
マスタービース

P T SS H E L L S C R I

ヽ
ヽ

ヽ
畑

ドくをフ

肛

亀「
Чヽ

"ワ

:= ヽノ 大角祐介

■
■
■
■
■
■
■
■

甲埒
′

「

~~~ ヾ「
l〔

ヽ

主

゛

蒸
ｃ
ユ
・又
猾

露
、
、
Ｌ

艇

m ヽ ` ¥3で
R、 ″超 尋

SB Creative



―

―

―

―

―

．
‥

―

―

―

―

―

―

―

―

―

―

―

―

―

―

・
‥

―

‥

１

●
Ｉ



―

「I E L L S C R I P T S

ヽ
ヽ

か
′
′
く

|

1鷲

大角祐介

兌

饉

SB Creative







■Linuxは、Linus Torvalds氏 の日本およびその他の国における登録商標または商標で

す。

■FreeBSDは FreeBSD Foundationの 登録商標です。
■Appleの 名称、およびMac OSは米国Apple COmputer,Inc.の 商標です。
日その他、本書中のシステム・商品名は、一般的に各社の商標、または登録商標です。

■本書ではTM、 Rマ ークは明記していません。

◎2014 本書の内容は、著作権法上の保護を受けています。著作権者、出版権者の文

書による許諾を得ずに、本書の内容の一部、あるいは全部を無断で複写・複

製・転載することは、禁じられております。



Iまじめに

本書は、LinuxやFreeBSDな どのUNIXマシンでシステム開発・運用を行なっている方、

あるいはこれからUNIXを学ぼうとしている方を主な対象とした、シェルスクリプトの実

用サンプル集です。

シェルスクリプトはUNIXユ ーザにとって非常に身近なプログラミング言語であり、ロ

グのデータ抽出やファイル操作、テキストフアイルの加工・整形、プロセスの制御、サー

バ構築のためのパッケージ管理など、利用されるシーンも数多くあります。UNIXで何か

作業をしようとするならば、シェルスクリプトの知識は必須と言ってよいでしよう。

しかしいざシェルスクリプトを学ぼうとしても、単にコマンドを並べてスクリプトを書

くだけのところからなかなか先に進めずにいるという方も多いことでしょう。

本書は、実用的なシェルスクリプトを書けるようになることを目的としています。その

ためシェルスクリプトのテクニック的な解説に終始するよりも、UNIXの運用管理におい

てよく見られる問題を想定して、それを解決する実用サンプル例を紹介しています。いま

読者が直面している、あるいはこれから直面するであろう問題に、きっと役に立つことと

思います。

本書の内容が、読者の日々の作業に少しでも力になれば幸いです。

なお本書を執筆するにあたり、三宅英明(@mollifier)氏 。伊能隆之氏のおふたりにレビ

ューを行なっていただき、多くのご指摘・意見をいただきました。この場を借りまして、

感謝の意を表します。

2014年 5月

大角祐介



本書の読み方

本書の読み方

シェルの確認方法

本書では、サンプル例はshも しくはbashで記述しています。shは どの環境でも存在し

ますが、bashは インス トールされていない場合があるかもしれません。その場合には、
APPENDIXの「09 baShの インストールについて」を参考にして、まずbashのインストー
ルを行ってください。

普段読者が端末ウィンドウでの操作に利用しているシェルは、「ログインシェル」と呼

ばれます。これは次のようにシェル変数SHELLを echoコ マンドで表示することで確認で
きます。

01ロ グインシェルの確認

基本的にログインシェルは、FreeBSDの 場合はtcshが、Linuxお よびMacの場合はbash

が利用されることが多いようです。また読者の中には、高機能なシェルであるzshを使っ

ている方もいるかもしれません。

ログインシェルと、シェルスクリプトを実行するシェルはそれぞれ別物ですから、これ

が違っていても気にする必要はありません。ただし、tcshな どのCシ ェル系をログインシ

ェルとして利用している場合には、コマンドラインで普段行 う操作とシェルスクリプトの

文法が一致 しないことがあるため、若干のとまどいがあるかもしれません。

ログインプロンプト

先ほどの図においてechoコ マンドの前の$記号は、シェルのプロンプト記号です。これ

は、シェルが「いま、コマンド入力待ち状態ですよ。何かコマンドを入力して ください」

と入力を促す (prompt)こ とからプロンプトと呼ばれています。なお、本書ではプロンプ

ト直後でユーザが入力する文字を太字にしています。

シェルのプロンプトはユーザが自由にカスタマイズできるため、読者の環境により使わ

れている記号は異なるかもしれません。しかし通常は、shやbashな どのBシェル系では一

般ユーザは$、 rootユ ーザは#が用いられます。そのため本書の実行例などでも、プロン

プトがSと なっていれば一般ユーザで、#と なっていればrootユーザで実行するよう意図

して記述 しています。

なお、tcshな どCシ ェル系では、一般ユーザのプロンプトは%がよく使われます。その

Iv

S echo SSHEL:L

/bin/lbash



本書の読み方

ためFreeBSDで tcshを利用 している場合などには、本書で例示 しているプロンプトの$を

%に読み替えてください。

シェルスクリプトの書き方

シェルスクリプトは単なるテキストフアイルですから、読者が使いやすい、お好きなエ

ディタを使って書いてください。一般的にはvi(vim)も しくはemacsが使われることが多

いのですが、geditな どのGUIエディタを利用してもかまいません。

シェルスクリプトのフアイル名は、何でもかまいません。ただし慣例的に拡張子を.sh

にすることが多いため、特別な理由がない限りそうしたほうがよいでしよう。また、ファ

イル名に日本語やスペースを入れるのは無用な混乱を招きますから、避けたほうが無難で

す。

なおファイルの拡張子がない場合、それがシェルスクリプトなのか通常の実行ファイル

なのかわからないことがあります。このようなときは、fileコマンドを利用すると対象フ

ァイルの形式を調べて表示してくれます。次の例では、scriptフ アイルは「shell script」

と表示されていますから、これがシェルスクリプトであることがわかります。

◎f‖ eコマンドでのファイル形式の確認

シェルスクリプトを書いたら、実行する前に文法チェックを行う―nオ プションを利用す

ることをお勧めします。―nオ プションを利用すると、シェルはスクリプトを1行ずつ読み

込んで解釈を行いますが、実行はしません。そのため、書いたスクリプトに文法エラーが

ないかを実行前に確認することができます。

蜀―nオプションを利用して文法チェック

shared
ELF 64-b■ tconunand:

f■■eS

fi■e

script I

syntaxscript . sh 3 6:

S Sh ―n



本書の読み方

シェルスクリプトの各種実行方法

シェルスクリプトを実行する際には、まずファイルに実行権限を付ける必要があります。
これには次のように、chmodコ マンドの実行ビットを立てる十Xオ プションを利用します。

0フ ァイルに実行権限を付加する

Chmodコ マンドでは、パーミッションを3桁の8進数で設定することもできます。詳 し
くは「man ChmOd」 として、Chmodコ マンドのマニュアルを読んでみて ください。
コマンドラインからシェルスクリプトを実行する際には、UNIXで は一般的にカレント
ディレクトリにパスが通っていないことが普通であるため、明示的にパスを指定してスク

リプトファイルを実行する必要があります。この際にはフルパス指定で実行 してもよいの

ですが、カレントディレクトリを意味する./を 頭に付けるパターンが通常はよく使われま

す。

0スクリプトを実行する(/hOme/user1/binが カレントディレクトリと仮定)

また、集計処理や監視などで定期的に実行するシェルスクリプトは、コマンドラインか

ら直接実行せず、cronで自動起動させるシーンも多 く見られます。cronを利用する例に
ついては、APPENDIXの「04 cronに よるスクリプト実行について」を参照してください。

vi

S



麓 饉霊懸TS e目 次

00NTE‖ TS

はじめに ..…

本書の読み方

＝̈

　

・Ⅳ

cHAPrEn 01 a-+I.(Y?714
００‐

００２

００３

００４

００５

０００

００７

０００

０００

０‐０

コマンドオプションの処理をする

キーボードから 十回が入力されたときに、現在の状態を出力してから終了する

キーボードからユーザのキー入力を取得して、変数の値として利用する

パスワード入力の際に、ユーザのキー入力を表示しないようにする……

ユーザのキー入力を1文字だけ取得す を不要にする)

ファイルから読み込んで処理をしているときに、キーボードからの入力を行う

選択式メニューを表示して、入力された数値の処理を実行する .………………

表示文字の色などを変える …………………………………………………….…

カレンダーで選んで特定の日付のログフアイルを削除する……………………

ファイルの圧縮中に、実行状態を示すプログレスバーを表示する ……………

GHAPTER 02 変 換 処 理

011

012

013

014

015

016

017

018

019

020

圃

圏

晰

晰

圏

田

四

晰

四
　
〇５１

固

晰

１
日
　
ｎ
‘

，
Ｌ
　
Ａ
Ｚ

ｎ

ｕ

Ａ
ｕ

実行時に変数の値が空のときは、デフォルト定義した値を設定する…………………

関数の中でローカル変数を定義して、呼び出し元の変数を破壊しないようにする…

読み込んだHTMLフ ァイルから特定の属性値を取得する………………………………

値が整数であることをチェックしてから計算を行う……………………………………

シングルクォートの中でシングルクォートを使う…………………………………………

変数や関数を外部ファイルに記述する .……………………………………………………

文章などの空白文字を含む文字列変数を引数にとるには……………………………

HTMLフ アイルから、タグの中に書かれたコマンドを抜き出してそのまま実行する

アンダースコアなどを含む文字列内で、変数の区切りを明示的にする………………

コマンドの出力結果を用いてフアイル名を組み立て、

そのフアイル名を対象にコマンドを実行する際に見やすくする………………….…

未定義の変数をエラーとなるようにして、タイプミスを防ぐ……………………………

ヒアドキュメントで変数展開をせずにそのまま$strのように表示する ……………

‖ l



00r饉莉 S。 目次

GHAPTER 03 フ アイ ル 処 理

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

絶対パスで起動されても相対パスで起動されても、同じ動作をできるようにする………Om
コマンドの使い方を表示する際に、現在の自分自身のファイル名を使つて例示する …… 063

ディレクトリ移動した後に簡単に元の場所に戻る………………………………………………066

デイレクトリ内のフアイル数・ディレクトリ数を調べる……………………………………… o“

ファイルの中身を消去して、ゼロバイトの空ファイルにする ………………………………… 071

新規ファイルを作らずに、すでにあるフアイルのみフアイル更新日を変更する……………074

複数HTMLファイルからtit:eタグ部分のみを抜き出して、
それぞれ別ファイルヘ出力する.………………………………………………………………… 0″

あるディレクトリ内の、n日前からm日前までに更新されたファイルー覧を取得する.…… 079

作業ファイルディレクトリから、1年以上更新のないファイルを削除する .… ……….…… 082

大量のログフアイルがあるディレクトリ内のフアイルに一括したコマンドを実施する…… 0“

フアイルをバックアップする際にファイル名に日時を入れる………………………………… 088

フアイル群を別デイレクトリに同期するバックアップ処理を行う…………………………….∞ 1

回―カルディスクに実ファイルを作らず、直接リモートホストにアーカイブする………… 0“

重要なファイルをバスワード付きzipと してアーカイブ……………………..…………………∞6

gZipコマンドで圧縮率を大きくしたい…………………………………………………………∞8

tarアーカイブの際に一部のファイルやディレクトリを除外する………………………………1∞

tarアーカイブに後からファイルを追加する………………………… ……………………… 102

フアイルバーミッションやタイムスタンプなど、

元のフアイルの属性を保つたままファイルコピーをする………………………………………1“

拡張子に.htmと .htm!が混じつたHTMLファイル群の拡張子を一括してtxtに変更する …… 1"

処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する … 1(Ю

2つのフアイルの新旧を比較し、古いほうを削除する …………………………………………112

2つのディレクトリ内を比較し、どちらか片方だけに存在するフアイルを表示する………114

あるデイレクトリの中で容量を食つているサブデイレクトリを調べる……..…………………117

作業ファイルを作る際に、内容を読まれないようセキュリティ対策を行う……………… 120

バイナリファイルに含まれる文字列を取得する………………………………………………….12

.svnなどの隠しファイル・ディレクトリのみを列挙する …………………………………………125

二重起動が可能な一時ファイルを作成する…………………………………………………… 128

sedでファイル置換を行う際、
シンポリックリンクを実ファイルで置き換えないようにする ………………………_… .…… 1∞

vill



鋤 露饉麟 傷目次

GHAPTER 04 日 付 処 理

嵌

051 dateコ マンドで日付の比較と取得を行う.………………………………………

052 今日が月末日かどうかを判定する…………………………………………………

053 現在の前月を取得して、前月に作成されたログフアイルを一括アーカイブする

154 今年がうるう年かどうかを調べる……………………………………………………

GHAPTER 05 ?'y l'.7 -?

“

舒

”

″

055 デフォルトゲートウェイにpingが通るかテストする(Linux)… ….…………………

056 デフォルトゲートウェイにpingが通るかテストする(FreeBSD/Mac)… …….

057 pingで特定ホストヘの応答平均時間を取得する…………………………………

058 arpテーブルから指定:Pアドレスに対応するMACアドレスを表示する……….

059 ホスト名からlPアドレスを取得する…………………………………………………・

000 1Pア ドレスからホスト名を逆引きする………………………………………………

001 あるサーバの特定ポートヘ通信できるかのチエツクスクリプト..…………………

002 テスト用の簡易TCPサーバを立ち上げる…………………………………………

063 ftpで 自動ダウンロード・自動アツプロードを行う…………………………………

004 シェルスクリプトでCGiを実行する…………………………………………………

005 指定したサイズのフアイルを作り、転送速度を測定する…………………………

066 :Pア ドレスによる処理分岐をcase文で書く.………………………………………

007 ローカルのシェルスクリプトのフアイルを、リモートホストでそのまま実行する

GHAPTER 06 テ キ ス ト処 理

“

囀

引

科

“

”

”

“

”

Ю

７２

■

謁

008 1Dが書かれたリストフアイルからlD抽出をする際、
lDの末尾文字(下 1桁 )でソートして取り出す……………………….…

009 テキストファイルから区切り文字を指定してカラムを取り出す………

070 ファイル先頭のシバン(#!/bin/Shなど)を抽出し、
スクリプトに応じた拡張子を付加する…………………………..………

071 入カファイルのハツシュ値を、行ごとに追加カラムとして出力する¨

072 CSVフ ァイルから、指定した特定レコードのカラムの値を得る……

073 CSVフ ァイルに!Dリストを入力して、対応するIDのカラム値を得る

0■  数値データの書かれたCSVフアイルから平均値を計算する .………

‐８２

価
　
憫

０

１９５

憫

犯



C鶴籠 肛ヽ ●目次

075 数値データ(CSVフ ァイル)から、:嗜‖を利用して簡単なテキストグラフを出力する
076 ログファィルのカラム位置を入れ替えて出力し、見やすく加工する…………………
077 Webサーパのログフアイルから特定のステータスコードを返しているものだけを
取得する………………………………………………………………………………………

078 システムログから:Pアドレスごとのアクセス回数を集計する………………………
079 Webアクセスログからファイルごとのアクセス回数を集計する……………………
000 sedで HTMLフアイルの属性を置き換える際、
スラツシュのエスケープが煩雑になるのを避ける……………………………………

001 右詰めにして数値を表示し、テキストで数値の表を作る……………………………
002 決まつた桁数の数字にハイフンを入れる(郵便番号など)…………………………
083 フアイルサイズを減らすために、
JaVaScriptフ アイル(jsフアイル)から空行を除去する……………………………

004 テキストフアイルからHTMLファイルを作る…………………………………………
085 HTMLファイルの文字コードを自動的に判別して、
UTF‐ 8でエンコードされたファイルに変換する…………………………………………

204

207

210

213

216

219

221

224

28

230

233

GHAPTER 07 シ ェル の 機 能 を 使 い こ な す
086

087

088

089

000

001

092

093

004

005

096

097

関数やif文内などでヒアドキュメントを使う際、
ベタ書きせずに行頭にタブを入れて見やすくする…………………………………………… 238

スクリプト実行中にシグナルを受け取つて、現在の実行状態を出力する …………… …… 241

HUPシグナルを受け取つて、実行中に設定ファイルを読み込みなおす …………………… 2“
異常終了してもゴミが残らないよう、終了前に作業ファイルを消去して後始末を行う ……247

常に指定した環境変数を設定してコマンドを実行するために、

ラツパースクリプトを作成する……………………………………………………………………2"
scpでフアイル転送を行つてCPU利用率を計算し、
圧縮処理をすべきかどうか判断する………………………………………………………………2"
移植性を考慮して外部コマンドを利用する・・……………………………………………………27
リダイレクトが煩雑とならないよう、グルービングして見通しをよくする…………………2"
コマンドがどこかで失敗したらそこで終了し、スクリプトの誤作動を防ぐ…………………る1

複数のURLからファイルを並列で同時ダウンロードする ………………………………………264
多数のホスト宛てにpingを投げる際、並列して実行し待ち時間を減らす……………… .2“

シェルスクリプトの一部にPerlや Rubyを使う。…………………………………… ……… 268



oo露11鬱患TS e目 )欠

GHAPTER 08 制 御 情 文 の サ ン プ リレ

098

099

100

101

変数を埋め込んだIPア ドレスのリストフアイルを読み込み、

pingコマンドで疎通をチェックする …………………………………………………………… 272

連番のフアイル名を持つURLを 自動生成して、順にダウンロードする .…………………… 275

強制終了されるまでフアイルのダウンロードを繰り返し、通信チェックを行う…………… 279

:Dカラムに
‖00001"な どゼロ詰めで書かれたCSVフ アイルから、

番号を指定して値を抽出する……………………………………………………….… .………282

スクリプトを修正してif文の中身が空っばになつた際、エラーとならないようにする ……2“

Webサーバからフアイルをダウンロードして、フアイルのMD5ハッシュ値を計算する …288
102

103

GHAPTER 09 サ ~バ 管 理

104

105

100

107

108

100

11lD

lll

ll12

113

114

115

116

1117

118

119

120

121

122

123

サーバのネットワークインタフェースとそのIPア ドレスー覧を取得する

サーバに作成済みのユーザアカウントー覧を取得する…………………

許可したユーザのみスクリプトを実行可能とする .¨……………………

システムのシャットダウンを行う…….… …………….…………………

ファイル名から、インストールされたRPMパッケージ名を調べる……

RPMパッケージ名を記述したリストファイルから、
それぞれのパッケージがインストール・更新された日付を調べる……

サーバ構築のパッケージリストをシェルスクリプトの形で管理する….

特定のプロセスが停止していないか監視する。.…………………………

特定プロセスの起動本数の間値チェックを行う…………………………

プロセスを監視し、プロセスダウン時に自動的に再起動させる………

サーバのping監視を行う…………………………………………………

Webアクセス監視を行う……………………………………………………

ディスクの容量監視を行う。…………………………………………………

メモリ・スワップ監視を行う….… .……….………………………………

CPU使用率の監視を行う…………………………………….……………

Webページの変更監視を行う ……………………………………………

MySQLデータベースのパックアツプ……………………………………

MySQLのレプリケーション監視 .…………………………………………

MySQLのテーブルをCSV出力する.… …………………………………

ログ出力を監視し、ログに特定の文字列があれば警告する……………

型

獅

劉

師

翻
　
爾

３１０

３‐３

３‐７

脚

認

昴

卸

鋼

翻

調

昴

卸

田

田

xi



00灘T田眼Se目次

cHAPTEn l0 bash
124

125

126

127

128

129

130

131

132

シェル変数を、整数値など属性付きで宣言する…………………

forループをブレース展開で手軽に記述する .……………….…

足し算・かけ算などをシンプルに記述する。………………………

変数内の文字列を、n文字日からm文字取り出す………….……

変数内の文字列の一部を置換する…………………………………

中間ファイルを作らずにコマンドの出力をファイルのように扱う

パイプ処理で各コマンドの終了ステータスを調べる……………

ユーザに簡易メニューを表示して選択してもらう。.……….……

整数値の乱数を得る…………………………………………………

爾

鋼

側

調

鋼

躙

搬

鰤

鰤

APPE‖DIX追 力1情報

珈
鯉
翻
獅
佃
価
佃
却
湘
市

‐
１

　

‐
２

‐３

‐４

‐５

‐６

‐７

‐８

‐９

０

０

０

０

０

０

０

０

０

０

１

端末(ターミナル)とは …………………

UNiXコマンドのオプションについて

シェルスクリプトの変数名……………

cronに よるスクリプト実行について

pVコマンドのインストール…………

dia10gコマンドのインストール _.…

Setコマンドの利用 ……………………

Webサービスの監視について………
bashのインストールについて………

参考文献…………………………………

xII



GHAPTER

ユーザインタフエース
この章では、シェルスクリプトでのコマンドオプシ

ョンの指定方法や、キーボード入力を扱う端末処理、

メッセージのカラー表示、テキストベースでのダイ

ァログボックスの利用方法などについて紹介しま

す。
ユーザにログインIDやバスワードを入力してもらい

たいときや、メニューやカレンダーを表示して選択

させる対話型のシェルスクリプ トを作りたい時に

は、これらのサンプル例が役に立つことでしよう。



bor 
I

コマンドオプシヨンの
処理をする

スクリフト内でオフション (‐aなど)を解析して動作を変えたいとき

″:′bin/sh

″―aオプションが付加されたかどうかのフラグ変数a_fLagと、
″―pオプションのセパレータ文字列を定義する

a_fLag=0
separator='`::

uhi[e getopts "ap:" opt'ion
do

case $option in
a)

Separator="$OPTARG‖

¥?)

esac

done

回回謳冒ロ
getopts.case.shin

…オフション.フラグ.コマントライン引数

Lag=1ゴ

′

■

′

p)

echo "Usage: getopts.sh t-al E-p separatorJ target_dir" 1>&2
exit 1

#オ プション指定を位置パラメータから削除する
Shift S(eXpr SOPTIND - 1)

Path="$1 "

S ./getolpts.sh _a _P '=====sep=====' /home/user■ /docs
a.txt readme.txt

″―aオプションが指定されたかどうかを、シェル変数a_ftagの値で判断する

0
002



001薔 コマンドオプションの処理をする

if E $a_fLag -eq 1 l; then
[s -a -- "$path"

eIse
ts -- "$path"

fi

if E -n "$separator" 3; then
echo "$separator"

fi
ヨ 0

解説

UNIXの コマンドでは、実行時にさまざまなパラメータを指定することがよくあります。

例えばファイルをコピーするcpコ マンドは、デフォルトでは既存ファイルがあった場合

でも確認なしに上書きコピーをしてしまいますが、「―i」 を付けると、次のように上書き前

に確認をするようになります。

鼈上書き前に確認するようになつた

上記の-1と いうのがオプシヨンです。また、この例では「-101d.tXt neW.tXt」 というコマ

ンドに与えているパラメータをまとめて、コマンドライン引数と呼びます。

このように、オプションを利用すると、同一のコマンドでもデフォルト状態から動作を

変えることができたり、特定のパラメータを指定したりすることができるようになります。

同様に、シェルスクリプトを作る際にも、オプションを指定してデフォルト動作を変え

たい場合があります。オプションは通常―(ハイフン)で始まるため、コマンドライン引数

を自分で解析して処理分岐を書けば実現できますが、これはなかなか面倒な作業です。そ

れよりも、オプション解析をしてくれる専用のビルトインコマンド、getoptsコ マンドを

用いるのが便利です。

このスクリプト例は、現在のディレクトリの中にあるフアイル名一覧を表示するだけの

ものですが、オプションによって多少動きが変わるようにできています。
―aオプションを

付けることで隠しファイル (ド ットで始まるフアイル)も表示できるようにしており、ま

た―pオ プションを付けることで最終行にセパレータとして表示する文字列を指定できるよ

うにしています。

さらに、デフォルトではカレントディレクトリの中身を表示しますが、コマンドライン

引数としてディレクトリを指定すれば、それを対象のディレクトリとするようにしていま

す。

では肝心のgetoptsコ マンドの使い方ですが、書き方がちょっとわかりづらいので、以

下少し丁寧に見ていきましょう。

翻

003



CH館電8010ユーザインタフェース

まず0では、―aオ プションが指定されたかどうかを判断するシェル変数a_■ agを宣言し
ています。このような変数はフラグ(旗)と 呼び、0で初期化しておき、設定されたら1と

しておくのが一般的です。

0で実際にgetoptsで オプションを解析しています。オプションに使う文字はgetOptSの
引数として並べ、さらにそのオプション自体が引数を取るものは、コロンを付けて指定し

ます。つまり、ここでは・ap:"と していますが、これは「aオプションとpオ プションを利用

する。そしてpオ プションは引数を受け取る」という意味です。getoptsは オプションを先

頭から順番に解析していくため、0の ようにwhneの対象とすれば、指定されたすべての
オプションを順番に処理できます。getOptSの 2つ 目の引数にはシェル変数 (こ こでは

option)を 指定します。ユーザが入力したオプションはこのシェル変数optionに 代入され

るため、以下のcase文で変数OptiOnの 値により分岐することで、入力されたオプション

ごとの処理が行えます。

なお、このようにgetoptsを利用する際は、「wh‖ e文の条件式としてgetoptsを書いて、
そのwh‖ eループ内部のcase文で判断する」というのがセオリーですので、この書き方は
丸ごと覚えてしまうとよいでしょう。

この例ではまずaオプションが指定された場合はa_nagを 1と して、「aオ プションが指定

された」とフラグに設定しています (0)。 一方、引数を受け取るオプション(つ まり
getoptsに てコロン付きで指定したオプション)では、その受け取った引数はOPTARGと
いうシェル変数に入っています。●ではこの値を、separatorと いうシェル変数に代入し

ています。これは最後の出力時に用いています。

ここまででマッチしなかったオプションを、0で処理しています。getoptsで は無効な
オプションが指定された場合は"?‖が代入されるため、これをcase文で処理しているので

す。このOの case処理にきた場合はオプションの指定にエラーがあるため、次のように
エラーメッセージを出力して終わりにします。

0不正なオプションを指定した場合

なお、上記の実行例をよく見ると、このスクリプトでは書かれていない
‖
illegal optioni'

というエラーを出力しています。これはgetoptsコ マンド自体が持つ機能で、定義しなか

つたオプションが指定された場合は自動で出してくれるのです。

続いて、0は理解がなかなか困難です。これは慣用句かイディオムのようなものだと思
って丸覚えしてしまってもよいのですが、きちんと理解したい方のために以下に解説しま

す。

この行は先に目的から言うと、コマンドライン引数を位置パラメータ($1,$2,.… )と し
て正しく扱いたいために実行しています。本来、位置パラメータは、オプションもパラメ
ータもひっくるめて $1,$2,$3,と して格納されています。

$ ./getopts.sh -a -z
,/getopts.sh: itlegal option -- z

Usage: getopts.sh [-a] [-p separator] target*dir

004



鬱議電饉コマンドオプションの処理をする

鸞コマンドライン引数の位置パラメータ

$ ./getopts.sh 一 a
|

|::||:糠 :||:|::|::

getoptsコ マンドでオプション解析が終わった後には、シェル変数OPTINDは「次に処

理する位置パラメータの番号」を指しています。つまり上記の例では、
‖
4"に なっています。

ここで、OPTINDか ら1を引いた値でshiftコマンドを実行することで、オプション部分

を無視した「本当のコマンドライン引数」を順番に$1,$2,$3と して扱うことができます。

つまり、shift S(expr$OPTIND-1)と することで、$1と して/tmpが取り出せるようにな

るのです。

0でこの仕組みを利用しています。このスクリプトでは、オプションではなく通常のコ

マンドライン引数として指定したディレクトリも対象とできる作りになっています。この

際、オプションがいくつ指定されるか、あるいは1つ も指定されないかが事前にはわから

ないので、オプション部分をshiftで「追い出し」てから改めて$1を取得することで、通常

のコマンドライン引数を取得できます。

0ではオプションーaが指定されたかどうかを、10で設定したa_■ agの値で処理を分岐し、
lsコ マンドでディレクトリの内容を表示しています。なおここで、

‖
Spath"の 前に一という

ハイフン2つのオプションを指定しています。これは、もし$pathがハイフンで始まるフ

ァイル名だった場合に、オプションと扱われないように付加しているものです。詳しくは、

APPENDIXの「UNIXコ マンドのオプションについて」を参照してください。

最後に0で、―pで指定されたセパレータを表示します。セパレータが指定されなかった

場合はシェル変数separatorは 空文字列になっています。それをtestコ マンドの中n演算子

で判断し、セパレータ文字列が入っている場合のみ出力されることになります。testコ マ

ンドの詳細については、P.109を参照してください。

麹L型盟
・ 引数を持つオプションを複数使いたい場合は、次のようにコロン付きで並べます。

上記の例では、aオプションは引数を取らず、pオプション、xオプション、zオプションは

引数を取ります。

ｐ

　

警

ｎ

低

融鰯

憮
　

鉤

′

′ＳＣＯｄ
′

′ｒｅ
　
　
蠅爾騨

ｓ

ｌ

鰤

ｕ
′

′ｅｍＯｈ
ノ

′ｐ

　

颯

一
コ

継麟

005



‖o. キーボードから Ctr:
|

〒 が入力
９
一

」■
Ｊ

Ｊ
■
■

」■
Ｊ

Ｊ
■
■
されたときに、現在の状態を出
力してから終了する

C

trap, exit, curl, sleep …シグナル.トラツプ‖終了

□■回日ロ
長い時間のかかる処理や無限ループの処理内で、ユーザが途中終了させるためにキー
ボードで匝コ十回を入力したとき、すぐ終了させずに何らかの処理を行いたいとき

″:′ bin′ 3ト

count=0
trap' echo

echo "Try count: $count"
exit ' INT

whi [e :

do

curt -o ,/dev/nul,l- $1

count=$(expr $count + 1)
sleep 1

done

利用コマンド

S ./sigint.sh http://m.exa■lp■ e.。 rg′     ‐ .   ‐    ‐

t TOtal    t Rece■ ved 2 Xferd  Avera00.Speed l‐ . Timol .I Tllヽ eヽ     Time  Current

Dload ‐■Op■ oaol‐ ||.Totall   Spont    teft  speed
‐. ||||.||||■

100  1270  100  1270    0     0   2903‐ ||.  ||‐ |().|=■|=L=1‐=_ =_;__:__ __:__:__  9921

t TOta1    2 Rece■ ved Ъ Xferd  Aヽ ′Orage‐ Slpeed.‐ .|ITllヽ e`. ‐  ITュ:me     Tin、 e  current
l  ‐ |‐ .| .| |■ ‐ |

‐D■ oad  Up1load l l11・ otal . spent    Left  Speed

100  1270  100  1270    0     0   ・53841111 ・‐0‐‐■―|■■:|■ _‐ =_:__:__ __:__:__ 10948
C― ‐  顆顆勒勒鰊輻
Try count: 2           ‐       .      ‐‐  ..  .  | .          |   .‐

006

|



002。 キーボードから巨コ+□ が入力されたときに、現在の状態を出力してから終了する

解説

このスクリプ トは、コマンドライン引数で指定されたURLに、1秒に1回 curlコ マンドで

アクセスし続けるものです。キーボードから Ctri +□が入力されると動作を止め、それま

でにアクセスした回数を「Try count:2」 のように表示します。

現在の端末で、フォアグラウンドで動作しているシェルスクリプトは、 Ctri 十回で強制

終了させることができますが、このときの動きは、以下のようになっています。

1) 十回を入力すると、シェルスクリプトのプロセスにSIGINTと いうシグナルが送

られる。

2)S!GIN丁 を受け取つたシェルスクリプ トのプロセスは、キーボー ドからの割り込み

(!nterrupt)を 通知される。

3)キーボー ドからの割り込み (!nterrupt)の デフォル ト動作は、プロセスを終了すること
であるため、シェルスクリプトは実行終了する。

ここで出てきたシグナルとは、実行中のプロセスに対してさまざまな動作を指示するこ

とができる仕組みのことです。シグナルには多くの種類があり、それぞれ機能も違います。

キーボードから CtrI 十回を入力された際には、シグナル番号2の SIGINTが送られます。

シグナルの一覧を確認したい場合は、次のようにki‖コマンドに‐lオプションを付けると

システムのシグナルー覧を表示することができます。

輪シグナルー覧はki‖コマンドの―|オプションで確認

さてSIGINTを 受け取ったプロセスは、通常はそこで終了します。しかしシェルスクリ

プトでは、シグナルを受け取った際の動作をtrapコ マンドで制御することができます。

trapコ マンドの書式は次のように、
‖
内に行いたい処理、後ろに制御 したいシグナル名を

記述します。この例では、 Ctrl 十□が押されると現在時刻を表示してからexitコマンド
でシェルスクリプトを終了します。

007



0鼎ぽ躍R01螢 ユーザインタフェース

trapコ マンドがよく使われる例としては、SIGINTな どの終了すべきシグナルを受信し

た際、その場ですぐに終了せずに、ログを出力したり現在の状態を表示してから終了する

というようにデフォルトの動作を上書きするケースです。

サンプル例は、1秒に1回curlコ マンドでWebサイトからダウンロードを行い (0)、 通

信が正常かを目で見て確認するスクリプトです。このプログラムは無限ループとなってい

るため Ctrl +□を入力するまで終了しません。そしてSIGINTを 0の部分でtrapし てい
るため、 Ctrl +□を入力した際には、全部で何回curlを実行したか、現在の状態を変数
countで出力してから終了するようにしているものです。

注意事項

FreeBSDで はcurlは標準でインストールされていません。そのため次のように、fetchコ

マンドで代用するとよいでしよう。

fetch ―o /dev/nuLL Sl ‐  .‐ |||.||| ‐

次のように実行するコマンドを空にすれば、 Ct′ ) 十回を無視して、キーボードからは終了

できないプロセスを作ることもできます。この場合は、別の端末からki‖コマンドでTERM
シグナル (ki‖コマンドがデフォルトで送信するシグナル)を送れば終了することができま

す。

trap 1l INT                         .|| _

関連項目

087 スクリプト実行中にシグナルを受け取つて、現在の実行状態を出力する

側旧 H∪ Pシグナルを受け取つて実行中に設定ファイルを読み込みなおす

089 異常終了してもゴミが残らないよう、終了前に作業ファイルを消去して後始末を行う

008



朧o.
キーボードからユーザのキー入力を
取得して、変数の値として利用する003

…read
中 ■■
標準入力.キーボード

キーボードから入力された値を用いて、対話的に処理を行いたいとき

″:′ bin′ sh

echo -n "Enten your ID: "
read id

echo "Now your ID is $id" -----€

E解説

このスクリプトは、ユーザにキーボー ドから自分のIDを入力してもらい、その値をシ

ェルスクリプト内で変数として利用 してIDを 表示するものです。

シェルスクリプトでキーボードから入力された値を取得するには、readコマンドを用

います。readコ マンドは●のように、値を入れたいシェル変数を引数にとります。つま

りこの例では、シェル変数idにユーザがキーボードから入力した値が代入されます。こう

してシェルスクリプト中で、ユーザからの入力を取得することができます。

続いて0で、キーボードから入力された値を用いてメッセージを表示しています。変数

idに は先ほど入力されたIDが入っています。この後に、入力されたIDに応じた処理を書

いていくことができるでしよう。

なお、readコ マンドで複数の入力値をとりたい場合は、次のようにreadコ マンドの後

ろに複数の変数をスペースで区切って並べます。

こうすれば、ユーザが次のように入力すると、変数idに はguest、 変数nameに はSato,

変1数:numberに は341が入ることになります。

000

|



CHAP■ R01● ユーザインタフエース

もっとも、複数の値を1行で入力するのは、ユーザにとってなかなか面倒です。実際に

はあまりまとめて入力させず、次のように値を1つ 1つ入力するほうが利便性が高い場合

が多いでしょう。

[EI] *. L b< 
^ht 

6 & | ) {frfriJt 
^ht6 

I* a rrfer \tD-f r \

Enter your ID 贅こメヽM■〕NUMBER: guest Sat0 341

echo

read
echo

read
echo

read

-n "Enten your ID: "
id
-n "Enter your NAIIE: "
name

-s "Enter your NUmBER:

number

echo "Nou your ID is $id."
echo "NAl,lE: $name, NUI|IBER: $number

注意事項

readコマンドを実行すると、ユーザからの入力を待つためにスクリプ トは一時停止します。

そのため、次のように単にスクリプ トを一時停止したい際にもreadコ マンドを利用できま

す。この例では入力値は不要なので、代入するシェル変数はダミーとしています。

Macで改行させないメッセージを出力するecho‐ nを利用する際は、P.15を参照してくだ
さい。

関連項目

004 バスワード入力の際に、ユーザのキー入力を表示しないようにする
005 ユーザのキー入力を1文字だけ取得する (入力時に匝団を不要にする)
m7 選択式メニューを表示して、入力された数値の処理を実行する

010



‖o. バスワード入力の際に、ユーザ
のキー入力を表示しないように
する

４■
Ｊ

Ｊ
■
■

」
■

Ｊ

Ｊ
■
■

…stty.read.wget.ourl ―
パスワード

…ユーザからバスワードを入力してもらう朦、入力された文字列を画面に表示しないよ
うにしたいとき

■臨目田D

″:′ bi n′ sh

username=guest
hostname= [oca Ihost

echo ―n i'Password: ::

#エ コーバックをOFFに する ←ech0

stty -echo
read password

″エコーバックをONにする (echo)

stty echo

echo

″入力されたバスワードでダウンロードを行う

■9et ―q ―̈ password=::Spasswordl' =iftp://S(username〕 OS{hostname}/fitename.tXti:

解説

このスクリプトは、ユーザにキーボードからパスヮードを入力してもらい、ftpサイト

からファイルをダウンロードするものです。パスワード入力時には画面に入力値が表示さ

れない工夫をしています。

ユーザのキー入力をreadコ マンドで取得する際、入力された文字はそのまま画面に表

示されます。当たり前のことのように思われるかもしれませんが、これはエコーバックと

011



CWP■ 301● ユーザインタフェース

呼ばれる機能で「入力された文字を画面に表示する」ように端末が設定されているからで

す。

一方、ユーザにパスワードを入力してもらうプログラムでは、画面を盗み見られる危険

性があります。そのための対策として、入力された文字が画面に表示されないようエコー

バツクをオフにするのが普通です。

エコーバックをしないように設定するには、●のように端末の設定を変更するsttyコ マ

ンドで―echoを 指定します。これで端末のエコーバックはなくなり、入力した文字が画面
に表示されないようになります。入力されたパスワードは、readコ マンドを用いてシェ

ル変数passwordに代入しています (0)。

このままではエコーバックしない設定が残つてしまうため、パスワード入力が終わった

ところで、0の ようにsttyコ マンドでechoを 指定して端末を元の状態に戻します。こうす
れば端末は再びエコーバックするようになり、入力した文字がそのまま表示されます。

なお、端末について詳しくは、APPENDIXの R380を参照してください。
サンプル例では、入力されたパスワードを使って、wgetコマンドでftpサーバからファ
イルをダウンロードしています。wgetコ マンドでユーザ名とパスワードを入力する際は、
10)の ように…passwordオプションの引数にパスワードを指定し、ダウンロード先のホス
ト名の頭に@を付けてユーザ名を入力します。

またwgetコ マンドには余計な出力をしない…qオプション(quietモード)を利用し、ファ

イルのダウンロードのみ行うように指定しています。

注意事項

エコーバツクの機能がビンとこない方は、端末で次のコマンドを直接実行 してみましょう。

stty 一echo  ll‐                                                     ‐|‐ .|| ..
|||||                                               _■

||||‐  .

こうすると、以後はコマンドを入力しても画面には表示されませんが、匝団を叩けばコマ

ンドの実行結果は表示されます。元に戻すには、 (表示されませんが)stty echoと タイプ

して匝団を押せば、再びキー入力は表示されます。

・ Macでは、標準でwgetコマンドがインストールされていません。代わりにcuriコマンドを

用いて次のように書くことができます。

o.111‐■‐s ,u lis(usernane}:s(password):: ―o llftp:/′ s(hostnaho)′lf111tenameitxtl.|| ‐
|.・
・
‐|■ |‐||‐■              . ..                                 ‐ |.|||■|||||‐  |

関連項目

012

003 キーボードからユーザのキー入力を取得して、変数の値として利用する



‖o. ユーザのキー入力を1文字だけ

005 取得する (入力時に
にする)

Enter を不要

sty.case,dd キーボード.入力.改行.巨日

…キーポードから入力してもらう際に、1文字入力されたら処理を続行し、Eコの入力
を不要としたいとき

#1′bin′ 3ト

echo -n "Type Youn Answer EYlnJ

#現在の端末設定をシェル変数 tty_stateにバックアップしてから、

#端末をraW設定する

tty_state=S(stty -9)

stty rah,

″キーボードから1文字読み込む

char=s(dd bs=l count=1 2> /dev/nuLL)―――――- 0

″端末設定を元に戻す

stty ==Stty_state==

echo

#入力された文字により処理を分岐する
case :ISchari: in

[yYコ )

echo l:Input: YES‖

[nNコ )

echo l=Input: NO"

■)

実行例

esac

echo "Input: tlhat?"

|



CHAttR 01● ユーザインタフエース

解説

このスクリプトは、ユーザにYes/Noの問い合わせを行い、キーボードから入力された
文字でYesかNoかを判断してメッセージを表示するものです。
スクリプトの実行中、「続行しますか?」 と問い合わせるなど、何かしらの入力をユーザ
にしてもらいたい場合があります。そのような場合はreadコ マンドを使うことでユーザ
のキー入力を取得することできますが、readコマンドは必ず改行が必要です。つまり、ユ
ーザはキーボードから文字を入力した後に匝団を押さなければいけません。
しかし単純なYes/NOの問い合わせなどでは、匝団を押さずとも、yも しくはnを押した
だけで処理を進めたい場合があります。このような場合は端末 (タ ーミナル)の状態を設
定するSttyコマンドで端末をrawモードにすると、キーバッファ処理が行われないため、
1文字ごとに処理を行うことができます。

この例では、改行しないメッセージをecho‐nで表示した後に、現在の端末の設定を
Stty‐ gコ マンドの出力結果を元に保存します (0)。 Stty― gの出力は次のようになっており、
現在の端末の設定が保存されています。

0「現在の端末の設定」を表示してみる

この後rawモードにするときに現在の端末設定がクリアされてしまうため、後で設定を
元に戻せるよう、現在の設定を一時的にシェル変数tty_stateに 保存しているのです。
続いて0で、stty raWコ マンドによって端末をrawモードに切り替えます。こうすると
実際のキー入力の値は、次のddコマンドに直接渡されます。0の ddコ マンド内では、入
出力のブロックサイズを1(bS=1)、 入力から出カヘとコピーするブロック数を1(count=1)
とすることにより、入力された文字をシェル変数charにセットしています。
また、ddコ マンドの実行メッセージはこの場合には不要なため、/dev/nuHヘ リダイレ
クトして消しています。

このままでは端末がrawモードのままとなってしまうため、スクリプト実行前の状態に
戻す必要があります。●のように、sttyコ マンドを使ってstty"Stty_State・ とセットすれば、
ユーザの端末状態はrawモードを抜けて最初に保存しておいた端末の状態へ戻ります。
入力された値はシェル変数charに入つているため、0でcase分岐させています。入力
された文字がyも しくはYな らばVesの処理、nも しくはNな らばNoの処理を行えばよいで
しょう。

MacOecho:I?7ls

$ stty -g
2d00:5:bf:ca3b:3;lc I 7f;15:4:0:1:0: I 1: 13: 1a: ff: 12:f:17 :16:
ff :0:0:0:0:0:0:0:0:0:0:0:0:0:0:0

014

Macの echoコ マンドで改行させないようにするのは少々厄介なため、以下に少 し詳 し



鸞5奪 ユーザのキー入力を 1文字だけ取得する (入力時に 匝口 を不要にする)

く解説します。

Macの echoコ マンドは、コマンドラインで直接使う場合、改行させない―nオ プション

が機能します。しかし、シェルスクリプトの中でecho― nと書いて、スクリプトとして実

行すると、オプションのつもりで指定した"― n"が文字列としてそのまま出力されてしまい

ます。

これは、echoコ マンドがシェルのビルトインコマンドとして実行されていることが原

因です。シェルスクリプトで利用するコマンドには、「外部コマンド」と「シェルのビルト

インコマンド」の2種類があります。外部コマンドとは、/bin/eChOの ように実行ファイル

が存在しているコマンドです。一方、シェルのビルトインコマンドとは、シェル自体が内

部で持っているコマンドで、実行ファイルが存在しません。

このサンプルのようにechoと 書くと、シェルのビルトインのほうのechoコ マンドが利

用されます。Macでは一般的にログインシェルにbashが指定されているため、コマンド

ラインではbaShの シェルビルトインのeChoコ マンドが実行されます。これは―nに対応し

ているため、正しく「改行しない」動作をします。

一方、スクリプト中でechOと 書くと、bashではなくshの シェルビルトインのechoコ マ

ンドが実行されます。Macの shシェルビルトインのechoコ マンドは、改行させないオプ

ションーnに対応していないため、指定しても引数として解釈され、
‖―n‖がそのまま出力さ

れます。

そのためMacで改行したくないメッセージをechoコ マンドで表示させるときは、次の

ように外部コマンドのechoを使うように書きます。

あるいは次のようにprintfコ マンドを使うという方法もあります。printfコ マンドは¥n

で明示的に指定しないと改行が入らないので、改行なしで出力できます。

関連項目

003 キーボードからユーザのキー入力を取得して、変数の値として利用する

015

printf "Type Your AnsNen



‖o. フアイルから読み込んで処理を
しているときに、キーボードか
らの入力を行う

000

□回鵬□日
tty.read 標準入力,キーボード.外部ファイル

□E回蒻■
readコマンドでファイルから読み込んでいる処理の中で、さらにreadコマンドでキ
ーボードからの入力を得たいとき

■瞑団田■

″!′bin/sh

tty〓
｀
tty

white read question 

- 
---{)

do

echo $question
read dir < $tty
echo "Command: [s $dir"
[s $dir

done < question.txt ---€

解説

このスクリプトは、question.txtに書かれた質問を1行ずつ順番に表示 しながら、キー

ボードから入力されたディレクトリ内のファイルをlSコ マンドで表示するものです。

readコ マンドは標準入力 (キ ーボードからの入力)を読み込んでその値をシェル変数に

代入しますが、ファイルの中身を1行ずつ読んでシェル変数に代入することもできます。そ

の際はまず●のようにwhileの 条件式にreadコ マンドを指定すると同時に、②のように

done直後にリダイレクトを書くことでwhileル ープ全体に入カリダイレクトします。こう

すれば、ファイルの中身をreadコ マンドが1行ずつ読み込んでシェル変数questionに代入

してくれるので、1行ずつ処理ができます。

この例では、question.txtに はリスト1の ような内容が書かれています。ディレクトリ

016

| ./read― redirectosh

Target Directory:

datal.txt  data2.txt



ooo Oフ ァイルから読み込んで処理をしているときに、キーボー ドからの入力を行う

名を尋ねる質問文を外部ファイルにしておき、ユーザからの入力値でそのディレクトリを

lsして、中にあるフアイルを表示しようとしています。

饉璽饉爾騨スクリプトで使用する質問フアイル

Input Target Dinectory:

しかし、こうしてreadコ マンドにリダイレクトをしている処理の中で、さらにreadコ

マンドを使ってキーボードからの入力を得たい場合、そのままreadコ マンドを実行して

も、すでに標準入力はファイルとなってしまっているため正しく動きません。

そこでこの例では、0の ように事前に端末情報をコマンド置換により保存しています。

シェルスクリプトでは、コマンド行を
｀
(バッククォート)で囲むと、その部分はコマンド

実行された結果に置き換わり、これをコマンド置換と呼びます。この例ではttyコマンド

の実行結果がシェル変数ttyに 代入されます。コマンド置換については、P.51も 参照して

ください。

そして標準入力がリダイレクトされている処理内でも、0のように端末情報を直接リダ

イレクトすることで、readコ マンドにリダイレクトしているwhileループ内でも、正しく

キーボードからの入力を得ることができます。

注意事項

・サンプル例に出てきたttyコマンドの出力は、具体的には次のように「/dev/pts/0」 など、

現在利用している仮想端末のデバイスフアイル名となつています。

Ottyコマンドの出力

0では、この仮想端末をリダイレクトすることで、キーボー ドからの入力を明示的に指定

できたわけです。仮想端末とデバイスフアイルについては、APP匡 NDIXの「端末(ターミナ

ル)とは」(→ P,390)も合わせて参照してください。

関連項目

003 キーボードからユーザのキー入力を取得して、変数の値として利用する

017



018

繊

選択式メニューを表示して、入力
された数値の処理を実行する007

‖0日

颯回ロロロ
read.case 標準入力

`キ
ーボード

□■回躍■

キーボードから入力された値を用いて、対話的に処理を行いたいとき

■鵬国四D

」:′ bi n/sh

l.hi [e :

do

echo "Menu:"
echo "1) List fiLe"
echo "2) cunrent directory"
echo "3) exit"

read number

case $number in =-€
1)

Is

2)
plrd

3)

f■■elist

1)1■ St f■ le

current directory

2 ) current directory
3)ex■ t

Menu:



007● 選択式メニューを表示 して、入力された数値の処理を実行する

購
exi t
;;

*) 
-------@echo "Error: Unknoun Command"

esac

echo

done

瞼解説

これは番号付きメニューを表示してユーザに値を入力してもらい、指定された番号の処

理を実行するものです。

このようなメニュー付きのスクリプトを作る場合は、番号と処理内容をechoコ マンド

で表示してからユーザの入力をreadコマンドで取得して、その入力内容をcase文で判断

して分岐させる手法が簡単でよく使われます。readコ マンドは0の ように、シェル変数
を引数として指定することで、標準入力 (こ こではキーボードからの入力)を シェル変数

に代入できます。この例では、シェル変数numberに ユーザがキーボードから入力した値

が入ることになります。

続いて、0の case文で入力されたメニュー番号ごとの処理を行っています。この例で
は、1が入力されるとカレントディレクトリのファイルをlsコ マンドで表示、2が入力され

るとカレントディレクトリをpwdコ マンドで表示、3が入力されるとexitコ マンドで終了、

としています。入力値による分岐はit文でも記述できますが、この例のようにシェル変数

の値で分岐させる場合は、case文を使ったほうが利便性と保守性が上がります。コマン

ド実行後には九のメニューに戻るようにするため、全体をwhile文の無限ループとしてい

ます。

なお、ユーザからの入力値には、数値が入力されることを想定しているのに文字列が入

力される、など予想しないものが入力される場合があります。0の ようにcase文 の最後
に*を用いると、それまでの条件にマッチしなかった値の処理が行えます。スクリプトが

意図しない動作を引き起こさないように、このようなエラー処理を行うことを忘れないよ

うにしましょう。

関連項目

003 キーボー ドからユーザのキー入力を取得して、変数の値として利用する

側‖ パスワード入力の際に、ユーザのキー入力を表示しないようにする
m5 ユーザのキー入力を1文字だけ取得する(入力時に〔Enヨを不要にする)

019



‖o.

008 表示文字の色などを変える

…ocho …端末,カラー

メッセージを表示する際に、文字の色を変えたり反転させるなどして注意を引きたい
とき

■圏□頭D

″:′ bin′ sh

echo "Script Start."

″背景をグレー (4み 文字色を赤 01)に する

echo ―e ''¥033E47′ 31m lmportant ‖essage Y033[Om‖

echo "Script End."

爾鶴圏機国磯
Soript End

$ ./color.sh
Script Start

解説

このスクリプトは、
‖
Important Message‖ という文字列を、赤色で表示するものです。

シェルスクリプトで文字列を表示するにはechoコマンドを用います。この際、メッセ
ージの一部に注意を引きたい場合など、文字列の一部を目立たせたいことがあります。こ

のような場合には、―eオ プションを指定してエスケープシーケンスという制御コー ドによ

り、表示される文字に色を付けることができます。

エスケープシーケンスの書 き方は、次のようにエスケープを表す¥033[と mで挟んだ
中に色のパラメータを指定 します。

エスケープシーケンスの書き方

警033【パラメータm表示する文字列 警033[Om

書 式

020

例えば、単純に文字の色を赤 (31番)に したい場合は、次のようになります。



008鬱 表示文字の色などを変える

パラメータを複数指定する場合は、;(セ ミコロン)で区切って並べて書きます。例えば

0では、パラメータとして31番 (文字色を赤)と 47番 (背景色を自)を あわせて指定してい

ます。

文字色の指定をリセットするには、0番を指定してY03310mと書きます。これをしない

と、それ以降の文字がすべて色指定されてしまうため、0のように文字列の最後に置いて

おくのがよく使われる書き方です。

色指定の番号は次のとおりで、30番台がForeground Color(文 字色 )、 40番台が

Background Color(背 景色)です。

輪色を指定するときの値

これらの番号は、Linuxな らば「man console_codes」 でFreeBSDな らば「man screen」

で表示される、コンソールのエスケープシーケンスのマニュアルに記載されています。

注意点

エスケープシーケンスを駆使すると、さまざまな色を用いて凝ったことをすることもでき

ますが、ユーザが利用している端末 (ターミナル)によつては、単に見にくいだけの結果と

なることも十分考えられます。色による強調は、あくまで補助的なものと考えたほうがよ

いでしょう。

環境によつては、echoコマンドを使う際に、エスケープシーケンスを解釈する‐eオプショ

ンが必要ない場合があります。MacOS Xの shや、Ubuntuの ように/bin/dashが shとな

つているLinuxがこれに該当します。これらの環境では、次のように‐eオプションなしで

echoすると、色が付きます。

34 35 36 3730 31 32 33

46 4740 41 42 43 44 45

021



‖o.
カレングーで選んで特定の日付
のログフアイルを削除する000

□回堅目E
dialog,awk,rm ダイアログ.カレンダー .対話型,回民

日付を指定する際に、対話的にカレンダーを表示して選択したいとき

″:′bin′ sh

LOG_DIR=/myapp / ap1 / log

″ diatOgコ マンドでカレンダー出力

#選択日付は標準エラー出力にでるため、一時ファイルヘリダイレクトする
dia Log ――catendar i=SeLect Date'1 2 60 2> caL.tmp― ―――――――(D

#カ レンダー機能では 日/月 /年 形式で出力されるため、これを
″年月日に整形する

date_str=$(awk ―F ノ :{print S3$2Sl)i caL.tmp)一――――――――――――o

″キャンセルされた場合はテンポラリファイルを削除して終了

if [ ―z :'Sdate_stri= ]′  then‐―¬
rm―f CaLtmp      L__
exi t

fi

rlm -1 ${LOG_DIR}/app_Log.Sdate_str

″テンポラリファイルを削除する

rm ―f caL.tmp

実行例

解説

このスクリプトは、カレンダーを表示 して日付を選択してもらい、その日付をファイル

名に持つログファイルを削除するものです。このようなケースではdialogコ マンドを使う

ことにより、さまざまな対話型インタフェースを持つシェルスクリプトを作ることができ

ます。実行すると、次のような表示になります。

022

|

」



000。 カレンダーで選んで特定の日付のログフアイルを削除する

Odialog― calendar.sh実 行中の様子

なおdialogコ マンドのインストール方法は、APPENDIXの R405を参照して ください。
dialogコ マンドのカレンダー機能を使用する場合は、次のような書式で起動 します。

dialogコ マンドでカレンダーを利用する

dia■og  ――ca■endar text 力e」 g力t w■ d'tカ

text :表 示するテキストメッセージ
height:テ キストメッセージの行数
width :ダイアログボックスの横幅

0では、「Select Date」 の文字列を2行ぶんの高さで表示し、ダイアログボックスの幅
を「60」 で指定してあります。

カレンダーから日付を選択するには、 Tab でフォーカスを移動して匝□で選択します。

[MonthHYear]のカラムではカーソルキーの上下で月と年を選択できます。真ん中のカレ

ンダー部では、カーソルを失印キーで動かすか、あるいはViエデイタのように日、|コ、1コ

、□でもカーソルを動かして選択できます。なお、カレンダーの左端にある数字は、1年

のはじめから数えて第何週かを示す週番号です。

ダイアログボックスをキャンセルしたいときは、下部のくOK>くCancel>カ ラムに

移動して、くCancel>を 匝団で選びます。

diaiogコ マンドでの選択結果は標準エラー出カヘ表示されるため、この値を後でrmコ マ

ンドのパラメータとして使うためにテンポラリファイルヘリダイレクトします。●では標

準エラー出力をテンポラリフアイルcal.tmpへ と出力するために、2>cal.tmpと 書いてい

ます。

dialogコ マンドの出力する日付を処理するとき、このスクリプトでは0でちよっとした

テクニックを使っています。これはdialogコ マンドのカレンダー機能の出力が、次のよう

に日/月 /年 となっているためです。

023



13/11/2013

C‖A際101● ユーザインタフエース

日本人からは奇妙に見える書き方ですが、この形式は西欧では比較的よく見られるポピ

ュラーな書式です。これを日本式の年月日形式になおすには、/(ス ラッシュ)をセパレー

タとして3つの要素に分けて、それを逆順に出力すればよいわけです。0は このために、
awkコマンドのオプションを―F/と して/(ス ラッシュ)をセパレータとして指定していま
す。結果としてこのawkコ マンド内では$1に 13、 $2に ll、 $3に 2013と いう値が入ります。
これを20131113と いう文字列とするため、$3$2$1と 逆順に出力しています。

0は、ダイアログでキャンセルされた場合に何もせず終了するための処理です。カレン
ダー選択時にくCancel>が 押されるとcal.tmpは 空っぽとなるため、ここでのシェル変数

date_strの 値も空文字列となります。そのためtestコマンドの‐2演算子で空文字列かどう

かを判断し、空ならば一時ファイルcal.tmpを rmコマンドで削除してからスクリプトを終

了します。

0で、日付指定されたファイルを削除しています。ここでは/myapp/ap1/10g/app_
log.20131113と いうファイルを消すことになります。rmコ マンドには―iオプションを付

けて、削除前に確認するようにしています。

このようにファイルを削除するスクリプトでは、思わぬ動きをして誤ったファイルを消

さないように注意を払う必要があります。ファイル削除など危険な操作を含むスクリプト

を書く際には、まず次のように組み立てた文字列をechoし て、想定したとおりのコマン

ドになっているかを一度確認するようにしましょう。

/app-Log. $date-str

dialogコ マンドのその他の機能

dialogコ マンドには、この他にも次のようなさまざまな機能があります。詳しくは、

man dia10gし てオプションを調べてみてください。

Odialogコ マンドの主要なオプション

――yesno Yes/Noの 問い合わせダイアログボックスを表示する

-msgbox [OK]を表示するメッセージボックスを表示する

-inputbox 値を入力するインプットボックスを表示する

:fsetect ファイル選択画面

-dselect ディレクトリ選択画面

――checktist リストから複数をチェックできるチェックリストボックスを表示する

――radiolist リストから1つだけ候補を選ぶラジオボタンリストを表示する

――menu メニューリストを表示する

024

隋
陽
一一一一●
．一
　

一

一　
　
　
一　
　
　
一　
　
　
一　

　

‐
一

echo rm -i

Fずヤ機ン



嵌)9● カレンダーで選んで特定の日付のログフアイルを削除する

ここでは例として1つ、Yes/Noの問い合わせダイアログボックス (―yeSnO)の使い方を

見てみましょう。リスト1がサンプルスクリプトです。

隕靡蝙褥な問い合わせダイアログボツクスの例

″!/bi n/sh

dialog --yesno "Continue?" 5 40

answer=$?

if E $answer -eq 0 l; then
echo "Setected: Yes"

etif E $ansr.rer -eq 1 l; then
echo "Selected: No"

t1

◎Yes/Noの問い合わせダイアログボックス

YeyNoの問い合わせダイアログボックスは、まずdialogコ マンドを…yesnoオ プション

で起動します。1つ 目の引数が表示するテキストで、普通は質問文となるでしよう。ここ

では
‖
Continue?‖ (続けますか ?)と表示しています。次の数字はカレンダーと同様、ダイ

アログボックスの縦と横の大きさです。

スクリプトの中でYesが押されたかNoが押されたかを判断するには、dialogコ マンドの

終了ステータスを利用します。コマンドの終了ステータスは、シェルの特殊変数S?に保

存されますが、dialogコ マンドの場合は、Yesが選択されれば0が、Noが選択されれば1が

終了ステータスとして返されます。

そこでこのスクリプトではシェル変数answerに S?を代入し、続くit文でYesの場合 (終

了ステータスが0の場合)と Noの場合 (終了ステータスが1の場合)でそれぞれの答えを表

示しています。

関連項目

“

1 作業フアイルディレクトリから、1年以上更新のないファイルを削除する
053 現在の前月を取得して、前月に作成されたログフアイルを一括アーカイブする

025



‖o.
フアイルの圧縮中に、実行状態を
示すプログレスバ…を表示する010

□口覇ロロ
Ⅳ ,tan■ ip

■日
…圧‐縮.プログレスノヽ一

長い時間がかかるファイル処理などを行う場合に、画面に進行状態を示したいとき

″:′ bin/sh

DATA_DIR=/myapp/datadi r

cd $DATA DlR

tan cf - bigfi[e1,dat bigfiLe2.dat I pv I gzip > archive.tar.gz - €

いつ使うか

実行例

解説

このスクリプトは、tarコ マンドとgzipコ マンドで大きなファイルをアーカイブすると

きに、処理の進行状態をpvコ マンドで表示するものです。

tarコ マンドで現在処理中のファイルを表示するには、次のようにvオプションを利用し

ます。ここで、cオプションはアーカイブの作成 (Create)、 fオプションはアーカイブをフ

ァイルとして作成 (こ こではarchive.tar)す ることを意味しています。

Otarコ マンドで処理中のファイルを表示

上記の出力結果を見るとわかるように、tarコ マンドのvオ プションはファイルごとの表

示となるため、サイズの大きなファイルのアーカイブに時間がかかる場合などには、現在

処理が進んでいるのか止まつているのか、判別がつきません。こんなときに役立つのが

020

， 一一灘
一颯

・　

　

　

　

　

　

　

一　

　

　

　

　

　

　

一　

　

　

　

　

　

　

一　

　

　

　

　

一―
■

饉693M13 0,00=42

. /tar-pv. sh

cvf



olo oフ ァイルの圧縮中に、実行状態を示すプログレスパーを表示する

pvコ マンドです。

pvコマンドはPipe Viewerの 略で、その名のとおりにパイプ処理中のデータの流れを可

視化することができるコマンドです。このコマンドのインストール方法は、APPENDIX
のP.400を参照してください。pvコ マンドで利用される主なオプションを、次にあげてあ

ります。

◎pvコマンドの主なオプション

サンプルでは、まず●でシェル変数DATA_DIRで指定されたディレクトリに移動してい

ます。このディレクトリ内には、とてもサイズの大きいデータフアイルが2つ、bigfilel.

datと bigfile2.datと して保存されているものとします。続いて0で、フアイルをまとめて

tar.gz形式にアーカイブしています。tarコ マンドの引数にハイフン"― "が指定されています

が、これはコマンドの出力をファイルではなく標準出力に出すよう指定しているものです。

これにより、tarア ーカイブされたデータ列はパイプでpvコ マンドにそのまま渡されま

す。pvコ マンドは処理状態を標準エラー出力に表示しながら、同時にパイプの接続先で

あるgzipコ マンドにデータ列を渡しています。gzipコマンドは、標準入力のtarア ーカイ

ブを受け取ってgzip圧縮し、archive.tar.gZと いうフアイルに出力しています。

pvコ マンドはデフォルトでは次のような表示を行います。この他にも流量制限 (―L)な

どさまざまなオプションがありますので、詳しくはman pVと してマニュアルを読んでみ

てください。

輪pvコ マンドによる可視化の例

このようにpvコ マンドは、標準入力をそのまま出力しながら、処理結果を標準エラー

出カヘ逐次わかりやすく表示する機能を持ちます。「データの流れを可視化するcatコ マン

ド」と考えるとわかりやすいでしよう。

プログレスバーではなく、パイプを流れるデータの平均速度を表示する―a

―b 処理したバイト数のみを表示し、プログレスバーを出さない

パイプの流量制限を行う。秒あたりの転送量をk(キロ)、 m(メ ガ)、 g(ギガ)単位のバ
イト数で指定する

―q 何も表示しない静かな (qu iet)モード。―Lで流量制限だけしたいときに用いる

-5
パイプを流れるデータサイズを先に指定する。これにより100%のプログレスバーを
表示する

027



CttFr菫 101● ユーザインタフェース

注意事項

・ pvコマンドを用いて流量制限を行うには、次のようにⅢLオプションを利用します。例えば

ddコ マンドを用いてout.datというlGBのファイルを作る際に、ほかのプロセスに影響を
与えないように処理速度を制限するには以下のように記述します。

pVコ マンドのオプションに―L10mと指定していますから、ddコマンドの結果は1秒間に最
大10MBまでしかout.datフ ァイルに出力されません。また、―s lgとすることで総処理サ
イズはlGBであると明示的に指定しています。こうすると、プログレスバーが100%まで
の到速度で表示されるようになります。

関連項目

130 バイプ処理で各コマンドの終了ステータスを調べる

dd if=/dev/zer6 count=1024 bs=1024000 1 pv ―L 10m ―s 19 > Out.dat

一　

　

・Ｉ

●

・　
　

　

　

　

　

　

・

，

．―

・
一
一　

・‐

一　
　
　
　
　
　
．．

一　

　

　

　

・

●
●
一　
　
　
鍵

一　
　
　
　
　
　
・

一　
　
　
　
　
　
　
　
一　
　
　
Ｑ



GHAPTER

変換処理
変数の取り扱いは、多くのプログラミング言語にお

いて重要なプログラムの要素となつています。シェ

ルスクリプトでも、様々な設定値やファイル名・デ

ィレクトリ名の操作を変数処理でおこないます。

この章では、変数定義の扱いやデフォルト値の設定、

入力値の確認、シェル変数の記述などについて解説

します。値が整数かどうかのチェックや、シングル

クォートの扱いなど、シェルスクリプトでありがち

な事例を取り上げて紹介します。



hrr 
I

実行時に変数の値が空のときは、
デフォルト定義した値を設定する

cp, tar …未定義,デフォルト値

□E□園ロ
環境変数が設定されている場合はその値を使い、設定されていなければスクリプトで
決めたデフォルトの値を利用したいとき

■鵬罰回■

″:′ bi n/sh

cp tangef i te.tan-gz ${TMPDIR:=/tmp)
cd STMPDIR

tar xzf Largefite.tar.gz

echo ''Extract fites to STMPDIR.'1

利用コマンド

腱旦墜
このスクリプトは変数TMPDIRの 値をチェックし、設定されている場合はその値を、設
定されていないもしくは空文字列の場合は/tmpを 作業ディレクトリとして、アーカイブ

ファイルを展開するものです。

●で書いている:=が、変数に値が設定されているかをチェックして値を代入する記法

です。${変数名:=値}と 書 くことで、変数が設定されていないもしくは空のときは、指定

した値を代入します。

つまり、環境変数TMPDIRに /var/tmpと いう値が事前に設定されていれば、このスク
リプトは作業ディレクトリとして/var/tmpを 使用 します。一方、環境変数TMPDIRに値
が設定されていないもしくは空のときは、スクリプトでデフォル ト値 と定めた/tmpを 作

業ディレクトリとして用いるということになります。

●ではコマンドの一部として代入を行っていますが、スクリプトの先頭でまずこの処理

を行って変数を初期化したいときは、次のように:(ヌルコマンド)を用いるとよいでしょ

つ。

|||:■

“
あlⅢⅢII I=ふ||1鶴絆||||lll畔 11■●111 11111

030

．
．
　
　
　
． 　

．．　
　
　
．　
　
　
　
　
　
　
　
　
　
一　
　
・
．　
一

一　
・・　
　
　
一●
Ｆ
，　
　
一



釧 1● 実行時に変数の値が空のときは、デフォル ト定義 した値を設定する

このサンプル例のように、ある変数がすでに設定されているかどうかをチェックし、設

定されていない場合はデフォルトの値を設定するというのは、環境変数を利用するシェル

スクリプトでよく使われる方法です。

例えばユーザが、/1argげtmpと いう巨大なディスクをマウントしたディレクトリを、作

業ディレクトリとして使いたいとします。この場合、次のようにして環境変数TMPDIRを

設定してからスクリプトを起動することで、スクリプト自体を修正せずに作業ディレクト

リを指定することができるのです。

り使用するときは起動前に環境変数をセットする

:口と:?と :+

この例の:=を用いてデフォルト値を設定すると、元の変数の値をデフォルト値で上書き

してしまいます。そうではなく、元の変数の値がセットされているかどうかだけをチェッ

クして、値は上書きしたくない場合は:‐を用います。

隠懸国鶴剛一時的に変数をチェックしたい場合

″!/bin/sh

cp Largef i Ie.tar.gz $tTttlPDIR:-/tmp]
#このSTMPDIRは 元の値がNULLな らばNULLの ままとなる

cd STMPDIR

上記の例でTMPDIRが設定されていない場合、●ではファイルは/tmpに コピーされま

す。しかし値の代入は行われないため、0では引数なしのcdコ マンドとなり自分のホー

ムディレクトリ直下に移動してしまいます。

この他、似たような記法として:?と :+がありますので、以下に簡単に紹介しておきまし

ょう。

$tva r : ?message)

上記はシェル変数varの値を返 します。ただし、シェル変数varが未定義もしくは空文字

列のときは、meSSageを 出力してスクリプトが終了します。これは次のように、変数が未

定義もしくは空の場合はエラー終了するという用途に使われます。

031

■||■ ||‐



C鵬打m02● 変換処理

次に:+の場合です。

S(var:+word〕

上記はwordを返します。ただし、シェル変数varが未定義もしくは空文字列のときは、
nullを 返します。これは次のように、「変数MYDIRが設定されている場合は1を返す」とい

うようにif文のような記述ができます。

関連項目

016 変数や関数を外部ファイルに記述する

021 未定義の変数をエラーとなるようにして、タイプミスを防ぐ

032

１

１

一
　

一



関数の中でローカル変数を定
義して、呼び出し元の変数を破
壊しないようにする

012

ls.local ローカル変数.グロー′0レ変数.スコープ

□E回國ロ
関数内で変数を扱う際に、呼び出し元に影響を与えないようローカル変数として定義

したいとき

#!′ bi n′sh

DIR=/va n/tmp

Ls home()

{

″変数 DIRを 関数内の回―カル変数として定義

LocaL DIR

DIR=～ /Sl

echo lidirectory: SDIR‖

Ls$DIR

ls_home logdir

echo ''di rectory: SDIR‖

Ls SDlR

033

‖o.

|

}



釧闘町臨 02● 変換処理

解説

このスクリプトは、ホームディレクトリ直下のlogdirと いうディレクトリの中のファイ

ルと、シェル変数DIRで指定された/vavtmpデ ィレクトリの中のフアイルを、Isコマンド
で順に表示するだけの簡単なものです。

はじめにls_homeと いう関数を作っており、これはホームディレクトリ内の、引数 ($1)

で受け取った名前のサブディレクトリを表示するものです。ここでは0でlogdirと いう引
数を与えていますので、(0)でのSlの値はlogdirと なります。

また、ホームディレクトリのパスを取得するため、0で
~(チ
ルダ)記法を使つています。

シェルスクリプトにおいて～(チルダ)はホームディレクトリのパスヘと展開されます。つ

まり、この実行ユーザのユーザ名がuserlな らば、～/は /home/user1/と なります。よっ

て0は実行時には、「DIR=/home/user1/1ogdir」 となります。
さて、多くのプログラミング言語では、関数内で定義した変数は、その関数内のみ有効

なローカル変数として扱われます。しかしシェルスクリプトでは、基本的に変数はすべて

グローバル変数として扱われます。そのため関数内で変数の値を変更してしまうと、スク

リプト全体に影響を及ぼすことになります。

つまり0のシェル変数への代入文は、このスクリプトの最初で宣言しているDIR=/vaげ
tmpに影響を与える恐れがあるのです。

これを防ぐため、このスクリプト例では、0で:oca:コマンドを使って変数を宣言して
います。呼び出しの時点ですでにDIRと いうシェル変数が使われていますが、ls_home関

数内の同名のシェル変数DIRは ローカル変数なので、呼び出し元に影響を与えません。

もし関数内でlocalコ マンドを使わないと、変数値が書き換えられてしまい、0では/
vaプtmpで はなく～/1ogdirが出力されてしまいます。

Φlocalコ マンドを使わないと関数内で変数値が書き換えられてしまう

関連項目

034

016 変数や関数を外部ファイルに記述する

_,



NO日

読み込んだHTMLフアイルから
特定の属性値を取得する013

…
      

…expr                  ノ`ターンマッチ.文字列.HTML.属性

変数内の文字列から、特定のパターンにマツチする部分を取り出したいとき

″:′ bi n/sh

quote="tY"tl"
match="[^Y":]*li――――――-0

uhi[e read line
do

href=$(expr "$tine" : ".*href=${quote}Y(${match}Y)${quote}.*") --------€
if E $? -eq 0 1; then

echo $href
fi

done < index.html

解説

このスクリプトは、カレントディレクトリにあるフアイルindex.htmlか らHTMLタ グ中
のhref属性を取り出し、その属性値を表示するものです。

HTMLフ ァイルからある属性値を取得するには、パターンマツチを利用して該当部分を
取り出すのが簡易なやり方です。シェルスクリプトでパターンマッチするにはいろいろな

手法がありますが、ここではexprコ マンドを使った例を見てみましょう。

exprコマンドは足し算などの数値演算をする目的でよく使われますが、「expr変数名 :

パターン」の形で、正規表現を利用して変数内の文字列からマッチする部分を取り出すこ

ともできます。この形では、パターン内でカッコ()で くくった部分を出力できます。なお、

カッコはエスケープする必要があるため、実際の表記は「¥(パ ターン¥)」 になります。例え

ば次の例では、"pen"が出力されます。

035

F・ _|



CHAttR 02 0変換処理

サンプルでは、「href属性はダブルクォートもしくはシングルクォートで始まり、再び

ダブルクォートもしくはシングルクォートで終わる」というHTMLの書き方を考えて、ま
ず0でクォート部分を表現する正規表現を用意しました。クォート記号にはエスケープが

必要で、実際のマッチ部分にこれを書くと大変煩雑になり読みづらくなるため、こうして

別途シェル変数にしています。

続いて0で、href属性の部分にマッチする正規表現を用意しました。これはクォート記
号の中の文字列なので、「ダブルクォートもしくはシングルクォート以外の文字列」とい

うことになるため、∧を付けた否定の後ろにこれらクォート記号を並べています。

0で実際にexprコ マンドでフアイルから読み込んだ1行 1行をマッチしています。expr

はマッチしたときのみ終了ステータスにOを返すので、特殊変数S?が0の ときのみ表示す

ることで、href属性値を出力できます。

日注意事項

exprコマンドは「重い」コマンドのため、速度はあまり速くありません。大量のテキスト処

理には、sedやawkが向いています。

古いHTMLの書き方では、<a href=doc.html>の ように属性値にクォートを付けずに裸
で書いているものがあります。また、<a href=‖doc.htmr>の ようにダブルクォートで開

いてシングルクォートで閉じているタイプミスもあるかもしれません。しかしここではク

ォートの扱い方の説明のため、そのような特殊な例は除外しました。

関連項目

018 HTMLフ ァイルから、タグの中に書かれたコマンドを抜き出してそのまま実行する

029 複数HTMLファイルからtitleタグ部分のみを抜き出して、それぞれ別ファイルヘ出力する

1“  変数内の文字列の一部を置換する

string*'rfhjs is a Pen."
expr "$string" : "This is a Y(.*Y)."

．
　

　

　

　

．　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

．
　

　

　

　

●

●
■

一

　

　

　

　

　

一

　

　

　

．

一

．
　

　

　

　

　

　

　

　

　

・

・

一
　

　

　

　

　

　

一



‖0日
値が整数であることをチェック
してから計算を行う014

test.expr 数値チェック、弓1数チェック、エラー処理

exprコマンドなどで計算を行う前に、変数の値が整数かどうかのチェックを行いたい

とき

翻躍堕四■

″!′ bi n′ sh

#引数が整数かどうかをテスト
test i=Sl:: ―eq 0 2>/devノ nuLL ――――――――――(D

if [ $? ―tt 2 ]′  then
echo "Angument
expr 10 + $1

eIse
echo "Argument
exit 1

fi

'is Integen. "

is not Integer."

解脱

このスクリプトは、コマンドライン引数で指定された整数値に10を足した値を返すも

のです。整数以外の値が指定された場合は、"Argument is not lnteger.‖ と表示してエラ

ーになります。

足し算引き算などの四則演算は、exprコマンドで行うことができます。この際、かけ

算の場合だけは・ (アスタリスク)がシェルに解釈されないように、¥記号でエスケープす

る必要があることに注意してください。

expr Si + Sj

expr Si ― Sj

#足 し算
#引 き算

L

037



CilAPTER 02● 変換処理

exPr Si ¥t Sj

eXPr Si / Sj

#かけ算
#割 り算

exprコ マンドは小数に対応しておらず、整数ではない値を四則演算しようとするとエラ

ーになります。そのためコマンド実行前に変数が正しい値かどうかをチェックしたい場合

があります。特にこのサンプル例のように、ユーザからの入力で処理を行う場合は、きち

んとエラー処理をしないと予期せぬ結果を招きます。

そのためこのスクリプトでは、0で引数チェックを行っています。testコ マンドを用い
て、コマンドライン引数 ($1)が 0と 等しいかどうかを中eq演算子で確認します。testコ マ

ンドの出力結果自体は不要なので、標準エラー出力は/dev/nuHヘ リダイレクトして表示

しないようにしています。

●の終了ステータス($?)は、次のようになります。

コマンドライン引数が0と等しければ0
コマンドライン引数が0と違う数値ならば 1

コマンドライン引数が0と比較できない文字列などならば2

そのため0でこの終了ステータスを比較し、2よ り小さければ整数とみなしてそのまま
計算を行い、そうでなければ整数ではないと判断してエラー終了としています。

注意事項

関連項目

m7 選択式メニューを表示して、入力された数値の処理を実行する
101 lDカ ラムに‖00001・ などゼロ詰めで書かれたCS∨ファイルから、番号を指定して値を抽出

する

・　　　　　　　　　　　　　・ 　　　　　　　　　　　　　　　　　　　　　　　　　　　　
・・　　一

038

百
， 癬
”玲
饉
陪
　
　
一

・このスクリプトでの整数値のチェックとして、文字列の
‖
0000‖などは、exprコ マンドで

整数の0と して正常に計算できるためエラーとはしていません。



シングルグォートの中でシング
ルクォートを使う015

Ш回目日日
ocho 文字列,ダブルクォート,シングルクォート

□E□國■
シングルクォートでくくつた文字列中で、変数展開やシングルクォート記号を使いた
いとき

日曝回四■

″:′ bi n′sh

pri ce=100

str='It costs $'$price'? I can'Y"t betieve it!'
echo $str

解説

このスクリプトは、シェル変数strの中身をechoコマンドで表示するものです。変数str

への代入の際、文字列全体をシングルクォートでくくっていますが、そこでシェル変数

priceの展開やシングルクォート記号そのものを扱うサンプル例です。

シェルスクリプトで文字列を扱うには、ダブルクォート(・)と シングルクォート(:)が使

われます。基本的な文法ですがいろいろとややこしいことも多いので、以下、基本的なこ

とを確認しながら解説します。

ダブルクォートでくくつた文字列は、変数の展開とコマンド置換を行うため、$と
｀
(バ ッ

ククォート)は クォート内でも変数展開とコマンド置換の意味を持ったままとなります。

一方、シングルクォート記号は単純なクォートで、変数展開などを一切行わず、
1(シ ング

ルクォート)以外の記号をすべてそのまま出力します。

0シングルクォートだと展開・置換を行わない

039

‖o.

|



CilAttR 02● 変換処理

さて、ダブルクォートの中でダブルクォートを使うには、次のように¥記号でダブルク

ォートをエスケープすればうまくいきます。

しかしダブルクォートが多数使われる文字列では、いちいちエスケープするのが大変で

す。このような場合は、次のようにシングルクォートを用いて処理すると便利です。

しかしこれでは、シングルクォートの中なので変数展開が行われません。「ダブルクォ

ートが多数登場するためシングルクォートで文字列を扱いたいが、そこで変数展開したり

シングルクォートを使いたい」というための工夫がこのサンプル例になります。

サンプル例では、まずシングルクォートを利用しながら変数展開するための手法として、

0で71t costs S:で いったんシングルクォートを打ち切っています。その後の$priceは シン
グルクォートの外なので変数展開されます。その直後にまたシングルクォートを開いて、

文字列を連結させています。

また、シングルクォートそのものを出力させるため、0で'¥"と いう表記を使っています。
これは、まずシングルクォートをいったん閉じ、「¥:」 でシングルクォート記号そのものを

表示し、再びシングルクォートを開く、という意味です。

このように書けば、シングルクォートの中でも、変数展開やシングルクォート記号を扱

うことができます。

関連項目

013 読み込んだHTMLファイルから特定の属性値を取得する
117 文章などの空白文字を含む文字列変数を引数にとるには

040

str=`:‖ e said ¥i:HetLo!¥".

echo $str

str=rHe said "Helto!". I said "HeLlo".'
echo $str



h」型L_

鵬厖謝饉艤ファイルenv.shの中身

tl0RK_DI R=/va r / tnp / nyapp /

nowtime() {
date +%X

)

‖●.

|

変数や関数を外部ファイルに
記述する016

□回壺目D
.(ドツトコマンド) 外部フアイル.読み込み.定義フアイル

複数のシェルスクリフトで共通の設定値や関数を使う際、それらの値や関数を外部フ

ァイルとして定義したいとき

#:′ bin′ 3h

. /env. sh

nowtime

cp -i -v large-fite.tar.gz "$WORK-DIR"

nowtime

実行例

このスクリプトは、指定された作業ディレクトリに大きなファイルをコピーして、その

処理時間を測る簡単なスクリプト例です。ここではlarge― ile.tar.gZと いうフアイルサイズ

の大きなファイルがあると仮定しています。

(o)では、env.shと いう定義ファイルを.(ドットコマンド)で読み込んでいます。env.sh

の中身はリスト1の ようになっており、テンポラリディレクトリを指定する変数 ($WORK_

DIR)と 、現在時間をdateコマンドで表示する関数が定義されています。

041



CHAttR 02 0変換処 :l里

このように、変数や関数を定義するとき、同一の定義を別のスクリプトでも共通して利

用したい場合があります。その場合に1つ 1つのスクリプトに定義を記載していくのは面

倒ですし、後々に値の変更があった場合には、すべてのスクリプトを修正しなければいけ

ません。これは手間がかかりますし、修正漏れなどの運用ミスも起こります。
これを防ぐ

｀
ためにも、変数や関数定義は共通の外部ファイルに設定して、スクリプトか

らはその外部ファイルを読み込む形式にしたい場合があります。このようなときに使うの

が、このスクリプト例であげた。(ド ットコマンド)です。

.(ド ットコマンド)で外部ファイルを読み込んだ場合は、あたかもソ…スファイルがそ
こにそのまま挿入されたかのようにファイル内のコマンドが実行されます。つまり、●の行
は、リスト1の中身をそのまま該当箇所にエディタで貼 り付けたかのように動きます。そ

のため外部ファイルで定義した変数や関数を取り込むことができるのです。

なお、ここで0の ところで「sh env.sh」 とシェルスクリプトを「実行」した場合は、現
在シェルとは別プロセスとして動作するため、変数は引き継がれません。以下が実行例で

すが、このスクリプトを実行しても、●は別プロセスとして実行されるので、変数や関数
の定義が元のスクリプトに反映されません。結果として、次のようにエラーとなります。

◎変数や関数の定義が引き継がれないためエラーになる

.(ド ットコマンド)に よる読み込みと、別プロセスとしての起動の違いはきちんと理解

しておきましょう。env.shフ ァイルには最初の行の#!/bin/sh(シ バン)がないのも、単独
で実行するからではなく、あくまで中身が別のシェルスクリプトに読み込まれて実行され

ることを想定しているからです。

なお、bashな らば次のように.(ド ットコマンド)と 同一の動作であるsourceコ マンド
が使えます。 ドット1つでは見にくいため、bash環境でしか動かなくてかまわない場合は、
SOurCeコ マンドを使ったほうが見やすい書き方になります。

source env.sh

.(ドツトコマンド)の功罪

外部ファイルを使うと、依存関係が生じます。つまり、あるシェルスクリプトをよその

環境に移植する際、読み込んでいる外部ファイルも一緒に移動しなくてはいけません。

一方、シェルスクリプトのよさの1つ として、移植の際はスクリプトファイル1つ をコ

ピーするだけでよいという、お手軽さがあげられます。.(ド ットコマンド)の利用で発生

する依存関係は、この手軽さを損ないます。

042

一　

．
　

　

　

　

　

一　
　
　
　
　
―
一■

二

command not found

71 found. /source. sh:
(not copied).



016● 変数や関数を外部フアイルに記述する

そのため、このような依存関係が生じることを嫌って、.(ド ットコマンド)は利用しな

いポリシーの人もいます。特にチームでの仕事の場合、あるいは将来的に長く使われるス

クリプトでは、このような決めごとはチーム内ポリシーとして事前に策定しておくべきで

す。

注意事項

ドットコマンドは、対象のフアイルが存在しない場合はエラーになります。そのため読み

込む設定フアイルは、事前にtestコマンドの‐f演算子でフアイルの存在チェックをしておく

べきです。例えば以下は、Linux(CentOS)の sshdの起動スクリプ トの一部です。/etc/

sysconfig/sshdと いう設定ファイルが存在することをチェックしてから、&&(AND演算

子)を用いて ドツトコマンドで設定ファイルを読み込んでいることがわかります。

ドットコマンドを使う際、この書き方はよく使われますから覚えておくとよいでしよう。

関連項目

012 関数の中でローカル変数を定義して、呼び出し元の変数を破壊しないようにする

043



‖o.

文章などの空自文字を含む文
字列変数を引数にとるには017

echo 空自文字.スペース,文字列.ダブルクォート

空自文字(スベース)を含む文字列を、複数の文字列として投われないようにしたいと
き

″:′ bin/sh

resutt="i nva Iid va[ue"

if E "$resuLt" = "invatid vatue,, J; then
echo "ERROR: $resutt" 1>&2

exit 1

fi

$./space-str.sh
ERROR: invalid value

解説

このスクリプトは、空自文字を含む文字列をif文で比較し、値が
‖
invalid value‖ といぅ

文字列だった場合はエラーを出力するスクリプト例です。空白を含む文字列の扱いがポイ
ントです。

シェルスクリプトでは、変数の区切り文字はシェル変数IFSに定義されており、デフォ
ルトでは空自記号・タブ・改行が指定されています。つまり空自文字は変数の区切りを表
す特別な意味を持ちます。

そのため値として文字列を持つ変数が、その値に空自文字を含むときは、適切にクォー

トしなければ複数の変数として扱われ予期せぬ動作となることがあります。

●では、変数resultが空自文字を含むため、これをクオートして
‖
$reSult"と しています。

もしこのクォートを行わずに単に$resultと 書くと、0は次のように、イコール記号の左
側に引数が2つ あるものと解釈されてしまいます。

lf .[ invatid vaヒ ue = 子linvatid vatue'! ]ノ  then               ..         .  ‐__

044

この結果、引数が多すぎるというエラーになります。

丁

一一　
　
一



017● 文章などの空自文字を含む文字列変数を引数にとるには

畿クォートを行わない実行時エラー

これを防く
゛
ために●では、空自文字を含む変数resultを ダブルクォート記号でくくって

"$result‖ と書き、空自文字を含めて全体を1つの文字列という扱いにしています。

また、もし変数resultの値が空っぽの場合は、●は次のように解釈されます。

これは比較対象がない状態でイコール記号を使ったことになり文法エラーとなります

(なお、表示されるエラーメッセージはOS環境などにより多少変わります)。

Oresuitが空のときの実行時エラー

シェルスクリプトで変数に文字列を入れる場合は、その値を利用する際に、そこには空

自文字が入つているかもしれない、あるいは空つばの文字列かもしれない、ということを常

に考慮しなくてはいけません。基本的にはこのサンプル例のように、空自文字を含むにせ

よ含まないにせよクォートするのがよいでしよう。

関連項目

015 シングルクォートの中でシングルクォートを使う

045



‖o. HTMLフアイルから、タグの中
に書かれたコマンドを抜き出し
てそのまま実行する

018

…sed,eval …コマンド・変数展開

ファイルに書かれた文字列を抜き出し、コマンドとして実行したい場合

■畷□田D

″!′bin/sh

fi Lename="myapp. Log"

eva[ $(sed -n "s/<code>Y(.*Y)<Y/code>lY1/p" command.htm)

S ./evalosh

Sun Nov 10 15:05:34 JST 2013 ‐

―rwt rwtr――. l userlluserl l1968 0ct 26 12:32 myapp.log

解説

このスクリプトは、command.htmフ ァイル内に書かれたくcode>タ グを抜き出し、そ
の要素をコマンドとして実行するものです。

ここで用意するcommand.htmフ ァイルの中身は、リスト1の ようになっています。つ

まり、「date;Is-1$ilename」 をコマンドとして実行することを想定しています。この際、

シェルスクリプト内でS■lenameの 変数展開も行います。

吻輻艤艤 処理対象のHTMLフ ァイル例 (command.htm)

くhtmL>

くhead>くti tte>Code Listく /titte>く /head>

<body>

<p>This is a sampte code-</p>
<code>date; Ls -1, $fi lename</code>

く/body>

く/htmL>

046



o13奎 HTMLフ ァイルから、タグの中に書かれたコマンドを抜き出してそのまま実行する

このスクリプトでは、まずくcode>タ グの部分をパターンマッチで取り出します。シェ

ルスクリプトでマッチ部分の文字列を取り出すにはさまざまな手法がありますが、ここで

は次のようにsedコマンドを用いています。

sedコ マンドの n̈オプションは、処理後にパターンスペースの内容を出力しないように

するオプションです。そのままでは何も出力されずに意味がないので、最後にpフ ラグを

付けて、マッチした場合のみパターンスペースを出力するように指定しています。

このように―nオ プションとpフ ラグを組み合わせることで、sedコ マンドで置換を行う

際に「置換が発生した行だけ出力する」ことができます。これはsedコ マンドでよく使われ

る手法ですので覚えておきましょう。

さて今回はマッチした行のうち<code>タ グでくくられた部分のみ取り出したいので、

上記では後方参照¥1を使っています。sedコ マンドでのマッチの際、カッコ()で くくった

部分は前から順番に¥1,¥2,..。 と参照することができます。ここではくcode>内の任意の文

字列.*を カッコ()で くくつて、¥1で取り出せるようにしています。このYlの部分が実行し

たいコマンド文字列となります。

なお、sedの正規表現では後方参照する部分のカッコとして()ではなく¥(¥)を用いるた

め、この例でも¥(¥)で くくっています。

これでコマンド文字列が取り出せたので、evalに より変数展開を行ってコマンドを実

行します。evalは 引数に与えられた文字列を変数展開してから、コマンドとして実行しま

す。ここではsedコ マンドの出力は、次のような文字列となっています。

evalコ マンドにこの文字列を引数として与えると、シェル変数■lenameが置き換えられ、

結果として、次のようなコードが実行されることになります。

このようにevalコ マンドを用いると、シェルスクリプトのコード自体を動的に生成して

実行することができるようになります。

なおevalコ マンドは、使い方によってはメタプログラミングのような書き方ができると

ても便利なコマンドです。しかし、ただのテキスト文字列をコマンドとして実行するため、

使い方によっては悪意のある人がプログラムを注入することができ、とても危険な結果を

もたらす可能性もあります。

OSコ マンドインジェクションなどの脆弱性をもたらす原因にもなるため、ユーザが自

由に入力できる文字列など外部からの入力値をそのままevalす る、という使い方は決して

しないように注意してください。

047



C籠肥TER 02● 変換処理

注意事項

。このサンプルではsedで<code>タグを処理しているため、次のように<code>タ グ内で
改行を入れていると正しく動作しません。

・ eValコマンドは引数の文字列をコマンドと解釈しそのまま実行してしまうため、入力値に

は注意 しなくてはいけません。例えば、もしこのサンプル例で次のような文字列が

<code>タ グに書かれていたとします。

この場合、スクリプトを実行するとチルダ (~)がホームディレクトリとして展開されるため、

実行者のホームディレク トリ内のすべてのファイルが消去されてしまいます。

evalを実行するスクリプ トを書く際は、まずevalを記述している部分をechoに置き換えて
みて、実行される実際のコマンド内容をよく確認しましよう。またユーザの入力値など、

何が入つてくるかわからない文字列をeva:するのも危険です。

関連項目

048

013 読み込んだHTMLフ アイルから特定の属性値を取得する

<code>

dat.e′ . Ls

く/code>

rm -rf -/*



‖o. アンダースコアなどを言む文字
列内で、変数の区切りを明示的
にする

019

国回墨國醸

…変数名.文字列.区切りWC

変数名の後ろに文字列を違結する際に、変数名の区切りを明示したいとき

…

″:′bin′sh

解説

このスクリプトは、20131106_logと いうファイル名を持つログファイルの行数を表示

するものです。wcコマンドはファイルの文字数や行数を調べるコマンドで、‐iオプション

を利用すると、フアイルの行数が表示されます。ここではファイル名が「シェル変数名+
アンダースコア+10g」 と、シェル変数名の後ろにアンダースコアが来る場合の注意点を

示しています。

シェルスクリプトの変数名として使える文字は、アルファベット・数字・アンダースコ

アの3種類です。ここで、あるシェル変数を使う際に、その変数の後ろに文字列を連結し

たいとします。この際、後ろに続く文字がシェルスクリプトの変数名として使える文字の

場合には、シェルはできるだけ長い変数名を使おうとして後ろの文字までも変数名とみな

してしまいます。

例えば次は、catコ マンド実行の際にシェル変数todayが "20131106‖ と展開されること

を期待して20131106」 ogと いう名前のファイルを表示しようと意図したものです。

049

|

today=‖ 20131106‖

#シェル変数 todayを 正しく展開する
wc ―L S(today)_Lo9



C鵬翻rEH 02● 変換処理

しかしこのパターンでは、シェルは実際にはtoday_logと いう名前のシェル変数だと解

釈してしまいます。このような変数は定義されていないので、結果として「cat‖ "」 と空文

字列に対してcatコ マンドを実行することになり、実行結果はファイルが見つからずエラ

ーとなります (おそらく、No such nle or directoryと 表示されることでしょう)。

このようなケースで、シェル変数の後ろに文字列を連結したい場合には、変数名の区切

りを明確にする中カッコ‖を用います。つまり、$〔 today}_logと 書けば、todayがシェル変

数だと明示的に指定できるため、後ろにシェル変数に使える文字が続いていても正しく扱

うことができます。

なお、中かっこが必要ない場面でも、見やすくするためだけにシェル変数を中カッコで

くくってもかまいません。コードが読みにくいと感じたら、文法上必要のない場合でも中

カッコを付けることをお勧めします。

bashの配列変数

bash限定のトピックとなりますが、配列変数を扱う際には必ず変数名に{〕を付けなくて

はいけません。

例えば次の実行例では、配列変数numberに ‖を付けた場合には、正しく"one・ という値
が取 り出せています。

一方、〔〕を付けないと「$numberに 文字列
‖
[1]‖ を連結」という意味になってしまいます。

この場合、配列変数は添え字を付けずに参照すると先頭の要素が参照できるため、先頭の

要素'lzero‖ に・111'|を 連結 し、「zero田」という文字列が得られてしまいました。

◎配列変数にはoを付ける

関連項目

021 未定義の変数をエラーとなるようにして、タイプミスを防ぐ

―a‐S

S ech0



‖o. コマンドの出力結果を用いてフアイル
名を組み立て、そのフアイル名を対象に
コマンドを実行する際に見やすくする

020

…hostnamo.grep
□目■□■
コマンド置換`入れ子.ネ

スト

コマンド置換の処理をネスト(入れ子)に したいとき

□冒罰皿D

″!/bin′ 3h

err_count=$(gnep -c "ERROR" lvar/log/nyapp/$(hostname).log) ----------{)
echo "Error counts: $err count"

儘解説

このスクリプトは、hostnameコ マンドでフアイル名を組み立てたログファイルの中
から、ERRORと いう文字列を検索し、マッチした行数を表示するものです。検索と行数
のカウントには、grepコ マンドの…cオプションを利用 しています。

この例では、コマンド置換を行う際に、通常使われる
｀
(バッククォー ト記号)ではなく

Soを使つていることがポイントです。

このスクリプトの前提条件として、検索対象のログファイルが以下のように設置されて

いるものと仮定しています。

/var/log/myappと いうディレクトリの中に、
‖
(サーバ名)」og‖ というファイル名のログ

が出力されている

このスクリプトを実行するサーバのホス ト名は
‖
serverl‖ である (hostnameコ マンドを実

行するとserverlと 出力される)

serverl.:ogと いうテキストファイルの中身はリス ト1のようになつている

鰯議爾饉鶴サンプルで使用するserverl.:ogの中身

2013/11/13 21:10122 [INFOコ  script start.

2013/11/13 21:10:24 [ERROR] Fite does not exist: /var/tmp/foo.txt

051



CWP[■ 020変換処理

2013/11/13 21110124 EERROR] FlLe does not exist: /var/tmp/bar.txt

2013/41/13 21:10:25 [INFOコ  script end.

一般的にシェルスクリプトで、あるコマンドの出力結果をそのままスクリプト中でシェ

ル変数に代入して使いたい場合には、
｀
が用いられます。これはコマンド置換 (Command

Substitution)と 呼ばれる機能です。例えば次は、dateコ マンドの出力を利用 して今日の

日付をY｀nγMMDD形式でシェル変数date_strに 代入する例です。

しかしこの
｀
を用いたコマンド置換は、処理をネスト(入れ子)にするときに手間がかか

ります。サンプルの●を、
｀
を用いた手法で書く場合は、次のように内側の

｀
(バッククォ

ート記号)を¥でエスケープしないといけません。

このようにいちいちエスケープするのは大変ですし、既存のスクリプトを修正 して入れ

子にする変更を加える場合には、エスケープ忘れによるバグを生み出す元 ともなります。

そこでお勧めするのが、このサンプルで用いている$0と いう記法です。

この記法が優れているのは、処理をネス トする際にも既存のコマンド置換部分をエスケー

プする必要がない点です。このため、既存のコードを修正する際に処理内部のコー ドを修

正する必要がないため、保守性に優れています。

また、カッコの対応 というわかりやすい書き方でコマンド置換部分を記述できるのも、

コー ドが読みやすくなるため大きな利点です。

一般にviやemacsな ど多 くのエディタでは、プログラミングの助けとなるよう、カッコ

の対応がひと目でわかるような工夫がされています (例えばviで は、カッコの上にカーソ

ルを置いて%キーを押すと対応するカッコに移動することができます)。 そのため、シェ

ルスクリプトでネス トするコマンド置換を行う際は、
｀
ではなく、この$o記法で書 くこと

をお勧めします。

理l型里
033

059

129

ファイルをバックアップする際にファイル名に日時を入れる

ホスト名からIPア ドレスを取得する

中間ファイルを作らずにコマンドの出力をファイルのように扱う

052

date str=' d ate +"%Y\.nY.d"'

echo $date_str

|■ | .■ |||

‐.‐     ‐         .|■ ||||||‐ |‐ |‐ ||

‐
 ‐||_|‐ ‐||‐ |       |   |‐ _ 

‐‐ |

||||■‐     ‐‐|

err_count='grep *c "ERR0R" lvar / Log/myapp/Y' hostnameY' . tog'



hzr 
I

未定義の変数をエラーとなるよ
うにして、タイプミスを防ぐ

set …未定義.変数.エラー.空文字列

…スクリフト中で未定義の変数を利用した場合は、エラーとして終了するようにしたい
とき

■■罰回■

#:′ bi n′ sh

set ―u

C0PY_DIR=/myapp/work

#COPY_DIRと 間違えて COP_DIRと打ってしまった I

cp myapp.Log SCOP_DIR

利用コマンド

解説

このスクリプトは、変数名をタイプミスして未定義の変数を利用してしまつた際にエラ

ーを表示するものです。実行例では、
‖
unbound variable・ とエラーになっていることがわ

か ります。

通常、シェルスクリプトでは、宣言されていない変数を利用してもエラーとはなりません。

変数への代入は変数自体を宣言せずにどこでもできますし、未定義の変数は参照しようと

すれば空文字列となります。そのため、いちいち変数宣言をすることなく気軽にプログラ

ミングできるのがシェルスクリプトの利点の1つです。

しかし、変数宣言が必要ないというシェルスクリプトのこの特徴は、思わぬバグを招 く

危険性があります。例えばrmコ マンドで削除するパス名をシェル変数で指定する場合は、

細心の注意を払わなくてはいけません。

この例 として、 リス ト1を見て ください。これは、シェル変数dirnameで指定された/

myapp/worν tmpdirデ ィレクトリを削除するスクリプト例です。

053



CHAPT館802● 変換処理

鰯爾爾饉機シェル変数で指定されたディレクトリを削除する例

rm *rf /

#:/bi n/sh

di rname=/myapp/work/tmpd i r
rm -rf $dirname/

しかしこのシェルスクリプトは、もし$dirnameの部分をミスタイプして$dirnamな ど
としてしまった場合、シェル変数dirnamは 未定義のため空文字列となり次が実行されま

す。

これは/(ルートディレクトリ)を消してしまう操作で、システム全体の破壊を伴う、大

変に危険なスクリプトです。このように、変数名をタイプミスしてそこが空文字列となっ

てしまい、その結果思わぬファイルを削除してしまうというのはよくあるバグであり、致

命的な結果をもたらす場合があります。

これを防ぐため、このサンプル例では●でsetコ マンドの一uオ プションを用いています。

set‐uを指定すると、スクリプト内で未定義の変数を参照しようとした時点でエラーとなり、

シェルスクリプトの実行が停止します。結果として、未定義の変数を利用しようとしたコ

マンドの実行を防く
゛
ことができます。

rmコ マンドなど危険な動作を行うシェルスクリプトを書 くときは、基本的にset―uし て、

変数名が未定義ならばエラーとするようにしたほうがよいでしょう。

set -uoiruyl.
set― uする副作用として、コマンドライン引数$1な どが扱いづらくなる点があげられま

す。次は、コマンドライン引数を表示するだけの簡単なスクリプトです。

鵬臓園議翻コマンドライン引数を表示するスクリプト例

#:/bi n/sh

set -u

echo "lst arg: $1'
echo "2nd arg: $2'

ここで、もしset― uし ていなければ指定されていないコマンドライン引数は参照時に空

文字列となるため、実行結果は次のようになります。

054

02



0210未定義の変数をエラーとなるようにして、タイプミスを防ぐ

◎引数を1つだけ指定した場合

しかしこのスクリプトはset― uし ているため、コマンドライン引数が1つ しかない場合

は$2が未定義となり、結果 として次のようにエラーとなります。これを防ぐには、シェ

ルスクリプト内でコマンドライン引数を自分で数えて処理を書かなければいけません。

脩set― uした場合の動作

シェルスクリプトではコマンドライン引数を扱うことが多いため、利便性のためset― u

を付けずに書くことも多いです。

何でもかんでもset― uを付けておけばよい、というわけではないことに注意してくださ

い 。

関連項目

011 実行時に変数の値が空のとき、デフォルト定義した値を設定する

019 アンダースコアなどを含む文字列内で、変数の区切りを明示的にする

055



.'ozz 
I

ヒアドキュメントで変数展開をせず
にそのままSstrのように表示する

cat …ヒアドキュメント,クォート.バラメータ
展開.コマンド置換.テキスト

□E回囲■
ヒアドキュメント本体に、$記号や

｀
(バツククオート記号)を使う際に、展開せずにそ

のまま出力したいとき

■躍□田■

″:′ bin′sh

″この変数は展開されないので実際には利用されない

str〓 ''Dum:ny:!

cat くく :EOT

ここはヒアドキュメント本体です。

この部分に書かれた文字列は、コマンドの標準入力に

直接リダイレクトされます。

終了文字列をシングルクォート記号でクォートしているので、

SStrな ど書いても変数展開されませんし、
｀
echo abc｀  としてもコマンド置換されません。
EOT

利用コマンド

S ./here.sh       .‐ ‐  ‐

ここはヒアドキュメント本体です。

この部分に書かれた文字列は、 コマンドの標準入力に
直接リダイレクトされます。

l解説

このスクリプトは、ヒアドキュメントを利用した際にパラメータ展開やコマンド置換が

行われないようにするものです。

ヒアドキュメントとは、シェルスクリプト本体に埋め込んだテキストを、スクリプト内

．

　

．
　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

・

　

　

　

　

●

‥

―

‐

050

終了文字列をンンクルクォート記号でクォー |ヽ しているので、

Sstrなと書いても変数展開されませんし、
｀
echo abc｀  としてもコマンド置換されません。



0220ヒ ア ドキユメントで変数展開をせずにそのまま Sstrの ように表示する

のコマンドの標準入力として利用する機能のことです。ここにドキュメントがあるよ、と

いう意味でヒアドキュメント(Here Documents)と 呼ばれます。

一般的に、ヒアドキュメントを利用する場合は、次のように記述します。

ヒアドキュメントの使い方

(コマンド)くく (終了文字列 )

ヒアドキュメント本体

終了文字列

終了文字列は、ヒアドキュメント本体に表れない文字列であれば何でもかまいません。

慣用的にはEND,EOT,EOFな どがよく使われますが、誤ってヒアドキュメント本体にこ

の文字列が表れるとエラーを引き起こすため、__EOT__な ど記号を合わせて用いたり、

EndOfMultilineTextな ど長い終了文字列を指定する書き方を好む人もいます。ここでは

End Of Textと いう意味で、EOTを用いました。

さて、ヒアドキュメント部分ではパラメータ展開とコマンド置換が行われます。つまり

$記号と
｀
記号は特別な意味を持ち、例えば変数$strは変数値へと展開されてしまいます。

一方、パラメータ展開やコマンド置換を行わず、書かれた内容一切をそのまま出力した

い場合のスクリプト例が、本サンプルになります。ヒアドキュメントの終了文字列を●の

ようにシングルクォートでくくって
:EOT子
とすることで、ヒアドキュメント本体のパラメー

タ展開やコマンド置換を抑制し、$記号や
｀
記号を含んだテキストをそのまま扱うことが

できます。

ヒアドキュメントの中で、パラメータ展開したい変数としたくない変数が混在する場合

があります。このような場合は、個別に変数をエスケープすることで対応できます。

y漑陪躊漑エスケープするとパラメータ展開を抑制できる

″1/bin/sh

st ri ng="He L Lor'

cat くく EOT

この変数は展開されます:Sstring

この変数は展開されません:¥Sst ring

EOT

057

量バラメータ展開の抑制



CHA円朧 020変換処理

上記では、 1つ 目のシェル変数SStringは エスケープしていないため変数展開されます。

一方、2つ 目は¥$Stringと $記号をエスケープしているため、$stringと いう文字列そのも

のを意味します。結果として、このスクリプトの実行結果は次のようになります。

0パラメータ展開を抑制した実行例

ヒアストリング

bashに は、ヒアドキュメント(<く )と よく似た記法としてヒアストリング (くくく)が実装

されています。これを用いると、より簡潔に埋め込みテキストをシェルスクリプトに記述

することができます。

Wffi tv^|u>)awJ一　

　

　

・

一
Ｉ
　

　

一　

●

″!/bin/bash

string="HeI Lo"

#埋め込み文字列はダブルクォートでくくるだけでよい
Catくくく ::あ いさつ文のサンプル :

こんにちは

Sstring

二一ハオ“

ヒアドキュメントではEOTな どの終了文字列を利用 しましたが、ヒアス トリングでは
単にダブルクォー トで埋め込みたい文字列をくくればよいだけなので、より直感的でわか

りやすくなります。

なお、埋め込む文字列内の$記号を変数展開させたくない場合は、ヒアドキュメントと

同様に、ダブルクォートではなくシングルクォー トでくくるようにします。

関連項目

015 シングルクォートの中でシングルクォートを使う
020 コマンドの出力結果を用いてファイル名を組み立て、そのフアイル名を対象にコマンドを
実行する際に見やすくする

058



GHAPTER

ファイル処理
UNIXの運用管理において、バックアップのための
コピーや不要フアイルの削除など、フアイル操作を

行う機会は数多くあります。このような処理は、ス

クリプトで自動化するとよいでしよう。

この章では、様々なファイル操作のサンプル例を紹

介します。大量の回グフアイルヘの一括処理やtar

コマンドでの一部ファイルの除外、2つのディレク

トリ内の比較など、運用時に何かと必要と思われる

処理をまとめてあります。



‖o. 絶対バスで起動されても相対
バスで起動されても、同じ動作
をできるようにする

023

cd, dirname 絶対バス,相対バス.フリ″ スヽ,cron

…cronなどからスクリフトをフルバスで起動する際に、相対バスで起動した時と同じ動
きをさせたいとき

■腱目田■

″:′ bin′ sh

cd ilS(di rname li$0‖ )''

/start. sh

/end. sh

利用コマンド

解説

閣豚国圏Dカレントディレクトリを意識せずに書いた例

″!/bin/sh

. /start. sh

. /end. sh

000

一
　

―
●
●
●
●
●

●

一
●
●
一一
一
●
●
一一一一●
●

一
．●
●
●
　
一●
●

●

このスクリプトは、2つの外部スクリプトファイルstart.shと end.shを順に実行するも
のです。ここで、start.shと end.shの 2つのファイルは/home/user1/myappデ ィレクトリ
に設置されており、それぞれの中身は、単に

‖START‖ および"END"と 表示するだけのスク

リプトであるとします。

このようにシェルスクリプトの中で他のシェルスクリプトを実行する際には、パスの書

き方に注意が必要です。あまり注意していないと、サンプルスクリプトは、リスト1の よ

うに書いてしまうでしょう。

|

|

|

|

END



0露 饉絶対パスで起動されても相対バスで起動されても、同じ動作をできるようにする

スクリプトを書いているときは、シェルスクリプトファイルが置いてあるディレクトリ

をカレントディレクトリとして作業することが多いため、リスト1のスクリプトは正常に

動作します。しかし、スクリプトが完成して、cronに登録して定期稼働するように設定

すると、このスクリプトは次のようなエラーとなってしまうかもしれません。

Ocron登録時の動作結果

このように、「手で実行してみると正常だったが、cronに登録して定期バッチにすると

動かなくなった」というのは非常にありがちな事例です。これは、cron起動の際には、カ

レントディレクトリがcron実行ユーザのホームディレクトリとなってしまうことが原因で

す。

つまりcronか らdirname.shが 実行されたときにはカレントディレクトリは/hOme/

userlと なっているため、ここで./start.Shを 指定すると、/homげ user1/start.shと いうフ

ァイルが探されてしまうのです。

このようにスクリプト内で他のシェルスクリプトを実行するプログラムでは、リスト2

のように外部のスクリプトフアイルをフルパスで指定してしまうのも1つの手です。

臨舅饉爾鰺必ずフルバスで指定する方法もあるが移植性が低い

″1/bi n/sh

/home/user1 /myapp/start - sh

/home/user1 /myapp/end. sh

しかし、その場合、このスクリプトを置いているディレクトリ(こ こではmyapp)の 名

前を変えることができなくなりますし、よそのサーバヘコピーする際にも移植性が失われ

ます。そのため、相対パスで書きたいケースのほうが多 くなります。

この問題を解決するには、シェルスクリプトがまずはじめに、「自分が置かれているデ

ィレクトリにcdコ マンドで移動 してから処理を開始する」という動きをすればよいことに

なります。この動きを実現しているのが、サンプルのOです。

●で使っているdirnameコ マンドは、フルパスが与えられた際にディレクトリ部分を

取り出すことができます。SOと いうのはシェルが実行された時のコマンド自身を表す変

数で、この例では
‖
/hOme/uSer1/myapp/dirnalne.sh"が 入っています。

0ディレクトリ部分を取り出すdirnameコ マンド

001



GHA籠 803● フアイル処理

一方、$oは コマンド置換の記法で、コマンドの出力をそのままスクリプト中で利用す
ることができます。つまりこの●は、「dirname‖ $0‖の出力結果のディレクトリに、cdコ
マンドで移動する」という意味になります。結果として、この例では/hOme/user1/
myappディレクトリにcdコ マンドで移動します。
これにより、シェルスクリプトは自分が置かれているディレクトリにcdコ マンドで移
動できます。こうすれば、シェルスクリプトが相対パスで起動されても絶対パスで起動さ
れても、外部のシェルスクリプトは相対パスで実行することができます。

櫻 L壁聖
・ 0にて、$0およびコマンド置換全体をダブルクォーテーション記号でクオートしているの
は、デイレクトリ名にスペース (空白文字)を含む場合にも正常に動作するようにするため
です。

・ dirnameコマンドを使わずに、次のような書き方をすることもあります。

cd 'iS(0%/*}:!

これはシェルのパラメータ展開を利用した書き方です。${parameter%WOrd}と 書くこと
で、変数parameterの値から、wordに後方一致でマッチする部分を削除した値を得るこ
とができます。つまり上記の例では、WOrdと して/★が指定されているため、「変数$0の後
ろ側から『/任意の文字列』を削除した値」、すなわちデイレクトリの部分のみ取り出すこと
ができます。上記の記法は、dirnameコ マンドという外部コマンドを利用せずにシェルの
機能だけで実現できるため、こちらの書き方を好む人もいます。知識として覚えておいた
ほうがよいでしょう。

関連項目

016 変数やファイルバスなどを外部ファイルに記述する
117 文章などの空白文字を含む文字列変数を引数にとるには

002

一
　
　
　
　
　
　
　
　
　
・
　
　
　
・・
　
・
　
　
　
　
．



‖oョ コマンドの使い方を表示する際
に、現在の自分自身のフアイル
名を使つて例示する

024

ファイル名.コマンドライン引数.スクリブト名basename

ヘルプ表示やログ出力の際に、自分自身のフアイル名を出力したいとき

嘔口医困回■D

″:′ bin′sh

prog=$(basename "$0")

″引数が1つではない場合は、ヘルプを表示して終了する

if E S″  ―ne l ]′  then
echo "Usage: $prog <string>" 1>&2 

-- 
---O

exit 1

fi

″ コマンドライン引数 Slを表示

echo liStart: $prog ...‖

echo l: Input Argument: Sl‖

echo liStop: $prog ...li

¬

いつ使うか

目解説

このスクリプトは、以下の条件でコマンドライン引数を表示するものです。

・コマンドライン引数が1つだけの場合はその値を表示する

。コマンドライン引数がない、もしくは2つ以上ある場合は、使い方が間違つているとしてヘ

ルプを表示する

003

|



CW『 [■ 03。 フアイル処理

●で自分自身のファイル名をスクリプト内で取得しており、その値をシェル変数prog
に格納してヘルプ表示などに使つていることが、このサンプルのポイントです。
シェルスクリプトはその性質から移植性に優れたプログラムであるため、運用上、コピ
ーしてよそで使われる場合も多々あります。この際、移植先ではファイル名を変更して使
われるかもしれません。そのようなときにファイル名を決め打ちしてスクリプト内で扱っ
ていると(そのような書き方をハードコードと言います)、 実際のフアイル名と食い違うた
めに混乱を招きます。

そのためこのスクリプトでは、●で自分自身のファイル名を参照して取得しています。
ここで使われているbasenameコ マンドとは、次のように、ファイルパスを示す文字列
からパス部分を取り除いて、ファイル名のみを抽出するコマンドです。

ObaSenameコ マンドはファイル名のみを取得する

●では、変数$0に対するbasenameコ マンドの出力を、コマンド置換S()に よってシェ
ル変数progに 代入しています。ここで変数$0と はシェルスクリプトで用いることのでき
る特殊な変数で、このシェルスクリプトが起動されたときのコマンド名となります。この
シェルスクリプトはフルパスで実行されたかもしれませんし、相対パスで実行されたかも
しれませんが、上記のようにどちらであっても正しくファィル名を取得することができま
す。

なお、この特殊な変数$0と 似たものに、コマンドライン引数を表す位置バラメータ

(→ P.4)がありますが、シェルでは$0は位置パラメータではなく特殊バラメータとして扱
われています。詳しく知りたい方は、man shと してマニュアルの特殊パラメータ (Special
Parameters)の 項を読んでみてください。

続いて0で、コマンドライン引数のチェックをしています。変数$#に は、コマンドに
与えられた引数の数が入つているため、これが1でない場合は引数のチェックでエラーと
しています。この際、エラー時のメッセージとしてoの ようにUsage(使 い方)を表示し
ています。これはエラーメッセージなので、1>&2と 書くことで標準エラー出力に表示し
ています。

このようにUsageを 表示する場合に、$0か ら取得したスクリプトのフアイル名を使って
ヘルプを表示することは、よく使われる手法ですから覚えておきましよう。例えば次のよ

うに、ファイル名をハードコードするのは好ましくありません。

eChl―ⅢIII■|IⅢ囃 ,IⅢⅢII   I::||||
いまはたまたまファイル名とこの記述が一致 しているからよいかもしれませんが、誰か

004

一
　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

●

一

$cript - sh
. /script. sh"



0240コ マンドの使い方を表示する際に、現在の自分自身のファイル名を使って例示する

がこのスクリプトを他のマシンに移植するためにコピーしてフアイル名を変更したら、ス

クリプト内の記述も書き換えないといけません。これは保守性を落とす書き方です。

一方、自分自身のフアイル名は$0か ら取得するようにしておけば、フアイル名を変更

してもスクリプト本体の修正は必要ありません。後々のメンテナンス性も考えて、プログ

ラムで使う値は、なるべくハードコードしないようにしましょう。

(0)では、指定された引数の値を出力しています。$1と は、コマンドライン引数の1番目

の値を指します。またここでは、スクリプトの動作ログとして変数progの 値を合わせて

出力することで、後でログファイルを見たときにどのスクリプトが出力したログなのかが

わかりやすくなるようにしています。

注意事項

自分自身のフアイル名を取得する場合、baSenameコ マンドの代わりに次のような書き方

をされている場合があります。

これはシェルのパラメータ展開を利用した書き方です。$Iparameter##wordlと 書くこ

とで、変数parameterの 値から、wordに最長マツチする部分を削除した値を得ることが

できます。つまり上記の例では、wordと して
★
/が指定されていますから、「変数$0か ら『任

意の文字列/』 を削除した値」、すなわちフアイル名のみを得ることができます。

サンプル例のように、Usageのエラーメッセージを表示する際に$0で自分自身のスクリプ

ト名を表示する手法は、システムツールなどにもよく使われます。例えばLinuxな らば、/

etc/initd配下のシェルスクリプトに「grep:$01」 と検索してみると、この手法を用いてい

る起動スクリプトが多く見つかります。参考に見てみるとよいでしよう。

023 絶対バスで起動されても相対パスで起動されても、同じ動作をできるようにする

041 拡張された.htmと .htmlが混じつたHTMLフアイル群の拡張子を一括してtxtに変更する

005

関連項目



‖o.
ディレクトリ移動した後に簡単
に元の場所に戻る025

□回誦□日
cd,ooho.ta「 サブシェル.カ レントデイレクトリ.子プロセス

スクリプト内でCdコマンドにより別のディレクトリに移動した後、元のディレクトリ
ヘ簡単に戻りたいとき

■鵬日田D

″!′ bin/sh

#カ ッコ内はサブシェルとなるため、ディレクトリ移動はこの中だけに影響する
(

echo "Archive. lva? /tmp/archive.tar',
cd /var/tmp
tar cvf archive.tar *.txt

)

#ス クリプト実行時のカレントディレクトリ内で処理
echo :tStarti cominand.sh"

./cc)nlnand.sh

いつ使うか

解説

このスクリプトは、/var/tmpに カレントディレクトリを移動して、その中にある拡張
子tXtの ファイルをarchive.tarと いうファィルにアーカイブしてから、元のディレクトリ
に戻つてきてCOmmand.shを 実行するものです。
ここでCOmmand.Shと いうのは、このサンプルスクリプトと同じディレクトリ内に設
置された、何らかの処理を行うスクリプトであると仮定 しています。

シェルスクリプト内では、作業用のディレクトリに移動するためなど、cdコ マンドで

カレントディレクトリを移動して処理を行いたいときがあります。この際、処理が終わっ

000

一　

　

●

　

■

　

一　
　

　
　

　
　

　

・

一　

　

　

．

●

―

一

|

|

|

|

|

Start: conunand.sh



025。 デイレクトリ移動した後に簡単に元の場所に戻る

た後に元のデイレクトリに戻ってくるには、最初に自分がいたディレクトリ名を保存して

おかなくてはいけません。

しかし、もといたディレクトリを保存しておかなくても、簡易な方法で九のディレクト

リに戻ってくることができます。それがこのスクリプトの例としてあげている、サブシェ

ルを利用する方法です。●がサブシェルの記法で、カッコoで くくった部分がサブシェル

として実行されます。

サブシェルとは、現在のシェルの中で新しく起動されるシェルのことです。サブシエル

中では呼び出し元の環境は引き継がれますが、サブシェル内での環境の変更は、呼び出し元

のシェルに影響を与えることはありません。

すなわち、サブシェルの中でカレントディレクトリを変更したり、変数の値を変えたり

しても、元のシェルのカレントディレクトリや変数の値は変わりません。このような関係

を、UNIXでは「親と子」と呼びます。つまリサブシェルは子プロセスで、呼び出し元が親

プロセスです。

このサンプル例では、サブシェルの「呼び出し元の環境を変えない」という性質を利用

しています。サブシェル内にて、cdコ マンドで現在のスクリプト設置ディレクトリから/

var/tmpへ とカレントディレクトリを移動していますが、サブシェルから抜けたところで

元のカレントディレクトリに自動的に戻るため、わざわざcdコ マンドで元のスクリプト

設置ディレクトリに戻る必要はありません。

こうすれば「cdコ マンドで元のディレクトリに戻るのを忘れた」という、よく見られる

簡単なバグを防く
｀
ことができます。

注意事項

サブシェル内で変数の値を変えても、元のシェルには反映されません。サブシェル内で変

数の値を変えたつもりになっていたら変わっていなかった、というのはよくあるミスです。

関連項目

012 関数の中でローカル変数を定義して、呼び出し九の変数を破壊しないようにする

023 絶対バスで起動されても相対バスで起動されても、同じ動作をできるようにする

129 中間ファイルを作らずにコマンドの出力をファイルのように扱う

007



‖o.
ディレクトリ内のフアイル数・デ
ィレクトリ数を調べる026

□日壺□D
…

目■
フアイル数,ディレクトリ数,カウントfind,wc

□ E回羽■
作業ディレクトリなど、たくさんのファイルができるディレクトリの中の、ファイル
数・ディレクトリ数をカウントしたいとき

″:′ bin′sh

ta rgetdi r=" /home/user1 /myapp/work"

fitecount=$(find "$targetdir" -maxdepth 1 -type f -print I wc -L)
dircount=$(find "$targetdir" -maxdepth 1 -type d -print I wc -l-) ]―― ●

dircount=$(expr $dircount _ 1) ___ €)

eCh。 ‖対象ディレクトリ:Stargetdi r"

eCho iiフ ァイル数 :Sfi Lecount‖

eChO‖ ディレクトリ数 :Sdi rcount"

解説

このスクリプトは、/home/user1/myapp/wOrkと ぃぅディレクトリの中にあるファイ
ルの数とディレクトリの数を、レポートして表示するものです。このレポート内では、指

定ディレクトリ直下のファイルのみをカウントし、サブディレクトリの中のファイル数は

含めないこととします。

なおここで、対象ディレクトリ/home/user1/myapp/WOrkの 中のファイルリストは次
のようになつているとします。

068

|

・
　
　
　
　
　
　
■



0200デ ィレクトリ内のフアイル数・ディレクトリ数を調べる

鸞対象ディレクトリ以下の構造

backup

calc

20131110」 og

20131114.log

20131119.log

script.tnlp

201 311 091og

201 3111 21og

すなわちファイルとして、201311101og、 201311141og、 201311191og、 scHpt.tmp

の4つがあり、さらに「backup」「calc」 という2つのサブディレクトリがあります。また、

サブディレクトリ[backup]の 中には20131109■ ogと 20131112■ogと いう2つのフアイル

があるとします。

さて、特定のディレクトリ配下のファイルリストを作る際には、findコマンドがよく使

われます。findコ マンドの基本的な使い方は、次のようになります。

findコマンドの書式

find fガ蒙/ヽ稼J ′式′

式としてよく使われるのは、―nameと ―typeです。‐nameは フアイル名を指定する式で、

特定のパターンのファイル名を探索するときに利用します。

一方、ここで用いている‐typeは 、フアイルの種別を指定する式です。―typeで指定で

きる種別は表 1の ようになります。このうちよく使われるのは、―type d(デ ィレクトリ)、
一けpe f(通 常のフアイル)、 ―type l(シ ンボリックリンク)で しょう。

Ofindコマンドのファイル種別指定

0では、―type fと ―type dで それぞれファイルリストとディレクトリリストを表示し、
その行数をwcコマンドの‐lオプションで取得することで、シェル変数■lecountに ファイル

-type b ブロックスペシャルファイル

-type c キャラクタスペシャルフアイル

-type d ディレクトリ

―type p FIFO(名前付きパイプ)

-type f 通常のフアイル

-type t シンボリックリンク

-type s ソケット

009



C猥劇イにR030フ アイル処理

数を、シェル変数dircountに ディレクトリ数を代入しています。

なお、●でfindコ マンド実行の際、…maxdepthと いうオプションを利用 しています。
これはサブディレクトリを対象としないための指定です。

findコ マンドは何も指定 しないと、サブデイレクトリも含めて探索してしまいます。こ

のサンプル例では、ディレクトリ/hOme/uSer1/myapp/work直下のファイル数 とディレ

クトリ数をカウントすることとしており、サブディレクトリは含めない仕様でした。その

ため、―maxdepぬ 1と して、 1階層 (指定ディレクトリの直下)だけを対象にしています。
findコ マンドの最後に、ここでは‐printを用いています。これは見つかったファイルを

そのまま表示します。なお、何も指定しないと―printと みなされるため、―printは 省略可

能です。―printの他にも、―exec(コ マンド実行 )、 ■s(詳細情報付きでファイルリス ト表示 )

などを指定できます。詳 しくはman hndと してfindコ マンドのマニュアルを読んでみて
ください。

0では、カウントしたディレクトリ数から1を引いています。これは、indコ マンドの
―type dでディレクトリリス トを表示すると、次のように対象パスがはじめに表示される

ため、実際にあるサブディレクトリの数より1つ多くカウントされてしまうからです。

Ofindコマンドによるディレクトリリスト表示

すなわち、対象パス内のディレクトリを数える際には、―type dの 出力結果から1を引か

ないといけません。そのため0で、exprコ マンドを利用 してシェル変数dircountか ら1を
引いて、その結果をコマンド置換Soで得ています。これでディレクトリ数を数えること
ができます。

関連項目

031 作業ファイルディレクトリから、1年以上更新のないファイルを削除する
u4 2つのディレクトリ内を比較し、どちらか片方だけに存在するファイルを表示する

$ find /home/user1/myapp/work -type d -print
/home/user1 /myapp/work
lhome,/user l,imyapp/work/backup
/ home/user I /myapp/work/calc

070

一
Ｊ
Ａ
Ｕ



腱o.
フアイルの中身を消去して、ゼ
ロバイトの空フアイルにする027

(ヌルコマンド),uptime,Sleep …空フアイル.初期化

″:′ bin′sh

#uptimeコ マンドの記録ファイルを定義

uptimeLog=“ upti me.Log“

#ヌルコマンドで空ファイルに初期化する

> $upt'imetog

″ 10秒おきに6回、uptimeコ マンドを実行

fOr1 ln1 2 3 4 5 6-一 ――――――――――――- 0
do

uptime >> $uptimelog
steep 10

done

利用コマンド

実行例

解説

このスクリプトは、現在のサーバの負荷状態を確認するものです。ロードアベレージ (サ

ーバの負荷)を出力するuptimeコマンドの出力結果をログファイルヘ10秒おきに6回、つ

まり1分間のあいだ出力しています。スクリプト実行後、次ページのようにuptime.logに

ロー ドアベレージが記録されています。

071

|

…スクリフト起動時に、記録フアイル
・一時フアイルを初期化したいとき



CHA'■R03。 フアイル処理

0日―ドアベレージのログファイル

なお、uptimeコ マンドで出力されるロードアベレージ (load average:の 右側)は、左か

ら順に過去l分間・5分間 。15分間の平均値です。ロードアベレージとは、サーバ上で待

ち状態になつているタスクの数を表した数値です。この値が大きければ、待ち状態となっ

ているタスクが多い、すなわちCPUや ディスクなどのリソースが不足しておリサーバの
負荷が高い状態であると判断できます。そこでサーバの負荷計測などのために、サンプル

例のようなスクリプトで、負荷データを取得しておくケースが考えられるでしょう。
この例のように、スクリプトの実行中に、状態の記録や保存をするために作業ファイル

を利用するプログラムは多くあります。その際に気を付けなければいけないのは、前回起

動時のフアイルが残つていたり、異常終了時に作業ファイルの残骸ができてしまうかもしれ

ないということです。

そのようなトラブルを避けるためには、スクリプトのはじめに空っぽの作業フアイルを

まず作成してしまい、環境を初期化するのが1つの手です。ファイルを空にするには、こ

のスクリプト例のように何も出力しない:(ヌルコマンド)を リダイレクトする方法が簡単で

よく使われます。

●が、:(ヌ ルコマンド)を利用した空ファイル作成を行つている部分です。ここでは:の

出力結果をリダイレクトしています。:は何も出力しないので、ファイルがなければ空っ

ぽのファイルが作成されますし、既存ファイルがあればその中身をクリアして空っぽにし

てくれます。そのため、すでにログファイル (こ こではuptime.10g)が存在するかどうか
は気にする必要がありません。

②でuptimeコ マンドを繰り返すためのfor文を書いています。ここでは6回繰 り返すこ

とにしたので、リストとして「123456」 を与えています。これは単なるループのカウ
ンタなので、6個の引数があることだけに意味があり、値自体には特に意味はありません。
「abcde亀 としてもかまわないわけですが、慣習的にループには数値を用います。
(0)で ログファイルにuptimeコ マンドの出力結果を記録しています。ここではループご

とに内容が上書きされないよう、追記のリダイレクト>>を用います。この後にsleepコ マ

ンドで10秒間待って、再びuptimeコ マンドを打つことを6回繰り返しています。

なお、新規ファイル作成ならばtouchコ マンドを使えばよいと思われるかもしれません。
しかしtOuChコ マンドは既存ファイルがある場合は更新日を変更するだけで、空っぽのフ

ァイルを作成することができず初期化には使えません。

lo9

6 days′

6 days′

6 days′

61‐ days′

6 days′

6 daysl′

, cat uptim.e

22326=46 up

22:26:56 up

22:27:06_up

22:27:16.up

22:27:26 1lp.

22:27:36.up

l user′

l user′

l user′

l user′

l user′

l user′

average:

average:

average:

average:

average:

average:

23:51′

23:51′

23:51′

23:52′

23:52′

23:52′

load

load

load

■oad

load

■oad

0。 10′

0。 10′

0.11′

0.13′

0.15′

0.18′

20′

21′

22′

207

19′

23′

0.33

0.32

0.32

0.32

0.33

0.32

0

0

0

0

0

0

072

一■
・
　

　

一



磁 7軽 フアイルの中身を消去 して、ゼロバイ トの空フアイルにする

蜻既存ファイルが存在する場合は空ファイルとならない

空ファイルを作るその他の方法

空っぽのフアイルを作るには、:(ヌ ルコマンド)を使う以外にもいくつかの方法がある

ため、ここでいくつか紹介します。

次のように/dev/nu‖をコピーする手法が一般的です。

また/dev/nullを catして出カリダイレクトする手法もよく使われます。

/dev/nunは UNIXで用いられるスペシャルファイルで、中身を読み出すとEOF(エ ンド

オブファイル)が出力されます。そのため、この中身をファイルに書き出すことで空ファ

イルを得ることができます。

またtrueコ マンドを使っても同じ結果が得られます。

trueコ マンドは:(ヌ ルコマンド)と 同じく、何も出力せずに終了ステータス0を返 します。

trueコ マンドは外部コマンドであるため、サンプル例のようなケースでは、内部コマンド

である:(ヌ ルコマンド)を用いたほうがよいでしよう。

関連項目

009 異常終了してもゴミが残らないよう、終了前に作業ファイルを消去して後始末を行う

118 CP∪使用率の監視を行う

073

.::



‖o. 新規フアイルを作らずに、すで
にあるフアイルのみフアイル更
新日を変更する

028

touch タイムスタンフ,新規ファイル.更新日

tOuChコ マンドでタイムスタンプを変更する初期化スクリフトなどで、存在しないフ
ァイルは新規作成したくないとき

″:′ bin/sh

″ [YYYY‖‖DDhhmm.SS]と して、[年月日口寺分 .秒 ]を指定
tinestamp="201311190123.45"

利用コマンド

実行例

解説

このスクリプトは、appl.logと lock.tmpと いぅ2つのファイルのタイムスタンプを更新
するものです。想定シーンとしては、ログファイル操作を行 う別のプログラムのために、

テス トデータを作 りたいケースを考えることとします。この別のプログラムは、ログフア

イル (appl.log)の タイムスタンプを判別 して、何らかの処理を行うものです。

1つ テス トを終えるたびにシェルスクリプトを実行 して、テストデータを初期化する、

というのはよく使われる手法です。このサンプル例は、そんなテストの一環で書かれたシ

ェルスクリプトです。

このスクリプトでは、タイムスタンプの操作にtouchコ マンドを利用 しています。ここ
でまず、touchコ マンドの解説の前に、UNIXに おけるファイルのタイムスタンプの仕組
みについて少し見ておきましょう。

一般にUNIXで は、ファィルのタイムスタンプには次の3つ の種類があ ります。ファイ
ルの内容を修正すると、mtimeが更新されます。なおここでctimeは 、create time(フ ァ
イル作成日時)ではなくchange time(状態変更日時)であることに注意して ください。

074

|

$./touch.sh ■ III1 1..―

″ファイルのタイムスタンプ更新。

#― Cオプション付きのため、ロックファイルは新規作成はしない

tOuCh―t$timestamp appl.Log― ―――――――――――(D
tOuCh― c―t Stimestamp にock.tmp―――――_o

一
　

　

　

　

　

　

　

　

一
　

　

　

　

　

　

　

　

一
　

　

　

　

一

―

　

一

一

一
　

　

　

　

　

　

・

一
　

　

　

　

　

　

　

　

一
　

　

　

　

　

　

・

一

・
　

　

　

　

　

　

　

・
　

　

●

　

．

　

一　

〓
　

　

　

　

　

　

　

　

一

¨
　

　

―

一
一
　

・
　

一　

　

　

　

　

　

　

　

一



atime 最終アクセス時刻 (access time)

mtime 最終修正時刻 (modify time)

最終状態変更時刻 (change time)ctime

020。 新規ファイルを作らずに、すでにあるファイルのみファイル更新日を変更する

◎UNIXに おけるファイルのタイムスタンプ

これらタイムスタンプは、次のようにstatコ マンドを使って詳しく見ることができます。

Ostatコマンドでタイムスタンプを確認する(Linuxの場合)

なおstatコ マンドを見やす くするために、FreeBSDお よびMacの場合は…xオプションを

付けてください。

Ostatコマンドでタイムスタンプを確認する(Macの場合)

statコ マンド実行例の最後の3行、Access/Modi″ /Changeがそれぞれatime/mtime/

ctimeに 該当します。今回のスクリプトが対象とする、フアイルのタイムスタンプを見て

動作するプログラムでは、最終修正時刻(mtime)を見て判断するものが多いでしよう。

●で利用しているtouchコ マンドは、…tオプシヨンで時刻を指定するとフアイルのatime

とmtimeを 更新します (加えて―aオプションおよび―mオプションを利用すると、atimeも

しくはmtimeの どちらか片方だけ更新することも可能です)。 なお
―tオ プションは、指定

する時刻 [年月日時分.秒]を [YYYYMMDDhhmm.SS]と して指定します。つまり0は、

「2013年 11月 19日 1時23分45秒」を指定してフアイルのタイムスタンプatimeと mtimeを

更新しています。

075

F■ le:

Size:

Mode:

Dev■ Ce:

AcceSs:

卜lod■ fy:

change:

S

309



GHAPT=803● フアイル処理

続いて0で、ロックファィルのタイムスタンプも変更しています。ここでロックファイ
ルを操作する際に、‐cォプションを付けています。これはファイルがない場合には新しく
フアイルを作らないようにするための処理です。

tOuChコ マンドを利用すると空ファイルが作成できる、というのはよく知られた動きで
す。しかしこのようにテストファィルの初期化を行う場合は、「ファイルがあればタイム
スタンプを変更したいけれど、ファイルがない場合は何もしない (フ ァイルを作らない)」
としたいことがよくあります。

この場合、次のようにいちいちファィルの存在をit文で確認するのは読みにくいですし、
後で動作を変えたいときに修正するのも大変です。

それよりも、サンプル例のようにtouchコ マンドの―cオプションを利用すれば、存在し
ないファィルは作らないようにすることができるため、簡潔にわかりやすく書くことがで
きます。

注意事項

・ tOuChコ マンドを‐tオプションを付けずに実行すると、フアイルのタイムスタンプはコマン
ドの実行日時で更新されます。ファイルの内容は変更しないけれども、タイムスタンプだ
け変更したい、という処理でよく使われます。

タイムスタンプを利用してファイルを検索するには、findコ マンドの‐mtimeオプションを
用いる例がよく使われます。

関連項目

030 あるデイレクトリ内のn日前からm日前までに更新されたファイルー覧を取得する
031 作業ファイルディレクトリから、1年以上更新のないファイルを削除する

076

|●●●

. .‐  .|‐ .11‐ ´
.・

‐  1・ .■
―
:‐

.・
・

１

●

..   
■
・

‐
|||||・ ||



‖o. 複数HTMLフアイルからtitleダ
グ部分のみを抜き出して、それ
ぞれ別フアイルヘ出力する

020

m回塞ロロ
basenane.sed for文 ,ファイルリスト.HTMLのタク.別フアイル

□E回躍曰
多数のHTMLフ ァイルから特定の要素を抽出し、HTMLフ ァイルごとに別々のフアイ
ルヘ出力したいとき

…

″!′ bi n/sh

#カ レントディレクトリの .htmLフ ァイルを対象

for htmLfう Le in ■.htmL

do

〃ファイル名から、拡張子を含まない文字列を取得する

fname=S(basenane $htmLfi Le .htmL)― ―――――- 0

#くtitte>タ グの中身を後方参照¥1と して抽出し、ファイル出力する

sed ―n i'sノ ^.*く titLe>¥(.*¥〉 く¥/titte>.*S/¥1/p:= Shtmtfi te > output/S(fname).

txt

done

解説

このスクリプトは、カレントディレクトリのHTMLフ ァイル (拡張子が.htmlのファイル)

からくtitle>タ グを抽出し、そのtitle要素をそれぞれ別のファイルとしてoutputと いうディ

レクトリヘ出力するものです。例えばindex.htmlの title要素はindex.tXtへ、menu.html

のtitle要素はmenu.検 tへ と出力します。

●で、HTMLフ ァイルを順に処理するためにfor文を使っています。シェルスクリプト

でディレクトリ内のファイルを順に処理したい場合は、この●のようにバス名展開する方

法が簡単でよく使われます。for文のinの後ろに、
*.htmlと いうパターンを与えれば、実

077

|



CHAmR03● フアイル処理

行時には次のようにパス名展開され、シェル変数htmnleを 用いて各ファイルを順に処理
することができます。

このようにパス名展開の結果をfor文のリストとして与える手法はいろいろと応用が効

くため、よく使われる手法です。

続いて、各ファイルを.txtと して出力するため、元のファイル名から拡張子を変更した

出力用のファイル名を組み立てる必要があります。その準備として、0でまず対象html
ファイルのフアイル名から、拡張子を取り除いた文字列を取得しています。これには

baSenameコマンド(→R64)を利用しています。
このコマンド出力により得られた文字列の後ろに、任意の拡張子を付けてファイル名を

組み立てれば、拡張子を変更して出力できるわけです。このスクリプトでは、.txtを付け

ています。

0が、くtitle>タ グの中身をパターンマッチで抽出してファイルに出力する処理です。パ
ターンマッチした部分を取り出すにはさまざまな手法がありますが、ここではsedコマン
ドの‐nオプション (パ ターンスペースを出力しない)と pフラグ (置換が発生した場合のみ

出力する)を組み合わせて、後方参照¥1によりくtitle>タ グの中身を取り出しています。こ

のsedコ マンドの使い方の詳細は、R46の例を参考にしてください。

注意事項

。このスクリプトでは、htm!フ ァイルが存在するかどうかのチェックは省略しているため、

カレントディレクトリにhtmiフ ァイルが1つもない場合はエラーになります。

関連項目

013 読み込んだHTMLファイルから特定の属性値を取得する
018 HTMLフ ァイルから、タグの中に書かれたコマンドを抜き出してそのまま実行する
041 拡張子に.htmと .htmlが混じつたHTMLフアイル群の拡張子を一括してtxtに変更する

078

for htmtflte in index.htlmt

do

|■ |■  .



■o.

030
あるディレクトリ内の、n日前か
らm日前までに更新されたフア
イルー覧を取得する

■■口曰●
find                前日.更新日.日付,タイムスタンプ.mtime

C―
特定の期間に作成・更新されたフアイルをリストアツプしたいとき

″:′ bin′ sh

logdi r=" /var / log lwyapp"

″4日 前から2日前までに更新されたファイルー覧を表示する

find SL。9di r ―name ti*.LOgil …mtime -4 -mti me +1 -print

登型壁
このスクリプトは、シェル変数logdirで 指定されたディレクトリの中から、4日前から2

日前までのあいだに更新のあつたログフアイル (拡張子が■ogの ファイル)一覧を表示する

ものです。ここで、ディレクトリ/var/10g/myappには、フアイル変更日時をフアイル名

に持つログフアイルがたくさんあるものと仮定しています。フアイル検索の際、拡張子の

指定には、indコ マンドの―nameを 利用して≒ log"と しています。findコ マンドの基本的

な使い方は、P.68を参照してください。

このサンプル例では、findコ マンドでフアイルの変更日時を対象とする…mtimeを利用

していることがポイントです。つまリファイル名の「日」ではなくファイルが持つタイム

スタンプを使用してフアイルを検索しています。

まずはじめに予備知識として、indコマンドの―mtimeでの日数の数え方を説明します。

findコ マンドの―mtimeは 日数nを指定しますが、ここで指定する「n日前」とは、「n× 24

079



Ci機打ER 03 0フ アイル処理

時間前」を意味します。例えば現在の時刻が11月 25日 の10時30分ならば、「1日 前」とは
ll月 24日 の10時30分 までを指し、それより前 (例 えば25時間前)の ll月 24日 9時30分は
前々日ということになります。n日 と指定したとき、これはカレンダー上の日付でのn日で
はないということにまず注意してください。

さて、findコ マンドの―mtimeには日数を指定しますが、この際にプラスを付けるかマ
イナスを付けるかで意味が違つてきます。マイナスを付けた―nで「n日前より新しい」、符
号なしのnで「n+1日前からn日 前」、プラスを付けた十nで「n日 よりも過去 (「n日 と数時間
前」のファイルは端数時間を切 り捨ててn日扱いになるので、実質的にはn+1日 よりも前)」
という意味になります。繰り返しになりますが、ここでn日前とはnx24時間前であるこ
とに注意してください。

例えばn=3の場合は、次の表のようになります。

屹日数の指定例

これは文章だけですと非常にややこしいので、次の図も参考にしてください。

0指定と実際の期間

find― rrltime-3 3日 (72時間)前よりも新しい

find― mtime 3 4日 (96時間)前から3日 (72時間)前まで

find― mtime+3 4日 (96時 間)前よりも過去

現在

‐mtime+3
↓
4日前 (96時間前)よ りも古い

‐mtime 3

↓
4日前 (96時
間前)か ら 3
日(72時間)前
まで

‐mtime‐3

↓
3日前(72時間前)よ りも新しい

このように―mtimeに指定 した日数と、プラスとマイナスの付け方で期間が変わってき
ますので注意してください。

サンプル例では、この―mtimeの プラス指定 とマイナス指定を組み合わせることで、「4
日前から2日前までのあいだに変更のあつたフアイル」を抽出しているのです。

080

tの指定例 説明      |.



030。 あるディレクトリ内の、n日前からm日前までに更新されたファイルー覧を取得する

鬱複数の‐mtimeで 期間を指定する

現在

-mtime - 4

‐mtime+1

―mtime-4 ‐mtime+1で、
「4日前から2日前の間に変更のあつたフアイル」

注意事項

FreeBSDで は、‐mtime+nのときに端数の時間を切り上げで数えるため、Llnuxの場合と

若干動作が違います。具体的には、‐mtime+3で「3日前よりも過去」を示します。ここで

の説明から1日ずれることに注意してください。

‐mtime― nのマイナス指定は、よく「n日以内」という書き方をされ、実用上はそれでほとん

ど問題ありませんが、正確には「n日前よりも新しい」ファイルです。つまり、もし現在よ

りも未来の日付のファイルがあつた場合、対象となります。未来の日付のフアイルは

touchコマンドの‐tオプションで作成できます (→ P.74)。

MacやFreeBSDの findコマンドでは使えませんが、Linuxの findコ マンドには、‐daystart

というオプションがあります。これを用いると、日数の数え方を現在の時刻と関係なく「現

在日のO時0分から」と扱ってくれます。

0-daystartオプションを指定したとき

11/23
0:00

11/24 11/25
現在

11/26  11/26
12:00

-mtime - 3

―mtime+1

‐daystartオ プションを付けたほうが、カレンダーの日付と一致させて「昨日」「n日前」が

指定できてわかりやすくなります。ただし、Macや FreeBSDでは使えないため、移植性を

損なうことには注意が必要です。

憑関連項目

028 新規ファイルを作らずに、すでにあるフアイルのみフアイル更新日を変更する

031 作業ファイルディレクトリから、1年以上更新のないファイルを削除する

081



‖o. 作業フアイルディレクトリから、
1年以上更新のないフアイルを
削除する

031

…find.xargs
■日目■D
更新日.日付.フアイル削除.自動削除

□

…長いあいだに変更のなかつたファイルや古いログファイルを削除したいとき

″:/bi n′ sh

logdi r="/var / log/nyapp"

″最終変更日時が1年以上前の古いファイルを削除する

find $Logdi r ―name :'キ .Logil ―mtime +364 -print l xargs rm ―fv――――― ●

s 。/find― de・ .sh―― ――一
―
li::〕 :::‡ζ議|||‡ |:1覇祗:]:1珈意蜃::‡隕i鶯 :!〕‡|||‡‡|‡饉:him:隕 :爾

/var/1og/]mlyapp/201211250147.log  _ .   ‐‐   .  .. _
/var/■ og/imyapp/201211200147.lo9    .‐ ‐‐ ■‐‐ |     ‐|‐ |‐ ‐ .
/var/1og/myapp/201211150147.lo9    .       .||‐ ‐|.‐ ‐ |

解説

このスクリプトは、シェル変数logdirで指定されたディレクトリから、1年 (365日 )以

上変更のないログファイルをfindコ マンドで見つけて削除するものです。ここで、ディレ

クトリ/var/1og/myappには、ファイル変更日時をファイル名に持つログファイルがたく
さんあるものと仮定しています。このサンプルでは、ファイルリス トをxargSコ マンドで

処理しているのがポイントです。

また、この例では、1年以上変更のないファイルを、findコ マンドの―mtimeを利用 して
取得しています。findコ マンド、および―mtimeオ プションの詳細は、P.68と P.79を 参照
してください。

このスクリプトで利用 しているxargsコマンドは、ファイルリストを引数として受け取
り、任意のコマンドを実行するためによく使われます。主な使い方としては、indコ マン
ドで特定の条件にマッチするファイルリス トを出力し、それをパイプでxargSコ マンドが

受け取って処理するという使い方が一般的です。

032

|

|

|

|

|

|

|



03電 。作業フアイルディレクトリから、1年以上更新のないフアイルを削除する

findと xargsの連携プレー

findくヵ場″、稼>くォ> l xargsく実子デι力01コマンド>

●では、まずシェル変数logdirで指定されるディレクトリから、
―nameで拡張子が.log

のフアイルを取得しています。この際、‐mtimeを併用することで、365日 以上前が変更

日となっているフアイルを選択しています。こうして条件にマッチするフアイルリストを

出力してxargsコ マンドに渡し、フアイルを削除するrmコ マンドを実行しています。rm

コマンドには、該当ファイルが1つ もないときにもエラーとならないようにイオプションを

付けて、また同時に‐vオプションを付けて削除したファイル名を表示するようにしていま

す。

さて、このサンプルのように古いファイルを削除するスクリプトは、長いあいだ稼働さ

せるWebア プリケーションなどの補助バッチとしてよく使われます。

一時ファイルや動作ログファイルをとりあえずどこかに出力しておくという作りのアプ

リケーションは開発途中などでよく見られます。何年も稼働するシステムでは、この一時

ファイルがそのまま放置されることがあり、扱いに注意が必要です。具体的には、以下の

ようなケースです。

1)初期バージョンでは、開発者がデバッグなどのためにとりあえず一時ファイルを出力

しておく実装にしてそのままリリースされる

2)元の開発者はいなくなり、運用担当者がサーバごと担当を引き継ぐ
3)数年経つた頃、削除されない一時ファイルがどんどんディスク領域を食つていき、い
つの間にか使用率100%になリシステムがダウンする

このようなことは、 (残念ながら)あ ちこちの現場でよく見られる光景です。このよう

な事態は、システムリリース時にはじめから、古いフアイルは削除するような考慮をして

おけば防く
｀
ことができるはずです。

サイズの大きな一時ファイル・ ログファイルを作成するアプリケーションを作る際は、

将来ディスクがあふれてしまって大きな事故となるのを防く
゛
ために、このように古いフア

イルを自動削除するバッチを作っておくとよいでしよう。

いきなリフアイルを削除するスクリプトを書くのは危険なので、まずは意図どおりに動い

ているかを確認するようにしましょう。具体的には次のように、xargsで実行するコマン

ドをIsに して、試してみるとよいでしよう。

優〕3

注意事項

こうすれば、実際にxargsで コマンドが実行される対象のフアイルリストのみを表示でき



GHAPTttR 03● フアイル処理

ます。意図しないファイルが対象になつていないかを確認してから、実行するコマンドを

lsか らrmに修正します。

テス トの際に更新日付が古いファイルを作るためには、touchコ マンドの―tオプションが利

用できます。P.74を参照してください。

フアイル名に空白文字 (スペース)を含む場合は、このサンプル例ではエラーとなります。

そのような場合は、文字列の区切りに空自ではなくヌル文字が使われているとみなす、

XargSコ マンドの-0オプションを利用します。この際、findコマンドのほうも、区切りを
ヌル文字として出すように―printOオ プションを使います。

I ⅢⅢ IL66`ir Ⅲ 11:ユo9"ⅢtiⅢ Ⅲ IⅢⅢII II■|IⅢ Ⅲv

こうすれば、空白文字を含むファイル名も正 しく扱うことができます。

関連項目

028 新規ファイルを作らずに、すでにあるファイルのみファイル更新日を変更する
030 あるディレクトリ内の、n日前からm日前までに更新されたファイルー覧を取得する
032 大量のログフアイルがあるディレクトリ内のフアイルに一括したコマンドを実施する

084

・　
　

　

・
一　
一
●

一　

　

一

一　

　

一●

●
●

一
　

　

１

，

一　

　

　

　

　

　

　

　

　

一　

　

　

　

　

●

　

●

■

一　　　　　　　　　　　　　　　　　　　　　一一　　　　　　　　　　　　　　　一　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　一



‖o. 大量のログフアイルがあるデイ
レクトリ内のフアイルに―括し
たコマンドを実施する

032

…find.xargs.grep …引数.コマンドライン引数,大量フアイル

□菫圏諷■

大量のフアイルがあり、単純に・てフアイルを指定するとエラーになる場合に、grep

コマンドなどを実行したいとき

■鵬田田D

#:′ bi n′ sh

Iogdi r="/va r/ [oglmyapp"

#拡張子 .LOgの ファイルから、"ERROR"と いう文字列を検索
find SLogdir ―name li*.Logil ―print l xargs grep ilERROR:: /dev/nuLL ――o

このスクリプトは、大量のファイルが置かれているディレクトリ/var/1og/myappに 対

して、
‖ERROR"と いう文字列を含むフアイルをgrepコ マンドで検索するものです。ここ

でディレクトリ/vaV10g/myappは 、単純にgrepコ マンドを実行するとエラーになるほど

の、大量のログフアイルが置かれていることを仮定しています。

0大量のファイルがあるとエラーが生じることがある

ここで、
‖
Argument list too long‖ (OSに よって多少メッセージは違います)と表示され

てエラーになる理由は、
*(アスタリスク)がシェルによって展開されたときにとても長い

085

」解説



0師

『

臓R03。 フアイル処理

文字列となるために、コマンドライン引数が、システムが扱える上限を超える長さとなっ

てしまうことにあります。

UNIXで は、コマンドライン引数の上限値はARG_MAX定数で決め打ちされています。
そのため大量のファイルがある場合に

*でファイルリストを与えると、ARG_MAX以上の
文字列長となリエラーになります。このARG_MAXの値は、例えばLinuxな らば次のよう
にgetconfコマンドで確認できます。

0コ マンドライン引数の上限値を確認

興味のある方は、man execveと してexecve(2)の マニュアルを読んでみて ください。
eXecVeは プログラムを実行するシステムコールで、例えばLinuxな らばARG_MAXの値が
くlimits.h>で定義されていることなどが解説されています。

この制限を回避するには、サンプル例のようにfindコ マンドでまずファイルリス トを出

力し、それをxargsコ マンドで受け取ってgrepを 実行するというのがよく使われる手法
です。indコ マンドの基本的な使い方は、P.68を参照して ください。

xargsコ マンドは、ARG_MAXの 値を超えないように引数を適宜区切って、指定された
コマンドを実行します。そのためコマンドライン引数がどれだけ長 くても、ARG_MAX
の制限に引っかからないように正しく処理することができるのです。

なお、このスクリプトではちよっとした技 として、対象のファイルに/dev/nuHを 加え

ています。これは、grepコ マンドの出力に必ずファイル名を含むようにするための処理

です。grepコ マンドでは複数のファイルを対象とした場合、次のように先頭にファイル

名を付けてマッチした行を出力します。

◎複数ファイルを対象としたgrepコマンド

このサンプル例では、/var/1og/myappに 大量のファイルがあると仮定していました。

しかし、もし対象ファイルが 1つ しかなかった場合には、grepコ マンドは結果にファイル

名を出力しません。

一
　

・
　

一●
●
　

●
■

―
　
　
一

ARC MAX



032。 大量のログフアイルがあるディレク トリ内のフアイルに一播したコマンドを実施する

鰈対象ファイルに'と指定したが、実は1つのファイルしかない場合

これでは対象のフアイル数によって結果出力が異なってしまうため、後処理する際にも

不便です。そこでこのサンプル例では、対象のフアイルに決め打ちで/dev/nullも加えて

おくことで、grepコ マンドが常に複数ファイルを対象とするようにして、結果にファイ

ル名が表示されるようにしているのです。

/dev/nunは どんな文字列も含まれることはないので、grepに 引っかかることもなく、

検索結果には影響を与えません。

曖
=宣
三塁

この例では、ファイルに空自文字 (スペース)を含む場合はエラーとなつてしまいます。空

自文字を扱うには、findコ マンドで‐p「intOオプシヨンを利用する必要があります。P.84の

注意事項を参照してください。

関連項目

030 あるディレクトリ内のn日前からm日前までに更新されたファイルー覧を取得する

031 作業ファイルディレクトリから、1年以上更新のないファイルを削除する

087



hss 
I

フアイルをバックアップする際
にフアイル名に日時を入れる

…date.cp パツクアツプ,現在時刻.日付

あるファイルのバックアップを取得する際、現在の日付を入れて簡単にコピーをとり
たいとき

■鵬日田B

″1′bi n/3h

conf i g="11Y3Pp , conf "

bak_fi Lename="${config).s(date l+%Y%m%d:)i'

#す でにmyapp.conf.20131202な どがあった場合は、秒まで入れて
″バックアップファイルを作成する

if [ ―e ilSbak_fi Lenamel: ]′  then
bak_fi Lename===${config}.S(date l+%Y%m%d%H%‖ .%Sl)=:
fi

cp -v "$config" "$bak_filename"

いつ使うか

S■S                           量1釉‡hl蓋 lM‡陪:R‡|1願 |‡
datenamo.sh     inyapp.conf   .                     .  ‐‐
S・ /datenm・ Sh ‐  ――――― ―…茫褥
myappoConf ―> rnyapp.conf.20131202     .. | ‐ ‐‐  |  ‐

S ./datenameosh ―  ――――――――――――――
―
―̂・・・ ‐|1鑽警篤‐ _ 

‐‐
. |・ .・

ll讐
輩|

myapp.conf ―> myappoconf.201312022255_20 1111‐ ‐|.| |   . ‐

datename.sh myapp.conf myapp.conf . 20L3L202 myapp.conf . 2 OL37ZO222S5.2O
=||■晰鰈躙鋏蟷S iS ―

曇解説

このスクリプトは、カレントディレクトリにあるmyapp.confと いうコンフィグファイ
ルのバックアップを取得するものです。実行すると、現在の日付を利用してファイル名を

組み立て、「myapp.conf.20131202」 と、「元のフアイル名+日 付」としてコピーを作りま
す。

なお、同一日に再度このスクリプトが叩かれた場合は、バックアップファイルを上書き

~¬

|°



033● ファイルをバックアップする際にフアイル名に日時を入れる

しないよう、時分秒までも含めて「myapp.cOnf.201312022255.22」 というファイル名で

バックアップを作 ります。

このスクリプ トでは現在 日付を取得するために、dateコ マン ドを利用 しています。

dateコ マンドは、引数が十で始まる場合には現在の時刻 (日付)を指定した形式で表示しま

す。この時刻表示形式は、引数としてフィールド名を与えることで制御でき、年月日や時

分秒を自由に組み合わせて文字列を作ることができます。

dateコ マンドでよく使われるフィールド名を、次の表に不します。これらのフィールド

はライブラリ関数strftimeで 定義されているため、詳しくはman strftimeを 参照してくだ

さい。

渉dateコマンドのフィール ド

(0)では、$0と いうコマンド置換を利用してファイル名を組み立てています。この際、

dateコ マンドの表示形式として%Y%m%d、 すなわちYYYYMMDD(年 月日)を利用して
います。いまが2013年 12月 2日 ならば、これは・20131202"と いう文字列になります。こ

れにより、現在の日付を後ろに付けてバックアップフアイル名を組み立てているわけです。

なおこのままでは、同一日に2回以上このスクリプトが実行された場合は前のフアイル

を上書きしてしまうため、0で上書きチェックの処理を加えています。もし現在日付が末

尾に付いたファイルがすでにある場合は、上書きしないように時分秒まで含んだフアイル

名でコピーしています。時分秒を指定するには、フィールドとして%H%M%Sを 利用しま
す。ここでは見やすくするために、秒の前にピリオドを打っています。これにより、2013

年 12月 2日 22時55分22秒にスクリプトが実行されると、'imyapp.COnf.201312022255.22‖

というファイル名を組み立てます。

(D)でバックアップのためにファイルをコピーしていますが、ここではcpコマンドに‐v

オプション(VerbOSeオ プション)を付けています。これにより、どのファイルを何という

ファイル名でコピーしたかを表示することができます。ファイル操作系のシェルスクリプ

トでは、画面で見て (あ るいは後でログフアイルを見て)確認できるように、このように

―vオ プションを付けておくと便利でしよう。

E注意事項

年 (1970^ン )%Y

年の下2桁 (00～99)%y

月 (01～ 12)%m

日 (01～ 31)%d

%H 日寺(00～ 23)

%M 分 (00～ 59)

%S 秒 (00～ 59)

このスクリプトは秒でファイル名を組み立てるため、1秒以内に何度も実行されるとフアイ



CW旧籠R03。 フアイル処理

ルを上書きしてしまいます。慎重を期するなら、すでにファイルがある場合は、後ろに1、 2、

3… …と数値を付けていく方式も考えられます。しかし、この方式は同一日内のどの時刻で

変更されたかがひと日でわかりにくいことや、ここでの「設定ファイルのバックアツプ」と

いう用途ではそうそう1秒以内に更新されることもないため、このサンプル例ではすでにフ

ァイルがある場合は、さらに時分秒を付ける形式を採用しました。

日付でバックアップファイルを作るのは簡単な方法でよく使われますが、ある意味、場当

たり的な方法でもあります。本来ならば設定ファイルは、SubversiOnや G itな ど、バージ
ョン管理システムで世代管理するのが望ましい手法です。

SubVerS:Onは SVnコ マンド、Gitは gitコ マンドで利用することができます。例えば以下は
Subversionでバージョン管理しているフアイルの履歴を表示したものです。いつ誰がど
う編集 したのか一日でわかりますし、過去のバージョンに簡単に戻すこともできます。

Subversionや Gitに興味を持たれた方は、それぞれの専門書を参照してください。

OSubVersionで ファイル履歴を表示する

r194 1 ozヽ1lna 1 2014-01-19 18149:21 +0900 (日 ′ 19  1 2014) 1 2 ■ines

Serverlが故障したため、接続先IPア ドレスをserver3のもの:こ変更

1 2014-01-07 10:17:14 ■0900 (プ(′  07  1 2014) 1 2 1■ nes

、 /Var/109/mlyapp力 'ら /disk/1o9/maypplこ 変更

$ svn log myapp.conf

r182 | mollifier

ログ出力先ディレクトリを

関連項目

000

028 新規ファイルを作らずに、すでにあるファイルのみファイル更新日を変更する

一

　

　

一
・

　

一



■0轟
ファイル群を別ディレクトリに
同期するバックアツプ処理を行う034

瓢回壺ロロ

…バックアップ.同期,差分.リモートパックアップrsync

□目回国B
毎日新しいログフアイルができるなど、フアイルが増えていくディレクトリのバック

アップを効率的に行いたいとき

■躾日囲B

″!′bin′ 3h

to⊆ dir■ '.′ hO日 e′uSerl′ myapp′ ι09'.

baCkun dir=Ⅲ ′腱。kup/暉app..

# /home/user1 lnyappl log a+aD i ) v'( )vt.
# lbackuplnyapp/l'og i 1 v, t- U L:ae-t 6
rsync -av "$toq-di r" "$backuP-di r"

l型L_
このスクリプトは、3つ のログファイル (20131201.log,20131202■ og,20131203.

log)が格納されているディレクトリ
‖
/home/uSer1/myapp/1og‖ の中のファイル群を、デ

ィレクトリ"/baCkup/myapp/1og‖ にバックアップするものです。ここではrSyncコ マンド

を利用し、大量のフアイルがあっても差分ファイルのみ更新を行って効率的にバックアッ

プできることがポイントです。

実行例では、3つのログファイルがあるはずなのに201312031ogし かコピーされていま

せん。これは前回実行時に20131201.log,20131202■ ogはすでにコピーされており、今

回新規にできた20131203■ogのみコピーされた、ということを仮定しています。

このように差分コピーをしてくれる動作は、毎日ログフアイルができていくシステムな

091



0“APTER 03● フアイル処理

どのように、追加で新規ファイルが作られるディレクトリのバックアップに役立つでしょ

つ。

このサンプルで利用しているrsynCコ マンドとは、その名のとおリファイルをsync(同
期)す るために使われるコマンドです。以下のような特徴を持ち、サーバ管理用途に広く

使われています。

・コピー時には、コピー元とコピー先の差分を元に、変更のあつたファイルのみコピーするた

め効率的

・フアイルのタイムスタンプ・パーミツション・所有者情報などのファイル属性をそのまま

コピーすることができる
。sshを利用してリモー トサーバからのコピーも行える

rSynCコ マンドの使い方は、次のようになります。

rSyncコ マンドの書式

rsync [t7'>a>] <sX-fr> <tE-fr>

サンプル例で利用 しているオプションは、‐a(ア ーカイブモード)と‐v(verbOseモ ー ド)
です。アーカイブモー ドとはよく使われるオプションをまとめたもので、先にあげた特徴

(フ ァイルのタイムスタンプや、パーミッション・所有者情報をそのままコピーする)を

利用できます。verboseモ ードは実際にコピーを行ったファイルリス トや転送量を表示す
るオプションで、コマンド実行の結果が目で見てすく

゛
わか りますから、できるだけ付けて

おいたほうがよいでヽしょう。

もう1つ覚えておいてはしいォプションが、…n(dry― runモ ード)です。次のように―nを

付けると、実際のファイルコピーは行わずに、処理される対象のフアイルリストのみが出

力されます。これで、実際のフアイルコピー対象を確認できます。

「Srl■11イ|,ⅢⅢl111ⅢⅢIIⅢIII′■||  |  |||||141
つまり、シェルスクリプトを書いている段階では上記のようにrsyncす る部分は―nオ プ
ションで書いておきます。これならば実際のファイルのコピーは行われませんから、テス

トする際にも気軽に実行することができます。目的どおりのファイルが対象となつている

ことを確認したら、最後に―avnと 指定 しているオプションを―avに修正して、―nォ プショ
ンをやめればよいわけです。

なおrsynCコ マンドでは、コピー元ディレクトリの指定時、最後にスラッシュを付ける
か付けないかで大きく意味が変わることに注意してください。例えば次のように、コピー

元のディレクトリの最後にスラッシュを付けて書いたとします。

092

rSynC ―aVn /hOmle/user1/myl.pp/Logノ  /lbackup/myapp. .



034● フアイル群を別ディレクトリに同期するバックアップ処理を行う

rsyncコ マンドでは、コピー元の最後がスラッシュで終わる場合には「ディレクトリ自身は

コピーせず、そのディレクトリの中のフアイル・サブディレクトリすべて」を意味します。

そのため、_上記は10gデ ィレクトリをコピーするのではなく、logデ ィレクトリの中身

(20131201.log,20131202.log,201312031og)の ファイルをコピーしようとします。

もし上記のようにコピー元のディレクトリの最後にスラッシュを付けて「ディレクトリ自

体はコピーしない」とする場合は、コピー先にもディレクトリを指定しないといけません。

このように、rsyncコ マンドではディレクトリ指定に若干の注意が必要です。混乱を招

かないように、コピー元をスラッシュで終える書き方はせず、本サンプルのように「コピ

ー元はディレクトリ指定することとし、最後にスラッシュは付けない」など事前に何かし

らのポリシーを決めておいたほうがよいでしよう。

注意事項

rsyncコマンドでは、リモートサーバヘ (も しくはリモートサーバから)バックアップを取

得することができます。この際には、次のようにファイルバスの前に「ユーザ名@ホスト名:」

を付けます。

デフォル トでは通信プロトコルはsshが利用されます。また、明示的にsshプロトコルであ

ると指定したい場合は、‐e sshオプションを利用します。

rsyncコマンドでは差分更新を行いますが、コピー元で削除されたファイルをコピー先で

消すことはしません。このようなときに完全にディレクトリを同期させたい (すなわち、コ

ピー元でフアイルが削除されていたらコピー先からも消 したい)と きは、次のように

…deleteオプションを利用します。

関連項目

035 ローカルディスクに実ファイルを作らず、直接リモートホストにアーカイブする

093



‖o. ローカルデイスクに実フアイル
を作らず、直接リモートホスト
にアーカイブする

035

□回塞口D
tar.ssh.cat …tarアーカイブ.リモートホスト,中間フアイル

…tarアーカイプを作成してリモートホストにコピーする際、中間ファイルを作らずに直
接コピーしたいとき

″!′ bi n′ sh

username="user1 "
server="l92-168.1.5"

tan cvf - myapp/tog I ssh ${username}0${server} "cat > lbackup/nyapp[og
tar"

解説

このスクリプトは、ログファイルが格納されたmyapp/1ogと いうディレクトリをtarア

ーカイブし、そのtarアーカイブファイルを192.168.1.5と いう別のサーバの/backupディ
レクトリにコピーするものです。この際、作業しているローカルサーバ上に中間ファイル

を作らずに、直接リモートホストにtarフ ァイルを作成していることがポイントです (次ペ

ージの図参照 )。

このような処理は、毎日や毎週など定期的に実行されるケースが多いでしょう。この際、
バックアップ先のサーバのIPア ドレスやファイルの保存パスなど多くのパラメータがあ

り、これを毎回手で打つのは面倒であり、タイプミスも招きます。このようにシェルスク

リプトにしておけば、後は必要なときにスクリプトを実行すればよいだけなので便利です

し、パラメータ指定の誤りも防げます。

094

一　
　

　
　

　
　

　

一　
　
　

　
　

　
　

一　
　

　
　

　
　

　

一　
　
　
　
　
―
●
」

．
　

　

　

　

・　
　
一　
　
　

　
　

　
　

一　
　

　
　

　
　

　

一　

　

　

　

―

●
■

．　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　一　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　一　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　．　　　　　　　　　　　　　　　　　　一

一
　

　

●

●
　

―

　

・

|

ｔ
Ｖ
ａＶ



035饉 ローカルディスク1こ実ファイルを作らず、直接リモー トホストにアーカイブする

0リモートホストに直接tarフ アイルを作成

logディレクトリ

tar

ファイリレ

このスクリプトでは●にて、tarコマンドでアーカイブを作成する際に、標準出力にtar

アーカイブを出力する‐(ハイフン)オプションを利用しています。0か らssh接続のための

コードを削除すると、次のようになります。

ここでtarコ マンドのオプションは、c(アーカイブ作成)、 v(処理ファイル表示)、 f(ア

ーカイブファイルを使う)を利用し、これを―(ハイフン)を指定して標準出カヘ表示して

います。そのままではtarフ アイルの中身そのものが画面に表示されてしまい読めません

ので、これをパイプで受け取り、catコマンドのリダイレクトでtarフ アイルとして出力す

ることで、/baCkup/myapp10g.tarと してtarアーカイブを作成できます。

つまり、まずtarア ーカイブを標準出力に表示し、これをパイプで受け取ります。シェ

ル変数backup_serverで指定されたリモートホスト上でこのパイプの中身をcatす ること

で、リモートホスト上に、手元のフアイル群を直接tarフ ァイルとしてアーカイブできる

ということです。

このサンプル例とは逆に、リモートホストのtarフアイルを直接手元で展開することもでき

ます。この場合も、次のようにtarコマンドで‐(ハイフン)を利用して、標準入力から展開

するようにすればよいわけです。

・ tarァーカイブはファイルをまとめるだけで、圧縮処理は行いません。gzip圧縮も行いたい

場合は、tarコマンドにzオプション (gzip圧縮)を付加します。

関連項目

034 フアイル群を別デイレクトリに同期するバックアツプ処理を行う

095

tar cvf -
_‐,|_~|:

薔注意事項



‖o。

重要なフアイルをバスワード付
きZipとしてアーカイブ036

回回覇□日

…バスワード.暗号化.zipファイルzlp

…重要な情報を含むログファイルなどをzipファイルにアーカイプする際、バスワード付
きのzioフ ァイルとして作成したいとき

″!′bin/sh

Logd'i r=" /home/user1 /myapp"

cd l'$Lo9di r"

″ /home/user1/myapp/Logデ ィレクトリ内の回グファイルを、
#パスワード付きzi pでアーカイブする。
zi p ―e ―r Log.zip Log

実行例

$./passzip.sh
Enter password:
Verify password, ]

addinqr log/ (stored 0t)
adding: lo9/access.lo9-20131203 (deflated 431)

adding: 10g/OrrOr.■ 09 (deflated 211)  ._   .

adding: 10g/errOr.lo9-20131204 (deflated 66t)

adding: ■09/error.■ o9… 2.0■ 31203 (deflated 192)
ad〈ling: ■o9/accoss.log-20131204 (def■ ated 603)
addin,: 199イ aCcess.log (deflated 392)

解説

このスクリプトは、/home/user1/myapp/1ogと いぅディレクトリに保存されているロ

グファイルを、zipフ ァイルとしてアーカイブするものです。このログファイルには重要

な情報が含まれていると仮定し、パスワード付きzipフ ァイルで保存しています。
このサンプル例で利用しているzipコ マンドの使い方は、次のようになります。

096

一
　

・
●
●

●
●
●
―

一

一
・
　

●
●

一

|

|

|

|

|

|

|



03覇 驚重要なファイルをパスワー ド付き zipと してアーカイブ

zipコマンドの書式

zip rオフレョン′ <z」Pファイル>くガ蒙ファイル>

Ⅲrオプションは、ディレクトリ内を再帰的に処理 します。すなわち、指定パスにサブデ

ィレクトリがある場合にはその中身も対象とします。大抵の場合には、このオプションが

必要となるで しょう。また、単一のファイルをアーカイブする際に―rオ プションを付けて

も特に問題はないため、基本的に―rオ プションは常に付けて利用することが多いです。

パスワー ド付きのzipフ ァイルを作成するには、‐e(Encrypt)オプションを利用 します。

サンプル例では一e― rと別々に書いていますが、これは次のように―erと 続けて書いてもか

まいません。

―eオ プション付きでzipフ ァイルを作成すると、
‖
Enter password:‖ とパスワー ドが聞か

れるため、キーボードから入力 します。再びVe五取 password:‖ と聞かれますので、確認

のため再度同じパスワードを入力します。これにより、パスワー ド付きzipフ ァイルを作

成することができます。

UNIXでよく使われるtar+gz形式では、アーカイブファイルにパスワードを設定する
ことができません。一方、zipフ ァイルはパスワー ドを設定できますし、Windowsな どで

も広 く利用されているため、PCと のファイルのや り取 りによく使われます。このサンプ

ル例で作ったパスワード付きzipフ ァイルは、Windows上でも問題なく開くことができま

す。

注意事項

FreeBSDでバスワード付きzipを展開する場合、バージョンによってはzipパッケージに付

属の/usr/bin/unzipコ マン ドではエラーとなり展開できません。Portsの archivers/

unzipでインストールできる、/usr/local/bin/unzipコ マンドを利用してください。

関連項目

038 tarアーカイプの際に一部のファイルやディレクトリを除外する

097

露



‖o. |   □____

1詈H マンドで圧縮率を大きく037
口回壺ロロ
gzip.bzip2.xz

Gロロ■■
圧縮率.821p形式

…他のプログラムと連携するため圧縮形式はgzから変えられないが、圧縮率を高めたい
とき

″:′bin/sh

tan cf archive.tar tog

#-9オプションで圧縮率を最大にする
gzip -9 archive.tar

実行例

解説

このスクリプトは、ディレクトリlogを tarア ーカイブした後にgzip圧縮するものです。

●でgzip圧縮する際、-9オ プションを付けて圧縮率を上げています。

gz:p形式の圧縮ファイルはUNIX環境では昔から広く使われており、シェルスクリプト
でも利用されることが多いファイル形式です。そのため、古くから動いている業務バッチ

などでは、圧縮形式がgzであることを決め打ちにして動いているスクリプトもまだまだ多

いでしょう。

現在はbzip2形式やxz形式などの、gzip形式より高圧縮率なファイル形式があり、広く

使われています。本来ならばそのような高圧縮率のフォーマットに移行するのが望ましい

のですが、古いシステムでは連携する他のプログラムの修正も必要なため、なかなか簡単

に移行できないこともあります。

そのような場合でも何とかデイスク領域を節約したいときに使えるのが、サンプル例の

‐9オプションです。gzipコマンドでは、「―数値」オプションを付けることで、処理時間と

圧縮率を調整することができます。この値は1か ら9ま で段階的に指定することができ、

数値が大きいほど圧縮率が高くなります。デフォルトの圧縮率は6です。

このサンプルでは、もっとも低速ですが圧縮率が高い-9オ プションを指定しています。

098

$./gzip.sh
$ls
archive.tar.gz gzip.sh log

爾



磯 7螢 gzipコ マン ドで圧縮率を大きくしたい

これでディスク容量の節約ができます。次の実行例は、筆者の手元にある20MBほ どのフ

ァイル“20140228.pcap‖ (tcpdumpし たパケットダンプフアイル)を、gzip-1と gzip-9で

圧縮してファイルサイズを比較したものです。圧縮後のファイルサイズは5。9MBと

6.2MBと なり、300KBほ どの差が出ました。-9オ プションで圧縮したほうがより圧縮率

が高いことがわかります。

Ogzipの圧縮率の違いによるフアイルサイズ差

なお-9オ プションを付けても、ファイルによってはコンマ数%程度しか圧縮率は変わら

ないこともあります。過度の期待はできませんが、ファイル数が多いときにはこの差も結

構効いてきますので、-9オ プションの利用を検討してみましょう。

注意事項

gz形式のファイルにこだわらないならば、もつと圧縮率の高いコマンドを使うとよいでし

ょう。Linuxで はbzip2コマンドが、FreeBSDではxzコマンドがよく使われます。どちら

もオプションなどはgzipコマンドと互換性を持つように作られており、違和感なく使える

はずです。

tarコマンドでアーカイブしてから圧縮する際、次のように中間ファイルを作らずに圧縮で

きます。こうすれば■arのフアイルをディスクに保存しなくて済むため、作業時のディスク

使用量を節約できます。このtarコ マンドの使い方は、P.64を参照してください。

‐ltar cf

gzipコマンドは、環境変数GZ!Pを設定すると、その値がデフォル トのオプションとして使

われます。そこでスクリプトの先頭に以下のような行を入れると、常に-9オプションが付

加されます。

関連項目

035 ローカルディスクに実ファイルを作らず、直接リモー トホストにアーカイブする

038 tarアーカイプの際に一部のファイルやディレクトリを除外する

01Ю

-Losl



‖o.
tarアーカイプの際に一部のフア
イルやディレクトリを除外する038

tar

Gロロロ■
tarアーカイプ.除外.例外

tarコマンドでアーカイブファイルを作る際、SubVersionの [.svn]ディレクトリなど、
特定のファイル・ディレクトリを除外したいとき

■鵬幻田■

″:′ bin′ sh

tar cvf archive-tar --exctude ".svn" myapp

いつ使うか

解説

このスクリプトは、tarコ マンドでカレントディレクトリ配下にある [myapp]と いうデ

ィレクトリをアーカイブする際、[.svn]と いうサブディレクトリを除外するものです。

このような処理はバックアップ用途などでよく使われ、定期的に実行されるものです。そ

のためコマンド1行で済むものであっても、 ミスタイプなどを防く
゛
ために毎回手でコマン

ドを打つのは避けて、このようにスクリプトを用意しておくのがよいでしょう。

ここでmyappデ ィレクトリ内には、次のように4つのディレクトリがあると仮定 してい

ます。普通にtarコ マンドを使うとmyappディレクトリ内のサブディレクトリはすべて対
象となってしまいますが、ここでは[.svn]ディレクトリをアーカイブの対象外としていま

す。そのため実行例のtarコ マンドの出力に、 [.svn]デ ィレクトリが入っていないことに

注意 してください。

100

一
―
―

■
―

―

■

E亜玉互コ

Ｆ
‘
　
　
　
　
０

ｎ

　

Ｏ

　
　

　

　

・

Ｏ

　

Ｃ
　
　
　
　
Ｓ

Ｃ
　
　
・
　

　

　

Ｓ

　

　

　

ｔ

・
　

ｋ

　

　

　

ｅ
　

　

　

ｒ

　

ｐ

ｐｐ

ｉＳ
　

　

　

ＣＣ

　

　

ｔａ
　

∞

ａ
　

＾

　ヽ
　
　
　
ａ
　
　
　
　
ｓ

　

ｓ

ｔｃ
　

ｔｃ
　

∞

　

”

・ｍ
　

一ｍ
　

ｉｎ

ｅ

ｅ

ｌ

ｌ

ｂ

ｂ

ｂ

ｐｐ

ｐｐ

ｐｐ

ｐｐ

ｐｐ

”

ｐｐ

ａ

ａ

ａ

ａ

ａ

ａ

ａ

町
町
町
町
町
町
町

$ 1s *aF myapp

etc/ Log/



038艤 tarアーカイプの際に一部のフアイルやディレク トリを除外する

綽実行例のディレクトリ構成

「γlyapp

svn

bin

etc

このようなケースでは、tarコ マンドの一excludeオ プションを利用することにより、

指定したディレクトリを除外してアーカイブすることができます。一exCludeオ プション

は次のように、一excludeの後にファイル名 (ディレクトリ名)を指定します。

なお、exclude指定した場合は、該当する名前のファイル・ディレクトリがすべて除外

対象となってしまいます。例えば、「myapp/1oノ ディレクトリはアーカイブ対象としたい

が、myapp/bakcup/1oノ ディレクトリは除外したい」場合は、単に
‖
log‖ と指定すると両方

のディレクトリが除外されてしまいます。このような場合は、ディレクトリをパス付きで

exclude指定すれば除外対象を個別に設定できます。

注意事項

アーカイブ除外したいフアイルがたくさんある場合には、‐Xオプションにより外部ファイ

ルに記述した除外リス トを適用することができます。例えば除外したいディレクトリを記

述したテキストファイルをexc!ude」 stとすると、次のようになります。

関連項目

048 svnな どの隠しファイル・ディレクトリのみを列挙する

101

log



hss 
I

tarアーカイブに後からフアイル
を追力|する

…tar.date tar,アーカイブ.追加.アベンド

月次アーカイブに日次でファイルを追加するなど、既存のtarアーカイブにファイルを

追加 したいとき

■匿罰四■

″:′ bi n/3h

#年月でアーカイブファイルを指定 0」 :201312.tar)
arChiVefite=‖ $く date +!%Y%m:).tar"

#今日の日付からログファイルを指定 (I夕」:20131205.Log)

Logfite=:=S(date +:%Y%m%dI).Log‖

″月次アーカイブに、今日のログを追加

tar rvf SarchivefiLe Log/SLogfi Le

いつ使うか

S tar tf 201312.tar

lo9/

■og/20131201.lo9

lo9/20131202.log

■og/20131203.log

log/20131204.lo9

S ./tar― addosh

log/20131205.lo9

S tar tf 201312.tar

log/

■og/20131201.log

lo9/20131202.lo9

log/20131203.lo9

■o9/20131204.■Og

log/2013120.5.log  ‐‐

翻圏囲籟爾囮腱議.

‐■‐:■,書ず:嬌■111‐ |

解説

102

一

■

一　
　

　
　

一　

　

　

■
　
　
　
　

一

一　

　

　

―

　

一　

　

　

　

　

　

一

このスクリプトは、月次で作られるtarア ーカイブファイルに、毎日作られる日付名の

ログファイルを追加していくものです。ここでは今日は2013年 12月 5日 であると仮定し、



o3鬱 饉tarアーカイブに後からフアイルを追加する

201312.tarと いうア‐―カイブファイルに20131205■ogと いうログファイルを追加するケ

ースを想定しています。

tarコマンドでは、Cオ プションとfオ プションを利用することで、新規アーカイブを作

成することができますが、すでに存在するtarア ーカイブフアイルの最後にファイルを追

加することもできます。この使用例が、0で指定しているrオプション(appendオ プショ
ン)です。

実行例ではまずはじめに、tarコ マンドのtfオ プションでアーカイブ内を確認しています。

結果を見るとわかるように、このサンプル例では、はじめは201312■arに は以下の4フ ア

イルがアーカイブされていました。

・20131201.log

・20131202.:og
・20131203.log

・20131204」og

ここでサンプルスクリプトを実行すると、まずdateコマンドを利用 して、現在の日付

をもとに月次アーカイブファイルとログファイルのファイル名を組み立てます (● )。 こ

の、dateコ マンドを利用 して日付でファイル名を組み立てる方法については、R88で解説

していますので詳しくはそちらを参照してください。

ファイル名が組み立てられたら、0にてtarコ マンドでアーカイブフアイルに今日の日

付のログファイルを追加 しています。rオ プションを利用 しているため、前日ぶんまでの

ファイルはそのままに、今日のフアイルを追加することができます。こうして月次ごとの

tarア ーカイブを自動で作ることができます。

注意事項

rオプションを付けた際、指定したtarアーカイブフアイルが存在しない場合は、新規にtar

アーカイブフアイルが作成されます。エラーとはなりませんので注意してください。

関連項目

033 ファイルをバックアップする際にフアイル名に日時を入れる

138 tarアーカイブの際に一部のファイルやディレクトリを除外する

103



‖03 フアイルバーミッションやタイムス
タンプなど、元のフアイルの属性を
保つたままフアイルコピーをする

」■
Ｊ

Ｊ
■
■
４」■
Ｊ

‘
■
■

□ロヨロロ
getopts.cp …コピー.′ ツヽクアツプ,ファイル属性,シンポリツクリンク

ディレクトリのコピーをとる際、ファイル属性やシンポリックリンクを含めてバック
アップしたいとき

″!′bin/sh

backup di r="/home/use11 /backup"

# nyappi< vt t t)A., $backup-dirf lzt\.y2v',a=Y-
whi [e getopts "a" option
do

case $option in
a)

cp -a myapp "$backup dir"
exi t

esac

done

cp -R myapp "$backup dir"

いつ使うか

実行例

S ./Cp… p.sh ―a

解説

このスクリプトは、カレントディレクトリにあるmyappと いうディレクトリ配下のフ
ァイル・ディレクトリー式を、シェル変数backup_dirで 指定されたディレクトリヘとコ

ピーして、バックアップを取得するものです。この際、―aオ プションを指定すると、ファ

イルのタイムスタンプやパーミッションなどの、ファイル属性を保持してコピーを行いま

す。

サンプル例では、getOptsコ マンドを利用 してシェルスクリプトヘのオプション指定を

判断しています。getoptsの 使い方について詳しくはP.2を 参照してください。ここでは―a

104

●
一
●
一一
●
●
●
一■
一
■
●
一

●

●
一
●

―
一●
一■
一■
―

〓

一　

　

　

　

　

一■
二

|



04Ю ●フアイルバーミッションやタイムスタンプなど、元のフアイルの属性を保ったままファイルコピーをする

を指定されるとcpコマンドを‐aオプション付きで実行してタイムスタンプやパーミッショ

ンを保持してコピーします。一方、何もオプション指定されないとcpコ マンドを
―Rオ プ

ション付きで実行して単にファイルコピーだけを行うという動きにしてみました。この後

者の動きは、例えばコピーした日時を明確にしたい場合には、タイムスタンプをあえて保

持せずにコピーするケースを想定しています。

cpコ マンドでは、何もオプションを付けずにファイルをコピーすると、フアイルのパ

ーミッションはumaSkで設定された値に変わります。また、タイムスタンプは現在の時刻

で更新されてしまいます。加えて、オプションを付けないとcpコ マンドはディレクトリ

のコピーをして くれません。バックアップ用途でディレクトリー式などをコピーする際に

は、これでは困る場合があります。

―aオプションを付けると、cpコ マンドはオリジナルファイルの所有者・グループ
。アク

セス権・アクセス時刻などのフアイル属性を保持したままフアイルをコピーします。その

ため、バックアップ用途でよく使われるオプションです。また、
―aオプションを利用する

と、…R(recursive)オ プシヨンも同時に指定されたとみなされ、サブディレクトリを含

めてフアイルツリーをそのままコピーしてくれます。

―Rオ プションを付けると、シンボリックリンクはそのリンク先を追わず、リンクそのも

のとしてコピーされます。もしシンボリックリンクが指している先の実体ファイルとして

コピー したい場合は、次のように―Rと‐Lオ プションを同時に利用 します。 また、…p

(preserve)オ プションを付けるとフアイル属性も保持できます。

なおcpコ マンドのmanを読むとわかりますが、cpコ マンドの‐aオ プションは、―pオ プ

ションにいくつかのオプションを組み合わせて、オプション指定を簡略化するために用意

されているものです。この―aオ プションはOSに よつて、次のように多少動作が異なりま

す。

・ Linuxの 場合、―aは‐dpRと同じ。‐dはシンポリックリンクをシンポリックリンクとしてそ

のままコピーすることを意味する。

・ FreeBSD/Macの場合、いaは‐RpPと同じ。‐Pは、シンポリックリンクをシンポリックリン

クとしてそのままコピーすることを意味する。

バックアップスクリプトとしては、―aオ プションを使わずに―pオプションと̂ Rオ プショ

ンを組み合わせる例も一般的によく用いられています。また同様の例として、次のように

小文字の―rで書かれたスクリプトも見ることが多いかもしれません。

しかし小文字の r̈オプシヨンは「方言」があり、例えばLinuxの cpコ マンドでは
‐rでコピ

ーするとシンボリックリンクをそのままリンクとしてコピーしますが、MacやFreeBSD

105



C‖AP■R03● フアイル処理

のcpコ マンドで―rオ プションを利用するとシンボリックリンクが指している実体ファイル

をコピーします。

そのため、特にBSD系のシステムでは、cpコ マンドの―rオ プションは使うべきではなく、
―Rを利用することが推奨されています。興味のある方は、FreeBSDの cpコ マンドのman
を読んでみて ください。

注意事項

コピー元のファイルについて、スクリプト実行者とファイル所有者が違う場合には属性を

保持できない場合があります。例えば、オーナーが「ootユーザのファイルを一般ユーザが
‐pオプション付きのCpコ マンドでコピーしても、ファイルの所有者をrootと する操作は一

般ユーザには許可されていないため、ファイルの所有者属性はCpコマンドの実行者になり
ます。ただし、ファイルのタイムスタンプなどはそのまま維持できます。

Orootが所有するフアイルを一般ユーザが―aオプションでコピーしても

同様に、ファイルのグループ属性が自分が所属していないグループとして設定されている

場合は、root権限でなければグループ属性をそのままコピーすることはできません。

このサンプル例と同様の手法として、中間ファイルを作らずに対象ファイルをtarアーカイ
ブして、コピー先に展開する方法があります。P.94を参照してください。

関連項目

S ls ―■

tota1 0

-rW― r――r―- l r00t root O Dec

S Cp ―a test.txt mly.txt

S ls ―■

tota1 0
-rW― r――r―- l uSerl uSer1 0 Dec

―:riV― r――r― - l rOOt  root  O Dec

6 22:55 test,txt

6 22:55 my.txt

6 22:55 test.txt

106

“

5 ローカルディスクに実ファイルを作らず、直接リモートホストにアーカイブする

一　

　

　

一



‖o. 拡張子に.htmと .htmlが混じ
ったHTMLファイル群の拡張子
を―括してtxtに変更する

041

…

G日□□D
拡張孔 リネーム CaSO文mv

拡張子が入り交じつたフアイル群を、1つの拡張子にまとめてリネームしたいとき

日睡口田■

″:′bin′ sh

for filename in *
do

*.htm l *.htmL)

#フ ァイル名の前の部分を取得 (index)

headname=${f i Iename%. *]

#フ ァイル名を.txtに変換

mv riSfi Lenaneil liS(headname}.txt:1 -― ―――-0

esac

done

解説

このスクリプトは、カレントディレクトリにある拡張子.htmお よび.htmlのフアイルす

べてについて、拡張子を意tに変更するものです。

まず●にて、
*を利用して、カレントディレクトリのファイルリストに対してシェル変

数nlenameを用いて順に処理していきます。このようにbr文のinに
*を指定することでパ

ス名展開され、カレントディレクトリのフアイルリストを簡単に作成することができます。

(0)では、ファイル名についてパターンマッチを行います。ファイル名から指定文字列を

107

case "$filename" in



CWPTER 03● フアイル処理

含むものだけを選んで処理する場合には、このようにcase文 を利用する方法が簡便でよ
く使われます。ここでは拡張子.htmも しくは.htmlの場合にリネーム処理を行いたいた
め、マッチするパターンの指定としては「任意の文字列+.htm」 もしくは「任意の文字列+
.html」 となります。これはすなわち「*.htm l*.html」 となり、0に このパターンを記述
しています。

0は、バラメータ展開を用いてファイル名から「拡張子を除いたファイル名」を取り出
す際によく使われる書き方で、慣用句のようなものです。指定されたシェル変数から、
%.*と いう記法で、「。(ド ット)+任意の文字列」を削除することで拡張子を除いた部分を
取得できますので、これをシェル変数headnameに 代入しています。この%を用いた記法
については、P.62の注意事項で紹介していますので詳しくはそちらを参照してください。
最後にOで、拡張子を.txtに変更します。なおmvコマンドの2つの引数をダブルクォー
トでくくつているのは、空白文字 (スペース)を含むファイル名にも対応するためです。

注意事項

。このスクリプトでは、拡張子だけが違うファイルが2つあった場合、片方の内容で.txtフ ァ
イルは上書きされてしまいます。

0片方のフアイルで上書きされてabC.tXtが 1つだけとなる

Linuxにはrenameと いうコマンドがあり、ファイル名の一部を簡単に変更することがで
きます。このコマンドを利用すれば、サンプル例と同じ動作を次のように短く書くことが

できます。

関連項目

023 絶対バスで起動されても相対バスで起動されても、同じ動作をできるようにする
024 コマンドの使い方を表示する際に、現在の自分自身のフアイル名を使つて例示する

108

S ■s

abc . htm

S

abc . txt



‖o.

２４」■
Ｊ

Ｊ
■
「

処理開始前に、実行権限をチェ
ックして正常動作できることを
確認してから実行する

ファイル属性.状態チェック.フアイルテスト.バーミッションteSt I

…スクリフトの初期設定などで、特定のフアイルの存在チェックやバーミッションチエ
ックを行いたいとき

″1/bin′ 5ト

sta rt-command=" . /sta nt - sh "

if E -x "$start-command" 1; then
$start-cormand

e tse
echo "ERR0R: -x $start comnand faited." >&2

exit 1

fi

実行例

跛_重整
このスクリプトは、カレントディレクトリにあるstart.shを 実行するだけの簡単なもの

です。start.shを 実行できるかどうかを、スクリプト内で事前にパーミッションチェック

をして判断しています。なお、ここでstart.shと は何らかの処理を行うスクリプトである

と仮定しており、このサンプル例では
‖
start.‖ と表示するだけの単純なスクリプトです。

このサンプル例では、スクリプト内で別のコマンドが実行できるかを、testコ マンドの、

ファイルの実行権限を調べる演算子‐xでチェックしています。ファイルの状態を調べる

演算子はたくさんありますが、次ページの表ではよく使われるものをあげておきました。

例えばスクリプトの起動時の初期チェックとして、ログディレクトリに書き込みできるか

どうかを―wで調べたり、設定ファイルが読めるかを―rでチェックしたりという用途でよく

使われます。

109



　̈　　　　　　　　　　　一　　　　　　　．　一　　一一一一　　　　・　　・　　　　一

C}hPTE1 03● フアイル処理

Otestコマンドの主な演算子

これら演算子はまだまだたくさんありますので、もっと詳しく知りたい方は、man test

としてtestコ マンドのマニュアルを読んでみてください。

なおここまで、teStコ マンドという記述をしてきました。実は(Dの if文の中に表れるカ

ッコ [は、制御構造を示すカッコではなく、testコマンドと同じくコマンドです。例えば

次のようにコマンド名を解釈するtypeコ マンドで調べてみると、[コマンドはシェルビル

トインのコマンドとして用意されているのがわかると思います。

0[がコマンドであることを確認する

ただし、[コ マンドがtestコ マンドと違う点として、[コマンドは最後の引数に閉じカッコ

]を必要とする点があげられます。このため、E文の条件式として使うと、条件全体がカッ
コでくくられて見やすくなるため好んで使われます。つまリサンプルの●は、次のように

書くことと実は同じです。

||,||||||,|||1場 ,,1戯緋:彗:1111111111111    1 11,|||||111111
testコ マンドは、条件判断をしてその結果が真ならば終了ステータスにゼロを返します。
it文ではこの終了ステータスに基づいて、真偽値を判断しているわけです。
一般的には、it文の条件式としてⅡを使うことが多いですが、testコ マンドで書いてもか

まいませんし、あるいは他にも終了ステータスを判断したいコマンドを何でも書 くことが

できます。例えばリスト1は、if文の条件式にgrepコ マンドをそのまま書いています。こ

こではファイルsample.txtに、文字列"bin‖が含まれているかを調べています。

―d フアイルが存在し、ディレクトリなら真

―e フアイルが存在すれば真
―b フアイルが存在し、ブロックスペシャルフアイルであれば真
―C ファイルが存在し、キャラクタスペシャルファイルであれば真

フアイルが存在し、通常フアイル (regular fle)で あれば真
―L フアイルが存在し、シンボリックリンクであれば真

―r フアイルが存在し、読み取り可能であれば真
‐W フアイルが存在し、書き込み可能であれば真
‐X フアイルが存在し、実行可能であれば真
―S フアイルが存在し、サイズが0よ り大きければ真
―○ フアイルが存在し、実行中のシェルの実行ユーザIDに所有されていれば真
К
一 フアイルが存在し、ソケットフアイルであれば真

110

13

[ iS a She■ l b‐u■lt■n

type [



“

2● 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

翻鰊艤爾帥f文の条件式にgrepコマンドをそのまま書く

#!/bi n/sh

if grep -q "bin" sample.txt ; then
echo "sample.txt has string [binJ"

fi

grepコマンドは、マッチする文字列があった場合には終了ステータス0を、マッチしな

かった場合は非ゼロである1を返しますから、このように11文の条件式としてそのまま使

うことができるわけです。

注意事項

サンプルであげた「もしファイルが実行可能ならば実行する」という単純な条件を簡単に書

くために、次のような記法もよく用いられます。

&&で コマンドをつなげると、前のコマンドが成功したら(すなわち終了ステータスが0な

らば)次のコマン ドを実行する、という形で書くことができます。ここではtest‐ xコ マン

ドが成功すればファイルが実行可能なことを意味するので、続いてそのコマンドを実行す

るよう記述しているわけです。

このサンプル例では、シェル変数start_commandで 指定されたファイルがディレクトリ

であるかどうかは調べていません。そのため、あまりないケースですが、[startsh]と いう

名前のディレク トリがあるとエラーになります。厳密にやるならば、0の if文の中身を次の

ように書き、―fで通常ファイルかどうかも調べてから実行するとよいでしよう。この際、中a

というのはtestコ マンドで「AND」 を意味する演算子です。

関連項目

043 2つのファイルの新旧を比較し、古いほうを削除する

111



112

bffil 2つのフアイルの新旧を比較し、古いほうを削除する

□日雲口D
test.「 m …タイムスタンプ.新旧

タイムスタンプを比較し、どちらのほうが古いかを判定したいとき

■■罰皿■

″!/bin/sh

″新旧を比較する対象ファイル

Logl=t'Logl.Log"

Log2=ilLog2.Log‖

″引数のファイルが存在するかを調べ、存在しない場合は終了する

fi Lecheckく )

{

echo "ERR0R: FiLe $1 does not exist." >&2

exit 1i
fi

fitecheck ''SLogl"

fitecheck ''Stog2'i

# 22a7v4 )t,o)*flEtlb^. tr'[r) tH[kt6
if E "$l.og1" -nt "$tog2" J; then

echo "E$[o911->newer, [$Log2l->oLder"
rm $tog2

e Ise
echo "[$[og2J->newer, E$tog1 J->oLder"
rm $[og1

fi

一
●
●
●
●
●
●

●●

一

―

一
　

一
●
　

●

.■ ■ |

,t■ .
イ:.''‐

‘^０
一

if [ ! ―e l'$1'' コ′ the

}

, .′ o■ddel.sh

ilog2.■og]―>newer′



043● 2つのフアイルの新旧を比較し、古いほうを削除する

解説

このスクリプトは、シェル変数loglと log2で指定された2つのフアイルのタイムスタン

プ(modi″ time)を調べ、そのうち古いほうのフアイルをrmコ マンドで削除するものです。

まずはじめに、タイムスタンプを比較するフアイルが存在するかどうかのチェックを行

うためにfilecheckと いうシェル関数を用意しました (0)。 この中では、it文 とteStコ マン

ドの ëに よってファイルが存在するかのチェックを行っています。このようなファイルテ

ストについて、詳しくはP.109を 参照してください。

なお0では、ファイルの存在を―eでチェックする際に!と いう否定演算子を付けて、全

体の真偽を逆にしています。つまり、―eで「ファイルが存在する」場合に真になるので、

それを否定することで、「フアイルが存在しない場合」の処理を書いていることになります。

ここではファイルが存在しない場合、エラーメッセージを表示してexitコ マンドでスクリ

プトを終了しています。

また0において利用している$1と いう変数は、位置バラメータ (→P.4)と 呼ばれます。
これはシェル関数の中では関数への引数を表します。ここでは0でチェックしたいログフ

ァイルを指定するシェル変数を渡していますから、■ogl.log‖などのファイル名が代入さ

れていることになります。

ファイルのタイムスタンプの新旧を比較 しているのが、0の if文です。 n̈tは newer

thanの略で、次のように利用してファイルのタイムスタンプを比較することができます。

つまりこのif文が真の場合にはファイル2の ほうが古く、偽の場合はファイル1のほうが

古いということです。この結果から、サンプル例ではrmコマンドを使うことによって古

いほうのファイルを削除しています。

注意事項

もし2つのファイルのタイムスタンプが全く同一の場合、‐ntは「より新しい」かを調べるた

め偽を返します。つまりこのサンプル例ではloglの ほうが古いとみなされ削除されること

になります。

Ⅱot(older than)という条件式もあります。これは‐ntとは逆で、より古いファイルの場合

に真となります。

関連項目

028 新規ファイルを作らずに、すでにあるフアイルのみフアイル更新日を変更する

“

2 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

113



‖0日 2つのディレクトリ内を比較し、
どちらか片方だけに存在するフ
アイルを表示する

044

■■

“
フアイルリスト,デイレクトリ比較

□鷹回囲ロ
2つのディレクトリが似たような構成の際に、片方だけにある・両方にあるファイル
を見やすくリストアップしたいとき

″:′ bin′sh

″比べる2つのディレクトリ名

di rA=‖ di rq,:

dirB=‖ di r2"

#di rlノ と di r2/のファイルリス トの差を調べる。
( cd ${dirA}′  find . ―maxdepth l ―type f ―print l sort )> tempfitel.Lst
( Cd S(dirB}′  find . ―maXdepth l ―type f ―print l sort )> tempfite2.Lst

0

P

corln tempfi Le1. lst tempfi [e2. tst - - €

$ . /find-comn.sh
. /dav.conf

. /default, conf

. /info.conf

. /mpm.conf
. /ssl . conf

. ,/userdir. conf
. /vhosts . conf

解説

このスクリプトは、カレントディレクトリ配下の2つ のサブディレクトリ、dirlと dir2

の中のファイルを調べ、

114

|

□日壺目日
find.so「t.comm

一　
　
　

　
　

　
　

・　

　

　

　

・

●
●
一　

―

・　

　

　

　

　

　

　

　

●
　
　
　

　
　

　
　

　
　
　

　
　

　
　

　
　
　

　
　

　
　

　
　

■
■

一　
　
　
　
　
一
　

　

　

一
■

　

　

　

　

　

　

　

　

．

一　
　
　
　
　
・　
　
　
　
　
一　
　
　
　
．
■



04402つ のディレクトリ内を比較し、どちらか片方だけに存在するフアイルを表示する

(1)dirlのみに存在するフアイル

(2)dir2のみに存在するフアイル

(3)dirlと dir2両方に存在するフアイル

を分けて出力するものです。出力としては、タブ区切りで左から (1)、 (2)、 (3)の順に表

示されます。つまりこの実行例では、dav.confと vhostS.COn助 デゞィレクトリdirlのみに

存在し、ssl.confが ディレクトリdir2のみに存在し、残りのファイルは両方のディレクト

リに存在する、 ということになります。読者がこのサンプル例を試す際には、最初に定義
しているシェル変数dirAと dirBの値を、実際に比べたい2つのディレクトリ名に変更して

実行してください。

●で、それぞれのサブディレクトリの中のファイルリストを一時ファイルとして出力し

ています。ここでは全体をサブシェル (→P.66)と して、カレントディレクトリの移動やリ

ダイレクト出力を行っています。サブシェルとしているのは、cdコマンドでカレントデ

ィレクトリを移動した際に、元のディレクトリに自動的に戻るようにするためです。

また●では、ディレクトリ内のファイルリスト作成の際に、findコマンドで…type fと

指定することによリディレクトリを除外し、通常のフアイルのみを指定しています。また

…maxdepth lと して、2階層以上深いディレクトリ内のファイルは対象とせず、サブデ

ィレクトリ直下のフアイルのみを対象としています。findコ マンドの基本的な使い方は、

P.68を参照してください。

ここまでで、ディレクトリdirlの 中のファイルリストをtempfilel.lst、 ディレクトリ

dir2の 中のファイルリストをtempfile2.lstと して出力できたので、この2つのファイルリ

ストを比較します。

0で、commコマンドを使って2つのディレクトリ内のファイルリスト差分を出力して
います。commコ マンドとはフアイルの内容を比較するコマンドで、2つの入カファイル

を読み込み、共通な行および共通でない行をそれぞれ表示するコマンドです。COmmコ マ

ンドの実行例は次のようになり、3列からなる出力を生成します。

畿commコ マンドは2つのフアイルを比較する

ここで、それぞれの列の意味は以下のようになります。列はタブ区切りとなります。

・第1列にはf‖ elだけに含まれる行を出力

115

■■目■目



Ci餞
『
露8030フ アイル処理

第2列にはf‖ e2だけに含まれる行を出力

第3列には両方のファイルに共通に含まれている行を出力

なおcommコ マンドを利用する際は、入カファイルがソートされている必要があります。
そのためこのサンプル例では、0でfindを実行後にsortコマンドで行ソートしてから一時
ファイルに出力しています。こうしてディレクトリ内のファイルリストをcomnlコ マンド

に比較させることで、各ディレクトリ内のファイルのチェックが行えます。

I nurn
このように2つのディレク トリ間でファイルリス トの差分を確認した後には、ディレクトリ

間でファイルを同期させたくなることでしょう。2つのディレクトリの中のファイルを同期

させたいときには、rsynCコ マンド(→P.91)が便利です。

COmmコ マンドは、指定した列のみの表示をすることができます。この際は、表示したく
ない列を‐1あるいは-2の ように指定します。例えば両方のファイルに存在する行のみ表示

したいときは、次のように‐12を指定して第3列のみ表示させればよいわけです。

comm -12 fltel fite2           ‐‐       |    . __

・ COmmコ マンドの終了ステータスは、似た動きをするdiffコマンドと若干異なるため注意が
必要です。diffコマンドの終了ステータスは以下のようになつています。

2つのファイルが同一ファイルのときは終了ステータス0

2つのフアイルに差があるときは終了ステータス 1

フアイルが見つからないなどのエラー時には終了ステータス2

つまりdiffコ マンドでは、終了ステータスが0か 1かで、2つのファイルに差があるかどうか

を判断するのが一般的です。

一方、commコマンドは2つのファイルに差があつてもなくても、正常終了すれば終了ステ
ータスにOを返します。commコマンドが終了ステータスに非ゼロを返すのは、ファイルが
見つからないなどのエラー時だけです。このため、commコ マンドの終了ステータスをチ
エツクして条件分岐をするスクリプトを作る際には、diffコ マンドとの違いに注意してくだ

さい。

I manc
025 ディレクトリ移動した後に簡単に元の場所に戻る
026 デイレクトリ内のファイル数・ディレクトリ数を調べる
034 ファイル群を別ディレクトリに同期するバックアップ処理を行う

116



-bls 
I

あるディレクトリの中で容量を食つ
ているサブディレクトリを調べる

□回壺目□
du,sori ディスク使用量.フアイルサイズ

□麗圏國■

ディレクトリごとのデイスク使用量を表示したいとき

■鵬罰四■

″:′ bi n′ sh

data di r=" /home/use11 /myapp/data"

″ディレクトリ$data_di r配 下の、サブディレクトリの

″容量をサマリ表示する

du _sk ${data_dir}/十 / l sOrt _rn

解説

このスクリプトは、シェル変数data_dirで 指定されたディレクトリの中の、サブデイレ

クトリごとのデイスク使用量を調べるものです。ここで、dataデイレクトリの中には

dirl、 dir2、 dir3と いう3つのディレクトリがあり、その中にはたくさんのフアイル・デ

ィレクトリが含まれているものとします。

は実行例のデイレクトリ構成

data

dirl

dir2

dir3

117



C略婚唯鶏03● フアイル処理

ファイルが利用しているディスク使用量を調べるには、duコ マンドを用います。これ

は意外に扱いにくくわかりにくいコマンドですので、ここで使い方を少し詳しく解説しま

す。

まずはじめに、duコ マンドで表示される値について説明しておきましょう。duコ マン

ドで表示される値は、ファイルサイズそのものではなく、ファイルがディスク上で利用し

ているブロックサイズを示します。このブロックサイズは環境によって値が変わりますの

で、シェルスクリプト内でduコ マンドを利用する際は、常に‐kオプション (キ ロバイト単

位)や‐mオプション(メ ガバイト単位)で表示するよう指定したほうがよいでしよう。例え
ば次の環境ではブロックサイズが512バイトであるため、―kオ プションを付けて1024バイ

ト単位の表示とすると、報告される値が半分になります。

0‐ kオプションを付けるとキロバイト単位で表示する

さて、duコ マンドを引数なしで実行すると、カレントディレクトリ配下のディレクト

リすべてについて、それぞれのディレクトリが利用しているディスク使用量を表示します。

鬱duコ マンドを引数なしで実行するとサブディレクトリも表示する

上記では、dir3と いうディレクトリの中にはさらにcontroHerと agentと いうサブディ

レクトリがあるため結果に表示されています。しかし一般的にこういう表示はなかなか見

づらく、dir3でまとめた使用量を表示してはしいと思うでしよう。本サンプル例は、その

ような用途のために使うものです。

リストのOでは、duコ マンドに…sオプションを利用しています。これは実際に引数で指
定された対象のディスク使用量のみを表示し、そのサブディレクトリによる使用量は表示

しないオプションです。(D)では、―sオ プションに/*/と いう引数を与えることで、サブディ

レクトリごとの容量を表示しています。また同時に―kオプションを指定して、キロバイト

単位で表示しています。

S cd /hol■ e/user1/myapp/data

, du
29116   ./dirl

8       ./d■r3/contro■ler

8       ./dir3/agent

1020    ./d■r3

4716     ./dir2

35856   .

118

●

●
●
●

一■
■
一一
一
―
■

―

●
●
●
・一●
一―
●
一
●
一・一一
●
一●

一
●

●
●

一
一．一一
●

一

du

■■

.― |||.:

■__‐ 11'|.



0450あるディレクトリの中で容量を食つているサブディレクトリを調べる

続いて●では、duコ マンドの出力結果をパイプでsortコ マンドに渡し、‐rで逆順ソート

しています。これでディスク使用量の多い順に表示することができます。またこの際、‐n

オプションも同時に利用して、文字列ソートではなく数値ソートとなるようにしています。
―nオ プションを利用しないと文字列ソートとなってしまうため、このような数値の降順ソ

ートを行いたい場合は、―rn指定するのがよく使われるやり方です。

duコマンドの‐hオプション

duコ マンドは…h(human‐readable)オ プションを利用すると、キロバイト(K)やメガ
バイ ト(M)な ど単位付きで使用量を読みやすく表示できます。

り大きなバイト数は―hオプションで読みやすくなる

このように‐hオプションを付けると大変読みやすくなりますが、sortコ マンドで使用量

ごとにソートすることができなくなつてしまいます。そのため、日で見て確認するときに

は便利ですが、シェルスクリプト中でソートしたいときにはあまり使いません。

なお、一部のLinuxの sortコ マンドには―h(…human― numeric―sort)オ プションがあり、

2K、 lG、 というようなduコ マンドの一hオ プションでの出力値を正しくソートできます。

理 型里

116 デイスクの容量監視を行う

119



‖o. 作業フアイルを作る際に、内容
を読まれないようセキュリティ
対策を行う

046

□回露□D
umask …セキュリテイ.′ ―ヽミツション,unask

□
―スクリフト内で、バーミッションを指定してフアイルを作成したいとき

■鵬田嘔D

″:ノ bi n′ 3h

umask 077

#eChOコ マンドの出力を、一時ファイルとしてパーミッション600で作成
echo liID: abcd1 23456=' > ldinfo.tmp― ―――――― o

S ./umaskosh        _

S iS ―■

tota1 8

-1■7-―――――- l userl user1 48 Dec l1 23:24 idinfo.tFnp

―r、●くr― xr―x l ■lserl user1 39 Dec l1 23:17 urヽ ask.sh

解説

このスクリプトは、umaskコ マンドを用いて、一時ファイルのパーミッションを設定し

ておくものです。こうして他の人からフアイル内容を読まれないようにセキュリティに配

慮して、ファイルを作成することができます。

サンプル例では、"ID:abcd123456‖ という文字列を一時ファイルに出力 しています。

スクリプトの実行中に一時ファイルを作ることはよくありますが、このようにID情報

など、あまり他の人に読まれたくない情報を記録することがあるでしょう。このような場
Aは、umaskコ マン ドでマスク値を設定 してからファイルを作れば、一時ファイルのパ
ーミッションを適切に設定できます。

umaskコ マンドの使い方は、次のようになります。

120



撻0鬱 作業フアイルを作る際に、内容を読まれないようセキュリテイ対策を行う

umaskコ マンドの書式

umask く7スク
“

昌F>

マスク値 (umask値 )は 3桁の8進数で指定 します。umaSkコ マンド実行後に作られるフ

ァイルのパーミッションは、umaSkで指定 したビットが0に なるように作成されます。ま

た、ファイルのパーミッションの値は、一般的なシェルスクリプト上でファイルを作る際

は、666(ディレクトリの場合は777)を umask値でマスクした値になります。

つまり666と umask値それぞれを2進数で記述し、umaskの値が 1になっている桁を0と

した値が、スクリプト中で作成されるフアイルのパーミッションになります。

例えば、umask 022と 指定 したときに作 られるフアイルのパーミッションは、次のと

おり644と なります。

0パーミッションの指定方法

666

022

―-2進数表示……>'1 1 0 1 1 0 1 1 0

-域進数表示―中> 0 0 0 0 1 0 0 1 0

マスク結果  110100100-〉

このスクリプトでは、スクリプトの先頭 (0)で、umask値に077を設定しています。こ

れにより、このスクリプト内で作られるフアイルのパーミッションは600(フ アイル所有

者のみ読み書き可)と なります。0でeChoコ マンドの出力をファイルにリダイレクトして

いますが、この一時ファイルのパーミッションも600と なり、他の人に読まれる心配があ

りません。こうしてシェルスクリプト中で、安全に一時ファイルを作成することができる

ということです。

関連項目

“

9 二重起動が可能な一時ファイルを作成する

121



.btt 
I

バイナリフアイルに含まれる文
字列を取得する

□回壺□日
strings.grep …バイナリフアイル,検索,実行フアイル

…エラーメッセージを出しているコマンドが不明な環境で、そのコマンドを探したいと
き

″:′ bin′ 3h

#検索したいエラーメッセージ
meSSage='!Unknown Error:1

stnings -f /home/use11/nyapp/binl* | grep "$message',

$./strings,sh
/home/user1/myapp/bin,/start : error: Unkno\^rn Error
/home/userl/myapp/bin/ki11: Unknorvn Error at gs

/home/user1/myapp/bin/ki1]: Unknown Error at Bs:td

解説

このスクリプトは、あるエラーメッセージを手がかりに、バイナリファイルの中からそ

のエラーメッセージを出力しているコマンドを探すものです。

システム運用をしていると、何かエラーメッセージが出ているのに、それをどのコマン

ドが出しているのかがわからない、 という事態が起きることがあります。プログラムが

Perlや Rubyな どのスクリプト言語で書かれているならば、そのエラーメッセージで単純
にプログラムファイルをgrepし てみればよいでしょう。しかしC言語などで書かれている
と、コンパイルされた実行ファイルはバイナリファイルのため、単純にテキス トとして検

索することができません。

こんなときに、エラーメッセージを表示しているコマンドを探す手段の1つ として使え

るのがStringsコマンドです。

StringSコ マンドは、バイナリファイルの中から文字列を抽出して くれるコマンドです。

一般的に、C言語で書かれたコンパイル済みのバイナリファイルであっても、多 くの場合
は文字列定数はファイル中にそのまま格納されています。そのため、stringsコ マンドで

プログラム内に書かれたエラーメッセージを見つけ出すことができます。このサンプル例

は、そうしてエラーメッセージを出力 しているコマンドの「当たり」を付ける…という、

122

一　

　

　

　

―

一
●
●
一

・　

　

　

　

　

　

　

一
　

　

・

一
　

―
　

一　

・
　

　

一●
●
●
●
一

・
　

　

　

　

　

一　

　

一
●

一●

●
―

一
　

　

　

―
一―

一
一



撃:7檬 バイナリファイルに含まねる文字列を取得する

トラブルシューテイング時に使えるスクリプトです。

リストのOでは、stringsコ マンドに‐fオプションを付けて、文字列表示の際にファイル

名も同時に表示するようにしています。―fオ プションは対象ファイルをワイルドカード(*)

で指定することにより、指定したパス内のフアイルすべてを対象にしています。strings

コマンドの出力は、パイプでgrepコマンドに渡して、シェル変数messageで 指定した文

字列にマッチする場合だけ表示しています。このサンプル例では、結果として
‖Unknown

Error‖ という文字列を合むファイルを抽出できます。

このサンプル例は、例えば読者が運用しているアプリケーションが、ログフアイルに、

見たことのない不審なメッセージを出力しているケースで利用できます。ログフアイルの

不審なメッセージをシェル変数messageに設定し、stringsコ マンドの―fオ プションで指定

するパスをアプリケーションのディレクトリに設定して実行してみてください。

odコマンドとheXdumpコマンド

バイナリフアイルの中身を直接見るには、ファイルを8進数でダンプするodコマンドが

よく使われます。odコ マンドはさまざまなオプションを持ちますが、単にバイナリファ

イルの中にある文字列を見たいだけならば、ASCII文字出力をする c̈オプションだけ覚え

ておけば十分です。

次は、Linuxの カーネルファイルをodコ マン ドでダンプした実行例です。・Direct

booting iom…
‖
という文字列があるのがわかります。

OLinuxカーネルをodコ マンドでダンプ

なおodコ マン ドは比較的シンプルなコマンドです。もう少 し高機能なものとして、

hexdumpコ マン ドもよく使われます。hexdumpコ マンドは―Cオ プションを利用すると、

ファイルの内容を、「16進ダンプとASCH文字列のセット」で表示することができます。

s Od ―c vm■ inuz-2.6.32-358.23.2.e16.x86_ 4

0000000 352 005

0000020 374 276

0000040 353 362

0000060  e  c
00001010        f

…・ (省略)

¥0 300  ¥a 214 310 216 330 216 300 21‐ 6 320

-  ¥0 254     300   t  ¥t 264 016 273  ¥a

1 300 315 026 315 031 352 360 377  :Y0 360

t b o o t il… 9 f
l o p p y ■ s■ ‐ n o

1 344 373

¥0 315 020

D  i  r

l   o

123



C田

『

rE■ 03● フアイル処理

◎Linuxカーネルをhexdumpコ マンドでダンプ

注意事項

プログラム内で動的にエラーメッセージを組み立てている場合などは、stringSコ マンドで

は該当のバイナリファイルを見つけることはできないでしょう。

Macの stringSコマンドには‐fオプションがないため、ファイル名を表示させることができ
ません。そのため0の部分は、forループを使つてファイルごとに処理するとよいでしょう。

00000000

00000010

00000020

00000030

00000040

… (省略 )

ea 05 00

fc be 2d

eb f2 31

65 63 74

20 66 6c

cO

00

c0

20

6f

07

cd

62

70

8c

20

16

6f

70

d10.

07

f0

66

6f

31

00

44

72

20

c8 8e

c0 74

cd 19

6f 74

79 20

d8 8e

09 b4

ea f0

69 6e

69 73

c0 8o

Oo bb

ff 00

67 20

20 6e

e4 fb

cd 10

69 72

6f 6d

6c 6f

..1..........Dir

ect booting from

floppy ェs no lo

124

S hexdump ―C vinlinuz-2.6。 32-358.23.2.e■ 6.x86.64

|



‖o.

|

.svnなどの隠しフアイル・デイ
レクトリのみを列挙する048

…Is.case 隠しファイル.ドットフアイル

隠しファイルのみを対象とした処理を行いたいとき

日鵬轟四■

#:′ bin′sh

″ IFSに改行を設定する

IFS=1~~L__________
_」

″ カレントディレクトリ配下のファイルを$fi Lenaneと して順に処理

for fitename in $(Ls -AF)
do

case "$filename" in
.*/)

echo "dot directory: $fi tename"

;;

echo "dot fiLe: $fitename"

esac

done

解説

このスクリプトは、カレントディレクトリにあるドットフアイル (ディレクトリ)を列

挙し、それぞれがファイルなのかディレクトリなのかを表示するものです。

一般的にUNIXでは、ファイル名の先頭が。(ド ット)で始まるフアイルをドットファイル

と呼び、これを隠しフアイルとして扱います。ドットファイルはコマンドの設定など特殊

な用途に使われることが多く、何かと特別扱いすべきことも多いため、このサンプル例の

125



C椰旧臓R03● フアイル処理

ようにドットファイルのみを対象とするスクリプトが必要な場面があるでしょう。よく使

われるドットフアイルを、次の表にあげておきました。

〇よく使われるドットファイル(ディレクトリ)

このスクリプトではドットファイルのリストをlSコ マンドで作りますが、そのための事

前準備として、●でIFS変数を変更しています。●は文の途中で改行してゴミが入つてい

るかのように見えますが、正しい書き方です。これは、はじめて見る人にはとても奇妙な

書き方に思われることでしょう。

:FSと はInternal Field Separatorの 略で、シェルが区切 り文字として解釈する文字を設

定する特殊な変数です。デフォルトでは改行 。タブ・スペースが設定されています。●
は、このIFSに改行のみを代入し、以降のスクリプトではシェルの区切り文字として改行

だけを用いて、スペースとタブを区切り文字として扱わないようにするための処理です。
このサンプル例ではファイル名を扱うため、ファイル名にスペースを含んでいる場合に

はひとまとめの文字列として扱い、スペースを区切りと解釈したくありません。そのため

IFSと して、このように改行だけを設定してスペースを含めていないのです。変数代入が

●のように2行に分かれるというのは、他の言語ではなかなか見られない書き方ですが、
シェルスクリプトのIFS設定の場面では比較的よく使われる記法です。

さて、ドットファイルはlsコ マンドを使えば簡単にリストが得られると思われるでしょ

うが、これが意外にややこしく面倒です。単純に'(ア スタリスク)を使つて、「IS*」 のよ

うにワイルドカード指定をしても、 ドットファイルは対象となりません。これはシェルの
仕様として、ドットファイルは

*にマッチしないようになつているためです。

lSコ マンドのワイルドカード指定で ドットファイルを得るには、.*と「ドット十ワイル

ドカード」を明示的に指定する方法があります。しかしこの場合は、カレントディレクト

リを意味する.(ド ット)と 、親ディレクトリを意味する。.(ド ットドット)も対象となって

しまいます。

そこでこのサンプル例では0にて、lSコ マンドの‐Aオプションでドットファイルを合め
てカレントディレクトリ配下のファイルすべてを表示し、それをcase文でより分ける、と

いう手法でドットファイルだけを抽出することにしました。ls― Aな らば、カレントディ
レクトリや親ディレクトリは表示されないため、先頭文字がドットかそうでないかの単純

な判断だけでドットファイルを抽出できます。

bash_profite baShがログイン時に読み込む環境設定フアイル

mysql_history mySqlコマンドの実行履歴フアイル

virn rc vi(vim)エ ディタの環境設定ファイル

[:)S Store Flnderが利用するフォルダ情報フアイル (MaCOSのみ)

.ssh(デ ィレクトリ)
ssh接続のための鍵フアイルなどを保管する。秘密鍵を含むことがあるため取
扱いに注意が必要

.sVn(デ ィレクトリ) Subverslonの 作業コピー管理ディレクトリ

git(ディレクトリ) Gitの リポジトリ管理ディレクトリ

126

一　

　

　

　

　

　

　

・

名前 用壌     ‐



解購醸 svnなどの隠しフアイル・ディレク トリのみを列挙する

なお0ではこの際、ファイルなのかディレクトリなのかを区別するためにlsコ マンドの
‐Fオプションも一緒に利用しています。―Fオ プションを付けるとディレクトリの最後には

/(ス ラッシュ)が付くため、これを見てディレクトリなのかフアイルなのかを判断できま

す。

実際にファイルかディレクトリかを判別するのは、101の case文で行っています。シェ

ルスクリプトで文字列をマッチさせて処理分岐させたいときには、このようにcase文 を

使うと手軽に書けます。ファイル名がドットで始まってスラッシュで終わっている場合

(〃)にはディレクトリと解釈して
‖
dot directow‖ と表示し、それ以外でドットから始まつ

ている場合 (.*)に はファイルとみなして"dot file‖ と表示しています。

注意事項

このサンプル例でさらに続けて何らかの処理を行う場合、lFSを改行のみとしていることが

悪影響を及ぼすことがあります。そのためlFSを 一時的に変更する際は、最初に現在の!FS

を保存しておいて、後で値を元に戻す、という手法が一般的によく使われます。

lFSに改行を設定したい場合、次のように書くこともできます。このほうが改行で分かれた

書き方をせずに済むため、見やすいかもしれません。ただし、POSIX準拠の書き方ではな

いため、Ubuntuの shなど一部の環境では動作しない場合もあります。

「

S=$YIII I IIII‐
||||||‐‐| | ‐‐| | ‐||‐

||‐| | | ‐‐|||||‐| ‐| ‐‐| | ‐‐| | ‐||||||||

127



‖o.         |

0491
二重起動が可能な一時ファイ
ルを作成する

date, cat テンポラリファイル.一時ファイル.
プロセスlD

…スクリフトを同時実行させるとき、一時ファイルを重複しないようにしたいとき

″!′ bin/sh

tmpfi te="tlmp.SSi: ―――――(D

date>Stmpfi Le―――――o
sLeep 10

cat StmpfiLe― ――――――――o
rm ―f StmpfiLe

用コマン ド

S ./tmippid osh

Sat Dec, 14 22:50:16 JST 2013

解脱

このスクリプトは、プログラム内で一時的に利用するテンポラリファイル (以下一時フ

ァイル)を扱うものです。スクリプト起動時にdateコ マンドで現在の日付を一時ファイル

に書き出し、 10秒待つてからその値をファイルから読み込んで出力します。このサンプ
ルでは、シェル変数tmpfileで 指定 している一時ファイル名を、プロセスlD($$)を用いて
生成していることがポイントです。

シェルスクリプトでは、途中の計算結果や処理結果などを後で利用するために、一時フ

ァイルを使う場面が多々あります。この際に気を付けなければいけないのが、二重起動さ

れた場合の処理です。例えば、もしtmp■ le.txtと いう名前の固定ファイル名で一時ファイ

ルを作つていると、次のように後から起動したプロセスで値が上書きされてしまうことが

あります。

128

03



翻:o燿 二重起動が可能な一時フアイルを作成する

蜻一時ファイルが重複しているとマズいことになる

プロセスAの処理 プロセスBの処理

これを防ぐには、同じシェルスクリプトを実行しても、それぞれのプロセスが違う名前

で一時ファイルを作るようにしておくことが必要です。その際によく使われる手法が、本

サンプルで用いている、拡張子を,S$とするやり方です。

$$と はシェルの特殊変数で、実行しているシェルのプロセスIDを値として持っていま

す。プロセスIDと はOS上でプロセスごとに振られる一意の数値で、同じシェルスクリプ

トであってもプロセスが違えば違う値となります。●ではこの一意性を利用して、一時フ

ァイルのフアイル名としてプロセスIDを利用しています。続いて(0)で この一時ファイル

にdateコマンドの結果を出力して、現在時刻を保存しています。

このサンプル例は途中にsieepコマンドを挟むぶん時間がかかるスクリプトであるた

め、他の人が同時に実行して何重にも起動されるかもしれません。しかしそれらはすべて

違うプロセスになりますから、それぞれ違うプロセスIDを持ち、結果としてtmp.$$で 指

定する一時ファイル名もすべて違うファイル名になります。そのため、0で一時ファイル

の中身を出力する際も、それら多重起動しているプロセスがお互いに影響を及ぼすことの

ないように扱うことができるのです。

このように、プロセスごとに違う値にしたい場合は、この$$を使うのがセオリーです

から覚えておいたほうがよいでしよう。

注意事項

ランダムかつ一意なファイル名を持つ一時ファイルを作るコマンドとして、mktempとい

うコマンドもあります。このサンプルのようにプロセスlDを用いた場合、悪意のある攻撃

者が比較的容易に一時ファイル名を推察できてしまうため、Webアプリケーションなどで

はセキュリティを考慮してmktempコ マンドが推奨される場合もあります。

129

:                 菫
: 値aを書き込み           1

1｀ 躙 鰤  |

l  ▼  /1

1 [RII轟国  i
l  値を読み出し           :
1  (aが読まれると思つているが、   1

↓  

実際はbが読まれる)       

↓



‖●.

050
Sedでフアイル置換を行う際、
シンボリックリングを実ファイ
ルで置き換えないようにする

シンポリックリンク.フアイル置換,実体フアイルsed, readlink

Sedコマンドの‐iオプションで、シンボリツクリンクを対象とするとき

■■目固回■D

″:′ bi n/sh

f i Iename="target. txt"

if [ ! ―e `'Sfi tenameli ]′  then
″対象ファイルが存在しなければエラー終了

echo l'ERROR: Fう te not exists.'I >82

exit l

eLif [ ―h l'Sfi tename'i コ′ then
″対象ファイルがシンボリックリンクならば、readtinkコ マンドで
″実体ファイルに対して処理を行う

sed -1.bak ''sノ HeLLo/H1/g:1 '=S(readtink '=Sfi tename:'):= ―――― o
etse

sed -1.bak i:s/HeLLo/H1/gi= i'Sfi Lename‖

fi

利用コマンド

いつ使うか

, ■s ―F
or■9/  sed― sym■■nk.sh丼

S is orェg/

target.txt

S ./sed― sytt■ェnk,sh

S is ―F

or■ 9/  sed― sylnl■ nk.shキ

target.txto -.- --

target. txte

‡|::::俯鶯鐵:鶉:鱗::爾鐵辣卜伝i鶴

S is ―F orig/
target.txt      target.txt.bak

解説

このスクリプトは、sedコマンドの‐iオプションでフアイルの上書き置換を行う際、シ
ンボリックリンクをそのままリンクとして扱うものです。この環境では、カレントディレ

130

|



Om osedで フアイル置換を行う際、シンポリックリンクを実フアイルで置き換えないようにする

クトリにtarget.挟 tと いう名前のシンボリックリンクがあり、このリンクはorigディレクト

リ内の実体ファイルに向いていると仮定しています。 これはlsコ マンドでも-1オ プション

を付けると確認できます。次のような表示を見たことがあるかもしれません。

9シンポリックリンクは実ファイルを指す

サンプルでは、target.挟 tと いうシンボリックリンクを対象としてsedコ マンドを実行し、

ファイル内の
‖
Hello・ を
‖
Hi‖に置換しています。

さて、sedコ マンドはフィルタコマンドであり、通常は入力元のフアイルを上書きしま

せん。そのため置換後の結果で元ファイルを上書きするには、次のように中間ファイル(こ

こではtmp)を作る必要があります。

蜻通常は中間フアイルを作つてから上書きする

しかしこの中間ファイルを作りたくないケースのために、sedコ マンドには九ファイル

を上書きする-1オ プションが用意されています。

なお-1オ プションを使う際には、上書きという破壊的処理に備えてバックアップファイ

ルの指定を行います。例えば、元ファイルに拡張子.bakを付けてバックアップをとり、上

書きする場合は次のようにします。これにより、置換後の結果で上書きしたtarget.txtと 、

元ファイルのバックアップファイルtarget.収 t.bak、 の2つのフアイルができます。

しかし―iオ プションは、シンボリックリンクを対象とするとややこしいことになります。

―iオ プションは対象がシンボリックリンクであっても上書きをしてしまうため、このサン

プル例では、カレントディレクトリにあるシンボリックリンクを置換後の内容で上書きじ

てしまいます。結果として、次の2つのファイルができてしまいます。これは管理上、間

題となるでしよう。

・ カレントディレクトリの、置換後のtargettxt

・ orig/ディレクトリ内の、元のフアイルtargettxt

そこでこのサンプル例では、対象がシンボリックリンクかどうかを判定して処理を変え

ています。まず●では、ファイルが存在するかをtestコマンドの ë演算子 (→P.110参照)

で判定し、ファイルがなければexitコマンドで終了しています。

131



CWF饉■03● フアイル処理

続いて0で、testコ マンドの‐h演算子で対象ファイルがシンボリックリンクかどうかを
チェックしています。もしシンボリックリンクだった場合、10)でread‖ nkコ マンドを用
いて実体ファイルのパスを得て、この実体ファイルに対してsedコ マンドを実行します。

なお、readlinkコ マンドとは次のように、シンボリックリンクを引数にとり、実体ファイ

ルヘのパスを表示するコマンドです。

Oread!inkコ マンドでシンポリックリンクを調べる

このように表示された場合、カレントディレクトリのtarget.txtは oriytarget.txtへのシ

ンボリックリンクです。

こうしてreadlinkコ マンドの出力結果をsedコ マンドで処理すれば、元の実体ファイル

を上書きしますからシンボリックリンクもそのまま残り、ファイルを正しく扱えるわけで

す。

注意事項

Linuxのsedには、シンポリックリンクのリンク先を追つてくれる…fo‖ ow…sym‖nksとい

うオプションがあります。これを使えば、サンプル例は次のように簡単に書くことができ

ます。この場合、対象ファイルが通常ファイルであればそのファイルを処理しますし、シ

ンポリックリンクならばリンク先のファイルを処理するため、リンクは壊れません。

sed ―う..bak ■=flot t.ow・ sym‐ Links :'s/HetLo/H1/g'i r'$fitename't         . ||| ‐| ||||‐
|||||‐.   

‐ |. ||| ||‐ ■ || . .  .                                           . ・ . |.|||||||‐ ||■ |

一　

　

　

　

　

　

　

・　

　

一

●
●

―

　

　

　

　

　

　

・

関連項目

132

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

●3‐



GHAPTER

日付処理
ログファイルなどのファイル名には日付が使われる

ことが多いため、シェルスクリプトではこれらファ

イルの操作のために「今日が月末かどうかを判定す

る」「現在の前月を取得する」など、日付処理が必要

とされる機会が多くあります。この章では、dateコ

マンドを用いて日付処理をおこなうサンプル例を紹

介します。Linuxと Mac/FreeBSDではdateコマン
ドの書式に違いがあるため、この差異も合わせて解

説します。



bsr 
I

dateコマンドで日付の比較と
取得を行う

…date.expr              日時,UN!X時間.エポック秒

■□日回日圏D
日時表記のテキストが2つあり、数値計算して何自の差があるのかを計算したいとき

″!/bi n′ sh

″比較したぃ2つの日時を変数として定義

dayl="2012/04/01 10149:49'1 -¬

day2=:'2012/03/30 08:31:52'i ―――「

#日付からepoCh秒 を取得するには+%sを 利用する(Linux)

#※ ―dオ プションはFreeBSDノ Macで は使えない
dayl―ep° Ch=S(date ~d ilSdayl'' 1+%S:)~ 

匡___」魔
day2_epoch=S(date ―d iiSday2'' :+%s:)― コ   ▼

echo "day1($dayl): $day1_epoch"
echo "day2($day2) : $day2_epoch"

″ 2つの日付のepOCh秒 を引き算して、

″ 1日 =24時間=1440分 =86400秒 で割れば何日違うかを計算できる

echo tiday intervaL: :=

day_intervaL=$(expr ¥( Sdayl_epoch ― Sday2_epoch ¥) / 86400)
echc, Sday_intervaL

利用コマンド

実行例

S ./date― cPochosh

dayl(2012/04/01 10:49:41):

day2(2012/03/30 08:31:52):

day ■nterval:

2

1333244981

1333063912

解説

このスクリプトは、文字列として与えられた2つの日付の差をUNIX時間に変換 して比

較し、その差が何日あるかを計算してシェル変数day_intervalに 代入しています。利用ケ

ースとしては、例えば申し込み日付から5日 以上経過しているユーザには何 らかのメール

134

■

●
―

　

　

　

一

一一一̈摯一一”一̈”一一一一一一一■

]―

―



1)議1鑢 dateコマンドで日付の比較と取得を行う

を送るなどのプログラムで、このday_intervalが 5以上ならばメール送信スクリプトを実

行する、などの使い方が考えられます。

さて、UNIXサ ーバを運用していると、以下のように現在日時を処理しなければならな

い場面は非常に多くあります。

。ログファイルのファイル名から、古い日付を持つファイル名の判定

・ 月次処理の日付判定

・ 受け付け日時/解除日時の登録など
。ファイルのタイムスタンプ判断

こんなとき、UNIXでは一般的に「UNIX時間」という値で日時を処理するケースが多く

あります。これは、UNIXエボック(epoch)と 呼ばれる1970年 1月 1日 0時0分0秒からの経

過秒数を表すもので、エポック秒とも呼ばれます。例えば2000年 1月 1日 0時0分0秒 は、

UNIX時間で946652400です。
一般的に日付をコンピュータで扱う際、年月日などを書く形式が国や文化によって違う

という問題点があります。例えば日本では「2013年 12月 15日 」と書くところ、英語では

「Dec 15 2013」 と書いたりします。このように言語だけでなく表記順も異なります。こ

れでは扱う環境によって日付処理を書きなおさなくてはならずとても不便です。しかし

UNIX時間を使えば、どんな国や文化でも表記は同一ですし、値も単なる整数値で扱いや

すいため、UNIX環境では広く用いられている時刻フォーマットです。
このサンプル例では、まず●で比較すべき2つの日付を変数に代入し、0でdateコマン

ドの出力形式を
1+%Siと
指定することにより、それらの日付のUNIX時間を算出しています。

この際、日時の指定に‐dオプションを利用していますが、これはLinuxのみで使える表記

です。FreeBSDや Macを お使いの場合は、「注意事項」を参照してください。

0で、テキスト表記の日時とUNIX時間の表記を、echoコ マンドで出力しています。
UNIX時間はPerlや Rubyな どのスクリプト言語でもよく使われますから、そのような外部

スクリプトと連携したい場合は、このUNIX時間を渡すとよいでしよう。
(0)では、daylと day2で何日の差があるかを計算しています。UNIX時間は単なる秒数

なので、単純にexprコマンドで引き算をすれば時刻の差が計算できます。その差を、1日

=24時間=1440分=86400秒で割れば、何日の差があるのかを計算できます。

注意事項

このサンプル例では、day2のほうが未来の日付の場合は、日付差としてマイナス表示をし

ます。そのためもし日付差の絶対値がほしい場合は、どちらが未来か (どちらのUNIX時間

が大きいか)を判断して、大きいほうから小さいほうを引く必要があります。

135



G:議打 ER 04。 日付処理

FreeBSDお よびMacなどのBSD系 UN!Xのdateコ マンドと、Linuxのdateコ マンドは、

オプションに多くの差があります。スクリプ トの0で 用いている―dオ プションは、
FreeBSDおよびMacでは使えません。そのためFreeBSDおよびMacの場合は、日付設定
ではなく日付表示を行う-1オプションと、フォーマット指定をする―fオプションを用いて、

次のように0の部分を修正してください。

ここで用いている%Yや%mなどの表記は、P.89の dateコマンドの説明を参照してくださ
い。

∪N!X時間は扱いが便利なため、日付時刻を扱うデータベースでもよく利用されます。例え

ばMySQLでは、UNIX時間から日付文字列へと変換するFROM_UNIXTIMEOと いう関数
が標準で用意されています。

OMySQLで UNIX時 間を扱う

関連項目

030 あるディレクトリ内の、n日前からm日前までに更新されたファイルー覧を取得する
033 ファイルをバックアップする際にファイル名に日時を入れる

撃ysq■ > SE:LECT FROM_UNIXTIME(1‐ 3‐33063912‐ ),|

+------ ------ ------- - --- ----+
I F'RoM_uNrx?rME(1333063912 ) I

+------ ------------- - --- ----+
| 2012-03-30 oB:31:52 I

+- ----- ------ ---- ---- ----- --+

136

(BSD′‖a0
%H:%‖ :%S': :=Sdayl='

"%Y/%m/%d %H:%‖ :%S': '=$day2・

・
　

　

　

　

　

一　

―

●

●
１

■
・
―

　

・

　

一

一　

●

　

　

―

　

一　

　

　

　

　

　

一

一　

　

，

　

　

一
　

　

　

　

一



圏oE

今日が月末日かどうかを
判定する052

末日.月末

月末の〆処理などのため、今日が月末日かどうかをスクリプト内で判定したいとき

‐ 医困回■D

″:′ bi n′ sh

tomonrow=$(date "+%d" -d '1 day') 

-- 
{)

if E "$tomorrow" = "01" li then
#今日が月末ならiよ 月次レポー トを作成するための
″外部スクリプトを実行

./monthLy_report.sh

fi

いつ使うか

解説

このスクリプ トは、現在の日付を判断し、月末ならば月次レポー トを集計する

monthly_report.shと いう外部スクリプトを実行するものです。集計処理や〆処理など

で、月末日だけに実行するプログラムやバッチ処理は多いでしょう。しかし定期実行する

ためのcronの仕組みでは、月初は「1日」に動くように設定すれば済むのですが、月末日

を指定する仕組みがありません。このためよく使われる手法が、次のようなやり方です。

1)cronでは、スクリプトが毎日起動するように設定しておく

2)スクリプト内で、今日が月末かを判断するロジックを入れておき、月末の場合のみ処
理を行う

そのため、「今 日が末日かどうか」を判定するという処理は何かとよく使われます。そ

こでここでは、月末日の判断ロジックを紹介し、月末ならば月次レポー トを作成する外部

スクリプトを実行する、という例を見てみます。

月末の日は、例えば1月 なら31日 であり、2月 なら28日 (う るう年ならば29日 )ですから、

月と年によって変わるため厳密に判定しようとすると意外に大変です。そこでこのサンプ

137

|

date



0出PttR 04。 日付処理

ル例ではもっと単純なロジックとして、「翌日が1日ならば、今日は末日」を採用していま

す。

●で、dateコマンドを用いてシェル変数tomorrowに 翌日を取得しています。ここでは
"+%d‖ として、dateコ マンドの出力形式を日だけにするよう指定しています。この%dな

どの表記は、P.89のdateコ マンドの説明を参照してください。

また●では、あわせて…dオプションに
!l day'と

して翌日を指定しています。dateコ マン

ドでは、―dオ プションをこのように利用して現在時刻の前後の日付を指定することができ

ます。例えば3日前の日がほしいならば、次のように'3 days ago:と します。

date "+Zd" -d 13 days ago'

なお、―dオ プションはLinuxのみで使える表記です。FreeBSDや Macをお使いの場合は、
「注意事項」を参照してください。

0で、シェル変数tomorrowに 代入されている明日の日付が、文字列・01・ と等しいかど
うかをf文で判定しています。もし得られた日付が

‖
01‖ならば、それは今日が月末日だと

いうことです。そのためif文の中で、末日のみ行う〆処理などを実行することができます。

サンプル例では、月次レポートを作成するスクリプトmonthly_report.shが カレントディ

レクトリにあると仮定し、これを実行しています。

注意事項

FreeBSDおよびMacな どのBSDttUNIXの dateコ マンドと、Linuxの dateコマンドは、
オプションに多くの差があります。スクリプトのOで、翌日を指定している―d ll day[と い
う表記は、FreeBSDお よびMacでは使えません。そのためFreeBSDおよびMacの場合は、
時間をずらす―vオプションを用いて記述して<ださい。

‐v+ldは、「‐vオプションに+ldを指定」を意味します。ここでは+ldだけずらすことで「 1
日後」を指定しています。―vオプションの詳しい使い方は、dateコマンドのマニュアルを

参照してください。

関連項目

033 ファイルをバックアップする際にファイル名に日時を入れる
151 dateコ マンドで日付の比較と取得を行う

138

一　

　

　

　

　

一

一



‖o. 現在の前月を取得して、前月に
作成されたログフアイルを―括
アーカイブする

053

□回■□D
dato.ta「 …前月.末日

…現在の日付から、先月の年月表記(YYYYMM)を組み立てて、日付をフアイル名に含
むログフアイルをまとめてアーカイプしたいとき

■醍目□■

″:′ bi n′ 3h

togdi r=" /va r / log I ny app"

″今月の15日 の日付を取得する

thismonth=S(date :+%Y/%m/15 00:00:001)

#先月の日付をYYYY‖‖で取得する。
#l month agoは先月の同日をとるため、末日とならないよう

″変数 thismonthに 15日 をオ旨定した

Last_YYYY‖‖=$(date ―d ilSthiSmOnth - l month ago:=
1+%Y%mi)

″先月のログファイルをまとめてアーカイブ

tar cvf S(tast_ YYY‖ ‖).tar S(Llo9di r}ノ access.Log― S{Last_YYY‖‖〕* ―――――-0

解説

このスクリプトは、現在の日付から先月の年月表記 (YYYYMM)を 組み立て、日付がフ

ァイル名に付いているログフアイルから、先月ぶんを抽出してアーカイブするものです。

ここでは、現在が2013年 3月 30日 であるとします。また/var/10g/myappと いうディレ

クトリ内には次のように、ファイル名に日付を持ったログファイルが「access.log一年月日」

の形で存在するものと仮定しています。

139

|

|

|

|

|
|

|



OH籍翻疇 040日 付処理

0ログファイルを確認

このようにログファイルにファイル名として年月日が付いている場合に、月初の月次バ

ッチ処理 として、先月のファイルをまとめてアーカイブするため、先月の年月表記

("MM)を 取得 したいというケースがよくあります。これを取得 してみましょう。

先月の日付表記を得たい場合、Linuxで はdateコ マンドの‐dオプションで、lヶ 月前す

なわち
‖l mOnth agonを指定するのが便利です。しかし、この・l month ago‖は、注意 し

て使わないと思わぬ結果を招きます。

◎dateコ マンドの・l month ago‖ でよくある失敗

上記の例のように3月の月末である3月 30日 に「date―d"l month agO‖」を実行しても、
2月 の月末である2月 28日 は返りません。これは、Linuxの dateコ マンドで"l mOnth agO"

を指定すると、「前月の同じ日」を取得するためです。この例では現在が3月 30日 のため「2

月30日」を取得しようとしますが、そんな日は存在しないため、2月 28日から数えて2日後、
つまり3月 2日 を取得してしまうのです。

醸結果が3月 2日 となる仕組み

S Is /var/1o9/myapp

access.■ o9-20130130

access.■ o9-20130131

access.lo9-20130201

(省略)    .

acoess.lo9-20130227

access.log-20130228

access.■ o9-20130301

2013/03/3000:00305  -一――――一 一一■●__:ζ::1燒賤靡

2013/03/0200:00:06-――――――
―
ニーーーーニーーーー

‐
|― |‡鷺鞣餡麟謳炒颯核鶯蜆ま

Linuxの dateコ マンドの、l month ago(lヵ 月前)

l month ago
(1ケ月前)

2月 28日プラス
2日、と解釈

これを防ぐためには、どの月にも存在する日を指定して・l month ago‖指定をすればよ
いことになります。つまり1日～28日 のどれかを指定します。このあいだの日ならどこで

もよいのですが、サンプル例では中間あたりということで15日 を選択しました0。

2月 30日
'

現在 :

3月 30日

3月 2回

140

題



053。 現在の前月を取得して、前月に作成されたログフアイルを一括アーカイブする

なお、このような月末日の考え方は、Linuxの dateコ マンドの特徴です。FreeBSDお よ

びMacの dateコ マンドでは動きが異なるため、本項の「注意事項」を参照してください。

0で、先ほど15日 を指定した今月の日付から、先月を得るためにdateコ マンドで
・1

month ago‖の日付を取得しています。
i+%Y%miを

指定することで、先月の年月表記

(YYYYMM)が得られます。

0で、先月日付を元に、ログフアイルをアーカイブしています。これは現在が3月 30日

ならば、実際に変数展開されると次のようになり、先月である2013年 2月 のログファイル

をアーカイブできるわけです。

は注意事項
FreeBSDおよびMacな どのBSD系UNIXの dateコ マンドと、Linuxのdateコ マンドは、

オプションに多くの差があります。FreeBSDお よびMacで先月を取得したい際、スクリプ

トの0で先月を指定している―d il mOnth agO:と いう表記は使えません。そのため

FreeBSDおよびMacの場合は、時間をずらす‐vオプションを用いて次のように記述してく

ださい。

_v_lmは、「‐vオプションに‐lmを指定」を意味します。ここでは‐lmずらすことで「先月」

を指定しています。‐vオプションの詳しい使い方は、dateコ マンドのマニュアルを参照し

てください。

・ FreeBSDおよびMacの―v‐ lmで指定する「1ケ 月前」は、Linuxの "l month agO‖ 指定と

違つて、月末日はそのまま先月の末日となります。そのため15日 にずらすテクニツクは必

要ありません。

関連項目

033 フアイルをバツクアツプする際にフアイル名に日時を入れる

052 今日が月末日かどうかを判定する

141



‖o.

|

054 今年がうるう年かどうかを調べる
巳田覇□D
expr.lost.:s …うるう年.剰余

…日付をファイル名に持つログファイルから、2月末日に作られたものを選択したいとき

″:/bin′ sh

″現在の西暦を4桁で取得
year=$(date '+ZY')

logf i Ie="/va r I loglnyapp / access. Log-,'

″西暦を割った余り 口l会 を計算する

modl=$(expr $year Z 4)
mod2=$(expr $year % 100)
mod3=$(expr $year Z 400) 」

″ うるう年かどうかの判定

if [ SmOdl ―eq O ―a Smod2 -ne O ―o Smod3 -eq O コ′ then―――――― o
echo "teap year:$year"
l-s "$tLogf i te)$tyear)0229"

etse
echo "not leap year:$year"
Is "$(Logf i Ie]$tyear]0228"

fi

実行例

$./Ieapyear.sh
leap year:20i.2
/ var / Iog / my al:p./access. 1o g*20L2A229

解説

このスクリプトは、2月末日のフアイルを表示するために、現在がうるう年かそうでな
いかを判別するものです。ここでは、

‖access.10g_20120315‖のように、ファイル名に年
月日が入ったログファィルカツVar/10g/myappと いうディレクトリに蓄積されていると仮
定しています。

142

一●
―
　

・
　

一

¬



趣騨 。今年がうるう年かどうかを調べる

月次〆処理の結果を確認するなど、月末のログファイルを参照する機会は多いでしよう。

そしてこのサンプル例のように、フアイル名に日付が入っているログフアイルなどを扱う

際、2月末日をどうやつて取得するかはプログラマを悩ませる世界共通の問題です。

ここでまず、うるう年を判定する条件を確認しておきましょう。以下の3つ となります。

(1)西暦年が4で割り切れる年は、うるう年。

(2)ただし、西暦年が100で割り切れる年は、うるう年ではない。

(3)ただし、西暦年が400で割り切れる年は、うるう年。

特に3番目の条件はあまり知られておらず、2000年 に多くのバグを発生させる原因とな

りました。2000年は、この3番 目の条件に引っかかる、400年に一度の珍しいうるう年だ

ったのです。

このサンプル例では、まず●で現在の西暦年を4桁で取得してシェル変数yearに代入し

ています。このdateコマンドでの+%Yな どの使い方は、P.89を参照してください。

0で、西暦年を割った余りをexprコマンドで計算しています。exprコ マンドで%演算

子を使うことで、割 り算の余り(剰余)を計算できます。ここでは条件 1、 2、 3と してそれ

ぞれの余り(剰余)を シェル変数modl、 mod2、 mod3に代入しています。

(0)で、先にあげたうるう年の条件をit文で判定しています。「割り切れる」ということは

すなわち「余り(剰余)が0」 ということですから、ここでは0と 変数の値とを比べています。

値が等しいかどうかは‐eq演算子で、等しくないかどうかは…ne演算子で判断できます。

またⅢaはAND(かつ)、 …oは OR(ま たは)を示す演算子です。つまり0の条件式全体を日

本語で書くと、『「modlの 値がo」 かつ「mod2の値は0ではない」』または『mod3の値が0

である』、という条件を意味しています。なお、testコ マンドの数値判定を行う演算子に

ついては次にあげておきましたので参考にしてください。

Otestコ マンドで比較を行う演算子

ち)な:じり、にltlま英言吾¢)"less than‖、 leは
‖
less than Or equal to‖ 、 gtlま

‖
greater than‖ 、 geは

‖
greater than or equal to"を 指しています。

これでうるう年かどうか判定できたので、2月末日のファイルを選択することができま

す。0と 10で、うるう年の場合には2月 29日のログファイルを、うるう年でない場合は2

月28日 のログファイルをlsコマンドで表示しています。

変数 1と変数2が等しければ真変数1-eq変数2

変数 1と変数2が等しくなければ真変数1-ne変数2

変数1が変数2未満ならば真変数 1‐性変数2

変数1が変数2以下ならば真変数 1-te変数2

変数1-gt変数2 変数1が変数2よ り大きければ真

変数1-ge変数2 変数1が変数2以上ならば真

143



C即FFE■ 04● 日付処理

注意事項

本項で利用したteStコマンドの演算子―a(AND)と‐o(OR)の優先度について、補足しておき
ましよう。他のプログラミング言語と同様にシェルスクリプ トのteStコ マンドも、ANDの
ほうがORよ りも優先度が高い演算子となつています。もしORの方の優先度をANDよ りも
高くしたい場合には、通常の数式のようにカツコでくくれば優先して評価されます。ただ

しこの際、シェルにカッコが解釈されないように でヽエスケープして、 (ヽ・・・、)のようにカ

ッコを書く必要があります。

上記の例は、「$aが0、 かつ、$bが0ではないまたは$cが 0」 のときに真となります。
なおteStコ マンドはシェルビルトインと外部コマンドの2種類がありますが、シェルスクリ
プ トではシェルビル トインのtestコ マン ドが利用されます。そのためマニュアルを読む際

は、man shと してシェルのマニュアルを見れば、testコ マンドの解説が書かれています。

関連項目

144

033 ファイルをバツクアツプする際にファイル名に日時を入れる



GHAPTER

ネットワーク
現在のUNIXシステムの構成要素として、ネットワ
ークは必須のものとなっています。この章では、

pingコ マンドやncコマンドなどを利用して、シェル

スクリプトでネットワークを扱う様々な事例を紹介

します。本章のサンプルを用いて、ネットワークの

テストや速度測定、DNSでの名前解決、フアイル転
送の自動化などをおこなうことができます。各コマ

ンドの使い方も、あわせて紹介しています。



ゝ__|デフォルトゲ…トウェイにping
U301が通るかテストする(Linuわ 

り

…「outo.awk.ping lCMP,デフォルトケートゥェィ

…デフォルトゲートウェイを自動て取得して、pingコマンドでネットワーク疎通を確認
したいとき

■厖日四■

″:′ bi n/si

″ rOuteコ マンドの出力からデフォル トゲー トウェイを取得。
″ カラム1が "0.0.0.0"の行の、カラム 2を取り出す
gateWay=$く rOute ―n l aWk :$1 == ''0.0.0.0:1{print S2}1)― ―――__CD

″デフォルトゲートウェイにping実行
ping ―C l Sgateway > /devノ nuLL 2>&1

″ pingコ マンドの終了ステータスで成功・失敗判断
if t $? -eq 0 l; then

echo "[Successl ping -> $gateway"
e tse

echo "[Faitedl ping -> $gateway"
fi

壼解脱

このスクリプトは、Linuxサ ーバからデフォルトゲー トウェイヘのネットワーク疎通を
テス トするものです。pingコマンドでiCMPパケットを送信 し、ネットワークが正常に通
イ言できるかどうかを確:認します。

まず、このサンプル例のテーマであるデフォルトゲー トウェイについて簡単に解説して

おきましょう。デフォル トゲートウェイとは、ネットワークのアクセス経路において、外

部ネットワークとの出入 り口になる機器のことです。 これは一般的にはルータになりま

す。

146

> 19‐2.168.1.1ping
$ . /gt".,ping-Linux. sh



055● デフオルトゲートウェイにpingが通るかテストする (Linux)

鶴)デフォルトゲートウェイとは

192.168.1.1

192.168.1.0/24の ネツトワーク

例えば上記の図で、「192.168.1.10」 から「192.168.1.20」 宛てに通信する際には、同

一セグメント内であるため、デフォルトゲートウェイは利用されません。

一方、自分が所属しないネットワーク、例えば「192.168.2.10」 宛てに通信する場合には、

マシンはデフォルトゲートウェイである「192.168.1.1」 (こ こではルータ)宛てにパケッ

トを送信します。ルータは、「192.168.2.10」 という宛先IPア ドレスに従って、適切なル

ーティングを行います。

サーバ管理においてネットワークに何か異常がある際に、まずはデフォルトゲートウェ

イにpingを打って疎通を確認するというのは大変よく行われる作業です。

Linuxサーバでデフォルトゲートウェイを調べるにはいくつか方法がありますが、ここ

ではルーティングテーブルを表示するrouteコ マンドの出力を利用 してみます。なお

routeコ マンドの出力はLinuxと FreeBSD/Macで 異なるため、ここではLinuxで の例を紹

介します。FreeBSD/Macを ご利用の場合は、次項を参照してください。

routeコ マンドは、次のように…nオプションだけを付けると、現在の経路テーブルの内

容をホスト名ではなくIPア ドレスで表示します。

巾Linuxの routeコ マンド出力例

_上記には多くの項目がありますが、 ここではDestinationと Gatewayの 値を利用します。
Destinationは 宛先ネットワークを指 し、このサンプル例ではデフォル トゲートウェイを

取得 したいため
‖
0.0.0.0・ の行 (最終行)を読みます。この行のGatewayが 192.168.1.1に な

147



一一　

　

　

一

GHA雛籠05。 ネットワーク

っていますから、192.168.1.1が このマシンのデフォルトゲートウェイです。

●にて、routeコ マンドの出力からテキスト加工してIPア ドレスを取り出すためにawk
コマンドを利用しています。awkで は、$1、 $2… という変数がそれぞれ第 1カ ラム、第2
カラムを指します。ここでは第1カ ラムDestinationが

‖
0.0.0.0‖である行のみを出力するよ

うにフィルタして、アクションを不す中カッコ‖内で第2カ ラムGatewayを prlntfコ マン
ドで表示しています。この出力を、コマンド置換記法$()でシェル変数gatewayに代入し
ています。

②で、取得したデフォルトゲートウェイのIPア ドレス宛てにpingコ マンドを実行 してい

ます。WindOWSの pingコ マンドは4回ICMPパ ケッ トを送 ると自動で終 了 しますが、
Linuxの pingコ マンドは、オプションを指定しないとICMPパ ケットを永遠に送 り続けて
しまいます。そのためここでは…cオプションを利用 して1回だけ実行するように指定して

います。また、このサンプル例ではpingコ マンドの終了ステータスのみ利用 し、出力は必

要ないため、標準出力および標準エラー出力を/dev/nu‖ へとリダイレクトして捨ててい

ます。

(0)で、pingコ マンドの実行結果を判断しています。pingコ マンドで送信 したICMP
Echo Requestに 対して、正常にICMP Echo Replyが返ってきていれば、pingコ マンドの

終了ステータスは0と なつています。シェルの特殊変数$?に はコマンドの終了ステータス
が入つていますので、この値が0か どうかで成功したか失敗したかを判断してメッセージ

を出し分けています。

置注意事項

Linuxサーバ自体にデフォルトゲー トウェイが設定されていない場合、0の pingコマンド
はシェル変数gatewayが空であることから、引数エラーとなります。そのためこのサンプ
ル例で「Faled」 となつた場合は、以下のような可能性があります。

>サーバの設定自体に問題がある (ネ ツトワークの設定が誤つているなど)
>途中のネツトワーク経路に問題がある (LANケーブルが抜けているなど)
>デフォルトゲー トウェイの機器に問題がある (電源が落ちているなど)
ネットワークの疎通を確認するならば、pingは 1回ではなく複数回実行して結果を見たほ

うがよいでしよう。pingを複数回実行するサンプルはP.323を参照してください。

関連項目

058 arpテ ーブルから指定IPア ドレスに対応するMACア ドレスを表示する
114 サーバのping監視を行う

148



..                   1

b501謬失祷 記
`鼎

鵬
netstat.awk,ping ping,!CMP.デ フォルトゲートウェイ

□目回調日
デフォルトゲートウエイを自動で取得して、pingコマンドでネットワーク疎通を確認

したいとき

■朦□田D

1:′bi n/sh

#netstatコ マンドの出力からデフォルトゲートウェイを取得。

″カラム1が ‖defau Lt‖ の行の、カラム2を取り出す

gateway=$(netstat ―nr l awk lSl == ildefauLtil{print S2)1)一 ――――(D

″デフォル トゲートウェイにping実 行

ping ―c l Sgateway > /devノ nuLL 2>&1

#pingコ マンドの終了ステータスで成功・失敗判断
if [ $? ―eq O ]′  then

echo "[Success] ping -> $gateway"

e tse
echo "IFaitedJ ping -> $gateway"
fi

h」菫墜
このスクリプトは、FreeBSDやMacマ シンからデフォルトゲートウェイヘのネットワ

ーク疎通をテストするものです。pingコ マンドでICMPパケットを送信し、ネットワーク

が正常に通信できるかを確認します。pingコ マンドによるデフォルトゲートウェイとの通

信テストについては、サンプル055で説明していますのでそちらも参照してください。

Linuxで は、ルーティングテーブルを表示するためにはrouteコマンドを引数なしで実

行しますが、FreeBSDで 同様のコマンドを実行してもエラーとなります。

これはLinuxと BSD系で、routeコ マンドの仕様が大きく異なるためです。FreeBSDや

Macでは、routeコ マンドは基本的に経路制御を行うコマンドで、単にルーティングテー

149

一　
　

　

　

　

　

―
＾

一
　

　

　

　

　

．

一

一

一　

　

　

―

一



G‖PTER 05。 ネツトワーク

ブルを表示するコマンドとしては使われません。

一般的にFreeBSDや Macでデフォル トゲー トウェイを調べるには、netstatコマンドを
用います。netstatコ マンドは、現在のネットワーク接続状態を表示する際によく使われ

るコマンドですが、 r̈オプションを利用することで現在の経路テーブルを表示することが

できます。

次がnetstatコ マンドで―rオ プションを利用 した場合の出力例です。なおここではIPv4

アドレスのみを扱うものとし、IPv6ア ドレス (Internet6:以 降)は省略しました。ホス ト名

で表示せずにIPア ドレスで表示させるよう、 n̈オプションも同時に利用 しています。

OFreeBSD/Macの netstatコ マンド出力例

上記には多 くの項目がありますが、ここではDestinationと Gatewayの 値を利用 します。
Destinationは 宛先ネットワークを指し、このサンプル例ではデフォル トゲー トウェイを

取得したいため"deね ult"の行を読みます。この行のGatewayが 192.168.1.1に なつていま
すから、192.168.1.1がこのマシンのデフォル トゲー トウェイです。

これでLinuxの routeコ マンドによるルーティングテーブル表示とほぼ同じ内容が得ら

れたため、後は前項と同様にawkコマンドで抽出してpingを 実行しています。
●、0、 0での処理は、P.146と 同様ですので、そちらを参照してみてください。

注意事項

前項の注意事項 (→ P.148)を参照してください。

日関連項目

UGS 0 0   (Dn10

デフォル トゲートウェイにpingが通るかテストする (Linux)

サーバのping監視を行う

150

055

114

Gateway Use Netif Expire

I netstat -nr
Routing tables

192.168.1.0/24

127.0.0.1

em0

lo0

Internet6:

(省略)

■ink#1

1inkチ 5 ●

●
●

●
■

'.  |  |

0     1111

0        18



聞0日

l pingで特定ホストヘの応答平

1均時間を取得する057

ping.sod.awk

特定のサーバヘの通信状態を目べたいとき

―
■

lCMP.応答速度.平均値

″:′ bin′3h

ipaddr=‖ 192.168.2.1::

count=10

echo 'IPing to: Si paddr::  ‐――
|

echo liPing COunt: SCOuntii  トーー 0
echo l=Ping average[nsコ :i! ――」

″ pingコマンドを実行し、結果を一時ファイルに出力

ping -c $count $ipaddn > ping-$$

#"time=4.32 mS"の 部分をsedで取り出し、aWkで平均値を集計する

sed _n iis/A.*time=¥(.*¥)ms/¥1/p'' ping.$$ |¥――――――――――- 0
awk l{sum+=$1) END{print suml/NR}1

#一時ファイルを削除
rm ―f ping.$$

利用コマンド

解説

このスクリプトは、指定したIPア ドレス宛てに複数回pingコ マンドを実行し、応答時間

の平均を計算 して表示するものです。

pingコマン ドはiCMPパケッ トを送信するコマンドです。実行すると、次のように

ICMP echo requestパ ケットが宛先に送信され、その応答としてICMP echo replyパ ケッ

トが返されます。

151

]―
―



OHAttR 05● ネットワーク

簸pingコ マンドとICMPバケット

S ping 192.168.2.20 ,

192.168110

192.168220

このICMPパケットの応答時間を測ることで、ネットワークの状態を調べることができ
ます。例えば定期的にpingコ マンドを実行 しておき、急に応答時間が長 くかかるようにな

ったならば、そのホスト宛てのネットワークが混雑しているか、あるいは途中のネットワ

ーク機器に何か異常が発生 したのかもしれません。

pingコ マンドの出力は、OSに よって多少異なりますが、次のようになります。表示さ
れているicmp_seqが試行回数、ttlがパケットのTTL値 (ルータを何台超えられるか )、
timeが応答時間 (ミ リ秒)です。

Opingコ マンドの出力例

最終行を見ると、rtt(round trip time,パ ケットが往復にかかった時間)の avgの ところ

でpingコ マンド自身が平均応答時間を出力してくれます。しかしここではコマンド出力

から平均値を求めるサンプル例ということで、スクリプトで値を計算してみましょう。

●で、対象のIPア ドレスとpingコ マンドの実行回数を指定しています。これを元に、0
でこれから計測する対象のIPア ドレス、カウント数などを表示しています。

0でpingコ マンドを実行しています。pingコ マンドはオプションを指定しないと永遠

152

恋

64

bytes of data。

ttl=64 time=0。 374 ms

ttl=64 tilne=0.405

ttl=64 time=0.345

ttl=64 time=0.469

64 byte.s

64 bytes



會墨7鰻 pingで特定ホス トヘの応答平均時間を取得する

に実行されるため、ここでは‐cオプションで実行回数を指定しています。表示結果は後で

計算処理するため、標準出力を一時ファイルping.$$に リダイレクトしています。この$S
というのはシェルの特殊変数で、プロセスlDが入っているため、このように一時ファイル

を作る際のファイル名 としてよく使われる手法です。詳 しくはP,128を 参照して くださ

い。

●では、pingコ マンドの出力結果から応答速度を取得しています。pingコ マンドの応

答速度は、「time=0.374 ms」 の数字の部分です。msと 付いているように、これはミリセ

カンド(ミ リ秒)を意味します。

ここでは、sedコマンドの‐nオプシヨンとpフラグでこの「time=0.374 ms」 の部分をマ

ッチさせ、数値部分のみを出力して応答時間を取り出しています。この、Sedコ マンドで

パターンマッチした部分のみを出力する手法は、P.46で詳しく解説しています。なお、こ

こではパイプでawkコ マンドに接続していますが、 1行が長いため末尾を¥と して改行し

ています。

sedコ マンドで数値のみを切り出したため、0でawkに渡される時点での入力は次のよ

うになっています。これがpingコ マンドの応答時間 (ミ リ秒)になります。

このような数値の羅列から平均値を求めるやり方はいろいろありますが、このサンプル

ではawkコマンドを用いてみました。Oの ようにawkのアクションでsumと いう変数に

$1(1列目)の値を足していき、全行の和を求めます。最後にENDパ ターン内で、sumの

値を処理した行数 (NR)で割ることで、平均値を出力することができます。このNRと は、

awkの組み込み変数で、入力中のレコード数を指します。

注意事項

・ セキュリティ上の理由などから、最近はpingコ マン ド(ICM Pバ ケット)に応答しないよう

設定されたサーバも多く存在します。そのためこのサンプル例を利用する前に、まずは対

象のサーバ宛てに手でpingを打つてみて、応答が返つてくるか確認してください。

襴l里翌
018

049

114

HTMLファイルから、タグの中に書かれたコマンドを抜き出してそのまま実行する

二重起動が可能な一時ファイル作成する

サーバのping監視を行う

153



‖o. arpテーブルから指定IPアドレ
スに対応するMACアドレスを
表示する

058

●Ei…
arp.awk …MACア ドレス.IPア ドレス・ARP

□E回囲ロ
ネツトワーク内から、IPア ドレスを指定して対象の物理アドレス (MACア ドレス)を検
索したいとき

″:′ bi n′ sh

うpaddr=='192.168.2.1'I

macaddr=$(arp ―an l awk `'ノ ¥(Sipaddr¥)/ {print ¥S4}‖ )一――――――-lD

if [ -n "$macaddr" J; then
echo "$ipaddr -> $macaddr"

e Ise
echo"$う paddrは ARPキ ャッシュにありません“
fi

実行例

解脱

このスクリプトは、シェル変数ipaddrで 指定 したIPア ドレスを元に、OSのARPキ ャッ
シュを検索 し、該当のネットワークインタフェースのMACア ドレスを表示するものです。
ネットワークが予期せぬ動きをしているなどの トラブルシューティング時には、IPア ド

レスなどのネットワーク層だけではなく、その1つ下のレイヤであるデータリンク層での

動作も調査すべきことがあります。ここではそのような際のツールとして使われる用途を

考えています。

IPア ドレスからMACア ドレスを調べるには、システムのARPキ ャッシュを参照 します。
このARPキ ャッシュを操作するためのコマンドが、arpコマンドです。arpコ マンドの出
カフオーマットはOSに よって多少違いますが、次のようになります。ここでは引数なし

' 
・/aFp.sh

192.168。 2.1 -> 00:00:5e:XX:xx:xx



轟 3§ arpテーブルから指定 Pア ドレスに対応する MACア ドレスを表示する

の‐aオプションを利用して、OSのARPキ ャッシュをすべて表示しています。また、‐nオ

プションも付けて名前解決も行わないように指定しています。

醸arpコマンドの出力例

先頭の?はホスト名で、―nオ プションで名前解決していないため全エントリが?と なっ

ています。次のカッコ内がIPア ドレスで、そのIPア ドレスに通信するためのMACア ドレ

スが
‖
at.…
‖
と書かれています。

(0)ではarpコ マンドの出力を、awkを使って整形しています。まずawkの フィルタに

/¥(Sipaddr¥)/と 、取得したいIPア ドレスを指定しています。これにより該当IPア ドレス

の行だけをアクションで処理することができます。なお、上記の図を見るとわかるように

arpコ マンドのIPア ドレス前後にはカッコ()が付いているため、フィルタ指定もカッコ付

きで書いています。

10)の awkの アクション〔}の部分は、〔print¥$4}と 、$4(4カ ラムロ)を表示するように

指定しています。この際、$4に対して¥でエスケープしています。これは、$ipaddrと い

うシェル変数をawkコ マンドの中に入れ込むために全体をダブルクォーテーションでくく

っているため、$4と そのまま書くとシェルが展開しようとしてしまうためです。ここで

$4は シェルの変数ではなく、「4カ ラムロ」を意味するawkの変数です。awkコマンド内に

シェルスクリプトからシェル変数を入れ込む際には、このように全体をダブルクォーテー

ションでくくつてシェル変数を展開されるようにして、その代わりに$1、 $2な どのawk

変数の$をエスケープするやり方が1つの手法です。

●の結果でシェル変数macaddrに、検索したいIPア ドレスに対するMACア ドレスが代

入できましたので、0で値をチェックしています。ここではtestコ マンドの‐n演算子を用
いて、空文字列でないかを調べています。空文字列でなければechoコマンドで該当のIP

アドレスとMACア ドレスの組を表示し(0)、 空文字列ならばAPRキ ャッシュにないため

その旨をechoコ マンドで表示しています (0)。

絆L堅翌
。このサンプル例を試す際は、事前にARPキ ャッシュを作っておかなくてはいけません。具

体的には、対象のマシンにpingを打つなどして、通信を発生させた直後に試してみてくだ

さい。

155



‖o.
ホスト名からIPアドレスを
取得する059

国回藤□D
host.awk …名前解決.DNS.lPア ドレス.lPv4.IPv6

□E回濶■
DNSサーバヘ問い合わせて名前解決を行い、該当の!Pア ドレスを一覧表示したいとき

■■目□回■D

″1′ bi n′ sh

″ IPア ドレスを取得したいホスト名を定義

fqdn=“ www.googLe.co■ 1='

echo "Address of $fqdn"
eChO r'=========rr

hOSt Sfqdn l ¥

aWk :/haS address/ {print SNF′ ''IPv4"} ¥
/has IPv6 address/ {print sNF′ 7'IPv6"}: 三]-0

隕解説

このスクリプトは、hOstコ マンドを利用 して指定したホス トの名前解決を行い、IPア ド

レスを表示するものです。実行例ではWWW.g00gle.Comの IPア ドレスを表示 してみまし
た。なお、環境によってはhostコ マンドが見つからずにエラーになる場合があります。そ

の際は「注意事項」に従ってインストールを行ってください。

名前解決とは、ネットワーク上でホス ト名からIPア ドレスを取得することです。例えば

普段使っているWebブラウザのアドレスバーにhttp://www.example.Oryと 入力すると、

156

■

●
　
　
　
　
　
　
一　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
一

Ｉ
■

，
　

　

・

一　

　

　

　

　

　

　

　

　

　

　

　

　

一

，
１
，

　

　

　

　

一　

　

　

　

　

　

　

　

　

　

　

　

　

一

″ hOStコマンドで IPア ドレスを取得し、aWkで加工して出力

1鐵

S ./hostip.sh
Address of ww、ュ.google.cOm

173.194.126.21l IPv4

国

IPv4

IPv4



醸鰺9崚 ホス ト名から IPア ドレスを取得する

コンピュータ内部ではまずDNSサーバに問い合わせてwww.example.orgの 名前解決を行

い、結果として203.0.l13.1な どのIPア ドレスを取得 してそのアドレス宛てに通信を行い

ます。

輪DNSと名前解決

DNSサーバー

Webサーバー
(wWW eXample.Org)

このように名前解決とは、地味ながらも非常に重要なネットワーク通信の要素です。IP

アドレスでは通信できるのにホスト名で指定すると接続できない、という場合は名前解決

がうまくいっていないパターンが多いでしよう。そのような際のトラブルシューテイング

のッールとして、このスクリプトが役立つかもしれません。

シェルスクリプトからDNSサーバに問い合わせて名前解決を行うには、nsiookupコ マ

ンドやdigコマンドなどを使う方法がありますが、このサンプル例では表示がシンプルな

hostコ マンドを利用してみました。例えばwww.google.comへ のhoStコ マンドの出力結

果は、次のようになります。

◎hostコマンドの実行例

157



・　

　

　

●

●

●
●
　
　

一

一
　

．

一
　

―

１

１

饉慎P■:R050ネ ットワーク

大規模なサイ トは負荷分散のため、同一のFQDN(完 全修飾 ドメイン名 :FuHy
Qualined Domain Name)に複数のIPア ドレスを持つことが多く、上記でもwww.google.
comに対して複数のIPア ドレスが表示されています。またhOStコ マンドでは、対象FQDN
にIPv6ア ドレスもある際は、「www.example.org has IPv6 addreSS・ ・・…」としてIPv6ア

ドレスがIPv4ア ドレスと同時に表示されます。

サンプル例では、●で、まずシェル変数れdnに指定されたホストの名前解決を行うため、
hOStコ マンドを実行します。この結果をパイプでつないでawkで処理するのですが、長く
なつてしまうため行末に¥を付けて改行を入れています。

②のaWkコ マンドでは、パターンを2つ設定 しています。1つ 目のパターンは/haS
address/で、これはIPv4ア ドレスを取得します。このパターンにマッチする行は、次の
ように最後にIPア ドレスが入つています。

IⅢ Xempte・Ⅲ Ⅲ Ⅲ 難 ■ ||IⅢⅢ I    II IIII I=

awkで最後のカラムを取り出すには、最終カラムを表す変数NFを用いてprint SNFと 書
きます。ここではさらに、後ろに“IPv4"と スペース区切りで表示しています。
awkコ マンドの2つ 目のパターンは/has IPv6 address/で 、これはIPv6ア ドレスを取得
します。IPv4ア ドレスのときと同様に、最終カラムにIPア ドレスが入っていますから、
これをaWkの変数NFか ら取り出して出力しているわけです。

注意事項

CentOSで は、最小構成でインストールするとhOStコ マンドがインストールされていませ
ん。そのため次のようにyumコ マンドでbind― ut‖ sパッケージをインストールしてくださ
い。正しくインストールできたかどうかは、whichコ マンドで確認できます。

◎bind― utilsパッケージに含まれるhostコマンドをインストール (CentOSの 場合)

Ubuntuの 場合はhOStコ マンドはデフォル トでインス トールされます。もし存在しない場
合はapt‐ getコマンドでbind9‐ ut‖sパッケージをインストールしてください。

hOStコマンドはDNSサーバヘ問い合わせて名前解決するコマンドです。そのため、/etc/
hostsに書いた設定内容はこのスクリプ トでは無視されます。

158

≠ y、In ■nstall b■ nd_utils

# exit
$ which host
/usr/bin/host



髄③篠
IPアドレスからホスト名を
逆引きする000

…hOst awk.sed             lPア ドレス・ホスト名.逆引き,DNS

IPア ドレスが■かれたフアイルを読み込み、ホスト名を付けて表示したいとき

″1′ bi n′ sh

whi[e read ipaddr
do

″ hostコ マンドでIPア ドレスを逆引きする

revLookup=S(host ''Sipaddr:`)―――――――- 0

″ hostコ マンドの逆引きが成功したかどうか

if [ S? ―eq O ]′  then
echo -n "$ipaddrr"
″ hoStコマンドの出力をaWkで整形してホスト名だけ表示

echO ==SrevLookup‖  l awk i(print SNF〕
1 1 sed is/¥.S/ノ : ―――- 0

eLse

echo li$ipaddr′
‖

fi

″ DNSサーバヘの負荷軽減のため 1秒のウェイト

steep 1

done < $1

用コマン ド

159

|



CH購・壼805。 ネットワーク

解説

このスクリプトは、IPア ドレスが書かれたファイル (lp.txt)を読み込んで、それぞれの

IPア ドレスをhOStコ マンドによって逆引きし、「IPア ドレス,ホスト名」の組でCSVフ ァイ
ルとして出力するものです。

Apacheな どのサーバソフトウェアのログフアイルには、接続元IPア ドレスが記録され
ています。これらのログを分析する際、IPア ドレスを逆引きすると接続元のISPや回線な

どがわかるため、接続元IPア ドレスをホス ト名に変換 したい場合がよくあるでしょう。こ

のスクリプトはそのようなケースに利用できます。

なおIPア ドレスの逆引きとは、次のようにIPア ドレスをDNSサーバに問い合わせ、ホス
ト名を取得するものです。

DNSの逆引きとは

卜名を知りたい

:1198.51.166:45Zげ

■□

DNSサーバー

通常、DNSで名前解決を行う場合は、P.157で見たようにホスト名からIPア ドレスを取
得 します。このケースでは逆にIPア ドレスからホス ト名を取得するので、「逆」引きと呼

ばれるのです。なお、文書によってはホス ト名から名前解決を行うことを「正引き」と呼

ぶこともあります。

サンプル例では、まず0の while文でreadコ マンドを実行することで、ファイルからシ
ェル変数ipaddrに IPア ドレスを読み込んでいます。ここでは、次のようなIPア ドレスが羅

列されたファイルを読み込むものと仮定します。

198.51.100.43                                  .

203.0.113.1                                ‐   .

203.0.113.198                           ..            ..

またこのwhile文の最終行 (done)の 後に、コマンドライン引数Slを入カリダイレクト
しています。そのため、readコ マンドを用いてシェル変数ipaddrに ファイルの内容が1行

160

一
●
●
．
一
一
●



鑽搬鐵IPア ドレスからホスト名を逆引きする

ずつ読み込まれていきます。

0で、IPア ドレスからホスト名を逆引きするためにhostコ マンド(→P.157)を実行して、

その結果をコマンド置換$oにてシェル変数revlookupに 代入しています。

Oで、hostコ マンドの終了ステータスを特殊変数$?で判断しています。hostコ マンド

で正常に逆引きできた場合、終了ステータスであるS?は 0(正常終了)と なっています。

一方、逆引きに失敗した場合は終了ステータスは0以外となるため、ここではこの$?の値

を用いて、逆引きできたかどうかをif文で分岐しています。

正常に逆引きできていた場合は、IIPア ドレス,ホ スト名]を 出力するために、まずecho

コマンドを改行なしの…nオプションで実行し、IPア ドレスを表示します(0)。 なおこの

echoコ マンドの―nオプションの例はMacではエラーとなりますので、P.15を参照してく

ださい。

続いて0でホスト名の表示を行います。次の結果を見るとわかるとおり、逆引きできた

ホスト名はhostコ マンドの表示結果の最後にあるため、ここではawkコマンドを用いて最

終カラムSNFを 出力しています。NFと は、awkコ マンドで「最後のカラム」を意味する変

数です。

輪hostコ マンドによる逆引きの出力例

なお、hostコ マンドの出力では、ホスト名の最後に,(ド ット)が付いています。そのた

め0ではawkコ マンドをさらにパイプでつないでsedコマンドに渡し、sedコ マンドで行

末の.(ド ット)を 消しています。ここでは、行末のドットを¥.$と いうパターンでマッチ

させて、これを空文字列に置換することで行末ドットを削除しています。

最後にOで、1秒のウエイトを入れています。これはDNSサ ーバに負荷をかけないよう

にするための処置です。hostコ マンドは外部のDNSサーバに問い合わせをするコマンド

ですから、このサンプル例のようにIPア ドレスをフアイルから読み込んで順次処理する場

合、ファイルの行数が多ければ大量のDNS問い合わせをサーバヘと投げることになって

しまいます。そのような行為はサーバに負荷をかけてしまいますから、ここでは1行ごと

に1秒ウェイトを入れて、DNSサーバヘの負荷を抑えています。

注意事項

このサンプルの中で例示しているlPア ドレスは、例示用lPア ドレスとしてRFC 6890で 定

義されているもので、実在のlPア ドレスではないため逆引きには失敗します。そのため、

このサンプルを試す際は実在するlPア ドレスに置き換えてください。

関連項目

059 ホスト名からIPア ドレスを取得する

101

一　
　
　

　
　

　
　

一

一　
　
　

　
　

　
　

一

．　
　
　
　
　
　
　

「



ber 
I

あるサーバの特定ポートヘ通信
できるかのチエックスクリプト

□回壺□日

…ネツトワーク,ボート番号.ポートスキャ
ン,フアイアウォール,テスト

nc

ネットワーク・

実行したいとき

フアイアウォールの設定が正しいかどうかのテストを、スクリプトで

″!′ bi n′ sh

ipaddr="1 92. 1 68.2 -52"
fai [ [og="f3i l-port. Iog"

″テス トするポートは80.2222.8080

for port in 80 2222 8080

do

nc -ul 5 -z $ipaddr $port
if t $? -ne 0 J; then

echo "Failed at pont:
fi

done

Sporti':>>'=Sfai LLog‖ ―――――o

いつ使うか

解説

このスクリプトは、nCコマンドを用いて対象サーバのTCPポ ー トの状態を調べ、接続
できないTCPポ ート番号をね11-port.logフ ァイルに出力するものです。
サーバ構築の際には、ネットワークやファイアウォールの設定が正しいかどうかのテス

トが必要になる場面が多々あります。そのようなときに、ひとつひとつのポー トを手でテ

ストするのではなく、テス トが必要なポー トをまとめてチェックしてくれるこのようなス

クリプトを用意しておくと便利でしょう。また、スクリプトにしておけばテス ト手順の漏

れもなくせますし、自動化できるという利点もあります。

$ ./checkPOrt.sh
Connect■ on to 192.168.2.52

succeededl
..Conn‐ ection to 192.168.2.52

cat fail-port.1og
‐Failed at port: 2222  -― ―

一
　

　

　

　

　

　

一
　

　

　

　

　

　

・

一　

　

　

　

　

　

∵



(鷺議饉あるサーパの特定ポー トヘ通信できるかのチェックスクリプ ト

まずテストするTCPポート番号の定義として、●で、for文を利用してシェル変数port

に80,2222,8080と いう数値を順に代入しています。このサンプル例では、この数値が実

際に接続テストを行うポート番号になります。

②で接続テス トを行うため、ncコ マンドを実行 しています。ncコ マンドはNetcatと 呼

ばれ、TCP/UDPパ ケットの作成を行いさまざまなネットワークテス トができます。その

ためncコ マンドは、ネットワーク技術者によく使われるコマンドです。ncコ マンドには

さまざまな機能がありますが、基本的な使い方は次のようになります。

ncコマンドの書式

nc rオフンョンノ く増 オスト><ボLハ番号>

ここでは、ncコ マンドの―wオ プションと―zオ プションを利用しています。

z̈オプションはTCPの 3WAYハ ンドシェイクのみを行い、実際のデータ通信は行わない

オプションです。このサンプル例のように、ネットワーク/フ アイアウォールのチェック

を行 う目的で、サーバまでの疎通だけを確認したい場合には、この―zオ プションが便利で

す。

ẅオプションはタイムアウト秒数の設定です。ファイアウォールの設定によっては、サ

ーバの存在自体を隠すために、ポー トヘの接続時に何も応答せずに無視する機能を利用し

ていることがあります。このような場合にはncコ マンドの動作が停止してしまいますか

ら、このサンプル例では―w5と して5秒応答がなければタイムアウトで終了するように処
理 しています。

ncコマンドでよく使うオプションを次にあげておきました。

Oncコマンドの主要オプション

ncコ マンドでは、接続に失敗した場合は終了ステータスに非ゼロを返します。シェル

スクリプトでは直前のコマンドの終了ステータスは変数$?で取得できるため、0の it文で

ncコ マンドが成功したか失敗したかを判断しています。‐neは「箸しくないならば真」で

すから、このit文の中は非ゼロの場合、すなわちncコ マンドが失敗した場合に実行されま

す。こうして、失敗したポート番号のみをねil―portlogに 出力することができるのです。

―k コマンドを終了させず、 +回が入力されるまで永続化する
リッスンモードで起動する

―n ポート番号のサービス名への変換や、ホスト名の名前解決を行わない

―u T⊂Pパケットではなく∪DPパケットを送信する
―V verboseモ ード。通信状態の出力を細かく行う

タイムアウト秒数を設定する―VV

―Z データ通信は行わずハンドシエイクのみを行う

163



C翻響電R()50ネ ットワーク

Netcatについて

本項で利用したNetcatと 呼ばれるコマンドには、このサンプル例で紹介 したncコ マン

ドのほかに、ポー トスキャンツールnmapに付属するncatコ マンドがあ ります。また、
GNUに よるGNU Netcatと いうソフトウェアもあります。ただしGNU Netcatは既に開発
が止まつているため、現在はほとんど使われていません。一方、ncコ マンドとncatコ マ

ンドはどちらも頻繁に利用されています。

ncコ マンドとncatコ マンドは、オプションもほぼ同じで似た動きをしますが、細かな

動作やメッセージ出力に差異があります。そのためシェルスクリプトで利用する際には注

意が必要です。一般に「Netcatコ マンド」と言うときには、ncコ マンドを指 している場合

とnCatコ マンドを指している場合がありますので、事前にどちらのNetcatな のかきちん

と確認 したほうがよいでしょう。

注意事項

・他人のサーバのポートを不用意にチェックすると、ポートスキャンとして不正アクセス行

為とみなされる可能性があります。そのためこのサンプルを試す際は、自分の管理下にあ

るサーバのみに行うよう注意してください。

・ nCコマンドの―wオプションでのタイムアウト設定は、Macの場合にはマニュアルには記載
されていますが動作しません。そのためMacで応答がない場合は、

てください。

+[コで終了させ

関連項目

164

002 テス ト用の簡易TCPサーバを立ち上げる



職0日

002
m回塞″ロ

…ネットワーク.ポート番号,フアイアウオ
ール.テスト.デーモン

nc

システム構築時、ミドルウェアなどをまたインストールしていないサーバに対して、

ネットワーク疎通のテストを行いたいとき

″!/bin/sh

port=8080

nc ―v ―k ―L SpOrt

量型壁
このスクリプトは、サーバ上のシェル変数portで指定されたポート番号で、TCP接続を

受け付けるものです。ネットワークの疎通を調べる際に使われるケースを想定していま

す。

ncコマンドは、TCP/UDPパ ケットの作成を行い、さまざまなテストができます。サン

プル061で は、クライアント側から送信するパケットを作成するために使いました。ncコ

マンドは多様な機能を持ち、このサンプル例のようにサーバ側で待ち受けて、簡単なデー

モンとして振る舞うことも可能です。ここではこのデーモンとして振る舞う機能を、ネッ

トワークのテスト用スクリプトとして利用します。

Oでncコ マンドを、3つのオプションーvと ―k、 -1を用いて利用しています。
…vオプションは、verboseモ ード(冗長モード)です。接続があった際にメッセージを表

示してくれますので、テスト用ではわかりやすいため付けておいたほうがよいでしょう。

…lオプションは、リッスンモードで起動する指定です。これにより、サンプル例ではポ

ート8080で待ち受けるプロセスが起動できます。
‐kオプションは、永続化オプションです。ncコ マンドのリッスンモードは、通常は一度

接続を受け付けるとそこでncコ マンドが終了してしまいます。ネットワークテスト時に

165

|テスト用の簡易TCPサーバを
1立ち上げる



CttAPTE猜 1閲奪ネットワーク

は何度もパケットを投げて確認するでしようから、そのたびに終了しては困ります。その

ため、コネクションを永続化する―kオ プションを付けることで、何度接続を受け付けても

終了しないようにできます。なおこの際は、キーボー ドから

終了できます。

Ctrl 十回 を入力することで

ncコ マンドのオプションについてはP.163も参照 してください。

このサンプル例の実際の利用シーンとしては、以下のようになります。

1)ネットワークの疎通を確認したい接続先のサーバで、このサンプル例のport‐ httpd.sh
を起動する。

2)ネ ットワークの疎通を確認したい接続元のサーバで、P.162のスクリプトでパケット
を生成する。

3)ネ ットワーク状態のOK/NGを 判断する。

特にシステム構築時に、物理サーバだけはすでにあるが、まだミドルウェアのインスト

ールや設定は行っていない。しかしネットワーク担当は早く設定作業にとりかかりたいと

せっついている¨̈ と̈いうシーンはよく見られます。そのような際には、このサンプル例

のような簡易デーモンを起動して疎通試験を行う、という例がよく見られます。

単にncコ マンドを実行するだけならばわぎわざスクリプトにしておく必要もなさそう

ですが、このようにシェルスクリプトにしておくと、テストを実行する際にコマンド操作

が不慣れな人でも比較的楽に操作することができます。そのため手順書などを簡略化でき

ますし、作業時のミス (ポート番号の指定を誤る、など)をなくすという意味でも重要です。

このようなテストの作業は、できるだけ自動化できるようスクリプト化することを検討し

てみてください。

注意事項

・ Macでは、ncコマンドの一vオプション(verboseモ ー ド)はマニュアルには記載されていま

すが、‐vオプションを利用しても接続があつた際のメッセージは表示されません。

・ポー ト番号1024未満のスタンダー ドボート(ウ ェルノウンポー ト)にバインドするには

root権 限が必要なため、1024未満のポー ト番号でテス トする際は、このスクリプ トも

root権限で実行する必要があります。

麹l型里

166

061 あるサーバの特定ポートヘ通信できるかのチエックスクリプト

一

一

・

‐

●

．
．
　

　

．
　

　

　

　

　

．
　

　

　

　

　

　

　

　

　

　

　

　

　

・
　

　

　

　

　

　

　

　

　

　

　

　

　

一



‖o.
ftpで自動ダウンロード・自動
アシプロードを行う003

国鷹轟日障

…ftp.ログイン.自動化ftp

…ftpてファイル連携を行うシステムで、ログイン処理やファイルのダウンロード・アッ
プロードを自動化したいとき

■朦回□■

″:′ bin′sh

〃 FTP接続のための設定

server="192.168.2.5"

user=':userl‖

password=="xxxxxxxxx:'

di n="/home/usenl /myapp/ [og"
fi Lename="app. log"

ftp -n "$server" << _EOT_ ----------€
user "$user" "$password"
bi na ry
cd "$di r"
get "$fi Lename"

_EOT_

鬱解雌
このスクリプ トは、指定されたFTPサーバから、ftpコ マンドで自動的にファイルをダ

ウンロードするためのものです。スクリプト内のシェル変数で、接続するFTPサーバやア

カウントを指定すると、自動的にログインしてファイルダウンロー ドが行えます。

ftpは ファイル転送のためのプロトコルで、サーバ間でファイルをやり取りするために

よく使われています。このftpは古いプロトコルであり、平文でID・ パスヮードをやりと

りするというセキュリティ面での欠点を持つため、新規システムで採用されることは減り

つつあるようです。しかし歴史の長いプロトコルであることから、読者がシステム運用を

行う上でFTPサーバを扱うことになるケースもまだまだ多いでしょう。

167



C出田ER 05 0ネ ットワーク

ここでは、バックアップサーバ上で定期的にスクリプトを実行して、FTPサ ーバ兼アプ

リケーションサーバのログファイルapp.logを 取得するというケースを想定しています。

このようにログファイルなどを定期的にftpで取得したいという要件は、現在でも比較的

よく見られます。

まずはじめに●で、ftp接続のための各種設定をシェル変数に代入しています。

server
USCT

password

dir
filename

FTPサーバのIPア ドレスもしくはホスト名

FTPサーバヘのログインlD

FTPサーバヘのログインパスワード

FTPサーバ上のファイル設置ディレクトリ

ダウンロードするフアイル名

続いて0で、ftpコ マンドを実行します。ftpコ マンドはオプションなしで実行すると、
次のように対話型モードで起動されます。これは、人がキーボードを打つ際にはわかりや

すいのですが、シェルスクリプトとして自動実行させようとすると、このような対話型と

いうのはむしろ扱いにくいモードになります。

Oftpコ マンドをオプションなしで実行すると対話型モードになる

そこで、シェルスクリプトとして自動実行 したいケースでは、0の ようにftpコ マンド
の―nオ プションを利用するのがよく使われる手法です。‐nオプションとは、本来は.netrc

ファイルによる自動ログインを抑止するオプションですが、シェルスクリプトでの自動化

のためにもよく使われるオプションです。

ftpコ マンドでは、ホームディレクトリ配下の.netrcと いうファイルにログイン情報を記

載しておくと、自動ログインが行えます。ここで―nオプションを用いると、.netrcフ アイ

ルを利用せず、代わりに標準入力からftpの コマンドを与えることができるようになりま

す。サンプル例ではこの機能を利用し、0でヒアドキュメントの形でftpコマンドを自動実
行させています。なお、シェルスクリプトでのヒアドキュメントの書き方については、

P.56で解説していますのでそちらを参照してください。

168

一●
一一
一●
一一

一
　
　
　

一
　
　

　
　

　
　

　
　

一
　
　
一
　
・
・

　
　

一
一
　
　
一
一
一

　

　

一
　
．
　
　
　

・

．　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
一　
　
　
・■ｍ

, ftp

server (version 6.00LS)

for331

Password:

230 user
|じNIX.

transfer files.

command successful".



0〔;轟 螢ftpで自動ダウンロー ド・自動アップロー ドを行う

0の ヒアドキュメントで実行しているftpコ マンドは、具体的には以下のものです。

1)userコマンドでログインを行う

2)binaryコ マンドでバイナリモードを設定

3)cdコマンドでディレクトリ移動
4)getコ マンドでフアイル取得

こうしてftpコ マンドの―nオプションを利用すれば、ftpプロトコルによるフアイルダウ

ンロードを、シェルスクリプトで自動化することができます。なお、サンプル例のヒアド

キュメント内でgetしている部分をputに 変えれば、フアイルのアップロードを自動化する

こともできます。

注意事項

・ CentOSでは、デフォルトではftpコ マンドがインストールされていません。そのため次の

ようにyumコマンドでインストールを行つてください。

・ Linuxの ftpコマンドは、‐nオプションを付けると、実行例のようにFTPサーバとのやり取

りが一切表示されなくなります。

。FreeBSDや Macの ftpコマンドは、‐nオプションを付けていてもftpサーバとのやり取りが

表示されます。これがうるさく感じる場合、FreeBSDや Macで はftpコマンドの‐Vオプシ

ョンを併用して表示を抑制できます。

。このシェルスクリプ トにはftp接続のためのIDとバスワー ドが直接書かれているため、他人

から見られないようにする必要があります。ファイルのパーミッションを700にするなど

適切な設定を行つてください。

・ ftpは平文で通信を行うため、通信内容を傍受されると:Dとパスワー ドが簡単にわかつてし

まいます。そのため、このスクリプ トは基本的にイン トラネット内で利用し、インターネ

ット経由でのフアイルのやり取りには、scpや sftpな どの暗号化通信できるプロトコルを

選択するようにしてください。

022 ヒアドキュメントで変数展開をせずにそのままSstrの ように表示する

169

晰関連項目



‖o.
シェルスクリプトでCGlを実行
する004

…eChO.uptime                  CGI

シェルスクリフトでCClプログラムを記述したいとき

″:′ bi n′ sh

#CGIヘッダの出力
eCh。| =:COntent― Type: teXt/ptainil ―――――――(D
echo

利用コマンド

Test CGI:¨ ti腱
20:22:40 up 9 min. 1ぃe「 , load average:0.00,0.02,0.00

解説

このスクリプトは、CGIプ ログラムとしてシェルスクリプ トを実行するためのものです。
Webブ ラウザでアクセスすると、uptimeコマンドの出力結果を表示し、サーバのロード
アベレージなどを確認できます。

CGIプ ログラムを記述する際、プログラミング言語として一般的にはPerlや Rubyが よ
く使われます。そのため、シェルスクリプ トでCGIプログラムを書 くというのは奇妙なや

り方 と思われるかもしれません。しかし、CGIプログラムはPerlで書かなければならない

というものではなく、Webブ ラウザが解釈できるように適切に出力をすることができれ

170

″ コマンドを実行してブラウザに表示させる

echo‖ Test CG1l uptime‖ ――――一―――――――――――o
uptime



麟購 苺シェルスクリプトで CGlを実行する

ば、利用する言語は何でもかまいません。

特にサンプル例のように、コマンドの出力結果をちょっとWebブラウザで表示したい

というケースでは、シェルスクリプトで書いたほうが便利でしょう。

●で、CGIのヘッダを出力しています。このサンプルではコマンドの出力結果をそのま

まブラウザで表示したいため、texν plainで出力することにします。また、HTTPの ヘッ

ダ部とボディ部は空行で区切る必要があるため、続けて空のeChoコ マンドを用いて改行

しています。

これらCGIヘ ッダなどについての詳しい説明は本書の範囲を超えますので、興味のある

方はCGIプログラミングの書籍などを読んでみてください。

0がHTTPレ スポンスのボデイ部、つまりWebブ ラウザに表示される部分を出力してい

る箇所です。
‖Test CGI:uptime"と いう文字列をechoコマンドで表示した後に、uptime

コマンドを実行しています。uptimeコ マンドとは、次のようにサーバの起動時間と、過

去1分/5分/15分のロードアベレージを表示するコマンドです。

醸uptimeコマンドで起動時間やロードアベレージを表示

こうしてCGIと してシェルスクリプトを用いることで、Webブ ラウザから実行結果を確

認できます。

この他にシェルスクリプトでCGIを書 く利用例として、サーバ構築時のテスト用途があ

げられます。例えば最小構成のFreeBSDや Linux(CentOS)は 、インストール直後のデフ

ォルト状態ではPerlがインストールされていません。サーバの構築作業とプログラム開発

が並行しているようなプロジェクトでは、まず臨時にWebサ ーバとして動作させ、クラ

イアントからCGIに接続できるかどうかのテストを先に行いたいという場面がよくありま

す。

このようなケースでは、シェルスクリプトで書いたCGIプログラムを設置して、クライ

アントからの接続テストを先行して進めるという手法をとることができるでしよう。

五注意事項

・サーバに対して負荷の高いコマンドを実行するCGlプログラムを、インターネットからも

アクセスできるところに公開すると、大量のアクセスを受けてサーバの動作に影響を与え

る可能性があります。そのため、そのようなCGlプログラムは、イントラネット内にのみ

公開する、パスワードによる保護をかけるなど、アクセス制限をかけることを検討してく

ださい。

171

3:21′   1 user′   load



172

#timeコ マンドの出力結果から実時間を取得し、割り算を

翻

llo. 
l

065 I

l

指定したサイズのフアイルを作
り、転送速度を測定する

□日堅□日
dd.tinie,ftp.bo …転送速度.通信速度,ネットワーク速度

…あるサーバ宛てに、一時ファイルを転送して通信速度を測りたいとき

″:′ bi n′ sh

#転送速度を測る一時ファイルのサイズ指定。単位はキロバイト(KD
fi Lesize=1024

″転送速度を測る一時ファイルのファイル名 (テ ンポラリ)

tmpdata="tmpdata . tmp"
t imef i Ie="timecount - tmp"

″転送に用いる一時ファイルを作成する

dd if=′deV/ZerO Of=iiStmpdata'' COunt=$fitesize bs=1024 2> /dev/nuLL ―――――― o

″ FTP接続してファイルをPUTする (No.063参員Q
serven="1 92 . 168.2 .5"
user="user1 "
pa ssword="xxxxxxxxx "

echo "FiIesize: $fiIesize (KB)"

echo "FTP Server: $server"

(time -p ftp -n "$server") << _EOT_ 2> ,,$timef iLe,'
time ftp -n "$server" << _EOT_
user "$user" "$passuord"
bi nary
put "$tmpdata"

EOT-

「

」

実行例

●
　
　

・　

　

　

　

　

　

一

一　

　

　

　

　

　

　

　

　

一
　

　

　

　

一
●
　

―

,

S ./transfer―sec.sh

F■ les■ 2e, 1024(KB)

FTP Server: 192.168.2.5

TranSfer Speed: 978 (KB/sec)



餓鰺 會指定したサイズのフアイルを作り、転送速度を測定する

鸞

#行って速度を求める
reaLtil■e=S(awk lノ ^reaL ノ {print S2): :]$timefi tei=)― ―――――-0
speed=$(echo "${fil-esize}/${reaItime]" I bc)

echo "Transfer Speed: $speed (KB/sec)"

″転送一時ファイルの削除

rm ―f i:Stmpdatali `iStimefi te"

解説

このスクリプトは、一時ファイルを作成してFTP転送し、その転送速度を測定するもの

です。このスクリプトを起動 したサーバと、シェル変数serverで 指定されたサーバ間の、

通信速度を調べる用途での利用を想定しています。

このサンプル例のように、サーバ間でファイルのやり取 りを実際に行つてみて転送速度

を測ることは、ネットワークの運用において重要な作業です。そこでこのようなシェルス

クリプトを利用して、できるだけ作業を自動化 してみましょう。

サンプルは、まず0と 0で、速度測定するための一時ファイルの、フアイルサイズおよ

びファイル名 (tmpdata)を 設定しています。同時に、時間測定のための一時ファイル名

(timeme)も設定しています。

ここではファイルサイズは1024KB(lMB)を指定していますが、ネットワークの状態

によって適正な値は異なるでしよう。あまリサイズが小さすぎると転送が一瞬で終わって

しまって正確な速度を計算できませんし、サイズが大きすぎるとサーバやネットワークに

大きな負荷をかけてしまいます。読者の環境にあわせて、ファイルサイズは適宜設定して

みてください。

Oで、転送する一時ファイルをddコマンドで作成しています。ddコ マンドは指定され
た入力から出カヘコピーを行うコマンドです。このスクリプトではddコ マンドの経過出

力は表示する必要がないため、/dev/nu‖ へと標準エラー出力をリダイレクトしています。

ここでは以下のようにオプションを指定しています。

鰈一時ファイル作成に用いたオプション

これで、ヌルキャラクタ (ASCIIコ ードでOx00)で埋められた、1024(KB)x1024(回 )=
lMBの 一時ファイルができあがります。

なお、このように/dev/zeroか ら一時ファイルを作ると高速にファイルを作成できま

すが、中身はすべて同じデータのファイルができます。転送速度を測る際、プロトコルに

if=/dev/zero 入力に、/dev/Zeroと いうヌルキャラクタが読み出せるスペシヤルデバイスを指定

of:"$f ilename" 出力に、シェル変数fitenameで 指定されたフアイル名を指定

count=$fi[esize シェル変数fitesizeで指定した回数だけコピーを行う

bs=1024 コピーを行うブロックサイズ。ここでは1024バイト(1キロバイト)

173

一　

　

　

　

　

　

一



CW響躍R050ネットワーク

よっては自動的にファイル圧縮がかかるため、このように内容がすべて同じファイルは圧

縮率が非常に高くなってしまいあまり現実的ではありません。

そのため用途によっては/dev/zeroか らではなく/dev/urandomか ら読み込むように
すると、フアイル内容をランダムにした、より現実的なファイルが作れます。

dd if=/dev/urandom of=tmp"dat count=1024 bs=1024

なおサンプル例ではftpプ ロトコルを利用しています。これは自動的にファイル圧縮が

かかるプロトコルではないため、高速性を重視して/dev/zeroか らファイルを作つていま

す。

転送ファイルが用意できたので、続いて実際にファイルを送信します。●では、ftpで

ファイル転送する設定を記述しています。このようにシェルスクリプト中でftp転送を自

動で行う方法は、P。 167で詳しく説明していますのでそちらを参照してください。

ftp転送の際、0でtimeコマンドを利用しています。ここでは秒数のみを表示する―pォ
プションを利用して、実時間realを取得します。timeコ マンドでの実行時間の取得につい

ては、P.253を 参照してください。

0はヒアドキュメントとリダイレクトが入り交じっていてちよっとわかりにくいのです
が、
‖
_EOT_・ というヒアドキュメントを用いて、同時にtimeコ マンドの出力をシェル変

数timenleで指定されているファイルにリダイレクトしています。

また、0は コマンド全体を丸カッコ()で くくってサブシェルとしています。これはコマ
ンド全体をひとくくりにしてリダイレクトするための処理です。サブシェルを使わずに次

のように書くと、ftpコ マンドの結果のみがリダイレクトされてしまい、timeコ マンドの

結果が得られません。

time *p ftp -n "$server" << EOT- 2> "$timefi Le"

0で、転送速度を計算しています。まずtimeコ マンドの表示結果が出力されているフ
ァイルStimenleか ら、コマンド実行にかかった実時間realを取得します。

転送速度は、「フアイルサイズ■時間」ですから、この計算を0の bCコマンドで行ってい

ます。シェルスクリプトの計算ではexprコ マンドがよく使われますが、exprコマンドは

小数が扱えないため、ここではbcコ マンドを用いています。割り算の式をechoコ マンド

で表示し、それをパイプでbCコ マンドに入力することで計算結果が得られます。

このサンプル例では、ファイルサイズは単位がキロバイト、timeコ マンドの出力は秒

数でしたから、0で計算している速度の単位は「キロバイト/秒」となります。これを
eChoコ マンドで表示して転送速度が表示できるわけです。

注意事項

P.167で、ftpはセキュリテイ的な問題があると記載しましたが、ここでは敢えてftpを用

いました。これは、scpなどのsshベースの通信は、暗号化によるCPUオ ーバーヘッドが

174

Ｔ
，

　

　

一



議(,議 饉指定したサイズのフアイルを作り、転送速度を測定する

大きく、通信速度を測つてもあまり意味のある値が得られないからです。ここではサーバ

間でのファイル転送速度を純粋にとりたいため、ftpを用いています。

このスクリプ トで測る時間は、純粋なネットワークの通信速度だけではなく、一時ファイ

ルのディスク読み書きぶんにかかる時間も入つています。そのため、ディスク速度がとて

も遅いサーパの場合は、見かけの速度が遅くでるでしよう。

wgetコマンドやcuriコマンドなどのツールは、コマンド終了時に転送速度を表示してくれ

ます。そのためダウンロー ドの速度を見たい場合は、これらのツールの出力を確認しても

よいでしょう。

鸞wgetコ マンドでのダウンロード

蜻cur!コマンドでのダウンロード

なお、この際、FTPの IDとパスワードは次のように指定します。

関連項目

003 ftpで自動ダウンロード・自動アップロードを行う

001 scpで ファイル転送を行つてCP∪利用率を計算し、圧縮処理をすべきかどうか判断する

175



176

‖o.
IPアドレスによる処理分岐を
case文で書く066

esac

□回露□日
caso.plng lPア ドレス.分岐.マッチング.文字列

…lPア ドレスことに違う処理を行う際、簡単に分岐を書きたいとき

■臓回四D

″1/bin′ sh

#対象 IPア ドレスがコマンドライン引数で指定されていなければ
″エラーとして終了

if [ -2 ''Sl'i コ′ then
eChO liIPア ドレスを指定してください'1凝2
exit l

fi

〃テスト対象ネットワークならばpingコ マンドを実行する

case i`Sl't in

192.168.2.*1192.168.10.*)

plng ―c l ''Sl'' > ′dev/nuLL 2>811 -―――――――― o

うf [ S? ―eq O コ′ then
eChO :`Ping to Sl :[OK]‖

eLse

eChO ::Ping to $1 :[NG]i:

fう

ホ)

eCh。 'lSlはテスト対象ではありません">&2
exlt 2

|

192.168.3.1./ipmatch.sh

to 192.168.2.1 : [oK]

./ip“Lユtch.sh 192。 168.2.■



憩機醸警IPア ドレスによる処理分岐をcase文で書く

解説

このスクリプトは、引数で指定されたIPア ドレス宛てにpingコ マンドでiCMPバケット

を送 り、ネットワーク疎通を確認するものです。この際、テストとは関係のないネットワ

ークにはpingコ マンドを実行 しないようにする処理を入れています。なお、ここでは

「192.168.2.0/24お よび192.168.10.0/24」 のみをテス ト対象とすると仮定しています。

まず0で、testコマンドのⅢzを利用してコマンドライン引数が指定されているかチェッ

クしています。―zは空文字列ならば真となるため、このOの if文が真となる場合は、コマ

ンドライン引数が指定されていません。そのためit文の中では「IPア ドレスを指定してく

ださい」とエラーを出力して、e対tlと してエラー終了させています。

(0)で、入力されたIPア ドレスをcase文で比較しています。case文でパターン比較する

際 には、
十
(ア スタ リスク)な どのワイル ドカー ドを利用で きます。そのため、

「192.168.2.0/24」 というネットワークは、「192.168.2.*」 としてマッチできます (ただし

この書き方は、「192.168.2.AA」 などIPア ドレスとして不正な文字列もマッチしてしまう

ことに注意してください)。

0で、指定されたIPア ドレスにpingコ マンドを実行しています。ここでは実行回数を指

定する―cオプションを利用して、1回だけICMPパ ケットを送っています。この…cオプショ

ンの使い方などは、P.146を 参照してください。なお0では、pingコ マンドの終了ステー

タスのみが必要で途中の出力は必要ないため、標準出力と標準エラー出力を/dev/nu‖ ヘ

リダイレクトして捨てています。

pingコ マンドを実行した結果の終了ステータスは、シェルの特殊変数$?に入っていま

す。●ではこの値を比較しています。終了ステータスが0(ping成功)な らば[OK]と 表示

し、終了ステータスが非ゼロ(ping失敗)な らば[NG]と 表示しています。

case文の分岐で、0にマッチしなかったIPア ドレス、すなわちテスト対象外ネットワー

クのIPア ドレスは、0の分岐にやってきます。0は、case文 にて
*(アスタリスク)でマッ

チしていますので、その前までの条件に引っかからなかったものすべてがマッチします。

ここに到達するということはテスト対象ではないアドレスということになるので、テスト

対象外である旨を表示して終了しています。

こうして、IPア ドレスごとに分岐させてテストを行う処理を、case文でスマートに書く

ことができます。

骰L壁翌
このサンプル例では、入力された値がlPア ドレスかどうかはきちんと確認していません (例

えば、AAAA.AA.AAと いう文字列が入れられるかもしれません)。

関連項目

055 デフォルトゲートウェイにpingが通るかテストする (Linux)

177



ローカルのシェルスクリプトの
フアイルを、リモートホストでそ
のまま実行する

007
‖o.

利用コマンド

cat, ssh, hostname, ping SSH,リ モートホスト

ローカルにあるシェルスクリプトを、ssh接続先にコピーせずそのまま実行したい
とき

口厖罰回■

″:/bi n/sh

script-remote.sh

username="user1 "
scri pt="check. sh"

cat $script
cat $script
cat $script

ssh ${username}0192.168.2.4 :ishi'

ssh S(username}0192.168.2.5 i'sh"

ssh S(username}0192.168.2.6 1:sh‖

″:′ bin/3h

#疎通を確認する対象サーバ
checkserver==1192.168.2.35::

″スクリプトを実行するホス ト名を表示する

hostname

check.sh

いつ使うか

S ./script―remote.sh

server04

P■ng to 192.168.2.35

server05

PIng to 192.168.2.35

server06

Ping to 192.168.2.35

[OK]

[NG〕

[OK〕

178

9

●
‥
　
　
　
・

~¬

」-0

″サーバヘの疎通をpingコ マンドで確認する

ping ―c l ''$checkserver'' > ノdevノ nuLL 2>&1 -― ――――――――― o



tS7苺 □一カルのシェルスクリプトのファイルを、リモートホストでそのまま実行する

鸞

if t $? -eq 0 l; then
echo "Ping to $checkserver : EoKl

e tse
echo "Ping to $checkserver : ENGI"

fi

解説

このスクリプトは、複数のサーバに順次ログインして、特定の宛先 (ス クリプト2のシ

ェル変数checkserverで 定義されている、192.168.2.35)へ の通信が正常に行えるかどう

かをチェックするものです。

巾‐複1数のサーバから特定の宛先に通信できるか調べる

―バ

.2.35)

check.shを実行してping

スクリプト1を実行することで、ローカルにある確認用スクリプトファイル (こ こでは

check.sh)を 、sshロ グイン先で直接実行するように動作させているのがポイントです。

このようなスクリプトの使い方は、以下のようなケースで応用できるでしよう。

複数のサーバで、設定内容が違つているものがないかを確認するコマンドを実行する

ネットワーク設定が全台同じになつているか、設定ファイルを確認してチェックを行う

●が、ローカルに設置しているシェルスクリプトのフアイルを、ssh接続先で直接実行し

ている部分です。ここでは、3台のサーバSeWer04(192.168.2.4)、 seⅣeЮ 5(192.168.2.5)、

seⅣer06(192.168.2.6)で 順次実行しています。

sshコマンドは、[ユーザ名@サーバ名]の後ろに引数を付けることで、リモートサーバ

で実行するコマンドを指定することができます。●では
‖
sh‖を指定して、非インタラクテ

ィブシェルを起動しています。この場合には標準入力は端末が割り当てられないため、

catコマンドでローカルのスクリプトを標準入カヘ与えてやることにより、シェルスクリ

プトが実行できます。

リモートサーバで実際に実行されるシェルスクリプトが、CheCkoShです。まずはじめ

に、0でhostnameコ マンドを実行して動作しているリモートサーバのホスト名を表示

しています。その後、0で、シェル変数checkseⅣ erで指定された宛先にpingコマンドを

179

一　

　

　

　

　

　

　

　

　

　

一



CHAPT田 050ネットワーク

実行して疎通を確認しています。0で、終了ステータス$?が0か どうかで成功したか失敗
したかを判断し、pingコ マンドが成功していれば[OK]を 、失敗していれば[NG]を表示し

ています。このpingコ マンドでの疎通確認の流れについては、P.176と ほぼ同じですので、

詳しくはそちらを参照してください。

このようにして、手元のシェルスクリプトのファイルを、リモート接続先にコピーせず

にそのまま実行することができます。複数のサーバに同じシェルスクリプトを実行したい

場合には便利でしょう。

非インタラクティプシェルとインタラクテイブシェル

本項で、「リモー トサーバ上でshを 非インタラクティブシェルとして起動 しています」

と解説しました。この用語について少し補足しておきましょう。

非インタラクティブシェルとは、その名のとおリインタラクティブ(対話的)ではないシ

ェルです。これは入力のためのキーボー ドや表示のための端末が接続されていないシェル

で、最も身近な例はシェルスクリプトを実行するために起動されるシェルでしょう。端末

からり script.sh」 などのコマンドを実行すると、そこで非インタラクティブシェルが起

動されてシェルスクリプトを実行しているわけです。

一方、普段読者がキーボードを叩いて操作しているシェルは、インタラクティブシェル

です。このシェルは入出力にキーボード・端末が接続されており、シェルに実行させる処

理をキーボードから直接打ち込みます。

非インタラクティブシェルとインタラクティブシェルでは、起動時に読み込む設定ファ

イルに若干の差異があります。これらの動作の差異については、Shやbashのマニュアル
に記載されています。

関連項目

180

066 1Pア ドレスによる処理分岐をcase文で書く



GHAPTER

テキスト処理
シェルスクリプ トがもつともよく利用されるのは、

sedや awk、 grepコ マンドを組み合わせて、文字列

を加工・抽出するテキスト処理でしょう。定型のレ

ポー ト出力などは、スクリプ トにしておけばすぐに

自動化できます。この章ではCSVフ アイルを対象と
した様々な抽出例や、ログファイルからアクセス数

のレポート集計をおこなうサンプルを紹介します。

|



182

‖o= IDが書かれたリストフアイルから
lD抽出をする際、IDの末尾文字
(下1桁)でソートして取り出す

008

国回国目B
rev.sort …末尾.ツート.IDリスト

…lDリ ストファイルの、末尾文字でソートした順に処理を行いたいとき

″!′ bin′sh

#一時ファイルの指定
tmpfi te=:'sort.Lst‖

#対象 IDフ ァイルを確認する
うf [ ! ―f :iSll: ]′  then
echo"IDリ ストファイルを指定してくださぃ11>&2

exit l′

fi

″ IDの末尾の数字でリストをソー トする

reV iiSl': I SOrt l reV > Stmpfite

″末尾ソートされたIDリ ストでレポートを作成する

./report-sh $tmpfiLe

″一時ファイルを削除する

rm ―f Stmpfite

, Cat id.lSt
PPX0 2 1~  |
AN39 9 1

UIA5 3 ‐―‐‐――――

BA06 7 :

QXD3 0 j

l ./revsort.sh

QXD3 0 ′

PPX0 2 :

UIA5 3 1

BA06 7 ,

Alヽ39 9 」

《鱗1暑::咸レlml菫餘簸:i〔〔::1鶉ζ:を::〔は:|:レぇ辣魏躙:

■stid

●
●

―
　

　

　

　

一
|



瞬鰺爾:Dが書かれたリス トフアイルから ID抽出をする際、IDの末尾文字 (下 1桁 )でソー トして取り出す

解説

このスクリプトは、指定されたIDリ ス トフアイル (こ こではld.lst)を読み込み、IDの末

尾文字でソートしたリス トを作成して順に処理を実行するものです。まず下1桁が・1・の人

を処理 し、次に下1桁が
‖
2・の人を処理 して……というように、下1桁の値で順番にリス ト

処理を行いたいケースを想定しています。

(Dの report.shと いうのは、IDリ ストのフアイルを対象としてさまざまな処理を行うス

クリプトと仮定しています。このサンプル例では、単純にファイルの中身を表示するだけ

のリスト1の ようなスクリプトを用いました。読者の利用シーンにあわせて、この中身を

実際の処理に変更してみてください。

鰯圏圏圏艤実行するスクリプトの例(reportsh)

″!/bin/sh

″引数で指定されたファイルの中身を表示

cat liSl''

ユーザ管理システムの運用現場では、一部のユーザだけを選択しての処理や、アンケー

ト集計処理などで、ユーザIDの末尾の数値 (下 1桁)の順に処理を行いたいという用途がと

きお りあります。このようなケースでは、サンプル例のように、IDリ ス トファイルを受

け取って集計を行 うシェルスクリプト(こ こではreport.sh)を まず作っておき、そこに用

途に応じたソー トをかけたIDリ ス トファイルを渡してやる手法を用いるとよいでしょう。

このサンプル例では、まず0で対象のIDフ ァイルをチェックしています。testコ マン
ドの‐fオプションでファイルが存在するかを調べ、それを否定演算子!と 併用することで、

ファイルが存在しない場合にはエラーを表示して終了するようにしています。これらファ

イルテストの演算子については、P.110で紹介していますのでそちらを参照してください。

0では、IDリ ストを末尾文字でソートするためにrevコ マンドを用いています。revコ
マンドは単体で用いると、次のようにファイルの各行の文字列を逆転 (reverse)して表示

します。

⑫revコ マンドで文字列を逆転する

使いどころが少ないコマンドですが、サンプル例のように末尾文字でソートするために

は便利です。0では、まずrevコ マンドで文字列を逆転させ、パイプでつないでsortコマ

183

1目rev

0987654321

■国



GHAPTER 00 0テキスト処理

ンドでソートします。sortコ マンドは先頭の文字でソートしますので、結果として末尾文

字でソートできます。このままでは文字列が逆転したままですから、パイプ処理でもう一

度revコ マンドを使うことで元の文字列に戻すことができます。この出力結果を一時ファ

イルとして、シェル変数tmpfileと いうファイル名で出力して、末尾文字でソートしたID

リストファイルが得られます。

こうして末尾文字でソートしたIDリ ストフアイルができたら、後はリストファイルを

受け取って処理するスクリプト(こ こではreport.sh)に渡せば、「末尾文字でソートされた

ID順」に処理を行うことができるわけです (0)。

Eその他の末尾ソート
データベースにおいても、さまざまなIDソ ー トの操作はよく使われます。ここではシ

ェルスクリプトでの集計処理などで連携することが多い、MySQLで の末尾ソー トの例を

参考までに見てみましょう。

MySQLでは、以下のようにsubstring関数で文字列の一部を取り出すことができます。

substing関数の起動書式

SubString(対象文字列′ オフセット′ 文字長 )

この際、オフセットに負の値を指定することで、前からではなく後ろから数えた位置を

指定できます。すなわち、オフセットに-1、 文字長に1を指定すれば、末尾文字だけを取

り出すことができます。

例えばusernfoテ ーブルのidカ ラムを末尾ソートするSELECT文は、以下のように書 く
ことができます。

SELECr id F農6轟 1凛:|:語

`|||も

―

R`[RI111き轟

`t商

ng“ d′ ~1′ 1)′       ‐
||||

| |‐ ■  .      |||||■ ||||■ |‐ ||―                           |■ ■  ||

関連項目

184

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

一　
　
　

　
　

　
　

　
　

・

一　
　

　
　

　

　
　

　
　

　

一　
　

　
　

　
　

・

・　
　

一

一　
　

　

　
　

　

　
　

　

―
一　
　
　
　
　
　

　
　
　
　
　

　
　
　
　
　

　
　
　
　
　

一

●

●
■



闘0日
テキストフアイルから区切り文
字を指定してカラムを取り出す000

国日藤目D
env.grep.cut 環境変数.区切り文字・カラム

設定されている環境変数のリストを取得し、ある変数名が定義されているかどうかを

確認したいとき

■醍孤囲■

″!′ bin′ sh

″事前設定をしておかないとエラーになる環境変数の定義

ENVNAMC=,,TMPVAR"

″ enVコ マンドで環境変数一覧を表示し、Cutコ マンドで、

″ *1番 目の値を表示 [―flコ
″  Ⅲ 区切り記・号は:[―d il==i]

″ として表示する

env l cut ―f l ―d il=== > env.Lst

″チェックする環境変数名がenv.LStに マッチするかで

#未定義かどうかを確認する
grep ―q :=^S{envname)Sil env.Lst

if E S? ―eq O ]′  then
″環境変数が設定されていればStart.Shを 実行

echO::環境変数 Senvnameは設定されています==―――-0
./sta rt.sh

eLse

echo::環境変数 SenVnameが設定されていません "

fl

いつ使うか

185



C出

『

狂R06● テキスト処理

解説

このスクリプトは、現在設定されている環境変数の一覧リストをenVコマンドで取得し、
指定した環境変数が設定されているかどうかを判断するものです。シェルスクリプトでは

環境変数に頼った記述をすることが多く、その際の事前チェックなどに利用されるケース

を想定しています。このサンプル例では、start.shと いうスクリプトを内部で実行してお

り、このstartoshの 実行には環境変数TMPVARの 設定が必要という仮定をしています。
まず0で、事前に設定しておくべき環境変数の名前をシェル変数envnameに代入して
います。ここで指定しているTMPVARと いう環境変数がセットされていない場合は、チ
ェックでエラーとする仕様とします。

0で、envコ マンドを利用して設定されている環境変数を一時ファイルenv.lstに 出力し
ています。envコ マンドの出力例を以下に示します。

Oenvコ マンドで環境変数を出力する

見てのとおり、enVコ マンドの出力結果は「環境変数名=値」のように、=(イ コール)
記号区切りとなつています。環境変数名は第1カ ラムにあるわけですが、このようなテキ

ストファイルから指定したカラムの値を取り出したいときは、「区切り文字を指定して」「第
n番 目の値を取り出す」というコマンドで対応できます。これにはいくつか手法がありま

すが、このサンプル例ではcutコ マンドを用いています。

cutコマンドは、その名のとおり、テキストファイルからある一部分を切り出すコマン

ドです。‐dオプションで区切り文字を指定し、…fオプションとそれに続く数字で取り出す

場所を指定します。0では、「―d‖ =‖」と指定することで、=(イ コール)を区切りとし、「―f
l」 で第1番目の値、すなわち設定されている環境変数名を抽出できるわけです。

0で、チエックしたい環境変数名が定義済みかどうかを調べています。grepコ マンドで、
先ほど出力した環境変数を記録した一時ファイルとマッチさせることで、シェル変数

envnameに 定義されている値が環境変数として設定されているかどうかを判別します。
ここではコマンドの終了ステータスのみを利用するため、grepコ マンドは結果を表示し

ない‐qオプションを利用しています。

0でgrepコ マンドの終了ステータス$?を利用して、環境変数が設定済みか未設定かで
処理を分岐しています。grepコ マンドでマッチ行があれば終了ステータスは0と なってい

186

一
〓

●
●
鸞
鸞灘

$ env

LOCNArIE=userl

SHELL=/bin/bash
‐HISTSIZE=1000



(〕69撥 テキス トフアイルから区切り文字を指定してカラムを取り出す

ますから、これはすなわちシェル変数envnameで定義した環境変数が設定済みというこ

とです。そのため0で環境変数は設定済みと表示し、続くスクリプトstart.shを 実行して

います。ここではこのスクリプトは、単純に「[STARTI startosh」 と表示するだけのもの

を仮定しています。読者の環境にあわせて、このstart,shを 実際に利用するスクリプトに

置き換えてみてください。

[注意事項

環境変数が設定されているかどうかは、一般的には次のように、testコ マンドの空文字列

かどうかを確認する‐z演算子を用いて、環境変数の値が空文字列かどうかで調べる手法が

一般的です。

この手法では、「環境変数が未定義」か「環境変数に空文字列が設定されている」かのどちら

なのかは判別できません。ただし、実用上はそれで困ることはほぼないでしよう。

=(イ コール)区切りのテキストフアイルから1つ目のカラムを取り出すには、awkコマン

ドの区切り文字を指定する‐Fオプションを利用して次のようにも書けます。

しかしこのサンプル例では、コンパクトでわかりやすいcutコマンドを用いる例を紹介しま

した。

072 CS∨ フアイルから、指定した特定レコー ドのカラムの値を得る

187

機関連項目



188

‖o. フアイル先頭のシバン(#:/bin/
shなど)を抽出し、スクリプトに
応じた拡張子を付力|する

070

esac

echo "Unknown Type: $1"

…head,mV            シバン.拡張子

“

t頭行

拡張子のないスクリフトファイルに.自動的に拡張子を付加したいとき

″:/bi n′sh

″対象スクリプトファイルの存在を確認する

if t ! -f "$1" J; then
eChO li指定されたファイルが見つかりません :Sl'=>&2
exit l

fi

#フ ァイルの先頭行を読み出す
headLi ne=S(head ―n l l'Sl li)

″ファイルの先頭行ごとに拡張子を判定して付加する

case "$headtine" in
*/bi n/sh | 

*bash*)

mv -v "$1" "${1}.sh"

*Per [ *)
mv -v "$1" "$t1).p1"

*rubyホ
)

mv ―v ''$1=1 1'$(1).rb‖

*)

利用コマン ド

I ./shebang.sh script
―> ' script. sh ' 一

●
―
一
●

$ ./shebang.sh sanplel
' -> 'sample1.p1'



鬱o。 ファイル先頭のシバン (#1/bin/shなど )を抽出し、スクリプ トに応じた拡張子を付カロする

跛解説

このスクリプトは、スクリプトフアイルの先頭行を読み込んで、使われている言語に応

じた拡張子をファイル名に付けるものです。

慣例的にスクリプトファイルは、その言語に応じた拡張子をフアイル名に用います。一

般的によく利用される拡張子を次の表にまとめました。

0広く使われている拡張子

しかし拡張子はあくまで慣例であって、シェルスクリプトを含めて、スクリプトフアイ

ルは特に拡張子を付けずとも動作します。そのためシェルスクリプトを書く際、いちいち

.shと いう拡張子を付けない人もいます。

読者が管理するシステムには、拡張子を付けないスクリプトファイルが数多くあるかも

しれません。そのようなスクリプトを、フアイル名だけ見て何の言語で書かれているかわ

かりやすいように、一括して拡張子を付加したい場合があるかもしれません。このサンプ

ル例はそのようなケースで役に立つでしょう。

さて、シェルスクリプトでは、はじめの1行日は必ず次のような#!で始まる行を書きま

す。

ガ!/bin/s11                                        ‐‐‐ ‐| .

これはShenbang(シバンあるいはシェバン)と 呼ばれる形式です。UNIXではファイル

を実行する際に、そのフアイルがマシン語で書かれたファイルであればそのまま実行しま

す。そうでなければ、ファイルの先頭を読み込み、それが#!であった場合はその後ろのコ

マンドを実行します。上記では/bin/shを 実行しますから、シェルスクリプトとして動作

します。

このシバンの動きを理解するために、ちよつと細かい話になりますが、以下に少し実験

をしてみましょう。

C言語などで書かれた実行ファイル (マ シン語のファイル)と 、シェルスクリプトのフア

イルは、実行させるための最低限のパーミッションが異なります。C言語などで書かれた

実行ファイルは、読み込みのパーミッションが付いていなくても、実行権限さえあれば実

行できます。

sh、 bashsh

pl PerI

rb Ruby

py Python

php PHP

189



$ chmod 100 a.out
$ ]^s -I a.out
---x------ 1 userl userl 6425 Jan 3 20:72 a,out*
$ . /a.out
Hel.Io, worl-d.

CIIAPTER 00● テキスト処理

OC言語で書いた実行ファイルは実行ビットのみでも実行できる

一方、シェルスクリプ トのファイルは、一般ユーザで実行する場合には実行権限だけで

は実行できず、必ず読み込みの権限も必要です。

0シェルスクリプトは実行ビツトだけでは実行時にエラーとなる

これは、UNIXではシェルスクリプトのフアイルを実行する際には、まず先頭のシバン
が解釈され、そこで指定されているコマンドにファイル自身を読み込ませる形で実行され

るからです。つまり上記の例ならば、「$/bin/sh./ptest.sh」 と解釈されるため、ptest.sh

には読み込み権限がないといけません (ただし、rootユーザならばそのまま実行できます)。

サンプル例ではこのシバンを見て、ファイルの種類を判別して拡張子を付加する処理を

行っています。

まず0で対象のスクリプトファイルをチェックしています。teStコ マンドの‐f演算子で
ファイルが存在するかを調べ、それを否定演算子!と 併用することで、ファイルが存在し

ない場合にはエラーを表示して終了するようにしています。これらファイルテストの演算

子については、P.110で紹介していますのでそちらを参照してください。

続いて0で、headコ マンドを用いてファイルの先頭 1行 を取 り出してシェル変数
headHneに格納しています。headコ マンドはファイルの先頭を読み出すコマンドで、‐n
オプションを利用することで指定した行数だけを取り出すことができます。ここでは―nl
とすることで先頭1行だけを取り出して、シバンの行だけを取得しています。

0で、case文を用いてファイル種別を判断しています。「*/bittsh l*bash*」 にマッチす
る場合 (すなわちshも しくはbashス クリプト)は拡張子を。shに、「

*perl*」 にマッチする場

合は拡張子を.plに 、「
*ruby*」 にマッチする場合は拡張子を.rbに、mvコマンドを利用し

て変更しています。コマンド名の後ろにも
*を
置いているのは、オプション指定などのた

めに後ろにスペースやオプションが続いてもマッチするようにするためです。

なお、拡張子変更のmVコ マンドには‐vオプションを付けて、変更前のファイル名と変
更後のファイル名を表示するようにしています。

0)の case文の最後に、「
*」 でどれにもマッチしなかったファイルの処理 として、

190

|

1 userl userL 29 Jan 3

$ chnod 100 ptest.sh
ls -:.F ptest.sh

■_|,■ 11  ‐

.,1ptest. sh



070薔 フアイル先頭のシバン (#!/bin/shな ど )を抽出し、スクリフ トに応じた拡張子を付加する

'lUnknown Type:‖ と表示するだけにして、フアイル名は変更 していません。このように

してスクリプトファイルの種別を判断して拡張子を変更することができます。

注意事項

このスクリプトは、PerLRuby,sh,bashに しか対応していません。また、例えばRubyが /

usr/bin/perl/rubyと いうおかしなパスにインストールされている場合には、誤動作を起

こします。

このスクリプトは、すでに拡張子があるかどうかはチエツクしていないため、拡張子があ

るフアイルに対して実行すると「ptest.pl.pl」 のように拡張子が2重になってしまいます。

正体不明のフアイル種別の判断には、f‖ eコマンドが便利です。f‖ eコマンドは次のように、

任意のフアイルを引数に取り、そのフアイルが何であるかを判断して表示してくれます。

鰊f‖ eコマンドの実行例

上の例では、1つ目のstartxフアイルはシェルスクリプト、2つ目のnetwork.datフアイル

はtcpdumpしたパケットキャプチャファイルであることがわかります。なおf‖ eコマンド

は、マジツクフアイルといういわば「フアイル辞典」を持っており、これを元にフアイル種

別を判断しています。興味のある方は、man magiCと してマジツクフアイルのマニュアル

を読んでみてください。

headコ マンドの逆として、ファイルの末尾行のみを表示するta‖コマンドもあります。

関連項目

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

191



192

hzr 
I

入カフアイルのハッシュ値を、行
ごとに追加カラムとして出力する

□回壺ロロ
paste,md5sum,read,awk

ー
ハツシュ.ペースト カラム

ファイルから入カデータを読み込み、一行ごとにそのハッシュ値を計算してCSVフ ァ
イルとして出力したいとき

″:′ bin/sh

″ハッシュ値を出力する一時ファイルを初期化する

tmpfite=‖ haSh・ tXt“ ~~L___________`、

: > $tmpfi[e __」

″ シェルの区切り文字を改行のみとする

″指定されたテキス トファイルからη行ずつ読み込む

white read -r line
do

〃各行の‖D5ハッシュを取得する。

″コマンドの後ろにはファイル名が付くため、1カ ラムロを取り出す

echo ―n ilSLinel: l md5Sum l aWk :(print Sl)! >> Stmpfi Le― ――――― o
dOneく Sl―――――――――一――――――――――――――(D

″元のテキストファイルと、ハッシュ値を出力した一時ファイルを、

″カンマ区切りで連結 して表示する

paste―d′ ''Sl'I StmpfiLe― ―――――――o

いつ使うか

実行例

S cat data.txt

abcdefg

password

123456

S 。/Paste.sh data.txt             ‐   ‐  .
abcdefg′ 7ac66cOf148de9519b8bd264312c4d64

password′ 5f4dcc3b5aa765d61d8327deb882cf99

123456′ e10adc3949ba59abbe56e1057f20f883e

Ｔ
■
　
　
　
・

IFS=:



0710入カフアイルのハッシュ値を、行ことに追カロカラムとして出力する

l型墜

このスクリプトは、指定されたテキス トファイルの行ごとにMD5のハッシュ値を計算

し、そのハッシュ値をカンマ区切 りのCSV形式で出力するものです。

MD5と はハッシュ関数の1つで、与えられた入力に対して 128ビ ットのハッシュ値を出

力します。ハッシュ値 とはメッセージダイジェストとも呼ばれ、入力値に対してハッシュ

関数による演算を行って出力される値です。メッセージが壊れていたり、改ざんされてい

ないかを手軽にチェックできるため、広 く使われています。

鰊わずか1文字の違いでもハッシュ値は大きく変わる

上記が、MD5の ハッシュ値を取得するmd5sumコ マンドの出力例です。ここでは
'ABCDEFG‖が5回繰り返される文字列のハッシュ値をまず求め、続いてこの文字列がど

こかで壊れてしまったという想定で、2文字めのBがAに化けている文字列のハッシュ値を

求めています。echoコマンドには改行を付けない‐nオプションを付けて、文字列のみの

ハッシュ値が得られるようにしています。入力が1文字違うだけなのに、出力されている

ハッシュ値は大きく異なることがわかります。このようにハッシュ値を比べることで、メ

ッセージが改ぎんされていないか、壊れていないかを判定することができます。また出力

されたハッシュ値から、逆に元の入力値を求めることは一般的に困難です。

サンプルスクリプトでは、まず入カファイルの各行を読み込んで、各行のハッシュ値を

計算して別ファイルに出力します。そのための一時ファイルの初期化を●で行っていま

す。:(ヌルコマンド)に よる初期化については、R71を参照してください。

0では、lFSに 改行を代入することで、シェルの区切り文字を改行のみに設定していま

す。シェルはスペース記号をデフォルトの区切り文字とするため、このスクリプトでフア

イルから中身を読み込む際、単語の先頭などにスペースが入っていた場合に区切り文字と

みなされてしまって正しいハッシュ値を得ることができなくなります。そのためここで区

切り文字を改行のみとする設定を行っています。このIFSの設定手法については、サンプ

ル048で説明していますのでそちらを参照してください。

0で、while文を用いて指定された入カファイルから1行ずつ、シェル変数lineに readコ
マンドを用いて読み込みます。ここでは0でwhile文全体に入カリダイレクトしており、
コマンドライン引数に指定されたファイルから読み込むよう処理しています。なお0の
readコ マンドには、バックスラッシュ(¥)の付いた文字をそのまま扱うように r̈オプショ

ンを付けています。ここで―rオ プションを付けないと、例えば
‖
abcd¥nefgh‖ という文字列

中のYnが、
i¥1と
'niと いう2つの文字としてではなく、'改行'と して扱われてしまいます。

0が、ハッシュ値を計算している処理部分です。md5sumコマンドに、パイプでつない

193

echo



一
一
■
一一●

●

一―

●
■
●

C‖‖確需00。 テキスト処理

だeChOコ マンドを用いて入力値を与えています。なお、md5sumコ マンドの出力は後ろ
にファイル名 (こ の例では標準入力なので―(ハイフン))が付いています。このファイル名

部分は不要なため、awkコマンドで 1カ ラムロのみを取り出しています。この結果を一時
ファイルStmpileに 出力しています。

ここまでの結果で、一時ファイル$tmpmeの 中身は次のように各行のハッシュ値が並ん
でいます。

最後にOで、元のファイルdata.txtと 、ハッシュ値を記録した一時ファイルStmpFileを
連結しています。これにはpasteコ マンドを用います。pasteコ マンドは、2つのテキスト

ファイルを「横方向に連結する」コマンドです。デフォルトではタブ区切 りで連結されて

しまうため、ここではカンマ区切りのCSVフ ァイルとするために区切りを指定する…dオプ

ションを用いて「―d,」 としています。これで、実行例に見るように、元の値とハッシュ値

のCSVフ ァイルを作ることができます。
ハッシュ値を他のスクリプトで再利用したい場合は、このサンプル例のように、いった

ん別ファイル (hash.txt)に出力しておきたいケースがあるでしょう。そのためこのサンプ

ル例では、ハッシュ値を別ファイルに出力しておき、最後に九ファイルとpasteコ マンド

で結合する方法で処理してみました。

注意事項

。FreeBSDお よびMacで は、Linux環境とはコマンドの名前が違うため、次のように
md5sumコ マンドではなくmd5コマンドを利用してください。

|■|1111ⅢⅢIⅢ Ilk:(print S,,|,1"fil l lll ll■ ||||
。MD5はハッシュ値が128ビットしかないため、安全性の問題から、現在はより出力の長い
SHA形式に移行が進んでいます。しかしSHA形式を扱うコマンドは一部のOSでは標準で
インストールされていないこともあり、ここではMD5を採用しました。
・ 0のようにecho‐ nを Macで利用する際は、No.05の注意事項を参照してください。

関連項目

194

027 ファイルの中身を消去して、ゼロバイ トの空ファイルにする

■_|..■ ‐ ‐‐

III,



CSVフアイルから、指定した特
定レコードのカラムの値を得る072

‖o.

cut.read.ocho

″ IDが指定されていなければ終了

if [ -2 '=$ll: ]′  then

echo‖ IDを指定してくださぃ
]:>&2

exit l

fi

″ CSVフ ァイルが存在しなければ終了

if [ ! …f liScsvfう Lei: ]′ then
echo:'CSVファイルが存在しません : SCSVfi Leli>&2

exit l

fi

white read Line
do

″行内の各カラムをCutコ マンドで取り出す

id=S(echo SLine l cut ―f l ―d :′ :)

name=S(echo Stine l cut ―f 2 -d I′ 1)

score=$(echo $Line l cut ―f 3 -d i′ 1)

CSV.レコード.カラム

□E回濶■
CSVフ ァイルから、引数で指定したIDに対応する特定のカラムを表示したいとき

■朦回□■

″!′ bin′ sh

#CSVファイルを指定
csvfi Le='idata.csv"

¬
」

0

195

¬

」



CHAPllR 00。 テキスト処理

餞

#IDカ ラムが、コマンドライン引数で指定されたIDと一致する
#場合には、名前フィールドを表示する
if[ ::Sl:: = :lSi d:: ]′  then
eChO l:$nameii ――――――- 0

fi

doneく SCSVfite― ――――――-0

量重壁
このスクリプトは、CSVフ ァイルから、指定されたIDに対応する名前フィールドを取

り出して表示するものです。ここで対象のCSVフ アイルは、次のように「ID番号,名前,ス
コア」という形式になつているものと仮定しています。

mn t >a )trtfri csY 7 z I )var\#
0001′ Osaka′ 45

0002′ Kyobashi′ 312

0003′ Tenma′ 102

0004′‖ori nomiya′ 3

0005′ Tamatsukuri′ 92

CSVフ アイルはWindows上でもMicroso■ Excelな どでよく用いられますが、簡便なデ
ータ構造のため、UNIXで もちょっとしたレポー ト処理などによく利用されます。シェル
スクリプトでCSVフ ァイルを扱うには、awkコ マンドを使う、IFSに ,(カ ンマ)を設定する、

などいくつかの手法がありますが、ここではcutコ マンドを用いて各項目を取 り出す例を

見てみましょう。

まず●で、コマンドライン引数をチェックしています。このサンプル例では検索する

IDを引数で指定するので、testコマンドの‐z演算子を用いて引数を確認し、空の場合はID

指定するようエラーを表示して終了しています。

0では、対象のCSVフ ァイルの存在をチェックしています。―fは対象が通常ファイルか
どうかをチェックする演算子です。それを否定演算子!と 併用することで、対象がディレ

クトリであったり、ファイルが存在しない場合にはエラーを表示して終了するようにして

います。これらファイルテストの演算子については、P.110で紹介していますのでそちら

を参照してください。

続いて(D)で、シェル変数lineに readコマンドを用いてCSVフ ァイルを読み込みます。こ

こでは0の ように、while文に対して入カリダイレクトを書いています。これにより、
CSVフ ァイルからreadコ マンドを用いて、シェル変数Hneに 1行ずつ順に読み込むことが
できます。

●で、CSVフ アイルの1行から各項目を取り出しています。cutコマンドはテキストを
切り出すことのできるコマンドで、‐fオプションで取り出すフィールド番号を指定し、―d

196

一
　

　

　

　

　

，

　

　

一

Ｉ

■
１

１



爾な。CSVフ アイルから、指定した特定レコー ドのカラムの値を得る

で区切り文字を指定できます。つまり「cut―fl― d∵」と書くと、「カンマ区切りで1番目

のフィールドの取り出し」を意味します。cutコ マンドのこのような使い方は、P.185で解

説していますのでそちらもあわせて参照してください。

このサンプル例では、CSVフ ァイルは「ID番号,名前,ス コア」という値が入っていると

想定しましたので、0ではこの項目それぞれをシェル変数id,name,scoreに コマンド置換
$0を用いて代入しています。

こうしてCSVフ アイルの各項目が取り出せましたので、0で、シェルスクリプト起動時
に指定されたIDと 、現在読み込んでいるCSVフ アイルのIDが一致するかをit文で判断して

います。これが一致すれば、それが該当のIDの行ですから、先ほど代入したシェル変数

nameの値をechoコ マンドで表示しています。全行に対してwhile文で繰り返すことによ

り、CSVフ ァイルから該当IDの名前を抽出することができます。

注意事項

。このスクリプトはマッチする行をそのまま表示するため、同一のlDを持つレコー ドが複数

あつてもそのまま複数行表示するという仕様です。

・ 値自身に,(カ ンマ)を含むCSVファイルは、このスクリプトでは対応していません。
・ このスクリプトでは、data.csvの値に複数のスペースが入つていると、それらは1つのス

ペースにまとめられてしまいます (例えば、
‖くspace>く space>Osaka‖は、‖<space>

Osaka‖になります)。 これでは困る場合には、P.192と同様にシェルの区切り文字IFSか

らスペースを除外して、IFSを改行のみとしてください。

・ サンプル例のように名前カラムだけを表示するのではなく、単にIDにマツチする行全体を

表示したいだけならば、awkコ マンドを使つて次のように書くとよいでしよう。

上記では、‐Fオプションに,(カ ンマ)を設定してカンマ区切りとし、さらにawk変数を指定

する‐vオプションで、コマンドライン引数$1をそのままawk変数idと して扱えるようにし

ています。そして、$1(1カラムロ)が idと一致すればprint文で表示しています。

関連項目

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

009 テキストファイルから区切り文字を指定してカラムを取り出す

071 入カファイルのハッシュ値を、行ごとに追加カラムとして出力する

197

嗜d="$1''                                            |

awk ―Fノ  ~V id="$1'1 ,$1 == id {pri nt〕
: data.。 sv _ ~  |.



198

0

CSVフアイルにlDリストを入力
して、対応するIDのカラム値を
得る

073
‖OE

利用コマンド

read, grep …lFS.CSV.レコード.カラム.区切り文字.分割

IDリ ストフアイルと、データOSVファイルから、該当IDの指定したカラム値を表示し
たいとき

■屁田回D

″:/bin′ sh

fi techeck( )
{

if E ! -f "$1" l; then --1

echo "ERR0R: Fite $1 does not exist." >&2 I

exit 1; f*
fil

)

#データCSVフ ァイル名と、IDリ ストファイル名を定義して
″ファイルの存在チェックを行う

csvfi te="data. csv"
idListfi [e="$1"
fi techeck "$csvfi [e"
fi techeck "$idListfi Le"

S Cat data.CsV ――――

0001,Osaka′ 45

0002′ Kyobash■ ′312

0003′ Tenrna,102

0004′ M‐orinom■ya′ 3

0005′ Tamatsukur■ ′92

S Cat id.■ st

0003

0004

――一一隋躙鰈涙褥隋躙鐵麟懸:

$ ./csv-list.sh id.lst
Teffna

Morinomiya

■ ■

.||.._

|



urhile IFS=, read id name score --------€
do

gnep -xq "$id" "$idtistf i Le" -----O
if E $? -eq 0 l; then

echo $name

fi
done < "$csvfi te"

このスクリプ トは、IDリ ス トフアイルをコマンドライン引数に指定することにより、

CSVフ ァイルか ら一致するIDの カラム値をまとめて取得するものです。ここで対象の
CSVフ ァイルは、次のような「ID番号,名前,ス コア」という形式になっているものと仮定

しています。

饂躊餘餘颯CSVファイル(data.csv)

爾

0001′Osaka′ 45

0002′Kyobashi′ 312

0003′Tenma′ 102

0004′Morinomiya′ 3

0005′Tamatsukuri′ 92

またIDリ ス トフアイルは次のように、抽出したいIDが書かれたテキス トファイルを想

定 します。

隕颯憑躊艤抽出したいIDのリストフアイル(idlst)

0003

0004

CSVフ ァイルは、UNIXで もちょっとしたレポー ト処理などによく利用されます。この

サンプル例では、lFSを ,(カ ンマ)に設定して、readコ マンドでCSVフ ァイルを扱う方法

を見てみましょう。

●で、シェル変数csvmeに データCSVフ ァイル名を、シェル変数idlistmeに IDリ ストフ

ァイル名を設定して、ファイルの存在チェックを行っています。存在チェックはシェル関

数mecheckoで処理しています。

シェル関数ilecheckOで は、testコ マンドの―f演算子 (対象が通常ファイルかどうかをチ

ェック)を利用して対象ファイルの確認をしています(0)。 否定演算子!と 併用すること

で、対象がディレクトリであつたり、ファイルが存在しない場合にはエラーを表示して終

199

073奮 CSVフ アイルに lDリ ス トを入力して、対応する IDのカラム値を得る

解説



一
一
●
７
．一
　
・　
．　
　
一

OШFttR 06● テキスト処理

了します。これらファイルテストの演算子については、P。 110で紹介していますのでそち

らを参照してください。

0でCSVフ ァイルからシェル変数id、 name、 scoreに対して値を読み込んでいます。こ
の行を理解するために、まず次のような「一時的に環境変数を設定してコマンドを実行する」

書き方をはじめに説明します。サンプル例では、この一時的に設定する環境変数として、

IFSを 利用しているわけです。

◎一時的に環境変数を設定してコマンドを実行する例

上記は、環境変数TMPDIRを 一時的に設定してstart.shを 実行します。この行より後で
は、環境変数TMPDIRに 設定されていた値は元から設定されていた値となり、/mytmpに
はなりません。つまり、「環境変数=値 コマンド」とすれば、ある特定のコマンドやスク

リプトを実行するときだけ環境変数を一時的に設定できるわけです。

0に戻ると、ここではまずwhile文を実行して、ループの終わりのdoneの ところで
Scsvfileを入カリダイレクトしています。これにより、while文で、シェル変数csvfileで

指定されたフアイルを1行ずつ読み込んで実行することができます。

このOの while文の条件式は、次のようになつています。

すなわち、環境変数IFSを一時的に,(カ ンマ)に設定してreadコ マンドを実行しています。

ここで、id、 name、 scoreは シェル変数です。

環境変数IFSに ,(カ ンマ)を一時的に設定することで、シェルが解釈する区切り文字を,

(カ ンマ)だけにすることができます。これにより、カンマ区切りの行を、カンマで値を

分割してそれぞれのシェル変数に代入できます。なおここで利用しているIFSについて詳

しくは、P.125で解説していますので、そちらも参照してください。

以上より、0の while文は日本語で詳しく書き示すと、

「シェル変数csvf‖ eで指定されたCSVフ ァイルから1行ずつ読み込んで、readコマンドを

実行してシェル変数に値を代入する。この際、値の区切りは、環境変数lFSに ,(カ ンマ)を

設定してカンマ区切りとする。これによりカンマ区切りの行が分割され、それぞれのカラ

ム値がシェル変数id、 name、 scoreに代入される」

という意味になります。少々複雑ですが、0の ような記法はCSVフ ァイルを扱う際にはよ

く使われる書き方ですので、じっくり読んで理解してみてください。

●では、IDリ ストフアイルのIDと 、CSVフ ァイルのIDを マッチさせるために、grepコ

マンドの―xオ プションと―qオ プションを利用 しています。grepコ マンドの‐xオプションは、

行全体がパターンと完全一致する場合のみを選択するオプションです。grepでは、例え

S TMPDIR=/:inytmpl ./startosh

200

IFS-, read id name score



爾 3。 CSVフ アイルに IDリ ス トを入力 して、対応する IDのカラム値を得る

ば
‖
0001・ というIDで検索すると、・00010・ というIDに もマッチしてしまうため、ファイル

からID検索する際には誤った結果を出力してしまう場合があります。CSVフ ァイルから

抽出したIDが、IDリ ストファイルと完全一致するのをチェックするために―xオプション

を利用しているわけです。

また0では、マッチしたか/し ないかの結果のみを終了ステータスで利用するため、
grepコ マンドの検索結果を出力しない‐qオプションを用いています。

0でgrepコ マンドの終了ステータスを判断して、マッチしたかしていないかを判断し
ています。マッチしていれば終了ステータスS?が0と なつていますから、これをit文で判

定して真の場合にはCSVフ ァイルから取り出した名前 (シェル変数name)を echoコ マン

ドで表示して、該当IDの名前を抽出することができるのです。

注意事項

値自身に,(カ ンマ)を含むCSVフ ァイルは、このスクリプトでは対応していません。

サンプル例のように名前のみを抽出して表示するのではなく、単純に入力lDフ ァイルにマ

ッチする行全体を表示したいときは、grepコマンドの―fオプションが利用できます。

輪lDリ ストを―fオプションで指定

ただしサンプル例のケースでは、ld」 stフ ァイルに例えば[0001]と 書いてあると、

[00010]というlDもマツチしてしまいます。また、もしも名前に [0001丁enma]と いうも

のがあつた場合にもマッチしてしまいます。このようなケースヘの対策としては、IDリ ス

トファイルは先頭に人を、ID末尾にカンマを付けて[Aoool,]と書いておく、などの手法が

あります。

靡関連項目

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

|“  svnな どの隠しファイル・ディレクトリのみを列挙する

072 CSVフ アイルから、指定した特定レコードのカラムの値を得る

201



‖o,
数値データの書かれたCSVフ
アイルから平均値を計算する074

□□国目日
平均値.CSVフアイルavvk

□E回囲■
CSVフ ァイルから、特定のカラム値の平均値を計算してファイルとして出力したいと
き

■膿覇頭■

″!′ bi n′ sh

#CSVフ ァイルが存在 しなければ終了
if [ : ―f 'iSll' ]′  then
eChO"対象の CSVフ ァイルが存在 しません :$1‖ >&2

exit l

fi

″拡張子を除いたファイル名を取得

fi Lename=S(1%.*}

awk -F, '{sum += $3} END{pnint sum / NR}' "$1" > $(filename].avg -- 3

解説

このスクリプトは、コマンドライン引数で指定されたCSVフ ァイルの第3カ ラムから、
スコアの平均値を計算して出力するものです。平均値は、元のファイル名に拡張子 [.avg]

を付けた別ファイルとして出力します。大量のCSVフ ァイルひとつひとつに平均値を出
したいときなどに役立つでしょう。

ここで対象のCSVフ アイルは、P,196と 同様に「ID番号 ,名前 ,ス コア」という形式になっ

ているものと仮定しています。

202

S‐ Cat data・ csv 一― ―  ‐ は陪漑隋隋鰺鐵簸
0001,Osaka,45
0002,Kyobashi,312
0003,Tenma,102
0004 , Morinomiya, 3

$,/csv-avg.sh data.csv

|1目

S cat data.av9

115.5



鮮4像 数値データの書かれた CSVフ アイルから平均値を計算する

シェルスクリプトで数値計算を行うには、exprコ マンドがよく使われます。しかし

exprは整数計算のみに対応しており、小数が含まれる計算には利用できません。シェル

スクリプトで小数を含む計算をするには、高機能な数値計算が行えるbcコ マンドを利用

するケースもありますが、ここでは手軽なawkコ マンドを利用してみましょう。

●で、対象のCSVフ アイルの存在をチェックしています。―fは対象が通常ファイルかど

うかをチェックする演算子です。それを否定演算子 !と 併用することで、対象がディレク

トリであったり、ファイルが存在しない場合にはエラーを表示して終了するようにしてい

ます。これらフアイルテストの演算子については、P.110を 参照してください。

0では、ファイルの拡張子を除いたファイル名を取得しています。これはシェルのパラ
メータ展開を利用した文字列置換で、シェル変数$1から、「。(ド ット)に続く任意の文字列」

を取り除きます。すなわち$1で コマンドライン引数としてCSVフ ァイルが渡されていま

すから、この拡張子 (.csv)を 削ることができます。ここで用いているパラメータ展開の記

法は、P.62で説明していますので、詳しくはそちらを参照してください。

0が、平均値を計算しているawkコマンドの行です。まずawkコ マンドで区切り文字を

,(カ ンマ)と するために、‐Fの区切 り指定オプションで,を設定しています。awkコマンド

の記法では、1}は各行で実行され、END‖は最終行を読んだ後に実行されます。まずは

[sum+=$3}と して各行で、$3(3カ ラムロ、ここではスコアの値)を変数sumに足し上げ

ています。

ENDで用いているNRと は、awkの組み込み変数で、現在処理した行番号が入っていま
す。すなわち「END〔print sum/NR}」 が実行されるのは最終行のため、NRは ファイルの

行数となります。このNRの値でsumを割ることで、スコアの平均値を表示しています。
スコアの平均値は、先ほど拡張子を除いたファイル名に拡張子.avgを付けてリダイレク

トして、ファイルを出力しています。

注意事項

awkで区切りを,(カンマ)にする際には、「―F,」 と書かずに「‐F∵」と指定してもかまいませ

ん。どちらの書き方でもよいのですが、他人の書いたスクリプトを読めるように、2種類の

指定の仕方があることは覚えておきましょう。

値自身に,(カ ンマ)を含むCSVフ ァイルは、このスクリプトでは対応していません。

このサンプル例では、CSVファイルの中身のチェックはしていません。もしCSVフ ァイル

の中身が空つぽの場合は、0÷0を実行することになリエラーとなります。

関連項目

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

072 CS∨ フアイルから、指定した特定レコードのカラムの値を得る

203



204

″ CSVフ ァイルを読み込み、値ごとの値をグラフ出力する

餞

数値データ (CSVフアイル)か
ら、
‖
*‖を利用して簡単なテキス
トグラフを出力する

075
‖o辱

…ech。 .awk.sOn,head.expr.read
□日□■D
グラフ,CSVフアイル.最大値

数値データを、端末上で簡単なテキストグラフとして表示したいとき

■憂劉■■

″:′ bi n′ sh

csvfite==“ data.csv7:

GRAPH WIDTH=50

markprint() {
Locat i=0

white C$1-Lt Sl]
do

echo -n "*"
i=$(expr $i + 1)

done

#データCSVフ ァイ
″ グラフの横幅値

}

″データから最大値を取得する。逆順ソートして先頭を取ればよい

max=S(awk ―F′  :{print $3}1 ''Scsvfi Le': l sort ―nr l head ―n l)一――――――o

#データのすべてが0の場合は最大値を1と する
if E $max -eq 0 1; then

max=1

fi 」

| ./csv― graph.sh data.csv

・ '☆ '・・ ' 10Sakal
☆ 求
=,力 ==■ =☆

丼 キ ★ 夫 贅 ☆ ☆ ☆ 夫 ■ 求 ,★ 来 ■ 夫 ■ ■ ★ ,,夫 ,実 ■ ,,オ 文
=■
■ オ

'X,",■ ' [KyOibash■ 1

luorinomiya l
************** [Tamatsukuri ]

ITenma]

ル ーー¬

_|-0

¬



0750数値データ (CSVフ アイル)から、り'を利用して饉単なテキストグラフを出力する

働

h|hite IFS=, read id name score
do

markprint S(expr $GRAPH_WIDTH ¥* SsCOre / Smax)‐ ―――- 0

echo :=[$name]ti

dOne く Scsvfi Le

このスクリプトは、コマンドライン引数で指定されたCSVフ アイルのスコア値を、
‖*‖

でテキストグラフとして出力するものです。

グラフはExcelな どで書 く人が多いでしようが、メール本文中でちよっとしたグラフを

書いたり、端末上でまず様子を見たいというときには、このような昔ながらのテキス トグ

ラフもなかなか役に立ちます。スクリプトとして使えるようにしておくと便利でしよう。

ここで対象のCSVフ アイルは、次のような「ID番号,名前,ス コア」という形式になって

いるものと仮定 しています。

鶉粽鰈鰈ICSVフ ァイル (datacsv)の 内容

0001′osaka′45

0002′Kyobashi′ 312

0003′ Tenma′ 102

0004′‖orinomiya′ 3

0005′Tamatsukuri′ 92

●でまず、スクリプトの初期設定を行います。シェル変数csvfileに は入力するデータ

CSVフ ァイル名を、シェル変数GRAPH_WIDTHに はグラフの横幅値を設定します。

0は、テキストグラフを出力するシェル関数を定義しています。この関数は数値を1つ

受け取って、その数だけ
‖
*‖を表示するだけの関数です。関数への引数は、シェルにより

$1に代入されています。

(0)では、まずカウンタ変数をローカル変数として初期化しています。このlocai宣言の

使い方は、P.33を参照してください。0で、関数への引数$lよ リカウンタが小さいあいだ、

"*"を 出力し続けています。なお
‖
*‖を出力する際は、echoコマンドの…nオプションを利用

して改行しないようにしています(0)。 このechoコ マンドの―nオプションの例は、Mac

ではエラーとなりますので、「注意事項」を参照してください。

0は、CSVフ ァイルから事前に最大値を取得する処理です。テキストグラフを書く際は、

横幅値を決めてその中に収まるようにしなければいけません。そのため、ここでまずデー

タの最大値を取得して、これが横幅に収まるようにします。

CSVの、特定のカラム列から最大値を取得するには、

1)そのカラム値を1列に表示

1解説

．　
　
　
　
　
．　
　
一●
一　
　
　
　
‐

．　
　
　
　
　
　
　
．
．
．　
　
　
鶏

一　
　
　
　
　
　
　
・
一　
　
　
閣



CmP■ :R00● テキスト処理

2)sortコ マンドの―nr(数値ソートかつ逆順ソート)オプションでソートする
3)headコ マンドで1行日のみを取り出す

と順番に処理すれば最大値が得られます。0は この処理を行つています。まずawkコマ
ンドの区切りを‐F,で ,(カ ンマ)と して、3カ ラムロを{p五 nt S3)と して表示しています。こ

れをパイプでsortコ マンドに渡し、…nrォプションにより数値で逆順ソートしています。
最後にheadコマンドの指定行数を取り出す‐nオプションで1を指定し、先頭1行日を取り
出します。これでCSVフ ァイルのスコア値のうち、最大値をシェル変数maxに代入できま
した。

0では、0で得たデータ最大値が0の場合に、シェル変数maxに 1を設定しています。
グラフ横幅の計算では最大値で割り算を行うため、全データが0の場合は0の割 り算とな

リエラーとなつてしまうための対応です。

これでグラフ描画の準備ができましたので、0でデータCSVフ ァィルから順番にデータ
を読み込んでグラフを描きます。0ではIFSに一時的に,(カ ンマ)を設定して、シェル変
数id,name,scoreに 値を読み込みます。この書き方はP.125で詳しく解説していますので
そちらを参照してください。

0で、テキストグラフを出力するためにmarkprint関 数に中'の出力個数を渡します。
SCOreの 数そのままを指定すると横幅があふれてしまいますので、正規化のために最大値
maxで割った値をexprコ マンドで計算し、その値をmarkprint関 数に渡します。こうして
横幅をできるだけいっぱいに使ってテキストグラフを出力できます。

なお、markprint関 数では
‖*‖を表示するだけで、改行は行っていません。そのため0の

後に、CSVフ ァイルの2カ ラムロ(名前カラム)か ら取り出した値がシェル変数nameに 入
っていますので、これを[$name]と して"*‖の右側に表不しています。
こうして行ごとに必要な数だけ"*‖を出力し、テキストグラフを描画することができま
す。

注意事項

このスクリプトでは、3カ ラムロのスコア値はexprコ マンドで割り算しているため、整数
のみ対応しています。小数は扱えません。

0で、Macで改行させないメッセージを出力するecho― nを利用する際は、P.15を参照し
てください。

関連項目

012 関数の中で回―カル変数を定義して、呼び出し元の変数を破壊しないようにする
072 CS∨ファイルから、指定した特定レコードのカラムの値を得る
073 CS∨ファイルにIDリ ストを入力して、対応するlDのカラム値を得る

200

■

―

―

ｒ
●



■o. ログフアイルのカラム位置を入
れ替えて出力し、見やすく力|エ
する

076

…awk                 アクセスログ.ログ解析.菫形

Apacheの アクセスログから必要なカラムの抜き出し・並べ替えを行いたいとき

″|′ bi n′sh

″ログファイルが存在しなければ終了

if [ ! ―f :'Sl'' コ′ then
echo li対象のログファイルが存在しません:Sl'1>&2
exit l

fう

″ リクエス ト時刻とリモートホストを外部ファイルヘ出力

awk l{print S4′ S5′Sl}: 'ISl'I > ‖${1).Lsti:

解説

このスクリプトは、Apacheの アクセスログから必要な列を抜き出し、順番を入れ変
えて出力するものです。ログ解析においては、同じ条件で大量のデータファイルから抽出

を行うことが多 く、このようにスクリプトにしておくと一括処理できて便利でしよう。

207



CmPrER“●テキスト処理

Apacheは アクセスログをさまざまにカスタマイズできるため、この実行例で扱ってい

るログ形式は読者の環境とは多少違つているかもしれません。ここでは、アクセスログは

次のような形式となっていると仮定します。これはApacheのアクセスログとして比較的
ポピュラーなcommonと いう設定です。

SApacheo)com monrt*,a 2 A$J

192.168.1.1 - ― [06/Jan/2014:05:58:35 +0900] ='GET /index.htm HTTP/1.1'' 200 83

このログの左から順に見た各項目の意味を、次の表に示しました。

OApacheロ グの読み方

「identdに よるリモートユーザ名」は、mod_identと いうApacheモ ジュールから提供さ

れます。現在では、Apacheで このidentdに よリユーザ名を取得するケースはほとんどあ

りませんから、読者の環境でも単に「―」が出力されているでしょう。
「認証によるリモートユーザ名」は、BASIC認証などで入力されたユーザ名です。認証
のかかっていないページでは、単に「―」が出力されます。
「リクエストの最初の行」は、「HTFPメ ソッド名 リクエストURI(フ ァイル名)HTTPバ
ージョン」のセットで記述されます。我々がふだんWebブラウザでWebページを閲覧する
際には、このリクエスト行を直接見る機会はありません。しかし内部的には、Webブ ラ
ウザはWebサーバに対して、都度このようなリクエストを発行してWebページを取得し
ているのです。

サンプル例では、このアクセスログを元にして、 1カ ラムロにリクエスト時刻を、2カ

ラムロにリモートホストを、「(元のログファイル名).lst」 というフアイル名で出力したい

と仮定しています。読者のニーズに応じて、この形式は適宜読み替えてください。

まず、このスクリプトは引数にログファイルをとるため、0でコマンドライン引数を確
認し、ファイルの存在をチェックします。‐fは対象が通常ファイルかどうかをチェックす

る演算子です。それを否定演算子!と 併用することで、対象がディレクトリであったり、

ファイルが存在しない場合にはエラーを表示して終了するようにしています。これらファ

イルテストの演算子については、P.110で紹介していますのでそちらを参照してください。

0で、ログファイルからawkコマンドで必要な列を抽出しています。awkコ マンドでは、
アクションと呼ばれる中カッコ{}で囲った部分でさまざまな出力が行えます。ここで記述

リモートホスト 192.168.1.1

identdによるリモートユーザ名

認証によるリモートユーザ名

リクエストを受け付けた時刻 [06/Jan/2014:05:58:35+0900]

リクエストの最初の行 ''GET/index.htm HTTP/1.1・

HTTPステータス 200

83

208

値の例 .

レスポンスのバイト数



076蓼 ログファイルのカラム位置を入れ替えて出力し、見やすく加工する

している
‖
$4,$5,$1‖ というのはawkコ マンドの組み込み変数で、それぞれ第4カ ラム、第5

カラム、第1カ ラムを意味します。

awkコ マンドでは、空自はデフォルトの区切り文字として扱われます。このログの例で

は、リクエスト時刻[06/Jan/2014:05:58:35+0900]は 、時差を示す
‖+0900"の 前にスペ

ースがあるため、awkでは別カラムと扱われてしまいます。そのため、第4カ ラムと第5

カラムを並べて
‖
$4,$5‖ としてprintし ています。なお、awkコ マンドではprintす る際に,

(カ ンマ)はスペースになります。ここで、次のようにスペース記号でprintす る変数を区

切ると、スペースは無視されて詰められてしまうので注意してください。

蜀awkコマンドでprintする際にスペースを使うと無視される

このようにして、awkコ マンドで表示したいカラム位置を好きな順番で並べることで、

好みのパターンにログファイルを整形することができます。

なお、0においてはSlと いう記述が、awkの変数と、シェルスクリプトの位置パラメ

ータ変数の2つ登場しています。この2つ は全く違うものですから、取り違えて混乱しな

いようにしてください。繰り返しになりますが、awkの print文の中にある$1は awkの変

数で、「1カ ラムロの値」を意味します。一方、シェルスクリプト中の$1は「1つ 目のコマ

ンドライン引数」です。

これがわかりにくければ、0の部分は次のようにファイル名を別変数にして書いたほう

がよいかもしオ■ま1士ん。

関連項目

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

077 Webサーバのログファイルから特定のステータスコードを返しているものだけを取得する

079 Webアクセスログからファイルごとのアクセス回数を集計する

209

一

　

・

　

　

　

　

．

　

　

　

　

　

一



Webサーバのログフアイルか
ら特定のステータスコードを返
しているものだけを取得する

077
‖0日

□日壺翻D
…アクセスログ.ログ解析.整形avvk

Apacheのアクセスログから、ステータス404(Not Found)の エラーを返しているリ
クエスト行を加工して、ファイル名のみ抽出したいとき

μl/bin′ sh

Iogfi Ie="access_tog"

″ログファイルが存在しなければ終了

if [ : ―f i:$Logfi Lel: ]′  then

echo li対象のログファイルが存在しません :SLogfう Le‖ >&2

exit l

fi

″ ログファイルから、HTTPス テータスを外部ファイルヘ出力

awk :S(NF-1)==404 {print S7)]:'SLogfitel' > ii${Logfi Le}.404'' ――――――o

いつ使うか

S Cat acCeSS_■ o9

xxoxx.xx.xx ― ― [06/Jan/2014:05:58:35
yy.yy.yy.yy ― ― [06/Jan/2014:06=01:43
200 304                       1

yy.yy.yy.yy ― - 106/Jan/2014:06:01:44

404 763

yy.yy.yy.yy ― - 106/Jan/2014106101144

200 763

S ./■ o9-Select.sh

S cat access_ og。 404

/tittle.gif                         ‐

‐←09001 'lGET

■09001 ''GET

+09001 1'GET

+09003 1'GET

/ HTTP/1.1'` 200 83

/index.htm■  HTTP/1.1・

/t■ttle.9■f HTTP/1.1・

/title.9■ f HTTP/1.1''

解脱

このスクリプトは、Apacheのアクセスログから、HTTPステータスが404(Not Found)
となつているフアイルを抽出するものです。抽出したファイルリストは、「(元のログファ

210



077 e Webサーパのログフアイルから特定のステータスコー ドを返しているものだけを取得する

イル名).404」 というファイル名で出力します。HTTPステータス404(Not Found)が返

されているリクエストを分析することは、リンク切れを起こしているコンテンツを探すに

は有効な手法です。そのため定期的にこのようなスクリプトを動かしてログ監視を行う事

例も多いでしょう。

このサンプル例では、Apacheのアクセスログが、次のような形式となつていると仮定

します。読者の環境によって、カラム位置などは読み替えてください。

憑蝙蝙核鮨Apacheの common形式ログの例

192.168.1.4 - ― E06/Jan/2014105:58:35 +0900コ  ‖GET ノi ndex.htm HTTP/1.11' 200 83

この形式では、HTTPス テータス番号は後ろから2番目のカラムに入っています。そこ

で、後ろから2番目のカラムに
‖
404・が出力されているログから、ファイル名を抽出してみ

ます。なお
‖
404‖ という文字列を単純にgrepす ると、例えば

‖menu4040.html‖などファイ

ル名に404を 含むフアイルも抽出されてしまいます。そこで本サンプルは、特定のカラム

の値が404に マッチする行のみを抽出しています。

●ではまずログファイルの存在をチェックします。‐fは対象が通常ファイルかどうかを

チェックする演算子です。それを否定演算子!と併用することで、対象がディレクトリで

あったり、ファイルが存在しない場合にはエラーを表示して終了するようにしています。

これらファイルテストの演算子については、P.110を参照してください。

②がawkコマンドによるログ抽出の処理です。この行を理解するために、まずawkコマ

ンドの組み込み変数NFについて説明します。
NFは、awkコ マンドで現在処理している行のカラム数 (フ ィールド数)を指します。例え

ば「{print SNF)」 と書くことで、最終カラムを表示できます。サンプル例では・S(NF-1)‖ と

して、このNFから1を引いた値を指定していますので、これは「後ろから数えて2カ ラムロ」

を意味します。ログ形式で見たように、ここにHTTPス テータスコードが入っています。
「注意事項」にも記載していますが、HTTPの リクエスト部分に入る空自文字は実にさまざ

まであるため、ここではカラムを前から数えずに、後ろから数えてできるだけ正確に値が

とれるようにしています。

変数NFの使い方がわかつたところで、0に戻ります。awkコ マンドでは、アクション{}
の前に条件式を指定することができます。これにより、カラム単位でのgrep相 当のこと

を行うことができます。ここでは「S(NF-1)==404」 と条件式を書くことで、「後ろから2

番目のカラムが404だ ったとき」、すなわち「HTTPス テータスが404だったリクエスト」

を指定しています。表示するカラムは、ここではファイル名のみを出力したいため、第7

カラム($7)のみをpHntし ています。

このようにしてアクセスログから、404 Not Foundだ ったリクエストのフアイル名の

みが抽出できます。定期的にこのようなスクリプトを実行することで、リンク切れを探す

手がかりとなるでしよう。

211



CHA鷹鶴00● テキスト処理

注意事項

・ Webサーバには、攻撃を意図してRFC違反の妙なリクエス トもときおりやつてきます (GE丁
の後ろにスペースがない、など)。 この場合にはスペースの位置が違うため、このスクリプ

トでは適切に扱えません。

・ HTTPステータス (→P.328参照)に 500番台のエラーを返しているリクエス トを取得する
には、次のように書くとよいでしょう。

awk l$(NF-1)>=500 {print S7)1

特に500番台のエラーは、アプリケーションに問題があつたり、サーバが高負荷になつて
いるなど、何らかの異常が起きているときに出力されるエラーコードであるため運用上重

要なログです。そのためこのようなスクリプトで適宜抜き出して、アプリケーション状態

を監視するためにも使えるでしょう。

関連項目

“

12 処理開始前に、実行権限をチェツクして正常動作できることを確認してから実行する

076 ログフアイルのカラム位置を入れ替えて出力し、見やすく加工する
179 Webアクセスログからファイルごとのアクセス回数を集計する

212



職o薔
システムログからIPアドレスご
とのアクセス回数を集計する078

…sed.sort.uniq …SSH,不エアクセス.認置剣腐ログ抽出

sshdのログフアイルから、ノヽスワード認証に失敗しているlPア ドレスをカウントした
いとき

田藤固田■

″:′ bin′3h

″ SShdの ログファイル

secureLog=i1/var/Log/secure‖

〃 IPア ドレスを抜き出すためのパターンマッ九 長いため変数として格納

pattern=11^.*sshd¥[.*Y].*FalLed password for.* from ¥(.ホ ¥)port .*!i ―――――o

″パスワード認証失敗ログからIPア ドレスを抽出し、カウントして表示する

sed ―n iis/$pattern/¥1/p'i :lSsecureLogli l sort l uniq ―c l sort ―nr―――-0

解説

このスクリプトは、sshdの ログ(/var/1oysecure)か らパスワード認証に失敗したログ

を抽出し、その接続元IPア ドレスをカウントして表示するものです。

インターネット上にssh接続できるサーバを設置すると、ブルートフォースアタックが

毎日のようにやってくることは珍しくありません。そこで、このようなログ整形スクリプ

トを設置しておき、パスワード認証に失敗したアクセス元を定期的にレポート出力してお

くと、不正アクセスの監視に役立つことでしょう。

sshでの接続ログは、Linux(CentOS)サ ーバでは一般的に/var/1og/secureに 、FreeBSD

では/var/1og/auth.:ogに出力されており、次のような形式になつています。

213



C躍

『

籠R鑢 。テキス ト処理

WM ssho)t*ffia)fiJ

Jan 3 21:40:00 cent unix_chkpudE1480l: password check failed for user (user1)
Jan 3 21=40=OO cent sshdt1478J: pam_unix(sshd:auth): authentication fai[ure,'
logname= uid=0 euid=0 tty=55;', ruser= nhost=10.211.55.2 user=user1
Jan 3 21:40:O2 cent sshdE1478l: Faited password for userl from 10-211,55.2
port 53639 ssh2

Jan 3 21=40:05 cent sshdE1479l: Connection closed by 10.211.55.2

Tailed password br userl"om.…‖というのがパスワード認証に失敗したことを意

味しますので、ここではこのアクセス元をカウントしてみましょう。なお、sshでは鍵認

証などさまざまな認証方式があるため、出力されるログメッセージも環境によって変わっ

てきます。パターンマッチさせる文字列は、読者の環境やニーズにあわせて適宜修正して

みてください。

このサンプルで扱うログファイルは、「Failed password br userl■ om 10.211.55.2」

のようにfromの後ろにIPア ドレスが入つていますので、これを取り出すことにします。
パターンマッチが長い文字列となってしまうため、●でパターンを文字列としてシェル変

数に格納しています。後のsedコ マンドを見やすくするため、長いパターンはこのように

シェル変数に入れておくとよいでしょう。

②では、接続元IPア ドレスを抜き出すために、sedコマンドでマッチ部分のみを表示す

る‐nオプションとpフ ラグの組み合わせを用いています。また同時に後方参照を用い、

「from¥(.*Y)」 としてfromの後ろの部分文字列を¥1と して参照して出力することで、ログ

ファイルからIPア ドレスを抜き出しています。このようにsedコ マンドの一nオ プションと

pフ ラグでパターンマッチの一部分を取り出す手法は、P.46で詳しく説明していますので

そちらを参照してください。

②のsedコ マンドの出力は、パイプでsortコ マンドとuniqコ マンドに渡しています。ま

ず1番目のsortコマンドによりIPア ドレスでソートをかけ、続くuniqコマンドの行数をカ

ウントする‐cオプションを利用して、同一行の出現回数をカウントしています。

そして0ではパイプの最後でもう一度、sortコ マンドの‐nオプション (数値ソート)と―r
オプション (逆順ソート)をかけることで、アクセスが多い順に表示されるようにしてい

ます。この、「sort l uniq―c l sort― nr」 は、テキスト処理で大変よく使われる慣用旬の

ようなものですから、ぜひ覚えておきましょう。

Osort― nrで、先頭の数値で降順ソートする

S Cat ■。9.tXt
2 10.211.55

15 10.211.55

6 10.211.55

S sort ―nr ■o9

15 10.211.55

6 10.211.55

2 10.211.55

18

2

21

txt

2

21

18

214

■
目
■



073修 システムログからIPアドレスことのアクセス回数を集計する

こうして、接続元IPア ドレスごとのカウント数を調べることができました。このサンプ

ルではsshdの ログを用いましたが、他にも不正アクセスの回数などを監視するため、ロ

グファイルの抽出に応用 してみてください。

I ssh@:Filv?Ezl=ztr(

本項ではsshdを 取 り上げましたので、この不正アクセスについて少し補足しておきま

しょう。

昨今はクラウドやVPSな どで手軽にサーバが手配できるようになったことから、それら

サーバヘの不正アクセスも急増しています。特にsshは、攻撃者が不正ログインに成功す

ると、容易に攻撃の踏み台として利用できてしまうため注意が必要なサービスです。

sshへのセキュリティ対策としては、

1)ポート番号をデフォルトの22/tcpか ら変更する
2)公開鍵認証を利用してパスワー ド認証を禁止する
3)iptablesな どで接続元:Pア ドレスを限定する

などの手法が挙げられます。これに加えて、本項のようなログ監視も合わせて行い、不正

侵入がないかどうかの確認を定期的にチェックしたほうがよいでしょう。

注意事項

・ /var/log/secureは通常、rootユーザでしか読めないため、このスクリプトもroot権限で

実行する必要があります。

・ 同一コネクションで複数回試行されたり、短時間に何度もアクセスされた場合、ログ出力

上それらは「3 more authentication fa‖ ure」 のようにまとめられてしまいます。そのた

めここでのカウント数は正確な不正アクセス試行回数ではなく、目安と考えてください。

関連項目

018 HTMLフ ァイルから、タグの中に書かれたコマンドを抜き出してそのまま実行する

079 Webアクセスログからファイルごとのアクセス回数を集計する



216

‖o. Webアクセスログからフアイル
ごとのアクセス回数を集計する079

alvk.so「t uniq アクセスログ.ログ解新.ベージピュー

Apacheのアクセスログからベージピューを集計したいとき

■廣覇皿D

″:′ bi n′ 3h

logf i le="access [og"

″ ログファイルが存在しなければ終了

うf [ ! ―f i:$Logfl Leil ]′  then

eChO"対象のログファイルが存在しません :$Logfi te‖ >&2
exit l

fi

″ ログファイルから、GETメ ソッドで取得されたファイルのアクセス回数を集計する。

″ aWkコマンドでファイルを取り出し、SOrt+uniqで カウント後に降順ソートする

awk lS6=="¥"GET=={print S7}: `'SLogfう Leir l sort l uniq ―c l sort ―nr ―――― o

106/Jan/2014:05:58:35 +0900]

106/Jan/2014:06:01:43 ■0900〕

〔06/Jan/2014:06:01:44 +0900]

"GET / HTTP/1.11' 200 83 ''―

':CET /■ ndex.htm■  HTTP/1.1'1

・CFT /title.9■ f HTTP/1.1“

$ cat access_log
XX・ XX.メX.メX ― ―

$ . /log-accessfile . sh

yy.yy.yy.yy ― ―

200 304

yy.yy.yy.yy ― ―

200 763

(省略 )

29/news.html

22 /

18 /fav■ con.■ co

8 /menu/

8 /title.gif

(省略 )



07鬱 e Webアクセスログからフアイルことのアクセス回数を集計する

解説

Fp'* Apac he o) com m onV*, a ) A fil

192.168.1.1 - ― [06/Janノ 2014:05:58:35 +0900コ  :=GET ノindex.htm HTTP/1.1'i 200 83

このスクリプトでは、':‖でくくられているHTTPリ クエスト行から、ファイル名を取得

します。HTTPの リクエストにはさまざまなメソッドがあるのですが、ここではGETメ ソ

ッドで取得されたアクセスのみを集計する仕様とします。よく見られるHTTPメ ソッドに

ついて、次の表に示しました。これらはRFC 2616で定義されています。

鯰よく見られるHTTPメ ソッド

0ではまず対象のログファイルの存在をチェックします。―fは対象が通常ファイルかど

うかをチェックする演算子です。それを否定演算子!と 併用することで、対象がディレク

トリであつたり、ファイルが存在しない場合にはエラーを表示して終了するようにしてい

ます。これらファイルテストの演算子については、P.110で紹介していますのでそちらを

参照してください。

0で、ファイルごとのアクセス数をカウントしています。ここではGETメ ソッドで取
得されたリクエストのみを対象とするため、awkコマンドのフイルタでHTTPメ ソッドが

入る6カ ラムロに対して、「
‖GET」 とフィルタ指定しています。なおこの際、0ではダブ

ルクォートをエスケープしているので、実際の書き方は「$6==‖¥‖GET"」 となっています。

正常にメソッドが指定されていた場合、アクセスログ上は7カ ラムロにファイル名がきま

すから、これをawkコ マンドのアクションで{print$7}と して出力しています。

そして0ではawkコ マンドの出力をいったんsortコマンドでソートしてから、パイプの

最後でもう一度、sortコ マンドの n̈オプション (数値ソート)と r̈オプション (逆順ソート)

GET ∪RIで指定されるフアイルの取得

HEAD HTTPヘ ッダのみを取得し、メッセージボディは取得しない

POST メッセージの投稿などを行う

ファイルの送信を行うP∪T

SSL通信を行う際などに、プロキシにトンネルを要求するCC)NNECT

217

このスクリプトは、Apacheの アクセスログから、ファイルごとのアクセス数を集計

するものです。Webページを運用する際には、ページビュー (PV)を調べるのはとても重

要な運用業務です。まずはこのような簡単なスクリプトで集計レポートを定期的に取得す

るだけでも、いろいろな情報が得られるでしよう。

このサンプル例では、Apacheのアクセスログがサンプル076と 同じく、次のような形

式となっていると仮定します。読者の環境によって、カラム位置などは読み替えてくださ

い。



0腑AP=R06● テキスト処理

を実行することで、アクセスが多い順に表示されるようにしています。このsortコ マンド

とuniqコマンドの組み合わせの使い方は、P.213で紹介していますのでそちらを参照して

ください。このようにして、ファイルごとのアクセスログの行数、すなわちファイルごと

のページビューが多い順に、ファイル名を表示することができます。

なお、ここでは「
‖GET」 としてフィルタをかけることで、ある程度、おかしなアクセ

スログを排除しようとしています。読者の皆さんが公開Webサーバを運用していると、
形式が明らかにおかしい、あるいは壊れているアクセスがときおり見られることに気がつ

くでしょう。例えば次のようなものです。

__―  ■.■       ‐                                  ―■ .  ■| || ||■
Xx.xx“ xx.xx‐ ― .―  [1‐ 0′Jan/2014121■ 45:48 +0900] ==¥x80w¥x01¥x03Vx0111'.504‐  2,4‐  ‐ 

‐
| 
‐

本来ならばHTTPの仕様上、リクエス ト行の頭にはGETやPOSTな どメソッド名が付か
ないといけないのですが、このログはいきなり奇妙な文字列でアクセスされています。

種明かしをすると、これはhttpの ポー トにhttpSア クセスしようとして、SSL通信を素の

httpで 流そうとするときに見られるアクセスログです。単なるクライアン トの勘違いか、

あるいは攻撃者が意図的に何かしらのスキャンを行つているのかもしれません。この他に

も、攻撃などのために、わざとHTTP仕様上ではエラーとすべきリクエス トを送 りつけて
来るアクセスがログに残つていることは多々あります。そのためこのサンプルでは「

‖GET
」とフィルタ指定することで、ある程度おかしいログは弾 くように設定 しました。

公開Webサーバのアクセスには実にさまざまなアクセスがやってくるため、集計レポ
ー トに多少の「ゴミ」が入つてしまうのはやむを得ないことです。このような簡単なレポ

ー ト出力のスクリプトで、あまり厳密にやろうとするのは大変ですから、ある程度の妥協

は必要でしょう。

注意事項

WebサーバとしてApacheは広く使われているソフトであり、ログ解析にもさまざまなソ
フトが存在します。よく使われている有名なものとしては、AWStatsがあげられます。口
グをグラフ化するなど視覚的にわかりやすくしてくれますので、興味のある方は利用して

みてください。

関連項目

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する
077 Webサーバのログファイルから特定のステータスコードを返しているものだけを取得する
078 システムログからIPア ドレスごとのアクセス回数を集計する

218



‖o. sedでHTMLフアイルの属性を置
き換える際、スラッシュのエスケ
ープが煩雑になるのを避ける

080

スラツシュ.エスケープ

sedコマンドで/(スラツシュ)を含む文字列を置換する際、いちいちエスケープしたく

ないとき

■鵬孤四■

″:′ bin′sh

″出カディレクトリの定義

outdir=‖ newdir:=

″出カディレクトリの存在チェック。なければエラー終了

うf E I ―d i:Soutdi ril ]′  then
eCh。

1=出
カディレクトリがありません :Soutdir‖ >&2

exit l

fi

″ カレントディレクトリのhtmLファィルを処理

for htmLfiLe in ■.htmL

do

″ ファイル内のテキス トでノimg/と いうパスをノimageS/に 変換する。

sed ‖s%ノ ilmgノ %/ilmages/%gil liShtmlLfう Le:: > ::S(outdir}/S{htmLfi te}:: ―――――- 0
done

いつ使うか

解説

このスクリプトは、カレントディレクトリにあるHTMLフ ァイルの中の、/img/と いう

文字列を/images/に置き換えるものです。置換後に、[newdir]と いうディレクトリに

HTMLフ ァイルとして出力します。利用シーンとして、Webサーバの構成変更を行い、画

像を格納しているディレクトリの名前を[img]か ら[images]に変えた、というケースを想

定しています。

219

|

|

|

|

…sed



C離籍嘲田 00。 テキスト処理

sedコマンドで置換を行う際、多くの人間書ではsコ マンドの後ろを/(ス ラッシュ)でパ

ターンを区切るよう解説されています。この場合、置換したい文字列自身が/(ス ラッシュ)

を含む場合は、¥記号でエスケープしなくてはいけません。

これは非常に書くのが面倒ですし、見た目にも置換文字列がわかりにくいため、避けた

い書き方です。

実は、sedコ マンドで置換を行う際、パターンを指定する区切り文字は/(スラツシュ)で

ある必要はなく、何でもかまいません。sの直後にある文字を自動的に区切 り文字とみな

してくれるのです。ただし、あまり好き勝手な文字を指定すると別の人が読む際にわかり

にくいため、慣例的によく使われる%を指定しておくのがよいでしょう。

サンプルでは、まず●で置換後のHTMLフ ァイルの出カディレクトリが存在するかどう
かを確認しています。‐dは対象がディレクトリかどうかをチェックする演算子です。それ

を否定演算子!と併用することで、出力先が存在しなかったリディレクトリでない場合に

は、エラーを表示して終了するようにしています。これらファイルテストの演算子につい

ては、P.110で紹介していますのでそちらを参照してください。

0で、forループのinに「*.html」 と指定することで、カレントディレクトリのHTMLフ
ァイルを順にシェル変数htmlfileと して処理しています。0の sedコ マンドが、区切り文
字を%と 指定した書き方です。その出力先を、はじめにシェル変数outdirで定義したディ

レクトリにすることで変換後のファイルを[newdir]に 保存しています。

このようにして、HTMLフ ァイルのリンク先を、一括して変更することができます。

1注意事項

このサンプル例では、単純に/img/を /images/に 置き換えるだけなので、置換対象文字列

がHTMLタ グの中にあるかどうかなどの細かいチエツクは行つていません。そのため、
HTMLの地の文に「ここでは、/img/というディレクトリを…」などの文章がある場合はそ
の内容も置換されてしまいます。

関連項目

220

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

# うに1字タリ bLue を red :こ 轟置1換                
‐  ‐   ‐‐|. ‐.

sed i's/bLue/red/g:i sampLe.txt                   .‐

″文字列 ノimg/を /1mages/に 置換。¥/と エスケープする

sed l's/¥′ img¥/′ ¥ノ images¥//g'I sampLeutxt‐    .‐・ |‐  |.



圏o.         |

0811
右詰めにして数値を表示し、テ
キストで数値の表を作る

…grop.printf 書式付き出力.テキスト整形.フォーマツト

□目回田●

数値カウントなどをするコマンドで、縦位置を揃えて菫形したレポートを作成したい

とき

■□団田B

″:′ bin′ sh

″検索する文字列の定義

search text=‖ ERROR 19:''

″カレントディレクトリの拡張子 .Logフ ァイルを順に処理

for filename in i.log
do

″マッチする行数を―Cオプションで取得

cOunt=s(grep ―c i:Ssearch_text'I ''Sfitename:])一 ――- 0

#printfコ マンドで、右詰め6桁で整形して出力する

printf::%6s(%s)¥ni= ‖Scountil`'Sfi Lenamel:一 ―――-0
done

解脱

このスクリプトは、カレントディレクトリのログフアイル (拡張子■og)か ら、シェル変

数search_textで定義された文字列 (こ こでは
‖ERROR 19:‖ )を検索して、マッチする行数

をフアイルごとに表示するものです。例えば何かのアプリケーションのログファイル群か

ら、ログフアイルごとにエラーがでている行数を数えたいときなどに役立つでしょう。

このサンプル例では、マッチ行数を出力する際、printfコ マンドを利用してフォーマッ

トを揃えたレポートにしていることがポイントです。フアイルからパターンにマッチする

行数をカウントして表示したい場合、grepコマンドだけでも、行数をカウントする‐cオ

221



CW『薇R1000テキスト処理

プションを利用 して実現することはできます。

Ogrepコ マンドの‐Cオプションでマツチ行数をカウントする

しかしこの形式はあまりに素っ気なく、もう少しレポートとして見やすく整形したいと
いう場面もあるでしょう。このスクリプトは、そのようなちよっと見栄えのよいレポート

を作成するケースでの利用を想定しています。

まず●で、br文のinで*.logと指定することで、カレントディレクトリの拡張子■ogの
ファイルを、順にシェル変数nlenameと して処理します。

0では、マッチした行数のみを表示するgrepコ マンドの―cオ プションを利用して、検索
文字の出現行数をカウントしています。この結果を、コマンド置換$0を 利用してシェル

変数countに代入します。

Oが結果を整形して表示する処理です。ここでは書式付きで文字列を出力できるprintf
コマンドを利用しています。printfと は、Perlゃ c言語などでもよく使われる関数です。
printfコ マンドはこの関数をシェルから直接利用できるように、コマンド化したものです。
printfコ マンドは、書式指定子と呼ばれる文字列を指定することできまざまなフオーマ

ットを設定でき、それを後ろに指定した引数 (0ではScount、 $filename)を 代入して表
示できます。ここでは$countに マッチした行数、Silenameに ファイル名が入っています
から、これを整形して表示しています。

printfコ マンドでよく使われる書式指定の例を次にあげておきました。

Oprintfで よく使われる書式指定

書式に指定する%sは文字列、%dは整数を意味します。%5sの ように数字を挟むと、そ
の桁数だけ出カスペースが確保されます。この場合には右詰めされますが、%― と指定す
ると左詰めされて表示されます。printfに は、この他にも多くの書式指定子があります。

S grep ―c ''ERROR 19:'`

app20140101。 lo981

app20140105.■ og873

app20140111.log:146

info.lo9:11

SyStem.log:5

*. ro9

[%S]・ 文字列をそのまま [ABC]

[%5s]・ 右詰めで5桁のスペースに文字列 [ABC]
[%-55]・ 左詰めで5桁のスペースに文字列 [∧BC ]

[%.2s]'' 左詰めで頭から2文字のみ [AB]

[%5d]・ 右詰めで5桁のスペースに整数 [ 123]

[%05d]・ 右詰めで5桁のスペースに整数 (頭にOを付ける) [00123]

[%-5d]・ 左詰めで5桁のスペースに整数 [123 ]

222

憲昧         .



081鰺 :右詰めにして数値を表示し、テキストで数値の表を作る

詳しく知りたい方は、C言語のprintfのマニュアルを「man 3 prin山 として読んでみてく

ださい。

Oでは、書式指定子として「
‖
%6s(%s)¥n・ 」を指定しています。これより、1番目の引数

(マ ッチ行数)を 6桁右詰めで、2番目の引数 (フ ァイル名)をカッコの中に入れて表示でき

ます。なお、printfコ マンドは改行を出力しないため、改行させるには明示的に nヽが必要

です。こうして実行例のように、数値位置が綺麗に揃ったレポートとして表示できるので

す。

このように、整形してレポート表示したい場合はprintfコ マンドを使うと便利です。読

者のニーズにあわせてサンプルの書式指定子を設定してみてください。

注意事項

・ manでマニュアルを表示する際、printfは 関数名としての意味と、コマンド名としての意

味があり、それぞれのマニュアルがあります。関数名としてのprintfのマニュアルは「man

3 printf」 で、コマンド名としてのprintfの マニュアルは「man l printf」 で、それぞれ表示

できます。

・ C言語でいうところのsprintf関数を使いたい場面、つまリフォーマツト文字列を表示する

のではなく変数に代入したい場合があります。そのようなケースでは以下のように、単純

にprintfコマンドの出力を、コマンド置換を利用して変数に代入すればよいでしよう。

223



224

駿

llo. I

o82 I

決まつた桁数の数字にハイフン
を入れる (郵便番号など)

□回壺□D
getopts.shift,awk.grop.sed …オブション.桁数.スペース除去.郵便番号

郵便番号や電話番号などのテキストから、決まつた桁位置にハイフンを入れたり削除
したりしたいとき

■醍孤四■

″1′bin/sh

#ハイフンを削除するかどうかのフラクな1な らば削除する
d-f tag=!

#getOptSコ マンドで、削除オプション (-0指定を判別
whi[e getopts "d" option
do

case $option in
d)

d-f Iag='l

Y?)

exit 1

S cat number―nohyphen.txt

5620001  -|

22500221    -― 一 ― 爾隆 鍼 炒 暉 漑
A120031  .

S ./nuin― hyphen.sh nu■1)er―nohyphen.txt.‐   ‐‐‐ ‐

:.::::::::               鰈1鰈lはiは::颯Йi‡ |;:11111謗 ::,鐵 ::|:鼈
S Cat ntu」 Der―hyphen.txt                    .  ‐

/num-hypben. sh -d nunber-hyphen.txt
―
卜■■■|||■躙欲鹸釉

562-0001

325-10022

_362-0001
AlB-OC■ C

S

56

36

20001

20001

＝
購
朧輔
機
　
　
一



OS2崚 決まった桁数の数字にハイフンを入れる (郵便番号など)

餞

esac

done

#コ マンドライン引数で指定された郵便番号ファイルを、

#シ ェル変数 fi Lenameに 代入する
shift $(expr $OPTIND - 1)
fi Iename="$1 " I]-0

″指定された郵便番号ファイルの存在チェック

lf [ : ―f ::Sfi Lenameli ]′  then
echo‖ 対象のファイルが存在しません :Sfi tenamen>&2

exit l

fi

″ d_f Lagが指定されていればハイフンを削除、指定なければハイフン付加

if [ iiSd_fLag=: ―eq l ]′  then
″ *ハイフンを削除する

#awkで前後スペース除去 → フォーマットチェック → ハイフン削除
awk :(print Sl}: ::SfiLenameli l grep =^[0-9]¥(3¥〕 一[0-9]¥(4¥)S: l sed iis/―

/ノ
1=                                     L_____ 0

eLse

#*ハ イフンを付加する
〃 aWkで前後スペース除去 → フォーマットチェック → ハイフン付加

awk :(print Sl): ==Sfう Lename=: l grep l^[0-9]¥{7¥}$: l sed lis/¥(...¥)/¥1-/t=

fi                                 L____0

機解説

このスクリプトは、7桁の数値が書かれたファイルの3桁目と4桁目のあいだにハイフン

を入れたり、ハイフン付きの7桁の数値からハイフンを削除して表示するものです。スク

リプトにオプションを指定しない場合はハイフンを入れて、―dオ プションを指定するとハ

イフンを削除します。郵便番号が書かれたフアイルを操作することを想定していますが、

他にも似たような数値テキスト処理に応用ができるでしよう。

このスクリプトでは、number― nOhyphen.tXtと いうハイフンが入っていない数値7桁

(例 :5620001)の ファイルと、number― hyphen.tXtと いうハイフンが入っている数値3桁

―数値4桁 (例 :562-0001)の ファイルを扱うと仮定します。具体的なファイルの中身は、

「実行例」のcatコ マンドで中身を表示している箇所を参照してください。

また、このスクリプトでハイフンを付加する際には、以下のような仕様でテキストフア

イルを操作することにします。

各行の前後にスペースが入つている場合は、自動的にスペースを除去する

7桁の数値でなければ、フォーマツトエラー行として無視する

1)

2)

225



各行の前後にスペースが入つている場合は、自動的にスペースを除去する

「3桁数値-4桁数値」となつていなければ、フォーマツトエラー行として無視する

このようなスクリプトでは、入カテキストファイルの中でフオーマットにあわない行を

どうするかという問題がありますが、ここでは上記のように単純に無視することとしてい

ます。

スクリプトでは、まず0で、オプション指定のフラグ変数d_■agを定義しています。こ
れは―dオ プション(こ のスクリプトではハイフンを削除する)が指定されたかどうかを判

断する変数です。0でgetoptsコ マンド(→ P.3)を利用して、起動時に―dオ プションが指
定されたかどうかを判断して、指定されていたら1を シェル変数d_■ agに代入しています。

Oでは、まず位置パラメータから、コマンドライン引数で指定されたオプションを
Shiftコ マンド(→P.5)で追い出します。これで位置パラメータ$1に、コマンドライン引

数で指定された郵便番号ファイル名が格納されていますから、この$1を シェル変数
量lenameに代入しています。

0は、指定された郵便番号ファイルが存在するかどうかの確認をしています。―fは対象
が通常ファイルかどうかをチェックする演算子です。それを否定演算子!と併用すること

で、対象がディレクトリであったり、ファイルが存在しない場合にはエラーを表示して終

了するようにしています。これらファイルテストの演算子については、P.5を参照してく

ださい。

0で、ハイフンを削除するのか付加するのかをit文で判断して分岐しています。―dオ プ
ションが指定されていた場合はシェル変数d_flagに 1がセットされていますから、この場

合にはハイフンを削除する0の処理に移 ります。―dオ プションが指定されていなければ、
d_■agの値は0ですから、if文は偽となリハイフンを付加する10の処理に移ります。

Oでは、まず前後のスペースを除去するためにawkコ マンドで1カ ラムロを〔print$1〕
として表示しています。テキストの行前後にスペースがある際、このようにすると前後の

スペースを簡単に除去できます。

続いて0でaWkコ マンドからパイプでつないだ後に、grepコ マンドでフォーマットチェ
ックを行っています。ここでは量指定子¥{3¥}を利用しています。量指定子とは、直前の
パターンの出現回数を表現する正規表現で、次の例のようにY〔 ¥〕で囲まれた数値の回数だ

け直前の文字が繰り返されるときにマッチします。

grep le¥(2¥}'

grep :[a― zA― Z]¥(8¥}

→ eeにマッチ。grep‖ ee"と 書 くのと同じ
→英字8文字にマッチ

ここではまず、10-9]と して数字を意味する文字クラスを指定して、その後ろに¥〔 3¥)と

3回 出現するパターンをハイフンでつなぎ、「[0-9]¥{3¥HO-9]¥{4Y〕 」としています。これ

は日本語で書 くと、「数値3桁の後ろにハイフンが付き、さらにその後ろに数値4桁」とい

1)

2)

220

C師1円
=察
00。 テキスト処理

一方、ハイフン削除の際には、以下のような仕様でテキストファイルを操作することに

します。



08鯰 饉決まつた桁数の数字にハイフンを入れる (郵便番号など)

うパターンです。郵便番号を正規表現でこのように表現しています。これにマッチしない

行は、フォーマットエラーですから表示されず、つまり無視されることになります。

0の最後に、sedコマンドでハイフンを削除しています。sedコ マンドで文字を削除す
るには、キャラクタを指定して空文字列で置換すればよいので、・s/―//‖ とすればハイフン

が削除できます。

一方、―dオ プションが指定されていなければ0の処理に分岐します。この場合はハイフ

ンを付加する処理を行います。まず0と 同様に前後のスペースを除去するためにawkコ マ

ンドで〔print$llと して、続いて「[0-9]Y{7¥}」 というフォーマットチェックをgrepコ マン

ドで行っています。つまり、数値7桁以外の、郵便番号としておかしい入力は無視するこ

とになります。

0の最後に、sedコ マンドでハイフンを付加しています。ここでは7桁の数値文字列が

渡されますから、「先頭3文字の後ろにハイフンを付ける」という処理をしています。まず

先頭の任意の3文字を、後方参照できるようにカッコ付きでマッチして「Y(… ¥)」 と指定し

ています。この後ろにハイフンを付ければよいわけですから、置換後文字列は後方参照

¥1を利用して「¥1-」 に置換すればよいわけです。

なお、このようなsedコ マンドでの後方参照についてはP.47で説明していますので詳し

くはそちらを参照してください。

このようにして、数値文字列に対して郵便番号としてのフォーマットチェックを行い、

ハイフンの削除・付加を行うことができます。他にも電話番号など、読者の利用シーンに

あわせてスクリプトを修正して利用してみてください。

注意事項

このサンプルでは、入力する郵便番号フアイルはフォーマットチェツクして、エラー行は

無視しています。しかし場合によつては無視せずにエラーとして表示したり、あるいは重

要なシステムならば「1行でもエラーがあればそこでスクリプト自体を終了させる」などの

運用も必要でしょう。入カファイルのエラー行の扱いは、事前にきちんとした設計が必要

です。

関連項目

001 コマンドオプションの処理をする

010 HTMLフ ァイルから、タグの中に書かれたコマンドを抜き出してそのまま実行する

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

227



フアイルサイズを減らすため
に、JaVaScriptフアイル(isフ
ァイJりから空行を除去する

~

‖o.

ＡＪＡＵ」■Ｊ

Ｊ
■
■

田日壺ロロ

空行.軽量化.転送量.圧縮sed

モバイル向けサイトなど、転送量を少しでも小さくしたいWebサイ トでファイルを軽
量化したいとき

■鵬日田■

″:′ bi n′ sh

″変換後のファイル出力用ディレクトリ名

outdi r="nelrdi r"

″ ファイル出力用ディレクトリのチェック

if [ ! ―d :'Soutdi r`: コノ then
echo "Not a directory: $outdir"
exit 1

fi

for fitename in *.js
do

#空行およびスペースやタブのみの行を、sedコ マンドのdで削除
sed iノ ^[[:bLank:コ コ■$/di l:Sfう Lenameil > ilS(outdir)/${fitename}=i ―――――- 0
done

いつ使うか

解説

このスクリプトは、カレントディレクトリにあるJaVaScriptの ファイル (拡張子.js)から、

空行およびタブ・スペースのみの行を削除して、ファイルサイズを軽量化するものです。

モバイル端末向けのサイトなどで、少しでも転送量を小さくしたいケースを想定していま

す。

●では、まず変換後の出力用ディレクトリを定義しています。ここでは複数のjsフ アイ

228

g ls ner^rdir/
sample. js lest. js

./del■ ine.sh



襲E。 フアイルサイズを減らすために、JavaScriptフ アイル (isフ アイル )か ら空行を除去する

ルを処理しますので、それらをシェル変数outdirで定義したディレクトリに出力します。

0で、この出力用ディレクトリのチェックをしています。‐dは対象がディレクトリかど

うかをチェックする演算子です。それを否定演算子!と併用することで、出力先が存在し

なかったリディレクトリでない場合には、エラーを表示して終了するようにしています。

これらファイルテストの演算子については、P.110で紹介していますのでそちらを参照し

てください。

0で、br文のinに「¬s」 と指定することで、カレントディレクトリのJavaScriptフ アイ
ルを順にシェル変数ilenameと して処理しています。0の sedコマンドが、空行およびタ

ブ・スペースのみの行を削除して出力する例です。ここではsedコ マンドに「/くパターン

>/d」 と、・d“を指定することで、パターンにマッチする行の削除を行っています。

削除するパターンに使つているH:blank:]]と は、POSIX文字クラスを利用した書き方で

す。ここで、[:blank:]と いうのはスペース記号やタブ記号など、いわゆる「空自」に相当

するものを意味する文字集合です。これをさらに[]で くくることで、空白記号の文字クラ

スを指定しています。後ろに
*が
付いていますから、これは全体では「行頭の次に、0回以

上の空自文字が続き、行末となる」という行にマッチします。これはつまり空行およびタ

ブ・スペースのみの行ですから、このsedコ マンドの出力結果をリダイレクトすることで、

不要行のみ削除した結果が得られます。ここでは出力先を、はじめにシェル変数outdirで

定義したディレクトリにすることで、変換後のファイルをディレクトリnewdirに 保存じ

ています。

なお、このサンプルのようにJavaScriptの ファイルサイズを小さくするには、専用のツ

ールも多くあります。ファイルサイズに厳しいモバイルサイト運用の際には、一般的には

そのような軽量化ツールが利用されますが、ここではシェルスクリプトで出力するサンプ

ル例を紹介しました。

注意事項

このスクリプ トは、ファイルの改行コー ドがLF(¥n)で あることを前提としています。

CRLF(¥r¥n)の 場合には、空行にマツチしません。

軽量化ツールでは、空行を消すだけでなく、もつとアグレッシブに改行も消してしまうも

のがあります。そのようなコー ドにしたければ、0の部分を次のように変えて、trコマン

ドで改行を消すことができます。

骰l型翌
042 処理開始前に、実行権限をチェックして正常動作できることを確認 してから実行する

229



田o.

|

テキストフアイルからHTMLフ
アイルを作る084

□田壺□D
HTML,エスケープ,文字参照,改行,テキストファイルsed

サーバ上のテキストファイルを簡易的にHTMLファイルに変換し、Webブラウザで閲
覧したいとき

□朦□田D

″:′ bi n′ sh

″ HTMLと してエスケープが必要な記号を文字参照に置き換え、

″最後に行末をくbr>タ グに置換する。

sed ―e is/&ノ ¥&amp′ /g: ¥―――――■D
―e is/くノ¥&Lt′ /g: ¥

―e is/>ノ ¥&gt′ノ91 ¥
―e lisノ :ノ ¥&″ 39′ノg'= ¥

―e is/''ノ ¥&quot′ ′g: ¥

―e is/Sノ くbr>′ : ¥

‖
Sli=

S Cat SainPle.tXt

l■ 1く 3
1'Hellol'1

A&B

s ,/txt2htm■ .sh samp■ e.txt > sainPle,htm

S Cat Samp■e.htm ‐          ‐・    .‐ ‐. ‐ `‐ ||

1 ■ 1 &■ t, 3く br>

&quot,菫e■ lo:&quot,く br>                ‐

A &amp, Bくbr>

:鰈鯰骰贔鱗 :驚

このスクリプトは、テキス トフアイルを簡易的なHTMLフ ァイルに変換して出力するも
のです。サーバ上にあるテキス トファイルを、Webブラウザで手軽に見たいケースを想
定しています。

リモー トホス トで作業中に、接続先にあるマニュアルなどのテキス トファイルを、狭い

端末内ではな くWebブラウザで閲覧したい場合があります。この際、長い行があると
Internet Explorerな どでは自動的な折り返 しがされず、横スクロールバーが表示されて

230

露解説



帳鶴趣テキストフアイルから HTMLフ ァイルを作る

ブト常に見にくいことがあります。

やブラウザでテキストファイルを表示すると読みにくくなる

これは短い行です

これはとでもとでも長い行です。これはとてもとでも長い行です。これはとてもとでも

HTMLフ ァイルならば長い行も自動的に折り返しされますから、このような場合は、テ
キストファイルをブラウザで表示できるようにHTMLフ ァイルにできれば便利です。その
ためこのサンプル例で、テキストファイルを簡易HTMLフ ァイルに変換してみましょう。
テキストファイルをHTMLフ ァイルにするには、厳密にやるならばくhtml>タ グや
くhead>タ グを組み立てたりと、さまざまな準備が必要です。しかしここでは、手元のブ

ラウザで見られれば十分ですから、単に行末にくbr>を 付けるだけというシンプルな仕様に

してみます。ただしこの際、不用意にJavaScriptな どのコードが実行されないよう、

HTMLと してエスケープが必要な記号は正しくエスケープ処理します。これはセキュリテ
ィ対策のための処理でもあります。

利用者がWebブラウザで閲覧するプログラムに外部からの入力値がある場合には、そ
の外部入力は、悪意のある攻撃者によって「汚染されている」可能性があることを常に意

識しなくてはいけません。例えばJavaScriptは 単なるテキストファイルとして見るぶんに

は何も問題がありませんが、Webブラウザに解釈させた途端に、危険な攻撃コードとし
て実行されてしまう可能性があります。ですから、誰かが書いたテキストファイルをWeb
ブラウザで表示するこのようなプログラムでは、HTMLタグをエスケ…プして無害化する
処理が重要です。なおPHPやRubyな ど一般的なスクリプト言語では、このために専用の
エスケープ関数が用意されています。これは「注意事項」にあげてあります。

(D)では、sedコマンドで複数のパターンをまとめて置換しています。このように複数の
パターンを指定する際は、●のようにsedコ マンドの‐eオプションでパターンを続けて指

定してつなげれば、パイプ処理を使わずに書くことができます。

なお0では、HTMLと してエスケープが必要な記号を文字参照に置き換えています。こ
の際に置き換えている記号は次のとおりです。

231



& &amp;

< &tti

> &gt;

&#39:

&quot;

0,IAPttR 00 0テ キスト処理

0ブラウザで表示させるための置換

シングルクォートとダブルクォートを置き換える際は、sedコ マンドの全体をくくるク

ォート記号に注意が必要です。サンプル例では基本的にすべてをシングルクォート記号で

くくっていますが、シングルクォート記号の置換「
‖
s/1/¥&#39;/g‖ 」だけは置換対象の

i(シ

ングルクォート記号)を わざわぎエスケープしなくてもよいように、全体をダブルクォー

ト記号でくくっています。このようなクォート記号の混在の際の注意については、P.39で

説明していますのでそちらを参照してください。

②の置換パターンは、行末にくbDタ グを付加する処理です。シェルスクリプトでテキス

トの行末部分に特定の文字列を追加するにはさまざまな手法がありますが、サンプル例で

はこれにもsedコ マンドを利用しています。sedコ マンドでは$が行末を表しますので、こ

れをくbr>で置換することで行末にくbr>タ グが付加できます。これが「
is/$/<br>/'」

という

置換パターンです。

このスクリプトは単にsedコ マンドの置換パターンをつなげて並べているだけですが、

このような処理をいちいち手打ちでやっていては大変ですし、処理の漏れが起こるかもし

れません。このようにスクリプト化して、自動化できるようにしておくとよいでしょう。

注意事項

このスクリプトで作られるHTMLファイルは<html>タ グや<head>タグがないなど、あ

まりHTML的 に正しい書き方にはなつていません。テキス トを簡易的にWebブラウザで見
るための事例、とご理解ください。

参考のため、他のスクリプ ト言語でH〒 MLタ グをエスケープする関数を次にあげておきま

す。

OHTMLをエスケープする関数

PHP htmlspecia[chars

escapeHTML(CGl.pmモ ジュールを利用)Perl

Ruby CGLescapeHTⅣ Lヽ

関連項目

232

015 シングルクォートの中でシングルクォートを使う

●
一　

●
・
●

置諫 え文字



HTMLフアイルの文字コードを自
動的に判別して、UTF‐8でエンコ
ードされたフアイルに変換する

贈o.

Ｆ３８■Ｊ
Ｊ
■
■

grep.sed.lconv HTML.metaタ ク,文字コード

HTMLフアイルのmetaタクから自動的に文字コードを判別し、UTF‐3へ変換したい
とき

日鵬彊四■

″:′●in/sh

〃変換後のファイル出力先ディレクトリ名

outdi r="newdi r"

″ ファイル出力先ディレクトリのチェック

lf [ ! ―d i=$outdi rti ]′  then
echo ::Not a directory: Soutdi ril

exit l

fう

#カ レントディレクトリの .htmLフ ァィルを対象
for {ilename in *-html

do

″ grepコ マンドでmetaタ グのCOntent―Type行を選択し、

″ Sedコマンドでcharset=指定部分を抜き出す

CharSet=S(grep -1 1匈 eta : iiSfi tename:= |¥

grep -1 :http― equiV=l'COntent― Typei== |¥

sed ―n is/.*charset=¥([― _a―zA― ZO-9]*¥)'].ホ ノ¥1ノ pl)

″ CharSetが取得できていない場合は、i COnVコ マンドを実行せずにスキップする

if I -z "$charset" J; then
echo "charset not found: $filename" >&2

cont i nue

fi

●

233

~¬

」~



GHAPTER 06● テキスト処理

ロ

″ metaタ グから取り出した文字コードから、UTF‥8へ と変換し、

″ディレクトリ$Outdirに 出力する

iconv ―c ―f ==Scharsetil ―t UTF-8 :'Sfi Lenameli  > ='S(outdi r)′ S(fitename}i=
L_ 0

done

解説

このスクリプ トは、カレントディレクトリにあるHTMLフ ァイル (拡張子.html)を 、
HTMLフ ァイル内のmetaタ グで指定されている文字エンコー ドを利用 して、UTF-8に変
換するものです。さまざまな文字コー ドのHTMLフ ァイルを、一括してUTF-8に変換する
ケースを想定 しています。変換には、文字コー ドを変換する標準的なコマンドである

iconvコマンドを用います。

●で、まず変換後の出力先ディレクトリを定義しています。ここでは複数のhtmlフ ァ

イルを処理しますので、それらをシェル変数outdirで 定義したディレクトリに出力します。

0で、この出力先ディレクトリのチェックをしています。‐dは対象がディレクトリかど
うかをチェックする演算子です。それを否定演算子!と 併用することで、出力先が存在し

なかったリディレクトリでない場合には、エラーを表示して終了するようにしています。

これらファイルテストの演算子については、P.110で紹介していますのでそちらを参照し

てください。

0で、for文のinに「*.html」 と指定することで、カレントディレクトリのHTMLフ ァイ
ルを順にシェル変数filenameと して処理しています。for文の中では、10)で HTMLフ ァイ
ルから文字コードを取り出し、シェル変数charsetに格納しています。なお0は、各コマ
ンドをパイプでつないでおり1行が長いため、行末にYを置いて見かけの改行をしていま

す。

ここで、HTMLの charset指定についておさらいしておきましょう。HTMLではフアイ
ルの文字コードを、metaタ グの中のcontent属 性内で、charset=を 指定して行います。

0,HTMLフ ァイルでの文字コード指定例

・EUC指定

くmeta http― equiv=:iContent― Typeli content=‖ text/htmt′  Charset=euc― jp‖ >

・シフトJIS指定

く:neta http― equiv=''Content― Typeli content=‖ text/htmL′  Charset=Shift_JIS">

。COntent属性とhttp―equiV属性の順序は逆になることもある
くmeta content=:itext/htmL′  cha rset=utf-8'l http― equiv=‖Content―Typeli />

・タグが大文字で書かれたり、CharSetの 前のスペースはないこともある
くMETA HTTP― EQUIV=‖ Content―Typeti CONTENT=“ text/htmL′ charset=UTF-8">

234



0絡 螢HTMLフ ァイルの文字コードを自動的に判別して、UTF‐3でエンコー ドされたフアイルに変換する

上記のように、HTMLで は表記の揺れもありすべてに対応するのは大変です。このスク

リプトでは、(0)で以下のような仕様で文字コード指定を抽出してみました。

(1)「<meta」 と「http‐ equiv=‖ Content‐丁ype‖」を含む行をgrepで選択

(2)charset=という文字列の、後ろのイコールで指定されている文字列をsedコ マンド

で抽出

0では、コマンド群全体をコマンド置換$0で くくって、シェル変数charsetに 代入して

います。はじめの2つのgrepコマンドでは、‐1オプションを付けて大文字小文字を無視し

ています。これはタグが大文字で書かれることもあるためです。

●の最後のパイプ処理でsedコマンドが行っているのは、「charset=xxxxx」 の「xxxxx」

という文字列を取り出す処理です。ここではcharsetのイコール記号の後ろに取り出すべ

き文字コードが入っていますから、それを「charset=¥(1-_a― zA―ZO-9FY)」 とパターン指定

しています。文字コードはEUC― JPな ど基本的に「アルファベット、ハイフン、アンダー

バー、数値」のみからなりますから、これを文字クラスとして[―_a― zA― ZO-9]と して表現し

ています。

薇文字コードを特定するための文字クラス

a“zA― ZO―9]

‐(ハイフン)ま たは

_(アンダーバー)ま たは
a―z(小文字のaか らz)ま たは
A―Z(大文字のAか らZ)ま たは
0‐9(数値の0‐9)

このときハイフンは範囲指定にも使われるため、文字クラスでハイフンそのものを指定

する際には先頭か最後に置かなければなりません。

sedコ マンドのマッチ部分で、charset=の 後ろをY(¥)で くくっているのは、後方参照 (マ

ッチ部分取り出し)できるようにするためです。sedコ マンドを、パターンスペースを出

力しない…nオプションを用いて、同時に置換後の文字列を後方参照「¥1」 としてpフ ラグ

で出力することにより、マッチした部分のみ取り出せます。なお、このようなsedコ マン

ドでの後方参照と―nオ プションでのマッチ部分取り出しについては、P.46を参照してくだ

さい。

0では、0で取 り出したcharsetの文字列をチェックしています。charset指定がない
HTMLフ ァイルなどで、文字コードの判別に失敗した場合、シェル変数charsetに は空文

字列が入っています。そのため10)ではtestコ マンドの空文字列かどうかを調べる‐z演算子

を用いてシェル変数charsetを チェックし、これが真だった場合はcontinue文で次のルー

プヘとスキップしています。

さて、0に よリシェル変数charsetに 文字コードが代入できたので、これをiconvコ マン

ドで処理します (0)。 iconvコ マンドの使い方は次のようになります。

235



C冊

『
臓驚00。テキスト処理

iconvコ マンドの書式

iCOnV… fく入力文字コード>―tく出力文字コード>くファイル名>

入力文字コードは0で取 り出せましたから、これを―fオ プションに指定しています。出
力文字コードは、このサンプルではUTF-8決め打ちとしています。またOでは、指定され
た文字コードで想定しないコードがあった場合には、その文字を無視するようにする―cオ

プションを加えています。 この―c指定をしないと、1文字でもゴミが入り込んでいる

HTMLフ ァイルがエラーで止まってしまいますので、実用上、入れておいたほうがよいで
しよう。

Oの最後に、出力をディレクトリnewdirに リダイレクトして、変換後のファイルを出
力しています。こうして、一括してHTMLフ ァイルをUTF-8で 出力できます。
なおHTMLフ ァイルは歴史が長いことから表記にもいろいろと揺れがあり、 このスクリ
プトでうまく扱えないファイルがあるかもしれません。読者の環境にあわせて、grepゃ

Sedコ マンドのパターン部分は適宜修正してください。

注意事項

このスクリプトでは、charset指定がされていないHTMLフ ァイルは扱えません。また出
力されるフアイルは、metaタ グで何が指定されていてもUTF‐ 8のファイルとして出力され

ます。

HTMLの新しい規格「HTML5」 では、次のような省略したcharset指 定ができます。

サンプル例ではこの形式には対応していません。この場合、sedコマンドの部分を、次の

ように変えてみてください。

く:■eta charsetE"UTF-8'1>

sed ―n is/く meta .ホ charset="Y([―二la― zA― ZO-9]*¥)"Ⅲ Ⅲ/Y1/pl

HTMLの古い形式では、Shift_JISは頭にx―を付けて「x‐ sjis」 と表現していました。iconv
ではこの形式に対応していないためエラーとなります。

関連項目

230

010 HTMLフ アイルから、タグの中に書かれたコマンドを抜き出してそのまま実行する

一
，

一

一

一

―

　

　

　

　

　

一



GHAPTER

シェルの機能を
使いこなす

この章では、シェルの機能であるシグナル処理や並

列処理、別のコマンドを実行するラッパーの書き方、

外部コマン ドの扱い方などを紹介します。この章の

サンプル例を活用すれば、ただ順番にコマン ドを並

べるだけの書き方から、割り込みや並列実行などの

非同期処理を利用した、一歩進んだシェルスクリプ

トが書けるようになるでしよう。



238

ロ

関数や:f文内などでヒアドキュメ
ントを使う際、ベタ書きせずに行
頭にダブを入れて見やすくする

‖o.

086

いつ使うか

園日塞□日

…ヒアドキュメント.インデント.タフ
cat

関数ブロツクやif文など、インデントが必要なところで、ヒアドキュメントもインデン
トしてコーディングしたいとき

■匿罰囲■

″:′ bi n′ sh

″ コマンドライン引数のチェック

if [ -2 :iSl:: ]′  then
echo::titLe要素を引数で指定してください‖>&2
exit l

eLse

″コマンドライン引数 Slの文字列をtitte要素に入れて表示。
″ヒアドキュメントに― (ハイフン)指定 して、
″行頭タプを無視してインデントしている

Cat くく―EOT

くhtmL>

くhead>

くtitLe>Slく /titLe>
く/head>

<body>
<p>Auto HTIIIL samp[e-</p>

$ .lhere-indent.sh "My Title"

<title>My ?itle</title>
く/head>

くhtml>

くhead>

|

くbody>

くp>Auto HTP■ , sample.く /p>
く/body>
く―/htinl>



0鑢1肇 関数や if文内などでヒアドキュメン トを使う際、ベタ書きせずに行頭にタブを入れて見やすくする

翻

く/body>

EOT

#※ ↑このヒアドキュメント部分のインデントは、スベースではなくタブである

fi

解説

このスクリプ トは、コマン ドライン引数で与 えられた文字列をくtitle>要 素 として、

HTMLフ ァイルを出力するものです。it文の中で、ヒアドキュメントをインデントしている

ことがポイントです。なお、ヒアドキュメントについての基本的な書き方は、R56で説明

していますのでそちらを参照 してください。

ヒアドキュメントを使う際に不便なのが、インデントができないということです。つま

り、ヒアドキュメント内のテキス トは行頭のタブを含めてすべてそのまま文字列 として認

識されてしまいますから、読みやすくするためにインデントを入れてコーディングすると

実行時に余計なタブが入ってしまいます。これでは、関数内やI文の中でインデントをせ

ずにベタ書きをしなくてはいけないため、見た目にもわかりやす くありません。

鰺鰈褥鰈魏インデントせずに書くとスクリプトはわかりにくくなる

if[ ―z li$1:: ]′  then
echo‖ titte要素を引数で指定してくださぃ

:'>&2

exit l

eLse

cat くく EOT

くhtmL>

くhead>

僣哺

くノbody>

EOT

#↑ このヒア ドキュメントはインデントできない

fi

しかしヒアドキュメントには、くく…のように―(ハイフン)を利用することで、行頭タブ

を無視させることのできる記法があります。本サンプルでは、この記法によリヒアドキュ

メントのインデントを行っています。

まず●で、testコマンドの「空文字列ならば真」となる…z演算子を利用して引数チェッ

クを行っています。これが真ならば引数が指定されていませんから、エラーを表示して終

了しています。

0で、くtitle>要素を指定したHTMLフ ァイルをcatコマンドで出力しています。本来な

らばこのようなI文の中などのヒアドキュメントは、余計な行頭タブが入らないようにベ

タ書きしないといけません。しかし0では、ヒアドキュメントの指定 (くく)の後ろに、̂ (ハ

」



餞限町ER 07 0シ ェルの機能を使いこなす

イフン)を付けています。この指定を行うと、シェルはヒアドキュメント部分の行頭のタ

ブを無視します。結果として、サンプル例のようにヒアドキュメント本体をタブでインデ
ントすることができるようになります。

このようにヒアドキュメントをインデントして書くと、わかりやすく読みやすいコーデ

ィングを行うことができますから、保守性の向上にもつながります。関数内やif文ブロッ

ク内などでヒアドキュメントを用いる場合は、この「くぐ」の記法を利用してみてください。

注意事項

。この記法で無視できるのは行頭タブのみで、行頭スペースは無視されません。そのためこ

の記法を利用してコーディングする際、インデントはスペースではなくタブで行つてくだ

さい。vimや Emacsなど多くのエディタでは、インデントをスペースで行うかタプで行う
かの設定と、タブ幅の設定ができるようになつています。

関連項目

240

022 ヒアドキュメントで変数展開をせずにそのまま$strのように表示する

■
●

　

　

一



スクリプト実行中IEシグナルを
受け取つて、現在の実行状態を
出力する

087
鵬o.

国回壺目B
t「ap.nc.sloep シグナル.割り込み,トラツプ

長い処理時間のかかるシェルスクリフトを実行中に、プロセスを停止せずに内部の実

行状態を表示したいとき

日朦国四■

″:′bin′sh

″実行回数カウンタ

count=0
#通信テストの対象サーバ

server=‖ 192.168.2.105t=

″ シグナルUSRlに トラップを設定。現在のSCOuntを表示する

trap lechO liTry cOunt: Scount‖ : USRl――――- 0

″ nCコマンドでの連続通信テストのループ

whi Le [ :=$countil ―Le 1000 ]

do

″カウンタを1増やし、nCコマンドで通信テストを行う

#最後に1秒のウェイトを入れる。
count=$(expr $count + 1)
nc -zv "$server" 80

sleep 1

done

「

~~~~~
」

241

¬

一　

　

　

　

　

　

　

　

一

CttPttR 07● シェルの機能を使いこなす

解説

このスクリプトは、繰り返し処理により実行時間が長いスクリプトを実行中に、該当プ
ロセスにki‖コマンドでUSRlシグナルを送ることで、現在までの実行回数を表示させる
ものです。ここでは、ncコマンドでTCPポ ート80(http)宛 てに長時間の繰り返し通信テ
ストを行い、シグナルが送られるとその都度、現在までのテスト回数を

‖
Tw Count:‖ とし

て表示するケースを想定しています。

このサンプルで利用しているnCコ マンドは、サーバ宛ての通信をテストできる便利な
コマンドです。使い方については、P.163を参考にしてください。

実行中のプロセスの状態を知るには、プロセスにシグナルを送ってそのタイミングで内
部の状態を表示するという手法があります。シェルスクリプトでこのようなシグナル処理
をするためには、trapコ マンドを用います。なお、trapコ マンドとシグナルの関係は、
P.6で詳しく説明していますのでそちらを参照してください。

サンプル例で用いているUSRlシ グナルは、アプリケーションごとに独自に動作を定め
ることのできるシグナルです。例えばWebサーバとしてよく使われるApache httpdでは、
USRlシ グナルを送るとgracefulモ ードで「緩やかに再起動」しますし、Linuxの ddコ マン
ドにUSRlシ グナルを送ると、コマンドを続行させたまま「現在までに処理したブロック
数」を途中表示させることができます。

このような仕組みをシェルスクリプトにも実装しておくと、長い処理時間がかかるスク
リプトで、実行中の状態を「覗く」ことができて便利です。サンプルではnCコ マンドでテ
ストを行った回数を表示することにしてみました。

まず01と 0で、テスト回数のカウンタ初期化と、テスト対象サーバを定義しています。
シェル変数countが、実行テスト回数になります。

0が、シグナルを受信した際の処理を記述している部分です。trapコ マンドでUSRlシ
グナルを受け取り、その処理として・Tw COunt:Scount‖ をechOコ マンドで表示すること
で現在までのテスト回数が表示できます。このOの部分は、スクリプトとして上から順に
実行されている時点では何も表示されません。実行中に実際にUSRlシ グナルが送られた
ときに、この処理が行われるように定義をする文だと理解してください。このようにして、
シェルスクリプトではtrapコ マンドを利用して割り込み処理を書くことができます。

●で、while文を用いて連続通信テスト(実行時間の長い処理)を行います。ここではカ
ウンタを1増やしながら1000回実行することにしています。(0)で、nCコ マンドにより対
象サーバのポート80(http)へ 通信テストを行い、sleepコ マンドで1秒待つてから、expr
コマンドでシェル変数countの値を1増やしていきます。

実際にこのプロセスにUSRlシ グナルを送るには、スクリプトを実行させたまま別の端
末ウィンドウを開いて、実行中のプロセスー覧を表示するpsコマンドを実行してくださ
い。

242

0300 sh

鑢 7饉 スクリプト実行中にシグナルを受け取つて、現在の実行状態を出力する

膵psコマンドで実行中プロセスー覧を表示

上記のPID欄を見ると、sig― usrl.shを 実行しているプロセスIDは29658です。このプロ

セスIDに、klllコ マンドでUSRlシ グナルを次のように送ります。

やsig― usrl.shの進行具合を表示させる

こうするとスクリプトはUSRlシ グナルを受信し、実行例のように"Try Count‖ として

ncコ マンドの実行回数が表示されます。

注意事項

OSによつて利用できるシグナルは多少変わります。現在の環境で使えるシグナルは、k‖ l

コマンドに‐lオプションを付けることで表示できます。このとき表示されるシグナルはすべ

て先頭にSIGが付いた形式、例えばHUPシグナルは「SIGHUP」 などと表示されます。

関連項目

”

６１

キーボードから 十回入力されたときに、現在の状態を出力してから終了する

あるサーバの特定ポートヘ通信できるかのチェックスクリプト

243

‖o. HUPシグナルを受け取つて、実
行中に設定フアイルを読み込み
なおす

088

trap.upume… (ドットコマンド) シグナル・割り込み.トラツプ.リロード

設定ファイルを読み込むスクリフトで、実行中に設定ファイルを書き換えた後、プロ
セスを止めずに設定ファイルを再読み込みさせたいとき

#:′ bin′ sh

#環境初期化のシェル関数。ログ出力先を設定したSetting.confを 読み込む
Loadconf(){ ―-1

)..ノ
set」 ng.conf_「一●

″ HUPシ グナルの割り込みで設定を読み込みなおすように定義
trap :Loadconfl HUP―――――o

#通常起動時の、はじめの初期化を行う
Ioadconf

″無限ループで実行

whi te :

do

″ uptimeコ マンドの結果を、setting.confで指定されたバスにログ出力
uptime>>::${UPTI‖ E_FILENAME〕 i=――――――くD
sLeep l

done

解説

このスクリプトは、サーバのロー ドアベレージ状態を1秒に1回 ファイルに出力し続け

るものです。uptimeコ マンドは次のように、サーバの起動時間と、サーバの過去1分/5分

244

'k■
ll― s HUPくブロセスID>

. /sig-hup. sh

|

088饉 HUPシ グナルを受け取つて、実行中に設定フアイルを読み込みなおす

/15分のロードアベレージを出力します。この結果を長時間とることで、サーバの負荷状

態を見ることができるでしよう。

◎uptimeコ マンドで負荷状態を表示する

このサンプル例では、シェルスクリプトのプロセスにHUP(ハングアップ)シグナルを
送ることで、プロセス終了させずに出力先のファイルを切り替えできることがポイントで

す。このような動作は、サーバに常駐するデーモンプログラムなどでよく使われる手法で

す。

このサンプルは起動時にまず●で、外部設定ファイルsettingoconfを 読み込んでいます。

このsetung.confと は次のように、出カファイル名を指定する定義ファイルです。

鰈趙嘲鰈颯このサンプルで使用している設定ファイル(se面ng.cOnf)

UPTIME_FILENAME===/var/tmp/uptime.Logi=

このように、外部ファイルを.(ドット)コマンドで取り込む例は、P.41で紹介していま

すので詳しくはそちらを参照してください。このサンプルでは、割り込み処理により、プ

ロセス動作中にこの設定ファイルを再度読み込ませようというわけです。シェルスクリプ

トで割り込みに対応する(シ グナル処理をする)た めには、trapコ マンドを用います。

trapコマンドとシグナルの関係は、P.6で詳しく説明しています。

このスクリプトでは、0でまず環境初期化のシェル変数を定義しています。これはカレ
ントディレクトリのファイルsemngoconfを 読み込むだけの簡単なものです。これでシェ

ル変数UPTIME_FILENAMEが 設定され、uptimeコ マンドのログ出力先が設定されます。

0が、trapコ マンドでHUPシ グナルによる割り込みを定義している部分です。ここで
は、設定ファイルを再読み込するためにloadconf関数を呼んでいます。trapコ マンドは実

際の処理をシングルクォートでくくるために長い処理が書きにくいので、このようにシェ

ル関数を別途定義しておいて、その関数を呼ぶように記述するという手法はよく使われる

やり方です。

設定ファイルを再読み込みさせるような動作には、通常はHUPシグナルが使われます。
例えばWebサ ーバとしてよく使われるApache httpdで は、親プロセスにHUPシグナルを

送ると、設定ファイルhttpd.confの 再読み込みを行うreload動作をします。このような慣

習から、10)で も設定ファイルの再読み込みはHUPシグナルで動作するようにしています。

0は、通常起動 した際に最初に実行される行です。ここではloadconf関数を呼んで、
設定を初期化 します。この時点で、シェル変数UPTIME_FILENAMEに は・/vavtmp/
uptime.log‖ が設定されることになります。

●から、実際にuptimeコ マンドを実行するwhneループになります。ここではwhileに :

(ヌ ルコマンド)を指定して、無限ループで実行しています。0では、uptimeコ マンドの

245

G臓コPTER 07。 シェルの機能を使いこなす

結果をシェル変数UPTIME_FILENAMEに 出力し、sieepコマンドで1秒待つてから、再び
uptimeコ マンドを繰 り返すという動作になっています。

では、設定ファイルを書き換えて、プロセスが起動したままファイルの出力先を動的に

変更してみましょう。まずsetting.confを テキス トエディタで開いて次のように書き換え

て、コマンドの結果がuptime2.logと いう別のフアイルに出力されるように設定 します。

翻漱田口D設定ファイルを変更する

UPTI‖ E_FILENA‖ E="ノ var/tmpノuptilme2.Lo9"

そして実際にこのプロセスにHUPシ グナルを送るために、別の端末ウィンドウを開い

て、psコ マンドで現在実行中のPIDを調べます。例えば、sig― hup.shを実行しているPID

が29658で あれば、次のようにki‖コマンドの‐sオプションでHUPシ グナルを送ればよい

といっことです。

◎HUPシグナルを送ると設定ファイルを再読み込みする

こうすると、いままで/var/tmp/uptime.logに 出力されていたログが、/Var/tmp/

uptime2■ ogに出るように切 り替わります。このようにして、プロセスを止めずに動的に

設定を変えることができるわけです。

」注意事項
このスクリプトは無限ループのため、終了させるにはki‖ ‐9コ マンドを利用するか、起動

した端末から 0,`| +□を入力してください。

関連項目

”
咄

キーボードから 十〔CI入力されたときに、現在の状態を出力してから終了する

246

変数や関数を外部ファイルに記述する

閥oコ 異常終了してもゴミが残らない
よう、終了前に作業フアイルを
消去して後始末を行う

080

trap.rm
―
■●

一時フアイル.終了.シグナル.トラツプ

□E□囲ロ
ー時ファイルを利用するスクリプトで、正常終了・強制終了ともに共通の終了処理を

記述したいとき

■藤日囲D

″:′ bin′bash

#一時ファイルを定義し、ファイルの中を空に初期化する
tmpfite=‖ catctmp.SSi' 一] `●
: > :iStmpfi Le" __」

″ トラップの設定。終了時に一時ファイルを削除する
trap :rm ―f l'StmpfiLe‖ : EXIT―――――- 0

″長い計算を行う外部スクリプトを実行する

./ca LcA.sh >> 'iStmpfi teli ―¬ __

./caLcB.sh >> ilStnlpfi teli _」

″計算結果を足し合わせて、最終数値を計算する

awk :(sum += $1) END(print sum)1 ='Stmpfi tel' 一――――――(D

解説

このスクリプトは、正常に終了した場合でも、キーボードから Ctri +□を叩かれるな
どで強制終了した場合でも、一時ファイル (tmpfile)を 削除して終了するものです。なお

動作環境として、bashを 前提にしています。

このスクリプトでは、何らかの計算を行ってその数値結果を出力する外部スクリプト

calcA.shと calcB.shを 利用しています。このスクリプトは次のように、単に計算結果を表

247

|

CIAttR 07● シェルの機能を使いこなす

示するものと仮定します。

OcalcA.shと calcB.shの 実行結果

このサンプルでは最終的に、calcA.shと calcB.shで出力される2つの値を足 し合わせた

数値を計算したい、という状況を仮定します。そして処理が長 くかかるため、強制終了な

どされた場合にはゴミが残らないように一時ファイルを削除する仕様 とします。このため

に、スクリプト終了時に一時ファイルを削除するコマンドを実行したいわけです。

スクリプト終了時の共通処理を書きたい場合には、trapコ マンドを使ってEXITシ グナ
ルを用いるのが基本的なや り方です。EXITシグナルとはbashで利用できる疑似シグナル
で、正常終了時 (ス クリプトが最終行まで実行された場合、もしくはexitコマンドで明示

的に終了された場合)、 強制終了時 (キ ーボー ドから Ctrl +□を押されたり、killコ マン
ドで終了させた場合)、 いずれの場合にも発生します。そのため、そのEXITシ グナルでの

割り込み処理として、一時ファイルの削除を書いておくと、スクリプト終了時に一時ファ

イルのゴミを確実に消すことができます。

サンプル例では、まず●で、計算結果を一時的に保存しておく一時ファイルのファイル

名を定義しています。この際、:(ヌルコマンド)を用いてファイルを空にしています。こ

こで"CalCtmp.$$‖ というのは一時ファイルを作る際にファイル名にプロセスIDを入れる

ために用いられる記法です。詳しくはP。 128を 参照してください。また、:(ヌ ルコマンド)

を用いたファイルの初期化についてはR71を参照してください。

0でEXITシ グナルの設定を、trapコ マンドで行つています。ここでは終了時に一時フ
ァイルを削除したいため、rmコ マンドで一時ファイルStmpFileを 削除するよう設定して

います。この設定により、スクリプト終了時にはこのtrap設定されたコマンド行が実行さ

れるため、一時ファイルが自動的に削除されます。

0で、一時ファイルに計算結果を出力しています。このスクリプトでは、この計算にと
ても時間がかかるという仮定をしているため、この計算途中で強制終了されるケースを想

定しています。

0で、一時ファイルから最終計算を行っています。awkコ マンドで一時ファイルの1カ
ラムロを取り出し、sumと いう変数に足し合わせて表示することで最終計算をしています。
スクリプトが0まで実行されれば、スクリプトの正常終了時にEXITシ グナルが発生し
て一時ファイルの削除が行われます。また、計算途中にキーボードから Ctrl +□が押さ
れるなどして強制終了された場合も、やはりEXITシ グナルが発生して一時ファイルの削

除が行われます。

このようにして、正常終了 。強制終了に関係なく、共通 した終了処理を書 くことができ

ます。一時ファイルを確実に削除したいときなどに利用するとよいでしょう。

248

´
¨

S ./oa■cA.sh

3928

,

79104

0鑢 奎異常終了してもゴミが残らないよう、終了前に作業フアイルを消去して後始末を行う

bashの疑似シグナル

本項で利用したEXITシグナルとは、bashで利用できる疑似シグナルです。通常、シグ

ナルはOSが発生させ管理するものですが、疑似シグナルはbashが発生させ、受け取るの

もbashプロセスのみです。もっとも、シェルスクリプトを書く上ではどちらのシグナル

もtrapコ マンドで同等に扱えますので、それが疑似シグナルであるか「本物の」シグナル

であるかは、あまり気にする必要はありません。

bashで利用できるシグナルを、次にあげておきます。例えばERRシ グナルを使うと、

エラーが発生するたびに特定の関数を実行するという処理を簡単に記述することができま

す。

Obashの疑似シグナル

EXIT スクリプトの終了時

ERR コマンドの終了ステータスがリトゼロだつた

DEB∪ G コマンドが実行された

RET∪ RN (ド ットコマンド)またはsourceコマンドで外部スクリプトを読み込んだ

関連項目

027 ファイルの中身を消去して、ゼロバイトの空ファイルにする

149 二重起動が可能な一時ファイル作成する

249

‖o. 常に指定した環境変数を設定し
てコマンドを実行するために、
ラッパースクリプトを作成する

「
一Ｊ

Ｊ
■
■
９」■
Ｊ

Ｊ
■
■

□日覇2日
…ラッパー .環境変数exec

ラッパースクリプトを作成したいとき

■■目固回■D

″:′ bin′3h

″ TMPDIR環境変数の設定
TMPDIR="/di sk1/tmp:i

export TMPDIR

″ eXeCコマンドでmyappdを 実行。コマンドライン引数を"$0"で渡す

exec . /myappd "$a"

いつ使うか

,・′eXeC・ Sh―。ω tput・ txt― 蜃 魏 囮 躙 |

解説

このスクリプトは、環境変数TMPDIRを・/disk1/tmp‖に設定したうえで、カレントディ
レクトリにあるmyappdと いうプログラムを実行するものです。ここでmyappdと は、環
境変数TMPDIRをテンポラリディレクトリとして用いるプログラムであると仮定していま
す。

サンプル例のように、環境変数などを独自指定したうえで他のプログラムを実行するプ

ログラムを、ラッパーと呼びます。このようなラッパースクリプトは、特に、デーモンな

どの常駐型アプリケーションを起動する際によく使われます。例えばJavaサーブレット

コンテナとして有名なTomcatで は、起動するためのスクリプトstartup.shを次のように
記述してcatalina.shを ラップしています。

凸覇鐵覇颯startup.shは cata‖ na.shをラツプして実行する

PRGDIR=:｀ di rname ::SPRG"｀

EXECUTABLE=cataLina.sh

250

exec i'SPRGDlR:i/"SEXECUTABLE:i start i:Sa‖

瞑Ю●常に指定した環境変数を設定してコマン ドを実行するために、ラッパースクリフトを作成する

興 味 の あ る方 は、 Tomcatの Webペ ー ジ http://tOmCat.apaChe.Orノ か らダ ウ ンロー ド

して、スタートアップスクリプトを読んでみてください。

さて、ラッパースクリプトでプログラムを実行する場合は、●のようにexecコマンド

を用いるのが一般的な手法です。単に外部プログラムを起動するだけなら、次のように書

いても問題はありません。しかしこれは、常駐型のサーバプログラムを起動する際には、

あまり使われない書き方です。

なぜ上記のように書かずにexecコ マンドを使ったほうがよいかを理解するには、シェ

ルが外部プログラムを起動する際のOSの動きについて理解する必要があります。そこで

以下に、シェルとコマンド実行の流れを簡単に説明します。

シェルがコマンドを実行する際には、内部では次のような動作をします。なお、ここで

あげているfork、 eXeC、 eXitと いうのはシステムコールであって、コマンド名ではないこ

とに注意してください。

鼈外部プログラムを起動する際のOSの動き

シェル

wait

fork
ゝ
罐

乙 ♂ ♂
″

燿蜃・ exit

饉
■
■
↓

目
日
□

ル
　
　
Ｃ

ガヽ
　
ｅＸｅ

251

.‐I,:,
■ 1‐ 1111,,1

この際、OSに とつてもっとも負荷が高いのは、fOrkに よるプロセス生成です。そのた

めプログラマは、できるだけ無駄なプロセスを生成しないようにするべきです。

●で利用しているexecコ マンドを用いると、シェルはbrkを行わず、現在のシェルで直

接execシ ステムコールを発行します。結果として、余計なプロセスを生成する必要があ

りません。もしここで、exceを使わずコマンドを直接実行すると、シェルはmyappdが終

了するのを待ち続けます。myappdが常駐型のサーバプログラムの場合には、この親プロ

セスのシェルは無駄なプロセスとなってしまいます。execコ マンドを利用することで、

この無駄なプロセスが発生することを防いでいるのです。

シェル1つ くらいならば大したことはありませんが、例えばこのmyappdがサーバ常駐

コマンド

0欄紺引m07● シェルの機能を使いこなす

型のプログラムで同時に複数起動されるケースを考えると、複数のシェルプロセスが無駄
に存在することになります。そのためこのサンプル例のように、ラッパースクリプトを書
く際は、リソースの無駄使いを防ぐためexecコ マンドを用いて外部プログラムを実行す

るのがお勧めです。

なお、0では、‖$@‖ と記述して、シェルスクリプトに指定されたコマンドライン引数
を実際のコマンドにそのまま渡しています。S@はコマンドライン引数全体を表す特殊な変
数で、
‖
$@‖ と指定することで位置パラメータを順にクォー トしたのと同じことになりま

す。

0$@でバラメータをクォートするときの動作

こうして
‖
$@‖を実行するコマンドの引数 として渡すことで、元の引数をそのまま外部

コマンドに引数指定して実行できます。

注意事項

・ コマンドライン引数すべてを意味する表現として、他に$★があります。しかしこの変数は、

このようなラツパーの例では利用できません。

O$☆でバラメータをクォートするときの動作

ダブルクォートでくくった場合、位置バラメータごとに
‖‖
でくくるのではなく、引数全体

が1つの文字列として扱われてしまいます。そのため実用上、引数を操作する際に$★を利

用することはあまりありません。基本的に"$刺は使わず
‖
$@"を用いると覚えておいてよい

でしよう。

S@ Sl S2 S3
・S@1'

1'Sl・・
S2'11'S3・

S* Sl S2 $3
・
S*1' 'Sl S2$3

252

ｉ

■

　

　

　

　

　

一

■

一
　
　
　
　
一

07

田o. scpでフアイル転送を行つて
CP口U利用率を計算し、圧縮処
理をすべきかどうか判断する

001

time, scp, awk, bc CPUバウンド.1/0バウンド.処層時間.計測

…スクリフトの実行時間とCPU利用時間を計測して、全体の実行時間に対するCPU利
用率を知りたいとき

■鵬困囲■

″:′ bin′ sh

#テス ト転送ファイルのファイル名、転送先などの定義
username=‖ userll: ″ sshユーザ名
fi Lename=‖ transfer.datil #転 送ファイル名

hostname="192.168.2.10" ″転送先のホスト

path=‖ /var/tmp" ″転送先パス
tmpfi Le=ntimetmp.SS" ″時間計測のための一時ファイル

″ scpコ マンドでファイルを転楚盤

#timeコ マンドで時間を測り、一時ファイルに出力する
(time ―p scp ―c ':sfi tenameil s{username〕 oS(hOstname}:::$(path}:1)2>
‖Stmpfi te‖ ――――――-0

″ timeコ マンドの出カー時ファイルから、各 timeを抽出

reattime=S(awk iノ ^reaL /{print $2): :iStmpfi Le‖)

userti me=S(awk :ノ ^user ノ {print S2): =iStmpfi Le‖)

systi me=s(awk :/Asys /{print S2): l'$tmpfi Lei:)

″ CPU利用時間から、CPU利用率を計算する

cpul…percentage=S(echo l'scate=2′ 100 = (Susertime + Ssystime)/ SreaLtime:' |
bc)

echo liSCp転 送時 CPU利用率 : SCpu_perCentage (%)‖

〃一時ファイルの削除

rm ―f il$tmpfi Leli

利用コマンド

253

~¬

0

01換籍鶴 070シェルの機能を使いこなす

解説

このスクリプトは、scpコ マンドでファイルを転送する際にファイル圧縮を行い、その

際の全体でかかった時間に対するCPU処理時間の比率を表示するものです。なおこの例
では処理時間を測るため、パスワー ドを手で入力する時間を含めないようにするためにサ

ーバ間はssh公開鍵認証を行い、パスワード入力は行われないものと仮定 しています。
ここでssh公開鍵認証 とは、秘密鍵 と公開鍵の鍵ペアを用いて認証を行 う方式です。一

般的にsshでパスワー ド認証を利用する場合には、ログイン時にパスワー ドを入力する必

要があるため、シェルスクリプトでの自動化が難しくなります。一方、鍵認証によるログ

イン方式を用いれば、パスワー ド入力が不要となるため自動化が簡単に行えます。

この鍵認証のssh設定について詳 しく解説していると本書の範囲を大きく超えてしまい

ますので、ここでは以下で手順のみを簡単に紹介します。

1)OpenSSLの ssh‐ keygenコ マンドなどを利用して、秘密鍵・公開鍵の鍵ペアを生成す
る。

2)作 成 した鍵ペアのうち、公 開鍵ファイルの内容を、接続先ホス トの7.ssh/
authorized_keysフ ァイルに追記する。

3)接続元ホス トの7.ssh/configフ ァイルを編集し、秘密鍵のファイルやログインユーザ
名の指定を行う。

なお、秘密鍵ファイルはとても重要なファイルです。設置したディレクトリのパーミッ

ションは他人に読めないようにしておくなど、厳重に管理してください。

このサンプル例でファイル転送に用いているscpコ マンドは、‐Cオプションを付けるこ

とでファイルを圧縮して送信することができます。しかしネットワーク帯域は十分にある

のにCPUが貧弱なマシンでこの圧縮処理を行うと、逆にCPU時間を食って全体の転送時
間が長くかかつてしまいます。一方、ネットワークが極端に遅い環境では、圧縮したほう

が効率的に転送できるでしょう。このスクリプトは、このような状態を判断するツールと

しての利用を想定しています。

●で、まず転送に用いるファイルやサーバ名などの設定を行つています。シェル変数

tmpileは 、次のtimeコ マンドの出力を保存する一時ファイルです。

0では、Scpコ マンドでファイルを転送しています。scpコ マンドは、次のような書式
で通信先を指定してファイルを転送することができます。0ではCPU時 間を計測するた
め、圧縮するための―Cオ プションも利用しています。

scpコ マンドの書式

。ファイル圧縮して転送する場合

SCp― C(フ アイル名>くニープ著>0くプー/ゞ著>8く転送先ノl塚>
。ファイル圧縮せず、そのまま転送する場合

SCP<ファイル名>くユーザ:著>0くサー/f著>:く転1選力/シ>

254

一
・

●
■
・
―

・　
・　
　
　
一

鶴1饉 sopでファイル転送を行つて CPU利用率を計算し、圧縮処理をすべきかどうか判断する

また、0で利用 しているtimeコ マンドは、指定したコマンドの実行時間とCPU利用時

間を計測するコマンドです。例えばcpコ マンドでフアイルコピーするのにかかった時間

を、timeコ マンドで計測する場合は、次のようにします。‐pオプションは、単純に秒数の

みを表示したい場合に使用します。

鰈timeコマンドで実行時間を計測

ここで、realは コマンドの起動から終了までに経過 した実時間、userはユーザCPU時間、

sysは システムCPU時間を指します。つまり大ざっぱに見れば、user+SySが CPU時間、

そしてrealか らCPU時間を引いた時間がvO待ちの時間です。

CPU処理した時間
1/0待ち時間

user + sys

real-(user+sys)

一般に、CPU処理の時間が長い場合には「CPUバ ウンドな処理」、ディスクやネットワ

ークなどの1/0待ちが長い場合には「1/0バ ウンドな処理」と呼びます。このサンプル例で

はtimeコ マンドの出力結果を利用 して、CPU利用時間の率を計算しています。これによ

り、CPUバ ウンドな処理なのか1/0バ ウンドな処理なのかを判断できるでしよう。

さて、リストの0に戻ります。(0)で は、コマンド全体を丸カッコ()で くくってサブシェ

ルとしています。これはコマンド全体をグルーピングしてリダイレクトするための処理で

す。サブシェルを使わずに書くと、scpコ マンドの結果のみがリダイレクトされてしまい、

timeコ マンドの結果が得られません。またtimeコ マンドは結果を標準エラー出力に表示

するため、0では標準エラー出力を「2>」 としてファイルにリダイレクトしています。
ここまででscp転送時のCPU利用時間と実時間を測定して、一時ファイルStmpfileに出

力できました。次にCPU処理時間の率を計算してみましょう。

0では、一時ファイルからtimeコ マンドの出力real,user,sysの 値を取得しています。

awkコマンドでそれぞれのパラメータをフィルタ指定し、第2カ ラムの値を取得してシェ

ル変数にそれぞれ代入しています。これで転送時間全体に対する、CPU利用時間の率が

計算できます。この計算をしているのが0です。シェルスクリプトでの数値計算には

exprコ マンドがよく用いられますが、exprコマンドは小数を含む計算ができません。小数

を含む計算はbcコ マンドを利用します。

bcコマンドは、次のように計算式を標準入力に与えることで数値計算ができるコマン

ドです。小数点以下の桁数は、scale=で指定します。

255

S echo)'iscale=2, (32.2 + 41.3)/ 5.6'I l bc
13.12

G側円ER 07● シェルの機能を使いこなす

り小数点第2位まで出力するbCコマンドでの計算例

前述のとおり、CPU処理 した時間はuSer+Sysで すから、これを全体でかかった時間real
で割れば、CPU処理時間の率を見積もることができます。0ではこの値を計算 し、パー
セント表示 しています。

もしこのサンプル例で表示されたCPU処理時間のパーセンテージが非常に大きい場合、
SCpコ マンドでの転送時に、むしろ圧縮 しない (‐ Cオ プションを付けない)は うが転送は早

く終わるかもしれません。ネットワーク帯域やCPU性能によって判断は変わるで しょう
から、その指標のツールとして利用してみて ください。

注意事項

timeコ マンドはシェルビル トインのコマン ドと外部コマンドがあり、それぞれ環境によっ

て出力形式が変わります。例えばUbuntuの 場合、以下3つのtimeコ マンドがあります。

>shビル トインのtimeコ マンド

>bashビル トインのtimeコ マンド
レ外部コマンド/usr/bin/time

シェルのビルトインコマンドでも外部コマンドでも、timeコマンドで‐pオプションは利用

できます。表示形式の環境依存をなくすため、シェルスクリプ トでは基木的に―pオプショ

ンを利用するとよいでしょう。

目関連項目

005 指定したサイズのフアイルを作り、転送速度を測定する

bgz
I

移植性を考慮して外部コマンド
を利用する

…unarne.echo …汎用性.移植性.OS

…OSごとにコマンドの動作が異なる場合に、それぞれのコマンドを変数として定義した
いとき

#:/bin/sh

#echOコ マンドのパスを、環境によって変えてシェル変数 ECHOに
″代入する。

case S(uname ―s) in

#‖aCの場合はシェルビルトインではなく/bin/echoを 用いる

Darwi n)
ECH0=" /bi n/echo"

*)
ECH0="echo"

¬

esac

SECHO― n ilこ こは改行をしない"
SECHO‖ メッセージです。"

LO

実行例

解説

このスクリプトは、echoコ マンドをシェル変数ECHOで置き換えるものです。Macの
echoコマンドは改行させない…nオプションに対応していないため、この対策のためのサン

プル例です。

P.15で紹介したように、Macの シェルビルトインのechoコ マンドは、改行させない―n

オプションに対応していません。そのため、Linuxな どからスクリプトを移植する際には、

echo― nし ている箇所をそのつど修正 しないといけません。そのような手間を嫌って、で

きるだけ汎用性を持たせようとしたのがこのサンプル例 となります。

257

|

」

CttPttR 07● シェルの機能を使いこなす

シェルスクリプトで、あるコマンドを変数名で置き換える際には、そのコマンドを大文

字とした変数名がよく使われます。これは慣習的なものですから、特に技術的な理由があ

るわけではありません。しかし他の人が書いたスクリプトを読む際にこのような表現がで

てくることもあるので、知識として覚えておいたほうがよいでしょう。このサンプル例で

はechoコ マンドを置き換えるため、シェル変数ECHOを用いました。
まずOSを判定するために、●ではcase文の引数としてunameコ マンドを実行していま

す。unameコ マンドはシステム情報を表示するコマンドで、OSの名称を表示するには…s
オプションを利用します。実際に得られる文字列を次の表にまとめました。

OOSごとのunameコ マンドの表示

0で は`、Macの場合 (Darwinの場合)に は、シェル変数:ECHOに /bin/echoと 指定して、
シェルビルトインのechoではなく外部コマンドの/bin/echoを 用いるようにしています。
それ以外のOSでは、そのままechoコ マンドを実行したいので、シェル変数ECHOに も
echoと 入力しています。

こうして環境ごとのechOコ マンドが準備できましたので、0で実行しています。この
ようにコマンドを変数で置き換えて、新しく定義した変数をコマンドのようにみなしてス

クリプトを書きます。ここでは1行日が―n付きで実行されていますので、改行されません。

実行例のとおり、次のechoコ マンドとあわせて1行で表示されます。このようにして、

OSご とにコマンドの挙動が若干異なる場合にも、同一のスクリプトで複数のOSに 対応し
たスクリプトを書くことができます。

注意事項

汎用性を重視するとスクリプトは煩雑になります。この例で見ると、たかだかechoコマン

ド1つに面倒なことをしすぎだという印象を受ける読者もいるでしょう。これはそのとおり

で、あまり汎用性を重視しすぎてスクリプトが複雑になつては本末転倒です。ただし、こ

のようなOS汎用性を重視して書かれたスクリプトは、特にオープンソース製品には多いた

め、知識として知つておいたほうがよいでしょう。

gzipコマンドは、環境変数GZIPがデフォルトのオプションとして使われます。そのため、

このような手法には注意が必要なコマンドです。

関連項目

Linux Linux

FreeBSD FreeBS[二)

AAac(DS Darwin

Solaris SunC)S

250

側)5 ユーザのキー入力を1文字だけ取得する (入力時に匝団を不要にする)

uname -s os,

饉o毎 リダイレクトが煩雑とならない
よう、グルーピングして見通し
をよくする

003

echo リタイレクト.グルービンク

複数のコマンドの結果を同―のファイルにリダイレクトして出力するとき、何行も繰

り返し書くのをやめてすっきりさせたいとき

″1/bi n′ sh

″中カッコでグルービングし、リダイレクトを1つにまとめる

echo "Escript startl"
date
Is
echo "EScript endl"

) > output. log

利用コマンド

解説

このスクリプトは、複数のコマンドの結果をまとめて、1つのファイルにリダイレクト

して出力するものです。〔〕(中カッコ)に よるグルービングを行っているのがポイントです。

実行するコマンドとして、ここではdateコ マンドで日付を表示してからlsコ マンドを実行

しています。ここは読者が実際に使うコマンドに置き換えてみてください。

シェルスクリプトを書いていると、次のように、コマンドの結果を同一のフアイルヘリ

ダイレクトする箇所が何行にも渡って続く場合があります。こういう書き方は見づらく煩

雑で、何度も同じことを書 くのは面倒でミスも招きます。

{

0:機P寵露07● シェルの機能を使いこなす

echo "[script start]" > output.Log
date >> output.Log
Ls >> output.tog
echo "[Script end]" >> output.[og

このようにリダイレクトが続 くときは0のように、中カッコを用いてコマンド群をグル
ーピングします。グルーピングを使えば、0の ように、最後に一度だけリダイレクトを書
くだけですむためスクリプトが煩雑になりません。こうすれば全体が見やすくすっきり書

けますし、リダイレクト先のファイルを変えたい場合も1カ所の訂正のみですむため保守

性が向上し、コーディングスタイルとしても優れた書き方になります。

なおグルーピングは中カッコではなく、()(丸カッコ)で行う例もあります。丸カッコで

グルーピングすると、その中のコマンドはサブシェルで実行されます。このサンプル例で

は特に違いはありませんが、例えばcdコ マンドでディレクトリ移動をした場合には、サ

ブシェルから抜けると元のディレクトリに戻ってしまう点が、中カッコでのグルーピング

と異なる点です。このサブシェルの動作については、P.66で解説していますのでそちらを

参照してください。

注意事項

次のように、中カッコ内にコマンドを1行で並べて書くこともできます。短いコマンド2～

3個ならば、この書き方のほうがコマンドをひとまとめにしているという意味がはつきりわ

かつて見やすいかもしれません。

(echo '!〔 Script start](:′ date′ ts′ echo l:EScript end]!:′ 〕 > output.Lo9

なお、1行に並べて書く際は、コマンドごとにセミコロンが必要となります。特に最後のセ

ミコロンを忘れることが多いので注意しましょう。

関連項目

200

025 ディレクトリ移動した後に簡単に元の場所に戻る

鵬o. コマンドがどこかで失敗したら
そこで終了し、スクリプトの誤
作動を防ぐ

004

終了ステータス,コマンド.失敗.停止

…何かしらの重要な処理を行うスクリフトで、途中のコマントが1つても失敗すれば、
そこでたたちに停止したいとき

#:′ Oin′ sh

#コ マンドの終了ステータスが非ゼ回の場合は、
〃 スクリプトをただちに終了する

set -e

″削除ファイルの格納ディレクトリ (を ミスタイプしている)

deLdir="/var/Log/myapp― “―――――― o

″ディレクトリ$deLdirに移動して、拡張子 .LOgの ファイルを削除する。

#set―eし ているため、ディレクトリ移動に失敗すればrmコ マンドは実行されない
cd liSdeLdi ri=

rm -f *.[og

解説

このスクリプトは、シェル変数deldirで指定されたディレクトリの中の、拡張子■ogと

いうファイルをすべて削除するものです。定期的にこのスクリプトを動かして、何かのア

プリケーションの古いログファイルを削除してディスクスペースを空けるなどの用途を想

定 しています。このサンプル例では、コマンドが失敗すればそこでスクリプトの実行を停

止 して、途中処理がエラーのまま先の処理に進まないようにしていることがポイントです。

シェルスクリプ トでは、スクリプ トファイルに書かれたとおりに、上から順にコマンド

を実行していきます。この際、途中のコマンドが成功 したか、失敗 したかは関係ありませ

201

□回饉□目
set.cd.rm

C餞鮨喧R07奎 シェルの機能を使いこなす

ん。つまり、1つ前のコマンドが成功しているという前提でスクリプトを書いていくと、

実は1つ前のコマンドが失敗していて思わぬバグを招き入れることがあります。

この解決策が、サンプル例であげたsetコ マンドの‐eオプションの利用です。このオプ

ションを利用すると、途中に終了ステータスが非ゼロのコマンドがあるとそこでスクリプ

トが終了します。

本サンプルでは、まず0で set― eオ プションを実行しています。set― eは、一般的にはこ
のようにスクリプトの先頭に書くのが普通ですが、スクリプトの特定の行以降だけにチェ

ックを入れたいという場合には、途中からset― eを書くケースもあります。一方、途中か

らset― eの効果を抑制するときの方法は後述します。

(0)で、ログファイルを削除するディレクトリを指定しています。ここでは対象ディレク

トリをタイプミスしたというケースを想定していますから、"/var/1oノ myapp"が本来のデ

ィレクトリなのに、後ろにゴミが付いて
‖
/vaプlog/myapp―・となってしまった、という設

定です。

0で、存在しないディレクトリに移動 しようとしているので、cdコマンドはエラーに
なり、終了ステータスに非ゼロを返します。このスクリプトは冒頭でset―eし ているため、

ここで即座にスクリプトは終了します。結果として、.logフ ァイルを消すrmコ マンド(0)

は実行されません。もしset― eしていないと、0は cdコ マンドに失敗しているのにそのま

ま実行され、結果としてカレントディレクトリの.logフ ァイルが削除されてしまいます。

このようにして、コマンドが途中で失敗した場合にスクリプトをただちに停止させるこ

とができます。ファイルの削除を行うスクリプトを書く際に、誤動作を防止するために役

立つでしょう。

set -eo#fr

一般にシェルスクリプ トで「コマンドが成功」するということは、コマンドの終了ステ

ータスが0であることを指 します。コマンドの終了ステータスはシェルの特殊変数S?に 入

つていますので、この値 を参照すれば成功・失敗が判断できます。この$?変数の扱いに

ついては、P.25で詳しく紹介していますのでそちらを参照 してください。

setコ マンドの―eオ プションは、コマン ドの終了ステータスが非ゼロならば、何でも終

了して しまいます。気を付けないといけないのは、例えばdiffコ マンドで「ファイルの差

分を出力」を意図して次のような処理を書いても、diffコ マンドは差分があると終了ステ

ータスに 1を返すため、スクリプトが停止 してしまうようなケースです。

diff frorl.txt to.txt > diff.txt .. . |

このように「予期したコマンド結果ではあるが、終了ステータスが非ゼロ」なコマンド

を含むスクリプトでset― eを使いたい場合には、いくつか対応方法があります。ここでは

2つの例を紹介します。

262

01に 0コマン ドがどこかで失敗したらそこで終了し、スクリフトの誤作動を防ぐ

゛ (1)一時的に「set+e」 として、set‐ eを無効にする
Setコ マンドの十eオプションを使えば―e指定を無効にできます。そのため、非ゼロを返

すコマンドの直前で十e、 直後で―e指定すれば一時的にset―eを無効化できます。

彙 (2)||:を用いる

set―eは、パイプラインの最後のステータスのみを対象とします。そこで、前のコマン

ドの終了ステータスが非ゼロならば実行されるようにOR演算子 (‖)を用いて後ろに:(ヌ
ルコマンド)を実行しておけば、ヌルコマンドは常に成功して0を返すため、set― eに引っ

かかりません。このOR演算子の使い方は、P.200で解説しています。

なおここで、ヌルコマンドは、代わりにtrueコ マンドを用いてもかまいません。ヌルコ

マンドについてはP.71で詳しく紹介しています。

注意事項

Setコ マンドの―eオプションを付けるとエラー時にスクリプトは停止するため、スクリプト

内にはエラー処理を書かないコーディングスタイルとなります。これには賛否両論あり、

「set―eは禁止として一切使わずに、自分できちんとエラー処理を書くべきだ」という主張

もあります。目的や場合に応じての使い分けが必要でしよう。

027 フアイルの中身を消去して、ゼロバイトの空ファイルにする
103 Webサーバからファイルをダウンロードして、ファイルのMD5ハッシュ値を計算する

263

麒関連項目

bss
I

複数のURLからフアイルを並列
で同時ダウンロードする

国回饉目B
ourI バックグラウンド,並列処理.ダウンロード

□E回躍■
待ち時間があるコマンドが複数あるとき、並列に実行して全体の実行時間を短くした

いとき

…

″!/bin/sh

#並列ダウンロードのため、複数のサイトからのダウンロードを
″それぞれをバックグラウンドで処理する

curL ―sO http://www.exampLe.org/downtoad/bigfう Le.dat &

curL ―sO http://www.exampLe.com/fi tes/sampLe.pdf &
curL ―sO http:ノ /jp.exampte.net/images/Large.jpg &

/background-download. sh

解説

このスクリプトは、複数のWebサイトからのフアイルダウンロードを並列に実行する

ものです。curiコマンドはWebサ イトからファイルをダウンロードするコマンドで、ここ

では途中経過を出力しない‐s(s‖ent)オプションと、標準出力ではなくファイルとして保

存する‐0オプションを利用しています。

サンプル例では、curlコ マンドをバックグラウンドで動かすことで、ダウンロードを並

列実行します。●のように、コマンドラインの一番後ろに&を付けると、シェルはコマン

ドの終了を待たずに次の処理に移ります。そのため本サンプルでは、1つ 目のファイル

bigme.datの ダウンロード完了を待たずに、次のファイルsample.pd魚 そして次のフアイ

ルlarge.jpgのダウンロードが同時に開始されます。

コマンドは3つ ともバックグラウンドで処理されていますので、結果としてスクリプト

を実行すると、すぐにシェルに制御が戻ります。このようにして、効率的にファイルをダ

ウンロードすることができます。

なお、標準エラー出力を標準出カヘとまとめてリダイレクトする「2>&l」 を併用する場

合は、&の位置に迷うことがあるかもしれません。このようなケースでは、リスト1の よ

うにバックグラウンド実行の&を一番後ろに付けることが正解です。

264

~¬

_「
→

議機 藝複数の URLか らフアイルを並列で同時ダウンロー ドする

餘藤茫憑颯バックグラウンド実行とリダイレクトの同時指定

″!/bi n/sh

″長い時間がかかるコマンドLon⊆ ẗime」Togramの表示結果を

″ resutt.LOgに リダイレクトして、バックグラウンドで実行する

Lon9_.timeL_.prOgram > reSu Lt.Log 2>8q &

ただし、並列してプロセスを実行すると、当然のことながらサーバに負荷がかかります。

そのためたくさんの処理をバックグラウンドで同時実行させる場合には、事前に性能検証

が必要でしょう。また、例えばディスクアクセスを激 しく行うプログラムでは、複数のコ

マンドを同時に動かしても、それぞれがデイスク利用待ちとなる時間が長 くなり、並列し

て動かしても大して実行時間に変わりはないことがあります。何でもバックグラウンドで

動かせばよいというわけではないので、注意しましょう。

注意事項

・同一のWebサイ トに並列して大量のダウンロー ドを行うことは、迷惑行為にあたり、度が

すぎればDoS攻撃とみなされる可能性もあります。そのためこのサンプルは、同一Webサ

イ トヘ大量のアクセスをかける用途には用いないでください。

・ このスクリプ トは各コマンドをバツクグラウンドで動かすため、実行と同時にシェルに制

御が戻つてきます。そのためすべてのコマンドが終了したかどうかは、出力しているフア

イルを個別にチェックする必要があります。

・「各コマンドは個別にバツクグラウンドで動かしたいが、スクリプ ト自体はすべてのコマン

ドが終了するのを待つてから終了したい」という場合には、waitコマンドを利用します。

P,266を参照してください。

・ FreeBSDではcur!は標準でインストールされていません。そのため次のように、代わりに

fetchコマンドを利用するとよいでしよう。

は関連現旦
096 多数のホスト宛てにpingを投げる際、並列して実行し待ち時間を減らす

265

多数のホスト宛てにpingを投
げる際、並列して実行し待ち時
間を減らす

‖o.

096

…ping.wait.cat 並列処理,同期.終了

□■回濶■
複数のホストに対してpingコマンドを実行する際、待ち時間を減らすために並列して
バツクグラウンド実行させ、さらにコマンドの終了を同期させて結果を順に出力した
いとき

″:′ bin′ sh

″ 3つのホス トに並列してpingを 実行する。6回実行するため、

″それぞれ約 5秒の待ち時間がかかる

ping ―c 6 192.168.2.1 > hostl.Log & ―¬
ping ―c 6 192.168.2.2 > host2.Log & トーーーー1)
ping ―c 6 192.168.2.3 > host3.Log & ――|

″3つのpingコ マンドが終了するまで待ち、同期をとる

lrait

″ pingコ マンドの結果を表示する

cat hostl.Log host2.Log host3.Log― ――――――――――()

S ./background― wa■ t.sh

PING 192.168.2.1 (192.168.2.1): 56 data bytes

64 bytes from 192.168.2.1: ■cmp_seq=O tt.1■ 255 t■me=3.554 ms

64 bytes from 192.168.2.1: ■clnP_seq=l ttl‐ 255 t■ me=3.435 ms

64 bytes from 192.168.2.1: ■crnp_seq=2 ttl=255 tilne=3.469 ms

(省略 i2つ 日、3つ目のping結果が順に表示される)

解説

このスクリプトは、複数のサーバにpingコ マンドを実行 してネットワークの疎通を確認

し、その結果を表示するものです。pingコ マンドはバックグラウンドで並列に実行させま

すが、最後に結果を表示する前にwaitコマンドで同期をとつている点がポイントです。な

お、pingコ マンドとICMPパ ケットについては、P.323で紹介 していますので詳 しくはそ

266

|

帳鐵。多数のホスト宛てに pingを 投げる際、並列して実行し待ち時間を減らす

ちらを参照してください。

●では、「192.168.2.1」 、「192.168.2.2」 、「192.168.2.3」 という3つ のホストに対し、

pingコマンドでICMPパケットを送つています。この際、結果をそれぞれログフアイル
「hostl.log」 、「host21og」 、「host3■ og」 として出力しています。ICMPパケットを送る回

数は、―cオ プションを用いて6回 と指定しています。

pingコ マンドでは、ICMPパ ケットを複数回送る際には、自動的に1秒のウェイトを挿

入します。つまり6回pingを実行する場合、あいだにウェイトが5回入るため、最低でも5

秒はかかります。サンプル例では3台にpingを実行しているため、全体としては最低でも

5秒 x3台 =15秒かかってしまいます。台数が増えれば待ち時間はもっと増えてしまうで
しょう。

そこで●では時間短縮のため、3つのpingコ マンドそれぞれの最後に&を付けて、ping

コマンドをバックグラウンドで実行 (→P.264)し ています。このようにバックグラウンド

で並列実行すれば、 (応答時間を無視すれば)3つのpingコ マンドは5秒ほどで終わります。

0ではwaitコ マンドを利用して、バックグラウンドで実行している3つのpingコ マンド
の同期をとっています。単にコマンドを並列に処理してバックグラウンド実行させるだけ

でよければ、&を付けて実行するだけで済みます。しかしそれではコマンドの終了を検知

できないため、スクリプトの最後に結果を表示することができません。このサンプル例の

ように終了結果を表示したい場合には、waitコ マンドで同期をとる必要があります。

waitコマンドを引数なしで実行すると、スクリプトから起動された、バックグラウンド

実行されているコマンドすべての終了を待ちます。すなわちサンプル例では、3つのping

コマンドの終了を待つことになります。本サンプルでは最後にレポートとしてping結果

を順番に表示したいため、すべてのpingコ マンドが終了するのを待つ必要があります。そ

のためwaitコ マンドを使うことで、それぞれバックグラウンドで実行しているpingコ マン

ドが「待ち合わせ」て、pingコマンドの終了を待ってから次の行に進むようになります。

0で、3つのpingコ マンドの出力結果をcatコ マンドで表示しています。0でwaitコ マン

ドを利用しましたから、このcatコ マンド実行時にはpingコ マンドは3つ とも終了してお

り、結果レポートを正しく表示することができます。

注意事項

あまりにたくさんのバツクグラウン ド処理を並列させるとネットワークが混み合い、この

ようなネットワーク診断ツールでは異常な結果をもたらすかもしれません。そのため同時

実行するコマンドの数は結果を見ながら適宜、調整する必要があります。

関連項目

005 複数の∪RLからファイルを並列で同時ダウンロードする

114 サーバのping監視を行う

267

`

‖o.
シェルスクリプトの―部にPerl
やRubyを使う007

□回藤冒D
perl.nc.sleep ワンライナー .Porl.Ruby.乱数

□E回圏■
乱数を生成するなど、シェルスクリプトの機能の一部としてPerlや Rubyの コードを
書きたいとき

■□覇四■

″:′bin′ sh

″テスト通信先の定義

l paddr=‖ 192.168.2.1`!

port=80

″ 1か ら10までの整数値の乱数を、PerLの ワンライナーで生成する

waittine=S(perL ―e lprint l + int(rand(10)):)一 ―――――――― o

#テス トコマンドを、ウェイトを入れて2回実行する
nc ―w 5 -zv Sipaddr Sport ――――――― o
echo :`Wait: Swaittime sec."

sLeep $wai ttime

nc ―w 5 -zv Sipaddr Sport

$. /perl-oneline. sh
Connection lo 192.L68.2
Wait: 4 sec.
Connection to 192.L68.2

80 port Itcp/http] succeededl

80 port [t'cp/http] succeededl

解説

このスクリプトは、ncコ マンドによるネットワークの通信テストを2回行う際、合間の

ウェイ ト秒として乱数を用いるサンプル例です。乱数はPeriを用いて生成 しています。

ネットワークテス トの際、常に定数のウェイ ト値を利用すると、タイムアウトの設定値

などに見落としが生じる可能性があります。そのため、このようにネットワークテストツ

ールのウェイ ト秒数に乱数を入れてみるのは、ときおり使われる手法です。

まず0で、ncコ マンドでテストする対象のIPア ドレスとポート番号を定義しています。
ncコ マンドについて詳しくは、P.162で解説していますのでそちらを参照してください。

268

}――

魯艤?螢 シエルスクリプ トの一部に Perlや Rubyを使う

(0)では、Perlの処理結果をシェルスクリプトから利用しています。Perlや Rubyな どの

スクリプト言語はとても強力で、ワンライナーと呼ばれる、1行だけ書いたスクリプトも

よく使われます。ここでは、シェルスクリプトからPerlの ワンライナーを利用する例を紹

介します。Perlや Rubyの機能をシェルスクリプトから使いたいとき、何かと役に立つこ

とがあるでしよう。

Perlで ワンライナーを書くには、perlコ マンドの‐eオプシヨンを利用して、コマンドラ

イン引数に直接Perlス クリプトを記述します。例えば0の行は、きちんとPerlス クリプト

として書くと、リスト1の ようになります。

y鰈粽蝙鞣乱数を発生させるPerlスクリプト

#!/usr/bin/perL

print 1 + int(rand(10));

このようなワンライナーを、0の ようにコマンド置換$0の 中に書くことにより、結果

をシェルスクリプトのシェル変数として取得することができます。日付処理や数値処理、

文字列処理などでPerlの力を借りると、シェルスクリプト単体では難しい処理が簡単に書

けることがあります。

サンプル例では0で、シェルスクリプトから乱数を生成するためにPerlを利用してみま

した。シェルスクリプトでも、/dev/urandomデ バイスなどを利用して乱数生成はできま

すが、単純に整数値の乱数がほしいときにこの/deV/urandOmを 利用するのはなかなか面

倒です。Perlな らばrand関数をint型 にパースすればすぐに整数の乱数は得られます。

int(rand(10))で は0か ら9の乱数を得られるため、ここでは待ち時間を作るために1を足し

て、1から10の乱数を得ています。

0で、実際にncコ マンドでネットヮークテストを行います。1回 目のテストの後に、

sleepコ マンドで先ほど得られた乱数値の秒数だけウェイトを入れています。このように

して、シェルスクリプトの一部に、Perlな どのスクリプト言語の処理を埋め込むことがで

きます。

I PerlE&6r>r<t-
サンプルで紹介した―eのほか、Perlの ワンライナーでよく使われるオプションに、

‐:(出

力を改行する)、 Ⅲn(ス クリプト全体が、
‖
while(く>)〔 ...}‖ ループに囲われているものと

して処理する)、 があります。例えば次はsample.txtと いうフアイルを表示するcatコ マン

ドのような動作になります。

瘍Perlのワンライナーを用いたフアイル表示

269

0剛

『

薇B07● シェルの機能を使いこなす

これをPerlス クリプトとしてきちんと書 くとリスト2の ような意味になり、引数で指定

したファイルの中身を出力する処理を行います。

屁日観閣ワンライナーの処理全体

″1/usr/bi n/pert

whi Le (0){
print Sl__′

}

L菫 盟
Rubyのワンライナーも、Perlと 同様に―eオプションで記述できます。ここで利用している
to_iと は、整数型にパースするRubyのメソッドです。

ORubyの場合も‐eオプションでワンライナーが可能

何力所にもワンライナーを埋め込むようならば、はじめからそのスクリプト言語ですべて

の処理を書いてしまったほうがよいでしょう。そのようなケースでは、シェルスクリプト

を使うことに特別な理由がなければ、シェルスクリプト全体をPerlやRubyで書きなおすこ
とも検討してみてください。

関連項目

270

1崎1 あるサーバの特定ポートヘ通信できるかのチェックスクリプト

+1ruby 'print

GHAPTER

制御構文のサンプル
シェルスクリプ トでは、if文やwh‖e文、for文を利

用した制御構造が多用されます。本章ではこれら制

御文を用いた具体的な事例として、IPア ドレスのリ

ス トファイルを読み込んで順に処理する例や、無限

ループでファイルをダウンロー ドし続けるサンプル

例などを紹介します。また、前のコマンドが成功し

たときだけ次のコマン ドを実行するAND演 算子
(&&)の利用例も紹介しています。

●
ｕ

ｎ
ｕ

変数を埋め込んだIPアドレスのリ
ストフアイルを読み込み、pingコ
マンドで疎通をチエックずる

~

‖o,

008

利用コマンド

…SOd.oing for文 .テンフレートファイル,置換,変数

…テンフレートファイルを用いてネットワークに疎通チェックしたいとき

″:′ bi n′ sh

#コ マンドライン引数をチェック
lf [―z ::Sl'1 コ′ then
eChO li第 3オ クテットまでの IPア ドレスを引数として指定してください

‖>"
exit l

fi

″対象の IPア ドレスを、外部ファイルpi IEtarget.LStか ら、
″ %ADDR_HEAD%の部分を置換して順に取得する
fOr ipaddr in S(sed l's/%ADDR_HEAD%/S1/ti pinQ¨ target

do

#pi ngコ マンドを実行。出力結果は不要のため/dev/nuLLヘ リダイレクト
ping ―c l Sipaddr > ノdev/nuLL 2>&1

″終了ステータスで成功・失敗を表示

if E S? ―eq O]′ then
echo ':ESuccess]ping ―> $ipaddr‖

eLse

tst)

 ヽ。/fOr-Oo菫凛熊ュnd.sh 192.168.2 ‐

ISuccess〕 ping ―> 192.168.2.1

1SuCCessl‐ ping ―> 192.168.2.2

:Failed]P■ng ―> 192.168.2.3

lSuccessi pin9 -> 192.168.2.4

■ ||||||:‐

|:‐

|:靱魃 躙 輻 輻 :

S Cat ping_arget。 ■st

tADDR HEADら .1 -

SADDR HEAD2.2

3船DR HEADら ,3

2ADDR HEAD2.4

272

●

~¬

P

|

|

01B。 変数を埋め込んだ IPア ドレスのリス トフアイルを読み込み、pingコ マン ドで疎通をチェックする

晰

echo li[Fai tedコ ping ―> Sipaddr'i

fi
done

解説

このスクリプトは、外部ファイルpin臣 target.lstに書かれたIPア ドレスのリスト宛てに、

pingコ マンドで疎通を確認するものです。ここで外部ファイルは次のように、%ADDR_
HEAD%と いう部分を実行時に置換する形式であると仮定 します。例えばl行 日は、

%ADDR_HEAD%を「192.168.1」 に置換して、「192.168.1.1」 にpingを実行します。

鰺鰈鰈鰈鰤Pア ドレスのリストが書かれたファイル(pingiargetlst)

%ADDR_HEAD%.1

%ADDR_HEAD%Ⅲ 2

%ADDR HEAD%.3

%ADDR HEAD%.4

ここではテス トヶ―スとして、「192.168.0.0/24」 、「192.168■ 0/24」・・。というネッ

トヮークごとにテストする例を想定 して、IPア ドレスの第3オ クテットまで (192.168.1な

ど)を コマンドライン引数で指定する仕様であるとします。

このサンプル例では、for文を用いています。fOr文は、一般的には引数にファイルリス

トなどを指定して実行する例が多 く見られます。例えばリスト2は、シェルのパス名展開

を利用してカレントディレクトリの拡張子.htmlの フアイルを順に処理しています。

f■111:| 拡張子htmlの フアイルに何かしらの処理をしていく

fOr fitename in *.htmL

do

・̈《可かしらの処D
done

しかしfor文のinの後には、シェルがリストと判断できるものであれば何を置いてもかま

いません。例えばinの後ろにコマンドの実行結果を利用するために、コマンド置換Soを

置けば、シェルは改行やスペースを区切り文字として解釈するため、実行結果ひとつひと

つを順に処理することができます。つまリリスト2は、わざと丁寧に書いてみると、リス

ト3の ようにも書 くことができるわけです。

y鶉鱚蝙リスト2を丁寧に書いた例

fOr fitename in S(Ls *.htmlL)

do

273

」

CttFTER 08。 制御構文のサンプル

...《可かしらの処|ロ

done

ただしリスト3は、ファイル名にスペースを含むファイルは正しく動作しません。厳密
にリスト2と 同じような動きにするならば、P。 125で見たようにIFSを 改行のみにする必要
があります。

このように、コマンドを直接for文のinの後ろに置くやり方は、覚えておくと何かと応

用が効くでしょう。

では、サンプル例をり1買に見ていきましよう。まず0で、テンプレートファイルを置き換
えるために指定するコマンドライン引数をチェックしています。1つ 目の引数を意味する

位置パラメータ$1を、teStコマンドの‐z演算子を用いて、空文字列でないかを調べていま

す。―z演算子は空文字列ならば真を返しますので、真の場合は「引数を指定してください」
と表示して終了します。

0ではfor文の対象として、コマンド置換$()を 利用してsedコマンドの結果を利用して
います。 ここでsedコ マンドの対象ファイルping_target.lstは、%ADDR_HEAD%と いう
固定文字列を持っています。これをテンプレートファイルとみなして、%ADDR_HEAD%
という文字列をコマンドライン引数で指定された文字列$1で置換することで、IPア ドレ
スを組み立ててシェル変数ipaddrに 順に代入していきます。

0で、シェル変数ipaddrで指定されたIPア ドレス宛てにpingコマンドを実行していま
す。ここではpingコ マンドの出力結果は不要のため/dev/nunヘ リダイレクトして、終了
ステータス$?で成功か失敗かを判断し、eChOコ マンドで結果を表示しています (0)。 こ
のようなpingコ マンドでのネットヮークテストの成功・失敗チェックについては、P.323

を参照してください。

このようにして、外部のテンプレートファイルを利用した処理をfor文で実行すること

ができます。変数を含むテンプレートファイルを作りたいときに使える手法でしょう。

関連項目

048 .svnな どの隠しフアイル・ディレクトリのみを列挙する

114 サーバのping監視を行う

274

翻o. 連番のフアイル名を持つURLを
自動生成して、順にダウンロー
ドする

000

seq.。「inti.curl 連番.URL.ダウンロード

□E回嗣ロ
ファイル名が連番となつている画像ファイルを提供しているWebサーバから、自動的
にファイル名を生成してダウンロードしたいとき

″:′ bin′sh

urL_temp[ate="http: //wuw. exampIe.org/down[oad/imtZO3d. jpg"

---O#Seqコ マンドで連番数値を生成する
for i in S(seq 10)

do

urt=$(printf "$url-tempLate" $i) ------€
curl -0 "$ur["

done

艶型L___
このスクリプトは、シェル変数url_templateで URLが指定された連番ファイル名の画像
ファイルを、Webサ ーバから順番にダウンロー ドするものです。ここではダウンロー ド

したい画像ファイルが、次のようなURLで提供されていると仮定しています。

http://www.example.orgldown load/img_00 1 . j pS

http://www.example.ortldown load/img_O02.jpg

http://www.example.orgldown load/imL0O3.jps

サンプル例では、この「img_(3桁数値).jpg」 というファイル名を、for文の中でseqコ

マンドを使って生成しているのがポイントです。

275

C即

『

■ R08。 制御構文のサンプル

seqコマンドは、単調増加 (減少)す る数値列を表示するコマンドです。利用する引数の

個数によって3種類の使い方があり、

1)最終値のみを指定する
2)開始値と最終値を指定する
3)開始値と差分と最終値を指定する

の3つ の使い方があります。開始値と差分は、省略された場合はどちらも1と みなされま

す。

Dseqコマンドの使い方

やseqコマンドの実行例 :開始値と差分と最終値を指定する

なお、差分にはマイナスの値を利用することもできるため、これにより減少する数列も

得られます。

サンプル例では、このseqコ マンドでループカウンタを作つています。このような手法

には、次の2つの利点があります。

1)

2)

seqコ マンドのオプションで柔軟にカウンタを作ることができる

ループ処理の高速化

一般に、シェルスクリプトでループカウンタに連番の数値を利用したい場合は、伝統的

にはリス ト1のようにwhile文の中でexprコマンドを用いてカウンタを増や します。

鰺眩絋凩漑ループカウンタの伝統的な記述法

seq 5 1から5まで1ずつ増加 省略された開始と差分は1

seq35 3から開始して5まで1ずつ増力□ 省略された差分は1

seq 5 10 45 5から開始して45ま で10ずつ増加 な し

1=1

whi Le ['1$1'' ―te 10]

do

276

(こ こに$1を 用いた1処王里を言己)⊃

Ｉ

Ｉ

●
　

　

　

　

　

一

‐記述例 ‐ 説明 | ・,■‐■.I■ ■・ |.|

S seq 5 10 45

(,99。 連番のフアイル名を持つ URLを自動生成して、順にダウンロー ドする

#変数 1を インクリメント
1=S(expr Si + 1)

done

しかしこの場合はループ1回 ごとにexprコ マンドを実行するため、ループ回数が多い場

合には処理速度が随分と遅くなります。サンプル例のようにseqコ マンドの出力をとる形

にすれば、ループごとのexprコ マンドによる加算が必要ないため、処理速度が速くなり

ます。

例えばリスト2は、テスト用に1か ら1000ま での連番ファイルを作るサンプルです。フ

ァイルダウンロードテストなど、何かしらのテストのために、このようなファイル作成ス

クリプトはよく使われます。このスクリプトは筆者の環境では0.1秒 もかからずに終了し

ました。一方、リスト1の ようにループをwhile文で書いてexprコ マンドでカウンタを加

算すると、1.2秒ほどかかつてしまいました。seqコ マンドでループを作ることで、10倍

以上の高速化ができたわけです。

鶉蟷尿蜀鰺seqコマンドを用いてループを記述すると速度も速い

″!/bin/sh

for i in $(seq 1000)

do

echo "$i" > ${i}.txt
done

では、サンプル例を見ていきましょう。まず●で、ダウンロードするフアイルのURLを

指定します。この際に連番部分は「%03d」 という、printfコマンドで指定する書式指定子

で記述しています。printfコ マンドと書式指定子については、P.221で詳しく説明してい

ますのでそちらの解説を参照してください。

0でseqコ マンドの出力をbr文に指定しています。この0の部分は、具体的に書くと次
のような動作となります。こうしてシェル変数1に、順に連番の数値を代入しているわけ

です。

0で、シェル変数urlに、ダウンロードする画像ファイルの実際のURLを代入しています。
連番部分は「%03d」 と指定しているため、例えばiが3な らば、printfコ マンドは、

ht tp : / /www. examp I e. org/down loadl i mg003. j pS

を出力します。この出力をコマンド置換$oを用いて、シェル変数urlに代入しています。

組み立てたURLを用いて、0でcuriコ マンドでフアイルをダウンロードしています。

277

C議′PTER 00 0制御構文のサンプル

curlコマンドには‐0オプションを用いて、URLの フアイル名をそのまま使用してローカル
に保存をしています。

このようにして、seqコ マンドとbr文を組み合わせて、連番ファイル名を生成してダウ
ンロードを行えます。この他にも、何らかのカウンタから数値を含む文字列を作るなど、

連番が絡む処理にいろいろと応用できるでしょう。

注意事項

FreeeBSDお よびMacの以前のバージョンではseqコマンドが標準でインストールされて
いない場合があります。代わりに、seqコ マンドとほぼ似た動きをするjotコ マンドがあり

ますので、そちらを利用してください。

・ FreeBSDではcur!は標準でインス トールされていません。そのため次のように、代わりに
fetchコ マンドを利用するとよいでしょう。

関連項目

278

001 右詰めにして数値を表示し、テキストで数値の表を作る

fetch 'ISurt':

脳0日 強制終了されるまでフアイルの
ダウンロードを繰り返し、通信
チェックを行う

100

…truo.curl.sloop ー無限
ループ.ダウンロード.接続テス ト

□
―Wobサーパのテスト時などに、連続したアクセスを繰り返したいとき

″:′ bi n/sh

#チ ェック対象の URL

urL=‖ http://192.168.22.1/webapL/check:' ―――――――●

whi te true
do

#curLコ マンドでテスト対象のURLか らダウンロー R
#フ ァイル自体は不要のため/dev/nuLLへ捨てる

curl -so /dev/nut["$ur["

″ curLコ マンドの終了ステータスで、OK/NCを 判断

if E $? -eq 0 1; then
echo "Echeck OKl"

e Ise
echo "Echeck NGl"

fi

#5秒 ウェイ ト

done

sLeep 5

279

#無限ループを開始

~¬

|

」

■
目
■
■

C騨[PTR 08。 制御構文のサンプル

解説

このスクリプトは、シェル変数urlで指定されたURLか ら、5秒おきにダウンロー ドを行

って結果をOK/NG表示するものです。ダウンロードは5秒間隔で行い、無限ループとなっ

ているためキーボー ドか ら Ct「 | +□を入力されるまでダウンロードを繰り返します。
Webサーバの連続接続テストを行う際などに利用できるでしょう。
シェルスクリプトで無限ループを記述するにはいろいろなやり方がありますが、ここで

は3パ ターンを紹介します。どれもよく使われるため、他人の書いたスクリプトを読んで

理解できるようにこの3つの書き方は覚えておいたほうがよいでしょう。

ドでの無限ループ

中でも、「while tme」 の書き方は、trueコマンドが真を返すことは字面からも明らかな

ので、コードを見たときに意味もわかりやすく好まれるやり方です。

ただし、trueコ マンドはシステムによっては外部コマンドであり、若干ですが機種依存

性があります。最近のLinuxやMac/FreeBSDで はtrueコ マンドはシェルのビルトインコマ

ンドですが、音のSolarisな どでは外部コマンド/bin/trueで した。また、(現代のUNIXで

は滅多にないことでしょうが)trueコ マンドがインストールされていないシステムもある

かもしれません。そのためスクリプトの移植性を重要視する人は、trueコ マンドよりも、

:(ヌルコマンド)での無限ループ「while:」 の書き方を好みます。

しかしこのサンプル例ではそのような厳密な移植性よりも、無限ループだということが

ひと目ですぐわかることを重視して、trueコ マンドを用いました。

サンプル例では、まず0でテスト対象のURLを 指定しています。これが接続テストを行
う宛先URLと なります。

続いて0で無限ループに入ります。ここでは先述したとおり、whne文 とtrueコ マンド
の組み合わせで無限ループを作っています。

280

[1]

″ :(ヌ ルコマンい

whi te :

do

での無限ループ■

αLID

done

100。 強制終了されるまでファイルのダウンロー ドを繰り返し、通信チェックを行う

0で、curiコマンドを用いて対象のURLか らファイルをダウンロードしています。ここ
ではテストロ的なので、ダウンロードしたファイル自体は必要ありません。そのため出力

先を指定する‐oオプションで/dev/nu‖を指定して、ローカルにファイルは保存していま

せん。また、curlコ マンドで正しくダウンロードできたかどうかだけを知りたいため、サ

イレントモードを意味する―sオ プションを付けて、余計な表示をしないように出力を抑制

しています。

curlコ マンドが正常に終了したかどうか、すなわちWebサーバから正常にファイルがダ
ウンロードできたかどうかは、コマンドの終了ステータスS?が0であったかどうかで判断
できます。●で、この$?が0だったならば[check OK]、 非ゼロだったならば[check NG]

と表示しています。なおこの際、HTTPス テータスは見ていないため、パス部をタイプミ
スしてWebサーバが404 Not Foundを返していたり、500 1nternal Selver Errorを 返し

ていても[check OK]と なります。つまりこのサンプルは、あくまでWebサーバヘの接続
テストを行うスクリプトです。

最後にOで、5秒間のウェイトを入れています。このような無限ループのスクリプトで
は、ネットワーク帯域やCPU資源を過剰に消費してしまう恐れがあるため、このように

適宜sieepコ マンドでウェイトを入れるとよいでしょう。

注意事項

純粋にWebサーバヘのネットワークテス トのみを行いたい場合は、ファイルのダウンロー

ド(GE丁メソッド)は不要ですから、コンテンツのダウンロー ドを行わないHEADメ ソッド
を利用するとよいでしよう。次のようにcurlコ マンドの…1オプションを利用すると、HEAD
メソッドで接続できます。これはHTTPヘッダのみを取得します。

このスクリプトは無限ループのため、止めないと永久にWebサーバにアクセスし続けてし

まいます。特に外部サイ トにチェックを行うケースでは、離席する際には一時停止するな

ど、自分がすぐに操作できる範囲内でのみ動かすようにしたほうがよいでしょう。

FreeBSDで はcur!は標準でインス トールされていません。そのため、代わりにfetchコ マ

ンドを利用するとよいでしよう。

281

Curt・
l lll■ |́||,||1摯 ||||′|||||||| ||||||||||||||||||||||||||

羅 :

282

0

IDカラムに
‖
00001‖などゼロ詰

めで書かれたCSVフアイルから、
番号を指定して値を抽出する

1lDl
■oョ

利用コマンド

…read.cut.test 数値.文字列.ゼロ詰め

…・00001'などゼロ詰めされた文字列を、そのまま数値として扱いたいとき

″:′ bi n′ sh

#抽出条件などの定義
match id=1

csvfi te="data.csvi=

″抽出するIDの値
″ CSVファイルをオ旨定

~~l

__」

″ CSVファイルが存在しなければ終了

うf [! ―f ''Scsvfi Leli]′ then

echo‖ CSVフ ァイルが存在しません :$csvfi te">&2

exit l

fi

″CSVフ ァイルの読み込み

uhi[e read line
do

″行内の各カラムをcutコマンドで取り出す

id=$く echo SLine l cut ―f l ―d l′ :)

name=$く echo $Line l cut ―f 2 -d i′ :)
~~]

__∫

〃 IDカラムが、シェル変数match_刊 で指定されたIDと一致する

#場合には、名前フィールドを表示する

$ cat data.esv
0000 L , Osaka

2 . Kyobashi
3 rTeilna
00004 , Morinomiya

$./zero-string.sh
osaka

一　
　

．●

■
―

　

　

・

一

　

　

　

・

二

　

．

101苺 lDカラムに ''00001''な どゼロ詰めで書かれた CSVフ アイルから、番号を指定して値を抽出する

if E "$id" -eq "$match_id" l; then
echo "$name"

fi
done < "$csvfi Le"

解説

このスクリプトは、CSVフアイルからID番号が1であるカラムを抽出するものです。こ

の際、「数値が 1」 という表現には、"l‖の他に
‖
00001‖ など、頭にゼロ詰めがされている形

式も扱えるようにしています。

このサンプルでは次のようなCSVフ ァイルを扱うこととします。

蜀瑕吻塚蝙禾|」用するCS∨フアイル(data csv)

鶴

00001′ Osaka

2′ Kyobashi

3′ Tenma

00004′‖orinomi ya

第 1カ ラムにID番号、第2カ ラムに名前が入っています。このCSVフ ァイルを作る前処

理では、困ったことにあまリデータの整合性が考えられておらず、ID番号には先頭にOが

付いているものといないものが混在しているケースを想定しています。このように、数値

の頭に0が付いた数値文字列を、普通に数値として扱いたいケースが、テキスト処理の場

面では多々あります。

数値文字列を純粋に数値として扱う際、実はシェルスクリプトでは難しい操作は必要あ

りません。真面目にやろうとすると、例えば次のように、sedコ マンドなどで先頭のOを

取り除くやり方が考えられます。

しかしシェルスクリプトでは、上記のような面倒な処理は必要ありません。というのも、

testコ マンドの同値かどうかを判定する―eq演算子や、exprコ マンドなど、数値を扱うコ

マンドは、ゼロ詰めされた数値文字列そのままで純粋に数値として扱ってくれるからです。

そのため先の例のような丁寧な置き換えは必要ないのです。

str='100001'` .‐

Str=$(eCれ。 1'SStril I Sed t'S/^0ネ //':) . . . ‐ ||||||||| |‐ .

靡exprコ マンドは先頭にOが入つていても問題なく動作する

233

一　

　

　

　

　

　

　

　

　

　

　

　

　

　

一　

　

　

　

　

　

　

　

　

・
　

　

―
　

一●

●

●

一

・

　

一　

　

　

　

　

　

　

一

一　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

・　
　

　

　

　

　

　

　

一●
―

一
　

　

　

　

　

一　
　

　

　

　

　

　

　

・

一　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

一　

　

　

　

　

　

一　

　

　

　

　

　

一　

　

　

　

　

　

一

一　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

一
　

　

・・
　

　

　

　

一　
　

　

　

　

　

　

　

・

~¬

」 0

C機鉗IER 00。 制御構文のサンプル

これを踏まえて、サンプル例を見ていきましょう。まず●で、抽出するID番号と、対

象のCSVフ ァイルの定義を行つています。0では対象のCSVフ ァイルの存在をチェックし
ています。‐fは対象が通常ファイルかどうかをチェックする演算子です。それを否定演算

子!と 併用することで、対象がディレクトリであったり、ファイルが存在しない場合には

エラーを表示して終了するようにしています。これらファイルテストの演算子について

は、P.110で紹介していますのでそちらを参照してください。

0で、CSVフ ァイルをwhne文に入カリダイレクトして1行ずつシェル変数lineに読み込
み、0のcutコマンドでカラムごとの値をシェル変数id、 nameにそれぞれ代入しています。
このようにCSVフ ァイルからcutコ マンドで特定のカラムを取り出すやり方は、R195で説
明していますのでそちらを参照してください。

0で、ID番号のカラムの値が、はじめにシェル変数match_idで定義した抽出すべきID
番号と一致するかを判断しています。ここでは単純に、取り出した1カ ラムロ(シ ェル変

数id)を testコマンドの…eq演算子で確認しています。testコ マンドの―eq演算子は、次の

ように先頭の0は気にする必要がありません。

ただし、teStコ マンドで誤って=で比較すると文字列として比較されてしまうため、
・00001"と ‖1"の比較が偽となることには注意が必要です。数値は―eq演算子で比較するこ

とに注意してください。

0では、こうして比較して真だった場合に、抽出すべきID番号のname値 をechoコ マ
ンドで出力しています。このようにして、数値文字列をシェルスクリプトでは簡単に扱う

ことができます。特にCSVフ ァイルを扱う際に、知っておくと便利な用例でしょう。

注意事項

値自身に,(カンマ)を含むCSVフ ァイルは、このスクリプトでは対応していません。

関連項目

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する
072 CS∨ファイルから、指定した特定レコードのカラムの値を得る

1 2“

田o. スクリプトを修正してif文の中
身が空つばになつた際、エラー
とならないようにする

102

(ヌルコマンド) r文.ヌルコマンド.空行

□鷹回囲■
仕様変更などで不要となつた処理をコメントアウトして、if文の中身が空になつたとき

に、エラーとなるのを回避したいとき

″:′bin′ sh

#データファイルの定義
datafite="/home/user1/myapp/sampLe.dat‖

″データファイルの存在チェック

if [―f ilSdatafi teil]′ then

#仕様変更で不要となったためコメントアウトしたものとする

.lnyapp "$datafi [e"

#空の if文が書けないため、:(ヌ ルコマン日 を置いておく

etse

echo‖ データファイルが存在しません :Sl'

exit l

fう

>&2

利用コマンド

解説

このスクリプトは、シェル変数datafileで指定されたデータファイルの存在をチェック

して、ファイルがあればカレントディレクトリのmyappと いうプログラムを実行するも

のです。ここでは仕様変更により、このmyappを実行する必要がな くなったためコメン

トアウトした結果、E文の中身が空になリエラーが出るようになってしまつたというケー

スでの対処を想定 しています。

入問書などで言及されることが少ないためあまり知られていないことですが、シェルス

285

C麟
『
菫R080制御構文のサンプル

クリプトでは、if文の中身が空の場合はエラーとなります。例えばリス ト1は、lock.tmpと

いうロックファイルがあれば何もせず、なければファイルをtouchコ マンドで作成すると

いうスクリプトを書いたつもりです。

mn lock.tmprt/d t, tLl{ffa 72 U a h. t*t r/c?6 U

S ./ifosh
./■ f.sh: 1■ne 5: syntax error near ttnexPeCte‐ d token‐

｀
elsei

./■ fosh: 1■ne 5: else' ‐

″!/bi n/sh

if E -f Lock-tmp J; then
:.:.?tt{pJ6 LrJr\

eIse
a'.)r7v4)vtlffr.
touch lock.tmp

fi

しかし、実行すると次のようにエラーとなります。これはif文の中身が空のためです。

醸空のif文ではエラー

C言語など一般的なプログラミング言語では、it文の中身を空っぽにしていても何も間

題はありません。しかしシェルスクリプトでは、it文の中身を空にするとエラーとなりま

す。そのため、it文の中には何か最低 1つはコマンドを記述しなくてはいけません。

これはシェルスクリプト初心者が陥りがちなミスです。特に、いままで動かしていたス

クリプトが仕様変更によって特定の処理が必要なくなった際に、スクリプトを丸ごと書き

換えずに該当の処理だけコメントアウトして済ませるケースは多いでしょう。このような

際に、コメントアウトによってif文の中で実行するコマンドがなくなると、突然エラーと

なるため注意が必要です。

本サンプルは、仕様変更によってit文の中身を実行する必要がなくなった場合を想定し

ています。まず●で、チェックするデータフアイルの定義を行って、シェル変数datafile

にファイルパスを代入しています。

0で、対象のデータファイルの存在をチェックしています。―fは対象が通常ファイルか
どうかをチェックする演算子です。このファイルテストの演算子については、P.110で紹

介していますのでそちらを参照してください。

0は、過去に外部コマンドmyappを 実行していた部分です。いまは仕様変更により実
行が不要となったという想定で、コメントアウトしています。つまりこのif文は、以前は

次のように書かれていました。

286

■

―

　

―

　

・

　

　

一

一，
■
●
一
一
・　
　
　
　
一

102● スクリプトを修正して if文の中身が空っぱになつた際、エラーとならないようにする

ここで./myappを コメントアウトすると、iわたの中身が空になるためこのスクリプトが

エラーとなってしまいます。これを防ぐためには、「何もしないコマンド」というものが

ほしくなります。このような用途のため、シェルビルトインの:(ヌルコマンド)が用意さ

れています。

ヌルコマンドは、実行しても何も出力しません。実行後は必ず成功して終了ステータス

0を返します。この機能を利用して、ヌルコマンドはフアイルを初期化する用途に使われ

ることもあります。ファイル初期化の用法については、R71を参照してください。

0で、if文の中身にこのヌルコマンドを置いています。ヌルコマンドは何もしませんか

ら、こうして後付けで記述しても副作用がありません。そしてコマンドが実行されますか

ら、I文の中身が空になリエラーが発生することを防く
｀
ことができます。こうして、実質

的に空のit丈を書くことができます。

これは地味な例ですが、it文の中身を後からコメントアウトして空にしたためにエラー

でハマってしまうというのは、運用現場でよく見られる失敗例です。そのためここで一例

として取り上げてみました。

注意事項

FreeBSDの shでは、Linuxや Macと違つてif文の中身が空でもエラーにはならないようで

す。しかし移植性を考慮すると、FreeBSDで も空のif文を書くのは避けて、この例のよう

にヌルコマンドを置いたほうがよいでしよう。

関連項目

027 フアイルの中身を消去して、ゼロバイトの空ファイルにする

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

287

ｏ・
．嘔
―

＝ Webサーバからフアイルをダ
ウンロードして、フアイルの
MD5ハッシュ値を計算する
03

ダウンロード.終了ステータス

国日壺目日

curl.md5sum

ネットワーク経由でファイルを取得する際、コピーが成功したことを確認してから次
のコマントを実行したいとき

■曝□頭■

″!′ bin′3h

#ダウンロードするファイルのURLパス部分、ファイル名を定義
ur [Jcath="http: //r.lr.lr.l. examp Ie . org/ "
f i Iename="sampLe. dat"

″ファイルをダウンロー Rダウンロード成功ならばmd5ハ ッシュ値を表示する。
#Mac/FreeBSDで は、nd5sumコ マンドではなくnd5コマンドを使う
curL ―sO '1${urL__path}S{fi Lename〕 i! && md5sum i'Sfi Lename'' 一―――― o

″ダウンロードファイルを削除して終了する

rm -f "$fi lename"

S ./and■ェst.sh

83036ecl109bf9770fc2d8673b545d35 saFnp■ e.dat

解説

このスクリプトは、シェル変数url_pathと ■lenameで指定されたWebペ ージからファイ
ルをダウンロードして、そのMD5ハ ッシュ値を表示するものです。日々変わるコンテン
ツの更新を定期的にチェックする用途を想定しています。ここでMD5ハ ッシュ値につい
ては、P.192で詳しく説明していますのでそちらを参照してください。

外部からファイルをダウンロードする際には、ネットワークの不調などで失敗する可能

性が常にあることを忘れてはいけません。このサンプル例では、ダウンロードに失敗した

場合にはmd5コ マンドを実行しないようにして、誤ったハッシュ値を出力しないように
しています。このために、0でAND演算子 (&&)を利用しています。
AND演算子 (&&)は左右に2つのコマンドを記述し、「a&&b」 の形で利用します。意

288

|

|

|

|

|

|

|

|

|

|

|

_」

籍3。 Webサーバからフアイルをダウンロードして、フアイルのMD5八ッシュ値を計算する

味としては、「a&&b」 は、「aと bが共に真ならば真」を意味します。しかし実用例 として

は、「左側のコマンドaが成功 (終了ステータスが0)の場合のみ、右側のコマンドbを 実行

する」として使われるほうが一般的です。これは、「a&&b」 と書いたとき、もし左側が

偽ならば全体の評価式は必ず偽になるため、右側を評価する必要がなく、左側のコマンド

の終了時点で評価が打ち切 りとなるからです。

つまりAND演算子は、単純に「前のコマンドが成功したら次のコマンドが実行される」記
法である、 と考えるとわかりやすいでしよう。AND演算子のこのようなロジックは、シ
ェルスクリプトに限らず、Javaや Perlな ど近年のメジャーな他のプログラミング言語でも

よく出てきますから、覚えておくとよいでしよう。

サンプル例では、まず0で、ダウンロードするフアイルのURLを定義しています。ここ

では次の処理で使いやすいように、URLの パス部分(url_path)と フアイル名部分

(filename)を 別変数として定義しています。

0で、curiコ マンドでフアイルをダウンロードしています。ここでcurlコ マンドには、
途中経過を表示しない‐sオプション (silentモ ード)と 、ダウンロードしたフアイルを標準

出力に表示するのではなくファイルとして保存する‐0オプションを利用しています。

(0)では、AND演算子でcurlコ マンドとmd5sumコマンドをつないでいます。もしネッ
トワーク不通などでcurlコ マンドが失敗したときには、curlコ マンドの終了ステータスは

非ゼロを返します。つまり、curlコ マンドが失敗した際は右側のmd5コ マンドは実行され

ません。こうして、ダウンロードに失敗しているのにMD5ハ ッシュを計算してしまうよ

うな誤処理をしないで済みます。

このままではダウンロードしたフアイルが残っていますので、(Dで消去しています。

Hnコマンドには―fオ プションを付けて、もしダウンロードに失敗していてファイルがない

場合でも、エラーとならないようにしています。

AND演算子の詳細

AND演算子の使用例をもう少 し詳しく見てみましょう。他に&&が よく使われる例 とし
てよくあるのが、カレントディレクトリを移動するcdコ マンドとセットで用いるケース

です。次のような形で使われます。

| .|. . _ . ■ .||||_ ||.| |.| .

cd l=$appdl,Ii&&./scri pt.sh ll ll lllllllll‐
||||||||‐
||||||

.||.|■ | |.
‐
「

・
 ||| |■ ||||||■ |■■||■ ||||||■|‐■・ ‐ |_

シェルスクリプトは、本来ならばどこのパスから実行されても動作するように書くのが

理想です。しかし実際には、カレントディレクトリにcdコ マンドで移動して実行しない

と、正常に動作しないものも多いでしょう。そのため、最初にcdコ マンドでスクリプト

の置かれたディレクトリに移動することが多くあります。

上記は、cdコ マンドと、L/SCript,Sh」 という実行命令で、AND演算子 (&&)を 挟んで
います。こうすると、ディレクトリ名のタイプミスなどでcdコ マンドによるディレクト

リ移動に失敗した場合は、次の L/script.Sh」 は実行されません。一方、AND演算子を使
わずに次のように書くと、もしディレクトリ名をタイプミスして、カレントディレクトリ

289

CttAttER 08。 制御構文のサンプル

に同名のscript.shと いうスクリプトファイルがある場合、cdコ マンドに失敗しているの

に次の「./sc五 pt.sh」 を実行してしまいます。

このようなエラーに配慮した書き方を、できる限り心がけたほうがよいでしょう。

注意事項

・ curlコマンドは、HTTPステータスが404 Not Foundでも、コンテンツがダウンロー ドで
きれば終了ステータスは0を返して正常終了します。つまりこのサンプル例は、例えば404
Not Foundペ ージのコンテンツも対象としており、HTTPス テータスは無視する仕様です。
・ AND演算子と対になるものとして、OR演算子 (‖)があります。「a ll b」 は、「aまたはbが
真ならば真」を意味します。しかし実用例としては、「左側のコマンドaが失敗 (終了ステー

タスが非ゼロ)の場合のみ、右側のコマンドbを実行する」として使われることが一般的です。

例えば、次の例ではシェル変数f‖ enameで指定されたファイルが存在するかどうかを、
testコ マンドで確認しています。ファイルがなければexitコ マンドでスクリプ トを終了し

ます。

釧里型聖

290

071 入カファイルのハッシュ値を、行ごとに追加カラムとして出力する

cd "$appdir"
. /scri pt - sh

‐ ‐ |― |||■ | || _‐‐ ‐‐
 ‐‐ ■|‐ ‐|| ‐| ||.‐ ■||| ‐ ‐

.| .
‐

teSt ―f ilSfilenamei! |l eXit l

GHAPTER

サーバ管理
サーバの構築には手順書を作ることが多いのです

が、必要なコマンドをシェルスクリプトで記述して

しまえば、構築作業を自動化することができます。

また、監視や各種チェックなどサーバの運用業務に

おいては、手順書通りに手で実行するのではなくシ

ェルスクリプトを提供すれば、誤つたコマンドを実

行するなどのミスを無くすことができます。本章で

は、これらサーバ管理に必要なスクリプト例を紹介

します。

|

ｏョ
．嘔
―

＝

04
サーバのネットワーグインタフ
ェースとそのlPアドレスー覧を
取得する

田回壺□D
ifoonfig.a、vk NIC,IPア ドレス,ネ ットワークインタフェース

□E回囲ロ
サーバのNICと IPア ドレスの一覧を表示したいとき

″:′ bin/sh

″ lfCOnfigコ マンドで有効なインタフェースを表示して、

″ aWkコマンドでインタフェース名とIPア ドレスを抽出する

LANG=C /sbin/1fconf19 1¥

awk '/^[a-z]/ {pnint "t" S1 "1"}
/inet / {sptit($2,anr,":"); print arr[21]' -€

キーワード

解脱

このスクリプトは、サーバのネットワークインタフェースと、そこに割 り振られている

IPア ドレスを表示するものです。IPア ドレス取得にはifconfigコ マンドを使い、その出力

をawkコ マンドで加工 しています。なおここでは、このサーバにはネットワークインタフ

ェースとしてethOと ethlがあり、共にインタフェースは有効 (UP)に していますが、IPア

ドレスはethOの みに設定 しているという仮定をしています。

サンプルで用いているifconfigコ マンドは、サーバのネットワークの設定や情報取得を

行うコマンドです。次のように引数なしで実行すると、サーバ上で現在有効なネットワー

クインタフェースの情報 (リ ンク状態、MACア ドレス、IPア ドレス、転送パケット数など)
を表示 します。なおiたonfigコ マンドは、Linuxと Mac/FreeBSDで は微妙に出力が異なり

ます。そのためMac/FreeBSDを お使いの場合はサンプル例がそのまま使えませんので、
「注意事項」をあわせて参照してください。

292

|

tl。 3

127.0.0.1

, ./oェ c― ipaddr.sh

〔ethO]

10.211.55.18

総4饉 サーバのネットワークインタフエースとそのlPア ドレスー覧を取得する

聰ifconfigコ マンドを引数なしで実行

ifConfigコ マンドはサーバ管理でよく使われるポピュラーなコマンドですが、表示され

る内容が盛りだくさんなため、出力を扱うのは少々厄介です。ネットワークの設定確認な

どのシーンでは、このサンプル例のように、シンプルにサーバのネットワークインタフェ

ースとIPア ドレスだけ表示したいということもよくあるでしょう。

サンプルでは、●でiたonigコ マンドを実行しています。この際に、Ubuntuな どでは結

果が日本語表記されてしまいIPア ドレスを取り出すことが難しくなるため、英語表記で統

一して表示するように先頭でLANG=Cと 指定しています。また、Linux環境では/sbinに
パスが通っていないことがあるため、ここではiた onfigコ マンドをフルパスで指定して実

行しています。出力結果をパイプでawkコ マンドに渡していますが、長くなるため行末に

¥を置いて改行しています。

②のawkコ マンドでは、まず/^[a― z]/と いうパターンを利用しています。これはインタ
フェース名を出力するためのパターンです。ifconfigコマンドでは、はじめに行頭にイン

タフェース名が表示され、その後にインデントされてリンク状態などの各種情報が表示さ

れます。そのため行頭に小文字アルファベットがくる行をマッチし、その1カ ラムロを表

示することでインタフェース名が得られます。ここではインタフェース名を見やすくする

ために、awkコ マンドで表示する際、次のように[]で くくっています。

awkコ マンドではスペースは詰めて表示されますから、上記のように書くと[ethO]の よ

うにインタフェース名をカッコ付きで表示できます。

(0)で、IPア ドレスを取得しています。ここで取得したいのは、「inet addr:」 の後ろの部

ゲヽ ここ
‐
ぐ|ま「10.211.55.18」 ‐で`‐ケ。

203

addr:

bytes:7153 (6.9

errors: 0

errors:0

K■3) TX

txqueuelen:1000

釧閥嘲蹴

"|●

サーバ管理

0では、まずawkコ マンドで2カ ラムロを$2と して取り出します。awkコ マンドの区切
りはスペースですから、ここで$2に は「addr:10.211.55.18」 が入っています。

続いてこの$2からIPア ドレスを取り出すには、「:(コ ロン)を 区切り文字としてその2カ

ラムロを取り出す」とすればよいことになります。そのため0ではawkコ マンドのsplit関

数を用いて、:(コ ロン)で文字列を分割してarr[21と して2カ ラムロを取り出しています。

この例のように、はじめにスペース区切りで文字を取り出し、そこからさらに別の区切り

文字で取り出す場合、このようにawkコ マンドのsp‖t関数を用いると便利でしよう。

このサンプル例ではネットワークインタフェース名とIPア ドレスを出力しましたが、出

力結果を別のスクリプトに渡して処理したい場合には、ネットワークインタフェース名は

不要で単純にIPア ドレスリストだけがほしい場合も多いでしょう。その場合、/∧ [a― Z〕 /フ

ィルタ部分を削除して次のようなスクリプトにします。

LANG=C /sbin/1fconfig l awk 1/inet / (sptit(S2′ aFr′
サ::11)′
 print arrE2]}:

注意事項

このスクリプトでは、lPv4ア ドレスのみを扱つており、:Pv6ア ドレスは無視しています。

Mac/FreeBSDの ifconfigコ マンドは、Linuxのifconfigコマンドと若干出力が異なります。

具体的には、IPア ドレス表示部分が「lnet 1 0.211.55.21」 となり、Linuxと違つて「addri」

の文字列がありません。

OMac/FreeBSDの ifconfigコマンドの場合

そのためMac/FreeBSDの場合は:(コ ロン)区切りで取り出す必要がないため、次のように、

Linuxよ りもシンプルなスクリプトで記述することができます。

294

LANG=C

metric 0 mtu

netmaskinet 10.211.55.21
(省略)

ether 00:lc:42:5e:c3:ibl

1500

S2}1

/Sbin/ifCOnfig i linet / {print

醸o目
サーバに作成済みのユーザアカ
ウントー覧を取得する105

□回冒圏D
grep.cut

□■口■■
ユーザアカウント・区切り文字.カラム

テキストファイルから区切り文字を指定して、特定のカラムを取り出したいとき

日瞬罰四■

″:/bin′ sh

″ユーザアカウント情報の対象ファイル

fi Lename='i/etc/passwdi=

″行頭が″であるコメント行を除外して、Cutコ マンドで、

″ *1番 目の値を表示 [―fl]
* 1区:切

'′

言己リチは :[―d '':::コ

″ として表示する

grep ―V il^″ =: !=$fitenameli l Cut ―f l ―d i::::

麒解説

このスクリプトは、UNIX環境においてシステムのユーザアカウント情報が記載された

ファイルである/etc/passWdフ アイルから、システムに存在するユーザアカウントー覧を

表示するものです。サーバを構築・運用する際に、どのようなユーザが作成済みかを確認

するために役立つことでしょう。

/etc/passwdファイルはユーザ管理に用いられるシステムファイルで、次のような形

式となっています。

295

一↓

CHAPTER 00● サーバ管理

[ml /etc/passwdT 7I)vaWl

root:x:0:0:rooti/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/noLogin

daemon:x12:2:daemon:/sbin:/sbin/noLo91 n

:借哺

sshd:x:74:74:Pri vi tege― separated ssH:ノ varノ empty/sshd:/sbin/noLogin

nginx:x:498:499:N9inx web server:ノ var/Lib/nginx:/sbin/noLogin

userl:x:501:501::/home/userl:/bin/bash

この/etc/passwdフ ァイルの内容はコロン区切りで記述されており、各項目の値は次の

ようになつています。

0各カラムの意味

ユーザアカウントやUIDを取得するために、この/etc/passwdフ ァイルを扱うコマンド
は多くあります。そこでこのサンプルでは、/etc/passwdフ ァイルのカラム1から、ユー

ザー覧を取得しています。

さてリスト1で見たように、/etc/passwdフ ァイルの区切りは:(コ ロン)と なっています。

このようなテキストファイルから指定したカラムの値を取り出したいときは、「区切り文

字を指定して」「第n番目の値を取り出す」というコマンドで対応できます。いくつか手法

がありますが、サンプル例ではcutコ マンドを用いています。

cutコマンドは、テキストフアイルからある一部分を切り出すコマンドです。‐fオプシ

ョンを利用して、第n番目の値のみを表示することができます。なおcutコ マンドの使い方

はP.196で解説していますので、そちらも参照してください。また、cutコ マンドでは、デ

フォルトの区切り記号はタブが指定されているため、0では、区切り文字の変更を行う‐d
オプションを同時に利用しています。「―d‖ :‖」と指定することで、:(コ ロン)を 区切りとし

て指定することができるので、これで―flと して第1番目の値、すなわちユーザ名を抽出

できます。

なお、/etc/passwdフ ァイルは、FreeBSDで は行頭に#があるコメント行が含まれてい

ます。そのためcutコ マンドに渡す前に、grepコ マンドのマッチしない行を表示するため
の‐vオプションを用いて、行頭に#がある行 (∧#)を 除外しています。

カラム 1 ユーザ名

カラム2 パスヮード

カラム3 ∪ID(ユーザID)

カラム4 GID(グループID)

カラム5 コメント(フルネームを入れることもある)

カラム6 ホームディレクトリのパス

カラム7 ログインシェル

296

ム 説明 .

罐ξ麟登サーバに作成済みのユーザアカウントー覧を取得する

メetc/passwdフ ァイルとバスワ…ド

現代のUNIXでは、セキュリテイの観点から/etc/passwdフ ァイルにはパスワードは書
かれておらず、代わりにLinuxでは/etc/shadowに 、FreeBSDでは/etc/master.passwdに 、

暗号化されたパスワードが書かれています。これらのファイルはrootで しか読めませんか

ら、rootユーザとなってファイルの中身を見てみると、次のようになっています。

蜻暗号化されたバスワードが書かれている

胆三型塑
Macで も/etc/passwdフ アイルは存在しますが、通常の回グインユーザはディレクトリサ

ービスを用いて別に管理されているため、この/etc/passwdフ アイルには通常ログインに

用いるアカウントは存在しません。しかしその他のシステムアカウントは/etc/passwdに

存在しますので、サンプル例を試してみることは可能です。

コロン区切りのテキス トフアイルから一部のカラムを取り出すには、awkコマンドの区切

り文字を指定する‐Fオプションを利用して次のようにも書けます。

しかしここでは、コンパクトでわかりやすいcutコマンドを用いる例を紹介しました。

I raene

072 CS∨ ファイルから、指定した特定レコードのカラムの値を得る

297

ここでは、例えば6か ら始まる長い文字列が暗号化されたパスワードです。昔の

UNIX環境では/etc/passwdフ ァイルにこの値が直接書かれていたのですが、悪意のある
ユーザが別ユーザのパスワードを総当たり攻撃で取得することが可能となるため、現在の

パスワードファイルはrootし か読めないような仕組みとなっています。

なお、Macでは/etc/passwdフ ァイルを直接ユーザ管理には用いていないため、/etc/
master.passwdフ ァイルは存在しますが、暗号化されたパスワード自体は書かれていませ

ん。

ｏ・
■
―

＝
|

001
許可したユーザのみスクリプト
を実行可能とする

国田謳■日

ld.、、′hoami.echo …実行ユーザ,パーミッション.root

あるスクリフトを実行する際、指定したユーザ以外での実行を禁上したいとき

″:/bin/sh

scri pt_user="batch1 "

″ idコ マンドで現在のユーザを取得し、定義と一致するかを確認

lf[$(ld―nu)=='SSCript_uSeri' コ′ then―――――- 0
″許可ユーザならばパッチ処理を実行

. /batchjrogram
etse
echo‖ EERRORコ Sscript_userユ ーザで実行してくださぃ '=>&2

exit l コー0
fi

, Whoami
userl

S ./id―script.sh

iERRORI batchlユ ーザで実行してください

解説

このスクリプトは、現在スクリプトを実行しているユーザ名をチェックして、指定した

ユーザでしか実行できないように制限するものです。

バッチ処理を行うプログラムがログファイルや一時ファイルを出力する場合には、実行

するユーザに注意する必要があります。スクリプトが誰でも実行できる場所に置いてある

と、本来想定していたユーザとは違うユーザが実行するかもしれません。例えばこのサン

プル例では、batchlと いうユーザが実行することを想定していますが、誤ってuserlと い

うユーザが実行すると、 (ス クリプトの作りにもよりますが)パーミッションの問題から

ログファイルの追記や一時ファイルヘの出力ができずにエラーとなってしまうでしょう。

またサーバ運用時にありがちな例としては、「rootな らばエラーなく実行できるだろう」

298

″ このスクリプトの実行を許可するユーザの定義

1鰺 嬌許可したユーザのみスクリプ トを実行可能とする

と安易に考えて、r00tユーザでバッチ処理のプログラムを実行してしまうケースです。こ

うするとログフアイルや一時ファイルなどがrootユ ーザのファイルとして作成されてしま

い、次に正規のユーザで実行してもファイルオーナーがr00tユーザであるために上書きで

きず、処理に失敗してしまう、といつたケースがよく見られます。

このような理由から、あるプログラムを実行するユーザを制限したい場合があります。

そのようなケースで実行ユーザを制限するのが本サンプルです。このサンプル例では、ま

ず0でプログラム実行を許可するユーザを指定しています。ここではbatchlと いうユー

ザに実行許可を与えています。

0では、現在スクリプトを実行しているユーザが、許可ユーザと一致するかどうかを確

認しています。ここで利用しているidコマンドとは、現在のユーザ情報を表示するコマン

ドです。idコ マンドを引数なしで実行すると、ユーザID、 グループID、 属するグループ

を表示します。

蜻idコマンドを引数なしで実行した例

0ではidコ マンドに、ユーザIDのみを表示する‐uオプシヨンと、IDではなく名前を表示

する‐nオプションを組み合わせて使っています。このid―nuの結果をコマンド置換$oで取

得することで、現在のユーザ名が得られます。この値を、許可ユーザ名を代入しているシ

ェル変数scnpt_userと =演算子で比較しています。

現在のユーザ名と許可ユーザ名が一致すれば、正しい実行ユーザだと判断できますから、

0で外部プログラムを実行しています。また、シェルスクリプトの先頭にこのような処理

を入れて、シェルスクリプト自身を実行するユーザを制限する手法もよく使われます。

なお0で実行している外部プログラムbatch_programと は、何らかのバッチ処理を行

う外部プログラムであると仮定しています。読者の環境にあわせて、この外部プログラム

は適宜読み替えてください。

現在のユーザ名と許可ユーザ名が一致していない場合は、エラー表示をして終了してい

ます (0)。 このようにしてプログラム実行ユーザを制限することができます。

なお現在のユーザ名を取得するには、idコ マンド以外にも、whoamiコ マンドを利用す

る例や環境変数SUSERを利用する例があります。どれも得られる結果は同じです。

螂現在のユーザ名の取得法各種

299

Ci:APttR鶴 ●サーバ管理

ユーザ名取得には、これらのコマンドもよく使われますので、覚えておくとよいでしょ

つ

注意事項

スクリプ トを実行できるユーザを制限するには、ファイルバーミツションを利用した例も

よく使われます。例えばスクリプトファイルのパーミッションを754(‐ rwxr― xr…)に設定

しておくと、ファイルのオーナーとそのグループに所属するユーザしか実行できません。

この場合は、バッチを実行するグループを作成して、実行を許可するユーザをそのグルー

プに所属させる、という運用を行います。

ここではバッチ処理の例を紹介しましたが、実行できるユーザを制限することは、サーバ

に常駐するデーモンタイプのプログラムでもセキュリテイ的に重要です。この場合は、一

般ユーザ権限で動作するプログラムを、不用意にrootで起動できないようにしておく手法

としてよく使われます。例えばJavaサーブレットのコンテナである丁omcatは rootで も一
般ユーザでも起動できますが、root権限で実行することはセキュリテイ的に推奨されてい

ません。もし搭載したJavaア プリケーションに脆弱性があつた場合、一般ユーザ権限では
なくroot権限が奪われてしまう可能性があり、危険だからです。そのようなプログラムで

はラツパースクリプト(→P.250)を 作り、「oot権限では実行できないようにしておく手法
があります。

関連項目

α:Ю 常に指定した環境変数を設定してコマンドを実行するために、ラツパースクリプトを作成
する

300

闘oB

107 システムのシャットダウンを行う

ログインユーザ・シヤツトダウン.
プロセス,確認.停止

who.wc.ps.shutdown

□ E国囲■
シャットダウンの手順をスクリプトで記述し、確認項目を自動的にチェックして電源

断したいとき

□圏罰田D

″:′ bin′5h

″ 自分以外のユーザがログインしていないかを、Whoコ マンドの出力から

″ チェックする

other_uSer=S(WhO I WC ―t)

if [:iSOther_user=: ―ge 2]′ then
echo"EERROR]whOコ マンドの出力が2行以上 :作業中のユーザがいます==>&2

exit l

fi

″事前に停止しておくべきプロセスが、起動したままでないかをチェックする

cOmmname=“ ノusrノ Lう bexec/mysqLd‖

ps aX ―。 COmmand l grep ―q ::^SCommnameil

if [$? …eq O]′ then
echo‖ EERROR]シ ャットダウンを中止 :プロセス Scommnameが起動中

‖>&2

exit 2

fi

#シ ャットダウンを実行。なお‖aC/FreeBSDの場合は D主意事項」を参照
shutdown― h now――――――-0

301

message from userl E linux
15:32at

dorrn for halt

CWPIR00● サーバ管理

解説

このスクリプトは、マシンのシャットダウンを行うものです。シャットダウンの前に、

以下の2点 をチェックしています。これは実際のサーバ運用時でも、よくあるチェックポ

イントでしよう。

他のユーザがログインしていないか

事前に止めておかないといけないプロセスが起動していないか

マシンのシャットダウンというのは重大な作業のため、手順書を策定することも多いで

しよう。しかし手順書だけでは不慣れなユーザが混乱したり、オペレーションミスも起き

るかもしれません。

例えば「シャットダウン前に別のユーザがログインしていないか確認すること」と手順

書に書いてあっても、実際に何というコマンドを打つかがわからなかったり、正しいコマ

ンドを打っても出力結果を読み間違えるかもしれません。そのため、このサンプル例のよ

うなスクリプトを用意しておいて、「スクリプトshutdownoshでシャットダウンすること」
と決めておけば手順書どおりの操作が行えます。

サンプル例では、(0)で Whoコマンドの出力結果を利用して現在のログインユーザをチ
ェックしています。whOコ マンドの出力はOSに よって若干異なりますが、次のように現
在ログイン中のユーザー覧を表示します。第1カ ラムがューザ名、第2カ ラムが利用して

いる制御端末、第3カ ラムがログイン日時です。

0現在ログインしているユーザを表示

ここでは、uSerlと いうユーザがシヤットダウン操作を行おうとしていると想定します。
hanakOと いうユーザがどうやら外からログインして何か作業しているようですから、何
も声をかけずにシャットダウンしてしまうと作業中のデータに大きな影響を与えてしまう

かもしれません。

●ではWhoコ マンドの出力が2行以上あれば他のユーザがいると判断する仕様で、別の
ユーザがログイン中かどうかのチェックを行つています。whOコ マンドの出力を、wcコ
マンドの行数のみを出力する…:オプションヘパイプでつないで、行数をカウントしていま

す。ここではwhoコ マンドの行数、すなわち現在のログインユーザ数を、teStコ マンドの
演算子‐ge(Greater Than)で 比較しています。このtestコ マンドの大小比較の演算子に
ついては、P,143で解説 していますのでそちらを参照してください。ここでは、もし行数

が2以上ならば、別のユーザがログイン中だとみなしてエラーを表示して終了しています。

302

一
　

　

　

　

　

　

　

一

■
一
　

　

　

　

一

一
１

１

2014-02-01 11:36

.‐ ‐ 2014-01-29 22:36 (10.211.55.2)

. 2014-02-01 11:26 (10.211.55.2)

$ who

userl
hanako
hanako

電畿7。 システムのシヤットダウンを行う

なお●のtestコ マンドでの大小比較の際、Linuxや FreeBSDの GUI環境やMacを利用し

ている場合には注意が必要です。一般にUNIX環境でX Window Systemな どのGUI環境

を利用している場合には、GUI画面にログインしているユーザと、そこからターミナルを

使っているユーザの二人いるのが普通のため、3行以上あれば他のユーザがいる、と考え

たほうが適当です。すなわち0は、GUI環境を利用している場合は次のように指定してく

ださい。

続いて0では、シヤツトダウン前に必要なプロセスのチェックを行っています。ここで

は「シャットダウン前に、MySQLを 手動で停止すること」という手順を想定しています。

このシステムのMySQLを実行するコマンド/usプlibeXeC/mySqldの プロセスが存在するか

を、psコ マンドとgrepコマンドで確認しています。プロセスが存在すればgrepコ マンド

は終了ステータスとして0を返しますから、これをit文で比較してエラーを表示していま

す。なお、このプロセス確認の手法については、R313を参照してください。

ここまででチェックが終わりましたので、0でshutdownコ マンドを実行しています。

ここで…hオプションはhalt(停止)を意味するオプションで、システム停止を行います。

shutdownコ マンドでは、再起動を意味する‐r(reboot)オプションもよく使われます。

shutdownコ マンドは、引数にTIME(時間)を指定して、この時間だけ経った後にシス

テムを終了させます。TIMEはほとんどの場合、now(い ますぐ)を指定することが多い

でしょう。0で もnowを指定して、システムを終了させています。

このスクリプトはShutdOWnコ マンドを実行するため、スクリプトは「oot権限で実行する

必要があります。具体的には、rootユーザで実行するか、Macや Ubuntuの場合はsudoコ

マンドを利用してください。

shutdownコマンドを実行する際、OSごとに指定方法が多少異なります。FreeBSDでは、

shutdownコ マンドで電源を切る際には―hオプションではなく‐pオプションを利用します。

そのため0の部分を次のように修正してください。

054

111

今年がうるう年かどうかを調べる

特定のプロセスが停止していないか監視する

303

書注意事項

⑮関連項目

ｏ・
．■
―

＝ |

081
フアイル名から、インストールさ
れたRPMパッケージ名を調べる

…RPMパツケージ・インストール
□回雲ロロ
rpm.exit

□E□囲■
サーバにあるファイルが、パッケージで入れられたものなのか、手で作られたものな
のかわからないケースで、属するRPMパ ッケージを調べたいとき

■■医困回■■

″:′ bi n′ sh

#フ ァイルを指定するコマンドライン引数をチェック
lf [! ―f ''Sl=' コ′ then
eChO::フ ァイルがありません :Sl">&2
exit 2
fi

″ ファイル名から、属するrpmパッケージ名を取得する

″ rpm― qfコ マンドの結果でパッケージ名を表示する
if E S? ―eq O]′ then
echo l'Sl ―> Spkgnameli

eLse

eChO‖ Slはパッケージに属していません=:>82

exit l

fi

解説

このスクリプトは、コマンドライン引数にファイルを指定して、そのフアイルがパッヶ
―ジ管理システム上のどのRPMパ ッケージに属するかを調べて、パッケージ名を表示す
るものです。なおRPMと はレッドハット社が開発したパッケージ管理システムの名称で、

304

pkgname=$(rpm -qf "$1")

/etc/ntp.conf ->
S . /rpn-coq>kg. sh

./rpm― c。暉pkgoshS
■
ロ
ロ

霧0悪 齋フアイル名から、インス トールさねた RPMパ ッケージ名を調べる

そのインス トールなどの操作を行うのがrpmコ マンドです。RPMは、Red Hat Linuxや 、
フリーのCentOSで利用することができます。

Linuxサーバの管理・運用を長いあいだ行っていると、サーバに設置されているあるフ

ァイルが、誰かが手で作って置いたものなのか、それともパッケージインス トール時に自

動的に設置されたものなのか、わからなくなってしまうことがよくあります。このサンプ

ル例は、そのような運用時の調査のシーンで役に立つでしょう。

あるフアイルがどのパッケージに属しているかを調べるには、rpmコ マンドの…qfォプ

ションを利用 します。このコマンドは次のように、ファイルを指定することでそのフアイ

ルが属する叩mパ ッケージ名を表示します。

◎rpmコ マンドでフアイルが属するパッケージを表示

また、逆にパッケージ名を指定して、そのパッケージに含まれるファイルー覧を出力す

ることもできます。この際にはrpmコ マンドの q̈:オプションでパッケージ名を指定 しま

す。パッケージのバージョン番号は省略可能です。

けパッケージに含まれるフアイルー覧を表示

rpmコ マンドはとても高機能なコマンドなので、そのすべての機能を解説していると本

書の範囲を大きく超えてしまいます。そのためこのサンプル例の解説では、「‐qfオプショ

ンでフアイルからパッケージ名を得ることができる」ということだけの理解にとどめます。

リストのOでは、コマンドライン引数のチェックを行っています。このサンプル例では

引数にファイルを指定しますから、そのフアイルが存在するかどうかをtestコマンドでチ

ェックします。ここで、‐fは対象が通常ファイルかどうかをチェックする演算子です。そ

れを否定演算子1と 併用することで、対象がディレクトリであつたり、ファイルが存在し

ない場合にはエラーを表示して終了するようにしています。これらファイルテストの演算

子については、P。 110で紹介していますのでそちらを参照してください。

0で、rpmコ マンドの―qfオ プションを利用してパッケージ名を取得しています。シェ
ルの位置パラメータ$1は コマンドライン引数の1つ 目を指しますから、このサンプル例で

は指定されたフアイルパスが入っています。コマンド置換$()を用いて、rpmコ マンドの

出力結果をシェル変数pkgnameに 代入しています。

0で、パッケージ名を表示しています。rpmコ マンドの―qfオ プションは、指定された

305

Ci測訂姜H00。 サーバ管理

ファイルがどのパッケージにも属していなかった場合はエラーとなり、終了ステータス 1

を返します。そのためここで、終了ステータス$?に よってif文で分岐しています。rpmコ

マンドが成功していた場合はファイル名とそのパッケージ名を表示して、失敗していた場

合 (すなわち終了ステータスが非ゼロの場合)に はどのパッケージにも属していない旨を

表示して終了しています。

なおこのスクリプトでは、引数に指定したファイルがなかった場合は「e対 t2」 として終

了ステータスに2を、ファイルはあるがどのパッケージにも属していなかった場合は「e対 t

l」 として終了ステータスに1を返しています。こうすれば、このスクリプトを別のスクリ

プトから利用する際、終了ステータスを利用して結果を判別することができます。

注意事項

このスクリプトはLinux(CentOS)の rpmコマンドを利用しているため、CentOSのみの

動作となります。Macと FreeBSDは 対象外です。

CentOSでは、標準rpmパツケージに加えてEPEL(Extra Packages for Enterprise

Linux)と いう拡張パッケージが存在します。最新のパッケージを積極的に採用するLinux

ディストリピューションであるFedoraの rpmパ ッケージを、CentOSか ら利用可能とする
のがEPELの仕組みです。CentOS標準パッケージには見つからないソフ トウェアも、
EPELな らば見つかるというケースは多いでしよう。EPELを利用するには、Fedora

ProiectのWebページからepe卜 re!easeというrpmパッケージをダウンロードしてインス
トールします。これにより、リポジトリに追加されたEPELサイトから、yumコマンドで
EPELのパッケージをインス トールできるようになります。詳しい手順をここで解説する
のは省略しますが、興味のある方はFedora Proiectの WebサイトからEPELについての説
明ページを読んでみてください。

関連項目

306

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

一
―
　

　

　

　

　

　

　

一

■
，

●

―

―

　

　

一

一
一一
一̈
．一、
・
　
　
．　
・　
．　
　
一

飢
嘔̈
―

鶴

00
RPMパッケージ名を記述したリストフア
イルから、それぞれのパッケージがイン
ストール・更新された日付を調べる

RPMパッケージ.更新日時,インストール.アップデート
m回壺ロロ
cat.rpm

複数台のサーバ管理中にバッケージのインストール・アップデートを行う際、サーバ

ごとに作業の漏れがないようチェツクしたいとき

″:′ bin′ sh

″指定されたリス トファイルの存在チェック

うf [1 -f ::Sl=i コ′ then

echo ll対 象のパッケージリストファイルが存在しません :Sl‖ >&2

exit l

fi

#引数で指定されたファイル ($1)か ら、パッケージリストを取得
pkgti st=$(cat ilSl'I)

″インストール済み rpmの更新日付を出力する

rpm ―q SpkgList ――queryformat i%{INSTALLTIME:date} : %(NAME}¥nl ―-0

解説

このスクリプトは、コマンドライン引数に指定されたテキストフアイルからRPMパ ッ

ケージ名を読み込み、そのRPMパ ッケージがインストールもしくは更新された日付を一

307

CWP躍 臓09● サーバ管理

覧表示するものです。

Linuxサーバを構築・運用していると、何十台もの多くのサーバに対して同一のパッヶ
―ジをインストールしたり、セキュリティパッチを当てるためにパッケージを更新するメ

ンテナンスを頻繁に行うでしょう。この際、「10台あるサーバのうち1台だけ更新してい

なかった」「後でやるつもりで1台だけインストールを忘れていた」などという作業漏れが

起きるのはありがちな失敗例です。このサンプル例のような確認スクリプトを用意してお

けば、メンテナンスの終了確認などの場面で役立つことでしょう。

このスクリプトでは、まず●で、位置バラメータ$1で指定されたリストファイルが存

在するかどうかの確認をしています。‐fは対象が通常ファイルかどうかをチェックする演

算子です。それを否定演算子!と 併用することで、対象がディレクトリであったり、ファ

イルが存在しない場合にはエラーを表示して終了するようにしています。これらファイル

テストの演算子については、P。 110で紹介していますのでそちらを参照してください。

続いて(0)で、コマンドライン引数で指定されたファイルSlか ら、シェル変数pkglistにパ

ッケージ名を読み込んでいます。ここで実行例では、pkg.lstフ ァイルはリスト1の ような

内容であるとしています。

炒覇爾鐵翻パッケージを指定するリストフアイル(pkg」st)の中身

httpd

zsh

XZ

91t

つまりここでは、httpd、 zsh、 xz、 gitパ ッケージのインストール・更新日付を確認し

たいというケースであると仮定します。読者の環境にあわせて、このパッケージリストの

定義は適宜変更してください。

0では、catコ マンドでpkg.lstフ ァイルの中身を出力し、コマンド置換$oを利用してそ
の出力結果をシェル変数pkglistに代入しています。ここではcatコ マンドの結果を用いて

いるので、この時点ではシェル変数pkglistに は改行区切りでリスト1そのままの内容が代

入されています。

0で、指定されたRPMパ ッケージのインストール・更新日付をrpmコ マンドで表示し
ています。ここでrpmコ マンドに指定しているのは、問い合わせの―qオプションと、表示
フオーマットを指定する一quewbrmatオ プションです。
rpmコ マンドの中qオプションは、対象のパッケージを指定します。この際、複数のパツ

ケージを指定できます。ここではシェル変数pkglistに 、0で組み立てたパッケージリス
トが入つていますので、これをそのまま指定しています。シェルでは改行をデフォルトの

区切り文字として解釈するため、0の ように$pkghstにダブルクォートを付けずに記述す
ると、改行を区切りとしてシェルが変数展開を行い、結果として次のようなコマンドが実

行されることになります。

308

rpm -q httpd zsh xz ,

loo鬱 RPMパ ッケージ名を記述したリス トフアイルから、それぞれのパツケージがインス トール・更新された日付を調べる

この際、0で誤って‖$pkglist‖ とダブルクォート付きで記述すると、コマンドの途中に
改行が入ってしまいエラーとなりますので注意してください。

0で用いている…queryformatオプションは、rpmコ マンドで表示する項目を指定す
るオプションです。続く書式指定の中で使用しているINSTALLTIMEと NAMEは、それ
ぞれインストール・更新日時、およびパッケージ名に置き換えられます。またデフォルト

では、INSTALLTIMEは UNIX時間 (1970年 1月 1日からの経過秒数)で表示されて読みに

くいため、:dateと 指定して日付表示するようにしています。これ以外にもさまざまな項

目が表示できますので、興味のある方は項目一覧を表示する̈ querytagsオ プションで確

認してみてください。

こうしてメンテナンス対象のサーバでサンプル例を実行すれば、各パッケージのインス

トール・更新日時を表示することができます。例えばあるサーバだけパッケージの更新日

が古ければ、パッチのアップデート作業忘れだとわかるでしょう。また、次のようにパッ

ケージが見つからないと表示されたら、インストール作業に漏れがあったと判断できます。

このようにしてサーバ構築・運用の作業ミスを減らすことができます。

醸インストール漏れがあつたときの表示例

このスクリプトはLinux(CentOS)の rpmコ マンドを利用しているため、CentOSのみの

動作となります。Mac、 FreeBSDは対象外です。

このスクリプ トでは、確認するパッケージリストを指定するファイルの中身が空っぽの場

合、rpmコマンドが失敗するためエラーとなります。

関連項目

042 処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する
108 ファイル名から、インストールされたRPMパッケージ名を調べる

309

量注意事項

サーバ構築のパッケージリストを
シェルスクリプトの形で管理する1 1lD

‖o.

□回露■B
RPMパッケージ.インストール・構築yum

サーバの構築作業で、パッケージをインストールする作業を自動化したいとき

■■目固回■■

″:′ bi n′ sh

#イ ンストールするパッケージ名の定義
pkgtist="httpd zsh xz git"

″パッケージリストから順に1行ずつ読み込み

for pkg in $pkgList
do

″ yumコマンドでパッケージをインストールする

yum -y insta[l $pkg

done

いつ使うか

./Yum.―instal■ .sh

■,oade(l plugins: fastestmirror′ security
Loading mェ rror sPeeds from cached hostfile

:(省略) yumコマンドで httpd、 zsh、 xz、 9itがインストールされる

解説

このスクリプトは、シェル変数pkglistで指定されたパッケージを、サーバに自動的に

インストールするものです。新規サーバの初期構築に利用して、処理を自動化するケース

を想定しています。ここでは、「httpd、 zsh、 xz、 gitを インストールする」という要件で

あると仮定しています。

このサンプル例でパッケージ管理に利用しているyumコマンドは、RPMパ ッケージを
インストールするためのコマンドです。依存関係にあるパッケージもあわせて入れてくれ

るため非常に便利で、現在では単体のrpmコ マンドよりも広く使われています。

サーバ構築時、パッケージのインストールをわぎわざこのようなスクリプトにしておく

のは理由があります。一般的に、このようなインストール作業は、構築手順書として次の

ようなものを作って、文書どおりに作業するのが昔ながらのやり方でしょう。

310

101篠 サーバ構築のパッケージリストをシェルスクリフトの形で管理する

やサーバ構築手順書の例

○○サーバ 構築手順書

必要バッケージのインストール

1.1)httpdを インストールする。

1.2)zshをインストールする。

:(省略)

しかしこのような手順書ベースの作業では、サーバ操作に不慣れな担当者ではどうして

もミスが起こりがちになります。一方、手順書をサンプル例のようにスクリプトの形で作

っておけば、別の担当者に交代してもスクリプトを実行すればよいだけですから、誤った

操作や作業漏れを防ぐことができます。

つまりこのサンプル例は、サーバ構築の作業をスクリプト化することで、作業の利便性

の向上と、作業ミスをなくすという、2つの目的を持たせたものです。

サンプル例では、まず●でインストールするパッケージを定義しています。ここでは

httpd、 zsh、 xz、 gitと いう4つのパッケージをインストールするように設定しています。

このようなスクリプトは、サーバに配布して作業を行うため、リストは外部ファイルにせ

ずにこのようにスクリプトに持たせたほうがよいでしょう。リストを外部ファイルにして

しまうと、リストフアイルだけコピーを忘れてしまうなどの作業漏れが発生するかもしれ

ません。

②のbr文で、シェル変数pkglistか ら値を1つずつシェル変数pkgに読み込みます。0で
利用しているyumコ マンドでは、insta‖を指定してパッケージのインストールを行って
います。yumコ マンドでよく利用する命令を次にあげておくので参考にしてみてくださ
い。

鰈yumコ マンドの主な命令

yum insta[[パッケージのインストール

yum info パッケージの情報表示

yum list 利用可能なパッケージの一覧を表示

yum search キーワードでパッケージ検索

yum update インストール済みのパッケージをアップデー ト

yum erase パッケージの削除

311

Insta■ ■ed s■ ze: 2.9 M

Is th■ s ok [y/N]:

(省略

C鵬湾 E■ 00● サーバ管理

なお、yumコ マンドでパッケージのインストールを行うと、途中でインストールしてよ

いかどうかという問い合わせが表示されます。

Oyumコマンドでインストールすると問い合わせが表示される

…yオプションを利用すると、これらの問い合わせにすべて自動的にyを回答 します。こ

こでは自動化スクリプトを作つているわけですから、この―yオ プションが必須となります。

このようにしてサーバのパッケージインス トールという構築作業を、スクリプトで自動

化することができます。読者の環境にあわせて、インス トールする具体的なパッケージ名

を修正して試 してみてください。

注意事項

このスクリプトはパツケージのインストールを実行するため、スクリプトは「oot権限で実

行する必要があります。

このスクリプトはLinux(CentOS)のyumコマンドを利用しているため、CentOSの みの

動作となります。Mac、 FreeBSDは対象外です。

サーバ構築の自動化については、最近ではChefやPuppetな どの高機能なソフトウェアが

広まりつつあります。これらはまだまだ歴史が浅いソフトウェアのため使用するにはリス

クがありますが、パッケージのインストールだけにとどまらず、各種コンフイグフアイル

の自動設定なども行える、非常に便利なソフ トウェアです。サーバ構築の自動化に興味の

ある方はぜひ調べてみてください。

関連項目

022 ヒアドキュメントで変数展開をせずにそのままSstrのように表示する

108 ファイル名から、インストールされたRPMパ ッケージ名を調べる

312

-ilr
]

特定のプロセスが停止していな
いか監視する

…ps.gЮ。.wo プロセス.監視.停止

サービス提供の際、存在すべきプロセスが停上していないかを監視したいとき

″:′bin/3ト

″監視するプロセスのコマンド

cominname=11/usr/Li bexec/mysq Ldi'

″対象コマンドのプロセス数をカウントする

COunt=S(pS aX ―。 COmmand l grep 'iSCOmmname'' l grep ―V rep" I r.rc -[)

″ grepコマンドの出力結果がゼロ行の場合にはプロセスが

″存在しないため、監視通知処理を行う

if [!:$count'' ―eq O コ′ then
echo tiEERROR]プ ロセス Scmmnameが見つかりません '=>&2
/home/user1/bin′ a tert.sh

fi

利用コマンド

解説

このスクリプトは、指定したプロセスが存在しているかどうかを監視するものです。こ

こではMySQLの サーバプロセス、
‖
/uSr/1ibeXeC/mySqld‖ が起動しているかどうかを監視

して、起動していない場合はプロセスダウンとみなしてalert.shを 実行 しています。なお、

このサンプル例でalert.shは、通知メールを送信するなど、何かしらの警告を行うスクリ

プ トであると仮定 しています。読者の環境にあわせて監視するコマン ド名を修正 し、

alert.shでエラーメッセージを表示した り、メールを送信するなど、応用 してみてください。

サーバ運用において、プロセスが知らないあいだに停止していることはよくあるトラブ

ル例です。サーバ自体の死活監視をpingコ マンドで行っていても、プロセスが落ちていて

は正常にサービスができません。そのため、プロセス監視の仕組みは、サービス提供のた

313

CHAPTR 00 0サ ーバ管理

めの重要な要素です。ここではシェルスクリプトを用いて、プロセスが存在しているかど

うかをチェックするサンプル例を見てみましょう。

サンプル例では、まず0で監視するプロセスを指定します。このサンプルではコマンド
名でプロセスをチェックしますので、Linux(CentOS)で MySQLを rpmでインストールし
た際の起動コマンド/usr/‖bexec/mysqldを 指定しています。

0では、まずpsコマンドの‐axオプションで全プロセスを表示し、さらに…oオプション
で表示項目を指定しています。ここでは「―o command」 と指定しているため、コマンド

名の項目のみを表示することになります。

0全プロセスのコマンドだけを表示

これは、プロセス監視では余計な文字列や数値が入つていると誤検知をする恐れがある

ため、余計な表示をしないようにするためです。なお、―oオ プションはBSDオ プション(→

後述)ではないため、Linuxで利用する場合もハイフン付きで指定します。

0のpsコ マンドの出力はパイプに渡 し、grepコ マン ドを実行 してシェル変数
commnameで指定されたコマンド名にマッチするかを調べています。さらにここでは、
もう一段パイプでつないで「grep― v‖^grep‖」としています。これは昔からよく使われる

定石のため、読者も前任者などから引き継いだシェルスクリプトに見ることが多いかもし

れません。

grepコマンドの‐vオプションは、そのパターンを含む行を除外するオプションです。
なぜこのコマンドを入れているかというと、例えば単純にmysqldプロセスを監視しよう

と「grep・ /uSプ libeXeC/mysqld"」 とすると、このgrepコ マンド自体がpsコ マンドのリスト

に載つてしまい、誤検知してしまうからです。

蛾
'psコ
マンドの結果を絞り込むためのgrepが リストに入つてしまう

そのため、grepコ マンド自体を除去するために、「grep― v‖∧grep‖」を指定していると

いうことです。0では最後にwcコマンドの、行数を数える…:オプションを用いてマッチし
た行数をカウントしてコマンド置換$oでシェル変数countに 代入しています。これがすな

わち、監視対象のプロセス数になります。

S ps ax ―o co■1:mnd

COⅣIMAND

/sbin/in■ t

[kthreaddl

lm■9ratユ On/0]

:(省略)

SShd: uSerl [priV]

sshd: user10pts/0

$ ps ax -o conmand I grep "/usr/libexec/mysqld"
grep /usr/libexec/mysqld

314

1籠 艤特定のプロセスが停止していないか監視する

0で、監視通知をするかしないかの判断をしています。シェル変数countに は、grepコ
マンドでマッチした行、つまリプロセス数が入つています。等しいかどうかを判断する
―eq演算子で比較して、これが0な らばプロセスが存在しないことを意味します。そのた

めプロセスが見つからないというメッセージをechoコ マンドで表示し、続けて監視通知

を行うalert.shを実行しています。

このようにして、プロセスの監視を行うことができます。このシェルスクリプトを

cronに 登録し、定期的に実行するのが一般的な使い方となるでしよう。

psコマンドの詳細

psコ マンドは、サーバ上で動作しているプロセスを表示するプログラムです。psコ マ

ンドには長い歴史があり、オプションの指定も癖があるため、なかなか扱いがわかりにく

いコマンドです。このpsコ マンドには、大別 して2種類のオプション形態があります。

UNIXオプション

BSDオプション

Sola五sで利用されていたオプション形式

その名のとおり、FreeBSDな どのBSD系列のOSで利用されてきたオ

プション形式

FreeBSD/Macで は、BSDオ プションが利用できます。一方のLinuxでは、この折衷案

としてどちらのオプション形式も利用できるようになっています。ただし、Linuxのpsコ

マンドは「UNIXオ プションはハイフン付きで、BSDオ プションはハイフンなしで利用す

る」というルールがあります。また、少々ややこしいのですが、FreeBSDな どのBSD系列

のOSでBSDオ プションを利用する場合も、ハイフンは省略するのが普通です。

まずUNIXオプションの例を次にあげておきます。

0主要なUNIXオ プションの例

続いて、BSDオ プションの例を次に示します。ここでは説明のためハイフンを付けてい

ますが、先述したとおリー般的には、実際にコマンドを実行する際はハイフンを付けません。

◎主要なBSDオプションの例

端末に関連していないプロセスを除いた、すべてのプロセスを表示―a

詳細情報を表示 (ユーザID、 親プロセスIDな ど)

―e 現在実行中のすべてのプロセスを表示

―a 自分以外のユーザのプロセス情報も表示

―X 制御端末を持たないプロセスも表示

詳細情報を表示 (ユーザID、 親プロセスIDな ど)

また、両方の形式で使えるオプションもあります。

315

―p プロセスIDを指定

―u 実行ユーザIDを指定

‐0 指定されたキーワー ドに関するカラムのみを表示

■

■

　

　

　

　

一

0椰PIR 00● サーバ管理

0両形式で使えるオプションの例

UNIXオ プションとBSDオ プションのどちらのオプション形式を使 うかは好みにもより
ますが、現在ではBSDオ プションのほうが好まれることが多いようです。そのためこのサ

ンプル例でもBSDオ プションを採用 し、―aと ―xを組み合わせて全プロセスを表示していま

す。なお先述したように、BSDオ プションを利用する場合は基本的にハイフンなしで利用

するため、サンプル例の「ax」 オプションもハイフンを付けていません。

注意事項

・プロセス監視の際、grepコ マンド自体を誤検知しないようにする手法には、サンプル例で

利用している「grep_v‖ Agrep"」 の他に、次のような手法もよく使われます。

ps ax -o command I grep "t/lusr/tibexec/mysqtd"

この手法では、監視したいコマンドの先頭の文字を、文字クラス[]に入れて指定します。

ここでは文字クラスの中に/(スラッシュ)しかありませんから、実質的には「grep‖ /usr/

‖bexec/mysqld‖ 」と書いているのと同じです。しかしこの場合には、pSコマンドで取得

できるgrepコ マンドの引数がカッコ付きとなるため、「/usr/‖ bexec/mysqld」 という文

字列にはマッチせず、誤検知を防ぐことができます。

このスクリプトでは、コマンド名で単純にgrepしているため、例えば次のようにコマンド

名と同じ文字列を引数にとつているプログラムがある場合には、プロセス有りと誤検知し

てしまいます。

. /hoge*check /us r/ L i bexec/mysq l"d

関連項目

316

114 サーバのping監視を行う

国o.

特定プロセスの起動本数の間
値チェックを行う112

園回墨ロロ
ps,grep.、vc

■■

…プロセス,多重起動.閾値.本数

□圧圏國■
定期的に起動されるコマンドの多重起動を監視し、闘値以上の場合は警告したいとき

■鵬罰田■

″:′bin′ 3h

″監視するプロセスのコマンドと、プロセス本数闘値

commname="/home/user1 /bi n/ca t c"
th resho Id=3

#プロセスの本数をカウントする
count=$〈 ps ax _。 cOmmand l grep ':scOmmnametl l grep ―v il^grep=' l wc ―L)- 0

″ プロセス本数が閾値以上ならば、警告処理を行う

lf [':scOunt'' 一ge 'iSthreshoLdi:]′ then
echo"EERRORコ プロセス Scommnameが多重起動 (Scount)‖ >&2

/homeノuser1/bi nノ a tert.sh

fi

解説

このスクリプトは、指定したプロセスが多重起動していないかどうかを監視するもので

す。ここではcalcと いうコマンドの起動本数を監視しています。もしこのcalcプログラム

が、3つ以上多重起動されている場合は異常とみなしてalert.shを 実行しています。読者

の環境にあわせて監視するコマンド名 (シ ェル変数commname)を 修正し、alert.shでエ

ラーメッセージを表示したり、メールを送信するなど、応用してみてください。

ここでは前提条件 として、calCと いうプログラムが5分おきに定期的に起動されて、何

かしらの計算を行うバッチ処理であるとします。このバッチ処理は、2つ までの多重起動

ならば問題ないのですが、3つ以上多重起動すると極端に処理が重くなったり、作業中の

データ破壊をしてしまうなどの問題がある処理と仮定します。

317

]―

→

一　

　

　

　

　

　

　

　

一　
　

　

　

　

　

　

　

一

C榊

『

薇R000サーバ管理

状況として、このcalcコ マンドをリリースした当初は、1回の処理に10秒 もかからなか

ったため、定期実行間隔を5分 として何も問題ありませんでした。しかし長いあいだシス

テムの運用をしていると、データベースやログファイルの肥大化によって、バッチ処理時

間がどんどん長くなっていく、というのはよくあることです。

0当初より負荷が高まつて困ることになる

蛉緻辣 Ca:cコマンド

コマンドは 10秒で終了

辟 顆 躙 輻

当初は余裕があった

|

5分後 10分後 15分後

~~~「 ~~~~~~7
20分後

コマンドが5分以上かかる

5分後 10分後 15分後 20分後

起動間隔より実行時間が
長くなると破綻

318

そしてあるとき、calcコ マンドの処理時間が5分以上かかるようになつてしまうと、5

分間隔の起動では処理 しきれず、多重起動されたプロセスが積み上がって最悪ではマシン

がハングアップしてしまうでしょう。

このようなケースで、プロセスの本数を監視するのがこのサンプル例です。リストでは、

まず0で、監視するコマンドと、プロセス数の閾値を定義しています。読者の環境に応じ
て、この値を修正してください。短い間隔で定期的に起動するようにcron登録している
バッチ処理などが、対象となるでしょう。

続いて0で、pSコマンドを利用してプロセス数を確認します。psコ マンドの使い方と
プロセスの数を調べるやり方については、P.313で詳しく説明していますのでそちらを参

照してください。ここではpsコ マンドの結果を、grepコ マンドでパイプ処理して、結果
の行数をwcコマンドの行数を取得する‐1オプションを利用して取得し、シェル変数count
に代入しています。これが現在のプロセス数となります。

0で、シェル変数countと 、最初に定義したプロセス本数の閾値thresholdを 比較して
います。ここではtestコ マンドの「AがB以上かどうか」を判断する演算子‐ge(以上)で比
較しています。このtestコマンドの大小比較の演算子については、P.143で解説していま



112鬱 特定プロセスの起動本数の間値チェックを行う

すのでそちらを参照してください。もしプロセス数が3以上ならば、閾値越えとして警告

表示を行い、警告処理スクリプトalert.shを 実行しています。このようにして、定期起動

するコマンドの多重起動をチェックできます。

前ページの図で紹介したバッチ処理の「追い越し・追い付き」は、ときにデータ破壊な

ど重大な障害を招くことがあります。重要な処理を行う場合には、このような監視と共に、

ロックファイルなどの利用でそもそも多重起動できないようにするなど、設計段階での計

画が必要です。

注意事項

FreeBSDや Macのwcコマンドで―lオプションを利用すると、先頭にスペースが入るため、

次のようにエラーメッセージに余計なスペースが入つてしまいます。

輪FreeBSDやMacの場合の表示

これが気になる場合は、0のパイプ処理の最後に、trコマンドでスペースを削除する処理

を追加するとよいでしよう。

。このケースとは逆に、「プロセスが複数あるのが通常だが、ある問値以下になると異常なの

で通知したい」というケースもあります。例えば何かしらの常駐型デーモンプログラムで、

通常は最低5つのプロセスが立ち上がつているシステムなどでは、プロセスが4つ以下にな

れば異常としてアラートをあげるべきでしよう。その場合は、このサンプル例のOで大小

比較している部分の「以上 (‐ge)」 を「以下 (10)」 と逆にするだけで対応できます。

麟関連項目

054

111

今年がうるう年かどうかを調べる

特定のプロセスが停止していないか監視する

319

室



プロセスを監視し、プロセスダ
ウン時に自動的に再起動させる

□回■ロロ
service.ps.wc,grep.dato.ocho …

■
プロセス.監視.再起動,自動化

□E回囲■
Webサーバなどの運用時、プロセスがダウンしたことを検知して再起動させ、障害対
応を自動化させたいとき

…

″:′ bin′ sh

″監視するプロセスのコマンド

commname=''/usr/sbin/httpd''

#監視プロセスの起動コマンド
start='iservice httpd start"

#監視対象コマンドのプロセス数をカウントする
COunt=S(pS aX ~。  COmmand l grep ''SCOmmnameli l grep ―V ''^g rept' l wc ―L)¨

#grepコ マンドの出力結果がゼロ行の場合にはプロセスが
#存在しないため、異常とみなしてプロセスを起動する

if [ `'$counti! ―eq O ]′  then
″ 日付を入れてログ出力

date_Str=$(date i+%Y/%m/%d %H:%‖ :%SI)――――――-lD

eChO‖ [Sdate_Str]プ ロセス SCOmmameが 見つかりません‖ >&2
eChO li[$date_Str]プ ロセス SCOmmname を起動 'i >&2

″監視プロセスの起動

$sta rt
fi

# ./1Process― restart.sh

12014/02/0321:10:511 ブロセス /usr/sbin/httpdが見つかりません
[2014/02/0321:10:51]ブ ロセス /usr/sb■n/httpd を起動
Starting httpd: [  OK  ]

320

■
卜

●
●

―
　

　

●

■
１

１

　

・
　

一

llo. I

fl3 I

I



113螢 プロセスを監視 し、プロセスダウン時に自動的に再起動させる

このスクリプトは、シェル変数commnameで指定されたコマンドのプロセス監視を行

い、プロセスが見つからない場合には自動で再起動を行って復旧させるものです。ここで

は、webサ ーバとしてよく使われる、Apache httpdサ ーバを対象プロセスと想定します。

なお、このスクリプトは、基本的にcronに 設定して自動実行されることを仮定しています。

プロセスの監視は、Webサービスを提供するうえでとても重要な要素です。シェルス

クリプトでのプロセス監視はP.313で解説したので、ここではその結果を利用して、プロ

セスを自動再起動させる方法と、その際の注意点について解説します。

サーバ運用において、「自動化」は非常に重要な技術です。読者がはじめてサーバを構

築する際は、あまりそのありがたみは感じられないかもしれません。そのサーバはおそら

くl台 しかなく、夜にプロセスが落ちていても、翌朝に気がついたら起動しなおせばよい

レベルのものかもしれません。

しかし運用期間が長くなってくると、えてして利用者の要求は高まり、サーバは何十台

にもなります。夜間休日にも、プロセスダウンヘの即時対応が求められるようになるかも

しれません。また、動いていると思っていたプロセスがいつの間にか落ちていた、という

見落としも起きるでしよう。そのような障害への対策として、このサンプル例が役立つか

もしれません。

サンプル例では、まず0で監視するプロセスのコマンドを指定します。ここでは

Apache httpdを 対象とします。読者の環境に応じてコマンドのパスは変わるでしようか

ら、シェル変数commnameは 適宜修正してください。

0では、プロセスの起動を行うコマンドを指定します。ここではLinuxの serviceコマ

ンドを使ってhttpdを起動させるよう設定しています。MacやFreeBSDの 場合には「注意

事項」を参照してください。

(0)で、シェル変数commnameで指定したプロセスが存在するかをpsコマンドで確認し

ます。シェル変数countに現在のプロセス数が代入されているため、これを0の it文で比

較しています。testコ マンドの中eq演算子で0と比較し、Oだった場合にはプロセスが存在

しないとみなしてit文の中のコマンドが実行されます。

0では、現在の日付を入れてechoコマンドで状態表示をしています。このようなシス

テム管理のスクリプトでは、後で障害時刻を調べるときのために時間が重要ですから、

dateコ マンドを利用して現在の日時をシェル変数date_strに 代入して表示しています。な

お、この際のdateコ マンドの%Yな どによるフォーマット指定については、P.88で解説し

ていますので詳しくはそちらを参照してください。

Oで監視プロセスの再起動を行っています。事前にシェル変数startで定義しておいた

コマンドをそのまま実行しています。こうしてプロセスの停止を検知し、自動的に再起動

させることができます。

このようなスクリプトは、「5分に1回」など定期的に動かしたいと思われるでしよう。

このようにスクリプトを定期的に動作させるには、cronの仕組みを用います。サンプル

例のようにApache httpdを再起動させたい場合は、root権限が必要なため、rootユ ーザ

321

鰺解説



CWPttR 00● サーバ管理

のcronと して設定するとよいでしょう。具体的には、/etc/crontabに 次のように記述しま

す。

十/5 * ヤ キ * rc)。 t ′usr/

tog 2>&1

この例では分指定を「γ5」 と記載しているため、5分おきにプロセスチェックが行われ

ます。

なお、ここでは対象のプロセスとしてApache httpdを サンプルにあげました。Apache
などのWebサ ーバは、リクエストに対してコンテンツを返すだけのソフトウェアであり、
このようにある程度気軽に再起動をしてもかまわないケースが多いでしょう。
一方、例えばMySQLな どのデータベースサーバに、このような自動再起動スクリプト
を安易に適用するのは危険です。データベースサーバが予期せぬ停止をした場合には、デ

イスク容量があふれたり1/0エ ラーが多発しているなど、何かしらの理由があるのが普通
です。その原因を調べずにこのような自動スクリプトで強制的に再起動を繰り返してしま

うと、最悪の場合、データベースの破壊という致命的な障害を招いてしまうかもしれませ

ん。

そのため、MySQLサーバなどのデータベースサーバでは、プロセス監視はするべきで
すが、このサンプル例のようなプロセス異常時に再起動させるスクリプトまで適用させる
のは注意が必要です。プロセスダウンなどの異常時にはその状態を保持しておき、手動復
旧を前提とするべきシステムもあるため、自動再起動をさせるかどうかは事前によく検討
しましょう。

一般的には、Webサーバやプロキシサーバなどは自動再起動をしてもあまり問題には
なりません。一方、データベースサーバの自動再起動を行う際は、きちんとした事前検証
と設計が必要でしょう。

1注意事項

このサンプル例では、Linux(CentOS)でApache httpdを rpmイ ンス トールした際に提
供される起動スクリプトを再起動に用いました。FreeBSDやMacでApache httpdの 起動
スクリプトを用意していない場合、apacheCtlコ マン ドを直接実行するとよいでしょう。
例えばMacな らば/usr/sbinに apachect!コ マンドがあるため、(0)を次のように修正しま
す。

start="/usnlsbi n,/apacect I start"

関連項目

033 ファイルをバックアップする際にファイル名に日時を入れる
111 特定のプロセスが停止していないか監視する

322



サーバのPing監視を行う114
‖0日

国回饉目D
plng.sloop.date …サーノヽ翻 .ネットワーク.終了ステータス

□■回回ロ
ネットワークの状態に異常はないか、あるいはサーバが落ちていないかを、pingコマ

ンドを利用して監視したいとき

″:′bin′ 3ト

#ping実行結果のステータス。0で成功とみなすため、1で初期化する
resu I t=1

″対象サーバがコマンドライン引数で指定されていなければ

″エラーとして終了

if [ ―z liSll: ]′  then
echo::対象ホストを指定してくださぃ

‖>82

exit l

fi

″ pingコ マンドを3回実行するループ)成功したらreSuLtを 0と する

i=0

whi te [ $う  ―Lt 3 ]

do

″ pingコ マンドを実行。終了ステータスのみが必要なため、

″表示はノdevノnuLLヘ リダイレクトして捨てる

pi ng ―c l ::Sl:: > ノdevノ nuLL

#pingコマンドの終了ステータスを判断。成功ならresuLt=0と してループから抜ける。
″失敗ならば3秒のウェイトを入れて再実行

if t $? -eq 0 1; then
resu L t=0
break

e Lse

steep 3

i=$(expr $i + 1)

0

323

~¬

|

|~



CHAPTE■ 09● サーバ管理

0
fi

done

″現在日付を「2013′02′0113115:4句 の形で組み立て
date_str=S(date :+%Y′ %ml′ %d %H:%‖ :%Sl)―――――- 0
″pingの実行結果をSresuLtか ら判断して表示する

if E $resutt -eq 0 1; then
echo "E$date strl Ping 0K: $1"

eIse
echo "E$date_strl Ping NG: $1"

fi

解説

このスクリプ トは、pingコマンドでサーバが正常に稼働 しているかの監視を行うもの

です。コマンドライン引数に対象サーバのIPア ドレスまたはホス ト名を指定 して実行する

ことで、対象サーバヘのping結果をOK/NG表示します。これにより、対象サーバのping
応答を監視して、サーバが正常に稼働 しているかどうかを判断できるでしょう。

pingコ マンドでは対象のサーバを指定 して、iCMPと いうプロトコルでパケットを送信
します。ICMPに はいくつかのメッセージタイプがありますが、pingコ マンドではEcho
Requestパ ケットを送信 して、その応答のEcho Replyが返ってくるかどうかで通信状態、
を確認します。pingコ マンドでよく使われるオプションを、次に示します。

Opingコマンドの主なオプション

なお、シェルスクリプトでpingコ マンドにより対象ホストを監視する場合には、多少の

工夫が必要です。例えば、ホストは正常でもネットワークの状態などでたまたま応答がな

いことがあります。1回エラーになっただけで監視異常のアラートをあげてしまうと、実

は正常に動いていたという誤検知が多くなります。そのため、実用上は「数回投げて1発

も返つてこなければ異常あり」と判断するのが妥当です。サンプル例でも1、 2回失敗して

も無視して、3回連続失敗ならば異常とみなす、という運用を仮定しています。

サンプルのOで、まずpingコ マンドの実行結果ステータスを格納するシェル変数result
を定義しています。このサンプル例では成功した場合に0と することにして、ここではま

ず1で初期化します。

0で、testコ マンドの‐z演算子を利用してコマンドライン引数の対象ホストが指定され
ているかどうかをチェックしています。Slは コマンドライン引数の1つ 目の値が入る、シ
ェルの特殊変数です。―zは空文字列ならば真となるため、このOの i敏:が真となる場合は、

‐c<count> count個のICMPパケットを送信した後に停止する
‐|<秒数> パケットを送るたびに、指定秒数だけ待つ。デフォルトは1秒

―q quletモ ード。開始時と終了時のみメッセージを出力し、途中経過は表示しない

324

オプション



電1奪 饉サーバの ping監視を行う

引数が指定されていません。そのためit文の中では「対象ホストを指定してください」とエ

ラー出力して、eXit lと してエラー終了させています。

Oが、pingコ マンドを実行するwhneループです。ここでシェル変数iはループカウンタ
で、0に初期化しています。

0で、pingコ マンドの中cオプションを利用して、1回だけpingを 実行しています。この
終了ステータスがシェルの特殊変数$?に入つているため、it文で0か どうかを判断します

(0)。 終了ステータスが0な らば、pingコ マンドは成功ですからシェル変数resultを 0(成

功)と して、break文でwhileループから抜けます。一方、pingコ マンドの終了ステータス

が非ゼロ (すなわちpingコ マンドが失敗、Echo Replyが返ってこないなど)の場合は、
sieepコ マンドで3秒待ってから再びpingを繰り返します。

0で、dateコマンドを用いて現在の時刻を「2013/02/0113:15:44」 のようなフォーマ
ットで組み立てています。このような監視スクリプトでは、問題発生時に後で確認すると

きのために、OK/NGを判断した日時を一緒に入れておくことが重要です。そのためこの
時刻を後で出力時に利用します。なおこのdateコ マンドでのフォーマット指定について

は、P.88で解説していますので詳しくはそちらを参照してください。

最後に0で、pingコ マンドの結果を出力しています。正常か異常かは、シェル変数
resultを 用いて0な らば正常、1な らば異常と判断しています。

こうして、対象ホストの稼働監視をpingコ マンドで行うことができます。定期的に実行

するようにcronな どに登録し、失敗の場合はアラートメールを送るスクリプトを実行す

るなど、読者の環境にあわせて修正してみてください。

注意事項

このスクリプトを利用する前には、まず対象のサーバにpingコマンドを手で実行してみて、

正常な応答が返つてくることを確認してください。最近のOSではセキュリティを考慮し
て、デフォル トではpingコ マンドに応答を返さない設定になつている場合があります。

このスクリプ トのテス トをする際は、あるサーバがpingに応答したりしなかつたりという

状況が作りたくなるでしょう。例えばLinuxで は、次のコマンドでカーネルバラメータを

一時的に変更すると、ping応答をしないように設定できるため、簡単にテストできます。

関連項目

033 フアイルをバックアップする際にファイル名に日時を入れる
057 pingで特定ホストヘの応答平均時間を取得する

325



田0.         |

115 1Webアクセス監視を行う

…curl,date.echo Web監視,サービス監視.HTTPステータスコード

□■回田■
運用しているWebサービスについて、アクセステストを定期的に実行し、異常時には
警告通知をあげたいとき

■□日四■

″:′ bi n′ sh

″監視対象 URLを 指定する

urL=‖ http://www.exampLe.org/webapps/check"

″現在日付を「2013/02/0113:15:4句 の形で組み立て

date str=S(date :+%Y/%『 1/%d %H:%‖ :%SI)

〃監視 URLに CurLコ マンドでアクセスし、終了ステータスを変数 curLresuLtに 代入

httpstatus=S(curL ―s 'iSurL:: ―o /dev/nuLL ―w :i%{http_code}:|)一 ――- 0
curLresutt=S?

#curLコマンドが失敗していればHTTP接続自体が異常とみなす
if E "$curlresutt" -ne 0 J; then
echo i:[Sdate_str] HTTP接 続異常 :curL exit statusEScurLresuttコ

‖

/hOme/user1/bi n/a Lert.sh

″ 400番台、500番台のHTTPス テータスコードならばエラーとみなして警告

etif [ i=Shttpstatus:1 -ge 400 コ′ then
echo"[Sdate_str]HTTPス テータス異常 :HTTP StatuS[$httpStatuS]"

/hOme/user1/bi nノ aLert.sh

fi

S ./web― curlcheck.Sh

[2014/02/06 17:50:32]HTTPス テータス異常 :HTTP statusi503]

ALERT...

解説

このスクリプトは、Webサーバヘのアクセス監視を行って、異常時には警告を発生さ

せるものです。ここでは異常時にはalert.shと いうスクリプトを実行し、これで通知を行

326



饉奪崚Webアクセス監視を行う

うものと仮定しています。読者の環境に応じて、このalert.shの 中身をメール送信するよ

う設定するなど、適宜修正して ください。

このサンプル例では、curiコ マンドでHTTPステータスコー ドを確認しています。その
ため単にWebサーバが稼働 しているかどうかだけでなく、そこで稼働しているアプリケ
ーション状態まで監視できることがポイントです。なお、このようなWebサ ービス監視
について実際にどのように運用すべきかについては、APPENDIXの P.410に 詳 しく説明し
ていますので、そちらを参照して ください。

Webサービスを提供するにあたっては、wgetコ マンドなどでHTTP接続できるかどうか
だけのテス トでは不十分です。例えば、次のようにバックエンドのデータベースに障害が

発生したケースを考えます。

辟バックエンドサーバでの障害も含めてテストしたい

HTTP I
ステータス
2000K

データベース障害時

HTTP
ステータス

5O0 lnternal Server Error

ここでもしポー ト監視 しか行っていないと、データベース障害時もWebサ ーバには正
しくTCPポ ー トの80番で接続できるため、障害を見逃してしまいます。HTTPス テータス
コー ドまで監視 していれば、WebサーバはHTTPス テータスコー ド500(Internal Server
Error)な どを返すでしょうから、アプリケーションが正しく動作していないことを検知

できます。

そのため、Webアプリケーションの監視ではHTTPス テータスコードまでを見る監視が
必要です。サンプル例ではこのチェックを行っています。

まず0で、監視対象のURLを シェル変数urlに定義しています。ここで対象のURLは、
前図で見るようにバックエンドサーバまで問い合わせるアプリケーションのパスを指定し

たほうがよいでしょつ。

327



01晨潮朧 000サ ーバ管理

〓

― 0では、dateコマンドを用いて現在の時刻を「2013/02/0113:15:44」 のようなフォー

マットで組み立て (→ P.51)、 これを警告表示の時刻へと利用しています。

Oで、curlコ マンドによりHTTPス テータスコードを取得してシェル変数httpstatusに

代入しています。curlコ マンドにはさまざまなオプションがありますが、ここでは次にあ

げた3つのオプションを利用しています。

0スクリプトで使用したCurlコマンドのオプション

このうち0では、‐wオプションで%[http_COdelと 指定して、HTTPステータスコードを

出力しています。これ以外にも―wオ プションでは、 トータルでかかった時間やダウンロ
ー ドサイズ、Content‐Typeな どさまざまな値を指定できます。詳 しく知 りたい方は、

man curlと してcurlコ マンドのマニュアルを読んでみて ください。

また0では、あわせてcurlコ マンド自体の終了ステータス$?も シェル変数curlresultに

代入しています。これは、何らかのネットワーク障害や、URLの誤りでcurlコ マンド自体

が失敗した場合のチェックも行いたいためです。このcurlコ マンドの終了ステータス確認

は0の it文で行っており、curlコ マンド自体が失敗している場合には「HTTP接続異常」と

してエラーメッセージを表示し、警告をあげるスクリプトalert.shを 実行しています。

0では、HTTPス テータスコー ドにより正常か異常かを判断しています。一般に、
HTTPス テータスコードは400番台および500番台が異常系のコードです。よく見られる

異常系のHlTPス テータスコードを次に示します。

◎チェックすべき異常系HTTPステータスコード

例えば503(Ser宙 ce Unavailable)は 、サーバが高負荷状態となったときによく見られ

ます。また500(Internal Server Error)は 、プログラムに何らかのバグがあり、正常にレ

スポンスを返せない場合にも発生します。

これら400番台および500番台のHTTPス テータスコードが返ってきた場合は異常とみ

なしたいため、(0)ではtestコ マンドの中ge演算子でHTTPス テータスコードが400以上かど

,、

メ:,|‐

―S sitentモード(静かなモード)。 途中経過などを表示しない

‐0 取得したファイルの出力先を指定

―W コマンド完了後に出力する表示フォーマット指定

400 Bad Request リクエストが不正。存在しないメソッドなど

403 Forbidden アクセス拒否。サーバの設定で接続拒否しているなど

404 Not Found ファイルが見つからないなど

500 lnternat Server Error サーバの内部エラー。CGlで のエラーなど

502 Bad Gateway
Proxyサーバなどにおいて、上位サーバから不正なレスポンスを
受け取つた

503 Service Unavaitab[e サーバがビジー状態などで処理を受け付けることができない

328

コード・ 謝購                     ― |||・ ||||‐ _



鮮議惨Webアクセス監視を行う

うかを判断しています。400以上ならば、異常であるとみなしてメッセージを表示し、警

告をあげるスクリプトalert.shを 実行しています。このように、HTTPステータスコード

での異常判断は、コード値力沼00、 もしくは500以上かどうかで行うのが比較的ポピュラ

ーです。

このようにして、Webサービスの監視を行うことができます。cronに 登録するなどし

て定期的に実行されるようにして、読者の運用するサービスに利用してみてください。

注意事項

FreeBSDに は、cur!コマンドがデフォルトではインストールされていません。FreeBSD

標準のfetchコマンドではH丁丁Pステータスコードを取得できないため、次の手順でports

からcurlコ マンドをインストールしてください。

瘍portsで cur:コマンドをインストール

。Webサーバを運用していると、Webク ローラや、あるいは何らかの悪意のある攻撃者がさ

まざまなアクセスをしてくるのが普通です。そのためアクセスログフアイルには、多くの

404(Not Found)が 見つかることでしよう。これをあまり気にする必要はありませんが、

攻撃の徴候がつかめたり、ページのリンク切れが見つかることもあるため、アクセスログ

ファイルも定期的にチェックしたほうがよいでしよう。

329



330

‖0.        |

1161デイスクの容量監視を行う

…df.al″k.read.ocho.rm …ディスク.使用■.使用率,容量

ディスクの使用率を定期的に監視して、間値以上の使用率となつたときに警告を出し

たいとき

□眠覇回■

″:′ bin′ sh

″監視するディスク使用量の間値パーセンテージ

used Limit=90

″ dfコ マンドの出力結果一時ファイル名

tmpfi Le=''df.tmp.S$'=

〃 dfコ マンドでディスク使用量を表示。1行日はヘッダなので除外する

df ―P l awk :NR >= 2 {print $5′ $6}: > `'Stmpfi tei' ――――― o

#dfコ マンドの出力の一時ファイルから、使用率を確認する
whi[e read percent mountpoint
do

″ ''31%"を "31“ に、末尾の%記号を削除する

percent_va [=${percent%Y%}

″ディスク使用量が規定値以上ならばアラート

if [ liSpercent_vaL': ―ge ''Sused_Li:ni tli ]′  then ――――――- 0
″現在日付を「2013/02/0113:15:4月 の形で組み立て
date str=S(date l+%Yノ %m/%d %H:%‖ :%St)

echo "E$date_strl Disk Capacity Atert: $mountpoint ($percent used)"
/home/user1 /bi n/a Iert , sh

fi
done < "$tmpfi Le"

″一時ファイル削除

rm ―f ''Stmpfi te"

いつ使うか

$ ./df―diskcheck.sh

〔2013/02/01 13:15:44]D■ sk Capacity Alert: /usr/■ ocal (92t used)

AI"ERT...                                  ‐‐‐‐ ‐‐.   ‐



110。 ディスクの容量監視を行う

瞼」墜
このスクリプトは、サーバがマウントしているディスクについてそれぞれ使用率を監視

して、指定した値よりも使用率が大きくなつているデイスクがある場合に警告を発するも

のです。ここではdfコマンドでディスクの空き容量を調べ、シェル変数used_limitで指定

された閾値パーセンテージの値より使用率が大きい場合には、alert.shと いうスクリプト

を実行して警告を発生させます。

なお、このサンプル例でalert.shは、通知メールを送信するなど、何かしらの警告を行

うスクリプトであると仮定しています。読者の環境に応じて、このalert.shでメールを送

信するなど、適宜修正してみてください。

サーバ運用に当たって、ディスク使用量は見落としやすい監視ポイントです。サービス

開始当初はディスクの空き容量が大きいため、その使用量は誰も気にしませんし、監視を

怠ることも多いでしよう。しかし何年ものあいだサービスを行っていると、ログフアイル

や一時ファイル、アプリケーションの出力したデータファイルなどが積み重なってディス

クを圧迫します。そしてある日突然サーバがダウンし、調べてみるとディスク使用量が

100%と なっていた 。̈というのはありがちな失敗例です。

そこで、サーバ運用の当初から、このサンプル例のようなディスク監視スクリプトを

cronに仕掛けておくと、将来何かの保険として役立つでしょう。

サンプルのOでは、まずこのスクリプトが監視するディスク使用率の閾値を、シェル変
数used_limitに 定義しています。ここで設定したパーセンテージの値よりもディスクの使

用率が高ければ、警告を発します。例えばused_limitに 90を設定していて、対象ディスク

の容量が50GBな らば、90%す なわち45GB以上ディスクを使用 していると警告を発生さ
せます。

0では、dfコ マンドの出力を保存する一時ファイルのファイル名を定義しています。こ
こではシェルの特殊変数$$を利用して、プロセスIDを ファイル名に用います。この$$の

利用例については、P.129を 参照してください。

0で、dfコ マンドの出力をawkコマンドで処理して使用率を抽出します。dfコマンドは

ディスクの使用量などを表示するコマンドで、オプションなしの出力例は次のようになり

ます。

輪dfコマンドの実行例

331



0薔″薇800● サーバ管理

出力は左列より、「ファイルシステム・デイスクの全容量 。ディスクの使用量・ディス

クの空き容量・ディスクの使用率 (%)。 マウントポイント」となります。またdfコ マンド

には、次のようなオプションがあります。

Odfコ マンドの主なオプション

サンプルでは‐Pオプションを利用しています。先ほどの実行例の最終行を見ればわかる

ように、ファイルシステム名が長い場合、dfコ マンドは自動的に改行を入れてしまいます。

シェルスクリプトで扱う際にはこれでは不都合ですから、―Pオ プションを利用して改行し

ないようにしているのです。

0では、まずdfコ マンドの1行日はヘッダのため不要ですので、awkコ マンドで「NR
>=2」 とフィルタ指定して2行目以降を表示しています。なお、NRと はawkの組み込み変

数で、現在の処理行を指します。そしてディスクの使用率とマウントポイントを取得する

ため、第5カ ラム ($5)と 第6カ ラム ($6)を awkコ マンドでprintし ています。結果を後で

使いますから、一時ファイルStmpmeに リダイレクトしています。ここまでの結果として、
一時ファイルStmpileの 中身は、次のようになっています。

IEII -?#72-( )vot\4

‐h
人間が読みやすい形式 (human― readabte)で サイズを表示する。例
えば2ギガバイトならば「2G」 と表示する

―k 1024バイト(1キロバイト)単位でサイズを表示する

|ノ ード情報を表示する

―P
POSiX出力形式を用いる。フアイルシステム名が長くても改行を入
れずに1行で表示する

□―カルファイルシステムのみを対象とし、NFSなどは表示しない

3% /

0% ノdev/shm

22% /boot

28% /mnt/nfs

0で、一時ファイルStmpFileの 中身をwhile文に入カリダイレクトして読み込んでいま
す。readコマンドを用いて、シェル変数percentお よびmountpointに、それぞれ利用率

とマウントポイントを代入します。

0では、利用率の文字列からパーセント記号(%)を消しています。前ページの図で見た

ように利用率はパーセント表示されますが、これは数値比較する際に邪魔なため、削除し

て数値のみにします。なお0ではパーセント記号(%)の削除に、シェルのパラメータ展開
を利用しています。

シェルのパラメータ展開とは、${parameter%word〕 と書くことで、「変数parameterの

値から、wordに後方一致でマッチする部分を削除した値」を得る機能です。Oでは%を削
除したいのですが、パラメータ展開では%自体がメタキャラクタであるため、エスケープ

332



籠麟崚ディスクの容量監視を行う

して${percent%¥%}と 記述しています。これで「シェル変数percentの 、一番後ろの%を

削除した値」という意味になります。なお、このパラメータ展開を利用した文字列処理に

ついては、P.62の注意事項で説明していますので、そちらもあわせて参照してください。

これでディスクの使用率が数値として得られたため、0ではtestコ マンドの「以上」を

意味する‐ge演算子で、閾値と比較しています。使用率が閾値以上ならば警告を表示して、

アラートを発生させるスクリプトalert.shを 実行しています。なお(0)では、dateコ マンド

を用いて現在の時刻を「2013/02/0113:15:44」 のようなフォーマットで組み立てていま

す。このdateコマンドでのフォーマット指定については、R88で解説していますので詳し

くはそちらを参照してください。この結果は、警告表示の時刻へと利用しています。

最後にOで、dfコ マンドの一時ファイルを削除しています。これを行わないと、一時フ

ァイルがいつまでも消えずに残ってしまいディスクを圧迫してしまうので注意してくださ

い。

このようにして、デイスク使用率を監視することができます。cronに 登録して、定期

的に実行するよう設定しておくとよいでしよう。

FreeBSDやMacでは、特殊なデバイスファイルシステムdevfsや mapの Capacity(使 用率)

が常に100%となつています。これは監視に不都合ですので、除外したほうがよいでしよ

う。具体的には、0のdfコマンドを次のように変更してください。

関連項目

023 絶対バスで起動されても相対バスで起動されても、同じ動作をできるようにする

033 フアイルをバックアップする際にフアイル名に日時を入れる

049 二重起動が可能な一時フアイル作成する

333

は注意事項



‖o.

117 メモリ・スワップ監視を行う

国回国■日
vnstat.al″k.date.echo …メモリ.監視.スワップ

□E回國ロ
メモリの空き状態を定期的に監視して、スワップが発生しているときに警告を出した
いとき

■鵬覇田D

″:′ bin′31

〃監視するスワップ発生回数。これ以上ならば警告する

sl'raPcount_L'i mi t=1 0

″ VmStatコ マンドの出力からスワップイン・スワップアウト値を取得する

swapcount=S(vmstat 1 6 1 awk :NR >= 4 (sum += $7 + S8) END{print sum)1)―  o

#ス ワップ回数が聞値を越えていれば警告
if [ ilSSWapCOunt`! ―ge liSSWapCOunt_timit'' コ′ then ―――――- 0

″現在日付を「2013/02/0113:15:4句 の形で組み立て
date str=$(date :+%Y/%m/%d %Hl%M:%Sl)

〃スワップ発生の警告出力

echo l'ESdate_str]Swap ALert: $swapcount (si+s。 )'1 ___o

/home/user1/bi n/atert.sh

fi

S ./swaPcheckosh      ‐       ‐

12014/02/06 22:40:181 swap Alert: 352 (s■ +so)

ALERT...

解説

このスクリプトは、現在のサーバのメモリ状態を確認し、メモリ不足が起きていないか

どうかを監視するものです。ここでメモリ不足とは、サーバで発生しているスワップイ

ン・スワップアウトの回数で判断する仕様とします。頻繁にスワップが発生しているよう

であれば、メモリ不足と判断して警告メッセージを表示します。

スワップ回数はvmstatコマンドで取得し、シェル変数SWapCount_Hmitで 指定された
値よりも直近5秒間のスワップイン・スワップアウトの回数が大きい場合には、alert.sh

334



籠 7檬 メモリ・スワップ監視を行う

蜀vmstatコマンドの実行例 (Linuxの場合)

上記ではvmstatコ マンドの引数に「13」 を指定しています。最初の引数がインターバル

で、何秒ごとに計測するかを指定します。2つ 目の引数が何回計測するかで、ここでは1

秒ごとに3回計測しています。vmstatコ マンドではさまざまなデータがとれますが、ここ

では「一swap―」列のみに注目します。siがスワップイン、soがスワップアウトの回数で

す。そのためこの第7カ ラムと第8カ ラムの数値を足した値を指標とします。

なお、vmstatコ マンドの1行日、最初の出力だけは、現在の状態ではなくサーバ起動時

からの平均が出力されます。ですからこの1行日は、現在の状態とかけ離れた値がでるこ

とがしばしばです。そのため監視などの用途では、vmstatコ マンドの1行目は読み飛ばす

のがセオリーです。

0では、awkコマンドで「NR>=4」 とフィルタして、ヘッダの2行ぶんとコマンド1行

日の出力をスキップし、4行日からデータ取得するようにしています。そしてスワップ回

数のsiと SOは第7カ ラムと第8カ ラムにありますから、この$7と $8の値をsumと いうawk

の変数に足しています。最後にENDブロックでsumを出力することで、直近5秒間のスワ

ップ回数を表示できます。このスワップ回数は、コマンド置換$oを用いてシェル変数

335

というスクリプトを実行しています。なお、このサンプル例でalert.shは、通知メールを

送信するなど、何かしらの警告を行うスクリプトであると仮定しています。読者の環境に

応じて、このalert.shの中身は適宜修正してみてください。

●では、まずスワップ回数の監視閾値を設定しています。このスクリプトでは、1秒お

きに5回計測したスワップイン・スワップアウトの回数をすべて足した値が閾値以上なら

ば、警告を行うとします。ここでのスワップ回数の閾値10と いうのは、ときどき警告が

出るくらいなら問題ないでしょうが、常時警告がでるようならば問題だろうと考えていま

す。実際の閾値は読者の環境にあわせて修正してみてください。一般的には、Apache

httpdな どのWebサーバで静的コンテンツを返すだけの場合には、デイスク上のコンテン

ツをリクエストに対して送り出すだけで、あまリメモリが必要な処理はありません。その

ためスワップは発生せずにOが普通です。一方、Apache httpdで多くのCGIを 動かしてい

るWebサ ーバや、JaVaア プリケーーションなどを動作させているアプリケーションサーバ

は多くのメモリを使うため、スワップの発生には注意を払う必要があります。

0で、スワップの回数を取得するためにvmstatコ マンドを実行しています。vmstatコ マ

ンドは、サーバの現在のリソース状態を表示するコマンドです。OSに よって表示形式はか

なり異なるため、ここではLinuxの例を紹介します。FreeBSDや Macに ついては後述します。



CttF‖ R00● サーバ管理

swapcountに 代入しています。

0で、計測したスワップ回数が、事前に定義していた閾値を上回つているかどうかをif
文で判断して分岐しています。testコ マンドの「以上」を意味する‐ge演算子で、シェル変
数SWapCOunt(ス ワップ回数)と シェル変数sWapcount_limit(閾 値)を比べています。
スワップ回数が閾値より大きければ、まず0で、dateコ マンドを用いて現在の時刻を
「2013/02/0113:15:44」 のようなフオーマットで組み立てています。このような監視ス

クリプトでは、問題発生時に後で確認するときのために、日時を一緒に入れておくことが

重要です。なお、このdateコ マンドでのフォーマット指定については、P.88で解説してい

ますので詳しくはそちらを参照してください。

最後に(Dで、警告表示を行ってスワップ発生回数を出力しています。このようなスクリ

プトを、サーバのメモリ状態を監視するためにcronに 登録して定期的に実行してみると

よいでしよう。

FreeBSDやMac(の場合

FreeBSDのvmstatコ マンドは、Linuxと 表示形式が異なります。

OFreeBSDの vmstat実行例

FreeBSDで はsi/soではなく、pi(ページイン)/po(ページアウト)でスワップ発生回数
を取得できます。これは第8カ ラムと第9カ ラムにありますから、01を次のように修正し

てください。

Macに はvmstatコ マンドはなく、代わりにvm_statコ マンドが存在します。これは使
い方も出力もLinuxと はかなり異なります。

OMacのvm_stat実行例

ζ Vmstat 1 3
procs     memory

rbw    avπ、   fre
1 0 0    490M  420M

0 0 0    49011  4.20M

0 0 0    490MI‐   42011

page

flt  re

686   1

1    0

0   0

”

０

０

０

●

１

１

。

disks.     faults

fr  sr adO cd0   1,n   sy

718 819   0   0   20 .253

0   0   1   0    3  127

0   0   0   0    1  117

cpu

cs us sy ■d

236  1  3 97

137  0  0 100

119  0  0 100

S w_stat ―c 3 1                      . ‐ .  ‐  | .

MaCt' Virtual MemOry Stat■ St■ Cs: (page s■ ze of 4096.bytes‐ , lcache hits Oマ )

free act■ ve   spec inactive   マ′■re   fau■ t.s     copy    Of■ 1■  react■ ve

226ツ 19 274773  93077   265596 122511  108973K  2488901 69631334   5942?9

.226960 2フ 2018  92998   265543 125173    1341        フ     869       0

225657 276034  93783   265620 121881    60'3      720    2.336       0

page■ ns  pageout

1598690   209423

0        0

28         0

336



117● メモリ・スワップ監視を行う

Macの vm_statコ マンドでは、計測回数は―cオ プションで指定 して、インターバルはコ

マンドライン引数の1つ 目に指定します。なお―cオ プションは最近のバージョンで付加さ

れたもので、音のMacOSで は利用できないようです。

Macの vm_statコ マンドでは、FreeBSDと 同様に、ページイン (pageins)と ページア

ウト(pageout)の 回数を取得すればスワップの発生回数がわか ります。ただしMacの

vm_statコ マンドは出力形式もバージョンによって異なるようで、 10.9(Mavericks)では

カラム構成が大きく変わっています。そのため読者の環境でvm_statコ マンドを実行し、

pageinsと pageoutの カラム位置を調べて、0を修正してみて ください。

胆 :壁盟
・ このようにメモリ監視をシェルスクリプトで行うのは、小規模環境で補助的に用いるケー

スが多いでしょう。もつと大規模で本格的な監視システムの構築には、APPEND!Xの

P.410で紹介しているZabbixやNagiosの利用を検討してみてください。

・ Javaアプリケーションを動かしている場合のメモリ監視としては、スワップだけでなくガ

ベージコレクション (特にFu‖ GC)の頻度もパフォーマンスに影響します。これはJVM
(Java仮想マシン)の起動オプション「―verbose:gC」 でログ出力できます。本書では詳し

い解説は省略しますが、興味のある方はJavaの専門書を読んでみてください。

030 あるディレクトリ内の、n日前からm日前までに更新されたファイルー覧を取得する

033 フアイルをバックアップする際にファイル名に日時を入れる

337

機関連項目



■0日         |

118 1CPU使用率の監視を行う

mpstat tail,awk,echo.date.Iostat
■日回曰■
CPU.負荷.アイドル値,利用率.監視

CPU彙荷を定期的に藤滉して、アイドル値が低下しているときに警告を出したいとき

″:/bin/sh

″監視するCPU%idLeの 間値。この値以下ならば警告
idLe Limit=10.0

″ CPUの %idLeを mpstatコ マンドで取得。最終行の平均値を取り出す
cpu_ldte=S(mpstat 1 5 1 taiL ―n l l awk :{print sNF}1)―――――o

″現在の%idLeと 閾値をbCコマンドで比較
iS_atert=$(echo ''$cpu_idLe く $う dLe_Limitil l bc)

″警告アラートをあげるか判断

if [ :'Sis_atert': ―eq l コ′ then
〃現在日付を「2013/02/0113:15:4句 の形で組み立て
date str=S(date l+%Y/%m/%d %H:%‖ :%Sl)

″ CPU%idLe低 下の警告出力
echo ''ESdate_str] cPu %idLe ALert: Scpu_idLe (%)'I ――――――――― o
/home/user1/bin/atert.sh

fi

実行例

このスクリプトは、直近5秒間のCPUの使用率を調べて、CPU負荷を監視するものです。
ここでCPU負荷とは、CPUの アイドル値である%idle(CPUが アイドル状態=未使用状態
となっていた時間の割合)を計測する仕様とします。

サンプル例ではmpstatコ マンドでCPU%idleを取得し、シェル変数idle_limitで 指定さ

338

●

・　

　

　

　

一
　

・
　

　

一　

一

一　

●

●

　

　

　

　

　

・

|__,■ 1■ _● |‐
.Ⅲ●lr・ |:|■
■ヽ、|、・ 1lⅢ:|||||

::喜1■|||

|ヽ響

`:

解説

4.53(2)[2014/02/07‐



118惨 CPU使 用率の監視を行う

れた値 よりも、直近5秒間の%idle平均値が小さい場合には、CPUリ ソースが足 りないと

判断 してalert.shと いうスクリプトを実行 しています。なお、このサンプル例でalert.shは 、

通知メールを送信するなど、何かしらの警告を行うスクリプトであると仮定しています。

読者の環境に応じて、このalert.shの 中身は適宜修正してみてください。

アプリケーションサーバなどでは、プログラム内に予期せぬ無限ループがあったり、重

い処理を長いあいだ実行するなどした際、サーバの負荷が高まりCPU処理が追い付かな
い場合があります。このようなCPUリ ソース不足のケースではサーバ全体の処理速度が

落ち、ユーザヘの応答時間も長 くなつてしまいます。CPUがシステムのボ トルネックに

なっていないかどうかをモニタをするために、このようなサンプル例が役に立つでしょう。

CPUの利用状態を取得するには、Linuxで はmpstatコ マンドが便利です。mpstatコ マン

ドの出力は次のようになります。

01mpstatの実行例

上記ではmpstatコ マンドの引数に「13」 を指定しています。最初の引数がインターバ

ルで、何秒ごとに計測するかを指定します。ここでは1秒ごとです。2つ 目の引数が何回

計測するかで、ここでは3回計測しています。

多 くの項目がありますが、CPUの 負荷を簡易的に見たいならば最終行の平均値

(Average)の %idleだ け見れば十分でしよう。この値が極端に低ければ、CPU負荷が高い

状態であると言えます。サンプル例でも、この値を利用します。

ではサンプル例を見ていきましょう。リストの●では、まずCPU%idleの 監視閾値を設

定しています。この値よりも現在のCPU%idleの 値が小さければ、CPU負荷が高いと判

断し、警告を発する仕様です。ここでは10.0%と します。

0で、mpstatコ マンドの出力から、直近5秒のCPU%idleの平均値を取得しています。
上記実行例で見たように、最終行の一番右側のカラム(図では60.83)に 取得したいCPU
%idleの平均値が出力されますから、ここを取り出します。

0ではまずmpstatコ マンドを実行し、パイプでつないだta‖ コマンドの行数指定オプシ
ョンーnで 1を指定して、最終行のみを表示します。そしてawkコマンドで「{print SNF〕」
とアクション指定することで最後のカラムのみを表示しています。SNFと はawkの変数
で、最後のカラムを意味します。

0では、取得したCPU%idleが 、事前に定義した閾値以下かどうかを判定しています。
シェルスクリプトでの数値比較は、整数ならばexprコ マンドで簡単に行えます。しかし

339



CttPTE田 00● サーバ管理

exprコ マンドは小数を扱えないため、ここではbcコマンドを用いています。bcコ マンドは、

次のように大小比較の式をechoコマンドで標準入力に与えることにより、比較結果を出

力できます。この際、真は1、 偽は0と なることに注意してください。

ObCコマンドでの大小比較

これで0に よリシェル変数is_alertに 警告をあげるかどうかのフラグがセットできたた

め、0の it文で分岐しています。is_alertが真 (値が1)な らばCPU%idleは 閾値以下ですか
ら、if文の中の警告処理が実行されます。

0では、dateコマンドを用いて現在の時刻を「2013/02/0113:15:44」 のようなフォー
マットで組み立てています。このような監視スクリプトでは、問題発生時に後で確認する

ときのために、日時を一緒に入れておくことが重要です。なお、このdateコ マンドでのフ

ォーマット指定については、P.88で解説していますので詳しくはそちらを参照してくださ

い。

最後にOで、警告表示を行ってCPU%idle値 を出力しています。このようなスクリプト
を、サーバのCPU負荷状態を監視するためにcronに 登録して定期的に実行してみるとよ
いでしよう。

FreeBSD/Macの 場合

FreeBSDお よびMacに はmpstatコ マンドがないため、代わりにiostatコ マンドを利用
してください。loStatコ マンドの出力例は次のようになります。

OFreeBSDの iostatコマンド

聰Macの iostatコ マンド

S echol:'1.1 ) 2.5''

0 -一―――――― ―――――――

S echo l'1.1 く 2.5''

1-――――  ―――――

l bC

l bC

祗爾圏饉颯熙国曜饉観回国|

S iostat 1 3 ■

tty            vtbd0

tin  tout  KB/t tps  MBソ s

._ 0.     6 27.66  12  0.32

0   183 ‐0.00   0  0.00

0     61  ‐0.00    0   0.00

vtbdl

KB/t.tps  MB/s

59。 39  24  1.37

0.00   0  0.00

38.04 135  5.01

cpu

us ni sy ■n ■d

9  0  4  0 87

1103086
5  0  3  0 92

S iostat 1 3
d■ sk0

KB/t tps  i4B/s

59._1■    5  0.30

diskl

KB/t tps  1ヽ3/s

199.60   0  0.00

cpu load average
us sy id lm 5m

7  2 91  0.14 0.17 0.21

340

15m



118 e CPU使用率の監視を行う

上記のようにMacと FreeBSDで 多少差はありますが、CPU%idleは 、cpu項 目のidと い

う値です。FreeBSDでは最終カラムにあります。一方、Macでは後ろから数えて4番目の
カラムにあります。lostatコ マンドの出カカラムはマウントしているディスクの数によっ

て変わるため、CPU利用率をとりたいときはこのように後ろから数えるのが適当です。
なおiostatコ マンドは、vmstatコ マンド(→P,335)と 同様に、最初の1行日は現在値では

なくシステム起動時からの平均値が表示されます。そのため監視の際には1行日を無視す

るのが普通です。

lostatコ マンドはmpstatコ マンドと違い、平均値を出力してくれないので自分で計算す

る必要があります。awkコ マンドでidカ ラムの数値を足して、処理行数で割って平均値を

求めるとよいでしょう。具体的には0の部分を次のように修正します。ここでは「lostat
16」 として、計測値を6回出力しますが、1行日を無視 して5つの計測値を用います。その

ためawkコ マンドで平均値を求める際も5.0で割り算しています。

lostatコ マンドでのCPU%idelの 平均値計算は、6回出力して1行 日は無視しています。
またMacの場合は「後ろから4カ ラムロ」を抜き出すために、最終カラムを表すawkの変数
NFから3を引いています。

注意事項

・ Linuxで は、インス トールオプションによつてはmpstatコ マンドがデフォルトでは存在し

ない場合があります。コマン ドが見つからないときは、mpstatコ マンドが含まれる

sysstatパ ッケージをインストールしてください。

・ mpstatコマンドで表示されるCPUの %id!e値などは、複数のCPUがある場合にはその平
均になります。例えばCPUが 2つあるマシンで、マルチプロセッサ対応していないプロセ
スが片方だけのCPUリ ツースを圧迫している場合には、片方のCPUは idleが0%(フル稼
働 )、 もう片方のCPUは idleが 100%(何もしていない)と いうことになるでしょう。しか
しmpstatコマンドでは平均値しか出ないため、この場合にはidleは50%と表示されます。

そのようなケースでCPUごとのCPU使用率を表示したい場合は、mpstatコマンドでCPU
ごとの使用率を表示するⅢP ALLオ プションを利用してみてください。

341



G腋IPl■驚000サ ーバ管理

0マルチプロセッサの場合のコマンド使用例

このようにCPUの idle監視をシェルスクリプ トで行うのは、小規模環境で補助的に用いる

ケースが多いでしょう。もつと大規模で本格的な監視システムの構築には、APPENDIXの

P.410で紹介しているZabbixやNagiosの利用を検討してみてください。

関連項目

033 フアイルをバックアップする際にファイル名に日時を入れる

117 メモリ・スワップ監視を行う

::書略)

AVerage:

Average:

Average:

Average:

CPU

all

0

1

ちosr

36.38

,2.76

0.00

?1n ice

0 .00

0.00

0 .00

Sirq

0.00

0.00

0. 00

sヽoft

O.00

0.00

0.00

lsteal
a .11

0.00

0.66

29ヽlest

O.00

0.00

0.00

■ヽdle

49.83

0.00

991.34

S mpstat ―P LL ■ 3

lsys tiowait
13.62

27.24

0.00

0.00

0.00

0.00

342



‖o.         |

119 1Webページの変更監視を行う

curl.cmp.echo.data …URL.フ ァイル変更,監視

□E□嗣ロ
不定期に変更されるWebサイトの内容を監視し、ファイルに変更があつたら通知して
ほしいとき

■鵬罰囲■

″1′ bi n′ sh

″監視対象のURL

urL=‖ http://www.example.org/update.htmlL': ―――――――●

#ダウンロードファイルのファイル名定義
newfi Le=“ neW・ dat:i~~L__________
oLdfite=‖ oLd.datil ―」

″ ファイルをダウンロード

curL ―so l:$newfi Leil ''SurL"

″前回ダウンロー ドしたファイルと、0でダウンロー ドしたファイルを比較
cmp -s "$newfite" "$o[dfil-e"

″ Cmpコ マンドの終了ステータスが非ゼロならば差があった

if [ $? ―ne O コ′ then
#現在日付を「2013/02/0113115:4句 の形で組み立て
date_str=$〈 date I+%Y/%m/%d%H:%‖ :%Sl)一―――― o

″ ファイル変更の通知

eChO"[$date_Strコ 前回ダウンロード時からファイル変更がありました‖

eChO l:対象URL: SurLi=

ノhome/user1/bin/atert.sh

fl

″0でダウンロードしたファイルをリネームして保存
mv ―f i:Snewfi Le‖  i!$oLdfi te‖

コ 0

343



CHAttR 09● サーバ管理

解説

このスクリプトは、指定されたURLか らファイルをダウンロードして、そのファイルが

前回のスクリプト実行時にダウンロー ドしたフアイルと異なる場合に通知するものです。

通知の際は、alert.shと いうスクリプトを実行しています。なお、このalert.shは、通知メ

ールを送信するなど、何かしらの警告を行うスクリプトであると仮定しています。読者の

環境に応じて、このalert.shの中身は適宜修正してみてください。

あるURLで何かの数値データなどが公開されており、それが不定期に更新されていると

します。そのような際は、定期的にファイルをダウンロー ドして、前回ぶんから更新され

ていないかどうかを自動的にチェックできると便利です。このサンプル例では、そのよう

な特定のURLの変更監視をするケースを想定 しています。 1日 1回など、定期的に実行 し

てみるとよいでしよう。

リストの●では、対象のURLを指定してシェル変数urlに 代入しています。このスクリ

プトでは変更比較には、バイナリファイルも扱えるcmpコ マンドを使っています。そのた

めここで指定するURLに は、HTMLフ ァイルなどのテキストベースのファイルだけでな

く、JPG画像などバイナリフアイルを指定してもかまいません。

0で、ダウンロードしたフアイルを保存する際の、ローカルでのフアイル名を指定しま

す。スクリプト実行時に保存するフアイル名をシェル変数newfile、 前回実行時に保存じ

ていたファイル名をシェル変数oldileで定義しています。

(0)ではcurlコ マンドを使って対象URLか らフアイルをダウンロードします。curlコ マン

ドには、何も表示しない‐s(s‖ ent)オプションと、出カファイル名を指定する‐oオプショ

ンを利用しています。ここまでで、シェル変数urlで 指定されたURLか ら、シェル変数

newmeで指定されたファイル名でファイルを保存したことになります。

●で、いまダウンロードしたフアイルと前回ダウンロードしたフアイルをcmpコ マンド

で比較しています。cmpコマンドは2つのフアイルの中身を比較するコマンドです。2つ

のテキストファイルの差分をとるdiffコ マンドと違って、ファイルを1バイトずつ比較す

るため、バイナリファイルも対象とすることができます。

cmpコ マンドは、終了ステータスにより次のような意味を持ちます。

Ocmpコマンドの終了ステータス

なお0ではcmpコ マンドの終了ステータスのみを利用するため、何も出力をしない‐s

(s‖ ent)オプションを指定しています。

Oで、cmpコ マンドの終了ステータスS?を利用してif文で分岐しています。ここでは終

了ステータスが非ゼロであった場合は差があったとみなし、I文の中のコマンドを実行す

2つのフアイルに違いはない

2つのフアイルに違いがある

指定されたフアイルが見つからないなど、エラーが発生した

34‖



119 0 Webペ ージの変更監視を行う

るわけです。

(0)では、dateコマンドを用いて現在の時刻を「2013/02/0113:15:44」 のようなフォー

マットで組み立てています。このdateコマンドでのフォーマット指定については、R88で

解説していますので詳しくはそちらを参照してください。この現在時刻を利用して、0で
ファイルに変更があった旨の通知を表示しています。このalert.shは、メールを送信する

など、読者の環境にあわせて適宜修正してください。

最後にOで、今回ダウンロードしたファイルを保存するためにmvコ マンドでリネーム
しています。前回ぶんのファイルに上書きすることになるため、上書き確認をしない―fオ

プションを付けています。

このようにして、URLで指定したファイルの変更監視をすることができます。cronに

登録して、1日 1回など定期的に実行してみるとよいでしょう。

注意事項

。もし対象のファイルサイズが大きくディスク容量が不安な場合は、ファイルのハッシュ値

のみを保存しておくとよいでしよう。具体的には、P.288で紹介したMD5値だけを保存じ
ておき、前回ぶんと比較する手法です。ハツシュ値を比較すればファイルに変更があつた

かどうかわかりますから、フアイル自体を保存しておく必要がなく、デイスク容量を節約

できます。

・はじめてこのスクリプトを実行する場合は、前回ダウンロー ドしたファイルがないために

cmpコマンドが失敗するため、必ず「変更がありました」と表示される仕様です。
・ FreeBSDではcurlは標準でインス トールされていません。そのため次のように、代わりに

fetchコマンドを利用するとよいでしよう。

関連項目

033 ファイルをバックアップする際にファイル名に日時を入れる

103 Webサ ーバからファイルをダウンロードして、ファイルのMD5ハッシュ値を計算する

345



346

if [ $? ―eq O ]′  then

‖L AA IMySQLデータベースの
lZUIバレクアツプ

いつ使うか

…mySqldump.date.82ip.flnd.XargS MysoL.データベース.パツクアツフ
ダンプファイル

MySQLデータベースのバックアップを、定期的に自動取得したいとき

■■目□回■D

″:/bin′sh

#データベース接続設定
DBHOST="192.168.11.5='

DBUSER=:ibackup"

DBPASS=="PASSWORD''

DBNAME=lihaml tton‖

″データベースバックアップ設定

BACKUP_DIR=::/home/user1/backup"

BACKUP ROTATE=3

MYSQLDUMP=" /usr'/bi n/mysq Idump"

″バックアップ出力先ディレクトリのチェック

if [ 1 -d ilSBACKUP_ IR=' ]′  then ―――――- 0

echO‖ バックアップ出力先ディレクトリが存在しません :SBACKUP_DIR‖ >&2

exit l

fi

″今日の日付をYYYYMMDDで 取得

today=S(date l+%Y%m%di〉

″mysqLdumpコ マンドでデータベースのバックアップを取得

$‖YSQLDUMP ―h i'S{DBHOST)'' 一u ''S(DBUSER}l' ―p“ $(DBPASS〕 =' ''S(DBNAME}11 >

"${BACKUP_DIR}ノS{DBNAME}― ${today].dump:` ――――――- 0

″ mySqtdumpコ マンドの終了ステータスS?で、成功・失敗を確認

轟

S 。/mysql― dbbackup.sh

/home/user1/backupに バンクアツプフアイルが作成される

¬
」



12o O MySQLデ ータベースのパックアップ

szip "${BACKUP_DIR)/$tDBNAHE)-$(today).dump"

解説

このスクリプトは、MySQLサ ーバから指定したデータベースのバックアップを作成し
てファイルとして保存するものです。取得したバックアップファイルはgzip圧縮して保存

し、さらに古いバックアップファイルは自動的に削除します。

ここではMySQLデータベースがすでに稼働しており、●で定義した設定でデータベー
スに正常に接続できているものと仮定します。MySQLの インストールや設定については

本書の範囲を超えますので、専門の書籍などを参照してください。

0では、データベースのバックアップ設定を定義しています。ここで定義しているシェ
ル変数は次のような意味を持ちます。

やスクリプトで使用しているパツクアツプ設定に関するシェル変数

(0)ではシェル変数BACKUP_DIRで指定された、バックアップファイルの出カディレク
トリが存在するかどうかを確認しています。―dは対象がディレクトリかどうかをチェック

する演算子です。それを否定演算子!と併用することで、出力先が存在しなかったリディ

レクトリでない場合には、エラーを表示して終了するようにしています。これらファイル

テストの演算子については、P.110で紹介していますのでそちらを参照してください。

●では、ファイル名に使うために現在の日付をYYYYMMDD形式でdateコマンドを用
いて取得します。例えばいまが2014年 2月 3日 ならば、20140203が得られます。 この
dateコ マンドでのフォーマット指定については、R88で解説していますので詳しくはそち

らを参照してください。

0で実際にデータベースのダンプを取得します。ここでmysqldumpコ マンドに指定し
ているオプションは、次のとおりです。

③

BACK∪ P DIR バックアップフアイルの保存先ディレクトリ

BACK∪ P_ROTATE 過去何世代ぶんのバックアップフアイルを保存するか

MYSQLD∪MP mysqtdumprY:/ f a) )ul\7

347

#古いバックアップファイルを削除する
find ilSBACKUP_DIR:1 -name ilS(DBNAME}― ■.dump.gz': ―mtime +${BACKUP_ROTATE} !

XargS rm― f―――――-0
etse

eCh。  ':バックアップイ乍成

`夫

:敗 : S(BACKUP_DIR}/S(DBNAME〕 一$(today}.dump‖

exit 2

fi



OH解田 00● サーバ管理

0スクリプトで使用したmysqldumpコ マンドのオプション

0)の mysqldumpコ マンドの出力は、リダイレクトして日付付きのファイル

「$〔DBNAME卜 $〔 todayl.dump」 として出力しています。このようにファイル名に日付を
入れておくと、後で利用する際にいつのバックアップかがわかるため便利です。

Oで、mysqldumpコ マンドが成功したか失敗したかで処理を分岐しています。終了ステ
ータス$?が0な らば正常にコマンドは終了していますから、まず取得したダンプファイル

をgzipコ マンドで圧縮しています。mysqldumpコ マンドで取得できるダンプファイルの中

身は単なるテキストフアイルのため、データベースの規模によっては大変にサイズが大き

くなってしまいます。そのためこのように圧縮して保存しておいたほうがよいでしよう。

0ではfindコ マンドの…mtimeオ プションを利用 し、シェル変数BACKUP_ROTATEで指
定された日数より前に作られたバックアップフアイルをxargsコ マンドで削除していま

す。ここで利用 しているfindコ マンドの^mtimeオ プションとxargsコ マンドについては、

R79と R82で詳しく解説しているためそちらを参照してください。
このようにして、MySQLデータベースのバックアップを自動的に取得することができ
ます。cronに設定して、 1日 1回定期的に実行しておくとよいでしょう。

注意事項

・ mysq!dumpコマンドを実行するには、接続時のMySQLアカウントに適切な権限が設定さ

れている必要があります。一般的には、SELEC丁/SHOW V!EW/LOCK TABLES権 限が
必要ですが、mysqldumpコ マンドで指定するオプションによつてはさらに追加の権限が必

要になります。詳しくはMySQLの専門書を参照してください。
・ このスクリプトにはMySQLサ ーバヘの接続パスワードが書かれているため、ファイルのパ

ーミッションに注意して、他のユーザからは不用意にファイルの中身を参照できないように

してください。また、データベースのバツクアツプフアイルは、データベースの全データが

入つている非常に重要なファイルです。そのためこの保存先ディレクトリも、他のユーザか

らは読めないように適切なパーミツションを設定するべきです。一般に、データベースサー

バのセキュリテイ確保に比べ、バックアップサーバのセキュリテイ対策はどうしても手薄に

なりがちです。バックアップサーバには、データベースサーバと同等か、それ以上のセキュ

リティ対策が必要だということはしつかりと認識してお<ようにしてください。

関連項目

.‐ .     030

‐‐‐
 .||||1     033

.‐ ‐      042

あるディレクトリ内の、n日前からm日前までに更新されたファイルー覧を取得する

ファイルをバックアップする際にファイル名に日時を入れる

処理開始前に、実行権限をチェックして正常動作できることを確認してから実行する

‐h MySQLサ ーバのホスト名
―U MySQLサ ーバに接続するためのユーザ名
―p MySQLサ ーバに接続するためのパスワード

348

一　
一
・
．
．

．　
　
　
　
　
　
　
　
　
　
　
　
　
　
一
　
　

一
・
・

　
　
　
　
　
　
　
　
　
　
　
　
　
　
．
　
　
　
・
　

．

一

・
¨
一
¨

・ 　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
一　
　
　
．
　
．



‖0.         |

121 1MySQLのレプリケーション監視

いつ使うか

mysql.awk.grep.data
■日

…MySQL,レプリケーション.監滉

MySQLの レプリケーション構成において、レプリケーション状態が壊れていないかを
定期的にチェックしたいとき

〃:′bin/sh

″データベース接続設定。スレーブサーバに接続する

DBHOST==:192.168.11_5:: ―¬

DBuSER=‖operator:1       トーーーー0
DBPASS="PASSWORDli     ―-1

″ mysqLコ マンドのフルパス指定と一時ファイルの定義

‖YSQL=::/usr/bi n/mysq Lil ――l   ^
resuLttmp=titmp.SSi:     ――l~~~~1,

″ SHOW SLAVE STATUSを MySQLサ ーバに問い合わせて、一時ファイルに出力

$‖YSQL ―h ''S(DBHOST}=i ―u liS(DBuSER}'' ―p"S(DBPASS〕 =i ―e ‖SHOW SLAVE STATuS

YG" > $resulttmp

″ レプリケーション状態に関するパラメータを抽出

SLave_10_Runni ng=S(awk :/SLave_10_Runni ng:/(print S2)1 ''SresuLttmpli)

Stave_SQL_Running=$(awk :/SLave_SQL_Running:/(print S2): l'Sresutttmp':)

Last_10_Error=$(grep :Last_10_Error:: !iSresuLttlmp:: l sed ls/^  キノ/g:)

Last_SQL_Error=S(grep :Last_SQL_Error:1 1lSresuLttmpl! l sed is/^  *ノ ノg:)

″現在日付を「2013/02ノ0113:15:4句 の形で組み立てて用意

機

349

0

」
」



G}換
「
饉R00● サーバ管理

0
date_str=S(date t+%Y/%m/%d %H:%‖ |:%Sl)――――――― o

″ S Lave_10_Runningと S Lave_SQL_Runningが共にYESで なければエラー

if[ 'ISSLave_10_Runni ng===:=YESi'― a"SSLave_SQL_Running''=:'YESil ]′  then
echo ::[Sdate str] STATUS OK"

eLse

eCho li[$date_str] STATUS NCil

echo ''SLave_10_Running: SSLave_10_Runningi=

echo l'SLave_SQL_Runni ng: SSLave_SQL_Runni ng‖

echo liSLast 10 Error"

echo itSLast SQL Errori=

″警告メール送信などのアラートをあげる

/home/user1/bin/aLert.sh
fi

″一時ファイルの削除

rm― f‖$resuLttmp`'一 ――――――o

解説

このスクリプトは、MySQLサ ーバのレプリケーション (複製)状態を監視するものです。
MySQLの スレーブサーバに接続し、レプリケーション異常となつていれば警告メッセー
ジを表示します。レプリケーションの意味については、P.352を参照してください。

このスクリプトではmySqIコマンドで"SHOW SLAVE STATUS"と いうMySQLの コマン

ドを発行し、レプリケーション異常と判断すれば警告メッセージを表示してalert.shと い

うスクリプトを実行しています。なお、このサンプル例でalert.shは、通知メールを送信

するなど、何かしらの警告を行うスクリプトであると仮定しています。読者の環境に応じ

て、このalert.shの 中身は適宜修正してみてください。

ここではMySQLの レプリケーションがすでに稼働しており、0で定義した設定でデー
タベースに正常に接続できているものと仮定します。MySQLの レプリケーション構築に
ついては本書の範囲を超えますので、専門の書籍などを参照してください。

②ではmysqlコ マンドのフルパスと、一時ファイルのファイル名を定義しています。一

時ファイル名に用いている$$と いう変数は、プロセスIDを指します。この$Sの利用例に

ついては、P.128を 参照してください。

(0)でMySQLサ ーバに対して、mysqlコ マンドで‖SHOW SLAVE STttTUS‖ 命令を発行し
ています。ここでmysqlコ マンドに指定しているオプションを、次に示します。

350

一
―

‐
　

　

　

　

●

■
―



121 0 MySQLの レプリケーション監視

◎スクリプトで使用しているmysq:コ マンドのオプション

‐eオプションを使うと、シェルのコマンドラインから直接MySQLサーバに命令を実行
できます。この―eオ プションを利用して0で実行しているSHOW SLAVE STATUSは 、
レプリケーション構成のスレーブサーバにてレプリケーション状態を表示するコマンドで

す。出力例は次のようになります。

OSHOW SLAVE STATUSの 出力

上記では多くの部分を省略しています。レプリケーション状態を確認したいときにチェ

ックすべきなのは、このうち
nS:ave_10_Running"と "Siave_SQL_Running::で す。こ

の2つの値が共に
‖
Yes‖ となっていなければ、レプリケーションに何かしらの問題が起きて

います。0では、このSHOW SLAVE STATUSの 出力結果を一時ファイルにリダイレクト

して保存しています。

0で、一時ファイルに出力されているSHOW SLAVE STATUSの 結果から、必要な値を
取得 してシェル変数に代入しています。Slave_IO_Runningと Slave_SQL_Runningに つい

ては、awkコマン ドのフィルタを利用 して2カ ラムロ($2)を 取得 しています。またそれ

らのエラーメッセージであるLast10_Errorと Last_SQL_Errorに ついて、grepコマンド

で一時ファイルから抽出しています。この際には、行頭の余分なスペース記号を削除する

ためにsedコマンドも利用しています。

0では、dateコマンドを用いて現在の時刻を「2013/02/0113:15:44」 のようなフォー
マットで組み立てています。このdateコ マンドでのフォーマット指定については、R88で

解説 していますので詳 しくはそちらを参照してください。この現在時刻を利用して、0で
メッセージ出力時に日時を入れ込んでいます。

―h MySQLサーバのホスト名
―U MySQLサーバに接続するためのユーザ名
―p MySQLサーバに接続するためのパスワード
―e 指定されたSQLを実行

351



C,:APTER 09● サーバ管理

0が、レプリケーション状態を確認して警告をあげるかどうかを判断するif文です。レ
プリケーション状態が正常であるかどうかは、Slave_IO_Runningと Slave_SQL_Running

が共にYesで あるかで判断します。ここではtestコ マンドの=演算子でそれぞれの文字列を

比較し、それを‐a演算子でつないでANDで比較しています。もしこの結果が真ならばレ
プリケーション状態には異常なしと判断し、OKを出力するだけとしています。

もし0の結果が偽ならば、レプリケーション状態を異常とみなします。例えばマスター

サーバのバイナリログが見つからない場合は、次のようにSlave_IO_RunningはNoと なり、

LastIO_Errorに エラーメッセージが表示されます。

0レプリケーション異常時のSHOW SLAVE STAT∪ S

0の else節の中では、レプリケーション異常であることをNGと 表示し、エラーメッセ
ージを同時に表示しています。またalert.shを実行し、警告メッセージを発しています。

読者の環境にあわせて、このalert.shでメールを送信するなど適宜修正してみてください。

最後に0で、一時ファイルを削除しています。
このようにして、レプリケーション状態の監視を行うことができます。現在のMySQL
システムにおいて、レプリケーションを構築する機会は多く、読者の運用管理するシステ

ムで扱うこともあることでしよう。レプリケーションによってシステムの可用性は高めら

れますが、データ不整合を産む原因となることもあるため、定期的にこのようにレプリケ

ーション状態を監視することは運用上とても重要です。

データベースとレプリケ…ション

レプリケーションとはデータベースサーバで利用されるシステム構成で、次図のように

マスターサーバからスレーブサーバヘデータを複製することです。このようにしてシステ

ムの可用性を高めた り、データベースサーバの負荷軽減を図ることができます。

例えばこのデータベースを高頻度に参照するアプリケーションがある場合、複数のスレ

ーブサーバヘ分散して参照することで、ひとつひとつのデータベースサーバヘのアクセス

負荷を抑えることができます。また、どれか 1つのスレーブサーバに障害が発生してアク

セス不可 となっても、対象のスレーブサーバをシステムから切 り離すだけでシステム復旧

が可能です。アプリケーションの作 りによっては、エラー時に次のスレーブサーバヘ接続

するよう自動リトライできますから、ダウンタイムを0に できます。

レプリケーションは、データベースのデータ復旧にも威力を発揮します。次ベージの図

でマスターサーバがディスク障害を起 こしたとしても、スレーブサーバの1つ をマスター

サーバに昇格させたり、スレーブサーバのデータを構築 しなおしたマスターサーバにコピ

Slave_ fo_Running: No

Slave_SQl_Running : Yes

Last-Io-Er:ror: Got fataf error 1236 fr:om master when reading data from
binary logr 'Could not find first 1og file name in binary log index file

352



121 0 MySQLの レプリケーション監視

―することで、障害発生直前までのデータを復旧させることができるわけです。

ただし、レプリケーションはバックアップとは違い、常にマスターと同様にデータを更

新します。そのため誤削除などのオペレーションミスによるデータ喪失に対応することは

できません。そのため、レプリケーションをしているからといつてバックアップが不要と

いうことはないので注意してください。

9,レプリケーションとは

……………機
データ更新

マスターサーバ スレーブサーバ 1

ど ″
身

r″″″
´データ更新

ヽ ヽ L ヽ ヽ
 ヽ   データ更新

＼  ｀ヽ 鴇
データ更新

スレーブサーバ3

注意事項

。このスクリプ トにはMySQLサ ーバヘの接続バスワー ドが書かれているため、ファイルのパ

ーミッションに注意して、他のユーザからは不用意にフアイルの中身を参照できないよう

にしてください。また、可能ならば接続ユーザは監視用の特別のユーザを作り、最低限の

権限のみ与えるようにしましよう。万―スクリプ トが他者から参照されてlDパスワー ドが

漏洩しても、被害を最小限に抑えることができるためです。

目関連項目

033 フアイルをバックアップする際にファイル名に日時を入れる

049 二重起動が可能な一時ファイル作成する

スレーブサーバ 2

※スレーブサーバは何台あつてもよい

(1台でも複数台でもよい)

353

ヽ

鷲



354

today=S(date l+%Y%m%dI)

g

田
L An lMySQLのテーブルを
IZ=ICSV出力する
利用コマンド

…mySu,date.tr                 MySQL.CSVフ ァイル

定期的にデータベースからSELECTした結果を、CSVファイルとして出力したいとき

″:′ 01●′sh

#データベース接続設定
DBHOST=:'192.168.11.5'1

DBUSER=!'userl'I

DBPASS〓=:IPASSWORDi`

DBNA‖ E=:=hami Lton"

#mysqLコ マンドのフルバス
MYSQL="/usr/bin/mysqL"

″ CSVファイルの出カパスと、レポート作成SQL文のファイル名を指定

csv_outputdir="/home/user1/Output‖   ――
l____________」 ぃ

sqtf i te="/home/use11 /bi n/seLect. sqL" - -l

#SQLフ ァイルの存在をチェック
if [ ! ―f ''SsqLfi Lel' ]′ then

echo::SQLフ ァィルが存在 しません : SsqLfi tel:>&2

exit l

fi

″ CSVファイルの出力先ディレクトリをチェック

if [ : ―d liScsv_outputdi ril ]′ then

eChO"CSV出 力先のディレクトリが存在しません :Scsv_outputdi r">&2
exit l

fi

#今 日の日付をYYYYMMDDで 取得

S ./mysq■ ―csvout.sh

csv_outputd■ rぐ指定したディレクトリにCSVファイルが出力される

」



11曖 ●MySQLのテーブルをCSV出力する

#CSV出力を行う。一Nでカラム名を表示しない。
″ trコ マンドでタブをカンマに置換する

S‖YSQL ―h ‖${DBHOST)': ―u liS(DBUSER}=: …p=iS(DBPASS〕 := …D liS{DBNAME〕 :: ―N ¥
く‖SsqLf■ e"l tr‖ ¥t"“′‖>‖S(csv_putputdir)ノ data―置翌輩

csv:=

解説

このスクリプトは、MySQLサーバにSELECT文を発行し、その結果をCSVフ ァイルで
出力するものです。MySQLサーバがリモー トホストで稼働していても、このスクリプト
を実行したマシン上に直接CSVフ ァイルを作成することができます。なお、ここで発行す

るSQL文は、シェル変数sqlfileで指定したテキストファイルの中に記述していると仮定し
ています。

データベースの中身をSELECTし た結果をレポートにして、それをWebサーバで配布し
てユーザPCで見てもらいたいというケースはよくあるでしょう。この際、リアルタイム

にデータベースに問い合わせて結果を組み立てれば最新の情報を返却できますが、Web
アクセスが集中するとデータベースヘの負荷が高まってしまうという問題があります。特

にWebサ イトを外部に公開している場合、ニュースサイトに取り上げられるなど何かの

拍子に急にWebア クセスが殺到するケースがあるため注意が必要です。

0データベースからのレポート配布

晰

構成 [A]

データベースに逐次問い合わせ
負荷が高い

対象のレポートが、ある1日ぶんの数値など日次データの場合には、毎日1回だけバッ

チ処理でCSVフ ァイルを作り、そのファイルをユーザにダウンロードしてもらうようにす

ればデータベースサーバヘの負荷を大幅に減らすことができます。このサンプル例は、こ

のようなケースを想定しています。

355



CH層曜 R09● サーバ管理

◎毎回データベースにアクセスせずレポート配布

構成 [B]

データベースから作成したファイルを配布
負荷が低い

なおここで、シェル変数sql■ leで指定している、このサンプルで利用するSQL文 はリス

ト1の ようなものを想定しています。読者の環境にあわせて、このSQL文は適宜変更して

ください。

1, > 7 ), A SQLY (select.sq I )

―h MySQLサーバのホスト名
―u MySQLサーバに接続するためのユーザ名
―p MySQLサーバに接続するためのパスワード
―D 接続するデータベース名

―N カラム名を表示しない

SELECT id′  score FROM userinfo ORDER BY id′

ではサンプル例を見ていきましょう。なお、ここでは0で定義した設定でデータベース
に正常に接続でき、0の ようにmysqlコ マンドがインストールされているものと仮定しま

す。

0では、CSVフ ァイルの出力先ディレクトリ(シ ェル変数csv_outputdir)と 、実行する
SQL文 を記述したファイル (シェル変数sqlile)を定義しています。続いて0と 0で、これ

らの存在チェックを行います。これらのフアイルとディレクトリが存在しなければエラー

として、スクリプトはここで終了します。

0では、dateコ マンドを用いて現在の日付をYYYYMMDDの フォーマットで組み立て
ています。このdateコマンドでのフォーマット指定については、P.88で解説しています

ので詳しくはそちらを参照してください。この現在日付は、CSVフ ァイル名を後で組み立

てる際に利用します。

0で、mysqlコ マンドを利用してCSVフ ァイルを出力します。ここではコマンド行が長
くなるため行末にYを置いて改行しています。ここで利用しているmysqlコ マンドのオプ

ションについては、次にまとめました。

350

0スクリプトで使用しているmysqlコマンドのオプション

アプリ

●

　

　

　

―

■



122繭 MySQLのテーブルをCSV出力する

0では、mySqlコ マンドに、SQL文が書かれたファイルを入カリダイレクトとして与え
ています。こうすると出力結果のカラムごとの区切 りはタブで表示されてしまいます。そ

のため、パイプで渡 したtrコマンドで、タブを,(カ ンマ)に変換 しています。具体的には、

「tr‖¥t‖
‖
,‖」としている部分です。これでSELECTし た結果がCSV形式で得られますから、

リダイレクトしてCSVフ ァイルとして出力しています。
このようにして、MySQLでのSELECT結果を、シェルスクリプトでCSVフ ァイルとし
て保存できます。cronに登録して、定期的なレポー ト作成などに利用すると便利でしよう。

注意事項

MySQLで 結果をCSVフ ァイルとして出力したい場合には、次のようなINT0 0UTF」 LE命

令を利用する手法がよく紹介されます。

しかしMySQLの lNT0 0UTFILEは 、mysqlコマンドを実行しているクライント上ではな
く、データベースサーバ上に出カファイルを作成するため、SCpコ マンドなどで、データ
ベースサーバからネットワーク越しにファイルを回―カルヘコピーする必要があります。

そのため本サンプルではlNT0 0UTFILEを 利用せずに、SQL文の結果をリダイレクトして
手元のマシンに直接保存しています。

・データ中に,(カンマ)を含む場合、区切り文字とデータ中のカンマの区別が付かなくなつて

しまいます。この場合にはSQL文のCONCA丁関数を利用して、各カラムを‖(ダブルクォ
ート)でくくると、Microsoft Excelなどでは正常に処理できます。具体的には、SQL文を

次のように修正すると各カラムの値をダブルクォートでくくることができます。

.                                            .  |||| |■
||||.|||||_ ■|■ |  _

SELECT CONCAT(='=:′ id′ 1''=)′ CONCATく
:'=】
′scole,111111)||IROMI101Selinfo.. 

・                         ||■ ‐|||||||■ ■|■ ■||■| ‐

ここで利用しているCONCATとはMySQLの文字列関数で、引数に指定した文字列を順に
連結して1つの文字列として返します。SEL=CT文 を発行する際に、選択したカラム値の
前後をCONCAT関数を用いてダブルクォート記号で連結しておくことで、カラム値をダブ
ルクォートでくくることができます。Microsoft Excelな どでは、値をダブルクォートで

くくつておくと、データ中にカンマがあつても正しく区切りを扱えます。

関連項目

033 ファイルをバックアップする際にファイル名に日時を入れる

357



.\zl 
I

ログ出力を監視し、ログに特定
の文字列があれば警告する

園日壺目B
tail, read ―

ログファイル.監視.リアルタイム

システムメンテナンス作業などの際に、監視対象のログフアイルをリアルタイムに見
やすく加工して出力したいとき

■□罰回■

″:′ bi n′ sh

″監視対象のログファイル名を設定

Lo9fite="/var/Log/myapp/appLication.Log‖

″ tai Lコ マンドで回グ監視 :

″  *― Fリ アルタイムに監視
″  *―nO追 記ぶんのみを対象とする
taiL -F -n 0 "$l.ogfiLe" lY
white read line
do
#ロ クにマッチする文字列があれば警告表示をする

case llSLinei: in
*‖ Fite Not Foundi'*)

echo"!注意 ! ファイルが見つかりません $tineli

*‖ AppLication Erro「 ‖*)

echo li l警 告 ! アプリケーション異常 $Line‖

esac

done

| ./■ o9～tailgrep.sh

l,主意 ! ファイルか見つか
',ま
せ/し : 103ac2fsd.datl Filo Not Found

l注意 ! フフイルが見つかりません :[pxac2fsd.dati File Not Found

i警告 ! アプリケーンヨン異常 : 1617chtlnp′ A]Application ErFOr

358



123攣 ログ出力を監視し、ログに特定の文字列があれば警告する

洟解説

このスクリプトは、常時追記されているログフアイルに対して文字列を検索し、特定の

文字列が含まれたログが出力された場合に、その内容をリアルタイムに表示するものです。

端末ウィンドウで何かしらのシステムメンテナンス作業中に、別の端末ウィンドウ上でロ

グの確認を行うツールとしての利用を想定しています。

◎スクリプトの利用例

メンテナンス作業の
ウィンドウ

ログ確認の
ウィンドウ

ここで、メンテナンス対象のアプリケーションは、常時大量のログをapplicatiOn.10gと

いうログファイルに出力しているとします。この際、エラーメッセージが次のように素っ

気ないものであるとします。

躊想定するapp‖cationlogの出力

これはあまりに地味なので、エラーが出力された場合にすぐにわかるように、先頭に日

本語で強調表示を付加したいというケースを想定します。

晰端末ウィンドウですぐわかるように、こう出力したい

359



OHAl円・饉R000サ ーバ管理

サンプル例では、●で監視対象のログフアイルを指定しています。ここは読者の環境に

あわせて、対象とするログフアイルに修正してください。

0で、ログ出力を監視してwhHe文へとパイプでつないでいます。ここで利用している

ta‖コマンドは、フアイルの末尾を表示するコマンドで、主なオプションは次のとおりで

す。

Otailコ マンドの主なオプション

0の tailコ マンドでは、―Fオ プションを利用しています。これにより、常時出力され続
けるログフアイルを、リアルタイムに追うことができます。一般にこの用途には小文字の

―fオ プションが利用されることが多いのですが、現在のtailコ マンドでは、ログローテート

にも対応している‐Fオプションを利用したほうがよいでしょう。

ログローテートとは、アプリケーションのログフアイルが肥大化しすぎないように、1

日単位などでログファイルを切り替える機能です。ローテートの際は、次のようにファイ

ル名の末尾に数値を付ける形式が一般的です。

0ログローテート

フアイルの最後に達しても終了せず、追加されるデータを待つ

―F ―fオプションに力□え、ファイルの名前変更や□―テートも監視する

ファイル末尾の<数値>行だけ表示する―n<委支イ直>
フアイル末尾の<数値>バイトだけ表示する‐c<数値>

1鳳嵐虚塁止」

app■ icatione■ og
application. 1og. 1

application. 1og. 2
application. Iog.3

|,||||||111:::11:ll:|:ili,I:L::|:::::‡

app■ iCatiOn.■ Og(新規)
application.log.1

applicat■ on.■og.2

application.■ og.3
applicatione■ og.4

ヽ

ヽ

ヽ

ヽ

この場合、application.logが翌日にはapplication.log。 1と リネームされ、新規ファイル

apphcation.logが作成されます。つまり毎日、アプリケーションのログ出力が新 しいファ

イルヘ と切 り替わります。

ここで、tailコ マンドの一fオ プションを利用 していると、変更前のフアイルを読み続け

るため、新 しいapplication.logへの追記を検知することができません。―Fオ プションを利

用すると、 (OSに よって多少実装は違いますが)tailコ マンドは定期的に該当ファイルを開

きなおすため、ログローテー トに対応することができます。

また0では、―nOと して末尾ゼロ行を指定しています。これは、スクリプト実行時点で

すでに存在するログフアイルの中身は読み込まず、実行後に追記されたログのみを対象と

300

オプション 意購
.       .|・

|||.‐



123奪 ログ出力を監視し、ログに特定の文字列があれば警告する

するための処理です。ここで―nOを付けないと、tailコ マンドのデフォルト動作である末
尾10行をまず読み込みます。その末尾10行には過去に出力されたログがあるでしようか

ら、このようなリアルタイム監視の用途には不適切となるでしよう。

0の tailコ マンドの出力は、 |(パイプ)でwhile文へとつないでいます。ここでは末尾に
Yを置いて改行していますが、これは1行が長くなるのでwhile文を見やすくするためです。

ここのwhile文では、readコマンドでシェル変数lineに追記されたログファイルを1行ず
つ読み込みます。

0の case文が、追記ログヘの検索部分です。シェル変数の値から特定の文字列を検索
するにはいくつか手法がありますが、ここでは使いやすいcase文を利用して文字列を検

索しています。まず"File Not Found‖ という文字列を含む場合、行頭に「!注意 ! ファイ

ルが見つかりません」と出力することにします。

0の case文でのマッチは、任意の文字列を表すワイルドカード*(アスタリスク)を使っ
ています。なおここで、「

叫File Not Found*‖」のように
*をダブルクォート記号の中に入

れてしまうと、メタ文字ではなくアスタリスクそのものを意味してしまうためマッチしま

せん。そのためここではアスタリスクをダブルクォート記号の外にだして、「
*‖File Not

Found‖ *」 としてマッチさせています。これでマッチしていた場合は、echoコマンドで先

頭に「 !注意 ! ファイルが見つかりません」を付け、またその後ろに$lineを付けて元の
ログ内容も表示しています。

Oの case文では同様に、‖AppHcation Error‖ という文字列も検索して、「 !警告 !」 を
表示するようにしています。他にもパターンを追記したければ、ここのcase文 にいくつ

でも追加できます。

このようにして、指定したログファイルをリアルタイムに監視して、メンテナンス作業

時などに見やすくすることができます。この他にも、何らかの読みにくいログを見やすい

ようリアルタイムにテキスト整形して表示したり、数値出力するプログラムのログをリア

ルタイムに計算して見せるといつた使用法もあるでしょう。読者のニーズにあわせて適宜

修正してみてください。

注意事項

重要な作業時は、このスクリプトが何かしらのエラーを見逃す可能性もあるため、次のよ

うに「メイン作業の端末ウィンドウ」「このサンプル例のような、スクリプト加工したログ

確認ウインドウ」「生ログをta‖ ‐Fして表示しつづけるだけの端末ウィンドウ」と3つ開いて

おくのがよいでしよう。

361



CHArrE1 09● サーバ管理

0ウ ィンドウを3つ開いて使うとよい

.■■‐'II_″.|'.,′ |■‐

lessコマンドの利用

常時追記されていくログファイルなどを監視する際には、tailコ マンドの他にiessコマ

ンドも利用できます。

lessコマンドはフアイルを引数として実行し、指定されたテキストファイルの内容を閲

覧するための、ページャと呼ばれるコマンドです。この際、ファイルの内容を表示中に、

spaceキ ーで「次ベージ」、日で「前ページ」へ移動することができます。

そして、□を押すことでlessコマンドはファイルの終端を読み続けるモードヘと移行し

ます。

OlessコマンドでFキー押下

上図のように「Wamng for data¨ .」 と表示されるモードに移ると、lessコ マンドは、

tailコ マンドの―fオ プションと同様に、フアイルヘ追記があれば自動的に読み込みます。

なお、lessコ マンドのFモードから抜けるには、Etrl〕 +□を押します。lessコマンドの終
了は日ですから、Fモードからそのまま終了するには匝rl〕 +□→回と順番に押します。

302

生ログ確認用の
ウィンドウ

[03ac2fsd.dati

[pxac2fsd.dat]

File Not Found

■ |



GHAPTER

bash
これまで本書では、互換性・移植性を考慮 して

/bin/shで のシェルスクリプトを紹介してきました。

しかし最近のUNIXではbashがデフォルトでインス
トールされていることが多く、シェルスクリプ トも

bashで書かれることも多くなっています。

そのためこの章では、shではなくbashスクリプ ト

として、配列やブレース展開、算術式など、bash

特有の機能を利用したサンプル例を紹介します。



‖0日
シェル変数を、整数値など属性
付きで宣言する124

回□堅口D
declare,curi bash.変数.属性.型.算術展開

…シェル変数を整数値として童言し、算術展開を自動的に行わせたいとき

日醍堕田■

夕!′ bin′ bash

ur l_template="http: //www. exampIe. org/down load/imq_203d. jpg"

whi te E $count -te '10 l
do

ur[=$(printf "$urt_temptate" $count)
curl -0 "$ur["

#cOuntを 1増やす。exprコマンドなどは不要で、この式だけで 1足せる
count=count+1

done

解説

このスクリプトは、連番ファイル名を生成 して、Webページから順次ダウンロー ドし
ます。P.275の 例を、bashの整数値の変数を扱う機能で書きなおしたものです。

bashで は、シェル変数に対して属性値などを設定・参照するdeclareコ マンドを利用

することができます。このdeclareコ マンドには、大きく分けて以下の2つの使い方があり

ます。

1)変数の属性を設定する
2)現在定義されている変数・関数名を表示する

364

$ . /bash-declare. sh ■・ |  ‐ .|‐■
.URLを

白動生成してタウンロードが行われる

″カウンタ変数Countを、整数値で宣言

decLare… l count=0-―――――――――――――――――CD



1240シ エル変数を、整数値など属性付きで宣言する

これらの2つの使い方についてそれぞれ説明します。

まず1)の変数の属性を設定する方法です。例えば次の例では、整数値のシェル変数で

あるcOuntを宣言するものです。

シェルスクリプトでは、基本的に変数の型はなく、すべてが文字列として扱われます。

しかしdeclare文 を利用することで、シェル変数に対して整数や配列などの属性を付加す

ることができます。他のプログラミング言語で一般的に使われる変数宣言と似た概念です

から、この記法は比較的わかりやすいでしよう。

次に2)の現在定義されている変数 。関数名を表示する方法です。例えば次の実行例は、

現在スクリプト中で定義されている変数countの値を表示します。

0シェル変数countを参照

これは、スクリプトの途中で変数の状態を確認したいときなど、デバッグ用途によく使

われる機能です。特に変数名が長いとき、いちいちechoコ マンドを使って「echo
‖someming_counter=$something_counter"」 のように、変数確認のための文を挿入す

るよりも楽でしよう。

declareコ マンドでよく使われるオプションは、属性設定と参照に分けて表にまとめま

した。なおbash 4.0以上では、変数を大文字の文字列専用として扱う「declare― u」 など

面白いオプションも追加されています。詳しくはbashのマニュアルを読んでみてくださ

い。

◎declareコ マンドの属性設定オプション

‐a 変数を配列として扱う

変数をハッシュ (連想配列)と して扱う (bash 4.0以上)―A

変数を整数として扱う

―r 変数を読み取り専用として扱う(readontyコ マンドと同じ)

―X 変数を環境変数として扱う (exportコ マンドと同じ)

365



GHAPTEB 10 0 bash

deClareコ マンドの使い方がわかつたところで、これを利用したサンプル例を見てみま

しよう。このサンプルは、P.275の例を利用したものであるため、スクリプトの動作の概

要はそちらの説明を参照してください。前回はループカウンタをseqコ マンドで生成しま

したが、ここでは整数値として宣言したシェル変数countを利用します。

●では、declareコマンドに、整数を宣言する‐1オプションを利用しています。こうして

シェル変数countは整数値として扱われ、算術展開 (AH山metic Expansion)が適用される

ようになります。

0が、シェル変数countを整数値として定義したために利用可能となった記法です。通
常のshス クリプトならばこの行は、次のようにexprコマンドで加算しないといけません。

count=$(expr $count + 1)

しかし0では、一般的なプログラミング言語と同じような「く変数名>=く変数名>+1」 と
いう記法を利用できています。またこの際には、変数名に$を付ける必要もありません。

ループ回数が大きい場合、exprコ マンドをそのたびに実行すると処理時間が長 くなって

しまいますが、算術展開はbashの機能であるため毎回外部コマンドが実行されることも

なく、処理を高速化できます。

なお0の行は、C言語などと同じような記法で、次のように書くこともできます。

CoUn t+='l

この他に、算術展開は$(0)と いう記法で書くこともできます。これら算術展開につい

て詳しくは、P.370で説明していますのでそちらを参照してください。

注意事項

Macなど一部の環境のshは機能拡張されているため、このサンプルであげた算術式をbash
でなくとも扱うことができます。しかし基本的には算術式はbashの機能ですから、shで使

うのは避けるべきです。

FreeBSDではcurlは標準でインストールされていません。そのため次のように、代わりに
fetChコ マンドを利用するとよいでしょう。

―f<関数名> 現在定義されているシェル関数とその内容を表示する。<関数名>を省略した場合は、
定義されているすべてのシェル関数とその内容を列挙する

―F<関数名> 現在定義されているシェル関数の関数名のみを表示する。<関数名>を省略した場合
は、定義されているすべてのシェル関数の関数名を列挙する

―p<変数名> 現在定義されている変数名とその値を属性付きで表示する。<変数名>を省略した場
合は、定義されているすべての変数とその値を列挙する

306

11il.IIIII1 0declareコマンドの参照オプション

,11.

オプション
~



124● シエル変数を、整数値など属性付きで宣言する

シェルスクリプトはshで書くべきか? bashで書くべきか?

算に外部コマン ドが必要であるなど欠点も多く、現代的なプログラミングがやりにくいの

も事実です。そのため、bashでシェルスクリプ トを書くことを好む人も昨今は増えてきて

いるようです。

bashでシェルスクリプトを書く利点としては、単純にプログラミングがしやすいという

こともありますが、「移植性・互換性に配慮するならば、shよ りbashの ほうがむしろふさわ

しい」という意見もあります。

例えば同じLinuxでも、CentOSな どは/bin/shを bashで実装しているのに対し、Ubuntuで

はdashと いう原始的なシェルで実装しています。またSolarisの shは、Linuxの shに比べると

動作にさまざまな差異があることがよく知られています。ですから、移植性・互換性を保

つたつもりでsh用のシエルスクリプトを書いていても、環境ごとの「方言」に悩まされるこ

とは多々あります。一方、bashの実装はGNUに よるものしかありませんから、マシンに

bashが 入っていればOSが何であれほぼ同じ動作となることが期待できます。つまり、bash

スクリプトの移植性はとても高いのです。

このような状況をふまえて、筆者としては、現代のUNIX環境ならばshでもbashでも好き

なほうで書けばよいと考えます (ただし、システムにbashが インストールされていなければ

shで書くしかありませんが)。 しかしその際には、以下のようなルールは必要でしよう。

鰊bashの機能を利用したスクリプトのシバンは、#!/bin/shに しない

具体的には、算術展開や配列変数を利用している場合などです。Linux(CentOS)では

/bin/shが bashを指しているため、bash特有の機能をshスクリプ トとして記述しても問題な

く動いてしまうことが多く、注意が必要です。bashス クリプ トのシバンは、「#!/bin/bash

(FreeBSDの場合は#!/u"loca:/bin/bash)」 と書くべきです。

瘍シェルスクリプトにこだわらない

最近では、システム運用のプログラムにPerlや Pythonを使う事例が多く出てきました。

シェルスクリプトにこだわらず、これらスクリプト言語の利用も検討してみてください。

そもそも実現したい作業がPerlで書いたほうが楽ならば、shでもbashでもなく、Per!を使え

ばよいのです。

099 連番のフアイル名を持つ∪RLを 自動生成して、順にダウンロードする

126 足し算・かけ算などをシンプルに記述する

367

00LUM‖

シェルスクリプトを記述するには、移植性・互換性に配慮して、/bin/shが長

いあいだ利用されてきました。しかしshは歴史の長いシェルである反面、数値計

関連項目



.i2i 
I

forループをブレース展開で
手軽に記述する

…
ping,eChO               ブレース展開,bash

□E回霞■
lPア ドレスリストなどをブレース展開の記法で手軽に作成したいとき

■■困□回■D

″:′ bin′ bash

#baShのブレース展開{)で IPア ドレスリストを作成する
for lpaddr in 192.168.2.(1..5)―――――――-113)

do

ping ―c l l'$i paddri= > ′devノ nuLL 2>&1

if t $? -eq 0 J; then
echo "[0K] Ping -> $ipaddr"

etse
echo "ENGI Ping -> $ipaddr"

fi
done

利用コマンド

$ , /bash-brace,sh
lOKl Ping -> 192.168.2.1

[0K] Ping -> 192.168.2.2
tNGl Ping *> !92.168.2.3
lNGl Ping -> 1g2.168.2.4

IoKl Ping -> Ig2.168.2.5

解説

このスクリプトは、pingコ マンドを対象のIPア ドレスに実行 し、その結果をOK/NGで
表示す るものです。対象 のIPア ドレス作成 には、bashの ブレース展開機能 (Brace
Expansion)を 利用しています。

pingコ マンドでのサーバ監視はP.323で紹介 しましたので、サンプル例の概要はそちら

を参照して ください。P.323で は1つのホス トに3回pingコ マンドを実行して丁寧に処理し

ていましたが、ここではbaShのブレース展開の機能にスポットを当てるため、スクリプト

を簡略化 してpingコ マンド1回のみで応答をチェックしています。

368

一
　

・
　

　

　

　

　

　

　̈

　

一
●

　

　

　

　

　

一　

　

　

一　

　

　

　

　

　

一　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

・　

　

　

　

　

　

　

　

　

一

●
一
　

　

　

　

　

．
　

　

・
―
　

　

　

一　

・
　

　

一　

一一　
　
　
一



123艤 forループをブレース展開で手軽に記述する

bashの ブレース展開とは、中カッコ{}で囲まれた文字列を展開する記法です。次にいく

つかサンプルを例示しましたが、カンマ区切りで文字列を列挙する記法と、ピリオド2つ

で範囲を指定する記法の2種類があります。どちらも直感的なためわかりやすいでしょう。

鸞bashの ブレース展開のサンプル

ブレース展開ではスペース区切りの文字列リストが得られるため、これをfor文のinに

直接指定することができます。うまく使いこなすと大変に便利な記法ですので、ぜひ覚え

ておきましょう。

サンプルの●では、IPア ドレスのリスト作成にブレース展開を用いています。ここでは

[192.168.2.1]か ら[192.168.2.5]ま でテストするため、第4オ クテットにブレース展開を

利用 し ま し
'セ

。 実行 時 |こ は、「192.168.2.1 192.168.2.2 192.168.2.3 192.168.2.4

192.168.2.5」 と展開され、このIPア ドレスに順番にpingコ マンドが実行されます。

なおブレース展開は複数書くことができますので、例えばリスト1のように記述すると、

192.168.0.0/16と いうネットワークに属するすべてのIPア ドレスリストを作成できます。

鰺陪颯隋麟ブレース展開を複数書いた例

#!/bi n/bash

for ipaddr in 192.168.(01..255).{0..255)

do

echo 'lSi paddr"

done

このようにブレース展開を利用すると、さまざまなリストを簡単に作成できます。IPア

ドレスやファイル名の生成に利用してみるとよいでしょう。

関連項目

114 サーバのping監視を行う

300



‖o.

|

足し算・かけ算などを
シンプルに記述する126

■

…ocho             算術式,算術展開,算術評価

…oxprコマンドを使わずに算術式を計算して、結果を得たいとき

″!/bin′ besh

″ブレース展開で1か ら100ま での数値リストを生成

for i in {1..100)

do

″算術展開を利用し、ファイル名に3を かけ算した

″中身を持つテキストファイルを作成

echo $((i * 3)) > $ti).txt
done

解説

このスクリプトは、1か ら100ま でのファイル名を持つテキストファイルを作成し、そ

のファイルの内容はファイル名の数値に3をかけ算した値とするものです。何かしらのテ

ストファイルを大量に作りたいときのツールとして使えるでしょう。

リストでは、まず●でブレース展開を利用して1から100ま での数値リストを作ってい

ます。このブレース展開については、P,368を参照してください。

②では、bash特有の記法である算術展開 (Arithmetic Expansion)を 利用しています。
この記法はS((算術式))と して書かれ、カッコ内の算術式を評価し、その演算結果を数値と

して展開する記法です。ここで記述する算術式は、変数名の前に付ける$記号を省略でき

ます。算術展開は一般的には、shシ ェルスクリプトにおいてexprコ マンドで計算してい

た部分を置き換える目的に利用されます。

算術展開でよく利用される演算子を次にあげておきます。これらはJavaやC言語で利用

される演算子とほぼ同じであるため、わかりやすいでしょう。

370

S ./bash― arith:netic.sh

l.tXtか ら100.txtま で、 100個の)ファイリレがイ乍られる

．　
　
　
　
　
　
　
　
　
　
　
　
　
一　
　
　
　
　
　
　
・　
　
・　
．
，
■
■

・　
　
　
　
　
　
　
　
　
．　
　
　
一

・



礎26蟻 足し算・かけ算などをシンプルに記述する

綽算術展開でよく利用される演算子(一部)

算術展開は、exprコ マンドで計算するのに比べて、外部コマンドを利用 しないことか

ら速度面での大きな優位性があります。また変数名に$が不要であったり、乗算の演算子
*にエスケープが必要ないなど、記述面でも便利です。

鰊exprコマンドと算術展開の違い

+ 加算

減算

乗算

除算 (切 り捨て)

% 剰余 (割 り算の余り)

べき乗

左シフト(ビット演算)<<

>> 右シフト(ビット演算)

resuLt=S(expr Si ¥* Sl)

resuLt=$((1 * 1))

←eXprコ マンドでは、かけ算はエスケープが必要
←算術展開では、S不要・エスケープ不要で記述できる

なお算術展開と似た例に、算術評価 (Arithmetic Evaluation)が あります。これは算術

式を評価し、その真偽値を返す記法です。その性質から、if文やwhile文の条件式として

testコ マンドの代わりに利用されることが多いでしょう。また、インクリメント/デクリ
メント演算子はそれ単体で成立し、演算結果を返す演算子ではないため、算術展開ではな

く算術評価で利用されるのが一般的です。

リスト1は、算術評価を利用してwhneル ープを書いてみた例です。exprコ マンドでの

加算などがないため、シェルスクリプト特有の回りくどさがなくなっているのがわかりま

す。

躊鰈隕鶉絋算術評価を用いたループ処理

#:/bin/bash

#i=1か ら1=9ま でwhi Leループで処理
う=1

whi te ((1 く 10))

do
・̈ 何かの処理…

((1++))

done

このように、bashの算術展開・算術評価を利用するとさまざまな数値計算をシンプル

371



cHAP預鷺鶴。bash

に記述することができます。またexprコ マンドのオーバーヘッドもなくなるため、スク

リプトの高速化も期待できるでしょう。

注意事項

算術展開では変数の頭に付ける$記号を省略できますが、引数を示す位置パラメータ($1,

$2など)だけは$記号を省略できません。位置バラメータは$記号を省略すると、例えば
「$1」 は「 1」 となり、ただの数値と見分けが付かないためです。

算術評価には、!etコマンドを利用する方法もあります。次のようにletコマンドの引数に算

術式を渡すと、算術評価の記法(())と 同様に、算術式が実行されてその真偽値が返されます。

次の2行は同じ意味です。

((1■+))|| ‐|                                                      ‐.

tet '1,+[

サンプル124で見たように、シェル変数をdecalare文の‐1オプションで定義すると、対象

の変数はS(0)記法を使わなくても、算術展開を利用できます。

関連項目

124 シェル変数を、整数値など属性付きで宣言する
125 forループをブレース展開で手軽に記述する

372

一　

　

　

　

　

　

ヽ



‖o.
変数内の文字列を、
n文字目からm文字取り出す127

囲回覇И腱

read,echo
Gロロ■■
文字列.―都,取り出し

IDリストフアイルから、指定したIDパターンのみを抽出したいとき

″:′ bin′bash

″指定されたIDフ ァイルから、「$id Sstatu可 として1行ずつ

″ readコ マンドで読み込む

whiLe read id status

do

″シェル変数 ldの先頭2文字が"AC"か をチェックする

if [ 1:S{id:0:2):: = ::ACi: ]r then― ¬

fieCh°

"Sid$StatuS"  _「→
done く ::Sl::

解説

このスクリプトは、IDリ ストファイル (id.lst)か ら「AC」 で始まるIDを抜き出し、その

IDと ステータスを表示するものです。ここで利用しているIDリ ストのファイルは、次の

ように「ID番号 ステータス」がスペース区切りで記述されていると仮定します。

回日陽艤 :Dリストファイル(id.:st)の 内容

AC38421021 0

HZ30281928 0

DP90023400 1

PX00031381 0

AC98102495 1

DP00281039 1

373



cHAPT臓需lo構 bash

IDリ ストの処理は、シェルスクリプトがよく使われる分野の1つでしょう。特に、この

サンプル例のようにIDの一部を取り出し、特定の文字列パターンを持つIDの みを抽出し

たい、というリスト処理は何かと利用シーンの多いケースです。

このサンプル例では、アンケート対象や抽選対象のID抽出を想定して、IDの先頭が「AC」

で始まっているIDを抽出するシーンを考えます。このようなケースで必要な、「変数内の

文字列に対して、指定したn文字目からm文字ぶん取り出す」という処理は、プログラミ
ング言語によってはsubstrな どの関数で実装されています。しかしシェルスクリプトには

substr関数はないため、自前で処理しないといけません。ここではbashのパラメータ展開

の機能を利用しています。

0では、まずwhile文に対してコマンドライン引数で指定されたファイル($1)を入カリ
ダイレクトしています。こうしてreadコマンドで1行ずつ読み込み、シェル変数idと

statusに 順に代入して処理していきます。

0の if文の条件式内で、シェル変数idに利用しているのが、n文字目からm文字ぶん取り

出すというbashのパラメータ展開の記法です。この機能は次のように利用されます。

バラメータ展開による文字列の取り出し

S{変数名8オフセット8文字数}

・・。「変数名」の、「オフセット」位置から後ろの「文字数」ぶん取り出す

S{変数名8オフセツト}

・・・「変数名」の、「オフセット」位置から後ろの文字列をすべて取り出す

なおこの際、offsetは 0か ら数えるため、「n文字目から取 り出す」場合に実際に指定する

数値は、nか ら1を 引いた値 となります。

次の実行例ではoffsetに 4を 指定していますから、シェル変数strの 5文字目であるEか ら

文字列が取 り出されます。「$〔 str:4:2}」 と指定すると2文字取 り出すのでEFが、「${str:4}」

とlengthを省略すると4文字目から最後までのEFGHIJKが取 り出されます。

Obashにおけるパラメータ展開は先頭位置が0となる

0では、「$〔 id:0:2〕」と指定しています。これはIDの「1文字目から、2文字ぶん取 り出す」
ことを意味 しますから、先頭2文字を取 り出すことになります。これを

‖
AC‖ と比較 して、

一致する場合にそのIDス テータスをechoコ マンドで表示しています。

S str==':ABCDEFGH工 JK''

‐S eChO S{StF=482}
EF         ‐  .

S echo Ststr:4}
EFGHIJK

374



127。 変数内の文字列を、い文字目から m文字取り出す

もちろん、このような処理はgrepコ マンドやsedコ マンド、cutコ マンドを使っても実

現できます。しかしbashのパラメータ展開を利用すれば、そのような外部コマンドを使

わずに実現でき、速度面でも有利であるため、ここで紹介してみました。

注意事項

バラメータ展開の書式中、offsetや lengthは算術展開されるため、算術式をそのまま書く

ことができます。そのため次のように、何文字目から取り出すかをシェル変数で動的に指

定できます。なお算術展開については、P,370を 参照してください。

また上記の例を応用すると、変数の末尾1文字のみを取り出す処理を、以下のように書くこ

とができます。

ここで${#id}と は、シェル変数idの値の文字列長です。

126 足し算・かけ算などをシンプルに記述する

375

関連項目



‖o.
変数内の文字列の―部を
置換する128

■日

…ocho                 ′ヽラメータ展開.文字列.置換.sed

□

…変数内の文字列を、sedコマンドを使わずに置換したいとき

″:′ bi n′ bash

″探査コマンドを取得

cormand="$1 "

#引数チェック
if [ -2 'lSCOm:mand'i ]′  then
eChO!]エ ラー :調べるコマンドを指定してくださぃ::>&2

exit l

fi

″環境変数 $PATHの コロンをスペースに置換し、fOr文のループ対象の

″ リストとする

for dir in S(PATHノ ノ:/ }

do

if t -f "$tdir)/${corunand}" J; then
echo "$tdi r)/${command}"

fi
done

$ ./bash-where.sh perl
/opt / 1oca1 /bin/perl-
/usr/bin/per1

解説

このスクリプトは、コマンドライン引数で指定されたコマンドが環境変数のパス内にあ

るかどうかを探索し、存在する場合はそのフルパスを列挙するものです。実行例では、

perlコ マンドが/opt/1ocaVbinと /uSr/binの 2カ所に見つかったとして表示しています。

このサンプルでは、tcshと いうシェルのwhereコ マンドを模した動作をするスクリプト

を作つています。tcshと は、baShと は違う系列のCシ ェルの一種で、一昔前はBSD系の

376



128。 変数内の文字列の一部を置換する

UNIXで よく使われていました。このtcshに は、あるコマンドがパス内のどこに存在する

かをすべて列挙するwhereと いうコマンドがあります

bashに はwhereコ マンドがないため、このサンプルで作成 してみることにします。例

えばPerlが システムに違うパスで複数インス トールされている場合、その状態確認のため

に使 うツールとして便利かもしれません。

リストの●では、まずコマンドライン引数で指定されたコマンド名を、位置パラメータ

$1か らシェル変数commandに代入します。0でその引数の中身をチェックし、空文字列
かどうかをtestコ マンドの―zオプションでチェックしています。空文字列ならばコマンド

が指定されていませんから、エラー表示してexitコ マンドで終了しています。

0で、bashのパラメ…夕展開の機能を使って:(コ ロン)をスペースに置換しています。
このような文字列置換は一般的にはsedコ マンドが使われますが、bashで は標準機能であ

るパラメータ展開で置換できるため、外部コマンドであるsedを使う必要がありません。

bashのパラメータ展開による文字列置換は、次のような書式で利用します。

バラメータ展開による文字列置換

(■)S{変数名ル タヾーン/置換文字列}

・・・「変数名」の、最初に一致した「パターン」のみ、「置換文字列」で置換する。sedコ マン

ドの ls/パターンノ置換文字列ノ
i 
に相当

(2)S{変数名/ル タヾーンノ置換文字列}

・・。「変数名」の、すべての一致する「パターン」を「置換文字列」で弛緩する。sedコ マンド
の is/パターン/置換文字列ノg' に相当

「パターン」の指定には、フイル ドカー ドである
キ
(任意の文字列)や ?(任意の1文字 )、

文字クラス指定[… ]な ども利用することができます。

0で利用する変数PATHは、コマンドの探索パスを指定する環境変数で、次のようにコ

ロン区切りで指定されています。

撥環境変数PATHの設定形式

ここでではこのコロンをスペースに置換することで、br文のリストとして各ディレク

トリをシェル変数dirに代入しています。それぞれのパス内にコマンドライン引数で指定

されたコマンドが存在しているかを、testコ マンドのフアイルテスト演算子―fを利用して

チェックし、ファイルがあればechoコ マンドで表不しています。

このようにして、パスが通っているディレクトリのどこにコマンドがあるか、一覧表示

できます。同一コマンドが複数のパスにインストールされていないかのチェックなどに使

377



OHAPTER 10。 bash

えるでしょう。

注意事項

・ このスクリプトでは、for文でスペースを区切りとして用いているため、環境変数PATHに
スペースを含むディレクトリを指定している場合には正しく動作しません。

・ パラメータ展開が使えないshスクリプ トでは、変数内の文字列を置換する際には、次のよ

うにechoコマンドで変数の値を出力してから、それをsedコマンドで処理する必要があり

ます。

・文字列置換の際に、文字列の先頭のみにマツチする/#と いう記法も利用できます。これは

正規表現ではA(行頭)で表されるパターンです。例えば次のように、先頭に余計なスペー

スが入つている文字列と入つていない文字列がある場合、/#で置換すると先頭にスペース

があるほうは置換されません。

上記の出力結果は次のようになり、1つ目のシェル変数strlは先頭にスペースが入つている

ためマツチしていないことがわかります。

なお、これとは逆に、末尾にマッチさせたい場合は/%記法を用います。

echo SPATH l sed ‐'s/:/ /.91    ‐

378

|| .    ‐‐.



‖o. 中間フアイルを作らずにコマン
ドの出力をフアイルのように扱
つ

129

□回饉■日
プロセス置換.名前付きバイブ FIFOcomm

□■回ロロ
コマントの出力結果をそのままファイルのように扱い、中間フアイルを作らないよう
にしたいとき

″:′ bin′bash

″比較する2つのディレクトリの定義

di r1=" lvar I tmp/backup1 "
di r2=" / v ar / tmp/backup2"

″ COnmコ マンドで出力を比較。中間ファイルを作らなくても

#プロセス置換で処理できる
comm く(Ls i'Sdi rl'I)く (Ls iiSdi r2ri)― ――――- 0

解説

このスクリプトは、2つのディレクトリ内のファイルー覧を比較して、その差異を表示

するものです。サンプル044で紹介したcommコ マンドを、中間ファイルを作らずにbash

のプロセス置換 (Process Substitution)の記法で処理しています。

bashのプロセス置換とは、コマンドの入力や出力を、FIFO(名前付きパイプ)や ファイ

379

E≡ヨ匹コ



CHAPT腹 1 10 0 bash

ル記述子を示す/dev/fd配 下のデバイスフアイルに接続して実行する機能です。コマンド

の出力結果を、ファイルとして別コマンドに渡すには、次のような書式を使います。

プロセス置換の使い方

コマンド1く (コマンド2)

一般的な利用の仕方としては、ファイルを対象とするコマンドを実行する際に、中間フ

ァイルを作らずに処理する用途が多いでしょう。例えば次の例では、lsコ マンドの実行結

果をファイルとみなして、commandAが 実行されます。

サンプル例では、commコ マンドで比較する対象リストファイルを、lsコ マンドの結果
とするために、プロセス置換を用いています。まず●で、比較する2つのディレクトリを

定義しています。この2つのディレクトリ内のファイルリストを比較するというケースを

想定しています。

0で、プロセス置換を用いて2つのlsコ マンドの結果を比較しています。commコ マン
ドは本来は、次のように2つのファイルを引数にとります。

しかし10では、2つのファイルをプロセス置換として指定することで、コマンドの結果

をそのまま利用することができます。

プロセス置換を使わない場合には、次のように2つのlsコ マンドの結果をいったん一時

ファイルに出力しておいて、それを比較するという手間がかかります。プロセス置換を使

うことで、このような一時ファイルの作成という面倒な作業をなくすことができたという

ことです。

このようにしてcommコ マンドの結果として、「ディレクトリ$dirlのみにあるフアイル」
「ディレクトリ$dir2の みにあるフアイル」「両方にあるフアイル」を分けて出力することが

できます。プロセス置換はこの他にも、ファイルを対象とするコマンドで応用できる記法

です。

380

comm a-txt b.txt

・　
―
一
¨
一

ts i'Sdi rll: > di rl.tmp

ts l'Sdi r21r > di r2.tmp

comm dlrll.tmp.di r2.tmp



1需 。中間フアイルを作らずにコマン ドの出力をフアイルのように扱う

注意事項

・プロセス置換の記法「<(コマンド)」 は、一見すると「入カリダイレクトとサブシェル」のよ

うに見えますが、この理解は誤りです。あくまで、「<(コマンド)」 で1セ ツトの記法です。

例えばリストの0を、次のようにしてカッコの前にスペースを入れると、エラーとなりま

すので注意してください。

プロセス置換には、この例で見たような入力をつなぐ処理とは逆に、出力をつなぐ「>(コ

マンド)」 という記法もあります。これは処理結果を標準出力には出さずにフアイルに直接

書き込むようなプログラムで、パイプ処理したいときに利用できます。例えばmy‐ calcコ

マンドが、直接結果を指定されたファイルヘ出力する仕様のコマンドであるとすると、次

のように記述することで、結果をファイルではなく標準出力に行番号付きで表示すること

ができます。

FreeBSDのパージョンによっては、プロセス置換が正しく動作しない場合があるようです。

その際にはportsか らbashの最新版をインストールしてみてください。

関連項目

0“  2つのディレクトリ内を比較し、どちらか片方だけに存在するフアイルを表示する

381



Ilo. 
I

t30 I

バイプ処理で書コマンドの
終了ステータスを調べる

回口国□D
バイフ‖ξ7ステータスecho

□E□囲■
パイプ処理の途中にあるコマンドの終了ステータスをチェックし、コマンドの成功
失敗を判断したいとき

■朦日田■

″:′bin/bash

″以下のような処理を行うケースを想定する。

″  SCri pt.Sh:データ出力
″  Sort―data.Sh:デ ータをソートする
#  CatC.Sh:出 カデータの計算をする
./SCript.Sh l ./SOrt― data.Sh l _/CatC.Sh > Output.tXt ―――――(D

″別のコマンドを実行するとPIPESTATUSの 値が失われるため、

″結果をコピーしておく

pl pe_status=(l'S(PIPESTATuSEaコ )it)

″パイプ処理の途中のコマンドの成功失敗チェック。

#SOrt―data.Shの 終了ステータスが非ゼロかを確認する

うf [ il${pipe_statusElコ 〕:' ―ne O ]′  then
echo l'EERROR] sort― data.sh は失敵〔しました'I >&2
fi

解説

このスクリプトは、パイプ処理の途中でエラーが起きたかどうかをチェックし、エラー

が発生していた場合はエラーメッセージを出力するものです。

ここでは、scnpt.sh―→ sort― data.sh → calc.shと いう3つのスクリプトを順に実行し

て何らかのデータ処理を行い、その結果をoutput.txtと いうファイルに出力するケースを

想定します。ここで、sort―data.shは失敗することもありますが、後続のCalC.shでの計算

にソートは必須ではないため、エラーは起きてもかまわず実行するものと仮定します。た

だし、ソートが失敗した際には終了ステータスが非ゼロとなるため、これを検知してエラ

382



130。 バイプ処理で各コマン ドの終了ステータスを調べる

―メッセージだけは出力しておきたい、というケースを考えます。

コマンドの終了ステータス$?を利用するサンプル例は本書でも多く取り上げています

が、パイプ処理をしている場合には、途中のコマンドの終了ステータスを$?で取得する

ことはできません。変数$?に はパイプラインの最後に実行されるコマンドの終了ステータ

スしか代入されないため、例えば●では最後のCalc.Shの終了ステータスしか取得できない

のです。

しかし、bashの組み込み変数であるPIPESTATUSを利用すると、直前のパイプライ
ン処理のすべての終了ステータスを取得することができます。PIPESTATUSは 配列変数
となっており、そのO番 目にはパイプの1つ 目の終了ステータスが、1番目にはパイプの2

つ目の終了ステータスが入つています。

0本サンプルにおける特殊変数PIPESTATUSの値

0の $IPIPESTATUS[@]〕で利用している配列の添え字@は、配列すべてを意味します。
全体をカッコ()で くくることで、配列全体をシェル変数にコピーしています。

0で、sort―data.shの 終了ステータスを$〔 PIPESTATUS[1]}か ら取得して、testコ マンド
の、等しくないかどうかを調べる―ne演算子で0と 比較しています。終了ステータスが0で

はない場合には、エラーメッセージを表示しています。

このようにして、パイプ処理の途中のコマンドの終了ステータスを取得することができ

ます。細かいエラー処理をしたいときに役に立つでしょう。

ヒ墜望堅里堕型塾
変数PIPESTATUSの利用には注意すべき点があります。それは、何かコマンドを実行
するたびに、変数PIPESTATUSは 常に更新されてしまうということです。例えばリスト1

は、パイプ処理した3つのコマンドの終了ステータスをechoコマンドで確認しようとした

(つ もりの)ス クリプトです。しかしこのスクリプトは、誤った書き方をしています。

躍因瞳撥 PIPESTATUSの誤つた使用例 (‖ st2.sh)

S{PIPESTA丁∪S[0]} パイプ処理の1つ目 (scriptsh)の終了ステータス

SIPlPESTAT∪S[1]} パイプ処理の2つ目 (50rt―data.Sh)の 終了ステータス

S{PIPESTAT∪S[2]} パイプ処理の3つ目 (catc.sh)の 終了ステータス

″!/bin/bash

./script.sh | ./sort-data.sh | ./caIc.sh > output-txt

echo S(PIPESTATuS[0]}

echo S(PIPESTATUS[1]}

echo S(PIPESTATUSE2]〕

383



GHAPr菫 朧10 0 bash

リスト1を実行してみると、④と◎のechoコマンドが何も表示されません。

0リ スト1の実行例

これは、パイプを使っていないコマンド処理でも、変数PIPESTATUSは 0個のパイプ処

理があるとみなして、常に更新されてしまうからです。よつて、④では直前のechoコ マ

ンドの2番目のパイプ処理の終了ステータスを取得しようとして、そのような処理が存在

しないため空文字列を出力しています。③も同様です。このように、echoコ マンドなど

何かコマンドを実行するたびに、PIPESTATUSは上書き更新されてしまいます。そのた

め本サンプルでは、PIPESTATUSを いったんシェル変数pipe_statusに丸ごとコピーして

います。

注意事項

シェル変数PIPESTATUSは 、shには存在しないbash特有のシェル変数です。この他にも
bash特有のさまざまなシェル変数があります。その中からシェルスクリプトを書く際に便

利そうなものの一部を、次にあげておきました。

蜻bash特有の便利なシェル変数

それぞれの詳細や、この他のbash特有のシェル変数については、man bashと してbash

のマニュアルを読んでみてください。

/■ ist2.sh，

０

BASH 現在実行しているbashを起動したときのフルパス

DlRSTACK 現在のディレクトリスタックの内容(配列変数)

SHELLOPTS 現在有効になつているシェルのオプション(コ ロン区切り)

シェルが起動されてからの秒数SECONDS
HOSTNAME ホスト名

∪ID 現在シェルを実行しているユーザのユーザID

GRO∪ PS 現在のユーザがメンバになつているグループのリスト(配列変数)

384



-i3r 
I

ユーザに簡易メニューを
表示して選択してもらう

園□壺□日
se:ect,case …メニュー ,選択

簡単なメニュー表示をして、ユーザに操作させたいとき

■鵬覇囲■

″:′ bin/b86h

″ メニュープロンプト文の定義

PS3='Menu;'

#メ ニュー表示の定義。メニューの各項目はinへのリス トとして指定する。
″ $itemには選択されたリストの文字列が、$REPLYには入力された数値が代入される

seLect item in iiList fiLe]]:icurrent directory=: =iexi tli

do

case liSREPLYil in

l)

Ls

2)

pwd

3)

exi t #選択肢にeXitコ マンドがないとメニューから抜けられない

キ)

echo :iError

esac

Unknown Command"

翻

385

Menu: 2

Menu: 3

■

・



CHAPTE■ 10 0 bash

ロ

echo

done

」」堕
このスクリプトは、メニュー表示をするものです。メニュー 1番の・list ile"を選ぶとls

コマンドを、2番の
‖
current directory"を 選ぶとpwdコ マンドを、3番の

‖
exit‖を選ぶとe対 t

コマンドを実行します。このようなメニュー表示のスクリプトはP.18で作 りましたが、こ

こではbashの機能であるselect文を利用 しています。

baShの select文 とは簡単にメニューを作るための機能で、次のように利用 します。

select文の基本的使用法

PS3=プロンプト文

Se■eCt く変数名> in くリスト>
do
...。 (コマンド)

done

くリス ト>で指定 した文字列を元にbashがメニューを組み立てて、自動的に番号を振っ

て表示してくれます。select文の「inく リスト>」 の部分は省略可能で、省略すると位置パ

ラメータ$@、 つまリコマンドライン引数が指定されたものとみなされます。

またPS3と は、select文 が利用するbashの シェル変数で、この文字列がメニューヘの

プロンプトとして表示されます。

select文では、ユーザが選択したリス トの値が、く変数名>に代入されます。またこの際、

ユーザが入力した数値は同時にシェル変数REPLYに代入されます。メニューとしてcase

文を利用して分岐させるならば、このシェル変数REPLYを 利用すると便利でしょう。サ
ンプル例でも、シェル変数REPLYを 利用 して選択されたメニューを取得 しています。

サンプルスクリプトでは、まず0でシェル変数PS3に プロンプト文を代入しています。
ここで設定した値が、メニュー表示の際の問いかけ文として表示されます。

0では、select文でメニューを定義しています。ここでは‖list me‖ "current directowI!
‖
exit"の 3つの文をリストとして与えています。実行例で見るように、これらに順に1)、

2)、 3)と 数値を付けて表示するのはbashが自動的に行つてくれますから、スクリプト中に

記載する必要はありません。ユーザが入力した数値は、select文によってシェル変数

REPLYに代入されていますから、これをcase文で分岐して各処理を実行しています。
このようにして、簡単にメニューを作成することができます。操作に不慣れな初心者が

利用するスクリプトなどで、対話型のメニューを利用したいときに役立つでしょう。

386



‖o.

132 整数値の乱数を得る

□回園目日
nc.echo.sloop 乱数.整数

…外部コマンドを使わず、シェルスクリフトだけで乱数を取得したいとき

■鵬日四■

″1′bin/bash

#テスト通信先の定義
ipaddr=‖ 192.168.2.1''

port=80

″ 1か ら10までの整数値の乱数を、RANDOM変数から取得する

waittime=S((RANDOM % 10 + 1))――――――- 0

#テストコマンドを、ウェイトを入れて2回実行する
nc -u 5 -zv ttipaddr $port
echo "tlait: $waittime sec."
sleep $waittime
nc -w 5 -zv $ipaddr $port

解説

このスクリプトは、ncコ マンドによるネットワークの通信テストを2回行う際、合間の

ウェイト秒として乱数を用いるものです。乱数はbashのシェル変数RANDOMを 利用して
います。このスクリプトは、乱数を取得する部分にbashの機能を用いたこと以外はP.268

のサンプルと同じものですから、スクリプトの詳しい動きについてはそちらを参照してく

ださい。

さて、シェルスクリプトを書いていると、テストのためのウェイト秒数やゲームなどで

の「サイコロ」など、乱数が必要な機会がときおりあります。しかしsh自体には乱数を生

成する機能はないため、/dev/urandomな どを用いて乱数を組み立てる必要がありました。

387

¬
」



OHAPllR 10● bash

しかしbashに はデフォル トで、乱数を生成 してくれる機能があります。それがシェル変

数RANDOMで す。
bashの シェル変数RANDOMは 、参照するたびにOか ら32767ま での整数値の乱数を返
します。 これを利用 して、1か らnま での乱数を得たい場合には、次のように算術展開を

利用 して記述します。なおbashの算術展開については、P.370で説明していますので詳し

くはそちらを参照して ください。

$((RANDOM % n ■ 1))

上記では算術式の剰余 (割 り算の余り)を意味する演算子%を利用しています。例えばn

が10な らば、得られる剰余は0か ら9ですから、それに1を足せば1から10ま での乱数が得

られるわけです。これはよく使われるイディオムのようなものですから、丸ごと覚えてお

くとよいでしょう。

●では、まず通信テストを行う対象ホストのIPア ドレスとポート番号を指定します。続

いて0で、テスト間隔のウェイト秒数を乱数で取得します。ここではウェイト秒数に1か
ら10の乱数を得たいため、RANDOM変 数の10の剰余に1を足しています。得られた乱数
を、シェル変数waittimeに 代入しています。

0で、ncコマンドで通信テストを2回行い、合間に先ほど0で取得した乱数のウェイト

秒を入れています。ここでのncコ マンドのオプションなどは、P.162を 参照してください。

このようにして、bashでは簡単に乱数値を得ることができます。覚えておくと、何か

の機会に役に立つかもしれません。

関連項目

007 シェルスクリプトの一部にPerlやRubyを使う
126 足し算・かけ算などをシンプルに記述する

388



APPE ‖ ロ H

拠三カ1情旨幸風
01◎端末 (ターミナル)とは

02◎ UNIXコマンドのオプションについて
03隋シェルスクリプトの変数名

04瘍cronに よるスクリプト実行について
05鬱 dialogコマンドのインストール
06磯 pVコマンドのインストール
07幌 setコマンドの利用

080Webサービスの監視について
09(癬bashのインストールについて

100参考文献



一　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　・　　　　　　　　　　　　　一

一　
　

　
　

一

0l lmx (r-=itb)ett
l

A,p機確DiX O追 加情報

端末(夕…ミナ′い

UNIX環境では、端末とはユーザが操作するシェルヘの入出カインタフェースを指しま

す。現在では、端末といえばほぼ「端末ウィンドウ」を指すと思って間違いないでしょう。

これは端末エミュレータとも呼ばれるソフトウェアで、次のような種類があります。この

本を読んでいる読者も、これらのどれかを使っていることでしよう。

0主な端末エミュレータ

しかし本来、端末とはこのようなソフトウェアのみを指すのではなく、もっと広い意味

を持ちます。例えばシリアルポートを介して利用するテレタイプ(電動タイプライター)

も端末であり、これはいまもUNIXの ttyデバイスという名称に名前を残しています。また

読者の中には、データセンターなどでダム端末を利用した経験のある方もいることでしよ

つ。

サンプル004な どでは端末操作のためにsttyコ マンドを利用していますが、このsttyコ

マンドにはボーレート(変調回数)やパリティの設定を行う機能があります。これは、シ

リアルポートにダム端末などをつなぐ際に、各種設定をするための機能が残っているもの

です。

仮想端末

端末エミュレータでUNIXに ログインすると、それは仮想端末を利用していることにな

ります。次のようにttyコマンドを実行すると、現在利用している仮想端末のデバイス名

を確認することができます。

0仮想端末のデバイス名を表示

Windows TeraTerm, PUTTY, Poderosa

Linux,FreeBSD xterm, kterm, gnome-termina[, Konsote

AAac Termina[.app, iTerm2

390

一般に、端末デバイス名はttyが物理ディスプレイとキーボード、ptSは仮想端末を指し



010端末 (ターミナル)とは

ます (Macの場合はデバイス名の割り当てが多少違います)。

ここで 1つ、簡単な実験をしてみましょう。端末ウィンドウを2つ開いて、それぞれ同

じUNIXマシンにログインしてください。そして片方の端末ウィンドウでttyコ マンドを実
行し、割 り当てられている仮想端末のデバイス名を確認します。ここでは、「/deV/ptS/1」

が割 り当てられていたと仮定します。

続いて、もう片方の端末ウィンドウから、次のように
‖HeHo‖ という文字列を表示する

echoコ マンドを実行 します。ここで、先ほど確認 した仮想端末のデバイスファイルに出

カリダイレクトを行います。

醸張想端末にechoコマンドの出力をリダイレクト

すると次のように、もう1つのウィンドウに・Hello"が表示されます。

◎仮想端末とデバイスファイル

仮想端末/dev/ptS/1

仮想端末/dev/pts/0

このようにUNIXで は、デバイスファイルに端末を割り当てています。この実験で、端

末とその動きが理解できたのではないでしょうか。

391



Ls― L

02 | 
urux avvlot7iv =rtz2l,rE

APP躙 01)【 苺)自カロ情幸風

サンプル001で getoptsコ マンドによるオプションの利用例を紹介しました。ここではls

コマンドを例にあげて、UNIXで使われるオプション指定についての基礎知識を解説しま

す。

オプションの指定方法

UNIXの多くのコマンドは、オプションを指定することができます。オプションは―(ハ
イフン)の後ろに、1文字のアルファベットもしくは数値を付加して指定します。

一　

　

　

　

　

●
　

一　

　

　

　

　

　

　

一　

　

　

　

　

　

　

一　

　

　

　

　

　

　

一　
　

　

　

　

　

　

一　
　
　
　
　
　
・

・Ｉ

一　

　

　

　

　

一　

一一　

　

　

　

　

　

一
　

●
‐
　

・
―
　

一　

　

　

　

　

　

一　

　

　

　

　

　

一　

　

　

―
●
一一
一
■
―

・
　

　

　

．

一　

　

　

　

　

　

一
　

一●
一
　

一
●

　̈

　

　

　

　

　

一　

　

　

　

　

　

一
　

　

　

．

●
〓
　

．

．
　

　

　

　

　

一　

　

　

　

　

　

・

●
―

―

―

　

　̈

　

　

　

　

　

　́

　

　

　

　

　

一　

　

　

　

　

　

¨

一　

　

　

　

　

　

一　

　

　

　

　

　

¨
　

一

●

　

　

　

　̈

　

　

　

　

　

・
　

　

　

　

　

一　

　

　

　

　

　

一

上記は、lsコ マンドに、ファイルの詳細情報を表示するオプションである-1を 指定した

ものです。lsコ マンドは何もオプションを付けないとファイル名しか表示 しませんが、こ

のように-1オ プションを付けるとファイルのパーミッション、所有者、タイムスタンプな

どの詳細情報を表示します。

オプションを複数指定するには、それらを並べて書きます。この際、ひとつひとつにハ

イフンを付けて分けて書いてもよいですし(0)、 ハイフン1つに複数のオプションの文字

をまとめて書いてもかまいません (0)。

０

０

．

■

二

●

〓

一
　

一

〓

二

一
　

一

〓
　

一

一　

一

・
ｔ

　

一

一　
　
一

L墜望生生圭
オプションは、伝統的にはハイフン1つ にアルファベット1つで指定されます。しかし

最近では、ハイフン2つ に英単語を並べて指定するロングオプションも用いられています。

次は、Linuxで lsコ マンドの結果をカラー表示するオプションーcolorを用いた例です。

Ls ――coLor

このロングオプションは、GNUの提供するコマンド群に多く見られることからGNU形
式 とも呼ばれます。ロングオプションは英単語で構成されるため、ひと目で見て効果がわ

か りやすいのが利点です。

しかしFreeBSDな どのBSD系 UNIX環境では、POSIX形式である1文字オプションにこ

392



o會 警UNIXコマンドのオプシヨンについて

陸圧堕型型翌豊
オプションには、引数を指定するものがあります。例えばheadコ マンドの表示行数を

指定する―nオ プション(LinuxではGNU形式の一linesオ プションも利用可能)では、表示す
る行数を数値で指定します。引数指定の際には、 1文字オプションでは後ろにスペースを

入れても入れなくてもかまいません。またGNU形式ではスペースではなく=を使ってもか

まいません。以下4つはすべて同じ意味で、「先頭2行を表示」します。

ハイフンで始まるフアイルを引数にとる

あまり見られないケースですが、ファイル名がハイフンで始まるフアイルを扱いたい場

合があります。例えば次の例では「―sample.txt」 というファイル名を引数にとりたいので

すが、このファイル名がオプションだと判断されて、エラーになっています。

Ls―sampte t■
||||||||||||||||||||||||||||||||||||||||||||||||       ||||||||||||||||||

このような場合は、オプションとしてハイフン2つ―を書くと、それ以降にオプション

はないという打ち切りを意味します。そのため―の後ろにハイフンを含むファイル名を書

けば、引数を正しく扱うことができます。

{ s -- *sarnpte - txt

393

だわる傾向が強 く、このロングオプションはあまり用いられません。例えばFreeBSDで

は、lsコマンドをカラー表示するには一colorオ プションは使えず、代わりに―Gオ プション

を用います。

なおロングオプションは、他のオプションと区別できる範囲で省略して書けます。例え

ばlsコ マンドの一colorオ プションは、「ls― col」 とだけ書いても正 しく認識されます。

ビ



|

031シェルスクリプトの変数名

AP,囲 DlX● 追カロ情幸展

大文字と小文字

シェルスクリプトでは、変数名に大文字小文字どちらも用いることができます。

特に文法的な決まりではありませんが、一般的には他のプログラミング言語と同じく、

定数は大文字で、変数は小文字で書いたほうがよいでしょう。また、環境変数は大文字で

書くのが普通です。

0大文字と小文字の使い分け

″定義ファイル名は定数なので大文字

CONFlGFILE=:imyapp.conf‖

″ループカウンタは変数なので小文字

1=0

#環境変数は大文字
‖Y_TMPDIR="ノ var/tmp"

export MY_TMPDlR

ただし、すべての変数名を大文字で書き、小文字は一切使わないという流儀の人もいま

す。プロジェクトによってはコーディング規約などですべてを大文字変数とすることもあ

りますから、そのようなスクリプトを見ても驚かないようにしてください。

また、シェルスクリプトで変数名や関数名が長 くなる際には、キャメルケースはあまり

使われず、スネークケースが利用されることが多いようです。

ここでキャメルケースとは、複数単語からなる場合にそれぞれの単語の先頭を大文字に

する記法で、特にJavaで よく使われる命名法です。例えばJavaの Fileク ラスで新規ファイ

ル作成をするメソッド名は、
‖
createNewFile‖です。一方、スネークケースとはそれぞれ

の単語を_(アンダーバー)でつなく
゛
記法で、古 くからさまざまな言語で使われています。

キヤメルケース :sampleDatalndex(Javaで よく使われる)
スネークケース :sample_data_index(シ ェルスクリプトでよく使われる)

ちなみにキャメルケースのキャメル (Camel)と は、ラクダのことです。おそらく変数

名の大文字小文字が入り交じるデコボコが、ラクダのこぶのように見えることから名付け

られたのでしょう。

394

Ｆ

Ｉ
　

　

　

一



鑢 簿シェルスクリプ トの変数名

変数の型

シェルスクリプトには、変数の型はありません。同じ変数に文字列を入れることも、数

値を入れることもできます。しかしそのようなプログラミングスタイルはバグを招きやす

いため、文字列を入れる変数と数値を入れる変数は分けておくべきです。

また変数に型がないため、変数名はできるだけ内容が理解しやすいものを命名するよう

に心がけてください。Varlと いう名前のシェル変数があったとしても、それはテンポラ

リの何かの文字列なのか、あるいは一時的なステータス値を保存しているのか、全くわか

りません。

一方、useLscoreと いうシェル変数があれば、それは少なくとも何かのユーザの得点を

保持している数値変数なのだろう、とすぐわかります。

バスと最後のスラツシュ

ディレクトリ名を入れる変数の最後に、/(ス ラッシュ)を入れるか入れないかは、若干

好みが分かれるところです。しかし一般的には、スラッシュを入れない書き方が多いよう

です。この場合、フルパスを組み立てるには自分でスラッシュを挿入する必要があります。

例えば次の例は、シェル変数filepathに はディレクトリ名を入れていますが、最後にス

ラッシュを入れていないのでファイル名と連結 してフルパスを組み立てる際にあいだに/

(ス ラッシュ)を入れています。

このスラッシュの挿入を忘れて、フルパス指定が誤りとなるのはよくある失敗例です。

特に同一のスクリプトの中で、最後にスラッシュを入れる変数 と入れない変数を混在させ

るようなことは、誤 りを誘発 しますから絶対に避けるべきです。

395



|

04 1cronによるスクリプト実行について

牌 剛鬱Ⅸ。追加情報

定期的な集計処理やサーバ 。ネットワーク監視など、シェルスクリプトを定期的に自動

実行したいニーズはさまざまな場面で見られます。UNIXに はそのようなコマンドの自動
実行を行うために、cronと いう仕組みが提供されています。ここで簡単に、cronの動作
とその設定方法を説明しておきましょう。

cronの動作と設定ファイル

cronの 仕組みは、cronデーモン(Linuxで はcrond、 FreeBSDではcron)が 、設定ファイ
ルcrontabに 記載されたとおりにコマンドを定期的に実行する形で提供されます。

システム全体のcronの設定ファイルは、/etc/crontabで す。中身はただのテキス トフア

イルなので、読者の環境でもcatコ マン ドなどで中身を確認 してみて ください。/etc/

crontabは 、次のような書式で記述します。このコラムでは、「実行するコマンドの定義」

について以下、詳 しく説明します。

翻爾鶴轟1/etc/crontabフ ァイルの設定例

″ *環境変数の設定

PATH=/sbi n:/bin:/usr/sbin:/usr/bi n

″ *コ メントは先頭に#を付ける。

#―――ここはコメント行です。―――

#*実行するコマンドの定義
″分 時 日 月 曜日 実行ユーザ

o  l 十 十 ■   userl
実行コマンド

ノusrノ bi n/cOmmand

上記の「実行するコマンドの定義」では、前半の5つのフィールドで、自動実行 したい日

時設定を指定します。指定可能な日時設定は、次のとおりです。

Ocrontabフ アイルで指定可能な日時

分 0～ 59

日寺 0´-23

日 1～31

月 1～ 12

曜 日 0～7(0と 7は日曜日)

396

■
―

■
　
・

・
　

一

，
・．
●
．‥
．
Ｉ
　
一
．　
　
　
一



ξM]撥 cronに よるスクリフ ト実行について

各フィールドには、次のような記法が利用できます。

やcrontabの各フィールドに可能な記述

I z-fEEOcrontabTvltV

/etc/crontabは システム全体の設定ファイルですから、rootユーザしか編集できません。

ユーザごとにcron設定をしたい場合は、crontabコマンドに編集を意味する‐eオプション

を付けて「crontab― e」 と実行します。こうすることでテキス トエディタが起動し、編集

後に保存して終了するとユーザごとのcronが設定できます。

「crontab― e」 で編集するユーザごとのcron設定は、リスト1の形式から実行ユーザを除

いた、次のような形式で記述します。 リスト1と 比べて、実行ユーザのフィール ドがない

ことに注意して ください。

l8g r--V t tactontabT y 4 )V

ホ
(アスタリスク)

これはそれぞれのカラムにおいて、指定可能な最初の値から最後の値、つまり「す
べて」を指す。例えばリスト1は、曜日と月と日が

*だから、「毎日 1:00に、
userlユーザ権限で、/usr/bin/command」 を実行する

数値の範囲
例えば時フィール ドに「8-11」 を指定すると、8時、9時、10時、11時に実行す
る

リスト
例えば時フィールドにカンマで区切つて「1,2,5,9」 とすると、1時、2時、5時、
9時に実行する。リストと範囲は組み合わせが●I能

間隔値
「/数値」を入れると、その数値間隔で実行する。例えば分フィールドに「

*/5」 と
指定すると、5分ごとに実行する

″分 時 日 月 曜日 実行コマンド

0  1  * * *   /usr/bin/command

なお、「crontab― e」 を実行する際には環境変数EDITORに設定されているエディタが利

用されます。

ユーザごとのcrontabフ アイルは、実際のファイルはLinuxな らば「/Var/Sp001/CrOn/(ユ

ーザ名)」、FreeBSDな らば「/vavcron/tabs/(ユーザ名)」 となります。記述したユーザご

とのcrontabフ アイルの内容は、crontabコ マンドに■オプションを付けて実行することで

確認できます。

蜻crontab‐ 1による現在のcrontabの確認

397



鮮り圏酬X● 追カロ情報

なお、ユーザごとのcrontabフ ァイルを扱う際の注意点として、crontabコ マンドの削

除を意味する―rオ プションがあげられます。crontabの ‐rオプションは、実行すると警告な

どを何も表示せず、即座にユーザのcrontabフ ァイルを削除するという動きをします。

Ocrontab―rは警告なしにいきなり削除するため危険

「crontab― e」 でcrontabフ ァイルを変更しようとして、誤って「crontab― r」 を実行して

丸ごと削除してしまう、というのはありがちな失敗例です。

この失敗の予防策として、「まずcrontab-1で 現在の内容をフアイルに出力してから、

そのファイルを更新して『crontabくファイル名>』 で反映させる。crontab― eは絶対に使

わない」という手法をとる人もいます。crontabコ マンドは、引数にファイルが指定され

た場合は、そのファイルの内容を登録するという動作をするためです。

◎ユーザごとのcron設定の際、望ましいcrontab操作

上記のような手法を利用する際には、修正したファイルをその都度Subverslonや Gitな

どにコミットし、バージョン管理するとさらによいでしょう。

L型空≡型堕堅
少々ややこしいのですが、設定ファイルcrontabと 、編集するためのcrontabコ マンド

は別物です。どちらも同一名称のため、manコ マンドでマニュアルを引 く際にも混乱し
やすいので注意が必要です。具体的なcronの マニュアル類を次にまとめておきましたの

で参考にしてください。

Ocron関連のマニュアル類

S Crontab -1 > ～/crontab

S vim― /crontab(図 2のように内容を修正する)
S Crontab ～/crontab

man 1 crontab ユーザーごとのcrontabフ アイルを管理するcrontabコ マンド

man 5 crontab cron動作のためのcrontab定義ファイルについて

man cron 常駐してcronを動作させるcronデーモンについて

398

一

一

・

‐

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

．

ェアメレ
'を

見るコマンド

$ erontab
$ crontab
no



翻:。 cЮnによるスクリプト実行について

環境変数など

cronか ら実行されたスクリプトは、コマンドラインから実行した場合とは、環境変数

やカレントディレクトリが異なるのが普通です。具体的には、cronか ら実行した場合に

は例えばbashな らば～/.bashrcが読み込まれません。またカレントディレクトリは、実行
ユーザのホームディレクトリとなります。

このような特性を理解していないと、「コマンドライン上にて手で。/script.shと して実

行すると正常に動作するが、cronに 登録して実行するとエラーとなる」という事態に陥り

がちです。cronに登録する際は、以下の点に留意してシェルスクリプトを記述するよう

にしてください。

カレントディレクトリがどこであつても動作するように書かれているか?

→サンプル023で、これに対応するサンプル例を紹介しています。

環境変数PATHの値に注意しているか?
→cronでは、例え,シusr/1oca1/binに はパスが通っていないことが普通です。スクリプ

ト実行前にcrontabフ ァイルの中で環境変数PATHに必要なパスを追加するか、あるい

はシェルスクリプト内でコマンドをフルパスで書くようにしてください。

はMacの場合
現在のMacOSではcronは 利用されず、代わりにlaunchdが使われています。そのため
Macで定期的にコマンドを実行したい場合には、launchd.plistと いう設定ファイルを編

集します。

launchdの具体的な動作や、launchd.plistフ ァイルの書式などを詳しく説明していると

本書の範囲を大きく超えてしまいますので、ここでは省略します。興味のある読者は

「man launchd」 および「man launchd.plist」 として、マニュアルを読んでみてください。

399



05 ]pv=vv\o,(vzrJ--rl,
l

APP籠機憩1ス ●追加情報

Linux(CentOS)では、pvコ マンドはデフォル トのyumリ ポジトリには入ってないため、
yumコ マンドで手軽にインス トールすることができません。

またMacOS Xで も、pvコ マンドはデフォルトでインストールされていないため、別途
インストールする必要があります。

そのためここでは、開発環境を準備 してからpvコ マンドのソースコー ドをダウンロー

ドして、システムヘインス トールするまでの手順を紹介します。

開発環境の準備

ソースコー ドからインス トールするためには、システムの事前準備 として、ソースコー

ドを実行可能な形式へと変換 (コ ンパイル)す るための開発環境が必要になります。具体

的には、gccコマンドやmakeコマンドが必要です。
Linuxではこれらのコマンドは、明示的に入れない設定 (イ ンス トール時に最小構成を

指定するなど)を しない限りは、ほとんどの場合デフォル トでインス トールされています。

gccコ マンドやmakeコ マンドに…versionオプションを付けてコマンドを実行するとバー

ジョン情報が表示されますので、これでシステムにコマンドがインス トールされているか

確認してみて ください。

Ogccと makeコマンドの確認

ここで
‖command not found‖ と表示されてエラーになるようなら、これらコマンドを

パッケージからインストールしてください。具体的には、Linux(CentOS)な らばyumコ

マンドを利用 します。

400

Oyumコ マンドによるインストール (Linux(CentOS)の 場合)

S mako

3.81GNU Mak0

gccinstaLl



議50 pVコマンドのインストール

FreeBSDの 場合は、デフォルトでgccと makeはインストールされています。

MacOS Xの場合は、開発環境を利用するためにXcodeと いうアップルが配布している

デベロッパツールをインストールする必要があります。Xcodeのインストール手順につい

ては、バージョンアップごとに大きく手順が変わる可能性があることと、本書の範囲を逸

脱してしまうため、ここでは詳しく解説しません。大まかには、まずApple IDを作成し、

その後にApp Storeか らXcodeをダウンロードしてインストールするという流れになりま

す。

なお、Xcodeの インストール時、Xcodeの バージョンによっては「Command Line
Tools」 を明示して指定しないとgccや makeコ マンドが入らない場合があるようです。こ

の場合、Xcodeイ ンストール後に、メニューの [Prebrences>Downloads]か ら「Command
Line Tools」 を追加インストールしてください。

ダウンロ…ド

す

pvコ マンドのソースコードは、以下のWebページからダウンロー ドすることができま

pvコマンドのソース

饉饉爾爾鰺http://www.ivarch.com/programs/pv.shtml

このWebページの「Downloads」 のところにソースコードヘのリンクがあります。ソー

スコードはファイルの圧縮形式などでいくつか種類がありますが、ここではもっともオー

ソドックスな、拡張子が.tar.gzに なっているフアイルをダウンロードしましょう。執筆時

点ではバージョン1.4.12が最新版でしたので、ダウンロードしたものはpv-1.4.12.tar.gz

です。

ファイルのダウンロードは、Linux/Macの 場合はcurlコ マンドを使うとよいでしょう。

curlコ マンドは、システムにデフォルトでインストールされています。

鍮curiコマンドでソースのダウンロード

curiコ マンドはデフォルトでは標準出力にダウンロードしたファイルを表示するので、

何もオプションを付けないとtar.gzのバイナリが画面にそのまま表示されてしまいます。

そのため必ず-0(オー)オプションを付けてファイルとして保存しましょう。

FreeBSDの場合、curlコ マンドは標準ではインストールされていません。そのため代わ

りに、標準でインストールされているたtchコ マンドを利用するとよいでしよう。

401



A:や壼‖D盤 。追加情報

Ofetchコ マンドでソースのダウンロード

インストール

ダウンロードしてきたpV-1.4.12.tar.gzフ ァイルは、gzip圧縮されたtarア ーカイブです

(こ のようなソースファイルー式を「tarボール」と呼んだ りもします)。 そのため、まずtar

コマンドで展開します。

Otarボールの展開

ここでtarコ マンドには、次のオプションを指定しています。これらはよく使いますの

で覚えておきましょう。これにより、tar.gz圧縮されたアーカイブを展開 して、中のフア

イルを取 り出すことができます。

Ctarコ マンドのよく使うオプション

次にソースコードをコンパイルします。まずソースコー ドに同梱されているconfigure

スクリプ トを利用して、Makefileを 作成 します。続いてmakeコマンドにより実際にソー

スコードをコンパイルします。最後に、make instanで実行ファイルをシステムにインス

トールします。

こう書 くと難しそうですが、実際の手順 として必要なコマンドは以下のようにわずかで

あり、そんなに難しいものではありません。なお、make installコ マンドだけは、root権

限で実行する必要があります。

t fetch http://w、私′.ivarch.com/programs/sources/Pv―■.4.12.tar.9Z

pv-1.4.12.tar.gz                               100な of  l10 kB   62 kBps

展開

展開中のフアイルを表示

gzipフ ィルタ

ファイルを指定

402

|オプション

$ tar xvzf pv-L.4.12.l-at.gz



倉聯鰺pVコマンドのインストール

蜀pvコマンドのコンパイルとインストール(Linux/FreeBSDの場合)

MacOS Xの場合は、最後にsudo make installと 実行 します。

鬱pvコマンドのコンパイルとインストール(MacOS Xの 場合)

configureと makeは一般ユーザで行い、make instanのみroOt権限で行うのは、誤動作

によるシステム破壊のリスクを抑えるためです。これは一種の慣習ですが、ソースコード

からインストールする際の決まつたお作法として覚えておいたほうがよいでしよう。

インストール先は、デフォルトでは/usr/1ocalと なります。このインストール先を変更

したい場合は、conigure時に一preixオ プションで変更することができます。

0インストール先を指定する例

上記のようにすると、ホームディレクトリ下にあるlocalデ ィレクトリ内にインス トー

ルされます。これならばmake instanす る際もroot権 限は必要ありませんので、まず試し

に入れてみる場合は、この手法でホームディレクトリ配下に入れてみるのもよいでしょう。

なおconfigureフ アイルの中身は、実はシェルスクリプトです。とても大きく複雑なス

クリプトなので、読むには骨が折れますが、興味があれば中を見てみてると面白いでしよ

つ。

インストール確認

make installで pvコ マンドがインストールできたら、一verslonオ プションを指定してコ

マンドを実行 してみましょう。

403

|



S pv --version
pv 7.4.L2 - Copyright(C) 20L2 Andrew Wood <andrew.wood@ivarch.com>

vieb site : http : //www. ivarch. com/programs /pv. shtml

This program is free software/ and is being distributed under the
terms of the Artistic License 2.0.

Th■ S prOgFaln.■ S diStri‐buted ■n the hOpe that ■t W■ 1l be uSefu■ ′
but WITHOじ T ANY WARRANTY, Without even the ■mp■ ied warranty of

MERCIIANTABILITY or F■TNESS FOR A PARTICじ LAR PURPOSE.

籍'PE‖ DiX● 追加情報

0インストールできたことを確認する

こうしてバージョン情報が表示されれば、正しくインストールできています。

ここで、"COmmand not bund“ と表示される場合にはインストールできていません。

畿インストール失敗時

なお、インストールの際に―prenxオ プションでホームディレクトリ配下のディレクトリ

を指定してインス トールした場合は、おそらくパスが通っていないためにエラーとなるで

しよう。この場合は、pvコ マンドをフルパスで指定して実行してみて ください。

0!ocalディレクトリにインストールしたときの例(userlというユーザ名の場合)

ホームディレクトリ配下にインストールした場合は、シェルスクリプト中でもpvコ マ

ンドはフルパスで書く必要があることに注意してください。

404

$pv
-bash: pv: command not found



06 | 
airro g=7zva4vz F-rl,

《〕6苺 dialogコマンドのインストール

サンプル004で使用したdialogコ マンドは、FreeBSDに はデフォルトでインストールさ

れています。またLinux(CentOSお よびUbuntu)な らばパッケージが用意されているので

簡単にインストールできますが、MacOS Xの場合はソースコードをダウンロードして、

自分でコンパイルしてシステムヘインストールする必要があります。

そのためここでは、Linux(CentOSお よびUbuntu)の 場合どMacOS Xの場合のインス

トール方法についてそれぞれ解説します。

Linux(CentOS)の場合

標準のyumリ ポジトリに入っていますので、r00t権限でyum install dialogを 実行する

だけでインストールできます。

鰈yumコマンドによるインストール

インストールの際、追加で依存するパッケージを入れるかどうか聞かれる場合がありま

すが、|コを押せばそれら含めて自動的にインストールしてくれます。

I unux(Ubuntu)Oilfr

dialogコ マンドは公式リポジトリで提供されていますから、apt‐ getコマンドを実行す

るだけでインストールできます。

Oapt‐ getコ マンドによるインストール

なおapt― getコ マンドでパ ッケージをインス トールするにはroot権限が必要です。

Ubuntuで はroot権限が必要な作業はsudoコ マン ドで行いますので、例のように「sudo

apt― get」 を実行 し、パスワー ドには現在ログイン中のユーザのパスワードを入力してくだ

さい。

MacOS Xの場合

ソースコードからインストールするには、まず開発環境の準備が必要です。これについ

41)5

diaLoginsta■ 1



$ curl -O http: l/invisible-island.net/datafiles/reLease/dia1og. tar. gz

AP躍鷹0:X● 追カロ1青報

ては、「pvコ マンドのインストール」の「開発環境の準備」を参照してください。

dia10gコ マンドのソースコードは、以下のWebページからダウンロードすることができ
ます。

dia:ogコマンドのソース

嘔|口日コID http://invisible― island.net/dialog/dialog.htrTll

このWebページの左メニュー「Download」 から、「The source(http)」 にソースコード
ヘのリンクがあります。ファイルのダウンロードは、curlコ マンドを使うとよいでしょう。

curlコ マンドは、システムにデフォルトでインストールされています。

Ocuriコマンドでソースのダウンロード

Curlコ マンドはデフォルトでは標準出力にダウンロードしたファイルを表示するので、

何もオプションを付けないとtar.gzのバイナリが画面にそのまま表示されてしまいます。

そのため必ず^0オ プションを付けてファイルとして保存しましょう。

続いて、ダウンロードしたソースコードを、tarコ マンドで展開し、configure/make/

make instaHの 手順でコンパイルしてインストールします。この具体的な手順について

は、P.402と 同様ですので、そちらを参照してください。

インスト…ル後の確認

dialogコ マンドがインス トールできたら、一versionオ プションを指定してコマンドを実

行してみましょう。

0イ ンストールできたことを確認する

こうしてバージョン情報が表示されれば、dialogコ マンドが正しくインストールできて

います。一方、コマンドが見つからなければ「command not bund」 というエラーメッセ

ージが表示されますので、正しくインストールは行えているか、環境変数PATHにインス

トール先のディレクトリが登録されているかの2点を確認してみてください。

$ dialoq --version
Version: 1.2-20121230

一Ｆ
■
●

●
●
一　

一
　

　

　

　

　

　

一

”
卜
．̈
¨^
．́一
‐
．
・
　
．　
一　
　
　
　
　
　
　
　
　
　
　
　
　
一　
　
　
　
　
　
　
　
　
　
　
　
　
・

||

400



07 lset=<Y]*otum

07● Setコ マンドの利用

setコマンドは多くの機能を持ち、またそれらの機能がお互いにあまり関連性のないこ

ともあり、混乱しやすいコマンドです。そのため、ここで使い方を簡単にまとめておきま

す。

setコ マンドには、大別すると主に以下3つの機能があります。これらについて順番に解

説します。

1)シェル変数を表示する
2)シ ェルのオプションを設定する
3)位置バラメータ ($1、 $2など)を操作する

シェル菫数を表示する

次のようにsetコ マンドを引数なしで実行すると、環境変数を含めて現在定義されてい

る変数一覧が表示されます。

麒引数なしのsetコマンドは変数一覧を表示する

これは、現在のシェル変数の状態を確認するために便利でしよう。

シェルのオプションを設定する

setコ マンドでオプションを設定することで、シェルのさまざまな動作モードを指定で

きます。本書でも、サンプル021で変数未定義ならばエラーとする―uオ プションや、サン

プル094で終了ステータスが非ゼロならば終了する―eオ プションを紹介しました。

この他にもさまざまなオプションを設定可能です。次のページの表にその一部をあげて

おきました。

407



貯 PE‖ OⅨ ●追加情報

Osetコマンドのオプション(一部)

また「―oくオプション名>」 とすることでもオプションを設定できます。例えば次は、―f

と同様のオプション設定を―oで書いたものです。

|

ァ;;1蜂 ;:‐ 1゛ ;i単 ::だ [f::ゝ
て詳しくは、man shとして、組み込みコマンドsetのマニュ

|

位置バラメータを操作する

通常、位置パラメータ ($1,$2,.¨ )に はコマンドライン引数が代入されていますが、

setコ マンドでこの値を設定しなおすことができます。 リス ト1がsetコ マンドで位置パラ

メータを設定している例です。この場合、setコ マンドの引数
‖
Osaka"‖ Kyobashi‖ ,...がそ

のまま位置パラメータ ($1,$2,.¨ )と なります。そのためリスト1は、コマンドライン引

数に何が指定されても、それに関係なく$2である
‖
Kyobashi・ を出力します。

口日困口D位置パラメータをsetコマンドで設定

―u 未定義の変数を参照するとエラーとする

―e コマンドが失敗 (終了ステータスがリトゼロ)であれば即座にスクリプトを終了する

―n コマンドを解釈するだけで実行しない。文法チェックに利用する

パス名展開を無効にする。例えば*は展開されず、そのまま*という文字として扱われる

―X コマンドを展開した結果を表示する。デバッグ時に利用する

リダイレクト時に既存ファイルを上書きしない―C

#!/bin/sh

set "Osaka" "Kyobashi" "Tamatsukuri"
echo $2

なお位置パラメータを操作する際、最初の引数にハイフンで始まる文字列がある場合に

は、それはオプションとみなされてしまいます。リス ト2は、単なる文字列として・―all‖を

扱いたいケースであると仮定します。

口l鬱l饉響聰 指定する引数の最初に、ハイフンで始まる文字列がある場合

″!/bin/sh

set "-a[[" "0saka" "Kyobashi" "Tamatsukuni"
echo $2

408

オプション

″これは Set if■と同じ意味|   .|||
. set ―o ぃogtob                .・ ‐.'1    ■ ‐

ト



07● setコ マン ドの利用

しかしリスト2を実行すると、次のように最初の
‖―all"がオプション扱いされ、エラーと

なります。

Osetコ マンドの引数にハイフン付き文字列でエラー

これを防ぐには、リスト3の ように一の後ろに引数を指定します。

炒財蟷財購指定する引数の最初に、ハイフンで始まる文字列がある場合

″:/bin/sh

set -- "-a[[" r'Osaka" "Kyobashi" "Tamatsukuri"
echo $2

リスト3の ようにsetコ マンドの後ろに一を置くと、それ以降の文字列はオプションとは

みなされなくなります。そのため
‖―all‖ も単なる文字列として扱われ、オプションとはみ

なされません。

またこの応用として、リスト4の ように「set一」として一だけ指定して引数には何も書か

ないと、位置パラメータをすべてクリアすることができます。

簸懸圏圃麟位置バラメータをクリアするので何も表示されない

″!/bin/sh

set ――

echo S2

409



|

08 1Webサービスの監視について

川'PE‖DiX O追 加情報

サンプルl15で も触れましたが、Webサービスにおいて監視はとても重要な要素です。
自分が担当するシステムで、気がつかないうちにいつの間にかサーバが落ちていた、とい

う経験を持つ読者は多いでしよう。サーバ監視をしておけば、そのような状態を素早く発

見し対応することができます。しかしひと口に「監視」と言ってもさまざまな手法があり、

必要な局面も変わります。

ここでは、次のような構成を例に、シェルスクリプトでの監視手法と適用ケースについ

て簡単に解説します。

OWebアプリケーションの監視

サーバ [A]

・プロセス監視
・ログ監視

上図に見るように、このWebサービスは静的ファイルをApacheで返し、一部のリクエ
ストはバックエンドのアプリケーションサーバに送ってデータベースから値を取得し、動

的にレスポンスを返すものとします。すなわち、サーバ[A]の Apacheは Webサーバ兼 リバ
ースプロキシサーバとして動作しています。

ここで上記のサーバ[A]について行う監視は、以下のようなものが考えられます。

÷plng監視

Webサーバヘpingコ マンドを実行し、そのICMPパケットの応答でサーバが起動してい
るかどうかを監視します。アプリケーションの状態は関係なく、サーバが起動しているか

どうかだけを監視するため、死活監視とも呼ばれます。Webサ ーバのプロセスが落ちて

1量量:艦―――…→ アプリ
ケーション
サーバ

データベ,ス
サーバ  .

|ギ ,



080 Webサービスの監視につしヽて

いても、OSが起動していれば正常と見なされます (→サンプル114)。

警プロセス監視

サーバ上でpsコ マンドを実行し、プロセスが稼働しているかを確認します。ネットワー

ク的なテストは行わないため、例えばファイアウォールの設定が誤っていて外部からつな

げない場合にも、正常とみなされます (→サンプル111)。

・:゛ログ監視

サーバ上で出力されるログフアイルをgrepコ マンドなどで解析し、エラーがでていな

いかをチェックします。クライアント側には通知されない、アプリケーション内部のエラ

ーも見つけることができます。

÷ポート監視

TCPや UDPの特定ポートでサーバまで到達するかを調べるネットワーク監視です。途
中経路のネットワーク障害やファイアウォールの誤設定を検知できます。具体的にはnc

コマンドを利用するとよいでしよう(→サンプル061)。

警HTTPヘッダ監視
curlコ マンドの―Iオ プションを用いて、HTTPの HEADメ ソッドでWebサ ーバにアクセ
スできるかを確認します。フアイルのダウンロードは行わずにHTTPヘ ッダのみ取得する
ため、サーバ 。ネットワークヘの負荷が軽くて済みます (→サンプル110)。

暴静的フアイルのHTTP監視
curlコ マンドなどでファイルを正常にダウンロードできるかを監視します。実際にファ

イルをダウンロードするためユーザ環境に近い監視が行えますが、ファイルサイズが大き

い場合などには、ネットワークの流量や負荷に注意が必要です (→サンプルl15)。

+動的アプリケ…ションのHTTP監視
Curlコ マンドなどでWebア プリケーションにアクセスし、バックエンドサーバから正常
にデータを取得して結果を正しくダウンロードできるかどうかまでをチェックします。サ

ービスインした後の運用フェーズでのサービスでは、これが基本的な監視になるでしょう。

この場合には、単にアクセスできたかどうかだけではなく、HTTPス テータスコードから、
成功か否かを判断する必要があります (→サンプル115)。

パックエンドサ…バの監視

前ページの図においては、アプリケーションサーバやデータベースサーバも監視が必要

です。これらについては、ping監視やプロセス監視など基本的な監視に加えて、CPU・

メモリ・ディスク使用量などをチェックするリソース監視が重要でしよう。

例えばアプリケーションサーバはメモリを大量に使うため、スワップが発生していない

411



APP朧調X輌 追カロ↑青報

かを監視する必要があります (→サンプル117)。 常時スワップが発生しているようでは、

ディスク1/0待ちとなる時間が長くなり、サーバのロードアベレージ (負荷)が大きくなり

ます。結果、ユーザヘのレスポンスが遅くなるでしよう。

データベースサーバについては、データベース領域のディスク使用率が100%と なると

データベース破損など重大な障害を招く危険性があるため、特にディスク使用率の監視は

重要です (→サンプルl16)。 またデータベースは重要なシステムですから、mysqlコ マン

ドを定期的に実行してMySQLサ ーバプロセスに接続できるかどうかをチェックするDB接

続監視を行うこともあります。

運用フェ…ズでの監視

ポート監視などは、低レイヤでの監視です。例えばサーバ構築時、ファイアウォールの

設定を試行錯誤しているときにこの監視がNGに なれば、「誤った設定を投入した」などが

すぐにわかるでしょう。

一方、サービスイン後には、「動的アプリケーションのHTTP監視」がもっとも高レイヤ

のため、最低限この監視は行うべきでしよう。システムのどれかの要素が障害を起こし正

常にサービスできていないという事態を素早く知ることができます。また、それ以外の監

視も、補助的に行うべきです。

いざ障害が発生して「動的アプリケーションのHTTP監視」がNGと なったときには、状

況把握のために、より低いレイヤの監視結果がトラブルシューティングに役立ちます。例

えば、「プロセス監視は正常だが、ポート監視がNGと なる」という結果がわかれば、おそ

らく途中経路のネットワークに障害があるか、もしくはファイアウォール設定に誤りがあ

ってTCPポート80を ブロックしてしまったのでは、と判断できるでしよう。

なお本書ではシェルスクリプトでの監視例をあげましたが、サーバ監視については、

Zabbix、 Nagios、 Hinemos、 Muninな どのオープンソースソフトウェアが提供され広く

利用されています。読者がより本格的な大規模サービスを提供するならば、これらのソフ

トウェアが役立つことでしょう。

Zabbix
GHf http://www.zabbix.com/jpl
Natios
I]II http;//www.nagios.orgl

Hinemos
l$[l http://www.hinemos.info/

Munin
http://munin-monitoring.ortl

412



09 | 
Oasfr O,(Yzl-- tblf,2ulE

菌|● bashのインストールについて

本書の一部では、bash専用の記法を用いた例を紹介しています。Macや Linuxで はbash

はデフォルトでインストールされていますが、FreeBSDではデフォルトではインストー

ルされません。また、最小構成のインストールオプションを選んだLinux環境などで、

bashがない場合があるかもしれません。

システムにbashが存在しない場合には、以下のようにしてbashコ マンドのインストー

ルを行ってください。FreeBSDお よびLinux(CentOS)でプロンプトが#と なっていると

ころはrootでログインするか、Suコ マンドを利用して (求められるパスワードを入力して)

から、rootユーザで実行します。

◎bashのインストール :FreeBSDの場合

埒bashのインストール :Linux(CentOS)の 場合

輪Linux(1」 buntu)の り易合

インストールできたら、bashコ マンドを、バージョン番号を確認する一versionオ プシ

ョンを付けて実行 してみて ください。正常にインス トールできていれば、次のように

bashのバージョンが表示されます。

◎bashコマンドの確認

413

instal■yum



APPE‖ D:X● 追カロ情報

なお実際にbashのシェルスクリプトを書くには、シバン(サ ンプル070を 参照)に bash

のパスを記述する必要があります。そのため、bashコ マンドがシステムにインストール

されているパスを正確に知る必要があります。次のようにwhichコ マンドを利用すると、
bashコ マンドがどこにあるのかを表示することができます。

Obashのインストールバスの表示

上記の例では、/bin/bashに インストールされていますから、シバンは「#!/bin/bash」

と書 くことになります。bashは 一般的には、Linuxや MacOSでは/bin/bashに、FreeBSD
では/usr/1oca1/bin/bashに インス トールされます。

S which bash

/b■n/bash

414

・
・ 黙 .



10鬱 参考文献

1● 1参考文献
‐ ~ |

本書を執筆するにあたり、以下の書籍を参考にさせていただきました。

鸞「入門UNIXシェルプログラミングシェルの基礎から学ぶUNIXの世界」
Bruce Blinn

SBク リエイティブ

曜鰺爾闘圏コD978‐4797321944

瘍「UNIXシェルスクリプトハンドブック」
関根達夫

SBク リエイティブ

咽圏圏国に響勝978‐4797326529

0「シェルスクリプト基本リファレンス」

山森丈範

技術評論社

a應図轟艤鰺978‐4774146430

鬱「入Fヨbash第3版」
Cameron Newhanl,Bill Rosenblatt

オライリージャバン

銀田ロロ畷麗鬱978‐4873112541

鶴「UNIXシェルスクリプト逆引き大全333の極意」
中橋一朗

秀和システム

G回爾□国D978‐4798008844

0「サーバ/インフラを支える技術」

安井真伸,横川和哉,ひろせまさあき,伊藤直也,田中慎司,勝見祐己

技術評論社

|1目轟測日)978‐4774135663

415



:‖DEX● 索弓|

lHDIЖ

:記号 .……31

$0
$1.

$2
$3

……61 30

…………………………………………….5、 4ス 308 [コマンド 110

.5

.5
～
(チルダ)記法 34

+ 371

2̈08
・(ダブルクォート)

$$………………………………_129、 153、 331、 350
$((～ )) .……366、 370

<く …………………………………………………5ス 371

..… ..… ..¨ ..……………… …̈…43、 249、 363

371

轟A～B
AND演算子 ¨̈288
Apache.……………………20ス 210、 21ス 322
apt‐ getコマンド ¨̈405
ARG MA×¨ 86

ARPキ ャッシュ………………………………………155

arpコマンド…………………………………………….155

awkコ マンド

24、 148、 150、 153、 155、 158、

161、 194、 208、 226、 249、

293、 331、 335、 339、 351
―Fオプション¨

18ス 19ス 203、 206、 297
basenameコ マンド………………….………64、 78
bash…

BASH ¨̈384
bcコ
~7ン
ド..…………….…….……174、 255、 340

BSDオ プション……………………………………314
bzip2コ マンド,…………………………̈ ……….……99

はC
case文 ……………4、 19、 108、 12ス 17乙

39 >>

$(～ ).………………
52、 62、 64、 89、 148、 235、

269、 273、 277、 299、 305
S'

36、 148、 201、 262、 274、

281、 306、 344
$@……………………………………………………………252
% 371

&#39:.… …….………………………….… .… `……….¨..232

&&……………………….… ..¨ .¨ .̈…………….111、 288
&amp; 232

232
232
232&quot;.............

1(シングルクォート) 39

&gt:

&lti…

★
...……………………………………….……………………..371

371

一
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
一

―

　

　

　

　

　

　

　

一　

　

　

　

　

　

　

　

一　
　

　

　

　

　

　

　

一

.(ドットコマンド)……………………………41、 245

.¨……….………31

/bin/echo… …

………………………….… 219、 371

.¨ …̈……… …̈…………….……258
/dev/nu‖ ...,¨ .̈………73、 86、 173、 177、 281

/dev/pts/0………………………………………1ス 390
/dev/urandom....... ………174

¨̈ .¨ 173/dev/zero...
/etc/crontab.¨ ………….…………………322、 397
/etc/passwd …….… 295
/var/:Og/auth.log¨ ¨̈ .̈.¨ …̈………….¨ ¨̈ ¨̈ 213

/var/ log/secure.. .………213
卜……………………….…………………………………….………31

,(ヌルコマンド)……………………………………………

30、 72、 193、 249、 263、 280、

287 ‐aオプション………………………………….

CG!…………… …̈
Chef.… ……………

cmpコ マンド……
commコ マンド̈

CONCAT関数¨
configureス クリプト

CONNECTメ ソッド

361

170

312
344
.115

357
402
217
338
253

CP∪ E蓋ネ見

CPUバウンド
cpコ マンド

416

‐Lオプション……

105
105

290

―..¨ .̈.…….……………………….…………….……….371

・,



‐pオプション……̈ ……………………………105
‐Rオ プション……………………………………105
‐rオプション….…………………………………105
-vオプション……………………………………89

cron....…….…Ⅲ…….61、 321、 331、 345、 396
crontabコ マンド………………………………….…397
CSVフ ァイル

195、 198、 201、 204、 262
354

curl:1 ? > li 8
―lオプション……………………………………281
-0オプション……264、 278、 281、 289
‐oオプション…………………………328、 344
‐sオプション.¨ ¨̈264、 289、 328、 344
-wオプション………̈ …̈ ………….………328
-dオプション…………………….……186、 296

cutコマンド .284
‐fオプション………….……186、 196、 296

蟻D～E

dateコ マンド………
89、 103、 129、 321、 325、 328、

336、 340、 345、 347、 351、

356
‐dオプション………….…….¨ 135、 138、 140
‐fオプション………………………………….136
‐
1オ プション………̈ …………………………136
-vオプション……………………………138、 141

ddコ マンド……………………………………….14、 173

DEB∪ Gシグナル. .249

.364

.331

declaref,?> F'

l  dfコマンド

dialogコマンド……………………….………23、 405
diffコマンド 116

digコ マンド…………

l‖ DEI【 饉索弓|

exitコマンド………………………….……ス 113、 131

EXITシグナル…………….…………………….……249
exprコ マンド…………̈ ………Ⅲ……………………………

35、 37、 135、 143、 206、 276

はF～G
fetchコ マンド………8、 265、 278、 329、 345
f‖ eコマンド 191

findコ マンド
ーdaystartオプション…………………………81
-maxdepthオプション….…………70、 115
-mtimeオ プション.………….79、 82、 348
‐nameオプション……………………69、 115
‐printオ プション………………………………70
‐printOオ プション …̈…………….……84、 87
‐typeオ プション………………………69、 115

fork.......

for文 …..

FQDN¨

251

272
158

FROM_UNIXTIME関 数…… …̈……….…….136
貴pコマンド.

FTPサ ーバ
167

167

400

DNS..…………………………….… .… .… .… .… .156、 159

getconff ?> F' 86

getoptsコマンド………………Ⅲ………3、 104、 226
GETメ ソッド………Ⅲ………………….¨……….¨ ...¨ ..217

Git…… 90

grepコマンド̈ .̈…………111、 123、 303、 351
-cオプション……………………………51、 221
-iオプション……̈ ……………………….……235
-qオプション……………………………186、 201
-vオプション……………………………………296
‐xオプション …̈………………………………201

GROUPS 384
258GZIP.¨…

gzip弄′式 98

Szipr?> 1..' ……………2ス 98

隧H～J

headコ マンド…………………………….… 190、 206
HEADメ ソッド

HOSTNAME
hoゞnameコ マンド…………………………51、 179

hostコマンド 15ス 161

otrnameJ <./ t

.157

¨̈61

.384DIRSTACK

duコマンド………… 118

echoコマンド…………………………………………………
14、 20、 161、 193、 205、 257

envコ マンド…………………………̈ ………̈ …….186

.306

.249

,…47

.217

.123

.412

.384

EPELパッケージ .
ERRシ グナル¨̈…
eva!コ マンド………

execコ マンド……. 251

exit 251 HTML.¨ .¨ ¨̈…….¨ ...¨ .̈¨ ..35、 77、 230、 233

417



1驚DEX。 索引

HTTP監ネ見… …411

HTTPステータス.…….210、 212、 290、 326
HTTPヘッダ監視………………………………Ⅲ……411
HTTPメ ソッド

H∪ Pシ グナル .

217
244

pasteコ マンド…………………………………̈

嘔0～P
odコマンド…………
OR演算子……………

123

…………………….263、 290
¨̈.195

……268

…̈…….312

2̈17

…………388
.…………269

idコマンド

1/0バウンド……………………………………………253
1CMP… ……….……146、 149、 151、 267、 324
iconvf ?> F'

Perl.¨ .

pingE誼|ネ見......................¨ ¨̈ .¨ .¨ .¨ .¨ ¨̈ .¨ .....410

pingコ マンド.……….……146、 26ス 274、 368
‐cオプション…………148、 151、 17ス 324
‐iオプション………………………….………324
‐qオプション………………………….………324

P!PESTAT∪ S………….……………………………383
POSIX文字クラス.…………………………………229
POSTメ ソッド…………………………………………217
printfコ マンド………………………………221、 277
PS3.… ….… .… ...¨ ...386

psコ マンド……………….242、 303、 313、 318

2̈34

…299
..292ifconfigコ マンド…

IFS_……………………44、 126、 193、 199、 206
if文 ¨̈¨̈ ...……285
INT0 0UTFILE命令…………….¨ .¨ “̈ .̈¨¨̈ 3̈57
!NTシ グナル………………………………………………7
ioSatiコ マンド.………………………………….……340
!Pア ドレス.…………………………….159、 176、 292
JavaScript..........… ………………̈ ¨̈.¨ .̈....¨ .¨228

辣K～N
ki‖ コマンド
‐lオプション .

―sオプション

lessコ マンド………

letコ マンド…………
localコマンド…….

¨̈ ス 243

………246

………362
.………372
.34、 205

Puppet… ……

PUTメ ソッド

漑R
RANDOM.
rand関数 ¨̈

pvコマンド………………………………………27、 400

lsコ マンド…………………………… 34

MACア ドレス…………………̈ …̈………155、 292
makeコ マンド…………………̈ ………̈ …………400
MD5……………………………………….………193、 288
md5sumコ マンド.…………………………193、 289
mktempコマンド……………………………………129
mpstatコマンド…̈ …̈ …………̈ ……̈ ….……338
Munin…………………………………̈………………….412

mvコマンド…………………………………̈ 1̈08、 190
MySQL.¨ .………….………322、 346、 349、 354
mysqldumpコ マンド………̈ ……………………347
mysqlコマンド……………………………350、 356
Nagios .33ス 412
ncatf ? > li' 164
ncコ マンド…………………163、 165、 268、 388
Netcat

read‖ nkコ マンド…………………………………….132

readコ マンド…………………………………………………

9、 11、 19、 160、 196、 199、

332、 361、 374
-rオ プション….……………………………… 1̈93

rename=lY> F' 108
RET∪ RNシ グナル …̈……………………………249
revlY> [.'

rmr?> F ,

183
113、 249

―fオプション.……………………………………….83
‐iオ プション …̈…………………………………24
-vオプション…………………………………… 83

Юuteコマンド……………̈ …………………………147

rpmコ マンド
ーqオプション……………………………………308
-qfオプション……………………………………305
‐qlオ プション….………………………………305
‐―queryformatオ プション………………308
‐―querytagsオ プション …̈………….… 309
RPMパッケージ………….………304、 30ス 310
rsyncコ マンド……………………………………………92

164
150netstatコ マンド

NF……….¨ ¨̈¨̈ ¨̈ ¨̈………...…….161、 211、 339
N!C …292

418

nslookup=lY> f.' 157 Ruby ……………268

Ｉ

■
　

　

一
　

・



辣S
scpコ マンド……………………………………Ⅲ……254
SECONDS ….384

sedコ マンド………………161、 22ス 229、 274
‐dオプション…̈ ………………………….……220
‐eオプション…………………………………….231

●オプション…………………………………….130
‐nオプション…4ス 78、 153、 214、 235
-foloow‐ sym‖nksオプション.……….132

seqコ マンド……………………̈ ……………….……276
serviceコ マンド………………………………………321
setコマンド

+eオ プション…………………………Ⅲ………263
-Cオプション …̈…………………̈………408
-eオプション…………………̈ .……262、 408
-fオプション …̈………………………………408
‐nオプション..…………………………………408
‐uオプション……………………………54、 408
-xオプション…………̈ ……………………408
SHELLOPTS .384

shiftコ マンド…………………………………….5、 226
shutdownコ マンド …̈…………………̈ .………303
S!G!NT..¨ …̈…………….…….………………….…………7
sleepコマンド………….129、 246、 281、 325
sortコ マンド…………………………………116、 183
‐nオプション………….……206、 214、 217
‐rオ プション………….……119、 206、 217

souceコ マンド̀………………………………………42
spliti巽l`敗 |…………………..………….… .¨ .… ....…294
sshd ……………213
sshコ マンド……………………………………………179
statコ マンド………………………………………….… 75
strftime関数 ……………89
stringsコ マンド………………………………….……122
styコマンド…………………………………………12、 14

substring関 数 .̈¨ ………….184

……………。90Subversion......

はT
ta‖コマンド………………………….………339、 360
tarアーカイブ…………………………94、 100、 102
tarコマンド
‐オプション.…………………………………….95
…excludeオ プション………………………101

cオプション.………̈ ………̈ …………26、 95
fオプション……………………̈ 26、 95、 402
rオプション…………………………….……103

:職議獲X艤 5東弓|

vオプション……………….… 2̈6、 95、 402
xオプション………………………….………402
zオプション………………………….………402
TERMシグナル
Ostコ マンド

8

‐a)寅13卓 1子 …….… .… ..¨ .¨ …̈111、 143、 352
―b演算子
―c演算子
‐d演算子 110、 229
‐e,寅鶴章1詈≒...¨ .………Ⅲ…….… 110、 113、 131
‐eq'実 1書筆子 .¨ ¨̈.……38、 143、 284、 321
‐f演1算1子 ¨̈.110、 183、 190、 284、 305
‐ge演算子……………………………………………

143、 302、 318、 328、 333、 336
―gt演算子……̈ ……………………………….
―h演算子
‐L演算子

le演算子………………………………………
‐lt演算子……………………………………….143
‐n演算子………………………………….5、 155
‐ne演鰐呂子..¨ ¨̈…………………………143、 163
‐nt演算子……………………………………….113
-0演算子…………………………………………110
-o演算子…………………………̈ …̈ ….……143
-ot演算子……………………………….………113
―r演算子 .,
―s演算子 .

‐S演算子 .

―W演算子…………………̈ ……………………
―x,寅書卓1守≒ …̈………..¨ ...¨…………109、 110
―z演算子

24、 187、 196、 235、 239、 274、

324
timeコ マンド………… …̈……………Ⅲ…… 174、 255
Tomcat .250

touchコ マンド………̈ ………………………….75、 76
trapコ マンド……………………………ス 242、 245
trueコ マンド.………………………………………….280
trコマンド.……………………………229、 319、 357
ttyコ マンド…………………………….………1ス 390
tureコ マンド……………………………………………73

蝙U～Z
UID

umask=v) F'

unamel?> [.'

110

110

143
132

.110

143

110

110

110

110

384
120
258

uniqコ マンド……………………………….214、 218

419



uptimeコ マンド….………….…….¨ 71、 170、 244
URL。 .......¨ ..…….…….¨………...¨ .………275、 343
USER……………………̈ .̈……..……………….¨ .299

USRlシ グナル………………………………………242
vm statコ マンド……………………………….……336
vmstatコマンド………………………̈ …………̈ 3̈34
wait ……251

waitコマンド……………………….………265、 266
wcコ マンド…̈ ………………49、 69、 302、 318
webサーバ…………………………….……326、 355
webサービス………………………………………….410

webページ……………………………………………343
wgetコ マンド………………………………………Ⅲ….12

whoamiコマンド……………………………………299
whoコマンド…………………………………………302
xargsコ マンド………………………….82、 86、 348
xzコマンド 99

yumコマンド………………………306、 310、 400
Zabbix………………………....……..…….¨…337、 412

zipコマンド 96

饉あ行

アイドル値…………………………………………………338
アクセスログ…… 216

22

環境変数………。..… .……………….1,8臥 200、 250
キーボード……………………………….……9、 13、 16

疑似シグナル

逆引き……………̈

キャメルケース…

空白文字 …….……

区切り文字 …̈……………………185、 220、 294
グルービング .…

グローバル変数

月末……………….

公開鍵……………

公開鍵認証…….

後方参照…………………………………4ス 22ス 235
コピー¨̈…………………………………………….……104

子プロセス 6̈7
コマンド置換¨

17、 39、 51、 62、 64、 57、 89、

148、 235、 269、 273、 277、

299、 305
コマンドライン引数……3、 63、 85、 85、 274

小文字 ¨̈394

晰さ行

サーバ監視… ……323
サブシェル……………………6ス 115、 174、 255

算術展開

算術評価

.… 366、 370
372
317

圏DEX● 索引

UNIXエ ポック…
UN!Xオ プション

UN!X日寺間…………

135

314
134

…………………………………257
.¨ .¨ .………….………128、 247
.… 4、 64、 113、 308、 408

カレンダー……………

249
159

394
4̈4

259
3̈4
137

254
254

アプリケーションサーバ…………̈ ……………355
暗号化……………

移植性……………

一時ファイル .…

位置パラメータ

インデント………

うるう年 …̈……
エコーバック _̈

96 閾値

シグナル

四則演算……….……

…238 実行ユーザ

ス 241、 244
システムログ……………………………………….… 213

38

…….… 298
142

………12

エスケープシーケンス………………………20、 219
大文字 . ……394

.3、 392オプション

シバン ..…………………………………………188、 367
シャットダウン.…

終了ステータス…

301

36、 116、 148、 201、 261、 274、

281、 306、 344
書式才旨定子 .¨ .̈.¨ .̈..…….…….………222、 277
シンボリックリンク.………………………104、 130蝙か行

改行コード………………………………

外部ファイル……………………………

隠しファイル…………………………….

拡張子

仮想端末 .

型

……………229
.“……………41

…………125

…10ス 188

スネークケース

スレーブサーバ

整数

394
352
387

…60
.262

…60

セキュリティ……………………………………………120

.390

.395
絶対パス………………….

ゼロ詰め………………….

相対パス……………………空ファイル………………………………………….……71

420

一　

　

●
●
・
●
―

―

一
　

―

―
●
―
　

　

・
　

　

　

・　

　

　

　

　

　

　

　

　

　

一　

　

　

　

　

　

　

一

一
　

　

　

一
　

　

　

一　

　

．
●
■
一●
―

　

一
　

　

　

一
　

　

　

　

　

　

　

　

　

　

・　

　

　

　

．

　

一



ソート 182   標準入力
属性……………………………………104、 109、 364   ファイル置換……

ブレース展開

鰈た行

ターミナル………………………………………………390
タイムスタンプ…………………………74、 79、 112

1籠酬家●索引

16、 18

130

368
プログレスバー.………………………………Ⅲ………26
プロセス …̈………….…….………301、 313、 317
プロセスID…………………………128、 153、 350
プロセス監視……̈ ………………………320、 411

プロセス置換……………………………….………379
並:列処理………….………………………………….266

変数¨̈…………………………̈¨̈ …̈………………….364

変数展開……………… …̈……̈ ………………39、 46
変数名……………….……………………………………49
ポート監視…………………………………….………411

ポート番号…………… …̈………………………….162

ホスト名 159

ダウンロード 275、 288
多重起動…………………………………………….…

端末……
置換……
ディスク監視………………………………………….

ディスク使用量

データベースサーバ………………………………355
デフォルトゲートウェイ …̈…….…….146、 149

転送速度…………………………………………………172

特殊パラメータ 64

データベース……………………………̈ ………….

ドットファイリ■........¨ …̈…………………………….125

317

390
376
330
.117

346

156

379
173

122

382
224
..50

395
7̈7

難ま行
マスターサーバ ...352

はな行

名前解決…………………………………………………

名前付きパイプ
`

ヌルキャラクタ
`

パイ

ハイフン…………………

配列変数…………………
バス .………………………
パス名展開

未定義変数 …̈………….………………………………54
無限ループ………̈ ……………̈ ………….………279
メニュー…………………………………………..……385
メモリ監視

文字クラス

文字コード

...334

316
.¨233

文字列 .… .....¨ ..… ..… ...…….…….… .… .373、 376餃は行

ハードコード 64

パーミッション………̈ ……………109、 120、 298
バイナリファイル

はや行
ユーザアカウント …295

パスワード………………………………………̈ 11、 297   舌日敗…………………………………………………………387

リモートバックアップ

リモートホスト

ログ…
57、 62、 65、 108、 203、 332、   ログ監視

ユーザインタフェース………………………….………1

郵便番号……………̈ …………………….…………224

量ら行

ラッパー………………̈ …………………………………250

.91

178
レプリケーション …̈………………………………349
ローカル変数…………………………………34、 205

20ス 210
360、 411

パターンマッチ…………
バックアップ……………
バックエンドサーバ…
バックグラウンド.……
ハッシュイ直……….………
パラメータ展開……….

…….……88、 91、 346

…………………….……411

…………………264、 267
.… .……..……192、 288

35    リダイレクト̈……….……..………̈ ……………72、 259

374、 377
ヒアストリング……………
ヒアドキュメント.…………56、 168、 174、 238
日イ寸…….……..… …̈ .̈…Ⅲ….… .¨ .̈.¨ .79、 82、 88
秘密鍵……………………….

標準エラー出力 …………

ログローテート.………………̈………….………360

.……….………….… .254

58   ロングオプション ..392

はわ行

害」り込み…………………………………̈ .……241、 244
23   ワンライナー…………………………………….……269

421



■サポートサイト

URL http:′ノisbn.sbcr.jp′ 77620/

本書をお読みになったご感想、ご意見を上記 URLか らお寄せください。また、本書のサンプルデー
タについてもご案内しております。

■注意事項

○本書内の内容の実行については、すべて自己責任のもとで行ってください。内容の実行により発生

したいかなる直接、間接的被害について、筆者およびSBク リエイティブ株式会社、製品メーカー、

購入した書店、ショップはその責を負いません。

また、本書の内容に関する個別の質問、問い合わせに対し、筆者およびSBク リエイティブ株式会社

はその回答の責を追わないものとさせていただきます。

○本書の内容に関するお問い合わせに関して、編集部への電話によるお問い合わせはご遠慮ください。

○お問い合わせに関しては、封書のみでお受けいたします。なお、質問の回答に関しては原則として

著者に転送いたしますので、多少のお時間を頂載、もしくは返答できない場合もありますのであら

かじめご了解ください。また、本書を逸脱したご質問に関しては、お答えいたしかねますのでご了

承ください。

ゆ に つ く す             _           ^

UNIXシェルスクリプトマスターピース132
2014年6月 30日  初版第1刷発行

著 者
発行者

発行所

印 刷

大角 祐介
小川 淳
SBク リエイティブ株式会社

〒106-0032東京都港区六本木2-4-5興和六本木ビル

TEL 03-5549-1201(営 業)

http://WWWSbC哺 p/

株式会社 シナノ

丁

版

装

組

荒木 慎司
三門 克二 (株式会社コアスタジオ)

落丁本、乱丁本は小社営業部にてお取替えいたします。

定価はカバーに記載されております。

P五nted in Japan ISBN978-4-7973-7762-0



|||‖ |||‖ |‖ |||‖‖‖|‖‖|||
9784797377620

1920055025003

iSBN978‐4‐ 7973‐7762‐0

C0055¥2500E

|‖‖||||||||||||||||‖ |||||||

定価E玉体2,5亜亘]十税




