
Webエンジニアからみた
Rust、Rustで始める
Webアプリケーション
藤田直己 , paiza［著］

01.なぜわざわざ学習コストを払ってまでRustを採用するのか？
Webエンジニア目線でRustを考察

03.なぜ「Rustは難しい言語」とされるのか
――習得の難しさとその対策をWebエンジニアが考察

05.RustのWebフレームワーク「axum」で SNSアプリの APIサーバを作る
――Web開発での記述性、要素技術を解説

02.Rustは本当に動作が高速なのか？
Pythonとの比較で分かる、Rustのパフォーマンス特性

04.【サンプルコードあり】Rustで作るWebアプリケーション
――データベース利用と自動テストの基本事項を押さえる

06.Pythonから利用できる
Rust製超高速データ分析ライブラリPolarsの実力

3 →目次に戻る

Rustへの関心の高まり

　近年、プログラミング言語「Rust」に関する重要なニュースを多く見るようになりました。例えば以下のような

記事です。

Androidの開発へ「Rust」を導入、なぜなのか

Microsoft、「Rust for Windows v0.9」を公開

実装言語を「Go」から「Rust」に変更、ゲーマー向けチャットアプリ「Discord」の課題とは

　これらの記事が指し示すことは、いわゆる「GAFAM」（Google、Amazon.com、Facebook、Apple、

Microsoft）と呼ばれる米国主要 IT企業および先進的なWebベンチャー企業がプロダクションユースとしてRust

を採用し始めており、さらに継続的投資意欲があることを示していると考えられます。他にもRustの勢いを示す

ものとして以下のような記事があります。

「Rust」はなぜ人気があるのか、Stack Overflowがユーザーのコメントを紹介

　Stack Overflowにおける最も愛される言語の1位にRustが君臨しています。2016年から2020年まで 5年

連続でRustが1位をキープし続け、さらには2020年の結果では非常に勢いのある言語である2位のTypeScript

に 19ポイントという大差をつけて 1位を獲得しており、エンジニアコミュニティーにおいても極めて勢いがある言

語であるように感じられます。

　これらは単なる一過性のブームなのでしょうか。手慣れた既存言語ではなく、新しい言語であるRustを利用、

学習するのはなぜでしょうか。第 1回ではRustを採用するモチベーションとは何かを整理、考察します。

なぜわざわざ学習コストを払ってまでRustを採用するのか？
Webエンジニア目線でRustを考察
Web開発者としての興味、関心に基づきRustを端的に紹介し、その強みや弱みについて理解
を深める本連載。第 1回では、Rustを採用するモチベーションとは何かを整理、考察します。

（2021年 09月 30日）

https://atmarkit.itmedia.co.jp/ait/articles/2104/15/news088.html
https://atmarkit.itmedia.co.jp/ait/articles/2105/10/news079.html
https://atmarkit.itmedia.co.jp/ait/articles/2002/10/news038.html
https://atmarkit.itmedia.co.jp/ait/articles/2006/11/news051.html

4 →目次に戻る

RustとC/C++

　Rustはその開発のいきさつからして、C/C++からの移行が意識されています。Rustが出現するまでは、C/

C++はハイパフォーマンス（最速、最高効率）なアプリケーションを開発するならば避けて通れない言語だとされ

てきました。一方でC/C++では、言語規格に動作の定義がない命令を記述することができてしまいます。その命

令の結果生じる動作のことを、未定義動作と呼びます。未定義動作を引き起こす命令の典型例としては以下のよ

うなものがあります。

1. すでに解放されているメモリ領域を参照する（use after free）

2. すでに解放されているメモリ領域をさらにメモリ解放する（double free）

3. 無効なメモリ領域を指しているポインタ（ダングリングポインタ）を参照解決する

4. 配列の範囲外アクセス

5. 複数スレッドによるあるメモリの同時参照・更新（データ競合）　etc.

　未定義動作の典型例は（厳密には予測不能ですが例えば）以下のようなものがあります。

1. 本来アクセスできないデータを参照・更新できてしまう（不正アクセス）

2. OSのメモリ保護機構によりメモリの不正アクセスを検出しプログラムが停止する（segmentation fault）　

etc.

【未定義動作を起こす極めて単純なCのコード】このコードの問題は明白ですが、現実の問題はここまで簡単ではないはずです

【Cのコードの実行例】この実行ではOSのメモリ保護機構により segmentation faultとなりましたが、いつでもこの結果になるとは限りま
せん

5 →目次に戻る

【未定義動作を起こすRustのコード】unsafeを使うとRustコンパイラの安全性保証から外れてしまう一方、C同等の自由度を獲得できます

　未定義動作を引き起こすプログラムは安全とは言えません。例えば、セキュリティ問題や障害を引き起こす可能

性があります。未定義動作が生じないことをC/C++コンパイラは（警告は出せますが）保証しないので、プログ

ラマーがコードを確認し保証する必要があります。未定義動作は、コンパイラによる最適化などにより予期せぬ振

る舞いや非決定論的な振る舞いを生じることも多くデバッグも困難なものになりがちです。言語仕様に精通したプ

ログラマーの尽力による問題解決が必要になります。

　Rustは、unsafeという言語機能を用いない限り未定義動作を引き起こし得る命令を記述しようとしてもコンパ

イル時または実行時エラー（パニック）になります。もしパニックとなったときでも決定論的に振る舞うのでデバッ

グがしやすく、なおかつC/C++に比肩するパフォーマンスを同時に有しています。
※この記事では上述の「未定義動作を引き起こす命令」のうち 1、2、3、4のような命令から保護されている、あるいは適切な動作が規定さ
れていることをメモリ安全、5のような命令から保護されていることをスレッド安全と呼ぶことにします。

Web開発者の視点から見たRust

　Rustはその開発のいきさつからC/C++との比較を通じて語られることが多いですが、Web開発においてC/

C++を採用することはまれで、メリットと呼ばれていることがそんなに大したことではないように思えるかもしれま

せん。

　実際のところ、Ruby、Python、JavaScriptといった典型的なWeb開発言語を用いる限り、メモリ管理を言

語処理系に委譲できるため use after freeを気にする機会はありません。また、配列の範囲外アクセスをすると

実行時エラーにはなりますが言語に備わっている例外機構により守られます。動作は言語の定義する範囲内に収

まり、決定論的な振る舞いを示すことが多いので、未定義動作を相手にするのに比べるとデバッグするのも比較的

容易です。

　Rustと典型的なWeb開発言語の安全性や開発生産性に関するさらなる考察は次回以降改めて検討すること

にして、ここではパフォーマンスに着目することにします。

6 →目次に戻る

　伝統的なWebアプリケーションは計算時間よりもネットワーク I/Oがボトルネックになることが多く、複雑な

データクエリ処理はデータベースに処理を委譲するよう設計することが基本とされています。そのため、Webアプ

リケーション自体の計算パフォーマンスはそれほど重視されない傾向にあります。そしてそれが比較的低速な言語

でWeb開発してもよい理由であり、C/C++が採用されてこなかった理由だと考えられます。

　一方でWeb開発の文脈において計算パフォーマンスが改善されるとどのようなメリットがあるのかを思い付く

範囲で列挙してみます。

1. メモリ使用量の低減→アプリケーション安定性の向上

2. バッチ計算時間の短縮→アプリケーション安定性、計算スループットの向上

3. 必要となるクラウドリソースが少なくできる→運用コスト削減

4. 計算時間改善→事前計算テーブルが不要に→技術的負債の削減

5. 計算時間改善→サーバレスポンスタイム改善→ユーザーエクスペリエンスの改善

　安全性とパフォーマンスを両立させるRustを使用することによって、「サービスの提供価値」「サイトリライアビ

リティ」「ユーザーエクスペリエンス」「運用コスト」など、今日のサービス開発における重要なファクターを安全

性を確保しながら改善していけることが期待できます。一方で開発生産性への影響などは客観的に語ることがかな

り難しいですが、次回以降検討を深めます。

Rustの卓越性、あるいは特異性

　この世にはすでにたくさんのプログラミング言語があります。その中でRustの卓越性、あるいは特異性とも呼

ぶべき要素について主観的な説明を交えて紹介します。

　Rust以前の代表的な言語はメモリ安全性とGC（ガベージコレクタ）が不可分なものとして扱われており、メ

モリ安全性を得るためにはGCを使わなければならないという関係にありました。でなければ、人間がメモリ安全

であることを保証する必要があります。

　一方でRustは「所有権システム」と呼ばれるモデルを採用し、コンパイル段階でメモリ安全性を検証すること

で、GCがオプトアウトできることを示しました。さらにその所有権モデルはコンパイル段階でのスレッド安全性を

検証することにも利用できて、データ競合も合わせて検出します（これは実に驚くべきことで、私がRustを学習

し始めた重要なモチベーションの一つになります）。

7 →目次に戻る

　所有権システムがRustの卓越性の根幹となるものと筆者は考えていますが、同時にRustは現代的な言語であ

り、さまざまな点において妥協のない言語設計になっていると強く感じます。ドキュメンテーション、依存性管理、

テスト、エラーハンドリング、合理的な構文――これらのトピックに関する明確な答えをRustは提示していて、そ

れらもまたRustの卓越性を構成しています。

まとめ

　第 1回では、Rustへのモチベーションと題して、Rustの魅力やWeb開発者目線でのRustのメリットについ

て提示しました。第 2回では、PythonとRustの構文比較をしながら、パフォーマンスについて簡易なベンチマー

クを取ることを予定しています。そのままパフォーマンス比較をすると自明で退屈な結果になるため、Python側

も少し工夫をしてもう一歩踏み込んだ比較をしていきます。

8 →目次に戻る

　今回は、Rustのパフォーマンス特性を理解し、Pythonとの比較を通じてRustの構文、記述性を簡潔に紹介

します。そのために構文、パフォーマンスを比較するための課題（要件）を設け、それぞれの言語でどのようなプ

ログラムになるのかを確認していきます。いろいろと高速化させたり要件を変化させたりすることで、改めてRust

の強み（あるいは Pythonの強み）を浮き彫りにしていきます。この記事を作成するに当たり関連コードを収録し

たGithubリポジトリも用意しましたので、検証したい方はぜひご利用ください。

課題設定

　昨今のコロナ禍の情勢において、感染者数の 7日間移動平均というデータをニュースでよく見掛けます。N日

間移動平均とは、ある日次（時系列）データに対して、直近 N日間の平均を計算して得られるデータのことです。

例えば [10,20,30,40]という日次データに対して、2日間移動平均を計算すると、[（10+20）/2,（20+30）/2,

（30+40）/2]=[15,25,35]というデータが得られます。

周期 7の摂動（変動）を持つ時系列データと 7日間移動平均：7日間移動平均を取ることで曜日ごとの摂動を時系列データから取り除くこ
とができます

　大した計算ではないですが、考察を深める上で良い題材なのでこれを課題にします。今回のプログラムの要件

をひとまず以下のように設定します（後で少し変更します）。

1. 64bit浮動小数点で表現できる 1000万個のデータ点がある時系列データの csvを用意

2. この 7日間移動平均を計算し、メモリに保持する

Rustは本当に動作が高速なのか？
Pythonとの比較で分かる、Rustのパフォーマンス特性
Web開発者としての興味、関心に基づきRustを端的に紹介し、その強みや弱みについて理
解を深める本連載。第 2回は、Pythonとの比較を通じてRustのパフォーマンス特性を整理、
考察します。

（2021年 12月 01日）

https://github.com/fn-reflection/web_engineer_in_rust/tree/main/chapter2
https://github.com/fn-reflection/web_engineer_in_rust/tree/main/chapter2

9 →目次に戻る

パフォーマンス比較の形式
　PythonやRustには「line_profiler」や「criterion-rs」など、それぞれ優れたプロファイリングのためのライ

ブラリやツールがあります。基本的にはこれらのツールを使うべきですが、計測自体が計測対象に影響を与えてし

まいますし（特に line_profiler）、異なる言語間で比較する必要があるため、経過時間を print出力する方式で進

めます。環境によって結果は異なるのですが、参考までに筆者のプログラムの実行環境を以下に記載しました。

• OS：ArchLinux（kernel 5.7.10-arch1-1）

• CPU：AMD Ryzen 9 3950X 16-Core Processor

• RAM：G.Skill F4-3200C16-32GVK×4（DDR4-3200 32GB×4）

• SSD：Crucial CT1000MX500SSD1（1000GB Serial ATA 6Gb/s）

10 →目次に戻る

最適化無しの Pythonで実装する

　まずは最適化一切なしの純粋なPythonで要件を満たすためのコードを記述しました。Pythonを利用したこと

がない人でも雰囲気がつかめるよう、コードにコメントを付記しています。

11 →目次に戻る

　1000万行のデータを処理したことを考えれば決して悪くはない結果です。6秒以内で処理を完結させることが

できます。

Rustで実装する

　次にRustで要件を満たすためのコードを記述しました。エラーを扱う上で便利な「anyhow」など幾つか外部

のクレート（ライブラリ）を使用しています。

12 →目次に戻る

13 →目次に戻る

Rustの優れた開発体験：Rustはほとんど型推論される。型推論の結果は rust-analyzerという開発ツールを用いると非常に簡単に確認で
きる

　純粋な Python実装と比べて処理が高速化されています。また、メモリ使用量についてもかなりの部分が説明

可能であることも分かります。f64（8バイト）のデータが 1000万行あるので、1000万 ×8バイト =80MBで、

それが nums変数とmoving_averages変数に保持されているため 160MBが必要最小限のメモリと計算でき

ますが、それに非常に近い値となっています。

　ソースコードの面で比較してみると、Rustのコードは Pythonに比べてやや冗長です。冗長となっている理由を

簡単にまとめると、以下のようになります。

• 型を明示する必要がある（関数の入出力、計算時の細かな型変換など）

• エラー値の処理を細かく記述している（読み込めない行があった場合どうするか、移動平均を計算できない場

合どうするかなど）

• （抽象化の余地があり、大した差ではないが）相対パスの解決のために get_csv_path関数を作っている

　これらを除外して見比べてみると、Rustは Pythonと非常に似通ったプログラム構造で記述可能であることが

分かります。

14 →目次に戻る

Numpyを利用した Pythonで実装する

　ある程度データ分析に習熟した Python使用者にとって、上記の比較はフェアではないと思うことでしょう。

Pythonが機械学習分野という多くの計算量を必要とする分野で利用され続けている理由は、それを支えるエコシ

ステムがあるからです。その代表格といえる「Numpy」を利用して、要件を満たすコードを記述します（一度書

いた関数は再利用します）。

　プロセスメモリ使用量を除いて、Rust実装と比べても良い結果が得られてしまいました。難しいテーマですが、

このパフォーマンスについて考察してみます。Numpyではベクター計算を高度に最適化してくれますが、筆者が

用意したRustコードではそのような最適化を含んでいないことが理由の一つだと考えられます。Rustコードに最

適化の余地があるわけですが、本記事では計算のユースケースや汎用（はんよう）性に着目して議論を進めたいと

思います。

15 →目次に戻る

移動平均の長さを変えて比較する

　上記までの計算では移動平均の長さを7と固定していました。この要件を変更して5000に変更してみるとどう

なるでしょうか？

　Numpyによる最適化の恩恵を受けても 6秒近くの計算時間がかかりました。というのも上記までの計算手法で

は、移動平均の長さが大きくなるほど、必要となる足し算の回数が増えるからです（1ループ当たり6回→ 4999回）。

　移動平均を計算するに当たって、もし 1日前の和を参照できれば、今日の和 =前日の和 +今日のデータ -N日

前のデータという関係性が成り立つので計算量を落とすことができます。この考え方に基づきRustコードを書き

換えてみます。

16 →目次に戻る

　7日移動平均を計算していたときとそれほど変わらない計算時間で計算を完了させることができました。

　一方でNumpyの方はもともとNumpyの convolve関数を使っていたので、そのまま書き換えることができま

せん。forループを使うことになりますが、Numpyでそのまま forループを使ってしまうと基本的に遅くなってし

まうので、ここでは「Numba」というライブラリを使って最適化します。

　Pythonを利用してもそこまで速度を落とすことなく計算が終わるようになりました。

17 →目次に戻る

ストリーム処理で比較する

　これまでは 1000万行のデータを全てメモリに配置しバッチ処理をさせるという要件（インタフェース）で考え

ていました。この場合では 1秒当たり何行処理できるかのスループットの観点が重要であり、いずれの言語でもス

ループットは引き出せることが分かりました。一方で、現状のプログラムは全部の値を読み込んでから計算するこ

とを前提にしているため、処理遅延（レイテンシ）とメモリ一括確保が避けられません。Webアプリケーションに

おいては一括でデータを読み込まなければならないという前提はかなり不自然です。そこで以下の制約を要件に追

加します。

• 中間変数（nums）を用いてデータを一括で読み込むことを禁止する（ストリーム処理で計算する）

　この前提に基づきRustコードを書き換えてみます。

18 →目次に戻る

　csvの読み込み結果を一時的に受け取る中間変数 numsがなくなりました。計算時間はバッチ計算のものとほ

ぼ同じです。またMovingAverageという構造体を用意し、移動平均の計算の本質部分を抽出しました。これは

ストリーム・バッチ処理を問わず利用可能な汎用的な抽象であり、つまりパフォーマンスを損ねることなくアプリ

ケーションコードとシミュレーション（データ分析）コードを同一にできる可能性を示しています。

19 →目次に戻る

　次にPythonでストリーム処理を行うコードを記述します。

　ストリーム処理をするということは、Pythonのコンテキストでループを回さざるを得なくなってしまうため、速

度はどうしても落ちてしまいます。また、Numbaを使ってもストリーム処理の計算時間は改善できず、また抽象

化にも限界があります。バッチ処理のコードとストリーム処理のコードを抽象化することは難しく、どちらかのパ

フォーマンスに妥協した結果になると思われます。

20 →目次に戻る

　それでも 1000万行のデータの処理時間であるので、レイテンシという観点で見れば 1つの入力当たり69ナノ

秒で処理できているともいえます。これを高いと見るか、低いと見るかはアプリケーションの性質や計算の重さに

よるところが大きいでしょう。また、Githubのリポジトリにチャネルという言語機能を用いたマルチスレッドの検

証結果と async/awaitを用いた結果を試験的に追加していますが、上述のシングルスレッドの方が速いことが分

かっています。これは移動平均の計算コストよりもスレッド間の通信コストの方が高価であるためだと考察できま

す。アプリケーション特性に応じて自在に計算モデルを選択できるのもRustの魅力だといえるでしょう。

まとめ

　今回、PythonとRustの構文比較をしながら、パフォーマンス特性について考察を深めました。結論としては

以下のようになります。

• バッチ計算では PythonとRustはそこまで大きな差はない

• ただし、Pythonで高速化するためにはNumpy、Numbaのコンテキストでループを回すという制約がつく

• ストリーム計算では、Rustに優位性がある

• Rustではパフォーマンスを損ねることなくアプリケーションコードとシミュレーション（データ分析）コードを

抽象化できる

　次回は、ここまであまり触れることがなかったRustの難しさと開発生産性について考えてみたいと思います。

21 →目次に戻る

　最終回となる今回は、Rustの開発生産性を支える言語機能および難しさにフォーカスを当てて簡潔に紹介します。

　開発生産性とはいうものの、この言葉は定義付けをすること自体が難しいです。下記のRust公式が提供する

ツール群は開発生産性を間違いなく向上させますが、実際に使ってみた方が理解がはかどるのでここでは紹介にと

どめます。

• Rustコンパイラによるコンパイルエラーメッセージの丁寧さ

• Docs.rsのドキュメンテーション

• Cargoによるパッケージ管理（≒ Rubyの bundler、JavaScriptの npm）

• rust-analyzerによる強力な開発支援（≒インテリセンス）

• 言語標準のユニットテスト

　端的にいえばモダン開発のプラクティスがRustのプロジェクトでもシームレスに利用でき、簡単に開発環境を

整えることができます。

なぜ「Rustは難しい言語」とされるのか
――習得の難しさとその対策をWebエンジニアが考察
Web開発者としての興味、関心に基づきRustを端的に紹介し、その強みや弱みについて理
解を深める本連載。第 3回は、Rustの開発生産性を支える言語機能と難しさについて。

（2022年 02月 01日）

22 →目次に戻る

　下記はプロジェクトファイル（Cargo.toml）の例です。外部ライブラリなどを簡単に管理できます。

Rustのエラーメッセージ 1：所有権（借用規則）ルールに違反しても、コンパイラが分かりやすく指摘してくれる

23 →目次に戻る

　この記事では開発生産性に関連するRustの言語機能の紹介、抜粋と、Rustの難しさについての考察を主眼

とします。この記事を作成するに当たり関連コードを収録したGitHubリポジトリも用意したので、自分でも検証

したい方はぜひご利用ください。

スレッド安全性を型で表現する

　Web開発でよく用いられているRubyや Python（のC言語実装）には、グローバルインタープリタロック

（GIL）という機構があり、スレッドを複数動作させていても同時に 1つのスレッドのみがプログラムを実行できる

という制約下にあります。

　同時に 1つのスレッドしか動かないのであれば、これらの言語で書かれたプログラムは常にスレッドセーフであ

るといえればよいのですが、スレッドセーフといえるのは単純な処理のみです。複雑な（非アトミックな）処理に

ついては、ロックを取らないと正しく動作しません。例えば、あるスレッドでオブジェクトを変更し、別のスレッド

でそのオブジェクトを参照すると、例外が起こり得ます。

　ドキュメントなどを見ていて「このコレクションはスレッドセーフである」や「この操作はスレッドセーフである」

というような記述があるとロックを取らなくてよいと分かりますが、いつでもそのような記述があるとは限りませ

ん。スレッドセーフか否かを識別するのは大変です。

　Rustはスレッド安全性をドキュメントではなく型として表現します。それによりスレッド安全でないコードをコン

パイルエラーとしてはじくことができます。

　この振る舞いを確認するために、少し複雑な課題を用意しました。2つのスレッド（record_thread1,2）が観

測データを記録していき、一方で 1つのスレッド（observe_thread）がキューを定期的に観測し、その最新値

を取得するというものです。

　上記の要件を満たすようなサンプルコードを用意しました。

https://github.com/fn-reflection/web_engineer_in_rust/tree/main/chapter3

24 →目次に戻る

25 →目次に戻る

　今回特に説明したいのは、サンプルコード内（1）と（2）で表現されている部分です。

　（1）は ArcMutexパターンと呼ばれているもので、これによりスレッド安全性を手軽に実現できます。今回は

Vec（可変長配列）を用いましたが、さまざまなデータ構造を組み合わせられるので極めて汎用（はんよう）的

です。また、（2）を見ると lock()というメソッド呼び出しがありますがこれはMutex型が持つメソッドであり、

lock()を呼んでロックを取得しない限り内部のデータ構造にアクセスできないことを型としてうまく表現し、スレッ

ド安全でないデータアクセスを排除します。非同期プログラムの難しさの一つを型システムが解決するというアイ

デアに引かれて筆者はRustに入門しました。

Rustのトレイト 1（型要件の抽象化）

　Rustのトレイトはある要件を満たす（実装している）型の総称、集合と捉えることができます。トレイトにより

高度な型の抽象化が実現できます。例えば、関数の引数にトレイトを指定することで、そのトレイトを実装してい

る具体型とその集合を引数として捉えることができます。

　ここでは第 2回のプログラムを簡略化し、トレイトを活用したプログラムに書き直してみようと思います。

26 →目次に戻る

　第 2回では取り上げませんでしたがこのコードの不満点は、MovingAverageが 64bitの浮動小数点数しか受

け付けないという前提があることです。上記コメントのように型変換を含めることで問題なく利用できますが、

32bit整数などのもう少し汎用的な型を受け付けるようにしたいです。こうしたユースケースにトレイトが活用でき

ます。トレイトを利用したコードが下記になります。num_traitsという便利な外部ライブラリを利用しています。

27 →目次に戻る

28 →目次に戻る

　型パラメーター Tを利用することで、具体的な型（f64）を指定しない抽象化されたプログラムを記述すること

が可能になります。一方で今回の移動平均の計算の実装を見るとTは何でもよいわけではなく、0が定義されて

おり、加算、減算ができて、f64にキャストできる型に限定されます。トレイトにより関数の引数や構造体に求め

られる制約をより抽象的、包括的に記述できるのが利点です。

Rustのトレイト 2（安全な機能拡張）

　他のトレイトの重要な利用方法として、既存の型にメソッドを後から安全に追加できるという特徴があります。こ

こでは便利な外部ライブラリである itertoolsを用いて、説明します。

　このコードの iter1の型は IntoIter型でこれは Rust標準（std）で提供されている型です。この型自体は

cartesian_productというメソッドを持ちません。これに対して、（1）のように Itertoolsというトレイトを use

する（スコープに含める）ことで、Itertoolsトレイトが IntoIter型に cartesian_productメソッドなどを供給し、

呼び出せるようになります。

　既存の構造体、あるいはクラスに後付けでメソッドを追加することは利便性が高く、「オープンクラス」と呼ばれ

ています。一方で、そのメソッドがどこで追加されたのかを追跡することが困難であったり、同名のメソッドを複

数箇所で上書きして既存挙動を容易に破壊できたりしてしまうなど非常にリスクが高く、開発のスケーラビリティ

を低下させてしまう手法だと考えられます。

　一方でRustのトレイトは、useを用いてメソッドの出自を明示し、同名のメソッドが重複定義された場合はコ

ンパイルエラーとなるため、非常に安全性の高い後付けでの機能拡張を実現できます。

29 →目次に戻る

Rustのトレイト 3（継承を持たない）

　RustはC++に影響を受けている言語ではありますが、Rustは構造体の継承という概念をC++から継承しま

せんでした。改めて継承とは何かを考えると「ある構造体間同士の関係性を木構造（多重継承を認めるなら有向

非巡回グラフ）で表現する」という制約の下にプログラムを抽象化することだと捉えられます。

　しかし、木構造は一度その構造（序列）を決めてしまうとその順序関係を変更することはできないため、事前

の要件定義や設計などウオーターフォールプロセスを余儀なくされると考えています。「Birdクラスは flyメソッド

を持ち、ハトクラスは Birdクラスを継承する」といった序列を構築してしまうと、要件定義を進めていく中でペン

ギンが出てきたときにモデリングが崩壊してしまいます。

　Rustでこのモデリングを考えたとしたら、例えば Flyableというトレイトを用意し、ハトは Flyableトレイトを

実装するというやり方で端的に表現できます。要件定義が進んでニワトリが出てきたとしても悩むこともなく漸進

的かつスケーラブルに判断し開発を進めることができます。Webエンジニアが慣れ親しんだリレーショナルデータ

ベースと同じように集合志向でプログラムを整理できると言い換えられるかもしれません。

30 →目次に戻る

Rustの難しさとその対策

　世間一般では、Rustは「難しい言語」という評価のようです。Rustが難しい理由は主に 4つほど思い付きます。

型解決が難しい
　静的型付け言語を習得する上でいつも思うことは、言語設計者やライブラリ設計者が考えた型とユーザーのメン

タルモデルが完全に一致することはないので整合させるために学習が必要になるということです。

　その点、Rustコンパイラは非常に優秀です。エラーメッセージに型解決の答えが書いてあることが多いですが、

抽象化された型（つまりトレイト）を解決するのが難しく体系的な言語理解やRust特有のイディオムの習得が必

要になると感じます。所有権（借用規則）はRust特有の概念で難しいとされていますが、筆者の体感では型を

利用するだけならば、慣れの問題ではないかと思っています。

Rustのエラーメッセージ 2：入力がトレイト（境界）を満たさない場合のメッセージ例、習熟しないと解決が難しい

幅広いユースケース（組み込みシステムからWebサービスまで）
　Rustは低レイヤーから高レイヤーのドメイン（関心領域）を記述できます。それ故に記述できる解像度や自由

度が極めて高いです。実装上の選択肢が多く、例えば本記事で紹介したスレッド安全なキューの代わりにチャネル、

async/await、ロックフリーなデータ構造を活用した実装が考えられ、選択肢がない言語に比べて悩む余地があ

ります。

マルチパラダイム
　Rustは、C++のようにメモリやその所有権など物理的な実体を意識しつつも、関数型言語由来の高度な抽象

を織り込んだ言語であり、マルチパラダイムな言語です。その奇跡的な融合こそがRustの魅力だと思いますが、難

しいと感じるところかもしれません。

31 →目次に戻る

本質的困難性に挑む
　簡単な問題を解決するならばスクリプト言語で解決するのが楽です。あえてRustを使うのは、難しいプログラ

ミングを進める場合で、「人月の神話」で有名なブルックスの言葉を援用すると「本質的複雑性」が高いプログラ

ムを書くために使われる傾向にあると推察されます。

　その点で行くとRustは「偶発的複雑性」あるいは「技術的負債」を増加させないための非常に慎重な言語設

計がされています。今回の例でもマルチスレッドが出てきており、難しいプログラムの部類に入るはずですが、Rust

の力により端的に記述することができています。

　難しさへの対策としては、自分の実力に応じてプログラムのレベルを決めるということが重要だと思います。例

えば第 2回で紹介したようなプログラムを書く分には、Pythonとほぼ同等の記述で書けます。またデータコピー

を許せば、所有権に関するコンパイルエラーからある程度逃げることもできると思います。高速化も抽象化も突き

詰めると、設計行為が必要であり難しくなるのは必然なので、少しずつ理解を深めるスタンスが良いと考えます。

まとめ

　今回はRustの特に重要な言語機能を抜粋して紹介しました。Rustには多くの優れた機能がありますが、ここ

では全てを紹介しません。

　Rustはどちらかといえば安全性（≒不変性）を志向しており、自由度（≒可変性）がやや犠牲になっている言

語です。雑に書きにくいけれども読みやすく、振る舞いがよく定義されている言語です。まずは手慣れた言語で要

件定義をして、Rustに移植して効率的に稼働させるというアプローチも一つの手です。また、公開されているコー

ドを読み解き知識を獲得するにも有益な言語であり、成長につながる言語だと筆者は考えています。

32 →目次に戻る

　paizaでWebエンジニアをやっています藤田と申します。今回の連載では、RustでWebアプリケーションを

開発する上での基礎となり得る要素技術やRustの応用にフォーカスを当てて簡潔に紹介します。

　Rustを採用するモチベーションやRustの有益な言語機能について知りたい方は、前回の連載（全 3回）にて

端的に要約しているのでご参照ください。

　今回のプロジェクトもGitHubのサンプルリポジトリを用意していますので、解説コードを実行する際はご利用

ください。第 1回では、Webアプリケーションを構築する上で基礎となるデータベースの利用と自動テストについ

て基本的な事項を押さえつつ、Rustでのソースコード例を示します。

Webアプリケーションとデータベース

　Webアプリケーション（webサービス）を構築するに当たり、仕様、要件を達成できるアーキテクチャであれ

ばどのように設計してもよいわけですが、データを記録するコンポーネントとして（リレーショナル）データベース

を採用することが多いです。

　システムをWebアプリケーションサーバとデータベースサーバに分離して、共有、記録すべき状態（ステート）

の管理をデータベースサーバに委譲します。このことにより、Webアプリケーションサーバが状態に依存しない、

ステートレスな処理のみを担当することになり、ステートレス処理のスケールアウトやアプリケーションのデプロイ

プロセスが簡略化されるとともにデータの管理が容易になります。

　この方式のデメリットとしては、データベースサーバが単一障害点になること、スケールアップが必要になること、

通信遅延やクエリの処理遅延がボトルネックになり得ることなどが挙げられます。しかしながら、厳しい性能要求

がない限りは第一選択になる構成だと考えられます。

【サンプルコードあり】Rustで作るWebアプリケーション
――データベース利用と自動テストの基本事項を押さえる
RustでWebアプリケーションを開発する際に基礎となる要素技術からRustの応用まで、
Rustに関するあれこれを解説する本連載。第 1回ではRustを使ったWebアプリケーション
開発におけるデータベースと自動テストの位置付けとコード例を紹介する。

（2022年 05月 26日）

https://github.com/fn-reflection/web_engineer_in_rust/tree/main/season2_chapter1

33 →目次に戻る

アプリケーション開発と自動テスト

　Web開発に限定せず継続的に開発を進める必要があるアプリケーション開発全般において自動テストは有用で

す。特にアジャイルな開発プロセスを採用する場合、自動テストの整備はほぼ必須に近い位置付けとなりつつあり

ます。

　改めて自動テストの主目的を説明すると「システムに期待する振る舞い（≒仕様）をテストコードとして事前に記

述し、ソースコードの変更が行われたときなどにテストコードを実行することで、ソースコードの変更後にも期待

する振る舞いが破壊されていないことを自動的に検証すること」だといえます。

　Ruby on Railsでの開発によく採用されているRSpecなどの分類を参考にすると、Web開発では以下のよう

なテストをよく行います。

1. ロジックテスト（純粋なロジックの検証）

2. ミドルウェアテスト（データベースなどのミドルウェアと連携し、レスポンスや副作用を検証する）

3. エンドポイントテスト（HTTPエンドポイントにリクエストし、レスポンスや副作用を検証する）

4. ブラウザテスト（ブラウザをプログラムで制御し、レスポンスや副作用を検証する）

5. etc……（パフォーマンステストなど）

　Rustではテストは言語標準機能として存在しますが、2022年 5月現在ではRSpecのようなデファクトスタン

ダードなテストフレームワークがあるわけではなく、複雑な自動テストの構成には自由度があります。自動テストの

記述を簡単にするライブラリも存在するようですが、今回の記事ではテスト目的を達成する単純で拡張可能なテス

トコードを示します。

Rustの主要なデータベースクライアントライブラリ

　Rustからデータベースを利用するためによく用いられるライブラリとしては「Diesel」と「SQLx」があります。

この 2つのライブラリはかなりコンセプトが異なります。

　DieselはRuby on Railsの ActiveRecordに似たORM（オブジェクトリレーショナルマッパー）で、Rust

の構文を用いてSQLを生成、発行できます。一方 SQLxはORM機能を持たないライブラリであり、素の SQL

をそのまま書いてデータベースにクエリを発行します。また 2022年 5月現在では、SQLxの方は async/await

構文に対応している一方でDieselは未対応であるという違いもあります。

　この記事では非同期処理に対応していてRustのWebフレームワークと相性が良く、ライブラリとして比較的

軽量な SQLxを用いてMySQLに接続します。

34 →目次に戻る

Rust+SQLxでMySQLに接続する

　ここでは、RustからMySQLを制御する方法を例示します。

　プログラムの実行にはRust開発ツールのインストールの他、「MySQL」のインストールが必要です。サンプル

リポジトリにはDockerを用いたサンプルもあるので、ホスト環境へのインストールを避けたい場合はご利用くだ

さい。

　今回は、データ分析や機械学習によく用いられるアヤメのデータセットをRustの構造体として定義し、MySQL

に読み書きするプログラムを用意しました。 データセットのテーブル生成 SQLは以下のようになります。

　SQLがあればこれをそのまま実行してテーブルを作成することもできますが、Rustを用いてSQLを発行する

ための基本的なプログラムを用意しました。

　今回はテーブルの作成プログラム（src/init_db.rs）とデータの読み書きプログラム（src/main.rs）の 2つを

作る関係上、共通化したいコードを src/lib.rsに記述します。また今回のプロジェクトファイル（Cargo.toml）は

以下のように記述しています。

35 →目次に戻る

36 →目次に戻る

　共通部分である lib.rsについて特記すべきところについて解説します。

　（1）のデータベース接続文字列については、サンプルリポジトリのDockerコンテナを動かした場合の想定で、

localhostの 53306ポートにMySQLが待ち受けている前提になっています。MySQL標準である 3306ポート

の使用を回避していますが、それでもポートが衝突してしまう場合などは適宜設定変更が必要です。

37 →目次に戻る

　（2）については、Rustでは使用する非同期処理ランタイム（Tokioなど）を指定し、そのランタイムの実行コ

ンテキスト内でのみasync/await構文を用いることができます。今回のコード例では非同期処理を用いるメリット

はほぼありませんが、複数のタスクを同時並行的に処理する状況において計算リソースを効率的に使用できるた

め、RustのWebフレームワークや SQLxは非同期処理が前提となっています。

　（3）の include_str!マクロは外部ファイルをコンパイル時に文字列として読み込むことができるマクロで、ファ

イルが存在しないとコンパイル段階でエラーとなるので非常に便利です。ただし実行ファイルは事前に読み込む分

大きくなるため、大きいファイルに対してはあまり良い手段ではありません。

　（4）は SQLxがORM機能を持たないことを象徴するような書き方で、SQLをプリペアドステートメントによ

り構築しています。

　ActiveRecordやDieselなどのORMを利用するのに比べると単純なクエリを発行させるのは煩雑ですが、例

えば IrisMeasurement.classをString（文字列）ではなくEnum（列挙型）で表現するなどして、より適切な

型で読み書きすることでデータモデルの表現能力を改善しやすいなどの利点があると考えられます。

　次は init_db.rsですが、特に難解な処理は含まれていないので解説を割愛します。

　下記シェルコマンドで実行できます（Cargo.tomlに init_dbというエントリーポイントを定義しており、src/

init_db.rsのmain関数が呼ばれます）。

　今回は単一テーブルのみの生成の例ですが、外部キー制約などを利用すると適切な順序でテーブル生成する必

要が出てきます。

38 →目次に戻る

　最後にmain.rsですが、こちらも特に難解な処理は含まれていないので解説を割愛します。

　下記シェルコマンドで実行できます（エントリーポイントが複数ある場合はクレート名を指定するとmain.rsの

main関数を呼び出せます）。

39 →目次に戻る

GUIツールにてデータベース内にデータが記録されていることを確認

Rustで自動テストとカバレッジ計測

　Rustは言語機能としてテストがサポートされています。今回はデータベースの連携を紹介したので、データベー

スを期待通りに制御できているかを検証するテストコードを書きます。

40 →目次に戻る

　データベーステストは通常副作用（データの保存や更新）を伴います。他の言語で利用可能なテストフレーム

ワークでは、テスト初期化処理（セットアップ）とテスト終了時処理（ティアダウン）が枠組みとして用意されるこ

とが多いのですが、今回のケースでは初期化処理時に完全に初期化することで終了時処理を省く構成としました。

　また、Rustのテストは指定がない限り全てのテストが並行的に動作するので、同一テーブルに対するテストが

複数あると、競合して失敗することがあります。Mutexなどを活用することで、テストの並行性を可能な限り維持

しつつ失敗しないテストプログラムを書くこともできますが、実行スレッド数を 1に指定する方法が一番簡単です。

　また自動テストによりソースコードが実行されどの程度検証されているかの割合をカバレッジと言います。Rust

のカバレッジ計測ツールはいろいろ選択肢がありましたが、2022年 5月時点で直近のリリースであるRust1.60

で利用できる cargo-llvm-covがより詳細な情報を取得できるので、こちらの利用例を紹介します。

41 →目次に戻る

　インストールは下記の cargoと rustupコマンドで簡単に行うことができます。

　カバレッジの計測は下記のシェルコマンドで実行することができ、カバレッジ情報が分かりやすく表示された

htmlファイルが出力されます。

ファイルごとの実行カバレッジの可視化

lib.rsファイルのカバレッジ状況の可視化

42 →目次に戻る

　こうしたカバレッジ情報を見ながらテストを拡充することで、継続的な開発を進めることができます。

まとめ

　今回は、アプリケーション開発におけるデータベースと自動テストの位置付けおよび Rustでのコード例につい

て紹介しました。

　筆者はRuby on Railsの ActiveRecordやRSpec、Pythonにおける pytestを知っており、それと比べると

Rustではデータベース連携やテスト構築方法に自由度がありプラクティスが定まっていない感覚はあります。

　一方で言語機能や開発ツールが極めて強力であることと、リソース効率の高さは魅力であり、開発規模の拡大

に応じて開発がスローダウンする要因（テストを含めたパフォーマンス低下、複雑な状態管理）を削減できる選択

を取れるのは、Rustを扱っていてとても良いと感じます。Dieselを利用すればまた別の意見が出てくるかもしれ

ません。

　次回では、今回の基礎的事項を踏まえつつ、Webフレームワークを利用しネットワークアプリケーションを作

成します。

43 →目次に戻る

　paizaでWebエンジニアをやっている藤田と申します。

　前回は、WebアプリケーションにおけるRDB（リレーショナルデータベース）の立ち位置と、RustからRDB

を制御する実装および自動テストについて記述しました。今回は、RustでWebフレームワークである「axum」

を用いて（REST）APIサーバを構築し、SNSアプリを簡易実装することで、RustでのWeb開発での記述性

や要素技術を解説します。

　今回のプロジェクトもGitHubのサンプルリポジトリを用意していますので、コードを実行する際はご利用ください。

今回の記事のスコープ設定

　現代のWebアプリケーションは、ネットワーク、データベース、ブラウザ、暗号などの技術を核として、デー

タモデリング、デザイン、UI/UX（ユーザーインタフェース／ユーザーエクスペリエンス）、セキュリティ、ログ、ト

レーシング、テレメトリー、データ分析、自動テスト、監視などの非常に多種多様な関心事に取り囲まれています。

　その全てを詳述し、一度にその解決策を実装するのも難しいため、この記事ではサーバサイドで重要な基礎と

なるデータモデリングとRDB+クッキーによるセッション管理のサンプル実装を提示します。HTTPS、認証機能、

ロギングなども実装されていないので、本番環境で利用する際はアプリに要求されるセキュリティ基準にのっとり

機能を追加してください。

RustのWebフレームワーク「axum」で
SNSアプリのAPIサーバを作る
――Web開発での記述性、要素技術を解説
RustでWebアプリケーションを開発する際に基礎となる要素技術からRustの応用まで、
Rustに関するあれこれを解説する本連載。第 2回では APIサーバを構築し、SNSアプリを
簡易実装することでRustを使ったWeb開発での記述性や要素技術を解説する。

（2022年 08月 09日）

https://paiza.jp/
https://github.com/fn-reflection/web_engineer_in_rust/tree/main/season2_chapter2

44 →目次に戻る

RustでAPI開発を進める利点の再整理

　Rustで API開発を進めた所感として、Ruby on Railsなどの成熟したWebフレームワークに比べると、モノ

リシックに提供されるソリューションが少なく、硬めの型システムを持つ静的型付け言語で APIを記述するのはそ

れなりに難しいということです。一方で、以下のような利点があると考えています。

• 実行性能が高い

　・限られた計算量をUX改善に使ったり、システムの複雑性を下げたり、インスタンスサイズを下げるのに使える

• OSS（オープンソースソフトウェア）フレームワークの開発ポリシーの影響を受けにくく、最新のソリューショ

ンへの段階的移行を進めやすい

• 高度な静的型システム

　・システムがよく定義された（well-defined）状態になる

　・エラーハンドリングを精緻に行いやすい

　・技術的負債が積まれにくい

　RustでのWeb開発は、初期段階でさまざまな難しさ（言語の難しさ、実装選択の難しさ）に直面するため短

期、小規模での開発には向かないと思われますが、長期、継続的に規模が拡大する開発において有利に作用する

ファクターが多いように感じます。

今回の記事で作るSNSアプリのAPI要件

　今回はRustで APIサーバのサンプルを実装するに当たり某 SNSサービスの機能をまねたアプリ「Ruitter」

を作成しようと思います。作成するAPIとその基本的要件は以下のようになります。

1. ユーザー新規作成 API（ユーザー名をPOSTすると、ユーザー名が重複していなければユーザーが作成でき

る）

2. ログインAPI（ユーザー名をPOSTすると、ユーザー名がRDBに登録されていればログインでき、クッキー

とRDBにセッションキーが記録される）

3. フォロー API（ログイン状態でフォローしたいユーザー名をPOSTすると、フォローできる）

4. メモ作成 API（ログイン状態で 140文字以内のテキストをPOSTすると、テキストを記録できる）

5. タイムラインAPI（ログイン状態でGETすると、自分とフォローしているユーザーのメモが最新順で見られる）

　あくまで今回の記事の主体はRustによるAPIサーバ実装ですが、サンプルコードにはデバッグのWeb UIプ

ログラムも用意しています。

45 →目次に戻る

APIサーバ動作確認用のデバッグ UI。左の「ユーザー管理」で機能 1～ 3を、中央の「メモを投稿する」で機能 4を、右の「タイムライン」
で機能 5を検証できます。またChrome DevToolsを活用し、Set-CookieレスポンスヘッダやCookieリクエストヘッダを確認すると検証
がはかどります

　機能 2に至ってはユーザー名さえ知っていれば誰でもなりすましができるなど本番運用するには課題があります

が、今回の内容を理解すれば機能拡張を進めていくことができると思います。

今回の利用ライブラリ

　今回はWebフレームワークライブラリとしてaxumを利用します。このライブラリは非同期ランタイムTokioの

開発チームが開発を進めており、扱いやすいため採用しています。その他利用ライブラリはプロジェクトファイル

（Cargo.toml）に記述しています。

46 →目次に戻る

データモデルレイヤーの実装

　5つの機能実現に当たり、データテーブルが幾つか必要になります。

• ユーザーテーブル（user）

　・機能 1の実現に必須

• セッションデータテーブル（async_sessions）

　・機能 2の実現に必須

　・async-sqlx-sessionライブラリに管理させる

• フォロー関連テーブル（follow_relations）

　・機能 3の実現に必須

　・フォロワー（フォローするユーザー）とフォロイー（フォローされるユーザー）を多対多でひも付け

• メモテーブル（user_tweets）

　・機能 4,5の実現に必須

　・メモを記録し、ユーザーとメモを 1対多でひも付け

follow_relationsテーブル。ID15のユーザーは ID9のユーザーをフォローし、ID19のユーザーは ID18のユーザーをフォローしています

47 →目次に戻る

async_sessionsテーブル。クッキーに保存されたセッションキーをデコードし、該当するセッション IDがこのテーブルに存在する場合、セッ
ションデータを参照できます。この記事ではデータ構造例示のために公開していますが本来は公開してはいけません

　モデルの実装を下記に示します。

48 →目次に戻る

49 →目次に戻る

50 →目次に戻る

※本当はモデルごとにファイル分割したほうがよいです

51 →目次に戻る

　大枠は第 1回で説明した話の延長上にすぎないので、詳述は割愛します。timeline関数については、SQLの

複雑度が上がっていたり、SQLxが現状配列の bindをサポートしていなかったりするので、プレースホルダを id

の個数分用意して bindするなどのテクニカルな実装を行っています。しかしながら、SQLで必要なデータを取得

するということが基本になります。

　モデルメソッドが自動実装される「ActiveRecord」に比べると実装が増えますが、必要以上のメソッドが自動

実装されないので、モデルの状態管理がしやすいというメリットもあります。Rustのトレイトとマクロを活用すれ

ば、例えば insertメソッドを自動実装することなども可能ですが、難しいので可能性だけを示唆します。

APIレイヤーの実装

　次はHTTPリクエストを受け付けるAPIエンドポイントを実装します。API要件については既に示しており、対

応する実装例を下記に示します。

52 →目次に戻る

53 →目次に戻る

54 →目次に戻る

55 →目次に戻る

※本当はエンドポイントごとにファイル分割した方がよいです

　まず見るべきは run_server関数に含まれているURLパスと関数（リクエストハンドラ）の対応表（ルーティ

ング）です。例えば /api/pages/timelineにGETリクエストを送信すると、get_timelineリクエストハンドラが

呼び出されます。またその下にある .layerメソッドを通じて、リクエストハンドラ内からRDBやセッションストア

を参照できるよう拡張（Extension）しています。

56 →目次に戻る

　次にユーザー新規作成 APIの create_userリクエストハンドラですが、Json(payload)と arc_poolという 2

つの引数を持っています。arc_poolは前述した .layerメソッドによる拡張の結果であり、MySQLクライアント

プールがハンドラ内で使用できることを示しています。

　拡張なしでも axumはリクエストに付随する情報（リクエストヘッダ、パス・クエリパラメーター、JSONデー

タなど）を自由に引数として記述でき、この機能は「extractor」と呼ばれています。必要なパラメータを関数の

引数として自由に引き出せるのは魔法のように思えますが、Rustのトレイトによって実現されています。

　CreateUserParamsは JSONデータのスキーマを規定しており、このスキーマに適合しないと axumがス

テータスコード422を返してくれるようです。これにより型定義による入力保護と型駆動での開発を推し進めるこ

とができます。create_userはユーザー作成の成否に応じて適切なステータスコードを返しています。より緻密に

ステータスコードを分けたり、エラーメッセージを返却したりすることもできます。

　動的型付け言語での実装に比べるとやや煩雑ですが、Rustの null安全な型システムにより、動作を精緻に記

述しやすいです。axumに処理を委譲したり、OptionやResultのメソッドを活用したりすると冗長な記述も削れ

ます。

　axumの extractorは FromRequestトレイトを実装することで作成できます。create_session関数では

CookieJarという extractorを使用していますが、これは axum_extraというライブラリから持ってきたものです。

　また今回はCurrentSessionというカスタム extractorを定義し、ログインしていなければステータスコード

401を返すような実装を作ってみました。このようなカスタム実装をしなくても、毎回セッションストアとクッキー

を付き合わせるという実装をすれば要件は実現できますが、少し大変です。

　このカスタムextractorを利用してログイン状態を要求するツイート作成APIやフォローAPI、タイムラインAPI

を実装しました。

57 →目次に戻る

プログラムの実行

　プログラムを実行する場合は先にデータベーステーブルの作成が必要です。テーブル初期化するプログラムを示

します。

　セッションストアを async_sqlx_sessionに作らせている他は第 1回での説明と重複するので割愛します。

MySQLが 53306ポートで待ち受けている状態で下記コマンドを実行します。

　サーバ起動プログラムを下記に示します。

58 →目次に戻る

　下記コマンドでコンパイルして実行できます。

　APIの動作検証としてはリポジトリの /frontにあるWeb UIを使う他、curlなどのHTTPクライアントを用い

ることができます。

まとめ

　今回はSNSアプリをサンプル実装するという題材でRustにおけるWeb APIサーバ開発事例を示しました。そ

の過程で

1. Webフレームワーク axumの活用方法

2. サーバサイドセッション実装の例示

3. Rust + SQLxによるデータモデリングの良い点、悪い点

4. Rust + axumによるWeb API実装の良い点、悪い点

　などを部分的にでも示せたのではないかと思います。特に axumの抽象化は洗練されており、ソースを読むと

いろいろ参考になりそうです。

59 →目次に戻る

　paizaでWebエンジニアをやっています藤田と申します。前回の連載では、RustでWebアプリの基礎となる

セッション管理と、SNSの APIサーバを構築するための実装概略、Rustの強力な型システムによるサーバサイ

ドアプリケーションの記述性について示しました。

　今回は、趣向を変えてRust製の高速データ分析ライブラリである「Polars」を利用し、その速度を簡易的に

検証、考察します。今回のプロジェクトもGitHubのサンプルリポジトリを用意していますので、コードを実行す

る際はご利用ください。

Polarsと pandas

　PolarsはPythonの小規模データ分析文脈でよく用いられるpandasを強く意識したライブラリです。pandas

がパンダならば、それに対してPolarsはホッキョクグマというわけです。

　どちらも「データフレーム」とよばれる抽象データ型が使いやすいインタフェースを形成しており「高速にデー

タ処理できるExcelのような分析ライブラリ」あるいは「インメモリリレーショナルデータベース」という感じで、

気軽に扱えるツールとなっています。

　利用可能なデータソースとして、リレーショナルデータベースはもちろん、csvや「Microsoft Excel」「Apache

Parquet」などのファイル、また「Amazon S3」などにあるデータを扱うことができる点も共通しています。

　相違点として、pandasがNumPy配列というC言語の構造体的なシンプルなデータ構造をバックエンドとし

て持つ一方、Polarsは Apache Arrow memory modelという列指向データ構造を有しており、分析クエリに

適しています。またPolarsの公式サイトでは pandas含む他のデータ分析ライブラリよりも卓越した処理速度を

持っていることが示されています。

Pythonから利用できる
Rust製超高速データ分析ライブラリPolarsの実力
RustでWebアプリケーションを開発する際に基礎となる要素技術からRustの応用まで、
Rustに関するあれこれを解説する本連載。第 3回は、Rust製の高速データ分析ライブラリで
あるPolarsの速度を簡易的に検証し、考察する。

（2022年 10月 31日）

https://paiza.jp/
https://github.com/fn-reflection/web_engineer_in_rust/tree/main/season2_chapter3

60 →目次に戻る

　さらに、Polarsには pandasにない遅延評価や並列処理などクエリ最適化の機能が織り込まれており、計算

資源を有効活用できます。一方でクエリ最適化を行えるようにする都合上 pandasとはAPIが異なる部分があり

ます（どちらかといえば大規模データ分析ライブラリの「Apache Spark」にやや APIが似ています）。そして

pandasは Pythonの APIしか提供されていませんが、Polarsは Pythonおよび Rustの APIが提供されてい

ます。

　探索的データ分析（Exploratory Data Analysis、EDA）をあえてRust APIで実施するといったユースケー

スは考えにくいため、Pythonで作成した分析、学習結果をRust製アプリケーションにシームレスに組み込むな

どのユースケースが考えられるでしょう。今回はRustからの利用についても試してみます。

今回の試験の実行環境

　パフォーマンスは実行環境に依存しますが、参考までに筆者のプログラムの実行環境を下記に示します。物理

コアが 16個あるので、並列処理可能だと大きく高速化できます。

• OS：Debian 11（Linux 5.10.0-17-amd64）

• CPU：AMD Ryzen 9 3950X 16-Core Processor

• RAM：G.Skill F4-3200C16-32GVK×4（DDR4-3200 32GB×4）

• SSD：Crucial CT1000MX500SSD1（1000GB Serial ATA 6Gb/s）

Hello Polars

　まずは以前の記事でも取り上げたアヤメのデータセットについて典型的な集計クエリを実行します。

　アヤメの種類（class）ごとに、がく片の長さ（sepal length）、がく片の幅（sepal width）、花弁の長さ（petal

length）、花弁の幅（petal witdth）の平均および標準偏差を計算します。がく片の長さの平均値の降順でデー

タを並び替えることにします。またPythonの実行時間計測ツール「timeit」を用いて pandasとPolarsの実行

速度を比較します。

　アヤメのデータセットはもともと 150行の非常に小さなデータセットであるので、実践ではより巨大なデータを

処理することをイメージし、1万回データを繰り返したもの（つまり150万行のデータ）を対象として処理時間を

計測します。Pythonおよび今回利用するライブラリのバージョンは以下のようになります。表示には、バージョ

ン管理ツール Poetryを利用しました。

61 →目次に戻る

　早速ですが pandasとPolarsそれぞれについて、今回の要件を実現するプログラムを記述します。

62 →目次に戻る

　pandasもPolarsもDataFrameというクラスを持っており、これが 2次元表を表すためのデータ構造になり

ます。

データフレームを出力した結果です。単なる 2次元表として取り扱うことができます。pandasの表示では左に連番が振られた列（インデック
ス列）がありますが、Polarsの出力にはありません

　by_pandas関数では pandasの APIを用いてクエリを、by_polars関数では polarsの APIを用いてクエリ

を記述しています。提供されているAPIによる違いはありますが、どちらも class（アヤメの種類）列で groupby

（集約）をして、集約関数としてmean（平均）と std（標準偏差）を適用し、その出力列でソートをするという

概略を素直に書くことができています。慣れる必要はありますが、SQLを書くことができる人であれば習得するの

はそこまで難しくはないでしょう。

63 →目次に戻る

　Polarsには pandasにはない LazyFrameというクラスが存在しており、この利用が推奨されています。これ

は計算の実行を極力遅延させ、collectメソッドを呼び出したときに計算を実行しDataFrameを返却するという

機能を有しています。上記のプログラムにおいては、read_csvメソッドを scan_csvメソッドに置き換えるだけ

で、LazyFrameクラスを用いた遅延実行が可能になります。この遅延実行により、中間オブジェクトの生成を抑

えるなど処理最適化を行える余地が大きくなると考えられます。

　上記の 3条件（pandasのDataFrameを用いる、PolarsのDataFrameを用いる、Polarsの LazyFrame

を用いる）についてPythonの実行時間計測ツール timeitを用いて、簡易計測を行った結果が以下となります。

3条件についてそれぞれ時間計測を行った時の出力

　結果としてPolarsは pandasよりもおよそ 6倍速く実行できました。また大きな差はないですが LazyFrame

を用いた方がわずかに速いという結果が得られました。集約クエリは一度集約キーで分割した後はそれぞれ独立な

表として扱えるので、並列処理可能な余地が大きいと考えられます。またPolarsのバックエンドはRustで実装

されており、物理コアの性能が引き出しやすいと考えることができそうです。

64 →目次に戻る

時系列クエリを試してみる

　集約クエリは並列処理させやすいので、次は時系列に対するクエリを試してみたいところです。以前のRustパ

フォーマンス検証記事で作った時系列データを用いて再び移動平均を計算してみようと思います。

　pandasで移動平均を計算する場合、文字通り 1行で処理が記述できてしまいます。この手軽さはやはり

pandasの魅力を非常によく表しています。一方でPolarsで移動平均を計算する場合、DataFrame、LazyFrame

（表データ）自体には移動窓計算を行うAPIがなく、Series（列データ）にその機能があるので少し複雑な表現

になります。

　集約クエリの時と同様、3条件（pandasをDataFrameを用いる、PolarsのDataFrameを用いる、Polars

の LazyFrameを用いる）について時間計測を行った結果が以下となります。

65 →目次に戻る

3条件についてそれぞれ時間計測を行った時の出力

　結果として polarsは pandasよりもおよそ 8倍実行できました。また集計クエリの時と同じくLazyFrameを

用いた方がわずかに速いという結果が得られました。前回の記事で作ったプログラムの中では590msが最高とい

う結果であったので、それと比較してもおよそ 7倍速いです。

Rust APIを試す

　PolarsではRust APIも提供されているとのことなので、時系列クエリをRustでも記述してみます。Rustお

よび今回利用するライブラリのバージョンは以下のようになります。こちらはバージョン管理ツールCargoを利用

して表示しています。

　Pythonの時系列クエリプログラムとほぼ等価なRustプログラムは以下のようになります。

66 →目次に戻る

　Python版とAPIの対比が取りやすいようにプログラムを構成しました。RustとPythonの大きな違いの一つ

として、Pythonはキーワード引数という非常に利便性の高い関数呼び出し方法がありますが、Rustにはパフォー

マンスを最大化するためにそのような機能が提供されていないことが挙げられます。結果として上記の

LazyCsvReaderのように一つ一つのオプションを逐次的に選択するような API（Builderパターンとも呼ばれ

る）が提供されていることが多く、そのような前提が API設計の差異を形成しています。

　そのような差異があることとAPIの型に合わせる必要性があることを除けば、Pythonとおおむね同じプログラ

ム構成でRustからもPolarsを利用できます。一方でRust APIはドキュメントが Python APIほど充実しては

おらず、基本的には Pythonからの利用を想定したライブラリであると思われます。

67 →目次に戻る

まとめ

　今回は超高速データ分析ライブラリPolarsを用いた集約クエリ、時系列移動平均計算クエリの記述方法を示

しました。 さらに pandas APIとの差異や速度検証を行い、またRust APIを用いたクエリの記述方法も示しま

した。

　PolarsはベースがRustで設計されていることもあり、pandasと比べてAPIが「かたい」印象を受けますが、

それにより卓越した高速化を実現しているため、より大きなデータセットをスムーズに分析したいというニーズに適

したライブラリであると考えられます。

筆者紹介
藤田直己

1988年生まれ、大阪府枚方市出身

京都大学工学部電気電子工学科卒、同大学エネルギー科学研究科修了

応用情報技術者・ネットワークスペシャリスト・情報処理安全確保支援士試験合格者

YKK APにて超高層建築物の外装設計に従事し、型・モジュール設計・ウオーターフォールプロセスに精

通する。その後 ITエンジニアに転向。paizaにて、Ruby on RailsやReactを用いたWebサービスの

スクラム開発に従事、現在に至る。

最も得意な言語は Python、最も影響を受けた言語はClojureであり、シンプルな関数型（的書き方がで

きる）言語を好む。関数型的記法を持ちながら、実行性能が高いRustに興味を持ち研さんを続けている。

https://www.itmedia.co.jp/author/235506/
https://paiza.jp/

