

はじめに

　近年、システム開発・運用の現場には、Dockerをはじめとするコンテナ技術
が急速に取り入れられています。その理由は、システムを動かすための環境整
備が、とても簡素化されるからです。
　コンテナとは、端的に言うと、アプリケーションの実行に必要なプログラムやライ
ブラリ、各種設定ファイルなどをワンパッケージにし、隔離して実行するための仕
組みです。ワンパッケージにされたコンテナは、いつでもどこでも簡単な操作で実
行できます。
　コンテナのメリットは、それをコピーして別のコンピュータで動かすのが容易なこと
です。システム開発・運用の現場では、「開発者が作ったプログラム一式を検証
機にコピーする」「検証機で動作確認して問題なければ本番機にコピーする」「冗
長性や負荷分散のために、同じ構成のものコピーして多数台用意する」というよ
うに、そのコピーを作りたいことが、よくあります。コンテナ技術を使えば操作が容
易になり、コピーや設定漏れを防げます。またシステムのアップデートも、コンテナを
差し替えるだけで済むようになります。
　本書は、コンテナの代表的な技術であるDockerについて、基礎から運用まで
を網羅した書です。Dockerを使う場合、次の3つのパターンがあります。

1.　誰かが作ったコンテナを使う
2.　自分でコンテナを作る
3.　コンテナを運用する

　何をしたいかによって、知らなければならない範囲が異なります。Dockerを習
得するには、自分の立場と目的を理解することが大事です。本書は広範囲に
網羅していますが、すべてが必要なわけではありません。特に開発者なら、上記
「1.」の前半を習得するだけでも、相当、役立つはずです。
　Dockerは、すべてを理解しないと使えないツールではありません。さすがに運
用は、システム停止やセキュリティ、データ消失などのリスクがあるからともかくとし
て、もしあなたが開発者なら、ちょっと触って理解して、さっさとDockerを取り入
れるべきです。Dockerの導入は、開発環境の構築に伴う、さまざまな面倒を大
きく改善します。その典型的な例が、3章で説明している「5分でWebサーバーを
起動する」といった類いです。
　本書は多数の実際の手順を記述し、手を動かしながら体験できる構成にし
ています。是非、皆さん、Dockerの便利さを体験してください。本書が少しで
も、開発・運用のお役に立てれば幸いです。

著者を代表して
2020年5月　大澤文孝

目次

第１章　コンテナの仕組みと利点

1-1　隔離された実行環境を提供する
1-1-1　複数のシステムが同居するときの問題

1-1-2　環境の隔離で解決するコンテナ

1-1-3　コンテナにはポータビリティ性がある

1-2　Dockerを構成する要素
1-2-1　Dockerコンテナを実行するためのDocker Engine

1-2-2　DockerコンテナとDockerイメージ

1-2-3　カスタムのDockerイメージを作る

1-2-4　クライアント環境のDocker

1-2-5　Dockerを構成する要素のまとめ

1-3　Dockerの利点と活用例
1-3-1　Dockerの利点

1-3-2　Dockerの欠点

1-3-3　Dockerの活用例

1-4　Dockerの本格運用
1-4-1　堅牢なDockerホストを検討する

1-4-2　クラスターを構成するKubernetes

1-4-3　コンテナの作り方は変わらない

1-5　本書の構成

第２章　Dockerを利用できるサーバーを作る

2-1　Dockerを使うための構成
2-1-1　DockerをサポートするLinux

2-1-2　ディストリビューション付属のパッケージとDocker提供のパッケージ

2-2　AWS上でEC2を使ったDocker環境を用意する
2-2-1　Amazon EC2にLinux環境を用意する

2-2-2　EC2をSSHで操作する

2-2-3　EC2とファイアウォール

2-2-4　Dockerが使えるEC2インスタンスを作るまでの流れ

2-3　EC2インスタンスを起動する
2-4　EC2インスタンスにSSH接続する

2-4-1　IPアドレスの確認

2-4-2　SSHで接続する

2-5　Docker Engineをインストールする
2-5-1　Docker Engineインストールの手順

2-5-2　UbuntuにDocker Engineをインストールする

2-5-3　Dockerの確認

第３章　5分でWebサーバーを起動する

3-1　DockerでWebサーバーを作る
3-1-1　Docker操作の基本的な流れ

3-2　Dockerイメージを探す
3-3　Dockerコンテナを起動する

3-3-1　docker runで起動する

3-3-2　実行状態の確認

3-3-3　ブラウザで確認する

3-4　index.htmlを作る
3-5　コンテナの停止と再開

3-5-1　コンテナの停止

3-5-2　コンテナの再開

3-6　ログの確認
3-7　コンテナの破棄
3-8　イメージの破棄
3-9　コンテナ操作のまとめ

第４章　Dockerの基本操作

4-1　Dockerの基本コマンド
4-2　コンテナ起動から終了までの流れ

4-2-1　Dockerイメージの取得

4-2-2　Dockerコンテナの作成

4-2-3　Dockerコンテナの開始と停止

4-2-4　pull、create、runをまとめて実行するdocker run

4-3　デタッチとアタッチ
4-3-1　-ditオプションの指定をせずに実行する

4-3-2　-ditオプションの役割

4-3-3　デタッチとアタッチの切り替え

4-3-4　「-iオプション」と「-tオプション」の意味

4-4　コンテナをメンテナンスする
4-4-1　シェルで操作する

4-4-2　停止中のコンテナでシェルを実行する

4-4-3　実行中のコンテナでシェルを実行する

4-4-4　docker runとdocker execとの違い

4-5　1回限り動かすコンテナの使い方
4-5-1　Go言語をコンパイルする

4-5-2　コンテナがたくさん作られないように注意する

4-6　Dockerのまとめ

第５章　コンテナ内のファイルと永続化

5-1　コンテナとファイルの独立性
5-1-1　2つのhttpdコンテナを起動する

5-1-2　コンテナの中にファイルをコピーする

5-1-3　コンテナを破棄して作り直すとファイルが失われる

5-2　データを独立させる

5-2-1　マウントすれば失われない

5-2-2　データを分ければコンテナのアップデートがしやすくなる

5-2-3　コンテナ間のデータ共有にも利用できる

5-2-4　設定ファイルの受け渡しや作業フォルダを受け渡す

5-3　バインドマウントとボリュームマウント
5-3-1　ボリュームマウント

5-3-2　バインドマウントとボリュームマウントの使い分け

5-3-3　MySQLコンテナを使った例

5-3-4　ボリュームを作成する

5-3-5　ボリュームマウントしたコンテナを作成する

5-3-6　データベースに書き込んだ内容が破棄されないことを確認する

5-3-7　mountオプションを使ったマウントの設定

5-4　データのバックアップ
5-4-1　ボリュームの場所

5-4-2　ボリュームバックアップの考え方

5-4-3　ボリュームをバックアップする

5-4-4　ボリュームをリストアする

5-4-5　コンテナのマウント指定を引き継ぐ

5-5　まとめ

第６章　コンテナのネットワーク

6-1　3つのネットワーク

6-2　bridgeネットワーク
6-2-1　コンテナに割り当てられるIPアドレスを確認する

6-2-2　bridgeネットワークの正体

6-2-3　Dockerホスト同士の通信

6-3　ネットワークを新規に作成して通信を分ける
6-3-1　Dockerネットワーク

6-3-2　Dockerネットワークを作る

6-3-3　Dockerネットワークにコンテナを作る

6-3-4　名前を使った通信ができることを確認する

6-3-5　Docketネットワークの削除

6-4　hostネットワークとnoneネットワーク
6-4-1　hostネットワーク

6-4-2　noneネットワーク

6-5　まとめ

第７章　複数コンテナをまとめて起動するDocker

Compose

7-1　2つのコンテナが通信するWordPressの例
7-1-1　（1）Dockerネットワークを作成する

7-1-2　（2）ボリュームを作成する

7-1-3　（3）MySQLコンテナを起動する

7-1-4　（4）WordPressコンテナを起動する

7-1-5　動作確認と初期設定

7-1-6　後始末

7-2　Docker Compose
7-2-1　Docker Composeの仕組み

7-2-2　Docker Composeが解決するもの

7-2-3　Docker Composeのインストール

7-3　Docker Composeを使った例
7-3-1　作業用ディレクトリとdocker-compose.ymlの準備

7-3-2　Docker Composeの操作

7-3-3　docker-composeで何が起きたのかを確認する

7-3-4　コンテナの停止と破棄

7-3-5　docker-compose.ymlの書き方

7-3-6　サービスを個別に操作する

7-4　まとめ

第８章　イメージを自作する

8-1　カスタムなイメージを作る
8-1-1　カスタムなイメージの利点

8-1-2　開発現場での使われ方

8-2　カスタムなイメージの作り方と仕組み
8-2-1　コンテナからの作成とDockerfileからの作成

8-2-2　ベースとなるイメージ

8-2-3　差分を重ねるレイヤー

8-2-4　流儀に従って作る

8-3　コンテナからイメージを作る
8-3-1　コンテンツ入りのhttpdコンテナを作る

8-3-2　コンテナにコンテンツをコピーする

8-3-3　コンテナをイメージ化する

8-3-4　カスタムなイメージを使う

8-4　Dockerfileからイメージを作る
8-4-1　必要なファイルをコピーするだけのコンテナの例

8-4-2　Dockerfileの書式

8-4-3　指定できる命令

8-4-4　ファイルコピー

8-4-5　コマンドの実行

8-4-6　公開するポート番号やボリュームの指定

8-4-7　既存のイメージのDockerfileに学ぶ

8-4-8　コマンドの実行やパッケージインストールを伴う例

8-4-9　Dockerfileとキャッシュ

8-5　イメージの保存と読み込み
8-5-1　docker saveでイメージからファイル化する

8-6　Docker Hubに登録する
8-6-1　Docker Hubのアカウントを作成する

8-6-2　リポジトリを作る

8-6-3　Dockerイメージ名を調整する

8-6-4　リポジトリに登録する

8-6-5　リポジトリに登録したイメージを使う

8-7　プライベートなレジストリを使う
8-7-1　Amazon ECRを使う流れ

8-7-2　IAMユーザーを作る

8-7-3　Amazon ECRでリポジトリを作る

8-7-4　awsコマンド周りを整備する

8-7-5　プライベートなリポジトリに登録する

8-7-6　プライベートなリポジトリに登録したイメージを使う

8-8　まとめ

第９章　Kubernetesを用いたコンテナ運用

9-1　コンテナの本番運用のポイント
9-1-1　冗長性とスケーラビリティのためのロードバランサー

9-1-2　全体を統括するオーケストレーションツール

9-1-3　プログラムとデータの分離

9-2　コンテナのオーケストレーションツール「Kubernetes」
9-2-1　Kubernetesとは

9-2-2　Kubernetesの構成

9-2-3　Kubernetesの運用はクラウドに任せる

9-2-4　勉強に最適なMinikube

9-2-5　Kubernetesを学ぶに当たって

9-3　Kubernetesオブジェクトと望ましい状態

9-3-1　Kubernetesオブジェクト

9-3-2　望ましい状態に合うように調整される

9-4　代表的なKubernetesオブジェクト
9-4-1　Podオブジェクト

9-4-2　Serviceオブジェクト

9-4-3　ラベルとセレクターによるオブジェクトの選択

9-4-4　Serviceの外部への公開

9-4-5　ServiceとPodのまとめ

9-4-6　Podのデプロイ

9-4-7　ネームスペース

9-5　Minikube環境を準備する
9-5-1　Minikubeの実行に必要なスペック

9-5-2　EC2インスタンスを2CPU構成に変更する

9-5-3　Minikubeをインストールする

9-5-4　Minikubeを起動してKubernetesクラスターを構成する

9-5-5　Minikubeに接続するための設定を自分の所有にする

9-6　kubectlコマンドを使った操作の基本
9-6-1　kubectlコマンドをインストールする

9-6-2　kubectlの主なコマンド

9-6-3　マニフェスト

9-7　Podを作る簡単な例
9-7-1　プライベートなリポジトリを参照できるようSecretオブジェクトを作る

9-7-2　Podのマニフェストファイルを用意する

9-7-3　Pod操作の基本

9-8　Deploymentオブジェクトを使って複数Podをまとめて作る
9-8-1　Deploymentのマニフェストファイルを用意する

9-8-2　複数のPodをまとめて作成する

9-9　Serviceオブジェクトを使って外部からアクセスできるようにする
9-9-1　Serviceのマニフェストファイルを用意する

9-9-2　Serviceを作ってインターネットからアクセスする

9-10　バージョンアップとロールバック
9-10-1　実験の内容

9-10-2　イメージを更新する

9-10-3　Podを更新する

9-10-4　ロールバックする

9-11　データの永続化
9-11-1　実験の内容

9-11-2　PersistentVolumeとPersistentVolumeClaim

9-11-3　イメージを更新する

9-11-4　PersistentVolumeとPersistentVolumeClaimを作るマニフェスト

9-11-5　PersistentVolumeとPersistentVolumeClaimを作る

9-11-6　PersistentVolumeをマウントするためのマニフェスト

9-11-7　PersistentVolumeに共有データを保存する

9-12　Job
9-12-1　実験の内容

9-12-2　Jobのマニフェストを作る

9-12-3　Jobを実行する

9-13　StatefulSetを用いた負荷分散とセッション情報の管理

9-13-1　実験の内容

9-13-2　イメージを更新する

9-13-3　StatefulSetオブジェクトやServiceオブジェクトのマニフェストを作る

9-13-4　StatefulSetオブジェクトを試す

9-14　Amazon EKSで本物のKubernetesを体験する
9-14-1　Amazon EKSとは

9-14-2　EKSを使うときの流れとその準備

9-14-3　Kubernetesクラスターを作る

9-14-4　kubectlで操作できることを確認する

9-14-5　利用するDockerイメージをAmazon ECRに登録する

9-14-6　kubectlコマンドを使ってServiceやPodを作る

9-14-7　EKSの後始末

9-15　まとめ

［注］　本書は執筆時点の情報に基づいており、お読みになったときには変わっている可能性がありま
す。最新情報をご確認ください。また、本書を発行するにあたって、内容に誤りのないようできる限りの注意
を払いましたが、本書の内容を適用した結果生じたこと、また、適用できなかった結果について、著者、出
版社とも一切の責任を負いませんのでご了承ください。

ファイルダウンロード

本書に記載しているコマンドなどをコピー・アンド・ペーストして利用できるように、ファイルを用意しまし
た。次のURLをご参照ください。

https://nkbp.jp/ncdocker

　コンテナは、隔離した環境でプログラム一式を実行でき
る仕組みです。仮想サーバー技術と比べてパフォーマンス
がよいことから、近年、注目を集めています。では、コンテ
ナを使うと、何がうれしいのでしょうか。この章では、コンテ
ナの特徴、そして、最も使われるコンテナ技術である
「Docker」の構成、利点、主な用途を説明します。

1-1　隔離された実行環境を提供する

　コンテナについて語るとき、「仮想サーバー技術がどうこう」という話から始まるこ
とが多いのですが、そうしたことは忘れてください。コンテナは、もっとシンプルで簡
単な技術です。ひと言で表現すると、コンテナとは「互いに影響しない隔離された
実行環境を提供する技術」にすぎません。

1-1-1　複数のシステムが同居するときの問題
　1台のサーバーで複数のシステム（プログラムやアプリケーション）を実行させる
ことはよくありますが、このとき、互いに影響し合って調整が必要となる場面があ
ります。

memo　ここでは便宜的にサーバーについて説明していますが、サーバーに限った話ではなく、クライア

ントPCでも同じです。

ディレクトリの競合
　すぐに思いつくのが、インストールディレクトリの重複です。例えば、あるシステム
Aを「/usr/share/myapp」というディレクトリにインストールしたとき、別のシステム
Bも同じ「/usr/share/myapp」ディレクトリにインストールすることはできません。シ
ステムAかシステムBのインストール先を変更する調整が必要です（図表1-1）。

　プログラミング言語の実行エンジン（PHPやRuby、Javaなどのインタプリターや
ランタイム）やフレームワーク、ライブラリについても同様です。例えば、システムAと
システムBが共通のフレームワークMを使っているとします。ここで、システムA側の都
合でフレームワークMをアップデートし、バージョンアップしなければならなくなったとし
ます。

　このとき同じフレームワークを使っているシステムBは、アップデートによって動かな
くなる恐れがあります。そのため、アップデートしてもシステムBが正しく動くかどうか
を、事前に確認しなければなりません。もしくは、フレームワークの古いバージョンを
残して、別の場所に新しいバージョンをインストールするなどの調整が必要です
（図表1-2）。

1-1-2　環境の隔離で解決するコンテナ
　このような競合を解決するのが「コンテナ」という考え方です。コンテナとは、シス
テムの実行環境を隔離した空間のことです。それぞれのコンテナは、独自のディレ
クトリツリーを持ち、互いに影響を及ぼしません。例えば、システムAを格納したコ
ンテナの/usr/share/myappディレクトリは、システムBを格納したコンテナ
の/usr/share/myappディレクトリとは別の場所にあり、独立しています。互い
に、その中身が見えることもないので、セキュリティ面でも優れます（図表1-3）。

1-1-3　コンテナにはポータビリティ性がある
　コンテナを使えば、それぞれの環境を隔離して互いに影響を与えないようにでき
ます。つまり、1台のサーバーに複数のシステムを同居させても、競合問題が起き
ないのです。コンテナの特徴は「独立」している点です。ここで独立とは、「それ単
体で完結している」ということです。コンテナ内で動作するシステムが動くのに必要
なすべてのファイルは、そのコンテナ内に含まれています。

　具体的には、ライブラリやフレームワーク、コマンドなど、それらすべてがコンテナの
中にあります。つまり、コンテナ内のプログラムを実行した場合、コンテナ外の何か
が参照されることはありません。このような特性を「ポータビリティ性」（持ち出すこ
とができる）と言います。ポータビリティ性があるため、コンテナを別のサーバーにコ
ピーして動かすのも容易です。（図表1-4）。

memo　図表1-4の「Linux基本コマンド」とは、/bin/ディレクトリにインストールされているような、シェ

ル（/bin/shや/bin/bash）、ls、cd、chmodなど、各種Linux操作をする基本的なコマ

ンドのことです。

1-2　Dockerを構成する要素

　コンテナを実現するソフトの代表が「Docker」です。ここでは、Dockerを取り巻
く環境を見ていきましょう。

1-2-1　Dockerコンテナを実行するためのDocker Engine
　DockerはLinux上で動作するソフトです。Linuxに「Docker Engine」をインス
トールすると、Dockerのコンテナ（以下、「Dockerコンテナ」）を実行できるよう
になります。Docker Engineをインストールしたコンピューター（＝Dockerコンテナ
を動かすコンピューター）のことを「Dockerホスト」と呼びます（図表1-5）。

　図表1-5に示したように、Dockerホストが動作するために必要なライブラリや
Linux基本コマンドがありますが、これらはDockerコンテナから参照されることはあ
りません。Dockerホストが動くためだけに必要なものです。

memo　DockerはLinux環境で動かす以外に、Windows環境やMac環境において「Docker

Desktop」というソフトを動かす方法もあります。これらはWindowsやMacにLinuxサブシス

テムをインストールして利用します。詳細は、「1-2-4 クライアント環境のDocker」で説明し

ます。

Dockerを操作するdockerコマンド

　Docker Engineには、コンテナを操作するさまざまなインターフェースが備わって
います。例えば、外部からDockerコンテナを起動・停止したり、Dockerコンテナに
ログインしたりするインターフェースです。こうしたインターフェースの標準コマンドが
「dockerコマンド」で、Dockerの利用者（Dockerの管理者）は、dockerコマ
ンドを使ってコンテナを操作します。

統合的な操作をするDocker Composeコマンド
　Docker Engineのインターフェースは、標準のdockerコマンド以外からも使えま
す。よく使われるのが「Docker Compose」というツールです。dockerコマンドはコ
ンテナを1つひとつ操作するのに対し、Docker Composeは複数のコンテナを同
時に操作し、その連携設定もできます。Docker Composeは標準機能ではな
いものの、dockerコマンドとともによく使われ、事実上の標準と言っても過言では
ありません。

1-2-2　DockerコンテナとDockerイメージ
　次に、Dockerコンテナを見ていきましょう。

「コンテナの元」となるDockerイメージ
　Dockerコンテナは、それぞれが独立したシステム実行環境です。すでに説明し
たように、コンテナの中にはシステムの実行に必要なライブラリやフレームワーク、基
本コマンドなどがすべて入っています。逆に言うと、コンテナを使うなら、こうしたす
べてのものをあらかじめコンテナに入れておかなければなりません。
　ただ、まっさらの状態から、必要なものをすべて入れたコンテナを作るのは意外
と手間がかかります。なぜなら、Linuxの基本的なコマンドやライブラリから作り込
んでいかなければならないからです。

　そこでDockerでは、コンテナ作りを支援するために、基本的なソフトやアプリケ
ーションをインストールした「コンテナの元」が提供されています。このようなコンテナの
元のことを「Dockerイメージ」と言います。Dockerイメージとは、必要なファイルを
すべて固めたアーカイブパッケージです（図表1-6）。

Dockerイメージを提供するレジストリ
　 Docker イ メ ー ジ は 、 Docker 社 が 運 営 し て い る 「 Docker Hub
（https://hub.docker.com/）」で公開されています（図表1-7）。Docker
Hubのように、Dockerイメージを管理しているサーバーを「Dockerレジストリ」と言
います。Dockerレジストリは、「Dockerリポジトリ」という単位でイメージを管理し
ます。Dockerでは、Dockerレジストリ上で管理されているDockerリポジトリに登
録されているDockerイメージをダウンロードし、ダウンロードしたDockerイメージから
Dockerコンテナを作成します（図表1-8）。

memo　Dockerイメージのダウンロード作業は、dockerコマンドで実行できます。そのため、事前に

別途ダウンロードしておく必要はありません。具体的な手順については、第3章で説明しま

す。

アプリケーション入りのDockerイメージ

　Dockerイメージには2種類あります。それは、「（1）基本的なLinuxディストリ
ビーションだけのDockerイメージ」と、「（2）アプリケーション入りDockerイメージ」
です。

　「（1）基本的なLinuxディストリビーションだけのDockerイメージ」（以下、
「LinuxのみDockerイメージ」）は、UbuntuやCentOSなど、Linuxディストリビュ
ーションだけで構成している基本的なDockerイメージです。Linuxシステムしか入っ
ておらず、ここに必要なものを追加でインストールするなどして使います。独自のコ
ンテナを自由に作る場合には、この「LinuxのみDockerイメージ」からコンテナを作
成します（詳細は、第8章で説明します）。

　「（2）アプリケーション入りDockerイメージ」は、すでにアプリケーションが入っ
ているので、すぐに使えるDockerイメージです。例えば、「Webサーバー（Apache
やNginxがインストールされ、設定済みのイメージ）」「データベースサーバー
（MySQLやMariaDB、PostgreSQLなど）」といった、よく使われるサーバーシス
テムが入ったDockerイメージのほか、ブログシステムの「WordPress」、チケット駆
動システムの「Redmine」、Webメールソフトの「Roundcube」など、さまざまなも
のがあります。

　こうしたDockerイメージを使えば、自分でソフトをインストールする必要がなく、
すぐに活用できます。用途に合わせてDockerイメージを選び、Dockerコンテナを
作成するだけです。

　コンテナを使わない場合、例えばブログシステムのWordPressを使いたいなら、
Webサーバーを構築し、PHPをインストールし、WordPressをインストールし、さら
に、データベースをインストールし、それらを適切に設定する必要があります。実際
にサーバー構築をした経験がある人ならわかりますが、これらの作業は煩雑です。
しかし「アプリケーション入りのDockerイメージ」なら、WordPressのコンテナと、コ

ンテンツを保存するデータベース（DB）のコンテナをダウンロードするだけで、すぐに
使えるのです（図表1-9）。

コラム 　なんでもDockerイメージで配布する
　Dockerコンテナは、「なんでもひとまとめにし、Docker Engineさえあればす
ぐに実行できる」という特徴があります。こうした特徴を生かして、最近は「プロ
グラミングの学習環境」「講演で説明されたサンプルプログラム」「機械学習の
開発環境」などのDockerイメージを配布するケースがあります。Dockerイメー
ジとして提供されれば、利用者はDocker EngineをインストールしたPCを用意
し、それを基にコンテナを作るだけでよいからです。1つひとつをインストールする
手間がなく、環境の違いによって動かないということもなくなります。今後

Dockerがさらに普及すれば、「配布はDockerイメージで」が常識になるかもし
れません。

1-2-3　カスタムのDockerイメージを作る
　業務システムでDockerを使う場合、「LinuxのみDockerイメージ」を使ってコン
テナを作り、そこに自社開発したシステムをインストールして使うことがほとんどでし
ょう。詳しくは第7章で説明しますが、Dockerは、コンテナを起動してから内部で
コマンドを実行したり、外部からファイルをコピーしたりできるので、そうした方法で
Dockerコンテナに手を加えられます（図表1-10）。

memo　Dockerイメージに手を加えるときは、「アプリケーション入りDockerイメージ」ではなく、

「LinuxのみDockerイメージ」をベースとするほうがやりやすいです。「アプリケーション入り

Dockerイメージ」は、イメージの大きさを小さくするために、必要最低限のコマンドやライブラ

リしか入っていなかったり、特殊な初期起動設定がされていたりすることがあるためです。

　ただ、そうしたカスタマイズは手間で、１つひとつ手作業をしていると作業漏れ
が起こる可能性が少なくありません。そこで、コンテナに手を加えたあと、そのコン
テナを「カスタムDockerイメージ」に変換します。そうすれば、そのDockerイメージ
からコンテナをまとめて作ることができます（図表1-11）。

memo　カスタムのDockerイメージを作るときは、手作業でファイルコピーやコマンド実行をするのでは

なく、Dockerfileと呼ばれる設定ファイルにファイルコピーや実行したいコマンドなど一連の

設定を記述し、そのファイルを適用して作るのが一般的です。そうすれば、あとから見たとき

に、元となるイメージにどのような変更を加えたのかが一目瞭然です。詳細は、第8章で説

明します。

　カスタムDockerイメージは、Docker HubのようなDockerレジストリに登録で
きます。登録すれば、ほかのコンピューターからも、そのDockerイメージを使えるよう
になります（図表1-12）。

memo　Docker Hubに「公開」として登録すると、全世界に公開され、誰でもそのイメージを入手

できるので注意してください。社内で作成したシステムなどは「非公開（プライベート）」とし

て登録することになるでしょう。もしくは、Docker Hubを使うのではなく、社内でプライベート

なDockerレジストリのサーバーを構築し、そちらに登録する方法もあります（AWSには、

Amazon ECRという、まさに、プライベートなDockerレジストリサービスがあります）。詳細

は、第8章で説明します。

1-2-4　クライアント環境のDocker

　DockerはLinux環境の技術であると説明しました。しかし実際には、
WindowsやMacでも利用できます。

Docker Desktop
　Docker社は、「Docker Desktop」というソフトウエアを配布しています。これ
は、WindowsやmacOSにおいて、Dockerを動かすためのソフトウエアです。
Docker Desktopの内部にはLinuxカーネルが含まれており、Windowsや
macOSでありながらも、Linuxを実行することで、その上で、Dockerが使えるよう
にしたものです（図表1-13、図表1-14）。この説明からわかる通り、Docker
Desktopは、WindowsやmacOS環境において、Linuxアプリケーションを動かす
ためのものです。WindowsやmacOSのアプリケーションが動くわけではありませ
ん。

コラム 　Docker DesktopとDocker Toolbox、そして、仮想マシンでの利
用

　WindowsでDockerを使いたい場合、「Docker Desktop」と「Docker
Toolbox」の2つの選択肢があります。最新版は前者の「Docker Desktop」
で、Docker社はこちらを推奨していますが、WindowsのHyper-Vと呼ばれる
機能を用いているため、Hyper-Vの機能を有効にした環境でなければ動きま
せん。Hyper-Vは、Windows 10 ProやWindows 7 Professional以上でな
ければ使えず、Home Editionで使うことはできません。

　またHyper-Vを有効にすると、VirtualBoxやVMwareなどの仮想マシンと
同居できないという問題もあります。後者の「Docker Toolbox」は、仮想マシ
ンで構成したDocker環境です。Home Editionでも使えますが、レガシー版と
いう扱いのため、サポート面が心配かもしれません。

　Hyper-Vが使えない（もしくは、使いたくない）なら、VirtualBoxなどで仮
想マシンを作り、そこにUbuntuなどをインストールしてDocker環境を作る方法
があります。この方法なら、Ubuntu上のDocker Engineを使うことになるので
最新版を使えます。皆さんの環境がHyper-Vを有効にして支障がないなら、
Docker Desktopを使うのがよいでしょう。そうでないときは、Docker Toolbox
を使うか、仮想マシンでLinux環境を作るかのどちらかの方法になります。

　なお、この状況は、提供が予定されている「Windows 10 バージョン2004」
で改善される見込みです（執筆時点では未提供）。同バージョンに含まれる
「WSL2（Windows Subsystem for Linux 2）」は、WindowsにLinuxのサ
ブシステムを提供する機能で、Windows 10 ProだけでなくHome Editionに
も搭載されます。

　すでにDocker DesktopはWSL2に対応しており、「Windows 10 バージョ
ン2004」の正式版が登場すれば、Hyper-Vに伴う問題は解消されるはずで
す。

サーバーと同じコンテナを実行できる

　Docker Desktopの利点は、サーバーで動かすのと同じDockerコンテナを実行
できる点です。つまり、自分のPCにサーバー環境を作ることができるのです（図表

1-15）。その利点を生かし、本来ならネットワーク越しにサーバー開発をしなければ
ならない場合でも、自分のPCにサーバー環境を構築してローカルに開発することが
可能です。Docker Desktopは、Docker EngineをインストールしたLinux環境と

完全互換です。インフラ担当者がサーバーで実際に試す前に、自分のPCで動作
検証したい場合にも活用できます。

1-2-5　Dockerを構成する要素のまとめ
　少し話が長くなったので、ここで、Dockerについて大事なことをまとめておきま
す。

（1）Docker EngineをインストールしたLinux環境で動作する
　Dockerは、Docker EngineをインストールしたLinux環境で動作します。この
環境を「Dockerホスト」と言います。

（2）DockerコンテナはDockerイメージから作る
　Dockerコンテナは、Dockerイメージから作ります。Dockerイメージは、Docker
HubなどのDockerレジストリに登録されていて、ダウンロードして使います。

（3）Dockerイメージには基本的なディストリビューションとアプリケーション入りの

ものがある
　Dockerイメージには、Linuxのみとアプリケーション入りの2種類があります。カ
スタマイズするなら前者を使います。

（4）カスタマイズしたDockerイメージはDockerレジストリに登録できる
　既存のDockerイメージは、カスタマイズして、そのイメージをDocker Hubなどの
Dockerレジストリに登録できます。登録すると、ほかのPC（サーバー）でも使え
るようになります。

（5）Docker Desktopを使うとPCで動かせる
　Docker Desktopを使うと、Linuxサーバーで使っているのと同じDockerイメー
ジを、自分のPCで動かせます。

1-3　Dockerの利点と活用例

　これまで話してきたDockerの構成から、次のような利点と欠点、そして、活用
例が導かれます。

1-3-1　Dockerの利点
　利点を以下に列挙します。

（1）隔離して実行されるのでほかのシステムと同居しやすい
　コンテナは隔離した実行環境なので、ほかのシステムに影響を与えません。そ
のため1台のサーバーに、複数システムを構成できます。

（2）アプリケーション入りDockerイメージを使えば、システム構築が簡単
　Docker Hubでコンテナの元となるイメージが提供され、アプリケーション入り
Dockerイメージを使えば、複雑なインストールや設定をすることなく簡単にシステ
ムを構築できます。

（3）複製を作りやすい
　カスタムDockerイメージを作っておけば、それを基にいくつでも同じコンテナを作
ることができます。すなわち、複製を作る場合、同じ設定作業をしなくて済むので
す。ほかのサーバーへのコピーも容易です。

1-3-2　Dockerの欠点
　もちろん欠点もあります。以下に2つ挙げますが、これらの欠点は、Dockerの
導入理由が「1つのサーバーに互いに影響なく、さまざまなアプリケーションを載せた
い」ということなら、大きな障害とはならないはずです。

（1）Linuxシステムでしか動かない
　DockerはLinuxの仕組みを使って動作しているため、Linux以外の環境で動
かすことができません。

（2）完全な分離ではない

　Dockerは、隔離した空間でプログラムを実行する技術にすぎません。似たソリ
ューションである仮想サーバーを使うのと違い、ハードウエアをエミュレートしているわ
けではありません。DockerにはそれぞれのコンテナのCPU利用率やメモリー消費
量を制限し、ほかのコンテナに影響を与えない仕組みがありますが、完璧ではあ
りません。もし、Docker Engineにセキュリティホールがあれば、そもそも隔離した
部分に抜け穴が生じてしまう恐れも（原理的には）あります。

コラム 　仮想サーバーとコンテナとの違い
　コンテナとよく似た技術に「仮想サーバー」がありますが、この２つの技術は根
本的な考え方がまったく違います。

　仮想サーバーは、1台の物理的なサーバーの中に複数の仮想的なサーバーを
作り、物理的なサーバーを仮想的なサーバーが分割して使います。それぞれの
仮想サーバーにはOSがインストールされ、そこにシステムが構成されます。

　一方のコンテナは、サーバーを分割する技術ではありません。サーバーはあくま
でも1台で、その中に、たくさんのアプリケーションが隔離して実行されているのに
すぎません。つまりコンテナでは、それを制御するOSは1つしかなく、複数のプロ
グラムがDocker Engineの下で動いているだけです（図表1-16）。プログラムを
実行しているのはDockerホストです。管理者のパスワードも、Dockerホストの
もの1つしかありません。

1-3-3　Dockerの活用例
　Dockerの利点は、コンテナの中に必要なものをまとめて、自在に実行できる
点です。この利点を考えたとき、次のような活用例が考えられます。

（1）試作・実験・運用ツールのインストール
　Docker Hubでは、たくさんのDockerイメージが提供されています。Webサーバ
ーやDBサーバーなどを構築する際に、こうしたDockerイメージを使えば、手早く簡
単に始められます。プログラマが自分の開発環境を整えたり、試作したりするのに
もってこいです。

memo　インフラ担当者なら、Muninなどのサーバー管理・監視ツールをDockerで構成すれば手間

がなく、時短につながるはずです。

（2）開発環境での利用
　もちろんDockerは、開発現場でも重宝します。まず取り上げたいのが、開発
環境の構築にかかる手間を省く活用です。開発チームでDockerに詳しい開発
者が、チームみんなのために開発環境を模したDockerイメージを作ります。そうす
ることで開発者は、それぞれ自分のPCで、そのDockerイメージを展開してローカ
ルで開発・テストできるようになります（図表1-17）。

　こうした使い方をするのは、いまはまだ開発者が主ですが、Dockerを使うこと
自体は難しくないので、今後は、デザイナーも、こうした開発環境で作業すること
が考えられます。

（3）本番環境での利用

　多くの場合、開発成果物は検証機でテストし、動作確認が済んでから本番
機で動作させます。検証機の実行環境（ライブラリやフレームワークなど）と同じ
環境を本番機に用意する必要がありますが、ライブラリやフレームワークの依存関
係を間違えてしまうと、環境の違いから本番機では動作しないという事故が起き
ます。

　Dockerを使っていれば、こうした事故が起きにくくなります。なぜなら、検証機
で確認した内容をDockerイメージにしておけば、本番機ではそれを展開するだけ
で済むからです。コンテナには、依存するものすべてが入っていますから、安全確
実、そして、迅速なデプロイが可能になります（図表1-18）。また万一、サーバー
が故障したときなども、Docker Engineをインストールした別のサーバーを用意す
れば、すぐに復旧できます。

memo　復旧する際、「ユーザーのデータ復旧」については、別途、検討する必要があります。

1-4　Dockerの本格運用

　コンテナを本番機に使う場合、「不具合や過剰負荷でも停止しない」ことが求
められます。本書はDockerの入門書なので、本格的な運用には踏み込みませ
んが、将来を見据えて、どのような運用になるのか、簡単に見ておきましょう。

1-4-1　堅牢なDockerホストを検討する
　Dockerコンテナを実行するのは、Docker EngineをインストールしたDockerホ
ストです。安定運用には、Dockerホストの安定稼働が必要です。Dockerホスト
は、サーバー（AWSの場合は仮想サーバーであるEC2）を使って自分で作ると、
そのDockerホスト自体の保守運用・管理が手間です。

　そこで本番機の運用では、Dockerホストをマネージドサービスにして、ある程
度、任せてしまうのが無難です。AWSには、「Amazon ECS」というコンテナを運
用するマネージドサービスがあります。ECSは、負荷分散機能もあり、必要に応じ
てスケーリングされます。

memo　マネージドサービスとは、「管理された（Managed）サービス」という意味で、運用管理をク

ラウドに任せることができるサービスのことを言います。仮想サーバーのEC2は、自分で管理す

るサービスなので「アンマネージド（Unmanaged：管理されていない）サービス」と言いま

す。

1-4-2　クラスターを構成するKubernetes
　さらなるスケーリングや堅牢性が必要なら、Kubernetesというオーケストレーショ
ンソフトがよく使われます。Kubernetesは、Googleが開発したオープンソースの
分散Dockerホスト環境です。複数台のサーバーでクラスターを構成し、負荷に応
じて、必要なだけのコンテナを自動生成できます。AWSには、「Amazon EKS」と
いう、Kubernetes互換のマネージドサービスが提供されています。これを使えば、
もっと大規模な環境でも、Dockerコンテナを安定して運用できます。

1-4-3　コンテナの作り方は変わらない
　Amazon ECSやAmazon EKSは、コンテナを実行する環境（＝Docker
Engineをインストールしたホスト）の代わりにすぎません。実行するのは、普通の
Dockerコンテナです。ですから、まずは、こうした大規模な環境ではなく、「1台の
サーバーでDockerコンテナを作り、それを実行するまで」を知ればよいのです。その
あと、Amazon ECSやAmazon EKSの使い方を習得すれば、作ったDockerコン
テナを、そのまま、より堅牢に実行できます。

1-5　本書の構成

　この章では、コンテナの仕組みとDockerの基本を説明しました。以降の章で
は、次の流れで、Dockerの使い方を具体的に説明します。

（1）Docker Engineのインストール
　まずは、Dockerホストを用意しなければなりません。本書では、AWSのEC2イ
ンスタンス（仮想サーバー機能）に、Ubuntuディストリビューションを構成し、そこ
にDocker EngineをインストールすることでDockerホストを構成します。第2章で
説明します。

（2）Dockerコンテナの基本操作
　次に知らなければならないのは、Dockerコンテナの起動や停止など、コンテナ
周りの基本操作です。第3章と第4章で説明します。

（3）Dockerコンテナにおけるデータの扱い方
　Dockerでは、コンテナの差し替えが容易になるよう、データをコンテナの外に置
いて扱います。第5章では、こうしたデータの扱い方について説明します。

（4）ネットワークとコンテナの連携
　WebサーバーとDBサーバーを連携するなど、コンテナ同士が通信したいこともあ
ります。第6章ではネットワークの基礎について説明します。そして、第7章では、
WordPressサーバーの作り方を見ながら、DBサーバーとなるコンテナと通信する方
法を説明します。

（5）Dockerイメージの作成
　Dockerに慣れてきたら、Dockerイメージを作ってみましょう。第8章では、簡単
なDockerイメージの作り方を説明します。

（6）Dockerの運用
　本番環境で使うには、Dockerコンテナの運用に関する知識が必要です。第9
章では、オーケストレーションツールである「Kubernetes」を使ったコンテナの運用の
基礎を説明します。

　本書では、AWS上にDockerを利用できる環境を整
備して、実際に手を動かしながら、Dockerの使い方を習
得します。この章では、そのための事前準備として、
Dockerをインストールした仮想サーバーを構成します。

2-1　Dockerを使うための構成

　Dockerを利用するには、Linuxをインストールしたコンピューターを用意し、そこに
Docker Engineをインストールします。

2-1-1　DockerをサポートするLinux
　Dockerは比較的新しい技術なので、古いLinuxでは利用できないことがあり
ます。Dockerが利用できるLinuxディストリビューションと、そのバージョンを示しま
す（図表2-1）。

　どのディストリビューションを使っても基本的な使い方は同じですが、本書では、
Ubuntu 18.06を利用します。なお、Dockerには無償版と有償版がありますが、
本書では無償版を対象にします。詳しくはコラムを参照してください。

memo　ディストリビューションとは、CentOSやDebianなど、Linuxパッケージの種類のことです。

コラム 　Dockerの無償版と有償版
　Docker Engineには、無償版のCommunity Edition（以下、Docker
CE）と、有償版のEnterprise Edition（以下、Docker EE）の2種類があり
ます。

　Docker CEは、さまざまなLinuxにインストールして利用できる無償版です。

　Docker EEは、認証済みのインフラやプラグインの提供、セキュリティ検査機
能などを提供する商用版です。有償のクラウドサービスやOracle Linux、Red
Hat Enterprise Linux、Windows Serverのような有償のLinuxにおいても提
供されます（Windows ServerではHyper-V機能を使ってLinuxのサブセット
を動かし、その上で実行しています）。

　本書ではDocker CEを用います。以降、特に断りのない限り、Docker
Engineとだけ記した場合は、Docker CEを指すものとします。

2-1-2　ディストリビューション付属のパッケージとDocker提供のパッケ

ージ

　Docker Engineは、ディストリビューションに含まれています。ですから、yumコ
マンドやaptコマンドなどでインストールできます。それとは別に、Docker社も
Docker Engineのパッケージを提供しています。

memo　yumコマンドはRed Hat Enterprise LinuxやCentOS系におけるパッケージのインストールコ

マンド、aptコマンドはUbuntuやFedoraなど、Debian系のパッケージのインストールコマンド

です。

　ディストリビューション付属のものを利用する場合、メリットは、yumコマンドや
aptコマンドなどで簡単にインストールできることです。アップデートも容易です。デメ
リットは、ディストリビューションによって、インストールされているDockerのバージョン
がまちまちなことです。

　一方で、Docker提供のパッケージを利用する場合、メリットは、常に最新版
を利用できることです。ディストリビューションが違っても、バージョンを統一できま
す。デメリットは、ディストリビューションの一部ではありませんので、アップデートは
自分で追わなければならない点です。
　保証やセキュリティアップデートなど運用上の問題を考えると、本番運用では、
ディストリビューション付属のものを利用するのが望ましいでしょう。一方で、自分
のコンピューターで利用する場合や学習目的の場合は、最新版を使うのがよいの
で、Docker提供のパッケージがよいでしょう。

　本書では、Docker提供のパッケージを使う方法で説明します。

2-2　AWS上でEC2を使ったDocker環境を用意する

　本書では、AWS上にDockerを利用できる環境を整備し、実際に手を動かし
ながら、Dockerを習得していきます。

2-2-1　Amazon EC2にLinux環境を用意する
　AWS上には、「Amazon EC2（Amazon Elastic Compute Cloud 。以下、
EC2）」という仮想サーバーサービスがあります。本書では、この仮想サーバーサービ
スを使って、Ubuntuのサーバーを作ります。そして、この仮想サーバーに、Docker
Engineをインストールします（図表2-2）。AWSの世界では、EC2を使って作った
仮想サーバーのことを「EC2インスタンス」と呼びます。

memo　AWSの世界では、AWSの各種サービスをアイコンで示す文化があります。図示で使われる

アイコンは、「AWSシンプルアイコン」と呼ばれます。

（https://aws.amazon.com/jp/architecture/icons/）

2-2-2　EC2をSSHで操作する
　AWSを少し触ったことがある人にとっては既知ですが、EC2インスタンスを操作
するには、SSHを使って通信します。具体的には、Windowsであれば「Tera
Term」や「PuTTY」、macOSであればシェルに付属の「sshコマンド」を使って接続
します。接続すると表示されるターミナル画面から文字入力することで、EC2イン
スタンスを操作できます（図表2-3）。

2-2-3　EC2とファイアウォール
　EC2には望ましくない通信を遮断するファイアウォール機能があります。この機
能を、「セキュリティグループ」と言います。

　デフォルトではすべての入力方向の通信（インバウンド。インターネット→EC2
の方向）が通らないように構成されていますので、SSHで操作するには、SSHの
通信ポートである「ポート22」の許可設定が必要です。

　さらに追加で、必要な通信を許可する設定をします。本書では、Dockerを使
った実例として、Webサーバーを取り上げます。そこでWebサーバーの通信ポート
「ポート80」（http://）と「ポート443」（https://）を通します。

　また本書では、複数のWebサーバーを構成するとき、「ポート8080」「ポート
8081」「ポート8082」を実験的に使うことにします。そして第9章では、オーケストレ
ーションツールのKubernetesを用いるとき、動作テストで「ポート30000」を使いま
す。そこで、図表2-4に示す通信ポートを許可する設定を施すことにします。

2-2-4　Dockerが使えるEC2インスタンスを作るまでの流れ
　この章では、以下の流れで、Dockerが使えるEC2インスタンスを作成します。

（1）EC2インスタンスの準備
　UbuntuがインストールされたEC2インスタンスを用意します。このときセキュリティ
グループ（ファイアウォール）も合わせて設定します。

（2）EC2インスタンスへのSSH接続

　Tera TermやPuTTY、sshコマンドなどを使って、EC2インスタンスに接続しま
す。

（3）Docker Engineのインストール
　SSH接続したあと、いくつかのコマンドを入力して、Docker Engineをインストー
ルします。

コラム 　Dockerのマネージドサービス
　クラウド環境におけるDockerについて調べたことがあるなら、「AWS ECS」や
「AWS EKS」などのマネージドサービスを知っているかもしれません。本書では、
ECSやEKSを使わず、EC2を使いますが、これは別に、学習用だからというわけ
ではありません。ECSやEKSは、Dockerコンテナを運用するためのサービスで
す。

　これらのサービスでは、Dockerイメージを作ったり、カスタマイズしたりするよう
な修正操作をすることはできません。あくまでも完成後のDockerイメージを実
行するものです。Dockerイメージを作ったり、カスタマイズしたりするときは、
Docker Engineをインストールしたコンピューターを使います（EC2である必要は
なく、自分のパソコンにDocker Engineをインストールしてもかまいません）。

2-3　EC2インスタンスを起動する

　では、早速、始めましょう。まずは、EC2インスタンスを起動します。

memo　本書では、AWSアカウントは取得済みであることを前提とします。あまり詳しくない人は、

AWSの入門書を適時、参照してください。

コラム 　リージョンの確認
　AWSは、「リージョン」と呼ばれる単位で操作します。リージョンとは、簡単に
言えば、「どの国にあるのか」という意味です。右上の地域が記載されたところ
から切り替えられます。どのリージョンで操作してもよいですが、本書では、東
京リージョンを使うことにします。右上で［アジアパシフィック（東京）］を選
択しておいてください（図表2-5）。

手順 UbuntuをインストールしたEC2インスタンスを起動する

［1］　EC2コンソールを起動する
　「EC2」を検索して選択することで、EC2コンソールを起動します（図表2-6）。

［2］　インスタンスを作り始める
　左の［インスタンス］メニューをクリックして開きます。［インスタンスの作成］
─［インスタンスの作成］を選択して、インスタンスを作り始めます（図表2-

7）。

［3］　UbuntuのAMIを選択する

　本書では、Ubuntuを利用します。［Ubuntu Server 18.04 LTS (HVM),
SSD Volume Type］の［64ビット（x86）］を選択してください（図表2-

8）。

［4］　インスタンスタイプを選ぶ
　インスタンスタイプを選びます。ここでは、［t2.micro］を選択し、［次のステッ
プ：インスタンスの詳細の設定］をクリックします（図表2-9）。インスタンス詳
細の設定画面が表示されたら、さらに［次のステップ：ストレージの追加］をク
リックします（図表2-10）。

memo　インスタンスタイプとは、EC2インスタンスの性能（CPUやメモリー）のことです。性能が高い

ほど費用がかかります。ここで選択しているt2.microは、AWSに加入してから1年間、1台を

無償で利用できます（本書の執筆時点）。

［5］　ストレージの追加

　ストレージを設定します。既定では8GBのストレージが追加されるのですが、
DockerやKubernetesの学習では、少ないため、20GBに変更します。［サイ
ズ］の部分に「20」と入力し、［確認と作成］ボタンをクリックします（図表2-

11）。

［6］　セキュリティグループの編集を始める
　EC2インスタンスが構成されます。ファイアウォールの設定を変更したいので、
［セキュリティグループの編集］をクリックしてください（図表2-12）。

［7］　必要な通信を通す
　デフォルトでは、SSHが通過するように構成されています。［ルールの追加］ボ
タンをクリックしてください（図表2-13）。

　すると追加の設定ができるので、［HTTP］を追加してください（図表2-

14）。同様にして、［HTTPS］も追加します（図表2-15）。ポート8080～8082
については、［カスタムTCP］を選択し、［ポート範囲］には、「8080-8082」
（「-」は半角のマイナス）と入力します（図表2-16）。さらにポート30000を追
加し、最後に、［確認と作成］ボタンをクリックします（図表2-17）。

［8］　起動する
　先の画面に戻ります。セキュリティグループに、いまの設定が追加されたことを
確認してください。そして［起動］ボタンをクリックします（図表2-18）。すると、

起動待ちの画面になります。

［9］　キーペアの作成
　あとでSSH接続するときに必要となるキーペアを用意します。キーペアとは、いわ
ゆる、パスワードのようなものです。EC2を使うのが初めての人は、［新しいキーペ
アの作成］を選択し、適当なキーペア名を入力してください。ここでは、
「docker_ec2」という名前にします（図表2-19）。

　そして［キーペアのダウンロード］をクリックしてください。すると、キーペアファイル
のダウンロードが始まります。ファイル名は、「キーペア名.pem」です。ダウンロードし
たファイルは、なくさないようにしてください。なくしてしまうと、このEC2インスタンス
にアクセスすることができなくなってしまいます。
　またダウンロードしたキーペアファイルは、第三者に漏洩しないように注意してくだ
さい。キーペアファイルを持っていれば、このEC2インスタンスにログインし、すべての
操作ができてしまうからです。

　キーペアファイルのダウンロードが完了したら、［インスタンスの作成］をクリック
してください。すると、インスタンスの作成が始まります。

memo　キーペアのダウンロードは、この画面に限ります。この画面外でダウンロードすることはできず、

また、再発行もできません。なくしてしまうと本当にアクセスできなくなるので注意してくだ

い。万一、なくした場合は、EC2インスタンスを作り直すしか手段がありません。

memo　すでにEC2インスタンスを使うのが2台目以降のときは、［既存のキーペアを選択］を選ぶ

と、すでに持っているキーペアファイルを使うことができます（この場合は、すでに使ったキーペ

アファイルを使うので、［キーペアのダウンロード］をクリックして、キーペアファイルをダウンロー

ドすることはできません。手持ちのキーペアファイルを使うという意味です）。

［10］　インスタンスの起動

　すると図表2-20に示す画面に切り替わり、インスタンスの起動が始まります。イ
ンスタンスの起動には数分かかります。［インスタンスの表示］をクリックしてくだ
さい。インスタンスの一覧画面に移動します。

2-4　EC2インスタンスにSSH接続する

　EC2インスタンスが起動したら、SSHで接続して操作します。

2-4-1　IPアドレスの確認
　まずは、起動したEC2インスタンスのIPアドレス（またはホスト名）を確認しま
す。EC2コンソールの［インスタンス］メニューをクリックすると、作成したEC2インス
タンス一覧が表示されます。ここで、いま作成したEC2インスタンスをクリックして
選択すると、その下に情報が表示されます。

　表示された情報のうち、「IPv4パブリックIP」（または「パブリックDNS
（IPv4）」）が、接続先のアドレスです。SSHで接続するときに必要な情報にな
るので、控えておいてください（図表2-21）。

2-4-2　SSHで接続する
　SSHを使って、EC2インスタンスに接続します。

Windowsの場合
　Tera TermやPuTTYなどのターミナルソフトを使って接続します。ここでは、Tera
Termを使います。下記からTera Termをダウンロードしてインストールしてください。

【Tera Term】
https://ja.osdn.net/projects/ttssh2/

手順 Tera Termを使って接続する

［1］　接続先を指定する
　Tera Termを起動すると、接続先が尋ねられます。［ホスト］の部分に、先の
図表2-20で確認したIPアドレス（またはホスト名）を入力します。［サービス］
の部分は［SSH］を指定し、TCPポートは「22」とします。これらを入力したら、
［OK］ボタンをクリックします（図表2-22）。

［2］　セキュリティの警告に回答する
　初回に限り、意図する接続先かどうかを確認するための、セキュリティの警告
画面が表示されます。［このホストをknown hostsリストに追加する］にチェック
を付け、［続行］をクリックします（図表2-23）。

memo　この画面は、接続先が差し替えられていないかを確認することが目的です。［このホストを

known hostsリストに追加する］にチェックを付けておくと、この情報が登録され、内容が

同じである限りは、このメッセージは表示されません。しかしその後、サーバーの差し替えや改

ざんなどがされて情報が変わると、再びこのメッセージが表示されるので、「接続先が差し

替えられたのではないか」と気づくことができます。

［3］　認証情報（キーペア）を選択する
　接続するユーザー名とキーペアを設定します（図表2-24）。

①ユーザー名に「ubuntu」と入力してください。
②認証方式で［RSA/DSA/ED25519鍵を使う］を選択してください。
③［秘密鍵］の横の［...］ボタンをクリックします。
④図表2-24右のようにファイルの選択画面が表示されるので、ダウンロードしてお

いたキーペアファイルを選択します。
⑤図表2-24左に戻ったら、［OK］ボタンをクリックして接続します。

memo　ユーザー名は「ubuntu」である点に注意してください。AWSでよく使う「ec2-user」ではあり

ません。「ec2-user」は、Amazon Linuxの場合です。本書では、Ubuntuを使っているの

で、ユーザー名は「ubuntu」です。また、一連の操作において、途中離席するなど、あまりに

時間がかかると、途中で切断されることがあります。その場合は、接続からやり直してくださ

い。

［4］　接続の完了
　接続が完了しました。一番下に、次に示す行が表示され、ここにコマンドを入
力できます（図表2-25）。

memo　XXX-XXX-XXX-XXXは、インスタンスに設定されたプライベートIPアドレスです。環境によって

異なります。終了するには、「exit」と入力します。もしくは、このウィンドウの［×］ボタンを

クリックして閉じます。

macOSの場合

　macOSの場合は、ターミナルから操作します。

手順 macOSから接続する

［1］　鍵ファイルのパーミッションを変更する
　macOSのターミナルを開きます。ダウンロードした鍵のパーミッションを読み取り
専 用 に 変 更 し ま す 。 例 え ば、 書 類 フ ォ ル ダ （ Documents フ ォ ル ダ ） に
「docker_ec2.pem」というファイル名で置いた場合は、次のように入力します。

［2］　接続する
　次のように入力して接続します。XXX.XXX.XXX.XXXの部分は、図表2-20で
確認しておいたEC2インスタンスのIP（またはホスト名）です。

　初回のみ、次のように尋ねられるので、「yes」と入力します。すると接続され、
利用できるようになります（図表2-26）。

コラム 　課金を抑えるには
　AWSのEC2インスタンスは、起動している間、課金されます。課金を抑える
には、利用していない間、停止するとよいでしょう。停止するには、EC2インスタ
ンスをクリックして選択してから、［アクション］─［インスタンスの状態］─
［停止］を選択します（図表2-27）。
　再度、実行する場合、同様に［開始］を選択します。再開したときには、
IPv4パブリックIPおよびパブリックDNS（IPv4）が変わります。ですから、SSH
で接続するときは、これらの値を再確認するようにしてください。

2-5　Docker Engineをインストールする

　これでUbuntuのサーバーができ、操作できるようになりました。このサーバーに、
Docker Engineをインストールしてみましょう。

2-5-1　Docker Engineインストールの手順
　Docker Engineのインストール手順は、公式ドキュメントに記載されているの
で、これにならいます。本書では、Ubuntuのパッケージに含まれているDocker
Engineではなく、Docker公式から提供されている最新版を使います。

【Docker Engineのインストール概要】
https://docs.docker.com/install/

2-5-2　UbuntuにDocker Engineをインストールする
　Ubuntuサーバー上で、次の操作をすることで、Docker Engineをインストールし
ます。

memo　下記の手順は、公式ドキュメントにならっています。最新版は、「Get Docker Engine -

Community for Ubuntu」などのドキュメントを参照してください。

（https://docs.docker.com/engine/install/ubuntu/）

手順 Ubuntu環境にDocker Engineをインストールする

［1］　パッケージをアップデートする
　下記のコマンドを入力して、Ubuntuのパッケージをアップデートします。

［2］　必要なパッケージをインストールする
　Docker Engineの実行に必要なパッケージをインストールします。次のコマンド
を入力します。

［3］　DockerのオフィシャルGPGキーを追加する
　以降の手順で、Dockerのオフィシャルサイトからパッケージをインストールしま
す。それに先立ち、DockerオフィシャルサイトのGPGキーをダウンロードし、登録し
ておきます。

memo　GPGキーはファイルが改ざんされていないことを確認するために使われる鍵のファイルです。

［4］　Dockerダウンロードサイトをaptリポジトリに追加する

　Dockerの公式サイトからDocker Engineをダウンロードできるよう、Dockerダ
ウンロードサイトをaptリポジトリに追加します。

［5］　Docker Engine一式をインストールする
　まずは、パッケージをアップデートします。

　次に、Docker Engineほか一式をインストールします。

［6］　ubuntuユーザーでdockerを利用できるようにする
　Ubuntuの場合、デフォルトでは、rootユーザーしかdockerを利用できません。
いちいち、rootユーザーに切り替えるのは煩雑なので、次のコマンドを入力し、
ubuntuユーザーでも、Dockerを利用できるようにしておきます。

［7］　ログオフする

　いったん切断し、SSHで再接続してください。切断するには「exit」と入力しま
す。

2-5-3　Dockerの確認
　以上でインストールは完了です。Docker Engineをインストールすると、
「docker」というコマンドが使えるようになります。dockerコマンドに「--version」と
いうオプションを付けると、バージョン番号が表示されます。実行したとき、次のよ
うなメッセージが表示されれば、Docker Engineがインストールされています。

memo　バージョン番号は、著者が執筆した時点でのものです。本書が発刊された頃は、より新しい

バージョンになっていることでしょう。

　これでDockerのインストールは完了です。次章から、このサーバーを使って、
Dockerを学んでいきましょう。

　Dockerを使うことは、とても簡単です。あれこれと説明
するよりも、まず、やってみるのが一番です。この章では、
Apacheがインストールされたコンテナを実行し、Webサー
バーを動かすまでの操作をやってみましょう。

3-1　DockerでWebサーバーを作る

　Dockerの使い方は千差万別ですが、この章では、Webサーバーソフトである
Apacheがインストールされたコンテナを実行します（もちろんコンテナを実行する
のは、第2章で作成したEC2インスタンスです）。このコンテナを起動することで、
EC2インスタンスがWebサーバーとして機能するようになります（図表3-1）。

　第1章で説明してきたように、Dockerコンテナは隔離された環境であり、
Dockerホスト（ここではEC2インスタンス）に何か影響を与えることはありませ
ん。コンテナを破棄してしまえば、そのWebサーバーは完全になくなります。これがコ

ンテナの大きなメリットであり、EC2インスタンス自体にApacheをインストールする
場合と比べた大きな違いです。

3-1-1　Docker操作の基本的な流れ
　この章では、下記の流れで、Dockerを操作します。

（1）イメージを探す
　Docker Hubから、目的のコンテナの元となるイメージを探します。

（2）起動する
　dockerコマンドを入力して起動します。これでWebサーバーが起動します。

（3）コンテンツを作る
　Webサーバーで見せたいコンテンツとしてindex.htmlを作ります。それがブラウザ
でアクセスしたときに表示されることを確認します。

（4）コンテナの停止と再開
　コンテナはいつでも停止することができ、また再開できます。停止中はWebサー
バーとして機能しないことを確認し、再開すれば、また動き出すことを確認します。

（5）ログの確認
　運用する上では、ログを確認することも必要でしょう。起動したWebサーバーの
アクセスログを参照する方法を説明します。

（6）コンテナを破棄する
　実験が終わったら、コンテナを破棄します。

（7）イメージを破棄する
　ディスクを消費するので、最後に、ダウンロードしたイメージを削除しておきます。

　Webサーバーの起動は（2）の時点で完了しています。慣れれば5分とかから
ないはずです。

3-2　Dockerイメージを探す

　まずは、起動したいDockerイメージを探します。第1章で説明したように、
Dockerイメージの大多数は、Docker社が運用しているDockerレジストリである
Docker Hubにあります。Docker Hubで目的のイメージを見つけ、イメージ名と
簡単な使い方を確認します。

【Docker Hub】
https://hub.docker.com/

手順 イメージ名を確認する

［1］　イメージを検索する

　Docker Hubの左上の検索ボックスから、ソフトウエア名などを入力して検索
します。例えば、「apache」や「webserver」などです。Apacheがインストールされ
たイメージは、「apache」で検索すると、「httpd」という名前で見つかるはずです
（図表3-2）。

［2］　詳細ページを確認する
　見つかった項目をクリックして、詳細ページを開きます。詳細ページには、概要
と使い方のドキュメントが書かれています（図表3-3）。

　ここで、次の2つのことを確認しておきます。

（1）イメージ名
　大きく「httpd」と書かれているのがイメージ名です。この名前は、右側の
「docker pull」というところにも記載されています。

（2）オフィシャルイメージ
　ページには、「Docker Official Images」と記載されており、このイメージが、公
式イメージであることがわかります。つまり、個人などが勝手に作ったイメージでは
ないということです。

基本的な使い方や起動方法
　下のほうにドキュメントがあります。多くのドキュメントには、使い方が書かれてい
ます。このhttpdコンテナの場合は、図表3-4に示すように、次の表記があります。

【ドキュメントより抜粋】
Without a Dockerfile
If you don't want to include a `Dockerfile` in your project, it is
sufficient to do the following:

memo　Dockerfileとは、Dockerコンテナを管理するための設定ファイルです。しばらくの間、本書

では、Dockerfileを使いません。Dockerfileについては、第8章で説明します。

　実際にすぐあとに試しますが、Dockerコンテナを起動するときは、こうしたドキュ
メントの内容を参考にして実行します。

コラム 　オフィシャルイメージ
　Docker Hubには公式のオフィシャルイメージと、個人や団体などが自由に
登録できる非オフィシャルイメージの2種類があります。オフィシャルイメージはイ
メージ名が「httpd」のような名称です。対して非オフィシャルイメージ名は、「配
布しているユーザー名/イメージ名」のように、「/」で区切られて配布しているユー
ザー名が付くので、名称の違いからも区別できます。

　非オフィシャルなイメージを使うときは、その内容をきちんと確認するようにし
てください。最終的には自己判断となりますが、どのぐらいの人が利用している
のか（Pull数）を確認したり、更新頻度を確認したりすることで、ある程度、

信用できるイメージかどうかの予想が付きます。非オフィシャルイメージがすべて
危険という意味ではありません。実際、非オフィシャルイメージにも便利なもの
がたくさんあり、業務でも、しばしば利用されます。

3-3　Dockerコンテナを起動する

　Dockerを操作するにはdockerコマンドを使います。dockerコマンドは、次のよ
うな書式を採ります。

　コマンドとは、何をするのかを指定するもののことです。詳しくは、第4章で説明
しますが、「run」というコマンドを指定すると、Dockerコンテナを起動できます。

3-3-1　docker runで起動する
　Dockerのことをまったく知らなくても、docker runというコマンドさえ知っていれ
ば、すぐに使えます。実際、先ほどのドキュメントには、次の例がありました。

　実際にやってみましょう。

　第2章で作成したEC2インスタンスにSSHで接続し、このコマンドを入力してみま
しょう。すると、次のように、いくつかのコマンドが表示されて、実行が完了します。

memo　初回は、DockerイメージをDocker Hubからダウンロードして実行するため、実行完了に

は 、 し ば ら く 時 間 が か か り ま す 。 ま た 、 実 行 時 に 「 docker: Error response from

daemon: Conflict.」というエラーが表示された場合、--nameオプションで指定したのと同

じ名前のDockerコンテナが存在するのが理由です。これは、2回、3回と同じコマンドを実

行したときに起こります。その場合、後述するdocker rmコマンドで、コンテナを破棄してか

ら試すか、--nameオプションで指定する名前（my-apache-app）を、別の名前にして

みてください。

3-3-2　実行状態の確認
　これでもう、Apacheが入ったDockerコンテナが動いています。つまり、Webサー
バーとして機能しています。実行されているかどうかは、docker psコマンドで確認
できます。

　「docker ps」と入力すると、実行中のコンテナの一覧が表示されます。実際
に確認すると、「my-apache-app」という名前のコンテナが存在することがわかる
はずです。ここでは「STATUS」の部分に「Up」と表示されていることを確認しましょ
う。これは、稼働中であることを示します。

memo　CONTAINER IDは、コンテナに割り当てられるランダムな番号です。そのため、環境によって

異なります。

コラム 　「docker container」というコマンド
　実行中のコンテナを参照する方法には、本文で説明している「docker ps」
のほか、「docker container ls」というコマンドもあります。どちらも結果は同じ
です。docker psは古くからあるコマンドで、docker container lsは、書式の
統一のために生まれた、比較的新しい書き方です。

　近年dockerコマンドは、できるだけ次のような書式に統一しようとしていま
す。ここで言う「コマンド」は、対象物（イメージやコンテナ、ネットワークなど）の
ことです。docker psという書式は、この書式に合わないので、「コンテナに対す
るls（一覧）」という意味で、docker containerというコマンドが、追加され
たのです。

　本書では、Dockerコンテナを起動するのに「docker run」と書いています
が、これも実は、「docker container run」と書けます（対象がコンテナ
（ container ） だ か ら で す 。 こ の 章 の 後 半 で 登 場 す る 「 docker start 」
「 docker stop 」 「 docker logs 」 な ど も 、 そ れ ぞ れ 、 「 docker container
start」「docker container stop」「docker container logs」と書けます）。

　本書では、長いコマンドを書くのが煩雑なので、「docker ps」「docker　
run」という書き方をしますが、「docker container コマンド」とも書けること
は、知っておいてください。

3-3-3　ブラウザで確認する
　Webブラウザのアドレス欄に、「http://EC2インスタンスのIPアドレス:8080/」の
ように入力して参照しましょう。すると、ApacheのWebページが表示されるはずで
す。Webページでは、docker runを実行したときのディレクトリの内容が表示され
るはずです（図表3-5）。

memo　EC2インスタンスのIPアドレスは、SSHの接続先のIPアドレスです。EC2コンソールで確認でき

ます（第2章の図表2-20を参照）。図表3-5で表示される内容は、docker runを実行

したときのカレントディレクトリの内容であるため、掲載の画面と皆さんの画面とは一致しな

いかもしれません。

コラム 　本番ではカレントディレクトリの公開は御法度
　ここでは話を簡単にするために、Dockerホストのカレントディレクトリを、Web
ページとして公開しています。このようにすると、カレントディレクトリの内容がイン
ターネットに漏洩してしまうので、本来、こうした使い方は、すべきではありませ
ん。正しく使うには、Webで公開する専用ディレクトリを作り、そこをWebサー
バーが公開するように構成すべきです。具体的には、第5章で説明するマウント
機能を使います。

3-4　index.htmlを作る

　図表3-5は、自分のカレントディレクトリの内容を表示しています。ですから、例
えば、index.htmlファイルを置けば、それが表示されます。やってみましょう。

手順 index.htmlを置く

［1］　nanoエディタを起動する
　Ubuntuには、nanoエディタというテキストエディタが付属しています。次のよう
に起動して、index.htmlを編集します。

memo　ここではnanoエディタを使いますが、viエディタなどに慣れているのであれば、そうしたエディタ

を使ってもかまいません。

［2］　HTMLファイルの内容を入力する
　HTMLファイルの内容を入力します。例えば、リスト3-1に示す内容を入力しま
す（図表3-6）。

［3］　保存する
　編集したら保存します。［Ctrl］＋［X］キーを押すと、保存するかどうか尋
ねられるので、［Y］キーを押します。さらに、ファイル名が尋ねられるので、そのま
ま［Enter］キーを押すと、保存して終了します（図表3-7、図表3-8）。

　以上で完了です。ブラウザの［更新］ボタンをクリックしてみましょう。コンテン
ツが更新され、「Hello Container」に変わるはずです（図表3-9）。

3-5　コンテナの停止と再開

　これで、Dockerを使ってWebサーバーを起動することができました。とても簡単
で、時間もほとんどかからなかったはずです。

3-5-1　コンテナの停止
　こうして作ったコンテナは、いまはもちろん、実行中ですが、停止することもでき
ます。停止するには、docker stopコマンドを使います。stopコマンドの引数に
は、コンテナ名またはコンテナIDを指定します。

（1）コンテナ名
　コンテナ名は、docker runするときに--nameで指定した値です。このコンテナ
は、

というように「--name my--apache-app」として実行しましたから、コンテナ名は
「my-apache-app」です。

（2）コンテナID
　コンテナIDは、コンテナを識別するIDです。コンテナを作成したときに確定するラ
ンダムな値です。docker psコマンドで調べられます。先ほどdocker psを実行し
たときは、

のようになっていました。この「6f26110b71ad」がコンテナIDです。

　コンテナIDは長くて全部記述するのは煩雑なので、ほかと重複しない、先頭か
ら何文字か（例えば、「6f26」や「6f」など）を入力すればよいことになっていま
す。

　さて実際に止めてみましょう。次のように入力します。

memo　コンテナIDを使って、「docker stop 6f26」や「docker stop 6f」などとしても止められます。

　Webブラウザをリロードしてみましょう。もうApacheは動いてませんから、アクセ
スできなくなるはずです。このとき、docker psで状態を確認してみましょう。稼働
中のものは、もう、ありません。

　ただしコンテナ自体は、残っています。docker psコマンドに、-aオプションを指
定すると、稼働中ではないものも含む、すべてのコンテナを表示できます。次のよ
うに、まだコンテナが残っていることがわかります。ただし、STATUSは「Exited」で、
終了していることがわかります。

3-5-2　コンテナの再開
　止まっているコンテナを再度、実行することもできます。それには、docker start
コマンドを実行します。

　docker psで調べて見ると、稼働中であることがわかるはずです。もちろん、こ
の状態では、Webブラウザでアクセスすることができます。

3-6　ログの確認

　実行中のログを確認したいこともあるでしょう。そのようなときは、docker logs
コマンドを使います。Apacheのアクセスログが表示されます。

memo　Apacheのアクセスログが表示されるのは、httpdイメージが、そのように構成されているから

です。Dockerイメージによっては、この方法では、ログが表示されないものもあります。エラー

ログやアクセスログを分離して出力したいような場合は、コンテナ内の設定ファイルを書き換

えて、適切なログを出力するように調整する必要があります。

3-7　コンテナの破棄

　このようにコンテナは、docker stop、docker startを使うことで、停止したり起
動したりできます。再開できるということは、docker stopしても、コンテナは、ずっ
と残り続けるということでもあります。これは明らかにディスクを圧迫します。もう使
わないということであれば、停止ではなく、明示的に破棄しましょう。

　コンテナを破棄するには、docker rmを使います。docker rmを使うには、コン
テナが停止状態でなければならないため、まずは、停止します。

　そしてdocker rmします。

memo　docker rmは、コンテナを完全に消し去ります。復活する方法はありません。

　docker rmすると、もう、docker psに-aオプションを付けても見つからず、完
全に削除されたことがわかります。

3-8　イメージの破棄

　ディスクの消費と言えば、Dockerイメージが消費する容量も馬鹿になりませ
ん。この章では、次のようにdocker runしました。

　このとき「httpd:2.4」というDockerイメージ（これはhttpdという名前のイメージ
のバージョン2.4を示します。「4-2-1　Dockerイメージの取得」で説明します）を
ダウンロードします。実際に、どのようなイメージをダウンロードしたのかは、docker
image lsコマンドで確認できます。

　このダウンロードしたイメージは、コンテナを破棄しても、残ったままです。これは、
もう一度、同じDockerイメージからコンテナを作ろうとしたときに、再ダウンロードし
なくて済むようにするためです。上に示したように、httpdイメージは、165MB消費
していることがわかります。不要であれば、このイメージを削除してしまいましょう。

　Dockerイメージを削除するには、docker image rmコマンドを使います。
docker image rmコマンドには、削除したいイメージ名を指定します。そのときの
書式は、上記で確認した「REPOSITORY」と「TAG」を「:」（半角のコロン）でつ
なげた名前として指定します。つまり、この例では、「httpd:2.4」を指定します。す
ると削除されます。

memo　ここで「2.4」のようにタグ名が付いているのは、本書の流れでは、docker runするときに、

「 docker run -dit --name my-apache-app -p 8080:80 -v

"$PWD":/usr/local/apache2/htdocs/ httpd:2.4 」 の よ う に 、 最 後 の 引 数 で

「httpd:2.4」と指定しているからです。その詳細は、「4-2-1　Dockerイメージの取得」で

説明します。docker runする際、「httpd:2.4」ではなく「httpd」とだけ指定した場合、

TAGは「latest」という特別な値となります。この場合、docker image rmするとき、コロン

以下は省略できます。

memo　歴史的な理由から、docker image rmは、docker rmiとも書けます。

　削除後に、docker image lsコマンドで確認すると、もうイメージが存在しない
（つまりディスクスペースが解放された）ことがわかります。

3-9　コンテナ操作のまとめ

　ここまで、実際にDockerでApacheを起動して、終了するまでの方法を説明し
てきました。この章での操作をまとめておきます。

（1）Docker Hubでイメージを探す
　Docker Hubでイメージを探します。イメージのドキュメントには、起動方法も記
載されているので確認します。

（2）docker runで実行する
　docker runで実行します。そのときに指定するオプションなどは、ドキュメントに
書かれているので、それを参考にします。docker runすれば、もうそれで、コンテナ
が起動します。

（3）停止と再開
　docker stopすれば停止し、docker startで再開できます。コンテナの状態
は、docker psで確認できます。停止中のものも含めて確認したいときは、
docker ps -aのように、-aオプションを指定します。

（4）ログの確認
　docker logsコマンドを使うと、ログを確認できます。

（5）破棄
　コンテナを停止しても、コンテナは破棄されず、ディスクスペースを消費します。完
全に削除するには、docker rmコマンドを使います。

（6）イメージの破棄
　コンテナを破棄しても、その元となったDockerイメージは、残ったままです。保有
しているDockerイメージは、docker image lsコマンドで確認できます。Docker

Hubで、いろんなイメージを探して試していると、そのうち、ダウンロードしたイメージ
でディスクがいっぱいになります。もう使わなくなったイメージは、docker images
rmコマンドを使って削除するようにします。

　この章での中心は、コンテナを起動するときの、docker runコマンドです。

　こうした各種dockerコマンドは、どのような意味を持っているのでしょうか。次章
で、より詳しく見ていきましょう。

　第3章でコンテナを操作するために使ってきたコマンド
は、いったい、どのような意味だったのでしょうか？　この
章では、改めて、Dockerの基本操作について説明しま
す。

4-1　Dockerの基本コマンド

　すでに第3章でも説明してきた通り、Dockerはdockerコマンドで操作します。
dockerコマンドは、次の書式を採ります。

（1）コマンド
　「run」「start」「stop」など、第3章で使ってきた命令のことです。

（2）オプション
　コマンドに対するオプションです。第3章では、docker runのオプションとして、コ
ン テ ナ 名 を 指 定 す る 「 --name 」 の ほ か 、 「 -p 8080:80 」 や 「 -v
"$PWD":/usr/local/apache2/htdocs/」「httpd:2.4」などを使ってきました。ま
たdocker psのオプションとして、停止中も含めてすべてを確認するための「-a」を
使ってきました。

　どのようなコマンドがあるのかがわかれば、おおよそ、Dockerに対して、どのよう
な操作ができるのかがわかるはずです。そこで代表的なコマンドを、図表4-1にまと
めました。

memo　図表4-1に示したのは、すべてではありません。すべてのコマンドについては、Dockerコマンド

リ フ ァ レ ン ス

（https://docs.docker.com/engine/reference/commandline/docker/）を参照し

てください。

4-2　コンテナ起動から終了までの流れ

　まずは、コンテナが起動するまでの流れを詳しく追ってみましょう。第3章では、
次のようにdocker runと入力することでコンテナを起動しました。

　 docker run と い う コ マ ン ド は 、 実 は 、 「 docker pull 」 「 docker create 」
「docker start」という3つの一連のコマンドをまとめて実行する、利便性を重視し
たコマンドで、次の3つのコマンドに分けて入力するのと同じです。

　また第3章では、docker stopで停止したり、docker startで再開したりもしま
した。そして最後に、docker rmでコンテナを破棄し、docker image rmでイメー
ジを削除することもしました。

　このような一連のコマンドを使って、コンテナ起動から終了までの流れを図示し
たものが図表4-2です。以下、この図を見ながら、何が行われているのかを詳しく
見ていきましょう。

4-2-1　Dockerイメージの取得
　Dockerコンテナを起動するには、その元となるイメージが必要です。イメージ
は、docker pullコマンドを使うことで、Dockerリポジトリから取得します。

memo　既定では、Docker Hubから取得しますが、オプションを指定することで、そのほかのレジス

トリ（自社が用意したプライベートなレジストリなど）から取得することもできます。イメージ

を取得する方法として、ほかに、tar形式のイメージを取り込む方法もあります。その詳細

は、第8章で説明します。

イメージ名とタグ

　docker pullを使ってイメージを取得するときの書式は、次の通りです。

　第3章で説明したように、イメージ名は、Docker Hubで検索すればわかりま
す。実際、ApacheがインストールされたオフィシャルなDockerイメージは、
「httpd」という名前でした。イメージ名には、「タグ（tag）」を指定することもでき
ます。タグというのは、Dockerイメージの制作者が名付けた分類名のことです。ど
のようなタグがあるのかは、Docker Hubで詳細ページを確認したとき、［Tags］
タブで確認できます（図表4-3）。

　タグは、「リリース版」や「開発版」「バージョン番号」などを示すのに使われま
す。タグ名を指定するときは、半角のコロン（:）で区切ります。第3章では、次
のようにdocker runコマンドを実行しました。

　これに相当するdocker pullは、次の通りです。

　ここからわかるように、イメージ名として、「httpd:2.4」を指定しています。つま
り、httpdの「2.4」というタグのものを（この場合は、バージョン2.4）をダウンロード
するという意味です。

最新版を示す「latest」
　第3章では、httpdの詳細説明に書かれていた実行例にならって「httpd:2.4」
を指定しましたが、タグ名を省略して、「httpd」とだけ書くこともできます。タグ名
を省略したときは、最新版を意味する「latest」という特赦なタグが指定されたも
のとみなされます。

　ほとんどの場合、最新版を使いたいでしょうから、タグ名は省略するケースが多
いでしょう。以降、本書でも、特定のバージョンを明示的に指定したい場合を除
き、タグ名は基本的に省略することにします。

コラム 　本番環境では、明示的にタグを指定する
　開発が盛んなDockerイメージでは、かなり頻繁にlatest版が更新されま
す。数時間前とか1日前、3日前など、できたてほやほやのことも少なくありま
せん。

　開発環境でDockerを利用する場面では、これでもよいでしょう。しかし本番
環境は、違います。納品に当たっては、動作検証するはずです。動作検証後
にコンテナのバージョンが変わるということは、システムが変わるということです。
基本的に、動作検証をし直すべきでしょう。その際、コンテナ自体の不具合な
ど、予想外のトラブルに巻き込まれる可能性もあるので、不用意にコンテナの
バージョンが上がることは、避けたいはずです。

　そのために本番環境でDockerを利用するのであれば、タグ名を省略せずに
明示的に指定して、特定イメージの版に固定する（それより新しい版ができた
としても使わないようにする）ことが、ほとんどです。

　もちろん、その特定イメージの版のまま使い続けるという意味ではありませ
ん。ある程度の期間が経ったら、そのときの最新版で再度動作検証し、問題
なければ、その版に差し替えるというように、コンテナの定期的なアップデートは
必須です（そうしなければ、脆弱性などに対応できないでしょう）。

ダウンロードしたイメージの保存と破棄

　docker pullで入手したイメージは、Dockerホストに保存されます。もう一度、
同じイメージをdocker pullしても、ダウンロードし直されることはありません。すでに
第3章で見てきたように、保持しているイメージは、docker image lsコマンドで確
認できます。

memo　本書の第2章で構成した手順でDocker Engineをインストールした場合、キャッシュしたイメ

ージは、/var/lib/docker/overlay2ディレクトリに保存されます。保存先は、「docker

image inspect httpd:2.4」のように入力すると調べられます。docker image inspect

は、イメージについての詳細情報を調べるコマンドです。しかし保存先はいつでもここであると

考えるべきではありませんし、このディレクトリを直接、操作すべきではありません。

　保持しているイメージを削除するには、docker image rmコマンドを使います。

イメージIDでの指定

　イメージには、イメージ名やタグ名以外に、一意の「イメージID」も付いていま
す。イメージIDは、イメージを作るたびに更新されるユニークな値です。このIDは、
docker image lsコマンドなどで確認でき、上記の例では、「c5a012f9cf45」と
いう値です。

　イメージを指定するときは、イメージ名やタグ名ではなく、このイメージIDを指定
することもできます。とはいえイメージIDは数値の羅列で人間にとって扱いにくいの
で、イメージIDを使うのは、主に、タグ名が明示的に付けられていないバージョンを
使いたいときに限られます。

　イメージIDは長いので、重複しない先頭何文字かだけ入力し、以降を省略す
ることもできます。実際、docker image lsコマンドで表示される値自体も、後ろ

が省略された値です。

memo　イメージID全体は、「docker image inspect httpd:2.4」と入力して、「Id」の項目で参照

できます。

4-2-2　Dockerコンテナの作成
　DockerイメージからDockerコンテナを作るには、docker createコマンドを使い
ます。docker createには、元となるイメージ名（タグ名含む）もしくはイメージ
ID、そして、各種オプション、さらに、実行したいコマンド名を指定します。「実行し
たいコマンド」は省略でき、省略したときは、イメージの制作者が設定した既定の
コマンドが実行されます。

　第3章で実行したhttpdコンテナを作る場合のdocker createに相当するもの
は、次の通りです。ここでは「実行したいコマンド」は、省略しており、httpdコンテ
ナの制作者が定めた既定のコマンド（後述しますが、これはApacheを実行し、
通信を待ち続けるためのコマンドです）が実行されます。

起動オプション

　上記の例では、「--name」「-p」「-v」の3つのオプションを指定しています。それ
以外にも、さまざまなオプションを指定できます。主なオプションを図表4-4に示しま
す。ここで使っている3つのオプションは、とても重要で、ほとんどの場面で指定しま
す。少し詳しく見ていきましょう。

memo　図表4-4に示しているのは、すべてではありません。例えば実行CPUやメモリー、IOレートの

制限を課すオプションや実行権限の設定、ヘルスチェックの設定などがあります。詳細は、

docker create の コ マ ン ド ラ イ ン リ フ ァ レ ン ス

（https://docs.docker.com/engine/reference/commandline/create/）を参照し

てください。

nameオプションによる名前付け

　オプションの中でも重要かつ、ほぼ間違いなく指定するのは、コンテナの名前を
付ける「--name」オプションです。nameオプションを指定しないと、ランダムなコン
テナ名が付けられるため、管理がとてもしづらくなります。第3章では、「--name
my-apache-app」を指定することで、作ったコンテナを「my-apache-app」とい
うコンテナ名で利用するようにしました。

pオプションによるポート設定

　「-p」オプションは、ポート番号をマッピングするものです。書式は、

です。第3章では、「-p 8080:80」と指定しました。これは、DockerホストのTCP
ポート8080番を、コンテナの80番に結びつけるという意味です。

memo　UDPを選択するには、ポート番号を「ポート番号/udp」のように記述します。例えば、

「53/udp」のようにです（ここで例示している53番は、DNSの通信に使われる代表的なポ

ート番号です）。図表4-4を見るとわかりますが、「-p」はportの略ではなくて、「--

publish」（公開）の略です。つまりコンテナのポートの一部を、ホストから露出（公開）

して、外から見えるようにするという意味合いです。

　httpdイメージの制作者は、このイメージをポート80番で待ち受けて、そこから
Apacheに渡すように構成しています。そのため、こうしたポートのマッピングを設定
することで、「http://DockerホストのIP:8080/」でアクセスすると、その通信がコン
テナのポート80番に転送され、Apacheが公開している内容が見えるようになりま
す（図表4-5）。実際、第3章では、このURLにブラウザでアクセスして確認しまし
た。

　Dockerでは、pオプションを指定しない限り、DockerホストとDockerコンテナ
との通信はつながりません。Dockerホストを通じてDockerコンテナ内で動いてい
るプログラムと通信するには、明示的なpオプションの設定が必要です。Docker
ネットワークについての詳細は、第6章で、改めて説明します。

memo　マッピングの状態は、docker portコマンドで確認できます。

vオプションによるマウント設定

　「-v」オプションは、コンテナの特定のディレクトリに、ホストのディレクトリをマウン
トする設定です。次の書式を採ります。

memo　これ以外の書式を採ることもできます。また「--mount」オプションを使うこともできます。詳

細は、第5章で説明します。

　httpdコンテナの起動では、次のように-vオプションを指定しています。

　この例では、$PWDの値を、コンテナの/usr/local/apache2/htdocs/に割り
当てます。

$PWD
　dockerコマンドを入力した瞬間の、ホスト側のカレントディレクトリを示す環境
変数です。

/usr/local/apache2/htdocs
　コンテナ側のマウント先のディレクトリです。httpdイメージの制作者は、このディ
レクトリをWebコンテンツとして（ドキュメントルートとして）公開するように構成し
ています。

　この設定の結果、Dockerホストのカレントディレクトリの内容が、Apacheで公
開されるようになります（図表4-6）。ですから第3章で試したように、カレントディ
レクトリにindex.htmlを置いたら、その内容が表示されたというわけです。

コラム 　マウントとは
　マウントとは、あるディレクトリに対して、別のディレクトリを被せて、そのディレ
クトリの内容が見えるようにする設定のことです。マウントしている間、元のディ
レクトリの内容は隠され、マウントを解除すると、元に戻ります（図表4-7）。

コラム 　ポート番号やディレクトリはドキュメントやソースコードから判断する
　 httpd イ メ ー ジ が 、 「 な ぜ ポ ー ト 80 で 待 ち 受 け し て い る 構 成 な の か 」
「/usr/local/apache2/htdocsを公開する設定になっているのか」。こうした質
問は愚問です。これらに決まりはなく、httpdイメージの制作者が、そのように
作ったからにすぎません。そのように作ってあるとドキュメントに書いていますし、
docker runのオプション例のところで、それが暗黙的に示されています。

　 も し 気 に な る の な ら 、 https://github.com/docker-
library/docs/tree/master/httpd に 記 載 さ れ て い る ド キ ュ メ ン ト や 、
https://github.com/docker-library/httpdで公開されている、このイメージ
を作るためのソースコードを見れば、構成すべてがわかります（具体的には、第
8章で説明するDockerfileというファイルに書かれています）。

4-2-3　Dockerコンテナの開始と停止
　docker createは、コンテナを作成するだけです。言い換えると、まだ止まってい
ます。開始するには、docker startコマンドを使います。

　docker startを実行すると、イメージの制作者が設定した既定のコマンド、もし
くは、docker createの引数で明示的に指定したコマンドが実行されます。この
httpdの例では、docker create（およびdocker run）では、明示的にコマンド
を指定していないため、既定のコマンドが実行されます。そして、そのコマンドの実
行が完了すると、Dockerコンテナは、停止します。

　あとで説明しますが、「コマンドの実行が完了すると、Dockerコンテナは停止す
る」という事実は、コンテナを理解する上で、とても大事です。httpdコンテナの既
定のコマンドは終了することがないようにつくられています。そのためコンテナは、ず
っと実行しっぱなしの状態でいられるのです。この実行中のコマンドを停止するの

が、docker stopコマンドです。docker stopコマンドを実行すると、コンテナ内で
実行中のコマンドが終了し、それに伴い、コンテナが停止します。

memo　コンテナが暴走しているときには、docker stopが効かないことがあります。そのようなとき

は、docker killコマンドを使うことで、強制停止できます。

4-2-4　pull、create、runをまとめて実行するdocker run
　docker runは、これまで説明してきた、docker pull、docker create、
docker startの3つのコマンドを順に実行するコマンドです。Dockerはコンテナを
作って実行するのが目的です。「イメージを取得するだけ」「コンテナを作るだけで
実行しない」ということはほとんどないので、コンテナの実行という意味では、
docker runだけを習得すれば十分です。

　そこで本書では、以下、特別な意図がない限り、pull、create、startを個別
に実行するのではなく、docker runを使った方法で記載していきます。

コラム 　別々に実行したい、いくつかの場面
　docker runは、Dockerイメージをダウンロードするdocker pullの機能を含
みますが、そもそもdocker pullは、すでにダウンロード済みであるときは、再
度、ダウンロードしません。つまり「ダウンロードせずに、再度実行したい場合」で

もdocker runすればよく、（あえてdocker pullを含むdocker runを避け
て）docker create、docker startとする理由は、ありません。

　docker runは、docker pullを含むかどうかというよりも、「docker create
+ docker startの機能である。もしイメージがなければ、docker pullする」とい
うニュアンスで捉えるほうがよいでしょう。docker createを単体で使いたい理
由としては、複数のコンテナを連携して起動したい場合が挙げられます。コンテ
ナIDはコンテナを作成した時点で決まります。例えば別のコンテナに対して、コ
ンテナ実行前に、そのコンテナIDを渡したいときなどには、あえて、停止状態の
コンテナを作るために、docker createを使うことがあります。

4-3　デタッチとアタッチ

　先ほど説明したように、稼働中のコンテナは、何かのコマンドがずっと実行しっ
ぱなしです。実行しっぱなしであれば、シェルのプロンプト（「#」や「$」など）が表
示されないので、それが終了するまで、コマンドをさらに入力できません。

　しかし第3章で見てきたように、

のようにして実行した場合、このコマンドはすぐに完了し、次のコマンドの入力をす
ることができます。これはコンテナがバックグラウンドで動くためです。

4-3-1　-ditオプションの指定をせずに実行する
　バックグラウンドで動かすための指定が、「-dit」というオプションです。では、「-
dit」を指定しない場合、どのようになるでしょうか。やってみましょう。

手順 -ditオプションを指定せずに実行する

［1］　-ditオプションを指定せずに実行する
　次のコマンドを入力して実行します。

［2］　ログが表示される
　実行すると、既定のコマンドが実行され、次のようにログが表示されます。そし
て次のコマンド入力を受け付けません。

　画面に表示されているのはログなので、この状態のときにブラウザでアクセスす
れば、そのアクセスログが画面に表示されます。

［3］　実行中の既定のコマンドを停止する
　［Ctrl］＋［C］キー（または［Ctrl］＋［D］）を押せば、この既定のコ
マンドが終了します。画面には、次のようにプロンプトが表示されて、またコマンド
入力できるようになるはずです。

［4］　コンテナの状態を確認する
　コマンドが終了したので、もうコンテナ自体も終了しています。docker ps -aで
確認してみましょう。STATUSが「Exited」（終了済み）になっていることがわかり
ます。

memo　COMMANDの欄に記述されている「httpd-foreground」というのが、実は、httpdイメー

ジを実行する際に、既定に設定されているコマンドです。

　このように「-dit」オプションを指定しなければ、コンテナがフォアグラウンド（前
面）で実行されてしまうことがわかりました。つまり、httpdコンテナのように、ずっと

バックグラウンドで動かしっぱなしにしたいときは、この「-dit」オプションが必須であ
ることがわかります。

［5］　コンテナを破棄する
　いったんここで実験は終了とします。停止したコンテナを破棄しておきましょう。

4-3-2　-ditオプションの役割
　-ditは、「-d」「-i」「-t」の3つのオプションの組み合わせです（図表4-8）。「-d」
が、端末から切り離してバックグラウンドで実行することを指定するオプションで
す。「-i」と「-t」は、このコンテナを端末（キーボードとディスプレイ）から操作するた
めのオプションです。

memo　これらのオプションは順不同ですし、1つずつ記述しても、まとめて記述しても同じです。つま

り「-dit」は「-itd」でも、「-d」「-i」「-t」でも、「-d」「-it」でも、同じです。

4-3-3　デタッチとアタッチの切り替え
　-dは端末と切り離した状態で実行するためのオプションです。この状態を「デタ
ッチ（detach：切り離されたの意味）」と言います。逆に、いま「-dit」を省略し
て実行したときのように、「-d」を省略し、端末と接続した状態で実行することを
「アタッチ（attach：接続されたの意味）」と言います。

　いま見てきたように、アタッチの場合（-dを指定しないとき）は、端末と接続
された状態なので、端末からの操作は、そのままコンテナ内で実行中の既定のコ
マンドに流されます。だからこそ、［Ctrl］＋［C］を押すことで、そのコマンドが
終了したのです。デタッチのときは、端末とは切り離されているので、コンテナ内で
実行されているコマンドに対して、何かキー操作することはできません。デタッチの
状態とアタッチの状態は、実行中に切り替えることができます（図表4-9）。

memo　デタッチに使うキーは、docker attachコマンドする際、--detach-keysオプションで変更する

こともできます。

デタッチへの切り替え
　アタッチ状態から［Ctrl］＋［P］、［Ctrl］＋［Q］を押す。

アタッチへの切り替え
　docker attachコマンドを入力する。

　デタッチとアタッチの切り替えとは、コンテナ内で実行中のコマンドに対して、端
末（あなたが操作しているキーボードとディスプレイです）をつないだり切り離した
りすることです。少し試してみましょう。

手順 デタッチとアタッチの切り替えを試す

［1］　-dを指定せずに-itのみで実行する
　次のように、-dを指定せずに、-itのみで実行します。この場合、コンテナは、ア
タッチモードで起動します。

memo　-itを指定しないと［Ctrl］キーが効きません。その理由は、のちに説明します。

［2］　ログが表示される
　実行すると、先と同じようにログが表示されます。このとき、コマンド入力を受け
付けません。これは自分の端末が、コンテナの既定のコマンドに結びついているか
らです。

［3］　デタッチする
　［Ctrl］＋［P］、［Ctrl］＋［Q］を順に押します。するとデタッチされ、コ
マンドプロンプトが表示され、次のコマンドを入力できます。これはコンテナと端末
が切り離され、Dockerホスト側へのキー入力が可能になったことを意味します。

［4］　コンテナの状態を確認する
　docker ps -aと入力して、コンテナの状態を確認します。すると、STATUSが
「Up」であることがわかります。デタッチした場合は、コンテナ内のコマンドを終了す
るわけではなく、ただ端末を切り離しただけで、コマンドは実行中だからです。

［5］　アタッチする
　もう一度、コンテナに接続してみましょう。docker attachコマンドを入力しま
す。docker attachコマンドには、接続したいコンテナ名またはコンテナIDを指定し
ます。

［6］　端末がコンテナと結びつけられた
　端末がコンテナと結びつけられます。本来は、再度、アタッチしたあと、キー入
力操作ができるのですが、残念ながら、httpdコンテナの場合、再アタッチには対
応しておらず、次のメッセージが表示され、終了します。本来は、何度でも、デタッ
チ／アタッチを繰り返せるのですが、httpdコンテナは、そうなっていません。

［7］　後始末
　もうコンテナは終了（STATUSが「Exited」）しているはずです。docker ps -a
で調べてみてください。確認したら、docker rmコマンドで、コンテナを破棄してお
きます。

　こうしたアタッチとデタッチの切り替えは、コンテナを操作中に、一時的にコンテ
ナを切り離して、ホスト側の操作をしたいときに使われるもので、コンテナを使いた
いだけの場面では、ほとんど使われませんが、メンテナンスしたいときの操作として
知っておく必要があります。

4-3-4　「-iオプション」と「-tオプション」の意味
　さてここで、説明を保留にしておいた、-iオプションと-tオプションの意味を説明
します。これらは、コンテナに対して端末から操作する際の指定です。いま、アタッ
チしたコンテナからデタッチするのに［Ctrl］＋［P］、［Ctrl］＋［Q］のキーを
押しましたが、これが機能するのは、-iオプションと-tオプションを指定しているから
です。

-iオプション
　標準入出力およびエラー出力をコンテナに対して結びつけます。その結果、キー
入力した文字はコンテナに渡され、コンテナからの出力が画面に表示されるように
なります。-iオプションを指定しないと、キー入力はコンテナに伝わりませんからこう
したキーが効きません。そしてコンテナからの出力が届きませんから、httpdコンテナ
の例で言えば、いま見てきたように、画面に各種ログが表示されることもありませ
ん。

-tオプション
　-tオプションは、pseudo-ttyと呼ばれる疑似端末を有効にする設定です。疑
似端末は、カーソルキーやエスケープキー、［Ctrl］キーなどで操作するためのもの

です。このオプションを指定せず、-iオプションのみだと、これらのキーが使えません。
つまり、［Ctrl］＋［P］、［Ctrl］＋［Q］キーが効きません。

　コンテナを端末から操作する必要がない（「-d」オプションを指定して、デタッチ
で起動したら、もう以降、何も操作しない）ということであれば、「-i」や「-t」のオ
プションは必要ありません。そうではなくて、あとでアタッチするなどして端末から操
作したいときは、「-i」や「-t」を指定する必要があります。

コラム 　「-i」だけを指定するケース
　docker runのオプションでは、-iと-tをセットで使うことがほとんどで、両方を
合わせた「-it」は慣例句のごとく使われます。では、-iのみ指定するケースはあ
るのでしょうか？

　答えは「あります」です。それは、標準入出力だけをコンテナに結びつけたい
ケースです。標準入出力は、「>」「<」「|」などの記号を使ってリダイレクトできま
す。例えば、何かファイルからの入力を、コンテナ上で動かすコマンドに流して実
行したいときには、

のように、-iオプションだけ指定することがありえます。ファイルからの入力では、
カーソルキーやエスケープキー、Ctrlキーなどは必要ないからです。-tを指定しない
と、疑似端末を作らない分だけ（1MB程度と言われています）、メモリーの
消費を抑えることができます。

4-4　コンテナをメンテナンスする

　ときには、動作中もしくは停止中のコンテナに入り込んで、ファイルを確認した
り、編集したり、はたまたソフトをインストールしたいことがあります。ソフトのインスト
ールなど大規模なものについては第8章で説明するとして、コンテナを使うだけとい
う場合でも、「本当にコンテナ内で正しくプログラムが動いているのか」「コンテナ内
のファイルの中身を知りたい」ということは、よくあります。ここでは、そうしたコンテナ
内の代表的な操作の方法を説明します。

4-4-1　シェルで操作する
　コンテナに入り込んで何か操作したいときは、「コンテナの中でシェルを実行し、
そのシェルを通じて、さまざまな操作をする」というのが、基本的な考え方です。

memo　シェルとは、キーボードからの操作を読み取り、それを解釈実行して結果を画面に表示する

プログラムです。コマンド入力のプロンプト（「#」や「$」）を表示しているのも、このプログラ

ムです。代表的なシェルとして、/bin/shや/bin/bashがあります。

　コンテナの中でシェルを起動すれば、「$」や「#」などのプロンプトが表示されま
す。ここで例えば、キーボードから「ls」と入力すれば、lsコマンドが実行され、ファイ
ル一覧を確認できます。コンテナ内部でシェルを実行するには、コンテナが動いて
いるかどうかによって、次のいずれかの方法を採ります。

memo　以下ではシェルに限って説明しますが、シェルに限らず、任意のプログラムを実行できます。

停止中もしくはまだ作られていないとき
　docker runの引数に、/bin/shや/bin/bashなどのシェルプログラムを指定し、
本来実行される既定のコマンドの代わりに、これらのシェルが起動されるようにし
ます。このときキー操作するのですから、「-it」のオプションを忘れずに指定します。

動作中のとき
　docker execを使います。「docker exec --it コンテナ名 /bin/bash」のように
すると、現在コンテナ内で実行されているコマンドとは別に、シェルが起動します。

4-4-2　停止中のコンテナでシェルを実行する
　実際にやってみましょう。まずは、コンテナが動いていないケースから確かめます。
ここでも、これまで使ってきたのと同じ、httpdイメージを使います。

手順 停止中のコンテナでシェルを実行する

［1］　/bin/bashを実行する
　次のように入力して、/bin/bashを実行します。

　実行すると、「root@コンテナID:/usr/local/apache2#」のようにプロンプトが
表示され、このコンテナの中に入れます。

memo　/bin/bashを実行するには、コンテナの中に、そのコマンドが格納されている必要がありま

す。ほとんどのDockerイメージの中には/bin/bashは入っています。しかしファイルサイズを極

力抑える工夫がされたDockerイメージには、/bin/bashが入っていないかもしれません。こ

こでの指定はシェルを実行するわけではなくて、コンテナに格納されている任意のコマンド

（/bin/bash）を実行しているのにすぎません（この説明からわかるように、例え

ば、/bin/passwdを指定すれば、パスワードの変更画面が表示されるというように、任意の

コマンドを実行できます）。

memo　表示されている「2544a164ec50」は、コンテナIDです。環境によって異なります。

［2］　任意のコマンドを入力する
　このプロンプトで何か入力すれば、それは、コンテナの中で実行されます。例え
ば、lsコマンドを実行してみましょう。コンテナの中のファイル一覧を閲覧できます。

　ほかにも、いくつかのコマンドを実行できます。必要があれば、コンテナ内のファ
イルを変更したり、アプリケーションをインストールしたりすることもできます。とはい

えここで、そうした操作まで行うと話が複雑になるので、それらは第8章で扱うこと
にし、先に進みましょう。

［3］　コンテナの中と外を行き来する
　さらに実験を続けます。先ほど、［Ctrl］＋［P］、［Ctrl］＋［Q］キー
で、デタッチできると説明しました。この状態から、［Ctrl］＋［P］、［Ctrl］
＋［Q］キーを押して、デタッチしてみましょう。すると、次のようにコマンドプロンプ
トが変わります。

memo　172-31-35-228は、EC2インスタンスのプライベートIPアドレスです。環境によって異なりま

す。

　デタッチしたので、端末での操作はDockerホストに移りました。つまり、以降の
操作は、Dockerホスト側での操作となります。このとき、コンテナはまだ動いてい
ます。docker psで確認してみましょう。STATUSは「UP」で稼働中です。

　再度、docker attachすれば、コンテナに端末を再接続できます。プロンプトが
変わり、Dockerの内部を操作できます。

［4］　シェルを終了する
　ここで、「exit」と入力してみましょう。これは、シェル（ここでは実行している
「/bin/bash」のこと）を終了させることを意味します。すると、次のように、コンテ
ナの外に戻ります。

［5］　コンテナが終了したことを確認する
　Dockerでは、docker run（もしくはdocker create）で指定したプログラム
が終了したときは、コンテナ自体が停止状態になると説明しました。上記の操作
によって、プログラムは終了していますから、コンテナも終了しているはずです。確認
しましょう。STATUSが「Exited」になっていることがわかります。

［6］　後始末
　ひとまずの実験は終了です。いったんここで、コンテナを削除しておきましょう。

4-4-3　実行中のコンテナでシェルを実行する
　次に、実行中のコンテナに対して、シェル操作する方法を説明します。言い換
えると、-dオプションを指定してデタッチ状態で動作しているコンテナに対してシェ
ル操作する方法です。実際に操作する場合は、こちらのほうが、使うケースが多
いはずです。

手順 実行中のコンテナでシェルを実行する

［1］　コンテナをデタッチモードで起動する
　まずは、実験対象となる実行中のコンテナを作ります。次のようにhttpdコンテ
ナを「-dit」オプションを付けて実行し、デタッチモードで起動します。

［2］　コンテナの状態を確認する
　コンテナが稼働中になったことを確認します。STATUSが「Up」になって稼働して
います。ここでは、COMMANDも確認しておきましょう。「httpd-foreground」と
記述されています。これはhttpdイメージの制作者が設定した既定の実行コマン
ドです（このコマンドがApacheを内部で起動しています）。

［3］　シェルを起動する
　docker execコマンドで、シェルを起動してみましょう。

　先ほどと同じように、プロンプトが変わり、各種コマンドを入力できます。lsコマ
ンドを入力したりして、いくつかのコマンドを入力して試してみてください。もちろん、
［Ctrl］＋［P］、［Ctrl］＋［Q］でデタッチすることもできますが、ここでの
説明は割愛します。

［4］　シェルを終了する
　さて、ここで「exit」と入力してみます。するとシェルは終了します。

［5］　コンテナの状態を確認する
　コンテナの状態を確認しましょう。STATUSはUpのままであり、稼働中であるこ
とがわかります。

　なぜなら終了したのは、docker execで実行した/bin/bashであり、docker
runで（暗黙的に実行されている）httpd-foregroundが終了したわけではな
いからです。

［6］　後始末
　ひとまずの実験は完了です。コンテナを停止し、破棄しておきましょう。

4-4-4　docker runとdocker execとの違い
　このようにdocker execを使えば、稼働中のコンテナに対して影響を与えること
なく中に入り込んで作業できます。docker runとdocker execの違いを、図表4-

10にまとめておきます。ほとんどの場合、docker execを使うことが多いはずです。

4-5　1回限り動かすコンテナの使い方

　これまで使ってきたhttpdコンテナは、Webサーバー機能を提供するものであり、
ずっと動かしっぱなしで利用することを前提としたものです。こうしたサーバー用途の
使い方は、Dockerの代表的な活用法です。しかしそれ以外にも、Dockerの代
表的な使い方があります。それは、1回限り動かすコンテナの使い方です。どうい
うことかというと、コンパイラや画像変換ライブラリなどの便利ツールが入っていて、
そのツールを使ってDockerホストのファイルを処理したいというケースです。

4-5-1　Go言語をコンパイルする
　プログラミング言語の環境を構築するのは、意外と面倒なものです。インストー
ルが複雑なこともありますが、一度インストールしてしまうとアンインストールが困難
であったり、ほかの環境に影響を与えたりすることもあるからです。その点、
Dockerコンテナを使えば、手軽に試せます。コンテナを破棄してしまえば、元の状
態にすぐに戻せるからです。

　実際にやってみましょう。Docker Hubには、Go言語（Golang）のコンテナが
あります。これを使って、Go言語のプログラムをコンパイルしてみましょう。

手順 Go言語をコンパイルする

［1］　ソースコードを用意する
　Go言語のソースコードを用意します。ここでは単純に、リスト4-1 に示す
「hello.go」というソースコードを用意します。nanoエディタなどを起動して、このプ
ログラムを入力してDockerホストの適当なディレクトリに保存してください。

memo　nanoエディタの使い方については、「3-4 index.htmlを作る」を参照してください。

［2］　Go言語のコンテナを起動して実行する
　Go言語のイメージは、「golang」という名前です。下記のURLに使い方が記
述されています。

【golang】
https://hub.docker.com/_/golang

　記載されている使い方の通りに、次のコマンドを入力して実行します。このとき
［1］で用意したhello.goファイルを置いたディレクトリをカレントディレクトリにし
て（cdコマンドで、そのディレクトリに移動して）から、実行してください。

　イメージとして「golang:1.13」を指定しています。これは、バージョン1.13のGo
言語のコンテナを示します。実行するコマンドは「go build -v」です。これはGo言
語のビルドをするもので、ビルド後のバイナリが作成されます（ここで指定してい
る-vは、go buildのオプションで、画面に詳細情報を表示するという意味で
す）。

　指定したオプションは、次の通りです。

--rm
　実行が完了したとき、このコンテナを破棄するオプションです。

-v "$PWD":/usr/src/myapp
　-vオプションは、すでにhttpdコンテナを使うときにも指定した、ディレクトリのマ
ウント設定です。ここではカレントディレクトリを、コンテナ内の/usr/src/myappに
割り当てています。

-w /usr/src/myapp
　-wオプションは、コンテナ内のプログラム（すなわち、go build -v）を実行す
るときの作業ディレクトリを指定します。/usr/src/myappは、-vオプションでマウン
トしたディレクトリです。これはDockerホストのカレントディレクトリにマウントされて
いますから、コンテナ内では、このディレクトリに対してGo言語のビルドが実行され
ます。

［3］　ファイルができる

　ビルドが完了すると、コンテナは終了します。そして、ビルド後のプログラムが
myappという名前で生成されます。lsコマンドで確認してください。

memo　下記の結果を見るとわかりますが、myappはrootユーザーの権限で作られます。削除する

には、sudo操作が必要です。

［4］　実行する
　「./myapp」と入力すると実行できます。実行すると、画面には「Hello
World」と表示されます。

［5］　コンテナの状態を確認しておく
　最後に、コンテナの状態を確認しておきましょう。docker ps -aと入力しても、
何も表示されないことを確認してください。これは、docker runするときに、「--
rm」オプションを付けているので、コマンドの実行が終わったとき（go build -vが
終わったとき）に、コンテナが破棄されるためです。

4-5-2　コンテナがたくさん作られないように注意する
　ここではGo言語を使う例を示しましたが、ほかにも、機械学習やTeXによる組
版、PDF処理、画像変換など、さまざまな用途で、こうしたDockerコンテナが使
われることがあります。オフィシャルなものは意外と少ないですが、Docker Hubを
探せば、個人や団体が作っている、とても便利なコンテナがたくさん見つかりま
す。

　出来合いのコンテナを使えば、環境構築が格段と楽になります。「使いたいツ
ールがあるけれどもインストールはちょっと」と尻込みしているツールがもしあるなら、
Docker Hubで探してコンテナで利用してみてください。

　こうした「1回だけ使うコンテナ」を使うとき、1つ注意点があります。それは、コン
テナが増えてしまうことです。Go言語の例では、docker runする際に、--rmオプ
ションを指定したので、終了と同時にコンテナが破棄されました。しかし--rmオプ
ションを指定しない場合は、それらのコンテナが残ります。その場合、docker ps -
aで見ると、多数のExitedのコンテナを見ることになるでしょう。

　こうならないためにも、コンテナは終了しても残ったままになることを理解し、--
rmオプションを指定する、もしくは、都度、docker rmで終了するなどして、不要
になったコンテナが残らないように注意しましょう。

コラム 　不要になったコンテナやイメージをすべて削除する
　docker ps -aして、たくさんの終了済みコンテナが出てきたとき、それらをす
べて1つずつdocker rmすることを考えると、気が遠くなります。しかし安心して
ください。「docker container prune」と入力すれば、停止しているコンテナ
を、すべてまとめて削除できます。安全のため、本当に削除してよいのか尋ねら
れるので、「y」キーを押すと、停止中のものすべてが削除されます。

　イメージについても同様です。docker image pruneと入力すれば、どのコン
テナも使っていないすべてのイメージを削除できます。

4-6　Dockerのまとめ

　この章では、Dockerの基本について説明してきました。最後に、この章で学ん
だことをまとめておきましょう。

（1）バッグラウンドで実行するときは「-d」、キーボード操作するなら「-it」
　コンテナをバックグラウンドで実行するときは「-d」、キーボード操作するなら「-it」
を付けます。まとめて「-dit」を指定しておけばよいでしょう。

（2）ログは標準出力に表示される
　ログは標準出力に表示されます。アタッチ中なら画面に表示されます。デタッ
チ中なら、docker logsで確認できます。

（3）-vでディレクトリをマウントする
　コンテナは、制作者によって、「あるディレクトリにコンテンツを置く」とか「あるディ
レクトリを基準にコンパイルする」などが決まっています（そしてそれはドキュメントに
記載されています）。そこで、-vオプションを指定して、そのディレクトリにDocker
ホストのディレクトリを割り当てて処理するようにします。

（4）-pでポートを設定する
　コンテナは、制作者によって、どのポート番号を使うかが決まっています（そして
それはドキュメントに記載されています）。そこで、-pオプションを指定して、そのポ
ートをDockerホストのポートに割り当てて処理するようにします。

（5）コンテナの既定のプログラムが終了したらコンテナも終了する
　コンテナ内では、docker createやdocker runで指定したコマンド、もしくは、
既定のコマンドが実行され、そのコマンドが終了するとコンテナも終了します。

（6）実行中のコンテナ内を操作したいときはdocker exec
　コンテナ内を操作したいときは、docker execで/bin/bashなどのシェルを起動
します。

（7）コンテナは既定では、終了しても削除されない
　終了と同時に削除したいなら、--rmオプションを指定します。

　Docker操作は、ここで説明していることと、いまは説明していない環境変数の
設定（docker runの-eオプション）を理解すれば、ほぼ足ります（環境変数
の話は、次の章で説明します）。

　次の章では、docker runの「-vオプション」、すなわちマウントについて、もう少
し詳しく説明します。

　Dockerコンテナは、それぞれが隔離された実行環境で
す。コンテナを破棄すれば、その中にあるファイルは、自ず
と失われます。この章では、コンテナを破棄してもファイル
を残すための方法、そして、バックアップの方法について説
明します。

5-1　コンテナとファイルの独立性

　これまでは、1つのhttpdコンテナだけを扱ってきました。ここでは、2つのhttpdコ
ンテナを扱ってみましょう。第1章で説明したように、コンテナは互いに独立した実
行環境です。いくつ起動しても、それらが互いに影響を受けることはありません。

5-1-1　2つのhttpdコンテナを起動する
　実際に、2つのhttpdコンテナを実行してみましょう。これまでhttpdコンテナを実
行する際、

というように実行してきました。これは、

・ポート8080をポート80にマッピングする

・Dockerホストのカレントディレクトリをコンテナの/usr/local/apache2/htdocsに
マウントする

という意味でした。

　ここでは、図表5-1のように2つのhttpdコンテナを作成します。コンテナの名前は
何でもよいですが、ここでは、web01とweb02とします。web01はポート8080、
web02はポート8081にマッピングすることにします。また、どちらも-vオプションは指
定せず、/usr/local/apache2/htdocsへのマウントはしないことにします。そうする
と、この2つのコンテナは完全に互いに独立します。

手順 2つのhttpdコンテナを起動する

［1］　1つめのhttpdコンテナを起動する
　次のように入力して、1つめのhttpdコンテナを起動します。

［2］　2つめのhttpdコンテナを起動する
　次のように入力して、2つめのhttpdコンテナを起動します。

［3］　コンテナの実行を確認する
　docker psコマンドを実行して、どちらも実行中であることを確認します。またこ
のとき、PORTSの欄を確認し、片方は「8080->80」、もう片方は「8081->80」
に設定されていることを確認しましょう。

［4］　ブラウザで接続する
　 こ れ で Apache が 実 際 に 2 つ 起 動 し て い る は ず で す 。 ブ ラ ウ ザ か ら
「http://Dockerホスト:8080/」および「http://Dockerホスト:8081/」に接続して

確認しましょう。どちらにも接続でき、「It works!」と表示されるはずです（図表5-

2）。

memo　ここでの「Dockerホスト」とは、EC2インスタンスのパブリックIPです（第2章の図2-20を参

照）。

5-1-2　コンテナの中にファイルをコピーする
　このようにして、1台のDockerホストに2台のWebサーバーを同居させることがで
きました。もちろん必要があれば、さらに3台、4台と、Webサーバーを追加できま
す。たかだか1台のマシンに、たくさんのWebサーバーを同居できるのは、とても素
晴らしいことだと思いませんか？

memo　ここまでの操作では、「http://Dockerホスト:8080/」「http://Dockerホスト:8081/」･･･の

ように、明示的なポート番号の指定での切り替えが必要です。実運用では、きっと、それぞ

れ、「http://www.example.co.jp/」「http://www.example.com/」など、アクセスするド

メイン名で切り替えたいことでしょう。それは可能ですが、少し工夫が必要で、Dockerの力

だけではできず、リバースプロキシとして構成します。

　さて、この2台のhttpdコンテナですが、どちらもまだコンテンツファイルを置いてい
な い の で 、 両 方 と も 「 It works! 」 と 表 示 さ れ 区 別 が 付 き ま せ ん 。 そ こ で
index.htmlファイルを置いて、片方を「It's web01!」、もう片方を「It's web02!」
と表示できるようにしましょう。

　図表5-1に示したように、それぞれのコンテナは独立しており、コンテナ内
の/usr/local/apache2/htdocsにindex.htmlを配置すれば、目的を達せられま
す。

ファイルをコピーするdocker cpコマンド
　では、コンテナの中のファイルを変更するには、どのようにすればよいでしょうか？

　 こ こ ま で 学 ん で き た 知 識 の 中 で や る と す れ ば、 docker exec コ マ ン ド
で/bin/bashを起動し、コンテナの内部に入り、そこでnanoなどのエディタを起動
して、/usr/local/apache2/htdocs/index.htmlを編集するという方法が、まず、
考えられます。これは正解ですし、よい方法です。しかし残念ながら、今回のケー
スでは、うまくいきません。httpdイメージはファイルサイズを小さくするため、nanoエ
ディタなどのエディタが含まれていないからです。

memo　もちろん入っていないなら、aptコマンドなどでnanoをインストールすればよいではないかとい

う向きもありますが、ダウンロード元のサイトの設定が必要など、意外と手間がかかります。

　では、どうすればよいのでしょうか？　うってつけのコマンドがあります。Docker
ホストとDockerコンテナ間でファイルをコピーするdocker cpコマンドです。次の書
式で使います。docker cpコマンドは、コンテナが稼働中でも停止中でも、どちら
の場合でもファイルコピーできます。

　つまるところ、コンテナを対象にする場合は、「コンテナ名またはコンテナID:パス
名」と表記します。docker cpコマンドは、パーミッションをそのままコピーします。デ
ィレクトリも再帰的にコピーします。-aと-Lのいずれかのオプションを指定することも
できますが、これらを使うことは、あまりないでしょう（図表5-3）。

memo　docker cpでは、/proc、/sys、/dev、tmpfs配下のような、システムファイルはコピーできま

せん。こうしたファイルをコピーしたいときは、標準入出力経由でコピーします。詳しくは、

docker cp の リ フ ァ レ ン ス

（http://docs.docker.jp/engine/reference/commandline/cp.html）を参照してく

ださい。

docker cpコマンドでファイルをコピーする例

　実際にやってみましょう。index.htmlをDockerホストに作り、それをコンテナに
コピーしてみます。

手順 index.htmlをコピーする

［1］　tmpディレクトリにindex.htmlファイルを作る
　まずはindex.htmlファイルをコンテナに作ります。どこに作成してもよいのです
が、ここでは/tmpディレクトリに作りましょう。次のようにして/tmpディレクトリにカレ
ントディレクトリを移動しておきましょう。ここでは、あとで、現在のカレントディレクト
リに戻れるよう、pushコマンドを使ってディレクトリを移動することにします。

memo　pushコマンドは、シェルにおいて、現在のカレントディレクトリの状態を保存した上で、別の

場所にカレントディレクトリを移動します。保存したカレントディレクトリの位置まで戻るに

は、popdと入力します（後述の手順[8]）。

［2］　index.htmlファイルを作る

　いま私たちは、カレントディレクトリを/tmpに移動しています。ここで、この場
所/tmpに、index.htmlファイルを作ります。まずは、web01コンテナ用の
index.htmlファイルを作りましょう。ここではリスト5-1の内容で作成します。作成し
たら、保存して終了してください（図表5-4）。

memo　nanoエディタの使い方については、「3-4　index.htmlを作る」を参考にしてください。

［3］　ファイルをコンテナにコピーする
　このindex.htmlファイルを、コンテナweb01の/usr/local/apache2/htdocs/に
コピーします。次のように入力します。

［4］　ブラウザでアクセスして確認する
　ブラウザで「http://Dockerホスト:8080/」に接続します。いま配置した
index.htmlの内容である「It's web01」と表示されることを確認します（図表5-

5）。

［5］　コンテナの内部に入って確認する
　いまはコンテナ内の/usr/local/apache2/htdocs/ディレクトリにindex.htmlを
配置しました。本当にコピーされたかを確認しましょう。そのためには、前章で説明
したdocker execコマンドを使って、コンテナの内部に入ります。プロンプトが変わ
り、コンテナ内でコマンド入力できるようになります。

memo　下記の「08cfabeff4c9」はコンテナIDです。環境によって異なります。

［6］　index.htmlを確認する
　lsコマンドで/usr/local/apache2/htdocsディレクトリの内容を確認します。
index.htmlファイルが存在することがわかります。

　catコマンドでindex.htmlを確認します。先ほど、docker cpでコピーした内容と
合致することがわかります。

　確認が終わったら、exitしてコンテナから出ます。

［7］　コンテナweb02に対しても、同様に確認する
　 コ ン テ ナ web02 に 対 し て も 、 同 様 に 確 認 し て お き ま し ょ う 。 今 度
は、/tmp/index02.htmlとして、リスト5-2の内容のファイルを作ります。

　このファイルをコンテナweb02にコピーします。index02.htmlという名前のファイ
ルをindex.htmlというファイルでコピーします。

　そしてブラウザで「http://DockerホストのIPアドレス:8081/」に接続して、「It's
web02!」と表示されることを確認します。

［8］　カレントディレクトリを戻しておく
　以上で実験は終了です。手順［1］では、/tmpにカレントディレクトリを移動
したので、元の場所に戻しておきます。

5-1-3　コンテナを破棄して作り直すとファイルが失われる
　このように、docker cpを使うと、ファイルをコンテナの中にコピーすることができま
す。ここでコンテナを停止したり破棄したりすると、コピーしたファイルが、どのように

なるのかを確認します。

コンテナを作り直す
　実際にやってみましょう。コンテナweb01を作り直してみます。

手順 コンテナを作り直す

［1］　現在の状態を確認する
　まずは、コンテナの現在の稼働状態を確認します。ここでweb01のコンテナID
（CONTAINER ID）を控えておいてください。この例では「08cfabeff4c9」です。
あとで確認します。

memo　コンテナID（CONTAINER ID）は、環境によって異なります。

［2］　コンテナを停止する
　docker stopでコンテナを停止します。

　ここでWebブラウザから「http://DockerホストのIPアドレス:8080/」に接続して
みます。コンテナは停止しているので、接続できず、エラーとなるはず（しばらく待
たされたあとタイムアウトになる）です。

［3］　コンテナを再開する
　docker startでコンテナを再開します。

　再びWebブラウザから「http://DockerホストのIPアドレス:8080/」に接続して
みます。今度は、「It's web01!」と表示されるはずです。

［4］　コンテナを破棄する
　コンテナを破棄してみます。まずは、docker stopで停止し、それからrmで削
除します。

　docker psで確認します。-aオプションを付けて、停止中のものも含めて確認
します。コンテナweb01は、もうありません。

　再びWebブラウザから「http://DockerホストのIPアドレス:8080/」に接続して
みます。コンテナがないので、接続エラーとなります。

［5］　コンテナを作り直す
　それでは、web01コンテナを作り直しましょう。docker runで起動します。

　ここでdocker psでコンテナの稼働状況を確認しておきます。

　この状態で、Webブラウザから「http://DockerホストのIPアドレス:8080/」に接
続してみます。すると、「It's web01!」とは表示されず、「It works!」と表示されま
す（図表5-6）。

［6］　index.htmlファイルがなくなっていることを確認する
　このコンテナの中に入って、/usr/local/apache2/htdocsを確認します。

　ここでindex.htmlの内容を確認すると、これはhttpdイメージの既定のファイル
であり、先ほど置いた「It's web01!」ではないことがわかります。

　確認したら「exit」と入力して、コンテナから抜けます。

コンテナを起動し直すとファイルが失われる

　このようにコンテナを起動し直すと、ファイルが失われます。これは、コンテナがそ
れぞれ独立しており、コンテナを破棄すると、その内容が失われるからです。

　いまコンテナweb01を破棄してから作り直しましたが、この2つのコンテナは別物
です。これは、docker psでコンテナIDを確認するとわかります。手順の最初で
は、docker psでコンテナ一覧を確認しておきました。そしてコンテナを起動したあ
とにもコンテナ一覧を確認しています。

　コンテナの破棄前と作り直したあとで、web01のコンテナIDが違います。つま
り、同じweb01という名前が付いていますが、それは別のコンテナです。

　ですから作り直す前のファイルが失われているように見えるのです（図表5-

7）。この説明からわかるように、コンテナを破棄する操作（docker rm）は、注
意深く操作する必要があります。

5-2　データを独立させる

　この実験からわかるように、docker rmしてコンテナを破棄すると、そのコンテナ
の中にあるデータは失われます。そうであれば、コンテナは一度起動したら、破棄
してはならないのでしょうか？　いいえ。そうではありません。考え方が違います。
コンテナは、失ってはならないデータは、外に出すように設計するのです。

5-2-1　マウントすれば失われない

　コンテナでは、「実行するシステム」と「扱うデータ」は、別に管理することが推奨
されます。第4章では、docker runするときに、-vオプションを使って、$PWD
を/usr/local/apache2/htdocsにマウントしました。

　この章では-vオプションを使っていませんが、仮にこのようにマウントすれば、コン
テナがなくなっても失われることはありません。つまり、データをコンテナの外に出す
のです。実際にやってみましょう。

　$PWDだと少しわかりにくいので、ここでは、/home/ubuntuディレクトリに
「web01data」というディレクトリを作って実験してみます。

手順 ボリュームのマウントを試す

［1］　web01コンテナを破棄する
　いますでにweb01コンテナが起動中なので、停止して破棄します。

［2］　マウントするディレクトリを作る
　/home/ubuntuディレクトリにweb01dataというディレクトリを作ります。

［3］　仮のindex.htmlファイルを作る
　web01dataディレクトリにindex.htmlファイルを作ります。nanoエディタなどを
使って、リスト5-3の内容を入力してください。

［4］　［3］のディレクトリをマウントしてweb01コンテナを起動する
　［3］のディレクトリを/usr/local/apache2/htdocsにマウントしてweb01コン
テナを起動します。

　起動したら、docker psでコンテナIDを確認しておきましょう。

［5］　ブラウザで確認する
　この状態で、ブラウザにて「http://DockerホストのIPアドレス:8080/」を開いて
確認しましょう。「mount test」というメッセージが表示されるはずです（図表5-

8）。

［6］　破棄して作り直す
　このweb01コンテナを破棄して作り直します。

　起動したら、docker psでコンテナIDを確認しておきます。先とは違うコンテナ
IDなので、別のコンテナです。

　このときブラウザで確認すると、同じようにコンテンツが表示されます。
index.htmlは失われません。

5-2-2　データを分ければコンテナのアップデートがしやすくなる
　この手順でやったことを図示したものが、図表5-9です。破棄したコンテナと新し
く 作 っ た コ ン テ ナ は 、 別 の コ ン テ ナ で す が 、 ど ち ら も Docker ホ ス ト
の /home/ubuntu/web01data デ ィ レ ク ト リ を マ ウ ン ト し て い ま
す。/home/ubuntu/web01dataディレクトリは、Dockerホスト側にあるので、コ
ンテナが破棄されても失われることはありません。ですから、コンテナが違っても、同
じデータが見えるのです。

　ここまでの例では、コンテナ側からマウントしたファイルを書き換えませんでした
が、もちろん、書き換えることもできます。書き換えれば、その書き換えたデータは
そのまま残ります。

　このようにデータをコンテナではなくDockerホスト側に持ち、それをマウントするよ
うにすれば、失われることがありません。間違えてdocker rmしても影響しなくなり
ます。これはコンテナのアップデートや差し替えが容易になることも意味します。

　コンテナの元となるイメージは、イメージの制作者によって、しばしばバージョンア
ップされます（これは、Docker Hubの更新履歴を見るとわかりますが、アップデ
ートの頻度は、そこそこ早いです）。新しいバージョンに差し替えたいと思ったら、
docker stopとdocker rmし、それから、docker runし直せばよいのです。
docker runするときに、明示的にタグ名を指定していない場合（「:タグ名」を省
略した場合）は、最新版に差し替わりますし、タグ名を指定しているときでも、
「httpd:2.4」のようなタグ名であれば、2.4の最新版に差し替わります。

　もちろん新しいバージョンにして、何らかの不具合が生じて、戻したいようなこと
もあるでしょう。そうしたときには、タグ名もしくはイメージIDを明示的に指定して、
別の版に差し替えることも簡単です（図表5-10）。

5-2-3　コンテナ間のデータ共有にも利用できる
　こうしたマウントするという手法は、データを失わないようにするだけでなく、別の
使い方もあります。それはコンテナ間でのデータ共有です。実は、1つの場所を2つ
の以上のコンテナで同時にマウントすることもできます。そうすれば、そのマウントし
た場所を通じて、コンテナ間でファイル共有できます（図表5-11）。

5-2-4　設定ファイルの受け渡しや作業フォルダを受け渡す
　またDockerでは、コンテナ内の設定ファイルを書き換えるために、あるフォルダ
もしくは設定ファイルの1つだけをマウントするという使い方もされます。例えば、こ
れまで使ってきているhttpdコンテナは、/usr/local/apache2/confディレクトリに
Apacheの設定ファイルが入っており、設定を変更したいときは、このファイルを書
き換える必要があります。

memo　設定変更が必要な場面としては、例えば、SSL（HTTPS）に対応させたいときや、接続

の際のIP制限を課したいときなどが挙げられます。

　そのためには、/usr/local/apache2/conf内の必要なファイルをdocker cpで
コピーする方法や、docker exec（docker run）でシェルを起動し、コンテナ内
に入り込んで設定ファイルを変更する方法もあります。

　コンテナを起動する前に書き換えなければならないので、docker runするので
はなく、一度、docker createしておいて、docker cpなどでファイルを書き換え、
それから、docker startで起動するという手順になるでしょう（図表5-12）。

　しかしマウントする方法を採れば、もう少し簡単になります。Dockerホスト上の
適当なディレクトリに、コンテナ内の/usr/local/apache2/confと同じ内容のもの
を用意しておきます。そしてそのファイルを書き換えておき、docker runするとき
に、そのディレクトリを/usr/local/apache2/confディレクトリにマウントするのです
（図表5-13）。

　この方法なら、Dockerホストに設定ファイルが残るので、設定のバックアップが
容易です。そしてすでに説明したように、docker stop、docker rmしてコンテナを
破棄しても設定がDockerホストに残るので、設定そのままでコンテナの差し替え

も実施できます。こうした、設定のディレクトリをマウントして設定変更するというの
は、コンテナで頻用されるテクニックです。

memo　マウントはディレクトリに対して設定するのがほとんどですが、ファイル名を指定して、指定フ

ァイルだけをマウントすることもできます。1つもしくはいくつかの設定ファイルだけをコンテナに

受け渡したいときは、ディレクトリではなくファイル名を指定してマウントすることもあります。

5-3　バインドマウントとボリュームマウント

　これまで説明してきたように、Dockerホストにあらかじめディレクトリを作ってお
き、それをマウントする方法を「バインドマウント」と言います。Dockerにはもう1
つ、「ボリュームマウント」という方法もあります。

5-3-1　ボリュームマウント
　ボリュームマウントは、ホスト上のディレクトリではなく、Docker Engine上で確
保した領域をマウントする方法です。確保した場所のことを、「データボリューム」も
しくは略して「ボリューム」と言います（図表5-14）。

　ボリュームは、あらかじめ、docker volume createコマンドを使って作成してお
きます。docker volumeコマンドには、作成するcreate以外に、一覧を表示する
ls、削除するrmなどのサブコマンドがあります（図表5-15）。

ボリュームマウントの利点

　ボリュームを使う利点は、ボリュームの保存場所がDocker Engineで管理され
るため、その物理的な位置を意識する必要がなくなるという点です。ディレクトリ
構造はDockerホストの構成によって違うので、ディレクトリ名で指定する場合

（docker runやdocker createのvオプションでディレクトリを指定する場合）
は、Dockerホストに合わせた場所を指定しなければならず、汎用的ではありませ
ん（例えば、ある管理者は/home以下を使うように構成したかもしれませんし、
別の管理者は/var以下を使うように構成したかもしれません）。

　それに対して、ボリュームを扱う方法は汎用的で、どのDockerホストでも同じで
す。すぐあとに見るように、docker createでボリュームを作るコマンド、そしてその
ボリュームをdocker runやdocker createで指定するためのオプションは、どの
Dockerホストでも同じです。

5-3-2　バインドマウントとボリュームマウントの使い分け
　汎用性という面で言うと、ボリュームマウントが推奨されますが、バインドマウン
トを完全に置き換えるわけではありません。バインドマウントのほうが優れた場面
もあります。

バインドマウントのほうがよい場面
　バインドマウントの利点は、Dockerホストの物理的な位置にマウントできること
です。そのため、Dockerホストのファイルをコンテナに見せたいときは、バインドマウ
ントを使います。

　次のような場面では、バインドマウントが向きます。

（1）設定ファイルの受け渡し

　Dockerホスト上に設定ファイルを置いたディレクトリを用意して、それをコンテナ
に渡したい場合です。

（2）作業ディレクトリの変更を即座にDockerコンテナから参照したいとき
　Dockerホスト上のファイルを変更したとき、それをDockerコンテナにすぐに反映
させたいときです。例えば、httpdコンテナを動かして、そのドキュメントルート
（/usr/local/apache/htdocs）を、これまでのように、Dockerホストの適当な
ディレクトリにバインドした場合、Dockerホスト側でそのディレクトリ内のファイルを
変更すれば、それはすぐにDockerコンテナに反映されます。つまり、（Dockerコ
ンテナ内ではなく）Dockerホスト上のエディタから、Dockerコンテナ内のファイル
を直接編集できます。これは開発中に、とても便利です（図表5-16）。

ボリュームマウントのほうがよい場面

　逆にボリュームマウントが向く場面は、単純にDockerコンテナが扱うデータをブ
ラックボックスとして扱い、コンテナを破棄してもデータが残るようにしたいだけの場
面です。例えば、データベースを構成するコンテナにおいて、データベースのデータを
保存する場所が挙げられます。

　データベースのデータは、通常、ひとまとめのブラックボックスとして扱い、それぞ
れのファイルをDockerホストから編集することはないはずです。もしそんなことをし
たら、データベースは壊れてしまうことでしょう。このようにDockerホストから不用意
にデータを書き換えたくない場面では、ボリュームマウントが向きます（図表5-

17）。

　ボリュームはデフォルトでは、Dockerホスト上のストレージですが、ボリュームプラ
グインをインストールすることで、AWSのS3ストレージやNFSなどのネットワークストレ
ージを用いることもできます。

コラム 　各自のPCでDockerを使う場合はバインドマウントが便利
　本書はAWS上でDockerを利用しているため論点がズレますが、図表5-16
のようなバインドマウントは、WindowsやmacOSにおいて、開発者やデザイナ
ーがDockerを利用する場面で便利です。

　例えば、httpdコンテナの/usr/local/apache2/htdocsを、Windowsの
C:\Users\ユーザー名\Documents\exampleなどのディレクトリにバインドマ
ウントして起動するとします。この場合、このexampleディレクトリのファイルを編
集すれば、自身で起動しているDockerのコンテンツとして、すぐに表示されま
す。つまり、Visual Studio Codeなどのエディタを使っていつも通りに開発する
だけで、自分のPCのポート8080など（http://localhost:8080/）で、そのコン
テンツをすぐに見ることができるのです（図表5-18）。

5-3-3　MySQLコンテナを使った例
　実際に、ボリュームマウントを使ってみましょう。いまちょうど適した利用例として
データベースを取り上げたので、ボリュームマウントを使ったデータベースのコンテナを
作る例を紹介しましょう。

　ここでは、データベースコンテナとして、MySQL 5.7を取り上げます。MySQLのコ
ンテナは、Docker Hubにオフィシャルイメージとして登録されています。バージョン
5.7のイメージ名は、「mysql:5.7」です（図表5-19）。

memo　バージョン5.7を利用するのは、次の章で説明するWordPressで利用するときの布石です。

MySQLのバージョン8以降は、デフォルトの認証方式が変わっているため、別のコンテナと

組み合わせたときに、デフォルトの設定だとうまく利用できないことがあります。こうした理由

から、ここではバージョン5.7を使いました。

【MySQLのイメージ】
https://hub.docker.com/_/mysql

　MySQLに限らず、Dockerイメージを使う場合、そのイメージの制作者が、「どの
ような使い方を想定して作っているのか」「各種設定はどのようにして行えばよい
のか」を、記載されているドキュメントからくみ取らなければなりません。

　これは上記のページに記載されていますが、かい摘まんで、「マウントすべきディ
レクトリ」と「rootユーザーのユーザー名、パスワード、既定のデータベース名などの指
定方法」の2つを以下にまとめます。

マウントすべきディレクトリ
　データベースのデータは、/var/lib/mysqlディレクトリに保存されます。ここをボリ
ュームマウント（もしくはバインドマウント）することで、コンテナを破棄しても、デー
タベースの内容が失われないようにします。

rootユーザーのユーザー名、パスワード、既定のデータベース名などの指定方法
　データベースにアクセスする際のrootユーザーのユーザー名、パスワード、既定のデ
ー タ ベ ー ス な ど は 、 環 境 変 数 と し て 引 き 渡 し ま す （ 図 表 5-20 ） 。
MYSQL_ROOT_PASSWORD （ も し く は
MYSQL_ALLOW_EMPTY_PASSWORD か
MYSQL_RANDOM_ROOT_PASSWORD）のみ必須で、残りはオプションで

す。すぐあとに説明しますが、具体的には、docker run（もしくはdocker
create）するときに、-eオプションで指定します。

memo　より複雑な設定をしたいときは、MySQLの設定ファイルであるmy.cnfファイルをバインドマウ

ントで引き渡す方法もとれます。

memo 　 図 表 5-20 の 環 境 変 数 名 に 「 _FILE 」 を 指 定 し た 環 境 変 数 （ 例 え ば

MYSQL_ROOT_PASSWORD_FILEなど）を使うと、直接文字列を記載するのではなく、

ファイル名を記載して、そのファイルの内容を設定するという挙動にもできます。

5-3-4　ボリュームを作成する
　では、始めましょう。まずは、ボリュームを作成します。ボリュームを作成する基本
的な構文は、次の通りです。

　--nameオプションは省略できますが、そうすると無名のボリュームとなりわかり
にくいので、設定したほうがよいでしょう。以下では、mysqlvolumeという名前の
ボリュームを作成してみます。

memo　ボリューム名に「/」からはじまる名前を付けることはできません。これは後述するように、マウン

トするときの構文がバインドボリュームと同じであるため、ボリュームマウントかバインドマウント

かの区別をする内部的な理由によります。

手順 ボリュームを作成する

［1］　ボリュームを作成する
　次のコマンドを入力して、mysqlvolumeという名前のボリュームを作成します。

［2］　作成したボリュームを確認する
　docker volumeコマンドを使うと、存在するボリュームを確認できます。

コラム 　ボリュームドライバとプラグイン
　docker volume lsの結果として表示される「DRIVER」は、ボリュームを構
成するドライバです。既定は「local」であり、Dockerホスト上のディスク上に作
成されます。それ以外にボリュームプラグインをインストールすることで、Amazon
S3のストレージやNFSなどのネットワークストレージを利用できます。

5-3-5　ボリュームマウントしたコンテナを作成する
　では、このボリュームをマウントして、MySQL 5.7のコンテナを起動してみましょ
う。ここでは、rootユーザーのパスワードは「mypassword」としてみます。

手順 MySQL 5.7のコンテナを起動する

［1］　MySQL 5.7のコンテナを起動する
　docker runコマンドを使って、MySQL 5.7のコンテナを起動します。どのような
コンテナ名でもよいですが、ここではdb01というコンテナ名にしましょう。このとき、い
ま作成したボリュームを/var/lib/mysqlディレクトリにマウントします。ボリュームのマ
ウントには、バインドマウントと同様にvオプションを使います。違うのはディレクトリ
名ではなくてボリューム名を使うという点だけです。

　 MySQL 5.7 を 起 動 す る に は 、 root ユ ー ザ ー の パ ス ワ ー ド を
MYSQL_ROOT_PASSWORDとして設定しなければなりません。これはeオプショ
ンで指定します。

memo　ただしボリュームのマウントには、vオプションではなくmountオプションを使うことが推奨され

ています。vオプションだと、ボリュームが作られていないときに新規にボリュームが作成されて

しまい、意図しない結果になるためです。詳細は「5-3-7 mountオプションを使ったマウント

の設定」で説明します。

［2］　起動を確認する
　docker psで起動を確認しておきます。

5-3-6　データベースに書き込んだ内容が破棄されないことを確認する
　では、このMySQLコンテナを使っていきましょう。MySQLコンテナにログインし
て、データベースを操作して、新しいデータベースを作り、適当なデータを書き込んで
みます。そのあとコンテナを破棄し、新たにコンテナを作り直したとき、そのデータが
破棄されていないことを確認します。

手順 データベースに書き込んだ内容が破棄されないことを確認する

［1］　コンテナ内に入る

　docker execコマンドを使ってシェルを起動し、コンテナ内に入ります。プロンプ
トが変わり、コンテナ内でコマンド入力できるようになります。

［2］　mysqlコマンドを実行する
　mysqlコマンドを-pオプション付きで実行します（パスワードを入力するた
め ） 。 パ ス ワ ー ド が 求 め ら れ た ら 、 コ ン テ ナ を 起 動 す る と き に
MYSQL_ROOT_PASSWORD 環 境 変 数 で 設 定 し た パ ス ワ ー ド （ こ こ で は
「mypassword」）を入力します。すると「mysql>」と表示され、MySQLの操作
ができるようになります。

［3］　データベースを作成する

　適当なデータベースを作成してみます。ここでは「exampledb」というデータベー
スを作成します。

memo　「mysql>」の後ろに続く部分が入力箇所です。それ以外は、応答です。

［4］　テーブルを作成する
　適当なテーブルを作成してみます。ここでは「exampletable」というテーブルを
作成します。

memo　本書はSQLを解説するのが目的ではないので、SQLの説明は省きます。以下は、use

exampledb;で、デフォルトのデータベースを手順［3］で作成したexampledbに変更し、

CREATE TABLE･･･で、テーブルを作るという意味です。この文により、id列、name列を持

つexampletableテーブルが作成されます。id列は自動連番に設定されます。

［5］　データを挿入する
　2件ほどのデータを挿入してみます。

［6］　データを確認する
　挿入したデータを確認します。2件のレコードが表示されます。

［7］　mysqlコマンドを終了する
　2件のレコードが追加されたことを確認したら、このコンテナを破棄していきましょ
う。まずは、mysqlコマンドを抜けます。抜けるには「\q」と入力します。

［8］　コンテナから出る
　「exit」と入力して、コンテナから出ます。

［9］　コンテナを破棄する
　コンテナを停止して破棄します。

　コンテナがなくなったことを確認します。

［10］　マウントせずに新しいコンテナを作って確認します。
　まずは、-vオプションを指定せず、マウントせずに新しいコンテナを作って確認し
ます。

　先と同様に、docker execしてシェルに入り、mysqlコマンドを実行します。

　useでexampledbに切り替えようとしてください。そのようなデータベースは存在
しないとエラーになるはずです。

　「\q」で終了し、「exit」でコンテナを抜けましょう。

［11］　コンテナを破棄してマウントした新しいコンテナを作る
　いまのコンテナを破棄して、別のコンテナを作り直します。今度は、-vオプション
を付けてマウントします。

　docker execでシェルに入り、いまと同じように、「use exampledb」してみま
す。今度は切り替えられます。

　SELECT文を実行すると、先ほど追加したレコードが存在することも確認できま
す。

　「\q」で終了し、「exit」でコンテナを抜けましょう。

［12］　後始末
　このように、ボリュームを作ってマウントすることで、データが失われないことを確
認できました。ひとまず実験終了です。コンテナから出て、終了し、破棄しておい
てください。

5-3-7　mountオプションを使ったマウントの設定
　さてこれまで、バインドマウントやボリュームマウントするのに「-vオプション」を使い
ましたが、もう1つ「--mount」というオプションを使う方法もあります。--mountオ
プションを使う場合の書式は、次の通りです。

　マウントの種類は、バインドマウントのときは「bind」、ボリュームマウントのときは
「volume」を指定します。srcはマウント元、dstはマウント先です（srcは
source、dstはdestinationやtargetとも書けます）。

　--mountは、Dockerバージョン17.06からサポートされたオプションです。どちら
を使っても結果は同じですが、--mountのほうが推奨されています。その理由は2
つあります。

（1）バインドマウントかボリュームマウントかわかりにくい
　-vオプションでは、マウント元が「/」から始まるときはバインドマウント、そうでない
ときはボリュームマウントです。わかりにくく間違える可能性があります。

（2）ボリュームが存在しないときに新規に作成される
　ここまでの流れでは、あらかじめdocker volume createでボリュームを作ってお
きましたが、実は、作らずに、いきなり-vオプションで指定することもできます。その
場合、新規にボリュームが作成されます。しかしこの動作は、ボリューム名をタイプ
ミスしたときに致命的な問題になりがちです。

　例えば今回の例では、mysqlvolumeというボリュームを作りました。これを-v
mysqlvolume:/var/lib/mysql と す る の を 間 違 え て 、 -v
mysqlvolum:/var/lib/mysqlのようにしたときは（最後の「e」が抜けている）、
新しいボリュームが作成されてしまうので、以前に使っていたデータが見えないとい
うトラブルが発生してしまいます。--mountオプションの場合は、こうした事故がな
いよう、ボリュームが存在しないときは新規作成せず、エラーが発生する挙動にな
っています。

　歴史的な理由から、-vオプションが使われるケースが多いですが、今後は、--
mountを使うほうがよいでしょう。

コラム 　tmpfsマウント
　ここまでバインドマウントとボリュームマウントを説明してきましたが、実はもう1
つ、tmpfsマウントというものもあります。tmpfsマウントは、--tmpfsオプション、
もしくは、--mountオプションのtypeでtmpfsを指定することでマウントします。

または

　tmpfsはディスクではなくメモリーを特定のマウント先に指定するもので、メモ
リーディスクを利用することで読み書きを高速化する目的で使います（そのた
めマウント元の指定がありません）。tmpfsはメモリーなので揮発性です。コン
テナを破棄するとともに破棄されます。

　なお、--mountで指定する際は、tmpfs-sizeオプションで容量を、tmpfs-
modeオプションでファイルモード（0700など）を、それぞれ設定することもでき
ます。--tmpfsで指定する場合は、これらを指定できません。

5-4　データのバックアップ

　コンテナを扱うときは、データのバックアップについても検討しなければなりませ
ん。バインドマウントの場合、バックアップは簡単です。Dockerホスト上のファイル
なので、Dockerホストからアクセスできるからです。Dockerホストで、別のディレク
トリにコピーするとか、tarコマンドでファイルをまとめて保存するなどすることで、バッ
クアップできます。

　ではボリュームをバックアップするには、どうすればよいのでしょうか？　ここまで
の手順では、MySQLコンテナのデータをmysqlvolumeという名前のボリュームに
保存しました。このボリュームが失われれば、データベースのデータは失われてしまい
ます。

5-4-1　ボリュームの場所
　そもそもボリュームは、どこにあるのでしょうか？　ボリュームの詳細情報は、
docker volume inspectコマンドで確認できます。

　実際にmysqlvolumeの詳細情報を確認してみましょう。次の情報が得られ
ます。

　上記のMountpointの場所が、実際にマウントされている場所です。この例で
は/var/lib/docker/volumes/以下にあります。

　では、このファイルをtarファイルなどで固めてバックアップすればよいのかという
と、そうではありません。ここはDocker Engineのシステム領域であり、仮にここを
バックアップしてリストアしても、元に戻るとは限りません。

5-4-2　ボリュームバックアップの考え方
　Dockerでボリュームをバックアップするときは、適当なコンテナに割り当てて、そ
のコンテナを使ってバックアップを取るようにします。

　具体的には、適当なLinuxシステムが入ったコンテナを1つ別に起動します。そ
してその/tmpなどのディレクトリにバックアップ対象のコンテナをマウントし、tarでバ
ックアップを作ります。そのバックアップをDockerホストで取り出せば、バックアップ
は完了します。リストアするときは、その逆の手順で戻します（図表5-21）。

　なお、1つのボリュームは、複数のコンテナから同時にマウントできるので、バック
アップに際して、利用中のコンテナのマウントを外す必要はありません。しかしコン
テナの稼働中のバックアップは、データの整合性がとれなくなる可能性があるの

で、バックアップ中は、コンテナを停止（docker stop）しておくのが望ましいでし
ょう。

memo　もちろん、そのボリュームに書き込みが発生しないタイミングでバックアップを確実に取れるの

であれば、コンテナ稼働中でもバックアップできます。あくまでもバックアップ中に、そのボリュ

ームへの書き込みがされないことを保証できるかどうかだけの話です。

5-4-3　ボリュームをバックアップする
　実際に、このmysqlvolumeをバックアップしてみましょう。

ボリュームバックアップの実例
　まずは実際にやってみます。それから解説します。

手順 ボリュームをバックアップする

［1］　ボリュームを利用中のコンテナが停止中もしくは存在しないかどうかを確

認する
　念のため、ボリュームを利用しているコンテナが停止中であることを確認します。
docker ps -aで調査し、db01コンテナの状態が停止中、もしくは、そもそもコン
テナが存在しないことを確認しましょう。

　本書を手順通りに進めていれば、いま、db01コンテナは存在しないはずです。

［2］　軽量Linuxシステムのbusyboxを起動してtarコマンドでバックアップす

る
　Linuxシステムが入ったコンテナを、mysqlvolumeをマウントして起動します。そ
してtarコマンドを実行してアーカイブします。そのために、次のコマンドを入力しま
す。

　このコマンドを入力すると、実行したディレクトリに、backup.tar.gzとしてバック
アップが作れます。lsコマンドで確認しましょう。

　tarコマンドで中身を確認してみましょう。それらしきファイルが格納されているよ
うです。

ボリュームバックアップの慣例的なコマンド
　では、いま入力した

は、どういう意味なのでしょうか？　少し順を追ってみてみましょう。ボリュームマウ
ントとバインドマウントを組み合わせているところに注目しましょう（図表5-22）。

（1）軽量なLinuxシステムbusyboxの起動
　ここではイメージとして「busybox」を指定しています。これは基本的なLinuxコ
マンドが格納された軽量Linuxで、「ちょっとLinuxのコマンドやシェルを使いたい」と
いう場面で、よく使われます（詳細は第8章で説明します）。busyboxはファイ
ルサイズが小さいのが特徴です。ここではtarコマンドだけが使えればよいので、こう
した最小のLinuxを利用しています。

（2）バックアップ対象を/srcにボリュームマウント
　1つめの-vオプションでは、バックアップ対象であるmysqlvolumeを/srcにボリュ
ームマウントしています。つまり、このコンテナの中からは、バックアップ対象が/srcか
ら見えます。

（3）Dockerホストのカレントディレクトリを/destにバインドマウント
　2つめの-vオプションでは、"$PWD"を/destにバインドマウントしています。
$PWDは、Dockerホストのカレントディレクトリ、つまり、このコマンドを実行したと
きの現在のディレクトリです。

（4）tarでバックアップを取る
　実行するコマンドは、tar czf /dest/backup.tar.gz -C /src .です。このコマンド
によって、/srcディレクトリの全ファイルが/dest/backup.tar.gzにバックアップされ
ます。上記の（3）で/destをDockerホストのカレントディレクトリにマウントしてい
るので、このファイルはDockerホストのカレントディレクトリに現れます。つまり、
Dockerホスト上で取り出せます。

（5）--rmで破棄する
　docker runするときは、--rmで実行後に破棄するようにしています。ですか
ら、ここで起動したコンテナは、tarコマンドの実行が終われば、自動的に削除され
ます（docker rmで明示的に後始末する必要がありません）。

　少し複雑ですが、ここで示したように、ボリュームをバックアップしたい場面では、

というコマンドを入力することで、カレントディレクトリにbackup.tar.gzというファイ
ルとして取得できます。

5-4-4　ボリュームをリストアする
　バックアップを作ったところで、次に、リストアしてみましょう。まずボリュームを削
除して、新たに作り直します。そして、いま作成したbackup.tar.gzからリストアし
てみます。

ボリュームの削除
　ボリュームを削除するには、docker volume rmコマンドを使います。

memo　docker volume pruneコマンドを使うと、どのコンテナからもマウントされていないボリューム

をまとめて削除することもできます。

手順 ボリュームを削除する

［1］　ボリュームを削除する
　次のコマンドを入力してボリュームを削除します。

memo　このコマンドは、ボリュームを完全に削除するため、保存していた内容は失われるので注意し

てください。

［2］　ボリュームが削除されたことを確認する
　docker volume lsコマンドを実行して、ボリュームが存在しないことを確認しま
す。

ボリュームの作成とリストア

　それではボリュームを作成し直してリストアしましょう。

memo　以下では、同名のボリュームにリストアしていますが、もちろん、別名のボリュームにリストアす

ることもできます。

手順 ボリュームの作成とリストア

［1］　ボリュームの作成
　まずはボリュームを作成します。

［2］　リストアする
　先にバックアップしておいたbackup.tar.gzをカレントディレクトリに置いた状態
で、次のコマンドを入力します。これでリストアされます。

　このコマンドは、先ほどと逆向きです。①リストア先のボリュームを/destにボリュ
ームマウント、②カレントディレクトリを/srcにバインドマウント、しています。こうする
ことで、カレントディレクトリに置いたbackup.tar.gzは、/src/backup.tar.gzとして
見えます。実行しているtar xzf /src/backup.tar.gzは、まさにこのファイルを/dest
に展開するものです。/destはリストア先のボリュームにマウントされていますから、
そのボリュームに展開されるという具合です。
　本当にリストアされたかどうかは、「5-3-6 データベースに書き込んだ内容が破
棄されないことを確認する」と同様の手順で、このボリュームをMySQLコンテナにマ
ウントして、SELECT文を入力することで確認してください。

　同じ手順ですから、ここでの手順の再掲は控えます。

5-4-5　コンテナのマウント指定を引き継ぐ
　いま示した方法では、バックアップする際、-vオプションには、バックアップ対象
のボリューム名を指定しています。これはコンテナが、どんなボリュームを使っている
のかを知っていなければならないことを意味します。

　どのようなボリュームを使うのかは、起動するときの管理者の気分次第です。

というように、mysqlvolumeというボリュームを使っていることもあれば、

のように、mysqlvolumeABCというボリュームを使っていることもあるかもしれませ
ん。

　自分だけで数個のコンテナを管理しているのならともかく、複数の管理者がコ
ンテナを管理する場合や、コンテナ数が増えてきた場合には、コンテナが、いま、ど
のボリュームを使っているのかを洗い出してバックアップするのは、なかなか手間の
かかる作業です。その際、漏れが生じる可能性もあります。

volumes-fromオプションを用いたバックアップ

　マウント先のボリュームを意識しないようにするために用意されているのが、--
volumes-fromというオプションです。--volumes-fromオプションは、コンテナを
起動する際、別のコンテナのマウント情報を引き継ぎ、それとまったく同じ設定で
マウントします。
　 例 え ば 次 の よ う に し て 、 db01 コ ン テ ナ を 起 動 し た と し ま す 。 こ こ で は
mysqlvolumeを/var/lib/mysqlにマウントしています。

　このとき、別のコンテナを起動するときに、「--volumes-from db01」と指定す
ると、db01コンテナとまったく同じ状態のマウント情報が設定されて起動します。
つまりこの例では、mysqlvolumeが/var/lib/mysqlにマウントされます。

　この方法を使うと、次のようにしてバックアップできます。

手順 --volumes-fromを使って対象を指定する

［1］　コンテナを停止する
　バックアップ中にデータが書き換わらないようにするため、いったん、コンテナを停
止します。

［2］　バックアップする

　次のように--volumes-fromを指定してbusyboxを起動し、コンテナをバックア
ップします。/var/lib/mysqlにマウントされていますから、バックアップ対象は、この
ディレクトリです。

［3］　コンテナを再開する
　バックアップが終わったら、コンテナを再開します。

volumes-fromオプションの利点

　この方法の利点は、バックアップ対象をボリューム名ではなくて、そのコンテナの
ディレクトリ名で指定できるという点です。コンテナのディレクトリが、どのボリューム
にマウントされているかを意識する必要がありません。
　例えば次のように、db01、db02、db03という3つのMySQLコンテナが起動し
ていたとします。

　この場合、バックアップを取るには、

のように、どの場合もバックアップ対象は、/var/lib/mysqlです。実際にマウントさ
れているボリューム名を意識する必要がありません。

　このように「コンテナのバックアップ」という用途では、とても便利です。なお、ここ
では1つしかボリュームをマウントしていませんが、--volumes-fromでは、すべての
マウント情報が引き継がれます。ですから、複数のボリュームをマウントしている場
面では、一括マウントできるので、さらに便利に利用できるはずです。

コラム 　データボリュームコンテナ
　ボリュームを利用する際、データボリュームコンテナという考え方が採用される
ことがあります。データボリュームコンテナとは、自身は何もせず、必要なディレク
トリだけをマウントしただけのコンテナです。何もしなくてよいので、通常は、
busyboxなどの軽量なイメージから作成します。コンテナは、ボリュームに直接マ
ウントするのではなくて、データボリュームコンテナを経由してボリュームにマウント
します。例えば、本章で説明しているMySQLコンテナの場合は、データボリュー
ムコンテナとして、/var/lib/mysqlを適当なボリュームにマウントしたものを用意
しておき、そのデータボリュームコンテナを--volumes-fromでマウントします（図

表5-23）。

memo　データボリュームコンテナは、「そういう種類のコンテナがある」という意味ではなく、コンテナ

の用途を示す概念にすぎません。つまり、「いくつかのボリュームをマウントしておき、ほか

のコンテナから--volumes-fromで間接的にマウント先を指定する目的で使われるコン

テナ」という、用途に対する呼称です。いわば、どのディレクトリをどのボリュームにマウント

するのかを指定するテンプレートにすぎないので、そもそも実行（docker run）しておく

必要はなく、作成（docker create）だけしておけば十分です。

　データボリュームコンテナを利用する利点は、3つあります。運用によっては、デ
ータボリュームの利用も検討するとよいでしょう。

（1）コンテナが実際のボリュームのマウント先を意識しないで済む

　コンテナ（この例ではMySQLコンテナ）が、実際に、どのボリュームをマウン
トしているのかを意識する必要がありません。
（2）どのボリュームを使っているのかわかりやすくバックアップが取りやすい
　ボリュームのマウント情報は、データボリュームコンテナで一元管理できます。
そのためバックアップ対象が明確で、取りやすくなります。
（3）docker volume pruneで削除されにくくなる
　docker volume pruneは、マウントされていないボリュームを削除するコマン
ドです。ボリュームを直接マウントしている場合は、たまたまそのコンテナを破棄し
ていたときに間違ってdocker volume pruneを実行すると、そのボリュームが
削除されてしまう恐れがあります。対してデータボリュームコンテナを利用している
場合には、データボリュームコンテナを破棄しない限りは、そのデータボリュームが
マウントしている状態になりますから、docker volume pruneで削除されてし
まう心配がありません。

5-5　まとめ
　この章では、Dockerでデータを扱うときの話をしました。

（1）コンテナを破棄するとデータもなくなる
　コンテナは隔離された実行環境にすぎません。docker rmでコンテナを削除す
ると、データは失われます。

（2）永続化したい場合はマウントする

　コンテナを破棄してもデータを残したい場合は、保存先をDockerホストのディレ
クトリなどの外に出してマウントすることで、失われないようにします。

（3）バインドマウントとボリュームマウント
　マウントには、バインドマウントとボリュームマウントがあります。前者は、Docker
ホストのディレクトリをマウントする方法、後者は、Docker Engineで管理されて
いる領域にマウントするものです。

（4）バックアップ
　データのバックアップは、マウント先をtar.gzなどでアーカイブします。ボリュームマ
ウントのときは、対象をマウントするコンテナを作り、そのコンテナ内でtarコマンドな
どを実行してバックアップをとって取り出します。

コラム 　リバースプロキシでマルチドメインに対応する
　 1 つ の サ ー バ ー に 複 数 の httpd コ ン テ ナ を イ ン ス ト ー ル し て お き 、
http://www.example.co.jp/ならコンテナ1へ、http://www.example.com/
ならコンテナ2のように、接続先のホスト名で振り分けたい場合は、リバースプロ
キシを構成します。Dockerでは1つのポートを複数のコンテナで共有できないの
で、こうするしかありません（図表5-24）。

　こうしたリバースプロキシは、もちろん自分でも作れますが、「jwilder/nginx-
proxy 」 と い う Docker イ メ ー ジ を 使 う と 簡 単 で す （ 実 際 に 試 す に は 、
「LiveHosts」のようなChrome拡張を使ってホスト名とIPアドレスとの関係をエ
ミュレートするとよいでしょう）。

［1］　jwilder/nginx-proxyを起動する
　下記のように起動します。

［2］　コンテナ1（www.example.co.jp）を起動する
　接続先のホスト名を「-e VIRTUAL_HOST=www.example.co.jp」で指定
して起動します。

［3］　コンテナ2（www.example.com）を起動する
　接続先のホスト名を「-e VIRTUAL_HOST=www.example.com」で指定
して起動します。

　詳細は、https://hub.docker.com/r/jwilder/nginx-proxy/を参照してく
だ さ い 。 HTTPS に 対 応 し た い な ら 、 steveltn/https-portal
（https://hub.docker.com/r/steveltn/https-portal/）というDockerイメ
ージを使うのも便利です。

　Dockerホスト上では、たくさんのコンテナを実行できま
す。それぞれは独立していますが、ときにはコンテナ間での
通信が必要となることもあります。この章では、コンテナの
ネットワークについて説明します。

6-1　3つのネットワーク

　Dockerでは、さまざまな仮想的なネットワークを作り、Dockerホストとコンテ
ナ、もしくは、コンテナ間で通信するように構成できます。Dockerが管理するネッ
トワークは、docker network lsコマンドで確認できます。実際に実行するとわか
るように、既定では、「bridge」「host」「none」という3つのネットワークがありま
す。このうち、よく使われるのがbridgeネットワークです。まずは、このネットワークか
ら見ていきましょう。

memo　NETWORK IDは、環境によって異なる値です。

6-2　bridgeネットワーク

　bridgeネットワークは、既定のネットワークです。docker run（もしくはdocker
create）するときに、ネットワークのオプションを何も指定しなかったときは、このネ
ットワークが使われます。これまで説明してきたように、bridgeネットワークにおいて
は、それぞれのコンテナのネットワークは独立しており、-pオプションで、どのコンテナ
と通信するのかを決めます。例えば、第5章の冒頭で行った2つのhttpdコンテナを
利用する場合の構成を、図表6-1に再掲します。これは、

というように、片方をポート8080、もう片方をポート8081に割り当てたものです。

6-2-1　コンテナに割り当てられるIPアドレスを確認する
　図表6-1に示したように、DockerホストやDockerコンテナは、1つの仮想的な
bridgeネットワークで接続されます。ネットワーク通信ですから、当然、Dockerホ
ストやDockerコンテナには、IPアドレスが割り当てられます。

　まずはコンテナに対して、どのようなIPアドレスが割り当てられるのかを確認して
みましょう。ここでは、第5章の冒頭で試したのと同じく、2つのhttpdコンテナを起
動してみます。そして、そのコンテナに割り当てられるIPアドレスを確認します。

2つのコンテナを起動する
　まずは、2つのコンテナを起動します。

手順 2つのコンテナを起動する

［1］　1つめのコンテナを起動する
　次のコマンドを入力して、1つめのコンテナを起動します。

［2］　2つめのコンテナを起動する
　次のコマンドを入力して、2つめのコンテナを起動します。

コンテナのIPアドレスを確認する
　コンテナが起動したら、IPアドレスを確認します。IPアドレスを確認する方法は、
2つあります。

（1）コンテナ内でipコマンドやifconfigコマンドなどを実行して確認する方法
　1つめの方法は、docker execを使って、コンテナ内でipコマンドやifconfigコマ
ンドなどのIPアドレスを調べるコマンドを実行する方法です。残念ながら、httpdコ
ンテナ内にはipコマンドもifconfigコマンドが入っていないため、この方法は使えま
せん。

（2）docker container inspectコマンドを使う方法
　もう1つの方法は、docker container inspectコマンドを使う方法です。このコ
マンドは、コンテナに対する詳細な情報を調べるコマンドです。実行すると、たくさ
んの情報が表示されます。このうち「NetworkSettings」の部分にIPアドレスが記
載されています。

　IPアドレスが示されているのは、

という部分です。

　docker container inspectコマンドでは、--formatオプションを指定すること
で、全データではなく、特定の項目の値を取得することもできます。例えば、次の
ようにすると、IPアドレス部分だけを取得できます。

コラム 　フォーマット書式
　--formatオプションは、Go言語のtemplateパッケージの書式で指定しま
す。これは一種のテンプレートエンジンであり、「{{」と「}}」で囲んだ部分が、合致
した箇所に置換して出力されます。

　フォーマットのルールを簡単に説明します。

（1）全体を「{{」と「}}」で囲む
　パターンマッチングや変数などで置換したい箇所は「{{」と「}}」で囲みます。

（2）項目は「.」で記述する

　 項 目 は 「 . 」 で 記 述 し ま す 。 「 .NetworkSettings.IPAddress 」 は 、
「.NetworkSettings」の中の「.IPAddress」という意味です。

（3）配列は「range」で指定する
　docker container inspectで取得した値が配列の箇所は、「[」と「]」で囲
まれています。例示した例では、Portsが、それに相当します。

　このPortsの値を取得するには、「range」と「end」の構文を使って、例えば
次のように記述します。

　rangeの構文は、次の通りです。変数は「$」から始まる名前で記述します。

　つまりこの例では、「.NetworkSettings.Ports」という部分を見つけて、それ
が変数$confに入るという意味です。取り出したそれぞれのキーは、変数$pに

入ります。この例では、"80/tcp"の部分が$pに入ります。ですから、「{{$p}} -
>」は、「80/tcp->」と表示されます。

　{{(index $conf 0).HostPort}} の「index $conf 0」は、$conf[0]と同じ意
味です。これは、

の部分を指します。この「.HostPort」を取得しているので、画面には「8080」と
表示されます。

　ほかにも、さまざま文法、関数を利用できます。詳細は、下記のtemplate
パッケージの解説を参考にしてください。

【Go言語のtempalteパッケージ】
https://golang.org/pkg/text/template/

　web01、web02について調べた結果を下記に示します。ここでは、それぞれ
「172.17.0.2」「172.17.0.3」が設定されていることがわかります。なおIPアドレスは
起動順に決まるので、ここで示した値ではないこともあります。以降の説明では、
コンテナ間の通信を試しますが、通信先として指定すべきIPアドレスは、ここで確
認したIPアドレスに、各自置き換えて試してください。

コラム 　ネットワークに接続されているコンテナのIPアドレス一覧を参照する
　「docker network inspect bridge」のように、ネットワークインターフェースで
あるbridgeに対してinspectすると、そこに接続されている全コンテナのIPアドレ
ス一覧を取得できます。「Containers」の項目が、コンテナとIPアドレスの対応
です。

　--formatオプションを使って次のようにすると、もう少し見やすく表示できま
す。

DockerホストのIPアドレス

　では、Dockerホストには、どのようなIPアドレスが割り当てられるのでしょうか。
実はDocker EngineをインストールしたLinux環境には、docker0というネットワー
クインターフェースが作られます。このインターフェースを通じて、bridgeネットワークに
接続しています。

　次のようにifconfigコマンドで確認すると、そのIPアドレスは、172.17.0.1である
ことがわかります。

memo　docker0というネットワークが、172.17.0.1/255.255.0.0であることが保証されているわけで

はありません。ここで説明していることは、仕組みを知ることで理解を深めるためのものであ

り、こうした実装であることを期待してはなりません。

6-2-2　bridgeネットワークの正体
　いま調べた結果から、bridgeネットワークに属するDockerホストのネットワーク
構成をIPアドレス入りで図示すると、図表6-2のようになります。

　このbridgeネットワークは、IPマスカレードを使って構成されています。docker
run（もしくはdocker create）の-pオプションは、IPマスカレードのポート転送設

定をしているのにすぎません。

　実際、このような構成で起動したとき、iptablesコマンドでnatテーブルを確認
すると、そのポート転送が設定されていることがわかります。下記の出力例では、
「Chain DOCKER (2 references)」という項目に、その設定があります。これが、
bridgeネットワークの正体です。

memo　-nオプションは、名前ではなく数値で表示するオプションです。そうすることで、IPアドレスや

ポート番号が数値で表示されます。指定しないときは、「ip-172-17-0-2.ap-northeast-

1.compute.internal」のようなDNS名で表示されます。

memo　これは保証されている内容ではありません。どのように実現するのかはDocker Engineの実

装次第です。将来的には、ほかの方法で実装される可能性もありますから、IPマスカレード

で構成されていることや、-pオプションを使うと、このようなIPマスカレードの転送設定がされ

ることを期待してはいけません。

6-2-3　Dockerホスト同士の通信
　さて図表6-2からわかるように、コンテナは、それぞれIPアドレスを持ち、bridge
ネットワークに接続されています。ですからコンテナ同士は、このネットワークを通じ
て、互いに自由に通信できます。

　この通信は、-pオプションが設定されていなくとも可能である点に注目してくだ
さい。-pはDockerホスト側で受信したデータをそれぞれのDockerコンテナの特定
のポートに転送する設定（図表6-2の点線）です。Dockerコンテナ間で通信す
る際は、Dockerホストを経由せず、直接やり取りしますから、-pオプションは関係
ないのです。

　では本当に、コンテナ間では自由に通信できるのでしょうか？　実際に試して
みましょう。ここでは、第3のコンテナとしてもう1つ追加し、そのコンテナから、いま起
動している2つのWebサーバーコンテナ、web01とweb02に通信可能かどうかを確
認します（図表6-3）。

手順 コンテナ同士の疎通を確認する

［1］　第3のコンテナを作る

　疎通確認用の第3のコンテナを作って、シェルを起動します。ここではubuntuの
イメージから作成してみます。ubuntuのイメージはファイルサイズが大きいので、本
当ならbusyboxなどの軽量なLinuxを使いたいところですが、疎通確認で利用す
るcurlコマンドなどが入っていないため、ここでは、それらを簡単な手順でインストー
ル可能なubuntuイメージを使います。以下ではシェル（/bin/bash）を起動し
ています。ですから実行するとプロンプトが表示され、コンテナ内でコマンド入力で
きるようになります。

memo　下記のdocker runコマンドでは--rmオプションを指定しているので、このコンテナは、シェル

を終了すると（シェルでexitと入力すると）、即座に破棄されます。このように、すぐに破棄

するコンテナには、名前を付けても意味があまりないため、--nameオプションは省略してい

ます。

memo　プロンプトの「be5275ef6b43」はコンテナIDです。環境によって異なります。

［2］　実験に必要なソフトをインストールする
　以下の実験では、「ip」「ping」「curl」という3つのコマンドを使います。そこで
aptコマンドを使ってインストールしておきます。

memo　iproute2にはipコマンドが、iputils-pingにはpingコマンドが、curlにはcurlコマンドが、それ

ぞれ含まれています。

［3］　自身のIPアドレスを確認する
　まずは、ipコマンドを入力して、自身のIPアドレスを確認します。著者の環境で
は、自身のIPアドレスは172.17.0.4であることがわかりました。

［4］　pingで疎通確認する
　すでに確認してあるweb01コンテナやweb02コンテナのIPアドレスに対してping
を送信して、疎通確認します。結果が、「0% packet loss」となっていれば疎通
できています。

memo　web01コンテナやweb02コンテナのIPアドレスは、すでに確認しているIPアドレスに合わせて

ください。忘れたときは、［Ctrl］＋［P］、［Q］でいったんコンテナから抜け、docker

container inspectでIPアドレスを調べ、それから、「docker attach このコンテナID」で戻っ

てくる操作で、作業を再開できます。

memo　指定している「-c 4」は、4回試したら終わるオプションです。オプションを省略したときは、ず

っと動きっぱなしになるので、［Ctrl］＋［C］キーで停止してください。

［5］　コンテンツを取得する
　web01やweb02では、Apacheが動作しています。ここに接続して、公開され
ているウェブコンテンツを取得できるかを確認します。curlコマンドを使うと、ブラウ

ザと同じようにWebサーバーに接続してコンテンツを取得できるので、その方法を
使います。

　次のように「curl http://IPアドレス/」と入力するとコンテンツを取得できます。
「curl http://IPアドレス:8080/」や「curl http://IPアドレス:8081/」ではなく、どち
らも「http://IPアドレス/」である点に注意してください。「http://IPアドレス/」とした
ときは、既定のポート80番で接続されます。図表6-3に示したように、Dockerホ
ストからはポート8080、ポート8081にマッピングされていますが、コンテナ自体は、
どちらもポート80番で待ち受けしているからです。

memo　ここでは、それぞれのコンテンツを変更していないため、どちらも「It works!」というコンテンツ

が戻ってきます。もちろん、それぞれのコンテンツを変更しておけば、別のコンテンツが戻ってき

ます。

［6］　IPアドレス以外では接続できないことを確認する
　いまはIPアドレスで接続しましたが、コンテナ名である「web01」や「web02」で
は接続できないことを確認します。例えば、次のpingコマンドは、web01が見つ

からないというエラーが発生します。

　curlコマンドも同様です。

［7］　後始末
　これで実験は終了です。exitと入力して終了してください。ここでは「--rmオプ
ション」を指定しているので、コンテナは終了とともに破棄されます。このあと、
docker rmコマンドを実行する必要はありません。

memo　コンテナを破棄していますから、apt installでインストールしたipコマンド、pingコマンド、curl

コマンドなども、当然のごとく削除されます。次にまたdocker runするときは、apt

update、apt upgrade、apt installコマンドで、これらをインストールする手順から始める

必要があります。

6-3　ネットワークを新規に作成して通信を分ける

　このように、それぞれのコンテナは、割り当てられたIPアドレスを介して、互いに
通信できることがわかりました。同時に、IPアドレスの代わりにコンテナ名を使って
通信することはできないこともわかりました。

　コンテナ名で通信相手を指定できないのは、とても不便です。なぜなら、コンテ
ナに対して、どのようなIPアドレスが割り当てられるのかはコンテナを起動するまで
わかりませんし、コンテナを破棄して作り直せば、IPアドレスが変わる恐れがあるた
めです。実験や開発目的ならともかく、実運用まで考えたときは、IPアドレスでは
なくてコンテナ名で通信相手を特定できるほうが望ましいといえます。

　そのための方法は、2つあります。1つは、Dockerネットワークを新規に作成す
る方法、もう1つは--linkオプションを指定する方法です。後者の方法は非推奨
なのでコラムで紹介することにし、以下では、前者の方法を説明していきます。

コラム 　--linkオプションで指定する方法
　既定のbridgeネットワークは、歴史的な理由から、コンテナ名を使った通信
ができません。しかしコンテナを起動する際、--linkオプションを指定すると、特
定のコンテナを任意名でアクセスできるようになります。

　具体的には、本文中で疎通確認するときに使った第3のコンテナ（ubuntu
コンテナ）を起動する際、次のように--linkオプションを指定します。--linkオプ
ションの書式は「--link コンテナ名（またはコンテナID）:参照名」です。下記

の例では、web01コンテナをweb01という名前で、web02コンテナをweb02と
いう名前で参照できます。

　 つ ま り こ の よ う に 起 動 す れ ば 、 ping web01 や ping web02 、 curl
http://web01/やcurl http://web02/など、--linkで指定した名前でのアクセ
スできるようになります。

　なお、--linkオプションは、コンテナ内のホスト名を解決する/etc/hostsファイ
ルに、その設定が書き込まれることで実現しています。/etc/hostsを確認する
と、次のように記載されていることがわかります。

memo　これはDockerネットワークを使った手法と大きく違います。詳しくは「コラム　Dockerネ

ットワークがコンテナ名でアクセスできるようにする仕組み」で説明しますが、Dockerネッ

トワークの場合は、/etc/hostsファイルではなく、Docker上に用意された内蔵DNSサー

バーが、その変換機能を担っています。

6-3-1　Dockerネットワーク
　これまでは既定のbridgeネットワークを利用してきましたが、Dockerでは任意
のネットワークを作ることができます。ネットワークを作ることで、「あるコンテナは、こ
ちらのネットワークに、別のコンテナはこちらのネットワークに」というように、別々のネ
ットワークに接続することもできます。

　 Docker ネ ッ ト ワ ー ク を 作 る と 、 そ の 数 だ け 、 Docker ホ ス ト 上 に は 、 br-
XXXXXXX（XXXXXXはDockerのネットワークIDの先頭）という名前のネットワ
ークインターフェースが作られます（図表6-4）。

　新たにDockerネットワークを作って、そこにコンテナを参加させる場合は、既定
のbridgeネットワークを使う場合と違って、--nameで指定したコンテナ名で互い
に通信できます。つまり、bridgeネットワークで問題となっていたIPアドレスでしか
通信できないという問題が解決します。

6-3-2　Dockerネットワークを作る
　Dockerネットワークは、docker network createコマンドを使って作ります。

　IPアドレス範囲を明示的に指定したいときは、--subnetや--iprangeなどのオ
プションを指定することもできますが、必須ではありません。省略したときは、既存
のネットワークと重複しない適当なIPアドレス範囲が使われます。

　実際に作ってみましょう。ここでは、「mydockernet」というネットワークを作成し
ます。

手順 Dockerネットワークを作成する

［1］　Dockerネットワークを作成する
　次のコマンドを入力してDockerネットワークを作成します。

memo　Dockerネットワークを作成すると、それに伴い、Dockerホストにネットワークインターフェース

が追加されます。興味がある人は、ipconfigコマンドを実行して、「br-4f9fad72a83e」な

ど（「-」以降は、ネットワークID）が作られることを確認するとよいでしょう。

［2］　作成されたネットワークを確認する
　docker network lsコマンドで、作成されたネットワークを確認しておきましょ
う。新しく「mydockernet」という名前のネットワークがbridgeというドライバーで
作成されたことがわかります。

［3］　IPアドレスの設定を確認しておく
　さらに、docker network inspectコマンドで、詳細情報を確認しておきましょ
う。この例では、「172.18.0.0/16」のIPアドレスが設定されたようです。

コラム 　明示的にIPアドレス範囲を指定したいとき
　明示的にIPアドレス範囲を指定するには、--subnetと--gatewayを指定し
ます。例えば次のようにすると、「10.0.0.0/16」のネットワークとして作成できま
す。

6-3-3　Dockerネットワークにコンテナを作る
　では、このネットワークに参加するコンテナを作りましょう。ここでは話を簡単にす
るため、いま稼働しているweb01コンテナ、web02コンテナをいったん破棄し、新
たに、いま作成したmydockernetに接続するようにして作り直すことにします。ネ

ットワークに参加させるには、docker run（もしくはdocker create）するとき
に、--netオプションを指定します。

memo　ここでは話を簡単にするため、Dockerコンテナを作り直しますが、起動したまま別のネットワ

ークに接続し直すこともできます。その方法については、コラム「コンテナを破棄せずに接続し

直す」を参照してください。

手順 接続先のネットワークを指定してコンテナを起動する

［1］　現在のコンテナを停止・破棄する
　web01コンテナ、web02コンテナをいったん止めて、それから破棄します。

［2］　mydockernetに接続してコンテナを作成
　 web01 コ ン テ ナ 、 web02 コ ン テ ナ を 起 動 し ま す 。 こ の と き 、 --net
mydockernetを付けて、mydocketnetという名前のDockerネットワークに接続
するように構成します。

［3］　ネットワーク接続を確認する

　以上で、mydockernetに接続されたはずです。次のようにして確認しましょう。
web01、web02が、このネットワークに接続されていることがわかります。

コラム 　コンテナを破棄せずに接続し直す
　docker network connectコマンドおよびdocker network disconnectコ
マンドを使うと、コンテナをネットワークにつないだり、ネットワークから切断したり
できます。

　例えば既定のbridgeネットワークに接続されているweb01コンテナを、破棄
することなく、そのままmydockernetという名前のネットワークに参加させるに
は、次のようにします。

　ここでweb01に対してdocker container inspectしてみると、接続先が
mydockernetに変わったことを確認できます。

6-3-4　名前を使った通信ができることを確認する
　では次に、この新しいネットワークでは、名前を使って通信できることを確認しま
しょう。

手順 名前を使った通信ができることを確認する

［1］　第3のコンテナを作る

　先の確認手順と同様に、第3のコンテナを作ります。このとき、--net
mydockernetを付けて、mydocketnetという名前のDockerネットワークに接続
するように構成します。

memo　プロンプトの「1bcb2cc4c036」はコンテナIDです。環境によって異なります。

［2］　実験に必要なソフトをインストールする
　「ip」「ping」「curl」を使えるようにするため、次のようにしてインストールします。

［3］　名前で疎通確認する
　まずはpingコマンドで疎通確認してみましょう。先ほどのbridgeネットワークの
場合と違い、web01という名前でアクセスできます。ここでは省略しますが、
web02も同様にアクセスできます。

［4］　コンテンツが取得できることを確認する
　次にcurlコマンドを使って、コンテンツが取得できることを確認します。ここでは
web01しか試しませんが、web02も同様にコンテンツを取得できます。

［5］　第3のコンテナの終了
　以上で実験は終了です。exitと入力してシェルから抜けてください。--rmオプシ
ョンを指定しているので、コンテナは自動的に破棄されます（その後、docker rm
する必要はありません）。

memo　もしコラムに示しているDNSサーバーの設定確認をしたいのなら、exitせず、先にコラムの内

容を確認してください。

コラム 　Dockerネットワークがコンテナ名でアクセスできるようにする仕組
み

　Dockerネットワークを使って通信する際、コンテナ名でアクセスできる仕組み
は、DNSによって構成されています。Dockerネットワークに参加しているコンテ
ナ（起動時に--net Dockerネットワーク名を指定した、もしくは、docker
network connectで接続した）では、Dockerが用意するDNSサーバーが使
われます。/etc/resolv.confを確認すると、127.0.0.11というIPアドレスのDNS
サーバーが起動していることがわかります。

　この127.0.0.11のDNSサーバーは、コンテナ名とIPアドレスのひも付けを返す
ように構成されているため、コンテナ名を通信相手として指定できます。より詳
し く は 、 「 Docker コ ン テ ナ ・ ネ ッ ト ワ ー ク の 理 解
（http://docs.docker.jp/engine/userguide/networking/dockernetwo
rks.html）」を参照してください。

6-3-5　Docketネットワークの削除
　さて、実験が終わったので、後始末をしておきましょう。いま作成した
mydockernetを削除します。このネットワークは、いまweb01コンテナとweb02コ

ンテナが利用中ですから、これらのコンテナを削除してから、ネットワークを削除しま
す。利用中のコンテナが存在するときは、ネットワークを削除できません。

memo　コンテナを破棄せずにネットワークを削除することもできます。そうしたいなら、docker

network disconnectコマンドを使ってネットワークから切断します（コラム「コンテナを破棄

せずに接続し直す」を参照）。

手順 Dockerネットワークの削除

［1］　ネットワークを利用しているコンテナを停止・破棄する
　web01コンテナとweb02コンテナを停止し、破棄します。

［2］　ネットワークを削除する
　mydockernetを削除します。削除は、docker network rmコマンドを使いま
す。

［3］　削除されたことを確認する
　docker network lsコマンドで、そのネットワークが存在しないことを確認しま
す。

memo　Dockerネットワークを削除すれば、それに対応するDockerホストのインターフェース（br-

XXXXXX）も削除されます。気になる人は、ifconfigコマンドで確認してみてください。

6-4　hostネットワークとnoneネットワーク

　ここまでで、Dockerネットワークの話は、ほぼ終わりです。最後に、まだ説明し
ていなかった、hostネットワークとnoneネットワークについて補足します。

6-4-1　hostネットワーク
　hostネットワークは、IPマスカレードを使わずにコンテナがホストのIPアドレスを共
有します。-pオプションを指定することはできず、すべてのポートがDockerコンテナ
側に流れます。hostネットワークを指定するには、docker run（もしくはdocker
create ） の 際 に 「 --net host 」 を 指 定 し ま す （ も し く は 、 あ と か ら docker
network connectでhostネットワークを指定します）。
　hostネットワークにおいて、Dockerコンテナは個別のIPアドレスを持たないた
め、同じポート番号を使う複数のコンテナを利用することはできません。例えば、
httpdコンテナを2つ起動することはできません。なぜならhttpdコンテナはポート80

番を利用するので、もう1つさらに同じポート80番を利用するコンテナを起動すると
かち合ってしまうからです（図表6-5）。hostネットワークは、全通信ポートを転送
するたかだか1個もしくは数個のDockerコンテナを起動するときに使われることが
ありますが、活用例は、さほど多くありません。

6-4-2　noneネットワーク
　noneネットワークは、コンテナをネットワークに接続しない設定です。docker
run（もしくはdocker create）の際に、「--net none」を指定します（もしく
は、あとからdocker network disconnectで、ネットワークから切断しても、同じ
状態になります）。セキュリティを高めたいなどの理由で、ネットワーク通信からコ
ンテナを完全に隔離したいときに使います。こちらもhostネットワークと同様に、あ
まり使われることはありません。

6-5　まとめ

　この章では、Dockerネットワークについて説明しました。

（1）Dockerホスト同士はIPアドレスで通信できる
　既定のbridgeネットワークでは、Dockerホスト同士はIPアドレスで接続できま
す。IPアドレスは、docker network inspectやdocker container inspectで確
認できます。

（2）名前で通信したいときはDockerネットワークを作る
　コンテナ間の通信をする際、コンテナ名でアクセスしたいときは、docker
network createで新しいDockerネットワークを作り、docker run（もしくは
docker create）する際に、--netオプションで、そのネットワークに参加させます。
すると、コンテナ名でアクセスできるようになります。

（3）コンテナ間の通信では-pオプションは関係ない
　コンテナ間の通信では、-pオプションは関係なく、コンテナ上の実際のポート番
号で通信します。-pオプションが指定されていなくても通信できます。

（4）hostネットワークとnoneネットワーク
　DockerホストのIPアドレスを全Dockerコンテナで共有して使うhostネットワー
クと、まったくネットワークに接続しないnoneネットワークという、特別なネットワー

クがあります。これらは、あまり使われることはありません。

　Dockerの話も、そろそろ大詰めです。次章では、複数のコンテナをまとめて起
動できるDocker Composeについて説明します。

　複数コンテナを組み合わせてシステムを構成することが
あります。例えば、「システム本体のコンテナ」と「データベー
スコンテナ」を組み合わせるような場合です。組み合わせ
るときは、コンテナをまとめて起動したり停止したりできると
便利です。そのための仕組みが、「Docker Compose」
です。この章では、Docker Composeを使って、複数の
コンテナをひとまとめにして操作する方法を説明します。

7-1　2つのコンテナが通信するWordPressの例

　この章では、複数のコンテナを組み合わせて、1つのシステムを構成する方法を
扱います。さまざまなシステムが考えられますが、もってこいなのがWordPressで
す。WordPress社が提供するブログシステムで、ブログ記事をMySQLデータベー
ス（もしくはMariaDBデータベース）に保存します。

memo　MariaDBは、MySQLの開発者がスピンアウトして作られた、MySQL互換のデータベースで

す。

　Docker Hubでは、オフィシャルなWordPressイメージが提供されています。し
かしこのイメージにはMySQLデータベースは含まれておらず、別途、用意しなけれ
ばなりません。つまり、WordPressを使うには、「WordPressコンテナ」のほか
「MySQLコンテナ」が必要で、この2つのコンテナの組み合わせで構成しなければ
ならないということです。MySQLコンテナのほうは、コンテナを破棄したときに、ブロ

グのデータが失われてしまうのを防ぐため、ボリュームマウント（もしくはバインドマウ
ントでもよいですが）して永続化することになるでしょう（図表7-1）。

memo　ここでは話を簡単にするために、MySQLをコンテナとして用意する前提で話を進めていま

す。しかしコンテナではなく、DockerホストにインストールしたMySQL、もしくは、別のサーバ

ーにインストールしたMySQLを利用することもできます。

memo　この章では話を簡単にするために、WordPressでアップロードした画像ファイルなどの永続

化を考慮していません。それらは/var/www/html/以下に保存されるため、ボリュームマウ

ントやバインドマウンドを検討すべきです。

　実際に、やっていきましょう。操作の順序は、次の通りです。

（1）Dockerネットワークを作成する
（2）ボリュームを作る
（3）MySQLコンテナを作る
（4）WordPressコンテナを作る

7-1-1　（1）Dockerネットワークを作成する
　コンテナ同士をつなぐのに、既定のbridgeネットワークを使ってもよいのですが、
それだとわかりにくくなるので、新しくDockerネットワークを作成したほうがよいでし
ょう。ここでは、wordpressnetという名前のDockerネットワークを作ってみます。

手順 Dockerネットワークを作成する

［1］　Dockerネットワークを作成する
　次のコマンドを入力して、wordpressnetという名前のDockerネットワークを作
成します。

［2］　ネットワークが作成されたことを確認する
　docker network lsコマンドを実行し、ネットワークが作成されたことを確認し
ます。

7-1-2　（2）ボリュームを作成する
　次に、MySQLコンテナのデータベースの永続化に用いるボリュームを作成してお
きます。ここでは、wordpress_db_volumeという名前にしておきます。

手順 ボリュームを作成する

［1］　ボリュームを作成する
　次のコマンドを入力して、wordpress_db_volumeという名前のボリュームを作
成します。

［2］　ボリュームが作成されたことを確認する
　docker volume lsコマンドを実行し、ボリュームが作成されたことを確認しま
す。

7-1-3　（3）MySQLコンテナを起動する
　次にMySQLコンテナを起動します。次の設定で起動します。

コンテナ名
　コンテナ名は、「wordpress_db」という名前にします。

データベースの初期値を設定する環境変数
　第5章で少し触れたように、MySQLの各種設定は、さまざまな環境変数を通
じて指定します。ここでは、パスワードや初期データベースなどを、図表7-2に示す環
境変数を通じて設定することにします。あとでWordPressコンテナの設定をすると
きは、これらの設定値と同じものをWordPress側にも指定します。

イメージ名とバージョン

　すでに第5章で説明したように、MySQLコンテナのイメージは「mysql」という名
前です。これは最新版のMySQLを示します。しかし残念ながら、WordPressから
利用する場合、既定では、MySQL 5.7以前でなければ接続できないという制約
があります（それより新しいバージョンでは、認証方式が変わったためです）。そこ
で明示的にバージョン5.7系の最新版を利用するよう、「mysql:5.7」というよう
に、「5.7」というタグを指定することにします。

memo　「5.7」は、バージョン番号を指定しているのではなく、「5.7というタグ」を指定しているだけな

ので注意しましょう。MySQLイメージを開発している人たちが、5.7というタグでバージョン5.7

系を作っているので、こうした指定ができるのです。バージョン名ではなくタグ名ですから、例

えば、「mysql:5.7.1」のような、MySQLイメージの開発者が用意していないタグ名を指定

す る こ と は で き ま せ ん 。 ど の よ う な タ グ が あ る の か は 、 ［ Tags ］ ペ ー ジ

（https://hub.docker.com/_/mysql?tab=tags）で確認できます。

　それではコンテナを作って起動しましょう。その手順は、下記の通りです。

手順 MySQLコンテナを起動する

［1］　MySQLコンテナを起動する
　コンテナ名（--nameオプション）を「wordpress-db」として、図表7-2に示し
た環境変数を指定し、mysql:5.7のイメージからコンテナを起動します。-vオプショ
ンでのマウント、--netオプションでのネットワーク指定を忘れないようにします。

memo　ここでは-pオプションは指定していない点に注意してください。MySQLコンテナは

WordPressコンテナから接続されますが、コンテナ間の通信は、-pオプションを指定しなくて

も可能です。

［2］　起動を確認する
　docker psコマンドを実行して、起動を確認しておきます。

7-1-4　（4）WordPressコンテナを起動する
　最後にWordPressコンテナを起動します。WordPressコンテナに関する解説
は、Docker Hubで確認できます。

【Docker HubのWordPressイメージのページ】
https://hub.docker.com/_/wordpress/

　解説を要約したものを、下記に示します。

ポート番号
　ポート80番で待ち受けしているので、docker runするときに、-pオプションで、
Dockerホストのポートとマッピングします。ここでは、ポート8080で接続したときに、
WordPressのページが見えるようにしましょう。

環境変数
　利用するデータベースの設定などを、図表7-3に示す環境変数で指定します。こ
れらには、先ほど図表7-2で設定したMySQLの情報と同じものを設定します。接
続先のホスト名「WORDPRESS_DB_HOST」には、すでに起動しているMySQL
のコンテナ名である「wordpress-db」を指定します。すでに第6章で説明したよう
に、Dockerネットワークに接続している場合、コンテナ名で通信できるからです。

　実際に起動する手順は、次の通りです。

手順 WordPressコンテナを起動する

［1］　WordPressコンテナを起動する
　次のコマンドを入力して、WordPressコンテナを起動します。コンテナ名は、
「wordpress-app」という名前としました。-eオプションで、図表7-3に示した環

境変数を指定するほか、-pオプションでのポート設定、--netオプションでのネット
ワーク設定も忘れないようにします。

［2］　起動を確認する
　docker psコマンドを実行して、起動を確認しておきます。

7-1-5　動作確認と初期設定
　以上で設定完了です。ブラウザから、「http://DockerホストのIP:8080/」を開
いてください。WordPressの設定画面が表示されるはずです。ここから初期設定
を始めていきます。

memo　DockerホストのIPは、EC2インスタンスのIPアドレスです。

手順 WordPressを初期設定する

［1］　言語を選択する

　まずは、言語を［日本語］に設定し、［続ける］をクリックします（図表7-

4）。

コラム 　うまく接続できないときは
　「Error establishing a database connection」など、データベースエラーが
表示されるときは、MySQLコンテナが起動していない、もしくは、環境変数で
指定したデータベース、ユーザー名、パスワードなどが間違っていることが考えられ
ます。Dockerコンテナは、docker logsコマンドでログを表示できることを思い
出してください。接続できないときは、次のようにして、ログを確認しましょう。

　すると、例えば、

のようなメッセージが表示されます。エラーの原因をつかむのに役立つはずです。

［2］　サイトのタイトルやユーザー名、パスワードなどを設定する
　サイトのタイトルやユーザー名、パスワードなど、必要事項を入力します（図表7-

5）。ここで指定したユーザー名やパスワードは、管理者ページにログインするのに
必要となるので、忘れないように注意してください。

［3］　インストール完了

　図表7-6のページが表示され、インストールが完了します。［ログイン］ボタンを
クリックしてください。

［4］　ログインする
　設定したユーザー名とパスワードを入力してログインします（図表7-7）。

［5］　管理画面が表示される
　管理画面が表示され、各種設定変更やブログの投稿ができます（図表7-

8）。この画面の左上の家のマークのボタン（図表7-8では「僕のブログ」と書か

れている部分）をクリックすると、作成したブログが表示されます（図表7-9）。
本書はWordPressの説明をするのが目的ではないので、これ以上、WordPress
についての詳細な設定方法は省きます。ウィザードでいくつか設定していけば、ブ
ログの設定が完了し、もう、使い始めることができます。

memo　図表7-9の画面は、「http://DockerホストのIP:8080/」を開いたとき、図7-8の画面は、

「http://DockerホストのIP:8080/wp_admin/」を開いたときの画面に相当します。

7-1-6　後始末
　こうした一連の操作によって、WordPressコンテナとMySQLコンテナが連動し
て動くことを確認できした。これで実験は、いったん終わりとし、コンテナやネットワ
ーク、ボリュームを削除しておきましょう。

7-2　Docker Compose

　いま見てきたように、複数のコンテナを組み合わせて使うことは難しくありませ
ん。Dockerネットワークを作って、--netオプションで、そのネットワークに接続する
ように構成すればよいからです。
　問題は、煩雑さです。この2つのコンテナはセットであり、どちらかを起動し忘れ
ると、正しく動作できません。また、普通に考えると、WordPressコンテナを起動
する前には、MySQLコンテナを起動しておかなければならないでしょう（そうしなく
ても、何度か再接続するうちに、うまく接続できるようになるでしょうが、それは意
図したものではないはずです）。

　コンテナの起動は、意外と煩雑で間違えやすいものです。1つずつdocker run
（もしくはdocker create、docker start）しなければならず、その際、--name
オプションで名前を設定したり、-vオプションでマウントしたり、-eオプションで環境
変数を設定したり、-pオプションでポートのマッピングを設定したりと、さまざまなオ
プション指定が必要です。こうしたオプションは、長く複雑になりがちです。またボ
リュームを使うのなら、あらかじめボリュームを作成しておく必要もあります。ネットワ
ークについても同様です。コンテナを使い終わって削除するときは、不要になったネ
ットワークも一緒に削除する必要があるでしょう。

　こうしたコンテナの作成や停止、破棄の一連の操作をまとめて実行する仕組
みが、Docker Composeです。

7-2-1　Docker Composeの仕組み
　Docker Composeは、あらかじめコンテナの起動方法やボリューム、ネットワー
クの構成などを書いた定義ファイルを用意しておき、その定義ファイルを読み込ま

せることで、まとめて実行する方法です（図表7-10）。

　この章では扱いませんが、定義ファイルには、起動したコンテナのなかで実行す
るコマンドや、コンテナに対してファイルコピーするコマンドなどを書くこともできます。
Docker Composeを使う場合、定義ファイルやコピーしたいファイルなどを、1つの
ディレクトリにまとめておきます。定義ファイルは、「Composeファイル」と呼ばれ、
既定では「docker-compose.yml」というファイル名です。このファイルをdocker-
composeというツールで読み込ませて実行すると、ボリュームやネットワークが作ら
れ、まとめてコンテナが起動します。そして不要になったら、同じくdocker-
composeツールを使って、まとめて停止や削除できます。

7-2-2　Docker Composeが解決するもの
　Docker Composeを使えば、いままでdocker runの引数で1つひとつ指定し
たり、起動後にdocker execでコマンドを実行したりしていたものを、docker-
compose.ymlという1つの設定ファイルに集約できます。つまり、次の煩雑さを解
決します。

（1）長い引数からの解放
　docker run（もしくはdocker create）の際、長い引数を指定する必要が
なくなります。

（2）複数コンテナの連動
　まとめて複数のコンテナを起動できます。起動順序の指定もできます。

（3）まとめての停止・破棄
　定義したコンテナをまとめて停止したり破棄したりできます。

（4）コンテナの起動時の初期化やファイルコピー
　コンテナ起動後にコマンドを実行したりファイルをコピーしたりする初期化などの
操作を行えます。

7-2-3　Docker Composeのインストール

　Docker Composeは、Docker操作の補佐をするPython製のツールです。
Docker Engineの一部ではありません。そのため、Docker Engineとは別にイン
ストールしなければなりません。いくつかのインストール方法がありますが、次のよう
にpipコマンド（pip3コマンド）でインストールするのが簡単です。

手順 Docker Composeをインストールする

［1］　Pythonをインストールする
　まずは、Pythonとpipをインストールします。

memo　Pythonは、バージョン3を用います。パッケージ名は「python3」「python3-pip」なので注

意してください。

［2］　Docker Composeをインストールする
　次のようにpip3コマンドを入力して、Docker Composeをインストールします。

［3］　Docker Composeがインストールされたことを確認する
　--versionオプションを指定してdocker-composeコマンドを実行することで、
コマンドがインストールされたことを確認します（表示されるバージョン番号は、本

書に掲載したものとは異なるかも知れません）

7-3　Docker Composeを使った例

　Docker Composeを使うと、コンテナ起動の煩雑さはどのように解決されるの
か、実際に試してみましょう。ここでは、いま手動で1つずつ操作した「WordPress
コンテナとMySQLコンテナを起動する」という行程を、Docker Composeで実現
してみます。

7-3-1　作業用ディレクトリとdocker-compose.ymlの準備
　Docker Composeを使うには、何か作業用のディレクトリを作り、そこに
docker-compose.ymlファイルを置きます。

手順 作業用ディレクトリとdocker-compose.ymlの準備

［1］　作業用ディレクトリの作成
　まずは、作業用ディレクトリを作成します。ここでは、ホームディレクトリ
（/home/ubuntu）の下に、wordpressというディレクトリを作ることにします。
ディレクトリを作ったら、そこをカレントディレクトリに移動（cd）します。

［2］　docker-compose.ymlを作る
　次に、そのディレクトリにdocker-compose.ymlファイルを作ります。nanoエデ
ィタなどを使って、リスト7-1のように編集します。編集したら、保存して終了してく
ださい。

memo　保存するには［Ctrl］＋［X］キーを押し、保存するかどうか尋ねられたら［Y］

［Enter］と入力します。

　 docker-compose.yml は 、 「 YAML 形 式 （ YAML Ain't a Markup
Language）」と呼ばれる形式のファイルです。YAML形式では、空白によるイン
デント（字下げ）で構造ブロックを表現します。インデントが間違っていると、正
しく動かないので注意してください。インデントに利用できるのは空白のみで、タブ
文字は使えません。インデントは、位置が合っていれば、空白何文字でもかまい
ませんが、「空白2つ」や「空白4つ」にするのが一般的です。

7-3-2　Docker Composeの操作
　docker-compose.ymlの意味を説明すると長くなるので、先に、このファイル
をdocker-composeコマンドで処理して、どんな動きになるのかを確かめましょう。

docker-composeのオプションやコマンド
　docker-composeコマンドは、次の書式で実行します。

　「オプション」は、docker-compose.yml以外のファイル名のものを指定した
り、別のホスト上で実行したりしたいときなどに指定するものです。指定しなけれ
ばならない場面は、ほとんどないので、ここでの説明は割愛します。

　「コマンド」は、起動や停止など、さまざまな命令のことです。図表7-11に示すコ
マンドが用意されています。最後の「引数」は、コマンドに対して指定するオプショ
ン引数です。コマンドによって引数の意味が異なります。たくさんのコマンドがありま
すが、まず覚えたいのは、起動の「up」、停止・破棄の「down」です。

起動

　では、起動してみましょう。起動は、upコマンドです。upコマンドには、図表7-12

に示すオプションを指定できます。このうち、最もよく使うのが、-dオプションです。
コンテナを起動するときのdocker runの-dオプションと同じ機能で、デタッチモード
で実行します。もし-dオプションを指定しないと、コンテナ終了まで待ってしまい、
次のコマンド入力ができませんから、デバッグなどの特殊な用途を除き、実質、-d
オプションの指定は必須と言えます。

　実際にコンテナを実行する手順は、次の通りです。

手順 Docker Composeでコンテナを起動する

［1］　カレントディレクトリを移動する
　docker-compose.ymlファイルを置いたディレクトリをカレントディレクトリにしま
す。

［2］　実行する
　次のように、-dオプションを伴ってupコマンドを実行します。すると、作成中のメ
ッセージが表示され、作成が完了します。

［3］　起動の確認
　これで起動しています。「http:/DockerホストのIP:8080/」にアクセスすると、
WordPressのページのインストールページが表示されるはずです。コンテナの状態
が、どのようになっているのかを確認してみましょう。それには、docker-compose
psコマンドを実行します。すると次のように、2つのコンテナが稼働していることがわ
かります。

コンテナの命名規則

　 こ こ で コ ン テ ナ の 名 前 が 、 「 wordpress_wordpress-app_1 」 や
「wordpress_wordpress-db_1」のように、

という命名規則になっている点に注目してください。docker-composeコマンドで
起動したときは、こうした命名規則になります。

memo　「1」というのは、「1つめ」ということを意味します。本書では説明しませんが、docker

composeでscaleオプションを指定すると、docker-composeファイルに記述している同じ

コンテナを2つ、3つと複数起動できます。その場合、「_2」「_3」･･･、といった命名規則にな

ります。

7-3-3　docker-composeで何が起きたのかを確認する
　docker-composeは、dockerコマンドを人間が入力するのを肩代わりする便
利なツールに過ぎません。docker-composeで作ったコンテナは、いままで手作
業で作ってきたコンテナと何ら変わりません。いまdocker-compose psコマンドを
使って起動したコンテナを確認しましたが、これまでコンテナの稼働状況を確認す
るときに使ってきた、docker psコマンドでも確認できます。実際に確認すると、や
はり2つのコンテナが存在することがわかります。

　ネットワークやボリュームについても同様です。docker network psやdocker
volume lsで確認した結果を以下に示します。

　必要があれば、こうしたコンテナをdocker stopで停止したり、docker rmで削
除したりすることもできます。ネットワークについてもdocker network rmで削除で
きます。しかしそうすると、docker-composeツールから操作した状態と反故が生
じて、管理しにくくなります。ですからdocker-composeで作成したコンテナは、
dockerコマンドではなく、docker-composeを使った管理に一元化すべきです。
その方法については、「7-3-6 サービスを個別に操作する」で、改めて説明します。

7-3-4　コンテナの停止と破棄
　では、いま起動したコンテナ一式を停止してみましょう。それには、docker-
compose downコマンドを使います。docker-compose downは、コンテナやネ
ットワークを停止するだけでなく、それらを破棄します。つまりdocker-compose
upする前に戻します。ただし既定では、ボリュームは削除しません（もしボリューム
が削除されたらデータが永続化されませんから、たいへんなことになります）が、図

表7-13に示すオプションを指定すると、削除するようにもできます。

memo　docker-compose.ymlファイルでは、ネットワークやボリュームを定義する際、externalオプ

ションを指定できます。externalオプションは、Docker Compose管理外のネットワークや

ボリュームであることを示します。これらのオプションが指定されたネットワークやボリュームは、

docker-compose downによって、削除されることは、決してありません。

　実際にやってみましょう。

手順 コンテナを停止して破棄する

［1］　docker-compose downを実行する
　docker-compose.ymlファイルを置いたディレクトリをカレントディレクトリにし
て、次のように、docker-compose downを実行します。メッセージに表示される
ように、コンテナやネットワークが削除されることがわかります。

［2］　コンテナの状態を確認する
　ここで状態を確認してみましょう。まずは、docker-compose psコマンドで確
認します。コンテナはありません。

　docker ps -aコマンドで確認しても同じです。

［3］　ネットワークの状態を確認する
　docker network lsコマンドを実行して、Dockerネットワークを確認してみま
す。こちらも存在しないことがわかります。

［4］　ボリュームの状態を確認する
　docker volume lsでボリュームの状態を確認します。こちらは残っています。で
すから、次にもう一度、docker-compose upしたときは、このボリュームの内容

は、そのまま使われるため、（そこにマウントしているMySQLコンテナが保存してい
るデータベースの）データが失われることはありません。

停止・破棄の際の注意

　つまるところ、docker-compose upで全部起動、docker-compose down
で全部停止および破棄という、まとめての操作ができるというのが、Docker
Composeの機能です。本当にそれだけの機能で、賢くはありません。そのため、
少し扱いに注意しなければならないことがあります。よく問題となるのは、起動時
（ docker-compose up ） と 停 止 時 （ docker-compose down ） と で 、
docker-compose.ymlファイルが異なる場合です。

　docker-compose downは、実行時にカレントディレクトリに置かれている
docker-compose.ymlファイルを見て操作します。（docker-compose upを
実行したときの）起動時の状態を把握しているわけではありません。例えば
docker-compose upしたときには、docker-compose.ymlファイルにコンテナA
を使う設定があったけれども、そのあとdocker-compose.ymlを編集して、コンテ
ナAを使う設定を削除した場合、docker-compose downすれば、そのコンテナ
Aは除外され、破棄されることはありません。

　docker-compose downは、あくまでも、その時点のdocker-compose.yml
フ ァ イ ル の 通 り に 動 作 し ま す 。 docker-compose up し た あ と に docker-

compose.ymlファイルを書き換えてしまい、docker-compose downしたとき
に、コンテナの削除残しや、意図しないコンテナやネットワークの削除が発生しない
よう、注意してください。

7-3-5　docker-compose.ymlの書き方
　それではdocker-compose.ymlは、どのように記述すればよいのでしょうか？　
その書き方を説明します。docker-compose.ymlでは、「サービス」「ネットワーク」
「ボリューム」の3つを定義します。

（1）サービス
　全体を構成する1つひとつのコンテナのことです。Docker Composeにおいてサ
ービスとは、コンテナのことだと言い換えて、ほぼ問題ありません。

memo　「ほぼ」と言っているのは、scaleオプションを指定すると、1つのサービスに対して複数のコンテ

ナを起動することができるためです。つまり本当は、サービスに対してコンテナが、1対多の関

係です。

（2）ネットワーク
　サービス（つまりコンテナ。以下同じ）が参加するネットワークを定義します。

（3）ボリューム
　サービスが利用するボリュームを定義します。

　docker-compose.ymlファイルでは、これらの設定をインデントしたブロック単
位で記述します。先ほどのリスト7-1のdocker-compose.ymlファイルをブロック
ごとに示したものを、図表7-14に示します。

コラム 　YAML形式について
　YAML形式に詳しくない人のために、基本的な書き方を以下に示します。

（1）設定値の書き方
　設定値は、「設定値:値」のように、「:」で区切って記述します。改行は入れ
ても入れなくても同じです。例えば、

という表記は、

と記述しても同じです。

（2）文字列の指定
　明示的に文字列であることを指定するときは、「'」か「"」で囲みます。

（3）複数値の書き方
　複数の値を書くときは、「- 設定値」のように、「-」で区切って記述します。
例えばリスト7-1には、ポート8080とポート80をマッピングする設定を、次のよう
に記述しています。

　もしさらに、ポート12345とポート1234をマッピングする設定を書きたければ、
次のように追記します。

（4）コメント
　「#」を記述すると、それ以降、行末までがコメントとみなされ、無視されま
す。

バージョン番号（version）

　冒頭の「version:」では、書式のバージョン番号を記述します。Docker
Composeは、過去、何度かバージョンアップしてきており、バージョンによって、
docker-compose.ymlの書き方が少し違うので、どのバージョンなのかを指定す
るためのものです。本書の執筆時点の最新版は、「バージョン3」なので、ここで
は、「version: "3"」と記述します。

memo　「version: '3'」のようにシングルクォートが囲んでもかまいません。また、バージョンには、マイナ

ーバージョンもあります。詳細なバージョンで特定したいときは、「version: "3.4"」などのよう

にマイナーバージョンも含めて記述することができます。

サービス（services）

　「services」の部分では、サービス（すなわち、コンテナの定義）を記述します。
次の書式です。

　それぞれのサービスの設定では、主に図表7-15に示す項目を設定できます。

memo　図表7-15には、主要なオプションのみを記述しています。全オプションについては、

Compose フ ァ イ ル の リ フ ァ レ ン ス （ http://docs.docker.jp/compose/compose-

file.html）を参照してください。以降の図表7-16、図表7-17についても同様です。

　具体的に見てみましょう。リスト7-1では、「wordpress-db」と「wordpress-
app」の2つのサービスを指定しています。

wordpress-db

　MySQLコンテナであるwordpress-dbでは、次の指定をしています。

イメージ（image）
　mysql.5.7というイメージから起動するコンテナを作ります。

ネットワーク（networks）
　wordpressnetというネットワークに接続します。このネットワークは、後述の
networks:の部分で定義しているものです。

ボリューム（volumes）
　wordpress_db_volumeというボリュームを/var/lib/mysqlというディレクトリに
マウントします。

起動失敗したときの再起動設定（restart）
　起動に失敗したときの再起動設定は、「always」としました。もし、コンテナの
起動に失敗したときは、再度、起動が試みられます。なお、再起動の際は、待ち
時間がだんだんと長くなるように構成されています。

環境変数（enviromnent）
　各種環境変数を設定します。これはdocker runするときに-eオプションで指
定したのと同じで、MySQLのパスワードやデータベース名などを指定しています。

コラム 　ボリュームのマウントを詳細に設定する
　リスト7-1では、次のように、docker runするときの-vオプションと同じ書式
でマウント方法を指定しています。

　しかし--mountオプションで指定する書式のように、より細かく指定すること
もできます。

wordpress-app

　WordPressコンテナであるwordpress-appでは、次の指定をしています。

依存関係（depends_on）
　先に定義したwordpress-dbに依存するという定義をしています。この定義に
よって、このwordpress-appは、wordpress-dbよりも後に起動するよう、起動
順序が調整されます（停止するときは、逆に、wordpress-appが先に停止し、
それからwordpress-dbが停止します）。

イメージ（image）
　wordpressというイメージから起動するコンテナを作ります。

ネットワーク（networks）
　wordpressnetというネットワークに接続します。このネットワークは、後述の
networks:の部分で定義しているものです。

ポート（ports）
　ポートのマッピングを指定します。ここでは、Dockerホストの8080番を、このコン
テナの80番に割り当てています。

起動失敗したときの再起動設定（restart）
　起動に失敗したときの再起動設定は、「always」としました。もし、コンテナの
起動に失敗したときは、再度、起動が試みられます。

環境変数（enviromnent）
　各種環境変数を設定します。これはdocker runするときに-eオプションで指
定したのと同じで、接続先となるMySQLのホスト名、データベース名、ユーザー名
や パ ス ワ ー ド を 指 定 し て い ま す 。 ホ ス ト 名 は 、
「WORDPRESS_DB_HOST:wordpress-db」のように、先ほど定義した「サービス
名」で指定している点に注目しましょう。同じdocker-compose.ymlに記述した
サービス（コンテナ）同士は、サービス名を指定することで通信できます。

ネットワーク
　ネットワークは、networksの部分で定義します。ここでは、次のように名前だけ
を指定していますが、オプションでIPアドレス範囲などを指定することもできます
（図表7-16）。

コラム 　ネットワークの指定を省略する
　ここではわかりやすくするため、networksの部分でwordpressnetという名
前のネットワークを作成し、そのネットワークに属するように指定しました。しかし
実際には、こうしたネットワーク設定を省略することもできます（リスト7-2）。

　Docker-Composeでは、明示的にネットワークを指定しなかったときは、記
述しているサービス（コンテナ）がつながる新しいDockerネットワークを自動的
に作成し、すべてのサービスを、そのネットワークに接続するように構成します
（docker-compose downすれば、そのネットワークは、もちろん、自動的に
削除されます）。この場合でも、サービス名を宛先として指定して通信できま
す。

　ですから明示的にネットワークを設定しなければならない必然性はなく、むし
ろ、指定が省略されることのほうが多いです。

ボリューム

　コンテナが利用するボリュームは、volumesの部分で定義します。ここでは、次
のように名前だけを指定していますが、オプションでマウント方法などを指定するこ
ともできます（図表7-17）。既定では、ボリュームが存在しない場合は作られ、作
られたボリュームは、docker-compose downしても、削除されません。

7-3-6　サービスを個別に操作する
　このように、docker-composeコマンドでは、upとdownを指定することで、まと
めて起動ならびに停止・削除できますが、ときには、1つひとつのサービス（コンテ
ナ）を操作したいこともあります。docker-composeで起動したコンテナは、普通
のコンテナですから、もちろん、dockerコマンドを使って1つひとつ操作することもで
きます。しかし、起動したコンテナ名は、「作業用ディレクトリ名_コンテナ名_1」とい
うような命名規則です。このように別名になることを考慮してコンテナを操作するの
は、少し煩雑です。しかもdocker-composeで管理されているものを、dockerコ
マンドで操作すると、反故が生じる可能性もあります。

　こうした理由から、docker-composeで起動したコンテナなどは、docker-
composeから操作すべきです。docker-composeには、図表7-18に示すオプショ
ンがあり、これらのオプションを使えば、1つひとつのサービス（コンテナ）だけを停
止したり、開始したりできます。

　docker-composeコマンドで実行する場合と、dockerコマンドで実行する場
合の違いは、次の通りです。

（1）docker-compose.ymlが必要
　 docker-compose コ マ ン ド は 、 カ レ ン ト デ ィ レ ク ト リ に 置 か れ た docker-
compose.ymlを読み込みます。このファイルがなければ失敗します。

（2）サービス名で指定する
　dockerコマンドはコンテナ名またはコンテナIDで指定するのに対し、docker-
composeではdocker-compose.ymlのservicesの部分に書かれたサービス名で
指定します。

（3）依存関係が考慮される
　docker-composeでは、depends-onで記述された依存関係が考慮されま
す。例えば今回の例でいえば、wordpress-appはwordpress-dbに依存してい
るため、「docker-compose start wordpress-app」としたときは、wordpress-
dbが先に起動します。同様に、「docker-compose stop wordpress-app」と
したときは、wordpress-appが終了したあと、wordpress-dbも終了します。

　実際に、いくつか試してみましょう。

手順 docker-composeでひとつずつコンテナを操作する

［1］　すべて起動する
　いったん、docker-compose upで、すべてを起動しましょう。

［2］　コンテナのシェルを実行する
　起動したコンテナのうち、wordpress-appのほうに入り込んでみましょう。
docker-compose execを実行すると、任意のコマンドを実行できます。docker
execのときは、「-i」「-t」を指定しましたが、docker-composeコマンドで実行す
るときは、これらのオプションはありません。指定しなくても、キーボードやマウスがコ
ンテナとつながります。下記のようにコマンドプロンプトが変わり、コンテナ内でコマン
ド入力できるようになります。

memo　8eb4cdec2934はコンテナIDです。環境によって異なります。なお、「ERROR: No

container found for wordpress-app_1 」 の よ う に 表 示 さ れ た と き は 、 docker-

compose downして、再度、docker-compose upして試してください。

［3］　コンテナ内でコマンドを実行してコンテナから抜ける
　いくつかのコマンドを実行してみましょう。ここでは、「ls /var/www/html」を実
行してみます。

　確認したら、exitと入力して終了します。

［4］　MySQLコンテナだけを停止してみる
　片方だけのコンテナを停止してみましょう。MySQLコンテナであるwordpress-
dbを停止してみます。

　docker-compose psで確認すると、片方が止まっていることがわかります。も
ちろん、この状態でWordPressにアクセスすると、DBエラーになります。

［5］　再度起動する
　再度、起動します。これには、2つの方法があります。1つは、「docker-
compose start wordpress-db」することです。この場合、wordpress-dbだけ
が起動します。

　docker-compose psで確認すると、起動中であることがわかります。これで
WordPressにアクセスしても、DBエラーは発生しなくなります。

　停止したコンテナを再度実行する方法は、もう1つあります。それは、docker-
compose upすることです。この場合、docker-compose.ymlの内容が再実行
され、それに伴い、wordpress-dbも起動します。

7-4　まとめ

　この章では、複数のコンテナをまとめて起動、停止・破棄できるDocker
Composeについて説明しました。

（1）docker-compose.ymlにまとめて書く
　起動したコンテナ、ネットワーク、ボリュームの情報をdocker-compose.ymlファ
イルに記述します。

（2）docker-compose upでまとめて起動する
　docker-compose.ymlファイルを置いた場所をカレントディレクトリにし、
docker-compose upすると、まとめて起動します。必要なネットワーク、ボリュー
ムも作られます。

（3）docker-compose downでまとめて停止・破棄する
　docker-compose downすると、まとめてコンテナが停止し、ネットワークも破
棄されます。ボリュームは残ります。

（4）コンテナの名前はDocker Composeに基づくものとなる

　コンテナの名前は、「作業ディレクトリ名_サービス名_1」のような命名規則に基
づくものとなります。

　この章までで、「コンテナを使う」という説明は終わりです。次章では、カスタムな
Dockerイメージを作ることに焦点を当てます。

　これまでは、誰かが作ったイメージを使ってコンテナを利
用してきました。しかしイメージを自分で作ることもできま
す。この章では、イメージを自作する方法について説明し
ます。

8-1　カスタムなイメージを作る

　Docker Hubなどで公開されているイメージは、汎用的なものです。ですからこ
れまで見てきたように、コンテナの起動後に、自分が使いたいように、何らかの調
整を加えることがほとんどです。具体的には、docker runの-eオプションで環境
変数を指定する、docker cpを使ってファイルをコピーする、docker execでコンテ
ナの中に入ってファイルを編集するなどの操作が挙げられます。

　カスタムなイメージを作れば、イメージの時点で、こうしたカスタマイズをしておくこ
とができます（図表8-1）。

8-1-1　カスタムなイメージの利点
　カスタムなイメージを作れば、コンテナを起動したあとに、さまざまな調整が必要
なくなります。つまり、すぐに使えるようになります。これによって、次のような利点
が生じます。

（1）Dockerに詳しくなくても利用できる
　コンテナ起動後の操作が必要ないため、Dockerに詳しくなくても利用できま
す。極論を言えば、docker runの使い方さえ知ってさえすれば、使えるはずです。

（2）設定や調整のミスを排除できる
　コンテナ起動後の設定や調整がないので、これらの設定ミスの可能性がなくな
ります。

（3）ファイルの配布としても使える
　コンテナには、動作に必要なライブラリやデータなども含められます。つまり、稼
働に必要なファイルを一緒に配布でき、1つひとつダウンロードする必要がなく、ワ
ンパッケージ化されます。

（4）イメージのなかで何を操作したのか履歴を残せる
　すぐあとに説明しますが、イメージを作成するときは、コンテナにコピーするファイ
ルや、コンテナで実行するコマンドなどを、1つのファイル（のちに説明する
Dockerfile）にまとめて記述します。そのため、何をしたのかが明確で操作の履
歴を残せます。

　この章を通じて実際に試していきますが、カスタムイメージの作成は複雑ではあ
りません。でも、手間がかかります。ですから、自分1人がちょっとしたコンテナを使
うだけであれば、カスタムイメージを作るメリットはあまりないかも知れません。カス
タムイメージを作る利点が活きてくるのは、誰かに使ってもらう目的で配布する場
合、もしくは、自分で使う場合でも、少なくとも2回以上使うなど、同じ構成のコ
ンテナを繰り返し使う場面です。

8-1-2　開発現場での使われ方
　開発の現場においてカスタムなイメージは、次のような場面で、よく使われます
（図表8-2）。

（1）サーバーの運用
　開発の現場でDockerを導入する場合、開発機・検証機・本番機で、同じ
構成のコンテナを使うことになるはずです。すべて、同じイメージから作ったコンテナ
を使うことで、同一構成のシステムを簡単に作れます。

（2）開発者やデザイナーの開発環境
　上記のイメージを開発者やデザイナーに配布すれば、それぞれ自分のパソコンで
（Docker Desktop for WindowsやDocker Desktop for Macなどを使っ
て）、サーバーと同じ環境で開発できます。

memo　最近では、ハンズオン形式の書籍やセミナーにおいて、読者や受講者が試せるような環境

を、Dockerイメージとして配布することが増えてきています。特にライブラリなどのインストール

が煩雑な機械学習系では、その傾向が強いです。ハンズオン環境をイメージとして提供す

れば、事前準備に手を煩わせることがありません。

8-2　カスタムなイメージの作り方と仕組み

　それではカスタムなイメージを作るには、どのようにすればよいのでしょうか？

8-2-1　コンテナからの作成とDockerfileからの作成
　カスタムなイメージを作る方法は、2つあります（図表8-3）。どちらの場合も、
作ったカスタムイメージは、Docker HubやプライベートなDockerレジストリに登録
できます。もしくは、作ったカスタムイメージのファイルを別のコンピューターにコピーし
て、取り込んで利用できます。

（1）コンテナから作る
　ベースとなるイメージからコンテナを起動して、そのコンテナに対して、docker
execでシェルで入って操作したり、docker cpでファイルコピーしたりして調整を加
えます。それから、docker commitコマンドを使ってイメージ化します。

（2）Dockerfileから作る
　ベースとなるイメージと、そのイメージに対して、どのような操作をするのかを記し
たDockerfileと呼ばれるファイルを用意し、そのDockerfile通りにコンテナに対し
て変更やファイルコピーを加えることによってイメージを作成します。イメージの作成
には、docker buildコマンドを使います。

アーカイブ目的ならコンテナから

　コンテナから作る方法は、「現在のコンテナの状態」をありのままイメージする化
方法で、コンテナのアーカイブであると捉えることができます。例えば、コンテナをそ
のまま別のコンピューターに移動したい場合は、この方法がよいでしょう。

memo　もちろん、コンテナのバックアップにもこの方法は使えます。しかし、そもそも失われてはいけな

いデータは、バインドマウントやボリュームマウントした別の場所に置き、コンテナ自体は破棄

されても問題ないような運用にすべきという方針を忘れないでください。コンテナのバックアッ

プが必要になるのは、ほとんどの場合、設計や運用が何か間違っています。バックアップす

べき対象は、コンテナではなく、バインドマウントやボリュームマウントした先のはずです。

配布用はDockerfileから作る

　コンテナから作る方法の最大のデメリットは、「ベースとなるイメージに対して、ど
んな変更を加えたのかわからない」という点です。最終的な現在の状態しかわか
らないのです。これは、他人が作ったイメージを使うときに、とても大きな不安要素
となります。なぜなら、悪意ある変更が加えられているかどうかわからないからで
す。

　Dockerfileを使った方法は、この問題を解決します。Dockerfileは、ベースと
なるイメージに対する変更指示をまとめたファイルです。これさえ見れば、悪意ある
操作や間違った操作が加えられていないかが一目瞭然です。

memo　もちろん、配布されているイメージが、本当に、そのDockerfileから作られたかどうかは、また

別の話です。もしかしたら配布されているイメージは、そのDockerfileから作られたのではな

いかも知れません。そこまで気になる場合は、Dockerfileだけを入手してきて自分の環境

でdocker buildし、イメージを作り直せばよいでしょう。

　Dockerfileを使った方法には、もう1つ改良しやすいというメリットもあります。
例えば、誰かが作ったイメージにさらに手を加えたい場合、そのDockerfileを入手
して、必要箇所を変更するだけで済むからです。

　こうした理由から、誰かに配布することを目的とした場合は、Dockerfileを使っ
た方法がほとんどです。実際、Docker Hubに登録されているすべてのイメージ
は、Dockerfileを使った方法で作られたもので、Dockerfile自身が公開されてい
ます（公開されているDockerfileについては後で説明します）。

8-2-2　ベースとなるイメージ
　図表8-3からわかるように、イメージの作り方によらず、どちらも元となるベースの
イメージがあり、そのイメージに対して何か修正していくように変更を加えます。ベー
スとなるイメージとは、要は、自分が使いたいものに近い既存のイメージです。しか
し、「Webサーバー」「DBサーバー」など、何か特定の用途向けに作られた実用的
なイメージは、イメージのサイズを小さくするために最低限のコマンドしか入っておら
ず、その改良がしにくいこともあります。

　例えば本書では、Apacheを構成するhttpdイメージを使ってきました。ここに
PHPの実行環境を入れたカスタムなイメージを作りたいとしましょう。それは少し困
難です。httpdイメージには、PHPをインストールするためのパッケージやビルドする

ための環境などが含まれていないからです。ファイルの追加や設定変更ぐらいの
小さな変更であれば、ベースイメージの種類が問われることは、ほぼありません。し
かしアプリケーションやライブラリを追加でインストールするような変更を加えたいと
きは、イメージに含まれているコマンドやパッケージが足りずに、うまくいかないことも
ありえます。

よく使われるLinuxイメージ
　こうした理由から、アプリケーションのインストールなどが必要な場面では、何か
が入っているイメージではなくて、Linuxの基本的なイメージから作成することがほ
とんどです。Dockerのオフィシャルイメージとして提供されており、かつ、よく使われ
るLinuxイメージは、図表8-4の通りです。

memo　ほかにも、centos、fedora、amazonlinux、oraclelinuxなどもあります。Docker Hubの

オフィシャルイメージで探してみてください。

　ベースイメージの種類によって、含まれる基本的なコマンドが違い、たくさんの機
能が含まれていないイメージほど、イメージサイズが小さくなります。ですからベース
イメージを選ぶときは、実行に必要となる必要最低限の機能を満たし、できるだ
けシンプルでイメージサイズが小さいものを使うことが望ましいです。

　ある程度、なんでもしたいときはdebianイメージが使われることが多いです。
debianイメージほどのフルセットが必要ないときに、alpineイメージを使うのはよい
選択です。そしてもし最低限のコマンドしか必要としないなら、busyboxの利用が

適しています。Ubuntuに慣れている人は、ubuntuイメージを使うとわかりやすく
操作しやすいはずですが、その分、イメージサイズが、少し大きくなります。

コラム 　「-alpine」というタグが付いたイメージ
　Docker Hubで公開されているイメージのタグに「alpine」という文字が含ま
れているものを、ときどき見かけます。例えばhttpdイメージは、「2.4」などのタグ
とは別に「2.4-alpine」というタグがあります。「-alpine」というタグが付けられた
ものは、Alpineをベースに作られたものです。言い換えると、このイメージには、
Alpineに含まれているコマンドやパッケージ一式が含まれています。ですから、そ
れらを使ったカスタマイズがしやくなっています。本書では深入りしませんが、公
開されている既存のイメージに何か改良したいときは、「-alpine」のタグが付い
たイメージを使うと、うまくいくケースが多いです。

コラム 　Linuxイメージはディストリビューション

　Linuxイメージは、あくまでもディストリビューションであり、Linux本体ではあり
ません。例えば、あなたのDockerホストがUbuntu上で動作しているとします。
このDockerホスト上で、alpineイメージからコンテナを作ったとします。このとき
alpineコンテナのなかでは、Alpineが動いているように見えますが、それは、コン
テナの中にAlpineを構成するディストリビューションのファイル群が含まれている
からにすぎません。Linuxカーネルは、その下で動いているUbuntuのものが使わ
れます。コンテナの中にカーネルはありません（図表8-5）。

8-2-3　差分を重ねるレイヤー
　Dockerのイメージは、データのサイズを抑えるため、「差分しか収録しない」とい
う作り方をしています。例えば、あなたがalpineイメージに対して、Aという変更を
加えたイメージを作ったとします。このとき、alpineイメージと異なる部分だけがAと
いうイメージに含まれます。AというイメージにさらにBという変更を加えた場合、Bと
いうイメージには、AとBの差しか含まれません。このようにイメージは、変更箇所が
階層化されています。この階層のことを「レイヤー」と言います（図表8-6）。

ベースイメージの共通化

　このように差分で構成されているのは、イメージを軽量にするためです。例えば、
イメージA、イメージB、イメージCが、すべて同じイメージXをベースに作られたものだ
とします。このとき、これらのイメージA、イメージB、イメージCからコンテナを作って動
かす場合、共通のイメージXからの差だけで構成されます。そのためディスク上のイ
メージサイズを抑えることができます（図表8-7）。

レイヤーを確認する

　どのようなレイヤーで構成されているのかは、docker historyコマンドで確認で
きます。Docker Hubで公開されているさまざまなイメージも、別のイメージから作
られた差分で構成されています。ここでは、mysqlコンテナが、どのようなレイヤーで
構成されているのかを確認してみましょう。

手順 mysqlコンテナのレイヤーを確認する

［1］　イメージをダウンロードする
　docker historyコマンドでレイヤーを確認するには、ダウンロードされたイメージが
必要です。そこでdocker pullして、イメージをダウンロードします。ここでは、
mysql:5.7をpullしてみます。

memo　5.7を使う大きな理由はありません。前の章で5.7を使ったという理由だけです。タグを指定

せず、「mysql」とだけ指定して、最新版で確認してもかまいません。

　まずは、実行結果をわかりやすくするため、いまmysql:5.7がダウンロード済みで
あるならば、それを削除します。

　そして改めて、ダウンロードします。

　この結果から、もう、ある程度の答えは出ています。結果は次のようになり、何
やら、たくさんのファイルをダウンロードしていることがわかります。

　こうした「54fe･･･」「bcc6･･･」というのが、それぞれのレイヤーに相当するイメー
ジの正体です（イメージには、イメージIDが割り当てられます。表示されている
「54fe･･･」のような文字は、イメージIDです）。つまりここに示したように、イメージ
をダウンロードしたときは、連なる差となるイメージが、すべてダウンロードされるので
す。

［2］　それぞれのレイヤーの詳細を確認する
　docker historyコマンドを使って、レイヤーを確認します。すると次のように、そ
れぞれのレイヤーの工程で、何が実施されたのかがわかります。「CREATED BY」

の部分に、前のイメージに対して実行したコマンドや追加したファイルなどが記され
ています。

memo　デフォルトでは、「CREATED BY」が長いときは後ろが切れて表示されます。「--no-trunc」

オプションを指定すると、切らずにすべてを表示できます。

8-2-4　流儀に従って作る
　説明はこのぐらいにして、次節から実際にイメージを作っていきますが、重要なこ
とがあります。それは、「Dockerの流儀に従う」ということです。Dockerの世界で
は、どんなコンテナであってもdocker runで起動します。そして、docker logsでロ
グ情報を参照できます。多くのコンテナは環境変数を使って設定変更できるよう
になっています。こうした流儀に従わないイメージを作ってしまったら、それは、とても
使いにくいものになるでしょう。Docker社は、イメージを作るときのベストプラクティ
スを、「Dockerfileのベストプラクティス」というドキュメントに示しています。このドキ
ュメントと一部重複しますが、Dockerイメージを作るときのポイントをまとめておき
ます。

【Dockerfileのベストプラクティス】
http://docs.docker.jp/engine/articles/dockerfile_best-
practice.html

（1）1つのコンテナは1つの処理しかしない
　1つのコンテナに、たくさんの機能を詰め込まないようにします。第7章で見てき
たように、WordPressを構築する場合は、「WordPressのコンテナ」と「データベー
スのコンテナ」に分けるなど、分離できるものは別のコンテナとして構成します。もち
ろん、いつも分割するのが正解とは限りません。例えば「Apache+PHP」は、互
いに連携して動作するので分けることはできません。ですから実際には、どのぐらい
密に連携するのか、分割して問題が起きないのかなど、総合的に判断して決め
ることになります。

（2）利用するポートを明確にする
　すでにコンテナを使ってきた経緯からわかるように、通信するコンテナをdocker
run する際は、-pオプションで、そのポート番号を指定します。自分でイメージを作
るときも、どのようなポートを経由して外部からつながれるのかを明確にしておきま
す（これは後述のDockerfileのEXPOSE命令のことを言っています）。

（3）永続化すべき場所を明確にする
　コンテナ内で書き換えるファイルを置くディレクトリは、まとめておきます。そしてそ
れを明確にすることで、イメージの利用者が、その場所をバインドマウントやボリュ
ームマウントする際の、手がかりになるようにします（これは後述のDockerfileの
VOLUME命令のことを言っています）。

（4）設定は環境変数で渡す
　何か設定を受け取るときは、環境変数でやり取りするのが慣例です。そうした
方法にのっとるようにします。

（5）ログは標準出力に書き出す
　ログは標準出力に書き出すように構成してください。そうすればイメージの利用
者は、docker logsコマンドで、その内容を確認できます。

（6）メインのプログラムが終了するとコンテナが終了することを忘れない
　これは改めて説明しますが、コンテナ内のメインのプログラムが終了すると、コン
テナは終了します。docker runするときに-dオプションを指定してデタッチモードで
実行することを想定するコンテナでは、「決して終了することがないプログラム」をず
っと動かしておかなければ、コンテナは勝手に終了してしまうことを意味します（こ
れは後述のDockerfileのCMD命令やENTRYPOINT命令のことを言っていま
す）。

8-3　コンテナからイメージを作る

　説明はこのぐらいにして、イメージを作る方法を説明しましょう。まずは、コンテナ
に変更を加えて、それをイメージ化する例を説明します。

8-3-1　コンテンツ入りのhttpdコンテナを作る

　 第 5 章 で は 、 httpd コ ン テ ナ を 作 っ た あ と 、 docker cp コ マ ン ド を 使 っ て
index.htmlファイルをコンテナ内にコピーし、「http://DockerホストのIP:ポート番
号/」でアクセスしたときに、そのファイルの内容が見られるようにしました。ここで
は、これと同様の方法で作ったコンテナをイメージ化します。そして、そのイメージか
らコンテナを作り直すことで、index.htmlがすでに入ったコンテナが起動することを
確認します（図表8-8）。

8-3-2　コンテナにコンテンツをコピーする
　まずは、第5章で行ったのと同様にしてhttpdコンテナを起動し、そのコンテナに
index.htmlファイルをコピーします。手順が重複するので、ここでは簡単にやり方
を説明します。より詳しい手順については、第5章を参照してください。

手順 httpdコンテナの中にindex.htmlファイルをコピーする

［1］　httpdコンテナを起動する
　docker runコマンドを使って、httpdコンテナを起動します。コンテナ名は、
webcontentとしました。

［2］　tmpディレクトリにindex.htmlファイルを作る
　まずは、コンテナに入れるべきindex.htmlファイルを、/tmpディレクトリに作成し
ます（リスト8-1）。nanoエディタなどを使ってファイルを作成してください。

［3］　コンテナの中にindex.htmlをコピーする
　コンテナの中にindex.htmlをコピーします。

［4］　ブラウザで確認する
　 ブ ラ ウ ザ で 「 http://Docker ホ ス ト の IP ア ド レ ス :8080/ 」 に 接 続 し ま す 。
index.htmlに書いた「Docker Contents」と表示されることを確認します（図表

8-9）。

8-3-3　コンテナをイメージ化する
　次に、このコンテナをイメージ化します。

手順 コンテナをイメージ化する

［1］　コンテナをイメージ化する
　いまカスタマイズしたwebcontentという名前のコンテナをイメージ化します。コン
テナをイメージ化するには、docker commitコマンドを使います。このとき作成する
イ メ ー ジ に 対 し て 、 イ メ ー ジ 名 や タ グ 名 を 付 け ら れ ま す 。 こ こ で は 、
「mycustomed_httpd」という名前を付けることにします。実行すると次のよう
に、「sha256:･･･」という文字列が表示され、イメージ化されます。ここに表示され
たのは、イメージIDです。

memo　イメージ名には、「mycustomed_httpd:1.0」のようにタグ名を伴うこともできます。また、イ

メージIDは固有のIDなので、みなさんの環境で異なる値になるはずです。

［2］　イメージを確認する
　 docker image ls コ マ ン ド で イ メ ー ジ を 確 認 し ま す 。 い ま 作 成 し た
mycustomed_httpdが存在することがわかります。

［3］　イメージの履歴を確認する
　docker historyで、このイメージの履歴を確認します。実行結果からわかるよ
うに、CREATED_BYの部分には「httpd-foreground」と書かれています。これは
もともとのhttpdコンテナが実行している内部プログラムの名前にすぎず、
「index.htmlをコピーした」などの履歴は残りません。

8-3-4　カスタムなイメージを使う
　作成されたmycustomed_httpdというカスタムイメージは、もちろん、すぐに使
うことができます。このイメージからコンテナを作成してみましょう。コンテナの名前
は、「webcontent_new」としましょう。

手順 カスタムなイメージを使う

［1］　コンテナを作る
　次のように入力してコンテナを起動します。ここではwebcontent_newという名
前とし、ポート8081に割り当てました。

［2］　コンテナを確認する
　docker psで、コンテナが動いたことを確認しましょう。

［3］　コンテナにindex.htmlがあることを確認する
　起動したwebcontent_newコンテナの/usr/local/apache2/htdocsには、カ
スタマイズしたindex.htmlファイルがあるはずです。その内容を確認しましょう。ま

ずは、docker execで、このコンテナ内のシェルに入ります。

memo　root@ffb6･･･の部分はコンテナIDです。環境によって異なります。

　コンテナ内のプロンプト（root@ffb6･･･#）が表示されたら、catコマンド
で/usr/local/apache2/htdocs/index.htmlの内容を表示します。リスト8-1と
同じ内容になっているはずです。

　確認したら「exit」と入力して、コンテナから抜けましょう。

［4］　ブラウザで確認する
　ブラウザで「http://DockerホストのIPアドレス:8081/」に接続します。先ほどの
図表8-9と同様に「Docker Contents」と表示されるはずです。

［5］　後始末
　これで実験は完了です。作成したコンテナやイメージを削除しておきましょう。

8-4　Dockerfileからイメージを作る

　このようにコンテナからイメージを作るのは、docker commitコマンドを使うだけ
なので、とても簡単です。次に、Dockerfileを使ってイメージを作る方法を説明し
ます。こちらは少し複雑ですが、こちらが本流です。

8-4-1　必要なファイルをコピーするだけのコンテナの例
　 ま ず は 、 簡 単 な 例 か ら 始 め ま す 。 先 の 例 と 同 様 に 、 httpd イ メ ー ジ
の/usr/local/apache2/htdocs/index.htmlを書き換えたカスタムイメージを作っ
てみます。

イメージに含めるファイル群とDockerfileの用意
　Dockerfileを使ってイメージを作る場合、「イメージに含めたいファイル」と
「Dockerfile」を1つのディレクトリに置き、それをdocker buildして作るという方
法をとります（図表8-10）。このディレクトリに含めているファイルは、イメージを作

成したときに、たとえ利用していないものであっても含まれてしまうので、余計なも
のは置かないようにしてください。

memo　ただし、同ディレクトリに.dockerignoreファイルを置くと、除外ファイルを指定できます。しか

しこの機能は、ファイル名のマッチングで除外するため、ファイル数が多いと、イメージの作成

に時間がかかってしまう恐れもあるので注意してください。

　実際に、このようなディレクトリを作り、index.htmlファイルとDockerfileを用意
しましょう。

手順 イメージの作成に必要なファイル群やDockerfileを用意する

［1］　作業用ディレクトリを作る
　まずは作業用のディレクトリを作成します。ここでは、customed_httpdという
名前のディレクトリを作ります。

　作成したら、ここにカレントディレクトリを移動しておきます。

［2］　index.htmlファイルを作る
　nanoなどのエディタを使って、index.htmlファイルを作ります。内容は、リスト
8-1と同じ内容とします。

［3］　Dockerfileを作る
　Dockerfileを作ります。ファイル名の先頭は大文字で、残りは小文字なので
注意してください。内容は、リスト8-2の通りとします。このファイルの意味について
は、すぐあとに説明します。

イメージをビルドする
　これで準備完了です。イメージを作成しましょう。Dockerfileからイメージを作
成することを「ビルド」と言います。

手順 イメージをビルドする

［1］　カレントディレクトリを対象ディレクトリに移動する
　Dockerfileやイメージに含めたいファイル群を置いたディレクトリに移動します。

［2］　ビルドする
　docker buildコマンドを使ってビルドします。このとき作成するイメージ名ならび
にタグ名は、-tオプションで作成します。ここでは、「myimage01」という名前にし
てみます。

memo　ここでは「myimage01」のようにイメージ名のみ指定していますが、「myimage01:1.0」のよ

うにタグ名を指定することもできます。

　すると次のように、ビルドに成功するはずです。

［3］　確認する
　docker image lsコマンドで、イメージができたことを確認します。

　さらにdocker historyで詳細情報も確認しておきましょう。すると次のように、
COPY fileというレイヤーが存在することがわかります。これはリスト8-2に示した
Dockerfileの2行目に書いた「COPY　･･･」の命令に相当します。

　後ろが切れていますが、--no-truncオプションを指定すると、さらに表示できま
す。index.htmlが、「5d2b･･･」というファイルに変わっていますが、これは
index.htmlの実体です。/usr/local/apache2/htdocs/にコピーしていることがわ

かります。このように履歴が残るのが、docker commitでコンテナからイメージを作
成した場合との、大きな違いです。

ビルドしたイメージを利用する

　ビルドしたイメージを使う方法は、先ほどのときとまったく同じです。次のようにす
れば、このイメージからコンテナを起動できます。下記のコマンドを入力してコンテナ
を作成したら、「http://DockerホストのIPアドレス:8080/」にアクセスしたとき、や
はり図表8-9のように表示されるはずです。

後始末

　これで実験は終わりです。作成したコンテナとイメージを削除しておきましょう。

8-4-2　Dockerfileの書式

　リスト8-2に示したのは、既存のイメージに、index.htmlをコピーするだけの、とて
も単純な内容です。次の2行しかありません。

　1行目のFROMは、ベースとなるイメージの名前です。2行目のCOPYは、ファイ
ルをコピーするコマンドです。Dockerfileには次の書式で、1行に1コマンドずつ記
述します。

（1）記述順序
　docker buildすると、Dockerfileが読み取られ、先頭から順に、1行ずつ処
理されます。言い換えると、記述順には意味があります。最初にベースイメージを
指定しないと何も始まりませんから、ほぼすべての場合において、1行目はFROM
命令です。

（2）コメント
　「#」を記述すると、それ以降、行末までがコメントとして扱われます。

（3）行をまたぐとき
　行をまたぐときは、末尾に「\」を記述します。

（4）環境変数
　「${環境変数名}」と記述すると、OSで設定されている現在の環境変数の値
が、そこに埋め込まれます。

8-4-3　指定できる命令
　指定できる命令一覧を図表8-11に示します。以下、これらの命令の主要なも
のを、項目ごとに説明します。

8-4-4　ファイルコピー
　ファイルコピーには、「ADD」か「COPY」のいずれかの命令を指定します。すでに
見てきたように、

というように、「コピー元のファイルまたはディレクトリ」と「コピー先の場所（とファイ
ル名）」を指定します。ディレクトリを指定すれば、そのディレクトリに含まれるファ
イルおよびサブディレクトリすべてが対象となります。コピー元として「foo/*.txt」など
のワイルドカードを指定することもできます。

memo　コピー元はDockerfileファイルが置かれている場所からの相対パスです。コピー先は、

WORKDIR命令で指定したパスからの相対パスです。

　COPY命令では、このような書式のほか、

のように、[]で囲んだリスト形式でも記述できます。複数のファイルを同じ場所にコ
ピーするときや、ファイル名に空白を含むときには、こちらの書式を使います。

　COPY命令に似た機能として、ADD命令があります。ADD命令は、次の点が
異なります。

・コピー元としてtarファイル（およびtar.gz、tar.bz2、tar.xz）を指定すると、コピー

先のディレクトリに展開されます。
・コピー元としてリモートのURLを指定し、そのURLからファイルをダウンロードできま

す（この場合、上記のtar展開はされません）。

　ADD命令は便利なのですが、挙動がわかりにくくなるため、Dockerfileのベス
トプラクティスでは、ADDコマンドよりもCOPYコマンドを使うことが推奨されていま
す。

8-4-5　コマンドの実行
　コマンドを実行する系統の命令は、「RUN」「CMDとENTRYPOINT」の2種類
あります。前者はイメージの作成時に、後者はコンテナの実行時に実行されます
（図表8-12）。

RUN

　RUNコマンドは、docker buildするタイミング（すなわち、イメージを生成する
とき）に実行します。ここには、イメージの時点で実行しておきたいコマンドを書き
ます。例えば、ソフトウエアパッケージのインストールやファイルのコピー、変更などの
処理です。RUNコマンドでは、次のいずれかの書式で、実行したいコマンドを記
述します。

（1）シェル形式
　次のように、実行したいコマンドを、そのまま記述する書式です。この場合、シェ
ル（/bin/sh -c）を経由して、コマンドが実行されます。

（2）exec形式
　次のように、実行したいコマンドや引数を[]で囲んで記述します。この場合、シ
ェルを経由せず、直接実行されます。

memo　既定のシェルは、SHELL命令で変更することもできます。

　RUN命令を使うときは、1つ、大事な注意点があります。それは、複数のコマ
ンドを実行するときも、できるだけ1つのRUNコマンドで済ませるように書くという点
です。Dockerのイメージは、その差分がレイヤーとして構成されると説明しました。
実は、このレイヤー、RUNコマンドを実行するたびに増えていく仕組みになっていま
す。例えば、次のように3つのRUNコマンドを記述すると、3つのレイヤーが作られて
しまいます。

　これでは効率が悪いので、特に意図がなければ、1つのRUNコマンドで実現す
るようにします。Linuxのシェルでは、「&&」でコマンドをつなげると、それを順に実
行してくれます。そこで、次のように記述します。

　こうすると行が長くなって読みにくくなります。そういうときは、行を分割できる表
記の「\」を使って、次のように記述するとよいでしょう。この例は、すぐあとに実際
に使います。

コラム 　イメージのビルド完了時に実行するONBUILD命令
　ときには、イメージのビルドが完了した後に、何か命令を実行したいことがあ
ります。そのようなときには、命令の直前に「ONBUILD」と書きます。例えば、
ビルド後にファイルをコピーしたいときは、次のようにします（もちろん[]を使った
記法でも書けます。次のRUNについても同様です）。

　コマンドを実行したいのであれば、RUNコマンドを次のように記述します。

CMDとENTRYPOINT
　CMDとENTRYPOINTは、コンテナを起動したときのタイミング（docker start
やdocker runするときのタイミング）で、コンテナの中で実行するコマンドを指定
するものです。docker run（もしくはdocker create）では、コンテナの中で実
行するコマンドを指定し、そのコマンドが終了するとコンテナが終了するという仕組
みだったことを思い出してください。

　この既定のコマンドを指定するものこそが、CMDやENTRYPOINTです。CMD
とENTRYPOINTの違いは、次の通りです。

（1）ENTRYPOINT
　コマンドの指定を強要します。イメージの利用者は基本的に、この設定を変更
することはできません（「基本的に」と記述しているのは、docker runするときに-
-entry-point オ プ シ ョ ン を 指 定 す る と 、 強 制 上 書 き で き る た め で す ） 。
ENTRYPOINTを指定した場合、docker run（もしくはdocker create）の最
後に指定するコマンドは、このENTRYPOINTで指定したコマンドへの引数となりま
す。

（2）CMD
　docker run（もしくはdocker create）の際に指定する、最後のコマンドのデ
フォルト値を変更します。ユーザーが明示的にコマンドを記述すれば、このCMDで
の設定は無視されます。ほとんどの場合、CMDが使われます。そうすることでユー

ザーは、既定のコマンドも任意のコマンドも、どちらも実行できるからです。CMD
命令やENTRYPOINT命令は、RUN命令と同様、シェル形式とexec形式の、い
ずれの書式もとることができます。

　CMDやENTRYPOINTを指定しない場合は、ベースイメージの設定値が引き
継がれます。リスト8-2では、どちらも書いていませんから、httpdイメージの設定が
引き継がれます。なおCMDやENTRYPOINTは、それぞれDockerfileに1つしか
記述できません（CMDとENTRYPOINTをそれぞれ記述することはできますが、
CMDを2つとかENTRYPOINTを2つとかは記述できません）。複数記述したとき
は、もっとも後ろにある設定が採用され、それ以外は無視されます。

8-4-6　公開するポート番号やボリュームの指定
　イメージが通信しようとするポート番号は、EXPOSEで指定します。

　この指定をすると、docker run（もしくはdocker create）する際、-pオプシ
ョンだけを指定し、ポート番号を省略したときに、ここで指定したポートのマッピング
が行われるようになります。EXPOSEの設定はポートのマッピングを強要するもので
はありません。-pオプションの既定値を指定するものにすぎません。-pオプションを
指定しなければマッピングされませんし、EXPOSEの指定をし忘れても、-pオプショ
ンで任意のポートにマッピングできます。

　同様にして、イメージが永続化されることを期待する場所は、VOLUME命令で
記述します。

　EXPOSEと同様に、こちらもdocker runするときに-vオプション（もしくは--
mountオプション）を指定してバインドマウントやボリュームマウントしない限り、何
も起こりません。

　このようにEXPOSEやVOLUMEは、利用しているポートや永続化を期待してい
るディレクトリを、イメージの利用者に伝えるという意味合いのものです。指定する
ことで何か起きるわけではありませんが、利用者に対してわかりやすくするために、
指定しておくことを推奨します。

memo　EXPOSEやVOLUMEで指定した値は、作成したイメージに対してdocker image inspect

を実行することで確認できます。

8-4-7　既存のイメージのDockerfileに学ぶ
　説明だけを見ていてもわかりにくいと思うので、ここでDockerfileの具体例を示
します。Docker Hubで公開されているオフィシャルイメージは、GitHub上で、その
ソースコードを公開しています。例えばhttpdイメージのソースファイルは、下記の
GitHubにあります（図表8-13）。

【httpdイメージのソース】
https://github.com/docker-library/httpd/tree/master/2.4

　開くとDockerfileが存在するのがわかります。これを開くと、リスト8-3に示すよ
うに、その内容を確認できます。

　全部を掲載するとわかりにくいので、ここでは主な部分だけを抜粋して示しまし
た。この設定の意味は、次の通りです。

（1）debian:buster-slimをベースにしている
　FROMでは「debian:buster-slim」が指定されており、このイメージをベースにし
ていることがわかります。

（2）RUN命令でパッケージをインストールしている

　RUN命令を使ってパッケージをインストールしています。ここでは掲載を省略して
いますが、httpd（Apache）のソースコードをダウンロードし、それにパッチを当て
てビルドするなどの処理も記述されています。

（3）ポート80をEXPOSEしている
　EXPOSE 80と記述されており、このイメージがポート80で通信することを期待し
ていることがわかります。

（4）既定のコマンドはhttpd-foreground
　docker run（もしくはdocker create）したときには、httpd-foregroundと
いうコマンドが実行されるように仕込まれていることがわかります。

　この例でわかるように、Dockerfileは、ファイルのコピーや実行、コンテナを実行
するときのコマンドを指定するだけの一連のファイルにすぎません。

コラム 　httpd-foregroundとは何か
　Apacheに詳しい読者は、Apacheを起動するのは、「service httpd
start」などではないのかと思われるかも知れません。DockerfileのCMD命令
には、こうしたコマンドではなく、httpd-foregroundが指定されています。
Dockerでは、CMDもしくはENTRYPOINTに指定したコマンド（もしくは
docker runやdocker createの引数で指定したコマンド）が終了すると、コン
テナ自身が終了する挙動だったことを思い出してください。「service httpd
start」を実行した場合は、httpdをバックグラウンドで実行して、serviceコマン

ド自体は、すぐに終了します。その結果、コンテナ自体がすぐに終了してしまい
ます。

　コンテナを動かしっぱなしにしたいのであれば、CMDやENTRYPOINTには、
「ずっと動きっぱなしでいるコマンド」を指定しなければなりません。かつ、
docker logsでログを確認するには、そのコマンドがエラーなどの情報を標準出
力に出力する構成でなければなりません。httpd-foregroundは、まさにそうし
た挙動をするプログラムです。GitHubの同ディレクトリでソースが公開されてお
り、その内容は、下記の通りです。Apache本体であるhttpdを（バックグラウ
ンドではなく）フォアグラウンドで実行するように構成されています。

8-4-8　コマンドの実行やパッケージインストールを伴う例
　説明はこのぐらいにして、もう少し複雑なイメージを作ってみましょう。ここでは
debianイメージをベースに、PHP入りのApacheを作ってみます。

memo　PHP入りのApacheを作るのは、実用を目的としたものではなく練習です。そのような構成

のコンテナは、すでにオフィシャルなイメージとして、phpイメージが提供されているので、本番

運用では、そちらを利用するのが賢明です。

DockerfileとサンプルPHPの準備

　まずは、DockerfileとサンプルPHPを準備します。ここでは、アクセスすると、自
分のIPアドレスを表示するindex.phpを、サンプルとして、コンテナに含めることにし
ます。

手順 DockerfileとサンプルPHPの準備

［1］　ディレクトリの準備
　 Dockerfile や 含 め た い フ ァ イ ル を 置 く デ ィ レ ク ト リ を 作 り ま す 。 こ こ で は
「phpimage」という名前のディレクトリを作ります。

［2］　index.phpを配置する
　nanoなどのテキストエディタを使って、サンプルとなるindex.phpを作成します
（リスト8-4）。本書はPHPの本ではないのでプログラムの詳細は省きますが、
$_SERVER['REMOTE_ADDR']に、アクセスしてきたユーザーのIPアドレスが含まれ
ています。それをecho文で画面に表示するようにしています。

［3］　Dockerfileを用意する
　Dockerfileを用意します。ベースイメージはdebianとします。やりたいことは、
①Apacheのインストール、②PHPのインストール、③index.phpのコピーです。そし
てApacheをフォアグラウンドで実行することも必要です。そのようなDockerfile
を、リスト8-5に示します。

　それぞれの意味は、次の通りです。

（1）FROM
　debianイメージをベースイメージとして選択しています。

（2）EXPOSE
　ポート80で通信するつもりだと伝えています。

（3）RUN
　次の5つのコマンドを、つなげて実行しています。

1. apt update
2. apt install -y apache2 php libapache2-mod-php
3. apt clean
4. rm -rf /var/lib/apt/lists/*
5. rm /var/www/html/index.html

　1.でaptパッケージをアップデートし、2.でApacheとPHPをインストールしていま
す。3.と4.は、パッケージを削除する常套句です。このように削除しておくことで、パ
ッケージの中間ファイルを消すことができ、構築したDockerイメージのサイズを小さ
くできます。5.は、このイメージ固有の話で、index.htmlを削除しています。
index.htmlを削除するのは、index.htmlとindex.phpを同じディレクトリに置い
たときには、index.htmlが優先されるので、「http://DockerホストのIPアドレス:
ポート番号/」のようにアクセスしたときに、index.htmlではなくindex.phpを見せ
るためです。

（4）COPY
　index.phpを/var/www/htmlにコピーしています。これで「http://Dockerホス
トのIPアドレス:ポート番号/」にアクセスしたときに、このファイルが表示（Webサー
バー上で実行）されるようになります。

（5）CMD
　Apacheをフォアグラウンドで実行するようにしています（コラム「httpd-
foregroundとは何か」を参照）。

イメージをビルドする
　 以 上 で 準 備 が で き ま し た 。 イ メ ー ジ を ビ ル ド し て み ま す 。 こ こ で は
「myphpimage」というイメージ名で作成することにします。

手順 イメージをビルドする

［1］　イメージをビルドする
　Dockerfileを置いたディレクトリをカレントディレクトリにし、次のように入力して
イメージをビルドします。

　すると、RUN命令のところに書いておいたaptコマンドによるパッケージのインスト
ールなどが始まり、イメージが作られます（しばらく時間がかかります）。最後に、
イメージIDとイメージ名が表示されます。

［2］　作成されたイメージを確認する
　作成されたイメージを確認しておきましょう。作成したmyphpimageが存在す
ることがわかります。

コラム 　ワーニングを消す
　docker buildしたとき、次のようなワーニングが表示されることがあります。こ
れはaptコマンドを、ユーザーと対話するターミナルではなく、スクリプトから実行
しているのが理由です。

　ワーニングなので、このままでも影響ありませんが、もし、解決したいのであれ
ば、DEBIAN_FORONTENDという環境変数を「noninteractive」に設定して
ください。すなわち、

という命令を、RUN命令の前に書いておけば、ワーニングが出なくなります。他
の方法として、「apt」の代わりに「apt-get」を使うことでも回避できます。詳し
い情報は、Docker Engineの「よくある質問と回答（FAQ）」のページを参照
してください（http://docs.docker.jp/v1.11/engine/faq.html）。

コンテナを作成して動作確認する
　イメージができたら、コンテナを作成して動作確認しましょう。

手順 コンテナを作成して動作確認する

［1］　コンテナを起動する
　いま作成したmyphpimageイメージからコンテナを作成します。コンテナ名は、
ここではmyphpとします。

［2］　ブラウザで確認する
　「http://DockerのIPアドレス:8080/」にアクセスします。自分のIPアドレスが表
示されることを確認します（図表8-14）。

［3］　後始末
　以上で動作確認は終わりです。コンテナを停止して破棄しておきましょう。

コラム 　docker stopが遅い
　実際に試してみると、docker stopしたとき、「いつもより遅いな」と気づいた
人もいるかも知れません。これは、httpdが強制終了するまで待っているからで
す。docker stopすると、デフォルトではSIGTERMというシグナルが、コンテナで
実行中の（CMDやENTRYPOINT、docker runやdocker createの引数で
指定した）コマンドに送信され、そのシグナルを受け取って、実行中のプロセス
が終了し、そのあとにコンテナ自体が終了するという流れになっています。しかし
Apacheは、SIGTERMではなく、SIGWINCHというシグナルで終了するという
仕様になっています。それゆえ、docker stopしても、DockerfileのCMDで指
定している「/usr/sbin/apachectl -DFOREGROUND」が終了しないので、タ
イムアウトまで待ち、それから強制終了させられているのです。Apacheに限った
話になりますが、正しく終了させるには、docker stopしたときに、SIGTERMで
はなく、SIGWINCHを送信するように修正する必要があります。そのためには、
Dockerfileに次の記述を追加して、イメージを作りなおしてみてください（追記
する場所はどこでもかまいません）。

　するとdocker stopしたときに、きちんと/usr/sbin/apachectlが終了するよ
うになり、コンテナを迅速かつ安全に終了できるようになります。

8-4-9　Dockerfileとキャッシュ
　概ね、Dockerfileの作り方はわかったと思います。単純に、コピーやコマンドの
実行などを書けばよいので、さほど難しくはないはずです。しかしここで1つ注意点
があります。それはキャッシュの問題です。docker buildは、Dockerfileに記述さ
れた1行1行のビルド行程をキャッシュします。そして、そこまでに変更がなければ、
キャッシュが使われます。この挙動は、実際に、docker buildを何度か実行して
みるとわかります。例えば、2回目に実行すると、次のようにただちに終了します。
「Using cache」と書かれているので、キャッシュが使われていることがわかります。

　docker buildする際、キャッシュを使うかどうかは、次の基準で決まります。

（1）FROMで指定しているベースイメージのキャッシュが変わった
（2）Dockerfile自体の命令が変わった
（3）ADDやCOPYしているファイルの対象が変わった

　例えば、ここではaptコマンドでApacheやPHPのパッケージをインストールしてい
ますが、ApacheやPHPのパッケージがアップデートされたかどうかは、キャッシュの
判定基準になりません。もう少しわかりやすく言えば、RUNコマンドで、どこかから
のサイトからファイルをダウンロードしているような場合、その対象ファイルが更新さ
れたかどうかまでを判定するものではありません（当たり前ですが）。キャッシュを
使わずに、すべてやり直したいときは、次のように、--no-cacheオプションを指定
します。

コラム 　キャッシュを活用してビルドを高速化する
　たくさんのパッケージをインストールし、内部でコンパイルするようなコンテナを
作ると、docker buildするとき、とても時間がかかるようになります。そのような
ときは、キャッシュを活用すると高速化できます。本文中では、RUNコマンドは
1つにまとめると説明しましたが、あえて複数に分けるのです。そうすると、そこで
別のキャッシュが作られますから、変更されていない部分は、そのRUNコマンド
の実行を飛ばすことができ、高速化に貢献します。

8-5　イメージの保存と読み込み

　作成したイメージは、そのコンピューターの中にあります。イメージをファイル化する
と、それを取り出して、別のコンピューターに持って行くことができます。ファイル化す
るには、docker saveを使います。ファイルから取り出してイメージを使えるようにす
るには、docker loadを使います（図表8-15）。

8-5-1　docker saveでイメージからファイル化する
　実際にやってみましょう。ここでは、いま作成したmyphpimageというイメージを
ファイル化してみます。ファイル名は、「saved.tar」としましょう。-oオプションで出
力先ファイル名を指定します。

手順 docker saveでファイル化する

［1］　docker saveする
　下記のコマンドを入力して、myphpimageイメージをsaved.tarというファイルと
して保存します。

［2］　ファイルサイズと内容を確認する
　ファイルサイズを確認します。

［3］　内容を確認する
　内容を確認します。たくさんのディレクトリが存在することがわかるかと思いま
す。これは、それぞれのレイヤーに相当するファイルです。

docker loadで読み込む

　このsaved.tarファイルを別のコンピューターにコピーして、そのコンピューター上で
docker loadすれば、そのコンピューターでもmyphpimageイメージを利用できるよ
うになります。確認のためにもう1台コンピューター（EC2インスタンス）を用意する
のが理想ですが、それは煩雑なので、ここでは作成したイメージを削除して、いま
作成したsaved.tarファイルからイメージを作り直せることを確認しましょう。

手順 docker loadする

［1］　いまのイメージを削除する
　myphpimageイメージを削除します。

［2］　削除されたことを確認する
　docker image lsして、削除されたことを確認します。

［3］　docker loadする
　先ほどdocker saveで保存したsaved.tarをdocker loadで読み込みます。フ
ァイルは「-i」オプションで指定します。すると、次のように取り込まれます。

［4］　myphpimageイメージが利用できることを確認する
　myphpimageイメージが利用できることを確認します。まずは、docker
image lsで、myphpimageイメージが存在することを確認します。

　このイメージからコンテナを作成してみましょう。myphp02という名前にします。

　あとは先ほどと同様に、「http://DockerホストのIP:8080/」に接続してコンテ
ンツが表示できるかなどを確認してください。

［5］　後始末
　確認できたら、いまのコンテナを停止して削除しておきましょう。

コラム 　export/importによるファイル化
　 docker で は 、 save/load を 使 っ た フ ァ イ ル 化 以 外 に 、 も う 1 つ
export/importによるファイル化もあります。こちらはDockerコンテナの情報を
残さずに、ファイルだけをアーカイブします。export/importは、イメージではなく
コンテナが対象です。簡単に実例を挙げて説明します。例えば、次のようにま
ず、コンテナを作成します。

　こうして作成したmyphp02をexportします。

　ここでexportされたファイルの内容を確認すると、コンテナ全体がディレクトリ
構造になったものしか含まれていないことがわかります。レイヤー情報が失われ
ています。

　このファイルは、docker importでインポートできます。インポートするときは、
イメージ名を指定できます。ここではtmp_httpdとしました。

　こうしてインポートしたtmp_httpdは、docker runできるかというと、実はで
きません。

　理由は、Dockerコンテナに関する情報が欠落し、CMDやENTRYPOINTな
どで指定している各種設定などが、すべて失われているためです。そのため
docker runの最後の引数に、コマンド（この例では、/usr/sbin/apachectl -
DFOREGROUND）を明示的に指定しない限り、実行できません。このよう
に、export/importを使った方法では、コンテナ情報が失われるため、あまり
使われません。使われるときは、もっぱら、「コンテナに含まれるファイル全体を
取り出したい」というように、含まれているファイルだけをファイル化したい場面に
限られます。

8-6　Docker Hubに登録する

　さて、イメージを他のコンピューターとやり取りするときは、いま見てきたようにファ
イルでやり取りするのではなく、Dockerレジストリに登録して、そこからdocker
pull（もしくはdocker run）してもらうという構成にするほうが使いやすいでしょ
う。

　Dockerレジストリは、Dockerイメージを管理するサービスです。その代表は、こ
れまで使ってきたDocker Hubですが、プライベートなレジストリを使うこともできま
す。レジストリは、リポジトリという単位でイメージを管理します。リポジトリ単位

で、「誰でも利用できるのか」「特定のユーザーしか利用できないのか」などの権限
を設定できます。

　docker pushというコマンドを使うと、リポジトリに登録できます。誰もが勝手
に登録できるのは改ざんの恐れがあり、セキュリティー上、望ましくないので、push
操作できるユーザーは制限し、特定のユーザーしか登録できないようにされているこ
とがほとんどです。事前に、リポジトリにアクセスするためのアカウントを取得してお
き、docker pushするときは、そのアカウントでログインする必要があります（図表

8-16）。

　ここでは、Dockerの標準的なレジストリサービスであるDocker Hubにイメージ
を登録する方法を説明します。Docker Hubの無料プランでは、1アカウントにつ
き1つだけ、プライベートなリポジトリを作れます。

8-6-1　Docker Hubのアカウントを作成する
　まずは、Docker Hubのアカウントを作成します。メールアドレスがあれば、誰で
も作れます。

手順 Docker Hubのアカウントを作成する

［1］　Sign Upする
　Docker Hubのページを開きます。

【Docker Hubのページ】
https://hub.docker.com/

　すると、「Sign Up Today」の項目があるので、次のように入力し、［私はロボ
ットではありません］にチェックを付けてから、［Sign Up］ボタンをクリックします
（図表8-17）。

Docker ID
　ログインするときに使う任意の名前です。

Email
　メールアドレスを入力します。

Password
　設定したいパスワードを入力します。

［2］　プランを選ぶ
　プランを選びます。ここでは無償の［Community］を選択します（図表8-

18）。

［3］　メールを確認してリンクをクリックする

　登録メールが届きます。［Verify email address］のリンクをクリックします
（図表8-19）。

［4］　登録完了
　登録完了です。Docker Hubのメインメニューが開きます（図表8-20）。

8-6-2　リポジトリを作る
　これでDocker Hubの操作ができるようになりました。図表8-20に示したのがメ
インメニューです。まずは、リポジトリを作成します。ここでは「myexample」という
名前の、プライベートなリポジトリを作ってみます。

手順 プライベートなリポジトリを作る

［1］　リポジトリの作成を始める
　前述の図表8-20において、［Create a Repository］をクリックします。

［2］　リポジトリを作る
　「リポジトリ名」を入力します。任意の名称を入力してください。ここでは、
「myexample」としました。［Visibility］は、公開か非公開かの設定です。ここ
では［Private］を選択して、非公開にすることにします。そして一番下にある
［Create］ボタンをクリックすると、リポジトリを作れます（図表8-21）。

memo　Docker Hubのフリープランでは、Privateなリポジトリは1つしか作れません。本書で扱うの

はサンプルで、誰に見られても問題ないので、「それが見られてしまう」という認識があるの

なら、［Public］を選択しても問題ありません。

コラム 　GitHubやBitbucketとの連携
　Docker Hubは、Gitリポジトリを提供するGitHubやBitbucketと連携でき
ます。連携すると、GitリポジトリにDockerfileをコミットしたとき、自動的に
docker buildしたものをDocker Hubに登録できます。連携は、図表8-21の
［Build Settings］の部分で設定できます。

［3］　リポジトリが作成された
　リポジトリが作成されました。「自分のDocker ID/入力したリポジトリ名」とい
う名称が付きます。この名称は控えておいてください。イメージをpushするときに合
致させる必要があるためです（図表8-22）。

8-6-3　Dockerイメージ名を調整する
　それでは、この作成したリポジトリにDockerイメージを登録していきたいところで
すが、その前に、やらなければならないことがあります。それは、作成するイメージの
名前を、図表8-22で確認しておいた「自分のDocker ID/リポジトリ名」に合わせ
なければならないという点です。イメージ名は、docker buildするときに、-tオプシ
ョンで指定できますが、すでにビルド済みであれば、docker tagで変更できます。
リポジトリ名が「myexample」であれば、次のようにしてタグ付けします。

8-6-4　リポジトリに登録する
　準備が終わったら、このイメージを登録してみましょう。次のようにします。

手順 Dockerイメージをリポジトリに登録する

［1］　ログインする
　まずは、Docker Hubにログインします。docker loginコマンドを使うと、
Docker IDとパスワードが尋ねられるので、先ほどDocker Hubに作成したアカウ
ント情報でログインします。

memo　ログイン情報は、~/.docker/config.jsonファイルに保存されます。もし別のアカウントでログ

インしたいときは、一度、docker logoutコマンドでログアウトし、もう一度、試してください。

うまくいかないときは、~/.docker/config.jsonファイルを削除してください。Docker Hub

以外のレジストリを使うときは、loginの引数に、そのレジストリのURLを指定します。

［2］　イメージを登録する
　イメージを登録するには、docker pushコマンドを使います。引数には、イメージ
名を指定します。指定すべきイメージ名は、先ほどdocker tagで指定した「自分
のDocker ID/リポジトリ名」です。例えばリポジトリ名がmyexampleであれば、
次のようにします。

　すると、次のようにアップロードされます（表示される「66e2･･･」「dc62･･･」な
どはイメージIDなので、環境によって異なります）。

［3］　登録されたイメージを確認する
　Docker Hubのサイトで、登録されたイメージを確認しましょう。先ほどのリポジ
トリのページを見ると、［Tags］のところに［latest］というタグが追加されたこと
がわかるはずです（図表8-23）。

memo　表示されないときは、イメージ名を間違えた可能性があります。コラム「まだ作っていないリポ

ジトリ名でpushするとpublicなリポジトリができる」を参照してください。タグ名が「latest」

なのは、イメージ名の後ろの「:タグ名」を省略しているからです。タグ名を明示的に付けれ

ば、そのタグ名が使われます。

［4］　イメージの詳細を確認する
　［Tags］タブをクリックします。すると、タグ一覧が表示されるので［latest］
をクリックします（図表8-24）。すると、そのイメージの詳細が、図表8-25のように
表示されます。これは作成したDockerfileの内容です。

コラム 　まだ作っていないリポジトリ名でpushするとpublicなリポジトリが
できる

　docker pushしたとき、まだ作っていないリポジトリに対応するイメージを指
定すると、その場で、イメージ名と同名のpublicなリポジトリが作られます。リポ
ジトリ名を間違えたときは、この動作になるので注意してください（図表8-

26）。意図せずにpublicなリポジトリを作ってしまったときは、コラム「リポジトリ
を削除するには」（p,295）を参考に、リポジトリを削除してから、正しい名前
でやり直してください。

8-6-5　リポジトリに登録したイメージを使う
　Docker Hubに登録したイメージは、これまで使ってきたオフィシャルなイメージと
同様に利用できます。使い方は、docker pullするときに、登録した名前
（Docker ID/リポジトリ名）を指定するだけです。つまり次のようにすれば、
docker pullできます。そもそもdocker pullせずにも、直接、docker runすること
もできます。

　ただし、いま登録したリポジトリはPrivateに設定しているため、docker loginし
ないと利用できません。実際に試してみましょう。まずは、docker logoutでログア
ウトします。

　そしてdocker pullすると、次のようにエラーが表示されることがわかります。

　しかしログインすれば、正しくpullできるはずです。

memo　一度ログインすると、その情報が保存されているので、2回目以降は、ユーザー名やパスワー

ドは尋ねられません。

コラム 　リポジトリを削除するには
　リポジトリを削除するには、次のようにします。

手順 リポジトリを削除する

［1］　設定画面を開く
　［Settings］タブをクリックして、設定画面を開きます。すると［Delete
repository］ボタンがあるのでクリックします（図表8-27）。

［2］　削除する
　リポジトリ名を入力するように求められます。入力して［Delete］ボタンを
クリックすると、削除できます（図表8-28）。

8-7　プライベートなレジストリを使う

　このようにDocker Hubを使えば、イメージを登録できますが、Docker Hubの
フリープランでは、プライベートなリポジトリは1つしか登録できません。そしてまた、
リポジトリを作成していないイメージ名で登録すると、それがPublicなリポジトリと
して作成されるため、意図せずに、公開してはいけないイメージを公開してしまう
操作ミスが生じる可能性もあります。

　完全にプライベートに管理したいのであれば、Docker Hubではなく、プライベー
トなレジストリを使うとよいでしょう。例えばAWSには、Amazon ECR（Amazon
Elastic Container Registry）というプライベートなDockerレジストリサービスがあ
ります。ここでは、その使い方を説明します。

memo　Amazon ECRは、1年間の無償利用枠の対象で、月500MBまでは無料です。この容量・

期限を越えると、費用がかかるので注意してください。別の方法として、Docker Hubで公

開されているオフィシャルなrepositoryイメージを使ったコンテナを作り、EC2インスタンスなど

の自分のサーバーでプライベートレジストリを構築する方法もあります。そうした場合、自由

度は高まりますが、自分で保守管理しなければなりません。

8-7-1　Amazon ECRを使う流れ
　Amazon ECRは、少し複雑です。その設定の流れは、図表8-29に示す通りで
す。

　話をややこしくしているのが認証です。AWSでは、ユーザー認証に「IAM
（Identity and Access Management）」という仕組みを使います。そのため、
まず、利用するユーザーの数だけ「IAMユーザー」と呼ばれるユーザーアカウントを作
成する必要があります。このIAMユーザーには、Amazon ECRにアクセスできる権
限を付与しておきます。作成するIAMユーザーには、コマンドから接続するときの
認証情報となる「アクセスキーID」と「シークレットアクセスキー」を発行します。この
2つの値が、Amazon ECRにアクセスするときに必要な情報となります。

　Amazon ECRにログインするには、Docker Hubのときと同様に、docker
loginコマンドを使うのですが、このときのパスワードが必要です。パスワードは安全
のために12時間しか有効ではありません。このパスワードを取得するため、awsと
いうコマンドを使って、先の「アクセスキーID」と「シークレットアクセスキー」を提示し
てAWSにアクセスします。パスワードさえ入手すれば、docker pushでイメージを登
録するという部分は、Docker Hubと同じです。こうした認証は、docker pullす
るときにも必要です。docker pullするユーザーも、同様にIAMユーザーとして登録
しておきます。

コラム 　IAMユーザーとawsコマンド、アクセスキーIDとシークレットアクセスキ
ー

　IAMユーザーとは、AWSを利用するユーザーアカウントのことです。awsコマン
ドは「AWS CLI」とも呼ばれ、awsに対して、さまざまな操作をするコマンドライン
のツール（CLI：Command Line Interface）です。ブラウザで操作する
AWSマネジメントコンソールと同じもしくはそれ以上の操作ができます。IAMユ
ーザーには、そのユーザーとしてAWSにアクセスするための「ユーザー名」と「パスワ

ード」に相当する「アクセスキーID」と「シークレットアクセスキー」を発行できます。
awsコマンドでは、これらの値を提示してAWSにアクセスします（図表8-30）。

memo　「発行できます」と表現しているのは、発行しないこともできますし、複数個発行すること

もできるためです。

8-7-2　IAMユーザーを作る
　それでは始めましょう。まずは、Amazon ECRにアクセスするためのユーザーを作
成します。

memo　すでにIAMユーザーを作成している場合は、以下[4]の設定を既存のIAMユーザーに対して

操作するとよいでしょう。

手順 IAMユーザーを作る

［1］　IAMコンソールを開く
　「IAM」を検索して選択することで、IAMコンソールを開きます（図表8-31）。

［2］　IAMユーザーの追加を始める
　［IAMユーザー］メニューを開き、［ユーザーを追加］ボタンをクリックします
（図表8-32）。

［3］　ユーザー名とアクセスの種類を設定する
　ユーザー名とアクセスの種類を設定します。ユーザー名には、好きな名前を入力
してください。ここでは「user01」とします。アクセスの種類では、［プログラムによる
アクセス］にチェックを付けて、［次のステップ：アクセス権限］ボタンをクリック
してください（図表8-33）。

memo　［プログラムによるアクセス］は、コラム「IAMユーザーとawsコマンド、アクセスキーIDとシーク

レットアクセスキー」に記述したように、アクセスキーIDとシークレットアクセスキーを発行して、

awsコマンドなどでアクセスできるユーザーのことです。［AWSマネジメントコンソールへのアク

セス］は、パスワードを発行して、AWSマネジメントコンソールにアクセスできるユーザーのこと

です。ここではAWSマネジメントコンソールにアクセスする必要はないので、後者のチェックボ

ックスはオフのままとしますが、オンにしてもかまいません（ただしそうするとパスワードが発行

され、そのパスワードでAWSマネジメントコンソールにアクセスできるので、セキュリティに注意

してください）。

［4］　アクセス権限の設定

　アクセス権限を設定します。ここではAmazon ECRにアクセスできる権限を設
定します。［既存のポリシーを直接アタッチ］をクリックします。ECRで接続すると
きの権限は、「AmazonEC2ContainerRegistry」という名前が含まれる項目で
す。「containerreg」などと入力すると絞り込めます。それぞれの意味は、次の通
りです。

AmazonEC2ContainerRegistryFullAccess
　Amazon ECRに対して、すべての権限を与える。リポジトリの作成や削除もで
きる。

AmazonEC2ContainerRegistryPowerUser
　リポジトリに対する、ほぼすべての権限を与える。push操作などができる。

AmazonEC2ContainerRegistryReadOnly
　リポジトリに対するpull操作のみができる。

　 こ こ で は リ ポ ジ ト リ に 対 し て push で き る
「AmazonEC2ContainerRegistryPowerUser」という権限を追加します（図表

8-34）。

コラム 　より細かく権限を設定する
　 こ こ で は 話 を 簡 単 に す る た め に 、 作 成 し た IAM ユ ー ザ ー に 対 し て
AmazonEC2ContainerRegistryPowerUserを設定しています。この場合、
Amazon ECRで管理した、どのリポジトリに対してもpushできます。しかしとき
には、特定のリポジトリだけpushできるようにしたいというように、リポジトリごと
に権限を設定したいこともあるでしょう。そのような場合は、リポジトリの権限設
定画面から、より細かい設定をすることもできます。詳細については、下記のド
キュメントを参考にしてください。

【Amazon ECR 管理ポリシー】
https://docs.aws.amazon.com/ja_jp/AmazonECR/latest/usergui
de/ecr_managed_policies.html

［5］　タグの設定

　メールアドレスや所属部署など任意の情報を、タグとして設定できます。ここで
は何も設定せず、そのまま［次のステップ：確認］をクリックしてください（図表

8-35）。

［6］　ユーザーを作成する
　［ユーザーの作成］ボタンをクリックして、ユーザーを作成します（図表8-

36）。

［7］　アクセスキーIDとシークレットアクセスキーを控える
　ユーザーが作成されます。「アクセスキーID」と「シークレットアクセスキー」が表示
されるので、これらを控えてから［閉じる］ボタンをクリックしてください。そのまま
画面に表示されている文字をコピペしてもよいですし、［csvのダウンロード］ボタ
ンでダウンロードしても、どちらでもかまいません。

　［シークレットアクセスキー］は「****」と伏せ字で表示されていますが、［表
示］リンクをクリックすることで、表示されます。シークレットアクセスキーは、この画
面を閉じると再確認できません。忘れてしまったときは、アクセスキーID/シークレッ
トアクセスキーを再発行するしかないので注意してください（図表8-37）。

［8］　ユーザーが作成された
　ユーザーが作成されました（図表8-38）。

コラム 　アクセスキーIDとシークレットアクセスキーを忘れたときは
　アクセスキーIDとシークレットアクセスキーを忘れたときは、図表8-38で該当
ユーザーをクリックしてユーザーの詳細を表示し、［認証情報］タブにある［ア
クセスキーの作成］ボタンをクリックして、新たに発行します（図表8-39）。シ
ークレットアクセスキーを忘れてしまったアクセスキーIDは、削除しておいたほうが
よいでしょう。

8-7-3　Amazon ECRでリポジトリを作る
　ユーザーができたら、次に、Amazon ECRでリポジトリを作りましょう。

手順 Amazon ECRでリポジトリを作る

［1］　Amazon ECRコンソールを開く
　「ECR」を検索して［Elastic Container Registry］を選択することで、
［Amazon ECR］のコンソールを起動します（図表8-40）。

［2］　リポジトリの作成を始める
　［使用方法］をクリックして、リポジトリの作成を始めます（図表8-41）。

［3］　リポジトリ名を入力して作成する
　リポジトリ名を入力し、［リポジトリを作成］をクリックします。ここでは、
「myexample_ecr」という名前にしておきます（図表8-42）。

［4］　リポジトリのURLを確認する
　リポジトリが作られました。ここでリポジトリのURLを確認しておきます。URLは、
図表8-43の［URI］の欄で確認することができます。ここでコピペしておきましょう。

例えば、次のようなURLです。

［5］　Dockerコマンドを確認する
　必須なのは、URLだけですが、のちの行程では、awsコマンドを使ってパスワード
を取得するコマンドを入力します。そのコマンドのひな型が見られてコピーできるの
で 、 こ こ で コ ピ ー し て お き ま し ょ う 。 図 表 8-43 に お い て 、 リ ポ ジ ト リ
（「myexample_ecr」と表示されている部分）をクリックします。すると、図表8-

44の画面が表示されます。ここで右上の［プッシュコマンドの表示］をクリックす
ると図表8-45のように表示されるので、このコマンドをコピーしておきます。次の4つ
のコマンドがあります。URLや名称は環境によって違うので、各自、画面に表示さ
れたものを控えておいてください。

（1）認証トークンの取得
　docker loginするときに必要なパスワードを入手するコマンドです。

（2）Dockerイメージの構築
　docker buildするときのコマンドです。

（3）イメージ名をリポジトリ名に合わせる
　docker pushする前に、イメージ名をリポジトリが期待する名前と合わせるた
めのコマンドです。

（4）docker pushのコマンド
　docker pushするときのコマンドです。pushするURLなどを引数として渡しま
す。

8-7-4　awsコマンド周りを整備する
　これで準備が整いました。それでは作成したリポジトリを使っていきましょう。
Amazon ECRにアクセスするにはdocker loginするのですが、その際に提示する
パスワードを取得するため、awsコマンドが必要です。そこで事前に、EC2インスタ
ンスにawsコマンドをインストールし、アクセスする際のアカウントなどを設定しておき
ます。

awsコマンドをインストールする
　まずは、awsコマンドをインストールします。awsコマンドには、バージョン1系とバ
ージョン2系があり、一部、コマンドの互換性がありません。ここではバージョン2系
を使います。awsコマンドのインストールについての詳細は、下記の「AWS CLIのイ
ンストール」ドキュメントを参照してください。インストールするときに入力すべきコマ
ンドについては、下記の「Linux での AWS CLI バージョン 2 のインストール」に記
載されているので、そちらのドキュメントのコマンドをコピペするのが簡単です。

【AWS CLI のインストール】
https://docs.aws.amazon.com/ja_jp/cli/latest/userguide/cli-chap-
install.html

【Linux での AWS CLI バージョン 2 のインストール】
https://docs.aws.amazon.com/ja_jp/cli/latest/userguide/install-
cliv2-linux.html

手順 awsコマンドをインストールする

［1］　unzipコマンドをインストールする
　インストールには、unzipコマンドが必要です。事前にインストールしておきます。

コラム 　unzipがインストールできない
　環境によっては、下記のエラーが表示されて、unzipをインストールできないこ
とがあります。

　この場合は、エラーメッセージにもあるように、「--fix-broken」というオプション
を使い、次のコマンドを試してみてください。

　画面に次のように表示されたら、デフォルトのまま［Enter］キーを押します
（図表8-46）。

　それから改めて、unzipをインストールしてください。

［2］　awsコマンドをダウンロードする
　次のように入力して、awsコマンドをダウンロードします。

［3］　展開する
　awscliv2.zipファイルができるので、次のように展開します。

［4］　インストールコマンドを実行する
　下記のように入力してインストールします。/usr/local/aws-cliにインストールさ
れます。

［5］　インストールされたことを確認する
　次のように入力して、インストールされたことを確認します。エラーが発生せず、バ
ージョン番号が表示されればインストールされています（バージョンは、異なること
があります）。

［6］　インストールに使ったディレクトリやファイルを削除する
　インストールに使ったディレクトリやファイルを削除しておきます。

awsコマンドに認証情報を設定しておく

　awsコマンドでは、IAMユーザーに対して発行した「アクセスキーID」と「シークレッ
トアクセスキー」を用いてawsにアクセスします（これらの2つのキーについては、「8-
7-2 IAMユーザーを作る」を参照）。そこでまずは、awsコマンドの環境設定をし
て、これらのキーを使うように設定します。

memo　アクセスキーIDやシークレットアクセスキーが変わったときは、もう一度、aws configureを実

行してください。なお設定した情報は、~/.awsディレクトリに保存されます。記憶したアクセ

スキーIDやシークレットアクセスキーを削除したいときは、~/.aws/credentialsファイルを削除

してください。

手順 awsコマンドに認証情報を設定する

［1］　awsコマンドの環境設定を始める
　次のように、aws configureを実行します。

［2］　アクセスキーIDを設定する
　次のように尋ねられたら、アクセスキーIDを入力します。

［3］　シークレットアクセスキーを設定する
　次のように尋ねられたら、シークレットアクセスキーを入力します。

［4］　リージョン名を設定する
　既定のリージョン名を設定します。例えば「ap-northeast-1」などを入力する
と、東京リージョンを既定にするなどの設定ができますが、本書では、特に意識し
ないので未入力とし、そのまま［Enter］キーを押してください。

［5］　出力フォーマットを設定する
　続いて、出力フォーマットを設定します。テキスト形式かJSON形式かなどを選
べるのですが、本書では、特に意識しないので未入力とし、そのまま［Enter］キ

ーを押してください。

動作確認する

　以上で設定完了です。このユーザーで、Amazon ECRが利用できるかどうかを
確認します。次のように入力して、Amazon ECRに接続するためのパスワードが
表示されれば、疎通確認できています（パスワードの値は、都度、変わりま
す）。

memo　ここで表示されるパスワードは、本当にログインできるパスワードなので、漏洩しないように注

意してください。本書ではバージョン2系のawsコマンドを使っています。本書の手順通りで

はなく、古いバージョン1系のawsコマンドは、「get-login-password」に対応していないも

のもあります。そのようなときは、awsコマンドをアップデートしてください。

　もし次のように表示されたときは、IAMユーザーの権限が間違っています。再確
認してください。

8-7-5　プライベートなリポジトリに登録する
　準備ができたので、イメージを作ってpushしてみましょう。ここでは、「8-4　
Dockerfileからイメージを作る」で作成したmyphpimageイメージを使います。た
だしこのとき、Docker Hubの場合と同様に、イメージ名とリポジトリ名は、合致さ
せておく必要があります。

手順 プライベートなリポジトリに登録する

［1］　リポジトリにログインする
　まずはリポジトリにログインします。docker loginするわけですが、すでに説明し
たように、awsコマンドを使ってパスワードを取得し、そのパスワードをdocker login
に渡します。このコマンドは、先に、「プッシュコマンドの確認」（図表8-45）で確
認済みです。そのままコピペします。

　次のように表示され、ログインできるはずです。

memo　下記のワーニングに示されていますが、取得したパスワードは、~/.docker/config.jsonに書

き込まれて保存されます。

［2］　ビルドする
　もしまだビルドしていなければ、図表8-45で提示されているコマンドに従ってビル
ドします。ここでは「8-4　Dockerfileからイメージを作る」で作ったphpimageを用
い、「myexample_ecr」という名前でビルドします。

［3］　タグ付けする
　Amazon ECRが要求するタグを付けます。すでに控えておいたコマンドを入力
します。

［4］　プッシュする
　次のようにしてプッシュします。これも、すでに控えておいたコマンドを入力するだ
けです（といっても、末尾にpush先のレジストリ（これはAmazon ECRです）の
URLを指定するだけです）。

　次のように表示され、プッシュ完了するはずです。「66e2･･･」などはイメージID
なので、環境によって異なります。

memo　権限のエラーが表示されるときは、IAMユーザーの権限設定を再確認してください。

［5］　登録された内容を確認する
　Amazon ECRコンソールで、該当のリポジトリをクリックして詳細画面を表示し
ます。「latest」として登録されていることがわかります（図表8-47）。

memo　もしこのイメージが必要なくなったときは、イメージにチェックを付けて［削除］ボタンをクリッ

クします。

8-7-6　プライベートなリポジトリに登録したイメージを使う
　これで登録完了です。次に、リポジトリの使い方を説明します。といっても、
Docker Hubを使ったときと同様に、ログインしてからdocker pullするだけです。

（1）ログインする
　ログインの方法は、イメージを登録するときと同じです。控えておいたコマンドを
コピペします。

（2）pullする
　pullする際には、末尾にAmazon ECRのURLを追加します。

　Docker Hubを使う場合と違って、「イメージ名やURLが複雑」「事前にawsコ
マンドを使って取得したパスワードを使ってログインしなければならない」という点以
外、大きく異なる点はありません。

8-8　まとめ

　この章では、既存のイメージを改良して、カスタムなイメージを作る方法を説明
しました。

（1）docker commitとdocker build
　カスタムなイメージを作る方法は2つ。コンテナをイメージ化するdocker commit
と、Dockerfileに記述した通りにイメージを作るdocker buildです。配布を目的
とした場合は、後者が望まれます。

（2）docker saveとdocker load
　docker saveを使うと、イメージをtar形式のファイルに変換して、バックアップし
たり、他のコンピューターに持っていったりできます。tar形式のファイルからイメージに
戻すには、docker loadを使います。

（3）リポジトリへの登録
　イメージはリポジトリに登録できます。まずは、そのレジストリのアカウントを取得
し、リポジトリを作成します。docker tagでリポジトリ名と同じ名前でタグ付けし
ます。それからdocker loginして、docker pushすると登録できます。

　コンテナは、コマンド1つで起動して、手間がかからないようにするのが理想で
す。そうした理想を目指すために、この章で説明した、イメージをカスタマイズする
方法を活用しましょう。この章で、Dockerの使い方は終わりです。次の章では、
Dockerの運用について説明します。

　コンテナを本番サーバーで使うときは、さまざまな運用上
の工夫が必要です。例えば、障害が生じても止まらない
ようにするための冗長性、負荷が高まっても耐えられるよ
うにするスケーラビリティ、データを失わないためのバックアッ
プ、そして、システム更新時の入れ替えなどです。こうした
運用を手助けするのが「Kubernetes」です。この章では、
Kubernetesの概念と注意点、そして、基本的な使い方
を説明します。

9-1　コンテナの本番運用のポイント

　コンテナの本番運用は、開発の時と考え方が大きく異なります。使いやすさよ
りも、堅牢性が第一に求められるからです。

9-1-1　冗長性とスケーラビリティのためのロードバランサー
　コンテナに限ったことではありませんが、本番運用では、冗長性とスケーラビリテ
ィが求められます。目的は異なりますが、どちらも、仕組みとして、同じ構成のサー
バーを複数台配置して処理を分散することで実現します。

冗長性
　複数のサーバーのうち、何台かが故障しても、残りのサーバーで処理できるように
します。

スケーラビリティ
　負荷が高くなったときは、サーバーの台数を増やすことで、より高負荷に耐えら
れるようにします。

　こうした分散のためには、ロードバランサー（Load Balancer。負荷分散装
置）をサーバーの前に設置して、処理を振り分けるように構成します。コンテナの
運用であれば、それぞれのサーバーに、いくつかのコンテナを動かし、それらに対して
負荷分散するような構成になるでしょう（図表9-1）。

9-1-2　全体を統括するオーケストレーションツール

　こうした冗長性やスケーラビリティを実現するには、多数のサーバーやコンテナを
管理しなければなりません。管理者が、サーバーやコンテナの状態を1つひとつ監
視して、都度、手作業でサーバー構築やコンテナ構築をしていたのではたいへんで
す。そこで必要となるのが、オーケストレーションツールです。オーケストレーションツー
ルは、システム全体を統括管理するツールです。管理者が、全体を管理するサー
バーに対して指示を出すと、その通りにサーバーやコンテナ、ネットワークなどが構成
されて、システム全体が自動構成されます。

　例えば、コンテナ技術に対応するオーケストレーションツールでは、全体の状態を
監視し、もしどこかのコンテナが応答を返さなくなった場合は、そのコンテナを破棄
し、別の新しいコンテナを作ることで復旧を試みます。そうすることで、一部のコン
テナに不具合が起きたとしても、システム全体としては、何ごともなかったかのよう
に動かせます。同様に、負荷を監視し、負荷が高まってきたときは、自動的にコ
ンテナの数を増やすことで、負荷が高まらないようにします（図表9-2）。

9-1-3　プログラムとデータの分離
　すでに前章までで見てきたように、コンテナはイメージから作るので、図表9-2に
示したように、同一構成のコンテナを増減するのは簡単です。イメージがリポジトリ
で管理されているなら、新しいコンテナを作るのに、docker runするだけです。

memo　docker runで済むというのは実は大きなポイントです。第8章で説明したカスタムイメージが

活きてきます。コンテナを作ったあとに調整を加えないといけない場合は、docker run後の

処理が必要ですから、構成が複雑になってきます。

　図表9-2に示した仕組みでは、コンテナの総数は必要数に保たれますが、実
際には、なくなったり新しく作られたりしている点に注意してください。コンテナの中

に、データを保持するような仕組みはNGです。コンテナが障害を起こしてなくなれ
ば、そのコンテナの中のデータも失われてしまうからです。バインドマウントやボリュー
ムマウントを使って、コンテナの外にデータを出す必要がありますが、バインドマウン
トやボリュームマウントだけでは、次の2つの場面が解決しません。これらの解決に
は、サーバー間で共有できるストレージが必要です。

memo　AWSでこうした共有ストレージを作るには、AWSのストレージサービスであるS3やEBSを使うこ

とができます。

（1）別のサーバーにコンテナが移動する場合
　コンテナではなくサーバー自体が不具合を起こした場合、やむなく正常稼働し
ている別のサーバーでコンテナを動かすことになるでしょう。つまり、コンテナの移動が
必要になります。もしコンテナが利用しているデータが、サーバーの中にあるのなら、
そのデータが失われてしまいます。こうしたコンテナの移動においてもデータを失わな
いようにするなら、ネットワークストレージなどの共有ストレージを使うように構成す
る必要があります（図表9-3）。

（2）サーバー間でデータを共有する場合
　これはコンテナに限った話ではありませんが、ユーザーは、ロードバランサーによって
どのコンテナに接続されても、同じデータが見えなくてはなりません。例えばブログ
のようなシステムで、あるコンテナからデータをアップロードしたとき、そのアップロード
先が、そのサーバー内のストレージである場合、ロードバランサーによって、別のコンテ
ナに分配されたときは、そのアップロードしたコンテンツを見ることができないでしょ
う。こうしたことがないようにするには、ファイルのアップロード先などは、共通のネッ
トワークストレージにマウントする必要があります（図表9-4）。

memo　図表9-3や図表9-4では、共有ストレージが単一障害点となっている点に注意してくださ

い。共有ストレージが壊れると、システム全体が動かなくなります。

9-2　コンテナのオーケストレーションツール「Kubernetes」

　このように複数台のサーバーでコンテナを運用するのは、とてもたいへんです。そ
こで、なにかしらのオーケストレーションツールが必要になってきます。コンテナ技術に
対応したオーケストレーションツールには、いくつかの種類がありますが、Dockerコ
ンテナのオーケストレーションツールとして幅広く使われているのが、「Kubernetes」
です。Kubernetesは、単語が長く綴りが覚えにくいことから、略して「k8s」（8
は、uberneteという8文字があるという意味）と表記されることもあります。

9-2-1　Kubernetesとは

　Kubernetesは、コンテナ技術を中心に、それらをつなぐネットワークやストレージ
など、複数台のサーバーにまたがってコンテナを動かすのに必要となるプラットフォー
ムを提供します。元々はGoogleが開発したシステムでしたが、オープンソース化さ
れ、現在は、Cloud Native Computing Foundationがメンテナンスしていま
す。Kubernetesはプラグイン型のソフトウエアで、さまざまなツールと連携して動き
ます。特定のコンテナ技術を対象にしたものではありませんが、もっぱらDockerコ
ンテナの管理に使われています。

9-2-2　Kubernetesの構成
　Kubernetesは、複数台のサーバー群で構成されます。Kubernetesシステムを
構成するサーバー群のことを「Kubernetesクラスター」（もしくは略して単純に「ク
ラスター」）と言います。クラスターを構成するサーバー群は、その用途により、「マ
スターノード」と「ワーカーノード」の2種類に分かれます（図表9-5）。

マスターノード

　Kubernetesクラスター全体を統括管理するための「コントロールプレーン」と呼
ばれるシステムをインストールしたサーバー群です。管理者は、このマスターノードに
対して指示を出します。コントロールプレーンには、次の5つのコンポーネントが含ま
れています。これらが連携して、Kubernetesクラスターを統括管理します。

kube-apiserver
　外部とやり取りするプロセスです。すぐあとに説明するように、管理者は、
Kubernetesの管理に「kubectl」というコマンドを使うのですが、その指示の出す

先が、このkube-apiserverです。

etcd
　Kubernetesクラスターの情報を全管理するデータベースです。

kube-controller-manager
　一連のKubernetesオブジェクトを処理する「コントローラ」と呼ばれるコンポーネ
ントを統括管理・実行する部分です。

kube-scheduler
　Pod（コンテナが格納された最小実行単位のこと）を、ワーカーノードへと割り
当てる処理をします。

cloud-controller-manager
　Kubernetesを運用するクラウドサービス（AWS、Azure、GCPなど）と連携
して、クラウドサービス上で必要となるモノ（サービス）を作る仕組みです。例えば
ネットワークのルーティングやロードバランサー、ストレージとなるボリュームの構成など
の処理が、この部分で動いています。

ワーカーノード
　ネットワークやストレージなどを構成し、実際にコンテナを動かすサーバー群です。
ワーカーノード内では、コンテナやネットワーク、ストレージを「Pod（ポッド）」と呼ば
れる単位で管理します（詳しくは後述）。

　ワーカーノードはマスターノードからのみ制御されます。管理者がワーカーノードに
対して、直接、何か操作できることはありません。ワーカーノードには、次の2つのコ
ンポーネントが含まれます。

kube-let
　マスターノード側のkube-schedulerと連携して、ワーカーノード上にPodを配置
し、（Podに含まれているコンテナを）実行します。実行中のPod（コンテナな
ど）に異常がないかなどの状態を定期的に監視し、kube-schedulerへの通知
もします。

kube-proxy
　ネットワーク通信をルーティングする仕組みです。

9-2-3　Kubernetesの運用はクラウドに任せる
　このようにKubernetesは、マスターノードとワーカーノードで構成されます。マスタ
ーノードにはコントロールプレーンを構成するプログラム（デーモン）をインストール
し、ワーカーノードには、kube-letやkube-proxyなどのコンポーネントをインストール
して、互いに通信できるようにします。多くの場合、冗長性を考えマスターノードは
複 数 台 で 構 成 し ま す 。 マ ス タ ー ノ ー ド は 頭 脳 で す か ら 、 こ こ が 壊 れ る と 、
Kubernetesクラウド全体が動かなくなってしまうからです。そしてワーカーノードも、
冗長性ならびに負荷分散を目的として、複数台で構成します。ですから管理す
べきサーバーの数は、相当数に上ります。Kubernetesクラウドは、複雑なシステム
となりうるわけです。こうした複雑なシステムの安全・安定した管理は、困難で
す。

　こうした理由から、Kubernetesクラウドを構成するサーバー群を自分で用意し
て運用することは、オンプレミスでのサーバー運用経験が、相当なければ現実的で
はありません。そこで多くの場合、自分で作るのではなく、AWSやAzure、GCPな
どで提供されているKubernetesのマネージドサービスを使います（図表9-6）。

memo　マネージド（managed）サービスとは、管理されたサービスという意味です。機器の故障や

アップグレード、セキュリティパッチの適用など、各種運用・保守をクラウド側が担当してくれ

るサービスのことです。

　Kubernetesのマネージドサービスを使えば、そのマネージドサービス上に、必要
な数のワーカーノードを持ったKubernetesクラスターを構成できます。一般的な運
用では、そのKubernetesクラスター上のマスターノードに対して、kubectlコマンド
で指示を出すだけになります（図表9-7）。

　Kubernetesは標準的なシステムです。いくつかの拡張機能の違いがあります
が、どんなクラウドで運用されていようとも（また、オンプレミスで作成していようと
も）、kubectlで操作する点は同じです。ですから、どんな環境でKubernetesを
学んだとしても、その知識は、さまざまなKubernetesクラウドで使えます。

memo　環境による違いとして、物理的に何で構成するかという点があります。Kubernetesでは、

ロードバランサーや永続的なストレージを構成できますが、これらは、AWS・Azure・GCPなど

の、それぞれのクラウドサービスの実際の構成要素に置き換えて動きます。例えばロードバラ

ンサーとして、AWSはELB（Elastic Load Balancing）を使いますが、AzureではAzure

Load Balancer を使うといった具合です。そのため機能の違いによって、一部、完全に再

現できなかったり、機能に制限があったりするケースもあります。

9-2-4　勉強に最適なMinikube
　 本 番 運 用 で は 、 Amazon EKS な ど の ク ラ ウ ド サ ー ビ ス で 提 供 さ れ る
Kubernetesシステムを使うことになるでしょう。しかし実際に調べてみるとわかりま
すが、Kubernetesサービスはエンタープライズ向けの意味合いが強く、それなりに
コストがかかります。例えばAmazon EKSの場合、ワーカーノードは仮想サーバーと
して構成されるため、EKSの基本料金に加えて「仮想サーバーの料金×台数」がコ
ストとしてかかります。本書で実験的に使うにしては負担が重いです。

　そこでこれからKubernetesを学習する人にお勧めしたいのが、Minikubeで
す。Minikubeは、1台のサーバーにマスターノードもワーカーノードも含めた、ミニマム
なKubernetesクラウド環境を作れる、Kubernetesプロジェクトによって提供され
ているソフトウエアです。いくつかの制限がありますが、Kubernetesを体験するの
に最適です。そこで本書では、Minikubeを使ってさまざまな操作を習得し、最後
にAmazon EKSを体験するという流れで進めていきます。

9-2-5　Kubernetesを学ぶに当たって
　Kubernetesは、とても巨大なシステムです。その理解には、全部をコントロール
しようとせず、「自分が何をしなければならないのか。自分は何をしなくてよいの

か」を切り分けることが大事です。本書では、Kubernetesシステムを運用する
（つまり、マスターノードやワーカーノードを自分で構築する）のは諦め、Amazon
EKSやMinikubeに任せることにします。これから私たちが理解しなければならない
ことを、下記にまとめます。

（1）Kubernetesの構成と仕組み
　まずKubernetesでは何が行われており、Kubernetesクラスター内のコンテナや
ストレージ、ネットワークなどの要素が、どのように管理されているのかを知らなけれ
ばなりません。本書では、これらの事項を、「9-3　Kubernetesオブジェクトと望
ましい状態」「9-4　代表的なKubernetesオブジェクト」で説明します。

（2）Kubernetesの操作
　次に知らなければならないのは、実際にKubernetesを操作する方法です。
Kubernetesクラスターを作る方法から始まり、kubectlというKubernetesを操作
するコマンドの使い方です。本書では、これらの事項について、「9-5　Minikube
環境を準備する」以降で説明します。

　繰り返しになりますが、Kubernetesは大きなシステムであり、この章で、そのす
べてを説明することはできません。本書で説明できるのは、概念や考え方、システ
ム構築上の注意点など、基本的な事柄に限られます。実際の本格的な運用に
ついては、運用ノウハウが詰まった、Kubernetesに関する書物（汎用的な
Kubernetesに限った話だけでなく、Amazon EKSなど運用するKubernetesサー
ビスに特化した情報についても）を参照してください。

9-3　Kubernetesオブジェクトと望ましい状態

　Kubernetesを習得するにあたって、まず理解したいことは、Kubernetesは自
律的なシステムであり、「コンテナを作る」「ネットワークを作る」などと、1つずつ命
令するような使い方を想定していないということです。Kubernetesでは、
Kubernetesクラスター全体の状態をetcdというデータベースで管理しており、その
データベースの状態を変更することで、構成を変更するというやり方をします。

9-3-1　Kubernetesオブジェクト
　Kubernetesでは、コンテナやネットワーク、ストレージなどの構成要素をリソース
（Resource）と呼び、それぞれを「Kubernetesオブジェクト」として表現します。
こうしたオブジェクトには、さまざまな属性があります。例えば、コンテナを表現する
オブジェクトであれば、コンテナの元となるイメージや利用するストレージなどがあり
ます。ネットワークであれば、利用するIPアドレス範囲の設定などがあります。

　こうしたオブジェクトは、マスターノードのetcdに格納されています。例えばコンテ
ナを作りたいときは、そのコンテナに相当するオブジェクト（実際は後述するように
コンテナではなくPodというオブジェクトです）として表現し、それをkube-
apiserverに投げると、Kubernetesクラウド上にコンテナができるという仕組みに
なっています。

9-3-2　望ましい状態に合うように調整される

　Kubernetesが管理する、コンテナやネットワーク、ストレージなどのすべての要
素はetcdにあり、そこには管理者が設定した状態が格納されています。管理者
が設定した状態のことを「望ましい状態（desired state）」と言います。
Kubernetesは、実際のコンテナやネットワーク、ストレージなどの状態を監視して
いて、望ましい状態と合わないときは、合うように調整してくれます。例えば、「望
ましい状態」としてコンテナに相当するオブジェクト（実際はPod。以下同じ）が
あるけれども、Kubernetesクラスター上には、そのコンテナが存在しない場合、
Kubernetesはそのコンテナを作ります。

　このように「望ましい状態」と「現在の状態」とを比較して、望ましい状態に合う
ように調整するのが、Kubernetesの基本的な動作です。言い換えると、ワーカー
ノード上で動いているコンテナやネットワーク、ストレージに対して、管理者が、何か
直接、手を下すことはできないということです。私たち管理者ができることは、
kube-apiserverに対して指示を出して、それをetcdに対して「望ましい状態」とし
て格納してもらうことだけです。

　例えば、コンテナを削除したいときは、ワーカーノード上のコンテナを削除するので
はなく、コンテナに相当するオブジェクトをetcdから削除する操作をします。仮に、
ワーカーノード上のコンテナを強制削除する場合、etcdに残っていれば、しばらくす
ると、ゾンビのように、そのコンテナは復活します。Kubernetesクラスターにおいて
は、etcdの「望ましい状態」が、いつも正しいのです（図表9-8）。

9-4　代表的なKubernetesオブジェクト

　ここまでの話から、管理者がやらなければならないことは、「望ましい状態を
Kubernetesオブジェクトとして表現して、それをetcdに登録すること」であるとわ
かったかと思います。では具体的に、Kubernetesには、どのようなオブジェクトが
あるのでしょうか。代表的なものを見ていきましょう。

9-4-1　Podオブジェクト
　Podは、Kubernetesにおける最小実行単位です。1つ以上のコンテナ、そし
て、いくつかのボリューム（ストレージ）を含むことができます（図表9-9）。ボリュ

ームは、コンテナ間でのデータ共有に使えます。

　Podは必ず、いずれかのワーカーノード上で実行され、それが分割されることはあ
りません。例えばPodにコンテナが2つ含まれる場合、それらのコンテナは必ず同じ
ワーカーノード上で実行されます。ただし、Podに複数のコンテナを含めることができ
るといっても、実際、ほとんどの場合、1つのPodには、1つのコンテナしか入れませ
ん。複数のコンテナを入れるのは、「メインとなるプログラムとなるコンテナ」と「それ
を補佐するバッチなどの連携プログラムのコンテナ」をひとまとめにするなど、密に連
携しなければならない場合に限られます。例えば第7章で見てきたWordPressの
例のように、「WordPressのコンテナ」と「DBコンテナ」は、密な連携ではないの
で、1つのPodにまとめることはせず、別々のPodにまとめます。

memo　密に連携するかどうかを判断するのは難しいかも知れません。パフォーマンスやメンテナンス

性などもあるので、一概にこれが正解といいにくいところもありますが、基本的な考え方とし

て、「ボリュームを共有して何かやり取りするような場合は同じPodに入れ」、そうでなく「通

信でやり取りするものは別のPodにする」と考えるとわかりやすいかも知れません。

プライベートIPアドレスの共有

　Podには、1つの動的なプライベートIPアドレスが割り当てられ、含まれるコンテ
ナは、そのIPアドレスを共有して、他のPodと通信できます。これは、（1）含まれ
ているコンテナ同士がlocalhostで通信できること、（2）含まれているコンテナ同
士で同じポート番号はかち合うために利用できないこと、を意味します。

Pod内のボリュームは失われる可能性がある
　Podは、永続的ではありません。マスターノードはPodが正常に動いているかど
うかを監視しています。正常でないと判断すると、そのPodは終了させられ、別の
Podが新たに起動します。このとき、当然、ボリュームは失われますし、IPアドレス
も変わる可能性があります（図表9-10）。さらに言えば、別のワーカーノード上で
実行される可能性もあります。そうなれば、Podが、ワーカーノード間を移動したよ
うに見えるでしょう。

　 た だ し こ う し た 問 題 は 、 「 永 続 ボ リ ュ ー ム （ PersistentVolume ） 」 や
「StatefulSet」という仕組みを使うことで回避できます。永続ボリュームは、NFS
やAWSのストレージであるEBSなどを保存先として構成したディスクです。実際
に、この問題を避ける方法については、「9-11 データの永続化」と「9-13　
StatefulSetを用いた負荷分散とセッション情報の管理」で説明します。

memo　少し先走って話をすると、Pod内のコンテナを更新する場合（コンテナのイメージがバージョ

ンアップされ、それに伴い、コンテナを更新したい場合）、Kubernetesでは既存のPodを

破棄して、新たにPodを作ることで更新するというのが基本的な考え方です。この場合も、

（永続ボリュームでなければ）ボリュームの情報は失われます。詳しくは、「9-10 バージョン

アップとロールバック」で説明します。

9-4-2　Serviceオブジェクト
　Serviceは、配下に同一構成のPodを束ねる概念です。配下に束ねられてい
る、同じ構成のPodのことを「レプリカ（replica）」と言います。Serviceに対して
は、作成時に固定されたIPアドレスが割り当てられます。これは「Cluster IP」と呼
ばれ、Serviceを明示的に削除しない限り、値が変わることはありません。

　図表9-11に示すように、ServiceはCluster IPで要求を受信して、それを配下の
Podへと振り分けるもので、技術的には、プロキシやNATなどの仕組みを用いた
ロードバランサーに相当します。Serviceはワーカーノードをまたぐ概念です。ワーカーノ
ードが異なるにもかかわらず、1つのIPアドレスでアクセスできるのは少し変な気もし
ますが、この機構は、ワーカーノード内のkube-proxyによって実現されています。

Serviceの名前とDNS

　Serviceには名前（name）を設定できます。Kubernetesには、既定で、
「CoreDNS（kube-dns）」と呼ばれるDNSサービスが動作しています。この
DNSサービスには、Serviceの名前とCluster IPアドレスとの関係が設定されま
す。Kubernetesクラスター内で実行されるコンテナは、既定でこのDNSサービスを

使うように構成されているため、Serviceの名前を使って、Serviceに対する通信
ができます。

ヘッドレスサービス
　実は、Serviceには、「プロキシしない」という選択肢があります。これはService
に対するCluster IPを設定しないことによって実現します。Cluster IPを設定しな
いServiceのことを「ヘッドレスサービス」と言います。ヘッドレスサービスとして構成す
ると、Serviceに対して設定した名前をDNSで検索したときに、その配下に存在
するPodのプライベートIPアドレスがすべて一覧で戻ってきます。これらのIPを使って
直接通信するのが、ヘッドレスサービスです（図表9-12）。ヘッドレスサービスは、
特定のポートを振り分けるのではなく、全振り分けしたい場合や、プロキシによる
パフォーマンス低下を避けたいときなどに使います。

memo　 Service を ヘ ッ ド レ ス と し て 構 成 す る に は 、 の ち に 説 明 す る マ ニ フ ェ ス ト に お い

て、.spec.clusterIPの値を「None」に設定します。

9-4-3　ラベルとセレクターによるオブジェクトの選択
　Serviceの配下には、Podを配置すると説明しました。それでは、配下に配置
するPodを、どうやって指定するのでしょうか？　Kubernetesには、オブジェクトを
選択する汎用的な仕組みとしてセレクターというものがあり、その仕組みを使って
選択します。

オブジェクトに対するラベル
　まず前提として、PodやServiceなど、すべてのKubernetesオブジェクトには、
任意のラベル（Label）を付けることができます。ラベルとは、キーと値のペアです
（metadataという項目で設定します）。例えば「mygroup」というキーに対し
て、「myapp」という値を設定する場合は、次のように記述します。

セレクター

　こうして付けたラベルは、「値が合致する」もしくは「値が含まれる」という条件
で、オブジェクトを絞り込むことができます。この機能をセレクター（Selector）と
言います。Serviceの配下に、「mygroupというキーにmyappという値が設定さ
れたPodを配置したい」という場合は、例えば、次のようにセレクターを記述するこ
とで絞り込みます（図表9-13）。

さまざまな場面で使われるセレクター

　ここでは例として、Serviceの配下のPodを選択するときの指定としてセレクター
を使う方法を示しましたが、セレクターは、さまざまな場面で使われます。例えば、
ボリュームの選択やPodのテンプレートを選択するときなどです。オブジェクトに対し
ては、任意の数の「キー/値」のペアを設定できる点にも注目してください。本番用
のサービスには「product」、開発用のサービスには「develop」などのラベル値を
付けておき、それらをまとめて更新するとか停止するなど、さまざまなグルーピングを
したい場面に、セレクターを活用できます。

9-4-4　Serviceの外部への公開
　ここまで説明してきたように、Serviceを構成するとCluster IPが割り当てられ、
CoreDNSによってServiceに付けた名前を使って通信できるようになります。で
は、この名前を使って、Kubernetesクラスターの外からServiceに向けて通信でき
るのでしょうか？　答えは否です。

　Serviceに割り当てられているCluster IPや、Podに割り当てられたIPアドレス
は、Kubernetesクラスター内のみで有効なプライベートなIPアドレスです。
Kubernetesクラスターの外から通信するには、グローバルなIPアドレスをこうしたIP
アドレスに変換して通信する構成を作らなければなりません。その方法は、主に3
つあります。

（1）ワーカーノードのIPを使う（NodePort）

　1つめの方法は、ワーカーノードのIPアドレスを通じて通信する方法です。具体
的には、Serviceオブジェクトを構成するときに、NodePortという設定を追加しま
す。NodePortは、docker runにおける-pオプションのようなもので、ワーカーノード
の特定のポート番号と、Serviceのポート番号をマッピングします（図表9-14）。
設定できるポート範囲は、30000～32767番までに限られます。

　この方法は、ワーカーノード単位になるので、Serviceがワーカーノード単位で分
断されてしまいます。そのため複数台のワーカーノードで構成する場合は、そもそも
どのワーカーノードに接続するかという問題があります。ですからこの構成が使われ
る場面は、DNSラウンドロビンなどでワーカーノードを振り分けるか、自前でロードバ
ランサーを前段に配置するなどの場合に限られます。

（2）Serviceの前段にロードバランサーを構成する（LoadBalancer）
　Serviceオブジェクトに対してLoadBalancerオプションを構成すると、前段にグ
ローバルIPアドレスを設定したロードバランサーを構成できます。このロードバランサー
が通信をServiceに向けて転送することで、通信できるようにします（図表9-

15）。TCP・UDPを使った通信全般では、一般に、この方法が使われます。
Kubernetesでは、ロードバランサーをどのような仕組みで作るのかは規定しませ
ん。ここはKubernetesを運用しているシステムに依存します。AWSならELBが使
われますし、AzureならAzure Load Balancerが使われます。

（3）Ingressオブジェクトを使う方法
　Ingressオブジェクトは、HTTP/HTTPS専用のアプリケーションレイヤーで動作す
るリバースプロキシです。このオブジェクトをServiceの前段に明示的に設置するこ
とで、Serviceへと通信します。（2）のロードバランサーを使うときとの違いは、

HTTP/HTTPSのレイヤーで動いているため、例えば、URLのパス（「/」以降）の
違いによって、別のServiceに振り分けるような構成ができる点です（図表9-

16）。ロードバランサーと同様に、Kubernetesでは、Ingressをどのような仕組み
で作るのかは規定しません。Ingressの機能を提供するものをIngressコントローラ
と呼び、何が利用できるのかは、Kubernetesシステムの構成によって異なりま
す。

9-4-5　ServiceとPodのまとめ
　ここまでの話をまとめておきます。Kubernetes上で動かすコンテナに対して、
Kubernetes外から通信を受け付けるには、図表9-17のような構成になります。こ
こに示したように、Podだけでは外部から通信できないという点に注意してくださ

い。外部から通信するには、Podの前段にServiceが必須です。そしてその
Serviceの前段には、ロードバランサーもしくはIngressが必要です。

9-4-6　Podのデプロイ
　これまで説明してきたように、KubernetesではPodが実行の主体です。では管
理者は、必要な数だけPodオブジェクトを作るのかというと、それは少し違いま
す。都度、必要なPodオブジェクトを作るのでは、手間がかかってしまうからです。
Kubernetesには、複数のPodをまとめて統括管理するためのオブジェクトがあ
り、それらを使ってPodをデプロイします。

DeploymentオブジェクトとReplicaSetオブジェクト
　Serviceのところで説明したように、冗長化や負荷分散を考える場合、同じ構
成の複数のPodを作ることは珍しくありません。こうしたときに使うのが、

DeploymentオブジェクトとReplicaSetオブジェクトです。ReplicaSetは、同じ構
成のPodを指定した数だけ管理するものです。Deploymentオブジェクトは、
ReplicaSetを管理し、Podのバージョンアップ（更新）などのデプロイ操作を担
当します（図表9-18）。

ReplicaSetを使った数の調整

　ReplicaSetは、Podの数を管理します。障害などでPodが停止してしまったと
きは、必要な数だけ増やします。レプリカの数は、管理者が明示的に変更するこ
ともできます。ReplicaSetを変更して数を増やせば、その数だけPodが増えます
し、減らせば減ります。0に設定すれば、Podはすべて削除されます。

Deploymentを使ったコンテナの更新とロールバック
　Deploymentオブジェクトは、Podのデプロイを管理します。Deploymentオブ
ジェクト（およびReplicaSetオブジェクト）の配下のPodが、どんなイメージを使う

のかなど、Podに関する情報は、このDeploymentオブジェクトに定義されていま
す。Deploymentオブジェクトは、コンテナの更新に役立ちます。Deploymentオ
ブジェクトのコンテナ定義を変更すると、それに伴い、Podが自動的に更新されま
す。

　例えば、最初はあるイメージのバージョン1を使ったコンテナが動いていたとしま
す。ここでDeploymentオブジェクトの定義を変更して、イメージのバージョン2を使
うように変更して適用し直すと、バージョン1を使っているPodは停止し、新たにバ
ージョン2を使っているPodができます。こうして順次、Pod内のコンテナをバージョン
アップできます。詳細については、「9-10 バージョンアップとロールバック」で説明し
ます。

Podを直接作らない
　このようにDeploymentオブジェクトやReplicaSetオブジェクトを使うと、Podの
更新や数の管理が、とても簡単になります。ですから基本的には、Podオブジェク
トを直接作るのではなく、これらのオブジェクトを使って管理することが推奨されて
います。もちろんReplicaSetオブジェクトを直接使うこともできますが、更新機能
もサポートしてくれるDeploymentオブジェクトを使うことがほとんどです。

StatefulSetオブジェクト
　DeploymentオブジェクトやReplicaSetオブジェクトは、Podがステートレスであ
ることを前提としています。Deploymentオブジェクトの設定を変更すればPodを
更新できると説明しましたが、このときの更新というのは、いまあるPodを削除し
て、更新したコンテナを含むPodに置き換えるというやり方をします。ですから、

Podが処理しているデータはすべて失われますし、IPアドレスも変わります（詳細
は「9-10 バージョンアップとロールバック」で説明します）。

　Podがデータを保持していて、失いたくないこともあります。そのようなときには、
Deploymentオブジェクトの代わりに、StatefulSetオブジェクトを使います。
StatefulSetでは、Podが更新されるときは、以前と同じIPアドレス、以前と同じ
ボリュームを割り当てるように構成されるため、データが失われることがありません。
StatefulSetオブジェクトについての詳細は、「9-13 StatefulSetを用いた負荷分
散とセッション情報の管理」で説明します。

JobオブジェクトとCronJobオブジェクト
　Podに含まれるコンテナがバッチ処理などであれば、Podをずっと実行させっぱ
なしにする必要はないはずです。指定した個数だけ起動して、処理が終わった
ら、Podを削除してしまってよいはずです。Jobオブジェクトは、こうしたワンショット
の起動に使う基本的なオブジェクトです。いくつ起動するか、並列にいくつ動作さ
せるかなどを指定でき、実行に失敗したときのリトライ機能もあります。CronJob
オブジェクトは、指定した日時にPodを実行するオブジェクトです。できることは
Jobオブジェクトと同じですが、1回限りではなく、毎時、毎日、毎週など、繰り返
し定期的に実行できます。JobオブジェクトとCronJobオブジェクトについては、
「9-12 Job」で説明します。

Daemonsetオブジェクト
　Daemonsetオブジェクトは、バックグラウンドで常に実行したいPodを、ワーカー
ノードごとに1つずつ動くPodを実行するときに使います。例えば、ログの処理やモ

ニタリングをするPodを動かしたいときなどに使います。本書では、説明を割愛し
ます。

9-4-7　ネームスペース
　Kubernetesオブジェクトについての解説はこれでほぼすべてですが、最後に１
つ、「ネームスペース」という概念があることを説明しておきます。ネームスペースと
は、Kubernetesクラスターを区切る概念です。1つのKubernetesクラスターには、
当然、複数のシステムが稼働することもありえます。こうしたとき、名前が重複す
ると困りますし、ネットワークも分割したいでしょう。ネームスペースは、こうした枠を
区切る仕組みです（図表9-19）。本書では、ネームスペースは扱わず、デフォルト
のネームスペース（ネームスペースなし）で作業します。

9-5　Minikube環境を準備する

　説明はこのぐらいにして、Kubernetesとはどんなものか、実際に試してみましょ
う。まずは、Minikubeを利用できる環境を準備します。Minikubeはマスターノー
ドとワーカーノードが1台のコンピューター上で完結する、シングルノードの
Kubernetes環境です。

9-5-1　Minikubeの実行に必要なスペック
　Minikubeを利用するには、次の構成が必要です。

（1）Dockerもしくは仮想マシンなどがインストールされていること
（2）2つ以上のCPUが搭載されており、2GB以上のメモリー、20GB以上のディ

スクスペースがあること
（3）Minikubeをインストールすること
（4）Kubernetesを操作するためのkubectlをインストールすること

　これまでDockerの学習に使ってきたEC2インスタンスは、（1）の条件を満た
しています。（2）以降の設定を進めて、Minikubeを利用できるようにしていき
ます。

9-5-2　EC2インスタンスを2CPU構成に変更する

　これまで使ってきたEC2インスタンスは、AWSの1年間の無料利用枠の範囲で
利用できる「t2.micro」というインスタンスの種類（インスタンスタイプ）を利用し
てきました（第2章を参照）。これは「1CPU、1GBメモリー」のため、Minikubeを
利用できる要件を満たしません。最低限、2CPU必要だからです。そこで次の手
順で、インスタンスタイプを「t3.small」に変更します。このインスタンスタイプは、
「2CPU、2GBメモリー」の構成なので、利用要件を満たします。なお「t3.small」
は、無料利用枠の範囲外です。下記の設定をした直後から、料金がかかりま
す。本書の執筆時点では、0.0272USD/時間です（東京リージョンの場合）。
1カ月（31日）で換算すると、0.0272USD×24時間×31日=約20USDの費
用がかかるので注意してください。

memo　下記の手順では、EC2インスタンスを停止してから起動します。このとき、EC2インスタンスの

IPアドレスが変わるので注意してください。つまり、SSHの接続先やブラウザで動作確認す

るときのIPアドレスが変わります。

手順 EC2のインスタンスタイプを「t3.small」に変更する

［1］　EC2インスタンスを停止する
　AWSマネジメントコンソールから、EC2コンソールを開きます。［インスタンス］メ
ニューをクリックしてインスタンスメニューを表示します。一覧のなかから、本書で利
用中のEC2インスタンスを右クリックし、［インスタンスの状態］─［停止］を
選択します（図表9-20）。確認画面が表示されたら、［停止する］をクリック
します（図表9-21）。

［2］　インスタンスタイプを変更する
　［インスタンスの状態］が［stopped］になるまで待ちます。［stopped］
になったら、同じく右クリックして、今度は、［インスタンスの設定］─［インスタ
ンスタイプの変更］をクリックします（図表9-22）。

［3］　t3.smallに変更する
　インスタンスタイプの変更画面が表示されたら［t3.small］に変更し、［適
用］ボタンをクリックします（図表9-23）。

［4］　インスタンスを開始する
　これで変更が終わりました。インスタンスを右クリックして［インスタンスの状
態］─［開始］を選択します（図表9-24）。確認画面が表示されたら［開
始する］をクリックします（図表9-25）。

［5］　パブリックIPを確認する
　 開 始 す る と パ ブ リ ッ ク IP が 変 わ り ま す 。 ［ イ ン ス タ ン ス の 状 態 ］ が
［running］になるまで待ち、「パブリックDNS（IPv4）」と「IPv4パブリックIP」
を確認してください。この値が、今後、SSHで接続するときや、ブラウザで開いたり
するときのIPアドレスもしくはホスト名となります（図表9-26）。

9-5-3　Minikubeをインストールする
　環境の準備が整ったので、Minikubeをインストールします。Minikubeをインス
トールするには、次のようにします。

memo 　 下 記 の 手 順 は 、 Minikube の 「 minikube start 」 ペ ー ジ

（https://minikube.sigs.k8s.io/docs/start/）に基づいています。最新版のインストー

ル方法については、このドキュメントを参照してください。ページには実際のコマンドが記述さ

れており、コピペすれば、下記のコマンドを手入力せずに済みます。

手順 Minikubeをインストールする

［1］　conntrackのインストール
　Minikubeのインストールには、conntrackが必要です。次のようにしてインスト
ールします。

［2］　Minikubeのダウンロード
　次のようにして、Minikubeをダウンロードします。

［3］　バイナリコマンドを/usr/local/binに移動する
　手順［2］によって、minikubeというバイナリファイルがダウンロードされます。こ
のファイルに実行権限を付け、/usr/local/binに移動します。

［4］　確認する
　インストールされたかどうかを確認します。次のように入力し、バージョン番号が
表示されればインストールできています（表示されるバージョン番号は、ここに示し
たものと異なることがあります）。

9-5-4　Minikubeを起動してKubernetesクラスターを構成する
　インストールしたら、Minikubeを起動します。次のように入力すると、起動でき
ます。

　初回起動時は、必要なファイルをダウンロードしたり、各種初期化が実行され
たりするため、起動完了までに、しばらく時間がかかります。次のように表示され、
コマンドプロンプトが起動すれば、Minikubeは起動し、Kubernetesクラスターが
作られた状態となります。

memo　Minikubeを停止したいときは、「sudo minikube stop」と入力します。また、Minikube

の利用には、ある程度のディスクを必要とします。途中、disk fullのエラーが発生したとき

は、docker image pruneコマンドなどを実行して、前章までで使った不要になったイメージ

を削除してディスク容量を増やす、もしくは、コラム「ディスク容量を増やす」を参照して、

AWSマネジメントコンソールから、ディスクの容量を増やす操作をするなどしてください。

memo　サーバーを再起動したときは、Minikubeは停止します。再起動後は、「sudo minikube

start --vm-driver=none」と入力して、Minikubeを再度、実行し直してください。

9-5-5　Minikubeに接続するための設定を自分の所有にする
　Minikubeを実行すると、すぐあとに説明するkubectlコマンドを使って
Minikubeに接続するための設定ファイルが作られます。このファイルの所有者は
rootユーザーであるため、次のようにして自分のホームディレクトリに移動し、かつ、
自分の所有にしておきます。

手順 kubectlコマンドからMinikubeに接続するための環境設定ファイルを

調整する

［1］　自分のホームディレクトリに移動する
　次のコマンドを入力し、ホームディレクトリの.kubeディレクトリに移動します。

memo　実行したユーザーによっては「･･･ are the same file」と表示されることがありますが、気にし

ないでください。

［2］　所有者を変更する
　次のように入力して、所有者を自分に変更します。

コラム 　ディスク容量を増やす
　DockerやKubernetesで、いろんなコンテナイメージを試していると、そのイメ
ージで、すぐにディスクがいっぱいになります。docker image pruneコマンドで
不必要なイメージを削除すればよいとはいえ、ときには、それでも足りないこと
があります。そのようなときは、EC2インスタンスに接続されているディスクの容
量を増やすこともできます。以下に、その手順を簡単に紹介します。

memo　本書の執筆時点においては、30GBまでは1年間の無料利用枠内で利用できます。

手順 ディスク容量を増やす

［1］　ボリュームを確認する
　EC2インスタンスをクリックし、下に表示される詳細画面で［ルートデバイ
ス］にある「/dev/sda1」をクリックします。すると詳細情報が表示されるので、
［EBS ID］の欄にある［vol-XXXXXXXX］の部分をクリックします（図表9-

27）。

［2］　ボリュームを変更する
　ボリュームが表示されるので、右クリックし、［ボリュームの変更］を選択し
ます（図表9-28）。

［3］　サイズを変更する
　［サイズ］を入力して［変更］ボタンをクリックします。確認画面が表示
されたら［はい］ボタンをクリックします（図表9-29、図表9-30）。

［4］　ボリューム変更の成功
　成功画面が表示されます。［閉じる］をクリックして閉じます（図表9-

31）。

［5］　増やした容量を使えるようにする
　これでディスクは増えましたが、OSからはまだ利用できません。OSから利用
するためには、コマンドの入力が必要です。図表9-26で確認したIPアドレス
（もしくはホスト名）にSSHで接続し、シェルから次のように入力します。

［6］　確認する
　dfコマンドを実行して、/dev/nvme0n1p1の容量（Size）が、設定した容
量に近いことを確認します。

9-6　kubectlコマンドを使った操作の基本

　Kubernetesは、kubectlコマンドを使って操作します。ここでは、kubectlコマン
ドのインストールと、基本的な使い方を説明します。

9-6-1　kubectlコマンドをインストールする
　kubectlコマンドは、さまざまなKubernetes環境（Kubernetesエコシステムと
も呼ばれます）に対して操作する汎用コマンドです。次のようにしてインストールし
ます。

memo 　 こ の 手 順 は 、 「 Install and Set Up kubectl 」

（https://kubernetes.io/docs/tasks/tools/install-kubectl/）というページに基づいて

います。最新情報については、このページを参照してください。ページには実際のコマンドが

記述されており、コピペすれば、下記のコマンドを手入力せずに済みます。

手順 kubectlコマンドのインストール

［1］　必要なパッケージをインストールする
　Ubuntu環境では、「apt-transport-https」と「gnupg2」というパッケージがイ
ンストールされていないと失敗します。次のようにして、前もってインストールしておき
ます。

［2］　kubectlのパッケージを追加する
　次のコマンドを入力して、kubectlのパッケージを追加します。

［3］　kubectlをインストールする
　次のようにして、kubectlをインストールします。

［4］　インストールされたことを確認する

　kubectlコマンドがインストールされたことを確認します。versionオプションを指
定して、バージョン番号が表示されることをもって、インストールされたことの確認と
します（バージョン番号は、誌面に掲載したものと異なることがあります）。

9-6-2　kubectlの主なコマンド
　kubectlコマンドは、次の書式で使います。

　接続先などは、ホームディレクトリの.kube/configファイルに記述されている内
容が使われます。本書の手順通りにここまできた場合は、Minikubeをインストー
ルしたときに生成される環境ファイルをここにコピーしているので、kubectlコマンドの
操作先は、Minikubeとなっているはずです。指定できるコマンドは、「リソースの
操作」「レプリカ数などの操作」「コンテナ操作」「環境の操作」などに分類できま
す。主なコマンドを図表9-32に示します。

9-6-3　マニフェスト
　kubectlでは、リソース（Kubernetesオブジェクト）を作成したり変更したりす
る操作をしますが、これらの設定値は数が多く、1つひとつkubectlの引数で設定
すると、とても膨大になります。そこでリソースの情報は、ファイルとして記述してお
き、それをkubectlに読み込ませるようにします。

　リソースに関するデータを「マニフェスト（Manifest）」と呼び、それを記述した
ファイルを「マニフェストファイル」と呼びます。マニフェストファイルは、JSON形式もし
くはYAML形式で記述します。JSON形式は、どちらというと機械的にやり取りす

ることを目的としたもので、人間がその設定ファイルを読み書きするのであれば、
もっぱらYAML形式が使われます。

マニフェストファイルの書式
　マニフェストファイルは、1つ以上のKubernetesオブジェクトを記述したもので
す。YAML形式の場合、1つのオブジェクトを示す書式は、次の通りです。

　YAML形式では「---」（「-」を3つ）記述すると、1つのファイルに複数のデータ
を記述できます。この書式を用いると、複数のオブジェクトを、次のように1つのファ
イルに記述できます。

apiVersionとkind

　kindは、オブジェクトの種類を示します。「Deployment」「ReplicaSet」
「Service」「Pod」など、これまで説明してきた、数々のオブジェクトを指定します。
これらの値は、kubectlコマンドの引数に「api-resources」を指定すると確認でき
ます。一覧の「KIND」の項目が、kindとして指定すべき値です。

memo　kubectl api-resourcesの結果には、「SHORTNAMES」という項目がある点に注目してく

ださい。この表記で略記できます。例えば「deployment」は「deploy」とも書けます。

　api-versionsに指定すべき値は、kubectl　api-versionsで確認できます。
api-resourcesで調べたAPIGROUPに相当するものを選択します。例えば、
Deploymentの場合、上記の結果では、次のように、APIGROUPSが「apps」で
す。

　kubectl api-versionsで調べると、「apps」は「apps/v1」なので、これを指定
するという具合です。APIGROUPSが空欄の場合は、一番下に表示されている
「v1」を指定します。

memo　ここではkubectlで確認する例を示しましたが、実際には、後述する「Kubernetes API

Reference」で確認するほうが簡単です。

metadata

　オブジェクトに関連する情報を記述する部分です。例えばオブジェクト名を指
定する「name」や、ラベルを設定する「labels」などの項目があります。ほかにも、
ネームスペースなども、この部分に記述します。metadataには、「アノテーション
（annotation）」という情報も設定できます。これはラベルと似て、任意のキー
に対して任意の値を設定できるものですが、セレクターによる選択をしないもので
す。

spec
　specには、そのオブジェクトが持つ属性を設定します。どのような属性をもつの
かはオブジェクトの種類によって異なるので、Kubernetes API Referenceなどで
確認します。例えばDeploymentオブジェクトであれば、レプリカの数、Podを作
るときのテンプレート（ひな型）など、さまざまな付随する設定を、このspecの部
分に記述します。

【Kubernetes API Reference】
https://kubernetes.cn/docs/reference/kubernetes-api/

9-7　Podを作る簡単な例

　説明はこのぐらいにして、実際にKubernetesを使ってみましょう。まずは簡単な
例として、Podを1つだけ作ってみます。ここでは「8-4-8 コマンドの実行やパッケー
ジインストールを伴う例」で作成したmyphpimageを使います。あらかじめ
myphpimageをビルドしたうえで、下記の手順を進めてください。本書の手順通

りに進めてきたなら、「cd ~/phpimage/」「docker build . -t myphpimage」
を順に実行すれば、myphpimageができるはずです。

memo　すでに説明したように、Kubernetesでは、Podを1つずつ管理者が操作することは推奨され

ていません。代わりにDeploymentオブジェクトなどを使うようにすべきです。しかしいきなり

Deploymentオブジェクトから操作を始めると複雑すぎるため、本書では、練習のため、ま

ずは1つのPodから作るというところを説明しているのに過ぎません。

9-7-1　プライベートなリポジトリを参照できるようSecretオブジェクトを

作る
　Kubernetesでは、コンテナを作成する際、リポジトリからイメージをダウンロード
します。利用するイメージがDocker Hubで管理されていて、とくに認証情報を必
要としない場合は問題ありませんが、そうではなくプライベートなリポジトリを使う
場合は、Kubernetesに対して、プライベートなリポジトリを参照できるような設定
が必要です。Docker Hubのプライベートなリポジトリを利用する場合は、認証
情報を格納したSecretオブジェクトをあらかじめ作っておき、Podを作るときにその
情報を参照するように構成します。

手順 プライベートなリポジトリを利用できるようにする

［1］　レジストリにログインする
　dockerコマンドを使って、レジストリにログインします。ユーザー名、パスワードが
尋ねられたら、正しいものを入力してください。

［2］　認証サーバーのホスト名を確認する
　［1］によって認証情報が~/.docker/config.jsonファイルに書き込まれま
す。この内容を確認します。

　結果は、例えば次の通りです。ここで「https://index.docker.io/v1/」というの
が、Docker Hubの認証サーバーの名前です。これを控えておきます。

memo 　 第 8 章 で 、 Amazon ECR に 登 録 し て い る な ら 、 auths の 項 目 に は 、 も う 1 つ

「XXXXXXX.dkr.ecr.･･･」という項目がありますが、そちらは、ここでは使いません。

［3］　認証情報をSecretオブジェクトとしてKubernetesに登録する

　認証情報をSecretオブジェクトとして作成します。次のコマンドを入力して、
Secretオブジェクトを作り、Kubernetesに登録します。

memo　--docker-emailオプションを指定して、メールアドレスを登録することもできます。ここでは

kubectlの引数に各種情報を渡すことでSecretオブジェクトを作成していますが、YAML形

式のファイルに認証情報を書き、それを読み込ませて作ることもできます。なお、kubectlコ

マンドを実行したときに「permission denied」というエラーが発生するときは、環境設定フ

ァイルの所有者がrootユーザーである可能性があります。「9-5-5 Minikubeに接続するた

めの設定を自分の所有にする」での操作をし忘れていないか、確認してください。

　登録名は任意の名前で、あとでPodを作成するときに、認証情報として指定
するオブジェクト名となります。ここでは「mysecret」という名前にします。認証サー
バー名は、手順［2］で確認したサーバー名です。実際の値を当てはめると、次
の通りです。

　すると結果として、次のように表示されます。

［4］　Secretオブジェクトが正しく登録されたことを確認する
　これでmysecretという名前のSecretオブジェクトが作られました。次のコマンド
を入力すると、正しく設定されたかを確認できます。

　結果は、次の通りです。

　ここでusernameとpasswordが正しいかどうか、そして、authの内容が、手順
［2］で確認したconfig.jsonの値と合致することを確認します。

コラム 　認証情報の削除
　認証情報を削除したいときは、kubectl deleteを実行します。本書の手順
の場合、オブジェクト名は「mysecret」です。

9-7-2　Podのマニフェストファイルを用意する

　準備ができたので、Podを作っていきましょう。まずは、Podを定義するマニフェ
ストファイルを用意します。ここでは、リスト9-1に示すpodexample.yamlファイルを
作ります。このマニフェストでは、「8-6　Docker Hubに登録する」で登録した「自
分のDockerID/myexample」というイメージを使ったコンテナを1つ含むPodを定
義しています。このファイルをnanoエディタなどで作成してください。第8章で説明
したように、YAML形式のファイルは、インデントの位置に意味があり、タブではな
くて空白でインデントを記述しなければならない点に注意してください。

kindとapiVersion

　ここではPodを作りたいので、kindには「Pod」を指定します。apiVersionは、
先に説明した「kubectl api-resources」と「kubectl api-versions」で確認した
ものを指定します。PodのAPIGROUPは空欄なので「v1」を指定します。

metadata
　metadataでは、Podの名前を指定しておきます。ここでは「my-pod」という名
前にしました。

spec

　specでは、このPodの詳細情報を記述します。含めたいコンテナはcontainers
の項目で指定します。nameにはコンテナ名を指定し、imageにはイメージ名を指
定します。portsは、Dockerfileのexposeの指定と類似のもので、コンテナが利
用するポート番号を記述します。containersの説明は、APIリファレンスの
Container v1 core
（ https://kubernetes.cn/docs/reference/generated/kubernetes-
api/v1.18/#container-v1-core）にあります。ほかにもボリュームのマウントや環
境変数の設定、起動時に実行したいコマンドの指定など、docker runするとき
に指定できるのと同等のオプションを指定できます。最後に指定している
imagePullSecretsは、プライベートなリポジトリを利用する際に必要となる認証
情報です。先に作成しておいたmysecretというSecretオブジェクトを指定しまし
た。ですから、コンテナが作られるときには、mysecretに登録した認証情報を使っ
てレジストリに接続し、イメージがダウンロードされます。Docker Hubで公開されて
いるイメージを使うなど、認証が必要ないときは、このimagePullSecrets自体を
省略できます。

コラム 　Podに複数のコンテナを含む場合の書き方
　Podに複数のコンテナを含めたいときは、containersのなかの「name」の部
分から、複数記述します。

9-7-3　Pod操作の基本
　作成したマニフェストファイルを使って、Podオブジェクトの作成から動作の確
認、削除までを、一通り実行してみます。

手順 Podの作成から削除までの操作例

［1］　Podオブジェクトを作成する
　リスト9-1のように用意したpodexample.yamlというマニフェストを元にPodオ
ブジェクトを作ります。kubectlコマンドでオブジェクトを作るには、（先にもすでに
Secretオブジェクトの作成で登場しましたが）create命令を指定します。マニフェ
ストファイルを読ませるには、-fオプションで指定します。次のコマンドを入力してく
ださい。すると、Podオブジェクトが作られ「pod/my-pod created」と表示されま
す。

　ただし、これはetcd上にPodオブジェクトが作られただけで、Podそのものが作ら
れたかどうかは定かでない点に注意してください。何らかのエラーがあり、Podが作
られない可能性もあります。

［2］　Podの一覧を確認する
　本当に作られたのか、Podの一覧を確認します。状態を取得するにはgetコマ
ンドを使います。getコマンドのオプションとして「pods」を指定すると、存在する
Podの一覧を取得できます。

memo　kubectl get podsでは、ネームスペースの指定がないPod一覧しか取得できません。すべて

のPodを参照したいときは、kubectl get pods -Aのように、最後に「-A」オプションを指定

してください。すると、システムとして使われているPodも含め、すべてのPodが表示されま

す。なお、「kubectl get pod」や「kubectl get po」とも書けます。

　すると、次のように「Running」というステータスとして表示されるはずです。

memo　「Running」ではなく「ErrImagePull」と表示されている場合は、イメージの取得に失敗して

いる可能性があります。その場合は、（1）Secretオブジェクトとして登録した認証情報は

正しいか、（2）マニフェストファイルのimagePullSecretで指定した名称が、作成した

Secretオブジェクトの名称と合致しているか、（3）imageで指定しているイメージ名が正

し い か 、 な ど を 確 認 し て く だ さ い 。 も し 間 違 い が あ っ た ら マ ニ フ ェ ス ト フ ァ イ ル

（podexample.yaml）を変更し、後に説明するように、「kubectl delete pod my-

pod 」 と 入 力 し て い っ た ん Pod を 削 除 し て か ら 、 改 め て 、 「 kubectl create -f

podexample.yaml」して作り直してください。

［3］　詳細情報を確認する
　kubectl describeを使うと、詳細な情報を取得できます。次のように入力して
ください。

　すると、次のように表示されます。この画面では、「Node」の部分で、実行され
ているワーカーノードのホスト名、それから、「IP」の部分で、このPodに割り当てられ
ているIPアドレスを確認できます。「Events」のところには、動作履歴が表示されま
す。何らかのエラーが発生しているときは、ここに表示されるので、トラブルが生じた
ときは、まず、describeを確認するのがよいでしょう。

［4］　通信状態を確認する
　本当は、このIPアドレスには、Kubernetesクラウド以外からは接続できないの
ですが、Minikubeの場合は、1台で動いているため、これが可能です。次のよう
に入力すると、第8章で作成した結果である「Your IP XXX.XXX.XXX.XXX。」
（XXX.XXX.XXX.XXXはホストのIPアドレス）と表示されるはずです。

memo　この段階では、「http://EC2インスタンスのIPアドレス/」のようにアクセスしてコンテンツを見る

ことはできません。そのためにはServiceの設定が必要です。Serviceの設定については「9-

9　Serviceオブジェクトを使って外部から参照できるようにする」で説明します。

［5］　削除する
　このように、マニフェストファイルを読み込ませたら、Podが動いたことがわかりま
した。ここで、削除してみます。削除には、delete命令を指定します。これには2つ
の方法があります。1つは次のように、kubectl delete pod Pod名を指定する方
法です。

　もう1つは、-fオプションでマニフェストファイルを指定する方法です。こちらの方
法では、オブジェクトの種別にかかわらず、マニフェストファイルに書かれたオブジェク
トを削除します。

［6］　削除されたことを確認する
　再び、kubectl get podsで実行中のPod一覧を確認します。すると、もう存
在しないはずです。

9-8　Deploymentオブジェクトを使って複数Podをまとめ

て作る

　いまは手作業で1つのPodを作成しましたが、本来は、Deploymentオブジェク
トやReplicaSetオブジェクトを使ってPodを作るべきです。そうすれば、Pod数の変
更やバージョンアップが容易になるからです。そこでここでは、Deploymentオブジェ
クトを使って、複数のPodをまとめて作る方法を説明します。

9-8-1　Deploymentのマニフェストファイルを用意する

　まずはマニフェストファイルを用意します。Deploymentオブジェクトを使って、3
つのPodを作成するためのマニフェストファイルは、リスト9-2の通りです。

kindとapiVersion

　ここではDeploymentを作りたいので、kindには「Deployment」を指定しま
す。apiVersionは、先に説明した「kubectl api-resources」と「kubectl api-
versions」で確認したものを指定します。DeploymentのAPIGROUPは「apps」
です。それにバージョン番号も合わせ、「apps/v1」を指定します。

metadata

　 metadata で は 、 Deployment の 名 前 を 指 定 し ま す 。 こ こ で は 「 my-
deployment」という名前にしました。

spec
　Deploymentの詳細情報を設定します。次の項目を設定しています。

（1）ReplicaSet
　レプリカの数を指定します。ここでは「3」を指定し、同じ構成のPodを3つ作るこ
とを指定しています。

（2）selector
　 ど の よ う な Pod を 作 る の か を 、 ラ ベ ル セ レ ク タ ー で 指 定 し て い ま す 。
「matchLabels」というのは、ラベルが合致する項目を採用するという意味です。
ここでは条件として「app: my-app」を指定しているので、ラベルのappキーに対し
てmy-appという値が設定されているものを採用するという意味です。この設定
は、すぐ下のtemplateのmetadataで指定されており、このtemplateで定義され
た箇所を採用するという意味です。

（3）template
　Podのテンプレート（ひな型）を指定します。metadataの部分では、いま説
明したようにラベルセレクターから選択されるために、appキーにmy-appを設定し
ています。specの部分で、どのようなPodを作るのかを指定します。この部分は
Podを作成するときに指定したもの（リスト9-1）と、まったく同じです。

9-8-2　複数のPodをまとめて作成する
　それでは、このDeploymentオブジェクトをKubernetesに登録することで、そこ
に書かれた3つのPodを作ってみましょう。下記の手順では、Podの作成からPod
の数の変更、そして、Deploymentオブジェクトの削除まで、一連の操作をしま
す。

手順 Deploymentオブジェクトを使って、Podの作成、数の変更、削除をす

る

［1］　Deploymentオブジェクトを作成する
　リスト9-2のように用意したdeploy.yamlというマニフェストを元にDeployment
オブジェクトを作ります。これは先にPodオブジェクトを作ったときと同じく、create
命令を使います。

［2］　デプロイの状態を確認する
　デプロイされたか確認します。まずは、次のようにしてデプロイ状況を確認しま
す。

　上記の表示では、「my-deployment」というDeploymentオブジェクトがあ
り、「3/3がREADY」つまり、Pod3つのうちの3つの準備が整っていることがわかりま
す。UP-TO-DATE、AVAILABLEとも3で、3つのPodが有効な状態になっていま
す。

［3］　Podを確認する
　ということは、Podが存在するはずです。kubectl get podsで、Pod一覧を確
認しましょう。

　すると次のように、3つのPodが「Running」の状態で存在することがわかりま
す。ここに示したように、Podには、「デプロイ名-XXXX-XXXX」という命名規則が
採用されます。

［4］　PodのIPアドレスなどを確認する
　先と同様に、kubectl describe podsすれば、その詳細がわかりますが、その
表示は長くなるので、それぞれのIPアドレスと実行ノードだけ確認しましょう。「-o
wide」を指定すると、それらが追加で表示されます。どうやらIPアドレスは、

「172.17.0.4」～「172.17.0.6」のようです（この値は、環境によって異なる可能
性があります）。

［5］　疎通確認する
　これらのIPアドレスに対して、疎通確認してみます。Pod内のコンテナにつなが
り、結果のHTMLが戻ってくるはずです。

memo　繰り返しになりますが、これはMinikubeであり、かつ、同じホストからkubectlを実行してい

るから成せる技です。

［6］　Podを削除してみる
　ここで、どれか1つ、Podを削除してみましょう。Podを削除するには、kubectl
delete podを使います。まずはPodの名前を再確認します。

　ここでは一番上に表示された「my-deployment-7744f9cc84-76zsn」を削
除してみます（この処理には、少し時間がかかります）。

　そしてもう一度、Pod一覧を確認します。

　すると、先ほどの「my-deployment-7744f9cc84-76zsn」は消えましたが、
今度は新しく「my-deployment-7744f9cc84-qhgvl」が増えていることがわか
ります（新しく増えたものは、実行時間が短いので、AGEの項目で確認できま
す。上記の例では起動から115秒しか経過していません）。この結果からわかる
ように、Deploymentオブジェクトを使ってPodを作る場合、Podが終了するなど
して指定したレプリカの数を満たさなくなったら、その分だけ作られるということで
す。Podを終了するには、（1）レプリカの数を0にする、（2）Deploymentオブ

ジェクト自体を削除する、のいずれかの方法をとります。Podオブジェクトだけを削
除しても消えないので注意してください。

［7］　レプリカ数を変更する　その1
　ここでレプリカ数を変更してみましょう。それには2つの方法があります。1つめの
方法は、マニフェストファイルを変更して、それを適用する方法です。まずは、こち
らの方法から説明します。nanoなどのエディタでdeploy.yaml（リスト9-2）を
開き、replicasを「3」から「5」に変更して保存します。

　そしてこの変更を適用します。適用するには、apply命令を使います。

memo　表示されるwarningは、applyはcreateやsave-configもしくはapplyで適用したリソースに

しか反映されないから注意せよという意味です。無視してかまいません。

　これでPodは5つに増えたはずです。確認してみましょう。

［8］　レプリカ数を変更する　その2
　もう1つの方法は、kubectl scale命令を使うことです。レプリカ数はreplicasオ
プションで指定します。例えば次のようにすると、レプリカ数が0、つまり、すべての
Podを削除できます。対象は「deployment/Deploymentオブジェクトに付けた
名前」を指定します。

　実行中のPodを確認すると、もうありません。もちろんこのあと、--replicasに1
とか2を設定すると、Podを1つ2つと増やしていくこともできますが、その操作はここ
では省略します。

［9］　Deploymentオブジェクトを破棄する

　ひとまずこれで実験は終了としましょう。Deploymentオブジェクトを破棄しま
す。

memo　「kubectl delete deployment my-deployment」（もしくは省略表記の「kubectl

delete deploy my-deployment」）でもかまいません。

　削除後、deployが存在しないことを確認しておきます。もちろん、（--
replicasで0に設定しなくとも）Deploymentオブジェクトから作られたPodも、
自動的に破棄されます。

9-9　Serviceオブジェクトを使って外部からアクセスできる

ようにする

　これでPodを作るところまでできました。しかしまだKubernetesクラスターの外か
らアクセスできません。アクセスできるようにするため、Podの前段にServiceオブジ
ェクトを作りましょう。

9-9-1　Serviceのマニフェストファイルを用意する
　まずは、Serviceのマニフェストファイルを、リスト9-3のように用意します。ファイル
名は、service.yamlとします。nanoエディタなどで作成してください。このサービス
は、リスト9-2で定義しているDeploymentオブジェクトに依存しています。この
Serviceオブジェクトでは、配下に配置するPodを、「appキーにmy-appという値
が設定されている」ということを条件としたラベルセレクターを用いて絞り込んでい
ます。

kindとapiVersion

　 こ こ で は Service を 作 り た い の で 、 kind に は 「 Service 」 を 指 定 し ま す 。
apiVersion は 、 先 に 説 明 し た 「 kubectl api-resources 」 と 「 kubectl api-
versions」で確認したものを指定します。ServiceのAPIGROUPは空欄なので
「v1」を指定します。

metadata

　metadataでは、Serviceの名前を指定します。ここでは「my-service」という
名前にしました。

spec
　specでは、このServiceの詳細情報を記述します。次の3つの設定をしていま
す。

（1）type
　Serviceの種類です。ここでは「NodePort」を指定しています。そうすることで、
ワーカーノードのIPアドレスを通じてアクセスできるServiceが作られます。
Minikubeの場合、すべて1台のコンピューターで動かしますから、ワーカーノードのIP
アドレスとは、Minikubeを実行しているコンピューター、すなわち、今回の場合は、
EC2インスタンスのIPアドレスと同じです。すでに説明したように、typeには
「LoadBalancer」を使うこともできますが、これはKubernetesのシステム依存しま
す 。 LoadBalancer が 使 え る の は 、 Minikube を Docker for Windows や
Docker for Mac、もしくは、それに類似する仮想マシン上で動かしたときに限ら
れます。今回はEC2インスタンス上で動かしているため、LoadBalancerが使えま
せん。そこでやむなくNodePortを指定しています。

memo　Minikubeを起動するときに「--vm-driver=none」のオプションを指定しているのが理由で

す。LoadBalancerは仮想マシンと連動するため、仮想マシンごとのドライバが必要になりま

す。

（2）ports

　「ワーカーノードのポート」「サービスのポート」「Podのポート」の関係性を設定しま
す。nodePortはワーカーノードのポート番号、portはサービスのポート番号、
targetPortはPodのポート番号です。ここではServiceはポート8080番で受け取
り、それをPodのポート80番へと転送するようにしています。その上にはワーカーノー
ドがポート30000で待ち受けしており、それをServiceのポート8080に転送するとい
う流れです（図表9-33）。この構成によって、「http://EC2インスタンスのIPアドレ
ス:30000/」でアクセスすると、いずれかのPodのポート80に接続されるようになり
ます。

memo　既定では、nodePortに設定できるポート番号の範囲は、30000～32767番までです。た

だしこの設定は、コントロールプレーンのservice-node-port-rangeの設定によって変更で

きます。

（3）selector
　配下に配置するPodを決めるセレクターです。「app: my-app」を指定して、ラ
ベルのappキーにmy-appが設定されているPodを選択しています。これはリスト
9-2で作成されるPodです。

9-9-2　Serviceを作ってインターネットからアクセスする
　ではServiceオブジェクトを作って、インターネット側からPod（コンテナ）に接
続してみましょう。

手順 Serviceを作ってインターネットからアクセスする

［1］　Deploymentオブジェクトを作成する
　リスト9-3に示したServiceは、リスト9-2で作成されるPodに依存します。そこ
で先に、リスト9-2のDeploymentオブジェクトを作成しておきます。

［2］　Serviceオブジェクトを作る
　リスト9-3に示したservice.yamlを元にServiceオブジェクトを作成します。

［3］　Serviceの状態を確認する
　作成したサービスの状態を確認します。下記のように、my-serviceという名前
のServiceが作られており、Serviceのポートは8080、ワーカーノードのポートは
30000が、それぞれ割り当てられていることがわかります。

memo　kubernetesというサービスは、Kubernetes自体の内部サービスです。

［4］　ブラウザで接続する
　ServiceをNodePortとして構成しているので、ワーカーノードのIPアドレスを経由
して、サービスにアクセスできます。ブラウザで「http://EC2インスタンスのIPアドレ
ス:30000/」に接続してみましょう。自分のIPアドレスが表示されるはずです（図表

9-34）。このIPアドレスは、アクセスしているブラウザのIPアドレスとは違い、内部で
NATされたIPアドレスが表示されています。

［5］　後始末
　以上で実験終了です。このあと、ServiceやDeploymentを削除してもよいで
すが、次の節では、引き続き、このPodをアップデートすることをしてみます。引き
続き次の節に進むのであれば、このままにしておいてください。やめたいなら、次の
コマンドを入力して削除してください。

コラム 　Pod内のコンテナのデバッグ

　Pod内のコンテナを変更したい場合、コンテナイメージの作成からやり直すの
が本来のやり方です。しかしときには、コンテナ内で、いくつかのコマンドを実行
したり、ファイルを書き換えたりして、これからやろうとする修正が正しいかを確
認したいこともあります。そのようなときは、次のようにするとよいでしょう。

（1）　対象のPodを1つにする
　レプリカが複数あると、どこに接続されるのかわかりにくいので、まずは、Pod
の数を1つに減らします。

（2）　コンテナに入り込んでデバッグする
　Pod一覧を確認します。

　このRunningであるPodにシェルでログインして、必要なデバッグをします。
kubectl exec命令でシェルを指定すれば、シェルでログインできます。-itオプシ
ョンを指定し忘れないように注意してください。

9-10　バージョンアップとロールバック

　Deploymentオブジェクトは、コンテナのバージョンアップが容易なのが特徴で
す。ここでは、バージョンアップすると、どのようになるのかを見ていきましょう。

9-10-1　実験の内容
　これまで作ってきた「Your IP XXX.XXX.XXX.XXX。」というように表示するプロ
グラムを修正して、追加で「Welcome to Kubernetes.」と表示するようにプログ
ラムを修正します。具体的には、第8章のリスト8-4に示したindex.phpの

の部分を

と変更します。そしてイメージを作り直し、リポジトリに登録し直します。このときイ
メージ名には、バージョンが上がったことがわかるよう、明示的に「1.1」というタグを
付けておきます。deploy.yamlでは、そのバージョン1.1のタグのイメージを使うよう
に修正して、それを適用します。すると、古いバージョンで動いているPodが順次

終了し、新しいバージョンのPodが起動するというように、少しずつ、入れ替わりな
がら更新されます。

　このような更新方法をローリングアップデートと言います。少しずつ切り替えるた
め、ダウンタイムなしで更新できます（図表9-35）。ローリングアップデートでは、
「旧バージョンのPod」と「新バージョンのPod」が少しの時間、同居します。ある時
間を境に全切り替えではありませんから、例えばWebシステムであれば、少しの
間、あるユーザーは古いバージョンのページが見え、別のユーザーは新しいバージョン
の ペ ー ジ が 見 え る と い う よ う な 状 況 に な り 得 る の で 注 意 し て く だ さ い 。
Deploymentオブジェクトは、その更新履歴を保存しており、元に戻すこともでき
ます。この機能をロールバックと言います。最後の操作ではロールバックして、前の
バージョンに戻ることも確認します。

9-10-2　イメージを更新する
　まずは、第8章で作成したmyexampleのイメージ（「8-4-8 コマンドの実行や
パッケージインストールを伴う例」）を更新します。

手順 myexampleイメージを修正する

［1］　PHPプログラムの内容を変更する
　第8章のphpimageディレクトリに移動します。

　そしてnanoエディタなどでindex.php（元のファイルはリスト8-4）を開きます。
そして、リスト9-4のように修正します。

［2］　ビルドする
　Docker Hubに登録できるようにビルドします。第8章で行ったのと同じように、
「自分のDocker ID/myexample」としますが、このとき、タグとして「1.1」を付け
ましょう。

［3］　リポジトリに登録する
　Docker Hubに登録します。

［4］　登録されたことを確認する
　Docker Hubにアクセスして、1.1のタグのものが登録されたことを確認します
（図表9-36）。

9-10-3　Podを更新する
　ではPod内のコンテナを、この新しいイメージにバージョンアップしてみましょう。

手順 Podを更新する

［1］　DeploymentとServiceを起動して現在の状態を確認しておく
　ここでは稼働中に更新されるところをみたいので、もし、Deploymentと
Serviceを削除しているのなら、下記のように作成して、ブラウザでの現在の表示
（前述の図表9-34）を確認しておきます。

［2］　Podの状態を確認しておく
　この状態で、Podの一覧を確認しておきます。

［3］　Deploymentを変更する
　リスト9-2のdeploy.yamlをnanoエディタなどで開き、imageを「1.1」に変更し
ます。

［4］　Deploymentを更新する
　編集したdeploy.yamlをapplyして反映します。このとき「--record=true」を
指定しておきます。あとで履歴に残したいためです。

［5］　Podの状態を確認する
　もう一度、Podの状態を確認します。すると、既存のPodが削除され、新しくコ
ンテナが作られ、ローリングアップデートが実施されていることがわかります。

　なんどか実行すると、完全に置き換わります（下記でTerminatingとなってい
る部分は、さらに時間が経つと消滅します）。

［6］　ブラウザで確認する
　ブラウザで確認します。Podが更新されており、「Welcome to Kubernetes.」
と表示されるはずです（図表9-37）。

コラム 　マニフェストを変更せずに更新する
　ときには、マニフェストを変更せずに更新したいこともあります。例えば、タグ
名なしのlatestを使っており、最新のlatestに更新したいようなときです。そのよ
うなときは、次のようにrollout restartを使います。

9-10-4　ロールバックする
　Deploymentオブジェクトは更新履歴を管理しており、元に戻すこともできま
す。ここでは履歴を確認して、ロールバックしてみましょう。

手順 ロールバックする

［1］　更新履歴を確認する

　履歴に関する命令はrolloutです。rollout history命令を使うと、更新履歴
を確認できます。次の2つの履歴が残っていることがわかります。

memo　CHANGE-CAUSEに記録が残っているのは、applyするときに、--record=trueオプション

を指定したときに限られます。

［2］　ロールバックする
　ではこれを、リビジョン1に戻しましょう。次のように入力します。戻すには、「--
to-revision=」にリビジョン番号を指定します。

memo　1つ前に戻すのであれば、「--to-revision=1」自体を省略できます。

［3］　Podの状態を確認する
　ロールバックするときも、やはり、Podが少しずつ更新されていきます。その様子
は、kubectl get podで確認できます。

［4］　履歴を再確認する
　履歴を再確認します。新しく「3」というリビジョンできました。もちろん、さらに「-
-to-revision=2」をして、rollout undoすれば、この取り消し自体を取り消せま
すが、ここでは省略します。

memo　リ ビ ジ ョ ン 3 で ［ CHANGE-CAUSE ］ が <none> な の は 、 手 順 2 の コ マ ン ド で 「 --

record=true」を指定しなかったからです。指定すれば、そのコマンドがここに残ります。

［5］　後始末
　これでひとまず実験は終了です。削除しておきましょう。

9-11　データの永続化

　これまで説明してきたPodは、データを一切扱わない、ステートレスなサービスで
した。今度は、コンテナがなくなっても、データを保存したままにできるようにする仕
組みを考えます。

9-11-1　実験の内容
　この節ではサンプルとして、アクセスカウンタを扱います。リロードするたびに数が
増えていくという、ありがちなサンプルです。たくさんあるPodのうち、いま、どのPod
に接続されているのかわかるよう、接続先のPodのホスト名を表示するようにもし
ています（図表9-38）。既定では、どのPodに接続されるか、都度、適当に振り
分けられるため、何度か（場合によっては十数回）リロードすると別のPodに接
続されるので、ホスト名の部分が変わります。

　ここではプログラムをリスト9-5のように実装します。リスト9-5では、カウンタ値
を/var/data/cnt.txtというファイルに書き込んでいます。ファイルロックする処理を
除けば、基本的には、/var/data/cnt.txtを開いて読み取り、それに「1」を加えた
ものを書き戻すという処理をしているだけです。

　Podのホスト名を表示するには、

のように、gethostname()を用いています。Pod内のコンテナでは、この/var/data
ディレクトリを、あらかじめKubernetesクラスターに作っておいた永続的なボリュー
ムにマウントします。永続的なボリュームのことをPersistentVolumeと言います。
すべてのPodが同じPersistentVolumeにマウントすることで、ユーザーがどのPod
にアクセスしても、同じアクセスカウンタの値を参照・更新するようにします（図表

9-39）。

memo　図表9-39のような構成は、あまりよい設計ではありません。PersistentVolumeを使うより

も、NFSやS3のような共有ストレージを使う、もしくは、データベースを使う、もしくはRedisな

どのキーバリューストアなどを使ったほうがよいです。これはあくまでも、Kubernetesの

PersistentVolumeの動きを理解するための例であり、優れた設計ではありません。

9-11-2　PersistentVolumeとPersistentVolumeClaim
　PersistentVolumeは、Kubernetesが提供する永続化ボリュームです。ここに
保存したデータは消えることはありません。ではコンテナは、Dockerでやってきたよ
う な 、 バ イ ン ド マ ウ ン ト や ボ リ ュ ー ム マ ウ ン ト の よ う に 、 あ る デ ィ レ ク ト リ を
PersistentVolumeにマウントすればよいのかというと、少し違います。すでに図表
9-39 に も 示 し て し ま い ま し た が 、 Kubernetes で は 、 そ の 間 を
PersistentVolumeClaimが取り持ちます（Claimとは、要請とか申し出という
意味です）。

　PersistentVolumeは、Kubernetesが提供する「永続化保存できる、物理
的な場所」です。これはワーカーノード上のディスクだったり、NFSやS3などの共有
ディスクだったりします。Kubernetesの管理者は、あらかじめPersistentVolume
をいくつか用意しておき、その名前や仕様（速いディスクか遅いディスクか）など
をラベルとして登録しておきます。

　 コ ン テ ナ 側 で は 、 PersistentVolume を 直 接 マ ウ ン ト す る の で は な く 、
PersistentVolumeClaimをマウントします。PersistentVolumeClaimには、「ど
んな条件のPersistentVolumeを使うのか」を指定しておきます。例えば名前や
仕様などラベルとして登録された情報、そして、容量です。するとKubernetes
が、条件に合うPersistentVolumeを選び、それを使うように構成してくれます
（図表9-40）。

　この図からわかるように、PersistentVolumeは管理者が事前に作成しておく
のが基本ですが、PersistentVolumeClaimにマウントしたときに、条件に合致す
るPersistentVolumeがないときには、それを自動で生成することもできます。そ
の機能をDynamic Provisioningと言います。

9-11-3　イメージを更新する
　それでは、始めていきましょう。まずは、第8章で作成したmyexampleのイメー
ジ（「8-4-8 コマンドの実行やパッケージインストールを伴う例」）を更新します。
先の「9-10　バージョンアップとロールバック」で行ったのとほぼ同じなので、ここで
は手順をいくつか端折ります。タグ名には「2.0」を指定します。

手順 myexampleイメージを修正する

［1］　PHPプログラムの内容を変更する
　第8章のphpimageディレクトリに移動し、nanoエディタなどを使って、
index.phpの内容を、前述のリスト9-5のように書き換えます。

［2］　Dockerfileを修正する
　Dockerfileに対して、/var/dataディレクトリを作る処理を加えます（リスト9-

6）。

［3］　ビルドしてリポジトリに登録する
　Docker Hubに登録できるようにビルドします。タグとして「2.0」を付けましょう。

　ビルドしたイメージをDocker Hubに登録します。

9-11-4　PersistentVolumeとPersistentVolumeClaimを作るマニ

フェスト
　まずは、PersistentVolumeとPersistentVolumeClaimを作るマニフェストを
作 り ま す 。 フ ァ イ ル 名 は 、 persistent.yaml と し ま す （ リ ス ト 9-7 ） 。
PersistentVolumeの定義とPersistentVolumeClaimの定義の2つが含まれて
い ま す 。 「 --- 」 で 区 切 ら れ て お り 、 前 半 が PersistentVolume 、 後 半 が
PersistentVolumeClaimです。

PersistentVolumeの定義

　前半ではkindにPersistentVolumeを指定して、PersistentVolumeを定義
しています。metadataの部分ではnameに「my-volume」を指定して、名称を
「my-volume」にしています。specの部分では、どんな永続ボリュームにするのか
を設定しています。

（1）accessModes

　アクセスの種類を示します。図表9-41に示すいずれかの値です。ここでは、図表
9-39に示したように、全Podが読み書きのアクセスをするため、ReadWriteMany
を 指 定 し ま し た 。 ど の ア ク セ ス モ ー ド が サ ポ ー ト さ れ て い る の か は 、
PersistentVolumeの種類（ローカルなのか、NFSなのか、その他のストレージな
のか）によって異なります。サポート状況については、下記のページを参考にしてく
ださい。

【Persistent Volumes】
https://kubernetes.io/docs/concepts/storage/persistent-
volumes/

（2）capacity
　確保する容量です。ここでは1Mi（メビバイト；2の20乗＝1,048,576バイ
ト）を設定しました。

（3）storageClassName
　ストレージの分類です。ここでは標準的なstandardを指定しておきます。

（4）hostPath

　保存先です。hostPathはローカルなディスクに保存するときの設定です。ほか
にも、NFSならNFS専用の、AWSのEBS（EC2などで利用するディスクです）な
ら、それ専用の書式があるので、どんな種類のボリュームを使うのかによって、適し
た 書 き 方 を し ま す 。 そ れ ぞ れ の 書 き 方 に つ い て は 、 「 Kubernetes API
Reference」（https://kubernetes.io/docs/reference/#api-reference）に
記載されています。Minikubeの場合は、hostPathに/dataディレクトリ以下を指
定することで、ローカルなディスクに保存できるので、ここではそうしています。詳細
は 、 Minikube の 「 Persistent Volumes 」
（ https://minikube.sigs.k8s.io/docs/handbook/persistent_volumes/ ）
というドキュメントの項を参照してください。

PersistentVolumeClaim
　後半はPersistentVolumeClaimの設定です。nameには「my-volume-
claim」を指定しています。accessModesはアクセスモードです。これは先に図表
9-41に示した値と同じです。requestsは要求する仕様を示します。ここでは
storage を 1Mi と し 、 1M バ イ ト 以 上 の 容 量 を 要 求 し て い ま す 。
storageClassNameはstandardとしました。これはPersistentVolumeで指定し
た も の と 合 致 し な け け れ ば な ら な い の で 注 意 し て く だ さ い 。
PersistentVolumeClaimでは、この値を最重視します。この値が合致しなけれ
ば、たとえ次に説明するvolumeNameが合致しても、そのPersistentVolumeは
選ばれません。最後のvolumeNameは、利用するボリューム名を指定するもの
で す 。 こ こ で は 「 my-volume 」 を 指 定 し て お り 、 前 半 で 作 成 し た
PersistentVolumeを使うようにしています。

9-11-5　PersistentVolumeとPersistentVolumeClaimを作る
　マニフェストができたので、実際に、PersistentVolumeを作成してみましょう。

手順 PersistentVolumeとPersistentVolumeClaimを作る

［1］　PersistentVolumeとPersistentVolumeClaimを作る
　リスト9-7に示したリソースを作成します。my-volumeとmy-volume-claimの
2つが作られます。

［2］　作成されたPersistentVolumeを確認する
　作成されたPersistentVolumeを確認しましょう。次のように入力すると、確認
できます（pvはPersistentVolumeの略）。1Miのmy-volumeという名前のボ
リュームが作られたことがわかります。

［3］　PersistentVolumeClaimを確認する
　自動で生成されたPersistentVolumeClaimを確認しましょう。次のように入
力すると確認できます（pvcはPersistentVolumeClaimの略）。my-volume-

claimという名前のPersistentVolumeClaimが作成されており、VOLUMEの項
目には、my-volumeが設定されている。つまり、手順［2］で確認した
PersistentVolumeと結びつけられていることがわかりました。

memo　STATUSが「Pending」の場合は、PersistentVolumeの名前を間違えた可能性がありま

す。一度、kubectl delete -f persistent.yamlで削除し、正しいかを確認して、再度、試

してください。

［4］　/data/counterappの権限を変更する
　/data/counterappディレクトリができます。全ユーザーが読み書きできるよう、
chmod 777します。

9-11-6　PersistentVolumeをマウントするためのマニフェスト
　 次 に Deployment オ ブ ジ ェ ク ト を 定 義 す る deploy.yaml フ ァ イ ル を 修 正
し、/var/dataディレクトリに対して、いま作成したPersistentVolumeClaimをマ
ウントするように修正します。その内容は、リスト9-8の通りです。

イメージに「2.0」のタグを付けたので、imageの設定は、

のようにしました。PersistentVolumeを使う設定は、次の部分にあります。

（1）コンテナでボリュームをマウントする

　containersの部分には、下記のようにvolumeMountsという設定がありま
す。nameが利用するボリュームの名前、monthPathがマウント対象のディレクト
リです。

　ここでは/var/dataをmy-volume-storageというボリュームにマウントしようとし
ています。このボリュームは、次の（2）の部分で定義しているボリュームです。

（2）ボリュームの定義
　ボリュームは、volumesの部分で定義しています。nameに指定しているのはボ
リューム名です。ここでは、my-volume-storageという名前にし、（1）の
volumeMounts で 指 定 し た 名 前 と 合 致 さ せ て い ま す 。
PersistentVolumeClaimというのは、マウント先のPersistentVolumeClaimオ
ブ ジ ェ ク ト の 値 で す 。 リ ス ト 9-7 で は 「 my-volume-claim 」 と い う 名 前 で
PersistentVolumeClaimオブジェクトを作成しておいたので、それを指定します。

コラム 　subPathで小分けにする
　volumeMountsでは、subPathという設定をすることもできます。sutPath
は、mountPathの下の、指定したサブディレクトリにマウントするという意味で
す。例えば下記の例では、my-volume-storageのfooというサブディレクトリ
にマウントされます。

　subPathは、1つのボリュームをディレクトリで小分けにしたいときに使います。
PersistentVolumeを必要なだけ作るのはコストがかかるので、ある程度、大き
めのものを1つ作り、それをsubPathで分けて使うと、コストを軽減できます。

9-11-7　PersistentVolumeに共有データを保存する
　では、実際に試してみましょう。

手順 PersistentVolumeを使ったアクセスカウンタの例

［1］　デプロイする
　リスト9-8に示したDeploymentオブジェクトを作成してデプロイします。

［2］　マウントされているか確認する
　マウントされているかどうかを確認しましょう。まずは、Podの一覧を取得しま
す。

　ここでは一番上のPodに対して、describeしてみます。すると、/var/dataが
my-volume-storageにマウントされていることがわかります。

［3］　Serviceを起動して動作テストする
　以上で設定完了です。もしServiceを起動していないのなら、Serviceオブジェ
クトを作成しましょう。

　そして、ブラウザで「http://EC2インスタンスのIP:30000/」にアクセスしてくださ
い。アクセスカウンタが表示され、リロードするたびに数が増えていくことを確認しま
しょう（図表9-42）。

　画面にはPodのホスト名が表示されます。何度かリロードして、別のPodに接
続したとき（表示されるPodのホスト名が変わったとき）にも、継続して（アクセ
スカウンタが0に戻るなどすることなく）表示されることを確認しましょう。

コラム 　PersistentVolumeやPersistentVolumeClaimを削除する

　 こ の あ と ま だ 実 験 が 続 く の で 、 こ こ で は PersistentVolume や
PersistentVolumeClaimを削除しませんが、もし削除したいのなら、

のように削除してください。もちろん、次のように、名前で削除することもできま
す。

memo　何らかの事情でMinikubeを初期化したいときは、「sudo minikube delete」と入力しま

す。すると、すべてのKubernetesオブジェクトが消え、「sudo minikube start --vm-

driver=none」とすれば、まっさらな状態から、Minikubeを使い始めることができます。

9-12　Job

　バッチ処理などを作るときは、コンテナを1回だけ、もしくは定期的に実行したい
ことがあるでしょう。そのようなときに使うのが、Jobです。

9-12-1　実験の内容
　この節では、アクセスカウンタの値を変更してみます。前節では、アクセスカウン
タを/var/data/cnt.txtに書き込んでいます。この値を変更すれば、アクセスカウン
タの値を変更できます。

9-12-2　Jobのマニフェストを作る
　Jobは、とても簡単です。早速始めましょう。まずは、リスト9-9に示すマニフェス
トを作ります。ファイル名はjob.yamlとします。このジョブでは、話を簡単にするた
め、新しくイメージを作るのではなく、busyboxを使いました。busyboxを起動し
て、

と実行することで、アクセスカウンタを保持しているcnt.txtを「0」に設定します。

kindとapiVersion

　kindには「Job」を指定します。apiVersionは、「batch/v1」です。

metadata
　metadataでは、このJobオブジェクトに対して、「my-job」という名前を付けま
した。

spec
　specでは、このJobの詳細情報を記述します。次の設定をしています。

（1）parallelism
　同時実行数です。ここでは1つだけ実行することにしました。

（2）completions
　（1）で実行したジョブのうち、いくつ成功したら完了したかとみなす値です。こ
こでは「1」を設定して、1つ成功したら成功とみなしました。

（3）image、command、args
　imageでは、busyboxを設定しています（これは公式イメージであり認証は必
要ないので、これまでのマニフェストと違って、imagePullSecretsを記述していま
せ ん ） 。 そ し て command で は シ ェ ル を 指 定 し 、 args で 「 echo 0 >
/var/data/cnt.txt」を指定することで、このコマンドを実行しようとしています。

（4）restartPolicy
　失敗したときに再実行するかを決めます。ここでは「Never」を指定することで、
失敗しても再実行しないようにしました。「OnFailure」を指定すると、失敗したと
きは、再実行するようにもできます。

（5）volumeMountsなど
　/var/dataを、これまで説明してきたように、PersistentVolumeClaimにマウン
トする設定です。

9-12-3　Jobを実行する
　Jobの実行は簡単です。createするだけです。

手順 Jobを実行する

［1］　Jobを実行する
　job.yamlを読み込んでJobオブジェクトを作ります。これで、Jobオブジェクトで
指定されているコンテナが1回実行されます。

［2］　成功したかを確認する
　 次 の コ マ ン ド を 入 力 し て 、 正 常 に 実 行 で き た か を 確 認 し ま す 。
COMPLATIONSが1/1であり、1つ実行され、1つの実行が完了したようです。

［3］　動作を確認する
　ブラウザで「http://EC2インスタンスのIPアドレス:30000/」にアクセスし、アクセ
スカウンタが0クリアされたことを確認します。

［4］　Jobから起動したコンテナを確認する
　Jobが終了しても、Jobから起動したコンテナは（停止中として）、残ります。
これはkubectl get podsで確認できます。

［5］　起動履歴を確認する
　望みならば、このPodにdescribeすることで、詳細な情報を見られます。Jobが
うまく動かないときは、こうした方法で確認するとよいでしょう。

［6］　Jobを削除する
　以上で実験は終了です。Jobオブジェクトを削除します。これに伴い、作成され
たPodも削除されます。

コラム 　CronJob

　CronJobは、設定したスケジュール通りに定期的に実行するオブジェクトで
す。スケジュール時間は、Linuxのcrontabと同じ書式で、schedule項目に記
述します。リスト9-10に、CronJobの例を示します。これは1分ごとにアクセスカウ
ンタ（/var/data/cnt.txt）を0に設定する例です。本書では説明しませんが、
CronJobでは、指定した時刻になったときに、前に実行中のものが、まだ残っ
ていた（スケジュールの実行が被った）ときにスキップするかどうかの設定項目
（concurrencyPolicy）、一時的に無効化する設定（suspend）などもあ
ります。詳細については、Kubernetes API Referenceを参照してください。

9-13　StatefulSetを用いた負荷分散とセッション情報の
管理

　Webシステムでは、セッション情報を用いて、一時的にユーザーのデータを保存
することがあります。例えばPHPでは、$_SESSIONに値を設定すると、ユーザーが
ブラウザを閉じるまで、任意の値を保持しておけます。こうした仕組みは、ショッピ
ングサイトの「カゴに入れる」などの仕組みで利用されています。Kubernetesのよ
うに複数のPodで分散処理するシステムでは、工夫しないと、こうしたセッション
情報が失われてしまうことがあります。

9-13-1　実験の内容
　この節では、図表9-43に示す、簡易な「カゴに入れる」の仕組みを模したサンプ
ルを使います。画面には［キュウリ］［トマト］［豆腐］というボタンがあり、そ
れぞれのボタンをクリックすると、カゴの中身が増えます。［リロード］ボタンをクリ
ックしたときは、再読込します。また一番下には、どのPodに接続しているのかが
わかるよう、Podのホスト名を表示するようにしています。図表9-43の動きを実現
するプログラムを、リスト9-11に示します。

memo　リスト9-11には脆弱性があります。「<input type="submit" name="add" value="キュ

ウリ">」のvalueを変更すれば、任意の商品を追加できるからです。仮に、valueの部分に

JavaScriptなどが埋め込まれれば、スクリプトインジェクションの危険性もあります。しかし

本書は、セキュリティに関する本ではありませんから、わかりやすさを重視し、理解を妨げる

余計なコードは書かないことにします。

　実際に、これを複数のPodで構成したシステムで試すとわかりますが、別の
Podに接続した瞬間にカゴの中身が空になります。これは、セッション情報が、そ
れぞれのPodの中に保存されているからです。別のPodには、自分のセッション情
報がないので、カゴの情報が失われてしまうのです。またもちろん、Podが何らかの
障害で失われた、もしくは、明示的にdeleteしたときにも、もちろん、カゴの中身
が失われます（図表9-44）。

　これを解決するには、2つの対策をします。

（1）同じクライアントは同じPodに接続されるようにする
　1つめの対策は、ランダムに接続先のPodを選択するのではなく、同じクライア
ントは同じPodに接続されるように構成します。これは比較的簡単で、Serviceの
specに「sessionAffinity: ClientIP」を設定することで実現できます。この値を設

定すると、クライアントのIPアドレスに基づき、同じクライアントは同じPodに割り振
られるようになります。

（2）セッション情報の保存先をPersistentVolumeにする
　２つめの対策は、セッション情報の保存先をPersistentVolumeにマウントし
ま す 。 詳 し い 話 は 割 愛 し ま す が 、 PHP は 既 定 で 、 セ ッ シ ョ ン 情 報
を /var/lib/php/sessions に 保 存 し て い ま す 。 こ の デ ィ レ ク ト リ を
PersistentVolume（より正確に言うと、PersistentVolumeClaimを通じて
PersistentVolumeへと）にマウントします。PersistentVolumeは、「9-11　デー
タの永続化」で使いました。このときは、すべてのPodで同じPersistentVolumeを
マ ウ ン ト し ま し た 。 今 回 は そ う で は な く 、 そ れ ぞ れ の Pod が 、 別 々 の
PersistentVolumeをマウントするようにします（図表9-45）。そしてPod内のコン
テナを更新するときは、同じPersistentVolumeをマウントすることによって、前回
Podが利用していたセッション情報を引き継げるようにします。このような仕組み
は、Deploymentオブジェクトの代わりにStatefulSetオブジェクトを使うことで実
現できます。

9-13-2　イメージを更新する
　それでは始めましょう。まずは、リスト9-11に示したcart.phpを、Dockerイメー
ジに追加しましょう。第8章からずっと作成を続けているmyexampleイメージを更
新します。

手順 myexampleイメージにcart.phpを追加する

［1］　PHPプログラムを追加する
　第8章のphpimageディレクトリに移動し、nanoエディタなどを使って、
cart.phpファイルを、前述のリスト9-11に示した内容で作成します。

［2］　Dockerfileを修正する
　Dockerfileに対して、cart.phpファイルを、コンテナの/var/www/htmlにコピー
する処理を加えます（リスト9-12）。

［3］　ビルドしてリポジトリに登録する
　Docker Hubに登録できるようにビルドします。タグとして「3.0」を付け、
Docker Hubに登録します。

9-13-3　StatefulSetオブジェクトやServiceオブジェクトのマニフェスト

を作る
　それでは、セッション情報を保持できるようなStatefulSetオブジェクトや
Service オ ブ ジ ェ ク ト の マ ニ フ ェ ス ト を 作 り ま す 。 リ ス ト 9-13 の 内 容 と し 、
statefulset.yamlという名前で保存することにします。リスト9-13は「---」で区切
って、2つのオブジェクトを定義しています。前半がServiceオブジェクト、後半が
StatefulSetオブジェクトの定義です。

Serviceオブジェクトの定義
　Serviceオブジェクトの変更点は、「sessionAffinity: ClientIP」を指定したとこ
ろだけです。ほかに特記すべきところはありません。

StatefulSetオブジェクトの定義
　StatefulSetオブジェクトは、Deploymentオブジェクトと同様に、配下に複数
のPod（レプリカ）を配置するものですが、それぞれのPodが状態（ステート）を
持っていることを前提としており、Pod内のコンテナが終了して、その代替えが起
動する際に、同じIPアドレスが割り当てられる、同じPersistentVolumeClaimが
割り当てられるという点が異なります。

kindとapiVersion
　kindには「StatefulSet」を指定します。apiVersionは、「apps/v1」です。

metadata
　metadataでは、このStatefulSetオブジェクトに対して、「my-stateful」という
名前を付けました。

spec
　specでは、このJobの詳細情報を記述します。次の設定をしています。

（1）serviceName
　上位に設置するServiceオブジェクトの名前です。指定している「my-service」
は、このファイルの前半で定義しているServiceオブジェクトの名前です。

（2）replicasとselector
　配下に配置するレプリカ数とPodを設定します。この設定はDeploymentオブ
ジェクトと同じです。ここでは、「appというキーにmy-appという名前で付いている
Podを3つ」を、このStatefulSetオブジェクトの配下に設置するようにしました。

（3）template
　Deploymentオブジェクトと同様に配下に作成するPodのテンプレートを記述
します。

PersistentVolumeの定義
　コンテナのマウント設定は、templateのvolumesの部分に記述してあり、次の
2つのマウントの設定をしています。このうちの「/var/data」のほうは、「9-11　デー
タの永続化」で設定したのと同じなので、説明を省きます。

　今回新たに設定したのは、/var/lib/php/sessionsをmy-volume-sessionと
いうボリュームに割り当てる部分です。/var/lib/php/sessionsは、PHPにおいて、
セッション情報（$_SESSIONで読み書きする情報）の既定の保存先です。ここ
で指定しているmy-volume-sessionは、次のように定義しています。この定義に
よって、specに指定しているPersistentVolumeClaimが、Podごとに1つ作られま

す。そしてそれに伴い、PersistentVolumeClaimに対応するPersistentVolume
も動的に生成されます。

　specの部分では、希望するPersistentVolumeの仕様を記述します。ここでは
storage に 「 5Mi 」 と し て 5Mi の デ ィ ス ク を 要 求 し ま し た 。 ま た こ こ で は
accessModesは「ReadWriteOnce」に設定している点に注意してください。図
表9-45に示したように、このPersistentVolumeは、1つのPodからしか使われるこ
とがないからです。

9-13-4　StatefulSetオブジェクトを試す
　マニフェスト通りにStatefulSetオブジェクトやServiceオブジェクトを作成して、
StatefulSetがどのような挙動になるのかを見ていきましょう。

手順 StatefulSetオブジェクトを試す

［1］　StatefulSetオブジェクトとServiceオブジェクトを作る

　リスト9-13に示したstatefulset.yamlを元に、StatefulSetオブジェクトと
Serviceオブジェクトを作成します。

memo　これらの定義内容は、これまで作ってきたdeploy.yamlとservice.yamlとかち合うため、も

し、これらを作成しているのであれば、実行前に、「kubectl delete -f deploy.yaml -f

service.yaml」として、削除しておいてください。

［2］　状態を確認する
　状態を確認しましょう。まずは、StatefulSetオブジェクトを確認します。3つの
Podが正しく動いているようです。

　今度は、Pod一覧を確認しましょう。3つのPodが動いているようです。ここで
は、Deploymentオブジェクトの場合と違い、Pod名はランダムではなく、「-0」
「-1」のように、規則的な名前が付くことに注目しましょう。

　次に、PersistentVolumeClaimを確認します。それぞれのPodのために、
PersistentVolumeClaimが作られたことがわかります。「my-volume-session-
my-stateful1-0」「同1」「同2」というのが、それです。

　もちろん、それに関連付けられたPersistentVolumeも作られています。

［3］　ブラウザで確認する
　ブラウザで、「http://EC2インスタンスのIPアドレス:30000/cart.php」を開いて
挙動を確認します。何度かリロードしても、カゴの中身が失われないこと、そして、

一番下に表示されている、処理しているPodのホスト名が変わらないことを確認
します（図表9-46）。

［4］　Podを削除する
　複数台あると振分先が変わって挙動がわかりにくいので、まずは、配下のPod
を1台に減らします。

　Podの状態を確認します。しばらくはTerminatingですが、そのうち、「my-
stateful-0」だけになるはずです。

　「my-stateful-0」だけになったら、ブラウザをリロードして操作し、カゴのなかに、
いくつかの商品を入れます。そして、この「my-stateful-0」を削除します（しばらく
時間がかかります）。

　再度、Podの状態を確認します。「my-stateful-0」は依然として存在します
が、「AGE」が短くなっており、これは新たに作られたPodです。

　ここでブラウザをリロードしても、カゴの中身が失われないことを確認します。

［5］　StatefulSetおよびServiceを削除する
　これで確認は終わりです。StatefulSetやServiceを削除します。

［6］　PersistentVolumeClaimやPersistentVolumeは残る
　Podの一覧を確認します。消えているはずです。

　PersistentVolumeClaimやPersistentVolumeを確認します。どちらも残って
いることがわかります。このようにStatefulSetでは、これらのオブジェクトは自動で
削除されません。手動で削除する必要があります。

memo　既定ではPersistentVolumeClaimを削除するとPersistentVolumeも消えます。これは下

記の一覧からもわかるように、PersistentVolumeのRECLAIM POLICYがDeleteになって

いるためです。PersistentVolumeClaimを作ることで自動生成したPersistentVolume

は、この設定になっています。

コラム 　DeploymentオブジェクトではNGなことを試す
　本文中では、話を簡単にするため、うまくいくStatefulSetの例しか試してみ
ません。より理解を深めるには、Deploymentオブジェクトでは、StatefulSetと
同じことはできないことを確認するとよいかも知れません。

　deploy.yamlを

のように、「image: 自分のDockerID/myexample:3.0」のように変更すれ
ば、Deploymentオブジェクトを使ったデプロイで、動作を確認できます。こうし
て実行すると、実際に何度かリロードするとカゴの中身が消えるなど、おかしな
挙動になることに気づくはずです。

9-14　Amazon EKSで本物のKubernetesを体験する
　これでKubernetesに関する基本的なことは、ほぼ説明し終えました。最後
に、Minikubeではない本格的なKubernetesでは、その運用がどのようになるの
か、Amazon EKSで体験してみましょう。

注意　Amazon EKSはエンタープライズ向けのサービスなので、高い負荷に耐えられるよう、デフォルト

が高スペックな構成になっています。下記の手順では、できるだけ費用を抑えるようにしていま

すが、それでも、月額ベースで5,000円以上かかります。無駄な課金が発生しないよう、実験

が終わったら、速やかに削除してください。なお構成オプションを間違えると、月額、数万円を

超えることもあるので、十分に注意してください（本書では、そのようなことがないよう、手順中

での確認手順も示しています）。

9-14-1　Amazon EKSとは
　Amazon EKSは、マネージドサービスとして構成されたKubernetesです。EKS
はマスターノードを担当します。ワーカーノードは、EC2またはFargateを使います。全
体図は、すでに図表9-7に示しましたが、ここに再掲します（図表9-47）。

　EC2は仮想サーバーです。Fargateは、必要に応じてすぐに実行できるサーバー
レスなコンテナ実行環境です。EC2を使う場合、自分で管理する必要があります
が、定額で運用できます。対してFargateを使うと運用管理をAWSに任せること
ができますが、時間課金であり、使った分だけ費用がかかります。どちらがよいの
かは、Kubernetesに載せたいシステムの特性によります。本書では、最初の構
築が簡単である、EC2を用いた方法を用いることにします。

　こうしたワーカーノードを含めた全体のKubernetesクラスターは、EKSが作ってく
れるわけではありません。どのようなスペックのワーカーノードが、どの程度必要なの
かは、要件によって異なるからです。管理者は事前に、こうしたKubernetesクラ
スターを作っておく必要があります。構成が複雑なので、これを手作業で作成す
るのはたいへんです。そこでAWSでは、次の2つの構築方法が提供されています。

（1）CloudFormationテンプレートを使う方法
　CloudFormationとは、テンプレートに記載した通りに、ネットワーク（VPC）
やEC2インスタンス、ロードバランサー（ELB）など、必要なものをまとめて構築して
くれるAWSの仕組みです。AWSは、EKS用のCloudFormationテンプレートを提
供しています。それを改良してCloudFormationで処理することで、必要な構成
一式をまとめて作れます。不要になったら、まとめて削除することもできます。

memo　CloudFormationを使ってKubernetesクラスターを作る方法は、Googleなどで「EKS Get

Started」を検索すると見つかります。

（2）eksctlコマンドを使う方法
　もう1つの方法は、eksctlコマンドを使う方法です。この方法は、裏では（1）
の処理が動いているのですが、コマンドラインから、必要なインスタンスの数やイン
スタンスタイプなどを入力するだけで、簡単に構築できます。本書では、この
（2）の方法を使って、Kubernetesクラスターを作っていきます。

コラム 　Amazon EKSとAmazon ECS

　コンテナを運用するもう1つの仕組みとして、Amazon ECSというサービスがあ
ります。こちらはAWS固有のもので、Kubernetesとは互換性がありません。
AWSは最初、コンテナの運用としてAmazon ECSだけを提供してきました。そ
れからしばらく経って、Dockerの事実上の標準とも言えるオーケストレーション
ツールであるKubernetesに対応する、Amazon EKSを提供しました。できるこ
とはほぼ同じですが、Amazon ECSはAWSに特化したものであることから、
Amazon EKSではできないけれどもAmazon ECSならできる機能もあります。
どちらを利用するのかは、目的によって選んでください。

　ただし繰り返しになりますが、Amazon ECSは、AWS固有の技術なので、
Amazon ECSに依存していると、将来、AzureやGCPに移行したくなったとき
に、そのままでは移行できない問題が生じる点に注意してください。こうしたこと
から、最近は、標準技術であるAmazon EKSが使われるケースが増えてきてい
ます。

9-14-2　EKSを使うときの流れとその準備
　EKSを使うときの流れは、次の通りです。

（1）管理者権限の付与
　本書では、eksctlコマンドを使ってKubernetesクラスターを構築します。その
際、EC2やVPCをはじめとした、さまざまなAWSサービスをまとめて作ります。こうし
た操作をするためには、さまざまな権限が必要です。そこでeksctlコマンドを実行
するユーザーに対して、管理者権限を設定しておきます。

（2）eksctlコマンドのインストール
　EC2インスタンスや自分のパソコンなど、管理者が操作する端末に、eksctlコマ
ンドをインストールします。

（3）Kubernetesクラスターの作成
　eksctlコマンドを実行して、Kubernetesクラスターを作ります。つまりネットワー
クを構成し、必要なワーカーノードを作るなど、Kubernetesを動かす環境を作りま
す。

（4）Dockerイメージの登録
　EKSでは、DockerイメージをAmazon ECRから取得します。そこで利用するイ
メージを、あらかじめAmazon ECRに登録しておきます。

（5）kubectlで操作する
　ここまででEKSに対する独自の設定は終わりです。あとは、kubectlを使って操
作していきます。その方法は、Minikubeのときと同じです。

　このうち、（1）と（2）が初めてEKSを使うときの事前準備、（3）以降が
Kubernetesシステムごとに必要な操作です。以下では、（1）と（2）の操作
をしていきます。

管理者権限を持つIAMユーザーを作成する

　EKSは、IAMロールで操作します。すでに「8-7　プライベートなレジストリを使
う」において、user01というユーザーを使っています。ここでは、そのユーザーに対し
て、管理者権限を追加します。

memo　管理者権限を持つIAMユーザーは、ほぼすべての操作ができるので、アクセスキーID、シーク

レットアクセスキーの取り扱いには、十分、注意してください。

手順 IAMユーザーに管理者権限を追加する

［1］　設定するユーザーを選択する
　IAMコントールを開き、管理者権限を追加したいユーザーをクリックします。ここ
ではuser01をクリックします（図表9-48）。

［2］　アクセス権限を追加する

　現在のアクセス権限が表示されます。［アクセス権限の追加］ボタンをクリッ
クします（図表9-49）。

［3］　管理者権限を追加する
　管理者権限は「AdministratorAccess」です。［既存のポリシーを直接アタッ
チ］をクリックし、表示されたもののなかから「AdministratorAccess」にチェック
を付け、［次のステップ：確認］をクリックします（図表9-50）。

memo　AdministratorAccessは、一番上にあるはずですが、見つけにくいときは、［検索］のとこ

ろに「Admin」「Access」などと入力して、絞り込むとよいでしょう。

［4］　アクセス権限追加の完了
　確認画面が表示されます。［アクセス権限の追加］ボタンをクリックすれば、
設定完了です（図表9-51）。

eksctlコマンドのインストール

　次に、管理者がEKSを操作するときに用いるPCに、eksctlをインストールしま
す。ここでは、これまでDockerやMinikubeをインストールして使ってきたEC2インス
タンスを使って、EKSを操作することにします。このEC2インスタンスに対して、次の
ようにして操作します。

memo　eksctlを使うには、awsコマンド（AWS CLI）をインストールし、アクセスキーIDとシークレット

アクセスキーを設定しておく必要があります。その詳細は、「8-7-4 awsコマンド周りを整備

する」を参照してください。逆に言えば、awsコマンドの設定さえしてあれば、管理者はEC2

インスタンスから操作する必要はなく、自分のWindowsやMacOSのPCから操作すること

もできます。

memo 　 下 記 の 手 順 は 、 AWS の ド キ ュ メ ン ト 「 Getting started with eksctl 」

（ https://docs.aws.amazon.com/eks/latest/userguide/getting-started-

eksctl.html）に基づいています。最新版のインストール方法については、このドキュメントを

参照してください。ページには実際のコマンドが記述されており、コピペすれば、下記のコマン

ドを手入力せずに済みます。

手順 eksctlコマンドをインストールする

［1］　awsコマンドをアップグレードする
　下記のコマンドを入力し、awsコマンドをアップグレードします。

［2］　eksctlコマンドをダウンロードする
　下記のコマンドを入力し、eksctlコマンドをダウンロードします。

［3］　コマンドを/usr/local/binに移動する
　ダウンロードしたekctlコマンドを/usr/local/binに移動します。

［4］　インストールされたことの確認
　インストールされたことを確認します。ここではバージョンを確認して、バージョン番
号が表示されればインストールされたこととみなしましょう（バージョン番号は掲載
しているものと異なることがあります）。

9-14-3　Kubernetesクラスターを作る
　準備ができたので、EKSを使っていきましょう。まずやらなければならないのが、
Kubernetesクラスターの作成です。すでに図表9-47で説明したように、EKSはマ
スターノードを担当するもので、Podなどを実行するワーカーノードとなるEC2または
Fargateは、別途、あらかじめ構成しておく必要があります。この操作が、
Kubernetesクラスターの作成です。

　具体的には、EC2インスタンスやFargateのスペックやインスタンス数を決め、そ
れらをネットワーク上にセットアップする作業です。すでに説明したように、この作
業は、eksctlコマンドを入力すると、簡単に作れます。ここでは、ワーカーノードとし
て、t3.smallのインスタンスを2つ、東京リージョン（ap-northeast-1）に作成し
ます。

コラム 　EKSの費用
　下記の手順でKubernetesクラスターをすると、作成が完了したときから課
金されます。EKSの基本料金は、1つのクラスターあたり0.01USD/時間
（≒7.44USD/月）です。それに加えて、ワーカーノードの料金がかかります。こ
こではt3.smallインスタンスを2つ作っています。t3.smallを東京リージョンで動
かす場合は、0.0272USD/時間（≒19.584USD/月）。これが2つなので2
倍かかります。よって、このシステムを1カ月動かす場合は、最低でも、
7.44USD + 19.584USD × 2 = 47.148USDだけかかります（実際は、この
料金に加えて、EC2インスタンスで使っているストレージのEBSの料金、ネットワ
ークの通信料などがかかるので、これより若干多くなるはずです）。
（価格はいずれも、本書の執筆時点のもの）。

手順 Kubernetesクラスターを作る

［1］　Kubernetesクラスターを作る
　次のようにeksctlコマンドを入力します。これだけでKubernetesクラスターが作
成されます。

　--nameは作成するクラスター名です。ここでは「my-cluster」という名前にしま
した。--regionは作成するリージョンです。ここでは「ap-notrheast-1（東京リー
ジョン）」を指定しました。--node-typeはEC2のインスタンスタイプです。

t3.smallを指定しました（ディスク容量は指定していませんが、既定で20GBが
割り当てられます）。--nodes、--nodes-min、--nodes-maxは、それぞれ初
期のノード数、最小のノード数、最大のノード数です。ノード数というのは、EC2イン
スタンスの数のことです。ここではすべて「2」とし、いつでも2個のEC2インスタンスを
作ることにしました。

　このコマンドを実行すると、下記のようにメッセージが表示され、Kubernetesク
ラスターが作られていきます。このとき、EC2インスタンスなど必要なAWSリソースも
まとめて作られます。この作業には、20分ぐらいかかります。終わるまで止めない
でください。

コラム 　途中で止めてしまってやり直せなくなったときは

　途中で［Ctrl］＋［C］キーなどを押して止めて、もう一度、やり直そうと
すると、次のメッセージが表示されて、再実行できなくなることがあります。

　これはCloudFormation上に、リソースが作られてしまったのが理由です。
AWSマネジメントコンソールからCloudFormationコンソールを開き、「eksctl-
作成しようたしたクラスター名」を探して、［削除］の操作をしてください。この
操作をすることで、eksctlコマンドで作られたすべてのリソース（EC2インスタン
スなど）が、まとめて削除されます（図表9-52）。削除には、しばらく時間が
かかります。［ステータス］で削除が完了したことを確認してから、再度、
eksctlを実行すると、うまくいくはずです。

［2］　作られたEC2インスタンスを確認する
　無用な課金が発生しないよう、間違ったEC2インスタンスタイプ、インスタンス数
で起動していないかを念のため、確認しておきます。AWSマネジメントコンソールで

EC2コンソールを開いて［インスタンス］を選択し、インスタンス一覧を確認します
（図表9-53）。作られたインスタンスには、「クラスター名（--nameで指定した
値）-XXXX」という名称が付けられます。これらのインスタンスについて、次のこと
を確認しておきます。

（1）インスタンスの数
　不用意にたくさんのインスタンスができていないかを確認します。

（2）インスタンスタイプ
　インスタンスタイプが「t3.small」であることを確認します。

　もし間違っているときは、コラム「途中で止めてしまってやり直せなくなったとき
は」を参考に、一度、CloudFormation上で削除操作してから、再度、正しい
操作をしてください。

9-14-4　kubectlで操作できることを確認する
　これでKubernetesクラスターができました。実は、eksctlコマンドを入力したと
き、kubectlの設定ファイルである~/.kube/configファイルが書き換わります。そ

のためこの段階で、kubectlコマンドを使って、（いままで操作してきたMinikube
ではなく）いま作ったKubernetesクラスターを操作できるようになっています。本
当に接続できるかを確認しましょう。

手順 kubectlでEKSのクラスターを操作できることを確認する

［1］　接続先のバージョンを確認する
　次のようにバージョン番号を確認します。「Server」と書かれているのが、サーバ
ー側です。「v1.15.11-eks-af3caf」のように「eks」が含まれたバージョンとなってお
り、EKSに接続されていることがわかります。

［2］　ワーカーノードを確認する
　次に、ワーカーノード一覧も確認してみましょう。

　これは図表9-53で確認した2台のEC2インスタンスに相当します。

コラム 　kubectlの接続先を切り替えるには
　このようにeksctl create clusterを実行すると、kubectlの接続先が変わり
ます。では、これまで操作してきたMinikubeを操作するには、どうすればよいの
でしょうか？　実は、Minikubeを操作するための情報も残っており、切り替え
ることができます。設定情報は、~/.kube/configファイルに記述されており、そ
の設定内容は、次のようにして確認できます。

　この結果から、MinikubeとEKSの2つの接続先が登録されていることがわか
ります。先頭に「*」が表示されているほうが、現在選択されている接続先で
す。切り替えるには、kubectl config use-contextを実行します。次のように
すれば、minikubeに切り替えられます。

　EKSに切り替えるなら、次のようにします。

9-14-5　利用するDockerイメージをAmazon ECRに登録する
　EKSでは、Dockerイメージを（Docker Hubではなく）Amazon ECRから取
得します。そのため利用するDockerイメージを、Amazon ECRに登録しておかな
ければなりません。以下の操作では、これまでMinikubeで使ってきたのと同じく、
~/phpimageで作れるDockerイメージを、EKS上で動かすようにしていきます。
下記の手順でAmazon ECR向けにビルドし直して、イメージを登録します。
Minikubeのときは、タグにバージョンを付けましたが、少し手順が多くなるので、こ
こではタグ名は付けず、latestとして登録することにします。

memo　Amazon ECRへの登録は、すでに「8-7　プライベートなレジストリを使う」で説明しているた

め、下記の手順では、簡単にしか記述していません。より詳しくは、8-7節を参照してくださ

い。

手順 DockerイメージをAmazon ECRに登録する

［1］　プッシュ手順を確認する
　AWSマネジメントコンソールでAmazon ECRコンソールを開き、リポジトリを選
択して［ブッシュコマンドの表示］をクリックします（図表9-54）。

［2］　プッシュコマンドを見ながらプッシュする
　図表9-55のようにプッシュコマンドが表示されます。~/phpimageディレクトリに
移動（cd ~/phpimage）してから、これらのコマンドを順に入力することでプッ
シュします。

9-14-6　kubectlコマンドを使ってServiceやPodを作る
　これで準備が整いました。kubectlコマンドを使って、ServiceやPodを作ってい
きます。

ServiceとStatefulSetのマニフェストの修正
　ここでは、Minikubeで実行してきた最後のStatefulSetオブジェクトを使った例
と同じものをEKSでも実行してみます。MinikubeもEKSもKubernetesであり、互
換性があります。ですから基本的にはそのまま動きますが、少しだけ調整しなけれ
ばならないところがあります。

（1）ロードバランサーにする
　MinikubeではServiceをNodePortとして構成しました。EKSではマルチノード
なので、LoadBalancerを使って構成することにします。LoadBalancerであれば、
ポートが30000以上などの制限がないので、ふつうにWeb標準のポート80番にし
ておきます。なお、AWSのLoadBalancerは、クライアントのIPアドレスを見て接続
先を切り替える「sessionAffinity: ClientIP」に対応しません。そこでこの設定は、
コメントアウトしておきます。

memo　そうすると、リロード時に別のPodに接続する可能性があり、今回の例（cart.php）だと、

カゴの中身が突如消えるという現象が起きます。これは、Ingressを利用すると対応できま

すが、複雑なので、本書での説明は割愛します。

（2）Dockerイメージ名
　利用するDockerイメージをAmazon ECRのURLに変更します。

（3）ストレージクラスに関する修正
　PersistentVolumeを提供する機構をストレージクラスと言います。どのようなス
トレージクラスが提供されているのかは、Kubernetesシステムによって異なります。
EKSの場合は、kubernetes.io/aws-ebsというprovisionerが設定されたストレ
ージクラスが、「gp2」という名前で登録されています。そこでこのストレージクラスに
変更します。またこのディスクは、accessModesが「ReadWriteMany」に対応し
ていません。「9-11　データの永続化」では、/var/dataをaccessModesを
ReadWriteManyに設定したディスクへのマウントをしていますが、対応していない
ため、このマウント設定をコメントアウトして無効にします。

memo　/var/dataにはアクセスカウンタのファイルを置いています。これを共有ディスクではなくするの

ですから、Podごとにアクセスカウント数をもってしまい、意図した動きにはなりません。これを

解決するには、NFSなどのReadWriteManyに対応するストレージクラスを明示的に作成し

て利用する方法がとれますが、本書では説明を割愛します。

　これらの変更を施したstatefulset_eks.yamlを、リスト9-14に示します。

コラム 　ストレージクラス
　ストレージクラスは、PersistentVolumeを割り当てる際に用いる機構です。
どのようなストレージクラスがインストールされているのかは、kubectl get
storageclassで確認できます。EKSで確認したときの結果は、次の通りです。
「gp2」であることがわかります。

　PROVISIONERに書かれているのが、ディスクの処理を担当するドライバの
種 類 で す 。 こ の 正 体 は 、 「 Storage Classes 」
（ https://kubernetes.io/docs/concepts/storage/storage-classes/ ）
を参考にするとよいでしょう。またKubernetesドキュメントの「ボリュームの動的
プ ロ ビ ジ ョ ニ ン グ 」
（ https://kubernetes.io/ja/docs/concepts/storage/dynamic-
provisioning/）に書かれている情報も役に立つはずです。

ServiceとStatefulSetの作成

　以上で、準備ができました。リスト9-14のマニフェストを実行して、Serviceと
StatefulSetを作りましょう。

手順 EKS上にServiceとStatefulSetを作る

［1］　マニフェストの内容でServiceとStatefulSetを作成する
　次のコマンドを入力して、ServiceとStatefulSetを作成します。

［2］　Podの作成を確認する
　Podが作られたか確認しましょう。ここでは3つのPodを作っていますが、作成に
は、少し時間がかかります。

［3］　PersistentVolumeとPersistentVolumeClaimを確認する
　PersistentVolumeやPersistentVolumeClaimも確認しておきます。Podごと
に、1つ作られているはずです。

　ここでCAPACITY（容量）に注目してください。ディスクを確保するリスト9-14
の定義では、

のように、「5Mi」を設定しています。ですから5Miしか割り当てられないはずです。
しかし実行結果では1Giに設定されています。これはEBSディスクの最小割り当て
単位が1Giであるためです。この結果からわかるように、指定している容量は最小
容量であり、それより大きなディスクが割り当てられることもあります。これはEBSに
割り当てられているので、AWSマネジメントコンソールのEC2コントールの
［ELASTIC BLOCK STORE］─［ボリューム］でたどってボリュームを一覧表示
したとき、ここに、そのディスクが存在することを確認できます（図表9-56）。

［4］　Serviceを確認する
　Serviceを確認します。結果の「EXTERNAL-IP」には、長いホスト名が表示さ
れると思います。これがロードバランサーのホスト名です。

［5］　ブラウザでアクセスして確認する
　手順［4］で確認したロードバランサーのホスト名をブラウザで開いて、接続確
認します。コンテンツが見えるはずです（図表9-57）。「cart.php」も開き、「カゴ
の中身」を模したプログラムのほうも動くことを確認しましょう（図表9-58）。すで
に説明したように、EKS環境のLoadBalancerではsessionAffinity: ClientIPが
利用できないため、何度かリロードすると、別のPodに接続され、カゴの中身がな
くなることも確認しましょう。

memo　手順［4］で確認したロードバランサーの作成には、少し時間がかかります。そのため直後

にブラウザでアクセスしたときには、まだロードバランサーが準備できておらず、接続できない

旨のエラーが発生することがあります。

［6］　実験の終了

　以上で実験は終了です。これまで作成してきたオブジェクトを削除します。

［7］　動的に作られたPersistentVolumeClaimの削除
　 Pod の 作 成 に 伴 っ て 動 的 に 作 ら れ た PersistentVolumeClaim や
PersistentVolumeは削除されません。これらは手作業で削除してください。

　1つひとつ削除するのは面倒です。実は、どれか1つdescribeするとわかるので
すが、これはラベルとして「app」というキーに「my-app」という値を設定しています
（実際、リスト9-14にその指定があります）。

　このようなときは、kubectlコマンドの--selectorというオプションを使って、次の
ようにまとめて削除できます。

9-14-7　EKSの後始末
　すべての実験が終わったら、EKSを削除しておきましょう。削除は簡単で、次の
ようにdeleteオプションを指定して、eksctlコマンドを実行します。

　次のようなメッセージが表示されて、すべて削除されます。削除には、10分程
度の時間がかかります。

　削除が完了したら、念のため、AWSマネジメントコンソールのEC2コンソールか
ら、インスタンスが削除されていることを確認してください。もし削除されていないよ
うなら、CloudFormationから、該当のリソースを削除してください（コラム「途中
で止めてしまってやり直せなくなったときは」を参照）。

9-15　まとめ

　やや駆け足ではありましたが、Kubernetesを使ったコンテナ運用について説明
してきました。

（1）Kubernetes
　Kubernetesは複数台のサーバー（マルチノード）でコンテナを運用するときに
使うオーケストレーションツールの1つです。

（2）マスターノードとワーカーノード

　マスターノードとはKubernetesクラウドを管理するコンピューター、ワーカーノードは
コンテナなどを実行するコンピューターです。

（3）Minikube
　シングルノードで実行できるKubernetes環境です。

（4）Amazon EKS
　AWSで提供されているKubernetes環境です。eksctlコマンドを使って、
Kubernetesクラスターを作ります。

（5）kubectl
　Kubernetesを操作するには、kubectlコマンドを使います。

（6）Pod
　Kubernetesでは、Podという単位でコンテナを動かします。Podには、1つ以上
のコンテナとボリュームを含めることができます。コンテナのイメージは、Docker Hub
やAmazon ECRなどのレジストリに登録されているものを使います。

（7）Service
　配下に同一構成のPodを配置したロードバランサーに相当する機能です。

（8）PersistentVolumeとPersistentVolumeClaim
　データを永続化するときには、PersistentVolumeとして物理的なディスクを確
保し、PersistentVolumeClaimを通じてPod内のコンテナにマウントします。この

仕組みは、Kubernetesシステムによって違うので、利用する際には、対応状況
を確認するようにしてください。

　本書で説明した内容は、コンテナ運用のさわりに過ぎませんが、基本的なこと
は、概ね、網羅したつもりです。コンテナ運用に興味がある人は、ここで習得した
知識をベースに、Kubernetesに関する、さまざまな情報を入手してみてください。
なお、Kubernetesに関する情報には、Kubernetesに共通の情報と、Amazon
EKSなど特定の環境に依存したノウハウに大きく分かれます。Kubernetesは、共
通化されたシステムだとはいえ、環境によって、一部、実装されていない機能があ
るなどの差異もあります。すでに、どのKubernetesシステムで運用するのかが決
まっているのであれば、それを考慮に入れて設計するようにしましょう。

著者プロフィール

大澤 文孝（おおさわ ふみたか）

テクニカル・ライター、プログラマ／システムエンジニア。専門はWebシステム。情報処理技術者（「情報セ
キュリティスペシャリスト」「ネットワークスペシャリスト」）。Webシステム、データベースシステムを中心とした記
事を多数発表。作曲と電子工作も嗜む。
主な著書は次の通り。（共著）『Amazon Web Services 基礎からのネットワーク＆サーバー構築　改
訂3版』（日経BP）、『ゼロからわかる Amazon Web Services超入門』（技術評論社）、『いちばんや
さしい Python 入門教室』（ソーテック社）、『ちゃんと使える力を身につける　Webとプログラミングのきほ
んのきほん』（マイナビ出版）、『Amazon Web Servicesネットワーク入門』（インプレス）、（共著）
『Arduino Groveではじめるカンタン電子工作』（工学社）

浅居 尚（あさい しょう）

静岡大学大学院理工学研究科修士卒。システムエンジニア。情報処理技術者（「情報セキュリティスペ
シャリスト」「ネットワークスペシャリスト」）。企業プロジェクトにおけるサーバ構築・運用に従事。最近では、
電子証明書を使用したセキュリティシステムの運用業務を担当。DockerやRPA（ロボットによる業務自
動化技術）などにも取り組んでいる。
主な著書は次の通り。『自宅ではじめるDocker入門』（工学社）、（共著）『Arduino Groveではじ
めるカンタン電子工作』（工学社）、（共著）『RPAツールで業務改善! UiPath入門 アプリ操作編』
（秀和システム）

さわって学ぶクラウドインフラ
docker 基礎からのコンテナ構築

電子書籍版データ作成日　2020年6月3日　第1版
著　者　　大澤 文孝、浅居 尚
発行者　　吉田 琢也
発　行　　日経BP
装　丁　　マップス
編　集　　松山 貴之

●この電子書籍は、印刷物として刊行された『さわって学ぶクラウドインフラ　
docker 基礎からのコンテナ構築』（2020年6月15日 初版1刷発行）に基づ
き制作しました。文章中の固有名詞などは掲載当時のものです。また、掲載時
の誌面とは一部異なる場合があります。

《電子書籍版について》
●おことわり
　本作品を電子書籍版として収録するにあたり、技術上の制約により一部の
漢字を簡易慣用字体で表したり、カナ表記としている場合があります。
　ご覧になる端末機器や、著作権の制約上、写真や図表、一部の項目をや
むなく割愛させていただいている場合があります。また、端末機器の機種によ
り、表示に差が認められることがあります。あらかじめご了承ください。

●ご注意
　本作品の全部または一部を著作権者ならびに株式会社日経ＢＰに無断
で複製（コピー）、転載、公衆送信することを禁止します。改ざん、改変などの
行為も禁止します。また、有償・無償にかかわらず本作品を第三者に譲渡する
ことはできません。

	第１章 コンテナの仕組みと利点
	第２章 Dockerを利用できるサーバーを作る
	第３章 5分でWebサーバーを起動する
	第４章 Dockerの基本操作
	第５章 コンテナ内のファイルと永続化
	第６章 コンテナのネットワーク
	第７章 複数コンテナをまとめて起動するDocker Compose
	第８章 イメージを自作する
	第９章 Kubernetesを用いたコンテナ運用

