
ChatGPT入門
かわさきしんじ , Deep Insider編集部［著］

01.ChatGPTとは何か　そのできること／できないこと

05.思考の連鎖（Chain of Thought）でChatGPTからよりよい応答を引き出そう

06.ChatGPTの APIを使ってみよう：コンソールで対話するコードとは？

03.OpenAI Cookbookで学ぶ ChatGPTプロンプトの基礎の基礎

04.新しいBingに組み込まれたChatGPTよりも強力な言語モデルに触ってみよう

02.ChatGPTや InstructGPTはなぜユーザーの意図に沿った返答を生成できるのか？

3 →目次に戻る

ChatGPTとは

　ChatGPTは 2022年 11月末にOpenAIがリリースした対話に特化した言語モデル（と、このモデルを使って

ユーザーが対話するためのWebサービス）です。

ChatGPT

　流れるように自然な会話ができたり、ときには素っ頓狂（すっとんきょう）な答えが返ってきたりするのが楽しく

て、このサービスを使っている方もたくさんいるでしょう。本稿では、その特徴や実際に使った例などを見ながら、

ChatGPTがどんなものかを概観することにします。

ChatGPTとは何か　そのできること／できないこと
OpenAIがリリースした人との対話をターゲットとする大規模な言語モデル「ChatGPT」。そ
の概要について見てみましょう。

かわさきしんじ，Deep Insider編集部（2022年 12月 23日）

https://openai.com/blog/chatgpt
https://openai.com/
https://www.itmedia.co.jp/author/208386/

4 →目次に戻る

特徴
　ChatGPTはテキスト生成用に訓練されたGPT-3.5と呼ばれる系列の言語モデルを対話に適したモデルへと

ファインチューンしたものです。このときには、RLHF（Reinforcement Learning with Human Feedback。人

間のフィードバックを用いた強化学習）と呼ばれる手法が使われています（この手法の概要については次回以降に

紹介する予定です）。

　ChatGPTを使う上で気になるのは使用料がかかるかですが、現在は初期のResearch Previewであり、無

料で使用できます（ということは、将来的には有料になるのかもしれませんね）。

　なぜこうもChatGPTとの対話が自然なのかといえば、その学習ではインターネット上のテキストを用いており、

その中には対話テキストも含まれているからだそうです。

　会話が自然なことにはもう一つ理由があります。それはユーザーが入力した内容をモデルが覚えていたり

（ChatGPTではユーザーが話した内容を 3000語あるいは 4000トークンまでさかのぼって参照可能）、モデルか

ら出力された内容に間違いがあったときに、ユーザーがそれを訂正したりできることです。人間同士の会話でも「ア

レってソレだっけ？」「いやコレだよ」みたいなことはよくあります。それと似たことを実現しているので、会話が自

然に感じられるのかもしれません。同時に、これはモデルと会話をしながら、特定の話題に関する知識を積み上

げていき、何らかの結論に達することもできるということです。

　ChatGPTは非常に多くのテキストを用いて学習されているので、その知識量は膨大なものですが、常にユー

ザーの入力に対して間違った返答を返したり、他者を害するような内容などを返答したりすることには注意が必要

です。また、学習した内容に含まれている事象は 2021年末までのものであることにも注意しましょう。例えば

2022年のサッカーワールドカップでどこが優勝したかなんて情報はこのモデルは知りません。

　トンチンカンな返答が楽しいというのもあるのかもしれませんね（かわさき）。

　「機械学習とは何ですか？」と質問すると非常に良質で短く分かりやすい回答が得られたり、

「Pythonでブロック崩しのゲームを作って。」と質問すると本当に動作するコードと作り方が

回答されたりします。これで「すごい」となるのですけど、「とんこつラーメンの作り方を教え

て。」と質問すると、自信満々に理路整然と「おしるこを入れ」たり「スキマ棒で泡を取り除

い」たりととんでもないウソを教えてくれます。というかスキマ棒って何……。すごくて正確と

思えるときと自信満々にウソのときで回答の仕方が同じなので、全てを素直に信じられないの

が残念なところですね（一色）。

5 →目次に戻る

ChatGPTを試してみよう

　以下では、ChatGPTにサインアップし、幾つかの質問をして、これがどんなものかを簡単に見てみましょう。

サインアップ
　ChatGPTを試してみるには、サインアップが必須です。ログインしていない状態でChatGPTのページにアク

セスすると以下の画面が表示されます。

ChatGPTのログイン／サインアップページ

https://chat.openai.com/auth/login

6 →目次に戻る

　ここで［Sign up］ボタンをクリックすると以下のような画面になります。

サインアップに使うアカウントを指定（ここではGoogleアカウントを使用）

　ここでは［Continue with Google］ボタンをクリックして、Googleアカウントでのサインアップをしました。こ

れにより使用するGoogleアカウントの選択画面になるので、使用するアカウントを選択し、Googleアカウント

のパスワードを入力します（2段階認証を利用していれば、何らかの手段で 2段階認証が行われます）。

7 →目次に戻る

　認証が通ると、次のような画面が表示され、名前と電話番号を入力する画面が順次表示されるので情報を入力

しましょう。

名前の入力ページ

8 →目次に戻る

　その後、ChatGPTの特徴を説明したダイアログが表示されます。ここで［Next］ボタンや［Done］ボタン

を押していけば、次のようにChatGPTにプロンプトを入力可能な画面になります。

ChatGPTとの対話を行う画面

　ウィンドウの右側には入力例／ ChatGPTの機能／制限が表示され、その下にプロンプトの入力ボックスがあり

ます。一方、左側の一番上には［New Chat］ボタンがあります。これを使うと、ChatGPTとの対話を行うセッ

ションを新たに作成できます。セッションはこのボタンの下に並べられます。

　また、その下には4つのボタンがあります。［Dark Mode］ボタンは対話部分の背景を黒に変更します。［OpenAI

Discord］ボタンはDiscordのOpenAIチャネルを開くためのものです。［Updates & FAQ］はChatGPTに

関するアップデート情報や FAQを一覧するページを開きます。［Log out］はChatGPTからログアウトするボタ

ンです。

　日本語の入力も受け付けて、日本語で返答してくれるのはうれしいですね。

9 →目次に戻る

Pythonについて質問してみる
　ChatGPTはプログラミングの分野の知識も豊富です。そこでまずは「Pythonでパスからディレクトリ名とファ

イル名を取得するには？」と入力してみましょう。以下はその結果です（結果は試すごとに内容が少し変化するか

もしれません）。

os.pathモジュールを使った解放

　うん。合っていますね。［Copy code］ボタンがあるからコードを実際に試してみるのも簡単です（実際に実行

してみました）。

　実は、これと同じ内容は、本フォーラムの解決！Pythonという連載の「パスからディレクトリ名とファイル名を

取得するには」でも紹介しています。

　プロンプトはあえて、解決！Pythonの記事と同じようにしています。

　ただし、記事の方では pathlibモジュールを使う例も紹介しているので、記事の方がエラそうな気はします。

https://atmarkit.itmedia.co.jp/ait/articles/2212/06/news018.html
https://atmarkit.itmedia.co.jp/ait/articles/2212/06/news018.html

10 →目次に戻る

　そこで「pathlibモジュールを使うとどうなりますか？」と入力してみます。

pathlibモジュールを使った場合の返答

　少々長い説明の後、正しい使い方が紹介されました（ただし、上の画像では、ディレクトリ名を print関数で表

示した結果をコメントとして記述しているところは間違えています）。

　これを見ると、筆者は少し怖くなってしまいます。解決！Pythonは主にGoogleなどの検索サイトで「Python

パス ディレクトリ名」などとして検索して、記事を読みにきてもらうことを念頭に置いた連載です。ところが、

ChatGPTとお話をすれば、言語モデルがその使い方をやさしく教えてくれるのです。「あれ？　記事を書く必要が

なくなっちゃう？」となりますよね。

11 →目次に戻る

Google Chrome用のChatGPT拡張機能
　世の中には目の付け所がよい人がいて、Googleで検索した語をChatGPTに渡して、その結果を検索結果ペー

ジに表示してくれるChrome／ Firefox用の拡張機能も既に存在しています（ただ、この拡張機能を使うと、自

分がOpenAIにログインしているアカウントでChatGPTのセッションが新規に作成され、その結果、ページ左側

に各セッションを表す［New Chat］などのタイトルが付いたタブが多数表示されてしまうかもしれないのでご注

意ください）。

ChatGPT for Google拡張機能によりページ右上にChatGPTからの回答が表示されるようになった

　Googleの強調スニペットよりも詳しく、プログラムの書き方を教えてくれるので、もはやこの拡張機能があれ

ば、解説記事なんて必要なくなっちゃうかもしれませんね。

　ただし、こうした内容は恐らく、インターネット上で誰かが書いた記事や解説を基に学習をし

ているのでしょうから、書く人がいなくなれば、言語モデルも正しい回答をユーザーに提示でき

なくなるのでしょう。

https://chatgpt4google.com/

12 →目次に戻る

　あと、ChatGPTなどで生成された少し間違った情報がインターネット上に増えれば、少し

間違った情報をまた学習してもっと間違った情報を生成するはずなので、インターネットの品

質が徐々に壊れていく可能性もちょっと想像できてしまいますね。Stable Diffusionなどを含

めて最近流行している生成系 AIの光と影における「影」の部分は、今後、問題として表面化

してくる気がします。

　まあ、これに関しては正しい返事が得られたのでよかったのですが、もっと難しい話題であれば、返答が間違え

ている可能性もあります（簡単な話題でも間違えている可能性はあるでしょう）。こうしたことから、プログラマー

御用達のQ＆AサイトであるStack Overflowでは、誰かの質問に対してChatGPTによる回答の投稿を一時

的に禁止する措置が執られる事態になりました。

　将来的には本サイトのように、プログラマーやエンジニアを対象としたWebメディアもどんな情報をどんな形で

読者に届ければよいのか、その立ち位置を検討する必要が出てくるかもしれません。

誰かに害を及ぼす可能性のある質問
　誰かを害する可能性がある質問をしてみるとどうなるでしょう。毒薬の作り方を聞いてみました。

不適切な質問

https://atmarkit.itmedia.co.jp/ait/articles/2209/16/news041.html
https://www.itmedia.co.jp/news/articles/2212/06/news069.html
https://www.itmedia.co.jp/news/articles/2212/06/news069.html

13 →目次に戻る

　ご覧の通り、怒られてしまいました。チャット機能を持つ人工知能は以前から差別的な発言をするように教え込

まれるなど、問題が発生することがよくありました。現状、ChatGPTでは大きな問題は発生していないようです

が、セーフガード機能をバイパスする方法を試している人もいるようです（個人的にはそうしたことをしようとは思

いませんが）。

2022年のワールドカップ優勝国を聞いてみる
　間違っている、あるいは望んだ通りの回答が得られない例も見てみましょう（毒薬の例も望んだ結果を得られま

せんでしたが、それは法に触れる行為を助長することにつながるので、ChatGPTが止めたものであり、モデルが

知らない情報について知ったような口を利いたものではありません）。

　上でも述べましたが、ChatGPTは 2021年末までの情報を基に学習をしているので、2022年に開催された

サッカーワールドカップの優勝国を知りません。そのことを分かった上で「2022年のサッカーワールドカップで優

勝したのはどこの国ですか？と質問してみた結果が以下です。

優勝国を知らないと素直に語るChatGPT

14 →目次に戻る

　この画像では「私は 2022年のサッカーワールドカップの優勝国についての情報を持っていません」としおらし

いことをいっています。が、同じ質問を画面下部にある［Regenerate response］ボタンを使って繰り返した結

果です（回答の左側に「2/2」とあるので、これは同じ質問を 2回して、その 2回目の回答であることが分かりま

す）。

　最初の返答は次のようなものでした。

最初の回答

　「現在、2022年のサッカーワールドカップは開催されておりません」とあるので、この返答は明らかに間違って

います。ChatGPTはあくまでも学習した内容を基にそれらしいテキストを生成するものだという認識を常に持ち、

その回答を鵜呑みにしないで、正しいかどうかを確認する必要があります。

　ChatGPTは現在のところ、正確な情報を教えてくれることもあれば、不正確な情報を返すこともあります。こ

のことを頭に留め置いて、その可能性を模索するというのがよさそうです。次回以降ではさまざまな情報を基に、

これがどのようにして動作しているかを考えてみる予定です。

15 →目次に戻る

GPT、InstructGPT、そしてChatGPT

　ChatGPTはその名の通り、対話に特化した言語モデルです。GPT 3（GPT 3.5）をベースとしていますが、

GPT 3からChatGPTが生まれるまでの間にはもう一つ重要な言語モデルがあります。それが InstructGPTで

す（InstructGPT自体はGPT 3をベースとしているようです）。

　では、GPT→ InstructGPT→ ChatGPTという進化がなぜ起きたのでしょう。InstructGPTについての論文

ではその概要でおおよそ次のようなことが述べられています。つまり、「大規模な言語モデルは嘘、有害な出力を

生成したり、単にユーザーの役には立たない出力を生成したりする。言い換えれば、これらのモデルはユーザーに

合ったものになっていない（not aligned with their users）」ということです。

　これはGPTのような大規模言語モデルが目的としているのは「一連のトークン（単語）が入力されたときに、

次のトークンは何かを予測する」ことであり、「ユーザーの指示に従って有用で無害な出力を行う」ことではない

からです。InstructGPTはまさにユーザーの指示（instruction）に従った出力が行えるようにGPTをチューンし

たもので、ChatGPTは InstructGPTをベースに対話を行えるようにチューンしたものだと考えることができるで

しょう。

 GPT／ InstructGPT／ ChatGPTの違い

　有用で無害な出力を得られるようにするために、ChatGPTと InstructGPTではそれらの訓練過程でRLHF

（Reinforcement Learning from Human Feedback、人間のフィードバックを基にした強化学習）と呼ばれる

手法が採用されているのが重要です（ただし、ChatGPTと InstructGPTとではデータ収集の方法に違いがあり、

これがChatGPTを対話に特化したものとしていると思われます）。

ChatGPTや InstructGPTは
なぜユーザーの意図に沿った返答を生成できるのか？
ChatGPTやその前身ともいえる InstructGPTは、GPTとは異なる目的を持ったモデルです。
それ故にこれまでとは異なり、ユーザーの意図に沿ったテキストを生成できます。その違いを
見てみましょう。

かわさきしんじ，Deep Insider編集部（2023年 01月 13日）

https://openai.com/research/instruction-following
https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf
https://www.itmedia.co.jp/author/208386/

16 →目次に戻る

　やばい。コードを少しは出そうと思っていたんですが、この回、コードが出てくるのかなぁ

（かわさき）。

RLHF（Reinforcement Learning from Human Feedback）

　では、このRLHFとはどんなものでしょうか。以下にOpenAIのブログ記事からその手法を説明する図を引用

します。

InstructGPTにおけるRLHF
『Aligning Language Models to Follow Instructions』より引用。

　図の内容を文章でまとめると次のような感じになるでしょうか。

• ステップ 1：あるプロンプトに対する望ましいモデルからの出力を人間が用意して、GPTモデルを教師あり学習

でファインチューンする

• ステップ 2：何らかのプロンプトに対するステップ 1のモデルの出力を幾つかサンプリングして、出力にランク付

けをし、そのデータを使って報酬モデルの学習を行う

• ステップ 3：報酬モデルを使ってGPTモデルの強化学習を行う

　ステップ 1では、以前のバージョンの InstructGPTに入力されたプロンプトをデータセットとして、その一部を

取り出し、それらのプロンプトが入力されたときにモデルがどう振る舞えばよいか（どんな出力を行えばよいか）、

その出力として望ましいものを人間が用意してやります。そして、「プロンプトと望ましい出力」の組み合わせを使っ

て教師あり学習を行って、GPTモデルをファインチューンします（Supervised Fine-Tune、SFT）。

https://openai.com/research/instruction-following

17 →目次に戻る

　ステップ 2では、このモデルに対して何らかのプロンプトを入力し、そこから幾つかの出力を得た上で、どの出

力が望ましいか／望ましくないか、人間がランク付けをします。そして、そのデータを使い報酬モデルの学習を行

います。

　ステップ 3では、GPTモデルを強化学習します。このときにはステップ 2で作成した報酬モデルが使われます。

　このうち、ステップ 2とステップ 3を繰り返すことで、プロンプトに対する出力にランク付けを行ったデータが新

しく得られ、その結果、報酬モデルが更新され、強化学習もさらに進むといった具合に学習が行われます。

　このように学習の過程に人間を組み込んだものを「ヒューマン・イン・ザ・ループ」と呼ぶ

ことがありますね。

　このようにして作成されたのが InstructGPTです。ChatGPTは対話に特化したモデルであることから、学習

に使われるデータの収集方法が少し異なっています。

　「ChatGPT: Optimizing Language Models for Dialogue」によれば、「ユーザーとAIとの対話を、人間（AI

トレーナー）が両方の立場でデモしたデータ」がステップ 1のデータとして使われます。これらが InstructGPT

の学習で使われたデータセットと統合され、対話の形式に変換されたものがGPTモデルのファインチューン

（SFT）に使われます。さらにステップ 2では AIトレーナーとチャットボットとの対話を基にデータ収集（とラン

ク付け）を行います。これらが InstructGPTとChatGPTのデータ収集方法の違いです。

　InstructGPTにしてもChatGPTにしても、重要なのは報酬モデルの学習に使われるデータのランク付けでしょ

う。モデルからの出力の品質に応じてランク付けを行うことで、人にとって有用で害のない出力を行えば、より多

くの報酬をもらえるようにモデルが学習することでモデルが生成するテキストがユーザーの意図や指示に沿ったも

のになるのです。

　さらにいえば、InstructGPTではユーザーからの入力（プロンプト）に対してモデルがどういう出力を返せばよ

いのかを学習させることで単に次に出力されるトークン（単語）を推測するというモデルではなく、ユーザーの指

示に合った出力を推測するようなモデルになっています。そして、ChatGPTでは対話形式のデータセットを使う

ことで、それを対話に特化したものにできているということです。これがChatGPT（や InstructGPT）からの出

力が人間にとって好ましい出力となっている大きな理由なのでしょう。

　これまで強化学習は自動的なゲーム操作や自動走行などに使われていてあまり目立っていな

かったので、こんなふうに使われて面白いですね（一色）。

https://atmarkit.itmedia.co.jp/ait/articles/1901/06/news049.html
https://atmarkit.itmedia.co.jp/ait/articles/2203/10/news019.html
https://openai.com/blog/chatgpt

18 →目次に戻る

さまざまなモデル

　OpenAIのドキュメント「Model index for researchers」にはGPTや InstructGPTに関連するモデルにつ

いての説明があります（残念ながらChatGPTについてはまだ記載がないようです）。

　これによれば InstructGPTに関連するモデルには以下のようなものがあります。

 InstructGPTに関連したモデル

　他のモデルについては上記のリンク先を参照してください。

　Webで InstructGPTを試すにはOpenAIが用意しているPlaygroundページが使えます（OpenAIへのサイ

ンアップ／ログインが必要です）。

Playgroundページ

https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/playground

19 →目次に戻る

　上の画像を見れば分かる通り、中央の大きな区画に InstructGPTへの入力とそれに対する出力が表示されます

（薄緑の背景色のテキストが InstructGPTからの出力です）。また、右上の［Model］欄には「text-davinci-003」

と表示されているので、InstructGPTの改善版モデルがここでは使われていることが分かります。

　中央の大きな区画の下部には「Looking for ChatGPT?」とあることから、ここで使われて

いるモデルがChatGPTではないということも想像できますね。

コードからモデルを使うには

　では、コードから簡単に InstructGPTモデルを使ってみましょう。OpenAIは InstructGPTの APIを公開し

ているのでこれを呼び出すだけのホントに簡単なコードです（ノートブックはこちら）。

　取りあえずコードを出してみることにしました（笑）。

　そのために必要な手順は以下です。

1. OpenAIにサインアップ／ログインして、APIキーを取得する

2. PyPIから openaiモジュールをインストールする

3. openai.Completion.createクラスメソッドを呼び出す

　APIキーはOpenAIにサインアップ／ログインした後に、右上のアカウントアイコンをクリックすると表示される

メニューから［View API keys］を選択します。

 ［View API keys］項目

https://colab.research.google.com/drive/1Xh7uMDO9pav9NcNWlk7rjLxlnBFFGWc6?usp=sharing
https://pypi.org/project/openai/

20 →目次に戻る

　すると、以下のようなページが表示されるので、［Create new secret key］ボタンをクリックしてください。

［Create new secret key］ボタンをクリック

　これで APIキーが作成され、次のようなダイアログにキーが表示されます。このキーは一度しか表示されない

ので、忘れずにコピーしておくようにしましょう。

 生成されたAPIキー

21 →目次に戻る

　そしてシェルやコマンドプロンプト、あるいは Visual Studio Codeなどの開発環境のシェルやコマンドプロン

プトから「pip install openai」コマンドを実行するか、Jupyterノートブックのセルで「!pip install openai」を

実行します。

　これで準備は完了です。後は openaiモジュールをインポートし、その api_key属性に、先ほど生成されたAPI

キーを代入し、最後に openai.Completion.createクラスメソッドを呼び出すだけです。以下に例を示します。

KEY = '取得した APIキーをここに記述 '

import openai

openai.api_key = KEY

response = openai.Completion.create(

 model='text-davinci-003', # InstructGPT

 prompt='晴れた日曜日の午後には何をすればいいかな？',

 temperature=0.7,

 max_tokens=256,

 top_p=1,

 frequency_penalty=0,

 presence_penalty=0

)

print(response['choices'][0]['text'])

InstructGPTのAPIを呼び出すコード

　InstructGPTの APIを呼び出すので、model引数には 'text-davinci-003'を指定します。promptには先ほ

どWebで試したのと同じ '晴れた日曜日の午後には何をすればいいかな？ 'を指定しました。その他の引数につい

ては「Create completion」を参照してください。

https://platform.openai.com/docs/api-reference/completions/create

22 →目次に戻る

　実行した結果を以下に示します。

実行結果

　中身のことはよく分からなくても、APIを呼び出せばそれなりの答えが返ってくるというのは楽でいいですね

（笑）。

　これは簡単ですね。Pythonなどでソフトウェアのプログラムを書ける人は多いと思うので、

多くの人が試すことで思いもしない面白い活用方法やソリューションのアイデアもたくさん出て

きそうだと思いました。

　というわけで、今回は InstructGPTとChatGPTという 2つのモデルがどんなふうに作られているかを見てき

ました。次回は何をするか未定ですが、何か面白いことをできたらと思っています。

23 →目次に戻る

　筆者がネタに苦しんでいるうちに、マイクロソフトが AzureにChatGPTを含むOpenAIの

サービスを採用すると発表したり、ChatGPT Professionalのウェイトリストが用意されたり

と、世の情勢は活発にうごいていますね（かわさき）。

OpenAI Cookbook

　OpenAIは「OpenAI Cookbook」と呼ばれるリポジトリをGitHubで公開しています。これは、OpenAIが

提供するAPIを使って何らかのタスクを行うためのサンプルコードやガイドを示したものです。今回はそのうちの

GPT 3に関連する内容を幾つか紹介しましょう。ただし、OpenAI Cookbookで紹介されているノウハウは

ChatGPTに特化して書かれているわけではないことには注意してください。

　　　OpenAI Cookbook

OpenAI Cookbookで学ぶ
ChatGPTプロンプトの基礎の基礎
OpenAIが提供しているCookbookでは大規模言語モデルからの出力をどうすればよいもの
にできるか、そのノウハウが紹介されています。その基本部分を見てみましょう。

かわさきしんじ，Deep Insider編集部（2023年 02月 03日）

https://github.com/openai/openai-cookbook
https://www.itmedia.co.jp/author/208386/

24 →目次に戻る

　このCookbookの「How to work with large language models」ページでは大規模言語モデルを「テキス

トとテキストをマップする」機能だとしています。純粋なGPTであればテキストを入力すると次にくるテキスト（単

語列）を推測するし、InstructGPTやChatGPTであればテキストを入力するとユーザーが入力したテキストの

指示に従った返答が得られるということです。

　そして、モデルからの出力の質を高めるには、入力するテキストつまりプロンプトがとても重要です。このプロン

プトには以下のような種類があります。

• Instructionプロンプト

• Completionプロンプト

• Demonstrationプロンプト

　以下ではこれらのプロンプトについて見ていきましょう。

https://github.com/openai/openai-cookbook/blob/main/how_to_work_with_large_language_models.md#how-to-work-with-large-language-models

25 →目次に戻る

Instructionプロンプト
　Instructionプロンプトとは「ユーザーがモデルに何をしてほしいかを伝える」プロンプトのことです。例えば、

「○○について教えてください」とか「以下の文章の概要をまとめて」のようなプロンプトのことだと考えられます。

　ちょっとした例を以下に示します。

Instructionプロンプト

　上の画像は本フォーラムの用語辞典の記事「ファインチューニング（Fine-tuning：微調整）とは？」の内容を

要約するように指示（instruct）したものです。もう少し文字数が多めでもいいんじゃない？　と思いますが、い

い具合の要約になっているようです。

https://atmarkit.itmedia.co.jp/ait/articles/2301/26/news019.html

26 →目次に戻る

Completionプロンプト
　Completionプロンプトとは「ユーザーが入力したテキストに続くテキストをモデルに推測してほしい」ときに使

用します。例えば「機動戦士」と人にいわれたら、「ガンダム」と続けたくなりますよね。これと同様に、入力さ

れたテキストに続くテキストをモデルに補完（completion）させるようなプロンプトのことです。

　「Zガンダム」や他のガンダム作品の名前を続けたくなる人がいることは承知しています（笑）。

　実際にChatGPTに「機動戦士」と入力した結果を以下に示します（必ずしもこうなるとは限りません）。

Completionプロンプト

　「機動戦士」に続くテキストとして「ガンダム」を推測できましたが、余計なところまで出力してしまっています。

Instructionプロンプトとは異なり、Completionプロンプトを受け取った場合、モデルは入力されたプロンプトに

続くテキストを推測しますが、推測をどこで終わればよいかは分かりません。そのためにこのような結果になって

います。

　こうした事態を避けるには、「ストップシーケンス」を指定します。ストップシーケンスはテキスト生成を終了さ

せるトリガーとなります（つまり、ストップシーケンスに指定したテキストにぶつかった時点で、テキストの生成が

終了します。また、ストップシーケンスに指定したテキストは生成された出力に含まれません）。

　ChatGPTにはストップシーケンスを指定する機能がありません。そこで、InstructGPTの Playgroundで試

してみましょう。こちらには「Stop sequences」欄があるので、ここでストップシーケンスを「ガンダム」に指定

します。

https://platform.openai.com/playground?model=text-davinci-003

27 →目次に戻る

生成されたテキストが「ガンダム」で終わったらテキストの生成を終了する

　上の画像を見ると、InstructGPTからの出力が表示されていません。これは恐らく、「機動戦士」に続けてモデ

ルが「ガンダム」（または「ガ」→「ン」→「ダ」→「ム」のような列）を推測したところ、これがストップシー

ケンスに合致したために推測がそこで終了し、ストップシーケンスに指定したテキストが出力には含まれないように

なっているために、何も出力されなかったところです。

28 →目次に戻る

Demonstrationプロンプト
　Demonstrationプロンプトとはユーザーがモデルに対して、何らかの例を提示（demonstration）した上で、

例を基にモデルに何らかの推測を行ってもらうためのものです。例が少ない few-shot学習と多数の例を提示して

のファインチューニングの 2種類があります。

　多数の例を用意するのは大変なので、ここでは few-shot学習の例を見てみます。ここでは変数 xと yの値を

指定して、その加算をしていますが、2つの変数の値の和を求めようとしています。が、ここでは単に加算するの

ではなく、間に 2つの値の 2進表記も含めるようにしています。

few-shot学習

　上の 2行がここではデモです。下の 2行は 2つの変数の値が上とは異なっています。ここで求めたい結果は「x

+ y =」に続いて「0000 + 0001 = 0001 = 1」のように間に 2進表記を含めて和を求めることです。果たして 1

つの例だけを見て、こうした形式を学習できるのでしょうか。

 実行結果

　このように思った通りの結果が求まりました。モデルがたった 1つの例を見て、どんな形式の出力がほしいかを

うまく学習できているようです。

29 →目次に戻る

　次の例もDemonstrationプロンプトといえるでしょう。1～ 3の階乗の計算方法をデモした上で 4の階乗はど

うなるかを尋ねてみました。

 階乗の定義とその計算例

　デモから階乗の定義を読み取って、「4!」が「4×3!」とした上で、それが「4×3×2×1＝ 24」であると正しく

計算してくれました。

　それどころか、チャットを新規作成して「4! =」と入力するだけできちんと 4の階乗を計算

してくれましたから、階乗がどんなものかをChatGPTはすでに学習しているようです（じゃあ、

デモする意味なかったじゃん？）。

　その場合、階乗の「4! =」に続くテキストを補完したのでCompletionプロントが働いたと

いうことなのでしょうかね（一色）。

30 →目次に戻る

よりよいプロンプトとは

　OpenAI Cookbookではモデルからの出力をよりよいものにするために次のようなテクニックを使うとよいと述

べています。

• 明確な指示を与える

• よりよい例を与える

• 専門家のように答えてくれるようにお願いする

• なぜそうなるのかを、一連のステップで書き下すように伝える

　「明確な指示を与える」というのは、どんな出力がほしいのかなどを伝えるときに、具体的な要望を伝えること

です。以下に例を示します。

明確な指示を伝えると、思った通りの結果を手に入れやすい

31 →目次に戻る

　最初の指示は単に「階乗を計算せよ」としか伝えていません。その結果は分かりやすいものですが、その結果を

コピー＆ペーストして流用したいとしましょう。そうなると、もっと簡潔な方が好ましくなります。そこで 2つ目の例

のようにどんな形式の結果がほしいかを明確に伝えることで、後でChatGPTからの出力を使いやすくなります。

　「よりよい例を与える」というのは、プロンプトの中に例を含める場合には、法則性や一般性を全て包括した情

報とすることや、そこに間違いがないようにすることといえるかもしれません。例えば、以下を見てください。

 　　 数字の後には何が続く？

　プロンプトとして与えた数列がその後どう続いていくかを推測させようとしています。しかし、冒頭の「1, 2, 3,」

だけでは求めたいものは初項 1、公差 1の等差数列かもしれませんし、フィボナッチ数列かもしれません。そこで、

それ以降では幾つか情報を付加することで最終的にフィボナッチ数列が得られるようにしています。察しのよい人

（モデル）ならば「1, 2, 3, 5,」とすれば「これはフィボナッチ数列！」となるかもしれませんが、上の画像ではそ

うはいきませんでした。そこで、「1, 2, 3, 5, 8, 13, 21」のようにモデルに十分な情報を与えることで、望みの結

果が得られました。

　この反対の意味でよく聞くのが「garbage in, garbage out」（ゴミを入れたら、ゴミが出て

くる）ってヤツですね。

32 →目次に戻る

　「数字の後には何が続く？」の例はDemonstrationプロンプトになっていると思います。それ

に対して明確に指示する Instructionプロンプトも組み合わせて使うとよいということですね。

「機動戦士」の例だったCompletionプロンプトの場合も言葉が足りない印象だったので、そ

れに対しても明確に指示する Instructionプロンプトも組み合わせた方がよさそうだなと思い

ました。3種類のプロンプト方法がありましたが、組み合わせて使えばよく、特に Instruction

プロンプトを使うのが一番重要かなと、ここまで読んで思いました。

　「専門家のように答えてくれるようにお願いする」についても例を見てみましょう。以下は Pythonについて

ChatGPTに尋ねたところです。

 　　　Pythonについて聞いてみた

33 →目次に戻る

　まあまあの概要が得られたようには思えます。専門家のように教えてもらうと次のようになります（上の質問に

続けて入力）。

 　　　　専門家のように教えてもらった

　返された内容には少し高度な話題が含まれるようになりました。もう少し深い話題がほしいといったときには

使ってみてもよいかもしれませんね。とはいえ、高度な話題を含んだ出力はそれを見る側にも十分な知識が必要な

ことには注意しましょう。

　「専門家のように教えてもらう」というのはそういうダイレクトな指示なのね。なんか驚いた。

だけど「小学生でも分かるように教えてください」などアレンジ可能だと思いました。

　最後の「なぜそうなるのかを、一連のステップで書き下すように伝える」というので重要なのは「ステップバイス

テップで考える」ように伝えることです。以下はその例です。

34 →目次に戻る

 　 ステップバイステップで考える／単に結果を得る

　「ステップバイステップ」を入れるか入れないかで随分と出力が変わることが分かります。これについてはちゃん

と計算できているようですが、実は間違った答えを返したときに「ステップバイステップ」で出力を指せるようにす

ることで正しく答えを導き出せたり、どこでモデルが間違えているかが分かったりする場合もあるようです。

　OpenAI Cookbookにそうした例もあるのですが、その例にあるプロンプトを入力してみる

と、ChatGPTでは正解が得られ、InstructGPTではステップバイステップで考えさせても間

違ってしまったので、ここでは別の例を使うことにしました。

　というわけで、今回はプロンプトの基礎の基礎を見ました。次回はもう少しプロンプトについて見ていく予定です。

https://github.com/openai/openai-cookbook/blob/main/techniques_to_improve_reliability.md#why-gpt-3-fails-on-complex-tasks

35 →目次に戻る

新しいBing

　マイクロソフトが 2023年 2月 7日にChatGPTの技術を活用して新しくなった検索エンジン「Bing」を発表

しました（以下では「新しいBing」とでも呼びましょうか）。筆者は少し遅いタイミングで「順番待ちリスト」に

登録したのですが、幸いにも新しいBingにアクセスできるようになったので、ちょっとその使い勝手やChatGPT

との違いを試した上で、前回に紹介したOpenAI Cookbookで紹介されているノウハウが使えるかを見てみるこ

とにします。

　そのリリースには、新しいBingではOpenAIによる「ChatGPTよりも強力」な言語モデルと、「OpenAIモ

デルの力を最大限に発揮できる」ようにマイクロソフトが開発した「Prometheusモデル」「コア検索アルゴリズ

ムへの AI適用」「新たなユーザーエクスペリエンス」により「検索の再発明」がなったとあります。

　PrometheusモデルがOpenAIのモデルを内包するものなのかどうかなどはよく分かりませ

んね（かわさき）。

　ちなみにPrometheusはギリシャ神話の「プロメテウス」のことみたいで、カッコイイ名前

ですね（一色）。

　2023年 2月 14日時点では新しい Bingはデスクトップ限定でのプレビュー段階にあり、https://www.bing.

com/newにアクセスして「順番待ちリスト」に登録して、新しいBingへのアクセスが可能になるまで待機する必

要があります。

新しいBingに組み込まれた
ChatGPTよりも強力な言語モデルに触ってみよう
ChatGPTはブラウザや検索エンジンの世界にも大きな影響を与え、その技術を組み込んだ検
索エンジンが登場しました。今回はこれに触ってみましょう。

かわさきしんじ，Deep Insider編集部（2023年 02月 17日）

https://www.bing.com/
https://news.microsoft.com/ja-jp/2023/02/08/230208-reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://www.bing.com/new
https://www.bing.com/new
https://www.itmedia.co.jp/author/208386/

36 →目次に戻る

新しいBingにアクセスするための順番待ちリストに登録するページ

　このとき、Edgeを既定のブラウザに設定し、スマートフォンにBingアプリをインストールすると早期にアクセ

スできるようですが、その真偽は筆者にはよく分かりません。

 　順番待ちリストで先に進むための条件？

　また、マイクロソフトのWebブラウザである「Edge」からでないと新しいBingには（現状）アクセスできな

いようです。上で述べた「新たなユーザーエクスペリエンス」を試してみるならEdgeの開発プレビューをダウン

ロードする必要もあるようですが、安定版の Edgeでも問題はないでしょう。

　macOSで Safari用の拡張機能「Microsoft Bing for Safari」をインストールすると、使えるようにならない

かな？　と思ったのですがそんなことはありませんでした。

https://www.microsoft.com/ja-jp/edge?form=MA13FJ
https://apps.apple.com/jp/app/microsoft-bing-for-safari/id1560727432

37 →目次に戻る

Microsoft Bing for Safariを入れたけど、お断りされたところ

　というわけで、Edgeで新しいBingを試してみることにしましょう。

38 →目次に戻る

新しいBingを試してみる

　以下は Edgeを使って、bing.comにアクセスをしたところです。

新しいBing

　トップに以下のように［チャット］があることに気が付いたでしょうか。

［チャット］メニュー

39 →目次に戻る

　これをクリックすると画面は次のように変化します。

チャット画面

40 →目次に戻る

　最下部に新しいBingに尋ねたいことを入力するプロンプトが表示されています。ここに何かを入力することで

チャットが始まります。取りあえず、ありがちな「2022年に J1リーグで 17位と 18位になって、2023年シー

ズンから J2リーグに降格することになったチームを教えてください」と入力したところが以下の画像です。

2022年に降格が決まったのは確かに清水エスパルスとジュビロ磐田。だけど……

　この画像は新しいBingで使われている言語モデルとChatGPTとの大きな 3つの違いを示しています（快適

な検索をチャットベースでどうやるかを考えると以下の 3つは必須だとマイクロソフトが考えているのでしょう。実

際、昔の情報しか知らない検索エンジンは使えないでしょうし、出典のリンクはもっと情報を得たい人にはとても

好ましい機能だと感じます。チャットが返す情報があっているかどうかは別として）。

• 必要があれば自分でWeb検索を行う

• 2022年にあったことでも知っている（検索ができるから？）

• 出典が記載されている

　と同時に 2つのモデルが「間違ったことでもそれっぽく返答してくる」ことも示しています。2022年の J1リー

グで 16位になったのは「ガンバ大阪」ではなく「京都サンガ」ですからね。

41 →目次に戻る

　そういうわけで、情報を訂正したのが以下です。

2023年の J1リーグにはロアッソ熊本と東京ヴェルディが参戦だと……

　京都サンガとガンバ大阪の情報は直りましたが、余計なことを付け加えたばっかりに、実際に昇格したアルビ

レックス新潟と横浜 FCの立場がないことになってしまいました（笑）。

42 →目次に戻る

　ちなみにアドレスバーに検索項目を入力して［Enter］キーを押すという従来の方法でもこのチャット画面に移

行することは可能です。例えば、以下は「python 余りを求める」とEdgeのアドレスバーに入力した結果です。

ページ右側にある［チャットしましょう］をクリックするとチャットが始まる

　ページ左側にはよく見る検索結果が、右側には新しいBingがとりまとめた解法です。この下部には［チャット

しましょう］というリンクがあるので、これをクリックすると上で見たのと同様なチャット画面が表示されます。

　ただし、新しいBingからの返事が表示されなかったり、ページ左側にチャット画面を開くためのリンクが表示

されたりすることもあるので、近いうちにちゃんとした方法が決まると思われます。

43 →目次に戻る

新しいBingに考えてもらう

　ここまでは新しい Bingが何かを知っているかどうかを試しただけです（あんまり知っていないような気がしま

す）。次に新しい Bingにクイズを出して、ちゃんと答えられるかを試してみましょう。クイズの内容はOpenAI

Cookbookの「Techniques to improve reliability」に書いてあるものをまるっと使わせてもらっています。

　幾つかの手がかりを提示して、3つの選択肢の中でその全てを満たす答えを新しいBingに選んでもらおうとい

うものです。

　その手がかりとは以下です。

1. スカーレット嬢はラウンジにいたただ一人の人です

2. パイプを持っていた人はキッチンにいました

3. マスタード大佐は天文観測所にいたただ一人の人です

4. プラム教授は図書室にもビリヤードルームにもいませんでした

5. 燭台を持っていた人は天文観測所にいました

　これらの条件を基に「マスタード大佐は燭台を持って天文観測所にいましたか？」という問題に対して、次の 3

つの選択肢の中から正解を選んでもらいます。

• （1）はい。マスタード大佐は燭台を持って天文観測所にいました

• （b）いいえ。マスタード大佐は燭台を持って天文観測所にはいませんでした

• （c）わかりません。マスタード大佐が燭台を持って天文観測所にいたかどうかを知るには情報が足りません

　自分たちなら上の条件から「マスタード大佐が天門観測所にいた（天文観測所にはマスタード大佐しかいなかっ

た）」「天文観測所にいた人が燭台を持っていた」という 2つの手がかりから「マスタード大佐が天文観測所にい

た」ことが分かるでしょう。新しいBingはこれを解けるのでしょうか。

https://github.com/openai/openai-cookbook/blob/main/techniques_to_improve_reliability.md

44 →目次に戻る

　プロンプトは次のようになります。

新しいBingに入力するプロンプト

　このプロンプトは前回に紹介した Instructionプロンプトなのか、Completionプロンプトな

のかよく分かりませんね。指示をしているという意味では Instructionプロンプトかと思いまし

たが、「解答：」の後に続く単語列（トークン列）を予想させているようにも思えます。

　さて答えはどうなるでしょう（この答えはあくまでも一例です）。

新しいBingの解答（うーん）

45 →目次に戻る

　肝心のところを間違えてしまっています。だからといって、新しいBingの言語モデル（やChatGPT）がこうし

た問題をちゃんと解けないというわけではありません。OpenAI Cookbookでは、こうしたときには次のようにし

ろと書いてあります（なお、新しいBingの答え方を見る限り、上記のプロンプトは Instructionプロンプトのよう

ですね。新しいBingの解答は「解答：」の後に続く語句のようには見えません）。

• より明確な指示を出す

• 複雑なタスクを、もっと簡単な複数のタスク（サブタスク）に分割する

• モデルがタスクを処理できるように指示を構造化する

• 説明をしてから、解答をするようにさせる

• etc

　ここでは「複雑なタスクを、もっと簡単な複数のタスク（サブタスク）に分割する」を試してみましょう。ここ

では次のような 3つのタスクに分けて考えさせるのがよいでしょう。

1. 問題文と関係のある手がかりを 5つの中から選ぶ

2. 関係のある手がかりを突き合わせて、正解が何かを考える

3. 正解と思ったものを選択肢から選ぶ

　問題文と関係あるのは手がかり3と 5です（マスタード大佐が天文観測所にいる／天文観測所にいる人が燭台

を持っている）。これらを付き合わせると、マスタード大佐が燭台を持って天文観測所にいることが想像できます。

ということは、正解は選択肢（c）といえると思考のルートを通ってほしいということですね。

　今いったようなことを記述したプロンプトが以下です（少し言い回しを変えました。また、ここに至るまでにア

レコレとテストをしてみたので、その辺はなしにして新しいBingでタブを新規作成しています）。

3つの手順で考えをまとめるようにしたプロンプト

46 →目次に戻る

　これでうまくいくのでしょうか（途中に「手順に従って解いてみてください」などと余計な指示が入ってしまい長

くなったので、少し画像を縮小してキャプチャーしてあります）。

ダメでしたー

　問題と手がかりが関係あるかどうかを調べる手順 1についてはうまくできて、手がかり3と 5が得られています。

が、それらを結び付けて考える手順 2がうまくいっていません。そのため、手順 3でも間違った選択肢を選んでし

まっています。OpenAI Cookbookではこんな感じのやり方でうまくいっているのにダメなのは、日本語と英語の

差なのでしょうか。

47 →目次に戻る

　取りあえず、間違っていることを指摘したらこんなことになりました。

同時に起こっていない可能性があるという指摘

　なるほど。日本語と英語の差ではありませんでした。手がかりは（特に時間を明記しない限り）同じ時間に起

こったと見なせるという人間にとっては暗黙の条件が、新しい Bingの言語モデルにはなかったのが行き違いの原

因です。同じ時間帯に起こったものだとすれば、モデルもちゃんと正解にたどり着けることが分かりました。

　これは上で述べた「より明確な指示を出す」というノウハウをうまく実行できていなかったと考えられます。モ

デルに何をしてほしいのか、人間の側でもうまく考える必要があるということがよく分かりますね。

　なお、「手がかりは同一時刻の状況を示していると考えられる」と制約を付けることで、手順をわざわざ指定せ

ずともちゃんと正解にたどり着けるようです。

制約を付けることで手順なしでもうまくいった例（プロンプトの 1行目に注目）

48 →目次に戻る

　複雑なタスクはより小さなタスクに分割するというのは、いわゆる「分割統治」のことで、プログラミングの世

界ではごくごく当たり前のことです。前回に紹介した「ステップバイステップで考える」というのもそうした考え方

を表しているといえるでしょう。

　1つの大きなプログラムは関数やクラスを使って、より微少なタスクへと分割して管理するのがコードの分かりや

すさやメンテナンス性の向上につながります。言語モデルに対しても、こうした考え方を適用していくと、うまく自

分の意図を伝えられるようになるのかもしれませんね。

　チャット形式での検索というのは、全く新しい検索体験となる可能性があります。検索エンジ

ンで知りたいことをサクッと調べて仕事に戻るはずが、泥沼に引きずり込まれて些細なところを

突っつき回すなんて人がたくさん出るかもしれませんね。

　人間が考え込むような論理的思考が必要となる質問への回答は難しいなと思いました。特

に、チャットAIによる回答には正確性の不安があるので、辞書的な使い方はしづらいですね。

一方でアイデアを出すような、「Deep Insiderのキャッチコピーを何個か提案してください。」や

「無難な依頼の断り方を教えてください。」のようなクリエイティブ方面は有用そうだと感じて

います。

　というところで、今回もそろそろ時間がきてしまいました。新しいBingのおかげでOpenAI Cookbookの探

求が進まなかったこともあり、もう 1回くらい記事を書こうかなと考えているところです。

49 →目次に戻る

　タイミングを考えると、プロンプトとか思考の連鎖をやっている場合じゃなくって、ChatGPT

APIをやるべきだろ！　となるのですが、それは次回のネタとさせてください（かわさき）。

思考の連鎖とは

　OpenAI Cookbookの「Techniques to improve reliability」ページでは言語モデルからの信頼性を高める

ためのノウハウが紹介されています。そこでは「明確な指示を与える」「複雑なタスクは幾つかのタスクに分割す

る」「モデルがタスクから逸脱することがないようにプロンプトを構造化する」といったことが書かれています。そ

して、その中には「答えを出す前に説明するようにモデルに指示する」（Prompt the model to explain before

answering）という項目があります。

　この中で出てくる概念に「思考の連鎖」（Chain of Thought、CoT）というものがあります。思考の連鎖とは

「複雑なタスクを最終的に解決する過程における、中間的な推測ステップの連なり」といえます。こういう表現だ

と少し分かりにくいのですが、「リンゴが 10個ありました。そのうちの 5個を食べた後に、食べ過ぎたと思って 3

個を買い直しておきました。リンゴは今何個あるでしょうか」を考えるときに、「10－ 5＝ 5個になったね」「5＋

3＝ 8個になったね」「じゃあ今は 8個あるよ」という風に問題を解くまでに頭の中で考えていることの過程を示

すものだと考えてもよいでしょう。「AならB」「BならC」だから「AならC」のような論理記述を行う際にも思

考の連鎖が使えますね。

　「Chain-of-Thought Prompting Elicits Reasoning in Large Language Models」という論文では、この

ような思考の連鎖（以下、CoTとしましょう）をプロンプトに組み込むことで、言語モデルからよりよい答えを引

き出せることが述べられています。こうしたプロンプトのことを「思考の連鎖プロンプト」「CoTプロンプト」など

と呼びます。これに対してCoTを含まないプロンプトを「標準的プロンプト」（Standard Prompting）と呼ぶこ

とがあります。

思考の連鎖（Chain of Thought）で
ChatGPTからよりよい応答を引き出そう
ChatGPTや InstructGPTが間違った答えを出すときには、解決の手順となる「思考の連鎖」
と呼ばれる情報をプロンプトに含めることで、よりよい解答を得られることがあります。これを
実際に試してみましょう。

かわさきしんじ，Deep Insider編集部（2023年 03月 10日）

https://github.com/openai/openai-cookbook/blob/main/techniques_to_improve_reliability.md
https://github.com/openai/openai-cookbook/blob/main/techniques_to_improve_reliability.md#prompt-the-model-to-explain-before-answering
https://arxiv.org/abs/2201.11903
https://www.itmedia.co.jp/author/208386/

50 →目次に戻る

プロンプトで言語モデルの振る舞いを制御する？

　ここでは「Q：このカフェテリアには 23個のリンゴがあります。そのうちの 20個を使ってランチを作りました。

その後、6個を買い足しました。リンゴは何個あるでしょう？」という問題について考えてみます（この問題は前

述の論文で使われているものです）。正解は「23－ 20＋ 6＝ 9」ということで 9個です。

　以下は標準的プロンプトを使って、これをChatGPTに尋ねてみたところです。

 　　　 ChatGPTはいい感じに答えてくれる

　いい感じに答えてくれました。実はいい感じに答えてもらうと都合が悪いのです。

　失敗してくれないと話が進まないので、InstructGPTに同じことを聞いてみましょう（背景色が薄い緑色のテキ

ストが InstructGPTからの出力です）。

 　　 InstructGPTに聞いてみたら間違えてしまった

　こちらは何を考えたのか「29個」だと答えを返してきました（「9個」だと正解を返してくることもあります）。プ

ロンプトを使って正解を得られるようにしていくのがここでのテーマです。

　その前に、InstructGPTのプロンプトと答えで少し注目してほしいところがあります。それはプロンプトを「Q：」

で始めたら、答えが「A：」で始まるようになっている点です。これは、プロンプトに合わせて解答が「A：」で

始まるように InstructGPTがしてくれているということです（プロンプトから「Q：」を削除すると、出力から「A：」

がなくなります）。

51 →目次に戻る

　それだけではありません。例えば、アヒルの鳴き声について InstructGPTに尋ねてみましょう。

 　　　アヒルの鳴き声は「ガーガー」

　日本語が微妙に変なところは置いておいて、ここで「ガーガー」とだけ答えてくれればよいとします。このよう

なときには本題の前にどのように答えてほしいのか、その例を提示できるのです。今見たように言語モデルは「Q：」

と「A：」のような係り受けをうまく処理してくれますが、さらにプロンプトの入力者が例を示すことで出力のフォー

マットを言語モデルに強制する、つまり、プロンプトで言語モデルの振る舞いを制御できるということです。

　以下に例を示します。

 　　 インコンテキストサンプル付きのプロンプト

　ここでは最初の 4行は入力とそれに対する応答の例です。これらの 4行は言語モデルからの出力ではなく、プ

ロンプトに含められた入力と応答の例です。プロンプトに例を内包することから「インコンテキストサンプル」（in-

context Exemplars）と呼ぶこともあります（上述の「Chain-of-Thought Prompting Elicits Reasoning in

Large Language Models」という論文による）。

　「exemplar」は「模範、手本、原型、典型、実例」といった意味です。が、ここではサン

プルという語を当てはめています。モデルに示す「お手本」（このような問題はこのようにして

解く）とか「典型的な解法」のような意味合いで使っていると思われるので、もしかしたらサン

プルという語はよろしくないかもしれませんね。

　プロンプトに含められた入力と出力の例から言語モデルは学習をして、例に合わせた出力を返します。このよう

に言語モデルをファインチューニングするのではなく、プロンプトを介して幾つかの入力と出力の例（ここでは 2つ

の例）を言語モデルに与えることで、言語モデルに学習させることを「プロンプトによる few-shot学習」と呼び

ます（例が 1つだけの場合、one-shot学習と呼ぶこともあるようです）。また、例を含んだプロンプトのことを

「few-shotプロンプト」と呼びます。

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

52 →目次に戻る

　人間も子供に答え方を教えるときには、こんな感じに教えるかなと思いました（一色）。

few-shotプロンプトと few-shot-CoTプロンプト

　ここで先ほどの「Q：カフェテリアには 23個のリンゴがあります。そのうちの 20個を使ってランチを作りまし

た。その後、リンゴを 6個買い足しました。リンゴは何個あるでしょう？」という問題をもう一度、InstructGPT

に尋ねてみましょう。

 　　 InstructGPTにリンゴの数を尋ねたところ（標準的プロンプト）

　これは標準的プロンプトで、インコンテキストサンプルもないので、先ほどと同様に、間違った答えが返ってき

ます（正解が返ってくることもあるでしょう）。ここでインコンテキストサンプルとして「ロジャーは 5個のテニス

ボールを持っています。さらに 3個のテニスボールが入った缶を 2つ買いました。ロジャーは何個のテニスボール

を持っているでしょう？」という問題とその答え「A：答えは 11個です」を書いてみます。このプロンプトにはイ

ンコンテキストサンプル（上で述べた入力と出力の例）が含まれていますが、CoT（問題を解く手順）は含めてい

ないので、標準的な few-shotプロンプトでもあります。

 　　 インコンテキストサンプル付きの few-shotプロンプトでリンゴの数を尋ねたところ

　テニスボールを求める問題の解答例は「A：答えは 11個です」になっています。そのため、リンゴの数を求め

る問題に対する答えもこれに合わせて「A：答えは 29個です」になっています。ですが、肝心な答えが間違って

います。ではどうすれば、インコンテキストサンプルを使って、言語モデルを正解へと導けるのでしょうか。

53 →目次に戻る

　ここでようやく登場するのが、CoT（思考の連鎖）プロンプトです。プロンプトに例としてCoTを含めるので

「few-shot-CoTプロンプト」といってもいいでしょう。具体的にはテニスボールの数を求める入力に対する出力例

に、その計算をどんな手順で行うのかを含めるだけです。例えば、以下がその例になります。

CoTをプロンプトに含めることで、言語モデルがリンゴの数を求める過程を出
力に含めて、その結果、正しい答えが得られるようになった

　テニスボールの数を求めるプロンプトとその出力（解答例）には「テニスボールが 5個あった。そこで、3つ入

りの缶を 2つ買ったので増えたのは 3×2＝ 6個。よって、合計は 5＋ 3×2＝ 11個」という答えにたどり着くた

めの道筋（CoT）を含めるようにしました。そして、本題であるリンゴの数を求めるプロンプトを入力すると、そ

の出力でも例に合わせて計算をするようになったというわけです。

　入力と出力の例を書いたからといって、言語モデルが常に正しい答えにたどり着けるわけでは

ないことには注意が必要です。また試したところでは、問題文はなるべく簡潔に記述することが

重要なようです（例えば、「○○は ××で、◇◇は▼▼で、云々」と書くよりは「○○は ××で

す。◇◇は▼▼です。云々」のように一つの文を短くした方がよさそうだと筆者は感じました）。

　論文によれば、CoTプロンプトには次のような効用があるとされています。

1. 複数のステップで構成される問題を、言語モデルが中間段階のステップに分解して、その個々のステップで計算

を行えるようになる

2. 言語モデルの振る舞いを観察できるようになる。これによりどうすれば正解にたどり着けるかを言語モデルに提

案したり、言語モデルが誤ったときにその振る舞いをデバッグしたりできるようになる

3. 計算問題や常識推測、記号操作などを解決するのに使える

4. 思考の連鎖を few-shot-CoTプロンプトに含めるだけで、言語モデルに手を加えたりすることなしに、言語モ

デルが思考を連鎖させて推測を行えるようになる

54 →目次に戻る

　とはいえ、CoTをプロンプトに含めるためには、問題の解き方を人間が知っている必要があります。さらにこれ

をプロンプトに含めるにはキーボードをたくさん打つ必要もあります。

　個人的に「ここは便利」と感じたのは言語モデルが間違ったときに、few-shot-CoTプロン

プトを修正することで、言語モデルの考え方に人が介入できるという点です。

　そこで、例をプロンプトに含めずともよくしたものが「zero-shot-CoT」プロンプトです。

zero-shot-CoTプロンプト

　zero-shot-CoTプロンプトは「Large Language Models are Zero-Shot Reasoners」という論文で提案

されたもので、簡単にいってしまえば以前にも紹介した「ステップバイステップで考えてみましょう」（Let's think

step by step）という文言を言語モデルからの出力の前に置くというものです。

　以下に例を示します。

 　　zero-shot-CoTプロンプト

　few-shot-CoTプロンプトとは異なり、プロンプトには入力と出力の例がありません。そのため、これは「zero-

shot」というわけですね。その代わりにモデルからの出力の前に「ステップバイステップで考えてみましょう」を置

いています。こうすることで、言語モデルからの出力に問題を解くためのCoTが含まれるようになり、正しい結果

が得られています。

　自分で試してみると分かりますが、これでも間違った推測を行うことは（それなりに）ありま

す。数回同じことを尋ねれば正解が出てくることもあります。

https://arxiv.org/abs/2205.11916

55 →目次に戻る

　ではなぜ「ステップバイステップで考えてみましょう」が有効なのでしょうか。論文によれば、zero-shot-CoT

プロンプトは概念的には解法を抽出するのと、答えを求めるのに 2回のプロンプトを使っていると考えられるとの

こと。

　1つ目のプロンプト（解法の抽出）では以下のように計算のステップを言語モデルが問題文から取り出します。

 　　　　解法を抽出するプロンプト

　次のプロンプト（答えを求める）では上で得られた解法をプロンプトに含めて言語モデルに入力します（上の画

像ではCoT部分がモデルからの出力で背景色が薄い緑色となっていますが、下の画像ではこれを例として入力し

ているので、背景色が白になっている点に注目してください）。

 　　　　 答えを求めるプロンプト

　このプロンプトを見ると、few-shot-CoTプロンプトと同様に見えます（ただし、入力と出力の例があるわけで

はなく、解きたい問題とその解法がプロンプトに含まれるだけです）。

　概念的にはこのような 2つのプロンプトをモデルに入力するのですが、実際には「ステップバイステップで考えて

みましょう」と書くだけで、これらをまとめて行ってくれるというわけです。

56 →目次に戻る

　手を煩わせる必要がないという点では、zero-shot-CoTプロンプトはかなり優秀ですが、言語モデルが正しく

推測してくれないこともあります。そうしたときには few-shot-CoTで言語モデルの振る舞いを細かく制御すると

いうのがよいでしょう（これについては次節で見てみます）。

ChatGPTはどうか

　本稿の冒頭でも見たように、ChatGPTは少し複雑な（ステップが複数ある）計算問題についてはうまい具合に

答えてくれます。

 少し複雑な計算問題ならChatGPTは解いてくれる（ことが多い）

　今度は、コインの表向き／裏向きをモデルに推測させてみます。

　初期条件はコインが表向きに置いてあるものとして、以下のようにコインをひっくり返すとしましょう。かっこ内

はコインの向きがどう変化するのかをメモしたものです。

• A氏は 1回ひっくり返す（表→裏）

• B氏は 2回ひっくり返す（裏→表→裏）

• C氏はひっくり返さない（裏向きのまま）

• その後、3人が 1回ずつひっくり返す（裏→表→裏→表）

　というわけで、最終的にコインが表向きとなっているかどうかをChatGPTが推測できるかを試してみます（正

しい答えが得られることもあるでしょう）。

57 →目次に戻る

 コインの表裏の推測は得意でないもよう

　この結果を見ると、B氏がコインを 2回ひっくり返すと、コインは裏向きから表向き、そしてまた裏向きになる

はずですが、そこを理解できませんでした。そこを間違えたばかりにコインは最終的に裏向きだと言語モデルは推

測をしました。

　こんなときには zero-shot-CoTプロンプトの出番です。といっても、InstructGPTとはUIが異なっているので、

ここでは入力プロンプトの最後に「ステップバイステップで考えてみましょう」と付加することにします。

　その結果が以下です。

 　 ステップバイステップで間違えた

　ここでは先ほどと同じポイント（B氏が 2回ひっくり返した）で先ほどと同じ間違いをしたので、結果も間違っ

たものになってしまいました。

58 →目次に戻る

　こうなったら few-shot-CoTプロンプトを試してみることにしましょう。ただし、ここでは現在の問題を解く手

順をそのまま入力プロンプトに組み込むだけとします（他の入力と出力の組はここでは省略します）。

 few-shot-CoTプロンプト

　自分でほぼ解答を入力しているので、ここでは正しい答えが出力されました。

　言語モデルに推測させるというよりも、言語モデルと一緒に答えを考えている感が非常に強く

なります（笑）。

　このようにChatGPTは InstructGPTよりも正しい答えを出してくれることが多いのですが、うまくいかないと

きには zero-shot-CoTプロンプトを使って「ステップバイステップで考えてみましょう」としてみて、それでもダメ

なら few-shot-CoTプロンプトを試してみるというのは確かによいアプローチのようです。

　「一緒に答えを考えている感」はなるほど。思考の連鎖によるプロンプトは、どうしても人間

が子供に勉強というか質問への答え方を教えているのに似ているという感じがありますね。そ

ういう意味ではChatGPTは、何でも答えてくれる大先生というよりも、すごく物知りでクリエ

イティブな発想ができる子供だと思って接するのがよいのかなと思いました。

　あと、前回も同じ感想だったのですが、ますます人間が考え込むような論理的思考が必要となる質問への回答

は、現状のChatGPTにはあまり向いていないなと思いました。答えが間違っている可能性を考慮する必要があ

るため、結局は答え合わせを質問者がしなければならなくなるので。

　というわけで、ChatGPTのプロンプトについてはこのくらいにして、次回はChatGPT APIを使って何かをし

てみようと思います。

59 →目次に戻る

ChatGPT API

　2023年 3月 1日、OpenAIがChatGPTの APIをリリースしました。今回はこの APIを実際に使って、その

特徴を調べてみることにします。

　さらに 2023年 3月 14日にはGPT-4がリリースされましたね。GPT-4はChatGPTでも

使用できますが、筆者はまだ待機リストに登録された状態なので、今回は gpt-3.5-turboを言

語モデルとして使用します（かわさき）。

　ChatGPT APIのドキュメントによれば、この APIは一連のメッセージを入力として受け取り、モデルが生成し

たメッセージを出力とするとのことです。

　API呼び出しには次のようなものが必要になります。この連載の第 2回でも説明しましたが、それとほぼ同じ

です（使用するクラスが openai.Completionから openai.ChatCompletionに変わっているところと、create

メソッドで単なるプロンプトではなく、メッセージを要素とするリストを渡すところが異なる点です）。もう一度ここ

で簡単にまとめておきましょう。

• OpenAIへサインアップする

• OpenAIのサイトで APIキーを取得する

• openaiモジュールのインストールする（pip install openai）

• oepnai.ChatCompletion.createメソッドを呼び出す

　APIキーを取得する詳しい手順などは第 2回を参照してください。また、openaiモジュールを使うことで

Pythonからこの APIを呼び出せます。

ChatGPTのAPIを使ってみよう：
コンソールで対話するコードとは？
2023年 3月にリリースされたChatGPTの APIの使い方、APIの振る舞い、対話をどのよう
に管理するのか、コンソールで APIを介して対話をするコードなどを紹介します。

かわさきしんじ，Deep Insider編集部（2023年 03月 24日）

https://platform.openai.com/docs/guides/chat
https://www.itmedia.co.jp/author/208386/

60 →目次に戻る

　コード的には次のようにとてもシンプルです。

import openai

KEY = "取得した APIキー "

openai.api_key = KEY

messages = [

 # ChatGPTとの対話内容：

 # {"role": ロール , "content": メッセージ }という辞書を要素とするリスト

]

completion = openai.ChatCompletion.create(

 model="gpt-3.5-turbo", # ChatGPT APIを使用するには 'gpt-3.5-turbo'などを指定

 messages=messages

)

print(completion)

ChatGPT APIを呼び出すコードのひな型

　以下ではmessagesリストの内容についてお話をした後に、実際にAPIを呼び出してみます。

ChatGPT APIを呼び出してみよう

　第 2回で取り上げた InstructGPTでは openai.Completion.createメソッドを呼び出すときに prompt引数

にプロンプトを指定していました。第 2回では次のようなコードを紹介していました。

response = openai.Completion.create(

 model="text-davinci-003", # InstructGPT

 prompt="晴れた日曜日の午後には何をすればいいかな？",

 # ……省略……

)

InstructGPT APIを呼び出すコードの例

61 →目次に戻る

　これに対して、OpenAIのドキュメントではChatGPT APIを呼び出すコード例としては以下が紹介されています。

openai.ChatCompletion.create(

 model="gpt-3.5-turbo",

 messages=[

 {"role": "system", "content": "You are a helpful assistant."},

 {"role": "user", "content": "Who won the world series in 2020?"},

 {"role": "assistant", "content": "The Los Angeles Dodgers won the

World Series in 2020."},

 {"role": "user", "content": "Where was it played?"}

]

)

ChatGPT APIを呼び出すコードの例

　2つのコード例の差は、createメソッドの prompt引数とmessages引数に現れています（model引数の値

も違っていますが）。InstructGPT APIの prompt引数は InstructGPTに対して何をしてほしいのかを指示する

プロンプトです。対して、ChatGPT APIのmessages引数はいわば人間とChatGPTとの間で行われる対話

で送受信されるメッセージをリストに含めたものといえます。上のリストを見れば、リストの要素となっている辞書

の "content"キーの値がそれらのメッセージを表していることは分かります。

　では、"role"キーの値は何を表しているのでしょう。その値としては "system"か "role"か "assistant"のいず

れかを指定します。"system"は「ChatGPT APIと会話を始めるときに、ChatGPTがどんなふうに振る舞うか

を指定するときに使う」と考えておきましょう。その後、「人間がChatGPTにメッセージを投げかけるときには

"role"に "user"を指定」します。"assistant"は対話を続けるのに必要な情報を含めるものですが、これについ

ては後で見てみましょう。

https://platform.openai.com/docs/guides/chat

62 →目次に戻る

　何はともあれ、上のメッセージリストを使ってAPIを呼び出してみましょう。以下に示すコードは、APIからの

戻り値を変数 completionに取っておくようにしたり、リストを変数messagesに代入したりしていますが、やっ

ていることは上で紹介したAPI呼び出しと同じです。

import openai

KEY = "取得した APIキーをここに記述 "

openai.api_key = KEY

messages = [

 {"role": "system", "content": "You are a helpful assistant."},

 {"role": "user", "content": "Who won the world series in 2020?"},

 {"role": "assistant", "content": "The Los Angeles Dodgers won the World

Series in 2020."},

 {"role": "user", "content": "Where was it played?"}

]

completion = openai.ChatCompletion.create(

 model="gpt-3.5-turbo",

 messages=messages

)

print(completion)

ChatGPT APIを呼び出してみる

　openai.ChatCompletion.createメソッドを呼び出す際に、model引数に "gpt-3.5-turbo"と指定しています

が、ChatGPT APIを呼び出す際にはこれを指定します。なお、ChatGPTでGPT-4を使用するのであれば、

"gpt-4"を指定します。モデルの詳細についてはOpenAIのドキュメント「Models」を参照してください。特定

の日付が付いたスナップショットもリリースされていますが（"gpt-3.5-turbo-0301"や "gpt-4-0314"など）、"gpt-

3.5-turbo"と "gpt-4"を指定した場合はAPIを呼び出した時点で最新の言語モデルが使われます。日付付きはそ

の特定の日付で指定された言語モデルが使われます。

https://platform.openai.com/docs/models/overview

63 →目次に戻る

　以下はこれをVisual Studio Code（以下、VS Code）で実行した結果です。

呼び出し結果

　戻り値の先頭要素（"choices"要素）の値はリストになっていますが、筆者が試した限りではその要素は辞書

（と同様に使えるオブジェクト）が 1つだけとなっています（将来変更される可能性はあります）。その "message"

キーの値（completion["choices"][0]["message"]）に ChatGPTが生成したテキストが含まれています

（"content"キーの値）。

　生成されたテキストは、上の例では「The 2020 World Series was played in Globe Life Field in

Arlington, Texas due to the COVID-19 pandemic」となっています。これはmessagesリストの最後の要素

にある「Where was it played?」（それはどこで開催されましたか？）に対応する返答です。

　ここで「ん？」と思いませんか？　messages引数には幾つかのメッセージが含まれているのに、返送されたテ

キストは 1つだけです。「Who won the world series in 2020?」（2020年のワールドシリーズで優勝したのは

どこ？）に対応する返答はありません。

64 →目次に戻る

　ここから予想されるのは、ChatGPT APIは対話の最後に生成したメッセージだけを返信するということです。

対話の途中で生成されたテキストは全て捨てられているようです。APIがそういう仕様であれば、メッセージを 1

つずつ送信すればよさそうな気もします。次にこれを試してみましょう。

ChatGPT APIは対話内容を記憶しない

　messagesリストには合わせて 4つのメッセージが含まれていました（そのうちの 1つは "role"が "assistant"

になっていますが、取りあえず、そこは気にしないことにします）。これを順次 APIに渡して、その戻り値を表示

するコードを以下に示します。

messages = [

 {"role": "system", "content": "You are a helpful assistant."},

 {"role": "user", "content": "Who won the world series in 2020?"},

 {"role": "assistant", "content": "The Los Angeles Dodgers won the World

Series in 2020."},

 {"role": "user", "content": "Where was it played?"}

]

for msg in messages:

 completion = openai.ChatCompletion.create(

 model="gpt-3.5-turbo",

 messages = [msg]

)

 print(completion["choices"][0]["message"]["content"])

対話の内容を 1つずつChatGPT APIに投げるようにしたコード

　このコードでは for文を使ってmessagesリストに含まれている要素（辞書）を 1つずつ取り出して、それを

messages引数に（リストに詰め込んで）渡すようにしています。それからChatGPTが生成したテキストだけを

画面に表示するようにもしました。残りは先ほどのコードと同じです。

65 →目次に戻る

　実行結果は次のようになります。

最後の返事に注目

　messagesリストには4つのメッセージがあったので、返答も4つあります。最初の返答は「You are a helpful

assistant」（あなたはとても有能なアシスタントです）に対するもので「Thank you! How may I assist you?」

（ありがとうございます。何かお手伝いしましょうか？）となっています。いい感じです。

　次の返答は「Who won the world series in 2020?」（2020年のワールドシリーズで優勝したのはどこ？）に

対するものです。「The Los Angeles Dodgers won the World Series in 2020」（ドジャースが優勝）という

答えになっていますね。

　その次は「The Los Angeles Dodgers won the World Series in 2020」（2020年のワールドシリーズでは

ドジャースが優勝しました）となっているので返答はそれを肯定するものになっています（"role"が "assistant"に

なっていることについては後で説明します）。

　問題は最後の返答です。「Where was it played?」つまり「それはどこで開催されましたか？」というメッセー

ジに対して、「I'm sorry, I cannot determine what you are referring to. Could you please provide more

context or information?」（すみません。何のことをいっているのか判断が付きません。もっと情報を与えてくれ

ますか？）と返されています。4つのメッセージをまとめてリクエストしたときには開催地を答えてくれたのにそう

はいきません。

66 →目次に戻る

　これはChatGPTが複数回の API呼び出しの間で、対話に関する情報（記憶、コンテキスト）を維持しないた

めです。この場合は「2020年のワールドシリーズでドジャースが優勝した」という情報が最後の API呼び出しでは

なくなっているからです。文脈がないところで「それ」「it」といわれてもChatGPTは困ってしまうというわけです。

　ChatGPTのWeb UIを例に考えてみましょう。メッセージをひとまとめにしてAPIに送るというのは、以下の

ような連続したやりとりを行って、最後の返答だけを返してきたものだと考えられます。

　　　　4往復の対話（イメージ）

　このときには、対話を続けていく中で出てきた話題や情報をChatGPTが覚えており、「it」が何を指しているの

か、といったことも文脈に応じて判別できています。

67 →目次に戻る

　一方、今のようにメッセージをバラバラにしてChatGPT APIを呼び出すのは、上のような連続した対話にはな

らず、一往復の対話を 4回続けただけということです。以下の画像はその例ですが、画面サイズを縮小している

ので文字が読みづらくなっています。が、ここでは文字の内容はどうでもよいです。一往復のリクエストが 4回と

いうイメージをつかんでください。

一往復の対話を 4回行う（イメージ）

　というわけで、一往復の対話（API呼び出し）をしながら、ユーザーの入力ごとにAPIからの返答を表示する

にはどうしたらよいでしょう。

　ChatGPTのWeb UIでは［New chat］で新規のチャットが作られてその対話の流れ全て

が履歴に残りますが、対話の流れ全てを覚えている必要があるからなのだと合点がいきました。

　コードは少し長くなって面倒な印象でしたが、対話の流れ全てをメッセージとして渡すためには仕方がないです

ね（一色）。

messagesリストで対話内容を管理する

　「ユーザーが入力して返答を受け取り表示する」という一往復の対話を繰り返しながら、さもChatGPT APIと

流れるように対話を行うには以下のようなことを行います。かっこ内の「"system"メッセージ」などは ”role”キー

に指定する値を表しています。”system” ／ "user"／ "assistant"のいずれかになることを先ほどお話しした通り

です。

1. messagesリストに最初のメッセージを格納する（"system"メッセージ）

2. ユーザーからの入力をリストに追加する（"user"メッセージ）

3. APIを呼び出す

4. APIから返答をリストに追加する（"assistant"メッセージ）

5. ユーザーからの入力をリストに追加する（"user"メッセージ）

6. APIを呼び出す

7. APIから返答をリストに追加する（"assistant"メッセージ）

8. 対話が終わるまでこれを繰り返す

　このようにしてユーザーが何を入力したか、APIが何を返したかをmessagesリストに全て保管して、APIを

呼び出すときにそれらをまとめて渡すようにします。

68 →目次に戻る

　以下のコードを見てください。

user_inputs = [

 {"role": "user", "content": "Who won the world series in 2020?"},

 {"role": "user", "content": "Where was it played?"}

]

messages = [

 {"role": "system", "content": "You are a helpful assistant."}

]

for user_input in user_inputs:

 print(f'>>> {user_input["content"]}')

 messages.append(user_input)

 completion = openai.ChatCompletion.create(

 model = 'gpt-3.5-turbo',

 messages=messages

)

 content = completion["choices"][0]["message"]["content"] # type: ignore

 print(content)

 messages.append({"role": "assistant", "content": f'{content}'})

messagesリストで対話内容を管理する

　ここではユーザー入力を模したものを user_inputsリストに含めるようにして、messagesリストには最初は

"system"メッセージだけを含めるようにしました。"assistant"メッセージがないのは、APIからの返答を

messagesリストに追加するためです。

　その後は、user_inputsリストの内容をmessagesリストに追加するたびに、APIを呼び出して、その返答を

表示して、リストに追加しているだけです（最初の "system"メッセージの表示は省略しています）。

69 →目次に戻る

　このコードの実行結果を以下に示します。

対話の内容が毎回表示されるようになった

　"user"メッセージは「>>> 」というプロンプト付きで表示するようにしたので、いかにも人間とChatGPTが

対話しているように見えますね。

　この状態でmessagesリストがどうなっているかを見てみましょう。

messagesリストの内容

　最後の API呼び出しの結果も含まれているので 5行になっていますが、最初の例で見たものと同様な要素が含

まれていることが分かります（最初の例のmessagesリストも似たような方法で作成したものだと筆者は予想し

ています）。

70 →目次に戻る

　上の画像を見ると、2往復の対話が一度の API呼び出しで行われているように見えますが、

そうではなくAPI呼び出しが 2回行われていることには注意してください。この例では過去の

イベントの結果を問い合わせているので、一貫性のある会話となっていますが、1回目の呼び出

しで行われた対話の内容が 2回目の内容と大きく変化して、対話の内容がかみ合っていないよ

うに見える可能性もあります。

コンソールでチャットする

　messagesリストで対話内容を管理して、APIにそれを渡せばよいことが分かったので、コンソールで

ChatGPTと対話をするためのコードを紹介します。

import openai

KEY = "取得した APIキーをここに記述 "

openai.api_key = KEY

class ChatManager:

 def __init__(self, model, sysmsg="こんにちは、アシスタントさん！"):

 self.model = model

 self.messages = []

 self.sysmsg = sysmsg

 self.compose_message("system", self.sysmsg)

 self.params = {}

 self.setup_params()

 def compose_message(self, role, content):

 self.messages.append({"role": role, "content": content})

 def setup_params(self, **kwargs):

 self.params["model"] = self.model

 self.params["messages"] = self.messages

 keys = kwargs.keys()

 key_list = ["temperature", "top_p", "n", "stream", "stop", "max_tokens",

 "presence_penalty", "frequency_penalty", "logit_bias", "user"]

 for key in key_list:

 if key in keys:

71 →目次に戻る

 self.params[key] = kwargs[key]

 def call_chat_api(self):

 completion = openai.ChatCompletion.create(**self.params)

 result = completion["choices"][0]["message"] # type: ignore

 return result

 def get_response_from_api(self):

 result = self.call_chat_api()

 print(result["content"])

 self.compose_message(result.role, result.content)

 def chat_by_api(self, content):

 self.compose_message("user", content)

 print(f">>> {content}")

 self.get_response_from_api()

 def chat_on_console(self):

 print("チャットを始めます。終わるときには「exit」と入力してください。")

 content = input(">>> ")

 while content != "exit":

 if content == "show status":

 print(self.messages)

 content = input(">>> ")

 continue

 self.compose_message("user", content)

 self.get_response_from_api()

 content = input(">>> ")

if __name__ == "__main__":

 chatmgr = ChatManager("gpt-3.5-turbo")

 chatmgr.chat_on_console()

 print("exit chat")

ChatMnagerクラス

72 →目次に戻る

　詳細なことには触れませんが、ここではChatManagerクラスにmessagesリストとそれを管理するコード、

ChatGPT API呼び出しを行うコードなどをまとめてあります。setup_paramasメソッドでは createメソッド呼

び出しで指定可能なパラメーターを設定できるようにしました（が、本稿では使いませんでした）。

　chat_on_consoleメソッドがコンソールで対話するメインコードです。ここではコンソールから入力された値を

受け取って、それを基にmessagesリストに "user"メッセージを追加し、APIを呼び出して、その結果を使って

messagesリストを更新する処理を行っています。このときには、messagesリストの内容を表示したり、「exit」

と入力すると対話を終了したりするようにしてあります。

　VS Code上の Jupyterノートブックで対話をできるようなメソッドも含めてあります

（Jupyterで試してからコンソールに話を移す予定だったのですが、文字数的にあきらめました）。

73 →目次に戻る

　実行している様子を以下に示します。

 VS Codeのコンソールで対話をしているところ

　ChatGPT APIを介してChatGPTの言語モデル（gpt-3.5-turbo）と対話をしているように見えますね。

ChatGPTの動作がある程度分かれば、これを活用したWebアプリなどを構築するのもそれほど難しいことでは

ないでしょう。

　どうすれば作れるのかをChatGPTに聞いてみればよいのでは！！（笑）

　ChatGPTに聞いてみましたが、最新の APIは知らないみたいでした。残念。

　とはいえ、基礎的なお話はできたので、ここから先は読者の皆さんにお任せしようと思います。

