
巨大 SIerのコンテナ・
Kubernetes活用事例
小林隆浩, 澤頭 毅, 海内映吾, 新井雅也,
野村総合研究所［著］



01.安定志向のNRIが変化の激しいKubernetesを推進する理由

02.なぜ金融系プロジェクトで先進のコンテナ技術を選択したのか

03.なぜ Kubernetesを採用するのか
　   2000人の開発者に提供するサービスで得られた知見と課題

04.大規模基幹システムを「マルチテナンシー Kubernetes」で構築、
　   そのメリットと悩ましい課題



3 →目次に戻る

　野村総合研究所（以後、NRI）のコーポレート・ステートメントは「未来創発」だ。顧客とともに新しいビジ

ネスモデルを生み出そうとする姿勢を示している。これはシステム開発や運用などを提供する分野でも一貫してお

り、ITサービスの分野でも先進的な取り組みをいち早くプロジェクトに取り入れ、強い実行力をもって、存在しな

かったようなサービスを生み出してきた。

　しかし、NRIはシステムインテグレーター（SIer）と呼ばれ、慎重・安定などのキーワードを連想されることが

ある。例えば、こんな評判を聞くことがある。

大規模なプロジェクトを幾つも推進していそう

先進的な技術というよりは、安定した（枯れた）技術を得意としているように見える

コスト効率を重視し、リスクの少ないプロジェクト管理が得意そうだ

　これらの評価は間違っていないが、さまざまな技術を調査・評価してプロジェクトに適用し、顧客に価値を届け

ることも、SIerの仕事の醍醐味（だいごみ）の一つである。こうした考えから、現在注目度が非常に高い「コン

テナ技術」や「Kubernetes」への取り組みも社内で積極的に行われている。

　そこで今回は、NRIのさまざまなプロジェクトの形態と組織の特性をまず整理する。そして本連載第 2回以降

で、コンテナや Kubernetesを適用した事例を紹介する。

安定志向のNRIが
変化の激しいKubernetesを推進する理由
さまざまな顧客のシステム開発や運用に関わる中で、NRIはコンテナ技術や Kubernetesに積
極的に取り組んでいる。本連載の初回は NRIが抱える組織や文化の課題を整理し、
Kubernetesに期待していることを紹介する。

小林隆浩，野村総合研究所（2020年 09月 24日）



4 →目次に戻る

プロジェクトの分類と 3つの事例

　先述したように、NRIが扱うプロジェクトは多種多様であり、ITサービスに関連するものだけではない。筆者

が所属する ITサービス関連部署でも、稼働しているプロジェクトはバイモーダルと定義されるように 2つの種類

に大きく分けられる。

バイモーダルとは           
　Gartnerが提唱した、情報システムを「モード 1：変化が少なく、確実性、安定性を重視する領域」と

「モード 2：開発・改善のスピードや “ 使いやすさ ”を重視する領域」に分類する考え方。モード 1は基

幹系業務である会計や生産管理・人事などを指し、モード 2は収益の拡大を目指して顧客と直接接点を持

つ業務などを指す。求められる組織体制・文化も異なり、モード 1には「ITIL」など効率化を重視した厳

密な規律、モード 2には「DevOps」といわれる開発チームと運用チームの一体化によりアジリティを引き

出す組織づくりが求められる。

　NRIが得意としてきたのは、モード 1の分野で、かつ大規模なプロジェクトである。しかし、こうしたプロジェ

クトは何より安定性が重視され、同時に導入・管理のコストを削減する意識が強く働くため、厳密な管理手法が

用いられた結果として、新規技術の導入が阻害されているケースがあった。

　このような先端技術への取り組みが難しいモード 1のプロジェクトにおいても、これまで培ってきた設計、開発

手法を生かしながら、Kubernetesを適用している。これは連載 4回目で詳説する予定だ。

　NRIではモード2に当たるプロジェクトも多数の実績がある。それらの中からコンテナ技術をベースに顧客の新

規ビジネスに必要なシステムを構築・運用した事例を連載の第 2回で紹介する。同様のモード 2のケースとして、

社内で開発したプロジェクト支援ツールをKubernetesで構築した事例を第 3回で紹介する。



5 →目次に戻る

NRIにおける組織・開発文化の課題　Kubernetesの適用が目標とするもの

　さて、説明してきたように、NRIが得意とするプロジェクトの形態はモード 1であり、大規模な開発プロジェク

トであっても標準化を通じて効率的に推進し、顧客ビジネスを支える安定したシステム運用につなげてきた。その

中でNRIの組織は、長い時間をかけて得意とする大規模向けの開発・運用プロセスに最適化されてきたといえる

だろう。

　組織の最適化とはつまり、機能の分化である。システム開発・運用において必要な機能を、以下のように分け

ている。

1. Dev：アプリケーション開発

2. Infra：基盤・開発支援

3. Ops：運用・統制

　それぞれが専門技術をプロジェクトに提供することで、多数の顧客から寄せられるさまざまなリクエストに応え

ることが可能となっている。例えば、Infraには「ハードウェア・ソフトウェアの発注を行い自社データセンター

（DC）に組み上げるチーム」や「アプリケーションの開発を効率化するフレームワークを提供するチーム」が含ま

れ、内部で専門領域に応じて細分化されている。

　こうした組織構成はNRIの固有のものではないが、そこには大きな課題が存在する。それが「組織間の壁」で

ある。

組織間の壁



6 →目次に戻る

　Infraの担当者はアプリケーションの設計を理解せず、同様にDevの担当者はフレームワーク以下の仕組みに

踏み込まないなど、本来必要なコミュニケーションが壁によって阻まれた好ましくない状況が発生し、課題となっ

ていた。

　そうした壁を打ち壊し、NRIが得意とするモード 1だけではなく、デジタルトランスフォーメーション（DX）の

担い手としてモード 2のプロジェクトへ積極的に取り組むために、社内でもさまざまな変革が行われている。その

一つが Kubernetesに代表されるクラウドネイティブ技術の適用である。クラウドネイティブ技術の活用で、アプ

リケーション開発者はよりパワフルになり、運用は効率化され、結果として壁を取り除かれた組織全体が活力を取

り戻す。そうしたゴールを目指し、各プロジェクトの模索が続いている。

　今後の連載各回のテーマを、バイモーダルにおけるプロジェクトの分類、そしてプロジェクト推進体制の違いで

生じる組織間の壁の有無で整理すると下表のようになる。

　ここからは第 2回以降で紹介するプロジェクトのアウトラインを少しだけ紹介していこう。

顧客の新規ビジネスを創り出すプロジェクト

　NRIが多くの基幹システムを長年支えてきた結果、顧客の重要なビジネスパートナーとして認知され、新規ビジ

ネスの立ち上げでも相談いただくことがある。最近はユーザー側の技術理解も非常に高く、コンテナ技術や

Kubernetesのメリットを顧客とNRIの双方が理解した上でプロジェクトをスタートできる例も増えてきている。

　このプロジェクトは、モード 2として、新規システム構築で開発スピードと変化許容性を重視してコンテナ技術

を採用し、少数精鋭の開発チームでサービスリリースまでを走り切ったケースだ。こうした小規模プロジェクトで

は厳密なプロジェクト管理の必要性が薄く、NRI内のさまざまなプロジェクトと比較して先端技術の導入が容易と

いうメリットがある。

　このプロジェクトではパブリッククラウドからコンテナ技術、プラットフォーム、アプリケーション開発と業務知

識までを兼ね備えたエキスパートチームを組成して、前述のDevと Infraの壁を乗り越えた。しかし、業界固有

の規制要件により、Opsとの間には壁が存在していた。これらをプロジェクトのアジリティを損なわずに、どのよ

うに回避したかについても焦点を当てる予定である。



7 →目次に戻る

社内サービスの開発におけるKubernetes適用

　NRIはチームのコミュニケーションを促進するサービスとして「aslead」を展開しており、サブプロジェクトと

して、開発チームに必要な継続的インテグレーションのパイプラインを提供する「aslead DevOps」がある。

　aslead DevOpsは、以前から抱えていたさまざまな課題の解消に向けて、各コンポーネントを適切に分割して

コンテナ化し、マネージドKubernetesサービスにデプロイして管理する構成にした。これにより「Pod」「Node」

レベルのオートスケールも実現し、開発ピーク時に発生する密度の高いパイプラインのリクエストにも柔軟に対応

が可能となっている。

　こちらもモード 2のプロジェクトであるが、自社向けのサービスとしてDev／ Infra／Opsを全て統合した組

織で管理し、Kubernetesがもたらすメリットの最大化を実現している。　

　また、若いエンジニアたちが組織の壁に縛られずに活動し、「CKA（Certified Kubernetes Administrator）」

「CKAD（Certified Kubernetes Application Developer）」などの資格取得を通じて知識を強化するとともに、

外部コミュニティーからベストプラクティスを持ち帰り、新規技術のプロジェクト適用を積極的に推進した。

　この事例はコンテナ技術、Kubernetes技術の獲得と社内共有を目的とした側面もある。実績をもとに他プロ

ジェクトへ展開が可能となったのはもちろん、ステートフルなワークロードへの Kubernetesの適用可否やマルチ

クラスタ対応など “その先 ”のノウハウ獲得に向けて、asleadは前進している。

https://aslead.nri.co.jp/


8 →目次に戻る

大規模な基幹プロジェクトにおけるKubernetes適用

　NRIが得意とする大規模プロジェクトでKubernetesを適用した事例だ。こちらは典型的なモード1であり、対

応する組織構成も従来通りで壁が随所に見られる状況だった。それに加えて、前述の Infra組織の中でも役割が

分かれ、Kubernetesに関連するチームとして基盤チームと開発支援チームが生まれた。

　基盤チームは、Kubernetesクラスタ管理者＝仮想サーバの上にKubernetesのクラスタを構築・運用すると

いう役割を担い、Kubernetesのノードやネットワーク、そしてNamespaceの設計・構築・テストを行った。も

う一方の開発支援チームでは、KubernetesのNamespace内管理者という役割を担い、Kubernetesリソース

をどのように使うか標準化し、必要であれば定義ファイル（YAML）のひな型を作り、Devチームに展開した。そ

して、コンテナをビルドするパイプラインの構築・管理も開発管理チームが担当した。

　では、アプリケーション開発チームではどのように開発を行ったのだろうか。そして、それは Kubernetesの導

入により何か変化があったのか。

　今回の対象プロジェクトでは生産性を重視し、アプリケーションの設計・開発は大きな変化なく行えることを方

針とした。つまり、Devと Infra間の壁をそのまま残し、同時にKubernetesなどの技術理解の必要性も壁の内

に閉じ込めた。こうしたアプローチはNRIで過去に蓄積されてきたアプリケーション設計やフレームワークを最大

限に生かすためだったが、当然課題も存在した。それらの詳細は連載第 4回で記す予定だ。

まとめ

　NRIはモード 1のような安定性が求められる大規模プロジェクトにおいて、これまで多くの成功をおさめ、顧客

の信頼を勝ち得てきた。しかし現在、異なる形でのプロジェクトへの参与を望まれている。それはDXの潮流にお

ける革新の担い手として、モード 2のプロジェクトに寄り添い、スピード感を持って歩むことだ。

　その実現にはNRIが長年培ってきた組織と開発文化の変革も不可欠だ。コンテナ技術や Kubernetesを変革

の一助として捉え、組織間の壁を乗り越えようとする動きは今回紹介する 3つの事例に限らず、今後も多くのプロ

ジェクトに拡がっていくだろう。

　NRIにおけるコンテナ技術や Kubernetesの活用事例が、自らの組織・文化に同様の課題を抱える読者にとっ

て、変革を始める一助になれば望外の喜びである。



9 →目次に戻る

金融系サービスでも顧客体験を改善する迅速さは不可欠

　「金融」と聞くと、勘定系処理や外部システムとの接続、バックオフィス業務などを思い浮かべる読者も少なく

ないだろう。これらのシステムでは、「求められるシステム品質が高く、ドキュメントは重厚に整備、管理され、大

規模な工数が必要なプロジェクト」という点を想像するに難くない。野村総合研究所（以後、NRI）はインター

ネットバンキングや証券業の大規模共同利用型サービスを構築、運用しており、まさにNRIが得意とする領域で

もある。

　こうした大規模プロジェクトのみならず、NRIはクラウドネイティブ技術を活用した「FinTechサービス」の共

創にも奮闘している。FinTechサービスといえば、家計簿アプリやキャッシュレス決済、資産運用アプリなど、ス

マートフォンアプリケーションを軸にしたサービスが主流だ。今や私たちの生活に溶け込み、日常の中で自然に利

用されている。故に、利用時にストレスを与えないユーザー体験が求められる。利用者からのニーズや不満を日々

くみ取り、素早く提供、改善することがサービスの価値を高める上で極めて重要だ。

　FinTechサービスに取り組む上で、システムインテグレーター（SIer）の立場においても、「お客さまのお客さ

ま」（サービスを利用するエンドユーザー）に届ける体験価値をより強く意識しながら取り組むべきだと考えている。

スコープを小さくして価値を素早く届けるという意味では、FinTechサービスは継続的なアジリティを重視したア

プリケーション開発が求められると言える（もちろん、FinTechサービスに限った話ではないが）。

なぜ金融系プロジェクトで
先進のコンテナ技術を選択したのか
NRIのコンテナ・Kubernetes活用事例について紹介する本連載。第 2回は FinTechサービ
スをクラウドやコンテナで支援した事例を紹介する。

新井雅也 , 小林隆浩，野村総合研究所（2020年 10月 23日）



10 →目次に戻る

業界標準規格、監査、ガバナンスルール――金融系サービスの高いハードル

　FinTechサービスのみならず、金融サービスは私たちの生活インフラを担っている。故にシステムの安定性や高

いセキュリティ維持のためにさまざまなルールが存在する。

　安全なシステム構築の指針として、金融情報システムセンター（FISC）は「金融機関等コンピュータシステム

の安全対策基準 （FISC安全対策基準）」を提示している。クレジットカード事業に求められるグローバルなセキュ

リティ標準規格「Payment Card Industry Data Security Standard （PCI DSS）」への準拠も一つの例だ。他

にも、金融機関や FinTech企業が自組織内で定めたガバナンスルールへの準拠や、監査法人などを通した準拠

状況の検査が求められるケースも珍しくない。「必要なドキュメントの整備」「開発ルールの策定」「ソフトウェアの

適切な設定」「システムの実装を証明するための証跡提出」など、実施すべき項目は多岐にわたる。昨今では、組

織ごとにリスクを定義、評価してそのリスクごとに対処する「リスクベースアプローチ」が採用されつつあるが、他

の業界と比較して金融サービスは不正取引や個人情報漏えいなど重要なセキュリティリスクが多く内在するため、

対応範囲が広くなる傾向が強い。

　これらの内容を踏まえると、「アジリティを重視した継続的なアプリケーション開発」と「コンプライアンス、ガ

バナンスの確実な準拠」のバランスをどのように実現するか、という点が FinTechサービスの継続的な発展に必

要なポイントだと捉えられるだろう。

金融系サービスの全体像

　両者を両立させるべく、筆者のプロジェクトでは、「チーム組成の工夫」「クラウドの利用」「コンテナの活用」と

いう 3つの観点で取り組みを検討することにした。

https://www.pcisecuritystandards.org/document_library


11 →目次に戻る

チーム組成の工夫：Devと Infraの融合

　本連載の初回で紹介した通り、Dev・Infra・Opsの組織に分かれてそれぞれが責務を持ち、システムを作り上

げていくことはNRIの得意とする開発スタイルであり、NRIで実施するプロジェクトのチーム組成における大半を

占める。一方で、組織間の責務に対する曖昧さが生まれたり、責務の調整に関するオーバーヘッドが生まれたりす

ることも少なくない。これに起因して「アプリケーション開発のアジリティが最大化されないのではないか」という

懸念もあった。

　筆者が担当したプロジェクトでは、少数のエンジニアがDevと Infraの両方を一手に担う、もしくは Devと

Infraで 1つの混成チームを結成することで懸念の払拭（ふっしょく）を図った。小規模かつ短納期というプロ

ジェクトの特性から、利用者に対して最も価値のある箇所を見定めてスコープを限定することで、必要となる技術

スキルや学習コスト、開発ボリューム、失敗に対する影響を最小限にできる。

　また、開発要件が変更された場合もチーム間の調整負荷も下がるため、変化に対して柔軟に振る舞えるだろう

と考えた。

クラウドの利用：マネージドサービスの活用

　2013年にNRIは Amazon Web Services（AWS）のプレミアコンサルパートナーとして認定を受け、多岐

にわたる業界のお客さま向けにAWSを活用したシステム構築を支援してきた。これらの経験を生かし、AWSの

マネージドサービスを上手に活用することでインフラ層の抽象度が上がり、Dev・Infraチームとしてアプリケー

ション開発寄りのスコープにより注力できると考え、AWSを利用することにした。

　AWSは FISC安全対策基準や PCI DSSの準拠に向けたガイドラインを提供しており、AWS利用者がこれら

の準拠に向けてお互いどのような責務で臨むべきかを整理している。マネージドサービスの活用により、各種ルー

ル準拠に必要なハードウェアからOS、ミドルウェアまで設計、運用の一部をAWS側に委譲できるため、より

アプリケーション開発に注力できると考えた。

https://partners.amazonaws.com/partners/001E000000NaBHnIAN/


12 →目次に戻る

コンテナ技術の採用

　チーム組成とクラウド活用に加えて、本プロジェクトではコンテナ技術を積極的に活用する方針とした。コンテ

ナ利用のメリットの一つは「可搬性」だ。開発環境でビルド、テストされた同一イメージを本番環境でも利用でき、

従来の手動オペレーションによる各環境向けのビルド＆リリースなどと比較して、稼働環境ごとの差異に伴う考慮

やリスクを減らすことができる。

　一方、アプリケーションデプロイやリソースの割り当て、負荷分散や可用性など非機能面や運用面を考えると、

コンテナオーケストレーションが必要不可欠だ。オーケストレーションツールの選択肢である「Kubernetes」は、

今やクラウドネイティブの中心的存在だ。クラウドネイティブ技術のオープンソースプロジェクトを推進するCloud 

Native Computing Foundation（CNCF）の調査レポートによると、2018年のコンテナオーケストレーション

を利用する 83％のユーザーが Kubernetesを利用している、との結果を公表している。これに対し、フルマネー

ジドでDockerコンテナの実行、管理を提供する「Amazon ECS」（Amazon Elastic Container Service）は

全体の 24％だが、今回筆者のプロジェクトは Amazon ECSを選択した。その理由は幾つかあるが、本稿ではこ

の選択のプロセスをもう少し掘り下げて紹介する。

なぜ Kubernetesではなく、Amazon ECSを採用したのか？

　一つはAWSをプラットフォームとして作り上げていく際の考え方だ。Amazon ECSを含め、AWSでは各サー

ビスをブロックと見立てて組み合わせる思想があり、組み合わせたサービス間はスムーズな連携が可能だ。この点

は、今後 AWSを主軸としてサービスを拡張する上で開発アジリティを高めていく際の重要なポイントになる。

Kubernetesとその他多数のCNCF関連ソフトウェアとの組み合わせと比較すると、オーケストレーション層にお

ける機能面の自由度は限定されるものの、今回のサービス要件では Amazon ECSで充足すると考えた。

　Amazon ECSの採用は運用面でも大きなメリットがある。Kubernetesはおおよそ3カ月に1度マイナーバー

ジョンがリリースされており、AWSでも同じ流れが踏襲されている。プロジェクト対応当時、マイナーバージョン

は最初のリリースから約 9カ月間サポートされていたため、定期的なバージョンアップ運用が必要だった（現在は

約12カ月間サポートに延長されている）。Kubernetesのバージョンアップ後は稼働するソフトウェアやアプリケー

ションへの影響確認が不可欠だ。Amazon ECSならこれらの運用をAWS側が透過的に実施してくれる点でメ

リットが大きい。

　また「サービスリリース後に誰が Kubernetesを運用するのか」という点でも課題があった。Kubernetesを

選択した場合、Kubernetesレイヤーでの金融規制の準拠に必要な運用スコープが増えてしまう。NRI内のOps

チームを巻き込むスコープが広くなり、運用の受け入れまで含めると、引き継ぎのリードタイムが生まれ、サービ

スインへの支障も懸念された。一方、Amazon ECSは Kubernetesと比較してAWS利用者側の責務範囲を抑

えることができる。故に運用スコープを小さくできると期待できたことから、Amazon ECSを採用するに至った。

https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/blog/2018/08/29/cncf-survey-use-of-cloud-native-technologies-in-production-has-grown-over-200-percent/
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html


13 →目次に戻る

コラム：Kubernetesを選択するメリット       
　今回選定しなかった Kubernetesにも良さがたくさんある。一例を挙げると、Kubernetesはコミュニ

ティーグループの活動が非常に活発であり、ITエンジニア間での熱量も非常に大きい。Kubernetesをは

じめとするクラウドネイティブ技術に関する勉強会が多数のコミュニティーを通じて日々行われ、モダンアー

キテクチャに対する共有やディスカッションが日々なされている。所属している会社、組織の枠を超えて、IT

エンジニアとしてのモチベーションが高く保てる技術の一つだと考えている。Kubernetesを利用しているこ

とが企業、サービスに対する一種のプレゼンスとなっている点もあるのではないかと思うこともある。

　またCNCFを軸としたソフトウェアの活用により、インフラとしての自由度を高めることが可能だ。

Amazon ECSは AWSの仕様範囲内の利用に限定されるが、Kubernetesは求められる要件ごとに

CNCF関連ソフトウェアを組み合わせることで、より柔軟なアーキテクチャを構成できる。オープンソース

ソフトウェア（OSS）が多く、オンプレミス環境や他のパブリッククラウド環境への移植性も高い。

　今回紹介した事例は、「FinTechサービス × 規制ルールの準拠」というプロジェクトの特色を考慮し、

Amazon ECSを採用する方針とした。一方でNRIにおいてもKubernetesを積極採用する事例が増え

てきている。至極当たり前のことだが、Amazon ECSにせよ、Kubernetesにせよ、プロジェクトの特性

と技術の特性を理解し、判断軸を設けて選択するプロセスを踏むことが重要だろう（※プロジェクト特性次

第では、一人の ITエンジニアとして筆者もKubernetesの世界に飛び込んでみたいと考えている）。

おわりに

　短納期かつユーザーファーストな FinTech領域の課題に先進のコンテナ技術を採用したNRIの事例を紹介し

た。今後も、組織組成の在り方に柔軟性を持たせたり、パブリッククラウドの積極的な活用やCloud Native技

術の採用による成功事例を積み重ねていきたいと考えている。

　本稿の内容が同じような課題に直面している読者のヒントにつながれば大変うれしい限りである。



14 →目次に戻る

Kubernetes採用の背景とメリット

　野村総合研究所（以後、NRI）では、ここ数年で Kubernetesを利用するプロジェクトが増えてきた。本記事

で取り上げる自社サービス「aslead」や、社内のプライベートクラウドに構築した「OpenShift」でもKubernetes

を活用している。Amazon Web Services（AWS）が提供する「Amazon EKS（Amazon Elastic Kubernetes 

Service）」（以後、EKS）を本番環境としてアプリケーションをデプロイしているプロジェクトも存在する。

　Kubernetes採用の背景は2つある。一つはコンテナ実行が可能なインフラを構築することでアプリケーション

開発やテストをするための環境をすぐに提供できるようにすること。もう一つは、アプリケーションをコンテナ化す

ることで、インフラストラクチャの EOL（End Of Life）に伴うアップデートをアプリケーションに影響を与えるこ

となく実現可能にすることだ。

　コンテナの可搬性は、アプリケーションのデプロイ頻度を高めるCI（継続的インテグレーション）／ CD（継

続的デリバリー）との親和性が高い。Kubernetesを導入したプロジェクトが増えるにつれ、Kubernetesリソー

スを手軽にデプロイしたりテストしたりするためのCI/CDの需要も高まりつつある。

　NRI内のプロジェクトでは本番環境とCI環境を別にする要件が多く、EKSの場合はNRI内のセキュリティポ

リシーに準拠しつつ手軽にCIを実行可能な環境を用意することにしていた。その結果、Kubernetesのプロジェ

クト導入事例が増えるとともに、Kubernetesリソースをデプロイして手軽にテストするためのCI環境の需要が

高まっていった。

なぜ Kubernetesを採用するのか　2000人の
開発者に提供するサービスで得られた知見と課題
NRIのコンテナ・Kubernetes活用事例を紹介する本連載。第 3回は開発者の QCD
（Quality、Cost、Delivery）を向上させることを目的とした開発支援サービスにKubernetes
を適用した事例を紹介する。

海内映吾 , 小林隆浩，野村総合研究所（2020年 11月 27日）

https://aslead.nri.co.jp/


15 →目次に戻る

社内向け開発支援ツールの提供

　NRIは2018年から社内向けの生産性向上サービスとしてコミュニケーションツールやファイル共有ツールなど

を提供する asleadを内製している。利用者は独自で環境構築をする必要がなく、サービスによってセキュリティ

が担保される。asleadの中でも開発を支援する「aslead DevOps」は 2020年 10月時点で利用者が 2000人

を超えている。

aslead DevOpsとは          
　NRIの開発現場から生まれた開発管理製品。ソースコードを管理する「GitLab」や資材を管理する

「Nexus」、ソースコードを静的解析する「SonarQube」にNRI独自のプラグインを加えた機能を持つ。

アプリケーションのDockerイメージを資産として格納し、それをKubernetesリソースとしてテストする

ための環境も提供している。開発方式をモダナイズしたいという開発者の要望に応え開発され、利用が広

まっている。

aslead DevOpsによる開発イメージ

　aslead DevOps展開までの過程で、社内の開発工程をモダナイズさせるためにどのようなプロセスで構築が

進められたのかを説明する。



16 →目次に戻る

Dev、Ops、Infraの結束

　NRIにおける組織、開発文化の課題としてDev（アプリケーション開発）、Ops（運用）、Infra（基盤）に組

織間の壁があることは第 1回に述べた通りだ。近年のクラウドネイティブに関する動向を見ても「まずは組織を変

えることが重要だ」と述べられているケースが多い。これはまさにその通りで、企業特有の組織文化やコミュニケー

ションを手軽に取れない環境が、サービス展開のスピードを高めることが難しくさせてしまう現実がある。

　そこで asleadではDev、Ops、Infraで組織間の壁が存在せず同じチームとして動いている。asleadの開発

過程はNRIの他プロジェクトとは毛色が異なり、DevはOSS（オープンソースソフトウェア）に導入するNRI独

自のプラグイン開発やデプロイを担当し、Opsは障害対応やQA対応、Infraはプライベートクラウド環境での必

要リソースの構築、管理を担当した。

　最初の組織体制では社内のセキュリティポリシーを満たすプライベートクラウド環境を別チームに依頼して提供

してもらっていたが、後に統合する形となった。この組織構成となったのはもともと人数の問題があったためであり、

覚える業務が多くなるというデメリットもあるが、提供するプロダクトを全員が正しく理解できるというメリットも

ある。

Kubernetes採用に至るまで

　サービス開始当初は Kubernetesを利用せずに運用をしていたが、サービスの運用コストが課題として挙がる

ようになった。そこで、運用コスト削減を第一の目標とし、副次的にリソース管理の負担軽減や自己回復性の担保

を実施すべく、Kubernetesを採用した。Kubernetesは自動復旧やリソース割り当ての容易さに加え、多くの便

利な機能がOSSとして提供されるエコシステムが確立していることも採用の背景にある。

　所属チームでは「Cloud Native Computing Foundation」（CNCF）の動向に注目しており、GitOpsを実

現する「Argo CD」やChaos Engineeringを実現する「Litmus」などを内部で調査検証している。顧客を技

術支援する際に効率良く展開できるようキャッチアップを行い、勉強会やWikiなどで共有している。このような

OSSをすぐに利用できるのもCNCFで I/F仕様の標準化が進められ、プラガブルな利用が可能な Kubernetes

ならではといえる。

　Kubernetesは開発スピードが早いため、それに追随することでさまざまな機能を利用できる。また、オンプレ

ミスにKubernetesクラスタを構築するか、各種クラウドサービスのマネージドKubernetesサービスを利用す

るかなど自分たちで構築場所を決められる自由度もある。



17 →目次に戻る

EKSでの運用

　当プロジェクトの Kubernetes環境には EKSを採用している。運用コスト削減を目的としていたため、AWS

が提供するマネージドKubernetesサービスが最適と判断した。テスト環境を提供する上で、Kubernetesのコ

ントロールプレーンに負荷がかかることも想定されていたため、高可用性や AWSリソースとの親和性も総合的に

考慮した。

　EKSでは Kubernetesのマイナーバージョンのリリースが 3カ月ごとに行われ、最新 3バージョンがサポート

対象となる。Kubernetesについて「バージョンアップに追随しなくてはいけない」ことがマイナスポイントとして

挙げられることもあるが、Kubernetesのバージョンアップに合わせてエコシステムは開発が進み、機能も増えて

いくためそれに追従できる環境を構築することが大切だと考えている。

　ここからは EKSで運用するに当たって得られた恩恵を紹介する。

シングルクラスタ構成によるコスト削減             
　以前は利用プロジェクトごとにApplication Load Balancer（ALB）で窓口を用意するようにしていたが、コ

スト削減のために 1つのクラスタにつきALBが 1つで済むようにリバースプロキシを適切に配置したり、複数の

プロジェクトがある場合はNamespaceで区切ったりすることで、EKSのクラスタを無駄に増やさずコスト効率

を高められた。

オートスケールによる可用性向上               
　EKSでは「Cluster Autoscaler」や「Prometheus Adapter」という機能によりNodeとPodをオートス

ケールさせることができる。Nodeのオートスケール条件は決まっているが、Podに関しては自由に設定できるの

でアプリケーションごとに設定することで適切なスケーリングができる。

適切なマニフェスト整備によるリソース管理の負荷軽減           
　アプリケーション単位で「Helm Chart」を持っておくことで、複数のコンテナが 1つのアプリケーションに含ま

れる場合でもリソース設定を容易にしている。利用者にはテスト環境を提供しており、デフォルトのリソース設定で

は不足に思う利用者もいた。Helm Chartの設定ファイルを編集してデプロイまでにかかる時間はわずかなため、

利用者の意思で設定変更を素早くできるようになった。

　また、EKSとAWSの製品との親和性もここ数年で上がってきているのも実感している。以前は「IAM Roles 

for Service Account」や「AWS Timestream」が存在していなかったため、それらを補うために自分たちで実

装する場面があった。「CloudWatch Container Insights」の機能も充実してきており監視ツールもマネージド

サービスに任せることが可能になってきている。



18 →目次に戻る

今後の展望

　Kubernetesを運用して恩恵が得られた部分は複数あるが、改善の余地も同様に複数出てきた。

　まず、ステートフルアプリケーションのスケーラビリティをどう確保するかが挙げられる。AWSの場合、

PersistentVolumeに「Amazon EBS（Amazon Elastic Block Store）」を利用するとReadWriteOnceの

制約によりマウントさせるPodは 1つだけに限定されマルチAZで冗長化できない。これを解決する方法として

「Amazon EFS（Amazon Elastic File System）」などの共有ストレージの利用やストレージオーケストレーター

「Rook」の利用が考えられる。もちろん、ただ冗長化すればよいものではなく性能など観点を広げて考えるべき

である。当プロジェクトでは Amazon EBSを使用しており、Rookを用いた冗長化を検討している。

Rookを用いたストレージ冗長化のイメージ

　次に、Kubernetesのエコシステムを柔軟に取り入れられていない点がある。本番環境にはHelmを用いてデ

プロイしているが、まだGitOpsを導入できていないために本番環境での手作業が必要になっている。GitOpsの

導入はセキュリティ強化、視覚化、複数クラスタ管理などあらゆる点でメリットがあるので、Argo CDをはじめと

するエコシステムを利用してこの問題を解決することを検討している。

　このように、Kubernetesの運用を自分たちで実施することで Kubernetesを用いた技術支援をする際も知見

として生かせられるようになった。また、若手メンバーは「CKA（Certified Kubernetes Administrator）」や

「CKAD（Certified Kubernetes Application Developer）」といった外部資格を取得したり外部コミュニティー

の勉強会に積極的に参加したりして、サービス展開に役立てている。

まとめ

　NRIでのKubernetes適用事例の一つとして、aslead DevOpsへの導入事例を紹介した。Kubernetesを採

用したことでサービスの管理コスト削減や可用性の向上を実施できたと同時に改善の余地も判明してきている。今後

は aslead DevOpsの一般提供に向けて注力し、Kubernetesを推進する存在を目指して活動していく所存だ。

　本記事が Kubernetesの採用を検討している読者の皆さまの参考になれば幸いである。



19 →目次に戻る

年々増加する設計コストが課題に

　2020年現在、ソフトウェアやサービスの開発において、開発速度の向上やリリースサイクルの短期化はより強

く求められるようになっている。野村総合研究所（以後、NRI）でも「アジャイル」や「DevOps」といった開発

手法に加えて「マイクロサービスアーキテクチャ」といった設計思想が現場になじみつつある。本連載のテーマで

もある、コンテナを効率的に運用するためのオーケストレーターである「Kubernetes」の普及も進んでいる。

　第 2回と第 3回で述べたように、小規模チームによるコンテナ活用やDevOpsチームによるKubernetesの

利用事例はあるが、大規模な基幹システム開発においてKubernetesを導入する事例は少ない。今回はNRIの

クラウド環境における「大規模基幹システムをマルチテナンシー Kubernetesに導入した事例」を紹介する。

　大規模な基幹システムの開発においては、業務知識やアプリケーション開発のスペシャリストである「アプリケー

ション開発チーム」と、ネットワークの設計やコンピュートリソースの整備を担う「基盤チーム」に分かれてプロ

ジェクトを進めることが一般的だ。大規模である分、業務が多岐にわたっているため、アプリケーション開発チー

ムはそれぞれの担当に分かれており、独立した開発体制を持っている。

　従来のシステム開発におけるアーキテクチャの設計は、システムごとにそれぞれのチームが個別に検討、対応す

ることが多く大きな負担になっていた。自社のクラウド環境でシステムを構築する場合、縮退運用や一時的なアク

セス増加に対処するための余剰リソースを常に用意しておく必要もある。リスクを十分に考慮した上で、システム

ごとの余剰リソースをいかに有効活用するかが重要な設計要素になった結果、設計や見積もりにかかるコストも高

まっていた。

大規模基幹システムを「マルチテナンシー
Kubernetes」で構築、そのメリットと悩ましい課題
NRIのコンテナ、Kubernetes活用事例を紹介する本連載。最終回はマルチテナンシー構成
を活用した大規模な基幹システム開発の事例を紹介する。

澤頭 毅 , 小林隆浩，野村総合研究所（2021年 01月 12日）



20 →目次に戻る

　こうした状況を改善するには、システム構築を進める上で下記要件を満たす環境が必要だと考えた。

• 自社クラウド環境で、コンピュートリソースの共有をより柔軟に実現する

• 各アプリケーション開発チームの実行環境が高い分離性を持つ

　この要件を満たす一つの解としてNRIが検討したのが、マルチテナンシー Kubernetesの導入だった。



21 →目次に戻る

マルチテナンシー Kubernetesをどう実現？　NRIの場合

　Kubernetesには、同一の物理クラスタ上に複数の仮想クラスタを構築できる「Namespace」と呼ばれる機

能が存在する。基盤チームはNamespaceを活用することで、Kubernetesクラスタを 1つ構築して、アプリケー

ション開発チームごとに分離された実行環境を提供できると考えた。

　しかし、Namespaceを分割するだけでは、特定のコンテナのせいでコンピュートリソースが枯渇したり、誤操

作で他のNamespaceにアクセスしてしまったりする可能性がある。そのため、複数のアプリケーション開発チー

ムで構成される大規模システムを運用するには十分な機能とはいえない。Namespaceで環境を分割する際、考

慮すべきポイントになった。

　また、大規模開発においては開発者のスキルレベルもさまざまであり、コンテナに詳しいメンバーばかりとはい

えない。コンテナが稼働するマシン（Node）に不要なアクセスを禁止するなど、コンテナ実行時の権限制御も不

可欠だ。

　ネットワークも同様に、クラスタ内で他チームが開発するAPIへのアクセスを禁止し、外部アクセスの際には特

定のエンドポイントのみを許可するといった制御も必要だ。

　従って、下記を要件としたマルチテナンシー Kubernetesを構築した（※）。

• 開発者の Kubernetes API操作権限の制御

• Namespaceごとのコンピュートリソースの制御

• 各 Nodeで稼働するコンテナの権限制御

• ネットワークの通信制御

（※）これは単一のクラスタを異なる会社やクライアントに分割して提供するハードマルチテナンシーを想定したものではない。あくまで同一組
織内の信頼できるチームによるソフトマルチテナンシーを前提とした。



22 →目次に戻る

マルチテナンシー Kubernetesの実装ポイント

開発者のKubernetes APIの操作権限の制御           
　Kubernetesには、「ServiceAccount」と通常の「UserAccount」の 2種類のユーザーがある。

　Kubernetesにアプリケーションをデプロイする場合、Kubernetes APIを介して実行する。それぞれのユー

ザーに対してKubernetes APIのアクセス制御を実現する機能として、Kubernetesは「Role Base Access 

Control」（RBAC）を提供している。この機能を利用することで「どのユーザーが」「どの Kubernetesのリソー

スにアクセスできるか」を制御できる。マルチテナンシーの Kubernetesクラスタを構築する中で、このアクセス

制御は特に重要だ。

　ユーザーによるKubernetes APIのアクセス制御の実装方針として、各テナントのNamespaceとテナント管

理用UserAccountは基盤チームが作成し、権限を付与した上でテナントのアプリケーション開発者に提供する方

式とした。

　テナント管理用UserAccountには「どのリソースにどういった操作ができるか」を表した「Role」と、「誰に

Roleを与えるか」を表した「RoleBinding」の機能を用いてNamespace内に閉じた権限が与えられている。

　これで、各テナント管理者はNamespace外のリソースや他 Namespaceのリソースにアクセスできない状態

となる。これにより、誤ったManifestの適用や誤操作による他テナントへの影響をなくすことができる。



23 →目次に戻る

　ServiceAccountは Kubernetesで稼働するアプリケーションなどを表すものである。各テナントで稼働する

コンテナには Kubernetes APIのアクセス要件はないため、ServiceAccountへ Kubernetes APIのアクセス権

限は付与しないこととした。

Namespaceごとのコンピュートリソースの制御           
　特定のアプリケーションによるコンピュートリソースの枯渇を防ぐため、Kubernetesには各 Namespaceに使

用可能なコンピュートリソースの制限をかけられる「ResourceQuota」という機能がある。

　ResourceQuotaによってテナントごとに利用可能なコンピュートリソースを制限し、指定以上のコンピュート

リソースが利用されそうになった場合は Podのスケジューリングをさせないことで、他テナントへの影響を抑えら

れる。

　Kubernetesは、Namespace内での Podやコンテナへのコンピュートリソース割り当てを制御する

「LimitRange」と呼ばれる機能を提供している。Podやコンテナへのコンピュートリソース割り当ては、

DeploymentのManifestのテンプレートにて設定するためLimitRangeによる制限は実施していない。こちらも

要件と照らし合わせて利用可否を決めるとよい。

　なお、コンピュートリソースを制限していないベストエフォートなコンテナがある場合、同じNode上で稼働す

る他のコンテナに影響を与える可能性がある。そのテナントで稼働するシステムの要件も踏まえLimitRangeを利

用してコンピュートリソースをクラスタ管理者側で制御するか、（リソース集約の観点ではあまり推奨されないが）

特定のNodeにベストエフォートなコンテナが含まれるPodを寄せてしまう方法を採ることもできる。



24 →目次に戻る

各 Nodeで稼働するコンテナの権限             
　セキュアな Kubernetesを構築するには、コンテナからKubernetesのNodeに不要なアクセスができないよ

うに制御する必要がある。Kubernetesには「PodSecurityPolicy」と呼ばれる機能があり、「rootユーザーで

の動作を想定したコンテナの実行」や「ホストネットワークの使用」「hostPathの使用」などNodeに影響を与

え得るコンテナの稼働を制限できる。

　実装方針として、上記に述べたようなNodeへの影響を与える可能性のあるコンテナはデフォルトで実行できない

ように設定した。root実行の許可やNodeへのアクセスを許可するPodSecurityPolicyの作成とServiceAccount

へのひも付けを基盤チームが実施し、要件に応じて各アプリケーション開発チームに提供している。

ネットワークの通信制御               
　Kubernetesで通信を制御しない場合、AというNamespaceの PodからBというNamespaceの Podに

アクセス可能だ。マルチテナンシーを考慮する場合は通信も制御すべきポイントになる。

　Kubernetesには「NetworkPolicy」と呼ばれるPod間通信やクラスタ外部とのエンドポイント通信を制御す

るためのリソースが用意されている。対応したSDNプラグインを利用することで Podの通信制御が可能だ。

　各アプリケーション開発チームのAPIは一部を除いて互いに実行できないよう制御できること、外部エンドポイン

トへのアクセスも同様に制御できることが要件にあったため、NetworkPolicyを導入し通信を制御するようにした。

　上記以外にも、Kubernetesの「Multi-tenancy SIG（Special Interest Group）」によって「Hierarchical 

Namespace Controller」といったマルチテナンシーな Kubernetesのための機能開発が進められている。



25 →目次に戻る

マルチテナント実現の課題

　マルチテナンシー Kubernetesを実現するメリットは複数あるが、課題もある。

　まず、Namespace外のリソースをテナントにどう提供するかだ。アプリケーション開発チームには

Namespace内に閉じた権限を付与しているため、Namespace外のリソースが作成できない。

　実例として、急きょストレージが必要になった際に、アプリケーション開発チームでNamespace外のリソース

であるPersistentVolumeを作成できなかったため、クラスタ管理者側がリソースを作成して対処したことがある。

頻度や作業量が増えた場合は細かいアクセスコントロールの検討が必要になるだろう。

　また、Kubernetesの機能を拡張するための考え方として「Operator Pattern」と呼ばれるものがある。

Operator Patternでは「CustomResourceDefinition」（CRD）と呼ばれるリソースを用いて、独自のリソース

定義を追加するが、このCRDもNamespace外のリソースになる。

　現状、各テナントによるOperatorの利用要件はないが、Operator Patternが一般的になり、CRDの適用が

増えていくと考えられる。Namespace外のリソースをどのように提供していくかは今後検討すべきポイントにな

るだろう。

　今回紹介した内容はソフトマルチテナンシーであったため、共通化可能な部分は集約したが、クラスタ上に構築

するシステムの要件によっては個別対応が必要なケースも考えられる。どこまでを共通化し、どこから個別対応と

するかの見極め、各テナントの開発者が利用しやすいようにスコープを決めることも難易度が高い。

　本記事では大規模な基幹システム開発における問題を解決する手段として、NRIが採用したマルチテナンシー

Kubernetesを紹介した。だが、システムの特性、要件によってはクラスタ自体を分けてしまった方が良い場合も

あるだろう。



26 →目次に戻る

まとめ

　本連載では、NRI内に存在する組織間の壁を乗り越える一手段として、Kubernetesをはじめとするクラウド

ネイティブ技術の取り組みを紹介してきた。

　第 2回、第 3回ではNRIが得意とする金融分野のプロジェクトでの例、生産性向上のサービスそのものを

Kubernetes上に構築した事例を紹介した。今回は、大規模なプロジェクトにおいて、従来の仮想化技術による

プロビジョニングではなく、Kubernetesを利用したマルチテナンシー構成を採用した例を紹介した。

　もちろん、こうした対応で組織に遍在する課題を全て解決したとはいえない。それでも小規模なスピード重視の

プロジェクトなど、企業としての対応力を高め、「顧客とともに栄える」べく、社内での挑戦は続いている。NRI

の取り組みが同様の課題に取り組み、コンテナや Kubernetesの技術採用で悩む読者の背中を押すものとなれば

望外の喜びである。

筆者紹介            
小林隆浩

野村総合研究所でデータベースを中心としたインフラ設計を担当。

新井雅也

野村総合研究所で金融業界を中心としたアプリケーション・インフラ設計・開発全般を担当。

Twitter： @msy78

海内映吾

野村総合研究所でシステム開発ソリューションサービス「aslead」のインフラ設計を担当。

澤頭 毅

野村総合研究所で Kubernetes導入支援や周辺のインフラ設計を担当。

https://twitter.com/msy78



