
WEB+:D)B PRESS

゛)‐

■″ヽ
Jb口 _ユム 》 ‐

留更「んる

ヽ ノロつ
// →

″
′1:,′
」■フ

/

日ヽ■ID

ゝ

スケーラビ明所、ハイパフォーマンス、省力運用

伊藤直也、勝見祐己、日中慎司
ひろせまさあき、安丼真伸、横川和哉

[著]

止められない
サービスのために
今:、イ可ができるのか

日
＋
可
■
ロ

B PRESS us

24時間365日
″
/

ヽ

、 ヽ

▼

ヽ
ヽ

を 泌

=だニ//

スケーラビ明所、ハイパフォーマンス、省力運用

伊藤直也、勝見祐己、日中慎司
ひろせまさあき、安井真伸、横川和哉

[著]

技術評論社

『
詈

 ` i

:1 量 ‡
・ ‐ ■ .. :

・ |"

鮭._F

`蓼 '

, ..5

! 1.■

菫|

1. …
 Ⅲ

ヽ
　

ヽ
　ヽ
　
¨

r議 .|=F.

，
　
電

ヽヽ
　́　　　‐ヽ
一́
・　　　　‐・　　　　　　一）・　　　　一一一・　　　　．，一．　　　．，．、

本書記載の内容に基づく運用結果について、著者、ソフトウェアの開発元および提供元、株式会社技術評論

社は一切の責任を負いかねますので、あらかじめど了承ください。

本書に登場する会社名、

マークなどは表示しておりません。

商品名です。本文中では、
謝、◎、③

SNSや ブログ、ショッピングサイトをはじめとする多彩なWebサービス、

メーノンやチャットなどのコミュニケーションツーノンなどなど、もはやイン

ターネットは生活に欠かすことのできないインフラであるといっても過言

ではないでしょう。かくいう筆者も例外ではなく、毎日、ネットを使って

います。より正確に表現するならば、公私ともにどっぷリネットに漬かっ

ている日々です。

ところで、筆者の場合
―
きっと今、本書をご覧になっているあなたも

同じことと思いますが
一
は、「利用者」とは別の側面も持ち合わせていま

す。それはサービス「提供者」という一面です。筆者の場合はネットワーク

やサーバの構築・運用管理を生業としています。

一昔前までは、ネットワークやサーバといえば機材が高価であったりし

て、そう簡単には手を出せない分野でした。しかし、近年は、Linuxや

FreeBSDを はじめとしたPC UNIXの普及、ハードウェアの低価格化、ネッ

トワークの常時接続化などのおかげで、自宅でネットワークを組んでサー

バを立てて楽しんでいる人も多くなってきました。

こういった状況も手伝ってか、インフラ系の情報もよく目にするように

なりました。とくに、インストーノン方法やApacheな どデーモンの設定とい

った、いわゆるハウツーものの充実には目を見張るものがあり、新米イン

フラエンジニアにとっては便利な世の中になったと思います。

一方で、その先のステップである運用管理作業の効率化、サービスの冗

長化やスケーラビリティといったトピックの技術的な情報やノウハウは、

まだまだ少ないと感じています。

筆者にとっても、サーバが数台のシステムの構築・運用から、数十台～

数百台規模へとステップアップする上での一番の壁はこの「冗長化」「スケ

ーラビリティ」に関する情報でした。当時の筆者は「冗長化」や「スケーラビ

リティ」に関する知識も経験もなく、どこから手をつけていいのかすらわか

らない状態でした。また、これらを実現するためには高価な商用の製品を

使わなければならないという思い込みがあり、ちょっと実験しようにもな

かなか手が出せないなと思っていました。

本書について

∧思えば、当時のこの考えは間違ったものでした。実は、オープンソー

ス(OSS)と コモディティな機材で、「冗長性」と「スケーラビリティ」を兼ね

備えたシステムを構築することができるからです。さて、振り返って、何

が原因だったのだろうと考えると、単純に「そんなものがあるとは知らなか

った」「そんなことができるとは知らなかった」ということに尽きるのでは

ないかと思っています。

ここに、本書を執筆した動機があります。つまり、本書の目標は「冗長

化」されていて「スケーラビリティ」もあるインフラを作るためのヒントを、

みなさんに届けることにあります。

本書では、こだわりをもってオープンソースを使っている、(掬はでなと

KLab(榊のエンジニア陣が、絵空事ではない、実稼働中のシステムによつわ

る、より実践的な情報をお届けします。システムというのは「系」です。系

というのは個々の要素が関係しあって構成されるものです。本書では、個々

の要素技術の詳説をしつつ、互いの関連性や流れ、つながりというものを

重視した内容となるように心懸けました。また、本書はハウツー本ではあ

りません。したがって、手取り足取りのインストーノレ手順の説明はありま

せんし、本に書いてあるとおりにコマンドを実行すれば何かができるとい

うわけでもありません。

本書に記されていることは、実際の現場において、われわれがどのよう

に考え、悩み、工夫してきたか、その軌跡と成果です。「読者の方々が次に

インフラの設計・構築・運用管理するときに、本書がそのよりどころとな

る知見となるといいな」、そんな思いをこめて本書を執筆しました。

2008年 7月

著者を代表して ひろせ まさあき

本書の構成

本書は、全6章で構成されています。

4章 性能向上、 チューニング・……Linux単一ホスト、Apache、 MySQL
4章のテーマは「性能向上」です。

サーバを並べてロードバランスし、システム総体として性能向上を計るという作

戦には、その構成要素であるサーバ単体のチューニングも欠かせません。4章では、

とくに単体性能の向上について扱い、サーバ単体の能力を出しきるために必要な、

ボトルネックの特定やチューニングについて述べます。

5章 省力運用 ……安定したサービスヘ向けて
5章は監視や管理といつた運用がテーマです。

もし、サーバ台数が増えるにつれ運用コストも増えるようならば、ゆくゆくは運

用コストがボトルネックになり、思うようにインフラを拡大できなくなる可能性が

あります。別のいい方をすると、どれだけ運用を効率化できるかが、スケーラブル

なインフラを育てる上での鍵になつてくる、ともいえます。5章では、執筆陣の運

用環境でどのように効率化の工夫を行つているか、その事例を紹介します。

6章 あのサービスの舞台裏……自律的なインフラヘ、ダイナミックなシステムヘ
最後の6章では、mはてなとKLabmの DSASのそれぞれについて、実際に稼働中
のネットワーク・サーバインフラにまつわるお話をします。

執筆者はインフラチームの中でもコアとなるエンジニアです。内容はテクニカル

な話に加えて、ここまでの章では細か過ぎて紹介できなかったことや、今日に至る

までの経緯・小史、インフラ系エンジニアのモチベーションやマインドといったよ

うなトビックも盛り込んでおり、読み物としてもおもしろい構成になつています。

1章 サ …バ ノインフラ構 築 入 門 ……冗長化/負荷分散の基本

2章 ワンランク上 の サ ーバ ノインフラの 構 築 ……冗長化、負荷分散、高性能
の追求

3章 止まらないインフラを目指すさらなる工夫 ……DNSサーバ、ストレージ
サーバ、ネットワーク

1～ 3章に一貫するテーマは「冗長性」と「スケーラビリティ」を兼ね備えたインフラ

デザインです。

各章の節はそれぞれ独立したトビックですが、「小さなシステムを出発点として

どのようにインフラを整備していくか」というストーリーの中で互いに関連してい

ます。まずは流れをつかむために1～ 3章全体をざつと通して読み、それから興味

のある節に戻りじつくり再読する、という読み方をお勧めします。

初出、執筆担当一覧

節 執筆担当

1.1冗長化の基本 安井真伸(KLabい)

1.2 Webサーバを冗長化する ― DNSラ ウンドロビン 安井真伸

1.3 Webサーバを冗長化する … lPVSで ロードバランサ 安井真伸

1.4ルータやロードバランサの冗長化 安井真伸

2.1 リバースプロキシの導入……Apacheモジュール 伊藤直也(いはてな)

2.2キヤツシユサーバの導入 ……Squid、 memcached 伊藤直也

2.3 MySQLの レプリケーション……障害から短時間で復旧する
※1ひろせまさあき(KLab榊)

2.4 MySQLのスレーブ+内部ロードバランサの活用例
X2 ひろせまさあき

2.5高速で軽量なストレージサーバの選択 安井真伸

3.l DNSサーバの冗長化 安井真伸

3.2ス トレージサーバの冗長イレ ・DRBDで ミラーリング 安井真伸

3.3ネ ットワークの冗長化……3ondingド ライバ、RSTP 勝見祐己(KLabい)

3.4 VLANの 導入 ……ネットワークを柔軟にする 横川 和哉 (KLabい)

4.l Linux単一ホストの負荷を見極める 伊藤直也

4.2 ApacheD1t--)i 伊藤直也

4.3 MySQLのチューニングのツボ※3 ひろせ まさあき

5.1 サービスの稼働監視 ―̈ Nagios 田中慎司(いはてな)

5.2サーバリソースのモニタリング ・…Ganglia※ 4 ひろせ まさあき

5.3サーバ管理の効率化 ¨̈ P̈uppet 田中慎司

5.4デーモンの稼働管理 ……daemontools ひろせ まさあき

5.5ネ ットワークブートの活用… PXE、 initramfs 勝見 祐己

5.6
リモー トメンテナンス …… メンテナンス回線、シリアルコン

ソール、IPMl
勝見祐己

5,7
Webサ ーバの回グの扱 い
rotatelogs

~SySI°
9｀ SySI° 9~ng｀ Cr° n｀ 勝見祐己

6.1 はてなのなかみ 田中慎司

6.2 DSASの なかみ 安井真伸

GIコD※ 1『WEB+DB PRESS』 (VoL22)の特集 2「MySQL乗り換え案内」、2章「現場指向のレプリケーショ
ン詳説」

※2『WEB+DB PRESS」 (VoL38)の 連載、 [見せます !匠の技]スケーラブル Webシステムエ房「第
1回 :い ろんなものを回― ドバランス」

※ 3「5分でできる、MySQLの メモリ関係のチューニング !」

CコD htp://dsas blog.klab org/archives/50860867.html

※4 rWEB+D8PRESS」 (VoL40)の 連載、 [見せます !匠の技]スケーラブル Webシステムエ房「第
3回 :監視にまつわるエ トセ トラ」

本書で扱う内容はネットワークからアプリケーションまでと範囲が広く、

いろいろな用語が出てきます。はじめに、よく使う用語をまとめておきま

す。

APサーバ (Appr′εα′′οκ S`rνar)
アプリケーションサーバ。動的コンテンツを返すサーバのこと。

たとえば、Apache+mod_perlが動いているWebサーバやTomcatな どアプリケーショ

ンコンテナが動いているサーバ。

CDN(Cο
“
′
`″
′D`JJνιツ N`′″ο潰)

コンテンツを配信するためのネットワークシステム。配信パフオーマンスの向上と可用

性の向上を目的としている。

Akamalな どいくつかの商用サービスが存在し、世界中に点在するキヤッシュサーバの中

から、クライアントにより近いキャッシュサーバを選び配信することにより、性能向上を

実現しているのが構成上で特徴的な点。

:PVS(P Ⅵ r′
“

α′Sθ rν
`r)

ⅣS(Li′′χy,rrレ′IS′″″r)プロジェクトの成果物で、日―ドバランサに不可欠な「負荷分散」

の機能を実現するもの。

→「ⅣS」 を参照。

[VS(Lれ
“

χ Иr″α′Sarνar)

Linuxで 、スケーラブルで可用性の高いシステムを作ろうと目指しているプロジェクト。

その成果物の一つにLinuxロ ードバランサのためのIPVSがある。

本来はプロジェクト名だが、慣例的に「LVS」 を「Linuxで作つた回―ドバランサ」という意

味に使うこともある。

CD htp:〃www‖ inuxvirtualserverorg/

NIC(地
"ο
rた I″ιψε`α

〃)
本来は、ネットワーク機能を追加するためのカードを指す言葉だが、拡張カードやオン

ボードを問わず、ネツトワークインタフェースの総称として使われることもある。

LANカード、ネットワークカード、ネットワークアダプタともいう。

Netilter
Linuxカ ーネルにおける、ネットワークパケットを操作するためのフレームワーク。

バケットフィルタリングなどを行うiptablesや ロードバランスを実現するためのIPVSも 、

このNetllterの 機構を利用している。

用
語
の
整
理

OSi参照モデル
データ通信のためのネツトワーク層を説明したモデル。7つの階層 (レイヤ、Lα″のからな

る。

よく目にするレイヤは以下のとおり。

・ レイヤ7(ア プリケーション層)
。レイヤ4(ト ランスポート層)
。レイヤ3(ネ ツトワーク層)
。レイヤ2(データリンク層)

HTIPや SMTPと いつた通信プロトコル

TCPや UDP

IPや ARP、 ICMP

Ethernet 41とゴ

また、「L2スイツチ」など、「レイヤ″」は「L“」と表記することもある。なお、OSIは Open
Systems lnterconnectlonの 略。

VIP(Иr′夕αI P A′′rass)
物理的なサーバやNICではなく、浮動的にサービスや役割に割り当てられるIPア ドレスの

こと。

たとえばロードバランサの場合なら、クライアントのリクエストを受けるIPア ドレスの

ことをVIPと いう。なぜなら、このIPア ドレスはHTTPなどのサービスに関連づくものであ

り、また、冗長化のためActive/Backup構成にしている場合は、唯―のマスタとなるActive

側の回―ドバランサがこのIPを引き継ぐことになるからである。

仮想アドレス、仮想IPア ドレスともいう。

可用性 (ルαj:αι′:′ッ)
システムの停止しにくさのこと。「可用性が高い」といつた場合は、「あのサービスは滅多

に止まらない」ということになる。また、文脈によっては「稼働率が高い」とか「年間稼働時

間が長い」という意味でも使われる。

Avallab‖ ty(アベイラビリティ)ともいう。

コンテンツ (Cο″″″s)
Webサ ービスの文脈の場合、ブラウザなどのクライアントに返す HTMLや画像のデータ
を意味する。

とくに、静的コンテンツといった場合は内容が変化しないHTMLや画像などを指し、動的
コンテンツといつた場合はリクエス トごとに内容が異なるデータを指す。また、データそ

のものではなく、動的なデータを出力するサーバサイ ドのプログラムのことを「動的コンテ

ンツ」ということもある。

サーパファーム(vνarルm)
たくさんのサーバが集まつてできたインフラシステムのことをいう。文脈によっては、デ

ータセンタと同じ意味で、施設の意味に使われることもある。

冗長化 (R″夕4グα4εノ)
システムの構成要素を複数配置して、1つが故障停止してもすぐに切り替えるなどして、

サービスが止まらないようにすることをいう。

RAID(R′力″′α″′ArrαガげJ"αp“ siッο Disた s)がその典型例。

二重化、多重化、Redundancy(リ ダンダンシ)ともいう。

スイッチングハブ(S″′たわ′昭比の
今、市場にあるほぼすべての「ハブ」⊂力)は リピータハブ(Rψσα

`er H″

b)ではなく、ブリ

ッジ機能を有したスイッチングハブである。

L2スイツチ、または単にスイッチともいう。

スケーラビリテイ(S`′J励″″)
利用者や規模の増大にあわせて、どれだけシステムを拡張して対応できるかという能力。

つまり、「スケーラビリティがある」は「拡張性がある」ということを意味する。

スケールアウト(S“ルーο″)
サーバを複数台並べて分散することにより、システム全体の性能を向上させること。

たとえば、国― ドバランサ配下のWebサーバの台数を倍に増やすなど。

スケールアップ(Scα Jι―η)
サーバ単体の性能を上げることにより、システム全体の性能を向上させること。

たとえば、サーバのメモリを増設する、より高性能の機種にリブレースする、など。

ステージング環境(翫″電E"ν″ο″
“
ι″)

本サービスに投入する前に、最終的な動作確認を行うための環境のこと(→「プロダクシ

ョン環境」も参照)。

スループット(動
“"g″
″)

ネットワークなどデータ通信の文脈で使う場合、単位時間あたりのデータ転送量を意味

する(→「レイテンシ」も参照)。

たとえ話をすると、「同じ車でもFlマシンよリバスのほうが、乗車可能人数が多いのでス

ループットが大きい」となる。

単 一 故 障 点 (SJ4g:`Pο妨 げ 彫 ′J夕 rι)

そこが故障するとシステム全体が停止してしまう個所。いわばシステムの急所。

SPOF(S'″ gJ′ Pο i″′げ剛 ′″)ともいう。

たとえば、いくらRAIDや電源の多重化などでサーバ内のコンポーネントを多重化してい

ても、もし、すべてのサーバが1台のスイッチングハブにつながつていると、システム全体

で見た場合にはそのスイッチが単一故障点となる。

データセンター (′′′α
“
″′θr)

サーバなどの機器を収容するために作られた、専用の施設の名称。

空調、停電対策、消火、地震対策などの、24時間365日 サービスを行うために必要な設

備が備わっている。

デーモン(Dαθ
“
ο4)

バックグラウンドで動き続け、何かしらの仕事をし続けるプ回グラム。

用
語
の
整
理

たとえば、httpdや bindな ど。

ネットワークセグメント(Nθナ″οtt Sθg“θ″′)
ブロードキヤストパケツトが届く範囲のネットワークのこと。「コリジョンドメイン」と

も同義だつたが、全二重ではコリジョンが発生しないので、「ネットワークセグメント=コ

リジョンドメイン」とはいいづらくなつてきている。

ネットワークブート(N`′νοtt Bοο′)
ネツトワーク越しに、起動に必要なブー ト回一ダやカーネルイメージなどを入手して起

動すること。

55節中で紹介している PXEは、ネットワークブートを実現するための仕様の一つ。

バケツト(勁εたθr)
おもにIPにおけるデータの最小単位の塊を意味する。

IPノ ケヽットともいう。

フェイルオーバ (乃′′ον″)
冗長化されたシステムにおいて、Actlveな ノード(サーバやネットワーク機器など)が停止

した際に、自動的にBackupノ ードに切り替わること。

ちなみに、自動ではなく手動で切り替えることは一般に「スイッチオーバ」という。

フェイルバック(勁′ルαεた)
Actlveノ ードが停止じフェイルオーバした状態から、元の正常な状態に復帰すること。

フレーム (ルク″
`)

おもに[thernetに おけるデータの最小単位の塊を意味する。

Ethernetフ レームともいう。

プロダクション環境 (Prοあ″′ο
“
E4ν′rο 4″

`4F)
本サービスを行つている環境のこと(→「ステージング環境」も参照)。

ヘルスチェック(H`α :′あC力
``た
)

監視対象が正常な状態にあるかどうかを確認すること。

たとえば、Webサーバに対して、pingが通るか、TCPの 80番ポー トに接続できるか、H¬TP
の応答があるか、といつたことを確認すること。多くの場合、ヘルスチェックに失敗する

と、管理者に監視失敗のアラー トが届くようにしている。

死活監視ともいう。

ブロックされる(BIοεた″)
読み出しもしくは書き込み処理が完了するのを待つているため、他の処理が何もできな

い状態のことを「1/o待ちでブロックされている」という。

おもにディスク 1/○やネットワーク 1/○に対して用いられる用語だが、入出力処理一般に

も使われることがある。

負荷 (Lο′′)
「負荷」といつてもいろいろとあるが、大別すると「CPU負荷」と「1/O負荷」に分けられる。

負荷を計るための指標は回―ドアベレージなどいくつかある。また、負荷を計測するた

めのコマンドもtopや vmstatな どいくつかある。詳しくは4」 節を参照。

ボトリレネック(Bθ″:ι 4“た)
そこが妨げとなつてシステム全体の性能が上がらない個所。

隧路 (あいろ)、 律速 (り っそく)と もいう。

メモリファイルシステム(Mθ
“
οッRた り疵解)

ハー ドディスクなどの永続的な記憶装置ではなく、メモリ上に作ったフアイルシステム。

ディスク上のフアイルシステムと同じように使えるが、メモリ上にあるため、再起動す

るとデータがなくなる反面、読み書きが高速に行えるのが特長。

ラウンドロビン(Rθ夕
“
′Rοι′4)

複数のノードに対して順番に割り振つたり分散したりすること。

たとえば、1つの FQDN(Fッ:夕 Q“クリ′′Dο
“
′j′ 助″ο、完全修飾 ドメイン名)に複数のAレ

コー ド(IPア ドレス)を割り当ててアクセスを分散する「DNSラウンドロビン」や、複数のサ

ーバに順番にリクエス トを分散するようなロー ドバランサのバランスアルゴリズムなどが

ある。

リツース(R`sO″
“
)

CPUやメモリ、ハードデイスクなど、サーバが持つハードウェア的な資源。

たとえば、CPU使用率が高い状態を「リソースを食つている」と表現する。

レイテンシ(:″
“
ッ)

ネットワークなどデータ通信の文脈で使う場合、データが届くまでの時間を意味する

(→「スループット」も参照)。

たとえ話をすると、「同じ草でもバスよりFlマシンのほうが、速度が速いのでレイテンシ

が小さい」となる。

レイヤ(L〃
`r)

0「 OSI参照モデル」を参照。

ロードバランサ (Lοα′Bα lα′
“
r)

クライアントとサーバの間に位置し、クライアントからのリクエストをバックエンドの

複数のサーバに適宜分散する役割の装置のこと。

別のいいかたをすると、複数のサーバを束ねて、1つの高性能な仮想的なサーバに見立て

るための装置のこと。

負荷分散機ともいう。

用
語
の
整
理

守融

[24時間365日]
サーバ/インフラを支える技術 スケーラピリティ、ハイパフオーマンスt省力運用(口)日次

本書について………̈……̈………………………̈……………………………………………………………̈……………珈

本書の構成…………………………………………………………………………………Ⅲ…………………………………̈………v

初出、執筆担 VI

用語の整理……前

―
　

■
●
　

、
¨
　

■

Eサ ーバノインフラ構築入門
冗長化/負荷分散の基本

冗長化とは…………………………………….………………̈………………………………………………………̈¨̈ …̈….2

冗長化の本質……2
0障害を想定する…………………………………………………………………………………….2
0予備の機材を準備する…………………………………………………………………………………3
0運用体制の整備・―障害発生の際、予備機材に切り替える…………………………3

ノレータが故障した場合の対応…………………………̈………………………………………………………̈…4
コールドスタンバイ………………………̈………………………………………………………………4

Webサーバが故障した場合の対応……………………………………………………………………………5
ホツトスタンバイ……………̈………………………………………………………………………………5

フェイ′レオーバ ……6
VIP………

…………………………………………………………」9

6

IPアドレスの引き継ぎ……………… …̈…………………………………………………………6

障害を検出する……へ′レスチェック……… …̈………………………………………………………………7
Webサーパのヘルスチェック………………………………………………………………………8
ルータのヘルスチェック………………………………………….¨…………………………………8

Active/Backup構 成を作ってみる………………………………………………………………………………9
1Pアドレスを引き継ぐしくみ…………………… ……̈ ……………… ……………̈ ………10

サーバを有効活用したい。……負荷分散へ……………………………………………………………11

DNSラウンドロビン………………………………………………………………………̈…………………………………12

DNSラウンドロビンの冗長構成例…………………………………………………………………………………13

もっと楽にシステムを拡張したい。̈…ロードバランサヘ……………………………………………16

DNSラウンドロビンとロードバランサの違い…………………………………………………………………18
IPVS・ 19

スケジューリングアルゴリズム………………………………………………………………………………………20

1PVSを使う…………Ⅲ……………………………………………………………………………………………………….……21

●
=・

1.1 冗長化の基本 2

」。2 Webサーバを冗長化する……DNSラウンドロビン 12

1.3 Webサーバを冗長化する。……IPVSでロードバランサ 18

■

一

一
■

■

¨

―
●
，

●
´
・

′
灌

■

・

．．目
次

専

・

〓
´
・

．

　

一Ｌ

1.4 ルータやロードバランサの冗長化 31

1 リバースプロキシの導入。……Apacheモジュール 42

システ

に応じたシス

..¨′.¨ .̈_1¨¨̈.…………42

…………………………43

_..¨ .…:_44 ‐ ―

●|・●‐●I.

……i45・■

‐
・
 ~
・ :| ‐

46

■■ | ●

′: |■

●
一

割役のグン
１１

ノアフツ′のタ・゙た
るす答応カ一サ

ｔ

Ｄ恥

キャッシュサーバの導入………̈…………………………………………………………………………………63

…
.… 48

HTTPの Keep― Alive¨ .¨¨̈¨̈¨̈¨̈.¨ .¨ ¨̈.¨¨̈¨̈...¨ .¨ .̈¨¨̈¨̈.¨ .̈...… ..¨ ...¨。.…….48

例:メモリ消費とKeep― A‖ veのオン/オフ …̈……………………………………………………49

APacheモジュールを利用した処理の制御……………………………̈………………………………50
リバースプロキシの導入の判断………̈ …………………………………………………………51

リバースプロキシの導入……………………………………………̈………………………………………………………52
Apache 2.2を 使う"……………………………………̈ ………………………̈ ……………………52

workerで httpdを 起動…………………………………………………………………………….52

httpd.confの設定…………………………………………………………………̈ ………̈ ………52

最大ブロセス/スレッド数の設定…………………… .………轟……………………………53

ServerLim t′′ThreadLimitとメモリの関偽 ……………………54

Keep―Aliveの 設定…………….¨ ¨̈……….¨ ¨̈ ..¨ .¨ …̈…………….¨¨̈ .¨¨̈ .̈¨ ¨̈¨̈¨̈_¨ 5̈5

必要なモジュールの回―ド……………….… .… …..……… …………………………………56

RewriteRuleを 言彙定¨̈ ……………̈ …………………………………………………………………56

-歩進んだRewriteRdeの設定例………………………………………̈…………………̈…………………58
特定ホストからのリクエストを禁止…………………………………………………………………58
ロボットからのリクエストに対してはキャッシュサーバを経由させる……………………58 .

mod_prow_balmcerで 複数ホストヘの分散…………………………………………………̈………59
mod_proxy_balancerの利用例…………………………………………………………………61

………………63

………………63

HTTPとキャッシュ

Live H‐

「

P Headersで知るキャッシュの効果…………………̈ …………

Squidキャッシュサーツ …ヾ……………………………………………………….………

蟻

.̈...64

Squidでリバースプロキシ……………………………………………………………̈ …̈……■…66

Squidは何をキャッシュするのか…………………………………………………………………67

Squidの設定例… 68

memcachedによるキャッシュ……………………̈…………………………………………………………………70

.2 *+y? tt-f tOHj\ """squid. memcached 63

.3 M Lのレプ リケ ー シ ョン ……障害から短時間で復旧する 72
DBサーバが止まったら?… .………………………………………………………………… 72

DBサーバが停止するケース………………………̈ …………………………………………72.
短時間で復旧する方法………………………………………………………………………….73

MySQLの レフリケーション機能の特徴と注意点……………………………………………74
シングルマスタ、マルチスレーブ…………………………………………………………………74

非同期のデータコピー………………………………………………………………………… …74
レプリケーションされるデータの内容……………̈ ……………………………………………74

レプリケーションのしくみ …̈……̈………………………………………………………………………………………75
スレープの1/0ス レツトとSQLスレット. 76

バイナリログとリレー回グ…………………………………………………………………………………76

ポジション情報………………………………………… ………………………………………̈ …77

レプリケーション構成を作るまで…̈………………………………………………………………………….… 77
77

my<nf… ……………………………………………………………………………………………….¨……Ⅲ…77

レプリケーション用ユーザの作成…………………………………………………………78

レプリケーションの条件………………………………………̀……

,1

鷺:

. ■ ‐ ‐ |

■

一
１

・

Lのスレーブ+内部ロードバランサの活用例 86

、 .. 11‐ ._....___._

…:メールサーバの例…………

……..…二…_………|… .……」 03
_.¨ . _̈¨ .¨ ..¨ _¨ ..1■ .103 ‐‐ ||‐

高速で軽量なストレージサ…バの選択 93

l DNSサーバの冗長化 102

■
“
５

．
［２４‐時
間

●
■

一
■

・ ・ . ,

■豪・

DNS障害の影響は大きい…………………………….………=“………“……………………
.… 104

サーバファームにおけるDNSの冗長化…………………………………………………Ⅲ………………….

VRRPを利用した構成………………………………̈………………………̈…………………̈……………………
DNSサーバの負荷分散……………………………………………………………………̈…………………………
まとめ

一■
104

105

106

107

ストレージサーバの故障対策…………………………………………………………………………………………109

ストレージサーバの同期は困難…………………………………………………………………………………109

DRBD………110
DRBDの構成………………………………………………………………̈ ………………………….110

DRBDの設定と起動……………………………………………………………………………………………………111
DRBDのマスタサーバを起動する…………………………………………………………………112
DRBDのパックアップサーバを起動する…………………………………………………………113

DRBDのフェイルオーバ ……………………………………………………………………………………………………115
手動で切り替える 115

keepa‖ vedの設定………………………………………………………■…………………………116

keepalivedを daemontooisで制御する……………………………………………….… .118

NFSサーバをフェイルオーバする際の注意点 …̈………………………………………………………118
バックアップの必要性……………………………………………………………̈……………………̈………………119

L1/L2構成要素の冗長化…………∴………………̈……………………………………………………….………120

故障するポイント………」20

リンクの冗長化とBondingドライバ……………………………………………………………………………̈ 121
Bondingドライバ……………………………………………….…………..………………………121

スイッチの冗長化……………………………………………………̈………̈…………………………………………123

リンク故障時の動作………………ふ…………………………̈ …………………………………124

スイッチ故障時の動作…………………………………………………………………………………124 ..
スイツチ間接続の故障時の動作……….■…………………………………………………124

スイッチの増設……125
さらなる冗長化を目指して……………̈ …………………“

..…………………………………126

……̈ ……………………….……127

,マ|

ブリッジの優先順位とルートブリッジ.……■………………………………………….………127

RSTPにおけるポートの役割…………………………̈ ……………………………………………128

RSTPの動作………….… ..…….………….…………….…….二 .… .…■.……………̈ .̈… .̈……129

おわりに…………̈………_130

サーバファームにおける柔軟性の高いネットワーク 131

VLANの導入がもたらすメリットを考える…….…… ……………̈ 132

132スイッチの有効利用

RSTP………………………………

3.2 ストレージサーバの冗長化……DRBDでミラーリング 109

.3 ネ ットワー ク の 冗 長 化 ……Bondingドライバ、RSTP 120

.4 VLANの導入・……ネットワークを柔軟にする 131

. ‐|:

: ||

■ |■ _I・

: ・ |

■. |:

_|::lヽi..

4.1 Linux単一ホストの負荷を見極める 146

●
■
●

・
‐
 |■

■
．
　

●
一
　

●
■

......r.........,...139 .

..13g

・・　
　
　
●
，
一
　
　
　
・
一
¨
　
　
　
　

、̈　
　
　
　
　
．

172

174

ps、 sar、 vmstatの 使い方………………………………………………………………………………………….………174
. ps……プロセスが持つ情報を出力する…………………………………………………….174
VSZと RSS… …仮想メモリと物理メモリの指標……………………■…………………175

TIMEはCPU使用時間…■………………………………………………………̈ ………………177

ブロッキングとビジーループの違いをPsで見る………………̈ ………………………….177

sar… … OSが報告する各種指標を参照する……………………………̈ …………………179

sar― u¨ ¨̈ CPU使用率を見る… 180

sar― q……ロードアベレージを見る…̈ ………………………………………………………181

sar―r …メモリの利用状況を見る……………………………………………̈ ……………182
1/0負荷軽減とページキヤツシユ………………………………………̈ ……………….………183

ベージキャッシュによる1/0負荷の軽減効果………………………………………….………184
ベージキャッシュは一度readしてから.…………………………………………………………185

sar‐w¨…スワップ発生状況を見る……………………………………………̈ ……………186
vmsta■ ・仮想メモリ関連情報を参照する……………………■……̈ ……………………186

0Sのチューニングとは負荷の原因を知り、それを取り除くこと………………………………188

LinuxThreadsとNPTL…….………………………………………….………………………………

・
　

・
　

　

　

一

■

　

　

　

一
‥

Webサーバのチューニング………………………………………………………̈………………………………

Webサーバがポトルネック?……………………………………………………………………………………………

Apacheの並行処理とMPM………………
preforkLworker. プロセスとスレッド.……………………………………………

'ルから見たマルチプロセス/マルチスレットの違い

¨̈¨̈ …̈193

プログラミングモデ ..¨ ..¨ ..… 193

パフォーマンスの観点で見たマルチプロセス/マルチスレッドの違い………………194

1クライアントに対して1プロセス/スレッド……̈ …………………………………̈ ……196

MaxClients 196

prebrkの 場合…………….…… .̈....¨ ..¨ .̈.………."...¨ ..¨、 .̈¨¨̈.… 197

¨̈ .̈¨ ...¨ ¨̈¨̈¨̈.¨ .¨ .¨ .̈....¨ .¨¨̈.199

コピーオンライトで共有しているメモリサイズを調べる、.………̈ ………品………200

MaxRequestsPerChild..■ ¨̈¨̈ 、̈̈̈ ¨̈:¨¨̈.………….¨ ¨̈¨̈¨̈¨̈¨̈.¨ ¨̈.¨ _.¨ _202

workerの場合…………………………………………………………………………………………203

過負荷でMaxChentsを 変更する、その前に…………………………………… ……205

Keep=Alivё

本Paぬe以外の選択肢の検討
lighttpd

190

190

191

196

親子でメモリを共有するコピ

…...¨¨………………. ¨̈… .¨ .¨…………. ..¨ . .__ . ……………………………….¨ _206

 ̈.¨…………………….. .¨ . ..¨ .¨ ¨̈..¨ ¨̈¨̈ .̈……… ……………………206

………………………………………■…………………207

MySQLチューニングのツボ……………………………………………………………………………209
チューニングの切り口での分類…………………………………………………………… 209

田サーバサイド…………………………… ………………………………………………………209

ロサーバサイド以外…… ………………………………………………………………… …210

口周辺システム…………………………… … ………………………… …… ……………211

本節でこれから扱う内容……………………………`………………………………………211

メモリ関係のパラメータチューニング……………………………………………………………………212

一
一
　

〓

4。2 cheのチュ…ニング 190

4.3 Lのチューニングのツボ 209

‐
・
・

 ■ |

●
●
　

一Ｉ

〓

■

ｉ

Ｉ

■

，
　

ｉ

1 サービスの稼働監視・……Nagios 218

memcached監視 (checヒ merncached)

t-.....................

・
 . : . .

2 サーバリツースのモニタリング・……Gang‖a 240

||モニタ

，

・

・
■
・

．
目
次‐

一■

…… I_……238

= :.: . .

|■

|ヽ

1草 .

=●

.■■●.

.¨…270 1

ノードの定義 .

クラスの定義

実際に複合グラフを追加してみる……………………………….……■…………………̈…245

そのほかのカスタムグラフ …̈………………̈ ……………̈……………………………………246

…̈……………………………………………………Ⅲ…………………250

効率的なサーバ管理を実現するツールPuppet………………………………………………………248

Puppetの概要………248

PuppetO

轟

250

250

253設定の反映

設定ファイルの書議方

リソース

package

テンプレートによるマニフエストの定義

253

リソースの定義 ………………………………̈ …̈ ……̈ ……………………………………………253

クラス …̈……………………………………………………………….253

関数……………………………………………………………….…….254

ノーR¨……………………………………………………………….… .254 .

61e一　

　

―

　

■

．
　

．

　

　

‐

.̈..¨ ..¨ .̈..¨ ¨̈¨̈¨̈¨̈."¨ .¨ .¨¨ .̈.。 ...… .… 256

……………………………..………257

255

255

256

256

デュアルマスタMySQLク ラス…̈ ………………………………258

iptablesクラス……………̈ …………̈……..¨ .………………259

動作ログの通知…………………̈……………………………………………………………………………………………262
tagmall.… …………………….… …̈……………………………….262

. . . puppetmasterlo9¨
.̈¨ .¨…….…………………、..¨ _̈...¨ .… 1..262

. report.¨ ¨̈ .̈¨ ¨̈ .̈¨ .¨ .̈._.¨ .̈¨¨̈.¨ ¨̈¨̈¨̈¨̈ .̈¨¨̈ .̈262 ‐
puppetdで のログ…………………………………………….……262 ..

運用…….……263

自動設定管理ツールの功罪……………………̈……………………………………………………………………263

デーモンが異常終了してしまったら………

257

270

271

¨̈¨̈....¨ ¨̈¨̈.¨I..¨265

.¨¨ ...、 .¨ .̈¨ .̈… …̈………...¨ 265daemontools..........,
266

・フォアグラウンドで動作する…………………………267

デーモンの管理方法……………………………̈………………̈………………………………………………̈……267
デーモンの新規作成……………………………̈ …………………………………………………268

デーモンの開始……………………………………………………………………………………………268

デーモンの停止、再開、再起動…….………………………̈…………………………………269

デーモンの削除……………………………̈ …………………………………………………̈ ……269

シグナル送信……………………………

5.3 サーバ管理の効率化……Puppet 248

デーモンの稼働管理・……daemontools 265

i:;

|… Ⅲ
' ,i l.

299

.5 ネットワークブートの活用・……PXEJnitramお 277

.6 U E-t t> 7 t, 7...... t>i t>
^E#.

rt)v)va>y-I,. tpMt 286

7 WebサーパのログOfrt I """syslog. syslog-ng. cron. rotatelogs 295

―
黎

―

■
に
■

L.

.|● li

裏台舞ヽノィυ
．
スビ一サ

ヽ
ノ
ィ
υ

．

あ

０自律的なインフラヘ、ダイナミックなシステムヘ………………………………………………………………303
はでなのインフラ 304

306スケーラヒリティと安定性………………………………………………………………………………………………
リバースプロキシ……̈ ………………………………………………………………………………307

DB 307

フアイルサーバ 311

運用 311

卜によるインストール 312

パッケージ管理とPuppet………………̈ …………………………………………………̈ ……312

サーバの管理と監視……………………………̈……………………………………………………313
Capttranoに よるデプロイ …̈…………………………………………………̈ ……̈ ………314

電源効率・リソース利用率の向上…………………̈……………………………………………………………315
lAあたりのパフオーマンスを重視する…………………………………………………….……315

1台あたりのサーバ能力をできるだけ使い切る……………………………………………316

不要なパーツは載せない …̈ ………………………………………………………………………317

自律的なインフラに向けて 319

6.1 はてなのなかみ 304

6.2 DSASの なかみ 320

DSASとは 320

320DSASの特徴。….
一つのシステムに複数のサイトを収容¨…………………………………………………̈ …320

0SSで構築………………………………………………………………………………………….…….322.

どこが切れても止まらないネットワーク……………………………̈ …………………………322

サーバ増設が簡単……………………………………………………………………… .…… 323

故障時の復旧が簡単…………………………………………………………………………………326

システム構成の詳細………………………………̈………̈………………̈………………………….………………326
Bondingドライバを利用する理由…………………………………………̈ …………………327

DRBDをフェイルオーバする際の注意点……̈ ………………………………………………328
・

SSLアクセラレータ………………………………Ⅲ………………………………………………………330
ヘルスチェック機能の拡張 …̈………̈…………………………………………………….……333 ..

簡単で安全に運用できるロードバランサ………………………■……….………….………334

セッションデータの取り扱い……………………………………̈ …………………………………337 _
memcached.… ……………………………̈………̈ ……Ⅲ………………………………………337

340

DSASの今後 341

repcached....................

咽回目団D… . .¨¨¨ ..¨ .¨ ¨̈ .¨ ¨̈¨ .̈.......,...¨ .̈.343

mymennchock(43節)……………………………………… .… 344

apache― status(52節).¨ ..¨ ¨̈ .̈………………………………………348

9anglla patch(52億1)……….¨ ¨̈,¨ .¨ .̈.¨ .̈.…Ⅲ……………_351

索引………………………………………………………………………… …………………………………………………355

‐ .. ||||

‐ .

.=
・
:・ .:|

iヽ 1■ ,

章 サ ー バ /イ ンフラ構 築 入 門 冗長化/負荷分散の基本

冗長化 (R″
"″
″″ッ)と は、障害が発生しても予備の機材でシステムの機

能を継続できるようにすることを指します。たとえば、工場や病院などで

は停電に備えて自家発電装置を持っていますし、公共の交通機関では万一

に備えて複数のブレーキ系統を持っているものです。

Webサービスを提供するネットワークやサーバシステムも例外ではなく、

可用性を確保するために冗長化することは珍しくありません。本節では、

システムを冗長化するために最低限知っておかなければならないことを解

説した後、シンプノンな例を紹介します。

システムの冗長化とは、以下のステップを実践することです。

0障害を想定する

0障害に備えて予備の機材を準備する

0障害が発生した際に予備の機材に切り替えられる運用体制を整備する

各ステップを追いながら、作業の流れを簡単に見ていきましょう。

●障害を想定する

冗長化の第一歩は、障害を想定することから始まります。例として図

1.1.1の ようなシンプルな構成で考えてみます。

まずは、図 1.1.1の システムで発生しうる障害を挙げます。

冗長化とは

冗長化の本質

・ルータが故障してサービスが停止する

・サーバが故障してサービスが停止する

図 1.1.1で は、どちらが故障してもサービスが停止してしまいます。

0予備の機材を準備する

次に、故障に備えて予備機を導入します。図 1■ 1の例に予備機を追加し

たのが図 1.1.2です。ここではまだ、予備のノンータとサーバはネットワーク

に接続していません。

0運用体 制 の整備 ……障害発生の際、予備機材に切り替える

いよいよ運用体制の整備です。運用体制の整備は、上記00のステップ
の、どこにどのような障害が発生するか、どのような機器でどう構成する

かにより、さまざまな対応を考えなければなりません。

それでは、はじめにOで想定したルータの故障とWebサーバの故障を例

図1.1.1 :最 もシンプルなサーバシステム

ヽ .:

ルータ
Webサーバ

図1.1.2 予備機の導入

ルータ
Webサーバ

ルータ〈予備)
Webサ ーバ(予備)

■

―

■

冗
長
化
の
基
本

インターネット(iSP)

インタニネツト(iSP)

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

に、運用体制の整備の基本と、冗長化における基本用語を解説します。

図 1.1.1の状態では、ノンータが故障するとサービスは止まってしまいます

が、図 1■2で予備機を導入したことによって、ノンータが故障したとしても

図 1.1.3の ように線をつなぎ替えるだけで簡単に復旧できるようになってい

ます。

コールドスタンパイ

図 1.1.2→図 1.1.3の 例のように、予備機は普段使わずにおいて、現用機が

故障 したら予備機を接続する運用体制を「コーノンドスタンバィ」(CO″

S″′′妙)と いいます。

ここで注意しなければいけない点は、現用機と予備機の設定は同じにし

ておかなければいけないという点です。冗長化されたシステムでは「現用機

と予備機の構成を常に同じ状態にしておくことが定石」です。

ノレータなどのネットワーク機器であれば、運用中に頻繁に設定を変える

こともないでしょうし、蓄積しなければならないデータもほとんどないの

で、コールドスタンバイでの運用は現実的な選択肢の一つです。

図1.].3 ルータが故障した場合の対応

ルータ

バ (予備)

Webサーバ

インターネット(:SP)

ルータ(予備)

ルータが故障した場合の対応

_ /

Webサーバが故障した場合の対応

次にWebサーバが故障したときの対応を考えます。Webサーバが故障し

たときの対応としては、ルータの場合と同様、図 1.1.4の ように予備機に切

り替えるという方法が考えられますが、これには問題があります。

ホットスタンバイ

先述のとおり、冗長化されたシステムでは「現用機と予備機の構成を常に

同じ状態にしておくことが定石」です。

Webサーバの場合、サイトの内容は日々更新されるでしょうし、アプリ

ケーションやオペレーティングシステムのバージョンアップなども避けて

は通れないでしょう。これらのさまざまな更新作業を普段停止している予

備機に対して実施し続けるのは、実際問題として非常に困難です。いざと

いう場面で予備機を起動したときに、コンテンツの内容が古かったリアプ

リケーションのバージョンが古かったりしては大変です。

そのため、Webサーバの予備機は常に電源を入れておいて、ネットワー

クに接続しておくのがよいでしょう。そして、現用機の内容を更新する際

には、予備機にも同じ更新がかかるような運用にします (図 1.1.5)。

このように、両方のサーバを常に稼働させておき、常に同じ状態に保っ

ておく運用形態を「ホットスタンバイ」(HOr Srα″′″)と いいます。コーノンド

スタンバイの場合は、物理的に線をつなぎ替えたり電源を投入しなければ

図1.1.4 サーバが故障した場合の対応

ルータ(予備)

ルータ
Webサーバ

インターネット(iSP)
大丈夫
'

Webサーバ (予備)

冗
長
化
の
基
本

章 サ ー バ ノインフラ構 築 入 門 冗長化/負荷分散の基本

いけないため、障害時のダウンタイムが長くなってしまいがちですが、ホ

ットスタンバイであれば即座に切 り替えることが可能になります。

現用機に障害が発生 した際に、自動的に処理を予備機に引き継 ぐことを

フェイルオーバ (動″ον″)と いいます。

サーバをフェイノンオーバするには「仮想 IPア ドレス」(И r′
“
αI P A認盗 S、

以下 ViP)と「IPア ドレスの引き継 ぎ」を利用します。

VIP

図 1.1.6は VIPを 利用 したActive/Backup構成の例です。現用機である

Weblに は、自分のIPア ドレスとは別に「VIP」 (lo.o.o.1)を 割 り当てておき、

Webサービスは「VIP」 で提供するようにします。

lPアドレスの引き継ぎ

現用機に障害が発生した際には、図 1.1.7の ように予備機がVIPを引き継

ぎます。これにより、利用者は予備機であるWeb2ヘアクセスするように

なります。

図1.1.5 ホットスタンバイ構成の運用

r

|

ジ

ルータ(予備)

ルータ
Webサーバ

インターネット(iSP)

Webサーバ (予備)

コンテンツの更新
アプリケーションのパージョンアップなど

フェイルオーバ

冗
長
化
の
基
本

障害を検出する……ヘルスチェック

正常にフェイノンオーバするためには、現用機で障害が発生していること

を検出するしくみが必要です。このしくみをヘルスチェック (H`αtt α
`崚
)

といいます。へ′レスチェックにはさまざまな種類があり、用途に応じて適

切なものを選択します。おもに利用されるものを以下に挙げます。

図1.1.ア :Pアドレスの引き継ぎ

銀

ルータ
現用機

10.0.0.101(Webl)

インターネツト(ISP)

ルータ(予備)予備機
10.0.0.102(VVeb2)

VIP
10.0.0。 1

.故障

ユーザ
(クライアント)

図1.1.6 VIPを利用したActiveノBackup構成

ユーザ
(クライアント)

ルータ(予備)

ルータ
現用機

10.0.0.101(Webl)

インターネツト(ISP)

予備機
10.0.0.102(Mreb2)

10・ 0.0.1

・Ｖ

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

・ lCMP監視 (レイヤ 3)

ICMP監視は、ICMP注
1の echoリ クエストを投げてリプライが返つてくるかを

チェックする。最も簡単で軽いヘルスチェックだが、Webサービスがダウン

した場合(Apacheが停止した場合など)は検知できない

・ポート監視 (レイヤ4)

ポート監視は、TCPで接続を試み、接続できるかどうかをチェックする。Web

サービスがダウンしたことは検知できるが、過負荷状態で応答できなくなつて

いたり、エラーを返していることは検知できない

0サービス監視 (レイヤ7)

実際にHTTPリ クエストなどを発行をし、正常な応答が返つてくるかどうかを

チェックする。ほとんどの異常を検知することができるが、場合によつてはサ

ーバに負荷をかけてしまうこともある

Webサーバのヘルスチェック

本章の冒頭で、図 1.1.1の構成で発生しうる障害を二つ想定しました。

そのうちの一つである「サーバ障害によるサービス停止」を正常に検出す

るためには、上記のヘルスチェックの中の「サービス監視」を利用します。

なぜサービス監視が必要かというと、サーバの電源が入っていてICMP応

答が返る状態であっても、Webサービス(Apacheな ど)が正常に動作してい

るとは限らないからです。Webサーバの障害を検出するためには、実際に

HTTPで リクエストを発行してみて、応答があるかどうかを確認するのが

最も確実な方法です。

ル…夕のヘルスチェック

「ルータ障害によるサービス停止」を検出するには「ICMP監視」を利用で

きます。ただし、ノンータに対してICMP監視をするのではありません。こ

こで確認したいことは「ルータがきちんとパケットを転送できているか」な

ので、インターネット上のホストからWiebサーバに対して監視するのがよ

いでしょう。要するに、Webサーバがインターネットと通信できる状態で

あることを確認できればいいのです。

注 l hternet Control Message Protocol。 異常発生時に、エラーとエラー情報を通知するプロ トコル。

* * *

Webサーバ、ノンータに限らず、ヘノンスチェックをする際には「何を確認し

たいのか」を明確にすることが最も重要です。

それでは実際に、シェノンスクリプトを利用して前出の図 1.1.6の構成を作

ってみます。Wieblと Wieb2に は自分のIPア ドレスのみを割り当てておきま

す。リスト1.1.1は、VIPに対して1秒 ごとにping試験をし、失敗したら自

分にVIPを割り当てるスクリプトです。

まず、Weblで リスト1.1.1のスクリプトを実行してください。すると「fail

Active/Backup構成を作ってみる

冗
長
化
の
基
本

DEV=`lethO'I

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

over!」 という文字列を出力して終了します。これで、Wieblに VIPが割り

当てられました。次に、Web2で リスト1.1.1を 実行してください。すると

今度は「health ok!」 という文字列が 1秒 ごとに表示され続けます。

ここで、クライアントからVIPに対してpingし ながらWeblを シャット

ダウンしてみます。Weblを シャットダウンすると、Web2で動いているス

クリプトのヘルスチェックが失敗してVIPを 引き継ぎます。

クライアントのping試験は図 1.1.8の結果となり、Weblを シャットダウ

ンしてから3秒程度でIPア ドレスが引き継がれている様子を確認できます。

lPアドレスを引き継ぐしくみ

「IPア ドレスを引き継 ぐ」とは、単に「IPア ドレスをつけ替えるだけ」では

ありません。試しに2台のサーバに同じIPア ドレスを振 り、別のマシンか

らpingを投げ続けてLANケ ーブノンを交互に抜 き差ししてみます。すると、

いくらケーブルを差し替えても、どちらか片方のサーバにしかpingが通ら

ないことを確認できます。

LAN(Ethernet)の 世界では、IPア ドレスではな くNIC(Nθttο戒レた,:″
`

C″のに固定で割 り当て られているMACア ドレス(M″′′Aεε
`ss CO″
加′

A″r`ss)を 使って通信をしています。他のサーバにパケットを送る際には、

MACア ドレスを取得するためにARP(A認″
“
R`sO′″″ο″P″′οω7)と いうプロ

回国||■口,日:困口麗コ■E期日園驚目‖熙露冒蜆響聰輯緻僣隧鰈鼈!;li:鷺
‐S ping 10,0.0,1 ′ ||

PING 10.0.0,1 (10.0.0,1)56(84)bytes of data,

64 bytes from 10,0,0,11 ■cmp_ eq=l ttl・ 641‐ time=2,46.ms
‐

.64 bytes f‐ rom 10,0,011: ■cmp_ eq=2 ttl=64 time=1.86. s _ ..

64 bytes from 10,0,0,1: icmp_seq=3 ttl=64‐ time=5.06 ms

64 bytes fFOm 10.0.0.1: ■Cmp_ eq=4 ttl=64 time=2.64 ms l

64 byt.es from 10,0,0.1: icmp_seq=S ttl=64 time=0.453 ms

64 bytes fronl 10.0.0.1: icmp_seq=6 ttt=64 time=3.73 rns

64 bytes from 10.0.0.1: icmp_seq=7 ttl=64 time=3.91 ms

64 bytes fronl 10,0,0.1: ■cmp_ eq=8 ttl=64 tine=0,418 ms

64 bytes from 10.0.0.1: icmp_seq=1l ttt=64 time・ 3.20 ms

64 bytes from 10,0.0.1: icmp_seq■ 12 ttl=64 time=1.69 ms

64 bytes from 10.0.0.1: icmp_seq=13 ttl=64 time=1.48 冊S

←Weblを シャットタウン

E亜亜玉麗菱□

トコノンを使います。

ARPは 、IPア ドレスを指定してMACア ドレスを問い合わせるためのし

くみです。しかし、通信するたびに問い合わせをしていては効率が悪いの

で、一度取得 したMACア ドレスはARPテーブノンに格納して一定時間キャ
ッシュします。そのため、別のサーバに同じIPア ドレスが割 り当てられた

としても、ARPテ ーブノンが更新されるまではそのサーバと通信することが

できません。つまり、IPア ドレスを引 き継|ぐためには、ほかのサーバの

ARPテーブノンを更新 してもらわなくてはいけません。

その手段 としてgratuitous ARP(GARP)が あります。通常のARPリ クエ

ス トは「このIPア ドレスに対応するMACア ドレスを教えてください」とい

う問い合わせをするものですが、gratuitous ARP Iよ「私のIPア ドレスとMAC
アドレスはこれです」と他のサーバヘ通知するためのものです。 リス ト1.1.1

(儘lover轟)では、0で send_arpコ マンドを使ってgratuitous ARPを送出し

ています。

以上のようなActive/Backup構 成では、現用機だけがアクセスを処理して

いて予備機はおとなしくしていますが、よく考えるともったいない話です。

両方のサーバを使ってサービスを提供することができれば、サイト全体の

処理性能は倍になるはずです。

複数台のサーバに処理を分散させてサイト全体のスケーラビリティを向

上させる手法を負荷分散 (■οα′B″α″
“
、ロードバランス)と いいます。wieb

サーバを負荷分散構成にすると、将来アクセス数が増えてサーバの処理が

追いつかなくなったとしても、サーバを増設することで対応できるように

なります。高性能なサーバに買い換えてリプレースする必要がないので、

古いサーバが余ったり無駄になったりすることがありません。

続く1.2節、1.3節では、Webサ ーバを負荷分散する具体的な構築例を紹

介していきます。

サーバを有効活用したい……負荷分散へ

冗
長
化
の
基
本

章 サ ー バ /イ ン フ ラ 構 築 入 門 冗長化/負荷分散の基本

DNSラ ウンドロビン(DNS Rο″″グROレ′)と は、DNSを 利用して一つのサ

ービスに複数台のサーバを分散させる手法です。図 1.2.1は DNSラ ウンド

ロビンの動作を表したもので、www.example.jPヘ アクセスしたいユーザ(A

さんとBさ ん)を想定してます。この2人は、それぞれDNSサーバにwww.

example.jPの IPア ドレスを問い合わせます。するとDNSサーバは「xxx.1」

「x.xェ 2」 という異なるIPア ドレスを返します。その結果、Aさ んはx.x.x.1

へ、Bさ んはx.x.x.2へ接続 します。

DNSサーバは、同じ名前に複数のレコー ドが登録されると、問い合わせ

DNSラウンドロビン

図1.2.l DNSラ ウンドロビン

x.x.x.l/\vrt7 x.x.x.2ヘアクセス

0 0

ヽ
0 0.'

0
当
魔

瞳
鐵驚 0

DNS応答
xxxlだよ

DNS応答
xxx2だよ

Aさん Bさん

DNS問い合わせ
www example,pの
IPアドレスを教えて!

Webサーバ2
x.x.x.2

webサーバ1
x.x.x.1

のたびに異なる結果を返します。この動作を利用することで、複数台のサ

ーバに処理を分散させることができます。比較的簡単に負荷分散できる

DNSラ ウンドロビンですが、以下のような問題があります。

・ サーバの数だけグローバルアドレスが必要

たくさんのサーバで負荷分散するためには、IPア ドレスをたくさん取得できる

サービス(回線)を利用する必要がある

0均等に分散されるとは限らない

これは携帯サイトなどで問題になることがある。携帯電話からのアクセスは、

キヤリアゲートウェイと呼ばれるプロキシサーバを経由する。プロキシサーバ

では、名前解決の結果がしばらくの間キャッシュされるので、同じプロキシサ

ーバを経由するアクセスは常に同じサーバヘ届くことになる。そのため、均等

にアクセスが分散されず、特定のサーバにのみ処理が集中する可能性がある。

また、PC用のWebブラウザもDNS問い合わせの結果をキャッシュするため、

均等に負荷分散されるとは限らない。DNSレコードの丁TLO″′ЪL姥)を短く

設定することである程度改善はできるが、必ずしも丁「Lに従つてキャッシュを

解放するとは限らないので注意が必要である

・ サーバがダウンしても気づかない

DNSサーバはWebサーバの負荷や接続数などの状況に応じて問い合わせ結果

をコントロールすることができない。Webサーバの負荷が高くてレスポンス

が遅くなつていようと、接続数がいつぱいでアクセスを処理できない状況だろ

うとまつたく関知しない。つまり、サーバが何らかの原因でダウンしていて

も、それを検出することなく負荷分散し続けてしまう。そのため、ダウンした

サーバに分散されてしまつたユーザは、エラーページと対面することになる。

DNSラ ウンドロビンはあくまでも負荷分散するためのしくみであり、冗長化

のしくみではないので、他のソフトウェアと組み合わせるなどしてヘルスチェ

ックやフェイルオーバを実装する必要がある

図 1.2.2の構成は、2台のWebサーバの両方にVIP(仮想アドレス)を持た

せて冗長化する例です。Weblが停止すると、VIPlが Web2へ引き継がれ、

すべてのアクセスをWeb2が処理するようになります。逆にWieb2が停止す

ると今度はVIP2が Weblに 引き継がれて、すべてのアクセスをWeblが処

理するようになります。Webサーバ同士が協調しあって、正常なサーバだ

DNSラウンドロビンの冗長構成例

１

・
２

　

Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
Ｄ
Ｎ
Ｓ
ラ
ウ
ン
ド
ロ
ビ
ン

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

けがVIPを保持するしくみです。

この構成を、先ほど紹介 したリスト1.1.1鰻遭ovensh)で 構築しようとする

と、以下のような点が問題になります。

・ Weblと Web2で VIPの設定値を変えなければいけない

⇒同じスクリプトを使えない

・ iCMP監視なのでWebサービス(Apacheなど)が停止してもフェイルオーバ
しない

そこで、リスト1.1.1を リスト1.2.1の ように変更します。

これで、両方のサーバで同じ内容のスクリプトを使うことができるよう

になりました。また、Pingで はなくcurl注
2を
使ってヘノンスチェックをする

ことで、Webサービスが停止してもフェイノンオーバできるようにもなりま

した。しかし、これでもまだ次の問題が残っています。

図1.2.2 DNSラ ウンドロビンの冗長構成例

ルータルータ

webr-/t
1o,o,o.1or (webl)

Web+j-,r\
10.0.0.102 (web2)

Webサーバ
10.0.0.102(Wi′ eb2)

Webサーバ
10.0.0.101(Webl)

V:P

10.0.0.1

10.0.0.2

V:P

10.0.0.2

V:P

10ЮЮ.1

ユーザは
http://www.example.jpノ

ヘアクセス

注 2 コマン ドラインの H¬
‐
Pクライア ン トソフ ト。

(EE) http://cu rl.haxx.se/

~｀ ・ヽ

,

www.example,p IN A 10.0,0.1
www.example.jp lN A 10.0.0.2

・ Webサービスが停止してもVIPを解放しないので IPア ドレスが重複してし
まう

・ 一度でもフェイルオーバしたらスクリプ トが止まつてしまう

この点を考慮して、さらにリスト1.2.2の ように変更します。

リスト1.2.2で は、VIPに 対するヘノンスチェックが失敗した場合、それが

自分に割り当てられているアドレスならば、自分のWebサービスに異常が

発生したとみなしてVIPを解放するようになっています。そして、自分に

リスト1.2.1 偽

１

・
２

　

Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
Ｄ
Ｎ
Ｓ
ラ
ウ
ン
ド
ロ
ビ
ン

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

割り当てられていないアドレスであれば、相手のWebサービスに異常が発

生したとみなして自分がVIPを引き継 ぐようになっています。また、VIP

の付け替えをしてもスクリブトが停止しないような変更も加えています。

以上で、どちらのサーバのWebサービスに異常が発生しても、きちんと

フェイノレオーバできるようになりました。DNSラ ウンドロビンを使って負

もっと楽にシステムを拡張したい……ローレ ラヾンサヘ

.#!/bin/Sh. . .

DEV=・ ethO:「
‐
VIP雪
:.10.0.0.1 10,0,0,2‖

ip_add()(

MAC=｀ ip llnk show SDEv l egrep ‐o l([0‐ 9a‐ fl{2}:){5}[0‐ 9a― f]{2}1 1

head ‐n l l tr ‐d :｀

lp addr add $1/24 dev $DEV

send_arp Si SMAC 255,255,255.255 ffffffffffff

}

,

ip_del(){

ip addr del $1/24 dev $DEV

}― ‐‐ .. .

heatthch(〕 ck(){

fOr i in SVIP;dO

lf [:i200:1 ‐ne t[｀ curl ‐s ‐I :lttp://Si/1 1 head ―n
‐: :1:]i then

‐ .

lf[-2 ‖`ip addr ShOW sDEV 1 9rep $i｀
1: l; then

. ip_add Sl .. .
‐ . ‐. .

else

ip_ el Sl ‐ ‐ . . .

fi
‐

fi . .

done

1 1 cut‐ f2‐ d

While tFuel; d.O healthCheCk;Sleep.1:dOne

failove13.sh

荷分散しながら冗長化をするためには、それなりの工夫と労力が必要とな

り、サーバの台数が増えてシステムが複雑になるにつれて難易度は上がっ

ていきます。リスト1.2.2の スクリプトも、サーバが3台になると次のよう

な問題が出てきます。

・ どのサーバが落ちたときにどのサーバがVIPを引き継ぐのか不定

・ フェイルオーバのタイミングによつては2台のサーバが同じIPア ドレスを

持つ可能性がある

・ 一度停止したサーバを復帰させるのが困難

スクリプト類を整備したり、他のソフトウェアと組み合わせたりするこ

とでこれらの問題を解決することもできますが、もっと楽にシステムを拡

張できたほうがいいでしょう。できれば、Webサーバ上で特別なソフトウ

ェアを動かさなくてもよい構成にしたいところです。次節で紹介するロー

ドバランサ (Lο′′B″α″
“
r、 負荷分散機)を導入することで、これらの問題

を解消できます。

１

・
２

　

Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
Ｄ
Ｎ
Ｓ
ラ
ウ
ン
ド
ロ
ピ
ン

章 サ ー‐バ /インフラ構 築 入 Fl 冗長化/負荷分散の基本

ロー ドバランサ (Lοα′B″α″
“
r、 負荷分散機)は、1つのIPア ドレスに対す

るリクエストを複数のサーバヘ分散することができます。DNSラ ウンドロ

ビンでは、Webサーバごとに異なるグローバルアドレスを割り当てる必要

がありましたが、ロー ドバランサを利用するとグローバルアドレスを節約

することができます。また、DNSラ ウンドロビンではWebサーバ側で工夫

して冗長構成を組みましたが、ロードバランサではその必要はありません。

・ ロー ドバランサの動作

ロードバランサは、サービス用のグローバルアドレスを持つた仮想的なサーバ

(以下、仮想サーバ)と して動作する。そして、クライアントから送られてきた

リクエストを本物のWebサ ーバ(以下、リアルサーバ)へ中継することで、あ

たかも自分がWebサーバであるかのように振る舞う

・ ロー ドバランサの機能

ロードバランサは、複数台のリアルサーバの中から1台を選択して処理を中継

する。その際、ヘルスチェックが失敗しているサーバは選択せず、必ずヘルス

チェックが成功しているサーバを選択する。したがつて、どれか1台のサーバ

が停止していても、正常に稼働しているサーバがある限リサービスが停止する

ことはない

・ ロー ドバランサの導入障壁

「ロードバランサ=高価な機材」というイメージや、「きちんと運用できるか心

配」という不安が導入の障壁である

3つめの導入の障壁については、たしかにアプライアンス製品は比較的

高価で、月額の保守費用などもかかります。 また、運用中に トラブノンが発

生した場合は開発元のサポー トが必要にな り、場合によってはファームウ

ェアのアップデー トなどもしなければならないので、保守契約を切ってラ

DNSラウンドロビンとロードバランサの違い

ンニングコストを下げるわけにもいきません。ある程度の収益が確保でき

るまで、ロードバランサの導入に踏み切れないケースが多いようです。し

かし、アプライアンス製品を利用せずにOsS(Op`″ Sο
“
κ
`Sο
′″″
`)で
構築し、

運用を自分で行うという選択肢もあります。以降では、本格的にロードバ

ランサを自分で構築、運用できるようになることを目指して解説します。

Linuxは 特別なソフトをインストーノンしなくても、ノレータ(ネ ットワーク

機器)と して利用することができます。また、ファイアウォーノンとしても十

分に実用可能なパケットフィノンタリング機能など、非常に強力なネットワ

ーク機能を数多く実装しています。:PVS(PV,r協′JS`rν″)と いう負荷分散

機能を提供するモジューノンも含まれています。

ロードバランサの種類と:PVSの機能

ロードバランサの種類について説明しておきます。ロードバランサには、

大きく分けてL4ス イッチとL7ス イッチの2種類があります
注3。 L4ス イツ

チは トランスポート層までの情報を解析するので、IPア ドレスやポート番

号によって分散先のサーバを指定することができます。L7スイッチはアプ

リケーション層までの情報を解析するので、クライアントからリクエスト

されたURLに よって分散先のサーバを指定することができます。

IPVSに 実装されているのは「L4ス イッチ相当の機能」です。L7ス イツチ

としては利用できません。

なお、本書の解説では、ロードバランサとして基本的にL4ス イッチを想

定しています
注4。
また、一般的に単にロードバランサといった場合、「L4

スイッチ」を指すことが多いと考えてよいでしょう。

注3 L4と L7というのはOSl参照モデルのレイヤ4(トランスポート層)と レイヤ7(アプリケーション層)を
指しています。

注4 リバースプロキシを用いることで、L7スイツチが果たす役割を一部実現することも可能です。リバー
スプロキシについて、詳しくは2.1節を参照してください。

IPVS・……LinⅨでロードバランサ

１
・
３
　
Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
Ｉ
Ｐ
Ｖ
Ｓ
で
ロ
ー
ド
バ
ラ
ン
サ

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

リアノンサーバに処理を分散する際、すべてのサーバヘ均等に分散してし

ようと、スペックの異なるサーバが混在している環境では負荷が偏ってし

よう恐れがあります。IPVSでは何種類もの「スケジューリングアノンゴリズ

ム」(Scた″
“
′′暉 Attri′み″)が組み込まれていて、必要に応じて環境に適した

アノンゴリズムを選択することができます。表 1.3.1はおもなアノンゴリズムの

一覧です。

リアルサーバにはそれぞれに「重み」(ツ姥
`g″
)と いう数値パラメータを指

定することができます。アノンゴリズムによっては、この値が大きいほど処

理能力の高いサーバだと解釈して分散比率を調節してくれるものがありま

す。表 1.3.1の動作欄は、各アルゴリズムがどのようにしてリアルサーバを

スケジューリングアノンゴリズム

表1.3.1 おもなスケジューリングアルゴリズム

動作

(何も考えずに)リ アルサーバを先頭から順番に選択していく。すべてのサーバに均等
に処理が分散される

rrと 同じだが、重みを加味しながら分散比率を変える。重みが大きなサーバほど頻繁
に選択されるので、処理能力の高いサーバは重みを大きくするとよいだろう

コネクション数が一番少ないサーバを選択する。ほとんどの場合はこれで問題ない。
どのアルゴリズムを使えばいいのかわからない場合に使つてもよいだろう

lcと同じだが、重みを加味する。具体的には「(コ ネクション数+1)一重み」が最小と
なるサーバを選択するので、高性能なサーバは重みを大きくするとよいだろう

最も応答速度が速いサーバを選択する。とはいえ、サーバにバケットを飛ばして応答
時間を計測しているわけではない。ステー トが ESTABLISHEDなコネクション数(以下、
アクテイブコネクション数)が一番少ないサーバを選択しているだけである。wlcとほ
とんど同じ動作になるが、wlcで はESTABLISHED以外のステー ト(TIME_WAITや FIN_
WAITな ど)のコネクション数を加算している点が異なる

sedと 同じアルゴリズムだが、アクティブコネクション数が0のサーバを最優先で選択
する

題■田

画面画面

選択するのかについての説明です。

IPVSに は表 1.3.1以外にもアノンゴリズムが実装されています。IPVSを透

過プロキシやキャッシュサーバなどと併用 して、パフォーマンスを向上さ

せるために作 られたもので、今回の用途では利用 しませんが、それらのア

ノンゴリズムを簡単に表 1.3.2に まとめておきます。

IPVSの機 能 は、以下の ソフ トウェアか ら利 用 す る ことがで きます。

・ ipvsadm(□D http:〃 WWW.‖ nuXVirtualSerVer.Org/SOftWare/ipVS.htmi

・ keepalived(ロ ロD http://www.keepalived.org/

ipvsadmは 、IPVSの 開発元が提供しているコマンドラインツーノンです
注5。

仮想サーバの定義やリアノンサーバの割り当てができるほか、設定内容の確

IPVSを使う

表1.3.2 その他のスケジューリングアルゴリズム

動作

送信元の IPア ドレスからハッシュ値を計算して分散先のリアルサーバを選択する

宛先のIPア ドレスからハッシュ値を計算して分散先のリアルサーバを選択する

コネクション数が「重み」で指定した値を超えるまでは、同じサーバを選択する。コネ

クション数が「重み」で指定した値を超えた場合は別なサーバを選択する。すべてのサ

ーバのコネクション数が「重み」で指定した値を超えている場合、最後に選択されたサ
ーバが選択され続ける

iblcと ほとんど同じだが、すべてのサーバのコネクション数が「重み」で指定した値を
超えている場合は、コネクション数が一番少ないサーバが選択される

注 5 nettkerモジュールに対するiptablesコ マン ドと同様の位置付けです。

■
■

・
う
０

Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
！
Ｐ
Ｖ
Ｓ
で
回
―
ド
バ
ラ
ン
サ

ipvsadm

¬

章 サ ー バ /ィ ンフラ構 築 入 門 冗長化/負荷分散の基本

認や接続状況の確認もできます。また、転送レー トなどの統計情報を表示

することもできます。

keepa‖ vedは、C言語で書かれているデーモンです。設定ファイノン(/etC/

kcPttved/keepahved.conOの 内容に従ってIPVSの仮想サーバを構築しま

す。さらに、リアノンサーバのヘノンスチェックをしてダウンしたサーバを自

動的に負荷分散から外す機能や、すべてのリアルサーバがダウンした場合

に「ただいま込み合っています」などのメッセージを出す機能 (sorry_server)

があります。

2008年 4月 現在の最新バージョンであるkepalived-1■ 15で は、以下の

ヘノンスチェックがサポートされています。

O HTTP_GET:HTTPで GE丁 リクエストを発行して応答を確認する

・ SSL_GET:HTTPSで GETリ クエストを発行して応答を確認する

O TCP_CHE⊂ K:TCPで接続できるかどうかを確認する
。SMTP_CHECK:SMTPで HELOコマンドを発行して応答を確認する
OM!SC_CHECK:外部コマンドを実行して終了コー ドを確認する

それでは実際に、kepalivedを利用して図 1.3.1の システムを構築します。

ここで、10.0.0.1は サービス用のグローバルアドレスとします。クライアン

トからhttp://10,0.0.1/に アクセスすると、Weblと Web2へ負荷分散する

構成になります。その他の細かい設定内容は以下のとおりです。

・スケジューリングアルゴリズム :rr(round― robin)

・ヘルスチェック種別 :HTTP_GET

・ヘルスチェックページ :http:〃 health/heath.html

・ヘルスチェックの成功条件 :ステータスコードが200で返つてくること

・ヘルスチェックのタイムアウト:5秒

以上の構成をkeepdivedの設定ファイノンとして記述したものがリスト1.3.1

ロードバランサを構築する

keepalived

です。

Webサーバの設定

keepalivedを 起動する前に、Webサーバの設定を確認します。必要な作

業は以下の3点です。

0デフォルトゲートウェイを192.168.0.254に設定する

・ヘルスチェックページを設置する

・動作確認用のページを設置する

この構成では、クライアントからのリクエストとリアノンサーバからのレ

スポンスはロードバランサを経由しなければいけません。そのため、各Web

サーバのデフォノントダートウェイにはロードバランサのIPア ドレスを設定

しておきます。

また、kcPalivedは リアノンサーバに対してヘルスチェックをします。今

回はhttp://health/health.htmlヘ アクセスして、ステータスコードが200

で返ってくるかどうかをチェックします。そのため、各Webサーバではあ

らかじめ、ヘノンスチェック用のページを設置しておく必要があります。

さらに、動作確認用のページを用意します。動作確認する際に、どちら

のサーバに分散されているかを把握しやすくするため、あえて内容の異な

図1.3.1 ロードバランサで負荷分散

Webサーバ
192.168.0.1(Webl)

クライアント ロードバランサ
192.168.0.254

Webサーバ
192.168.0.2(11′ eb2)

仮想サーバ
10.0.0.1

１

・
３

　

Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
Ｉ
Ｐ
Ｖ
Ｓ
で
ロ
ー
ド
バ
ラ
ン
サ

章 サ ー バ /イ ンフラ構 築 入 門 冗長化/負荷分散の基本

るindex.htmlを 設置するとよいでしょう。ここでは、ホスト名 (Webl、 Web2)

を記述したind∝htmlを設置します。

ivedを起動する

リスト1.3.1を /etc/keepalived/keepahved.cOnfに 記述してkeepal市edを起

動すると、IPVSの仮想サーバが構築されます。図 1.3.2の ようにlpvsadmコ

se

1

}

virtual_server group

lvs sched rr
Ivs*method NAT

protocol TCP

virtualhost heatth

example {

.180{real serve‐ r 192‐ ,168.0

we■ ght l

HTTP.GET {

80

5

}

}

real server 192.168.

weight l

HTTP CET {

0,2 80 {

url{
path /health.html

status code 200

}

connect port 80

connect_timeout 5

}

I些仕上型型望型1型塑 L__二__二 _轟 止 i止_亀二=量墓な:

マンドで確認することができます。図 1.3.2は 、10.0.0.1:80へ の接続を、

192.168.0■ :80と 192.168.0.2:80に分散することを示しています。

負荷分散を確認する

クライアントからhttp://10,0,0,1/ヘ アクセスすると図 1.3.3の ような

結果が得られます。アクセスするたびにWeblと Wcb2へ交互に接続され、

負荷分散されている様子を確認することができます。

冗長構成を確認する

次に、Web2を シャットダウンして再度アクセスしてみましょう。すると

図1.3.4の ように必ずWeblへ接続されるようになります。Web2が停止して

いてもエラーにならず、正常にアクセスできていることが確認できます。

ipvsadm -Ln

,

図1.3.3 負

■
■

・
う
０

Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
Ｉ
Ｐ
Ｖ
Ｓ
で
ロ
ー
ド
バ
ラ
ン
サ

0.‐
 |ヽ| `||

‐.0. , .| _

・ 10‐ . ‐ ‐

L4スイッチとL7スイッチ

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

先ほど少し触れましたが、ロードバランサにはL4ス イッチとL7ス イッ

チがあります。どちらも負荷分散することに違いはありませんが、その処

理内容は大きく異なります。L4ス イッチは、TCPヘ ッダなどのプロトコノン

ヘッダの内容を解析 して分散先を決定するのに対し、L7ス イッチは、アプ

リケーション層の中身まで解析して分散先を決定します。

図 1.3.5は L4ス イッチとL7ス イッチの動作の違いを表したものです。L4

スイッチでは、クライアント(Webブラウザなど)の通信先はリアノンサーバ

になりますが、L7ス イッチではロードバランサとクライアントがTCPセ ッ

ションを張ります。つまり、1つのアクセスに対してクライアント⇔ロー

ドバランサとロー ドバランサ⇔リアルサーバの2つのTCPセ ッションが張

られます。

L4ス イッチとL7ス イッチの特徴を、端的にまとめると以下のとおりで

す。

・ 柔軟な設定をしたいならL7スイツチ

・ パフォーマンスを追求するならL4スイツチ

||||||||||口1目 |||||||||||||||||||||ヨ|1目 |||||||||||||||コ |1目 |||||||||||||||1日 ||||1目 |||||1田 |||は ||||||1颯 ||||||||||||1蠅 |||||1鰈 ||1躊 :‡|||:痣11::|‐ 11‐

3‐ Curl 'thttp:′ /10.010.1/1 _ .. ‐‐ ‐・ ‐ .・ ^. ‐‐・‐‐‐‐
・ ‐‐‐ ‐‐・ ・‐‐ |‐‐

lёbl ‐

S Curl ihttp://10.0.0.1/1
.Webl ‐ ‐

S Curl 'http://10.0.0.1/i

‐Webl .

‐S Curl ihttp://10`0.0,1/1

Webl ‐

図1.3.5 L4ス イッチとL7スイッチの違い

Webサーバ

クライアント Webサーバ

Webサーバクライアント

・Webサーバヘ接続
・リクエストを送信
・レスポンスを受信

Webサーバ

・クライアントと接続
・リクエストを受信
・内容を解析
・分散するサーバを選択

１
・
３
　
Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
Ｉ
Ｐ
Ｖ
Ｓ
で
ロ
ー
ド
バ
ラ
ン
サ

Lアスイッチと柔軟な設定

L7スイッチは、http://example,jp/*.pngのような画像ファイルに対するリク

エストを画像専用のWebサーバヘ転送することができます。また、http://example.
jp/hoge?SESS10NID=xxxxxxxxの ような、セツションIDを含んだリクエストに対し

て、同一のセツションIDの リクエストを同じサーバに振り分けることなども可能

です。

つまり、リクエスト先URLの ようなアプリケーションプロトコルの内容を、リ

アルサーバを選択するための条件として利用することができます。その反面、日

―ドバランサが解釈できないプロトコルは負荷分散できません。たとえば、SMTP

を負荷分散する際に「この宛先のメールはこのサーバヘ飛ばす」といつた処理も、

理屈上はL7スイッチで可能ですが、回― ドバランサがSMTPを サポー トしていな

ければ使うことができません。

どのようなプロトコルをどのようなルールで分散できるかは、日―ドバランサ

の機能に完全に依存するので「L7スイッチだからできるはず」という思い込みは厳

禁です。L7スイッチを選定する際には、やりたいことがきちんとできるかどうか

を確認することが重要です。

章 サ ー バ ノインフラ構 築 入 門 冗長化/負荷分散の基本

L4ス イッチはパフォーマンスの点で優れていると紹介しました。では、

パフォーマンスをポイントにL4ス イッチはどのような構成がとれるのかに

ついて考えます。

L4ス イッチは、図 1.3.1で構築 したNAT(Nα″ο″ Aグ′FaSSル
"SI′
わ′)構成

で利用することもできますが、さらにパフォーマンスを追求するためにDSR

ω″
“
rS`″ιr R″

“
rr)と いう構成を組むことができます。DSRと NATの違い

を図 1.3.6に 図示 します。

NAT構成の場合、L4ス イッチはクライアントから届いたパケットの送信

先アドレスを書 き換えてリアノンサーバに転送します。そのため、応答パケ

ットを受け取ってIPア ドレスを書き戻す必要があります。DSR構成の場合、

IPア ドレスの書 き換えは行われません。L4ス イッチは、クライアントから

受け取ったパケットをそのままリアノンサーバヘノンーティングします。この

場合、応答パケットに対 してIPア ドレスを書き戻す必要がないので、リア

ノンサーバはL4ス イッチを経由せずに応答を返すことができます。

ロードバランサがボトノンネックになることが心配だったり、高トラフィ

L4スイッチのNAT構成とDSR構成

クライアント

クライアント

Webサーバ仮想サーバ

仮想サーバ

Webサーバ

図1.3.6 DSR(下)と NAT(上)の違い

x.x.x.x← y.y.y.ソ

ックに耐える負荷分散環境が必要な場合は、DSR構成にすることをお勧め

します。ちなみに、keepalivedで DSR構成にするには、市s_methOdに「DR」

と指定します (「 DSR」ではありません。注意してください)。

ただし、DSR構成では仮想サーバ宛のパケット(グローバルアドレス宛

のパケット)がリアノンサーバにそのまま到達するので、リアノンサーバがグロ

ーバルアドレスを処理できなければいけません。つまり、NAT構成で動い

ているシステムに対して、ロードバランサの設定だけをDSRに変更しても

負荷分散はできません。

最 も手軽な設定方法は、リアノンサーバのループバックインタフェース

(Lο

"ι

′凛レた,1ルの に仮想サーバのIPア ドレスを割り当てる方法でしょう。ほ

かには、nettterの機能を使って仮想サーバ宛のパケットを自分宛にDNAT

(D`s′:"′動′Nι″οtt A′′
“
ssルク″sI″′ο″、宛先NAT)するという手段もあります。

ここまでは、インターネット上に公開するWebサーバの負荷分散を考え

てきました。しかし、ロードバランサの用途はこれだけではありません。

たとえば、メーノンマガジンなどを配信するシステムでは、webサーバから

メーノンサーバに対して大量のメーノンを送信する場合があります。しかしメ

ールサーバが 1台だけだと配送に時間がかかり過ぎるので、ロードバラン

サを使ってメールサーバを負荷分散するような用途も考えられます。この

ような場合、図 1.3.ア のような構成が考えられますが、注意しなければいけ

ない点があります。

同じサブネットのサーバに対して負荷分散したい場合は、NAT構成が使

えません。NAT構成では、ロードバランサが宛先のIPア ドレスを書き換え

てしまうため、メーノンサーバが受け取るパケットは、宛先が 192.168.0.151

で、送信元は192.168.0.1に なっています。そのため、メーノンサーバが返す

応答パケットの送信元は192.168.0.151と なり、宛先は 192.168.0.1と なりま

す。ここで、宛先である192.168.0.1は 同じサブネットのIPア ドレスなので、

ロードバランサヘ戻らずにWebサーバヘ直接送り返してしまいます。その

結果、NATに よって書き換えられたIPア ドレスを元に戻すことができない

同じサブネットのサーバを負荷分散する場合の注意

■
■

・
●
Ｄ

Ｗ
ｅ
ｂ
サ
ー
バ
を
冗
長
化
す
る
　
！
Ｐ
Ｖ
Ｓ
で
ロ
ー
ド
バ
ラ
ン
サ

章 サ ー バ ノインフラ構 築 入 門 冗長化ノ負荷分散の基本

ので、正常に通信ができなくなってしまうのです。

このような場合は、先ほど紹介したDSR構成にするとよいでしょう。DSR

の場合、ロードバランサはIPア ドレスの書き換えをしないので、メーノンサ

ーバが直接Webサーバに応答を返しても問題ありません。

図1.3.7 同一サブネットで負荷分散

〆
摯… ヽ

１
１
１
１
‥
―
―

―
―
１
１
１
■
ｌ
‥
１
１
１
１
１
１

１

■
―
‥
１
１
■

饉
１
１
↓
ノ

■.

ロードバランサ

この構成ではNATを

使えません

Webサーバ
192.163.0.1′ 24

メールサーバ
192.168.0.151ノ 24(Mai:1)

メールサーバ

192.168.0.152/24(Mai12)

仮想サーバ
192.168.0。 150

Linuxを L7スイツチとして利用できるようにするソフトウェアの開発も進めら

れているようです。

. UltraMonkey-17 @ http://ultramonkey-lT.sourceforgejp/

. Linux LayerT Switching (GD http://www.linuxlTsw.orgl

UltraMonkey― L7は 2008年の 1月にバージョン1.0.1-0が リリースされています。

Linux Layer7 Switchingは 2007年の1月 にバージョン0.1.2が リリースされてい

ます。どれだけ実用に耐えられるのかは現状では未知数ですが、今後の展開が非

常に楽しみなプロジェクトでしょう。

⑮
■■■
LinuxベースのL7スイツチ

１

・
４
　
ル
ー
タ
や
ロ
ー
ド
バ
ラ
ン
サ
の
冗
長
化

前節まででWebサーバの冗長化はできましたが、まだロードバランサが

冗長化されていません。1台 しかないロー ドバランサが故障すると、サー

ビスが全停止してしまいます。故障に備えてもう1台 ロー ドバランサを用

意し、コーノンドバックアップで運用することもできますが、人の手が介在

しなければ復旧できないのはどうにかしたいところです。

本節では、ノンータやロードバランサをフェイノンオーバする方法を紹介し

ます。

アプライアンス製品のノンータやロードバランサには冗長化の機能をもっ

ているものが数多くあります。一昔前までは、冗長化の実装は製品によっ

て様々で、ベンダ独自のプロトコルが利用されていました。

しかし、異なるベンダ間の相互運用ができないのは不便 ということで、

Cisco社の HSRP(Hο′S′α″昴ッRοク″暉P″′οω′)と いうプロ トコノンをベースに

してベンダ非依存の冗長化プロトコノンが作 られました。それがVRRP(И r″α′

RO″
`rR`′
′″あ″ッPωわ醐)です。VRRPの 仕様はRFC 37`8注

6で
定義されて

お り、多 くのノンータやロー ドバランサで採用されています。前節で紹介 し

たkeepttvedで もVRRPを利用できるので、ロードバランサをもう1台構築

してkeepalivedの設定を追加するだけで冗長化することができます。

ロードバランサの冗長化

冗長化プロトコルVRIP

注6 C□D http://www」 etforg/rfc/rfc3768.txt

VRIPのしくみ

章 サ ー バ ノインフラ構 築 入 門 冗長化/負荷分散の基本

はじめに、ノンータやロー ドバランサのフェイノンオーバの原理は、1.1節で

おもにWebサーバのフェイノンオーバの流れ として解説 した「ヘルスチェッ

ク」「IPア ドレスの引き継 ぎ」とほとん ど同じです。マスタノー ドが正常に

稼働 しているかどうかのチェックをして、もし停止していたらBackupノ ー

ドが VIP(仮想アドレス)を引き継いでフェイノンオーバします。

VRRPの構築・設定へ進む前に、VRRP固有のノレーノンや用語、VRRPの動

作を整理 しておきます。VRRPを 利用する上で押さえておきたいキーワー

ドは「VRRPパ ケット」「仮想ルータID」「プライオリティ」「プリエンプティ

ブモー ド」「仮想MACア ドレス」ですo

VRRPパケツト

ヘノンスチェックというと、監視対象の機器に対して定期的に何らかのリ

クエストを発行し、その応答を確認するというイメージがあるかもしれま

せんが、VRIPは逆のアプローチでマスタノードの稼働を監視しています。

VRRPの マスタノードは、定期的にVRRPパケツトをマノンチキャストアドレ

ス(224.0.0.18)に 送出し続けます。VRRPパ ケットは、マスタノードが健全

であることを「広告」するメッセージという意味で「アドバタイズメント」

は″ar″ s`″θ″)と も呼ばれています。図 1.4.1は VRRPパ ケットのフォーマ

ットです。図 1.4.1に あるようにVRRPパケットには、

・ IP Address(仮 想 !Pア ドレス、ViPを指す)

・ Virtua:RtrlD(仮想ルータlD)

・ Priority(プライオリティ)

などのデータが格納されています。Backupノ ー ドは、VRRPパ ケットを受

信できている限り待機 していますが、一定時間VRIPパケットを受信でき

なければ、マスタノー ドがダウンしたと判断してフェイノンオーバを開始し

ます。VRIPで は、Backupノ ー ドが能動的にマスタノー ドの状態を確認し

にいくようなことはしていません。

仮想ルータ:D

VRRPパケットは、あらかじめ決められているマノンチキャストアドレス

(224.0.0.18)に送出します。このアドレスは変更することができないので、

図 1.4.2の ように一つのネットワーク上に複数の系列のロードバランサを設

置した場合、すべてのVRIPパ ケットが同じアドレスに送出されます。こ

れは一見すると誤動作を引き起こしそうに見えますが、VRRPで は仮想ル

．
一
一
●
●

二

・

十
　
‥
　
１
＋
―

図 1.4`1

図1.4.2 同一ネットワーク上に複数のロードバランサを設置

出
●
送
．
を
・

ケ

ロードバランサA
(ActiVe)

ロードバランサB
(3ackup)

ロードバランサD
(Backup)

ロードバランサc
(Adive)

VRRP

VRRP

１

・
４
　

ル
ー
タ
や
ロ
ー
ド
バ
ラ
ン
サ
の
冗
長
化

最

章 サ ー バ ノインフラ構 築 入 門 冗長化/負荷分散の基本

―夕lDと いうパラメータでインスタンスを分けることができるので問題は

ありません。図 1.4.2中 のロードバランサ A、 Bと 、ロー ドバランサ C、 D
で、仮想ルータIDの値を変更しさえすれば、問題なく図 1.4.2の構成で運

用することができます。

プライオリテイ

VRRPの構成例としてよく見かけるのはActive/Backupの 2台構成ですが、

しくみ的にはloO台のBackupノ ードを持つことも可能です。その際に懸念

されるのは、3ackupノ ー ドが2台以上動いているところでマスタノードが

停止すると、どのBackupノ ードがマスタノードになるのかという点です。

VRRPではプライオリテイ(Pr′ο″り)と いう値をノードごとに設定します。

各ノー ドは、VRIPパ ケットを受信できなくなると、自分からVRRPパ ケ

ットを送出し始めます。VRRPパケットの中にはプライオリィが格納され

ているので、自分よりも高いプライオリティを持ったノー ドがいるかどう

かはすぐにわかります。そして、自分よりも高いプライオリティを持った

ノードが見つかった時点でマスタノードに昇格することを断念します。シ

ンプノンなしくみですが、このおかげでプライオリティを高く設定したノー

ドから順にマスタになることができます。

プリエンプティブモード

VRIPの デフォノント設定では、既存のマスタノードよりも高いプライオ

リティを持ったノードが起動すると、フェイノンオーバが発生します。つま

り、プライオリティの高いノードが常にマスタノードとなります。この挙

動はプリエンプテイブモー ド(P“
“
P′″`Mο
ル)と いう設定によって変更す

ることができます。プリエンプティブモードを無効にすると、すでにマス

タノードが稼働していれば、自分のプライオリティのほうが高かったとし

てもフェイノンオーバはしません。

どちらのモードで運用するかは状況によって異なります。たとえば、マ

スタノードの調子が悪くなって、頻繁に再起動を繰り返してしまうという

状況を懸念するならば、プリエンプティブモードを無効にするとよいでし

ょう。逆に、オペミスを防ぐ目的で「両方のノードが動いている場合は必ず

特定のノードがマスタになっていてほしい」と望むならば、プリエンプティ

ブモードは有効にしたままがよいでしょう。

仮想MACアドレス

VRRPでは、仮想 IPア ドレスとは別に仮想MACア ドレスが定義されてい

ます。フェイノンオーバ時はIPア ドレスだけでなく、MACア ドレスも一緒
に引き継ぐように設計されています。MACア ドレスを引き継がずにIPア

ドレスを引き継ぐ場合、通信相手となるすべての機器のARPテーブノンを更

新してもらう必要があります。その手段として、1.1節でも紹介したgratuitous

ARPと いうARPリ クエストを利用するのが一般的ですが、nhernetの しく

み上、すべての機器に正常にARPリ クエストが到達する保証はありません。

もしARPテ ーブノンを更新できなかった機器があると、その機器との通信は

ARPキ ャッシュが更新されるまで途絶えてしまいます。

そのため、VRRPではMACア ドレスを引き継ぐことで、通信相手がARP
エントリを更新する必要性を排除しています。RFC 3768に よると、マスタ

状態になる直前にはgratuitous ARPを 送出することになっていますが、こ

れは通信相手のARPテ ーブノンを更新することが目的ではなく、L2ス イッチ

のMACア ドレスの学習状態を更新することが目的です。

keepdivedの VRPは 、仮想 MACア ドレスを使っていません。つまり、
RFC 3768に 従った実装にはなっていません。Linuxは MACア ドレスの変

更はできますが、複数のMACア ドレスを持てないので、keepdivedで は仮

想MACア ドレスを使わない実装になっています。そのため、フェイノンオ
ーバ時にARPエントリが更新されない機器があった場合、ARPキ ャッシュ

がクリアされるまでの間通信できなくなる危険性があ ります。

_9t?$tiI_9-'l: ARP(GARP)の遅延送出

この問題を解決するために、kep」市edに は「g=P_masteLdelay」 という

設定項目があります。kepdivedはマスタ状態に遷移した直後にgratuitous

の実装上の問題

１

・
４
　

ル
ー
タ
や
ロ
ー
ド
バ
ラ
ン
サ
の
冗
長
化

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

ARPを 送出しますが、その瞬間はネットワークの状態が安定していないこ

とが多 く、一時的に トラフィックが集中したり通信できない状態になって

いる可能性があ ります。keepahvedは 通信相手に確実にARPエ ン トリを更

新 してもらうために、数秒待ってから再度gratuitous ARPを 送出する実装

になっています。この待ち時間をgarp_masteLdelayで 設定することができ、

デフォノント値は5秒 となっています。

たとぇば、sTP(ジα′″′暉 T″
`Pr。
′。ωl)注 7を使ってネットワークを構築して

いて、L2ス イッチがダウンしたことによってロードバランサがフェイノンオー

バする構成のシステムがあるとします。この場合、L2ス イッチがダウンした

瞬間にSTPのコンバージェンス (CO″ν
`ば`″“
、収東)が実行されるため、数秒

から数十秒 くらいの間通信できなくなることがあります。この間に送出され

たgratuitous ARPは 他のノードに伝送されないので、garp_master_delayを 設

定してコンバージェンス完了後にgratuitous ARPが 送出されるように調整 し

ます。このように、keepdivedの VRIP実装はRFC 3768で 定義されている内

容と異なっている部分があるので、利用する際には実際のネットワーク環境

で正常にフェイルオーバできるかどうかを検証する必要があります。

では、kecPalivedを 利用して図 1.4.3の システムを構築します。図 1.4.3中

の市1と lv2は、LinⅨ にkeepahvedを インストーノンしたロードバランサで

す。市1と 市2の keepahved.confは リスト1.4.1の ようになります
注8。
各パラ

メータの意味は表 1.4.1の とおりです。

VIPの確認

市1と lv2で keepal市edを 起動すると、lvlに VIP(10.0.0.254と 192.168.0.

254)が割 り当てられますが、ifconfigコ マンドでは確認できません。図

1.4.4の ようにipコ マンドで確認します。

注7 ループのないツリー構成をとるプロトコル。IEEE 802.lDで 規定されています。

注8 リスト1.4.1で はIPVS(負 荷分散)の設定を省いています。実際は、前節のリスト1.3.1に追記します。

k空型vedを冗長化する

１

・
４
　

ル
ー
タ
や
ロ
ー
ド
バ
ラ
ン
サ
の
冗
長
化

クライアント

図1.4.3 ロードバランサの冗長化

ivl

10.0.0.252′24
192.168.0.252′ 24

iv2

10.0.0.253′ 24
192.168.0.253′ 24

Webサーバ
1".168● 1′24(Webl)

Webサーバ
192.160.02′ 24(Web2)

V:P

10.0.0.254′24

192.168.0.254ノ 24

10.0.0.1

仮想サーバ

仮想サーバ

1よ0.01

クライアント

lvl

10.0.0.252ノ24
192.160.0.252′ 24

:v2

10.0.0.253′ 24
192.168.0.253′ 24

Webサーバ
192.:13.0.1′24(Wiebl)

Webサーバ
192■ 68.0.2′ 24(Web2)

VIP

10.0.0.254/24

192.168.0.254ノ 24

‐
故障

仮想サーバ

←lv2は 100に変更する

リスト1.4.1
|■

仮想サーバ

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

VRRPの動作確認

フェイルオーバの動作確認結果を次にまとめます。

01vlを シャットダウンする→ lv2=MasterO

O!vlを起動する→ lvl=Master、 lv2=BackupO

Olvlの ethOの LANケーブルを抜く|→ ivl=Backup、 lv2=MasterO

Olvlの ethOの LANケーブルを戻す→ lvl=Master、 lv2=BackupO

Oivlの ethlの LANケーブルを抜く|→ !vl=Master、 lv2=Backup X

図1.4.4 ViPの 確認 |||

1000 .

keepa‖ vedの起動時に、MASTERと して起動するか
BACKUPと して起動するかを指定する

VRRPバケットを送出したり受け取つたりするインタ
フェースを指定する

仮想ルータIDo VRRPイ ンスタンスごとにユニークな

値を指定する。指定できる範囲は0か ら255で ある

VRRPのプライオリティ値。マスタを選出する際は、
この値が大きいものが優先される

VRRPパケット(ア ドバタイズ)の送出間隔。秒単位で
指定する。デフォルト値は1秒である

VIP(仮想アドレス)。 書式は以下のとおりで、複数の

指定が可能である
くIPADDR>/く MASK> dev くSTRING>

state MASTER

interface eth0

garp_master_delay 5

virtual_router_id'l 00

priority 101

advert_int 1

virtual_ipadd ress

表 1.4.1 バラメータの意味

マスタ状態に遷移してから
るまでの待ち時間を秒単位

、9ratultous ARPを 再送す
Iで指定する

lvl:～」F ip addr show ethO _ _ ‐ ‐‐ ‐ ‐

2: OthO: くBROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen

link/ether .xx:xx,xx:xx:xx.:xx.brd ff:ff:ff:ff:ff:ff

inet 10.0,0,252/24 brd 10,0.0..255 scope.91‐ obal eth0

■net 10.0.0.254/24 scope 91obal ethO ‐ ‐
‐―

lvl:～ # ip addr show ethl . | | .
‐‐ . ‐

31 ethl: くBROADCASTIMULTlCAST′ UP> mtu 1500 qdisc prifo‐ fast qlen 1000 1

1ink/ether xx:xx.:xx:xx:xx:xx brd ff:ff:ff:ff:ff:ff

inet 192:168.0,252/24 brd 192■ 68,0.255‐ scope 91oba■ ethl

inet 192.168._0.254/24 scope global ethl

これを見ると、0の ethlの ケーブノンを抜いたときの挙動がおかしいよう

にみ えます。本来であれば、市1の ethlが リンクダウンした ときは

lvl=Backup、 lv2=Masterに ならなくてはいけません。

VRRPインスタンスを分離する

以上の設定では、VRRPパ ケットはethOだけに流れているため、ethlの

LANケ ーブノンを抜いても異常を検出できません。複数のインタフェースで

障害を検知したい場合は、リスト142の ようにインタフェースごとにVRRP

インスタンスを定義する必要があります。ここで注意しなければいけない

のは「宙rtuaLЮ■er_id」 パラメータです。vrrp in■ anceブロックをコピペす

ると書き換えるのを忘れそうになりますが、VRRPイ ンスタンスは宙rtud_

ЮuteLidに よって分けられるので、インスタンスごとにユニークな値を指

定してください。

VRRPインスタンスを同期する

vrrp_sync groupと いうブロックは、複数のVRRPイ ンスタンスで状態を

同期させるための設定です。外向けのインスタンス(VE)が Backupになっ

た場合、それと連動して内向けのインスタンス (VI)も Backupに なります。

これによって、市1で ethOと ethlの どちらのケーブノンが切れてもきちんと

フェイノンオーバできるようになりました。

本節では、keepttvedの VRRP機能でフェイノンオーバできることについて

説明をしました。

keepalivedは応用次第でさまざまなものに利用できます。たとえば、1.1

節の図 1.1.6の構成も建

"divedを
使えばもっと簡単で安全に構築できるで

しよう。kepdivedは 一Vrrpと いうオプションを付けることで、vⅢご機

能だけを独立して利用することができますので、SMTPサーバなどのシン

プノンなところから冗長化してみると動作を理解しやすいでしょう。

divedの応用

１
・
４
　
ル
ー
タ
や
ロ
ー
ド
バ
ラ
ン
サ
の
冗
長
化

U7T.1.4.2 VRRPOBEO 1

章 サ ー バ /インフラ構 築 入 門 冗長化/負荷分散の基本

ｐ

一

ｒＯ

Ｖ

roup {

. . ‐‐ ・ =

. .VI

}

}

vlrrp_ nstance VE {

state MASTER

interface etho
ga rp_ma ste r_delay

virtual router id
p rio rity
advert_int 1

authentication {
auth_type PASS

auth_pass HIMITSU

}

Vrrp_ nstance VI{

hl

| |`

.● ,I

}

Vlrtual_ paddriess {
. 10.0,0,254/24 dev

}

state ‖ASTER

interfac.e etl

{

auth_type PASS

auth_pass HIMITSU

}

Vlrtual_ paddress{

192,168,0,254/24 dev ethl

) .

}

．髯

←lv2は 100に変更する

←VRRPイ ンスタンスごとにユニーク

priority 101

advert int l

‐ ‐ . ■ .| |
■ |. = _

, .. _l ・ .

‐.:.: ll●

■ | _‐ . .

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

1章のロー ドバランサの導入によりWiebサーバの負荷分散は可能にな り

ましたが、IPVS(LVS)の ようなロー ドバランサはL4レベノンでパケットを転

送するのみです。Webサーバがクライアントアプリケーションからの リク

エス トに直接応答する構成であることには変わりません。

ここでロードバランサ どWiebサーバの間にリバースプロキシ(R`ν
`rs`

Prοχァ)と 呼ばれる役割のサーバを挟むことで、より柔軟な負荷の分散が可

能になります。リバースプロキシはApacheに mod_pЮ xyや mod_pЮxy_

balancerを組み込んで構築することができます。APache以外でも、ligh■pd

やSquid(い ずれも後述)な どでも代用可能です。

リバースプロキシはクライアントからの要求を受け取り(必要なら手元で

処理行った後)、 適切なWebサーバヘと要求を転送します。Webサーバは

要求を受け取り、いつものように仕事をしますが、応答はクライアントに

ではなく、リバースプロキシヘ返します。要求を受け取ったリバースプロ

キシはその応答をクライアントヘ返却します。

図2.1.1の ように、クライアントとWiebサーバの間に立って要求を代理

で処理するのがリバースプロキシの役割です。通常プロキシサーバはLAN

→WANの要求を代理で行いますが、リバースプロキシはWAN→ LANの

要求を代理します。そのため「リバース」(R″餡ι)と いう名前になっていま

す。

リバースプロキシを利用すると、クライアントからの要求がWebサーバ

ヘ届く途中の処理に割って入って、さまざまな前後処理を施すことができ

るようになります。これが、リバースプロキシ導入のメリットです。より

具体的な利点/機能には以下が挙げられます。

リバースプロキシ入門

O HTTPリ クエストの内容に応じたシステムの動作の制御(L7スイッチが果た
す役割と似ている)

・ システム全体のメモリ使用効率の向上

e Webサ ーバが応答するデータのバッファリングの役割

・ Apacheモ ジュールを利用した処理の制御

順番に解説 していきます。

IPVSは L4ですので、クライアン トから要求されたHTTPリ クエス トの

内容に応 じて処理を振 り分けるようなことはできません。 ここでリバース

プロキシがあると、たとえばHTTPリ クエス トの中からURLを見て、

・クライアントから要求されたURLが /images/1ogojpgな ら画像用のWeb
サーバに

・クライアントから要求されたURLが /newsであれば動的コンテンツを生成
するWebサーバに

と最終的な処理をそれぞれ別のサーバに振 り分けるような制御が可能にな

ります (図 2.1.2)。

Apaぬcで リバースプロキシを構築する場合、この振 り分けはmod_rewrite

のRewriteRule機 能を使 うことになります。mOd_rewriteで 制御できること

であれば、ほぼ何でも可能であるともいえます。たとえば、

・クライアントのlPア ドレスを見て特定の lPア ドレスのみサーバヘのアクセ
スを許可する

HTTPリクエストの内容に応じたシステムの動作の制御

図2.1.1 リバースプロキシ

0リクエスト
ロ ー ー ー →

← ― ― ― ―

0レスポンス

0
由 ― ― ― →

← ― ― 口 "

0
リバース
プロキシ

Webサーパ

２
・
１
　
リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
Ｂ
（コｏ
モ
ジ
ュー
ル

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

・クライアントのUse「Agentを 見て、任意のUser― Agentからのリクエスト

を特別なwebサーバヘアクセスを誘導する

・/hOge/f00/barと いうURLを /hoge?loo=barと いうURLに変更してから

Webサーバヘリクエストする

などといったことが可能です。それぞれがどのような場合に有効か、 もう

少 し考えてみましょう。

IPアドレスを用いた制御

たとえばIPア ドレスによる制御は、悪意のあるホス トからのリクエス ト

を遮断する目的にも利用できます。 また、管理者向けのページが含まれる

サイ トでIPア ドレスとURLに よる制御を組み合わせて、管理者向けページ

には特定のIPア ドレスからのみしかアクセスできないよう制限することも

できます。

による制御

User― Agentに よる制御は、Googlebotや ヽhoo!Slurpな ど検索エンジンの

ロボットヘの対応などに利用できます。

たとえば、ユーザ向けにはどうしてもキャッシュすることが難しい動的

なページ(ユーザに合わせてユーザ名が表示されるページなど)があるとし

ます。ロボットにはユーザ名を表示する必要がない場合、そのページをキ

ャッシュすることができます。そこで User― Agcntを 見て、ロボットのUser―

Agentの 場合はキャッシュサーバを経由してWiebサーバヘアクセスさせる

図2.1.2 リバースプロキシによる振り分け

動的コンテンツ用
Webサーバ

クライアント リバース
プロキシ 画像用Webサーバ

.....fl:r.....・

レ

/images/logojpg

よう制御を行う、といったことが可能です。

URLの書き換え

昨今ではサイト全体の階層構造をイメージしやすいなどの理由から、ユ

ーザに対してWiebサイトのURLを綺麗に見せたいこともあるでしょう。「ク

ーノンなURI」
注1を
実現するには本来Webア プリケーション側で対応するべ

きですが、レガシーなシステムをどうしても利用せぎるを得ない場合があ

ります。そんなときはリバースプロキンでリクエストURLを分解してから、

レガシーシステムが理解できるURLに 変更してWebサーバヘ転送するとい

うのも一つの手です。

動的コンテンツを返却するWebサーバ (APサーバ とも呼ばれます)で は

通常、アプリケーションが利用するプログラムをメモリに常駐させること

で、アプリケーションの起動時のオーバーヘッドを回避する設計がなされ

ています。たとえば、Javaで書かれたプログラムは起動に相当な時間がか

かりますが、一度メモリに常駐させてしまえば、以降は起動時間をカット

して動作させることができます。mod_perlや mOd_phpで Penや PHPを Web

サーバに組み込んで利用すると、アプリケーションの処理が高速化される

のも同じ原理です。また、FastCGIも ほぼ同様の原理でアプリケーション

を高速化させます。

APサーバではこの都合上、大量のメモリを要求されます。静的コンテン

ツを返却するだけのWebサーバに比べて、動的コンテンツを返却するAPサ

ーバでは数倍から数十倍のメモ リを消費することも珍しくありません。

通常、APサーバはクライアン ト1リ クエス トに対 して 1プロセスもしく

は 1ス レッドを割 り当てて処理する方式を取っています。それぞれのプロ

セス/ス レッドは、他のプロセス /ス レッドとは独立して動作 します。これ

注1 たとえば、http:〃b.hatena.nejp/b00kmarkて gi?uSer=naOya&tagl=perl&tag=2=cpanと いうURLよ
りもhup″bhatena.nejノ naoya/pe‖/cpanのほうが綺麗で、クールです。詳しくは以下を参照して
ください。

C□D htp:〃www.w3.org/Provide″ Style/URLhtrnl

システム全体のメモリ使用効率の向上

２
・
１
　
リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
Ｂ
ｎコｏモ
ジ
ュー
ル

章 ワンランク上 の サ ー バ /イン フラの 構 築 冗長化、負荷分散、高性能の追求

によリアプリケーション開発者はリソース競合を気にせずプログラムを開

発することができるため、アプリケーションの設計がシンプルかつ容易に

なるというメリットが得られます。

しかし、APサーバが 1リ クエス トに対して1プ ロセス/ス レッドで応答

する場合、画像や IttaScript、 CSSの ような静的コンテンツを返却する、つ

まリファイノンに書かれた内容をそのまま返却するだけでよい場合も、同様

の方式で返却することになります。

例 :動的ページにおけるリクエストの詳細

たとえば、動的に生成された1枚のHTMLのページ中に画像が30枚ほど

使われているケースを想像してみます。たとえば、「はでな」のトップペー

ジ注2な どのようなページです。このページは動的に生成されています。

このページヘのリクエストは、初回の 1リ クエストのみが動的コンテン

ツの要求になります。初回 1リ クエストでHTMLが動的に生成され、その

HTMLは クライアントのブラウザによってダウンロードされます。ブラウ

ザはその後HTMLを解析して、必要な画像ファイノンやスクリプトファイノン

をサーバに要求します。合計、動的リクエスト1+静的リクエスト30に な

ります。

― ―すべてAPサーバで応答する場合

この 1+30の リクエス トをすべてAPサーバで応答する場合、全体 とし

てはほぼ静的コンテンツの返却が仕事であるのに、たった1つの動的 リク

エストを処理 したいがために、残る30の静的なリクエス トの返却に際 して

もメモリを大量に消費することになります。画像であれ、動的コンテンツ

であれ、同じ1リ クエス ト1プロセス/ス レッドで応答する必要があるため

です (図 2.1.3)。

←――サーバを切り分ける場合

そこで静的なファイルを返却するWebサーバ と、動的コンテンツを生成

)82 (4D http://www.hatena.ne.jpl

するAPサーバを別のサーバとして切 り分けます(図 2.1.4)。 これにより、

静的コンテンツはメモリ消費量の少ないWebサーバが応答し、動的コンテ

ンツのみアプリケーションで応答する、 という構成が可能になります。シ
ステム全体で見た場合のメモリ使用効率が上がり、同時に処理できるリク

エス ト数が向上します。

サーバを2つに分割するのは良いとして、どのようにして静的コンテン

ツ、動的コンテンツに対するリクエス トをそれぞれのサーバに振り分ける

のでしょうか。ここで、リバースプロキシの出番です。

・ リクエストされた URLが /images以下や CSSな ど、静的コンテンツを配備
したバス以下である場合はWebサーバヘ

・ それ以外のURLの場合は動的コンテンツの要求なので、APサーバヘ

とURLの内容を見て振 り分け先を変更します。リバースプロキシのこの働

きは、やはりL7ス イッチ相当の処理を行っていると見ることができます。

このとき、リバースプロキシ自身もWebサーバであるという特徴を生か

図2.1.3 すべてAPサーバで応答する場合

動的コンテンツ要求 静的コンテンツ要求

消費メモリが大きいプロセス/スレッド

図2.1.4 サーバを2つに分割した場合

動的コンテンツ要求

ロ ロ ロ ロ ロ
→

■
■
■

:::i:::::: らヽ
ト

静的コンテンツ要求

APサーバ

クライアント リバース
プロキシ

静的コンテンツ用
Webサーバ

２
・
１
　
リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
「●ｎすｏ
モ
ジ
ュー
ル

″

′
′
′ ~

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

して(静的コンテンツを返却するためにWebサーバを別途用意するのでは

なく)静的コンテンツはリバースプロキシ自身が返却する、という構成が一

般的です (図 2.1.5)。

リバースプロキシは、APサーバの手前に立って、APサーバのバッファ

としての役割を呆たすという点でも重要です。とくにHTTPの Keep― Alive

機能を使いたい場合に、この点でリバースプロキシの存在が重要になって

きます。

HTTPに はKeep― A‖veと いう仕様があります。あるクライアントが一度

に多数のコンテンツを同一のWebサーバから取得する場合、たとえば先に

示した30枚の画像が利用されているHTMLページなどが良い例で、その多

数のHTTPリ クエストごとにサーバとの接続を確立しては切断して…を繰

り返すのは効率がよくありません。最初の 1リ クエストで確立したサーバ

との接続を、そのリクエストが終了した後も切断せずに維持して、続くリ

クエス トでその接続を使い回すことにより1本の接続でまとめて多数のリ

クエス トを処理することができます。

これを実現するのがKeep― Aliveです。サーバ側が「KecP―Aliveし てOK」 と

いう指示をブラウザに対してHTTPヘ ッダで知らせると、ブラウザはサー

バとの接続を維持し続けてKeep― Aliveの仕様に則って一つの接続で複数の

ファイノンをまとめてダウンロードします。実際、Keep― AlⅣeがオフのサー

バより、Keep―Aliveが有効になっているサーバからのファイルのダウンロ

Webサーバが応答するデータのバッファリングの役割

図2.1.5 -般的な構成
静的コンテンツ要求

●暉じ・

.......・
ケ

ロ ロ ロ ロ ロ →

動的コンテンツ要求

クライアント リバース
プロキシ

APサーパ
ロ ロ ー ー →

HTTPOKeep-Alive

―ドのほうが体感速度的にも速いと感じられるようです。

Keep―Aliveは一度確立した接続をしばらく維持するという性格上、Wieb

サーバ側にある負担を強います。具体的には、ある特定のクライアントか

ら要求を受けたプロセス/ス レッドは、その時点から一定時間の間、その

クライアントヘの応答のために占有されることが挙げられます
注3。

例 :メモリ消費とKeep‥Al iveのオン/オフ

先のメモリ消費の観点からこの状況を考えてみましょう。1プロセスあ

たりのメモリ消費量が多いAPサーバでは、1つのホスト内で立ち上げられ

る最大プロセス数はせいぜい50～ 100本 といったところです。このときリ

バースプロキシなしでKeep― Ahveを 有効にした場合、その 50～ 100本 とい

う少ないプロセスの多くが、Keep― miveの接続の維持のために消費されて

しまtヽ ます (図 2.1.6)。

では、Keep―Aliveを オフにしたらどうか。しかし、その場合はクライア

ントから見た場合の体感速度が低下してしまいます。それは望む結果では

ありません。

ここでリバースプロキシを導入した場合を考えてみましょう。一般的に

図2.1.6 プロセスがKeep‐ A‖veの接続維持のために消費される

接続できない

消費メモリが大きいプロセス/スレッド

クライアント

クライアント

クライアント

クライアント

クライアント

２

・
１
　

リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
Ｒ
（すｏ
モ
ジ
ュ
ー
ル

注 3 1ighttpdの ようなイベン トモデルを採用している Webサ ーバにおいては、その限りではありません。

章 ワンランク上 の サ ー バ /イ ンフラの 構 築 冗長化、負荷分散、高性能の追求

リバースプロキシ役のWebサーバは、プロセスあたりのメモリ消費量はそ

れほど多くないため、1つのホスト内で 1,000～ 10,000プ ロセスを立ち上げる

ことも可能です。この場合、ある程度のプロセスがKeep― Ahveコ ネクショ

ンを維持するために消費されたとしても、問題ありません。そしてクライア

ントとリバースプロキシの間のみ「Keep― Aliveオ ン」にして、リバースプロキ

シとバックエンドのAPサーバ間は「Keep― Aliveオ フ」にします(図 2.1.7)。

これでAPサーバ側はプロセス数が少なかったとしても、1リ クエストが

終了するとすぐその直後に別のリクエス トに応答できます。全体として、

同時に扱えるクライアントの数は多くなり、またスノンープットも向上しま

す。クライアントとの接続の維持をリバースプロキシが担当し、メモリ消

費量の多いAPサーバではその責務を負わないという、いいとこどりのシ

ステムを構築することができるのです。

リバースプロキシにApacheを 採用 した場合、そのリバースプロキシに

APacheモ ジュールを組み込んで、HTTPリ クエストの前処理/後処理とし

図2.1.7 Keep― A‖ veのオンノオフ

消費メモリが小さいプロセス/スレット

Keep-Alive

消費メモリが大きいプロセス/スレッド

クライアント

クライアント

クライアント

クライアント

クライアント

モジュールを利用した処理の制御

て任意のプログラムを動かすことが可能になります。

たとえば、Apache 2.2で はソースに付属してくるmod_denateは コンテ

ンツを解ip圧縮するApacheモジュールです。これをリバースプロキシに組

み込むことで、バックエンドのAPサーバから受け取ったHTTPの応答を、

クライアントには圧縮してから返却することができます (図 2.1.8)。 同様に

mod_sslを 使えば、APサーバからの応答をSSLで 暗号化することができま

す。

また、mod_dosdetectOr注
4は
Apache 2.2用 のDoS攻撃対策用モジュー

ノンで、特定クライアントからの過剰なアクセスを一時的に遮断したりする

ことができるモジュールです。これをリバースプロキシに組み込むことで、

バックエンドのAPサーバが過剰アクセスにより過負荷になることを防ぐ

ことができます。

Apache以外でもlightャdな ど、サー ドパーティ製のモジュール/プラグイ

ンを組み込むことができるWebサーバはいくつかあり、それらをリバース

プロキシとして利用することで同様のメリットが得られます。

リバースプロキシの導入の判断

このように動的コンテンツを配信するAPサーバを用いる場合、リバー

スプロキシがある/な しではシステムの柔軟性に大きく差がつきます。た

とえ、物理的なホストが1台 しかない場合でも、同一ホスト内にリバース

プロキシとAPサーバを動かすなどして、「静的コンテンツの配信役とバッ

クエンドのAPサーバ」という役割分担をはっきりさせるほうがサーバリソ

ースの利用効率を上げることができます。

図2.1.8 mod_denateを組み込んだ場合

0,リクエスト
ロ ー ー ー →

0
ロ ー ー ー →

OvTrh>Zクライアント

プロキシ

sziplEffi APサーバ0

)14 llEID hfip:l lsourceforge.net/projects/moddosdetector/

２
・
１
　
リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
Ｂ
ｎすｏ
モ
ジ
ュ
ー
ル

―

一

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

リバースプロキシを導入しない理由は、どこにも見当たりません。

それではApacheに よるリバースプロキシの構築方法と、構築したリバー

スプロキシでの各種設定の例を解説します。

e2.2を使う

リバースプロキシを構築するにあたっては、安定版のApache 2.2を 用い

るといいでしょう
注5。 また、リバースプロキシではなるべく多数のクライ

アントを同時に処理することができることが望ましく、クライアントあた

りにプロセス 1つ を割り当てるpreおrkモデノンよりも、クライアントあたり

にスレッド1本で済ませる「workrモデル」のほうがベターです。

workert を起動

Red Hat Enterprise Linux 5や CentOS 5で は標準パ ッケージにAPache 2.2

が同梱されていますので、これをインス トーノンすればよいでしょう。この

Red Hatに よリパッケージされたApacheは preおrυwoよer(マノンチプロセス

モデル/マノンチプロセス +マノンチスレッドの複合モデル)、 いずれのモデノン

でサーバを運用するかを起動時に選択することができます。/etc/sが conng/

httpdに て、

HTTPD=/usr/sbin/httpd,worker

とすれば、httPdを wOrkerモ デルで起動させることができます。

nfの設定

Apacheを リバースプロキシとして動かすための最低限の設定を示します。

なお、Apacheは DSO(Dッ″α″たSみά
`′
0り″)有効でコンパイノンされている

ものとします。

リバースプロキシの導入

注 5 本節では、CentOS 4 4、 Apache 224を使用 しました。

最大プロセス/スレッド数の設定

２

・
１
　

リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
Ｂ
ｏすｏ
モ
ジ
ュ
ー
ル

まずはworkerのプロセス、スレッド数にまつわる設定です。

Startservers 2
MaxClients 150
MinSpareThreads 25
MaxSpa reTh reads 75
ThreadsPerChild 25
14axRequestsPerChild 0

デフォノントではhttpd.cOnfの グローバノンディレクティブに以上のように

設定されていますが、これはかなり1控えめな設定になっています。リバー

スプロキシは高負荷時でもバックエンドのAPサーバの盾になる役割を期

待されるので、もう少しリソースを使って、対応できる同時アクセス数を

増やす設定をしてもかまわないでしょう。

上記の中でも重要な指標はMax⊂hentsと ThreadsPerCh‖ dです。worker

モデノンの場合Apacheは複数の子プロセスを立ち上げ、そのそれぞれのプロ

セス内で複数のスレッドを生成し、結局「プロセス数×プロセスあたりのス

レッド数」分のリクエス トを同時に処理することになります。

このプロセスあたりのスレッド数を制御するのが■hreadsPerChildで す。

子プロセスの最大値は、

MaxClients

ThreadsPerChild

で決 まります。MaxChentsは 同時に扱 えるクライアン トの総数になります。

したがって前述の設定の場合、

・ 最大プロセス数 :6

・ プロセスあたりの最大スレッド数 :25

・ 同時に扱えるクライアントの数 :6× 25=150

とい う設定になります。

メモ リを2GB～4GBほ ど搭載 しているサーバであれば、同時接続数は

1,000～ 10,000程度を処理することも可能でしょう。た とえば、

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

・ 最大プロセス数 :32

・ プロセスあたりの最大スレッド数 :128

0同時に扱えるクライアントの数 :32× 128=4096

と設定する場合は、以下のようになります。

Sta rtSe rve rs
Se rve rLimit
Th readLimit
MaxClients
MinSpa reTh reads
MaxSpa reTh reads
Th read s Pe rChild
l'laxReques t sPe rChild

25
75
128G□B
0

還

新たにServerLimitと 丁hreadLimitを設定しました。ServcrLimit/■hreadLimit

はそれぞれプロセス/ス レッド生成数の最大数を決める、MはChentsや

■ readsPerChildに並ぶもう一つの設定項目です。ServerLimitはデフォノント

で 16、 ■hreadLimitは 64と なっているので、それ以上の数のプロセス/ス レ

ッド数を設定する場合にはこの2項 目を明示的に指定する必要があります。

― ―ServerLiml′「hreadLimitとメモリの関係

ところで、MttChentsや ThreadsPerChildも プロセス/ス レッド数の上限

を決めるのに、なぜ同じようなパラメータとしてServerLimit/ThreadLimit

の項目があるかは気になるところです。MaxClientsや ■hreadsPerChildは サ

ーバの動的なリソース消費に関する設定項目で、この値が高かろうが低か

ろうが、サーバが最低限消費するであろうリノース消費量には影響を与え

ません。一方、ServerLimit/■ hreadLimitは APacheが確保する共有メモリの

サイズに影響します。これらの数字に必要以上に高い値を設定してしまう

と、そのぶんAPacheが無駄に共有メモリを消費してしまいます。したがっ

て、設定 したいプロセス数 /ス レッド数の上限が組み込みの値である

ServerLimit 16、 'IhreadLimit 64を 超える場合のみ、その値に合わせて設定

されるべき値になります。

なお、プロセス/ス レッドあたりのメモリ使用量は、組み込むモジュール

の種類などに依存します。また、OSが どの程度APacheに メモリを割り当て

られるかは環境によりけりなので、設定値を断言することはできません。上

記の設定はあくまで設定参考にとどめてください。実際にお使いの環境で

どの程度の上限を設定するのがよいかは、プロセス/ス レッドあたりのメモ

リの使用量と相談して見積もるべきです。詳しくは4章で解説します。

あるWebサーバ上での最大プロセス/ス レッド数は、それらリソースが

上限に達した際に、スワップが発生しない程度、つまり、

00Sや Webサーバ以外のソフ トウェアが常時利用するメモリの量

e Webサ ーバのプロセス/ス レッド数が最大数に達したときにサーバが消費

する合計メモリ量

の2つ を合計して、搭載物理メモリの範囲内に収まる程度にチューニング

するのがベストです。プロセス /ス レッドあたりのメモリの使用量の見分

け方についても、4章にて詳しく解説します。

先に説明したとおり、リバースプロキシで Keep―Ahveをオン、APサーバ

では Keep―Al市eをオフにするのが定石です。APacheで Keep―Al市eを有効に

するにはグローバルディレクティブに以下のように設定します。

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTineout 5

これは、次のような内容 になっています。

・ Keep―A‖veを有効に

・ Keep―Alive中 に処理できる最大リクエス ト数は 100件

・ Keep―A‖veタイムアウ ト(クライアン トと接続を維持し続ける時間)を 5秒

KeepAliveTimeoutは デフォノントでは15秒 となっていますが、通常のWeb

サイトではレスポンスは5秒 もあればクライアントに返却されるはずです。

この値を大きくすると、それだけプロセス/ス レッドがKeep―Aliveのため

に占有される時間が長くなるので、サーバのリソース消費量が大きくなり

ます。デフォノントの15秒 よりも小さな値を設定しても問題ないでしょう。

２
・
１
　
リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
Ｂ
∩コｏモ
ジ
ュー
ル

Keep‐ A‖veの設定

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

必要なモジュールの回―ド

次に設定すべきは、必要なモジューノンのロードです。リバースプロキシ

を構築するため最低限必要なモジュールは、以下のとおりです。

. mod_rewrite

. mod_proxy

. mod-proxy_http

これに加えて、公開ディレクトリのエイリアスを定義できる「mod_alias」

も有効にしておくと便利です。

LoadModute alias module modules/mod alias.so
LoadModule rewrite module modules/mod rewrite.so
LoadModule proxy module modules/mod pioxy.so
LoadModule proxy http_module modules/mod_proxy_http. so

これらモジュールをロードすることにより、RewriteRuleや RewriteRule

内でのProxy、 Aliasな どのディレクティブが使用可能になります。

なお、パッケージでインストーノンされたApacheの h■pd.confにおいては、

デフォノントで多数のモジューノンが組み込まれていますが、必要のないモジ

ューノンを組み込むとその分APacheの メモリ消費量が増えてしまいますの

で、利用しないモジューノンは極力削ってシェイプアップしておくほうがよ

いでしょう。

RewriteRuleを設定

ServerRootや ログなどの設定を済ませたら
注6、
最後にRewriteRuleの 設定

を行います。ここがリバースプロキシ構築時の核になります。

以下のように設定することを考えます。

・ /imagesは画像を配信するパスで、この URLは リバースプロキシ自身で配
信。なお、すべての画像はリバースプロキシと同一ホス ト内の/path/to/

images/以下に置かれているとする

注 6 Apacheの基本的な設定については、Apacheのマニュアルを参照 してください。

・ /css、 /isも 同様

・ それ以外のURLは動的コンテンツの配信。APサーバ192.168.0.100に リク
エス トをプロキシする

設定はリス ト2.1.1の ようにな ります。

RewriteRdeの内容に注 目してください。RewriteRuleは 要求されたURL

にパターンマッチを行い、マッチ したらその URLに任意の処理を行 うこと

ができるディレクティブです。RewriteRuleで は正規表現を利用することが

できます。リス ト2.1.10は 、

/images/、 /css/、 /is/のいずれかにURLがマツチした場合、とくに何もせず

([L]は RewriteRuleの パターンマツチをここで終了するという意味)、 デフォ

ルトのコンテンツハンドラでコンテンツを返却する

という設定です。デフォル トのコンテンツハンドラは静的なファイノンを返

す、URLのパスに応じてファイノンを探しそれをクライアントに返却すると

いう、いつものApacheの動作です。

この設定によリクライアントからのリクエストがたとえば/images/prOme/

naoya.pngだ った場合、ローカルの/Path/to/mlages/pronle/naoya.pngがクラ

イアントに返却されます。

続く、リスト2.1.10は 以下のような設定になります。

すべてのURLに対するリクエストを、192.168.0.100にプロキシする

リスト2.1.1

２
・
１
　
リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
ｏ８
すｏ
モ
ジ
ュー
ル

章 ワンランク上 の サ ー バ ノインフラの 構 築 冗長化、負荷分散、高性能の追求

これで設定は完了です。リバースプロキシがバインドするポートにブラ

ウザでアクセスすると、さもAPサーバから応答が返ってきたかのように、

192.168.0■ 00が返却するコンテンツが表示されるはずです。

一歩進んだRewriteRuleの 設定例を見ていきましょう。

特定ホストからのリクエストを禁止

たとえば、特定のIPア ドレスからのリクエストに対してアクセス禁止で

あるステータスコー ド403を返却する場合は、リスト2.1.2のように設定し

ます。

APサーバヘプロキシする前に条件判定を行うRewriteCondディレクティ

ブでREMOTE_ADDRを 見て、特定のアドレスであった場合403を返却注7

して終了します。

ロボットからのリクエストに対してはキャッシュサーバを経由させる

仮に、Squidな どで構築 したHTTPキ ャッシュサーバが 192.168.0.150に

配置されているとしましょう。ロボットからのリクエス ト、つまり特定の

User―Agentか らのリクエス トのみキャッシュさせた内容を返去pし たい場合

はリス ト2.1.3の ように設定します。

#192.16810.200か らのリクエス トに403を返して終了 _
RewriteCond%{REMOTELADDR}.'192ヽ ,168ヽ ,0ヽ .200$.

ReWFiteRule .* ‐|[F′ LI

#.リ バースプロキシの設定 ‐

RewriteRule^/(imageslcsslj5)/― [Ll .
‐ ~‐ .‐

RewriteRulel^/(■ 半)S httpl//192.168,0.100/Sl IP′ L]

一歩進んだRewriteRuleの設定例

注7 RewriteRuleの フラグである[F,L]を使います。

口壺■墨日亜1口■l■l圏■鯰l躊財lttmiml諫:姜|111::|1職 |.

ROWriteE■9ine On l

mod_setenⅥfを使ってUser― Agent文 字列からロボット判定を行い、ロボ

ットと判定された場合はキャッシュサーバヘプロキシします。

このように、APacheの mod_rewriteは ほかのモジューノンなどと組み合わ

せて柔軟な設定が可能な点が強みです。ReM″iteRdeで書ける条件に当ては

まるケースであれば他サーバヘの振り分けをいかようにも行うことができ

ます。

ところで、バックエンドのAPサーバが複数の場合どのような構成にす

るのかという疑間が沸いてきます。いくつかの方法が考えられます。

0リバースプロキシとAPサーバは常に一対―で配備する。特定のプロキシか
らは特定のAPサーバヘリクエストを転送する

Omod_proxy_balancerを 使つて、1つのリバースプロキシから複数APサー
バヘの振り分けを行う(図 2.1.9)

0リバースプロキシとAPサーバの間にビVSを挟む

balancer ("複数ホストヘの分散

リスト2.1.3

，
一
ｏ
「１

リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
Ｂ
ｎ，ｏ
モ
ジ
ュー
ル

章 ワンランク上 の サ ー バ ノインフラの 構 築 冗長化、負荷分散、高性能の追求

上記のうち、0はあまり賢い選択とはいえません。リバースプロキシに

は基本的に、APサーバよりもリソース消費量が少なく、かつリソース消費

量が少なくても裁ける仕事を担うことが期待されます。一般的なシステム

であればリバースプロキシは冗長化を考慮して2台 もあれば十分です。一

方、負荷状況によってはバックエンドのAPサーバは2台では済まされな

い、という場合も多いでしょう。たとえば、はでなブックマーク
注8は
執筆

時の時点(2008年 2月)で、リバースプロキシ2台に対してAPサーバが11台

という構成になっています。

リバースプロキシとAPサーバのリソース消費にはアンバランスがある

ため、一対一の構成ではリバースプロキシ側のリソースが無駄に余ること

になります。

0の Apacheの mod_proxy_balancerは 、リバースプロキシを行うにあた

って、プロキシ先のホストが複数あった場合でもそれらにリクエストが分

散して振 り分けられるよう計らってくれるモジューノンです。また、プロキ

シ先のホストが何らかの理由で応答を返せない場合、フェイノンオーバして

分散先リストから該当ホストを切り離し、該当ホストがリクエスト可能に

なったところでフェイノンバックする機能も持っています。これを利用する

のが一つの手です。

も う一 つ の 手 と して は 、 リバ ー ス プ ロ キ シ と APサ ー バ の 間 に LVS十

Webサーバ

ts2.1.9 mod-proxy-balancerO)*UE

― ― ― ― →

ロ ー ロ ー →

ロ ー ロ ー → ／
一 webサーバApache 2.2

_balancer

クライアント

webサーバ

ii8 (ELhttp://b.hatena.nejp/

kepalivedを 挟むというのが0です。これが最も確実な方法といえます。筆

者の個人的な使用感では、mod_proxy_balancerの フェイノンオーバ機能は

LVSの それに比べて信頼性はそれほど高くはないように思います。また、

LVS+keepahvedは mOd_prOxy_bdancerに 比べて、負荷分散のロジックの

調整がしやすく、かつ管理もコマンドラインから行うことができて便利で

す。

ただし、LVS+kepahvedは その用意に若干の手間や追加のサーバが必

要になります。簡易に負荷分散を行いたい場合を想定して、「mod_proxy_

balancer」の利用方法を解説しておきます。

ncerの利用例

mod_proxy_balancerを利用したリバースプロキシの構築は簡単です。

O mod_proxy_balancerを ロードする
注9

0 BalancerMemberデ ィレクティブで振り分け先のホストー覧を定義する

・ RewriteRu!eで リバースプロキシの設定を行う。このときbalancer:〃 スキ
ームを利用する

APサーバが3台、192.168.0■ 00～ 102ま であるとしましょう。この場合

httPd.confの 設定は、たとえばリスト2.1.4の ようになります。

リスト2.1.40に注目してください。先の例まではhuP:〃 192.168.0.100/Sl

とAPサーバのURLを直接記述していましたが、今回は「balancer://」 とい

うスキームのURLを 使っています。balancer://backendと 記述すると、リ

クエストごとに上方で定義しているBdancerMemberの うち1台 が選択さ

れ、ここで展開されます。どのサーバが展開されるかは、BalancerMember

で定義しているloadLctorの値に依存します。loadね ctorの値が大きいほど、

振 り分けられる確率が大きくなります。リスト2.1.4の ようにloadLctOrを

すべて同一の値にすると、ほぼ均一にリクエストが分散されることになり

ます。

mod_proxy_balancerに は、10adfactOr以 外にもいくつかのパラメータが

注 9 mod_proxy_balancerは Apache 2.2で は標準で添付されてきます

２
・
１
　
リ
バ
ー
ス
プ
ロ
キ
シ
の
導
入
　
＞
ｏＲ
すｏ
モ
ジ
ュー
ル

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

あります。実際に利用する場合は、サイトの構成に合わせて適宜設定を加

えるとよいでしょう。

mod_proxy_balancer€ tr* l':

LoadModule proxy_balancer_module modules/mod_proxy_balance r. so

#振り分け先ホストー覧を定義
くProxy balanceri//backend> . ― . ・

BalancerMember http://192.168.0.100 1oodfactor=10

BalancerlMember http://192.168,0.101 loadfactorE10 .

3alancerlMember http.://192,168,0.102 1oadfactor=10

く/Proxy> ‐ _‐ . .
‐

Liste「 80‐

くVirtualHost *:80> ― .

ServerName naoya,hatena.ne,jp

Alias /images/ 11/path/to/images/1`

Alias /css/ 1・ /path/tO/CSS/11 ..

Alias /jS/ "/path/tO/iS/11 ‐

#‐ リバースプロキシの設定

RewriteEngine on ‐_ || | .| .. .

RewriteRule A/(images‐ lcss‐ lj5.)/
― ‐[LI I

. RewriteRule A/(,*)s balancer://backend/31 1P,.Ll

.く/VirtualHost> | ・
 ~

GD

リスト2.1.4

２

・
２
　
キ
ャ
ッ
シ
ュ
サ
ー
バ
の
導
入
　
いｏ
ｃ
ａ
′
３
ｏ３
８
ｎ，ａ

2.1節では、リバースプロキシについて解説しました。続いて、キャッシ

ュサーバについて本節で論じておきます。

HTTPとキャッシュ

ネットワークサービスで利用されるプロトコノンの中でも、HTTPは とく

に「景」なプロトコノンで、ステートレス
注10で
す。ステートレスなプロトコノン

でやり取りされるドキュメントは状態を持たないため、キャッシュしやす

いという特徴があります。そのためHTTPに は、プロトコノンのレベノンでキ

ャッシュの機能が組み込まれています。

たとえば、Internet ExPlorer(IE)や Firebxな ど多くのWebブラウザは、一

度取得したドキュメントを必要以上にリクエストしなくていいようローカ

ノンにその内容をキャッシュして、三度め以降のアクセスではキャッシュを

利用するようになっています。またブラウザは、リモー トのドキュメント

が更新さたかどうかを調べるために、HTTPヘッダでサーバと任意のドキ

ュメントの更新日時のやり取りを行うことができるようになっています。

Live HTTP Headersで 知るキヤッシュの効果

Fircおxの Live HTTP Headers注
11を
使うと、HTTPヘ ッダのやり取りを見

ることができます。試しに画像ファイノンのやり取りの様子を見てみましょ

注10ステートレスなプロトコルについては、以下に説明があります。

・C□D htpノ /yohe「yわ !ogspotcom/2007/10/blo9-posthtml

・『WEB+DB PRESS」 (VoM2)の連載「R[STレシピ」、「第5回 :R[STのステートレス性とHTTPメ ソッ
ドの基本性質」(山本陽平著)

注 1l eZコ D htpsy/addons.mozi‖ a.org/,a“ refoガ addon/3829

キャッシュサーバの導入

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

う。以下は、ブラウザからWebサーバに向かって送信されるHTTPリ クエ

ストヘッダです。

GET /images/top/h1.gif HTTP/1.1
Host: www,hatena,ne. jp
Keep-Alive:300
Connection r keep-alive
If-Modified-Since: l,led, 19 Dec 2007 15:31:43 GMT

If―MOdined‐Sinceヘ ッダに日付が記述されています。これは、このブラ

ウザが前回該当ドキュメントを取得した際の日付になります。このリクエ

ストに対するサーバ(Apache)の応答は、

HTTP/I,x 304 Not Modified
Date: Wed, 27 Feb 2008 06:43:31 Gl,4T

Server: Apache

とHTTPス テータスコー ド304(Not Modined)で す。Webサ ーバであ る

APaCheは 、

・ クライアントから送信された l「Modined― Sinceの 更新日時を取得

・ ローカルのドキュメントの日付を比較

・ クライアントが保存したドキュメントは更新されていないと判断する

という処理を行って、ドキュメント本体のデータは返却 しません。「ドキュ

メント本体を返却 しなくても、そちらが持っているキャッシュを使えば画

像 は描写で きます よ」とい う意味 を込 めてステー タスコー ド304(Not

Modined)を 返却します。このや り取 りにより、

・ クライアントは、ネットワークからの画像データのダウンロードを省略で

きる

・ サーバは、ドキュメントのクライアントヘの転送を省略できる

これがHTTPプ ロトコノンのキャッシュの効果です。

5quidキヤツシユサーバ

クライアントとサーバの間でHTTPのキャッシュが使 えるのであれば、

サーバとサーバの間でHTTPキ ャッシュが使えるであろうことは容易に想

像がつきます。ホストとホストの関係がどのようなものであれ、両者のや

り取りにHTTPプロトコノンが使われていれば、その内容はキャッシュする

ことが可能です。

squid注
12は HTTP、 HTTPs、 FTPな どで利用されるオープンソースのキ

ャッシュサーバです。Squidを使 うと任意のWebシ ステムに、HTTPキ ャ

ッシュの機能を組み込むことができます。Squidを HTTPで通信する2点間

の間に配置すると、そのやり取りをキャッシュすることができます。

Squidは多くの場合、クライアントがサーバのドキュメントをダウンロ

ードしたものをキャッシュする目的で利用されます。たとえば大学や企業

のLANのグートウェイ直前にSquidを配備して、オフィス内の各PCは Squid

を経由してインターネット上のサイトにアクセスするような使い方です。

いわゆるプロキシサーバです (図 2.2.1)。

この場合、あるクライアントがダウンロードしたドキュメントをSquid

がキャッシュして、また別のクライアントが同じドキュメントを取得しよ

うとしたときにそのキャッシュが有効になります。一度誰かが取得したド

キュメントは以降、キャッシュから返却されるので、オリジナノンのサイト

ヘ何度もアクセスする必要がありません。故にネットワーク帯域が節約で

きるほか、LANか ら直接データが返却されるので、クライアントはより高

速にドキュメントを参照することができます。

図2.2.l Squid(プロキシサーバ)

＼
＼

ロ ー ー ー →
ロ ロ ロ ロ

→

/″ Squid

２

・
２
　

キ
ャ
ツ
シ
ュ
サ
ー
バ
の
導
入
　
い捏
ａ
′
Ｂ
ｏ３
８
（すａ

E 1 2 GED http://www.squid-cache.orgl

PCl

PC2

PC3

章 ワンランク上 の サ ー バ ノインフラの 構 築 冗長化、負荷分散、高性能の追求

でリバースプロキシ

Squidは リバースプロキシとして利用することができます。2.1節 では

Apacheを リバースプロキシとして設定しましたが、Squidも 同じように設

定でリバースプロキシ化することができるのです。サーバの負荷分散とい

う観点からいくと、こちらがSquidの おもな利用形態です。

Squidを リバースプロキシとして働かせると、サーバサイドの ドキュメ

ントをサーバシステム側でSquidに キャッシュさせることができます (図

2.2.2)。

・ SquidはクライアントからHTTPリ クエストがあると、そのドキュメントを
バツクエンドのサーバに問い合わせる

・ サーバから取得したドキュメン トはSquidが自身の回―カルにキャッシュ

する

0別のクライアントからリクエス トがあると、Squidは キヤッシュの有効性
を確認し、キヤツシュが有効なら、クライアントヘはキャッシュを返却す

る

・ たとえば短時間のうちに lo′ooOクライアントから同一のドキュメントヘの
アクセスがあつた場合、バックエンドのサーバヘは(キャッシュが有効であ

る限り)初回 1リ クエストのみが到達し、それ以外の 9′999リ クエス トは

Squidか らキャッシュが返却される

Squidが内部で持つキャッシュ用のストレージは非常に高速で、かつSquid

は大規模なアクセスを少ないリソースで返却できるように設計されていま

す。多くの場合、バックエンドのサーバヘ問い合わせを行うよりもSquid

でキャッシュを返却させるほうが高速です。また負荷も低く抑えることが

図2.2.2 Squid(リ バースプロキシ)

0
― ― ― ― →

← ― ― ― ―

0
APサーバ

クライアント2

*+v22._y.,■

`“
い●口・・・

‐~0 0

できるでしょう。

Squidは単にHTTPの内容をキャッシュするだけでなく、別のSquidと ネ

ットワーク越しにキャッシュを共有することができます。この機能を使う

と、キャッシュを返却するSquidサーバの負荷が高い場合は別のSquidを増

やすだけで対応が可能となります。冗長化も同様です。

Squidは 、HTTPプロトコルのキャッシュ機能を前提としたキャッシュサ

ーバです。したがって、HTMLフ ァイノンや Css、 IⅣaScriptあ るいは画像な

どの静的なドキュメントは非常に効率よくキャッシュができるようになっ

ています。オリジナノンのドキュメントが更新されたら古いキャッシュを捨

ててキャッシュを新鮮にする、という動作も可能になっています。

動的なドキュメントはどうでしょうか。Squidのキャッシュコントロー

ノンのしくみは非常に柔軟で、たとえばある動的なページを30分間だけキャ

ッシュさせるなどの制御も可能になっています。

HTTPプロトコノンをベースにキャッシュするというのはつまり、URLを

キーーにドキュメントをキャッシュするということでもあります。一意なURL

が与えられているドキュメントは、基本的にキャッシュすることが可能で

す。

問題は、動的なドキュメントの中でも状態を持つドキュメントです。Web

アプリケーションではページのヘッダに、各ユーザのアカウント名を表示

するようなケースがよくあります。通常、この手の処理はCooにeに よるセ

ッション管理によって実現します。結果、同じURLで もユーザによって異

なる出力となります。

この手のドキュメント全体を不用意にキャッシュしてしまうと、「ようこ

そAさ ん」という表示がキャッシュされて、同一URLへのBさ んのアクセ

ス時にもそのAさ んのキャッシュが利用されてしまい、Bさ んに対して「よ

うこそAさ ん」というドキュメントを返却することになります。これは、キ

ャッシュ絡みのトラブノンとしては代表的なものです (図 2.2.3)。

この手の、ユーザごとに内容が変わるページのキャッシュは、URLをキ

ーにドキュメント全体をキャッシュするHTTPプ ロトコノンレベノンでのキャ

２

・
２
　

キ
ャ
ツ
シ
ュ
サ
ー
バ
の
導
入
　
い捏
こ
′
ヨ
ｏ３
８
（コａ

Squidは何をキヤツシュするのか

章 ワンランク上 の サ ー バ ノインフラの 構 築 冗長化、負荷分散、高性能の追求

ッシュでは難しいでしょう。そもそも、HTTPで はステー トレスにドキュ

メントをやり取りする前提 となっているのに対し、今では一般的に行われ

ているCookeに よるセッション管理は、ステートレスなプロトコル上に

「状態」、つまリステー トフノンな通信を持ち込もうとする試みです。これは

プロトコノンが前提としている要件を超えてしまっていますから、そのプロ

トコノンが想定しているキャッシュ機構では矛盾が生じるのです。

負荷を軽減するためにキャッシュを利用したいけれどもHTTPプロトコ

ノンレベノンでのキャッシュでは対応が難しい…という場合は、アプリケーシ

ョンプログラム内部で、たとえばDB(Dα″ι′sa)の レコー ドのオブジェクト

などをオブジェクト単位でキャッシュすることにより対応します。つまり、

キャッシュの粒度をより細かくして対応することになります。l粒度が細か

くなるので、当然Squidの ようなより大きな粒度を対象にしたキャッシュ

サーバではなく、その粒度に適したキャッシュサーバを選択することにな

ります。後述する「memcached」 がその一例です。

まとめると、「Squidが有効なのはページ全体をキャッシュできるような

ケース」ということになります。

の設定例

Squidを リバースプロキシとして利用する際の設定例を簡単に紹介して

おきましょう。

Squidを リバースプロキシとして利用する場合、構成はいろいろと考え

図2.2.3 キヤツシュしてはいけない個所

はてなプックマーク

田『保存と検察』

られますが、ここではApacheで構築したリバースプロキシとバックエンド

のAPサーバの間に入るような構成を例とします(図 2.2.4)。 オリジナノンコ

ンテンツを持ったバックエンドのAPサ ーバまで、リバースプロキシを

Apache→ Squidと 2カ所経由するような構成です。また、Squidは分散と冗

長化のために2台用意して、2台のSquidでキャッシュを共有させます。

リスト2.2.1はバックエンドのサーバから返却されるコンテンツを、静的

/動的に関係なく30分間、キャッシュするような設定です。Squidの設定フ

ァイノンであるsquid.confに リスト2.2.1の ように記述します。

図2.2.4 Squidをリバースプロキシとして利用する例

2台のSquidへの振り分けは

192.168.0.151

5quid2

APサーバ
192.168.0.100

Apache

192.168.0.150

Squidl

２

・
２
　

キ
ヤ
ツ
シ
ュ
サ
ー
バ
の
導
入
　
いｏ
ｃ
ａ
′
Ｂ
の３
８
ｏすａ

イム 卜を2000msに―兄弟とのキャッシュ

Al■ veに

べてのサーバからア する

←兄弟

セ ス

192.158.0,151に いる。キャッシュ
フロトコルはボート3130で やり取り

なのでアクセス制御をしない)

―キヤッシュストレー
ス トレージにはcossを 利用・ :-30分 間コンテンツをキャッシュ′2

オリジナルサーバはパツクエンドサーバ
←― (192.168 0.100:80)

を80番 にblnd

リスト 1

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

Squidの 良いところは、HTTPプロトコノンレベルでドキュメントをキャッ

シュする点です。HTTPプロトコノンはステートレスでスケーラブノンなプロ

トコノンですので、Squidも 同様にスケーラブノンかつアプリケーションの構

成などにはほとんど依存しません。

一方、先に触れたようにHTTPレベノンでのキャッシュでは適切でない場

合も多いでしょう。Webア プリケーションの世界では、アプリケーション

内部が利用するデータの粒度でキャッシュを管理するキャッシュサーバを

使うことができます。memcached注 13がその一例です。

memcachedは C言語で書かれた高速なネットワーク対応の分散キャッシ

ュサーバで、ストレージにはOSのメモリを利用します。サーバでmemcached

を立ち上げ、専用のクライアントライブラリを利用してサーバと通信しプ

ログラミング言語が規定するオブジェクトの取得/保存を行うことができ

ます。クライアントライブラリは各言語用のものが多数公開されており、

C言語、C++、 Java、 Perl、 Ruby、 PHP、 Pメhonほ か、メジャーな言語は

ほとんどサポー トされています。

memcachedは、プログラム内部から利用するものです。プログラム内で

特定のデータをファイルにキャッシュしたり、ローカノンのメモリ上にキャ

ッシュしたりということがよくありますが、それをネットワーク上のサー

バにキャッシュできればいいなと思、うことは多くあります。memcachedが

提供するのはその類のソリューションです。

ここでは詳細についての言及は避けますが、その利用のイメージとして

簡単なサンプルPerlス クリプトを紹介しておきましょう。リスト2.2.2は配

列オブジェクトをキャッシュサーバに保存して取得するだけの簡単なプロ

グラムです。

リスト2.2.2の 実行結果は、

% perl memd.pl
256

)t l3 (EIl http//www.danga.com/memcached/

memcachedによるキャッシュ

となります。キャッシュから取 り出された配列オブジェクトにアクセスし

ていますが、問題なく以前の状態が復元できているのが確認できます。

memcaぬedは (key,Value)のペアであれば対象が言語に依存したオブジ

ェクトであれ何であれ、保存することができます (シ リアライズされて保存

されます)。 キーさえわかっていれば、別のプログラムからそのキャッシュ

を取得することも可能です。

memcachedに は(ク ライアントライブラリの実装にもよりますが)耐障害

性があります。どこか特定のホストで動作しているmemcachedが ダウンす

ると、クライアントライブラリがそれを感知し、キャッシュサーバとして

そのサーバを利用するのを避けるなどの工夫が施されています。

リスト2.2.2

２
・
２
　
キ
ャ
ツ
シ
ュ
サ
ー
バ
の
導
入
　
い捏
こ
′
３
ｏ３
８
６，ａ

25611

| ‐・ ●|

ション

章 ワンランク _上の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

多くの場合、DB(D″αιαsa)に はユーザ情報をはじめとしたサービス運用

に必要不可欠なデータを格納していることでしょう。したがって、DBサー

バがダウンしたり故障したりすると、サービス停止に直結する障害となっ

てしまう可能性が非常に高く大きな問題につながります。

本節では、DBサーバが停止してしまった場合に、いかに早くDBサービ

スを復旧できるようにするか、その方法を考えてみたいと思います。

DBサーバが停止するケース

DBサーバのサービスが停止してしまう原因としては、いろいろなものが

あります。たとえば、以下のような原因が挙げられます。

・ DBサーバのプロセス(mysq!d)が異常終了した

・ディスクがいつばいになつた

・デイスクが故障した

・サーバの電源が故障した

mysqldが異常終了してしまった場合は、mysqldを 起動し直せば復旧でき

るでしょう。ディスクがいっぱいになった場合は、不要なデータやファイ

ノンを削除するかディスクの容量を増やせば復旧できます。

一方、ディスクや電源などハー ドウェアが故障した場合は、復旧までに

時間がかかりがちです。なぜなら、故障部品の交換はDBサーバの設置場

所まで移動する時間と交換作業そのものに時間がかかりますし、ディスク

故障の場合はさらにその後データのリカバリ作業が待っているからです。

DBサーバが止まったら?

Mソ5QL

短時間で復旧する方法

さて、このようなハードウェア故障の場合でも、短時間でDBサービス

を復旧するにはどういった方法が考えられるでしょうか。

仮に、まったく同じDBサーバが2台あれば、もし片方がハードウェア故

障で使えなくなってももう片方をその代わりとしてすぐに切り替えること

ができます。このとき、同じサーバを2台用意するのは、ハードウェアや

ソフトウェアの構成・設定に関しては比較的簡単にできますが、短時間で

の復旧を目指す上で問題となるのは「DBの データ」です。

ここで登場するのが、レプリケーション(Rり
'た"ο
れ)と いうしくみです

(図 2.3.1)。 一般的にレプリケーションとは、データをリアノンタイムに他の

場所へ複製することをいいます。複製をLANやインターネットなどネット

ワークを経由して行えば、物理的に異なるサーバの間でデータを同一に保

つことができます。つまり、データのバックアップを物理的に異なるサー

バヘリアノンタイムにとっている、 ということになります。
まとめると、DBサーバを2台用意してデータをレプリケーションすれば、

片方が故障しても短時間でDBサービスを再開できる、ということになり

ます
注14。
以降では、「MySQLのレプリケーション」について、その特徴と

レプリケーション構成を作る手順を紹介したいと思います。

注 14と はいえ、できるだけサーバは壊れないほうがいいので、RAIDを導入するなどサーバ単体の堅牢性
の向上も合わせて行うと、より安定 した運用ができます。

余談になりますが、Write Cacheを搭載 したハーードウエア RA,Dを使うと、書き込み性能の向上も期待

できるので一石二鳥です。ただし、製品によつては、38U(Battery Backup unit)も搭載 しないとWrite

Cacheが有効にならないので注意 しましょう。

レプリケーション

クエリ

MySQL
マスタ

図2.3.1 レプリケーション

，

一
ｏ
う
０

〓
く
い
Ｏ
Ｆ
の
レ

プ^

リ

′ケ
ー

シ

ョ
ン
　
障
害
か
ら
短
時
間
で
復
旧
す
る

MySQL
スレープ

堕望望と:型生童」堕望壁墾壁塾

章 ワンランク 上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

まずは、MySQLのレプリケーションの特徴やクセを見てみましょう。本

節で使用するMySQLのバージョンは5.0.45です。

シングルマスタ、マルチスレーブ

マスタ(Masたr)と は、クライアントからの更新と参照の両方の種類のク

エリを受け付けるサーバで、スレーブ(並″)と はクライアントからの更新

は受け付けず、データの更新はマスタとの連携でのみ行う役割のサーバの

ことをいいます。

MySQLの レプリケーション機能でサポー トされているのは、1台のマス

タと複数のスレーブという構成 (シ ングルマスタ、マノンチスレーブ)です。

複数のマスタが存在して、互いに互いのデータをレプリケーションする

ようなマノンチマスタと呼ばれる構成には対応していません
注15。 _方、スレ

ーブは複数存在することができるので、SELECT文 などの参照系のクエリ

を複数のスレーブに分散させて性能向上を図る、といった構成を作ること

もできます。これについては、24節で詳しく紹介したいと思います。

非同期のデータコピー

MySQLで サポートしているのは「非同期のデータレプリケーション」ですo

非同期 とは、マスタに対 して行った更新系の処理が同時にスレーブに反

映されるとは限らない(反映されるまでにタイムラグがある)と いうことで

す。

非同期ではなく同期レプリケーションをサポー トしているRDBMSも あ

りますが、非同期 も同期 も一長一短があるので、一概にどちらかが優れて

いてどちらかが劣っているということはできません。

レプリケーションされるデータの内容

MySQLのレプリケーションは「SQL文単位」で行われます。たとえば、あ

注 15ただし、更新がかかるテーブルや レコー ドの空間を分離するなどの工夫をすれば、マルチマスタ構成
で運用することは可能です。

|

る 1つの UPDATE文 があるとして、それが1件更新するUPDATE文で も、

100万件更新するUPDATE文 でも、マスタからスレーブヘ渡されるのは 1

つの UPDATE文 になります。

この方式はマスタとスレーブの間のや り取りが少な くて済むというメリ

ットがあるのですが、反面、実行時まで結果がわからないクエリをレプリ

ケー トすると、マスタ とバックアップ とで保持するデータが異なってしま

う可能性がある、とい う危険性もあります。

た とえば、更新系のクエリで、ORDER BY句 をともなわないLIMIT句 が

ある場合、LIMIT句で選ばれる行はマスタとスレーブとで異なってしまう

可能性があります。 したがってこの場合、マスタとスレーブとで異なる行

が更新 される結果 となってしまいます。 この問題の致命的な点は、データ

の食い違いに気づきづ らいという点です。運よく、UNIQUEな どの制約に

違反すればレプリケーションがエラー停止し異常に気づ くことができます

が、そうでない限り誰にも気づかれずにひっそりとデータに食い違いが発

生してしまっている可能性があります。

SQL文単位のレプリケーションはほかにもいくつか潜在的な問題を抱え

ているのですが、この問題に特効薬はなく、問題のあるクエリを発行しな

いようにするしかありません。

ただしMySQL 5.1.5以 降ならば、「行単位のレプリケーション機能」を使

うことでこの問題を解決できます。行単位のレプリケーションでは、マス

タで実際に更新された行のデータがレプリケーションされるので、先ほど

のLIMIT句のような実行時まで結果がわからないといった問題からは解放

されるのです。

さらにMySQL 5■ 8で「混在モー ド」というものが追加されました。これ

は、通常はSQL文単位のレプリケーションをしますが、場合に応じて行単

位のレプリケーションを行ってくれる、というものです。

レプリケーションのしくみ

以下の点を取り上げて、レプリケーションのしくみについて解説します。

つ
“
ｏ
う
０

〓

ヽ
い
Ｏ

Ｆ
の

レ

フ́

リ

ケ

ー

シ

ョ
ン

　

障
害
か
ら
短
時
間
で
復
旧
す
る

章 ワンランク上 の サ ー バ ノインフラの 構 築 冗長化、負荷分散、高性能の追求

・ 1/0ス レッドとSQLス レッド

・ バイナリログとリレーログ

・ ポジション情報

スレーブのi/0スレッドとSQLスレッド

スレーブでは、レプリケーションのために2つのスレッドが働いていま

す。「1/0ス レッド」と「SQLス レッド」ですo

1/0ス レッドは、マスタから得たデータ(更新ログ)を「リレーログ」と呼

ばれるファイルにひたすら記録します。他方、SQLス レッドはリレーログ

を読み取ってひたすらクエリを実行します。

なぜ2つ のスレッドに分かれているかというと、レプリケーションの遅

延を少なくするためです。もし、1/0と SQLス レッドの仕事を1つのスレッ

ドで行っていた場合、処理に時間のかかるSQLがあると、その間SQL文の

処理にかかりっきりになるためマスタからのデータのコピーができなくな

ってしまいます。このような事態を避けるために、2つのスレッドで仕事

を分担しているわけです。

バイナリログとリレーログ

マスタには「バイナリログ」、スレーブには「リレーログ」と呼ばれるファ

イノンが作成されます。

バイナ リログにはデータを更新する処理のみが記録され、参照系のクエ

リな どは記録されません。 また、バイナ リログはレプリケーションのほか

にも、フノンバックアップからの更新分のみを保管したい、 といった場合に

も使われます。バイナリログはテキス ト形式ではないので直接エディタで

開いて見ることはできませんが、mysqlbinlo9コ マンドでテキス ト形式に

変換することができます。

リレーログとは、スレーブの1/0ス レッドが、マスタから更新ログ(更新

系のクエ リを記録したデータ)を 受け取 り、スレーブ側に保存 したもので

す。 したがって、その内容はバイナリログと同じです。ただ、バイナリロ

グと違い、必要がなくなるとSQLス レッドによって自動的に削除されるの

で、手動で削除する必要はあ りません。

ポジション情報

スレーブは、どこまでレプリケーションしたか、という情報を覚えてい

ます。ですので、スレーブのmysddを いったん終了してしばらくしてから

起動しても、終了した時点からデータのレプリケーションを再開できます。

これらの、マスタのホスト名、ログファイノン名、ログファイノン中の処理

したポイントといった情報のことを「ポジション情報」といいます。このポ

ジション情報は「masteninお」というテキスト形式のファイノンで管理されて

いて、SHOW SLAVE STATuSと いうSQL文で確認することができます。

それでは、レプリケーションの構成を作る流れを追って説明します。

レプリケーションの条件

MySQLで レプリケーション構成を作るにあたっては、以下のような前提

条件があります。

・ マスタは複数のスレープを持つことができる

1つのマスタの配下には、複数のスレーブを配置することができる

・ スレーブはマスタをただ 1つ持つことができる

スレープは複数のマスタとレプリケートすることはできない。ただし、スレー

ブは他のサーバのマスタとなることはできる

0すべてのマスタ、スレーブの中で一意なserveHdを指定しなければならない

server― idは、レプリケーション構成内のサーバを識別するためのもので、互

いに異なる値を指定する必要がある

・マスタはバイナリログを出力しなければならない

更新系のクエリをスレーブに伝えるため、マスタではバイナリログを有効にす

る必要がある

MySQLの設定ファイノン「my.cnf」で、レプリケーションのために必要な設

定項目はリスト2.3.1の とおりです。

レプリケーション構成を作るまで

つ
“
・
一
Ｄ

ζ
ヽ
い
Ｏ
ｒ
の
レ
プ

リ

ケ

ー

シ

ョ
ン
　
障
害
か
ら
短
時
間
で
復
旧
す
る

my.cnf

章 ワンランク上 の サ ー バ /イン フラの 構 築 冗長化、負荷分散、高性能の追求

servendは 、DBサーバごとに個別の値にする必要があります。1～

4294967295ま での整数値を指定できます。リスト2.3.10で は 1を指定して

いるので、これをマスタのmycnfと した場合、スレーブのserver― idは 1で

はない値 (2な ど)に する必要があります。

リスト2.3.1 01og― binと 01og―bin―indexは 、バイナリログの有効化およ

びバイナリログのファイル名とその一覧のファイル名の指定です。Orelγ―

logと Orelり■og― indexも 同様に、リレーログの有効化とそのファイル名の

指定です。

最後の01og― slavc― updatcsは 、スレーブでもバイナリログを出力するよ

うに指示するための設定です。この指定がないと、スレーブはバイナリロ

グを出力しません。しかし、MySQLの レプリケーションではマスタはバイ

ナリログを出力しなければならないので、スレーブをマスタに昇格させる

ステップをスムーズに進められるように、あらかじめスレーブでもバイナ

リログを出力させておいたほうがいいでしょう。

では、リスト2.3.1の my.cnfを 使って、マスタとなるサーバでmysqldを

起動しましょう。

レプリケーション用ユーザの作成

スレーブがマスタに接続するためのユーザをマスタに作成します。最低

限、与えなければならないのはREPLICATION SLAVE権 限だけです。このユ

ーザはレプリケーション専用 とし、他の権限は与えるべきではありません。

たとえば、ユーザ名「repl」、パスワード「qa55wd」 で、192.168.31.0/24の

ネットワークにスレーブが存在する場合は、以下のようにマスタで実行し

ます。

server― id =10
1。g_bin .‐ mysql_bin eD
lo9‐ bin‐・ndex =mysql‐ bin CD
relay_1。9 =relay_bin aD
relay‐ lo9 4ndex■ retay‐ bin CD
109-51aVe‐ updateS CD

mysql> GRANT REPLICAT10N SLAVE ON *`*
‐
「O repl@1192.168.31.0/255,255.255.01

lDENTIFIED BY lqa55wdi;

レプリケーション開始時に必要なデータ

スレーブを新たに追加する場合や、故障したスレーブの代替機を復帰投

入する場合のスレーブの初期データは、マスタのフノンダンプだけでなく、

そのフノンダンプがマスタのバイナリログでどの時点の ものなのか、とい う

ポジション情報 も必要です。したがって、mysqldumpな どでとったデータ

のフノンダンプだけでは、スレーブを構築することはできません。

便宜的に、このフノンダンプ+ポジション情報のセットのことをここでは

「スナップショット」(S″″sあο′)と 呼ぶ ことにします。

さてスナップショットを採取するには、もしマスタの mysqldを停止する

ことが可能ならば、まず mysqldを停止 してからMyISAMや InnoDBの デー

タファイノンがあるMySQLのデータディレク トリをまるごとtarな どでコピ
_注 16す るか、LVM(■οゴ

“
′乃7“″
`M″
′αFr)を使っているなら、そのスナッ

プシ ョット機能を使 うのが手っ取 り早 い方法です。tarを 使 う場合は、

一eXCludeオ プションで、不要なファイル (バイナリログなど)を コピー対

象から除外 して、極力短時間でコピーが終わるようにしましょう。

その際に気をつけなければならないのは「ポジション情報をメモする」の

を忘れない、ということです。

mysddを停止した場合は、そのときのマスタのバイナリログファイノンの

名前をメモしておきます。たとえばファイノン名が「mys゛ bin.000002」 の場

合は、mysqldの起動時にバイナリログは次の番号のものに切り替えられる

ので、ポジション情報は「mys」―bin.000003の 最初」
注17と なります。

mys」dを停止できない場合は、更新系のクエリを止めた状態にした上で、

フノンダンプをとり、SHOW MASTER STATUSの 結果をメモしておけばOKです。

また、採取したスナップショットはディスクが許す限り保存しておいた

ほうがいいでしょう。なぜなら、スナップショットと採取時点からのマス

注16 GNUtarでは-2オプシヨンで同時にgzip圧縮ができますが、データサイズが大きいと圧縮処理に時間
がかかりますので、停止時間を短く収めるためには圧縮せずにtarだけでコピーするのがお勧めです。

注17バイナリログの先頭のポジションは、0ではなく「4」なので注意してください。

つ
“
ｏ
●
Ｄ

〓
ヽ
い
Ｏ
Ｆ
の
レ
プ
リ
ケ
ー
シ
ョ
ン
　
障
害
か
ら
短
時
間
で
復
旧
す
る

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分訊 高性能の追求

夕のバイナリログがあれば、いくら古いものであっても、それを元にスレ

ーブが作れるので、後々スレーブを新規追加する場合や故障機を復帰する

場合に役に立つからです。

では、スナップショットを元にスレーブを作ってみます。もしスレーブ

でmysqldが稼働中であれば停止してから、先ほど説明した手順で採取した

スナップショットをMySQLの データディレクトリと入れ替えるように展開

します。これで、マスタとスレーブとが同じデータを持っている状態にな

りました。

ではさっそくスレーブのmysddを起動したい、ところなのですが、その

前にマスタとスレーブのmy.cnfを比較しましょう。

マスタ、スレーブの 。cnfの比較

確認するポイントは「server― id」 です。server― idだけはマスタとスレーブ

とで異なる値にしなければなりません。それからInnoDBを使っている場

合は、innodb_dda_me_pathで 指定しているデータファイノンの名前、数、サ

イズがマスタとスレーブとで同じになっている必要があります。

まとめると、マスタとスレーブのmycnfは、server― idだけが異なってい

るようにすればOKと いうことになります。

スレーブの動作開始&確認

確認できたらスレーブでmys」dを起動します。起動しただけではまだス

レーブとして動作していませんので、スレーブで以下を実行します。

CHANGE MASTER TO (l目 lilllill図 lI:llli口 ll1111lI□目:ill)
MASTER HOST = imy5-11′
MASTER_USER = l repli,
MASTER_PASSWORD 二 lqa55wdi′

MASTER_LOG_FILE = Imysql‐ bin.0000031,

MASTER LOC POS = 4:

レプリケーションの開始

-0レ プリケーションのSLAVE START;

O CHANGE MASTER TOの「MASTER_LOG_FILE」 と「MASTER_LOG_POS」

には、スナップショットを採取したときの位置情報を指定します。

うまくレプリケーションが開始できたかどうか確認するには、スレーブ

でSHOW SLAVE STATuSを 実行 して、その結果 の「Slave_IO_Running」 と

「Slave_SQL_Running」 が両方ともIsに なっていればOKで す。もし、何か

しらのエラーがある場合は、「Last_Error」 やMySQLのエラーログファイノン

にエラーの内容が表示されるはずですので、問題を取り除いてから再度

SLAVE STARTを 実行します。

最後にレプリケーションの状況を確認する方法を紹介します。これらは、

レプリケーションがうまくいかない場合の原因特定や、レプリケーション

の状態監視で役に立ちます。

マスタの状況確認

まずは、マスタの状況を確認するためのSQL文です。

―――SHOW MASTER STATUS

SHOW MASTER STATUSは 、マスタのバイナリログの状況を確認するのに使

います。実行すると、図2.3.2の ように表示されます。項目の内容は表 2.3.1

のとおりです。

― ―SHOW MASTERLOCS

SHOW MASTER LOGSは 古いものも含めて、現在マスタに存在するすべての

バイナリログのファイノン名が表示されます。実行結果は図2.3.3の ようにな

ります。

バイナリログは延々と増えていくので、定期的に削除しなければなりま

せん。しかし、むやみに削除するとレプリケーションが止まってしまうの

で、後述するSHOW SLAVE STATUSで 処理済みのバイナリログのファイノン名

を確認して削除します。スレーブが複数台ある場合は、安全に削除できる

レプリケーションの状況確認

，

一
ｏ

ｊ^

〓
く
∽
Ｏ
ｒ
の
レ
プ

リ

ケ

ー

シ

ョ
ン
　
障
害
か
ら
短
時
間
で
復
旧
す
る

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

のはすべてのスレーブで処理済みとなっているバイナリログである点に気

をつけてください。また、削除にはファイノンシステム上のファイルを直接

削除するのではなく、マスタでPURGE MASTERLOGS文 を発行して削除します。

たとえば、

PURGE MASTER LOGS TO lmysql‐ bin.000003:;

と実 行 した 場 合 は、mysql― bin.000003は 残 り、そ れ よ り古 い mysql―

bin.000002と 000001が削除されます。R[SET MASTER文 で もバイナ リログの

1回目 ■ 国 国 回 EE□ 団 □ 醍 日 ■ ll■□ ll燿晰 趙 隕 鰊:蓋|::11懸 |11.|:轟
mysql) SHOW MASTER STATUSヽ6
*************************** .11‐ ‐row ***************************

I Filei mysql‐ bin,000006

Position: 98

Binlo9_Oo_DB:

Bin10.g=19nOreLDB:

1回■目■口国:回国口‖コI口【機回:ヨ‖蜃闇l目‖雪鱚辟1目鸞舅輻曇聞i眩鶉凩|::|,1‐亀議
.■ysql> SHOW MASTER LOCS; . ‐. ‐|‐

‐
||

+‐ ―‐―――‐―――――――‐―――+― ――‐――‐‐…‐‐+ .|‐ ||11■ |‐
 ~|_‐

I Lo9_name l File_size l
十■
|,‐
■‐‐‐‐‐¨■‐|‐ ‐―――‐―+― ―――――‐―‐‐‐+ |

l mysql‐ bin.000001 1 117 1

1 mysql‐ bin,000002 1 1‐‐‐ 46311

|‐り,oし binto00003 1 343 1 ‐ _ ||■ .

l mysql‐ bin.000004 1 242 1 1 11

1 mysql‐ bin,000005 1 11111‐ 117111‐
‐ ‐||| _

.|■ysql.biniOo0006 1 . 981 ‐‐‐ .‐ .‐.. 11111
+‐ ‐‐‐1‐ ―‐‐――‐――‐‐――+― ‐―――‐―――‐1+. .. ‐‐ ‐・‐‐‐ | . |

■

表2.3.l SHOW MASTER STATUSの 項目

使用中のバイナリログのファイル名

Position 使用中のバイナリログの位置情報

Binlo9_Do_DB バイナリ回グに記録するように指定されているDB名

Binio9_lgnore_DB バイナリログに記録しないように指定されているDB名

削除ができますが、この文を実行するとすべてのバイナリログがマスタか

ら削除されるのでレプリケーションが止まってしまいます。レプリケーシ

ョンの運用中は、RESET MASTERで はなくPURGE MASTER LOGSを 使ってバイ

ナリログを削除しましょう。

スレーブの状況確認

＾
Ｚ

・
う
０

三
ヽ
い
Ｏ
Ｆ
の
レ
プ
リ
ケ
ー
シ
ョ
ン

障
害
か
ら
短
時
間
で
復
旧
す
る

次は、スレーブの状況を確認するためのSQL文です。

―――SHC)W SLAVE STATUS

SHOW SLAVE STATuSで は、図2.3.4の ようにスレーブのさまざまな情報を

確認することができます。項目の内容は表 2.3.2の とおりです。SHOW SLAVE

STATuSの 内容はMySQLのバージョンによってたびたび変わるので、最新

の情報はMySQL ABの リファレンスマニュアノンを参照してください。

項目がたくさんありますが、いくつか注意点を挙げておきます。

ログファイノン名 と位置情報の項 目がいくつかあ ります。Master_Log_File

には Read_Master_Log_Posが対応 し、 Relay_Log_Fileに は Relay_Log_Pos

が、Relay_MastetLog_Fileに はExec_MasteLLog_Posが 対応 します。

1/0ス レッドが正常動作 していればSlave_IO_Runningが「Yes」 に、SQLス

レッドが正常動作 していれば Sl鉗e_SQL_Runningが「■ s」 になっています。

どちらか片方でも町es」 ではない場合は、レプリケーションは「止 まってい

る」状態 となりますので、スレーブの動作を監視する場合はこの項 目を確認

すればよいでしょう。

Last_Errorに はエラーログファイノンに記録されるようなエラーメッセー

ジも表示されるので、LastErrnoが 正常を示す「0」 でも、LastErrorに はエ

ラーメッセージが表示されている、 ということがあり得ます。スレーブの

状態を監視する際は、片方だけでなくLast_Errnoと LastErrorの 両方を確

認しましょう。

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

饉塁コロ|:ヨヨコEE□ロヨロ:日回ヨ回罷困回||口 |口|ロロⅡ鱚鶉躙躙輻鰈鰈麒辮|::|||||:::1:|:|||:|'||:ltl諄 .
mysql> SHOW SLAVE STATUSヽ G

*************************** 1. row.1本 ボー*************************

Slave_10_Statet Waiting fOr master to send event

l.4aster Host r my5-L

Master_User: repl
lllaster_Port: 3306

Connect_Ret ry : 60

Master_Log_Fite: mysq1.-bin

Read_Master_Log_Pos : 98

relay - bin
235

mysql-bin.000006

Ves

Yes

Repticate_Do_DB:

Replicate_Igno re-DB

Replicate_Do_

Rep

0

Master SSL Allowed: No

Master SSL CA File:

Master SSL CA Path:

Master SSt.Cert:

Master_SSLCipher:

Master_ SL_ ey:

Seconds Behind Master: 0

Until Conditlon:

Untll_Lo9_File:

None

表2.3.2 SHOW SLAVESTATUSの 項目(―部)

Master_Host マスタのホス ト名

Master_User マスタヘの接続に使用するユーザ名

Master_Port マスタのポー ト番号

Connect_Retry マスタと接続できなかつた場合に、スレーブが再接続を試
みるまでの待機秒数

Master_Log-File スレーブの 1/○ スレッドが現在処理中のマスタのパイナリロ
グファイル名

Read_MasteLLo9_Pos l/○ スレッドが読み込んだマスタのバイナリログの位置

Relay_Log File スレープのSQLス レッドが現在処理中のスレーブのリレー
ログファイル名

Relay_Log_Pos SQLスレッドが実行完了したスレープのリレーログの位置

Relay_MasteLLog_F‖ e SQLス レッドが最後に実行したクエリが記録されていたマ
スタのバイナリログファイル名

S:ave_10_Running l/○スレッドが稼働中かどうか

Slave_SQL_Running SQLス レッドが稼働中かどうか

Rep‖ cate_Do_DB レプリケー トするように指定されているDB名

Rep‖ cate_lgnore_DB レプリケートしないように指定されているDB名

Last Errno 最後に実行したクエリのエラー番号。「o」ならば成功

Last_Error 最後に実行したクエリのエラーメッセージなど。空文字は
エラーがないことを示す

Skip_Counter 最後にSQLSLAVE_SKIP_COUNTERを 使用したときの値。使
用していなければ「0」 になる

Exec_MasteLLog_Pos SQLス レッドが最後に実行したクエリの、マスタのバイナ
リログでの位置

Re!ay_Lo9_Space 存在するリレーログフアイルのサイズ。単位はバイ ト

Seconds_3ehind_1/○ スレッドに対して SQLス レッドの処理がどのくらい遅れ
Master ているかを示している。単位は秒。マスタとスレーブとの

間のネットワークが十分に速い状況下ならば、マスタに対
してスレーブがどのくらい遅延しているかの指標になる

つ
“
・
う
０

〓
く
い
Ｏ
Ｆ
の
レ
プ
リ
ケ
ー
シ
ョ
ン
　
障
害
か
ら
短
時
間
で
復
旧
す
る

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

MySQLのレプリケーション構成でのスレーブは、リアルタイムバツクア

ップのためと考えればとても重要な役割を呆たしているわけですが、せっ

かくなのでもう少し活用したいところです。本節では、MySQLの スレーブ

の活用方法について考えます。

スレーブ参照

まずはじめにぱっと思いつき、そして実際によく使われているのは、更

新系のクエリ(INSERT、 UPDATE、 DELETE)は マスタに、参照系のクエリ

(SELECT)は スレーブに、とサーバを使い分けて負荷を分散する活用方法

でしょう。

さらにスケーノンアウトするには、:複数のスレーブを配置するとtヽ う方法

があります。MySQLの レプリケーションはマスタは1台だけですが、スレ

ーブは何台あってもOKです。そこで、スレーブを複数台立てて、参照系

のクエリを複数のスレーブで分散するわけです。

複数のスレーブに分散する方法

複数スレーブで問題になるのは、どのようにクエリを分散するかです。

ここでは2つの方法について考察してみたいと思います。

― -0アプリケーションで分散する

1つ めは、Webア プリケーション側で分散処理を行 う方法です。次のよ

うな実装をすれば、アプリケーションで分散することができます。

MttΩLのスレ

「

ブの活用方法

・ スレーブ群のホスト名の一覧を持つている

・分散先のスレーブサーバを決定するロジックを実装する

・ スレーブの死活監視を行い、ダウンしているスレーブには分散しないよう
な処理を実装する

最近ですと、0/Rマ ッパを使ってDBに アクセスすることが多いと思い

ますので、0/Rマ ッパの層にこのような分散処理を実装するのが良い作戦

でしょう。

― -0内部ロードバランサで分散する

2つめの案はロー ドバランサを使 う方法です。ロードバランサというと、

外部のクライアントとWiebサ ーバとの間(つ まリサーバファームの出入日)

に置くものと思いがちですが、せっかくLinuxで ロードバランサを作れる

のですからサーバファームの内部にも置いてしまえ、というのがこの2つ

めの案です。

アプリケーションで分散するのと比べたメリットを挙げてみます。

・ アプリケーションはスレーブの台数を気にしなくていい

スレーブの台数の増減はロードバランサで吸収できるので、APサーバそれぞ

れでスレーブの一覧を管理する必要がなくなる

・ アプリケーションはスレーブの状態を気にしなくていい

死活監視と分散グループからの除外・復帰はロードバランサがやってくれるの

で、アプリケーションでの死活監視や分散の処理は必要なくなる

・ より均―な分散ができるようになる

「一番コネクション数が少ないスレーブに分散する」といつた分散方法がとれる

ので、より均等に負荷を分散することができる。アプリケーションで分散する

場合は、プロセスを超えて、もしくはAPサーバを超えてコネクション数を数

えるのは容易ではないので、均等に分散することは困難である

このように、アプリケーション側の処理が減るのに加え、アプリケーシ

ョンはスレーブ群の状態を知らなくてよくなるというメリットもあります。

たとえば、新しいスレーブを追加する場合は、アプリケーション側の作業

は一切必要なく、ロードバランサより下の部分の作業で完結することがで

きます。

２

・
４

〓
く
い
Ｏ
Ｆ
の
ス
レ
ー
プ
十
内
部
ロ
ー
ド
バ
ラ
ン
サ
の
活
用
例

章 ワンランク上 の サ ー バ /イン フラの 構 築 冗長化、負荷分散、高性能の追求

というわけで、本節ではこの内部ロードバランサ案について掘 り進めて

ヽヽきたいと思います。

それでは、内部ロードバランサを経由したスレーブ参照について解説し

ます。

概略図

図2.4.1が ここで関係する部分の構成図です。

OAP:ク エリを発行するWebアプリケーション

O db100 1 MySQLの DBサーバ。レプリケーションのマスタ

・ db101、 db102:MySQLの DBサーバ。レプリケーションのスレープ

・ db100-s:ス レーブ群を東ねる仮想スレーブの名前

・‖1、 ‖2:内部用のロードバランサ。‖1と ‖2とでVRRPに よるActive/Backup

スレーブ参照をロードバランサ経由で行う方法

図2.4.1 内部ロードバランサ経由のスレーブ参照

Create
Update
Delete

Read

l11 |:2

db101 db102db100

レプリケーション

1`331101

ethO:19216831112ethO119216831 110

(‖s)

((lbl()0‐ 5)

VIP:19216831230

ethO1192 16831 111

構成にしていて、そのV!Pは‖s(192.168.31.230)とする

MySQLは レプリケーション構成にしていて、マスタ(db100)と スレーブ

が2台 (db101、 db102)あ るものとします。クライアントとなるAPは、更

新系のクエリ(C“載e、 Update、 Delete)はマスタに、参照系のクエリはス

レーブに対して発行します。スレーブに対しては、直接接続するのではな

く、内部ロードバランサ (■s)を経由してアクセスします。内部ロードバラ

ンサ 1lsは、スレーブ群の死活状態に応じて、適切なスレーブにリクエスト

を振 り分けます。

使用するMySQLのバージョンは5.0.45、 kepdivedは 1.1.15で す。

内部ロードバランサの設定

1ls(111と ■2)の keepalived.confは リス ト2.4.1の ようになります。

まず「basic」のセクションを見てみます。このセクションでは、1lsがロー

ドバランサとして振る舞うための基本的な設定をしています。注意しなけ

ればならないのは、リス ト2.4.10の virtuaLrouter_idで 指定するVR:D

(И r′″α′RοッたrD、 VRRPルータのグノレープの識別子)です。

VRRPで は、VRIDが同じノード(ルータ)のグノンープで仮想ノンータを構成

します。したがって、同一のネットワークセグメントでは、仮想ノンータグ

ループごとに異なるVRIDをつけなければなりません。もし、外部ロード

バランサなど、すでに仮想ノンータグノンープが存在している場合は宙rtuaL

Юuctidが重複しないようにしなければなりません。参考までに、tcpdump

を使 うとVRRPパケットを覗くことができるので、図2.4.2の ようにして実

際に使われているVRIDを観察することができます。

basicセ クションで見てほしいところがもう1つあります。リスト2.4.10

の宙rtu」_ipaddressで す。ここでは、内部ロードバランサ自身の仮想ノレー

タアドレス(192.168.31.230)に 加えて、仮想スレーブ(db100_s)用 のIPア ド

レス (192.168.31.119)も 設定しています。

続いて「MySQL slave」 のセクションですが、とくに変わったことはしてい

ません。virtuaLserveLgЮupで仮想スレーブ用のIPア ドレスとポート番号

を指定して、続く宙■u」_serverで リアノンサーバ (ス レーブ)の指定をしてい

２

・
４

ζ
ヽ
い
Ｏ
Ｆ
の
ス
レ
ー
ブ
＋
内
部
ロ
ー
ド
バ
ラ
ン
サ
の
活
用
例

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

basic section
vrrp_instance VI i

state BACKUP

interface eth0
oarD master delav 5

irrruai rouier ro 2ro (ED
priority 100

n0preempt
advert-int 1

authentication {
auth type PASS

auth_pass himitsu
)
virtual_ipaddress {

192.168.31.230/24 dev eth0
192.168.31, 119/24 dev etho

.^.

}

}.

.lure

#」け MySOL slave section _
vlrtual_server_group MYSOL100 (

192.168.31.119 3306

} ■ .‐
viltual_server group MYSQL100.{

delay_loop ..3 _■ |
‐ .

l,s sched rr

lvslmethod DR CD
prOtOcOI TCP

. real server 192.168.31.111 3306{

weight l ‐ .. ―
■ inhibit on failure
TCP_CHECK {

connect_pOrt 3306

connect tineout 3 ‐

) .

} _
real server 192.168,31:112 3306 {
. weight l

■・ ・

■nh■ b■ t on fa■
TCP CHECK{

connect,port 3306
connect timeout 3

饉回|□団EIE圏囲層困目田1轟1鞣蝠暉隋祓馘黎褥颯嘲欲‐|||.111::|:::`|:
ll.sl# tcpdump ‐n prot6 ヽヽVrrp l . ・

00:59:42.164341 1P 192.1.68.31.231 ,22410.0:18:I VRRP'2, Advertisement,
■. .|■ ・ |― ― |||

‐ ― ― . |. =.

vrid 230, prio 100, authtype simple, intvl ls, length 24

匝亜互亜憂亜亘亜I正三正三
=三

≡:≡三萱∞

}

ます。 この例では、リアルサーバの死活監視は、TCP_CHECKで TCPの

3306番ポー トが開いているかどうかで行っています。より厳密に監視を行

うならば、実際にクエ リを発行して意図した結果が得 られたかどうかを確

認するスクリプトをMISC_CHECKで指定するのがいいでしょう。

レープの設定

内部ロードバランサから見るとリアノンサーバとなる、MySQLのスレーブ

サーバでもちょっと設定が必要です。

MySQLのサービス的にはとくに設定することはないのですが、前出のリ

スト2.4.10の とおり「DSR」 で分散するように設定したので
注18、
仮想スレー

ブのIPア ドレス宛のパケットを受け入れるようにしなければなりません。

具体的には、スレーブのそれぞれ(dblol、 db102)で 、以下のコマンドを実

行します。

■ptables ―t nat ‐A PREROUTING ‐d 192.168.31.119 ‐] REDIRECT

スレーブ参照のロードバランスを体験

以上で設定は終わりました。では、ロードバランスの体験へと進みまし

ょう。ここでは確認用に、分散対象 となるスレーブのdb101と db102の

server_id注
19は
、ホス ト名に合わせて lolと 102と しているものとします。

注 18 DSR構成にするには、ivs_methOdに「DR」 と指定 します。「DSR」 ではありません(1.3節を参照)。

注 19 my.cnfで 指定する MySQLのパラメータです。レプリケーションをするときなどで、サーバを識別す
るために使われます。2.3節で説明しています。

図2.4.3 スレーブ参照の日―ドバラン

２
・
４
　
〓
く
い
Ｏ
Ｆ
の
ス
レ
ー
ブ
＋
内
部
ロ
ー
ド
バ
ラ
ン
サ
の
活
用
例

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

このserveLidを 問い合わせるクエリを仮想スレーブ(db100_s)に対して発

行して、ちゃんと分散されるか確認してみましょう(図 2.4.3)。

同じサーバ(凸 100-s)に クエリを発行しているにもかかわらず、結果の

servetidの 値が異なることから、ちゃんとロードバランスされているのが

確認できます。

MySQLの スレーブ参照に限らず、外部ロードバランスにはない内部ロー

ドバランサ特有の注意点があります。それは「分散方法はNAT(lv旺mcthod

NAT)ではなくDSR(lvs_method DR)に する」です。

なぜならNATに した場合、クライアントから見ると、パケットを送った

のとは違 う相手から応答パケットが返ってくるように見えるので、戻りの

パケットを受理できないからです。

もう少し詳しく説明すると、まずクライアントがVIPを終点アドレスと

するリクエストパケットを発信します。NATの場合、それを受け取ったロ

ードバランサは、終点アドレスをリアルサーバのIPア ドレスに書き換えて

リアノンサーバに転送します。リアノンサーバはパケットを受け取って応答を

返しますが、戻りのパケットの始点アドレスは自分 (リ アノンサーバ)の アド

レスとなります。この戻 りのパケットが、ロードバランサを経由すればそ

のときに始点アドレスがVIPに書き換えられるので問題は起こらないので

すが、リアノンサーバとクライアントが同じネットワークに存在するときは、

ロードバランサを介す必要なく直接クライアントにパケットが届いてしま

い、結果的にVIP宛に送ったパケットの応答が、VIPと は異なるところ (リ

アノンサーバのIPア ドレス)か ら返ってきているように見えてしまうわけで

す。

ピンと来たかもしれませんが、このパケットの流れはまさにDSRで す。

したがって、分散方法をDSRに すればなんの問題もなく応答パケットがち

ゃんと受理できます。NATで も一捻りすればできないことはないのですが、

DSRのほうがロードバランサの負荷が軽減されることもあり、内部ロー ド

バランサの場合は苦労してNAT構成にする必要はないでしょう。

内 部 ロードバ ランサ の注 意 点 ……分散方法はDSRにする

２

・
５
　
高
速
で
軽
量
な
ス
ト
レ
ー
ジ
サ
ー
バ
の
選
択

大容量コンテンツ(動画や音声など)を配信するサービスでは、コンテン

ツファイノンをどこに格納するかが最重要課題となる場合があります。とく

に負荷分散環境では複数台のWebサーバに同じファイノンを格納しなければ

いけませんが、ファイノンの数やサイズが膨大になってくると以下のような

問題に直面します。

・全Webサーバにデプロイするのは時間がかかる

・全Webサーバに大容量なハー ドディスクを搭載しなければいけない

・全Webサーバでファイルの整合性がとれているかを検証するのが困難
O Webサーバの新規投入が困難になる(フアイルコピーに時間がかかる)

すべてのデータをMySQLな どのDBサーバヘ格納できれば楽ですが、運

用の都合やメンテナンス性を考慮した結果「ファイノンとして扱いたい」とい

う結論に落ち着くケースも多々あります。このような場合、大容量なスト

レージサーバにファイノンを格納し、各WiebサーバはNFSマ ウントをしてフ

ァイノンを読み出すという構成が一般的です。

しかし、システムを管理する側の人間にとっては「できるだけストレージ

サーバは使いたくない」というのが本音です。その理由を以下に挙げます。

・ストレージサーバに障害が発生すると被害が広範囲に及ぶため

0万―データが消失すると復旧に多大な時間と労力がかかるため

・ストレージサーバはボトルネックになりやすいため

・商用の製品は高価なため

ストレージサーバの必要性

ストレージサーバはボ トノンネックになりやすく、単一故障点ともなりう

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

るため、 トラブノンが発生した時の状況を想定すればするほど導入に対して

は慎重になるものです。実際にストレージサーバにトラブルが発生すると

どのようなことが起こるのかを、 もう少し詳しく考えてみます。

ストレージサーバは単―故障点になりやすい

Wiebサーバがス トレージサーバをNFSマ ウントして利用している場合、

ストレージサーバが何らかの原因で停止すると大変な事態に陥ります。man

nfsか ら引用して紹介します。

soft

hard

i ntr

NFSへのフアイル操作がメジャータイムアウトとなつた場合、呼び出したプ
ログラムに対し1/0エ ラーを返す。デフォルトでは、ファイル操作を無期限
に再試行し続ける。
NFSへのフアイル操作がメジャータイムアウトとなつた場合、コンソールに
‖
server not responding‖ と表示し、ファイル操作を無期限に再試行し続け
る。これがデフォルトの動作である。
NFSへのフアイル操作がメジャータイムアウトとなり、かつそのNFS接続が
ha rdマ ウントされている場合、シグナルによるフアイル操作の中断を許可
し、中断された場合には呼び出したプログラムに対してEINTRを返す。デフ
ォルトではファイル操作の中断を許さない。

一 man nfsよ り引用。

つまり、ストレージサーバが停止している間、WebサーバはNFSへのフ

ァイノン操作を無期限に再試行し続けます。その結果、Wiebサーバはファイ

ノン操作待ちのプロセスでいっぱいになり、他のページも閲覧できない状態

(サービス停止)に陥ってしまいます。また、ファイノン操作を中断できない

(imrが指定されていない)状況下では、Apaぬeを再起動することすらまま

ならない状況になります。

マウントオプションにsonと intrを指定することである程度改善はできま

すが、NFSはオペレーティングシステムの機能 (フ ァイノンシステム)と して

実装されているため、Wiebア プリケーションからタイムアウト時間を調整

したり、ファイノン操作を中断したりはできません。そのため、ファイノン操

作がタイムアウトになるのを待っている間にWiebサーバのプロセスがいっ

ぱいになると、サービス停止に陥ってしまいます。

ストレージサーバはボトルネックになりやすい

ストレージサーバは単一故障点になりやすいだけでなく、ボトノンネック

にもなりやすいという問題があります。Wiebサーバは10台、20台 とスケー

ノンすることができますが、NFSサーバはスケーノンできません。そのため、

ここがボトノンネックになってしまうと、それを改善するのは非常に困難で

す。図 2.5.1の ようにNFSサーバを増設してディレクトリを分けて対応する

方法も考えられますが、実はこれでは解決できない場合が多々あります。

なぜなら、アクセスが集中するコンテンツというのは、更新されたばかり

の新しいものや、なんらかのプロモーションの効果によるものが多いため

です。つまり、アクセスが集中している状況では、大勢のユーザが同じデ

ータを要求しているので、ディレク トリごとにNFSサーバを分けたとして

も、結局は同じNFSサーバに対してアクセスが集中してしまいます。

しかし、負荷の問題だけを考慮するならば図 2.5。2の ように、Webサーバ

ごとにマウントするNFSサーバを分けることで対応は可能です。ただし、

この構成にすると、複数のNFSサーバでファイノンの整合性を保たなければ

ならないという問題が残 ります。コンテンツを展開するときは、すべての

NFSサーバに同じファイノンを転送しなければいけません。ファイノンの数が

数千個や数万個の規模にもなると、すべてのサーバの内容が同じかどうか

をチェックすることは非常に困難になります。

図2.5.l NFSサ ーパの増設例

mount ―t
mount ―t
mount ―t

nfs nfsl
nfs nfs2
nfs nfs3

/mnt/nfs
/mnt/nfs
/mnt/nf5

Webサーバ

NFSl NFS2 NFS3

２

・
５
　
高
速
で
軽
量
な
ス
ト
レ
ー
ジ
サ
ー
バ
の
選
択

章 ワンランク上 の サ ー バ ノインフラの 構 築 冗長化、負荷分散、高性能の追求

Web?-/\ Webサーバ

NFSl

Webサ ーバWebサーバ

≡

〓

Webサーバ

NFS3

ファイルを同期しなければならない

少し話を整理してみましょう。結局どんなストレージサーバが理想的か

というならば、

・ 大量のアクセスが来てもボ トルネックにならないくらい速くしたい

・ 複数台のサーバにフアイルを同期するのは避けたい

。単一故障点になるのは避けたい

0できればオープンソースで実現したい

といった要求を満たしてくれるものになります。

負荷を軽くする工夫

多くのwebサイトにおいて、ストレージサーバに求めるものは「読み込

み速度」と「ディスク容量」でしょう。実は意外と、「書き込み」に対する性能

は求められていません。

高速な書き込みが必要なデータは、「セッション情報」や「個人情報」など

が大半を占めています。セッション情報は一時的なデータなのでmemcached

などのメモリベースのキャッシュサーバを使えばよく、個人情報はDBに

理想的なストレージサーバ

図2.5.2 NFSサ ーパの分散例

NFS2

格納すればいいデータです。つまり、ス トレージサーバは、動画や画像な

ど比較的サイズが大きめのデータをできるだけたくさん格納することがで

きて、必要なものを高速に読み出すことができればいいわけです。

ここで、「これはWebサーバでいいのではないか」という考え方が浮かん

だでしょうか。ストレージサーバだからといって、NFSを使わなければな

らないということはありません。また、Webア プリケーションでよく利用

されるプラットフォーム、たとえばJavaや PHPな どでは、Wiebサーバ上の

ファイノンを普通のファイノンと同じように扱 うことができるので、HTTP経

由でファイノンを扱うことに抵抗を感じる開発者も少ないでしょう。

以上の点から、ス トレージサーバ上で小 さくて軽いWebサーバを動かす

だけでパフォーマンスの問題は解決できそうです。そこで、図2.5.3の よう

なシステムを構築しました。図 2.5.3の「WS」 というサーバがス トレージサ

ーバです。ファイノンの書 き込みにはNFSを使いますが、すべてのサーバで

マウントする必要はありません。ファイノンをアップロー ドするサーバだけ

図2.5.3 NFSと HTTPを組み合わせたストレージサーパ

NFSマ ウント

HTTP GET

HTTP GET

HTTP GET

Webサーバ

Webサーバ

マスタサーバ

Webサーバ

NF5.t,_/\

Webサーバ

HTTPをストレージプロトコルとして利用する

２

・
５
　
高
速
で
軽
量
な
ス
ト
レ
ー
ジ
サ
ー
バ
の
選
択

HDD

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の追求

がマウントしていれば事足ります。図 2.5.3の「マスタサーバ」がこれに相当

します。他のサーバ (Webサーバ)は NFSを 利用しません。WSか らHTTP

経由でファイノンを取得します。

軽量なWebサーバの選択

WSで使うWebサーバは、できるだけ小さくて軽 くて速いものがよいで

しょう。APacheほ ど高機能でなくてかまいません。CCIや SSIの ような動

的生成の機能は不要で、いかに高速に静的なファイノンを転送できるかが肝

になります。筆者の環境では、thttpd注
20を
利用してHTTPを サポートする

ことで、性能を向上させることができました。とくに、アクセス集中時の

処理性能は期待以上のものがありました。

冒頭でも少し触れましたが、アクセスが集中するときというのは「大勢の

ユーザが同じデータを要求しているとき」なので、同じデータが繰り返し読

み出されるようなアクセスパターンとなります。これらのデータはほとん

どがストレージサーバのメモリ上にキャッシュされます。th■pdは メモリ

にキャッシュされているデータをひたすら転送するだけでいいため、ス ト

レージサーバのディスク1/0に はほとんど負荷がかかりません。そのため、

現状ではストレージサーバがボトルネックになる気配はありません。

HTTPを利用するメリット

NFSに 比べると、HTTPはサーバ とクライアントの結合が疎であるとい

えます。WebサーバがNFSマ ウントしている場合、NFSサーバが停止する

とファイノンシステムレベノンで処理を停止 してしまうため、Apacheを 再起動

することもままならない状況に陥ってしまいます。

しかし、HTTPな らば、Webア プリケーション側で自由にタイムアウ ト

を設定することができるので、ス トレージサーバの異常を検出してエラー

メッセージを返すことが簡単にできるようになります。そのため、ス トレ

ージサーバの障害によってサイ トが全停止 してしまう危険性を多少は回避

することができます。

it 20 GElt http://ww.acme.com/software/thttpd/

２

・
５
　
一局
速
で
軽
量
な
ス
ト
レ
ー
ジ
サ
ー
バ
の
選
択

残る課題

ここまでで「大量のアクセスが来てもボトノンネックにならないくらい速い

ストレージサーバ」ができあがりました。残る問題は「単一故障点になるの

は避けたい」と「複数台のサーバにファイノンを同期させたくない」という二つ

です。これらの問題 (と いうかわがまま?)は互いに相反するものです。単

一故障点にしたくなければサーバを増やさなければいけない、しかし複数

台のサーバにファイノンを同期したくない、という問題を合わせて解決する

ためには、より高度な策が必要です。

この矛盾した要件を解決する手段については、後ほど3.2節で考えます。

舅y睫‡1小さくて軽いWebサーバの選択
ストレージサーバで利用するWebサーバとして、以下のソフトウェアを検証し

ました。

。khttpd(図 A)

0コ)htp://www.fenrus.demon.nν

・ thttpd(:菫 IB)

oコ)http:〃www.acme.com/sonware/thttpd/

・ lighttpd(図 C)

C□D htp://www.lighttpd.neυ

図A khttpd

TTPd Linux HTTP Acceterator

ffi A , hlbda@n (6s@) tor Unui kH]ft b dffaet tom o$w rebsws
h sfln ruG iiom ffi fr€ unur{hd ss a dub ((jr,1/@@.

I odi ffi (e @d) @Fa@ d Ss d qu*
rqe us#F{Miuch e:A@b*?ry,

{e da q@hiEb s€eM@cry{llffi

ryBbmJ lMon aE tuns i. & kmd.

By 'ecenn9' frs shpb ca;e dh & kend, us6rc@6 daMs 6n & what &q arc
vry 9d * Gensatng Lss-SfE, d/.mE 6net

⑬

章 ワンランク上 の サ ー バ /インフラの 構 築 冗長化、負荷分散、高性能の迫求

まず、khttpdで すが、これはLinuxの カーネルモジュールとして実装された

Webサーバです。さすがにカーネル空間で動作するだけあつて、ほかを圧倒する

ほどの性能がでました。しかし、動作が不安定でカーネルごとハングアツプする

こともあったので次期バージョンで改善されることを期待していましたが、カー

ネル2.5の途中でソースツリーから削られてしまい、26では跡形もなくなつてし

まつたため利用を断念しました。この発想はとてもおもしろいのですが、カーネ

ル空間でアプリケーションプロトコルを処理するのはさまざまな問題があつたよ

うです。

thttpdと ‖9httpdは 、どちらも「小さくて、速くて、軽い」を目的としたWebサ
ーパソフトウェアです。このどちらを使うかは非常に悩みました。筆者が検証し

た時点(2004年頃かな)では、性能的にはほとんど差がありませんでした。当時か

ら‖ghttpdのほうが機能は豊富でしたが、「thttpdのほうがシンプルでとり回し

が楽そう」という理由から筆者はthttpdを選択しました。

図B thttpd

図C :ighttpd

“

嗜
""““ '′

●
…
Ⅲ岬 |"“■

'4',“
‐●● ,`●●

LIGHTTPD
S&!.ity, s@. cloplane, andfldibriry .- al ot th66&$cre ligh$d (&En
6ghtt/ whlch is tpidlyr$flring erridan.y or 3 re8sldrss t is &sgnd End

optmizd for hish Eilorm€ncosnvionmenl1 Wth a smallm6mryl@int
compa,d io ds ffitrssvers, elfslivo haiiagemsijl of fre cpuload, and
advancd fe&.€ set (FastCGr, SCCI,Aurh, Ou$lcompqsion, URL-RtriUnq
and many mor€) lighitpd is $repedetsolutjon forwqs€mr sflis
sufferinq load problems. Ad krof allifs Os Sour$ liwsd un&r hs

VVeb 2 0

けⅢ

“
…
●
…
|"‐●い

“

疏■鮨 ヽ ,は 口ヽ
="●
●●

nris l6st d aorvorand is &velcpmsiltfa,r crek a wolsw$ frt Oe
n* d Se luurerebrn mind:

・ l i ‐
 . .

軍

4^夫 |`‐ |||‐ _‐ .:■■
IUソ `・

‐‐| ‐|・ |‐

||‐ ll .

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

DNSサーバの障害はなかなか起きませんが、いざ起こると原因が判明す

るまでに時間と手間がかかる問題です。止まらないインフラを目指すため

に、DNSサーバの冗長化対策は重要です。本節では、以下の点を順に取り

上げながらDNSサーバの冗長化について考えます。

・ レゾルバライブラリを利用した冗長化と、性能低下の危険性

・ サーバファームにおける DNSの冗長化
→VRRPを利用した構成

→ DNSサーバの負荷分散

DNSを 冗長化するには、図 3.1.1の ように/etc/resOLcOnfに 複数のDNS

図3.1.l DNSサーバ2台の構成

DNSサーバ2
192.168.0.202

Uetcl resolv. confl
nameserver 192. 168.0.201
nameserver 192. 168. 0. 202

Webサーバ

DNSサーバ1
192.168.0.201

・¢

DNSサーバの冗長化の重要性

レゾルバライブラリを利用した冗長化と、問題

サーバを指定する方法が手軽です。さまざまなアプリケーションが名前解

決のために利用しているレゾノンバライブラリは、/etc/resoLconfを参照し

て問い合わせ先のDNSサーバを取得します。nan resolv`confで は以下の

ように説明されています。DNSサーバを複数指定できるという点がポイン

トです。

namese rve rネームサーバのIPア ドレス
レゾルバが問い合わせをするネームサーバの (ド ット表記の)イ ンターネットア
ドレス。このキーワード1つごとに1台ずつ、MAXNS台 (現状では3台、くresolv.h>
を参照)ま でのネームサーバをリストできる。複数のサーバが指定された場合、
レゾルバライブラリはリストされた順に問い合わせを行う。nameserverエントリ
がない場合、デフォルトではローカルマシン上のネームサーバが使われる (こ こ
で使われるアルゴリズムは以下のようなものである。はじめにネームサーバに問
い合わせを試みる。この問い合わせがタイムアウトになつた場合、次のネームサ
ーバに問い合わせを試みる。これをネームサーバがなくなるまで続ける。それで
も応答がない場合は、リトライ最大回数に達するまですべてのネームサーバに問
い合わせを繰り返す)

……man resolv.confよ り引用。

レゾルバライブラリの問題点

DNSサーバを複数指定しておくことで、片方のDNSサーバがダウンして

も名前解決できる構成になります。

しかし、「問い合わせがタイムアウトになった場合、次のネームサーバに

問い合わせを試みる」という挙動には少々問題があります。最初に指定され

ているDNSサーバがダウンすると、タイムアウト(デフォノントは5秒)を待

ってから次のサーバヘ問い合わせをします。この「待ち時間」は、サーバフ

ァームにとって深刻な性能低下を引き起こす要因となります。わかりやす

い例 として、メーノンサーバの動作で説明します。

性能低下の危険性……メールサーパの例

メーノンサーバがメーノンを送信する際には、以下の2回のDNS問い合わせ

をします。

●宛先アドレスのドメインバートに対してMXレ コードの問い合わせをする

OMXの結果からAレコードを問い合わせて送信先サーバのlPア ドレスを取
得する

３

・
ｌ
　

Ｄ
Ｎ
Ｓ
サ
ー
バ
の
冗
長
化

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

たとえば、1時間で1000通のメーノンを配送しなければならないメールサ

ーバがあるとします。この場合、最低でも3秒に1通のペースでメーノンを送

信できなければなりません。/etc/resoLconfに 指定されているDNSサーバ

の片方が停止すると、1回のDNS問い合わせに5秒のタイムアウトが発生

するようになります。すると、1通のメールを送信するのに10秒かかるの

で、1時間で処理できるメールの数は単純計算で360通程度となり、要求性

能の半分以下の処理しかできなくなってしまいます。

この例は少々極端ですが、要するにどんなに高スペックなサーバを導入

していても、1台のDNSサーバの障害によって性能低下を引き起こす危険

性があるということです。

DNS障害の影響は大きい

「性能は低下するがエラーにならない」という状況は、障害の発見を遅ら

せてしまう要因になります。上記の例の場合、メーノンサーバの配送性能が

著しく低下しているにもかかわらず、配送自体は完了するのでシステム停

止とはなりません。メールサーバの管理者が性能低下に気づき、原因を調

べようとメールサーバの設定をいくら見直したところで異常は見つからな

いことでしょう。

DNSサーバの障害は、影響範囲が大きい割に障害個所の特定に時間がか

かってしまう場合が多いので注意が必要です。

前述のレゾルバライブラリ(DNSク ライアント)が DNSサーバの異常を検

出するには、タイムアウトを待つ以外に方法がありません。そのため、レ

ゾノンバライブラリを利用した冗長化をサーバで利用するのは避けたほうが

いいでしょう。

サーバファームにおいてDNSを冗長化する場合は、DNSサーバ側で無停

止となるような施策を施します。以降、VRRP(1.4節 を参照)を利用した構

成とロードバランサを利用した構成を紹介します。

サーバファームにおけるDNSの冗長化

う
Ｏ

ｏ
■
■

Ｄ
Ｎ
Ｓ
サ
ー
バ
の
冗
長
化

VRIPを利用した構成

図3.1.2は VRRPで DNSサーバを冗長化した構成です。図3■2中 のWcb

サーバやメールサーバには/etc/“ soLconfに VIP(192.168.0.200)だ けを設定

します。そして2台のDNSサーバのうち、 どちらか片方がVIPを持つこと
で冗長化します。

図3.1.2の構成は、1章で紹介した「睦epdived」 を利用して構築できます。

各DNSサーバにはあらかじめkeepalirdを インス トーノンしておきます。そ

してkepahved.confを リス ト3.1.1の ようにして起動すると、どちらか片方

(先に起動したほう)が Activeサ ーバとなりVIP(192.168.0.200)が 割り当て

られます。両方のサーバが起動している状態でActiveサーバをシャットダ

ウンすると、正常にフェイノンオーバすることを確認できます。

この状態ではActiveサーバのkepa■vedが停止するとフェイノンオーバし

ますが、DNSサービス注1が停止してもフェイノンオーバしません。そこで、

リスト3.1.2のようなヘノンスチェックスクリプトを動かします。リスト3.1.2

のスクリプトは、5秒 ごとにdigコ マンドを使って自分自身にDNS問 い合

わせをし、digコ マンドが異常終了したらkeepalivedを 停止します。これに

E 1 BIND (Berkeley lnternet Name Domain.@ http://www.isc.orglproducts/BIND/),ptinydns
(GEID http://cr.yp.toldjbdns/tinydns.html) /a 8.

図3.1.2 VRRPを 利用した冗長化

く団口> 1匡ヨ|:轟轟 l

:豊
==l壼
=ヨ
DNSサーノヽ

192.168.0.202ノ 24(DNS2)
DNSサーノ`

192.168.0.201ノ 24(I)NSl)

Webサーバ
192.168.0.1/24

VIP
192。 168.0‐200

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

よって、DNSサーバが利用できなくなった場合でもフェイノンオーバするよ

うになります。

Active/BackuP構 成では、2台のDNSサーバのうち1台 しか仕事をしてい

ません。このままではサーバリソースを活用したいので、負荷分散して図

3.1.3の ようなActive/Active構 成にします。

`口

因ロロ回目国回 1■11日1閾1圏■剛口赳‖彊飩鰤鰤 ξl‐轟
#/bin/Sh . _‐ ‐ _.‐ ‐ ‐| |||‐

 ‐ . ・

・ ‐whi10.trむё.do‐・
‐ . ・

 . ・ ‐・ ‐■・‐ |‐

/uv/bi,ィo19■1lme1001+tries■ 3o127.0.0.1 localhost,localnet

if [:10〕
: ‐ne nS?:: ll then

. /etc/init.d/keepalived lstop・・ . . .
. . ex■

t
‐
 ‐. ‐.|. ‐|・| . ‐―・11-

‐‐
|｀
‐・ . ‐ ‐・‐ .

‐‐fi _.|‐ . ‐・._ . =|‐ . |‐
~| . ~~ ‐ . . ||.|

‐｀
 ― . _ .| . ■ ‐ ..‐ ||
.(1●on ヽ ||‐ |.=| ‐.■■ ―‐‐― ■|. .‐・ ヽヽ r ´ .‐ ‐ .‐ |‐ ‐ ‐・ _ ‐・ _‐ |‐

‐. ‐ |

done l l l l

DNSサーバの負荷分散

リスト3.1.1

vrrp_instance DNS {
state BACKUP

interface ethO

garp-master-delay 5

virtual_router_id 200

priority 1.00

nopreempt
.advert int-1

authentiCatiOn {
. auth_ ype PASS

l autLpassl HIMIttUDFSU
■

Active/Backup構成 と異なる点は、ロー ドバ ランサ を利用する点です。

Active/Backup構 成ではDNSサーバにkeepahvedを インス トーノンしてvIPを

割 り当てましたが、Active/Active構 成ではロー ドバランサがVIPを 持ちま

す。Webサーバの設定は変える必要あ りません。先ほどと同様に、VIPを

/etc/resoLconfに 設定 しておけばOKで す。また、同一サブネット上で負荷

分散する場合はNAT構成にできないため、DSR構成にする必要があ りま

す。したがって、各 DNSサーバではVIP宛のパケットを処理できるように、

ノンー プバ ックイ ンタフェースにVIP(192.168.200/32)を 割 り当て るか、

iptめlesを使ってリダイレク トするなどの対応が必要です。

ロー ドバランサは、Linuxで「IPVS」 と「kcPaLved」 を使って構築 します。

この構成のkcepalived.confが リス ト3.1.3で す。keepttvedで はDNSのヘノン

スチェック機能がサポー トされていないので、MISC_CHECKを使ってdig
コマンドを実行 してヘノンスチェックをします。

DNSサーバは、日につかないところで多くの重要な仕事をしています。

また、DNSサーバ用のソフトウェアは安定しているものが多く、滅多なこ

図3.1.3 DNSサーパの負荷分散構成 (Active/Active構成)

ロードバランサ

同一セグメント
なのでDSRにする

Webサーバ
192.168.0.1/24

DNSサーバ
192.168.0.201/24(DNSl)

DNSサーバ
192.168.0.202/24(DNS2)

・仮想サーバ
192.168.0.200

３

・
ｌ
　

Ｄ
Ｎ
Ｓ
サ
ー
バ
の
冗
長
化

まとめ

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

とでは止まったり落ちたりしません。そのため、DNSサーバの障害はあま

り想定されないかもしれません。

しかし、DNSサーバの障害は、原因が判明するまでに時間と手間がかか

ることが多いため、万一の際に余計な労力がかかることのないように、し

っかりとした対策をとっておきたいところです。

virtual_server_group DNS {
192.168.0.200 53

)
virtual-server group DNS {

delay_toop 5

lvs_sched rr
lvs*method DR

protocol UDP

real_server 192.168,0.201 53 {
weight l

MISC_CHECK {

misc_path l'/usr/bin/dig +time=001 +tries=3 o192.168.0.201

localhost.localnet‖

misc_timeout 5

)
)
real server 192.i68.0,202 53 {

weight 1

Hrsc-cHEcK {
misc_path "/usr/bin/dig +time=001 +tries=3 G192,168.0.202

localhost . localnet "
mlsc timeout 5

}

頭

}

リスト3.1.3 ロードバランサのke● pa‖ved`to,f

う
Ｏ

ｏ
つ
“

ス
ト
レ
ー
ジ
サ
ー
バ
の
冗
長
化
　
Ｄ
Ｒ
Ｂ
Ｄ
で
ミ
ラ
ー
リ
ン
グ

ス トレージサーバには大量のファイノンが格納されます。そのため、ハー

ドディスク故障によリデータが消失すると、復旧は大変です。復旧作業は

バックアップのリカバリが常套手段ですが、すべてのファイノンのリカバリ

には大変時間がかかります。また、ストレージサーバの障害は影響範囲が

広範囲に及ぶことが多いので、RAIDを 利用してハードディスク故障によ

ってデータが消失しない構成にするのが一般的です。

さらに、故障するのはハードディスクとは限りません。もしRAIDコ ン

トローラが故障した場合、運が良ければ予備のRAIDコ ントローラと交換

するだけで復旧するかもしれませんが、壊れた拍子にハードディスクに予

期しないデータを書き込んでしまい、データを消失する危険性があります。

ディスクに比べれば故障頻度は極めて低いですが、このような障害から

もデータを保護するために、ストレージサーバを2台用意して冗長化する

ことを考えます。

ス トレージサーバを冗長化するには、2台のサーバでデータを同期し続

ける必要があります。その手段として最初に考えたのは「データをアップロ

ー ドするときには必ず両方のサーバにアップロードする」という運用にする

ことです。しかし、データの整合性をとり続けるのは意外と難しいもので

す。アップロードプログラムなどの不具合で、片方のサーバにしかファイ

ノンが転送されないこともあるかもしれませんし、作業ミスによって片方の

サーバのデータのみを更新してしまうこともあるかもしれません。

ストレージサーバの故障対策

ストレージサーバの同期は困難

‐
3。 2‐

章 lLまらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

ファイノン数が少なくてデータ量が小さければ、簡単なスクリプトで機械

的に整合性をチェックすることは可能でしょう。しかし、ファイノン数が何

百万個、何千万個もあり、データサイズが数百GB(G,レ″た)に も及ぶデー

タをチェックするのは困難です。整合性のチェックができない状況のまま、

同期を運用に依存し続けるのは信頼性の面で大きな不安が残ります。

2台のサーバにおいて、ファイノン単位でディスクを同期 したり整合性の

チェックをすると、ファイノン数が多くなるほどディレク トリの検索や比較

に時間がかかります。また、その際にはハー ドディスクに過度な負荷がか

かるので、サーバ全体のパフォーマンスが大幅に低下 します。DRBD

(Dis″ル′たノR`pたαセ′]οεたD`ν j“)注
2と ぃぅソフトゥェアを利用すると、こ

の問題を解決することができます。

DRBDのサイトから引用して紹介します。

DRBDは 、ハイアベイラビリテイ (HA)ク ラスタを構成するときに有用なブロック
デバイスを提供します。可能であれば専用のネットワークを使って、 2台のコン
ピュータのブロックデバイスの間でデータをミラーします。ネットワーク越しの
MID lと考えるのがわかりやすいでしよう。

・■ttp://mm drbd.jp/よ り引用。

DRBDの構成

DRBDは 、図3.2.1の ようなしくみでマスタサーバとバツクアツプサーバ

があり、以下の2つで構成されています。

・カーネルモジュール(デバイスドライバ)

・ユーザランドツール(制御プログラム)

ファイノン単位でデータを転送するのではなく、ブロックデバイスに対す

る更新をリアノンタイムに転送します。ファイノンの作成や更新をする際に、

DRBDやバックアップサーバの存在を意識する必要はありません。

注2 CココD http://www.drbd or9/

Cコ)htp:〃wwwdrbdjp/(日 本語)

DRBD

DRBDの ミラーリングはActive/Backup構 成です。Active側のブロックデ
バイスに対 しては読み書 きできますが、Backup側のブロックデバイスには

アクセスできません。ただ し、バージョン8.0.0以降では、OCFS(OπεJθ

CI″Sたr■ルシ確″)や GFS(Gbあ″]た りsた″)な どのクラスタファイノンシステ

ムとの組み合わせによる、Active/Active構成がサポー トされました。2008

年 5月 現在の最新バージョンは 8.2.5で すが、筆者の環境では0,7系で運用し

ています。これは、最初に導入した時点での最新バージョンが 0,7系 だった

ためです。

以降で紹介する構成は、筆者のシステムで稼働実績のあるDRBD O.7系

で構築 したものですが、8.2系 で変更された機能や設定についても随時補足

しながら説明していきます。なお、DRBD O.7系 は2008年 の 10月 でメンテ

ナンスが終了予定です。これから導入 しようと考えている方は、最新バー

ジョンを利用してください。

リス ト3.2.1は 、DRBDの 動作に最低限必要な設定です。これを、/etc/

図3.2.l DRBDの構成

を同期

ハードディスク ハードディスク

ノdevノ sdbl /dev/sdbl

ノdevノ drbdO

DRBDの設定と起動

３
・
２
　
ス
ト
レ
ー
ジ
サ
ー
バ
の
冗
長
化
　
Ｄ
Ｒ
Ｂ
Ｄ
で
ミ
ラ
ー
リ
ン
グ

DRBD

r,1叫■T■τ
drbdsetup
drbdadm

drbdsetup
drbdadm

mkfs

mount

止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

drbd.cOnfと いうファイノン名でマスタとバックアップの両方のサーバに作成

します。

リスト3.2.1は シンプノンですが、最低限必要な設定はこれだけです。各項

目の意味は表 3.2.1の とおりです。

DRBDのマスタサーバを起動する

それではDRBDを動かしてみましょう。まずはマスタサーバ上で以下の

作業をします。図3.2.2は実際のオペレーションの様子です。

ODRBDを起動する

0プライマリ状態にする

0/dev/drbdOに フアイルシステムを作る

0/dev/drbdoを /mnt/drbdOにマウントする

DRBDを起動すると、まずはミラーリングの相手に接続しようとします。

しかし、最初のセットアップ時は相手がいないため「To abort waiting enter

lyes`」 というメッセージが出てタイムアウト待ちになるので「yes」 と入力

して中断します。また、起動直後のDRBDは「セカンダリ状態」になってい

ます。これは、プライマリ状態なDRBDか らデータが流れてくるまで待機

protocol A;

on V,sl {
device

disk .

add ress

meta - disk

,/dev/Sdbl:

192.168,0.2011

lnternal;

7789;

|●

disk /dev/sdb1;
address 192,168.0.202:7789

meta-disk internal;嵌
‐

}

}

している状態で、この状態ではブロックデバイスに対して書き込みも読み

込みもできません。

ファイノンシステムを作ってマウントするためには、drdbadmコ マンドで

「プライマリ状態」へ切り替える必要があります。プライマリ状態への切り

替えにはdrbdadmの primaryコ マンドを使いますが、今回のような初期構築

時に限り、0.7系では一do‐ what-1‐ sayオ プション、82系では‐oオ プショ

ンをつけなければいけません。プライマリ状態に切り替われば、/dev/drbdO

を/dev/sdblと 同じように扱えるようになります。

DRBDのバックアップサーバを起動する

同様にバックアップサーバでDRBDを起動 します。するとマスタサーバ

からバックアップサーバヘの同期が始まります。この状況は図 3.2.3の よう

表3.2.l drbd.confの 設定項目

resource リソースを定義するブロック。ここでは「rO」 という名前のリソースを定義
している

protocol データ転送プロトコルを指定する。指定できる値はA、 B、 Cの 3つで、そ
れぞれ以下のような特徴がある
・protocol A:ロ ーカルディスクヘの書き込みが終わり、TCPバッファヘ

データを送出した時点で書き込み操作完了とする(パフオ
ーマンス重視の非同期転送)

・protocol B:ローカルディスクヘの書き込みが終わり、リモートホス ト
ヘデータが到達した時点で書き込み操作完了とする(Aと
Cの中間)

・pЮtocol C:リ モー トホストのディスクにも書き込みが終わつた時点で

書き込み操作完了とする(信頼性重視の同期転送)

on ホス トごとのリソースを定義するフロック。ここで指定しているwslと
ws2はホスト名である。uname― nの結果と一致するかどうかで自分自身
の設定かどうかを判断している

device DR3Dの 論理ブロックデバイスを指定する。ここで指定したブロツクデバ
イスに対してmはや mountを行う

disk ミラーリングしたい物理デバイスを指定する。ブロックデバイスであれ
ばなんでも指定できるが、ループバックデバイスを指定するとハングア
ップするので注意が必要

address データを同期するために待ち受ける IPア ドレスとポート番号を指定する。
ポー ト番号はリソースごとにユニークでなければならない

meta― disk メタデータを格納するデバイスを指定する。lnternalを指定した場合、dlsk
で指定したブ回ツクデバイスの 128MBをメタデータ用に確保する。82系
ではブロックデバイスのサイズに応じてメタデータのサイズが変わる

３
・
２
　
ス
ト
レ
ー
ジ
サ
ー
バ
の
冗
長
化
　
Ｄ
Ｒ
Ｂ
Ｄ
で
ミ
ラ
ー
リ
ン
グ

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

にして確認することができます。同期が終わればセットアップ完了です。

マスタサーバの/mnt/drbdO/に ファイノンを作るなどしてデータを書き込む

と、それはバックアップサーバにも転送されています。

wstt-# / etc/ init,d/drbd start
Starting DRBD res0urces: I d0 s0 n0].

{<*i< * *i<r<*r(***** ** *** r(*** x i * rx* * ** ** *** *****xx** ** *x* ****x** * *** *

DRBD's startup script waits for the peer node(s) to appear,
- In case this node was already a degraded cluster before the

reboot the timeout is 0 seconds. Idegr-wfc-timeout]
- If the peer was available before the reboot the timeout will

expi.re after 0 seconds, [wfc-timeout]
(These values are for resource 'r0'; 0 sec -> wait forever)

To abort waiting enter 'yes' [5]:yes

wsl:-# drbdadn -- --do-what-I-say primary all (0.7K
wsl:-# drbdadm -- -o primary alt (8.2#
wsl:-# mkfs /dev/drbd0
mke2fs 1.40-lrIIP (14-Nov-2006)

<+m>
This fitesystem will be automatically checked every 38 mounts or
180 days, whichever comes first, Use tune2fs -c or -i to override.
wsl:-# mount /dev/drbd0 lnnl/drbdl/

回国|IEI回|||口|:|ロヨ ||■■1目||||1轟 ||1塵1鶉1轟1鰈1爾1輻1翁1輻1蝙 :1藝|も
ws21■″/etc/initid/drbd start .

Starting DRBD r,SOurces: .I dO.sO‐ nO‐ 1‐ .
■s21・イ cat l/proc/drbdOp .

VerS10n1 0,7‐ 25(Opi179/pFOtO:74) .
GIT‐ haSh: 389C7c136a9af8df921b3628129dafbe212ace9f bu‐ ild.by rootcws2,

2997‐ 12,31 22:20:‐ 38 1

01 CSllSlynCTarget StiSeCOndary/SeCOndary ld.:InCOnSiStent ‐

.‐ nsi.0.n.r:ぅ 23.dw:.528‐
・dr:O al:O bm:O lo:O pe:O ua10 ap:0 ‐_ ‐‐‐‐

‐
 [>.......・ ..・,.・・..,i syncledi O,‐71% (666832/667360)K

.. lfini`h: 0'127:47‐ speed: 264(264)K/sec .‐ . ‐ `_‐‐ ||

DRBDの動作 ¬

DRBDのフェイルオーバ

DRBDはマスタサーバで トラブノンが発生 したからといって、バックアッ

プサーバが自動的にマスタサーバにはな りません。そのため、睦epahved

を利用 してフェイノンオーバできるようにします。

手動で切り替える

自動でフェイノンオーバさせる前に、まずは手動で切り替えてみましょう。

フェイノンオーバするためには、マスタサーバのDRBDを セカンダリ状態に

します。しかし、ブロックデバイスがマウントされていると失敗するので、

NFSサーバを停止してアンマウントしておきます。この処理をシェルスク

リプトにしたものがリスト3.2.2で す。これを/usr/1oc」/sbin/dめ d―backup

として両方のサーバに保存します。

バックアップサーバをマスタサーバにする場合は、DRBDを プライマリ

状態にし、ブロックデバイスをマウントしてNFSサーバを起動します。こ

れをスクリプトにしたものがリスト3.2.3です。これを/usr/1oca1/sbin/dめ d―

masterと して両方のサーバに保存します。

データが同期されていることを確認しやすくするために、マスタサーバ

の/mnt/dめdO/に 適当なファイルを作っておきます。次に、マスタサーバ

でdrbd‐ backupコ マンドを実行し、両方のサーバをセカンダリ状態にしま

す。そして、バックアップサーバでdrbd‐ masterコ マンドを実行すると、プ

リスト3.2.2‐ d

３
。
２
　
ス
ト
レ
ー
ジ
サ
ー
バ
の
冗
長
化
　
Ｄ
Ｒ
Ｂ
Ｄ
で
ミ
ラ
ー
リ
ン
グ

・・.umoun‐t /mn‐ t‐/drb10

drbdadm secondary

i .
■: .|

. : . ,

章 止まらないインフラを目指すさらなる:工夫 DNSサーバ、ストレージサーバ、ネットワーク

ライマリ状態に遷移して/dev/dttdOが/mnt/drbdO/に マウントされます。

そこには、先ほどマスタサーバで適当に作ったファイノンがあるはずです。

マスタサーバに障害が発生したときに、この一連の処理が自動的に走るよ

うにするとフェイルオーバできます。続いて、kepalivedの VRRP機能と組

み合わせて、NFSサーバを冗長化する方法を紹介します。

‖vedの設定

図3.2.4は、NFSサーバをVRRPで冗長化 した例です。リス ト3.2.4は こ

の構成におけるkepalivedの 設定です。VIPは 192.168.0.200で 、NFSク ラ

イアン トは 192.168.0.200:/mnt/drbdO/を NFSマ ウントしています。サーバ

がフェイノンオーバしても、NFSク ライアントはリマウントする必要あ りま

せん。

ここではじめて登場するパラメータを表 3.2.2に まとめておきます。

noti″_masterと noti″_backuPに先ほど作ったリスト3.2.2、 リスト323

を指定することで、フェイノンオーバ時にDRBDの状態を変更できるように

しています。この設定により、バックアップサーバがマスタサーバに切り

替わる際にdrbd― masterが実行されてフェイノンオーバします。

しかし、keepalivedが終了するときにはnoti″_masterや nOti″_backupの

図3.2.4 NFSサ ー′ヽを冗則 ヒ

VRRP

マスタサーバ
192.168.0.201/24 192.168.0.202′ 24

バックアップサーバ

NFSマウント

NFSク ライアント NFSクライアント

ViP

192.168.0.200ノ 24

マスタサーバ
192.168.0.201/24

バックアップサーバ
192.168.0.202/24

NFSマ ウント

NFSクライアント NFSクライアント

V:P

192.168.0.200ノ 24

故障

|

スクリプトは実行されません。そのため、マスタサーバのkccpahvedが 停

止すると、マスタサーバのDRBDがプライマリ状態のままフェイノンオーバ

しようとするので、バックアップサーバのdめ d―masterはエラーになりま

す。したがって、kepahvedが終了したときには必ずdめ d―backuPの スクリ

プトを実行するようにしなければなりません。

表3.2.2 keepanved.confの設定項目(新出)

nopreempt VRRPの プリエンプテイブモードを無効にする。プリエンプティブモ
ードについての詳細は1章を参照 (不要なフェイルオーバを避けるた
めに指定する)

notify master VRRPが マスタ状態になったときに実行したいコマンドを指定する

noti″_backup VRRPが バツクアツプ状態になったときに実行したいコマンドを指定
する

notify fault ネツトワークインタフェースがリンクダウンしたときに実行したい
コマンドを指定する ‐

３
・
２
　
ス
ト
レ
ー
ジ
サ
ー
バ
の
冗
長
化
　
Ｄ
Ｒ
Ｂ
Ｄ
で
ミ
ラ
ー
リ
ン
グ

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

‖vedを daemontoolsで制御する

この問題を解決するために、kepalivedの 起動スクリプトをリスト3.2.5

の よ うに します。た 力ごし、 これ は /etc/init.d/keepahvedで
`ま

な く、

daemontoolsで 利用するrunス クリプトです。詳しくは5.4節で解説します

が、daemontoolsで はこのようなスクリプトからデーモンの起動を制御し

ます。ここでは、kepalivedの 終了をwaitで 待ち続け、waitか ら抜けたら

drbd― backupス クリプトを実行するようになっています。super宙 seか ら送

られるシグナルは、trapコ マンドを経由して睦epalivedに 渡しているので、

kecPahvedを daemontoolsで 直接制御しているのと同じオペレーションで運

用することができます。このしくみによって、kepahvedが どのような理

由で停止しても必ずdrbd― backupス クリプトが実行されます。

DRBDで ミラー リングするデバイスをNFSで 共有するためには、マスタ

サーバで NFSサ ーバを起動 しなければいけ ません。 しか し、NFSサーバの

冗長化は、Webサーバやメールサーバの冗長化 とは別の問題があるので注

意が必要です。 フェイ′レオーバによって新 しくマスタになったNFSサーバ

は、 どのクライアントからもマウントされていません。しかし、NFSク ラ
イアントはサーバが切 り替わったことに気づかないため、すでにマウント

#!/bin/sh

| -f /uarlrun/vrrp.pid I && exit
exec 2>&L

trap lkill ‐TERM SPIDI TERM

trap lkill ‐HUP SPID: HUP

trap lkill ‐INT ‐$PIDI INT

/uSr/1oca1/Sbin/keepalived ‐n

PID=$|

wait SPID

/usr/1oca1/Sbin/drbd― backup

S i. --vrrp &

NFSサーバをフェイルオーバする際の注意点

口墨日■コ暉1澤日2四鳳顧1目1饉躍艤□儡屁鰈蜀

・″ar/‖ b/nfs/を同期する

NFSサーバの接続情報は/var/lib/nfs/配下に格納される。DRBDで このポリュ

ームをミラーリングすることにより、フェイルオーバしても接続情報を引き継

ぐことができる。ただし、デイストリビューションによつては、NFSサーバの

起動スクリプトの中でexportfsコ マンドで接続情報をクリアしていることが

ある。その場合は、接続情報をクリアしない起動スクリプトを別に作成し、フ

ェイルオーバの際はそのスクリプトからNFSサーバを起動するなどの工夫が必

要である

・ nttdフ ァイルシステムを利用する

nfsdファイルシステムは、NFSサーバを冗長化するために作られたLinux固有

の機能である。mount‐ t nfsd nfsd/proc/fs/nfsdを した状態で起動された

NFSサーバは、/var/1ib/nfs/デ ィレクトリを利用しなくなる。さらに、見ず知

らずのNFSク ライアントからアクセス要求があつた場合でも、すでにマウント

済みであるかのように処理を行う。カーネル26系のLinuxを使つている場合

は、こちらを利用すると便利である

DRBDでディスクをミラーリングしていても、100%の安全が保証される

わけではありません。たとえば、誰かが間違えて消してしまったファイノン

は元に戻すことができません。DRBDの利点であるミラーリングは、オペ

レーションミスでファイノンを消してしまっても即座にバックアップヘ反映

してしまうという弱点ともなります。そのため、毎日でなくてもいいです

し、時間がかかってもいいので、最悪の事態に備えてバックアップは必ず

取っておきましょう。

バックアップの必要性

う
Ｏ

ｏ
（
Ｚ

ス
ト
レ
ー
ジ
サ
ー
バ
の
冗
長
化
　
Ｄ
Ｒ
Ｂ
Ｄ
で
ミ
ラ
ー
リ
ン
グ

済みだと思ってファイノンアクセスをします。その結果、NFSサーバでは「マ

ウントしていないクライアントからファイノンアクセスの要求がきた」と判断

し、アクセスを拒否してしまいます。これを解決するには以下の方法があ

ります。

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

1章、2章、そして3章の前節まではすべて、OSI参照モデノンでいうとこ

ろのレイヤ3(L3=IP層)か らレイヤ7(L7=ア プリケーション層)を冗長化

する話でした。しかしながら、それよりも下の物理的なネットワーク(Ll

=物理層)や Ethernetの レベノンでの通信 (L2=データリンク層)が故障すれ

ば、その上に載っているものが正常であったとしても、全体としては故障

してしまいます。

本節ではLlと L2の構成要素が故障してもシステムが停止しないよう、こ

れらを冗長化する方法について述べます。L1/L2を冗長化しておけば故障

を回避するだけでなく、システムをメンテナンスをする上でもより大胆な

ことができるようになります
注3。

L1/L2の構成要素で故障するものとしては、次のものが考えられます。

O LANケーブル

ONIC(ネ ットワークカード)

(D)ネットワークスイッチのポート

10)ネットワークスイッチ

LANケーブノンの故障には断線やコネクタの接触不良などがあります。NIC

の故障は、筆者が経験したケースではリンクのアップとダウンを繰り返す

注 3 たとえば筆者が管理する環境では、すべてのスイッチとロー ドバランサ兼ルータを無停止で置き換え
る、といつた荒業を行つたこともあります。

L1/L2構成要素の冗長化

故障するポイント

というものがありました。NIC同様スイッチの特定のポートだけが故障す

ることもあります。またスイッチの故障としては、スイッチがまるごと故

障することもあります。故障とは少々違いますが、誤ってスイッチの電源

を落としてしまうこともあります。

さて、これら故障する要素を改めて見てみると、0～0はサーバとスイ

ッチの間の接続の故障としてまとめられます。ここではこれを「リンク故

障」と呼ぶことにします。

またスイッチ同士を結ぶスイッチ間接続にも0と 0の故障は起こり得ま

す。これを「スイッチ間接続の故障」と呼ぶことにします。

Oのネットワークスイッチの故障は「スイッチ故障」と呼ぶことにします。

以下では、これらの故障を回避するためにはどうすればいいのかを、そ

れぞれ説明していきます。

リンク故障を回避するためには、サーバとスイッチの間の接続を冗長化

します。つまり、サーバにNICを複数用意して、LANケーブノンも同じ数だ

け接続します。しかし、単に複数のNICを用意しただけだと、それらを使

って通信するためにはそれぞれのNICに対して別のIPア ドレスを振る羽目

に陥ります。そうすると、ネットワークに接続された各マシンは通信する

たびに通信相手のどのNICが使えるかを診断し、その結果に従って送信先

アドレスを切り替えなければいけません。これは不可能とはいいませんが、

かなり不便です。これを解決するためのしくみとして、Linuxに はBonding

ドライバが用意されています。

Bondin ライバ

Bondingドライバ注
4は
、Linuxに 用意されているネットワークドライバ

の 1つです。Bondingド ライバは複数の物理的なネットワークカード(物理

注 4 Bondingド ライバについてはLinuxカ ーネルの付属文書が一次情報になります。kerneLorgな どから
配布パッケージを入手 しその中の linux-26.X.X/Documentation/networking/bondingtxtを 参照 し

てください。また、次の講演資料も参考になります。

・「bonding機能紹介と展望」□D hup:〃 osdnjp/event/kerne12005/pdf/nec.pdf

リンクの冗長化とB ドライバ

３

・
３

　

ネヽ
ツ
ト
ワ
ー
ク
の
冗
長
化
　
”ｏ
ａ
ご
ド
ラ
イ
バ
、力∽宅

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

NIC)を まとめて、1つの論理的なネットワークカード(論理NIC)と して扱

えるようにします。

この論理NICは アドレスを付与する対象のNICと してはもちろん、LinⅨ

カーネノンのIPエイリアス機能やVLAN(И rr′α′LAN)機能、ブリッジ機能等

の対象NICと しても指定できます。論理NICを 通じた通信は、Bondingド

ライバが設定に従って配下の物理NICに割 り振 ります。また配下の物理

NICが故障していないかをチェックして、故障していればその物理NICは

使わないようにします。

Bondingド ライバが複数ある物理NICの 中から通信に使うものを選択す

る方法は、いくつかの中から選べます。選択肢を表 3.3.1に 示します
注5。 ぃ

ずれのモードでも、物理NICが故障すればそのNICは使われなくなります。

BOndingド ライバのもう1つ別の重要なパラメータに、物理NICの故障

検出方法があります。これはM‖ (M″j′ I′′ψ
`″
″″ιI′ r`ψ

“
)監視と、ARP

(A"容 R`sο′″″ο″Prο
`ο

醐)監視の2種類から選択できます。

MII監視は物理NICが リンクダウン(L′″たDO″″)すれば故障したとみなす

ものです。これは低コストかつ短時間で故障のチェックができますが、反

注5 これらのモードの中では、active― backupが一番癖がなく使いやすいです。筆者が管理する環境でも
active― backupを使つています。

表3.3.l Bondingドライパの動作モード
※

balance-rr 送信するパケットごとに使用する物理NICを切り替え
る(ラウンドロビン)

active-backup 1つめの物理NICが使えるうちはそのNICのみを使う
そのNICが故障すれば次のNICを使う

balance-xor 送信元と送信先のMACア ドレスをXORして使用する
物理NICを決める

broadcast 送信パケツトはコピーされて、すべての物理NICに対
して同じものが送り出される

802.3ad IEEE 802 3adプ ロトコルを使い、スイッチとの間で動
的にアグリゲーションを作成する

balance-tlb 物理NICの 中で最も負荷の少ない物理NICを選んで送

信する。受信は特定の物理 NICを使つて受信する

balance-alb 送信も受信も、負荷の少ない物理NICを使う

※ linuxカ ーネル 2624付属の bondingtxtよ り。

モニ ド

面NICが リンクアップ(L′れた1ク)し ているのに通信できないような状況には

対応できません
注6。

ARP監視では、ARPリ クエストを指定されたマシンに対して送信し、リ

プライが返ってくるか試験して判断します。実際に通信して確認するので

故障を見過ごす可能性は低い反面、確実にリプライを返してくれる相手に

対してARPリ クエストを送信しなければ、誤診断につながります。誤診断

の可能性を低くするためにBondingド ライバでは、ARPの送信先として複

数 (最大 16)のアドレスを登録できます。

Bondingド ライバを使って複数の物理NICを 束ねて冗長化しても、その

接続先が同じスイッチではスイッチ故障に対応できません。スイッチ故障

を回避するためには、スイッチも複数台用意して、Bondingド ライバ配下

の物理NICを それぞれ別のスイッチに接続します。スイッチとリンクを二

重化した構成を、図3.3.1の 0に示します注7。

各サーバマシンからはそれぞれ1本ずつ別のスイッチにリンクが延びて

います。これらのリンクはBondingド ライバの配下にあります。さらに、2

台のスイッチの間にはスイッチ間接続LSl-2を用意します。このLSl-2は リ

図3.3.1 スイッチとリンクを二重化した構成

Ll

LSl-2

Ll-2

0 0

svvl

svf2

Ll‐ 1

Ll-2

L2-1

L2-2

sw2

svvl

L2‐ 1

L2-2

sw2

注 6 筆者が管理する環境では実際にそのような故障が発生 しました。それ以後、ARP監視を使つています。
注 7 この構成をとる場合、選択できる Bondingド ライパのモー ドは actⅣ e―backup、 balance― tlb、 balance―
albになります。balance― rrと balance― xOrはスィッチによっては混乱 し、通信が途切れることがあり
ます。

スイッチの冗長化

う
０

・
う
０

ネ
ッ
ト
ワ
ー
ク
の
冗
長
化
　
∞０
己
ご
ド
ラ
イ
バ
、”∽宅

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

ンク故障時に活躍 します。

リンク故障時の動作

スイッチ間接続 LSl-2が ないと、 リンク故障時にsvrlと svr2の 間の通信

はどうなるか、svrlの Ll-1が故障した場合を例にとって見てみます (図 3.3.1

の0)。 svrlか らsvr2へのパケットは、Ll-1が使えないのでLl-2か ら送ら

れます。このパケットはsw2を 経由してsvr2へ至る経路が確保されていま

す。したがって、問題ありません。

しかしsvr2か らsvrlへの逆向きのパケットは、L2-1か ら送られる場合と

L2-2か ら送られる場合があります。L2-2か ら送られた場合はさっきと同様

sw2を経由する経路が使えますが、L2-1か ら送られたパケットはLl-1が使

えないので、wrlへ は到達できません。このパケットをsw2へ と転送する

ために、スイッチ間接続LSl-2が必要になるのです。

スイッチ故障時の動作

LSl-2を用意することでリンク故障時にもsvrlと wr2は 通信できること

を確認できました。では、スイッチ故障はどうでしょうか。swlが故障し

た場合を考えます。

swlが故障すればリンク故障時と同様にBOndingド ライバがswlへのリン

クは使えないと判断します。リンク故障時と違うのは、すべてのサーバ上

で同時にその判断が成されることです。結果、すべてのサーバはswlに接

続されたリンクを使わずにsw2へのリンクだけを使うようになるので、通

信は正常に行われます。

スイッチ間接続の故障時の動作

最後にスイッチ間接続の故障です。スイッチ間接続は Bondingド ライバ

のモー ドによってはリンク故障時以外にも使われます
注8。 したがって、こ

こが故障すると通信が途切れることがあ ります。スイッチ間接続 LSl-2の

注8 たとえば、balance― tibや balanCe― albモードの場合は常に使いますし、active― backupモードの場合
も、すべてのサーバでactive側 の物理NICが接続されるスイッチが同じでなければ、スイッチ間接続

が必要になります。

故障の対策にはサーバとスイッチの間の接続と同様に、複数の接続を用意

して東ねることによって冗長化します。

サーバとスイッチの間の接続を束ねるのにはBOndingド ライバを使いま

したが、スイッチ間接続を束ねる方法としては、スイッチメーカ独自の規

格を使 う方法と、IEEEで規格化された802.3ad注 9を使 う方法があります。

これらは一般的に「ポートトランキング」(POr′ η′れた′電)や「リンクアグリゲ

ーション」(■れたA“″

"″

′ο″)と 呼ばれます。

前出の図3.3.1の構成では、全体で使えるスイッチのポー ト数は実質的に

スイッチ 1台分になります。サーバの台数が増えてスイッチのポート数が

足らなくなれば拡張しなければなりません。拡張の方法としては既存のス

イッチを多ポートのものと置き換えるか、スイッチを増設します。置き換

えの場合は先ほどと状況は変わりませんが、増設する場合は構成が変わる

ので冗長性を保つ上で必要な条件が増えます。図3.3.1の構成に、スイッチ

を増設してカスケード接続した場合の構成を、図3.3.2に 示します。LSl-3

とLS2-4の カスケード接続は、LSl-2と 同様にリンクアグリゲーションを使

って冗長化しておきます。

図332の構成をとる場合、Bondingド ライバの物理NICの監視方法は、

ARP監視にしなければなりません。MII監視ではswlあ るいはsw2が故障

図3.3.2 スイッチを増設し、カスケード接続した構成

LSl-3

LSl-2

swl sw3

svr3

L4‐ 3

L4‐ 4

L3‐ 3

L3‐ 4

sw2 sw4

スイッチの増設

３

・
３
　

ネヽ
ッ
ト
ワ
ー
ク
の
冗
長
化
　
”ｏ
乱
ご
ド
ラ
イ
バ
、刀い宅

E9 (!Ell http:Zwww.ieeeS02.orgl3,/adl

LttL L饉

量デ当
Ll‐ 21 L2‐ 21

章 lLまらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

した場合に、svr3や sv“の通信が途切れてしまいます。問題になる状況を

次に説明します。

たとえばswlが故障した場合、sw4は sw2と 接続されていますが、sw3は

孤立します。すると、svr3が wrlと 通信しようとしてパケットをsw3に送

ってもsw3か らsvrlへ到達する経路はなく、通信ができません。これを回

避するには、swlが故障した場合にswlに接続されているsvrlや wr2だけ

でなく、svr3や svr4も sw3へのリンクを故障として扱 うようにします。こ

れはsvr3と svr4に おいて物理NICの故障検出方法としてARP監視を選択

し、APR監視の対象としてsvrlと 釘r2を指定すれば実現できます。この場

合swlが故障すれば、L3-3や L4-3か らARPリ クエストを送ってもリプライ

が返らなくなるので、これらのリンクは故障として扱われるようになりま

す。

さらなる冗長化を目指して

さて、図3.3.2で はsw3と sw4の間にスイッチ間接続がないために、swl

やsw2の故障時にsw3と sw4が孤立してしまうことが問題でした。この対

策として、図3.3.3のようにsw3と sw4の 間にLS卜 2と 同様のスイッチ間接

続LS3-4を設けて迂回路を設定しておけば、Bondingド ライバのARP監視

に頼らなくても通信が止まることはなくなりそうです。しかしながら、こ

のように単に迂回路を設定しただけだと問題が発生します。

図 3.3.3を 見ると、swl～ sw4がすべて相互接続していてノレープができて

いることがわかります。Ethernetで はこのようなノレープができると、ブロ

図3.3.3 sw3とsw4を接続して迂回路を設定した例

=0■
■・二 | |=・ニユ・

`swl sw3

LSl-2 LS3‐ 4

sw2 sw4
TE■・
`l

lL・ニユ電

―ドキャストストーム
注1° が発生してしまいます。

もし、正常時にはsw3と sw4は LS3-4を仰L視 して、swlや LSl-3カ 故゙障し

たときだけLS3-4を使うようにできれば、ブロードキャストストームが発

生することなく、迂回経路を確保できます。これを実現するものとしてSTP

(ジα″″′電ル
“
PЮわJ)があります。次の節では、STPの発展版であるRSTP

について説明します。

RSTP(Rη jグ シα″″′電 2′`P“
″οω7)注 11は各スイッチが協調してネットワー

ク上にできたノレープを検出し、自動的に冗長な接続を遮断するための、デ

ータリンク層のプロトコノンです。どの接続を遮断するかは各スイッチに設

定されたプライオリティやスイッチ間の接続のリンク速度などを元に決定

します。

RSTPで はスイッチが本目互1に BPDU(Bri′

“

PЮわεοJ Dα″し″″)パケットを

交換することで、プライオリティ情報などの交換と故障検出を行います。

このBPDUパケットが途切れたリスイッチ間接続がダウンすれば、スイッ

チは故障が発生したと判断し、代替経路を探 して使います。

では、簡単にRSTPの動作について見てみます。

ブリッジの優先順位とルートブリッジ

RSTPが動作する各ブリッジ注12で は、相互にBPDUを交換することでど

ちらが上位のブリッジかを決定 します。接続 されたすべてのブリッジの う

ちで最 も上位のブリッジが「ルー トブリッジ」になります。ブリッジは優先

注 10

注 11

注 12

プロー ドキャス トス トームとは、プロー ドキャス トパケ ッ トがループしたネッ トワークの中を、いつ

までも巡 り続ける状態のことをいいます。ブロー ドキャス トパケットを受信 したスイッチは、受信 し

たポー ト以外のすべてのポー トに転送 しますが、自分が転送 したバケットが戻つてきてもそれを破棄

したりせず再度転送します。そのため、ネットワークの中にはプロー ドキャス トパケッ トが増え続け

て帯域を食いつぶしたり、場合によってはスイッチがパケッ トを処理 しきれずにダウンします。

RSTPは先にlEEE 802.lDと して規格化された STPを 高速化 したものです。STPはループを検出して切

断するまでに最大で 50秒程度の時間を要 しますが、RSTPでは数秒で収東するように改良されました。
RSTPは最初 IEEE 802.lwと して規格化されましたが、現在の IEEE 802.lD-2004で は STPは廃止され、

代わりに RSTPが組み込まれています。

ブリッジとはスイッチングハブと意味合い的には同 じものを指 します。RSTPの規格の中では用語と

して「ブリッジ」が使われますので、ここでもそれにならいます。

RSTP

３

・
３
　
ネ
ツ
ト
ワ
ー
ク
の
冗
長
化
　
∞ｏ
こ
ご
ド
ラ
イ
バ
、力い宅

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

順位を、相手から受け取ったBPDUに 記載された値 と自分自身が持つ値と

を次の順序で比較して決定します。

0ルートブリッジだと認識しているブリッジのブリツジ!D

Oルートブリッジヘのパスコスト

0ブリツジのブリツジlD

O相手のブリッジがBPDUを送出したポートのポート!D

O相手のブリッジからBPDUを受信したポートのポートlD

ブリッジIDと は8バイトの値で、そのうち上位 2バイトは各ブリッジに

ユーザが設定したプライオリティ値です。下位6バイトはそのブリッジの

MACア ドレスが使われます。ブリッジIDが より小さい方が、優先度は高

くなります。

ルートブリッジヘのパスコストは、ノンートブリッジヘ到達するのに経由

する接続の、各接続に設定されたパスコストを足し合わせたものです。各

接続のパスコス トは、その接続のリンク速度によって決められた値です。

これも小さいほど優先度が高くなります。

結局のところ、ノレー トブリッジとして選択されるのは、最も小さいプラ

イオリティ値が設定されたものになります。

RSTPにお'けるポー̈卜の役害リ

RSTPではすべてのブリッジにおいて、初期化の過程でブリッジの各ポー

トに対してそれぞれRSTP上の役割を決定します。役割は5種類あります。

・ルートポート(Rοο′Pο r′)

ブリッジの各ポートのうち、最も上位のブリツジに接続されているポートのこ

と。RSTPの初期化が収束すればすべてのブリッジが認識するルートブリツジ

は同じになるので、ルートポート=ルートブリッジヘの最短経路になる

・指定ポート(Dttg″α′ιグ勁rr)

下位のブリッジが接続されているポートのこと。接続相手のブリッジのポート

は、ルートポートか代替ポートになる

・代替ポート(A′″′αたPο″)

ルートポート以外で、上位のブリッジに接続されているポートのこと。このポ

―卜ではBPD∪以外のパケットを遮断する。ルートポートが何らかの理由で使

えなくなれば、代替ポートが使われる

・バックアップポート(B“たηゐ″′)

別のポート(=指定ポート)か ら自分自身が送つたBPDUを受信したポートのこ

と。RSTPが設定されたブリッジは受信したBPDUを転送することはないので、

自分が送つたBPDUを受信するということは、その先にRSTPが設定されてな

いスイッチ類が接続されていてループを形成していると判断できる。このポー

トではBPDU以外のパケットを遮断する

・ Disabled Port

BPDUを 受信しないポートのこと。たとえば、端末が接続されるポートがこれ

にあたる

RSTPの動作

ここでは、RSTPの動作の概略を説明します。詳しくは参考資料をご覧く

ナビさに、注
13。

RSTP(図 3.3.4)は ループが形成されたネットワークにおいて、その一部

を論理的に切断 (パケットを遮断)す ることでループを解消します。そのた

めにRSTPは、ノレー トブリッジを根 とした「木構造」を作ります。本構造で

は上位ノードヘの接続 (=ノレー トポー ト)は必ず1つ に限定されます。ノレー

図3.3.4 RSTPの 動作

RP=ルートボート
Dp=指定ポート
AP=代替ポート

RSTP

→
DP

普段は使わず、左のリンクが

故障した場合に使う

priority = 1 priority = 3

Priority = 2 priority 4

priority = I

priority = 2 =3

Priority 4

３

・
３
　

不ヽ
ツ
ト
ワ
ー
ク
の
冗
長
化
　
∞ｏ
ａ
ご
ド
ラ
イ
バ
、刃∽宅

注 13 RSTPの詳細に関 して、lEEE 802.lD-2004の 仕様書に以下からアクセスできます。

Cコ日口)http://standards.leee.org/getieee802/802.1.html

RSTPの 動作については、以下も参考にな ります。

(!EDhttp://www.cisco.com/japanese/wary/public/3/jp/service/tac/473/146-j.shtml(iZlrZ
テムズ社)

CコD http:〃 wwwsoi wide.ad,p/class/20040031/s‖ des/23/39.html(WIDEの 講義資料)

章 lLまらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

トポー ト以外で上位のブリッジに接続されているポートは普段は使わず、

ルートポー トが使えなくなった際の代わりとしてマークしておきます (代替

ポート)。 上位への接続を常に 1つ に保ちそれ以外は使わないことで、ノレー

プを論理的に解消します。

代替ポー トがないブリッジにおいてルートポー トが使えなくなった場合、

下位のブリッジとBPDUを交換し、役割を交代します。これは、ノンートポ

ートが使えなくなったとtヽ うことはルートブリッジヘのパスコス トは無限

大になり、結果下位のブリッジのほうが優先順位が高くなるからです。

Linuxの Bondingド ライバを使えば、サーバとスイッチの間の接続を冗長

化すると同時に、スイッチの冗長化もできます。設置するサーバが増えて

スイッチを増設したとしても、適切な構成と設定を施せば、Bondingド ラ

イバを使うことで冗長性を確保できます。ただしこの方法では、ネットワ

ークに接続されたすべてのマシンがBondingド ライバを使うことが前提に

なります。

一方RSTPを 使えば、スイッチの冗長化をBondingド ライバに頼らずに

実現できます。スイッチを冗長化するためにすべてのマシンがBondingド

ライバを使わなければならないとtヽ う縛りは、将来のシステムの拡張の自

由度を奪います。接続するサーバが増えてきてスイッチを増設するならば、

それを機にRSTPをサポー トした機器の導入も検討してみてください。

おわりに

３

・
４

　

Ｖ

Ｌ

Ａ

Ｎ

の

導

入

　

ネ
ツ
ト
ワ
ー
ク
を
柔
軟
に
す
る

サーバファームにおける柔軟性の高いネットワーク

はじめに、サーバファームにおいて柔軟性の高いネットワークとは何か

について考えます。具体的な条件としては、

0新規サーバを容易に追加したい

・ サーバが故障したときにすぐに代替機に移行したい

・ あるサーバを別の役割のサーバとして切り替えたい

というような要望に応え、作業上のネックがない=柔軟性の高いネットワ

ークといえます。逆に、ネットワーク構成がネックとなり上記の作業が容

易にできないならば、そのネットワークは柔軟性が低いといえます。

物理的に対応することも可能ですが、上記の条件を満たすとはいい難い

でしょう。たとえば、サーバが手元にあれば、ケーブノンを付け替えたり、サ

ーバを移動することは大きな問題になりませんが、Webサービスを提供す

る多くのサーバはデータセンターに置いてあるため、データセンターに人

を配置できない場合はそのつど現地に行く必要が出てきます。また、物理

的にケーブルを付け替えて対応していると、気が付いたらラック内がケー

ブルで入り組んだ状態になり、外すことさえ困難になることもあり得ます。

ネットワークの構成変更などで行われる物理作業のなかには、インテリ

ジェントなスイッチが持っているVLAN(И″′′α″LAN)の機能を利用すれば、

物理作業をともなわずに対応が可能であるものも多くあります。本節では、

サーバファームにおけるネットワークの柔軟性を高める方法の一つとして、

VLANを使った場合のネットワーク構成やVLANのサーバファームにおけ

る利用方法について取り上げます。合わせて、ロードバランサだけハード

ウェア構成が特殊にならないようにする方策としてのVLANの利用方法に

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

ついても考えます。

サーバファームにおいて、VLANを 利用した場合のメリットはいくつか

あります。ここでは、おもな二つのメリットとして以下について考えます。

・ 1台のスイッチで複数のセグメン トを管理できる

0スイッチを有効に活用できる
∨LANを利用すると1台のスイッチで複数のセグメントを管理できる。そのた

め、VLANを 使わない場合よリスイッチを有効に活用できる

・ 設定だけでポー トに流れるデータを制御できる

⇒サーバ追加/置き換え、故障時の代替機による復旧が容易になる

VLANにより、物理的にLANケーブルでのつなぎ直しをせずに、設定でLANケ

ーブルがつながつているポートに流れるデータを制御できる。したがつて、ど

のセグメントにつながつているサーバが故障しても代替機にLANケーブルさ

えつながつていれば容易に復旧させることできる

それぞれについて、運用の状況を想定しながら詳しく見てみましょう。

スイッチの有効利用

図 3.4.1の ような一般的なWiebシ ステムの場合、WAN側 セグメントと内

部セグメントがあるでしょう。

図3.4.1 -般的なWebシステム

内部セグメント WAN側セグメント

スイッチ)v-t
(ective)

上位ルータ
Web Web

スイッチ)v-,
(standby)

VLANの導入がもたらすメリットを考える

WAN側セグメントについて考えてみると、たとえスイッチ以外を冗長化

している最もポー トを消費する構成だとしてもスイッチのポートは最大4

ポート(上位回線 2本、ノンータ2台)しか使いません。ポート数の少ない8ポ

ー トのスイッチを利用していたとしても、4ポー トは無駄になっていると

いえます。

また、サービスが順調に拡大していく中でWebサーバを追加するという

こともあるでしょう。もし、内部セグメントのスイッチに空きポートがな

ければ、1台や2台のWebサーバを追加するのに合わせてスイッチまでも

追加する必要性が出てきます。このようなときに、ポートに余裕のある

WAN側セグメントのスイッチにある空きポー トを内部セグメントのスイ

ッチにある空きポートのように使えれば、新たにスイッチを追加する必要

がなくなります。

当然、そのまま外部のネットワークと内部のネットワークを同じスイッ

チにつなげてしまうと、内部ネットワークに外部ネットワークから直接ア

クセスされてしまう恐れがあります。したがって、柔軟性だけでなくセキ

ュリティ的にも安全に利用できなければなりません。

上記のような構成でVLANを 利用すると、セキュリティを確保しながら

各スイッチのポー トを柔軟に活用することができるようになります。

故障したサーバの復旧体制……1台の代替機を活用したい

ここで、データセンター内のサーバが故障した場合を想定し、復旧まで

の流れを考えてみましょう。単純に、データセンターに復旧用の代替機を

用意しているとすると、

0故障したサーバの環境を代替機にセットアップ

0代替機を故障したサーバの代わりにつなぎ直す

という手順が必要になります。

手間を省き復旧までの時間を短縮するために、あらかじめセットアップ

したサーバを代替機として現地に用意しておく方法も悪くはないのかもし

れません。しかし、そうなるとWebサーバ、DBサーバなどシステムの各

役割ごとに代替機を準備する必要があります。それぞれの役割のサーバが

３

・
４

　

Ｖ
Ｌ
Ａ
Ｎ
の
導

入

　
ネ
ッ
ト
ワ
ー
ク
を
柔
軟
に
す
る

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

何百台もあるような非常に大規模なシステムでもない限り、このような方

法は現実的な選択肢ではありません。

トラブノン時以外、役に立たない代替機に多くのコストをかけれませんの

で、代替機はできるだけ少なくしたいものです。また、ゲートウェイやロ

ードバランサを含むシステム全体をLinuxベースで構成している場合は、代

替機1台で、サーバだけでなくゲー トウェイやロー ドバランサの代替機に

もなることが理想的です。

1台の代替機による復旧と、VLANの使いどころ

では、上記のような1台の代替機でシステムのすべてをカバーする構成

をとった場合の、復旧について考えてみましょう。まず、上記0代替機ヘ

の環境セットアップ方法はいくつか考えられます
注14。

・代替機に各役割を持つた複数のハードディスクを搭載させ、起動時に切り

替えする

0すべてのサーバを同じシステム構成にし起動後に必要なサービスを立ち上

げたり、lPア ドレスを付与することで切り替えを行えるようにする

・システムを構成するほとんどのサーバをネットワークブートにして、起動

時にバラメータで役割を切り替える
注15

次に、上記0代替機の効率的なつなぎ込みですが、どのような方法が現

実的でしょうか。代替機に複数のNICを搭載させ、どのネットワークにも

つながるようにしておくのは不可能ではないかもしれません。しかし、そ

の場合には代替機はすべてのセグメントのスイッチにつながっていなけれ

ばなりません。つまり、物理的な配置場所やケーブルの取り回しなどが非

常に困難になることが目に見えています。

対応としては、代替機だけを特別な構成にせず、たとえ代替機がどのス

イッチのどのポー トにつながっていても代わりができればいいということ

になります。その理想的な環境を用意できれば、すべてが同じ=フ ラット

な構成とみなせるので、代替機の話だけではなく、場合によっては稼動中

注 14これらの方法以外にも、取り得る選択肢はあるかもしれませんが、いずれの方法もネットワークだけ
でどうにかできるものではなく主旨から外れるため本節では割愛 します。

注 15ネ ツ トワークブー トについて詳しくは 5.5節 を参照。

のサーバを緊急で別の用途に割り当てることも不可能ではないでしょう。

ケーブルのつなぎ込みに関しては、スイッチとOSの VLAN機能を活用

することで対応することができます。VLANを活用することで物理的な制

限が緩和されるので、故障時だけでなくサーバの追加も容易になり、より

スケーラビリティのあるシステムを構成することが可能となるのです。

以上を実現できれば、本節冒頭で紹介したような柔軟なネットワークを

満たします。以降では、このような用途を想定しながらVLANに ついて説

明します。

VLANと は物理的な構成ではなく、ネットワーク機器やサーバの設定で

「論理的」にネットワークを分割して構成する技術です。具体的には、ブロ

ードキャストドメインの分割が論理的に可能ということになります。VLAN

を利用すると、同じスイッチに複数のセグメントの端末を接続しても、設

定によって論理的にブロードキャストドメインを分割できるので、その結

果として適切なポー トにのみフレームがフォワードされるようになります。

先に、VLANで 論理的にネットワークを分割できると説明しました。具

体的に、通常2台のスイッチに接続された別々のネットワークを1台のスイ

図3.4.2 ネットワークの物理的な分割と論理的な分割 (VLAN)

02台のスイッチで2つのグループ 01台 のスイッチで2つのグループ(VLAN)
,. : グループ1

サーバ サーバ

スイッチ
(グループ2)

サーバ サーバ サーバ サーバ

スイッチ
(共通)

サーバ サーバ

スイッチ
(グループ1)

VLANの基本

３

・
４

　

Ｖ

Ｌ

Ａ

Ｎ

の

導

入

　

ネ
ツ
ト
ワ
ー
ク
を
柔
軟
に
す
る

端末 端末 端末

章 止まらないインフラを目指すさらなる11夫 DNSサーバ、ストレージサーバ、ネットワーク

ッチで管理する場合を考えてみましょう。たとえば、図3.4.20の ように

別々のセグメントとなるグノンープ1と グループ2に分かれたシステムがあっ

た場合、通常それぞれのグノンープでスイッチを用意します。しかし、VLAN

を使い適切に設定を行えば図3.4.20の ように1台のスイッチを複数のグノン

ープに分割することができます。

VLANを 使わない場合でも、通常 1つのスイッチに複数のセグメントを

つないだ場合にもそれぞれで通信はできます。しかし、VLANが設定され

ていない状態のスイッチでは、マルチキャスト/ブロー ドキャストフレー

ムやスイッチがまだ学習できていない宛先不明なユニキャストフレームは

関係のないセグメントヘも転送 (フ ォワー ド)さ れます。

これでは、本来関係ないセグメントのブロードキャストフレームなども

各ポー トに流れてしまい、無駄に帯域を消費してしまいます。また、場合

によっては本来通信を行ってはならないセグメントにまで通信できてしま

い、盗聴の危険性などが考えられるためにセキュリティ的にも好ましくあ

りません。

VLANを 実現するには、大きく分けて2種類の方法があります。

一つは、ポー ト単位に手動でグループの割 り当てを行 う「スタティック

VLAN」 (Sr″たVLAN)で す。この方法の場合、ポー トにつながる端末のグル

ープが変わるたびにスイッチの設定を手動で変更することになります。

もう一つは、つながる機器などによって動的にグノンープの割 り当てを変

える「ダイナミックVLAN」 ωッ″α
“
′ε VLAN)で す。この方法だと、つながる

端末のグノレープが変わっても、ルールに基づいて割 り当てが動的に変わる

ので、スイッチの変更を行 う必要がありません。

これ らのVLANを 実現する技術にも複数あ り、利用目的によって使い分

けられています。実際、近年の社内LANな どで活用されているVLANでは

ユーザごとやMACア ドレスごとなどのノンールに基づいて制御を行 うVLAN

技術を駆使 し、適切なVLANグループを割 り当てることによってセキュリ

ティを確保する手段が使われ始めています。これは、社内LANで はネット

VLANの種類

ワーク利用者(=社員)の移動などで構成変更が頻発に発生する環境である

ため、動的にVLANを 割 り当てることで利用者の利便性とシステムのセキ

ュリティ向上を同時に満たせるように考えた上で使われています。

しかし、サーバファームで利用する場合には頻繁に構成変更があるわけで

はないので、このような利便性に関しては考慮する必要性はありません。も

し、頻繁に構成変更があるようならば構成全体や運用面を改善すべきです。

VLANに は、上記のほかにもベンダー依存の特殊なものを含めさまざま

な種類がありますが、本節ではサーバファームにて利用する上で適した

VLANの知識として「ポー トVLAN」 と「タグVLAN」 を取 り上げます。

ポートVLAN

ポー トVLAN(乃″′VLAN)と はスイッチのポー トごとにVLAN識別子 (以

下、VLAN ID)を割 り当てる方法です。1つのポー トに対 して1つのVLAN
IDを与え、グノンーピングしたいポー トに対 しては同じ識別子を与えます。

図3.4.3で はポー ト1、 5、 6が VLANl(VLAN ID lが割 り当てられたグノンー

プ)、 ポー ト2、 3、 4が VLAN2(VLAN ID 2が 割 り当てられたグループ)と

なります。この場合、当然同一のVLAN間 では通信でき、VLANl―VLAN2

間での通信はできません。

ポー トVLANを 利用する利点はそのスイッチに接続する端末側には特別

な設定が不要であることと、ポー トごとにVLANを 設定するだけなので設

図3.4.3 ポートVLAN

澤

鬱
撃

．

饉
墜
螺
」

一

Ｎ

”

」Ａ

一

Ｖ

・

プ

一
■グ

．

サーバ

サーバ

３

・
４

　

Ｖ
Ｌ
Ａ
Ｎ

の
導

入

　
ネ
ッ
ト
ワ
ー
ク
を
柔
軟
に
す
る

章 lLまらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

定を 1台のスイッチ内で完結でき、比較的シンプルに構成できることです。

しかし、ポートVLANを利用する上での欠点として、複数のスイッチ間で

のグルーピングができない点が挙げられます。ポートVLANでは複数のス

イッチにまたがったグルーピングを行 うことは不可能ではありませんが、

そのような場合は構成が複雑になったり、スイッチ間の トラフィックに関

係なく複数のポー トが消費されたりするためお勧めできません。そのため、

ポー トVLANの みで構成する場合は、大量にデータをやり取りするサーバ

は同じスイッチに接続して制御するなどの考慮が必要となります。

タグVLAN

タグVLAN(物 |“
`′
VLAN)と は、VLAN IDを 含むVLAN識別情報 (以下、

VLANタグ)を Ethernetフ レームに挿入して、各VLANグループを識別する

方法です。このVLANタ グは端末やスイッチからEthernetフ レームが送信

される際に挿入されるようになっています。VLANグループの管理は、ポ

ー ト単位でのグノレーピングを行うポー トVLANと は異なり、流れるフレー

ム単位でのグルーピングとなります。したがって、ポー トVLANに あった

「1つ のポー トに対 して 1つの VLAN ID」 とい う制約はな くな り、1つのポー

トで複数のVLANを扱 えるようにな ります。

この ことで、図 3.4.4のように複数のスイッチにまたがったVLANグノレー

図3.4.4 タグVLAN

Ethernet
フレーム

▲
‥

Ｉ ↓

Tagged
II)=1

スイッチ

サーバサーノ

グループ1

スイッチ =

端末

プを物理的にはシンプノンに構成することができます。

ここまでの話ですと、ポートVLANよ リタグVLANのほうが良いと思え

るかもしれません。しかし、実はVLANタ グが埋め込まれたEthernetフ レ

ームは、通常のEthernetフ レームと比較しVLANタ グが含まれているぶん、
ヘッダ情報などが異なります。これは、VLANタ グを理解できない端末や、

同様にVLANタ グを理解できないネットワーク機器から見た場合は不正な

フレームに見えてしまうことを意味します。つまり、それらの機器にVLAN
タグの付いたEthernetフ レームが流れた結果、たとえ有効なフレームであ

っても場合によっては破棄されてしまうことがあるのです。そのため、

VLANタグのついたEthernetフ レームが流れる端末やネットワーク機器は、

すべてVLANタ グを理解できなければなりません。

では、前述の「故障したサーバの復旧体制・……1台の代替機を活用した

い」項で紹介したサーバ故障時の対応を前提 として、各VLAN技術を使っ

た場合の構成を検討してみましょう。今回、システム全体をロードバラン

サも含め、LintⅨベースのサーバで構成する場合を考えます。

VLANを使わない場合の構成

サーバファームでの利用

３

・
４

　

Ｖ
Ｌ
Ａ
Ｎ

の
導

入

　
ネ
ッ
ト
ワ
ー
ク
を
柔
軟
に
す
る

まず、VLANを使わない場合を考えてみます。図3.4.5の ように、きちん

図3.4.5 すべて冗長化された構成

スイッチ スイッチLVS

(Acti")

上位ルータ
Web Web

スイッチ スイッチLVS

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

とすべて冗長化された構成では次の点が問題になるのがわかります。

・ WAN側スイッチはそれぞれ4ポートのみ利用 (残りのポートが無駄)

0用意している代替機が、WAN側スイッチに接続していないという物理的な
問題でロー ドバランサの代替機として使えない

。ロードバランサだけハードウエア構成が特殊(NICが 4つ必要)

これらを改善する方法として、図3.4.6の ようにすべて同じスイッチに接

続するという構成を考えてみます。

しかし、この方法には重大な欠点があります。先述したとおり、マノンチ

キャスト/ブ ロー ドキャストフレームはすべてのポートにフォワードされ

ます。つまり、この構成の場合、Webサーバのセグメントで発生したマノン

チキャスト/ブロードキャストフレームがWAN側 セグメントにある上位ル

ータにも流れてきます。また、逆にWAN側セグメントからも同様に流れ

てきてしまいます。このことは、 トラフィック的にもセキュリティ的にも

好ましいものではありません。つまり、この改善方法はとるべきではなく、

図3.4.5の構成で上記問題を抱えたままとならぎるを得ないでしょう。

ポートVLANを利用した構成

では、ポー トVLANを利用した場合はどうでしょうか。

ポー トVLANを利用する場合、図 3.4.7の ような構成が考えられます。 1

つのスイッチ内でVLANグノンープを2つ (VLAN IDl、 VLAN ID2)作 成しそ

図3.4.6 すべて同じスイッチに接続する構成

スイッチ

上位ルータ
Web LVS LVS

(nctive)

スイッチ

Web

れぞれWAN側セグメント用、内部セグメント用とします。これにより、ス

イッチのポートを有効に活用することができるようになりました。

しかし、代替機のつながっているポートのVLANグノレープを変更するだ

けでWAN側セグメントに切り替えることはできますが、ロードバランサ
はNICが 4つ あるという特殊なハー ドウェア構成です。したがって、ロー

ドバランサが故障した時を考慮 し代替機もNICが 4つある構成にしなけれ

ばなりません。また、代替機の話 とは異なりますが、図3.4.8の ように複数

のスイッチで構成する場合はスイッチ間の接続もあわせて考慮しなければ

なりません。これらの問題で、残念ながらポー トVLANだけでは理想 とす

るフラットな構成にはできていません。

図3.4.7 ポートVLANを利用した構成例■

VLAN:Dl

V■■■lD2

スイッチ

上位ルータ
Web Web [VS EVS

(Active)

スイッチ

図3.4.8ポートVLANを利用した構成例ロ

1
スイッチ スイッチ

上位ルータ
Web Web LVS EVS

(lctive)

スイッチ スイッチ

３

・
４

　

Ｖ

Ｌ

Ａ

Ｎ

の

導

入

　

ネ
ッ
ト
ワ
ー
ク
を
柔
軟
に
す
る

壼圏

一̈
一̈

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

タグVLANを利用した構成

いよいよ大本命のタグVLANを利用した場合を考えてみましょう。

ポー トVLANを利用 した構成で問題 となった2点 を改善することを考え

ると、図 3.4.9の ようになります。ロー ドバランサがつながるポー トでVLAN

IDlと VLAN ID2の 2つのグノレープを扱えるように設定することで、ロー

ドバランサのNICは代替機やほかのサーバ と同様に2つ で済みます。この

構成にすることで問題点はすべて解決できています。

ただし、この構成にするということは流れてくるフレームにVLANタ グ

が付与されるということです。先述 したように、VLANタ グが付与された

フレームはVLANタ グを理解できる端末でないと、処理されず破棄される

可能性があるということにな ります。しかし、実はこの接続できる端末が

制限されてしようタグVLANと 、基本的にどんな端末でも接続可能なポー

トVLANは併用できます。つ まり、ポー トから出るフレームのすべてに

VLANタ グを付ける必要はあ りません。ポー トVLANで は制御が難しいポ

ー ト、つまり複数のVLANを扱わなければいけないポー トにのみVLANタ

グを付与すればよいのです。

今回の場合なら、上位ノンータにつながるポー トをVLAN IDlの ポー ト

VLANに 割 り当て、残 りのポー トにはVLAN ID2で ポー トVLANの設定を

図3.4.9 タグVLANを利用した構成

一０
＝
Ｎ

Ｈ
●
０
０
０
Ｌ
】９
＝
Ｊ

一Ｕ
＝
Ｎ

引
●
●
●
Ｏ
Ｌ

一
口
＝
“

引
Ｄ
●
０
●
Ｌ

一ワ
＝
Ｎ

上位ルータ
Web Web LVS EVS

(Active)

スイッチ

行って しまいましょう。 そして、複数のVLANグ ノンープのフレームを流す

必要 のあ るポー ト(ロ ー ドバ ランサ のポー ト)に は、VLAN IDlに 対 して

VLANタ グを「あ り」で設定追加 します。 ここでは、ロー ドバランサのポー

トの VLAN IDlに 対 してVLANタ グを「あ り」にしましたが、逆にVLAN IDl

でポー トVLANを設定 し、VLAN ID2に 対 してVLANタ グを「あ り」に して

もか まい ません。ただ し、「一番多 く使われているVLANを常にVLANタ

グなし=ポートVLANで利用する」など、ノンール付けしておけば設計時や

構築時、運用時に混乱を避けやすくなるでしょう。

以上により、VLANタグを処理できるようにしなければいけない端末は、
ロードバランサのみとなりました。ここでまた、ロードバランサだけ特別

という話になってしまいますが、Linuxは VLANタ グに対応しているので、

特別なハードウェアを用意する必要はとくになく、その設定を行うだけで

す。Linuxで VLANタ グを扱う場合、カーネノンのサポー トと設定ツーノンが

必要です。カーネルのサポートは、構築時に「CONFIG_VLAN_80210=y」 とする

ことで機能を有効にすることができます。また、設定ツーノンとしてはvcOnfig

というコマンドが用意されており、このコマンドを利用することでVLAN

インタフェースを作成したり、削除することが可能となります。

今回の構成では、ロードバランサでvconfigを 実行し、新たにVLAN IDl

のethO.1と いうインタフェースを作成するだけとなります。

1vs01:-# aptitude install vlan
1vs01:-# vconfig add eth0 I

これで、VLANを利用しない場合やポー トVLANのみを利用した場合の

問題を、すべて改善した構成となりました。

タグVLANを利用することでこのように物理構成がシンプノンで、かつ柔

軟性のあるシステムが構築できるのです。ただし、ここで注意があります。

タグVLANを利用する場合には論理構成が複雑になりがちです。また、ポ

ートVLANと 異なリサーバ側の設定追加も必要となります。したがって、

ポートVLANを基本として考え構成し、必要なところにのみタグVLANの

設定を行うようにすべきです。

３

・
４

　

Ｖ
Ｌ
Ａ
Ｎ
の
導

入

　
ネ
ッ
ト
ワ
ー
ク
を
柔
軟
に
す
る

章 止まらないインフラを目指すさらなる工夫 DNSサーバ、ストレージサーバ、ネットワーク

これまでの説明で、サーバファームでVLANを利用するメリットを理解

できたでしょうか。

実際にVLANを導入しようと考える際に重要なのは、どのVLAN方式を

使うにしても、極カシンプルな構成を目指すことです。せっかくVLANを

導入しても、複雑な構成にしてしまってトラブノン解決に時間がかかったり、

ましてや トラブルを招 くなどとなっては九も子もありません。

また、論理的に構成できるからといって物理的な構成をおろそかにすべ

きではありません。というのも、複数のスイッチにまたがるセグメントが

存在するとそのセグメントのデータはスイッチ間を通ることになります。

もし、このようなセグメントが多数ある場合にスイッチ間の帯域がボトノン

ネックとなる可能性はゼロではありません (図 3.4.10)。 そのようなことに

ならないためにも、初期構築段階で物理的な構成と論理的な構成をきちんと

検討すべきでしょう。場合によっては、リンクアグリゲーションなど帯域を

確保できる技術も合わせて導入の検討を行っておくことをお勧めします。

図3.4.10 スイツチ間の帯域がボトルネックとなる可能性

グループ21D=1

グループ21D=2
グルー・プ

'21D〓3

VLAN l.2、 3(1)

データが流れる

スイッチ スイッチ

上位ルータ
LVS DB
サイトB サイトA

DB

(サイト8)

Web Web
(サイト3)

複雑なVLAN構成でも物理構成はシンプルさが鍵

■1:

轟早

ー

| ..

、

・

‐
 |｀

■
 ■

章 性 能 向 上 、チ ュ ー ニ ン グ Lin駆 単一ホスト、APaぬ e、 MySQL

「負荷分散」という言葉から思い浮かべるのは、多くの場合、1～ 3章で見

てきたような複数のホストに処理を担当させる文字どおりの「分散」です。

しかし、そもそも1台で処理できるはずの負荷をサーバ10数台で分散す

るのは本末転倒です。単一のサーバの性能を十分に引き出すことができて

はじめて、複数サーバでの負荷分散が意味をなします。本章ではこの問題、

つまりそのネットワークを構成する「単一のホスト」に焦点を当てて解説し

ていきます。

性能とは何か、負荷とは何かを知る

単一ホストの性能を十分に引き出すためには「性能とは何か」を知る必要

があります。そこでまずは、サーバリソースの利用状況を把握するための

計測方法について解説します。計測方法を解説すると同時に、Linuxを 対

象にOSの動作原理についても触れていきます。負荷を知るということは

OSの状態を知るということです。OSが どう動いているかを知らずして、

状態を診断することはできません。

Linuxの カーネノンソースを追っていくと、「負荷」と呼ばれているものが

具体的に何なのかがわかるでしょう。計測によって得られた値は、計測の

仕方を知らずして考察することはできません。マノンチタスクの動作原理は、

プロセスの状態と負荷の関係を明らかにします。Webア プリケーションの

負荷分散は、多くの場合「ディスク1/0の分散と軽減」作業です。1/0が OS

によってどう処理されるのかを学びましょう。osは 1/oを軽減するために

キャッシュのしくみを内包しています。キャッシュが最も有効に働くよう

システムを組むのが、1/0分散のコツです。

単一ホストの性能を引き出すために

OSの動作原理と負荷の計測方法を知っていれば、対処療法でしか対応で

きなかったさまざまな トラブノンを根っこから解決することができるように

なるでしょう。OSの どこがボトルネックになってシステムの性能が出てい

ないか、を突き止めることができるようになります。ボ トノンネックを見極

めるための基本戦略に沿って、その具体的な方法も見ていきましょう。

単一ホストという意味では、そのOSの上で動作するミドノンウェアにも目

を向ける必要があります。OSが理想的な状態で動いてさえいれば、その上

で動くアプリケーションはだいたいにおいて問題なく性能を発揮するもの

ですが、ちょっとした落とし穴や、サーバに固有の問題などもあります。

OSの次は、Web+DBア プリケーションの心臓部であるWebサーバとDB

サーバのチューニングについて見ていくこととしましょう。

なお、本章では対象 OSが Linuxカ ーネノン2.6で あることを前提に話を進

めます。ただし、近年のマノンチタスクosはだいたいが同じ原理で動作して

いることもあり、別のバージョンのカーネノンあるいはほかのOSを見ても、

本節での解説が大枠を外すことはないでしょう。

単一ホストの性能を引き出すには、サーバリソースの利用状況を正確に

把握する必要があります。つまり、負荷がどの程度かかっているかを調べ

る必要があります。そしてこの計測作業こそが、単一ホストの負荷軽減で

最も重要な作業です。

プログラマの世界には有名な格言があります。

推測するな、計測せよ

です。負荷分散の世界も例に漏れず、です。

さて、負荷計測。これまたApacheや MySQLと いったアプリケーション

に意識がいきがちなところ、対象になるのはおもにその下、OSです。OS

知らずして負荷分散を語ることなかれ。負荷を知るのに必要な情報はほぼ

すべて、OSすなわちLinuxカ ーネノンが持っています。

LinlⅨ ではps、 top、 sarな どのツーノンを利用します。これらのツーノンは

推測するな、計測せよ

４
・
ｌ
　
Ｆ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ Li叫単一ホスト、Apache、 MySQL

Linuxカ ーネルが内部的に測定した各種統計情報を見るためのコマンドラ

インツーノンです。たとえば、topを 実行すると端末に図4.1.1の ような出力

が表示されます。

topコ マンドは、ある瞬間のOSの状態のスナップショットを表示するツ

ールです。表示される出力は時刻の経過 とともにその内容が更新されてい

くので、OSの動向を眺めたいときに便利です。

CPU使用率やメモリの利用状況など、さまざまな値が報告されています。

これらの値から判断して、負荷がどの程度かかっているかを見極めていく

ことになるのですが、困ったことに報告される値は多種にわたります。一

体どのように値を見ていけばよいのでしょうか。その指針を得るためには

「負荷 とは何なのか」を知る必要があります。

そんな「負荷とは何か」の詳細に入る前に、話の流れを整理する意味も込

めて先にボトルネック見極めの基本的な流れを解説しておきます。

ボ トノンネックを見極めるための作業を大きく分けると、次のとおりです。

・ ロードアベレージを見る

・ CPU、 1/0のいずれがボトルネックかを探る

ポトルネック見極め作業の基本的な流れ

top - 19:50:21 up 150 days, 4138, I user, load aVerager 0.70, 0.66,0.59
Tasks: tr04 total, 2 running, 102 lleeping, 0 stopped, 0 zombie
Cpu(s): 2L.8tus, 0,6%sy, 0.0tni, 17.2\id, 0.otua, 0.1thi, 0,3tsi, 0.otst
ti|em: 4028676k total, 2331860k used, 1696816k free, 150476k buffeis
Su,ap: 2048276k totat, 9284k used, 2038992k free, 425064k cached

PID USER PR

18481 apache 17
19199 apache 16

18474 apache 15

18471 apache 15

19325 apache 15

l root 15

2 root RT

3 root 34
く以下略>

NI VIRT RES SHR S tCPU %‖ EM

0 394m 154m 4228 R 100 3,9

0 390m 153m 4328 S 26. 3.9

IIME+ COM‖ AND

ll:23.50 httpd

O:41.59 httpd

l:12.26 httpd

l:13.31 httpd
0

0

0

0

0

19

4 3.1
2 3.4
22.7
0 0.0
0 0.0
0 0.0

360m 122m 4364 5

371m 133m 4232 5

343m 105n 4340 S

10304.‐ . 80 48.S

0 0 05
0 0 0S

httpd

in■t

nigration/0

ksoftirqd/0

01‐35,10

4123.65

2:40.25

0100,38

以下、それぞれの基本的な流れを説明します。

ロードアベレージを見る

まず、負荷見極めの入り口となる指標 としてtopや uptimeな どのコマン

ドでロー ドアベレージを見ます。ロードアベレージはシステム全体の負荷

状況を示す指標です。ただし、ロードアベレージだけではボトノンネックの

原因がどこかは判断できません。ロードアベレージの値を皮切りに、ボ ト

ノンネック調査を開始します。

ロードアベレージは低いのにシステムのスループットが上がらない場合

も時折あります。その場合はソフトウェアの設定や不具合、ネットワーク、

リモートホスト側に原因がないかなどを探|り ます。

CPU、 1/0のいずれがボトルネックかを探る

ロードアベレージが高かった場合、次はCPUと 1/0ど ちらに原因がある

かを探 ります。sarや vmstatで 時間経過 とともにCPU使用率や1/0待 ち率

の推移が確認できるのでそれを参考に見極めます。確認後、次のステップ

ヘ進みます。

CPU負荷が高い場合

４

・
ｌ

　

ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

CPU負荷が高い場合、以下のような流れで探っていきます。

・ユーザプログラムの処理がボトルネックなのか、システムプログラムが原

因なのかを見極める。topや sarで確認する

・またpsで見えるプロセスの状態やCPU使用時間などを見ながら、原因とな
つているプロセスを特定する

・プロセスの特定からさらに詳細を詰める場合は、straceで トレースしたり

oprofileで プロフアイリングをするなりしてボトルネック個所を絞り込ん

でいく

一般的にCPUに 負荷がかかっているのは、

・ディスクやメモリ容量などそのほかの部分がボトルネックにはなつていな

い、いつてみれば理想的な状態

章 性 能 向 上 、チ ュ ー ニ ン グ Lmux単 一ホスト、Apache、 MがQL

・プログラムが暴走してCPUに必要以上の負荷がかかつている

のいずれかです。前者の状態かつシステムのスループットに問題があれば、

サーバ増設やプログラムのロジックやアノンゴリズムの改善で対応します。

後者の場合は不具合を取り除き、プログラムが暴走しないよう対処します。

:/0負荷が高い場合

1/0負荷が高い場合、プログラムからの入出力が多くて負荷が高いか、ス

ワップが発生してディスクアクセスが発生しているか、のいずれかである

場合がほとんどです。sarや vmstatに よリスワップの発生状況を確認して

問題を切り分けます。

確認した結果スワップが発生している場合は、次のような点を手掛かり

に探っていきます。

・ 特定のプロセスが極端にメモリを消費していないかをpsで確認できる

・ プログラムの不具合でメモリを使い過ぎている場合は、プログラムを改善

する

・搭載メモリが不足している場合はメモリ増設で対応する。メモリが増設で

きない場合は分散を検討する

スワップが発生しておらず、かつディスクヘの入出力が頻繁に発生して

いる状況は、キャッシュに必要なメモリが不足しているケースが考えられ

ます。そのサーバが抱えているデータ容量と、増設可能なメモリ量を突き

合わせて以下のように切り分けて検討します。

・ メモリ増設でキヤッシュ領域を拡大させられる場合は、メモリを増設する

0メ モリ増設で対応しきれない場合は、データの分散やキヤツシュサーバの

導入などを検討する。もちろん、プログラムを改善して 1/0頻度を軽減す

ることも検討する

以上が、負荷の原因を絞り込むための基本的な戦略になります。これら

を踏まえた上で、「なぜこの手順でボ トノンネックを絞 り込むことができるの

か」を具体的に見ていきましょう。

負荷とは何か

そもそも負荷とは何か、についてさまざまな点から考えてみることにし

ます。

二種類の負荷

一般的に、負荷は大きく二つに分類されます。

・ CPU負荷

・ 1/0負荷

たとえば、大規模な科学計算を行 うプログラムがあったとして、そのプ

ログラムはディスクとの入出力は行わないが、処理が完了するまでに相当

の時間を要するとします。「計算をする」ということからも想像がつくとお

り、このプログラムの処理速度はCPUの計算速度に依存しています。これ

がCPUに負荷をかけるプログラムです。「CPUバ ウンドなプログラム」とも

呼ばれます。

一方、ディスクに保存された大量のデータから任意のドキュメントを探

し出す検索プログラムがあったとします。この検索プログラムの処理速度

はCPUではなく、ディスクの読み出し速度、つまり入出力 (I″″
`/0“
″
“
′、

1/0)に依存するでしょう。ディスクが速ければ速いほど、検索にかかる時

間は短くなります。1/0に 負荷をかける種類のプログラムということで、

「1/0バウンドなプログラム」と呼ばれます。

一般的に、APサーバはDBか ら取得したデータを加工してクライアント

に渡す処理を行います。その過程で大規模な1/0を発生させることは稀で

す。よって多くの場合、APサーバはCPUバ ウンドなサーバであるといえ

ます。

一方、Webア プリケーションを構成するもう一つの要素システムである

DBサーバは、データをディスクから検索するのがおもな仕事で、とくに

データが大規模になればなるほど、CPUでの計算時間よりも1/0に対する

インパクトが大きくなる1/0バウンドなサーバです。同じサーバでも、負

荷の種類が違えばその特性は大きく変わってきます。

４
。
ｌ
　
Ｆ
ヨ
⊆
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ Lin麒単
一ホスト、APache、 wSQL

マルチタスクOSと負荷

Windowsや Linuxな ど近年のマノンチタスクOSは、その名のとおり同時に

複数の異なるタスク=処理を実行することができます。しかし、複数のタ

スクを実行するといっても、実際にはCPUや 、ディスクなど有限なハード

ウェアをそれ以上の数のタスクで共有する必要があります。そこで非常に

短い時間間隔で複数のタスクを切り替えながら処理を進めることで、マノン

チタスクを実現しています (図 4.1.2)。

実行するタスクが少ない状況では、OSは タスクに待ちを発生させずに切

り替えを行 うことができます。ところが、実行するタスクが増えてくると、

あるタスクAが CPUで計算を行っている間、次に計算を行いたいほかのタ

スクBや Cは、CPUが空くまで待たされることになります。この、「処理を

実行したくても待たされている」という待ち状態は、プログラムの実行遅延

となって現れます。

topの出力には「load average」 (ロードアベレージ)と いう数字が含まれます。

load average1 0.70, 0.66, 0.59

ロードアベレージは、左から順に1分、5分、15分の間に、単位時間あた

り待たされたタスクの数、つまり平均的にどの程度のタスクが待ち状態に

あったかを報告する数字です。ロードアベレージが高い状況は、それだけ

タスクの実行に待ちが生じている表れですから、遅延がある=負荷が高い

状況といってよいでしょう。

しかし、ロードアベレージはあくまで待ちタスク数を表すだけの数字な

ので、これを見ただけでは、CPU負荷が高いのか、1/0負 荷が高いのかは

判断できません。最終的にサーバリソースのどこがボトルネックになって

図4.1.2 マルチタスク

カ
ー
ネ
ル

カ
ー
ネ
ル

カ
ー
ネ
ル

カ
ー
ネ

ル

カ
ー
ネ
ル

カ
ー
ネ

ル□轟日

時間

A Ａ

　

・

C ・Ａ

いるのかを判断するには、 もう少し細かい調査が必要です。

・ どの値を見ればOSのボ トルネツクが判断できるのか。それぞれの値はOS
が何を出力した値なのか

・ ロー ドアベレージが表す「待ちタスク」とは、実際に何を待つているタスク

のことなのか

・仮にボ トルネックがわかつたとして、実際どのプロセスが負荷の原因にな

つているのか

を探っていく必要が出てきます。

負荷の正体を知る=カーネルの動作を知る

結局のところ「負荷」というのは、複数のタスクによるサーバリソースの

奪い合いの結果に生じる待ち時間を一言で表した言葉でしかありません。

その正体を知るためには、「タスクが待たされるのはどのような場合か」と

いうOSの挙動、つまりLinuxカーネノンの動作を理解する必要があります。

タスクの待ちを制御するのは、Linuxカ ーネノンの中でも「プロセススケジ

ューラ」(Prm"Sc力
`あ
′ιr)と 呼ばれるプログラムです。プロセススケジュー

ラは、マノンチタスクの制御において、実行するタスクの優先度を決め、タ

スクを待たせたり再開させるというカーネノンの中枢の仕事を担います。こ

のプロセススケジューラの概要を見ていくと、負荷の正体が見えてきます。

プロセススケジューリングとプロセスの状態

「プロセス」(PЮ
“
ss)は 、プログラムがOSに よって実行されているときそ

の実行単位となる概念です。プロセスは、カーネル内部での実行単位を表

す「タスク」(ル sた)と は狭義の意味で区別される言葉ですが、ここではほぼ

同じと思って読み進めていただいても差 し支えありません。

たとえばlsコ マンドを実行すると、lsのバイナリファイノンから機械語命

令がメモリに展開されて、CPUがメモリから命令をフェッチ (ル磁)し実行

していきます。命令を実行するにはlsコ マンドが使用する各種メモリ領域

のアドレス、実行中の命令の位置(プログラムカウンタ、ルOg′″CO″″たr)、

lsコ マンドがオープンしたファイノンの一覧などさまざまな情報が必要にな

ります。これらの情報はばらばらになっているより、実行中のプログラム

４

・
ｌ

　

ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ LmⅨ単一ホスト、Ap“ he、 MySQL

ごとにひとまとめにして扱うほうが都合が良いのは明らかです。プロセス

とは、この「プログラムの命令」と「実行時に必要な情報」がひとまとめにな

ったオブジェクトのことです。

Linuxカ ーネルは、プロセスーつにごとに「プロセスディスクリプタ」

(Prο
“
ss D“

“
P′οr)と いう管理用のテーブルを作成します。このプロセスデ

ィスクリプタに各種実行時情報が保存されます
注1。

Linuxカ ーネノンは、このプロセスディスクリプタ群を優先度の高い順に

並び替えて、もっともらしい実行順でプロセス=タ スクが実行されるよう

に調整します。この調整役が「プロセススケジューラ」です (図 4.1.3)。

スケジューラは、プロセスを状態分けして管理します。たとえば、

O CPUが割り当てられるのを待つている状態

・ デイスクの入出力が完了するのを待つている状態

という具合です。プロセスディスクリプタにはこの状態を保存する領域

(task_struct構造体の stateメ ンバ)があります。状態の区別には表4.1.1の も

のがあります。

スケジューラは各プロセスの実行状態を管理しながら、必要に応じて状

態を変更しタスクの実行順を制御します。これがスケジューリングです。

図4.1.3 プロセススケジユーラ

キュー

↑ /
1 /

プロセススケジューラ

CPU

計算中

実行準備できてるよ

一回休み

Cレ 順番入れ替わり

注1 プロセスディスクリプタは、Linuxカーネルのコード中ではtask_structと いう構造体です。カーネル
ソースのinclude/1inux/sched.hに その定義があります。興味のある方は覗いてみるとよいでしよう。

プロセスの状態選移の具体例

もう少し具体的に見ていきましょう。3つのプロセス●、0、 0を同時

に起動したところを想像します。まず、いずれのプロセスも生成直後は実

行可能状態、つまりTASK_RUNNINGの状態からスター トします。TASK_

RUNNINGは その名前に反 して「実行可能な待 ち状態」であって「いままさ
に実行中」ではないことに注意 してください。

・プロセス● :TASK_RUNN:NG

・プロセス0:TASK_RUNNING

・プロセス0:TASK_RUNNING

TASK_RUNNINGの 3つのプロセスは、すぐにスケジューリングの対象
となります。このとき、スケジューラがプロセス0に CPUの実行権限を割

り当てたとします。すると、

・プロセス● :TASK_RUNNINGか つ実行中
0プロセス0:TASK_RUNNiNG

・プロセス0:TASK_RUNNING

となります。Linuxカ ーネノン内部ではいままさに実行中のプロセスと、実

行可能な待ち状態を区別する状態はありません。ここではこの状態を便宜

表4.1.1 プロセスディスクリプタの状態の区別

TASK RUNNING 実行可能状態。CPUが空きさえすれば、いつでも実行
が可能な状態

TASK_INTERRUPTIBLE 割り込み可能な待ち状態。おもに復帰時間が予測不能
な長時間の待ち状態。スリープやユーザからの入力待
ちなど

TASK UNINTERRUPTIBLE 割り込み不可能な待ち状態。おもに短時間で復帰する
場合の待ち状態。ディスクの入出力待ち

サスペンドシグナルを送られて実行中断になつた状
態。リジュームされるまでスケジユーリングされない

TASK ZOMBI[ゾンピ状態。子プロセスがexitして親プロセスにリー
プされるまでの状態

４
・
ｌ
　
Ｆ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

TASK STOPPED

章 性 能 向 上 、チ ュ ー ニ ン グ
LinⅨ 単一ホスト、Apache、 wSQL

的に「TASK_RUNNINGか つ実行中」とします。

CPUを割り当てられたので、プロセス0は処理を開始します。0と 0は

0が CPUを 明け渡すのを待ちます。

0はいくばくかの計算を行った後、ディスクからデータを読み出す必要

が出てたとしましょう。0はディスクに読み出し要求を出しますが、その

後、要求するデータが届くまでは仕事が続けられません。この状況を「0は

1/0待 ちでブロックされている」といいます。Oは 1/0完了まで待ち状態

(TASK_UNINTERRUPTIBLE)に な るので CPUを 使 い ません。 そ こで、ス

ケジューラは0■ 0の優先度を計算した結果を見て、優先度の高いほうに

CPU実行権限を与えます。

ここでは01よ りも0の優先度が高かったとしましょう。

0プロセス0:TASK_UNINTERRUPTIBLE

Oプロセス0:TASK_RUNNINGか つ実行中

0プロセス0:TASK_RUNN!NG

となります。

0は実行して間もなく、ユーザからのキーボー ド入力を待つ必要が出て

きました。10はキーボード入力を待ってブロックされます。結果0も 0も

入出力待ちとなり、0が実行されます。このとき、0と 0は同じ待ち状態

ですが、ディスク入出力待ちとキーボード入力待ちは異なる状態に分類さ

れます。キーボー ドの入力待ちは無期限かつ長時間の待ちイベント待ち

(TASK_INTERRUPTIBLE)で すが、ディスク読み出しは短期間かつ必ず終

わりがあるイベント待ちであるのが、二つの状態が区別される理由です。

各プロセスの状態は、

・プロセス● :TASK_UNINTERRUPTIBLE(デ イスク入出力待ち/割り込み不可

能)

0プロセス0:TASK_INTERRUPTIBLE(キーボード入力待ち/割り込み可能

・プロセス0:TASK_RUNNINGか つ実行中

となります。

今度はプロセス0を実行中に、ディスクからプロセス●が要求していた

データがデバイスバッファに届いたとしましょう。ハードウェアからカー

ネノンに対し割り込み信号が来て、ディスク読み出しが完了したことをカー

ネルは知ります。カーネルはプロセス01を実行可能状態に戻します。

・プロセス● :TASK_RUNNING

・ プロセス0:TASK_INTERRUPTIBLE

・ プロセス0:TASK_RUNNINGか つ実行中

となります。

この後、プロセス0が何らかの待ち状態になる、たとえば、

O CPU時間をある一定以上使い続けた

・ タスクが終了した

・ 1/0待ちに入つた

などの条件を迎えるのを契機に、スケジューラはプロセス0か らプロセス

●へ実行プロセスの切り替えを行います。

プロセスの状態遷移のまとめ

以上のプロセスの状態遷移を図にすると図4■4のようになります。この

ようにプロセスにはいくつかの状態区分が定義されていて、プロセスはそ

の各状態を遷移しながら必要な計算を行ったり、1/0を 行ったりするわけ

です。システム負荷を理解するにあたって、このプロセスの状態遷移が大

きな意味を持ちます。

図4.1.4 プロセスの状態遷移

~実
行中

TASK RUNNING

甲始再開″中断

実行待ち _ ´起床
TASK RUNNING ~ロ

ロ

Yち

生成

― ― →

４
・
ｌ
　
ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

イベント待ち

章 性 能 向 上 、チ ュ ー ニ ン グ Li叫単一ホスト、Apache、 MがQL

ロードアベレージに換算される待ち状態

プロセス0～0が状態遷移を行う中で、4つの状態がありました。

・ TASK_RUNNINGか つ実行中

・ TASK RUNNING

e TASK INTERRUPTIBLE

O TASK UNINTERRUP丁 !BLE

ロー ドアベレージは「待 ちタスクの平均数」を表す数字でした。4つの状

態のうち「TASK_RUNNINGか つ実行中」以外の3つ は待ち状態です。この

3つ すべてが、待ち状態 としてロードアベレージに換算されるのでしょう

か ?

結論か らいうと、ロー ドアベレージに換算されるのはTASK RUNNING

とTASK_UN!NTERRUP丁 lBLEの 2つのみで、TASK_INTERRUPTIBLEは 換算

されません。つまり、

0⊂PUを使いたいけれども、他のプロセスがCPUを使つていて待たされてい

るプロセス

・処理を続けたいけれども、ディスク入出力が終わるまで待たなければいけ

ないプロセス

の2つが、ロードアベレージの数値となって表現されることがわかります。

いずれの状態も「実行したい処理があるけれども、どうしても待たなけれ

ばいけない」という点が共通しています。一方、同じ待ちでも、キーボード

入力待ちやスリープによる待ちは、プログラムが自ら明示的にそれを待つ

点が異なっており、ロー ドアベレージには含まれません。リモートホスト

からのデータの着信待ちも、相手からいつデータがやってくるかは不明で

あるため、ロードアベレージには換算されません。

ロー ドアベレージとはシステムの負荷を示す指標ですから、つまりは上

記の2点が負荷の原因となる待ち状態であることがわかります。

ロードアベレージが報告する負荷の正体

ハー ドウェアは、ある一定の周期でCPUに割り込み信号と呼ばれる信号

を送 ります。周期的に送 られる信号であることから、「タイマ割り込み」

C″′rル′′″″ηつと呼ばれます。たとえば、CentOS 5で は割 り込み間隔は

4ms(ミ リ秒)に なるよう設定されています。この割り込みごとに、CPUは

時間を進めたり、実行中のプロセスがCPUを どれだけ使ったかという計算

など、時間に関連する処理を行います。このとき、タイマ割り込みごとに、

ロードアベレージの値が計算されます。

カーネルはタイマ割り込みがあったそのときに、実行可能状態のタスク

と1/0待ちのタスクの数を数え上げておきます。その数を単位時間で割っ

たものが、ロードアベレージ値として報告されます。

* * *

ここまでくると、「ロー ドアベレージが報告する負荷」の正体がはっきり

してきます。つまリロー ドアベレージがいう負荷は、

処理を実行したくても、実行できなくて待たされているプロセスがどのぐら
いあるか

であり、より具体的には、

O CPUの実行権限が与えられるのを待つているプロセス

・ デイスク!/0が完了するのを待つているプロセス

であることがわかります。

これはたしかに、直感 と一致します。CPUに負荷がかかるような処理、

たとえば、動画のエンコー ドなどを行っている最中に別の同種の処理を行

いたいと思っても結果が返って来るのが遅かったり、ディスクからデータ

を大量に読み出している間は、システムの反応が鈍くなったりします。一

方、いくらキーボード待ちのプロセスがたくさんあっても、それが原因で

システムのレスポンスが遅くなることはありません。

４
・
ｌ
　
Ｆ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ Linux単
一ホスト、Apachc、 MySQL

TASK_RUNNINGや TASK_lNTERRUPT!BLEな どはカーネルが内部で扱う状態の

区別ですが、ユーザプロセスからもその状態を参照することが可能です。psや

topなどはその情報を整形して表示します。以下はpsコマンドの出力です。

%ps auxw l egrep{STATlhttpd)
USER PID %CPU %MEM VSZ
root
apache
apache
apache

1.7 295256
3.1 366744
3.8 396636
3.9 400188

RSS‐「TY
69020 '
125176 ?
154696 '
158492 '

STAT START
Ss Feb07
R 00:13

5 00:18
5 00:22

10861
18711
18827
18898

TIME COMMAND
O:06/usr/Sbin/httpd
l:14 /usr/Sb■ n/httpd
O:58 /usr/Sbln/httpd
O:42 /usr/Sbin/httpd

STAT列に注目してください。man psに よると、「S」が "lnterruptible sleep‖ 、

り ま りTASK_INTERRUPTIBLEに 相 当 し、「R」は‖Running Orrunnab!e(on
runqueue)・

※1なのでTASK_RUNNINGに相当します※2。 1普段何気なく表示してい

たpsの STAT項が、カーネル内部でのプロセスの状態と対応していることがわか

ります。

・ R(Run):TASK_RUNNING

・ S(S!eep):TASK_INTERRUPTIBLE

・ D(Disk Sleep):TASK_UN:NTERRUPTIBLE

・ Z(Zombie):TASK ZOMBIE

となります。その他の項の対応はpsのマニュアルを参照してください。

※l runqueueはランキュー、実行可能状態プロセスが並′Sヽカーネル内部のキューです。

※2 なお、「Ss」のsはセッションリーダを表すようです。

ロー ドアベレージの計算処理をより具体的にイメージできるよう、少 し

カーネルのコー ドを覗いて見ることにしましょう。ここではLinuxカ ーネ

ノン2.6.23の コー ドを参照 します。

ロー ドアベレージ計算の関数はkerne1/timencの calc_load()で す。この

関数が、ハー ドウェアのタイマ割 り込みごとに呼び出されます。CentOS 5

ではタイマ割り込みの周期は4msで すので、ほぼ4msご とにcalc_load()が

呼ばれていることにな ります。

ロードアベレージ計算のカーネルのコードを見る

fn‐ 1■爺
“
■ ……ps

unsigned long avenrun[3] ;

EXPoRT SYI'1801(avenrun) ;

static intine void catc_toad(unsigned tong ticks)
{

unsigned long active,tasks; 7* fixed-point */
static int count = L0AD FREQ;

count -= ticks;
if (unlikety(count < 0)) {

active_tasks = count_active_tasks() ;
do{

CALC L0AD(avenrun[0], EXP

CALC L0AD(avenrun[1], EXP-
CALC_L0AD(avenrun [2], EXP_

count += L0AD_FREQ;

] while (count < 0);

1, active_tasks);
5, active tasks);
15, active tasks);

cdc_load()の 中ではaverunと い うグローバルな配列に、count_active_

tasks()関数の結果を格納しているのがわかります。count_activc」 asks()と

いう関数名からその時点でシステム内に存在する「ActⅣeな タスク (プ ロセ

ス)の数」を数えていることが伺えます。この「Activeな タスク」とは何でし

ょうか。もう少 し処理を追ってみると、krne1/sched.cの nLactive()関数

にたどり着きます。

unsigned long nr_active(void)
{

unsigned long i, running = 0, uninterruptibte = 0;

each on
runnlng

tine_cpu(j.) {
+= cpu_rq(i) ->nr running;

uninterruptible +== Cpu_rq(1)‐ >nr_uninterruptible;

}

if {unlikely((10ng)uninterruptible く 0))
uninterruptible == 0;

return running ‐卜 uninterruptible;
}

br_each_on‖ ne_cpu()は 、CPUご とに計算をするときに使われるマク

ロです。また、cpu_rq()は CPUに 紐付いているランキュ_江 2を取得する

注2 待ち状態にあるタスクディスクリプタを格納しているキュー。

４
。
ｌ
　
ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ LmⅨ単一ホスト、Apache、 MySQL

マクロです。つまり、ここでは各CPUの ランキューを順番に見ていること

がわかります。そしてランキューから、

. cpu_rq(i)->nr_running

. cpu_rq(i)->nr_uninterruptible

の2つの値を取 り出して合計 したものを返却 しています。名前からも想像

がつ きます が、それ ぞれ ラ ンキ ュー 内 の TASK_RUNNING、 TASK_

UNINTERRUPTIBLEの プロセス数に相当します。

このnr_active()か ら返却 された値は先に見たcalc_load()関 数に渡 り、

1分、5分、 15分単位で計算 した値が averun配列に格納されます。averun

配列に格納された値がロー ドアベレージの正体です。

ユーザプロセスからpЮcフ ァイノンシステムの/proc/loadavgに 読み出し

要求が来ると、カーネルはその時点のavcrun配列の値を整形してユーザ空

間に届けます。出力を確認しておきましょう。

% cat /prOc/1oadavg
O.01 0.05 0.00 4/46 10511

topや uptimeコ マンドは、この出力からロー ドアベレージを取得 し、表

示しています。

タイマ割 り込みごとにロー ドアベレージが計算されて、待ち状態にある

タスクの うちTASK_RUNNINGと TASK_UNINTERRUPTIBLEの 状態の も

のを数え上げている、というのがコー ドのレベルでわかりました。

ロードアベレージの具体的な算出方法を見ていくと、その値がCPU負荷

と1/0負荷を表していることがわかりました。逆にいうと、過負荷でシス

テムのパフォーマンスが劣化する原因は、ほとんどの場合CPUか 1/0ど ち

らかに原因がある、ということを示しています。よって、ロードアベレー

ジを見て対応の必要がありとみなした場合、次はCPUと 1/0ど ちらに原因

があるのかを調べることになります。

ロードアベレージの次はCPU使用率と1/O待ち率

sarで CPU使用率、νO待ち率を見る

ここで、CPU使用率や1/0待ちの割合(1/0待 ち率)の指標が生きてきま

す。これらの指標はsarコ マンドで確認するとよいでしょう。sar(秒 s′ι
“

Ac"り Rψοr``r)は その名のとおリシステム状況のレポートを閲覧するため

のツーノンで、sysstatパ ッヶ―ジに含まれています。

図4.1.5は CPUバウンドなシステムでのsarの実行結果です。

細かな使い方については後述しますが、sarが他のツールよりも優れて

いる点は、負荷の指標を時間の経過とともに比較しながら閲覧できる点で

す。上記では00:00～ 00:40ま での間のCPU使用率の遷移が確認できます。
「%user」 はCPUのユーザモー ドでの使用率です。「%system」 がシステムモ

ードです。ロードアベレージが高く、かつこれらCPU使用率の値が高けれ

ば、待たされているプロセスの負荷の原因はCPUリ ソース不足であると判

断できるでしょう。

CPUのユーザモードとシステムモード

４
。
ｌ
　
ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

CPUのユーザモードとシステムモードとは、それぞれ

・ ユーザモード:ユーザプログラムが動作する際のCPUのモー ド、つまり通
常のアプリケーションが動作するモード

・ システムモード:システムプログラム=カーネルが動作する際のCPUモード

になります。同じCPU使用率でも、ユーザアプリケーションがCPUを使

用したのか、カーネノンが使用したのかで異なる指標として扱われています。

通常のプログラムがCPUに負荷をかける場合、多くはユーザモードでの

図4.1.5 sarの実行例 (CPUパウン

章 性 能 向 上 、チ ュ ー ニ ン グ Lmux単 一ホスト、APache、 wSQL

CPU使用率が高くなります。つまり、ユーザアプリケーションが計算を行

っている状態です。一方、たとえば大量のプロセスやスレッドを動作させ

ている場合、つまリプロセスやスレッドの切り替え回数が多い場合、もし

くはシステムコーノンを呼び出す頻度が高い場合などは、システムモー ドで

の使用率が高くなるでしょう。

CPU時間の違いをイメージしやすいよう、図示したのが図4.1.6で す。

マノンチタスクといってもカーネノンが短い時間でプロセスを切り替えてい

るだけ、というのは本節の冒頭で述べたとおりです。つまり、プロセスが

切り替わるタイミングでは必ずカーネノンが動作することになります。また、

システムコーノンを発行すると、ユーザプログラムからカーネルヘと実行状

態が遷移します。

次に、1/0バ ウンドなサーバでの s額の結果を見てみます (図 4.1.7)。

「%lowait」 は1/0待 ち率です。ロー ドアベレージが高 く、かつここの値が

高い場合は、負荷の原因が1/0で あると判断できます。

l.8.e15

all

図4.1.6 CPU時 間の違い

ユーザモード

r .

r _.‐ 1●´́
時間

システムモード

カ

ー
ネ

ル

カ
ー
ネ
ル

カ
ー
ネ
ル

カ
ー
ネ
ル

カ
ー
ネ
ル

カ
ー
ネ

ル

図4.1.7 sarの実行例 (1/0バウンドなサ

1/0バウンドな場合のsar

00:00:01

00:10101

00120101

00130:01
00:40101

Aveに age:

量
８８
８４
９９
０９
一４５

鳴
２
．
２
．
＆
■
・％

■Ю
．つ
２
１
一
１
１

一「

・
　

―
　
　
　
．

ｅｍ

２２

００

６６

５０

３４

%idte
‐59,76
61.01
.61.19

78.30

65.07

A CA

CPU、 1/0いずれかに原因があることがわかったら、そこからさらに詳

細に調査していくためにほかの指標、たとえばメモリの使用率やスワップ

発生状況などを参照していきます。

このように、ボトノンネックを見極める際は、ロードアベレージなどの総

合的な数字から、CPU使用率や1/0待 ち率などのより具体的な数字、さら

には各プロセスの状態へとトップダウンで見ていく戦略が有効です。何を

どのような順番で見ていくかの方針は、カーネノン内部の動作と、報告され

る値の計算方法がわかっていれば自明です。繰り返しになりますが、負荷

を知るということは、カーネノンの動作を知るということなのです。

昨今のx86 CPUア ーキテクチャは、マノンチコア御回″̂cο″)化が進んでい

ます。マルチコアになると、たとえcPuが物理的に1つでもOSか らは複

数のCPUが搭載されているように見えます。Linuxカ ーネノンは、CPU使用

率統計をそれぞれのCPUご とに保持するようになっています。確認してみ

ましょう。

sarの ‐Pオ プションを利用します。図4.1.8は、コアが4つのクアッドコ

アCPU(Q″α′Oκ CPの が搭載されたサーバでのsarの結果です。

各 CPUにはCPU IDと いう連番の数字が付いており、出力のCPU列で確

認できます。各CPUご とに使用率の統計が得られています。

マルチ CPUと CPU使用率

図4.1.8 sar‐Pの実:行例1(CPU′

４
・
ｌ
　
ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

t sar
Linux

‐P ALL

CPU

all .

章 性能向上、チューニング LinⅨ単一ホスト、
～
ache、 wSQL

これはCPUバウンドなサーバですが、1/0バ ウンドなサーバでの結果を

見てみましょう。まずは‐Pオ プションは用いずに総計だけを見てみます (図

4.1.9)。

1/0待ち(%lowait欄)が、平均して20%前後であることが確認できます。

このサーバは、コアが2つのデュアノンコアCPUを 利用しています。sar‐ P

で個別に見てみます (図 4.1.10)。

結果は少し意外です。1/0待 ちはほぼCPU O番だけで発生しており、CPU

l番はほとんど仕事をしていないことがわかります。

マノンチCPUが搭載されていても、ディスクは 1つ しかない場合、CPU負

荷はほかのCPUに分散できても1/0負荷は分散できません。その偏りがsar

の結果となって現れています。平均すると1/0待 ちは20%程度とそれほど

多くないようにも見えますが、CPUご とに見るとその値の偏りが顕著に現

れます。マノンチコア環境では、場合によってはCPU使用率を個別に見てい

く必要があるといえます。

回□墨回目回□國困圏口暉⑮鯰財顆颯躙輻瘍:
%Sar i head
Linux 2.6.18‐ 3.1.8.e15{takehira・ hatena・ ne.ip)02/08/03..

00:00:01

00:10:01

00120:01

00130:01

CPU

all

all

all

%user %nice %system

O.14 0.00 17.22

0.15 0.00 16.001

0.16 0.00 19.66

%user

O.14

0.28

0.00

%steal %ldle”

２２

２２

１８

“

“

“

る

０

”

図4.1.10 sar‐ Pの実行例 (lノ0バウンドなサーバ、

亀 sar ‐P ALL l head
Linux 2.6.18‐ 3.1.3.e15

CPU∞
∞
∞
∽
∞
匈
匈

all

0

1

%steal %idle
1 0,00 59.76

0.00

a11 0.15

0 .0.30 .■

1 0.00

20.10

99.42

61.01
22.51

CPU使用率の計算はどのように行われているか
ロードアベレージに同じく、CPU使用率の計算が具体的にどう行われて

いるかを知っておけば、sarや topの結果を分析するのに役立つでしょう。

また、今見たように「何を知りたい場合にマノンチコアの指標をCPU別に見
る必要があるのか」も明確になります。

CPU使用率の算出は、ロードアベレージに同じく、タイマ割り込みを契

機にカーネノン内部で行われます
注3。

ロードアベレージは、CPUに 紐付 くランキューが保持しているプロセス

ディスクリプタの数を数えていました。また、ロードアベレージの値が保

存される領域は、カーネノン内のグローバノンな配列でした。

一方、CPU使用率は少し様子が異なります。CPU使用率の計算結果は、

グローバノンな配列などではなく、各CPU用に用意された専用の領域に保存

されます
注4。 CPUご とにもった領域にデータを保存しているからこそ、sar

などでCPUご との情報が得られるわけです。

カーネルは、プロセス切り替えのために、各プロセスが生成されてから

どの程度CPU時間を利用したかを、プロセスごとに記録しています。「プ

ロセスアカウンティング」(P“
“
sA“ο夕″″暉)と 呼ばれる処理です。そして、

このプロセスアカウンティングによって得られた記録を元に、スケジュー

ラはCPU時間を使い過ぎているプロセスの優先度を下げたり、ある一定以

上計算を行ったら別のプロセスにCPUを明け渡すような作業を行っていま

す。

この「各プロセスがどういう時間を過ごしたかの記録」をCPUご との合計

として足し込んでいけば、CPUが どの程度、何に時間を使ったかがわかり

ます。そして、単位時間の間での計算結果に変換すれば、CPU使用率など

の値が算出できます。

ここで重要なのは2つ、次のような対比です。

注3 シングルコアとマルチコアで利用する割り込み信号が異りますが、いずれにせよハードウェアが同期
的に発生させる信号を利用してるのには変わりません。

注4 より具体的には、カーネル内部のcpu_usage_stat構 造体です。

４
・
ｌ
　
ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ単一ホスト、Apachc、 ゅ SQL

・ロードアベレージはシステムグローバルな計算結果である

・ CPU使用率や1/0待ち率は、種類ごとかつCPUごとに保存された計算結果
である

ここから、2つの指標の違いがはっきりします。

・ ロードアベレージはあくまでシステム全体での負荷の指標となる値であり、

それ以上の細かい分析はできない

・ CPU使用率や 1/0待ち率は、全体の総計としてレポー トされるが個別に見

ていくことができる。またその必要がある

概要がつかめたところで、より確実に理解するために、プロセスアカウ

ンティングの実際のコードも見ておきましょう。まず、include/1inux/kerneL

stat.hに 定義されているcpu_usage_stat構 造体とkerne:_stat構 造体を見て

みます。

struct cpu_usage_stat {
cputime64 t user;
cputime64_t nice;
cputime64_t system;
cputime64_t softirq;
cputime64_t irq;
cputime64_t idle;
cputime64 t iowait;
cputime64_t steat;

1.
It

struct kernet_stat {
struct cpu_usage_stat cpustat;
unsigned int irqsINR_IRQSI ;

);

DECLARE PER CPU(struct kernel stat, kstat)i

この構造体が、計算で算出されたCPU使用時間などを記録、保持する領

域です。

cpu_usage_statの 中を見ると、sarで 表示 している項 目そのまま、userや

system、 lowaitな どのメンバが確認できます。このcPu_usage_stat構 造体は

krnd_stat構造体の中に含まれており、そのkrnd_stat構造体はDECLARE_

プロセスアカウンティングのカーネノンコードを見る

PER_CPU()マ クロによりCPUご とに用意されることがわかります。

プロセスアカウンティングの実際の処理は、kcrne1/timer.cの update_

process_times()に 定義されています。この関数がタイマ割り込みごとに

呼び出されます。updde_PЮ cess_times()内 では、カレントプロセスが直前

のプロセスアカウンティング処理から現在までの間、何をしていたかを判

定して、統計情報をアップデートします。

void update_process_times(int user tick)
{

struct task_struct +p = current;
int cpu = smp_processor_id0;

/* Note: this timer irq context must be accounted for as welt, */
if (user_tick)

account_user_time(p, jiffies_to_cputime(1)) ;
etse

account_system_time(p, HARDIRQ_0FFSET, jiffies_to_cputime(1)) ;

<+Es>

まず、currentマ クロでカレントプロセスのプロセスディスクリプタを取

得します。そして、user_tickの値を見て処理を分岐します。user_tickは 直

近の時間がユーザ時間だったのか、システム時間だったのかを判定するフ

ラグです。

結果、その時間がユーザ時間であればaccountuser_time()を 呼び、そ

うでなければaccount_system_time()を 呼びます。accountusettime()

を見てみましょう。

void account_userjime(struct task_struct *p, cputime_t cputime)
t

struct cpu_usage_stat *cpustat = &kstat_this_cpu,cpustat;
cputime64_t tmp;

p->utime = cputime_add(p->utime, cputime) ;

/* Add user time to cpustat. */
tmp = 6pu1ir._to_cputime64(cputime) ;if (TASK_NICE(p) > 0)

cpustat->nice = cputime64_add(cpustat->nice, tmp) ;

else
cpustat->user = cputime64_add(cpustat->user, tmp) ;

)

４

・
ｌ

　

ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュー ニ ング LmⅨ単一ホスト、Apaぬ e、疇 SQL

引数で渡ってきた「P」 は、カレントプロセスのプロセスディスクリプタ

です。

まず、この処理を実行しているCPU用のcpustat構造体を取得します。次

に、cPutime_addマ クロを使ってカレントプロセスのutimeメ ンバを更新し

ます。これで、このプロセスがどの程度ユーザモードでcPU時間を消費し

たかの値が更新されます。次に、cpustat構造体のniceも しくはuser値 に対

してcPutime64_addマ クロで、同じように経過時刻を足し込みます。

一方のaccount_system」 ime()は どうでしようか。

void account_system_time(struct task_struct *p, int hardirq_offset,
cputime_t cputime)

{
struct cpu_usage_stat *cpustat = &kstat_this-cpu.cpustat;
st ruct rq * rq = this_ rq () ;
cputime64_t tmp;

p->stime = cputime_add(p->stime, cputime);

/* Add system time to cpustat. */
tmp = 6pr1ir._to_cputime64(cputime) ;if (hardirq_count() - hardirq_offset)

cpustat->irq = cputime64-add(cpustat->irq, tmp) ;

else if (softirq_count0)
cpustat->softirq = cputime64_add(cpustat->softirq, tmp) ;

else if (p != rq->idle)
cpustat->system = cputime64_add(cpustat->system, tnp) ;

else if (atomic_read(&rq->nr_iowait) > 0)
cpustat->iowait = cputime64_add(cpustat->j,owait, tmp) ;

else
cpustat->idle = cputime64_add(cpustat->idle, tmp) ;

/* Account for system time used */
acct_update_integ rats (p) ;

)

こちらも同様な処理を行うのですが、先のupdde_process_times()で は

「ユーザモードで仕事してなければシステムモードで仕事をしている」とい

う大雑把な条件分岐しかしていませんでした。実際には、ユーザモードで

仕事をしていない場合には、何もしていないアイドル状態、システムモー

ドで計算をしていた時間、1/0を待っていた時間などがあります。それら

の判定を行って、必要なcPu_usage_statの項目を更新しています。

* * *

やや複雑でしたが、CPU使用率統計の更新処理を見てきました。sarや

Zwvl'LZ"atZ

topが示すそれぞれの指標が、具体的に何を表す指標なのかがはっきりし

たと思います。

話は少し脱線しますが、プロセスとスレンド(勧″α′)についても少し触

れておきましょう。

一般的にスレッドは、プロセスよりも細かな実行単位です。プロセスの

中で複数のスレッドを動作させることができます。いわゅるマノンチスレツ

ドです。1つのプログラムで同時並行的に複数の処理を行いたい場合の実

装テクニックとしては、

・プロセスを複数生成して実行コンテキストを複数確保する(→マルチプロセス)

・スレッドを複数作成して実行コンテキストを複数確保する(→マルチスレッド)

という手が取られます
注5。 MySQLはマノンチスレッドにより複数のクライア

ントからの要求を同時にこなしますし、Apacheは MPMに「preお rk」 を選ぶ
とマノンチプロセス、「wOrker」 を選ぶとマノンチプロセス十マルチスレツドで

動作します。

マノンチプロセス (図 4.1,11)と マノンチスレッド(図 4.1.12)の決定的な違い

は、前者はメモリ空間を個別に持つのに対し、後者はメモリ空間を共有す

る点です。よって、メモリの使用効率は後者のほうが高く、またプロセス

切り替えの際にメモリ空間の切り替えが発生しないぶん、そのコストが低

く抑えられます。大量の実行コンテキストを必要とするプログラムでは、

マノンチスレッドを採用するほうが有利です。

カーネル内部におけるプロセスとスレッド

ただし、以上はあくまでユーザから見たプロセスとスレッドの違いです。

カーネノン内部では、プロセスとスレッドはほぼ同じものとして扱われま

す。スレッド1本に対してプロセスディスクリプタ1つがあてがわれ、プロ

注 5 ほかには、シングルスレツ ドでイベン トドリブンで処理を行う方法もあります .

４

。
ｌ

　

Ｆ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー
ニ ン グ Linux単一ホスト、Apache、 MySQL

セス とスレッドはまったく同じロジックでスケジユーリングされます。し

たがって、マノンチスレッドアプリケーションを動作させる場合でも負荷計

測の仕方は変わりません。

なお、スレッドはカーネノレ内部では EWP=Light Weight PrOCeSS、 軽量

プロセスと呼ばれることがあります。

psとスレッド

カーネルにとってはプロセスとスレッドは同じですが、ユーザから見た

スレッドは、プロセスの中で動作する実行コンテキストです〇つまり、ス

マルチプロセス(メモリ空間は別。コピー)※

スタック

テキスト

データ

ヒープ

親
※ sP:ス タックポインタ、PC iプ ログラムカウンタ。

do_ hoge: : i
do hoge: : j

Ｐ

　

Ｃ

Ｓ

　

Ｐ

main (

do_ h

dof

ＳＰ

　

ＰＣ

do hoge: : i
do hoge: : j

i■→

子

仮想アドレス空間
レジスタ

図4.1.11

レジスタ

図4.1.12 マルチスレッド(メモリ空間同一)

do fuga: : k
do fuga: : L

ＳＰ

　

ＰＣ

'do_ hoge: : i
do_ hoge: : j

Ｐ

　

Ｃ

Ｓ

　

Ｐ

main ()

do hoge()

do fuqa ()

スレツド2

スレツド1

仮想ア

テキスト

データ

ヒープ

レジスタ

レッドはプロセスよりも小さな概念で、プロセスはスレッドを包含します。

マノンチスレッドのスレッドすべてをpsで一覧する場合には、オプションが

必要です。

たとえばmysqldのプロセスを見た場合、図4.1.13の ように2本のプロセ

スのみしか表示されません。ここで図4.1.14の ようにpsに ‐Lオ プションを

付けます。

表示される行が増えました。増えた分が、スレッドです。ヘッダの「PID」

と「LWP」 の列に注目してください。PIDは プロセスIDですが、mys」dの

プ ロセ ス IDは すべ て 同一 です 。 一 方 の LWPは ス レ ッ ドIDで す 。 プ ロセス

IDが同一 で ス レ ッ ドIDが異 な っ て い る こ とか ら、 これ らス レ ッ ドが単 一

-etf legrep (CI,1D

STIME TTY

safe

O ‐ 100738

%pS― etf― ||l egrep
F S uID . ‐||I PIDI P

TIME CMD‐ _・・|・・・・■|■ |.|

.‐4 S root ・ ‐_・ 3297

00:00:00 /bin/sh /usr

PRI NI ADDR SZ_

'/bin/mysq

3297 3329

101251

. 3333 0 37 75 . 0 ‐ 101251

STIME ■
　

．
？

4 S mysqt

00:11:23 /us

44 /usr

Jan25 '

3329 3297..‐ 3334 0

酬
　
　
　
・ｍ

●
●

一
醐
　
　
　
帥

０

一
　

・
つ

図 4.1.14

４
。
ｌ
　
Ｆ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

0 - 13260 wait Jan25 ?

stext Jan25 ?

. LWP

1 5 mysql

00100:00

く以下略,

章 性 能 向 上 、チ ュ ー ニ ン グ
LinⅨ単一ホスト、Apache、 MySQL

のプロセス内で生成された複数のスレッドであることがわかります。

「NLWP」 (N′″ι
`rげ
LWPs)はスレッド本数です。mys゛d_satはスレッド

1本、つまり自分自身だけであるのに対し、mysddは スレッドが37本生成

されているのがわかります。

LinuxThreadsと NPTL

ところで、Linuxの マルチスレッド実装は歴史的経緯により複数の実装

があります。現在は「NPTL」 (N′ r'νa POSIX ttraα′L′♭解ッ)1本に統合されて

いますが、少 し古いディス トリビューションな どでは別の実装である

「LimⅨ■ reads」 が採用されている場合があります。

Linuxlllreadsも NPTLも ほとん ど変わらないのですが、psで 閲覧した場

合に、LinuxThreadsは ほぼプロセスと同じように表示されるという違いが

あります。NPTLは ‐Lオ プションなしではスレッドを確認できないのです

が、Linuxlhreadsは ―Lオ プションなしでもスレッドが確認できてしまいま

すので、混乱 しないよう注意 してください。

脱線した話を元に戻します。ここまでで、

・負荷計測の基本戦略

・ ロー ドアベレージが算出される過程

O CPU使用率が算出される過程

を見てきました。ここまで理解できれば、ツールが出力する各指標をどの

ように見るべきかは明確になっていることでしょう。以上の知識を前提に、

ps、 sar、 vmstatの 見方を少し掘り下げていきます。

ps…・̈プロセスが持つ情報を出力する

ps(Rψοr`PЮ
“
Stグ′S)はプロセスが持つ情報を出力するソフトウェアで

す。すなわちカーネノン内部が保持するプロセスディスクリプタに保存され

た各種情報に、ユーザ空間からアクセスするツールであるといえます。

s、 s額、vn霞試の使い方

ps auxwの 表示を確認しましょう(図 4.1.15)。 主要なカラムの意味を見て

いきます。

0%CPU:psコマンドを実行した際のそのプロセスのCPU使用率

・ %MEM:プロセスがどの程度物理メモリを消費しているかを百分率で表示
する

・ VSZ、 RSS:それぞれ、そのプロセスが確保している仮想メモリ領域のサイ
ズ、物理メモリ領域のサイズ(詳しくは後述)

・ STAT:先に解説したとおり、プロセスの状態を示す。非常に重要な項目で
ある

・ TIME:CPUを使つた時間を表示する項目(詳しくは後述)

VSZと RSS……仮想メモリと物理メモリの指標

VSZ(Ⅵr″αI S″ S′zι)はプロセスが確保した仮想メモリ領域のサイズ、RSS

(R西ル″′S`′ S姥)は物理メモリ領域のサイズですが、なぜ2つのメモリの指

標があるのでしょうか。

Linuxに 限らずマルチタスクOSの重要な機能として、仮想メモリ機構が

あります。「仮想メモリ」(И r′
“
αI Ma″οッ)と は、プログラムがメモリを使用

するにあたって、物理的なメモリを直接扱わせるのではなく、物理メモリ

を抽象化したソフトウェア的なメモリを扱わせる機構です。ハードウェア

RSS TTY

ｐＳ

ＥＲ

Ｏｔ

∝

Ｏｔ

碗

僕

杖

．

図 4.1。 15 auxwの確認

４

・
ｌ

　

ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

COMMAND

in■ t

0.0■ .0_‐

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ単
一ホスト‐ ache、 MySQL

が提供する「ページング」(Pαg′埓)と 呼ばれる仮想メモリ機構を使って実現

し、OSがその仮想メモリ領域の管理を行います。

あるプロセスが、適当なサイズのメモリを必要としているとしましょう。

ユーザプロセスはマルチタスクのシステム保護の関係で、直接ハードウェ

アを触ることはできませんから、いったん処理を停止してカーネルにメモ

リ確保を依頼することになります。

カーネルはプロセスに割り当てるメモリを確保しなければいけないので

すが、このとき本物の物理メモリ領域のアドレスを渡すのではなく、仮想

的なメモリのアドレスを渡します。プロセスはカーネノンから返って来た仮

想メモリのアドレスを本物のアドレスであると思い込み、処理を再開しま

す。

ここで重要なのは、カーネノンがプロセスに返却する仮想メモリ領域は、

実際にはこの時点ではまだ物理メモリとは結び付けられていない、いわば

実体のないメモリ領域である点です。プロセスがカーネノンからもらったそ

の新品の仮想メモリ領域に対して書き込みを行った時点ではじめて、物理

メモリ領域との対応付けが行われます (図 4.1.16)。 いわばカーネルは、仮

想メモリという抽象レイヤによって、プロセスを(良い意味で)だましてい

るのです。

仮想メモリ機構によって得られる恩恵は非常に大きく、マルチタスクOS

を支える重要な役割を担います。たとえば、以下のような点が挙げられま

す。

仮想メモリ

メモリがほしい

プロセス 物理メモリカーネル

りとのマッ

図4.1.16 仮想メモリ

VSZ

・ 本来物理メモリに搭載されている容量以上のメモリを扱えるかのようにプ

ロセスにみせかけることができる

・ 物理メモリ上ではばらばらにの領域を連続した一つのメモリ領域としてプ

ロセスにみせかけることができる

・ それぞれのプロセスに対して、プロセスごとに独立したメモリ空間を持つ

ているように見せかけられる

・ 物理メモリが不足した場合は、長時間使われていない領域の、仮想メモリ

と物理メモリ領域の対応を解除する。解除されたデータは二次記憶装置 (デ

ィスクなど)に退避してまた必要になつたときに元に戻す。いわゆる「スワ

ツプ」(S″′p)

・異なる2つのプロセスが参照する仮想メモリ領域を、同一の物理メモリ領

域に対応させることで、2つのプロセスでメモリの内容を共有する。lPC注
6

共有メモリなどはこの方法で実装される

もといVSZと RSSは、それぞれこの仮想メモリ領域と物理メモリ領域の

大きさを表す指標です。したがって、たとえばスワップが発生している場

合は物理メモリが不足している証拠ですから、RSSのサイズを見て極端に

大きなプロセスがないかなどを探っていけばよいことになります。

TIMEは CPU使用時間

丁IMEは時間を表す指標ですが、これはプロセスが実際にCPUを 使った

時間を表示する項目です。プロセスが生成されてからの経過時間ではない

ことに注意してください。

プロセスが実際にCPUを 使った時間とは何か。もうお気づきでしょう。

先にプロセスアカウンティング処理の詳細で見た、プロセスディスクリプ

タに記録されたCPU使用時間のことです。よって、たとえばCPU負荷が

極端に高いシステムがあったとき、psの TIME項 を調べれば、どのプロセ

スがCPUを たくさん使っているかを見分けることができます。

ブロッキングとビジーループの違いをpsで見る

ここでCPU時間についての理解を深めるために、一つ実験をしてみまし

４

・
ｌ
　

ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

注6 inter Process Communicationの 略。プロセス間通信〈機能)。

章 性能向上、チューニング LinⅨ単一ホスト、ゃache、 wSQL

ょう。無限ループする2つの Rubyスクリプトを動かして psで そのプロセス

の挙動を確かめます。1つ めのスクリプ トはリス ト4.1.1。 ひたすら足 し算

を行 うスクリプト(busy_loop.お)です。 リス ト4.1.1の スク リプトを実行 し

てしばらくしてからpsの結果を見てみましょう(図 4.1.17)注
フ
。

注 目してはしいのは、状態を表す「S」 のカラムと「TIME」のカラムです。

リス ト4.1.1の スクリプ トはひたす らCPUで加算演算を行 う無限ループな

スク リプトで、イベント待ちに入るような処理はありません。よって状態

は常に「TASK_RUNNING」 ですので S列 は「R」 を示 します。またCPU時 間

を延々と消費するのでTIMEの値が時間 とともに増えていきます。この手

の、ひたす らCPUの 演算処理を繰 り返すノンープを「ビジーノンープ」(B″ツ

LO")と 呼びます。

一方、リス ト4.1.2は どうでしょうか。ユーザのキーボー ド入力をそのま

ま標準出カヘオウム返 しするスクリプ ト(blocking.rb)です。psの結果は図

#l/usrlbin/env ruby

i=0
while true

i += 1

end

% ps ‐fl ‐C ruby

F S UID PID C

O R naoya 10640 69

TI‖E CMD

00:00123 ruby busy_ oop.rb

饉 回 □1団固■■■ |■■躍輔辣濶陽躙蒻輻躙躙 :1奎‐

.#!/usr/bin/env ruby _‐ `| | _‐ .|‐・ . . .‐ .

注フ オプションにBSD形式のauxwではなくSysV形式の-1を指定しているので出力が先ほど解説したも
のと少々異なりますが、見られる情報には大差ありません。

1回□■:國:罰回:国璽回目1回雷調目1目ロロl国腱

while true
puts gets

end

4.1.18の ようにな ります。

キーボー ド入力を待ってブロックされているので、状態は「S」 、つまり

「TASK_INTERRUPTIBLE」 です。また、このプロセスは待機状態になって

いる限りCPU時間を使いません。よって、どれだけ待っていてもTIMEの

値が増えることはありません。

同じ無限ノレープでも、ビジーノレープの場合 とブロックされた場合では動

作が異なり、その結果がpsの項 目になって現れます。プロセスの状態遷移

や CPU使用時間の計算方法が理解できれば、各項 目をどう読めばよいかは

自明です。

sar・……OSが報告する各種指標を参照する

OSが報告する各種指標を参照するツーノンはいろいろとありますが、中で

も汎用的で便利なのがsar(シ並″A`″νり R9οttr)で す。

sarは sysst江 パッケージに含まれているコマンドで、2つの使い方があり

ます。

・過去の統計データに遡つてアクセスする(デフォルト)

。現在のデータを周期的に確認する

sarに はsadcと いうバックグラウンドで動くプログラムが付属していて、

SがSt誠パッケージをインストーノンすると、自動でsadcがカーネノンからレポ

ートを収集して保存してくれるようになっています。先に見たように、sar

コマンドをオプションを付けずに実行すると、sadcが集めたCPU使用率の

過去の統計を参照することができます。

デフォノントでは、直近の0:00か らのデータが表示されます。さらに遡っ

て昨日以前のレポートを見たい場合は、図4.1.19の ように―fオ プションで

ノvar/1og/saデ ィレクトリに保存されたログファイノンを指定します。

図4.1.18 の実行例 (

４
・
ｌ
　
ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ 単
一ホスト、Apache、 MySQL

この過去のデータを閲覧する機能は非常に重宝します。たとえば障害が

あった後など、障害が発生した原因を探る場合に障害発生時間帯のデータ

が役に立ちます。また、プログラムを入れ替えた後などのパフォーマンス

の変化はsarの データをしばらく取って、プログラム入れ替え前後を比較

することで確認できます。

過去のデータではなく、今現在のデータが見たい場合はsar l 1000と 数

字を引数に与えます。「11000」 は「1秒おきに 1000」 という意味です。

図4.1.20の ように、1秒おきにCPU使用率を閲覧できます。今そのとき

システムで何が起こっているかを確認するのには、多くの場合、sarの こ

の機能を使 うことでカバーできます。

sarは オプション指定で、CPU使用率以外にもさまざまな値を参照でき

るようになっています。多数のレポートが閲覧できますが、以降ではよく

使うものだけに絞って紹介します。なお、―Pオ プションでCPUご とにデー

タを閲覧することができるのは、前述のとおりです。

sar― u・… C̈PU使用率を見る

デフォノントで表示されるCPU使用率などの情報は、sar― u相 当です (図

4.1.21)。 各列の指標は、

t sar -f lvarllog/salsag4 I head

Linux 2 ,6 . 19 . 2 - 103 . hatena . centos5 (goka . hatena . ne . j p) 02/04/08

00100:01

00:10:01

00:20:01

00:30:01

00:40:02

CPU

all

all

all

all

%nice
0.00
0.00
0 .00
0.00

%system %lowait

2.16

2.04

1,94

1,95

tsteal
0.00
0.00
0.00
0.00

%idle
り

”

９

９

“

“

”

２ｌ

Ю
ｍ

”

饉l□l困■:■l目麗:蛋i目:薇l熙:鶴量吻塚躙蒻躙隋輻粽:||:|:嬢||1薫::燕■:
%sar 1 3 .|‐ ■ ‐‐ . .
Linux 2.6.19.2‐ 103.hatena.centos5 (90ka‐

16:13:32

al1 2.04

al1 2.27

16:13:33 al1 2
al1 2.Average

28

20

sar‐fの実行例

%system %■ owa■ t.

3.56 3.82
2.02 1.26

2,03~ 1.52
2.54 2.20

%stea1

0 ,00
0.00
0. 00
0. 00

%nice
0. 00

0 .00
0.00
0.00

・ user:ユ ーザモー ドでCPUが消費された時間の割合

・ nice:niceで スケジューリングの優先度を変更していたプロセスが、ユー

ザモードでCPUを消費した時間の割合

・ system:シ ステムモードでCPUが消費された時間の割合

・ iowait i CPUが ディスク!/0待ちのためにアイドル状態で消費した時間の割

O steal:Xenな どOSの仮想化を利用している場合に、ほかの仮想CPUの計
算で待たされた時間の割合

・ id!e:CPUがディスク 1/0な どで待たされることなく、アイドル状態で消費
した時間の割合

とな ります。これまで見たように、負荷分散を考慮するにあたっては user/

s「tem/iowait/ideの 値が重要な指標 とな ります。

sar― q ・…ロードアベレージを見る

―qを指定すると、ランキューに溜まっているプロセスの数、システム上

のプロセスサイズ、ロードアベレージなどが参照できます (図 4.1.22)。 値

の推移を時間とともに追える点が、ほかのコマンドよりも便利です。

%sar-u13
Linux 2.6.19.2‐ 103.hatena.centos5 (

16:19114 CPU %user %idle

16:19115 83.37

16:19:16

16:19117 81.50
19.42 79.00

al1 14.89

al1 26.37

図4.1.22 sar

４

・
ｌ

　

ｒ
３
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

性 能 向 上 、チ ュ ー ニ ン グ Linux単一ホスト、APaぬ e、 MySQL

sar¨ r・……メモリの利用状況を見る

―rを指定すると、物理メモリの利用状況を一覧することができます。図

4.1.23は 、4GBの物理メモリを搭載したサーバでのsar‐ rの結果です。各

列のkbmemfreeや kbmemusedの「kb」 はKllobメ eの略です。おもな項目の意

味を以下に記します。

・ kbmemfree:物 理メモリの空き容量

・ kbmemuserd:使用中の物理メモリ量

O memusedi物 理メモリ使用率

・ kbbufFers:カーネル内のバッフアとして使用されている物理メモリの容量

・ kbcached:カ ーネル内でキヤツシュ用メモリとして使用されている物理メ
モリの容量

O kbswpfree:ス ワップ領域の空き容量

・ kbswpued i使用中のスワップ領域の容量

sar‐ rを使うと、時間推移とともにメモリがどの程度、どの用途に使わ

れていくかを把握できます。後述のsar‐ Wと 組み合わせると、スワップが

発生した場合に、その時間帯メモリ使用状況がどうであったかを知ること

ができます。

sar― rの実行例 (一部カラム省略)‐

t sar -r I head

Linux 2. 6, 19. 2- 103. hatena. centos5 (koesaka. hatena. ne. j p) 02/03/08

kbcached00:00:01

00:10:01
00:20:01

00:30:01
00:40101
.00:50:01

01:00101
01:10:01

534972

437964

491184

491208

457364

453172

3442564

3539572

3486352

3486328

3520172

3524364

86.55

88.99

87.65

87.65

38.50

88.61

kbmemfree kbmemused %1lemused kbbufferS.

522724 3454812 86.86 ・_114516

.kbswpused

1/0負荷軽減とページキャッシュ

ところで、先の図4.1.23で は「%memused」 が90%近 くの数字を示し、空

き容量はわずか500MB(M"α妙″)程度です。また時間を追うごとに空き容

量であるkbmem“ eの数字は少なくなっていっており、このままではメモ

リ不足になってしまうかのようにも見えます。しかし、ここでLinuxの「ペ

ージキャッシュ」(PαF C“み
`)の
存在を忘れてはいけません。

Linuxは 、一度ディスクから読み出したデータは可能な限リメモリにキ

ャッシュして、次回以降のディスクリード(D′ sた R滋′)が高速に行われるよ

う調整します。このメモリに読み出したデータのキャッシュは「ページキャ

ッシュ」と呼ばれます。

Lhuxはメモリ領域を4KB(【わ妙姥)の塊に区切って管理します。この4KB

の塊は「ページ」ωttθ)と 呼ばれます。ページキャッシュは、その名のとお

リページのキャッシュです。つまり、ディスクからデータを読み取るとい

うのは、ページキャッシュを構築することにほかなりません。読み出した

データは、ページキャッシュからユーザ空間へ転送されます。

Linuxの ページキャッシュの挙動で覚えておくべきは、「Linuxは可能な

限り空いているメモリをページキャッシュに回そうとする」というポリシー

です。つまり、

・何かディスクからデータを読んで、

・ まだそれがページキャッシュ上になく、

0かつメモリが空いていれば、

・ (古いキヤッシュと入れ替えるのではなく)いつでも新しいキャッシュを構

築する

のです。キャッシュ用のメモリがなければ、古いキャッシュを捨てて新し

いキャッシュと入れ替えます。また、プロセスがメモリを必要とした場合

は、ページキャッシュよりも優先的にメモリが割り当てられることになり

ます。

sar‐ rの結果で、時間を追うごとにkbmemieeが 減っていくのはページ

キャッシュが理由です。その証拠に、ページキャッシュに割り当てたメモ

４

・
ｌ

　

ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ Lmu単 一ホスト、Apache、 MパQL

り容量に相当するkbcachedの値は、徐々に増加しています。

ベージキャッシュによる:/0負荷の軽減効果

ページキャッシュの効果は、どの程度期待できるのでしょうか。結論だ

け述べると、完全にデータがメモリに載るだけの容量があれば、ほぼすべ

てのアクセスはメモリから読み出しを行うことになるので、プログラムで

メモリ上にファイルの内容をすべて展開した場合と変わらない速度が期待

できます。

たとえば、図4.1.24は 、実際にMySQLが稼動しているDBサーバのメモ

リを、8GBか ら16GBへ増設した前後の sar― POの出力の比較です。この

DBが保存しているデータは20GB弱で、16GBメ モリがあれば、有効なデ

ータのほとんどはキャッシュに載せることができます。

メモリ増設の効果は一目瞭然です。20%強あった1/0待ち(%iowait)がほ

とんどなくなるまでになりました。

このように、とくに1/0バウンドなサーバでは、そのサーバが扱うデー

タ量に合わせてメモリを搭載するのが1/0負荷を軽減するのに効果的な方

法です。

sar‐ rを見れば、どの程度カーネノンがキャッシュを確保しているかが判

断できます。そのキャッシュの容量 と、実際にアプリケーションが扱 う有

・ メモリ86B時

13:40:01

13:50:01

14:00:01

14:10:01

14:20:01

・ メモリ増設後

15:20:01

15:30:01

15:40:01

15:50:01

16100:01

%user

20.57

18,65

19.50

19,38

%nice

0, 00

0, 00

0 ,00

0 ,00

'6SyStem
15.61

16.54

15,26

16.19

%iowa■ t

23.90

30.36

20.51

21.93

%idle

39.92

34,45

44.73

42.50

%user

23.31

22.43

22.90

23.54

%nice %idle

58.32

60.11

59,11

57.07

0,00

0,00

Ｗ

０

０

１

１

sar‐POの出力の比較

効なデータ量を比較して、データ量のほうが多ければメモリ増設を検討し

ます。うまくキャッシュにデータが載っている状態では、ディスクに対す

るアクセスは最低限になります。後述するvmstatを 使えば、実際のディス

クアクセスがどの程度発生しているかを確認できます。

メモリを増設できない場合は、データを分割して別々のサーバでホスト

することを検討します。データを上手に分割すると、単純にディスク1/0

回数が台数を増やしたぶん減るだけでなく、キャッシュに載るデータの割

合が増えますので、相当なスノンープット向上が期待できます。

ページキヤッシュは一度readしてから

前述のとおり、ページキャッシュはその名のとおリキャッシュですので、

当然キャッシュミスしたデータは直接ディスクから読み込みます。OSが起

動した直後はほとんどのデータが未キャッシュ状態ですので、ほぼすべて

の読み取り要求はキャッシュではなく、ディスクヘと転送されます。

MySQLな どのDBサーバを運用するにあたって、大規模なデータを扱う

場合はここに注意が必要です。

たとえば、メンテナンスなどでサーバを再起動した場合、それまでにメ

モリにキャッシュされていたページキャッシュは、すべてフラッシュされ

てしまいます。リクエストの多いDBサーバを、キャッシュが構築されて

いない状態で実際に稼動させた場合はどうなるでしょうか。ご想像のとお

り、ほぼすべてのDBア クセスはディスク1/0を 発生させてしまいます。大

規模な環境では、これが原因でDBがロックしてしまい、サービス不能に

なるということも珍しくありません。一度必要なデータ全体に読み込みを

かけてから、プロダクション環境に戻すといった工夫が必要になります。

たとえば、1/0バウンドなサーバが1/0負荷が高 くスノンープットが出ない

という場合には、ページキャッシュが最適化された前なのか後なのかで話

が変わってくるともいえるでしょう。

図4.1.25に一つ、おもしろいデータを紹介します。メモリを4GB搭載し

ているMySQLサーバでのOS起動後から20分程度の sar― rの結果です。OS

が起動した後、MySQLの各種データファイノン全体を読み込むプログラム

(フ ァイノンをКadするだけのプログラム)を動かしました。

４
。
ｌ
　
Ｆ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ Li叫単一ホスト、Apaぬ e、 MがQL

起動直後はメモリの使用率は5%弱で、空きメモリが3.5GB程度ありま

す。この後データファイノンを読み込んだことで、メモリ使用率が96.98%ま

で上がっています。ファイルを読み込んだおかげで、その内容がページキ

ャッシュとして保持されているのがわかります。

sar‐W・……スワップ発生状況を見る

。Wを 指定すると、スワップの発生状況を確認できます(図 4.1.26)。

「pswpin/s」 は1秒間にスワップインしているページ数、「pswpout」 はその逆、

スワップアウトしているページ数です。スワップが発生すると、サーバの

スノンープットは極端に落ちてしまいます。サーバの調子が悪い場合に、メ

モリ不足でスワップが発生しているか否かが疑わしい場合はsar‐ Wを利用

すると、その時間にスワップが発生している/い たかどうかを確認するこ

とができます。

vmstat・・…・仮想メモリ関連情報を参照する

vmstat(Rψ οr′ Иr′′αI Ma″οッ S′″,s″
`s)の
使い方も簡単に紹介しておきま

す。vmstatの「vm」 はVirtual Memory(仮想メモリ)の こと。vmstatは 仮想

メモリ周りの情報を参照することができるツーノンです。多くの項目はsar

でも閲覧することができますが、CPU使用率と実際の1/0発生状況などを

並べてリアルタイムに表示できるところが便利です。

図4.1.25 ページキヤツシュとして保持された例 (

18:20:01

18:30:01

18:40:01

18:50:01

kbmemfree kbmemused

3566992 157272

3546264 178000

112628 3611636

%memused kbbuffers kbcached

4,22 11224 50136

4.78 12752 66548

96.98 .. 4312 3499144

19:20:01 pswpin/s

0.39 7.21

sar‐Wの実行例

VmStatと sarは使い方が似ています。vmstat l looと 引数に数字を指定

すると「1秒おきに10o回」統計情報を表示します。

図4.1.27は vmstatの 出力例です。各項目の意味はman vmstatで確認でき

ますので、そちらを参照してください。おそらくここまでの解説を見れば、

項目名からだいたい想像がつくでしょう。

図4.1.27で しっかり見ておきたいのは「bi」 と「bo」の値です。それぞれ、

・ bi:ブロツクデバイスから受け取つたブロック(biocks/s)

・ bO:ブロツクデバイスに送られたブロック(blocks/s)

という数字を表しています。

ブロックデバイスというのは、端的にいうと二次記憶装置、つまリディ

スクのことです。Linuxは ハー ドウェアとの入出力を二種類に分けて扱い

ます。

・ キヤラクタデバイス :バイ ト単位で入出力を行うハー ドウェァ

・ ブロツクデバイス :プロツクと呼ばれる、ある一定の大きさの塊単位で入
出力を行うハー ドウェア

ディスクはこのブロックデバイスに相当します。vmstatで はディスクか

らの読み出し(bi)と 、ディスクヘの書き込み(bo)が、ブロック単位でどの

程度発生しているかを見ることができます。

tOpや sarで はCPU使用率と一緒に1/o待ち率が確認できますが、1/o待

ちの数字でわかるのは、あくまでシステム全体で1/0待ちが発生した「割合」

のみです。実際にどの程度1/0が発生しているかの絶対値が知りたい場合

は、vmstatを参考にするとよいでしょう。

図4.1.27 vmstatの出力例

４
・
ｌ
　
ｒ
ヨ
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

‐̂ヽ― ――‐‐‐‐‐memory‐ ‐‐‐・‐‐‐‐‐

swpd f ree buff cache

4 61692 342476 118464

4 61692 342480
4 61692.342480 118464

OSのチューニングとは負荷の原因を知り、それを取り除くこと

章 性能向上、チューニング Linux単一ホスト‐ ache、 wSQL

負荷の計測方法がわかったところで、いよいよOSの性能を向上させるた

めのチューニングの話に入ります…といいたいところですが、本書ではこ

れ以上解説することはありません。チューニングという言葉から、本来そ

のソフトウェアが持っているパフォーマンスを三倍、三倍へと拡げるため

の施策を想像する方もいるかもしれません。

しかし、チューニングの本当のところは「ボトノンネックが発見されたらそ

れを取り去る」という作業です。そもそも、元々のハードやソフトが持って

いる性能以上の性能を出すことはどうがんばっても不可能です。やれるこ

とは「ハード/ソ フトが本来持つ性能が十分発揮できるよう、問題になりそ

うな個所があったらそれを取り除く」ぐらいです。

最近のOSや ミドノンウェアは、デフォノントの状態でも十分なパフォーマン

スが発揮できるよう設定されています。渋滞していない高速道路の車道を

拡げても1台の車が目的地に到達するまでの時間が変わらないのと同じで、

デフォノントの設定が最適であれば、いくら設定を変えても多くの場合効果

はありません。

たとえば、CPUの計算時間をフルに使って10秒かかる処理は、どんなに

OSの設定をいじったところで10秒以下に縮めることはできません。これ

が渋滞していない高速道路の例です。

一方、たとえば他のプログラムの1/0性能が影響していて、そのプログ

ラムが本来 10秒で終わるところを100秒 かかっている、という場合には

1/0性能を改善することができます。これは渋滞している高速道路の例で

す。1/0性能を改善するためには、

。メモリを増設することによるキヤツシユ領域の確保で対応できるのか

・そもそもデータ量が多過ぎるのか

・ アプリケーション側での1/0のアルゴリズムを変更する必要があるのか

等々を見極める必要があります。結局、原因がわかればその原因に対する

対応方法は自明なのです。この自明になった対応方法を実践することが、

チューニングにはかなりません。

最後に、繰り返しになりますが、ハードゥェアが持つ性能や、OSの性能

を最大限に発揮させるために必要な知識は、ボトノンネックが発生したとき

にそれが何によって発生しているのかを見極めるための知識です。本節で

は、そのために必要になる知識を得るための足掛かりとして、OSの内部の

しくみや負荷の計測方法の基本について解説しました。

４
。
１
　
に
一３
ｃ
ｘ
単
一ホ
ス
ト
の
負
荷
を
見
極
め
る

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ単
一ホスト、Apふ e、 MがQL

ここまではOSの話でしたが、次はそのOSの上で動くアプリケーション、

wiebサーバヘロを向けていきます。ここでは題材としてOSSの Webサーバ

としてはデファク トスタンダー ドとなっているApache HTTP SERVER

(Apache)注
8について解説します。

OSのチューニング同様、Webサーバのチューニングも、その作業を行っ

たからといってWebサーバが持っている性能が三倍、三倍と向上するなど

ということはありません。あくまで本来持っているサーバの性能が十分に

発揮できるよう調整するのがチューニング作業です。

実は、過負荷でwcbサーバが応答をうまく返せない場合、その原因とな

るのはWebサーバの設定とは関係ないことがほとんどです。Webサーバは

比較的安定したソフトウェアで、かつそれ単体ではそこまでシステムに負

荷をかけるソフトウェアではありません。

問題がWebサーバの応答不能という現象で顕在化しただけであって、そ

の原因がWebサーバであるとは限らないのです。熱が出ているからといっ

て、解熱するだけでは病気が治らない、というのと同じです。

こういった状況では、どんなにApachcの設定をいじったところで、それ

以外の個所で問題が発生している以上、意味がないということをまず意識

してください。4.1節 でも見てきたとおり、Apacheの設定を変更しながら

Webサーバのチューニング

Webサーバがボトルネック?

ii I (m http://httpd.apache.orgl

ApacheDfr-->O
4。2

様子を見るといった対症療法的な対策ではなく、障害の原因を探るための

知識が最も重要です。ここでも「推測するな、計測せよ」です。問題の多く

は、ここまでに見てきたpsや sar、 vmstatな どのツーノンを使えば特定する

ことができます。

一方「ハードウェアやOSが十分に性能を発揮できている状態」かつ「負荷

が大きい」という限られたシチュエーションになってしまいますが、webサ

ーバの設定で足かせになる項目は確かにあります。以降、Apacheの設定項

目の中でも、とくに大規模環境で性能に影響がありそうな個所に絞って解

説を行っていきます。

Apacheの設定項目に触れる前に、Apacheの並行処理のアーキテクチャ

をおさらいしておきます。

Apacheに限らず、不特定多数のクライアントに公開されるネットワーク

サーバは、同時に複数のクライアントから接続されても処理が継続できる

よう並行処理を行う必要があります。並行処理を行わないサーバではある

クライアントが接続してサーバと入出力を行っている間、ほかのクライア

ントはサーバに接続することができません (図 4.2.1)。 とくにApaぬ eを は

じめとするWebサーバは、いかに多数の接続を同時に処理できるかが性能

の基準になるソフトウェアですから、並行処理の実装がサーバの性能に与

Webサーバ

クライアント クライアント

図4.2.1 並行処理のあり/なし

プロセス/スレッド

並行処理なし 並行処理あリ

クライアント クライアント

の並行処理とMPM

４

．
２
　

＞
０
∞
（
す
の
の
チ
ュ
ー
ニ
ン
グ

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ単
一ホスト、APache、 wSQL

える影響が大きいといえます。

並行処理の実装モデルはいくつかあります。

・ プロセスを複数生成して並行処理を実現するマルチプロセスモデル

・ プロセスではなくより軽量な実行単位であるスレッドを使うマルチスレッ

ドモデル

・入出力を監視してイベント発生のタイミングで処理を切り替え、シングル

スレッドで並行処理を行うイベントドリブンモデル

などです。それぞれに利点/欠点があり、一概にどれがベス トかは断言で

きません。また、これらの各モデルを組み合わせた実装などもあります。

Apacheは、その内部の各種機能がモジュール化により綺麗に分離されて

いるのが特徴ですが、この並行処理を行 うコア部分の実装 もモジュールに

なっています。MPM Oわ r″ P"6'電 Mο′′′
`)と
呼ばれるモジュールです。

MPMに何を選択するかによって、並行処理のモデノンに何を使うかユーザ

が選べるようになっています。APache 2.2で利用可能なMPMの一覧は以下

から確認できます。

cED http://httpd.apache.o rgld ocs / 2.2/ 1a/ mod /

注 9 他にも workerにイベン トモデルの長所を盛り込んだ revent MPM」 もありますが、Apache 2.2段 階で
は実験的なモジュールとして位置付けられているため、プロダクションで利用されることは多くあり

ません。

図4.2.2 UNIX環 境における代表的なMPM

prefork プロセス worker

スレッド
クライアント

クライアント

UNIX環境において代表的なMPMは以下の2つです (図 4.2.2)注 9。

・ preお rk:あ らかじめ複数のプロセスを生成 (プリフォーク、P4′ brた)してク
ライアントの接続に備えるマルチプロセスモデル

・ worker lマ ルチスレッドとマルチプロセスのハイブリッド型

MPMに何を利用するかはコンパイル時に決まりますので、後から別の
MPMを利用する場合は基本的にApachcの再コンパイノンが必要になります。
ただし、Red Hat Enterprise Linuxや CentOSではpreおrk対応とworker対応

の2つ のhttpdがインス トーノンされます。デフォノントではprcお rkのバイナ

リが利用されます。workrに 切り替えたい場合は/etc/s「 conng/httpdで 、

H・「TPD=/usr/sbin/httpd,worker

と設定を行 うことで変更が可能になっています。

worker、 プロセスとスレッド

prebrkはマノンチプロセス、workerは マノンチスレッドとマノンチプロセスの

ハイブリッド型です。基本的には後者のほうが、メモリをはじめとするリ

ソース消費量が比較的少なく済みます。したがって、より大規模な環境で

はworkerを 選ぶのがベターです。ここをもう少し掘り下げて解説しておき

ましょう。

プログラミングモデルから見たマルチプロセスノマルチスレッドの違い

Apacheは画像や単一のHTMLフ ァイノンなど静的なファイノンを返却する以

外にも、たとえばmod_perlや mod_PhPを組み込むことでAPサーバ相当と

して利用することができた り、2.1節 で見たようにmOd_prOxy_balancerを

組み込むことでリバースプロキシとして利用することもできたりと、モジ

ューノンの選択如何でその役割を大きく変更することが可能です。Apachc 2.2

ではより汎用化が進み、(世間での認識はともかくとして)今ではApacheは

Webサーバ というよりも汎用的なネットワークサービスプラットフォーム

としての位置づけが強いソフトウェアです。

一般的に「マルチプロセス」と「マノンチスレッド」では、後者のほうがプロ

４

。
２

　

＞
０
∞
〔
す
の
の
チ
ュ
ー
ニ
ン
グ

章 性 能 向 上 、チ ュ ー ニ ン グ Lin嘔単一ホスト、Ap∝ he、 MySQL

グラミングモデノンは複雑になりがちです。ここで合わせて、図4.1.11、 図

4■ 12(p.172)を改めて確認しておいてください。

・マルチプロセスでは基本的にプロセス間でメモリを直接共有することはな

い。メモリ空間が独立していて安全である

・ マルチスレッドではメモリ空間全体を複数のスレッドで共有するため、リ

ソース競合が発生しないよう気をつける必要がある。これがマルチスレッ

ドプログラミングが複雑であるといわれる理由である

そのため、サードパーティ製のApacheの モジューノンの中にはマノンチスレ

ッド環境ではうまく動作できないものや、そもそもマルチスレンドで動作

することを前提にしていないもの、preおrkを前提としているモジューノンが

あります。

このような理由から、以下のような位置付けになっています。

・ prebrk:安定指向かつ後方互換性の高いMPM

・ worker:ス ケーラビリティを高めたMPM

サー ドパーティ製モジューノンを考慮に入れなければworkerを 使う、サー

ドパーティ製モジューノンを使用する場合にはそのモジューノンの仕様と相談

の上preおrkと workerど ちらかを選ぶ、といった指針に従 うとよいでしょ

ぅ
注10。

パフオ…マンスの観点で見たマルチプロセスノマルチスレッドの違い

一般的にマノンチプロセスとマノンチスレッドでは、後者のほうが軽量かつ

高速であるといわれます。おもな理由は以下の2点です。

0複数のメモリ空間をそれぞれ持つマルチプロセスよりも、メモリ空間を共
有するマルチスレッドのほうがメモリ消費量が少ない

0マルチスレッドはメモリ空間を共有しているため、スレッド切り替えにか
かるコストがマルチプロセスよりも少ない

Apacheを利用するにあたっての実際はどうでしょうか。

注 10 mod_perlを workerで 動かす場合はPerlが ithreadsで スレツドを生成 します。Perlのスレッド実装は

多少特殊であるため、prebrkと の場合で多少の仕様の差異があります。これを嫌ってpreforkを 選ぶ

ユーザは多いようです。

0について、メモリ消費についてはたしかにマノンチスレッドを用いる

workerに軍配が上がります。ただし、実際にはマノンチプロセスの場合でも、

親と子で、更新されていないメモリ空間は共有される(コ ピーオンライト、

Cοpッο″Wrた)のでそこまで顕著な差が出るわけではありません。コピーオ

ンライトについては後に詳しく解説します。

0について、これはいわゆる「コンテキストスイッチ」(Cο″
“
″S″′F`力)の

コストの差です。マノンチタスクosは、異なる処理を行う処理単位としての

プロセス/ス レッドを短い時間で切 り替えることで並行処理を実現してい

ます
注11。 このときのプロセスノスレッドの切り替え処理は「コンテキストス

イッチ」と呼ばれます。このコンテキストスイッチ時に、マノンチスレッドは

メモリ空間を共有するため、メモリ空間の切り替え処理をスキップするこ

とができます。メモリ空間を切 り替えずに済むと、CPU上のメモリキャッ

シュ(正確にはTLB注
12)を
そのままにしておけるなどの大きなアドバンテー

ジががあるため、性能に与える影響は顕著です。

この2点から以下のようなことがわかります。

・ prebrkを workerに変更しても、1つのクライアントに対する応答時間が
高速化されるわけではない

・ prebrkを workerに変更しても、メモリが十分にあれば同時に扱える接続
数は変わらない

・ prebrkを workerに変更しても、大量のコンテキストスイッチがなければ
(同時並行的に大量のアクセスがなければ)効果は大きくない

prebrkを workrに したからといって、パフォーマンスが改善される状況

は限られているということを認識しましょう。

逆に、workerに 変更することで効果的な場面は以下のような場面です。

・利用できるメモリ容量があまり多くない場合や、メモリ消費量を少なく済
ませたい場合。この場合、プロセスよリメモリ消費量が少ないスレッドの

利点が生きてくる

注11マルチタスクの切り替えについて詳しくは4■ 節を参照。

注 12 TL3(Transiation Lookaside BufFer)は メモリの仮想アドレスを物理アドレスヘ変換する処理を高速化
するためのキャッシュで、CPu内部の機構です。コンテキストスイッチが行われるとTLBがフラッシ
ュされますが、この影響によるTLBキ ヤッシュミスは、相対的にコストが高くつきます。

４

・
２

　

＞
Ｏ
ｏ
（
す
ｏ
の
チ
ュ
ー
ニ
ン
グ

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ 単
一ホスト、Apふ e、 MySQL

・ コンテキストスイツチ回数が多くその分のCPUリ ソースを削減したい場合、

つまり大量のアクセスがあつてCPU使用率を下げたい場合
注13。
プロセス間

よりもスレッド間のほうがコンテキストスイツチのコストは低く済むため、

⊂PU消費が少なく済む

1クライアントに対して1プロセスノスレッド

prebrkと wOrkerに 共通しているのは、Apachcはクライアントからの 1リ

クエス トに対 して、基本 1プ ロセスもしくは 1ス レッドを割り当てて処理す

る点です。つまり、同時に10ク ライアントからリクエストがあった場合、

loプロセスもしくは 10ス レッドを生成して応答 します
注14。

したがって、同時にどれだけのプロセス/ス レッドを生成できるかが

Apachcの性能を左右する項目とい うことになります。それらプロセス /ス

レッド数を制御する設定項目の最適解を探すことが、Apacheチ ューニング

の肝 といえるでしょう。詳しく見ていきましょう。

h■pdconfの 中でもApacheの性能、とくに「同時処理可能なリクエス ト

数」に影響を与える個所について解説します。

A MaxClients

Webサーバは不特定多数のクライアントからの要求を受け付けるサーバ

であるため、「いつどの程度の トラフィックがやってくるかは予想できな

い」ことを前提に設計されています。

そこでApacheは プロセス/ス レッド数を負荷に応じて動的に制御します。

しかし動的に制御した結果、マシンリソースを使い切るほどたくさんのプ

ロセス/ス レッドを生成されては困ります。

そのための安全弁として、「同時に接続できるクライアント数の上限値」

が設けられています。この安全弁がなければ、そのシステムが許容できる

注 13コ ンテキス トスイツチ回数は sar‐cで調べ られます。

注 14このモデルにより、サー ドバーテイ製のアプリケーションをApacheで動かす場合、そのアプリケー

ション開発者の負担が軽くなるという利点が得られます。

の設定

以上のリクエスト数が同時に押し寄せたときに、メモリを使い呆たしてOS

がハングアップしてしまったり、CPUを消費しつくして応答不可能になっ

たりと、致命的な障害を招くことになります。

リクエストが多過ぎる場合は、

・ 処理しきれないリクエストには待ち行列の中で一定時間待つてもらい

・ さらに待ち行列があふれるようであれば、そのリクエストに対してエラー

を返却じクライアントには帰つてもらう

という動作がApacheの 安全弁によって実現されます。これでOSご とハン

グアップするなどの最悪の事態を回避します。

この安全弁である上限値は静的な値です。マシンの持っているリソース

に合わせて人手で設定する必要があります。この調整がApaぬcのチューニ

ングの肝になります。逆に、これ以外の項目で性能に影響するものは多く

ありません。以下、この安全弁の値の調整について詳細を述べます。

rebrkの場合

pr品よの場合、設定項目は比較的シンプノンです。安全弁となるのは

ServerLimitと MaxC‖ entsと いう2つのディレクティブで設定されるパラ

メータです。ServerLimit、 MaxChentsと もにAPacheが生成するプロセス数

の上限となる値です。本来的には、

・ ServerLimit:サ ーバ数、すなわちprebrkで はプロセス数の上限

O MaxChents:同時に接続できるクライアント数の上限

を意味するパラメータですが、1ク ライアントを1プロセスで処理する

Preお rkで は、両者はほぼ同義です
注15。 プロセス数の上限を上げたい場合

は ServerLim量 とMttClientsを 設定することになります。仕様の都合上

「MttClients>ServerLimit」 とすることはできないため、

Se rve rLimit
MaxClients

４

。
２

　

＞
０
∞
（
す
の
の
チ
ュ
ー
ニ
ン
グ

注 15両者に別れているのは workerモデルなど他の MPMで意味を持ちます。

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ単一ホスト、APache、 MySQL

のように先にServerLimitを 設定します。上記は最大プロセス数 (同時接続

クライアント数)を 50に する設定です。

この ほ か、プロセ ス /ス レ ッ ド数 を制 御 す るパ ラメー タ として

MinSpareServers、 MaxSpareServers、 StartServersな どの値 もあ りますが、

これらの項 目が性能に与える影響はそれほ ど大 きくはありませんのでここ

での解説は省略します。

さて、問題はこの ServerLimit、 MaxClientsを どの程度の値に設定すれば

よいのか、です。残念なが ら「この値にするべ き」という断定的な数字はあ

りません。

・サーバが搭載している物理メモリの容量

・ 1プロセスあたりの平均メモリ消費量

の2点から、合計どの程度までプロセスを生成できるかを計算して設定す

る必要があります。

前者はハードウェアのスペックを参照すればわかります。freeな どのコ

マンドで確認してもよいでしょう。

後者のプロセスのサイズはどのように調べるとよいでしょうか。psや top

でも確認できますが、ここではProcフ ァイノンシステムから調べてみましょ

う。Linuxで は/proc/<プロセスのP!D>/statusで プロセスのメモリ使用量

などのサマリを見ることができます。表示される項目の意味について詳し

くはカーネノンソースに付属のドキュメント(Documentation/nles"tem/proc.

誡)を参照してください。

図4.2.3のサマリのうち、「VmHWM」 がそのプロセスが実際に使用して

いるメモリ領域のサイズになります。図4.2.3の例はmod_perlを組み込ん

でAPサーバとして利用しているApacheの統計ですが、100MB弱、物理メ

モリを利用していることがわかります。「VmPeak」や「VmSize」 は仮想メモ

リ上の領域で、物理メモリ上での領域サイズはVmHWMで す。
一見するとこのVmHWMの 値からhttpdの各プロセスのVmHWMの 平
均値を求めればよいように見えます。たとえば図4.2.3の 例ですと、

・搭載メモリ量が4GBと して

・ httpdプロセス1つあたりのメモリ使用量 100MB

・ OSが利用するメモリとして512MB残す

・ 4GB-512MB=3.5GBを httpdに割り当て→ 3′500/100=35

というロジックでMaxClients 35… という具合です。

しかし、これだけでは判断材料が不十分です。Linuxは、物理メモリを節

約するため親プロセスと子プロセスで一部のメモリを共有します。この共

有部分のメモリを考慮すると、もっと大きな値を設定することが可能です。

親子でメモリを共有するコピーオンライト

ユーザプロセスはすべて、何かしら別のプロセスからおrkさ れて生成さ

れます。すなわち、すべてのプロセスには親プロセスがいます。preおrkの

Apacheの場合、ある一つのhttpd親 プロセスがまず起動して、そのプロセ

スが複数のhttpd子プロセスを生成します。

プロセスがおrkに よって生成されると、親と子は異なるメモリ空間で動作

します。お互いがお互いを干渉することはありません。この独立したメモリ

空間を実現するためおrkに ともない親から子へとメモリの内容がまるごとコ

図4.2.3 プロセスのメモリ使用量など|

セスが実際に使用している物理メモリ領域のサイズ

４

。
２

　

＞
ｏ
●
（
す
の
の
チ
ュ
ー
ニ
ン
グ

VmStk:

||

章 性 能 向 上 、チ ュー ニ ング LinⅨ単
一ホスト、APache、 呻 SQL

ピーされるのですが、このコピー処理は非常にコス トの高い処理です。

そこでLinuxは 、おrkし た段階では仮想メモリ空間にマッピングされた

物理メモリ領域はコピーせずに親 と子でそれを共有します。この共有は、

親子に仮想メモリ空間は別々に用意し、それぞれの仮想メモリ空間から同

一の物理メモリ領域をマッピングすることで実現されます (図 4.2.4)。 親あ

るいは子が仮想メモリに対して書き込みを行うと、その書き込みが行われ

た領域はそれ以上共有できませんから、そこではじめて、その領域に紐付

けられた物理領域だけ、親子で別々に持つことになります。

逆にいうと、書き込みが行われていないメモリ領域はいつまでも共有し

続けることができ、これによリメモリ上のページの重複を避けてメモリを

効率的に利用することができます。

このしくみを「コピーオンライト」(Cο〃ο″Wr姥)と 呼びます。「書き込み

時にコピーする」という意味です。brkに ともなうメモリコピーの遅延処

理、と見ることもできます。

コピーオンライトで共有しているメモリサイズを調べる

MaxChentsを 設定するには、実際に使用しているメモリ領域のうち、親

子で共有している物理メモリサイズも考慮する必要があります。共有メモ

図4.2.4 仮想メモリのコピーオンライト

親プロセスの
仮想メモリ空間 物理メモリ 親 物理メモリ

物理ページ

更新されたページ

子プロセスの
仮想メモリ空間

brko直後は親子で同じ物理メモリ
領城をマップ

子

更新された個所のみ別々のメモリ
領城をマツプ

り領域は/proc/<プロセスの PID>/smapsの データを参照することで調査

可能なのですが、データ量が多いためそのままでは調べるのが難しくなっ

ています。そこで、共有メモリサイズを調べるPerlスクリプト(リスト4.2.1)

を作成しました
注16。
引数に動いているプロセスのプロセスIDを渡すと、そ

のプロセスの共有メモリサイズを調べます。pgrepと 組み合わせて使うと

よいでしょう。出力は図4.2.5の ようになります。

表示されているメモリサイズの単位はKB(んありた)です。RSSがプロセス

リスト4.2.1
・

４

。
２

　

＞
ｏ
”
〔
，
の
の
チ
ュ
ー
ニ
ン
グ

注 16ス クリプ トの実行には Perlモ ジュールの Linux::Smapsの インス トールが別途必要です。

|・
 ‐

ζl

■ヽ

鸞

[pld・・…1・ ;

).
・ 100)

. ・ . :

■ 1

2480.7・ ‐ ‐16945‐ 2

24809_ 76996

54236 .(70%)

章 性 能 向 上 、チ ュー ニ ング LinⅨ単一ホスト、APache、 町 SQL

全体のメモリ割り当てサイズ、SHAREDが うち親子で共有されている領域の

サイズです。70%前後ものメモリが親子で共有されているのがわかります。

なお、コピーオンライトのしくみでは、親と子のメモリの内容は時間が

経つほど乖離していくことになり、共有率が低下していきます。httpdを立

ち上げた直後は、共有している率は当然高い数字を示すのであまり参考に

なりません。MaxClientsの 計算にはある程度リクエストを流して、定常状

態になったころの数字を利用するのがよいでしょう。先の計算過程に親子

の共有サイズを考慮すると、

・搭載メモリ量が4GBと して

O httpdプ ロセス1つあたりのメモリ使用量100MB

・うち70%は親と共有することがわかつたので、子プロセス1つあたりのメ
モリ使用量は30MB

00Sが利用するメモリとして512MB残す

04GB-512MB=3.5GBを httpdに割り当て→ 3′500/30=116.66

という結論になります。平均メモリ使用量や共有率はあくまでざっくりと

した計算ですので、ある程度余裕を持たせて100程度に設定しておけばよ

いでしょう。

ここで補足をしておきます。コピーオンライ トによるメモリの共有は、

時間の経過 とともに共有率が下がっていくのでした。 となると、Webサー

バのようにずっと動作し続けるソフトウェアでは、最終的にはほとんどの

領域が共有できなくなってしまうようにも思えます。

Apacheで は定期的に子プロセスを終了させて新しい子プロセスを作らせ

て、この状態を回避する方法があります。子プロセスを新しく作るという

ことは親から子を新たに偽rkす ることにほかなりませんから、その時点で

また完全にメモリを共有した子に戻すことができる、というわけです。

MaxRequestsPerCh‖ dディレクティブがその設定になります。

MaxRequestsPerChild 1024

MaxRequestsPerChild

と設定しておくと1プロセスあたり1,024リ クエストを処理すると、そのプ

ロセスは1,024回 めのリクエスト完了直後に自動で終了し、親が新しい子を

用意します。

MttReqcustsPerChndは 、mOd_perlゃ mOd_PhPな どで動作しているアプ

リケーションがメモリリークを起こしていて、放っておくといつまでもメ

モリを消費し続けてしまう場合の応急処置にも有効です。

リクエストを多数受けている大規模なサーバではMaxRequestsPerChild

の値が小さ過ぎると頻繁にプロセスの終了と生成が繰り返されてしまうた

め、ある程度大きな値を設定しておく必要があるでしょう。逆にリクエス

トがそれほど多くないサーバでは、小さめの値に設定してもサーバにかけ

る負担はほとんどありません。CPu負荷、プロセスのメモリサイズの時間

経過と相談しながら適当な値を決めるとよいでしょう。

workerの場合

workerは 、マノンチプロセスとマノレチスレッドのハイブリッド型のモデノン

です。

01つのプロセスの中に複数のスレッドを生成し、スレッド1本でクライアン
ト1つを処理する

・ そのプロセスを複数生成する

という動作をします。したがって、プロセス×プロセスぁたりのスレッド

分のスレッドが同時並行で動作することになります。プロセスの部分は、

preおrkの場合とほぼ同じ考え方でチューニングします。一方のスレッド部

分ですが、

・スレッドはプロセスの場合と異なり、メモリ空間を完全にスレッド間で共
有する。コピーオンライトのときのようなケースを考える必要はない

・ 1ス レッドあたり、スタック領域として最大 8′192KBのメモリを必要とす
る
注17

とい うことを念頭 にチューニ ング します。workrの 場合 ServerLimit、

注 17これはApacheの仕様。Apacheは Linux環境ではスレツドのスタックサイズはシステムの指定に任せ
ます。8′ 192KBはシステム依存です。ulimit― sで確認できます。

４

・
２

　

＞
０
口
∩
コ
の
の
チ
ュ
ー
ニ
ン
グ

章 性 能 向 上 、チ ュ ー ニ ン グ LinO単
一・ホスト、Apache、 MySQL

MaxClientsにカロえて、■lreadLinlitと ThreadsPerChildを 調整することにな

ります。workerで は、

O MaxChents:同時に接続できるクライアントの上限、つまリプロセス数×

スレッド数

・ ServerLimit:プロセス数の上限

・ ThreadLimit iプ ロセスあたりのスレツド数の上限

・ ThreadsPerch‖ d:プロセスあたりのスレッド数 (丁hreadLimitと ほぼ同義)

という意味を持ちます。MaxClientsが システムの許容できるクライアント

数で、その同時クライアント数を処理するためのプロセスとスレッドの本

数 の 制 御 を他 のパ ラ メー タで行 い ます。MttClientsが 決 まって、

■hreadsPerChildが 決まると自動的にプロセス数が決まります。たとえば、

MaxClientsを 4096と して■hreadsPerChildを 128と すると、

O MaxChents 4096′ThreadsPerCh‖d128=32プロセス

となります。したがって、常にServerLimit≧ MaxClients/ThreadSPerChild

という関係を満たすように調整 します。この関係が満たされない場合は、

エラーログにその旨が記録されます。

以上を設定に落とすと、

Se rve rLimit
Th readLlmit
!laxClient s

Th read s Pe rCh i1d

となります。各パラメータをいくつにするかの戦略ですが、基本はpreおrk

の場合に同じくシステムの搭載メモリ量と、1ス レッドあたりの消費メモ

リ量を天秤にかけて計算します。

実際に稼動しているシステムでスレッドが何本生成されているかを数え

るには、psに ‐Lオ プションです。4.1節で解説したように、‐Lを付ければ

NPTLのスレッドを表示することができるので、その本数を数えればOKで

す。

過負荷でMaxChentsを変更する、その前に

先に「問題がWebサーバの応答不能という現象で顕在化しただけであっ

て、その原因がWebサーバであるとは限らない」ということを述べました。

問題は表面上は、MaxChents上 限に到達する、という現象として顕在化し

ます。エラーログには以下のように記載されます。

IWed Sep 05 17r30:43 2007] [error] server reached Maxclients setting,
consider raising the MaxClients setting

繰り返しになりますが、MaxClientsに到達してこれ以上プロセス、スレ

ッドが生成できないという状態はあくまで「何かしらの問題」があるという

警告に過ぎません。本当に接続数が多過ぎてMttClientsに 達してしまって

いる場合もあるでしょうが、ほかの個所に原因があることも多いのです。

たとえば、APサーバとしてApacheを利用していて、その上で動くアプ

リケーションがDBに接続しにいっているとしましょう(図 4.2.6)。

クライアント クライアント
2

クライアント

Webサーバ

DB

原因はDBの過負術にもかかわらず、
問題はWebサーバヘの接続不可という形で顕在化する

0リクエスト0リク

図4.2.6 DBの 過負荷が原因の例

0ほかのクライアントがWeb

O DBが過負荷でブロック̀
クライアント2へも応答返らず

O DBが過負荷でブロック。
クライアント1へは応答
返らず

サーバのプロセスを使い

切つているため、クライア
ント3は接続できない
OMaxChentsと してログ
に報告

４

・
２

　

＞
０
∞
（
す
０
の
チ
ュ
ー
ニ
ン
グ

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ 単
一ホスト、APachc、 MがQL

O DBが過負荷になると、アプリケーションはDBからの応答を待つてブロツ

クする

・結果 httpdプロセス/ス レッドがブロックされた状態になる

・ ブロックされたプロセス/スレッドは別のクライアントからの要求を処理で

きないので、Apacheは空いているプロセス/ス レッドを探す

・空きがなければ新しいプロセス/ス レッドを生成する

O DBが相変わらず過負荷だと、新しく生成したプロセス/ス レッドも続くク

ライアントからの要求処理途中にブロックされる

・ いずれMaxChentsに到達し、プロセス/ス レッドを生成することができな

くなる

。エラーログにその旨が記載される

このようなケースでは、いくらApache側の設定を調整 しても意味がな

く、MはChentsを増やしても、増やした分、さらに続けて接続しに来たク

ライアントがブロックされるだけで状況は改善されません。そもそもの原

因に立ち返って、DBの過負荷の問題を解決する必要があります。

MPMモ ジューノンのパラメータ以外に性能に影響を与えるものとして、
「Keep― Alive」 の設定があります。Kccp―Aliveは 特定クライアントからのリ

クエストが完了した後もしばらく接続を維持して、同じクライアントから

の別のドキュメントの要求に備える機能です。これにより、クライアント

はいちいち接続/切断を繰り返さなくても一度の接続で複数のドキュメン

トをダウンロードできるので、クライアント/サーバともに処理効率が上

がります。

ところが、場合によってはこの Keep―Al市eがボ トルネックの原因になる

こともあります。詳しくは2.1節のリバースプロキンの節で解説しています

ので、そちらを参照してくださtヽ。

Keep-Alive

生曇呈型墜璽堅塾塑壁
本節の中心はApacheの解説でしたが、世の中にはOSSかつフリーなWeb

サーバの実装がたくさんあります。Apacheは その中でもデファクトのサー

バではありますが、必ずしもApacheを使わなければいけないわけではあり

ません。

Apacheの長所の一つに、内部が綺麗にモジュール化された汎用的な作り

になっており、拡張性が高いことが挙げられます。そのため、サードパー

ティ製を含む拡張モジューノンの開発が盛んです。自分で新しいモジューノン

を作ってApacheの動作をカスタマイズするのも容易です。Apacheを Web

サーバ以上のネットワークサーバとして見たとき、Apache以上に多様なシ

チュエーションに使えるサーバは多くありません。

一方、パフォーマンスはどうでしょうか。Apacheは現在のところ、マル

チプロセス/マノンチスレッドモデノンを採用しています。これ以外のネット

ワークサーバの代表的なモデノンとして、シングノンプロセス・イベントドリ

ブン(S′″gr`PЮ
“
s Eνθ″′Dri″″、SPED)と いうモデルが挙げられます。SPED

サーバでは、複数の接続を複数の実行単位で処理するのではなく、単一の

プロセスが複数のネットワーク入出カイベントをOSの機能を使って監視し

て、入出力のイベントに合わせて処理を高速に切 り替え実行することで、

並行処理を実現します。

純粋にマノンチスレッドとSPEDと いうアーキテクチャの観点で見た場合、

どちらも一長一短でどちらかが圧倒的に優れているということはありませ

ん。他方、実装の世界に目を向けると、Apaぬeは汎用的な作りになってい

るぶん、1リ クエストのサイクノン内に要するリソースがCPU計算量、メモ

リ消費量ともに若干大きい、その大きいリソース消費量がプロセス/ス レ

ッド分だけ必要になる、という欠点があります。

lighttpd

最近OSSの Webサーバで人気があるのが‖ghttpd注 18です。lighttpdは 、

・ SPEDを採用しており、少ないメモリで大量のアクセスを同時並行的に処理
することを主眼に置いた高速な実装

E 1 8 (EIl http://www.lightrpd.net/

４

。
２

　

＞
０
●
（
コ
の
の
チ
ュ
ー
ニ
ン
グ

章 性 能 向 上 、チ ュ ー ニ ン グ Linux単
一ホスト、Apache、 MySQL

O Apacheに比べて汎用性は劣るものの、その分 1リ クエス ト数あたりの計算

量が少ないためCPUに優しい

・ シングルプロセスなのでメモリ消費量がApacheに比較して遥かに小さく

て済む

・ Apacheの コアモジュール、mod_rewriteや mod_proxyに相当する基本的

な機能はすべてカバーしている

・ FastCGIにも対応しており、Perlや PHP、 Rubyで記述されたWebアプリケ
ーションを高速化しAPサーバとして利用することもできる

という特徴を持った非常に優れた実装で、大規模環境での稼動実績も増え

てきました。はでなでも、これまでApache workerで まかなってきた部分

を一部lighIPdに 置き換えたりもしています。

nghttPdと Apacheを比較した場合、最も顕著に差が出るのはメモリ消費

量です。lighttpdは どんなに接続がたくさんあっても、1プロセスから数プ

ロセスですべてを処理します
注19。 この部分が、クライアント数に合わせて

プロセス/ス レッドを増減させるApacheと の決定的な差になります。

hghttpdの利用に向いているのは、静的なファイノンを大量に配信したい場

合です。大量のファイルを大量のクライアントに返す場合でも最小限のリ

ソース消費で済ませることができます。

もちろんhghttpdを 動的コンテンツの配信に利用することも可能です。

hghttpdの扱いやすさから、スクリプト言語で開発されたWebア プリケー

ションをhghttpd+FastCGIで 高速化して動かしている事例も多くありま

す。ただし、動的なコンテンツを配信する場合は、Apache+mod_perl

(mod_phPな ど)と lighttpd+FastCGIの ような組み合わせ比較においては

それほど性能差はありません
注20。

Lghttpdの 詳しい解説は割愛しますが、大量のクライアントからの接続を

少ないリソースで処理したい場合はhghttpdを 検討してみるのもよいでし

よフ。

注 19 select(2)/po‖ (2)や epo‖ などのファイルディスクリプタ監視システムコールを使つて、ネッ トワーク

1/0を 多重化することで並行処理を実現 しています。

注 20個 人的には Apacheの 豊富なAPIを 使つてアプリケーションをカスタマイズできる点を評価 し、前者

をよく利用しています。

４

・
３

〓
く
い
Ｏ
Ｆ
の
チ
ュ
ー
ニ
ン
グ
の
ツ
ボ

パフォーマンス面でDBサーバに求められることは何でしょうか ?かな

り乱暴ですが一言で表すと「データをいかに速く出し入れするか」といえる

のではないかと思います。

ではDBサーバのパフォーマンスチューニング、すなわち「より短い時間

でデータを出し入れできるようにする」にはどのような方法が考えられるで

しょうか ?こ れはチューニングの切り口によっていくつかに分類できます

ので、まずはこの点について簡単に整理してみます。

チューニングの切り口での分類

はじめに、以下のチューニングの切 り口で分類 して考えてみましょう。

田 サーバサイ ド

日 サーバサイ ド以外

団 周辺システム

■サーバサイド

一つめは「サーバサイドのチューニング」です。サーバサイドのチューニ

ングというと、真っ先に挙げられるのは「mysddのパラメータチューニン

グ」でしょう。とりわけ、メモリ関連のパラメータと、ディスク1/0に関連

するパラメータがチューニングのキモとなります。

mys」dのパラメータ以外では「OS寄 りのチューニング」、たとえば、

MySQLi z*zY2'AY;f:

・ デイスク1/0関連のkernelバ ラメータの調整

章 性 能 向 上 、チ ュ ー ニ ン グ Li叫単一ホスト、APache、 MがQL

・ 適切なファイルシステムの選択とマウントオプションなどの調整

といったものも、本節ではサーバサイドのチューニングに分類しておきま

す。

ほかにパラメータ以外のチューニング・工夫としては、「パーティショニ

ング」(勁r″″雨暉)があります。規模が大きくなると、データサイズやアク

セスが増大して1台のDBサーバではまかないきれなくなります。

そこで、テーブル単位でDBサーバを分けたり、テーブノンのデータをプ

ライマリキーなどを元にして分割してDBサーバを分けたりします。これ

により、保持するデータサイズを小さく抑えることができるのでキャッシ

ュに乗りやすくなったり、アクセスを分散することができるのでサーバの

負荷が減ったり、といった効果が期待できます。反面、分割されたDBサ

ーバ群のうちから適切なものを選ぶ処理が必要になったり、SQLレベノンで

のテーブノン結合ができなくなるといった、アプリケーション側の負担が増

える側面もあります。

日サーバサイド以外

二つめはサーバサイド以外の部分のチューニングです。便宜的に「サーバ

サイド以外」と書きましたが、ここでは次のような事項を指すものとします。

・ テーブル設計

→適切なインデックスの作成

→意図的な非正規化

O SQLの最適化

→インデックスをうまく使うように

→テーブル結合の順序、方法を調整

とくにSQLの最適化は、チューニングの効果が劇的に高いケースが多々

あることに加え、時間がかかっているクエリの洗い出しにはスロークエリ

(′%―slο″-4“
`r燃
)で 時間がかかるクエリが特定できた後での原因究明には

EXPLAIN構 文と周辺ツーノンが整備されているので、比較的取りかかりやす

いチューニングなのではないかと思います。

日周辺システム

最後は「周辺システムのチューニング」です。そもそも周辺システムのチ

ューニングとは何でしょうか。冒頭で、チューニングのゴールは「より短い

時間でデータを出し入れできるようにする」と書きました。そこで視点を

DBサーバの周辺にも広げると、データの出し入れが速くなるならば、必

ずしも直接 DBサーバに問い合わせる必要はない、ということに気づくと

思います。

具体例を挙げると、データを参照するクライアントとDBサーバの間に

memcachedな どのキャッシュサーバを入れて、DBサーバではなくキャッ

シュサーバのデータを参照する、というのが考えられます。

RDBMSの チューニングというと、とかくSQLやサーバパラメータの最

適化ばかり目がいきがちです。しかし、これらを「データを入出力するため

の一連の系」ととらえ、クライアントやDBサーバをその構成要素と考える

ならば、そこにキャッシュサーバという構成要素を追加して系の性能を向

上する、といったマクロな視点も必要なのではないかと思います。

本節でこれから扱う内容

ここまででチューニングの切り口を3つ に分類しましたが、次のステッ

プ、つまり実際のチューニング作業はどうなるかというと、ボトノンネック

の発見→その解決というターンの繰り返しになります。

ボトノンネックの原因は至る所に潜んでいます。ですからボトノンネックの

発見は、「遅いSQL文を見つければいい」といった単純なものではなく、先

に挙げた3つの切り口で横断的に観察、検討することが求められます。

とはいうものの、このようなボトルネックは、要件やRDBMSの使い方

に起因するものなので実に多くのバリエーションがあり、一元的に「こう

だ」ということはできません。

また、DBやテーブノンのパーティショニングやキャッシュサーバの導入

は、それ以前にSQLの見直しやパラメータチューニングを行い、DBサー

バの性能を100%引 き出してそれでも処理しされない場合に検討すべきだ

と考えます。

４

ｏ
３

〓
ヽ
い
Ｏ
Ｆ
の
チ
ュ
ー
ニ
ン
グ
の
ツ
ボ

章 性能向上、チューニング Linux'トホスト、APache、 wSQL

そこで続く本節の以降では、サーバサイドのチューニングの中でもとく

に効果が期待できる、MySQLサーバ (mysqld)の パラメータチューニングの

勘所に焦点を当てて、掘り下げて解説していきます。

なお、本節で対象とするMySQLのバージョンは5.0.45で す。

ではMySQLサーバのチューニングにおいて、非常に重要となるメモリ

(バッファ)関連のパラメータについて、以下の2つの点を紹介します。

・チューニングのポイント

0参考までに、とあるDBサーバ(実メモリ4GB)の実際の設定値

バッフアの種類……チューニングの際の注意点0

まず最初に注意点を。MySQLに は、性能向上のためにデータを一時的に

蓄えておくためのメモリ領域があります。これをバッファというのですが、

このバッファには2つのタイプがあります。

・グローバルバッファ(G′ο
"7助
ルr)

・スレッドバッフア(物 rθ′′クルr)

グローバルバッファとは、mys」dで内部的に1つだけ確保されるバッフ

ァです。これに対し、スレッドバッファはスレッド(コ ネクション)ご とに

確保されるものです。

パラメータチューニングの際には、このグローバノンとスレッドの違いを

意識する必要があります。なぜなら、スレッドバッファに多くのメモリを

割り当てると、コネクションが増えたとたんにアッという間にメモリ不足

になってしまうからです。

割り当て過ぎない……チューニングの際の注意点0

バッファに割り当てるメモリは、大きければ大きいほどパフォーマンス

が上がります。とはいっても、サーバが搭載している物理メモリ以上の大

メモリ関係のパラメータチューニング

きさを割 り当てると、スワップが発生 してしまい逆にパフォーマンスが落

ちてしまいます。

また、MyISAMテ ーブルはMySQLレ ベノンのパラメータチューニングよ

り、MyISAMの データファイノンが OSのディスクキャッシュに載るように

調整したほうが性能が向上する場合があります。

メモリ関連のパラメータ

メモリ関連のパラメータを表 4.3.1ま とめました。

表4.3.1に ついて補足しておきます。まず、「hnodb」og nl鮭 sizc」 につい

て、mys」 dは innOdb」 og_■leがいっぱいになると、メモリ上のinnodb_

buttr_poolの 中でだけ更新されている部分をディスク上のInnoDBのデータ

ファイルに書き出すような動作をします。したがって、innodb_bu“ er_Pool_

sizeを 大きくしたら、このinnodb_log_ile_sizeも 合わせて調整しないと、

innodb」 og_■le_sizeがすぐにあふれてしまい、頻繁にInnoDBデータファイ

ノンに書き出し処理を行わなければならず、性能が低下してしまいます。

innodb」 og_■le_sizeの 値は、lMB以上で、32bitマ シンの場合は4GB以下

にしなければならない、とMySQL ABの ドキュメントには書いてあります。

もう一つ上限があります。 innodb_log_:61cは innodb_log_mes_in_group θ)

数だけ(デフォノントは2)作 られるのですが、innodb_log_me_size× innodb_

log_■ les_in_groupが innodb_buttr_pooLsizeを 超えてもいけません。

まとめると、以下のようになります。

lMB (innodb_log_file_size < MltX_innodb_tog_fi1e_size < 4GB

innodb_ buffe r_ pool_ size
MAX_innodb_tog file_size:

innodb_lo9_lles_in_g roup

ほかに注意しなければならないのは、innodb」 og■le」 izeを 大 きくすれ

ばするほど、InnoDBの クラッシュリカバリの時間が長 くかかるようにな

るという点です。

次に、同じく表 4.3.1の「key_bu“etsize」 についても参考までに補足 して

おくと、キーバ ッファのヒット率は、SHOW STATUSの 値を使って、次の式

で算出できます。

４

・
３

ζ
く
い
Ｏ
Ｆ
の
チ
ュ
ー
ニ
ン
グ
の
ツ
ボ

章 性 能 向 上 、チ ュ ー ニ ン グ LinⅨ 単一ホスト、Apache、 MySQL

表4.3.1 メモリ関連のパラメータ

バラメ

説明

innodb_buffer_pool_sizo .. |~ .

C□DlnnoDBのデータやインデックスをキャッシュするためのメモリ上の領域
□ ■□□□Dグローバル G田□D512MB
グローバルバッファなので、どかんと割り当てるのがお勧め

輌置動nnoDBの 内部データなどを保持するための領域
□ ■■■□Dグローバル (国□D20MB
それほど大量に割り当てる必要はない。足りなくなつたらエラーログにその旨、警告
が出るのでそれから増やしても問題ない

G団霧lnnoDBの更新ログを記録するメモリ上の領域
口団困四□国回)グローバル (曙罷躍Ⅲ6MB
大抵は8MB、 多くても64MBで十分で、あまり大きくする必要はない。なぜなら、バ
ツフアは トランザクションがCOMMITさ れるごと、または毎秒ディスクにフラツシュ
されるので、ほかのパラメータを厚くしたほうが得策である

0回DinnoDBの更新ログを記録するディスク上のファイル。メモリではないのですが
チューニングの上で重要なので解説しておく
C□□□□D一 曜□D128MB
大きくするほどパフオーマンスが向上する。詳しくは本文を参照

咽□k)RDER BYや GROUP BYの ときに使われるメモリ上の領域
α■□■□Dスレッド 曜轟罰口

'2MBスレッドバッファなので、むやみに大きくするとメモリが足りなくなるので注意。筆
者の場合は2MBか 4MBに している

颯圃)ソート後にレコードを読むときに使われるメモリ上の領域。デイスク1/○が減る
のでORDER 3Yの 性能向上が期待できる
●□回■回Dス レッド (圏目日)lMB
これもスレッドバッフアなので、割り当て過ぎには注意が必要。筆者の場合は512KB
～2MBに している

CDイ ンデ
□■日回D

ックスを用いないテーブル結合のときに使われるメモリ上の領域
スレッド 曜羅躍D56KB

スレッドバッフアである。そもそもインデックスが使われないようなテーブル結合は
パフオーマンス向上の観点からすると避けるべきなので、このパラメータはそれほど
大きくする必要はないだろう

GttDイ ンデックスを用いないテーブルスキャンのときに使われるメモリ上の領域
C日目□園Dス レッド (圏□回)lMB
これもパフオーマンスを考えるならば、インデックスを使うようなクエリを発行する
べきなので、それほど多くする必要はないだろう

C:目目DMvlSAMのキー(インデックス)をメモリ上にキャッシュする領域
aロロロ回田)グローバル 曜最躍D256MB
グローバルバッファで、多く割り当てるほどパフオーマンスが向上する。グ回―バル
バッファなのでどかんと割り当てられる。もし、MylSAMを (あまり)使つてないのな
らば、小さくしてほかのパラメータにメモリを回すのもアリである

(表 4.3.1の続き)

C轟目DMylSAMで以下の時のインデツクスのソー トに使われるメモリ上の領域
・REPIAIR TABLE
・CREATEINDEX
・ALTER INDEX
O日□目圏Dスレッド 饉覇□D lMB
通常のクエリ(DML)では使われないようなので、それほど多くする必要はないだろう

メモリ関連のチェックツール……mpemcheck

*-*t'v)tAZ'y l-* = 100 - (key_reads / key_read requestsxl00)

最後に、筆者らが使用している自家製のツール「mymemcheck」 について

紹介します。mymemcheckは、my.cnfも しくはSHOW VARIABLESの 結果を元

に、以下の3つのチェックを行います。

・ 最低限必要な物理メモリの大きさ

・ lA-32の Linuxでのヒープサイズの制限

Oinnodb_log_me_sizeの 最大サイズ

いずれもMySQL ABの ドキュメントに書かれている事項なのですが、メ

モリ関係のパラメータは相互に関係しあっているものがいくつかあり、気

をつけないと矛盾した値を設定してしまうことがあります。したがって、

パラメータを変更するときは、このmymemcheckを使って無理な値になっ

ていないか確言忍するといいでしょう
注21。

実行結果の例は図4.3.1の ようになります。

注 21本書の Appendixに 、全文を掲載 しています (mymemcheck)。 本書のWeb補足情報コーナーも合わ
せて参照 してください。

４

・
３

　

〓
ヽ
い
Ｏ
Ｆ
の
チ
ュ
ー
ニ
ン
グ
の
ツ
ボ

章 性 能 向 上 、チ ュ ー ニ ン グ Lin麒単一ホス1ヽ、Apache、 wSQL

$./mymemcheck my.cnf

I minimat memory]
ref

* rHigh Performance MySQLI , Solving Memory Bottlenecks, pl25

globa1_buffers
key_buffe r- size
innodb buffer poot size
innodb_log_buf f er size
innodb_additional_mem_pool_size
net_buffer_length

thread buffers
sort buffer size
myisim_ so rt,buffe r- s ize
read buffer size
join-buffer size
read_rnd_buffer size

268435456 256

536870912 512
16777216 16

20971520 20
16384 16

2097152

1048576

1048576

262144

1048576

2.000 [M]

1024.000 [K]

1024.000 1Kl

256.000 [Kl

1024.000 1K〕

鰤
動
囲
動
輌

max_connections

min_memory_needed = global_buffers + (th read_buffers* max_connections)

= 843071488 + 5505024* 250

= 2219327488 (2,067 [Gl) . .
・
||

[32bit Linux x86 1■ mltatlon l

ref
* http://dev.mysql.com/doc/mysq1/en/innodb‐ conf19urat■ on.html

* need to inctude read rnd buffer.

* nO need myiSam_50rt_buffer beCauSe al10Cate When repall, CheCk alte「
.

2G > process heap
pド ocess heap ==‐ 1■o.odb. buffer_p001 + key_ uffer

■maxiconnections*(SOrt_buffer+ read_buffer+ read_rnd_buffer)
+ max.connections* stack s■ ze

= 51368709.12 + 268435456
+ 250* (20917152 + 1048576 + 1048576)

+ 250* 262144

= 1919418363 (1.788 1G]}

2G > 1.788 [Gl ... Safe

l maXlmum SiZe Of innOdb_109_f■ le_SiZe l

ref
* http://dev.mysql.com/doc/mysql/en/innodb-start.html

1MB < innodb_1og_file_size < [4AX,innodb_log_file_size < 4GB

MAX_lnnodb_lo9_flle_size = ■nnOdb_buffer_p001_S■ 2e* .1/innOdb.10g_fileS_ln_grOup

= 536870912* 1/2
‐ ・

= 268435456 (256.000 1Ml)

■nnodb_log_f■ le_size く MAX_lnnodb_log_f■ le_silze l . ..

134217728 く 268435456
128.000 [‖〕く 256.000 1MI safe

図 4.3。 1

彙早

力運用

ニタスのモ
Canglia

Puppet

安定したサービス運営と、サービスの稼働監視

章 省力運用 安定したサービスヘ向けて

安定したサービスの運営には、サービスの稼働監視が欠かせません。サ

ーバを二重化して冗長化していたとしても、知らない間に片方が落ちてし

まうと冗長化が失なわれた危険な状態となってしまい、もう一度障害が発

生するとサービス停止となってしまいます。このようにシステムの一部で

異常が発生した時に、速やかに知らせてくれるサービスの稼働監視が安定

したサービス運営の鍵となります。

OSSのサービスの稼働監視ツーノンで有名なものは、Nagios注
1で
す。Nagios

は、柔軟な設定が可能で世界中で広く使われています。

一般に稼働監視は、ある機能が動いているかどうかだけではなく負荷状

態のチェックも含まれます。稼働監視はおもに以下の3つ に分類されます。

■ホストやサービスの稼働状態といつた死活状態の監視

日ホストのCPU使用率やサービスの同時処理数などの負荷状態の監視

団一定期間(1カ月や1年など)でのサービス提供ができていた割合である稼働

率の計測

日死活状態の監視

「死活状態の監視」は、ある機能が動作しているかしていないかをチェッ

クするもので、稼働監視の基本となる監視です。

稼働監視の種類

;l 1 (!El, http://www.nagios.orgl

たとえば、pingに よる応答を確認することでホストが生きているかどう

か、サービスに対してTCPコ ネクションを張れるかどうか、対象とするサ

ービスの基本的なプロトコノン処理ができるかどうかをチェックすることで、

対象となるサービスが正しく動いているかどうかを検出します。

もし、pingに よる応答が返ってこなかったり、TCPコ ネクションを張れ

ない、基本的なプロトコノン処理が動かないといった場合、そのホストやサ

ービスが停止していると判断し、管理者に通知します。それを受けて、管

理者は、ホストやサービスの再起動や、代替ホストの用意などの復旧手段

を速やかにとることができます。

監視対象とするサービスが冗長化されている場合、サービスを構成する

それぞれのホストに対する監視だけではなく、冗長化された後のVIP(仮想

IPア ドレス)に対しても監視をすることで、最終的なユーザからの観点か

ら正常にサービスができているかどうかを監視できます。こうすることで

障害が発生した際に、冗長化されているホストの一部のみの障害でサービ

スには影響ないのか、サービス提供に影響のある障害なのかを容易に判断

することができるようになります。

図 5,1.1の例では、サーバBで障害が発生しても、ロードバランサが自動

的にリクエストをサーバAに転送し、サービスヘの影響はありません。こ

のような構成の場合に、サーバAと サーバBだけではなくロードバランサ

上のVIPも 監視対象とすることで、サービスヘの影響の有無を確認でき、

障害の緊急度を判断することができます。

監視サーバ

ロードバランサ

サーバA サーバB

図5.1.1 冗長化している場合の監視

ロロ→ リクエスト

‐‐‐一‐‐●監視

５
。
１
　
サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
と
ｏ∽

章 省力運用 安定したサービスヘ向けて

日負荷状態の監視

「負荷状態の監視」は、サービスは止まっていないものの異常に重かった

りしないかどうかをチェックするという、サービスの稼働監視の応用的な

監視です。

負荷状態を監視するために、対象となるホストのCPU負荷や、OSレベ

ノンでの待ちプロセス数などを計測し、ホストの負荷が異常なレベルに到達

していないかを監視します
注2。
また、サービスを提供しているプロセスの

リクエストキューにある待ちリクエスト数や、リクエストの応答時間を計

測し、そのサービスヘのリクエストが許容可能なサービスレベノンで処理さ

れているかどうかを監視 します。待ちリクエスト数が異常に多かったり、

応答時間が長過ぎる場合は、ホストやサービスに過剰な負荷がかかってい

ると判断します。

過剰な負荷は、以下のような3つ に分けられます。

●DoS攻撃のような異常なリクエストによる負荷

O Slashdot効果
注3のような突発的なリクエストによる負荷

0純粋にサービスの人気が出たことによる恒常的なリクエストによる負荷

このため、通知が来た際の対応も死活監視のように単純ではなく、それ

ぞれの負荷に応じた対応が必要となります。たとえば、01と 推測とされる

ような場合はリクエス トの遮断をしたり、0)と 推測される場合は、コンテ

ンツの一時的なキャッシュをしたりします。そして、(Dの ようにサービス

自体に人気が出て恒常的な負荷が上昇した際には、ホストの増設などが必

要となります。

負荷状態を監視することで単純な死活監視では検出することができない、

「一応使えるのだけど、遅い」というような状態を検出することができ、そ

の対策を行うことで良好なレスポンスを維持することができるようになり

ます。

注 2 負荷の計測について、4.1節に詳 しい説明があります。

注 3 人気のある他のサイ トからリンクを張られて、多数のユーザが来る現象のことをいいます。

日稼働率の計測

「稼働率の計測」は、上の2つの監視 とは異なり、数週間～数力月といっ

た、ある程度の期間の監視結果を解析することで、システムの中長期的な

改善につなげるためのものです。

上の2つのサービスの死活監視と、負荷状態の監視を続けることで、そ

のサービスがどれぐらい稼働し続けていたのか、 どれぐらいの負荷がかか
っていたのか、を知ることができます。それにより、システムのどの部分

が落ちやすいか、システム全体としてどの程度の稼働率なのか、を客観的

に分析することができるようになります。

この分析により、特定のホストの不安定さを把握 したり、そもそもシス

テムの構成が不安定であることを認知できるようになります。それによっ

て、システム全体における冗長化のレベルや、管理者の保守体制などの戦

略的な判断へのフィー ドバックをかけることができます。

以上のような監視や計測を可能 とする代表的な監視ツーノンとして、

「Nagios」 があります。Nagiosは 、pingに よるホス トの死活監視、TCPコ ネ

クション接続による各種サービスの監視、SNMP(SttpFι Nα″ο″Mα″%御
`4′

P“οわ
`ο

′)に よるホストの状態監視のほか、独自プラグインによる任意の監

視が可能となっています。また、監視結果の通知も、メーノンを基本として、

任意の手段を定義することができます。さらに、Webイ ンタフェースによ

って状態の参照や、監視の停止・再開などの制御ができます。

なお、本節では執筆時点の最新版であるNagios 3.0.2を ベースに解説しま

す。

lvg-gi-q:のインストール

Nagiosは Red Htt Enterprise Linux 5や CentOS 5で は標準パッケージに含

まれていませんので、以下の公式サイ トからパッケージをダウンロー ドし

てインス トーノンしてください。

osの概要N

５
・
１
　
サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
こ
ｏい

章 :省力;塁用 安定したサービスヘ向けて

Nagios本体に合わせて、さまざまな対象を監視するためのスクリプトを

含む「0伍 cial Nagios Plugins」 もインストーノンしてください。0伍cial Nagios

Pluginsは、ほかに依存しているパッケージがいくつかありますので、必要

に応じて追加でインストーノンしてください。以降、本節ではCentOS 5.0で

動作確認をしています。

GED http://wwwnagios.orgl

Nagiosは 、柔軟な設定が可能な代わりに設定ファイノンが若干複雑なもの

となっていますので、インストール時に同時にインストーノンされるサンプ

ノン設定ファイノンを流用しながら設定するのがお勧めです。

まず、Nagiosの設定に必要となる基本的な概念を表 5.1.1ま とめておきま

す。以降では、表 5.1.1に ある主要な概念に添って説明を進めます。

Naglosの設定

サーバやルータなどのネットヮーク上の物理的な要素

1つないしそれ以上のホストをグループにまとられる。いずれのホス

トも、少なくとも1つのホストグループに属する必要がある。ホスト

グループ単位で、各ホストのイベント(ホストの障害・復帰など)の
通知先を指定することができる。各hostは 1つ、もしくはそれ以上
のhostgroupに 属す必要がある

ホスト上で稼動しているサービス。このサービスには、POPや HTTP
などのわかりやすいサービスだけではなく、pingへのレスポンスや、
ディスクの空き容量など、ホスト上のさまざまなものをサービスと

することができる

サービスグループ定義は、Web管理画面での表示のために1つ以上
のサービスを分類するのに使用される

Naglos上 の各種イベントを通知する通知先 (コンタクト)の定義

複数のコンタクトをグループにまとめられる。ホス トグループとサ
ービスで指定する通知先は、このcontactgroupに なる

テンプレー ト 複数のホス トやサービスに共通する設定がある場合、テンプレー ト
を利用することで、共通部分を繰り返す必要がなくなり、設定を簡

潔に記述できるようになる

hostgroup

service

servlce9roup

contactgroup

host

contact

表5,1.l Nagiosの基本概念

設定ファイル

以降の解説は、3.0.2を インストーノンした際に同時にインストーノンされる

「nagiOS,Ct」「COmmands.ct」 と「localhost.ct」をベースにしています。

設定ファイルは、cゎ_lleと いう設定項目で別ファイノンを読み込むことが

できますので、任意に分割することができます。ホスト数が増えるととも

に、設定ファイノンはどんどん肥大化していく傾向がありますので、わかり

やすく分割してください。

host・・…・ホストの設定

hostで監視対象となるホストを定義します。hOstで設定する項目は多岐

にわたり、かつ複数のホストで共通になることが多いので「テンプレート」

を使うことをお勧めします。

リスト5.1.1の例では、まず、generic_hOstと いぅテンプレートを定義し、

そのテンプレー トをベースにホスト10ca■ Ostを定義しています。

各設定項目は、リスト5■ 1内 にコメントで簡単に説明していますが、重

要な項目について補足しておきます。

・ lap_detection_enabled

障害発生と障害復旧が異常な頻度で繰り返されることを「フラツピング」

(F′′pp,電)という。フラツピングが発生すると大量の通知が来ることになり、

他の通知が埋もれてしまう。この設定を有効にすると、フラツピングを検出し

たらフラツピング開始・終了のみを通知するようになる

O max_check_attempts

ここで指定した回数以上、チェックに失敗した場合、ホストに障害が発生した

と判断され、通知される

・ nOtincation_period

通知する時間帯。localhost cち にて「24x7」 (24時間)、 「workhours」 (平日の9

時から5時)、 「nonworkhours」 (平日の9時から5時以外)、 「none」 (対応時間

なし)の 4つが定義されている。基本的には「24x7」 を使う

・ check cornrnand

監視に使うコマンド。設定例で指定しているcheck― host― a‖veは、pingを発行

することでホストの死活確認をするchec唯 pingコ マンドをベースとしたコマ

５
。
１
　
サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
こ
９

章 :省 力 運 用 安定したサービスヘ向けて

ンドである。デフォルトの設定では、5,000ms以 内に応答がないとCRITICAL

とするようになつている

service """+,-V.7afr*

serviceで 、ホスト上で動作するサービスを定義します (リ ス ト5.1.2)。

hostと 同様にテンプレートを利用することで簡潔に記述できます。

define host{
naIne

notifications enabled

event_handle r_enabled

f lap_detection_enabled
f ail.u re prediction_enabled

p roces s_ pe rf_data
retain_ stat u s_ info rmat ion

retain- non status_in fo rmation

not ification_ pe riod
regi ste r

l
define host{

natne

use

chec k_ pe riod
max_ chec k_attempt s

check_ command

notif icat ion_ pe riod
notificat ion_ inte rvat
not ification_options
contact_g roups

registe r

)
define host{

use

host_name

al ias
add res s

)

linux - se rve r
localhost

generic - host

linux - se rve r
gene ric - host

24x7●誕■口四D
10

check_host_alive aロロロロ日D
workhours a田園回国団D
120 G口回団D
d,u,r(1目回:|口圏田圏|)
admins

0

Localhost Server C□D
192.168.0,l C曰■國D

リスト5.1.l hostの 設定例

←テンプレート

るイベン トハン ドラを有効にする

―フラッピングを検出する

←ハフオーマンスに関する情報

←再起動時に状態に関する

る情報を保持する←再起

る

る

―故障予測を有効にする

←ホストに関する る

←ホスト

←常に通知する

←この定義をテンプレー トとする

←テンプレー トの名前

←使うテンプレー トを指

←チェックを10回 まで試行する

一通知対象となる通知グルーブ

←この定義をテンプレートとする

←ホス ト名

―使うテンプレート 定

command……コマンド定義

commandで コマンドを定義します。先のリスト5.1.2(serviceの設定例)

暉暉■団國居卿コロ圏下隧聰聰鰈魃諫勒鰈輻躙輻餞::
define service{

retaln nonstatus informatilon

is-volitile o

register 0

)
defLne service{

name

use

localiservice C薔図圏目曖励

check_ pe riod
max_ chec k*attempt s

normal_check_interval 5

retry_check_interval 1

contact_groups admin

not ificat ion_opt ions

noti fication_ inte rvat
not i ficat ion_ pe riod
regi.ster 0

)
define service{

use local-service

generlc‐ servlce

24x7 (1:目目ll目 :ill日lllIレII:iil:lll)
41:日:::l,i:l,17:II:目 1目li:I調171i:::i圏 l)

←受動的チェックを有効にする

チェツクで並列チェックを有効にする

―フラツピングを検出する

卜とする

を保持するに

る情報 処理する←パフォーマンスに

にするを

る←イベンドハンド

←ホストに を に

エ ツ をチェックする

←能動的チェック る

― 卜の

←使うテンプレー トを指定

エツクコマンド

←サービス

ストグルー

ンプレート

５

。
１
　

サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
こ
ｏ・

nallle

active checks enabled
passive checks enabled
pa rallel ize, check

obsess_ove r,se rvice
check, f reshnes s

noti.f ications_enabled
event_ hand le r_enabled

f lap_detection_enabled

章 省力運用 安定したサービスヘ向けて

では、サービスの死活監視にcheck_pingで行っていました。コマンド名

(checLping)の後の町100.0,20%!500.0160%"は 、コマンドに与えるパラメ

ー タです。パ ラメー タは !で 区切 られ、・100,0,20%"が $ARGl$と し

て、"500.0,60%"が SARG2$と して渡されます。

このコマンドは、デフォノントの設定ではリス ト5.1.3の ように設定されて

います。‐wに渡されるパラメータがWARNINGと なる条件、‐cに 渡される

パラメータがCRITICALと なる条件 となります。 リス ト5,1.2の例の とおり

のパラメータを渡すと、100ms以上の遅延 もしくは20%以上のパケットロ

スでWARttNG、 500ms以 上の遅延 もしくは60%以上のパケットロスで

CRITICALと なります。

contact プ

contactで 通知先を、contactgroupで 通知先グノレープを定義します (リ

スト5.1.4)。 通知は、通知先グループを指定することで行いますので、最

低 1つの通知先グループが必要です。

service_notincation_commandsでサービス関連の通知を処理するコマン

ドを、hOstnOtincation_commandsで ホスト関連の通知を処理するコマン

ドを定義します。リスト5.1.4の例では、いずれもメールによる通知の設定

となっています。

設定のテスト

Nagiosの設定を変更した際には、以下のコマンドで設定を反映します。

/etc/in■ t.d/nagios reload

もし、設定に文法ミスなどのエラーがあれば、エラーメッセージが出力

されます。その場合は適切に設定ファイノンを修正してください。

リスト5.1.3 command定義の例

'check*ping' command definiti0n
define command{

command_name check_ping
command_tine $USER1$/check_ping
)

―H $HOSTADDRESSS ‐w SARGl$ ―c SARG2S

Web管理画面

ループに←この るコンタクト

←通知先グループの

一通知先クルー 円|サ

一通知先のメールア ドレス

←ホストの通知コマンド

←サービスの通知コマンド

←ホストについて通知するイベント

―サービスについ るイベント

←ホストについて通知する時間帯

―サービスについて通知する時間帯

一通知先の別名

←通知先の名前

Uah5.1.4 contact

Nagiosは、強力なWeb管理画面を持っており、さまざまなホストやサー

ビスの状態を確認したり、監視の一時的な停止などある程度の制御ができ

ます。図5.1.2が、Nagiosの メインメニューです。メニューの内容について

表 5■2に まとめておきます。

５

。
１
　

サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
と
ｏい

define contactgroup{
contactg roup-narlle

alias
membe rs

]

図5.1.2 Nagiosのメインメニュー

墨agiOピ I懸職ぽf

朧躍態 睡画

麟 ,●●
'

議 F…
靡目摯詳‐爾

ｎ
Ｃ
　

鷹

蠍̈

define contact{
contact name

admin s

nagios - admin

い
　

　

一

章 ‐省 力 運 用 安定したサービスヘ向けて

表5.1.2 Nagiosのメインメニュー

Monitoring 監視関連の状態をさまざまな観点で表示するためのメニュ

Tactical Overview ホストとサービスの各ステータスごとの件数が表示される。
また、各ホストやサービスのモニタリングについても状況
ごとに件数が表示される。全体像を把握するのに有益であ
る

Service Detail 全ホストについて、それぞれのサービスが一覧ですべて表
示される。各カラムでソート可能で、網羅的に把握するの
に利用できる

Host Deta‖ 全ホス トを一覧できる。ホス トの死活状態を確認可能

Hostgroup Overview ホストグループごとに、状態を確認できる。ホストグルー
プにまとめることで、目的ごとに把握できる。また、ホス
トグループ名のリンクをたどることで、特定のホストグル
ープのみの一覧を表示させられる

HOstgrOup Summary ホストグループごとの状態を件数で表示する

Hostgroup Grid Hostgroup Overviewと 似ているが、サービスが状態ごとで
はなく、列挙されるため不具合の時のサービスの特定が容
易となつている(図 5.1.3)

Servicegroup Overview
Servicegroup Summay
Servicegroup Grid つた画面である

< lL < /'c. Hostgroup Overview. Hostgroup Summay.
Hostgroup Grid OiTl))t-JD+t-C7,)t-Jl.tr.

Status Map
3-D Status Map

ホス ト定義の親子関係をネツトワーク図として表示するた
めの画面。Status Mapは 2Dで、3-D Status Mapは 、VRML
による3-Dマ ツプとなつている

Service Problems 障害が発生しているサービスのみを一覧表示する

Host Problems 障害が発生しているホス トのみを一覧表示する

Network Outages ホストの親子関係を元に、親ホストの障害の影響範囲を表
示する

Comments ホス トやサービスに付けたコメントを一覧表示する

Downtime

Process lnfo Na91osプ ロセスについての情報を表示する。ブロセスの起
動時間などが表示されるほか、Naglos全体の監視や通知を
一時的に無効にできる

Performance
lnformation

Na91osの パフオーマンス情報として、監視コマンドの実行
時間の統計などを表示する

Schedu‖ng Queue 監視のコマンド実行のスケジュールー覧を表示する

Reporting 過去の監視結果を解析するためのメニューである

Trends ホストやサービスについて、時間を横軸に状態を縦軸に表
示する

Availability ホス トやサービスについて、指定した期間の間の稼働率や
各状態の頻度、監視回グを表示する

項 目 説明

計画しているタウンタイムを一覧を表示する

|

ホストやサービスについて、時間を横軸に警告数を縦軸に
表示する

全ホストと全サービスについての警告の履歴を表示する (図
5.1.4)

指定したホス トやサービスの警告履歴についての最新 25件
や最多25件といつた集計結果を表示する

過去に行われた通知を一覧表示する。特定の種類の通知に
表示を絞り込むこともできる

(表 5■2の続き)

Alert Histogram

Alert History

Alert Summary

Notifications

Event Log

Configuration 設定に関するメニュー

View Config ホス トとサービスの設定を一覧表示する

Na9iosの起動や警告
表示する

通知を含むすべてのイベント回グを

図5.1.3 Hostgroup grid画 面

艤艤爾轟鐵颯鯰爾炒譲1鰈醸跛畿艤褥鰺艤隕離朧蠅鐵|
簸「 ,「F。

「

下

'1聰
編爾緊F,マF。

「

TTI
I爾麒繭隕熔

「

~~鱚
靡躇鶉

「

~
匡彊 l堕コ :鰊 塀 堕 |

Shtur Gild ForAll Hocl Group!

Etr5.1.4 NagiosOAlert HistoryEiE

靡 蒻市覇

「

面 TT磯
鸞

爾塾鋼

Ｆ
Ｄ

ｏ
■
■

サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
こ
ｏ
∽

{ Ho6.nd $Nlc.!

Nagiosの基本的な使い方

章 省 力 運 用 安定したサービスヘ向けて

Nagiosは柔軟な設定が可能な代わりに、少々とっつきにくくなっていま

す。ここでは、Webサーバ監視を題材に基本的な使い方を紹介します。

ホストとサービスの定義

まずは、サー ビスが稼働 しているホス トを登録 してい きます (リ ス ト

5.1.5)。 そして、サービスごとにホス トグノンープに振 り分け、それぞれの

ホス トグループに監視サービスを定義 していきます。

追加するサービスには、全サーバで共通のサービス と、サーバごとの役

割に応 じたサービスがあ ります。共有のサービスとしては、ホス トの死活

監視 としてchec唯 pingコ マンド、ディスクの残容量チェックとしてcheck_

snmpコ マンドをベースとしたSNMPに よる監視をしています。

Apacheな どのWebサーバについては、check_httpを定義 したり、MySQL

のサーバにはcheck_mysqlを 使います。chectmysqlは 、Omcial Nagios

Pluginsに 含まれています。

mysql ‐‖ $HSTADDRESSs ‐u $ARC15 ‐p

SAR62$ ‐P

define host{
use

host_name
alias
address

)

databaseserverl

192.168.0.100

define hostgroup {
hostgroup_name database- servers
alias Database Servers
members databaseserverL

)

define service{
use http-service
hostg roup_natne database- servers
service_desc ription lilySQL

check_command check_mysqlinaglos!na91osl

}

ホストとサービスの定義の例

通知

稼働監視によって、発見した異常や警告が明らかになった場合、速やか

に対応可能な管理者に通知する必要があります。そのための基本機能とし

て、異常や警告内容のメーノン送信があります。またほかにも任意のコマン

ドを起動できますので、コマンドの実装次第でIRCや IMな どへの通知もで

きるようになります。

たとえば、筆者らは障害通知を各担当者の携帯に送っているのですが、

それに加えてIRCへ通知を送っています。IRCは、おもに障害対応時の情

報共有のために利用しているのですが、そこにNagiosか らの通知を投げる

ようにすることで、複雑な障害が発生した場合の状況の見通しを良くして

います。

― ――メール

メールは、Nagiosか らの障害通知の基本 となります。障害が発生すると、

図 5.1.5の ような文面のメールが送付されます。デフォノントの設定では、ホ

ス トの場合には host― notify‐ by‐ emailコ マン ドが、サービスの場合には

notify‐ by‐ emailコ マンドが利用されます。それぞれのコマンドの設定例

をリス ト5.1.6に 示 します。

←――lRC

はてなでは、メールに加えてIRCのチャンネノンヘも警告を流すようにし

ています。障害が発生した時に、管理者間での対策方針を相談したり、各

種連絡をするためのチャットに、刻一刻と変化するサーバの状態を流すこ

とで、情報共有を円滑にし効率的な対策が可能となります。また、影響範

囲の大きな障害が発生すると大量のメーノンが送られてくるため一覧性が悪

くなります。このような時にもIRCのチャンネノンログを確認することで、

状況を網羅的に把握できるようになります。

IRCヘメッセージを流すには、IRCサーバ、IRCボ ット、ボットヘメッセ

ージを投げるクライアントの3つ が必要 となります。IRCサーバは標準的

なircdを利用しています。また、IRCボ ットとして、Kwik::Notiヶ :IRCと

５

。
１
　

サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
こ
ｏ・

章 省 力 :運用 安定したサービスヘ向けて

From: na91osCexample,com

Subiecti CRITICAL 1011/http_service

To: maintenanceCexample.com

***** Nagios

Notification
‐
「ype: PROBLEM

Serv■ ce: http_ erv■ ce

Host1 1011

Address: 192.168.1.11

Statel CRITICAL

Date/Time: 02‐ 08‐ 2008 12:37:51

Additlonal lnfo:

(Service Check Timed Out)

lhost‐ notify‐ by‐ emaill command definition

define command{

command_ ame host‐ notify― by‐ ema■ l

command_line /usr/bin/printf l:%bl: l:*****Nagios *****ヽ nヽ

nNot■ ficat■ on Type: 5NOTIFICAT10NTYPEsヽ nHost: $HOSTNAMESヽ nState:

$HOSTSTATE$ヽnAddress: 5‖OSTADDRESSSヽ nlnfo: $HOSTOUTPUTSヽ nヽ nDate/Tlme:

SLONGDATETIMEsヽ ■
1: 1 /bin/mail ‐s 〕:$HOSTSTATEs sHOSTNAME$|‖

SCONTACTEMAILS

}

lnotify― by‐ emaili command definition

define command{

command_ ame notify‐ by‐ ema■ l

command_line /usr/bin/printf i`%bll l:***** Nagios *****ヽ nヽ

nNotiflcation Type: SNOTIFICAT10NTYPEsヽ nヽ nService: SS[RVICEDESCSヽ nHost:

SHOSTALIASSヽ nAddress: $HOSTADDRESSSヽnStatel SSERVICESTATESヽ nヽ nDate′ Time

SLONGDATETIMESヽ nヽ nAdditional lnfo:ヽ nヽ nSSERVICEOUir.PUTS:| 1 /bin/mail ‐5
11 $SERVICESTATEs sHOSTALIASs/SSERVICEDESC$:l. SCONIACTEMAIL$

}

リスト5.1.6 メールによる通知コマ

睡≡≡亜亘憂憂亜亜≡亜正三I正三
==菫
轟量飩卜絋吻財同圏

い うCPANモ ジュール に含 まれる「noti″―irc.Pl」 とい うbOtを 利用 してい ま

す。ク ライン トは、同モ ジュールの Kwik::Noti争:IRC.Pmを 単体のスク リ

プトとして動かせるようにした、「nOti年_irc.Pl」 を使っています(リ ス ト

5.1.ア、リスト5.1.8)。

リスト5.1.7 notify ircopl

「

shi

Component

wa rnlngs;

リスト5.1.8 notify irc.p:

５

。
１
　

サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
３
一９define contact{

contact-nalne irc
alias irc-bot
etnail testGexample.colll

}

'host― notlfy‐ by‐■rct collrlnand definition
define command{

command_ ame host‐ not■ fy― ■rc
command_line sUSER15/not■ fy_i rc.pl

}

rtly $remote =

p()rt => 9999′

name => "Nagiosgg",

ex■ t O;

応用的な使い方

章 :省力 運 .用1 安定したサービスヘ向けて

ここでは、稼働率の測定と独自プラグインといったNaglosの 応用的な使

い方を紹介します。

稼働率の測定

稼働率を計測するには、まずサービスの稼動チェックができるようにす

る必要があります。基本的には、そのサービスのグローバルIPでホストを

定義 して、その上に計測対象とするサービスを定義します。たとえば、

http:/洵 w・ hatena,ne.jp/の 稼働率を計測するためのNagiosの 設定はリス

ト5.1.9のようになります。checに vhostは 、check_httpコ マンドを利用し

て、FQDNで ドメインを指定し、任意のパスを指定できるようにしたコマ

ンド定義です。

次に稼働率をグラフ化するために記録してみます。リスト5.1.10に Nagios

のWeb管理画面からスクレイピング(S“η′暉)し て、はでなグラフに投稿す

口暉E口回E証棗回田■1軍1弾:5量鰈鰺鰺鰈儡
define service {

use generic-service
host_name hatena -www. hatena , ne . j p

service_desc ription hatena -!,iww

check_command check_vhost ! wvw. hatena. ne. j p | /
)

define host {
use generic-host

host_name hatena-tivilv, hatena, ne, jp
address 59.106.108.86

atias hatena-question

)

#'check*vhost' comrnand

define command{

command name check

command_tine $USERI

)

definition

vho st
$/Check

るスクリプトを示します。このスクリプトを1日 1回動かすことで、サービ

スの稼働率を簡単にグラフ化して他の人や外部に公開したりすることがで

きます。図5.1.6に稼働率をグラフに投稿した例を示します。

独自プラグイン

５

。
１
　

サ
ー
ビ
ス
の
稼
働
監
視
　
２
３
一ｏい

Nagiosでは、多数のチェック用のコマンドが用意されていますが、それ

ta rgets = 〔

{ :hOSt =>

:service

・hetena_aihatenalお :」 p・

=> ::hatena‐ antennall′

:

:id E> |[hatenaanten,a ′ ||
:graphname l>‐ lavaitability:.},

｀
鎮t市 d}・
 ・‐ ~‐

ガ
・．ｂｏ‐。

:valtё
‐
=> count)

章 省力運用 安定したサービスヘ向けて

でも非対応のサービスの状態監視や、特殊なハードの状態監視などのよう

に対応されていない監視対象が出てきます。そのような対象を監視するに

は、NRPE(Nαg′οs R`″οr`PI“gi′ Eχ
“
′′οr)を使 う方法、SNMPを 使 う方法、

独自プラグインを作る方法の3種類があります。

NRPEを 利用すると手軽に監視対象を加えることができるのですが、各

サーバにNaglosの ためのプロセスを新しく立ち上げる必要があるため、は

でなでは利用していません。その代わりに、MySQLな どのように元々リモ

ートからアクセス手段が用意されている場合は独自プラグインを、リモー

トからアクセスできない場合は、net_snmpに よるSNMP経由で監視してい

ます。

ここでは独自プラグインの例として、「MySQLの レプリケーション監視」

「MySQLの プロセス数監視」「memcached監視」の3つ を紹介します
注4。

― 一MySQLの レプリケーション監視
……check_mySqlrep.Sh

MySQLの レプリケーションが正しく動作 していることを監視します (リ

注 4 3つ の独 自プラグイン (check_mysqlrep Sh、 CheCk_mySql_prOCeSS.Sh、 CheCk_memCaChed Shに つ

いては、本書の Web補足情報 コーナー (p344を参照)も 合 わせて参照 して ください。

図5。 1.6 稼働率のグラフ(はてなグラフで作成)

|

3

四 hatenadiaり のaVal!ab“町

[二型菫■E正:=」三菫[二lニニ壼_L二塑__上二堕_」

L_

スト5.1.12、 リスト5.1.13)。 このスクリプトでは、MySQLサ ーバにshow

slave statusコ マンドを投げて、レプリケーションの正常性を監視してい

ます。エラーで止まっている場合は、エラーを表示して停止させています。

― 一MySQLのプロセス数監視……CheCk_mySqLprocess.sh

MySQLの処理中のクエリ数 (プロセス数)を監視するスクリプトです (リ

スト5.1.14)。 このスクリプトでは、MySQLサーバにshow processlistコ

マンドを投げて、MySQLサーバで処理中のプロセス数を数えています。ま

リスト51 12

リスト5,1.13‐

Ｆ
Ｄ

ｏ
■
■

サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
８
一ｏ
い

章 省 力 運 用 安定したサービスヘ向けて

た、プロセス数を数える際にSleep状態にあるプロセスはカウントしていま

せん。

― ―memcachedl舗・……check_memcached

メモ リ上で動作するキャッシュツールであるmemcached(ht"://www.

danga.cOm/memcached/)が正 しく動作 していることを監視 します (リ ス ト

5.1.15)。 Ian Zilbo氏 のサイ ト
注5で
公開されています。このスクリプ トで

は、指定されたmemcachedサ ーバに接続 し、正常に値の設定・取得ができ

るかどうかを確認 しています。

Nagiosは、サーバ監視という安定動作が期待される領域での実用的なOSS

としては、ほとんど唯一といっていいと思います。大規模環境での動作実

績も多く、豊富なプラグインも用意されており、あらゆる環境に対応でき

ますので、うまく有効利用して、インフラの安定化を目指してください。

proc€sscount='$mysqlpath/mysqt -u $user 'p$pass -P $port -h $host -BNe

'show processlist' I awk '{print $5}' I grep -v Steep I wc -l';

echo llproCesscount: Sprocesscount‖

if 〔 Sprocesscount ‐ge SCrit li then

exit sSTATE CRITICAL .

elif [SprOCeSSCOunt ‐ge SWarn l)then

exit sSTATE WARNING

else. ‐

exit SSTATE OK II・

fi

exit sSTATE_UNKNOWN _

■ i■ ..

おわりに

注5(口D http://zilbo.cOm/(執筆時点では接続できなくなつています)

サ
ー
ビ
ス
の
稼
働
監
視
　
ｚ
と
ｏ
・

ｒ
Ｄ

ｏ
■
■

Check keyll′ 4*60))(

$key";

my $val = gmemd->get(gkey

if (defined(SVal)and

exit SERRORS{:OK!};

}

else{

print ilunable to get

exit sERRORS{iCRITICALl};

章 省力:塁用 安定したサービスヘ向けて

本節では、サーバリソースのモニタリングによつわる話をします。前半

はモニタリングについてその意義などを整理し、後半では実際に筆者らが

使っているモニタリングのしかけを紹介したいと思います。

モニタリングの目的

まずは「モニタリング」という行為について整理しておきましょう。モニタ

リングの目的を一言でまとめると「変動を観察する」といえます。「変動を観

察する」とはどういうことかというと、サーバの状態を示すさまざまな指標、

・ CPU使用率

・ メモリ使用率

・ ロードアベレージ

・ ネットワークトラフイツク

などといった値を継続的に記録し、視覚化し、傾向や変動をつかみやすく

することを意味します。

即座の対応が必要なサービス監視 (こ れは「異常を検知する」といえます)

とは違い「変動を観察する」は派手さはありませんが、実践しておくと後々、

そのありがたみが感じられます。

たとえば、メノンマガやテレビコマーシャノンや大手ポータノンサイトヘの広

告掲載などといった訴求活動をした場合、その瞬間に大量のアクセスが押

し寄せてきます。アクセスが落ち着くまではあれやこれやの対応で管理者

はでんてこ舞いでしょう。一段落してからどこがボトノンネックになってい

たのか ?と 振り返るときに、過去に遡ってサーバリソースの変動をグラフ

のモニタリング

サーバリソースのモニタリング

で視覚的に比較することができると、とても役に立ちます。

また、環境に変化がないにもかかわらず観測値に増減がある場合は、そ

れは故障や障害の予兆かもしれません。一例を挙げると、1/0待ちのプロ

セスが増え続けて高止まりしている場合は、ディスク故障による1/0性能

の低下が原因かもしれません。モニタリングを行うことで、そのような場

合の対策にもつながるでしょう。

では、実際にモニタリングを行 うにはどうしたらよいでしょうか。ゼロ

からしくみを作 り上げてもいいのですが、モニタリングのためのデータ収

集とそのグラフ化をやってくれるツールにはいろいろなものがありますの

で、まずはそれらを試してみるのがいいでしょう。いくつか列挙しておき

ます。

. M u n i n QED http://m un i n.projects.l in pro.nol

. Cacti (4D http://www.cacti.net/

. Centreon (IE#I Oreon) (trD http://www.centreon.com/

. Monitorix (EIl http://www.monitorix.orgl

. NetMRG @D http://www.netmrg.net/

. collectd (4ll http://collectd.orgl

Muninと Cactiに ついては個人的な使った感想をまとめておきます。

Munillの配布物には非常にたくさんのプラグインが含まれているので、プ

ログラムを書いたり凝った設定をしたりしなくても、とでもたくさんのリ

ソースをグラフ化できるのがいいなと思いました。Cactiは レイヤ(データ

収集、データ定義、グラフ描写)の機構がきれいに分かれていることと、そ

の設定がすべてブラウザで行えることがいいなと思いました。

ただどちらも、監視対象となるノード(サーバ)を追加や削除した場合は

設定を書き換える必要があったり、グラフ表示画面の一覧性がよくなかっ

たりと、大量のサーバをモニタしたい場合にはちょっと不向きかなという

印象を試したときに持ちました。

モニタリングのツールの検討

５
・
２
　
サ
ー
バ
リ
ツ
ー
ス
の
モ
ニ
タ
リ
ン
グ
　
い
ｏうｏ
一一９

5}anglia・i魅量ノ三二皇けのグラフ化ツール_

章 省力運用 安定したサービスヘ向けて

では何を使っているかというと、サーバファームではGangha注
6と ぃぅ

ものを使っています。Gangiaの サイトによれば、Cangliaは 九々クラスタ

やグリッドコンピューティングといった、大量のノードがいる環境での使

用を想定して作られたモニタリングシステムだそうです。実際に使ってみ

て「便利」と思った点を挙げてみます。

まず 1つ めは、ノード(サーバ)を追加、削除した際に設定変更が不要と

いう点です。追加したノードではユージェント(gmond)を動かすだけでOK

です。これだけで、データ収集 とグラフ化を行 う役割のステーション

(gmetad)と 通信して、グラフ化対象となるグループに追加されます。通信

はマルチキャストで行われるので、互いのIPア ドレスを設定する必要もあ

りませんし、ノードを検出するためにサブネット全域にSNMPし まくると

いったこともありません。

2つ めはグラフの一覧性の良さです。図5.2.1を 見てください。こんな風

にすべてのノードのグラフがグリッド状に表示されるので、ぎっと眺めて

傾向を比較しやすい画面構成になっています。

逆に、「ここはいまいち」と思った点も挙げてみます。

まず、グラフの種類がそれほど多くないという点です。CPUやメモリの

使用率、 トラフィックなど、基本的なグラフは描けるのですが、Muninほ

どその種類は多くありません。また、独自のグラフを追加する場合、値が

1種類のものならばgmetricと いうコマンドで値を送信するだけでグラフが

描けるので簡単でいいのですが、1つのグラフに複数の値を描きたい場合

(た とえば 1つのグラフ中に1/O readと 1/O writeの 両方を描写したいとか)

は、Ganglie本 体のコード(PHP)に 手を入れる必要があり、ちょっとめんど

うです。

2つめは、グラフの表示期間の指定の選択肢が固定で、1時間、1日 、1週

間、1カ 月、1年 しか選べない点です。これでは「大量アクセスがあったあ

の日の何時から何時までだけのグラフを見たい」といった柔軟な表示ができ

)86 GEI' http://ganglia.info/

ません。ただ、観測データは全時間保存されているので、表示期間指定の

ユーザインタフェースと描写ロジックにちょっと手を入れれば、任意の期

間のグラフを見られるようにできます。筆者の場合もそのように改造し、

ついでにhh00!uI Library注アのカレンダーを使って日付の指定をしやすい

ようにもしています。

* * *

結局のところ、オリジナルのままのGanま aではかゆいところには手が届

きません。しかし、大量のノードがいる環境での使用を考えた場合、基本的

な設計・しくみがよくできており、また、PHPで書かれているので、全体の

見通しの良さとカスタマイズしやすさはいいほうだと思います。したがっ

て、Gangliaを使うならば、気に入らないところはどんどんいじって改良し

て使うのがいいでしょう。続いて、ちょっと凝ったグラフを追加する方法を

紹介します。なお、本節で使用するGangliaの バージョンは3.0.5です。

Etr5.2.1 Ganglia

.DSASI
家 J霧馨ギ 撼 '`“

口

"・'菫

‐

・
‐°回 事

'「
目 爾籐 I

(rrD Grrd > 6As > l:c@

ヽ
=薇
■.:‐

５

・
２
　

サ
ー
バ
リ
ソ
ー
ス
の
モ
ニ
タ
リ
ン
グ
　
い
３
Ｑ
一一●

)L7 tM httpL ldeveloper.yahoo.com/yuil

嗜議轟誡
==警
詳

ApaChQプロセスの状態をグラフ化

章 省力運用 安定したサービスヘ向けて

Gangliaに カスタムグラフを追加する例 として、Apacheプ ロセスの状態

をグラフ化する方法を紹介します。

Apacheに付属するモジュールmOd_statusを有効にすると、立ち上がって

いるhttpdプロセスそれぞれの状態を知ることができます (表 5.2」)。 たと

えば、h■Pd.confに リス ト5.2.1と 設定す る と、
「http://example,o rg/

serve r‐ status」 というURLにアクセスすることでこれらの状態情報を見る

ことができます。また、/se rver― status?autoに アクセスすると、プログ

ラムで処理しやすい形式でレスポンスが返ってきます。

そこで、このプロセスの状態ごとに累積して色分けしたグラフが図5.2.2

です。このようにグラフ化することにより、単純に「Wcbサーバ忙しそうだ

<Location /server- status>
SetHandler server-status

0rder Deny,Allow

Deny from all
Allow f rom 192, i68,31.0/24
Allow from 127.0.0.1

</Location>

表 5.2.l Apacheの 状態

接続を待っている

S 起動中
R Iリ クエス トを読んでいる

W リプライを送っている
K Keep― A‖ ve要求のため待機 している

D DNS問 い合わせ中
C 接続を切断中
L ログ書き込み中
G 終了処理中(Graceful)
| アイ ドルワーカを整理中
プロセス不在の空きス回ット

リスト5.2.1 図5.2.2 Apacheプ ロセス状態のグラフ

r3ls Ap.ch. Proc.sE Stetw ts.t SEys

lrrocr nii. 13,@ rvg 29,S trrr- E0,61
8*!di& up atu.dir! eq!.rt I*ndine tup1y
ax..p.1iv. lr!.d) 8mS L&kup I4.rinq.onn.dion aLoqrihr
6 o...ful, fiiirhin! g rdl. <l.rrup of york..
& iritinN for (oi^.dloo

記号

な」という以上に、どんな処理をしていて忙しいのか、Keep―Aliveのタイム

アウト待ちで滞留している、あるいはログ書き込みの1/0待 ちで待たされ

ているのかなどが一日でつかめます。

Ga グラフを追加する方法

さて、Gangliaに グラフを追加する場合、1つの観測値を1つのグラフと

して描写するならば、gmetricコ マンドを使うだけでできます。gmet ricは

マノンチキャス トを使って観測値などの情報を送信し、それを受け取った

gmetadが観測値を保存します。

一方、複数の観測値を1つのグラフの中に描く場合は、Gmgliaの コード

に手を入れる必要があります。具体的には、それぞれの観測値は別々のデ

ータファイルに保存されているので、それをまとめて読んで1つのグラフ

として描写する処理が必要になってきます。

実際に複合グラフを追加してみる

では実際にAPacheの プロセス状態のグラフを追加してみましょう。まず

は、リス ト521の設定をしてから、「http://1ocalhost/Server‐ status?

auto」 にアクセスして応答が得られるかどうかを確認します。

確認できたら、このURLに アクセスしてその応答を処理し、gmetr破 で

観測値を送信するプログラムを実行します。今回は、デフォノントで60秒ご

とにApacheに アクセスしてプロセス情報を取得し、gmetricで 送信するサ

ンプノンプログラムを使いました
注8。

ここまでで、Gangliaの Vttebフ ロントエンドのクラスタビューのMetric

のプノンダウンメニューとホストビューのページの下のほうには、個別の観

測値のグラフ(ap_dOsingな どT_で始まるもの)が表示されるはずです。

続いて、ここの観測値をまとめて前出の図5.2.2のように1つのグラフに

してみます。ここでは、変更するファイノンごとに簡単に説明をします。す

べての変更個所は、本書Append破 を参照してくださぃ注9。

注 8 プログラムは、本書の Appendixに 全文を掲載 しています(apache―status)。 本書のWeb補足情報コ
ーナーも合わせて参照してください。

注 9 変更個所は、本書の Appendixに 全文を掲載 しています (ganglia.patch)。 本書のWeb補足情報コー
ナーも合わせて参照 してください。

ＦＤ

・
＾
Ｚ

サ
ー
バ
リ
ツ
ー
ス
の
モ
ニ
タ
リ
ン
グ
　
ｏ
ｏこ
一ｏ

章 ‐省 力 運 1用 安定したサービスヘ向けて

・ coniphp、 my‐coniphp

coniphpで my― coniphpという名のファイルをincludeするようにして、今回

の変更に関する設定項目はmyてoniphpに 書くようにしていく

・ functions.php

ru n_apacheと いう関数を追加している。これは、引数で渡されたホストで

Apacheの グラフを描くかどうかをbooleanで返すものである。今回は単純に

ホスト名を見て判別するような処理にしている

・ graph.php

行数ではいちばん多い変更が必要なのがgraph.phpだ が、難しくはない。

RRDtoolの文法でグラフ描写の指示をしているだけで、読み込むデータが多い

ので行数が多くなつているだけである

・ templates/default/host_viev眈 tpl、 hOst_view.php

ホストビューの画面のカスタマイズをしている。テンプレートに「functional」

というラベルで挿入ポイントを追加して、host_view phpではru n_apacheが

真の場合にApacheの グラフを表示するためのHTMLを「functional」 に割り当

てている

・ headerphp

クラスタビューのMetricのプルダウンメニューにApacheの グラフ(Apache_

Pro⊆report)を表示するようにしている

そのほかのカスタムグラフ

ほかに有用なグラフをいくつか挙げてみます。先ほどのApacheのプロセ

ス状態のグラフと同じ要領でGangliaを カスタマイズすればグラフが描け

ますので、ぜひチャレンジしてみてください。

O MySQLの各種キャッシュ(キーキャッシュやクエリキヤッシュなど)ヒット

率のグラフ(図 5.2.30)

O MySQLの秒あたりの処理クエリ数のグラフ(図 5.2.30)

・ MySQLの SELECT、 INSER丁、UPDATE、 DELETEの クエリの比率のグラフ
(図 5.2.30)

・ MySQLの !nnoDBのテーブルスペースの空き容量のグラフ(図 5.2.30)

O MySQLのコネクション数のグラフ(図 5.2.30)

・Tomcatの ヒープメモリ使用状況のグラフ(図 5.2.30)

図5.2.3 カスタムグラフ

0各種キャッシュのヒット率 0秒あたりの処理クエリ数

.=串 品 超ヽ
…

,

0クエリの比率 OinnoDBテーブルスペースの空き容量

・
議

灘

明̈
］暖ｍ

Ｊ

ｏ
‥

0コネクション数 OTomcatのヒープメモリ使用状況

db5rr a rhro.d L.st d.is

５

ｏ
２
　

サ
ー
バ
リ
ソ
ー
ス
の
モ
ニ
タ
リ
ン
グ
　
ｏ
●うｏ
一一リ

itn
E !., .!.h. rit
r q!.r, r..[. hil
!r.bLr locl ritr.dr.t! 1co o
arhr.,d ..d' hil 99.9
6r.r tbhl. M

31:=:l:l

呵
db5rr m F.6e 1.b1@r.r. l.st S.rs

:酬路・ 11:`留 ′

章 :省力ま塁用 安定したサービスヘ向けて

運用しているサービスが成長して徐々に規模が大きくなると、必然的に

サーバ台数が増加し、それにともないサーバ管理コストも増大していきま

す。たとえば、個人サービスで 1台～数台のサーバを管理する方法を、企

業で数百台～数千台のサーバを管理する場合に適用していては、途方もな

い作業が必要となってしまいます。そのため、ある程度の規模の企業にお

けるサーバ管理では、均質な環境の維持や設定変更の全体への反映を、効

率的かつ確実にすることが要求されます。

Puppet注
10は
、このような大規模環境での効率的なサーバ管理を実現す

るためのツールです。Puppetに よって、各サーバにログインして手作業で

行ってきた設定が、ほぼ自動的に反映させることができるようになります。

これにより、

・新規サーバの投入

・既存サーバの設定変更

における各サーバヘの設定の反映を省力化することができるようになりま

す。また、設定漏れによる不具合も減らすことができるようになります。

なお、本節の動作確認はCentOS 5.o、 Puppet O.24.4で 行いました。

Puppetと は、Reductive Labsに よって開発されているRubyで実装された、

効率的なサーバ管理を実現するツールPu

Puppetの概要

i} l0 (EID http://puppet.reductivelabs.com/

OSSのサーバ設定の自動化ツーノンです。

Puppetで は、各サーバ設定 (マニフェスト)を、クラスとして定義したり、

定義済みのクラスを継承して新しいクラスを定義するなど、オブジェクト

指向的に柔軟に記述できる特徴を持っています。Puppetは 2003年 に開発が

始まり、ここ1、 2年ほど注目度が上昇中であり、国内での導入事例もいく

つか報告されています。

Puppet(図 5.3.1)は 、各サーバで実行されるpuppetdと 、管理サーバで

実行されるpuppetmasterdの 2つのデーモンによって動作します。各サー

バのpuppctdは 定期的 (デフォノントでは30分間)に puppetmasterdに 問い合

わせを行い、得られた定義を現状と比較し、反映するべきことがあれば反

映します。この際、設定ファイノンは、puppetmasterdか らダウンロードされ

ます。また、定期的に問い合わせるだけではなく、直接puppetdを コマン

ドとして実行することで、設定を確認したり、反映させたりできます。さ

らに、サーバであるpuppetmasterd側 からpuppetrunコ マンドにより、明示

的に反映させることもできます。

puppetdと puppetmasterdの 間の通信は、SSLに よって暗号化されるなど、

セキュリティも考慮された設計となっています。

各ノードの

設定定義

図5.3.l Puppet:こよるサーノヽ管I里

う自
／

ノ
〆／

puppetdによる
問い合わせ/設定反映

「
１
門
Ｊ

一１

〇

一

国
］・ぶ
一

Ｆ
睡 又

Ｆ
Ｄ

ｏ
う
０

サ
ー
バ
管
理
の
効
率
化
　
「ｃつつｏ一

Puppetの設定

章 `省力)塁用 安定したサービスヘ向けて

本節では、APacheに よるWiebサーバの設定を題材にPuppetの 設定の概

要を解説します。Puppetの 設定には、以下の二種類があります。

O Puppet自 体の設定(/etc/puppet/puppet.conf)

・ Puppetによつて設定されるサーバの設定内容を定義する設定ファイル (マ
ニフェスト)

ここでは、後者のマニフェストについて解説します。Puppetの マニフェ

ストでは、ノード(puppetdが設定対象 とするサーバ)に 、各サーバの設定

定義の集合であるクラスを割り当てます。また、クラスは、オブジェクト

指向のように他のクラスを継承することができます。これらの設定は、通

常Jetc/puppet/man■ sts/以下に記述します。すべての設定を1カ所に書く

と長大なファイルになりますので、サーバの役割ごとで切 り分けるなどし

て適切に分割することをお勧めします。

ノードの定義

まず、イ固々 のサーバを意味するノードについて、そのノードの設定内容

を記述します。ここで具体的な設定を直接記述するのではなく、設定の集

合であるクラスを指定することで、スマー トに記述できます。1つのノー

ドに複数のクラスを指定することもできます。リスト5.3.1で は、設定対象

のサーバ (testserver)に 、Apacheと mOd_perlに よるWebサーバのクラス

(apache―mod_perl)を 指定しています。

クラスの定義

クラスは、具体的な設定の集合です。他のクラスを継承することで、似

た役割を持つサーバの共通設定をまとめて記述することができるようにな

node testserver {
include apache-mod_perl

)

リスト5.3.1 ノード定義ファイル

ります。

リス ト5.3.2に 示すapache―mod_perlク ラスでは、各種 rpmパ ッケージ

(httpd、 mod_perl)がインストーノンされているか、httpdcOnfが最新か、httpd

が起動されているか、といった設定項目を定義します。具体的な設定内容

を説明していきます。

リスト5.3.20の Package宣言により、httpd、 mod_Pcrl、 perHibapreり の

各種パッケージがインストーノンされていること(ensure=>installed)を 指

定します。もしインストーノンされていなければ、パッケージ管理システム

により、自動的にインストーノンされます。

リスト5.3.20の conag■le宣言により、httpd.confと syscOnng/httpdの 2つ

のファイノンを配信します。require=>Packagel‖ httpd_mOd_perl‖]と 書い

ておくことで、パッケージがインストーノンされた後に、ファイノン配信が行

われるようになります。cOnngnleは 、Puppetが標準で備えている宣言では

なく、後述のdenne宣言により独自に拡張したものです。実際に配信され

るファイノンの場所は、con■gnle宣言内のsource属 性で指定されています。

puppetmasterdは ファイルサーバも兼ねており、指定されたファイノンがサ

ーバヘダウンロードされるようになります。

リスト5.3.20の user宣言により、apacheユーザを定義しています。公式

ドキュメントでは、PasswOrdも 設定できることになっていますが、現バー

ジョンではコメントアウトされており、パスワー ドの設定は1台ずつ行 う

必要があります。

リスト5.3.20の ser宙 ce宣言により、htpdプ ロセスが立ち上がっており、

chkonngで 起動時に実行 されるように定義 します。subscribe=>[

Filel$path], File[ssysconfigpath], Package['httpd[], Package1lmOd_

perl[l]と 書くことで、パッケージのインストーノンや更新、設定ファイノン

の更新時に自動的にhtpdプロセスが再スタートされるようになります。ま

た、enable=>t rueに より、サーバの再起動時に自動的にサービスが起動

されるようになります。ちなみに、手動で管理していると自動起動される

ように設定するのを忘れることはよくあることです。

リスト5.3.20の me宣言により/varttwwデ ィレクトリの属性を定義しま

す。

Ｆ
Ｄ

ｏ
●
Ｄ

サ
ー
バ
管
理
の
効
率
化
　
つｃ署
ｏ（

章 省 力 運 用 安定したサービスヘ向けて

apache-mod_perl {
package { httpd: |E)

ensure => installed
I

package { mod_pert:

ensure => instatled
)

package { pert-tibaPreq2
ensure => installed

)

Spath = '/etc/httpd/COnf/httpd.conf:

configfile{“ spath‖ :GD
50urCe => 11/apaChe‐ mOd_per1/httpd.COnf〕

:′

■ode => 644′

require => Package[:'httpd‐ mod_perllll .

}

SsySCOnfigpath = 1/etC/S,SCOnfig/httpdl

COnfigfile { llSSySCOnfi9path11:

50urCe => :1/apaChe‐ mOd_per1/SySCOnfig,httpdil,

mode => 644′ ‐

requi re => Packagelllhttpd― mod_perli:1
‐

}
‐

user{ apache:. GEED ‐
ensu re => present, . ・

uid => 48,

91d => 48 .. | |‐

}

service (httpd: GEE〕)

has resta rt => t rue, ‐‐ .

hasstatus => true′

ensure => runnlng′

subscribe => [FlleISpathl, File[Ssysconf■ 9pathlI Package[:httpd‐

mod_perll〕 l′
.enable => t rue ‐‐|

・

"□
■閣薇調四口国l熙爾印■1■躍螂騨

設定の反映

これらのノード定義ファイノンとクラス定義ファイノンをpuppetmasterdに

読み込ませ、testserverで 以下のようにpuppetdを実行することで、testserver

でApacheと mOd_perlが起動し、Webサーバとして、正しく動作するよう
になります。puppetmasterdが 動作 しているサーバを 192.168.0.1と してい

ます。

puppetd -o -v --server 192.168,0.1

正しく設定がされると、以下のような出力が得られます。

info: Caching configuration at /uat/llb/puppet/localconfig.yaml
notice: Starting configuration run
notice; Finished configuration run in 1.27 seconds

設定ファイノンの文法は、Ruby似の文法をPuppetが 独自に定義していま

す。概要を以下に解説します。公式 ドキュメントに詳細な説明があります

ので、興味のある方は参照してください。

リツースの定義

定義 ファイノンな どの リソース(Resource)を 集めた ものです。クラス

(Class)、 関数 (Dennition)、 ノー ド(Node)の 3種類があ ります。

― ―クラス

複数のリソースを集めて「クラス」を定義します。1つのホス トには、各

設定ファイルの書き方

５
。
３
　
サ
ー
バ
管
理
の
効
率
化
　
「ｃｏつｏ一

章 省力運用 安定したサービスヘ向けて

クラスのインスタンスは 1つ しか作れません。下のun破クラスでは、/etc/

passwdフ ァイノンと/etc/shadOwフ ァイノンの属性を定義しています。

class un■ x {
ile {

/etc/ pas swd "
/et c/ shadow "

他のクラスを継承 し、一部だけ変更することができます。下の例では、

それぞれのフアイノンの所有グノンープがr00tか らwheelに変更されます。

class freebsd inherits unix {

Ｗ

Ｗ

root, group => l"oot, mode => 644;
root, group => 1"00t, mode => 440,
０
　
↓

Fite["/etc/passwd"]
Fite["/etc/shadow"]

grouP => W6se
group => whee

― ―関数

引数をサポートした「関数」を宣言することができます。クラスと異なり、

継承することができません。1つのホス トで同じ関数を複数定義できるの

も、クラスと異なるポイントです。

リス ト5.3.3で はconngnle関 数を定義 し、いくつかのパラメータのデフ

ォノント値を設定しています。

― ―ノード

「ノー ド」で定義できることは、クラス と同じですが、実サー
バに反映さ

れるようになります。ホス トの識別子 として、hostnameが使われます。IP

アドレスは使えません。以下では、testserverに apache―mod_perlク ラスの

設定が反映されるようになります。

node testserver {
include apache-mod_pert

)

リツース

各クラスの実体であるリソースを、タイプ(Type)に より定義します。タ

イプは、ファイノン(me)やパッケージ(Packar)な ど具体的な設定項目とな

ります。

。一――-1!e

「me」 ではファイノンの属性を定義 します。sOurcesを 定義することで

puppetmasterdか らファイノンをダウンロードすることができます。また、

contentを定義すると内容を直接書いたり、テンプレートを利用することが

できます。

以下では、/etc/Passwdフ ァイノンの所有者と権限を指定しています。

fite {
"/etc/passwd": owner => root, group => r00t, mode => 644;

)

・ ――――
―package

「Packar」 ではパッケージを定義します。ensu re=>installedと すると、

５

・
３
　

サ
ー
バ
管
理
の
効
率
化
　
「ｃつ
ｏｏ一

章 省力運1用 安定したサービスヘ向けて

インストーノンされていなければ、インストーノンされます。Red Hat系 OSで

は、yumに よってrpmパ ッケージがインストールされ、Debian系 OSで は、

apt― getに よってdebパ ッケージがインストーノンされるなど、それぞれの

OSに応じた挙動となります。

以下では、mys」パッケージがインストーノンされることを定義しています。

package { mysql:
ensure => installed,

i

・ ――――exec

「exec」 では任意のコマン ドの実行 します。下の例では、iptablesの 設定フ

ァイノンの更新を受けて、っtablesを再起動しています。

exec { "/etc/init.d/iptabtes stop && /etc/init.d/iptables start"
subscribe => File["/etc/sysconfig/iptabtes"],

)

。一―――serv:ce

「service」 ではサービス(プロセス)を定義します。起動状態や、再起動時

の挙動を定義することができます。

以下では、hipdサ ービスが実行している(ensure=>running)こ とと、

OS起動時に自動起動される(enable=>t rue)よ うに定義しています。

service { httpd:
ensure => runni.ng,
enable => true

)

サーバごとの設定の微調整

設定項目を適用するサーバごとに微調整したい場合は、Puppetが利用し

ているLctcrラ イブラリの変数を使って、設定の定義を変更することがで

きます。たとえば、$operatings"temと いう変数を参照することで、Solaris

の場合と、それ以外(deLult)の 場合で、ファイノンを配置するパスを変更す

ること力
'で
きます。

path => $operatingsystem ? {
solaris => "/usr/local/etc/ssh/sshd config",
default + "/etc/ssh/sshd_config"

),

コマンドライン上で facterコ マンドを実行してみると、一覧が表示され

$oper“ ngsystem以外にどのような変数が使えるかがわかります。

リツース間の依存関係

リソース間の依存関係を定義することで、設定反映の順序や、反映のた

めに再起動が必要なサービスを指定することができます。たとえば、httpd.

confを 更新したら、httpdを 再起動する、ということが可能になります。こ

れにより、ファイルは更新したけど反映されていない、という事態を避け

ることができます。

以下では、service定 義のsttscribeの項目で、/etc/httpd/conghttpd.conf

という設定ファイノンにhttpdサ ービスが依存していることを定義していま

す。この設定により、Puppetの 実行によって新しヽヽ/etc/httpd/conf/httpd.

confが配置されると、自動的にhttpdサービスが再起動されます。

$path =|
‖
/etC/httpd/COnf/httpd.COnf‖

COnigfil(){
‖
Spath“ :

50u rCe =>
〔1/apaChe―

mOd_per1/httpd.COnfl:,
mode => 644,

}

service { httpd:
hasrestart => true,
hasstatus => true,
ensure => running,
subscribe => [FileIgpath] L
enable => true

)

テンプレートによるマニフェストの定義

Puppetの 特徴として、テンプレー トを利用して、複雑なマニフェス トを

用途ごとにカスタマイズしながら配信することができるようになります。

ここでは、デュアノンマスタMySQLク ラスとiptあ lesク ラスの2つを題材に

設定方法を解説します。

５

・
３
　

サ
ー
バ
管
理
の
効
率
化
　
つｃ
ｏ
ｏｏ（

章 :省力運用 安定したサービスヘ向けて

― ―デュアルマスタMySQLクラス

MySQLの設定ファイノン(my.cnf)は 、servetidや レプリケーションの設定、

デュアノンマスタのための設定など、各サーバで設定ファイノンが異なります。

そのため、テンプレー ト機能を利用することで、簡便に記述できるように

なります。このクラスでは、各ノードの定義においてパラメータを渡すこ

とで設定ファイノンを調整 しています。

まず、リスト5.3.4の ようにmysql― master―conf関数を定義します。次に、

リス ト5.3.5の ノード側の定義で、server_id、 master_hostと いったパラメ

ータをノードに合わせて設定します。また、リスト5.3.6の mutimaster― my.

cnfの テンプレートを配置します。

こうすることでpuppetdが実行されると、テンプレー トにseweLidや、

master_hostな どの渡されたパラメータに従って、設定ファイノンを生成さ

れ、実際のサーバに配置されます。ちなみに、「server― id」 ではなく「se“et

define mysqt-master-conf ($path, $server_id, $master_host = false,
$auto_increment_increment = false, $auto_increment

_offset = fatse, $log_bin . false, $1og_slave_updates = false, ginnodb =
false, $reptace = true) {

temptatefile { $path:
source => "mysql/multimaster-my,cnf .erb",
notify => Servicelmysqtdl,
replace => $replace

)
)

node mysqldb {
mysql-master-conf {"my. cnf " :

path => "/etc/my. cnf",
server id => "1001",
master_host =>''192.168, 1.1",
auto increment increment => "16",

auto_i.ncrement_offset ;> "1",

)
)

LlELLi£」L」型型塾生三二憂_____轟 血上止二二五上止」

id」 としているのは、Puppetの 言語仕様がパラメータとして「_」を許容しな

いためです。

― ―iptablesク ラス

LVSにおけるDSRに 対応するためのiptables設 定は、そのホストの用途ご

とにVIPが異なります。そのため、vIPご とに設定ファイノンも異なること

になりますが、それらを一つ一つ用意するのは煩雑です。iptめlesク ラスで

は、テンプレー ト機能を使い、ノー ドを定義する時にパラメータを渡すこ

とで、適切な設定ファイノンが展開されるようにしています。

nOde foobar{
iptableS‐ lVS― COnf {‖ iptablesl::
path => !!/etc/syscOnig/iptables'i,

lVS_iptables :=> :159.106.108,97:80‖

}

}

iptあles-lvs― confと いう独自関数でiptあlesの設定をします。pathが ファ

イノンの配置先、市旺ゎtablesが iptお leの内容です。ここでは、・59.106.108.

97:80"と 定義されており、実際には、

/sbin/iptables
‐―tO― ports 80

t nat ―A PREROUTING ‐d 59.106.108.97 -p tcp ―j REDIRECT

が実行されます。また、"59:106:108.97:80:81‖ とすることで、

５
。
３
　
サ
ー
バ
管
理
の
効
率
化
　
「ｃｏつｏ^

master-user = repli

auto increment increment
end ‐%>

く% ■f

章 省力運用 安定したサービスヘ向けて

/sbin/iptables ‐t nat ―A PREROUTING ‐d 59.106.108,97 ‐p tcp
‐m tcp

‐―dport 81 -j REDIRECT ‐―to‐ ports 80

が実行されるようになっています。

リスト5.3.7で は、iptおles―市S―COnf関 数を定義しています。sOurceで死に

なるテンプレートを、notiヶ でテンプレート更新時にiptめlesを再スター ト

することを指定しています。また、template■ leは hnctions/utilS,ppで 定義

している関数で、テンプレー トを展開する関数です。

リスト5.3.8で 、iptablesク ラスを定義します。

cOnignleに 含まれているiptables_check.shと いうのは、iptablcsが設定さ

れているかどうかをチェックするためのコマンドです。フアイノンを配置す

るパスに、存在しないディレクトリを指定するとエラーになってしまうた

め、ここでは/usr/binに配置するようにしています。cxec定義で、conngnle

で生成されるファイルをsubscribeす ることでsysconng/iptablesが 変更され

たら、再起動されるように指定しています。

最後のservice定義により,tablesが実行されるようにしています。iptables

サービスの statusチ ェックのために(リ スト5.3.8(Dで)配置したiptables_

check.shを 使用しています。

リスト5.3.9は、テンプレー トファイルとなります。与えられたパラメー

タを処理して、適切なファイノンを生成するようにしています。理想的には

パラメータを配列で渡せるとよかったのですが、Puppetの 言語仕様が対応

していないようなので
注11、 :区切りで渡してテンプレートの中で配列に展

開しています。

define iptables‐ lvs‐ conf(Spath,

temptatefite { $path:
source => "iptables/1vs_iptabtes
notify => Serviceliptablesl
}

Uah.5.3.7 iptables-lvs-conflltr*l

注 1l Puppetの言語仕様では、テンプレー トに渡せるパラメータは文字列のみとなつています。

リラζ卜5.318

$checkcmd,

figf
‐
ile

"$checkcmd

/init

}

リスト5。3.9

５
。
３
　
サ
ー
バ
管
理
の
効
率
化
　
つｃｏｏｏ綺

距
・

動作ログの通知

章 省 力 運 用 安定したサービスヘ向けて

puppetdは サーバの設定を確認し、必要に応じて変更します(必要がなけ

れば変更しません)。 このときに変更された内容はsが10gに 出力されます。

メーノンやログで通知させることもできます。

・ ――――
―tagrna‖

tagmail機能は、各サーバでPuppetが動作した時のログをメーノンで送信

するための機能です。たとえば、/etc/Puppet/tagmail.confに 、

all: userL@exarnple, com

apache: user2Gexample. com

のように記述します。anはすべての変更を通知し、apacheな どのタグを指

定すると、そのタグに関連する変更のみが通知されます。タグは、各クラ

スにおいて、タグ名を定義することができます。また、クラスのクラス名

はデフォルトでタグ名となっていますので、クラス名を指定することもで

きます。

。一―――puppetmaster.log

/var/10g/Puppet/puPpetmaste■ logに実行結果が出力されます。ただし、エ

ラーメッセージがあまり親切ではないので、設定のデバッグにはあまり使

えません。

・ ――――repOrt

/var/1ib/puppet/repOrtsに YAML形式で出力されます。1回の反映で1フ ァ

イノンが生成され、何 もなければ何 も生成されません。人が見るというより

は、他のツーノンなどで処理し、グラフなどを生成するためのものです。

― ―puppetdでのログ

以下のように各サーバで直接puppetdを 起動することでも、puppetdを 実

行することができます。

% sudo /usr/sbin/puppetd --server=l92.168,0.1 -o -v --waitforce 60

このときのログが一番詳細に出力されますので、設定のデバッグ時には、

この方法がわかりやすいです。―noopォ プションを付けることで、実際に設

定を書き換えずにどういう設定が行われるのかを確認することができます。

Puppetは、多数のサーバの設定ファイノンを簡単に更新できるため、設定

ミスの影響も大きくなります。たとえば、sshd_cOnngの設定を失敗して、ロ

グインできなくなったら。̈などなど。そのために、大きく変更する際には、

簡単に後戻りができるような方法で修正を加えることが重要となります。

そのための対策として、以下のような手法が考えられます。

・全体に適用する前に一部のサーバでテストする。普段はpuppetdか らの自動更

新をオフにしておき、テスト用のサーバでpuppetdを 明示的に実行すること

でテストし、正しく動作しているようだつたら、puppetrunで 全体に適用する
・Subverslonでの設定ファイルを管理する。/etc/puppet以 下のPuppet関連の設
定ファイルはすべてsubversiOnで管理することで、変更のバージョン管理を可
能になる。これにより、過去の変更を追跡したり、不具合が発生した時にロー
ルバックできる。また、Subverslonか らチエツクアウトしたツリーをmakeコ
マンドなどを利用して、本番反映前に一n00pオプション付きでPuppetを実行

することで事前に文法チェックを入れることができる

ちょっと前まではcingine、 最近だとPuppetが、OSSの 自動設定ツーノン

の有名どころでしょう。これらの自動設定ツールは、一見便利そうですが、

なかなかちゃんと運用するのは大変です。

自動設定ツーノンというのは、ぱっと聞くとすごいいいものに聞こえます

が、実際はなかなかやっかいなものです。実際に適用した時のありがちな

状況を含め、まとめておきます。

運用

自動設定管理ツールの功罪

５
。
３
　
サ
ー
バ
管
理
の
効
率
化
　
「ｃ署
２

章 ‐省 力 運 用 安定したサービスヘ向けて

・何か本質的に新しいことができるようになるわけではない

本来は手でやっていたことを自動化するだけなので、当たり前のことである。

人はすでにできていることのやり方をなかなか変えようとはしない、という話

もよく聞く

・ その割に、覚えることがいろいろと多く面倒

あるアプリケーションの設定をする時に、そのアプリケーションの設定の仕方

を覚えるだけではなくて、設定するための設定までしなければならなくなる。

書いているだけで面倒だし、そもそもなぜそんなことをしなければならないの

かわからなくなる

・ しかも、そのツールのおかげで、 トラブルが発生することが(よ く)ある
一部の人が直接手で設定を変更してしまうと、非常にトラブルが発生じやすく

なる。典型的には、ある日、設定ツールを動かしてみたら、手で修正した部分

が綺麗さつばり消えてしまつて、まともに動作しなくなってしまつた !という

ようなことがあり得る。これもなかなか難しい問題で、トラブルが発生してい

る最中は、設定のための設定をしている余裕はないし、もし、対処している人

が設定のための設定のノウハウを持っていない場合は、直接触らぎるを得ない

このように書いているとデメリットが大き過ぎる気がしますが、「多数の

サーバを効率的に管理する」ためには、やはり自動設定ツーノンはとても魅力

的です。たとえば、Sshd_COnngの ちょっとした設定変更を何百台、何千台

のすべてのサーバに適用しなければならない、というのは、やっぱり自動

設定ツーノンにやらせたくなるものです。

このような自動設定ツーノンをうまく導入するには、どこまでを自動化し

て、どこまでは手でするか、という問題が大事だと思います。しかし、一

般的な指針を示すのは非常に難しい領域です。適用しようとしているとこ

ろの規模や、担当する管理者のやる気にも大きく依存するためです。

ざっくりと自動設定ツーノンを適用して、 うまく運用できる状態に持って

いくための戦略としては、

・台数が多いところ

・手動では、設定漏れが発生しがちなところ

から、徐々に導入して、自動設定ツーノンというものに慣れていくのがいい

でしょう。

５

・
４
　

デ
ー
モ
ン
の
稼
働
管
理
　
α
・ｏＢ
ｏ
２
８
一いOS起動時に自動で起動して動き続けてくれるデーモンですが、いつの間

にかいなくなってしまって大変な思いをしたことはないでしょうか ?web
サーバやメーノンサーバなど、日立つサービスは落ちるとすぐに気づくと思

いますが、地味な役割のデーモンなどは、落ちたことになかなか気づきに

くいものです。

なかには落ちたら自動的に起動し直してくれるものもあります
注12が
、

/etc/init.dに ある多くの起動スクリプトは、起動し直しの機能は持っていま

せん。かといって、個々の起動スクリプトにプロセス監視と起動し直しの

処理を実装するのは面倒です。

このようなデーモンの稼働管理にうってつけのツーノンがdaemont。。ls注 13

です。本節では、このdaemontools(バージョン0.76)の使い方のツボを解説

していきます。

daemontoolsと は、デーモンプロセスの開始、終了、再起動、プロセス

が落ちた場合の自動起動、といったデーモンプロセスの管理を行うための

プログラム群です。

daemOmoolsで は、いくつかのプログラムが連携してデーモンの監視、管

理を行います。おもな部分のみを図示したものが図5.4.1です。

E I 2 MySQL t..lrllEf 6 mysqld_safe t E.
)t 1 3 (EIl http://cr.yp.to/daemontools.html

6AAl;daemontoolsLl(0)tt, runit(http://smarden.org/runiV)LUray-)V$bt)*t"

デーモンが異常終了してしまったら

daemontools

章 省力運用 安定したサービスヘ向けて

まず、wscanb00tが wscanを 起動します。svscanは 、指定されたディレ

クトリ(デフォノントでは/ser宙 ce)を監視して、新たなデーモンが追加された

場合はsuperⅥ seを起動します。superviseは runと いうファイノンを実行し、

このrunで デーモンプロセスを起動します。superⅥ seは 1つのデーモンで 1

つ起動されるので、wscanは 複数のsuperviseを 管理する形になります。

また、svcと いうコマンド使い、supeⅣiseを経由してデーモンプロセス

にシグナノンを送ることができます。

daemontoo:sを使う王里由

daemontoolsを 使 う大 きな理由は2つあります。

0プロセスが落ちた場合に、自動的に起動し直してくれる

0手軽にデーモンを作れる

0の理由については、デーモンプロセスが落ちてしまった場合に、supervise

が検知して起動し直してくれるという利点は魅力です。これにより、気が

つかずにデーモンプロセスが落ちっぱなしになってしまっていた、とヽヽう

事態が防げます。

0については、一般的に、デーモンとして振る舞うためにはいろいろな

svscanboot

supervlse

supervise

シグナル

85.4.1 daemontoolsOlfiEB

処理が求められます。たとえば、

・制御端末から切り離す

・カレントワーキングディレクトリをルート(/)に変更する

・標準入出力を/dev/nu‖ (も しくはそのほかのフアイル)にリダイレクトする

などといった処理が必要
注14で
、少々面倒です。

しかし、daemontoolsを 使えば、ある条件 (後述します)を満たすプログ

ラムならば何でもデーモンにすることができます。ささっと書いた自作の

監視スクリプトでも、簡単にデーモン化できるのでとでも重宝します。

7 - -> I=tt 6hAN) *l* - -z *z o 7, >t:< frfet a

前節で、daemontoolsで デーモン化するにはある条件を満たす必要があ

ると書きました。それは「フォアグラウンドで動作する」です。

httpdや sshdと いった一般的なデーモンプログラムは、およしてバックグ

ランドで動作するようになっているので、そのままではdacmomoolsの 管

理下には置けません。フォアグラウンドで動作するためのオプション(sshd

の‐Dオ プションなど)が そのデーモンプログラムで提供されているか、さ

もなければdaemontoolsに 含まれるツール fghackを 使 う必要があります。

一方、自分でデーモンプログラムを書く場合は、whileや おrで無限ノンー

プして、終了せずにフォアグラウンドで動き続けるようなコードを書くだ

けでOKです。

また、daemontoolsに はmultilogと いう優れたログ収集ツールが付属し

ているのですが、このmultilogを 使いたい場合は、「デーモンプロセスは

標準出力 (か標準エラー出力)に ログを出力する」という必要もあります。

以下ではデーモンの作成や停止、再起動などの典型的なオペレーション

の方法を確認します。

デーモンの管理方法

注140Sによりますが、これらの処理をまとめて行つてくれるdaemon(3)と いう関数もあります.

５
・
４
　
デ
ー
モ
ン
の
稼
働
管
理
　
αｏｏ３
ｏユ
８
″

早 :省力 運 ′用 安定したサービスヘ向けて

デーモンの新規作成

仮に「Жxd」 というデーモンを新たに作ろうとしている場合を考えます。

まずはこのデーモンに関するファイノンを置くディレクトリを作ります。

デーモンたちを置くディレクトリは、どこか一つにまとめておいたほうが

後々管理しやすいでしょう。ここでは、以下のようにおきます。

・ /etc/daemon→デーモンたちを置くディレクトリ

・/etc/daemon/xxxd→ xxxd用のデイレクトリ

次に、superviscが 実行する/etc/daemon/xttd/runと いうフアイルを作り

ます。典型的なrunフ ァイル
注15はシェノンスクリプトで、実効ユーザの変更

や環境変数の設定をした後、デーモンプログラムをexecし ます。

サンプルコードをリス ト5.4.1に示します。簡単に解説します。

0標準エラー出力を標準出力にリダイレクトする

0このプロセスを後続のコマンドで置き換える

0実効ユーザを変更する

0環境変数をリセットして、必要な環境変数を設定する

Oenvというディレクトリにフアイルがある場合は、それを参照して環境変
数を設定する

0デーモンプログラムを実行する

multilo9を 使ってログ収集する場合は、さらにlogと いうサブディレク

トリを作 り、log/runと いうファイルを作 ります(図 5.4.2、 リスト5.4.2)。

デーモンの開始

デーモンを開始するには、svscanが監視 しているディレク トリ(デフォノン

トでは /ser宙 cc)に、以下のようにデーモン用ディレク トリを指すシンボリ

ックリンクを作 ります。これで5秒以内にはrunが実行されてデーモンが

開始するはずです。

注15以下のページに、runフ ァイルのサンプルがあります。参考になるでしよう。

CコD hup:〃smaden.org/runit/runscripts.html

ln ―s /etc/daenon/XXxd /Service/

デーモンの停止、再開、再起動

デーモンを停止、再開、再起動するには、daemo血 oolsに付属するsvcコ

マンドを使います (表 5.4.1)。

デーモンの削除

デーモンを削除する場合は、シンボリックリンクを削除した上で、svc

コマンドを使いsuperviseを 解放する必要があります。

cd /service/xxxd
rm /service/xxxd
svc -dx log

mv /service/xxxd /service/.xxxd
svc -dx /service/.xxxd /service/.xxxd/tog
rm /service/.xxxd

#!/b■ n/Sh

exec 2>&1 0
execヽ GE2〕)

setuidgid USERNAMEヽ 11目E》

↓または、以下でも解放できる

リスト5.4.1 典型的なrun

図5.4.2 rnuiti

リスト5.4.2

５
・
４
　
デ
ー
モ
ン
の
稼
働
管
理
　
αｏｏ３
８
６
ｏ一い

envdir ./env \
/us r/1ocal/bin,/xxxd

#mkdir

■

●

章 省力運用 安定したサービスヘ向けて

シグナル送信

表 5.4.1で 、SVCコ マンドを使ってTERMシグナノンを送れると説明 しまし

たが、他のシグナノンも同様に送ることができます (表 5.4.2)。

ファイルの例●

runフ ァイノンの例を2つ紹介します。1つめ、kecPalivedを dacmontoolsで

管理する場合のrunフ ァイルは、リスト5.4.3の ようになります。

kecPal市edは ―n(― dont‐ fork)オ プションを指定するとフォアグラウンド

で動き続けるようになっているので、daemontoolsで 管理する場合はこの

オプションを使います。またこの例では、ロギングはmuHogを使わずに、

表5.4.2 5VCコマンドで送れるシグナル

SIOP

―C CONT

―h HUP

ALRM

INT

TERM

―k KILL

表5.4.1 停止、再開、再起動

停止 svc―d/servlce/××xd TERMシ グナルを送ってプロセスを終了する。再起動
はしない

再 開 svc― u/service/xxxd プロセスが存在しなければ起動し、停止中ならば再起
動する

再起動 svc―t/service/xx×d TERMシ グナルを送る

リスト5.4.3 lived用のrunフアイ:,レ

! /bin/sh
exec 2>&1

exec /usr/toca1/sbin/keepatived -n -5 I

.コマンド 説明 .

svcのオプション シグナル

s,ogの ファシリティLOCALlで出力するようにしています。ディスクレ

スサーバでログを書き込むディスクがない場合や、ログを1カ所に集約し

たい場合は、このようにsぃlogで syslogサ ーバにログを飛ばすのも手です。

自作の監視スクリプト……runフアイルの例0

2つめは、自作の監視スクリプトをd“monゎ。lsで管理する例を紹介しま

す。リス ト5.4.4が runフ ァイノンで、リス ト5.4.3と 処理は同じです。

続いて、リスト5.4.5で す。このmonitor― pingが監視スクリプトの本体

(シェルスクリブト)になります。

ポイントは、無限ノンープ(while truei dO)し て終了しないようにするこ

とです。ただし、全力でノンープするとそれでマシンパワーを使ってしまう

ので、sleepし てある程度間隔を空けてループするようにします。

それから、リスト5.4.5のスクリプトではスクリプト外でセットされるい

くつかの変数(TARGET_HOSTS、 INTERVAL、 DEBUG)を参照しています。

runフ ァイノンでenvdirを使っているので、たとえば、図5.4.3の ように変数

と同名のファイノンをenvディレクトリの下に作りその中身を変数の値にす

れば、環境変数としてmonitor― pingに伝えられます。このようにしておけ

ば、監視するホストが増えたときなどでも、runフ ァィノンや監視スクリプ

トmonitor― pingを一切、編集することなく、動作を変えることができます。

最後にdaemO威 001sを使う際のTipsと して「依存するサービスの起動順序

の制御」「便利シェノン関数」を紹介します。

daemontools O

リスト5.4.4

５
。
４
　
デ
ー
モ
ン
の
稼
働
管
理
　
」ｏｏ３
ｏ
ヨ
８
一い

章 省ブ]1運用 安定したサービスヘ向けて

依存するサービスの起動順序の制御

daemontoolsで 管理するデーモンとrcス クリプトで起動するデーモンと

の間で、起動順序が問題になる場合があ ります。DNSが その一例です。

#!/bin/Sh.

I I!$DEBUG‖

INTERVAL=${INTERVAL:=5}

$TRAC[‖私RGE■ HOSTS:STARGE■ HOSTS‖

STRACE :lINTERVAL: SINTERVAL‖

alert(){

hOSt=Sl

TODOl implement

echo "$host is down! !"

monitor()

=1111&&TRACE=:echo DEBUG::|卜 TRACE=:

}

{

host=$1

if ping ‐qn ―c l 'iShOStll >/dev/null 2>&1: then

‐ STRACE‐ 110K Shost‖

else

stii

ce/monito r

while true; do

for h ln $TARGET H0STS; do

mOnitOr Sh

done

sleep SINTERVAL

done

リスト5.4.5 監視スクリプトの本体

#svc‐ t

回□E■轟□日
=コ
事:魔剛下ヨ

“

隕鰊隋魃 k‐11彗 |:IIIII:|:|:||:lζ :‐ 1.:‐‐‐1轟1黙

daemontoolsと 同じ作者のdjbdns注
16と いうDNSサーバがあります。この

商bdnsを dacmontoolsで 管理していて、daemontools(の svscanboot)を /etc/

initあ で起動している場合に、もし、rcスクリプトで起動するデーモンで、

起動時にDNSの名前解決ができないと起動できなかったり挙動が変わって

しまったりするものがあると問題になります。なぜなら、daemomools管

理下のdibdnsが起動する前、いい換えると、DNSの名前解決ができるよう

になる前にrcスクリプトのデーモンが起動されてしまうからです。

これを解決にするには一捻りが必要です。解決方法の一例として、KLお

で行っている方法を紹介しますので参考にしてみてください。

まず、リスト5.4.6を 見てください。このように/etc/ini量おを編集して、

wscanbootを 起動した後に、DNSサーバが動き出してから起動したいデー

モンの起動コマンドを記述した自作スクリプトを書きます。ちなみに各ス

クリプトで起動しているサービスは表 5.4.3の とおりです。

さて、この起動スクリプト(/etc/init.d/1og)は 、スクリプトの先頭でリス

ト5.4.ア のwaitdnsの ような処理を行っています。これで、名前解決ができ

るようになったことが確実に確認できてから、次の処理、つまリサービス

用のデーモンの起動を行うようにしています。

また、リスト5.4.6の起動スクリプトの行の第3フ ィーノンドがwait注
17と
な

っているので、waitdnsが必要なのは先頭の/ctc/init.d/1ogだけでいいのです

表5.4.3 起動しているデーモン

/etc/init.d/log syslog-ng

/etc/init.d/share NFSク ライアント

/etc/init.d/web Webサーバ

;E l 6 (ED http://cr.yp.to/djbdns.html

５

。
４
　
デ
ー
モ
ン
の
稼
働
管
理
　
α
ｏｏ３
ｏ
２
８
一И

瑕
SV:123456:respawn:/COmmand/SVSCanboot ..

LG:2345:wait:/etc/init.d/1og >/dev/null

SH:2345:walt:/etc/init.d/Sha re >/dev/null

WE:2345:waiti/etc/■ nit,d/web >/dev/nu_ltl‐ ‐‐.._ _‐ .

リスト5.4.6

章 省 力 運 用 安定したサービスヘ向けて

が、念には念を入れて、後続の/etc/inid/shareと /etc/init.d/webで も、先頭

でwaitdnsし ておいたほうがいいでしょう。

便利シェル関数

筆者らが運用で実際に使っている便利シェル関数を3つ紹介します。

。一―――daemonup

/ser宙 ceに シンボリックリンクを作って、デーモンを登録、起動します

(リ スト5,4.8、 図5.4.4)。

― 一daemondown

daemonupと は逆に、デーモンを停止、削除して/serviceか らシンボリッ

クリンクを消 します (リ ス ト5.4.9、 図 5.4.5)。

←―――daernonstat

/ser宙 ceに あるデーモンの起動日時と起動してからの経過時間を表示しま

す(リ ス ト5.4.10、 図5.4.6)。 経過秒数しか表示されないdaemontOolsに 付

属するsvstatコ マンドの出力を、見やすいように加工しています。

注17 waitは 、OS起動時に一度だけ実行され、4番めのフイールドのスクリプトが終了するのを待つ、とい

う指示です。

リスト5.4.7 waitdns

旧itdnS(){

}

while true; do

d■ 9 o127.0,0,1 ■short +tlme=1 {DOMAINNAME} >/dev/nul1 2>&1 && break

done

uzl.,

d=$ (basename $DAEM0NDIR)

if [! -s "/service/$d"];
ln -snf ${DAEi,I0NDIR} /se

fi
/command/svc -u /servi

lcommand/svc -dx

if I -d /service/,
/command/svc -dx

fi
rm -f /service/.$1

$1/109 !:

else
echo "not found

fi
)

図5.4.4

５
。
４
　
デ
ー
モ
ン
の
稼
働
管
理
　
α・ｏ３
ｏ２
８
一い

esac

[-d gDAEM0NDTR 1 ll t

章 省 力 運 用 安定したサービスヘ向けて

daemondown monitor-ping

露国□□□国□l■l■■■■l■l■l■l■l園躙魃‐
daemonstat(){

local ‐a ds .

if i S# ‐gt o l; then

fOr i in t:SCi:i dO

dSI${#dSiO〕 }l=S(i#/SerViCe/}

done

else

ds=''*`:

fi

Cd /Se rvlce/ ‐ ‐

SVStat ${dSI(0〕 } | ヽ .. . ‐

wh■ le read daemon state dsec p■ d sec dumy; do

[1:$Statel: == |:downl1 1 && Sec=SdSeC

printf ll%-20s %4s %8ds = %3ddays %02d:%02di%02d′ since %sヽ n lI ヽ

Sdaemon SState SSec
‐

ヽ

$((sec / (60* 60* 24))) ヽ

S(((sec / (60* 60))ヽ 24)) ヽ

S(((sec / 60)% 60)) ヽ

$((sec % 60)) ヽ
. :lS(datel‐ d.ll.SSeC SeCOndS agO:: ':+%y/%m/%d %T!1)11;

done . ・‐...‐ .|‐・.、 |‐■
‐
||
‐
 ||.

■ ― ‐.・ |■ |● ||.■■|■.■.||■. |. || ‐
」 .‐ .|||■■|‐●■■‐__ .

回轟1国国冒嗣圏回■|||||||||||1醸暉隋輻 :曇 :‡ |:1111111::|

#daemoostatl‐ _ . ‐‐
‐‐ ・

|‐ _ ‐ _
dhcpd:
dnscache, in:
dnscache , Io:
qmail :

qmqpd :

smtpd:
stone:
tinydns . ex:
tinydns . in:

up 7417649s =

up 5227391s =

up 7417649s =

up 5637954s =

up 7417649s =

up 7417649s =

up 7417649s =

up 7417649s =

up 7417649s E

85days 20:27:29, s■ nce 07/10/05 05:21:57

60days 12:03:11, Since 07/10/30 13:46:15

85days 20:27:29, since 07/10/05 05:21:57

65days 06:05:54, since 07/10/25 19:43:32

85days 20:27:29,‐ since 07/10/05 05:21:57
85days 20:27:29, since 07/10/05 05,21:57

85davs 20;27:291 s‐ince 07/10/05 05:21:57
85days 20127129, sinCe 07′ 10/05 05:21:57
85days 20:2:i:、

|,Ⅲ,p7/10/0505:21:57

daemondownOttffifrl

５

・
５
　

不ヽ
ツ
ト
ワ
ー
ク
ブ
ー
ト
の
活
用
　
つｘ
［′
ヨ
ぎ
ヨ
お

ネットワークブー ト(比
"ο
tt Bοο′)と は、マシンがブートするために必要

なデータやファイノンをネットワークから取得してブー トすることです。通

常のブートでは、マシンの起動に必要なブートローダやOSのカーネルは、

BIOSがローカノンに接続されたハー ドディスクやCD―ROMな どの二次記憶

装置から読み出します。これに対して、ネットワークブートでは、これら

のファイノンをネットワーク上のサーバから読み出します。

ネットワークブートの特徴と利点

ネットワークブー トを使えば、マシンの起動にローカノンの二次記憶装置は

必要なくなります。しかし、ブートローダとカーネノンをネットワークから取

得するだけでは、実際のところ通常の起動に比べて運用の柔軟性が少々増す

程度です。より柔軟性を持たせるには、ネットワークブートにinitramt注
18

というしくみを組み合わせます。

initramお とは、カーネルがルー トファイノンシステムをマウントしてinit

を起動する前に、カーネノンの外部でしか行い得ない初期化をするためのし

くみです。initramtの 典型的な役割は、カーネノンがルートファイノンシステ

ムをマウントするのに必要とするドライバモジューノンを、カーネルにロー

ドすることです。

initramム の実体は、初期化するのに必要なファイノンを集めてcploで まと

め、9zip圧縮したファイノンです。このファイノンはブー トローダがカーネ′レ

注 1 8 initramfsに ついては、Linuxカーネルの付属文書が一次情報です。kerneLorgな どからカーネルの配

布パッケージを入手して‖nux‐ 2.6X X/Documentation/11esystems/ramfs― rootfs‐ in■ramfstxtを参照、

してください。

ネットワ
PXE、 initramt

ネットワークブート

章 省力運用 安定したサービスヘ向けて

をメモリに読み込む際に、カーネルとともにメモリ上に配置します。initramR

のイメージがメモリ上にあればカーネルは、自身の初期化が終わった後ノン

ートファイノンシステムをマウントする前に、initramお の中にある/initと い

うファイノレ名のプログラムを実行します。大抵の場合この initは 、通常の

起動時に用いられるinitプ ログラムとは違ってシェノンスクリプトです。

ネットワークブートでは、ブートローダがinitramRを カーネルとともに

ファイノンサーバから取得 します。これはつまり、事前に起動するマシン上

で何も準備しておかなくても、ファイルサーバ上にいろいろなシステム用

のカーネル とinitramRを 用意しておけば、どのマシンでも任意のシステム

として起動することができるということを意味します。

ネットワークブートを使えば、OSを起動する上でディスクは不要になり

ます。これを一歩進めて、OSの動作に必要なファイノンシステムをディスク

以外におけば、「ディスクレスシステム」にすることも可能になります。デ

ィスクレスシステムでは、ノンートファイノンシステムは、「NFS」 (N`如ο潰]た

りた
“
)注
19ゃ「メモリファイノンシステム」上に置きます。

ハー ドディスクはマシンの構成要素の中でも最も故障率が高い部品です

ので、ディスクレス構成にすればサーバの故障率はぐっと下がります。

では、ネットワークブー トの動作を見てみましょう。ネットワークブー

トの枠組みはいくつかあ りますが、現在の ところx86系 のアーキテクチャ

でメジャーなのは、Intel社が規格化した PXE(Ptta錢″′ο″E″ッ′″ο′″′″)注
20

と呼ばれるものです。PXEの 実体はNIC上 に実装された拡張 BIOSで す。

PXEブー トの流れは次のようになります (図 5.5.1)。

注 19 Linuxで NFSサーバをルー トファイルシステムとして使う方法については、カーネルの付属文書であ
る linux-2.6.XX/Documentation/nfsroot.txtに 詳 しい説明があります。

注20(2ED htp://www.pix.neysotware/pxebOot/archive/pxespec.pdf

なお、PXE B10S自体の設定項目はないですが、PXEブートするためにはDHCPサーバの設定がいくつ
か必要になります。これについては以下のページ(PXELINUX)に説明がありますので、必要に応じて

参照してください。

C口D htp:〃 syshnux zメOrCOm/pXe.php

ネットワークブートの動作……PXE

0通常のB!OSが初期化作業をする。この過程で拡張 B10Sの スキヤンが行わ
れて、PXE B!OSが登録される

0起動デバイスとしてPXEが選択されると、PXE B10Sに制御が渡る

0制御を受け取つたPXE B!OSは 、DHCPを使つてlPア ドレスなどの情報を取
得し、!P通信の準備をする

0次にPXE B10Sは、ファイルサーバからブートローダを取得して起動し、制
御を引き継ぐ。ファイルサーバのアドレスとブートローダのファイル名は、

0で DHCPサーバから知らされる

0ブートローダは起動すると、(0)と 同じファイルサーバからブートローダ自
身の設定ファイルを取得する。フアイルサーバのアドレスはPXE B:OSか ら
ブートローダに通知される

0同様にブートローダは起動するカーネルと、設定ファイルで指定されてい
ればinitramfsのファイルをファイルサーバから取得し、メモリ上に配置し
てカーネルに制御を渡す

カーネノンに制御が渡れば、以降は通常の起動 と変わ りません。使用する

カーネノンもとくにPXEに対応した ものを用意する必要はありません。通常

と同じのものが使えます。

PXE BIOSが サーバからファイノンを取得するには、TFTP(ル
`ν

″′Πセルク′予r

PЮわωF)を使います。これはUDPベースの簡易なファイノン転送プロトコノン

で、認証もしません。

まとめると、PXEブー トするために必要なものは以下のとおりです。

lPアドレス
T「 Pサーバ
アドレス
ブートローダ
ファイル名

ルートファイル
システム

0

lPアドレス
リクエスト

ブートローダ
リクエスト

※ このケースでは initramtを 使つている。

ルートファイリレ
システム

DHCP
サー′ヽ

(TFTPサ ーバ)

ブートローダ

設定ファイル

リクエスト

ル

０

カーネル
initramfs

フヽアイリレか
い

・ネブレ
赫
　
　
　
　
，レ．‐　
‐

力．
ｍ

B:OS 力 initramfsPXE B10S

５
・
５
　

不ヽ
ツ
ト
ワ
ー
ク
ブ
ー
ト
の
活
用
　
つｘ
ｍ′
ヨ
ぎ
∃
い

'85.s.1 PxET-Fo,lfitt*

章 省力運用 安定したサービスヘ向けて

・ PXEブー トに対応した NiC

最近のサーバマシンに搭載されているNICな らば、大抵対応している

・ DHCPサーバ

PXEブートに必要な情報を提供する

O TFTPサーバ

PX[B10Sが必要なファイルを取得するのに使う。atftpdな どのTSIZEオプショ

ンをサポートしている実装を使う必要がある

O PXE対応のブートローダ

PXEブー トに対応したものを使う必要がある。GR∪ B注
21を PXE対応させた

PXEGRUBや、SYSLINUX注 22の PXE版であるPXELIN∪ X注 23がある

・ カーネル

PXEブート用に特別なものを用意する必要はない

0ルー トファイルシステムの初期化用システム (initramfs)

ルートファイルシステムをメモリファイルシステム上にとるのならば必須であ

る。それ以外の場合でも、inltramも を使えば起動するシステムを柔軟に構成で

きるようになる

・ルートファイルシステム (の中身)

どのようなルートファイルシステムを使うにしても、OSが動作するために必

要なファイルを何らかの形で用意しておく必要がある

ノンー トファイノンシステム用のファイルは、ディスクレス構成にする場合

には、ファイノンサーバに用意 します。NFSサ ーバを直接ノンー トファイノンシ

ステムとしてマウントするならばNFSマ ウントできる形で、メモ リファイ

ノンシステムをノンー トファイノンシステムとして利用するならinitramtの 初期

化スクリプ トが利用しやすい形で、用意しておきます
注24。

注 21CコD htp:〃wwwOnu.org/sO■ Warげ97ub/

注 22C口D htp://syslinuttμ 。にOm/

注 23口堕D http:〃 syslinux zい 。iCOm/pxe.php

注 24筆者の管理する環境では、ルー トファイルシステム用のファイルは、tarで一つにまとめて外部から
はアクセスできないWebサ ーバに置いています (このtarで まとめたフアイルは、起動するサーパの

目的に合わせて複数用意 してあります)。 initramfsの初期化スクリプ トは、起動するシステムにあっ

たtarフ ァイルを HTTPで 取得 し、メモリファイルシステムに展開します。PXEが使うTFTPではなく

わざわざ H丁「Pを使つているのは、TFTPでのファイル転送が HTTPに比べて遅いからです。

ネットワークブートの活用例

筆者が管理する環境で、ネットワークブー トを活用している事例を紹介

します。

ロードバランサ

ロー ドバランサ (も ちろんLVSを 使っています)は、サービスの要です。

ロードバランサがハードディスクの故障のたびに停止しては困りますので、

完全なディスクレスシステムにしています。おかげで、ハードウェアトラ

ブノンが原因でロードバランサが停止したことはこれまで一度もありません。

もちろん、ハードディスクを使わないからといって故障がなくなるわけ

ではありません。万が一故障した場合は、たくさんあるWiebサーバの内の

1台 を代替機として使います。Wiebサ ーバをロードバランサに仕立て直す

には、ロー ドバランサとしてネットワークブー トするだけです
注25。 っま

り、マシンを1台再起動するだけで復旧作業が完了します。

DBサーバ/フアイルサーバ

DBサーバやファイノンサーバもネットワークブートしています。しかし、

さすがにデータの保存先をメモリファイノンシステムでまかなうことは、容

量の点からもデータの永続性の点からも現実的ではありません。そこで、

データの保存先にはRAIDを使って冗長化したハードディスクを用います。

RAIDデ ィスクがあるのに、わざわざメモリファイノンシステム上にルート

ファイノンシステムをおいているのは、おもにインストーノン作業を不要にす

るためでです。

RAIDデ ィスクにしたとしても、それだけでマシンの故障がなくなるわ

けではありません。したがって、万が一の事態に備えて代替機を用意して

おくべきですが、普段は使わない代替機をDBサーバ用とファイノンサーバ

注 25実際には、Webサーバとロー ドバランサでは必要とする レイヤ 2ネ ツトワークは異なります。しかし
復旧の際にネットワークケーブルを接続 し直すのは手間なので、物理的な配線はすべてのマシンで同

じにしておき、レイヤ2を分離する必要がある個所はVLANを使 つて分離しています。 したがつて、
実際にWebサーバをロー ドバランサにする際は、加えてそのマシンが必要なVLANに参加するよう
に、スイツチの設定の変更作業も必要です。

５
・
５
　

不ヽ
ツ
ト
ワ
ー
ク
ブ
ー
ト
の
活
用
　
つｘｍ′
ヨ
ぎ
ヨ
お

章 省 力 運 用 安定したサービスヘ向けて

用にそれぞれ用意するのも無駄な話です。

DBサーバとフアイルサーバは、動作するプログラムも用途も違います

が、ハードウェア的にはどちらも同じような構成です。そこで、これらの

代替機は共通で1台だけ用意しておき、いずれかのマシンが故障すれば、故

障したほうのシステムとして代替機をネットワークブー トします。こうす

れば 1台分のコストで2つのシステム用の代替機が用意でき、かつインスト

ーノン作業が不要なためよりすばやく復旧できます。

メンテナンス用ブートイメージ

ネットワークブー トはサービスを提供する上で必要なシステムだけでは

なく、メンテナンスロ的でも活用しています。

たとえばサーバマシンの初期セットアップ用のシステムや、メモリテス

ト用のシステム(memtest注
26が
起動します)、 故障したディスクを交換する

際やリースアウトしたサーバを返却する際に、ディスク上のデータを消去

するためのシステム (shred注
2アが入っています)な ど目的に応じたシステム

を用意しています。

最後にネットワークブートサーバを構成する上で、考慮すべき点をいく

つか紹介します。

initramfsの共通化と役割の識別

複数の種類のシステムをinitramtを 使ってネットワークブートするのな

ら、initramR自 体は共通で使えるように構成したほうが楽です。というの

も、initramfsは カーネルの起動直後に動作するのでデバッグがしづらく、

作 り込むのに結構な労力を要するからです。initramtを 共通化した場合に

問題になるのは、マシンをどのシステム用に初期化すればいいのかを、init

注260□ D htp://www.memtest86て om/

注27ハードデイスクのデータは、単純に消しただけでは磁気の痕蘇を解析することで復元できてしまいま
す。shredはハードディスクに対して特別なビットパターンを書き込むことで、データの復元をより

困難にするツールです。

ネットワークブートを構成するために

スクリプトが判断する方法です。これにはいくつか方法が考えられます。

一つは、カーネノンのコマンドラインを通じてinitス クリプトにパラメー

タを渡す方法です。

boot: db

カーネノンのコマンドラインは、カーネノン組み込みのドライバにパラメー

タを渡すためのものですが、余計なものが入っていても無視されるだけで

エラーにはなりません。カーネノンのコマンドラインに渡された文字列は、

procフ アイノンシステムを通じて起動後に取得できます。起動するシステム

にあったパラメータをカーネルのコマンドラインを通じてinitramお に渡す

には、起動するシステムの数だけブー トローダの設定を作り起動時に選択

するか、あるいは起動の度に手で入力します。いずれにせよ、ブートロー

ダに対して対話的な操作が必要になります。

ほかの方法としては、起動したマシンに割り振られたIPア ドレス (も し

くは対応するホスト名)を元にinitramお が判断するという方法があります。

IPア ドレスの割り振りはDHCPサーバの仕事です注28。 DHCPサーバが、起
動するマシンに対して特定のIPア ドレスを割り振るためには、あらかじめ

そのマシンのMACア ドレスを調べて、IPア ドレスとMACア ドレスの対応
をDHCPサーバに設定しておきます。

ほかにも方法があるかもしれません。いずれにせよ、自分が管理する環

境に合った、使いやすくかつ拡張しやすい枠組みを作り込む必要がありま

す。

デイスクレス構成にする際に考慮すべき点

ディスクレス構成にする場合に、気をつけなければいけない点がいくつ

かあります。

注 28 1PMI(56節 を参照)を使つているのなら、IPMiに設定された IPア ドレスを読み出して使用することも

↑どのD8サーバかの指定

できます.

５

・
５
　
、ネ
ッ
ト
ヮ
ー
ク
ブ
ー
ト
の
活
用
　
「ｘ
ｍ′
ヨ
Ｓ
ヨ
い

章 省 力 運 用 安定したサービスヘ向けて

― 一ログの出力

一つめはログの出力先です。通常ログはローカノンのハードディスクに書

かれます。しかし、デイスクレス構成ではハードディスクがない場合もあ

ります。ディスクレスシステムでも、保存しておかなければいけない
ログ

はあります。そのようなログは別のマシンに転送して保存します。ログを

手軽に転送する方法としては、「NFSに書く方法」と「syslogの 転送機能を使

う方法」の2つがあります。

ネットワークブートするマシンがNFSを使うのであれば、そこにログを

出力するのが一番手軽です。この場合気をつけなければいけない点が二つ

あります。一つは複数のマシンが同じフアイルにログを書き出さないよう

にすることです。もう一つは出力するログの量です。ログの量が多いとNFS

サーバヘの1/0を 圧迫してしまい、本来の使用目的に支障をきたします。

NFSを使わないのならば、syslogの ログ転送機能を使うのが手軽です。そ

の場合、普通のsyslogで はなく「syslog― ng」 を使えば、送信側でログのフイ

ノンタリングなどができるので便利です
注29。

保存する必要はないけれどもトラブノン時には参照したいログはメモリフ

ァイノンシステムに出力します。その場合、メモリファイノ
ンシステムの容量

はハードディスクに比べてずっと小さいので、保存するログの量に気をつ

けなければいけません。通常よりは短いスパンでログをローテ
~卜
(Rο″′
`)

し、古いログは積極的に消すようにします。これには「multilog」 が便利で

す。

multi10gは daemOnt001sに 付属するプログラムの 1つで
注30、
標準入力から

ログを受け取ってフィノンタリングや加工をした上で、ファイノンに出力しま

す。ログをファイノンに出力する際にmultilogは、出力先のファイノ
ンのサイ

ズが一定以上であれば、ログフアイノンをローテートします。またローテー

トしたファイノンの数が決められた数を超えた場合、古いファイノ
ンを消して

くれます。これにより、ログファイノン全体の量が一定以上にならないこと

を保証できます。

注 29 sysIOg― ngについては、5.7節 を参照 してください。

注 30 daemOnt001S、 mult‖ Ogについては、5.4節 を参照 してください。

― ―ファイルの変更管理

二つめは、ノンートファイノンシステム用のファイノンの変更管理です。ノンー

トファイノンシステムとしてメモリファイノンシステムを使う場合、起動中の

マシンにあるファイノンを変更しても再起動すれば元に戻ってしまいます。

したがって、ファイノンを変更した際は、同時にその元 となるファイルにも

変更を反映しなければなりません。これを怠ると、たとえばトラブノンが発

生した際に、それを解決するためにシステムを再起動すると別のトラブノン

に見舞われるという、笑えない状況に陥ります。このような事態に陥らな

いようにするためには、運用しやすい手順を確立することです。

筆者の管理する環境では、起動中のシステム上でファイノンを更新して動

作確認をしたら、それをマスタにコピーし、古いマスタを念のためバック

アップしています。またこれら一連の作業は、専用のスクリプトを用意し

て簡単化しています。

― ―マスタファイルのセキュリティ

マスタファイノンのセキュリティには、気をつける必要があります。ノレー

トファイノンシステムをメモリファイノンシステム上にとる場合、ノンー トファ

イノンシステムのマスタを用意することになります。このマスタには、たと

えば何かのパスワードやSSHの秘密鍵など、一般ユーザがアクセスできて

はいけないファイノンを含めてはいけません。なぜならば、マスタのファイ

ルは、マシンの起動時にファイノンサーバからコピーされます。このコピー

はinitramtが行いますが、initramtが コピーできるということは一般ユー

ザもコピーできることになります。

ファイノンサーバからのコピーに認証をかければよいと思われるかもしれ

ませんが、それは無意味です。なぜなら、認証を通過するためには認証情

報をinitramお の中に含める必要がありますが、initramtのパッケージは

TFTPで取得でき、このTFTPに は認証がないからです。

５

・
５
　

ネヽ
ッ
ト
ワ
ー
ク
ブ
ー
ト
の
活
用
　
つЖ
ｍ′
ヨ
Ｓ
３
´

章 :省力 運 用 安定したサービスヘ向けて

高い可用性を求められるサーバマシンは、多くの場合間借りしたデータ

センターに設置されます。しかし、システムの管理者がデータセンターに

常駐することは、とくに小規模なサイトでは稀でしょう。サーバの設置場

所とシステムの管理者が普段いる場所が離れていると、メンテナンスのた

びにサーバの設置場所に赴むくのは時間的にも金銭的にも無駄です。その

ため、普段の管理作業はSSHな どでリモートログインして済ませます。

しかしながら、 トラブノン時にはネットワークを使ったリモートログイン

ができるとは限りません。またそもそも、リモートログインはOSが起動し

正常に動作していることが前提です。本節では、トラブノンの際やOSが動い

ていない場合でもリモー トメンテナンス (R`″ 0た M″虚れα″
“
)を実現する方

法を紹介します。

まずは、ネットワークトラブノン時にもリモートメンテナンスを可能にす

る方法を紹介します。リモートメンテナンスする上でデータセンターにあ

るサーバマシンにログインする経路としては、サービス提供用の商用回線

があります。この商用回線はルータに接続され、ノンータはスイッチイング

ハブを介してサーバと通信します。ネットワークトラブノンに対する備えは、

この商用回線とノンータのトラブルに対するもの、そしてネットワークスイ

ッチの トラブルに対するものとに分けて考えます。

リモートメンテナンス
メンテナンス回線、シリアルコンソール、IPMI

楽々リモートログイン

ネットワークトラブルに備えて

メンテナンス回線

商用回線やノンータ (レイヤ3ス イッチ)の トラブノンの際にもリモートメン

テナンスを可能にするためには、別系統の経路を用意することで備えます。

これをここでは「メンテナンス回線」と呼びます。メンテナンス回線を別に

用意するのはコス ト的に厳しいと思われるかもしれませんが、実は意外と

安 く済みます。なぜならメンテナンス回線が絶対必要になるのは商用回線

からログインできない時だけで、それならば家庭用のグレードの低いもの

で十分だからです
注31。
またメンテナンス回線はトラブノンの際だけではなく

通常時にも、大量のファイノン転送など商用回線を使 うとサービスに悪影響

を及ぼす作業などに活用でき、決して無駄にはなりません。

筆者が管理している環境では図5.6.1の ように構成しています。回線は

NTTの Bフ レッツ(十 固定IPのオプション付きのISP契約)です。Bフ レッ
ツの光回線はONU(OP′′

“
Iル如οtt u雄)で終端されてLANケーブルが引き

出されますが、このLANケーブルはルータに接続するのではなく、ハブを

注31商用回線とメンテナンス回線が完全に別の系統の回線ならば、同時に使えなくなることはまずありま
せん。

ルータ

サーバ

ONU
ハブ ハブ

サーバ

サーバ

※ 左側は商用回線系、右側はメンテナンス回線系。

商用回線

図5.6.1 メンテナンス回線の構成例
※

５

ｏ
６

　
リ
モ
ー
ト
メ
ン
テ
ナ
ン
ス
　
メ
ン
テ
ナ
ン
ス
回
線
ジ
リ
ア
ル
コ
ン
ソ
ー
ル
、も
≡

インターネット

インターネット

章 :省力遅:用 安定したサービスヘ向けて

介して数台のサーバに接続します。このハブは商用回線系のものとは物理

的に完全に別のものを使います。商用回線用のハブをVLANで 区切って間

借りするのも御法度です。なぜなら、そのハブがトラブノンの元になった場

合、両方使えなくなってしまうからです。

ハブを介してメンテナンス回線のONuに接続されたサーバの内の 1台が、

実際にインターネットに接続します。このサーバは外部に直接つながって

いますので、商用回線や内部のネットワークトラブノンの影響を受けずにリ

モートログインできます。ちなみにわざわざハブを使って複数台のサーバ

をONUに接続しているのは、インターネットに接続するサーバを変更する

場合の備えで、これによリデータセンターに赴いてLANケーブルを差し替

えることなく、リモートメンテナンスで済ませられるようにしてます。

スイッチのトラブルに対する備え

商用回線からリモー トログインできない場合も、メンテナンス回線を通

じて1台のマシンにはログインできるようになりました。このマシンから

隣のマシンにログインするにはスイッチが必要です。次はこのスイッチの

トラブルに対する備えです。

スイッチのトラブノンの要因は2つ考えられます。1つはスイッチ自体が原

因の場合で、これに対する対処法はスイッチの再起動です。もう1つはス

イッチに送られてくるパケットが原因の場合で、これに対する対処法は送

信元が接続されているポートの遮断です。

スイッチングハブには、インテリジェントスイッチとノンインテリジェ

ントスイッチの2種類があります。ノンインテリジェントスイッチの場合、

これらの作業はリモー トからはできません。一方インテリジェントスイッ

チの場合は、スイッチ自体にログインして、スイッチの設定インタフェー

スからスイッチの再起動やポートの遮断ができます。

スイッチにログインする方法は大抵の場合、■lnetや SSHを 使ったネッ

トワークログインと、シリアノンコンソーノンからのログインの2種類が用意

されています。普段の作業にはネットワークログインのほうがレスポンス

が良いのでそちらを使いますが、 トラブノンでネットワークログインができ

ないときのために、シリアルコンソーノンからもログインできるように備え

ておきます。シリアノンコンソールに関しては次節で詳しく述べますが、こ

こではシリアノンコンソー′ンの接続先についてだけ説明します。

商用回線系のトラブノンの際に確実にログインできるマシンは、メンテナ

ンス回線が接続されたマシンだけです。ですので、スイッチのシリアノンコ

ンソーノンにも、このマシンからアクセスできるようにしておきます。その

ためには、すべてのスイッチのシリアノンインタフェースをこのマシンに接

続しなければいけないのですが、通常マシンに用意されているシリアノンイ

ンタフェースは多くて2つです。3台以上のスイッチを接続するには、USB―

シリアノン変換コネクタ(写真 5.6.1)な どを使います。

ここまでで、ネットワークの トラブルに対する備えはできました。次は、

マシントラブノンが発生 してネットワークからログインができない場合や、

あるいはマシンを再起動する時のリモー トメンテナンスの手段 として、シ

リアルコンソール
注32を
紹介 します。

写真5.6.l USB―シリアル変換コネクタ

注 32シ リアルコンソールを Linuxで使 う上で全般的によくまとまつているのが「Remote Serial Console
HOWTO」です。元のものも日本語訳も少々古いですが、事情が大きく変わる分野ではないので今で
も十分参考になります。xmodemなどやMagic SysRqに 関しても述べられています。

0■)http://tldporg/HOWTO/Remote― Serial― Console― HOWTO/(元の文書)

ロロ)http〃www‖ nuxorjp/JF/JFdocs/Remote‐ Se“ al― Console―HOWTO/(日 本語訳)

/t)7tv=/Y-tv

５

ｏ
６

　
リ
モ
ー
ト
メ
ン
テ
ナ
ン
ス
　
メ
ン
テ
ナ
ン
ス
回
線
、シ
リ
ア
ル
コ
ン
ソ
ー
ル
、も
三

章 :省力 運 用 安定したサービスヘ向けて

コンソーノンとは、具体的にいえばキーボードとディスプレイ、つまり入

力と出力です。UNIX系のOSの場合ほとんどの管理作業にはGUIは必要な

いので、テキストデータの入出力さえできれば済みます。シリアノンコンソ

ーノンでは、ディスプレイとキーボー ドの代わりに、管理したいマシンにシ

リアノンインタフェースを使って別のマシンを接続し、テキストの入出力を

行います
注33。

シリアノンコンソールには、一般的にRS-232Cと 呼ばれるインタフェースが

使われます。RS-232Cの 通信は一対一です。Ethernetと は違って、1本のケ

ーブルを使って通信できる相手はたかだか1台だけです。したがって、2台

のマシンが1つのペアになります。あるマシンにシリアノンコンソーノンからロ

グインするには、まずペアになっているマシンにリモートログインしてから、

改めて目的のマシンにログインします。少々使いにくい面もありますが、大

概のサーバマシンにはRS-232Cの端子が 1つか2つは備わっていますので、

ヶ_ブル注34さ え用意すれば後はソフトウェアを設定するだけで使えます。

シリアルコンソールの実現

シリアノンコンソールは、SSHな どとは違ってログインされる側をサーバ

とは呼びません。しかしここではわかりやすいように、操作される側をサ

ーバ/操作する側をクライアントと表現します。

シリアノンコンソーノンのためのクライアントソフトは、有名なところでは

cuや kermit、 minicomがあります。cuは歴史の古いプログラムですので、

取っつきにくいかもしれません。単純にシリアノンコンソーノンを使うのなら

ば、minicomの ほうがわかりやすいでしょう。一方、cuや kermitは シリア

ノンコンソーノンだけでなく、シリアノン接続を使ってファイノン転送することが

できます
注35。

注33ワークステーションが一般的になる前は、1台のUNIXマシンに多数のシリアルコンソール専用の装
置(ダム端末)を接続して利用するのが主流でした。現在ではダム端末は姿を消しましたが、その機能
はソフトウェアで実現され、利用されています。

注34-般的に「シリアルクロスケーブル」と呼ばれるものを使います。またRS-232Cに 使われる端子は9ビ
ンのものと25ビンのものがありますが、サーバマシンに用意されているのは9ビンのものです。

注35 xmodemや ymodem、 2mOdemと呼ばれるプロトコルを使います。どちらの方向にもファイルを送
ることができますが、サーバ側では送受信のためのプログラムが別に必要になります。詳しくは前ベ

ージの注32で紹介した参考資料を参照してください。

シリアノンコンソーノンのサーバ側
注36は
、マシンの起動が進むにつれて担当

が変わ ります。順に、BIOS、 ブー トローダ、OS、 getけ です。

OB!く)S

サーバマシンに搭載されたBIOSな ら、「コンソールリダイレクション」という

機能を持つている。これはマシンの起動時にBIOSが出力するメッセージやB10S

の設定画面を、指定されたシリアルインタフェースに出力する機能である

・ ブー トローダ

|‖oや SYSLINUX、 GRUBなどの一般的なブートローダはシリアルコンソールに

対応している。設定すれば(図 5.6.20)通 常のコンソールと同じように、シリ

アルコンソールを通じてブートローダの制御画面にアクセスできる

00S

大半のUNIXttOSは 、OSや起動時に実行される初期化スクリプトが出力する

メッセージを、シリアルコンソールに出力することができる。Linuxの 場合な

らばカーネルのパラメータで、デフォル トのコンソールとしてシリアルインタ

フェースを指定する(図 562の0)

・ getty

UNIX系のOSではコンソールからのログインは9ettyと呼ばれるプログラムが

処理する
注37。
シリアルコンソールからのログインにもgettyを使う

default=0
timeout=10
seriat --unit=l -

terminal - -timeout=30

注36こ こでは挙げていませんが、前述のスイッチもシリアルコンソールのサーバ側になります。

注37正確にいうとgetwは指定されたインタフェースを監視 して、何か入力があればloginと いうプログ
ラムにログイン処理を引き継ぎます。

←②

←●

図5.6.2 GRUBにおけるブートロ‐ダ

５

ｏ
６

　

リ̈
モ
ー
ト
メ
ン
テ
ナ
ン
ス
　
メ
ン
テ
ナ
ン
ス
回
線
、シ
リ
ア
ル
コ
ン
ソ
ー
ル
、も
ζ
一

title Linux (Console Mode)

章 省力運用 安定したサービスヘ向けて

getり は多くの種類があって、大概のものはシリアノンコンソーノンからのロ

グインを扱えますが、ここではmgettyを お勧めします。通常gettyは起動

されると、監視するインタフェースをロックします。しかしmgettyで は起

動オプションに‐rを付けるか、設定ファイル(mget“ conng)で「direCt yeS」

を指定すれば、インタフェースをロックすることなく動作します
注38(リ ス

ト5.6.1)。 これにより1本のシリアル接続のみで、mgettyが監視している

間でも、クライアントプログラムを使ってペアになっているマシンのシリ

アノンコンソーノンにアクセスできます。

さて、これでサーバにネットワークログインできない場合や、OSを再起

動する際にもリモー トメンテナンスできるようになりました。しかし、カ

ーネノンがパニックしたリストーノンすれば、シノンアルコンソールからもログ

インできなくなります。そのような時はマシンがそばにあればリセットボ

タンや電源ボタンを押すことで強制的に再起動しますが、リモートにある

マシンではボタンは押せません
注39。

代わりに、隣のマシンからネットワークを通じて電源を制御するしくみ

port ttyso
speed 19200

direct yes

btocking no

data-only yes

need-dsr yes

toggle-dtr n

ignore-carrier no

togin-time 10

term vt102
※ この例の

"gettyの
パージョンは 1.1

注 38 1oginが 起動すれば、インタフェースはロックされます。

注 39大抵のデータセンターでは、このような簡単な作業を代行するサービスがあります。しかしお願い し
てから実際に再起動されるまで時間がかかります し、何度も頼むのも気が引けます。

IPMI

リスト5.6.1

があります。それが lPMl(レたJな
`″
′P′αψr″ Mα″αg`″

`″

rンた,ル
“
)注
40で
す。

IPMIは Intel社 などによって作成された、ソフトウェアからマシンの電源

を制御したり状態を確認するための規格です。IPMIで はローカノンマシンか

らはもちろんのこと、ネットワーク上の別のマシンからもこれらの機能に

アクセスできます。IPMIの機能はハードウェアで実装されていて、OSと

は独立して動作します。さらにIPMIはマシンの電源のオン/オ フの状態に

依存しません。マシンに電源が供給されてさえいれば、IPMIを使って外部

からマシンを制御できます。IPMIはいわば本体 とは独立した制御用の小さ

なマシンのようなものです。

:PMlでできること

IPMIの おもな機能を表 5.6.1に まとめました。現在使われているIPMIの

バージョンには 1.5と 2.0があります。 どちらも電源の制御やセンサー情報

ノイベントログの取得ができます。IPM12.0の 目玉は Serial over LAN(SoL)

対応です。これはサーバマシンのシリアノンコンソールにIPMIを通 じてアク

セスする機能です。SoLを使えばシリアルケーブノンに縛られずに、ネット

ワーク上のどのマシンからでもシリアノンコンソーノンにアクセスできます。

注40 1PMlについて詳しくは、ハードウェアのマニュアルおよび各ソフトウェアのサイトをご覧ください。

・GNU FreelPMi C口 D htp:〃 www.gnu.org/sotware/freeipmi/

.IPMitool C□ D http://souκebrge.neVpro」 ects/lpmitool/

・ipmiutil C□ D hup:〃sOurceforge.net/projects/ipmiut‖ /

○ O FANの 回転数や温度、電源電圧の取得

Serial over LAN。 15では規格化されてないが独自に実装している場
合もある

表5.6.1 :PM:で できること

○ ○ 電源のon/o依 reset

○ ○ イベントログの取得
○ ○ ウォツチドツグタイマ
△ 〇

× C) VLAN対 応

× ○ 通信の暗号化

５

・
６

　

リ̈
モ
ー
ト
メ
ン
テ
ナ
ン
ス
　
メ
ン
テ
ナ
ン
ス
回
線
、シ
リ
ア
ル
コ
ン
ソ
ー
ル
、一翌
一

章 :省力運用 安定したサービスヘ向けて

lPM!を ,使うには

IPMIを使うには、まずマシンがIPMIの機能を実装している必要があり

ます。実装の仕方はマシンによって異なります。はじめからIPMIの機能を

実装しているものもあれば、オプションのサブボードが必要なものもあり

ます。お使いのハードウェアメーカに確認してください。

IPMIに アクセスするためのソフトウェアは、ハードウェアメーカが配布

しているものと、OSSの ものとがあります。ハー ドウェアメーカのものは

同じメーカのマシンでしか使えないこともありますので注意が必要です。

OSSの ものは、OSやハードウェアのメーカに依存せずに使えて便利です。

OSSの IPMIク ライアン トの ソフトウェアにはFrecIPMIや IPMItool、

lpmiut■があります(他にもあるかもしれません)。

ここで紹介した備えは、 もちろん万全ではありません。しかし、比較的
安く導入できる割には普段の管理作業でも便利に使えるので、導入してお

いて損はないと思います。もちろん、ここで紹介したもの以外にも便利な

技術はいろいろあります。ここでは詳しく取 り上げられませんが、たとえ

ばMagic SysRqや ウォッチ ドッグタイマ、kdumPな どなど。いろいろな技

術やしくみを試して、より管理しやすい環境を作 り上げてください。

おわりに

５

。
７
　

Ｗ
ｅ
ｂ
サ
ー
バ
の
ロ
グ
の
扱
い
　
・ヽ
い一ｏｏ
′
・近
ｏ９
コＱ
′
８
Ｐ
３
ｌ
ｏ一ｏ
つ

Webサーバのログの集約・収集

分散環境を整えてサービスの提供を本格的に開始すると、アクセスの集

計やトラブノンの解析のために、ログを扱 う場面が増えてきます。分散環境

では1つのサービスを複数台のWebサーバで提供するので、ログはサーバ

の台数分だけ分散して出力されます。しかし、ログの解析や保存の観点か

らすると、ログは1カ所に集まっているほうが望ましいです。そこで、本

節ではログの集約と収集について解説します。Webサーバ (Apachc)の ログ

を集約・収集する方法を述べますが、その他のログに対しても考え方とし

ては応用できるはずです。

ここでは、ログの集約と収集を区別して扱います。ここでいう集約とは、

Webサーバが出力するログを常に転送して 1つ にまとめることです。これ

に対して収集とは、各サーバ上に出力されたログを定期的に集め、保存す

ることをいいます。これらを区別しているのは、それぞれ目的と精度が異

なるからです。

ログを常に集約する目的は、その時々の状況を把握するためです。たと

えば、 トラブノンが発生した際はどのマシンで問題が起きているのかを確認
したり、サイ トのアクセス状況、すなわち瞬間的なPVやユーザ数など、を

ざっと集計したりするのに使います。つまり、何が起こっているのか、 ど
こで起こっているのか、あたりを付けるために使います。

一方ログを収集する目的は、おもに集計 と解析、そして保存です。サー

ビスを運用する上で、WebサーバやAPサーバのログを集計・解析するこ

集約と収集

章 省力運用 安定したサービスヘ向けて

とは基本です。ログ解析には日ごとや週ごと、月ごとなどいろいろな単位

でのログが必要になります。そのため、必要なログがあちこちに分散して

いると非常に手間です。また保存を考える上でも、1カ所にまとまってい

るほうが扱いやすいわけです。

結局のところ両方とも1カ所にログを集めるのに、ログの集約と収集を

区別しているのは、前述のとおり両者のログの精度が異なるからです。Web

サーバの場合、アクセスの量に比例して単位時間あたりに出力されるログ

の量も増えます。アクセスが一時的に増大すると、そのすべてのログを集

約して漏れなく保存するには、それに見合った性能を持つハードウェアが

必要になります。一時的にしか発生しない状況に合わせて高性能なハード

ウェアを用意するのはコストパフォーマンスの面から好ましくないので、

集約するログは精度を求めず、それでは問題になる用途のために、別途各

サーバのローカルに出力されたログを収集するわけです。

ログの集約・収集にはいろいろな方法があります。たとえば、ログをフ

ァイルに書くのではなくDBに 書 き込むのも1つの方法です。DBに ログを

登録すれば検索性は上がりますが同時に管理のコス トも増えますので、通

常はそこまでする必要はないことの方が多いと思います。以下では、筆者

が管理する環境で採用している方法を紹介します。

ログを集約するにはsysiogを 使 うのが手軽です。sがlogの役割はUNIX

系のOSに おけるログの集約ハブです。Apacheの ログをsぃlogを使って集

約するしくみを次に説明します
注41。

ログの集約

Apacheは ログの出力先として、指定されたファイノンに書 き込む以外に、

注 41本書では取り上げませんが、ログの集約を syslogではなくmod_lo9_spに adと いうApacheモジュー
ルを使って実現する方法について『スケーラブル Webサイ ト」(cal HendersOn著 、武舎広幸 /福地太
郎/武舎るみ訳、オライリージヤバン)の「10章 :統計、監視、警告」に説明があります。

mod_log_spreadの 入手については、以下を参照 してください。

CコD htp://www.backhand.org/mod_log_spread/

ログの集約……釧ogと syslog― ng

別のプログラムを起動して標準入力にログを渡す機能を持っています
注42。

ログを渡されたプログラムは、そのプログラムの目的に従ってログを処理

します。一方sys10gに はlogger注
43と ぃぅプログラムが付属していて、標準

入力から受け取ったログをsyslogに 渡すことができます。この2つ を組み

合わせることで、Apacheの ログをsyslogに 出力できます。

sys10gに集められるログには、ファシリテイ(F′
`″
り)と プライオリテイ

(Pttrり)注“が設定されます。syslogは これらを手掛かりに
ログを識別し、

必要なログを指定されたファイノンに書き出すかあるいは別のマシン上の

s「10gに ログを転送することができます。Apacheが出力するログを特定の

1台のマシン(こ こではログサーバと呼びます)に sys10gを使って集約する上

でも、このファシリティとプライオリティを使います。つまりApacheが 出

力するログをsyslogが識別できるようにしておき、目的のログだけをログ

サーバに転送します (図 5。 7.1)。

図5,7.l sys:ogを使つたログの集約
※

※ 複数のサイ トのログを集約する場合は、サイ トごとにログの出力先も分ける。

Apache

teA. access

itec,access

注 42 Apacheに おいてログを外部のプログラムに渡す方法は、Apacheの ドキュメン トのCustomLo9デ ィ
レクテイプの項に説明があります。

Cコ

=D htp:〃
hupd.apache.org/docs/2.0/mod/mod_lo9_COnig.html

注 43 Apacheか らログを受け取るloggerに ついては、付属のmanを参照 してください。

注 44 sysio9におけるフアシ リティとは、別の言葉でいい換えるならカテゴリになります。フアシリテイと

プライオリティはあらか じめいくつか定められていて、syslogを 通 じてログを出力するプログラムは、

出力の際にその中から適切なものを選んで指定 します。フアシリテイの例としてはkern(カ ーネル用)

や ma‖ (メ ール関連)daemon(各種デーモン用)等があります。プライオリテイの例としては、debug
や e“ or、 emer9等があ ります。

５
。
７
　
Ｗ
ｅ
ｂ
サ
ー
バ
の
ロ
グ
の
扱
い
　
ゞ
一ｏい
′
・近
ｏＱ‐・９
Ｑ
３
′
８
ｌ
ｏ一ｏ９

章 省力運用 安定したサービスヘ向けて

syslogは 、ログを時々取 りこぼすことがあります。また同じログが連続

して出力されるとそれらを 1つのログにまとめます。このため集計など厳

密さが要求される用途には適しませんが、一方で大量のログが出力された

時でもディスクヘの負荷を押さえることができます。s"logで 集約したロ

グはあくまでも、問題が発生したときにどのマシンでそれが発生したのか

あたりを付けたり、あるいは現在のサイトの トレンドを観察するために使

います。

sys:og―ng

さて、複数のサイトを運用していて、それぞれのログを個別に集約した

いとします。そのような場合に、サイトごとにファシリティとプライオリ

ティを割 り当てていたのでは手間がかかります。また、ファシリティとプ

ライオリティの組み合わせは有限なので、設定できる数に上限が生じてし

まいます。できればWiebサーバ用として 1つのファシリティとプライオリ

ティで済ませたいところです。ただし、もちろんその場合でも各サイトの

ログが混ざってしまっては困ります。つまり、ログを転送するときは1つ

のファシリティとプライオリティを使い、ログを書き出す段階で別の情報

を使って区別し、サイトごとに別のファイノンにログを出力できるのが理想

です。

このわがままを実現してくれるのがsyslog― ng注
45で
す。SyS10g― ngは SyS10g

の実装の 1つです。syslog― ngではsyslogに比べて、出力するログのフィノン

タリングや、ログのローテー ト、ログを出力するディレクトリの自動的な

作成など、いろいろ便利な機能を備えています。その便利な機能の 1つ に

「マクロ」があります。これはログに関するメタ情報などを表すもので、イ

メージ的には変数が近いです。用意されているマクロには現在の日時やロ

注45 syslog―ngは以下で配布されています。

CコD htp:〃 www balabitcom/ndwork‐ securitゾ SySIog―ng/

syslo9‐ ngは オーソドックスなsysiogに比べて、設定ファイルの記述方法がかなり異なり少々取つつ

きにくいかもしれません。以下に日本語による解説があります。

・「安全性の高いログ・サーバヘの乗り換えのススメ(1)」 、および同連載の(2)(木村靖著、αT)

CコD http://www atmarkit.co」 p/fsecurity/rensai/unix_sec09/unix_sec01.html

C口D htp://www.atmarkit.co」 p/fsecurity/rensa1/unix_sec1 0/unix_secol htmi

グのファシリティ/プライオリティを表すもの、ログを出力したホストを表

すもの、出力されたログに設定されているタグ(プログラム名)を表すもの

などがあります。syslog―ngではこのマクロを使って、ログを出力するファ

イノンの名前を組み立てることができます。つまり、たとえば出力先のファ

イノン名としてタグを表すマクロを使えば、同じタグが付いているログは同

じファイルに出力されることになります。ログのローテートも、ファイノン

名の一部に日時を表すマクロを使えば実現できます (図 5.7.2)。

ログを収集する一番の目的は、ログの保存と解析のためです。大抵の場

合ログの解析は一日に一度行います。したがって、ログの収集も一日に一

度、早朝の比較的にサーバの負荷が低い時間帯に、各マシン上にある前日

の分のログを集めます。ちなみに筆者の管理する環境では収集と同時に、

各マシン上にある古いログを削除します。また、ログサーバ上にある古い

ログの圧縮も行います
注
“。

ログの解析は毎日の解析だけではなく、たとえば週次や月次などいろい

ろな期間の単位で行います。また過去に遡って新たな視点で解析をするこ

ともあります。したがって、古いログもできるだけすぐにアクセスできる

注46これらは一連の動作としてスクリプ トを組んであります。このスクリプ トを組む上では、エラー発生
時の記録と回復にとくに気をつけなければなりません。なぜなら、ログの収集に失敗 したことをログ

解析プログラムが検知できないと、中途半端な状態で解析が行われて結果が報告されて しまい、混乱

を招くからです。

ログの収集

ログ
設定ファイル
/Var/109/$HOST/SPROGRAM.acc.5MONTH― $DAY

/ var / log/ kane/ usagi. acc. 10-21

oct 21 06:27:24 kame usagill23l test log from kame

日:10/21

出カホストkame
プログラム名:usagェ

ログの内容 :
「test log from kane」

※ syslog―ngは、設定ファイルの中でマクロを使つてファイル名を指定できる。

図5.7.2 sysiog‐ngの禾:」用例
※

５
。
７
　
Ｗ
ｅ
ｂ
サ
ー
バ
の
ロ
グ
の
扱
い
　
い■
ｏＱ
′
い近
ｏＱ３
９
Ｑ
８
′
「ｏｌ
ｏ一ｏ９

章 省力運用 安定したサービスヘ向けて

状態にあるほうが望ましいです。しかし、生のままのログは非常にかさば

りますので、一定以上古いログは圧縮します。この圧縮処理は時間がかか

ってもOKな ので、できるだけ小さくなるように圧縮します注
4フ

。筆者の管

理する環境では、bzip2を 使ってWebサーバとAPサーバのログを圧縮保存

していますが、500GB程度のディスクでも数年分のログは優に保存してお

ける見積もりです。

ログの回―テート……cronと rotateiogs

さて、ログを毎日収集するためには、Wめサーバが出力するログが 1日

分ごとに分かれていたほうが便利です。Apacheが出力するログを1日 分ご

とにローテートするには、APache本体がログのローテート機能を持ってい

ないので、外部のプログラムに頼ることになります。これには2つの方法

があります。

1つめの方法はcronを 使ってログファイノンのリネームとApacheの再起動

を行う方法です。Apacheは 動作している間はログファイルを開いたままに

しますので、途中でログファイルをリネームしただけではログのローテー

トはできません。Apacheを 再起動すればログファイノンをいったん閉じます

ので、リネーム後ただちにApacheを再起動すれば、ログのローテー トが実

現できます。

2つめの方法は、Apacheに 付属 しているrotatelogsプ ログラムを使 う方

法です
注48。 これはログの集約の節で説明した、外部プログラムにログを渡

す機能と組み合わせて使うプログラムです。rOtate10gsは受け取ったログを

ファイルに書き出しますが、ログを書き出す際にログファイノンをローテー

トする機能を持っています。

残念ながら、どちらの方法を使っても日付の変わり目びったりにローテ

ー トすることはできません。cronを 使 う方法ではその構成上、どうしても

注47ロ グはテキストデータで、かつ出力される文字列のパターンも決まつているので、かなり高い圧縮率
が期待できます。たとえばあるサイトのApacheのログの場合、bzip2を使つて最も小さくなるオプ

ションを指定すれば、元のフアイルの約 1/10になりました。

注48 rotatelogsで Apacheのログを回一テートする設定は、Apacheに 付属するman、 または次のページを

参照してください。

C□D htp:〃 hupd.apache.org/docs/20/programs/rotatelogs.html

Apacheを再起動するタイミングに揺らぎが発生してしまいます。rotatelogs

を使えば 1つめのcronを使った方法よりも厳密なタイミングでローテー ト

させることができます。しかし、Apacheがリクエストを受け取ってからロ

グを生成しrOtatdOgsに 渡すまでのタイムラグがあるので、たとえば0時ぴ

ったりにローテートするように設定したとしても、昨日のアクセスのログ

が今日の分のログファイノンに出力されることがあります。

ログサーバの役割は、ログの集約 と収集、そして収集したログの保存で

す。そのほかに収集したログの集計や解析をするためのマシンとしても、

ログサーバを用います。ログの収集や古いログの圧縮、ログの集計/解析

は、比較的重い部類の処理になります。したがって、サービスを提供する

サーバが同時にログサーバの役割を担 うのは適しません。またログの保存

用に容量が大きめのディスクが必要になります。したがって、ログサーバ

にはそれ専用にマシンを割り当てることが望ましいです。

筆者の管理する環境では、ログサーバはプライマリ用とバックアップ用

の2台のサーバを用意しています。バックアップ用のログサーバは、ログ

ファイノンの保存先のバックアップとしての役割と、プライマリのログサー

バが故障したときの代替マシンとしての役割を担います。また月次や年次

のログ集計のような大量のファイノンを扱 う必要がある解析は、日々のログ

集計に影響を与えないように、プライマリではなくバックアップのログサ

ーバで行うようにしています。

バックアップ用のログサーバを専用で用意できない場合でも、ログファ

イノンだけはどこか別のマシンに転送して保存するようにしたほうがよいで

しょう。転送先は必ずしもデータセンターの中のマシンである必要はなく

て、オフィスにあるマシンにメンテナンス回線などを使って転送してくる

のも、1つの方法です。その場合、ログファイノンにはしばしばセンシティ

ブな情報が含まれますので、その扱いには十分注意する必要があります。

ログサーバの役割と構成

５
。
７
　
Ｗ
ｅ
ｂ
サ
ー
バ
の
ロ
グ
の
扱
い
　
い■
８
′
い■
ｏｏ３
Ｑ
′
Ｑ
ｏＰ
「ｏ，
ｏ一ｏ９

章 省力運用 安定したサービスヘ向けて

本節では筆者が管理する環境での方法をベースに、ログの集約と収集に

ついて述べました。ログに対する要求は、その内容や扱い方がケースバイ

ケースでかなり変わってきます。あるサイ トではリアノンタイムにPVやユ

ーザ数の集計を取りたい、と要求されたこともありました。また、大規模

サイトになると出力されるログの量が多過ぎて、保存するのもかなり苦労

する、 という話も聞きます。本当に、運用するサイトによってログに対す
る要求は千差万別です。また、同じサイトでも成長するに従って要求され

ることが変わってくるかもしれません。したがって、ログを取り扱うしく

みもケースバイケースで変えていく必要があります。その際に、本節で述

べたことが設計の一助になれば幸いです。

おわりに

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

(榊はてな
注1では、はてなダイアリー、はてなブックマーク、入力検索は

てなといったいくつかのWebサービスを提供しています。2008年 2月時点

でのトラフィックは、月間ユニークユーザ約970万 となっています。はて

なは、独自の考え方に基づくユニークなWebサービスで有名ですが、その

インフラも独特な考えを持って構築しています。

はてなのインフラには、「自前主義」「オープンソース主義」の二つの考え

方が脈々と流れています (写真 6.1.1～写真 6.1,3)。 自前主義という考えか

ら、できあいのサーバを買ってくるのではなく、サーバのハードウェアや

ケースレベノンから、自分達で設計・組み立てをしていますし、「オープンソ

ース主義」という考えから、サーバの上で動作するソフトウェアは、ほぼす

べてがOSSです。また、自分達でカスタマイズしたり機能追加したソフト

ウェアを、できるだけオープンソースコミュニティに還元していくように

写真6.1.1 はてなのサーバ

はでなのインフラ

ii 1 (m https://www.hatena.nejp/

「

憶111 」
１̈

．
:篠

U

しています。

執筆時点では、はてなのインフラ全体でサーバ台数は約350台程度とな

っています。それらのうち、サービス向けのインフラでは、基本的に、リ

バースプロキシサーバ、APサーバ、DBサーバの三層で構成されており、

それらに必要性や負荷に応じてファイノンサーバやキャッシュサーバ、バッ

チサーバが加わっています。それらの脇にログサーバや監視サーバ、リポ

ジトリサーバなどの共用サーバが固めている、という構成です (図 6.1.1)。

これらのサーバ群が24時間365日 安定して動き続けることで、はてなの

サービスが提供され続けています。本章では、はでなのインフラの中にお

けるスケーラビリティと安定性/運用効率/電源効率のそれぞれを向上させ

写真6.1.2 設置された自作サーバ

写真6■3 データセンターの内部の様子

６

・
１
　

は
て
な
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

る取 り組みについて紹介 します。

はでなで扱うぐらいの高いトラフィックになると効率的な負荷分散を行

うことで、高いスケーラビリティを維持することが極めて重要となります。

はでなでは負荷分散のためにLVS(IPVS)+keepahvedを利用しています。

この構成のサーバを2台用意し、VRRPで冗長化したものを1セ ットとして、

リバースプロキシサーバ、APサーバ、DBサーバの3層のそれぞれの手前

に1セ ットずつ配置しています。LVSサーバのストレージとしてハー ドデ

ィスクではなく、コンパク トフラッシュを利用することでハードウェア的

な故障率を下げる努力をしています。また、LVSに おいて、DSRを利用す

ることで、LVSサーバを通過するトラフィックを下げていることもあり、

それぞれの層に対して 1セ ットで十分捌けています。将来的にさらにトラ

フィックが伸びてくると、それぞれの層の手前に2セ ットずつ配置する時

もくるかもしれませんが、それはもうしばらく先のようです。

スケーラビリティと安定性

図6.1.1 はてなのサーバ構成

サービス用メインサーバ

サービス用サブサーバ

共用サーバ

AP
サーバ

リバース
プロキシ
サーバ

DB
サーバ

ファイル
サーバ サーバ

バッチ
サーバ

□□」監視サーバ
嗣
「
∃

口曰□」柳申一

隔
卜
」

リバ…スプロキシ

リバースプロキンには、Apache 2.2を おもに利用しています。リバース

プロキシから複数のバックエンドに処理をプロキシするモジュールは、mOd_

proxy_balancerで はなく、mod_proxyを使い、負荷分散には前述のLVSを

利用しています。また、APサーバとの間にSquidを 利用することで最大限

キヤッシュをし、APサーバやDBへの負荷を低減しています。

リバースプロキシのApacheに 筆者が開発したmod_dosdetectOr注 2を利

用し、動的にDoS攻 撃を検出するというDoS攻撃対策も行っています。

mod_dosdetector導 入以前は、DoS攻撃をされるたびに手動で攻撃元 IPア

ドレスを引く設定を追加しており、安眠を妨害されていたのですが、mOd_
dosdetectorの導入により、動的に攻撃が排除され、単純なDoS攻撃では、

ほとんど影響を受けなくなりました。

Apacheの アーキテクチャは、1つのリクエストに対して、workrモデノン

の場合スレッドが、preおrkモデノンの場合プロセスが割り当てられ、APサ

ーバの応答待ちでも割り当てが解除されることがないようになっています。

そのため、極めて多数のリクエス トが届くと、たとえAPサーバの負荷に

余裕があったとしても、リバースプロキシのリソースを使い尽してしまう

ことがあります。少し前には、はでなブックマークのブックマークユーザ

数を返却するAPIで この問題が発生していました。このAPIへのリクエス

ト量は、他のリクエストに比較すると桁違いで、そのAPIの処理のために、

通常のページの処理が滞るという事態になっていました。そのため、Apache

のさらに前面にlighttpdと いうアーキテクチャの異なるWebサーバをリバ

ースプロキシとして用意し、APIか通常のリクエストかを分類させること

で、効率が向上させることができました。現在では、極めて高速な応答を

返せていると思います。

DB

DBは、スケーラビリティと安定性を考える上で、ボトルネックとなりや

)t 2 (4D http//sourceforge.net/projects/moddosdetector/

６

・
１
　

は
て
な
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

すい個所です。はてなでは、DBと してMySQLを 全面的に採用しています。

はてなの最初期のころは、PostgreSQLを 使っていたのですが、比較的早い

時期にその高速性からMySQLに 乗 り換えて、現在に至っています。今は、

MySQL 4.0系 と5.0系 が併存している状態となっています。筆者としては、

サポートも終了している4.0系 を使い続けるのではなく、すべて5.0系に移

行したいのですが、4.0系列と5.0系列でタイムスタンプ周りの挙動が異な

るため、アプリケーション側の改修が必要となり、なかなか進んでいませ

ん。

MySQLは レプリケーションによリマスタ・スレーブ構成を取っており、

スレーブ群も前述のようにLVSで 負荷分散されているため、スレーブの 1

台に障害が発生した場合も、障害が発生したサーバにリクエストを自動的

に抑制することで、可用性を高めています。

また、MySQL 5.0系 に移行が済んだDBで は、マノンチマスタ構成を採用

し、keepalivedに よりActi“/Standbyを 切り替えることで、マスタDBに つ

いても冗長化を実現しています (図 6.1.2)。 マノンチマスタの具体的な設定は

リスト6.1.1の とおりです。この設定をすることで、相互にマスタでもあり

スレーブでもある関係となり、お互いへの書き込みが相手側に伝わるよう

になっています。マノンチマスタ構成を採用した場合、auto increment指 定

EVS

マスタDB
(Active)

マスタDB
(Standby)

マスタDB
(Acti鴨

DBへのリクエスト

サービスに影響なしでメンテナンス

。障害時

障害発生

哺 >

正常時 DBへのリクエスト

■――→

相互に

レプリケーション

←
口
→

相互に
レプリケーション

図6.1.2 MySQLの マルチマスタ構成

LVS

”

”

０

知

ｎｄ

仙

ス

ｔａ
ｋ

マ

６

●

をしたフィーノンドヘのINSERTの競合が問題となります。MySQLで は、a■o

incrememを する ときに、インク リメン トをする量(auto_increment

increment)と 、初期オフセット(auto_incrementottet)を指定できるように

することで、マノンチマスタでautO incrementが正しく使えるようにしてい

ます。

また、DBのスキーマでautO mcrementを利用していない場合でも、Active/

Active構 成で運用 している場合、アプリケーションの性質によっては

Duplic■e Emryエ ラーによってレプリケーションが止まることがあります。

そのため、それぞれのマスタサーバでkecPttvedを 立ち上げ、VRIPに よる

Active/Standby構 成とすることで、更新系のSQLは 片側だけで処理するよ

うにしています。これにより、アプリケーションの性質に依存せずに安定

した運用ができるようにして tヽ ます。

マルチマスタ構成に移行したDBでは、テーブノンヘのカラムの追加や、テ

ーブノンの最適化の実行など、従来のマスタスレーブ構成では、サービスを

停止するしかなかったメンテナンスが、サービスヘの影響を与えることな

くできるようになったことも大きな前進です。

マスタ0(Active)と マスタ0(Stand_by)のマノンチマスタ構成の場合、具体

的な手順 としては、以下のとおりになります。

・マスタ10(Stand― by)のホストでkeepa‖ vedを停止する

６

・
１
　

は
て
な
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

・ マスタ0とマスタ10のそれぞれでSLAVE STOPを 実行し、レプリケーション
を停止する

・ マスタ0でカラムの追加などメンテナンスを実行する

・ マスタ0で SLAVE STARTを 実行し、AからBへのレプリケーションを再開する

・ マスタ0の レプリケーションがマスタ0に追いつくのを待つ

・ マスタ0の keepanvedを立ち上げ、マスタ0の keepa‖vedを停止し、マス
タ0を Activeに する

0マスタ0で SMVE STAMを 実行し、BからAへのレプリケーションを再開する

・ マスタ0の レプリケーションがマスタ0に追いつくのを待つ

・ マスタ0の keepanvedを立ち上げ、マスタ0を Activeに戻す

若干、複雑な手順ですが、これで何回かサービス無停止でのメンテナン

スを行っています。ただし、実施するメンテナンスの内容が、それと並行

して実行され続けるActive側への更新内容と矛盾しないことが必要です。

たとえば、メンテナンスの内容が、既存テーブノンヘのカラム追加で追加さ

れるカラムの中身がすべてデフォル ト値でよい場合は、矛盾がなく問題あ

りません。一方、カラムを削除するメンテナンスの場合は、Active側 にカ

ラム削除が反映される前に実行されたInsert文 にそのカラムの項目が含ま

れていると「マスタ0の レプリケーションがマスタ0に追いつくのを待つ」

時にレプリケーションエラーが発生してしまいます。後者の例のように、

レプリケーションを再開した時にエラーでレプリケーションが停止してし

まった場合は、諦めて、サービス停止をともなうメンテナンスを実施する

必要があります。

マルチマスタのその他の問題として、 トラフィックが増えてきて2台の
マスタだけではアクセスが捌けなくなり、スレーブを追加した場合の障害

処理があります。各スレーブはどちらかのマスタのスレーブになるのです

が、自分がマスタとしているサーバで障害が発生し、片側のマスタだけで

動いていると、障害が発生した側にぶら下っているスレーブDBに は更新

情報が伝わりません。そのため、障害が発生した場合にはなんらかの手段

で更新を伝えるか、障害が発生した側のスレーブDBを すべて止めてしま

うか、どちらかの対応が必要なのですが、現状ではうまい対策が見つかっ

ていません。

前者のように生きている側のマスタから更新情報を受けとれたら理想的

なのですが、MySQLの レプリケーションのしくみ上難しいため、対処する
にしても、後者の障害が発生した側のスレーブを止めるしかなさそうです。

ただ、こうすると処理能力が一気に半減してしまうので、サーバリソース

に余裕を持たせておかないとピーク時間帯での障害が発生すると厳しいこ

とになりそうです。今はまだ、そこまでは必要とされていないのですが、

近い将来に解決しなければならない課題です。

フアイルサーバ

DBと 同様にファイルサーバも、スケーラビリティや安定性のボトノンネッ

クとなりやすいサーバです。はてなでは、DRBD+keepttvedで 冗長化し

たファイルサーバにlightpdに よるAPIと Squidに よるキャッシュを用意す

ることで、冗長性と高速性のバランスをとっています。また、DRBDに よ
り:冗長化したブロックデバィスをOCFS2(0″ル C′

“
並r■ルシ確″ル″L′″′χ

2)注
3と いうクラスタファイノンシステムでフォーマットして利用しています。

クラスタファイノンシステムを利用することで、DRBDの Act市e側でサービ
スを提供し、Backup側でバックアップを行うということし、日々のバック

アップによる1/o負荷がサービスに影響しないようにしています。

新しいサーバをィンフラの本番環境に投入するまでには、大まかに以下

のことが必要です。

・ ハー ドウエアの組み立て 。設置

00Sのインストール

・ アプリケーションの動作に必要なライブラリなどのインストール・設定

・ 監視などインフラの一部として動作するための設定

・ アプリケーションのデプロイやDBの設定などサーバごとの役割に合わせた
設定

運用効率の向上

)E 3 (EIl http://oss.oracle.com/proj ects/ocls2/

６

・
１
　
は
て
な
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステム
ヘ

・ ロー ドバランサの設定への追加による本番への組み込み

アプリケーションの挙動に合わせた設定やDBのデータコピーなどは、ど

うしてもそれなりの時間がかかってしまうのですが、それ以外の部分は、

ほぼ自動化されており、ハードの組み立てから、実際に使えるようになる

まで、ほとんど管理者の手間なくできるようになっています。

以下では、その流れを簡単に紹介します。

キックスタートによるインストール

はてなのサーバは、基本的にパーツか ら調達/組み立てしています。こ

の部分は純粋に人海戦術 となってお り、さすがにある程度の時間がかか り

ます。サーバが組み上がり、BIOSの 設定が済むと、まずキックスター トで

OSの基本的なインス トールを行います。通常の最小限の OSイ ンス トール

に加 え、LDAP(Lなみ勒ιjgあ F Di“わッA“6 PЮ
`ο

胡)や autofsに よるユーザロ

グイン周 りの設定や、Puppetの初期設定を行い、最後にエンジニア間の連

絡に使っているIRCチ ャンネルに自分の IPア ドレスを通知 します。ここで

は、大量のパッケージインストーノンが発生するので、それなりに時間がか

か ります。

これにより、BIOS設定後リブー トしてから後は、完全にリモー トでの作

業を可能 としています。

パッケージ管理と

「アプリケーションの動作に必要なライブラリなどのインストーノン・設

定」と「監視などインフラの一部として動作するための設定」の部分は、少し

前までは相当の時間と人手がかかっていた部分でした。そこで、

0なんでもrpmパツケージ化&yumで一発インストール

・ Puppet(設定自動化ツール、5.3節 を参照)

の2つ を作成・導入することで、ほぼ自動化されるようになり、大幅な時

間短縮ができるようになりました。

なんでもrpmパ ッケージ化&yumで一発インストーノンでは、MySQLは

APacheで特定のバージョンを使いたいとか、標準ではないライブラリを使

いたい、という時もすべてrpm化 してから自前yumリ ポジトリ経由でイン

ス トーノンする、ということです。一番大変なのは大量のCPANモ ジューノン

なのですが、CPANの依存関係を解析してrpm化する手製スクリプトで、

CPANモ ジューノンのrpm化がほぼ自動化されています。おかげで、200以

上に上るはでなのアプリケーションが依存しているCPANモ ジューノンも、

簡単にインストールができるようになっています
注4。

5.3節で解説したPuppetは 、徐々に運用ノウハウを蓄積しながら、サー

バに必要とされる初期設定が自動化されるところまで達することができて

います。Puppetの使い所としては、めったに触らないような設定、たとえ

ば、ネームサーバの設定やsshdの 設定などを中心に適用し、バックエンド

サーバやDBサーバの基本的な設定を行う、というところまでにしていま

す。アプリケーションごとに負荷に合わせて細かく設定を変更していくよ

うな設定ファイルについては初期ファイノンを配置するのみで、それ以上の

設定まではPuppetで 適用しないようにしています。

Puppetは 、その特性上、設定を微調整するのにも数ステップの冗長とも

思える操作が必要になります。そのため、トライ&エラーが必要だったり、

頻繁な書き換えが必要 とされる設定、たとえば、APacheの htpd.confや

MySQLの my.cnfと いった設定ファイノンは、設定反映までのスピードと効率

を重視して各管理者が直接書き換えられるようにしています。

これで、サーバの設定が済んだら、アプリケーションのデプロイと動作

確認を軽くして、ロー ドバランサ (LVS)の 設定を更新して本番投入終了と

なります。

サーバの管理と監視

日々、サーバの追加・設定、チューニングをしていると、あるサービス

がどのサーバで動いているか、とか、あるサーバがどういうスペックなの

かを管理するのが極めて大事になります。以前は、はてなグノレープのキー

ワード機能(いわゆるWikiのような機能を持っています)で一覧を管理して

注 4 また、rpm化のおかげで CPANモ ジュールのアツプデー トを適用するのも簡単になつています。

６

・
１
　

は
て
な
の
な
か
み

章 あのサービスの舞台裏 自体的なインフラヘ、ダイナミックなシステムヘ

いました。ですが、その更新作業があまりに煩雑で、更新漏れが出て、い

ざ触ろうと思った時に実は別のサーバで動作していた、ということが頻発

していました。

その最大の原因は、1台サーバの役割を変更すると、

・ サーバ管理キーワー ドの修正

O Nagiosに よる監視設定の変更

・ MRTG(M′ ′″Rο
“
′ιr T匂■ Gr″ルr)注

5に
よるリツースグラフ化ツールの設定

の変更

0アプリケーションデプロイ対象リストの変更

・ [VSの設定変更

などと、修正すべき項目が多岐にわたっていたことで、人為的なミスは避

け難い状態となっていました。

そのため、独自のサーバ管理ツールを構築し始めています。これにより、

サーバ管理ツールのデータを変更するだけで、他の設定項目も自動的に修

正されるように徐々に変えていっています。現状では、MRTGに よるグラ

フ化ツーノンを独自サーバ管理ツールにグラフ化機能も加えることで吸収し、

デプロイ対象リストの更新を不要としています。Nagiosや LVSの設定の反

映は今後進める予定です。

また、サーバ管理ツーノンで、全サーバ台数や、スペックごとのサーバ台

数といった統計データを出力できるようにしており、はでなグラフヘの投

稿スクリプトと合わせることで、インフラ規模や中身の変遷が把握できる

ようにしています。最近では、はてなのインフラの中にPentium MMXが

まだ使われていることがわかって、少し感動を覚えました。

このサーバ管理ツーノンも、OSSと して公開する予定です。

--c-e.pr
stranoによるデプロイ

アプリケーションのデプロイはずいぶん前から⊂apistran。
注6で
、ほぼコ

マンドー発で済むようになっています。Capistranoは Rubyで実装されたア

)i5 (ED http://oss.oetiker.ch/mrtg/

;t6 GEII http://www.capify.org/

プリケーションのデプロイ支援ツーノンです。デプロイ以外にも複数のサー

バに対して任意のコマンドを発行したり、シェノンでインタラクティブにコ

マンドを実行できる便利なツーノンです。

はてなでは、このCapistranOを そのまま使 うのではなく、一部独自に修

正して利用しています。たとえば、デプロイなどのコマンドを送るサーバ

リストを、前述のサーバ管理ツーノンのAPIか ら取得するようにしています。

これにより、インフラチームがサーバを増設しても、アプリケーション開

発者はそれを意識することなくアプリケーションのデプロイやアップデー

トなどが可能となっています。

多数のサーバを運用し、増強を繰り返していると、インフラのコストは、

どうしても膨れていってしまいます。その時に問題となるのは、今あるサ

ーバを使い続けるのがいいか、より効率の高い新しいサーバを導入するの

がいいか、ということです。

はでなでは、サーバの購入費などの初期コス トの圧縮を重視するととも

に、電源コストの圧縮を重視しています。そのために、以下の三つの考え

方でサーバの調達と選定を日々行っています。

・ サーバを設計・調達する時に、lAあたりのパフオーマンスを重視する

01台あたりのサーバ能力をできるだけ高めて、仮想化技術により、分割し
て利用する

・ 不要なパーツは載せない

lAあたりのパフオーマンスを重視する

サーバを選定する時にそのハードの価格は大抵の場合重要視されますが、

その消費電力はそれほどは重視されていない傾向があるように思います。

とくにメーカ製のサーバだと、消費電力を公開していないこともよくある

ようです。はでなでは、ハードを自分達で組み上げていることもあり、CPU
やチップセットの消費電力だけではなく、メモリ、ハードディスクや電源

ユニットの消費電力も一つ一つテストして計測しながら選定しています。

電源効率・リソース利用率の向上

６

。
１

　
は
て
な
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

また、既存のサーバについても、一部のパーツを置換することで性能が

向上する、消費電力が下がる、という場合には積極的に置換を進めていま

す。最近の事例で一番劇的だったのは、CPUの Core2 Duoか ら「Core2 Quad」

への載せ替えで、単にCPUを載せ替えるだけで性能三倍/消費電力そのま

ま、ということがありました。このときは、Core2 Duoの導入からまだ 1

年程度だったのですが、相当な勢いでCore2 Quadに 置き換え、今では、

Core2 Duoは最盛期の 1/3程度まで少なくなっています。この置き換えによ

って、サーバ台数を増加させることなくトラフィックの増加に対応でき、

データセンターのラック費用、電源費用を抑えることができ、結果として

インフラコストの圧縮に結び付けることができました。

1台あたりのサーバ能力をできるだけ使い切る

前述のようにCore2 Duoか らCore2 Quadに 載せ替え、さらに、冗長化の

ために同じ用途のCore2 Quadを 搭載したサーバを用意すると、次に発生す

る問題が、サーバ能力を使い切ることができない、というものになります。

Core2 Quadの性能は相当高く、1台だけでもある程度のトラフィックは捌

くことができ、小振りなサービスならその性能を使い切ることができず、

冗長化のために2台用意すると相当の規模のサービスにならないとサーバ

能力が余ることになってしまいます。また、将来的にも、1台あたりのサ

ーバ性能はどんどん向上していくことが予想され、この傾向はさらに強ま

ると思われます。

そのような場合に、より安価なCPUを 使 う、という解もあるのですが、

そもそもCPUは価格的にも消費電力的にも、それほど支配的ではありませ

ん。そのため、小さいサービスのためにもある程度のコストがかかってし

まう、ということになります。そこで、はてなでは、仮想化技術 Xen注
ア
を

導入することで、サーバリソースの効率化を図っています。

Xenを使うことで、1台の物理的なサーバの上に論理的なサーバを複数用

意することができ、メモリとハードディスクと負荷の許す限り詰め込んで

いくことができます。現在のはでなでの標準的な構成では、最初に起動す

)17 (EIt http://www.xen.org/

るホストOs(Xen用語ではDomO)を管理用として、最小限のハードディス

クとメモリのみを割り当て、残 りにいくつかのグス トOS(Xen用 語では

DomU)を作っています。たとえば、2台のサーバにAPサーバのDomUと
マノンチマスタのDBの DomUを構築しています。2台用意しているのは冗長

化のためで、片方のサーバにハー ド障害が発生してもAPサーバとDBの

DomUが 1つずつは残ることを期待しています。また、APサーバとDBを

分離しているのは、将来的にサービスが成長した時にそれぞれのDomUを

別のサーバヘの再配置を容易にするためです。

さらに、DBサーバはメモリ容量と1/0性能がボトノンネックになりやすく、

APサーバはCPu性能がボトノンネックになりやすい、という傾向がありま

す。そのため、DBサーバの余っているCPuを APサーバのDomUを同居
させて使うことで、CPUも 1/0も 限界近くまで使うことができるようにな

ります。

はてなでは、この方針で徐々にインフラリソースの効率化を進めており

(図 6.1.3)、 現状では物理的なサーバ台数は350台程度なのですが、仮想的

な論理サーバ数では、その2割増しぐ
｀
らいとなっています。

ただ、リソース利用率の向上 とともに1台あたりの消費電力も上ってい

るため、1つの電源に想定していたより少ない台数のサーバしかつなげら

れない、という別の悩みが生じてきているところです。

不要なパーツは載せない

もう一つ電源の効率を向上させる方法として、不要なパーツはサーバに

載せない、ということがあります。たとえば、メモリを安直に最大まで載

せない、ハードディスク容量は控えめに、無駄にRAIDを組まない、など

があります。今、はてなでは、そもそもハードディスクをなくしたディス

クレスサーバの取り組みを進めています。

ディスクレスサーバは、その名のとおリハー ドディスクがないサーバの

ことですが、そのメリットとして、消費電力の低下、ハードウェア故障確

率の低下、ネットワークブー トによる役割設定の変更を容易に、という点

が挙げられます。逆にデメリットとしては、自力ではブートもできない、

ログなどがローカノンに保存できない、など、足が地に着いていないような

６

・
１

　
は
て
な
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

不安定感があります。

はでなでのディスクレスサーバは、以下のような特徴を持っています。

・ ネットワークブート&DHCPに よる役割の設定

・仮想化技術による高いメンテナンス性

・オンメモリファイルシステム
注8によるフアイルサーバとの疎結合

実際にファイルサーバが起動すると、以下のような流れで起動 します。

・ DHCPによりMACア ドレスからlPア ドレスとディスクイメージのパスを取
得

・初期ルートにより、ディスクイメージの取得と実ルートとしてのマウント

・実ルートによる起動

ファイノンサーバやDHCPサーバなどの外部との接続が必要なのは起動時

のみで、起動後はそれらのサーバとの接続が遮断されても単体で動作し続

けることが可能です。起動後にアプリケーションのデプロイなどで、ファ

イノンが更新されたときは、その差分がディスクイメージに自動的に書き戻

され、ユーザからは、ディスクレスサーバであることを意識せずに使うこ

とができます。ただし、同じ役割を与えられたディスクレスサーバは、す

べて同じイメージで起動するようになっているので、そこは気をつける必

図6.1.3 インフラリツースの効率化

Core2 Quad'lL 仮想化

Core2
Quad

DomU

DomU

．

数

ま

．

」
口
＝

宙

轡
一

”

サ

２

Core2
Quad

DomU

サーバ台数
半減

Core2
Quad

Duo

Core2
Duo

Core2
Duo

Core2
Duo

Core2
Duo

Core2
Duo

注8 aufsを指しています。 aufsは Another Unionfsの 略。C口D hup:〃aufs sourcebrge.net/

國
蜃
國
明

Core2
Duo

Duo

要があります。

ディスクレスサーバを利用すると、たとえば、負荷分散のために新しい

バックエンドサーバを追加する際に、DHCPの設定ファイノンを書き換え、
そのサーバを起動させるだけで、自動的に適切なディスクイメージがダウ

ンロート&マ ウントされ、運用に投入することができるようになります。

はでなのインフラは、この 1、 2年で、負荷分散と冗長化、リソース効率

向上のノウハウが一通り蓄積され、相当な規模のトラフィックに耐えられ

るサーバを効率良く運用できるようになってきています。ただ、職人的な

感覚に頼って設定しているところや、手動での微調整を繰り返していると

ころは、まだまだ残っています。日々トラフィックは増加し、サービスの

種類は増え続けており、またインフラ技術的にも、仮想化技術によリチュ

ーニングが必要な個所が増え、効率の向上とともに、サーバ能力の余剰も

減りつつあります。そのため、近い将来に、このような細かいチューニン

グに管理者の時間がますます費されていくことが容易に想像できます。

これからしばらくは、チューニングのための蓄積したノウハウをしくみ

に落し込むことで、各サーバのチューニングから、サーバの追加、撤去ま

で、徐々に自動化していきたいと思っています。たとえば、Apacheの プロ

セスを監視し、負荷が増大したらMttProcessを 増やす、プロセスの消費メ

モリが増大したらMaxProcessや RequestsPerChildを 絞ったりというような

ことは、すぐにでもできそうです。また、ディスクレスサーバの運用がう

まく軌道に乗れば、ある役割のサーバを動的に増やしたり、減らしたり、

ということも、容易にできそうです。

このような自律制御を究極に突き進めていくと、インフラは生物のよう

になるのではないかと思っています。個々のサーバが自律的に動いて、障

害が発生すれば自己修復し、負荷が高まればその部位が増強され、使わな

くなれば衰えていく。もちろんハードレベノンの作業は人の力が必要なので

すが、論理的なソフトウェアで完結する部分は、生物のように自律で頑強

な「系」を構築することがインフラの究極の形だと思っています。

自律的なインフラに向けて

６

。
１

　
は
て
な
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

DSAS(Dッ′α
“
たSarν
`rAsな
″ンS′ι″)と は、KLab(欄

注9で運用しているサー

バ・ネットワークインフラの総称です。現在は東京と福岡のデータセンタ

ーで300台以上のサーバが稼働しています(写真6.2.1)。 本節では、DSAS

の特徴や内部構造を紹介します。

はじめに、DSASの大きな特徴である以下の点について解説します。

・ 一つのシステムに複数のサイトを収容

0 0SSで構築

・ どこが切れても止まらないネットワーク

・サーバ増設が簡単

・故障時の復旧が簡単

一つのシステムに複数のサイトを収容

新しいサイ トを立ち上げるたびに、サーバやネットワークを新 しく構築

していくと、全体構成は図6.2.1の ようになっていきます。この構成では、

サイ トAの トラフィックが急増 してサーバの処理が追いつかなくなったと

しても、サイ トBのサーバを流用することができないので、アクセスのピ

ークに合わせてサイトA用のサーバを増設する必要があ ります。定常的に

DSASとは

DSASの特徴

it9 GEII http://www.klab.orgl

アクセスが多いならばこれでいいのですが、一過性のピーク (キャンペーン

時など)のためにサーバを増設するのはコスト的に見合わないことが多いで

しょう。

DSASの構成は、図6.2.2の ように、一つのシステムを複数のサイトが共

有しています。さらに、どのサイトがどのサーバを利用するかを動的に変

更できるしくみになっています
注10。 これによって、サイトAのアクセス数

写真6.2.l DSASの外観

６

・
２

　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

注 10 rDSAS」 という名前は「動的にサーバ割 り当てを変更できる」という特徴に由来 しています。

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

が急増 しても、一時的にサイ トBのサーバを利用 して乗 り切ることができ

ます。複数のサイトを一つのシステムに収容することで、サーバリソース

を無駄な く利用できるようになっています。

OSSで構築

サーバ構成は図62.3の ようになっています。役割によって「フロントエ

ンドサーバ」と「バックエンドサーバ」に分かれていますが、すべてのサーバ

はLinⅨ (Debian GNU/Linux 4.0)を ベースとしたOSSで構築しています。表

6.2.1はお もに利用しているソフトウェアの一覧です。フロントエンドサー

バと、バックエンドサーバについて、表 6.2.2、 表 6.2.3に まとめておきます。

どこが切れても止まらないネットワーク

図6.2.4はネットワークの物理配線図です。完全冗長化にこだわって、ど

図6.2.1 サイトごとにシステムを構築

|サイトA専用

サイトB専用

L2スイツチ

サイトAのアクセス数が増えたら
サーバを増設する

サーバ
Web

サーバ

L271vf

Web
サーバ サーバ

予備
サーバ

DB
サーバ

DB
サーバ

L2スイツチ

Web
サーバ

メール

サーバ
DB

サーバ
DB
サーバ

予備
サーバ

サイトC専用

DB

サーバ
Web

Web

こが切れても止まらない構成になっています。L2ス イッチはRSTPで 冗長

化し、サーバはBondingド ライバを利用しています。インターネット回線

も2本引き込んでおり、どちらか片方がリンクダウンしても影響のない構

成になっています。

サーバ増設が簡単

マスタサーバ以外のサーバは、すべてネットワークブートしています。

ネットワークブー トの利点は、サーバを増設する際にインストーノンが不要

な点です。買ったばかりでディスクがまっさらなサーバでも、BIOSで ネッ

トワークブートを有効にするだけですぐにOSを起動することができます。

起動時に入力するパラメータによって、Wiebサーバにも、ロードバランサ

にも、DBサーバにもなることができます。

図6.2.2 -つのシステムに複数のサイトを収容

ヽ
、
ヽ
Ｋ
Ｎ
ョ

ホ
、
ヽ
Ｋ
ヽ
ョ

６

・
２
　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

サイトBに :

割り当てたサーバ :

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

図6.2.3 DSASのサーバ構成

LVS

(Active)

LVS
(aackup)

(セカンダリ)
Web Web

(プライマリ)
Web

Web Web Web Web Web

(マスタ)
ヽ

(nctive)
LLS

(lctive)
PS/WS
(Active)

LOG
(Active)

(スレーブ)

DB PS/VVS

(スレーブ)
DB

表6.2.1 おもに利用しているソフトウェア

Apache 2.0系、22系

Tomcat 55系、60系

PHP 44系、52系

MySQL 40系、50系

qmail 103

djbdns 105

daemontool 070

thttpd 2.25b

dhcpd 304

atftpd 07

DRBD 0725

stone 23c

keepa lived 1113

repcached 20

フロントエンドサーバ

TS LLS LOG

名称

表6.2.2 フロントエンドサーパ

説明

Linuxで 構築した回― ドバランサ。エン ドユーザからのリクエス トをWebサーバヘ負
荷分散する。ヘルスチェック機能を拡張したkeepa‖vedを利用し、独自のメンテナン
ススクリプ トを組み込んでいる

動的にサーバ割り当を変更できるようにするには「すべてのサーバの中身が同じである
こと」を保証しなければならない。したがつて、サイ トを更新する際にはマスタサーバ
に対してデプロイし、専用のコマンドで全サーバに展開する運用になつている

エンドユーザにWebサービスを提供するサーバ。すべてのサーバにすべてのサイ トを
デプ回イしており、どのサーバがどのサイ トでも提供できるようになつている。Web
サーバにはApacheを 、APサーバにはTomcatや PHPなどを利用している

表6.2.3 バツクエンドサーバ

説明

DBサーバにはMySQLを 利用している。マスタ1台とスレーブ2台の3台構成を最小構
成としているが、必要に応じてスレーブの台数を増やしていく。マスタが障害で停止
した場合は、スレーブをマスタに切り替えて復旧する

一時的なデータ(キ ャッシュやセッションデータなど)を保管するためのサーバ。
memcachedに レプリケーション機能を追加したrepcached(後 述)というソフ トウェ
アを利用している

永続的なデータ(コ ンテンツデータなど)を保管するためのス トレージサーバ。3章で
紹介したDRBDを 利用して冗長化している。NFSだけでなく、HTTPで もファイルを読
むことができる。BKは Backupサーバで、定期的にPSのパックアップをとつている

内部ロードバランサ。ⅣSと同様にkeepalivedで 構築している。DNSや MySQLの 負荷
分散などに利用している

Apacheロ グなどを集約するサーバ。各Webサーバの回グを集約してマージする。日
グ解析などで利用する。また、52節で紹介したGan9‖ aも動いており、各サーバの稼
働状況を保持している

６

・
２

　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

故障時の復旧が簡単

RSTPで L2ス イッチを冗長化する構成はとくに珍しいものではありませ

んが、図6.2.4で 特徴的な点はインターネット回線がL2ス イッチに直接接

続されている部分でしょう。ロー ドバランサはLinuxマ シンなので、外見

は他のサーバと一緒です。そのため、ロードバランサに直接インターネッ

ト回線を接続しようとすると、2台のサーバ(ロ ードバランサ)に NICを 増

設しなければいけません。すると、故障などでロー ドバランサが止まって

しまった場合、代替機となるマシンにNICを増設してケーブルを差し替え

る必要があります。

この煩わしさを解消するため、インターネット回線をL2ス イッチに収容

し、すべてのサーバの物理配線を一緒にしています (こ の詳細は3.3節 で紹

介しています)。 ロー ドバランサが故障した場合は、代替となるサーバを

1台選定して再起動します。その際、ネットワークブー トの起動パラメー

タでロードバランサとなるように指示をします。この作業はすべてリモー

トから可能なので、データセンターに行かなくても冗長構成に復帰させる

ことができる体制になっています。

DSASは、さまざまな OSSを 組み合わせて構成されています。その中で

システム構成の詳細

L2スイツチ L271v*

ロード

L271'y7 L2スイツチ

サーノ

ロード

ラ`ンサ

インターネット

図6.2.4 物理配線図

も特徴的なところを、いくつかピックアップしながら、工夫した点や苦労

した点などを紹介します。

バを利用する理由

冗長化目的で複数のNICを 利用する場合、それぞれのNICに IPア ドレス

を割り当てることを考えるかもしれませんが、これはなかなか思うように

は動いてくれません。たとえば、あるサーバのethOに 192.168.0■ /24を割り

当て、ethlに は192.168.0.2/24を 割り当てたとします。他のマシンからこれ

らのアドレスにpingを投げると、どちらのアドレスからも正常に応答が返

ってきます。しかし、ethOの LANケーブノンを抜 くと、ethlに LANケーブ

ノンが刺さっていても192.168.0.2と 通信できなくなってしまいます。ARPテ

ーブルを確認すると、どちらのアドレスにもethOの MACア ドレスが割り
当てられていることがわかります。つまり、両方のNICを使っていたつも

りでも、実際は片方のNICと しか通信していなかったわけです。

複数のIPア ドレスを割り当てたサーバのノンーティングテーブルは図6.2.5

のようになっています。このように、同じネットワークに対するエントリ

が複数登録されている場合は、ノンーティングテーブノンの上にあるノンーノンが

利用されるので、192.168.0.0/24宛 のパケットは必ずethOか ら出て行こうと

します。この動作はNICの リンク状態を意識しないので、LANケーブノンが

つながっていない場合でもethOか らパケットを送出しようとします。

e■0宛のノンーティングテーブノンを消すと、cthlを使って他のサーバと通

信できるようになりますが、その際には他のサーバのARPエントリをクリ

アするか、e■ 1か らgratuitous ARPを 送出してMACア ドレスの変更を通知
しなければなりません。つまり、NICを冗長化する場合には、以下の処理

が必要になります。

‐n

tablerouting

６

・
２
　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

図6.2.5 複数NIC利用時の

.0 0.0.
‐192.168.0.0 0.0.0.0

Genmask

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

O NiCの リンク状態をチェックする

・ リンクダウンしたらNICを切り替える

・ gratuitous ARPを送出する

BOndingド ライバは、これらの機能を実装しています。仮想インタフェ

ース(bondOな ど)に登録した物理インタフェース(ethO、 ethlな ど)が リン

クダウンすると、自動的にリンクアップしているNICに切り替えてgratuitous

ARPを送出します。この機能は、L2ス イッチを冗長化したネットワークに

とって大変便利なものです。

DRBDをフェイルオーバする際の注意点

ストレージサーバは、3.2節で紹介したDRBDを 利用して冗長化していま

すが、障害時にフェイノンオーバする場合には注意しなければならない点が

あります。DRBDに は「on-lo― error」 という設定項目があります。これは、ハ

ー ドディスクやレイドコントローラの故障などで物理デバイスヘのアクセ

スがエラーになった場合に、どのような処理をするかを指定するもので、

以下の値を設定できます。

・ pass_on:デ ィスクエラーを上位レイヤ (フ アイルシステム)に通知して動

作し続ける

・ panic:カ ーネルバニックする

・ detach:物理デバイスを切り離して動作をし続ける

デフォノントの設定はdetachで す。筆者は以下の理由によりdetachを選択

しました。

・ ディスクエラーが発生したとたんにバニックするのはいくら何でも極端過

ぎる気がする

・ ディスクエラーが発生した場合はフエイルオーバするのが理想的な動作で

ある

・ pass_onの場合はファイルアクセスに失敗したプロセス以外は異常を検知

できない

・ detachな らば、すぐに異常を検知できるのでスムーズにフェイルオーバで

きると思う

・ detachな らば、OSはそのまま動き続けるので障害の詳細を調査するのが
楽そう

・ デフォル トがdetachなので、そのままでも問題ないに違いない

プライマリでディスクエラーが発生 したときには、

0プライマリはディスクを切り離す(OSは動作し続ける)

0フェイルオーバの処理が実行される

0セカンダリがプライマリに昇格する

という処理を期待していましたが、実際にはこのようにはなりませんでし

た。実際に物理デバイスが故障すると、プライマリはディスクを切り離し

て動き続けますが、セカンダリはカーネノンパニックになって停止してしま

います。このとき、それぞれのサーバのカーネノンログには図6.2.6の 内容が

出力されます。

プライマリがデバイスをdetachす ると、NegDReplyメ ッセージをセカン

ダリに送信します。セカンダリがNegDReplyを 受信すると、カーネノンパニ

ックして停止する実装になっているようです。ソースコードを確認したと

ころ、リスト6.2.1の ようになっていました
注H。

少なくとも、これは開発者が意図したとおりの動作であり、不具合とい

うわけではなさそうです。おそらく「止まってもいいのでデータを確実に保

図6.2.6 デイスク故障時のカーネルログ|

６

・
２

　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

注 11 これはdrbd-0.7.25の ものです。

kernel: d rbdl: .Local 10 falled,

kernel: drbdl: messy,

b roken .

WE ARE

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

護したい」という意図で、このような実装になっているのでしょうが、故障

したサーバが動き続け、健全なサーバが止まってしまってはフェイノンオー

バできません。そのため、On_10_errOrに panicを 指定して故障したサーバが

停止するような運用にしています。

SSLアクセラレ…タ

HTTPSを利用するサイトでは、WiebサーバでSSLを処理するとパフォー

マンスが低下してしよう恐れがあります。図6.2.7の ようにハードウェアア

クセラレータを利用して負荷を軽減させる方法もありますが、DSASで は

stone注
12を SSLの ソフトウェアアクセラレータとして利用しています。

ハードウェアアクセラレータは比較的高価な製品が多いですが、高速に

大量の処理ができるので冗長化した2台で処理をするのが一般的です。他

にはアクセラレータ機能付きのNICや PCIカ ードなど、Webサーバに直接

取り付けてCPUの負荷を軽減させるタイプの製品もあります。しかし、

露日□団団回軍眠■■■轟日■■■瑕輻顆:|.|

STATIC int 9ot_NegRSDReply(drbd_dev.*mdeV:1 0Fbd_Header* h)
r ‐

|■
■||・‐・■ |■ ||‐■|■ .‐ ‐

‐■ . ■ ・
sector t sector;

Drbd_31ockAck_Packet *p = (Drbd_BlockAck_Packet*)h; |

secto r=be6tttCpu(p― >Sector);

D_ASSERT(p‐ >block_ld == lD_SYNCER):

d rbd_rs_complete_lo(ndev,sector)i‐

d rbd_panic(・ 6ot NegRSDReply, WE AR[LOST, We lost .ouF up‐ to‐ date

diSk,ヽ n・):

// THINK do we have other options,

// What about bio end1lo,.in.

but panic?

case we don't panic ??

return TRUE;

,E't2 (El, http://www.gcd.org/sengoku/stoneAVelcomeja.html

StOneを ソフトウェアアクセラレータとして利用する場合は、1台あたりの

処理能力が低いので図6.2.8の ようにして何台も並べて処理を分散します。

HTTPS接続はstoneが処理をし、複合したHTTPリ クエストをロードバ

ランサ経由でWebサーバに渡します。しかし、この構成では接続元 IPア ド
レスがアクセラレータのものになってしまうので、IPア ドレスによってア

クセス制限してる場合に問題となります。そのため、stoneの設定をリスト

6.2.2の ようにして、「x_orig_client:」 とぃぅHTTP拡張ヘッダ
｀
にクライア

ントIPア ドレスを埋め込みます。webサーバは、このヘッダを参照して実

際にどこから接続されたのかを知ることができます。

Webア プリケーションでは、クライアントがHTTPで接続しているのか、
HTTPSで接続しているのかを判別しなければならない場合があります。
Apacheの mod_sslで は、HTTPsで接続されると環境変数(HTTPS=on)が 設定
されます。PHPや Tomcatな どのAPサーバは、この環境変数を参照して判
別しますが、stOneを経由するとすべての接続がHTTPに なってしまうの

で、httpd.confに リス ト6.2.3の ような設定を追加します。

ロードバランサ
(Backup)

SSLハードウェアアクセラレ…タ
(Backup)

クライアント

ロードバランサ
(Active)

SSLハードウェアアクセラレータ
(Active)

Webサ ーバ Webサーバ Webサーバ Webサーバ Webサーバ

図6.2.7 ハードウェアアクセラレータ

６

・
２

　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステム
ヘ

Remote_Addrは 、stoneが 動いているすべてのサーバのアドレスとマッチ

させて HTTPs=Onを セットします。次に、X-0五g― Clientをチェツクし、空の

場合はstone経 由ではないので環境変数をク リアします。これによって、

図6.2.8 ソフトウエアアクセラレータ

□
ヒ
=当

ロードバランサ
(Backup)

ロードバランサ

(Backup)

Webサーバ

クライアント

ロードバランサ
(A`tive)

アクセラレータ アクセラレータアクセラレータ アクセラレータアクセラレータ

ロードバランサ

(Active)

Webサーバwebサーバ Webサ ーバwebサーバ

=二
::=ニ

:..l.;

-z defautt
-z sid_ctx='ssl,example.cOin:443' "
-z CApath=/usr/tocal/etc/sst / certs/
-z cert=/uir/tocal/etc/sst/cert. pem

-z key=/usr/local/etc/s.st/priv. pem

tLs:80/proxy 443/sst riX-0rig-Clignt: \a' -'

stonc経 由で接続された場合にのみHΠPS=onと な ります。

ヘルスチェック機能の拡張

DSASの ロー ドバ ランサはkecpttvedを 利用 していますが、パ ッチ

(keepa‖ ved_extcheck)注
13を
当てて、ヘノンスチェック機能を拡張したもの

を使っています。

このkeepaLved― extcheckを適用すると、以下のヘノンスチェックができる

ようになります。

・ FTP CHECK

・ DNS CHECK
する

O SSL HELLO:

FTPサーバがN00Pコマンドに応答できるかをチェックする

DNSサーバがレスポンスを返すことができるかをチェック

サーバがSSLハンドシェイクに応答できるかをチェックする

keepalivedに は、サポートしていないヘノンスチェックのためにMISC_

CHECKと いう機能があります。これは、外部コマンドを呼び出して、そ

の終了コードからヘノンスチェックの結果を得るものですが、以下のような

問題があります。

・ヘルスチエツクのたびにコマンドを起動するのでオーバーヘッドが大きい

・ コマンドが自分で終了できないようなことがあるとプロセスが増え続ける

DNSと FTPの ヘノンスチェックは、MISC_CHECKを 利用するとリス ト
6.2.4の ような設定でできます。しかし、数秒単位での短い周期でヘノンスチ

ェックをしなければならない場合は、外部コマンドを呼び出すことに抵抗

を感じます。そこで、kecPal市edの本体に手を加え、リスト6.2.5の ように

注 13 keepa‖ ved― extcheckは 、以下で公開しています。

C□D http://lab.klab Org/mOdules/mediaw ki/index.php/s。 貴ware#keepa‖ ved_extcheck

リスト6.2.3

６

。
２

　

Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

設定できるようにしました。これによって、MISC_CHECKに比べて非常

に少ないコス トでヘノンスチェックできるようにな ります。

kepahvedに標準実装されているSSL_GETは 、HTTPSのサイトにアクセ

スしてステータスコー ドを取得するものです。そのため、ヘルスチェックの

たびに暗号化通信をします。また、クライアン ト認証が必要なサイ トや、

HTTPS以 外のプロトコル (SMTPSな ど)に は利用できないという問題があ

ります。

パッチで拡張されたSSL_HELLOは 、SSLハ ンドシェイクを試行 してサー

バが証明書を送ってくるかどうかをチェックします。アプリケーションプ

ロトコノンに依存 していないので、クライアント認証が必要なサイ トや、SSL

アクセラレータ単体のヘノンスチェックにも利用できます。また、暗号化通

信もしないので、サーバに負荷がかからないというメリットもあ ります。

DSASで は、SSL_HELLOで stoneのヘルスチェックをしています。

簡単で安全に運用できるロードバランサ

ロードバランサのメンテナンス作業は「仮想サーバの構築」と「リアノンサー

バの割り当て」がおもな内容になります。この作業の実体は設定ファイル

(kepalivedconOの変更ですが、サイトやサーバの数が多くなると直接編

口

'国

:目■!国l爾理:麗:コI■:回蜃⑮尋籠l醒】饉鯰|:1輻::::|11餞 :|:|||||||||||1111111‐ |:11お |

real_ erver 192.168.1.1 53 {

MISC_CHECK { . ..

misc_path l1/usr/bin/dig +time=001 +t ries=2 o192.168.1,1 locathost,

localdomain‖

m■ sc timeout 5

}

}

real_server 192.168,1,1 21 {

MISC_CHECK {

misc_path t'echo ―en iN00Pヽ rヽ nQUITヽ rヽ n〔 i nC ‐W 5
‐n 192.168.1.1 21 1

egrep 1200 N00P command sucCeSSfull:〕 ‐

m■ sc timeout 5

}

}

集するのが困難な量になります
注14。
そのため、簡単で安全に設定ファイノン

をメンテナンスできるしくみを考える必要があります。

まずは、keepalived.confの 書式を無視して、メンテナンスの際にどのよ

うなインタフェースがあるとよいかを考えます。ロードバランサをメンテ

ナンスする目的は、仮想サーバに割り当てられているリアノンサーバを、増

やしたり、減らしたり、変えたりすることです。適切な割り当て管理をす

るためには、今現在どのサイトにどのリアノンサーバが割り当てられている

かという情報を、直感的に把握できなければいけません。そのために、以

下のような形式のテキストファイノンを作りました。一番左のw101と かw102

というのがリア′レサーバのホス ト名で、SiteAと かSiteBと いうのがサイト

名 (仮想サーバ)になります。このファイノンのことを、KL島 用語で「MATRIX」

と呼んでいます。ちなみに、名前の由来は単純に「形式が行列みたいだか

ら」です。

192.168.1.1

{

リスト6.2.5 拡張機能でD

６

・
２

　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

注 14 現在の DSASの keepa‖ ved.confは 2500行以上あります .

real server 192.168.1.1 53 {

DNS_CHECK {
port 53

timeout 5

retry 3

type A

192.168.1.1

connect port 21

i
connect timeout
ret ry
delay,before_retry 5

}

}

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

w101
w102
w103
w104
w105
w106

SiteA
SiteA SiteC
SiteB SiteC
SiteB SiteC
siteB

シンプルな書式ですが、ここの記述を「サイ ト名 :サーバ サーバ」にす

るのか、「サーバ :サイ ト名 サイ ト名」にするのかは悩みました。「どのサ

イ トにどのサーバが割 り当てられているか」を把握するのであれば、前者の

ほうが直感的でわか りやすいと思います。しかし、実際にMATRIXを編集

する場面 とい うのは、サーバの調子が悪 くなって割 り当てから外 した り、

別のサーバに移動 した りする時です。たとえば、w103の調子が悪 くなっ

て、予備サーバであるw106に切 り替えようとした場合、後者であればw103

とw106の行を入れ替えるだけでよいので、1回のカット&ペース トで済み

ますが、前者だと「w103」 という文字列を「w106」 に置換 しなくてはいけませ

ん。そのため、MATRIXで は「どのサーバがどのサイ トを提供しているか」

を表す後者の書式にしています。

あとは、MATRIXを 参照してkeepalⅣed.confを 生成するようなスクリプ

トを書けばよさそうですが、MATRIXに は仮想サーバに関する情報が含ま

れていないので、これとは別にリス ト626の ような定義ファイルを作 りま

す。これは、仮想サーバの設定に必要なパラメータをYAMLで 記述 したも

のです。DSASで は独自の Perlス クリプトからこの定義ファイノンとMATRIX

を読み込み、Templdc―■oolkitを 使ってkepalived.confを 生成 しています。

リス ト62.7は Templatc― ■ooktの テンプレー トです。

keepdi“ d.confに は割当サーバ台数分の real_serverブ ロックを記述 しな

ければいけませんが、テンプレー トエンジンを使 うことで簡単で安全に生

成できるようになりました。リス ト6.2.8が自動生成されたkepal市edconf

です。

このしくみにより、サーバの割 り当て変更は、MATRIXを 編集して特定

のスクリプ トを実行するだけでよくなりました。膨大なhepdived.confの

中から変更個所を探 し出す必要 も、 どきどきしなが ら手作業で設定を書 き

換える必要もあ りません。

セッションデータの取り扱い

負荷分散環境では、ユーザがページ遷移 した ときに、必ずしも同じサー

バヘ接続するとは限らないので、セッションデータをローカノンファイノンに

保存することができません。そのため、DBや NFSの ような、どのWebサ

ーバからも利用できるリソースに格納する必要がありますが、DBや NFS

はアクセス集中時にボ トノンネックになりやすいため、頻繁に更新されるセ

ッションデータを格納する用途には向かない という問題があります。

セッションデータの取 り扱いに関して、「memcached」「repcached」 の 2つ

を説明します。

memcached

当初、高速なキャッシュサーバの「memcached」 をセッションストレージ

として利用していましたが、memcachedに はレプリケーション機能がない

ため、消えては困るセッションデータ(会員登録や退会中のセッション情報

など)を格納することができません。

また、消えても困らないとはいっても、実際にセッションデータが消え

てしまえば、利用者の方々にはなんらかの影響がでてしまいます。たとえ

ば、いきなリトップページに戻ってしまったり、入力したはずのデータが

PROJECT: SiteA

SERVICE:

‐ 10.0.0,1:80

lc

DR

リスト6.2.6 仮想サーパの定義

６

。
２

　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

蜀

protOcOl:

HEALTH TYPE:

HTTP CET:

c0nnect*p0rt:
connect,timeout i 5

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

消えてしまったりなどです。そのため、memcachedと は別に、RamDiskを

DRBDで冗長化 したNFSサーバを構築 し、パフォーマンスを重視する場合

はmemcached、 安全性を重視する場合はRamDisk、 といった具合にセッシ

ョンス トレージを選択できるようにしてみました。

しかし、セッションス トレージの切 り替えをWebア プリケーション側で

virtual_server_group [% PROJECT %l{

[% FOREACH S=SERVICE ―%]

[% S.replace(1:l,1
。
)%l

[% END ‐%〕

}

real_server :% R %] [% real_port %] {

weight l

■nhibit on fa■ lure

[% SWITCH H[ALT‖ TYPE ―%]

[% CASE :HTTP_GETl ‐%]

HttLGET{
url{
path [% HTTP_6ET,path %]

status_code [t HfiP_GET,status_code t]
}

connect_pOrt

connect timeout

}

CASE ITCP CHECKl ―%l

TCLCHECK{

protocol [%protocol%l

[% FOREACH R=REAL ‐%]

connect_port [%

connect_timeout

}

〔% [ND ‐%l

}

[% END ‐%]

[% HTTP_GET,connect_port %]

[%HWLGET.connect_timeout%l

|| ||…
●
‐

・ |ln.ギ]■
.

.罰:督F.

ま■ ,鮮

回日□□ 目■醒□団回目圏■田■国lは儡 靱 ::「|ヽ

実装するのはいろいろと面倒 ということもあ り、結局はDRBDで 冗長化し

たRamDiskの みを使 うケースが大半を占めていました。しかし、RamDisk

といっても結局はNFSサーバなので、期限切れのセッションデータを消す

ために、定期的にガベージヨレクタのようなものを動かさなければいけな

かったり、アクセス集中時にはボ トノンネックになりやすいという問題が残

lvs_method DR

protocol TCP

reat server 192.168.0.
. lreight l

status_code

l
connect_port
connect_tilneout

)

６

・
２

　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

}

}

}

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

っていました。

memcachedは 、パフォーマンスや利便性の面で大変優れていると思いま

す。レプリケーション機能がないという理由で利用できないのはもったい

ないので、memcachedに レプリケーション機能を追加実装 した repcached

を開発 しました
注15。

repcachedの 動作は図 6.2.9の ようになっており、2台のサーバが一組で双

方向にデータレプリケーションします。 どちらのサーバにデータをセット

しても両方のサーバに格納されます。

図6.2.10の ように、片方が停止したとしてもデータはすべて保持されて

いるので、Webサーバは稼働中のrepcachcdに つなぎ変 えるだけで、何事

もなかったかのように処理を継続することができます。

memcachedの クライアントライブラリには、複数のサーバヘ負荷分散 し

たり、障害時に別のサーバヘ切 り替える機能があるので、rcpcached用 のク

ライアントを新規に実装 しなくても、memcachedの ライブラリをそのまま

利用することができます。

Key2 Key4 Key6

Key2 Key4 Key6

レプリケーション

WebサーバWebサーバ Webサ ーバwebサーバ

図6.2.9 repcachedの 動作

repcaGhed

SET′GETSET/GET

注15 repcaChedは 、以下で公開しています。

(ココロ)http://1ab.klab Or9/mOdules/mediawiki/index.php/Repcached

repcached

repcachedI:]]

DSASの今後

現在のDSASは「ダイナミックにサーバをアサインするシステム」と呼ぶ

には至らない点が数多く残っています。この名前は「状況に応じてサーバの

割り当てを好きなように変更できる」という意図でつけたものですが、その

経緯を知らない方には、もっとすごい印象を与えてしまうようです。たと

えば、 トラフィックや接続数によって自動的にサーバ構成を変更してくれ
るシステムや、サーバが壊れたら自動的に代替機を構築してくれるシステ

ムなどです。

「ダイナミック」という単語は、「動的」と同時に「自動的」という意味にと

らえられることが多いようです。たしかに「ダイナミックノレーティングプロ

トコノン」は自動的に経路情報を書き換えてくれますし、「ダイナミックDNS」

もIPア ドレスを自動的に設定してくれるようなイメージがあります。さら

に、DHCPの頭文字も「ダイナミック」なので、その感覚はよくわかります。

DSASで も、できるだけ期待を裏切らないような、名前負けをしないシス

テムにしていきたいという気持ちを常に持っています。

また、トラフィックの増加によって自動的にサーバを割り当てるという

のはおもしろそうなテーマだと思いますし、サーバが故障したら自動的に

図6.2.10 障害時の挙動

repcaGhed

SETノ GET

Key2 Key4 Key6

Webサーバ Webサーバ Webサーバ Webサ ーバ

６

。
２

　
Ｄ
Ｓ
Ａ
Ｓ
の
な
か
み

章 あのサービスの舞台裏 自律的なインフラヘ、ダイナミックなシステムヘ

他のサーバを再構築して冗長構成に復帰させることもできなくはなさそう

です。こんな話をしていると、しまいにはSFチ ックな話になって収集がつ

かなくなることもありますが、「それはできません」とはいわずに、冗談半

分でもいいので「どうすれば実現できるか」をじっくり考えてみると、そこ

で出たアイデアが別の場面で役に立つこともあります。今後、どのように

成長していくのかは想像できませんが、良い意味で「常に発展途上なシステ

ム」であり続けたいものです。

●

一

，

１

(4.3負

')_

t>/tv=-y*

サンプノンコードの入手については、以下の本書のWeb補足情報コーナー

を参照してください。

CED http://gihyojp/book/support/24svr

Appendix

サンプルコード

#!/usr,/bin/env perl
use strict;
use warnings;

Carp;
6etopt : : Long;
Pod::Usage;
Readonly;

Readonly my$VERS10N=>11.01lI

Readonty my cGLOBAL_BUFFERS => qw(

u,t
,,1

―

甲Readonly my σHREAD_BUFFERS =>

Readonly my @|EAP_LIMIT

Readonly my cINNODB_LOG_FlLE =>

),

=>{

，

”

),

Readonly my oOTHER_VARIABLES => qw(

innodb buf fer pool,size
inriodb 1og fj.les in_group

),

=> qW(

ｒ
．　
　
　

セ

　

　

　

ー

．　

　

　

　

ｉｚ

Ｚｅ

ｆｆ

Ｚｅ

Ｚｅ

ｒ
・
　

　

ｐＯ

ｅ

Ｚｅ

“

ｒ
．

ｒ

．
ｔ

．
ｒ

．
ｒ

辞

　

　

ｆｅ

ｓ

，

Ｆ

歯

ｆｆ

”
ｆｆ

ｆｆ

●
．
　

　

ｂｕ
ｆｅ
ｆｆ

ｆｆ

ｄ
．

ｂｕ

ｍ
・ｂｕ
ｂｕ

ｍ
　

　

ｂ
．
ｕｆ

詢

ｂｕ

ｒｎ

ｔ
．
”
ｄ
．
ｎ
ご

．　

　

“

ｂ
モ

一ｄ
一ｄ
一

Ｗ

呼

ｒｅａ
一μ

ｍ

　

ｉｎｎ
Ｏ

何

瞼

ｒｅａ

サ
ン
プ
ル
コ
ー
ド

oOTHER VARIABLES,

), .

MAIN:

next

$in,mysqld = 0;

$mycnf && !

11

$_′ 2){

if $valle =～ /1KMG〕 $/,

.
‐|_||‐・

~・ ‐‐ .

|・
|・ |・

 .

= gvalue;

t>/tvt-1-'-

my l

for

my Sminlmal_menory

COnneCt10nS};

p rint くくEOHEAD;
I minlmal nem。「y 〕
ref

p rint・ nヽ・ ,

printf it%|‐ 34s

pr■ nt .(ヽ n':;

jo■ n(・ nヽ ・,keysdie "IABoRT1 missing variables:\n "

sub report flinimal-memory {
my $myvar = shift;

%missing), "\n";

BOttleneCk5,p125

$k, $myvar->{$k}, add-unit($myvar->{$k}) ;

gmyvar->{$k}, add_unit ($myvar->{$k}) ;

* max_connecti.ons)

$91obal_uffer_lze:
my Sk (oGLOBAL_BUFFERS)

$global_buffer_size +=

$thread_buffer_5■ 2e:

my $k(oTHREAD_BUFFERS)

Sthread_buffer_size +=

|{

SmyVar‐ >{$k}:

{

$myVar‐ >{$k};

= gglobal-buffer-size + $thread-buffer-size *

my l

for

* rHigh Performance MySOL』
,

EOHEAD

p rint・ global_buffersヽ n・
;

for my $k (oGLOBAL_BUFFERS){
printf(' %‐ 32s%12d %12sヽ n“

}

pr■ nt'ヽ n・
:

prlnt t'thread_buffersヽ n ll:

for my Sk(oTHREAD_BUFFERS){
printf'' ‐ヽ325%12d '6125ヽ n・ ,$k,

}

min_memory_needed

sub

#

printf "

%12dヽ n・ ,'

$mlnlmal_emOry,
add_unit(Sm■ nlmal_memory),

report_heap_limlt{
my SmyVar=sh■ ft;

my $stack_size= 2 * 1024 * 1024, # 2 MB
my sstack_size=256*1024, チ256 KB

($myvar->{sort_buf f er_size}
+ gmyvar->{read_buf f er_size}
+ $|llyvar->{ read_ rnd_butf er_size}

liml

= %lu

printf l' =
$heap_lim■ t_size,

add_unit($heap_1lmi

printf ''

add_unit(
2G>%s

$heap_

sub report_innodb 1og_file
my $lllyvar = shift;

start.htnl

109_filqSizeく 4GB

_size *

.=%lu.(%S)ヽ nヽ n“ ′

printf "t24s < &s ... ts\n,,
add unlt

add unit

safe' ,

prj.nt "\n"

サ
ン
プ
ル
コ
ー
ド

allocate when repair/ check

read buffer +

EOHEAD

= int($myvar->{innodb_buffer_poot_size} / gmyvar->{innodb-

ty/tvt-i^

return $n;

sub add_unit {
my $n = shi.ft;

my $base = 0;
mY $unit = ";
if ($n > 1073741824) {

$base = 1073741824;

$unit ='G';
) elsif ($n > 1048576) {

$base = 1048576;

$unit = 'l'l';
) elsif ($n > 1024) {

#!/us
use
use
use
use Getopt::Long;
use L}lP: iUserAgent;
use oata::Dumper;
$Data::Dumper::Indent = 1;

$Data: :Duoper: :Deepcopy = l;

“

１

１

，

，

my $RC51D = q$Id$;
my gREvISlON = $RCSID =- /,v (t\d.l+)/ ? $1 : "my gPROG = substr($o, rindex($o, '/')+1);

mY $Deblg = 0;
Iny $No Daeflon = 0;
rrry gINTERVAL = $ENV{INTERVAL} ll 60;

sub dprint (@) {
return unless $oebug;

sub to. byte {
my $s - shift;

UZI.,

print
print

my $ua

arugment. '

get $url";

vhost name if you

un1e55

carp
sleep
next;

of $url";

parse status

サ
ン
プ
ル
コ
ー
ド

|||' |■ ■・ ・ |

11,さ I」を ,
thomp‐ en,・

 ‐

prlnt STDERR 'DEBU6: ',

}

v$REVIS10N

#″十二nitょ al■ ze

.II・
=

if gmesg;

.11‐ Xl

０・“″
．

・崚

request per

tz/tv=-1*

#+# gnetric
if ($rps >= e) {

&gmetrlc(
ulnt16`,

¨

―
　
　
・
つ

．
　

鈍

―

卜
　
　
一
２

■

　

●

“
甲

ｒ

解

畔

) = each

'reading requ€st' ,

' sending_ repl!/' ,

'keepalive' ,
'dns_lookup' ,

' closing' ,
'logging' ,

' gracef uIly-finishj.ng',
'idle' ,

'open-slot ' ,

);
my tsc,byname = (

'uaiting'
'startlng'
９
．
ｇ
．ｉｖ

ｏｋ

ず

ず

ｕｌ

ｒｅ

ｓｅ
ｋｅ
ｄｎ
ｄ

ｂ

９ｒ
ｉｄ

=> 'S' ,

+ 'K',
=> 'D' ,

=>'C',

=> '6',
=>

,I,,
'open slot'

);
my e6sc_bychar = reverse %sc-byname;

Iny $score;
if (gcontent '- /"scoreboard:\s*(,+)$/In) {

$score = $1;
l etse {

$score = "";
)
dprint2 "score-$score" ;

lny

map

map

#initiali2e

)

eiit 0;

sub gmetric {
my $nane = shift;
ltly $value = shift;
mY topts = @_;

$opts{'--name'} =
system('glnetric',

)
__EN0__

graph.php

= isset{$

@ -194,6 +199,7 @

@ -205,10 +211,10 @

$。 ptS{'‐‐
-value', $value, %opts);

/tags/3.0.5)
/t runk)

∞

$Vert■cal label=
$eXtras='■ ‐slope‐ mode・ ,

$series = "DEF: '

"DEF:'proc_run'= $i

$series,-"AREA;
if($context !=

)

lseries.=・ LlNE2:Icp● _num'
,="LINE2:'proc_run
.=('LINEl:

$series .="LINE1:'

'load-one'#$1oad 0ne, color:'1-min Load' ';
"host")

$series .= "LINE2:'nulll nodes
gseries .= "LINEI.:'num,nodes

uah.

＞
一
一
８
ヽ
オ
サ
ン
プ
ル
コ
ー
ド

#RFM‐ Def■ ne these

・　
・
＋

＋
　
　
　
　
∞

Processes' ";

t>/tve-y*

+ .`'LINEl::bytes_out 11摯 3men_used_color:10ut' 11,

}

else if ($g raph == ・lpacket_reportit)

{

oo‐ 238,6● 244,6300
, "LItlE2:'bytes_in'#$mem_cached_color:'In"'
. " LIt'lE2 :' bytes-out' #$lllem_used_color :' out "'

)
else if ($graph :'Apache_Proc_r€port')

{
$styte = 'Apache Process Status';
glol{er timj.t ='--lotJer-limit 0 --rlgld';
$extras = '--base 1000';
gvertical_Iabet = "--vertical-label'proc"'i

$Series=
.'`OEF:

.1lDEF:

.('DEF:

.''DEF:

.t'DEF:

.“ DEF:

.“ DEF:

.・ DEF:

.・ DEF:

.“ DEF:

.1'CDEF

' stup' =' g{rrd dlr},/ap_starting, rrd' r' sum' : AVERAGE "

' read' =' ${rrd_dir}/ap_ reading_request, rrd' :' suln' :AVERAGE "
, send, =, g{rrd dir}/ap-sending_ reply, rrd, :, sulrl, :AVERAGE,,

' keep'=' ${rrd,dir}/ap_keepalive. rrd' :' sum' :AVERAGE "

' dnsl'=' g{rrd_di.r}/ap-dns,lookup. rrd' :' sum' :AVERAGE "
, ctos,=, g{rrd dir}/ap-ctosing. rrd, :, sull], :AVERAGE,,
' 1og9'=' g{rrd,dir}/ap logglng..rd' r'sulrr' :AVERAGE "

' gf in' =' ${ rrd dir}/ap gracef utly_f lnishing. rrd' :'sunt' :AVERAGE "
, idle,=, ${rrd_dir}/ap,idle. rrd, :, sum, :AVERAGE,,

' \{alt'=' ${rrd dlr}/ap_waiting, rrd' ;' sum' :AVERAGE "

:total=stup, read,send, keep,dnsl, clos,togg, gfin,idle,vai
t,+,+,+,+,+,+,+,+,+ "

'CPRlNT:total:MIN:''(procヽ : min=%6.21i '` 1
lGPRINT:total:NERAGE:・ avg裁6.21f'11
1CPRIN「 :total:MXl・ max=%6.21f)ヽ n・ '

if ($netricname : 'Apache-Proc_report') {
// metri.c vi.ew
j.f (array-key_exists(' upper-1imit',

gupper_timit = "--upper-linit'
$lny custom metrics[$metricname])) {
$lny_ custom-Inet rics [$met ricname]

upper-1imj.t' I ;
}

,“rie, ・ ''

・想B:ヽ toば ,F田

“

8■ 5TA〔K

.■に,rr"rif周 o田 IIsTκx
rm口 rsmd.■ ,7419`ISI,a
.■■ま |'kαデ

`'OCF∞
:,STA〔 K

・A睡☆r`●,rめ ,関
"i,sI嵐
K

.・IRDr●:oデ■,97C6[I SIκ K
r慇臥メ1"ぽ ,9420∝ ::SIκ (
r慇臥:"firκ ecece=,|■ c(
`鶏〔☆r“ l。

.″9田5F:,¶κK
.・ Rttrmit■ FFoc,:)sTA〔 K

〕elSe{
′′bt,,α
$Ser■ es.='1
.1'AREA:'stup'#FFD660:'Startlng up.lSTACK

“AREA:'sendl#157419:'
1'ARtt r keep'約

OCF00:t
i'AR臥 :'dnsl.#55D603:'
1'AREA:iclos'■797C6E:`
・・AREA:'lo99'#942DOC:'
tAREA:igfin'κ ococo:'

“AREA:'idle'#F9F05F:|
'IAREA:'wait'#FFC3CO

G0 -3,6 +3,U @

$tp1 = new TemplatePolrer(
->assignIfl clude("extra",
run_apache($hostname))

$racks i

+functlon run apache($hostnane)
+{

Index: my-conf.php

---my-conf.php (..
+++ my-conf,php {..
@ -0,0 +1,7 @
r<?php
+$my_ cu stom_net rics = array(

a rray (

＞
辱
８
ヽ
財
サ
ン
プ
ル
コ
ー
ド

+ retuTn (strpos($hostname,'w') === 0) '

+),
+);
+?>

+lv/tvt-y*

Index: get_context.php

―‐―get_context.php● …/tags/3.0.5) {rev■ sion 134)
+++ get_context.php (.../trunk) (revislon 134)

αo-98:フ +98,1000
s,.Jitch ($range)

{
case "hour":

+ case "4hour";
+ case "8hour":

case "day":
+ case "3days":

case "week":
case''month・ :$start=-2419200;break;
case ''yea rl(: $start = ‐31449600, break:

Index: conf.php

$start =
$start.
$start.
$start =

$start =
$start =

‐3600, break;
‐14400, break:
‐28800; break:
‐86400, break;
‐259200, break:
‐604800i break;

―・‐conf.php ●…/tags/3.0.5) (revis■ on 134)
+++ conf.ph, (.../trunk) (revlsion 134)

oo‐ 4,6+4,7 oo
Used to check for updates.# Gmetad-uebf rontend version.

include-once "./version.php" ;

+include_once'./my-conf . php" ;

*

c(o‐ 114,12■ 115,12(X0

#
#Default graph range(hour′ day,week′ month,or year)
#
‐Sdefault_range="hour“ ;

+$default_range = 1'3days'1,

#
Default llletric
#

-$default_metric =
+gdefault metric =

'toad-one";
"load_report";

#
optional summary graphs

Index: header.php

‐‐‐header,php
+++ header,php

oo‐ 237,6+237

#
oc‐ 244,ア +246,1000
#
if

./tags/3.0.5) (revision 134)

./trunk)(revision 134)
8(II

$context netricsl] = $o;
foreach (greports as $r => $foo)

$context_metrics[] = $r;
foreach ($llry-custom_metrics as $c => $foo)

$context metricsll = $c;

(! gphysical) {
$context rangesI l="hour";
$context_ranges []."4hour" ;
$context*ranges I I="8hour' ;
$context_ranges[]="day" ;

$context,ranges []="3days" ;
$context_ranges I l="week" ;
$context_ ranges I l="month" ;

$context_ ranges []-"year" ;

E

/va″lib/nfs …… . .… ………….… …… …….119

403 _58

180、 187、 240
151、 163、 166

149、 162

46、 67

118、 265、 271

151、 281、 305

9、 256、 322

05、 107

92、 92、 107、 306

●■■■D
Active/3attup蒲 :成

‐ ― __ ._輛 .

5ア、59、

auto

BaiancerMember "・ . … . ………61
bash . . … …………___9 Entry . . 309

bzip2
126

138

192

45、 208

一Ｚ

Ｕ
ｍ
Ｘ

∈目□目D
%iOWait ・ . i64、 166、 184

96uSer ……‐ . . …… . .… .■ 63
/et(′initab. … . . . ¨ ̈ . ………273

lA・ ・ . . 315

B8U ‐̈̈… … ………… …………. . ……… ……Ⅲ73
81()S‐ .̈¨ ̈_. .̈ ̈ . . ._ . …279、 291 .
Bondingドライバ…… … … 121、 122、 323、 327
BPDU… ‐……………o . …… . … …………327

GRuB…….… . . _̈280
gzip.… … . … … … ………… .51、 79

□ ■■D
HSRP… … .. … …… . .… ………… … 31

48、 67

48、 63、 65、 97、 98

-+!yr
～プロトコル . ………… ……… …67、 70
～ヘッダ… … …………… … … . …̈63
～リクエスト…… … ……………… .43

httpd 52、 198、 202、 206

httpd.conf . 52、 56、 61、 196、 331

65

□ ■■D
I/o¨………… …………… …………………………… ….146、 149、 188

～性能 _ … 188、 241

～バウンド… 151、 164、 166、 184、 185
～負荷… .. .150、 162、 183

～分散 . .… … 146
～待ち… … ヨ 84、 241、 245、 187

1/0待ち率 .… .… 149、 163、 165

1CMP ‐ Vi:i

～監視_…… … … …8
181

IEEE 801 l D-2004 127、 129

1EEE 802.3ad. 125

ifcOnig. .… … …36
FModined― Sinceヘ ツダ 64
initスクリプト 283
initramfs …… ..277、 280、 282
lnnoDB … 246
innodb-buffer-pool

181

36

IPアドレス .v‖ 、44、 58、 283
～の引き継ぎ ……… . … 6
1PC共有メモリ … 177
1PMI … . .̈ … …283、 292

IRC

kermit… ……………… … … . . 290

kernel__stat構 造体…. … . … 168

key-buffer-size
khttpd. ……………. … … .99

KLab………. . ….… . . …320

20

LDAP … ……" . . . 312
1ighttpd . …Ⅲ . 42、 49、 51、 99、 207、 307、 311

Linux . …… ……… …143、 146、 146、 152、 183、 199

Linuxカーネル… .._ … 4ア、153、 154、 160
30

LinuxThreads 174

Live HTTP Headers 63

65 … …Ⅲ…………………… … 26、 28
L7スイツチぃ . Ⅲ …… ………… 26、 30、 43、 47
LAN………………… … …… . . 10、 42

38

～スレッド 76、 83 Linux Layer7 Switching

152

is

□■■■D
MACアドレス….… ..

61

153

79

42.59、 60、 259、 306
172、 173

10、 128、 136、 283、 318

ithreads 194

memtest
mgetty…… … … 292
M‖監視 ……… . … …… 122、 125
minicOm …………… . .290
MISC_CHECK… …… Ⅲ … … …22、 107、 333
nlod alias _ _… ……… …. _ 56

mOd_dOsdaector 51、 307
n、 Od_|。 9_spread…… 296

rnod_per「 . Ⅲ… …. . 45、 193、 194、 198、 203

mod_php… …. . … . … 45、 193、 203

45.70 mod_proxy 56、 208、 307

59、 61、 193、 307
56

56、 59、 208

n,。d_setenvifl_.… …Ⅲ…… ……__ …………… . . 59

mOd_ssl……… ……….I"_.…. … … 51、 321

,8,

iptables 91、 257、 259

IPVS 19、 21、 42、 107、 305

D
JavaScript 67

“

■■■D
. _ Keep― Alive_ 48、 49、 55、 69、 206、 244

keepalived 21、 22、 24、 31、 35、 36、 39、 61、

89、 105、 107、 115、 116、 270、 306

keepalived.conf 334

keepalived‐ extcheck 333

mOd status… ⅢI…Ⅲ… ……. 244

Monitorix …………………. 241

MPM … .… ……二……… . 171、 192、 197

myてnf. _ . 77、 80、 91
MySQL . 74、 91、 171、 185、 209、 236t

246、 258、 303.

mySqld . …72、 173、 174

mysqldump

218、 221、 230、 314

ix、 73、 109、 281、 317

221、 256

57、 58、 61

～構成 .28

NetMRG

0■■■D
OCFS― … . .… ……… … …111ヽ 311
0n― io―error ̈_¨ ………… …. . .¨ ……328
ONU
oprofile
C'reon. . ._. .¨ .…―‐。centreon
OS_. . …… …………… … . …146、 291
0SI参照モデル… …………… vili
OSS…… … . . …… .… 19、 322

□ ■■D
Pentium MMX .… …. _… .…3

45、 70、

171、 193、 194、

ServerLlmit. …54、 197、 198、 203

1、 312

Perl . _. . . …_45、 70、 194、 200、 208

63、 164、 179、 187、 191

11

20

、236、 242

182、 184、 185

180
149 -Ⅵ′.. _ . …. __ … 186

S‖ 0ヽハ′MASTER tOCSI:_… …… 81
STATじ S.… . . __ …._ . 81

一Ｚ
Ｏ
ｍ
Ｘ

steal_¨¨̈…………………………………… ………. . …. ……………181

■one… . …… …………………………………………330
STP

svscan¨ . . . … … …………………… .266

svscanboot… ……… … 266、 273

SYSLINUX… ……… . .. … …280
syslo9 . … … …… . . 262、 271、 296
syslo9-ng… …………… …….284、 298

sysstat ……… 163、 179

system. ……… ……………181

□ ■■D
tagn、 a::………Ⅲ………̈¨̈̈ …̈…………̈̈…………………………………262

tar

TASK_lNTERRUPTIBLE_ .… ……155、 156、 158、 160

■ASK_RUNNIN(:¨ :̈155、 156、 158、 160、 162、 178

TASK ST10'PED_¨ …̈………………………………………………155

task_struct構 造体 154

TASK UNINTERRUPT13LE 155、 156、
158、 162、 179

TASK ZIC)MBIE. …155

vII:

～コネクション…… … 219
TCP_CHECK _. . . . 22
tcpdump 89

Template―Toolkit. . …336

TFTP . . 279、 280、 285

ThFadLimit ..54、 204
ThreadsPerChild 53、 54、 204

TLB

Tomcat 246、 331

top¨ …̈…… …… xi、 148、 149、 152、 160、 162、 187
trap 118

36-127 vrrp*sync*group
175

269
価■■■D
WAN…………………………………………………………̈̈ …………42、 132
Web+DBアプリケーション. . … .147
Web管理画面 (Nagios) ….227
Webサーバ 23、 98、 99、 190

Webブラウザ…………… 63
〃ヽindow.. … … ………………………………… …152

、へ′orker_ 52、 171、 193、 194、 203、 307
VVrite Cache… ………… ………… . . . 73

,0

79 □ ■■D
x86. _ _ 165、 278

Xen 181、 316

□ ■■D‐
Yahoo:SIu.rp.… … . . _ . … . . 44

12

,90

279 イベントモデル……………………………49

宛先 NAT 29

51

安定性 .… .… ._… …… … . 306
依存関係 .… … ………… … .257
イベントドリブン .. .171、 192、 207

イベント待ち . 156、 178

インテリジェント .. 131
運用効率の向上 … . 311
オープンソー ―→OSS
オブジェクト…… ……… .68、 70、 71
親プロセス…………… ." . 199
オンメモリファイルシステム… .. . 318

a日■■D
アイドル状態…………… ..

●日■■D
カーネル…1…………………………

70

thttpd. …… …………98、 99 アベイラピリテイ… ……, … . … … … v‖ i

195 ,アリレ
=lり
:ズム …̈… .. 150、 188

UltraMonkey‐ L7 30

VLAN
～ID

149、 162

URL . _ .… …… 43、 44、 45、 47、 57、 67

USB―シリアル変換コネクタ .. .289
user . . _ 181
User‐Agent " . _… …… .………44、 58

143

VIP .. vili、 6、 13、 36、 92、 219、 259
virtual_ipaddress. ._ . . 89
virtual router id … .39、 89

146、 153、 160、 164、 168

科学計算 ..¨ 151
カスケード接続… …. … …125

63、 67

15、 316

… .… ……… …. ___... .132、 135、 288

～タグ._ .138、 142
198

vmstat 150、 185、 186、 191

VRID _ . … 89
VRRP_. . .31、 38、 88、 105、 306

186、 198、 200

キヤツシユ . … . … 63、 65、 6ア、70、 68、 146、 |

150、 182、 184.
‐～サーバ . _ 44、 58、 63、 65、 210、 3051

～ツール 221

機械語命令 .… …153

監視 . .265
～サーバ ..305
～対象 .223

'エリ.

キーキャッシ

キックスタート

ぺ_ジ

ヨールドスタンバイ =,ァ
ηウ々ション数 ._,_
三藝■芽ジヴ身卜 200、 195、 199、 202.
子プロセス … …. _ ……199■

～の起動順序 .. _272

システムモード. .… …

.ステ

154
172

X
58

63、 68、

ストレージサーバ … … 93、 1

ストレージプロトコル .
スナップショット 79、 80
スループット...‖ x、 50、 149、 150、 185、 186
スレーブ_… … .74、 76、 80、 83、 86、 88、 310

150、 165、 177、 182、 186

186

296

x、 2、 12、 102、 118、 218

31

25

71

19

167

192、 207
74

86

ix

コンソールリダイレクション…._ ̈… … …291 .ステ=トレス
コマンド

コンテキストスイッチ.… … ………… 195、 196
コンテンツ .… . .¨ . .vlli
コンテンツハンドラ……… … 57

C日■■D
サーバ……………………… … ...… …222
～管理 ……… . .. …248、 3141.
～増設 . … _… … …………3231
～能力 .… …… ………… 316 1
～ファーム…… ..…… .vm、 102、 104、 131■
.～リソース … … .… … 147、 152、 240 ‐
～を切り分ける…… Ⅲ ……….■_… 46.||
サービス……………………218、 240、 224、 230● 256●

“70

09
97

186

il、 45、 46、 47、 51

“
・

一Ｚ

Ｏ
ｍ
×

a□■■D
代替機…… ..… … …… ………………133、 281
代替ポート. … 128、 130
ダイナミックVLAN 136
タイマ割り込み… .159、 160、 162、 167、 169
タグVLAN 138、 142

タスク ̈. .… … …152、 153、 154
単一故障点 …… … … ix、 94

単一ホスト .… .… … …… … .._146
握 証 :美 出

～ポート… ……… .……………………… …129
～サーバ……… ……Ⅲ…. . .325
パツクグラウンド .267
パッケージ管理 312
パツチサーバ…………… ………… … … …… …305
ノヽッファ . . ̈ . … 48、 182、 212
パッフアリング… .. 43、 48
は
‐
でな… …… …………… . . 46、 208、 304

はてなグラフ..… … … … … ……………234
はてなダイアリー

はてなブックマーク 60、 304

～チューニング

ファイルの変更管理 .285
ファシリテイ ………………… . 297
ブートローダ ………_….… …… x、 278、 291
フェイルオーバ_. … …x、 6、 31、 60、 61、 115、

フェイルバック

118、 119、 328
_ x、 60

フォアグラウンド………… ………. 267
負i,テ … Ⅲ Ⅲ…… … xi、 96、 146、 158、 188
二種類の～……………. … … 151

負荷分散 ..…ぃ.…… …v“、11、 25、 29、 146
～機 … ..… … ……ロードバランサ
を引日 . 326
物理メモリ … … … … 175、 182、 198、 200
浮動的に………………… … …″ . .v"i
プライオリテイ… … … … …. .34
～値 128

フラッピング…………………… .…… .223
プリエンプテイブモード…… …… ._34
ブリッジ 127

35

15

抽象レイヤ
チューニング. 188、 190、 197、 209、 313
通知 … .231

ディスク1/O x、 146、 185
ディスクレス 283、 178

データコピー. …… …74
データセンター .:x、 131、 286、 305
テーブルスペース .246
デーモン…… lx、 265、 272
デバイスバツフア _ .■ 57
デプロイ _ _93、 313、 314、 318

デュアルコア .. … 166

デュアルマスタ... .… . … 258
電源効率

テンプレート . .223、 224、 257
動作ログ … … … … …… … .… .262

53

176 パフオーマンス

ヒープサイズ 15

～先
''6
ヒープメモリ… …… …246
ビジーループ………… …… ……… . .178～先グループ

74

178

～サーバ .… … 317 ファイルサーバ … .281、 305、 311

動的コンテンツ ………… …………………vil、 v‖ i、 45、 57

動的なドキュメン 67

46

お動的リクエスト

独自プラグイン .221、 234、 236、 235
トラフイツク. … 310
トレース 149

"■
D

内部ロードバランサ

入出力……… … .→ 1/0

～処理 … …… ……………… …… … … x
ネットワーク1/0 _ …… x

ネットワークトラフイツク 240
ネットワークブート x、 134、 277、 282、 317、 323
ノード .… 250、 254

～!D . … .… 128
87、 92 x、 135

x、 136プロードキャスト………………… ……… ..
～ストーム
～ドメイン

127
135

ネットワークセグメント x プロキシ
～サーノ

17

パーティショニング 10

ハードウエアアクセラレータ _330

プログラムカウンタ.… … 153
プロセス … .45、 49、 52、 53、 153、

. . 154、
171、 193、 196

～lD ………………… … .173、 201
～アカウンティング…………… …… ■67、 169
.～監視 ……………… ……………… .._265

153、 154

154、 155、 167

バイナリフアイ 153

バイナリログ…… .… … …… …76、 81
バケット .… … .… …………… … … .x

128

パターンマッチ 57

バックアツプ.. … … … ″3、 119
154

146、 153、 160

～サーバ(DR3D) 113 157、 179

ブロッキング

～される

プロファイリング.… . .… … …………149
フロントエンドサーバ … ………… 325
分割| … . … … . ……. .. 86、 92、 210

63、 170、 181

160、 161、 162、 16ア、181

一Ｚ
ｇ
ｍ
×

～キヤッシュサーノヾ… ……… ̈ .̈… . ̈ . ……… … . . 18、 89
並行処理…… … … … … … .¨ … ……
ページ… ………… … .… ………….

183、 185、 186

ヘルスチェック
ポート

マルチマスタ

55、 253、 254
46、 194

43、 47、 50、 52、

53、66、 68、 307

～トラッキング

ボジション情報

13ア、140、

95、 147、

..マ
スタ
～サーバ(DR3D)
～スレーブ
～ファイル

待ちタスク・・ ……… Ⅲ .… ……■15]
マニフェスト… .. ^ _249、 2571
マルチCPU ・‐ ‐ … … …165
マルチキヤスト . _… …… 136、 242
～アドレ

～監視 .._8

マルチコア. … .165、 166、 167

マルチプロセス .. 52、 171、 193、 194、 207

i:、 8

1:、 8
ス 33 ～7… ……………Ⅲ . _ viil、 8

マルチ 74
マルチスレッド .52、 171、 174、 193、 194、 207 ～用ユニザ

レゾルバライブラ1九 _ … …… 102
レプリケーシヨン … … .74、 77、 80、 81、 86、 236

78

152、 175

回―テート…………… 300
回―ドアベレージ .._ xl、 149、 162、 158、 165、

74、 309

'I 74. 181 , 240
!-l.r/\r>1i,.................vii. viii, xi. I 7, 18. 22. 31.

. 42、
37、 88、 219、 281、 312、 334

295、 299、 300

無限ルー

メールサーノ

メール送信 .231
メモ1ム … 199、 213
～空間 171、 199、 203

～デバイス …… .110、 187、 311.|

●カバー・本文デザイン

西岡裕二 (志岐デザイン事務所)

●レイアウト

高瀬 美恵子 (技術評論社)

●本文図版

和田敦史 (トップスタジオ)

……スケーラビリティ、ハイパフォーマンス、省力運用

WEB+Dl暫
湯
SS p:usシ
Y―
ズ

[24時間365日]ささ ぎじゅっ
サーバノインフラを支える技術

2008年: 9月 1日
2009年 3月 10日

著 者

発行者

発行所

第 1刷発行

第5刷発行

帯議置也、解克鴇色、出竿模当、
ひろせまさあき、安井 真伸、横川和哉

片岡巌

株式会社技術評論社

東京都新宿区市谷左内町21-13

電話 03‐3513‐6150 販売促進部
03-3513‐ 6175 葬唯1言志編

`茉

1吉「

図書印刷株式会社

版

版

初

初

。本書の内容以外の

あらか

印刷/製本

定価はカバーに表示してあります。

本書の一部または全部を著作権法の定める範囲を超え、無断

で複写、複製、転載、あるいはファイルに落とすことを禁じます .

◎2008伊藤直也、勝見祐己、田中慎司、
ひろせまさあき、安井真伸、横川和哉

造本には細心の注意を払つておりますが、万一、乱丁 (ページの乱

れ)や落丁 (ページの抜け)がございましたら、小社販売促進部ま

でお送りください。送料小社負担にてお取り替えいたします。

ISBN 978-4-7741-3566-3 C3055
Printed in Japan

東京都新宿区市谷左内町21■3
‐
株式会社技術評論社
‐ |サーバ/インフラを支える技術襲係

003-3513-6173
●口Dh“p:〃gihyojノ

. .(技 術評論社Wcbサ イト)

|ご質問の際に記載いただいた個人情報は回

答以外の目的に使用することはありません。

1使用後は速やかに個人情報を廃棄します。

lSBN978-4-7741‐ 3566-3
C3055¥2780E

定価 (本体2780円 +税)
]M卜code 42202■

||‖ ||||‖ ||||||‖‖|||‖‖|||
9784774135663

|‖ |||||||||||||||||||||||||||

1923055027800

本書には、例はてなとKLabいのサーバ /イ ンフラエンジニア陣総勢6名が書いた、

絵空事ではない、実稼働中のシステムにまつわる実践的な情報が詰まっています。

実践的とはいっても、ハウツー本ではありません。手取り足取りのインストーノン手順

の説明はありませんし、本に書いてあるとおうにコマンドを実行すれば何かができる

というわけでもありません。・… で̈はイ可が書かれているのか?

システムというのは系です。系というのは個々の要素が関係しあって構成されるもの

です。本書で重視した点はここにあり、個々の要素技術の詳説をしつつ、これらをど

のように関連付け、組み合わせ、つなげたかを明らかにするところに力を注ぎました。

つまり、本書に記されていることは、実際の現場において、我々がどのように考え、

悩み、工夫してきたか、その軌跡と成果です。

読者の方々が次にサーバ /イ ンフラの設計・構築。運用をするときに本書が役立つ

といいな、そんな思いをこめて本書を執筆しました。(「本書について」より)

