

1.	はじめに
2. 環境設定

2.1 Eclipse Temurin JDK
2.2 Spring Tool Suite 4

2.2.1 STSのインストール
2.2.2 STSの日本語化
2.2.3 Web開発用プラグインのインストール

2.3 Lombok
2.4 PostgreSQL

2.4.1 PostgreSQLのインストール
2.4.2 環境変数PATHの設定

3. Spring BootでHello,world!
3.1 Hello,world!
3.2 GETリクエスト/POSTリクエスト
3.3 GETリクエストの処理

3.3.1 クエリ文字列からのデータ取得
3.3.2 URLパスからのデータ取得

3.4 POSTリクエストの処理
参考：STSにプログラムを入力するときのヒント

4. Thymeleafでフォーム操作
4.1 ThymeleafでHello, world!
4.2 フォーム部品
4.3 @ModelAttributeを使った入力データの取
得
補足：プロジェクト間でファイルをコピーする

5. セッション操作
5.1 セッションの必要性
5.2 数あてゲームでセッションを学ぶ
補足：セッション操作詳説

参照とは？
数当てゲーム 起動時の処理
1回目の処理
2回目の処理
[もう一度最初から]クリック時
同時に実行した場合

6. テーブルのデータを一覧表示する
6.1 テーブルの作成
6.2 プロジェクトの構成
6.3 エンティティ
6.4 リポジトリ
6.5 コントローラー
6.6 ビュー
6.7 その他ファイル
6.7 ビュー/コントローラー/リポジトリ/エンティティの
関係
todoテーブル作成手順

7. テーブルにレコードを追加する
7. 1 バリデーション
7. 2 コントローラー
7. 3 サービスクラス
7. 4 レコードの追加

7. 5 リダイレクト
7. 5 エラーメッセージの表示
補足：プロジェクトのコピー方法

8. テーブルのレコードを更新・削除する
8.1 主キーで検索する
8.2 レコードを更新する
8.3 レコードを削除する
8.4 Thymeleafでセッションのデータを参照する
8.5 PRG(Post-Redirect-Get)パターン

9. 入力された条件で検索する
9.1 検索条件フォームの追加
9.2 検索条件の取得
9.3 検索処理の定義・実行

10. 動的なクエリによる検索
10.1 動的なクエリ実行方法
10.2 DAO(Data Access Object)
10.2 JPQLによる動的クエリの実行

10.2.1 JPQLの組み立て
10.2.2 EntityManager

10.4 Criteria APIによる動的クエリの実行
10.4.1 Criteria APIの基礎
10.4.2 Criteria APIの利用

メタクラス作成手順
11. ページネーション(ページング)

11.1 Pageable/Pageの追加
11.2 ページリンクの作成

11.3 動的クエリ結果のページング
演習課題
参考資料

書籍
サイト

奥付

1.	はじめに
　
本書はSpring Boot3を使ってWebアプリケーション開発を始めた
い方向けの入門書です。
想定している読者は
・ITシステム開発企業の新入社員
・転職してWebプログラマーになりたい人
・自分でも何かWebアプリケーションを作ってみたい人
といった方々です。
　
著者は長年Java言語によるシステム開発に携わってきました。近
年はITシステム開発企業の新入社員向けJava導入教育の講師なども
務めており、要望があればSpring Bootも教えています。ただし
Servlet/JSPなど従来技術をやったあと、さらにSpring Bootへ
チャレンジする、というスタイルです。
そのとき、ふと「プログラミン初心者に、いきなりSpring Boot

を使ったWebアプリケーション開発を教えることは可能だろう
か？」という疑問が湧きました。最近は、導入教育もそこそこに、
開発現場に投入される人の話も聞きます。それは極端な例として
も、「最初の仕事がSpring BootでWebアプリケーション開発」と
いうパターンはありえるでしょう。本書はそういった方を念頭にお
いて執筆しました。
　
Spring Boot 3

Spring Boot 3(https://spring.io/projects/spring-boot)

はSpring Frameworkというフレームワーク群
(https://spring.io/projects)をシンプルに活用しやすくしたも
のです。Spring Frameworkを直接使うより少ない手間でWebアプリ
ケーションを構築できます。
このSpring Boot 3はSpring Bootの3番目のメジャーバージョ
ンであり、2022年11月にリリースされました。それ以前のメジャー
バージョンであるSpring Boot 2から一部のパッケージ名が変更さ
れるなど、ソースコード的に非互換な部分があります。
本書はこの最新のSpring Boot 3を使ってWebアプリケーション
を作っていきます。
なお本書ではSpring Boot3をSpring Bootと表記します。
　
本書の目標
この本を読み終わったら「簡単なマスタメンテプログラムを作れ
る」ようになるのが目標です。
「マスタ」は、そのシステムが管理する顧客や商品など基本的な
データを集めたものです。このマスタに対して検索、追加、更新、
削除といった操作を行えるようにするのが「マスタメンテプログラ
ム」であり、実際のシステム開発でも頻繁に登場します。これを
Spring Bootを使ったWebアプリケーションとして作成するにはど
ういった知識が必要か？そこから逆算して作成したのが本書です。
　
本書の内容は、上記目標を実現するのに必要最低限な事項を中心
としています。その上で、重要ポイントは冗長にならない程度に繰
り返し説明しています。

https://spring.io/projects/spring-boot
https://spring.io/projects

一方「Spring Framework」「DI(依存性注入)」「MVC(モデル-

ビュー-コントローラ)パターン」などについては、言及していませ
ん。プログラミング初期段階で、こういった概念的な話題を説明し
ても「有用性がイメージしにくく、腹落ちするのが難しい」という
導入教育での経験によるものです。本書を読み終わってから学んだ
方が理解しやすいでしょう。
　
前提知識
本書を読み進めるには「Java言語」「HTML」「リレーショナル
データベース/SQL」の知識が必要です。おおよそ以下のようなレベ
ルを前提としています。
・Java言語
クラス、インタフェース、制御文に加え、Listなどのコレク
ションやジェネリックスがある程度わかればベストです。

・HTML

ブラウザに「Hello, world!」といった文字列を表示させた経
験があればOKです。<table><th><tr><td>タグやリンク()を知っていれば最高です。それ以外に必要なタグ
は本書で説明します。

・リレーショナルデータベース/SQL

「リレーショナルデータベースのテーブルは、表のようなも
の」といった基礎知識を持っているのが望ましいです。また簡
単なSQL文(SELECT,INSERT,UPDATE, DELETE)がわかれば申し
分ないです。
　

本書の構成
本書の構成は下表のようになっています。
　章 　タイトル 　備考
　1章 　はじめに 　本章
　2章 　環境設定 　
　3章 　Spring Bootで

Hello, world

　Webアプリケーションの基礎知識

　4章 　Thymeleafでフォー
ム操作

　〃

　5章 　セッション操作 　〃
　6章 　テーブルのデータを

一覧表示する
　ToDo管理アプリケーションの開
発

　7章 　テーブルにレコード
を追加する

　〃

　8章 　テーブルのレコード
を更新・削除する

　〃

　9章 　入力された条件で検
索する

　〃

　10章　動的なクエリによる
検索

　〃

　11章　ページネーション
(ページング)

　〃

　ー 　演習課題
　ー 　参考情報
　

2章で開発環境を準備し、3～5章でWebアプリケーションの基礎を
説明します。また5章では、初心者にとって「継承」以上に鬼門と思
える「参照」について、パラパラ漫画風の図を多用して徹底解説し
ます。
6～10章では「ToDo管理アプリケーション」をステップ・バイ・
ステップで開発していきます。このToDoを一種のマスタと読み替え
れば、マスタメンテプログラムを作成できます。さらに11章では
(類書では見かけないが)実務では必ずと言っていいほど必要になる
「動的クエリのページネーション(ページング)」についても解説し
ます。
以上の内容を理解できれば、現場で周りの人との会話にも、ある
程度ついていけるようになるでしょう。また類書やインターネット
上の解説記事を読みこなすこともできるようになるでしょう。
　
本書の進め方
本書では各章の冒頭で何をやるか、何を作るかを説明します。あ
わせて画面のスクリーンショットやUMLのシーケンス図を提示しま
す。そのあとプログラムをできるだけ細かく解説します。
　
もし時間に余裕があれば、掲載しているプログラムを手入力しな
がら読み進めることをお勧めします。理由は2つあります。
1つは、開発ツールに慣れるためです。
本書ではSTSという、Spring Bootに欠かせない開発ツールを使い
ます。操作方法は本書でも説明しますが、これを利用し3章と4章で
は(非常に単純ですが)7個のWebアプリケーションを作ります。短い

サイクルで繰り返し手を動かせば、それだけ早くSTSを使いこなせ
るようになります。実務では、こういった開発ツールに対する習熟
度が生産性の差として現れる場合があります。その最初のチャレン
ジだと思ってSTSに取り組んでください。
　
2つめは、プログラムを手入力していくと、より深く学習できるか
らです。
書いてあるとおり入力したつもりでも、文法エラーや実行時エ
ラーが発生するでしょう。それを解決すればするほど経験値がアッ
プします。それ以外にもたくさんの気づきがあるでしょう。「なぜ
この値(名前)を使うのだろう？」「あそことここは、何が違ってい
るのだろう？」といった疑問はその典型です。それを自分で考え
る、周りの人に聞く、あるいはググるなどして、クリアしていくこ
とが、本当の学習であると著者は考えています。
　
人は理論ではなく、例題から学びます。だから「論よりラン

(run;実行)」です。手を動かしながら読み進めてください。
　
サポートサイト
本書掲載のプログラムは以下のURLから入手できます。追加情報が
あれば、あわせて掲載します。
https://kktworks.github.io/

kktworks@gmail.com(お問い合わせ)

@kktworks1(Twitter)

https://kktworks.github.io/

2. 環境設定
本書で使用している環境を下表に示します。いずれも2022年11月時点の安定版で
す。実際にインストールするものとは多少バージョンが異なると思いますが、適宜読
み替えてください。
　
【表2-1】本書の前提環境

No. 　名称 　Ver 　機能 　備考
　1 　

Windows10(64bit)

　- 　-

　2 　Chrome 　107.0 　Webブラウザ
　3 　Eclipse Temurin

JDK

　
17.0.5+8

　Javaプログラム開発
キット

　(Java Development

Kit)

　No.4 の前提ソフ
ト

　4 　Spring Tool

Suite 4

　4.16.1 　Spring Bootアプリ開
発環境

　Spring Boot

3.0.0

　5 　Eclipse Web開発
ツール

　3.27 　HTML/CSS編集用プラグ
イン

　6 　Lombok 　1.18.24　Java定型コード生成
ツール

　7 　PostgreSQL 　15.1 　リレーショナルデータ
ベース

　管理システム
　
以下No.3～7のインストール方法を説明します。
　

2.1 Eclipse Temurin JDK

JDKには開発元の違いなどにより、複数の種類(ディストリビューション)が存在し
ます。たとえばSpring BootがベースにしているSpring Frameworkは「 BellSoft

Liberica JDK」というものを推奨しています(https://spring.io/quickstart)。
しかし本書ではよりメジャーなJDKであったAdoptOpenJDKの流れを組む「Eclipse

Temurin JDK」を使用します。
　
インストール手順
1)ダウンロード
ブラウザでhttps://adoptium.net/temurin/releases/を開く。
Operating System[Windows], Architecuture[x64]を選択し、[.msi]をク
リックする ⇒ ダウンロードが始まる

　
2)ダウンロードしたファイル(msiファイル)を、エクスプローラーでダブルクリック
して実行する。
　
3)セットアップウィザードが起動する ⇒ [次へ(N)]ボタンをクリックする。

https://spring.io/quickstart
https://adoptium.net/temurin/releases/

　
4)使用許諾契約書が表示された場合は⇒ 内容確認 > [使用許諾契約書に同意しま
す]をチェック > [次へ(N)]ボタンをクリックする。
　

5)インストール機能選択画面が表示される。
[Set JAVA_HOME variable]をクリック > [ローカル ハード ドライブにインス
トール]を選択 > [次へ(N)]ボタンをクリックする。

　
6)[インストール(I)]ボタンをクリックする。

　
7)完了したら[完了(F)]ボタンをクリックする。

　
8)正常にインストールされたことを確認する。
コマンドプロンプトを開き、以下のコマンドを実行する。

java　--version

⇒ Versionが表示されることを確認する。

⇒ exitと入力するか、右上の[X]をクリックしてコマンドプロンプトを閉じる。
　

2.2 Spring Tool Suite 4

　
Spring Bootを使ったWebアプリケーション開発には、Spring Frameworkの開発元
であるSpringSourceが提供するツールを利用するのが一般的です。その方法には、
大きく分けて次の２つがあります。
1)Eclipse, Visual Studio Codeなどの統合開発環境(IDE)に「Spring Tools

4」を追加インストールする。
2)「Spring Tool Suite 4(以下STS)」を使用する。
　
本書では2)のSTSを使います。STSは「Spring Tools 4が組み込まれたEclipse」
であり、セットアップが簡単です。使用するPCにEclipseがインストールされていて
も、STSを別フォルダにすれば共存できます。
インストールしたSTSはPleiadesプラグインにより日本語化します。
　
2.2.1 STSのインストール

　
インストール手順
1)ダウンロード
ブラウザでhttps://spring.io/tools/を開く。
Spring Tools 4 for Eclipseの[WINDOWS X86_64]をクリックする ⇒ ダウン
ロードが始まる

https://spring.io/tools/

　
　
2)ダウンロードしたファイル(jarファイル)をエクスプローラーでダブルクリックす
る ⇒ 自動的に解凍される
　
3)解凍されたフォルダ(下図ではsts-4.16.1.RELEASE)を、任意の場所に移動させ
る。
⇒ 本書ではC:\下へ移動させたものとします。
⇒ 以降このC:\sts-4.16.1.RELEASEを<STS_DIR>と表記します。

　
2.2.2 STSの日本語化

　
インストールしたSTSをPleiadesプラグインにより日本語化します。
　
日本語化手順
1)ダウンロード
ブラウザでhttps://mergedoc.osdn.jp/を開く。
画面下部「Pleiadesプラグイン・ダウンロード」にある[Windows]をクリックす
る。

https://mergedoc.osdn.jp/

　
2)ダウンロードリンクをクリックする。

　
3)ダウンロードしたファイル(zipファイル)をエクスプローラーで右クリック >

[すべて展開(T)...]を選択し、解凍する。

　
4)解凍したフォルダの中にあるsetup.exeをダブルクリックして起動する。

　
5)セットアップ画面が表示される ⇒ [選択...]ボタンをクリックする。

　
6)<STS_DIR>下のSpringToolSuite4.exeを選択 > [開く(O)]ボタンをクリックす
る。

　
7)「日本語化するアプリケーション」が6)で選択した内容であることを確認 > [日
本語化する]ボタンをクリックする。

　
8)[OK]ボタンをクリックする。

　
9)[終了]ボタンが表示されたらクリックする。

　
10)STSが日本語化されたことを確認する。

エクスプローラーで<STS_DIR>\SpringToolSuite4.exeをダブルクリックして起
動する。
スプラッシュウィンドウが表示された後...

　
11)「ディレクトリー選択」ダイアログが表示される ⇒ [起動(L)]ボタンをクリッ
クする。

　
12)STSが起動する。
メニューなどが日本語で表示されていることを確認する。

　
2.2.3 Web開発用プラグインのインストール

　
続けてSTSへHTML/CSSを編集するためのプラグインを追加します。
　
追加手順
1)STSのメニュー[ヘルプ(H)] > [Eclipse マーケットプレース(M)...]をクリック
する。

　
2)検索(I)欄に"Eclipse Web"と入力 > [Go]ボタンをクリックする。

　
3)表示された“Eclipse Web 開発者ツール”の[インストール]ボタンをクリックす
る。

　
4)必須機能がチェックされていることを確認 > [確認(C)]ボタンをクリックする。

　
5)ライセンスを確認 > [使用条件の条項に同意します(A)]を選択 > [完了(F)]ボタ
ンをクリックする。

　
6)STSのウィンドウ右下にインストール状況が表示される。

　
7)完了したら[今すぐ再起動(R)]ボタンをクリックする。

　
8)「終了の確認」ダイアログが表示された場合は、[終了(E)]ボタンをクリックす
る。

　
9)ショートカットの作成(オプション)

STSの設定は以上です。
<STS_DIR>\SpringToolSuite4.exeのショートカットをデスクトップに作成して
おきましょう。
名称は適宜変更してください。

　
「スタートメニューにピン留めをする」「タスクバーにピン留め」するでも構い
ません。STSを起動しやすくしておきましょう。
　

2.3 Lombok

　
Javaでプログラムを作成しているとsetXXX()やgetXXX()など、同じようなコード
が繰り返し現れます。こういった定型的なものはSTSで自動生成できますが、
Lombok(ロンボック/ロンボク)を使えば、より効率的に対処できます。
　
インストール手順
1)ダウンロード
ブラウザでhttps://projectlombok.org/downloadを開く。
[Download x.xx.xx]の部分をクリックする ⇒ ダウンロードが始まる

　
2)ダウンロードしたファイル(jarファイル)をエクスプローラーでダブルクリックし
て実行する。

https://projectlombok.org/download

　
3)インストーラ―が起動し、STSがインストールされている場所を探す。
⇒ [IDEs]に<STS_DIR>\SpringToolSuite4.exeが表示されるのを待つ。
　⇒ チェックされていることを確認し[Install/Update]ボタンをクリックす
る。

　
4)インストールが完了したら[Quit Installer]ボタンをクリックする。

　
5)Lombokが正常にインストールされたことを確認する。
⇒ <STS_DIR>にlombok.jarがあることを確認する。

　

2.4 PostgreSQL

　
本書ではリレーショナルデータベース管理システム(RDBMS)として、

PostgreSQL(ポストグレスキューエル)を使います。
Spring Bootにも「H2」というデータベースが組み込まれており、設定ファイルを
用意するだけでプログラムからアクセスできます。しかし純粋にデータベースやSQL

を学びたいと思ったときには、かなりの不便を強いられます。
データベースシステムはSpring Bootから独立したものを準備した方が良いでしょ
う。その方が後々学習の幅を広げやすいでしょう。
そこで本書では、商用製品に匹敵する機能と性能を持ち、業務システムでも多くの
使用実績があるオープンソースのPostgreSQLを使います。
PostgreSQLはインストールしたあと、環境変数を設定します。
　
2.4.1 PostgreSQLのインストール

　
インストール手順

1)ブラウザでhttps://www.postgresql.org/download/windows/を開く。

⇒ "Download the installer"をクリックする。

https://www.postgresql.org/download/windows/

　
2)[↓]をクリックする ⇒ ダウンロードが始まる
本書では64ビットWindows用Version 15.1を使用します。

　
3)ダウンロードしたファイル(exeファイル)をエクスプローラーでダブルクリックし
て起動する。
　
4)セットアップウィザードが表示される ⇒ [Next>]ボタンをクリックする。

　
5)インストール先選択画面が表示される。
⇒ [Next]ボタンをクリックする(本書ではデフォルトのC:\Program

Files\PostgreSQL\15のままとします)。
⇒ 以下、このインストール先を<POSTGRES_DIR>と表記します。

　
6)インストール機能選択画面が表示される。

⇒ [Next>]ボタンをクリックする(本書ではデフォルトのままとします)。

　
7)データベースファイル格納位置選択画面が表示される。
⇒ [Next>]ボタンをクリックする(本書ではデフォルトのままとします)。

　
8)PostgreSQL管理者のパスワード入力画面が表示される。
⇒ 適宜パスワードを入力し、[Next>]ボタンをクリックする。
※ここで入力したパスワードは6章で使います。忘れないこと！

　
9)Port番号入力画面が表示される。
⇒ デフォルトの"5432"のままとする。[Next>]ボタンをクリックする。

　
10)Locale入力画面が表示される。
⇒ デフォルトの"Default Locale"のままとする。[Next>]ボタンをクリックす
る。

　
11)インストール条件が表示される ⇒ [Next>]ボタンをクリックする。

　
12)[Next>]ボタンをクリックする ⇒ インストール開始

　
13)インストール完了
⇒ 「Lunch Stack Builder are exit?」をクリア > [Finish]ボタンをクリッ
クする。

　
2.4.2 環境変数PATHの設定

　
1)「システムの詳細設定」を表示する。

■表示方法(複数あります)

・スタートメニューを右クリック > システム > 設定ウィンドウの[設定の検索]

に"詳細設定"と入力 >

候補に「システムの詳細設定の表示」が表示されるのでこれをクリック
・コントロールパネル > システムとセキュリティ > システム > システムの詳
細設定(表示方法が「カテゴリ」)

・コントロールパネル > システム > システムの詳細設定(表示方法が「大きい
アイコン」「小さいアイコン」)

　
2)[環境変数(N)...]クリックする。

　
3)「環境変数」ダイアログが表示される。
⇒ システム環境変数の"Path"をクリック > [編集(I)...]ボタンをクリックす
る。

　
4)「環境変数名の編集」ダイアログが表示される。
⇒ [新規(N)]ボタンをクリックする。

　
5)[参照(B)...]ボタンをクリックする。

　
6)<POSTGRES_DIR>\binを選択 > [OK]ボタンをクリックする。

　

7)<POSTGRES_DIR>\binが追加されたことを確認 > [OK]ボタンをクリックする。

　
8)環境変数ダイアログに戻るので[OK]ボタンをクリックして閉じる。

　
9)PostgreSQLが正常にインストールできたことを確認する。
コマンドプロンプトを開き、以下のコマンドを入力する
psql --version

⇒ Versionが表示されることを確認する。

⇒exitと入力するか、右上の[X]をクリックしてコマンドプロンプトを閉じる。

3. Spring BootでHello,world!

3.1 Hello,world!

　
多くのプログラミング入門書では、"Hello, world!"といった文字列を表示する、いわ
ゆる「Hello worldプログラム」から始めています。そこで本書もこれに習い、最初のプ
ログラムはSpring Boot版Hello worldです。完成すると以下のようになります。
　
■実行例
1)ブラウザを起動しhttp://localhost:8080/helloを開く。

　
2)"Hello, world!"と表示される

　
このようにとても単純なものです。ですが、内部ではWebアプリケーションの基礎である
リクエスト(Request)/レスポンス(Response)を使っています。「Hello, world」では、
これを学ぶことができます。
　
上記の操作をUML(Unified Modeling Language)のシーケンス図で表すと、次のように
なります。

【図3-1】Hello, worldのシーケンス

　
リクエストは、サーバーに対する何らかの「要求」です。この要求はURLで表します。
先ほどブラウザへ入力したURLは、次のような形をしています。

これで「localhost(=自マシン)の8080番ポートへ接続し、httpの規約に従って/hello

というデータを取得せよ」という要求になります。
　
リクエストを受け取ったサーバー(=localhost)は、/helloというパス名を処理するプ
ログラムを探し、そこに処理を依頼します。すると"Hello, world!"という文字列が返さ
れるので、それをブラウザへ送信します。レスポンスは、この「応答」のことです。
そして「パス名」と、それに対応する「処理」をペアにして持っているのが、「コント
ローラークラス」と呼ばれるJavaで記述したプログラムです。
　
では実際にSTSを使ってHello, world!を表示させてみましょう。
　
プロジェクトを作成する

1)STSを起動する
2.2節でインストールしたSTSを起動する。

　
2)「ワークスペースとしてのディレクトリー選択」ダイアログが表示される。

STSではJavaプログラムやHTMLファイル、設定情報など関連するリソースを「プロ
ジェクト」という単位で管理します。
そしてプロジェクトを格納するフォルダを「ワークスペース」と言います。つまり
ワークスペースは、プロジェクトを保管するフォルダです。このダイアログは、その
フォルダを選択するものです。
　
デフォルトでよければ、[起動(L)]ボタンをクリックします。
変更する場合は[ワークスペース(W)]にフォルダ名を入力してから[起動(L)]ボタンを
クリックします。
　
本書ではワークスペースを以下のように<STS_DIR>\workspaceとします。

　
3)STSの初期画面

STSの画面は、以下のような領域から構成されています。この構成を「Javaパースペク
ティブ」と言います。

　
【表3-1】Javaパースペクティブを構成する領域

　領域名 　機能
　パッケージ・エクスプ
ローラー

　プロジェクトのリソースを階層的に表示・操作する

　Bootダッシュボード 　プロジェクトに対応するサーバーを表示・操作する
　エディタ 　JavaプログラムやHTMLファイルなどを表示・編集す

る
　コンソール 　サーバーの実行状況を表示する
　アウトライン 　編集中のファイルのアウトラインを表示する
　
4)プロジェクトを作成する

STSのメニューから[ファイル(F)] > [新規(N)] > [Spring スターター・プロジェク
ト]を選択する。

　
「Spring スターター・プロジェクト」は「Spring Bootを使うのに必要な設定が済ん
でいるプロジェクトのひな型」です。この後ダイアログから各種情報を入力すると、
その内容を反映したプロジェクトが自動的に作成されます。
　

5)「新規Springスターター・プロジェクト」ダイアログが表示される。
[名前]に"Hello"と入力します。これが作成するプロジェクトの名前になります。
⇒ [名前]を入力すると、[ロケーション]、[成果物]が自動的に変更されます。
[タイプ]は Maven を選択してください。
また[Javaバージョン]が 17 になっていることを確認してください。
それ以外はデフォルトのままで大丈夫です。

　
[次へ(N)>]ボタンをクリックします。
　
デフォルトでタイプはGradleが選択されていると思います。このMavenやGradleはプロ
ジェクトで使うビルドツールのことです。興味がある方は調べてみてください。
　
　
6)依存関係を設定する

　
次に表示される「新規Springスターター・プロジェクト依存関係」では、このプロ
ジェクトで使用するフレームワークやライブラリを選択します。
　
まずフレームワークですが[Spring Bootバージョン]で3.0.0(あるいはそれ以降)を
選択してください。2.7.Xなどを選択すると、本書のプログラムで文法エラーになると
ころがあります。
　
またHelloプロジェクトでは、以下のライブラリを使用します。
[1]Spring Web

[2]Spring Boot DevTools

　
[1]はSpring BootでWebアプリケーションを作成するのに必須です。[2]はオプショ
ンですが、作業効率化に役立つので、合わせて選択することをお勧めします(具体的な
効用は後述します)。
　
選択の操作は、まず[使用可能]に"Spring Web"と入力します。するとこのキーワード
を含むものが表示されるので、その中から「Spring Web」をチェックします。これで

右側の「選択済み」に「Spring Web」が表示されます。

　
続けて今度は[使用可能]に"Spring Boot Dev"と入力します。「Spring Boot

DevTools」が表示されるので、これもチェックします。

　
なおこの２つは本書のすべてのプロジェクトで使います。選択済みの状態で[デフォル
トにする]ボタンをクリックすると、次のプロジェクトから選択する手間が省けます。
　
[次へ(N)>]ボタンをクリックします。
　
7)プロジェクトを作成する

[完了(F)]ボタンをクリックします。これでHelloプロジェクトが作成されます。

　
STSで初めてプロジェクトを作成するときは、インターネット経由で多くのリソースを
ダウンロードするため、少々時間がかかります(回線速度が遅いと10分以上かかること
もあります)。2回目以降は、差分だけなので早くなります。インターネットに接続し
ていないと、プロジェクトを作れないので注意してください。
　
プロジェクトが作成されると、パッケージ・エクスプローラーに表示されます。
⇒Helloの右側に[boot][devtools]と表示されるまで待ちます。

　
8)作成されたプロジェクト内容
パッケージ・エクスプローラーのHello左にある[>]をクリックしていくと、プロジェ
クトの内容を表示できます。

　
src/main/java下には、これからJavaクラスを定義していきます。
なおHelloApplication.javaはプロジェクト作成時、自動的に作成されたクラスで、
このプロジェクトを実行するときのエントリーポイントです(Javaプログラムの
main()のようなイメージです)。ファイル名は「プロジェクト名」+

"Application.java"という意味です。
　
src/main/resources下のフォルダ、ファイルの用途は以下のようになっています。
【表3-2】src/main/resources下のフォルダおよびファイル

　フォルダ/ファイル 　用途
　static 　CSSファイルなど、内容が変化しないファイルを格納する

フォルダ
　templates 　処理結果画面など、内容が動的に変化するファイルを格納

するフォルダ
　
application.properties

　DB接続情報など、プロジェクト全般に関わる設定情報を
記述するファイル

　
詳細は後述します。
　

コントローラークラスを作成する
プロジェクトができたので、ここに「URLのパス名」と「対応する処理」をペアで持つ
「コントローラークラス」を追加します。名称は自由ですが、このクラスの役割
は"Hello, world!"という文字列を返すことなので、「HelloController」とします。こ
のようにコントローラークラスの名称は、～Controllerとするのが一般的です。
　
作成手順は以下のようになります。
1)パッケージ・エクスプローラーでcom.example.demoを右クリック > [新規(W)] >

[クラス]を選択する。

　
2)「新規Javaクラス」ダイアログが表示される。

[名前(M)]に"HelloController"と入力 > [完了(F)]ボタンをクリックする。

　
3)作成されたHelloController.javaを次のように編集する(保存は[CTRL]+S)。

　　　　　　　　　　　　　↓

【リスト3-1】com.example.demo.HelloController.java

package com.example.demo;

　
import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

　
@RestController　　　　　　　　　　　//　①

public class HelloController {

　　@GetMapping("/hello")　　　　　 //　②

　　public String sayHello() {

　　　　return "Hello, world!";

　　}

}

　
ポイントは@で始まるアノテーション(注釈)という付加情報です。
アノテーションは直後にあるものに対して、いろいろな情報を付与します。
　
ここでは２つのアノテーションを使っています。
①@RestControllerアノテーション
「コントローラークラスのメソッドで処理した結果を、そのままレスポンスとしてブ
ラウザへ送信する」ことを表すアノテーションです。本来はJSONやXMLなどを返す
「RESTインターフェース」で使うものですが、「テキストを返す」機能を流用できる
ので、このアノテーションを利用します(画面用のアノテーションは後述します)。
　
②@GetMappingアノテーション
「GETリクエストに対応するメソッド」であることを表すアノテーションです。
「GETリクエスト」は、サーバーへリクエストを送る方法の１つです。詳しくは3.2節
で説明しますが、
ブラウザのアドレス欄に
　http://localhost:8080/hello

といったURLを入力すると、サーバーには「GETリクエスト」として送信されます。
@GetMappingは、このGETリクエストを処理するメソッドであることを表しています。
　
@GetMappingの引数には処理対象とする「URLのパス名」を書きます。
@GetMapping("/hello")とすると、GETリクエストで/helloが送られてきたら、直後
にあるsayHello()が自動的に呼び出されるようにしてくれます。これが先に説明した
「URLパス名に対応する処理」になります。このようなメソッドを「ハンドラーメソッ
ド」と言います。
　
プロジェクトの実行
では実行してみましょう。
まず以下のような方法で、プロジェクトを実行します。
1-a)パッケージ・エクスプローラーのHelloプロジェクトを右クリック > [実行(R)] >

[Spring Boot アプリケーション]を選択する。

　
または
1-b)Bootダッシュボード > Localの[>]をクリック > Helloを選択 > [(再)開始]ボタ
ンをクリックする。

　
2)コンソールにメッセージが出力され始めます。
⇒”Started HelloApplication ...“が出力されるまで待ちます。

　
3)初めてSTSでプロジェクトを実行するとき、以下のようなメッセージが表示されること
があります。この場合は[アクセスを許可する(A)]ボタンをクリックしてください。

　

　
4)Helloプロジェクトが起動したら、ブラウザのアドレス欄に
http://localhost:8080/helloと入力します。
⇒"Hello, world!"と表示されればOKです。

　
5)成功したらSTSに戻って、HelloController.javaのreturn文を以下のように変更→保
存してください。
⇒再びコンソールにメッセージが出力され始めるので、止まるまで待ちます。
　
　return "Hello, world!";

　　　↓

　return "みなさん, こんにちは!";

　
　
6)ブラウザの再読み込みボタンを押すか、[CTRL]+[R]または[F5]を押して再読み込みし
ます。
⇒表示内容が変わればOKです。

　
このようにプログラムを変更→保存すると、再デプロイ(deploy)やサーバーを再起動す
ることなく、すぐ反映されます。これが依存関係で選択したSpring Boot DevToolsの機
能です。変更した結果を素早く確認できるので、効率良く作業を行えます。
　
プロジェクトの停止
プロジェクトを停止するときは、以下のような方法で行います。
1-a)パッケージ・エクスプローラーでHelloプロジェクトを選択 > ツールバーの[停止]

ボタンをクリックする。

　
または
1-b)BootダッシュボードでHelloを選択 > [停止]ボタンをクリックする。

　

3.2 GETリクエスト/POSTリクエスト
　
一般にWebアプリケーションでは、ブラウザから処理して欲しいデータなどをリクエスト
に乗せてサーバーへ送ります。リクエストには何種類かありますが、本書では「GETリクエ
スト」「POSTリクエスト」を使います。
　
この２つはリクエストをどこから送るか？で使い分けます。
【表3-3】GETリクエストとPOSTリクエスト

　リクエスト 　リクエスト送信元
　GETリクエスト
 ・ブラウザのアドレス欄

・リンク(a要素)

・method属性にgetを指定したform要素(<form>～</form>)

　POSTリクエスト ・method属性にpostを指定したform要素(<form>～</form>)

　
一般的にGETリクエストはサーバーからのデータ取得、POSTリクエストはデータ登録で
使われます。
以下GETリクエスト、POSTリクエストでサーバーへデータを送る方法を説明します。
　
この「GETリクエスト」「POSTリクエスト」は、「HTTPのGETメソッドを指定したリク
エスト」、同じく「POSTメソッドを指定したリクエスト」のことです。メソッドには他
にもPUT, DELETE, HEAD, OPTIONS, TRACEなどがあります。興味がある方は調べてみ
てください。
　

3.3 GETリクエストの処理
　
GETリクエストでは、サーバーへ送るデータをURLに付加します。その方法には次の２つ
があります。
①クエリ文字列
②URIパス変数
　
3.3.1 クエリ文字列からのデータ取得

　
インターネットをブラウズしていると、?を含むURLがブラウザのアドレス欄に表示され
ることがあります。
例.

　
この?に続くのがデータです。これをクエリ文字列(Query String)と言います。「パラ
メータ名=パラメータ値」という形式で、複数あるときは&で繋げます。上記のURLなら、
下表のようなパラメータがサーバーへ送信されます。
　
【表3-4】クエリ文字列name=James&age=26の意味

　パラメータ
名

　パラメータ値 　備考

　name 　James

　age 　26 　文字列として送られる
　
ではプロジェクトを追加し、新しいHello,worldプログラムを作成します。今度はブラ
ウザから名前を渡せるようにします。
URLパスは/hello2とし、名前はname=Jamesのように、クエリ文字列で指定します。

これをブラウザから入力すると、以下のようにnameの値と合わせて、テキストが表示さ
れます。
　
■http://localhost:8080/hello2?name=Jamesの実行結果

　
作成するプロジェクトの仕様
プロジェクトの作成手順は、前節のHelloプロジェクトと同様です。ここにはキーになる
項目だけ記載します。
　プロジェクト名 　Hello2

　依存関係 　Spring Web, Spring Boot DevTools

　コントローラー
クラス

　Hello2Controller

　
1)プロジェクトの作成

STSのメニューから[ファイル(F)] > [新規(N)] > [Spring スターター・プロジェク
ト]を選択。
「新規Springスターター・プロジェクト」で[名前]に"Hello2"を入力。
[タイプ]はMaven, [Javaバージョン]は17とします。

　
2)依存関係の指定

Spring Web, Spring Boot DevToolsを選択。
　⇒Helloプロジェクトで使用したものが[使用頻度高]に表示されていれば、それを
チェックします。
　⇒表示されていない場合は、Helloプロジェクトと同じ手順で選択してください。

　
3)コントローラークラスの作成
パッケージ・エクスプローラーでHello2のcom.example.demoを右クリック > [新規
(W)] > [クラス]を選択する。[名前(M)]に"Hello2Controller"と入力する。

　
Hello2Controllerを、以下のように編集します。
【リスト3-2】com.example.demo.Hello2Controller.java

package com.example.demo;

　
import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.RestController;

　
@RestController

public class Hello2Controller {

　　@GetMapping("/hello2")

　　public String sayHello(@RequestParam("name") String name) {

　　　　return "Hello, world! " + "こんにちは " + name + "さん!";

　　}

}

　

基本的な構造はHelloControllerと同じです。違いはsayHello()に引数があり、
@RequestParamアノテーションが付与されていることです。
@RequestParamは引数で指定されたパラメータの値を、メソッド実行前にクエリ文字列
から取得し、メソッド引数へセット(バインド)します。

このようにsayHello()は、引数nameに"James"が設定された状態で始まります。これを
使ってブラウザに返信する文字列(=レスポンス)を作成します。
　
@RequestParamの引数は、クエリ文字列のパラメータ名と一致させます。
一方、バインドされる引数名は自由です。たとえば次のようにすると、引数onamae

に"James"がセットされます。
　
public String sayHello(@RequestParam("name") String onamae) 　//　	OK

　
　
しかし次の場合は、クエリ文字列にonamaeという名前のパラメータが無いため、実行時
エラーが発生します。
　
public String sayHello(@RequestParam("onamae") String name)　 //　	NG

　
　
パラメータが複数あるときは、その分@RequestParamを付与したメソッド引数を記述し
ます。
http://localhost:8080/hello2?name=James&age=26

↓

public String sayHello(@RequestParam("name") String name, @RequestParam("age") int

age)

メソッドの引数ageはint型なので、自動的にintに変換されてバインドされます。

　
なお@RequestParamの名称と、バインドされる引数名が同じなら、@RequestParamは省
略できます。よって以下のようにすることもできます。
public String sayHello(@RequestParam("name") String name, @RequestParam("age") int

age)

↓

public String sayHello(String name, int age)

　
3.3.2 URLパスからのデータ取得

　
GETリクエストでデータを送るもう１つの方法は、URLパスにその値を含めてしまうもの
です。
たとえばURLパス/hello3へ“James”というデータを送るとき、下記のようにすることも
できます。
http://localhost:8080/hello3/James

　
次のプロジェクトでは、この値を取り出して表示します。実行イメージは以下のように
なります。
■http://localhost:8080/hello3/Jamesの実行結果

　　　　　　　　　　　↓

　
作成するプロジェクトの仕様

　プロジェクト名 　Hello3

　依存関係 　Spring Web, Spring Boot DevTools

　コントローラー
クラス

　Hello3Controller

　
【リスト3-3】com.example.demo.Hello3Controller.java

package com.example.demo;

　
import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RestController;

　
@RestController

public class Hello3Controller {

　　@GetMapping("/hello3/{name}")

　　public String sayHello(@PathVariable("name") String name) {

　　　return "Hello, world! " + "こんにちは " + name + "さん! ";

　　}

}

　
前節のHello2Controllerと、以下の点が異なります。
1)@GetMappingアノテーション
引数に{}で囲まれた部分があります。これはURLパスから値として取り出す部分を指定
するもので「URIテンプレート変数」と言います。この場合、URLパス
が/hello3/Jamesなら、nameという名前で"James"を取り出せます。
　

2)@PathVariableアノテーション
@RequestParamが@PathVariableに変わっています。このアノテーションは、1)の
URIテンプレート変数の値をメソッド引数にセット(バインド)します。
　

　
なお@PathVariableの名前は、URIテンプレート変数名と一致させる必要があります。
　
@GetMapping("/hello3/{onamae}")

public String sayHello(@PathVariable("onamae") String name) { 　//　OK

　
　
　
@GetMapping("/hello3/{name}")

public String sayHello(@PathVariable("onamae") String name) { 　//　NG

　
　
複数の値を埋め込むときは、以下のようにします。
http://localhost:8080/hello3/James/26

↓

@GetMapping("/hello3/{name}/{age}")

public String sayHello(@PathVariable("name") String name, @PathVariable("age") int

age)

　

3.4 POSTリクエストの処理
　
次にPOSTリクエストですが、POSTリクエストは、会員登録画面などHTMLのform要素で作
成した画面に入力されたデータを、サーバーへ送るのに使います。本節ではformに入力さ
れた名前を取得し、Hello, world!と合わせて出力します。実行イメージは以下のように
なります。
　
■実行例
1)入力画面(hello.html)を要求する(GETリクエスト)：
http://localhost:8080/hello.html

　　　　　　　　　　↓

2)入力画面が表示される(レスポンス)

　　　　　　　　　　↓

3)名前を入力して[実行]ボタンをクリックする(POSTリクエスト)

　　　　　　　　　　↓

4)結果表示(レスポンス)

　
この操作ではブラウザ～サーバー間をリクエスト/レスポンスが2往復しています。

【図3-2】POSTリクエスト版Hello, worldのシーケンス

　
最初の画面要求は、ブラウザのアドレス欄に

URL(http://localhost:8080/hello.html)を入力するのでGETリクエストです。このリ
クエストのように(URLパスでなく)ファイル名を指定すると、そのファイルがレスポンス
として返されます。
　
hello.htmlで[実行]ボタンをクリックすると、POSTリクエストが送信されます。入力さ
れたデータは、クエリ文字列の形式(name=James)でリクエストの「メッセージボディー」
という部分に格納され、サーバーへ送られます。メッセージボディーについては割愛しま
すが、POSTリクエストもGETリクエスト同様、パラメータ名(ここではname)がキーになる
ことを覚えておいてください。
　

作成するプロジェクトの仕様

　プロジェクト名 　Hello4

　依存関係 　Spring Web, Spring Boot DevTools

　コントローラー
クラス

　Hello4Controller

　 作成ファイル 　src/main/resources/static/hello.html(入力画面)

　
hello.htmlファイルは、以下のように作成します。
1)パッケージ・エクスプローラーのHello4を展開しsrc/main/resources下のstaticを
右クリック > [新規(W)] > [その他(O)]を選択。

　
1)「新規」ダイアログの[ウィザード(W)]に"HTML"と入力。表示された[HTMLファイル]

を選択 > [次へ(N)>]ボタンをクリックする。
※Eclipse Web 開発者ツールがインストールされていないと、ここで「HTMLファイル」
が表示されません。その場合は「2.2.3 Web開発用プラグインのインストール」の操作
を行ってから実行してください。

　
3)「新規HTMLファイル」ダイアログの[ファイル名(M)]に"hello.html"と入力 > [次へ
(N)>]ボタンをクリックする。

　
4)[新規 HTMLファイル(5)]が選択されていることを確認して、[完了(F)]ボタンをク
リックする。

　
5)hello.htmlが作成される。
　
作成したhello.htmlは、以下のように編集します。
【リスト3-4】src/main/resources/static/hello.html

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Hello</title>

</head>

<body>

　<form action="/hello4" method="post">

　　<input type="text" name="name" placeholder="お名前を入力してください">

　　<input type="submit" value="実行">

　</form>

</body>

</html>

　
hello.htmlを作成したstaticフォルダは、静的(static)なファイル、言い換えると実
行中に内容が変化しないファイルを格納する場所です。格納されているものと同名のファ
イルがリクエストされると、Spring Bootがその内容をブラウザへ自動的に返信します(コ
ントローラークラスを経由しない)。
　
実行例と見比べると、最初のinput要素は名前入力欄ということがわかると思います。

　
このようにinput要素は、ブラウザにデータを入力するための部品(フォーム部品)で
す。どのような形状にするかはtype属性で決めます(詳細は次章で説明します)。
上記のようにtype="text"なら、テキスト入力フィールド(1行)になります。
name属性は、フォーム部品の名前であり、サーバーへ送信する際のパラメータ名に使わ
れます。
またplaceholder属性は、初期表示する文字列です(何か入力されると消える)。
　
もう１つのinput要素はtype="submit"です。これもブラウザと見比べると[実行]ボタ
ンということがわかると思います(value属性の値がボタンのキャプション)。
　
submitボタンはクリックされたとき、自分が属しているform要素に入力された内容を、
クエリ文字列形式(パラメータ名=パラメータ値)にしてサーバーへ送信します。
この[実行]ボタンの場合、form要素の開始タグは、次のようになっています。
　
　<form action="/hello4" method="post">

　
action属性はデータの送信先、method属性は送信方法です。[実行]ボタンがクリックさ
れたら、入力内容を/hello4へPOSTメソッドで送ります。データはクエリ文字列形式
(name=Jmaes)になっていると思ってください。
なおmethod属性をgetにすれば、formからもGETリクエストを送れますが、あまり使う機
会は無いと思います。
　
これを受け取るコントローラーは次のようにします。
【リスト3-5】com.example.demo.Hello4Controller.java

package com.example.demo;

　
import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.RestController;

　
@RestController

public class Hello4Controller {

　　@PostMapping("/hello4")　//　①

　　public String sayHello(@RequestParam("name") String name) {　//　②

　　　　return "Hello, world! " + "こんにちは " + name + "さん!";

　　}

}

　
　
ハンドラーメソッドに付与されている@PostMappingアノテーションは「POSTリクエスト
を処理するメソッド」ということを表しています。(①)。
フォーム部品に入力された値は、GETリクエストと同じくクエリ文字列形式(パラメータ
名=パラメータ値)のため、@RequestParamで受け取ります(②)。
これでPOSTリクエストによって送られたフォームの入力値を取得できるようになりま
す。
　
　
本章ではいろいろな方法で“Hello, world!”を表示させました。ここで説明した内容
は、このあとも形を変えて頻繁に現れます。必要に応じて読み直してください。

　
　

参考：STSにプログラムを入力するときのヒント
　
STSでソースコードを入力するとき、import文を後回しにすると楽ができます。
たとえば以下のリストは、本章最初のものですが、このimport文を手打ちするのは少々
骨が折れます(本書の終盤になるとimport文が10行以上になります)。
【リスト3-1】com.example.demo.HelloController.java(再掲)

package com.example.demo;

　
import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

　
@RestController

public class HelloController {

　　@GetMapping("/hello")

　　public String sayHello() {

　　　　return "Hello, world!";

　　}

}

　
こういった場合、import文は入力せず、あとからSTSのクイックフィックス(Quick

Fix)機能で挿入すると、キータッチ数を減らせます。
　
以下、上記リストの入力を例に説明します。
1)import文を入力せず、"@RestController"を入力して改行すると、文法エラーを表す
赤波線が引かれる。
⇒ 気にしないで次の行まで入力する。

　
2)次の行まで入力したところ

　
3)@RestControllerにマウスカーソルを合わせる
⇒ポップアップウィンドウが表示される。
　⇒これがクイックフィックス(Quick Fix)。文法エラーに対する解決策が表示され
ている。

　
4)この中の「'RestController'をインポートします」のリンクをクリックする。

　
5)org.springframework.web.bind.annotation.RestControllerのimport文が挿入さ
れる。

⇒@RestControllerの赤波線も消える

　
6)@GetMappingも同じようマウスカーソルを合わせる⇒ポップアップウィンドウが表示さ
れる。

　
7)この中の「'GetMapping'をインポートします」のリンクをクリックする。

　
8)org.springframework.web.bind.annotation.GetMappingのimport文が挿入され
る。
⇒@GetMappingの赤波線も消える

　
クイックフィックスは、クラスやインターフェースのimport文も作成できます。手順は
上記と同じ「赤波線が引かれているものにマウスカーソルを合わせる」です。

4. Thymeleafでフォーム操作
　
前章ではレスポンス(処理結果)として文字列をブラウザ上に表示しました。ではもっと

WebアプリケーションらしくWeb画面(HTML)を返したいときはどうすればいいでしょう？技
術的には文字列操作でも対応可能です。しかし、以下のようにコードの見通し・可読性が
悪く、よい方法とは言えないでしょう。
【リスト4-1】文字列操作でHTMLを組み立てる

　StringBuilder sb = new StringBuilder();

　final String LS = System.lineSeparator();

　sb.append("<!DOCTYPE html>" + LS);

　sb.append("<html>" + LS);

　sb.append("<head>" + LS);

　sb.append("<meta charset=\"UTF-8\">" + LS);

　　：
　sb.append("</html>" + LS);

　return sb.toString();

　
実際のWebアプリケーションでは、条件によって作成する内容を変えたり、繰り返し処理
も必要です。またCSS、JavaScriptなどもあるでしょうから、さらに複雑になります。
このためWebアプリケーション開発では、プログラムを「入力データを処理する部分」と
「Web画面を作成する部分」に分け、後者には「テンプレートエンジン」というものを利用
するのが一般的です。
Spring Bootにも複数種類の「テンプレートエンジン」が用意されています。本書で
は、そのうちの１つである「Thymeleaf(タイムリーフ)」を使用します。
　
Thymeleafの特長
1. HTMLとの親和性が高い

Thymeleafで作成したWeb画面のソースコードは、一見するとHTMLファイルのようで
す。実際、格納するときのファイル拡張子はhtmlです。これは<input>などのHTMLタ
グに、Thymeleaf独自の属性を追加していくためです。HTMLの知識があれば非プログ
ラマーでも、習得コストは比較的少なくて済む、と言われています。
　

2. 最も使用されている
適用実績について統計的な裏付けはないのですが、Spring Bootで最も使用されてい
るテンプレートエンジンはThymeleafではないかと思います。他にもJSP(JavaServer

Pages)、Groovyなども利用可能ですが、試しにGoogle Trendsで比較してみると、注
目されているのはThymeleafのようです。

　
本書では、HTMLがわかれば習得が容易なThymeleafを使いWeb画面を作成していきます。
　

4.1 ThymeleafでHello, world!

　
Thymeleafも"Hello, world!"から始めます。
前章Hello2のように、パラメータで渡された名前を含めて表示できるようにします。
■実行例：http://localhost:8080/hello5?name=James

　
プロジェクトの作成方法は、これまでと同じです。依存関係では「Thymeleaf」を追加
します。
　
作成するプロジェクトの仕様

　プロジェクト名 　Hello5

　依存関係 　Spring Web, Spring Boot DevTools, Thymeleaf

　コントローラー
クラス

　Hello5Controller

　 作成ファイル 　src/main/resources/templates/hello.html

　
依存関係
[使用可能]に"Thymeleaf"と入力して選択します。

　
作成ファイル
Thymeleafが使用するファイル(テンプレート)をプロジェクトに追加します。追加場所
はsrc/main/resources下にあるThymeleafフォルダです。Thymeleafで使うファイル
は、このtemplates下に格納します。

　
ここにhello.htmlというファイルを作成し、以下のように編集してください。
　

【リスト4-2】src/main/resources/templates/hello.html

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org">　　<!-- ① -->

<head>

<meta charset="UTF-8">

<title>Hello</title>

</head>

<body>

Hello, world! こんにちはさん!　<!-- ② -->

</body>

</html>

　
一見するとただのHTMLですが、２つポイントがあります。
①<html xmlns:th="http://www.thymeleaf.org">

「このHTMLファイルに"th:～"という属性があれば、それはThymeleafのもの」という
ことを宣言しています。こう宣言するとThymeleafはテンプレートファイルから"th:

～"を探し、そこで何らかの処理(主にコンテンツ生成)を行います。②はその典型例で
す。
　
②

span要素にth:textという属性があります。Thymeleafはth:textを見つけると、右
辺"${...}"の中に書かれている変数の値を、タグのテキストに変換します。この
${...}を「変数式」と言います。
たとえば変数nameに"James"が設定されていれば、Thymeleafが次のようにします。
　
Hello, world! こんにちはJamesさん!

　
　

"th:～"の処理が終わったら、サーバーはThymeleafが処理したテンプレートファイル
を、レスポンスとしてブラウザに返します。
　
では、変数nameはどこから来るのでしょうか？これはコントローラークラスから渡され
ます。
【リスト4-3】com.example.demo.Hello5Controller.java

package com.example.demo;

　
import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.servlet.ModelAndView;

　
@Controller　　　　　　　　　　　　　//　①

public class Hello5Controller {

　　@GetMapping("/hello5")

　　public ModelAndView sayHello(@RequestParam("name") String name,

　　　　　　　　　　　　　　　　　　ModelAndView mv) {　//②

　　　　mv.setViewName("hello");　　//　③

　　　　mv.addObject("name", name); //　④

　　　　return mv;　　　　　　　　　　//　⑤

　　}

}

　
前章のコントローラークラスに比べ、いくつか違っている点があります。
①@Controllerアノテーション
前章では@RestControllerをクラスに付与しましたが、@Controllerに変わっていま
す。
@RestControllはテキスト用のものでした。一方、ここではThymeleafが処理したテ
ンプレート(HTML)を返します。こういった場合は、@Controllerを使います。
　
②ModelAndViewオブジェクト
メソッド引数にModelAndViewオブジェクトが追加されています。またメソッドの戻り
値もModelAndView型です。
このModelAndViewは、その名の通り「モデル」と「ビュー名」を保持するクラスで
す。
・ビュー名：次に表示する画面名
・モデル：ビュー(画面)で使用するデータ
　
ビュー名はModelAndView#setViewName()で設定します(③)。

　
　mv.setViewName("hello");　　//　③

　
Thymeleafは設定されたビュー名に拡張子".html"を追加したファイルを

src/main/resources/templates下から探します。よって③は、次に表示する画面として
【リスト4-2】のhello.htmlを指定したことになります。
　
次のModelAndView#addObject()は、このビューが使うデータを渡します(④)。
　
　mv.addObject("name", name); //　④

　
第2引数がビューに渡すデータ(オブジェクト)です。第1引数はその名前です。少々紛ら
わしいのですが、hello.htmlに記述したth:text="${name}"のnameに対応するのは、第1

引数の方です。
　
名前を以下のように変えてもかまいません。この場合は、ビュー側も第1引数に合わせま
す。
　mv.addObject("onamae", name); //　④

　　　↓

　

　
最後にビュー名とモデルをセットしたmvをreturnします(⑤)。mvはThymeleafに渡さ
れ、前述の処理が実行されます。そしてブラウザには、入力された名前を含むhello.html

が返されます。
図で表すと以下のようなイメージになります。

【図4-1】Thymeleafの機能
　

4.2 フォーム部品
　
前章「3.4 POSTリクエストの処理」では、フォーム部品としてテキスト入力フィールド

(type="text")とsubmitボタン(type="submit")を使いました。本節ではそれ以外の
フォーム部品の使い方について説明します。
例として以下のような「会員登録画面」を作成します。データ入力後[実行]ボタンをク
リックすると、入力内容が一度サーバーへ送られ、文字列として返される単純なもので
す。
　
■入力画面(input.html):http://localhost:8080/input.html

　　　　　　　　　　　　　　　　　 ↓[実行]ボタンクリック
■結果画面(result.html)

　
作成するプロジェクトの仕様

　プロジェクト名 　Registration

　依存関係 　Spring Web, Spring Boot DevTools, Thymeleaf

　コントローラー
クラス

　RegistrationController

　 作成ファイル 　src/main/resources/static/input.html(入力画面)

　src/main/resources/templates/result.html(結果画面)

　
入力画面はstaticフォルダにinput.htmlとして作成します。このファイルはth:～を含
まないため、テンプレートではありません(=Thymeleafが処理しない)。こういったファイ
ルはstaticフォルダ下に格納します。
　
【リスト4-4】src/main/resources/static/input.html

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>会員登録</title>

</head>

<body>

　◇会員登録
　<form action="/register" method="post">

　　<table border="1">

　　　<tr>

　　　　<td>氏名</td>

　　　　<td>

　　　　　<input type="text" name="name">

　　　　</td>

　　　</tr>

　　　<tr>

　　　　<td>パスワード</td>

　　　　<td>

　　　　　<input type="password" name="password">

　　　　</td>

　　　</tr>

　　　<tr>

　　　　<td>性別</td>

　　　　<td>

　　　　　<input type="radio" name="gender" value="1">男
　　　　　<input type="radio" name="gender" value="2">女
　　　　　<input type="radio" name="gender" value="9">無回答

　　　　</td>

　　　</tr>

　　　<tr>

　　　　<td>地域</td>

　　　　<td>

　　　　　<select name="area">

　　　　　　<option value="1">北海道</option>

　　　　　　<option value="2">東北</option>

　　　　　　<option value="3">関東</option>

　　　　　　<option value="4">中部</option>

　　　　　　<option value="5">近畿</option>

　　　　　　<option value="6">四国</option>

　　　　　　<option value="7">九州・沖縄</option>

　　　　　</select>

　　　　</td>

　　　</tr>

　　　<tr>

　　　　<td>興味のある分野</td>

　　　　<td>

　　　　　<input type="checkbox" name="interest" value="1">ハード・インフラ

　　　　　<input type="checkbox" name="interest" value="2">プログラミング

　　　　　<input type="checkbox" name="interest" value="3">データベース
　　　　　<input type="checkbox" name="interest" value="4">ネットワーク
　　　　　<input type="checkbox" name="interest" value="9">その他
　　　　</td>

　　　</tr>

　　　<tr>

　　　　<td>備考</td>

　　　　<td>

　　　　　<textarea name="remarks" rows="4" cols="80"></textarea>

　　　　</td>

　　</table>

　　<input type="submit" value="実行">

　</form>

</body>

</html>

　
下表はこのinput.htmlを含め、本書で使っているフォーム部品と属性値をまとめたもの
です。またform要素についても記載しました。
　
【表4-1】form要素

　タグ 　詳細
<form></form>
 　フォーム部品の上位要素として記述する。

　　action属性：入力内容の送信先

　　method属性：入力内容の送信方法(post, getのいずれ
か)

　
【表4-2】フォーム部品

　タグ 　詳細
<input type="text">
 　テキスト入力フィールド(1行)

　　value属性：入力フィールドのテキスト(パラメータ値)

　　placeholder属性：初期表示する文字列
<input

type="password">

　パスワード入力フィールド

　　value属性：入力フィールドのテキスト(パラメータ値)

<input type="radio">
　ラジオボタン(１つのみ選択可能)

　同じname属性値のラジオボタンでグループを構成する

　　value属性：選択されているとき、サーバーへ送信する値
(パラメータ値)

　　checked属性：画面表示時、選択状態とする
<input

type="checkbox">

　チェックボックス(複数選択可能)

　同じname属性値のチェックボックスでグループを構成する

　　value属性：選択されているとき、サーバーへ送信する値
(パラメータ値)

　　checked属性：画面表示時、選択状態とする
<input

type="submit">

　

　フォームに入力された内容をform要素のaction属
性/method属性に

　従い送信する。

<input

type="hidden">

　

　画面上には表示されないが値を保持する項目(隠し項目)

　　value属性：非表示で保持するテキスト(パラメータ値)

<textarea>

</textarea>

　テキスト入力フィールド(複数行)

　　rows属性：入力フィールドの幅(文字数で指定)

　　cols属性：入力フィールドの高さ(行数で指定)

　　placeholder属性：初期表示する文字列
<select></select>
 　セレクトボックス

　選択肢はoption要素で作成する

　　size属性：

　　　　選択肢の表示行数

　　　　　　省略した場合

　　　　　　　　multiple属性がある場合、4

　　　　　　　　ない場合、1(プルダウン形式)

　　multiple属性：

　　　　選択肢を複数選択可能にする

　　　　　⇒Windowsの場合、[Shift]または[Ctrl]キーを
押しながら選択

　　　　ない場合、選択できる選択肢は１つ
<option></<option>
 　選択肢

　　value属性：選択されているとき、サーバーへ送信する値
(パラメータ値)

　　selected属性：画面表示時、選択状態とする
<button></button> 　汎用ボタン

　　type属性："button"を指定すると上記input要素の

　　　　　　　　type="submit"と同じく送信ボタンになる

　　formaction属性：form要素のaction属性をこの属性値
で上書き

　　formmethod属性：form要素のmethod属性をこの属性値
で上書き

※name属性はoption要素以外で指定可能。サーバー送信時、パラメータ名として使われ
る。
　

これらは「代表的なもの」です。他にもいろいろなフォーム部品や属性があります。興
味がある方は調べてみてください。
　
次は会員登録フォームに入力された値を受け取るコントローラークラスです。
入力/選択されたデータは、POSTリクエストでも「パラメータ名=パラメータ値」形式、
つまり「name属性の値=入力/選択されたデータ」のペアで送られます。よってハンドラー
メソッドは@RequestParamを使います。
【リスト4-5】com.example.demo.RegistrationController.java

package com.example.demo;

　
import java.util.Arrays;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.servlet.ModelAndView;

　
@Controller

public class RegistrationController {

　　@PostMapping("/register")

　　public ModelAndView register(@RequestParam("name") String name,

　　　　　　　　　　　　　　　　　　 @RequestParam("password") String

password,

　　　　　　　　　　　　　　　　　　 @RequestParam("gender") int gender,

　　　　　　　　　　　　　　　　　　 @RequestParam("area") int area,

　　　　　　　　　　　　　　　　　　 @RequestParam("interest") int[]

interests,

　　　　　　　　　　　　　　　　　　 @RequestParam("remarks") String remarks,

　　　　　　　　　　　　　　　　　　 ModelAndView mv) {

　　　　StringBuilder sb = new StringBuilder();

　　　　sb.append("名前：" + name);

　　　　sb.append(", パスワード：" + password);

　　　　sb.append(", 性別：" + gender);

　　　　sb.append(", 地域：" + area);

　　　　sb.append(", 興味のある分野：" + Arrays.toString(interests));

　　　　sb.append(", 備考：" + remarks.replaceAll("\n", ""));

　
　　　　mv.setViewName("result");　　　　　　　　　 //　①

　　　　mv.addObject("registData", sb.toString());	//　②

　　　　return mv;

　　}

}

　
@PostMapping("/register")は、input.htmlの<form action="/register"

method="post">に対応しているので、[実行]ボタンがクリックされるとregister()が呼
び出されます。
　
なおinput.htmlの「性別」「地域」に対応するメソッド引数gender,areaはint型で
す。これらの入力値はint型に変換された後、バインドされます。
また「興味のある分野」のinterestsはint型の配列(int[])です。チェックボックスは
選択肢の数だけチェック可能なので、値の個数は可変です。そこでバインド先は配列とし
ます。
　
あとは前節のHello5Controllerと同様です。ビュー名を"result"とし

(①)、"registData"という名前で処理結果を渡します(②)。
ビュー側は、単純にこの内容をspan要素として表示します。
【リスト4-6】src/main/resources/templates/result.html

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org">

<head>

<meta charset="UTF-8">

<title>会員登録</title>

</head>

<body>

　

</body>

</html>

　
　

4.3 @ModelAttributeを使った入力データの取得
　
前節のRegistrationでは、フォーム部品に対応する引数をハンドラーメソッドに並べて
いました。しかしフォーム部品が多くなると面倒です。またフォーム部品の値は、クラス
のプロパティとして表すのが一般的です。このようなクラスは、フォームの内容を保持す
るので「フォームクラス」などと呼ばれています。
Spring Bootには、こういったデータを扱う@ModelAttributeというアノテーションが
あります。これにLombokを組み合わせるとフォームからのパラメータ取得が簡潔になりま
す。
　
作成するプロジェクトの仕様
　プロジェクト名 　Registration2

　依存関係 　Spring Web, Spring Boot DevTools, Thymeleaf, Lombok

　作成クラス 　Registration2Controller

　
依存関係
依存関係に「Lombok」を追加します。[使用可能]に"Lombok"と入力して選択してくださ
い。

　
なお
・入力画面(src/main/resources/static/input.html)

・結果画面(src/main/resources/templates/result.html)

は、前節Registrationと同じものを使用しますので、このRegistration2へコピーして
ください。
⇒操作方法は本章最後を参照してください。
　
まずフォームの内容を受け取るフォームクラスを作成します。
【リスト4-7】com.example.demo.RegistData.java

package com.example.demo;

import lombok.Data;

　
@Data　　　　　　　　　　//　①

public class RegistData {

　　private String name;

　　private String password;

　　private int gender;

　　private int area;

　　private int[] interest;

　　private String remarks;

}

　
　
フォームクラスには、フォーム部品と同じ名前のプロパティを定義します。データ型は
入力される値を考慮して決めます。
そしてこれらプロパティに対するsetter/getterメソッドは、Lombokの@Dataアノテー
ションで作成します(①)。このアノテーションを付与すると、デフォルトコンストラクタや
toString()などのメソッドも、合わせて自動生成します。
STSのアウトラインを見ると、自動生成されたメソッドを確認することができます。

　
STSにもgetter/setter生成機能がありますが(メニュー [ソース(S)] > [getterおよ
びsetterの生成(R)...])、これはソースコードを生成します。それに対しLombokは
ソースコードを変えず、直接classファイルを操作します。
　
このフォームオブジェクトを、ハンドラーメソッドの引数に追加します(①)。
【リスト4-8】com.example.demo.Registration2Controller.java

package com.example.demo;

　

import java.util.Arrays;

import org.springframework.web.bind.annotation.ModelAttribute;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RestController;

import org.springframework.web.servlet.ModelAndView;

　
@RestController

public class Registration2Controller {

　　@PostMapping("/register")

　　public ModelAndView register(@ModelAttribute RegistData registData,　 //　
①

　　　　　　　　　　　　　　　　　 ModelAndView mv) {

　　　　StringBuilder sb = new StringBuilder();

　　　　sb.append("名前：" + registData.getName());

　　　　sb.append(", パスワード：" + registData.getPassword());

　　　　sb.append(", 性別：" + registData.getGender());

　　　　sb.append(", 地域：" + registData.getArea());

　　　　sb.append(", 興味のある分野：" +

Arrays.toString(registData.getInterest()));

　　　　sb.append(", 備考：" + registData.getRemarks().replaceAll("\n",

""));

　
　　　　mv.setViewName("result");

　　　　mv.addObject("registData", sb.toString());

　　　　return mv;

　　}

}

　
@ModelAttributeを付与すると、フォーム部品のname属性値とフォームクラスのプロパ
ティ名をキーにして、フォーム部品の値がフォームオブジェクトにバインドされます。こ
うするとフォーム部品ごとの引数を並べる必要が無いのでシンプルになります。

【図4-2】フォームオブジェクトへのバインド

　
バインドの結果は、同じ名前のフォーム部品とフォームクラスのプロパティがあるか、
ないかで以下のように変わります。
【表4-3】@ModelAttributeによるバインド

　フォーム部品　フォームクラスプロ
パティ

　結果

　あり 　あり 　フォーム部品の値がフォームオブジェクトに
バインドされる。

　あり 　なし 　フォームオブジェクトには何もバインドされ
ない

　なし 　あり 　実行時エラーになる
　
　
本章ではThymeleafの簡単な紹介と、各種フォーム部品の使い方を説明しました。本書
の後半では、これらを駆使してWeb画面を作成していきます。
　

補足：プロジェクト間でファイルをコピーする
　
ここではプロジェクトRegistrationのsrc/main/resources/static/input.htmlを

Registration2へコピーする操作を例に説明します。
1)パッケージ・エクスプローラーでコピー元ファイルRegistrationの
src/main/resources/static/input.htmlを右クリック > [コピー(C)]を選択する。

　
2)コピー先のRegistration2のsrc/main/resources/staticを右クリック > [貼り付け
(P)]を選択する。

　
3)input.htmlがコピーされる。

　
■参考

・パッケージ・エクスプローラー内では、ドラッグ＆ドロップ操作でファイルを移動さ
せることもできます。
・パッケージ・エクスプローラーには、Windowsのエクスプローラーでコピーしたファ
イルを貼り付けることもできます。

5. セッション操作
　

5.1 セッションの必要性
　
本書ではWebアプリケーションのクライアントソフトとして、ブラウザを使用していま
す。そしてブラウザは、HTTPというプロトコルを使い、サーバーとリクエスト/レスポンス
をやり取りします。これはインターネット上のショッピングサイトでも同じです。
例えば「インターネット上にZというWebショップがあり、Aさん、Bさんが気に入った商
品をカートに入れた」とします。シーケンス図で表すと次のような状況です。

【図5-1】カートがユーザーごとに用意されていない？
　
⑤でAさんが、カートの合計金額を照会します。⑥はいくらでしょう？当然200円と思うで
しょう。しかしZのシステムが、適切に作成されていないと800円が返ってくるかもしれま
せん。これはAさんとBさんの商品が同じカートに入っている、ということです。
実はHTTPプロトコルだけでは、①はAさんのリクエスト、③はBさんのリクエスト、という
ことがわかりません。そのためZのサーバーは同じカートに入れてしまったわけです。もち
ろんこれでは困ります。①と③は異なる人(ブラウザ)からのリクエストと認識し、カートは
別なものとしなければなりません。
こういったとき必要になるのがセッション(Session)です。セッションを使えば「誰から
のリクエストか？」を識別でき、さらにその人ごとの専用領域を持つことができます。カー
トはこの領域の中に作ればいいのです。
図で表すと次のようなイメージです。

【図5-2】ユーザーごとのカートをセッションに作成する

　
本書には、複数ユーザーで同時に実行するプログラム例は載せていません。だからといっ
てセッションが不要、というわけではありません。画面をまたいでデータを共有するとき
は、そのデータをセッション内に保存する必要があります。これはHTTPプロトコルが、前
のリクエスト/レスポンスの結果を保持しないからです。このため「最初に入力した内容
を、次の次の画面で使う」といった場合は、データをセッションへ格納し、後から取得でき
るようにします。
　

5.2 数あてゲームでセッションを学ぶ
　
本章ではセッションを使い「画面間でデータを共有する方法」について説明します。
例として、簡単な「数あてゲーム」を作成します。
　
数当てゲームのルール
(1)ゲーム開始時、サーバーは1～100の中から数字を1つ選び、それを「正解」とする。
(2)ユーザーは(1)の正解を推測し、その数字を「回答」として入力する。
(3)コンピューターは「正解」と「回答」を比較し、以下のようなメッセージを表示す
る。
(3.1)正解 < 回答の場合	：「もっと小さいです」と表示する。
(3.2)正解 = 回答の場合	：「正解です！」と表示する。
(3.3)正解 > 回答の場合	：「もっと大きいです」と表示する
　
実行例
上記のルールをもとにSpring Bootを使い、Webアプリケーションにした例を以下に示し
ます。ブラウザからhttp://localhost:8080/へアクセスすると、ゲーム開始です。
本章では、このプログラムを作成して行きます。

【図5-3】数あてゲームの実行例

　
上記の操作をシーケンス図で表すと以下のようになります。
　

【図5-4】数あてゲーム実行例のシーケンス

最初のリクエストで正解を作成します。HTTPプロトコルだけでは、この正解を次のリクエ
ストまで保持できません。そこでセッションに格納し、回答が送られてくる都度、セッショ
ンの正解と比較します。
　
作成するプロジェクトの仕様

　プロジェクト名 　Game

　依存関係 　Spring Web, Spring Boot DevTools, Thymeleaf, Lombok

　コントローラー
クラス

　GameController

　 作成ファイル 　src/main/resources/templates/game.html

　
数あてゲームのコントローラークラスは、以下のようになっています。
【リスト5-1】com.example.demo.GameController.java

package com.example.demo;

　
import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import jakarta.servlet.http.HttpSession;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.servlet.ModelAndView;

　
@Controller

public class GameController {

　
　@Autowired　　　　　　 //　①

　HttpSession session;　 //　①

　
　@GetMapping("/")

　public String index() {

　　session.invalidate();　　　　　　　　　　 //　②

　　// 答えを作ってSessionに格納
　　Random rnd = new Random();　　　　　　　　 //　③

　　int answer = rnd.nextInt(100) + 1;　　　　 //　③

　　session.setAttribute("answer", answer);　//　④

　　System.out.println("answer=" + answer);　　//コンソールに正解を出力する
(^^)

　　return "game";

　}

　
　@PostMapping("/challenge")　　　　　　　　　 //　⑤

　public ModelAndView challenge(@RequestParam("number") int number,

　　　　　　　　　　　　　　　　　ModelAndView mv) {　//⑥

　　// セッションから答えを取得
　　int answer = (Integer)session.getAttribute("answer");　//⑦

　
　　// ユーザーの回答履歴を取得
　　@SuppressWarnings("unchecked")

　　List<History> histories =

(List<History>)session.getAttribute("histories");//⑧

　　if (histories == null) {

　　　histories = new ArrayList<>();

　　　session.setAttribute("histories", histories);

　　}

　　// 判定→回答履歴追加
　　if (answer < number) {

　　　histories.add(new History(histories.size() + 1, number, "もっと小さ
いです"));//⑨

　
　　} else if (answer == number) {

　　　histories.add(new History(histories.size() + 1, number, "正解で
す！"));　　//⑨

　
　　} else {

　　　histories.add(new History(histories.size() + 1, number, "もっと大き
いです"));//⑨

　　}

　
　　mv.setViewName("game");　　　　　　　　 //⑩

　　mv.addObject("histories", histories);　//⑩

　　return mv;

　}

}

　
このプログラムのポイントは次の2行です(①)。
　
　@Autowired　　　　　　 //　①

　HttpSession session;　 //　①

　
　
HttpSession(jakarta.servlet.http.HttpSession)がセッションのクラスです。変数

sessionには、正解や回答履歴を格納して行きます。しかし、sessionを初期化する処理が
見当たりません。このままでは実行時エラー(例外NullPointerException)になるのでは？
そう思う方がいるかもしれません。
その答えが@Autowiredアノテーションにあります。通常HttpSessionオブジェクト(=

セッション)は、リクエストを表す
HttpServletRequest(jakarta.servlet.http.HttpServletRequest)オブジェクトから
getSession()で取得します。@Autowiredを付与すると、コントローラークラス起動時、こ
れに相当する処理が自動的に行われ、sessionに設定されます。つまり自分でセッションの
インスタンスをセットする必要がない、というわけです。
　
この初期化方法は「フィールドインジェクション」と呼ばれています。以前はよく使われ
ていましたが、現在は「コンストラクタインジェクション」という方法が推奨されていま
す。後者については次章で説明します。
　
Spring Bootでセッションを操作する場合、@SessionAttributeアノテーションや
@Scopeアノテーションを使う方法もあります。興味がある方は調べてみてください。
　
ハンドラーメソッドは２つ定義しています。このようにコントローラークラスには、複数
のハンドラーメソッドを定義できます。
【表5-1】GameControllerクラスのハンドラーメソッド

　アノテーション 　ハンドラーメ
ソッド

　発生タイミング

　@GetMapping("/") 　index() 　1)初期表示

　2)リンク[もう一度最初から]をク
リックしたとき

　@PostMapping("/challenge")　challenge() 　[トライ！]ボタンをクリックした
とき

　
index()の処理内容
index()はURLパス"/"がGETリクエストで送られてきたときのハンドラーメソッドです。
発生するタイミングは、上表のように2パターンあります。
1)の初期表示は、ブラウザからhttp://localhost:8080/がアクセスされた場合です
(シーケンス図参照)。

2)のリンク[もう一度最初から]は、後述するようにとしています。これも
http://localhost:8080/へのアクセスとなります。
　
index()の処理は、最初にinvalidate()を呼び出し、セッション内の情報をクリアしま
す(②)。これは2)の[もう一度最初から]をクリックしたとき用の処理です。1)の初期表示で
は、セッションにまだ何も格納していないので、実行しても状態は変わりません。
　
　　session.invalidate();　　　　　　　　　　 //　②

　
　
正解は、次の2行で作成します(③)。
　
　Random rnd = new Random();　　　　　　　　　 //　③

　int answer = rnd.nextInt(100) + 1;　　　　　 //　③

　
java.util.Random#nextInt()は0～引数を超えない範囲でint型の乱数を返します。

nextInt(100)なら、0～99になるので、+1して正解の範囲を1～100とします。
　
これをHttpSession#setAttribute()でセッションに格納します(④)。
　
　session.setAttribute("answer", answer);　　//　④

　
第2引数が格納する値(オブジェクト)、第1引数がその名前です。setAttribute()の第2

引数はjava.lang.Object型と定義されているため、answerはInteger型へAutoboxingさ

れてから、セッションに格納されます。
　
最後に"game"をreturnして次画面を指定します。
　
return "game";

　
最初にアクセスされたとき、コントローラーから画面に渡すデータはありません。つまり

addObject()は不要です。Thymeleafには、次に表示するビュー名を伝えるだけです。
こういった場合、上記のように文字列でビュー名を指示できます。これで

ModelAndView#setViewName()と同じように、templates下にある".html"を付加した名称
のファイルが、次画面としてブラウザへ送信されます。このgame.htmlは、後述【リスト5-

3】にあります。
　
challenge()の処理内容
challenge()は[トライ！]ボタンをクリックしたときの処理です。アノテーションから、
・POSTリクエストでURLパスは/challenge(⑤)

・回答はnumberという名前のパラメータ(⑥)

ということが推測できると思います。実際、後述する画面game.html(【リスト5-3】)は
そのようになっています。
　@PostMapping("/challenge")　 //　⑤

　public ModelAndView challenge(@RequestParam("number") int number,

　　　　　　　　　　　　　　　　　ModelAndView mv) {　//⑥

　
このメソッドでは、まずセッションに保存されている正解を

HttpSession#getAttribute()で取得します(⑦)。
　
　int answer = (Integer)session.getAttribute("answer");　//⑦

　
引数の名前は、前述のsetAttribute()で格納したときのもの(="answer")です。
getAttribute()の戻り値はjava.lang.Object型なので、格納時Autoboxingされた

Integer型へキャストします。これがanswerに代入されるときAuto-Unboxingされてint型
となります。
　
次に前回までの回答履歴をセッションから取得します(⑧)。

　List<History> histories =

(List<History>)session.getAttribute("histories");//⑧

　if (histories == null) {

　　　histories = new ArrayList<>();

　　　session.setAttribute("histories", histories);

　}

回答履歴はHistory型オブジェクトを要素としたArrayListとしています。ゲーム(再)開
始直後は、セッションに回答履歴は無いためnullが返されます。この場合、回答履歴を生
成し、"histories"という名前でセッションに格納します。
　
この histories = new ArrayList<>() のhistories はList<History>型です。

ArrayListはListインターフェースを実装しているので代入できます。さらにhistoriesに
対しては、Listで宣言されているメソッドしか使わないことを表しています。
右辺のArrayList<>は、この場合ArrayList<History>の略です。ダイアモンド演算子

(<>)が型推論により、左辺の<History>からHistory型と推論し、これを割り当てます。
　
そして正解(answer)と回答(number)を比較し、結果を回答履歴に追加します(⑨)。
　histories.add(new History(histories.size() + 1, number, "もっと小さいで
す"));//⑨

　histories.add(new History(histories.size() + 1, number, "正解です！"));　

//⑨

　histories.add(new History(histories.size() + 1, number, "もっと大きいで

す"));//⑨

　
最後にビュー名と処理結果(回答履歴)をModelAndViewオブジェクトに設定して(⑩)、

returnします。
　mv.setViewName("game");　　　　　　　　 //⑩

　mv.addObject("histories", histories);　//⑩

　return mv;

　
この説明ではindex()/challenge()でやっていることがわからない、という方のために
パラパラ漫画風の解説を章末に載せています。上記処理を理解する上で欠かせない「参
照」の考え方からセッション操作まで、ステップ・バイ・ステップで説明していますの
で、そちらも参考にしてください。

　
個々の回答を表すHistory型クラスは、以下のように定義しています。
【リスト5-2】com.example.demo.History.java

package com.example.demo;

　
import lombok.AllArgsConstructor;

import lombok.Getter;

　
@AllArgsConstructor

@Getter

public class History {

　private int seq;

　private int yourAnswer;

　private String result;

}

　
　
ここでもLombokのアノテーションを使っています。自動生成するコードは下表の通りで
す。
【表5-2】Lombokのアノテーション

　アノテーション 　生成対象
　@AllArgsConstructor 　全フィールドへ値をセットするコンストラクタ
　@Getter 　フィールドに対するgetterメソッド
　
このうち@AllArgsConstructorは、Historyの場合、以下のようなコンストラクタを作
成します(ソースコード上には現れません)。これは回答履歴を追加するとき使用しています
(⑨)。
　public History(int seq, int yourAnswer, String result) {

　　super();

　　this.seq = seq;

　　this.yourAnswer = yourAnswer;

　　this.result = result;

　}

　

結果を表示する画面は、以下のようになっています。
【リスト5-3】src/main/resources/templates/game.html

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org">

<head>

<meta charset="UTF-8">

<title>数あてゲーム</title>

<style>

th, td {

　　　border: solid 1px; /* 枠線指定 */

}

　
table {

　　　border-collapse: collapse; /* セルの線を重ねる */

}

</style>

</head>

<body>

　<h1>数あてゲーム</h1>

　<form action="/challenge" method="post">

　　<p>

　　　<input type="text" name="number" placeholder="いくつでしょう？">

　　</p>

　　<p>

　　　<input type="submit" value="トライ！">

　　</p>

　</form>

　<hr>

　<table>

　　<tr>

　　　<th>回数</th>

　　　<th>あなたの答え</th>

　　　<th>判定</th>

　　</tr>

　　<tr th:each="h:${histories}">　　　　　　　<!-- ① -->

　　　<td th:text="${h.seq}"></td>　　　　　　 <!-- ① -->

　　　<td th:text="${h.yourAnswer}"></td>　　 <!-- ① -->

　　　<td th:text="${h.result}"></td>　　　　　<!-- ① -->

　　</tr>

　</table>

　<p>

　　もう一度最初から

　</p>

</body>

</html>

　
ポイントは回答履歴を作成するth:each属性を追加したtr要素、およびその子要素tdです

(①)。
th:eachはJavaの拡張for文と同じように、コレクションオブジェクトの要素を処理する
ために使います。
右辺は「変数:${コレクションオブジェクト}」という意味です。
<tr>～</tr>は、このコレクションオブジェクトの要素数分、作成されます。
変数は、コレクションオブジェクトの各要素を表します。変数に対して処理を記述する
と、それがコレクションオブジェクトの全要素に適用されます。
　
ここではコレクションオブジェクトがhistoriesとなっています。これは

GameControllerが、画面に渡したオブジェクトの名前です(⑩)。
　
　mv.addObject("histories", histories); //⑩

　
historiesはList<History>型なので、変数hはHistory型です。このため${h.seq}は、

History型オブジェクトのseqプロパティと解釈され、内部でh.getSeq()が呼び出されま
す。後続の${h.yourAnswer},${h.result}も同様です。これらの結果をtd要素で表示しま
す。
　
th:textの代わりに[[...]]というインライン式を使うこともできます。以下のように書
いても同じ結果が得られます。
　<tr th:each="h:${histories}">

　　<td>[[${h.seq}]]</td>

　　<td>[[${h.yourAnswer}]]</td>

　　<td>[[${h.result}]]</td>

　</tr>

　
　
以上で数あてゲームをプレイできるようになります。
プレイしながら「最小手数で正解にたどり着くにはどうすればよいか？」を考えてみるの
も面白いでしょう。
　

補足：セッション操作詳説
　
Java言語の導入教育をしていると、「参照」で悩む方が数多く見受けられます。C言語の
経験者には「ポインタ演算ができないポインタ」という説明をすると、ある程度納得してく
れます。しかしセッションと組み合わせると、やはり難しいようです。
そこで「参照」というものを説明した上で、それがGameControllerのセッション操作で
どのように使われているか、パラパラ漫画風に、ソースコードを1行ずつ解説して行きま
す。
　
参照とは？

　
Java言語のデータ型には「基本データ型(プリミティブ型)」と「参照型」があります。
基本データ型は、以下の8種類です。プログラムで追加できません。
　byte, short, int, long, float, double, char, boolean

参照型は、以下に該当するものです。Stringクラスなどはこの典型です。無数にあり、
プログラムで追加できます。
　クラス、インターフェース、配列
　
ここでは基本データ型のintと、参照型のjava.lang.Integerクラスを使って説明して行
きます。どちらも32ビットの整数値を表すことができます。まず100という整数値を格納す
る変数を作成します。
　
int int100 = 100;

Integer integer100 = new Integer(100);

　
　
「変数は箱のようなもの」という説明をよくしますが、それでいくとint100は、以下のよ
うなイメージです。

いまint100という箱を開けると中から100が取り出せます。このように「箱の中に値その
ものが入っている」のが基本データ型の変数です。
　

一方integer100は少々事情が異なります。

箱の中に100はありません。あるのは100のありかを表す特別な値(ここでは●とします)で
す。箱を開けたら「それは下駄箱の上から2段目、左から3番目の中だよ」と書かれた紙が
入っていた、という感じです。このように参照型の変数には「値の場所を示す特別な値が格
納されている」と思ってください。
　
では100はどこへ行ったのか？専門的になりますが「ヒープエリア」という領域に置かれ
ています。つまり●は、ヒープエリアの100の場所を表しているわけです。
　
C言語なら●はアドレスです。しかしJavaでは、アドレスがプログラマから隠ぺいされて
います。そしてポインタ演算に相当する機能はありません。
　
int100やinteger100のようなローカル変数は「スタック領域」(あるいは「ローカル領
域」)と呼ばれるところに作成されます。つまりint型など基本型の値は、スタック領域
上に格納されています。
　
Integer integer100 = new Integer(100) をもっと分解してみます。
この1行は以下のように書いても同じです。
　
Integer integer100;

integer100 = new Integer(100);

　
　
最初の行は、変数integer100の宣言です。宣言直後はnullです。

　
2行目の右辺はIntegerオブジェクトを生成します。newはヒープエリアに作成すること、
と考えてもよいでしょう。

　
これを代入演算子(=)でinteger100に代入するわけですが、ここで代入されるのは生成し
たIntegerオブジェクトの場所を表す特別な値●です。

　
結果このようになります。

integer100は100の場所を「指し示している」わけです。「どこにあるの？」と聞かれた
ら「あそこだよ」と答えられるようになっています。これが「参照」です。以後、参照を青
矢印線で表します。
　
ここからさらに次の2行を実行します。これも分解しながら説明します。
　
Integer integer101 = integer100;

integer100 = new Integer(200);

　
　
まず1行目の左辺でInteger型の変数integer101を作成します。

　
ここにinteger100を代入します。integer100の値は、100のありかを示す特別な値●です
が、これがinteger101に代入されます。

　
結果、integer101も100を指し示すことができるようになります。この「特別な値が代入
されると、それも参照になる(=指し示すことができるようになる)」というのが、参照を理
解する、もう1つのポイントです。

　
次に2行目の右辺で200というInteger型オブジェクトを生成します。

　
これをinteger100に代入するわけですが、●ではありません。●は100の場所です。200の
場所は、●とは異なる特別な値になります。ここでは★とします。

　
これがinteger100に代入されることで、200を参照します。

　
どうでしょうか？「参照」という言葉に慣れてきたでしょうか？
基本型変数は値を直接表すが、参照型変数は間接的に表す、という考え方です。ここまで
の説明を参考に、参照の働きを自分なりにイメージできるようにしてください。
　

次節からはGameControllerの動作を1行ずつ解説します。以降も「参照」を青矢印、「参
照の代入」を赤点線で表します。
　
数当てゲーム 起動時の処理

　
①http://localhost:8080/アクセス⇒サーバー到着
この時点で、アクセスしてきたブラウザ用にセッション領域が作成されます。最初は何
も格納されていません。

　
②GameController起動時

@Autowiredにより変数sessionがセッション領域を参照します。本編で解説しました
が、セッションというのはHttpSessionクラス型のオブジェクトです。セッションもク
ラスなので参照になるわけです。

　
③index()開始

session.invalidate()を実行しますが、この時点では何も格納されていないため、変
化はありません。

　
④session.setAttribute("answer", answer)

セッション領域に“answer”という名称で、正解(本編の実行例では80)を格納します。
これはsessionが「参照しているところ」、別な言い方をすると「指し示しているとこ
ろ」にsetAttribute()を実行する、という意味になります。

　
⑤index()終了⇒GameController終了
変数sessionはGameControllerクラスのインスタンス変数なので、GameController終
了時点で消去されます。しかしセッション領域は残ります。

　
よって以下のような状態になります。

　
1回目の処理

　
1回目の回答として50を入力して[トライ！]ボタンをクリックしたとします。
　
①セッション領域は正解だけが格納された状態で残っています。

　
②GameController起動

@Autowiredにより変数sessionが保存されていたセッション領域を参照します。これで
前項④の状態を復元できました。つまり、前回の終了時点から、処理を継続できるよう
になったわけです。

　

③challenge()開始
④List<History> histories =

(List<History>)session.getAttribute("histories");

セッション領域から”histories"という名称のデータ（回答履歴）を取得します。しか
しこの時点では存在しないので、historiesには null が設定されます。

　
⑤histories = new ArrayList<>();

回答履歴が無いのでArrayList<History>オブジェクトとして作成し、histories か
ら参照できるようにします。
※以下、図中ではArrayList<History>をArrayList<>と表記します。

　
⑥session.setAttribute("histories", histories);

⑤で作成したhistoriesを"histories"という名称でセッションに保存します。値は
ArrayList<History>オブジェクトの場所を表す特別な値★です(赤点線)。
ArrayList<History>オブジェクトは、2か所から参照されています。

　
⑦histories.add(new History(histories.size() + 1, number, "もっと小さいで
す"));

1回目の判定結果をhistoriesに追加します。ここでは最初にHistoryオブジェクトを
new(生成)します。その結果、また新しい特別な値▲ができます。historiesにadd()し
ているのは、この▲です。

　
⑧challenge()終了⇒GameController終了

historiesはchallenge()内で宣言されたローカル変数なので、challenge()終了時に
消去されます。
sessionもGameController終了時に消去されます。
しかしセッション領域は残ります。そしてセッション領域から参照されているオブジェ
クトも残ります。

　
よって以下のような状態になります。

　
2回目の処理

　
2回目の回答として75を入力して[トライ！]ボタンをクリックしたとします。
　
①セッション領域は1回目終了時点の状態で残っています。

　
②GameController起動

@Autowiredにより変数sessionがセッション領域を参照します。

　
③challenge()開始
④List<History> histories =

(List<History>)session.getAttribute("histories");

セッション領域から”histories"という名称のデータ（回答履歴）を取得します。これ
で値★がhistoriesに設定されます。★は1回目に格納したArrayList<History>オブ
ジェクトの場所であり、これでhistoriesからも参照できるようになります。これで前
項⑦と同じ状態にできました。
このように毎回、前の終了時点から、処理を継続できるようにしています。

　
⑤histories.add(new History(histories.size() + 1, number, "もっと小さいで
す"));

2回目の判定結果をhistoriesに追加します。

　
⑥以降は、1回目と同じです。
　
[もう一度最初から]クリック時

　
①セッション領域には前回の正解と回答履歴が残っています。例えば以下のような状態で
す。

　
②GameController起動

@Autowiredにより変数sessionがセッション領域を参照します。

　

③index()開始
④session.invalidate()

sessionが参照しているセッション領域の内容をクリアします。

　
これで「起動時の処理②」と同じ状態になります。
　
正確に言うと、セッション領域から参照されていたArrayList<History>は、まだメモリ
上(ヒープ領域)に存在しています。しかしどこからも参照されていないので、アクセス
不可の状態です。このように参照されていない領域は、再利用できるようにする「ガベー
ジコレクション」という処理の対象になります。
　
セッションも一定時間経過すると、削除されてしまいます。これを「セッション・タイム
アウト」と呼んだりします。興味がある方は調べてみてください。
　
同時に実行した場合

　
この数当てゲームを複数人で同時に実行したらどうなるでしょうか？もちろん、きちんと
動作します。試してみたい方はChromeとFireFox(あるいはEdge)を起動して、
http://localhost:8080/へアクセスしてみてください。それぞれのブラウザで、数当て
ゲームをプレイできます。
これはセッションにより、ブラウザごとに異なる領域が使われているためです。図で表す
と以下のようなイメージです。これを見ると、本章冒頭のカートを人(ブラウザ)によって
別々にする、という意味がわかるのではないかと思います。

6. テーブルのデータを一覧表示する
　
本章からはSpring Bootを使い１つのWebアプリケーションを作成していきます。テーマ
は「ToDo管理」です。非常にシンプルですが、データベース上のToDoを検索、追加、更
新、削除できるようになっています。

【図6-1】本書で作成するToDoアプリケーションの概要
　
このToDo管理アプリケーションを、章ごとに「ステップ・バイ・ステップ」で作りま
す。各章で追加する機能は、以下の通りです。
6章　ToDoの一覧表示
7章　ToDoの登録
8章　ToDoの変更、削除
9,10章　ToDoの検索
11章　検索結果のページネーション(ページング)

　
本章では最初の一歩として、データベースに格納されているToDoをブラウザに一覧を表
示します。
■本章で作成する一覧画面の実行例　⇒　http://localhost:8080/todoへアクセスす
る

　

6.1 テーブルの作成
　
ToDo管理で使用するテーブルは、下表の「todoテーブル」１つだけです。
「重要度」「緊急度」は別テーブルにすべき、という考えもありますが、シンプルさを
優先して、この１つにしました。
【表6-1】todoテーブルの形式

 　列名 　内容 　データ型 　制約 　備考
　id 　1～ 　SERIAL 　PRIMARY KEY　連番(自動採番)

　title 　件名 　TEXT

　importance 　重要度 　INTEGER 　0:低, 1:高
　urgency 　緊急度 　INTEGER 　0:低, 1:高
　deadline 　期限 　DATE

　done 　完了 　TEXT 　'Y':完了, 'N':未完了
　
データ型のTEXT, INTEGER, DATEは、それぞれ文字列型、整数型、日付型(時分秒は持
たない)の意味です。
id列のSERIALも整数型ですが、これはレコードを追加するとき、自動的に値が設定され
ます。デフォルトでは1, 2, 3...というように、前の値に+1したものがセットされます。
いわゆる「連番(自動採番)」のデータ型です。
制約のPRIMARY KEY(主キー)は、「この列が同じ値のレコードは格納できない」ことを
表しています。たとえばid=10のレコードがあるのに、さらにid=10のレコードを登録しよ
うとすると、PostgreSQLがエラーにします(追加できない)。
これでid=10のレコードは、todoテーブル中に高々1件(1件、または0件)しか存在しない
ことを保証します。
　
todoテーブルの作成手順は本章の最後に載せていますので、そちらを参照してくださ
い。テーブルができたら一覧表示するプロジェクトを作成していきます。
　

6.2 プロジェクトの構成
　
作成するプロジェクトの仕様

　プロジェクト名 　Todolist

　パッケージ 　com.example.todolist

　依存関係 　Spring Web, Spring Boot DevTools, Thymeleaf, Lombok,

　Spring Data JPA, PostgreSQL Driver

　コントローラー
クラス

　TodolistController

　 作成ファイル 　src/main/resources/static/css/style.css

　src/main/resources/templates/todoList.html(ToDo一覧画
面)

　
本章からクラスやインターフェースを管理しやすくするため、適宜パッケージ名

(com.example.todolist)付与していきます。

　
また依存関係にSpring Data JPA, PostgreSQL Driverも追加します。

　
JPAはJava Persistence APIの略です。Persistenceは日本語で「永続化」、簡単に言
えば「データベースにデータを格納する」という意味です。Spring Data JPAを使うと
Javaオブジェクトへの操作(メソッド)が、自動的にSQL文へ変換されます。つまりSQL文を
書くことなく、テーブルをアクセスできるようになります。
　
PostgreSQL Driverは文字通り、JavaプログラムからPostgreSQL(データベース)へ接
続するためのドライバーソフトです。

　
プロジェクトを作成したら、以下のパッケージを追加します。
　
【表6-2】作成パッケージ

　パッケージ名 　用途
　
com.example.todolist.controller

　コントローラー(controller)クラス用

　com.example.todolist.entity 　エンティティ(entity)クラス用
　
com.example.todolist.repository

　リポジトリ(repository)インターフェース用

コントローラーはすでに説明しました。エンティティ、リポジトリについては、この章
で説明します。
　
パッケージ作成手順
1)パッケージ・エクスプローラーのcom.example.todolistを右クリック > [新規(W)]

> [パッケージ]を選択する。

　
2)「新規Javaパッケージ」ダイアログの[名前(M)]

を"com.example.todolist.controller"にする(表示されているパッケージ名
に".controller"を追加する) > [完了(F)]ボタンをクリックする。

　
3)パッケージcom.example.todolist.controllerが追加される。

　

4)同様の手順でcom.example.todolist.entity, com.example.todolist.repository

を作成する。

　
作成したパッケージに、以下のクラス/インターフェースを追加します。
【表6-3】作成クラス/インターフェース

　パッケージ名 　追加するクラス/インターフェース
　
com.example.todolist.controller

　クラス TodoListController(コントローラー)

　com.example.todolist.entity 　クラス Todo(エンティティ)

　
com.example.todolist.repository

　インターフェース TodoRepository(リポジト
リ)

　
クラス/インターフェース作成手順
1)クラス
クラスを追加するパッケージを右クリック > [新規(W)] > [クラス]を選択すると、
「新規Javaクラス」ダイアログの[パッケージ(K)]に、右クリックしたパッケージ名
がセットされます。

　
この状態でクラス名を[名前(M)]に入力 > [完了(F)]をクリックします。

　
2)インターフェース
インターフェースも同様です。インターフェースを追加するパッケージを右クリック
> [新規(W)] > [インターフェース]を選択すると、「新規Javaインターフェース」の
[パッケージ(K)]に、右クリックしたパッケージ名がセットされます。

　
この状態でインターフェース名を[名前(M)]に入力 > [完了(F)]をクリックします。

　
ここまでの操作でsrc/main/javaは、以下のような構造になります。
Todolist

└ src/main/java

　 ├ com.example.todolist

　 │　└ TodolistApplication.java

　 ├ com.example.todolist.controller

　 │　└ TodoListController.java

　 ├ com.example.todolist.entity

　 │　└ Todo.java

　 └ com.example.todolist.repository

　　　 └ TodoRepository.java

　

6.3 エンティティ
　
最初にTodo.javaを以下のように編集します。
【リスト6-1】com.example.todolist.entity.Todo.java

package com.example.todolist.entity;

　
import java.sql.Date;

import jakarta.persistence.Column;

import jakarta.persistence.Entity;

import jakarta.persistence.GeneratedValue;

import jakarta.persistence.GenerationType;

import jakarta.persistence.Id;

import jakarta.persistence.Table;

import lombok.Data;

　
@Entity　　　　　　　　　　　　　　 //　①

@Table(name = "todo")　　　　　　　 //　②

@Data

public class Todo {

　　@Id　　　　　　　　　　　　　　　//　③

　　@GeneratedValue(strategy = GenerationType.IDENTITY)　//　④

　　@Column(name = "id")　　　　　　//　⑤

　　private Integer id;

　
　　@Column(name = "title")

　　private String title;

　
　　@Column(name = "importance")

　　private Integer importance;

　
　　@Column(name = "urgency")

　　private Integer urgency;

　

　　@Column(name = "deadline")

　　private Date deadline;

　
　　@Column(name = "done")

　　private String done;

}

　
Todoクラスのプロパティは、todoテーブル(【表6-1】)の列と１対１で対応していま
す。つまりTodoオブジェクト１つでtodoテーブルの1レコードを表せます。このように
テーブルのレコードを表すクラスを、Spring Bootでは「エンティティ(Entity)クラス」
と呼びます。
【表6-4】Todoクラスとtodoテーブルの関係

　Todoクラス 　todoテーブル
　プロパ
ティ名

　データ型 　アノテーション 　列名 　データ
型

　制約

　id 　Integer 　@Id,

　
@GeneratedValue

　id 　SERIAL 　PRIMARY

KEY

　title 　String 　title 　TEXT

　
importance

　Integer 　
importance

　
INTEGER

　urgency 　Integer 　urgency 　
INTEGER

　deadline 　
java.sql.Date

　deadline 　DATE

　done 　String 　done 　TEXT

※すべてのプロパティに付与している@Columnは省略しています。
　
プロパティのデータ型は、テーブル列のものと対応させます。
todoテーブルのdeadline列は、年月日だけのDATE型なので、Todoクラスのdeadlineプ
ロパティはjava.util.Dateではなく、java.sql.Dateとします。
　
Todoクラスで使っているアノテーションは次の通りです。
①@Entity

・このクラスがエンティティであることを示す。
②@Table

・このエンティティに対応付けるテーブルを指定する。
　⇒これによりTodoオブジェクトへの操作は、自動的にtodoテーブルのレコードに対
する操作となる(後述)。

③@Id

・テーブルの主キーに対応するプロパティであることを表す。
　⇒プロパティ名はid以外でも構わない。「@Idが付与されているプロパティが主キー
に対応する」と解釈される。

④@GeneratedValue

・主キーが自動採番されることを表す。
・PostgreSQLでSERIAL型とした場合、strategyにはGenerationType.IDENTITYを指
定する。

⑤@Column

・プロパティに対応するテーブルの列を指定する。
・プロパティ名と列名が同じなら省略可能(ただし大文字/小文字は区別されるので注
意)。
・異なる名前にするときは指定が必要。
　⇒テーブルのdone列をcheckedプロパティに対応付けるなら、以下のように付与す
る。
　　@Column(name = "done")

　　private String checked;

　
エンティティクラスとテーブルの関係を図で表すと次のようになります。

【図6-2】エンティティクラスとテーブルの対応
　

@GeneratedValueのstrategyに指定する値は、使用するデータベースシステム、およ
び自動採番の方法により異なります。興味がある方は調べてみてください。

　

6.4 リポジトリ
　
次はTodoRepository.javaです。
Spring Bootには、エンティティ(=テーブル)に対する処理を自動生成する仕組みがあり
ます。これは「自分でコードを書かなくてよい」ということです。それを実現するのが、
この「リポジトリ(Repository)」です。
【リスト6-2】com.example.todolist.repository.TodoRepository.java

package com.example.todolist.repository;

　
import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

import com.example.todolist.entity.Todo;

　
@Repository　　//　①

public interface TodoRepository extends JpaRepository<Todo, Integer>{

//　②

}

　
TodoRepositoryインターフェースのポイントは、次の2か所です。
①@Repository

・このインターフェースがリポジトリであることを示すアノテーション。
・@Repositoryを付与したインターフェースの名称は、対象エンティティクラス名
+"Repository"とするのが一般的。
　
②JpaRepository<Todo, Integer>

・インターフェースの継承元
・型引数<Todo, Integer>

　 第1引数：このリポジトリが対象とするエンティティ(クラス)

　 第2引数：対象エンティティで@Idが指定されているプロパティのクラス(Todoの場
合、idなのでInteger)

　
このインターフェースには抽象メソッドがありません。しかし下表のメソッドが使用で
きるようになっています。テーブルに対するレコードの作成(Create)、読み出し

(Read)、更新(Update)、削除(Delete)、いわゆるCRUDが一通り揃っていることがわかる
と思います。
【表6-5】自動実装されるメソッド(*:本書で使用するメソッド)

No 　修飾子と型 　メソッド(引数) 　機能

1 　long 　count() 　件数

取得2 　<S extends T>

long

　count(Example<S> example)

3 　void 　delete(T entity) 　1レ

コード

削除

4 　void 　deleteAll() 　全レ

コード

削除

5 　void 　deleteAll(Iterable<? extends T>

　　　　　　　　　　　　　　　entities)

　該当

レコー

ド削除

　
6

　
　void

　
　deleteAllById(Iterable<? extends ID>

　　　　　　　　　　　　　　　 ids)

　主

キーで

削除
7 　void 　deleteAllByIdInBatch(Iterable<ID>

　　　　　　　　　　　　　　　 ids)

8 　void 　deleteAllInBatch() 　全レ

コード

削除

9 　void 　deleteAllInBatch(Iterable<T> entities) 　該当

レコー

ド削除

10　void 　deleteById(ID id)* 　主

キーで

削除

11　<S extends

T>boolean

　exists(Example<S> example) 　存在

チェッ

ク

12　boolean 　existsById(ID id) 　主

キーで

存在

チェッ

ク

13　List<T> 　findAll()* 　全レ

コード

取得

14　<S extends

T>Iterabe<S>

　findAll(Example<S> example) 　条件

指定検

索

15　Page<T> 　findAll(Pageable pageable)* 　全レ

コード

取得

　

16　List<T> 　findAll(Sort sort)

17　<S extends

T>Page<S>

　findAll(Example<S> example,

　　　　　　　　　　　Pageable pageable)

　条件

指定検

索

18　<S extends

T>List<S>

　findAll(Example<S> example, Sort sort)

19　List<T> 　findAllById(Iterable<ID> ids)

20　<S

extends T, R>R

　findBy(Example<S>

example, Function<FluentQuery.FetchableFluentQuery<S>,R>

queryFunction)

21　Optional<T> 　findById(ID id)*

22　<S extends

T>Optional<S>

　findOne(Example<S> example)

23　void 　flush() 　更新

結果を

DBに反

映

24　T 　getReferenceById(ID id) 　レ
コード

への参
照取得

25　<S extends T>S 　save(S entity) 　レ

コード

追加・

更新

26　<S extends

T>Iterable<S>

　saveAll(Iterable<S> entities)

27　<S

extends T>List<S>

　saveAllAndFlush(Iterable<S> entities)

28　<S extends T>S 　saveAndFlush(S entity)*

T:エンティティの型, S:Tのサブクラス, ID:Tで@Idが指定されたプロパティの型
※deprecated(使用すべきではない)メソッドは上表に含めていません。
　
これらのメソッドはTodoRepositoryインターフェースの継承元である

JpaRepository、およびスパーインターフェースCrudRepository,

PagingAndSortingRepository, QueryByExampleExecutorの抽象メソッドから継承され
たものです。これはSpring Bootが自動実装します。
さらにTodoRepositoryインターフェースへ、ある「命名規則」に準じた名前の抽象メ
ソッドを定義すると、それも自動実装してくれます(9章で説明します)。
ただしこの自動実装も、万能というわけではありません。複雑な検索や、動的に検索条
件を組み立てるといった場合は、自分で検索メソッドを作成します(10章で説明します)。
　

6.5 コントローラー
　
TodoListControllerの役目は、GETリクエストを受け取ったらtodoテーブルを検索し、
その結果を一覧画面(todoList.html)に渡すことです。検索には前節のTodoRepository

を使います。
【リスト6-3】com.example.todolist.controller.TodoListController.java

package com.example.todolist.controller;

　
import java.util.List;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.servlet.ModelAndView;

import com.example.todolist.entity.Todo;

import com.example.todolist.repository.TodoRepository;

import lombok.AllArgsConstructor;

　
@Controller

@AllArgsConstructor　　　　　　　　　　　　　　　　　 //　②

public class TodoListController {

　　private final TodoRepository todoRepository;　　　//　①

　
　　@GetMapping("/todo")

　　public ModelAndView showTodoList(ModelAndView mv) {

　　　　// 一覧を検索して表示する
　　　　mv.setViewName("todoList");

　　　　List<Todo> todoList = todoRepository.findAll(); //　③

　　　　mv.addObject("todoList", todoList);　　　　　　 //　④

　　　　return mv;

　　}

}

　
前章までは、コントローラーのインスタンス変数に@Autowiredを付与していましたが、

todoRepositoryには、ありません(①)。もし前章と同じように書くと、以下のようになり

ます。
　
　@Autowired

　private final TodoRepository todoRepository

　
これは「フィールドインジェクション」という方法です。以前はよく使われていまし
た。しかし現在は、コンストラクタで初期化する「コンストラクタインジェクション」と
いう方法が推奨されています。
　private final TodoRepository todoRepository

　@Autowired

　public TodoListController(TodoRepository todoRepository) {

　　this.todoRepository = todoRepository;

　}

このように記述するとTodoListController起動時、Spring Bootが必要なインスタン
スを生成し、コンストラクタを呼び出します。つまりtodoRepositoryは、Spring Boot

がコンストラクタ経由でセットしてくれます。
TodoRepository はインターフェースのためインスタンスを作れません。このとき
Spring BootはTodoRepositoryの実装クラスを無名クラスとして作成し、そのインス
タンスをここで設定しています。
　
しかしこれだとフィールドインジェクションに比べ行数が増えます。そこでまず「コン
ストラクタが１つしかない場合、@Autowiredは省略できる」というSpring Bootのルール
を利用します。
　private final TodoRepository todoRepository

　
　public TodoListController(TodoRepository todoRepository) {

　　this.todoRepository = todoRepository;

　}

　
さらにこのコンストラクタは、クラスの(１つしかありませんが)全インスタンス変数に
値をセットしています。つまりLombokの@AllArgsConstructor(②)を使えば、コンストラ
クタも省略できます。
　
　private final TodoRepository todoRepository　　　//　①

　
以下本書では、この方法でコンストラクタインジェクションを使用します。
　
ハンドラーメソッドもシンプルです。http://localhost:8080/todoがリクエストされ
たら、showTodoList()を実行します。ポイントは次の2行です(③④)。
　
　List<Todo> todoList = todoRepository.findAll(); //　③

　mv.addObject("todoList", todoList);　　　　　　 //　④

　
　
③findAll()は【表6-5】にある自動実装されるメソッドの１つです。これはテーブルの
全レコードを検索します。SELECT文で表せば「SELECT　*　FROM　todo」に相当します。
結果はList<Todo>型オブジェクトとして返されるので、そのまま一覧画面に渡して表示
させます(④)。
　

6.6 ビュー
　
最後は検索したToDoの一覧表示画面です。
【リスト6-4】src/main/resources/templates/todoList.html

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org">

<head>

<meta charset="UTF-8">

<title>ToDo List</title>

<link th:href="@{/css/style.css}" rel="stylesheet" type="text/css"><!--

③ -->

</head>

<body>

　<table border="1">

　　<tr>

　　　<th>id</th>

　　　<th>件名</th>

　　　<th>重要度</th>

　　　<th>緊急度</th>

　　　<th>期限</th>

　　　<th>完了</th>

　　</tr>

　　<tr th:each="todo:${todoList}"><!-- ① -->

　　　<td th:text="${todo.id}"></td>

　　　<td th:text="${todo.title}"></td>

　　　<td th:text="${todo.importance == 1 ? '★★★':'★'}"></td> <!-- ②

-->

　　　<td th:text="${todo.urgency == 1 ? '★★★':'★'}"></td>　　<!-- ②

-->

　　　<td th:text="${todo.deadline}"></td>

　　　<td th:text="${todo.done == 'Y' ? '完了':''}"></td>　　　　 <!-- ②

-->

　　</tr>

　</table>

</body>

</html>

　
検索結果の表示には、前章の数あてゲームと同じようにth:eachを使います(①)。
"todo:${todoList}"のtodoListは、前節のTodoListControllerからaddObject()で
渡された、List<Todo>型のオブジェクトです。
変数todoは、このList<Todo>型の要素を表すのでTodo型です。そしてListの要素数
分、つまり検索されたToDoの数だけ<tr>～</tr>を作成します。
todoに検索結果がセットされれば、あとはそれを表示するだけです。このうち「重要
度」「緊急度」「完了」は、条件に応じて表示内容を変えています(②)。
【表6-6】「重要度」「緊急度」「完了」の表示内容

　項目 　条件 　表示内容
　重要度

　

　todo.importance　==　
1

　★★★

　上記以外 　★
　緊急度

　

　todo.urgency　 ==　1 　★★★

　上記以外 　★

　完了

　todo.done　==　'Y' 　完了
　上記以外 　(何も表示しない)

　
この処理には条件演算子(三項演算子)を使っています。構文は以下の通りです。
　
　条件式　?　式1　:　式2

　
条件式がtrueなら式1を評価し、falseなら式2を評価します。
Javaのif文で表すと次のような意味です。
　
　if (条件式){　式1　} else {　式2　}

　
　

後述するようにThymeleafもif文相当の属性を持っていますが「true/falseで表示内容
を変える」といった場合は、こちらの方がシンプルに書けます。
　

6.7 その他ファイル
　
ToDo一覧画面はCSSを利用して見栄えを整えています(③)。
　
<link th:href="@{/css/style.css}" rel="stylesheet" type="text/css"><!--

③ -->

　
　
th:ref属性はHTMLのhref属性になります。また@{～}を「リンクURL式」と言います。
link要素のth:refにリンクURL式を使うと、staticフォルダを起点にしたパスと解釈さ
れます。そのため、@{/css/style.css}は、static/css/style.cssを表します。
　
これに合わせてスタイルシートを配置する手順は、以下のようになります。
1)src/main/resources下のstaticを右クリック > [新規(W)] > [フォルダー]を選択
する。

　
2)「新規フォルダー」ダイアログの[フォルダー名(N)]に"css"と入力 > [完了(F)]ボタ
ンをクリックする。

　
3)cssフォルダが作成される

　
4)cssフォルダを右クリック > [新規(W)] > [その他(O)...]を選択する。

　
5)「新規」ダイアログの[ウィザード(W)]に"css"と入力 > [CSSファイル]をクリック >

[次へ(N)>]ボタンをクリックする。

　
6)「新規CSSファイル」ダイアログでcssフォルダが選択されていることを確認し、[ファ
イル名(M)]に"style.css"入力>[次へ(N)>]ボタンをクリックする。

　
7)[完了(F)]ボタンをクリックする。

　
8)style.cssが作成される。

　
作成したstyle.cssを以下のように編集します。
【リスト6-5】src/main/resources/static/css/style.css

@charset "UTF-8";

body {

　　　margin: 20px;

　　　font-size: 14px;

}

table {

　　　border: solid 1px #84b2e0;

　　　border-collapse: collapse;

}

th {

　　　text-align: center;

　　　color: white;

　　　background: linear-gradient(#829ebc, #225588);

　　　box-shadow: 0px 1px 1px rgba(255, 255, 255, 0.3) inset;

　　　padding: 4px 10px;

}

td {

　　　padding: 4px 10px;

　　　border: solid 1px #84b2e0

}

button {

　　　width: 90px;

　　　margin: 10px 4px;

　　　padding: 4px;

}

.red {

　　　color:red;

}

#nav {

　　　list-style: none;

　　　display: flex;

　　　padding: 0px;

}

　
#nav li {

　　　margin-right: 10px;

}

　
ここまでの操作でsrc/main/resources下は、次のようになります。
Todolist

└ src/main/resources

　 ├ static

　 │　└ css

　 │　　 └ style.css

　 ├ templates

　 │　└ todoList.html

　 └ application.properties

　
　
最後はapplication.propertiesです。このファイルには、プロジェクト全般にかかわ
る情報を定義します。
本書ではPostgreSQLへの接続情報を記述しています。Spring Bootはプロジェクト起動
時、このファイルを読み取り、PostgreSQLにアクセスできるよう準備します(PostgreSQL

に接続するコードを書く必要はありません)。
　
パッケージ・エクスプローラーでapplication.propertiesをダブルクリックし、以下
のように編集します。
【リスト6-6】src/main/resources/application.properties

spring.datasource.driver-class-name=org.postgresql.Driver

spring.datasource.url=jdbc:postgresql:tododb

spring.datasource.username=todouser

spring.datasource.password=pass

　
これは以下のような情報を設定しています。
spring.datasource.driver-class-name=<接続に使用するJDBCドライバークラス名>

spring.datasource.url=<JDBC URL>

spring.datasource.username=<接続に使用するユーザー名称>

spring.datasource.password=<接続に使用するユーザーのパスワード>

　
ここで作成したstyle.cssとapplication.propertiesは、これ以降の章でも使用しま
す(内容は同じです)。
　

6.7 ビュー/コントローラー/リポジトリ/エンティティの関係
　
本章ではToDo一覧を表示するために必要なエンティティ、リポジトリ、コントロー
ラー、そしてビュー(画面)を説明してきました。一度にたくさんの要素が出てきたので、
少々混乱しているかもしれません。これらの関係をシーケンス図で表すと、以下のように
なっています。

【図6-3】ToDo一覧表示のシーケンス
　
図中左上に～/todoとありますが、"～"は"http://localahost:8080"を略したもので
す。
この図と、本章のプログラムを照らし合わせながら、それぞれのつながりを把握できる
ようにしましょう。
次章からは、ここで作成したプロジェクトをベースに各種機能を追加していきます。
　
　

todoテーブル作成手順
　
インストールしたPostgreSQL上に、下表の環境を作成します。
【表6-7】データベース環境

　項目 　名称 　内容
　データベース 　tododb 　todoテーブル格納する
　ユーザー 　todouser 　tododbの所有者
　パスワード 　pass 　todouserのパスワード
　テーブル 　todo 　ToDoを格納する

　

【図6-4】作成するテーブルの構造

　
細かい説明は割愛しますが「データベースtododbの中にテーブルtodoがあり、todoにア
クセスできるのはtodouserである」ということを覚えておいてください。
　
todoテーブル作成手順
1)任意のディレクトリに、以下のSQLファイルを、サクラエディタなどのエディタで作成
する。
⇒Windows付属のメモ帳は、デフォルトで拡張子が“.txt”になるので、避けた方が無
難
　⇒どうしてもメモ帳で作成したい場合は、ファイルを格納するとき「名前を付けて
保存」を使う。

　　そのときダイアログ下部の[ファイルの種類(T)]を「すべての種類」にし、ファイ
ル名は～.sqlとする。

本書ではC:\temp下に作成したものとします。
　
【リスト6-7】C:\temp\init_database.sql

CREATE USER todouser WITH PASSWORD 'pass';

CREATE DATABASE tododb OWNER todouser ENCODING 'UTF8';

CREATE USER ～：ユーザー todouser を作成する。パスワードは pass とする。
CREATE DATABASE ～：データベース tododb を作成する。所有者は todouser 、文字
セットは UTF8 とする。
　
【リスト6-8】C:\temp\init_table.sql

CREATE TABLE todo

(

　id　　　　　 SERIAL PRIMARY KEY,

　title　　　　TEXT,　　
　importance　 INTEGER,　
　urgency　　　INTEGER,

　deadline　　 DATE,

　done　　　　 TEXT

);

　
INSERT INTO todo(title, importance, urgency, deadline, done)

VALUES('todo-1', 0, 0, '2020-10-01', 'N');

INSERT INTO todo(title, importance, urgency, deadline, done)

VALUES('todo-2', 0, 1, '2020-10-02', 'Y');

INSERT INTO todo(title, importance, urgency, deadline, done)

VALUES('todo-3', 1, 0, '2020-10-03', 'N');

INSERT INTO todo(title, importance, urgency, deadline, done)

VALUES('todo-4', 1, 1, '2020-10-04', 'Y');

CREATE TABLE ～ : todoテーブルを作成する(【表6-1】参照)

INSERT ～ : todoテーブルにレコードを追加する。
　
INSERT文でテスト用のToDoを追加していますが、VALUE句にid列が含まれていないこと
に注意してください。
⇒id列はSERIAL型のため、自動的に1～の連番がセットされます。これは手順最後の

SELECT文で確認します。
　
2)コマンドプロンプトを開く。
3)1)のSQLファイルを作成したディレクトリへ移動する。
　
>cd C:\temp

　
　
4)psql(PostgreSQLのコマンドラインベースの対話ツール)を起動する。
・接続ユーザー(-U)にはpostgresを指定する。
・パスワードはインストール時に、設定したものを入力する。
　
C:\temp>psql -U postgres

　
接続に成功するとプロンプトが以下のように変わります。
C:\temp>psql -U postgres

ユーザ postgres のパスワード:

psql (12.4)

"help"でヘルプを表示します。
　
postgres=#

　
5)1)のinit_database.sqlを実行する(\i に続けてSQLファイル名を指定する)

⇒これでデータベースとユーザーが作成される
postgres=# \i init_database.sql

CREATE ROLE

CREATE DATABASE

postgres=#

※もしメモ帳で作成して拡張子が“.txt”になった場合は、そのファイル名
(init_database.sql.txt)を入力する
　
6)\qを入力し、一度psqlを終了する。
postgres=# \q

　
C:\temp>

　
7)再びpsqlを起動して、tododbにtodouserとして接続する。パスワードはpassです。
C:\temp>psql tododb todouser

ユーザ todouser のパスワード:

psql (12.4)

"help"でヘルプを表示します。
　
tododb=>

　
8)2)init_table.sqlを実行する(\i に続けてSQLファイル名を指定する)

⇒これでテーブルが作成される
postgres=# \i init_table.sql

CREATE TABLE

INSERT 0 1

INSERT 0 1

INSERT 0 1

INSERT 0 1

tododb=>

　
9)以下のSELECT文を実行してtodoテーブルにレコードが4件登録されていることを確認す
る。
　
SELECT　*　FROM　todo;

　
　

SERIAL型のid列に1～の連番が自動的にセットされています。
　
10)\qを入力してpsqlを終了する。
postgres=> \q

　
C:\temp>

　
11)コマンドプロンプトにexitと入力するか、右上の[X]をクリックして閉じる。

7. テーブルにレコードを追加する
　
本章ではToDoを追加できるようにします。入力画面だけでなく、入力データのチェック
機能(バリデーション)も作成します。

【図7-1】ToDoの登録操作

　
シーケンス図で表すと、次のようになります。入力チェックは、アノテーションと新し
く追加する「サービス」で行います。

※~/todoの詳細は6章参照(【図6-3】)

【図7-2】登録操作のシーケンス

　
作成するプロジェクトの仕様

　プロジェクト名 　Todolist2

　パッケージ 　com.example.todolist

　依存関係 　Spring Web, Spring Boot DevTools, Thymeleaf, Lombok,

　Spring Data JPA, PostgreSQL Driver, Validation

　コントローラー
クラス

　TodolistController

　 作成ファイル 　src/main/resources/templates/todoForm.html(ToDo入力画
面)

　
プロジェクトの構造は、次のようになります。
Todolist2

├ src/main/java

│　├ com.example.todolist

│　│　└ Todolist2Application.java

│　├ com.example.todolist.controller

│　│　└ TodoListController.java(▲)

│　├ com.example.todolist.entity

│　│　└ Todo.java

│　├ com.example.todolist.form(★)

│　│　└ TodoData.java(★)

│　├ com.example.todolist.repository

│　│　└ TodoRepository.java

│　└ com.example.todolist.service(★)

│　　　└ TodoService.java(★)

└ src/main/resources

　 ├ static

　 │　└ css

　 │　　└ style.css

　 └ templates

　　　 ├ todoForm.html(★)

　　　 └ todoList.html(▲)

★：このプロジェクトで追加する

▲：前プロジェクトの内容を一部変更する
　
本章からステップ・バイ・ステップで、前の章までの結果に追加、変更を加えていきま
す。説明は上図★▲の部分だけになります。
コードを入力しながら読み進まれる方は、プロジェクトのコピー方法を本章最後に載せ
ていますので、そちらを参照し前章Todolistをコピー → 本章の内容を反映、とすること
をお勧めします。
　
プロジェクト名は"Todolist2"にします。パッケージ名com.example.todolist、クラ
ス名TodoListControllerは前章と同じです。

　
依存関係にバリデーション機能を追加します。[使用可能]に”validation”と入力し、そ
れを選択してください。
⇒ 選択済みには「検証」と日本語表示されます。

　

7. 1 バリデーション
　
最初にToDo入力画面(todoForm.html)のデータを取得するフォームクラスTodoDataを
作成します。
フォームクラスの考え方は、4章で説明しました。フォーム部品と同じ名前のプロパティ
を定義するのがポイントです。このTodoDataも、後述のtodoForm.html(【リスト7-5】)

と一致させています。これで@ModelAttributeにより、画面に入力された値を取得しま
す。

【図7-3】フォームクラスTodoData

　
プロジェクトにパッケージcom.example.todolist.formを追加し、以下のクラスを定義
します。
【リスト7-1】com.example.todolist.form.TodoData.java

package com.example.todolist.form;

　
import java.sql.Date;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import com.example.todolist.entity.Todo;

import jakarta.validation.constraints.Min;

import jakarta.validation.constraints.NotBlank;

import jakarta.validation.constraints.NotNull;

import lombok.Data;

　
@Data

public class TodoData {

　　private Integer id;

　
　　@NotBlank(message = "件名を入力してください")

　　private String title;

　
　　@NotNull(message = "重要度を選択してください")

　　private Integer importance;

　
　　@Min(value = 0, message = "緊急度を選択してください")

　　private Integer urgency;

　
　　private String deadline;

　　private String done;

　
　　/**

　　 * 入力データからEntityを生成して返す
　　 */

　　public Todo toEntity() {

　　　　Todo todo = new Todo();

　　　　todo.setId(id);

　　　　todo.setTitle(title);

　　　　todo.setImportance(importance);

　　　　todo.setUrgency(urgency);

　　　　todo.setDone(done);

　
　　　　SimpleDateFormat sdFormat = new SimpleDateFormat("yyyy-MM-dd");

　　　　long ms;

　　　　try {

　　　　　　ms = sdFormat.parse(deadline).getTime();

　　　　　　todo.setDeadline(new Date(ms));

　　　　} catch (ParseException e) {

　　　　　　todo.setDeadline(null);

　　　　}

　

　　　　return todo;

　　}

}

　
TodoDataでは、アノテーションによる入力チェック(バリデーション;validation)を行
います。
アノテーションとチェック内容は、以下のような関係になっています。
【表7-1】TodoDataクラスのバリデーション

　プロパティ
名

　内容 　アノテー
ション

　チェック内容 　エラーメッセージ
(message)

　title 　件名 　@NotBlank 　空でないこと 　"件名を入力してくださ
い"

　importance 　重要度 　@NotNull 　nullでないこと 　"重要度を選択してくだ
さい"

　urgency 　緊急度 　@Min 　指定値より大きい
こと

　"緊急度を選択してくだ
さい"

　
各アノテーションは「チェック内容」が満たされていなければ、messageで指定された
エラーメッセージを生成します(チェックするタイミング、エラーメッセージの表示方法は
後述します)。
　
Spring Bootは多くのバリデーションを持っていますが、大きく次の２つに分けられま
す。
1)Bean Validation

パッケージ名：jakarta.validation.constraints

(https://jakarta.ee/specifications/bean-

validation/3.0/apidocs/jakarta/validation/constraints/package-summary.html)

　
2)Hibernate Validator

パッケージ名：org.hibernate.validator

(http://hibernate.org/validator/)

　
以下は代表的なバリデーションです。
【表7-2】Bean Validation(一部)

https://jakarta.ee/specifications/bean-validation/3.0/apidocs/jakarta/validation/constraints/package-summary.html
http://hibernate.org/validator/

　アノテーション 　チェック内容 　記述例
　@NotNull 　nullではないこと 　@NotNull String title;

　@NotEmpty 　null,""でない 　@NotEmpty String title;

　@NotBlank 　null,"",半角SPACE,TABで
ない

　@NotBlank String title;

　@Max 　指定値以下であること 　@Max(100) int score;

　@Min 　指定値以上であること 　@Min(0) int score;

　@Size 　文字数/要素数が範囲内で
あること

　@Size(min=1, max=20) String

name;

　@Future 　現在日時より未来であるこ
と

　@Future Date deadline;

　@Past 　現在日時より過去であるこ
と

　@Past Date birthdate;

　@AssertTrue 　trueであること 　@AssertTrue boolean isValid;

　@AssertFalse 　falseであること 　@AssertFalse boolean

isError;

　@Pattern
 　正規表現にマッチすること
　@Pattern(regexp="^[a-zA-

Z]+$")

　String numeric;

　
【表7-3】Hibernate Validator(一部)

　アノテーション 　チェック内容 　記述例
　@Length 　文字数が範囲内であること 　@Length(min=0, max=100)

　String message;

　@Range 　数値が範囲内であること 　@Range(min=0, max=100) int

score;

　@Email 　Eメール形式であること 　@Email String email;

　
@CreditCardNumber

　クレジットカード番号形式
であること

　@CreditCardNumber

　String cardNumber;

　@URL 　URL形式であること 　@URL String url;

　
messageを指定しないと、デフォルトのエラーメッセージが使われます。(@NotBlankな
ら「空白は許可されていません」、など)。またプロパティファイルを用意すると、メッ

セージの国際化に対応できます。興味がある方は調べてみてください。
本書の続編である「応用編」でも扱っています。
　

7. 2 コントローラー
　
冒頭のシーケンス図を見ると、コントローラークラスには、新たに３つの処理が必要に
なることがわかります。
【処理1】ToDo一覧画面(todoList.html)で[新規追加]リンクがクリックされたときの
処理 ⇒ 本節で説明
【処理2】ToDo入力画面(todoForm.html)で[登録]ボタンがクリックされたときの処理
⇒ 本節で説明
【処理3】ToDo入力画面で[キャンセル]ボタンがクリックされたときの処理 ⇒ 7.5節で
説明
　
これらを追加した本章のコントローラークラスは、次のようになっています。
【リスト7-2】com.example.todolist.controller.TodoListController.java

package com.example.todolist.controller;

　
import java.util.List;

import org.springframework.stereotype.Controller;

import org.springframework.validation.BindingResult;

import org.springframework.validation.annotation.Validated;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.ModelAttribute;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.servlet.ModelAndView;

import com.example.todolist.entity.Todo;

import com.example.todolist.form.TodoData;

import com.example.todolist.repository.TodoRepository;

import com.example.todolist.service.TodoService;

import lombok.AllArgsConstructor;

　
@Controller

@AllArgsConstructor

public class TodoListController {

　　private final TodoRepository todoRepository;

　　private final TodoService todoService;　// Todolist2で追加
　
　　// ToDo一覧表示(Todolistで追加)

　　@GetMapping("/todo")

　　public ModelAndView showTodoList(ModelAndView mv) {

　　　　mv.setViewName("todoList");

　　　　List<Todo> todoList = todoRepository.findAll();

　　　　mv.addObject("todoList", todoList);

　　　　return mv;

　 }

　
　　// ToDo入力フォーム表示(Todolist2で追加)

　　// 【処理1】ToDo一覧画面(todoList.html)で[新規追加]リンクがクリックされ
たとき

　　@GetMapping("/todo/create")

　　public ModelAndView createTodo(ModelAndView mv) {

　　　　mv.setViewName("todoForm");　　　　　　　　　//　①

　　　　mv.addObject("todoData", new TodoData());　 //　②

　　　　return mv;

　　}

　
　　// ToDo追加処理(Todolist2で追加)

　　// 【処理2】ToDo入力画面(todoForm.html)で[登録]ボタンがクリックされたと
き
　　@PostMapping("/todo/create")

　　public ModelAndView createTodo(@ModelAttribute @Validated TodoData

todoData,//③

　　　　　　　　　　　　　　　　　　 BindingResult result,

　　　　　　　　　　　　　　　　　　 ModelAndView mv) {

　　　// エラーチェック
　　　boolean isValid = todoService.isValid(todoData, result); //　④

　　　if (!result.hasErrors() && isValid) {

　　　　　// エラーなし
　　　　　Todo todo = todoData.toEntity();　　 //　⑤

　　　　　todoRepository.saveAndFlush(todo);

　　　　　return showTodoList(mv);

　
　　　} else {

　　　　　// エラーあり
　　　　　mv.setViewName("todoForm");　　　　 //　⑥

　　　　　// mv.addObject("todoData", todoData);

　　　　　return mv;

　　　}

　}

　
　　// ToDo一覧へ戻る(Todolist2で追加)

　　// 【処理3】ToDo入力画面で[キャンセル登録]ボタンがクリックされたとき
　　@PostMapping("/todo/cancel")

　　public String cancel() {

　　　　return "redirect:/todo";

　　}

　
}

　
追加したハンドラーメソッドは、以下のようになっています(【処理3】[キャンセル]は

7.5節参照)。
　@GetMapping("/todo/create")

　public ModelAndView createTodo(ModelAndView mv) {

　　　mv.setViewName("todoForm");　　　　　　　　　//　①

　　　mv.addObject("todoData", new TodoData());　 //　②

　　　return mv;

　}

【処理1】ToDo一覧画面の[新規追加]リンクに対応しています。
呼び出されたらToDo入力画面が表示されるようにします(①)。また前述のTodoDataオ
ブジェクトを生成し、"todoData"という名称で画面に渡します(②)。これでToDo入力
画面は、初期化された状態で始まります。
　
　@PostMapping("/todo/create")　

　public ModelAndView createTodo(@ModelAttribute @Validated TodoData

todoData,//③

　　　　　　　　　　　　　　　　　　BindingResult result,

　　　　　　　　　　　　　　　　　　ModelAndView mv)

【処理2】のTodo入力画面の[新規登録]ボタンに対応しています。
ハンドラーメソッドの引数に、@ValidatedアノテーションとBindingResultオブジェ
クトがあります(③)。
　
@ValidatedはtodoDataにバインドされた値(=画面で入力された値)を、前節で説明し
たTodoDataクラスのアノテーション(@NotBlank,@NotNull,@Min)でチェックしま
す。結果はBindingResultオブジェクトに格納されます。
つまりこのハンドラーメソッドが処理を始めるとき、resultにはtodoDataのチェック
結果が入っています。
エラーがあればBindingResult#hasErrors()で判断します(エラーがあればtrueにな
る)。
　
さらにアノテーションでチェックできないエラーは、TodoService#isValid()で調べ
ます(④)。詳細は次節で説明します。
　
　boolean isValid = todoService.isValid(todoData, result);//④

　
　
ここで@GetMappingと@PostMappingのURLパスは同じ("/todo/create")ですが、リク
エスト方法で区別されます。
またハンドラーメソッドも、同じcreateTodoという名前です。これは引数の型・数が異
なれば同名メソッドを定義できる「オーバーロード」を利用しています。
　

7. 3 サービスクラス
　
アノテーションによる入力チェックは便利ですが、万能ではありません。たとえばToDo

入力画面の件名に、全角スペースだけ入力しても、@NotBlankではエラーになりません。
また期限の形式チェック(yyyy-mm-dd)も、標準のアノテーションでは難しいでしょう。
こういった場合は、自分で入力チェックを行い、結果をBindingResultに追加します。
こうすればアノテーションと追加チェックの結果を1か所にまとめることができます。
　
追加チェックはコントローラークラスでも行えます。しかしSpring Bootで開発すると
きは、このような分岐のある複雑な処理はコントローラーに含めないようにするのが一般
的です。代わりに別なクラスのメソッドとして定義し、そのクラスに@Serviceアノテー
ションを付与します。これを「サービスクラス」と言います。なおサービスクラスの名称
は～Serviceとするのが一般的です。
　
以下が追加チェックを行うTodoServiceです。プロジェクトにパッケージ

com.example.todolist.serviceを追加し、そこに定義します。
【リスト7-3】com.example.todolist.service.TodoService.java

package com.example.todolist.service;

　
import java.time.DateTimeException;

import java.time.LocalDate;

import org.springframework.stereotype.Service;

import org.springframework.validation.BindingResult;

import org.springframework.validation.FieldError;

import com.example.todolist.form.TodoData;

　
@Service　　// ①

public class TodoService {

　
　　public boolean isValid(TodoData todoData, BindingResult result) {

　　　　boolean ans = true;

　
　　　　// 件名が全角スペースだけで構成されていたらエラー

　　　　String title = todoData.getTitle();

　　　　if (title != null && !title.equals("")) {

　　　　　　boolean isAllDoubleSpace = true;

　　　　　　for (int i = 0; i < title.length(); i++) {

　　　　　　　　if (title.charAt(i) != '　') {

　　　　　　　　　　isAllDoubleSpace = false;

　　　　　　　　　　break;

　　　　　　　　}

　　　　　　}

　　　　　　if (isAllDoubleSpace) {

　　　　　　　　FieldError fieldError = new FieldError(

　　　　　　　　　　result.getObjectName(),

　　　　　　　　　　"title",

　　　　　　　　　　"件名が全角スペースです");

　　　　　　　　result.addError(fieldError);

　　　　　　　　ans = false;

　　　　　　}

　　　　}

　
　　　　// 期限が過去日付ならエラー
　　　　String deadline = todoData.getDeadline();

　　　　if (!deadline.equals("")) {

　　　　　　LocalDate tody = LocalDate.now();

　　　　　　LocalDate deadlineDate = null;

　　　　　　try {

　　　　　　　　deadlineDate = LocalDate.parse(deadline);

　　　　　　　　if (deadlineDate.isBefore(tody)) {

　　　　　　　　　　FieldError fieldError = new FieldError(

　　　　　　　　　　　　result.getObjectName(),

　　　　　　　　　　　　"deadline",

　　　　　　　　　　　　"期限を設定するときは今日以降にしてください");

　　　　　　　　　　result.addError(fieldError);

　　　　　　　　　　ans = false;

　　　　　　　　 }

　　　　　　} catch (DateTimeException e) {

　　　　　　　FieldError fieldError = new FieldError(

　　　　　　　　　result.getObjectName(),

　　　　　　　　　"deadline",

　　　　　　　　　"期限を設定するときはyyyy-mm-dd形式で入力してください");

　　　　　　　result.addError(fieldError);

　　　　　　　ans = false;

　　　　　　}

　　　　}

　　　　return ans;

　　}

}

　
TodoServiceクラスには@Serviceを付与します(①)。前述のTodoListControllerは、
このTodoServiceのインスタンスをコンストラクタインジェクションで取得しています。
　
ここでは追加のエラーチェックを行うisValid()だけ定義します。引数は画面入力値が
バインドされたtodoDataとチェック結果を格納するresultです。todoDataをチェック
し、エラーがあればFieldErrorオブジェクトをresultに追加(addError())します。
　
FieldErrorは以下のコンストラクターで生成しています(②)。引数はFormクラス名, エ
ラーとするフィールド名, エラーメッセージの３つです。このうちFormクラス名は
BindingResult#getObjectName()で取得できます。
　FieldError fieldError = new FieldError(　//　②

　　　　　　　　　　　　　　　　 result.getObjectName(),　//　Formクラス名
　　　　　　　　　　　　　　　　 "title",　　　　　　　　　 //　フィールド名
　　　　　　　　　　　　　　　　 "件名が全角スペースです");　　//　エラーメッ
セージ
　
期限は、以下の2点をチェックします。これもエラーがあれば、FieldErrorをresultに
追加します。
・LocalDate型に変換できる
・今日以降の日付である
　

バリデーションを行うバリデーター(validator)を独自に作成することもできます。可
能であれば、上記のような入力チェック処理もバリデーション化した方がよいでしょ
う。興味がある方は以下のインターフェース名などをキーに調べてみてください。
jakarta.validation.ConstraintValidator

　

7. 4 レコードの追加
　
【処理2】のハンドラーメソッドcreateTodo()へ戻ります。
　
　boolean isValid = todoService.isValid(todoData, result);//　④

　if (!result.hasErrors() && isValid) {

　　　// エラーなし
　　　Todo todo = todoData.toEntity();　　 //　⑤

　　　todoRepository.saveAndFlush(todo);

　　　return showTodoList(mv);

　
　} else {

　　　// エラーあり
　　　mv.setViewName("todoForm");　　　　 //　⑥

　　　// mv.addObject("todoData", todoData);

　　　return mv;

　 }

　
　
アノテーションおよびisValid()でエラーがなければ、入力されたToDoをテーブルに追
加します(⑤)。
追加はエンティティクラスのオブジェクトを引数にして

TodoRepository#saveAndFlush()を実行します(toEntity()はTodo型オブジェクトを返
す。【リスト7-1】参照)。
この場合のsaveAndFlush()は、次のようなINSERT文に相当します。処理コードは

Spring Bootが自動実装してくれるので、メソッドを実行するだけです(これも【表6-5】
に含まれています)。
　
INSERT　INTO　todo(title,　importance,　urgency,　deadline,　done)

　　　　　　VALUES(画面に入力された件名,　重要度,　緊急度,　期限,　完了)

　
　

ToDoを追加したら、ToDoリスト一覧を再表示します。ここでfindAll()を実行してもよ
いのですが、代わりに前章で作成したshowTodoList()を呼び出し、その戻り値をreturn

します。これで一覧表示処理を1か所にまとめることができます(ただしこの方法には問題
があるため、次章で解決します)。
　
　return showTodoList(mv);

　
　
入力エラーのときは、入力画面へ戻り、エラーになった値を含め前回入力された値を再
表示します。エラーメッセージもあわせて表示します(⑥)。
　
なおこの場合、入力画面にデータを渡すaddObject()は省略可能です。
　mv.setViewName("todoForm");　　　　 //　⑥

　// mv.addObject("todoData", todoData); //	← 省略可
　return mv;

これは「@ModelAttributeが付与されたオブジェクトは、addObject()しなくても遷移
先で使用できる」からです。
ただし条件が１つあります。それはオブジェクトの名前(=addObject()の第1引数)が、
「クラス名の先頭を小文字にしたもの」であることです。"todoData"はTodoData型オブ
ジェクトtodoDataに対する名前なので、条件に合致します。よって省略可能です。
さらにバリデーション結果が格納されたBindingResultオブジェクトもaddObejct()し
ません。これはバリデーション対象オブジェクト(この場合todoData)に、関連付けられて
いるからです。
　

7. 5 リダイレクト
　
コントローラーの最後にある@PostMapping("/todo/cancel")は、【処理3】Todo入力
画面の[キャンセル]ボタンに対応します。必要な機能はToDo一覧の再表示です。ここでは
showTodoList()を直接実行するのではなく、「リダイレクト(redirect)」という方法を
使い、次の画面へリクエストを転送します。
やり方は簡単で、ハンドラーメソッドの戻り値を"redirect:" + 転送先のURLパスとす
るだけです。
　@PostMapping("/todo/cancel")

　public String cancel() {

　　return "redirect:/todo";

　}

これでURLパス/todoに対するGETリクエストが発生し、showTodoList()が呼び出されま
す。これがシーケンス図の一番下の往復になります。
　
リクエストの転送には、このリダイレクト(redirect)とフォワード(forward)の2種類
あります。興味がある方は違いなどについて調べてみてください。
　

7. 5 エラーメッセージの表示
　
最後に画面を説明します。
前章で作成したToDo一覧画面には、入力画面へ遷移する[新規追加]リンクを追加しま
す。これがコントローラーの【処理1】@GetMapping("/todo/create")と対応します。
【リスト7-4】src/main/resources/templates/todoList.html(一部抜粋)

<body>

<a th:href="@{/todo/create}">新規追加

　<table>

本章からはa要素のURLパス指定にも、th:href属性とURLリンク式@{}を使います。
th:hrefはHTMLのhref属性になり、@{}はURLパスを生成します。ここでは単にとしても同じですが、URLリンク式には「URLパスにパラメーター
を埋め込む記述がシンプルになる」というメリットがあります(後述)。そのためURLリン
ク式で統一して行きます。
　
本章で追加するTodo入力画面は、次のようになっています。
【リスト7-5】src/main/resources/templates/todoForm.html

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org">

<head>

<meta charset="UTF-8">

<title>ToDo List</title>

<link th:href="@{/css/style.css}" rel="stylesheet" type="text/css">

</head>

<body>

　<form th:action="@{/}" method="post" th:object="${todoData}"><! -- ① -

->

　　<table>

　　　<tr>

　　　　<th>件名</th>

　　　　<td>

　　　　　<input type="text" name="title" size="40" th:value="*{title}">

　　　　　<div th:if="${#fields.hasErrors('title')}" th:errors="*{title}"

　　　　　　　 th:errorclass="red"></div>

　　　　</td>

　　　</tr>

　　　<tr>

　　　　<th>重要度</th>

　　　　<td>

　　　　　<input type="radio" value="1" th:field="*{importance}">高
　　　　　<input type="radio" value="0" th:field="*{importance}">低
　　　　　<div th:if="${#fields.hasErrors('importance')}" th:errors="*

{importance}"

th:errorclass="red"></div>

　　　　</td>

　　　</tr>

　　　<tr>

　　　　<th>緊急度</th>

　　　　<td>

　　　　　<select name="urgency">

　　　　　　<option value="-1" th:field="*{urgency}">選択してください
</option>

　　　　　　<option value="1" th:field="*{urgency}">高</option>

　　　　　　<option value="0" th:field="*{urgency}">低</option>

　　　　　</select>

　　　　　<div th:if="${#fields.hasErrors('urgency')}" th:errors="*

{urgency}"

th:errorclass="red"></div>

　　　　</td>

　　　</tr>

　　　<tr>

　　　　<th>期限</th>

　　　　<td>

　　　　　<input type="text" name="deadline" th:value="*{deadline}"

　　　　　　　　　placeholder="yyyy-mm-dd">

　　　　　<div th:if="${#fields.hasErrors('deadline')}" th:errors="*

{deadline}"

　　　　　　　 th:errorclass="red"></div>

　　　　</td>

　　　</tr>

　　　<tr>

　　　　<th>チェック</th>

　　　　<td>

　　　　　<input type="checkbox" value="Y" th:field="*{done}">完了
　　　　　<input type="hidden" name="!done" value="N" />

　　　　</td>

　　　</tr>

　　</table>

　　<div>

　　　<button type="submit" th:formaction="@{/todo/create}">登録</button>

　　　<button type="submit" th:formaction="@{/todo/cancel}">キャンセル
</button>

　　</div>

　</form>

</body>

</html>

　
　
一番のポイントはform要素のth:object="${todoData}"です(①)。
　
　<form th:action="@{/}" method="post" th:object="${todoData}"><! -- ① -

->

　
th:object属性は、その要素内(下位要素)で使用するオブジェクトを設定します。この
オブジェクトからは*{プロパティ名}で、プロパティ値を取得できます(*{}を選択変数式
と言います)。
ここではform要素にth:objectがあるので、下位のフォーム部品でtodoDataが使えま
す。
　
*{プロパティ名}は、件名のth:value属性などで使われています。
　<input type="text" name="title" size="40" th:value="*{title}">

　　　↓

　<input type="text" name="title" size="40" value="todoData.getTitle()の
結果">

まずth:valueはHTMLのvalue属性を作成します。値の*{title}は「th:objectで指定さ
れたtodoDataのtitleプロパティの値」と解釈され、todoData.getTitle()の結果が
value属性の値になります。
　
次のラジオボタン(type="radio")にはth:field属性があります。
　
　<input type="radio" value="1" th:field="*{importance}">高
　
　
th:fieldはHTMLのid属性, name属性, value属性を生成します。
　
　id="importance", name="importance", value="todoData.getImportance()の
結果"

　
　
しかしvalue属性は最初から記述されているので(value="1")、こちらが使われます。
　
　id="importance", name="importance", value="1"

　
　
さらにこのラジオボタンには、同じ名前の要素が複数あります。こういった場合、id属
性には1～の連番が追加されます。
よって次のようになります。
　<input type="radio" value="1" th:field="*{importance}">高
　<input type="radio" value="0" th:field="*{importance}">低
　　　↓

　<input type="radio" value="1" id="importance1" name="importance">高
　<input type="radio" value="0" id="importance2" name="importance">低
　
th:fieldはoption要素でも使っています。
　<option value="-1" th:field="*{urgency}">選択してください</option>

　<option value="1" th:field="*{urgency}">高</option>

　<option value="0" th:field="*{urgency}">低</option>

上記のようにth:fieldはid,name,value属性を作成しますが、option要素はid, name

属性を持ちません。またvalue属性も明示してあるので、その値になります。よって
th:fieldを指定する意味が無いように見えます。
しかしth:fieldには「option要素のvalue属性の値=*{プロパティ名}の値なら、

selected属性を追加する」という働きがあります。もしtodoData.urgency=1なら、次の
ようなHTMLが生成されます。
　<option value="-1">選択してください</option>

　<option value="1" selected>高</option>

　option value="0">低</option>

これはラジオボタン、チェックボックスのchecked属性に対しても同様です。値が同じ
ならchecked属性が追加されます。
　
完了のチェックボックスには、hidden要素も使っています。
　
　<input type="checkbox" value="Y" th:field="*{done}">完了
　<input type="hidden" name="!done" value="N" />

　
チェックボックスの値がサーバーへ送信されるのは、チェックされているときだけで
す。未チェックのまま、あるいはチェックから未チェックに変更した場合、サーバーには
何も送られません。そこで上記hidden要素を追加することで、未チェック時の値もフォー
ムオブジェクトにバインドできるようにします。
このhidden要素のname属性は、対応するチェックボックスの名前の先頭に!をつけたも
のです。
value属性は、未チェック時の値です。
これで未チェック時、todoData.doneには“N”がセットされます。
チェックボックスの値がboolean(true/false)なら、上記hidden要素の追加は不要で
す。
　
[登録]ボタン(【処理2】に対応)、[キャンセル]ボタンは<input type="submit">では
なく、汎用のbutton要素としています。
　
<button type="submit" th:formaction="@{/todo/create}">登録</button>

<button type="submit" th:formaction="@{/todo/cancel}">キャンセル</button>

　
これは押されたボタンによってURLパスを変えたいためです。それぞれのURLパスは

th:formaction属性で指定します。このth:formactionはHTMLのformaction属性とな
り、form要素のaction属性を上書きします(【表4-2】参照)。
　
最後はエラーメッセージの表示です。以下は件名(=title)に対するものですが、少々複
雑です。
　
　<div th:if="${#fields.hasErrors('title')}" th:errors="*{title}"

　　　　　　　 th:errorclass="red"></div>

　
　
このdiv要素は、件名にエラーがあった場合のみエラーメッセージを表示するために作成
します。
・#fields.hasErrors('title')で、エラー有無をチェックします。

#fieldsはth:objectで指定したオブジェクトに関連付けられたエラー情報を表しま
す。ここでは、ハンドラーメソッドcreateTodo()のresultになります。中にはアノ
テーションとTodoService#isValid()のチェック結果が格納されています。そこに
titleのエラーがあればtrue、なければfalseが返されます。
　
・th:if属性は、この要素を作成するかどうかの判断です。
変数式がtrueならこの要素が作成される、falseなら作成されません。
　
・th:errors属性は、エラーメッセージを取得します。

*{プロパティ名}の形式で、どのプロパティに対するエラーメッセージなのかを指定し
ます。
　
・th:errorclass属性は、この要素に適用するCSSのクラス名称です。

redはstyle.cssで以下のように定義しているので、エラーメッセージは赤文字で表示
されます。

.red {

　　　color:red;

}

　
注意点としてth:objectとエラー表示要素の位置関係があります。
このtodoForm.htmlでは、エラー表示するdiv要素を、th:objectを指定したform要素
の内部(下位)要素としています。
<form th:action="@{/}" method="post" th:object="${todoData}">

　　　:

　<div th:if="${#fields.hasErrors('title')}" th:errors="*{title}"

th:errorclass="red"></div>

　　　:

</form>

　
これを以下のように上位-下位関係の無いところに配置すると、Thymeleafでエラーにな
るので注意してください。
<form th:action="@{/}" method="post" th:object="${todoData}">

　　　:

</form>

<div th:if="${#fields.hasErrors('title')}" th:errors="*{title}"

th:errorclass="red"></div>

　次のようにするとエラーの一覧表示もできます。ただし、エラーを発生箇所から離れ
たところに、まとめて表示するというのは、ユーザーインターフェース的に良い方法と
は言えないでしょう。
　<form th:action="@{/}" method="post" th:object="${todoData}">

　

　　<li th:each="e : ${#fields.detailedErrors()}" th:text="${e.message}"

class="red">

　

　
　
本章では新たに入力画面を追加し、ToDoを登録できるようにしました。次章からは、

ToDoの変更などができるようにしていきます。
　
　

補足：プロジェクトのコピー方法
　
本節ではTodolistプロジェクトをコピーしてTodolist2を作成する手順を説明します。
これ以降の章でも、同様の手順で前の章のプロジェクトをコピーできます。
　
1)パッケージ・エクスプローラーでコピー元のプロジェクト(Todolist)を右クリック >

[コピー(C)]を選択する。

　
2)パッケージ・エクスプローラーの下の余白を右クリック > [貼り付け(P)]を選択す
る。

　
3)「プロジェクトのコピー」ダイアログの[プロジェクト名(P)]にコピー先のプロジェク
ト名("Todolist2")を入力 > [コピー(C)]ボタンをクリックする。

　
4)プロジェクトがコピーされる(Todolist2)。

　
本章から新たに依存関係として「Validation」を使いますので、コピーしたプロジェク
トに以下の手順で追加します。
なお本章以降、依存関係は同じです。よってこの操作が必要なのは、

Todolist→Todolist2の場合だけです。
　
5)コピーしたプロジェクト(Todolist2)を右クリック > [Spring] > [スターターの追
加(S)]を選択する。

　
6)「新規Springスターター・プロジェクト依存関係」ダイアログが表示されるので、[使
用可能]に"Validation"と入力。チェック > [次へ(N)>]ボタンをクリックする。

　
7)変更箇所が表示されるので[左から右へ現在の変更をコピーする]ボタンをクリック >

[完了(F)]ボタンをクリックする。
　

　
ここまでの操作で本書の内容を進めていく準備ができました。ただし既存のプロジェク
トを直接コピーして作ったため、一部不整合が起きています。ToDoアプリケーションを動
かすのには支障ありませんが、念のため以下の手順で解消します。
　
8)コピーしたプロジェクトのパッケージcom.example.todolist下の
TodolistApplication.javaを右クリック > [リファクタリング(T)]>[名前変更
(N)...]を選択する。

　
9)「コンパイル単位名の変更」ダイアログで、[新しい名前(M)]にコピー先プロジェクト
名+"Application("Todolist2Application")を入力 > [次へ(N)>]ボタンをクリック

する。

　
10)[完了(F)>]ボタンをクリックする。

　
11)[はい(Y)>]ボタンをクリックする。

　
12)コピー先プロジェクト(Todolist2)下にあるpom.xmlをダブルクリックして開く。

　
13)先頭付近の<artifactId>～</artifactId>と<name></name>の2か所を、コピー先プ
ロジェクト名("Todolist2")に変更し、保存する。
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"...(略)

　　xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ...(略)

　　<modelVersion>4.0.0</modelVersion>

　　<parent>

　　　　<groupId>org.springframework.boot</groupId>

　　　　<artifactId>spring-boot-starter-parent</artifactId>

　　　　<version>3.0.0</version>

　　　　<relativePath/> <!-- lookup parent from repository -->

　　</parent>

　　<groupId>com.example</groupId>

　　　　artifactId>Todolist2</artifactId>　<!-- ←変更 -->

　　<version>0.0.1-SNAPSHOT</version>

　　<name>Todolist2</name>　<!-- ←変更 -->

　　<description>Demo project for Spring Boot</description>

　
pom.xmlはMaven(メイヴン/メイヴェン)というJavaプロジェクト用プロジェクト管理
ツールの定義ファイルです。このファイルで、作成するプロジェクトの情報や依存関係
などを管理しています。

STSではGrandleという管理ツールも使えますが、デフォルトはMavenです(「新規
Springスターター・プロジェクト」ダイアログの[タイプ]で指定している)。
MavenやGrandleはSTS以外でも利用されています。興味がある方は調べてみてくださ
い。

8. テーブルのレコードを更新・削除する
　
前章まででToDoの一覧表示、追加ができるようになりました。本章ではさらに更新機能
と削除機能を追加します。また追加後の画面再表示についても見直します。

【図8-1】ToDoの更新操作
　

※~/todoの詳細は6章参照(【図6-3】)

【図8-2】更新操作のシーケンス

　

【図8-3】ToDoの削除操作

　

※~/todoの詳細は6章参照(【図6-3】)

【図8-4】削除操作のシーケンス

　
作成するプロジェクトの仕様
　プロジェクト名 　Todolist3

　依存関係
 　Spring Web, Spring Boot DevTools, Thymeleaf, Lombok,

　Spring Data JPA, PostgreSQL Driver, Validation

　
　
Todolist3

├ src/main/java

│　├ com.example.todolist

│　│　└ TodolistApplication.java

│　├ com.example.todolist.controller

│　│　└ TodoListController.java(▲)

│　├ com.example.todolist.entity

│　│　└ Todo.java

│　├ com.example.todolist.form

│　│　└ TodoData.java

│　├ com.example.todolist.repository

│　│　└ TodoRepository.java

│　└ com.example.todolist.service

│　　　└ TodoService.java

└ src/main/resources

　 ├ static

　 │　└ css

　 │　　 └ style.css

　 └ templates

　　　 ├ todoForm.html(▲)

　　　 └ todoList.html(▲)

★：このプロジェクトで追加する
▲：前プロジェクトの内容を一部変更する
　

8.1 主キーで検索する
　
更新と削除は、一覧画面(todoList.html)から対象とするToDoを選ぶことから始めま
す。
一覧画面の件名がリンク(a要素)になっていて、クリックすると入力画面

(todoForm.html)へ遷移し、[更新][削除]ボタンをクリックできます(【図8-1】,【図8-

3】参照)。
　
この件名リンクには、選択されたToDoをコントローラーに知らせる情報が必要です。そ
こでtodoテーブルの主キーであるidの値を含めます。具体的にはURLパスを「/todo/todo

のid」とし、idを@PathVariableで受け取ります。
【リスト8-1】src/main/resources/templates/todoList.html(変更箇所)

<td th:text="${todo.title}"></td>

↓

<td><a th:href="@{/todo/__${todo.id}__}" th:text="${todo.title}">

</td>

　
URLリンク式(@{})の中で、todo.idを囲んでいる__${}__(変数式の前後にアンダースコ
アが２つ)は、値を埋め込むための書き方です。これでtodoオブジェクトがid=1,

title="todo-1"なら、次のようなHTMLになります。
　
<td>todo-1</td>

　
　
このリクエストを受け取るコントローラーには、以下のハンドラーメソッドを追加しま
す。
【リスト8-2】
com.example.todolist.controller.TodoListController.java#todoById()

　private final HttpSession session;

:

　@GetMapping("/todo/{id}")

　public ModelAndView todoById(@PathVariable(name = "id") int id,

ModelAndView mv) {

　　　mv.setViewName("todoForm");

　　　Todo todo = todoRepository.findById(id).get();　 //　①

　　　mv.addObject("todoData", todo);　　　　　　　　　 //　※b

　　　session.setAttribute("mode", "update");　　　　　//　②

　　　return mv;

　}

　
URIテンプレート変数idを@PathVariableで取得し、それを引数にfindById()でtodo

テーブルを検索します(①)。findById()は「@Idが付与された項目を条件に検索」するメ
ソッドで、【表6-5】に含まれています。
SELECT文で表せば次のようになります。
　
　SELECT　*　FROM　todo　WHERE　id　=　引数idの値
　
　
①ではさらにfindById()の戻り値にget()を実行します。これはfindById()が

Optional<Todo>型オブジェクトを返すためです(【表6-5】参照)。
findById()は@Id(主キー)で検索するため、結果は1件または0件です。該当があれば、
そのレコードを表すTodoオブジェクト、なければnullという意味のOptional<Todo>で
す。get()はこのOptionalオブジェクトからTodoオブジェクトを取得するものです
(java.util.Optional#get())。
　
実務ではfindById()がnullの場合も考慮すべきですが、本書では省略しています。リ
ンクがクリックできるということは、showTodoList()でfindAll()を実行したときに
は存在していたはずです。つまり一覧が表示されから、リンクをクリックするまでの間
にレコードが削除されない限りnullにはなりません。
　
検索結果todoはaddObjectメソッド(※b)で入力画面に渡します。
また入力画面から更新、削除もできるようにするため、表示するボタンは機能にあわせ
て変える必要があります。そこでコンストラクタインジェクションで取得したセッション
(HttpSession型の変数session)に、入力画面のボタンを指定するデータを書き込んでお
きます(②)。入力画面はこの内容を見て、表示するボタンを切り替えます(後述)。
【表8-1】表示するボタンの切り替え

　イベント 　入力画面に表示するボタン 　セッションに格納するデータ

　新規追加をクリッ
ク

　[登録][キャンセル] 　mode="create"

　件名をクリック 　[更新][削除][キャンセ
ル]

　mode="update"

　
mode="create"も、createTodo()で書き込むようコードを追加します(③)。
【リスト8-3】
com.example.todolist.controller.TodoListController.java#createTodo()

　@GetMapping("/todo/create")

　public ModelAndView createTodo(ModelAndView mv) {

　　　mv.setViewName("todoForm");

　　　mv.addObject("todoData", new TodoData());　//　※a

　　　session.setAttribute("mode", "create");　　//　③

　　　return mv;

　}

　
これで件名をクリックしたToDoの内容が入力画面に表示されます。
　

8.2 レコードを更新する
　
次は入力画面で[更新]ボタンが押された時の処理です。ハンドラーメソッドは以下のよ
うになっています。
【リスト8-4】
com.example.todolist.controller.TodoListController.java#updateTodo()

import org.springframework.ui.Model;

　　 :

　@PostMapping("/todo/update")

　public String updateTodo(@ModelAttribute @Validated TodoData todoData,

　　　　　　　　　　　　　　　BindingResult result,

　　　　　　　　　　　　　　　Model model) {

　　　// エラーチェック
　　　boolean isValid = todoService.isValid(todoData, result);

　　　if (!result.hasErrors() && isValid) {

　　　　　// エラーなし
　　　　　Todo todo = todoData.toEntity();

　　　　　todoRepository.saveAndFlush(todo);　 //　①

　　　　　return "redirect:/todo";

　
　　　} else {

　　　　　// エラーあり
　　　　　// model.addAttribute("todoData", todoData);

　　　　　return "todoForm";

　　　}

　}

　
　
前章の新規登録createTodo()(【リスト7-2】)と、よく似ています。これはエラー
チェック方法が同じで、さらに更新もsaveAndFlush()で行うためです(①)。
saveAndFlush()は、引数のエンティティオブジェクトで、@Idが付与されたプロパティ
がnullならレコードを追加します(前章の内容)。nullでなければ、その値を条件にして引

数の内容でレコードを更新します。ToDoは@Idをidに付与しているので、この内容で判断
されます。
　
追加/更新をidで実行し分ける仕組みを説明します。まず次の２つの画面を見てくださ
い。
■[新規追加]で遷移してきたとき　⇒　id欄が空白

　
■件名リンクで遷移してきたとき　⇒　クリックしたToDoのidが表示されている

　
このように[新規追加]ではidが表示されず、件名クリックでは表示されることがわかり
ます。
　
idに着目して処理の流れを見ていきます。まず登録の場合です。
1)入力画面には@GetMapping("/todo/create")のハンドラーメソッドから、初期状態の
TodoDataオブジェクトが渡される(【リスト8-3】の※a)。
⇒idはnull。このためid欄は空白になる。

2)[登録]ボタンをクリックすると、@PostMapping("/todo/create")のハンドラーメ
ソッドでTodoDataオブジェクトにバインドされる。
⇒入力画面ではidを変更できないのでnullのまま。

3)toEntity()でTodoオブジェクトを作成する。
⇒idはnullが引き継がれる。

4)saveAndFlush()を実行する。
⇒@Idのプロパティ(=id)がnullのため、引数の内容がtodoテーブルに追加される。
　⇒追加時、idの値が自動設定される(id列はSERIAL型)。
　

【図8-5】登録時、idはnullのまま
　
これに対し更新では、ハンドラーメソッドでToDo検索結果を入力画面に渡します(【リス
ト8-2】の※b)。idは選択されたToDoのものであり、下図のようにsaveAndFlush()の引
数になるまで引き継がれます。よって更新処理となります。

【図8-6】更新時、idは非nullが引き継がれる
　
このとき実行されるUPDATE文は次のような形です。
　
UPDATE　todo　SET　title　=　todo.title, ...　WHERE　id　=　todo.id

　

　
入力画面には"todoData"という名前で、登録時TodoDataオブジェクト、更新時Todoオ
ブジェクトを渡しています。オブジェクトの型が異なっていますが、Thymeleafはその
ことを意識していません。どちらの場合も、渡されたオブジェクトから、*{プロパティ
名}でプロパティ値を取得できるよう、同じ名前のプロパティを定義しておきます。
　
　

8.3 レコードを削除する
　
コントローラーの最後は、[削除]ボタンクリック時の処理です。これはdeleteById()を
呼び出すシンプルなものです。
【リスト8-5】
com.example.todolist.controller.TodoListController.java#deleteTodo()

　@PostMapping("/todo/delete")

　public String deleteTodo(@ModelAttribute TodoData todoData) {

　　　todoRepository.deleteById(todoData.getId());

　　　return "redirect:/todo";

　}

　
deleteById()も自動生成されるメソッドです(【表6-5】参照)。そろそろ名前から推測
できるかもしれませんが、このメソッドは@Idを指定したプロパティを条件にしてレコード
を削除します。これは次のようなDELETE文に相当します。
　
　DELETE　FROM　todo　WHERE　id　=　todoData.getId()の値
　
　

8.4 Thymeleafでセッションのデータを参照する
　
入力画面は、前章のものに以下の変更を加えています。
【変更点1】表示項目にidを追加。ただし値はhidden要素に格納する。
【変更点2】modeによって表示するボタンを切り替える。
【リスト8-6】src/main/resources/templates/todoForm.html(一部抜粋)

<body>

　<form th:action="@{/}" method="post" th:object="${todoData}">

　　<table>

　　　<!-- TodoList3で追加 開始 -->

　　　<tr>

　　　　<th>id</th>

　　　　<td>

　　　　　

　　　　　<input type="hidden" th:field="*{id}">　　 <!-- ① -->

　　　　</td>

　　　</tr>

　　　<!-- TodoList3で追加 終了 -->

　　　<tr>

　　　　<th>件名</th>

　　　　<td>

　　　　　<input type="text" name="title" size="40" th:value="*{title}">

　　　　　<div th:if="${#fields.hasErrors('title')}" th:errors="*{title}"

　　　　　　　 th:errorclass="red"></div>

　　　　</td>

　　　</tr>

　　　　:

　　</table>

　　<!-- TodoList3で変更 開始 -->

　　<div th:if="${session.mode == 'update'}">　　　<!-- ② -->

　　　<button type="submit" th:formaction="@{/todo/update}">更新</button>

　　　<button type="submit" th:formaction="@{/todo/delete}">削除</button>

　　　<button type="submit" th:formaction="@{/todo/cancel}">キャンセル
</button>

　　</div>

　　<div th:unless="${session.mode == 'update'}">　<!-- ②③ -->

　　　<button type="submit" th:formaction="@{/todo/create}">登録</button>

　　　<button type="submit" th:formaction="@{/todo/cancel}">キャンセル
</button>

　　</div>

　　<!-- TodoList3で変更 終了 -->

　</form>

</body>

</html>

　
【変更点1】のidは、すでに説明したように登録/更新の判別、および削除時の条件に使い
ます。
本来このidは、ユーザーに見せなくてよい項目ですが、挙動がわかるようspan要素と
しています。しかしspan要素はサーバーへ送信されないため、ブラウザに表示されな
いhidden要素を追加し、ここにidの値を格納します(①)。これでボタンクリック時、
idもサーバーへ送られます(hidden要素については、【表4-2】参照)。
　
【変更点2】のmodeは、コントローラーでセッションに書き込んだ、表示するボタンを決
めるものです(【表8-1】参照)。
セッションの値を変数式で参照するときは${session.名称}という形にします(②)。
またth:unless属性(③)は、th:ifの反対で「条件式がfalseの場合」この要素を作成
します。

ThymeleafにはJavaのif～then～else文に相当する属性はありません。すでに説明し
た三項演算子(?:)は属性の中で使える演算子の一種です。
その代わりswitch～case文に相当するth:switch, th:caseがあります。これで代替可
能なケースも多いと思いますので、興味がある方は調べてみてください。
　

8.5 PRG(Post-Redirect-Get)パターン
　
前章の登録用ハンドラーメソッドcreateTodo()は、ToDo登録後、showTodoList()を呼
び出して一覧画面を再表示しました。しかし、この方法には問題があります。これは以下
の手順で再現できます。
　
1)前章で作成したTodolist2を起動し、http://localhost:8080/todoをアクセスす
る。

　
2)[新規追加]をクリックする
3)データを入力して[登録]ボタンをクリックする。

　
4)一覧画面に登録した内容が追加されている。

　
5)ブラウザの再読み込みボタンをクリック、または[CTRL]+[R]を押下する。
⇒「フォーム再送信の確認」ダイアログが表示されるので、[続行]ボタンをクリック
する。

　
6)3)で入力したものが、もう1件追加される。

　
7)ブラウザの再読み込みボタンをクリック、または[CTRL]+[R]を押下する。
⇒「フォーム再送信の確認」ダイアログが表示されるので、[続行]ボタンをクリック
する。

　
8)3)で入力したものが、さらにもう1件追加される。

　　　　　　　　　　　　　:

このように登録直後に再読み込みをすると、入力画面を通らず同じデータが登録されて
しまいます。これは明らかに不具合でしょう。
　
なぜこういうことが起こるのか？まずTodolist2のコードを再掲します。
【リスト8-7】Todolist2のTodoListController.java#createTodo()

　@PostMapping("/todo/create")

　public ModelAndView createTodo(@ModelAttribute @Validated TodoData

todoData,

　　　　　　　　　　　　　　　　　 BindingResult result, ModelAndView mv) {

　　　// エラーチェック
　　　boolean isValid = todoService.isValid(todoData, result);

　　　if (!result.hasErrors() && isValid) {

　　　　// エラーなし
　　　　Todo todo = todoData.toEntity();

　　　　todoRepository.saveAndFlush(todo);

　　　　return showTodoList(mv);　　　　　　　　//　①

　
　　　} else {

　　　　　// エラーあり
　　　　　mv.setViewName("todoForm");

　　　　　// mv.addObject("todoData", todoData);

　　　　　return mv;　　　　　　　　　　　　　　　 //　②

　　　}

　}

　
　
ToDo登録後、①のshowTodoList()で一覧を再表示させますが、表示されたブラウザのア
ドレス欄は/todo/crate/のままです。これは先ほどの操作3)→4)を見るとわかります。こ
の状態で再読み込みすると、ブラウザは直前のリクエスト(=アドレス欄のリクエスト)を再
度実行しようとします。5),7)の「フォーム再送信の確認」ダイアログは、その可否を確
認するものです。[続行]とすると、直前の/todo/crate/がPOSTリクエストでサーバーへ
送られてしまい、余計なToDoが追加されるのです。
　
解決方法はいくつか考えられますが、ここでは①を「/todoへのリダイレクト」へ変更し
ます。リダイレクトを実行すると、アドレス欄はリダイレクト先(/todo)に変わります。
そして、リダイレクト先のハンドラーメソッドshowTodoList()で一覧を再表示します。
　
　　return "redirect:/todo";

　
　

しかしこれだけではModelAndView型オブジェクトを返す②と共存できません。そこで②も
Stringで次画面を指定するよう変更します。
　
　　return "todoForm";

　
　
するとModelAndViewの持つ「ビュー名を保持する」という機能は不要になります。こう
いった場合、「ビューに渡すデータを保持する」だけの
Model(org.springframework.ui.Model)を使うことができます。これで書き換えたの
が、下記のcreateTodo()です。ハンドラーメソッドの戻り値もString型に変更していま
す。
【リスト8-8】Todolist3のTodoListController.java#createTodo()

　// ToDo追加処理(Todolist2で追加したものをTodolist3で改善)

　@PostMapping("/todo/create")

　public String createTodo(@ModelAttribute @Validated TodoData todoData,

　　　　　　　　　　　　　　 BindingResult result,

　　　　　　　　　　　　　　 Model model) {

　　　// エラーチェック
　　　boolean isValid = todoService.isValid(todoData, result);

　　　if (!result.hasErrors() && isValid) {

　　　　　// エラーなし
　　　　　Todo todo = todoData.toEntity();

　　　　　todoRepository.saveAndFlush(todo);

　　　　　return "redirect:/todo";

　
　　　} else {

　　　　　// エラーあり
　　　　　// model.addAttribute("todoData", todoData);

　　　　　return "todoForm";

　　 }

}

　
　
今度は本章のTodolist3で、登録直後の再読み込みを実行してみます。

1)Todolist3を起動し、http://localhost:8080/todoをアクセスする。
2)[新規追加]をクリックする

　
4)データを入力して[登録]ボタンをクリックする。

　
5)一覧画面に登録した内容が追加されている。

　

6)ブラウザの再読み込みボタンをクリック、または[CTRL]+[R]を押下する。
⇒一覧画面が再表示される。

　
今度は「フォーム再送信の確認」ダイアログが表示されません。何回再読み込みして
も、一覧が表示されるだけです。意図しないデータ追加を回避することができました。
　
このように登録処理後、リダイレクトで次画面へ遷移させる方法を「PRG(Post-

Redirect-Get)パターン」と呼んでいます。図で表すと次のようなイメージです。

【図8-7】登録処理のPRGパターン動作イメージ

　
ポイントは、リダイレクトを実行するとクライアントPC(ブラウザ)へ一度制御が戻る点
です。ここからリダイレクト先へGETリクエストが自動的に送られます。操作していると1

往復のように見えますが、実際には2往復しています。こうすれば再読み込みしても、直前

のリクエストは一覧画面を表示するGETリクエストになるので、これが再実行されるわけで
す。
　
このPRGパターンは、同じフォームデータが複数回サーバーへ送信されないようにする
方法の１つです。しかし、多重登録の原因となる操作パターンは他にもあるため、さら
に別な防止策も必要です。興味がある方は「二重サブミット」などをキーワードに調べ
てみてください。
　
　
これでToDoの登録、変更、削除ができるようになりました。ただ、表示は一覧だけで
す。件数が多くなってくると、不便です。そこで次章からは、この検索機能を強化してい
きます。

9. 入力された条件で検索する
　
本章では条件に一致するToDoを検索できるようにします。条件入力画面を追加する方法
もありますが、ここでは一覧画面(todoList.html)に検索条件フォーム(form要素)を追加
します。

【図9-1】ToDoの検索操作

　

※~/todoの詳細は6章参照(【図6-3】)

【図9-2】検索操作のシーケンス

　
作成するプロジェクトの仕様

　プロジェクト名 　Todolist4

　依存関係
 　Spring Web, Spring Boot DevTools, Thymeleaf, Lombok,

　Spring Data JPA, PostgreSQL Driver, Validation

　
Todolist4

├ src/main/java

│　├ com.example.todolist

│　│　└ TodolistApplication.java

│　├ com.example.todolist.common(★)

│　│　└ Utils.java(★)

│　├ com.example.todolist.controller

│　│　└ TodoListController.java(▲)

│　├ com.example.todolist.entity

│　│　└ Todo.java

│　├ com.example.todolist.form

│　│　├　TodoData.java

│　│　└　TodoQuery.java(★)

│　├ com.example.todolist.repository

│　│　└ TodoRepository.java(▲)

│　└ com.example.todolist.service

│　　　└ TodoService.java(▲)

└ src/main/resources

　 ├ static

　 │　└ css

　 │　　 └ style.css

　 └ templates

　　　 ├ todoForm.html(▲)

　　　 └ todoList.html(▲)

★：このプロジェクトで追加する
▲：前プロジェクトの内容を一部変更する
　

9.1 検索条件フォームの追加
　
一覧画面に、検索条件を入力するためのフォーム(form要素)を追加します。
【リスト9-1】src/main/resources/templates/totoList.html(一部抜粋)

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org">

<head>

<meta charset="UTF-8">

<title>ToDo List</title>

<link th:href="@{/css/style.css}" rel="stylesheet" type="text/css">

</head>

<body>

　<!-- Todolist4で追加 開始 -->

　<form th:action="@{/}" method="post" th:object="${todoQuery}"><!-- ① -

->

　　<div style="display: flex">

　　　<table border="1">

　　　　<tr>

　　　　　<th>件名</th>

　　　　　<th>重要度</th>

　　　　　<th>緊急度</th>

　　　　　<th>期限</th>

　　　　　<th>完了</th>

　　　　</tr>

　　　　<tr>

　　　　　<td>

　　　　　　<input type="text" name="title" size="40" th:value="*

{title}">

　　　　　</td>

　　　　　<td>

　　　　　　<select name="importance">

　　　　　　　<option value="-1" th:field="*{importance}">-</option>

　　　　　　　<option value="1" th:field="*{importance}">高</option>

　　　　　　　<option value="0" th:field="*{importance}">低</option>

　　　　　　</select>

　　　　　</td>

　　　　　<td>

　　　　　　<select name="urgency">

　　　　　　　<option value="-1" th:field="*{urgency}">-</option>

　　　　　　　<option value="1" th:field="*{urgency}">高</option>

　　　　　　　<option value="0" th:field="*{urgency}">低</option>

　　　　　　</select>

　　　　　</td>

　　　　　<td>

　　　　　　<input type="text" name="deadlineFrom" th:value="*

{deadlineFrom}" size="10"

　　　　　　　　　placeholder="yyyy-mm-dd">

　　　　　　～
　　　　　　<input type="text" name="deadlineTo" th:value="*{deadlineTo}"

size="10"

　　　　　　　　　 placeholder="yyyy-mm-dd">

　　　　　</td>

　　　　　<td>

　　　　　　<input type="checkbox" value="Y" th:field="*{done}">完了
　　　　　</td>

　　　</table>

　　　<button type="submit" th:formaction="@{/todo/query}">検索</button>

　　</div>

　　<div th:if="${#fields.hasErrors('deadlineFrom')}" th:errors="*

{deadlineFrom}"

　　　　 th:errorclass="red"></div>

　　<div th:if="${#fields.hasErrors('deadlineTo')}" th:errors="*

{deadlineTo}"

　　　　 th:errorclass="red"></div>

　　<hr>

　　<button type="submit" th:formaction="@{/todo/create/form}">新規追加
</button>

　</form>

　<!-- Todolist4で追加 終了 -->

　<table border="1">

　　<tr>

　　　<th>id</th>

　　　<th>件名</th>

　　　:

</body>

</html>

　
①のth:object="${todoQuery}"からわかるように、このフォームとコントローラーは

todoQueryという名前のオブジェクトで関連付けます(定義は後述します)。
デザイン的には入力画面の項目を横並びにしたような形です。違いは期限を範囲で表せ
るように、開始と終了の2つ用意していることです(以下、期限：開始、期限：終了と呼び
ます)。
　
このフォームに入力された内容から、下表のような検索を行います。
【表9-1】検索条件と処理内容

優先度 　検索条件 　処理内容
　1 　件名に文字(列)が入力されてい

る
　その文字(列)を件名に含むToDoを検索す
る

　2 　緊急度="高", "低" 　該当する緊急度のToDoを検索する
　3 　重要度="高", "低" 　該当する重要度のToDoを検索する
　4 　期限：開始!=""、期限：終了

=""

　期限：開始 ≦ 期限 に該当するToDoを検
索する

　5 　期限：開始=""、期限：終
了!=""

　期限 ≦ 期限：終了 に該当するToDoを検
索する

　6

　
　期限：開始!=""、期限：終
了!=""

　

　期限：開始 ≦ 期限 ≦ 期限：終了 に該
当する

　ToDo検索する
　7 　完了がチェックされている 　完了='Y' のToDo検索する
　8 　上記以外 　全ToDoを検索する
　

入力内容は、優先度1 →2 →...→8の順にチェックし、該当すればその条件で検索しま
す。このため「緊急度="高"　かつ　重要度="高"のToDo」といった複合条件による検索は
できません(緊急度="高"のものを検索)。このような検索は次章で対応します。
　
また一覧画面では、新規追加をリンクからボタンに変更しています。
新規追加

　　　↓

<button type="submit" th:formaction="@{/todo/create/form}">新規追加
</button>

　
これに合わせて入力画面(todoForm.html)の[登録]ボタンも、以下のように変更してい
ます。
【リスト9-2】src/main/resources/templates/todoForm.html(変更箇所)

<button type="submit" th:formaction="@{/todo/create}">登録</button>

　　　↓

<button type="submit" th:formaction="@{/todo/create/do}">登録</button>

　
これでURLパスと対応する処理は下表のようになります。
【表9-2】入力に関するURLパス

　URLパス 　処理内容
　/todo/create/form 　入力画面を表示する
　/todo/create/do 　入力内容を登録する
　
これは検索処理とは関係ないデザイン上の変更です。
　

9.2 検索条件の取得
　
次に検索条件フォームへ入力された内容をバインドするフォームクラスを追加します。
【リスト9-3】com.example.todolist.form.TodoQuery.java

package com.example.todolist.form;

　
import lombok.Data;

　
@Data

public class TodoQuery {

　　private String title;

　　private Integer importance;

　　private Integer urgency;

　　private String deadlineFrom;

　　private String deadlineTo;

　　private String done;

　
　　public TodoQuery() {

　　　　title = "";

　　　　importance = -1;

　　　　urgency = -1;

　　　　deadlineFrom = "";

　　　　deadlineTo = "";

　　　　done = "";

　　}

}

　
ToDo入力用のTodoDataと違い、検索条件に対しては必須入力といったチェックをしない
ので、バリデーション用のアノテーション(@NotBlank,@NotNull,@Min)はありません。
ただし期限：開始、期限：終了については、TodoServiceでチェックをします(後述)。
　
コントローラーの検索処理は、以下のようになっています。

【リスト9-4】com.example.todolist.controller.TodoListController.java関連
箇所

　　@GettMapping("/todo")

　　public ModelAndView showTodoList(ModelAndView mv) {

　　　　// 一覧を検索して表示する
　　　　mv.setViewName("todoList");

　　　　List<Todo> todoList = todoRepository.findAll();

　　　　mv.addObject("todoList", todoList);

　　　　mv.addObject("todoQuery", new TodoQuery());　　　　 //

※Todolist4で追加
　　　　return mv;

　　}

　　　:

　　@PostMapping("/todo/query")

　　public ModelAndView queryTodo(@ModelAttribute TodoQuery todoQuery,　
//　①

　　　　　　　　　　　　　　　　　　BindingResult result,　　　　　　　　　
//　②

　　　　　　　　　　　　　　　　　　ModelAndView mv) {

　　　　mv.setViewName("todoList");

　
　　　　List<Todo> todoList = null;

　　　　if (todoService.isValid(todoQuery, result)) {　　//　③

　　　　　　// エラーが無ければ検索
　　　　　　todoList = todoService.doQuery(todoQuery);　 //　④

　　　　}

　　　　// mv.addObject("todoQuery", todoQuery);　　　　 //　⑤

　　　　mv.addObject("todoList", todoList);　　　　　　　//　⑥

　
　　　　return mv;

　　}

　
showTodoList()
最初に表示する一覧画面の処理です。

todoListには初期化したTodoQueryオブジェクトを渡します(※部分)。これで検索条件
フォームは初期状態で表示されます。
　
queryTodo()

[検索]ボタンが押された時の処理です。
検索条件フォームの内容はtodoQueryオブジェクトにバインドされます(①)。
TodoQueryにはバリデーションが無いので@Validatedを指定しません。しかし

TodoServiceでのチェック結果を格納するためBindingResultは引数に残しておきます
(②)。
　
独自チェックはTodoService#isValid()で行います(③)。エラーが無ければ入力された
条件で検索します(④)。詳細は次節で説明します。
エラーがあった場合、todoListはnullのままなので、一覧には何も表示されません。
　
また⑤のaddObject()は、前章で説明したように以下の理由で省略可能です。
・todoQueryが@ModelAttributeでバインドしたものである
・第1引数の名前がクラス名の先頭を小文字にしたものである
・遷移先todoList.htmlのth:objectでもこの名前("todoQuery")を指定している
　
以下は期限：開始、期限：終了に対するチェック処理です。なおTodoServiceには、す
でに6章のTodolist2でisValid()を作成しています。ただし引数の型・数が違うので、同
名メソッドを追加できます(オーバーロード)。
【リスト9-5】com.example.todolist.service.TodoService.java#isValid()

　
package com.example.todolist.service;

　　　:

public class TodoService {

　　　:

　　// Todolist4で追加
　　public boolean isValid(TodoQuery todoQuery, BindingResult result) {

　　　　boolean ans = true;

　
　　　　// 期限:開始の形式をチェック
　　　　String date = todoQuery.getDeadlineFrom();

　　　　if (!date.equals("")) {

　　　　　　try {

　　　　　　　　LocalDate.parse(date);

　　　　　　} catch (DateTimeException e) {

　　　　　　　　// parseできない場合
　　　　　　　　FieldError fieldError = new FieldError(

　　　　　　　　　　result.getObjectName(),

　　　　　　　　　　"deadlineFrom",

　　　　　　　　　　"期限：開始を入力するときはyyyy-mm-dd形式で入力してくださ
い");

　　　　　　　　result.addError(fieldError);

　　　　　　　　ans = false;

　　　　　　}

　　　　}

　　　　// 期限:終了の形式をチェック
　　　　date = todoQuery.getDeadlineTo();

　　　　if (!date.equals("")) {

　　　　　　try {

　　　　　　　　LocalDate.parse(date);

　　　　　　} catch (DateTimeException e) {

　　　　　　　// parseできない場合
　　　　　　　FieldError fieldError = new FieldError(

　　　　　　　　　result.getObjectName(),

　　　　　　　　　"deadlineTo",

　　　　　　　　　"期限：終了を入力するときはyyyy-mm-dd形式で入力してくださ
い");

　　　　　　　result.addError(fieldError);

　　　　　　　ans = false;

　　　　　　}

　　　　}

　　　　return ans;

　　}

　　　:

}

　
処理の流れはTodolist2で追加したisValid()と同じです。todoQueryの期限：開始、
期限：終了にエラーがあればFieldErrorオブジェクトを生成し、引数のBindingResultオ
ブジェクト(result)に追加します。
　
7.3節でも触れたようバリデーションを行うバリデーター(Validator)は独自に作成で
きます。一度作ってしまえば使い回せます。興味がある方は以下のインターフェース名
をキーに調べてみてください。
jakarta.validation.ConstraintValidator

　

9.3 検索処理の定義・実行
　
残っているのは入力に応じた検索を行う、TodoService#doQuery()の仕組みです。
本章では「入力された文字列を件名に含むもの」といった検索を行います(【表9-1】)。
しかし該当するメソッドは【表6-5】にありません。それでは自分で書くのか？というと、
それも違います。「ある命名規則に準じた抽象メソッドをリポジトリに宣言すると、
Spring Bootが自動実装してくれる」という機能を利用します。
　
以下がこの章で使用するTodoRepositoryです。検索処理に対応する抽象メソッドを追加
しています。
【リスト9-6】com.example.todolist.repository.TodoRepository.java

package com.example.todolist.repository;

　
import java.sql.Date;

import java.util.List;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

import com.example.todolist.entity.Todo;

　
@Repository

public interface TodoRepository extends JpaRepository<Todo, Integer> {

　　List<Todo> findByTitleLike(String title);

　　List<Todo> findByImportance(Integer importance);

　　List<Todo> findByUrgency(Integer urgency);

　　List<Todo> findByDeadlineBetweenOrderByDeadlineAsc(Date from, Date

to);

　　List<Todo> findByDeadlineGreaterThanEqualOrderByDeadlineAsc(Date

from);

　　List<Todo> findByDeadlineLessThanEqualOrderByDeadlineAsc(Date to);

　　List<Todo> findByDone(String done);

}

　
追加した抽象メソッドは【表9-1】の検索処理と１対１で対応しています。

【表9-3】検索処理とメソッド宣言

　検索処理 　メソッド宣言(戻り値はすべてList<Todo>)

　1) 　その文字(列)を件名に

含む

　findByTitleLike(String title)

　2) 　緊急度が一致する 　findByImportance(Integer importance)

　3) 　重要度が一致する 　findByUrgency(Integer urgency)

　4)

　
　期限が期限：開始

　　～期限：終了の範囲

内

　findByDeadlineBetweenOrderByDeadlineAsc(Date from,

Date to)

　
　5) 　期限：開始 ≦ 期限 　findByDeadlineGreaterThanEqualOrderByDeadlineAsc(Date

from)

　6) 　期限 ≦ 期限：終了 　findByDeadlineLessThanEqualOrderByDeadlineAsc(Date to)

　7) 　完了が一致する 　findByDone(String done)

　
この命名規則を大雑把に言えば、以下のようになっています。
・"findBy～"は「～で検索する」を表す
・"OrderBy～"は「～で並べ替える」を表す
・～の部分は、Todoクラスのプロパティ(=todoテーブルの列)を表す
　⇒findByのときは引数で条件値を渡す
　
上表のメソッド宣言のプロパティ名を～にすると次のようになります。
・findBy～(条件値)

・findBy～Like(条件値)

・findBy～BetweenOrderBy～Asc(条件値1, 条件値2)

・findBy～GreaterThanEqualOrderBy～Asc(条件値)

・findBy～LessThanEqualOrderBy～Asc(条件値)

　
本章で使用している命名規則はごく一部です。詳細については、以下のサイトなどを参
照してください。
Spring Data JPA - Reference Documentation > 5. JPA Repositories >

5.3.2. Query Creation

https://docs.spring.io/spring-data/data-jpa/docs/current/reference/html/#jpa.query-

methods.query-creation

https://docs.spring.io/spring-data/data-jpa/docs/current/reference/html/#jpa.query-methods.query-creation

　
findBy～(条件値)

最もシンプルな2)のfindByImportance(Integer importance)から説明します。
findByに続くImportanceは、Todoクラスのimportanceプロパティのことです(キャメ
ルケースのため大文字で始まる)。引数は探す値(=検索条件フォームの重要度に入力された
値)です。これで「importanceが引数に一致するtodoレコードを検索する」SELECT文が実
行されます。
findByImportance(Integer importance)

↓

SELECT　*　FROM　todo　WHERE　importance　=　引数importanceの値(検索条件
フォーム入力値)

　
検索結果はList<Todo>になります。3), 7)も同様です。
　
【表6-5】のfindAll(Example<S> example)を使えば、2, 3), 7)と同等の検索ができ
ます。
たとえば以下のようにすると、2)のfindByImportance()と同じ結果が得られます。
　Todo todo = new Todo();

　todo.setImportance(todoQuery.getImportance());

　Example<Todo> example = Example.of(todo);

　todoList = todoRepository.findAll(example);

少し冗長な感じがするので本書では使っていません。興味がある方は調べてみてくださ
い。
　
findBy～Like(条件値)

1)のfindByTitleLikeは「titleが指定された文字(列)を含むもの」という意味です。
SQLで言えばLike演算子による検索となります。
findByTitleLike(String title)

↓

SELECT　*　FROM　todo　WHERE　title　Like　'引数titleの値'

　
引数には必要に応じてワイルドカード(%)を追加します。
【表9-4】ワイルドカードの使い方

　引数 　意味(検索条件)

　"xyz%" 　"xyz"で始まるもの(前方一致)

　"%xyz" 　"xyz"で終わりもの(後方一致)

　"%xyz%" 　"xyz"を含むもの(部分一致)

　"xyz" 　"xyz"であるもの(完全一致)

　
likeのほかにもワイルドカード(%)を使わないStartingWith(前方一致),

EndingWith(後方一致), Containing(部分一致)などもあります。興味がある方は調べ
てみてください。
　
findBy～Between, OrderBy～Asc

4)のfindByDeadlineBetweenOrderByDeadlineAscはfindBy～BetweenとOrderBy～
Ascの組み合わせです。
まずfindByDeadlineBetweenは「deadlineが引数の範囲内に含まれるもの」を表しま
す。これもSQLで言えばBetween演算子による検索です。
findByDeadlineBetween(Date from, Date to)

↓

SELECT　*　FROM　todo　WHERE　deadline　BETWEEN　引数fromの値　AND　引数to

の値
　
OrderByDeadlineは、検索結果をdeadlineで並べ替えます。最後のAscは、その並べ方
の指定です。

Asc ：～の昇順にする(値が小さい→大きい順；ascendingの略)

Desc：～の降順にする(値が大きい→小さい順；descendingの略)

　
これでfindByDeadlineBetweenOrderByDeadlineAsc()は「deadlineが引数の範囲内
に含まれるレコードを検索し、それをdeadlineの昇順に並べ替えて返す」と読み解くこと
ができます(ここは期限が小さい、つまり期限が早いToDoから表示させるのが自然だと思
います)。SELECT文で表すと、以下のようになります。
findByDeadlineBetweenOrderByDeadlineAsc(Date from, Date to)

↓

SELECT　*　FROM　todo　WHERE　deadline　BETWEEN　引数fromの値　AND　引数to

の値

　　　　　　　　　 ORDER　BY　deadline　ASC

　
PostgreSQLをはじめとするリレーショナルデータベース(RDB)では、ORDER BYを指定
しない限り、検索結果の並び順は不定、と考えた方が無難です。並びが主キーの昇順に
見える場合もありますが、それは「たまたま」そうなっているだけです。レコードを更
新すると崩れます。
検索処理を実行するときは、結果の並び順も意識しましょう。
　
findBy～GreaterThanEqual, findBy～LessThanEqual

5), 6)のGreaterThanEqual, LessThanEqualは、それぞれ「以上」、「以下」を表し
ます。
findByDeadlineGreaterThanEqualOrderByDeadlineAsc(Date from)

↓

SELECT　*　FROM　todo　WHERE　deadline　>=　引数fromの値　
　　　　　　　　　 ORDER　BY　deadline ASC

　
findByDeadlineLessThanEqualOrderByDeadlineAsc(Date to)

↓

SELECT　*　FROM　todo　WHERE　deadline　<=　引数toの値　
　　　　　　　　　 ORDER　BY　deadline　ASC

　
本書では使用しませんが、条件をAndやOrで複数記述することもできます。
findByImportanceAndUrgency(Integer importance, Integer urgency)

　　　↓

SELECT　*　FROM　todo　WHERE　importance　=　引数importanceの値
　　　　　　　　　　　　 AND　urgency　=　引数urgencyの値
詳細は上記Reference Documentationなどを参照してください。
　
検索処理は、入力された条件から対応するこれらのメソッドを呼び出すことで実現しま
す。これも分岐が多い処理なのでコントローラーではなくサービスに記述します。
【リスト9-7】com.example.todolist.service.TodoService.java#doQuery()

package com.example.todolist.service;

　　:

@Service

@AllArgsConstructor 　　 //　①

public class TodoService {

　　　:

　private final TodoRepository todoRepository;　　//　①

　　　:

　// Todolist4で追加
　public List<Todo> doQuery(TodoQuery todoQuery) {

　　List<Todo> todoList = null;

　　if (todoQuery.getTitle().length() > 0) {

　　　// タイトルで検索
　　　todoList = todoRepository.findByTitleLike("%" +

todoQuery.getTitle() + "%");

　　　
　　} else if (todoQuery.getImportance() != null &&

todoQuery.getImportance() != -1) {

　　　// 重要度で検索
　　　todoList =

todoRepository.findByImportance(todoQuery.getImportance());

　
　　} else if (todoQuery.getUrgency() != null && todoQuery.getUrgency() != -1) {

　　　// 緊急度で検索
　　　todoList = todoRepository.findByUrgency(todoQuery.getUrgency());

　
　　} else if (!todoQuery.getDeadlineFrom().equals("") &&

　　　　　　　 todoQuery.getDeadlineTo().equals("")) {

　　　// 期限 開始～
　　　todoList = todoRepository

　　　　.findByDeadlineGreaterThanEqualOrderByDeadlineAsc(

　　　　　Utils.str2date(todoQuery.getDeadlineFrom()));

　
　　} else if (todoQuery.getDeadlineFrom().equals("") &&

　　　　　　　 !todoQuery.getDeadlineTo().equals("")) {

　　　// 期限 ～終了

　　　todoList = todoRepository

　　　　.findByDeadlineLessThanEqualOrderByDeadlineAsc(

　　　　　　Utils.str2date(todoQuery.getDeadlineTo()));

　
　　} else if (!todoQuery.getDeadlineFrom().equals("") &&

　　　　　　　 !todoQuery.getDeadlineTo().equals("")) {

　　　// 期限 開始～終了
　　　todoList = todoRepository

　　　　.findByDeadlineBetweenOrderByDeadlineAsc(

　　　　　　　Utils.str2date(todoQuery.getDeadlineFrom()),

　　　　　　　Utils.str2date(todoQuery.getDeadlineTo()));

　
　　} else if (todoQuery.getDone() != null &&

todoQuery.getDone().equals("Y")) {

　　　// 完了で検索
　　　todoList = todoRepository.findByDone("Y");

　
　　} else {

　　　// 入力条件が無ければ全件検索
　　　todoList = todoRepository.findAll();

　　}

　
　　return todoList;

　}

　　:

}

　
このメソッドはリポジトリを使うので、コンストラクターインジェクションで取得しま
す(①)。
またUtils#str2date()は、文字列をjava.sql.Date型に変換するヘルパーメソッドで
す。次章以降、他クラスでも必要になるので独立させておきます
【リスト9-8】com.example.todolist.common.Utils.java

package com.example.todolist.common;

　

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.sql.Date;

　
public class Utils {

　　// Todolist4で追加
　　private static final SimpleDateFormat sdf = new

SimpleDateFormat("yyyy-MM-dd");

　
　　public static　Date str2date(String s) {

　　　　long ms = 0;

　　　　try {

　　　　　　ms = sdf.parse(s).getTime();

　　　　} catch (ParseException e) {

　　　　　　e.printStackTrace();

　　　　}

　　　　return new Date(ms);

　　}

}

　
　
フォームに入力された条件で、いろいろな検索ができるようになりました。しかし「緊
急度="高"　かつ　重要度="高"　かつ　未完了のToDo」といった検索はできません。これ
では期限に遅れてクレームになるかもしれません。反対に「緊急度="低"　かつ　重要度
="低"　かつ　未完了のToDo」は、本当にやるべきか考える余地がありそうです。
このように検索パターンは様々ですが、それを本章の内容だけ実現するのは大変です。
次章ではもっと柔軟な検索処理を導入します。

10. 動的なクエリによる検索
　
前章の検索処理は、条件を複数入力しても１つしか使いませんでした。これを本章で
は、条件が2つなら「条件1　AND　条件2」、3つなら「条件1　AND 条件2　AND 条件3」
といった検索ができるようにします。つまり実行時に、入力内容から条件を組み立てて検
索します。こういった処理を「動的なクエリ(問い合わせ)」と言います。
　

【図10-1】ToDoの動的な検索操作

　

※~/todoの詳細は6章参照(【図6-3】)

【図10-2】動的な検索操作のシーケンス

　

作成するプロジェクトの仕様
　プロジェクト名 　Todolist5

　依存関係
 　Spring Web, Spring Boot DevTools, Thymeleaf, Lombok,

　Spring Data JPA, PostgreSQL Driver, Validation

　
Todolist5

├ src/main/java

│　├ com.example.todolist

│　│　└ TodolistApplication.java

│　├ com.example.todolist.common

│　│　└ Utils.java

│　├ com.example.todolist.controller

│　│　└ TodoListController.java(▲)

│　├ com.example.todolist.dao(★)

│　│　├ TodoDao.java(★)

│　│　└ TodoDaoImpl.java(★)

│　├ com.example.todolist.entity

│　│　├ Todo.java

│　│　└ Todo_.java(★自動生成)

│　├ com.example.todolist.form

│　│　├　TodoData.java

│　│　└　TodoQuery.java

│　├ com.example.todolist.repository

│　│　└ TodoRepository.java

│　└ com.example.todolist.service

│　　　└ TodoService.java

└ src/main/resources

　 ├ static

　 │　└ css

　 │　　└ style.css

　 └ templates

　　　 ├ todoForm.html

　　　 └ todoList.html

★：このプロジェクトで追加する

▲：前プロジェクトの内容を一部変更する
　

10.1 動的なクエリ実行方法
　
前章で説明したように、リポジトリに抽象メソッドを宣言すると、そのメソッド名を手
掛かりにして検索処理が自動実装されます。検索条件をAnd/Orで結合すれば、ある程度複
雑なパターンにも対応できます。しかしそれにも限度があります。
たとえばToDoの検索パターンは、単純に考えても144通り存在します。
【表10-1】ToDoの検索パターン

　項目 　入力パターン 　パターン数
　件名 　入力・なし　入力・あり 　2

　重要度 　指定・なし　低 　高 　3

　緊急度 　指定・なし　低 　高 　3

　期限：開始 　入力・なし　入力・あり 　2

　期限：開始 　入力・なし　入力・あり 　2

　完了 　未チェック　チェック 　2

検索パターン　=　2　×　3　×　3　×　2　×　2　×　2　=　144通り
　
全パターンをfindBy～And～の形でリポジトリに宣言し、それらを条件分岐で実行し分
けるのは(プログラム的には可能ですが)現実的な方法とは言えないでしょう。
こういう場合Spring Bootでは、実行時に検索条件を作成する「動的なクエリ」という
機能が利用できます。実行方法は複数ありますが、本書では次の2つを取り上げます。
　
JPQL(Java Persistence Query Language)

Spring Boot内部で使用している問い合わせ言語(クエリ言語)です。SELECT文とよく似
ていますが、文法上の操作対象はエンティティオブジェクトです。エンティティはテーブ
ルに関連付けられているので、最終的にテーブルの検索となります。
このJPQLは文字列として作成します。
　
JPQLを@NamedQueryアノテーションで実行することもできます。しかし、実行内容を動
的に変えられないため本書では割愛しました。興味がある方は調べてみてください。
　
Criteria API

JPQLを生成するAPIです。JPQLは文字列として組み立てるので、プログラムを実行する
まで誤りがわかりません(コンパイラは文字列リテラルの内部をチェックしない)。これに
対しCriteria APIは、メソッドやメタクラスというものを使いJPQLを作成することによ
り、エラーが起こらないようにしています(その代わりJPQLよりも複雑です)。
　

10.2 DAO(Data Access Object)

　
JPQL/Criteria APIによる動的クエリは、リポジトリを使わず自分で検索メソッドを作
成します。Spring Bootを利用したアプリケーション開発では、リポジトリを使わずデー
タベースにアクセスする処理はDAO(Data Access Object)と呼ばれるクラスに記述するの
が一般的です。本書でもこれにならってDAOのインターフェースと実装クラスを定義しま
す。
　
以下がインターフェース定義です。
【リスト10-1】com.example.todolist.dao.TodoDao.java

package com.example.todolist.dao;

　
import java.util.List;

import com.example.todolist.entity.Todo;

import com.example.todolist.form.TodoQuery;

　
public interface TodoDao {

　　// JPQLによる検索
　　List<Todo> findByJPQL(TodoQuery todoQuery);

　
　　// Criteria APIによる検索
　　List<Todo> findByCriteria(TodoQuery todoQuery);

}

　
JPQL/Criteria API用の検索メソッドを宣言しています(実際に使うのは片方です)。ど
ちらも検索条件がバインドされたTodoQueryオブジェクトを受け取り、検索結果を
List<Todo>で返す仕様です。
　
DAOという呼び名はクラスの役割を言い表したものです。実体はただのJavaクラスであ
り、何か特別な定義を求められているわけではありません。
　

10.2　JPQLによる動的クエリの実行
　
10.2.1 JPQLの組み立て

　
次にTodoDaoインターフェースを実装したクラスを作成します。
最初にJPQLで検索するfindByJPQL()について説明します。プログラムは以下のように
なっています。
【リスト10-2】com.example.todolist.dao.TodoDaoImpl.java(一部抜粋)

package com.example.todolist.dao;

　
import java.util.ArrayList;

import java.util.List;

import com.example.todolist.common.Utils;

import com.example.todolist.entity.Todo;

import com.example.todolist.form.TodoQuery;

import jakarta.persistence.EntityManager;

import jakarta.persistence.Query;

import lombok.AllArgsConstructor;

　
@AllArgsConstructor

public class TodoDaoImpl implements TodoDao {

　　private final EntityManager entityManager;

　
　　// JPQLによる検索
　　@Override

　　public List<Todo> findByJPQL(TodoQuery todoQuery) {

　　　　// ここを"todo"にすると実行時エラーになる。
　　　　StringBuilder sb = new StringBuilder("select t from Todo t where

1 = 1");

　　　　List<Object> params = new ArrayList<>();

　　　　int pos = 0;

　

　　　　// 実行するJPQLの組み立て
　　　　// 件名
　　　　if (todoQuery.getTitle().length() > 0) {

　　　　　　sb.append(" and t.title like ?" + (++pos));　　　　　　　//　①

　　　　　　params.add("%" + todoQuery.getTitle() + "%");　　　　　 //　②

　　　　}

　
　　　　// 重要度
　　　　if (todoQuery.getImportance() != -1) {

　　　　　　sb.append(" and t.importance = ?" + (++pos));　　　　　　//　①

　　　　　　params.add(todoQuery.getImportance());　　　　　　　　 //　②

　　　　}

　
　　　　// 緊急度
　　　　if (todoQuery.getUrgency() != -1) {

　　　　　　sb.append(" and t.urgency = ?" + (++pos));　　　　　　　 //　①

　　　　　　params.add(todoQuery.getUrgency());　　　　　　　　　　//　②

　　　　}

　
　　　　// 期限：開始～
　　　　if (!todoQuery.getDeadlineFrom().equals("")) {

　　　　　　sb.append(" and t.deadline >= ?" + (++pos));　　　　　　　　 //　①

　　　　　　params.add(Utils.str2date(todoQuery.getDeadlineFrom())); //　
②

　　　　}

　
　　　　// ～期限：終了で検索
　　　　if (!todoQuery.getDeadlineTo().equals("")) {

　　　　　　sb.append(" and t.deadline <= ?" + (++pos));　　　　　　　　//　
①

　　　　　　params.add(Utils.str2date(todoQuery.getDeadlineTo()));　//　②

　　　　}

　
　　　　// 完了

　　　　if (todoQuery.getDone() != null &&

todoQuery.getDone().equals("Y")) {

　　　　　　sb.append(" and t.done = ?" + (++pos));　　　　　　　　　//　①

　　　　　　params.add(todoQuery.getDone());　　　　　　　　　　　 //　②

　　　　}

　
　　　　// order

　　　　sb.append(" order by id");

　
　　　　Query query = entityManager.createQuery(sb.toString());　 //　③

　　　　for (int i = 0; i < params.size(); ++i) {　　　　　　　　　　 //　④

　　　　　　query = query.setParameter(i + 1, params.get(i));

　　　　}

　
　　　　@SuppressWarnings("unchecked")

　　　　List<Todo> list = query.getResultList(); 　　　　　　　　　 //　⑤

　　　　return list;

　　}

　
　　// Criteria APIによる検索
　　@Override

　　public List<Todo> findByCriteria(TodoQuery todoQuery) {

　　　　// 内容は次節で解説
　　　　return null;

　　}

}

　
処理の流れは、以下のようになっています。
①JPQLを文字列として組み立てる
②検索条件値(パラメータ)を保存
③①の結果からQueryオブジェクトを生成する
④②のパラメータをQueryオブジェクトにセットする
⑤Queryオブジェクトから検索結果を取得する
　

以下、各ステップの処理を説明します。
①JPQLを文字列として組み立てる
ここで作成するJPQLは、次のような形をしています(1=1の意味は後述します)。
select　t　from　Todo　t　where　1 =　1

　　　　　　　　　　　　　　and　TodoQueryオブジェクトから作成した検索条件
　　　　　　　　　　　order　by　id

　
SELECT文そっくりですが、from句の"Todo"はTodoエンティティのことです。

PostgreSQL上のtodoテーブルではありません。ただTodoエンティティは、@Tableでtodo

テーブルと関連付けているため、最終的にはtodoテーブルに対する検索となります。
"Todo"の次の"t"はTodoのエイリアス(別名)です。これをselect句に書くとTodoの全プ
ロパティを取得します(SELECT * と同じイメージ)。
またwhere句にプロパティ名を記述するときは、エイリアスで修飾します。
　

findByJPQL()で動的なのはwhere句の部分です。引数TodoQueryオブジェクトの全プロ
パティにパラメータがセットされていれば、次のようなJPQLを作成します。
select　t　from　Todo　t　where　1　=　1

　　　　　　　　　　　　　　and　t.title　like　?1

　　　　　　　　　　　　　　and　t.importance　=　?2

　　　　　　　　　　　　　　and　t.urgency　=　?3　
　　　　　　　　　　　　　　and　t.deadline　>=　?4

　　　　　　　　　　　　　　and　t.deadline　<=　?5

　　　　　　　　　　　　　　and　t.done　=　?6

　　　　　　　　　　　order　by　id

　
重要度と緊急度だけなら、次のようにします。
select　t　from　Todo　t　where　1　=　1

　　　　　　　　　　　　　　and　t.importance　=　?1

　　　　　　　　　　　　　　and　t.urgency　=　?2　
　　　　　　　　　　　order　by　id

　
JPQLに含まれる"?"で始まる数字(?1～?6)を「プレースホルダ」と言います。これは後
続のステップ④でパラメータに置き換えられます。

しかしよく見ると、同じ?1でも最初の例ではtitle(件名)、次の例ではimportance(重
要度)に使われています。このように各プレースホルダが何に対応するかは、パラメータの
入力状態によって変わります。
　
プレースホルダには、ここで使用した「?数値」の形式と、「:任意の文字列」の形式
(たとえば:id)があります。前者を「位置パラメータ」、後者を「名前付きパラメー
タ」と言います。興味がある方は名前付きパラメータも調べてみてください。
　
なおJPQL中の"1 = 1"は、ちょっとしたハック(hack)です。これは真(true)になる条件
であり、条件式の評価には影響しません(「真 and 条件式」の結果は、条件式の評価結果
(true/false)になるため)。
そして"1 = 1"があると、後続の検索条件は常に"and "で始められます。つまり「最初
の条件はandなし」「2つ目からはandをつける」といった判断ロジックが不要になる、と
いうわけです。
　
②パラメータを保存
検索に使う値(パラメータ)をArrayListオブジェクトに保存します。④では、この保存し
た順番でプレースホルダを置換します。
　
③①の結果からQueryオブジェクトを生成する
①で作成したJPQLを引数にして、EntityManager#createQuery()でQueryオブジェクト
を生成します。
Queryオブジェクトは、SQLのSELECT文に相当します。
EntityManagerは、その名の通りエンティティによる操作を制御するものであり、各種
メソッドを提供しています。
このEntityManagerオブジェクトの取得方法については、次節で説明します。
　
　Query query = entityManager.createQuery(sb.toString());　 //　③

　
　
④②のパラメータをQueryオブジェクトにセットする
生成したqueryに含まれるプレースホルダ(?1～)を、setParameter()でパラメータに置
換します。第1引数はプレースホルダの数字部分(?1なら1、"?"は不要)、第2引数がパラ

メータです。
　for (int i = 0; i < params.size(); ++i) {　　　　　　　　　　 //　④

　　query = query.setParameter(i + 1, params.get(i));

　}

　
⑤Queryオブジェクトから検索結果を取得する
ここで作成している検索条件は、結果が複数件(0～n件)になるものです。こういった場
合、Query#getResultList()を呼び出し、検索を実行します。結果はコレクションとして
受け取ります。
　
　List<Todo> list = query.getResultList(); 　　　　　　　　　 //　⑤

　
　
検索結果が1件であるとわかっていれば、Query#getSingleResult()を使うこともでき
ます。興味がある方は調べてみてください。
　
これでfindByJPQL()を呼び出すと、動的クエリの結果が返されます。
次は、このメソッドを実行するコントローラー側を説明します。
　
10.2.2 EntityManager

　
コントローラー側のポイントは、EntityManagerの取得方法です。
【リスト10-3】com.example.todolist.controller.TodoListController.java(一
部抜粋)

package com.example.todolist.controller;

　　　：
@Controller

@RequiredArgsConstructor　　　　　　 //　②

public class TodoListController {

　　private final HttpSession session;

　　private final TodoRepository todoRepository;

　　private final TodoService todoService;

　　// Todolist5で追加

　　@PersistenceContext　　　　　　　　//　①

　　private EntityManager entityManager;

　　TodoDaoImpl todoDaoImpl;

　
　　@PostConstruct　　　　　　　　　　　//　③

　　public void init() {

　　　　todoDaoImpl = new TodoDaoImpl(entityManager);

　　}

　　 ：
　　// フォームに入力された条件でToDoを検索(Todolist4で追加, Todolist5で変
更)

　　@PostMapping("/todo/query")

　　public ModelAndView queryTodo(@ModelAttribute TodoQuery todoQuery,

　　　　　　　　　　　　　　　　　　BindingResult result,

　　　　　　　　　　　　　　　　　　ModelAndView mv) {

　　　　mv.setViewName("todoList");

　
　　　　List<Todo> todoList = null;

　　　　if (todoService.isValid(todoQuery, result)) {

　　　　　　// エラーがなければ検索
　　　　　　// todoList = todoQueryService.query(todoQuery);

　　　　　　// ↓

　　　　　　// JPQLによる検索
　　　　　　todoList = todoDaoImpl.findByJPQL(todoQuery);　//　④

　　　　}

　
　　　　//mv.addObject("todoQuery", todoQuery);

　　　　mv.addObject("todoList", todoList);

　
　　　　return mv;

　　}

　　　：
}

　

EntityManagerのインスタンスは@PersistenceContextアノテーションで取得します
(①)。
　
　@PersistenceContext　　　　　　　　//　①

　private EntityManager entityManager;

　
　
これはEntityManagerの作成タイミングが、@Autowiredでコンストラクターインジェ
クションするものとは異なるためです。興味がある方は調べてみてください。
　
このためentityManagerをコンストラクターインジェクションの対象外とする必要があ
ります。そこでコンストラクタ作成方法を@AllArgsConstructorから、
@RequiredArgsConstructorへ変更します(②)。前者はクラスの全フィールドを対象とし
たコンストラクタを生成しますが、後者はfinalが指定されたフィールドだけになりま
す。
両コンストラクタの違いはSTSのアウトラインで確認できます。
■@AllArgsConstructorの場合 - EntityManagerがコンストラクタに含まれている

　
■@RequiredArgsConstructorの場合 - EntityManagerが含まれていない

　
次のinit()には@PostConstructアノテーションを付与しています(③)。これは
「init()の実行タイミングは、コンストラクタや@PersistenceContextによる初期化終
了後」ということを表します。この結果TodoDaoImplのコンストラクタを経由して
EntityManagerを渡せるようになります。
　@PostConstruct　　　　　　　　　　　//　③

　public void init() {

　　todoDaoImpl = new TodoDaoImpl(entityManager);

　}

　
実際TodoDaoImpl には@AllArgsConstructorを付与しているので、コンストラクタ経
由で受け取ります。
　@AllArgsConstructor

　public class TodoDaoImpl implements TodoDao {

　　private final EntityManager entityManager;

　
そしてinit()が終了してから、queryTodo()などのメソッドが呼び出されます。
これでtodoDaoImplに対してfindByJPQL()を実行すれば、検索条件に応じたレコードを
取得できるわけです(④)。
　
　todoList = todoDaoImpl.findByJPQL(todoQuery);　//　④

　
　
addObject()からの処理は前章と同じです。同じ型のオブジェクトを渡しているので、
一覧画面(todoList.html)側は変更する必要がありません。

　

10.4　Criteria APIによる動的クエリの実行
　
Criteria APIは複数のクラス、インターフェースが出てくるので複雑です。ここもス
テップ・バイ・ステップで、Criteria APIの基礎を解説した後、ToDoアプリへの適用例
を説明します。
　
10.4.1 Criteria APIの基礎

　
Criteria APIで中心となるのは、次の3つのインターフェースです。
・CriteriaBuilderインターフェース
(jakarta.persistence.criteria.CriteriaBuilder)

Criteria APIによる検索を管理する。
・CriteriaQueryインターフェース
(jakarta.persistence.criteria.CriteriaQuery)

JPQLのselect句、from句、where句などに相当するものをメソッドで設定し、クエリ
を生成する。

・Rootインターフェース(jakarta.persistence.criteria.Root)

エンティティの列に関する情報を表す。
　
これらのオブジェクトは次のように作成します。
　CriteriaBuilder builder = entityManager.getCriteriaBuilder();

　CriteriaQuery<Todo> query = builder.createQuery(Todo.class);

　Root<Todo> root = query.from(Todo.class);

最初にEntityManager#getCriteriaBuilder()を呼び出してCriteriaBuilderを取得します。

次にCriteriaBuilder#createQuery()でCriteriaQueryを作成します。引数には検索
で取得するエンティティクラスの「Classインスタンス」を渡します。Classインスタンス
は、そのクラスで定義されているフィールドやメソッドなどの情報を保持しています。こ
のTodo.classは、TodoのClassインスタンスなので、queryによる検索はTodoオブジェク
トを返します。
RootはCriteriaQuery#from()で作成します。引数はTodoのClassインスタンスです。
これでrootは、検索対象がTodoの全プロパティ、ということを表します。
　

以上が検索する準備です。ここから実際の検索処理に入っていきます。簡単なものから
順を追って説明します。
　
全レコード取得する
最初は、最も単純な「todoテーブルの全レコードを取得する」ものです。これは
　SELECT　*　FROM　todo

に相当します。Criteria APIでは次のようにします。
　
　List<Todo> list =

entityManager.createQuery(query.select(root)).getResultList();

　
最も内側のCriteriaQuery#select()は、取得するプロパティを指定するものです。前
述のようにqueryは、検索対象エンティティがTodoであることを表しています。またroot

はTodoの全プロパティを表しています。よってquery.select(root)は、todoテーブルの
全列を取得対象にします。
EntityManager#createQuery()は、引数に従いTypedQuery型のクエリを作成します。ここではwhereに相当する検

索条件がないので、todoテーブルの全レコード/全列を取得するクエリになります。

実際にクエリを実行するのは、TypedQuery#getResultList()です。検索結果は
List<Todo>型に変換されて返されます。
　
検索条件を指定する
次は検索条件です。これにはCriteriaQuery#where()を使います。
たとえば「重要度が高(importance = 1)のToDo」を検索するとします。SELECT文で表
せば、
　SELECT　*　FROM　todo　WHERE　importance　=　1

です。これは次のようなコードになります。
　
query = query.select(root).where(builder.equal(root.get("importance"),

1));

List<Todo> list = entityManager.createQuery(query).getResultList();

　
select(),where()の戻り値はCriteriaQuery型です。このため上記のようにメソッド
を続けて記述できます(メソッドチェイン)。そして結果は、再びCriteriaQuery型の
queryへ代入しています。

　
where()の引数は検索条件です。importance = 1という条件を

CriteriaBuilder#equal()で作成します。
　
builder.equal(root.get("importance"), 1)

　
equal()は、第1引数のプロパティと第2引数の値が等しいこと(第1引数 = 第2引数)を検
証するPredicateオブジェクトを作成します。つまりこのPredicateが検索条件になるわ
けです。
ここでは第1引数がimportanceプロパティを(=列)表しています。rootはTodoの全プロ
パティの情報を持っています。そこからRoot#get()でimportanceプロパティを取得し、
第2引数の1と比較されるようにします。
　
ANDで複合条件にする
さらに「緊急度が高(urgency = 1)のToDo」という条件を追加します。SELECT文で表せ
ば
　SELECT　*　FROM　todo　WHERE　importance　=　1　
　　　　　　　　　　　　　 AND　urgency　=　1

に相当します。これは次のようになります。
　query = query

　　　　　　.select(root)

　　　　　　.where(

　　　　　　　builder.equal(root.get("importance"), 1),

　　　　　　　builder.and(builder.equal(root.get("urgency"), 1)));

　List<Todo> list = entityManager.createQuery(query).getResultList();

where()の引数が2つになっています。where()はPredicateオブジェクトの可変個の引
数を受け取るので、条件をカンマ(,)で区切り並べます。
equal()は前述のとおりです。ここでは新たにCriteriaBuilder#and()を使っていま
す。これは上記where句と比べると、なんとなく働きがわかると思います。and()は、条件
を論理積(AND)でつなぐものです。
　
もう１つ条件を追加します。期限が2020-10-10以前に設定されているToDoに限定しま
す。SELECT文で表せば次のようになります。
　SELECT　*　FROM　todo　WHERE　importance　=　1　

　　　　　　　　　　　　　 AND　urgency　=　1

　　　　　　　　　　　　　 AND　deadline　<=　'2020-10-10'

以下がコーディング例です。
　query = query

　　　　　 .select(root)

　　　　　 .where(

　　　　　　　builder.equal(root.get("importance"), 1),

　　　　　　　builder.and(builder.equal(root.get("urgency"), 1),

　　　　　　　builder.and(builder.lessThanOrEqualTo(

　　　　　　　　　　　　　　　　　　　root.get("deadline"),

　　　　　　　　　　　　　　　　　　　Utils.str2date("2020-10-10")))));

　List<Todo> list = entityManager.createQuery(query).getResultList();

where()とand()については、前述のとおりです。
新しく出てきたのはCriteriaBuilder#lessThanOrEqualTo()です。これは第1引数のプ
ロパティが第2引数の値より小さいか等しいこと(第1引数 <= 第2引数)を検証する
Predicateオブジェクトを作成します。
このようにCriteriaBuilderには、演算子に対応するメソッドが定義されています。
なおUtils.str2date()は、前章で追加した「文字列をjava.sql.Dateオブジェクトへ
変換する」メソッドです。deadlineプロパティはjava.sql.Date型なので、これに合わせ
る必要があるわけです。
　
動的生成への対応
ここまで説明してきたwhere()に検索条件を並べる方法はわかりやすいのですが、検索
条件の動的生成には向いていません。なぜなら引数にする条件は、ユーザーが入力した内
容で決まるからです。
そこで次のようにします。
　List<Predicate> predicates = new ArrayList<>();

　
　// 検索条件(Predicate)をListへ追加する
　predicates.add(builder.equal(root.get("importance"), 1));

　predicates.add(builder.and(builder.equal(root.get("urgency"), 1)));

　predicates.add(builder.and(builder.lessThanOrEqualTo(

　　　　　　　　　　　　　　　　　　　　　root.get("deadline"),

　　　　　　　　　　　　　　　　　　　　　Utils.str2date("2020-10-10"))));

　// Listを配列に変換する
　Predicate[] predArray = new Predicate[predicates.size()];

　predicates.toArray(predArray);

　
　// 配列を可変長引数としてwhere()渡す
　query = query.select(root).where(predArray);

　List<Todo> list = entityManager.createQuery(query).getResultList();

predicatesの実体はArrayList<Predicate>です。前述したように検索条件は
Predicate型です。<>は左辺から<Predicate>と推論されます。
条件をpredicatesに追加し終わったら、Predicate型の配列へ変換し、where()に渡し
ます。上述したようにwhere()はPredicateの可変長引数を受け取ります。そして可変長
引数の実体は配列です。このためwhere()へ引数として配列を渡せるわけです。
これでユーザーが指定した条件をpredicatesへadd()すれば、動的なクエリとすること
ができます。
　
検索結果の並べ替え
最後は並べ替えです。前述の検索結果を「idの昇順(小→大)」で並べ替えるには、以下の
ようにします。
　
　query =

　　
query.select(root).where(predArray).orderBy(builder.asc(root.get("id")))

;

　
CriteriaQuery#orderBy()は、並べ替えの指定です。これも戻り値がCriteriaQuery型
です。
CriteriaBuilder#asc()は、引数のプロパティを昇順(小→大)にします。

root.get("id")はTodoのidプロパティを表すため、「idの昇順」になります。

　
以上がCriteria APIの簡単な解説です。次節ではこれを使ってToDoの動的クエリを実行
します。
　
10.4.2 Criteria APIの利用

　
前節の内容をベースに作成したCriteria APIでToDoを検索するメソッド

findByCriteria()は、次のようになっています。
【リスト10-4】com.example.todolist.dao.TodoDaoImpl.java(一部抜粋)

package com.example.todolist.dao;

　
import java.util.ArrayList;

import java.util.List;

import com.example.todolist.common.Utils;

import com.example.todolist.entity.Todo;

import com.example.todolist.entity.Todo_;

import com.example.todolist.form.TodoQuery;

import jakarta.persistence.EntityManager;

import jakarta.persistence.Query;

import jakarta.persistence.criteria.CriteriaBuilder;

import jakarta.persistence.criteria.CriteriaQuery;

import jakarta.persistence.criteria.Predicate;

import jakarta.persistence.criteria.Root;

import lombok.AllArgsConstructor;

　
@AllArgsConstructor

public class TodoDaoImpl implements TodoDao {

　　private final EntityManager entityManager;

　　　:

　　// Criteria APIによる検索
　　@Override

　　public List<Todo> findByCriteria(TodoQuery todoQuery) {

　　　　CriteriaBuilder builder = entityManager.getCriteriaBuilder();

　　　　CriteriaQuery<Todo> query = builder.createQuery(Todo.class);

　　　　Root<Todo> root = query.from(Todo.class);

　　　　List<Predicate> predicates = new ArrayList<>();

　
　　　　// 件名
　　　　String title = "";

　　　　if (todoQuery.getTitle().length() > 0) {

　　　　　　title = "%" + todoQuery.getTitle() + "%";

　　　　} else {

　　　　　　title = "%";

　　　　}

　　　　predicates.add(builder.like(root.get(Todo_.TITLE), title));

　
　　　　// 重要度
　　　　if (todoQuery.getImportance() != -1) {

　　　　　predicates.add(

　　　　　　builder.and(

　　　　　　　builder.equal(

　　　　　　　　root.get(Todo_.IMPORTANCE), todoQuery.getImportance())));

　　　　}

　
　　　　// 緊急度
　　　　if (todoQuery.getUrgency() != -1) {

　　　　　predicates.add(

　　　　　　builder.and(

　　　　　　　builder.equal(

　　　　　　　　root.get(Todo_.URGENCY), todoQuery.getUrgency())));

　　　　}

　
　　　　// 期限：開始～
　　　　if (!todoQuery.getDeadlineFrom().equals("")) {

　　　　　predicates.add(

　　　　　　builder.and(

　　　　　　　builder.greaterThanOrEqualTo(

　　　　　　　　root.get(Todo_.DEADLINE),

　　　　　　　　Utils.str2date(todoQuery.getDeadlineFrom()))));

　　　　}

　
　　　　// ～期限：終了で検索
　　　　if (!todoQuery.getDeadlineTo().equals("")) {

　　　　　predicates.add(

　　　　　　builder.and(

　　　　　　　builder.lessThanOrEqualTo(

　　　　　　　　root.get(Todo_.DEADLINE),

　　　　　　　　Utils.str2date(todoQuery.getDeadlineTo()))));

　　　　}

　
　　　　// 完了
　　　　if (todoQuery.getDone() != null &&

todoQuery.getDone().equals("Y")) {

　　　　　predicates.add(

　　　　　　builder.and(

　　　　　　　builder.equal(

　　　　　　　　root.get(Todo_.DONE), todoQuery.getDone())));

　　　　}

　
　　　　// SELECT作成
　　　　Predicate[] predArray = new Predicate[predicates.size()];

　　　　predicates.toArray(predArray);

　　　　query = query

　　　　
.select(root).where(predArray).orderBy(builder.asc(root.get(Todo_.id)));

　
　　　　// 検索
　　　　List<Todo> list =

entityManager.createQuery(query).getResultList();

　
　　　　return list;

　　}

}

　
コントローラー側を次のように変更すれば、Criteria APIでの検索に切り替えられま
す。
todoList = todoDaoImpl.findByJPQL(todoQuery);

↓

todoList = todoDaoImpl.findByCriteria(todoQuery);

　
このfindByCriteria()も引数のTodoQueryオブジェクトから検索条件を動的に組み立て
ます。もしパラメータがすべてセットされていれば、次のようなWHERE句に相当するもの
を作成します。
WHERE　title　LIKE　'%' + フォーム.件名 + '%'

　AND　importance　=　フォーム.重要度
　AND　urgency　　 =　フォーム.緊急度
　AND　deadline　 >=　フォーム.期限：開始
　AND　deadline　 <=　フォーム.期限：終了
　AND　done　　　 = 'Y'

　
重要度と緊急度だけなら次のようになります。
WHERE　title　LIKE　'%'

　AND　importance　=　フォーム.重要度
　AND　urgency　　 =　フォーム.緊急度
　
2つめの例では、件名が入力されていないのに「title LIKE '%'」を条件にしていま
す。意味としては「title列に何らかの文字が含まれる」ということであり、全レコード
該当します。検索条件としては無意味ですが、これがあると後続の検索条件をすべて
and()で作成できます(前述の1=1同様、一種のハックです)

　
ここで新しく出てきたメソッドは以下の2つです。
CriteriaBuilder#like()

・第1引数のプロパティが第2引数のパターンを満たすかどうか検証するPredicateオ
ブジェクトを作成する。
・ワイルドカードは'%'で表す。
　(第1引数 LIKE 第2引数)

　
CriteriaBuilder#greaterThanOrEqualTo()

・第1引数のプロパティが第2引数の値より大きいか等しいことを検証するPredicate

オブジェクトを作成する。
　(第1引数 >= 第2引数)

　
また前節のコードと違い、Root#get()の引数が"id"などの文字列ではなく、Todo_.ID

といった形になっています。このTodo_はTodoの「メタクラス」です。メタクラスは「ク
ラスの情報を持つクラス」であり、自動生成できます。以下は自動生成されたTodo_で
す。
【リスト10-5】com.example.todolist.entity.Todo_.java(自動生成結果)

package com.example.todolist.entity;

　
import java.sql.Date;

import jakarta.annotation.Generated;

import jakarta.persistence.metamodel.SingularAttribute;

import jakarta.persistence.metamodel.StaticMetamodel;

　
@Generated(value =

"org.hibernate.jpamodelgen.JPAMetaModelEntityProcessor")

@StaticMetamodel(Todo.class)

public abstract class Todo_ {

　
　　public static volatile SingularAttribute<Todo, Integer> urgency;

　　public static volatile SingularAttribute<Todo, Integer> importance;

　　public static volatile SingularAttribute<Todo, Integer> id;

　　public static volatile SingularAttribute<Todo, String> title;

　　public static volatile SingularAttribute<Todo, Date> deadline;

　　public static volatile SingularAttribute<Todo, String> done;

　
　　public static final String URGENCY = "urgency";

　　public static final String IMPORTANCE = "importance";

　　public static final String ID = "id";

　　public static final String TITLE = "title";

　　public static final String DEADLINE = "deadline";

　　public static final String DONE = "done";

　
}

メタクラスの自動生成方法は、本章の最後にありますので、そちらを参照してくださ
い。
　
メタクラスの詳細は割愛しますが、この中にはTodoエンティティのプロパティ名を表す
フィールドが定義されています。これを使えばroot.get("importance")は
root.get(Todo_.IMPORTANCE)で表せます。root.get(Todo_.INPORTANCE)と打ち間違え
ても文法エラーになります。しかし文字列の場合は、root.get("inportance")としても
実行時エラー発生まで気づけないでしょう。
　
またLikeなどSQLの演算子もメソッド化されているので、名称や引数の誤りはコンパイ
ルエラーなります。Criteria APIを使うと、こういった誤りをコンパイル時点で見つけら
れます。
　
　
JPQLは文字列の組み立てが中心でわかりやすいのですが、文字列中に誤りがあってもコ
ンパイルエラーになりません。
一方Criteria APIは、コンパイルで誤りを検出できますが、JPQLよりも複雑です。
このように一長一短があります。プロジェクトの約束事として、どちらを使うか(あるい
は別な方法にするか)明文化されていることも多いと思います。基本的にはそれに従うべき
でしょう。
　
本書で説明したJPQL, Criteria APIの機能は全体のごく一部です。詳細は以下のサイ
トなどを参照してください。
■JPQL

39.5 Full Query Language Syntax - Java Platform, Enterprise Edition:

The Java EE Tutorial (Release 7)

https://docs.oracle.com/javaee/7/tutorial/persistence-

querylanguage005.htm

　
■Criteria API

CriteriaBuilder (Java(TM) EE 7 Specification APIs)

https://docs.oracle.com/javaee/7/api/javax/persistence/criteria/Criteri

aBuilder.html

https://docs.oracle.com/javaee/7/tutorial/persistence-querylanguage005.htm
https://docs.oracle.com/javaee/7/api/javax/persistence/criteria/CriteriaBuilder.html

CriteriaQuery (Java(TM) EE 7 Specification APIs)

https://docs.oracle.com/javaee/7/api/javax/persistence/criteria/Criteri

aQuery.html

Root (Java(TM) EE 7 Specification APIs)

https://docs.oracle.com/javaee/7/api/javax/persistence/criteria/Root.ht

ml

　
　

https://docs.oracle.com/javaee/7/api/javax/persistence/criteria/CriteriaQuery.html
https://docs.oracle.com/javaee/7/api/javax/persistence/criteria/Root.html

メタクラス作成手順
　
メタクラスの作成にはHibernate jpamodelgenというツールを使います。以下はそのイ
ンストール手順です。
　
1)ブラウザで
https://mvnrepository.com/artifact/org.hibernate.orm/hibernate-

jpamodelgenを開く。
2)使用するVersionを選択する。
⇒ここでは6.1.5.Finalをクリック

　
3)Mavenタブの内容をコピーする。
⇒マウスで右クリックするとクリップボードにコピーされる。

https://mvnrepository.com/artifact/org.hibernate.orm/hibernate-jpamodelgen

　
4)STSのパッケージ・エクスプローラーでTodolist5のpom.xmlをダブルクリックして開
く。

　
5)</dependencies>の直前に4)でコピーした内容を貼り付けて保存する([CTRL]+S)。

　
このタイミングでjpamodelgenのjarファイルがダウンロードされる。
■格納場所
C:\Users\<ユーザー名>\.m2\repository\org\hibernate\orm\hibernate-

jpamodelgen\6.1.5.Final

　
6)オプション：<version>～<version>の警告を消す
黄色波線にマウスカーソルを合わせる > クイックスフィックス Ignore this

warningを選択

　　　　　　　　　　　　　　　↓

　
　

　
7)パッケージ・エクスプローラーでTodolist5を右クリック > [プロパティ(R)] >

[Javaコンパイラー] > [注釈処理]

> [ファクトリー・パス]を選択する。

8)[外部JARの追加(X)...]ボタンをクリックする。

　
9)5)の格納場所にあるhibernate-jpamodelgen-6.1.5.Final.jarを選択し[開く(O)]

ボタンをクリックする。
　

　
　
　

10)[注釈プロセッサーを含むプラグインおよびJAR]に9)で選択したjarファイルがチェッ
クされていることを確認して[適用して閉じる]ボタンをクリックする。

　
11)「注釈処理設定が変更されました」ダイアログに対して[はい(Y)]ボタンをクリック
する。

12)エンティティクラスのメタデータクラスが作成される。
⇒ただしsrc/main/javaではなくtarget/generated-sources/annotations下に作
成されます。

　

これ以降エンティクラス(@Entityを含むクラス)を作成したり、変更するとその内容に

応じてメタクラスが自動的に作成/変更されます。手動で操作する必要はありません。

11. ページネーション(ページング)

　
検索処理に欠かせない機能として「ページネーション(ページング)」があります。これ
は検索結果一覧など、行数の多いデータを複数のWebページに分割し、各ページへのリンク
を並べてアクセスしやすくするものです。
　
Spring BootではPageable/Pageを利用することで、ページネーションを簡単に実現で
きます。
Pageableインターフェース(org.springframework.data.domain.Pageable)

・ページネーションのためのインターフェース
・Pageに関するデータを管理、取得する機能を提供する。
　

Pageインターフェース(org.springframework.data.domain.Page)

・検索結果のサブリスト
・検索結果における当該ページの位置情報を取得する機能などを提供する。
　

【図11-1】ToDoのページング処理
　
シーケンス図で表すと、次のようになります。findAll()および前章で作成した

findByCriteria()の戻り値がList<Todo>からpage<Todo>に変わっています。つまり
ページングに関する処理は、ここで実行しています。

【図11-2】ページング処理のシーケンス

　
作成するプロジェクトの仕様
　プロジェクト名 　Todolist6

　依存関係
 　Spring Web, Spring Boot DevTools, Thymeleaf, Lombok,

　Spring Data JPA, PostgreSQL Driver, Validation

　
Todolist6

├ src/main/java

│　├ com.example.todolist

│　│　└ TodolistApplication.java

│　├ com.example.todolist.common

│　│　└ Utils.java

│　├ com.example.todolist.controller

│　│　└ TodoListController.java(▲)

│　├ com.example.todolist.dao

│　│　├ TodoDao.java(▲)

│　│　└ TodoDaoImpl.java(▲)

│　├ com.example.todolist.entity

│　│　├ Todo.java

│　│　└ Todo_.java

│　├ com.example.todolist.form

│　│　├　TodoData.java

│　│　└　TodoQuery.java(▲)

│　├ com.example.todolist.repository

│　│　└ TodoRepository.java

│　└ com.example.todolist.service

│　　　└ TodoService.java

└ src/main/resources

　 ├ static

　 │　└ css

　 │　　 └ style.css

　 └ templates

　　　 ├ todoForm.html

　　　 └ todoList.html(▲)

★：このプロジェクトで追加する
▲：前プロジェクトの内容を一部変更する
　
ページング処理されている様子がわかりやすくなるように、todoテーブルを一度初期化
してレコードを増やします。以下のSQLファイルを、6章の手順を参考にしてpsqlから実行
してください(接続ユーザーはtodouserです)。
【リスト11-1】init_table_2.sql

DROP TABLE todo;

CREATE TABLE todo

(

　id　　　　　 SERIAL PRIMARY KEY,

　title　　　　TEXT,　　
　importance　 INTEGER,　
　urgency　　　INTEGER,

　deadline　　 DATE,

　done　　　　 TEXT

);

　
INSERT INTO todo(title,importance,urgency,deadline,done)

VALUES('todo-1',0,0,'2020-10-01','N');

INSERT INTO todo(title,importance,urgency,deadline,done)

VALUES('todo-2',0,1,'2020-10-02','Y');

　　　：
INSERT INTO todo(title,importance,urgency,deadline,done)

VALUES('todo-23',1,0,'2020-10-23','N');

INSERT INTO todo(title,importance,urgency,deadline,done)

VALUES('todo-24',1,1,'2020-10-24','Y');

　
この状態でTodolist5(あるいはTodolist5からコピーした直後のTodolist6)を実行す
ると次のようになります。

これをページングできるようにしていきます。
　

11.1 Pageable/Pageの追加
　
ページングするには、以下の情報をコントローラークラスで作成し、ページリンクを表
示する画面へ渡す必要があります。
1)指定されたページのコンテンツ(本章の場合、1ページ分のToDoのリスト)

2)表示するページに関する情報(ページ番号、1ページ当たりの表示件数、など)

　
本章ではToDo一覧画面(todoList.html)をページングしますが、この画面を表示する経
路は次のように3つあります(シーケンス図も参照)。
【ルート1】http://localhost:8080/todoをアクセスして表示する場合
【ルート2】[検索]ボタンをクリックして表示する場合
【ルート3】ページリンクをクリックして表示する場合
　
つまりそれぞれのルートで、上記のページ単位の切り出し、ページ情報作成を行いま
す。
　
最初に【ルート1】をステップ・バイ・ステップで作成します。その後、【ルート2】
【ルート3】にも適用していきます。
　
まず【ルート1】に対応する@GetMapping("/todo")のハンドラーメソッドを次のように
変更します。
【リスト11-2】
com.example.todolist.controller.TodoListController.java(step1;一部抜粋)

　@GetMapping("/todo")

　public ModelAndView showTodoList(ModelAndView mv, Pageable pageable) { //

①

　　　mv.setViewName("todoList");

　
　　　Page<Todo> todoList = todoRepository.findAll(pageable);　　　 // ②, ③

　　　mv.addObject("todoQuery", new TodoQuery());

　　　mv.addObject("todoList", todoList);

　
　　　return mv;

　}

　
変更したのは次の3か所です。
①メソッドの引数にPageableオブジェクトを追加
②findAll()に①のPageableオブジェクトを引数として渡す。
　⇒このfindAll(Pageable pageable)も【表6-5】にあります。つまり自動実装され
ています。
③findAll()の結果を代入するtodoListを、②に合わせてList<Todo>からPage<Todo>に
変更する。
　
これでTodolist6を起動し、ブラウザからhttp://localhost:8080/todo?

size=5&page=0を開くと、最初の5件が表示されます。

　
http://localhost:8080/todo?size=5&page=1にすると、次の5件が表示されます。

　

http://localhost:8080/todo?size=5&page=0&sort=id,DESCでは、id順で最後から5

件表示されます。

　
【リスト11-2】だけで、ToDoをページングできました。実行結果からある程度わかると
思いますが、ハンドラーメソッドの引数にPageableオブジェクトがあると、リクエストパ
ラメータsize, page, sortは、下表のような意味を持ちます。これらが【リスト11-2】①

のPageableに取り込まれ、それを②findAll()に渡すことで、指定した部分(ページ)を取
得できるようになります。
【表11-1】ページングのパラメータ

　パラメー
タ名

　説明

　size ・ページ当たりの表示件数(省略時:20)

　page

　
・表示するページ番号(省略時:0)

・先頭ページは0, 2ページ目は1を指定する。
　sort
 ・ソート条件(複数指定可能,省略時:UNSORTED)

・条件は"ソート項目名(,ソート順)" で指定する。

・ソート順は昇順(小→大)なら"ASC", 降順(大→小)なら"DESC"とする(省
略時:"ASC")

　例."sort=x,y,DESC&sort=z" → "ORDER BY x DESC, y DESC, z

ASC"と解釈する。
※上表のパラメータは、@RequestParamで取得しないことに注意
　
これでページ単位の表示ができるようになりました。しかし毎回これらのパラメータを
指定するのは面倒です。そこで一般的なWebサイトのように、ページリンクで移動できるよ

うにします。
【リスト11-3】
com.example.todolist.controller.TodoListController.java(step2;一部抜粋)

　@GetMapping("/todo")

　public ModelAndView showTodoList(ModelAndView mv,

　　　@PageableDefault(page = 0, size = 5, sort = "id") Pageable

pageable) {//①

　　　mv.setViewName("todoList");

　
　　　Page<Todo> todoPage = todoRepository.findAll(pageable);

　　　mv.addObject("todoQuery", new TodoQuery());

　　　mv.addObject("todoPage", todoPage); 　　　　　　　　　 //　②

　　　mv.addObject("todoList", todoPage.getContent());　　　//　③

　　　session.setAttribute("todoQuery", new TodoQuery());　 //　④

　
　　　return mv;

　}

　
【リスト11-2】から次の4か所を変更します。
①引数のPageableオブジェクトに@PageableDefaultアノテーションを追加
size, page, sortのデフォルト値を指定します。
　
②findAll()の実行結果であるPage<Todo>オブジェクトを一覧画面に渡す処理を追加
このオブジェクトを使って一覧画面(todoList.html)側でページリンクを作成します
(次節)。
　
③表示内容をgetContent()で取得
Pageオブジェクトはページ情報のほかに、(size,page,sortから求めた)次に表示す
るページ単位のデータ(コンテンツ)を持っています。これをgetContent()で取得し、
一覧画面に渡します。
　

④セッションに検索条件を格納する
ページリンクで次に表示ページを検索するときに備えて、現在の検索条件(=条件・無)

をセッションへ格納しておきます。

　

11.2 ページリンクの作成
　
一覧画面では、コントローラーから渡されたPageオブジェクトを使ってページリンクを
作成します。本章のページリンクは、以下のような形式です。

1行目：現在表示しているページ位置
2行目：各ページへのリンク(表示中のページはリンクにしない)

　
画面もステップ・バイ・ステップで変更していきます。
【リスト11-4】src/main/resources/templates/todoList.html(step1;一部抜粋)

:

　</table>

　<div>

　　<span th:text="|${todoPage.getNumber() + 1} / ${todoPage.getTotalPages()} ペー

ジを表示中|">

　　

　　<ul id="nav">

　　　

　　　　←前

　　　　<a th:unless="${todoPage.isFirst()}"

　　　　　 th:href="@{/todo/query(page = ${todoPage.getNumber() - 1})}">←前

　　　

　　　<li th:each="i : ${#numbers.sequence(0, todoPage.getTotalPages() - 1)}">

　　　　

　　　　　<a th:if="${i != todoPage.getNumber()}"

　　　　　　 th:href="@{/todo/query(page=${i})}" th:text="${i + 1}">

　　　

　　　

　　　　次→

　　　　<a th:unless="${todoPage.isLast()}"

　　　　　 th:href="@{/todo/query(page = (${todoPage.getNumber()+ 1}))}">次→

　　　

　　

　</div>

</body>

</html>

　
todoPageは上記②でコントローラーから渡されたPageオブジェクトです。Pageオブジェ
クトからは、下表のメソッドで各種情報を取得できます。これを利用してページリンクを
作成します。
【表11-2】Pageインターフェースのメソッド

　メソッド 　機能
　getNumber() 　表示しているページの番号を返す(先頭:0)

　getTotalPages() 　総ページ数を返す。
　isFirst() 　先頭ページを表示しているときtrueを返す。
　isLast() 　最終ページを表示しているときtrueを返す。

　
最初のspan要素は「表示中ページ/総ページ数」です。
　
<span th:text="|${todoPage.getNumber() + 1} / ${todoPage.getTotalPages()} ページを

表示中|">

　
表示中のページ番号はgetNumber()で取得できますが、0から始まるので+1します。
総ページ数はgetTotalPages()です。
ここではth:text="| ... |"というように|で囲まれている部分があります。この記法
を使うとテキスト内に変数式${...}を埋め込めるので、+ で結合するよりシンプルになり
ます。
　
最初のli要素は「←前」です。ここはisFirst()で「先頭ページかどうか？」を判定し、
以下のように表示を変えます。
・先頭ページの場合、単なる文字列とする(リンクにしない)。
・先頭ページでなければ、前ページへのリンクとする。

←前

<a th:unless="${todoPage.isFirst()}"

　 th:href="@{/todo/query(page = ${todoPage.getNumber() - 1})}">←前

同じ条件をth:ifとth:unlessで評価しているので、どちらかが作成されます。このうち
th:unlessには、URLリンク式に(page = ${todoPage.getNumber() - 1})という()で囲
まれた部分があります。これはクエリ文字列を生成する記法です。もし表示するのが3ペー
ジ目であれば、次のようになります。
th:href="@{/todo/query(page = ${todoPage.getNumber() - 1})}"

↓

th:href="@{/todo/query(page = ${2 - 1})}"

↓

th:href="@{/todo/query(page = 1)}"

↓

href="/todo/query?page=1"

　
２つの目li要素は各ページへのリンクです。
　
<li th:each="i : ${#numbers.sequence(0, todoPage.getTotalPages() - 1)}">

　
#numbersはThymeleafの数値用ユーティリティオブジェクトです。sequence()は引数
の範囲の配列を生成します。これで「0 ～ 総ページ数-1」を要素とする配列を作り、そ
れをiに代入しながら子要素を繰り返します。つまり全ページ番号分の処理を行うわけで
す。
　
ここでも以下のように、表示を変えます。
・iが表示するページの場合、文字列として表示する(リンクにしない)。
・表示ページでなければ、そのページへのリンクとする。
この「表示ページ」はgetNumber()で取得します。

<a th:unless="${i == todoPage.getNumber()}"

　 th:href="@{/todo/query(page=${i})}" th:text="${i + 1}">

　
最後のli要素は「次→」の部分です。最終ページの判定はisLast()で行います。考え方
は「←前」と同じです。
　

これで【ルート1】のページングは完了です。次は【ルート2】の[検索]ボタンクリック
で動的クエリを実行した場合です。
　

11.3 動的クエリ結果のページング
　
[検索]ボタンクリックに対応するハンドラーメソッドを、以下のように変更します。
【リスト11-5】
com.example.todolist.controller.TodoListController.java(step3;一部抜粋)

　@PostMapping("/todo/query")

　public ModelAndView queryTodo(@ModelAttribute TodoQuery todoQuery,

　　　　　　　　　　　　　　　　　BindingResult result,

　　　　　　　　　　　　　　　　　@PageableDefault(page = 0, size = 5) Pageable

pageable, // ①

　　　　　　　　　　　　　　　　　ModelAndView mv) {

　　　mv.setViewName("todoList");

　
　　　Page<Todo> todoPage = null;　　　　　　　　　　　　　 //　②

　　　if (todoService.isValid(todoQuery, result)) {

　　　　　// エラーがなければ検索

　　　　　todoPage = todoDaoImpl.findByCriteria(todoQuery, pageable);　 //　③

　
　　　　　// 入力された検索条件をsessionに保存

　　　　　session.setAttribute("todoQuery", todoQuery);　　 //　④

　
　　　　　mv.addObject("todoPage", todoPage); 　　　　　　　//　⑤

　　　　　mv.addObject("todoList", todoPage.getContent()); //　⑥

　
　　　} else {

　　　　　// エラーがあった場合検索

　　　　　mv.addObject("todoPage", null); 　　　　　　　　　//　⑤’

　　　　　mv.addObject("todoList", null);　　　　　　　　　 //　⑥’

　　　}

　
　　return mv;

　}

　

前章から追加、変更したのは以下の部分です。
①メソッド引数にPageableオブジェクトと初期値を追加
②検索結果の型をList<Todo>からPage<Todo>に変更
③(前章で作成した)findByCriteria()の引数にPageableオブジェクトを追加
⇒ページ単位の検索結果とする(後述)

④検索条件をセッションに保存する処理を追加
⇒ページリンクはGETリクエストになるのでフォームの検索条件をサーバーへ送信でき
ない。
　⇒そのためこの時点(=[検索]ボタンクリック時)でバインドされた条件をセッション
に格納し、後続画面で使う。

⑤ページ情報を画面に渡す。
⑥表示する検索結果を画面に渡す。
⑤’、⑥’検索条件にエラーがあった場合は、ページ情報、検索結果にnullをセットして画
面に渡す。
　
エラーチェックを除けば、基本的な流れは前述のshowTodoList()と同じです。これに
沿って、メソッドを変更していきます。
　
まずfindByCriteria()にPageableオブジェクトを渡せるようインターフェースを変更
します。
【リスト11-6】com.example.todolist.dao.TodoDao.java

package com.example.todolist.dao;

　
import java.util.List;

import org.springframework.data.domain.Page;

import org.springframework.data.domain.Pageable;

import com.example.todolist.entity.Todo;

import com.example.todolist.form.TodoQuery;

　
public interface TodoDao {

　　// JPQLによる検索
　　List<Todo> findByJPQL(TodoQuery todoQuery);

　
　// Criteriaによる検索(Todolist6でPageable追加)

　Page<Todo> findByCriteria(TodoQuery todoQuery, Pageable pageable);

}

　
次に実装を変更します。クエリを作成するところまでは、前章と同じです。戻り値が

Pageableで指定された部分だけとなるようにします。
【リスト11-7】com.example.todolist.dao.TodoDaoImpl.java(一部抜粋)

　@Override

　public Page<Todo> findByCriteria(TodoQuery todoQuery, Pageable pageable) {

　　：
　　// SELECT作成

　　Predicate[] predArray = new Predicate[predicates.size()];

　　predicates.toArray(predArray);

　　query =

query.select(root).where(predArray).orderBy(builder.asc(root.get(Todo_.id)));

　
　　// クエリ生成

　　TypedQuery<Todo> typedQuery = entityManager.createQuery(query);　//　①

　　// 該当レコード数取得

　　int totalRows = typedQuery.getResultList().size();　　　　　　　//　②

　　// 先頭レコードの位置設定

　　typedQuery.setFirstResult(pageable.getPageNumber() * pageable.getPageSize());　
//　③

　　// 1ページ当たりの件数

　　typedQuery.setMaxResults(pageable.getPageSize());　　　　　　　//　④

　
　　Page<Todo> page = new PageImpl<Todo>(typedQuery.getResultList(), pageable,

totalRows); //⑤

　　return page;　　　　　　　　　　　　　　　　　　　　　　　　　 //　⑥

　}

　
ポイントは最後にPage<Todo>オブジェクトをreturnしているところです(⑥)。
先に説明したshowTodoList()で呼び出したfindAll(Pageable pageable)の戻り値も

Page<Todo>でした。そしてこのオブジェクトから表示するデータを取得し、さらに画面側

でページリンクを作成しました。findByCriteria()の結果もページングするには、
Page<Todo>で返す必要があるわけです。
　
Page<T>インターフェースには、デフォルト実装クラスとしてPageImpl<T>がありま
す。ここでは、以下のコンストラクタで生成します。
PageImpl(List<T> content, Pageable pageable, long total)

・content - 検索結果(該当ページ分)

・pageable - ページング情報
・total - 検索結果の件数
contentは検索結果全体ではなく、pageableで指定されたページ分だけとします。たと
えば「11件目からの5件分」という形です。このページ単位の取得には、クエリの実行を制
御するTypedQueryインターフェースを使ってみます。そのためcreateQuery()の結果を取
得します(①)。
List<Todo> list = entityManager.createQuery(query).getResultList();

↓

TypedQuery<Todo> typedQuery = entityManager.createQuery(query);　 //　①

前章で説明したようにEntityManager#createQuery()の戻り値はTypedQuery型です。
　
②のgetResultList()は検索結果をListオブジェクトにして返します。この要素数を

size()で取得して、条件に該当したレコード数を求めます。
次に検索結果のどの位置から何件取り出すかを、setFirstResult()および

setMaxResults()で設定します。
開始位置は、引数で渡されたpageableの
　表示ページ番号(=getPageNumber()) * 1ページ当たりの表示件数

(=getPageSize())

で算出できます(③)。
取得件数はgetPageSize()そのものです(④)。
これでgetResultList()を実行すると、setFirstResult()で指定した位置から

setMaxResults()の件数分の検索結果を得られます(⑤)。あとはこの結果をリターンすれ
ばよいわけです(⑥)。
　
Page<Todo> page = new PageImpl<Todo>(typedQuery.getResultList(), pageable,

totalRows);　//　⑤

　

　
ここではidの昇順で並べ替えた結果をページングしています。order byが無いと意図し
ない結果になる可能性があるので注意してください。
　
画面側のページリンクは、本章の前半で作成したものに2か所修正を加えます。
【リスト11-8】src/main/resources/templates/todoList.html(step2;一部抜粋)

<div th:if="${todoList != null && #lists.size(todoList) != 0}"> <!-- ① -->

　<span th:text="|${todoPage.getNumber() + 1} / ${todoPage.getTotalPages()} ページ

を表示中|">

　

　<ul id="nav">

　　

　　　←前

　　　<a th:unless="${todoPage.isFirst()}"

　　　　 th:href="@{/todo/query(page = ${todoPage.getNumber() - 1})}">←前<!-- ②

-->

　　

　　<li th:each="i : ${#numbers.sequence(0, todoPage.getTotalPages() - 1)}">

　　　

　　　<a th:if="${i != todoPage.getNumber()}"

　　　　 th:href="@{/todo/query(page=${i})}" th:text="${i + 1}"><!-- ② -->

　　

　　

　　　次→

　　　<a th:unless="${todoPage.isLast()}"

　　　　 th:href="@{/todo/query(page = (${todoPage.getNumber()+ 1}))}">次→<!--

② -->

　　

　

</div>

　
まずページリンクの上位div要素にページリンクを表示するかどうかの判断を追加します

(①)。
ここでページリンクが不要なのは、以下の場合です。

・検索条件にエラーがあった場合 → コントローラーはtodoListオブジェクトにnullを
設定する。
・該当するToDoが無かった場合 → todoListの要素数が0(nullではない)

つまり「todoList == null　または　todoListの要素数 == 0」ならページリンクは
不要です。よってこの逆(否定)である「todoList != null　かつ　todoListの要素数
!= 0」の場合、ページリンクを表示させます。
　
ある条件式の否定形を求めるとき「ド・モルガンの法則」を知っていると便利です。
■ド・モルガンの法則
NOT(X AND Y) = NOT(X) OR NOT(Y)

NOT(X OR Y) = NOT(X) AND NOT(Y)

X,Yは条件式(booleanを返す)、NOTは否定を表すとします。
　
ここではXをtodoList == null, YをtodoListの要素数 == 0とします。すると最初の
ページリンク不要の条件式はX AND Yとなります。これの否定NOT(X AND Y)は、上記法
則より NOT(X) OR NOT(Y)となります。これでX,Yを元に戻すと
NOT(todoList == null) OR NOT(todoListの要素数 == 0)

です。NOTを外して簡単にすると以下のようになります。
todoList != null OR todoListの要素数 != 0

　
このテクニックは
・if文のthen句とelse句の内容を入れ替えてプログラムを読みやすくしたいとき
・early returnにするとき
などに役立つことがあるので、覚えておいて損はないです。
　
次は【ルート3】の各ページリンクをクリックしたときに対応するものです。
このリンクには、次に表示するページをコントローラーに知らせる情報が必要です。そ
のためページリンクの「←前」、ページ番号、「次→」のリンク先を/todo/query?page=n

に変更します(②)。
これを以下のハンドラーメソッドで処理します。
【リスト11-9】
com.example.todolist.controller.TodoListController.java(step4;一部抜粋)

　@GetMapping("/todo/query")

　public ModelAndView queryTodo(@PageableDefault(page = 0, size = 5)

Pageable pageable,

　　　　　　　　　　　　　　　　　 ModelAndView mv) {

　　mv.setViewName("todoList");

　
　　// sessionに保存されている条件で検索
　　TodoQuery todoQuery = (TodoQuery)session.getAttribute("todoQuery");

　　Page<Todo> todoPage = todoDaoImpl.findByCriteria(todoQuery, pageable);

　
　　mv.addObject("todoQuery", todoQuery); // 検索条件表示用
　　mv.addObject("todoPage", todoPage); // page情報
　　mv.addObject("todoList", todoPage.getContent()); // 検索結果
　
　　return mv;

　}

　
[検索]ボタンクリック時のハンドラーメソッドとほぼ同じですが、検索条件はフォーム
ではなくセッションに保存されているものを使います(GETリクエストではフォーム内容を
取得できない)。またセッションに検索条件があるということは、入力チェックでエラーが
無かったことになるので、入力チェックも省いています。

演習課題
ここまで作ってきたToDo管理には、残念ながら少々使い勝手の悪
いところがあります。実務でであれば、対応すべき項目のように思
われます。いずれも本書で説明してきた内容で解決できますので、
チャレンジしてみてください。
(実装例はサポートサイトより入手できます)

　
①更新の場合、完了日が過去でもエラーにしない
完了日が過ぎたToDoを更新しようとすると「期限を設定するとき
は今日以降にしてください」というエラーメッセージが表示されま
す。そのため期限オーバーのToDoは件名、重要度、緊急度だけ直す
ことができません。そこで更新の場合、完了日はyyyy-mm-ddの形式
チェックだけするよう変更してください。
　

②入力画面から元のページへ戻る
入力画面で[登録][更新][削除][キャンセル]ボタンを押下する
と、1ページ目に戻ります。これを入力画面へ遷移する前に表示して
いたページへ戻るよう変更してください。
例. ToDo更新の場合
現状)

①3ページ目のtodo-14をクリック

　
②件名を「todo-14a」に変更して[登録]ボタンをクリックす
る。

　
③表示は1ページに戻る。

　
変更後)

①3ページ目のtodo-14をクリック

　
②件名を「todo-14a」に変更して[登録]ボタンをクリックす
る。

　
③入力画面へ遷移する前に表示していた3ページ目に戻る。変更
箇所が確認できる。
　

　
③ページリンクの範囲を制限する
ページリンクを表示中ページの前後2ページ分だけにしてくださ
い。
現状)たとえば、検索結果が12ページあったら、1～12がページ
リンクになる。

変更後)ページリンクを以下のようにする。
表示中
ページ

ページリン
ク範囲

ページリンク全体(下線はリン
クを表す)

1 1～3 　←前　1　2　3　次→

2 1～4 　←前　1　2　3　4　次→

3 1～5 　←前　1　2　3　4　5　次→

4 2～6 　←前　2　3　4　5　6　次→

: : 　　　　　　　:

9 7～11 　←前　7　8　9　10　11　次
→

10 8～12 　←前　8　9　10　11　12　
次→

11 19～12 　←前　9　10　11　12　次→

12 10～12 　←前　10　11　12　次→

　

参考資料

書籍
　
この本を読んだ後、さらにSpring Bootを学びたい方には、以下
の3冊をお薦めします。
ただしいずれもSpring Boot3ではなく、SPring Boot2用なので
留意してください。
(書籍情報は2022年12月時点のもの)。
　
Spring Boot 2 入門: 基礎から実演まで(Kindle版)

作者:原田 けいと,竹田 甘地,Robert Segawa / 発売日:

2020/05/22 / 価格：980円
★次に読むならこの本。本書では扱っていない項目、あるいは同じ
項目でもまた別の角度から解説されており、理解度を深めること
ができます。
　
Spring Boot 2 プログラミング入門

https://www.amazon.co.jp/exec/obidos/ASIN/B0893LQ5KY/kktworks-22/
https://www.amazon.co.jp/exec/obidos/ASIN/B0893LQ5KY/kktworks-22/
https://www.amazon.co.jp/exec/obidos/ASIN/B07KF4R1HT/kktworks-22/

作者:掌田津耶乃 / 発売日: 2018/1/30 / 価格：3,080円(単行
本), 2,772円(Kindle版)

★レベルアップを目指すならこの本。「オリジナルのバリデーター
を作る」など、Spring Bootの使いこなす上で有用な情報が多数
書かれています。ただ掲載されているプログラムリストが見にく
いのと、文章が少々わかりにくいのが残念。
　
Spring徹底入門 Spring FrameworkによるJavaアプリケーショ
ン開発(大型本)

作者:株式会社NTTデータ / 発売日: 2016/07/21 / 価格：
4,400円(大型本), 3,960円(Kindle版)

★Spring BootのベースとなっているSpring Frameworkに関する
書籍。Spring Bootの根本原理を理解したいならこの本は欠かせ
ません。本格的にやるなら手元に置いておきたい1冊。ただし
「徹底入門」とあるが入門者用ではない。ある程度知っている人
のための本です。
　

https://www.amazon.co.jp/exec/obidos/ASIN/B07KF4R1HT/kktworks-22/
https://www.amazon.co.jp/exec/obidos/ASIN/4798142476/kktworks-22/
https://www.amazon.co.jp/exec/obidos/ASIN/4798142476/kktworks-22/

サイト
　
インターネット上にも数多くの情報源があります。Spring Boot

関連で日頃筆者がよく利用させてもらっているのは、以下のサイト
です。
　
Spring Boot

https://spring.io/projects/spring-boot

★Spring Boot開発元のサイト。
　
Qiita

https://qiita.com/

★プログラマー向け技術情報共有サービス。このなかにSpring

Bootに関する記事も数多く含まれている。ただし内容は高度なも
のが多い印象。
　
StackOverflow

https://stackoverflow.com/　英語
https://ja.stackoverflow.com/　日本語
★プログラミングに関するQ&Aサイト。英語版は圧倒的なボリュー
ムを持つ。エラーメッセージをキーにしてGoogleで検索する
と、ここにたどり着くことが多い印象。
　
TERASOLUNA Server Framework for Java (5.x) Development

Guideline

https://spring.io/projects/spring-boot
https://qiita.com/
https://stackoverflow.com/
https://ja.stackoverflow.com/

https://terasolunaorg.github.io/guideline/5.5.1.RELEAS

E/ja/index.html#

★TERASOLUNAは、株式会社NTTデータの開発している比較的規模
が大きなシステム開発手順、フレームワーク、サポートのブラン
ド名です。「TERASOLUNA Server Framework for Java」は
オープンソース化されたフレームワークでSpring Frameworkを
使っています。このガイドラインはSpringの知識だけでなく、
Webアプリケーションを構築する上で示唆に富む内容を数多く含
んでおり参考になります。
　
　
英語のサイトも多いですが、ChromeでGoogle翻訳の拡張機能で

ページ全体を翻訳すると大体の意味はつかめます。意味不明なとこ

ろはDeepL(https://www.deepl.com/ja/translator)を使うと、

良い結果が得られることもあります。

https://terasolunaorg.github.io/guideline/5.5.1.RELEASE/ja/index.html
https://www.deepl.com/ja/translator

奥付
　
菊田 英明(きくた ひであき)
Java言語と出会ったのは1995年の終わりごろ。JDKはまだβ版だっ
た。当初は「趣味」でJavaプログラムを書いていたが、いつのまに
か仕事もJava一色となる。その後はWebアプリケーションシステム
の開発に従事する。某エンジニアリング会社勤務を経て2019年4月
より個人事業主。近年は新入社員向けJava導入教育の講師も請け
負っている。
　
■保有する資格
情報処理技術者試験
　プロジェクトマネージャ
　アプリケーションエンジニア
　プロダクションエンジニア
　データベーススペシャリスト
　オンライン情報処理技術
　基本情報処理技術者
Sun Certified Programmer for the Java Platform

　
■著書
「実践 JDBC―Javaデータベースプログラミング術 」(オーム社)

「SE・プログラマスタートアップテキストJSP 基礎」(技術評論
社)

「基本情報技術者 らくらく突破 Java」(共著、技術評論社)

「Spring Bootで始めるWebアプリケーション開発入門」(Kindle)

「Spring Bootで始めるWebアプリケーション開発入門(実践編)」
(Kindle)

「Spring Bootで始めるWebアプリケーション開発入門(実戦編)」
(Kindle)

　
表紙デザイン：後藤あゆみ
　
Spring Boot3で始めるWebアプリケーショ
ン開発入門(基礎編)

2022年12月05日　初版発行
　
著者　　菊田英明
発行者　菊田英明
　
(C)Hideaki Kikuta

	1. はじめに
	2. 環境設定
	2.1 Eclipse Temurin JDK
	2.2 Spring Tool Suite 4
	2.2.1 STSのインストール
	2.2.2 STSの日本語化
	2.2.3 Web開発用プラグインのインストール

	2.3 Lombok
	2.4 PostgreSQL
	2.4.1 PostgreSQLのインストール
	2.4.2 環境変数PATHの設定

	3. Spring BootでHello,world!
	3.1 Hello,world!
	3.2 GETリクエスト/POSTリクエスト
	3.3 GETリクエストの処理
	3.3.1 クエリ文字列からのデータ取得
	3.3.2 URLパスからのデータ取得

	3.4 POSTリクエストの処理
	参考：STSにプログラムを入力するときのヒント

	4. Thymeleafでフォーム操作
	4.1 ThymeleafでHello, world!
	4.2 フォーム部品
	4.3 @ModelAttributeを使った入力データの取得
	補足：プロジェクト間でファイルをコピーする

	5. セッション操作
	5.1 セッションの必要性
	5.2 数あてゲームでセッションを学ぶ
	補足：セッション操作詳説
	参照とは？
	数当てゲーム 起動時の処理
	1回目の処理
	2回目の処理
	[もう一度最初から]クリック時
	同時に実行した場合

	6. テーブルのデータを一覧表示する
	6.1 テーブルの作成
	6.2 プロジェクトの構成
	6.3 エンティティ
	6.4 リポジトリ
	6.5 コントローラー
	6.6 ビュー
	6.7 その他ファイル
	6.7 ビュー/コントローラー/リポジトリ/エンティティの関係
	todoテーブル作成手順

	7. テーブルにレコードを追加する
	7. 1 バリデーション
	7. 2 コントローラー
	7. 3 サービスクラス
	7. 4 レコードの追加
	7. 5 リダイレクト
	7. 5 エラーメッセージの表示
	補足：プロジェクトのコピー方法

	8. テーブルのレコードを更新・削除する
	8.1 主キーで検索する
	8.2 レコードを更新する
	8.3 レコードを削除する
	8.4 Thymeleafでセッションのデータを参照する
	8.5 PRG(Post-Redirect-Get)パターン

	9. 入力された条件で検索する
	9.1 検索条件フォームの追加
	9.2 検索条件の取得
	9.3 検索処理の定義・実行

	10. 動的なクエリによる検索
	10.1 動的なクエリ実行方法
	10.2 DAO(Data Access Object)
	10.2 JPQLによる動的クエリの実行
	10.2.1 JPQLの組み立て
	10.2.2 EntityManager

	10.4 Criteria APIによる動的クエリの実行
	10.4.1 Criteria APIの基礎
	10.4.2 Criteria APIの利用

	メタクラス作成手順

	11. ページネーション(ページング)
	11.1 Pageable/Pageの追加
	11.2 ページリンクの作成
	11.3 動的クエリ結果のページング

	演習課題
	参考資料
	書籍
	サイト

	奥付

