
たのしい鸞脚覧・

Ｄ

Ｅ

6版第

〓〓SB Creative

●

●
●
●●

●

●
●
●●

）

●
●●●

）

●
●

●

● ● ●
●

●

●

●

●
　
●

）

●
●
　
●

）

●
●
　
●

）

●
●
　
●

）

●
●
　
●

）

●
●
　
●

）
●
●
　
●

）
●

●
● ● ●
● 0●

● ●

●
● ● ● ● ● ● ● ● ● ● ●

● ●
●●●●

●

●

●

）

●
●
　
●

● ● ● ● ●

●

　

●

●

●

　

●

●

●

●

●

● ● ● ● ● ●

●

● ● ●

● ● ● ●

● ● ● ●
● ●
● ●

●

● ●

● ● ● ● ●
● ● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ●
● ● ● ● ● ●● ● ●

● ● ● ● ●
● ● ● ● ●

● ● ● ● ●
● ● ● ● ●● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ●

● ● ● ● ● ●● ● ●● ● ● ●

● ● ● ● ● ●

● ● ● ●

●

●

　

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
● ●
●
● ●
●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ●

●

●00● 0

● ● 00● 0

●

● ● ● ● ● ●

●●●

　

●
●

●

　

●
　

●

●

　

●

●

●

●

●

●

　

●

●

●

●

　

●

●

　

●

　

●

●

　

●

●

● ● ●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

　

●

●

　

●

●

　

●

●

　

●

● ● ●

● ● ●

●

●

●

●

●

●

●

●

　

●

　

●

●

　

●

● ● ● ● ●

●

●

●

　

　

●

●

　

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

　

●

●
・
　

●

　

●

●

　

●

●

　

●

　

●

●

●

●

●

●

●

●

０

●

　

●

●

　

　

●

０

　

　

０

●

　

●

●

●

●

●

●

●

　

　

●

●

●

●

●

●

● ● ● ● ● ● ●

●

　

●

　

●

●

　

●

● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

0

0

●

●

●

●

●

●

●

●

●

●

●

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

０

●

● ●
●

● ● ●

●

●

● ● ●●

● ● ● ●

● ● ● ●
●

●

●

●

●

●

●

●

●

0

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

0

●

●

●

0

0

0

●

0

0

0

●

　

　

●

●

●

●

●

●

０

０

０

●

●

●

●

●

●

●

　

　

●

　

　

●

●

　

　

●

　

　

●

●●

０
・　

　

０

●

●

　

　

●

●

●

　

　

●

０

　

　

０

●
　
　
●
　
　
●

●

　

　

●

　

　

●

０

●

０

０

● ●

●

●

０

　

　

●

　

　

●

●

0

●
・　

　

０

● 0 ●
● ● ●

00000
● 0● ●● ● ●

０

　

　

０

●

0

●

●

●

●

●

0

●

●

●

0

● ● ● ● ●

0● ● ● ●

●

●

0

●

● 0000000●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● E

.■
 .,‐―
 __..1

．
．一， 一‐
―
一
　
　
一
・一
一，一・
・‐

―

■

・
―

●

〓

・　

一
一

●

一

・
・
・

・　
　
　
　
　
　
　
　
　
　
　
‐

たのしい輛癬k著

―
一
，
一
■
●
‐
　

　

●
●
・

・
　
・

一
．

●
●
一
　
　
　
　
・
　

・
■
●

．

―
　

　

・
　

　

―
　
・
●
■

一
●

．
　
　
　
　
‐●

．
‐

‐

．
．
．
．
一
．
．　
　
．
　

一
．
●
●
一一
．

・

‐
一
　
　
　
‐
―

藉

サンプルスクリプトのダウンロードと練習問題の解答

本書のサンプルスクリプトと練習問題の解答は、著者によるサポートサイトからダウンロードできます。

https:ノハanoshiirub■ github.lo′ 6ノ

本書に関するお問い合わせ

この度は小社書籍をご購入いただき誠にありがとうございます。小社では本書の内容に関するご質問を

受け付けております。本書を読み進めていただきます中でご不明な箇所がございましたらお問い合わせく

ださい。なお、お問い合わせに関しましては以下のガイドラインを設けております。恐れ入りますが、ご

質問の際は最初に下記ガイドラインをご確認ください。

ご質問の前に

小社Webサイトで「正誤表」をご確認ください。最新の正誤情報を下記のWebページに掲載しております。

6*Offiffi^-y I nttps://isrn.sbcr.jpl998lt,

上記ページの「正誤情報」のリンクをクリックしてください。なお、正誤情報がない場合、リンクをクリッ

クすることはできません。

ご質問の際の注意点

ご質問はメール、または郵便など、必ず文書にてお願いいたします。お電話では承っておりません。

ご質問は本書の記述に関することのみとさせていただいております。従いまして、○○ページの○○行

日というように記述箇所をはっきりお書き添えください。記述箇所が明記されていない場合、ご質問を

承れないことがございます。

小社出版物の著作権は著者に帰属いたします。従いまして、ご質問に関する回答も基本的に著者に確

認の上回答いたしております。これに伴い返信は数日ないしそれ以上かかる場合がございます。あらか

じめご了承ください。

ご質問送付先

ご質問については下記のいずれかの方法をご利用ください。

■本書内に記載されている会社名、商品名、製品名などは一般に各社の登録商標または商標です。本書中では●、
TMマークは明記しておりません。

■本書の出版にあたっては正確な記述に努めましたが、本書の内容に基づく運用結果について、著者およびSBク リ
エイティブ株式会社は一切の責任を負いかねますのでご了承ください。

0201 9 Masayoshi TakahashL Yuuzou Gotou

本書の内容は著作権法上の保護を受けています。著作権者・出版権者の文書による許諾を得ずに、本書の一部または全部を無断

で複写・複製・転載することは禁じられております。

Webベージより

上記の商品ページ内にある「この商品に関する問い合わせはこちら」をクリックすると、メールフォームが

開きます。要綱に従ってこ質問をご記入の上、送信ボタンを押してください。

郵送

郵送の場合は下記までお願いいたします。

・1・ 106-0032

東京都港区六本木2-4-5

SBク リエイティブ 読者サポート係

監嗜老 まtガ き
1993年から開発が始まったRubyは、言ってみればもう20代 もなかばです。

一人前の「大人」とみなされる年齢になりました。誕生当初は、幼く力弱いプ

ログラミング言語であったRubyも すっかり成長し、あらゆる分野で活躍して

います。特に、Rubyは現代におけるWeb開発の主要な言語の一角を占めてい

ると断言しても誰からも反対を受けないでしょう。クックパッドやAirBnB

など、世界的な大規模Webア プリケーションがRubyで実装されています。

Rubyの もっとも良い点は、本書のタイトルにもある「たのしい」ことにひ

ときわ注目している点にあります。プログラミングはとてもたのしいことで

す。私自身30年以上ずっとプログラミングしてきていますが、一度も飽きた

ことはありません。とはいえ、一方でプログラミングはたのしいことばかり

ともいえません。ですからRubyは「プログラミングのたのしさ」を最大化す

ることを目標として設計。開発されてきました。たのしくないことはコンピ

ューターに任せて、プログラマーはたのしいことに集中したい、それがRuby

の設計原理です。

Rubyの もうひとつの良い点は、すばらしいコミュニティの存在にありま

す。これもまた技術ではなく人間とその集まりによって成り立っています。

海外ではRubyコ ミュニティのスローガンとしてMINASWANと いうものが
挙げられています。これは「Matz is nice so we are nice(Matzが ナイスだか

ら我々もナイスであろう)」 の略で、Rubyコ ミニュティが他のオープンソー

ス・ソフトウェアのコミュニティと比較してもナイスである、少なくとも互

いにナイスであろうとしていることを反映しています。

本書はRubyコ ミュニュティの先輩である「ナイス」な著者たちが、新しい

コミュニティメンバーを歓迎するために書かれた書物です。過去、5つの版は

数えきれないほどの「新人」をRubyコ ミュニティに迎え入れるお手伝いをし

てきました。近年ますます巨大になっているRubyコ ミュニュティがナイスで

ありつづけるためには、みなさんの力がぜひ必要です。私たちと一緒にナイ

スな雰囲気のたのしい開発に参加しませんか。

20191年 1月

まつもとゆきひろ

3

　̈
　
　
■

It U dh tI "'[r-'oL7.lzL-?cr-forl-=>ry

「面白いよ |

「ディー 君はそういうのが面白いのかつ」
サバンナでライオンやキリンに生まれていたら

できなかった遊びだ !」

一
三原順『僕がすわっている場所』

コンピュータのプログラムとのつきあい方には2通 りあります。1つ は「プログラ

ムを使う」というつきあい方、もう1つは「プログラムを作る」というつきあい方で

す。

けれども、プログラムを作る人は、それほど多くはいません。ほとんどの人はプロ

グラムを使うだけです。これは、「文章を読む人」と「文章を書く人」の割合に似て

います。小説やエッセイ、ノンフィクションなどの本を読まれる方はたくさんいま

すが、自分で小説を書いたリノンフィクションを書いたりする方は、読者の数に比

べると、ずっと少ないものです。

でも、「文章」は何も商業出版物だけではありません。たとえば「Webサ イト」を

含めるとするとどうでしょうか。ほとんど毎日のようにブログや投稿サイトでコン

テンツを公開している人は、たくさんいます。それは、周りの人をたのしませたり、

何かちょっとした役に立つ情報を提供したりしています。ささやかなものではある

かもしれませんが、それをたのしみにしている読者、つまり「ユーザ」がいる、立派

な「人に読ませるための文章」といえるでしょう。

このようなコンテンツを公開する目的はいろいろあるでしょう。けれど、自分で

コンテンツを作ること、それ自体が面白い、という人も少なからずいると思います。

ネット上の個人によるコンテンツであれば、そうしたたのしみを求めて作られてい

るサイトのほうが多いくらいかもしれません。

プログラミングでも、同じようなことがありうるのではないでしょうか。つまり、

何かの目的の達成のためだけにプログラミングを行うだけではなく、プログラミン

グそのものをたのしむ、ということが。

ただし、それはプログラムの内容だけではなく、どのようなプログラミング言語

を用いてプログラムを書くかによっても変わってくるでしょう。このような、プロ

グラミングそのものをたのしむことに向いているプログラミング言語は、はたして

あるのでしょうか ?

―
あります。それが、少なくともその1つが、Rubyです。

* * *

4

Rubyは、プログラミングをたのしくするためのプログラミング言語です。Ruby

には、「徹底的なオブジェクト指向」「豊富なクラスライブラリ」「人にやさしい直観

的な文法」など、いくつかの特徴がありますが、そういった特徴はRubyの 目的では

ありません。あくまで、プログラミングをたのしくするための手段です。

プログラミングの世界では、今までにいろいろな言語が提案され、利用されてき

ました。それらの言語は、「高速に動作するプログラムが書ける」とか、「短期間で

プログラムが書ける」とか、「一度書けばどこでも動く」とか、「子供でも簡単にプ

ログラムが書ける」とか、とにかくいろいろな目的を持っていました。でも、「プロ

グラミングをたのしくする」という目的を積極的に主張するプログラミング言語は、

あまりなかったようです。それは、「誰もがプログラミングする」ということについ

て、あまり真剣に考えられてこなかったからかもしれません。

もちろん、「プログラミングをたのしくするプログラミング言語」は、簡単に使い

こなせなければなりません。面倒な言語では「たのしみ」は味わえませんから。それ

と同時に、機能的にも十分に強力なものでなければいけません。非力な言語で何か

に使えるプログラムを書くのは大変ですから。いうまでもなく、Rubyは簡単に使い

こなせる、強力なプログラミング言語でもあります。

* * *

本書は、今までプログラミングというものをしたことがない、という方でもRuby

の使いこなし方の一端がつかめるように、ていねいな解説を行っています。プログ

ラムに必要な変数・定数・メソッド・クラス・制御構造といった文法的な説明から、

主なクラスの使い方と簡単な応用まで、できるだけわかりやすく説明することを心

がけました。一度もコンピュータを触ったことがない、という人には少々とっつき

づらいかもしれませんが、自分でHTMLを いじったことがある、というくらいの人
なら活用できると思います。また、まったくの初心者ではないけれど、もう一度最初

からRubyを 学び直 したい、という方にも役立つと思います。

本書を読んだ方々が、Rubyを使いこなすことによって、それぞれが自分自身にと

っての「たのしみ」「面白さ」を見つける一
そんなふうに活用していただければ、

筆者としてこれ以上の喜びはありません。

Rubyの世界へ、ようこそ。

高橋征義 1後藤裕蔵

5

Rubyについて

一
　

　

　

口

　
　
　
一

プログラミングを始める前に、Rubyについて簡単に紹介しておきましょう。

O Rubyはオブジェクト指向言語です
Rubyは、オブジェクト指向プログラミングが大好きなプログラマが、最高

のオブジェクト指向言語を作ろうとして設計し、開発した言語です。すべて

のデータは一貫してオブジェクトとして表現されているので、考えたことを

素直に記述できるようになっています。継承やMix_inと いった、オブジェク

ト指向言語らしい機能はもちろん備わっています。

また、さまざまなクラスライブラリが標準で添付されているほか、例外に

よるエラー処理や、自動的にメモリの解放を行うガベージヨレクタなど、快

適なプログラミングを支援する機能も備わっています。

O Rubyはスクリプト言旧です
Cや Javaの ようなプログラミング言語で書かれたプログラムを実行するに

は、そのプログラムのソースコードを機械命令に翻訳する「コンパイル」とい

う作業が必要になります。スクリプト言語の場合、書いたソースコードはコ

ンパイルする必要がありません。そのまま実行できます。

つまり、スクリプト言語を使えば、

プログラムを書く→ コンパイルする→実行する

という流れが、

プログラムを書く→実行する

という流れになるのです。そのため、コンパイルの必要な言語に比べ、プログ

ラミングを手軽にたのしむことができるのです。

O Rubyはマルチプラツトフォームな言語です
Rubyは、macOS、 Linux、 FreeBSDな どUnix系のOSや、WindOwsな ど、さ

まざまなプラットフォームで動作します。Rubyの スクリプトの多くは、まっ

たく書き換えることなく異なるプラットフォームでもそのまま実行させるこ

とができます。

6

O Rubyはオ…プンソ…スソフトウェアです
Rubyは、まつもとゆきひろ氏によるオープンソースソフトウェア (フ リー

ソフトウェア)です。誰もがRubyを 入手して、自由に使用することができま

す。1995年にインターネット上で公開されたRubyは、多くの人に支持され、

活発な開発が行われています。

本書は、コンピュータの知識があってもプログラムの経験はない人が、

Rubyを使ってプログラミングを始めるための入門書です。なるべく予備知識

を必要とせずに読み進められるように心がけましたが、たとえば「コンピュ

ータの電源の入れ方と切り方」や「シフトキーの使い方」など、コンピュータ

の初歩については説明を省いてあります。本書の読者としては、ひとまず次

のような人を想定しています。

鰺ファイルの操作やコマンドの実行などについて基本的な知識がある

。エディタを使ってテキストファイルを作ることができる

機プログラミングを始めてみようと思っている

対象読者について

本書の構成について

本書は先頭から順に読み進めていけるように書かれていますが、いくらか

Rubyを 使ったことがある人には前半は退屈に感じられるかもしれません。

Rubyの文法など基本的なことについて知識のある人は、第2部まではさっと

流 して、第3部からじっくり読む、というのがよいでしょう。

○第1部 Rubyをはじめよう
ごく簡単なRubyのプログラムを使いながら、プログラムの基本的な構成を

紹介します。

0.3 本書の構成について :

7

一
　
　
　
ロ

○第2部 基礎を学ぼう
Rubyの プログラムを書くうえで基礎となる文法の規則や、クラスとモジュ

ールといったオブジェクト指向プログラミングの考え方や用語を紹介します。

○第3部 クラスを使おう
プログラムを書くのに必要なのは文法だけではありません。Rubyで たのし

くプログラミングできるのは、巧みに設計された標準ライブラリのおかげで

もあります。

ここでは、Rubyの基本的なクラスを1つずつ取りあげ、その機能と使い方

を紹介します。

○第4部 ツ…ルを作つてみよう
ここまでの総復習として、少し複雑なプログラムの例を紹介します。Ruby

を使って実用的なプログラムを書いてみます。

(D付録A Ruby実行環境の準備
プラットフォーム別にRubyを インストールする方法を紹介します。

○ 付録B リフアレンス集
Rubyを使ううえで必要な知識や関連する情報をまとめてあります。

動作環境について

本書は、バージョン2.6の Rubyで動作するように解説しています。想定す

る動作環境は、Windows 10と 、macOS、 Linuxな どのUnix tt OSで す。

Rubyのインストール方法は、「A.l Rubyの インストール」(p.489)で説明

しています。本書を読み進める前に、環境に応じてインストールを行ってく

ださい。

8

CONTttNTS

監修者まえがき

はじめに

0。l Rubyについて .
0。2 対象読者について
0。3 本書の構成について
0,4動作環境について

・
~

――・
~ C::〕 ′

::D

第‐1章 IまじめてのRuby こ,

３

４

　

６

７

７

８

1.1

1.2

1.3

1.4

1.5

1.6

].7

1.8

1.9

1.10

1.11

1.12

Rubyの実行方法 …
1.■1 「ubyコマンドを使う方法
1.■ 2 irbコマンドを使う方法

プログラムの解説 ・ ‐

1.2.1 オブジェクト

1.2.2 メソッド

文字列

1.31 改行文字と「 」ヽ

1.3.2 「
t'」
と「
向
」

メソッドの呼び出し

putsメ ソッド
pメソッド .

日本語の表示

数値の表示と計算

1.8.1 数値の表示

1.8.2 四則演算

1.3.3 数学的な関数

変数

1.9.l p「 intメ ソッドと変数

コメン トを書く

条件半」断
|:if～ then´ν end ・

繰り返 し ・ ・
112.l wh‖ e文 ・ ‐

1.12.2 timesメ ソッド・

24
24
26

27

２

４

６

６

７

８

９

１

２

３

６

６

６

３

３

３

３

３

３

３

４

４

４

４

４

４

第1部 O Rubyを 1まじめよう

9

:CONTENTS

第 2章

第3章

便利なオブジェク ト .::

2.1 配列 (Array)
21.1 配列を作る

2.1.2 配列オブジェクト ‐
2.1.3 配列からオブジェクトを取り出す

2■4 配列にオブジェクトを格納する
2.1.5 酉己列の中身

2.1.6 配列と大きさ

21.7 配列と繰り返し

2.2 ハッシュ(Hash)
2.2.1 シンボルとは 一
2.2.2 ノヽッシュを作る

2.2.3 ノヽッシュの操作

224 ノヽッシュの繰り返し …
2.3 正規表現
2.3.1 パターンとマッチング

コマン ドを作ろう

3.1 コマンドラインからのデータの入力
3.2 ファイルからの読み込み
321 ファイルからテキストデータを読み込んで表示する
322 ファイルからテキストデータを 1行ずつ読み込んで
表示する

323 ファイルの中から特定のパターンの行のみを選んで
出力する

3.3 メソッドの作成
3.4 別のファイルを取り込む

49

50
50
51

51

52
53
54
54
56
56
57
58
58
59
60

63

63
65
66

67

69

70
71

第2部 ●基礎を学ぼう

第 4章 オブジエクトと変数・ 定数
4.1 オブジェクト
4。2 クラス

□―カル変数とグローバル変数

多重代入

4.6.1 しヽくつかの代入をまとめて行う

一　

　

一
語

轍
４３‐
動
Ⅷ

３

　

　

４

５

６

４

　

４

４

４

77

77
78
79
80
82
83
84
84

|

10

１
・　

Ｚ^

５

５

条件判断とは ..… … . ・… 87
Rubyでの条件 88
521 条件と真偽値 … .・ ・ ‐ … ・89
論理演算子 ―― ‐ ・ ‐ 90

91

unlessg
case文 … .. ._ ・ 93
if修飾子とun:ess修飾子 . ・ 98
まとめ

5.3

5.4

5.5

5。6

5。7

5。8

if文 …… …

4.6.2

4.6.3

変数の値を入れ替える

配列の要素を取り出す 85

Л

。
２

３

・
４

・
５

。
６

″

。
８

。
９

６

６

６

６

６

６

６

６

６

繰り返しの基本 01

02

02

03

05

08

109
111

繰り返しで気をつけること

for* .

一般的なfor文

wh‖ e文

until文

each.xY y tr .. . 'l I 2
6.10 1oopメ ソッド

6。11 繰り返しの制御

114

6.11.l break

・・ 114
… 116

6.11.2 next・ ‐ … ・・ 116

6.12まとめ卜 ・ …・ ・ ・ ・ … … 119

7.1 メソッドの呼び出し 121

7■1 単純なメソッド呼び出し ・ ・ … ・ ……… 121
7.1.2 ブロックつきメソッド呼び出し ・ ― ・122
7■3 演算子の形式のメソッド呼び出し

7.2 メソッドの分類

7.2.2 クラスメソッド

7.2.1 インスタンスメソッド… … ……124

123

124

125

7.2.3 関数的メソッド . … ・ ・ … … 126

ll

CONTENTS・

第 5章 条件判断

第6章 繰づ饉し 101警‐

timeslYy F

121

CONTENTS

第 3章

7。3 メソッドの定義
7.3.1 メソッド定義の構文

7.3.2 メソッドの戻り値

7.3.3 ブロックつきメソッドの定義

7.3.4 引数の数が不定なメソッド

7.3.5 キーワード引数

ア.4 メソッドの呼び出しの補足
7.4.1 配列を引数に展開する

74.2 引数に八ッシュを渡す

タラスとモジュール

8.1 クラスとは ¨

8.2

8.3

8.4

５

　

　

　

　

６

７

８

　

　

　

　

９

８

　

　

　

８

８

８

　

　

　

８

8.1.1 クラスとインスタンス

8■2 インスタンスの生成
8.1.3 継承

クラスを作る …・・・

8.2.l class文

8.2.2 initia‖ zeメ ソッド ‐・
8.2.3 インスタンス変数とインスタンスメソッド

8.24 アクセスメソッド
8.25 牛寺別な変数self

8.2.6 クラスメソッド

8.2.7 定数

8.2.8 クラス変数 ・…
メソッドの呼び出しを制限する

クラスを拡張する

8.4.1 既存のクラスにメソッドを追加する

842 継承する
alias`生,undef

8.5.l alias

8.5.2 undef

特異クラス

モジュールとは

モジュールの使い方

8.8.l Mix― inによる機能の提供

8.8.2 名前空間の提供

モジュールを作る

8.91 定数
89.2 メソッドの定義 ・ .

127
127
128
130
132
133

135
135
136

142
142
143
143

146
148
148

141

150
152
154
155
156

157
160
160
161

163
163
164

165
166
166
166
167

168
169
169

12

8。10

8。■

Mix‐in ……… … …
8.10.1 すでにあるクラスの動作を変更する

8102 メソッド検索のルール
8.10.3 extendメ ソッド ・ ……
8.104 クラスとMix― in ― ― ・

オブジェク ト指向プログラミング

8.11.1 オブジェクトとは ‐

3.11.2 オブジェクト指向の特徴

8.11.3 ダックタイピング

81■4 オブジェクト指向の例

第9章 毒纂子
9。 1

9.2

9。3

9。4
9.5

9.6

11.]

11.2

代入演算子

論理演算子の応用

条件演算子

範囲演算子

演算子の優先順位

演算子を定義する

9.6.1 二項演算子

9.6.2 単頂演算子

9.6.3 添字メソッド

ブロックとは

ブロックの使われ方

1121 繰り返し

11.2.2 定形の処理を隠す

189.
189
190
193
194
196
198
198

201

201

第10章 エラー処理と例外

10。1 エラー処理について
10。2例外処理 ‐一
10.3例外処理の書き方
10。4後処理
]0.5や り直し

10.6 rescue修飾子

10。7例外処理の構文の補足
10.8捕捉する例外を指定する
10。9例外クラス
10』0例外を発生させる

第 11章 プロック |:|111 1

203

203
205
207
210
211
212
213
213
214
217

221

221
223
223
224

CONTENTS・

170
172

174
177

179
179

181

183

184

i3

CONTENTS

11.3

11.4

11.2.3 計算の一部を差し替える ・・
ブロックつきメソッドを作る

11.3.1 ブロックを実行する …
11.3.2 ブロック変数を渡す、ブロックの結果を得る

11.3.3 ブロックの実行を制御する

1■34 ブロックをオブジエクトとして受け取る
ローカル変数とプロック変数

226
229
229
230
233
234
236

第 12軍 数値 (Numeric)ク ラス

12.l Numericの クラス構成
12.2数値のリテラル
12.3算術演算
12.3.1 割り算

12.4 Mathモ ジュール

12.5数値型の変換
12.6 ビット演算

12.ア 舌L数
12.8数えあげ
12.9丸め誤差
練習問題

第13章 配列 (Arranクラス|

13.] 酉己フに)復習

13.2 配フ」α)イ乍り方

13.2.l A「 ray newを使う

13.2.2%wや %iを使う
13.2.3 to_aメ ソッドを使う

13.2.4 文字列のsplitメ ソッドを使う

13.3イ ンデックスの使い方
13.3.1 要素を取り出す

13.3.2 要素を置き換える

13.3.3 要素を挿入する

13.3.4 複数のインデックスから配列を作る

13.4集合としての配列
13.4.1 集合の演算

1342「 |」 と「十」の違い

13.5列 としての配列

243

244
246
247
248
250
252
253
255
257
259
262

263

264
264
265
265
266
266
267
267
270
271

272
272
273
275
275

第3部 ● クラスを使おう

14

CONTENTS

13.6配列の主なメソッド ‐
13.61 配列に要素を加える・ ・ ―
13.6.2 配列から要素を取り除く

13.6.3 配列の要素を置き換える

13.7配列とイテレータ ー…
13.8配列内の各要素を処理する …… … ・・
13.8.1 繰り返しとインデックスを使う

13.3.2 eachメソッドで要素を1つずつ得る ・
13.8.3 破壊的なメソッドで繰り返しを行う

13.8.4 その他のイテレータを使う ‐

13.8.5 専用のイテレータを作る ・

13.9 配夕uC)≡辱素 .・ …

13.9.1 例 :簡単な行列を使う .・ ・ ・

13.9.2 初期化に注意 ・…
13.10複数の配列に並行してアクセスする

練習問題

第 14章 文字列 (String)ク ラス

278
278
281

283
286
286
286
287
288
288
288
289
289
290
291
295

297

298
299
299
301

301

304
304
305
307
307
310
310
311
311

313

313
313
315
317
318
320

14.1

14.2

14.3

]4。4
14.5

14.6

14.7

14.8

14.9

]4.10

14.11

文字列を作る ‐一 ……

]4.1.1 %Q、 %qを使う
14■2 ヒアドキュメントを使う ‐

14■3 sprintfメソッドを使う ‐一
14■4「 ｀`」を使う ・ ¨

文字列の長さを得る

文字列のインデックス ・ ・ … ……
文字列をつなげる 一 ・…
文字列を比較する ・ ・ ‐ ・
14.5.1 :文 ::字ユタ|」σ)大」ヽ上ヒ車交

文字列を分割する ・
改行文字の扱い方 …
文字列の検索と置換 ・ … …
14.81 文字列の検索 ‐・
14.8.2 文字列の置換 ・ ‐・ ・

文字列と配列で共通するメソッド

14.9.1 インデックス操作に関するメソッド

14.9.2 Enumeratorオ ブジェクトを返すメソッド

14.9.3 連結や逆順に関するメソッド

その他のメソッド … … …… … …
日本語文字コー ドの変換 ・ ・・―

15

CONTENTS

第 15章

第16章

1411.l encodeメ ソッド

14.11.2 nkfラ イブラリ

練習問題

ハッシュ (Ha8h)クラス
15。1 ノヽッシュの復習 ・
15。2ノ ッヽシュの作り方
15.2.1 11を 使う

15.2.2 Hash.newを使う

15.3値を取り出す 。設定する
15.3.1 キーや値をまとめて取り出す

1532 八ッシュのデフォルト値
15.4あ るオブジェク トをキーや値として持つか調べる
15.5 ハッシュの大きさを調べる

15.6キーと値を削除する
15.ア ハッシュを初期化する
15.7.1 2つ のキーがある八ッシュを扱う

15.82つのハッシュを合わせる
15。9応 用例 :単語数を数える
練習問題

正規表現 (Rogexp)ク ラス
16.1 正規表現について

16■1 正規表現の書き方と使い方
16.1.2 正規表現オブジェクトの作り方

16.2正規表現のパターンとマッチング
16.2.1 通常の文字によるマッチング

16.2.2 行頭と行末とのマッチング

16.2.3 マッチさせたい文字を範囲で指定する

16.2.4 任意の文字とのマッチング

16.2.5 バックスラッシュを使つたパターン

16.2.6繰 り返し

16.2.7 最短マッチ

1628「 ()」 と繰り返し
16.29 選択

16.3 メタ文字をエスケープする ・
16.4正規表現のオプション
16.5 キャプチャ …
16.6正規表現を使うメソッド

320
320
324

325

341

325
326
326
327
328
329
330

332
333
334
336
336
337
340

342
342
342
343
343
344
346
34フ

348
350
352
353
353
354
355
356
358

16

16.6.l subメ ソッドとgsubメ ソッド

16.6.2 scanメ ソッド

16.7正規表現の例 …
練習問題 ・ … … ・…

第 17章 10クラス

17.1 入出力の種類
17■1 標準入出力
17■2 フアイル入出力

17.2 基本的な入出力操作

17.2.1 入力操作

17.22 出力操作

17.3 フアイルポインタ

17.4バイナリモードとテキストモード
17.5 コマンドとのやりとり

17.6 open‐ uriライ:ブラリ

17.7 strinJoラ イブラリ

練習問題

第]8章 F‖ eクラスとDirクラス 387
18。l F‖eクラス

18■ 1 フアイル名を変更する
18.■2 フアイルをコピーする
18■3 フアイルを削除する

18.2ディレク トリの操作
18.2.1 ディレクトリの内容を読む

18.2.2 ディレクトリの作成と削除

18.3 ファイルとディレクトリの属性
18.3.1 フアイルやディレクトリの検査

18.4フ ァイル名の操作 ・ ・ ・ ・…
18.5ス クリプトのファイル名
18.6フ ァイル操作関連のライブラリ
18.6.l findラ イブラリ

18.6.2 tempf‖ eラ イブラリ

18.6.3 fileut‖ sライブラリ

練習問題 ‐ ‐

冤閂圏

388
388
. 389

390
390
392
・ 397
397
401
・ 402
404
405
405
406
407
410

CONTENTS:

365

358
359
361
364

366
366
369
872
3フ2

376
377
379
381
382
383
385

17

CONT[NTS

第19章

第20章

第 四 章

エンコ…ディング (Encoding)ク ラス

19。l Rubyのエンコーディングと文字列
19.2ス クリプトエンコーディングとマジックコメント
19.3匡ncodingクラス
19.3.l Encodingク ラスのメソッド

19.4正規表現とエンコーディング
19.5!0ク ラスとエンコーディング
195.1 外部エンコーディングと内部エンコーディング

19.5.2 エンコーディングの設定

19.5.3 エンコーディングの動き ・
練習問題

TimeクラスとDateクラス

20.]Timeク ラスとDateクラス
20.2時刻を取得する
20.3時刻を計算する
20.4時刻のフォーマット
20。5ローカルタイム
20。6文字列から時刻を取り出す
20。7日付を取得する
20。3日付を計算する
20。9日付のフオーマット
20。10文字列から日付を取り出す
20■l Timeと Dateの変換
練習問題

procクラス

21.l Procクラスとは
21_11 ラムダ式

21.1.2 ブロックをProcオ ブジェクトとして受け取る

2■ 13 to_procメ ソッド

21.2 P「 ocの特徴

21.3 P「 OCクラスのインスタンスメソッド

練習問題

411

411
412
414
416
420
421
421

422
423
426

427

427
428
430
430
433
433
435
436
437
438
438
440

441

441
443
446
446
447
449
453

第4部 0ツールを作つてみよう

第 22章 テキスト処理を行う
22.1 テキス トを用意する ・ …

22.1.1 フアイルをダウンロードする

22■2 本文のテキストを取り出す ・…
22■3 タグを削除する ・
Simple_grep.rbの拡張 :件数の表示
22.2.1 マッチした行を数える

Simple_grep.rbの拡張 :マッチした箇所の表示

22.3.1 マッチした位置を見やすくする

223.2前後 10文字ずつ表示する
2233前後の文字数を変更可能にする ・・

22.2

22.3

23.1

23.2

23.3

23.4

23.5

23.6

23.7

457

457
457
458
460
462
463
464
464
465
467

469
471
472
475
478
481
485

第23章 郵便番号データを検索する 469
郵便番号データの取得

CSVラ イブラリ

sq‖te3ラ イブラリ

データの登録

データの検索

Bundler

まとめ

付録

付録A Ruby実行環境の準備
A.l Rubyの インストール
A.2 Windowsでのインス トール
A.2.1 インストールの開始

A22 インストール先とオプションの確認
A23 インストールするソフトウェアの選択
A24 インストール状況
A.2.5 インストールの完了

A26 MSYS2の セットアップ
A27 コンソールの起動
A28 sqlite3のインストール

A.3 maCOSでのインス トール
A.4 Unixで のインストール
A41 「benvを利用する

489

489
489
490
491

492
492
493
493
494
496
497
498
499

CONTENTS:

19

.CONTENTS

A4.2 バイナリパッケージを利用する 500

A4.3 ソースからビルドする .… 500
A.5 エディタと!DE ・ … … …. 501
A.5.1 ちゃんとしたエディタがなくちゃ Rubyは

使えない? … ・ 502

B。 1 RubyCems … ・ . ・ 503
B.1.l gemコ マンド 503
コマンドラインオプシヨン 506２

３

Ｂ

Ｂ 組み込み変数・定数 508
B.3.1

B.3.2

B.3.3

B.3.4

組み込み変数 … ・・ 508
組み込み定数 … … … … … ……・ … 509
擬似変数・ ・ ・ ……… … ……… …… … ・ 510
環境変数 … … … … … 510

あとがき ‐ ・ … … …… … …… 511
謝辞 ・・ 512
索引 513

20

付録B Rubyリ フアレンス集 503

「だつて、じゃあ、考えないで何かやつちゃうの ?」

―
新丼素子『・……絶句』

簡単なプログラムを見ながら

Rubyについての全体像を
眺めていきましょう。

Rubyを使つたプログラミングの
イメ…ジをつかんでください。

陪鱚隕輻隕赳国

■■

‐

第 1部

Rubyを
はじめよう

く

4
第 1章 嘔

ｙｂｕＲのてめ゛′
■
■
■
■

土
Ｆ

●
■
Ｌ
▼

それではRubyを使ってみましょう。

この章では次の内容について紹介します。Rubyを使ったプログラミングの

概要をつかんでください。

。Rubyを 1吏う

Rubyを使って、プログラムを実行してみます。

o文字や数値を使う
文字や数値を出力したり、計算を行ったり、変数に代入したりします。

●条件判断や繰り返しを行う

数値や文字列を比較して条件判断や、処理の繰り返しを行います。

ヽ
ノ
「
　
´
〆
ゝ

″

///

″

23

Enjoy Programming!)

第1章 はじめてのRuby

Rubyの実行方法

まずは、画面に文字を表示するプログラムを作り、実行してみましょう。

Rubyで書かれたプログラムを実行する方法はいくつかあります。もっとも

一般的なのは、rubyと いうコマンドを使って実行する方法です。次によく使

うのが、irbと いうコマンドを使って対話的に実行する方法です。小さいRuby

プログラムのときは、irbコ マンドを使うほうが簡単に実行できます。

ここではまずrubyコ マンドを使う方法を紹介して、その後でirbコ マンド

を使う方法も紹介します。

なお、Rubyそ のものをインストールしていない人は、「付録A Ruby実行

環境の準備」を見て、あらかじめインストールしておいてください。

」曽墨
本書で使用するRubyのバージョンは、Ruby 2.6で す。macOSや Linuxを 使

■語
菫
用 している場合、標準でインス トールされているRubyのバージョンが古い

ことがあります。その場合、新 しいRubyを インス トールしてください。

●●・1■l rubyコマンドを使う方法
では、はじめて実行するプログラムList l.1を 見てみましょう。

ListCD he‖ oruby.rb

print(〕IHello′ Ruby.ヽ n・)

幸
「 」ヽ(バックスラッシュ)は、Windowsで は「¥」 (円記号)と表示されます。

本書の中では、原則として「 」ヽに統一します。

……ちょっと拍子抜けしたでしょうか?「 プログラム」と問いて、何か
すごく長い暗号めいたものを想像されたかもしれませんが、このプログラム

はたったの1行です。文字数にしても20字ちょっとしかありません。でも、こ

れも立派なプログラムですし、実行すればちゃんと目的を果たします。

このプログラムをエディタで入力し、ファイル名を「heHOruby.rb」 にして、

ファイルとして保存してください。ファイル名の「.rb」 は、Rubyの プログラ

ムであることを表しています。

1。 1

24

働
プログラムを入力するには、「エディタ」または「lD巨」というソフトウェア

を使います。エディタやlDEに ついては、「A.5 エディタとlDE」 (p.501)

をご覧ください。

それでは、このプログラムを実行してみましょう。コンソールを起動しま

1.l Rubyの 実行方法 :

もしエラーが出てしまうようなら、第10章のコラム「エラーメッセージ」

(p.218)お よび「付録A Ruby実行環境の準備」(p.489)を 確認してください。

C
す。

コンソールの起動方法については、「付録A Ruby実行環境の準備」(p489)

でOS別 に説明しています。

コンソールを起動したら、ファイルhe1loruby.rbを 置いたフォルダに、cdコ

マンドで移動します。たとえばWindowsを使っていて、Cド ライブの「たのし

いRuby」 フォルダ(c:¥たのしいRuby)に ファイルを置いたのであれば、次の

ように入力します。

>cd c:¥たのしいRuby

そこで、

と入力します。すると、図1.1の ように「He1lo′ Ruby.」 と表示されます。

国:Sh“ COmrr・nd prOmpt W■h ttby

Q国回Dl rubyの起動

ψ

> ruby helloruby.rb

静

i : ill=* r,.:$.ai,:t r:,tlr-trlr.'r'i::d t : f Il- r,',t L. l.,Fl,lL,:.'

:: 9f;iil l- l- rp11[,,1;.:' ;,-1111, Le I | ,:, r,r[r'.'. t-L,

1‐1111=|′ J`」
tll 」.い .

●、RЦは,'.

:∵たtL■ lFLlヒ

25

:第 1章 はじめてのRuby

●・01.1。2 irbコマンドを使う方法
irbコ マンドを使う方法も紹介します。

irbコ マンドは、rubyコ マンドと同様にコンソールから実行します。ただし、

プログラムを書いたファイルは指定しません。

irbコ マンドを実行すると、次のように入カプロンプ トが表示されます。

ここで、先ほどのプログラムList l.1を そのまま入力し、[Enter]キ ーを押

すと、その場で実行されます。

ぜ盪
3行日に表示される「=>nil」 とぃうのは、printメ ソッド自体の戻り値で

「

す。詳しくは「7.3.2 メソッドの戻り値」(p.128)で説明します。

このように、入力したプログラムをその場で実行できるので、簡単なテス

トにはとても便利です。ただし、大きなプログラムを試すのには不向きなの

で、そのような場合にはrubyコ マンドを使いましょう。

irbコ マンドを終了するには「exit」 と入力して [Enter]キ ーを押すか、

[Ctrl]([Control])キ ーを押しながら[d]キ ーを押します。

幸
maCOSや Windowsを 使っている場合、irbコ マンドでは日本語が正 しく入力
できないことがあります。その場合、irbコ マンドに一noread‖ neォ プション

をつけて「irb― noread‖ ne」 と実行してください。これでread‖ ne機能がオフ
になり、日本語を正しく入力できるようになります。ただし、read‖ ne機能を
オフにすると、入力済みの文字の編集機能やヒストリ入力支援機能などが使

えなくなってしまうので注意してください。

> irb

irb(main):001:0>

irb(main):001:0> print(::H0110′ Ruby.ヽnn)

Hello′ Ruby.+_printメ ソッドによって表示された文字列
=> nil

irb(main):002:0>

26

プログラムの解説

それでは、ほんの1行だけではありますが、List l.1の プログラムを解説し

ましょう。

●‐1。2.1オブジエクト
まず、「"Hello′ Ruby.ヽ n‖」という部分に注目します。

print(・ 塁£119._塁ュ⊇x二 ユゝ上)
:~EI文字列オブジェクト

これをstringオブジェクト、または文字列ォブジェクト、あるいは単に文

字列と呼びます。「Hello′ Ruby.」 という文字列を意味するオブジェクト、

というわけです (図 1.2)。

文字列オブジェクト

「He‖ o,Ruby.」 ―――――一>

データは、プログラム中ではォブジェクトとして表現さねる

(秒
―
データとオブジエクト

Rubyでは、文字列、数値、時刻などさまざまなデータがオブジェクトにな

ります。

¶髯ゝ
文字列の終わりの「 nヽ」 は改行を表す文字です。

●・ 01.2。2 メリッド
今度は「print」 という部分に注目しましょう。

print ("He1lo, Ruby. \n")

C

~I弓
ソッド L__引 数

27

1.2 プログラムの解説 :

，
一
―
●

●
■
■

■Hello′ Ruby.ヽ n"

第1章 はじめてのRuby

「print」 は、メソッドです。メソッドとは、オブジェクトを扱うための手続
きのことです。「数値」を使って足し算や掛け算をしたり、「文字列」同士をつ

なげたり、「ある時刻」の1時間後や1日 後を求めたりといったことは、すべ

てメソッドを起動することによって行われます。
printメ ソッドは、「()」 の中の内容をコンソールに出力するメソッドです。
ですから、he110ruby.rbで は、「Hello′ Ruby.」 という文字列オブジェクトが

表示されています。

メソッドに渡す情報のことを引数といいます。たとえば、printメ ソッド
の機能を説明する場合には「printメ ソッドは引数として与えられた文字列
をコンソールに出力します」といった使い方をします。

printメ ソッドの引数を書き換えて、別の文字列を表示するプログラムに
してみましょう。

print ("He1lo, RUBYT \n")

今度は大文字で「Hello′ RUBY!」 と表示するようになります。ちょっと元

気のよいあいさつになりましたか ?

文字列

文字列について、もう少し詳しく見ていくことにしましょう。

●・・1。3.1 改行文字と「 」ヽ
先ほど、文字列の「 nヽ」 は改行を表すと説明しました。普通の文字を使って

改行を書けるおかげで、たとえば

Hello′

Ruby

と表示させるには、

28

print(‖ Hello′ nヽRubyヽ n!ヽ n‖)

L― IIエー改行文字

と書くことができます。もっとも、

Ruby

‖
)

などと書いても、同じように表示されます。しかし、この書き方だとプログラ

ムが読みにくくなってしまうので、あまりよい書き方ではありません。せっ

かく改行を表す書き方があるのですから、それを使うほうがよいでしよう。

「 nヽ」 以外にも、文字列の中で特殊な文字を埋め込みたいときに「 」ヽを使い

ます。たとえば、「‖」は文字列の始まりと終わりを表す文字ですが、これを文

字列の中に含める場合には「 "ヽ」 とします。

print(■ Hello′
‖ヽRubyヽ 17.ヽ n‖)

は 、

Hello′ i:Rubyll

と表示されます。

このように、文字列中の「 」ヽはそれに続く文字に特別な意味を与える文字

になっています。そのため、「 」ヽそのものを文字列中に合めたいときには、「ヽヽ」

と書く必要があります。たとえば

は 、

print(|'Hello ヽヽ Ruby!1:)

1.3 文字列 :

29

:第 1章 はじめてのRuby

Hello ヽRuby!

と表示されます。2つ あった「 」ヽが1つになっていることに注意してください。

●・・1。3.2「・」と「旧」
文字列オブジェクトを作るための区切り文字には、「‖‖」(ダブルクォート)
ではなく、「I :」 (シ ングルクォート)を使うこともできます。先ほどのプロ

グラムを

print(lHello′ nヽRuby、 n!ヽnl)

とシングルクォートに書き換えて実行してみましょう。すると今度は、

Hello′ nヽRubyヽ n!ヽ n

というように、「: 〕」の中の文字がそのまま表示されます。

このように「: :」で囲った文字列は、「 nヽ」 などの特殊文字の解釈を行わず、

そのまま表示します。ただし例外として、「 」ヽと「[」 を、文字列中に文字その

ものとして含めたいときにのみ、その文字の前に「 」ヽをつけます。こんな感

じです。

print(lHel10′ ヽヽ ヽlRubyヽ 1.1)

実行すると次のように表示 されます。

Hello′ ヽlRuby

30

メリッドの呼び出し 嘔
メソッドについてもう少し説明しましょう。

Rubyのメソッドでは「 ()」 を省略することができます。そのため、先ほどの

プログラム (List l.1)でのprintメ ソッドは、

print "He11o, Ruby.\n"

と書くこともできます。

また、いくつかの文字列を続けて表示したいときには、「′」で区切れば、並

べた順に表示できます。ですから

print "He11o, ", "Ruby", ".", "\n"

なんて書き方もできるわけですね。これは、表示したいものがいくつもある

ときに使うと便利です。とはいえ、要素が複雑に込み入ってくると、「 ()」 を

つけたほうがわかりやすくなります。慣れるまではこまめに「 ()」 を書いてお

きましょう。本書では、単純な場合には「 ()」 を省いて表記しています。

さらに、メソッドを縦に並べて書くと、その順にメソッドを実行します。た

とえば

prj-nt
prj-nt
print
print

" Hel1o ,

"Ruby"

,,\n,

などと書いても、同じように「He1lo′ Ruby.」 と表不するプログラムになり

ます。

31

1.4 メソッドの呼び出し :

1。4

第1章 はじめてのRuby

printメ ソッド以外にも文字列を表示するメソッドがあります。putsメ ソ

ッドは、printメ ソッドとは異なり、表示する文字列の最後で必ず改行しま

す。これを使えば、List l.1は

puts "HeIIo, Ruby. "

と書けるようになります。ただし、

puts :lHello′ ::′ ''Ruby!‖

のように2つの文字列を渡した場合には、

Hello′

Ruby!

と、それぞれの文字列の末尾に改行が追加されます。printメ ソッドとは少

し使い勝手が違いますね。この2つのメソッドは、場面に応じて使い分けてく

ださい。

trutsjI,y t:

pメソッド

さらにもう1つ、表示のためのメソッドを紹介しましょう。オブジェクトの

内容を表示するときに便利な「p」 というメソッドです。

たとえば、数値の100と文字列の‖100‖ を、printメ ソッドやputsメ ソッ

ドで表示させると、どちらも単に「100」 と表示されてしまいます。これでは

本当はどちらのオブジェクトなのか、表示結果から確認できません。そんな

ときには、pメ ソッドを使うのが便利です。pメ ソッドなら、文字列と数値を

違った形で表示してくれるのです。さっそく試してみましょう。

ＦＤ
■
ロ
ヮ

1。6

■
１

　

‐

32

1.6 pメ ソッド

puts :[100・

puts 100

p ・100‖

p 100

|=> 100

+=> 100

+=> |'10011

+=> 100

■

ψ
本書では、プログラム中で出力した内容を表すために、出力用のメソッド

の横に「半二>」 という文字を置き、その右側に出力された文字を並べて書く

という表記を用いています。この例では、「puts ‖100・ 」や「puts 100」、
「p100」 というメソッドでは「100」 という文字列が出力され、「p ‖100‖ 」
というメソッドでは「・100‖ 」という文字列が出力される、という意味にな

ります。

このように、文字列を出力する場合、「:I ‖」で囲んで表示してくれるわけ

です。これなら一目瞭然ですね。さらに、文字列の中に含まれる改行やタブな

どの特殊な文字も、「 nヽ」 や「 tヽ」 のように表示されます (List l.2)。

LЫ
―
puts」nd_p.rb

puts ::He1lo′ nヽヽ tRuby.‖

p ilHello′ nヽヽ tRuby.‖

printメ ソッドは実行結果やメッセージなどを普通に表示したいとき、

pメ ソッドは実行中のプログラムの様子を確認したいとき、と使い分ければ

よいでしょう。原則として、pメ ソッドはプログラムを書いている人のための

メソッドなのです。

> ruby puts_anclj.rb
He11o,

Ruby.

"HeIIo, \n\tRuby. "

実行例

33

:第 1華 はじめてのRuby

日本語の表示

ここまで、文字列にはアルファベット(英字)を使ってきました。

今度は日本語を表示してみましょう。日本語の表示も難しいことは何もあ

りません。単にアルファベットの代わりに日本語を「l[‖」の中に書くだけで

す。こんな感じになります。

List CIEコD kiritsubo.rb

print‖ いづれの御時にか女御更衣あまたさぶらいたまいけるなかに nヽ‖

print‖ いとやむごとなき際にはあらぬがすぐれて時めきたまふありけり nヽ‖

ただし、文字コードの設定によっては、エラーが出たり、正しく表示されな

い場合があります。その場合、コラム「日本語を扱う場合の注意」を参照して

ください。

日本語を扱う場合の注意

環境によっては、日本語を含むスクリプトを実行すると次のようなエラーに

なります。

> ruby kiritsubo.rb

いづれの御時にか女御更衣あまたさぶらいたまいけるなかに

いとやむごとなき際にはあらぬがすぐれて時めきたまふありけり

実行例

> ruby kiritsubo.rb
kiritsubo.rb:1: invalid multibyt.e char (UTF-B)

kiritsubo.rb:l-: j-nvalid multibyte char (UTF-B)

34

これはソースコー ドの文字コー ド(エ ンコーディング)が指定されていない

諷涎Ю 000

７
″

■
日
●

1,7 日本語の表示
:

からです。Rubyでは、「#encoding8 文字コード」というコメントを1行日
に記述することによってソースコードの文字コードを指定します。このコメン

トをマジックコメントといいます。

WindOwsで一般的に使われているエンコーディングShift_JISでソースコー

ドを記述した場合は、次のようにマジックコメントを書きます。

l encoding: Shift_JIS

print‖ いつれの御時にか女御更衣あまたさぶらいたまいけるなかに nヽ‖

print‖ いとやむごとなき際にはあらぬがすぐれて時めきたまふありけり nヽ"

このようにコメントで文字コー ドを指定することによって、Rubyが ソース

コード中の日本語を正しく認識できるようになります。次の表にプラットフォ

ームごとによく使われる文字コー ドをまとめています。複数の文字コード名が

挙げられている場合は、環境に合わせて適切なものを選んでください。

プラットフォーム 文字コード(エ ンコーディ
‐ング)名

Windows Shift_JIS(ま たはWindows-31J)

macOS UTF-8
Unix UTF-8、 EUC― JPなど

なお、マジックコメントがないソースコー ドの文字コードはUTF-8と仮定

されます。そのため、UTF_8の ソースコードを使う場合はマジックコメントは

不要です。

これ以外でも、前述のpメ ソッドで日本語の文字列を出力すると、いわゆる

「文字化け」をしたような出力になる場合があります。そのような場合は、出力

用の文字コードを指定するために「…E文 字コード」の形式でコマンドライン
オプションを指定してください。コンソールがUTF_8を受けつける場合は次の

ようにします。

嘔

>nおy―E UTF-8ス クリプトフアイル名
> irb ―E UTF-8

―
―スクリプ トの実行

+― irbの起動

実行例

35

:第 1章 はじめてのRuby

数値の表示と計算

文字列に続いて、今度は「数値」を扱ってみましょう。Rubyの プログラムで

は、整数や小数 (浮動小数点数)を、自然な形で扱うことができます。

●・01.8.1 数値の表示
まずは文字列の代わりに数値を表示するところから始めてみます。「1.2

プログラムの解説」(p.27)で、「Rubyでは文字列は文字列オブジェクトとい

う形になっている」と説明しました。同じように、数値も「数値オブジェクト」

として扱われます。

Rubyで整数オブジェクトを表現するのは簡単です。そのまま数字を書けば

よいだけです。たとえば

と書けば「1」 の値の整数 (Integer)オ ブジェクトになります。また、

100

と書けば、「100」 の値の整数オブジェクトになります。

さらに、

3.1415

などと書けば、「3.1415」 の値の浮動小数点数(Float)オ ブジェクトになり

ます。

ψ
「Integer」 や「Float」 というのは、それぞれのオブジェクトが所属する「ク

ラス」の名前です。クラスについては、第4章と第8章で説明します。

数値を表示するには、文字列と同様にprintメ ソッドやputsメ ソッドを使

います。

Ａ●
一
―
―

「

‐

　

‐∠

|

36

putS(10)

というメソッドを実行すると、

と画面に表示されます。

●。・1。8.2 四則演算
数の計算を行ったり、その結果を表示したりすることもできます。四則演

算をやってみましょう。

ここではirbコ マンドを使ってみます。

嘔

ψ
irbコ マンドのあとの一simple― promptは、irbの プロンプト表示を簡易にする

ためのオプションです。

プログラミング言語の世界では、掛け算の記号に「*」 (アスタリスク)を、

割り算の記号に「/」 (ス ラッシュ)を使うのが一般的です。Rubyも この習慣

にならっています。

もう少し四則演算をやってみましょう。普通の計算では、「足し算・引き算」

と「掛け算・割り算」には計算のチ1贋序が決められていますが、Rubyで も同じ

です。つまり、

10

実行例

>irb… …simple… lprc口pt

>> 1 + 1

=>2--1+1の 実行結果

>> 2 ‐ 3

=>-1--2-3の 実行結果

>>5*10

=>50-5× 10の実行結果
>> 100 ′ 4

=>25十 -100-4の 実行結果

1.8 数値の表示と計算 :

37

:第 1章 はじめてのRuby

20+8/2

とすれば答えは「24」 になります。「20+8」 を2で割りたいときは、「()」 で

囲って、

(20+8)/2

とします。答えは「14」 ですね。

●・・1。 8。3 数学的な関数
四則演算以外にも、平方根や、三角関数の「sin」「cOs」 、指数関数などの数学

的な関数が利用できます。ただし、その場合、関数の前に「Math.」 という文字

列をつける必要があります。

「Math.」 をつけずに「sin」「cos」 などの関数を使うには、「include
Math」 という文が必要です。これについては「8.8.2 名前空間の提供」で説

明します。

sinは sinメ ソッド、平方根はsqrtメ ソッドで求めます。メソッドを実行す

ると、計算した結果を得ることができます。このことを「メソッドが値を返す」

といい、得られる値のことを戻り値といいます。

ψ

幸
Rubyのパージョンや実行する環境により、結果の桁数などが異なる場合が

あります。

1番目のsinの答えである「9.265358966049024e_05」 ですが、これは、極端

に大きい数や、極端に小さい数を表すときに使われる表記方法です。「(小数)

>irl)― ―si■呵ple―pro珂 pt

>> Mathosin(3.1415)

=>9.265358966049024e-05十 一 sinメ ソッ ドの戻 り値
>> Mathosqrt(10000)

=>100・ 0+― sqrtメ ソッ ドの戻 り値

実行例

38

e(整数)」 と表示されたときは、「(小数)*[10の (整数)乗]」 の値、と解釈し

てください。この例の場合、「9.265358966049024× 10-5」 とぃうことになる

ので、つまりは0.00009265358966049024と いう値を表しています。
■

変数

プログラミングに欠かせない要素として変数があります。変数とは、「もの」

につける名札のようなものです。

オブジェクトに名札をつけるには、

変数名 =オブジェク ト

と書きます (図 1.3)。 このことを「変数にオブジェクトを代入する」といい

ます。

文字列オブジェクト

数値オブジェクト

(図)G■ヨD変数とオブジェクト

aliphaibet = 1[abcdefgi'

nurn 二 10

age = 18

name = ‖TAKAHASH11:

変数の利用例として、直方体の表面積と体積を求めるプログラム (List

l.4)を見てみましょう。

alphabet = iabctlefg"

num = 10

alphabet

39

1.9 変数 :

・ abcdefg::

第1章 はじめてのRuby

List IIll area_volume.rb

x=10
y=20

z = 30

area = (x*y + y*z + z*x)* 2

volume = x * y * z

print ‖:表 F面積 =::′ area′ 11ヽ n"
print ''体 積 =‖ ′ volume′ :'ヽ n‖

このプログラムを実行すると次のようになります。

変数をまったく使わなければ、

print 〔[表 T面積=‖ ′ (10*20 + 20*30 + 30*10)* 2′ 11ヽ n‖

print il′体積 =‖ ′ 10*20*30′ ::ヽ n・

といったプログラムになってしまいます。これでは値を1つ変更するために

何力所も修正しなければいけません。この例はたったの2行なのでたいした

ことはありませんが、ちょっと大きなプログラムになると、そのような変更

をきちんと行うのは大変な手間となります。

また、変数には、値が何を表しているのかを明確にするという意味もあり

ます。したがって、わかりやすい名前をつけることが大切です。たとえば、

hoge = (fooxbar + barxbaz + bazxfoo) x 2

funi=fooxbar*baz

という調子では、何をやっているのかさっぱりわからないプログラムになっ

てしまいます。変数名には、「area」 や「v01ume」 など、そのままで意味のわ

かる単語などを使うように、ふだんから心がけましょう。

> ruby area_vollュコle.rb

表面積 =2200

体積 =6000

40

●・・1。9。l printメソッドと変数
printメ ソッドの動きをもう少し見てみましょう。

print i[ヲ受ヨ田積 =:1′ area′ l:ヽ n‖

このprintメ ソッドの呼び出しには「‖表面積=‖ 」「area」「
‖ヽ
n‖ 」の3つの

引数を指定しています。printメ ソッドはこれらの引数の値を順番に出力し

ます。

「"表面積=‖ 」は「表面積=」 という値を持った文字列なので、それがそのま

ま出力されます。「area」 はareaと いう変数に関連づけられたオブジェクト

になります。この例では2200という整数になっているので、printメ ソッド

はその値を出力します。

最後の「‖ヽn‖」は改行を表す文字列なので、そのまま出力します。

これらの3つの値をprintメ ソッドで処理した結果として「表面積=2200」

と改行が画面に表示されるというわけです。

printメ ソッドに渡す文字列は次のように書くこともできます。

print l!表 面積三十(area)ヽ nl〔

「‖表面積二|{area}ヽ n‖ 」が全体で1つの文字列になっています。「+{area)」

は文字列の中に変数areaの値を埋め込むという書き方です。文字列の中に

「#{変数名 }」 と書くと、文字列にデータを埋め込むことができます。計算結

果の変数名を埋め込む代わりに、「‖表面積二十{(x*y+y*z+z*x)*2}
nヽ‖ 」のように計算式を直接書いても同じ結果を得られます。

画面に結果を出力する場合は改行も出力することが多いため、putsメ ソッ

ドを使って次のように書けば、「 nヽ」 も必要なくなり、プログラムがすっきり

します。

●

puts ::表:面積二十{area}‖

1.9 変数 :

41

第1章 はじめてのRuby

コメントを書く

プログラムの中には、コメントを書くことができます。コメントは、プログ

ラム中に書かれていても、直接プログラムとしては扱われません。つまり、プ

ログラムの実行には何の関係もないもの、ということです。

「どうしてプログラムの中に、実行とは関係のない余計なものを書くのだ

ろう?」 と思われるかもしれません。確かに一度書いて実行すればそれっき

り、というプログラムであれば、コメントは特に必要ないでしょう。しかし、

一度書いたプログラムを何度も使い回すことも少なくありません。そのよう

なときに、

●プログラムの名前や作者、配布条件などの情報

●プログラムの説明

などを書いておくために、コメントが使われます。

コメントを表す記号は「十」です。行頭に「十」があれば、1行まるまるコメン

トになります。行の途中に「+」 があれば、「|」 の部分から行末までがすべて

コメントになります。また、行頭から始まる「=begin」 と「=end」 で囲まれた

部分もコメントになります。これは、プログラムの先頭や最後で、長い説明を

記しておくのに重宝します。

List l.5は 、先ほどのList l.4に コメントを追加したプログラムです。濃い

網掛けの部分がコメントになっています。

Lis,1日ロロD commentsamp:e.rb

=begin

「たのしいRuby第 6版」サンプル
コメントの使い方の例

2006/06/16作成

2006/07/01-部 コメントを追加
2019/01/01第 6版用に更新

=end

x=10 1横
y=20 +縦
z=30 +高 さ

42

1.1lC)

|・

|

#表面積と体積を計算する ・ ~. .

area = (x*y + y*z + z*x)* 2

volulne=x*y*z
十出力する

print ilラ 長:11積 =ll′ area′ ||＼ n‖

print :lf本積 =11′ volume′ |'ヽ n‖

なお、コメントは、先ほど挙げた目的以外にも、「この行の処理を一時的に

実行させないようにする」といったことにも使います。

C言語のコメントのように、行の途中だけをコメントにするような書き方

はありません。行末まで必ずコメントになります。

■

条件判断:if～ then～ end
これまで見てきたプログラムは、上から順に実行していくものでした。し

かし、そのようには実行したくない場合もあります。

●計算結果がプラスの数値のときはA、 マイナスかゼロのときはBを実

行したい (条件判断)

●同じ処理を10回繰り返したい (繰り返し)

このような、プログラムの実行順序などを変えたり、一部を実行させなく

するための仕掛けを制御構造といいます。

この節と次の節で、制御構造のうち「条件判断」と「繰り返し」を取りあげ

ます。

条件によって挙動が変わるプログラムを作るには、if文を使います。if文

の構文は、次のようになります。

if劣副牛 then

条件が成り立ったときに実行したい処理

end

条件には、値がtrueま たはfalseと なる式を書くのが一般的です。2つの

値を比較して、一致すればtrue、 一致しなければfalse、 などが条件にあたり

ます。

43

1.11 :条件半」断i:if^´ then´―end:

1.1l ia

第 1章 はじめてのRuby

数値の場合、たとえば大小関係の比較には、等号や不等号を使います。Ruby

では、「=」 は代入のための記号として使われるので、一致するかどうか調べ

るには「=」 を2つ並べた記号「==」 を使います。また、「≦」と「≧」には、「く=」

と「>=」 を使います。

このような比較の結果はtrueま たはfalseと なります。もちろん、trueは

その条件が成り立っている場合、falseは成り立っていない場合です。

p(2

p(1

p(3

p(3

p(3

p(3

p(3

p(3

== 2)

== 2)

>1)
>3)
>= 3)

く 1)

く 3)

く= 3)

+=>

+=>

十三>

+=>

|=>

十二>

十=>

十=>

true
false
true
false
true
false
false
true

文字列の比較もできます。この場合も「==」 を使います。同じ文字列なら

true、 異なる文字列ならfalseを返します。

p(‖ Ruby〕 1 == :IRuby・
)

p(‖ Rubyi: == i:Rubens‖)

値が異なっていることを判断するには、「!=」 を使います。これは「≠」の

意味ですね。

p("Ruby〕〔 != :!Rubens‖)

p(1 !=1)
#=> true
#=> false

では、これらを使って、条件判断文を書いてみましょう。変数aの値が10以

上の場合は「greater」、9以下の場合は「smaller」 と表示するプログラムは

List l.6のようになります。

44

#=> true
#=> false

1.11 条件判断 :if～ then～ end:

tist aED greater-smal ler.rb

a=20
if a >= 10 then

print "greater\n"
end

ifa<=9then
print. "sma11er\n"

end

thenは省略することもできます。その場合、if文は次のようになります。

if a >= 10

print !igreaterヽ ln‖

end

また、条件に一致するときとしないときで違 う動作をさせたい場合は、

elseを使います。次のような構文になります。

if 条{牛 then

条件が成り立つたときに実行したい処理

else

条件が成り立たなかつたときに実行したい処理

end

これを使って、List l.6を 書き直すと、List l.7の ようになります。

List ff,D greater-smaller_else.rb

a=20
if a >= 10

print i:greaterヽ n‖

else

print iismallerヽ ni:

end
・ . || |・

45

第1章 はじめてのRuby

繰り返し

同じことを何度か繰り返す方法はいくつもあります。ここでは基本的な

2つ を紹介しましょう。

●・el.12◆l wh‖e文
while文は、繰り返しを行うための基本的な構文です。なお、doは省略する

こともできます。

while繰 り返し続ける条件 do
繰り返したい処理

end

0例 :1から10までの数を順番に表示する

i=1

while iく =10
print i′ llヽ n・

i=i+1

end

●・。1.12。2 timesメソッド
繰り返しの回数が決まっているときは、「times」 というメソッドを使うと

シンプルにできます。なお、こちらの「do」 は省略できません。

繰り返す回数 .times do

繰り返したい処理

end

(Dl列 :「Al:work and no play mlakes Jack a duli boy.」 と

100行表示する

100. ti-mes do

print 'a11 work and no play makesJack a dul1 boy.\n'
end

l

|

46

1.12繰 り返し :

timesメ ソッドはイテレータと呼ばれるメソッドです。イテレータ

(iterator)は、Rubyの特徴的な機能です。「繰り返す (iterate)も の (_Or)」 と

いう意味です。オペレータ(OperatOr)が「演算 (operate)す るもの」として「演

算子」と呼ばれるのを真似るなら、さしずめ「繰り返し子」「反復子」というと

ころでしょうか。その名の通り、繰り返しを行うためのメソッドです。

Rubyは timesメ ソッド以外にも数多くのイテレータを提供しています。イ

テレータの代表はeachメ ソッドです。eachメ ソッドについては、第2章で配

列やハッシュと一緒に紹介します。

C

いろいろなRuby

Rubyの ようなプログラミング言語で書かれたプログラムを実行するための

ソフトウェアを「処理系」と呼びます。Rubyで書かれたプログラムを動作させ

る処理系は複数あります。

本書が対象としていて、付録Aでインス トール方法を紹介しているのは
「CRuby」 と呼ばれる処理系です。「C」 がついているのは、処理系本体がC言語
で開発されたためです。CRuby以外にも、Javaで作られたJRubyや、組み込み

向けのmruby、 Webブ ラウザで実行できるOpalな どがあります。

本書のサポートベージ (https://tanOshiiruby.github.iO/6/)で は、Opalを使っ

てRubyのサンプルコードを試せるようにしてみました。本書とあわせてご覧

ください。

コード print(''He‖ o,Ruby、 n・)

□
実行結果

⑭ -Opa!に よるサンプルコードの実行

'●''0. ''●
,

クリア

47

n
第∠章

a
便利なオブジェクト

第1章では、Rubyで扱う基本的なデータとして「文字列」と「数値」を取り

あげましたが、Rubyで扱えるオブジェクトはこれだけではありません。多く

のRubyの プログラムでは、もっと複雑なデータを扱うことになるでしょう。

Rubyでアドレス帳を作ることを考えてみます。アドレス帳に必要な項目は、

。名前

畿ふりがな

o郵便番号
o住所

藍電話番号

鬱メールアドレス

e SNSCDID

爾登録日

といったところでしょうか。これらはいずれも文字列で表現できそうです。

これらの項目をひとまとめにすることで、1人分の情報になります (図

2.1)。 さらに、交友関係の人たちの情報が集まって、アドレス帳全体のデータ

ができあがるわけです。

高橋征義

タカハシマサヨシ

123セ1567

○ふりがな

○郵便番号

OSNSの :D

○名前

○……

Twitter

@takahashim

@takahashirn

C,m項 目を結びつけてひとまとめにする

49

第2章 便利なオブジェクト

図2.1のようにデータとデータを合わせた1つのデータを表すには、これま

でに紹介した「文字列」や「数値」といった単純なオブジェクト以外に、デー

タの集まりを表現するデータ構造が必要になります。

この章では、「配列」と「ハッシュ」というデータ構造を紹介します。また、「正

規表現」という、文字列処理に使われるオブジェクトも紹介します。

ψ
配列やハッシュのようにオブジェクトを格納するオブジェクトを、コンテナ

やコレクションといいます。

配列・ハッシュ・正規表現はさまざまな場面で使われますが、より詳しい説

明はあとの章で行うことにして、ここではごくおおまかにイメージをつかむ

ことを目的に解説します。

酉己ダU(Array)

配列は「いくつかのオブジェクトをサ1頂序つきで格納したオブジェクト」と

して、もっとも基本的でよく使われるコンテナです。「配列オブジェクト」
「Arrayオ ブジェクト」などと呼ばれることもあります。

●・02■1 配列を作る
新しい配列を作るには、要素をカンマ区切りで並べて、「[]」 で全体を囲み

ます。まずは簡単な、文字列の配列を作ってみましょう。

names=[・ 小林‖′ 11林 ‖′ 11高野‖′ ‖森岡‖]

この例では、namesと いう配列オブジェクトが作られました。各要素とし

て「‖小林‖」「‖林‖」「‖高野‖」「‖森岡‖」という4つの文字列を格納していま

す。図示すると図2.2のようになります。

"小林" "林
‖

(D― 配列オブジェクト

2。1

■
―
―
―
―
‥
ｌ

ｉ
ｌ

ｌ

"森岡
‖

''高野
‖

50

2.1 配列 (Array):

●・・ 2。 1。2 配列オブジェクト
配列の要素となるオブジェクトが決まっていない場合には、「[]」 とだけ書
くと、空の配列オブジェクトができます。 a

names = []

これ以外にも配列の作り方はいくつかあります。詳しくは「第13章 配列
(Array)ク ラス」で説明します。

0)・
02.1.3 配列からオブジェクトを取り出す
配列に格納されたオブジェクトには、位置を表す番号であるインデックス

がつきます。このインデックスを使って、オブジェクトを格納したり、取り出

したりできます。

配列の要素を取り出すには、

配列名 [イ ンデックス]

という構文を使います。たとえば、namesという名前の配列オブジェクトを

次のように作ったとします。

names=[‖ 小林‖′ 1:林 "′ ‖高野‖′ 1'森岡‖]

配列namesの最初の要素である「小林」という文字列を取り出すには、

names [0]

と書きます。そのため、

print‖ 最初の名前は・′names[0]′ ::です。ヽ n“

最初の名前は小林です。

という文を実行すると、

51

第2章 便利なオブジェクト

と表示されます。同様に、names[1]は ‖林‖、nmes[2]は ‖高野・になります。

>irb― ―si口ple…lprompt
>>names=[・ 小林 "′ ::林 “′

=>[‖ 小林 ‖′ 11林 ‖′ 11高野・′

>> nalmeS[01

=> Iiイ 本ヽ本
ii

>>1la□neS[11

=>‖ 林
‖

>>nanes[21

=>‖ 高野
‖

>>names[31

=>‖ 森岡
‖

" *[fi[,]‖高野

‖森岡

,

幸

配列のインデックスは0か ら始まります。1で はありません。ですから、a[11

と書くと、aと いう配列オブジェク トの先頭の要素ではなく、2番 目の要素が

返ってきます。慣れるまでは間違いやすいかもしれません (慣れていても間

違いやすいところです)。 注意 してください。

Windowsの コマンドプロンプ トで日本語入カモー ドに切り替えるには、[半

角/全角]キ ーを押 します。

0002.1。4 配列にオブジェクトを格納する
すでにある配列に、新しいオブジェクトを格納することもできます。

配列の要素の1つを別のオブジェクトと置き換えるには、

配列名 [イ ンデックス]=格 納したいオブジェクト

という構文を使います。先ほどの配列 namesを 使ってみましょう。先頭に‖野

尻 "と いう文字列を格納するには、

names[0]= ::野 .尻 ‖

と書きます。たとえば、次のように実行すると、nmesの最初の要素が「野尻」
になることがわかります。

「
―
―

>irb… ―simple― lprompt
>>nこmes=["小 林 "′ “林

‖′ ::高野‖′

=>[‖ 小林
‖
′ |:林
‖
′ ':高野

‖
′ |:森岡

‖
]

>>n□les[0]=口 野尻“
=>|:野尻

‖

=>[‖ 野尻
‖
′ i:林
‖
′ i:高野

‖
′ li森岡

‖
]

,#E!,1

2.1 配列〈Array):

オブジェクトの格納先として、オブジェクトのまだ存在しない位置を指定

すると、配列の大きさが変わります。Rubyの 配列は、必要に応じて自動的に

大きくなります。

●・・2■5 配列の中身
配列の中には、どんなオブジェクトも要素として格納できます。たとえば、

文字列ではなく数値の配列も作れます。

a

num= [3′ 1′ 4′ 1′ 5′ 9′ 2′ 6′ 5]

1つの配列の中に、複数の種類のオブジェクトを混ぜることもできます。

mixed = [1′ 'i歌
‖
′ 2′ ::月民

〕l′
 3]

ここでは例を挙げませんが、「時刻」や「ファイル」といったオブジェクトも、

配列の要素にできます。

>irl)… …si珂,le―pro田lpt

>>names=[口 小林 田′田林田′ =:高野田′■森岡・ 1

=>[‖ 小林 ‖′ :〕 林 ‖′ lI高野 ‖′ :l森岡‖]

>>n`調濾S E41 ="野尻田

=>il野尻・

=>[‖ 小林 ‖′ :l林 ‖′ :i高野 ‖′ ‖森岡‖′ '1野尻 ‖]

53

0)・
02。
1。6 配列と大きさ

配列の大きさを得るには、sizeメ ソッドを使います。たとえば、配列array

に対して次のように使います。

第2章 便利なオブジェクト

array.s■ ze

sizeメ ソッドを使って、先ほどの配列オブジェクトnamesの大きさを調べ

てみましょう。

このように、配列の大きさが、数値として返ってきます。

●・02■7 配列と繰り返し
「配列の要素をすべて表示したい」とか、「配列の要素のうち、ある条件に

当てはまる要素についてはxxメ ソッドを、当てはまらない要素についてはyy

メソッドを適用したい」といったときには、配列の要素すべてにアクセスす

る方法が必要です。

Rubyに は、このためのメソッドとして、eachメ ソッドが用意されています。

eachメ ソッドは、第1章でも少し触れたように「イテレータ」というメソッド

の1つです。

eachメ ソッドは、次のように使います。

配列 .each do l変 数
|

繰り返したい処理

end

>irb― ―siコple―prompt

>> names = [‖ 小林 "′ "林 ‖′ ・ 7笥野 ::′

=>[‖ 小林 ‖′ :i林
‖
′ 11高野

‖
′ '1森岡

‖
]

>>na□es.sュ ze

=> 4

,#[88,]

54

2.1 配列 (Array)

eachのすぐ後ろの「do～ end」で囲まれている部分をブロックといいます。

そのため、eachの ようなメソッドは、ブロックつきメソッドとも呼ばれます。

ブロックにはいくつかの処理をまとめて記述することができます。

ブロックの冒頭には「 1変数 |」 という部分があります。eachメ ソッドは、

配列から要素を1つずつ取り出して、「1変数 |」 で指定された変数に代入して、

ブロックの中の処理を繰り返し実行していきます。

実際に使ってみましょう。配列namesに あるすべての要素を順番に表示し

てみます。

lnlと なっている部分の変数nには、繰り返しのたびに配列nanesの要素が

代入されます (図 2.3)。

1回目 2回目 3回目 4回目

a

n = '1」 本ヽ本
li n = '1本

本'l n = “驚等里予" . n = '躊栞‐岡"

(D"繰 り返しによるnの変化

配列にはeachメ ソッドのほかにもブロックを使うメソッドがたくさん用

意されています。配列の要素をまとめて処理する場合によく使います。詳し

くは「第13章 配列 (Array)ク ラス」で取りあげます。

> ュrb ……s■mple―proЩpt

>>熙mes=[田 小林 Ⅱ′田林口′・ 高野 "′ :i森岡‖]
=>[・ 小林 ‖′ ‖林 ‖′ i:高野 ‖′ 7i森岡 ‖]

=>[‖ 小林・′ :i林 “′ i[高野
‖
′ i:森岡・]コーーーー eachメ ソッドの戻り値

putsメ ソッドの実行結果

do～ endのように複数行にま
たがる場合は、endが入力さ
れるまで実行されません

>> names.each dlo lnl
?> puts n
>> end

小林

林

高野

森岡

55

ハッシュ (Hash)も よく使われるコンテナです。ハッシュでは文字列やシ

ンボルなどをキーにしてオブジェクトを格納します (図 2.4)。

D
address={name: l・ 高橋"′ furigana: 'iタ カ八シ

‖
′

Postal: '11234567"}

:第 2章 便利なオブジェクト

sym=

sym2 ‐

ハッシュ(Hash)

――>

―)・

{glGED t\y 2 t

●・・2。2。1 シンポルとは
シンボル (Symb01)と いうのは、文字列に似たオブジェクトで、Rubyがメ

ソッドなどの名前を識別するためのラベルをオブジェクトにしたものです。

シンボルは、先頭に「:」 をつけて表現します。

foo +こ れがシンボル「 :fOO」 を表す
:"foo・ +上と同じ意味

シンボルと同様のことはたいてい文字列でもできます。ハッシュのキーの

ように単純に「同じかどうか」を比較するような場合は、文字列よりも効率が

よいことが多いので、シンボルがよく使われます。

address

:name

: furigana

:postal

タカ八シ

1234567

56

高橋

2.2 ハッシュ(Hash):

なお、シンボルと文字列はそれぞれ互いに変換できます。シンボルにしo_s

メソッドを使えば、対応する文字列を取り出せます。逆に、文字列にto_sym

メソッドを使えば、対応するシンボルを得られます。

鯰‐‐畿。2.2.2 ハッシュを作る
新しいハッシュの作り方は、配列の作り方にちょっと似ています。配列と

違うのは、「 []」 の代わりに「{}」 で囲むところです。また、ハッシュでは、オ

ブジェクトを取り出すためのキーと、そのキーと対応させるオブジェクトを

「キー =>ォブジェクト」という形式で指定します。キーにはシンボル、文字列、

数値を使うのが一般的です。

song = {:title=>‖ Paranoid Android‖ ′ :artist=>‖ Radiohead")

person=(・ 名前‖=>‖ 高橋 ''′ '!仮名‖=>‖ タカハシ‖}
mark = {11=>“ Jackl:′ 12=>‖ Queen‖ ′ 13=>‖ King‖ 〕

シンボルをキーにする場合は「シンポル=>オ ブジェクト」だけではなく

「シンポル名:オブジェクト」という短い書き方が使えます。次の2つは同じ意

味になります。以降では、短い書き方を積極的に用います。

personl = (:name=>'lイ 麦‐藤 :i′ :furigana=>11コ
゛
トウ 1:}

person2 = {name: i;イ 麦藤 il′ furigana:[lゴ
｀
トウ :')

a
>irb――siЩple― pro回りt
>> sym= :foo

=> :foo

>>助m.to_s Iシ ンボルを文字列に変換

=> :ifoo‖

>>nfoo・ .to_型m l文 字列をシンボルに変換

=> :foo

57

:第 2章 便利なオブジェクト

●・02.2。3 ハッシュの操作
ノヽッシュからオブジェクトを取り出したり、オブジェクトを格納したりす

る方法も、配列にそっくりです。ハッシュに格納されたオブジェクトを取り

出すには、次の構文を使います。

ハッシュ名 [キー]

また、オブジェクトを格納するには次の構文を使います。

ハッシュ名 [キー]=格納したいオブジェクト

配列と違って、キーには数値以外のオブジェクトも使えます。シンボルを

キーにしたハッシュを操作してみましょう。

●・・2.2.4 ハツシュの繰り返し
eachメ ソッドを使って、ハッシュのキーと値を1つずつ取り出し、すべて

の要素を処理することができます。配列の場合はインデックスの順に要素を

取り出しましたが、ハッシュの場合は「キー」と「値」の組を取り出すことに

なります。

ハッシュ用のeachは次のように書きます。

>irlb― -8imple―prCmpt

>>address=Cnttle:“ 高橋 "′ furigana8::タ カハシ n)

こ>{:name=>‖ 高橋 ‖′ :furigana=>‖ タカハシ‖}
>> addreSS[:nt口me]

=>[1高橋 ‖

>> addreSSI:furigana]

=>|:タ カハシ
‖

>> addreSs[:tel]= ::000… 1234… 5678'1

=> 1'000-1234-5678ii

>> address

=> (:name=>i!高 橋 ;i′ :furigana=>':タ カハシ |:′ :tel=>・ 000-1234-567811)

58

2.3 正規表現 :

ハッシュ.each do lキーの変数′値の変数
|

繰り返したい処理

end

さっそく使ってみましょう。

eachメ ソッドによって、ハッシュaddresSが持っている項目名とその値を

表示するputsメ ソッドが繰り返し実行されるのがわかります。

a

0)正規表現
Rubyで文字列を処理するときには、正規表現 (Regular Expression)と いう

ものがよく使われます。正規表現を使うと、

●文字列とパターンの一致 (マ ッチング)を調べる

oパターンを使った文字列の切り出し

などを手軽に行えます。

正規表現は、Perlや PythOnな ど、Rubyの先輩格にあたるスクリプト言語

でつちかわれてきた機能です。Rubyも その流れを受け継いでいて、言語に組

み込みの機能として、手軽に正規表現を扱えます。文字列処理はRubyの得意

分野ですが、それはこの正規表現のおかげでもあります。

> irb ―…silm!plo… iprompt

>>address E{name8・ 高橋 "′ furigana8 1:タ カハシロ)

=>(:name=>‖ 高橋
‖
′ :furigana=>‖ タカハシ

‖
}

>>adaress.each d。 lkey′ ‐ luel

?> putS 口+(■Oy)3 +{Value}::

>> end

name:高橋
furigana: タカハシ

=>(:name=>‖ 高橋
l'′ :furigana=>‖ タカハシ

‖
}

59

/cde/ =～ ::abcdefgh‖

:第 2章 便利なオブジェクト

●・・2。3el パターンとマツチング
「○○という文字列を含んだ行を表示したい」とか、「○○と××の間に書
かれた文字列を抜き出したい」などといった、特定の文字列のパターンに対

する処理を行いたい場合があります。文字列がパターンに当てはまるかどう

かを調べることをマッチングといい、パターンに当てはまることを「マッチ

する」といいます。

このような文字列のパターンをプログラミング言語で表現するために使わ

れるのが、正規表現です (図 2.5)。

llabcdefghi:

ll

/cde/

(D― マッチングの例

「正規表現」という言葉から、何やら難しげな雰囲気が漂う、硬そうな印象

を持たれるかもしれません。実際のところ正規表現の世界は何かと奥が深い

のですが、単純なマッチングに使う分にはあまり身構える必要はありません。

まずは、そういうものがあるということを覚えておいてください。

正規表現オブジェクトを作るための構文は、次の通りです。

ノパターンノ

たとえば「Ruby」 という文字列にマッチする正規表現は、

/Ruby/

と書きます。そのままですね。アルファベットと数字からなる文字列に一致

するパターンを書く分には、「そのまま」で大丈夫です。

正規表現と文字列のマッチングを行うためには、「=～」演算子を使います。

同じオブジェクト同士が等しいかどうかを調べる「==」 に似ています。

正規表現と文字列のマッチングを行うには、

ノパターンノ="マ ッチングしたい文字列

と書きます。英数字や漢字だけのパターンを使った場合は、パターンの文字

列を含んでいればマッチし、含んでいなければマッチしません。マッチング

|

2.3 正規表現
:

が成功したときは、マッチ部分の位置を返します。文字の位置は、配列のイン

デックスと同様に、0か ら数えます。つまり、先頭文字の位置は0と表されます。

一方、マッチングが失敗だとnilを返します。

正規表現の右側の「/」 に続けて「i」 と書いた場合には、英字の大文字・小

文字を区別せずにマッチングを行うようになります。

これ以外にも、正規表現にはさまざまな書き方や使い方があります。詳し

くは「第16章 正規表現 (Regexp)ク ラス」で説明します。

a
>irb‐‐si■ple… lprol嘔)t
>> ノIRulbyブ =・・ mYet A:nother Ruby Hacker′ ‖

=> 12

>> ′Ruby′ =″ "RIuby●

=> 0

>> ′RIuby′ =″ 口Diamondn

=>nil

>irb――simple― lpro珂pt
>> ′R:ul)y′ =・・ “ヱ1ュby"

=> nil

>> ノRuby′ =‐ “RUBYロ

=> nil

>>/Ruby′ i=“ "ruby“

=> 0

>> ′Rubyノ i =‐ "RtrBY=:

=> 0

>> ′Rubyソ i =“ nrubY0

=> 0

61

第2章 便利なオブジェクト

n‖とは ?

nilは オブジェク トが存在しないことを表す特別な値です。正規表現による

マッチングの際、どこにもマッチしなかったことを表す場合のように、メソッ

ドが意味のある値を返すことができないときにはnilが返されます。また、配

列やハッシュからデータを取り出す場合に、まだ存在 していないインデックス

やキーを指定すると次のようにnilが得 られます。

if文 やwhile文は、条件を判定するときにfalseと nilを「偽」の値とし

て扱い、それ以外のすべての値を「真」として扱います。したがって、trueか

falseの どちらかを返すメソッドだけではなく、「何らかの値」もしくは「nil」

を返すメソッドも、条件として使うことができます。

次の例は配列の中の「林」という文字を含む文字列だけを出力します。

List print_hayashi.rb

names = [, rjrft', " ffi',
names.each do lnamel

it /tfi/ =- name

puts name

end

end

‖高野 森岡‖]

> irb --siq,1e-prmpt
>> item = {trna.metr=>tr)V>l: n, npricett=>610}

=> {,'name,'=>,)V> i ,,, ',price,,=>610}
>> itenIntaxnl
=> nil

> ruby print_hayashi.rb
,J.tt

f

実行例

62

コマンドを作ろう 日

この章では、コマンドラインからデータを受け取 り、処理を行う方法を紹

介します。また、第 1部のまとめとして、Unixの grepコ マンドもどきを作成

しましょう。Rubyプログラミングのおおまかな流れをつかんでください。

コマンドラインからの
データの入力

今まで行ってきたことは、データを画面に出力することでした。「出力」が

あればその反対、「入力」も試してみたくなります。そもそも、普通に使える

コマンドを作るにはプログラムに動作を指示する方法を知らなければいけま

せん。そこで、Rubyの プログラムにデータを入力してみましょう。

プログラムにデータを与えるには、コマンドラインを利用する方法が一番

簡単です。コマンドラインの情報をデータとして受け取るには「ARGV」 とい

う配列オブジェクトを使います。このARGVと いう配列は、コマンドラインか

らスクリプトの引数として与えられた文字列を要素として持っています。

List 3.1で確認してみましょう。コマンドラインでスクリプトに引数を指

定するときは、1つずつ空白で区切って入力してください。

List m puts_argv.rb

puts
puts
puts
puts
puts

:1最
初の引数 :十 (Nヽ GV[0]}‖

・2番目の引数 :+(Nヽ GVll]}‖

“3番目の引数 :十 {ARGV[2]}‖
‖4番目の引数 :+{ARGV[3]}‖
‖5番目の引数 :十 {鱚 GヽV[41)‖

第3章

13111

63

> ruby puts_ar.gverb lst 2nd 3rd 4th 5th

最初の引数 :lst

2番 目の引数 :2nd
3番 目の引数 :3rd
4番 目の引数 :4th
5番 目の引数 :5th

第3章 コマンドを作ろう

配列ARGVを 使えば、データをプログラムの中にすべて書いておく必要はな

くなります。配列なので、要素を取り出して変数に代入することもできます

(List 3.2)。

tist GED happy-birth.rb

name = ARGV[0]

puts "Happy Birthday, #{name}!"

引数から取得したデータは文字列になっているので、これを計算に使うと

きは数値に変換する必要があります。文字列を整数にするには、to_iメ ソッ

ドを使います (List 3.3)。

List GFI arg-arith.rb

num0

numl-

puts
puts
puts
puts

= ARCV[0].tO_i

=ARGV111.to_i
‖十{numO〕 + +〔num■ }二 |{numO + numl}‖

'1+(numO}― |{numl)= |(numO ― numl}1
‖+(numO}*|(numl}二 |〔nmO*numl}‖
‖十{numO)/1(numl}=十 {numO/numl).

> ruby happy_birth.rb Ruby

Happy Birthday, Ruby!

実行例

64

|

> ruby.arg_arith.rb 5 3

5+3=8
5-3=2
5*3=15
5/3=1

実行例

3.2 ファイルからの読み込み

q

0フアイルからの読み込み

ψ

Rubyのスクリプトが入力として受け取れるデータは、コマンドライン引数

だけではありません。ファイルからデータを読み込むこともできます。

Rubyの ソースコー ドには、「NEWSフ ァイル」とも呼ばれる、Rubyの 変更
点が記されたファイルが同梱 されています。Ruby 2.6.0の 変更点であれば、

dOcsデ ィレクトリ内の「NEWS-2.6.0」 というファイルです。

このファイルには、以下のように変更点が英語で記載されています。

== Changes since the 2.5.O release

* <code>$SAFE</code> now is a process g1obaI state and can be
set to 0 agaj.n. [Feature +14250]

このファイルを使って、Rubyでのファイル操作の練習をしてみましょう。

Rubyの ソースコー ドは、Rubyの 公式 ウェブサイ トから入手できます。
NEWSフ ァイルは、GitHubの Rubyリ ポジ トリからも取得可能です。
。Rubyの ソースコー ドダウンロー ド

httpS://WWW.ruby」ang.org/ia/downioads/

・GitHub上 (DNEヽA′S‐2.6.0フ ァイル

h■pS://raVV.githubuSerCOntent.COrn/ruby/ruby/trunk/doc/NEiVVS‐ 2.6.0

==二 Language changes

第3章 コマンドを作ろう

●・03.2.1 ファイルからテキストデータを読み込んで
表示する

まず、単純にファイルの中身をすべて表示するプログラムを作ってみまし

ょう。ファイルの中身を表示するプログラムは、次のような流れになります。

①ファイルを開く

②ファイルのテキストデータを読み込む

③読み込んだテキストデータを出力する

④ファイルを閉じる

この流れを、そのままプログラムにしてみましょう (List 3.4)。

List GED read-text.rb

1: filename = ARGV[01

2: file = File.Open(filename)l ①

3: text = file.read 十 ②

4: print text 十 ③

5: file.close + ④

今までの例に比べると、ちょっとプログラムらしくなってきました。1行ず

つ説明します。

1行日では、filenameという変数にコマンドラインから受け取った最初の

引数の値ARGV[0]を代入しています。つまり、変数filenameは 読み出したい

ファイルの名前を示していることになります。

2行日で使っている「File.open(filename)」 は、filenameと いう名前の

ファイルを開き、そのファイルを読み込むためのオブジェク トを返 します。

……といわれても、「ファイルを読み込むためのオブジェクト」というのが何

を意味しているのかよくわからないという方もいるかもしれません。あまり

気にせず、ここではそういうオブジェクトがあるとだけ思ってください。詳

しくは「第17章 IOク ラス」で説明します。

この「ファイルを読み込むためのオブジェクト」が実際に使われるのは3

行日です。ここでは、「read」 というメソッドでデータを読み込み、その結果

をtextに代入しています。ここでtextに代入されたテキストデータが、4行

日で出力されます。printメ ソッドは今までにも何度も使ってきたので、も

66

3.2 ファイルからの読み込み

うすっかりおなじみのことでしょう。そして、最後に「close」 というメソッ

ドを実行します。これは、開いたファイルを開じるためのメソッドです。

このプログラムを次のように実行すると、指定したファイルの内容をその

まま一気に表示します。

>ruby read_textrb表示したいファイル名

もっとも、ファイルを読み込むだけであれば、Flle.readメ ソッドを使 う

と簡単に書けます (List 3.5)。

List― read」ext_simp:e.rb

1: filename = ARGV[0]

2: text = File.read(filename)
3: print text

File.readメ ソッドは、先ほどの①、②と④をまとめて行い、ファイルの内

容を返すものです。詳しくは「第17章 IOク ラス」で説明します。
さらに、変数が不要であれば、1行でも書けます (List 3.6)。

L:゛ CD read_text_one‖ ne.rb

1: print File.read(ARGV[01)

0)。
蓼3.2。2 ファイルからテキストデータを1行ずつ
読み込んで表示する

ここまでで、まとめて読み込んだテキス トデータを表示することができる

ようになりました。しかし、先ほどの方法では、

oフ ァイルのデータをまとめて読み込むのに時間がかかる
●一時的にすべてのデータをメモリにためることになるので、大きなフ

ァイルの場合に困ることがある

といった問題があります。

100万行あるようなファイルでも、本当に必要なのは最初の数行だけ、とい

うこともあります。そのような場合、すべてのファイルを読み込むまで何も

しない、というのは、時間とメモリを無駄に使ってしまうことになります。

C

67

:第 3章 コマンドを作ろう

これを解決するには、データをすべて読み込んでから処理を開始するとい

うアプローチをやめる必要があります (図 3.1)。

●データをすべて読み込んでから処理する(f‖ e.read)

フアイル全体を収める

メモリ空間が必要

●1行ずつ読み込んで処理する(f‖ e.each_!ine)

メモリ空間は

1行分でよい

(璽)― テキストの読み込み方の違い

List 3.4を 、1行読み込むたびに出力するように変更してみましょう (List

3.7)。 そうすれば、使われるメモリはその行の分だけで済むようになります。

list (GED read-line.rb

1: filename = ARGVt0l

2: file = File.open(filename)
3: file.each-Iine do llinel
4t print line
5: end

6: file.close

→
→
→
→

68

Ｔ
‥

‥

‥

1、 2行日は、List 3.4と 同じです。3行日以降がちょっと変わっています。3

行日から5行日はeach_lineメ ソッドを使っています。

each_lineメ ソッドは、第2章で紹介したeachメ ソッドに似たメソッド

です。eachメ ソッドは配列の各要素をそれぞれ処理するメソッドでしたが、

each_lineメ ソッドはファイルの各行をそれぞれ処理するメソッドです。こ

こではファイルを1行ずつ読み込み、その行の文字列 lineを printメ ソッド

で出力することで、最終的にすべての行が出力されています。

麒)・。3.2.3 フアイルの中から特定のパターンの行のみを
選んで出力する

Unixには、grepと いうコマンドがあります。これは、入力されたテキスト

データの中から、正規表現で指定した特定のパターンにマッチする行を出力

するコマンドです。これに似たコマンドを作ってみましょう (List 3.8)。

Li軒
―
simple=rep.rb

1: pattern = Regexp.new(ARGV[o])

2: filename = ARcVtll
3:

4: fi-1e = File.open(filename)
5: file.each_line do llinel
6: if pat.tern =- line
7: print line
8: end

9: end

10: file.close

List 3.8を 実行するには、次のように入力します。

>ruby simp:e_grep.rbパ ターン ファイル名

少し長くなったので、1行ずつ見ていきましょう。

プログラムを実行する際にコマンドラインで与えた引数は、ARGV[0]と

ARGV[1]に 代入されています。1行目では、1つ 目の引数ARGV[01を 元に正規

表現オブジェクトを作り、変数patternに 代入します。「Regexp.new(s″)」

という形で、引数の文字列 s″から正規表現オブジェクトを作ります。そして

2行日では、2つ 目の引数ARGV[1]を ファイル名に使う変数 filenameに代入

します。

a

69

3.2 ファイルからの読み込み :

第3章 コマンドを作ろう

4行 日では、ファイルを開き、ファイルオブジェクトを作り、これを変数

fileに代入します。

5行 日はList 3.7と 同じです。1行ずつ読み込んで変数lineに 代入し、8行

日までを繰り返します。

6行 日はif文になっています。ここで、変数lineの値である文字列が変数

patternの値である正規表現にマッチするかどうか調べます。マッチした場

合、7行 日のprintメ ソッドでその文字列を出力します。このif文 にはelse

節がないので、マッチしなかった場合は何も起こりません。

すべてのテキストの読み込みが終わったらファイルを開じて終了します。

たとえば、ファイルNEWSフ ァイルから「Array」 という文字列が含まれて
いる行を出力したい場合には、次のように実行します。

> ruby simple_grep.rb Array NEWS-2.5.0

Arrayに関する変更点が出力されます。

メソッドの作成

今までいくつかのメソッドを使ってきましたが、自分で作ることもできま

す。メソッドを作成する構文は次のようになります。

def メソッド名
メソッドで実行したい処理

end

「Hello′ Ruby.」 と表示するメソッドを作ってみましょう。

ilef he1lo
puts "He11o, Ruby. "

end

この3行だけを書いたプログラムを実行しても、何も起こりません。hello

メソッドが呼び出される前に、プログラムが終わってしまっているからです。
‐‐「
―

―

70

Ａ
●
■
●

そのため、自分で作成したメソッドを実行するコードも必要になります。

Usr (EED hel lo_ruby2.rb

1: def hello
2: puts "He11o, Ruby. "

3: end

4:.

5: hel1o ()

「he1lo()」 というメソッド呼び出しにより、1～ 3行 日で定義された

helloメ ソッドが実行されます。

a

別のファイルを取り込む

プログラムの一部を、別の新しいプログラムの中で使い回したいことがあ

ります。たとえば、あるプログラムで使った自作メソッドを、別のプログラム

で利用したい、といった場合です。

たいていのプログラミング言語では、別々のファイルに分割されたプログ

ラムを組み合わせて、1つのプログラムとして利用するための機能を持って

います。他のプログラムから読み込んで利用するためのプログラムを、ライ

ブラリといいます。

プログラムの中でライブラリを読み込むには、requireメ ソッドまたは

require_relativeメ ソッドをイ吏います。

remire使いたいライプラリのファイル名

または、

remire_relative使 いたいライプラリのフアイル名

使いたいライプラリのファイル名の「.rb」 は省略することができます。

> rtby heIlo_ruby2.rb
He11o, Ruby.

実行例

3.4 別のフアイルを取り込む :

3.4
ヽ

71

第3章 コマンドを作ろう

requireメ ソッドを呼ぶと、Rubyは引数に指定されたライブラリを探して、

そのファイルに書かれた内容を読み込みます (図 3.2)。 ライブラリの読み込

みが終わると再び、requireメ ソッドの次の行から処理を再開します。

use_hello.rb he‖o.rb

l def hello

print〈 "H。 1lo′ ruby.ヽ ni:)

end

(□)― ライブラリとそれを読み込むプログラム

requireメ ソッドは既存のライブラリを読み込むときに使います。ライブ

ラリ名を指定するだけで、Rubyと 一緒にインス トールされたライブラリな

ど、あらかじめ決められた場所から探し出して読み込んでくれます。それに

対してrequire_relativeメ ソッドは、実行するプログラムが置かれたディ

レクトリ (フ ォルダ)を基準にしてライブラリを探します。複数のファイルに

分けて記述したプログラムを読み込むときに便利です。

実際の例として、先ほどのsimple_grep.rbの 検索部分をライブラリとして、

他のプログラムから使ってみましょう。ライブラリといっても別に変わった

書き方は必要ありません。simple_grepメ ソッドを定義したファイル (List

3.10)と 、それを利用するプログラム (List 3.11)を同じディレクトリに作成

します。

Ust (Ef,ED grep.rb

def simple_grep (pattern, filename)
file = File.open(fi.lename)
file.each-line do llinel

if pattern =- line
print line

end

end

fi1e. close
end

requ,ire 'rhe11otr

hel1o ()

処理の流れ

V

72

tist (Ef,ID use-grep.rb

require_relative "grep"

3.4 別のファイルを取り込む :

十grep.rbの読み込み (「 .rb」 は不要)

+simple_grepメ ソッドの起動

pattern = Regerc.new(ARGVt0l)

filename = ARGV[1]

simple-grep (pattern, f ilename) C
simple_grepメ ソッドは検索するパターンとファイル名が必要なので、こ

れらをpatternと filenameと いう引数で受け取るようにします。

grep.rbで定義したsimple_grepメ ソッドを、use_grep.rbで呼び出してい

ることに注目してください。List 3.8の実行例 (p.70)と 同様に、NEWSフ ァ

イルから「Array」 という文字列が含まれている行を出力したい場合には、次

のように実行します。

Rubyに は、たくさんの便利なライブラリが標準で付属しています。これら

を利用する場合にrequireメ ソッドを使います。

たとえば、dateラ イブラリを読み込むことで、今日の日付を求めるDate.

todayメ ソッドや特定の日付のオブジェクトを生成するDate.newメ ソッド

などを利用できるようになります。Rubyの誕生日である1993年 2月 24日 か

ら今日までの日数を求めるプログラムは次のようになります。dateラ イブラ

リについては第20章で詳しく説明します。

require "date"

days E Date.today ― Date.neW(1993′ 2′ 24)

puts(days.to_i) 十三> 9472

> nrby use-grep.rb Array NEWS-2.5.0

73

第3章 コマンドを作ろう

ppメ ソッド

pメ ソッドと同じような目的に使われるメソッドとして、ppメ ソッドがあり

ます。ppは「Pretty Print」 の略です。

List p_and_pp.rb

bOokS = [

{title:

{title:

(title:

]

p books

pp books

‖猫街‖′author:〕 '萩原朔太郎‖)′
‖猫の事務所“′author:‖ 宮沢賢治

‖
}′

‖猫語の教科書‖′author:':ポール・ギャリコ・)′

> ruby p_and」 porb

[(:title=>':`苗 惰庁ii′

:author=>‖ 官
・
沢賢治 ‖

ギャリコ・)]

[{:title=>:l猫 街 :l′ |

:author=>‖ 萩原朔太郎‖}′ {:title=>‖ 猫の事務所 "′

}′ (:title=>‖ 猫語の教科書 "′ :author=>・ ポール・

〔:title=>‖ 猫の事務所 ‖′ :author=>‖ 宮沢賢治 ‖}′

{:title=>‖ 猫語の教科書 ‖′ :authOr=>‖ ポール・ギャリコ‖}]

:author=>li萩原朔太郎 :i}′

pメ ソッドとは異なり、ppメ ソッドはオブジェク トの構造を表示する際に、

適当に改行を補って見やすく整形してくれます。ハ ッシュの配列のように、入

れ子になったコンテナを確認する場合に利用するとよいでしょう。

74

||■■|■ 1. ||

「ようやく ようやく
これでスタートラインだ

ここからはじまるんだ

ここから

神様との 神様との対話が」

一 竹本健
治『入神』

第2部

基礎を
1昇Iぎう
プログラムの書き方には

いくつかの約束事があります。

Rubyにおけるプログラミングの
ル…ルを学んでください。

■

く

「
　
　
　
『

』

第4章 C

す

この章では、Rubyで データを扱うための基礎として、次の内容を説明しま

oオブジェクト
饉クラス

蟻変数

艤定数

オブジェクトと変数・定数

オブジェクト

Rubyではデータを表現する基本的な単位をオブジェク トといいます。

オブジェクトにはさまざまな種類があります。その主なものをいくつか紹

介しましょう。

○ 数値オブジェクト

「1」「-10」「3.1415」 などの、数を表すオブジェクトです。また、行列を表

すオブジェクトや複素数を表すオブジェクト、あるいは数式を表すオブジェ

クト、などもあります。

○ 文字列オブジェクト

「‖こんにちは‖」「‖hello‖ 」などの、文字の並びからなるオブジェクトです。

○ 配列オブジェクト.ハツシュオブジェクト

複数のデータをまとめるためのオブジェクトです。

77

:第 4筆 オブジエクトと変数・定数

○ 正規表現オブジェクト

マッチングのためのパターンを表すオブジェクトです。

○ 時刻オブジェクト

「2019年 2月 24日午前9時」といった時刻を表すオブジェクトです。

○ ファイルオブジェクト

ファイルそのもの、というよりは、ファイルヘの読み書きを行うためのオ

ブジェクトです。

○ シンポルオブジェクト

Rubyがメソッドなどの名前の識別に使うラベルを表すオブジェクトです。

これ以外にも、「範囲オブジェクト」「例外オブジェクト」などがあります。

クラス

クラスとはオブジェクトの種類を表すものです。

オブジェクトがどのような性質を持つのかは、オブジェクトが属するクラ

スによって決められます。これまでに登場したオブジェクトとクラスの対応

を表4.1に示します。

目mオ ブジェクトとクラスの対応表

オブジェクト クラス

数値 Numeric

文字列 String
酉己夕|| Array
ハ ッシュ Hash

正規表現 Regexp

ファイル File

シンボル Symbol

78

ψ
××クラスのオブジェクトのことを、「××クラスのインスタンス」という

ことがあります。Rubyの場合、すべてのオブジェクトは何かのクラスのイン

スタンスなので、インスタンスという言葉はオブジェクトとほとんど同じ意

味で使われています。

一方、あるオブジェクトが、あるクラスに属していることを強調する場合に

は、「インスタンス」のほうがよく使われます。たとえば「文字列オブジェク

ト‖foo‖ はStringク ラスのインスタンスである」といいます。

表4.1のクラスは、Rubyに 組み込まれているものですが、自分で新しいク

ラスを定義することもできます。

クラスについては、第8章で詳しく見ていきます。

変数

「1.9 変数」(p.39)で説明した通り、変数とはオブジェクトにつける名札

のようなものです。

Rubyに は、4種類の変数があります。

●ローカル変数 (局所変数)

oグローバル変数 (大域変数)
oイ ンスタンス変数
●クラス変数

ある変数がどの種類の変数なのかは、変数名で決まります。

●ローカル変数

先頭がアルファベットの小文字か「_」 で始まります。

oグローバル変数
先頭が「S」 で始まります。

●インスタンス変数

先頭が「C」 で始まります。

●クラス変数

先頭が「Ce」 で始まります。

C

この4つ のほかに擬似変数と呼ばれる変数があります。擬似変数は「nil」

79

4.3 変数 :

4.3

―

　　「
―

―
「

第4章 オブジェクトと変数・定数

「true」「false」「self」 など、特定の値を指し示すために予約された名前で、

代入することによって値を変更することはできません。見た目が変数のよう

ですが、挙動が変数とは違うため、「擬似変数」と呼ばれています。

0)・・4。3.1 ローカル変数とグローパル変数
変数の中でまず覚えるべきものは、ローカル変数です。

「ローカル」というのは、変数の有効な範囲 (こ れは「変数のスコープ」とも

いいます)が局所的 (ロ ーカル)だからです。つまり、あるところで使われて

いる変数の名前を、別のあるところで使っても、それが無関係なところであ

れば、違う変数として扱われる、ということです。

ローカル変数の反対の変数は、グローバル変数です。グローバル変数は、プ

ログラム中のどこで使われても、同じ名前であれば、必ず同じ変数として扱

われます。

たとえば、あるプログラムの中から別ファイルに書かれているプログラム

を読み込んで、自分のプログラムの一部として実行するとしましょう。この

とき、元のプログラムと別ファイルのプログラムの中に、同じ名前の変数xが

あってもローカル変数なので別の変数として扱われます。しかし、同じ名前

の変数Sxは グローバル変数なので、同じ変数として扱われます。

List 4.1と List 4.2は 変数のスコープを調べるプログラムです。scOpetest.

rbの 中では、Sxと xの どちらも0に しておいてから、sub.rbを読み込みます。

sub.rbでは2つの変数をどちらも1に しています。そしてscOpetest.rbに 戻り、

6行日と7行日でそれぞれの変数の値を出力してみると、xは元のまま、Sxだ

けが1に なります。これは、scOpetest.rbと sub.rbと の間で、Sxは同じ変数と

して、xは別々の変数として扱われているからです (図 4.1)。

tist trlID scopetest.rb

1: $x = 0

2;x=0
3:

4: require_relative
5:

6: p $x #=> 1"

7;px #=> 0

:isub il

80

変数4.3

tist (GED sub.rb

1:Sx=1 +グ ローバル変数に代入
2:x=1 1ロ ーカル変数に代入

(3-ロ ーカル変数とグローバル変数

一般的に、グローバル変数は好まれません。グローバル変数はプログラム

全体のどこからでも変更できるため、大きなプログラムではグローバル変数

を利用することによって、プログラムが必要以上に複雑になったり、プログ

ラムの流れを追ったり修正を加えたりするのが大変になったりするからで

す。本書でも、グローバル変数の説明はほとんど行っていませんし、例として

も使いません。

ローカル変数は、最初に代入されたときに初期化されます。初期化されて

いないローカル変数を参照しようとするとエラーになります。

同じ変数

異なる変数

raquire_reJ.ative

p$x
px

=0

=0

xのスコープ xのスコープ

Sxのスコープ

NameError (undefined local variable or method 'x' for main:Object)

> irb ……simple― proコlpt

>>x+1
Traceback (most recent call last) :

実行例

81

= 1

=1

第4章 オブジェクトと変数・定数

なお「インスタンス変数」と「クラス変数」は、クラスを定義するときに使

う変数なので、「第8章 クラスとモジュール」で詳しく説明します。

定数

定数は、変数と同様に、あるオブジェクトにつける「名札」の働きをします

が、変数とは違って、一度代入したあとでもう一度同じ定数に代入すると警

告されます。プログラム上で何度も参照される変更しない値に名前をつける

ときに使います。

先頭がアルファベットの大文字で始まるものが定数となります。たとえ

ば、Rubyの処理系のバージョン (RUBY_VERS10N)や プラットフォームの名前

(RUBY_PLATFORM)、 コマ ン ドラ イ ン引 数 の配 列 (ARGV)な どが、組 み 込 み 定

数として与えられています。このような、あらかじめ定義されている定数に

ついては、「B.3.2 組み込み定数」(p.509)でまとめて紹介します。

>irb― ―sユ lmple―iprottpt
>> TEST = 1

=> 1

>> TEST E 2

(irb):2: warning: already initialized constant TEST

(irb):1: warning: previous definition of TEST was here

=> 2

|

82

4.5 予約語
:

予約語 C
表4.2の語は、名前として使う場合に制限があります。こういった使用が制

限されている名前を予約語といいます。うっかり「end」 や「next」 といった

変数を作ると、次のように構文エラーになってしまいます。

明匡D Rubyの予約語一覧

> irb --simple-pro@t
>>end=1
Traceback (most recent call last)

SyntaxError ((irb):1: slmt.ax error, uner<pected end)

ill=',

LINE ENCODING FILE BECIN END

alias and begin break case

class def do else
elsif end ensure fa1 se for

if in module next nil

not or redo rescue retry
return self super then true
undef unless unt■ 1 when 、″hile

y■ eld

4.5

defined?

83

第4章 オブジェクトと変数・定数

多重代入

ここまで「変数 目値」の形式で変数に代入を行うと説明しましたが、複数

の変数への代入を1つの式で一度に行うこともできます。この機能を多重代

入といいます。多重代入が使われる場面はいろいろありますが、いくつかか

いつまんで紹介します。

日ヽ」・・4.6.1 いくつかの代入をまとめて行う
組になっている変数をまとめて代入したい場合です。

first = 1

second = 2

third = 3

という代入は、次のように書けます。

first′ secOnd′ third 二 1′ 2′ 3

こうすると、firstに 1が、secondに 2が、thirdに 3が それぞれ代入され

ます。それぞれにあまり関係のない変数同士を多重代入するとプログラムが

わかりにくくなるので、まとめるのは関係のある変数にするとよいでしょう。

また、受け取る側の変数に1つ だけ「*」 をつけておくと、その変数には余っ

た値の配列が代入されます。

f irst., second, 'rrest = 1, 2, 3, 4, 5

p Ifirst, second, rest] #=> [1, 2, 13, 4, 5))
first, *second, rest = 1, 2, 3, 4, 5

p lfirst, second, rest] #=> [1, 12, 3, 4], 5l

84

4.6 多重代入

の「・・4。6.2 変数の値を入れ替える
2つの変数 aと bがあり、この値を入れ替えることを考えます。通常は、入れ

替えの途中で値をなくすことがないようにtmpな どの一時変数を使います。

a′ b=0′ 1

tmp=a +aの 値をtmpに逃しておいて

a=b +aに bの値を代入する

b二 tmp l最 初のaの値をbに代入する
p la′ b] +=> [1′ 01

多重代入を使 えば、これを 1行で済ませることができます。

a′ b=0′ 1

a′ b=b′ a +aの 値をbに、bの値をaに代入する
p[a′ b] +=>[1′ 0]

0)・
04。
6。3 配列の要素を取り出す

配列を代入するときに左辺に複数の変数があると、自動的に配列の要素を

取り出して多重代入が行われます。

ary = [1′ 2]

ｙｒａｂ

　

ａ
　

ｂ

ａ

　

ｐ

　

ｐ

|=> 1

+=> 2

配列の先頭の要素だけを取り出したい場合には、次のように書くこともで

きます。

ary = [1′ 2]

a′ _ ary
p a +=> 1

85

第4章 オブジェクトと変数・定数

左辺の変数のリストが「′」で終わるのは、なんとなく変数を書き忘れたよう

にも見えて不安な感じがする場合、「a′ _=ary」 というように、ダミーの
変数として「_」 という1文字のローカル変数を使うこともあります。

,

変数名のつけ方

変数名のつけ方は、変数の種類ごとに決められた先頭文字以外には、これと

いって必ず守らなければならない規則はありません。とはいえ、よく使われて

いるルールはあります。わかりやすいプログラムを書くにはこういったルール

を守ったほうがよいことが多いので、知っておいて損はないでしょう。

○ わかりやすい単語を選ぶ

プログラミング言語ではメソッドやクラスの名前が英語になっていること

から、変数名にも英単語がよく用いられます。とはいえ、なじみのない英単語を

選ぶよりは思い切ってローマ字を用いるのもよいと思います。チームでプログ

ラムを開発する場合は、仲間内で話し合って方針を決めておくとよいでしょう。

(Dあまり省略した名前にはしない

たとえば、開店時間 (Opening time)を表す変数は、これをoptmな どにするよ

りは、素直にopening_timeと します。画面上で1行に収まらないような長すぎ

る名前は困りますが、下手に短く省略するよりは、素直に長く書いたほうが、あ

とからプログラムを見たときにわかりやすくなります。

ただし、慣習的に使われている、短い名前の変数もあります。数学や物理的な

計算を行う場合は、対象の問題に合わせて、座標は「x」「y」「z」、速度の座標は「v」

「w」 を使います。繰り返しの回数を表す場合は「i」「j」「k」 などがよく使われ

ます。

tDいくつかの単語をつなぎ合わせるときには「_」 で区切る

複数の単語からなる変数名を、プログラミング言語により「foo_bar_baz」

にする流儀と、「fooBarBaz」 にする流儀がありますが、Rubyでは変数名やメ

ソッド名には前者 (すべて小文字にしてアンダースコアで区切る)のルールが

使われます。クラス名やモジュール名は大文字で始めてアンダースコアを使わ

ずに各単語の先頭を大文字にします。

86

|

「
第り章

a
判断

この章では、制御構造の1つである「条件判断」について詳しく見ていきま

しょう。

●条件判断とは何か

。条件判断に欠かせない「比較演算子」「真偽値」「論理演算子」

o条件判断の種類とそれぞれの書き方・使い方

などについて説明します。

条件判断とは

Rubyが生まれたのは1993年です。西暦を入力すると、Rubyの「年齢」、つ

まりRubyが生まれてからその年まで何年たったかを返すプログラムを書い

てみます。この場合、入力された文字列を数値に変換し、1993を引いた値を表

示することになります。このプログラムは、List 5.1の ようになります。

tist (GID ad1ase.rb

十 西暦からRubyの年齢を返す

ad = ARGV[0].tO_i

age = ad - 1993

puts age

実行 してみると、次のようになります。

「

‐
　

Ｚ
一

一
―
―

Ｄ
Ｅ
Ｊ

87

> r.uibly ad2ageorb 2019

26

実行例

:第 5章 条件判断

しかし、このプログラムには問題があります。それは、1993年以前を入力す

ると、返す値が0になったリマイナスになったりすることです。

もっとも、Rubyが生まれる前に「年齢」はないのですから、このような入力

を受けつけてしまうことがおかしいわけです。1993未満の数を入力された場

合は、変換できないということを表示するべきでしょう。

このように、「ある条件のときには○○という処理を、そうでないときに

は××という処理をさせたい」といったときのために用意されているのが、

条件判断文です。

条件判断文は、大きく3つ あります。

● if文

● unless文

O case文

以降では、これらの条件判断文と、「条件」の書き方について説明していき

ます。

Rubyでの条件
条件判断文の前に、Rubyでの「条件」の扱いについて触れておきます。

> ruby ad2age.rb 1990

-3

実行例

●
一

・
Ｅ
Ｊ

「

　

‘ノ

88

5.2 Rubyで の条件

鬱・・5.2。1 条件と真偽値
条件判断によく使われるものとして、「比較演算子」をすでに紹介しました。

「比較演算子」とは、等号「==」 や不等号「>」「く」のことです。

比較演算の結果は、trueか falseです。いうまでもなく、比較の結果が正

しいときがtrue、 間違っているときがfalseで す。

比較演算子以外でも、条件を表すメソッドがたくさんあります。たとえば、

文字列クラスのempty?メ ソッドは、その文字列の長さが0の ときにtrueを 、

そうではないときにはfalseを返すメソッドです。

a

p :〕 :l.empty?

p ‖AAA・ .empty?

#=> true
#=> false

また、trueか false以外にも、条件判断に使える値があります。たとえば、

正規表現によるマッチングでは、マッチした場合には文字列中でマッチした

部分の位置を、マッチしなかった場合にはnilを返します。

F /RubY/ =- nRub,"

F /Ruby/ =- 'Diamond'

+=> 0

+=>nil

このような、trueと false以外についても真偽が決まるように、表5.1の

ように定義されています。

自―
Rubyの真偽値

真 falseと nilを除くオブジェクトすべて

偽 falseと:nil

つまり、falseと nilだけが「偽」として扱われ、それ以外はすべて「真」と

して扱われることになります。このため、trueは「真」の代表値、falseは「偽」

の代表値、という位置づけになっています。一方、trueや falseを 返さない

メソッドでも、意味のある値を返せない場合はnilを返すメソッドであれば、

条件判断に利用できます。

なお、真偽値を返すメソッドの名前は、一日でわかるように末尾に「 ?」 を

つけるというルールがあります。自分でメソッドを作る場合は、このルール

に合わせるのがよいでしょう。

第5章 条件判断

論理演算子

論理演算子「&&」 と「 ||」 は、複数の条件を1つにまとめるときに使います。

条件1&&条件2

は、条件1と条件2の どちらもが「真」である場合に、全体も「真」となります。

どちらか一方でも「偽」であった場合は、全体も「偽」になります。

一方、

条件111条件 2

は、条件1と条件2のいずれか一方が「真」なら、全体も「真」になります。

また、否定の論理演算子、

:条件

は、条件を反転させます。つまり、条件が「偽」である場合は「真」に、「真」で

ある場合は「偽」になります。

たとえば、整数xが 1か ら10の間にあるかどうかを判断して、処理を行う

if文は次のように書きます。

end

if x >= 1 && x く= 10

if x < 1 ll x > 10

これと逆の条件、「1か ら10以外」という条件を表すには、「!」 を使って「!(x

>=1&&xく =10)」 と書くこともできます。しかし、次のように「1よ り小さ
いか、10よ り大きい」と書くほうが素直でしょう。

end

90

条件判断は、プログラムの制御を行う重要な部分です。条件の記述がわか

「
―
‐
　

ロ

5。3

りにくいと、そこで何をやろうとしているのかが読み取りにくくなってしま

います。できるだけ読みやすい条件を書くように心がけましょう。

「&&」「||」「!」 と同じ意味でより優先サ1原位の低い、「and」「or」「not」 とい

う論理演算子があります。演算子の優先順位については、「9.5 演算子の優

先サI頃位」(p.196)を参照してください。
日

if文

それでは、いろいろな条件判断文を見ていきましょう。if文は、もっとも

基本的な条件判断文です。一番単純な構文は、次のようになります。

if i奔 :イ牛 then

文

end

※thenは省略可能です

さらに、elsifと elseを加えると、次のようにな

ります。

if i条件 l then

文 1

olsif 条件 2 then

文 2

elsif 条件 3 then

文 3

olse

文4

end

※thenは 省略可能です

条件は上から順に判定され、まず

条件1が真の場合は文1が実行され

ます。条件1が偽の場合は条件2を

盲
【

偽

百
ネ

偽

偽

偽

条件 1

文 1

条件2

文2

条件3

文 3

文4

5。4

5.4 :fS21:

条件

文

91

第5章 条件判断

判定して真のときは文2が実行されます。同様に条件2が偽の場合は条件3を

判定して……、と例では4つですがいくつでも続けることができます。最終的

にすべての条件が偽の場合に文4が実行されます。

elsifを 使ったサンプルプログラム (List 5.2)を 見てみましょう。

List― iteisif.rb

a = 10

b=20
if a>b
puts‖ aは bよ りも大きい‖

elsif a く b

puts[la lま bよ りもノ」ヽさい :〔

else

puts :'aは bと 同じ‖

end

これはaと bを比較しています。比較の結果は、aが bよ りも大きいか小さ

いか、あるいは同じかですから、3通りあります。その場合分けをif～ elsif
～else文で行っています。

unless*
if文とちょうど反対の役割をする条件判断文として、unless文 がありま

す。unless文 の構文は、次のようになります。

unlegs *l$ ttren
*

end

※thenは 省略可能です

形のうえではif文 と同じですね。if文では条件

が真のときに文を実行していましたが、unless文

では条件が偽のときに文を実行します。

偽

百
【

一
　
　
　
ロ

条件

文

f"'......

5.6 casel

unless文を使ったプログラム (List 5.3)を見てみましょう。

t ist (GED unless.rb

a・ 10

b=20
unless a > b

puts‖ aは bよ り大きくない ‖

end

このプログラムを動かすと、「aは bよ り大きくない」と表示されます。

unless文の条件「a>b」 が偽になるため、putsメ ソッドが実行されるのです。

unless文でも、elseを使うことができます。

unless *{$
ir

else
9z

end

これは、次のif文と同じです。

if条件
文 2

olse

文 1

end

文1と文2の場所が入れ替わっています。このように入れ替えれば、if文で

unless文 と同じ処理を表現することが可能です。

a

case*
条件がいくつもある場合、ifと elsifと の組み合わせでそれぞれの条件を

書いていくこともできますが、比較したいオブジェクトが1つだけで、そのオ

ブジェクトの値によって場合分けをしたい場合、case文 を使ったほうがシン

プルでわかりやすくなります。

6

93

:第 5章 条件判断

case文は次のようになります。

case比較 したいオブジェク ト
when値 l then
文 1

when {直 2 then

文 2

when 値 3 then

文 3

olse

文 4

end

※thenは 省略可能です

この例では「比較したいオブジェ

クト」に対して3つの値を比較して

いますが、いくつでも増やすことができます。

また、whenには一度に複数の値を指定できます。次の例 (List 5.4)は配列

tagsの要素を先頭から順に処理し、要素に合わせて異なったメッセージを出

力します。

651 G7I case.rb

tags = [‖A‖ ′ :'1lMG‖ ′ ll PRE ll]

tagS.eaCh dO lta"amel

case tagname

when ::P':′ 1:All′ l'I ll′ 1l B':′
〕!BLOCKQUOTE‖

puts l'十 (tagrlそ江ne)has a child.‖

when l'IMG ll′ iIBR“

puts ::十 (tagname}has no child.‖

else

putS tII(tagnalne}Cannot be used.::

end

end

吉
本

偽

偽

偽

1との
比較

文 1

文 2

文3

文4

94

> ruby case.rb
A has a child.
IMG has no child.
PRE cannot be used

実行例

5.6 caset I

もう少し違う例を見てみましょう(List 5.5)。

tist,GED case-class.rb

array = ["a", 1, ni1]

array.each do liteml
case it.em

when String
puts "item is a String."

when Numeri.c

puts "item is a

else
Numeric. "

puts "item is something.,,
end

この例では与えられたオブジェクトが文字列 (Stringク ラス)か、数値

(Numericク ラス)か、あるいはどちらでもないかを判断して、結果を表示し

ます。

ここでもやはりcase文を使って条件判断を行っています。しかし、ここで

のwhenは実際にスクリプトの中で与えられた文字列と直接比較しているわ

けではなく、そのオブジェクトがどのクラスに所属するオブジェクトなのか、

という情報を求め、その情報に基づき、条件判断を行っているわけです。

end

> ruby case_c1ase.rb
item is a String.
item is a Numeric.

item is something.

95

:第 5章 条件判断

case文では、正規表現を用いた場合分けをすることができます。正規表現

を使った場合のcase文の例も紹介しておきましょう。

text.eaCh_line dO llinel

case line

when /AFrom:/i

puts i:送信者の情報を見つけました。・

when /^To:/i

puts:'宛先の情報を見つけました。‖

when /Asubject:/i

puts‖ 件名の情報を見つけました。・

when /^S/

puts‖ ヘッダの解析が終了しました。|'

else

+読み飛ばす
end

end

このプログラムは、電子メールのヘッダを解析する処理を表しています。

もっとも、簡略化のため、ヘッダの文が複数にわたる場合の解析は無視して

いますし、実際の値を取得しているわけでもありません。あくまでも、処理の

流れを記述するためにおおまかな枠組みを書いたものだと捉えてください。

each_lineメ ソッドでは、メール本文のテキストデータtextか ら1行ずつ

文字列を取り出して変数lineに代入します。ファイルやテキストの文字列を

行ごとに処理する場合の、お決まりの書き方です。

続くcase文 では、このeach_lineメ ソッドにより得られた文字列lineに

よって場合分けしています。From:で始まる場合は「送信者の情報を見つけ

ました」と表示します。また、To:で始まる場合は「宛先の～」、Subject:で

始まる場合は「件名の～」と表示します。

最後のwhenの /^S/は、行の先頭の直後に行末がくる場合、すなわち行の中

身が空の場合に真になる正規表現です。つまり、空行ですね。メールのメッセ

ージではヘッダと本文の間には必ず空行を1つ置く、という決まりになって

いるので、空行がヘッダの終わりになります。そこで、このwhenではヘッダ

の解析が終了したことを告げています。

96

5.6 casel I

「===」 とcase文

case文は、whenで指定した値に一致するかどうかを「===」 という演算子を

使って判定します。「===」 は、左辺が数値や文字列の場合は「==」 と同じ意味を

持ちますが、正規表現の場合は「=～」と同じようにマッチしたかどうかを判定

したり、クラスの場合は右辺がそのクラスのインスタンスかどうかを判定する

など、両辺の「値」を比較するよりも、もう少し緩い意味で同じかどうかを判断

するために使います。

p(/ZZ/ === 1lXyzZy‖
)

p(String === 1:xyzzy‖
)

p((1..3)===2)

#=> true
#=> true
#=> true

case文 をif文に書き換えると、次のようになります。whenで指定したオブ

ジェクトは「===」 の左辺となっていることに注意してください。

case value
when A

tr
when B

9z
else

t3
end

⇒

if A === value
g1

elsif g === y4lus

TZ
Eabe

1g
end

97

|

|

ifや unlessは、次のように実行したい式の後ろに書くことができます。

puts ‖aは bよ りも大きヽヽ :l if a>b

これは、次のif文と同じことですが、よリコンパクトで、何を実行したいの

かを目立たせる書き方といえます。プログラムの見やすさを考えて使いまし

よつ。

if a>b
puts :'aは bよ りも大きもヽ・

end

:第 5章 条件判断

この章では、次のことを紹介しました。

O真 偽値
真偽値とは条件を表す値で、

●nilか falseの ときは偽

●それ以外の値のときは真

となります。

ID条件判断文

条件判断文には、次の3つ があります。

● if文

● unless文

● case文

if修飾子とunless修飾子

まとめ
「
‐
　

ョ

卜.....,1

5.8 まとめ :

○ 比較

if文、unless文での比較には、比較演算子 (==、 !=、 く、>な ど)、 末尾に「?」

がついたメソッド、論理演算子などを使います。

D if文、unless文

条件判断を行うための基本的な構文です。

C)case文

case文は、「あるオブジェクトの状態によってさまざまに処理を変えたい」

という「場合分け」の処理を書くために使います。

場合分けは、オブジェクトの種類によって異なる方法で行われます。具体

的には「===」 という演算子による比較によって、場合分けが実現されていま

す。コラム「「===」 とcase文」(p.97)を参照してください。

条件判断はたいていのプログラムで利用します。本書でもさまざまなとこ

ろで条件判断が使われているので、それらも参考にして、どういうときにど

ういう書き方をするのか、その上手な利用の仕方を覚えましょう。

オブジェクトの同一性

すべてのオブジェクトは「アイデンティティ」と「値」を持っています。

アイデンティティ(ID)と は、オブジェクトの同一性を表すものです。すべて

のオブジェクトに対して一意に与えられます。オブジェクトのIDは、object_

id(ま たは__id__)メ ソッドで得ることができます。

aryl = []
ary2 = ll
p aryl.object_id #=> 67653636

p ary2.objecl_id #=> 61650432

2つのオブジェクトが同じかどうか (IDが同じかどうか)は equal?メ ソッド

で判定します。

a

０
′
０
″

|

:第 5章 条件判断

strl = "foo"
str2 = strl
str3=trfr+no{+ilon
p strl.egual?(str2) #=> true
p strl.egual? (str3) #=> false

一方、「値」とはオブジェクトが持っている情報のことです。たとえば、内容

が同じ文字列は同じ値を持っています。オブジェクトの値が等しいかどうかを

調べるには、「==」 を使います。

strl = :]foo‖

str2 = [!f:[+ [:o

p strl == str2

+ uou

*=> true

「一」とは別に、値が同じかどうかを判定するメソッドeql?が あります。「==」

とeql?は ともに、Objectク ラスのメソッドとして定義されていて、たいてい

の場合は同じように振舞います。しかし、数値クラスではこれらは再定義され

ているので、異なる振舞いをします。

pl.0==1
pl.0.eql?(1)

#=> true
#=> false

直感的には1.0と 1は同じ値であると判断できたほうが便利です。「==」 は普

通のプログラム中で値を比較するために使います。eql?メ ソッドは、多少厳密

に比較を行う必要がある場合に用いられます。たとえばハッシュのキーとして

は0と 0.0は別のものとして扱われますが、ハッシュオブジェクトの内部では

eql?メ ソッドを使ってキーの比較が行われるためです。

hash = { S=> ,'zero',
}

p hash[0.0J #=> ni1
p hash[O] #=> "zero"

:00

′ヽ

第0章

返し

繰り返しの基本

a
条件判断と並び、「繰り返し」(ループ)も プログラム中のそこかしこで使

われる、プログラムに欠かせない仕組みです。

この章では、

●プログラムにおいての「繰り返し」とは何か

●繰り返しを書く際に気をつけなければいけないこと

0繰 り返しの種類と書き方

などについて説明します。

プログラムを書いていると、「同じ処理を繰り返したい」ということが頻繁

に起こるようになります。たとえば、

010本の線を画面に表示したい

といった簡単な繰り返しから、

●配列の中身をすべて別のオブジェクトに入れ替えたい

●ファイルが開けるまで、ディレク トリを読みにいきたい

といった繰り返しまで、いろいろな繰り返しが必要になります。

ここでは、Rubyで使うことのできる基本的な繰り返しについて説明しま

す。繰り返しの中でも、メソッドを使った繰り返しは、ユーザの側でいくらで

も新しく作ることができます。しかし、こちらについては「第11章 ブロック」
で細かく触れることにして、ここでは既存のメソッドと繰り返しの構文につ

いて説明します。

:Ol

第6章 繰り返し

繰り返しで考えなければいけないことを2つ挙げておきます。

・ 繰り返したいことは何か

・ 繰り返しを止める条件は何か

「繰り返したいことは何か」については、自分で繰り返しを書こうとしてい

るのですから、それくらいはわかっている、と思われるかもしれません。しか

し、実際には繰り返さなくてもよい処理を繰り返しの中に含めてしまってい

る、ということも起こります。さらに、繰り返しの中でさらに繰り返しを行う

入れ子の構造になる場合は、どこでどのように繰り返しが行われ、そしてそ

の結果がどこで利用されているかが読み取りにくくなります。

また、「繰り返しを止める条件」を間違えると、処理が終わらなくなったり、

処理が終わってないのに繰り返しを抜けてしまったりする可能性がありま

す。そういったことが起きないように気をつけましょう。

繰り返じで気をつけること

繰り返しの実現方法

Rubyで繰り返しを実現するための方法は2種類に分けられます。

●繰り返しのための構文を利用する方法

Rubyに は、繰り返しを行うために用意された構文がいくつかありま

す。これを使えば、たいていの繰り返しを書くことができます。

●メソッドで実現する方法

メソッドにブロックを渡して、そのブロックの中に繰り返したい内容

を書くこともできます。これは、繰り返しのための構文を使う場合と

比べると、何らかの限定された目的に特化されている傾向があります。

これから説明する繰り返しのための構文とメソッドをまとめると、次の6

つになります。

102

6。2

＾
●
′
０

. timesJ!vl.'
r forl
o whileI
o untilI
r eachl!.yF
r loop l! v F'

これらの構文やメソッドを使って、実際にいるいろな繰り返しを書いてみ

ましょう。

C

timesメソッド

単純に「一定の回数だけ同じ処理をさせる」という繰り返しなら、timesメ

ソッドを使うのが便利です。

たとえば、「いちめんのなのはな」という文字列を7回表示したい場合には、

List @ times.rb

7.tiimes do

puts・ いちめんのなのはな ''

end

と書きます。これを実行すると、

> rulDlr tiコ neS.rb

いちめんのなのはな

いちめんのなのはな

いちめんのなのはな

いちめんのなのはな

いちめんのなのはな

いちめんのなのはな

いちめんのなのはな

と表示されます。

103

6.4 timesメ ソッド・

6e4

:第 6章 繰り返し

timesメ ソッドで処理を繰り返すには、ブロック「do～ end」 を使って

繰り返したい回数 .times do

繰り返したい処理

end

と書きます。

またブロックの部分は、「do～ end」 の代わりに、「{～)」 を使って次の

ようにも書けます。

繰り返したい回数.times(

繰り返したい処理

}

timesメ ソッドでは、ブロックの中で繰り返している回数を知ることもで

きます。繰り返しの回数は、

5.times do lil

などと書 くと、変数 iに代入されるようになります (List 6.2)。

List― times2.rb

5.times do lil

puts‖ 十(i)回 目の繰り返しです。‖

end

end

> 1口Liby ti=【 382.rlb

O回 目の繰り返しです。

1回 目の繰り返しです。

2回 目の繰り返しです。

3回 目の繰り返しです。

4回 目の繰り返しです。

104

6.5 forl:

このように、繰り返しの回数は0か ら始まることに注意してください。最初

に初期値として「1」 を与えてそこから繰り返しを開始する、といったことは

できません。1か ら始めたいときは、ブロックの中で数値を変更して対応しま

す (List 6.3)。

tistGED times3.rb

5.times do lil

puts・ +(1+1)回 目の繰り返しです。‖

end

しかし、このような書き方をすると、実際の変数iの値と、表示される値に

違いが生じてしまいます。これは、プログラムの動きのわかりやすさの面か

らはマイナスでしょう。単純に繰り返しの回数だけが重要な場合だけtimes

メソッドを使って、それ以外には次に説明するfor文やwhile文を使うとよ

いでしょう。

C

forl
for文 も、処理を繰り返すために使われます。先ほど紹介したtimesと は異

なり、forはメソッドではありません。そういう文法の形式があるんだ、と覚

えてください。

for文 を使った典型的なプログラムは、List 6.4の ようになります。

> rl」by tiコ nes3.lrb

l回 目の繰り返しです。

2回 目の繰り返しです。

3回 目の繰り返しです。

4回 目の繰り返しです。

5回 目の繰り返しです。

105

ｒ
ａ
′●

第6章 繰り返し

tist(GED for.rb

1:sum=0
2: for i in 1..5
3: sum=sum+i
4: end

5: puts sum

これは、1か ら5ま での数の合計を求めるプログラムです。この for文の構

文は、次のようになっています。

for変数 in開始時の数値 ..終了時の数値 do
繰り返したい処理

end

※doは 省略 ||∫能です

List 6.4に戻ってみましょう。1行 日が変数 sumを 0にする処理、5行 日が

sumの値を表示して改行する処理です。

2行日から4行日のfor文では、iの値の範囲が1か ら5までになるように

指定しています。つまり、iの値を1から5まで変化させながら、「sum=sum+
i」 が実行されているわけです。このプログラムは、

sum=0

suュl= suln

sunl=surn

su■1・ sum

sunl‐ sun

su■1‐ surn

puts sum

+1
+2
+3
+4
+5

> nrby for.rb
15

ということと同様の処理を行っています。

一

‥

‥

‥

106

6.5 forE:

for文は、timesメ ソッドと違い、開始時の値や終了時の値を自由に変更

できます。たとえば、変数fromか らtoまでの合計を計算しましょう。これを

timesメ ソッドを使って書くと、次のようになります。

from= 10

to = 20

sum=0
(to - from + 1-).times ao lil

sum=sum+(
end

puts sum

一方、for文 を使えば、

i + from)

from = 10

to = 20

sum=0
for i in from..to

sum=sum+i
end

puts sum

といったように、非常にシンプルな形で書けます。

なお、「sum=sum+i」 という計算はもっとシンプルに、

suln += ■

と省略して書くことができます。これは足し算の例ですが、引き算や掛け算

でも同様の省略形を使えます。

a― _b

a*=b

「第9章 演算子」で改めて説明しますが、便利な省略形として覚えておく
とよいでしょう。

107

第6章 繰り返し

一般的なfor文

先ほどのfor文の構文は、実は特殊な例にすぎません。for文の一般的な構

文は、次のようになります。

for変数 inオ ブジエクト do
繰り返したい処理

end

※doは省略可能です

先ほどとは、inの後ろが異なっていることがわかります。

でも、先ほどの for文とこちらの for文 は、まったく別の構文、というわけ

ではありません。実は「 ..」 または「 ...」 というのは、範囲オブジェクトとい

うオブジェクトを作る記号なのです。

もちろん、ここでのオブジェク トは、どんなオブジェクトでも指定できる

というわけではありません。ここでは、配列を使った場合の例 (List 6.5)を

挙げておきます。

t-ist (GED for-names.rb

names = ["awk', "Per1", "Python", nRubyu]

for name in names

puts name

end

配列の中から要素を1つずつ取り出して、それぞれを表示する、という処理

を繰り返しています。

> ruby for_na.meE.rb

awk

Perl
Python

Ruby

実行例

108

6.7 whilel;

while文

while文 は、どんなタイプの繰 り返 しにでも使える、単純な構文です。
while文の構文は次のようになります。

while l宗罰牛 do

繰り返したい処理

end

※doは省略可能です

これは、この条件が成り立っている間、繰り返し

たい処理が繰 り返し実行される、という意味になり

ます。例として、List 6.6を 見てみましょう。

tistl.tl while.rb

i=1

while iく 3

puts i

i += 1

end

このプログラムがどうしてこのような結果になるのか考えてみましょう。

最初に、iに 1が代入されます。この時点で、iの値は1になっています。次に

while文に処理が移ります。while文では、次のような処理の繰り返しを行い

ます。

a
偽

> rlby while.rb
1

2

実行例

処理

109

第6章 繰り返し

①「土く3」 の比較を行い、

②比較結果が真 (つまりiが3よ り小さい)の場合、「puts i」 と「i+=1」

を実行する。比較結果が偽 (つまりiが 3以上)の場合、何も実行せず

にwhile文 から抜ける

③①に戻る

最初はiが 1ですから、「puts l」 が実行されます。2回目も、1は「2」 です

から、3よ りも小さいので、「puts 2」 が実行されます。しかし、3回 目はiが 3

ですから、「3よ りも小さい」という条件は成立しません。つまり、比較の結果

が偽になります。そこで、while文の繰り返しを抜けることになります。そし

て、プログラムも終了します。

もう1つ、while文 を使ったプログラムを作成してみましょう。

まず、先ほどfor文の説明で紹介したプログラム (List 6.4)を、while文 を

使ったプログラム (List 6.7)に書き直してみましょう。

List O wh‖e2.rb

sum=0
i=1

while iく =5
surn += ■

1 +3 1

end

puts suln

for文の場合と、どこが違っているでしょうか。まず、変数iの条件の与え

方が異なっています。for文の例では、「1..5」 と単なる範囲指定だけを書い

ていました。このwhile文の例では、比較演算子「く=」 を使って、「iが 5以下

の場合 (に処理を繰り返す)」 という条件を与えています。

さらに、iの増やし方も異なります。このwhile文の例では、「i+=1」 と、
iの値を1増やす処理が、プログラムの中で明示的に書かれています。for文

の場合は、特に何も書かなくても、1を 1ずつ増やす処理が行われていました。

この例のように、for文でも簡単にできることをわざわざwhile文で行う

必要はありません。while文のほうがわかりやすくなるのは、List 6.8の よう

な場合です。

l10

6.8 until文

tist (EED while3.rb

sum=0
i=1
while sum < 50

sum += i
.i r- I

end

puts sum

この例では、条件の部分が「i」 でなく「sum」 についての条件になっていま

す。「sumが 50よ り小さい間は繰り返せ」という条件です。sumが 50を超える

ときにiがいくつになるのかは実行してみないとわからないので、for文を

使うと、いまひとつわかりにくいプログラムになってしまいそうです。

for文のほうが簡単に書ける場合もあれば、while文のほうが簡単に書け
る場合もあります。for文 とwhile文の使い分けについては、この章の最後で

説明します。

C

until文

if文 に対してunless文があったように、while文に対してもuntil文が

あります。until文は、構文の見た目はwhile文と同じですが、条件の判定が

反対になります。つまり、その条件を満たしていない場合に繰り返しを行い

ます。言い換えると、while文は条件が成立している間は繰り返すのに対し
て、until文は条件が成立するまで繰り返します。

until 条イ牛 do

繰り返したい処理

end

盲

※doは省略可能です

until文を使ったプログラム (List 6.9)を見て

みましょう。

lll

孫仄
~笏

【

`.8.l
L」

処理

第6章 繰り返し

Lis'O unti:.rb

surn=0
i=1

until sum >= 50

suln += ■

i+= 1

end

puts sum

これは、while文のところで使ったプログラム (List 6.8)を、until文用

に書き直したものです。while文とは条件比較が反対になっています。

もっとも、while文 の条件に否定の演算子「!」 を使えば、until文 と同様

のことが行えます(List 6.10)。

Ust (Gf,ED while-not.rb

sum=0
i=1

while l(suln >= 50)

surn += ■

i += 1

end

puts sum

このように、until文は、while文と !演算子で代用できるため、使わなく

てもなんとかなります。しかし、条件式が複雑で、それの否定を考えるのが直

感的でない場合などは、until文を使うほうがわかりやすくなるでしょう。

eachメソッド

eachメ ソッドは、オブジェクトの集まりに対して、それを1つずつ取り出

すときに使います。for文で行っていた、配列に対してその要素を取り出す処

理によく似ています。実際、for文でのプログラム (List 6.5)を、eachメ ソッ

ドを使ったプログラム (List 6.11)に直すことは簡単です。

l12

tist (GEID each-names.rb

puts name

end

sum=0
(1..5).each do lil

sum=sum+i
end

puts sum

names = ["awk", 'Perl",
names.each do Inamel

・Python‖ ′ 1'Ruby‖]

6.9 eachlYvl.'":

■■|

eachメ ソッドの一般的な構文は次のようになります。timesメ ソッドのと
ころでも説明しましたが、メソッドのブロックには「(～ }」 も使えます。

オブジエクト each“ 1変数 |

繰り返したい処理

end

オブジエクト.each{1変数
|

繰り返したい処理

}

これらは、次の処理と、ほぼ同じ働きをします。

for変数 inオブジェクト
繰り返したい処理

end

for文はRubyの内部処理としてはeachメ ソッドが実行される特殊な構文
になっています。したがって、eachメ ソッドを呼び出すことができるオブジ

ェクトであれば、for文のinの あとに指定することができます。

for文のところで取りあげた、範囲オブジェクトを使ったプログラム (List

6.4)も 、eachメ ソッドを使って直してみましょう。

li"caED each.rb

¨、ま
:::壼

..

このように、簡単に直せますね。for文 を使うべきか、eachメ ソッドを使
うべきかについては、この章の最後で考えることにします。

I13

6.10

:第 6章 繰り返し

終了条件がない、ただの繰り返しのためのメソッドもあります。それが

loopメ ソッドです。

loop do

print "Ruby"
end

などというメソッドを実行しようものなら、画面全体が「Ruby」 の文字で埋

め尽くされて、大変なことになります。このようなことにならないように、実

際にloopメ ソッドを使う際には、次で説明するbreakを使って、繰り返しを

途中で抜けるようにします。

1暖生
ループし続けるプログラムをうっかり実行してしまった場合は、[Ctrl]

「

 ([Control])キ ーを押しながら[c]キ ーを押すと、止めることができます。

loopメリッド

繰り返しの制御

繰り返しの途中で、処理を中断したり、処理を次の回に飛ばしたいことが

あります。そのために繰り返しを制御する命令があります (表 6.1)。

自G目■D繰り返しを制御する命令

命令 用途

break 繰り返しを中断し、繰り返しの中から抜ける

next 次の回の繰り返 しに処理を移す

redo 同じ条件で繰り返しをやり直す

繰り返しの制御の仕方は少々わかりにくいところがあります。redoはほと

んど使われないため、本書では特に触れません。breakと nextは どちらも使

われるので、この2つ について詳しく説明します。サンプルプログラム (List

6.13)を 見てください。

l14

Lisi m breaヒnext.rb

1: puLs "breakO{fl : "

2:i=0
3: ["Per1", "Python".
4'. i+=1
J.frf--J

6: break
7: end

8: p [i, lang]
9: end

10:

11: puts "nextOfffl:"
12: i = 0

13: ["Perl", "Python",
14: i+=1
15: ifi==3
16: nexL

17: end

18: p Ii, lang]
19: end

il Ruby "Scheme"l.each do I ians
I

凛

"Ruby", "Scheme"l .each do llangl

）・『

プログラムは2つの部分に分かれていますが、break、 nextと なっている

ところ以外は同じです。実行すると、次のように表示されます。

> nrby break_next.rb
breako)ffiJ :

[]., "Per1 "l
[2, "Python"]
next-D$l :

[1, "Per1"]

[2, "Python"]
[4, "Scheme"]

[4′ ・Scheme‖]の表示だけ異なっています。それぞれについて説明します。

6.11 繰り返しの制御 :

li5

―

―
‐
　
ロ

第6章 繰り返し

●・・6。1].l break
breakは繰り返し全体を中断します。List 6.13では、iが 3のとき、6行日

のbreakが実行されます (図 6.1)。 breakが 実行されると、eachメ ソッド

の繰り返しを抜けて、10行日まで進んでしまいます。そのため、「Ruby」 と

「Scheme」 は表示されません。

r'Perl‖ ′"Python‖ ′''Ruby‖ ′
‖Sche“ '¬ 。eaCh dO llangl

i += 1
lf i == 3
break

end

P li′ lang]
end

Iang = "1'""1' Iang = "Pr1troo' lang = "xu5r"

i += 1 i +〓 1 i += 1

true true true break

p [i, lang] P li′ lang]

tir.,lGrl break

breakの例をもう1つ紹介しておきます。List 6.14は、第3章で紹介した

simple_grep.rb(p.69)に 手を加えて、マッチした行を10行 までしか表示しな

いようにしたプログラムです。マッチするたびに、変数matchesを 加算し、

max_matchesになればeach_lineメ ソッドによるループを終了します。

●・・6。 11。2 next
nextは、繰り返しの中のnext以降の部分を飛ばして、次の回の処理を開始

します。List 6.13では、iが 3の場合に16行日のnextが実行されると、次の

eachメ ソッドの繰り返しに進みます (図 6.2)。 すなわち、langに「Scheme」

が代入され、「i+=1」 が実行されます。そのため、「Ruby」 が表示されずに、

1:6「 SChene」 が表示されるのです。

fal

i 〓= 3 ? i == 3 ? i == 3 ?

6.11 繰り返しの制御
:

List m ten_‖ nettgrep.rb

pattern = Regexp.new(luRGV[01)

filename = ARCV[11

maX_matChes E 10 + 出力する

matches=0 +マ ッチし

file = File.open(filenaine)

file・ eaCll_line dO llinel

if imatches >= max_matches

break

end

if pattern =- line
matches += 1

puts line
end

end

fi1e. close

最大数

た行数

¨
聖

Iang = "PrgSoo' Iang = "3o5r'

i +3 1 1 += 1

true truetrue

P Ii′ lang〕

00 next

true

i=0
I“ Perl‖ ′

‖
Pyth。ユ‖′

‖
mby‖′
‖SChem¬ 。eaCh d。 llangl

i += 1
if i == 3

next
end

P [i′ lang〕
end

lang = "P"t1'

i +=

lang = "scheme"

i +=

i == 3 ? i == 3 ?

p[i′ p【 i′

fal

l17

i =〓 3 ? i =〓 3 7

第6章 繰り返し

nextについても、ほかの例を紹介しておきます。入力を1行ずつ読み取っ

て空白行と「十」で始まる行は読み飛ばし、それ以外はそのまま出力するプロ

グラム (List 6.15)を作ってみましょう。

次のように実行すれば、heHo.rb(List 6.16)か らコメントと空行を取り除

いたstripped_heHO.rb(List 6.17)を 得ることができます。

> ruhv Etrip.rb he1lo.rb > Etrippedl-hello.rb

t ist (Gf,ED strip.rb

file = File.open(ARGV[0])

file.each-tine do I linel
next if /^\s*$/ =" line
next if /^#/ =- line
puts line

end

fi1e. close

t-ist (Ef,ED hello.rb

+ Hello′ world
puts 1lhello′ world‖

十 日本語

puts'1こ んにちは世界 1!

1中文
puts:1祢好,世界 ‖

List (Gf,D stripped-hel lo.rb

十空自行

+ハ ッシュ記号で始まる行

puts
puts
puts

':he1lo′ world‖
‖こんにちは世界

‖

‖祢好,世界
‖

l18

6.12 まとめ

まとめ

この章では、繰り返しのための構文とメソッドを紹介しました。

繰り返しの機能だけを考えれば、while文でどんな繰り返しでも実現でき

ます。極端なことをいえば、ほかの繰り返しの構文やメソッドは必要ないわ

けです。それにもかかわらず、繰り返しのための道具がこんなにもあるのは、

プログラムが単に機能を実現するためのものではなく、書く人にとっても読

む人にとっても、わかりやすくすることが大切だから、といえるでしょう。

この章の最初に紹介した各メソッド・構文の一覧に、使いこなすための指

針として「主な用途」を追加した表 (表 6.2)を紹介しておきます。

玲 0繰 り返しのための構文とメソッドの主な用途

主な用途

times//yi^ 回数の指定された繰 り返し

tor { オブジェクトから要素を取り出す場合
(eachの シンタックスシュガー)

while文 条件を自由に指定したい場合

until a whileではわかりにくい条件を指定したい場合
eachJ 7 y l-" オブジェクトから要素を取り出す場合

Ioop / '/ .r l.' 回数制限のない繰り返 し

α

ψ
シンタックスシュガーとは、人にやさしい字面にするために追加された特

殊な構文のことです。メソッドの一般的な構文に従えば、たとえば足 し算は

「3.add(2)」 などと書くことになります。けれども、人間にとっては「3+2」
と書いたほうがわかりやすくなります。

シンタックスシュガーによって機能が何か強化される、ということはありま

せんが、プログラムをわかりやすくするためには欠かせないものです。

もっとも、これは若千筆者の私見が入っているので、これが絶対、というわ

けではありません。あくまで目安程度に考えてください。

回数の決まった単純な繰り返しは、timesメ ソッドを使うことにしましょ

う。それ以外のたいていの繰 り返しは、while文とeachメ ソッドの2つ を使
えば、それなりにわかりやすく記述できます。まずはこの3つ を使いこなせる

ようになることを目標としてみてください。

:19

6。12
¬

第6章 繰り返し

「dO～ end」 と「{～ }」

timesメ ソッドの例で、ブロックの書き方には「do～ end」 と「(～)」 の

2種類があることを紹介しました。動作としてはどちらを使っても大きな違い

はありませんが、広く使われているルールとして、

0複数行に分けて書く場合は「do～ end」
● 1行にまとめる場合は「{～ }」

というものがあります。timesメ ソッドを例にすると、

10.times do lil
puts i

end

と書くか、

10.times {lil puts i}

と書くかという違いです。

見慣れるまではわかりづらいかもしれませんが、「do～ end」 を使えばブロ

ックの処理をある程度のまとまりのように見せることができます。もう一方の

「{ ～)」 はブロックつきメソッド呼び出し全体を1つの値のように見せるこ

とができます。

また、1行にまとめる場合に「do～ end」 を使うと、

10.ti-mes do lil puts i end

となってしまい、なんとく文法上の区切 りがわかりづらい印象を受けます。最

終的には好みで使い分けてかまいませんが、最初のうちはここで紹介したルー

ルに合わせてみてはどうでしょうか。

120

■ワ _

第 F―章

メソ ド
ル
ｒ

．

●

ノ
′

０

「

a
メソッドは、オブジェクトに定義されているもので、そのオブジェクトに

関連する操作を行うために使われます。Rubyでは、すべての操作がメソッド

として実装されています。

メソッドの呼び出し

最初にメソッドの呼び出し方をおさらいしましょう。

●・・ 7■1 単 純 な メリ ッ ド呼 び 出 し
メソッド呼び出しの構文は、次のようになります。

オブジェクト.メ ソッド名 (引数 1′ 引数2′ ・̈ ′引数n)

先頭にオブジェクトが1つ置かれ、その後ろにピリオド「.」 を挟み、メソッ

ド名が続きます。メソッド名の後ろには、「()」 で囲まれたメソッドの引数が

並びます。引数の数と順番はメソッドごとに決められているので、それに合

わせて指定しなけばいけません。なお、この「()」 は省略できます。

上の構文の「オブジェクト」は、レシーバ(receiver)と も呼ばれます。これは、

オブジェクト指向の世界では、メソッドを実行することを「オブジェクトに

メッセージを送る」、その結果として「オブジェクトはメッセージを受け取る

(receiveす る)」 と考えるからです (図 7.1)。 つまり、あるオブジェクトに対し、

いくつかのパラメータとともにメッセージが送られる、というイメージです。

メソッドの引数がパラメータに相当します。

7.1

121

第7章 メソッド

ヽ

n = :icat!1。 size

凸
gizeメソッド(メッセージ)

戻り1直

樫)― オブジェクトにメッセージを送る

00。 7.1.2 プロックつきメソッド呼び出し
「第6章 繰り返し」で見たeachメ ソッドやloopメ ソッドのように、ブロ
ックを伴って呼び出されるメソッドがあります。ブロックを伴うメソッド呼

び出しをブロックつきメソッド呼び出しといいます。

ブロックつきメソッド呼び出しの構文は、次のようになります。

オブジェクト.メ ソッド名 (引数′・̈)do l変数■′変数 2″ ..。 |

プロックの内容

end

「do～ end」 の部分がブロックです。ブロックは「do～ end」 のほかに
「{～ }」 という形式で、次のように書くこともできます。

オブジェクト.メ ソッド名 (引数′・̈)(1変数 1′ 変数 2′ ...|
プロックの内容

〕

運ぬ
「do～ end」 の形式では、引数リストを囲む「 ()」 を省略してもかまいませ

「

ん。「{～ }」 の形式の場合は、引数がない場合にのみ引数リストを囲む「 ()」

を省略できますが、引数が1つ以上ある場合は省略できません。

ブロックの最初の「| ～ |」 で囲まれた部分に指定された変数はブロック

変数またはブロックパラメータといいます。この変数にはブロックを実行す

るたびに、メソッドからパラメータが渡されます。パラメータの数や値はメ

ソッドごとに異なります。すでに紹介したように、timesメ ソッドのブロッ

ク変数は1つで、ブロックが呼び出されるたびに0か ら順に繰り返しの回数が

渡されます (List 7.1)。

‖catil

(レシーバ)

122

tist (f,ID ti mes-with-param.rb

5.times do lil

puts‖ 十(i}回 目の繰 り返 しです。!1

end

0007■3 演算子の形式のメリッド呼び出し
演算子の形をしているメソッドもあります。四則演算などの2項演算子や

―(マイナス)などの単項演算子、配列やハッシュの要素を添字で指定する []

などがメソッドとなっています。

o oblj + argl

● obj =" argl

● ―obj

● :olbj

● Obl」 [argl]

O obj[argll = arg2

これらは、メソッド呼び出しの一般的な構文とは異なっていますが、それ

ぞれ「obj」 がレシーバ、「argl」 や「arg2」 が引数となっている、立派なメソ

ッドです。これらの演算子の形をしたメソッドも自由に定義できます。

a

ψ
演算子の中にはメソッドで実現されていて自由に動作を変えることができる

ものと、動作を変更できないものがあります。演算子については、「第9章

演算子」で説明します。

> ruby times_■ th_para:n.rb

O回 目の繰り返しです。

1回 目の繰り返しです。

2回 目の繰り返しです。

3回 目の繰り返しです。

4回 目の繰り返しです。

123

7.1 メソッドの呼び出し :

第7章 メソッド

0 メソッドの分類
Rubyのメソッドは、レシーバによって、3種類に分けることができます。

●インスタンスメソッド

●クラスメソッド

o関数的メソッド

ここでは、この3つのメソッドについて、それぞれ説明していきます。

(|)・・7。2。1 インスタンスメソッド
インスタンスメソッドは、もっとも一般的なメソッドです。あるオブジェ

クト(イ ンスタンス)があったとき、そのオブジェクトをレシーバとするメソ

ッドのことを、インスタンスメソッドと呼びます。

インスタンスメソッドには、次のようなものがあります。

p ・ 10′ 20′ 30′ 40・ .split(・ ′‖)
p [1′ 2′ 3′ 4].index(2)

p 1000.to_s

上からサ1頃に、文字列、配列、数値の各オブジェク トがレシーバになってい

ます。

オブジェクトに対してどのようなインスタンスメソッドが使えるかは、そ

のオブジェクトの種類 (ク ラス)に よって決められます。オブジェクトに対し

てインスタンスメソッドを呼び出すと、そのクラスごとに決められた処理が

実行されます。

同じ名前のメソッドは同じような処理を行うことが多いのですが、具体的

な処理の内容はオブジェクトの種類によって違います。たとえば、to_sメ ソ

ッドはほとんどのクラスで使うことができる、オブジェクトの内容を表す文

字列を返すメソッドです。オブジェク トを文字列にするという意味は共通し

ていますが、数値オブジェクトと時刻オブジェクトでは作られる文字列の形

式やその作り方が違います。

一二

二

一

:24

7.2 メソッドの分類 :

02:20:17 +0900・

●・・7.2.2 クラスメソッド
レシーバがインスタンスではなくクラスそのものだった場合、そのメソッ

ドはクラスメソッドといいます。たとえば、インスタンスを作るような場合

には、クラスメソッドが使われます。

p l-0 . to_s
p Time.now.to_s

+=> :110‖

+=> 112019-01-15

a
Array. new

Fi1e. open (" some_f i1e")

Time.now

+新 しい配列を作る
+新 しいファイルオブジェクトを作る
1新しいTimeオブジェクトを作る

また、直接インスタンスを操作するわけではないけれども、そのクラスに

関連する操作を行いたい場合にも、クラスメソッドが使われます。たとえば

ファイルの名前を変更するには、ファイルクラスのクラスメソッドを使い

ます。

File.rename(oldname′ nemlame) #フ ァイル名を変更する

さらに、クラスメソッドにも演算子の形をしているものがあります。

Array[‖ a‖ ′ ‖b‖ ′ :!c‖ 1 +[‖ a‖ ′ lib‖ ′ i:c‖]という配夕」を生成する

クラスメソッドの呼び出しには、「 .」 の代わりに「::」 を使うこともできま

す。どちらもRubyの文法としては同じ意味です。

クラスメソッドについては、「第8章 クラスとモジュール」でさらに詳し
く説明します。

125

:第 7章 メソッド

●・・7。2.3 関数的メソッド
レシーバがないメソッドを、関数的メソッドと呼びます。

もっとも、「レシーバがない」といっても、レシーバに該当するオブジェク

トが本当にないわけではありません。関数的メソッドの場合、それが省略さ

れているのです。

print l〕 hello!‖

Sleep(10)

十コンソールに文字列を出力する

1指定された秒数の間、処理を休止する

関数的メソッドは、レシーバの状態によって結果が変わることがないよう

に作られています。printメ ソッドやsleepメ ソッドは、レシーバの情報を

必要としません。逆にいえば、レシーバを必要としないメソッドは、関数的メ

ソッドにする、ということになります。

メソッドの表記法

マニュアルなどに登場するメソッド名の表記法を紹介 しておきましょう。

あるクラスのインスタンスメソッドの名前を表記するにはArray十 eachや

Array+inj ectの ように、

クラス名♯メソッド名

と書きます。これはドキュメントや説明のための表記法なので、プログラム中

に書くとエラーになってしまいます。注意 してください。

一方、クラスメソッドの名前の表記には、Array.newま たはArray::newの

ように、

クラス名 .メ ソッド名

クラス名 88メ ソッド名

という2通 りの書き方があります。これらは実際にプログラム中で使用する場

合にも同じように記述できます。

126

メソッドの定義

●・07.3.1 メソッド定義の構文
メソッド定義の一般的な構文は次のようになります。

defメ ソッド名 (引数 1′ 引数 2′
実行したい処理

end

メソッド名にはアルファベット、数字、「_」 (ア ンダースコア)を使うこと

ができます。ただし、数字で始めてはいけません。

List 7.2を 見てください。

List― he‖ o_with_name.rb

def hello(name)
puts "HeIIo, #{name}. "

end

hello(・ Ruby・)

樫醒ゝインスタンスメソッドやクラスメソッドを定義するには先にクラスを定義す

「

 る必要がありますが、まだ紹介 していません。ともかくメソッドを定義すれ
ば、レシーバを省略して関数的メソッドとして呼び出すことができます。

helloメ ソッドの中ではnameと いう変数で、実行する際に与えられた引数

を参照できます。このプログラムでは「‖Ruby‖」という文字列が指定されて

いるので、実行結果は次のようになります。

a

> ruby heLLo_with_narne.rb

He1Io, Ruby.

7.3 メソッドの定義 :

127

:第 7章 メソッド

引数にはデフォルト値を指定することもできます (List 7.3)。 デフォルト

値は、引数を省略してメソッドを呼び出したときに使われる値で、「引数名ョ

値」と書きます。

List― he‖∝with」 efauit.rb

def helIo (name="Ruby")

puts "He11o, #{name}. "

end

hello() +引数を省略して呼び出す
hello(“ Newbie・)十 引数を指定して呼び出す

メソッドが複数の引数を持つ場合は、引数リス トのうち右端から|1贋にデフ

ォル ト値を指定します。たとえば、3つの引数のうち2つ を省略可能にする場

合は、右側の2つ にデフォル ト値を指定します。

def func(a′ b=1′ c=2)

左端の引数、あるいは途中の引数だけを省略可能にすることはできません。

●・・7.3.2 メリッドの戻り値
メソッドの中でreturn文を使うことで、メソッドの戻り値を指定できます。

return 値

例として、直方体の体積を求める計算をメソッドにしてみましょう。引数

はx、 y、 z方向の各辺の長さです。「x*y*z」 の結果をメソッドの戻り値
としています。

end

> ruby hello_vrith-default. rb
HeIIo, Ruby.

HeIlo, Newbie.

実行例

128

7.3 メソッドの定義

def volume(x, y, zl 3.:■

return x * y * z

end

p volurne(2′ 3′ 4) +=> 24

#=> 6000p volume(10′ 20′ 30)

return文は省略してもかまいません。その場合は、メソッドの中で最後に

得られる値が戻 り値となります。省略した場合の例として、今度は直方体の

表面積を求めるメソッドを作ってみましょう。ここでは、areaメ ソッドの最

後の行の「(xy+yz+zx)*2」 の結果がメソッドの戻り値となります。

def area(x, y, z)

xy=xxy
Yz=Y*z
zx=z*x
(xy+yz+zx)>k2

end

p area (2, 3 , 4)

p area(l-0, 20, 30)

'1.:r

メソッドの戻り値は、見かけ上の最後の行の結果とは限りません。次の例

は2つの値を比較して大きいほうを返すメソッドです。「a>b」 が真の場合
はaが、偽の場合はbが if文全体の結果となり、それが戻り値となります。

def max(a′ b)

if a>b

else
b

end

p max(10′ 5)

end

+=> 52

+=> 2200

|=> 10

129

省略できるのであまり使う機会のなさそうなreturn文 ですが、条件に

よってメソッドをすぐに終了させたいときには便利です。maxメ ソッドは、

return文 を使うと次のように書き直すことができます。違いを比べてみてく

ださい。

def max(a′ b)

if a>b
return a

end

return b +こ この「return」 は省略してもよい

end

p max(10′ 5) 十=> 10

なお、returnの 引数を省略した場合には、nilが返されます。

メソッドの中には、処理することが目的で、戻り値そのものは使わないメ

ソッドもあります。そのような場合、多くはnilを返します。第1章で紹介し

たprintメ ソッドもその1つです。

printメ ソッドは、引数を出力するだけで、戻り値はnilになります。

p print.("1:") |=> 1:nil
+ (printメ ソッドの出力結果「1:」 とpメ ソッドの

十 出力結果「nil」 が表示される)

(DO。 7。3。3 プロックつきメリッドの定義
メソッド呼び出しの形式として、ブロックつきメソッド呼び出しを紹介し

ました。今度は与えられたブロックを使うメソッドの作り方を紹介します。

与えられたブロックを繰り返し実行するloopメ ソッドと同じ動きをする

メソッドmyloopを 作ってみましょう (List 7.4)。

:30

:第 7章 メソッド

7.3 メソッドの定義 :

List (EED myloop.rb

def myloop

while true

yield

end

end

num = l-

myloop do

puts "num is #{num}"
break if num > 10

num *= 2

end

+ブロックを実行する

■̈
■

」|●

■
'・

::『

・
1

温 ヽ t・

．
　
〓
一
　
　
　
　
　
　
　
．
．
　
　
　
　
　
　
．

+nuln を初期化する

I nuFnを 2倍する

十numを表示する

十numが 10を超えていたら抜ける

「yield」 という命令が出てきました。このyieldが、ブロックつきメソ

ッドを定義する際にもっとも重要なキーヮードです。メソッド定義の中の

yieldは 、メソッドの呼び出しの際に与えられたブロックを実行します。

このプログラムを実行すると、numの値を 1、 2、 4、 8と 2倍にしていき、10

を超えたところでmyloopメ ソッドから抜けるというふうに動きます。

この例ではブロックにはパラメータがありませんが、yieldに引数があれ
ば、それがブロック変数としてブロックに渡されます。また、ブロックで最後

に評価した式の値がブロックを実行した結果となり、yieldの戻り値として

取り出すことができます。

ブロックつきメソッドの使い方については、クラスの定義を学んだあとで、
「第11章 ブロック」で詳しく見ていきます。

> ruby myloop.rb
num is l-

num is 2

num i.s 4

num is 8

num is 16

i31

第7章 メソッド

●・07。3。4 引数の数が不定なメソツド
引数の数が決められないメソッドは、次のように「*変数名」の形式で定義

することで、与えられた引数をまとめて配列として得られます。

def foo(*args)
args

end

p foo(1′ 2′ 3) ‖=>[1′ 2′ 3]

少なくとも1つ は引数を指定しなければならないメソッドを定義したい場

合は、次のようにします。

def meth(arg, *args)

Iarg, args]
end

不定の引数はすべてargsと いう変数に配列として渡されます。「*変数名」

の形式の引数は、メソッド定義の引数リストに1つだけ含めることができま

す。最初の引数と最後の引数は決まった名前で受け取って、その間の引数は

省略できるようにしたい場合は次のようにします。

def a(a′ *b′ c)

[a′ b′ c]

end

p meth(1)

p meth(1′ 2′ 3)

pa(1,2′ 3′ 4′ 5)

pa(1,2)

+=> [1′ []]

十=> [1′ [2, 3]〕

+=> [1′ [2′ 3′ 4]′ 51

‖=> [1′ []′ 2]

:32

7.3 メソッドの定義

m)e。 7.3。5 キーワード引数
これまで紹介したメソッド定義では、メソッドを呼び出す際の引数は、メ

ソッドを定義したときに決めた個数と順番に従って与える必要がありまし

た。キーワード引数を使うと、引数名と値のペアで引数を渡せるようになり

ます。

キーワード引数を使う場合のメソッド定義の構文は次のようになります。

defメ ソッド名 (引数 18引数 1の値 ′引数23引数 2の値′
実行したい処理

end

「引数名8 値」の形式で引数名だけでなくデフォル ト値を指定します。直方

体の表面積を計算するareaメ ソッド(p.129)を キーワード引数を使うよう

に書き直してみましょう。

def area(x: 0, y: 0, z: 0)

xY=xxY
Yz=Y*z
zx=z*x
(xy+yz+zxl*2

end

a

p area(x: 2, y: 3, z: 4)

p arealz: 4, yz 3, x: 2)

p area(x: 2, z: 3l
(引数の順序を変える)

(yを 省略する)

+=> 52

+=> 52

+=> 12

引数のx、 y、 zのそれぞれにデフォル ト値として0を指定してメソッドを定

義します。呼び出しの際は「x:2」 のように、引数の名前と値をペアで指定し

ます。キーワード引数形式のメソッド定義では、それぞれの引数にデフォル

ト値を与えるため、どれを省略してもかまいませんし、呼び出しの際に引数

名を与えるので、順番も自由にしてかまいません。

デフォルト値を指定したくない場合は、引数名 :と 引数名だけ書きます。デ

フォルト値が省略された引数は、呼び出し時に省略できません。

133

第7章 メソッド

def volume(x:, y: 2, z: 4)

x*y*z
end

p volume(x:2, y:3) *=> 24

p volume(y: 3, z: 4) *=> ArgrumentError

定義にない引数名でパラメータを与えた場合には、エラーとなります。

area(x: 2, foo: 0) #=> ArgumentError

定義に存在しないキーワード引数をエラーにせずに受け取りたい場合は

「**変数名」の形式で受け取ります。次の例では、キーワード引数x、 y、 zのほ

かに、**argsと いう引数を持つメソッドを定義しています。引数argsには、

引数リストに存在しないキーワードをキーとして持つハッシュオブジェクト

が設定されます。

def meth(x: 0, y: 0, z: 0, **419s1

[x, y, z, args]
end

p meth(z: 4, y: 3, xt 2\ #=>

p meth(x: 2, z: 3, v: 4, w: 5) S=>

, {}l
, {:v=>4 , 'w=>5 } l

rDキーワード引数と通常の引数を組み合わせる

キーワード引数は通常の引数と組み合わせて用いることができます。

def func(a′ b: 1, c: 2)

このように定義した場合、aは必須のパラメータ、bと cは キーワード引数

となります。このメソッドを呼び出すときは、次のように、最初の引数に続け

end

i34

7.4 メソッドの呼び出しの補足 :

てキーワード形式の引数を指定します。

func(1′ b: 2′ c: 3)

○ ハツシュで引数を渡す

ハッシュをキーワード引数として渡すことができます。キーはシンボルで

なければなりません。デフォル ト値を持つキーワードは省略してかまいませ

んが、余分なキーを与えるとエラーになります。次の最後の例ではキーワー

ドyを省略しています。

def area(x: 0, y: 0, z: 0)

)qf=x*y
YZ=y*z
zx=z*x
lxy+yz+zx)x2

end

argsl = {x: 2, y: 3, z: 4)

P area(args1) #=> 52

args2={x:2′ z:3}#yを 省略する
p area(args2) 十三> 12

メソッドの呼び出しの補足

メソッド呼び出しの際の引数の渡し方について補足します。

●・・ア.4.1 配列を引数に展開する
メソッドに引数を渡す場合に、配列を展開してメソッドの引数にすること

もできます。メソッドの呼び出しの際に、「*配列」の形式で引数を指定すると、

配列そのものではなく、配列の要素が先頭からナI原にメソッドの引数として渡

a

i35

:第 7章 メソッド

されます。ただし、配列の要素の数とメソッドの引数の数は一致していなけ

ればいけません。

def foo(a, b, c)

a+b+c
end

p foo(1, 2, 3) #=> 6

argsl = [2, 3]

P foo(1, *args1) |=> 6

args2 = 11, 2, 3)

P foo(*aags21 ‖=> 6

●・・7.4.2 引数にハッシュを渡す
ハッシュオブジェクトは通常「{～ }」 という形式で書きますが、メソッド

の引数にハッシュを渡す場合は、「{}」 を省略できます。

def foo(arg)
arg

end

p f00({‖ a‖ =>1′
‖
b‖ =>2))

p fOo(:la‖ =>1′ 1lb‖ =>2)

p foo(a: 1′ b: 2)

十=> {:〕 a‖ =>1′ ''b‖ =>2}

+二 > {‖ a‖ =>1′ lib〔
l=>2}

|=> (:a=>1′ :ib=>2}

この書き方は、最後の引数にハッシュを渡す場合にも使えます。

def bar(argt, arg2)

largL, arg2)
end

p bar(loO′ (li a ll=>1′
〔:b‖
=>2〕)

p bar(100′ :la‖ =>1′ ::b‖ =>2)

p bar(100′ a: 1′ b: 2)

+=> [100′ {‖ a‖ =>1′ 'Ib:'=>2}]

+=> [100′ 〔
〕la‖
=>1′
‖
1)〕
:=>2)]

十二> [100′ {:a=>1′ :ib=>2)]

|

:36

7.4 メソッドの呼び出しの補足 :

3番 目の形式はシンボルをキーとするハッシュを渡していますが、キーワ

ー ド引数を使った呼び出しとそっくりです。もともと、このハッシュを引数

として渡す書き方があって、キーワード引数はその見かけに似せて設計され

ました。キーワード引数を使うと、使用できるキーを制限したり、デフォル ト

値を与えたりすることができます。キーワード引数を積極的に使うのがよい

でしょう。

読みやすいプログラムを書こう

プログラムは、コンピュータに理解させるためのものである一方、人間が読

み書きするものでもあります。しかし、同じように動作するプログラムでも、人

間が読みやすいものもあれば、そうではないものもあります。この読みやすさ

は、プログラムの設計や構造だけではなく、「見た目」にも左右されます。プロ

グラムの見た目をよくするためのポイントとして、次の3点が挙げられます。

。改行と「′」(セ ミコロン)

0イ ンデント
●空自

それぞれについて、
'I原

に見ていきましょう。

○ 改行と「 ;」

Rubyの文法の特徴の1つに、改行を文の区切りに使えることが挙げられます。

改行以外に、文の区切りになる記号として「,」 があります。1行に複数の文を

書きたい場合に使えます。たとえば、

str = "he11o"; print str

と書くのは、

a

str = "he11o"
print str ..慧 .ど ち

と書くのと同じ意味になります。

この文法は、改行そのものを一種の自然な区切りと見なしたほうが、プログ

i37

138

インデントを行うべき場面として、次のような箇所が挙げられます。

ラムを書きやすく読みやすいという考えを表しています。1行にいくつもの操

作を書くよりも、適切に改行することが、読みやすいプログラムヘの第一歩と

なります。

「′」を多用すると、プログラムが読みにくくなりがちです。使う前に「どうし

ても同じ行に書かなければいけないのか ?」 と自問してみましょう。そして、使

ったほうが読みやすくなると判断したときにだけ使いましょう。筆者もふだん

は「,」 を使うことはありません。

(Dインデント

インデントとは、「字下げ」のことです。プログラムの行頭に空自文字をいく

つか並べて、まとまりを強調するために使います。本書では、空白文字2つ をイ

ンデント1つ としています。

次の例では、printメ ソッドの2行がif～ endの内部にある処理、という
ことをわかりやすくするために、インデントを行っています。

if a == 1

print messagel

print message2

end

繰り返しなどが入れ子になったときには、インデントをさらに深くします。

こうすると、文と繰り返しの対応関係が、わかりやすくなります。

while a < L0

while b < 20

b=b+1
print b

end

a=a+1
print a

end

:第 7章 メソッド

7.4 メソッドの呼び出しの補足 :

●条件分岐

if a>0
SOme_method()

else

other_method()

end

●繰り返し

while iく 10

method()

i=i-1

end

.)ay,

SOmeJalue・ eaCh dO lil

i.method()

end

●メソッドやクラスの定義

def foo
print "hel1o"

end

インデントをする際には、次のことを守りましょう。

・ 何でもないところで突然字下げしたりしない

x=10
y=20

z = 30 + く= 1電景‐ヽヽ 31

139

|

第7章 メソッド

●インデントの幅は揃える

if foo

if bar

if buz 十く=下げすぎ
end

end

end

○ 空自

空白は、プログラム中のいたるところで現れます。次のことに気をつけまし

よつ。

●空自の長さは揃えて、バランスよく

演算子の前後の空白は同じ長さにしましょう。たとえば、aと bの足し算だと

以下のパターンがありえます。とりわけ、「a+b」 は、「+b」 という引数を持っ
た「a」 というメソッドのメソッド呼び出し「a(+b)」 のように見えるため、好ま

しくありません。

a+b

a+b

a +b

a+ b

○好ましい書き方

○好ましい書き方

△好ましくない書き方

△好ましくない書き方

(Dよいスタイル

よいスタイルを身につけるには、ほかの人の書いたRubyの プログラムを読

んで、それを真似るところから始めるのがよいでしょう。プログラムの内容に

ついても、スタイルについても、上達するにはほかの人のプログラムをたくさ

ん読むことが欠かせません。

140

^
第U章

クラスとモジュール

ここまでの説明で、どんなプログラムでも必要となる基本的なデータ型 (数

値、文字列、配列、ハッシュ)と 、データを操作するための道具であるメソッド、

そして、プログラムの流れを記述するための制御構造を紹介しました。これ

らはさまざまなプログラミング言語に共通の考え方で、ある意味プログラミ

ングの基本ともいえるものです。

ところで、Rubyに は「オブジェクト指向スクリプト言語」という肩書きが

あり、その名の通リオブジェクト指向プログラミングをサポートするための

機能を備えています。ここでは、オブジェクト指向に共通の概念である「クラ

ス」とRubyの特徴的な機能である「モジュール」といった道具の使い方を説

明したあとで、オブジェクト指向の基本について解説します。

α

八
＼ ヽ

鵞鶉
蛉瘍

] 口
‐桐
国
○
□
（
Ｗ

′ヽ

Y
/~ヽ

9
‐
□□

◎

○

|口 |

141

クラスとは

クラスはオブジェクト指向における重要な用語の1つです。第4章でも簡単

に説明しましたが、ここではもう一歩踏み込んで、オブジェクト指向言語に

おけるクラスという考え方を紹介します。

(|)・・8■1 クラスとインスタンス
クラスとはオブジェクトの種類を表すものです。Rubyでは「型」と言い換

えてもよいかもしれません。Rubyのオブジェクトは例外なく何らかのクラス

に属しています。たとえば、これまで「配列オブジェクト」あるいは単に「配

列」と呼んできたオブジェクトは、実際はArrayク ラスのオブジェクトです。

また、「文字列」と呼んできたオブジェクトも、実際はStringク ラスのオブ

ジェクトです。

「あるクラスのオブジェクト」のことを、そのクラスの「インスタンス」と

も呼びます。先ほどの例では、「配列はArrayク ラスのインスタンス」とか、「文

字列はStringク ラスのインスタンス」といった具合です。その意味ではオブ

ジェクトとインスタンスは同じ意味で使えますが、インスタンスの方がその

元となるクラスをより意識した表現になります。クラスが雛型あるいは設計

図で、インスタンスはそれを元に作った物、といったような関係になります

(図 8.1)。

:第 8章 クラスとモジュール

型 (クラス)

142

嘔〔□回Dク ラスとインスタンスの関係

タイ焼き(インスタンス)

8.1 クラスとは・

鯰)008.1.2 インスタンスの生成
新しいインスタンスを生成するには、各クラスのnewメ ソッドを使うのが

一般的です。たとえば配列の場合、Array.newを使って新しい配列を生成す
ることができます。

arf = fu14'.n",
p ary *=> []

ψ a配列や文字列のような組み込みのクラスは、リテラル (文法に組み込まれた

[1′ 2′ 3]や ‖abc‖ のような表記法)を使ってオブジェク トを作ることも
できます。

オブジェクトがどのクラスに属しているのかを知るには、classメ ソッド

を使います。

ary = Array,new
p ary.cIass #=> Array
p 'ABC'.c1ass *=> String

あるオブジェクトがあるクラスのインスタンスかどうかを判断するには、

instance_of?メ ソッドを使います。

ary = Array.new
str = "He1lo!"
p ary.instance-of?(Array) #=> true
p str. instance_of? (String) #=> true
p ary.instance-of?(String) #=> false

骰機・8■3 継承
すでに定義されているクラスを拡張して新しいクラスを作ることを継承と

いいます。

画面上に時計を表示するクラスを作ることを考えてみましょう。このクラ

スはユーザの好みに応じて、アナログ時計のような表示にしたり、デジタル

:43

:第 8章 クラスとモジュール

時計のような表示にしたりできることにします。

アナログ時計とデジタル時計は時間を表示する形式が違うだけで、現在時

刻を取得する方法や、アラームなどの基本的な仕事を行うための機能はほと

んど同じです。このような場合には、基本的な機能を持った「時計クラス」か

ら、「アナログ時計クラス」と「デジタル時計クラス」を継承するという方法

を取ることができます (図 8.2)。

時計クラス 共通の機能は
スーパークラスが

提供するものを

利用する

特殊な機能は
サブクラスが

個別に提供する

デジタル時計クラス アナログ時計クラス

嘔嘔ロロD「時計クラス」から「アナログ時計クラス」と「デジタル時計クラス」を

継承する

継承によって新しく作られたクラスをサブクラス、継承のもとになったク

ラスをスーパークラスといいます。継承を行うことによって、次のようなこ

とができます。

●既存の機能はそのままで、まったく新しい機能を追加する

●既存の機能を定義し直して同じ名前のメソッドに違う振舞いをさせる

0既存の機能に処理を追加 して拡張する

継承は同じような機能を持った複数のクラスを作る場合に便利なメカニズ

ムです。

RubyのすべてのクラスはBasicObjectク ラスのサブクラスとなっていま

す。BasicObjectク ラスには、Rubyの世界のオブジェクトとして必要な最低

限の機能が定義されています。

・時刻の設定

・アラームの設定

。時,分,秒の管理

″ J■ ″ J
″′口″′

表示

:44

・表示

8.1 クラスとは

ψ
もっとも、BasicObjectク ラスだけでは本当に最低限なので、通常のオブジ

ェクトとして共通に使われる機能も削られてしまっています。通常のオブジ

ェクトに必要なクラスはObjectク ラスとして定義されています。文字列や

配列などはObjectのサブクラスです。BasicObj ectと Objectについては、
「8.4.2 継承する」で改めて説明します。

本書で取りあげる組み込みクラスの継承の関係は図8.3の ようになってい

ます。なお、Exceptionク ラスの下にはたくさんのサブクラスがありますが、

ここでは省略しています。

BasicObject
L____Object

-
Array

-
String

-
Eash

-
Regexp

-IO I ril.

-
Dir

-
Nuneric
Integer

Float

Co口Plex
Rational

-
Exception

-

Tine

1璽)― 組み込みクラスの継承の関係

サブクラスとスーパークラスの関係を「is―aの関係にある」といいます。た

とえばStringク ラスは、スーパークラスであるObjectク ラスとis_aの 関係

にあります。

クラスのインスタンスであることを調べるinstance_of?メ ソッドはすで

に紹介しましたが、is_a?メ ソッドを使うことによって、継承関係をさかの

ぼってクラスに属するかどうかを調べられます。

str = "This is a String. "

p str.is-a?(String) #=> true
p str.is-a?(Object) #=> true

a

〓

Ｉ

Ｌ
Ｉ
ド
Ｌ
Ｉ
」

145

第 8章 クラスとモジュール

ちなみに、instance_of?メ ソッドやis_a?メ ソッドはObjectク ラスで定

義されているので、通常のオブジェクトではこれらのメソッドを使えます。

この章の残りの部分では、クラスやモジュールを作る方法を紹介します。

Rubyに あらかじめ用意されているクラスの使い方は「第3部 クラスを使お
う」で説明します。まずクラスの使い方を知りたい方は、第3部を先に読んで

もかまいません。

クラスを作る

簡単なクラスを作ってみましょう。クラスの定義には、さまざまな決まり

ごとがあります。まずは、基本的なことからサl頂に始めます。

クラスの例として、買い物をしたときにもらえる「レシート」を考えてみま

す。レシートには、店名、買った商品名と単価と個数、小計や消費税、合計金額

などが並びます。これをプログラムで表すにはどうすればよいでしょうか。

データは、文字列や数値で表現できそうです。購入商品の一覧も配列を使

えばよいでしょう。各商品の単価と個数などから合計金額を計算する処理も

用意します。オブジェクト指向ではないプログラミングでは、そのような要

素を組み合わせてプログラムを作っていました。

一方、オブジェクト指向プログラミングでは、「レシート(Receipt)ク ラス」

という新しいクラスを作ります。レシートクラスは、購入者に渡すレシート

のもとになるものです。そして、このクラスをもとに生成されるインスタン

スが、個々のレシートオブジェクトと考えてプログラミングします (図 8.4)。

レシートクラス

レシートオブジェクト

(インスタンス)

○店名 :XXXX
O商品1:XXXX
O商品2:XXXX
O……

卵 200円 ×1
大根 100円 ×2

ストアA

牛乳

バン

弁当

200円 Xl

150円 ×2

500円 ×1

ストアB

(墜1)― レシートクラスとインスタンス

146

レシートクラスは共通の機能を持ちます。たとえば購入商品の単価と個数

からそれぞれの金額を計算したり、また小計に消費税を加えて合計金額を出

したりします。こういった機能は、メソッドとしてレシートクラスに実装し

ます。各レシートはレシートクラスのメソッドで計算することになります。

最初の例として、List 8.1の Receiptク ラスを見ていきましょう。

List m receipt.rb

class Recej-pt

def inj-tialize(name)
Gname = name

Glines = []
end

‖ インスタンス変数の初期化

def li-nes= (lines)
@1ines = lines

end

def calc
total = 0

Glines.each do llinel
total += line[:price] x line[:num]

end

total
end

def output

puts ilレ シート |〔 ename〕 ‖

01ineS・ eaCh dO llinel

puts i!|(line[:name]〕 +{line[:price]}円 x +(line[:num]}‖

end

puts‖ 合計金額 : +(calc)円 ‖

end

r = Receipt.new(" 7 l. 7A')
r.lines = [{name: "9F", price: 200, num: 1},

{name: "rtffi", price:100, num:2}l
r. output

end

147

8.2 クラスを作る :

一　
　
　
■

第8章 クラスとモジュール

1曙卜(・ 08。2.l ciass文
クラスを定義するにはclass文を使います。class文の一般形は次の通り

です。

classク ラス名
クラスの定義

end

クラス名は、必ず大文字で始めなければいけません。

●・ 08。2。2 in:tializeメソッド
class文の中でメソッドを定義すると、そのクラスのインスタンスメソッ

ドとなります。List 8.1で は、calcメ ソッドなどがそれにあたります。

ただし、initializeと いう名前のメソッドは特別です。newメ ソッドによ

ってオブジェクトを生成すると、このメソッドが呼ばれます。そのとき、new

に渡した引数がそのまま渡されます。オブジェクトにとって必要な初期化の

処理はここに記述します。

def initialize(name)
Gname = name

@lines = []
end

十 initializeメ ソッ ド

+イ ンスタンス変数の初期化

この例では、initializeメ ソッドは引数nameを受け取るようになってい

ます。したがって、

r = Receipt.new(" 7 l' 7A")

というようにしてオブジェクトを生成すると、initializeメ ソッドに‖スト

アA‖ が渡されます。

i48

8.2 クラスを作る

《勝,・・8。2.3 インスタンス変数とインスタンスメソッド
List 8.1の initializeメ ソッドをもう一度見てください。

def initialize (name)

Gname = name

Glines = []
end

「ename=name」 によって、引数で渡されたオブジェクトをenameと ぃぅ

変数に代入しています。Cで始まる変数はインスタンス変数といいます。ロー

カル変数はメソッドごとに異なる変数として扱われますが、インスタンス変

数は、同じインスタンス内であればメソッド定義を越えて、その値を参照し

たり、変更したりできます。なお、初期化されていないインスタンス変数を参

照すると、nilが得られます。

インスタンス変数は、インスタンスごとに違う値を持つことができます。

また、インスタンス変数は、インスタンスが存在している間は値を保持して

おいて何度でも利用できます。一方、ローカル変数はメソッド呼び出しごと

に新しく割り当てられ、メソッドの中でしか参;l煮できません。

たとえば次のようにした場合、

rl = Receipt.new{I!ス トアA:I)

r2 = Receipt.new(i:ス トアB'i)

r3 〓 Receipt.new{1!ス トアC・)

rlと r2と r3は それぞれ異なるenameを保持 します (図 8.5)。

new(nストアAn) neW(・ストアB・) new(‖ストアC・)

Receiptクラスの
インスタンス

a

Receiptクラス

=ロストアAn 0■me=ロストアB" ename=‖ストァc‖

《19“ クラスとインスタンス

:49

:第 8章 クラスとモジュール

インスタンス変数は、インスタンスメソッドから参照できます。Receipt

クラスのoutputメ ソッドでは、次のようにenameを 利用しています。

class Receipt

def output
puts "vr-l #{Gname}"

Receiptク ラスのインスタンスに対してoutputメ ソッドを次のように呼

び出すと、

11. output

initializeメ ソッドで設定されたenameの値が使われて、

と出力されます。

(口)・・8。2.4 アクセスメリッド
Rubyで は、オブジェクトの外部からインスタンス変数を直接参照したり、

インスタンス変数に代入したりすることができません。オブジェクトの内部

の情報にアクセスするには、そのためのメソッドを定義する必要があります。

List 8.1の Receiptク ラスのenameに アクセスするために、次のようにメ

ソッドを追加します。

end

end

レシー ト ス トアA

実行例

150

8.2 クラスを作る

tist (GED receipt.rb (th*)

class Receipt

def nane

@nane

end

十enameを参照する

def nane=(nane)#enameを 変更する
ename=name
end

end

最初のメソッドnameは単に、enameの値を返します。このメソッドは属性

を参照しているかのように利用できます。

p rl.name |=>:'ス トアA‖

2番 目のメソッドはname=と いう名前を持っています。このメソッドは次

のように使います。

r2.name=1'ス トア B・

一見、オブジェクトの属性のようなものに代入を行っているように見える

この文は、実際はname=(‖ ストアB‖)と いうメソッド呼び出しを行っていま

す。このようなメソッドを用意すれば、インスタンス変数に外部からアクセ

スを許すことができるようになります。

しかし、インスタンス変数がいくつもある場合、何度もメソッドを定義す

るのは面倒なうえに、見つけにくいミスが入り込みやすくなります。そこ

で、これらのメソッドを簡単に定義するために用意されているのが、attr_

reader、 attr_writer、 attr_accessorです (表 8.1)。 インスタンス変数名

を示すシンボルを指定すると、同名のアクセスメソッドを自動的に定義して

くれます。

151

:第 3章 クラスとモジュール

目mア クセスメソッドの定義

先ほどのnameメ ソッドとnane=メ ソッドを定義する代わりに、次のように

1行書けば同じ意味になります。

class Receipt
attr_accessor name

end

ψ
インスタンス変数を設定するメソッドをライター (writer)、 参照するメツッ

ドをリーダー(reader)と いいます。また、これらのメソッドを合わせてアク

セサー(accessor)と いいます。リーダーのことをゲッター (geuer)、 ライタ

ーをセッター (setter)、 アクセサーのことをアクセスメソッドということも

あります。

●・08。2.5 特別な変数self
インスタンスメソッドの中で、メソッドのレシーバ自身を参照するには

selfと いう特別な変数を使います。アクセスメソッドの例で作成 したname

メソッドを、別のインスタンスメソッドから呼ぶことを考えてみます。

List“ receipt.rb(抜粋)

class Receipt
attr_accessor :narne

def output
puts " vi- | #{se1f .name} "

end

end

定義 意味

a[tr_reader : name 参照のみ可能にする(nameメ ソッドを定義する)
atLr_writer:name 変更のみ可能にする(name=メ ソッドを定義する)

attr accessor :nalne 参照と変更の両方を可能にする (上記2つを定義する)

:52

outputメ ソッドで不」用している「self.name」 はoutputメ ソッドを呼ん

だときのレシーバを参照しています。

また、レシーバを省略してメソッドを呼ぶと暗黙にselfを レシーバとしま

す。そのため、実際は次のようにselfを省略してもnameメ ソッドが呼ばれる

ことになります。

def outpuL
puts " vr- | #{name}. "

end

一方、name=メ ソッドのように、「=」 で終わるメソッドを呼び出す場合は

注意が必要です。

インスタンスメソッドの中で単に「name二 ‖ストアB‖」と書いても、そ
のメソッドの中で有効な「name」 というローカル変数が作られるだけで

name=メ ソッドは呼ばれません。この場合はレシーバを明示して、「self.

name=‖ ストアB‖」という形式で呼ぶ必要があります。

a

def replace_name

name = 'new name'

self.nane = "new name"

end

十ローカル変数への代入

十name=メ ソッドの呼び出し

ψ
「self」 という名前自体はローカル変数と同じ形式ですが、そのオブジェ

ク ト自身を参照するための名前として予約されているので、代入して値

を変更することができません。このように、変数として自由に使うことが

できない名前には、ほかにnil、 true、 false、 __FILE__、 __LINE__、

__ENCODING__が あります。

153

8.2 クラスを作る :

第8章 クラスとモジュール

●・・8。2。6 クラスメソッド
クラスメソッドはクラスそのもの (ク ラスオブジェクト)を レシーバとす

るメソッドです。「7.2.2 クラスメソッド」(p.125)で説明した通り、クラス

メソッドはインスタンスに対する操作ではありません。そのクラスに関連す

る操作のために使われます。

クラスメソッドは、「classくくクラス名 ～ end」 という特殊なクラス定

義の中にインスタンスメソッドの形式で定義します。

class くく Receilpt

def create_receipt_xyz

self.new(・ ス トアXYZ‖)

end

end

Receipt.create_store_a 十二>ス トアAの新しいレシートを返す

上記の方法ではなく、List 8.1で紹介したクラス定義の中でクラスメソッ

ドを追加することもできます。クラス文の中のselfはそのクラス自身を参照

するので、次のように「classくく self～ end」 として、その中にメソッド

を記述します。こちらの方法が一般的に使われています。

class Receipt
class << self

def create_receipt_qgz
self.new('7. lTXYZ"l

end

end

end

また、「classくくクラス名 ～ end」 の形式のクラス定義を用いずに、次の

ように「defクラス名。メソッド名 ～ end」 の形式でクラスメソッドを定義
することもできます。

■

．
‥

‥

154

8.2 クラスを作る :

def Receipt . creaLe_receipt-xyz
self .new('7, l-7XYZ')

end

この形式の場合も、クラス定義の中であればselfを使って次のように書く

ことができます。

class Receipt
def self . create_receipt-xyz

self .new('7.ITXYZ'l
end

end

, 「classくくクラス名 ～ end」 という書き方のクラス定義を特異クラス定義といいます。また、特異クラス定義で定義したメソッドを特異メソッドと

いいます。

●・・8.2。7 定数
class文の中では定数を定義できます。

class Receipt

VERS10N= i[1.0.0':

end

クラスの持っている定数は、次のように「::」 を使ってクラス名を経由すれ

ばクラスの外部からも参照可能です。

p Receipt: :VERSION #=> " 1. 0 . 0 "

155

】

―

‐

第8華 クラスとモジュール

●・・8.2.8 クラス変数
「00」 で始まる変数はクラス変数です。クラス変数とは、そのクラスのすべ

てのインスタンスで共有できる変数のことです。定数と似ていますが、クラ

ス変数は何度でも値を変更することができます。また、クラスの外部からク

ラス変数を参照するには、インスタンス変数の場合と同様にアクセスメソッ

ドが必要です。ただし、attr_accessorな どは使えないので直接定義する必

要があります。List 8.4の プログラムは、outputメ ソッドが呼ばれた回数を

集計するようにしたものです。

List□ D receipt_count.rb

class Receipt
GGcount = 0 +publishメ ソッドの呼び出し回数

def Receipt.count
0Gcount

end

十呼び出し回数を参照するためのクラスメソッド

def initialize(name)
@name = name

Glines = []
end

十インスタンス変数の初期化

def Lines=(1ines)
Glines = lines

end

def calc
total = 0

@Ij-nes.each do llinel
total += line[:price] x line[:num]

end

total
end

def output + インスタンスメソッド
puts‖ レシー ト |(Oname}‖

elines.each d。 llinel

:56

8.3 メソッドの呼び出しを制限する

puts i'十 {line[:namel}十 {line[:price]}円 x +{line[:num]}‖

end

puts ii合計金額 :十 {calc)円 ‖

00count+=1 +呼 び出し回数を加算する
end

11 = Receipt.new(, 7 l. 7A,)

12 = Receipt.new(' 7 l. 7B')

end

C+=> 0

|=> 2

メソッドの呼び出しを
制限する

前節ではレシートクラスを題材にクラスの定義について一通り説明しまし

た。さらにメソッドの呼び出し制限について紹介します。

ここまでに紹介した方法でメソッドを定義すると、インスタンスメソッド

として呼び出すことができますが、そうしたくない場合もあります。たとえ

ば、複数のメソッドに共通する処理を単にまとめるために作ったメソッドな

どは、むやみに公開するべきではありません。

Rubyのメソッドには3種類の呼び出し制限のレベルが用意されており、必

要に応じて変更することができます。

o publis..
. private

インスタンスメソッドとして使えるように公開する

レシーバを指定して呼び出せないメソッドにする (レ シ

ーバを省略した形式でしか呼べないため、インスタンス

の外側から利用できなくなる)

…同一のクラスであればインスタンスメソッドとして使

えるようにする

o proteqted...

:57

p Receipt.count
rl-. output
12 . output
p Receipt.count

ー
■F:難 ―――

【8。3
L

:第 8章 クラスとモジュール

メソッドの呼び出し制限を変更するには、これら3つのキーワードにメソ

ッド名を表すシンボルを指定します。

まずは、publicと privateを使った例 (List 8.5)を 見てみましょう。

List m access」 est.rb

class AccessTest
def pub

puts "pub is a public method. "

end

public:pub +pubメ ソッドをpublicに設定 (指定しなくてもよい)

def priv
puts "priv is a private method. "

end

private :priv + privメ ソッドをprivatelこ設定

end

access = AccessTest.new

access.pub

access.pr■ v

AccessTestク ラスの2つのメソッドのうち、pubメ ソッドは普通に呼び出

すことができますが、privメ ソッドを呼ぼうとすると例外が発生し、次のよ

うなメッセージが出力されます。

複数のメソッドを、まとめて同じ呼び出し制限に定義したい場合は、次の

ようにすることもできます。

> rrrby access_tegt.rb
pub is a public method.

Traceback (nost recent call last) :

access_test.rb:17:in'<main>' : privat.e method'priv'
for #<AccessTest. : 0x00005607821abc30> (NoMethodError)

called

8.3 メソッドの呼び出しを制限する

class AccessTest

public 十 引数を指定 しなければ、
十 これ以降に定義 したメソッドはpublicに なる

def pub

puts

end

private lこ れ以降に定義したメソッドはprivateになる

def priv
puts "priv is a private method. "

end

end

ψ
何も指定せずに定義されたメソッドはpublicと なりますが、initialize

メソッドだけは特別で、常にprivateと して定義されます。

protectedは、同一クラス (と そのサブクラス)か らはインスタンスメソッ

ドを呼び出せても、それ以外の場所からは呼び出せないようにします。

List 8.6で は、X、 Y座標を持ったPointク ラスを定義しています。このク

ラスでは、インスタンスの保持している座標を外から参照することはできて

も、変更はできないということにします。このような場合に、2つの座標を交

換するメソッドswapを実装するために、protectedを使います。

119 GFI point.rb

class Point
attr_accessor :x, :y
Protected :x=, :y=

|ア クセスメソッドを定義する

+ x=と y=を protectedlこ する

def initialize(X=0.0′ y=0.0)

ex′ ey = x, y

end

def swap(other) 十 x、 yの 1直を入オt替えるメソッド

tmp_x′ tmp_y = ex′ ey

159

0x, @y = other.x, other.y
other.x, other.y = tmp-x, tmpJ

return self
entl

end

p0 = Point.new
pL = Point.new(1.0, 2.0)
p tp0.x, p0.y I #=> [0.0, 0.0]
p I p1.x, p1.y I *=> [1.0, 2.0]

+同一クラス内では
十呼び出すことができる

p0. swap (p1)

p t p0.x, p0.y I

plpl .x,p1 .yl

pO.x= 10.0

|=> [1.0′ 2.0]

+=> [0.0′ 0.01

#=> a) - (NoMethodError)

クラスを拡張する

○。|・ 8.4。1 既存のクラスにメソッドを追加する
すでに定義されているクラスにメソッドを追加することもできます。

Stringク ラスに、文字列中の単語数を数えるインスタンスメソッドcount_

wordを 追加してみます (List 8.7)。

Ust lEf,l ext-string.rb

class String
def count_word

ary = self.split(" ") +selfを空白文字区切りで

十配列に分解する

十分解後の配列の要素数を返すreturn ary.size
end

end

:60

:第 8章 クラスとモジュール

】

8.4 クラスを拡張する

str = "ilust Another Ruby Newbie"
p str.count_word #=> 4

この機能を実現するために、count_wordメ ソッドの定義の中で、count_

wordメ ソッドが実行されたときのレシーバであるselfを splitメ ソッドで

分解して、その結果として得られる配列の要素数を求めています。

●・08。4.2継承する
「8.1.3 継承」(p■43)で説明した通り、継承によって、既存のクラスには

変更を加えずに、新しい機能を追加したり、部分的にカスタマイズしたりし

て新しいクラスを作ることができます。

継承を行うには、class文で指定するクラス名と同時にスーパークラス名

を指定します。

classク ラス名 く スーバークラス名
クラスの定義

end

Arrayク ラスを継承 したクラスRingArrayを 作ってみましょう (List
8.8)。 RingArrayク ラスで必要な変更は、配列の参照に使われる演算子 []を

再定義するだけです。List 8.8で使用しているsuperは、スーパークラスの同

名のメソッド(つまり、この場合はArray十 [])を呼び出します。

Lisi嘔匡p rin&array.rb

a

class RingArray く Array

def [](i)

idxl = i t size

Super(idX)

end

end

#ス ーパークラスを指定する

十演算子 []の再定義

#新 しいインデックスを求める
|ス ーパークラスの同名のメソッドを呼ぶ

wday=RingArray[‖ 日‖′ !1月 ‖′ li火 ‖′ ‖水‖′ ‖木 "′ :i金 ‖′ ‖土 ‖]
p wday[6] +=> il」土 11

p wday[111 +=> 11木 ‖

p wday[15] |=> :!月 ‖

p wday[-1] +=> :i:士 :‖

161

第8章 クラスとモジュール

RingArrayク ラスは、配列サイズよりも大きなインデックスを指定して参

照を行うと、はみ出した部分を先頭からさかのぼってインデックスの計算を

行います (図 8.6)。

"day=RingArray["日
"′ 1'月 "′ :'火 "′

‖
水 "′ ':木 "′

‖
金“′ :'土 "]

wdaY =

P lぼday〔 61 1=> ''土
‖

―p wday[111 1=> '1木‖

p wdav1151 1=>::月 "―――――コ

p wdayl-11 1=>:1土 "― ―

1璽)― RingArr可 クラス

継承を使うと、複数のクラスの共通部分だけをスーパークラスで実装し、

差分はサブクラスで実装するといったことができます。

なお、スーパークラスを指定せずに定義したクラスは、Objectク ラスの直

接のサブクラスとなります。

Objectク ラスは実際のプログラムを作る際に便利なようにたくさんのメ

ソッドを持っていますが、もっとスリムなクラスを利用したい場合がありま

す。そこで登場するのがBasicObjectク ラスです。

BasicObjectク ラスはRubyのオブジェクトとしての最低限のメソッドし

か持っていません。クラスオブジェクトに対してinstance_methodsメ ソッ

ドを呼ぶと、クラスに定義されたインスタンスメソッド名の一覧をシンボル

の配列の形式で返します。この機能を使ってObjectク ラスとBasicObject

クラスのインスタンスメソッドを確認してみましょう。

> irb --single-prupt
>> Object. instance-nethods

=> [: instance_variable_def ined?,
:i.nstance_of?, :kind_of?, :is_a?,
... l

:remove_instance_variable′

:tap′ ...た くさんのメソッド名

火 水 "
‖
木
‖
金
‖
"土 ':

実行例

ヽ

|

|

|

|

|

|

"日 "
‖
月 '〕

162

8.5 aliasと :undef・

>> Basicobject. instance methodls

=> [:egual?, :!, i==t :instance_exec, :!=, :instance_eval,
:__id ,:_send l

class MySimpleClass < BasicObject

end

a
，
，

幸
この節で紹介するような標準クラスの拡張は、上手に使えば大変便利な半面、

複数人が開発するようなアプリケーションで安易に利用すると、相互作用で

思わぬ影響が生じることもあります。使いすぎないように注意 しましょう。

G撥
:機。8。5.l alias
すでに存在するメソッドに別の名前を割り当てたい場合があります。そん

なときには、aliasを使います。aliasの引数にはメソッド名かシンボル名

を指定します。

alias別名 元の名前 ‖メソッド名をそのまま書いた場合
alia8 8別 名 8元の名前 半シンポルを使つた場合

Arraylsizeメ ソッドとArray+lengthメ ソッドのように、同じ機能を複数

の名前で提供する場合などに使います。

また、単にメソッドに別名をつけるだけでなく、すでに存在するメソッド

の定義を変更する場合に、もとのメソッドを別名で呼び出せるように保存し

163

本書では紹介しないものがほとんどですが、Objectク ラスがいくつものメ

ソッドを持っているのに対して、BasicObjectク ラスは本当に最低限の機能

しか持っていないことがわかります。

Objectク ラスではなく、BasicObjectク ラスのサブクラスを作る場合は、

次のようにスーパークラスとしてBasicObjectク ラスを指定してください。

@ aliasEundef

:第 8章 クラスとモジュール

ておくためにも使えます。

次の例 (List 8.9)では、クラスClと 、クラスClを継承したクラスC2を定

義しています。クラスC2では、helloメ ソッドにold_helloと いう別名をつ

けたあとに、helloメ ソッドを再定義しています。

tist GED alias-sample.rb

class Cl

def hello

"Hello:!

end

end

class C2 く Cl

alias old_hello hello

‖Clク ラスの定義

+helloを定義

+Clク ラスを継承してC2ク ラスを定義
十別名old_helloを設定

def hello ‖helloを 再定義
‖|{Old_hello}′ again‖

end

end

CD・
08.5。2 undef
定義されたメソッドをなかったことにしたいときには、undefを 使います。

これもaliasと 同様に、メソッド名かシンボル名を指定します。

obj = 92.n"*
p obj.old-heIlo
p obj.hello

Шdefメ ソッド名
undef:メ ソッド名

#=> "He11o"

#=> "Hel1o, again"

#メ ソッド名をそのまま書いた場合
#シンボルを使った場合

スーパークラスで提供するメソッドをサブクラスでは削除する、といった

用途で使います。

164

8.6 特異クラス

特異クラス

p.154で はクラスにクラスメソッドを定義する方法として特異クラス定義

を取りあげました。特異クラス定義を使うと、任意のオブジェクトに、そのオ

ブジェクトだけで利用できるメソッド(特異メソッド)を追加できます。

次の例では、変数strlと s tr2に ‖Ruby‖ という文字列を代入し、strlが

参照している文字列オブジェクトだけに、helloメ ソッドを追加しています。

このメソッドはstrlに対して呼び出せますが、str2ではエラーとなります。

strl = 'Ruby"
st.r2 = "Ruby"

class << strl
def hel1o

"He1Io, #{se1f} ! "

end

end

a

p strl.hello

p str2.hello

#=> "He11o, Ruby!'
#=> ru - (NouethodError)

これまで特定のクラスにのみクラスメソッドを追加することを何度も行い

ました。Rubyでは、クラスはClassク ラスのオブジェクトになっています。

そのため、Classク ラスのインスタンスメソッドのほか、クラスオブジェク

トに追加された特異メソッドがクラスメソッドとなります。

ψ
特異クラスは英語でシングルトンクラス(singleton class)ま たはアイゲン

クラス (eigenc!ass)と いいます。

165

第3章 クラスとモジュール

モジュールはRubyの 特徴的な機能の1つです。クラスは実体 (データ)と

振舞い (処理)を持った「もの」を表現する機能ですが、モジュールは処理の

部分だけをまとめる機能です。クラスとモジュールは、

●モジュールはインスタンスを持つことができない

oモジュールは継承できない

という点で異なります。

モジュールとは

モジュールの使い方

モジュールの代表的な使い方を紹介しましょう。

G008。 8。l Mix‐inによる機能の提供
モジュールをクラスに混ぜ合わせることをMix‐ inと いいます。クラス定義

の中で includeを 使うと、モジュールに含まれるメソッドや定数をクラスの

中に取り込むことができます。

List 8.10の ようにすることで、MyClasslと MyClass2の両方で共通の機能

をMyModuleに記述することができます。クラスの継承に似ていますが、

● 2つのクラスは似たような機能を持っているだけで、同じ種類 (ク ラス)

と考えたくない

● Rubyの継承は複数のスーパークラスを持てない仕様になっているた

め、すでに継承を行っていると、うまく共通機能を追加できない

といったケースにはMix_inのほうが柔軟に対応することができます。

継承とMix― inの関係についてはモジュールの作り方を説明したあとで説明

します。

166

一
′ｎ
〉

Ａ
●
Ａ
〉

8.3 モジュールの使い方 :

tist (Ef,ED mixin-sample.rb

module MyModule

+共通 して提供 したいメソッドなど

end

class MyClassl

include lMyModule

十 MyClasslに固有のメソッドなど

end

class MyClass2

include MyModule

l MyClass2に 固有のメソッドなど

end

0・・8。8。2 名前空間の提供
名前空間とは、メソッドや定数、クラスの名前を区別して管理する単位の

ことです。モジュールはそれぞれが独立した名前空間を提供するので、Aと い

うモジュール以下のfooと いうメソッドと、Bと いうモジュール以下のfoo

というメソッドは別のものとして扱われます。定数も同様に、Aと いうモジュ

ール以下のF00と いう定数と、Bと いうモジュール以下のF00と いう定数は

別のものとして扱われます。

メソッドでもクラスでも、名前は簡潔なほうがよいことはいうまでもない

のですが、sizeや startの ような一般的な名前は、すでに使われているかも

しれません。モジュールの内部に名前を定義することで、衝突を防げます。

たとえば、数値演算のためのライブラリであるMathモ ジュールには、数学

でよく使われるメソッドや定数が定義されています。モジュールの提供する

メソッドは「モジュール名。メソッド名」という形式で参照します。このような

形式で使用するメソッドをモジュール関数といいます。

+2の平方根
p Math.sqrt(2)

十円周率 (定数)

p Math::PI

十二=> 1.4142135623730951

a

十二> 3.141592653589793

167

:第 8章 クラスとモジュール

モジュール内で定義されたメソッドや定数と同名のものが定義されていな

い場合は、モジュール名の指定を省略できると便利です。includeを使えば、

モジュールが持っているメソッド名や定数名を現在の名前空間に取り込むこ

とができます。先ほどのMathモ ジュールで見てみましょう。

incl"ude Math

p sqrt (2)

PPI

module HelloModule

VERS10N 二 ':1.0‖

p He1loModule::VERS10N

HelloModule.hello(11Alice‖)

モジュールを作る

I Mathモ ジュールをインクルードする

|==> 1.4142135623730951

1==> 3.141592653589793

十module文

1定数の定義

このように、一連の機能ごとにモジュールでまとめることによって、関係

のある名前をひとまとめに扱うことができます。

モジュールを作るにはmodule文を使います。構文はクラスとほぼ同じで、
モジュール名は大文字で始めなければなりません。

moduleモジュール名
モジュールの定義

end

例として、モジュールを作ってみましょう (List 8.11)。

List C口巨口D he‖ o_module.rb

def hello(naに) #メ ソッドの定義

putS I〕 Hello′ +{name}.|!

end

module_function:hello +helloを モジュール関数として公開する
end

‖=> l11.0!1

+=> Hello′ Alice

168

3.9 モジュールを作る

●・・8。 9。1 定数
クラスと同じように、モジュールの内部で定義した定数は、モジュール名

を経由して参照できます。

p HelloModule::VERS10N +=> 111.011

a)・
08。
9。2 メソッドの定義

クラスと同様に、module文の中でメソッドを定義することができます。

ただし、メソッドを定義しただけでは、モジュール内やincludeで インク

ルードした先から呼び出すことはできても、「モジュール名 .メ ソッド名」の形

式で呼び出すことはできません。メソッドをモジュール関数として外部に公

開するには、module_functionを 使う必要があります。module_function

の引数はメソッド名を表すシンボルです。

def hello(name)
puts "He11o, #{name}

end

modufe-function : hel lo

モジュール関数を「モジュール名。メソッド名」の形式で呼び出した場合、メ

ソッド中でself(レ シーバ)を参照すると、そのモジュールが得られます。

■nclude HelloModule

p VERS10N

hello(・ Alice・)

module FooModule

def foo
p self

end

module_function
end

十 イ ンクルー ドしてみ る

十=> ::1.0‖

十=> Hello′ Alice.

C

foo

FooModule. foo #=> FooModule 169

第8章 クラスとモジュール

一方、クラスにモジュールをMix― inす ることは、そのクラスにインスタン

スメソッドを追加することを目的としています。この場合のselfは Mix_in

した先のクラスのインスタンスとなります。

同じメソッドであっても呼び出す文脈によって意味が違ってくるので、

Mix― inして使うモジュールでは、モジュール関数を提供しないなどの使い分

けを意識する必要があります。モジュール関数として定義したメソッドでは

selfを使わないのが普通です。

IVlix‐ in

モジュールの作り方を説明したところで、いよいよMix― inについて見てい

きましょう。クラスにモジュールを取り込むにはincludeメ ソッドを使いま

す (List 8.12)。

Lisi C□圧∋ mixin_test.rb

module M

def meth

'methu

end

end

class C

include M +モ ジュールMをインクルードする
end

c = C.new

p c,meth #=> "meth"

クラスCにモジュールMを インクルードすることによって、モジュールMの

メソッドをクラスCの インスタンスメソッドとして使えます。

なお、includeさ れているかを調べるには、include?メ ソッドを使います。

8。10

170

8.10 Mix― in

C.include?(M) *=> true

クラスCの インスタンスに対してメソッド呼び出しを行うと、クラスC、 モ

ジュールM、 そしてクラスCのスーパークラスであるObjectの サ1頁にメソッド

を検索し、最初に見つかったものを実行します。インクルードされたモジュ

ールは、仮想的なスーパークラスとして機能します。

Object Object

+=> [C′ lM′ Object′ Kernel′ BasicObjecti

l=> Object

a
―→

スーバークラス

ではないが、

そのように振舞う

◎―
クラスの継承関係

継承関係を調べる|こは、ancestorsメ ソッドとsuperclassメ ソッドをイ吏

います。List 8■ 2に次の行を加えて実行すると、ancestorsメ ソッドで継承

の関係にあるクラスの一覧を取得できます。インクルードされたモジュール

Mも 先祖の1つとして含まれているのがわかります。superclassメ ソッドの

戻り値は、直接のスーパークラスです。

p C.ancestors
p C. superclass

ψ
ancestorsメ ソッドの戻り値に含まれるKernelと は、Rubyの プログラム

で共通 して使用する関数的メツッドが実装されたモジュールの名前です。た

とえばpメ ソッドや raiseメ ソッドはKernelモ ジュールのモジュール関数

として提供されています。

Rubyは、複数のスーパークラスを持てない単純継承 (単一継承)と いうモ

デルを採用していますが、Mix―inを使うことによって、単純継承の関係を保

ったまま、複数のクラスで機能を共有できます。

171

:第 8章 クラスとモジュール

Rubyの標準の組み込みの機能で、Mix― inに より機能を提供するためのモ

ジュールとしてEnumerableがあります。Enumerableモ ジュールをeachメ

ソッドを持つクラスにインクルードすると、each_with_indexメ ソッドや

collectメ ソッドなどの、要素を順に処理するためのメソッドを利用できる

ようになります。Enumerableモ ジュールは、Array、 Hash、 IOク ラスなどで

インクルードされています (図 8.8)。 これらのクラスは、継承という血縁関係

は持っていませんが、「eachメ ソッドによって要素を数えあげることができ

る」という点にだけ注目すれば、似ている、ないしは、同じ属性を持っている

ということができます。

Object Object Object Object

string

□)― Enumerableモジュールと各クラスの関係

単純継承の利点は、シンプルなところです。継承による拡張を行う場合に

も、クラス同士の関係を単純なままに保つことができます。しかしその一方

で、既存のプログラムを積極的に再利用したり、複数のクラスの性質をあわ

せ持った高度なクラスを作ったりしたい、という要求もあります。そのよう

な状況に対して、単純継承とMix_inの 組み合わせは、クラス設計における理

解のしやすさと使い勝手のよさの両方を満たす解答の1つ となっています。

0)008。 10。1 すでにあるクラスの動作を変更する
Mix― inをするメソッドには、includeメ ソッドのほかに、prependメ ソッ

ドがあります。

includeに よるMix"inは 、クラスにモジュールを追加して複数のクラスで

モジュールの機能を共有するために用いられます。一方、すでにあるクラス

の動作を変更したい、あるいは修正したいということがあります。たとえば、

標準ライブラリなどの自分では変更できないクラスのメソッドに手を加え

て、(ま ったく独自の変更をすることはお勧めできませんが)次のバージョン

のRubyで使える機能をいち早く使えるようにしたり、バグを修正したりする

というケースです。

Eilrmerable

Array Hash

172

▲ A▲ 木

工0

8.10 Mix― in・

List 8.13は、クラスCに対して、prependメ ソッドを使ってモジュールMを

追加する例です。この操作を「クラスCにモジュールMをプリペンドする」と

呼ぶことにしましょう。継承の順序としてはモジュールMは クラスCの直前

に差し込まれ、クラスCのインスタンスに対してmethメ ソッドを呼ぶと、モ

ジュールMの methメ ソッドで上書きされていることがわかります (図 8.9)。

モジュールMの methメ ソッドの中でsuperを 呼ぶと、九のクラスCの methメ

ソッドを呼ぶことができます。

List m pЮ pend」 est.rb

module M

def meth

"M*meth"

end

end

class C

prepend M

def meth
‖C+meth‖

end

c = C.new
p C.ancestors #=> [M, C, Object, Kernel, BasicObject]
p c.meth #=> "M#meth"

end

Object 0bject

―→
元のメソッドより

モジュールのメソッドが

優先される

側 m pЮ pendメ ソッドで Mix¨ inし たときの継承関係

173

第 8章 クラスとモジュール

●・08』0。2 メソッド検索のルール
Mix― inを使ったときのメソッドの検索順について説明します。

①インクルードされたクラスと、元のクラスで同じ名前のメソッドが定義さ

れている場合は、クラスのほうが優先されます。

module M

def meth
‖Mlmeth"

end

end

class C

include M I Mを インクルー ドする

def imeth
‖C+meth‖

end

end

②同じクラスに複数のモジュールをインクルードした場合は、あとからイン

クルードしたものが優先されます。

module Ml

end

module M2

end

c = c,new
p c.meth

class C

include u1

include M2

end

十=> ::Clmeth‖

+Mlを インクルードする
I M2を インクルードする

174

8.10 Mix― in・

p C.ancestors *=> [C, M2, M1", Object, Kernel, BasicObjectJ

③インクルードが入れ子になった場合も、検索順は一列に並びます。このと

きの関係は図8.10の ようになります。

module Ml

end

module M2

end

module M3

include M2 1 M2を インクルードする

end

・　一　　̈
　
　
　
・・　
，，
一　̈
・

”　・̈
　̈
お　・̈
”　．・　・

・・
“
つ
・
　
．
‥
¨
、
■

・
〓

‘

―

　

■̈

¨
一

．．．一一一一̈轟一̈一
class C

include M1

include M3

end

+Mlをインクルードする
I M3を インクルードする

p C.ancestors 十三> [C′ IM3′ :M2, Ml′ Object′ Kernel′ BasicObject]

Object

―→

object

Ml

M2

M3

(Dmイ ンクルードが入れ子になった場合の関係
175

▲
Ｔ
Ｉ

M2

:第 8章 クラスとモジュール

④同じモジュールを2回以上インクルードしても、2回日以降は無視されま

す。

module Ml

end

module M2

end

class C

include u1

include M2

include M1

end

p C.ancestors #=> [C, M2, M1-, Object, Kernel, BasicObjectJ

⑤モジュールをプリベンドすると、インクルードの逆にモジュールを前へ前

へと追加します。

module M1

module M2

end

end

class C

prepend M1

prepend M2

end

I Mlを プリペンドする

I M2をプリペンドする

:76

p C.ancestors #=> [C, M2, M1, Object, Kernel, Basic0bject]

隕卜・8。10。3 extendメ ソッド
特異メソッドを1つずつ定義する方法は「8.6 特異クラス」(p.165)で 説

明しましたが、モジュールで定義されたすべてのメソッドを特異メソッドと

してオブジェクトに追加する機能として、Obj ect十 extendメ ソッドがありま

す。このメソッドは、モジュールを特異クラスにインクルードして、オブジェ

クトにモジュールの機能を追加します。

module Edition

def editiOn(n)

・ |〔 self}第 十{n}版 ‖

end

end

str=I:たの しいRuby‖

str.extend(Edition)

p str.edition(6) 十=>‖ たのしいRuby第 6版 ‖

includeを使うと、継承の階層を越えてクラスにモジュールの機能を追加

できることを説明しました。extendメ ソッドでは、クラスを越えて、オブジ

ェクト単位にモジュールの機能を利用できるようになります。

●・・8.10.4 クラスとMix口in
Rubyのクラスは、それ自体がClassク ラスのオブジェクトとして提供され

ています。また、クラスメソッドは、クラスをレシーバとするメソッドである

と説明しました。つまり、クラスメソッドはクラスオブジェクトに対するイ

ンスタンスメソッドであるわけです。そのようなメソッドは次の2つです。

e Classク ラスのインスタンスメソッド

罐クラスオブジェクトの特異メソッド

クラスを継承すると、これらのメソッドはサブクラスにもクラスメソッド

として引き継がれます。サブクラスで特異メソッドを追加することによって、

クラスに新しいクラスメソッドを追加できます。

C

8.10 Mix― in・

177

:第 8章 クラスとモジュール

p.154でクラスメソッドを定義する構文を紹介しましたが、クラスオブジェ

クトに対してextendメ ソッドを使うことでもクラスメソッドを追加できま

す。extendメ ソッドによってクラスにクラスメソヅドを追加し、includeメ

ソッドによってインスタンスメソッドを追加する例を次に示します。

module ClassiMethods

def cmethod

"class method‖

end

end

十 クラスメソッドのためのモジュール

module lnstanceMethods lイ ンスタンスメソッドのためのモジュール

def iimethod
i:instance method“

end

end

class MyClass

+extendするとクラスメソッドを追加できる

extend ClassiMethods

+includeするとインスタンスメソッドを追加できる

include lnstancelMethods

end

p Myclass. cmethod
p Myclass.new.imethod

#=> "c1ass method"

#=> "instance method"

ψ
Rubyの すべてのメソッド呼び出しは、レシーバとなるオブジェク トを伴っ

て実行されます。言い換えると、Rubyの メソッドは、(特異クラスを含む)何

らかのクラスに所属 していて、レシーバとなるオブジェクトのインスタンス

メソッドとして呼び出されます。その意味では、レシーバの種類の違いによ

って便宜的に「インスタンスメソッド」や「クラスメソッド」というふうに呼

び分けているにすぎません。

178

オブジェクト指向プログラミング

「オブジェクト指向」という言葉は、問題の分析やシステムの設計あるいは

プログラミングなど、システムやプログラム開発の場面で幅広く用いられま

す。さまざまな場面で使われる言葉ですが、最初に「オブジェクト指向」とい

う言葉が用いられたのはプログラミングに関してでした。

本書はプログラミング言語の入門書ですから、ここではあまり範囲を広げ

ずに、プログラミング言語 (題材はもちろんRubyです)におけるオブジェク

トとオブジェクト指向プログラミングの基礎について説明します。

ここでは、ソースコードの書き方というよりは、プログラムを作るときの

考え方を説明します。抽象的な話といえなくもないので、少しわかりにくい

かもしれません。まずは、気軽に読み進んで雰囲気をつかんでみてください。

畿・・8。■。1オブジェクトとは
世の中にはRubyを 含めて、数多くの「オブジェクト指向プログラミング言

語」があります。言語により文法だけでなく機能もさまざまに違いますが、も

っとも基本的なこととして、「プログラムの処理の対象を『オブジェクト』と

して考える」ということはおおむね共通しています。

プログラム言語で表現される処理の対象とはデータです。これまでに取り

あげてきた数値や文字列や配列といったものも簡単なデータといえます。

オブジェクト指向言語における「オブジェクト」とは、こういった何らかの

データ(あ るいはデータの集合)と そのデータを操作するための手続きをま

とめたものです。Rubyに おける数値の「3.1415」 はFloatク ラスのインスタ

ンスであることはすでに紹介しました。この「3.1415」 は単に3.1415と いう

値を表現するデータであるだけでなく、数値に関する処理をあわせ持ってい

ます。

f 三 3.1415

pf.round 十=>3(四捨五入)
pf.ceil 十二>4(切 り上げ)
pf.to_i +=>3(整 数に変換)

a

8.11 オブジェクト指向プログラミング
:

〔〕.(11
¬

179

¨
　

　

　

■

第8章 クラスとモジュール

このように、データとそれを処理する手続きをオブジェクトとしてまとめ

ることによって、全体の見通しがよくなります。たとえば、浮動小数点数を四

捨五入するroundメ ソッドをFloatク ラスの一部として提供できるようにな

りますし、データと手続きの組み合わせを間違えることもありません。

簡単な数値を扱うだけなら問題になりませんが、たいていのプログラムで

はもっと複雑なデータ構造が必要になります。たとえば画像を扱うプログラ

ムでは、画像の幅と高さ、色の情報、画像そのものを数値化したバイナリデー

タなどが必要になります。画像を1つの部品として扱えれば、アルバムのよう

な複数の画像を扱うアプリケーションを作りやすくなります (図 8.11)。

アルバム 画像

イメージデータ(バイナリデータ)
|

[:]:]:]1議

C抑

-
幅(整数)″

1⊃m構 造化されたデータ

大きなプログラムを作成する場合には、複数のデータをひとまとめにして、

それをさらにまとめて、というふうにしてデータを整理しなければ、プログ

ラムの処理自体もまとまりがなくなってしまいます。オブジェクト指向プロ

グラミングでは、このひとまとまりにしたデータをそれぞれオブジェクトと

して扱います。オブジェクトには、データとデータを処理するためのメソッ

ドもセットになっていて、処理の内容に対して責任を持たせます。

また、ネットワーク上のサーバもプログラムで操作する対象となります。

サーバとの通信は、Webや メールなど、アプリケーションごとに決められた

手順 (通信の決まりをプロトコルといいます)に従う必要があります。プロト

コルをプログラムで実現する場合は、メッセージのフォーマットや手lll原 を管

理するためのライブラリを実装するのが一般的です。Rubyには、Net::HTTP

やNet::POPな どのクラスが添付されているので、手軽にネットワークプロ

グラミングを行えます。

ヽィ

σ,い
Nィ

●い
ヽィ

●い
ヽィ

●い
ヽィ

C六ハ
ヽィ

α,い

180

ヽ″

●チ、メ

8.11 オブジェクト指向プログラミング :

G},008。 11。2 オブジェクト指向の特徴
オブジェク ト指向プログラミングの考え方について簡単に紹介しました。

ここでは、オブジェクト指向の特徴を整理しておきましょう。

○カプセル化

カプセル化とは、オブジェクトが管理するデータをオブジェクトの外部か

ら直には操作できないようにして、変更したり参照したりするときは必ずメ

ソッドを呼び出させるようにすることです。カプセル化によって、不整合な

データをオブジェクトに設定してプログラムの挙動がおかしくなるといった

ことを防げるようになります。

メソッドはオブジェクトの内部が不整合な状態にならないように作成すべ

きです。メソッドの利用者が気をつけるのではなく、そもそもメソッドの定

義自体、不整合な状態が起きないように定義しておくのが理想的です。

Rubyではオブジェクトの外部からインスタンス変数に直にアクセスす

ることができませんから、もともとカプセル化が強制されています。attr_

accessor(p.151)のようにアクセスメソッドを簡単に定義する方法はあり

ますが、むやみに使用せずに、必要なものだけを公開するようにしましょう。

カプセル化のもう1つのメリットは、具体的なデータや処理をオブジェク

トの内部に隠ぺいして抽象的に表現できることです。たとえばTimeク ラスを

利用すると、現在時刻をシステムから取得したり、時刻から年月日などの情

報を取り出したりすることができます。

C

t = Time.now
p t.year

+シ ステムから現在時刻を取得する

|=>2019(時刻から年を取り出す)

現在時刻をシステムから取得する際にどのような処理を行うのか、Timeオ

ブジェクトの内部ではどのような形式で時刻の情報が管理されているのか、

さらにそこから年を取り出すにはどのような計算を行うか、といったことは

Timeク ラスのメソッドの内部で決められています。仮に、オブジェクトの内

部で保持する具体的なデータ構造が変更されても、外部から見えるメソッド

の名前や機能に変化がなければ、クラスの利用者は内部の変化を気にせずに

使えます。逆にクラスを作成する側も、適切なメソッドを用意しておけばク

ラスの利用側のことを気にせずに内部を変更できます。カプセル化を行うこ

とは、クラスを作成する側と利用する側の両方にメリットがあるのです。

○ ポリモーフィズム

オブジェクトはデータと処理を組み合わせた「機能」を提供します。データ

をどのように処理するのかはオブジェクトが知っています。言い換えると、

それぞれのオブジェクトが独自にメッセージの解釈を持っているということ

です。同じ名前のメソッドが複数のオブジェクトに属すること (そ してその

オブジェクトによって異なる結果が得られること)を オブジェクト指向の用

語でポリモーフィズム (多相性または多態性)と いいます。

Obj ectと Stringと Floatの各オブジェクトに対してto_sメ ソッドを呼

び出す例を見ると、それぞれのクラスによって結果の形式が異なっているこ

とがわかります。

obj =object.new l:オブジェクト(Object)
str= !:Ruby:| +文字列 (String)

nulrt = Mlath::PI 十 数値 (Float)

いずれも、「データを表示可能な形式で文字列化する」という意味の同じ名

前のメソッドですが、実際の文字列を作る手順はオブジェクトが表現するデ

ータによって異なります (図 8.12)。 Stringク ラスもFloatク ラスもObject

クラスから派生していますが、Objectク ラスから継承したto_sメ ソッドを

定義し直して、よりふさわしい文字列を返すバージョンのto_sメ ソッドを提

供しています。

p obj.to_s
p str.to_s
p num.to_s

obj . to_s

"Ruby".to_s
ヽ

Math::PI.to s
ト

‖=> :;|く object:Ox7fald6bd1008>‖

+=> :lRuby‖

+=> ::3.141592653589793‖

object*to-s D
"‖くObject:Ox7fald6bd1008>"

ヽ

Ruby
全

↓

　

↓

↓

　

↓

　

↓ Float‖ to s
い

※ 同名のto sメ ソッドでもクラス専用のパージョンが呼ばれる。

理)∈亜日Dポリモーフィズム

String*to_s

1'3.1411,92653589793‖

:第 8章 クラスとモジュール

|.....l,1

8.11 オブジェクト指向プログラミング・

(機〉0・ 8.11。3 ダックタイビング
オブジェクトの特徴を考えるうえで、ポリモーフィズムを積極的に活用し

た考え方であるダックタイビング (Duck Typing)を紹介しましょう。ダック

タイピングは「アヒルのように歩きアヒルのように鳴くものはアヒルに違い

ない」という格言から来た言葉です。この言葉の意味するところは、

オブジェクトを特徴づけるのは実際の種類 (ク ラスとその継承関係)で

はなく、そのオブジェクトがどのように振舞うか (どんなメソッドを持

っているか)である。

ということです。たとえば「文字列を含む配列から要素を取り出して、その要

素に含まれるアルファベットを小文字にして返す」というメソッドを考えて

みます (List 8.14)。

gs1 GfZl fetch_and_downcase.rb

def fetch_and-downcase (ary, index)
if str = arylindexl

return str.downcase
end

end

ary = ["Boo", ttFoo", "V,loo']
p fetch_anil_downcase(ary, 1) #=> "foo

実のところ、このメソッドに配列ではなくハッシュを渡して、次のように

使うこともできます。

hash = {0=>"Boo", 1=>"Foo", 2=>"Woo"}

p fetch-and_downcase(hash, 1) #=> 'foo'

なぜなら、fetch_and_downcaseメ ソッドが、引数として渡されるオブジ

ェクトに期待していることは、

嘔

183

第8章 クラスとモジュール

●ary[indeЖ]と いう形式で要素が取り出せること

0取り出した要素がdowmcaseメ ソッドを持っていること

の2つだからです。この条件を満たしていれば、fetch_and_do、mcaseメ ソッ

ドに渡すオブジェクトは配列とハッシュのどちらでなくてもかまいません。

Rubyは変数に型を持ちません。決められたクラスのオブジェクトしか代入

できない、という変数はありません。そのため、プログラムを実行するまでは、

変数が指し示しているオブジェクトに対するメソッド呼び出しが正しいかど

うかを判断できません。

これは、実行するまで不具合を見つけにくい、という欠点と考えられるこ

ともあります。しかし、その半面、継承のような明示的な関係を持っていない

オブジェクト同士で処理を共通化させるといったことを容易に実現できるの

です。「同じ操作を行えるならば、実際は違うものであってもその違いを気に

しない」、逆に「実際は違うものであっても、同じ名前のメソッドを用意する

ことによって、処理を共通化することができる」というのがダックタイピン

グの考え方です。

ダックタイピングによって共通に扱われるものは必ずしも継承などの明示

的な関係にあるわけではないので、うまく使いこなすには少し慣れが必要か

もしれません。たとえば、先ほど紹介した「ary[index]」 の形式は、さまざま

なクラスでオブジェクトが保持する要素にアクセスする手段として用いられ

ます。最初はこういった単純でわかりやすいメソッドを意識するようにして

いれば、コツをつかめてくるのではないでしょうか。

●・08.11.4 オブジェクト指向の例
では、実際の例をもとにオブジェクトがどのように組み立てられているか

を見てみましょう。List 8.15は、Net::HTTPク ラスを使ってRubyの ホーム

ページのHTMLを取得して、コンソールに出力するスクリプトです。

11st GJFI http-set.rb

1: require "net/http"
2: require "uri"
3: ur1 = URr. parse (-https : / /www. ruby-1 ang. org / jal ")

4: hLtp = Net::HTTP.new(ur1,host, url.port)
5: http.use_ss1 = true
6: doc = http.get(url.path)
7: puts doc.body

184

8.11 オブジェクト指向プログラミング :

1～ 2行 日でnet/httpラ イブラリとuriラ イブラリを読み込んでいます。

これ に よ って Net::HTTPク ラス と URIモ ジ ュ ール を利 用 で き る よ うに な りま

す。3行 日はURIモ ジュールのparseメ ソッドを使って、URLの文字列を解

析しています。戻り値は文字列を解析した結果として得られたURI::HTTPS

クラスのインスタンスです。URLはその表記のルールに従って複数の情報に

分割されます。

require tllュ ri‖

url = URI.parse(lihttps://www.ruby-lang.org/ja/・)

p url.scheme l=>‖ https・ (ス キーム:URLの種類)

p url.hOst l=> |、 Ⅳw.ruby-lang.orgi! (ホ スト名)

p url.port 十三>443 (ポ ート番号)

p url.path 十二> "/ja/:i (パ ス)
p url.to_s +=> llhttps://www.ruby― lang.org/ja/1:

スキームはどのようなプロトコルを使用するかという情報です。よく使

われるURLには「http://」 で始まるものと、「https://」 で始まるものがあり

ます。どちらもHTTPと いうプロトコルを使用しますが、「https://」 のほう

は、ネットワークの途中の経路で内容を覗き見たり改ぎんしたりするのを防

ぐことができるように暗号を使用する点が異なります。ネットワーク上のサ

ーバに接続するには、サーバのホスト名とポート番号が必要となります。ま

たサーバは複数のドキュメントを管理しているので、これを特定するのがパ

スです。URL文字列を解析して分解した情報をひとまとめにして扱うのが

URI::HTTPSク ラスの役割です。

モジュール名がURLではなくURIと なっています。URLと いうのは、URI

という識別子の表記法のうち特定の種類のものを指す名称です。解説は省き

ますので、URLと はURIの一種であると思っておいてください。

再びList 8.15に 戻ると、4行日でNet::HTTPク ラスのnewメ ソッドにホス

ト名とポート番号を与えてNet::HTTPオ ブジェクトを作成しています。5行

日は通信を暗号化するための指定です。スキームが「https」 の場合に必要で

す。6行 日ではNet::HTTP十 getメ ソッドにパスを指定してドキュメントを取

得しています。最後に、7行 日で得られたドキュメントをコンソールに出力し

ています。bodyメ ソッドで得られたドキュメントはStringオ ブジェクトな

ので、Net::HTTPク ラスとは無関係に処理されています。

a

185

:第 8章 クラスとモジュール

Net::HTTP十 getを実行したときに、オブジェクトの内部では次のような処

理が実行されます。

①ホスト名とポート番号を使つて、サーバと通信するための通信路 (ソ

ケットといいます)を作成する

②OpenSSLラ イブラリを使つてソケットを暗号化する準備をする

③パスを使 つて、要求メッセージを表現するNet38HTTPRetteStオ ブジ

ェク トを作成する

④ソケットに要求メッセージを書き込む

⑤ソケットからデータを読み取って、応答メッセージを表現する

Net88HTTPResponseオ ブ ジ ェク トに格 納 す る

⑥ Net88HTTPResponseオ ブジ ェク トの機 能 に よ って応 答 メ ッセ ー ジ を

解析し、ドキュメントに相当する部分を取り出す

この関係を図にすると、図8.13の ようになります。

http_get.rb

URI::HTTP
"https : / /www. ruby-1ang.org / ja/ "

ホスト名,ポート番号,パス

Net::HTTP サーバ

要求
Net::HTTPRequest___三 二三___ >

Net::HTTPReEponEe <
応答

string
ドキュメント

コンソール

(璽)m hup」et.rbの動き

―→

ソケット
十

暗号化

186

この例では、URLの解析はURI::HTTP、 ネットワークの接続はソケット、

暗号化の処理はOpenSSLラ イブラリ、通信のメッセージに関する詳細は

Net::HTTPRequestと Net::HTTPResponse、 通 信 に必 要 な ソケ ッ ト、リクエ

スト、レスポンスに関する操作を|1贋序よく実行するのがNet::HTTP、 という

具合に各オブジェクトが処理を分担しています。個々の情報に対して適切な

オブジェクトを用意することによって、何をどこに配置すべきか、そこで必

要な処理はどのようなものかといった方針を決定できます。

この方針は、プログラムを新しく作るときだけでなく、拡張したり修正し

たりする場合にも役立ちます。オブジェクト同士はメソッドを通じて情報を

やりとりするので、その情報がオブジェクトの内部でどのように保持されて

いようとかまいません。適切な情報を適切なメソッドで操作することを念頭

においてクラスを作成することで、見通しのよいプログラムが書けるように

なります。

ここで重要なのは、「自然にそのようなプログラムが書けてしまう」という

点です。勘が働くようになるにはプログラミングの経験も必要ですし、また

デザインパターンといった、クラスの役割の構成についての一般的な手法も

手助けになるでしょう。「もの」を外側から見た特徴を中心に考えることによ

って、実際のものごとの関係に近いモデルを使ってプログラムを組み立てる

ことができるようになります。

C

8.11 オブジェクト指向プログラミング
:

187

第8章 クラスとモジュール

オブジェクト指向プログラミングについては、一般向けの日本語書籍も多数

出版されていて、書籍でも入門しやすい分野になっています。

オブジェクト指向プログラミング全般についての入門書としては、平澤章

『オブジェクト指向でなぜつくるのか 第2版』(日 経BP社)が平易な説明でわ
かりやすいでしょう。

デザインパターンについての入門書を読みたい方には、結城浩『増補改訂版

Java言語で学ぶデザインパターン入問』(SBク リエイティブ)をお勧めします。

とにかくやさしい解説とシンプルなサンプルプログラムでデザインパターンの

基礎知識が得られます。

デザインパターンを踏まえたオブジェクト指向プログラミングの解説であ

れば、アラン・シャロウェイ+ジ ェームズ 。R・ トロット『オブジェクト指向の

こころ』(丸善出版)があります。各パターンをいつ使うべきか。なぜ使うべき

かについて、詳しく解説されています。

また、Rubyでのオブジェクト指向プログラミングを読みたいのであれば

Sandi Metz『 オブジェクト指向設計実践ガイド』(技術評論社)があります。こ

ちらは静的型付け言語でのそれとは異なる、Rubyな らではのプログラミング

について学べます。

188

オブジェクト指向プログラミングのオススメの参考書

^
第U章 t_,.¨ , ／

ノ

ノ

ノ

ノ

ノ

ここではRubyの演算子について詳しく見ていきます。

前半では演算子に関連する文法のうち、ここまで紹介しきれなかったもの

や、論理演算子を使ったRubyのイディオムを紹介します。

また、Rubyの演算子には、メソッド定義によってその操作を変更できるも

のがあります。後半では実際に演算子を定義する方法を紹介します。

演算子

代入演算子

a += 1

b*=2

■

Rubyの変数は、その名前の変数に最初に代入を行うタイミングで作成され

ます。その後、変数に代入されたオブジェクトに何か操作を行って、もう一度

同じ変数に代入する、ということもしばしばあります。たとえばaに 1を足し

たり、bを 2倍するというのがそれにあたります。

a=a+1

b=b*2

これらの式はそれぞれ次のように書き換えることができます。

多くの二項演算子οPについて、次の変換が行われます。

「
‐
　

，
コ

ー
■
ロ
ヮ

189

第9章 演算子

var op- va]-

I
var = var oP val

このように二項演算子と代入を組み合わせた演算子を代入演算子といいま

す。表9.1は代入演算子の一覧です。

目

"代
入演算子

&&= &= |=

*‐ /= t= **=

この書き方は変数だけでなく、メソッドを経由したオブジェクトの操作に

も使うことができます。次の2つの式は同じ結果になります。

$stdin.lineno += 1

$stdin.lineno = $stdin.lineno + 1

ただし、これらの式が「Sstdin.lineno」 と「Sstdin.lineno=」 という2つ

のメソッド呼び出しを行っていることに注意 してください。このような書き

方を行うには、対象となるオブジェク トが、値の参照と設定の 2つのアクセス

メソッドを持っていなければいけません。

論理演算子の応用

ここでは論理演算子の応用例を紹介します。まず、論理演算子を使った演

算には次の特徴があることを理解する必要があります。

●左側の式から順に評価される

●論理式の真偽が決定すると、残りの式は評価されない

●最後に評価された式の値が論理式全体の値となる

少し詳しく説明します。まず、||について見てみましょう。

条件111条件2

190

||=

le2

という論理式では、必ず条件 1、 条件2のサI頂に真偽が判定されます。ここで、条

件1の結果が真のときは条件2の結果を見るまでもなく全体が真となること

は明らかです。逆にいえば、条件2を評価する必要があるのは、条件1が偽の場

合だけです。このような場合、Rubyの論理演算子は無駄な条件の判定は行わ

ないようになっています。これをさらに拡張して、

条件111条件211条件3

とした場合にも、条件1と条件2の両方が偽にならなければ、条件3の判定は行

われません。また、ここでいう条件とはRubyの式全般を指します。

var | | ilRuby'

という式では、変数varの真偽が判断され、nilか falseの場合にのみ、文字

列‖Ruby‖ の真偽が判断されます。先ほど挙げたように、論理式の戻り値は、

最後に評価された式の戻り値に一致するので、この式全体の戻り値は、

。varがオブジェクトを参照していたらその値

O varが nilま たはfalseの場合は、文字列 nRuby"

となります。

続いて、&&に ついて見てみましょう。基本的なルールは ||の場合と同じで

す。

条件1&&条 件 2

という論理式における条件2は、||と は逆に、条件1の結果が真の場合にのみ

評価されます。

このような論理演算子の性質を利用した応用例を紹介しましょう。変数

nameに 、必ず何らかの値を与える場合を考えます。

a

name = "Ruby

if var
name = var

end

l nameにデフォル ト値を設定する

l varが nilま たはfalseで なければ

#nameに varを代入する

9.2 論理演算子の応用 :

19:

第9章 演算子

この4行でやりたいことは、||を使って次の1行で書くことができます。

name=varll'Ruby

今度は少し状況を変えて、変数に配列の先頭要素を代入する場合を考えて

みます。Array+firstメ ソッドは先頭要素を返します。

item = ni1
if ary

item = ary.first
end

+itemに初期値を設定する

l aryが nilま たはfalseでなければ

+aryの先頭要素をitemに 代入する

変数 aryが nilの場合、ary.firstと いうメソッド呼び出しを行うとエラ

ーになってしまいます。この例では、あらかじめitemに nilを代入したうえ

で、aryが nilでないことを確認してから、firstメ ソッドを呼んでいます。

これは、&&を使えば次のように1行で書くことができます。

iten = ary && ary.first

この操作をさらに短く済ませるために、「オブジェクト&。メソッド呼び出し」

とする書き方もあります。これは「安全参照演算子」や「nilチ ェックつきメソ

ッド呼び出し」という機能で、aryが nilでないときにだけfirstメ ソッドを

呼び出します。aryが nilの ときはnilに なります。

item = ary&.first

最後に ||の代入演算子を紹介しましょう。

192

9.3 条件演算子 :

var I l= 1

は

var=var ll 1

と同じ意味なので、varが nilか falseの場合に限り1を代入する、という処

理になります。これは変数にデフォル ト値を与える場合の定番の書き方です。

条件演算子 a
条件分岐を書くための演算子もあります。条件演算子 ?:は次のように使い

ます。

条件 ?式 18式 2

この式は次の if文 と同じ意味を持っています。

if条件
式 1

olse

式 2

end

たとえば、aと bの うち、大きいほうをmaxに代入するという処理は、次の

ように書くことができます。

a=l-
b=2
max= (a>b) ? a

p max *=> 2

式が複雑になると読みづらくなってしまうので、簡潔に書けるときにだけ

使ったほうがよいでしょう。条件演算子は三項演算子とも呼ばれます。

b

193

第9章 演算子

プログラムの用語で値を持つものを「式」といい、また構文上のひとまとま

りを「文」といいます。「a=x+y」 という1行を例に考えてみると、「x」 と「y」
は式、これを組み合わせた「x+y」 も式、さらに「a=x+y」 はいずれも式で、
全体として他の行とは独立した1つの文になっています。

「第5章 条件判断」で紹介した「if文」ですが、実際は最後に評価した式の
値がif全体の値として返されます。そのため、次のようにif全体が返す値をそ

のまま変数に代入することができます。

^-1a-r

L-a

max=ifa>b
a

else
b

end

p max #=> 2

近年のメジャーな言語の多くで条件分岐の構文を式として扱うことはでき

ないので、本書もそれにならって「if文」としましたが、厳密には「if式」と呼

ぶべきものです。Rubyでは、if以外にもunless、 class、 defな どのほとんど

の構文が式として定義されており、何らかの値を返します。

範囲演算子

Rubyには範囲 (Range)オ ブジェクトという、値の範囲を表すオブジェクト

があります。たとえば、1から10までを表す範囲オブジェクトを生成するには、

次のようにします。

Range.new(1,10)

if文 ? lf式 ?

194

9.4 範囲演算子

この省略形として用意されているのが、範囲演算子です。次の式は前記の

例と同じ意味です。

1..10

この演算子は第6章の for文の例の中で使用しています。

sum= 0

for i in l-..5
sum += i

end

puts sum

p (5..10).to_a

p(5...10).to_a

|=> [5′ 6′ 7′

+=> [5′ 6′ 7′

範囲演算子には「 ..」 と「...」 の2種類があります。「χ..ッ」と「χ...ッ」の

違いは、前者がχからyまでの範囲を表すのに対し、後者はχからッの1つ手前

までの範囲を表す点です。

Rangeオブジェクトに対してto_aメ ソッドを呼ぶと、範囲の開始から終了

までの値を含む配列を作ることができます。このメソッドを使って「 ..」 と

「 ...」 の違いを確認してみましょう。

数値以外のオブジェクトでも、現在の値から次の値を作るメソッドがあれ

ば、範囲の始点と終点を指定することでRangeオ ブジェクトを作成できます。

たとえば、文字列オブジェクトからRangeオ ブジェクトを作ることができま

す。

p ("a".."f").to_a #=> ["a", "b", "c", "d", "e", "f"]
F ("a"..."f").to_a #=> ["a", "b", "c", "d", "e"]

Ruby 2.6か らは、範囲演算子の右辺、つまり終点を省略することもできま

す。その場合無限のリス トを生成するので処理が止まらなくならないように

:95

:第 9章 演算子

注意しましょう。

p (|' あ!|..).take(100) +=> [!:あ 〔:′ ::あ
11′

 !!ぃ
I:′

 :|ヽ
:ヽ:′

 :: ぅ ::′ ... 〕

Rangeオブジェクトの内部では、始点の値から次々と値を作るためにsucc

メソッドが使われます。succメ ソッドの戻り値に対してさらにsuccメ ソッ

ドを呼び、その値に対してさらにsuccメ ソッドを……。というように終点とな

る値より大きくなるまで、次々と値を生成しているのです。

> irb --eiq)1e-prorqlt
>> vel = nan

>> vaI = val.succ

=> "b"
>> va1 = val.aucc
=> uc'

>> val = val.gucc
=>'d'

演算子の優先順位

演算子には優先順位が設けられています。式の中に複数の演算子がある場

合は、より優先順位の高いものが先に呼び出されます。たとえば四則演算で

は、乗算や除算は加算や減算よりも先に計算されます。演算子の優先順位の

例を表9.2に示します。

Rubyの演算子を優先順位の高いものから順に並べると、図 9.1の ようにな

ります。

196

¬

1+2*3 1+(2*3)
ila{+trbtr*2+,c, ‖al' +(・ bl' * 2)+ 'ic‖ :labbc“

3 * 2 ** 3 3 * (2 ** 3) 24

2+3く 5+4 (2+3)<(5+4) true
2 く 3 && 5 > 3 (2 く 3)&& (5 > 3) true

9.5 演算子の優先順位 :

目― 演算子の優先順位の例

高い
::

[]

+(単項演算子): ″

― (単項演算子)

十 ′ %
+

くく >>

> >〓 く く=

こと

||

?:(条件演算子)

(+= ―= セ= /=などを含む)
not

and or

{璽嘔回■D演算子の優先順位

優先順位とは違うll贋番にしたいときは、先に計算したい部分を「()」 で囲み

ます。これで、内側の「()」 の中からサI頃に処理されます。演算子の優先順位に

自信が持てないときは積極的に「()」 を利用しましょう。

a

低い

i97

式 意味 結果

第9章 演算子

演算子を定義する

Rubyの演算子の多くはインスタンスメソッドとして実装されているので、

ユーザが新たに定義したり再定義したりして、意味を変えることができます。

しかし、表 9.3に挙げる演算子は意味を変えることができません。

目―
再定義できない演算子

●・・9。6。1 二項演算子
「式 演算子 式」のように、式と式の間に置く演算子を二項演算子といいま

す。四則演算でもおなじみの演算子です。

二項演算子を定義するには、演算子をメソッド名としてメソッドを定義し

ます。演算子の左側の項がレシーバとなり、右側の項がメソッドの引数として

渡されます。List 9.1の プログラムでは、二次元の座標を表すPointク ラスを

作って、演算子+と ―を定義しています。

List m pOint.rb

class Point
attr_accessor :x, :y

def initj-a1ize(x=0, Y=Q1

@x, GY=x, Y

end

def inspect +pメ ソッドで「 (x′ y)」 と表示する
11(+〔
x)′ 十〔y})1'

end

def+(Other)lx、 yのそれぞれを足す
self.class.new(x + other.x′ y + Other.y)

end

or?: not and&&

:98

def― (other)十 x、 yのそれぞれを引く

9.6 演算子を定義する

end

self .class.new(x - other.x, y - other.y)
end

point0 = Point,new(3, 6)

pointl = Point.new(1, 8)

p pointO
p pointl
p pointO + pointl
p poj-ntO - pointl

十二> (3′ 6)

|=> (1′ 8)

十二> (4, 14)

+=> (2′ -2)

List 9,1の ように、二項演算子を定義するときには、引数名として「other」

がよく用いられます。

なお、演算子+と ―の中で、新しいPointオブジェクトを作る際に「self.

class.new」 としていますが、次のようにPoint.newメ ソッドを使うことも

できます。

def +(other)
Point.new(x + other.x, y + other.y)

end

この場合は戻 り値として必ずPointオ ブジェク トが返 されます。逆に、

Pointク ラスを継承したサブクラスのオブジェクトで演算子 +や ―を使った

ときにはサブクラスのオブジェクトを返すほうが適切なケースがあると思い

ますが、この書き方ではPointオ ブジェク トしか返すことができません。メ

ソッド内で同じクラスのオブジェクトを作るときは、クラスを名前で記述す

るのではなく「self.class」 で、そのときの実際のクラスを参照してnewメ

ソッドを呼ぶほうが、継承やMix_inに柔軟に対応できます。

199

第9章 演算子

putsメ ソッドとpメ ソッドの違い

List 9.1で、表不用としてinspectメ ソッドを定義しています。

このメソッドはpメ ソッドがオブジェクトの内容を示す文字列を得るために

使います。オブジェクトから文字列を作るメソッドにはもう1つ、to_sメ ソッ

ドがあって、こちらはputsや printメ ソッドが使います。文字列オブジェクト

を例に両者の違いを見てみましょう。

>irb‐ ‐Siコple‐ prO田pt

>>str=・ たの しい R趾v"
=>!:た のしいRuby‖

>> stroto_

=>‖ たのしい Ruby‖

>> stroinspect

=>11ヽ・たのしい Rubyヽ
‖‖

String+to_sの 結果はもとの文字列と同じになっていますが、String

linspectの 結果には「・ヽ」が含まれています。これはpメ ソッドで文字列を表

示したときに、文字列であることをわかりやすくするためです。使い分けとし

ては、プログラムの出力として意味のある形式の文字列を返すのがto_sメ ソ

ッドで、プログラムを書いている人が動作確認のためにオブジェクトを調べる

ための文字列を返すのがinpsectメ ソッドとなります。

to_sメ ソッドは、putsメ ソッドやprintメ ソッドのほかに、Array#joinメ

ソッドなど、内部的に文字列が必要な場面でも用いられます。

inspectメ ソッドは主にpメ ソッドによる出力のためのメソッドと言っても

差し支えありません。irbコ マンドが表示する1行 ごとの式の結果もinspectメ

ソッドによって作られます。自分でクラスを作る場合は目的に応じて、これら

のメソッドを定義すると便利です。

200

9.6 演算子を定義する :

●・09。6。2 単項演算子
「演算子 式」のように、式の前に置く演算子を単項演算子といいます。再定

義可能な単項演算子は、+、 一、
～、!の 4つです。これらはそれぞれ、+C、 一e、

～
0、 !Cと いう名前で定義できます。List 9.1の Pointク ラスに、これらの演算

子を定義してみましょう (List 9.2)。 単項演算子はいずれも引数を持ちませ

ん。

List― pOint.rb(抜粋)

class Po■nt

def +0

dup

end

a
=:|■

・

自分の複製を返す

def -0

selfoclasS.neW(― X′ ―y)

end

十 x、 yのそれぞれの正負を逆にする

def ～C

self.class.new(― y′ X)

end

end

190度反転させた座標を返す

point = Point.new(3, 6)

p +point *=> (3, 6)

p -point +=> (-3, -6)
p -point #=> (-6, 3)

●・・9。6。3 1添宇メソツド

添字メソッドとは、配列やハッシュで用いられるObj国 とObj[′]=χ の

ことです。これらは、それぞれ []と []=と いう名前で定義できます。Point

クラスのインスタンスpointに ついて、point.xを point[0]、 point.yを

pOint[1]でアクセスできるようにしてみます (List 9.3)。

201

def [] (index)
case index
when 0

x
when l-

v
else

raise ArgumentError, "out of range '#{index}",
end

end

def tl=(index, va1)

case index
when 0

self.x = val
when 1

se1f.Y = va1

else
raise ArgumentError, "out of range '#{index},',

end

end

point = Point.new(3, 6)

p point[0] #=> 3

P point 11) = 2 #=> 2

P Point[1J #=> 2

p point[2J #=>r7- (ArgnmentError)

引数indexは 、配列でいうところの添字です。このクラスには2つの要素し

かないので、2以上の値をインデックスとして指定された場合には、引数に誤

りがあることを表すエラーにしています。

end

202

:第 9章 演算子

List"point.rb(抜 粋)

class Po■ nt

理と例外

プログラムの実行にはさまざまなエラーがつきものです。プログラマがま

ったく間違えることなく、そして、すべての処理がいつも正常に動作すれば

エラーが起こることはありませんが、残念ながらそうはうまくいかないもの

です。この章ではプログラムのエラーとその対処に関する話題を中心に、例

外処理について紹介します。

エラー処理について

実際のプログラムを紹介する前に、エラーについてもう少し一般的な話か

ら始めることにしましょう。プログラムの実行中に発生するエラーには、次

のようなものがあります。

oデータのエラー

家計簿の計算を行う際に、金額があるべき欄に商品名が書かれていて

は必要な計算ができません。また、HTMLの ような構造を持ったデー

タの場合には、タグが閉じていないなど、構文上の間違いがあるとう

まく処理を行うことができません。

●システムのエラー

ハードディスクの故障のような明らかな障害や、ネットワークが切断

されているといった、プログラムの力だけでは回復できない問題が起

こることもあります。

●プログラムのミス

存在しないメソッドの呼び出しや、引数として渡す値の誤り、また、計

算ミスによって間違ったデータを作成してしまうなど、プログラムの

ミスによるエラーも考えられます。

ロ

■■■■

203

一
　

　

「

:第 10章 エラー処理と例外

このように、プログラムはさまざまなエラーに出会う可能性があります。

発生したエラーを放置しておくと、たいていは正常な処理を続けられないの

で、何らかの対処が必要になります。

●エラーの原因を取り除く

ディレク トリにファイルを作成したいときに、対象のディレクトリが

存在しない場合には、ディレクトリを自力で作成すればよいでしょう。

ここでディレクトリが作成できない場合にはまた別の対処を考える必

要があります。

o無視 して続行する
そもそも無視してもかまわないようなものはエラーとはいわないかも

しれませんが、たとえば必要な設定ファイルが読めないといった状況

が考えられます。読めなくても最低限の動作をできるようにデフォル

トの値をあらかじめ用意しておけば、エラーを無視することもできま

す。

●エラー発生前の状態を復元する

エラーが発生したことを報告するだけで、次の動作はユーザに指示 し

てもらうこともあります。

oも う一度試す
一度失敗しても、時間をおいて再度試せばうまくいくこともあります。

0プログラムを終了する
自分ひとりで使うプログラムでは、そもそもエラーに対処する必要は

ないかもしれません。

実際にどのような対処を行えばよいかについては、プログラムの大きさや、

アプリケーションの性質にもよるので一概にはいえません。しかし、エラー

の発生があらかじめ予想される場合は、特に次の点に気をつけるとよいでし

よつ。

0入カデータ、特に人間が手作業で作成したデータを破壊 しないか ?
●エラーの内容と、(可能なら)その原因を通知することができるか ?

ファイルを上書きしてしまい、時間をかけて入力したデータを消 してしま

うなど、大切なデータを失ったり、あるいは壊してしまっては困ります。また、
エラーの原因がユーザにある場合や、プログラム自身がエラーの原因を取り

204

除くことができない場合は、ユーザに対して、わかりやすいエラーメッセー

ジを報告しなければ、やはり使いにくいプログラムとなってしまうでしょう。

Rubyに はエラー処理をサポートするための例外という仕組みが備わって

いるので、いくらか楽にエラー処理を記述することができるようになってい

ます。

例外処理

プログラムの実行中にエラーが起こると例外が発生します。例外が発生す

るとプログラムの実行は一時中断し、例外処理を探します。例外処理が記述

されていればそれを実行します。例外処理が記述されていなければ、プログ

ラムは、次のようなメッセージを表示してから終了します。

このメッセージは、

Traceback (1■ OSt recent call last):

呼び出しの深さ ファイル名 :行番号 3in｀ メソッド名 :

呼び出しの深さ ファイル名 :行番号 8in｀ メソッド名 i

1フ ァイル名 8行番号 :in｀ メソッド名 :

ファイル名 :行番号 8in｀ メソッド名 :8エラーメッセージ (例外クラス名)

という形式になっています。上から読むと、最初にくmain>と して表記されて

いるプログラムの本体が実行され、そこからメソッドbarが呼ばれ、メソッド

α

> ruby teEt.rb
ruby test.rb
Traceback (most recent call last):

4: from test.rb:9:in'<main>'
3: from test.rb:5:in'bar'
2: from test.rb:2:in'foo'
1: from test.rb:2:in 'open'

test.rb:2:in 'initialize': No such file or directory @ rb-
sysopen - lnol file (Errno: :ENoENT)

205

10.2 例外処理 :

第10章 エラー処理と例外

barか らfooが呼ばれ、メソッドfooか らメソッドopenが呼ばれ、openがエ

ラーを発生 させている様子がわかります。最後の行は発生 したエラーそのも

のに関する情報です。

エラーを発生させたメソッドは、そのメソッド自体に問題あるのではなく、

往々にしてメソッドの呼び出したときの引数などに問題があることがありま

す。したがってプログラムのエラーを確認するうえで、メソッドがどういっ

たサ1頁序で呼ばれたのかという情報が重要になります。このメソッドの呼び出

しのサI頂序のことをバックトレース (ま たはスタックトレース)と いいます。

ψ
以前は、最初にエラーメッセージが表示 され、それに続いてバックトレース

も深いものからくmain>に向かって表示 されていましたが、Ruby 2.5か らエ

ラーメッセージがコンソールに出力される場合の順序が変更されました。プ

ログラムが大きくなるとバックトレースが長 くなるため、コンソールを上に

スクロールしなければメッセージを確認できないという問題があります。そ

こで出力の順序が見直されました。エラーメッセージがコンソールではなく

ファイルに出力される場合は、以前と同じ順序で出力されます。

例外処理の仕組みがない言語では、処理が完全に終わったかどうかを1つ 1

つ確認しながらプログラムを書く必要があります (図 10.1)。 このような言語

では、プログラムの多くの部分をエラー処理に費す必要があり、繁雑になり

がちです。

。例外処理の仕組みがない言語

if a() == fa180

エラー処理

end

if bl() == false

エラー処理

end

if C() == false

エラー処理

end

a()′ b()′ C()

でエラーが起きると

falseを返す

1理)m例 外処理の仕組みの有無

●Rubyでの例外処理

begin
ao
bo
co

reacue
エラー処理

end

aO′ bO′ C0
で例外が発生する

206

10.3 例外処理の書き方
:

いつもその通りにいくものでもありませんが、例外処理には、

0操作の完了を1つ 1つ確認しなくても、エラーは自動的に検出される
●エラーの発生場所も同時に報告されるのでデバッグしやすい

o正常な処理とエラーの処理を分けて記述できるようになり、プログラ

ムの見通しがよくなる

といったメリットがあります。

例外処理の書き方

例外処理には、次のようにbegin～ rescue～ end文 を使用 します。

begin

例外を発生させる可能性のある処理

rescue

例外が起こつた場合の処理

end

Rubyで は例外に関する情報もオブジェク トとして扱われます。rescueに

続けて変数名を指定することで、例外オブジェクトを得ることができます。

begin

例外が起こる可能性のある処理

rescue=>例外オブジェクトが代入される変数
例外が起こつた場合の処理

end

変数名を指定しなくても、表 10.1の ように変数 S!に 自動的にセットされま

すが、明不的に変数名を指定する書き方のほうがわかりやすくなります。

国lm例 外発生時に自動的にセットされる変数
変数 意味

S! 最後に発生した例外 (例外オブジェクト)

50 最後に発生した例外の位置に関する情報

また、例外オブジェク トから表 10.2の メソッドを呼べば、例外に関する情

報を取得できます。

C

207

:第 10章 エラー処理と例外

国C【夏∋例外オブジェクトのメソッド

メソッド名 意味

class 例外の種類

message 例外のメッセージ

backtrace 例外の発生した位置に関する情報 (50は Sl.backtraceと 同じ)

List 10.1のプログラムはUnixの wcコ マンドの簡易版です。引数で指定し

た各ファイルの行数、単語数、文字数を出力し、最後に全ファイルの集計を出

力します。

List CEf,D wc.rb

ltOtal・ 0 1行 数の合計

WtOtal=0 +単 語数の合計

ctotal=0 +文 字数の合計

想 GV.each do lfllel

begin

input = File.open(file) 十 ファイルを開く(A)
1=0 1 file内 の行数

w=0 +file内 の単語数

C=0 +file内 の文字数

input・ eaCh_lille dO llinell

l += 1

c += line.s■ ze

line.subl(/^ヽ s+/′ '‖
]) +行 頭の空白を削除

ary=line.split(ハ s+/) +空 白文字で分解する
w += ary.s■ ze

end

input.C10Se +フ ァイルを閉じる
printf(鳴8d38d t8d tsヽ n"′ l′ w′ c′ file)+出力を整形する

> ruby wc.rb intro.rd sec01.rd sec02.rd
50 6'1 1655 intro.rd
81 92 3445 secO1.rd

123 162 3420 sec02 . rd
254 32L 8520 total

208

ltota1 += 1

wtotal += w
ctotal += c

rescue => ex
puts ex.message

end

end

+例外のメッセージを出力(B)

printf(‖ t8d 38d 98d %sヽ n‖ ′ ltotal′ wtotal′ ctotal′ :Itotal‖)

(A)でファイルが開けなかった場合には、rescue節に処理が移ります。例

外オブジェクトは、変数exに代入され、(B)が実行されます。

たとえば、存在しないファイルを指定すると次のようにエラーが報告され

ます。エラーを報告したあとは、プログラムを終了するのではなく、次のファ

イルの処理に移ります。

例外が発生したメソッド中にrescue節がない場合は、呼び出し元にさかの

ぼって例外処理を探します。わざとらしい例ですが、図10.2のプログラムを

見てください。fooメ ソッドを呼び出すと存在しないファイルを開こうとし

ます。File.openメ ソッドが例外を発生させると、foo、 barを飛び越えて、

トップレベルのrescue節によって捕捉されます。

> ruby wc.rb intro.rd sec01.rd sec02.rd sec03.rd
50 67 L655 intro.rd
81 92 3445 sec01.rd

1,34 188 3729 sec02.rd
No such file or directory - sec03.rd

265 347 8829 total

209

10.3 例外処理の書き方 :

一

０

一

Ｐ

　
■
日
●
　
」

■
Ｆ
Ｉ
」
Ｄ

第10章 エラー処理と例外

def foo

File.olpen(:'′ no/file11)

end

begin

baro
fooo

def bar

fO。 ()

end

File. open ()
―>例外発生

begin

bar()

rescue => ex

pr■nt ex.lmessage′ :ヽュ':

end

l璽)□

=〕
例外処理の動き

エラー処理はメソッドごとではなく、必要に応じて記述すれば十分です。

エラーの原因を解決したりする必要が特にない場合は、例外を捕捉する必要

はありません。もちろん、例外を捕捉しない場合は、プログラムはただちに終

了します。

後処理

例外が起こっても起こらなくても常に実行 したい処理がある場合には、

ensure節 に後処理を記述します。

begin

例外を発生させる可能性のある処理

rescue=>Z至数

例外が起こった場合の処理

ensure

例外の有無にかかわらず実行される処理

end

ファイルをコピーするメソッドを考えてみましょう。次のcopyメ ソッドは

ファイルfromを toにコピーします。

]0。4

210

rescue
|

|

end

」

」
←

10.5 や り直 し

def copy(from, to)
src = Fi.l-e. open (f rom)

begi.n

dst = File.open(t.o,
data = src.read
dst..write (data)

dst. close
ensure

src. close
end

end

#コ ピー元ファイル fromを 開く(A)

‖
w・)十 コピー先ファイル tOを開く(B)

+(C)

(A)でコピー元のファイルを開けなければ、例外が発生して呼び出し元に

戻りますが、これ以降の処理がうまくいくかどうかにかかわらず、srcは閉じ

なければいけません。それを実行するのが(C)の部分です。ensure節に書か

れた処理は、begin～ endで囲まれた部分から抜ける場合には必ず実行され

ます。もしも、(B)でコピー先のファイルが開けなくても(C)は実行されます。

やり直し

rescue節でretryを用いると、begin以 下の処理をもう一度やり直せます。

次の例は、ファイルが開けるようになるまで、10秒ごとにFile.openメ ソ

ッドを実行して、成功すればその内容を読み取ります。

file = AR(3V[0〕

begin

io = File.open(file)

rescue

sleep 10

retry

end

data = io.read
io. close

α

211

:第 10章 エラー処理と例外

ただし、どうやっても開けないファイルを指定すると、無限ループになっ

てしまうので注意が必要です。その場合、5回失敗したらretryせずに終了す

る、というような方法もあります。

rescue修飾子

if修飾子やunless修飾子のように、rescueに も修飾子があります。

式 ■ rescue 式 2

これは式1の処理の中で例外が発生した場合は、式2の値が全体の値となり

ます。つまり、

begin

式 1

rescue

式 2

end

と同 じ意 味です。次の例 を見て くだ さい。

n = rnteger(val) rescue 0

Integerメ ソッドは引数‖123‖ のような数値らしい文字列を受け取った場

合にはその文字列が示す整数値を返し、‖abc‖ のように数値として不正な文

字列を受け取った場合には例外を発生します (文字列が数値として正しいか

どうかを判定する場合によく使われます)。 この例の場合、valが数値として

不正なフォーマットだった場合は例外が発生し、「=」 の右側全体の値として

は0が返ることになります。このように、難しい処理が必要ではないときに、

デフォル ト値がほしい場合などによく使われます。

10.6

212

10.8 捕捉する例外を指定する :

例外処理のためにメソッドの処理全体をbegin～ endでくくるような場合

は、beginと endを省略してrescue節やensure節 を記述することができます。

def foo

メソッドの本体

rescue => eЖ

例外処理

ensure

後処理

end

同様にクラス定義内でも、rescue節やensure節を記述できます。ただし、

クラス定義内で例外が発生すると、例外が発生した箇所以降のメソッド定義

などが行われなくなるため、通常はこの処理を利用することはありません。

class Foo

クラス定義の本体

rescue => ex

例外処理

ensure

後処理

end

例外処理の構文の補足

捕捉する例外を指定する

C

複数の種類の例外が発生する可能性があって、それぞれを個別に対処する

必要がある場合は、複数のrescue節を記述することで処理を分けることがで

きます。

2:3

藤アヽ
【10。7
L」

第10章 エラー処理と例外

begin

例外を発生させる可能性のある処理

rescue Exceptionl′ EЖception2 => 1変 数

EЖceptionlま たはException2に 対する処理

rescue Exception3=>変 数
Exception3に 対する処理

rescue

それ以外の例外が起こった場合の処理

end

クラスを指定すれば、想定している例外だけを捕捉することができます。

filel = f」 RGV[0]

file2 = ZuRGV[1]

begin

io = File.open(filel)

rescue Errno::ENOENr′ Errno::EACCES

io = File.open(file2)

end

この例では、filelを 開くのに失敗した場合にfile2を 開いています。こ

こで捕 捉 して い る Errno::ENOENTと Errno::EACCESは、フ ァイル が存 在 し

ない場合とファイルを開くための権限がない場合に発生する例外です。

例外クラス

すでに述べたように、例外もオブジェクトです。すべての例外はException

クラスのサブクラスとなっていて、エラーの種類に応じた例外を定義してい

ます。組み込みの例外クラスは図10.3の ような継承の関係を持っています。

]0。9

214

10.9 例外クラス

Exception

一
SystemExit

一
NoMemoryError

―
SignalException

一
ScriptError

L_
L_
L_

LoadError
SlmtarGrror
NotInpLementetlError

-

StandartlEEor

L―――NoMethodError

RuntimeError
SecurityError
Nas€Error

工OError

L―――一EOFError

SystelllCallError
l

EI= ロErrno::EPERM

Errno::ENOENT

嘔)硼回□D例外クラスの継承関係

rescue節 で指定した例外の種類は、例外クラスのクラス名です。rescue

節で例外クラスを指定しなかった場合は、StandardErrorと そのサブクラス

が捕捉されます。

すでに紹介したように、rescue節は指定した例外クラスを捕捉しますが、

同時にそのサブクラスも捕捉 します。自分で例外クラスを定義する場合は、

StandardErrorク ラスを継承したクラスを作成し、さらにそれを継承するの

が一般的です。

MyError = Class.new(StandardError)
MyErrorl = Class.new(MyError)
MyError2 = Class.new(MyError)
MyError3 = Class.new(MyError)

+新 しい例外クラス

このように定義すれば、

215

第 10章 エラー処理と例外

begin

rescue MyError

とすることで、そのサブクラスである、MyErrorl、 MyError2、 MyError3な ど

も捕捉できるようになります。

本題とは関係ありませんが、この例の

MyError = Class.new (StandardError)

という書き方は、StandardErrorを 継承 した新しいクラスを作成 して、
MyErrorと いう定数に代入するという意味です。第8章で紹介した継承を伴

うclass文 を使って、次のように定義したクラスと同じように利用できます。

class MyBrror < StandardError
end

class文 の場合はその中にメソッドを定義したりできますが、今回は単に

StandardErrorを継承した新しいクラスを生成できれば十分なので、1行で

簡潔に書ける例を紹介しました。

end

2:6

10.10 例外を発生させる

例外を発生させる

自分で例外を発生させるにはraiseメ ソッドを使います。自分で判定した

条件をもとに例外を新しく発生させる場合や、直前に捕捉した例外を再び発

生させて、例外を呼び出し元に伝えたいときに使用します。

raiseメ ソッドは、次の4つの形式を持っています。

o raiseメ ッセージ

RuntimeErrorを発生させます。新しく生成された例外オブジェクト

にメッセージとして文字列をセットします。

e raise例外クラス

指定した例外を発生 させます。

e raise例外クラス′メッセージ

指定 した例外を発生 させます。新しく生成 された例外オブジェク トに

メッセージとして文字列をセットします。

e ra■ se

rescue節の外ではRuntimeErrorを発生させます。rescue節 の中で

は最後に発生した例外 (s!)を もう一度発生させます。

例外が発生する際にS!に例外オブジェクトが設定されている、つまり

rescue節 の中で新たな例外を発生させると、新しい例外オブジェクトは自

動的にS!を取り込みます。これによって例外のもとになった例外を後から調

べることができます。もとの例外オブジェクトは新しい例外オブジェクトの

causeメ ソッドで参照できます。

begin

begin

raise'IErrorl‖ 1最 初の例外
rescue

l こσ)と きS!は ‖Errorl‖

ロ

raise i'Error2・

end

rescue => e

pe

p e.cause

end

+2番目の例外

十 ‖Error2・ を捕捉
十=> 十くRuntimeError: Error2>

+=> +くRuntimeError: Errorl>

217

∝

第 10章 エラー処理と例外

エラーメッセージ

プログラムを書き終えて実行しても、一度でちゃんと動くということはめっ

たにありません。プログラムはさまざまなエラーによって終了してしまいます

が、間違いを探すヒントがエラーメッセージとして出力されます。

Rubyのエラーメッセージは英語 (の ようなもの)で出力されるので、読むの

が面倒と感じてしまう方もいるかもしれませんが、これをきちんと読まなけれ

ば、問題を解決するのに時間がかかってしまいます。ここでは、よく目にすると

思われるメッセージの例とその意味を紹介します。

i) syntax error

foo.rb:2: s)mtax error, unexpected end, expecting ')'

プログラムに文法的な間違いがあります。特にカッコや文字列の開じ忘れの

場合、インタプリタが報告してくる場所よりもずっと前の部分に間違いがある

かもしれません。次の点を確認してください。

● if、 while、 beginな どに対応するendがあるか

0カ ッコや文字列はきちんと閉じているか
● ヒアドキュメン トが閉じているか

●配列やハッシュの要素の区切りを表す記号に誤りや抜けがないか

0演算子の使い方に誤りがないか
●誤って全角文字 (英数字や空白)が使われていないか

i) NameError,/ NoMethodError

name. rb:2: in ' foo' : undefined 1oca1 variable or method
'retrun' for main:Objecl (NameError)

Did you mean? return
retry

メソッドや変数が存在しません。この例の場合は、returnを retrunと 書

いてしまったために例外が発生しています。NameErrorの 場合は、「Did you

mean?」 というメッセージでエラーになった名前と似たメソッド名や変数名の

候補を列挙してくれます。

218

10.10 例外を発生させる :

method. rb:1: in '<main>' : undefined method 'inejct' for
[] :Array (NoMethodError)

Did you mean? inject

文法的にメソッド名の誤りと判断できる場合は、NoMethodErrorと なりま

す。次の点を確認してください。

。メソッド名や変数名のスペルが間違っていないか

。変数に期待通りのオブジェクトが代入されているか

。 自分の考えていたクラスとは違うクラスのオブジェクトが代入されてい

ないか

C ArgumentError

arg.rb:L:in 'foo': wrong number of argumenLs (given 1,

expected 0) (ArgumentError)

メソッドの引数に誤りがあります。例の場合は引数を取らないところに、1つ

渡していることを表しています。また、printfメ ソッドのフォーマット文字列

が不正であるといったような、メソッドが期待しているものとは異なる引数が

渡されたときにも発生します。

O TypeError

type.rb:1:in 'scan': wronq argument type nil (expected
Regexp) (TypeError)

メソッドが期待しているものとは別のクラスのオブジェクトが渡されてい

ます。思いがけず変数にnilが代入されていることは、慣れていてもよくあり

ます。

C LoadError

load. rb: l: in ' require ' :

(LoadError)

cannot load such file foo

2:9

|

10

|

|

第10章 エラー処理と例外

requireに 指定したライブラリを読み込むことができません。利用している

ライブラリから間接的にライブラリをロードしている場合もあります。次の点

を確認してください。

● re颯五reの引数が間違っていないか

● 目的のライブラリがインス トール されているか

O SLONLPATHで参照 しているデ ィレク トリにファイルが存在するか

|(_)[BUG]

segv.rb:6: [BUGI Segmentation fault at Ox00000000000000oo

ruby 2.6.lp33 (2019-01-30 revision 66950) [x86_64-linux]

―― Control fralne inforlnatiOrl ――――――――――――――――――――――――――――______

c:0004 p:―――― s:0018 e:000017 CFtnCC :call

c:0003 p:0018 s:0013 e:000012 METHOD segv.rb:6

c:0002 p:0027 s:0007 e:000005 EVIAL segv.rb:8 [FINISH]

c:0001 p:0000 s:0003 E:0001dO (none) IFINISH]

―― Ruby level backtrace information ―――――――――――――――――――――――――――

…デバッグ用の情報…

Rubyや 拡張ライブラリのバグによるエラーです。

最新版ではすでに解決 しているかもしれないので、Rubyを アップデー トす
ることも検討してみてください。それでもダメな場合はRubyの メーリングリ
ス トruby― hSt(https://www.ruby-lang.org/ia/community/mailing― lists/)で相談

してみてもよいでしょう。Rubyの 開発チームにバグレポー トとして報告する

と、今後の開発に役立てられるかもしれません。

220

ック

Rubyプログラミングではブロックが活躍します。ブロックは、もともとは

「繰り返し」のための構文でしたが、現在ではプログラムのさまざまなところ

で使われます。ブロックを活用することが、Rubyのプログラミングに慣れる

ための重要なポイントになります。

この章ではブロックの用途と機能について見ていきます。

プロックとは C
プロックとは、メソッド呼び出しの際に引数と一緒に渡すことのできる処

理のかたまりのことです。これまでもeachメ ソッドやtimeメ ソッドなど、主

に繰り返しについて説明する際にブロックが登場しました。ブロックを受け

取ったメソッドは必要な回数だけブロックを実行します。実行される回数は、

メソッドによって制御されるため、あらかじめ決まっているわけではなく、

一度も実行されない場合もあります。

次の例は、Arrayオ ブジェクトに格納された整数値について、eachメ ソッ

ドを使って、先頭から∫I頃にそれぞれの値を2乗 した数値を表示します。この

「do」 から「end」 までの部分がブロックです。この場合はブロックは5回実行

されます。

[1′ 2′ 3′ 4′ 5].each do lil

puts i ** 2

end

11。 1

221

:第 11章 プロック

「第7章 メソッド」でも紹介しましたが、このようなメソッド呼び出しを
「ブロックつきメソッド呼び出し」または「ブロックつき呼び出し」といいま

す。ブロックつき呼び出しの一般形は次の通りです。

オブジェク ト.メ ソッド名 (引数 リス ト)do lプロック変数
|

繰 り返したい処理

end

または、

オブジェクト.メ ソッド名 {引数リスト){|プロック変数
|

繰り返したい処理

}

ブロックの冒頭には、ブロック変数 (ま たはブロックパラメータ)と いうも

のが用意されています。これはブロックを実行する際に、メソッドから渡さ

れるパラメータです。ブロック変数がいくつ渡されるかはメソッドによって

異なります。たとえばArray+eachメ ソッドの場合は、配列の要素が1つずつ

|1頂にブロック変数としてブロックに渡されます。Array‖ each_with_index

メソッドの場合は、「要素′ そのインデックス」の2つの値がブロックに渡さ
れます。

> irb ――gil口!plo―prompt

>>ary・ I"am′ ::b‖ ′ "C"1+一 変数 aryに 値 を配列 を代入
=>[・ a‖ ′ |:b‖ ′ :lC‖]

>>aryoeaCh(|。 bjl p obj}― ― Array#eachの 例
‖
a‖

‖
b‖

‖
C‖

=> [il a‖ ′ 'l bii′ :iC‖]

>> ary.oach=with_index do

>? p robj′ idxl

>> end

[・ a‖ ′ 01

[‖ b‖ ′ 1〕

[・ c‖ ′ 2〕

=>[‖ a‖ ′ iib‖ ′ ‖C‖]

|。 bj′ idXI

Array#each_w ith_index
alrl

222

11.2 プロックの使われ方

「第6章 繰り返し」で紹介したloopメ ソッドのように、ブロック変数がな
いメソッドもあります。

プロックの使われ方

●・011。 2。1繰り返し
ブロックつき呼び出しは、しばしば繰り返しに用いられます。ブロックを

受け取るメソッドのうち、繰り返しを行うものは特にイテレータと呼ばれま

す。イテレータの代表的なメソッドはeachメ ソッドです。

次の例は、配列の各要素の文字列を大文字にして出力します。

alphabet = ["a", nbtr, 'rc", "d", "e"]
alphabet..each do lil

puts i.upcase
end

ハッシュも配列と同様、要素を取り出していくような形になりますが、配

列と異なり「[キー′ 値]」 のペアを配列にして取り出していきます。List
ll.1の ようにすれば、全部のキーと値のペアを取り出して処理することがで

きます。この例ではpair[1]でハッシュの値を取り出して合計しています。
ハッシュのキーのほうを取り出すにはpair[01と します。

List⊂画■D hash_each.rb

sum=0
outcome={‖ 参加費‖=>1000′ :lス トラップ代‖=>1000′ :1懇親会会費‖=>4000〕
OutCOme.eaCh dO lpairl

surn+=pair[11 +値 を指定している
end

puts:1合計 :十 {Slm}‖

ブロック変数を受け取るときは、多重代入と同様のルールで複数の値のパ

ラメータを受け取ることができます。List ll.1を 書き換えて、List ll.2の よ

うにすれば、キーと値を別の変数で受け取れます。

C

223

:第 11章 プロック

List eiED hash-each2.rb

sum=0
outcome=(・参加費‖=>1000′ ::ス トラップ代‖=>1000′ ‖懇親会会費‖=>4000)
。1ltCOrne.eaCh dO lite・ 1′ priCel

sum += pr■ ce

end

puts ti合 計 :十 {slm)・

次に、Fileク ラスのeach_lineメ ソッドを使ったサンプルプログラムを

見てみましょう。List ll.3は「sample.txt」 というファイルから行を順に取り

出し表示するプログラムです。

tist IIED file-each.rb

ファイルオブジェクトには1行ずつデータを取り出して繰り返しを行う

each_lineメ ソッドのほかにも、1文字ずつデータを取り出して繰り返しを

行うeach_charメ ソン` ド、1バイ トこ
゛
とに繰り返しを行うeach_byteメ ソッ

ドなどがあります。ファイル以外でもデータを取り出しながら繰り返しを行

うメソッドは「each_× ×」という名前になっているものがたくさんあります。

●・・11.2.2 定形の処理を隠す
ブロックを繰り返しに使うイテレータの例を見てきました。しかし、この章

の冒頭でも述べたように、ブロックはイテレータ以外にも広く使われていま

す。その1つ として、後処理を確実に実行させるための使い方があります。典

型的な例としてFile.openメ ソッドを紹介しておきましょう。File.openメ

ソッドは、ブロックを受け取ると、ファイルオブジェク トをブロック変数と

して、一度だけブロックを起動します。ブロックを使えば先ほどのList ll.3

を、List ll.4のように書き直すことができます。

224

file = File.open("sanp1e.txt")

file.each-line do llinel
print line

end

fi1e. close

ListC□ED file_open.rb

File.open(・ sattle.txt‖)do lfilel
file・ eaCh_line dO llinel

print line

end

end

書き直す前と比べると、ファイルオブジェクトfileか らデータを読み出す

部分は同じですが、closeメ ソッドの呼び出しがなくなっている点が異なっ
ています。開いたファイルを使い終わったあとは、確実にファイルを閉じな

いと、別のプログラムから開けなくなったり、一度に開けるファイルの上限

に達すると新しいファイルが開けなくなったりといった問題の原因になる可

能性があります。

さらに、List ll.4は ファイルが開けなくてエラーになった場合でもファイ

ルを開じてくれます。内部的にはList ll.5の ような処理が行われているので

す。

U$ eiED f i le_open_no-btock.rb

file = Fi1e.open("sample.txt,,)

file.each_line do I linel
print line

end

ensure

file. close
end

File.openメ ソッドにブロックを与えた場合は、ブロック内の処理が終了
してメソッドから抜ける前に自動的にファイルが閉じられるので、List ll.3

にあるようなFile+closeメ ソッドの呼び出しを書く必要がなくなります。

ファイルを使い終わったら閉じるといった決まりきった処理はメソッド側

で行って、ユーザ側では必要な処理だけをブロック内に記述できるようにす

ると便利です。こうすることによって、プログラムの記述量を減らすととも

に、ファイルの閉じ忘れなどのミスを防ぐことができます。

〓
『

C

Ｆ
●
ワ
“
ｎ
Ｚ

11.2 プロックの使われ方 :

第 11章 プロック

{0)・011。2.3 計算の―部を差し替える
もう1つ、よく使われるブロックつき呼び出しの使い方を紹介しましょう。

今度は、配列の並べ替えを例に、処理の方法を指定するための使い方を見て

いきます。

○ 並べ替えの順序を指定する

例として、sortメ ソッドとsort_byメ ソソヽドを取りあげます。Arrayク ラ

スのsortメ ソッドは、配列内の要素を並べ替えるためのメソッドです。要素

の並べ替えを行うには、さまざまな方法があります。

●数の大きい順

・ 文字列のアルファ
ベット順

・ 文字列の長さの長い順

●配列の要素の合計値の大きい順

こういったそれぞれの条件に合わせて別々のメソッドを定義してしまう

と、メソッドの数が多すぎて、覚えきれなくなってしまいます。そのため、

Arraylsortメ ソッドでは要素の並べ替えの処理はメソッド内に用意してあ

って、要素同士の前後関係を比較する方法だけをブロックで指定するように

なっています。

, 配列などの要素を一定の順序に並べ替えることを、「整列する」または「ソートする」といいます。

Array+sortは 、ブロックを指定しなければ、それぞれの要素をく=>演算子

で比較した結果サ1頁に並べ替えます。く=>演算子は、結果として_1、 0、 1のいず

れかを返します。

目口回Da<=>bの結果
aく bの とき _1(0よ り小)

a==bの とき
a>bの とき 1(0よ り大)

226

11.2 プロックの使われ方

文字列同士をく=>演算子で比較した場合は文字コー ドの値で大小が決まり

ます。アルファベットの場合は、大文字のアルファベットに続いて小文字の

アルファベットというサI頂になるため、次のようになります。

array = [‖ Ruby'I′ i'Perl::′ 1:PHP ii′ lIPython‖]

sorted = array.sort

p SOrted +=> [1:PHPil′ iI Perl‖ ′ lIPython‖ ′ !:Ruiby‖]

並び順の指定にはブロックつき呼び出しを使います。ブロックを与えない

場合と同じようにソートするなら、次のようにします。

arralz = ["Ruby", 'Per1', 'PHP", "Python,']
sorted = array.sort {la, bl a <=> b}
p sorted #=> ["PHP", "Per1", "Python", "Ruby"]

sortメ ソッドの呼び出しに「〔la′ bl aく =>b}」 というブロックが加わ

りました。sortメ ソッドの内部では、ブロックを実行した結果によって要素

の前後関係を判断します。このブロックは、要素の大小関係が必要になった

ときに、比較すべき2つのオブジェクトをブロック変数として呼び出されま

す。ブロック変数のaと bを何らかの方法で比較する処理を与えれば、全体が

その順にソートされます。

ここで注意が必要なのは、「ブロックの最後の式がプロックを実行した結

果となる」ということです。く=>演算子を使った式はブロックの最後に書か

なければいけません。

C

働
「ブロックの最後の式」とは、ブロックの末尾の行に書かれた式のことではな

く、ブロックの最後に実行された式のことです。

文字列の長い|1頂にソー トするなら、次のようにします。

array = ["Ruby", "Per1", 'PHP', "Python"]
sorted = drrdy.sort {la, bl b.1engt.h <=> a.length}
p sorted #=> ["Python', ,Ruby,, ,,Per1,', ,pHp"

]

Ｔ

〓

227

第11章 ブロック

先ほどはaと bと いう文字列を単純に比較していましたが、今度はString

十1engthメ ソッドを使って、文字列の長さを比較しています。数値をく=>演算

子で比較すると値の小さい順になるので、く=>の左右を逆にすることで文字

列の長い順にソートができています。

このように、sortメ ソッドではll原序の判定にブロックを使います。

(D並べ替えに必要な情報を先に取得する

sortメ ソッドに指定したプロックをもう少し詳しく見てみましょう。この

ブロックは比較のたびに2つ の要素をプロック変数としてブロックが呼び出

されます。先ほど紹介した文字列を長さの順にソートする例で、lengthメ ソ

ッドが何回呼び出されているかを調べてみましょう (List ll.6)。

tist (IED sort-comp-count.rb

十 tw(...)は 各単語を要素とする配列を生成するリテラルです

ary = tw(

Ruby is a open source progralnming language with a focus

on si:mplicity and productivity. It has an elegant siyntax

that is natural to read and easy to wr■ te

)

call_mm=0 +プ ロックの呼び出し回数

sorted = ary.SOrt dO la′ ibl

call_num+=1+プ ロックの呼び出し回数を加算する
a.length く=> b.length

end

puts
puts
puts

''ソ ートの結果 +(sorted}‖
‖配列の要素数 十{ary.length}‖

"プロックの呼び出し回数 十{Call_num}‖

> ruby sort_comp_count.rb

ソー トの結果 [‖ a‖ ′ ‖a‖ ′ ll is・ ′ ‖on・ ′ ‖It‖ ′ ‖an‖ ′ ‖iS・ ′ li tO‖ ′
配列の要素数 28

ブロックの呼び出し回数 97

実行例

228

11.3 プロックつきメソッドを作る :

この例では28個の要素に対して、ブロックが97回呼ばれていることがわ

かりました。1回のブロックの実行でlengthメ ソッドは2回呼ばれるので、

都合 194回 も呼んでいることになります。本来ならばすべての文字列に対し

てlengthメ ソッドを1回ずつ呼び出して、得られた値を使ってソートを行え

ば十分なはずです。単純に値をく=>演算子で比較できる場合は、sort_byメ

ソッドを使うと、より効率よくソートを行えます。

ary = %w(

Ruby is a open source programming language with a focus
on simplicity and productivity. It has an elegant slmtax
that is natural to read and easy to wri

sorted = ary.sort-by {liteml item.lengthi
p sorted

sort_byメ ソッドは与えられたブロックを各要素ごとに1回ずつ呼び出し

た結果を使ってソートします。この場合もく=>演算子を呼び出す回数は変わ

りませんが、lengthメ ソッドを呼び出す回数は配列の要素数 (こ の場合は28

回)で済むというわけです。

このようにブロックは、並べ替えの処理の共通部分はメソッドで提供して、

並べ替えのサ1原序 (ま たは順序を決定するために必要な情報の取得)と いった、

目的によって異なる処理だけを差し替えるためにも使われます。

プロックつきメソッドを作る

ブロックを受け取るメソッドの作り方は、「第7章 メソッド」でも簡単に
紹介しましたが、詳しく見ていきましょう。

〈撥0011。3.1 プロックを実行する
「第7章 メソッド」で紹介したmyloopメ ソッドをもう一度見てみましょ
う(List ll.7)。

229

11

1用。3

1第 11章 プロック

List CEコ ID myloop.rb

def nyloop
while true

yield
end

end

num=1
myloop do

puts "num is #{nurn}"

break if num > 10

num *= 2

end

十 ブロックを実行する

+mmを初期化する

I nunを表示する

十nurnが 10を越えていたら抜ける

十nurnを 2倍する

myloopメ ソッドは、while文 でループを実行しながら、「yield」 という命

令を呼んでいます。このyieldが メソッドに与えられたブロックを実行する

命令です。このwhile文は条件が常にtrueに なっているため限りなく繰り返

しを実行しようとしますが、ブロックの中でbreakが呼ばれるとmyloopメ ソ

ッドを終了させて次の処理に進みます。

●・・11。3。2 プロック変数を渡す、プロックの結果を得る
先ほどの例では、ブロック変数も、ブロックを実行 した結果も使っていま

せんでした。今度は、2つの整数を受け取って、1つ 目の整数から2つ 目の整数

までの整数値を順に取り出して値ごとに何 らかの処理を行ってから合計する

メソッドを考えてみましょう。「何らかの処理」をブロックで指定できるよう

にしてみます (List ll.8)。

List(肛 ID total.rb

1: def total(from, to)
2'. result = 0

3: from.upto(to) do lnuml
4; if block_given?
5: result += yield(num)
6: else
7: result += num

十合計の値

十 fromか らtoま で処理する

+ プロックがあれば
+ ブロックで処理した値を足す
+ ブロックがなければ
十 そのまま足す

230

8: end

9: end

10: return result.
11: end

12:

13: p total(1, 10)

14: p total(1, 10)

11.3 プロックつきメソッドを作る :

+メ ソッドの結果を返す

+1か ら10の和 =>55
(lnurnl nuln**2}+1か ら10の 2乗の値の和 =>385

totalメ ソッドはfromか らtoま での整数値をInteger+uptoメ ソッドで

サI頃に取り出して、その値をブロックで処理した結果を変数 resultに足し込ん

でいきます。5行日のように、yieldに 引数を渡すと、その値がブロック変数

としてブロックに渡ります。また、ブロックを実行した結果がyieldの 結果

となって戻ってきます。

4行 日で使っているblock_given?は 、メソッドの中で使うと、そのメソッ

ドが呼ばれたときにブロックが与えられている場合はtrueを、与えられてい

ない場合はfalseを 返すメソッドです。ブロックがない場合は7行 日でnum

をそのまま足しています。

この例ではyieldに 1つの引数を渡して、1つのブロック変数として受け取

っています。yieldに 0個、1個、3個の複数の引数を波して、ブロック変数と

してどのように受け取れるかを見てみましょう (List ll.9)。

t-ist CIED block-arss-test.rb

def block_args_test

yield()

yield(1)

yield(1′ 2′ 3)

end

十プロック変数なし

|ブロック変数 1つ
|ブロック変数3つ

puts t!プ ロック変数を lalで受け取る・

b10Ck_argS_teSt dO lal

p lal

end

puts

puts‖ ブロック変数を la′ b′ clで受け取る・

b10Ck_argS_teSt dO la′ b′ CI

231

第11章 プロック

p [a, b, c]
end

puts

puts IIプ ロック変数を |*alで受け取る
‖

b10Ck_argS_teSt dO I*al

p[al

end

puts

注目すべきは、yieldの 引数の数と、ブロック変数の数は違ってもかまわ

ないことです。ブロック変数が多い場合はnilと なり、ブロック変数の数が足

りない場合は値を受け取ることができないだけです。lalで受け取るケース

と、la′ b′ clで受け取るケースでその様子がわかります。

最後の |*alで受け取るケースでは、ブロック変数をまとめて配列として受

け取っていることがわかります。メソッド定義で不定の数の引数をまとめて

受け取る場合と似た動きになるようになっています。

> 口 iby block args_test.rb

ブロック変数を lalで受け取る

[nill

[11

[11

プロック変数を la′ b′ clで受け取る

[nil′ nil, n■ 1]

[1′ nil′ nil]

[1′ 2′ 3]

プロック変数を |*alで受け取る

[[]]

[[1]]

[[1′ 2′ 3]]

232

|

11.3 ブロックつきメソッドを作る :

鼈綽011.3。3 プロックの実行を制御する
次にbreakな どでブロックの実行を制御する場合の動きを見てみましょ

う。List ll.8の totalメ ソッドを呼び出す際に、次のように途中でbreakを

使って中断すると、totalメ ソッドの結果はどうなるでしょうか。

n = tOtal(1, 10)dO lnuml

if nurn=・ 5

break

end

num

end

pn +=> ??

答えはnilです。ブロックの中でbreakを 呼ぶと、ブロックつき呼び出しの

場所まで一気に戻ってくるため、totalメ ソッドの中で計算の結果を返す処

理などがすべて飛ばされてしまいます。メソッドの結果として何か値を返し

たい場合は「break O」 のようにbreakに 引数を与えると、その値をメソッド

の戻り値として得ることができます。

また、ブロックの中でnextを使うと、ブロックのその回の実行を中断しま

す。中断するのはその回だけなので、続きはそのまま実行されます。nextを

使うとブロックを実行したyieldが戻りますが、その戻り値は、nextに何も

指定しなければnil、「next O」 のように引数を与えると、その値となります。

C

n = total(1, 10)

ifnum? 21=0
next 0

end

num

end

pn #=>30

do lnuml

233

:第 11章 プロック

0)・
。
11。3.4 プロックをオブジエクトとして受け取る

ここまでは、ブロックを受け取ったメソッドの側ではyield命令を呼ぶこ

とで、ブロックを実行しました。

もう1つ、ブロックをオブジェクトとして受け取る方法について見ていき

ます。ブロックをオブジェクトとして受け取ることで、ブロックを受け取っ

たメソッドとは別の場所でブロックを実行したり、ブロックを別のメソッド

に与えて実行したりできるようになります。

ブロックをオブジェクトとして持ち運ぶには、Procオブジェクトを使いま

す。Procオ ブジェクトを作る典型的な方法は、Proc.newメ ソッドをブロッ

クつきメソッドとして呼び出すことです。ブロックの手続きは、Procオ ブジ

ェク トに対してcallメ ソッドで呼び出すと実行できます。

List ll.10の例では、メッセージを出力するProcオブジェクトを作成して、

2回呼び出しています。callメ ソッドに与えた引数がブロック変数となって、

ブロックが実行されます。

tist fifEl procl.rb

heI1o = Proc.new do lnamel
puts "He11o, #{name}."

end

hello.call(|'WOrld‖)

hello.call(・ Ruby")

メソッドからメソッドにブロックを渡すときには、ブロックをProcオ ブジ

ェクトとして変数で受け取って、次のメソッドに渡すという操作を行います。

メソッド定義の際に最後の引数を「&引数名」の形式にすると、そのメソッド

を呼び出すときに与えられたブロックは、自動的にProcオ ブジェクトに包ま

れて引数として渡されます。

> ruby Drocl.rb
He1lo, Wor1d.

He1lo, Ruby.

実行例

234

11.3 プロックつきメソッドを作る :

List ll.11は、List ll.8の ブロックの受け取り方を変えて書き直したもの

です。

tist CIIID total2.rb

1: def tota12(from′ to′ &block)

2: result=0 1合 計の値

3: from.upto(to)do lnulnl l fromか らtoま で処理する

4: if block l ブロックがあれば

5: result+二 十 ブロックで処理した値を足す
6: block.call(num)

71 else + ブロックがなければ
8: result+=nuln l そのまま足す
9: end

10: end

ll: return result 十メソッドの結果を返す
12: end

13:

14: p tota12 (1, 10)

15: p tota12(1, 10) {lnuml num *x 21

C
+1か ら10の和 =>55
+1か ら10の 2乗の値の和 =>385

冒頭のメソッド定義の引数に&blockと いう引数の定義があります。この

ように、変数名の前に「&」 をつけて受け取る引数のことをブロック引数とい

います。メソッド呼び出しの際にブロックが渡されなければブロック引数は

nilに なるので、ブロックの有無を値が渡されているかどうかで判断できま

す。また、ブロックの実行がyieldではなく、block.call(num)に なってい

る点が以前と違います。

「第7章 メソッド」では、メソッドの引数にはさまざまな要素があって、
デフォル ト値の指定など引数の定義には順番があることを説明しました。ブ

ロック引数はすべての引数の要素の中で一番最後になっていなければなりま

せん。

ブロックをProcオ ブジェクトとして受け取ることにより、ブロックを好き

なタイミングで呼び出すことができるようになります。インスタンス変数に

保持しておいて、別のインスタンスメソッドからブロックを実行するといっ

たことも可能です。

Procオ ブジェクトをブロックとしてほかのメソッドに渡すこともできま

235

―

　　　「

‐
―
呵

‐
　

―

―
―

第 11章 プロック

す。この場合は、メソッド呼び出しの引数に&をつけて「&PrOcォ ブジェクト」

の形式で指定します。たとえば、ブロック引数として受け取ったブロックを、

Arrayleachメ ソッドのブロックとして中継する場合は、List ll.12の ように

します。

Lis十 C口厖D ca‖ _each.rb

def call_each(ary, &block)
ary. each (cblock)

end

call_each [1′ 2′ 3]do liteml
p item

end

こうすると、call_eachメ ソッドを呼び出す際に与えたブロックを、ary

eachメ ソッドにそのまま渡すことができます。

> ruby call_each.rb

ψ
本書の以前の版ではブロック引数を「Proc引数」と呼んでいましたが、第6

版からはRubyリ ファレンスマニュアルの記載に合わせてプロック引数と表

記しています。

ローカル変数とプロツク変数

ブロックは名前空間をブロックの外側と共有しています。ブロックの外側

で作られたローカル変数は、ブロックの中でも引き続き使うことができます。

一方、ブロック変数として使われる変数は、ブロックの外側に同じ名前の変

数があっても別のものとして扱われます。List ll.13の例を見てください。

236

11

11.4 □―カル変数とプロック変数 :

LisIC画〕 loca:Fnd_b:ock.rb

x=0 1xを ネ刀期化

y=0 +yを 初期化

ary = [1′ 2′ 3]

ary.each do lxl +プロック変数としてxを使用する
lyに xを代入する

#xと yの値を確認する

lxを初期化
lyを初期化しない

+ブロック変数としてxを使用する
lyに xを代入する

y=x

end

p [x, y]

嘔ary.eachメ ソッドのブロックの中で、ローカル変数yに xの値を代入して

います。そのため、最後にブロックが呼ばれたときのxの値である3が、yと

して残ります。一方、xの値はary.eachを 呼び出す前と変わっていません。

逆にブロック内で初出の変数はブロックの外側に持ち出すことができませ

ん。先ほどの例で、2行日のyの初期化を削除するとエラーになります。

x=1

+y=1
ary = :1′ 2′ 3]

ary.eaCh dO IXI

y=x

end

p [x, y] +yを参照するとエラー (NameError)

ブロックは、ブロックの外側とローカル変数の有効範囲を共有しつつ、新

しい有効範囲を作るためにこのような挙動になります。ブロック内で代入さ

れるローカル変数は、ブロック外側の同名の変数と関係があるのかどうか常

> ruby local_and_blockorb

[0′ 31

237

実行例

:第 11章 プロック

に注意する必要があるので、Rubyの仕様の中でも少々ひっかかりやすい部分

です。

ブロック変数は常にブロック内でのみ有効な変数 (ブロックローカル変数)

として扱われるので外側のローカル変数を上書きしませんが、ブロック変数

とは別にブロックローカル変数を定義するためのプロックの構文が用意され

ています。ブロックローカル変数は、プロック変数の後ろに「′」で区切って

定義します。

List ll■ 4で確認してみましょう。ブロックの実行後もxと yの値が変更さ

れずに保存されていることがわかります。

tist fifEi local_and_block2.rb

a=y=g=Q
ary = [1, 2, 3]

ary.each do lx; yl
Y=x

p lx, y, zl
end

puts
p lx, y, z1

+xと yと zを初期化

+プロック変数x、 ブロックローカル変数yを使用
|ブロックローカル変数yを代入
十プロックローカルでない変数zを代入

+プロック内のx、 y、 zの値を確認する

lx、 y、 zの値を確認する

> ruiby local_and_block2.rb

[1′ 1′ 1〕

[2′ 2,2]

[3′ 3,3]

[0′ 0′ 31

238

■

‥

・
‥

11.4 □―カル変数とプロック変数

Ru byリ フアレンスマニュアルについて

本書では限られた紙面の都合と、要点を絞って説明していることから、すべ

てのRubyの機能については触れてはいません。本書にも書かれていないRuby

の詳しい機能を知りたい場合は、リファレンスマニュアルで調べるのが効果的

です。

O Web上のリツース
Rubyの リファレンスマニュアルはソースコードとともに英語で書かれてい

ます。日本語版のマニュアルは「るりま」プロジェクトによって整備されてい

ます。次のURLで ドキュメントを閲覧できます。

● ドキュメント(Ruby公式サイ ト)

https://wwwruby_lang.orノ ia/documentatiOn/(日 本語)

https://www.ruby― lang.org/en/documentation/(英 語)

● るりま

https://doc.ruby― lang.org/ja/

○ リフアレンスマニュアルを読むコツ

リファレンスマニュアルを読み解くコツを4つ挙げておきます。

●クラスやメソッドを調べるときは「組み込みライブラリ」と「標準添付

ライブラリ」から調べる

URLでいうと、組み込みライブラリはhttps://dOcs.ruby_lang.Org/ia/2.6.0/
1ibrary/_builtin.html、 標準添付ライブラリはhttps://docs.ruby_lang.Org/

ia/2.6.0/hbrary/index.htmlに なります。ここで、調べたい対象のクラスを探 し

て読みましょう。

●メソッドを調べるときは「るりまサーチ」を使う

リファレンスマニュアルのページはクラスやモジュールごとになっている

ため、メソッドを探している場合は目視では見つけるのが難しいこともありま

す。そのような場合は、無理に頭から調べるより、るりまサーチ検索を使ってメ

ソッドを探したほうが早そうです。

● るりまサーチ :

httpS://docs.ruby― lang.org/ia/SearCh/

●

239

:第 11章 ブロック

(3)mる りまサーチ

● スーパークラスのメソッドも調べる

あるクラスのメソッドを探すときに、そのクラスのページを見ても日当て

のメソッドが見つからないことがあります。そのような場合、目的のメソッド

はそのクラスではなく、スーパークラスで定義されているかもしれません。対

象のクラスはスーパークラスから継承したメソッドを使っていた、というわけ

です。

●一度に全部を覚えようとしない

Ruby標準のメソッドは相当な数になります。標準添付ライブラリまで合め

ると、とても一度に把握できる数ではありません。ですから、Rubyに慣れるま

では、「必要なときに必要なところだけ読む」という態度で十分です。Rubyに

慣れてきたら、「あるクラスのメソッドを一通り読む」とか、「文法の説明を一

通り読む」といった読み方をお勧めします。

tL!/{2>at4!1>qh!
F2-F tu-tul.q,bodn.e4!@

,

t^t(llrr) lrqlsi) rro0s6))sqxt E
'-O4tafU-f

鮨

"絆

,腱倅ヒットい・10●t薇示】(0■■)

E,,

1 240

「わたし

わた

まいを見て、

してさらに、

いつたん、それらを見たり聞いたりしなかつたかのように、

ふるまい、言葉をしゃべる。」

一
高橋源一郎『文学の向う側 ‖』

第3部

クラスを
使おう

Ruby:こ !ま

さまざまなクラスがあります。

クラスの使い方を覚えれば

Rubyのたのしみを
感じられることでしょう。

●

一
一
●

`,,●
¨

一
●
■

く

「

F
L

「

L

P産
L

く

」

ロ

数値 (Numeric)クラス

Numericク ラスとは、これまでに何度も登場してきた数値を扱うクラスで

す。足し算や引き算のような基本的な操作だけでなく、Numericク ラスの機

能をもう少し詳しく見ていくことにします。

O Nwnericのクラス構成

Integerや Floatな どを含む数値クラスの構成を紹介します。

●数値のリテラル

プログラム中に数値を直接記述するための、さまざまな表記方法を紹

介します。

●算術演算

四則演算などの基本的な演算や、数値計算のためのMathモ ジュールを

紹介します。

●型の変換

Integerか らFloatへ、またはその逆など、数値の型を変換する方法

を紹介します。

●ビット演算

ビット演算を行う演算子を紹介します。

●乱数

ランダムな値を得るための機能を紹介します。

0数えあげ
Integerを 使って繰り返しの回数を指定する方法を紹介します。

243

第12章 数値 (Numerlc)ク ラス

Numericのクラス構成

数値クラスには、_1、 0、 1、 10な どの整数を表すIntegerク ラスと、0.1、

3.141592な ど小数点以下の精度を持つ浮動小数点数を表すFloatク ラスがあ

ります。

これらの数値クラスはNumericク ラスのサブクラスとして定義されてい

ます。

Numerュ c―
(数値)

――→ hteger
(整数)

――――>Float
(浮動小数点数)

―――)■Rational

(有理数)

――→ Complex
(複素数)

1菫)― Numericク ラスのサブクラス

プログラミング言語の多くは整数型が扱える値の大きさ(桁数)に制限が

あるため、それを超える数の計算をすると「桁あふれ」という現象が発生して

正しい結果を得ることができませんが、Rubyの整数はとても大きな値を扱う

場合でも特に意識する必要はありません。例として、2の 10乗 と2の 1000乗

を計算してみましょう。**はべき乗を計算する演算子です。

>irb¨ ―siЩple― proЩpt

>> 2 ** 10

=> 1024

>> 2 ** 1000

=> 10715086071862673209484250490600018105614048117055336074437

50388370351051124936122493198378815695858127594672917553146825

18714528569231404359845775746985748039345677748242309854210746

05062371141877954182153046474983581941267398767559165543946077

062914571196477686542167660429831652624386837205668069376

244

ｑ
ｌ
ｌ

●
一

■
日
●

Rubyでは有理数や複素数も扱えます。有理数はRationalク ラス、複素数

はComplexク ラスで表します。

RatiOnalオ ブジェクトは「Rational(分子′分母)」 の形式で生成します。

たとえば

といった分数の計算は、Rationalオ ブジェク トを利用すると次のように

書けます。Rational+to_fメ ソッドを使うと、Floatオ ブジェクトに変換
できます。また、Rationalオ ブジェク トから分子と分母を取り出すには、

numeratorメ ソッドとdenominatOrメ ソッドを使います。

ロ

１

一
３
十

２

一
５

a = RationaL(2, 5)

b = Rational(1, 3)

p [a, b]

c=a+b
pc
p c. to_f
p Ic.numerator, c.denominator]

|=> [(2/5)′ (1/3)]

十=> (11/15)

十=> 0.7333333333333333

+=> [11′ 15]

COmpleXオ ブジェクトは「Complex(実 数部′虚数部)」の形式で生成します。

複素数 1+2プ を2乗する計算は次のように書けます。Complexオ ブジェクトか

ら実数部と虚数部を取り出すには、realメ ソッドとimaginaryメ ソッドを

使います。

c = Complex(1, 2)** 2

p C +=> (-3+4i)

p [c.real′ c.ilmaginary] +=> [-3, 4]

245

12.l Numericの クラス構成 :

数値オブジェクトを表現するリテラルの例を表 12.1に挙げます。

目m数 値オブジェクトのリテラル

リテラル 意味 (カ ッコ内は10進数での値)

123 整数の10進表記

0123 整数の8進表記 (83)

Oo123 整数の8進表記 (83)

Od123 整数の10進表記 (123)

Ox123 整数の16進表記 (291)

Oblll1011 整数の2進表記 (123)

123.45 浮動小数点数

1.23e4 浮動小数点数の指数表記 (1.23× 10の 4乗 =12300.0)

1.23e-4 浮動小数点数の指数表記 (1.23× 10の _4乗 =0.000123)

123r 有理数の (123/1)

123.45r 有理数の123.45(12345/100=2469/20)

123i 虚数の 123j

123.45i 虚数の 123.45」

単純な数字の羅列は10進数表記の整数を表します。また、Obで始まる数値

は2進数、0ま たはOoで始まる数値は8進数、Odで始まる数値は10進数、Ox

で始まる数値は16進数を表します。なお、数値リテラル中の「_」 は無視され

ます。3桁区切りなどで数値を表現する際に便利です。

:第 12章 数値(Numeric)ク ラス

p 1234567

p l_234_567

p Obllllllll

p 01234567

p Ox12345678

数値のリテラル

十=>

十=>

+=>

+=>

+=>

1234567

1234567

255

342391

305419896

小数点を含む数値は浮動小数点数となります。有効数字を表現する仮数部

と、指数を10のべき乗で表す指数表記も利用できます。指数表記するときは、

「仮数部となる数値」「アルファベットの e(ま たはE)」「指数部となる整数」

の順に書きます。

′
０
４
．

，
“

pl.234
pl.234e4

p l.234e-4

十=> 1.234

+=> 12340.0

+==> 0.0001234

また、整数や少数の末尾に「r」 をつけることでRationalオブジェクトを、

「i」 をつけることでComplexオ ブジェクトを作ることができます。

軽D)算術演算
数値オブジェクト同士の基本的な計算は、表 12.2の演算子を使って行うこ

とができます。

辟CEED算術演算のための演算子

IntegerオブジェクトとFloatオ ブジェクトを計算した結果はFloatオブ

ジェクトになります。一方、Integerオブジェクト同士、Floatオブジェクト

同士を計算した結果は、それぞれIntegerオ ブジェクト、Floatオ ブジェク

トになります。

pl

pl

p2

p2

p3

p3

p3

p5

p5

+ 1

+ 1.0

- 1

- 1.0

*2
* 2.0

* -2.0

/2
/2.0

+=>

+=>

+二>

|=>

+=>

|=>

+=>

+=>

+=>

2

2.0

1

1.0

6

6.0

-6.0

2

2.5

加算

減算

* 乗算

除算

剰余 (余り)
** べき乗

247

12.3 算術演算
:

演算子 演算

:第 12章 数値 (Numeric)ク ラス

p5t2
p582.0
p5 ** 2
p5 ** 0.5

p5 ** -2.0
p5 ** -2

+=> 1

+=> 1.0

+=> 25

+==> 2.23606797749979

|=> 0.04

+=> (1/25)

また整数と有理数の割り算の結果は有理数、整数と虚数の足 し算の結果は

虚数になることから、p.245で紹介した有理数と虚数の計算の例は、リテラル

表記を用いて次のように書くことができます。

r = (2 / 5r)+ (1 / 3r)

p r +=> (11/15)

p r.to_f 十=> 0.7333333333333333

c = (1 + 2i)** 2

p c +=> (-3+4i)

負の整数でのべき乗は、有理数を表すRationalオブジェクトを返します。

●・012。3.1割り算
数値オブジェクトには、/と ちのほかにも割り算に関するメソッドがいく

つかあります。

(Dχ .div(y)

χをッで割った商を整数で返します。

p5.div(2)

p 5.div(2.2)

p -5.div(2)

p -5。 div(2.2)

十三> 2

+=> 2

+=> -3

+=> -3

248

12.3 算術演算 :

Oχ .quo(y)
χをyで割った商を返します。整数同士の場合はRationalオ ブジェクトに

なります。

p5.quo(2)

p5.quo(2.2)

p-5.quo(2)

p-5.quo(2.2)

+=> (5/2)

+==> 2.2727272727272725

+=> (-5/2)

+二> -2.2727272727272725

Oχ .modulo(y)
「xty」 と同じです。

Oχ・diVmOdし)
χをyで割ったときの商と余りを配列にして返します。商は「χ /ッ」の結果

を小さい方向に丸めた値です。余りは「χネッ」の結果と同じです。したがって、

azs = x.divlnod(y)

の場合に、次の結果が成り立ちます。

x==ans[Q] xy+ansll)

p 10.divmod(3.5)

p 10.divmod(-3.5)

p -10.divmod(3.5)

p-10.divmod(-3.5)

十二> [2′ 3.01

十二> [-3′ -0.5]

十二> [-3′ 0.5]

+=> [2′ -3.0]

249

第12章 数値 (Numeric)ク ラス

(Э ″.remainder(y)

χをッで割った余りを返します。結果の符号は「χ」の符号に一致します。

p 10.remaiinder(3.5)

p 10.remainder{-3.5)

p -10.remainder(3.5)

p -10.remainder(-3.5)

十=> 3.0

1=> 3.0

+=> -3.0

1=> -3.0

また、0に よる割り算はIntegerク ラスではエラーとなりますが、Floatク

ラスではInfinity(無限大)や NaN(Not a Number)を返します。これらの値

を使った演算はInfinityか NaNに しかなりません。入力をそのまま使って演

算する場合など、0で割り算を行う可能性がある場合は注意してください。

+二 > エ ラー (ZeroDivisionError)

#=> Infinity

l=>NaN
p 1-.divmod(0) #=> aA- (ZeroDivisionError)
p l-.divmod(0.0) #=> t1- (ZeroOivisionError)

Mathモジュール

三角関数や対数関数など、よく使う数値演算のためのメソッドはMathモ ジ

ュールで提供されています。このモジュールはモジュール関数と定数を提供

します。たとえば、平方根を求めるには次のようにします。

ｐ

　

ｐ

　

ｐ

/0
/0.0
/0.0

】

　

　

　

―

‐

250

Mathモ ジュールでは、表 12.3に示すメソッドが提供されます。

p Math.sqrt(2) #=> 1.4142135623730951

メソッド名 意味

acos (r) 逆余弦関数

acosh (-rr) 双曲線逆余弦関数

asin (r) 逆正弦関数

aS■ nh(χ) 双曲線逆正弦関数

atan (-r) 逆正接関数

aLanz(x, y) 4象限表現の逆正接関数

atanh (x) 双曲線逆正接関数

cbrt(χ) 立方根

cos (-r) 余弦関数

cosh (x) 双曲線余弦関数

erf(χ) 誤差関数

erf c (.r) 相補誤差関数

exp (-r) 指数関数

frexp (x) 浮動小数点数の正規化小数と指数

gamma (x) ガンマ関数

hypot(χ ′ ッ) ユークリッド距離関数

ldeXp(χ′ ッ) 浮動小数点数と2の整数乗の積

lgamma ("r) ガンマ関数の自然対数

log(χ) 底をeと する対数 (自 然対数)

log10(χ) 底を10と する対数 (常用対数)

1og2 ("r) 底を2とする対数

sin(χ) 正弦関数

sinh(χ) 双曲線正弦関数

sqrt (r) 平方根

tan (x) 正接関数

tanh(χ) 双曲線正接関数

12.4 Mathモ ジュール

目口 D Mathモ ジュールで提供されるメソッド

また、表 12.4の定数が用意されています。

国C=D Mathモジュールで提供される定数

α

意味″;"||●

円周率 (3.141592653589793)PI

自然対数の底 e(2.718281828459045)

251

定数名

数値型の変換

IntegerオブジェクトをFloatオ ブジェクトに変換するには、to_fメ ソッ
ドを使います。逆にFloatオ ブジェクトをIntegerオ ブジェクトに変換する

には、to_iメ ソッドを使います (Integerlto_iメ ソッドとFloat十 七o_fメ

ソッドはレシーバと同じ値を返します)。 また、文字列を数値に変換すること

もできます。

:第 12章 数値 (Numeric)ク ラス

p 10.to_f

p10.8.to_i

p -10.8.to_i

p ::123・ .to_i

p l112.3'1.to_f

p 0.12.round(1)
p 0.18.round(1)
p 1.2 . round
p 1. B. round
p 120.round(-2)
p 180.round(-2)

p l.5.ceil

p -1.5。 ceil

p l.5.floor

p -1.5。 floor

Float+to_iメ ソッドは小数点以下を切り捨てた値を返します。小数点以

下を四捨五入するにはroundメ ソッドを使います。引数で小数点以下の何位

を丸めるかを指定できます。負の値を指定すると、小数点より上位の桁 (つま

り整数部分)を丸めます。

十二>

+=>

十二>

‖=>

十二>

10.0

10

-10

123

12.3

十二>

十=>

+=>

|=>

+=>

+=>

0.1

0.2

1

2

100

200

レシーバよりも大きくてもっとも小 さい整数を返す ceilメ ソッドと、レシ

ーバよりも小さくてもっとも大きい整数を返す floorメ ソッドもあります。

252

十=> 2

+=> -1

+=> 1

+=> -2

12.6 ビット演算

数値をRationalオブジェクトやComplexオ ブジェクトにも変換できます。

次のようにそれぞれto_rメ ソッドとto_cメ ソッドを使います。 ロ
p 1.5. to_r
p l-.5.to_c

+=> (3/2)

+=> (1.5+Oi)

ビット演算

Integerク ラスでは、表 12.5に示すビット演算を利用できます。

日―
integerク ラスのビット演算子

演算子 演算

ビット反転 (単項演算子)

ビット積

ビット和

排他的論理和 ((a&～b)|(～ a&b))

右ビットシフト

くく 左ビッ トシフ ト

ビット演算は、整数を2進数で表現したときの各桁をビットとして扱う演

算です。次のプログラムのように、2進数表記の数値リテラルを用いたり、

printfメ ソッドで2進数表示したりすることで、ビット演算を使う際の値や

結果をわかりやすくできます。

def bits(i)

十printfの 3bフ ォーマットを使って、

十整数の末尾 8ビットを2進数表示する

printf(・ 308bヽ nl'′ i & Obllllllll)

end

i ・ Oblll10000

bits(1) 十二> 11110000

bits(～ i) 十二> 00001111

bits(i & Ob00010001)十 二> 00010000

253

第 12章 数値 (Numeric)ク ラス

lC)itS(i 1 0b00010001)|=> 11110001

bits(i ∧ Ob00010001)十 => 11100001

bits(i >> 3) +=> 00011110

bits(i くく 3) +=> 10000000

ビットとバイト

コンピュータの世界では「ビット」や「バイト」という表現がよく使われます。

これらの意味についてざっと紹介しておきましょう。

○ ビット(bit)

「ビット」は情報の一番小さな単位で、「ON」 か「OFF」 か、あるいは「0」 か「1」

か、という情報を表現します。もともとは「Binary digit」 の略だったそうです。

○ ビットと2進数
ビットの持つ情報は「0」 と「1」 の2通 りですが、ビットを2つ組み合わせれ

ば「00」「01」「10」「11」 の4通りの情報を表現できます。同様に3ビ ットでは8

通り、4ビ ットでは16通 り、という具合にビット数を増やすごとに倍の情報を

表現できるようになります。

このように、「0」 と「1」 のみで数値を表す表記の仕方を「2進数」といいます。

ふだん使っている表記は「10進数」といいますが、これは、1つの桁で「0」から「9」

の10通りの数が使われているからです。

(D8進数と 16進数
コンピュータが扱う情報は、2進数で表現されます。けれども、すべてを0と

1で書こうとすると、桁数ばかり大きくなってしまい、人間にはわかりにくくな

ります。そこで8進数や16進数が使われます。8進数では3ビ ットを0か ら7ま

で8つの数字を用いて表します。16進数では4ビ ットを0か ら15ま での数を用

いて表現します。16進数では、10か ら15をアルファベットのAか らFを使って

表現します。

○ バイト(byte)

8ビ ットをまとめたものを1バイトといいます。1バイトで表現できる数は10

254

|

12.7 乱数

進数で表すと0か ら255になります。

8進数は1桁で3ビ ットを表すので、1バイトは「2ビ ット、3ビ ット、3ビ ット」
の3つに分けた3桁 (000か ら377)に なります。

16進数は1桁で4ビ ットを表すので、1バイトは「4ビ ット、4ビ ット」の2つ

に分けた2桁 (00か らFF)に なります。16進数だとどの桁も4ビ ット分になる
ので、データの中身を確認する際によく用いられます。

乱数

この世の中では、デタラメなデータが必要とされることがあります。デタ

ラメに期待される性質として、次のようなものがあります。

0規則性、法則性がない
0-定の範囲の数が均等に出現する

サイコロを振る場合でたとえると、次に出る目を予測することができず、

またすべての目が偏りなく現れるということです。このような性質のことを

ランダムといい、ランダムに得られる数値のことを乱数といいます。乱数は、

サイコロの目や トランプのシャッフルのように偶然性が必要な場面や、暗号

の鍵のように予測が難しいデータが必要な場面で用いられます。

乱数を得るにはRandom.randメ ソッドを使います。Random.randメ ソッ
ドは、引数を与えない場合には1未満の浮動小数点数を返します。引数として

正の数値を与えた場合には、0か らその値より小さい範囲の数値を返します。

α
‐

p Random.rand
p Random.rand(100)
p Random.rand(100)

十=> 0.13520495197709

+=> 31

+=> 84

ソフトウェアでは本物の乱数を作ることができないので、計算によって乱

数のように見える値を作ります。この乱数を擬似乱数といいます。擬似乱数

では、「種」と呼ばれる乱数を生成するきっかけとなる値が必要になります。

Randomオブジェクトに乱数の種を指定して乱数を得るには、Random.newメ

255

第12章 数値 (Numeric)ク ラス

ソッドで乱数生成器を初期化して、Random+randメ ソッドを使います。乱数

の種があれば乱数列を再現することができるため、ゲームのリプレイのよう

に再現性が求められる場面などで使用できます。Random.newメ ソッドの引

数を省略すると、そのつど適当な種が与えられます。

rl =Random.new(1) +舌 し数夕:」 を初期化する

p [rl.rand′ rl.randl

+=> [0.417022004702574′ 0.7203244934421581]

r2=Random.new(1) 十再び乱数列を初期化する
p [r2.rand′ r2.randl

十=二> [0.417022004702574′ 0.72032449344215811

r3=Random.new +種 を与えずに乱数列を初期化する

p [r3.rand′ r3.rand]

+=> [0.05181083770841388′ 0.146686572314226441

情報セキュリティの分野ではパスワードや暗号の鍵の生成に乱数を用い

ます。Rubyに はこのような目的で乱数を生成するためのsecurerandomラ

イブラリが用意されています。このライブラリの提供するSecureRandom.

random_bytesメ ソッドは、引数にバイ ト数を指定すると、その長さのランダ

ムなバイト列 (Stringオ ブジェクト)を返します。

ランダムなバイト列には文字としては無効な値が含まれるので、そのまま

表示できないなど扱いづらい場面があります。SecureRandom.base64メ ソ

ッドは英数字と記号の組み合わせに変換された値を返すので、目的によって

使い分けてください。

require "securerandom"

p SecureRandom.random_byteS(12)

+=> !lヽ xOFLzヽ xEEヽx809Fヽ x81ヽ x80ヽ xC3ヽ x14ヽ t‖

p SecureRandom.base64(12)

|=> i:xEn6NEZi9M09xt/K‖

ロ

256

12.8 数えあげ :

数えあげ

Integerク ラスは数値の計算のほかにも、処理の回数や配列の要素数など

を数えあげるために使われます。これから紹介するメソッドは、数によって

指定された回数だけ処理を繰り返すイテレータです。

○″etimS{同 ・̈〕
″回の繰り返しを行います。ブロック変数Jに は0か らか1が順に渡されます。

ary=[]
10・ timeS dO lil

aryくく i +iを 配列の要素として追加する
end ■|‐

p ary l=> [0′ 1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9]

○′10″・uptO("){IJI 。・・ }
ルοれから″οに達するまでJを 1ずつ加算しながら繰り返します。ルο

“
が′οよ

り大きければ一度も繰り返しません。

ary = []

2.upto(10)do

ary くく ■

end

p ary 十二> [2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

li

○′り″・dOヽ日Lt。 ("){レ | ・・・}
ルο
“
からゎに達するまで」を1ずつ減算 しながら繰り返 します。ルθ

“
がわよ

り小さければ一度も繰り返しません。

257

:第 12章 数値 (Numeric)ク ラス

ary=[]
10。 domto(2)do lil

ary くく ■

end

p ary +=> [10′ 9′ 8′ 7′ 6′ 5, 4′ 3′ 21

○′り″OStep(わ′S`θP){IJI 。・・ }

ルο″から′οに達するまでjに sr″ を足しながら繰り返します。∫′りが正の場

合、ルοれが′οより大きければ一度も繰り返しません。s′″が負の場合、ルοれが

ゎより小さければ一度も繰り返しません。

ary = []

2.step(10,3)do lil

ary くく ■

end

p ary +=>[2, 5′ 8〕

ary = [1

10.step(2′ -3)do lil

ary くく ■

end

p ary +=> [10′ 7′ 4]

times、 upto、 downto、 stepの 各メソッドは、ブロックを与えなければ

Enumeratorオ ブジェクトを返します。これにより、stepメ ソッドのブロッ

ク変数として得られる一連の数値をさらにEnulnerator+colleCtメ ソッドで

収集したりできるようになります。Enumeratorオ ブジェクトについては、第

14章のコラム「EnumeratOrク ラス」(p.316)を参照してください。

ary = 2.step(lo).c。 1lect (lil i * 2)

p ary +=> [4′ 6′ 8′ 10′ 12′ 14′ 16′ 18′ 20]

258

12.9 丸め誤差

丸め誤差

一般に、小数点以下の数、とりわけ浮動小数点数を扱う場合には、誤差によ

る問題が生じることがあります。具体的な例として、次のプログラムを実行

すると、奇妙な結果になります。

a

a=0.1+0.2
b=0.3
p[a′ bl

pa==b
|=> [0.30000000000000oo4′ 0.3]

十二> false

「0.1+0.2」 と「0.3」 を比較した結果はtrueを 期待してしまいますが、
実際には違う値になり、比較しても一致しません。なぜこのようなことが起
こるのでしようか ?

10進数では 1/10、 1/100、 1/1000、 ・…・・といった10のべき乗の逆数の組み

合わせで数値を表現します。一方、Floatク ラスが扱う浮動小数点数では、

1/2、 1/4、 1/8、 ・……といった2のべき乗の逆数の組み合わせをもとにしてい

ます。このため、1/5や 1/3な ど、2進数表現では正確に表現できない数に対し

ては誤差が生じてしまいます (1/3は 10進数でもうまく表現することができ

ませんね)。 このような数を2進数の和で表現しようとすると、適当なところ

で値を打ち切らなければならず、これが「丸め誤差」となって現れるのです。

整数の割り算によって問題が生じる場合は、Rationalク ラスを用いるこ

とで、丸め誤差のない形で計算を行うことができます。

a = 1 / 10r + 2 / 10r

b=3/10r
p la′ bl +=> [(3/10)′ (3/10)]
p a == b l=> true

また、本書では取りあげませんが、小数点以下の有効桁数を持った大きな

10進数を扱うためのbigdecimalラ イブラリもあります。

12.9壌
望

259

ComparabletY a-)V

Rubyの比較演算子 (==や く=な ど)は メソッドとして提供されています。

cOmparableモ ジュールは比較演算子を提供するモジュールで、クラスに

Mix― inすると、インスタンス同士を比較するためのメソッド(次表)が追加さ

れます (「 Comparable」 は「比較可能な」という意味です)。

目 cOmparab:eモ ジュールが提供するメソッド

cOmparableモ ジュールの各演算子はく=>演算子の結果を使います。く=>演

算子を次表の関係が成り立つように定義するだけで、前表の各メソッドが利用

可能になるのです。

目 a<=>bの結果
aく bの とき -1(0よ り小)

a==bの とき
a>bの とき 1(0よ り大)

次のvectorは、xと yの 2つの成分を持つベクトルを表現するクラスです。

ベクトル同士の大きさ (ス カラー)を比較するように、く=>演算子を定義してい

ます。このようにしてからcomparableモ ジュールをインクルードすることに

より、先の表の各メソッドで大小を比較できるようになります。

class Vector
include Comparable

at.tr_accessor : x, : y

def initialize(x, y)

0x, GY=x, Y

end

def scalar

Math.sqrt(X ** 2 + y** 2)

end

between?

def <=> (other)

:第 12章 数値〈Numeric)ク ラス

260

・J.ど ̈ |~´

本書で取りあげる主なクラスの中では、Nuneric、 String、 Timeが Comparable

モジュールをインクルードしています。

261

12.9 丸め誤差
:

scalar <=> other.scalar
end

end

v1 = Vector.new(2, 6)

v2 = Vector.new(4, -4)
p v1 <=> v2 #=> 1

p v1 < v2 #=> false
p v1 > v2 #=> true

:第 12章 数値〈Numeric)ク ラス

練習問題
′

′

′

(1)温度を表すときに、日本では通常「摂氏 (セルシウス)温度」という単位

系が使われていますが、アメリカなどでは「華氏 (フ ァーレンハイト)

温度」という単位系が使われています。摂氏温度を華氏温度に変換する

メソッドcels_to_fahrを定義してください。なお、摂氏温度と華氏温

度の変換の公式は次のようになります。

華氏 〓 摂氏 X9÷ 5+32

(2)(1)と は逆に華氏温度を摂氏温度に変換するメソッドfahr_to_celsを

定義してください。また、摂氏 1度から摂氏 100度まで1度 きざみに華氏

温度との対応を出力させてください。

(3)サ イコロを振って出た目(1か ら6ま でのランダムな整数)を返すメソ

ッドdiceを定義してください。

(4)10個のサイコロを振って出た目の合計を返すメソッドdice10を 定義

してください。

(5)整数numが素数であるかどうかを調べるメソッドprime?(num)を定義

してください。なお、素数とは「それ自身と1以外で割ることのできな

い数」です。1桁の整数のうち、素数となるのは「2、 3、 5、 7」 です。

※解答は、サポートベージ (https://tanoshiiruby.github.io/6/answer/)で 公開しています。

262

ロ
配列(Arra」 クラス

この章では、配列 (Array)ク ラスについて説明します。

。配列の作り方

何もないところから、またはすでにあるオブジェクトから配列を作る

方法を説明します。

●インデックスの使い方

配列の基本は、インデックス (添字)を使って配列内の各要素にアクセ

スすることです。ここではインデックスの使い方について説明します。

0「集合」としての配列、「列」としての配列

Rubyの配列には、配列を「集合」として扱うメソッドや「列」として扱

うメソッドがあります。その考え方と使い方を紹介します。

●配列の主なメソッド

配列のメソッドには、実行結果として新しいオブジェクトを返すだけ

ではなく、要素を入れ替えたり削除したりするなどして、既存のオブ

ジェクトを変更するものが多数あります。その考え方と使い方も紹介

します。

●配列とイテレータ

配列の各要素を1つ 1つ処理するには、イテレータがよく使われます。

イテレータの初歩的な使い方として、配列のイテレータ (メ ソッド)を

紹介します。

0配列内の各要素を処理する
イテレータ以外にも配列の各要素に対して処理を行う方法がありま

す。その方法をいくつかに分けて紹介します。

●複数の配列に並行してアクセスする

どんなオブジェクトでも配列の要素にすることができます。ここでは、

そのために気をつけておかなければいけないことを説明します。

263

:第 13章 配,」 (Array)ク ラス

配列については、すでに第2章で紹介しましたが、もう一度復習しておきま

しょう。

配列は「インデックスのついたオブジェクトの集まり」です。

酉己夕」
‐
て`|ま、

●あるインデックスの要素 (オブジェクト)を取り出すことができます

【例】print name[21

●あるインデックスの要素に好きな値 (オ ブジェクト)を格納すること

ができます

【例】name[01=‖ 野尻‖

●イテレータを使うことで、要素を1つ 1つ取り出すことができます

【例】nmes.each(lnamel puts ntte)

こんな感じでしたね。思い出してきたでしょうか。

配列の復習

配列の作り方

第2章では、「[]」 を使った配列の作り方を紹介しました。

nums = 11,, 2, 3, 4, 5)

strs = , "c't, 161
1

name8
0

‖
小林“ 'i林 '' "森岡"

264

これ以外にも作り方があります。ざっと紹介しておきましょう。

11〔〕ご1

ii高
野
‖

OⅢ 13。 2。l Arraynewを使う
クラスのインスタンスを作るメソッドnewは、配列を作るときにも使え

ます。

‖=> [〕

+=> [nil′ nil′ nil′ nil′ nil]

+=> [0′ 0′ 0′ 0, 01

配列 (Array)ク ラスの場合、引数を指定しないnewメ ソッドは、要素数が0

個の配列を作ります。引数を1つだけ指定した場合は、その引数の数だけnil

が格納された配列ができます。引数を2つ指定した場合は、1つ 目の引数が要

素数、2つ 日の引数が格納される値となります。

この方法は、同じ要素の配列を作りたいときに使います。

0)・
013。2.2 %wや %iを使う
要素が空白を含まない文字列の配列を作る場合、おwが使えます。

lang = 2w(Ruby perl Python Scheme Pike REBOL)

p lang 十=> [‖ Rubyll′ l'Perli:′ 1:PythOn〔
1′ 〕lSCheme・ ′ :IPike・ ′

l i:REBOLit]

単に「11 “」や「′」を書く手間を省く、という感じにも見えますが、文字列

の配列を作りたいことはままあるので、この書き方を覚えておくと、プログ

ラムをすっきりとさせることができます。

同様に、要素がシンボルの配列は2iで作れます。

lang = 2i(Ruby Perl Python Scheime Pike REBOL)

p lang 十三> [:Ruby′ :Perl′ :Python′ :Scheme′ :Pike′ :REBOL]

|q
釧
　
　
　
釧

ｎ
　
　
　
　
ｎ

ａｙ

　

　

　

可

ｒ
　
　
　
　
ｒ

ｒ
　
　
　
　
ｒ

Ａ

　

　

　

Ａ

〓
　

ａ

　

〓

ａ

　

Ｏ
一
　

ａ

ＷｎｙａｒｒＡ

ａ

　

一一　
　
ａ

ｐ

　

ａ

　

ｐ

265

13.2 配列の作り方 :

第13章 配列 (Array)ク ラス

例では、配列にしたい文字列を囲むための区切り文字として「()」 を使いま

したが、「◇」「||」「!!」「Ce」「溌」などの記号を使うことができます。

とはいえ、あまり奇をてらってもプログラムが読みにくくなってしまいま

す。区切り文字には、「文字列中に区切り文字が含まれていない」ということ

に気をつけて、「()」「()」「 []」「く>」「 ||」 などを使うとよいでしょう。

●・・13。 2。3 to_aメソッドを使う
配列の作り方としては、ここまでの3通 りがオーソドックスな方法ですが、

ほかのオブジェクトを配列に変換する方法も触れておきましょう。

to_aメ ソッドは、多くのクラスで定義されているメソッドで、それぞれの

オブジェクトを配列に変換します。

color_table = {iblack: :[+00000011′ white: l:IFFFFFFIl}

p color_table.to_a +=> [[:black′ :1+000000:l]′

十 [:white′ ::十 FFFFFF‖]]

ハッシュにto_aメ ソッドを適用すると、配列の配列ができます。これは、

キーと値のペアからなる配列を、さらに配列にしたものになっています。

●‐13。2.4 文字列のsp‖tメリッドを使う
もう1つ、ほかのオブジェクトを配列に変換する方法を紹介します。カンマ

や空自で区切られた文字列から、splitメ ソッドを使って配列を作る、とい

うものです。これは、Rubyの定石の1つといってよいでしょう。

column ='20t9 /02/01, foo.html,proxy.example. jp".sp1it(',')

p column

*=> 1"20L9/02/0L', "foo.htm1", "proxy.example.jp-l

splitメ ソッドについては、「14.6 文字列を分割する」(p.310)で も説明

しています。

266

インデックスの使い方
C

配列の作り方がわかったところで、配列を操作するためのメソッドの説明

に移ります。

まず、インデックスを使って配列を操作するメソッドを見ていきましょう。

このタイプのメソッドが、配列を使うにあたっての基本になります。第2章で

の説明と重複するところもありますが、そこでは説明しなかったことも含め

て、改めて説明します。

③).0・ 13.3.1 要素を取り出す
配列にインデックスを指定することで、要素を取り出せます。要素を1つだ

け取り出すほかに、複数の要素を配列の形で取り出すことも可能です。

インデックスによる要素の取り出しには「[]」 を使います。「[]」 の使い方

は、次の3通りあります。

(a)α [“]

(b)α [″ ..“]ま たはαレ ...“]

(c)α [″′″″]

(a)は、第2章でも使った、インデックスがれの要素を1つ取り出す方法です。

たとえば配列alphaの先頭の要素を取り出すときは、alpha[0]と します。イ

ンデックスが0か ら始まるということは、前に説明した通りです。慣れないう

ちはどうしても間違いやすいので注意してください (図 13.1)。

ゝ
alpha = [:ta'1′ lib'1′ :iCi'′ 'ld‖ ′ 'le‖]

p alpha11] ‖=> ':b"

インデックス

酉己,u alpha

alpha[11

C)C国□D配列とインデックスの関係

01234

‖
a "b "d" e"

267

13.3 インデックスの使い方 :

:iC':

第13章 配列(Array)ク ラス

インデックスの値がマイナスの数の場合は末尾から数えます (図 13.2)。 要

素の数を超えるインデックスを参照した場合は、nilが得られます。

alpha = ["a", "b", uc', ud', 'e'1
p alphal-l] #=> "e"
p alphal-2l #=> "d"

1>7'y)701234

1riv27ot234

酉己フ」alpha

alpha [-1]
alphal… 21

図,C画□Dイ ンデックスの値がマイナスの場合

(b)の「αレ..れ]」 という形は、α[″]か らα[れ]の要素までを並べた新しい

配列を作って返します (図 13.3)。「αレ...冽 」という形は、α[κ]か らα[″ -1]

の要素までを並べた配列を返します。以降では、[4..“]の例のみを取りあげ

ますが、[″ ..″]が使えるところはレ...“]も使えます。

alpha = 〔'la''′ 'lb!:′ ':C':′ 'ldi'′ :ie・ 1
p alphall..3] #=> 【'ib'1′ 1'c‖ ′ 'ld

EdfU alpha

alpha11..3]

(璽)0イ ンデックスを範囲で指定する場合

“
が元の配列よりも大きい場合には、配列の一番後ろの要素を指定した場

合と同じ結果になります (図 13.4)。 また、レ..]と いう形にしても、同様の結

果になります。

ｎ
）
′０ワ
“

“b "C"

b''
:'d"

e

"a"

':a:|

13.3 インデックスの使い方 :

alpha = [1:ar!′ :ib::′ 'iCi'′ :'di'′ 'lel'1

P alPha11..7] |=> ['ib:|′ i'c il′ :!d'1′ :iel:]
p alphall・・】 +=> 【

l'b'1′

 :iC:i′ :'dii′ 1'e il] C-(riy2701234

EEIU alpha

alpha11..7]
alpha11・・1

(Dmイ ンデックスの値が配列よりも大きい場合

(c)の「レ′ Jιれ]」 という、2つの数値を「′」で区切った形は、αレ]か らJι″

個先までの要素を並べた新しい配列を返します (図 13.5)。

alpha = ["a", "b
p alpha[2, 2]
p alpha[2, 3]

1:′

 :i C ii′ iid‖ ′ 'ie‖]

十=> 【
1'Ci'「

 1'dil]

#=> [:'C!!′ l'di'′ :le‖]

インデックス

酉己,u alpha

01234

:iC
e

alpha12′ 21

alpha12′ 3】

図)― ある要素から、複数個の要素を取り出す場合

なお、この「[]」 の代わりに、同じ働きをする一般的なメソッドも用意され

ています。こちらを使ってもかまいません。

o a.at (n)

c a.slice(z)
o a.ELLce(n..ml
o a.Elice(nt len)

α[“」と同じ

α[″]と 同じ

α[“ ..“]と 同じ

α[″′J“]と 同じ

C"

もっとも、ふだんは特にこれらのメソッドを使う必要はないでしょう。

"a‖

269

第 13章 配列(Array)ク ラス

0)・
013.3。2 要素を置き換える
[]、 at、 sliceメ ソッドは、要素を取り出すだけではなく、要素を置き換え

るのにも使えます。

(Dα [“]〓 J″θJ%

これは、αレ]の要素を「,た″」に変更します。例として、2つ 目の要素を
‖
B‖ に、

5つ 目の要素を‖E・ に置き換えてみましょう(図 13.6)。

alPha = 【
1'a'i「

 'lbl'′ 'iCi:′ ''d'i′ :'el'′ 1l f“ 1

alphalll = 'IBI'

alpha141 = 'IE':

p alpha l=> [l'al:′ ':Bi:′ li C i・ ′ lidi'′ :'口 ''′ :'fi'1

インデツクス 0 1 2 3 4 5

ICIII alPha

FCIU alpha

(理)― 要素を置き換える

これは1つの要素だけを置き換える操作ですが、複数の要素をまとめて置

き換えることもできます。複数要素の指定方法は「13.3.1 要素を取り出す」

(p.267)で説明した、配列の中から複数の要素をまとめて取り出すのと同じ

方法です。

例として、3つ 目の要素から5つ 目の要素までを入れ替えてみましょう。

「 [″ ..“]」 という形で指定した場合は、図13.7の ようになります。

同じ操作を、「レ′′
"]」
という形で指定した場合は、次のようになります。

alpha=[‖ a‖ ′ ‖b‖ ′ ‖C‖ ′]id‖ ′ ll e‖ ′ ‖f‖]

alpha12′ 3]= [‖ C・ ′ ::D‖ ′ ‖E‖]

p alpha +=> [1'al:′ :ib・ ′ ::Ci:′ 7:D"′ ':El'′ :[f‖]

"b C':
:'e

Ci' "d

270

'IB‖ 'tE''

alpha = ["a", "b", "c", "d", ueu,

alpha[2..4] = ["C", "D", "8"]
P alPha #=> ["a",

:ifl'1 ヽ

E"
1'fi']

ロ1riv2701234s

酉己タリalpha

酉己,」 alpha

・ b Cl'

"b‖
‖
D

(DCコロD複数の要素を置き換える

蟷辮 13.3.3 要素を挿入する
要素の置き換えを応用して、今ある要素はそのままに、新しい要素を挿入

することもできます。

要素の挿入は、ちょっと変則的ですが、「0個の要素と置き換える」と見な

すことができます。そこで、「 [れ′ o]」 とすると、インデックスがれの要素の

前に挿入されます (図 13.8)。

alPha = [:`a'1′ :'b''′ ii C::′ 'idi'′ 'lel:′ 'lf‖]

alpha12, 01 = [i:X''′ :`Y`'】

p alpha l=> 1''a`:′ `ibl'′ :'X';′ i:Yi!′ 'iC:`′ ':d'1′ :le''′ :`fl']

-1Yfv27012345

酉己,u alPha

EBIU alpha

(Dm要 素を挿入する

13.3 インデックスの使い方 :

"a" 1l E l'

‖
a‖

1:b‖ ‖
C‖
‖
d" "e"

ii f''

‖
a" "b‖ "X" "Y'! 'lC''

‖
d': “e‖

1'f il

271

0)・
013.3。4 複数のインデツクスから配列を作る
「13.3.1 要素を取り出す」(p.267)で 紹介した方法は、複数の連続した要

素を参照することはできますが、とびとびに要素を参照することはできませ

んでした。複数のインデックスを使って、とびとびに要素を参照し、1つの新

しい配列を作るためのメソッドが、values_atメ ソッドです。

(Dα .values_at(″ I′ ″2′ ・・・)
これを使って、配列から1つおきに要素を取り出してみましょう (図 13.9)。

ト
alpha = %w(a b C d e f)

p alpha.values_at(1′ 3′ 5)+=> 【口b口′ nd‖′ "f‖]

インデックス 0 1 2 3 4 5

酉こ,u alpha

配列

1図)0と びとびの要素を参照して配列を作る

集合としての配列

今までの操作は、すべてインデックスに基づく操作でした。つまり、「どこ

を取り出すか」「どこからどこまでを置き換えるか」「どこに挿入するか」と

いったように、直接インデックスを指定していたわけです。

もちろん、配列ことArrayク ラスは「インデックスつきオブジェクトの集

まり」なので、インデックスを使うのは当然といえば当然です。ですが、イン

デックスを直接意識しないで、要素を使いたいことも多々あります。

たとえば、配列で集合を表すことを考えてみましょう。この場合、Arrayク

ラスの各要素が「集合に含まれている要素」ということになります。

ところが、集合には順序がありません。そのため、[‖ a‖ ′ ‖b‖ ′ ‖c‖ lも

・ a bn nd :if‖

,b, "d" :lfl:

272

:第 13章 配列(Array)ク ラス

["b・ ′ ‖cu′ ‖a‖]も [‖ c‖ ′ "b‖ ′ ‖a‖]も、どれも同じ集合を表している、と
考えることになります。

そのような使い方をする場合、「このオブジェクトは配列の何番目の要素

なのかな ?」 などと考えると、混乱してしまうかもしれません。インデックス

による操作は、Arrayク ラスの持つ機能の1つの側面にすぎないのです。

ここでは、配列を集合として見た場合のメソッドについて説明します。ま

た、次の節では、列として見た場合のメソッドについて説明します。

●‐13.4。1 集合の演算
集合の基本的な演算といえば「共通集合と和集合を作る」というものがあ

ります。

。2つの集合のどちらにも含まれる要素を取り出し、新しい集合を作る

。どちらか一方にでも含まれる要素を集めて、新しい集合を作る

1番 目の集合を「共通集合」、2番目の集合を「和集合」ということを、数学

で学んだ人は多いでしょう。Rubyでは、これらの集合をそれぞれ次のように

表します。

●共通集合……αッI&″ノ
●和集合 ・……αヮII″ノ

Rubyの配列で共通集合と和集合を表現すると、図 13.10の ようになります。

集合の演算といえばもう1つ、ある集合からその集合に属していない要素

だけを取り出す「補集合」がありますが、Arrayク ラスの場合、「全体集合」に

相当するものがないので、補集合はありません。その代わり、ある集合からも

う1つの集合に含まれている要素を除いた集合を作る、「差」の演算が可能で

す (図 13.11)。

●集合の差……αヮI… cノ

C

13.4 集合としての配列 :

■
７
７

・

２

¨

arYl = ["a",
ary2 = ["b",

I:b‖

′ ii C"]

′
tid

p (aryl & ary2) *=>
p (aryl I ary2) *=>

‖
b'1′ 'iC"〕
‖
a‖ ′ 'ib"′ i'C"′ 1'd"]

:第 13章 配列〈Array)ク ラス

EdItJ aryl

ECIU aryl

"b "d

"b C

ICJU ary2

(ary1 & ary2)

a "b "C‖ b‖ C'1

a b" C ''d‖

酉己,」 ary2

(ary1 | ary2)

嘔)C回【D共通集合と和集合

aryl = ["a", "b", "c"]
ary2 = ["b", "c", "d"]
p (ary1 - ary2) *=> ["a"]

酉己

'u arYl

酉己,」 ary2

(aryl - ary2)

{璽)m集 合の差

図 13.11の配列 ary2に含まれていた文字列
‖d"は、配列arylに含まれてい

ないので、残りません。

C'.
‖
b"

‖
b "d

274

"b‖ 'iC"

‖
a"

」

13.5 列としての配列

●・013.4e2 「i」 と「+」 の違い
配列を結合させるメソッドには、「 |」 のほかに「+」 があります。この2つは

似ていますが、同じ要素が含まれている場合の振舞いが異なります。

num=[1′ 2′

even = [2, 4,

p (num + even)

p (num I even)

配列numと 配列evenは どちらも「2」 という要素を持っています。「+」 を使

って結合した場合、2は 2つになりますが、「 |」 を使って結合した場合、同じ

要素は1つだけになります。

C
#=> [1′ 2′ 3

+=> [1, 2′ 3

(目臓顆 FI11と
:Lメ¬rd)西己フII

今度は、配列をオブジェクトの列としてみた場合のメソッドについて説明

します。

この列という構造は、キューやスタックというデータ構造を作るのに向い

ています。キューとスタックは、対になるデータ構造で、どちらも

●要素を追加する

●追加した要素を取り出す

という2つの操作でデータをやりとりします。

キューは、要素を取り出す際、要素を追加した順に取り出すことができる

データ構造です (図 13.12(a))。 これは、F:FO(First―in First― Out)と も呼ば

れています。「最初に入れたものを最初に取り出す」という意味ですね。また、

何かを待つ人が、列を作って並んでいる状態と同じなので、待ち行列と呼ば

れることもあります。

一方、スタックは、要素を追加した順と逆のサI頃序で要素を取り出していき

ます。こちらは、LIFO(Last―in First―Out)、 つまり「最後に入れたものを最初

に取り出す」というデータ構造です (図 13.12(b))。 要素を追加するときは一

番後ろに加え、要素を取り出すときは一番後ろから取る、という感じです。

275

DATA

DATA
DATA
DATA

:第 13章 配列 (Array)ク ラス

(a)キュー (b)スタック

0入れる n)入れる
'‐

取り出す

la取り出す 最後に入れたものを最初に取り出す

つまり、「A」「B」「C」 の順にデータを格納していった場合、「A」「B」「C」

のサI頃にデータを取り出せるのが「キュー」、「C」「B」「A」 の順にデータを取

り出せるのが「スタック」、ということになります。

キューやスタックは、使い方が若千難しいデータ構造なのですが、効率よ

くデータを処理する場合に欠かせないものです。

このようなデータ構造を配列を使って実現するには、配列の先頭や末尾に

データを挿入したり、反対に先頭や末尾からデータを取り出す、といった操

作を行えることが必須条件となります。その点、Rubyの配列には、表 13.1の

メソッドが揃っているので簡単に実現できます。

目dE□D配列の先頭。末尾要素を操作するメソッド

先頭要素に対する操作 末尾要素に対する操作

要素を加える unshi ft. push

要素を取り出す shift pOp

要素を参照する first

キューは図 13.13の ようにpushメ ソッドとshiftメ ソッドを、スタックは

図 13■ 4の ようにpushメ ソッドとpopメ ソッドを使って実現 します。

DATA DATA

DATA
DATA
DATA

DATA

最初に入れたものを最初に取り出す

(州硼目圧〕キユーとスタツク

last

276

alpha = [nan′ ‖b"′ ncl:′ nd"′ ne・ 1
p alpha.puSh(nf・) +=> ["ar′ “b::′ li c':′
p alpha.8hift #=> ::ar

p a■pha #=> [‖ b"′ nC::′ 1:dl:′

1:di:タ ロel:′ nfl:]

“el:′ ''f::]

13.5 列としての配列

"an
‖
b‖
nC" ‖

d‖
nel:

I alpha.push(uf,) (r'f

:ian 'b, ‖
C‖ d' "e

:if

] alnha.sbift @

alpha ‖
bⅡ nC ::d ne ‖f::

①mキ ュー

百己,」 alpha na‖ ‖b :iC nd
・ ●・

! alpha.pnsh('f') !'g'

alpha 1l a Ⅱb nC Π
d‖
‖en nf::

|' arpha.pop { ngn

alpha ‖an 口b・ nC‖ nd‖
"0"

OC□EDスタック

shiftメ ソッドやpopメ ソッドは配列の要素を取り出すだけではなく、配

列からその要素を削除します。それでは困る場合のために、先頭か末尾の要

素を参照するだけの、firstメ ソッドとlastメ ソッドが用意されています。

C
酉己,u alpha

alpha = [::a"′ ‖b‖′ :ic"
p alpha.push{::fm) ♯=>
p alpha.pop +=>

p alpha #=>

nd・ ′ ne‖]

[・ a口 ′ "b‖ ′ ::Cn′ ::dn′ ::0::′ :lf::1

・ f‖

[“ a“′ 口bn′ ::c::′ nd"′ ne::]

277

aJ.pha

第13章 配列 (Array)ク ラス

a=[1′ 2′ 3′ 4′ 5]

p a.first l=> 1

p a.last l=> 5

p a ‖=> [1′ 2′ 3′ 4′ 5]

配列の主なメソッド

配列に対するいろいろなメソッドのうち、よく使われるものを、似たよう

な役割でまとめつつ、サ1原に取りあげていきます。

⑬0013。6.1 配列に要素を加える
配列に対し、新しい要素をつけ加える操作です。

(D αounshift(Jた″)

配列αの先頭に新しい要素j″
“
をつけ加えます。

a=[1′ 2′ 3′ 4′ 5]

a.unshift(0)

pa 十=>[0′ 1′ 2′ 3′ 4′ 5]

(:E)α くく J″θ]“
α.push(J`ι″2)

くくとpushは同じ働きのメソッドで、配列αの末尾に新しい要素」″″をつけ

加えます。

a=[1′ 2′ 3′ 4′ 5]

a くく 6

pa l=>[1′ 2, 3′ 4′ 5′ 6]

278

C)α .COncat(b)

α+ら

配列αに別の配列わを連結します。concatは破壊的なメソッドですが、十は

元の配列をそのままにして新しい配列を作ります。

a=[1′ 2′ 3′ 4′ 5]

aoconcat([8′ 91)

pa +=>[1′ 2′ 3′ 4′ 5′ 8′ 9]

Oαレ]・ J″″
α[″ ..″3]= ′

`θ“
降

α[″′ル″]=J″
“配列αの指定された部分の要素をj′′れに置き換えます。

a=[1′ 2′ 3′ 4′ 5′ 6′ 7′ 8]

a[2..4]=0
pa l=>[1′ 2′ 0′ 6′ 7′ 8]
a[1′ 3]・ 9

p a +=> [1′ 9′ 7′ 8]

破壊的なメソッドとfreeze

popメ ソッドやshiftメ ソッドのように、レシーバにあたるオブジェクトの

値そのものを変更してしまうメソッドは、破壊的なメソッドと呼ばれます。破

壊的なメソッドを使う場合には、注意が必要です。レシーバと同じオブジェク

トを参照している変数があると、その変数の値も変化してしまうからです。た

とえば、次のようなプログラムを見てみましょう。

a=[1′ 2′ 3′ 4]

b=a
p b.pop +=> 4

pb #=>[1′ 2′ 3]
pa 十二>[1′ 2′ 31

279

13.6 配列の主なメソッド
:

|

|

配列 a

第13章 配列〈Array)ク ラス

popメ ソッドで変数bの要素を削除すると、変数bの示す配列が [1′ 2′ 3′

4]か ら[1,2′ 31になりますが、同時に変数aの示す配列の要素も削除されま

す。これは「b=a」 によって、bは aの中身をコピーしたオブジェクトを示すよ

うになるのではなく、bは aと同一のオブジェクトを示すようになるからです。

Ob=a」を実行

与 陽.っ oっ」を実行重⇒.4

破壊的なメソッドのような処理がオブジェクトの内容を変更することを禁

止するためにObj ect+freezeメ ソッドがあります。これを使うとオブジェクト

は凍結され、変更しようとするとエラーになります。一度凍結したオブジェク

トを元に戻す方法はありませんが、dupメ ソッドでコピーしたオブジェクトは

凍結されていない状態になります。

a = [1, 2, 3, 4]

a. freeze
b = a.dup
p a.pop

*=> r7- (FrozenError)
p b.pop *=> 4

なお、Rubyのメソッドの中には、「sort」 に対して「sort!」 のように、同じ

名前で「 !」 がついているメソッドがあります。破壊的にオブジェクトを操作す

るメソッドと、そうでないメソッドがある場合、破壊的なほうは使用する際に

注意が必要なので、「 !」 をつけるというルールになっています。

配列 a

配列 b

配列 a

配列 b

280

●・・13.6.2 配列から要素を取り除く
配列から、ある条件に従って要素を取り除きます。

C)α .compact
αocolmlpact:

配列αの中から要素がnilの ものを取り除きます。「compact」 は新しい配

列を作り、「compact!」 は元の配列を置き換えます。compact!メ ソッドは

nilを取り除いたあとのαを返しますが、何も取り除けなかったときはnilを

返します。

a= [1′ nil′

a.compact!

3′ nil′ nil]

p a +=> 11′ 3]

O αodelete(χ)
配列αから要素χを取り除きます。

a=[1′ 2′ 3,2′ 1]

a.delete(2)

pa +=>[1′ 3′ 11

Dα .delete_at(″)

配列αレ]の要素を取り除きます。

a=[1′ 2′ 3′ 4′ 5]

a.delete_at(2)

p a l=> [1, 2′ 4′ 5]

281

13.6 配列の主なメソッド :

引

(Dα・delete_if{1滋
“
|・
・・ }

αOrejeCt{IJ″θ″|。・・ }
αerejeCt:{1滋

“
|。
・・ }

配列αの各要素 J′
`″
について、ブロックを実行した結果が真だった場合、α

から,たれを取り除きます。delete_ifと reject!は 破壊的なメソッドです。

a=[1′ 2′ 3′ 4′ 5]

a.delete_if(lil i>3)
p a l=> [1′ 2′ 3]

(E)α .slicel(″)

α.Slice:(″ .。 1協,)

α.Slicel(“ ′ Jθ″)

配列αから指定された部分を取り除き、取り除いた値を返します。slice!

は破壊的なメソッドです。

:第 13章 配列 (Array)ク ラス

a=[1′ 2′ 3′

p a.SliCel(1′

pa

]

+=> [2′ 3]

+=> [1′ 4′ 5]

a二 [1′ 2′ 3′ 4′ 3′ 2′ 11

a.uniq!

pa +=> 11′ 2′ 3′ 4]

282

(Dα .uniq
α.uniq:

配列αの重複する要素を削除します。uniqlは破壊的なメソッドです。

oα .shift

配列αの先頭要素を取り除き、取り除いた値を返します。

a=[1′ 2′ 3′ 4′ 5]

a.shift 十=> 1
pa +=>[2′ 3′ 4, 5]

Oα .pOp

配列αの末尾要素を取り除き、取り除いた値を返します。

a=[1′ 2′ 3′ 4′ 5]

a.pop 十二> 5

p a l=> [1′ 2′ 3′ 4]

0)・
。13.6。3 配列の要素を置き換える
配列の中の要素を、別の要素に置き換えるメソッドです。これも、「 !」 がつ

くものはレシーバの配列を変更してしまう破壊的なメソッド、「 !」 がつかな

いものは別の配列を作って返すメソッドです。

Oα・C01leCt{IJ"″ |
。・・ }

α・C0110Ct:{IJ″
“
| ・・・ }

αemap{||;′θ″|。・・ }

αOmap:{1滋
“
|・
・・ }

配列αの各要素′′′れにブロックを適用し、その結果を集めて新しい配列を

作ります。結果として、要素数は同じままですが、配列の各要素はブロックの

中の処理によって前と異なるものになります。

a=[1′ 2′ 3′ 4, 5]

a.c011ectl{liteml item*2}
p a +=> [2′ 4′ 6′ 8′ 10]

C

13.6 配列の主なメソッド:

283

第13章 配列 (Array)ク ラス

([)α .fill(ツαルθ)

α.fill(ツαル′′ らθlg「J″)
α.fill(ッαルθ′らθg加′ル

“
)

α.fill(ツαJ″′′″..″)

配列αの要素をッα′能に置き換えます。引数が1つの場合は、αの要素すべて

をναル′にします。引数が2つの場合、あ
`gJれ
から配列の末尾まで、引数が3つ

の場合はわ
`gブ
れから′

`“
個までをッα′

“
にします。また2つ 目の引数に「″..″」

と範囲を指定している場合、その範囲をッαJ″にします。

ｐ

ｐ

ｐ

ｐ

′ 5].fill(0)

′ 5].fill(0′ 2)

′ 5].fill(0′ 2′ 2)

′ 5].fill(0′ 2..3)

+=>

+=>

|=>

+=>

0′ 0′

2′ 0′

2′ 0′

2′ 0′

0′ 0]

0′ 0]

0′ 5〕

0′ 5]

[0′

[1′

[1′

[1′

⊂)α .flatten
α.flatten:

配列αを平坦化します。「平坦化」というのは、配列の中に配列が入れ子に

なっているような場合に、その入れ子を展開して、1つの大きな配列にする操

作です。

a=[1′ [2′ 13]]′ [4]′ 5]

a.flatten!

p a 十=> [1′ 2′ 3′ 4′ 5]

(:D αereverse
α.reversel

配列αの要素を逆順に並べ替えます。

a=[1′ 2′ 3′ 4′ 5]

a.reversel

p a l=> [5′ 4′ 3′ 2′ 1]

284

13.6 mrlotrs.x Y v l-" ;

(])α .sort

α.sort:

α・SOrt{IJ′ ノ|・・・ }
α・SOrt!{し ノ|・ }̈

配列αの各要素を並べ替えます。並べ替え方は、ブロックで指定できます。

ブロックを指定しない場合には、く=>演算子を使って比較します。

a=[2′ 4′ 3′ 5′ 1〕

a.sort!

pa 十=>[1′ 2′ 3′ 4′ 5]

ブロックを使った並べ替えの指定については、「11.2.3 計算の一部を差し

替える」(p.226)で も説明しました。

O αOSOrt_by{IJI 。・・ }
配列αの要素を並べ替えます。並べ替えはすべての要素についてブロック

を評価した結果をソートした順に行われます。

a=[2′ 4′ 3′ 5′ 1]

pa.sort♪y{lil― i}+=>[5′ 4′ 3′ 2′ 1]

詳しくは「11.2.3 計算の一部を差し替える」(p.226)を 参照してください。

285

第13章 配列 (Array)ク ラス

これまでに触れた通り、イテレータは「繰り返しのためのメソッド」です。

一方、配列は、たくさんのオブジェクトを1つにまとめる役割を持つオブジェ

クトです。このたくさんのオブジェクトに対して、何か操作したり、いくつか

を取り出して操作したりするために、イテレータは頻繁に使われます。

たとえば、配列の各要素に対して同じ操作を行うためのメソッドとして紹

介したeachメ ソッドは、代表的なイテレータです。このメソッドは、配列内

のすべての要素1つずつに対して、特定の操作を行います。

また、レシーバが配列ではない場合でも、イテレータを実行した結果を何

かのオブジェクトにして返すために配列を使う、ということもあります。

こちらの代表的なメソッドは、collectメ ソッドです。collectメ ソッド

は、ある操作を行った結果を集めて、1つの配列にして返すメソッドです。

a=1..5
b=a.collect{lil i+=2}
pb +=>[3′ 4′ 5′ 6′ 71

この例では、レシーバは範囲オブジェクトですが、その結果は配列になっ

ています。このように、イテレータと配列は深く結びついています。

配列とイテレータ

配列内の各要素を処理する

配列の各要素に対して何らかの処理を行いたい場合、いくつかの方法があ

ります。

●・0]3.8.1 繰り返しとインデックスを使う
オーソドックスなやり方は、ループを回して、つまり繰り返しを行いなが

ら、インデックスを使って1つずつアクセスする方法です。

たとえば、listと いう配列の要素を1つずつ出力していくプログラムは、

List 13.1のようになります。

286

ｎ
ｖ
一
●
■
日
●

13.8 配列内の各要素を処理する :

List (Ef,D list.rb

list=[‖ a‖ ′ ‖b‖ ′ ‖C‖ ′ i:d‖]
for i in O..3

puts

end

‖+(i+1}番 目の要素はI〔 list [il)です。‖

また、数値の入った配列の要素の合計を計算するには、List 13.2のプログ

ラムのようになります。

tist (EED sum-list.rb

list = [1′ 3′ 5′ 7′ 91

sum=0
for i in O..4

surn 十二 liSt iil

end

puts i:合計 :|{sum}::

0)・
013.8。2 eachメソッドで要素を1つずつ得る
配列ではeachメ ソッドを使った繰 り返しが行えます。これを使って、List

13.2の プログラムを書き直してみましょう (List 13.3)。

tist (EED sum-list2.rb

list = [1′ 3′ 5′ 7′ 9]

sum=0
1iSt.eaCh d。 leleml

sum十 二 elem

end

puts ll合計 :十 〔Sum}‖

ただし、eachメ ソッドを使った繰り返しの場合、取り出してきた要素のイ

ンデックスはわかりません。そこで、要素とそのインデックスがわかるeach_

with_indexメ ソッドを使います (List 13.4)。

287

:第 13章 配列 (Array)ク ラス

Ust fEfll tist2.rb

liSt = ["al:′
‖
b‖ ′ :[c:'′ lld‖]

liSt・ eaCh_With_indeX dO lelem′ il

puts・ +{i+1}番 目の要素は十(elem}です。‖

end

●・。13。 8。3 破壊的なメソッドで繰り返しを行う
「配列の各要素に対する処理が終わったときにはその配列が必要ない」と

いう場合には、「配列の要素を1つずつ取り除いていって、最後には空になる

ようにする」という方法で繰り返しを実現できます。

while item = a.pOp

l itemに 対する処理

end

繰り返しを始める前、配列aにはすでに要素が入っているとします。この要

素を、配列aか ら1つずつ取り除いていっては、取り除いた値の処理を行いま

す。そして、配列が空になった時点で終了、という流れになります。

●・。13。 8。4 その他のイテレータを使う
collect、 mapメ ソッドなど見ればわかるように、基本的な操作はすでに実

装されています。こんなイテレータがほしい、と思った際には、Rubyリ ファ

レンスマニュアル (p.239)に 目を通しておくとよいでしょう。がんばって実

装したメソッドとほとんど同じような働きをするメソッドがすでに実装され

ていた、とがっかりせずに済みます。

●)・・13。 8。5 専用のイテレータを作る
それでも、自分の使いたいメソッドがない、ということもあります。そんな

場合は、自分でイテレータを作ることになります。

イテレータの作成については、「11.3 ブロックつきメソッドを作る」

(p.229)で も解説しています。

288

配列の要素

配列はその要素として、いろいろなオブジェクトを持つことができます。

数字や文字列以外にも、配列オブジェクトの中に配列オブジェクトを入れた

り、配列オブジェクトの中にハッシュオブジェクトを入れたりすることも可

能です。

00013。 9.1 例:簡単な行列を使う
例として、配列で行列を表現してみましょう。

配列オブジェクトの各要素が配列オブジェクトになっている、いわゆる「配

列の配列」は、行列などを表現する場合に使われます。

たとえば、図13.15のような行列を、「配列の配列」を使って表現してみます。

ロ

■′ 2′

4′ 5′

7′ 8′〔
(Dm3行 3列の行列

1行 日は [1′ 2′ 3]、 2行日は [4′ 5′ 6]、 3行 日が [7′ 8′ 91と なってい

るので、これをさらに配列としてまとめると、

a = [[1′ 2′ 3]′ 14′ 5′ 6]′ [7′ 8′ 9]]

となります。

この中で、たとえば「6」 の位置の要素を取り出すには、

a[1][2]

と書きます。a[11で [4′ 5′ 6]と いう配列を指定し、さらに [2]でその3つ

目の要素を指定するわけです。

13.9 配列の要素
:

13。

289

:第 13華 配列(Array)ク ラス

●・013.9。2 初期化に注意
配列オブジェクトの要素として配列オブジェクトやハッシュオブジェクト

を使う場合、その初期化に注意する必要があります。

a = Array.new(3′ [0′ 0′ 0])

と書くと、aは [[0′ 0′ 0]′ [0′ 0′ 0]′ [0′ 0′ 0]]という配列になるよ

うに思えますが、これには問題があります。a[0]、 a[11、 a12]の要素がすべ

て同じオブジェクトになってしまうのです (図 13.16)。

(a)期待しているもの

(b)Array.new(3′ [0′ 0′ 0])の結果

|IEi,C】面D配列の初期化

次のように、最初の行の2つ 目の要素のみを変更させたつもりが、すべての

行の2つ 目の要素が変更されてしまいます。これは困ってしまいますね。

a = 鮭 ray.new(3′ 10, 0′ 0])

a[0][11 =2

pa l=>[[0′ 2′ 01′ [0, 2′ 0]′ [0′ 2′ 0]]

配列 a

配列 a

290

13.10 1複数の配列に並行してアクセスする

そこで、newメ ソッドに要素数とブロックを指定します。すると、要素の数

だけブロックを起動して、その戻り値が要素にセットされます。ブロックの

中で新しいオブジェクトを生成するようにすれば、各要素が同じオブジェク

トを参照するという問題は起こりません。

a = Array.new(3)do

[0,0′ Ol

end

pa 十三>[[0′ 0′ 0]′ [0′ 0′ 0]′ [0, 0′ 011

a[0][11 =2
pa l=>[[0, 2′ 0]′ [0, 0′ 01′ [0′ 0′ 01]

次のようにすると、iには対応する要素のインデックスが渡されるので、イ

ンデックスごとに異なる値で初期化を行うことができます。

a = Array.new(5) {lil i + 1}
p a *=> [1, 2, 3, 4, 5]

ロ

複数の配列に
並行してアクセスする

複数の配列の同じインデックスの要素に、まとめてアクセスする処理を考

えます。List 13.5のプログラムは、3つ の配列の同じインデックスの要素を

合計して、新しい配列 (result)に 格納する例です。

t ist CEED sum-with-each.rb

aryl =[1′ 2′ 3, 4′ 5]

ary2 = [10′ 20, 30′ 40′ 501

ary3 = [100, 200, 300′ 400′ 500]

result = []

291

第13章 配列〈Array)ク ラス

while i く aryl.length

result くく aryl[i] + ary2[il + ary3[i〕

i += 1

end

p result +=> [111′ 222′ 333′ 444′ 555]

このような処理は、zipメ ソッドを使 うことでより簡単に記述できます

(List 13.6)。

List fE'Fl sum_with-zip.rb

aryl=[1′ 2′ 3′ 4′ 5]

ary2 = [10, 20′ 30, 40′ 501

ary3 =[100′ 200, 300′ 400′ 5001

reSult = []

aryl.zip(ary2′ ary3)do la′ b′ cl

result くく a + b + c

end

p result +=> [111′ 222′ 333′ 444′ 555]

zipメ ソッドはレシーバと引数から渡 された配列の要素を 1つずつ取 り出

して、そのたびにブロックを起動します。引数は1つでもそれ以上でもかまい

ません。

Enumerable'E9: -/tr

292

| コラム「COmparableモ ジュール」(p.260)に続いて、Mix_inの ためのもう1 1
1 つのモジュールであるEnumerableを 紹介しましょう。「Enumerable lと は「数 |

| えあげられる」「列挙可能な」といった意味です。本書で取りあげているクラス |

I C)「 11‐てヽは 、Array、 Dir、 File、 Hash、 IO、 String10、 Range、 Enumeratorノ安ど |

| の各クラスがEnumerableモ ジュールをインクルードしています。 |

メソッド 意味 ・ ・

all? すべての要素が真であればtrue、 そうでなければfalseを返す

any? 1つ以上の要素が真であれば true、 すべて偽ならfalseを返す

collect 各要素に対してブロックを実行した結果を配列にして返す
count 引数がなければ要素数を、引数があれば引数と同じ要素数を返す

cycle 各要素に対して繰り返し (最後の次は先頭に戻って)ブ ロックを
実行する

detecL 要素に対してブロックを実行し、結果が真となった最初の要素を
返す

each_sl ice 引数の数″に対し、″要素ずつブロックに渡して実行する
each-with_
index 要素とそのインデックスをブロックに渡して実行する

f■ nd detect L lEl l)

find all 各要素に対してブロックを実行し、結果が真になる要素だけを配
列にして返す

first 先頭要素を取り出す

grep 引数のパターンとマッチする要素を配列にして返す

include? 引数を含んでいれば真を返す

inj ect 要素に対してプロックの畳み込み演算を行った結果を返す
map collect L IEJ D

rnember? ■nclude?と「司じ

none ? すべての要素に対して偽ならtrue、 そうでなければfalseを返す
one ? ちょうど1要素だけ真ならtrue、 そうでなければfalseを返す

partition ブロックを実行して真になるものと偽になるものを別々の配列に
して返す

reduce ■njectと 同じ

rej ect 各要素に対してブロックを実行し、偽になったものを配列にして
返す

reverse_
each 各要素に対し、逆順にブロックを実行する

select find_allと 1司 じ

sort ブロックの実行結果を元にソートした結果を配列にして返す

sort_by ブロックの実行結果をく=>で比較した結果を元にソートした配列
を返す

to a すべての要素を配列にして返す
z■ p レシーバと引数の各要素をまとめて1要素とした配列を返す

13.10 複数の配列に並行してアクセスする
:

隧D Enumerab:eモ ジュールが提供する主なメソッド

この章でArrayク ラスのメソ ッ ドとして紹介 した もので も、実際は
Enumerableモ ジュールによって提供されているものもあります。紹介しきれ
なかった各メソッドについてはRubyリ ファレンスマニュアル (p.239)な どを

参照してください。

Comparableモ ジュールがく=>演算子を要求するように、Enumerableモ ジュ

ールはeachメ ソッドを要求します。たとえばeach_with_indexメ ソッドのお

C

293

第13章 配列 (Array)ク ラス

おまかな動きをRubyで書けば、次のようになるでしょう (実際はブロックを受

け取らないときにはEnmeratorオ ブジェクトを返すなど、もう少し複雑です)。

module Enumerable

def each_with_index
index = 0

each do liteml
yield(item, index)

十 インデックスを初期化する

index += L

end

十要素とindexを パラメータとして

十プロックを実行する

キインデックスを加算する

繰り返 しの処理を提供するクラスを作るときは、eachメ ソッドをイテレー

タとして作成 したうえで、Enumerableモ ジュールをインクルー ドすると、前表

のメソッドを使えるようになります。

end

end

294

練 習問題

C(1)1か ら100ま での整数が昇順に並ぶ配列aを作ってください (a[01は 1、
a[99]は 100になります)。

(2)(1)の 配列の各要素をすべて100倍 した、新しい配列a2を作ってくださ
い(a2[0]は 100になります)。 また、新しい配列を作成せずに、すべて

の要素を100倍 した要素に置き換えてください。

(3)(1)の 配列から3の倍数だけを取り出した、新しい配列a3を作ってくだ

さい (a3[0]は 3、 a3[2]は 9に なります)。 また、新しい配列を作成せず

に、3の倍数以外の数を削除してください。

(4)(1)の 配列を逆順に並べ替えてください。

(5)(1)の 配列に含まれる整数の和を求めてください。

(6)1か ら100の整数を含む配列 aryか ら、1～ 10、 11～ 20、 21～ 30と い

うように10個の要素を含む配列を10個取り出します。取り出したすべ

ての配列を、順に別の配列 resultに 格納するとき、以下の???の 部分に

当てはまる式を考えてください。

ary=[1～ 100の整数を含心配列]
result = Array.new

10。 timeS dO lil

result くく ary[???]

end

(7)数値からなる配列nulnslと nums2に 対して、それらの個々の要素を足し

合わせた要素からなる配列を返すメソッドsum_arrayを定義してくだ

さい。

p sum_array(11′ 2′ 3]′ [4′ 6′ 81)+=> [5′ 8′ 11]

※解答は、サポー トベージ(https://tanosh"ruby.github.io/6/answer/)で 公開しています。
295

練習問題
:

文字列 クラ(string)
■■D
月7

^ C
第4章で触れたように、Rubyでの「文字列」はすべてStringク ラスのオブ

ジェクトです。この章ではStringク ラスの扱いについて説明します。

●文字列を作る

文字列を作るためのいろいろな方法を取りあげます。

o文字列の長さを得る
文字列の長さを知るためのメソッドの紹介と、「文字数」と「バイト数」

の違いについて説明します。

o文字列のインデックス

文字列中の文字を扱う場合には、配列と同じようにインデックスを使

用します。その使い方を紹介します。

●文字列の連結と分割

文字列を連結するメソッドとして +、 くく、concatメ ソッド、文字列を

分割するメソッドとしてspiltメ ソッドを紹介します。

●文字列を比較する

文字列が同じかどうか調べるメソッドと、ソートなどで使う、文字列

の「大きさ」の比較について説明します。
0改行文字の扱い方
文字列の中の不要な改行文字の扱いについて説明します。

●文字列の検索と置換

文字列の検索や置換を行うためのメソッドを紹介します。

●文字列と配列で共通するメソッド

文字列と配列は挙動の似た同名のメソッドが使えるので、まとめて紹

介します。

。日本語文字コードの変換

日本語文字列のために必要となる文字コードの変換を紹介します。

297

第14章 文字,U(Strin3)ク ラス

文字列を作る

一番簡単な文字列オブジェクトの作り方は、文字列オブジェクトにしたい

「文字の集まり」を「""」や「[:」で囲って直接プログラム中に書く方法です。

strl = i:こ れも:文字列‖

str2= :あ れも文1字夕!'

「‖‖」で文字列オブジェクトを作る場合と「
[i」 で文字列オブジェクトを

作る場合との違いは、第1章で簡単に紹介しました。そのほかにも、「
‖ ‖」を

使うと「+{)」 で囲まれた部分をRubyの式として実行し、その結果に置き換

えられることも紹介しました。この「十{}」 のことを式展開といいます。

moji =

strl =

p strl
str2 =

p str2

‖文字列 "
‖あれも十〔mOji}‖

|=>‖ あれも文字列‖

:あれも十(mOji}l

+=>:1あ れも 十ヽ(mOj i}‖

また、「‖‖」を使えば、「 」ヽを使った特殊文字 (表 14.1)を表現できます。

目mヽ を使った特殊文字
特殊文字 意味

tヽ タブ (Ox09)

＼n 改行 (OxOa)

rヽ 復帰 (OxOd)

＼f 改ページ (OxOc)

＼b バ ックスペース (Ox08)

aヽ ベル (Ox07)

eヽ エスケープ (Oxlb)

sヽ 空白 (Ox20)

vヽ 垂直タブ (OxOb)

\nnn 8進数表記 (″ は0～ 7)

\xnn 16進数表記 (4は 0～ 9、 a～ f、 A～ F)

cヽχ、 Cヽ―χ [Ctrl]([Control])+χ

―

Ｉ

　

Ｊ

Ｉ

Ｉ

Ｉ

　

Ｉ

Ｉ

298

114.11

Mヽ―χ [Alt]([Meta])+χ
Mヽ― Cヽ―χ [Alt]([Meta])+[Ctrl]([Control])+x
xヽ 文字χそのもの (χ は上の文字以外)

\unnnn Unicode文 字の 16進数表記 (4は 0～ 9、 a～ f、 A～ F)

「‖‖」「1 :」 以外にも文字列の作り方があります。ll原に見ていきましょう。

0)・・14■1 %Q、 %qを使う
「‖」や「 [」 を合めた文字列を作りたいときは、「 「ヽ」や「ヽ

:」 などの特殊文

字を使うよりも、おQや らqを使うと簡単です。

desc=%Q{Rubyの 文字列には「 11」 も「・‖」も使われます。}
str=%qlRuby said′ :Hello world![|

この場合、おQを使ったほうは「‖ ‖」で囲った文字列、おqを使ったほうは
「: :」 で囲った文字列と同様の扱いになります。

(|)・
014■2 ヒアドキュメントを使:う
ヒアドキュメントとは、Unixの シェルに由来する記法で、「くく」を使って文

字列を作るものです。改行を含む長い文字列を作りたい場合にはこの方法が

一番簡単です。

くく ::終了の記号“

置き換える文字列

終了の記号

「くく」の後ろには、終了の記号として「: 1で囲った文字列」か「‖ |:で囲っ

た文字列」を書きます。「1! '1」 で囲った場合には文字列内の特殊文字や式表

現は展開されます。「[:」 で囲った場合には展開されず、そのままの文字列

になります。また、「・ ‖」も「 : !」 もない文字列が使われた場合は、「
‖‖」で

囲った文字列と見なされます。

ヒアドキュメント全体が文字列リテラルとなるので、変数に代入したり、

メソッドの引数にしたりできます。

終了の記号としての区切り文字列には、「EOF」 や「EOB」 をよく使います。こ

の場合 の EOFは「End of File」 の略、EOBは「 End of Block」 の略です。

C

299

14.1 文字列を作る :

特殊文字 意味

第 14章 文字列(Strin3)ク ラス

ヒアドキュメントの終わりに書く区切り文字列は、行頭になければなりま

せん。プログラム中のインデントが深い部分でヒアドキュメントを使うと、

次の例のようにインデントのバランスが崩れてしまうこともあります。

10・ timS dO lil

print(く く'IEOB11)

i: |(1)

EOB

end

インデントを揃えたいときは「くく」の代わりに「くく―」を使いましょう。区

切り文字列よりも行頭側の空白文字とタブ文字が無視されるので、行頭に区

切り文字列を書かなくてもよくなり、次の例の「print」 と「EOB」 のようにイ

ンデントが揃うので、見やすくなります。

10・ timeS dO lil

print(く く―‖EOB!:)

i: +(1}

EOB

end

さらに、「くく～」を使うと、行頭の空白が切り詰められるため、「i: 十{i}」
のインデントも揃えられます。

10・ timeS dO lil

print(く く～・EOBI:)

i: ‖{i}

EOB

end

また、ヒアドキュメントを変数に代入するときは次のようにします。

300

14.1 文字列を作る

str = くく―EOB

He1lol

Hellol

EOB

●・e14■3 sprintfメソッドを使う
数値を8進数や16進数として文字列で表すといったような、何らかのフォ
ーマットに従った文字列を作る場合には、sprintfメ ソッドを使います。

sprintfメ ソッドの使い方については、コラム「printfメ ソッドとsprintf

メソッド」(p.302)を参照してください。

鬱・・14■4 「｀`」を使う
「 コ`マンド

｀
」の形式でコマンドの標準出力を受け取って文字列オブジェ

クトにできます。次に示すのはLinuxの lsコマンドとcatコ マンドの出力を取

得する例です。

C

> irb --siry1e-prqlt
>> 'Ia -I /etc/hoet,E'

=> u-rw-r--r-- L root wheel
>> DutB 'cat /etc/hosts'
Host Database

#

L27 .0.0.t localhost
255.255 .255 .255 broadcasthost
::1 localhost
fe80: :181o0 localhost
=> ni1

445 9 11 20:28 /etc/hostsヽ n11

301

1
|

第14章 文字列(String)ク ラス

printfメ ソッドとsprintfメ ソッド

文字列の整形に欠かせない、printfメ ソッドとsprintfメ ソッドについて

紹介します。

printfメ ソッドは、フォーマットに従って文字列を生成 して出力します。

printfメ ソッドを使えば、たとえば数字を出力するときに10進数だけでなく

8進数や 16進数で表示させたり、小数の場合、何桁まで表示させるか、といった

指定を簡単に行うことができます。

printf(′ ,″″α′[′ α慇′[′ ・・・]])
Sprintf(′ ,′″α″[′ αttf[′ ・・・]])

最初の引数ル物 ′は文字列で、その中で「%文字」という形式でどのように整

形するかを指定します。それ以降の引数でフォーマット中の「%文字」に対応す

る値を|1頂番に指定します。printfメ ソッドは整形した文字列をコンソールに

出力し、sprintfメ ソッドは整形した文字列をオブジェクトとして返します。

n= 65535
printf(::tdの 16泳筐1姜文|ラ曼記は %x‐です nヽ・ ′ n′ n)

+=>65535の 16進数表記は ffffです

p sprintf(:'tdの 16進数表記はtxです nヽ‖ ′n′ n)

|=>・ 65535の 16進数表記はffffです nヽ‖

sprintfメ ソッドにはformatと いう別名があり、さらに「文字列 %配列」
の形式でも同じことができます。

p format(・ Hello′ ts!‖ ′ |'Ruby'1)

p〔〕%d年 %d月 3d日 :13[2019′ 2′ 11

十=> :iHello′ Ruby!〕
1

+=>‖ 2019年 2月 1日 ‖

○ 指示子

フォーマットの基本は「%指示子」の形式です。指示子によって与えられたデ

ータをどのように整形するかが決められます。

302

癬l printfフ ォーマットの指示子

指定子 意味

tc コードポイントに対応する文字を出力する
2s 文字列を出力する (引数 .to_sを 呼ぶ)
tp pメ ソッドと同じ形式で出力する (引数 .inspectを 呼ぶ)
tb、 3B 整数を2進数表現で出力する

%o 整数を8進数表現で出力する
3d、 ti 整数を10進数表現で出力する

tx、 tX 整数を16進数表現で出力する

tf 浮動小数点数を出力する

Ze 浮動小数点数を指数表現で出力する

%% %そのものを出力する

○ フラグ、最小幅、精度

「2」 と指示子の間にフラグと最小幅と精度を指定することで、より細かく形
式を指定することができます。

鑑〕prinぜフォーマットのフラグ

フラグ

3b、おB、 おo、 2x、 3xについて、リテラル表現と同じプリフィックス (「 Ob l
「OB」「0」「Ox」「OX」)を出力する

幅を指定した場合に出力を左寄せにする
「+」 か「_」 の符号を出力する

空白 負の数のときのみ符号「―」を出力する

最小幅を指定する際に余った桁を空自ではなく「0」 で埋める

フラグに続けて最小幅と精度による出力の桁数を指定できます。最小幅と精

度は「最小幅 .精度」の形式で指定します。最小幅は出力の最小の桁数を指定す

るものです。結果が指定よりも長い場合は、はみ出して表示されます。精度は指

示子がらfの ときは小数点以下の桁数の指定、おsと おpの ときは最大桁数の指定
になります。最小幅と精度に「*」 を指定すると、引数から値を取り出します。

C

p sprintf(・ 98si:′ l:Ruby‖)

p sprintf(11%8.8s"′ I:Hello Ruby‖)

p sprintf(・ 9+010x‖ ′ 100)
p sprintf(・ を+.2f‖ ′ :Math::PI)

p Sprintf(712*.*fl:′ 5′ 2′ IMath::PI)

+=> II Ruby‖

+=> ‖IIello Ru‖

#=> [iOx00000064‖

|=> '1+3.14‖

|=> li 3.14‖

14.1 文字列を作る :

|

意味

303

:第 14章 文字列(String)ク ラス

p " ".empty?
p 'foo".empty?

文字列の長さを得る

文字列の長さを調べるには、lengthメ ソッドまたはsizeメ ソッドを使い

ます。どちらも同じ結果を返すので、好きなほうを使いましょう。

p "just another ruby hacker,".length *=> 25

p "just another ruby hacker,".size #=> 25

日本語の文字列の場合も、文字数が返ってきます。

p‖ オブジェクト指向プログラミング言語
‖.length +=>17

文字数ではなく、バイトの長さがほしい場合は、bytesizeメ ソッドを使い

ます。

p‖ オブジェクト指向プログラミング言語・.bytesize 十=>51

なお、文字列の長さが0で あるかどうかを調べるためだけのメソッド

empty?も あります。繰り返しなどで文字列が空かどうかを調べるために使い

ます。

*=> true
#=> false

文字列のインデツクス

文字列中の特定位置の文字、たとえば「先頭から3番目の文字」を取り出す

には、配列と同様に、インデックスを利用します。

14。3

304

str=〔 :新 しい Stringク ラス Il

p str[01 1=> il新 ‖

p str[3] 十=> :「 S‖

p Str[9] |=> ::ク ‖

p str[2′ 8] 十二> 〕iい Stringク ::

p str[41 +=> ii t i'

hello << worl.dl

14.4 文字列をつなげる

ユ

(書き換えられている)

C

文字列をつなげる

文字列をつなげるといっても、

。2つの文字列がつながつた文字列を新しく作る

0すでにある文字列を長い文字列にする

というように2通 りの方法があります (図 14.1)。

(a)2つの文字列がつながつた文字列を新しく作る (b)すでにある文字列を長い文字列にする

str=hello+worLd こ

樫)⊂口団D文字列をつなげる

新しい文字列を作るには、「+」 を使います。

hello 四Hollo′ " hello ‖Hello「 ロ

world ::World::: world ‖World:::

hello "Hello′
‖ hello ‖Hollo′ World:::

world 口lForld:!: "World:ロworld

str "Eello, WOrld:・

305

「
仄
~Ч
¬

「
4.1

一

第14章 文字列〈String)ク ラス

hello = :'He1lo′ :l

world = 1lWorld!':

str=he11o+world
p str #=> "i{e11o, World! "

すでにある文字列に別の文字列をつなげるには、くくメソッドか、concatメ

ソッドを使います。

he1lo = "Hello, "

world = 'Worfdp

he11o << world
p hel1o #=> "Hello, World! "

he11o. concat (wor1d)

p he11o #=> "He11o, WorldlWorld! "

「+」 を使って新しい文字列を作る場合でも、

hello = hello + world

などとすると、変数helloについては、くくメソッドを使った場合と同じ結果

が得られます。しかし、この方法は、helloと worldを連結した新しい文字列

を生成するため、helloと 同じオブジェク トを指していた変数がほかにあっ

ても、そちらは変更されません。一方、くくメソッドやconcatメ ソッドを使う

場合には、同じオブジェクトを指している別の変数にも影響があります。

一般に、くくメソッドやconcatメ ソッドを使ったほうが効率がよいのです

が、状況に応じて使い分けが必要です。

一　
　
　
　
ロ

306

14.5 文字列を比較する

文字列を比較する

文字列が同じかどうかを調べるには、「==」 または「!=」 を使います。「strl

==str2」 は、strlと str2が同じ文字列の場合にはtrueを、異なる文字列の

場合にはfalseを返します。「!=」 は「==」 と反対の動作になります。
C

ｐ

ｐ

ｐ

ｐ

ｐ

aaa‖

aaa‖

aaa‖

aaa‖

aaa‖

‖baa‖

‖aan

"aaa"
‖baa:I

naaa‖

#=>

十=>

+=>

+=>

+=>

false
false
true
true
false

|=

!‐

まるっきり同じ文字列かどうかは「==」「 !=」 で簡単に調べることができま

すが、「似ている文字列」かどうかを調べたいときは正規表現を使ったほうが

簡単になることが多いでしょう。

●・。14。5』 文字列の大小比較
文字列にも「大小関係」があります。ただし、これは文字列の長さで決まる

わけではありません。

p ("aaaaa" < "b") #=> true

文字列の大きい、小さいは、文字コード順に決まります。文字コードは、ア

ルファベットについてはABC順に、日本語のひらがなとカタカナについては
あいうえお順に並んでいるので、このサ:頂番に日本語や英語の文字列を並べる

場合に利用できます。ただし、日本語のいわゆる「辞書順」とは異なるので、

注意が必要です。たとえば「かけ」「かこ」「がけ」の3つの単語がある場合、辞

書順では「かけ」「がけ」「かこ」のII頁番になりますが、Rubyで大小関係を比

較したときは、小さいほうから「かけ」「かこ」「がけ」のサ:頂になります。

また、漢字の文字列から読みサI原にあった大小関係を得ることはできないの

で、読み順に並べたい場合には、あらかじめ読みがなを用意するなどの対処

が必要です。

307

第14章 文字列(Strin3)ク ラス

文字コー ド

コンピュータの中では、それぞれの文字を、数値によって管理しています。こ

の数値のことをコードともいいます。

文字と数値の対応として、次のような表があることになります。

文字 数値

A 65

B 66

C 67

このような文字と数値の対応のことを、文字コー ドなどと呼びます。とはい

え、文字コー ドというのは正確な用語ではないので、この言葉を使う際には注

意が必要です。

コンピュータの基本はASCIIと いうコードです。これは、アルファベットや

数値、その他の記号や、さらには改行文字やタブなどの文字を集めて、0か ら

127ま での数値を割り振ったもので、1バ イトに収まります (1バ イ トは0か ら

255ま で表現できます)。 さらに、欧米圏では、ISO_8859-1と いう、ヨーロッパ

で使われる基本的な文字 (ア クサンやウムラウトがついた文字など)を 128か

ら255ま での間に割り振った文字コー ドもよく使われていました。つまり、た

いていの文字は 1バイ トで収まっていたわけです。

しかし、日本語では当然ひらがなやカタカナ、そして漢字が使えなければな

りません。そうなると、1バイトでは収めることは不可能です。そのため、1文字

を2バ イトで表す技術が使われるようになりました。

ところが、非常に残念なことに、日本語を扱うための文字コードは1種類で

はありません。大きく分けて次の4つの符号化方式があり、さらに同じ符号化方

式でも、違う文字が使われることがあるのです。

符号化方式 主に使われるところ

UTF_8 テキスト全般

Shift JIS WindOwsのテキス ト

EUC―JP 従来のUnixの テキス ト

ISO-2022-JP 電子メールなど

308

14.5 文字列を比較する

文字 UTF‐8 ShiftJiS EUC‐JP :SC)‐ 2022‐JP

あ E38182 82A0 A4A2 2422

上記の表は「あ」という文字に割り振られた数値を、16進数で表したもので

す。それぞれ、まったく異なる数値が割り振られているのがわかります。このよ

うな「文字」を一意に示す値を、コードポイントと呼ぶことがあります。なお、

Rubyで コードポイントを調べるには、Stringlordメ ソッドを使います。

lencoding: Shift_JIs

p l:あ ‖.ord ‖=> 33440 (16進 ,数では82AO)

また、ISO_2022_JPは、ASCIIと 同じ領域のコー ドを使っているのですが、

実際にはASCIIと は区別ができるような巧妙な仕掛けが使われています (こ の

仕掛けはちょっと複雑なので、説明を省きます)。

そして、現在はUnicodeと いう、国際的な文字コー ドの規格が普及 していま

す。UTF-8は、そのUnicOdeの符号化方式の1つです。

文字コードについては、矢野啓介『[改訂新版]プ ログラマのための文字コー

ド技術入門』(技術評論社)な ど、いくつか詳しい書籍もあります。こちらの書

籍では、Rubyについても、Encodingク ラスができる前 (Ruby l.8時代)とでき

たあと (Ruby l.9以 降)の両方について触れているので、参考にしてください。

C

309

符号化方式 (character encoding scheme)と いうのは、文字に数値を割り振る、

その割り振り方のことです。日本では、Shift_JIS、 EUC― JP、 ISO-2022-JPと

いう3つの符号化方式が長らく使われてきました。これらは、国内で標準化され

ている「JIS X0208」 という文字集合の規格が元になっています。また、文字コ

ードの名前には、たいていこの符号化方式の名前が使われます。たとえば、「こ

のテキストの文字コードはEUCだ から、Windowsで開くときには気をつけて
ね」というように使われます。

符号化方式が違うと、同じ文字を使っていても、その文字に割り振られた数

値が異なります。この符号化の違いが、俗にいう「文字化け」の一因です。

14。6

第14章 文字列(String)ク ラス

特定の文字で文字列を分割するには、splitメ ソッドを使います。たとえ

ば、文字列strが「:」 で区切られている場合、

column = st.r.split(" : ")

とすると、colurmに それぞれのカラムの文字列を要素とした配列オブジェク

トが代入されます。

str=''高橋 :タ カハシ :1234567:000-123-4567‖

COlu■ul = Str.Split(l!:〕 ')

p c01umn

十三>[‖ 高橋 ‖′ :'タ カハシ・′ ・1234567"′ ‖000-123-4567・]

文字列を分割する

改行文字の扱い方

標準入力からeach_lineメ ソッドなどで文字列を読み込んだ場合、末尾に

改行文字がつきます。ところが、実際に文字列を扱うときには、改行文字が邪

魔なことが少なくありません。このような場合のために、改行文字を取り除

くメソッドがあります (表 14.4)。

目0■回D改行文字を取り除くメソッド

末尾を必ず1文字削る 改行がある場合のみ削る

非破壊的 chop chomp

破壊的 chop ! chornp !

chopメ ソッドとchoplメ ソッドは、文字列の末尾がどんな文字であれ、そ

の文字を削りますが、chompメ ソッドとchomplメ ソッドは末尾が改行文字の

場合のみ削ります。

310

14。71

14.8 文字列の検索と置換

str=‖ abcde‖ 十 改行文字ではない場合
newstr = str.chop

p newstr 十二> 1:abcd‖

news tr = str.choimp

p newstr 十=> iiabcdeil

str2 = :iabcdヽ n ll 十 改行文字|の :場合

newstr = str2.chop

p newstr 十三> 1:abcd‖

newstr = str2.chomp

p newstr 十=> l:abcd‖

each_lineメ ソッドを使って、繰り返 し新しい行を読み込む場合には、

chomp!メ ソッドなどで破壊的に改行文字を落とすのが常套です。

C

f.each line do

lineochc=rp l

lineを処理する

end

I rine I

という書き方は、chomp!メ ソッドも含めてイディオムといってもよいでしょ

う。なお、改行文字は、使っている環境によって異なる場合があります。これ

については、コラム「改行文字の種類」(p.312)を参考にしてください。

文字列の検索と置換

一般的な文字列操作を行うときには、「検索」と「置換」の処理が欠かせま

せん。Rubyでは、手軽に文字列を操作できます。

0001468.1 文字列の検索
文字列の中に特定の文字列が含まれているかどうかを調べたいときは、

indexメ ソッドあるいはrindexメ ソッドを使います。

indexメ ソッドは、引数に渡された文字列が含まれるかどうかを、対象とな

る文字列の左側の文字から調べていき、rindexメ ソッドは右側から調べてい

きます (rindexの「r」 は「right(右)」 の意味です)。

311

第14車 文字列(String)ク ラス

str〓 ‖すもももももも‖

p str.index(‖ もも‖)

p str.rindex(11も も‖)

十二> 1

+=> 5

indexメ ソッドとrindexメ ソッドは、探す文字列が見つかった場合は一致

部分の先頭インデックスを返し、見つからなかった場合はnilを返します。

また、単純に含まれるかどうかを調べたいだけであれば、include?メ ソッ

ドを使うとよいでしょう。

str=‖ すもももももも‖

p str.include?(i:も も:1) #=> true

文字列ではなくパターンで探したい場合には、正規表現を使います。パタ

ーン検索は、「第16章 正規表現 (Regexp)ク ラス」で詳しく取りあげます。

改行文字の種類

「改行」というのは、行の折り返しを行うための特別な記号です。コラム「文

字コード」(p.308)で 説明したように、コンピュータで使われる文字には番号

が振られていますが、改行文字にも同じように番号が振られています。しかし、

困ったことにこの改行文字の扱いは、OSに よって異なります。

代表的なOSの改行文字を次にまとめておきます。ここで、「LF」 (LineFeed)

は「‖ヽn・ 」、「CR」 (Carriage Return)は「‖ヽr‖ 」というイ直|こなります。

OS種別 改行文字

Windows CR+LF
macOS LF

Unix LF

Rubyで標準の改行文字は、「LF」 です。これは、10+each_lineメ ソッドなど

で「行」の区切りとして使われます。

each_1■ neメ ソッドに引数を与えることで、改行文字を指定できます。デフ

ォルトはeach_line(・ nヽ‖)です。

312

〈陽0014。8.2 文字列の置換
ある文字列の一部分を、別の文字列に置き換えたいことがあります。この

置き換えのことを置換と呼びます。置換のためにsubメ ソッドとgsubメ ソッ

ドがあります。

subメ ソソヽ ドとgsubメ ソン`ドにて)いては、「16.6.l subメ ソソヽ ドとgsubメ

ソッド」(p.358)で詳しく説明します。 C
文字列と配列で
共通するメソッド

文字列では、配列と同じメソッドがいくつも使えます。

もちろん、Obj ectク ラスのインスタンスメソッド、つまりすべてのオブジ

ェクトが継承している(はずの)メ ソッドは、文字列 (Stringク ラスのイン

スタンス)で も配列 (Arrayク ラスのインスタンス)でも利用できます。それ

以外のものとして、

(a)イ ンデックス操作に関するメソッド

(b)Emmerableモ ジュール関連のメソッド

(c)運結や逆順に関するメソッド

を使えます。

0)・・]4.9。1 インデツクス操作に関するメソッド
「14.3 文字列のインデックス」(p.304)で も説明したように、文字列は配

列と同じようなインデックスを利用できます。配列に対するインデックス操

作と同様のメソッドを、文字列に対しても使えます。

14。9

14.9 文字列と配列で共通するメソッド :

3i3

第 14章 文字列(Strin3)ク ラス

O sI″]=s″
sI″。。
“
]=s″

sI“′ル

“
]=s″

S.Slice(π)

SoSlice(″ ..]“,)

SoSlice(■ ′ Jθ″)

文字列sの一部をs″に置き換えます。なお、このれや仏 ′のは文字単位です。

str = 'labcdel'

str[2′ 1]= 1!C“

p str l=> 1!abCde‖

sliceメ ソッドも []と 同様に使えます。

p "abcdeu.slice(2, 3) #=> "cde"

文字のインデックスではなくバイ ト数で指定したい場合には、byteslice

メソッドを使います。

p‖ こんにちはRuby・ .byteslice(15′ 4)+=>‖ Ruby‖ (UTF-8の 場合)

()SeSliCe:(″)
SeSlice:(″ ..]“

`)
S.Slice:(″ ′ Jθ4)

文字列sの一部を削ります。削られた部分がメソッドの戻り値となります。

str =

p str
p str
p str
p str

+=>

+=>

十二>

+=>

‖Hello′ Ruby

SliCel(-1)

slicel(5..6)

slice!(0′ 5) ‖Hello‖

‖Ruby‖

3i4

14.9 文字列と配列で共通するメソッド:

崎。。14。 9。2 Enumeratorオ ブジェクトを返:すメリッド
文字列には行単位に繰り返しを行うeach_lineメ ソッド、バイト単位に繰

り返しを行うeach_byteメ ソッド、文字単位に繰り返しを行うeach_char

メソッドがあります。これらのメソッドは、プロックを与えない場合には

Entmeratorオブジェクト(p.316)を返すので、これらを使って次のようにし

てEnumerableモ ジュールのメソッドを利用できます。

+each_lineメ ソッドで取り出した行をcollectメ ソッドで処理する

str 二 :'あ nヽt｀ nヽう nヽ・

tmp = Str.eaCh lille.C01leCt dO llirlel

line.chomp * 3

end

p tmp 十二>[‖ あああ‖′ :lい いい ‖′ ‖

l each_byteメ ソッドで取 り出 した数値 をcollectメ ソッドで処理する

str = i:abcde‖

t叩 =Str.eaCh_byte.C011eCt dO lbytel
―byte

end

p tmp 十二>[-97′ -98′ -99′ -100′ -101]

+each_charメ ソッドで取り出した数値をcollectメ ソッドで処理する

str=‖ Aと B‖

tmp = Str.eaCll_Cllar.C011eCt dO ICllarl
ll(十 {char})n

end

p tmp l=> [11(A)11′ :1(と)〕
l′

 :l(B):l]

315

第14章 文字列(String)ク ラス

Enumeratori)7
Enumerableモ ジュール (p.292)は便利ですが、各メソッドの中心になる、1

つずつ要素を取り出すためのメソッドがeachメ ソッドに限定されているのが

ちょっと不便です。

Stringオ フ
゛
ジェク トには、each_byte、 each_lineあ るtヽ 1ま each_charと

いった繰り返しのためのメソッドが用意されていますが、それぞれに対して

eaCh_With_indeXや collectと いった、Enumerableモ ジュールのメソッドが

使えると便利です。そこで登場するのがEnuineratorク ラスです。

Enumeratorク ラスは、each以外のメソッドを元にして、Enumerableモ

ジュールのメソッドを利用する際に使われるクラスです。Enumeratorク ラ

スを使えば、「String+each_lineメ ソッドをeachメ ソッドの代わりにして
Enumerableモ ジュールのメソッドが利用できるクラス」といったものが実現
できます。

さらに、組み込みクラスのほとんどのイテレータは、ブロックを与えられな

ければEnumeratorオ ブジェクトを返します。そのため、each_lineメ ソッド

やeach_byteメ ソッドの結果に対してmapメ ソッドなどを続けて呼び出すこと

ができるのです。

str コ 〔IAAヽ nBBヽ nCCヽ n・

p str.each_line.class 十=> Enurterator
p Str・ eaCLline・ mp{llinel line,ChOp}

|=> [!り Aヽ‖ ′ 〔!BB‖ ′ !:CC II]

p Str・ eaCh_byte・ rejeCt(ICI C==OXOa}

十=> [65′ 65′ 66′ 66′ 67′ 67]

3:6

14.9 文字列と配列で共通するメソッド :

轡0014。 9。3 連結や逆順に関するメソッド
Enumerableモ ジュール関連やインデックス関連以外にも、配列と同様に

使えるメソッドがあります。

O soconcat(s2)

s+s2

concatメ ソッドと「+」 は、配列と同様に、文字列をつなぎ合わせることが

できます。

s=i:よ うこそ‖

s.concat(・ ゲストさん ‖)

ps 十=>‖ ようこそゲス トさん‖

Os.delete(s″)
s.delete:(s″)

文字列 sか ら、該当する文字列s″の部分を取り除きます。

s=‖ 検/索 /避 /け ‖

p s.delete(‖ /'1) 十三> 1''検索避け‖

(E)soreverse

s.reverse:

文字列 sを逆順に並べ替えます。

s=!:こ んばんわ“
ps.reverse l=>:'わ んばんこ‖

C

317

:第 14章 文字列(Strin3)ク ラス

その他のメソッド

(D sostrilp

sostrュlp!

文字列 sの先頭と末尾にある空白文字をはぎとるメソッドです。文字列の

入力などを受け取る際に、先頭と末尾の空白は不必要な場合、このメソッド

が便利です。

p " Thank you. ".strip #=> "Thank you."

O soupcase

s.1ュpcase:

s.downcase
s.dotwncase:

so sl‖「apcase
s.sl‖Papcase:

socapitalize
s.capitalize:

ここでの「case」 とは、アルファベットの大文字・小文字の意味です。～

caseメ ソッドは、大文字・小文字を変換するものです。

upcaseメ ソッドは、小文字の文字を大文字に置き換えます。大文字の文字

はそのままです。

p 110bject― Or■ ented Language‖ .upcase

+=> !'OBJECT― ORIENTED LANGUAGE‖

反対に、dowlcaseメ ソッドは、大文字の文字を小文字に置き換えます。

p "object-0riented Langruage".downcase

#=> "object-oriented language"

318

14.10 その他のメソッド
:

また、swapcaseメ ソッドは、大文字の文字を小文字に、小文字の文字を大

文字に置き換えます。

p l'Object― Oriented Language・ .swapcase

l=> ::oBJECT― oRIENTED lANGUAGE‖

capitalizeメ ソッドは、最初の文字を大文字に、以降の文字を小文字にし

ます。

p "Object-oriented Language",capitalize
#=> "Object-oriented langmage"

⊂)sotr

sotr:

もともとは Unixの trコ マンドに由来するメソッドで、文字を置き換えるた

めに使います。

gsubメ ソッドと似ているのですが、gsubと異なるのは、「s.tr(・ a― z‖ ′
‖
A― Z‖)」 というように、複数の文字について、どのように置き換えるかをま

とめて指定できる点です。

p:lあ いうえお ".tr(‖ い‖′ 1'イ !I)

p"あ いうえお‖.tr(・ いえ‖′ :1イ エ ")
pl'あいうえお“.tr(・ あ―お "′

!lア ーオ‖)

十〓>‖ あイうえお‖

+=>![あ イう工お‖

十=>1'ア イウエオ
‖

正規表現などを使って置き換える文字を指定することはできません。あく

までも1つの文字を別の 1文字に置き換えるだけです。

319

114.11

第14章 文字,」 (String)ク ラス

日本語文字コードの変換

文字コードを変換するには、encodeメ ソッドを使う方法と、nkfラ イブラ

リを使う方法があります。

●・・14.]1.l encodeメ ソッド
Rubyでの文字コー ド変換の基本はencodeメ ソッドを使う方法です。文字

コードが Shift_JISの 文字列をUTF-8に 変換する場合は、次のようにします。

l encoding: Shift_JIS

sjis_str=‖ shift_JISの文字列 :'

p sjis_str.encoding 十二>+くEncoding:Shift_JIS>

utf8_str=sjis_str.encode(・ utf-8‖)

p utf8_str.encodiing 十=> |く Encoding:UTF-8>

また、破壊的なメソッドとして、encodelメ ソッドも用意されています。

+ encoding: Shift_JIS

str = !:shift_JIsの 文字夕1l i:

str.encodel(‖ utf-8‖) + strは UTF-8に なる

p str.encoding +=> +く Encoding:UTF-8>

encodeメ ソッドで指定できる文字コードの一覧は、Encodingoname_list

メソッド(p.417)で取得できます。

0)・
014.1■2 nkfライブラリ
単に文字コードを変換するだけならencodeメ ソッドで十分ですが、いわゆ

る半角カナを全角カナに変換するといった用途には使えません。そのような

場合、nkfラ イブラリを使います。

nkfラ イブ ラ リは 、NKFモ ジュール を提 供 します 。NKFモ ジュ ール は 、も と

もとUnix用に作られたnkf(Network Knali cOde cOnversiOn Filter)と いうフ

Ａ
Ｕ
つ

一

う
０

14.11 日本語文字コードの変換 :

ィルタコマンドをRubyか ら使えるようにしたものです。

NKFモ ジュールでは、文字コードなどの指定にコマンドラインオプション

のような文字列を使います。

M口 .nkf(オ プション文字列′変換する文字列)

nkfメ ソッドの主なオプションを表 14.5に示します。

ロロ■D nkfの主なオプション

トプション 意味

―d 改行文字からCRを 削除する
―C 改行文字にCRを加える

半角カナを全角カナに変換しない

―m0 MIMEの処理を抑制する
―hl カタカナをひらがなにする
―h2 ひらがなをカタカナにする
―h3 ひらがなとカタカナを入れ替える
―Z0 JIS X 0208の数字をASCIIに する
―Zl ―zOに加えて全角スペースを半角スペースにする
―Z2 ―zoに加えて全角スペースを半角スペース2個にする

出力文字コードをEUC―JPと する
― S 出力文字コードをShiftJISと する
~] 出力文字コードをISO-2022-JPと する

出力文字コードをUTF-8(BOMな し)とする
―E 入力文字コードをEUC―JPと する
―S 入力文字コードをShiftJISと する
―J 入力文字コードをISO-2022-JPと する
―W 入力文字コードをUTF-8(BOMな し)と する
―W16 入力文字コードをUTF-16(Big Endian/BOMな し)と する

半角カナから全角カナヘの変換や、あるいは電子メールに特有の文字列処

理によるトラブルを避けるため、単純に文字コー ドを変換することが目的の

場合は一xと ―mO(ま とめて―xmOと書けます)を常に指定すべきです。

文字コードがShift_JISの 文字列をUTF-8に変換する場合は、次のように

します。

十 encoding: Shift_JIS

require iinkf‖

sj is_str=‖ Shift_JIsの 文字列‖

utf8_str = NKF.nkf(・ =S ―w ―xm0 1i′ sj is_str)

C

321

】
　

　

ロ

1第 14章 文字列〈Strin3)ク ラス

入力文字コードの指定を明示的に行わない場合は、ライブラリが自動的に

判別を行うため、たいていは次のように書くことができます。

encoding: shift-Jrs
require "nkf"

sj is_str=‖ shift_JIsの 文字列 '〔

utf8_str = NKF.nkf(・ ―w ―xmO‖ ′ sjis_str)

NKFは Rubyの文字列がエンコーディングをサポー トする以前から提供さ

れてきたライブラリです。オプションを指定する方法などに、どことなくク

セがあるのは、nkfと いうまったく別のコマンドの機能をそのまま取り込ん

でいるためです。現在は日本語の文字に関する特殊な処理を除けば、encode

メソッドを使うのがよいでしょう。

文字列リテラルとfreeze

リテラルとして作られた文字列は、通常は凍結 (freeze)さ れていない、変更

可能なオブジェクトになります。

str = "Ruby"
p str.upcasel #=> "RUBY"

これに対し、スクリプ トの冒頭にマジックコメントとしてfrozen― string―

literal:trueと いう指定を加えると、そのスクリプ ト中のすべての文字列リ

テラルが凍結されます (List 14.1)。 これは、文字列にObjectlfreezeメ ソッド

を使うのと同じ状態になります。

List frozen-string.rb

frozen-string-literal: Lrue

str=‖ Ruby'7
p str.upcase!

322

「
00●000-

14.11 日本語文字コードの変換

これを実行すると、次のようにエラーになります。

また、――enable=frozen― string― literalと いうォプションをつけると、マ

ジックコメントがなくても、スクリプト内の文字列リテラルがすべて凍結され

ます。

C

, rubyコ マンドの―eオプションでコマンドラインに書いたプログラムを実行できます。

> nrby frozen_string.rb
Traceback (most recent call last):

1: from frozen_string.rb:.4:in'<main>'
frozen_string,rbt4:in'upcase!' : can't modify frozen String
(FrozenError)

実行例

> rrrby --enable=frozen-6tring-litera1 -e t rrRubfl,n.upcage!'

Traceback (most. recent call last) :

1: from -e:1:in'<main>'
-e:1:in 'upcase!': can't. modify frozen String (FrozenError)

323

第14章 文字列(Strin3)ク ラス

練習問題
√

′

′

(1) 1lRuby is an object oriented prOgramming language:1と いう文

字列があります。この文字列に含まれる各単語を要素とする配列を作っ

てください。

(2)

(3)

(1)の配列をアルファベット順にソー トしてください。

(2)の配列を大文字と小文字の区別をせずにアルファベット順にソー

トしてください。

(4)(1)の 文字列に含まれる文字とその数を次のような形式で表示させて

ください (空白文字が6つ、
[Rlが 1つ、:alが 4つ、[biが……という

意味です)。

1 1: ******

R': *

al: ****

b!: **

C': *

(6)11七千百二十三‖といった、漢数字による1～ 9999の数の表現を、「7123」

のような数値に変換するメソッドkan2numを 定義してください。

※解答は、サポートページ (httpsi//tanoshliruby.github.io/6/answer/)で 公開しています。

324

|.||.|

ハ
4じ

ツンユ h)クラス
′
日
、

C
この章では、ハッシュ (Hash)ク ラスについて詳しく説明します。

0ハ ッシュの復習
ハッシュの使い方について、ぎっと紹介します。

●ハッシュの作り方

新しいハッシュを作る方法をいくつか紹介します。

●キーや値を取り出す。設定する

キーや値を、1つずつではなく、まとめて取り出す方法も紹介します。

●条件判断

キーや値があるかないかを調べるメソッドを紹介します。

●大きさを調べる

ハッシュの大きさを調べるメソッドを紹介します。

●初期化する

ハッシュの初期化方法を新しくハッシュを作った場合と比べてみ

ます。

0使い方の例
ハッシュの使用例として単語の数を数えるプログラムを紹介します。

ハツシュの復習

ハッシュの復習をする前に、配列の使い方をもう一度復習しましょう。

配列では、インデックスを利用して、そのインデックスに対応するデータ

を取り出したり、逆に与えたりすることができました。

○

325

第15章 ハッシュ(Hash)ク ラス

person = Array.new

personi01=':田 中一郎 ‖

person[ll 二 1嗜生1藤次郎 ‖

person[2]二 ::木村:二郎 :1

p person[11 +=> ::佐 藤‐次郎 ‖

ハッシュは、配列と同様に、オブジェクトの集まりを表現するオブジェク

トです。配列ではインデックスを用いて、各要素にアクセスしましたが、ハッ

シュでは「キー」を利用します。インデックスには数値しか使えませんでした

が、キーにはどんなオブジェクトでも利用できます。このキーを使って、デー

タを取り出したり、データを与えたりします。

person = Hash.new

person[・ tanaka"]=‖ 田中一郎 "

person[・ satou‖]= ::佐藤次郎
‖

person[‖ kimura‖]二 11木オ寸二郎
‖

p person[・ satou‖] +=> !l佐 藤次郎
‖

この例では、「tanaka」 や「satOu」 という文字列がキーになっています。そ

れに対応している値が「‖田中一郎‖」や「"佐藤次郎‖」です。「[]」 を使ってい

るところは配列にそっくりです。

ハッシュの作り方

配列と同様、ハッシュを作るのにもいくつかの方法があります。特に使わ

れるのは、次に紹介する2つの方法です。

●・015。2.1 11を使う
ハッシュのリテラルを使う方法です。

(キー=>値 }

というように、「キー」と「値」のペアを並べて指定します。ペアとペアの区切

りには「′」を使います。

326

●
６
一
３
■
日
●

'15.2)\"t9tA(F|fi',

hl = {‖ a‖ =>‖ bli′ ll C‖ =>‖ d‖ }

p hl[Ha‖] +二 > :ib‖

また、キーがシンボルの場合は、

{キ~8値 }

という書き方もできます。

h2 = {a: "b", c: "d" }

p h2 f=> {:a=>"b", :q=>"d"}

曜)・・15.2.2 Hash.newを使う
Hash.newは新しくハッシュを作るためのメソッドです。引数を与えた場

合、その値がハッシュのデフォルト値、つまり「登録されていないキーを指定

したときに返す値」になります。引数がない場合、そのハッシュのデフォルト

値はnilになります。

h1 = Hash,new

h2 = Hash.new("")

P h1 ["not-key"] #=> ni1
p h2 ["not_key"] #=> " "

ハッシュのキーには、いろいろなクラスのオブジェクトを使うことができ

ます。しかし、キーに使うオブジェクトには、次のクラスのオブジェクトを使

うことをお勧めします。

● 文 字 列 (String)

●数値 伸師eric)

●シンボル (s「山ol)

。 日イ寸(Date)

詳しくはコラム「キーに使うオブジェクトの注意点」(p.339)を参照してく

ださい。

327

:第 15章 ハッシュ(Hash)ク ラス

値を取り出す・設定する

キーを与えて値を取り出したり、特定のキーに対応する値を設定するため

に、配列と同じように「 []」 が使えます。

h = Hash.new

h[1'R‖]= llRuby“

ph[‖ R“] 十=> '〔 Ruby‖

値の登録にはstoreメ ソッドを、値の取り出しにはfetchメ ソッドを使う

こともできます。前掲の例と同じことをstoreメ ソッドとfetchメ ソッドで

行うと、次のようになります。

h = Hash.new

h.store(・ Rl!′ 'lRuiby‖)

ph.fetch(・ R・) 十二> i:Ruby‖

h = Hash.new

p h. fetch("N") #=> t1- (KeyError)

第2引数を指定すれば、キーが登録されていないときに返す値として使用

されます。

h = Hash.new

h.store('R', 'Ruby")

p h. fetch("R" , ' (undef) ") #-> "Rubyn
p h.fetch(uN', u (undef) ") #=> " (undef) "

328

fetchメ ソッドは、キーが登録されていない場合には例外を発生させる点

が「 []」 とは異なります。

15.3 値を取り出す。設定する :

また、fetchメ ソッドは引数としてブロックを使うことができます。この

場合、ブロックを実行した結果得られる値が、キーが登録されていないとき

に返す値になります。

h = Hash.new

p h.fetch("N") {String.new} #=> ''

0)・・15.3。1 キーや値をまとめて取り出す
ハッシュに登録されているキーや値を、まとめて取り出すこともできま

す。ハッシュの場合、「キー」と「値」が組み合わせとして登録されているの

で、どれを取り出すかによってメソッドを使い分けます。1つずつ取り出すメ

ソッドもあれば、全体を配列として一度に取り出すメソッドもあります (表

15.1)。

医〕mハ ッシュからキーと値を取り出すメソッド

keys、 valuesメ ソッドは、それぞれハッシュのキー、または値の配列を作

ります。to_aメ ソッドは、キーと値を、

[キー′値]

という2要素の配列にして、さらにこの配列を要素として並べた配列を作っ

て返します。

{,,a',=>"b,",c,=>,'d" }

keys #=> ["a", "c"]

values #=> t"b", "d"l
to_a #=> [[,'a',, ,,b',], t',c',, ',d,'ll

C

〓
　

ｈ

　

ｈ

　

ｈ

ｈ

ｐ

ｐ

ｐ

eacn Key t I +- |)キーを取り出す keys
values eachⅣalue〔 1値 |)値を取り出す

Iキー′値 1のペアを取り出す to a
each{|キ ー ′値

|

eaCh {1酉己

'」

| ...

また、配列として返すのではなく、イテレータを使ってキーや値を取り出

329

配列として イテレータで

}

第15章 ハッシュ(Hash)クラス

すこともできます。

each_keyメ ソッドやeach_valueメ ソッドを使えば、キーや値を1つずつ

取り出して操作することができます。eachメ ソッドを使えば、[キー′ 値]
という配列で一度に得られます。

イテレータを使った例は、「15.9 応用例 :単語数を数える」(p.337)を 参

考にしてください。

なお、to_aメ ソッドで配列にしたり、eachメ ソッドで1つずつ取り出すと

きの要素の順番は、ハッシュにキーを登録した順番になります。

●・・]5。3。2 ハッシュのデフォルト値
ハッシュのデフォルト値、つまり「そのハッシュに登録されていないキー

が指定されたときに返す値」について説明します。ハッシュから値を取り出

す際に、登録されていないキーを指定してもエラーにはならず、何らかの値

が返されます。このときに返される値を指定する方法は、3通りあります。

01.ハッシュの生成時にデフォルト値を指定する
Hash.newに引数を指定するとデフォルト値として使われます (デフォル

ト値のデフォル トはnilです)。

h = HaSh.new〈 1)

h[‖ a‖]=10
ph[‖ a‖] +=> 10
ph[“ X“] |=> 1
ph[‖ y‖] +=> 1

この方法では、配列の初期化と同様に、すべてのキーに対するデフォル ト

値が共有されるという性質があります。

02.ハツシュのデフォルト値を生成するプロックを指定する
キーによって異なる値を返させたい場合や、すべてのキーに対する値が同

じオブジェクトになることを避けたい場合には、Hash.newに ブロックを指
定します。

h = Hash.new do lhash, keyl
hashlkeYl = key.upcase

＾
Ｕ
う
０
う
０

end

h[‖ a‖

ph[‖

ph[・

ph[:'

‖
b‖

|=> :ib‖

十二> lI X‖

十=> 1:Y‖

ｌ

ａ

Ｘ

ｙ

ブロック変数hashと keyは、生成されたハッシュと指定されたキーです。

この方法を使 うと、デフォル ト値が必要な場合にブロックが起動されます。

また、ハッシュに代入を行わなければ、同じキーを指定しても再びブロック

が起動されます。

03.fetchメ リッドで指定する
最後は、先ほど紹介したfetchメ ソッドを使う方法です。Hash.newにデフ

ォル ト値やブロックを指定していた場合でも、fetchメ ソッドの第2引数の

値が優先されます。

h = Hash.new do lhash, keyl
hashIkeY] = key.upcase

end

p h. fetch("x", " (undef) ") X=> " (undef) "

あるオブジェクトをキーや
値として持つか調べる

Oλ .key?(たιッ)
λ.has_key?(ルθッ)
λ.include?(■θツ)
λ.men』Der?(■ιッ)

ハッシュが、あるオブジェクトをキーとして持っているかどうかを調べる

ためのメソッドです。4つ ありますが、動作と使い方は一緒です。どれか1つ

に統一してもよいでしょうし、使い方によっていくつかを使い分けてもよい

でしょう。

C
|
|

331

15.4 あるオブジェクトをキーや値として持つか調べる
:

15。4

第15章| ハッシュ〈Hash)ク ラス

ハッシュカがキーたのを持っているときにはtrueを、持っていないときに

はfalseを返します。

h=
ph
ph
ph
ph

{
nan->nbn, "Cr=>r'dr }

key?("a") #-> true
has-key?("a") #=> true
include?("2") #=> false
nember? ("2") #=> false

Oλ .value?(ッαJ“ι)
み.has_value?(ッαJ“θ)

あるオブジェクトを値として持っているかを調べるためのメソッドです。

keys?、 has_keys?メ ソッドのキーたりの部分が値ッα′形になっただけで、使

い方は同じです。

ハッシュ″が値ッα′
“
′を持っているときにはtrueを、持っていないときに

はfalseを返します。

h - {ua'=>,bu, ucu->ud,}

P h.value? ("b") #=> true
p h.has-va1ue?("z") #=> false

ハッシュの大きさを調べる

(E)λ osize

λ。length
ハッシュの大きさ、つまり登録されているキーの数を調べるには、length

メソッドまたはsizeメ ソッドを使います。

囁。...1,2

15.6 キーと値を削除する
:

h = { "a"=>"b', 'c'=>"d" }

p h.length #=> 2

p h.size *=> 2

C)λ oolmpty?

大きさが0、 つまり何もキーが登録されていないかどうかを調べるには、

empty?メ ソッドを使います。

h = {"a"=>"b', 'c'=>"d"}
p h.empty? #=> false
h2 = Hash.new

p h2.empty? #=> true

h=(‖ R・ =>‖ Ruby“)
p h.delete(‖ P〕:){lkeyl :ino 十{key}.〕 i〕

キーと値を削除する

すでに登録されているキーと値のペアを取り除くことも、配列と同様にで

きます。

(])λ odelete(たθッ)

キーを指定して削除するにはdeleteメ ソッドを使います。

h=〔 “R‖ =>‖ Ruby‖ }
p h[‖ R‖] 十二> lIRuby‖

h.delete(・ R・)

ph[‖ R‖ 〕 十=> nil

また、deleteメ ソッドは引数にブロックを取ることができます。ブロック

を指定すると、キーが存在しなかった場合、ブロックの実行結果を返します。

*=>'no P."

333

:第 15章 ハッシュ(Hash)クラス

O λedelete_if(レリ′″JI・・・}
れrejeCt:{|たり′″JI・・・ }
条件を与えて、その条件に当てはまるものだけ削除したい場合には、

delete_ifメ ソッドを使います。

h = {‖ R"=>‖ Ruibyl:′ :IP"=>‖ Perl:|〕

ph.deletヽ if〔 lkey′ valuel key==‖ P‖ }+=>PIR:'=>'IRuby“ }

また、reject!メ ソッドも、delete_ifメ ソッドと同じように使えますが、

削除の条件に当てはまるものがなかったときの戻り値が異なります。

delete_ifメ ソッドでは元のハッシュを返す一方、reject!メ ソッドは

nilを返します。

h = (::R‖ =>‖ Ruby::′ ::P'l=>‖ Perll:〕

ph.delettif〔 lkey,valuel key==‖ L‖ }
+=> (l!R‖ =>1:Rubyll, ・P‖ =>‖ Perlll}

p h.reject!〔 lkey′ valuel key == :lL‖ } 十三> nil

ハッシュを初期化する

()あ .clear

一度使ったハッシュを空にするには、clearメ ソッドを使います。

h = {"a,=>"b", ncn->trd"}

h. clear
p h.size *=> 0

334

これは、

1 5.? t\".t 9 t 2.+Dffil1i 6 ..

h = Hash.new

と、もう一度新しいハッシュを作り、代入するのに似ています。実際、hを利

用するところが1カ所だけなら、どちらを使っても同じ結果になります。

しかし、hのハッシュを別の変数が参照している場合、結果が異なります。

次の2つの例を見て、結果を比べてみてください (図 15.1)。

【例 1】

h =〔 ‖kl‖ =>‖ vl:i}

g=h
hoclear

pg 十二>{)

【例 2】

h={‖ kl・ =>‖ Vl‖)
g=h
h = Hash.new

p g l=>(‖ kl‖ =>‖ vl・ }

【例1】 【例2】

C

{ilkl:'=>"Vl‖ }

h = Hash.new

{ "kl "=>"v1 " }

⑭m例 1と例2の違い

335

「

~■~~¬

Ll■里劃

h

:第 15章 ハッシュ(‖ash)ク ラス

例1では、hoclearに よってhが参照しているハッシュそのものをクリア

しています。そのため、gが参照しているハッシュも、クリアされたハッシュ

になります。gと hは同じハッシュを参照しているままです。

一方、例 2では、hに新しいオブジェクトを代入しています。そのため、gが

参照しているハッシュは、そのままの形で残ります。つまり、gと hが参照し

ているハッシュは別のものになります。

メソッドは、変数に対してではなく、変数が参照しているオブジェクトに

対して操作を行うことに注意してください。

●・015ユ1 2つのキーがあるハッシュを扱う
ハッシュの値がハッシュになっている、いわゆる「ハッシュのハッシュ」も、

配列での「配列の配列」と同じように使うことができます。

table = {"A"=>inan=>trxtr, "b'=>uY'},
trBn->{ {ai->"vtr , ,,btr=>nwn } }

p tablet"A"I t"a"I fi=> 'x'
p tablelrgrI ['a'] #=> "v"

この例では、tableと いうハッシュの値が、さらにハッシュになっていま

す。そのため、[‖ A‖][“ a‖]と いうように、2つのキーを並べて、値を取り出せ

ています。

2つのハッシュを合わせる

2つのハッシュを組み合わせて新しいハッシュを作るには、Hash+mergeを

使います。

p ({"a',=>,,x"}.merge({"b"=>"y"})) #-> {'a'=>'x", "b"=>"y"}

Hash+merge!は Hash‖mergeを破壊的にしたメソッドで、レシーバになる

ハッシュを更新します。Hash+mergelの 別名としてHash‖ updateも 同じよ

うに使えます。

¬

336

応用例 :単語数を数える

ハッシュを使うと簡単にプログラミングできる例を挙げます。List 15.1は 、

1つのテキストファイルに現れる単語を集計し、出現回数ナII目に表示するプロ

グラムです。サ1頂番に見ていきましょう。

tist CEID word-count.rb

1:十 単語数のカウント

2: counts = Hash.newく 0)

3:

4:十 単語の集計

5:File.openは GV[01)do lfl
6i f.eacLline do llinel

7: words ・ line.split

8: words.each do lwordl

9: COunts[Word]十二 1

10: end

ll: end

12: end

13:

14:十 結果のソート

15:sorted=counts.sort♪ y{lcl c[1〕

16:

17:+結果の出力
18:sorted.each do l"rd′ countl

191 puts :i+{word}: 十(count}‖

201 end

まず、2行 日で出現回数を記録するハッシュ countsを作ります。countsは、

キーが単語、値がその単語が出現した回数を表 します。キーがない場合、出現

回数が0回なので、値が0になるようにデフォル ト値を設定しておきます。

6行 日から11行 日までの繰り返しでは、指定されたファイルを読み込んで、

それを単語単位に分割し、それぞれの単語ごとに集計します。

6行 日のeach_lineメ ソッドで入力を読み込み、変数 lineに代入します。

C

15.9 応用例 :単語数を数える
:

.15。

9】

337

第 15章 ハッシュ(Hash)ク ラス

続く7行 日では、変数lineを splitメ ソッドで分割し、単語単位の配列にして、

変数wordsに代入します。

8行 日からの繰り返しでは、このwordsに対して、eachメ ソッドを使って

登録されている単語を1つずつ取り出します。そして、それぞれの単語をキー

にして、countsか ら出現回数を取り出し、+1し ます。このHashオ ブジェクト

にはデフォル ト値を指定してあるので、初出の単語であっても0を取 り出す

ことができるのです。

15行 日で出現回数順に単語をソー トして、18行 日からの繰り返しで結果を

出力します。

ここでのポイントは整列の際に「c[1]」 というように配列の2番 目の要素

を使っていることです。Hashを イテレータで処理すると、各要素がキーと値

の配列として取り出されるため、この場合の配列は、

[単語′出現回数]

という形になっています。つまり、c[0]で単語、c[1]で出現回数を示すこと

になります。そこで、sort_byメ ソッドでc[11を比較すれば、出現回数順に

並べ替えられるというわけです。

18行 日のeachメ ソッドでは、並べ替えが終わったハッシュを、さらに1つ

ずつ取り出します。そして、18行 日で単語と出現回数を出力するわけです。で

は、実際にこのプログラムを使ってみましょう。Rubyに同梱されているファ

イルREADME.mdの 単語の出現数を調べてみます。

> ruby word_ ount.rb README.md

十: 1

Wihat i s: 1

interpreted: 1

scripting: 1

Ruby: 11

of: 11

you: 11

and: 14

to: 26

*: 26

the: 27

338

C
キーに使うオブジェクトの注意点

数値や自分で作ったクラスなどのオブジェク トをハッシュのキーに使うと

きの注意点を挙げておきます。さっそくですが、試 しに、数値をキーにしたハッ

シュを作ってみます。

h = Hash.new

nl=1
n2=1.0
p nl == n2

h inl]= :leXists

p h[nl]

ph[n2]

#=> true

十=> !〔 exists.:i

十二> nil

nlを キーとして格納した値はnlを使って取り出すことができますが、値と

してはnlと 同一であるはずのn2を指定しても取り出すことができません。n2

をキーにした場合、キーをうまく見つけることができないため、デフォル ト値

であるnilが返ってきてしまいます。

ハッシュの内部では、ハッシュから値を取り出すときに指定するキーを、ハ

ッシュに値を格納したときに指定したキーと比較して、一致しているかどうか

で判定します。このとき、キー同士が一致するかどうかの判断はキー自身の挙

動によって決まります。具体的には2つのキー、keylと key2に ついて、keyl.

hashと key2.hashが 同じ正数値を返し、keyl.eql?(key2)が trueになる場合

に2つのキーが一致したと見なされます。

例のように、「==」 で比較した場合には同一となる場合でも、htegerと
Floatと いう異なるクラスに属するオブジェクトの場合には「同じキー」とは

判断できないようになっているので、期待とは違う結果になってしまうという

わけです。

339

15.9 応用例 :単語数を数える
:

これによると、一番多い単語は「the」 で、27回出現していることがわかり

ます。

|

第 15章 ハッシュ(HaSh)ク ラス

練習問題

(1)曜日を表す英語と日本語との対応を表すハッシュwdayを定義してくだ

さい。

′

″

′

p wday[:sunday]
p wday[:monday]
p wday[:saturday]

十=> 1:日 曜日
‖

+=>“ 月曜日‖

|=>‖ 土曜日・

(2)ハ ッシュのメソッドを使って、(1)のハッシュwdayのペアの数を数え

てください。

(3)eachメ ソッドと (1)のハッシュwdayを使って、

「sunday」 は日曜日のことです。

「monday」 は月曜日のことです。

という文字列を出力させてください。

(4)ノ ッヽシュには、配列の2wのようなものがありません。そこで、空白とタ

ブと改行 (正規表現で定義するなら「ハs十 /」)で区切られた文字列をハ

ッシュに変換するメソッドstr2hashを 定義してください。

p str2hash(‖ bule青 white自 nヽred赤 ‖),

十=>{‖ blue‖ =>・ 青 "′ ‖white‖ =>‖ 白‖′ ‖red‖ 二>‖ 赤・}

※解答は、サポー トページ (htps://tanoshiiruby github.io/6/answer/)で 公開 しています。

340

dハ
第 10章

■■口■

止)ク

Rubyは「すべてがオブジェクト」というプログラミング言語なので、正規

表現もオブジェクトになっています。この正規表現オブジェクトが所属する

クラスが、Regexpク ラスです。

●正規表現の書き方と使い方

正規表現についての概説です。

●正規表現のパターンとマッチング

正規表現に使われるメタ文字と、それを使ったマッチングの実際につ

いて説明します。

●メタ文字をエスケープする

正規表現のメタ文字そのものにマッチさせる方法を説明します。

●正規表現のオプション

正規表現で設定できるいくつかのオプションについて説明します。

oキ ャプチャ

正規表現のマッチングのもう1つ の役割、キャプチャについて説明し

ます。

●正規表現を使うメソッド

引数に正規表現を使うメソッドについて説明します。

●正規表現の例

正規表現の例として、URLにマッチする正規表現を紹介します。

ロ

341

第 16章 正規表現(Regexp)ク ラス

正規表現について

ここでは、正規表現について、概要と作り方を紹介します。

0)。
e16。

1。1 正規表現の書き方と使い方
「2.3 正規表現」(p.59)でも述べたように、正規表現とは「文字列」とマッ

チングを行う「パターン」の記法のことです。正規表現で書かれたパターンを

保持するオブジェクト(Regexpク ラスのオブジェクト)は「正規表現オブジ

ェクト」あるいは単に「正規表現」と呼びます。

これまでは単純な文字によるパターンしか使いませんでしたが、もっと複

雑なパターン、たとえば「1文字目はAからDまでのアルファベットのうちの

どれか、2文字目以降は数字が続くパターン」といったものも簡単に書けます

(このパターンは、「/[A― D]ヽ d+/」 となります)。

とはいえ、何でも書けるわけではありません。たとえば、「なんとなくRuby

に似た字面の文字列」というような漠然としたパターンを作ることはできま

せん。「Rか ら始まってyで終わる、4文字の文字列」といったように、具体的

に指定する必要があります (このパターンは「/R..y/」 となります)。

このように、正規表現を使いこなせるようになるには、正規表現のパター

ンの書き方を理解する必要があります。そこでこの章では、具体的な正規表

現の使い方を学ぶ前に、さまざまなパターンの書き方について説明します。

そのあとで、Rubyでの正規表現の使い方を説明します。

●・。16■2 正規表現オブジエクトの作り方
正規表現を作るためには、正規表現 として扱いたいパターンを表 した文字

列を、「//」 で囲ってやります。直接プログラム中にパターンとして記述する

には、これが一番てっとり早いでしょう。

これとは別に、クラスメソッドからオブジェクトを作る方法「Regexp.

new(s″)」 を使うこともできます。先に文字列オブジェクトs″があって、その

文字列をもとに正規表現を作る場合などは、こちらの方法がよいでしょう。

つ
‘
４

．

ヽ
Ｊ

re = Regexp.new("Ruby")

16.2 正規表現のパターンとマッチング
:

また、配列や文字列オブジェクトの場合と同様、スを使った特殊な表記で作

る方法もあります。正規表現の場合は「そr」 を使います。これは、正規表現中

に「/」 の文字を使いたい場合に便利です。構文の例を次に示します。

%r(パターン)
%rく パターン >

%rlパターン
|

%r{パターン }

正規表現のパタ…ンと
マツチング

C
正規表現の作り方を覚えたところで、いよいよマッチングの説明に入りま

しょう。正規表現には、「=～」というメソッドがあります。これは、正規表現と

文字列がマッチするかどうかを調べるためのメソッドで、

正規表現 目
″
文字列

という形で使います。マッチしない場合にはnilを、マッチする場合には、文

字列の中で、そのマッチする文字列が始まる文字の位置を返します。

「第5章 条件判断」で説明したように、nilと falseが偽、それ以外が真、
と解釈されるので、マッチしたかどうかで処理を変えるには、次のように書

きます。

if正規表現 ="文字列
マッチした場合の処理

else

マッチ しなかった場合の処理

end

真と偽が逆になる「!～」というメソッドもあります。

蟷蹄 16。2.1 通常の文字によるマツチング
まず、簡単なパターンとのマッチングから行います (表 16.1)。 正規表現に

よるパターンが英数字のみで書かれている場合、単純に文字列の中にその文

字が含まれているかどうかでマッチする。しないを判断します (以降の表で

は、マッチしている部分を>こ のよう|にく表現します)。

343

16.2

:第 16章 正規表現くRegexp)ク ラス

目m通 常の文字を使った例
パターン 文字列 マッチする部分

/ABC/ 1'ABC‖ ‖>ABCく

/ABC/ ''ABCDEFt' ll)ABCく DEF'1

/ABC/ ・123ABC'1 1123)ABCく ・

/ABC/ ''AlB2C3il (マ ッチしない)

/ABC/ ''ABI: (マ ッチ しない)

/ABC/ llabc'1
(マ ッチしない)

0)・・16.2。2 行頭と行末とのマツチング
先ほどの例のように、/ABC/と いうパターンは、ABCを含む文字列ならど

んな文字列でもマッチします。では、「ABC」 という文字列そのものだけにマ

ッチする、つまり「‖ABC‖ 」という文字列にはマッチしても、「・012ABC‖ 」や

「‖ABCDEF‖ 」にはマッチしないようなパターンを書くにはどうすればよいで

しょうか? これには、「/人ABCS/」 というパターンを使います。
「∧」や「s」 という文字は、特殊な意味を持つ文字です。「

∧
」や「S」 という文

字とマッチするものではありません。このような特殊な文字を、メタ文字と

いいます。「^」「S」 以外のメタ文字については、あとの節で順に紹介します。

「∧」は「行頭とマッチするパターン」、「s」 は「行末とマッチするパターン」

を表します (表 16.2)。 つまり、「/^ABC/」 というパターンは、行の先頭から

「ABC」 という文字が続く文字列にマッチし、また「/ABCS/」 というパターンは、

行の末尾が「ABC」 で終わる文字列にマッチします。

目硼ロコ川^」 と「s」 を使った例

パターン 文字列 マッチする部分

/^ABCS/ lIABC II ‖>ABCく '1

/^ABCS/ lIABCDEF'1
(マ ッチ しない)

/^ABCS/ ''12 3ABCII (マ ッチしない)

/^ABC/ ''ABCl'
|'>ABCく

/入ABC/ lIABCDEF'I ')eac{lrr''
/^ABC/ 11123ABC"

(マ ッチしない)

/ABCS/ lABC‖ 11卜 ABCく ‖

/ABCS/ ・ABCDEF (マ ッチしない)

/ABCS/ 123A:BC II ・123>ABCく

行頭や行末は文字ではないので、「行頭にマッチする」という表現には少し

違和感を覚えるかもしれませんが、たびたび使われるので慣れてください。

344

「

~~~



行頭と行末

ｌ

　

Ｂ

Ｏ

　

Ａ

「^」 と「S」がマッチするものは、「行頭」「行末」であって、「文字列の先頭」や「文

字列の末尾」ではありません。文字列の先頭にマッチするメタ文字は「 Aヽ」、文

字列の末尾にマッチするメタ文字は「 zヽ」 です。

これはどう異なるのでしょうか? Rubyの文字列、すなわちStringオブジ

ェクトでは、「行」というのは改行文字 (ヽ n)で区切られた文字列にあたります。

そ の ため、「 /^ABC/」 とい うパ ター ンは、「・012ヽ nABC‖ 」とい う文 字 列 に もマ ッ

チします。これはつまり、

という、2行にわたる文字列に対しても、2行日の「ABC」 が行の先頭から始まっ

ているためにマッチする、ということです。

なぜ行頭・行末と、文字列の先頭・末尾が別々に用意されているのでしょう

か ? これには歴史的な理由があります。
もともと、正規表現は、行ごとに分かれた文字列にマッチさせるものであっ

て、複数の行にまたがった文字列にマッチさせることがありませんでした。そ

のため、「行」と「文字列」を同じものとして考えることができたのです。

しかし、正規表現が広く使われるようになると、複数行の文字列にもマッチ

させたい、という要求が出てきました。しかし、その場合に^と sを文字列の先

頭・末尾にマッチさせることにすると混乱してしまいます。そのため、文字列の

先頭・末尾にマッチさせるためのメタ文字が、別に発明されたのでした。

なお、「 zヽ」 に似た表現として「 Zヽ」がありますが、こちらは挙動が異なります。

「 Zヽ」 も文字列の末尾にマッチするメタ文字ですが、「文字列の末尾の文字が改

行文字の場合、改行の前にもマッチする」という特徴があります。

p "abc\n".gsub(/\z/, " ! ") #=> "abc\n! "

p "abc\n".gsub(/\Z/, "1") #=> "abcl\nl"

通常は「 Zヽ」 を使う必要はないと思われます。「 zヽ」 を使いましょう。

α

345

16.2 正規表現のパターンとマッチング :



第 16章 正規表現 (Regexp)クラス

0)・
016.2。3 マツチさせたい文字を範囲で指定する
「ABCの 3つの文字のうちのどれか1文字」というような条件を指定したい

ことがあります。このように、いくつかの文字のうち、その1つ を指定したい

場合には、「[]」 で囲みます。

● [コ31   ……Aま たは B
● [鵜C] ……Aま たは Bま たはC
O[CBA] ……上と同じ ([]の 中の順番は関係ありません )
● [012,BC]…… 0、 1、 2、 A、 B、 Cの どれかの文字

でも、このような書き方で「Aか らZま でのすべてのアルファベット」とい

ったような文字を指定するのは大変です。そのため、このようなひとかたま

りの文字の範囲を指定するための書き方として、「‖」の中では「―」という文

字を使えます。

● [A‐ Z]

● [a― z]

● [0-9]

● :A― Za― z]

● [A― Za― z_]

Aか らZまでの、アルファベットの大文字全部

aか らzま での、アルファベットの小文字全部

0か ら9ま での、数字全部

Aか らZま でと、aからzま でのアルファベット全部

アルファベット全部と「_」

ψ
文字の範囲を「文字のクラス」といいます。ここでいう「クラス」とは、オブ

ジェクト指向で使っている「クラス」という単語とは異なるので注意してく

ださい。

「―」は、「 []」 の中の最初か最後の文字として使うと、単なる「―」の文字に

なります。逆にいえば、文字のクラスを意味する「―」ではなく、単なる文字と

しての「―」を表したいときは、最初か最後に書かなければなりません。

● [A¨Za-20-9_― ]… …アルファベットと数字全部と「_」 と「―」

また、「[]」 の中で先頭文字として「∧」を使うと、「そこで指定されたもの

以外の文字」を表します。

0[AABC] ・……A、 B、 C以外の文字
● [^a― zA… Z]・ ……aか らzと Aか らZ(アルファベット)以外の文字

346



パターン 文字列 マッチする部分

/[ABC]/ l!B‖ ''>Bく '

/[ABC〕 /
‖BCD‖ )s{cy

/[ABC]/ 111231'
(マ ッチしない)

/a[A13C]c/ ''aBc'' '1>aBcく ll

/a[賜CiC/ " LaBcDe " "1 ) aBc { le"
/a[ABC]c/ abc (マ ッチしない)

/[^ABC1/ :'1 li >1く '1

/[^ABC]/ ‖
AI` (マ ッチしない)

/a[人 A― B]c/ " aBcabc "
laBc>abcく

'I

轟0  「[]」 を複数使った例
パターン 文字列

/[ABC][AB]/ ‖AB" 11卜 ABく '1

/[ABC][AB1/ l'AA‖ ‖>AAく '|

/[ABC][AB]/ ‖CA l'卜 CAく ‖

/[ABC][AB〕 / 'lCCCCA' "CCC > CA< '
/[ABC][AB1/ 'xCBx" ‖x>cBく xl
/[ABC][AB]/ ・CC‖ (マ ッチしない )

/[ABC][AB〕 /
‖CxAxll (マ ッチしない )

/1ABC][AB]/ :'C‖
(マ ッチしない )

/10-9][A― Z]/ '10A:1
11>OAく

'1

/10-91〔 A― Z]/
11000AAA・ ・00>OAく AA・

/[^A― Z][A― Z]/
1'lA2B3C‖ ‖>lAく 2B3C‖

/[人 0_9][人 A― Z〕 / ''lA2B3C‖ ・1>A2く B3C・

C

ψ
Unicode文字プロパティという文字の属性を使った文字クラス指定もありま

す。たとえば、ひらがな全部、カタカナ全部、漢字全部にマッチするパターン

は、それぞれ pヽ{Hiragana}、 pヽ{Katakana}、 pヽ{Han}に なります。

蝙薇 16.2.4 任意の文字とのマツチング
さらに、「どんな文字でもいいから1文字にマッチする」というパターンを

作りたいことがあります。そのような場合には、「.」 (ピリオド、ドット)とい

うメタ文字を使います。

347

16.2 正規表現のパターンとマッチング :

実際にマッチングを行った場合の結果です (表 16.3)。 1つのパターンの中

で、複数の「 []」 を使うこともできます (表 16.4)。

目0  「[]」 を使った例

マッチする部分



:第 16章 正規表現 (Regexp)ク ラス

● .・……任意の1文字とマッチ

実際にマッチさせると、表 16.5のようになります。

日0  「.」 を使った例
パターン 文字列 マッチする部分

/A.C/ ‖ABCl' 1>ABCく ‖

/A.C/ 1'AつくC'' 1)AxCく
''

/A,C/ l'012A3C45611 ・012>A3Cく 456‖
/A.C/ 1'AC 11

(マ ッチしない )

/A.C/ lIABBCt'
(マ ッチしない )

/A.C/ ‖abcI (マ ッチしない )

/aaa. . .1 "00 )aaabcd{ e"

/aaa.. . / " aaabb " (マ ッチしない )

ところで、「任意の文字にマッチできる文字なんて、いったい何に使うんだ

ろう?」 と思われる方もいるかもしれません。確かに何にでもマッチするな

ら、わぎわぎ指定してもうれしいことがなさそうです。

このメタ文字は、次のような場合に使われます。

o文字数を指定したいときに利用する
/∧ ...S/と いうパターンは、3文字の行にマッチします。

0あとで説明する「★」というメタ文字と組み合わせて利用する
これは、「16.2.6 繰り返し」(p.350)で説明します。

0)0中 16。2。5 バックスラッシュを使つたパターン
文字列の場合と同様に、改行や空白といった文字を表す特殊なパターンを

「 」ヽ十「アルファベット1文字」で表現することができます。

〇 sヽ

空白文字を表します。空白 (Ox20)、 タブ、改行文字、改ページ文字とマッチ

します (表 16.6)。

目

“

  「、s」 を使った例

パターン 文字列 マッチする部分

/ABCヽ sDEF/ l(ABC DEFlt 11卜 ABC DEFく 'I

/ABC＼ sDEF/ lI ABCヽ tDEF!1 ll卜 ABCヽ tDEFく )1

/ABC＼ sDEF/ I AIBCDEF
(マ ッチしない)

" 00aaabcde "

348



16.2 正規表現のパターンとマッチング :

〇 dヽ

Oか ら9ま での数字とマッチします (表 16.7)。

困0  「、d」 を使った例

〇 wヽ
英数字にマッチします (表 16.8)。

日m  「、w」 を使った例

〇 Aヽ
文字列の先頭にマッチします (表 16.9)。

目0  「 Aヽ」 を使った例

Oヽz

文字列の末尾にマッチします (表 16.10)。

11012-345611 'I>012-3456く 1ハ dヽ dヽ d― dヽヽ dヽ dヽ d/

ハ dヽ dヽ d― dヽヽ dヽ dヽ d/ :101234-0123451' ・01)234-0123く 45'

/＼ dヽ dヽ d― dヽヽ dヽ dヽ d/
1'ABC― DEFGll (マ ッチしない )

ハdヽ dヽ d― dヽ＼ dヽ dヽ d/ '1012-2111 (マ ッチしない )

ハwヽwヽw/ ‖ABC“ ‖>ABCIく 1'

ハwヽwヽw/ ‖abc・ 11卜 abOく l'

ハw＼ wヽW/ "0121: 11)012く |:

ハwヽwヽw/ ‖AB C‖ (マ ッチしない )

/＼ wヽwヽw/ lI AB＼
nC'' (マ ッチしない )

/＼想 BC/ ・ABCt' ll>ABCく
'1

/＼ AJゝBC/ “ABCDEF・
Ii>ABC●

“

DEF'1

ハAABC/ !1012ABCil
(マ ッチしない )

ハAABC/ ・012ヽ nABC‖ (マ ッチしない )

349

パターン 文字列 マッチする部分

パターン 文字列 ,マッチする部分

パターン 文字列 マッチする部分



:第 16章 正規表現くRegexp)ク ラス

自CコD「、z」 を使った例
パターン 文字列 マッチする部分

/ABCヽ z/
:'ABCI 11卜 ABCく ||

/ABC＼ z/ :1012ABC'1 1012>ABCく ‖

/ABCヽ z/ ABCDEF (マ ッチしない )

/ABCヽ z/ l'012＼ nABC‖ ・012ヽn>ABCく・
/ABC＼ z/ ''ABC＼ nDEF‖ (マ ッチしない )

C)メタ文字を文字として扱う

また、「 」ヽのあとに「^」 や「S」「 [」 などの英数字以外のメタ文字を書くこ

とで、その文字はメタ文字としての機能ではなく、その文字そのものとして

マッチできるようになります (表 16.11)。

目m  「ヽ 」を使った例
パターン 文字列 マッチする部分

/ABCヽ [/
‖朋 CIi' 〕>ABC[く '1

ハ ^ABC/ 'lABC'1 (マ ッチしない )

/＼
入ABC/ 11012^ABC'l ・012>^ABCく ‖

●・・16.2.6繰り返し
同じ文字や単語の繰り返しにマッチさせたいことがあります。たとえば、

「‖Subject:‖ という文字列のあとに、いくつか空白があって、その後ろに文

字列が並んでいる行にマッチさせる」というような場合です (これは、電子メ

ールの件名 (サブジェクト)にマッチさせるためのパターンです)。

繰り返しのパターンを表すために、次のメタ文字が用意されています。

● *

● +

● ?

● {″ }

● {“′1“ }

0回以上の繰り返し

1回以上の繰り返し

0回 または1回の繰 り返 し

“
回の繰り返し

れ～脇回の繰り返し

まず、「0回以上の繰り返し」を表す「*」 について見てみましょう (表

16.12)。 これは、その前の文字が0個以上、つまり、「1個以上ある場合」にも、「1

個もない場合」にもマッチするパターンです。

350



16.2 正規表現のパターンとマッチング

目CコD「 *」 を使った例
パターン 文字,

/A*/ ':Al'
‖>Aく ‖

/A*/ ・AAAAAA・ 1>AAAAAAく ‖

/A*/

/A*/ iIBBB'l " ){eee'
/A*C/ ll鳳

C‖ ・)AAACく ''

/A*C/ 'I BC il ・B>Cく ‖

/A*C/ ‖AAABIi (マ ッチしない)

/AAA*C/ ‖AAC'1 ‖>AAё く“

/皿 *C/ ‖
AC Il (マ ッチしない)

/A.*C/ AB012C・ t'>AB012Cく l)

/A.*C/ 1lAB CDll '>AB Cく D・

/A.*C/ iIACDE" (1)ACく DEI'

「*」 を使うと、電子メールの件名のパターンは、表16.13の ように書けます。

自lm  「*」 を使った例(その2)

これに対し、「+」 は、「その前の文字が1個以上ある場合」にのみマッチし

ます (表 16.14)。

目ICコD「 +」 を使った例

パターン 文字列 マッチする部分

/A+/ ‖
A:l '1卜 Aく ‖

/A+/ ・AAAAAA'1 ・>AλAAAAく ‖

/A十 / (マ ッチしない)

/A+/ 'IBBB・ (マ ッチしない)

/A+C/ 1'皿
C II

‖>AAACく '

/A+C/ ‖BCl' (マ ッチしない)

/A+C/ ‖AAAB‖ (マ ッチしない)

/AAA+C/ ‖AAC・ (マ ッチしない)

/AAA+C/ 'AC・ (マ ッチしない)

/A.+C/ 1'AB012C:I >AB012Cく

/A.+C/ ‖AB CD‖ 11>AB Cく
D・

/A.+C/ ‖ACDE・ (マ ッチしない)

C

パターン 文字列 マッチする部分
/∧ SubjeCt:ヽ S*.*S/ Subject: foo" il>Subject: fooく 11

/^SubjeCt:ヽ S*.*S/ "Subject: Re: foo" ) Subject: Re: foo .(

/^SubjeCt:ヽ S*.*S/ "Subject:Re^2 foo" 11卜 Subject:Re^2 fooく 11

/∧ SubjeCt:ヽ S*.*S/ "in Subject:Re foo" (マ ッチしない )

351

マッチする部分



:第 16章 正規表現 (Regexp)ク ラス

「?」 は、「その前の文字が0個か、1個ある場合」にのみマッチします (表

16.15)。

日m?」 を使った例

パターン 文字列 マッチする部分

/AAA?C/ ‖皿 C'' ・ )AAACく '

/皿つC/ ‖AAC" 1'>AACく
''

/諄寝?C/ ‖AC‖ (マ ッチしない)

/A.'C/ 'IACDE!' " )ec{la'
/A.?C/ ‖ABCDE11 tl卜 畑 Cく DEl'

/A.?C/ ・AB012CII (マ ッチしない)

/A.?C/ ‖AB CDll (マ ッチしない)

さらに細かい回数を指定するには、正規表現の中で (}を使います。ちょう

ど3回繰り返すなら〔3}、 3回以上なら(3′ }、 3回以下なら{′ 3}、 3回から5回

までなら{3′ 5)と 書きます。

⊂五D「 ()」 を使った例

パターン 文字列 マッチする部分

/へA(3)S/ l'All
(マ ッチしない)

/^A{3)/ ・AAAAA・ ‖>AAAく AA

/^A(3′ }S/ ・AAAAA'1 ・>AAAAAく ||

/人 A(′ 3)S/ |IA'l ‖>Aく l'

/^A{′ 3)/ ・AAAAA・ '1>AAAく AA・

/^A(3′ 5〕 S/
‖>AAAく ‖

/^A{3.5}S/ ・AA皿 ''

tl卜 AAAAAく '

/^A(3′ 5)/ lAAAAAAl( ‖>AAAAAく Al

0)・・16。 2。7 最短マッチ
0回以上の繰り返しを表す「*」 と1回以上の繰り返しを表す「+」 は、可能な

限り長い部分にマッチします。逆に、マッチする可能性のある部分のうち一

番短い部分にマッチさせる場合は、次のメタ文字を使います。

。 *?……0回以上の繰り返 しのうち最短の部分

0+?…… 1回以上の繰り返 しのうち最短の部分

352

「?」 のつかない「*」 や「+」 との違いを比べてください(表 16.17)。

1'AAA ll



目C=口)「 *」 と「+」 と「*?」 と「+?」 を使った例
パターン 文字列

A.*B ‖ABCDABCDABCD:' >ABCDABCDABく CD
A.*C 'lABCDABCDABCD・ >ABCDABCDABCく D
A.*?B ‖ABCDABCDABCD・ ) AB ( cnesclaecl
A.*?C |'ABCDABCDABCD・ > ABC < DABCDABCD

A.十 B "ABCDABCDABCD‖ >ABCDABCDABく CD
A.+C lIABCDABCDABCDll >ABCDABCDABCく D
A.+?B lIABCDABCDABCDll > ABCDAB { cneecl
A.+?C '1′ BヽCDABCDABCD'1 > ABC < DABCDABCD

0薔・e16.2。8 「()」 と繰り返し
先ほどの例は1文字単位での繰り返しでしたが、「 ()」 を使うと、複数の文

字列の繰り返しを表現できるようになります (表 16.18)。

鐵回ロロロ ()」 を使つた例

|、 パターン

/^(ABC)*S/

文字列

ABC

マッチする部分 .
・>ABCく ll

/^(ABC)*S/ ‖>く ‖

/∧ (ABC)*S/ 1:ABCABCil 11卜 ABCABCく 11

/∧ (ABC)*S/ "ABCABCABI (マ ッチしない )

/^(ABC)+S/ ‖ABC‖ ‖>ABCく ll

/∧ (朋C)+S/ (マ ッチしない )

/∧ (ABC)+S/ lIABCABC:' '1>ABCABCく '|

/^(畑C)十 S/ 11ABCABCAB‖
(マ ッチしない )

/^(ABC)?S/ ・ABCI〔 ''卜 ABCく '1

/∧ (ABC)?S/ ‖>く |〕

/^(ABC)?S/ |'ABCABCII
(マ ッチしない )

/^(ABC)?S/ 1'ABCABCABI'
(マ ッチしない )

●・ 0]6。2。9 選択
「
|」 を使って、いくつかの候補の中からどれか1つに当てはまるものにマ

ッチする、というパターンを書くこともできます (表 16.19)。

C

353

16.2 正規表現のパターンとマッチング
:

マッチする部分



パターン 文字列 マッチする部分

/"(ABCIDET)$/ ・ABC・ ''>ABCく ‖

i"(ABCIDEF)$/ ''DEFl' '1>DEFく il

/^(ABCIDEF)$/ ‖
AB・ (マ ッチしない )

/"(ABCIDEF)$/ lIABCDEF'I
(マ ッチしない )

/^(肥 ICD)+S/ 'IABCD'1
‖>ABCDく ll

/^ (AB 
I cD) +$/ (マ ッチしない )

/" (AB 
I cD) +$/ llABCABC 11

(マ ッチしない )

/^(ABlcD)+$/ lIABCABCABI'
(マ ッチしない )

:第 16章 正規表現 (Regexp)クラス

目回 |」 を使った例

メタ文字をエスケープする

ファイルなどの入力からパターンを受け取って正規表現オブジェクトを作

る場合には、Regexp.newメ ソッドを使います。しかし、入力に含まれる文字

をその文字そのものにマッチさせたい (例えば「*」 を「*」 そのものにマッチ

させたい)と きは個別にメタ文字をエスケープしなければいけません。この

ような場合は、Regexp.escapeメ ソッドまたはRe"xp.quoteメ ソッドを使

います。これらのメソッドは正規表現のメタ文字をエスケープした文字列を

返すので、これをRegexp.newメ ソッドの引数として正規表現オブジェクト

を作成します。

pattern ='a[0]=L+2*3"
regexpl = Regexp.new(pattern)
regexp2 = Regexp. new (Regexp. escape (pattern) )

p regexpl #=> /a[0] =1+2*3/
p regexp2 #=> /a\[0\]=1\+2\*3/
p (regexpl =- "at0l=1+2*3") #=> ni1
p (regexp2 =- "1[Q]=l+lt<1") #=> 0

354



正規表現のオプション

正規表現にはオプションがあります。オプションは、正規表現オブジェク

トの挙動を少し変化させるために使います。

正規表現のオプションを設定するには、「/… /」 という書式の後ろの「/」

に続けて、「/… /im」 といったように指定します。この「i」 や「m」 というのが

オプションです。

オプションの種類には、次のようなものがあります。

○ ユ

アルファベットの大文字と小文字の違いを無視します。文字列が大文字で

あっても小文字であっても、どちらでもマッチするようになります。

C)x
正規表現内の空白と、「#」 の後ろの文字を無視します。このオプションを

指定すれば、「十」を使って正規表現中にコメントが書けるようになります。

C)m
「.」 が改行文字にもマッチするようになります。

str = ::ABCヽ nDEFヽ nGHI‖

p /DEF.GH1/ =～  str   +=> nil

p /DEF,GH1/m =～  str  十=> 4

正規表現のオプションを表 16.20に まとめました。

自IC=璽)正規表現のオプション

α

オプション文字 オプション定数

Regexp::IGNORECASE 大文字小文字を区別しない

X Regexp::EXTENDED パターン内の空白を無視

Regeixp::MULTILINE 複数行マッチ

0 (な し) 式展開は一度のみ行う

16.4 正規表現のオプシ ョン
:

16。41

意味

355



第16章 正規表現 (Regexp)ク ラス

Regexp.newメ ソッドでは、オプション定数を第2引数に指定できます。第

2引数を指定しないときはnilを与えるか、第1引数だけにします。

たとえば、「/Rubyス クリプト/i」 という正規表現は次のように書けます。

Regexp. new (' Ruby 7 ) t) A | ", Reqexp : : IGNORECASE)

また、第2引数に複数のオプションを指定したい場合は「|」 を使います。

「/Rubyス クリプト/im」 という正規表現なら、次のようになります。

Regexp.new("Ruby.x, \J l' ,

Regexp: :IGNORECASE I RCgEXP: :MULT]LINE)

キャプチャ

さて、ここまでは正規表現でのマッチングについて説明してきました。け

れども、正規表現を使ってできることは、単にマッチするかしないかを調べ

るだけではありません。それと同じくらい、あるいはそれ以上に重要なのが、

正規表現によるキャプチャ (後方参照)機能です。

キャプチャというのは、正規表現でマッチした部分の一部を取り出すもの

です。正規表現の中の「()」 で囲まれた部分にマッチした文字列を、slや S2

などといった、

S数字

の形の変数で取り出すことができます。

/(.)(。 )(。 )/ =～
 :labci!

first = Sl

second = S2

third 二 S3
p first   +=> ll a l:

p second  +=> ‖b‖

p third  +=> 1'c‖

356



プチキ ャ16.5

マッチングを行ったときには、マッチするかどうか、マッチするなら何番

目の文字にマッチしたか、ということしかわかりません。キャプチャを使え

ば、「どの部分にマッチしたか」という情報が得られます。そのため、文字列

を簡単に解析したいときにとても役立ちます。

しかし、「16.2.8「 ()」 と繰り返し」で紹介したように、「 ()」 は複数のパ

ターンを1つにまとめる場合にも用いられます。過去に書いたプログラムの

中の正規表現を修正するときに「 ()」 の数を変更すると、本当に参照したい部

分のインデックスまで変更されてしまい、何かと不便な場合があります。そ

のようにキャプチャする必要のないパターンをまとめる場合は、「(?: )」 を

使います。

/(.)(ヽ dヽ d)+(.)/ =～  l'123456‖

p Sl  +=> il l・

p S2  +=> ・45‖

p S3  +=> :16:1

/(。 )(?:ヽ dヽ d)+(。 )/ =～
 l'123456・

p Sl  +=> :ill:

p S2  十三> 〕1611

また、「S数字」以外にも、マッチした結果を保持する変数として「S｀ 」「S&」
「S:」 などがあります。この3つは、それぞれ「マッチした部分より前の文字列」
「マッチした部分そのものの文字列」「マッチした部分より後ろの文字列」と

いう情報を持っています。

この3つについては、例を見てもらうのがてっとり早いでしょう。

/C./ =～  1:1ヽBCDEF‖

p S｀   十二> i:AB‖

p S&  |=> :'CD‖

p Si  l=> ll EF‖

このように、文字列全体を、マッチしている部分とそうでない部分に分け

て、3つの変数に保存しています。

357



:第 16章 正規表現(Regexp)クラス

マッチしたデータはS～ やRegexp.last_matChで 得られます。これは

MatchDataク ラスのオブジェクトになっていて、Slの代わりに S～ [1]、 S｀

の代わりに S～ .pre_matchを使うこともできます。

ψ

正規表現を使うメソッド

文字列のメソッドの中には、正規表現を使うメソッドがいくつもあります。

この中から、特によく使われるsubメ ソッドとgsubメ ソッド、そしてscanメ

ソッドについて説明します。

C)・・16。 6。l subメソッドとgsubメソッド
subと gsubは、文字列中のある部分を、別の文字列に置き換えるためのメ

ソッドです。

subメ ソッドもgsubメ ソッドも、引数を2つ取ります。最初の引数には、マ

ッチさせたいパターンを正規表現として指定します。2番目の引数には、マッ

チした部分と置き換える文字列を書きます。subメ ソッドは最初にマッチし

た部分だけを置き換えますが、gsubメ ソッドはマッチする部分すべてを置き

換えます。

str = "abc def S hi'
p str.sub(/\s+/, ' ") #=> "abc def S hi'
p str.gsub(/\s+/, ' ', #=> "abc def g hi"

「ハ s+/」 という正規表現は、1つ以上の空白文字にマッチするパターンで

す。そのため、このsubメ ソッドとgsubメ ソッドは、それぞれ「空白文字にマ

ッチする部分を、空白1つに変換する」という処理を行います。subでは最初

の「abc」 と「def」 の間の空自のみを置き換える一方、gsubメ ソッドではそ

れ以降の部分の空白文字も、すべて置き換えています。

また、subメ ソッドとgsubメ ソッドは、ブロックを取ることもできます。

この場合、文字列のうち、マッチした部分がブロックに渡ります。ブロックの

中では、その文字列を使って処理を行い、文字列を返します。そのブロックか

ら返された文字列が、元のマッチした部分と置き換えられます。

16.6

358



str = "abracatabra"
nsrr = srr.sub(/.a/) do lmatcneal

"<" + matched.upcase + ">"

‖
abく RA>catabra‖

nsLr = str.gsub( l.a/) do lmatchedl
"<" + matched.upcase + ">"
end

p nstr

end

P nstr #=>

|=> li abく RA>く CA>くTA>bく RA>‖

この例では、「a」 とその前の文字を大文字に変換して、さらに「く>」 で囲っ

ています。

subと gsubに は「 !」 つきのメソッド、sub!と gsub!があります。これらは、

メソッドのレシーバにあたるオブジェクトを、置き換え後の文字列に変更し

ます。

●・・16.6。2 scanメソッド
scanメ ソッドは、gsubメ ソッドとは違ってパターンにマッチした部分を

取り出すだけで、置き換えることはしません。マッチした部分を取り出して、

何らかの処理を行うときに使います (List 16.1)。

1;51rI?fD scanl.rb

,,abracatabra,,.scan(/.a/) do lmatcfredl
p matched

end

> ruby scanl.rb
uran

Ud

urau

実行例

359

16.6 正規表現を使うメソッド :



:第 16章 正規表現(Regexp)ク ラス

また、正規表現の中で「()」 が使われていると、そこにマッチした部分を配

列にして返 します (List 16.2)。

List O scan2.rb

"abracatabra".scan(/ (. ) (a) /) do lmatchedl
p matched

end

なお、ここでブロックの変数を「 ()」 の数だけ並べると、配列ではなくそれ

ぞれの要素を取り出すことができます (List 16.3)。

List m scan3.rb

‖abraCatめ ra・ .SCan(/(。 )(a)/)dO la′ bl

p a+‖ ―・+b

end

ブロックがない場合はマッチした文字列の配列を返します。

ruby scan2.rb

‖
r―a"

‖
c― a‖

‖
t― a li

‖
r― a‖

ruby scan3.rb

360

p "abracatabra".scan(/.a/) #=> ["ra', "cd", 'tu", "ra"1



正規表現の例

正規表現を使った例として、URLのマッチングを考えてみましょう。

まず、「URLを含む行を抽出する」ということを考えてみます。URL全体
を表現する正規表現を作るのは大変ですが、単に「HTTPの URLっぽい文字
列を探す」ということなら、

/https?:ヽハ //

というパターンでマッチングをかける方法もあります。この方法は、手軽な

うえに、かなりの程度確実にマッチしてくれる、という利点があります。

もう少し凝って、「URLの ような文字列のその一部分だけを取り出す」と
いう正規表現も書けます。たとえば、HTTPの URLの中から、サーバのアド
レスを取り出すパターンは、

/httpS?:ヽハ /(1^ヽ /]*)ヽ //

となります。「[^ヽ /]*」 の部分は「/」 を含まない文字の連続を表します。

少 「々/」 が多いので、「%r」 を使うと次のようにすっきりできます。

trlhttps? | / / (1" / )*l / I

これで本当にマッチできるかどうか、試してみましょう(List 16.4)。

Lilt m ur:_match.rb

str = "https : //www.ruby-Lang.org I ja/ "

Srlhttps? : I / (1"/lx)/l =- str
puts "server address: #{$1}'

C

361

16.7 正規表現の例
:



第16章 正規表現 (Regexp)ク ラス

正しくアドレスを取り出すことができました。

さて、こうなると、サーバのアドレス以外の部分も取り出せる正規表現を

書きたくなってきます。次の正規表現を見てみてください。

t, |" t t t": /?#l +) tt? (/ I fi" /?#l*) ) ? ( t"?#l*) (\? ( ["*]x) )? (# ( . x) )? |

これは、RFC2396「 Uniform Resource ldentifiers(URI):Generic Syntax」

という、URIの 一般的な文法を定義した文書で使われている正規表現です。

この正規表現はRubyで もそのまま使えます。これでマッチングを行えば、

「https」 などのスキーム名がS2に、サーバのアドレスなどがS4に、パス名が

55に、クエリー部分がS7に、フラグメントがs9に、それぞれ格納されます。

たとえば、「https://www.example.co.ip/foo/?name=bar#baz」 というURI

だと、「https」 がスキーム名、「www.example.co.ip」 がサーバのアドレス、「/

foo/」 がパス名、「name=bar」 がクエリー名、「baz」 がフラグメントになります。

サーバアドレス

↓
クエリー名

I
?name=bar#baz

スキーム名 パス名

↑
フラグメント

とはいえ、ここまでくるとどうにも複雑ですね。正規表現で、どんな場合で

も正確にマッチする、一般的なパターンを書こうとすると、あとで修正が難

しくなってしまうくらいに読みにくい表現になってしまいます。そのため、

とりあえずの用途を満たす程度に正確なパターンを使う、ということを考え

たほうがよいかもしれません。

たとえば、郵便番号にマッチするパターンを書くとします。単純に

httpS://WWW.eXample.CO.ゴ p1/fOO/

1          1

> ruIET url_natch.rb
server address : www.ruby-lang.org

実行例

362

ハ dヽ dヽ d― dヽヽ dヽ dヽ d/



のように書くと、3桁 しかなかったり、「―」の入っていない郵便番号にマッチ

しなくなります。

そこまで厳密に入力しなくてもよいことにしたい場合には、ハ d+― ?ヽ d*/

とだけ書いておく、というのも1つの手です。

正規表現は、その複雑さと手軽さのバランスを考えながら使いましょう。

ψ
正規表現についてもっと詳しく知りたい、という方には、Jeffrey巨 .F.Friedi

『詳説 正規表現 第3版』(オライリー・ジャパン)と いう本がお勧めです。こ

れは1冊丸ごと正規表現について書かれており、その解説には定評があり

ます。

363

16.7 正規表現の例
:



:第 16章 正規表現 (Regexp)ク ラス

練習問題
″

′

′

(1)電子メールのアドレスは「ローカルバート●ドメイン名」という形になっ

ています。このような文字列から、ローカルパートをSlと して、またド

メイン名をS2と して取得する正規表現を作ってください。

(2)「 "正規表現は難しい ! なんて難しいんだ !‖ 」という文字列を、gsubメ ソ

ッドを使って「‖正規表現は簡単だ! なんて簡単なんだ !‖」という文字列

に直してください。

(3)アルファベットとハイフンからなる文字列を与えられると、ハイフンで

区切られた部分をCapitaHzeするようなメソッドword_capitalizeを

定義してください。

p word_capitalize ( " in-repIy-to" )

p word_capitalize ('X-MAILER' )

+=> :lln― Reply― To“

+=> |'X― Mailer‖

※解答は、サポートベージ (https://tanoshiiruby glhub.io/6/answer/)で 公開しています。

364



■■■ ■■D

フス

ここまでに登場したプログラムにも、ファイルに保存されたデータの処理

がありました。プログラムの外部とデータをやりとりするための機能として

入力 (Input)と 出力 (Output)を 提供するのが、10ク ラスです。ここでは、次

の内容を扱います。

。入出力の種類

IOク ラスがサポー トする入出力操作の対象を紹介します。

●基本的な入出力操作

行単位またはサイズ単位の読み出しや書き込みなどIOク ラスの基本

的な操作を紹介します。

eフ ァイルポインタ、バイナリモードとテキストモード、バッファリング
多少雑多な話題ですが、少し凝ったことをする場合に必要となる入出

力の仕様について説明します。バイナリモー ドとテキストモー ドは

Windows環境で特有の仕様ですが、問題としてあがることが多いよう

に思います。

●コマンドとのやりとり

外部のコマンドを起動してデータをやりとりする方法を紹介します。

●関連するライブラリ

IOク ラスに関連して open―uriラ イブラリとstringioラ イブラリを

紹介します。

α

365



第17章 10ク ラス

入出力の種類

■
　
　
　
　
一

まずは、入出力の対象にどんなものがあるかを見てみましょう。

●・017■1 標準入出力
プログラムを起動すると、3つの10オ ブジェクトがあらかじめ割り当てら

れています。

●標準入力

標準入力はデータを受け取るためのIOオ ブジェク トです。組み込み

定数STDINに割り当てられているほか、グローバル変数 Sstdinか ら

も参照されています。レシーバを指定しないgetsな どのメソッドは、

sstdinか らデータを受け取ります。標準入力は最初はコンソールに関

連づけられていて、キーボードの入力を受け取ります。

●標準出力

標準出力はデータを出力するための IOオブジェクトです。組み込み定

数 STDOUTに割り当てられているほか、グローバル変数Sstdoutか ら

も参照されています。レシーバを指定しないputs、 print、 printfな

どのメソッドは、Sstdoutへ 出力します。標準出力は最初はコンソー

ルに関連づけられています。

●標準エラー出力

標準エラー出力は警告やエラーを出力するための IOオ ブジェク トで

す。組み込み定数 STDERRに割り当てられているほか、グローバル変数

sstderrか らも参照されています。警告メッセージを表示するための

warnメ ソッドが Sstderrへ出力します。標準エラー出力も最初はコン

ソールに関連づけられています。

標準出力と標準エラー出力はどちらもコンソールに出力を行いますが、プ

ログラムの本来の目的である出力は標準出力へ、エラーや警告または単なる

メッセージは標準エラー出力へ、というふうに使い分けます。サンプルプロ

グラムをList 17.1に 不します。

17
■
日
●

366



17.1 入出力の種類 :

List fEfD out.rb

3.times do lil
$stdout.puts " # {Random. rand},'

$stderr.puts "#{i+1} El,U/rL* L/: "

end

十標準出カヘ

十標準エラー出カヘ

このプログラムは、ランダムな値を3回生成 して標準出力に書き込むたび

に、何回出力をしたかというメッセージを標準エラー出力に書き込みます。

出力をファイルにリダイレク トすると、標準出力への書き込みはファイル

に書き込まれ、標準エラー出力への書き込みのみが画面に表示されます。

出力先を使い分けることで、プログラムの結果として必要なデータはファ

イルに保存しつつ、処理の進み具合をコンソールに表示することができるよ

うになります。

電暖ゝ
プログラムを実行して出力されるテキストをファイルに保存するには、プロ

「

 グラムを実行する際に、コマンドのあとに「>ファイル名」と書きます。これ
は「リダイレクト」というコンソールの機能です。

ロ
> ruby out.rb

O,7673984708216316

1回出力しました

0.7376823351751016

2回出力しました

0.16663488'759063894

3回出力しました

> ruby out.rb > logotxt

l回出力しました

2回出力しました

3回出力しました

実行例

367



:第 17章  10ク ラス

標準出力と標準エラー出力を使い分けると、必要なデータとエラーなどの

メッセージを別々に取り出すことができるようになります。

1,ョ
:rubyコ
マンドからのエラーメッセージも、標準エラー出力に出力されます。

通常、標準入力・標準出力・標準エラー出力は、コンソールに関連づけられ

ています。しかし、コマンドの出力をリダイレクトでファイルに落としたり、

あるいはパイプ (|)を使ってほかのプログラムに渡したりるす場合はそうで

はありません。プログラムによっては、入出力の状態に合わせて処理を変え

たくなることがあります。IOオ ブジェクトがコンソールに関連づけられてい

るかどうかは、tty?メ ソッドで半暢」できます。

List 17.2は、標準入力がコンソールかどうかを調べるプログラムです。

List C巨麗口D)ty.rb

if SStdin.tty?

puts [lStdin is a TTY.::

else

puts i:stdin is not a TTY.[l

end

このプログラムで違いを調べてみましょう。まずは普通に起動してみます。

コマンドの出力をパイプで渡したり、入力をファイルに関連づけると結果

が変わります。

> ruby tty.rb

Stdin is a TTY

実行例

> eCh。  l ruby tty・ rb

stdin is not a TTY.

> ruby ttyorb く data.txt

Stdin is not a TTY.

実行例

368



ψ

17.1 入出力の種類 :

丁丁Yと いう名称は、昔使 われていたテ レタイプ端末 (teletype)に 由来 してい

ます。

0)・・17.1。2 フアイル入出力
ファイルの入出力には、10ク ラスのサブクラスであるFileク ラスを使い

ます。Fileク ラスは、ファイルの作成や削除などのファイルシステムに関係

する操作を提供しますが、基本的な入出力の操作には10ク ラスから受け継い

だメソッドを使います。

⊂)」0=File.opentβル[′
“
οd♭ [′ ′θr“ ]][′ οp`])

JO=Open(βル[′
“
Oαι[′ ′θF“ ]][′ Op`1)

ファイルを開いて新しいFileオ ブジェクトを得るには、File.openメ ソ

ッドかopenメ ソッドを使います。

モード(“οル)にはどのような目的でファイルタルを開くかを指定します

(表 17.1)。 モードの指定を省略した場合は、読み込み専用 (‖ r・ )と なります。

Windowsでは各モードにbを加えて‖rb‖、‖rb十 ‖のように指定することでバ

イナリモード(後述)と なります。Windows以 外のプラットフォームでは単
に無視されるため、バイナリファイルを扱う際には常に指定するのがよいで

しょう。また、各モードにしを加えて・rt・ のように指定することで、読み込み

の際の改行文字を「 nヽ」 に統一できます。

困mモ ード

モード 意味

読み込み専用でファイルを開く

・ r+・ 読み込み/書 き込み用としてファイルを開く
書き込み専用でファイルを開く。ファイルがなければ新たに作成する。ま
た、すでに存在する場合にはファイルサイズを0にする

・ W+ 読み込み/書 き込み用、そのほかは・w・ と同じ
・ a‖ 追加書き込み専用でファイルを開く。ファイルがなければ新たに作成する

読み込み/追加書き込み用としてファイルを開く。ファイルがなければ新
たに作成する

許可モードけ 脇 )は新たにファイルを作成する場合のアクセス許可モー

ドの指定です。許可モードについてはp.400を参照してください。

オプション (ω′)はその他のオプションの指定です。表 17.2に 示すキーを

持つHashオブジェクトを指定します。

a

369



:第 17章  10ク ラス

目0日Dオプション
オプション 意味

: mode 引数
“
οル と同じ

: exLernal_encoding 外部エンコーディングを指定する。エンコーディングについ

ては「第19章  エンコーディング (Encoding)ク ラス」を参照
interna 1_encoding 内部エンコーディングを指定する

encoding 内部および外部エンコーディングを指定する

: t.extmode trueの とき、モードにtを指定するのと同じ

: binmode trueの とき、モードにbを指定するのと同じ

autocfose
falseの とき、Fileオ ブジェクトがGCで回収される際にフ
ァイルディスクリプタを開じない

OβルOC10Se
開いたファイルを閉じるにはcloseメ ソッドを使います。

1つのプログラムが同時に開くことのできるファイルの数には制限がある

ので、使い終わったファイルはなるべく閉じるようにすべきです。複数のフ

ァイルを次々と開くようなプログラムでcloseメ ソッドの実行をサボると、

突然openメ ソッドが例外を発生させるかもしれません。

File.openメ ソッドにブロックを渡すと、使い終わったファイルを自動的

に閉じることができます。この場合、Fileオ ブジェクトはブロック変数とし

てブロックに渡されます。ブロックを実行し終えるとFileオブジェクトは自

動的に閉じられます。この書き方には、入出力操作の範囲がわかりやすくな

るというメリットもあります。

File.open("foo.txt") do I filel
while line = file.gets

end

0メル・C10Sed?
closed?メ ソッドを使うと、Fileオ ブジェクトが閉じられているかどうか

を調べることができます。

end

370



17.1 入出力の種類
:

file = File.open( "foo.txt" )

file. close
p file.closed? *=> true

C)File.readtβ ttθ [′ ル″grλ [′ qガ燿賣″[′ οpι]]1)
Fileオブジェクトを作らずに′Jιからデータを読み込みます。引数のJικg′み

には読み込むサイズを、θttα には先頭何バイトロから読み込むかを指定しま

す。ο′′にはFile.openと 同じその他のオプションを指定します。これらの引

数を省略した場合は、ファイルの先頭から終わりまで一度に読み込みます。

text = File.read( "foo.txt" )

C)File.binread(β J′ [′ 及夕
“
gιあ[′ οκttH″]])

μ
`を
バイナリモード(p.380)で開いて読み込みます。バイナリデータを読

み込むときはこのメソッドを使いましょう。

data = File.:binread(1l foo.dat・
)

OFユleowrite(./測セ′αα惚[′ q〃レ
`[′

θp`]])
Fileオ ブジェクトを作らずにメルにあ″を書き込みます。引数οttι′を省略

した場合はファイルの内容をすべてグα″αに置き換えますが、指定した場合は

先頭から(ジ麟バイトロ以降に書き込み、その後のデータは元のまま残ります。

ο′′にはFile.openと 同じその他のオプションを指定します。

:"‐  :

text = :'Hello′  Ruby!ヽ n‖

File.write(・ hello.txtl:′  text)

p File.read(・ hello.txt 11)  +=>

File.write(‖ hello.txt・ ′ 1:!'1′  5)

p File.read(‖ hello.txt ii)  十二>

37:



第 17章 10ク ラス

(D File.binwrite(1/切レ′ααια[′ 〔lκttα l)

∫′ιをバイナリモード(p.380)で開いて書き込みます。

data=‖ 何かのバイナリデータ‖

File.binwrite(・ binary.dati〔 ′ data)

基本的な入出力操作

入出力の対象になるデータは文字列です。文字列というのは、つまり

stringオ ブジェクトのことです。入力操作を行うと、データの先頭から終わ

りまでが順に読み込まれ、出力を行うと、書き込んだサ1頂に次々と追加されて

いきます。

ここから説明するものの多くはloオ ブジェクトのメソッドです。そのため

「loオ ブジェクトを……」と説明していますが、10ク ラスのサブクラスであ

るFileク ラスでも同じように使えます。

●・・17。 2。1 入力操作

(D Jο .gets(rs)

Jο .each(お )

わ.each_line(お )
JOereadlineS(FS)

IOオ ブジェクト,οからデータを1行読み込みます。行の区切りは引数rsで

指定した文字列になります。引数だが省略された場合は、組み込み変数S/(デ

フォル トでは・ nヽ・ )が行の区切りになります。

これらのメソッドは行の末尾の改行を含む文字列を返します。文字列の末

尾の改行文字を削除するには、chomp!メ ソッドが便利です。

getsメ ソッドは、入力の終わりに達してからさらに読み込むとnilを 返し

ます。また、入力の終わりまで読み込んだかどうかはeof?メ ソッドで判定で

きます。

17。21

1    372



17.2 基本的な入出力操作・

while line = io.gets
1ine. chomp I

end

p io.eof?

#lineに対する操作

#=> true

このwhile文の条件式では、変数への代入と判定を同時に行っています。
getsメ ソッドの戻り値がlineに代入され、その値がwhile文の条件として

評価されます。getsメ ソッドを使う際のイディオムともいえる書き方なの

で、覚えておきましょう。

これと同じことをeach_lineメ ソッドを使って行うこともできます。

io. each_line do I line 
I

line. chomp !

+lineに対する操作

また、readlinesメ ソッドを使って一気に終わりまで読んで、各行を要素
とする配列を取得することもできます。

ary - io.readlines
ary.each do llinel

1ine. chomp !

+lineに 対する操作
end

嘔Lgetsメ ソッドとputsメ ソッドは、それぞれ睦pt string」 Jput string」とい

「

 う意味です (「 げっつ」「ぷっつ」と読む流派と、「げっとえす」「ぷっとえす」
と読む流派がありますが通じれば何でもかまいません)。

O Jο。lineno
Jο。lineno=(“

“
′πらθr)

getsメ ソッドやeach_lineメ ソッドを使って、行単位で読み込みを行うと、

それまでに何行読み込んだかが自動的に記録されます。その行数はlinenoメ

□

end

373



:第 17章  !0ク ラス

ソッドで取得することができます。また、この値はlineno=メ ソッドで変更

することができます。ただし、lineno=メ ソッドで値を変更してもファイル

ポインタ (後述)は変更されません。

次の例は、標準入力を1行ずつ読み込み、先頭に行番号を追加して出力しま

す。

$stdin.each-Iine do llinel
printf ( "83d ts" , $stdin. lineno, line)

end

(3)Jο .each char

′οから1文字ずつデータを読み込んでブロックを実行します。読み込んだ

文字 (Stringオ ブジェクト)を ブロック変数として渡します。

iO.eaCh_Char d。  IChl

:      十 chに 対する操作
end

(E)Jο .each_byte
′οから1バイトずつデータを読み込んでブロックを起動します。ブロック

変数には、読み込んだバイトに対応するASCIIコ ードを整数値で渡します。

(D JO.getc

′οからデータを1文字だけ読み込みます。ファイルのエンコーディングに

よっては1文字は複数のバイトから構成される場合もありますが、1文字分を

読み込んでStringオ ブジェクトを返 します。入力の終わりに達してからさら

に読み込むと、nilを返します。

while ch = ■o.getc

:      #chに 対する操作
end

374



O Jο .ungetc(θλ)

引数あで指定した文字をりοの入カバッファに戻します。

l hello.txtの中は「He1lo′ Ruby.ヽ n」

File.open(‖ he1lo.txt・ )do liol
p io.getc  十=> ii H‖

iO.ungetc(‖ h・
)

p iO.getS  +=> :11lello′  Ruby.ヽ n‖

end

1文字分のStringオ ブジェクトを指定します。戻せる文字数に制限はあり

ません。

○ わ.getbyte
jοからデータを1バイトだけ読み込んで、バイトに対応するASCIIコ ード

を整数オブジェクトで返します。入力の終わりに達してからさらに読み込む

と、nilを返します。

○ あ.ungetbyte(bツ ″)

引数わノ′′で指定した1バイトを′οの入カバッファに戻します。整数値を指

定した場合はその値を256で割った余りをASCIIコ ードとして1バイトだけ

戻し、文字列を指定した場合は先頭の1バイトだけを戻します。

○ あ.read(sたθ)

バイト数で長さs′zι を指定して読み込みます。長さを指定しなければ、ファ

イルの終わりまで一気に読み込んで全体を返します。

# he1lo.txtO4lt [se]]o, Ruby. \n]
Fi1e.open( "hello.txt") do IioI

p io.read(5) #=> "He1lo"
p io.read +=> ", Ruby.\n"

end

|

q

375

17.2 基本的な入出力操作
:



第17章 10ク ラス

⑬Ⅲ・]7。2.2 出力操作

〇 わ.puts(S″θ′ S`燿′ 。・・)
文字列の出力後に改行します。複数の引数を渡すと、引数ごとに改行しま

す。また、Stringク ラス以外のオブジェクトを渡したときは to_sメ ソッド

を呼び出して、文字列に変換してから出力します。

t-ist (EED stdout-put.rb

SStdOut.putS :'Stringil′  :Sy■ [k)。 1′  1/100r

O Jο oputc(cλ )

引数εんで指定した文字コードに対応する文字を出力します。文字列を与え

た場合は、先頭の文字を出力します。

tist fi71 stdout-putc.rb

Sstdout.putc(82) + 82は「R」 ¢)ASCIIコ ード

Sstdout.putc(・ Ruby‖ )

SstdOut.putC(‖ nヽ‖ )

(Э JO.print(S`rθ′ S′Ff′ °̈ )
引数に指定した文字列を出力します。複数の引数を受け取ることができま

す。引数がstringオ ブジェクト以外のときは文字列に変換します。

> nrby stdoutjut.rb
String
Symbol

1/100

実行例

> ruby stdout3utc.rb
RR

実行例

376



oJ。。printfげ″J′ αFgθ′αFgr′ ・̈ )
書式指定つき出力です。フォーマットメ

“
′の詳細はprintfメ ソッドと同じ

です。第14章のコラム「printfメ ソッドとsprintfメ ソッド」(p.302)を参照し

てください。

○ あ.Write(s″ )

引数s′rで指定した文字列を出力します。引数がStringオ ブジェクト以外

のときは文字列に変換します。書き込んだバイト数を返します。

size = Sstdout,write(・ Helloヽ n'1)

p s■ ze

十二> Hello

+=> 6

□
○ わ くく s″

引数 s″で指定した文字列を出力します。くくはレシーバ自身を戻り値とす

るので、

io くく |lfoo !| くく 'lbar l: くく :lbazll

のようにつなげて書くことができます。

ファイルポインタ

テキストデータは、改行文字までを区切りとする「行」を単位にして処理す

るのが普通です。行の長さは改行文字まで読んでみなければわからないので、

100番 目のデータを読むためには、必ず100行分のデータを読み込まなけれ

ばいけません。また、データを書き換えた結果、行の長さが変わってしまうと、

ファイルのそれ以降の部分をすべて書き換える必要があります。

そこで、効率よくデータを読み書きするために、ファイルを固定サイズの

ブロックの集まりと考えて、データの位置を決めうちでアクセスする方法を

取ることもあります (任意の位置のデータにアクセスできる半面、決めたサ

イズよりも大きなデータを扱えなくなるという欠点もあります)。

17.3 ファイルポインタ・

醜

「

7Ⅷ

【17:31
L__」

377



:第 17章 10ク ラス

10オ ブジェクトがファイルのどこを指しているかを不す情報を、ファイル

ポインタまたはカレントファイルオフセットといいます。ファイルポインタ

は読み書きを行うたびに自動的に進みますが、自分で操作すると、ファイル

の中の好きな位置のデータを読み書きできるようになります。

(D′0.pOs
Jο・pOS=υοSJ″ο″)
現在のファイルポインタの位置はposメ ソッドで取得することができます。

また、ファイルポインタの位置変更はpos=メ ソッドで可能です。

# he11o. txt oFlt [tte11o, Ruby. \n.]
File.open( "he11o.txt") do I iol

p io.read(5) #=> "Hel1o"
p io.pos #=> 5

io.pos = 0

p io.gets *=> "He11o, Ruby.\n"
end

(D Jο .seek(qκル:α′ ″λθ″εθ)
ファイルポインタを移動するメソッドです。引数θttα には位置を整数で指

定し、引数″みι
“
ιにはοチ′′をどのように評価するかを指定します (表 17.3)。

田―
″Й
`“
′:こ指定する値

whence 意味

10::SEEK SET 噺%′ で指定された位置にファイルポインタを移動する

10::SEEK CUR て′1,`′ を現在の相対位置と見なしてファイルポインタを移動する

IO::SEEK END ″レ′をファイルの末尾からの相対位置として指定する

oわ .rewind
ファイルポインタをファイルの先頭に戻します。linenoメ ソッドが返す行

番号も0になります。

378



# hello.txtO+lt lHello, Ruby. \n]
File.open( "heI1o.txt" ) do I iol

p io.gets #=> "He1lo, Ruby.\n"
io. rewind
p io.gets #=> "He11o, Ruby.\n"

end

○ わ.truncate(sたθ)

ファイルの長さを、引数sた′で指定したサイズに切り詰めます。

j-o. truncate (0 )

io . truncate ( io . pos )

十ファイルサイズを0にする

1現在のファイルポインタ以降のデータを削除する
a

|

バイナリモードと
テキストモード

第14章のコラム「改行文字の種類」(p.312)で説明したように、プラットフ

ォームによって改行の文字コードには違いがあります。

改行文字の違いがあってもプログラムの互換性が保たれるように、文字列

に含まれる‖ヽn‖ は各OSご との改行文字に変換されて出力されます。また、

読み込みの際には実際に書き込まれている改行文字を‖ヽn‖ に変換するとい

う処理が入ります。

図17.1は、WindOws上で変換が行われる様子を表したものです。

Windows以外でもFile.openメ ソッドのモードに‖rt‖ や‖wt‖ を指定する

か、オプションで「textmode:true」 を指定すると、読み込みの際には「CR」

「LF」「CR+LF」 のいずれの改行コー ドであって も「LF」 のみに変換 され
ます。書き込みの際は「LF」 はプラットフォームの標準のテキスト形式に合

わせて変換 します。WindOwsで は「CR+LF」 に、Linuxや macOSで は「LF」
のまま出力されます。

379

17.4 バイナリモードとテキストモード・

フ.4'橿



第17章  !0ク ラス

|フアイルを開いて1行出力する
io = Fllo.open(‖ test.txt:l′  ':割 H・

::)

io.print( "Eello, world. \n" ) test.txt

十出力した行を読むために

#フアイルの先頭に戻る

ェo.rewind

‖ファイルから読み込む

P io.gets
l=> ''Hello′  1呼orld.ヽュ

:i

(口lm Windows環境での文字‖ヽn・ の変換

長さをきちんと決めて入出力を行いたい、あるいはほかのプラットフォー

ムにデータをコピーしてそのまま使いたい、といった場合においては、改行

文字の変換が問題になることがあります。

そのような場合のために、改行文字の変換をしないようにすることもでき

ます。改行文字の変換は行単位で入出力を行うことを前提としているので、

変換が有効な状態をテキストモードといいます。これに対して、変換を行わ

ない状態をバイナリモードといいます。

○ あ.bil回lode

新しい10オ ブジェクトはテキストモードに設定されていますが、binmode

メソッドを使うことでバイナリモードに変更できます。

File.open("foo.txt",'w') do liol
io . binmode

io.write "Hel1o, wor1d. \n"
end

こうすれば改行文字は変更されずに、ファイルの中にあるものと同じもの

が得られるようになります。

いったんバイナリモードに変更したIOオ ブジェクトをテキストモードに戻

すことはできません。

フアイルには"ヽ rヽ nt'
が書き込まれる

‖
rヽヽ n"を読み込むと
‖
nヽ・ に変換される

Eello, world.\r\n

380

ψ

一

．

‥

‥



17.5 コマンドとのやりとり
:

コマンドとのやりとり

Rubyは ほとんど何でもこなすことのできるパワフルな言語ですが、それで

もほかのコマンドを利用してデータを処理したくなることがあります。たと

えば、GNU zipで圧縮されたデータを読むときはzcatコ マンドに展開しても

らったデータを受け取ることができると便利です。

Rubyの プログラムの中でほかのコマンドとデータをやりとりするには、

10,popenメ ソッドを使います。

C)=0。 popen(cο″
"π
α

“

J′ ′ποαθ)
IO.popenメ ソッドで作成したIOオブジェクトの入出力は、起動したコマ

ンドε
"笏
αんどの標準入出力に関連づけられます。つまり、ここで起動された

コマンドはIoオブジェクトに書き込まれたデータを入力として受け取り、コ

マンドが標準出力に出力したデータを10オ ブジェクトから受け取ることが

できます。引数
“
οルについては File.openメ ソッド(p.369)と 同様です。省

略した場合は‖r‖ と見なされます。

第3章で紹介したsimple_grep.rb(p.69)を 改造して、拡張子が.gzの場合は

zcatコ マンドで展開したデータを処理するようにしてみましょう。

tist fEFl si mPle-greP-gz.rb

pattern = Regexp.new(ARGV[0] )

filename = ARGV[1]

if /\.sz$/ =- filename
file = I0.popen( "zcat #{filename} " )

else
file = r'ile.open(filename)

end

file.each_1ine do llinel
if pattern =- line

print line
end

end

a

1日幸
List 1 7 5を実行するにはzcatコマンドが必要です。

38:



第17章 10ク ラス

open-uri71)'71)
コンソールやファイルのほかにも、プロセス間通信に用いられるパイプや

ネットワーク間通信を行うためのソケットもIoオ ブジェクトとして使用で

きます。パイプやソケットを直接利用する方法は本書では取りあげませんが、

ここではHTTPや FTPに よってネットヮーク上のデータを手軽に取得する

方法を紹介します。

open―uriラ イブラリをrequireで 読み込むと、HTTPや FTPの URLを普

通のファイルのように開くことができるようになります (List 17.6)。 open―

uriラ イブラリの機能を利用する場合は、File.openメ ソッドではなく、た

だのopenメ ソッドを利用してください。

Lis'(肛麗D read_ur"b

require "open-urj."

filename=1lruby-2.6.1.z■ p‖           十ソースコードのファイル名
versiOn=filename.scan(ハ d+ヽ .ヽd+/).first+「 2.6」 の部分を取り出す

+Rubyの ソースコードのUR工:

url= 1:https://cache.ruby― lang.Org/pub/ruby/1(version)/+{filename}‖

十URLを指定して読み込み用の10オ ブジェクトを得る

。pen(url)dO lremOtel

十書き込み用のファイルをバイナリモードで開く

File.open(filenme′ ・価 ‖}do 1locall

while data=ranote.read(10000) +10Kバ イトずつデータを読んで

10cal.write(data)        +フ ァイルに書き込む

end

end

end

382

Ｔ

‥

・

‥



17.7 strin」 oライブラリ

@ strinsio71.)7.)
プログラムのテス トを書いていると、ファイルやコンソールに何を出力し

たのかを確認したいことがありますが、実際にコンソールに出力したリファ

イルに追加書き込みを行ったりしていると、プログラムから出力したものだ

けを取り出すことができません。そこで、loォ ブジェクトの振りをするオブ

ジェクトに出力して確認するという方法が用いられます。

その工0オ ブジェク トの振 りをす るオブジェク トが、stringloで す。
StringIOオ ブジェクトを使うには、stringioラ イブラリをrequireで読み

込みます (List 17.7)。

List(|]□ロロID stringi∝puts.rb

require "stringio"

io = StringIO.new
io. puts ( "A" )

io.puts ( "B" )

io.puts("C")
io. rewind
p io. read #=> "A\nB\nC\n,,

StringIOオ ブジェクトヘの出力は、実際にはどこにも出力されずにオブジ

ェクトの中に蓄えられ、あとからreadメ ソッドなどで読み出せます。

StringIOオブジェクトを使うもう1つのケースは、すでに文字列として持

っているデータをIoオ ブジェクトのように見せかけたいときです。巨大なデ

ータはいったんファイルに保存じ、そうでないデータはそのまま別の処理に

渡すという場合には、Stringloォ ブジェクトを使うと、10オ ブジェクトか

文字列かによって処理を分けなくてもよくなるので便利です。実際、前述の

open― uriラ イブラリでURIを開いたときに返されるオブジェクトは、loォ

ブジェクトかString工 0オ ブジェクトのどちらかとなっています。たいてい

の場合は、その違いを気にする必要はありません。

文字列からStringloオ ブジェクトを作るには、Stringlo.newメ ソッドの

引数にデータとなる文字列を渡します (List 17.8)。

α

383



:

:

ixrzl tor-^

Usr (EED strinsio-sets.rb

require "stringio"

io = StringIO.new( "A\nB\nC\n" )

p io.gets #=> "A\n"
p io.gets #=> "B\n"
p io.gets #=> "C\n"

stringloオ ブジェクトは、この章で説明したほとんどの入出力操作を行う

振りをしてくれます。

384



練習問題 :

響習問題

(1)テキス トファイルからデータを読み込んで次の処理を行うスクリプ ト
を作成してください。なお、ここでは空白や改行以外の文字の並びのこ

とを単語と呼ぶことにします。

(a)テ キス トの行数を数える

(b)テ キス トの単語数を数える

(c)テキストの文字数を数える

(2)テキス トファイルからデータを読み込んで次の条件に従って上書きす
るスクリプトを作成してください。

(a)フ ァイル中の行を逆順に並べ替える

(b)フ ァイル中の最初の1行だけを残して残りを削除する

(c)フ ァイル中の最後の1行だけを残して残りを削除する

(3)Unixで使われるtailコ マンドと似たことができるメソッドtailを定義
してください。

tailメ ソッドは2つの引数を取ります。

tail(行数′ファイル名 )

ファイルの最後の行から数えて指定された行数分だけ、そのファイルの

中身を出力する動作とします。つまり、ファイル sOme_file.txtに 100行

のテキス トが入っていたとして、このときに「tail(10′  ‖some_file.
txt‖ )」 というメソッドを実行すると、90行は飛ばして最後の 10行のみ

を標準出力から表示するという動作です。

※解答は、サポー トベージ (htpS://tanOShiiruby.github.io/6/answer/)で 公開しています。

□

385





ラスクラスとｅ
■
口■
■
■

口

■
■
■
■

Ｆ

「第17章 IOク ラス」では、ファイルのデータを読み書きする方法を説明
しました。

この章では、ファイルの名前や属性に関する操作について紹介します。ま

た、ファイルを整理するためのディレクトリ (フ ォルダ)についても取りあげ

ます。

ファイルとディレクトリの操作には次のようなものがあります。

●ファイルの操作

名前の変更、コピー、削除など基本的な操作

●ディレクトリの操作

ディレクトリの参照、作成、削除などの操作

●属性の操作

「読み取り専用」など、ファイル・ディレクトリの属性の操作

コンピュータを利用するうえで日常的に必要な操作ですが、たくさんのフ

ァイルを扱っていて面倒に感じたり、操作を間違えてしまったり、という経

験があるのではないでしょうか ? 大量のデータに対する単調な作業はプロ
グラムにすることで、素早く、間違えずに作業を行えます。ファイル名の単純

な変更程度なら、数行のプログラムで済ませることができるでしょう。おま

けにプログラムを一度書いておけば、何度でも実行することができます。単

純作業は積極的に自動化しましょう。

なお、WindOwsや macosではディレクトリのことをフォルダと呼びます。
これらのプラットフォームを利用している方は適当に読みかえてください。

C

プログラムでファイルを操作するのは便利な半面、たくさんのファイルをい

っぺんに壊すこともあるので、操作の前にバックアップを取るように心がけ

ましょう。

幸

387



第18章  F‖ eク ラスとDirク ラス

Fileクラス

Fileク ラスにはファイル名などファイルシステムを操作するためのメソ

ッドが実装されています。

0)・・18■1 ファイル名を変更する

O File.rename(bこそ′フ″′Cル″)
ファイル名を変更するには、File.renameメ ソッドを使います。

File.rename ( "before. txt", "after. txt." )

すでに存在するディレクトリの下に、ファイルを移動することもできます。

ディレクトリがなければエラーとなります。

File.rename ( "data.txt", "backup/data.txt" )

拳
File.renameメ ソッドでファイルシステムまたはドライブをまたぐ移動は

できません。

この章で紹介するメソッドは、ファイルが存在しなかったり、適切な権限

がなかったりなどの理由で操作に失敗すると例外をあげます。

> irb --sitnple-DromDt
> File.oPen(' /no/such/file" )

Traceback (most recent call last) :

6: from /usr/Iocal/bin/irb:23:in'<main>'
5: from /rsr/Local/bin/irb:23:in'1oad'
4: from /usr/loca1/Iib/ruby/gems /2 .6 .Llgensl irb-0.9.6i

exe/irb:11: in'<top (reguired)>'
3: from (irb):1
2: from (irb):1:in 'open'

実行例

388



18.l F‖ eク ラス・

1: from (irb):1:in 'initialj-ze'
Errno::EN0ENT (No such file or directory @ rb_sysopen - /no/
such/ fi 1e )

③・・18■2 フアイルをコビーする
組み込みメソッド1つでファイルのコピーを実行することはできません。

その代わり、次のようにFile.openメ ソッドとwriteメ ソッドを組み合わせ

ることで、ファイルコピーのメソッドを作ることができます。

def copy(from, to)
File.open(from) do I inputl

File.open(to, "w") do loutputI
output.write ( input. read)

end

end

end

しかし、ファイルのコピーは頻繁に行う操作なので、いつも自分で定義す

るのはさすがに面倒です。fileutilsラ イブラリを読み込むことにより、
FileUtils.cp(フ ァイルのコピー)、 FileUtils.mv(フ ァイルの移動)な ど、

ファイルを操作するメソッドを利用できるようになります。

require [:fileutils‖

FileUtils.cp(・ data.tixt l:′  ::backup/data.txtr)

FileUtils.mv(■ data.txtil′  :!backup/datal.txt・ )

FileUtils.mvメ ソッドをイ吏うと、File.renameメ ソッドではできなかっ

た、ファイルシステムやドライブをまたがったファイルの移動ができます。

fileutilsラ イブラリに関しては、p.407で紹介します。

389



:第 18章  F‖ eク ラスとDirク ラス

10・・18■3 ファイルを削除する

O File.deletet′認♭)
File.unlink(′開し)
ファイルμ′を削除するには、File.deleteメ ソッド(ま たはFile

unlinkメ ソッド)をイ吏います。

File.delete(・ data.tXt‖ )

ディレクトリの操作

ディレクトリを扱うには、Dirク ラスを使います。具体的な操作を説明する

前に、ディレクトリについて基本的な事柄を少し復習しておきましょう。

ディレクトリは、複数のファイルをまとめるための入れものです。ディレ

ク トリの中には、ファイル以外にもディレクトリを入れることができて、さ

らにそのディレクトリの中にもディレク トリを……・という具合に何段にも階

層を重ねることができます。複数のディレクトリを重ねたり並べたりして、

たくさんのファイルを整理します。

WindOwsのエクスプローラ (図 18.1)の左側にあるのが、視覚的に表現され

たディレクトリの階層構造 (ツ リー構造)です。ディレクトリの中のファイル

名を指定するには、ディレクトリ名を「/」 でつないで表記します。ディレク

トリ名を経由 (path)し てファイルの位置を指定することから、ファイルの場

所を表す名前のことを「パス」または「パス名」といいます。また、ツリーの起

点となるディレクトリは特別に「ルートディレクトリ」といい、「/」 のみで表

されます。

18.2

390



18.2 ディレクトリの操作

曇 1口 墨●12m

.o 16@** . i-_.
‐↑ 1:Iた ,□―カルシスク●),鮨 b′ '=χ“

,lb)則
"

融」Ⅲぶ

燿●●

口

"

+―ム 夫十  ■,1

ｕ
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
』

・̈咄・
鉗̈
・̈

叫̈螂̈

い
赫
は
中
一品
農
」
枷
縮

ファイル
"′

膠―

フアイ,|フォ
'レ

ダヽ

ファイルフォルダ̈

フアルカル井

ファイルフォ′レダー

円 lo

10鰤項目  1●
"目
薔 択

ファイルフォルター

ファイルフォルダー

ファイルフォルダー

ファイルフガ,グー

ファイルフォルダー

ファイルフォルター

ファイルフォルター

ファイルフォルグー

ファイルフ
"レ

ダー

曇 P“tⅢ

目 Prt,薔1口螂

餞 P,"ぬn輌略は,
SLける―・

“
田Ыn

組 ind瞑姜

』 lb

颯m9ing■ 1

縞 Pk“Onfけ

aa
8di uiga*i*t
m hdk
ffi.si
ffi.-

塾 e2nヽ i漱 p

薩 :超に

轟 :18“L

佃)m Windowsの エクスプローラの画面

Wlndowsでのパス名 について

WindOwsの コマンドプロンプト上ではディレクトリの区切り文字として「¥」

が使われます。しかし、「¥」 を使うと文字列の表記がわかりにくくなったりす

るうえに、同じプログラムをUnixで実行できなくなるので、「/」 を使うほうが

無難です。ただし、WIN320LEの ようなWindOws固有の機能を使う場合には「/」
ではうまく動かないこともあるので注意が必要です。

Windowsではディレクトリのさらに上が「ドライブ」という単位で分かれて
います。ハードディスクはC:、 D:、・…・・というように、アルファベット1文字 (ド

ライブレター)で対応するドライブを表します。この場合、各ドライブごとにル

ートディレクトリが存在すると考えてください。たとえば、「C:/」 と「D:/」 は

常に別々のディレクトリを表すのは明らかですが、単に「/」 とだけ書いた場合、

プログラムをどこで実行したかによってドライブが異なるため、別々のディレ

クトリを表すことがあります。

391



第18章  F‖eク ラスとDirク ラス

O Dir.pwd
Dirochdir(dじr)

プログラムは、現在どのディレクトリ上で作業しているかという情報を持

っています。この情報をカレントディレクトリといいます。カレントディレ

クトリを取得するにはDir.pwdメ ソッドを使い、カレントディレクトリを変

更するにはDiF.Chdirメ ソッドを使います。Dir.chdirメ ソッドの引数|″ J′

には、カレントディレクトリからの相対位置を表す相対パス、またはルート

ディレクトリからの位置を表す絶対パスのいずれかを指定します。

p Dir.pwd

Dir.chdir(・ ruby/2.6.l11)

p Dir.pwd

Dir.chdir(:t/etc il)

p Dir.pwd

+=> !1/usr/10Ca1/1ib‖

1相対パスによる移動
|=> [1/usr/1oca1/1ib/ruby/2.6.1“

十絶対パスによる移動

‖=> 11/etc‖

カレントディレクトリ上にあるファイルは、ファイル名だけを指定して開

くことができますが、カレントディレクトリを変更するとディレクトリ名も

含めて指定しなければいけません。

p Dir.pwd            十=> II/usr/10Ca1/1ib/ruby/2.6.11'

io = File.open(llfind.rb‖ )

♯ ‖/usr/1oca1/1ib/ruby/2.6.1/find.rb‖ を開く
■ooclose

Dir.chdir(‖ ../..‖ ) +2つ 上のディレクトリヘ移動する
p Dir,pwd        +11/usr/1oca1/1ib‖

io = File.open(1:ruby/2.6.1/fiind.rb‖ )

+ I:/usr/1oca1/1ib/ruby/2.6.1/find.rb‖ を開く

■o.close

0)・・18。2。1 デイレクトリの内容を読む
では、ファイルのときと同じように、すでに存在しているディレク トリを

読むことから始めましょう。ディレク トリの内容の読み込みも基本的にはフ

ァイルと同じで、

つ
ム
０

″

う
０



①ディレクトリを開く

②内容を読み込む

③閉じる

という手サ1頂を踏みます。

O Dir.open(′α滋 )
Diroclose
Fileク ラスと同様に、Dirク ラスにもopenメ ソッドとcloseメ ソッドが

あります。

試しに、/usr/binディレクトリを読んでみましょう。

dir = Dir.open( "/usr/bin" )

while name = dir.read
p name

end

dir. close

`ξ

while文の部分は、次のようにDir+eachメ ソッドで置き換えることもでき

ます。

dir = Di-r.open("/usr/bin" )

dir.each do lnamel
p name

end

dir. close

Dir.openも File.openと 同様にブロックを与えることによって、close

メソッドの呼び出しを省略できます。このときブロック変数には、生成され

たDirオブジェクトが渡されます。

Dir.open(・ /usr/1oca1/1ib/ruby/2.6.1・ )do ldirl
dir・ eaCh dO lnamel

p name

end

end

18.2 ディレクトリの操作 :

393



第 18章  F‖ eク ラスとDirク ラス

このプログラムの出力は、次のようになります。

‖x86 64-linux‖
‖CSV‖

・optparse‖

iiforwardable.rb‖

(E)JJroread

Fileク ラスと同様に、Dirク ラスにもreadメ ソッドがあります。

Dir+readメ ソッドを実行すると、最初に開いたディレクトリに含まれるも

のの名前を1つずつ順に返します。ここで読み出せるものは基本的に次の4種

類のいずれかです。

oカ レントディレクトリを表す「.」

・ 親ディレクトリを表す「..」

●その他のディレクトリ名

oフ ァイル名

「/usr/bin」 と「/usr/bin/.」 は同じディレクトリを表すということに注意し

てください。

List 18.1の プログラムは、指定したディレクトリ以下のすべてのパスを処

理します。コマンドライン引数ARGV[0]に渡されたパスがディレクトリの場

合は、中に含まれるファイル名に対して同じ処理を再帰的に呼び出し、それ

以外 (フ ァイル)の場合はprocess_fileメ ソッドを呼び出して処理します。

ここでは、コンソールヘの出力のみを行っています。結果的にtraverseメ ソ

ッドは、指定したディレクトリ以下のすべてのファイル名を出力します。

コメントに※をつけた行で、カレントディレクトリと親ディレクトリを読

み飛ばしています。これがないと、何度も同じディレクトリを処理し続ける

無限ループに陥ってしまいます。

394



18.2 ディレクトリの操作

List CEf,D traverse.rb

def traVerSe(path)

if File.directory?(path) 十 ディ

dir = Dir.open(path)

while name = dir.read

next if name == 11.1:   十 ※

next if name =二  1:..:'  + ※

レクトリの場合

Lraverse(path + " /' + name)

end

dir. close
else

proc
end

end

ess_fi1e (path) 十ファイルに対する処理

def process-f ile (path)
puts path

end

十ひとまず出力するだけ

traverse(ARGVt0l )

O Diroglob
Dir.globメ ソッドを使うと、シェルのように*や ?な どのパターンを使っ

てファイル名を取得できます。Dir.globメ ソッドはパターンにマッチした

パス名 (フ ァイル名およびディレクトリ名)を配列にして返します。また、ブ

ロックを渡すことで、マッチしたパス名ごとに、そのパス名をブロック変数

としてブロックを実行します。

いろいろなマッチの仕方があるので例を挙げます。

oカ レン トディレク トリにあるすべてのファイル名を取得する (‖ 。・ で

始まる Unix隠 しファイル名は取得できません )

Dir.glob(‖ *・ )

oカ レン トディレクトリにあるすべての隠しファイル名を取得する
Dir.glob(・ .*‖ )

一

８

一

フ
　
一―
Ｉ

Ｌ

■
ｒ
ｌ
Ｌ
一

395



:第 18章  F‖ eク ラスと Dirク ラス

oカレントディレクトリにある拡張子が「.html」 または「.htm」 となって
いるファイル名を取得する。複数のパターンを一度に指定するときは

配列を使う

Dir.glob([:[*.html‖ ′ :[*.htm‖ ])

oパターンに空白を含まないのであれば、%w(...)を 使って文字列の配

列を生成するとパターンを読みやすくできる

Dir.glob(2w(*.html *.htm))

●サブディレクトリにある拡張子が「.html」 または「.htm」 となっている

ファイル名を取得する

Dir.glob([‖ */*.html‖ ′ '|*/*.htm‖ 1)

o l:foo"に 拡張子が 1文字ついたファイル名を取得する

Dir.glob(‖ foo.?‖ )

●Ⅱfoo.cn、 nfoo.h"、 "foo.o・ に一致するファイル名を取得する

Dir.glob(‖ foo.[cho]‖ )

oカ レントディレク トリ以下のすべてのファイル名を取得する。ディレ

ク トリを再帰的に検索する

Dir.glob(・ **/*il)

●ディレクトリfoo以下にある「.html」 を拡張子に持つすべてのファイ

ル名を取得する。ディレクトリを再帰的に検索する

Dir.glob(‖ foo/**/*.html・ )

List 18.1の traverseメ ソッドは、Dir.globメ ソッドを使って次のように

書き換えることができます。

List(肛受D traverse_bLgiob.rb

def traverse(path)
Dir.glob( ["#{palh}/xx/x', "+{path} /**/.x-] ) do lnamel

unless Fi1e. directory? (name)

process_fi1e (name)

end

end

end

def process_f i1e (path)

puts path

396

十ひとまず出力するだけ



18.3 ファイルとディレクトリの属性

traverse(ARGV[01)

0)・・]8.2.2 デイレクトリの作成と削除

O Dir.m]【dir(′α滋 )

新しいディレクトリを作成するにはDir.mkdirメ ソッドを使います。

Dir.mkdir(‖ temp‖ )

O Dirorndirレα励)
ディレクトリを削除するにはDir.rmdirメ ソッドを使います。このとき、

削除するディレクトリの中は空でなければなりません。

Dir.rmdir("temp")

end

q

フアイルとデイレクトリの属性

ファイルとディレクトリには、所有者や最後に更新した時間などの属性が

ついています。これらの属性値を取得したり、参照したりする方法を紹介し

ます。

O File.statレα滋)
Fileostatメ ソッドを使って、ファイルやディレクトリの属性を取得でき

ます。File.statメ ソッドはFile::Statク ラスのインスタンスを返します。
File::Statク ラスのインスタンスメソッドは表 18.1の通りです。

18.3

397



:第 18章  F‖eクラスとDirクラス

目 mF‖ e::St籠 クラスのインスタンスメソッド

メソッド 戻り値の意味

dev ファイルシステムの装置番号

■no i_node番号

mode ファイルの属性

nlink リンクの数

u■ d ファイルの所有者のユーザID

g■d ファイルの所有グループのグループID

rdev ファイルシステムのデバイスの種類

s■ ze ファイルサイズ

blksize ファイルシステムのプロックサイズ

blocks ファイルに割り当てられたプロック数

atime ファイルを最後に参照した時刻

mtime ファイルを最後に修正した時刻

ctime ファイルの状態を最後に変更した時刻

これらのうち、atimeメ ソッド、mtimeメ ソッド、ctimeメ ソッドがTime

ォブジェクトを返すのを除けば、ほかはすべて整数値を返します。

uidメ ソッドとgidメ ソッドから対応するユーザ名とグループ名を求め

るには、Etcモ ジュールを使います。Etcモ ジュールを使うには、「require
‖etc‖ 」が必要です。

Unixのパスワード情報には、ユーザID、 ユーザ名、グループID、 ホームデ

ィレクトリなどが登録されています。Etc.getpwuidメ ソッドはユーザIDに

対応するパスワード情報のエントリを返します。同様に、グループ情報には

グループIDやグループ名などが登録されていて、Etc.getgrgidメ ソッドで

グループIDに対応するグループ情報のエントリを得ることができます。

ぜ 曰ゝ
Etcモ ジュールはUnixや Linuxのユーザやグループの情報を参照するための

「

機能です。Windows版 Rubyで もモジュールは提供されていますが多くの機

能に制限があります。

ファイル/usr/1oca1/bin/rubyの ユーザ名とグループ名を表示するプログラ

ムは、次のようになります。

require "etc"

398

st = Fi1e.stat ( " /usr/1oca1/bin/ruby" )



pw = Etc. getpwuid(st.uid)
p pw.name #=> 'root'
gr = Etc.getgrgid(st.gid)
p gr.name #=> 'wheel"

O File.ctimeレα滋)
Fユle.mtimeレα滋)
File.atine(′α滋 )
これ ら3つ のクラスメソッドは、インスタンスメソッドFile::Stat
十ctime、 File::Stat+mtime、 File::Stat+atimeと 同じ情報を返します。こ

れらのうち2つ以上を使う必要がある場合は、インスタンスメソッドを使っ

たほうが実行効率がよくなります。

O File.utime(α ″
“

ι′″
`;“

θ′′α
`力

)

ファイル′α′λの属性のうち、最終参照時刻α″
“̀と
最終修正時刻

“
″ゴ″′を変

更します。時刻は整数値またはTimeオ ブジェク トを使って指定できます。ま
た、同時に複数のパス名を指定することもできます。ファイルf00の最終参照

時刻と最終修正時刻を変更するプログラムは、次のようになります。Time.

nowメ ソッドを使って、現在の時刻を表すTimeオ ブジェクトを作り、そこか

ら100秒 を引いた値を設定しています。

filerlame = :ifOO‖

File.write(filename′ ・) + ファイルを作る

st = File.stat(filename)

p st.ctime  +=> 2019-01-30 22:02:53 +0900

p st.Intime  #=> 2019-01-30 22:02:53 +0900

p st.atime‐   十=> 2019-01-30 22:02:53 +0900

File.utime (Time.now-100, Time.now-100, filename)
st = File.stat(filename)
p st.ctime #=> 2019-0L-30 22:02:53 +0900

p st.mtime #=> 2019-0L-30 22:01:1"3 +0900

p st.atime #=> 2019-01--30 22:01:13 +0900

ロ

399

18.3 ファイルとディレクトリの属性 :



第18章 F‖ eク ラスとDirク ラス

O FileoclⅢ lod(“ OJθ′′αιλ)

ファイル′α′んの許可モード(パーミッション)を変更します。″οルには新

しいモードを整数値で指定します。同時に複数のパス名を指定することもで

きます。

ψ
Windowsで は所有者の書 き込み許可ビットだけが操作可能です。実行属性

は、拡張子 (batや .exeな ど)に よって決定されます。

許可モードは、実行、書き込み、読み込みができるかどうかを表す3ビ ット

ずつの情報です (図 18.2)。 各許可モードは、ファイルの所有者、所有グループ、

その他のそれぞれについて個別に設定できるので、全体は9ビ ットで表現さ

れます。

所有者の読み取り許可

― 所有者の書き込み許可

所有者の実行許可

所有グループに対する許可モード

¬「
I耳
その他のユーザに対する許可モード

111 111 111

(函嘔画日D許可モードが表す情報

たとえば、「所有者は読み書きの両方をできるが、それ以外は読み込みのみ」

というモードを設定する場合のビットは、110100100と なります。8進数表記

は1桁でちょうど3ビットを表すので、許可モードの記述に一般的に利用され

ています。先ほどの110100100を 8進数に直すと、0644と なります。8進数表

記についてはコラム「ビットとバイト」(p.254)を 参照してください。

ファイルtest.txtの 許可モードを0755(所有者はすべて許可。それ以外は読

み込みと実行のみ)に設定するには、次のようにします。

Flle.chlmod(0755′  :itest.txt‖ )

特定のビットを追加する場合、たとえば実行権を現在の許可モードに追加

するような場合には、File.statメ ソッドで得た情報に指定のビットを追加

してから、再度設定します。ビットの追加にはビット和を使います。

400

一　

―

　

　

‐

‐

ｒ

ｌ

‐

‐

‐

‐

― ――

‐ ――
―― ―

― ――

―‐
Ｆ

‐



18.3 ファイルとディレクトリの属性

rb file = l:test.rb ll

st = File.stat(rb file)

File.chmod(st.mOde l olll′ rLfile)十 実行権を追加

C)File.chown(ο ″
“
θr′ gFO“P′ ′α

`力

)

ファイル′α′力の所有者を変更します。ο″
“
′には新しい所有者のユーザID、

g“″′には新しいグループのIDを指定します。同時に複数のパス名を指定す

ることも可能です。実行にはシステム管理者の権限が必要です。

1lI[Windowsで
はメソッドは提供されてしますが 実際には何も行しません。

磯・ 018。3.1 フアイルやディレクトリの検査
Fileク ラスにはファイルやディレクトリの属性を検査するためのメソッ
ドがあります。表でまとめて紹介します (表 18.2)。

日口日日Dフ ァイルやディレクトリを検査するメソッド

C

メソッド 戻り値¨  ヽ.■ ,

Fi1e. exist? (patft) ρα′′2が存在すれば true

Frle.file? (path) ρ″′2がファイルならば true

Fi1e. directory? \path) がディレク トリならばtrue

Fi1e. owned? (paflz) ′αめの所有者が実行 したユーザと等しければtrue

FiIe. grpowned? \path)
′α
`力

の所有グループが実行したユーザのグループと等し
ければtrue

File . readabl e? (path) が読み込み可能ならばtrue

Fj-le . wri tabl e? \pathl ραЙが書き込み可能ならばtrue

Fi1e. executable? \path) ρα物が実行可能ならば true

File . size lpath) ′αルのサイズを返す

FiLe.size? (path) ′αルのサイズがoよ り大きければtrue、 サイズが0ま たは
ファイルが存在しなければnil

File . zero? (path) ″物のサイズが0な らtrue

401



18。4 ファイル名の操作

ファイルを操作するときには、ファイル名の操作が何かと必要になります。

パス名からディレクトリ名とファイル名を取り出したり、逆にディレクトリ

名とファイル名からパス名を作ったり、といった操作を行うためのメソッド

が用意されています。

O File.basenameυα磁[′ S“〃加1)
パス名′αrんのうち、一番後ろの・/‖ 以降の部分を返します。拡張子 s“瀕iχが

指定された場合は、戻り値から拡張子の部分が取り除かれます。パス名から

ファイル名を取り出すときに使います。

:第 18章  F‖ eク ラスとDirク ラス

p File.basename ( " /usr/1oca1/bin/ruby" )

p File.basename( "src/ruby/fiIe.c", " .c" )

p File.basename( "file.c", ".c" )

|=>

十=>

+=>

:'ruby‖

‖fileli

‖file・

O Filo.dirname(′α
`λ

)

パス名ρα″んのうち、一番後ろの・/‖ までの部分を返します。・/‖ が含まれな

い場合は‖.‖ を返します。パス名からディレクトリ名を取り出すときに使い

ます。

p File.dirname(‖ /uSr/1oca1/bin/rubyl')  |=> 1:/usr/1oca1/ibin'i

p Flle.dirname(1:ruby‖ )                 +=> i:.:I

p File.dirname(::/11)                     |=> 1'/1〕

(D File.extnameレα滋)
パス名′αrんのうち、前述のbasenameメ ソッドが返す部分から拡張子を取

り出して返します。拡張子が含まれない場合は空の文字列を返します。

つ
ム
Ｕ^‘４



O Fileesplitレ α励)
パス名′α′力をディレク トリ名の部分とファイル名の部分に分解し、2つ の

要素からなる配列を返します。多重代入を使って受け取ると便利です。

p Fi1e. splil ( " /:usr / local /bin/ruby" )

#=> [" lusr/local/bin", "ruby"]
p Fi1e.sp1it.("ruby") #=> [".", "ruby"]
p File.split("/") #=> [" 1", '"1

dir, base = File.split( " /usr llocal/bi-n/ruby,' )

p dir #=> "/usr/1oca1/bin',
p base #=> "ruby"

O File.コ Oin(ηα′貿″[′ ″α″ι2′ ・・・1)
引 数 で 与 え られ た文 字 列 を File::SEPARATORで 連 結 し ます。File::

SEPARATORに は通 常 ‖/‖ が設 定 され て い ます 。

p Fi1e. extname ( "he1loruby. rb" )

p Fi1e. extname ( " ruby-2 .6 .L.Lar ,gz" \

p File. extname ( " img/foo.png, )

p File.extname ( " /usr/1oca1/bin/ruby" )

p Fi1e. extname ( "-/. zshrc" )

p File.ゴ oiin(‖ /usr/binil′  !iruby‖ )

p File.join(:i.::′  ‖ruiby・ )

|二 > l:.rb‖

|二> l:.gz‖

|=> :〕 .png〕
i

十二> :日 :

|=> :'‖

+=> ::/usr/bin/ruby‖

+=> ::./ruby・

ロ

O File.expand_pathυα滋[′ αり物
“
J`_″月)

相対パス名′α′力を、ディレクトリ名グ′ヵ″に読″に基づいて絶対パス名に変

換します。拗 励_arが指定されなかった場合は、カレントディレクトリを基

準にして変換します。

18.4 ファイル名の操作 :

403



第18章  F‖ eク ラスとDirク ラス

p Dir.pwd
p File. expandjath ( "bin" )

p File.expandJath( " . . /bin" )

p File.expand-path( "bin", "/usr" )

p File.expandJath( ". ./etc", "/usr" )

p File. erpand path ( " 
-gotopzo/bin" 

)

p File.o<pand path( "-takahashim/bin" )

p File. expand-path ( "-/bin" )

|=>

十=>

+=>

十三>

十三>

‖/usr/1ocal‖
l1/usr/1oca1/bin‖

“/usr/bini:
:1/usr/bin‖

‖/etc"

Unixの場合は、「～ユーザ名」でユーザのホームディレクトリを取得するこ

とができます。また、「～/」 はプログラムを実行したユーザのホームディレク

トリを表します。

#=> " /home/gotoyuzo/bin"
#=> " /home/takahashim/bin"
#=> " /home/gotowzo/bin"

スクリプトのファイル名

プログラムの中で、そのプログラムが書かれているファイル名を参照する

方法を紹介します。

IЭ  F工LE

現在のソースファイル名が格納された擬似変数です。絶対パスとは限らな

いため、絶対パスが必要な場合はFile.expand path(__FILE__)と する必

要があります。

O  dir
現在のソースファイル (__FILE__)の あるディレクトリ名を絶対パスで返

します。こちらは擬似変数ではなくメソッドとして実装されています。

18。5

404



18.6 ファイル操作関連のライプラリ :

フアイル操作関連のライブラリ

Rubyのパッケージに標準添付されている、ファイル操作関連のライブラリ

を紹介します。組み込みのFileク ラスやDirク ラスは、OSの提供する機能
をRubyか ら扱えるようにするための最低限の機能しか提供していません。効

率よくプログラムを書くには、この節で紹介するライブラリが必要になるで

しょう。

(|卜 18。6.l findライブラリ
findラ イブラリに含まれる Findモ ジュールは、指定したディレクトリ以

下に存在するディレクトリやファイルを再帰的に処理するためのものです。

O Findofind(″){|′α滋 |・・・}
Find.prune
Find.findメ ソッドは、ディレクトリar以下のすべてのファイルのパスを
1つずつパス′α効に渡します。

Find.pruneメ ソッドは、Find.findメ ソッドで現在検索中のディレクト

リ以下のパスを読み飛ばします (単にnextを使うと、読み飛ばすのはそのデ

ィレクトリだけで、サブディレクトリの検索は継続されます)。
List 18.3は コマンドライン引数に指定したディレクトリ以下を表示するス

クリプトです。listdirメ ソッドは、引数topで指定したパス以下のすべて
の デ ィレク トリ名 を表 示 します 。検 索 した くな い デ ィ レク トリを IGNORESに

登録しておくと、Find.pruneメ ソッドでそれ以下の検索を省略します。

L:s,0:istdir.rb

require "find"

IGNORES = [ /人 .ヽ/′  /^、 。svnS/′  /^ヽ .gits/ ]

def liStdir(tOp)

Find.find(top)do lpathl

if File.directory?(path) l pathがデ ィレク トリならば
dir′  baSe E File.split(path)

q

405

′
０
Ａ
〉
■
日
●



第18章  F‖ eク ラスとDirク ラス

IGNORES.each dO

■f re =  base

Find.prune

end

end

puts path

end

end

+無視したいディレクトリの場合

十それ以下の検索を省略する

lrel

1出力する

listdir(ARGV[0])

●・018。 6。2 tempf‖eライブラリ
tempfileラ イブラリはテンポラリファイルを管理するためのライブラリ

です。

たくさんのデータを扱うプログラムでは、処理の途中で作成される一時的

なデータをファイルに書き込むことがあります。このファイルはプログラム

が終了すると必要なくなるので、削除しなければいけませんが、ファイルを

削除するには作成 したときのファイル名をいちいち覚えておかなければなり

ません。また、複数のファイルを扱う場合や、同時に複数のプログラムが実行

されることを考えると、いつも同じファイル名を使ってはならないという面

倒な問題もあります。

tempfileラ イブラリに含まれるTempfileク ラスは、これらの問題を解決

してくれます。

(D TempfileoneW(bα Sθ
“
αl“θ[′ 惚

“
′JjFl)

テンポラリファイルを作成 します。実際に作成 されるファイル名は、

ゎas`4α″
`に
プロセスIDと 、通し番号を付加したものです。したがって、同じ

ゎasι 4αれιを使っても、newメ ソッドを呼ぶごとに異なったファイルが割り

当 て られ ます 。デ ィ レ ク トリ名 r"?″′′を指定 しな け れ ば 、ENV[‖ TMPDIR・ ]、

ENV[‖ TMP‖ ]、 ENV[‖ TEMP‖ ]、
‖/tmp"の順 に検 索 して 最 初 に見つ か っ た デ ィ

レク トリが使 用 され ます。

end

406



18.6 ファイル操作関連のライプラリ

(])telmlpfileoclose(F2α J)

テンポラリファイルを開じます。″α′がtrueの とき、テンポラリファイル

はすぐに削除されます。明示的に削除しなくても、Tempfileオ ブジェクトが

GC(p.439)さ れると同時に削除されます。καJのデフォルト値はfalseです。

C)tempfileoopen
closeメ ソッドで閉じたテンポラリファイルを、もう一度開きます。

(E)teimpfileopath

テンポラリファイルのパス名を返します。

磯》0018.6.3 fileut‖ sライブラリ
すでにFileUtils.cp、 FileUtils.mvメ ソッドは紹介 しましたが、
fileutilsラ イブラリをrequireで読み込むと、ファイルの操作を行うとき

に便利なFileUtilsモジュールのメソッドを利用できるようになります。

O FileUtils.cptル 0″′力)

ルο
“
からrοヘファイルをコピーします。′οがディレクトリの場合は、′ο以

下にル知 と同名のファイルを作成します。ルοれを配列にして複数のファイル

を一度にコピーすることもできます。この場合、′οはディレクトリでなけれ

ばなりません。

O FileUtils.cp_rびわ
“
′わ)

FileUtils.cpメ ソッドとほぼ同様の動作をしますが、ルο
“
がディレクト

リの場合は再帰的にコピーを行います。

O FileUtilsomvlげb″′わ)

ルο協からゎヘファイル (ま たはディレクトリ)を移動します。′οがディレク

トリの場合は、′ο以下にルο
“
と同名のファイルとして移動します。ルοれを配

列にして複数のファイルを一度に移動することもできます。この場合、′οは

ディレクトリでなければなりません。

lq

407



H

第18章 F‖eク ラスとDirク ラス

OFユ leUtilsorm(′α滋 )
FileUtilserm_f(′ α励 )

′αr力 を削除します。′α′たはファイルでなければなりません。′α′みを配列に

して複数のファイルを一度に削除することもできます。FileUtils.rmメ ソ

ッドは削除の際に例外が発生すると処理を中断しますが、FileUtils.rm_f

メソッドは無視して続行します。

()FileUtils.rm_r(′α″り
FileUtilsorm_rf(′α滋)

′αまたを削除します。′α′たがディレクトリの場合は再帰的に削除を行います。

′α′みを配列にして複数のファイル (ま たはディレクトリ)を一度に削除する

こともできます。FileUtils.rm_rメ ソッドは処理の途中で例外が発生する

と処理を中断しますが、FileUtils.rm_rfメ ソッドは無視して続行します。

O FileUtilsecomparetルο″′
")

ルοれと′οの内容を比較します。一致していればtrueを 、一致していなけれ

ばfalseを返します。

OFユ leUtils.install(メ リ
“
′わ[′ θP′jO″ 1)

ルο″からrοヘファイルをコピーします。″οがすでに存在し、ルο
“
の内容と

一致していれば、コピーは行われません。また、オプションο′″οれとしてコピ

ー先のファイルの許可モードを次のように指定することもできます。

FileUtils.inStall(frOm′  tO′  :mOde=>0755)

O FileUtilsomkdir_p(′ α滋 )
Dir.mkdirメ ソッドを使って“foo/bar/baz‖ というディレクトリを作成

する場合、

Dir.Inkdir(‖ foo・ )

Dir.mkdir(:if00/bar11)

Dir.1■kdir(Ii foo/bar/baZ‖ )

408



18.6 ファイル操作関連のライプラリ :

のように上位のディレクトリからサ1贋番に作成 しなければいけませんが、

FileUtils.mkdir_pメ ソッドをイ吏えば、

と呼び出すだけで階層の深いディレクトリも一度に作成できます。パス名

′αルを配列にして複数のディレクトリを一度に作成することも可能です。

409

FileUt■ ls.mkdir_p(ll foo/bar/baz‖
)

18



第18車 F‖eク ラスとDirク ラス

練習問題
／

′

′

(1)変数 S:に は、Rubyが利用するライブラリが置かれているディレク ト

リの名前が、配列の形で格納されています。この変数を使って、Rubyが

利用できるライブラリのファイル名を順に出力するメソッドprint_

librariesを 定義してください。

(2)Unixの duコ マンドのように、ファイルとディレクトリに保存されてい

るデータの大きさを、再帰的に掘り下げて調べ、表示するメソッドduを

定義してください。

このメソッドは引数を1つだけ取ります。

du(調べるディレクトリ名 )

指定されたディレク トリにあるファイルの大きさ (バイ ト数 )と ディレ

クトリの大きさを表示します。ディレクトリの大きさは、そのディレク

トリの下にあるファイルの大きさの合計とします。

※解答は、サポー トベージ (htps://tanoshiiruby.github」 o/6/answer/)で 公開しています。

410



イング
ing)クラス

この章では、Encodingク ラスと、Rubyにおけるエンコーディングの扱い

について説明します。

● Rubyのエンコーディングと文字列

Rubyでの文字列とエンコーディングの扱いについて説明します。

●スクリプトエンコーディングとマジックコメント

マジックコメントとスクリプ トエンコーディングについて改めて説明

します。

●Encodingク ラス

エンコーディングの基本となるEncodingク ラスについて紹介します。

o正規表現とエンコーディング
正規表現とエンコーディングの関係を説明します。

●工0ク ラスとエンコーディング

IOク ラスとエンコーディングの関係を説明します。

ロ

Rubyのエンコーデイングと
文字列

第14章のコラム「文字コード」(p.308)で、コンピュータで文字を扱う際の

基本である文字コードについて説明しました。このコラムで説明した通り、

文字コードは複数あり、1つのプログラムでも、入出力で異なる文字コードを

扱わなければいけなくなることがあります。たとえば、入力はUTF-8で受け

取りながら、Shift_JISで出力するというような場合です。UTF-8の「あ」と

Shift_JISの「あ」は異なるデータですが、適切に変換を行うことによって、こ

のようなプログラムを書くことが可能になります。

プログラムがどのように文字コードを扱うかは、プログラミング言語によ

411

ヽ



:第 19章  エンコーディング(Encoding)ク ラス

ってアプローチが異なります。Rubyでは個々の文字列オブジェクトが、「文

字列のデータそのもの」と「そのデータの文字コード」という2つの情報をセ

ットで保持しています。このうちの2つ 日、文字コードに関する情報をエンコ

ーディングといいます。

文字列オブジェクトを作るには、おおまかに、スクリプトにリテラルとし

て記述する方法と、プログラムの外部 (フ ァイル、コンソール、ネットワーク

など)か らデータを受け取る方法の2通りの方法があります。データをどのよ

うに取得するかによって文字列オブジェクトのエンコーディングが決められ

ます。文字列の一部を取り出したり、複数の文字列を連結して新しい文字列

オブジェクトを作る場合は、もとのエンコーディングが引き継がれます。

また、プログラムの外部にデータを出力する際は、出力先ごとに適切なエ

ンコーディングを決める必要があります。

Rubyは次の情報をもとに、文字列オブジェクトのエンコーディングを決定

したり、入出力処理の際に変換を行ったりします。

●スクリプトエンコーディング

リテラルに記述した文字列オブジェクトのエンコーディングを決定す

る情報です。スクリプトそのものの文字コードと一致します。これに

ついては「19.2 スクリプトエンコーディングとマジックコメント」

で説明します。

●内部エンコーディングと外部エンコーディング

内部エンコーディングは外部から受け取ったデータをプログラム内で

どのように扱うかという情報です。逆に外部エンコーディングはブロ

グラムを外部に出力する際のエンコーディングに関する情報です。い

ずれも10オ ブジェクトに関連します。これについては「19.5 10ク ラ

スとエンコーディング」で説明します。

スクリプトエンコーデイングと
マジツクコメント

マジックコメントについては、第1章で簡単に説明しました。マジックコメ

ントをスクリプトの先頭に書くことで、Rubyス クリプト自体のエンコーディ

ングを指定できます。

412

口 2



19.2 スクリプトエンコーディングとマジックコメント
:

スクリプ ト自体のエンコーディングのことを、スクリプ トエンコーディン

グと呼びます。スクリプ ト中の文字列や正規表現のリテラルは、スクリプ ト

エンコーディングに従って解釈されます。スクリプ トエンコーディングが

Shift_JISな ら、文字列や正規表現リテラルはShift_JISに なります。同様に、

スクリプ トエンコーディングがUTF-8な ら、文字列や正規表現リテラルも
UTF-8に なります。

スクリプ トエンコーディングを指定するために使われるのがマジックコメ

ントです。Rubyはスクリプ トの解析を始める前に、マジックコメントを読み

取ってスクリプトエンコーディングを決定します。

マジックコメントはスクリプトの最初の行に記述しなければなりません

(1行日が「十! ～」で始まる場合は2行 日に記述します)。 UTF-8を指定する
場合の例を次に挙げます。

# encoding: utf-8 q
ψ

また、Emacsや Vimな どのエディタに対するエンコーディングの指定と共
通化できるように、次の形式で指定することもできます。

# -*- coiling: utf-B -x-
# vim:set fileencoding=uL1-g

I Emacsの 場合

十Vimの場合

マジックコメントがついていない場合のスクリプ トエンコーディングは

UTF-8に なるため、UTF-8の ソースコードであればマジックコメントは必
要ありません。UTF-8以外の日本語の文字列を使う場合はマジックコメント
に適切なエンコーディングを指定しなければいけません。

次の例では、日本語の文字 を含んでいますが、マジックコメン トで

4:3

Unixで はスクリプ トの許可モー ド(p.400)に 実行許可ビットを付与すれば、

実行形式と同様にスクリプ トを実行することができます。その際に、ファイ

ルの先頭に「#:コ マンドのパス」の形式でスクリプトを処理するコマンド

を指定します。本書のスクリプトの実行例では「> ruby スクリブト名」の
ようにrubyコマンドをコマンドラインに指定していますが、ファイルの先
頭に「十!/usr/bin/ruby」 など、適切にrubyコ マンドのパスを記述すれば
「>。 ノスクリプト名」のようにして実行できます。



:第 19章  エンコーディング(Encoding)ク ラス

US―ASCIIが指定されているためエラーになっています。

l encoding: US― ASCII

a = l'こ んにちは ::  +=> invalid imultibyte Char (US― ASCII)

文字列のエンコーディングを調べるにはString十encodingメ ソッドを、現

在のスクリプトエンコーディングを調べるには擬似変数__ENCODING__を 参

照します。ついでになりますが、UTF-8は他のエンコーディングよりも扱い

が充実しており、文字列リテラルで特殊文字「 uヽ」 を使うとスクリプトエンコ

ーディングにかかわらずUTF-8の文字列を作ることができます。次に示すの

は、Shift_JISのスクリプトにUTF_8の 文字列をリテラルとして埋め込む例

です。

+ encoding: Shift_JIS

p _ENCODINO_ +=> |く Encoding:Shift_JIS>

s = "\u3042\u3044\u3046\u3048\u304a"
puts s

p s.encoding

十 UTF-3の「あいうえお」

|=>‖ あいうえお‖

十二> 十くEncoding:UTF-8>

Encodingクラス

先ほど紹介した通り、string#encodingメ ソッドは、Encodingオ ブジェ

クトを返します。

p " a/!l=tlJ. ".encoding #=> #<Encoding:UTF-B>

この例では、「こんにちは」という文字列オブジェクトのエンコーディング

がUTF-8になっています。

19。3

414

〓
‥

‥

‥



19.3 Encodingク ラス

サ
Windows環 境では「Windows-31J」 というエンコーディングが表示されるか

もしれません。これはWindows用 にShift_JISを 拡張したエンコーディング
で、たとえば「①」といった本来のShn_JiSにはない文字が含まれています。
Windows-31Jに はCP932(「 Microsoftコ ードページ932」 の意味)という別

名があり、インターネット上で文字コードに関する議論が行われる場合には

こちらの名前が使われることがあります。

スクリプ トの中で異なるエンコーディングを扱うときには、必要に応じて

変換を行います。文字列オブジェク トのエンコーディングを変換するには

String+encodeメ ソッドを使います。

str= :'こ んにちは ‖

p Str.enCOding   +=> +く EnCOding:UTF-8>

str2 = str.encOde(lIShift_JIs ii)

p str2.encoding  十=> +く Encoding:Shift_JIS>

この例では、UTF-8の文字列オブジェクトから、Shift_JISのエンコーデ

ィングを持つ新しい文字列オブジェク トを作成しています。

文字列を操作する際には、エンコーディングの扱いをRubyが チェックして

くれます。たとえば、異なるエンコーディングの文字列を連結しようとする

とエラーが発生します。

# encoding: utf-8

strl=‖ こんにちは・

p Strl.enCOding     +=> #くEncoding:UTF-8>

str2 = :lあ tヽ うえお‖.encode(・ Shift_JIs・ )

p str2.encoding     十=> 十くEncoding:Shift_JIS>

str3 = strl + str2  1=> lncompatible character encOdings: UTF-8

1 and Shift_JIS(Encoding::CompatibilityError)

エラーを防ぐには、文字列を連結する前に、encodeメ ソッドなどを使って

両者が同じエンコーディングになるよう変換する必要があります。

また、比較の際にも、表現している文字が同じでも文字コードが異なれば、

異なる文字列と見なされます。

4:5



第19章 エンコーディング(Encoding)ク ラス

# encoding: utf-8
p, b, =-, &),'.encode(,Shift_JIS") #=> false

なお、この例ではstringlencOdeで エンコーディングを指定する場合、エ

ンコーディング名の文字列を使っていますが、Encodingオブジェクトで指

定することもできます。

Gい 19。3.l Encodingクラスのメリッド
それではEncodingク ラスのメソッドを見ていきましょう。

r)Encoding.cOlmlpatible?(sι rr′  s`r2)

2つの文字列の互換性をチェックします。ここでいう互換性とは2つの文字

列を連結できるかどうかです。互換性がある場合は、連結した結果得られる

文字列のエンコーディングを返します。互換性がない場合はnilを返します。

p Encoding.coimpatible?(‖ A131!.encode(・ Shift_JIS il)′
llあ ::.encode(11 UTF-8‖ )) #=> +くEncoding:UTF-8>

p EncodingocOmpatible?(:iあ il.enCOde(‖ Shift_JIS‖ )′
1:あ 11.encode(‖ UTF-811)) +=> nil

「AB」 という文字列はShift_JISで もUTF_8で も同一なので、Shift_JISに

変換してもUTF-8の文字列と連結できますが、「あ」という文字列は連絡で

きないため、nilになります。

(D Encodingedefault_external

デフォルトの外部エンコーディングを返します。この値は10ク ラスの外部

エンコーディングに影響します。詳細は「19.5 10ク ラスとエンコーディン

グ」(p.421)を参照してください。

(E)Encodingedefault_internal

デフォルトの内部エンコーディングを返します。この値はIOク ラスの内部

エンコーディングに影響します。詳細は「19.5 10ク ラスとエンコーディン

グ」(p.421)を 参照してください。

4:6



19.3 EncodingrrZ:

C)Encodingefindo2"%θ )
エンコーディング名″α″ιに対応する、Encodingオ ブジェクトを返します。

あらかじめ組み込まれているエンコーディング名は空白を含まない大小のア

ルファベットと数字と記号から構成されています。検索の際はれα
“
ιの大文字

と小文字は区別されません。

p Encoding.find(・ Shift_JIS・
)

p Encodi‐ng.find(■ shift_jis・ )

+=> |く Encoding:Shift_JIS>

|=> 十くEncoding:Shift_JIS>

なお、特殊なエンコーディング名として、表 19.1が予約されています。

霞m特 別なエンコーディング名

locale ロケール情報によって決定されるエンコーディング

external f t t.w l. rf*jry = 
*i .t > )"

internal デフォル ト内部エンコーディング

filesystem ファイルシステムエンコーディング

C)Encoding。 list
Encodingenam.e_ ist

Rubyが サポートしているエンコーディングの一覧を返します。Encoding.

listメ ソッドはEncodingオ ブジェクトの一覧を、Encoding.name_listは

エンコーディングの名前を表す文字列の一覧を、それぞれ配列に格納して返

します。

p Encoding.list
#=> [*<Encoding:ASCII-BB]T>, #<Encoding:UTF-8>.

p Encoding.name_Iist
#=> [ "ASC]I-BBIT', "UTF-8", 'US-ASCII,, . . .

ロ
|

417

名前 意味



:第 19章 エンコーディング(Encodin3)ク ラス

(Dθ″c.name
Encodingオ ブジェクトι″θのエンコーディング名を返します。

p Encoding.find(‖ shift_jisi:).nalme  +=> 〔:Shift_JIS‖

(])ι″ι.names
「ASCII-8BIT」 と「BINARY」 など、1つのエンコーディングが複数の名前

を持つ場合があります。このメソッドは、Encodingオ ブジェクトに与えられ

た名前の一覧を含む配列を返します。このメソッドに含まれるエンコーディ

ング名であれば、Encoding.findメ ソッドで検索する際に利用できます。

enc = Encoding.find(・ ASCII-8BIT‖ )

p enc.names  l=> [|:ASCII-8BIT‖ ′ :!BINARY‖ ]

ASC‖-8BITとバイト

'」
特別なエンコーディングとして、「ASCII-8BIT」 が用意されています。これ

はバイナリデータ、バイ ト列を表現するためのエンコーディングです。そのた

め、このエンコーディングにはBINARYと いう別名があります。

文字列オブジェク トはバイト列を格納するためにも使われます。典型的な

例はArray+packメ ソッドでバイ トデータを文字列 として生成する場合や、

Marshal.dumpメ ソッドでオブジェク トをシリアライズしたデータを文字列と

して生成する場合です。

たとえば、Array#paCkメ ソッドを使って、IPア ドレスを4つの数値で表し

たものを4バイトのバイト列にする場合は、次のようになります。

str = [127,0,0,1] .pack("C4')
p str #=> "\x7F\x00\x00\x01"
p str.encoding #=> #<Encoding:ASCTI-BBIT>

418



Array+packメ ソッドの引数はバイト列化するためのパターンで、C4は 8ビ

ットの符号なし整数 4つの並びを意味しています。その結果は4バイ トのバイ

ト列で、エンコーディングはASCII-8BITに なります。

また、open―uriラ イブラリなどを使い、ネットワーク越しにファイルを取得

する場合、その文字コードがわからない場合があります。その場合にも、エンコ

ーディングはASCII-8BITになります。

# encoding: utf-8
require "open-uri"
str = open( "http://www.example. jpl,, ) .read
p str.encoding #=> #<Encoding:ASCII-BBIT>

ASCII-8BITの 文字列であって も、本来の文字 コー ドがわかる場合は、
force_encodingメ ソッドを使います。このメソッドは、文字列の値 (バイトデ
ータ)は変更せず、エンコーディングの情報だけを変更します。

# encoding: utf-B
require "open-uri"
str = open( "ht.tp: //www.example. jpl" ) .read
str. force_encoding ( "Windows-3 1,J " )

p str.encoding #=> #<Encoding:Windows-31J>

こうすると、ASCII-8BITだ った文字列を、Windows-31Jと いうエンコーデ

ィングの文字列として扱うことができます。

なお、force_encodingメ ソッドの引数に、その文字コードの文字列に変換

不可能なエンコーディングを指定しても、その時点ではエラーにはなりませ

ん。その文字列に対してさらに操作を行う時点ではじめてエラーが発生しま

す。また、適切なエンコーディングかどうかを調べるためのメソッドvalid_
encoding?も あります。不適切な場合にはfalseを返します。

str二 1:こんにちは・

Str.fOrCe_enCOding(・ US― ASCII・ )十 => コ1ラ ー|こはならなもヽ

str.valid_encoding?            #=> false

str + Ii`み 、,ま さ′ん′:'                十二> EnCOding::COmpatibilityError

l

ロ

419

19.3 Encod:ngクラス
:



19。4

:第 19章 エンコーディング(Encoding)ク ラス

正規表現とエンコーデイング

正規表現も文字列と同様に、エンコーディングの情報を持っています。

正規表現オブジェクトは同じエンコーディングを持つ文字列としかマッチ

しません。たとえば、UTF-8の正規表現オブジェクトにShift_JISの 文字列

をマッチさせようとしても、エラーになります。逆も同じです。

+ encoding: utf-8

regexp=/あ /              +UTF-8の 正規表現

str=‖ あいうえお‖.encode(・ shift_JIS・ )十 shift_JIsの「あいうえお」

p regexp =～  str    +=> incompatilble encoding regexF)match

‖   (UTF-8 regexp with Shift_JIS string)

+   (Encoding::CoimpatibilityError)

通常、正規表現リテラルのエンコーディングはスクリプトエンコーディン

グと同じになります。

異なるエンコーディングを指定するときは、Regexpク ラスのnewメ ソッド

を使います。このメソッドでは、第 1引数に正規表現のパターンとして文字列

を与えますが、この文字列のエンコーディングが、そのまま正規表現のエン

コーディングに使われます。

str = :1パターン :1.encode(1'Shift_JIS11)

re = Regexp.new(str)

p re.encoding  +=> +く Encodilng:Shift_JIS>

420



IOクラスとエンコーデイング

10オ ブジェクトを使って入出力を行う際も、エンコーディングが重要です。

ここでは10ク ラスとエンコーディングについて説明します。

●・・19。5.1 外部エンコーデイングと内部エンコーデイング
IOオ ブジェクトはそれぞれ、外部エンコーディングと内部エンコーディン

グという2つのエンコーディング情報を持ちます。外部エンコーディングは

入出力の対象となるファイルやコンソールで期待するエンコーディングで、

内部エンコーディングはRubyス クリプ トの中で扱うエンコーディングのこ

とです。IOオ ブジェクトのエンコーディングに関するメソッドを表 19.2に示

します。

陸)― :0クラスのエンコーディング関連のメソッド
メソッド名 意味    ~

I0#external_encoding IOの外部エンコーディングを返す
IO# internal_encoding 10の 内部エンコーディングを返す
IO#set_encoding Ioにエンコーディングを設定する

エンコーディングを明示的に設定しない場合、工0オ ブジェクトの外部エ

ンコーディングと内部エンコーディングはそれぞれEncoding.default_
internalおよびEncodingodefault_externalの 値になります。デフォルト

では外部エンコーディングはシステムごとのロケールをもとに設定されます

が、内部エンコーディングは設定されません。Windowsの場合は次のように
なります。

p Encoding, defaul!_external
p Encoding. default_internal
File.open("foo.txt,') do lf I

p f.external_encoding
p f.internal_encoding

end

19.5 10ク ラスとエンコーディング・

|=> +く Encoding:Windows-31J>

十二> nil

#=> #<Encoding : Windows-31J>

#=> nil

ロ

42:

19.5



:第 19章 エンコーディング(Encodlng)ク ラス

●・・19。5.2 エンコーデイングの設定
Ioォ ブジェク トにエ ンコーデ ィング情報 を設定す るには、10+set_

encodingメ ソッドを使うか、File.Openメ ソッドの引数としてエンコーデ

ィングを指定します。

(D JO.set_enCOding(θ ″
`ο

′′
“
g)

10+set_encodingメ ソッドには「"外部エンコーディング名:内部エンコーデ

ィング名 ::」 の形式の文字列ι′2εο′Jκ gを指定します。外部エンコーディングを

Shift_JIS、 内部エンコーディングをUTF-8に 設定する場合は次のようにし

ます。

sstdin.set_encOding(‖ Shift_JIS:UTF-8‖ )

p sstdin.external_encoding  +=> +く Encoding:Shift_JIS>

p sstdin.internal_encoding  十三> |く Encoding:UTF-8>

(D FileeOpen(lβ lル′ ::“ 0′θ8ι″CO′Jκg‖ )
Fileoopentl″ル′ 1:“,OJθ

ll′ enCOding8 θ″εOJJ″g)

File.readOα洗り enCOding8 θ
“

COJJ“g)

FileowriteもβJθ′ S`rJ″ g′ enCOding8 θ″COグJ″g)

ファイルμ′を開く際にFile.openメ ソッドでエンコーディンク
゛
"`ο
グjれg

を指定するには、第2引数のモード指定″ο″ιと一緒に
‖
:‖ で区切って外部

エンコーディング、内部エンコーディングのサ1貝に指定します (内部エンコー

ディングは省略できます )。 また、:encodingオ プションを追加して指定す

ることもできます。:encodingオ プションは、File.readメ ソッドやFile.

writeメ ソッドに指定することもできます。

+外部エンコーディングとしてUTF-8を 指定する
File.Open(‖ fOO.tXtl:′  II W:UTF-8‖ )

十 または

File.Open(・ fO。 .txt il′  〔[w::′  encoding: 1:UTF-8‖ )

十外部エンコーディングとしてShift_JISを指定し、

十内部エンコーディングとしてUTF-3を 指定する

422



19.5 10ク ラスとエンコーディング

File.Open(‖ foo.txt 11′  l:r:Sllift_JIS:UTF-811)

十 または

File.Open(・ f00.tXt・ ′ l:r li′  encoding: liShift_JIS:UTF-811)

1外部エンコーディングとしてUTF-8を指定してファイル全体を読み込む
File.read(・ foo,txt‖ ′ encoding: 1:UTF-8・ )

+外部エンコーディングとしてUTF-3を指定してファイルに書き込む
text=‖ UTF-8や Shift JISの テキス トデータ‖

File.Write(‖ f00.tXt‖ ′ text′  encoding: 1l UTF-8・ )

なお、エンコーディングは文字をどのように扱うかという情報なので、バ

イナリファイルにとっては役立つものではありません。

「17.3 ファイルポインタ」(p.377)でバイト数を指定してファイルを操作

するために、10+seekを 紹介しました。また、10+read(s権 )によって読み込

まれた文字列は、「ASCII-8BIT」 というバイナリデータのためのエンコーデ

ィングを持ちます。これらのメソッドはどのようなデータであっても読み書

きの操作ができるようにエンコーディングの影響を受けないようになってい

ます。

●・・]9.5.3 エンコーデイングの動き
それでは、10オ ブジェクトに設定されたエンコーディング情報がどのよう

に利用されるかを見ていきます。

○ 出力時のエンコーディングの動き

2つのエンコーディングのうち、書き込み (出力)に影響するのは外部エン

コーディングです。出力の際に、個々の文字列が保持しているエンコーディ

ングと、loオブジェクトの外部エンコーディングをもとに文字コードの変換

が行われます (したがって、出力用の10オ ブジェクトについては内部エンコ

ーディングを指定する必要はありません)。

外部エンコーディングが設定されてない場合や、文字列のエンコーディン

グと外部エンコーディングが一致している場合は変換されません。変換が必

要な場合に、出力しようとする文字列のエンコーディングが不正 (実際は日

本語なのに中国語用のエンコーディング情報を持つ文字列など)だったり、

ロ

423



第19章 エンコーディング〈Encodlng)ク ラス

文字列と外部エンコーディングが変換できない組み合わせ (日本語用のエン

コーディングと中国語用のエンコーディングなど)だ ったりする場合には例

外が発生します。

エンコーディングに関する処理はIOIwriteメ ソッドで行われます。IOオ

ブジェクトのすべての出力処理は内部でwriteメ ソッドを呼ぶため、常にエ

ンコーディングの影響を受けることになります。

スクリプト 出力先

(フアイルなど)

"文字列"

(Shit_JiS) ⇒ ⇒
"文字列 ''

(∪TF-3)

external_encoding=gTP-U

●外部エンコーディングが設定されていない場合は変換されない

o文字列の持つているエンコーディングから外部エンコーディングに変換される

●変換できない場合はエラーとなる

嘔)― 出力時のエンコーディングの動作

○ 入力時のエンコーディングの動き

読み込み (入力)は少し複雑です。まず、外部エンコーディングが設定され

ていない場合は、外部エンコーディングはEncoding.default_externalの

値と見なされます。

外部エンコーディングが設定されていて、内部エンコーディングが設定さ

れていない場合は、読み込まれた文字列には10オ ブジェクトの外部エンコー

ディングが設定されます。このケースでは変換は行われず、ファイルやコン

ソールから入力されたデータがそのままの形でStringオブジェクトに格納

されます。

最後に、外部エンコーディングと内部エンコーディングの両方が設定され

ている場合は、外部エンコーディングから内部エンコーディングヘと変換さ

れます。出力と同様に入力でも、変換が発生したときに入力されるデータの

形式やエンコーディングの組み合わせが正しくない場合には、例外が発生し

ます。

複雑に感じられたかもしれませんが、基本的に利用環境と実際に利用する

!0

424



19.5 10ク ラスとエンコーディング :

データのエンコーディングが一致していれば変換を意識しなくてもよいよう

になっています。一方、動作環境と異なるエンコーディングのデータを利用

する場合は、何らかの変換をプログラムで意識する必要があるのが普通です。

IOク ラスの入カメソッドのうち、getsメ ソッドやgetcメ ソッドなどの行

または文字単位の読み込みはエンコーディングの影響を受けます。readメ ソ

ッドは、引数を省略してファイルを終わりまで読み込む場合はエンコーディ

ングの影響を受けますが、読み込む長さを指定したときはバイナリデータを

扱う処理ということでエンコーディングの影響を受けません。また、getbyte

メソッドなどのバイト単位の読み込みもエンコーディングの影響を受けませ

ん。

スクリプト 出力先
(ファイルなど)

"文字列
‖

(Shifヒ _JIS) ● ●
"文字列"

(UTF-8)

ロ
|

external_encoding:g1P-a
internal_encoding=Shift_JlS

●内部エンコーディングがない場合は外部エンコーディングが文字列に設定される

●外部エンコーディングが設定されていない場合はEncoding.defau!t_externa!となる

●内部エンコーディングが設定されている場合は外部エンコーディングから変換される

●変換できない場合はエラーとなる

(璽)― 入力時のエンコーディングの動作

10

425



:第 19章 エンコーディング(Encodin3)ク ラス

練習問題

(1)EUC― JPの文字列 str_eucと 、Shift_JISの 文字列 str_sjisを 連絡し

てUTF-8の文字列を返すメソッドto_utf8(str_euc′  str_sjis)を

作ってください。

(2)ShiftJISで「こんにちは」と書かれたテキストファイルを作り、そのフ

ァイルを読み込んでUTF-8で出力するスクリプトを作ってみてくださ

い 。

(3) str.encode(・ Shift_JIS‖ )と Str.enCOde(・ windows-31J“ )1を実行 し

た ときに結果が異 なるような、UTF-8の文字列 strを 見つけてくだ さ

い 。

※解答は、サポー トベージ (https://tanoshiiruby.github」 o/6/answer/)で 公開 しています。

″

′

′

426



TimeクラスとDateクラス

この章では、時刻を扱うためのTimeク ラスと日付を扱うためのDateク ラ

スを紹介します。

。Timeク ラスとDateクラス

Timeク ラスとDateク ラスの概要を説明します。

●時刻や日付を取得する

現在の時刻や日付を取得する方法を紹介 します。

。時刻や日付を計算する

2つの時刻や日付を比較したり、または差を求める方法を紹介します。

●文字列に変換する

時刻や日付を文字列として整形して出力する方法を紹介します。

●文字列を解析する

時刻や日付を表現する文字列からTimeオ ブジェクトやDateオ ブジェ

クトを作成する方法を紹介します。

α

Timeク ラスは時刻を表現するクラスです。時刻には、年月日時分秒のほか

に、地域ごとの時差を表現するためのタイムゾーンという情報が含まれます。

日本におけるある時刻が協定標準時で何時にあたるか、といった計算を行う

ことができます。

Dateク ラスは年月日だけを扱うためのクラスです。Dateク ラスは日を単

位とした計算に使えます。また、Dateク ラスは、来月の同日や今月の月末と

いった日付を求めることもできます。

427

‐ヒE幡I TimeクラスとDateクラス



第 20章 Timeク ラスと Dateク ラス

Timeク ラスとDateク ラスで表現できる時刻や日付に制限はありません (現

在の暦がそれまで使われていれば、の話ですが、「西暦100億年」といった時

刻や日付も扱うことができます )。 しかし実際にはファイルのタイムスタン

プやプログラムの実行時間などのシステム内の時刻、あるいはデータベース

上の時刻型データなど、Rubyの プログラムとは別に環境の制限を受ける場合

があります。

時刻を取得する

C)Time.new
Time.now
Time.newメ ソッドまたはTime.nowメ ソッドを使って、現在の時刻を表す

Timeオ ブジェクトを得ることができます。

p Tirne.new  十二> 2018-11-19 11:08:22 +0900

sleep l   +1秒待つ
p Time.now  +二 > 2018-11-19 11:08:23 +0900

〇 ′.year

`.month

`.day
年、月、日など取得した時刻の要素を求めることもできます。

t = Time.now
p t #=> 2018-11-19 11:09:05 +0900

p t.year #=> 201-8

p t.month #-> l-l-

p t.day #=> 19

428

時刻の要素に関するメソッドを表20.1に 挙げます。



20.2 時刻を取得する :

国G四■D時刻の要素に関するメソッド

year 年

month 月

day 日

hour 時

分

sec 秒

usec 秒以下の端数 (マ イクロ秒単位 )
nsec 秒以下の端数 (ナ ノ秒単位 )
to i 1970年 1月 1日 0時からの秒数
wday 週の何日目か (日曜日を0とする)
mday 月の何日目か (dayメ ソッドと同じ)
yday 年の何日目か (1月 1日 を1と する)
zone タイムゾーン (・ JsT‖ など)

utc_of fset UTCと の時差 (秒単位 )

O Timeomktine(

ッθαF[′

“

0″滋 [′ αの [′ 乃0“F[′ ″れ [′ S“ [′
“
S“]]]]]1)

指定した時刻を表すTimeオ ブジェクトを得るには、Time.mktimeメ ソッ
ドを使用します。

t = Tirne.mktime(2018′  11′  19′  11′  09′  40)
p t  l=> 2018-1_1-1_9 11:09:05 +0900

C)T土:me.at(θpο
`力
)

Unixシ ステムの時刻の基準点である1970年 1月 1日 午前0時 0分0秒 (UTC)
からの経過秒数に対応するTimeオブジェクトを取得します。

tO = Time.at(0)

p tO +二 > 1970-01-01 09:00:00 +0900

tl =Time.at(1600000000)

p tl +=> 2020-09-13 21:26:40 +0900

α

429

メソッド名 意味



:第 20章 Timeク ラスとDateク ラス

また、ファイルの作成時刻や更新時刻もTimeォ ブジェクトとして取得でき

ます。詳しくは「18.3 フアイルとディレクトリの属性」(p.397)を参照して

ください。

時刻を計算する

Timeオ ブジェクト同士は、比較したり、差を求めたりすることができます。

t1 = Time.now

sleep(10) * Llt 't+2
t2 = Time.now
p t1 < t2 *=> true
p t2 - t1 #=> 10.004440506

また、Timeオブジェクトに対して、秒数を足したり引いたりできます。

t = Time.now

p t                    +二 > 2018-11-19 11:09:05 +0900

t2=t+60*60*24 +24時 間分の秒数を足す

p t2                   +〓 > 2018-11-20 11:09:05 +0900

時刻のフォーマツト

C)`.Strftinetル F“α′)
′.to S

時刻をフォーマットに従った文字列にしたいときは、Time+strftimeメ ソ

ッドを使います。フォーマットしο″
“
″)に使用できる文字列を表20.2に示し

ます。

＝

―
‐
― 430



範囲

tA 躍日の名称 (Sunday、 Monday、 …… )

ta 曜日の省略名 (Sun、 Mon、 …… )

tB Ho$ffi (January, rebruary. ..'...)
%b 月の省略名 (Jan、 Feb、・……)

2c 日付と時亥」

%d 日 (01～ 31)

%H 24時間制の時 (00～ 23)

%I 12時間制の時 (01～ 12)

年中の通算日 (001～ 366)

tM ', (oo -- s9)
%m 月を表す数字 (01～ 12)

tp 午前または午後 (馴、PM)

%S 秒 (00～ 60)※ 60は うるう秒の場合
らU 週を表す数。最初の日曜日が第1週の始まり(00～ 53)
tW 週を表す数。最初の月曜日が第1週の始まり(00～ 53)
tw 曜日を表す数。日曜日がo(0～ 6)
%X 時刻

%x 日付

%Y 西暦を表す数

ty 西暦の下 2桁 (Oo～ 99)
%Z タイムゾーン (JsTな ど)

%z タイムゾーン (+o9ooな ど)

%% らをそのまま出力

20.4 時刻のフォーマット

畷)C璽愛D Time#strftimeメ ソッドのフォーマット文字列

た とえば 、Timelto_sメ ソ ッ ドで得 られ る文 字列 は ‖%Y― %m― %d BH:3M:3S

tz:lと同等です。

t = Tilme.now

p t.to_s

+==〕> i(2018-11-19 11:14:01 +0900‖

p t.Strftime(・ をY-21rt-3d %H:%lM:tS 2z‖ )

+=:), :[2018-11-19 1_1:14:01 +0900・

α

Time+strftimeメ ソッドのフォーマッ トの中には、プラットフォームの提
供する機能に依存 して、実行環境により結果が異なるものがあります。たと

えばWindowsで は、‖%Z‖ に対して「‖東京 (標準時 )‖ 」のような文字列を
生成します。

ψ

431



第20章  Timeク ラスとDateク ラス

○
`。

rfc2822

電子メールのヘッダ情報に含まれる、Date:フ ィールドで使用される形式

は、Time+rfc2822メ ソッドで生成できます。rfc2822と いうメソッド名は、

インターネットに関する一連の仕様書であるRFC(Request For Comments)

のうち、電子メールの形式を規定する仕様が記載されたRFC 2822に 由来し

ます。このメソッドを利用するには、あらかじめ「require‖ time‖ 」により

timeラ イブラリを読み込む必要があります。

require "time"

t = Time.now

p t.rfc2822  +=> :lMon′  19 Nov 2018 11:15:30 +0900・

(D`.iso8601

1S08601と いう時刻の表現に関する国際標準に則った形式でフォーマッ

トするには、Timeliso8601メ ソッドを使います。このメソッドを利用する場

合もtimeラ イブラリを読み込んでください。

require "time"

t = Time.now

p t.iso8601   ‖=> :12018-11-19Tll:15:30+09:00‖

432



ローカルタイム

世界の各地域には時差が設けられています。みなさんの使っているコンピ

ュータにもタイムゾーンが設定されていて、ふだんはタイムゾーンに合わせ

た時刻 (ロ ーカルタイム)を使っています。

⊂)′.utc

′.localtユ Ime

Timeオ ブジェクトが保持しているタイムゾーンを協定世界時 (UTC)に変
更するには、Time+utcメ ソッドを使います。また、UTCか らローカルタイム
に変更するにはTime+localtimeメ ソッドを使います。

t = Time.now

p t  +=> 2018-11-19 11:16:16 +0900

t.utc

p t  +=> 2018-11-19 o2:16:16 UTC

t.localtime

p t  l==> 2018-11-19 11:16:16 +0900

例からわかるように、これらのメソッドはTimeォブジェクトを破壊的に変
更します。破壊的でないバージョンとして、getutcメ ソッドとget10calメ

ソッドもあります。

文字列から時刻を取り出す

文字列で表現された時刻からTimeオ ブジェクトを得ることもできます。

O Time.parse(s″ )
文字列で表現された時刻を扱うには、「require ・time‖ 」で使用できる
Time.parseメ ソッドを使います。Time.parseメ ソッドは引数で与えられた

文字列s′rを解析し、Timeオ ブジェクトを返します。

α

20.6 文字列から時刻を取り出す
:

433



第20章 Timeク ラスとDateク ラス

Time.parseメ ソッドは、Timelto_sメ ソッドが返す形式のほか、
l'〃
〃 /

″″/″‖や日本の元号の頭文字 (昭和は・S‖、平成は
‖
H‖ など)、 さまざまなフ

ォーマットに対応しています。

reguire "time"

p Time.parse(:lMon Nov 19 02:45:15 UTC 20181:)

|=> 2018-11-19 02:45:15 UTC

p Time.parse(〕 lMon′  19 Nov 2018 02:45:15 +090011)

+==> 2018-11-19 02:45:15 +0900

p Time.parse(:i2018/11/19':)

+=> 2018-11-19 00:00:00 +0900

p Time.parse(112018/11/19 02:45:1511)

十=> 2018-11-19 02:45:15 +0900

p Time.parse(ll H3 0.11.19・ )

十三> 2018-11-19 00:00:00 +0900

D TimeoStrptime(S`r′ ′フr]“lαι)

年の表記には、「平成30年 11月 9日」のようにTime.parseメ ソッドでは対

処できないものや、同じ日付でもアメリカ式は「11/9/2018」、イギリス式は

「9/11/2018」 と書くように見かけで判断できないものがあります。このよう

な場合には、strptimeメ ソッドにフォーマットを指定して年を取り出します。

フォーマットの文字列はstrftimeメ ソッドで紹介したフォーマットと同

じです。プロックを指定すると解析の結果として得られた年が渡されるので、

元号や2桁の表示から西暦への調整を行います。

reguire 'timeu

p Timeostrptime(‖ 平成 30年 11月 9日 ‖′ ‖平成 3Y年 %m月 おd日・)dO lyl
y+1988
end

+=> 2018-1_1-9 00:00:00 +0900

p Tilme.strpti:me(・ 11/9/20181:′  ':をm′ %d/tY・ )

+=> 2018-11-9 00:00:00 +0900

p Time.strptime(・ 9/11/2018‖ ′ 1'%d/%m/%Y・ )

十=> 2018-1_1-9 00:00:00 +0900
「
―
―
―
―
―

‐

434



20.7 日付を取得する

日付を取得する

Dateク ラスは時刻を持たない日付を操作するためのクラスです。Date.

todayメ ソッドを使って、現在の日付を表すDateオ ブジェクトを得られます。

Dateク ラスを利用する場合はdateラ イブラリを読み込む必要があります。

require udate'

d = Date.today

puts d  十三> 2018-11-19

Timeク ラスと同様に、日付を構成する要素を求めることができます。

require "date"

d = Date.today

p d.year   十 年 二> 2018

p d.month  十 月 => 11
p d.day    十 日 => 19

pd.wday #週 の何日目か (日 曜日を0とする) =>1
pd.mday 十 月の何日目か (dayメ ソッドと同じ)=>15
pd.yday 十年の何日目か (1月 1日 を1とする)=>323

日付を指定してDateオ ブジェクトを生成することもできます。

reguire'date'

d = Date.new〈 2018′  11′  19)
puts d  l=> 2018-11-19

Dateク ラスの特徴として、月末の日付を-1(月末の前日は-2)で指定でき

るというものがあります。もちろんうるう年にも対応しています。

α

O

435



第20章 T:meクラスとDateク ラス

require'date'

d = Date.new(2018′  11′  19)

puts d  +=> 2018-11-19

d = Date.newく 2016′  2′  -1)

puts d  十=> 2016-02-29

日付を計算する

Dateオブジェクト同士の計算は日を単位とします。そのため、Dateオ ブジ

ェクト同士を引き算するとその間の日数が得られます。引き算の結果は整数

ではなくRationalオ ブジェクトとなります。また、Dateオ ブジェクトと整

数を足したり引いたりすると、その前後の日付を得ることができます。

require "date"

dl = Date.neW〈 2018′  1′  1)

d2 = Date.new・ (2018′  1′  4)

puts d2 - dl  +=> 3/1

d = Dat.e.today
puts d #=>

putsd+1- +=>

putsd+100 #=>

putsd-1 S=>

putsd-100 fi=>

201_8-11-19

2018-11-20

2019-02-27

2018-11_-18

2018-08-11

>>演算子を使うことで、後ろの月の同日を表すDateオ ブジェクトを得る

こともできます。同様に、くく演算子を使うことで、前の月の同日を表すDate

ォブジェクトを得られます。その月に同日が存在しない場合 (2月 31日 など)

は、実際の月末に揃えられます。

436



20.9 日付のフォーマット・

reguire "date"

d = Dat.e.new(2019,

Puts d #=>

Putsd>>1 {=>

Putsd>>2 #=>

Putsd<<1 #=>

Putsd<<2 #=>

1′  31)

2019-01-31

2019-02-28

2019-03-31

2018-12-31

2018-11-30

日付のフオーマット

Timeク ラスと同様に、strftimeメ ソッドを使って日付を文字列にするた

めのフォーマットを指定できます。ただし、時刻に相当する部分はすべて 0

になります。iso8601メ ソッドとto_sメ ソッドも使えます。また、Dateク ラ

スではJIS X 0301と いう日本工業規格に則って元号を含む形式を出力する、

Time+jisx0301メ ソッドが使えます。

require "date"

d = Date,today

p d.Strftime(・ 9Y/8:m/3d tH:tM:gS・ )

十==> ::2018/11/19 00:00:00‖

p d.Strftilme(::ta 21b 3d らH:tM:tS tZ 2Y・
)

+=> :'Mon Nov 19 00:00:00 +00:00 201‐ 8!1

p d.iso8601   +=> 112018-11-19‖

p d.to_s      +=> l!2018-11-19‖

p d.〕 ■sx0301  +=> i[H30.11.19・

α

437



第20章  Tlmeク ラスとDateク ラス

puts Date.parse(:lMon Nov 19 03:50:12 JST 201811)

puts Date.parSe(・ H30.11.19・ )

puts Date.parSe(li S48.9.28‖ )

puts Date.strptime(・ 19/11/2018:l′  'Iお d/tm′ らY・ )

文字列から日付を取り出す

文字列からDateオ ブジェクトを得るにはDate.parseメ ソッドまたは

Date.strptimeメ ソッドを使います。

require "date"

十三> 2018-11-19

+=> 2018-11-19

十三> 1973-09-28

+==> 2018-11-19

Timeと Dateの変換

Timeオ ブジェクトとDateオ ブジェクト|ま、to_timeメ ソッドとto_date

メソッドを使って相互に変換できます。Dateオ ブジェクトには時間部分がな

いので、時刻に変換した場合はシステムのタイムゾーンで0時 0分 0秒となり

ます。

require 'date'

t1 = Time.now
pt1
d = t1. to-date
puts d

t2 = d.to_time
pL2

+=> 2018-11-19 15:51:29 +0900

十=二 > 2018-11-19

438

|==> 2018-11-19 00:00:00 +0900

0



20.1l Timeと Dateの変換

GCについて

第3部ではいろいろな種類のオブジェクトを紹介していますが、プログラム

中でオブジェクトを作成すると、(一部の例外を除いて)メ モリ領域を消費し

ます。配列や文字列などは、サイズが大きくなるとそれだけ大きな領域を必要

とします。プログラムが目的の動作を果たすために必要なオブジェクトについ

ては仕方がありませんが、コンピュータのメモリ領域は無限に使えるわけでは

ないので、不要になったオブジェクトの領域は解放しなければなりません。

次の例は本書で何度も登場する書き方ですが、変数 lineは ブロックが実行

されるたびに新しいオブジェクトを指します。ブロックの外側で有効な変数に

代入するなどしなければ、前回のブロックの実行の際に取り出した文字列オブ

ジェクトを再び参照することはできません。

io.each_line do llinel
print line

end

また、メソッドの中で一時的に作成 されたオブジェク トも、メソッドを抜け

たあとでは、再び参照することはできません。

def hel10(name)

msg=‖ Hello′ +{name}|: 1新 しい文字列オブジェク トが作 られる
puts msg

end

どこからも参照されなくなったオブジェクトは、適切に削除してメモリ領域

を解放する必要があります。しかし、領域を解放する処理は、解放もれや、間違

って必要なものを解放してしまうという、やっかいなバグを作り込む原因にな

ったりします。Rubyでは (Java、 Python、 Lispな ど多くの言語に備わった機能
ですが)、 インタプリタが適当なタイミングを見計らってどこからも参照され

なくなったオブジェクトを解放しています。この機能を、Garbage COllectiOn

(「 ゴミ集め」という意味です)の頭文字を取ってGCと いいます。
GCのおかげで、煩わしい領域の管理をする必要がありません。GCは Ruby
がモットーとする「たのしいプログラミング」を支える重要な機能の1つです。

口

439

|



:第 20章 Timeク ラスとDateク ラス

練習問題

(1)「 ‖2018年 12月 25日午後8時 17分 50秒
‖」といったように、「年・月。日・

時・分・秒」を使った時刻の文字列をTimeオ ブジェクトに変換して返す

メソッドjparsedateを定義してください。

(2)Unixの「Is― t」 コマンドのように、ディレクトリを指定するとそのディ

レクトリの下にあるファイルを時刻の順に並べるメソッドls_tを定義

してください。

このメソッドは引数を1つだけ取ります。

ls_t(調べるディレクトリ名 )

指定されたディレク トリの下にあるファイルの名前を、その時刻の古い

サI原に並べて表示します。

(3)Dateク ラスを使って今月の 1日 と月末の日付と曜日を求め、次のような

形式でカレンダーを表示させてください。

January

Su Mo Tu We

1  2

6789
13 14 15 16

20 21 22 23

27 28 29 30

2019

Th Fr Sa

3  4  5

10 11 12

17 18 19

24 25 26

31

※解答は、サポー トベージ (hips://ね noshHruby gthub.lo/6/answer/)で 公開しています。

440



■■■ ■■D

フス

この章では、Procク ラスについて説明します。

。Procク ラスとは

Procク ラスとは何か、Procオ ブジェクトの作り方についていくつか

のパターンを紹介します。

。Procオ ブジェクトの特徴

PrOCオブジェクトはプログラムの一部を持ち運ぶという性質から、単

なるデータとは異なります。Procオ ブジェクトの性質について見てい

きます。

●Procク ラスのインスタンスメソッド

Procク ラスのインスタンスメソッドを紹介します。

PrOcクラスとは

Procは、ブロックとして記述された手続きを持ち運ぶためのクラスです。
Procと ブロックは密接な関係にあるので、「第11章 ブロック」でもProcク
ラスについて説明しました。そちらもあわせて参照してください。

それでは、Procォ ブジェクトの作り方と実行の方法を見ていきましょう。

C)Proconew {...}
proc {...}

Procオ ブジェクトを作るもっとも典型的な方法は、Proc.newメ ソッドま

たはprocメ ソッドにブロックを指定することです。

al

441



第21章 Procク ラス

he1Io1 = Proc.new do lnamel
puts "He11o, ${nane}."

end

he11o2 = proc do lnamel
puts 'He11o, #{name}."

end

he1lol.call(‖ World‖ )

hello2.call(‖ Ruby‖ )

十=> Hello′ IWorld

l=> Hello′  Ruby.

Proc.newメ ソッドまたはprocメ ソッドにブロックを与えると、そのブロ

ックを保持するProcオ ブジェクトが作られます。

ブロックはProc十 callメ ソッドによって実行できます。Proclcallメ ソッ

ドを呼び出したときの引数がブロック変数となり、ブロックで最後に評価さ

れた式の値がProc十 callの戻り値になります。Proc+callメ ソッドの別名と

してProc十 []も あります。

1西暦の年を与えられたときにうるう年かどうかを判定する処理
leap = PrOC.neW dO lyearl

year t 4 == o && year t 100 != 0 11 year t 400 == 0

end

p leap.call(2000)

p leap[20131

p leap[2016]

#=> true
#=> false
#=> true

ブロック変数を「|*配列 |」 の形式にすると、メソッドの引数と同様に不定

の数の引数をまとめて配列で受け取ることができます。

double = Proc.new dO I*argSI

args.map(lil i*2} +要 素をすべて2倍 して返す
end

p dOuble.call(1′  2′  3)

p double[2′  3′  41

442

|=> [2′

十二> [4′ 8]



21.l Procク ラスとは・

そのほか、デフォル ト引数やキーワード引数など、メソッド定義で使用で

きる引数の形式のほとんどをブロック変数として定義して、Proc+callメ ソ

ッドの引数として与えることが可能です。メソッド定義の引数の指定につい

ては、「第7章 メソッド」を参照してください。

0・021■1 ラムダ式
Proc.newや procと は別の書き方として、lambdaメ ソッドがあります。

Proc.newや procメ ソッドと同じように、Procオ ブジェクトを生成しますが、

lambdaメ ソッドで作成したProcオブジェクトのほうがメソッド呼び出しに

近い動きをするようになっています。

ψ
以降では、lambdaメ ソッドで作成したProcオブジェクトを「ラムダ式」と

呼ぶことにします。

1つ 目の違いは、引数の数のチェックが厳密になることです。Proc.newで

作ったProcオ ブジェクトに対してcallメ ソッドを呼ぶ場合、callメ ソッド

の引数の数とブロック変数の数が違っていてもかまいません。ラムダ式では

引数の数が違っているとエラーになります。

prCl = PrOC.neW dO la′  b′  CI

p[a′ b′ C]

end

prcl.call(1′  2) #=> [1′  2′  nil]

prc2 = lambda do la, b, cl
F [a, b, c]

end

prc2.call (L, 2) #=> ta - (ArgmmentError)

2つ 目の違いは、ブロックから値を返すときにreturnを 使えることです。

List 21.1を 見てください。power_ofは、引数nを使って「xの n乗を計算する

Procオ ブジェクト」を返すメソッドです。戻り値は数値ではなく、計算を行

うProcオ ブジェクトであることに注意してください。power_of(3)の 呼び

出しにより、callメ ソッドで与えた値を3乗するProcオ ブジェクトが得ら

れます。値を返す際にreturnを使っていますが、このreturnは Procオ ブジ

ェクトのcallメ ソッドの戻り値になります。

a

443



¬

|

第21章  Procク ラス

t-ist @ power-of.rb

def power_of(n)

lattda dO IXI

return x ** n

end

end

cube = power_of(3)
p cube.call(5) #=> L25

続いて、List 21.1を Proc.newで置き換えてみます。Proc.newの場合は、

ブロックの中でreturnを 使うと、そのブロックとは関係なく、そのブロック

を作成したメソッド呼び出しから戻ろうとします。この場合でいうと、ブロ

ック内のreturnは power_ofメ ソッドから戻ろうとしますが、ブロックを実

行するときには、すでにpower_ofを実行する文脈ではなくなっているため、

エラーになってしまいます。

def power_of(n)

PrOC.neW dO IXI

return x ** n

end

end

cube = power_of(3)
p cube. call (5 ) +=> t, - (Loca1,:umpError)

通常のブロックのreturnの 動作は、繰 り返 しの実行中にメソッドから

いっぺんに戻るような場面で使われるように作られています。List 21.2の

prefixメ ソッドは、引数aryの配列のうち、objに一致するものがあればそ

の手前までの要素を、一致するものがない場合は空の配列を返します。6行

日のreturnはブロックの実行から戻るのではなく、ブロックを飛び越えて

prefixメ ソッド全体の戻り値となります。

444

一　
　
　
】



21.l Procクラスとは

Lis,C□ D prefix.rb

1: def prefix(ary, obj)
2: result = []
3: ary.each do liteml
4'. result << item
5: if item == obj
6: reLurn resulL
7: end

8: end

9: return resuft 十すべての要素を検査し終わった場合

10: end

ll:

12: p prefix([1′  2′  3′  4′  5]′  3)十三> [1′  2′  3]

イテレータを制御する目的でbreakを使う場合も挙動も違います。この命

令はブロックを受け取ったメソッドの呼び出し元に戻り値を返します。次の

ようにすると、「break[]」 はArray#mapメ ソッドをただちに終了させて、
mapメ ソッド全体の戻り値として空の配列を返します。

[:a′  :b′  :C]・ map d。  liteml
break []

end

Proc.newメ ソッドまたはprocメ ソッドでProcオ ブジェクトを作成した

場合は、breakが これらのメソッドを終了させようとするため、Proc+call
メソッドを呼ぶ時点では適切な戻り先が存在せずエラーとなります。ラムダ

式の場合は、returnと 同様にProc+callメ ソッドに値を戻します。

一方、nextに ついては、ブロックの実行を中断するだけなので、Procオ ブ

ジェクトの作り方に関係なく、callメ ソッドの戻り値を返す目的で使用でき

ます。

ラムダ式を作る構文にはもう1つ、「‐>(プロック変数){処 理 )」 という
形式が用意されています。ブロック変数にあたる部分が、「{～ }」 の前に出
ていてより関数らしい見かけになっています。「―>」 を使う場合は、「do～
end」 よりも「{～ }」 のほうがよく使われます。

+結果の配列を初期化する
十要素を1つずつ見ながら

十要素を結果の配列に追加する

+要素が条件に一致するものがあれば
1結果の配列を返す

a

445



第21章 Procクラス

square = ->(n) {return n ** 2}

p sguaretsl *=> 25

0)0021.1.2 プロックをProcオブジェクトとして
受け取る

メソッド定義にブロック引数を使うことで、呼び出しの際に指定されたブ

ロックをProcオブジェクトとして受け取ることができます。List 21.3は「第

11章  ブロック」でも紹介したサンプルです。tota12メ ソッドの呼び出しの
際に指定したブロックは、tota12メ ソッドの側では変数blockか らProcオ

ブジェクトとして受け取ることができます。

t-ist (EIED total2.rb

def tota12(from′  to′ &block)

result=0        1合 計の値

frOm.upt。 (tO)dO lnurnl l fromか らtoま で処理する

if b10ck             十   ブロックがあれば

result+=       +   プロックで処理 した値を足す

b10Ck.Call(num)

else                 +   プロックがなければ

result+=mm    十   そのまま足す
end

end

return result       十 メソッドの結果を返す
end

p tota12(1′  10)

p tota12(1′ 10)(lnulnl nШ **2}
11から10の和 =>55
+1から10の 2乗の値の和 =>385

●●321■3 to_procメソッド
オブジェクトの中にはto_procメ ソッドを持っているものがあります。メ

ソッドにブロックを指定する際に「&オブジェクト」の形式で引数を渡すと、

Procオ ブジェクトを生成するためにオブジェクト.to_proCが 自動的に呼ば

れます。

446



2'1.2 ProcA#H,1

特徴的でかつ利用する機会が多いのがsymbol+to_procメ ソッドです。
Symbol#to_procメ ソッドを、たとえば :to_iと いうシンボルに対して使う

と、次のようなProcォブジェクトを生成します。

Proc . new { | arg I arg. to_i }

これを何に使うかというと、たとえば配列のすべての要素を数値に変換す

るという場合に、

と書くところを、次のように書くことができます。

クラスを名前順にソー トする場合は、次のように書くことができます。

少し慣れが必要かもしれませんが、すっきりしていて意図もわかりやすい

書き方です。

a

Procの特徴

PrOcオ ブジェクトは名前のない関数やメソッドのように使うことができ

ますが、単に手続きをオブジェクト化するだけではありません。List 21.4を

見てください。

>>洵

“

23956).mp{lil i.t⊆ i}
=> [42′  39′  56]

>> %w(42 39 56)。 lmapl(■ 8tO_1)

=> [42′  39′  56]

実行

IInteger, String, Array, Ilash, Fi1e, IO].sort_by(&:name)
IArray, File, Hash, I0, fnteger, String]

>>

実行

447

21。2鹸



第21章 Procク ラス

List (Ei[D counter-proc.rb

def counter
c=0
Proc.new do

g+=1
end

end

|カ ウンターを初期化する

+callメ ソッドを呼ぶたびにカウンターに

11を足して返すPrOcオブジェクトを返す

１

２

３

４

５

６

７

８

９

十 カウンター clを作成 してカウントアップする

cl = counter

10: p cl.call      +=> 1

11: p cl.call      十=> 2

12: lp cl.call      l=> 3

13:

14:十 カウンター c2を作成 してカウントアップする

15i c2=counter +カ ウンター c2を作成
16: p c2.call      +=> 1

17: p c2.call      +=> 2

18:

19:+再び clを カウントアップする

20: p cl.call      十=> 4

1行 日から6行日はcounterメ ソッドの定義です。このメソッドは最初に

カウンターとなるローカル変数cを 0で初期化します。メソッドの戻り値は、

Proc+callメ ソッドを呼ぶたびにカウンターの値に 1を足して返す Procオ

ブジェクトを返します。9行 日でcounterメ ソッドを呼んでProcオブジェク

トを変数 clに設定します。clに対してcallメ ソッドを呼ぶと、Procオ ブジ

ェクトが参照しているローカル変数cがカウントアップされていく様子がわ

かります。15行 日で新しいカウンターを作成して同様の処理を行うと、カウ

ンターが最初から始まります。最後の20行 日で最初に作成 したclに 対して

callメ ソッドを呼ぶと、前回の続きからカウントアップされます。

このサンプルの様子から、変数clと変数c2に設定されたProcオ ブジェク

トは、counterメ ソッドの呼び出しごとに初期化された異なるローカル変数

を個別に保持して操作していることがわかります。Procオ ブジェクトは、手

続きと、ローカル変数のスコープなどのブロックが定義された時点での状態

448



21.3 PrOcク ラスのインスタンスメソッド

も一緒に保持しているのです。

ProCオブジェクトのように、手続きと同時に変数などの環境を保持する手

続きオブジェクトを、プログラミング言語の一般的な用語でクロージャとい

います。クロージャを用いると、手続きとデータをオブジェク トとして扱う

ことができます。クラスに手続きを記述してインスタンスにデータを記録し

ておくのと本質的には同じことができますが、プログラムを記述するという

観点では、当然ながらクラスを用いるほうが多くの機能を使うことができま

す。

PrOCオブジェクトは、先ほどのカウンターの例のような、ほんの数行で済
むような処理をオブジェクト化するために使用するとよいでしょう。また、

Rubyで はブロックが多用されるので、ある程度の規模のプログラムを開発す
るようになるとProcオ ブジェクトを扱うことは避けられません。特に、ブロ

ックつきメソッド呼び出しとの受け渡しや、クロージャを使ってデータを保

持するといった機能について理解することが必要です。

PrOcクラ、スの
インスタンスメソッド

a
(Ξ)′´
`.Call(α

Fgs,.¨ )

′κ [αtts,¨ .]

′
“
ε.yield(α FgS,...)

′κ .(α tts,。。.)

pFC===α Fg
いずれもProcオ ブジェクト′κを実行します。

prC = PrOC・ neW {la′  bl

p prc.call(1′  2)  +=>
p prc[3′  4]       +=>
p prc.yield(5′  6) +=>
p prc.(7′  8)       十=>
p prC === [9′  10]  |=>

a+b}
3

7

11

15

19

劉も31

449



第21章 Procク ラス

文法の制限から、「===」 で与えられる引数は必ず1つだけになります。この

メソッドはProcオ ブジェクトがCaSe文の条件として使用されることを念頭

に置いています。そのようなProcオ ブジェクトを作る場合は、値を1つ受け

取って、trueま たはfalseを返すというのが適切です。

次に示すのは、1か ら100の整数について、3の倍数のときは「Fizz」 を、5

の倍数のときは「Buzz」 を、15の倍数のときは「Fizz BuzZ」 を、それ以外の

ときはその数値を出力するプログラムです。

fizz = proc {lnl n I 3 == 0}

buzz = proc {lnl n I 5 == 0}

flzzbuzz - proc {lnl tizzlnl && buzz [n] ]
(1..100).each do lil

case i
when fizzbuzz then puts "Fizz Buzz"

when fizz then Puts "Fizzn
when buzz then puts "Btlzz"
else puts i
end

end

○ ′κOarity

callメ ソッドの引数となる、ブロック変数の数を返します。「 |*α ttsl」 の

形式でブロック変数を指定すると、_1になります。

prcO = Proc.new {ni1}
prcl = Proc.new {lal a}

prc2 = Proc.new {la, bl a + b}

prc3 = Proc.new tla, b, cl a + b + c]
prcn = Proc.new {lxargsl args}

p prc0
p prcl-
p prc2
p prc3
p prcn

arity
arity
arity
arity
arity

450

+=> 0

+=> 1

+=> 2

+=> 3

+=> -1



C)′ έoparameters

′たのブロック変数のより詳細な情報を返します。戻り値の形式は、各変数

について [種類′変数名]の形式の配列をリストした配列になります。種類は

シンボルで表 21.1の意味を持ちます。

目α■D Proc#parametersメ ソッドが返す変数の種類

prc0
prcl-
prc2
prc3
prc4
prc5

proc {nil}
proc {lal a}

lambda {la, bl ta, Ull
lambda {la, f=r, *cl ta, b, cl}
lambda {la, ablockl ta, blockl}
lambda {la: 1, x*bl ta, bl}

p prc0
p prcl
p prc2
p prc3
p prc4
p prc5

parameters
parameters
parameters
paramet.ers

parameters
parameters

+=> [〕

十二> [[:Opt′

十二> [[:req′

十二> [[:req′

+=> [[:req′

十二> [[:key′

:a]]

:a]′

:al′

:al′

:a]′

[ : req, :bl I

[:opt, :b], [:rest, :c]l
[:b1ock, :b1ock] l
[:keyrest., :b] l

劇
「
―
―

意味

opt 省略可能な変数

:req 必須な変数

:rest *″gs形式で受け取る残りの変数

: key キーワード引数の形式の変数

keyrest **″gs形式で受け取る残りの変数

:block ブロック

45:

21.3 Procク ラスのインスタンスメソッド
:

シンボル



:第 21章 Procク ラス

(D prc。 lambda?

′κがラムダ式であれば true、 そうでなければfalseを返します。

prcl = Proc.new {la, bl a + b}
p prcl. lambda? #=> false

prc2 = lambda {la, bl a + b}

p prc2.lambda? *=> true

|〔)′IFCoSOurCe_ OCatiOn

′rε が定義されたソースコード上の位置を返します。戻り値は、[ソースフア

イル名′ 行番号1の形式の配列となります。′″θが拡張ライブラリなどで作成
されていて、Rubyス クリプ ト上に存在しない場合はnilを返します。

List(□藤D prOc_sOurce」 ocation.rb

1: prcO = Proc.new {nil}
2: prcl = Proc.new {lal a}

3:

4: p prc0. source-location
5: p prcl.source-location

> ruby proc-6ource-location.rb

[ "proc_source-location.rb', 1]

[ "proc_source-location.rb' , 2]

実行例

452



練習問題 :

・　
¨

・
，
，
●

●
‘

一
一ヽ
　
、

(1)Arraylcollect(p.283)の ような動作をするmy_collectメ ソッドを作
成してください。引数としてeachメ ソッドを持つオブジェクトを受け
取って、各要素をブロックで処理します。次の「 (??)」 に当てはまるコー

ドを考えてください。

def my_c01lect(Obj′  &block)

(??)

end

ary=my_collect([1′ 2′ 3′ 4′ 5])do lil
i*2
end

p ary  l=> [2′  4′  6′  8′  10]

(2)次のSymbol+to_procメ ソッドを使ったサンプルの結果を確認してく
ださい。

to_class = :class.し o_.prOc

p tO_Class,call(l「 test・ )

p tO_Class.call(123)

p tO_Class.call(2 ** 100)

十=> ??

+=> ??

十=> ??

(3)カ ウンターの例の応用として、実行するたびにcallメ ソッドでそれま
でに与えられた引数の合計を返すProcオ ブジェクトを返すメソッドを
考えます。次の「 (??)」 に当てはまるコードを考えてください。

def accurnlator

total = 0

Proc.new do

(?')

453

練習問題

21



第21章  Procク ラス

end

end

acc = accumlator
p acc. call ( L ) *=> L

P acc. call (2 ) #=> 3

p acc.call(3) #=> 6

p acc.call(4) #=> 1-0

※解答は、サポー トベージ (htpS://tanOshiiruby.github.lo/6/anSWer/)で 公開しています。

■

‥

‥

‥

|......1,1



ちがいだつた。

世界を変える

ど

「あねはまちがいだつたもあれ

ための呪文を本屋で探そうとしたの

こかの誰かが作つた呪文を求めたの

僕は僕だけの、自分専用の呪文を作ら

|はま

はまちがいだった。

"

‐

第4部

ツールを
作つてみよう

Rubyで何ができるのか
どのようなプログラミングに向いているのか

その答えを2つほどお見せしましょう。
たのしいプログラミングの参考にしてください。

【

く

く

く

【

く





a
テキス を行う

″

第3章で作ったsimple_grep.rb(p.69)を元にして、テキス ト処理の一般的

な作法を学んでいきます。

ここでは次の作業を行うスクリプトを作ってみます。

麟HTMLフ ァイルの取得と単純な加工
機単語検索と件数表示

機検索結果の強調と結果表示の加工

④ テキストを用意する
まず、処理の対象となるテキストを用意します。

●)・・22■1 フアイルをダウンロードする
今回は、Webで公開されており、自由に利用できる文書ということで、アー

サー・コナン・ドイルの短編小説『赤毛連盟』を使用します。この作品は1891

年に『ストランド・マガジン』誌に掲載された作品です。すでに著作権保護期

間が終了しており、大久保ゆうさんが翻訳された日本語訳を青空文庫のWeb
サイトから入手できます (こ の日本語訳は「クリエイティブ・コモンズ 表示

2.1日 本 ライセンス」の下で自由に利用できます )。

『赤毛連盟』のXHTML版のURLは次の通りです。

● https://w、 vi″ .aozora.gr.ip/cards/000009/files/8_31220.html

上記 URLに Webブ ラウザを使ってアクセスし、ダウンロー ドしてもよい
のですが、せっかくなのでRubyを使ってダウンロードしてみます。

457



「

~~

:第 22章 テキスト処理を行う

Lis■四D get akage.rb

require l!open― uri‖

ur1 = "https | / /www. aozora. 9r. jplcards/ 000009 / f iles/8-3l-220 . htm1 "

filename = "akage,html"

File.open(filentte′ ‖wb:UTF-8・ )do lfl

text = open(url′  ::r:Shift_JIS:UTF-811).read

f.、″rite text

end

テキス トを扱う場合、改行コードに注意する必要があります。OSに より

標準的な改行コードは異なりますが、今回ダウンロードするHTMLフ ァイル

はCR+LFに なっているので、どの環境でもそのまま保存するよう、File.
openメ ソッドの第2引 数を

‖
wb‖ にして、バイナリモー ドで書き込むようにし

ています。

さらに、日本語を扱う場合はエンコーディングにも注意する必要がありま

す。特に外部からの入力はすべて同じエンコーディングにしておくのが無難

です。macOSや Unixではコマンドラインで渡される文字列がUTF-8に なる

ことが多いため、ファイルも同じに揃えておきましょう。このHTMLフ ァイ
ルはShift_JISなので、openメ ソッドの引数やencodeメ ソッドでUTF-8に

変換してからwriteメ ソッドで出力します。

●0・ 22』.2 本文のテキストを取り出す
List 22.1で得られるのはWebブ ラウザでページを表示するためのHTML
ファイルになります。このHTMLフ ァイルにはヘッダやフッタなど、不要な

部分がついているので、本文だけを取り出してみましょう。

まず、本文がどこからどこまでか、ということを決める必要があります。こ

れはHTMLそのものを見てみないとわかりません。先ほどダウンロードした
akage.htmlの ソースをよく見てみます。

458



22.1 テキストを用意する

く?xml version=・ 1.0:l encoding二 :tshift_JIs il?>

くdiv id=:icontents:: style=‖ display:block′ 1:>く /d■ v>く div
class=・ main_text‖ >くbr />

友人シャーロック・ホームズを、昨年の秋、とある日に訪ねたことがあった。する

と、ホームズは初老の紳士と話し込んでいた。でっぷりとし、赤ら顔の紳士で、頭髪

が燃えるように赤かったのを覚えている。私は仕事の邪魔をしたと思い、詫びを入

れてお暇しようとした。だがホームズは不意に私を部屋に引きずり込み、私の背後

にある扉を開めたのである。くbr/>

く/div>

くdiv class二 llafter text‖ >

くhr />

くbr />

翻訳の底本 :Arthur Conan Doyle (1891) &quot,The Red― Headed
League&quot′ くbr />

ていねいに見ていくと、この中の、「くdiv class=‖ main_text‖ >」 が含ま

れる行から本文が始まることがわかります。

同様に、「くdiv class=‖ after_text‖ >」 という行からは、本文とは関係の

ない、フッタ部分になることがわかります。

そこで、この2行に含まれている文字列を目印にして、本文部分を抜き出し

てみます (List 22.2)。

tiqi GEED cut-akase.rb

1: htmlfile = "akage.html"
2: textfile = "akaqe.txt"
3:

4: html = File.read(htm1fi1e, encoding: 'UTF-B')
5:

6: File.open(t.extf ile, 'w'UTF-8') do lf I

7: i-n_header = true
8: html.each-Iine do IlineI
9: if i-n_header && /<div cfass="main_text">/

10: next
!- line

459



第22章 テキスト処理を行う

't 1: else
12: in-header = false
'13: end

14: break if /<div class="aft.er text.">/ =- line
15: f.write line
16: end

17: end

このスクリプトは、「くdiv class=‖ main_text‖ >」 という文字列が入って

いる行が本文の始まりで、「くdiv class=‖ after_text‖ >」 という文字列が

入っている行が本文の終わりになっているという前提で、その間の行だけを

akage.txtと いうファイルに保存します。

最初に、File.readメ ソッドでHTMLフ ァイルをすべて読み込みます。エ

ンコーディングを明小するためにencodingオ プションを使っています。

続いて、HTMLフ ァイルの文字列に対し、each_lineメ ソッドを使って 1

行ずつ変数lineに読み込み、これをファイルに保存していくわけですが、そ

の前にin_headerと いう変数をtrueに しています。これは、処理している行

がヘッダ内かどうかを判別するための変数です。9行 日からのif文では、この

変数の値を使い、ヘッダ内であり、かつ読み込んだ行に「くdiv class=‖ main_

text‖ >」 が含まれていない場合は、読み飛ばしています。そうでない場合は、

もうヘッダからは出たということなので、in_headerを falseに しています。

これにより、次回以降の繰り返しでは、読み飛ばさなくなります。

14行 日では、if修飾子を使っています。「break if・ 」̈という形は、繰り

返しから脱出する際によく使われる書き方です。これは、if節の条件があま

り長くない場合にコンパクトに記述できる、というメリットがあります。こ

こでは、本文の終わりを表す行かどうかを調べて、マッチした場合に行の読

み込みの繰り返しから脱出します。

続いて15行 日です。ここまで来た、ということは、lineの 中身が本文中の

1行である、ということになります。そこで、writeメ ソッドを使ってlineを

ファイルに出力します。

α)。・22.1.3 タグを削除する
ところで、本文部分としてファイルに出力したテキストには、HTMLの タ
グが残ったままになっています。HTMLのタグがあってもテキスト処理は可

ｎ
〉
′
０
４



22.1 テキス トを用意する
:

能ですが、この章ではタグなどは特に不要なので、タグを削除してプレーン

テキスト形式のファイルにしてみましょう。

HTMLタ グを削除するには、HTML解析用のライブラリを使うことも考え
られますが、ここでは単純に正規表現で置換するだけにしています。

List C笙憂D cut_akage2.rb

1: require "cgi/uti1"
2: htmlfile = "akage.html,,
3: textfile = "akage.txt,,
4:

5: html = File.read(htmlfite, encoding: "UTF-8,)
6:

7: File.open(textfile, ) do lfl
8: in_header = true
9: html.each_line 0o llinel

10: if in_header && /<div class="main_text,,>/ l- Iine
1 1: next
12: else
13: in_header = false
14: end

15: break if /<div class="after_text,,>/ =- line
16: line.gsubl (/< [">] +>/ , ,')
17; esc_line = CGI.unescapeHTMl(1ine)
18: f.write esc_line
19: end

20: end

List 22.3は、先ほどのList 22.2を もとに、タグを消去するようにしたもの

です。といっても、実質異なっているのは16行 日と17行 日のみです。

16行 日では、/く [^>]+>/と い う正規表現 を使 って タグ を表 現 してい ます。

HTMLの タグは、「く」で始 ま り、「 >」 で終 わ る ものなので、これで HTMLタ
グの部分 にマ ッチで きます。17行 日では、CCI.unescapeHTMLメ ソッ ドを使
い、「&ampF」「&lt′ 」といったHTMLの文字実体参照を、「&」「く」などの普通
の文字に戻す処理をしています。このメソッドは、1行日に追加した「require
‖cgi/util‖ 」で読み込まれるクラスのメソッドです。

こうすると、次のようなテキストが得られます。

a

461



第22章  テキスト処理を行う

友人シャーロック・ホームズを、昨年の秋、とある日に訪ねたことがあった。する

と、ホームズは初老の紳士と話し込んでいた。でっぶりとし、赤ら顔の紳士で、頭髪

が燃えるように赤かったのを覚えている。私は仕事の邪魔をしたと思い、詫びを入

れてお暇しようとした。だがホームズは不意に私を部屋に引きずり込み、私の背後

にある扉を開めたのである。

「いや、実にいい頃合いだ、ワトソンくん。」ホームズの声は、親しみに満ちていた。

sirnple_grep口rbの1広張 :

件数の表示
さて、simple_grep.rbを 見てみましょう。ただし、第3章に掲載したものか

らは少し手を入れてみました (List 22.4)。

Lis十 C愛ヨロD simple_grep.rb

pattern = Regexp. new (ARGV t 0 I . encode ( "UTF-B' ) )

filename = ARGV[1]

File.open(filename, "r:UTF-8" ) do

file.each-1ine do I linel
if pattern =- line

print line
end

end

end

l filell

File.openメ ソッドでブロックを使っています。このため、Filelcloseメ

ソッドは不要になりました。さらにどんな環境でも問題ないように、コマン

ドラインから受け取った文字列ARGV[0]を UTF_8に変換するコードも入れ

ました。

これを使って、本文中に「ホームズ」という単語が何回出てくるかを調べて

みましょう。

462



22.2 simple_grep.rbの拡張 :件数の表示 :

00・ 22。2。1 マツチした行を数える
simple_grep.rbは マッチした行をそのまま表示するので、macOSや Linux
であればwcコ マンドを使って、テキス トの行数を調べることができます。

Windowsでは次のようにfindコ マンドを使います。

というわけで、本文中に「ホームズ」は64回含まれています……とはいえな

いですね。1行に複数回含まれていることもあるので、行数を数えただけでは

正しい件数がわかりません。

そこで、String#scanメ ソッドを使って、マッチした回数を数えるように

simple_grep.rbを改造してみましょう (List 22.5)。

Lis,(Eコ 2日:】D simpl鮭 scan.rb

patLern = Reqexp.new(ARGVt0l .encode ( "UTF-8, ) )

filename = ARGV[1]

口

count = 0

File.open(fi1ename,,,r:UTF-8,,) do

fi1e. each*1ine 0o I line 
I

if pattern =- 1i,ne

line.scan(pattern) do IsI
count += l-

end

print line
end

end

end

puts "count: #{count}"

I rire 
I

>ruby S慟
"lQ」
reporb‖ ホームズ "akage.txt l“

64     412   30623

> nrby sinple_grep.rb ,fi-Aa" akage.txt I fina lc lv n,,

64

463

実行例



:第 22章 テキスト処理を行う

実行結果は、84件になりました。

もっとも、1行ずつ何かしらの処理をするのではなく、単に件数だけわかれ

ばよい、ということであれば、もっと簡単になります (List 22.6)。

1;51 GET| simple-count.rb

pattern = Regexp.new(ARGVI0I .encode('UTF-8' ) )

filename = ARGV[1]

count = 0

Fite.read(filename, encoding: *UTF-8')'scan(pattern) do lsl
6sun! += 1

end

puts "count: #{count}"

string+scanメ ソッドは文字列に対するメソッドなので、File.openメ ソ

ッドは使わずFile.readメ ソッドで一気に文字列にしています。

sirnple_grep.rbの書広張 :
マツチした箇所の表示

さて、元のsimple_scan.rb(List 22.5)に 戻って拡張を続けます。

③:Ⅲ 22。 3。1 マツチした位置を見やすくする
マッチしている行が表示されるのはよいのですが、どこがマッチされてい

るのかが見づらいですね。強調するようにしてみましょう(List 22.7)。

> ruby silmp10_scan.rb ‖ホームズ " akage,txt

友人シャーロック・ホームズを、昨年の秋、とある日に訪ねたことがあった。

count: B4

実行例

〓
‥

‥

‥

|

464



tist (EEf) si mple-match.rb

4:

5:

6:

7:

1: paLtern = Regexp.new(ARGVI0I .encode(,'
2: filename = ARGV[1]

3:

count. = 0

File.open(fifename, "r:UTF-8,,) do lfilel
file. each_line do I line 

I

if paLLern =- line

22.3 simpie_grep.rbの 拡張 :マ ッチした箇所の表示 :

) { lstrl "<<#{str}>>"J

8:

9:

10:

11:

line.scan(pattern) do lsl
count += 1

end

prinl 1ine. gsub (pat.tern
12: end

13: end

14: end

15: puts "count: #{count},'

11行 日で、変数lineの値を直接出力していたところを、いったんgsubメ

ソッドで変換してから出力するようにしています。gsubメ ソッドにブロック

を与えると、ブロック変数としてマッチした部分を返してくれるので、「くく

>>」 を前後につけた文字列に置換しています。

実行結果は次のようになります。

強調して表示 されるようになりました。

{0)・・22。3。2 前後10文字ずつ表示する
List 22.7の 結果では行中のあちこちに散らばっているので、もう少しまと

めて、前後 10文字と一緒に表示するようにしてみましょう (List 22.8)。

>ruby'Silmple」 腱tch.rb::ホ ームズ m akage.txt

友人シャーロック・くくホームズ>>を 、昨年の秋、とある日に訪ねたことがあった。

すると、くくホームズ>>は初老の紳士と話し込んでいた。・…

count: 84

465



|

第22章  テキスト処理を行う

Lisi C笙憂D simple_match2.rb

pattern 〓 Regexp.new(・ (.(10〕 )(・ +ARGV[01.enCOde(・ UTF-817)キ
::)(.{10})':)

filename=ARCV[11

count = 0

File.open(filenane, "r:UTF-8') do lfilel
file.each-Iine do llinel

line.scan(pattern) do lsl
puts "#is[0] ]<<#{st1l }>>#{s[2] ]"
count += 1

end

end

end

puts 'count: #{count}"

正規表現の「レ}」 は直前のパターンの4回の繰り返しを表します。したが

って、サンプル中の「.(10}」 は任意の10文字にマッチします。

それでは実行してみましょう。

「count:61」 と、件数が減ってしまっています。これは、行頭に「ホームズ」

が来る場合など、前後10文字のない「ホームズ」がカウントされなくなって

しまったからです。やり方を変えてみます(List 22.9)。

List C″ ED Simp!e_matCh31b

1: pattern = Regexp.new(ARGV[0] .encode('UTF-8' ) )

2: filename = ARGVtll

3:

4: count = 0

>ruby s慟咬lo_match2。 rb nホームズ::akage.txt

友人シャーロック・くくホームズ>>を 、昨年の秋、とある

とがあった。すると、くくホームズ>>は初老の紳士と話し込

暇しようとした。だがくくホームズ>>は不意に私を部屋に引

count:61

466



22.3 simple_grep.rbの 拡張 :マ ッチした箇所の表示 :

5: File.open(fj-Iename, ',r:UTF-8" ) do

6: file.each_line do llinel
7: line.scan(pattern) do lsl
8: pre = '\u3000" x 10 + $'
9: post = $'

10: puts "#{pre[-10, 10]]<<#{s}>>#{postt0, 101},,
11: count += 1

12: end

13: end
'14: end

15: puts "count: #{count}',

1行 日の正規表現は元に戻して、8行 日から10行 日で出力する部分を変更
しています。正規表現でマッチした部分の前後を取り出すための変数、S｀ と

SIを使って、いったんpreと postと いう変数に代入したあとで、lo行 日の出

力する部分でそれぞれから10文字分を切り出しています。なお、「、u3000」

は全角空白文字をUnicodeの コードポイントで指定したものです。

実行してみると今度は全件出力されることが確認できます。

瘍・。22.3.3 前後の文字数を変更可能にする
ところで、前後の文字数が今は10文字に決めうちになっています。これは

可変にできたほうがよいですね。変更してみましょう (List 22.10)。

I rire a|

・ =
=9"〓̈

・

一
「

ヽ
ヽ

‘
●
・

>rロッ Sil叫ユe_match3。 rb nホーZ、フ(n akageotЖ t
友人シャーロック・くくホームズ>>を 、昨年の秋、とある

とがあった。すると、くくホームズ>>は初老の紳士と話し込

暇しようとした。だがくくホームズ>>は不意に私を部屋に引

count: 84

467



第22章  テキスト処理を行う

ust €Ef,E) si mple-match4.rb

1 : pattern = Regexp.new (ARGV t 0 I . encode ('UTF-8 " ) )

2: filename = ARGV[I]

3: 1en = ARGV[2].to_i
4:

5: count = 0

6: File.open(filename, "r:UTF-8") do Ifilel
7: file.each-line do llinel
8: line.scan(pattern) do lsl
9: Dr€ = r\u3000" * Ien + $'
10: post = $t
11: puts "#{pre[-ten, 1en] ]<<*{s}>>#{post[0, 1en] ]"
12: count += 1

13: end

14: end

15: end

16: puts "count: #{count}"

長さのところを変数 lenに置き換えて、これをARGv[21に より3番 目の引

数として指定できるようにしています。

それでは、5文字にして実行してみましょう。

前後5文字分が並んで表示されるようになりました。

この章で見てきた通り、ツールを作るときには、簡単なところから始めて、

少しずつやりたいことに近づけていくことが効果的です。いきなり完成させ

るのが難しいことであれば、一気に解決しようとせずに、問題点を1つずつ潰

していくつもりで作っていくようにしましょう。

>ruby silmple_match4.rb nホ ームズn akageotxlt 5

-ロ ック・くくホームズ>>を 、昨年の

。すると、くくホームズ>>は初老の紳

した。だがくくホームズ>>は不意に私

count: 84

468



ニタを検索する
C

手元にあるデータをまずは処理しやすいように加工する場合など、データ

に応じたプログラムを簡単に作れると便利です。この章では、Rubyの応用例
として郵便番号データを検索するプログラムを作成します。

0 郵便番号データの取得
日本の郵便番号データは、郵便局 (日本郵便株式会社)のサイトから入手で

きます。

艤 ]'1更番号検索 :https://www.pOst.iapanpost.ip/zipcode/

。郵便番号データダウンロード
ー
読み仮名データの促音・拗音を小書

きで表記するもの (zip形式 ):

httpS://ヽアヽVW.pOSt.iapanpost.ip/zipcode/d1/kOgaki_zip.html

O郵便番号データの説明 :

httpS://WWW.pOSt.iapanpost.ip/zipcode/d1/readme.htinl

データダウンロードページの「全国一括」となっているリンクから、ZIP形

式のデータをダウンロードできます。これをZIPツ ールで展開すると、全国
の郵 便 番 号 デ ー タ を一 覧 した KEN_ALL.CSVフ ァイル を取 り出せ ます 。この フ

ァイルの中身はCSVと いう形式で、文字コードはShift_JISになっています。

樫墜
CSVは「COmma‐Separated∨alues」 の略で、「・aaa‖ ′"bb"′ "ccccc‖ 」と

「

いうように、値をカンマ「′」で区切って列挙する形式です。

469



第23章 郵便番号データを検索する

CSV形式では1行が1つのデータのかたまりになっていて、これを「レコー

ド」といいます。つまり、1行が1レコードを表します。レコードにはカンマで

区切られた複数の値が含まれており、値が入っている場所のことを「カラム」

とい い ます 。先 ほ どの KEN_ALL.CSVは 15個 の カ ラムで構 成 され た レ コ ー ド

が含まれています。カラムは先頭から1番 目、2番目というふうに数えて、同

じサI原番のカラムには同じ種類のデータを入れるのが普通です。

郵便番号データの各カラムの意味は、郵便番号データの説明ページに掲載

されています。最初の9つのカラムの意味は次の通りです。

①全国地方公共団体コード(J!S X0401、 X0402):半角数字

② (旧 )郵便番号 (5桁 ):半角数字

③郵便番号 (7桁 ):半角数字

④都道府県名 :半角カタカナ

⑤市区町村名 :半角カタカナ

⑥町域名 :半角カタカナ

⑦都道府県名 :漢字

③市区町村名 :漢字

⑨町域名 :漢字

また、13番 目のカラムは「一つの郵便番号で二以上の町域を表す場合の表

示」とあり、ここが1の場合には同じ郵便番号が複数のレコードに現れること

を示しています。

実際のファイルの1行を読んでみると、次のようにデータは「′」で区切ら

れており、先頭のカラムと末尾のカラム以外は
‖‖で囲まれていることがわか

ります。

01101′ 1:060    11′
〕10600000::′

':ホツカイト
゛
ウ::′ '1サツホ

°
ロシチユウオウク:i′ ::イカニケイサイカ

゛
ナイハ
゛
アイ

・′
‖北海道‖′

‖札幌市中央区‖′1以下に掲載がない場合し 0′ 0′ 0′ 0′ 0′ 0

」

470



23.2 csvライプラリ

CSvライブラリ

CSVフ ァイルを扱うライブラリとして、csvラ イブラリがあります。この
ライブラリはRubyに添付されているので、「require Hcsv‖ 」で読み込むだ

けで利用できます。

すでにあるCSVフ ァイルを読む場合は、CSV.openメ ソッドでファイルを
開いて、先頭から順にレコードを取り出します。ブロックを指定すると、CSV

オブジェクトをブロック変数としてブロックを実行し、ブロックを終了する

ときにファイルを開じます。CSV+eachメ ソッドはレコードを1つずつ取り出

して、カンマ区切りのデータを配列にしてブロックを実行します。

さっ そ く csvラ イブ ラ リを使 って KEN_ALL.CSVを処 理 す る簡 単 な プ ログ ラ

ムを作ってみましょう。

CSV.openメ ソッドには、File,openメ ソッドと同じように引数に処理す
るファイル名と動作モードやエンコーディングを指定します。

List m read_csv.rb

requi.re "csv" +csvラ イブラリを使う

日

COde = 7■ R(3v101

start time=Time.now
+引数を取り出す
+処理の開始時刻を取得する

+Shift_JISを UTF-8に 変換する指定をして csvフ ァイルを開く
CSV.Open(‖ KEN_ALL.CSV‖ ′ ;ir:Shift_JIs:UTF-8・ )do lcsvl
CSV・ eaCh dO lreCOrdl

l郵便番号が引数の指定 と一致 したらそのレコー ドを表示する
putS reCOrd.jOin(:1 1:)if record[2]二 =code
end

end

p Time.now― start_time +処 理が終了した時刻との差を表示する

47:

23.2



第23章  郵便番号データを検索する

> ココiby read_C8V'。 rb 1000002

13101100  1000002トウキョウトチヨダクコウキヨがイエン東京都 千代田区 皇居外苑

000000
2.141564733

筆者のラップトップPCで実行したところ、2.1秒ほどかかりました。List

23.1の ように、ファイルの先頭から最後まで1行ごとに読み込んで一致する

ものを探すという方法だと、処理に時間がかかってしまいます。これはこれ

で実用的ですが、次からはもう少し速く処理する方法を考えていきます。

sqlite3ライブラリ

データの処理を速くするためにデータベースを利用します。ここではオー

プンソースのリレーショナルデータベースライブラリであるSQLiteに より、

データベース操作用言語のSQLを使ってデータを検索できるようにします。

SQLiteの 現在のバージョン3で、そのため「SQLite3」 などと呼ばれることも

あります。

●SQLiteホームページ :https://www.sqlite.org/

Rubyで SQLite3を操作するには、sqlite3ラ イブラリを使います。このラ

イブラリをインストールするにはRubyGemsを 使います。RubyGemsと はイ

ンターネットを通じて配布されるRubyの ライブラリを管理する機能の名前

で、配布されるファイルの形式の名前をgemと いいます。gem形式で配布さ

れているライブラリのことを「gemパ ッケージ」または単に「gem」 といいま

す。RubyGemsに ついては「B.l RubyGems」 (p.503)も 参考にしてください。

gemのインストールや削除にはgemコ マンドを使います。

> gen install sqlite3

実行例

472



23.3 sq‖ te3ライプラリ
:

幸
Windowsで 実行したときにエラーが出た場合は「A.l Windowsで のイン
ス トール」の「sq‖ te3の インス トール」(p.496)を 参考にしてください。

macOSや Unixでは、ディストリビューションの開発用パッケージをインス
トールしたうえで、gemコ マンドを実行してください。

データベースに入っているデータは、「テーブル」という単位で管理されて

います。1つのテーブルは、1つのCSVフ ァイルと同じように、いくつかのカ

ラムを持った複数のレコードという形をしています。データベースの中には、

このようなテーブルがいくつも作られ、それぞれのテーブルにさまざまなデ

ータが格納できるようになっています。そのデータに対し、SQLを使って、
データの追加・更新・削除を行います。

SQLite3でデータを処理するサンプルコードを見てみましょう。データを

登録するためには、まずデータを格納するテーブルを用意しておく必要があ

ります。ここではaddress.dbと いうファイル名のデータベースファイルに対

して、名前と住所のみを格納するaddressesテ ーブルを作ってみましょう。

テーブルを作成するには次のようにします。

1: SQLite3 : :Database.open("address.db") do

2: db. execut.e (<<-SQL)

3: CREATE TABLE addresses

4: (name TEXT, address TEXT)

5: SQL

6: end

lф l

本書ではSQLite3の ごく限られた機能 しか使わないため、実際に使用する

メソッドも2つだけです。1つ はSQLite3::Databaseク ラスのクラスメソッ

ドであるopenメ ソッド、もう1つは同じクラスのインスタンスメソッドであ

るexecuteメ ソッ ドです。

SQLite3::Database.openメ ソッドの第 1引数はデータベースのファイ

ル名です。2行 日のSQLite3::Database+executeメ ソッドで、address.db内

に新 しい テ ー ブル addressesを 作 るため の CREATE TABLE文 を実行 します 。

CREATE TABLE文 は 2行 日の くく―SQLか ら 5行 日の SQLの間 の ヒア ドキ ュ メ

ントの部分です。SQLは長いテキストになることがあるので、ヒアドキュメ
ントを使うと便利です。これで、nameと addressと いう2つのカラムを持つ

addressesテ ーブルが作られます。それぞれのカラムの型は、特に制限なく

日

473



第23章  郵便番号データを検索する

どんな長さの文字列でも保存できるよう、TEXT型になっています。
テーブルを作ったあと、そのテーブルにデータを登録するには次のように

します。

1:data=[‖ 山田みのる・′ :1東江戸川区東江戸川三丁目‖]
2:SQLite3::Database.open(Haddress.ф ・)do lф

l

3:   db.execute(くく―SQL′ data)

4:     INSERT IINTO addresses VALUES (?′  ?)

5:   SQL

61 end

1行 日は登録されるデータです。必要な数だけの要素を含む配列になって

います。2行 日のSQLite3::Database.openメ ソッドは先ほどと同様で、3行

日のSQLite3::Database+executeメ ソッドでデータベースにデータを登録

す るための SQLで ある INSERT文 を実行 します。「 (?′  ?)」 とあるのはテ ー

ブルのカラムで、2つ 目の引数であるdataに含まれる要素が先頭から順に「?」

に埋め込まれます。この「?」 のようにあとから値をはめ込む場所のことを「プ

レースホルダー」といいます。

プレースホルダーの数が多くなると、対応する配列の要素との対応がわか

りにくくなります。次のように、データをハッシュで渡して、プレースホルダ

ーからは「:キー名」の形式で値を参照することもできます。

data = 〔
nmle:‖ 山田みのる‖′

addr: !:東江戸川区東江戸川三丁目‖

}

SQLite3::Database.open(・ address.ф・ )dO lф
l

db.execute(く く―SQL′  data)

INSERT INTO addresses VALUES (:name′  :addr)

SQL

end

474

登録したデータを読み出すときには次のようにします。



SQLite3 : :Database.open( "address.db" ) do

db.execute(<<-SQL) { lrowsl n rows}
SELECT name, address FROM addresses

SQL

end

lф l

今度はexecuteメ ソッドでSELECT文 を実行します。SELECT文は「SELECT

カラム名 FROMテープル名」の形式になっています。カラム名をカンマ区切り
で指定すると、指定したカラムだけを取り出して結果を配列にして返します。

executeメ ソッドはブロックを取り、ブロック変数にはSQLの実行結果と得

られるレコードが1つずつ配列として渡されるので、結果に対して|!頂に処理

を行うことができます。

日

データの登録

これから郵便番号を検索するためのプログラムを作成します。作成する処

理は、JZipCodeク ラスのメソッドとして実装することにします。

まずは郵便番号データのテーブル構成を決めます。ここでは単純に、次の

ようなテーブルにします。

目 m郵 便番号検索テーブル

郵便番号 都道府県名 市区町村名 町域名 検索用ア ドレス

カラム名 code pref city address alladdress
データ型 TEXT TEXT TEXT TEXT TEXT

簡略化のため、データ型はすべてTEXT型 にしてあります。これは任意の
長さの文字列を格納できるデータ型です。

最初の4つのカラムはCSVに あったカラムの値をそのまま格納します。最
後の「検索用アドレス」というのは、都道府県名と市区町村名と町域名をつな

げたものです。住所で検索するときはこちらを使い、「東京都港区」のように

都道府県名と市区町村名が1つになった文字列が与えられても検索できるよ

うにします。

テーブルを作 るには、SQLの CREATE TABLE文 を使います。表 23.1の テー

475

23.4 データの登録 :

0



第23章 郵便番号データを検索する

ブルを作るSQLは次の通りです。これにより、5つのTEXT型のカラムを持
っ た zip_cOdesテ ー ブル が作 られ ます 。な お、IF NOT EXISTSは 、同名 の テ ー

ブルが存在しないときだけテーブルを作成するキーワードです。

CREATE TABLE IF NOT EXISTS zip_cOdes

(code TEXT′  pref TEXT′  city TEXT′  addr TEXT′  alladdr TEXT)

List 23.2は、zip_codesテ ーブルに郵便番号データを登録す る処理

(Jzipcode+createメ ソッド)を組み込んだJZipCodeク ラスです。

List⊂目□HzipCOde.rb(登録処理)

require :Isqlite3‖

require t'csv‖

class JZipCode

CSV_COLU10J = (cOde: 2′ pref: 6, city: 7, addr: 8)

def initialize(dbfile)

edbfile = (lbfile

end

十①

def Create(Zipfile)

return if File.exist?(Odbfile)                    + ②

SQLite3::Database,open(Odbfile)do lф l     l③
db.execute(くく―SQL)

CREATE TIABLE IF NOT EXISTS zip_codes

(code TEXT′  pref TEXT′  city TEXT′  addr TEXT′  alladdr TEXT)

SQL

db.execute(lBECIN TRANSACT10N11)                 + ④

cSv.open(zipfile′ ‖r:Shift_JIS:UTF-8・ )do lcsvl

CSV.eaCh dO lreCI

data = Hash.new                             l ⑤

CSLCOLU皿 .each{lkey′ indexl datalkey〕 =rec[index]}

datal:alladdr]= datal:prefl + data[:City]+ datal:addr]

db.execute(く く―SQL′  data}                    イト ⑥

INSERT INTO zip_COdeS VALUES

(:COde′  :pref′  :city′  :addr′  :alladdr)

476



23.4 データの登録 :

end

db. execule ( , COMMIT TRANSACT]ON, )

end

return true
end

+⑦

JZipCodeク ラスの冒頭の CSv_COLUMNは 、必要なデータが csvフ ァィル
の何番目のカラムかを示す定数になっています。

JZipCode+initializeメ ソッドでは、データベースファイル名を引数と

して受け取ります。ここではあとの処理でデータベースを参照できるように、

単にインスタンス変数にファイル名を保存するだけです (① )。

JZipCode+createが テーブルを作成し、KEN_ALL.CSVの データをデータ
ベースに登録するメソッドです。まず、このメソッドはファイルが存在して

いると何もせずにreturnで 終了します (② )。 ファイルが存在しない場合、
SQLite3::Database+openメ ソッドを使って新規にデータベースファイルを

開き、SQLの CREATE TABLE文 を発行します (③ )。 そして、List 23.1で 見た
のと同様にエンコーディングを指定してCSVフ ァイルを開いてデータを取
り出します。③からの3行の処理は、配列として得られたKEN_ALL.CSVの各
レコードからCSV_COLUMNで 定義した位置にある情報を取り出して、:code、

:pref、 :city、 :addr、 :alladdrを キーとして持つハッシュを作成していま

す。抽出したデータをINSERT文で登録します (⑥ )。

なお、INSERT文 を発行 す る前 後 の BEGIN TRANSACTION文 (④ )と CmШ IT

TRANSACTION文 (⑦ )は、一 連 の書 き込 み をひ とま とま りの処 理 と して扱 う

ための命令です。INSERT文 でデータを追加するつどファイルを更新しないた

め、処理が速くなるという効果もあります。

SQL

end

q
end

477



第23章 郵便番号データを検索する

データの検索

次に格納された郵便番号データを検索するメソッドを作りましょう。List

23.3は、List 23.2の JZipCodeク ラスに追加する、find_by_codeメ ソッドと

find_by_addressメ ソッドです。

List C理口)iZipCOde.rb(検 索処理)

class JZipCode

def find_by_code(COde)

ret = []

SQLite3::Database.open(edbfile)do lф
l

db.execute(<く―SQL′ code)〔 lrowl retく く rOW.join("・ )}

SELECT code′  alladdr

FROM zip_cOdes

WHERE code = ?

SQL

end

return ret.map {llinel line + |'ヽ n:!}・ jOin

end

def f ind_by_address (acldr)

ret = []
sQlite3: :Database.open(Gdbfile) do ldbl

like = "t#{addr}8'
db.execute(<<-SQL, like) {lrowl ret << row.join(" ")}

SELECT code, alladdr
FROM zip_codes

IIIHERE alladdr L]KE ?

SQI,

end

return ret.map {|Iine| line + "\n"}.join
end

end

478

23。5



find_by_codeメ ソッドは、郵便番号を引数として、その郵便番号を持つ住

所を返します。find_by_addressメ ソッドはその反対に、文字列を引数とし

て、その文字列を含む住所の郵便番号を返します。

検 索 の と き も SQLite3::Databaselexecuteメ ソ ッ ドを使 い、SELECT文 を

実 行 します 。SELECT文 で「 WHERE条 件 」を記述 す る と、その条 件 に一 致 す る
レコードだけが結果として返ります。単純に一致しているものを取り出すに

は「カラム名 =値」とし、文字列の部分一致検索を行うには「カラム名 LIKE
‖考文字列%‖ 」とします。上記のメソッドでは、引数として与えられた値は

「MIERE code=?」 や「 WHERE alladdr LIKE?」 とい う条件 部 分 の「 ?」 に

置き換えられます。これらのINSERT文 ではcodeと alladdrを取り出してい

るので、空白で連結します。複数のレコードが検索にヒットする場合もある

ので、各行に改行を追加したあとで1つの文字列オブジェクトに連結し、メソ

ッドの戻り値としています。

では、find_by_codeメ ソッドとfind_by_addressメ ソッドを使って検索

を行うプログラム (List 23.4)を作ってみましょう。

tist GEED postal.rb

1: require_relative "jzipcode,,
2..

3: start_time = Time.now

4: db = FiIe. join(_dir_, " jzipcode.db" 
)

5: csv = File.join(_dir_, 'KEN_ALL.CSV')
6: j zipcode = ,JZipCode. new (db)

7: jzipcode.create (csv)

8:

9: keyword = ARGVt0l

10: result = jzj.pcode. find_by_code (keyword)

11: if result..empty?
12: result = jzipcode.find_by_address(keword)
13: end

14: puts result
15: puts
'16: puts " # {Time. now - start_time} f} "

嘔

479

23.5 データの検索 :



:第 23章 郵便番号データを検索する

1行日でjzipcode.rbを 読み込みます。postal.rbは jzipcode.rbと 同じ

ディレクトリに置いてください。3行 日は処理にかかった時間を計測するた

めにプログラムの時刻を取得しています。最後の13行 日で検索後の時刻との

差分によって何秒かかったかを表示します。4行日と5行 日は、JZipCodeク

ラスが使用するデータベースファイルと郵便番号データのCSVフ ァイルの

パス名です。これらも同じディレクトリにあるものを参照するために、プロ

グラムの置かれているディレクトリ名__dir__と ファイル名を連結して生

成しています。6行日と7行日でJzipCodeオ ブジェクトを生成してデータベ

ースを準備します。

9行 日は検索するキーワードをコマンドライン引数から受け取ります。こ

のキーワードを使って郵便番号か住所を検索します。まず、10行 日でfind_

by_codeを 使って郵便番号による検索を行い、結果を変数resultに 代入し

ます。11行 日のresult.empty?の判定で結果が空であれば、12行 日でfind_

by_addressを使って住所による検索を行います。13行 日で郵便番号か住所

のいずれかによる検索結果を出力します。

実行するときは次のように、コマンドライン引数として検索したい文字列

を与えます。

データベースヘの登録に少し時間がかかりますが、検索処理は速くなった

はずです。List 23.1と 同じようにtimeコ マンドで処理時間を計算して効果

を確認してみてください。

0.025630432禾 少

>ruby postal.rb東京都渋谷区神

1500047東京都渋谷区神山町

1500001東京都渋谷区神宮前

1500045東京都渋谷区神泉町

1500041東京都渋谷区神南

0.068563868秒

>rl■)y postal.rb 1060031

1060031東京都港区西 I′陳布

480



Bundler
sqlite3ラ イブラリをインストールする際にgemコ マンドを紹介しました。

より実用的なプログラムではたくさんのライブラリを使うことになります

が、1つ 1つをgemコ マンドでインストールするのは手間がかかります。また、

ライブラリが更新されることで、以前は使えていた機能が動かなくなること

もありえるため、ライブラリの名前だけでなくバージョンも管理しておきた

くなります。Bundlerは プログラムで利用する複数のgemパ ッケージの組み

合わせを管理するツールです。

Bundlerの コマンド名はbundleです。Bundlerは Ruby 2.6か ら標準添付さ

れるようになりました。次のコマンドを実行してBundlerが使えることを確

認してください。2.5以前のRubyを使っている場合は最初に「gem install
bundler」 を実行してインストールしてください。

サ
ここではBundlerの最低限の使い方 を紹介 します。公式 ドキュメン トは

httpS://bundler.io/docs.htrnl:こ あります。

O Gemf‖ eを作成する
Bundlerで ライブラリを管理するためにGemfileと いうファイルを作成し

ます。このファイルにライブラリの名前を登録します。

日

>bundle vers■ on

Bundler version l.17.2 (2018-12-19 corrmit 3fc4de72b)

> bunclle init
Writing new Gemfile to C: / /:O LIrRuby/part4/Gemfile

48:

23.6 Bundler・

③



:第 23章 郵便番号データを検索する

O Gemf‖ eに必要なライブラリの情報を追加する

bundle initで作成されたGemfileを開くと、次のようになっています。

List(日璽∋ Gemf‖e(bundle initの直後)

‖ frozen_ tr■ ng_ iteral: true

source l'https://rubygems.org‖

git_sourCe(:github)(lrepO」 amel‖ httpS://github・ COm/十 {repO」me}‖ 〕

十 gem lirailstl

このファイルの最後にコメントアウトされている「gem‖ rails‖ 」は

railsと いうgemパ ッケージをインストールするための指定です。今回は

sqlite3を インストールするため、最後の行を変更して次のようにしてくだ

さい。

Lis‖日彊D Gemf‖e(変更後)

# frozen-string-literal: Erue

source "https : //rubygems. org"

git-source ( : github) { | repo-name | "https : / /github. com/#{repo-name} " }

go'sqlite3n

(Dライブラリをインストールする

Cemfileに gemパ ッケージを指定 したらインス トールします。

> bundll.e inEtall
Fetching gem metadata from httPs
Resolving dependencies. . .

Using bundler L.tl .2

Fetching sqlite3 1.3.13

つ
ム
ｎ
）
４
．

/ /rubygems . org/



23.6 Bundler

Installing sqlite3 1.3.13 with native extensions
Bundle completel 1 Gemfile dependency, 2 gems now installed.
Use 'bundle info [gemnamel' to see where a bundled gem is
installed.

Gemfileの 指定に従ってsqlite3の gemが インストールされました。この

とき、Cemfile.lockと いうファイルがGemfileと 同じディレクトリに作成

され、実際にインス トールされたgemのバージョン番号が記録されます。今
回はCemfileに sqlite3の バージョン番号を指定 しなかったので最新版がイ

ンストールされました。

また、Gemfileで指定したgemが さらに別のge mを必要とする場合は、そ
れらも自動的にインス トールされ、Gemfile.lockに パッケージ同士の関係

性 (依存関係といいます)と バージョンの情報が元のgemと 同様に記録され

ます。そのためGemfileと Gemfile.lockを保存しておくことで、たとえば将

来的にsqlite3が更新されても、記録されているバージョンをインストール

して環境を再現することができます。

鰹哩ゝ
将来的:こ Gemfileは gems.rb、 Gemfile.lockは gems.10ckに そオ■ぞれ

「

 ファイル名が変更される予定になっています。

gemのバージョンを指定するには、先ほど追加した「gem・ sqlite3‖ 」の行
にバージョン番号の指定を追加します。先ほどインストールされたバージョ
ンは「1.3.13」 なので、試しに次のように1つバージョンを下げてみましょう。

gem lisqllite3〕 !′  ::1.3.12‖

Gemfileを 編集したらbundle installを再び実行します。Gemfileで指

定されたバージョンのパッケージがシステムになければ新しくインストール

されるとともに、Gemfile.lockが 適切に更新されます。Gemfile.lockを テ

キス トエディタで直接変更することは基本的にありません。

日

‐

483



第23章 郵便番号データを検索する

Gemfileで指定できるパッケージのバージョン指定のルールは、次の通り

です。

目C区壼〕gemパッケージのパージョン指定

バージョン指定 意味

・ X.X.X'' バージョンを固定

x.x.x以上のバージョンが必要

">= x.x,x", ',< y.y.y" x.x.x以上かつy.y.y以下のパージョンが必要

x.0以上は良いが、メインのバージョンが上がることは不

可 (た とえば‖
～>3.2・ で 3.2以上は良いが4.0は不可 )

○ プログラムを実行する

Gemfile.10Ckに 記録されたバージョンのパッケージを正しく読み込んで

プログラムを実行するには、今までのようにrubyコ マンドを直接実行するの

ではなく、「bundle exec ruby」 コマンドを使います。

484

> bundle instell
Fetching gem metadata from https: //rubygems .org/ . .

Resolving dependencies. . .

Usj-ng bundler L.L'7 .2

Fetching sqlite3 1.3.I2 (was 1.3.13)
Installing sqlite3 L.3.12 (was 1.3.13) with native extensions

Bund1e completel 1 Gemfile dependency, 2 gems now installed.
Use 'bundle info fgemnamel' to see where a bundled gem is
installed.

> bundle exec ruby postalorb 1010021

1010021東 京都千代田区外神田

0.033793148秒

実行例

‖～>x.01'



23.7 まとめ

○ ライブラリを更新する

Cemfile.lockに 記録されたバージョンのライブラリを何度でもインス
トールできると紹介しましたが、逆に新しいバージョンのライブラリに更新

したいこともあります。この場合は「bundle install」 ではなく「bundle
update」 を使います。引数で更新する対象のパッケージを指定できますが、

省略して何も指定しなければ、すべてのパッケージを可能な限り最新のもの

に更新します。

日

まとめ

SQLite3ラ イブラリを使って大量のデータを素早く検索する方法を紹介し

ました。目的に応じてデータベースなどのライブラリを利用するのが便利で

す。Rubyか らライブラリを利用する場合、すでにgemパ ッケージとして入手
できるものがあれば手早く入手して使い始めることができます。また、gemパ

ッケージを管理するBundlerの使い方を紹介しました。

データベースは大量のデータを扱ううえで不可欠なソフトウェアです。

オープンソース・ソフトゥェァとしてはSQLite3のほかにも、MySQLや
PostgreSQLな どが広く使われています。SQLの構文など、細かな点での違
いはありますが、テーブル作成やデータの登録や検索などの基本的な使い方

はほぼ同じです。ここではSQLについても必要最小限の範囲でしか取りあげ
ませんでしたが、より詳しく学ぶとよいでしょう。

> btrndle update
Fetching gem metadata from https://rubygems.orgl
Resolving dependencies. . .

Using bundler 1 L'7 .2

Using sqlite3 1.3 .13

Bundle updated!

赳

485    1





=|  
・
:r

・

よ．だ先 |ま まだ長そう
タ

，

一

、工一

付録

Ruby実行環境の準備
Rubyのインスト…ル

WindOWSでのインストール
maCOSでのインスト…ル
uniXでのインストール

エディタとlDE

Rubyリ フアレンス集
Ruby●ems

コマンドラインオプション

組み込み変数・定数

く

く

く

く

財





」n

付録 A G
R uby実1行

Rubyのインストール

Windows、 macOS、 Unixで Rubyを利用する方法を紹介します。WindOwsで

は手軽にRubyを実行する環境を整えるインストーラー「RubylnstaHer fOr

Windows」 を利用します。macOsや unixで は、初めからRubyが インストール

されている場合すぐにRubyを使い始められますが、古いバージョンになって

いることがあるので、ソースからビル ドする方法やバイナリパッケージを使

う方法、またRubyのパッケージマネージャを使う方法を紹介します。

インストールの方法については、次のサイトも参考にするとよいでしょう。

艤ダウンロード(Ruby公式サイト):

https://www.ruby_lang.Org/ja/dOwn10ads/

ただし、すでにインストールされているRubyの アプリケーションなどで、

システムであらかじめインストールされているバージョンや、古いバージョ

ンのRubyを 期待しているものがあった場合、正しく動作しなくなる場合があ

ります。そのような場合には、後述するrbenvな ど、好きなバージョンのRuby

に切り替えられるツールを利用するとよいでしょう。

WIndowsでのインストール
この節ではRubylnstallerに よるインス トールの方法を紹介 します。

Rubylnstallerは次のサイトから入手できます。

489

A.2
「

，

ノ



:付録A Ruby実行環境の準備

● Ruby lnsta:ler for VVindovvs:https://rubyinstaller.org/

ページ冒頭にある「Download」 のリンクをクリックすると、「Downloads」

というページが表示され、配布されているインストーラの一覧が表示され

ます。本書執筆時点の最新版はRuby 2.6.1な ので、これをインストールしま

す。「Ruby+Devkit 2.6.1-1(x64)」 のリンクをクリックすると、インストーラ

「rubyinstaner_devkit-2.6.1-1-x64.exe」 をダウンロードできます。

以降はこのRubylnstanerに よるインストールの手|1原を説明します。スクリ

ーンショットは、Ruby 2.6.1を WindOws 10 Pro 64ビ ット版にインストール

したときのものです。

000A。 2。1 インストールの開始
ダウンロードした「rubyinstaller― devkit-2.6.14-x64.exe」 のアイコンをダ

ブルクリックすると、インストーラが起動します。

最初に使用許諾の確認画面が表示されます。Rubylnstanerは修正BSDラ

イセンスになっていますが、Ruby本体やサードバーティのソフトウェアに関

するライセンスは別途確認すべきこととなっています。非商用の利用におい

て通常は問題になることはないと思いますが、確認したうえで「I Accept the

License」 を選択し、[Next>]ボ タンをクリックします (図 A.1)。

dl S.,rp - Ruby 26.1-1-xan with MSYS2 1.  ×

Rul″ 2●■-1-x“ ‐■■MSYS2 L“ g■建 嘔́ra田瞑nt

くR〉

Ple* read the fo{onilg uw AgMtild acpt th€ knsbeftte olttlilg
t€ iEdatar.

(c)20072018R出yhs●lg Team.

rights reserved. |

Ruby is @pyrightEd fte sftilde by Ydd*.o Mahnob
htb r /lwww , nbv.{arc , oro/tr/LICENSE, b(t

◎襲轟轟:饉鮨赫i革 :
01de曇 憔吐口:“

巨亜
=コ

|二■|■ |

490

111C電田)使用者許諾契約書の同意



A.2 Windowsで のインストール

黎)eo A。2.2 インストール先とオプションの確認
インストール先とインストールに関するいくつかのオプションを指定でき

ます (図 A.2)。 次の3つを選択できます。

●Add Ruby executab:es to your PATH

環境変数 PATHを設定することで通常のコマンドプロンプ トなどから

ruby.exeを 実行できるようになります。他のアプリケーションのDLL
の読み込みにも関連するので、影響を把握できない場合はチェックし

ないでください。

● Associate.rb and.rbw fi!es with this Ruby installation

拡張子が .rbと ,rbwの ファイルをダブルクリックすることで Rubyス ク

リプトとして実行できるようにします。

。 Use lJTF‐ 8 as defauit external encoding

デフォル トの外部エンコーディングをUTF-8に します。

必要なオプションを有効にして [Instan]ボ タンをクリックします。

哩)― インストール先とオプションの確認

6p Surup - nuUy zal-1-x54 with M5Y52

IEtalati.n fr6liEtin drd WioJ fad6

□ ×

竜〉

491

Setp w融 議s●l Rlルソ2●■1-る 4憫衝猥SYS2 nto」程制b卿撻薇」

“

r.αiよ

hstal b∞ 繭 ue σ ddl議 ow隧
"●"ad縮

(nt● rl増 :  ・.

PhaF awid try fulds name thatffitdhs sp#s (e.g. Progra Fiies).

Ers$se,.,

□醐 亀わソe繭翻es bソ・
“
柵

flasffirae .ib aA .Ow ft* witt this tu6y iEtalation

f]u* tm-e * detudt exhmd m@&lg.

m: Ml,E over tl€ dove opbms fu rcre detaiH informati4.

Req.dred Fe dskspae: -?1,8iW

‐
Canζ橙|くBad(



:付録A Ruby実行環境の準備

●・・A.2。3 インストールするソフトウェアの選択
Rubyと 一緒にインス トールするソフ トウェアの選択画面が表示 されます

(図 A.3)。 選択できるのは「MSYS2 development toolchain」 です。これはC言

語で書かれた拡張ライブラリをビル ドする際に必要になるので、チェックを

外さずに「Next>」 ボタンをクリックしてください。プログラムのビルドは複

数の開発ツールを適切な順番に実行して行われます。一連の開発ツールー式

のことをツールチェイン(t001chain)と いいます。

fll Set p - n Uy zal-1-x64 with IUSYS2 □ ×

sd<t Cotrtpo(EG
Whi& cotrporenb stt@ld be inrtaledT くR〉

SdKt the dmormts you wilt b hstali der the @opomts yw do f,ot silt b
iroh{. ddNext etm yo ne ready to qtire.

|マ 11■|,21111暴 1111 :I:::iil :1:: :I:::::: ":′

"|
図 MSYS2 devdo四 tt対占訥 m19‐-31         830.7椰

Rr-6y rIil be hsded inb clvFJsyIS{64 md l.lsYs2 wil be hsbled lnb
c:+Rby26-x54ltNys64. Ples u 'rldkiffitall' m lhe hst tEtds p6ge b iitalre
it. It @ be LpdaH later po 'rt*. iretal' a wel.

oment Eelectifl re+ires at lst 902. 516 of dsk spae.

|: く8ad(~_IE亘≡
==|| lanl「

|

1璽)― ソフトウェアの選択

0)・・A.2。4 インストール状況
インストールが完了するまでプログレスバーが表示されます (図 A.4)。

E (i.clhg ffs,.,
c rkrby26-x64&rsys6+hEw6{*tb{gc+x66-6,t-s6+nfr rEw32}8. 2, 1yclpl6, exe

■5いLリ
円e～ watt wNe Setip● st』 s Rtby 2.6.1-1■ 64卿衝 MSYS2研1ソOW∞ mp●詭r.

ffi Setup - Ruby 2.6.1-1-154 with MSYS

く廂〉

ピ   X

492

唾〔□□Dイ ンストール状況

EE



A.2 1Windowsでのインストール
:

(0)00A。2.5 インストールの完了
インストールの完了画面が表示されるので、「Run iridk installi tO setup

MSYS2 and deve10pment t001chain.」 にチェックをつけたまま[Finish]ボ タ

ンをクリックします (図 A.5)。

⑭C=Dインストールの完了

●・・A.2.6 MSYS2のセットアップ
続いてコマンドプロンプ トが表示されます。ここでMSYS2の セットアッ
プを行います (図 A.6)。「 1」 (MSYS2 base installatiOn)を 入力して [Enter]

キーを押 し、セットアップを実行します。

ru Awvindows*sy*d*.trd.s€

嘔

Completing the Ruby 2.6.1-l-x6,4
with HSVS2 Setup tlllizard

Setlp h6 foished iutakE tu-&y 2"6,1-1-r(6,+sifi fttSYSzm
yM ffqJk. lhe as*@tim my be lmd|ed by sdecting
theimb[edSwhrE.

ft( Fii*r b ent Set-p.

MSYS2 is reqted b imbf gffiE wifi ( exbmims,

web SEr hqr//n-fiyinltds,qg
Srpport gro-qr: httsr/boes.goode.@/groupfubyinsds
W*i: htFs://*tu.4thr-6.@rdskaisrh.6yinstds2

口    ヽ』鐵up― Ruり 2麒-1‐x“ with MWS2

仰)― MSYS2のセットアップ

E轟コ

.   _ | |  .    |  |. |  . |

1 11  .||   | |  |                        ..    _  ‐

|~|

|||~1

―
・
―

ゴ

一

■

■

‐に

一

493



:付録A Ruby実行環境の準備

MSYS2の セットアップが完了すると、再び処理を指定するメニューが表

示されます (図 A.7)。 何も入力せずに [Enter]キ ーを押すと終了します。

E Cywindws:ryndzkdse

図―
MSYS2のセットアップ完了

0)00A.2。7 コンソールの起動
WindOws 10の 場合は、スター トメ

ニューにアルファベ ッ ト順にアプ リ

ケーションの一覧が表示 されるので、

[Ruby 2.6.1_1-x64 with MSYS2](の

フォルダを探 してク リックします。

フ ォフレダの中の [Start COmmand

PrOmpt with Ruby]を クリックする

と、Rubyの 実行に必要な環境変数が

設定 されたコマン ドプロンプ ト(コ

ンソール)を起動できます (図 A.8)。

P ErE'^rLrit*

494

(D“ Rubyコマンドプロンプトを開く

「
‥

‥

‥

ム・ヽ|‐…

哺 _・ ¬ :

●■ )・‐

口 …
| ' |‐  ・′|||

o
!,rrl

8

●

9 ‐   _.   ・
・

い
　
　
ル
い
０

葬
　
　
”

■

　

■
・　

“
明 0

_| |‐ ||`,|:‐ ):|●・ _「 ||II「 III

11

出||,「 |.=|



A.2 Windowsで のインストール

一度このコマンドプロンプトを起動した後であれば、スタートメニューで

「ruby」 と入力するだけで「最も一致する検索結果」に表示されようになりま

す。この方法でも素早く起動することができます (図 A.9)。

フィルター、/

,rt)
l! lnteradiw Rrby

d mbyiffiller-devkit-e6.1-t-x64.exe

tl+rr)l
I Ruby2,6.t AH neterence

I-GT
,p ruby -ws t6*tBa

P Nylral"-lb

P ruby lll
P ruby d ralls

P rubYtB

,p rubyiEilar[

P ruryf*m acumentition Seryer

図

"Rubyコ
マンドプロンプトを開く(検索)

コンソール (図 A■0)を 開いたら、rubyコ マンドに_vオプションをつけて

実行してRubyのバージョンを確認します。次のように表示されたらrubyコ
マンドの実行が成功です。これでRubyプログラミングをはじめられます。「第
1章 はじめてのRuby」 に進んでください。

国:S●■Comi櫂 nd PЮnl口 with Ruけ

■

Ｏ

．

Ｄ

一

団

最も一致

“

横糠結果

図

1■

(コC■ED Rubyコ マンドプロンプト

stlにいmmand Proぃ ot with ktけ
デユタ|ップアメ亨

■
．
　

゛
●
　

“
ｕ

|  . .| . .|| .‐  |‐ ■ 1‐ ■ _. |・ || ‐

||||・|=・ 1

495



付録A Ruby実 行環境の準備

●・・A。2.8 sq‖te3のインストール
ここからは「第23章  郵便番号データを検索する」で使用するsqlite3の
gemパ ッケージをインストールする手順を補足します。第23章のプログラム

がうまく動かないときに確認してください。SQLiteは C言語で記述されたプ

ログラムです。これをRubyか ら利用するために、sqlite3の gemでは「拡張ラ

イブラリ」と呼ばれる方法を用いています。

本文のサンプルに従って作業を進めると、rubyコ マンドを実行したときに

以下のようなエラーになる場合があります (2019年 1月時点)。

sqlite3/sqlite3_nativeと いうライブラリのロー ドに失敗 しています。

これは、Wiwdows(x64_mingw32)向 けにビル ドされたsqlite3の gemパ ッケ

ージが Ruby 2.6に 対応 していないためです。そこで、sqlite3の gemを インス

トールする際に拡張ライブラリをソースからビル ドする手順を紹介します。

gemを インストールする前に、まず、ビルドに必要な開発用のパッケージを

インストールします。提供されているsqlite3の関連パッケージを検索してみま

しょう。前節で紹介したコンソールを起動して次のように入力してください。

> rialk exec pacman -Ss eqlite3

MSYS2で はpacmanと いうプログラムを使ってパッケージを管理 します。

ridkと いうのはRuby hsta‖ er DevKitの フロン トエンドです。これを使って

MSYS2の コマン ドであるpacmanを 実行します。

> ruby jzipcodle.rb

Traceback (most recent call 1ast.) :

1: from C:/Ruby26-x64lhblr:uby/gems/2.6.1/gemsi
sqlite3-1. 3 . 13-x64-mingw32 / Ii-b/ sqlite3 . rb: 6 : in' rescue in <top

(reguired) >'

C : / Ruby26-x64 I I ib I ruby I gems I 2. 6 . 1/ gems / sq1 i te3 -1 . 3 . 13-x64-

minqw32/lib/sq1ite3.rb:6:in'require' : cannot load such file
-- sql.ite3/sqlite3-native (LoadError)

ｚ
０
０
″
４
．

ψ



A.3 macOSで のインストール
:

SQLite関連のパッケージ名が表示されます。この中の「mingw_w64-

x86_64-sqlite3」 がgemの ビルドに必要なパッケージです。バージョンによっ

ては「mingw― w64-x86_64-dlfcn」 が必要になる場合があります。次のコマン

ドを実行すると、インストールを続行するか確認を求められるので「Y」 と

[Enter]キ ーを押すとビルドが始まります。

> rialk exec pacman -S ningw-w54-x85_54-sq1ite3
> rialk exec pacman -S rningw-w54-x85_64-tllfcn

続いてsqhte3の gemをインストールします。同じコンソールで次のコマン

ドを実行してください。

これでRubyで sqlite3ラ イブラリを使う準備は完了です。

p.481の手順の通りにBundlerを 使用する際にも、同じ問題が発生します。

bundle instanを実行する前に以下のコマンドを実行してください。

> bundle COnfig ……10Cal fOrCe_rubyLplatfo=m. true

■
|

macOSでのインストール
macOSでは標準のコマンドとしてRubyを利用することができます。2019

年 1月時点の最新版であるMoiaveで はRuby 2.3.7p456と いうバージョンが

インストールされているので、そのまま利用できますが、本書で紹介されて

いる新しい機能については、一部利用できないものがあります。Ruby 2.6.1以

上のバージョンを改めてインストールすることをお勧めします。

バージョンを確認するために、まずコンソールを起動します。コンソール

を起動するには、Finderか ら[アプリケーション]→ [ユーティリティ]→ [タ
ーミナル]を選んでください。

> gem install sqlite3 --platform=nrby

497

A.3



付録A Ruby実行環境の準備

「ruby― v」 を実行すると、Rubyのバージョンがわかります。

このようにバージョン2.6以上と表示されない場合は、古いバージョンの

Rubyがインストールされています。

自分で新たにRubyを インストールする場合、パッケージ管理システムを利

用してインストールするか、ソースからコンパイルしてインストールするか

を選べます。どちらもUnixでインストールする場合と同じような手順になる

ので、次節を参照してください。

Unixでのインストール

Unixの場合はすでにRubyが インストールされているかもしれません。試

しにコンソールで次のように入力してください。

次のようにバージョン2.6以上と表示されれば、改めてインス トールする

必要はありません。

ruby 2.6.lp33 (2019-01-30 revision 66950) [x86_64-linux]

Ruby 2.5以前の古いバージョン番号が表示された場合は、より新しいもの

をインストールすることをお勧めします。

> ruby -v
ruby 2.3.7p456 (2018-03-28 revision 63024) luniversal.x86-64-
darwinlB l

実行例

> nrby -v

498



A.4 Unixでのインストール

●・・A.4。l rbenvを利用する
rbenvは複数のバージョンのRubyを切り替えて使えるようにする開発者向

けの管理ツールです。Rubyを ソースコードからビルドしてインストールしま

すが、ビルドの手順が自動化されるため単純にRubyを使いたいという人に取

っても便利に使うことができます。

rbenvの ソースはGitHubサ イトにあるので、gitコ マンドを使って入手しま

す。ここでは、ユーザのホームディレクトリの.rbenvデ ィレクトリにダウン

ロードしています。

パスの情報とrbenvの初期化の情報を、シェルの設定ファイルに書き込み

ます。bashを使っている場合、次のコマンドを実行することで、環境設定ファ

イル～/.bashrcに設定ができます。macOSの場合は～/.bashrcと なっている部
分を～/.bash」rOfileに 置き換えて実行してください。

> eChO :eXport PATH=:iSHOME/.rbenvプ bin:SPATH": >) ・・′.bashrc

> eChO ieVal :IS(rbenV ilnit ―)“ : >> 
‐
ノ.bashrc

ここでシェルの状態を更新するため、次のように入力します。ターミナル

を立ち上げ直してもよいでしょう。

> exec $SHELL -t

さらに、rbenvで Rubyを インス トールするために、gitコ マンドでruby_

buildを ダウンロードします。

> git clone git! //github.con/sstephenson/ruby-build.git
- / . rbenv/plugins /ruby-build

これでrbenv installコマンドが使えます。さらにrbenv rehashコ マンドを

実行し、rbenv g10balコ マンドを使えば、rubyコ マンドが2.6.1になります。

C

> git clone git : //github. com/s6tephenson/rbenv. git -/. rbenv

499



付録A Ruby実行環境の準備

> rbenv install 2.6.1
> rbenv rehash
> rbenv global 2.5.1
> ruby -v
ruby 2.6.1p33 (2019-01-30 revision 66950) [x86-64-1inux]

(口)・・A。4。2 バイナリバッケージを利用する
Unixや macOSに最新版のRubyを インストールする場合、ソースからビル

ドすることも可能ですが、プラットフォームのパッケージ管理システムを使

ったほうが後々の管理が楽になります。

macOSの場合、HOmebrewと MacPortsと いうパッケージマネージャが広

く使われています。Unixの場合も、広く利用されているプラットフォームの

多く(各種Linuxや
事BSDな ど)において、バイナリまたはソースからビルド

する形式のパッケージが配布されています。それぞれのシステムに合ったや

り方でインストールしてください。

(口)・・A.4。3 ソースからビルドする
まず、Rubyの ソースを入手します。Rubyの ソースの一次配布元URLは次

の通りです。

●https://cache.ruby_lang.Org/pub/ruby/メ ジャー+マイナーバージョ

ン番号 /ruby―バージョン番号 .tar.gz

Rubyのバージョンが 2.6.1の 場合、メジャー+マイナーバージョン番号は

「2.6」、バージョン番号は「2.6.1」 になります。この場合、URLは、

● https://cache.ruby_lang.Org/pub/ruby/2.6/ruby_2.6.1.tar.gz

となります。

次のようにしてソースアーカイブを展開すると、「ruby_2.6.1」 というディ

レクトリが作成されます。

> tar zxvf ruby-2.5.1.tar.92

500



A.5 エディタとlDE・

Unixの場合は、そのディレクトリに移動して、次のコマンドを順に実行す

れば完了です。

> cd nby-2.5.1
> . /confignrre
> make

> nake teEt
> make inetall

最後の「make install」 ではsudOコ マンドなどを利用して、スーパーユー

ザの権限で実行します。スーパーユーザの権限がない場合は、管理者にイン

ストールしてもらうか、自分で書き込みのできるディレクトリにインストー

ルします。たとえば自分のホームディレクトリ以下にインストールする場合

は、次のようにします。

/conf igure - -pref ix=$HO!.E

この場合、ディレクトリ「$HOME/bin」 にrubyコ マンドやirbコ マンドな

どがインス トールされるので、パスが通っていることも確認してください。

q

エディタとlDE

Rubyのプログラムを書くには、「エディタ」と呼ばれる、テキストファイル

を編集するアプリケーションを使うことが一般的です。Rubyの文法に対応し

たエディタを利用すれば、適切な箇所で自動的にインデントを挿入してくれ

たり、ifや whileな どのキーワード、定数、文字列などをわかりやすく色づ

けしたりしてくれたりするので、快適なプログラミングには欠かせません。

ここではそのようなエディタやIDE(統合開発環境)を簡単に紹介します。
もちろん、使い慣れたエディタがあれば、それを使うのがよいでしょう。

最近よくプログラミングに使われているエディタとしては、VS cOdeこ

とVisual Studio Codeが あります。Windows、 macOS、 Linuxをサポートし、

Rubyのための拡張も用意されています。

501

ワ   ヨ:

A:5鸞



「

~

付録A Ruby実 行環境の準備

● Visual Studio(E)ode:https://code.visualstudio.coln/

またSublime Textや Atomと いったリッチなエディタの人気も高いよう

です。

o Sub‖ rne Text:https://www.sublimetext.com/

● Atolm:https://atomoio/

単体のエディタではなく、いわゆるIDEに付属のエディタにも、Rubyに

対応しているものがあります。IDEはプログラムの編集だけでなく、実行や

テストを支援するための機能も内包しています。Ruby対応のIDEと しては

「RubyMine」 がよく使われています。

● RubyMine:https://www.ietbrains.com/ruby/

●・OA.5.1 ちやんとしたエディタがなくちや
Rubyは使えない?

ここまでの説明を読んで、Rubyのプログラミングには高機能なエディタや

IDEがないとできない、と思われる方もいるかもしれません。Unixを 使って

いる方なら、たいていの場合Vimや Emacsと いった定番エディタがインスト

ールされているのであまり問題ではないかもしれませんが、Windowsで は標

準でインストールされるメモ帳しかない場合もあるでしょう。

でも、メモ帳のようにシンプルなエディタだけしかなくても大文夫です。

筆者もちょっとしたプログラムを作成 したり修正したりする際には、メモ帳

を使うこともあります。そのような場合には、自分でインデントを入力する

必要がありますが、それほどの手間ではありません。さらにはirbな どで直接

Rubyの コードを実行することでエディタを使わずに実行結果を確認するこ

とだってできます。

ただ、プログラミング自体に不慣れな方にとっては、できるだけ敷居が低

いほうがプログラミングしやすいでしょう。ですから、Rubyに対応したエデ

ィタを用意しておいて、その使い方に慣れておいてください。それが、よいプ

ログラムを書くための近道です。

502



ンス集 ¨
，
　
　
　
　
　
′

―

　

　

●

・　

　

●

，

ロ
フアレ

RubyCeims
RubyGemsは、Rubyの ライブラリやアプリケーションを統一した方法で
インストール・管理するためのRuby標準のツールです。RubyGemsで は、個

別のライブラリをgemと 呼びます。RubyGemsを 使えば、それぞれのgemを

探したり、どんなものか調べたり、インストール/ア ンインストールしたり、
古いgemのバージョンアップをしたり、今インス トールされているgemを一

覧したりできるようになります。

●●・B』.l gemコマンド
RubyGemsは 通常、コマンドラインで使用します。コマンド名は「gem」 です。

C)gemilist

インストール済みのgemを 一覧表示するには、次のように実行します。

bigdeciimal (default: 1.4.1)

bundler (default: 1.17.2)

Cmath (default: 1.0.0)

csv (default: 3.0.4)

> gem ligt

*** LOCAL GEMIS ***

503

ロロヽ

付録b



:付録B Rubyリ フアレンス集

ここで使われている「list」 といった指示部はgemコマンドと呼ばれます。

gemコ マンドにはlist以外にもいくつかあります。主だったものを以降で挙げ

ていきます。

(])genl search

gemを検索するのに使います。オプションを指定しない場合、リモー トリポ

ジトリからインストール可能なgemを 探します。

_1オ プションをつけると、インス トール済みの gemを検索します。

backupify-rsolr-nokogiri (0. 12. 1. 1)

epp-nokogiri (1.1.0)

slebm-nokogir j- ( 1 .4 .2 .L)
jwagener-nokogiri (1. 4. 1)

nokogiri (f.10.0 ruby java x64-mingw32 x86-mingw32, 1.6.1 xB6-

mswin32-60 , L.4.4.1 xB5-mswin32)

nokogiri-cache (1.0.0)

> gen search nokogiri

*** REMOTE GEMS ***

> gem search -L csv

csv (default: 3.0.4)

*** LOCAL GEMS ***

504



B.l  RubyGems

C)gemlinstall,genl fetch

gemを インストールします。gemは、インターネット上でgemフ ァイルを配

布しているサイト(https://rubygems.Org/)か らダウンロードされます。

gem fetchは インストールせずにダウンロードのみを行います。gemは、
.gemと いう拡張子のファイルでパッケージされていて、これをインストール

することもできます。、

(E)gem update

インストールされたgemを 最新のものに更新します。

なお、RubyGems自 体の更新にも、このコマンドを使用します。その場合は

一systemオ プションを追加してください。

C
> gem install nokogiri

> gem fetch nokogiri
Fetching nokogiri-1. 10. 0. gem

Downloaded nokogiri-1. 10 . 0

> gen install nokogiri-l.10.0.gem
Building native extensions. This could take a while
Successfully installed nokogiri-1. 1-0. 0

1 gem installed

> gem update nokogiri

> gem update ―…systelm

505



付録B Rubyリ ファレンス集

ほかにも多数のgemコ マンドがあります。gem help commandsで、gemコ マ

ンドの一覧が表示されます。

コマンドラインオプション

Rubyを 実行するときにコマンドラインオプションを指定できます。たとえ

ば_vオプションを指定してrubyコマンドを実行すると、バージョン番号を表

示して終了します。

表 B.1は rubyコ マンドのコマンドラインオプションの一覧です。便利なも

のもあるので、ざっと見ておくとよいでしよう。

日(Eヨ■D Rubyのコマンドラインオプション

> ruby -v
ruby 2.6.1p33 (2019-01-30 revisj-on 66950) [x86-64-darwin16]

実行例

オプション 意味

-0octal
οcrα′で、lo.getsな どが認識する改行文字を8進数で

指定する

オートスプリットモード(―nま たは―pオ プションとと

もに使用するとsFに s_.split(s,)が セットされる)
を指定する

スクリプ トの文法チェックのみを行う

-Cdirectory
スクリプトを実行する前にグjκ c′οりで指定されたディ
レクトリに移動する

―d、 一―debug デバッグモードを有功にする(sDEBUGが trueに なる)

-e'command'
σ。
“"α
″グで1行のプログラムを指定する。このオプシ

ョンは複数指定できる

-Eexl:inl. --encod in g=e;[ : in]
デフォル ト外部エンコーディング (α )と 、デフォル ト

内部エンコーディング (′″)を指定する

-Fpattent
Stringll
り文字 (s

sp
,,)

litメ ソッドが使用するデフォル トの区切
を指定する

-i lextensionT

ARGVで指定されたファイルをスクリプ トの出力で置
き換える (arι″sjο″を指定した場合はその拡張子を追

加したバックアップが作成される)

-Idirectory
SLOAD_PATHに 追加 されるデ ィレク トリを指定する。こ

のオプションは複数指定できる

_nま たは―pオ プションでs_の改行を削除する

506



――enableお よび―disableオ プションに指定できるルα′
“
r`(機能名)には表

B.2の ものがあります。

目―
…enab:e、 一disab:eオプションで指定する機能名

機能名  . .. .         意味              _
gems RubyGemsを 有効にするかどうか (デフォル ト:有効 )
rubyopt 環境変数RUBYOPTを 参照するかどうか (デフォルト:有効 )
did3ou_mean スペルミスを指摘する機能を有効にするかどうか (デフォル ト:有効)
frozen-string-
literal すべての文字列リテラルをfreezeす るかどうか (デフォルト:無効)

iit JITコ ンパイラを有効にするかどうか (デフォルト:無効 )
all 上記のすべてを有効にするかどうか

a
スクリプ ト全体が Iwhile gets(), ...endiで囲ま
れているように動作する (gets()の 結果をs_に セッ
トする)

―p
_nの動作に加えて、ループの終わりごとにs_を 出力す
る

-rlibrary
スクリプ トを実行する前に励響 をrequireで読み込
む

スクリプトに与えるフラグを解釈する機能を有効にす
る (lruby_s script_abciで sabcが trueに なる)

―S 実行するスクリプトをPATH環境変数のディレクトリ
から探す

-Tlevel 汚染チェックモードを指定する

―U 内部エンコーディングのデフォル ト値 (Encoding
default_internal)を UTF-8にする
バージョン番号を表示 し、冗長モー ドを有効にする
(SVERBOSEが trueになる)

冗長モードを有効にする

―Wルν′′ 冗長モードのレベルを指定する(0=警告を出力なし、
1=重要な警告のみ、2=すべての警告 (デフォルト))

-xdirectory
実行するスクリプトのうち「+!ruby」 という行の手前
までを無視する

--copyright 著作権情報を表示する

- - en abl e:=-fe atu re l, ...) ルα′
“
ィを有功にする

__disable=.feature l, ...) ル磁″を無効にする

--external-enco ding= e nc o din g デフォル ト外部エンコーディングを指定する

--internal-enco ding= encodin g デフォル ト内部エンコーディングを指定する

--verbose 冗長モー ドを有効にす る (sVERBOSEが trueに なる )
バージョン情報を表示して終了する

--help ヘルプメッセージを表示する

507

オプション 意味

B.2 コマンドラインオプション
:



付録 B Rubyリ ファレンス集

組み込み変数・定数

●・・B。3。]組み込み変数
組み込み変数とは、Rubyであらかじめ使い方が決められている変数です。

組み込み変数はすべて「S」 から始まる変数になっていて、グローバル変数の

ように参照できます。Sく に対するARGFの ようにわかりやすい別名がある場

合は、なるべくそちらを使ったほうがよいでしょう。

組み込み変数の一覧を表 B.3に示します。

辺墾聖D組み込み変数

変数名 内容

SI 最後に発生した例外に関する情報

gLoADED_FEArIREI DfrlA
SS 現在実行中のRubyの プロセスID

S& 最後に実行したパターンマッチでマッチした文字列

最後に実行したパターンマッチでマッチした部分より後ろの文字列

S* ARGVの 別名

S+
最後に実行したパターンマッチでマッチした中で最後の「 ()」 に対応
する文字列

Array十」oinのデフォル トの区切り文字列 (デフォル トはnil)

S― W ―wオ プションを指定して実行したときの引数の値

S― a ―aオプションを指定して実行したときtrue

S― i ―iオ プションを指定して実行したときの拡張子の値

S-1 -1オ プションを指定して実行したときtrue

S― p ―pオ プションを指定して実行したときtrue

最後に読み込んだ入カファイルの行番号

S/ Lfi v :1- l.'-tlst/ -, (i7 i-lr. | iX "tn",
50 $PROGRAM NAMEr,_BI]4

sl、 S2、 .̈

最後に実行したパターンマッチで「()」 にマッチした文字列 (″ 番目の
「()」 がs″ に対応する)

S: $LOAD-PATH OEUA

S, Srrins#splir af 1 t )v I a\vl0!?9r1 Gz,r;u I. ltnil)
Sく I\RGFrl_EJ&

S> prinr. purs. pb Eaf I t )v I afifi*, (iz tt tv l' lJsrDour)
Sつ 最後に終了した子プロセスのステータス

se 最後に例外の発生した位置に関する情報

S＼ ffhv= - l-'t/JL -, (i1alL I. llnil)
最後にgetsメ ソッドで読み込んだ文字列

508



B.3 組み込み変数・定数

変数名 ' 内容 目

最後に実行したパターンマッチでマッチした部分より前の文字列

S～ 最後に実行したパターンマッチに関する情報

SDEBUG デバッグモードを指定するフラグ (デフォル トはnil)

SFILENAME ARGFが現在読み込んでいるファイルの名前

$LOADED-
FEATURES requireで 読み込まれたライブラリ名の一覧

$LOAD_PATH
requireが フアイルを読み込むときに検索するディレクトリの名前を
含む配列

SPROGRAl〔_
NAME 現在実行中のRubyス クリプ トの別名

SSAFE t-7v,\)v(iat)vIltl)
SVERBOSE 冗長モードを指定するフラグ (デフォル トはnil )
Sstdin 標準入力 (デフォルトはsTDIN)

$stdout 標準出力 (デ フォル トは STDOUT)

$ s Lderr 標準エ ラー出力 (デ フォル トは STDERR)

●・・B.3。2組み込み定数
組み込み変数と同様に、あらかじめ値が決められている組み込みの定数が

あります。組み込み定数の一覧を表B.4に示します。

目m組 み込み定数

定数名 ___   _  
・
内容 ・
 ~~

ARGF 引数、または標準入力によって作 られる仮想のファイルオブ
ジェクト

ARGV コマンドライン引数の配列

DATA __END__以 降のデータにアクセスするためのファイルオブジ
ェクト

E卜R/ 環境変数
RUBY COPYRIGHT 著作権情報を表す文字列
RUBY DESCRIPT10N ruby―vで表示されるバージョンなどの情報
RUBY ENGINE Rubyの処理系の実装の種類を表す文字列
RUBY_PATCHLEVEL Rubyの処理系のパッチレベルを表す文字列
RUBY PLATFORIVI 実行している環境 (OS、 CPU)を表す文字列
RUBY RELEASE DATE Rubyの処理系のリリース日を表す文字列
RUBY VERS10N Rubyの処理系のバージョンを表す文字列
STDERR 標準エラー出力
STDIN 標準入力

STDOUT 標準出力

a

509



コ

ー

ー

ー

ー

‐

―

付録B Rubyリ ファレンス集

●・OB.3.3 擬似変数
擬似変数は変数のように参照することができますが、いずれも値を設定す

ることはできません。代入を行うとエラーになります。

擬似変数の一覧を表B.5に示します。

疇

“

擬似変数

変数名 内容

self デフォル トのレシーバ

nil. true. false ni1. true. false
FILE 実行中のRubyス クリプ トのファイル名

LINE 実行中のRubyス クリプ トの行番号

ENCODING スクリプトエンコーディング

●・・B.3。4 環境変数
目

“

環境変数

変数名 内容

RUBYLIB
LOAD_PATHに 追加するデ ィレク トリ
で指定する )

組み込み変数 S
名 (「 :」 区切り

RUBYOPT
Rubyを 起動する際のデフォル トのオプション

(RUBYOPT=‖―U― v‖など)

RUBYPATH
―sオ プションを指定してインタプリタを起動 した

ときのスクリプ トの検索パス

RUBYSHELL、 COMSPEC (プ ラットフォーム依存)外部コマンドの実行でシ

ェルが必要な場合に使用されるインタプリタのパス

HOME Dir.chdirメ ソッドのデフォル トの移動先

LOGDIR
HOMEが ないときのDir.chdirメ ソッドのデフォ
ル トの移動先

PATH 外部コマンドの検索パス

LC ALL、 LC CTYPE、 LANG (プ
ラットフォーム依存)デフォル トのエンコーデ

ィングの決定に使用されるロケール情報

510



あ とが き

ここで Rubyを持ち出したのは、わたしが咄嵯に触ることができ、

原稿の締め切りに間に合いそうな言語が当座これしかないからだ。

―
円城塔『プロローグ』より

あとがきであります。

本書は、2002年に出版された『たのしいRuby』 の改訂版で、2016年に出版
された第5版にさらに手を加えた第 6版になります。

第6版では、Ruby 2.6.1の リリースを受けて、2.6の新機能についての説明

をいくつか追加しました。それと合わせて、第5版の対応バージョンだった

2.3のサポート終了が近いことから、古いバージョンのRubyに 関する記述を

削除しています。わかりやすいところとしては、整数としてFixnumと Bignum

があったのを、Integerに統一しました。また、時代の変遷を経て、EUC_JPが
使われる機会が少なくなってきた一方、Shift_JISは まだ現役で使われてい

るところもあるため、EUC―JPのサンプルはShift_JISに変えてみました。
ほかにも細かなところでは、常時SSL(TLS)化 が進んだため、「http://～ 」
だったURLを「https://～ 」に変更 しています。URLのパターンも、httpに
もhttpsに もマッチするように修正しました。インターネットのように日々変

化するジャンルでは、細かい修正を行わないといつの間にか古びてしまうこ

ともあることに気づかされました。

Rubyも誕生から四半世紀を超える長い時間を経て、少しずつ、しかし確実
に変わってきました。Rubyの言語そのもの以外にも、ソースコードの書き方
からプログラムを支援するツールまで、プログラミングを取り巻く環境はい

つまでも同じままではありません。むしろ、そのような変化に追従するため

に、Rubyも 進化を続けているといえます。コンピューティングとプログラミ
ングの世界が変わり続ける限り、今後もRubyも 変わりながら、便利な道具で

あり続けていくことでしょう。本書もそんな変化に追従し、新しくRubyを 始
めるみなさんをお手伝いできれば幸いです。

『プロローグ』の「わたし」こと雀部とは異なり、原稿の締め切りにはあま

り間に合っていなかった筆者ですが、みなさまのおかげで無事第6版 を刊行
できました。次回の改訂では、いよいよリリースが期待されるRuby 3.0に対

応することになるでしょうか。本書を片手にRubyを 始めた方々の中からも、
3.0やそれ以降のRubyの変化を支える方が生まれることを期待しています。

511



ヨ静 吾幸

著者 2人からの翻辞

多くの書籍と同様、本書も初版から第6版に至るまで、さまざまな方の協力

により、刊行までこぎつけることができました。

監修を引き受けてくださったまつもとゆきひろさん、本書を書く機会を与

えてくれた渡辺哲也さん、原稿が遅くなってご迷惑をおかけしたSBク リエ

イティブの杉山聡さんとトップスタジオの武藤健志さん、原稿のアイデアや

査読にご協力していただいた麻耶さん、青木みやさん、葉山響さん、加藤希さ

ん、株式会社ツインスパークのみなさん、菱沼雄太さん、なひさん、安藤葉子

さん、小倉正充さん、takkanmさ ん、松田明さん、高橋ゆりえさん、猫廼舎さ

ん、リファレンスマニュアルや各種 ドキュメントの整備に努めてくれている

Rubyist MLの みなさん、ライブラリや ドキュメントの作者のみなさん、Ruby

のWebサイ トを維持・運営しているwebmasterの みなさん、Rubyの各種ML
で有益な情報や興味深い話題を提供してくださるみなさん、そしてまた、繰

り返しになりますが、Rubyの生みの親でもあるまつもとゆきひろさんと、多

くの開発者の方々に、心からの感謝を棒げます。どうもありがとうございま

した。

高橋征義からの闘辞

この本は共著ではありますが、私がはじめて書いた本なので、いわば原点

にあたります。初版にしても改訂版にしても、陰に陽にさまざまな方に支え

られて書籍も自分も成長できているのだと思います。ありがとうございます。

そして、日々の生活から制作業務までを支えてくれている妻に感謝します。

いつもどうもありがとう。

後藤裕蔵からの翻辞

10年以上にもわたってひとつの仕事に関われることをとてもうれしく思い

ます。この本はたくさんの人生のイベントとともにあります。さまざまな形

で支えてくださった方々に感謝します。いつもありがとうございます。

集中して作業をする期間は親しい人との時間から順に犠牲にすることにな

ります。私を見守り、励まし、刺激を与えてくれる妻と2人の息子と4匹の猫

に感謝します。ありがとう。

512



11(文字列リテラル)
・・ (文字列リテラル)
" (t)ir)v)
!(破壊的なメソッド)

!(論理演算子)

!～メソッド(Regexp)

!=(比較)

I =.,t7yF' (strinq) ..

十(コメント)

十(メソッドの表記)

十 encoding:(マ ジックコメント)    35,413
+ frozen― string-literal:(マジックコメント)

322

+!                                413

+{}(式展開)          41,298
#=>(メ ソッドの戻り値の表記)      33
S(グローバル変数)          79
S(メタ文字)             344
S!                       207,217,508

SS                               508

S&                           357,508

S*                               508

S′                                508

S.                                508

5/                               508

S:                                508

S,                                508

S?                               508

50                           207,508

S_

S｀

S～

Si

S il

Sヽ

S+

S―a

S― i

S-1

S―p

S―W

508

357,509

358,509

357,508

508

372,508

508

508

508

508

508

508

壼 引

366,

366,509

366,509

509

t - ............. .... .

(:................... .. ..

t n . . . . . . . .. . . . . . . . . . . .

(nFarrn

$FILENAME

$LOAD_PATH

$LOADED_FEATURES ' --

$PROGRAM_NAME.. ..

( c ts,.1arr

$ stdin
(otzln,,r ........

t\rFDDneF......-..

% ))vF
Numeric
Stringi
gi(配列リテラル)

%q(文字列リテラル)

をQ(文字列リテラル)
gr(正規表現リテラル)

2w(配列リテラル)

&(ブロック引数)

&(メソッ岡 1数 )

&メソッド

一

一

一

一

一

一

一

２３

２３

Array                         273

1nteger                       253

&&(論理演算子)         9o,191
&.(安全参照演算子)        192
()(メソッド)                 31,121
()(メタ文字)        353,356,360
(?:)(メ タ文字)        ・ 357
*(配列)             84,135
*(ブロック変数)      232,442,450
*(メソッ岡 1数)                132
*(メタ文字)    …            350
*メソッド

Numer■ c                       247
**(メソッド引数)              134
**メソッド(Numeric)           248
*?(メタ文字)                 352
*=(代入演算子)          189

5:3

索引
:

42

301

280

126

５ｏ

ｍ

343

307

目



「

:索引

′(多重代入)

.(カレントディレクトリ)

.(メソッド)

.(メタ文字 )

… (親ディレクトリ)

… (範囲)

.… (範囲)

/メソッド(Numeric)

//(正規表現リテラル)

//(リテラル)

:(キーワード引数)

:(シンボル)

:(ハッンュリテラル)

・  84

394

38,121,125,126

347

394

108,195,267

108,195,267

247

342,355

,(ブロック)

,(文の区切り)

?(メソッド名)

?(メタ文字)

?:(条件演算子)

126,155

238

137

89

350

193

79,149

79,156

201

50,264

346

0(インスタンス変数)

00(クラス変数)

[](添 字メソッド)

[](配列リテラル).

[](文字のクラス)

[]メ ソッド

Array

Hash

Proc

String

[]=メソッド

Array

Hash

Str■ ng

lBUGl
∧
(メ タ文字 )

^(文字のクラス)
∧メソッド(Integer)

_(数値リテラル)

_(ローカル変数)

_(変数)

_dir_メ ソッド(糸且あヽ込冽
_ENCODING_               414,510
_FILE_                  ‐ 404,510

_id_メ ソッド(Object)           99
LINE                        510

50,267

58,328

52,

5:4

{}(ハ ッシュリテラル)

(}(ブロック)

()(メタ文字 )

|(パイプ)

|(メタ文字 )

|メソッド

Array

lnteger

ll(論理演算子 )

||=(代入演算子)
～メソッド(Integer)

¥(Windowsでのパスの区切り)

273

253

90,190

190,193

253

391

24

298

24,29

¥(円記号)

(ヽ特殊文字)

(ヽバックスラッンュ)

(ヽメタ文字)

aヽ(特殊文字)

Aヽ(メタ文字)

＼b(特殊文字)

cヽ(特殊文字)

dヽ(メタ文字)

eヽ(特殊文字)

fヽ(特殊文字)

Mヽ(特殊文字)

nヽ(特殊文字)

５０

％

゛

”

“

“

”

９８

”

pヽ(文字のクラス)

rヽ(特殊文字)

sヽ(特殊文字)

sヽ(メタ文字)

tヽ(特殊文字)

uヽ(特殊文字)

vヽ(特殊文字)

wヽ(メタ文字 )

xヽ(特殊文字)

Zヽ(メタ文字)

zヽ(メタ文字)
―(文字のクラス)
―メソッド

Array

Date

Numer■ C

T■me
―e(オプンョン)

―E(オプション)

一―noreadl■ ne(irb)

27,28,298

347

298‐

298

348

298

299,414

298

349
.  298

345

345,349

346

. 273

436

247

430

323

35

. 26

449

314

220

57,326

353

|

344  1

346  1



――simple―prompt(irb)

+(メタ文字)…
+メソッド

Array

Date

Numer■ c

String

Time ・

+?(メタ]文1字 )

+=(代入演算子 )

=(代入)

=～メソッド(Regexp)

==(比較)・  ―  ―
==メソッド(String)

===(比較 )
三==メソッド(Proc)

=>(rescue)

=>(ハッシュリテラル)

=begin(コメント)

=end(コメント)

く(比較)

くメソッド

String

Time

くく(特異メソッド)

くく(文字列リテラル)

37

350

275,279

436

247

305,317
.  430

352

189

39,84

60,97,343

44,89,100

307

97

449

207

57,326

42

42

44,89

278

436

253

377

305

300

44

226,260,338

44,89

445

367

44

一
　

一　

５４

　

一
　

一くく―(文字列リテラル)

くくメソッド

Array

Date  ・

Integer

IO

string

くく～(文字列リテラル)

く=(比較)

く=>(1ヒ車交‐)

>(比較)・
―>(ラムダ式 )

>(リダイレクト)‐

>=(比較)

>>メソッド

Date

lnteger

436

253

2進数

8進数

16進数

acosメソッド(Math)

acoshメ ソッド(Math)

alias

all?メソッド(Enumerable)

ancestorsメ ソッド(Module)

and(論理演算子)

any?メソッド(Enumerable)

ARGF

ArgumentError

ARGV

arityメ ソッド(Proc)

Arrayクラス

ASCII

ASCII-8BIT

asinメソッド(Math)

asinhメ ソッド(Math)

atメソッド

Array

Time

atanメソッド(Math)

atan2メ ソッド(Math)

atanhメ ソッド(Math)

atimeメ ソッド

File

File::Stat

●

５４

５４

attr_acces sor J YyI.' (Modu1 e )

attr-readerrlY.yl.' (Module) ..

attr_writerr/vl.' (Module) ..

backtraceメ ソッド(Exception)

base64メソッド(SecureRandom)

basenameメ ソッド(File)

BasicObjectク ラス

begin

bigdeci:malラ イフ'ラリ

BINARY
binmodeメソッド(10)

binreadメソッド(File)

418,423

251

251

269

429

251

251

251

399

398

151

151

151

208

256

402

144,162

”

万

４１

８

８７

515

索引 :

数字

A

251

251

91

509

219

B

450

308



索 引

binwriteメ ソッド(File)         372
blksizeメ ソッド(File::Stat)     398
b10ck_9■ ven?メソッド(組み込み)     230

b10cksメソッド(File::Stat)      398
break                l14,116,233,445

bundleコ マ`ンド                  481
Bundler                        481

bytesliceメ ソッド(Str■ng)       314

call:t'l.r1" (Proc) '

capi tali ze rY.yl." (string)
capital j-ze ! JY'rt" (string)
case文

causeメ ソッド(Exception)

cbrtメソッド(Math)

ceilメソッド(NumeriC)

cgi/utilラ イフ
゛
ラリ

chdirメ ソッド(Dir)

chmodメ ソッド(File)

chompメ ソッド(String)

chomplメソッド(String)

chopメソッド(String)

choplメ ソッド(String)

chownrY'yli'(Fi1e)
Class))a
CIASS )(

class /Y.yl.'
Exception ..
Obj ect

cIearJ).y1" (Hash)

close;l /'yl.'
Dir' ' '

F■ le

10

Tempfile

c10sed'メ ソッド(10)

c。 llectメ ソッド

Array

Enumerable

collect I I /.ylr'(Array)
compact I).r1" (array)
compact I i).y1" (erray)
Comparablet)z-)v "'

一　

一　

一　
　
　

　̈
一　
６６
　
一　

¨

516

compare JY'rl" (Fileutils)

compatible?メ ソッド(Encoding)

Complexクラス        ¨̈

COMSPEC
concatメ ソッド

Array

Str■ng

cosメ ソッド(Math)

cOshメソッド(Math)

countメ ソッド(Enumerable)

cpメソッド(FileUtils)

cp_rメソッド(FileUtils)

CP932

CR          …      …

CRuby

CSV形式
csvライブラリ

ct■meメソッド

File

F■ le::Stat

cycleメ ソッド(Enumerable)

DATA

Dateク ラス

dateライフ
｀
ラリ

dayメ ソッド

Date

509

435

435

Time            ……Ⅲ ・      428
def                       70,127,154

default_externalメソッド(Encoding)
416,421,424

default_internalメソッド(Encod■ng)

416,421

delete l7.vl-'
Array ...

i'11e

Hash
cts-i -^

delete I /Y.rl-' (String)
delete_at /Y rl" (Array)

delete-if//yl"
hlrdy ,,

Hash '

detectメ ソッド(Enumerable)

devメ ソッド(File::Stat)

416

244,247

510

279

317

251

251

293

407

407

415

312

47

469

471

281

390

333

317

317

281

C

|

)

|

D

401

177

148

281



Dir))z 387,390
directory?-iYvf'(File) 401
dirnameJTyli'(Fife) 402
divJ/'yl.'(mumeric) .. . .. . . .... 248
dir,mod-,t7'y1." (tlumeric) . ......... 249

do(z'uy2) s4,Lo4,t2o,tz2,22t
downcase;./yl.'(String) 318
downcase LYyN (String) :tS
downtoJTvl." (rnteger) .... ...... 2ST

dup;t)'rr^ (Object) . .......... ....... ... 280

E (Math)

eachJ/vi
Array ..

Range .... .. .... ..

each_byte/7vF'
r0 .......... ...

String

251

54,113,222,287

471

393

294

58,223,329

372

113

374

315

374

315

329

String
each_keyi7.yi (Hash)

each_line J /.yi
ro .......... 68,224,3t2,372
String ...... 315

each_sliceJ/vI."(snumerable) 293

each_va1ue.:()vl.'(Hash) 329
each_wi th_index J Y.y [.'

Array . ... 222,287

Enumerable
e1se.......
efSfr ,, ,, ,'

empty? >t7vF'

Hash . ..

String
encode,.tT'y1." ( Str inq)
encode ! 2.Y'rlj (String) ..

Encoding 217
encoding/7v[.'

索引

Regexp             ¨

String  ‐ ‐

enSure                      210,

Enumerableモ ジュール  ‐171,292,315,
Enumeratorク ラス          258,
ENV .

EOB
EOF
eof?メソッド(10)

eql?メソッド(Object)         100,
equal?メ ソッド(Object)

erfメソッド(Math)    ‥

erfcメソッド(Math)

Errno::EACCES

Errno::ENOENT

escapeメ ソッド(Regexp)

Etcモジュール

420

414

213

316

316

509

299

299

372

339

EUC_JP

Exceptj-on277 ..... ..... .. ...... - - -. 214
excutable?ryvl.'(Fi1e) . .... .. 401

executel'/yr^ (oatabase) ..... 473

exist?JYvi.^ (rile) , 401

expJ/vr^ (uatfr) . 251

expandjathr{yvF'(File) .... 403

extendJ/.yr^(objecr) ............... 777

external_encoding.rTvF' (ro\ 42I, 424

extnameJ/yl.'(Fi1e) 402

false . .

f etchJ'/.y1.'(ttash)
FIFO
Fileクラス

file?メソッド(File)

fileutilsライブ
｀
ラリ

fillメソッド(Array)

findメソッド

Encoding

Enul■erable

Find

fLndr4Jrt)
f ind_aII J/vl.' (Enumerable)

f irst J).yi'^
1rra1,..............

Enumerable

43,510

328,331

275

387

401

407

284

′

”

０５

０５

９３

276

・  293

517

E

Dir

411

251

251

214

214

398

.F



「
~~

flatten/7.vF'(erray) .

f latten I J)vI." (Array) '

Floatク ラス

floorメソッド(Numer■ C)

284

284

244

252

forA .. '

gem

105,113

force-encoding:t/'rl"(String) 419

format,,t/'vl" Gfl,AIA 302

freezeJT'yI." (object) 280,322

frexpJTvi.* (matfr) 251

frozen-string-1iberal 322

gamma JY.yt' (uatrr)

Garbage Collection

GC

一　

　̈

　̈
一　
４７
　
一

gemf vTli'
Gemfile
getbyte/).r1" (I0)
getc,'t7.rl-' (rO)

getgrgidl /'rl' (Etc )

getpwuid :t7'rt'' (Etc )

gers rv../['^ (ro)
gid,lt /.r1.' (Fi1e: : Stat)
glob r7 rl" (lir)
glep J v /l

grepl)"tl' (Enumerable)'
grpowned? IY vl'' (FiIe)
gsub r'l rl" (String)

has_key?メ ソッド(Hash)

has_value?メ ソッド(Hash)

Hashク ラス     .…
hashメソッド(Obj ect)

HOME
hourメソッド(Time)

HTTP
hypot I /'rl'' (Math)

i(数値リテラル)

ID

IDE

if修飾子

375,425

374,425

398

398

372,425

３９

３９

６

”

０

３５

518

if文

imaginaryメソッド(Complex)

includeメソッド(Module)

include?メソッド

indexメソッド(String)

Inf■nity

initializeメ ソッド(Object)    148,

inj ectメソッド(Enumerable)

in。メソッド(File::Stat)

inspectメソッド(String)

installメソッド(FileUtilS)

instance_methodsメソッド(Module)

instance-of ? ,Y.yl" (Obj ect)
Tn|'eger rlT
internal-encoding r r'vl'" ( Io)
10クラス

～のエンコーディング

irbコマンド

■s_a'メソッド(Obj ect)

is_aの 関係

ISO-2022-JP

iso8601メ ソッド

Date

Time

159

293

398

200

408

162

143

244

437

432

jisx0301メソッド(Time)
j。■nメソッド(File)

Kernel'E):- )v """"'
key?,*7.r1" (uash)

keysメソッド(Hash)

lambdaメ ソッド(組み込み)

lambda?メ ソッド(Proc)  ‥

LANG
lastメソッド(Array)

last_matchメ ソッド(Regexp)

LC ALL

一…

「

Hash

Enumerable

Module
String

２０

３３

１７

３１

３１

”

G

145

145

308

K

H

382  1

251  1

510

276

J

L

510



LC CTYPE
ldexpメ ソッド(Math)

lengthメソッド

Hash

string

LF
lgammaメソッド(Math)

LIFO
linenoメソッド(10)

lineno=メ ソッド(10)

listメソッド(Encoding)

LoadError

localtimeメ ソッド(Time)

logメ ソッド(Math)  ―

log2メソッド(Math)

log10メソッド(Math) i―

LOGDIR
loopメソッド(組み込み)‐

macos .. . ... ....... . ..

maprYyf"
Array ....... .......
Enumerabfe ...

map I /7vr* (array)
MaLh jE)r_,L ..........

mday.rY.rl"
Dat.e .......... ......... ...

'I',lme . .. .. .

member? J/vI.'-
Enumerable
Hash .... ....... .

merge.lTylr' (Hash)

merge! J/vl.' (Hash) . ..

332

304

312

251

275

373

373

417

219

433

251

251

251

510

114

293

331

336

336

208

429

166,170,177

messageメ ソッド(Exception)

minメソッド(Time)

Mix― in

mkdirメソッド(Dir)

mkdir_pメ ソッド(FileUtils).
mktimeメソッド(Time)

modeメソッド(File::Stat)

module文        …

module_functionメソッド(Module)
moduloメソッド(Numeric) ・・

monthメソッド

ψ
価
４２９
３９８
硼
硼
”

Date

Time

MSYS2
mtimeメ ソッド

File

File::Stat

mvメ ソッド(FileUtils)

nameメソッド(Encoding)…

name_listメ ソッド(Encoding)

NameError

namesメ ソッド(Encoding)

NaN……

net/httpライブ
｀
ラリ

Net::HTTPク ラス

newJ / yl.'

17rf,1,........ ..

Dat.e ........
Hash . . ....

Proc

^dlruullt
D.-^6....-.-.

Regexp . ...

435

428

492,496

StringIO

一
　

一　

８９

９１

郎

刀

郷

¨
　

¨
　

¨

２

，

¨
　

¨
　

¨
　

一

一　

　̈
一　
３４
　
一　
一　
一　
一

Tempfile

Time

NEヽVSファイル

next

n■ 1

n■ 1チェック付きメソッド呼び出し

nkfメ ソッド(NKF)

nkfライ:ブラリ

nlinkメ ソッド(File::Stat)

NoMethodError

none?メ ソッド(Enumerable)

not(論理演算子 )

nowメ ソッド(Time)

nsecメソッド(Time)

Numericクラス

Obj ectクラス            100,145,162
object_idメ ソッド(Object)     .  99
one?メソッド(Enumerable)         293

519

索31:

N

M

418

417

218

418

250

185

り

　

２３

２９

２８

62,510

0



「

:索引

Opal '

open/'/.r1"
csv                       471
Dir                              393

File                 66,224,369,422

SQLite3::〕 Database            473

Tempfile                       407

組み込み            369,382
0pen― uriライフ

ヾ
ラlり          382,419,458

or(論理演算子)           91
0rdメ ソッド(String)            . 309
。wned?メ ソッド(File)          401

47

32,200

418

451

276,278

376

pメソッド(組み込み)

packメソッド(Array)

parametersメ ソッド(Proc)

parseメ ソッド

Date

Time

partition/Y.vl" (Enumerable) .

PATH
pathメソッド(Tempfile)

PI(Math)

popメ ソッド(Array)

pOpenメソッド(10)

posメ ソッド(10)

pos=メソッド(10)

ppメソッド(組み込み)

prependメソッド(Module)

pr■ ntメソッド

10.

組み込み

printfメ ソッド

10 ・  .      …   …  ・

組み込み

privateメソッド(Module)

ProcrlT
ProcdlH
proc r7.;F $A&'LA)
protectedrY.yf" (uodule)
prune,,l /.'rl' (r'ind)
public rT.yl' (Module) '

push/'./.yt' (array)
putc l7.vl" (rO)

価
硼
郷
ｍ
佃
”

520

putsメ ソッド

10

組み込み

pwdメソッド(Dir)

quo//'rr- (Numeric)

quote /).r1.' (negexp)
249

354

r(数値リテラル)           246
raise                          217

randメ ソッド(Random)            255
RandOmモジュール             255
random_bytesメソッド(SecureRandom)

""1*r.or:r.rhRaLLonaLrrT
rbenv '

rdev /7'yl" (File : : Stat )

read I /'yl"
lJrr
! lle

ro
readable? ;t),v1" (Fif e)

readlinesJ/.y1" (I0)
real /Y yl-'(complex) '

redo
reduceJ7.yl"'(snumerable)'
Regexp217
rejectl/.r1."

l r r.1t

Enumerable
reject!メソッド

Array                         282

Hash                        334
remainderメ ソッド(NumeriC)  .    250
renameメソッド(File)             388
requ■ reメソッド(対1み込み)      71,220
require_relat■ veメソッド(組み込み)  71
rescue  ….                  206,213

rescueイ修飾子                    212

retry                         211
return                         128

reverseメソッド

394

67,371,422

66,375,423,425

４０‐
３７２
‰
・・４
四
３４．
　
″
”

P

377

302

R

256

108

244,247

|

378

74

|

Q



Array

string

reverse!メソッド

Array               …

String

reverse_eachメ ソッド(Enumerable)

rew■ ndメソッド(10)

RFC2396

rfc2822メソッド(Time)

rindexメソッド(String)

rmメソッド(FileUtils)

rm_fメソッド(FileUtils)

rm_rメソッド(FileUtils)

rm_rfメ ソッド(FileUtils)

rmdirメ ソッド(Dir)        .  .
roundメ ソッド(Numeric)

rubyコマンド

RUBY_COPYRIGHT

RUBY DESCRIPT10N

RUBY ENGINE

RUBY PATCHLEVEL

RUBY PLATFORM

RUBY RELEASE DATE

RUBY VERSION

RubyGems

Rubylnstaller

RUBYLIB
RUBYOPT
RUBYPATH
RUBYSHELL
RuntimeErrorクラス

82,

284

317

284

317

293

378

362

432

311

scanJY.yl.'(string) 359

sec,*/vl." (f ime) . ..... ... 429

SecureRandoma)t')v 256
securerandom14)11) -- --. . 256
seekJyvt" (ro) 378

selectJ'/vr*(snumerable)...... 293
self ............ . 152,510
set_encodingryvl." (I0) ...- . ... 422

shifrryyt'(erray) 2Z6,zBs
shiftJls 35,308,321,413
sin->.7v1"'(uath) 251

sinhJT'yl.'(mattr) 257

sizeメソッド

Array                          54

File                           401

File::Stat                    398

HaSh                        332
String                        304

size?メ ソッド(File)           401
sl■ ceメ ソッド

Array                         269

String                      314
slice!メ ソッド

Array                         282

String                     314
sortメソッド

Array                   226,285,338

Enumerable                  293

sort!メソッド(Array)            285
sort_byメソッド

Array                     229,285

Enumerable                    293

source_locat■ onメ ソッド(Proc)    452
spl■ tメソッド

F■ le

Str■ng

sprintfメソッド(組み込み)

SQL
sqlite3ライラ′ラリ

sqrtメ ソッド(Math)

StandardErrorクラス

statメソッド(F■ le)

STDERR

STDIN

STDOUT

stepメソッド(Integer)

storeメソッド(Hash).  .

strftimeメソッド

Date

Time

Stringク ラス

stringioライラガラリ

stripメソッド(String)

strip!メ ソッド(String)

strptimeメソッド

Date
'1',rme

403

266,310,337

302

472

472,496

251

215

397

366,509
３６

３６

　

一
　

一

437

430

297

383

318

318

索引 :

|

５０

８

５１

５１

５１

５１

２１

S

|

521



索引

sub J'l.y1.' (String)
succ:{7.y1" (String)
super " '

superclass .r'l.y1" (Class )

swapcase,'17'rl. (string)
swapcase ! JY./1" (String)
Synhol217
syntax error

tanメ ソッド(Math)

tanhメソッド(Math)

tempfileライフ
｀
ラリ

Timeクラス

timeライブラリ

times /'/.y1.' (rnteger)
to_aJ)vl"

Enumerable
Hash .. .... . .. '

Range ... ......... .

to c J'lvl.' (mumeric)

to_dateJ/'yl" (Time)

to_f J/vlr' (Numeric)

to-i J7'yl"
Numeri,c
ots-.i -^

Time ........... '

tojroc //,I. (Syrnbol)

ys_a )t'./i (Nuneric)

to_s /)'yl"
Date
Obj ec l
string

symbol

Time

tO_symメ ソッド(String)

tO_timeメソッド(Date)

todayメ ソッド(Date)

trメソッド(String)

tr!メソッド(String)

true   ….

truncateメソッド(10)

TTY
tty? /7.r1'' (I0)
TlpeError " " '

“

“

６１

７１

■

”

”

ｕ

266

329

195

253

438

252

437

182

200

522

46,109,373

uidJT'yl" (Fi Ie : : SEat) '

undef
unes capeHTML.r Y'yr^ ( CGI )

ungetbyteJY yl.'(IO)

ungetc l'l'yl.'(ro)
Unicode

uniqJY.yI" (lrray)
uniq! ,>t7 rlr'(erraY)

wcコマンド

wdayメ ソッド

Date

Time

when

while文

ⅥアIN320LE
Ⅵrindows

Windows-31J

398

164

461

375

375

309

282

282

98

92

390

unless修飾子

unless文

unlinkメソッド(File)

unshiftメソッド(Array)

until文

upcaseメ ソッド(String)

upcase!メソッド(String)

updateメソッド(Hash)

uptoメソッド(Integer)

URIモ ジュール

uriラ イブラリ

URL
usecメソッド(Time)

US― ASCII

UTC
utcメ ソッド(T■me)

utc_offsetメ ソッド(Time)

UTF-8

276,278

35,308,321,

ut■meメ ソッド(File)

valid_encoding?メソッド(Str■ng)  419
value? J7'yl.' (ttash)

values J7.vl.' (Hash)

values-at J7.yi" (Array)

切
鶴
”
爛
”
如
柳

208

435

429

94

U

|

251 1

251  1

405  1

433

V

332

329

57

W

435  1

319

319  1

489

379

369

368

219

T



yday/7vF'
Date ..... .

'I',1me .

year->t7vF'

Date                           435

T■me                      428
y■ eld                    131,230,231

yieldメ ソッド(Proc)             449

writable?メ ソッド(File)

writeメ ソッド

File

10

ziP/7vlr'
Array .. .

Enumerable

アイデンテイテイ

アクセサー

アクセスメソッド

後処理

安全参照演算子

イテレータ

インスタンス

インスタンス変数

インスタンスメソッド

インテヾックス

インデント

エディタ

エラー処理

_エラーメッセージ

エンコーディング ‐
演算子

～形式のメソッド呼び出し

～の再定義

～の優先順位

円周率

オープンソースソフトウェア

401

371

371,422

377,424

435

429

165

99

152

150,152

210

192

47,54,223,286

79,142

79,149

124,148,177

51,267

138

501

203

・ 205,218

34,411

189

123

198

196

・ 251

7

zero?メソッド(File)            401

zone JY'yl.' (f ime)

アイグンクラス

オブジェクト

～の同一性

オブジェクト指向

オブジェクト指向言語

改行:文字                 28,310,312,379

外部エンコーディング        412,421
カプセル化               ‐ 181
カレントディレクトリ                392
カレントファイルオフセット            378
環境変数

関数的メソッド

ガンマ関数

偽

キー

キーワード引数

～のデフォルト値  . …
擬似変数 ・
逆正弦関数

逆正接関数

逆余弦関数

キャプチャ

キュー

共通集合

協定世界時

行頭

行末

空白

組み込み定数

組み込み変数

クラス

～の拡張
～の継承関係

クラスオブジェクト

クラス定義

クラス変数

クラスメソッド

繰り返し

グループ名

クロージャ

グローバル変数

継承

ゲッター

元号

79,156

125,154,177

43,46,101,223
.  ・      398

449

・ ・   . .  . ・・ 79

143,161,171

152

434,437

510

126

251

251

356

275

273

523

索引
:

あ 行

27,77,179

89,190
Z

Y か



「

索 引

後方参照

コードポイント

誤差関数

コマンドプロンプト

コマンドライン

コマンドラインオプション .

コメント

コレクション

コンソール

コンテナ

最短マッチ

サブクラス

三項演算子

式展開

字下げ

指数関数

自然対数

～の底

シフト

集合

条件

条件演算子

条件判断

常用対数

真

真偽値

シンクリレトンクラス

シンタックスシュガー

シンボル

数値

～のリテラル

スーパークラス

272

88

193

43,87

251

89,190

89

165

119

56,78

36

246

144,161

412

6

80

275

スクリプトエンコーディング

スクリプト言語  …
スコープ

スタック

正規表現

～のエンコーディング ‐

～のオプション

制御構造

正弦関数

整数

正接関数

さ行

524

セッター

絶対パス

相対パス

添字メソッド

ソート ・

代入

代入演算子

多重代入

多相性

多態性

ダックタイビング

単項演算子

単純継承

定数

ディレクトリ

データベース

テーブル

テキストモード

デザインパターン

特異クラス

特異クラス定義

特異メソッド

ドライブ

39

190

84

182

182

183

201

171

82,155,169

387,390

472

473

379

187

165

155,165

155,165,177

391

内部エンコーディング

名前空間

二項演算子

日本語 .

日本語文字コード

～の変換

パーミッション

排他的論理和

バイト

バイナリモード

パイプ

配列

～のインデックス

～の初期化

～の配列

破壊的なメソッド

412,421

167

198

34

308

320

400

253

一　
一　
一　
５〇
　
一　
一　
一　
¨

た行

356  1

309  1

251  1

63

506

41

298

138

144,162

501

な行

|

420

355

Iま



パス

パターン

ハッシュ

～のキー

～の初期化

～のデフォルト値

～のハッシュ

範囲演算子

範囲オブジェクト

ヒアドキュメント

比較演算子

引数
～のデフォルト値

左ビットシフト

ビット

ビット演算

標準エラー出力

標準出力  ・
標準入力

ファイリレ

ファイルポインタ

フォルダ

複素数

浮動小数点数

浮動小数点数

プリペンド

ブロック

プロックつきメソッド

～の作成

～の定義

ブロックつきメソッド呼び出し

ブロックつき呼び出し

ブロックパラメータ

プロック引数・

プロック変数       |
ブロックローカル変数

プロトコル

分数

平方根

変数

～に代入

ポリモーフィズム

55,122,

235,

55,122,222,236

238

180

245

251

39,79

39

182

３３６
Ｍ
・０８
２９９
８９
２８
塑
狗
２５４
狛
協
協
調
“
３７７
３８７
四
２４４
％
И

“

刀

∞

″

″

２

“

マジックコメント 35,412

525

待ち行列

マッチング

丸め誤差

右ビットシフト

メソッド

～の検索順

～の定義   ・ ―
～の引数

～の引数のデフォルト値
～の戻り値

～のレシーバ

ブロックつき～ .

メタ文字

～をエスケープ

メッセ~ン

文字コード

モジュール

モジュール関数

文字列

～のインデックス

～の検索
～の先頭

～の置換

～の末尾

戻り値

やり直し

ユークリッド距離関数 ―
ユーザ名

有理数

余弦関数

予約語

ライフ
｀
ラリ

ラムダ式

乱数

リダイレクト

立方根

リテラル

リファレンスマニュアル

ルートディレクトリ

るりま

275

60

259
‐  253

27,121

121,126

174

70,127

28

128

152

28,297

304

311

344

313

344

38

71

255

367

251

143

239

390

239

211

251

398

244

251

83

や行

索引
:

ま行

60,342

56,325

|

|

|

|

l

l

l

l

l

l

l

l

l

|

|

|

|

|

|

|

|

|

４

５４

２１

“



索引

例外                205
例外オブジェクト 207

″l外クラス                   214
例外処理              213
レシーバ                 121,280
夕」 275

ローカル変数           79,236
論理演算子            90,190

和集合               273
わ行

526



■監修者紹介

まつもとゆきひろ

Rubyの創始者。プログラミング言語オタク。自分の趣味が高 じて自分のプログラ
ミング言語を作ったら、世界中に広まってしまい、最近では講演とか執筆とかの活

動のほうが忙しい。事実は小説よりも奇なり。鳥取県出身、島根県在住。

■著者紹介

高橋征義 (たかはしまさよし)

札幌出身。北海道大学卒。Webア プリケーションの開発に従事する傍ら、日本
Rubyの会を設立し、以降現在まで同会代表をつとめる。2010年からは株式会社達人
出版会にて電子出版事業に注力中。著書に『たのしいRuby』『Rails3レ シピブック

190の技』(共著)な ど。好きなメソッドはatt_accessOr。 好きな作家は新井素子。

後藤裕蔵 (ごとうゆうぞう)

福岡県出身。九州工業大学卒。株式会社ネットヮーク応用通信研究所取締役。
1999年、iusに よるイベント「Rubyワ ークショップ」でRubyと 出会う。以来、Ruby
に関する雑誌記事の執筆や標準添付ライブラリのwebrickお よびOpenssIの メンテ

ナとしてもRubyに関わる。好きなメソッドはEnumerable#iniect。 好きなロックバ
ンドはピンクフロイド。



本書の商品ベージ

https://isbn.sibcr.jp/99844/

本書をお読みいただいたご感想・ご意見を上記URLか らお寄せください。本書に関するサポート情

報やお問い合わせ受付フォームも掲載しておりますので、あわせてご利用ください。

ルビー

たのしいRuby 第 6版
2002年 4月 10日
2006年 2月 2日
2006年 8月 10日
2009年 8月 30日
2010年 4月 12日
2013年 2月 26日
2013年 6月 15日
2015年 9月 16日
2016年 3月 12日
2018年 4月 26日
2019年 3月 22日

初版第 1刷発行

初版第6刷発行
第2版第 1刷発行
第2版第10刷 発行

第3版第1刷発行

第3版第 7刷発行
第4版第1刷発行
第4版第7刷発行
第5版第1刷発行
第5版第 6刷発行

第6版第1刷発行

者

修

著

監

発行所

高橋征義、後藤裕蔵

まつもとゆきひろ

小川淳
SBク リエイテイブ株式会社
〒 106「 0032 東京都港区六本木 2-4-5
https://www.sbcr.jp/

株式会社シナノ自] 届1

本文イラス ト 自井ユウキ
装 丁    米谷テツヤ
組版・編集   武藤健志 (ト ップスタジオ)
企画・編集   杉山聡
※:な
房

=き

掛階 憲ァ。
「は正確な記述に努めましたが、記載内容、運用結果などについて一.保証する

※乱丁本、落丁本はお取替えいたします。小社営業部 (03-5M9-1201)ま でご連絡ください。
※定価はカバーに記載されております。

Printed in Japan                                          ISBN978-4-7973-9984-4

発行者



′

。

゛

”
職

ヽ

，
【

〓
=SB⊂
reative

`′ D｀
ト

たのしい

iSBN978‐4‐7973‐9984-4

C0055¥2600E

定価 本体2,600円 +7

CttDプログラミング。開う

|||||||||||‖ ||||||||||||||‖ |

9784797399844

|||‖ |‖ |

聞
Ⅲ
副
Ⅲ
ＥＩ
５

＝
Ⅲ
副
Ⅲ
田
Ⅲ
５

＝
＝
＝
＝
６

ｓ

旧
旧
旧
旧
旧
旧
０

＝
＝
＝

ｏ

ｓ

2220
S.

nuLv

|




