
「Python＋PyTorch」と
「JoeyNMT」で学ぶ
ニューラル機械翻訳
太田 麻裕美 , 八楽［著］

01.ニューラル機械翻訳（NMT）の基礎を「JoeyNMT」で学んでみよう（準備編）

03.「JoeyNMT」で音声データを使った自動音声認識、音声翻訳モデルを作る

02.Discordのチャット botでニューラル機械翻訳を試そう
「JoeyNMT」のカスタマイズについても解説

3 →目次に戻る

　ハイデルベルク大学の博士課程に在籍しながら、八楽という会社で「ヤラクゼン」の開発に携わっている太田で

す。ヤラクゼンは、AI翻訳から翻訳文の編集、ドキュメントの共有、翻訳会社への発注までを 1つにする翻訳プ

ラットフォームです。

本連載の目的、前提知識、構成

　機械翻訳のフレームワークはよく知られたものが幾つか存在しますが、高機能であるが故にコードベース自体が

巨大です。そのため機械翻訳の学習に行き着く前に、フレームワーク特有の仕様などを調べる段階で挫折してしま

うことが少なからずあると感じています。

　本連載は、機械翻訳モデル開発の経験がほとんどない初心者でも「モデルを実行してみる」ことができるように

なるのを目的としています。フレームワークには、小規模で初学者にも扱いやすい「JoeyNMT」を使用します。

　なお読み進めてもらうに当たって、以下 3点の前提知識があることを想定しています。

1. Pythonの基本的なプログラミングができる

2. 機械学習、特にニューラルネットワークの基礎が分かる（損失関数、バックプロパゲーション、ドロップアウト

などを学んだことがある）

3. 自然言語処理の基礎が分かる（トランスフォーマー、エンコーダー、デコーダー、サブワードトークン、単語

埋め込み、ビームサーチなどを聞いたことがある）

　機械翻訳の理論的な部分は割愛し「プログラムを実行する」という実践部分に焦点を当てました。実践という

意味では 2点目、3点目は必須ではないかもしれませんが、解説なしで扱いますので適宜補っていただければと思

います。

　本連載は、全 3回を予定しています。第 1回で、英日翻訳を題材にフレームワークの基本的な使い方を学びま

す。第 2回では、フレームワークをカスタマイズする方法を具体例とともに紹介します。第 3回では、発展編とし

て、音声データを扱えるようにフレームワークを拡張し、自動音声認識、音声翻訳に挑戦してみましょう。

ニューラル機械翻訳（NMT）の基礎を
「JoeyNMT」で学んでみよう（準備編）
精度向上により、近年利用が広まっている「ニューラル機械翻訳」。その仕組みを、自分で動かし
ながら学んでみましょう。第 1回は海外の大学で教材として使われている「JoeyNMT」のイン
ストール方法やモデルの訓練方法を紹介します。

（2022年 06月 29日）

https://github.com/joeynmt/joeynmt

4 →目次に戻る

　第 1回の今回は、前半でフレームワークのインストールと学習済みモデルからの翻訳文生成を試します。後半

でモデルを訓練する方法、訓練したモデルを評価する方法を概観します。

「JoeyNMT」とは

　JoeyNMTは、教育目的に開発されたコンパクトな機械翻訳フレームワークです。海外の大学では入門レベル

の授業で採用されている他、論文などで見たアイデアを軽く再現実装してみるといった場面で多く活用されていま

す（※ 1）。PyTorchで書かれている点も、初心者にはうれしいポイントではないでしょうか。
※ 1：MutNMT、AIMS Senegal、Masakhaneなど。本記事の FAQはハイデルベルク大学の機械翻訳ゼミや卒業論文などで JoeyNMT
を使用する大学生からの質問に基づいています。

　機械翻訳モデル開発の基本的な部分をサクッと学びたい、新しいアイデアを簡単に試したい、という要望に応え

てくれるのが JoeyNMTです。大規模な汎用（はんよう）フレームワークを使って一度機械翻訳に手を出してみた

ものの、そのフレームワークのどの部分がどのように機械翻訳に使われているのか見つけられなかった、コードを

読み始めたけれど、どの部分を書き換えれば自分のアイデアを実装できるのか分からなかったという人にも

JoeyNMTはぴったりです。逆に言えば、プロダクションに耐え得る機能や性能を持つフレームワークを探してい

る人には物足りないかもしれません。

　本連載を執筆するに当たって、一般公開されている JoeyNMTでは少しつまずきやすいと思われる、古い依存

ライブラリや日本語トークナイズなどの部分をアップデートしたコードを公開しています（※ 2）。アップデートした

バージョンを便宜的に「JoeyNMT2.0」と呼ぶことにします。
※ 2：公開に当たり、JoeyNMTの作者である Julia Kreutzer氏に JoeyNMT2.0を監修していただきました。

　JoeyNMTの詳細は、以下の論文を参照してください。初心者の学習のたやすさに関するユーザースタ

ディーなど、興味深いデータが載っています。

Kreutzer, J., Bastings, J., & Riezler, S. (2019). Joey NMT: A Minimalist NMT Toolkit for Novices.

In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP): System Demonstrations (pp. 109-114). Association for Computational Linguistics.

　論文を読むのはちょっとハードルが高いという方は、JoeyNMTの作者 Julia Kreutzer氏によるブログ

記事も参考にしてみてください。

https://pytorch.org
https://ntradumatica.uab.cat
https://atmarkit.itmedia.co.jp/ait/articles/2206/29/news008.html
https://www.masakhane.io
https://www.uni-heidelberg.de/en
https://atmarkit.itmedia.co.jp/ait/articles/2206/29/news008.html
https://juliakreutzer.github.io
https://www.cl.uni-heidelberg.de/statnlpgroup/blog/joey/
https://www.cl.uni-heidelberg.de/statnlpgroup/blog/joey/

5 →目次に戻る

JoeyNMT2.0のダウンロードとインストール

　JoeyNMT2.0をインストールします。Python 3.9、PyTorch 1.11.0、CUDA 11.5の環境で動作を確認して

います。

$ pip install git+https://github.com/may-/joeynmt.git

　なお、Google colabでは、Python 3.9に対応するようブランチを指定してインストールする必要があるので

注意してください。

$ pip install git+https://github.com/may-/joeynmt.git@py3.7

学習済みモデルを試す

学習済みモデルをダウンロードする
　まずは簡単に試せるよう、事前学習済みモデルを準備しました。以下のURLからダウンロードしてください。

JparaCrawlという大規模英日パラレルコーパスで訓練したモデル（※ 3）のチェックポイント、設定ファイル、語彙

（ごい）ファイルが同梱（どうこん）されています。

$ wget https://www.cl.uni-heidelberg.de/statnlpgroup/joeynmt/tutorial_enja.

tar.gz

$ tar -xvf tutorial_enja.tar.gz

$ ls tutorial_enja

avg5.ckpt config.yaml spm.en.model spm.ja.model src_vocab.txt trg_vocab.

txt
※ 3：このモデルの利用条件は、JparaCrawlのライセンスに基づきます。

https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/

6 →目次に戻る

インタラクティブ翻訳モード
　JoeyNMTには「train」「test」「translate」という 3つのモードがあります。「translate」モードを選択して

インタラクティブに翻訳文を生成してみましょう。

　ダウンロードしたフォルダに入っている「config.yaml」ファイルを指定してください。

$ python -m joeynmt translate tutorial_enja/config.yaml

2022-05-01 22:01:45,749 - INFO - root - Hello! This is Joey-NMT (version

2.0.0).

2022-05-01 22:01:46,572 - INFO - joeynmt.model - Building an encoder-decoder

model...

2022-05-01 22:01:49,456 - INFO - joeynmt.model - Enc-dec model built.

2022-05-01 22:01:55,974 - INFO - joeynmt.helpers - Load model from tutorial_

enja/avg5.ckpt.

Please enter a source sentence:

I like apples.

2022-05-01 22:08:08,262 - INFO - joeynmt.prediction - Validating on 1 data

points... (Beam search decoding with beam size = 5, alpha = 1.0)

2022-05-01 22:08:10,779 - INFO - joeynmt.prediction - Generation took

2.5159s[sec]. (No references given)

JoeyNMT: Hypotheses ranked by score

JoeyNMT #1: 私はリンゴが好きです。

Please enter a source sentence:

^C

Bye.

　設定ファイルで指定されたパスからモデル、トークナイザーなどのモジュールが読み込まれます。「Please enter

a source sentence:」と表示されたら、翻訳したい文を入力します。今回利用している事前学習済みモデルは英

語→日本語のモデルですので、英語を入力してください。日本語訳の候補が表示されます。［Ctrl］＋［C］キー

でインタラクティブ翻訳モードを終了できます。

7 →目次に戻る

実行に関するよくある質問
Q：マルチGPUの環境でインタラクティブ翻訳を試したらエラーが出ました。

A：インタラクティブ翻訳モードはMulti-GPUに対応していません。Single GPUまたはCPUで試して

みてください。

Q：複数の候補（n best）を出力させることはできますか？

A：はい、出力できます。「config.yaml」の「testing」セクションにある「n_best」の値を変更してくだ

さい。

ミニコラム：機械翻訳の難しさ
　統計的機械翻訳からニューラル機械翻訳にパラダイムが移り、特にトランスフォーマーアーキテクチャが

登場して以降、機械翻訳の精度は劇的に向上し続けています。中でも流ちょう性は、人間の翻訳者と見分

けがつかないといわれることもあるほどです。そんな機械翻訳ですが、ディープラーニングの恩恵を受けて

もなお、難しいといわれている点が複数あります。

可変長の入力、出力

　画像分類などのタスクは、画像のサイズ（ピクセル数）がどのデータポイントも同じという設定がほとん

どです。機械翻訳に使われる対訳データでは、短い文もあれば長い文もあり、異なる長さの文対を扱う必

要があります。可変長の系列を扱う自然言語処理タスクの中でも、PoS Taggingなど出力長が入力長と同

じタスクに比べ、機械翻訳では出力長が入力長に必ずしも一致しない（事前に出力長が確定していない）と

いう難しさもあります。

構造予測

　入力画像に対して「ネコ」というラベルを予測する、あるいは入力テキストに対してそのジャンル「スポー

ツ」を予測するといった分類タスクとは異なり、機械翻訳の出力は構造をもった系列です。特定の構造を

出力するためには、膨大な候補から適切な構造を効率良く探索する必要があります。

未知語

　機械翻訳では、訓練時に見たことがない単語を予測する場面もあり得ます。「Covid-19」といった単語

は、数年前には機械学習訓練データにほとんど表れていませんでした。あるいは、新しく設定された絵文

字などのように文字そのものが訓練されたモデルの語彙（ごい）に入っていないということもあります。こ

のような未知語をうまく扱う工夫が必要です。

あいまいな正解ラベル

　翻訳には、「ただ一つの正解」と呼べるものは基本的には存在しません。ある 1つの英語の文の意味を

表現する日本語の文は、何通りも考えられます。特に日本語には表記ゆれ（「りんご、リンゴ、林檎」「繰

越、繰り越し」「半角、全角の違い」など）も多く、表現だけでなく表記さえも一意に定まりません。Web

から自動で取得された対訳データには、互いに翻訳になっていない文対などノイズも一定数混じってしまい

ます。教師あり機械翻訳では、このようなあいまいな教師データからモデルを学習させることになります。

https://atmarkit.itmedia.co.jp/ait/articles/2206/29/news008.html
https://arxiv.org/abs/1803.05567
https://arxiv.org/abs/1803.05567

8 →目次に戻る

言語間で対応しない言い回し

　言語には、複数の意味があったり、あるいは字義通りの意味だけでなく「裏の意味」が込められていると

いったこともよくあります。そのような多義的な言い回しは、言語間で 1対 1対応していないことも多いで

す。例えば、本質的に異なっていて本来比べられないものを無理やり比べることを、英語で「comparing

apples and oranges（リンゴとオレンジを比べる）」と表現することがありますが、ドイツ語では「Äpfel

mit Birnen vergleichen（リンゴと洋ナシを比べる）」と言うのが一般的です。このようなフレーズを翻訳

するには、字義通りの翻訳「oranges ⇔ Orangen（オレンジ）」「pears ⇔ Birnen（洋ナシ）」を学習し

ているだけでは足りません。

　これは機械翻訳に限った話ではありませんが、どのように大量の対訳データを集めるのか、巨大なモデルを訓

練するためのリソースをどのように確保するか、といった実務的な問題もあります。近年の機械翻訳モデルはどん

どん巨大化しており、論文などで提案されているものの中には、学生や個人の開発者には手をだせないような規模

の非公開データと高額な計算資源を前提にしているものも少なくありません。このような困難を克服するさまざま

なアイデアが今、世界中で研究されています。本連載が、機械翻訳研究、開発の世界に飛び込むきっかけの一つ

になればと願っています。

モデルを訓練する

対訳データの準備
　JoeyNMT v1.xは、1行 1文のプレーンテキスト形式のファイルを入力として受け付けます。JoeyNMT v2.0

で、Huggingfaceの datasetsライブラリからの入力もサポートしました。これにより、メモリに乗り切らないよ

うな大規模データの扱いも容易になりました。今回は、datasetsに入っているThe Business Scene Dialogue

corpusを使ってみることにします。

 データセットの一例

　JoeyNMTはデータの情報（ファイルパスなど）を config.yamlの dataセクションで指定します。トークナイ

ズ、ノーマライズなどの事前処理もここで設定できます。事前学習済みモデルのフォルダに同梱されているconfig.

yamlを見てみましょう。

https://github.com/tsuruoka-lab/BSD
https://github.com/tsuruoka-lab/BSD

9 →目次に戻る

10 →目次に戻る

11 →目次に戻る

　joeynmt/configsフォルダに異なる設定のサンプルが幾つかありますので参考にしてください。スクラッチから

モデルの訓練を始める場合は、scripts/build_vocab.pyで語彙ファイルを生成します。

　config.yamlで指定されたパスに語彙ファイルがすでに存在する場合は上書きされてしまいますので注意してく

ださい。また英語、ドイツ語ペアなど、単語埋め込みレイヤーを入力言語、出力言語で共有したいとき（tied

embeddings）は、jointオプション（--joint）を付与してください。入力言語、出力言語を連結したファイルか

ら語彙を学習させることができます。

よくある質問
Q：dataセクションの normalizeを Trueに設定すると、どのような正規化が行われますか？

A：Pythonのビルトイン「unicodedata」のNFKC正規化が適用されます。詳しくは tokenizer.pyの

BaseTokenizerクラスを参照してください。

Q：入力言語、出力言語で共通の語彙（Joint Vocabulary）を使用しています。語彙ファイル「src_vocab.

txt」「trg_vocab.txt」（またはトークナイザーのモデルファイル）を別々に準備しなければなりませんか？

A：いいえ、語彙ファイルは 1つで大丈夫です。同じファイルへのパスを、srcと trgの両方に設定してくだ

さい。

Q：スクラッチでモデルを訓練します。語彙サイズはどのように決めたらよいですか？

12 →目次に戻る

A：JParaCrawlの論文は日英、英日翻訳に 3万 2000種類の語彙を利用しています。幾つか違う値を試

してみて、devデータでのスコアが最も良かった値を採用するのが無難かもしれません。VOLTなど、適切

な語彙サイズを求める方法を提案している研究もあります。

Q：JoeyNMT 1.x で使われていた 1行 1文のプレーンテキスト形式のデータを、JoeyNMT2.0でもその

まま使いたいです。

A：JoeyNMT 1.xの設定ファイルと同じように、train、dev、testに拡張子なしのファイルパスを指定で

きます。事前にトークナイズされているデータの場合は、levelを「"word"」と指定することで、半角ス

ペースで分割されるようになります。ただし、デトークナイズも半角スペースでの joinになってしまうので、

BPE分割されたデータの場合は BaseTokenizerクラスの post_process関数を適宜変更してください。

モデルの訓練
　config.yamlの trainingセクションでパラメーターを指定し、モデルの訓練を制御します。

13 →目次に戻る

　モデルの構成はmodelセクションで指定します。

　設定ファイルが書けたら、trainモードで joeynmtを起動します。

$ python -m joeynmt train tutorial_enja/config.yaml

　データが読み込まれ、モデルが構成されて、訓練のイテレーションが始まります。model_dirには、訓練され

たモデルのチェックポイント、loggerの出力ファイル、開発データの評価スコア「validation.txt」が記録される

他、tensorboardのログフォルダもここに生成されます。訓練開始時にフラグを付けることで、tensorboardで

のアテンションの可視化も可能です。

$ tensorboard --logdir tutorial_enja/tensorboard

14 →目次に戻る

　設定ファイルの trainingセクションでリセットパラメーターを Falseに設定すると、中断したモデルの訓練を続

きから再開できます。

　model_dirには、中断前の訓練のときとは違う別のパスを指定してください。同じパスを指定すると中断前の

訓練で保存されたチェックポイントが上書きされてしまうことがあります。

　幾つかのチェックポイントの平均をとることで、よりロバストな予測を得られることが知られています。このチェッ

クポイントの平均を取るためのスクリプト、scripts/checkpoint_averaging.pyも準備されています。

$ python scripts/average_checkpoints.py --inputs model_dir/*0000.ckpt

--output model_dir/avg.ckpt

よくある質問
Q：dataセクションの voc_limitと trainingセクションの batch_sizeは何が違うんでしょうか？

A：dataセクションの voc_limitは、語彙の数、つまり重複を避けたユニークなトークン数です。例えば語

彙数が 1000のとき、モデルが次のトークンを予測するのに、1000個の候補から確率が高いものを選ぶこ

とになります。trainingセクションの batch_sizeは、ミニバッチの大きさです。batch_typeが tokenの

とき、batch_sizeで指定された数のトークンを含むようにミニバッチが作られます。

Q：「RuntimeError: CUDA out of memory.」というエラーが出ます。バッチサイズを小さくして精度が

落ちるのは避けたいです。

A：もしGPUの数を増やせるのであれば、GPUの数を増やしてください。GPUの数が限られているの

であれば、trainingセクションの batch_sizeを小さく（例えば半分に）し、その分、batch_multiplierを

（例えば倍に）増やしてみてください。訓練時間は長くなってしまいますが、実質のバッチサイズを維持で

きます（詳細は「gradient accumulation」というキーワードで検索してみてください）

Q：「実質のバッチサイズ」はどうやって確認できますか？

A：訓練のイテレーションが始まる前に train.logに表示される Train statsの、effective batch sizeの

項目で確認できます。

15 →目次に戻る

　2022-05-02 16:16:43,980 - INFO - joeynmt.training - Train stats:

 　device: cuda

 　n_gpu: 4

 　16-bits training: False

 　gradient accumulation: 1

 　batch size per device: 2048

 　effective batch size (w. parallel & accumulation): 8192

Q：モデルサイズ（レイヤー数など）や他のハイパーパラメーターの値はどのように決めたらよいですか？

A：この質問に普遍的な答えはないように思います。手持ちのデータに近いデータで訓練されたモデルを探

し、公開されている論文や他のツールキットで採用されているデフォルトの値をまずは試してみるのが安全

かもしれません。その値を起点に、幾つか違う値を試してみて、devデータでのスコアが最も良かった値を

採用することが多いです。

参考文献ガイド
　より深くニューラル機械翻訳を学びたい方のために、参考になる jupyter notebook形式のチュートリアルを幾

つか挙げてみます。平易な英語で書かれており、コードや図も豊富なので、英語が苦手な方でも読み進められる

はずです。

• Annotated Transformer：トランスフォーマーアーキテクチャで使われている自己注意機構がどのように計算

されるのか解説されています

• Annotated Encoder-Decoder：機械翻訳で使われているエンコーダー・デコーダーモデルの仕組みを、サ

ンプルコードから学ぶことができます

• Translation with a sequence to sequence network and attention：PyTorchで機械翻訳モデルを作っ

てみるチュートリアルです

• Transformer model for language understanding：Tensorflowで機械翻訳モデルを作ってみるチュートリ

アルです

http://nlp.seas.harvard.edu/annotated-transformer/
https://bastings.github.io/annotated_encoder_decoder/
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
https://www.tensorflow.org/text/tutorials/transformer

16 →目次に戻る

モデルを評価する

　JoeyNMTでは、性能の評価に sacrebleuというライブラリを使用しています。sacrebleuは機械学習モデル

の評価として一般的な BLEUスコア、ChrFスコアを利用できます。設定ファイルの testingセクションで評価に

関わるパラメーターを指定します。

　JoeyNMTを testモードで起動します。評価に使いたいチェックポイントが明示的に与えられていない場合は、

model_dirの中の best.ckptが使われます。

$ python -m joeynmt test tutorial_enja/config.yaml –ckpt tutorial_enja/

avg.ckpt

2022-05-02 18:22:11,223 - INFO - root - Hello! This is Joey-NMT (version

2.0.0).

2022-05-02 18:22:11,224 - INFO - joeynmt.data - Building tokenizer...

[...]

2022-05-02 18:23:39,560 - INFO - joeynmt.prediction - Decoding on dev set...

2022-05-02 18:25:53,451 - INFO - joeynmt.prediction - Evaluation result (beam

search) bleu: 11.01, generation: 131.5355[sec], evaluation: 2.0884[sec]

2022-05-02 18:25:54,992 - INFO - joeynmt.prediction - Decoding on test set...

2022-05-02 18:28:23,234 - INFO - joeynmt.prediction - Evaluation result (beam

search) bleu: 11.57, generation: 147.7790[sec], evaluation: 0.2176[sec]

https://github.com/mjpost/sacrebleu

17 →目次に戻る

よくある質問
Q：思ったような精度がでません。

A：さまざまな原因が考えられます。まずは学習曲線を見てみましょう。train lossは下がっていますか？　

validation lossは下がっていますか？　JoeyNMTの FAQで、デバッグのためのレシピ集としてブログ記

事が紹介されています。また、データのアラインメント、トークナイゼーション、フィルタリング、語彙ファ

イルの中身などを再度確認することを勧めています。

Q：ベースラインのモデルよりも良いスコアが出ました。この差は統計的に有意であるといえるでしょうか。

A：ランダムシードの値だけを変えて同じ設定の実験を繰り返し、どの程度スコアにばらつきが出るか調べ

ます。sacrebleuは v2.0で bootstrap resampling、approximate randomizationという有意差検定

（Significance tests）をサポートしました。このようなライブラリを使って差が有意かどうか調べることも

できます。

　今回は、yamlの設定ファイルを中心に、JoeyNMTを実行する方法を解説しました。第 2回は JoeyNMTを

カスタマイズする方法を学びます。JoeyNMTの強みは、コードを読んだり、書き換えたりするのが容易である点

です。次回は JoeyNMTの長所を実感していただけるよう、実践例を交えて紹介していきます。

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://aclanthology.org/W04-3250.pdf
https://aclanthology.org/W05-0908.pdf

18 →目次に戻る

　ハイデルベルク大学の博士課程に在籍しながら、八楽という会社で「ヤラクゼン」の開発に携わっている太田で

す。ヤラクゼンは、AI翻訳から翻訳文の編集、ドキュメントの共有、翻訳会社への発注までを 1つにする翻訳プ

ラットフォームです。

　第 1回は、機械翻訳フレームワーク「JoeyNMT」の概要、インストール方法、モデルを訓練する方法を紹介

しました。今回は、JoeyNMTをカスタマイズする方法を具体的なユースケースを交えながら紹介します。

　JoeyNMTは、他のフレームワークに比べてコードの行数で 9～ 10分の 1、ファイル数でも 4～ 5分の 1（※ 1）

というミニマルな実装が特長で、核となるモジュールはしっかり入っています。機械学習分野における多くのベン

チマークで SOTA（State-of-the-Art）に匹敵するベンチマークスコアを出しています。またデバッグ時に stack

traceをたどる際、フラットなディレクトリ構造のおかげで迷わずにエラー箇所を探し当てられるのもメリットです。
※ 1：OpenNMT-py、XNMTとの比較です。詳細は「Joey NMT: A Minimalist NMT Toolkit for Novices」を参照してください。

　それでは、ユースケースごとに JoeyNMTをカスタマイズする方法を見ていきましょう。

JoeyNMTでトークナイザーを変更するには

　JoeyNMTはデフォルトで「subword-nmt」「sentencepiece」という 2つのサブワードトークナイザーに対

応しています。では、別のトークナイザーを利用したい場合はどうすればよいでしょうか。

　トークナイザーは「joeynmt/tokenizers.py」で定義できます。例として、「fastBPE」を新しく導入してみま

しょう。

　fastBPEは subword-nmtを c++で実装したライブラリです。「SubwordNMTTokenizer」クラスを継承す

ることにします。

Discordのチャット botでニューラル機械翻訳を
試そう　「JoeyNMT」のカスタマイズについても解説
精度向上により、近年利用が広まっている「ニューラル機械翻訳」。その仕組みを、自分で動かし
ながら学んでみましょう。第 2回はユースケースごとに「JoeyNMT」をカスタマイズする方法や、
Discordのチャットbotに組み込む方法を解説します。

（2022年 07月 21日）

https://github.com/joeynmt/joeynmt/blob/main/docs/benchmarks_v1.md
https://arxiv.org/abs/1907.12484
https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece
https://github.com/glample/fastBPE

19 →目次に戻る

　これで fastBPEでのトークナイズができるようになりました。設定ファイルで「tokenizer_type: "fastbpe"」

と選択できるようにするため「_build_tokenizer()」で「FaseBPETokenizer」を呼び出せるようにします。

　fastBPEには codesファイルが必要ですので「codes_path」が設定ファイルで指定されていることを確認し

ましょう。今回導入した「FaseBPETokenizer」オブジェクトを返すようにしています。

20 →目次に戻る

補足
トークナイザーの「__call__()」は、データセットからインスタンスを取り出す際に呼び出されます。例え

ば「PlaintextDataset」では、「get_item()」内で呼び出されています。

　つまり、訓練、予測時の「for batch in data_iterator:」のイテレーションで「__getitem__()」がコー

ルされるたびにトークナイズの関数も呼び出されることになります。これは、BPE dropoutを可能にする

ための実装です。もし、新しく導入するトークナイザーが重い計算を必要としたり、いつも決まった値を返

したりするのであれば、データ読み込み時に呼び出される「pre_process()」でトークナイズすることを検

討してください（「BaseTokenizer」にある「MosesTokenizer」を利用した事前分割の実装が参考にな

ります）。

JoeyNMTで学習率スケジューラーを変更するには

　JoeyNMT は「torch.optim.lr_scheduler」 に 入 っ て い る「ReduceLROnPlateau」「StepLR」

「ExponentialLR」の他、transformerでよく使われる「noamスケジューラー」を実装しています。別の学習

率スケジューラーを使いたい場合はどうしたらよいでしょうか？

　学習率スケジューラーは「joeynmt/builders.py」で定義できます。例として、Inverse Square Rootスケ

ジュールを導入してみます。

　「BaseScheduler」クラスに、そのステップでの学習率をオプティマイザのパラメーターに渡す部分が実装され

ています。学習率を計算する「_compute_rate()」関数をオーバーライドします。

21 →目次に戻る

　Inverse Square Rootスケジュールは、ステップ数の二乗根に反比例するように学習率を減衰させます。加え

て、warmupの期間は、学習率が線形に増加するようにし、warmupの終わりで与えられた学習率に到達するよ

う係数（decay_rate）を調節します。

　今回導入した Inverse Square Rootスケジューラーを設定ファイルから選択できるように「build_

scheduler()」を変更します。

22 →目次に戻る

補足
　訓練を途中で中断した際、その中断したところから再開できるよう、学習率の変数をチェックポイントに

保存しています。スケジューラーで保存すべき変数が異なるため、スケジューラーごとに、どの変数を保存

するのかを指定する必要があります。

　Inverse Square Rootスケジューラーの場合、デフォルトで保存されるステップ数とそのステップ時の学

習率に加えて「warmup」「decay_rate」「peak_rate」「min_rate」を保存します。

損失関数のカスタマイズ

　機械翻訳では多くの場合、交差エントロピーが損失関数として使われており、JoeyNMTでもデフォルトになっ

ています。損失関数をカスタマイズしたい場合、どうすればよいでしょうか？

　損失関数は「jorynmt/loss.py」で定義できます。第 3回で予定している音声翻訳で必要となる「CTC Loss」

と呼ばれる損失関数を、少し先取りしてここで導入してみましょう。既存の「XentLoss」クラスを継承して新し

いクラス「XentCTCLoss」を作り、PyTorchで実装されているCTC Lossを呼び出します。

　CTC Lossを計算するには、blankを特殊なトークンとして扱う必要があり、その blankのためのトークン ID

を指定しなければなりません。新しくblankトークンを定義してもよいのですが、今回は BOSトークン「<s>」

で代用することにします。

https://pytorch.org/docs/stable/generated/torch.nn.CTCLoss.html

23 →目次に戻る

　「XentCTCLoss」では、すでにある交差エントロピーとCTCの重み付き和を返すようにします。

　損失関数は、モデルの「forward()」で呼ばれます。「joeynmt/model.py」の該当部分を変更し「XentCTCLoss」

を呼び出せるようにします。

24 →目次に戻る

　バックプロパゲーションに使われるのは重み付き和である「total_loss」だけですが、それぞれの損失関数の学

習曲線をプロットするため、「nll_loss」「ctc_loss」も返すようにしています。

補足
　デコーダー（joeynmt/decoders.py）に、CTCLossの計算のためのレイヤーを追加しました。

25 →目次に戻る

トークンペナルティで「翻訳結果の繰り返し」を防ぐ

　機械翻訳の出力結果でよくあるのが、繰り返しです。例えば、配布している英日モデルを用いたwmt20テスト

セットで、以下のような出力を確認しました。

入 力："He begged me, "grandma, let me stay, don't do this to me, don't send me back,""

Hernandez said.

出力：「おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おば

あちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、お

ばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん、おばあちゃん」

　根本的には、なぜモデルがこのような繰り返しに高い確率を与えてしまうのかを考える必要があります。ここで

はその原因には踏み込まず、モデルがこのような繰り返しに高い確率を割り振ったとき、その確率を人為的に低く

することで生成させないという対症療法的な方法を考えます。

　JoeyNMTは、貪欲サーチとビームサーチの 2種類の探索を実装しています。どちらも 1ステップずつ前から順

に生成する auto-regressive、つまりそのステップまでに生成された系列 prefixを使って次のトークンを予測しま

す。そこで、そのステップまでに生成された系列 prefixを調べ、そこにすでに出現したトークンは、次のトークン

を予測する際に確率を下げることにします。

　この例文でいえば「おばあちゃん、おばあちゃん」まで生成したところで次のトークンを予測する際、モデルの

予測をそのまま真に受けると「おばあちゃん」が最も確率の高いトークンになってしまいます。そこで、すでにこ

の系列 prefixに出現している「おばあちゃん」のトークンの確率を人為的に下げ、生成されないようにブロックし

ようというわけです。

　「search.py」の「transformer_greedy()」を見てみましょう。

26 →目次に戻る

　各ステップで最も確率が高いトークンを採用する前に、モデルの出力（out）を操作してそれまでのステップで生

成されたトークンの確率を下げる repetition penaltyを導入します。

　ここで「penalty」には 1より大きい正の値が入ります。例えば「penalty=2」の場合、すでに出現したトーク

ンの確率を 2分の 1にせよ、という意味です。

　repetition penaltyは、すでに出現した全てのトークンの確率を一律に下げるように働きます。しかし、例えば

日本語の助詞「は」などは複数出現する可能性があり、大きなペナルティーを課したくないときもあるでしょう。そ

こで、すでに出現した系列 prefixのNgramを計算し、次に生成するトークンがそのNgramに一致する場合は

確率を 0にするという方法もあります。

　仮に「['おばあちゃん ', '、', 'おばあちゃん ', '、']」という系列 prefixがあったとします。3gramの繰り返しをブ

ロックする場合「['おばあちゃん ', '、', 'おばあちゃん ']」と「['、', 'おばあちゃん ', '、']」の 2つの 3gramがすで

に出現していることになります。この系列 prefixの次に来るトークンが仮に「'おばあちゃん '」だった場合、直前の

2トークンと合わせて「['おばあちゃん ', '、', 'おばあちゃん ']」となってしまい、すでに出現した 3gramのうちの 1

つと一致してしまいます。すでに出現した 3gramと一致するようなトークン「'おばあちゃん '」を禁止トークン

（banned_batch_tokens）として扱い、生成されないようにその確率を「float("-inf")」で上書きします。

27 →目次に戻る

　オブジェクトをいったんCPUに移し、各シークエンス、各トークンを 1つずつループしながら禁止トークンを

探していることからも明らかなように、ngram blockerを使うと探索にかかる時間が著しく増大します。GPUの

並列化によるアドバンテージを損ないたくない場合は、repetition penaltyを使うことを検討してください。

　ここで「repetition_penaly: 2」と設定して、もう一度同じ例文を全く同じ英日モデルからデコードしてみます。

入 力："He begged me, "grandma, let me stay, don't do this to me, don't send me back,""

Hernandez said.

出力：「おばあちゃん、泊まらせてもらって、これもしないで、送ってくれないか」とハーナンデスは言いま

した。

　意図した通り、一度出現したトークンは生成されにくくなっています。

　「no_repeat_ngram_size: 4」と設定してみます。

入 力："He begged me, "grandma, let me stay, don't do this to me, don't send me back,""

Hernandez said.

出力：「おばあちゃん、おばあちゃん、これやらない、送ってくれない」と、ヘルナンデスは言いました。

　4gramより長いフレーズの繰り返しをブロックできています。

28 →目次に戻る

補足
　上記の説明では「'おばあちゃん '」が 1つのトークンであると仮定していました。配布しているモデルで

はサブワードトークンを使っており、実際はトークンレベルでの生成は以下のようになっています。

 ['「', 'お ', 'ば ', 'あ ', 'ちゃん ', '、', 'お ', 'ば ', 'あ ', 'ちゃ', '

ん ', '、', 'これ ', 'や ', 'ら ', 'な ', 'い ', '、', '送 ', 'って ', 'くれ ',

'ない ', '」', 'と ', '、', 'ヘル ', 'ナン ', 'デ ', 'スは ', '言 ', 'いました

', '。', '</s>']

　2回目の「['お ', 'ば ', 'あ ', 'ちゃ ', 'ん ']」が生成されるところでは、1回目の「['お ', 'ば ', 'あ ', 'ちゃ

ん ']」の 4gramを避けるために「'ちゃん '」のトークンは選ばれませんでしたが、その代わりに「'ちゃ '」

という別のトークンが選ばれ、その次のステップで「'ん '」というトークンが最も高い確率を得ました。そ

の結果、各トークンを結合した出力レベルで見ると、あたかも繰り返しているように見えます。BPEによる

トークナイゼーションは何通りもあり得るので、Ngram Blockerを使ってもこのような表層レベルでの繰り

返しは起こりえます。

JoeyNMTでアテンション（注意度）を可視化するには

　JoeyNMTには、RNN（Recurrent Neural Network）アーキテクチャからエンコーダーとデコーダー間のア

テンションをプロットするオプションが用意されています。Transformerアーキテクチャでアテンションをプロット

するにはどうすればよいでしょうか？

　マルチヘッドトランスフォーマーでは、アテンションは 1つではありません。全てのレイヤー、全てのヘッドが注

意機構で構成されています。エンコーダー層は自己アテンションを、デコーダー層は自己アテンションとクロスア

テンションを持っています。今回は、最終レイヤーのクロスアテンションを取り出し、全てのヘッドの平均を取った

ものをプロットすることにします。

　マルチヘッドアテンションは「joeynmt/transformer_layers.py」で定義されています。「softmax」を取った

後の値を、全てのヘッドで平均して返すようにします。

29 →目次に戻る

　「TransformerDecoderLayer」でクロスアテンションを計算する際に「return_weights」フラグを使えるよう

にします。

　「joeynmt/decoders.py」のトランスフォーマーデコーダーで、最終層のときに「return_attention」フラグを

Trueにしてアテンションの重みを取得するようにします。

30 →目次に戻る

　「joeynmt/search.py」の「transformer_greedy()」で、デコーダーから返ってきたアテンションの値を各ス

テップでリストに格納し、整形して出力します。

31 →目次に戻る

　これで、トランスフォーマーでもアテンションをプロットできるようになりました。JoeyNMTをテストモードで

起動してみましょう。この時に、「--save_attention」オプションを付けると上記の「transformer_greedy()」の

「kwargs」に「save_attention=True」が渡されます。

$ python -m joeynmt test config.yaml --save_attention

　テストセットに入っている全ての文のアテンションをプロットしますので、テストセットにはプロットしたい文だけ

を入れておくようにしてください。

　残念ながら、配布されている日英、英日のモデルではあまりきれいな単語間アラインメントは見られませんでし

た。アテンションから意味のある単語アラインメントを取り出したい場合は、アラインメントのためのレイヤーを入

れるなどの工夫が必要かもしれません。ある程度成功している例として、参考までに独英モデルからプロットした

アテンションもお見せしたいと思います（こちらで配布されています）

https://github.com/joeynmt/joeynmt#iwslt14-deen

32 →目次に戻る

補足
　matplotlibの環境によっては、日本語のフォントが文字化けしてしまうかもしれません。その場合は、日

本語に対応したフォントを設定する必要があります。上記のプロットには IPAexGothicを使用しています。

「joeynmt/plotting.py」を次のように書き換えてください。

コミュニケーションツール「Discord」用のチャット botを作ってみよう

　ここからは JoeyNMTで訓練したモデルを、コミュニケーションツール「Discord」上のチャット botとして動

かす方法を紹介します。

Discord アカウントとサーバの準備
　Discord のアカウントがない場合は登録ページでアカウントを作成します。

https://discord.com/register

33 →目次に戻る

　続いてサーバを作成するポップアップが開きますので「オリジナルの作成」に進みます。

　「JoeyNMT」という名前のサーバを作ることにします。

34 →目次に戻る

　サーバを作成できました。

Bot Applicationの作成
　次に、Discordの開発者ポータルにアクセスし、アプリケーションを新規作成します。

https://discord.com/login?redirect_to=%2Fdevelopers%2Fapplications

35 →目次に戻る

　アプリケーション名を指定します。

　チャット bot追加のボタンをクリックすると確認のポップアップが開くので許可します。

36 →目次に戻る

　ここでチャット bot用のアクセストークンが生成されます。後で必要になりますので控えておきます。

　認証に必要なURLを生成します。スコープのセクションでBotを、パーミッションのセクションでAdministrator

を選択します。生成されたURLにブラウザからアクセスします。

37 →目次に戻る

　認証のポップアップが開きます。ここで、初めに作成したサーバをドロップダウンから選択します。

38 →目次に戻る

　管理者権限を与えることを確認して認証します。

　これで設定は一通り終わりました。

39 →目次に戻る

　サーバに戻ると、チャット botが追加されています。

チャット bot用スクリプトの作成
　チャットbot用のスクリプトとして、discord.pyライブラリを使います。discord.pyはpipコマンドでインストー

ルできます。

$ pip install discord.py

　ではスクリプト（discord_joey.py）を書いていきましょう。

　必要なライブラリをインポートします。設定のパートで作成したチャット botのアクセストークンをスクリプトに

コピーします。

　チャット botには英日、日英のモデルを利用します（学習済みモデルを配布していますのでご利用ください）。

JoeyNMTのインタラクティブモードは single GPUもしくはCPUで動作します。

https://github.com/Rapptz/discord.py

40 →目次に戻る

　イベントを定義します。`on_ready()`で JoeyNMTの学習済みモデルを読み込み、`on_message()`で翻訳

を返すようにします。

　モデルの読み込みは「joeynmt/prediction.py」の「translate()」とほぼ同じ手順で行います。

　トークナイザー、入力を stringから idに変換するエンコーダーを構成し、インタラクティブモードのための

stream datasetを作ります。stream datasetは初めは空で、入力が来るとその都度キャッシュを更新します。

https://github.com/may-/joeynmt#jparacrawl-enja--jaen

41 →目次に戻る

　幾つかのデコーディングオプションを、インタラクティブモードに対応するように書き換えます。

　メッセージを翻訳する「translate()」では「joeynmt/prediction.py」の「predict()」を呼び出しています。メッ

セージには、翻訳方向を示す言語タグ「/ja-en/」または「/en-ja/」がついているものとし「get_language_tag()」

でこの言語タグと本文を分けています。言語タグの設定に合わせて、翻訳結果を取得します。

42 →目次に戻る

　GitHubのリポジトリに「discord_joey.py」をアップロードしてありますので参考にしてください。では、実行

してみます。

　モデルがロードされたことを確認したら、Discord上でチャット botに話し掛けてみます。言語タグを付けるの

を忘れずに。

43 →目次に戻る

　翻訳結果を返してくれています！　実行されていることが確認できました。

さいごに

　今回はユースケースに合わせてJoeyNMTをカスタマイズする方法を解説しました。同様のシナリオを別のツー

ルキットで実現しようとすると、この何倍ものコードを書き換える必要があります。JoeyNMTの場合、実行スピー

ドを上げるための最適化などはほとんどされておらず、あまり高度なことはできないと感じられた方もいらっしゃる

かもしれません。しかし、頭の中で思い描いている変更を愚直に実装できるのはとても大きなアドバンテージだと

感じています。

　機械翻訳を良くするアイデアはあっても、既存のフレームワークでは実装が難し過ぎると感じる方、pythonプ

ログラミングや自然言語処理に取り組み始めて日が浅い初心者の方が、JoeyNMTを使って学ぶきっかけになれば

幸いです。

　次回は、音声入力からテキスト（文字起こし、翻訳）を生成できるように、JoeyNMTを変更する手順を解説

します。

44 →目次に戻る

　ハイデルベルク大学の博士課程に在籍しながら、八楽という会社で「ヤラクゼン」の開発に携わっている太田で

す。ヤラクゼンは、AI翻訳から翻訳文の編集、ドキュメントの共有、翻訳会社への発注までを 1つにする翻訳プ

ラットフォームです。

　第 2回は、Discordのチャット botでニューラル機械翻訳を試す方法と「JoeyNMT」のカスタマイズ方法を

紹介しました。第 3回は「JoeyNMT」を音声に対応させて、音声認識や音声翻訳のタスクをエンドツーエンド

（E2E）で解くモデルを構築する方法を紹介します。

「自動音声認識」タスクとは

　自動音声認識（Automatic Speech Recognition: ASR）といえば、ある言語での音声の入力を受け付け、音

声を書き起こしたテキストを返すタスクです。音声翻訳（Speech Translation: ST）は、ある言語で音声の入

力を受け付ける部分は同じですが、別の言語に翻訳されたテキストを出力するタスクです。今回紹介するE2Eは、

入力音声の言語で書き起こしせず、ダイレクトに別の言語のテキストを生成するモデルになります。

　例えば、日本語音声を入力してその日本語を書き起こすのは自動音声認識タスク、日本語音声を入力して日本

語が書き起こされることなくダイレクトに英語のテキストに翻訳されるのは E2E音声翻訳タスクに分類されます。

　本記事では、音声認識と音声翻訳を合わせて、Speech-to-Text（S2T）タスクと呼ぶことにします。

インストール
　S2TのためのコードをGitHubにアップロードしました。まずは下記リポジトリからインストールしてください。

$ pip install git+https://github.com/may-/joeys2t.git

「JoeyNMT」で音声データを使った自動音声認識、
音声翻訳モデルを作る
精度向上により、近年利用が広まっている「ニューラル機械翻訳」。その仕組みを、自分で動かし
ながら学んでみましょう。第 3回は「JoeyNMT」を音声に対応させて、音声認識や音声翻訳の
タスクをエンドツーエンドで解くモデルを構築してみましょう。

（2022年 08月 17日）

https://www.yarakuzen.com/

45 →目次に戻る

モデルの構成

　テキストの機械翻訳のモデルをベースに、S2Tに対応させるため、以下のモジュールを実装していきます。

1. 入出力フォーマット

2. データ拡張（CMVN、SpecAugment）

3. 畳み込みレイヤー

4. エンコーダー／デコーダー

5. CTC損失

6. 評価（WER）

　それでは一つ一つ詳しく見ていきましょう。

46 →目次に戻る

入出力フォーマット
入力：スペクトログラム

　モデルに音声を入力する際、生の音声波形（waveform）は S2Tタスクにおいてあまり良い特徴量とはいえま

せん。ニューラルネットへの移行が起こる以前から、音声スペクトログラムと呼ばれる、横軸にフレーム数、縦軸

に周波数をとって各フレーム、周波数におけるエネルギーの強さを 2次元配列で表現する特徴量が音声認識タス

クで広く使われてきました。

　スペクトログラムの抽出方法は幾つか種類がありますが、人間の音声の周波数帯に特化したMel Filterbankと

いう変換を採用している論文が、E2Eモデルでは主流になっています。

　加えて、スペクトログラムを抽出する前の音声波形の段階で、背景ノイズの低減やスピード調整などが行われる

こともあります。また録音の質（背景雑音、非母語話者による録音など）にばらつきが多いときはメタデータによ

るフィルタリングや、女声男声の数のバランスを取るといったことも行われることがあります。今回はフィルタリン

グせず、データセットに入っている音声波形をそのまま使ってMel Filterbankスペクトログラムを抽出します。

　本記事では割愛しますが、スペクトログラムのような音響工学に基づく特徴量抽出方法以外にも、wav2vecと

いう特徴量ベクトルの値を深層学習で学習させる手法が 2019年に提案され、盛んに研究されています。言語モ

デルがさまざまな自然言語処理タスクの事前訓練として定着していったように、今後、wav2vecが音声系のタス

クの事前訓練として広く用いられるようになっていくのではと思います（※ 1）。
※ 1：Fine-Tune Wav2Vec2 for English ASR with Transformers

https://ai.facebook.com/blog/wav2vec-state-of-the-art-speech-recognition-through-self-supervision/

47 →目次に戻る

出力：テキスト

　英語の音声認識ではアルファベットの文字が出力ラベルとして使われています。しかし、BPEの手法が広まって

以降はどの言語のS2Tでもサブワードレベルの分割が出力ラベルになるケースが増えてきました（※2）。トークナイ

ズについては基本的にはテキストの機械翻訳のときとほとんど変わりませんが、語彙（ごい）サイズはテキストの

機械翻訳よりも小さく作ることが多いようです。
※ 2：他にもマルチリンガルタスクへの応用で、IPAの発音記号を使ったり、音素（Phoneme）を使ったりする工夫も提案されています
（https://doi.org/10.1109/ICASSP.2014.6855086など）。https://arxiv.org/abs/2009.04707など、文字レベルの分割とサブワードレベ
ルの分割を比較した研究も参考にしてみてください。

　音声の前処理は、テキストの前処理とは異なります。「えーと」といった言いよどみの書き起こしや、音声では

発話されない句読点やかぎかっこなどの記号を取り除いたり、音声と表記にずれがある数字などを正規化したりす

る処理が挙げられます。特に字幕から作られたデータセットでは「（拍手）」など発話されていない描写が書き起こ

しテキストに入っていることが多々あります。これらを取り除いたり、トークナイズしたりする際に「（拍手）」が分

割されないよう 1つのトークンとして扱うなどの工夫も必要です。

　入力データの句読点を外す前処理を施す場合は、モデルによる生成後、出力された書き起こしにも句読点を付

け戻す後処理が必要になることもあります。

JoeyS2T実装

　JoeyS2Tでは、音声ファイルへのパスと書き起こしテキストを各行に入れた tsvファイルを入力に取るようにし

ています。「src」の列は、.wavなどの音声波形ファイル名、.npyのスペクトログラムファイル名、もしくは .zip

ファイル名とバイトオフセットのいずれかの形式で入力音声へのパスを指定します（※ 3）。音声波形をスペクトログ

ラムに変化するため「torchaudio」の sox warpperを利用しています。この変換は時間がかかるので、訓練を

始める前にあらかじめ抽出しておき、numpyの 2次元配列として保存しておくことにします。
※ 3：fairseq S2Tの入力形式に準拠しています。

.flacファイル名を指定した例

https://ieeexplore.ieee.org/document/6855086/
https://arxiv.org/abs/2009.04707
https://pytorch.org/audio/stable/torchaudio.html
https://github.com/facebookresearch/fairseq/tree/main/examples/speech_to_text

48 →目次に戻る

.npyのスペクトログラムファイル名を指定した例

.zipファイル名とオフセットを指定した例

　このスペクトログラムの抽出と入力 tsvファイルの生成をするスクリプトを準備しました。

$ python scripts/prepare_librispeech.py --data_root $WORK_DIR/LibriSpeech

　LibriSpeechデータセットは、英語の音声認識タスクでよく使われるベンチマークです。960時間の音声を含

む大きなデータセットで、私の環境では上記処理に丸 1日かかりました。また、ダウンロードした生の音声波形と

抽出したスペクトログラムのファイルを合わせると160GB程度の大きさになります。ディスク容量に注意してくだ

さい。

　LibriSpeech以外にも幾つかサンプルのスクリプトが JoeyS2Tに入っています。別のデータセットを使いたい

場合は、このスクリプトを書き換えるところから始めてみてください。

49 →目次に戻る

2. データ拡張（CMVN、SpecAugment）
CMVN

　Cepstral Mean Variance Normalization: CMVNは、スペクトログラムの入力値の平均を 0、分散を 1にす

ることでスケールの偏りやノイズを軽減する正規化手法です。

　各インスタンスのスペクトログラム 2次元配列の平均、分散を計算し、インスタンスごとに平均を引いて分散で割

る手法（Utterance-CMVN）と、全てのインスタンスから平均、分散を計算し、その 1つの値を使って正規化する

手法（Global-CMVN）の 2種類があります。JoeyS2Tでは前者のUtterance-CMVNを実装しています（※ 4）。
※ 4：Utterance-CMVNとGlobal-CMVNの比較は、https://arxiv.org/abs/2011.04884での議論が参考になります。

SpecAugment

　過学習を防ぐ工夫として、SpecAugmentと呼ばれるマスキングを適用します。SpecAugmentは、スペクトロ

グラムの値を、時間軸方向（垂直向き）、周波数方向（水平向き）とランダムに選んでマスクアウトする手法です。マ

スクした場所は、そのインスタンスのスペクトログラムの平均値で埋めてしまいます。各エポックでそのインスタンス

が呼び出されるたびに違うマスクが適用されるので、疑似的にデータ数をかさ増しする効果もあります（※ 5）。
※ 5：画像処理の分野で、入力イメージを回転したり反転したりするなど、ラベルに対して不変な変換を施してデータ数を増やすのに似ている
かもしれません。

　イメージとしては、通話などをしていて途中で数カ所接続が途切れる、マイクの設定などのせいで高い声の周波

数帯だけ聞こえづらい、低い声の周波数帯だけゆがんでいて声が普段と違って聞こえるといった障害が起きたとし

ても、文脈から推測すれば話している内容が補完できるというような状況を想像してみてください。

SpecAugmentのマスキングは、その通信障害のようなものを疑似的に取り入れることで過学習を避け、よりロ

バストなモデルを作ることに貢献しているといえます。

https://www.sciencedirect.com/science/article/abs/pii/S0167639398000338?via%3Dihub
https://arxiv.org/abs/2011.04884
https://arxiv.org/abs/1904.08779

50 →目次に戻る

JoeyS2T実装

　CMVN、SpecAugmentは「joeynmt/data_augmentation.py」で定義されています。ここで定義されたク

ラスを、トークナイザーが呼ばれるタイミングで適用します。JoeyNMT v2では、バッチイテレーションの中でイ

ンスタンスを取ってくる（データセットの「__getitem__()」関数を参照）たびにトークナイザーが呼ばれるので、

1つのインスタンスでも毎回違うマスクを適用することができます。

51 →目次に戻る

3. 畳み込みレイヤー
　音声入力のスペクトログラムは、テキストの入力に比べて系列長が 10倍程度長くなります。LibriSpeechの

devセットで比較すると、テキストのサブワード系列長の中央値は 17であるのに対し、スペクトログラムフレーム

数の中央値は 590となっています。

　このような長い系列をトランスフォーマーで扱うのは、計算効率でも性能の面でも困難です。そこで、入力系列

を畳み込みレイヤーで短くしてからエンコーダー渡すようにします。時間軸方向に畳み込む 1d-convをストライド

2で n回適用すると系列長を 2nだけ減らすことができます。

　音声スペクトログラムでは、1つのフレームが 1つのターゲットトークンに対応しているということはあまりなく、

複数のフレームが 1つのターゲットトークンを表している場合がほとんどです。音声のこのような冗長性を考える

と、畳み込みが役に立つことも感覚的に納得できるのではないでしょうか。

52 →目次に戻る

JoeyS2T実装

53 →目次に戻る

　畳み込みレイヤーを適用すると系列長が短くなるので、それに合わせてパディングマスクも計算し直す必要があ

ります。PyTorch DataParallelでバッチが複数GPUに割り当てられると、バッチの元の最大系列長が分からな

くなります。そのため、複数GPUに割り当てられる前に最大長を保持しておき、その最大長に合わせて全ての

GPUのバッチのパディングを計算し直しています。

　損失関数に渡すパディングマスクも、バッチオブジェクトのメンバーである「batch.src_mask」ではなく

Encoder内で計算し直した「src_mask」に置き換える必要があります。

54 →目次に戻る

4. エンコーダー／デコーダー
　エンコーダー／デコーダーの構成は、テキストの機械翻訳とほぼ同じです。コードは（畳み込みレイヤーに関す

る変更を除けば）全く同じものを使いますが、設定で少し気を付けるべきポイントを挙げます。

深いエンコーダー

　テキストの機械翻訳では、同じレイヤー数のエンコーダーとデコーダーを使うことが多いでしょう。S2Tタスク

の場合、エンコーダーをデコーダーより深くし、より複雑な学習により多くのパラメーターを割り当てると性能が

上がるという報告があります（※ 6）。
※ 6：https://arxiv.org/abs/1904.13377など

転移学習

　音声翻訳の場合に使われるテクニックとして、エンコーダーのパラメーターをASR事前学習モデルで、デコー

ダーのパラメーターをMT事前学習モデルで初期化するという方法があります（※ 7）。スクラッチから音声翻訳モデ

ルを訓練するのは不安定になったり、収束させるのに時間がかかりすぎたりすることがあります。事前学習モデル

からパラメーターの値を転移させることで訓練を安定させたり、処理時間を短縮させたりすることを狙っています。
※ 7：https://arxiv.org/abs/1911.08870

JoeyS2T実装

　チェックポイントを読み込む際、レイヤーの名前を確認して、あるチェックポイントからはエンコーダーのパラ

メーターのみを、別のチェックポイントからはデコーダーのパラメーターのみを読み込むようにします。

　Source側の単語埋め込みはスキップしてスペクトログラムを直接エンコーダーに送るため「Model.src_embed」

には「torch.nn.Embeding」オブジェクトではなく「torch.nn.Identity」オブジェクトを入れておきます。

https://arxiv.org/abs/1904.13377
https://arxiv.org/abs/1911.08870

55 →目次に戻る

5. CTC損失

　多くの機械学習タスク同様、テキストの機械翻訳でも、交差エントロピーを損失関数として採用することがほと

んどです。E2E音声認識でも、交差エントロピーを最小化する目的関数を採用したトランスフォーマー型のモデル

がより高い精度を達成してきました。この交差エントロピーに加えて「Connectionist Temporal Classification:

CTC」と呼ばれる長い系列をうまく扱う工夫を損失関数に取り込む手法が提案されています（※ 8）。
※ 8：https://doi.org/10.1109/ICASSP.2017.7953075

　CTC損失は、手書き文字認識や音声認識のような、入力と出力の長さが大きく異なるようなタスクで使われて

います。これらのタスクでは、正解のテキスト系列を出力させることが目的であって、各出力ラベルがどの入力フ

レームに対応するかはあまり重視されていません。

　例えば、仮に 100フレームの「こんにちは」という音声入力があるとします。この音声が、20フレームずつ均

等に「こ」「ん」「に」「ち」「は」というラベルにそれぞれ対応していたとしても、最初の 60フレームが「こ」に

対応していて残りの 40フレームが「んにちは」に対応していたとしても、どちらの場合でも「こんにちは」という

正解ラベルを出力できれば、音声認識の目的は達成できると考えます。

　JoeyS2Tでは、交差エントロピーとCTCの両方の損失を最小化する目的関数を採用しています（※ 9）。

※ 9:https://doi.org/10.1109/JSTSP.2017.2763455

https://dl.acm.org/doi/10.1145/1143844.1143891
https://dl.acm.org/doi/10.1145/1143844.1143891
https://ieeexplore.ieee.org/document/7953075/
https://ieeexplore.ieee.org/document/8068205

56 →目次に戻る

　ここで、λはハイパーパラメーターで、設定ファイルの「ctc_weight」に指定します。一般に、CTC損失が交

差エントロピー損失よりも大きな値になることが多いです。両方の損失がともに全体の損失に貢献するようなλの

値を、予備実験を行って決めるのがよいかもしれません。例えば、以下のような学習曲線の場合、10kステップ時

点で交差エントロピーの損失がおよそ 40、CTC損失がおよそ 80ですので、λ＝ 0.3くらいに設定すると（1-0.3）

×40＝ 28、0.3×80＝ 24となり、ちょうど両方の損失のバランスが取れそうです。

JoeyS2T実装

　損失関数のコードをカスタマイズする方法については第 2回の記事を参照してください。

6. 評価（WER）
　音声認識の評価には「Word Error Rate: WER」という評価尺度がよく使われます。モデルの出力と正解ラベ

ルの間の編集距離（edit distance）に基づく指標で、小さい値ほどモデルの出力と正解ラベルの間に違いが少な

い、つまり精度が良いことを示しています。

JoeyS2T実装

　JoeyS2Tでは、Cythonで実装された editdistanceパッケージをインポートしています。

　モデルが出力した one-hot-encodingのトークンのリストを 1つの文字列に戻した後、sacrebleuのトークナ

イザーとともに「wer()」関数に渡しています。設定ファイルの「sacrebleu_cfg」の項目で、トークナイザーの

種類を指定することができます。

https://github.com/roy-ht/editdistance

57 →目次に戻る

※ scliteでの計算結果と一致することを確認しています。

【補足】参考文献ガイド
• Speech Translation Tutorial：音声翻訳で参考文献を何か一つ挙げるとしたら、断然この「EACL

2021」の音声翻訳チュートリアルをおすすめします。講義ビデオ、スライド、文献リスト、データ、ツー

ルなど多岐にわたる情報がまとまっています。カスケード型から最新のEnd to Endまで広く学ぶことが

できます

• Speech Processing for Machine Learning：スペクトログラムについてより詳しく知りたい方はこの

記事を読んでみてください

• Sequence ModelingWith CTC：CTC損失関数について、分かりやすい図を用いて視覚的に説明して

くれている記事です。前向き後ろ向きアルゴリズムについては日本語で読めるこちらの記事をおすすめし

ます

• An Illustrated Tour of Wav2vec 2.0：近年研究が進んでいる「wav2vec2.0」の解説記事です。後

続論文の「wav2vec-U」は、音声認識のチュートリアルとしても読むことができると思います

• Speech Translation and the End-to-End Promise: Taking Stock of Where We Are：音声翻訳

の概要をつかむには、このような包括的なサーベイ論文が助けになるかもしれません

• Pythonで学ぶ音声認識 機械学習実践シリーズ：日本語の書籍では、基礎知識から数式の解説、実装

まで広く扱っているこちらの本を参考文献として挙げたいと思います

https://st-tutorial.github.io/
https://2021.eacl.org/
https://2021.eacl.org/
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://distill.pub/2017/ctc/
https://musyoku.github.io/2017/06/16/Connectionist-Temporal-Classification/
https://jonathanbgn.com/2021/09/30/illustrated-wav2vec-2.html
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2105.11084
https://aclanthology.org/2020.acl-main.661/
https://book.impress.co.jp/books/1120101083

58 →目次に戻る

モデルの訓練

　「入出力フォーマット」のセクションで言及した LibriSpeechコーパスから、clean100カテゴリーのデータを

使ってモデルを訓練します（※ 10）。
※ 10：LibriSpeechはデータサイズが大きいのでGoogle Colabでは扱うのが難しいかもしれません。Google Colabで動かしてみたい場
合は、小さいデータを扱った notebookを参照してください。

　コンフィギュレーションファイルで、Speech-to-Textタスクの設定をします。「src」の「min_length」は、

1d-Convで圧縮するカーネルサイズより長くなるように設定してください。

https://github.com/may-/joeys2t/blob/main/notebooks/joeyS2T_ASR_tutorial.ipynb

59 →目次に戻る

60 →目次に戻る

　「train」モードで訓練を始めます。

$ python -m joeynmt train configs/librispeech_100h.yaml --skip_test

　およそ 30kステップで、Accuracyが 0.9、Perplexityが 2、Word Error Rateが 15くらいの値に落ち着い

てきます。

61 →目次に戻る

　以降はあまり変化が見られなかったので、100kステップでいったん訓練を打ち切りました。100kステップを回

すのに、NVIDIA RTX A6000のGPUで約 22時間かかりました。

モデルの評価

　保存されたチェックポイント 10個の平均を取ります。

$ python scripts/average_checkpoints.py --inputs models/librispeech100h/*00.

ckpt --output models/librispeech100h/avg10.py

　「test」モードでモデルの性能を評価します。

$ python -m joeynmt test configs/librispeech_100h.yaml --ckpt models/

librispeech100h/avg10.py

2022-06-30 01:01:47,581 - INFO - root - Hello! This is Joey-NMT (version

2.0.0).

[...]

2022-06-30 01:02:14,239 - INFO - joeynmt.prediction - Decoding on dev set...

2022-06-30 01:02:14,239 - INFO - joeynmt.prediction - Predicting 2703

example(s)...

2022-06-30 01:14:47,924 - INFO - joeynmt.prediction - Evaluation result wer:

11.04

2022-06-30 01:14:47,928 - INFO - joeynmt.prediction - Decoding on test set...

2022-06-30 01:14:47,928 - INFO - joeynmt.prediction - Predicting 2620

example(s)...

2022-06-30 01:23:56,345 - INFO - joeynmt.prediction - Evaluation result wer:

12.33

　この学習済みモデルは公開しています。jupyter notebook（※ 11）では、モデルの書き起こし結果とともに、その

入力音声を聞くこともできます。ぜひリポジトリからアクセスしてみてください。
※ 11：この notebookは、AIMS Senegalでの「NMT in Practice」の講義で使ったものが基になっています。

62 →目次に戻る

最後に

　3回にわたってお届けしてきた本連載も今回で最後となりました。「JoeyNMT」は 2019年にオープンソース化

されて以降、多くのコントリビューターに支えられて少しずつ成長してきました。ミニマリスティックな哲学は保ち

つつ、新機能の実装、古い依存ライブラリからくる問題への対処など、ボランティアの手で継続的にアップデート

されています。

　当初の開発目的であった教育用途はもちろん、翻訳の枠を超え、画像キャプション生成、手話翻訳、強化学習

などさまざまなプロジェクトで用いられています。本連載での音声認識により、応用の幅はさらに広がったのでは

ないでしょうか。また日本語で「JoeyNMT」を紹介する機会をいただけたことをとてもうれしく思います。本連

載が、ニューラル機械翻訳の世界に飛び込むきっかけになれば幸いです。

