Web TVI =7 hHh 5Hi-
Rust. Rust CTiRéHD
Web 77U —3 3

BHED , paiza [E]

01. TEHEIHIFE IR M=\ >TET Rust ZEHFEIT2DN?
Web T3 Z7B#E T Rust &R

02.Rust (A Y ([CEIEN ERLZDH?
Python DL THH D, Rust D/\T+— > XK

03. 73t "TRust & LWEE &SNd0H
BEOHLUIEZFDONERZE Web TVIZT7HER

04. [TIILO—k&%HD] Rust TED Web 77U —> 3>
— T —IN—RFAEEEBTACOEASHEERSZD

05.Rust ® Web 7L —AT—7% Taxumi TSNS 77U®D APl Y —/\%E/E3
—Web R TOER ., BERFEMi=EDR

06.Python "SFATES

Rust &#BE3ET — Y051 75" Polars O£/

HEHDESHSEEIANZIA>TEXTRust ZiRHETADH?
Web IVIJZ"7H#TRust #&EE

Web FF&E S L TOHER, BE/OICEDE Rust ZimMIITHEN L. FDEAHPRTMHCDWNTIRER
HROHDAES, 1[0 Tld. Rust AT DIEFAR—IavE(Iar=EE, EZRUED,
(2021 %09 B 30 H)

Rust ADOELDEED

. JOYSSVEE Rust [CHTREEA-1-—RES<RBESIHNEL. FIREUTOLS%
RETT,

Android DFFEN TRust; =8 A, AEHZOH
Microsoft. "Rust for Windows v0.9; Z=/\Fd
RESEZ 'Gos 15 "Rusty [CEE, ¥—Y—MRIFFvv 7Y Discord; DEREE(IE
CNoDEENELRICEEF. LWHhikpD TGAFAM) (Google. Amazon.com. Facebook. Apple.
Microsoft) “ME(ENDKEEE IT BES LOEENT Web R Fv—BENTOY Y301 —-X& LT Rust
ERALBHTED, SOICHKRIRERMRNHDCEERLTCVWDEEZONET, f1lCH Rust DELERT
BEDELTUTDORISBEENHDET,
"Rust) [FEEATNHBDDH. Stack Overflow B 1—HF—D X R EBN
Stack Overflow [CHIFDREESINDEED 1 6L Rust "EERLTWET, 2016 F£H5 2020 FXTHF
EFTRust A 1 firEF— 7 Ui1F. E5(2(3 2020 £ DR CIRIFBICHV\DH D= ETH B 2 1D TypeScript
[C19RA YV REWDKREZDIF T IZEEEBLTHD., IVIZFAZ 2T —([CBVWTEBDTEWNH DS

FECHDLIICRERULNET,

CNDEFREZ—BEDT —LEDTLELIN,, FENLBEFSETIEIEL, FILLWEETHS Rust ZHIFA.
FEITDDEFEETLLDIN, 5 1ETIE Rust ZRBIDEFNN—2 3V ANEEE, ERLET,

3 SERIZES

https://atmarkit.itmedia.co.jp/ait/articles/2104/15/news088.html
https://atmarkit.itmedia.co.jp/ait/articles/2105/10/news079.html
https://atmarkit.itmedia.co.jp/ait/articles/2002/10/news038.html
https://atmarkit.itmedia.co.jp/ait/articles/2006/11/news051.html

Rust & C/C++

Rust [3ZDRAFEDNEESDONSLT. C/C++ HODBITHNEHSINTNET, Rust MEIRIZDETIE. C/
C++ (F/\ANTA—V VR (R RESIE) BT7TVT—2 3V RS DEOIEE T TERNENSEBLESN
TEXUIco —ATC/C++ TlE SHBRBICEMEDEERNEVRDZELR T D ENTECLRNEY . ZDn
TOBRELCDEEDCEZE, REEMEEFUORT, REERBFESISEIITHHORBFELTIUTOK
SIEEDNHDET,

1. ITICEMSNTVNDXEVREZZSEI D (use after free)

2. ITICHEBISNTVDAEYREBZESHICXEUEKT D (double free)

3. WMMBAEVBEBEERLCVWDIRIYY (FVTUVITIRAVY) S BERT S
4. FSD&EENT TR

5. BERALYRICKZHZ2AEUDORAKESER - B# (T —95E) etc.

REZEFEORAMT (BECEFRHARETINPIZE) UTDOESBEDNHDET,

1. RRTFVLATERNT —5%LR - EHTECLED (REFVEX)
2. OS DAEVRERBICEDXATYDREFZVERZEELTOTSLNMEIETSD (segmentation fault)

etc.

1. // deref_null_pointer.c

2. #include <stddef.h>

3. int main(void)

4. | A

ba int *null_pointer = NULL;

6. int value = *null_pointer; // REZENEFAE
T | ¥

REZBFERCIMHTEAME C DI—R] COI—-FOMERFIBEATIH. REOHBFCCETHETIRIEWNITTY

> deref_null_pointer.c
»

[1] 3745754 segmentation fault (core dumped) ./a.out
» |

[C DO—RDETHI] CDEFTTIE OS DAEVREREICKD segmentation fault D HE LA, WD TEZDIERICEDEILRDE
Th

4 SERICES

// deref_null_pointer.rs
fn main() {
let p: *const i32 = std::ptr::null(); // null pointerZDbDEEETH S
unsafe { // unsafeTEHFAWEIV/IAIILTS—
println! ("{}", *p); // KREZRBIEFRE
b

~N oo s W N

[REZENFZLI Rust DO—R] unsafe ZES& Rust I/ A SORELERIENSANTUERDI—A. C AZEDOEHEZERTSET

RERBEZSISRCI TATIARREEIIEIFEA. BIZIE EF1UTr HECEE %S| S I Ik
MHHDET, KERBMENELCLZNCEZE C/IC++ V)1 3(F (BEHEFHEEETH) FELAEWVDT, 7OV
IXR—NOA—RZEERURILES DRENHDET, KERBEEF. I/ A I(CRDFRBENLBEICKD FHEHIR
DENVOIERERNTIRDENVEE LD EEELT/\WIEREBEDICHEDONETT, SBAKICHEBLIES
A0 SN —DRAICKDEERRNBEICEDET,

Rust (£, unsafe EW\WSE &= VVEVWRD R EREEES ISR LBDMmP TR LIS LTHEIV/N
TIVEFLIEETRIS— (JN\ZvY) ([ZEDFET, HEU/IN Y IEHY I EETHERERNICIRDESDTT/\W
THLPIL, AHND C/IC++ [CHBT /T4 —Y YV AZREICELTVNED,

XCDELETELERD TRERBIEZSISECI®R) OI5 1. 20 3. 4 DESEGHNSRESNTND. HDWIBYVEEBENRES
NTWBIEEXTYZE, 5 DEILHRHNORESNTNDCEERALY RREEFSTEICLET,

Web FFEDHRAD SR Rust

Rust (FZDRFEDNEESDNS C/C++ EDLEEBLU TEOSNDENZWTI A Web BIEICH T C/
C++ ZHAT 2T EIFENT XY FEFEENTVWDZENZAMKICKRUIECETIFEVWLSICBZ DN ELNE
Bh,

EEDECA. Ruby. Python. JavaScript EW\o/zBARIRE Web B EZBZAVDRED. XEVEEZE
FEARERICEFE TET D7 use after free ZRUCTDIERIIHDF A, Ffeo EIIDBEN I ERETDE
ETRIS—([CEEDEINEBCHE D O>TVDHINMERBICLDFONEK T, BIEFSEDOERIT DEEMRICUX
D RERIGIRDEVNZRI CENE VDT, REBREBEZHEFICTDDICHNDET/\WIFTDDELEMN
AHTI,

Rust BRI /E Web RS EOL 2 CHREEEMICAIT ORI ERIIRELIELH TR T D E
(LT, CCTIRINTA—VYVRICEBT D EICLES,

5 SERIZES

BRI Web 77U —2 a3V [FHERBELIDERY KT =2 110 BRMLRY DL ENE L BE#TT
T8O TUNERBRET —IN—RICABEEFEIT DL SR TDENERESINTNET . ZD7eth. Web 7~
VT —2aVBEFROHE/NTA XV RAFZNEEERSNEMERICHD TS, ZLTENDBRIERTSH
T Web BHLTELVNERTHD. C/C++ MRASNTIHN > /BHILEEZIONET,

— AT Web BREOXIRICBWCEHE /N DA VYV AHDNREZEINDEEDLSBAVY MHHDDOHZE BT
EHETHZELTCHET,

AEUERAEDER>7TUT—2avREMDR L

NNy FERERBEOER -7 T I —raveEl. stERIL—Tyhom| L
MEEEDITIRIY —ZNDELTE D> ERIX MR
STERERE>ERISET T REIC KM S BEDEIR
SERERE Y —/\LARY RS LRE>I— P —TIINRU IV ADWE

o &~ b=

ZE2ME/N\TA—NVRAZEWIZSED Rust ZFEAIT D ECEOT W —ERDRHME) RIS 17E
UT+1 "I -—ITHRRUITVR,; BEATIRN) BE. SHOY—ERFARICHIDEELT7 U5 —ERE
HEBRLENOWEL CWIDCENRHT TS ET , — A CHELEENDOFELEFEHRNICEDENDE
DELWTIN REUERNERDET,

Rust DFi#lifE, HDVNIFFRE

COHICIFITTICIKETADTOATSZIVIEENHDET, TDOHT Rust DEHME. HDWIFEEE B
SNZERICDVWCERWLFBZRZI TBNMLET,

Rust MEIOREKNEEZBEXEVLEME GC (IN—YILIY) HARADEEDELTRONTED, A
TEURLMZERDIHICE GC ZEDRIFNZESBNENSBERICHDE LI, THEIFNE ABIXEURS
THDEZERIETDRENDDET,

—ATRustlE TFABEIRATAI EMIENDETIVEFAL. DV AIVERETXE)REEERITT DS
T. GCHATRFORTEDCEERUELU, SOICZEDFABIETETIVIEO VTV TDRL Y R %
BREAET D EICEFATETC. T—YHABEEDETURELET (CNIFHRICEINREZET, N Rust =% H
LHBOHIEBHEEFAR—3VD—DIZHENET),

6 SERIZES

FIEES AT LN Rust DFBEDIRBELDEDEEEFEZTNEI N RAKIC Rust [FIRAKEEETH
D, SESHLRCHEVWTHBOBVWEBRETHEOTVWDERSKRAUET, RFaXyT— 3y, KEERERE.
TR IS—/N\VRUVT, BEBNEEX—NDDO Y VICBT 2L EZZ Rust (FIRRLTVWT, £
NH5EHE Rust DEHEZEBHLTNET,

FEH

2 1 EITIE. Rust N\OEFAR—23 VB LT, Rust DI Web FFEBIRTD Rust DXUw MMIDL)
TRRLEUZ, % 2 [EITI3. Python & Rust DX LB Z LEH S, /N T4 =XV RICDWCTEBHERYFI—
VEMDCEZTFELCVNET . ZOERF/N\NTA—NVAHRZETDEHHRTREGIERICED/H. Python
EDULIXRELTCTED—HRHAATEBZEL TVNEXT,

7 —BRICES

Rust [IFZH(CEMED ERGDH?
Python EDHE TS HS. Rust D/NTA+—Y >V 4514

Web FFEE L TOER, B/OCEDE Rust ZiwMIICHBIT L. ZDRAPIZHICDONTE
fRERDDAEE, F 2[Ed. Python ZDHEZEL T Rust D/\T# =V AFHEEEIE,

ERLET,
(2021 £ 12801 B)

SE(F. Rust D/\TA =YV REFHEERE L. Python EDHLE %@L T Rust DX, St ERICEN
LEY, ZDHITEEX. /\TA NV RAZLRIDIHDHEE (BH) =X(T. ZNETNOEBCEDKL ST
AJSAICIEBDOHERERLTCVNEEXT, LWBAWAREERILESBIEDEHEZ(SEIDT DT LT, KHT Rust
Di&H (HDWE Python D5#H) ZZEREDICLTVWERT, CORREZERTDICHADEED]— RZINERL
7z Github UIRY RUEAERBRLE LD T, RIELIEWAIFEOCTHIBLIEE L,

PRRARR IE

SOIOFROBERICHNT, BREERO 7 HEBHTIENWST —¥%E_1—XATLLB#HIFEI. NH
BEBREBTHEE. HDER (BRI T—FCHULT. BN HEOFHZHELTEONDT —FDIETT,
$IZ(3[10,20,30,40] CZWSHRT —FIC LT, 2 HEBETIHZEEI D&, [(10+20) /2, (20+30) /2,
(30+40) /2]=[15,25,35] EW\S>T —FHELNET,

— mS
17.5 4 moving_averages

15.0 1
12.5 1
1000 1
7.5 4
5.0 4

25 4

0 20 40 &0 a0 100

B 7 0EBE (£F) ZRFOERINT —5& 7 BEBETY | 7 HEBRHTIHENMDETRAC EDEHERRIT —FNSImDERC
ENTEFRT

LIcEStETRBWTI D, ZERZRHDD ETRVEMLBDTINZREICLEY, SEROTOTSLDES
FOEFIUTOLSICRELERT (BTHLEELERD),

1. 64bit SZE KA TERETES 1000 HEDT —9 BB BHRIT -0 csv EFE
2. 7 ABBBHTHESEL, XEUICRETS
8 SERIZES

https://github.com/fn-reflection/web_engineer_in_rust/tree/main/chapter2
https://github.com/fn-reflection/web_engineer_in_rust/tree/main/chapter2

INT A=V ALLB DR

Python > Rust [Z(F fline_profilers ¥ Tcriterion-rs) %%&. ZNENENLTOT 71V T DI=HD A
TIUDY—ILHBDET, BEARANICEINOSDY —ILEEDINETIH FHHBFEISHRNRICEEZSZTL
FWEIL (FC line_profiler) . Z52 BRI THER I DLENG D8, BiBKE%Z print HHTDHXTHE
HFET, REICKOTHERIFEZDDTIN. SEXTICEFDTOV SLDOETREZUTICEREHLF LI

« OS : ArchLinux (kernel 5.7.10-arch1-1)

* CPU : AMD Ryzen 9 3950X 16-Core Processor

* RAM : G.Skill F4-3200C16-32GVKx4 (DDR4-3200 32GBx4)

+ SSD : Crucial CT1000MX500SSD1 (1000GB Serial ATA 6Gb/s)

9 SERIZES

RE{LELD Python TREKID

FIIFRBEL—UR L DR Python TEHZ M-S 72pDI— RETRUE LTz, Python ZFIEL/C&
HMEWATEZEINADNDDELS. A—RICOXV REMELTVET,

30.
31.
32.
33.
34,
35,
36.
37.
38.
39.
40.
41.
42.
43.

44.
45.

46.
47.
48.

import csv

import math

import sys

import psutil

from datetime import datetime
from typing import List
import pandas as pd

def process_memory_usage_mb():

ETTOEAOATEREEIEST S (E{LIIMB)
return psutil.Process().memory_info().rss/leé
def read_csv(relative_path):

res = []
with open(relative_path) as f:

reader = csv.reader(f)

next(reader) # ~v % %skipd 3

for row in reader:

res.append(float(row[0])) # csvD2iT4floatBICEHRL THMAD

return res

def calc_batch_list(calc_strategy, average_length) —> List:

csvh S5Python® listEFiduAds, /\y FRICBEITFHEZHHEHIES

mwon

before_read = datetime.utcnow() # 7 — 7T AARIDRZIE

nums = read_csv("../data/time_series.csv") # 7 —& —iEGidAH

after_read = datetime.utcnow() # o —%iduAAEOELITR

moving_averages = calc_strategy(nums, average_length) # & HE iy

oy
i

after_calc = datetime.utcnow() # BEIFEEEEORAEH
print (f"#EFHEEICER LB : {calc_strategy}")
print(f"#Z#¥H0&= @ {average_length}")
print (f"##HFEHORHEOERE : {moving_averages[-1]1}")
print(f"csvO—Richh o okl : {after_read - before_read }#")
print (f"#BBHEHFTEICHD - 2KE : {after_calc - after_read}#")
print(f*"UZrOXAEYUERAR(L%E) : {sys.getsizeof(moving_averages)/1e6}MB")
print(f"7OEXAEY#FHER(S%) : {process_memory_usage_mb()}MB")
return moving_averages

def moving_average_batch_python(nums: List, average_length: int) —> List:

PythondUist £S5, BHTHERECHET 2

assert len(nums) - average_length + 1 > @ # F—4HWFEd 5EGEMNEEET

EENBFEOMSEHELENENTE S

res = [sum(nums[i-average_length+1:i+1]) / average_length for i in
range(average_length-1, len(nums))]

return res
if __name__ == "__main__":

mal = calc_batch_list(calc_strategy=moving_average_batch_python,
average_length=7)

10 —BRICES

Ef FIEFEBBTIR) csvO—FRHE HERR SRR ZE8OATUERE 7O0CADXATYERE

Python (Naive,7) 3.3% 26% 598 89MB 870MB

1000 A1TDT —FZMIBLIcCEZZEZNITRUTELIBWVERTY . 6 WA TUBRZTR/ESEDIEN
TEEY,

Rust TR%&93

R(Z Rust CEHZ/BIS/cthDI—REDRLE LIc, T5—2HS ETEFZ Tanyhow LEEDHHER
DUL—hk (51T73Y) ZERLTVETD,

1. | // VRIYRNUVDI—bTFoL 7 MV ZERRE UBN/SRZEBET S (GithubZR)
2 fn get_csv_path(relative_path: &str) -> std::path::PathBuf {

3. let project_path = env! ("CARGO_MANIFEST_DIR"); // Rust@ /Oy 77l
Cargo.tomh'H27r LI kY

4. std::path::Path::new(project_path)

5. .parent() // project_path@12EtDOFT s L7 Y (=URIRUDIL—)

6. .unwrap()

7o .join(relative_path)

8. }

9. fn read_csv(relative_path: &str) —> anyhow::Result<Vec<f64>> {

10. let csv_path = get_csv_path(relative_path); // csvi—oDiE/(AEEd %

11. let mut csv_reader = csv::Reader::from_path(csv_path)?;

12. let nums = csv_reader

13. .deserialize: :<f64>() // AHLEBWVWEFTT—FIEXFIE LTHMAENZ DT,
fo4icEHRI B

14. .filter_map(|row_result| row_result.ok()) // f64& L TadADmholciTa
mET 5

115, .collect::<Vec<_>>(); // AIEREIIICIEINT S

16. Ok (nums)

17. }

18. fn moving_average_batch_naive(nums: &[f64], average_length: usize) —>
anyhow: :Result<Vec<f64>> {

19. let size = nums.len() as i64 - average_length as i64 + 1; // HAOZh 5B
BOEIOYA X

20. if size <= 0 {

2l [/ TAZXDBOUATESEIS—EZEHOEDEE UTRY

22. return Err(anyhow: :anyhow! (

28}, "average length must be less than nums array length"

24,));

25. }

26. let averages = nums

27. .windows(average_length) // EANEO T —%#LELah s)L —7%Ed

28. .map(|window| window.iter().sum::<f64>() / (window.len() as f64)) //
EENBDOF—% offlz & h. NTEIS

29, .collect::<Vec<_>>(); // RBRZEAEREIICRIAT S

30. Ok(averages) // FIEREIZEBORDEE LTERY, returniZgEEBELTWS

31. | }

» ~BRICES

B2
B8
34.
35.
36.
37.

38.
39.

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
D3
54.
=59
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73
74.
75
76.
77.
78.

fn calc_batch<F: FnOnce(&[f64], usize) -> anyhow::Result<Vec<f64>>>(
strategy: F,
average_length: usize,
) —> anyhow: :Result<Vec<f64>> {
let before_read = chrono::Utc::now(); // T —%idtAdigiOEFZIE08:
let nums = read_csv("data/time_series.csv")?; // EEUfccsvT —H Z 64D 0%
REI & LTHAES
let after_read = chrono::Utc::now(); // 7 —%iiduAHEDRZI6HE
let moving_averages = strategy(&nums, average_length)?; // BI&0&FAWTREIITF
B8
let after_calc = chrono::Utc::now(); // ZEIFHEHEZRORZIREER
println!(
"BEV ISt EICERAL B {7},
std: :any: :type_name::<F>()
);
println! ("BEFHDRS : {}", average_length);
println!(
"BEITFHORROER {:7}",
moving_averages [moving_averages.len() - 1]
);
let load_time = after_read - before_read;
let calc_time = after_calc - after_read;
printin!(
"csva— Richdr o b - {: 238,
load_time.num_nanoseconds().unwrap() as f64 / 1e9

);
println!(
"BETIREIC OO o R - {7,
calc_time.num_nanoseconds().unwrap() as f64 / 1e9
)i
println!(
"VecDERXEUE(S%E) : {:7}MB",
std::mem::size_of_val(&*moving_averages) as f64 / le6
);
println!(
"FTOEADERAXEYR(SE) {:7}MB",
psutil::process::Process::new(std::process::id())
.unwrap()
.memory_info()
.unwrap()
.rss() as f64
/ leb
);
Ok(moving_averages)
b
fn main() -> anyhow::Result<()> {
let mal = calc_batch(moving_average_batch_naive, 7)7;
Ok(())

12 —BRICRES

read_csv(relative_path: &str) -> anyhow: :Result<Vec<f

csv_path: PathBuf = get_csv_path(relative_path);

c eader: Reader<F ~: : from_path(csv_path)?;
> = csv_reader:
.deserialize: :<f64>(): _
.filter_map(|row_result: Result<f64, Error>| row_result.ok()): impl Iterator<Item = f64>
.collect: :<Vec<_>>();

Ok (nums)

calc_batch<F:

strategy: F,

average_length:

) —> anyhow: :Result

before_read
nums: Vec<f6 read_csv(tive : "data/time_series.csv")?;
after_read: Date ¢ ::Utc: :now();
moving_averages f6 strategy(&nums, average_length)?;

after_calc: Date chrono: :Utc: :now();
Rust DEN/-FRAER © Rust (FIFEACTHEREND, BHROERS rust-analyzer CWSBIRY —ILERWSE IR ICHIECHERT

=3
EE (HEF: BHTEE) mmnn BHERN THOATUERE TOEIOAEY AR

Rust (Naive,7) 0.65% 0.047# | 0.7% 80MB 162MB

k7R Python EEEINTUEBNERIEENTVET, i, XEUFEREICDOVTENED DI ERET
AIRECHDEENNDET, 64 (8/\1K) DT —4H1000 H175HDDT. 1000 /5 x8 /- ~ =80MB T,
ZNH nums Z#& moving_averages ZHICRIFENTND7 160MB HMAER/NBDAEJEETHETE
FIH, TNUTFHFEITEMEEEO>TNET,

YV —X—ROETHELTHDERust DI—R(F Python [CHEANTPPITRTY . TRELODTVDERZ
ECTREHDE. UTDXIICHEDET,

o BZHARIDHNENDHD (BEOALA. FEROMENEZREEIRILY)

o IS—(EOMEZEMHI<TERLTND FHADBZEWNTHHO/HZEEST DN BEIEESE TSRV
BESTINEE)

o (HBRILORMNAHD. KUIZETIFEWND) Bx/ NRDEERDI=6H(C get_csv_path BBEZEEOTLND

CNOZERALTRENTHDE,. Rust (3 Python EIEBICRUES/ET OV SLBETRABARETHDEN
AHOEI,

13 ~BRICRS

Numpy ZFfIF U7 Python TE&KJI3

HDERET —IDMICE R U Python EAREICEST. EROHRIFT 7 TRIBEVWERSZETLLS,
Python M'MZEBE R TFEVSE<DHEEZNEE T DN F CTHRASNREITITVWSEREG, ZNEXZ 2T
ATLNHBNDTT, ZORKIKEEWNZD "Numpys ZHBLT. EfzHicdI—ReRRlEy (—EE
LWeBEISBFRLET),

1. def calc_batch_ndarray(calc_strategy, average_length) -> np.ndarray:

e before_read = datetime.utcnow() # F—#FiduAXmi0RZIE

30 nums = pd.read_csv("../data/time_series.csv")['value'l.values # F—4—iE5:
FIATH

4, after_read = datetime.utcnow() # F—#aARELOELEE

5c moving_averages = calc_strategy(nums, average_length) # BJZZRIVTEEIFY
AHE

6. after_calc = datetime.utcnow() # ZEEIFHEEORZEE

7. print (f"BEFEHstEICERL/-B%: {calc_strategy}")

8. print(f"B#FHDERE:{average_length}")

9. print (f"BEIFEHOHEEDOETR:{moving_averages [-1]}")

10. print (f"csvO—RIChho7/=mE/:{after_read - before_read }#")

11. print (f"BE)IFHFHICHH o/ :{after_calc - after_read}#")

12. print (f"EINDAEVEHE(S%) {moving_averages.nbytes/1e6}MB")

13. print (f"7OZXAEUERE(EE) :{process_memory_usage_mb()}MB")

14. return moving_averages

15. def moving_average_batch_numpy(nums: np.ndarray, average_length: int) —
np.ndarray: # numpy array#{#>, convolve APIZf#S

16. assert len(nums) - average_length + 1 > @

17. return np.convolve(nums, np.ones(average_length), 'valid') /
average_length

18. if _pame__ == "__main__":

19. mal = calc_batch_ndarray(calc_strategy=moving_average_batch_numpy,

average_length=7)

csvO—REF HEE BHER ZXBOXEVYER JOCAOXAEVER
[&] = =

ERE (NFE BHTER)

Python+Numpy

)
(Naive,7) 0.029% | 0.58%

TOCRAEUFEREZRVT, Rust REEHUNTERWERNMEONTLEWE LI, #EELWT—ITIAN
CDINTA—=IXVRICDVWTERLTHET, Numpy TIINIY—stEZSEICRBLLLTINETH. EE5N
FELUZRust I—RTIEFZDESBHREEEATWVEWCENBHD—DREEEZ HNET, Rust I—RICK
BEDORMNHZDIFTIN, RERETIFHEDI-RT—ZAVNA (FALD) HICEBLTERTESDZW\NE
BUWET,

14 —BRICRES

B TFHORSZEZITHEKID

FREETOHETEIBHFHDORSZ 7 CEAELTCWE U, COEFHZEZEELTS000 (CEELTHDEEDS
BBHTL&LOIN?

csvO—RE HEI BHER ZEBOAEVER JTOCADOATVUER
i i i = B

ENE (HBEF%BPBHTHIR)

Python+Numpy

Numpy [C&2BBIEDREZERIITE 6 WIELDEFEREAIDINDELI, WSO ELELEETOHEFET
(F BB FIDREINAESLDEFE VEELDRUEDEBMEZZNSTY (1 /)L—FH/D 6 [E— 4999 [E]),

BETIEEETDCH/cOC. L 1 HEIOMZSRTENIE. SHOM = s1HOM + SHDOT—% -NH
RIDT —FEVWSERENBDII DD THEEEZEEITCENTEXT, COEZXAICEDE Rust I—REEE
MR THET

1. fn moving_average_batch_online(nums: &[f64], average_length: usize) —>
anyhow: :Result<Vec<f64>> {

2. let size = nums.len() as 164 - average_length as i64 + 1; // HAEhBEIHFE
HOBIIDYAX

3. if size <= 0 {

4, [/l BAXMBOLITFaoIE IS — (2B ORVIESL TERY

Se return Err(anyhow: :anyhow! (

6. "average length must be less than nums array length"

7.));

8. }

9. let mut res = Vec::with_capacity(nums.len());

10. // EBANBOT—DBMEHETS, BHOT—SIREICETINZEES

11. res.push(nums[0..average_length].iter().sum::<f64>());

12, /! BDOT—ZLISMIBIOBIMSHLWT—SE2EL T, LW F—4%5|I<KCLTREL. AEERZRES
+

1l53- for i in average_length..nums.len() {

14. res.push(nums[i] as f64 - nums[i - average_length] as f64 + res[i -
average_length])

15 }

16. // BHTBET—HENTES, BTEDDLHBEREZNELT S/

17. for i in @..(nums.len() - average_length + 1) {

18. res[i] /= average_length as f64;

19. }

20. Ok(res)

21. | }

22. fn main() —> anyhow::Result<()> {

23. let _ma = calc_batch(moving_average_batch_online, 5000)7;

24, ok(())

25. | }

15 SERICES

ERE (AT BBTHR) csvO—RRHE AEBRHE B5HEE ZROXATUERR JOCAOXATUERR

Rust (Online,5000) 0.58% 0.079% | 0.66% 80MB 162MB

7 BBBFHEEHEL TV EEEZNEFEEDSBVWERBE CHHEZT TS ENTER L,

—7 7T Numpy DA IFEEEE Numpy @ convolve B#ZE>TWeD T, ZDRFESRIDENTEE
Bho for) L—TZESTECEDFEITA. Numpy TZDEE for L—TZE>CLUESEEARNITELSLLEOTL
FODT. TCTTIE "Numbay WSS TSUZEE>TRBE(LLET,

1. @numba.jit(nopython=True)

2. | # numpy array#{E>, AS5A 7 INTUXAEER, Numbaz{#E>

3. def moving_average_batch_numpy_numba_online(nums: np.ndarray, average_length:
int) -> np.ndarray:

4 assert len(nums) - average_length + 1 > @

5 N_i = nums.shape[0]

6. res = np.empty_like(nums, dtype=np.float64)

7 res[average_length — 1] = np.sum(nums[:average_length])

8 for i in range(average_length, N_i):

9. res[i] = nums[i] - nums[i - average_length] + res[i - 1]

10. for i in range(average_length-1, N_i):

gl res[i] = res[i] / average_length
12. return res[average_length-1:]

13.

14. if __name__ == "__main__":

115 ma8 =

calc_batch_ndarray(calc_strategy=moving_average_batch_numpy_numba_online,
average_length=5000)

csvO—FR HHEI BHER ZBOXATUE JTOTADAEUE
L] i) 4 AR RE

ER (HRF%BPHTIR)

Python+Numpy+Numba

(Online,5000) 0.55% 0.31# |0.86# 80MB 304MB

Python ZHIFAL CHZCE THREZERE T CEBLSFEMRDDES(CHEDERLU,

16 —BRICES

ARY—LAETHET S

CNETIF 1000 BITDT —YELTAEIICREL/N\Y FUBZSEDEVWSER (1571 —X) TEX
TWEUIc, COZBAETIF 1 BHELDEITUIETEDN DRI —TY SOBRENEETHD. WITNDEETEHER
W=y MIEBNIEHEDENAHDERLIce —A T, BROTOTSLBLEDIEZETAAATHOEET DT
EERRICUTWDIcH BB (L1TVY) EXEU—FERENE#ToNEEA. Web 77U —23V(C
BVWTF—ETT —YEHHAXLZINELESBNEVNSTFHRIFAEDREATT . ZC TUT DHINEEHITE
MUERY,

s FEAZH (nums) ZAVWCT —9Z—ETHRAALEEZRIETD (ANU—LNBTEHETS D)

CORTHRICEDE Rust I—REESBATHETI,

1. #l[derive(Debug, Clone)]

2. pub struct MovingAverage {

3. period: usize,

4. sum: 64,

e deque: std::collections::VecDeque<f64>,

6. }

7. impl MovingAverage {

8. pub fn new(period: usize) —> Self {

9. Self {
10. period,
abal sum: 0.0,
12. deque: std::collections::VecDeque::new(),
13. }
14. }
15. pub fn latest(&mut self, new_val: f64) —> Option<f64> {
16. self.deque.push_back(new_val);
17. let old_val = match self.deque.len() > self.period {
18. true => self.deque.pop_front().unwrap(),
19. false => 0.0,
20. I
21. self.sum += new_val - old_val;
22. match self.deque.len() == self.period {
23. true => Some(self.sum / self.period as f64),
24. false => None,
25. }
26, }
27. | }
28. fn calc_stream(average_length: usize) —> anyhow::Result<Vec<f64>> {
29. let before_read = chrono::Utc::now();
30. let csv_path = get_csv_path("data/time_series.csv");
31. let mut csv_reader = csv::Reader::from_path(csv_path)?;
32. let mut ma = MovingAverage::new(average_length);
B33 let moving_averages = csv_reader

17 SERICES

34, .desetqa lize; 1<f6d>()7

SOk .filter_map(|row_result| row_result.ok())
36. .filter_map(|new_val| ma.latest(new_val))
37. .collect::<Vec<_>>();

38. let after_calc = chrono::Utc::now();

39. println! ("B#FH0EE:{}", average_length);
40. println!(

41, "BRTFHORBOER:{:7}",

42. moving_averages [moving_averages.len() - 1]
43,)8

44, let total = after_calc - before_read;

45, printin!(

46. "HEICH oS {2 R,

47. total.num_nanoseconds().unwrap() as f64 / 1e9
48.);

49, println!(

50. "VecDfERAEVRE (5%):{:?}MB",

51. std::mem::size_of_val(&«moving_averages) as f64 / 1le6
52.);

53. printin!(

54, "ZOeRAOERAEVE(5E) {: 7IMB",

558 psutil::process::Process::new(std::process::id())
56. .unwrap()

57. .memory_info()

58. .unwrap()

59, .rss() as fe4

60. / leb6

61.)7

62. Ok(moving_averages)

63. 1}

64. fn main() —> anyhow::Result<()> {

65. let mad4 = calc_stream(5000)7;

66. ok(())

67. }

ER (EFEEBHTER) cvO—RERHE HERE BHERE EBOAEVERR JOCADAEVERR

Rust (Stream,5000) === --- 0.59%# 80MB 83MB

csV DFd+AMERZ —RF(CZ (FTED B ZE nums A<D E LTz, STERBEIE/\WFHEDEDE(F
(FRLTY, F7c MovingAverage EWSHEEHRZRAREL. BBITHDHEDOAER A EMELE L. CNIF
ARU—=L - Ny FABZEEO I FARREAABNAHRKRTHD,. DRD/N\TA -V RAEERDIELELTTY
T—2avid—R&yZal—y3y (F—¥94) d—RZE—ICTE2TkEZERLTVET,

18 —BRICES

RIZ Python TAKY—AIBZ{TS5I—RZERLET,

1. class MovingAveragePython(object):

A def __init__(self, period):

3t self.sum = 0

4, self.period = period

3r self.deque = collections.deque()

6. def latest(self, new_val):

Ur self.deque.append(new_val)

8. old_val = self.deque.popleft() if len(self.deque) > self.period else
0.0

9. self.sum += new_val - old_val

10. return self.sum / self.period if len(self.deque) == self.period else
None

11. def calc_stream(constructor, average_length) —> np.ndarray:

12, before_read = datetime.utcnow() # F—#5AARFIOEZIEIE

13. moving_averages = []

14, ma = constructor(average_length)

155 with open("../data/time_series.csv") as f:

16. reader = csv.reader(f)

17. next(reader) # Ay#%skipd3

18. for row in reader:

19. num = float(row([@])

20. moving_averages.append(ma.latest(num))

21. after_calc = datetime.utcnow() # ZETEHEEORLIEE

22. print (f"#&§FEH0KS:{average_length}")

23. print(f"BEIEHDOHEEDESR {moving_averages [-1]}")

24, print (f"F&IChHho/=E5/:{after_calc - before_read}#")

25. print (f"URrDAEVERE(S%) :{sys.getsizeof(moving_averages)/1e6}MB")

26. print (f"7OZXAEUERE(S$ZE) {process_memory_usage_mb()}MB")

27. return moving_averages

28, if _name__ =="__main__":

29. ma3 = calc_stream(constructor=MovingAveragePython, average_length=5000)

ER EFEBHTHOR) cvO—RFERHE HERME BHERE EBOAEVERR TOCRAOAEVERR

Python (Stream,5000) |--- --- 6.9% 84MB 529MB

AR —=L0EBETZENSTElF. Python DOV THFAR T —TZEBE S 2&/H<EOTLEDSH. &
EFESLTEEETLENE T, £/co Numba ZE>TEAN —LAREBOFHEREIHETEY . KHR
LICERANHDET . /NyFLEDI—RERAN—LANBOOD— RZlRILITDEFELL EE55HD/N
TA—RVAICRBUIAERICHEDERONET T,

19 —BRICES

ZNTE 1000 AITDT —Y DIBEFE THDD T, LATVIEVWSIHRTENIE 1 DOAHLID 69 7/
MTIBTECVNDEENZI KT, NZEBVERDH BLERDINETTUT—2 a3V ORENFHEDES(C
KBDETBNARENTLLD. Feo Github DURI MIICFvRILEWD S ERBEZRAVCNILF AL Y RDR
AL R E async/await ZFAVWVCIERZRBIISEMLCVWETH, EROIVIILAL Y ROANENZ A D
MOTCVET, CNEIBBFHOHEIRRNKDEAL Y FEDBEIRXNDANBMCTHDIcHEEERTEE
Fo YTV —2aVREICISUCCEEICHEET IV ERIRTEDDE Rust DBH/EENWZ D TLELS,

[

FEH

S[El. Python & Rust DEXHERZLEND. N\TA—Y Y AFEICDWTERZ RO F LIz, fEme LT
BUFDELSICHEDET,

« J\yFEHETIE Python & Rust [ZZETRELZEEAEL

* /272U, Python TE®R{bE I 5728(CIE Numpy. Numba D> TF XS TIL—TZEIFT VNS HIFINDL

o ANU—ALEETIE. Rust [CEAIENHD

* Rust TI3/\TA—NYVRZEEBRDCEBL T VT -3V A—REYZal—ray (F—¥a04H) I—R%
mRILTEDS

csvO—F HER BHERN ZTHOATUE TOCROAEUME

ERE (HRF%BPHTHR)

=15] i RE AR
Python (Naive,7) 3.3 2.6¥ | 5.9 89MB 870MB
0.047
Rust (Naive,7) 0.65% EPJ# 0.7# |80MB 162MB
0.029
Python+Numpy (Naive,7) 0.55% ?9 0.58# [80MB 227MB
Python+Numpy (Naive,5000) 0.53% 5.77% |6.3#® 80MB 227MB
Rust (Online,5000) 0.58% %;079 0.66¥ |80MB 162MB
Python+Numpy+Numba X N
(Online,5000) 0.55% 0.31% |0.86# |80MB 304MB
Rust (Stream,5000) - -— 0.59# |80MB 83MB
Python (Stream,5000) --- --- 6.9¥ |89MB 529MB

RENF, CCERTHEDHNDZENEN DTc Rust DEELSERFEEMECDOVNTEZTHLWEBWNET,

20 ~BRIERS

¥ TRust (XELWEEE &Shd0h
—BRDOHULEEZDNRE Web TV IZTHEER

Web FF&E S LU COER., BE/ONCEDE Rust ZHMIICHBNA L. FDEAVITZHCDWNTHE
R7ZRDDAES, 5 3[0)F. Rust DEREEMZIZ XD EEBMEECHLE(ICDVT,
(2022 £ 02 B 01 H)

RO 75D 5EE. Rust DRFEAEHEX I DEBMES KO LS (CTA —NAZLTTHRACHENLET,

FAREEESEBVDIEDD. COTERFEERMITZIDCEBERNELTY, TiD Rust AXNRHT D
V)V IRREEMEREVNVGE LS EER TN RERCEOTHANEENEINEDD T TIFBNICE
EHET,

e Rust AV/\AS(C&BAV/AINIS—AXvE—IDTES

* Docs.rs DRFaXVF—23Y

 Cargo [C&D/\wT—VEIE (= Ruby @ bundler. JavaScript @ npm)
* rust-analyzer [CKDENBRAFAXLE (5170TUEVR)

s SHRIREDIZY TR

HRICWRIEEY VHEEDTS0T14 AN Rust DT7OY U hTEY —ALRICHIATE, BRICHARKREZ
BZBHIENTEERT,

21 —BRICRES

TEEF7AYz oI 7L (Cargo.toml) DHITT,

1.
i # Java®po L) b S. >
3. [package]
4, authors = ["Naoki Fujita"l
5. edition = "2021"
6. license = "MIT"
7hr name = "web_engineer_in_rust"
8. version = "@.1.0"
9. [dependencies]
10. p ¥ Z2S54TS51) (4 —ig
16 |- : Led Ry
12. anyhow = "1.0.52"
13. chrono = "0.4.19"
14. itertools = "0.10.3"
15. | num-traits = "0.2.14"
16. [[bin]]
17. | # TURJ—RA AR
18. cargo run bin thread _safe_queueTS5
19. name = "thread_safe_queue"
20. path = "src/thread_safe_queue.rs"
2 [[bin]]
22. name = "moving_average_f64"
23. path = "src/moving_average_f64.rs"
24. [[bin]]
25. name = "moving_average_trait"
26. path = "src/moving_average_trait.rs"
27. [[bin]]
28. name = "use_trait_extension"
29. path = "src/use_trait_extension.rs"

build

NEBSA TS VB E=HRICERETEXT,

r rt v0.1.0 (/home/lb/pj/rt/server)

: borrow of moved value:
src/exchange/bf/ws.rs:45:35

let execs =

dbg! (execs);

‘execs’

stream: :iter(values)

if cfg!(feature = "save_exec") {
let _ = Exec::bulk_insert(&execs, &state.pool).await?;

Rust DIS—Xvt—I1: FiEtE (BRAKA) IL—ILISERLTE. JV/ U IHPHDPIIERLTND

22

—BRICES

COFLETIIFAREEMICEET D Rust DEFBHEDREN. k&, Rust DELSICDOVWTDZEREER
ELERT, CORLEZEMTDICHALDEET— RZRER L GitHub VR RJEABLZDT,. BHTHRIE
LIcWAIFROISHIBALIEE L,

ALY RRZHZBRTRIRT D

Web AETXI<AWVSNTULSD Ruby 2 Python (0 C E8EXE%) Cd. 7O-/N\Nbr>v5—-TUs0Ovo
(GIL) EWSHENHD, ALy REEHEESETOWTERRIC 1 DORLY ROAHNTAT S LEETTED
EWSHIITICHDET,

BRI 1 DDALY RUAEBHEVDTHNIE, CNODEECTENMMILTOTSAFEICALYRE—TTH
BEVZNUIENDTIH. ALY RE—TEVWZDDIEEMENIBOHITT, EHME GE7 NIy IR) NI
DWTIE AYIZERSHENWEIEULSEELEEA. FIZIE. HDALYRTATIzINEEEL, FIDRAL YR
TZDAT IS RIDE. FINNRIDI/ERI,

RFIXVREEZRTNT 'COILIYavVIFRLYRE—TTH 21 ¥ TCOREFIALYRE—TTH2,
EVWSKSBRABNHDEAYIZIMSHBLTEINERNDRIA. WOTEZDLSBERNHDEFRDEE
ho ALY RE—THENZHRTDDIIKETT,

Rust(FALY FLEMERFIAY P TREBLBEELTRELET, ZNICKDAL Y RZETHENI— =Y
INTIIVIS—ELTEILLZENTEXT,

CDIRDENERER T DIHIC. PUEMTREEZARLE L, 2 DDAL YR (record_thread1,2) H'&ER
BTF—4%EZHUTCVNE, —AT1DDALYR (observe thread) H'Fa1—=TEHMICERL. ZORFE

ERFIIDEVNSEDTT,

FROEHE/RICILSBET YT A—RERBLE L.

1. use chrono::NaiveDateTime; // &AL — L0 HE
2. use std::sync::{Arc, Mutex}; // ARLyRt—7LHFEMEMutexOyIERER
3. | #[derive(Copy, Clone, Debug)]

4. /] BAF—40OEEE(T—SD) 2 THE

5. struct Measurement {

6. // BE(ZALT—EL)

7/ time: NaiveDateTime,

8. // BRE

9. value: 64,

10. /] T—8EBALERALYRID

11 thread_id: usize,

23 ~BRIERS

https://github.com/fn-reflection/web_engineer_in_rust/tree/main/chapter3

12.
135
14,
15.
16.
1lzf
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.
28,
29.
30.
Efile
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42,
43,
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55
56.
57.
58.
59.
60.
61.
62.
63.

>
impl Measurement {
// Measurement##iE{kDBaEBEM (AY VR) £ER
fn new(value: f64, thread_id: usize) —> Self {
Measurement {
// ERREEDRTERFZZROS
time: chrono::Utc::now().naive_utc(),
// BRAEEES, F—LEHBLRAULSEBILENERS
value,
/] T—HEERLUIALYRERRER
thread_id,

}
}
fn main() -> anyhow::Result<()> {
// Fa—DER. Fa1—DRRFHEEIANAVYRDIED
let queue = Vec::new();
// (1) :Fa—00vsft (Mutex) DB SR (Arc)ZEET S
let arc_queue = Arc::new(Mutex::new(queue));
// Fa—DHEREFBBEIE—(TOLABNEEHRDALYRDST SR TERLY)
let arc_queuel = arc_queue.clone();
/! T—IRFEALYR1EIER
// moveTHEEZRER AL YRICER)
/! REEREBH=F21—DSREREFN AL YRICHELILEEZADESDHYRTIN
let record_threadl = std::thread::spawn(move || {
for i in 1..=10000 {
let m = Measurement::new(i as f64, 1);
// (2):Fa—0OysERYF1—ICERREZERE
arc_queuel. lock().unwrap().push(m);
}
k)
let arc_queue2 = arc_queue.clone();
/! T—YRGEAYR2EER
let record_thread2 = std::thread::spawn(move || {
for 1 in 1..=10000 {
let m = Measurement::new(i as f64, 2);
arc_queue2. lock().unwrap().push(m);
}
13 H
/] T=FEBRRALYREER
// 1SUBDORY—TE#B DD, Fa—DBRFEELA

let observe_thread = std::thread::spawn(move || loop {
// CCT{IEEBWTRO—T 2RI EICIIBHDHS
{

// AyoEmDE

let queue_lock = arc_queue. lock().unwrap();

let latest = queue_lock.last();

println!("{:?}", latest);

// AA=FIC&VZZTqueue_lockZEHAEHIC/RE-Ovo BB ENS
}
std::thread::sleep(std::time::Duration::from_millis(1));

i

24 —BRICRES

64. /] 2DDTF—FRHAV VRO T EFD

65. for thread in [record_threadl, record_thread2] {
66. let _ = thread.join();

67. }

68. ok(())

69. }

SERCERALZVLDE. YV TILa—RR (1) & (2) TRRSNTVDEATI,

(1) (F ArcMutex /\Z =V EE(ENTNDED T, CNICKDRALY RE2REFE(CEKRRTERY, SO
Vec (AIZEREY)) ZAVWERLICH. SRESTLET —IEEZHEAEHEONDOTEROTRA (FALS) B
TY, Ffeo (2) ZRB& lock() EWSXVY RIFUHULA SO EIHATNIE Mutex BAFDOXY Y RTHD,
lock() ZIFATHY V7ZEE LEWRDAEBDT —FBIEICT7 I ATERNCEZRELTSERIFR L, ALy
RELTHEWT =70 REHRLET, IEERTOTSLDHLESD—DERIXTLANERT DENDITA
T 75N TEE(F Rust (CAFILER LT,

Rust DL H 1 (BREHDHRIE)

Rust DhLA MIH2EHZFHCT (RELTND) BORIT, ERERADCENTEXT, bLAKIED
BEGEOHRCHRETERT, PIRE BHROSIKICHL M NEREETDIET, ZORLAMEERELTN
DEAREZOERZSIBELTHRADENTEEXT,

CCTRE2E8OTOVILZEEILL. FLAREERLETOIIAICEETELTHEDIERBVET,

25 ~BRIERS

1. #l[derive(Debug, Clone)]
2. pub struct MovingAverage {
) period: usize,
4. sum: 64,
5. deque: std::collections::VecDeque<f64>,
6. }
7. impl MovingAverage {
8. pub fn new(period: usize) —> Self {
9. Self {
10. period,
Tl sum: 0.0,
128 deque: std::collections::VecDeque::new(),
13. }
14. }
15. pub fn latest(&mut self, new_val: f64) —-> Option<f64> {
16. self.deque.push_back(new_val);
17. let old_val = match self.deque.len() > self.period {
18. true => self.deque.pop_front().unwrap(),
19. false => 0.0,
20. I
21. self.sum += new_val - old_val;
772 match self.deque.len() == self.period {
23. true => Some(self.sum / self.period as f64),
24. false => None,
25, }
26. }
27. | }
28. fn calc_stream(average_length: usize) —> Vec<f64> {
29. let input_data = 1..=10;
30. let mut ma = MovingAverage::new(average_length);
31. let moving_averages = input_data
32. // .map(|n| n as f64) // ZDfe4~DEREANNIERIHSEIN. ...
33. .filter_map(|new_val| ma.latest(new_val))
34. .collect::<Vec<_>>();
35. moving_averages
36. }
37. pub fn main() — () {
38. let ma = calc_stream(2);
39. println!("{:?}", ma);
40. }

2 2 B TIFED EIFFEBATULEAZDI— ROFRHERIE. MovingAverage 7' 64bit DF /N RELNZ
(FRIFEVWEWVWSHIRENHDCETT, LEEIXVIDKSICEEREEHDCE CHELRSFATERIN
32bit BHIEEDES D URANERZZ I FFDKRICLIEVWTT, CO5ULIEI—RT—RIChLA MANERATE
£, bLARZFRALIZI—RATRICEDERT, num_traits EWSEFILGALS 1T SUZEFIBLTVED,

26 ~BRIERS

1. #l[derive(Debug, Clone)]

2. | /] BINRSA—H-TERANS

3. pub struct MovingAverage<T>

4. where

5. // TISNumblL A28, HDOF64RICF v AR TESE
6. // BAKKIIC(Zu8, u32, u64, 32, f64izé

e T: num_traits::Num + num_traits::cast::AsPrimitive<f64>,
8. {

9. period: usize,

10. sum: T,

11. deque: std::collections::VecDeque<T>,

12. }

13. impl<T> MovingAverage<T>
14. where

15. T: num_traits::Num + num_traits::cast::AsPrimitive<f64>,
16. |
17. pub fn new(period: usize) —> Self {
18. Self {
19. period,
20. // NumbbAbhZHETERIEzerolWVOBEERD
i1 // 1327350, f64/550.0%iRT /=35
22, sum: T::zero(),
23. deque: std::collections::VecDeque::new(),
24. }
258 }
26. pub fn latest(&mut self, new_val: T) —> Option<f6d> {
27. self.deque.push_back(new_val);
28. let old_val = match self.deque.len() > self.period {
29, true => self.deque.pop_front().unwrap(),
30. false => T::zerol(),
31. hr
32. // self.sumIhn¥g - BT TEEIFNIEESE0N
33. self.sum = self.sum + new_val - old_val;
34. match self.deque.len() == self.period {
35. // self.sumldTE, BVETHOTHHEFF64ELE
36. true => Some(self.sum.as_() / self.period as f64),
B false => None,
38; }
39. }
40. }
41. fn calc_stream(average_length: usize) —> Vec<f64> {
42, // i32BIDET
43, let input_data = 1..=10;
44, let mut ma = MovingAverage::new(average_length);
45, let moving_averages = input_data
46. .filter_map(|new_val| ma.latest(new_val))
47. .collect::<Vec<_>>();
48. moving_averages
49. }
50. pub fn main() —> () {
51. let ma = calc_stream(2);
52. println!("{:?}", ma);
53. | }
27 ~BERICRD

BNSA—5—TZHHAIT2ZIET, BHRNGE (f64) ZEELLVARILSNLTOTSLER R DI E
NAIBEICHEDE T, — A CHRIDBETFHIDHEDREZRDE T BIATELIVNDIFITEEL, 0 NMEESNT
BO. ME. BENTET, 64 [CFvATEDRICRESNE T, LA MIKDEED5IEOEERTKD
SNDEMELDHRN. SENICERTEDDNFRTI,

Rust DL 2 (Z2EHEEEILR)

DL FOBEELGFHATEE LT EFEORICXY Y REBRDNORESEINTEDEVWDRHHNHOET, C
CCIHEREAES TSI THS itertools ZAWT, FHALET,

1. // (1):RustiZ#ET(I/\Itertoolshl -M/hZEuse

2. use itertools::Itertools;

3. fn main() {

4, let iterl = vec![1, 2, 3].into_iter();

5. let productl = iterl

6. // (2) :RustiREFEDBICAVYRERFFITEINTES

7.5 .cartesian_product(vec!['a', 'b'])

8. .collect::<Vec<(_, _)>>();

9. println!("{:?}", productl);

10. Ll == [{1; *a“); (1; *b%); (2, *a'), (2, 'b"), (3, *a'), (3, ‘b")]

11, let iter2 = vec![1, 2, 3].into_iter();

123 [/ AIVREDSBEERBIO AN IS—ICHEDTES

13. // TREDXDICHARIICFU 3 BaEE e E L Tl 38 = B n] AE

14. let product2 = Itertools::cartesian_product(iter2, vec!['a',
'b']).collect::<Vec<(_, _)>>();

15. println!("{:7}", product2);

16. [== [{1; 'a%)y (1; "b'); {2, “a"); (2, 'B"'), (3, "a"); (3 "b)]

17. | }

COI—RoDiter! DE(F Intolter L TIMN(F Rust 1R%# (std) TR#HSNTVWBRETI, CORBRKIF
cartesian_product EWS XV Y REFEFHA, CNIZHULT. (1) DLSIC Itertools &S5 kL b % use
9% (RO—TIC&HD) T&T. ltertools kLA BA Intolter BY(C cartesian_product XV w RixE Z G L.
HUOHEDLDICHEDERT,

BEOEIER, HDVETFRICEMITITAVY REBINY B EFHERNEL =TV I3 EFEN
TWET, —AT. ZOXVYRHECTEMSNIcONEBITDENRETH /1D, BRDXYV Y Rzl
HEFCLEEUCEREHEZRSICIIBETE/LODLCLESHEFEICURINEL. AEORT—ZEUT+
EETSEBTCURSFELEEZONKT,

— AT Rust DL ME, use ZHVNTXVY ROEBEZRRL. BEZDAVY RAEEEZINIHZEIED
VINMIWIS -8B, FEBICEEHEOSNEMIFTTOEEELREZRIETEEXT,

28 ~BRIERS

Rust DL 1k 3 ({fEZIFLIEN)

Rust (3 C++ [CREBZZ(TTNDEETIEIHDRIH Rust (FBERDHEAE NI SZE C++ HOHAL R
HATUco BOTHAE AN EEZDE "HIBEFRRBELTOBREEAELS (ZEMEREDDDESEM
FEKETST) TRRT D EWSHKDOTICTOVSLAERMRILTDIELLERZIONET,

LA L. AMEEF—EZDHEE (FF) ZROCULEXDIEZDIEFEFRZELREI D EIFTERE D, Ehl
DEHERPRABEIA -5 T4 —)ILTOCRZERELELSNDEEZTNEY, Bird 73R (Efly XV vk
Z=R5. I\NITRAIZ Bird VSREME TS EWOTEFINZEBELTCLRSE. EREHRZEDTNSHTRY
FUNETEREEICET YV IHEBRIELTCLEVNETD,

Rust CCOET VI EEZIcE LS, HIZIS Flyable WS kL hZ2AEL. /\~& Flyable kL h%&
RERIDEVWSPOATHNICKRIRTERT . EHREBENEATTTRIDNETELELTENE CEBEHIE
N DRI —STICHIMT LR EED D ENTERT, Web TVIZTFHEBENH LA IL—23FILT—F
N—RERULSICEAREMTTOTSLERBTEDEEV BRI SNINELNEE Ao

29 ~BRIERS

Rust ¥ LS EZDXE

HE—#KTIE Rustld "#ULWSE) SOWOFHHEDKISTY, Rust NEELWEHFEIC 4 DIFEBLEEERT,

BUBERNE UL
BB I EBEER I LT DERICLE EERFE LS T SURGENER LRI —T—DXY
SINETINTLIC—HITDEBBVDTEESEDDICFBENIDECAZENSTETT,

ZDH. Rust AV/ A SIEFEICEF T, TT—AVE—IICHBROEZEINENTHDIENZNTI A
MRIESNIE OFRDRLAL) ZHRT DONEHL ERHES EBER L Rust FFE DA T+ ALDBBH D
B(LRBERUET, FTEE (BAFRAD (X Rust HFEOHRTHLWEINTLEIHD, EEDOKRRTFEE
FRATDEEFELE. BNOBETIEEWAEEO>TNET,

: the trait bound ‘[exec::Exec; 1048576]: arraydeque::Array' is not satisfied
src/shared_state.rs:15:26

pub execs: Vec<Mutex<ArrayDeque<[Exec; 10485761, Wrapping>>>,

help: the following implementations were found:

<[T; @] as arraydeque::Array>

<[T; 100] as arraydeque::Array>

<[T; 1024] as arraydeque::Array>

<[T; 1@] as arraydeque::Array>

and 53 others
e: required by a bound in ‘ArrayDeque’
/home/1b/.cargo/registry/src/github.com-1ecc6299db%ec823/arraydeque-0.4.5/src/lib.rs:97:26

pub struct ArrayDeque<A: Array B: Behavior = Satu t1ng> {

y this

Rust DIS—XytE—3 2 AADRLAE (BFR) EELCSBVEEDOXvE—IFl, BRUEDEERHDELL

BEVWI—RT—R (H#HAHIZATLHDS Web —EZET)

Rust (HELAV—DoEmLAV—DRX1Y (BDOHEE) ZHR TEXT . TNRICEER TEDREELEH
ENMBHTEHWNTY, REEOBRREN %L FIZITEREETENLUICAL Y REL2EF1—DRDODICF v,
async/await. dvo7)—3T —YBEZERLUICEENEZ ON. FIREAEVWE EICENTRO RN H
NDEI,

NIVFINGT 1L

Rust (3. C++ DESICAEIPZOMBEELEYENGREFEZRHLODE. BHRESERROSETHR
EWORAALEBCTHD NIVFINSTAILIEEETY . ZOFUMERECZN Rust DBHIEERBNEIHN &
LWERLUZETANELNE A,

30 ~BRICRS

2

FENEHEEICHE

R EEEZRRY DHEOIFRVITREETRRIDDONETY ., HXCRust ZESDIF, #HLWTOTS
IV EHEDDIHET. TAEBOMEE) THRBTIVYIADE

REERIDE TAENEME HenTOI5
LEELIEOITEDNDERICH D EFHERINK T,

ZDRTIT<E Rust (3 "MEFAEMIE) HDVIE RITHNERE) ZBMSEHEWHDIERICEER

N
= aAaX

SHAESNTVNET, SEOHITEIILFALY RAETETED. ELWTOTSLADERKEICADIZT TIH Rust

DAICEDIHHICEERT D ENTETNED,

#HLUSADOXEREL I, BADEAICIHELTTOTSLDLNIERDDEWVNSCENEEZEBNETS, 4l
Z 35 2 B TEN

|
Lic&S55 7075 0%E<2(2F. Python EIFERZEDELARTEITET, FcF—y—

L FTEEICET 2OV MV IS—hoh2RERIFDEETEDERNET, BERILEHRILERS
FHDE, REHTRNDETHDHELBEDDEHAEDT

DU DOBBEERNDRTVANRNEEZET,
FH

ZElF Rust DR ICEZEG S EBEEZTRMLUTBN LR U, Rust [CIZZ<DEBNIEENHDFRIN. CC
TlEETa@MlEEA.

Rust [FEBONENZEREHE (5F7EH) ZEAELTHED. BHE (SHZEH) MePREICHEO TVDE
FBTY, ¥CEZKVWEINEETEHPIL. IRDEFVNEKERSNTNDEETT, £ITIFFENEHETE
HEHRZLT, Rust [CBIELTHENICHREIEZEVWSFIO-FE—DDFTI, Fio. AFSNTLDI—
ZERAREHBEER/IDICERRLEECHD. HRICDEND

IR =E

S/CEEBIFIEITCVET,

31 —BRICES

[>T —R&BD]Rust TED Web 77U -3y
—TF=INR-AFHEHEITAMNDERFIEZIREZ D

Rust TWeb 7 7UT —2 3V ZRKITIRICERELDERKIMN S Rust DISHR T,
Rust [CEAT 2HNNZMES DAER, 5 1 [EITIE Rust 2> Web 77U —23Y
FFICHITDT —IN—REBETARDAERFET— RIZEEBNT Do

(2022 % 05 A 26 H)

paiza TWeb TVIZ7EPO>CVWEIBHERALET, SEIDESE TIE. Rust TWeb 77U r—>3v%i
R T2 ETOERELGDEDERRIM® Rust DISAIC T+ —HRZEY TTHRICHENLED,

Rust ZHAI2EFN—3 0 Rust DBEREEBEEECDWVWTHID WAL BIElDES, (£3[E) (CT
BHRICEHNLTOWDDTTSEBLIEE0,

SEIOTOY 78 GitHub DB 7)VURY RUZRABLTVWEID T, B —RZEETIIRISTHIA
<FZEW, 1 ETE Web 7TV —2 3V % BT 5 ETEBEELDT —IRX—ADFAEBETANIDL

CTEANLGEEEZHSZ DD, Rust TOY—RO—RIZERLET,

Web 77U —23vETF—INR—R

Web 77U —>3Y (web B —ER) ZEEITDICHID. Tk, EFEZERTEDT—FTIFvThHN
FEDLSICEEFFLTELIVDIFTIN, T—FZRLFIDIVIR—RV LT (Ub—23F) T—IR—X
ERATBHIENENTT,

VAT L& Web 7TV —2 38— /)\eT —IR—AG—/\ICHREL T, HE. TH/INERE (XT—hH)
DEBZET —INR—ZAY—/NICEELTIT, CDI&ICKD. Web 7T UT—23r 85—/ UHHREITIREF LU,
AT —hLRIENIBOIHEBLETDEITED. RT—RLRIBORT —)L7 IROT TV -2 3007 701
TOEADEBIEESNDEEEBICT —YDEENBSCEDERT,

COARDTAYYRELTIE, T—INR—RAY—/\ WM BE—BERICHEDE. RT—ILT7YTHRECEDIE,
BSEIENY T DAIBEIEATR MRy T [CED/DCERENFETONE T, LAMULENS, BILLEREEK
HEWBRD (FHE—ERICEDBHIEEEZONET,

32 ~BRIERS

https://github.com/fn-reflection/web_engineer_in_rust/tree/main/season2_chapter1

FTVT—-oavREEBETAN

Web FF(ICRE S T FHNICHREZED DDRENH DT TUT —2aVHEELRICBWTEETANIBRAT
Fo FCTIvMNVERETORZRABI2%HE. BETAMDEREFIFIFHEAISEVEERNFEEDDDHD
ENC

HHTHEITANDEBWNZFET DE 'VRATAICHRFIDIRDE) (518R) Z7AMI—RELUTERIICE
WU, V=RO—ROZEENMTONICEELEICTAMNI—REETIDET, V—RI—ROLEZRICEHF
FRDIRDEVHIIESINTOWEWCEEBENICKRILT D) F2EWVWAET,

Ruby on Rails TOREICK<IHEAENTLID RSpec BEDNEESE(CT DL, Web FETIFLITDLS
BT AR ZLLITVET,

AYvyoFAN (##a02y o OREE)

SRIVIIT TR (F—IR—ABEDIRILIT 7 EEEL, LARY ZAPEIERERIIS)
IVRIRAYETRAN (HTTP TV RIRAYMIUIITRNL, LARY REWERZIREES)
To2OYTRN (T80T 00SATHEIL. LARY AVEIVERZIRIES D)

etc - (TA =NV RTARNEE)

o &~ b=

Rust TIZTRANIEEBFERAEE LTHEELEIN 2022 F 5 ARTETIZ RSpec DKIBT IT7 I RATY
F—RETANIL—LT—=Uh525DIFTEEL EMEEHTANDOBRICIFEHENHDET . BETALD
T =EBECITDIITIUEFEITDEITIN SEIDLETIEITANENEENT DEMTILRABELT X
bd—r&ERLET,

Rust DEELT —IN—RISITFVRI1T3Y

Rust 67 —INR—REFATD=HICE<BVNSNDEST1TSUELTIE Diesels & 'SQLxy hHDOET,
CD2DDZATIVENBZEDIAVE TN ELEDET,

Diesel (& Ruby on Rails @ ActiveRecord [Z{8l/c ORM (A73¥z o KJL—>3F+)L¥wv/{—) T. Rust
DEXZRWNT SQL Z4R. FITTEET, —7 SQLx (3 ORM H#EEZR/EWS1TSUTHD. =D SQL
HEZDERFENTCT —INR-R(COTVZHRITLET, F£/c2022 F 5 BIRAETIE. SQLx DFIE async/await
BX(ZXIHL TS —7AT Diesel [FRMETHDEWSEWVNESHDEXT,

CORETIFIEFIMLIERZH G LTNT Rust ® Web TL—AT—ZEHAMNEL, S1T5UELTHER
|87 SQLx #ALT MySQL [CEGLET,

33 ~BRICRD

Rust+SQLx T MySQL [C#E#9 D

CCTIE Rust o MySQL =l 2775 %0RLET,

075 LDETICIE Rust BFY —ILOA VX —=)LOM, "MySQL) O1YA=)LAARETY, VT
UIRT RUIZIF Docker ZRWVEH Y TILEH DD T, MARNRBEADA YA L—)LEBIFWGERFTHIBLL

=LY,

SEIF. T —IRITPERFEEICELAVDONDTVYADT —Ft v b Rust DE&EHE LTEZ L. MySQL
CHRAESITD IOV ILZABLELL. Ty hDT—TIVER SQL IFUTDOXSICHEDET,

CREATE TABLE IF NOT EXISTS iris_measurements (
id SERIAL,
sepal_length DOUBLE NOT NULL, —— <&
sepal_width DOUBLE NOT NULL, —— #AS<ODi&
petal_length DOUBLE NOT NULL, — fERADES
petal_width DOUBLE NOT NULL, -- fEHDIE
class VARCHAR(16) NOT NULL —- 4%

);

SAL A"BNIEINZEZDRERITLTCT —TIEFRT D EETERI A Rust AT SQL ZH1TID
TEHDOEANLZTOT S LZRELE LI,

SEIET—TILDERTAT S L (srcl/init_db.rs) &T—5DHEAHEZTTOTZ L (sre/mainrs) D2 D%
EDBfR L. B LW —R%Z sreflib.rs (CEERULET . F/SEBIOTAY I RT70)L (Cargo.toml) (&
BITFOELSICERLTWET,

O o0 N O WU s WN P

Cargo.toml

[package]

authors = ["Naoki Fujita"]

edition = "2021"

name = "web_engineer_in_rust"

version = "0.1.0"

[dependencies]

anyhow = "1.0.56"

csv = "1.1.6"

futures = "0.3.21"

serde = "1.0.136"

sqlx = {version = "0.5.11", features = ["runtime-tokio-native-tls", "mysql",
"chrono", "json"1}

tokio = {version = "1.17.0", features = ["full"]}
[[bin]]

name = "init_db"

path = "src/init_db.rs"

34 —BRICES

~N o e WN P

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
350

36.
37.
38.
39.
40.

41.
42,

43.
44,
45,

// src/lib.rs
use sqlx::{
mysql::{MySqlPool0Options, MySqlQueryResult},
Executor as _, MySqgl, Pool,
¥
// (D)AEDBERE) DT —FR—RA|E T
pub const DB_STRING_PRODUCTION: &'static str =
"mysql://user:pass@localhost:53306/production”;
// TAMDBUHERE) DT —HN—R$EHLFI
pub const DB_STRING_TEST: &'static str =
"mysql://user:pass@localhost:53306/test";
/! Q)EREALEZRITT DS54 L%EVERK
pub fn create_tokio_runtime() —> tokio::runtime::Runtime {
tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap()
b
// MySQLEESD7/=bD o517 b
[/ ARO A T I T LVBINIE S SA T/ MNERK £ E &
pub async fn create_pool(url: &str) —> Result<Pool<MySql>, sqlx::Error> {
MySqlPoolOptions::new().connect(url).await
b
// DBICREERT BT —SLLT. 7V ADAET —S%EEE
#[derive(Debug, PartialEq, serde::Serialize, serde::Deserialize,
sqlx: :FromRow)]
pub struct IrisMeasurement {
pub id: Option<u64>,
pub sepal_length: f64, // W< EE
pub sepal_width: f64, // H<®iE
pub petal_length: f64, // EHOES
pub petal_width: fe4, // {EfHdiz
pub class: String, // %%
}
impl IrisMeasurement {
const TABLE_NAME: &'static str = "iris_measurements";
// (3)include_str!<wZOmFIHA
pub async fn create_table(pool: &Pool<MySql>) —> Result<MySqlQueryResult,
sqlx::Error> {
pool.execute(include_str!("../sql/ddl/iris_measurements_create.sql"))
.await
}
1/ (A FTURTFRRT—FALOFI A
pub async fn insert(self, pool: &Pool<MySql>) -> Result<MySqlQueryResult,
sqlx::Error> {
let sql = format!(
r#'"'INSERT INTO {} (sepal_length, sepal_width, petal_length,
petal_width, class) VALUES (7, 7, 7, 7, ?)"#,
Self::TABLE_NAME
);
let result = sqglx::query(&sql)

35 ~BRICRD

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
750
76.
17
78.
79.
80.

.bind(self.sepal_length)
.bind(self.sepal_width)
.bind(self.petal_length)
.bind(self.petal_width)
.bind(self.class)
.execute(pool)
.await;
result
}
/! TYADERERELVIANERE
pub async fn find_by_class(
pool: &Pool<MySql>,
class: &str,
) —> Result<Vec<IrisMeasurement>, sqlx::Error> {
let sql = format! (r#"SELECT * FROM {} WHERE class = ?"#,
Self::TABLE_NAME);
let rows = sqlx::query_as::<_, IrisMeasurement>(&sql)
.bind(class)
.fetch_all(pool)
.await?;
Ok(rows)
L
}
// FEHIWebI =75 F-RustE2ESRE
fn get_csv_path(relative_path: &str) —> std::path::PathBuf {
std::path::Path::new(env!("CARGO_MANIFEST_DIR")).join(relative_path)
}
// EHIWebI =7 S I-RustE2EIEHE
pub fn read_csv(relative_path: &str) —> anyhow::Result<Vec<IrisMeasurement>> {
let csv_path = get_csv_path(relative_path);
let mut csv_reader = csv::Reader::from_path(csv_path)?;
let nums = csv_reader
.deserialize::<IrisMeasurement>()
.filter_map(|row_result| row_result.ok())
.collect::<Vec<_>>();
Ok(nums)

HBEHDTHD lib.rs [CDONWTHELINEZECAICDWTHEFRLETD,

(1) DT —IN—REHRIXFHNCDVNTIE Y TIVIRI RUD Docker VT FEEH LIiZEDEE T,
localhost M 53306 7/R— ~Z MySQL MF5ZIFTNDHEIRICESTVES, MySQL F# T3 3306 /R— b
DOEERZEEERELTVRIN. ENTER— M ERLCLESHALEFBEEREEENDETI,

36 ~BRICRD

(2) IZ2DWTIE. Rust TIXEATDIERPUIES YL (Tokio 75E) EIBEL. ZDIVFALDETI
VT EIARATDH asynclawait EXZRWNDCENTEEXRT, SEDD— REITIEIERPLEZRND XY b
FZEZEHDFEBAN., ERDY RV ZRRIEITHICAET DIRRICHWTEHED Y —RENERNICERTED
8. Rust ® Web 7L —AT—2% SQLx (F3EREFLIEA FIIREEOTNEXTD,

(3) D include_str! X7 OIFAEBT 7 ILEIAVIA VKT FFN E L THRAADENTEDYY AT, T7

TIVDFELEVNE TV AMIVERIETIS — 2D THEICERTY, 7iEUETIT7MIVEIERIICHEAAT S
RELZDIeH. REWT 7MKL TEHERDRWFERTIFHDFE A,

(4) 13 SQLx M ORM #EEZEIFIBNWCEERMIDEOIBEZT AT, SQL ZTURTRAT—RXVKI&
DBELTNET,

ActiveRecord ¥ Diesel 72E D ORM ZFIFA T 2DICLRZE BRI TUZRKTSEDD(FEHTIH. Fl
Z (3 IrisMeasurement.class % String (XF71) TIFE< Enum (FIZER) TRIRIDHELT. KDEYIE
B THAIEETDETT —YETINDRBEENZRELPTWVEEDH RN HDEEZONET,

1. | // src/init_db.rs

2 use web_engineer_in_rust::{create_pool, create_tokio_runtime, IrisMeasurement,
DB_STRING_PRODUCTION};

3. fn main() -> anyhow::Result<()> {

4, let tokio_rt = create_tokio_runtime();

5 tokio_rt.block_on(run())

6.)

7. async fn run() — anyhow::Result<()> {

8. /] BET—IN—RIEBRTDI5A4T7 T —IVEERK

9, let pool = create_pool(DB_STRING_PRODUCTION).await?;

10. /! BBETF—FR—2RIZiris_measurementsT—FILEVERK

11. let query_result = IrisMeasurement::create_table(&pool).await?;

12. println!(“{:?}", query_result);

13. ok(())

14. }

RlFinit_db.rs TIH, RFICHAETLEB(IEENTWVEVWDTRESRZIIBLED,

TRHEYTIAVYRTRERITTEET (Cargo.toml ([Zinit_db EWSITVRY—RAVhEEHELTED., src/
init_db.rs @ main BEAMFEEFNET),

1. cargo run —bin init_db

SEIFE—T—TILDHDERDEITIH AEF—HKREZFAY 2 E@BYEIERFTT —7IVERT D
ENHTERT,

37 ~BRIERS

1. // src/main.rs

2. use web_engineer_in_rust::{

S create_pool, create_tokio_runtime, read_csv, IrisMeasurement,
DB_STRING_PRODUCTION,

4. | };

5. fn main() —> anyhow::Result<()> {

6. /! RS &AL LEERK

e let tokio_rt = create_tokio_runtime();

8. tokio_rt.block_on(run())

9. | }

10. async fn run() —> anyhow: :Result<()> {

11. // csvipsT—&tyhEAEIICO—R

12. let measurements = read_csv('data/iris.csv")?;

13. let pool = create_pool(DB_STRING_PRODUCTION).await?;

14. // M FDOF—&~A—X|ZINSERT

5% for m in measurements {

16. m.insert(&pool).await?;

17. }

18. // Iris-versicolor®F—4%EBT5

19. let rows = IrisMeasurement::find_by_class(&pool, "Iris-
versicolor").await?;

20. println!("{:7}", rows);

21. 0k(())

22, }

B#(C main.rs TN, CHESHERICHBELTNEIEENTOWEVLD THESRZEIELED,

TEHEYTIOAVY RTEITEET (VR —RIV M ERHDIHEITIL —EEIEETDE mainrs O
main BE¥Z=NHUOEEES),

1. cargo run —bin web_engineer_in_rust

38 ~BRICRD

sepal_length sepal_width petal_length petal_width class

Items Queries History

Q
¥ Functions

¥ Tables

4.6 3.2 1.4 0.2 Iris-setosa
5.3 3 1.5 0.2 Iris-setosa
5 3.3 1.4 0.2 Iris-setosa

iris_measurements 7 3.2 4.7 .4 Iris-versicolor

6.4 3.2 4.5 .5 Iris-versicolor

6.9 3.1 4.9 .5 Iris-versicolor

H 2.3 4 .3 Iris-versicolor

6.5 2.8 4.6 .5 Iris-versicolor

bty 2.8 4.5 .3 Iris-versicolor

6.3 3.3 4.7 .6 Iris-versicolor

4.9 2.4 33 Iris-versicolor

6.6 2.9 4.6 .3 Iris-versicolor

5.2 21574 3.9 .4 lIris-versicolor

5 2 3.5 Iris-versicolor

5.9 3 4.2 .5 Iris-versicolor

6 2.2 4 Iris-versicolor

GUI Y —=ILICTT —IR—AANICT —IHBHMINTND & & FER

Rust THEITAMERN/\Ly IEHE

Rust [FEZHEEELTTAMYIR—FENTVNEY, SEIGT —IR—RADEEZBN LD T T —IN—
A=HRRPED [CHIEI CE TV N EIRIES 2T AN — R EEEXT,

1. #[cfg(test)]

2. mod tests {

3 use super: :x;

4. pub async fn truncate_table(

e pool: &Pool<MySql>,

6. name: &str,

7.) —> Result<MySqlQueryResult, sqlx::Error> {
8. let sql = format!("TRUNCATE TABLE {}", name);
9. pool.execute(sql.as_str()).await

10. }

11. /! TANAT—

12. // Rails®FactoryBotZzUZX~ok

13. fn create_fake() —> IrisMeasurement {

14. IrisMeasurement {

1153 id: None,

16. sepal_length: 3.0,

17. sepal_width: 4.0,

18. petal_length: 5.0,

19. petal_width: 6.0,
20. class: "Iris-virginica".to_string(),
21. }
22. }

39 —ERICED

23. /! T=TIVDEREMERIL

24, pub async fn setup_database(pool: &Pool<MySql>) {

25. let _ = IrisMeasurement::create_table(pool).await.unwrap();

26. let _ = truncate_table(pool, IrisMeasurement::TABLE_NAME)

27. .await

28. .unwrap();

29. b

30. #[tokio::test]

31. async fn create_and_select_ok() {

S8 /! TRRROT—H\—R|iEE

33, let pool = create_pool(DB_STRING_TEST).await.unwrap();

34. // BIEIOTAMRITICKZEIERAZIHE

358 let _ = setup_database(&pool).await;

36. let measurement = create_fake();

3/ let insert_result = measurement.insert(&pool).await.unwrap();

38. // INSERTXICKUF—FMEEEIN=MRIITS

39. assert_eq!(

40. "MySglQueryResult { rows_affected: 1, last_insert_id: 1 }",

41. format!("{:7}", insert_result)

42, H

43, let actuall = IrisMeasurement::find_by_class(&pool, "Iris-virginica")

44, .await

45, .unwrap();

46. /! FEEBIBGT—SPMETELEORIETS

47, assert_eq!(actuall.len(), 1);

48. let actual2 = IrisMeasurement::find_by_class(&pool,
"abc").await.unwrap();

49. /] FREEB=TERT—LIIMBTERVELEREETS

50. assert_eq! (actual2.len(), 0);

Silr ¥

52. }

T—IN—RATAMIBEEEIER (T —YDREPEH) ZHVET, MOSHETHAINELTANIL—LA
D—UTE TANMIBALLE (Y h7vD) ETAMETRILE (T4750Y) HEAIELTHRESNSC
ENZVDTIN. SEOT —ATIIYHRILAIBRICTE2ICHEAE T2 E TRTIFUBZE<ERELE LT,

F’o. Rust DT ARIEENBVRDETOT A EITHICEIETDDT. B—FT—TILICHTDTAN
BHHDE. BELTEKBITDIENHDET, Mutex BEZERITDE T, TAMDILATHZPIREIEBRD HERF
LODKRMULBWTANTOTSLEELIEETEXRIN. RITALYREE 1 [TIEEITDHEN—BBFETI,

1. | cargo test -—- —-test-threads=1 # RTALYRZ1ICHRLTEET AL

FBBTAMMILDY —ROA— RAETENEDRERIESN VDD DEIEZ /LYy IEENET, Rust
DALYy IEHANY —IUENWBNBEIRENA H D HE LA, 2022 & 5 BRFA CERDYY—XT#%H2 Rust1.60
THATES cargo-llvm-cov 'K D EIEBEREREF CEDD T, CEH5DOFARNEBNLET,

40 —BRICES

AV AR=)VIETEED cargo & rustup INY RTEHBICITOCENTEERT,

1. cargo install cargo-llvm-cov
2. rustup component add llvm-tools-preview

ANLY YDA TEDYT)VANY RTEITITDIENTE, ANLYIBERHANDPIIRRSN

html Z71)ILAAEHENET,

1. cargo llvm-cov —-html # A/LyPZEhtmlZ7A D

Coverage Report
Created: 2022-05-09 03:26

Click here for information about interpreting this report.

Filename Function Line Coverage Region Branch
Coverage Coverage Coverage
init db.rs 25.00% (1/4) 8.33% (1/12) 7.14% (1/14) - (0/0)
Lib. rs | 69.23% (18/26) | 78.50% (84/107)J 64.04% (57/89) - (0/0)]
main.rs 25.00% (1/4) 6.25% (1/16) 4.55% (1/22) - (0/0)
Totals 58. 82% (20/34) 63.70% (86/135) 47.20% (59/125) - (0/0)

Generated by Llvm-cov == Llvm version 14.0.0-rust-1.60. 0-stable

7AW EDERITHINLY I DRI

16 [/ FEHANEERITE D589 1 LEFERK

17 0 pub fn create tokio runtime() -> tokio::runtime::Runtime {

18 0 tokio::runtime::Builder::new multi thread()

19 0 .enable all()

20 0 .bui Lld()

21 0 .unwrap()

22 0}

23

24 // MySOLEF D /-bD I 514 7 > b

25 [/ AR ayT=Y U TIEYISAT Y NERKRI R b EHIE

26 1 pub async fn create pool(url: &str) -> Result<{Pool<MySql>, sqlx::Error> {
27 7 MySqlPoolOptions: :new().connect(url).await

28 1T}

29

30 // DBICHNT 27 —9 & LT TYAXDHET—S 5+ EH

31 1 #[derive(Debug, PartialEq, serde::Serialize, serde::Deserialize, sqlx::FromRow)]

Unexecuted instantiation: <{web engineer in rust::IrisMeasurement as core::cmp::PartialEq>::eq

lib.rs 77 1)LDA/\Lw DR TDAIRIE
41

—BRICES

SOUIANLY VIERERBEN DT AN T D E T, MTHNERREEDHDCENTEET,

FEH

SElE. 7TV —2avRAECHIFDT —IN—RAEBFTANDAB[AFH KLU Rust TOI—RHFIIZDN
TN ULEL

% #(3 Ruby on Rails @ ActiveRecord > RSpec. Python [C$(3% pytest ZH>THD., ZNEHENDE
Rust TIET —IRX—XEBEDLT A MERAECBRENSD TS VT ANEF >CWEWRERIFHDET,

— A CEBBEECRHREY —ILHIMBOTRANTHDEE, VY —RAHROESBIBATHD. BREEEOILK
CIHUTHENRO—YIVIDER (TRANZEH/\TA -V ET EHTREERE) ZHIR TED:EIR
ZENDDIE. Rust ZiK>TVWTETERVWERU KT, Diesel ZFIBITNERLADOBREMNHTDNELN
FtAo

RETIE. SEOEBRNEBEZEEZDD. Web JL—AT—0ZFIBLRY NI =07 TV —23 0%k
BLET,

42 —BRICES

Rust ® Web 7L —4A7J—% Taxumj T
SNS 77U®M APl Y—/)I\%=E3
—Web AFETOR . ERFiixE5

Rust TWeb 77U —2 a3V zRE I DRICERELDERFEMN S Rust DIGFAE T,
Rust [CBET2HNNZEE T DAESE, 5 2 O TIEAPIb—/N\ZEBEL. SNS7TU%
IS ELE T D ET Rust ZE o7z Web R TOERRMEPERFEMZ/HFERT Do

(2022 £ 08 H 09 H)

paiza TWeb T>VI =7 &P >CVWDBEHEBRLED,

giEl(x. Web 77U —23v([CHIFD RDB (UL—3F)l7—9R—X) OB EE. Rust 5 RDB
ZHIEHTDIRESLUBEHTAMNIDWVWTCERR LI UL, SEIF. Rust TWeb 7L —AT—2oT#%H2 Taxumi
ZAWT (REST) API Y —/\Z#EL., SNS 7 7UZEBFEEITDHET. Rust TD Web FHFETOEERE

PERRMZEBFELET,

SEOT7OY oM GitHub DY TILVUIRI RUZRELTWE IO T, A—REETITDRESHALIES L,

SEDEEDRAI—TRE

BARDWeb 77U —23vid, ryhD—00 T—IR=X, TIUY BEEEORMZE#ZELT. T—
YETIVI THAY, UIIUX (A—Y—AV5T7x—R /1P -IIZRNRIUIVR), €FaUTr. OJ. b
L—22J TLARN) = T—90. BEITAL, BEREEDIEICELELRLBELECHROEINTNED,

ZOE2TEFRL. —E[LZOBRREREITDOEHLH. COLETEY—/\U1 RTEELGEREE
32T —5ETYUVITE RDB+ VvF —(C&kdtyvraVvBEBOU Y TIVEERERRLUET, HTTPS, RiHaE.
OFVIBEERESNTVEVNDT, ABEFRBECHREIDRE7ZTIICERSNDEF1UT 1 EEICDOED
RSB TIEE L,

43 —BRICES

https://paiza.jp/
https://github.com/fn-reflection/web_engineer_in_rust/tree/main/season2_chapter2

Rust T API F#ZESD D7 R DFEE

Rust T AP| & Z#ES/ATEE LT, Ruby on Rails REDEZ LI Web TL—AT—JICHNRZE, £/
U2y (CREENDY) a—2 3 uhdial BHDEY AT AZERFDEFNEFFTERET API ZER 3 20DI13Z
NEDCEELNEWNWDTETY, —AT. UTOESHARDHDEEZITNET,

- RiTHREEN BN
BRONIETESEZE UX BEICHESIED. YATLDEMEETIFID, AVRYVAY A XETIFBDICHEZD

« 0SS (A—TvV—RVYITLDxT) TJL—LD—0DORFERIY—DELEEZ(F (KL, BFOVI1—3
UNDERBEMNBITZEEDHPT L)

c BEGBNBEIITA
- IRTLNKLEREN (well-defined) KEEICHED
c I5—/\YRUYIZREBICTVDPT L
- B aEAIEENC)

Rust TD Web (3. IHIRETCSRIETLELS (FEHROHLS, BREROHELS) ICEMET DrchHiE
. NRETORECEAMEVNERBONEIH. R, #ENICREMERT DRECEVWTENICHERYTS

T709—H%NWKIICRUET,

SEIDECETED SNS 7TUD API 4+

23 Rust TAPI —/\OB Y T)LEERET BICH/CDHE SNS —EXD#EEEH A7) "Ruitter)
EERULESERBNWE T, BT D APl EZDEANERIIUUTDLIICHEDET,

1. A—Y—FRER APl (- —2% POST 35&. 1—F—&AEELTCWEIINEI - —HAERTE
%)

2. OJ1Y APl (A—Y—%% POST §2&. 1—HY—&N RDB [CEFENTLINEOT IV TE, IvF—
& RDB [CtyyavF—HRiHiasnsd)

3. 70— APl (OJ1ViREETT+O—L71cWI—Y—%% POST 92&. 7AO0—T&3)

4. XEAER APl (AT VIREET 140 XFLRDTFR % POST 95&. TFANELHRTED)

5. 91L51> APl (AU VREET GET 32&. BAE 74O LT\ I——DXENRHFIETRESN D)

HLETSEIDEEDERIF Rust [C£D API B —/\EETIA. Y TILO—RICIET/\w D Web Ul 7
OJSLERAELTVET,

44 —~HRXICR2

mBrg g nan]

a—HEE

"nackifujita

AEEZERRTS FALLZ1TY
LRI R L | [Frasrom]

- —Bg

naokifujita; BT LWERSBREERELE!

naokifujita

atmarkit: SEIRRust TWebAPIY —/ (R BT 2 0ET

O 2

¥!

atmarkit

atmarkit: RustR &S RES !

Z40-73%

AP 5 —/\EMEREERDT/\Y Y Ul, £O "1—5—EIE, THEE1~3%Z& RO "XEERRID) TEELIZ. HD F1LS5TV)

BhnALyMR1+H] RVRARIONID

THERE 5 EIRIETEE T, F/z Chrome DevTools ZERL. Set-Cookie LARY AW S Cookie T ITA RS EHERT DRI
MEhEDbEs

WEE2 [CESTFA—Y—ZSZHOTWWNIEH TEED T RUN TEDLREAEER T DICITFREENHDET
B SEOABER#EINISEELREED TV TENTEDERNET,

SEDFRSA IS

SEFWeb IL—LD0—0Z5147ZVUELTaxum ZFIALET, O T ZUIIIEREES > %1 L Tokio D
AEF—LNRAREESTHD, KZLWPTVHERALTWEYS, ZOMAIRSI7ZUE70Ico8T 71
(Cargo.toml) ([CEERLTWETD,

W 0o N O WU W NP

B R R R R
B WNR®

15,
16.
17.
18.
19.
20.

[package]

authors = ["Naoki Fujita"]
edition = "2021"

name = "ruitter"

version = "0.1.0"
[dependencies]

BREIS—N\RITSA4TSY
anyhow = "1.0.58"

tyiasA473Y
async-session = "3.0.0"

Byl arT—&%RDBICHRINT BI=HDSA TSV

async-sqlx-session = {version = "0.4.0", features = ["mysql"]}

WebZL—AD—4

axum = {version = "0.5.13", features = ["headers", "http2", "ws", "tower-
log"]}

CookieBERICEFAEI—TAVT1—3HAHDTHEM

axum-extra = {version = "0.3.6", features = ["cookie"]}
FERBNBOEESATSY

futures = "0.3.21"

AT SAXTNNTIAZXDIATI)

serde = "1.0.140"

45 SERICES

21
22,
23.
24,

25
26.
27
28.
29.
30.
31

JSONERustiBEEMEZNITIA X, TVTSAXTBI=HDTATS)
serde_json = "1.0.82"

RustipoRDBZEIRD/ZHDZAT S

sqlx = {version = "0.6.0", features = ["runtime-tokio-native-tls", "mysql",
"chrono", "json"1}

O9F—DEESATS)

cookie = "0,16,0"

JEREAS S HALSATSY

tokio = {version = "1.17.0", features = ["full"]}
[[bin]]

name = "init_db"

path = "src/init_db.rs"

TF—YETILAV—DERE

5 DOKRERIRICHU/D. T —FT—TILMEDNMBECIEDERT,

« 1—H—F—7)L (user)
- HEE 1 OEIR(ICHA

s Tv 37 —%7—7)L (async_sessions)
- HEBE 2 DEIRICHEA
- async-sqlx-session 17 JVICEEEIED

« 7AO0—BET—7)L (follow_relations)
- HBE 3 DFIRICHA
- JAOD— (Jx40—9%1—Y—) &T7A400— (UAO0—EN2I1—Y—) ZLENELTOHEMIT

« XET—7)L (user_tweets)
- HEBE 4,5 ODEIRICHEAE
- AEERHRL, I—H—EXEZ 1 HETOBMF

followee_id follower_id

Q 15

v Functions

v Tables

async_sessions

follow_relations

follow_relations ¥—2)L, ID15 ®D1—H—(3 D9 DI1—F—%&T7+0—L. ID19DI—H—(FID18 DI—HF—ZT7A40—LTVNET

46 —BRICRES

async_sessions 7—J)b, JvF—(CEFENEYYaVF—ETI—RL. ZLIDdvy 3y ID KNCDTF—JIVICHEET D56, Y
2avT—5%ESBTEFT, CODRETIIT —FEEHRDIHICABLTNEIAERREAELTEIVFEREA

ETIDREZETRICRLET,

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
230

24,
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.

0 ~NOoO WU s WNR

// src/models.rs
use sqlx::{
mysql::{MySqlPoolOptions, MySqlQueryResult},
Executor as _, MySqgl, Pool,
};
use std::collections::HashSet;
// FBHEDB(EE)DT—HN—IEHLFT
pub const DB_STRING_PRODUCTION: &'static str =
"mysql://user:pass@localhost:53306/production;
// TARDB(HERE) DF—HX—REHLFF
pub const DB_STRING_TEST: &'static str =
"mysql://user:pass@localhost:53306/test";
// JERHAEERITTEI 1 LEVERK
pub fn create_tokio_runtime() —> tokio::runtime::Runtime {
tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap()
I
// MySQLIESED /=D IZAT7 2+
[/ ARDAL T =T ICEVOSAT A NERRIRX N EHR,
pub async fn create_pool(url: &str) -> Result<Pool<MySql>, sqlx::Error> {
MySqlPoolOptions::new().connect(url).await
h
#[derive(Debug, PartialEq, serde::Serialize, serde::Deserialize,
sqlx: :FromRow)]
pub struct User {
pub id: Option<u64>,
pub name: String, // 1—H—%
}
impl User {
pub const TABLE_NAME: &'static str = "users";
pub async fn create_table(pool: &Pool<MySql>) -> Result<MySqlQueryResult,
sqlx::Error> {
pool.execute(include_str!("../sql/ddl/users_create.sql"))
.await
h
// IEEIA—Y—&hSUseriERENG

47 —BRICRES

35.

36.

37
38.
39.
40.
41.
42,
43.
44.

45.

46.
47.
48.
49.

50.

51.
52.
53.
54.
35.
56.
57.
58.

59.
60.
61.
62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
712.
73.
74.
75.

76.
77.
78.

pub async fn find_by_name(name: &str, pool: &Pool<MySql>) —>
Result<Option<User>, sqlx::Error> {
let sql = format!(r#"SELECT * FROM {} WHERE name = ?;"#,
Self::TABLE_NAME);
let result = sqlx::query_as::<_, User>(&sql)
.bind(name)
. fetch_optional(pool)
.await;
result
}
// UserF—##%RDBICk LTS
pub async fn insert(&self, pool: &Pool<MySql>) -> Result<MySqlQueryResult,
sqlx::Error> {
let sql = format!(r#"INSERT INTO {} (name) VALUES (?);"#,
Self::TABLE_NAME);
let result = sqlx::query(&sql).bind(&self.name).execute(pool).await;
result

I
#[derive(Debug, PartialEq, serde::Serialize, serde::Deserialize,
sqlx: :FromRow)]
pub struct UserTweet {
pub id: Option<u64>,
pub user_id: u64,
pub content: String,
}
impl UserTweet {
pub const TABLE_NAME: &'static str = "user_tweets";
pub async fn create_table(pool: &Pool<MySql>) —> Result<MySqlQueryResult,
sqlx::Error> {
pool.execute(include_str!("../sql/dd1l/user_tweets_create.sql"))
.await
}
pub async fn insert(&self, pool: &Pool<MySql>) —-> Result<MySqlQueryResult,
sqlx::Error> {
let sql = format!(
r#"'INSERT INTO {} (user_id, content) VALUES (7, ?);"#,
Self::TABLE_NAME
);
let result = sqlx::query(&sql)
.bind(&self.user_id)
.bind(&self.content)
.execute(pool)
.await;
result

b
#[derive(Debug, PartialEq, serde::Serialize, serde::Deserialize,
sqlx: :FromRow)]
pub struct FollowRelation {
pub id: Option<u64>,
pub followee_id: u64, // 7#40O—=nAHl01—H—1ID

48 —BRICES

79.
80.
81.
82.
83.

84.
85.
86.
87.

88.
89.
90.
a1.
92.
93.
94,
95.
96.
97.
98.
99.
100.

101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.

115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.

pub follower_id: u64, // 7#40—d 501 —H—1D

}
impl FollowRelation {
pub const TABLE_NAME: &'static str = "follow_relations";
pub async fn create_table(pool: &Pool<MySql>) —> Result<MySqlQueryResult,
sqlx::Error> {
pool.execute(include_str!("../sql/dd1l/follow_relations_create.sql"))
.await
1
pub async fn insert(&self, pool: &Pool<MySql>) -> Result<MySqlQueryResult,
sqlx::Error> {
let sql = format!(
r#"INSERT INTO {} (followee_id, follower_id) VALUES (?, 7);"#,
Self::TABLE_NAME
);
let result = sglx::query(&sql)
.bind(&self.followee_id)
.bind(&self.follower_id)
.execute(pool)
.await;
result
1
pub async fn find_by_follower_id(
follower_id: u64,

pool: &Pool<MySql>,
) —> Result<Vec<Self>, sqlx::Error> {

let sql = format!(
r#"SELECT * FROM {} WHERE follower_id = ?7;"#,
Self::TABLE_NAME

)i

let result = sqlx::query_as::<_, Self>(&sql)
.bind(follower_id)
.fetch_all(pool)
.await;

result

}
#[derive(Debug, PartialEq, serde::Serialize, serde::Deserialize,
sqlx: :FromRow)]
pub struct TimelineItem {
name: String,
content: String,
}
/] BALGAT—H5%RT
/! BHER-DR—ayBEBLE
pub async fn timeline(
follower_id: ub4,
pool: &Pool<MySql>,
) => Result<Vec<TimelineItem>, sqlx::Error> {
// 74#0—-LTWB1—H—IDZEF|%
let mut ids = FollowRelation::find_by_follower_id(follower_id, &pool)
.await?

49 —BRICES

128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154,
155.

156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.

.into_iter()
.map(|r| r.followee_id)
.collect: :<HashSet<_>>();
/! BALSA/ICIZAS BEDEEOIHS
ids.insert(follower_id);
// BREDsqxTIRINGICEFIZEEbind TELZVDT/N\YS TS
// idDEES /NS A—4%bindd B
let placeholders = format!("?{}", ",?".repeat(ids.len() - 1));
let sql = format!(
r#"
SELECT users.name as name, user_tweets.content as content
FROM user_tweets
INNER JOIN users
ON user_tweets.user_id = users.id
WHERE user_id IN ({})
ORDER BY user_tweets.id DESC;
u#,
placeholders
);
let mut query = sqlx::query_as::< , TimelineItem>(&sql);
for id in ids {
query = query.bind(id);
}
let result = query.fetch_all(pool).await;
result
}
// MySQLTILINDEXICIF NOT EXISTSZEE TE/MALDTIS—N\IRUVTTS
pub fn panic_except_duplicate_key(result: Result<MySqlQueryResult,
sqlx::Error>) {
if let Err(e) = result {
let is_duplicate_index_error = e
.as_database_error()
.unwrap()
.message()
.starts_with("Duplicate key name");
if !is_duplicate_index_error {
panic!("{}", e);
}
};
}
[/ T=FIEERTS
/7 structictd I -3 o0 EESTLERINTEONER
pub async fn setup_tables(pool: &Pool<MySql>) {
panic_except_duplicate_key(User::create_table(&pool).await);
panic_except_duplicate_key(UserTweet::create_table(&pool).await);
panic_except_duplicate_key(FollowRelation::create_table(&pool).await);

KAEHRETIVSELT7AIVAGEILIIFEDIHEINTT

50 ~BRICRD

RRFE 1 B THRALICFEDER LICTETBNDT, FHRIFEELEI, timeline BEICDWTIE. SQL D
BHEN ENOTULED, SQLx MRIRELHID bind ZH7/R—kLTWEN 27D T 2DT, TL—ARILF % id
DEHPAELT bind 328EDTIZNIVEREEZITTOCVNET, LHLENS, SQL TRELT —FZEIS
FTHEVNSTENERICHEDET,

EFILXV Y RABEEFEEEIND MActiveRecord; [CHENRZERENMEZ FIH. BB EOXV Y RABEHE
REINZLDT, EFILOREEEHSLOTVNEVNSI XU Y RESHDET, Rust DL hEIIO%FRAIN
[E. BIZ(L insert XV REBFEESTDCEHEEARETITH. HLUWDTHRESIFZRBLET,

APl L1V —DR%

RIFHTTP UOTRNZER(FFD API TV BRIV hEERELF T, API EHICDVWTIIBHCRLTED N
S 2REHZETEICRLET,

W oo NN O WU W N

NNNNNRPRPRRPRRRR R R R
P WNRPOWOWOONOOU BAWNIEROS®

25.
26.
27.
28.
29.
30.
31.
32.

// src/endpoints.rs
/! ETIAVY—TEBLUIBEG LR ZTR A
use crate::models::{timeline, FollowRelation, User, UserTweet};
use async_session::{Session, SessionStore as _};
// 'y a iEBEMYSQLICIRET 2514735
use async_sqlx_session::MySqlSessionStore;
use axum::{
extract::{Extension, FromRequest, Json, RequestParts},
http::StatusCode,
response: : IntoResponse,
routing::{get, post},
Router,
};
/! O34T b ovF—EFHTBERNGESATIY
use axum_extra::extract::cookie::{Cookie, Cookielar};
use sqlx::{MySql, Pool};
use std::sync::Arc;
// A=Y —FREKAPIDY I ZARISONDRAF—7
#[derive(serde::Deserialize)]
pub struct CreateUserParams {
pub name: String,
}
// A—Y—R{ERRAPI
pub(crate) async fn create_user(
Json(payload): Json<CreateUserParams>,
arc_pool: Extension<Arc<Pool<MySql>>>,
) —> impl IntoResponse {
let user = User {
id: None,
name: payload.name,
| H
/! A—Y-BHEHHD

51 SERICES

33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54,
55.
56.
57.
58.
59.
60.

61.

62.
63.
64.
65.
66.
67.
68.

69.
70.
71.
72.
73.

74.
75.
76.
77.
78.
79.
80.
81.

match user.insert(&arc_pool).await {
/! BRIMUIEBHTTPRF—4ZA0—R201%:RT
Ok(_res) => StatusCode::CREATED,
/! RUEBHTTPRT—4A0—R400%:R T
// A=Y —ZBEECY—NEGEIS—TE
/! SUBBICRT—HRA0—RE51122E6TES
Err(_e) => StatusCode: :BAD_REQUEST,

}
// BIA4API
#[derive(serde: :Deserialize)]
pub struct CreateSessionParams {
pub name: String,
}
pub(crate) async fn create_session(
Json(payload): Json<CreateSessionParams>,
arc_pool: Extension<Arc<Pool<MySql>>>,
session_store: Extension<MySqlSessionStore>,
cookie_jar: Cookielar,
) => impl IntoResponse {
/! VOTANSNI=RRINTFET HDHRS
match User::find_by_name(&payload.name, &arc_pool).await {
Ok(user) => match user {
/! A= —RBNHFETHEEAT(0HE
Some(user) => {
let mut session = Session::new();
let expire_seconds = 86400;

session.expire_in(std::time::Duration::from_secs(expire_seconds));
session.insert("user_id", user.id).unwrap();
// RDBICEYIaFmFERAS
match session_store.store_session(session).await {
Ok(cookie_value) => Ok((
StatusCode: : CREATED,
// BRIL7=5Set-Cookie ARV ANYS ZBL TOVF—5EH
cookie_jar.add(
Cookie: :build (AXUM_SESSION_COOKIE_KEY,
cookie_value.unwrap())
// HTTPS(TLS) i/ Tlalsekl
.secure(false)
.http_only(true)
.same_site(cookie: :SameSite: :Lax)

.max_age(cookie::time: :Duration::new(expire_seconds as i64, 0))
.finish(),
}l
)),
)5
Err(_) => Err(StatusCode: :SERVICE_UNAVAILABLE),
}.
¥
[/l A=Y —ZDBFELEES

52 ~BRIERS

82. None => Err(StatusCode: :BAD_REQUEST),

83. o

84, Err(_) => Err(StatusCode::SERVICE_UNAVAILABLE),
85. }

86. }

87. | #[derive(serde::Deserialize)]

88. pub struct CreateUserTweetParams {

89. pub content: String,

90. }

91. // YA—MERKAPI

92. pub(crate) async fn create_user_tweet(

93. Json(payload): Json<CreateUserTweetParams>,
94. arc_pool: Extension<Arc<Pool<MySql>>>,
95. session: CurrentSession,
96.) —> impl IntoResponse {
97. /] tyiarpbuser_idEHREBTS
98, match session.@.get::<u64>("user_id") {
99, Some(user_id) => {
100. let tweet = UserTweet {
101. id: None,
102. user_id,
103. content: payload.content,
104. I H
105. match tweet.insert(&arc_pool).await {
106. Ok(_) => Ok(StatusCode: :CREATED),
107. Err(_) => Err(StatusCode::SERVICE_UNAVAILABLE),
108. }
109. }
110. /! 'viarpbuser_idEETTELRNMES
111. None => Err(StatusCode: :UNAUTHORIZED),
112. }
113. | }

114. #l[derive(serde::Deserialize)]

115. pub struct CreateFollowRelationParams {
116. pub name: String,

117. '}

118. // 7#0O—API

119. pub(crate) async fn create_follow_relation(

120. Json(payload): Json<CreateFollowRelationParams>,
121. arc_pool: Extension<Arc<Pool<MySql>>>,
122. session: CurrentSession,
123.) —> impl IntoResponse {
124, match session.0.get::<u64>("user_id") {
125. Some(user_id) => {
126. // IBELEERIOA—Y —DHFETIDHERTS
127. let result = User::find_by_name(&payload.name, &arc_pool).await;
128. match result {
129. Ok(followee) => match followee {
130. // FETRESETAO—-T3
131. Some(followee) => {
132. let follow_relation = FollowRelation {
133. id: None,
53 ~BERICRD

134,
135.
136.
137.
138.
139.
140.
141.
142.
143,
144,
145.
146.
147.
148.
149.
150.
151.
152.
153.
154,
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184,
185.

followee_id: followee.id.unwrap(),
follower_id: user_id,
b
match follow_relation.insert(&arc_pool).await {
Ok(_) => Ok(StatusCode::CREATED),
Err(_) => Err(StatusCode::SERVICE_UNAVAILABLE),

}
None => Err(StatusCode: :BAD_REQUEST),
-
Err(_) => Err(StatusCode: :SERVICE_UNAVAILABLE),

¥
None => Err(StatusCode: :UNAUTHORIZED),

¥
pub(crate) async fn get_timeline(
arc_pool: Extension<Arc<Pool<MySqgl>>>,
session: CurrentSession,
) —> impl IntoResponse {
match session.0.get::<u64>("user_id") {
Some(user_id) => match timeline(user_id, &arc_pool).await {
Ok(tweets) => Ok(axum::Json(tweets)),
Err(_) => Err(StatusCode: :SERVICE_UNAVAILABLE),
}I
None => Err(StatusCode: : UNAUTHORIZED),

}
pub async fn run_server(
arc_pool: Arc<Pool<MySql>>,
session_store: MySqlSessionStore,
) —> anyhow: :Result<()> {
// 8888BR—FTLTDIPTRLADSFHFERITS
let addr = std::net::SocketAddr::from(([@, @, @, @], 8888));
/! W=TATEEETS
// posti3HTTP POSTIRAA b
// getlIHTTP GETIRARA b+
let app = Router::new()
.route("/api/users", post(create_user))
.route("/api/sessions", post(create_session))
.route("/api/user_tweets", post(create_user_tweet))
.route("/api/follow_relations", post(create_follow_relation))
.route("/api/pages/timeline", get(get_timeline))
// RDBOSATANET V3 BBMOFVHEDLIICTS
. layer(Extension(arc_pool))
/] YAy AT ET O3 BEHSFUEERLIICTS
. layer(Extension(session_store));
axum::Server::bind(&addr)
.serve(app.into_make_service())
.await?;

0k(())

54 SERICES

186.
187.
188.

189.
190.
191.
192.
193.
194.
195.
196.
197.

198.
199.

200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221,
222,
223.

pub struct CurrentSession(Session);
const AXUM_SESSION_COOKIE_KEY: &str = "axum_session";
// https://github.com/tokio-rs/axum/blob/main/examples/sessions/src/main. rs#ct{
g
// axumDhR#& hextractorziEs:
// DyF—IEESh ey ard—hotkyia TS ERTTS
#[axum: :async_trait]
impl FromRequest for CurrentSession
where
B: Send,

type Rejection = StatusCode;
async fn from_request(req: &mut RequestParts) —> Result<Self,
Self::Rejection> {
// MySQLEvS a3 AT EERTS
let Extension(store) = Extension::
<MySqlSessionStore>::from_request(req)
.await
.unwrap();
/! SO hSRESNZIvF—EBRTS
let cookie = Cookielar::from_request(req).await.unwrap();
/] oyF—botyiar+—zmE
let session_id = cookie
.get (AXUM_SESSION_COOKIE_KEY)
.map(| cookie| cookie.value())
.unwrap_or("")
.to_string();
/! ByarF—hotyial TS ERTS
let session_data = store.load_session(session_id).await;
match session_data {
Ok(session_data) => match session_data {
/!l YA TS EE=tyiarT—5ERT
Some(session_data) => Ok(CurrentSession(session_data)),
[/ 'y F—EBHEELLEN=0T A TETIR
None => Err(StatusCode: :UNAUTHORIZED),
}r
// RDBEDIEBMYINTWDRIREMAH S, 500K
Err(_) => Err(StatusCode: :SERVICE_UNAVAILABLE),

}

XAEZRIIURIRA VRSELTFAIVAGEILIEITDENTT

FIRBIRE(L run_server BHICEFENTNS URL /K\REE#H (VIIRMN\VYRT) OXIEER b—T
V) TY, BRI /api/pages/timeline (C GET YU TR EXETHE. get timeline YT\ RIH
HUOHESNET . KICZDTICHD layer XV v RZ2@EL T, YUIIAN\YRZANS RDB P2y 3V AL
ZSRTEDLOME (Extension) LTWET,

55 ~BRIERS

RICDA—Y—FEIERL APl D create_user VI X\ RS T AH. Json(payload) & arc_pool &L\ 2
DO5|#ERF>TLET, arc_pool [FRTR U7z layer XV RICKDILRDFERTHD. MySQL 517>k
T—=ILHN\YRSATHEATEDCEERLTCVETD,

IERAELTE axum [FU T I ANIHAHBET B1EHR (JIITARYSY, /XX - TTU)XSGA—=F—, JSON T—
13E) Z=BHICEIHELUTERTE, COEEIT Textractory EMEIENTVWET, HEL/INSXA—FEEKD
S|1# - L CHRAICEIZHERDIFEEDEISICRZIEFITN. Rust DL MMIK>TERSINTULET,

CreateUserParams (3 JSON T —YDAF—YZHELTHD. COXF—VITHEELZLE axum 1R
T—HAA—R 422 R TKNDEDTY . CNUICEDBERICKDANREERRE TORAZHLEDHDC
ENTEXY, create_user (FA1—F—1ERDHEICIHC GAYVIEAT —FRAI—RZRLTVET . KDOBEIC
AT —=HAA—RZRFED. T5—XvtE—IZRANUIDTDIEETEXRT,

BEMIFEBTOERICENDEPCEHTI A Rust D null ZEHEIDITAICKD, BIEZRBERICE
IR WNTT . axum [CAIEZEZRZELD. Option > Result DXV R&EER LD T DE TR REHIN
ENCIN

axum @ extractor (& FromRequest b1 hZEEEK T D ETIERTEXRT, create_session B TIE
Cookiedar &\\\5 extractor ZERALTCLEIH. CNUE axum_extra EWS 51T SUNBROTEED T,

F7-%[Eld CurrentSession WS HAY L extractor EE&EL. OJ1 YL TCVWERIFTNIERT—FRXO—R
401 BRI IS HEEZE>TCHELC. COLDIHBAHRYLAREZLLELKTH, #Bholtyyavy AT ETvE—
ERNEEGDOEDENSERELZINSEFEIRBETCETEIN. PLKETT,

CDHARY Lsextractor ZFIFALCOT MV REEERT DY 11— MEKAPI ©T7+0— APL¥1AS1> API
ERELRUI,

56 ~BRICRD

OS5 LDRIT

TOISLERTIBDHBRIIEICT —IR—AT—TILDERNBETY ., T 2T O S L%ER
L&,

1. // src/init_db.rs
2. use ruitter::models::{create_pool, create_tokio_runtime, setup_tables,
DB_STRING_PRODUCTION};

3. fn main() —> anyhow::Result<()> {

4. let tokio_rt = create_tokio_runtime();

5. tokio_rt.block_on(run())

6. }

7. async fn run() -> anyhow::Result<()> {

8. // FBDBICtyIaryT—7 IV EER

9. let session_store =
async_sqlx_session::MySqlSessionStore: :new(DB_STRING_PRODUCTION).await?;

10. session_store.migrate().await?;

11. // FBDBIIERET DI5AT T —IVEERK

12. let pool = create_pool(DB_STRING_PRODUCTION).await?;

13. // FEDBICEDMT—T IV EVERL

14. setup_tables(&pool).await;

15. ok(())

16. }

v a3 AR % async_sqlx_session [CEHETWVWAMIEE 1 B CTOHBAEEERIDDTEELET,
MySQL A* 53306 R—hTRBEZ(FTCVDRET eIV Y REETLED,

1. cargo run --bin init_db

Y—/\EETOV S L%ETRICRLET,

1. // src/main.rs

2. use ruitter::endpoints::run_server;

3. use ruitter::models::{create_pool, create_tokio_runtime,
DB_STRING_PRODUCTION};

4, use std::sync::Arc;

5. fn main() —> anyhow::Result<()> {

6 // RS HA LEERK

7. let tokio_rt = create_tokio_runtime();

8 tokio_rt.block_on(run())

9

%]

¥
10. async fn run() —> anyhow::Result<()> {
11. let arc_pool = Arc::new(create_pool(DB_STRING_PRODUCTION).await?);
112)- let session_store =

async_sqlx_session: :MySqlSessionStore: :new(DB_STRING_PRODUCTION).await?;
13. // APIH—/DEEH)
14. run_server(arc_pool, session_store).await
15. }

57 ~BRIERS

TEIVYRTIOAV/AILLTETTEET,

1. cargo run ——bin ruitter --release

APl OENMERIEE LTIZURY RUD ffront (2352 Web Ul ZESM. curl 75D HTTP 754 7> bR
BDTENTEET,

FEH

SEIFSNS 7TV EY Y TILEET BEWNSEM TRuUstICH1FD Web API U —/\FAKEFIERLELTc. £
DiEET

1. Web 7L —AT—2 axum O3ERAE

2. U—=)I\UA Ry avERDHIR

3. Rust + SQLX [C&2T—FETUVIDRVR. BLR
4. Rust + axum [C&2 Web APl EZEDRWV R, BLR

BEETAMICTEREBIZDTIFEVWDEBNET, 5 axum OMRIEITTFEEINTSD, V—RAZHOE
WAWBEE(IEDZESTY,

58 ~BRICRD

Python h*5FIATES
Rust #BEET—5 0 >1 7>V Polars DEH

Rust TWeb 77U =23V =HE T DRICEMEBDIERFMN S Rust DIGHEET.
Rust [CEAT2HNCNZERTDAES, 5 3 [Od.Rust EDERT —F i Z71 73T
%% Polars DIREZEZHICHKRIEL. EFERI D,

(2022 %10 B 31 H)

paiza TWeb ITVIZ7ZPo>CVWEIBEHEELET, FIEIDES TIE. Rust TWeb 77U DEREE 5D
v avEEE. SNS D API U —/\ZHEIT DO DEEMEE. Rust DBRHGEIATAICKDY —/\TA
RFPTUT—2avOmBEICDVWTRUEL,

SEE #EEEZEZTRust BOERT —I 95175 THD "Polars; ZHFAL. ZDREZHZHNIC
ik, ZELFET, SEIOTOY I GitHub OBV TILURI NUZABRLTCVWEID T, I—RZEETT

BDERFTFIALIES LN,

Polars & pandas

Polars (& Python D/NRIET — & DI XARCTL<FLSN D pandas Z#@< B L7517 75U TY, pandas
MU FIE6IEE. ZNUTHUT Polars (FRyF300<EWSDIFTY,

EE5% [F—9T7L—L1 ELKENDHRT —FREIMENVPT N VI T —RAERRLTED T&&ECT —
HIIBTED Excel DESBAMSAT I H2WVE MY AEYIL—23FIT —IR—X; EWSRUT,
K[EICKZA DY —ILEEOTVNET,

FAMEELT =Y —RELT UL =3 FIT —IR=RIFEEBA.csv ¥ "Microsoft Excels "Apache
Parquet; EDT 7). £z TAmazon S3) BECH DT —F=E/RIENTEDREHBLTNET,

HEERELT, pandas 1Y NumPy EE5lE WS C SRBOBEFRNLEY Y TIVET — o=/ \v I IV REL
THD—7A. Polars (& Apache Arrow memory model EW3FiEAT —4#EEEELTHED. DI TVUIC
BLTWET, &7z Polars DARX Y ~TI3 pandas 8TMDT =921 75 UEDEEHMUAIEREZ
RO TVWAZENRENTVETD,

59 ~BRICRD

https://paiza.jp/
https://github.com/fn-reflection/web_engineer_in_rust/tree/main/season2_chapter3

E5IC. Polars [CI3 pandas [C7RVVEEFHER I FI AR E 0 T RBELDIEREN B DAFTN TS D, 5 E
BREAWEATERY, —ATYIVRBE(LZITADELDICTDEE L pandas &(F API i"RE2E N8B D
F9 (EBONEVZIEKIBET — 9927517 >UD TApache Sparks [API AMUTWED), ZLT
pandas (& Python @ APl LA RHENTWEEAN. Polars (& Python $KU Rust ® APl AM2tEn T
x99,

BRWT —5 217 (Exploratory Data Analysis. EDA) %Z#%X T Rust APl TEMI D& WVN>/c1—X T —

R(FEZICKL s, Python TERR LI, ZE#ERZ Rust W7 7T —2 3V —ALRICHMAADTS
EDQI—RT—ANEZBNDTL&LD, SEIE Rust hoDFIAICDOVWTERHLTHET,

ZEDHEBRDRITRIE

INTA—XVABETREICEKELTIN, SEXTICEEOTOISLOERTREEZTTICRLES, Y=
A7N 16 f@HDDT, WHMIBRAIEEEERESHEILTEET,

+ OS : Debian 11 (Linux 5.10.0-17-amd64)

+ CPU : AMD Ryzen 9 3950X 16-Core Processor

* RAM : G.Skill F4-3200C16-32GVKx4 (DDR4-3200 32GBx4)

+ SSD : Crucial CT1000MX500SSD1 (1000GB Serial ATA 6Gb/s)

Hello Polars

FITRILEIDELETEID LIFTFVYADT =5y M DWTHRBNGERT VT EETLED,

TV ADELE (class) &S H<KHFDREE (sepal length) . A< F D& (sepal width) . fEFDRE (petal
length). TEF D& (petal witdth) DFHEBIOEEREEZHELE T, HN<KAORSOFHEOREIETT —
YEWOBEZDEICLET, &Kz Python OETRMEEHAIY —)L Ttimeits ZFAWLT pandas & Polars DE{T
REZHBRLUET,

TYADT =5y MIBEBE 150 TOFEICNESHT -5y hTHDD T, EETIIEDERET —5%
ARG 2 EZEAA—I U AEIT —5ZiEDRUIZED (DFED 150 A1TDT —%) ZXRE U TAUIERREZ
FHAILE T, Python BLUOSEFIAT DA TSUDN\—IaVEUTOLSCHEDET, RRICIFE. /\—T3
VEBRY—)L Poetry ZFIAALEX U,

60 ~BRICRD

1l
2l

= W

O 0~ o W

10.
11.
12.
13.
14.

pyproject.toml

[tool.poetry]

authors = ["NaokiFujita"]

description = "test script for performance comparison between polars and
pandas"

name = "web_engineer_in_rust"
version = "0.1.0"
[tool.poetry.dependencies]

pandas = "~1.5.0"

python = "~3,9"

polars = "70.14.18"
[tool.poetry.group.dev.dependencies]
autopep8 = "~1.7.0"

pylint = "~2.15.4"

ipython = ""8.5.0"

B3R TI M pandas & Polars ZNZNICDVWC, SEIDEHZERTZTOT I LZETHRUET,

1
2
3
4
)
6
7
8
9

10.
17.
125
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
230
24,
25.
26.
27.
28.
29.
30.
3%
32.

aggregate_query.py
from typing import Union
import numpy as np
import pandas as pd
import polars as pl
def by_pandas(df: pd.DataFrame):
"""pandasZANVTT VY AOEHRILOFHEZME TS
features = (
df
.groupby('class') # FVYADEHETENTS
pandasTIARINF A TyIRBYR—bENTNIDTISEITS
.agg({
'sepal_length': [np.mean, np.std],
'sepal_width': [np.mean, np.std],
'petal_length': [np.mean, np.std],
'petal_width': [np.mean, np.std],
})
KA DRZOFETRELVEZS (BIR)
.sort_values(by=[("'sepal_length', 'mean')], ascending=False)
)
return features
def by_polars(df: Union[pl.DataFrame, pl.LazyFrame]l):
""polarsEAWTT VADEBRAC LORHBERBTH"""
features = (
df
.groupby('class') # FYADEHETENTS
.agg(
[
polars(@VIFA 2 TyvoREBREYR—ILTVEN
VAN BRILALEEESIETHRILITIATEE
pl.col('sepal_length').mean().alias('sepal_length_mean'),
pl.col('sepal_length').std().alias('sepal_length_std'),

61 —BRICES

) pl.col('sepal_width').mean().alias('sepal_width_mean'),

34. pl.col('sepal_width').std().alias('sepal_width_std'),

35. pl.col('petal_length').mean().alias('petal_length_mean'),

36. pl.col('petal_length').std().alias('petal_length_std'),

37. pl.col('petal_width').mean().alias('petal_width_mean'),

38. pl.col('petal_width').std().alias('petal_width_std'),

39.]

40.)

41. # <R ODESOFHETHREZLVEZ S (FFIR)

42, .sort('sepal_length_mean', reverse=True)

43.)

44, return features

45. if __name__ == '__main__"':

46. # pandasTOEEREETH

47. features_by_pandas = by_pandas(pd.read_csv('../data/irisx10000.csv"'))

48. print(features_by_pandas)

49, # polarsTOYFEHEBETE GBEFMLZL)

50. features_by_eager_polars =
by_polars(pl.read_csv('../data/irisx10000.csv"'))

51. prlnt(featu res_by_eager_ polars}

52. # polarsTORMEHE GEBEFMTS)

5378 featuresﬁby_lazyﬁpolars =
by_polars(pl.scan_csv('../data/irisx10000.csv')).collect()

54. print(features_by_lazy_polars)

pandas & Polars © DataFrame WSV 5 XZH>THED. CNH 2 RITRZERI/2HDT —FEEICED

T —LEHAUIHERTY, B35 2 RITRELTRDIRSZENTEET, pandas DERRTIIEITEZENMRONIN (VT VY
23) HiBbFEITH. Polars DEAICEHDEEA

by pandas BI#(T(d pandas ® APl ZBWLWTCoITU%., by polars B TI(& polars @ APl ZFWCo T
ZEIRLUTWET, BHEINTWND API ICEDEWEIHDEIN EEH6FE class (FVXDTELE) 51T groupby
(&H) =L T, EMEHELTmean (F3) & std (FRERE) ZEAL. ZOHBNINTY —hEd &S
MEZRECELIENTECVET, BNIREFHDEIN. SQAL ZELCENTEDATHNIIERI DD
(FZCHRTHEHLLFENTLELD,

62 —ERICED

Polars [Z[& pandas [CI3750) LazyFrame EWS O SABEFEELTE D, COFIAN#ERSNTOET, N
(FEEDETZMIEILESE. collect XV Y FEMOH Uiz EICEHEZETTL DataFrame &RFIT5E 0D
BEEZBLCWET, LEDTATSAICENTIE. read_csv XV R% scan_csv XV R[CEZRI D1
T. LazyFrame 75 RZRAWGEBERTHAIREICHEDE T, COELERTICED, FEAT I I SDOERZL
ZBDBENBRBECZEITRADRIHNKRECRDEEZIOLNET,

LED 3 &% (pandas ® DataFrame ZFL\%. Polars @ DataFrame %ZF\\%. Polars @ LazyFrame
ZFW3) [ZDWT Python OETREEHAIY —)U timeit ZAWT, BSFHAIZETO/ERMUATELZDET,

In [6]: %timeit -n 10 by_polars(pl.read_csv('../data/irisx

75.8 ms £1.19 ms per loop (mean *std. dev. of 7 runs, 10 loops

In [7]: %timeit -n 10 by_polars(pl.scan_csv('../data/iri sv')).collect()
72.8 ms £1.48 ms per loop (mean xstd. dev. of 7 runs, 10 loops each)

3 FEICOVWTENENREEHAIZTT o e R DT

fERE LT Polars (& pandas KDEHKZ 6 FRSETTERUc, FKRELEIFZNTI A LazyFrame
ZRWCADDINCEVNE WSHERIMEONE UL &NV T E—EENF —CToElLiciFEnznidirg
RELTRZDDT, WHNBARERENASENEEZISNET, £/ Polars D/\yI IV R(E Rust TEE
SNTHED, YEIATOHERENSIESHLPTNEEZDZENTEZEDSTY,

63 —ERICED

RRIITVZHALTHD

EHNITURAINLESERT VDT, RISEFRIICHTDITUZEAL THIcWETETI . HUEID Rust /¢
TA— NV ARREEE TS IR RINT — 5 ZAVWTHUOBB T EHEL AL SERVETD,

W 00 N O WU BsWwN R

time_series_query.py

from typing import Union

import pandas as pd

import polars as pl

def by_pandas(df: pd.DataFrame, window_size: int):

"““pandasZAWTBBFIHEHE T
features = df.rolling(window_size).mean()
return features

def by_polars(df: Union[pl.DataFrame, pl.LazyFrame], window_size: int):

"""polarsEAWTEBFHEHETEI"""
features = df.select(
[
pl.col('value').rolling_mean(window_size),
]
)

return features

if __name__ == '__main__"':

50)

50).

pandasTOYHEBHE

series_by_pandas = by_pandas(pd.read_csv('../data/time_series.csv'), 50)
print(series_by_pandas)

polarsTONHEHE (EEFML)

series_by_eager_polars = by_polars(pl.read_csv('../data/time_series.csv'),

print(series_by_eager_polars)

polarsTOSFHEBE (BEFMETS)

series_by_lazy_polars = by_polars(pl.scan_csv('../data/time_series.csv'),
collect()

print(series_by_lazy_polars)

pandas CE#HFHZHEITDHE. XFED 1 TTLENERTECLEVNET, COFESI(IVED
pandas DB HZEIEEICKFKLTNET ,— T Polars THREITFI9%ETH I 2% 5. DataFrame. LazyFrame
(RT—%) BEICIIBEREEEITD APIH'73<. Series (BT —2%) ([CZDHRENHDD T UIEMERE
[CTEDET,

£ TVDRERE. 3 &% (pandas Z DataFrame ZF\%. Polars @ DataFrame %ZF\\%. Polars
@ LazyFrame ZAW\3) [CDOWTRBEHAIZEIT OICERMATEHED T,

64 —BRICRES

In [6]: %timeit by_pandas(pd.read_csv('../data/time_series.csv'), 50)

686 ms =24 ms per loop (mean *xstd. dev. of 7 runs, 1 loop each)

|: %timeit by_polars(pl.read_csv('../data/time_series.csv'), 50)

83.3 ms *£1.47 ms per loop (mean *std. dev. of 7 runs, 10 loops each)

[8]: %timeit by_polars(pl.scan_csv('../data/time_series.csv'), 50).collect()
.7 ms £725 us per loop (mean Estd. dev. of 7 runs, 10 loops each)

3 EEICOVTENZNREEHAIZET o e DT

f&aR& LT polars (& pandas KDEHKZ 8 FEERITCEHLIc, FEFHITUDKERUL LazyFrame %=
WA DI MTENENWSERNMEONEK U, BIEIDREETHES>/2TIOT S LADHTIE 590ms HgEmE L
DIERTHDDT, TNEHBRLTESLZ 7 FENTT,

Rust APl =39

Polars Tl3 Rust APl H2EENTNREDTEHBD T, BRI ITU% Rust THERLTHET, RustdH
KOSEFIATZ 17 ZUDN=IaVIEUTDOLICHEDFT, CEH(F/\—IaVEEY—)L Cargo Z=FIF
LTERRLTWET,

1. [package]

2. authors = ["Naoki Fujita"]

3. edition = "2021"

4. license = "MIT"

5. name = "web_engineer_in_rust"

6. rust-version = "1.64.0"

7. version = "0.1.0"

8. [dependencies]

9. anyhow = "1.0.65"

10. polars = {version = "0.24.3", features = ["lazy", "csv-file",

"rolling_window"]}
11. serde_json = "1.0.68"

1173 [[bin]]
13. name = "time_series_query"
14. path = "src/time_series_query.rs"

Python ORI TUTOT S LAEIFIFEM Rust 7OV S AR TOLSICEDERT,

65 —ERICED

1. // time_series_query.rs

2. use polars::prelude::{col, DataFrame, Duration, LazyCsvReader, LazyFrame,
RollingOptions};

3. | // TSz HOMFALIPIDEDR /IS AERIF/NRICTRI—T AT 4—

4. fn get_csv_path(relative_path: &str) —> std::path::PathBuf {

5. let project_path = env!("CARGO_MANIFEST_DIR");
6. std: :path::Path::new(project_path)

Ve .parent()

8. .unwrap()

9. .join(relative_path)

10. ¥

11. // polarsTEEFEHEHETS
12. fn by_polars(df: LazyFrame, window_size: i64) -> anyhow::Result<DataFrame> {

13. let duration = Duration::new(window_size);

14, let rolling_options = RollingOptions {

15 window_size: duration,

16. min_periods: window_size as usize,

17. ..RollingOptions::default()

18. +;

19. let features = df

20. .select([col("value").rolling_mean(rolling_options)])
21. .collect()?;

22. Ok(features)

23. | }

24. fn main() —> anyhow::Result<()> {

25 let csv_path = get_csv_path('data/time_series.csv");

26. // CSVEBEZMAHTS

27. let df = LazyCsvReader::new(csv_path).has_header(true).finish()?;
28. // polarsTOYHEHE GREFET S)

29. let features = by_polars(df, 50)7;

30. println!("{:?}", features);

31. ok(())

32, }

Python k& API DXLEAERD YT WK SICTAY S LZEER LE LIz, Rust & Python DXEFEND—D
EUT. Python (FF —T—R5I#HEVWSERBICFEMHOEVEBIFOHLUAENHDEIH. Rust (SIF/\TA—
NYRAERRETDIEHICZOELSHBHEENRHEINTOLWEVLWIENEITFONET, BRELTLEED
LazyCsvReader DK SIC—D—DDA T 3V Z&RHITEIRT 2L 57% APl (Builder /N5 —> EERE(FN
%) MEHENTVDIENE L ZDLSEHIEN APl FRETOEREFBRLTNET,

ZOEOBERNHDEE APl DEUCEDEDREMNH D EZRIFE Python EHHTRALTOIS
LHERT Rust '5% Polars ZFIFFTEE Y. — T Rust APl (FRFa2 X2 kA Python API IFEFREL T
59 BEARMICIE Python h'oDFIRERELILSI TS ITHIEBRODNET,

66 ~BRICRD

FEH

SEIFBERT —F 2T >1 7Y Polars ZRWENITY, BRIIBEIFIHAEITYDRERAEEZR
LEL7ze &HIC pandas APl EDEEPRERIEZ{TL). £z Rust APl ZAW TV DERAEFERUE
L/TCO

Polars [FN—XZH Rust TEEENTWDIEEH D, pandas ELERTAPI A THh7zW\ EIRZZ(FEITH
ZFNCEDEHUBRERRE LTV, KDKRELT -5ty bR ALA—XRICHATLIEWEWS Z—XIZHE
LIco1 735U THDEEZONET,

EERBN

BHEC

1988 FAEFN. KR ATIHS

RERZTPEEXEFLERE, BRAZIRILF—RIZAREMET

ISARBHRZMNE - Ry hD—OZARIY U - BRVBELZ SERIETTHRERE

YKK AP [CTBREREYMDONERECRESEL. B - ®V1 &S - 9A——TA—I)LTOCRICHE
WD, 2D IT TVI=7(CEM, paiza [CT. Ruby on Rails ¥ React =Lz Web ' —E XD
RS LRFEICHSE. RELCED,

RHERML SR Python, REFEZZ (IS5 Clojure THD. PV T)VIEEHE (WEEANT
E?) SEZHT. BHENDEE/FELEN D, EITHENEL Rust (CEKZERFSMSAZRIT TS,

67 ~BRIERS

https://www.itmedia.co.jp/author/235506/
https://paiza.jp/

fREE @IT fRESD
@I T ST 1 T AT 1 AT A PHRAH
atmarkIT Copyright © ITmedia, Inc. All Rights Reserved.

