
cocoa01@gmail.com

2

本書に関するご質問、正誤表については、下記のWebサイトをご参照ください。

　正誤表 http://www.shoeisha.co.jp/book/errata/

　刊行物 Q&A http://www.shoeisha.co.jp/book/qa/

インターネットをご利用でない場合は、FAX または郵便で、下記にお問い合わせください。

〒 160-0006　東京都新宿区舟町５

（株）翔泳社 愛読者サービスセンター

FAX番号：03-5362-3818

電話でのご質問は、お受けしておりません。

※本書に記載された URL 等は予告なく変更される場合があります。
※ 本書の出版にあたっては正確な記述につとめましたが、著者や出版社などのいずれも、本書の内容
に対してなんらかの保証をするものではなく、内容やサンプルに基づくいかなる運用結果に関して
もいっさいの責任を負いません。

※ 本書に掲載されているサンプルプログラムやスクリプト、および実行結果を記した画面イメージな
どは、特定の設定に基づいた環境にて再現される一例です。

※ 本書に記載されている会社名、製品名はそれぞれ各社の商標および登録商標です。
※本書の内容は 2015年 12月執筆時点のものです。

cocoa01@gmail.com

3

Gitを学んで、チーム運用や開発フローの設計をこなし、実際に運用をはじめてみると、

思ってもみない問題に出くわす機会が増えてきます。チームメンバーが泣きついてきた問

題は、大抵、解決するのにちょっとした工夫や、一捻りが必要な状況になってから相談さ

れているケースがほとんどです。その時、最初に今の状態を把握して、その情報を基に解

決するための低レベルな Gitコマンドを調べたり、ブランチを駆使して履歴を基に戻せな

いか四苦八苦する事になります。

今の状態を把握し、対策すべきポイントを洗い出す時に必要となるのが、Gitのバージョ

ン管理の内部構造を知ることです。普段なにげなく利用しているコマンドが内部的にどう

動いているのか、データ構造はどうなっているのか。「なぜ」動いているのかを理解する

事で、あらゆる問題への対応への助走が格段に早くなります。また、ブランチの運用や普

段の Gitの運用が、内部の動きを頭に描きながら行う事で、格段に簡単に感じるようにな

ります。

この上級編を通して、さまざまな基礎コマンドの動きが内部管理ファイルの状態をど

う変更しているかを学び、ブランチの概念はどう内部管理されているかを知って履歴の

変更を自由自在に頭に描けるようにしましょう、Indexの仕組みや最も使う git add /git

commitを自分で作りながら実際の挙動を学べば、コマンドの使いこなし・３つのエリア

（ワーキングディレクトリ・ステージングエリア・リポジトリ）の行き来・ブランチの分

岐統合を自由自在に行えるようになります。

はじめに

Section-01 Gitのバージョン管理の仕組みを知る ～初級編～	 004

Section-02 Gitのバージョン管理の仕組みを知る ～中級編～	 019

Section-03 Gitのバージョン管理の仕組みを知る ～上級編～	 055

目　次

cocoa01@gmail.com

4

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

4

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

Gitのバージョン管理の概要
Gitのリポジトリの情報は、ファイルで管理されています。つまり、ファイルで構成さ

れるデータストアです。Gitでは、ワーキングディレクトリで利用し編集している（ソー

スコードなどの）ファイルが、そのままの形で管理情報として格納されている訳ではあり

ません。コミットしたファイルやディレクトリの情報は、コミットの情報・ファイルのメ

タデータ・データ・ディレクトリやパーミッションなどに分割され、それぞれにユニーク

な IDを採番して、別のデータとして管理します。ユニークな IDを採番されたデータは、「オ

ブジェクト」という単位で管理されます。

コミットによって変更された履歴は、ブランチや各オブジェクト同士で参照し合ってい

るオブジェクトの IDを変更することによって、柔軟に管理されます。つまり、IDを参照

しながら管理情報の関係をつなぐ、連想記憶ファイル・システムです。これらの IDの参照は、

その名前の通り「参照」として管理されます。例えば、コミットされたファイルはオブジェ

クトとなり、ファイルのメタデータを格納したオブジェクトから参照され、さらにメタデー

タの情報はコミット情報を格納したオブジェクトから参照されます。この連想記憶ファイ

ル・システムは、重厚長大なデータベースより管理しやすく、サイズを小さく、より効率

よくリソースを活用するための工夫です。

この節では、実際に「オブジェクト格納領域」や「参照」をどのように分けて格納し、

どのように変更しているかについて、各コマンドの動きを見ながら解説します。

git initと管理情報
まずは、 git initコマンドを使ってリポジトリ構築の初期に生成される Gitの管理情報を

見ていきます。localというディレクトリを作り、そこにリポジトリを構築します。

リポジトリの作成

$ mkdir local
$ cd local

#リポジトリの作成
$ git init
Initialized empty Git repository in /workspace/git/local/.git/

Gitの管理情報が格納されるディレクトリパスの設定を git rev-parseコマンドを利用し

この節では、Gitによるリポジトリの管理システムの動きを、Gitコマンドの実行と
対比しながら、理解を深めていきます。内部的な管理の動きを知ることで、各コマ
ンドの意味を深く理解し、さらに使いこなすことができるようになります。

Gitのバージョン管理の仕組みを知る　
～初級編～01

cocoa01@gmail.com

5

01

02

03

5

01

02

03

01

て、確認してみます。

管理情報の格納先を確認

$ git rev-parse --git-dir
.git

リポジトリ管理情報の格納先パスには、デフォルトで .git がパスとして指定されていま

す。リポジトリパスは、git initの --separate-git-dirオプションか、gitコマンドの --git-

dirオプション、環境変数 GIT_DIRなどで設定可能です。本解説ではデフォルトの .git を

リポジトリパスとしてそのまま利用しています。

localディレクトリ

$ cd local
$ ls -a
. .. .git

local/.gitディレクトリの初期の構成は、以下のようになっています。

local/.gitのディレクトリ初期構造

$ tree .git
.git
├── HEAD
├── branches
├── config
├── description
├── hooks
│ ├── applypatch-msg.sample
│ ├── commit-msg.sample
│ ├── post-update.sample
│ ├── pre-applypatch.sample
│ ├── pre-commit.sample
│ ├── pre-push.sample
│ ├── pre-rebase.sample
│ ├── prepare-commit-msg.sample
│ └── update.sample
├── info
│ └── exclude
├── objects
│ ├── info
│ └── pack
└── refs
 ├── heads
 └── tags

各管理情報の初期状態を、ざっと見ていきます。各ファイルの説明よりも、Gitの各コ

cocoa01@gmail.com

6

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

6

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

マンドによって、管理情報がどう変更されいていくかを先に知りたい場合は、次項の「git

addと管理情報」以降から読み始めてください。

HEADファイル

.git/HEADには、現在のブランチを指すシンボリック参照（"symbolic reference"）を格

納します。シンボリック参照は、ハッシュ値への直接参照ではなく、他を参照します。

.git/HEAD

$ cat .git/HEAD
ref: refs/heads/master

初期状態では、参照である refs/head/masterが参照されています。これが参照の参照

です。.git/refsディレクトリとmasterファイルについては、「git commitと管理情報」に

て後述しますが、最初のコミット時に作成されるmasterブランチを、ブランチ作成前か

ら参照していることになります。この時点では、まだシンボリック参照が指している .git/

refs/head/masterという管理情報は存在していません。.git/HEADは、ブランチを切り替

えるたびに変更されます。後述の「git checkoutと管理情報」で詳しく説明します。

configファイル

.git/configは、リポジトリ固有の設定ファイルです。

.git/config

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
 ignorecase = true
 precomposeunicode = true

この節の解説は、Gitがどのようにバージョン管理を行うかを見ていくことが目的です

ので、細かい設定まで見る必要はありませんが、簡単に解説します。初期状態では、内

部フォーマットのバージョンを指す repositoryformatversion、ワーキングディレクトリの

ファイルの実行ビットを優先するかどうかの filemode、bareリポジトリであるかを表す

bare、.git/logs/以下に全ての参照の更新を記録するかどうかを表す logallrefupdates、ファ

イルシステム上の大文字小文字の区別を無視するかを表す ignorecase、MacOS上でファ

イルシステムがファイル名を Unicode変換するのを Gitが元に戻しWindowsとのファイ

ル名の互換性を保つ動きをする precomposeunicodeなどの設定が行われます。細かく .git/

configの設定内容を知りたい場合は、manコマンドを利用して、man git-configによって

cocoa01@gmail.com

7

01

02

03

7

01

02

03

01

詳細を確認できます。$GIT_COMMON_DIR環境変数が設定されている場合は、このファ

イルの代わりに、$GIT_COMMON_DIR/configが参照されます。.git/configは、Gitのコ

マンドによって自動変更が行われます。後述の「git remoteと管理情報」と「git pushと

管理情報」において、変更される内容について詳しく説明します。

descriptionファイル

.git/descriptionには、リポジトリ名が格納されています。

.git/description

$ cat .git/description
Unnamed repository; edit this file 'description' to name the repository.

.git/descriptionは、Gitに付属する GitWebという CGIを利用して Gitを使う際に、リ

ポジトリ名を表示するために参照されます。初期状態では、上記のように Unnamed

repositoryという状態でリポジトリ名がありません。.git/descriptionを直接編集すること

でリポジトリ名を変更できます。GitHubのリポジトリ名は、.git/descriptionは参照されず、

GitHub上でリポジトリ名を編集することになるので注意してください。

hooksディレクトリ

.git/hooksディレクトリは、以下のように *.sampleファイルを格納しています。

.git/hooks

$ ls .git/hooks
applypatch-msg.sample pre-push.sample
commit-msg.sample pre-rebase.sample
post-update.sample prepare-commit-msg.sample
pre-applypatch.sample update.sample
pre-commit.sample

.git/hooksの初期状態では、フックに利用できるサンプルスクリプトが格納されていま

すが、全て無効化されています。.sampleの拡張子を取り除くことで有効化できます。Git

コマンドによって、.git/hooks以下に変更が行われることはありません。

excludeファイル

.git/info/excludeには、除外ファイルのパターンを記載できます。

.git/info/exclude

$ cat .git/info/exclude
git ls-files --others --exclude-from=.git/info/exclude

cocoa01@gmail.com

8

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

8

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

Lines that start with '#' are comments.
For a project mostly in C, the following would be a good set of
exclude patterns (uncomment them if you want to use them):
*.[oa]
*~

初期状態では何の設定も入っておらずコメントだけ記載されています。除外ファイルの

パターンといえば、.gitignoreがありますが、.gitignoreはディレクトリ単位の除外リス

トです。このファイルは、リポジトリに対しての除外ファイルを設定します。git status、

git add、git rm、git cleanコマンドが .git/info/excludeを参照します。

objectsディレクトリ

.git/objectsディレクトリは、リポジトリに関連付けられたオブジェクトを格納する格

納領域（オブジェクトストア）です。3種類のオブジェクトファイルとパックファイル

（"packfile"）が格納されます。パックファイルについては、03「git gcと管理情報」にて

詳細を解説します。objects/ディレクトリが格納することになる「オブジェクト格納領域」

は、以下の 3つの基本オブジェクトから構成されます。各オブジェクトの詳細は、Gitコ

マンドを触りながら、後述の「git addと管理情報」および「git commitと管理情報」に

て後述します。ここでは概要だけ眺めて 3種類あることだけを確認してください。

オブジェクト名 概要

blob（ブロブ）
オブジェクト

ファイルのデータのみを格納します。ファイルのメタデータは格納しません。ファ
イルの内容が少しでも異なれば、新しい blobオブジェクトが作成されます。後述の
「blob（ブロブ）オブジェクト」で、詳細を解説します。

tree（ツリー）
オブジェクト

blobオブジェクトの IDへのリンク、１階層分のディレクトリの情報とファイルの
パス名を格納します。さらに、treeオブジェクトを参照することで階層構造を管理
することができます。後述の「tree（ツリー）オブジェクト」で、詳細を解説します。

commit（コミット）
オブジェクト

変更時のメタデータを格納します。 コミットの、日付、ログメッセージ、コミッター
などのメタデータと、ディレクトリ構造・ファイルの変更を関連付けるため、tree
オブジェクトへの参照を格納します。後述の「commit（コミット）オブジェクト」で、
詳細を解説します。

refsディレクトリ

.git/refsディレクトリに作成されるサブディレクトリ以下に、ローカルブランチ・リモー

ト追跡ブランチなどの各ブランチの参照と、「tag（タグ）」オブジェクトを格納します。

参照については、後述の、「リファレンス・参照（refs）」において、実例を用いて解説し

ます。$GIT_COMMON_DIR環境変数が設定されている場合は、このファイルの代わりに、

$GIT_COMMON_DIR/refs以下の「参照」が参照されます。

オブジェクト名 概要

tag（タグ）
オブジェクト

オブジェクトを特定するシンボルの役割で、特定のコミットに付けた名前と、その
名前が指す commitオブジェクトを格納します。後述の「tag（タグ）」オブジェクトで、
詳細を解説します。

cocoa01@gmail.com

9

01

02

03

9

01

02

03

01

git initによるリポジトリ初期構築時には、いくつかのファイルとディレクトリが自動生

成されます。これらの管理情報の中から、この節では主に、コマンド発行時のオブジェク

ト格納領域である objects/ディレクトリと、参照格納領域である refs/ディレクトリが変

更される動きに注目していきます。以降の Gitコマンドでは、初期状態からの管理情報の

変更差分を抜き出して、実際の格納データを使って解説します。

git addと管理情報
新規ファイルを作成して、作成したファイルをステージし、git addコマンドによって

管理情報がどのように追加・変更されるかを見ていきます。まずは、ワーキングディレク

トリにファイルを追加して、ステージングします。

ファイルの作成とステージング

$ cd local
$ echo "good morning" > a.txt
$ ls -a
. .. .git a.txt

#ステージング
$ git add a.txt

git add実行後に、追加された管理情報は以下の通りです。

addコマンド時に追加された管理情報

.git
├── index
├── objects
│ ├── b1
│ │ └── eb87387a92aa01e2bd12ddf8a7fab28dda14e1

このような Gitコマンドの実行時に、コマンドごとに異なる .gitディレクトリ以下の管

理情報が、追加および更新されていきます。git addの後、indexファイルと、objectsディ

レクトリの b1ディレクトリの下に、オブジェクトファイル eb87387a92aa01e2bd12dd

f8a7fab28dda14e1が追加されています。それぞれ、どのような管理情報を持つのか見て

いきます。

indexファイル

git addを利用すると、指定したファイルはステージングされ、「追跡（tracked）」状態

になります。この現在のインデックスの情報が .git/indexに書かれています。.git/indexは

バイナリファイルなので、直接ファイルを閲覧しても、意味がわかりません。git status

を使って現在のインデックスがどうなっているかを確認します。

cocoa01@gmail.com

10

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

10

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

indexを確認

$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: a.txt

new fileとして a.txtがステージングされています。ステージングされたファイルを確認

する場合には git ls-files --stage を使います。

ステージングされたファイル

$ git ls-files --stage
100644 b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1 0 a.txt

a.txtの横に、いくつかの管理情報が表示されています。ここで、b1eb87387a92aa01

e2bd12ddf8a7fab28dda14e1という値に注目してください。

ハッシュ値

git ls-files --stageを用いて表示したステージの状態には、ステージされた a.txtの横に、

b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1という値が表示されていますが、こ

れをハッシュ値と呼びます。Gitは、オブジェクトの内容からハッシュ関数 SHA-1を利用

して生成したハッシュ値を、オブジェクトの名前として付けます。生成されるハッシュ値

は、40桁の 16進数となっており、objects/以下に生成されるオブジェクトは、a.txtに

おけるb1eb87387a92aa01e2bd12ddf8a7fab28dda14e1のように、全てユニークなハッ

シュ値で名付けられ管理されています。

名前空間の活用

ステージされたファイルのデータ

├── objects
│ ├── b1
│ │ └── eb87387a92aa01e2bd12ddf8a7fab28dda14e1

さて、おかしなことに気付きませんか？　先ほど、git ls-files --stageで見ていたハッシュ

値が名前として付けられているならば、b1eb87387a92aa01e2bd12ddf8a7fab28dda1

4e1がオブジェクトのファイル名として存在していそうですが、よく見るとハッシュ値が

分割され、先頭 2文字の b1がディレクトリ名に利用され、それ以降のハッシュ値 eb87

cocoa01@gmail.com

11

01

02

03

11

01

02

03

01

387a92aa01e2bd12ddf8a7fab28dda14e1がファイル名として利用されています。これ

には理由があります。gitは名前空間として先頭 2文字を利用し、データ管理や検索の効

率を向上させているのです。では、実際に、このオブジェクトの中身を見ていきます。

blob（ブロブ）オブジェクト

git addによって追加された objectsディレクトリの下の階層のオブジェクトファイルを

見ていきます。オブジェクトファイルの中身をみるには、git cat-file コマンドを利用します。

b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1を確認

$ git cat-file -t b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
blob
$ git cat-file -p b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
good morning

git cat-fileの -tオプションは、オブジェクトの種類を表示します。b1eb87387a92aa

01e2bd12ddf8a7fab28dda14e1は blobと表示され、blobオブジェクトであることがわ

かります。git cat-fileの -pオプションは、ファイルの中身を表示します。blobオブジェ

クト b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1の中には、good morningという、

a.txtに記載したデータの中身だけが格納されています。

blobオブジェクトでは、ファイルのメタデータとは切り離して、データの内容だけを保

持します。blobオブジェクトに付けられているハッシュ値は、データ内容から計算されて

おり、同一内容のデータは全て同じハッシュ値を持つことになります。good morningと

いうデータを持つファイルを作成して、git addすると、常に上記の例と同じ b1eb87387

a92aa01e2bd12ddf8a7fab28dda14e1という blobオブジェクトが生成されるというこ

とになります。

実際に、別のリポジトリを作成し、z.txtというファイルに "good morning"というデー

タを作成して git addしてみます。

z.txtとして同じデータを作成し blobオブジェクトのハッシュ値を確認

#新しいリポジトリの作成
$ mkdir git-hash-test
$ cd git-hash-test/
$ git init
Initialized empty Git repository in /workspace/git-hash-test/.git/

#z.txtの作成
$ echo "good morning" > z.txt
$ cat z.txt
good morning

#ステージング
$ git add z.txt

cocoa01@gmail.com

12

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

12

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

#ハッシュ値の確認
$ git ls-files --stage
100644 b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1 0 z.txt
$ git cat-file -t b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
blob
$ git cat-file -p b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
good morning

z.txtにおいても、a.txtと全く同じ blobオブジェクト b1eb87387a92aa01e2bd12ddf

8a7fab28dda14e1が生成されました。以上のように、ファイル名が違っていても、デー

タが同じであれば、同じハッシュ値が採番されます。この仕組みによって、Gitのバージョ

ン管理システムは、同じデータをバージョンごとに持つ必要がなくなり、効率の良いデー

タ格納を行うことができます。例えば、ファイル名が変更された場合、データの値は変わ

らないので、blobオブジェクト自体には何の変化もない、ということになります。

git commitと管理情報
コミット git commitによって、管理情報がどのように変化するかを見ていきます。先

ほどの git addが完了した状態から、git commitでコミットを行います。

コミット

#コミット
$ git commit -m "first greeting"
[master (root-commit) 1162a51] first greeting
 1 file changed, 1 insertion(+)
 create mode 100644 a.txt

初回コミットによって、masterブランチが作成されています。

ブランチを確認

$ git branch
* master

続いて、初回コミットによって、追加・更新が行われたファイルを見ていきます。

コミットによって追加・更新が行われたファイル

.git
├── COMMIT_EDITMSG
├── index
├── logs
│ ├── HEAD

cocoa01@gmail.com

13

01

02

03

13

01

02

03

01

│ └── refs
│ └── heads
│ └── master
├── objects
│ ├── 11
│ │ └── 62a5173ee3a6b9dff9a1d0941a28e4656840f0
│ ├── 1a
│ │ └── 24d97271e9e771f2717927f9b7a0a158ecc1fe
│ ├── info
│ └── pack
└── refs
 ├── heads
 │ └── master

COMMIT_EDITMSGファイル

COMMIT_EDITMSGは、直前のコミットメッセージが格納されています。

COMMIT_EDITMSG

$ cat .git/COMMIT_EDITMSG
first greeting

-mオプションを付けないコミット時や、amendでコミットが修正される場合に、この

ファイルを直接編集することになります。

リファレンス・参照（refs）

refs/以下は、「リファレンス」あるいは「参照」と呼ばれ、任意の Gitオブジェクトを

参照します。

.git/refs/heads/master

$ cat .git/refs/heads/master
1162a5173ee3a6b9dff9a1d0941a28e4656840f0

初回コミットによって、masterブランチが作成されましたが、masterブランチの参照

先を、.git/refs/heads/masterに格納しています。masterブランチの参照先を git rev-parse

コマンドを利用して確認してみます。

masterの参照先

$ git rev-parse master
1162a5173ee3a6b9dff9a1d0941a28e4656840f0

cocoa01@gmail.com

14

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

14

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

masterブランチは、最新のコミットとして、1162a5173ee3a6b9dff9a1d0941a28e

4656840f0というオブジェクトを参照しています。このように、refs/以下には、特定の

Gitオブジェクトへの参照が格納されます。

logsディレクトリ

git commit後、.git/logsディレクトリが作成されました。.git/logsディレクトリは、参

照への更新を記録します。.git/logs/HEAD`ファイルには、HEADの参照の変更履歴が格納

されています。

.git/logs/HEAD

$ cat .git/logs/HEAD
00 1162a5173ee3a6b9dff9a1d0941a28
e4656840f0 Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900
commit (initial): first greeting

初回コミットであることから、直前のコミットは履歴として存在しません。00000000

00000000000000000000000000000000は、直前のコミットがない状態を表してい

て、通常この位置には直前のコミットのハッシュ値が記録されます。1162a5173ee3a6b

9dff9a1d0941a28e4656840f0が今回のハッシュ値です。これと同じ情報は、git reflog

で見ることができます。

reflogを確認

$ git reflog
1162a51 HEAD@{0}: commit (initial): first greeting

短縮したハッシュ値である 1162a51は、1162a5173ee3a6b9dff9a1d0941a28e465

6840f0の先頭部分であることがわかります。

では、参照 .git/refs/heads/masterが参照しているオブジェクト 1162a5173ee3a6b9d

ff9a1d0941a28e4656840f0を探してみます。今回の追加・更新のあったファイルの一

覧を見ると、objects/11/62a5173ee3a6b9dff9a1d0941a28e4656840f0という形で格

納されているオブジェクトがあることがわかると思いますが、これが「commit（コミット）」

オブジェクトです。

commit（コミット）オブジェクト

commitオブジェクト1162a5173ee3a6b9dff9a1d0941a28e4656840f0を見てみます。

1162a5173ee3a6b9dff9a1d0941a28e4656840f0を確認

$ git cat-file -t 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
commit

cocoa01@gmail.com

15

01

02

03

15

01

02

03

01

$ git cat-file -p 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
tree 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
author Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900

first greeting

タイプを確認すると、commitと表示され、commitオブジェクトであることが確認で

きます。commitオブジェクトの内部には、コミットの authorや時刻、コミットメッセー

ジが格納されていることがわかります。コミット 1162a5173ee3a6b9dff9a1d0941a28

e4656840f0の中身を確認してみます。

コミット 1162a5173ee3a6b9dff9a1d0941a28e4656840f0を確認

$ git show 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
commit 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
Author: Seigo Kawamura <seigo_kawamura@example.com>
Date: Tue Aug 4 21:09:27 2015 +0900

 first greeting

diff --git a/a.txt b/a.txt
new file mode 100644
index 0000000..b1eb873
--- /dev/null
+++ b/a.txt
@@ -0,0 +1 @@
+good morning

このような、コミットのメタデータが commitオブジェクトとして記録されています。

参照したコミット IDと、commitパラメータに記載された commitオブジェクトのハッシュ

値が、同じであることに注目してください。コミットオブジェクトのハッシュ値は、その

ままコミット IDとして利用されます。

blobオブジェクトのときは、同一のデータであれば同一のハッシュ値が名付けられてい

ましたが、commitオブジェクトのハッシュ値はどうでしょうか？　同一内容のコミット

は、同一のコミット ID（ハッシュ値）となるでしょうか？　blobオブジェクトと、同じ

ような実験をしてみます。新しいリポジトリを作成し、全く同じデータを持つ a.txtを作

成して、全く同じコミットメッセージでコミットしたらどうなるでしょうか？

同じデータを持つ a.txtを同じコミットメッセージでコミット

#新しいリポジトリの作成
$ mkdir commit-hash-test
$ cd commit-hash-test/
$ git init
Initialized empty Git repository in /workspace/commit-hash-test/.git/

cocoa01@gmail.com

16

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

16

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
初
級
編
〜

#a.txtの作成とコミット
$ echo "good morning" > a.txt
$ ls -a
. .. .git a.txt
$ cat a.txt
good morning
$ git add a.txt
$ git commit -m "first greeting"
[master (root-commit) 2480ba9] first greeting
 1 file changed, 1 insertion(+)
 create mode 100644 a.txt

#ハッシュ値の確認
$ git rev-parse master
2480ba9fa3530eb7be7ec27912dc94e0ca05214c

#コミット内容の確認
$ git show 2480ba9fa3530eb7be7ec27912dc94e0ca05214c
commit 2480ba9fa3530eb7be7ec27912dc94e0ca05214c
Author: Seigo Kawamura <seigo_kawamura@example.com>
Date: Mon Aug 10 17:22:56 2015 +0900

 first greeting

diff --git a/a.txt b/a.txt
new file mode 100644
index 0000000..b1eb873
--- /dev/null
+++ b/a.txt
@@ -0,0 +1 @@
+good morning

この実験のコミットでは、2480ba9fa3530eb7be7ec27912dc94e0ca05214cがコ

ミット IDとして割り当てられました。先ほどの、commitオブジェクト 1162a5173ee3

a6b9dff9a1d0941a28e4656840f0と同じファイル・同じコミットメッセージでコミッ

トしましたが、commitオブジェクトのコミット IDは、異なることがわかります。コミッ

トオブジェクトは authorとコミット時刻を含むことからもわかる通り、commitオブジェ

クトのハッシュ値であるコミット IDは、任意の全てのリポジトリで一意です。開発者同士、

どのリポジトリの開発であろうとも、コミット IDを伝えることで、どのコミットについ

ての話題かを厳密に特定することができます。

少し話を戻して、commitオブジェクトの中身をもう一度見ていきます。

commitオブジェクト 1162a5173ee3a6b9dff9a1d0941a28e4656840f0

$ git cat-file -p 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
tree 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
author Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900

cocoa01@gmail.com

17

01

02

03

17

01

02

03

01

first greeting

コミットで変更のあったファイルの情報 a.txtについての記述が見つかりません。その

代わりに、treeというパラメータと、ハッシュ値が格納されています。これは、ディレク

トリ情報を管理する tree（ツリー）オブジェクトへの参照です。このような、commitオ

ブジェクトは、コミットのメタデータを持ち、ディレクトリ・ファイルの変更については、

treeオブジェクトへの参照を持ちます。

tree（ツリー）オブジェクト

今回のコミットで objects/以下に追加された、treeオブジェクトの中身を見ていきます。

1a24d97271e9e771f2717927f9b7a0a158ecc1feを確認

$ git cat-file -t 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
tree
$ git cat-file -p 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
100644 blob b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1 a.txt

タイプを確認すると、treeと表示されています。treeオブジェクトの中身には、blobオ

ブジェクトへの参照が格納されていることが確認できます。このような、treeオブジェク

トは 1つ以上の blobオブジェクトと treeオブジェクトを持ち、それぞれのファイル・ディ

レクトリの形式とパーミッションを管理しています。ここには、モード（mode）・オブジェ

クトタイプ・ファイル名が書かれています。blobの横に、100644という数列が確認でき

ます。これがモードを表しています。見た目通りの数値ではなく、bitで管理されています。

先頭 4bitは、オブジェクトのタイプ、続く 3bitは利用しておらず、残り 9bitはUNIXのパー

ミッションを表しています。例えば、以下のようなモードがあります。

モード（mode） ビット 意味

100644 1000 000 110100100 実行できないファイル

100755 1000 000 111101101 実行可能なファイル

040000 0100 000 000000000 ディレクトリ

120000 1010 000 000000000 シンボリックリンク

160000 1110 000 000000000 Gitlink（git submoduleで利用）

Gitのバージョン管理の仕組みを知る・初級編では、git initから git commitまでの管理

情報の変更を追いかけて、内部の作りを見てきました。基本的なオブジェクトを学び、Git

がどのように動いているのかがだいぶブラックボックスではなくなってきたと思います。

Gitのバージョン管理の仕組みを知る・中級編では、チーム開発で必要となるコマンドの

管理情報がどのように変更されるのかを見ていきます。

cocoa01@gmail.com

18

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

18

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

git init --bareと管理情報
01「Gitのバージョン管理の仕組みを知る　～初級編～」で操作していたリポジトリを

継続して操作し、実際の動きを追っていきます。

複数人で開発するときに、全員が参照するリポジトリ上のワーキングディレクトリで、

特定の個人が開発を行い、ファイルの編集やブランチの切り替えができるとしたら、どう

でしょう？　もちろん、それでも運用は可能です。しかし、そこでブランチを切り替える

ためにチェックアウトを繰り返ししたらどうでしょうか？　作業中のリポジトリに、プッ

シュが行われたら？　思いもよらないデータの不整合が起こる可能性があります。

bareリポジトリはワーキングディレクトリを持ちません。git init --bareを利用するこ

とで、全員が参照しているリポジトリで、特定の個人が直接開発を行わないようにするこ

とができます。実際に、git initと git init --bareでは、管理情報がどのように異なるのか

見ていきます。

localディレクトリの横に、remote_test.gitディレクトリを作成し、そこに bareリポジ

トリを作成してみます。なぜ remote_testディレクトリではなく、.gitを末尾に付加した

意図は後でわかります。

remote_test.gitの作成と bareリポジトリの作成

$ mkdir remote_test.git
$ ls
local remote_test.git
$ cd remote_test.git/

#bareリポジトリの作成
$ git init --bare
Initialized empty Git repository in /workspace/git/remote_test.git/

remote_test.gitのリポジトリが、bareリポジトリになっているか、確認してみます。

remote_test.gitは bareリポジトリか？

$ git rev-parse --is-bare-repository
true

bareリポジトリと、通常の initが作る管理情報の構成とが、どのように異なるかを見て

みます。remote_test.gitディレクトリのファイル構成は、以下のようになっています。

中級編では、リモートリポジトリとローカルリポジトリの間の管理と、マージやリ
ベースなどの動きと共に管理情報がどのように変更されるか、を見ていきます。

Gitのバージョン管理の仕組みを知る　
～中級編～02

cocoa01@gmail.com

19

01

02

03

19

01

02

03

02

remote_test.gitのファイル構成

$ cd remote_test.git
$ ls -a
. branches hooks refs
.. config info
HEAD description objects

比較のため、git initしたばかりの localディレクトリと比較してみます。

localのファイル構成

$ cd local
$ ls -a
. .. .git

git initによる初期化状態で、localディレクトリの場合は、.gitディレクトリのみが存

在していますが、bareリポジトリ remote_test.gitの場合は、refsを始めとした複数の管

理情報がルートディレクトリ直下（ここでは remote_test.git/）にあることがわかります。

実際のディレクトリ構成を並べて、比較してみます .

remote_test.git/のディレクトリ構成は、以下のようになっています。

remote_test.gitのディレクトリ構造

$ tree remote_test.git
remote_test.git
├── HEAD
├── branches
├── config
├── description
├── hooks
│ ├── #（省略）
├── info
│ └── exclude
├── objects
│ ├── info
│ └── pack
└── refs
 ├── heads
 └── tags

local/のディレクトリ構成は以下のようになっています。

localのディレクトリ構造

$ tree local/.git
local/.git

cocoa01@gmail.com

20

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

20

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

├── HEAD
├── branches
├── config
├── description
├── hooks
│ ├── #（省略）
├── info
│ └── exclude
├── objects
│ ├── info
│ └── pack
└── refs
 ├── heads
 └── tags

localディレクトリに git init で作成したばかりの管理情報は git-dir（この場合は .git）

の下に作成されています。一方で、remote_test.gitで作成した bareリポジトリでは、ルー

トディレクトリ直下に管理情報ファイルが並んでいます。上下で、見比べるとわかります

が、配置されている管理情報ファイルの種類には、差はありません。

差がないことを確認

#ディレクトリ構造をファイルに出力
$ tree local/.git > local_tree
$ tree remote_test.git > remote_tree

#差を確認
$ diff local_tree remote_tree
1c1
< local/.git

> remote_test.git

diffコマンドの結果から、一行目のディレクトリ名の以外には、差がないことがわかり

ます。つまり、localにおける .gitと、remote_test.gitが位置づけとしては同じ管理フォ

ルダとなるため、remote_testに .gitを付加した名前を付けています。また、初期状態の

比較だけでは気付きませんが、bareリポジトリはワーキングディレクトリを持たないため、

作業インデックスを格納する .git/indexが通常作成されません。

git remoteと管理情報
初級編の操作は、ローカルリポジトリに閉じていました。既存プロジェクトに、リモー

トを設定して、ローカルリポジトリとリモートの連携時に、管理情報がどう変更されるの

かを見ていきます。これまでの手順では、git cloneではなく、git initによってリポジトリ

を作成しているので、リモートの設定が行われていません。リモートとの連携を試すには、

cocoa01@gmail.com

21

01

02

03

21

01

02

03

02

リモートの設定が必要となります。git remoteを用いて、前の節で設定した remote_test.

gitを利用しながら、リモートを設定し、管理情報の変更を見ていきます。まずは、localディ

レクトリに移動して、git remoteで、リモートリポジトリとして remote_testを設定します。

remoteの追加

$ cd local

#リモートの追加
$ git remote add origin ../remote_test

remote_test.gitをリモートに指定するときは、remote_testとして指定します。

remoteコマンドによる管理情報の差分

$ cd local
$ tree .git
.git
├── config

configファイルにだけ変更が行われました。configファイルには、[remote "origin"]と

いう設定が追加されています。リモートに関する設定を記載します。

.git/configの差分

$ cat .git/config
（略）
[remote "origin"]
 url = ../remote_test
 fetch = +refs/heads/*:refs/remotes/origin/*

urlは、git remoteで指定した ../remote_testを格納しています。fetch = +refs/heads/*

:refs/remotes/origin/* の部分は、「転送元：転送先」の形式で記述されています。fetchの

際は、remoteの .git/refs/heads/以下のブランチを、ローカルの同名の追跡ブランチ .git/

refs/remotes/origin/以下に置くことを表しています。

git pushと管理情報
設定したリモートの originへの git pushコマンドで、ローカルのリポジトリの管理情報

がどのように変更されるかを見ていきます。git pushの --set-upstreamオプションで、追

跡ブランチの設定を行います。

upstreamの設定

$ cd local

cocoa01@gmail.com

22

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

22

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

#プッシュ
$ git push --set-upstream origin master
Counting objects: 3, done.
Writing objects: 100% (3/3), 233 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To ../remote_test
 * [new branch] master -> master
Branch master set up to track remote branch master from origin.

masterブランチの upstreamとして、リモートの originにおけるmasterブランチを設

定しました。ローカルのリポジトリの管理情報の変更差分を見てみます。

localの treeの変更差分

$ cd local
#ローカルリポジトリの管理情報の差分
$ tree .git
.git
├── config
├── logs
│ └── refs
│ └── remotes
│ └── origin
│ └── master
└── refs
 ├── remotes
 │ └── origin
 │ └── master

参照 refsに、remotes/originディレクトリが作成されました。ここに remoteである origin

のmaster追跡ブランチの現在の参照、.git/refs/remotes/origin/masterが格納されています。

.git/refs/remotes/origin/master

$ cat .git/refs/remotes/origin/master
1162a5173ee3a6b9dff9a1d0941a28e4656840f0

ハッシュ値への参照が格納されています。参照されている 1162a5173ee3a6b9dff9a1

d0941a28e4656840f0は、以下の通り最初のコミット "first greeting"です。

1162a5173ee3a6b9dff9a1d0941a28e4656840f0を確認

$ git cat-file -p 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
tree 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
author Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900

cocoa01@gmail.com

23

01

02

03

23

01

02

03

02

first greeting

追跡ブランチ masterが、localリポジトリの参照している commitオブジェクト

1162a5173ee3a6b9dff9a1d0941a28e4656840f0と、同じ commitオブジェクトを参

照していることがわかります。

git pushによるmasterブランチへの set-upstreamによって、configにも、変更が掛か

りました。.git/configの変更差分を見てみます。

.git/config

$ cd local
$ cat .git/config
（省略）
[branch "master"]
 remote = origin
 merge = refs/heads/master

[branch "master"]というブランチの設定が追加されています。remoteという設定項目

が追加され、git pushでは、リモートである originの情報を更新する設定がされました。

同様に、mergeの設定項目が追加されました。git pullコマンド時に、originからフェッチ

（git fetch）して、refs/heads/masterをローカルのmasterブランチにマージ（git merge）

するという設定を意味しています。

プッシュされたリモート側の管理情報は、どのように変更されたでしょうか？　

remote_test.gitディレクトリの管理情報の変更差分を見ていきます。

リモートの treeの変更差分

$ cd remote_test.git
#リモートリポジトリの管理情報の差分
$ tree .
.
├── objects
│ ├── 11
│ │ └── 62a5173ee3a6b9dff9a1d0941a28e4656840f0
│ ├── 1a
│ │ └── 24d97271e9e771f2717927f9b7a0a158ecc1fe
│ ├── b1
│ │ └── eb87387a92aa01e2bd12ddf8a7fab28dda14e1
└── refs
 ├── heads
 │ └── master

リモートにオブジェクトが 3つ作成されました。localリポジトリで git commitしたと

きに追加された 3つのオブジェクトが、リモート remote_testリポジトリにもそのまま作

成されています。

cocoa01@gmail.com

24

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

24

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

リモートのオブジェクトファイルを確認

$ cd remote_test.git

#commitオブジェクト
$ git cat-file -t 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
commit
$ git cat-file -p 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
tree 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
author Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900

first greeting

#treeオブジェクト
$ git cat-file -t 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
tree
$ git cat-file -p 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
100644 blob b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1 a.txt

#blobオブジェクト
$ git cat-file -t b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
blob
$ git cat-file -p b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
good morning

作成された管理情報 3つのオブジェクトは、localリポジトリと同じハッシュ値の、

commitオブジェクト、commitオブジェクトから参照される treeオブジェクト、treeオブジェ

クトから参照される blobオブジェクトでした。ローカルリポジトリ localと、リモートリポ

ジトリ remote_testは、git push後、全く同じオブジェクトファイルを管理していることが

わかりました。リモートリポジトリのmasterブランチの参照はどうなっているでしょうか？

リモートのmasterブランチの参照

$ cd remote_test.git
$ cat refs/heads/master
1162a5173ee3a6b9dff9a1d0941a28e4656840f0

リモートリポジトリのmasterブランチは、commitオブジェクト 1162a5173ee3a6b

9dff9a1d0941a28e4656840f0("first greeting")を指しています。git push後に、ローカ

ルリポジトリと、リモートリポジトリの参照が一致したことがわかります。

git cloneと管理情報
localとは異なるディレクトリに、リモートリポジトリからクローンを行い、構成情報

がどのように渡されるのかを見てみます。git cloneを利用して、remote_testリポジトリ

から、local2ディレクトリを作成し、管理情報を確認します。

cocoa01@gmail.com

25

01

02

03

25

01

02

03

02

git clone
remote_test

local local2

remote_testリポジトリからのクローン

#remote_testリポジトリからのクローン
$ git clone ../remote_test local2
Cloning into 'local2'...
done.
$ cd local2
$ ls -a
. .. .git a.txt

local2ディレクトリに、remote_testからのクローンが完了しました。

local2の tree構造

$ cd local2
$ tree .git
.git
├── HEAD
#（省略）
├── config
├── objects
│ ├── 11
│ │ └── 62a5173ee3a6b9dff9a1d0941a28e4656840f0
│ ├── 1a
│ │ └── 24d97271e9e771f2717927f9b7a0a158ecc1fe
│ ├── b1
│ │ └── eb87387a92aa01e2bd12ddf8a7fab28dda14e1
#（省略）

objects以下の3つのオブジェクトファイルの管理情報は、リモートと同じハッシュ値で、

commitオブジェクト・treeオブジェクト・blobオブジェクトが、そっくりそのまま伝わっ

てきています。Gitは分散管理システムであり、このようなリモートとローカルで同じ管

理情報を所有します。.git/configの中身を確認します。

.git/config

$ cd local2
$ cat .git/config
#（省略）
[remote "origin"]
 url = /workspace/git/remote_test.git

cocoa01@gmail.com

26

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

26

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master

クローンで作成された .git/configは、すでにリモートの設定と、追跡ブランチの設定が

作成されていて、git pushやgit pullが、引数なしでそのまま利用できるようになっています。

git tagと管理情報
再び localディレクトリに戻って、最初のコミットにタグで名前を付け、どのように管

理されているかを見ていきます。git tagコマンドを使って、最新のコミットに version1.0

というタグを付けてみます。

タグで version1.0という名前を付ける

$ cd local

#タグの作成
$ git tag -a version1.0 -m 'first version'

#タグを確認
$ git tag
version1.0

git tagによってversion1.0タグを付けた際に、変更された差分ファイルは以下の通りです。

タグ付け後に変更された管理ファイル

$ tree .git
.git
├── objects
│ ├── 2f
│ └── be3fe9c638172f9bdf4a264e4698d69de2715e
│
└── refs
 └── tags
 └── version1.0

.git/refs/tags/version1.0という参照と、2fbe3fe9c638172f9bdf4a264e4698d69de2

715eとして、オブジェクトが作成されています。

.git/refs/tags/version1.0

$ cat .git/refs/tags/version1.0

cocoa01@gmail.com

27

01

02

03

27

01

02

03

02

2fbe3fe9c638172f9bdf4a264e4698d69de2715e

参照が指しているのは、作成されたオブジェクト `2fbe3fe9c638172f9bdf4a264e469

8d69de2715eです。

tag（タグ）オブジェクト

参照されているオブジェクト 2fbe3fe9c638172f9bdf4a264e4698d69de2715eのタ

イプと、中身を確認します。

2fbe3fe9c638172f9bdf4a264e4698d69de2715eを確認

$ git cat-file -t 2fbe3fe9c638172f9bdf4a264e4698d69de2715e
tag
$ git cat-file -p 2fbe3fe9c638172f9bdf4a264e4698d69de2715e
object 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
type commit
tag version1.0
tagger Seigo Kawamura <seigo_kawamura@example.com> 1438770196 +0900

first version

2fbe3fe9c638172f9bdf4a264e4698d69de2715eのオブジェクトタイプは、tagと

なっています。これは、tag（タグ）オブジェクトです。ファイルの中身を見ると、タグ
の名称が、tag version1.0として格納されており、commitオブジェクトとして object

1162a5173ee3a6b9dff9a1d0941a28e4656840f0("first greeting")を参照しています。

commitオブジェクト 1162a5173ee3a6b9dff9a1d0941a28e4656840f0

$ git cat-file -t 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
commit
$ git cat-file -p 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
tree 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
author Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900

first greeting

タグを付けた commitオブジェクトには、変更がありません。tagオブジェクトにタグ

の詳細が格納され、commitオブジェクトへの参照を持つことで、タグとコミットを関連

付けています。このことから、データ管理上、タグの管理と、commitの管理は疎結合で

あることがわかります。念のため、最新のコミットに付けたタグが、問題なく付加されて

いるかどうか確認します。

cocoa01@gmail.com

28

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

28

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

タグを確認

$ git log --decorate=full
commit 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 (HEAD -> refs/heads/
master, tag: refs/tags/version1.0, refs/remotes/origin/master)
Author: Seigo Kawamura <seigo_kawamura@example.com>
Date: Tue Aug 4 21:09:27 2015 +0900

 first greeting

問題なく、tag: refs/tags/version1.0と、1162a5173ee3a6b9dff9a1d0941a28e4656

840f0が関連付けられています。

git branchと管理情報
ブランチの作成はどのように管理されているか、git branchコマンドを使った後の管理

情報を見ていきます。ここでは、チェックアウトはせずに、developブランチを作成して、

管理情報への影響を絞っておきます。

developブランチの作成

$ cd local

#ブランチの作成
$ git branch develop
#ブランチの確認
$ git branch
 develop
* master

developブランチが作成だけが行われ、まだmasterブランチにいる状態です。

ブランチ作成後の管理情報の差分

$ tree .git
.git
├── logs
│ └── refs
│ ├── heads
│ ├── develop
│
└── refs
 ├── heads
 │ ├── develop
 │

参照の履歴を格納する logsディレクトリと、参照を格納する refsディレクトリに、

cocoa01@gmail.com

29

01

02

03

29

01

02

03

02

developという、ブランチ名と同じ名前のファイルが作成されています。ログから見てい

きます。

.git/logs/refs/heads/develop

$ cat .git/logs/refs/heads/develop
00 1162a5173ee3a6b9dff9a1d0941a28
e4656840f0 Seigo Kawamura <seigo_kawamura@example.com> 1438778966 +0900
branch: Created from master

branch: Created from masterとあるように、developブランチを作成した起点が書かれ

ています。

reflogで developブランチの履歴を確認

$ git reflog develop
1162a51 develop@{0}: branch: Created from master

developブランチのログを見ると、logsに格納されていたメッセージが表示されていま

す。次に参照を確認します。

.git/refs/heads/develop

$ cat .git/refs/heads/develop
1162a5173ee3a6b9dff9a1d0941a28e4656840f0

developブランチは、commitオブジェクト 1162a5173ee3a6b9dff9a1d0941a28e46

56840f0("first greeting")を参照しています。refs/heads/developからコミットへの参照を、

コミットログで確認してみます。

コミットログ

$ git log --decorate=full
commit 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 (HEAD -> refs/heads/
master, tag: refs/tags/version1.0, refs/remotes/origin/master, refs/
heads/develop)
Author: Seigo Kawamura <seigo_kawamura@example.com>
Date: Tue Aug 4 21:09:27 2015 +0900

 first greeting

コミット 1162a5173ee3a6b9dff9a1d0941a28e4656840f0は、refs/heads/develop

から参照されていることがわかります。このように、ブランチの正体は、コミットオブジェ

クトのハッシュ値、コミット IDへの参照であることがわかります。

cocoa01@gmail.com

30

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

30

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

git checkoutと管理情報
作成した developブランチをチェックアウトして、管理情報の変更を見てみます。

developブランチをチェックアウト

$ cd local

#developブランチのチェックアウト
$ git checkout develop
Switched to branch 'develop'

#ブランチの確認
$ git branch
* develop
 master

git checkoutによるチェックアウト後の管理情報の変更差分は、以下の通りです。

チェックアウト後の管理情報の変更差分

$ tree .git
.git
├── HEAD
├── index
├── logs
│ ├── HEAD

.git/HEADファイルが更新されています。HEADファイルは、現在のブランチの最新コ

ミットへのシンボリック参照（"symbolic reference"）を格納しています。どんな管理情報

が格納されているでしょうか。

.git/HEAD

$ cat .git/HEAD
ref: refs/heads/develop

developブランチへの参照、refs/heads/developの値が、シンボリック参照として格納

されています。シンボリック参照は、ハッシュ値への直接参照ではなく、他を参照します。

refs/heads/developを指していることから、現在のワーキングディレクトリが、develop

ブランチを参照していることがわかります。ブランチの変更情報を参照できる git reflog

の出力を確認します。

reflogの出力

$ git reflog

cocoa01@gmail.com

31

01

02

03

31

01

02

03

02

1162a51 HEAD@{0}: checkout: moving from master to develop
1162a51 HEAD@{1}: commit (initial): first greeting

これらの情報が、管理されている .git/logs/HEADへの更新を見てみます。

.git/logs/HEAD

$ cat .git/logs/HEAD
00 1162a5173ee3a6b9dff9a1d0941a28
e4656840f0 Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900
commit (initial): first greeting
1162a5173ee3a6b9dff9a1d0941a28e4656840f0 1162a5173ee3a6b9dff9a1d0941a28
e4656840f0 Seigo Kawamura <seigo_kawamura@example.com> 1438779507 +0900
checkout: moving from master to develop

developブランチをチェックアウトしたことが、checkout: moving from master to

developとして、記録されています。

チェックアウトでは、ワーキングディレクトリから見ると、ファイルの変更などが行わ

れるため複雑な印象を持ちますが、実際に必要なのは、.git/HEADのシンボリック参照の変

更と、インデックスとログの変更を行うだけの非常にシンプルな管理方法となっています。

git mvと管理情報
git mvでファイル移動をした場合は、どのように管理されるのかを見ていきます。以降

の作業は、先ほどチェックアウトした、developブランチで行っていきます。

ファイルの移動

$ git branch
* develop
 master
$ ls -a
. .. .git a.txt

#ファイルの移動
$ git mv a.txt b.txt
$ ls -a
. .. .git b.txt

git mv実施後、ワーキングディレクトリの a.txtは、b.txtに移動しています。管理情報ファ

イルで、変更された管理情報は以下です。

ファイル移動後の管理情報の差分

$ tree .git
.git

cocoa01@gmail.com

32

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

32

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

├── index

ファイルをステージングしたので、indexが変更されています。git mvによって、ステー

ジングされた内容は以下です。

ステージングを確認

$ git status
On branch develop
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: a.txt -> b.txt

ステージングされた内容をコミットします。

コミット

$ git commit -m "move from a.txt to b.txt"
[develop be1eb7e] move from a.txt to b.txt
 1 file changed, 0 insertions(+), 0 deletions(-)
 rename a.txt => b.txt (100%)

コミット後の管理情報の差分は以下の通りです。

コミット後の管理情報の差分

$ tree .git
.git
├── COMMIT_EDITMSG
├── index
├── logs
│ ├── HEAD
│ └── refs
│ ├── heads
│ │ ├── develop
│
├── objects
│ ├── 0c
│ │ └── 1ce4b2d1da852658cb88f686cd8d43c90df5e4
│ ├── be
│ │ └── 1eb7e8911a20d7c616d20057928d72965f23a1
│
└── refs
 ├── heads
 │ ├── develop

objectsディレクトリ以下に、オブジェクトファイルが 2つ増えています。git mvは、ファ

cocoa01@gmail.com

33

01

02

03

33

01

02

03

02

イルの移動を行いますが、ファイルのデータ自体は変更しません。データ変更が行われな

い場合の管理情報は、どのように変化するのでしょうか。be1eb7e8911a20d7c616d20

057928d72965f23a1から見ていきます。

データに変更がないコミット時の管理情報の変化

be1eb7e8911a20d7c616d20057928d72965f23a1を確認

$ git cat-file -t be1eb7e8911a20d7c616d20057928d72965f23a1
commit
$ git cat-file -p be1eb7e8911a20d7c616d20057928d72965f23a1
tree 0c1ce4b2d1da852658cb88f686cd8d43c90df5e4
parent 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
author Seigo Kawamura <seigo_kawamura@example.com> 1438780643 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438780643 +0900

move from a.txt to b.txt

commitオブジェクト be1eb7e8911a20d7c616d20057928d72965f23a1は、tree

オブジェクト 0c1ce4b2d1da852658cb88f686cd8d43c90df5e4を指しています。これ

は、今回作成されたもう 1つのオブジェクトです。

0c1ce4b2d1da852658cb88f686cd8d43c90df5e4を確認

$ git cat-file -t 0c1ce4b2d1da852658cb88f686cd8d43c90df5e4
tree
$ git cat-file -p 0c1ce4b2d1da852658cb88f686cd8d43c90df5e4
100644 blob b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1 b.txt

以上のように、今回の git mv後のコミットで更新があったのは、commitオブジェクトと、

treeオブジェクトだけでした。データ実体を指す、blobオブジェクトの更新はないので

しょうか？　treeオブジェクト1ce4b2d1da852658cb88f686cd8d43c90df5e4は、b.txt

という名前で、blobオブジェクト b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1を

指しています。この b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1は、最初の a.txt

のコミット時に作成されたオブジェクトです。

b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1を確認

$ git cat-file -t b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
blob
$ git cat-file -p b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
good morning

データの中身 good morningには変更がないのでハッシュ値に変更はなく、blobオブジェ

クト b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1には変化はありませんでした。

cocoa01@gmail.com

34

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

34

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

treeオブジェクト 1ce4b2d1da852658cb88f686cd8d43c90df5e4の作成だけで、ファ

イルが a.txtから b.txtに移動できたことになります。

commit（コミット）オブジェクトにおける parent

もう一度、今回追加した commitオブジェクト be1eb7e8911a20d7c616d20057928

d72965f23a1を見てみます。

be1eb7e8911a20d7c616d20057928d72965f23a1を確認

$ git cat-file -t be1eb7e8911a20d7c616d20057928d72965f23a1
commit
$ git cat-file -p be1eb7e8911a20d7c616d20057928d72965f23a1
tree 0c1ce4b2d1da852658cb88f686cd8d43c90df5e4
parent 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
author Seigo Kawamura <seigo_kawamura@example.com> 1438780643 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438780643 +0900

move from a.txt to b.txt

今回のコミットは、2回目のコミットになります。2回目以降のコミットで生成される

commitオブジェクトには、parentという情報が付加されています。これは何を表してい

るでしょうか？　parent 1162a5173ee3a6b9dff9a1d0941a28e4656840f0と表示され

ているように、parentは、オブジェクト 1162a5173ee3a6b9dff9a1d0941a28e46568

40f0を指しています。

1162a5173ee3a6b9dff9a1d0941a28e4656840f0を確認

$ git cat-file -t 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
commit
$ git cat-file -p 1162a5173ee3a6b9dff9a1d0941a28e4656840f0
tree 1a24d97271e9e771f2717927f9b7a0a158ecc1fe
author Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438690167 +0900

first greeting

parentが指し示している 1162a5173ee3a6b9dff9a1d0941a28e4656840f0は、最初

のコミットを管理する commitオブジェクトです。commitオブジェクトは、この parent

によるcommitオブジェクトの参照を元にコミット履歴をたどります。そして、最初のコミッ

ト 1162a5173ee3a6b9dff9a1d0941a28e4656840f0には、parentがありません。

コミットログを見て、parentによる参照を、おさらいします。

コミットログ

$ git log --graph --pretty=format:"%H %s"

cocoa01@gmail.com

35

01

02

03

35

01

02

03

02

* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

1162a5173ee3a6b9dff9a1d0941a28e4656840f0("first greeting")が最初のコミッ

ト、次に、be1eb7e8911a20d7c616d20057928d72965f23a1("move from a.txt to b.txt")

の順に並びました。

parentの向きに注目してください。2番目のコミット be1eb7e8911a20d7c616d200

57928d72965f23a1("move from a.txt to b.txt")から、1番目のコミット 1162a5173ee

3a6b9dff9a1d0941a28e4656840f0("first greeting")を指しています。このような、コ

ミット履歴は parentのハッシュ値の参照によってたどることができます。

git commit（データを上書きする場合）と管理情報
b.txtに good afternoonという挨拶を追加してみます。

b.txtへの上書き

$ git branch
* develop
 master
$ ls -a
. .. .git b.txt

#ファイルへの文字列の追加
$ cat b.txt
good morning
$ echo "good afternoon" >> b.txt
$ cat b.txt
good morning
good afternoon

#差分の確認
$ git diff
diff --git a/b.txt b/b.txt
index b1eb873..7367032 100644
--- a/b.txt
+++ b/b.txt
@@ -1 +1,2 @@
 good morning
+good afternoon

#変更のコミット
$ git add b.txt
$ git commit -m "adding second greeting"
[develop 9a1df15] adding second greeting
 1 file changed, 1 insertion(+)

cocoa01@gmail.com

36

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

36

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

これまで、初回コミット、データの上書き変更のないコミットを見てきました。今回の

コミットでは、b.txtに good afternoonという文字列が追記されました。データが上書き

された状態でのコミットでは、どのように管理情報の変更差分が変わるでしょうか？

localの .gitの差分

$ tree .git
.git
├── COMMIT_EDITMSG
├── index
├── logs
│ ├── HEAD
│ └── refs
│ ├── heads
│ │ ├── develop
│
├── objects
│ ├── 73
│ │ └── 670329a9741fd52674409adb06149e535988aa
│ ├── 9a
│ │ └── 1df1574f7aa38c6ab1d54c54432cde8a5b57d4
│ ├── a8
│ │ └── 8781bdbf18ee9ff43912ce0df57cbc17dfe70d
│
└── refs
 ├── heads
 │ ├── develop

objects/に、3つのオブジェクトが追加されました。これまで見てきた挙動から、

commitオブジェクト・treeオブジェクト・blobオブジェクトが追加されていると予想で

きます。1つ 1つ見てみます。まず、commitオブジェクトは以下のようになります。

9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4を確認

$ git cat-file -t 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4
commit
$ git cat-file -p 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4
tree a88781bdbf18ee9ff43912ce0df57cbc17dfe70d
parent be1eb7e8911a20d7c616d20057928d72965f23a1
author Seigo Kawamura <seigo_kawamura@example.com> 1438931924 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1438931924 +0900

adding second greeting

コミットメッセージadding second greetingを始めとしたメタ情報が管理されています。

commitオブジェクトから参照されている treeオブジェクトは、以下のようになります。

cocoa01@gmail.com

37

01

02

03

37

01

02

03

02

a88781bdbf18ee9ff43912ce0df57cbc17dfe70dを確認

$ git cat-file -t a88781bdbf18ee9ff43912ce0df57cbc17dfe70d
tree
$ git cat-file -p a88781bdbf18ee9ff43912ce0df57cbc17dfe70d
100644 blob 73670329a9741fd52674409adb06149e535988aa b.txt

b.txtの上書きされた新しいデータ内容として、blobオブジェクト 73670329a9741fd

52674409adb06149e535988aaが参照されています。blobオブジェクトは、以下の通

りです。

73670329a9741fd52674409adb06149e535988aaを確認

$ git cat-file -t 73670329a9741fd52674409adb06149e535988aa
blob
$ git cat-file -p 73670329a9741fd52674409adb06149e535988aa
good morning
good afternoon

追加した、good afternoonという文字列を含むデータが、blobオブジェクト 7367032

9a9741fd52674409adb06149e535988aaに管理されています。変更差分ではなく、b.txt

に上書きしたデータそのものが格納されていることがわかります。

Gitはスナップショットでデータを管理する
b.txtの内容を上書き編集しましたが、直前のコミットが参照していた上書き前の b.txt

の内容を保持していた blobオブジェクト b1eb87387a92aa01e2bd12ddf8a7fab28dda

14e1は、どうなっているのでしょうか？

b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1を確認

$ git cat-file -t b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
blob
$ git cat-file -p b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1
good morning

ファイル b.txtに上書き編集が行われても、Gitの管理システムは、最初のコミット時（上

書き前）の b.txtの内容を保持しています。ファイルの各バージョンは、それぞれ blobオ

ブジェクトとして保持します。コミットが何度行われたとしても、ファイルに変更がなけ

れば、同じハッシュ値が算出され、同じ blobオブジェクトを指し続けることになります。

ファイルに変更があれば、今回のように、各バージョンのデータを個別の blobオブジェ

クトでスナップショットとして管理することになります。

cocoa01@gmail.com

38

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

38

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

git merge （Fast-forward）と管理情報
developブランチの変更内容をmasterブランチにmergeして、管理情報の変更内容を

見てみます。developブランチのコミットログは以下の通りになっています。

developブランチのコミットログ

$ git branch
* develop
 master

#コミットログの確認
$ git log --graph --pretty=format:"%H %s"
* 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

developブランチには 3つのコミットがあります。masterブランチに切り替えます。

masterブランチに切り替える

$ git branch
* develop
 master

#masterブランチのチェックアウト
$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
$ git branch
 develop
* master

masterブランチのコミットログを見てみます。

masterブランチのコミットログの参照

$ git log --graph --pretty=format:"%H %s"
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

masterブランチのコミットログに加えて、developブランチには 2つ多くコミットログ

があることがわかります。

cocoa01@gmail.com

39

01

02

03

39

01

02

03

02

develop 9a1df
"adding second greeting"

be1eb
"move from a.txt to b.txt"

1162a
"first greeting"master

masterブランチと developブランチの差

$ git rev-list --pretty=format:"%H %s" master...develop
commit 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4
9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
commit be1eb7e8911a20d7c616d20057928d72965f23a1
be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt

developブランチのコミットを masterブランチに取り込むため、developブランチを

masterブランチにマージしてみます。

developブランチをmasterブランチにマージ

$ git merge develop
Updating 1162a51..9a1df15
Fast-forward
 a.txt | 1 -
 b.txt | 2 ++
 2 files changed, 2 insertions(+), 1 deletion(-)
 delete mode 100644 a.txt
 create mode 100644 b.txt

コミット 1162a5173ee3a6b9dff9a1d0941a28e4656840f0を起点とした、develop

ブランチの 2つの追加コミット be1eb7e8911a20d7c616d20057928d72965f23a1と、

9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4を masterブランチに取り込みまし

た。masterブランチの参照は、コミット 1162a5173ee3a6b9dff9a1d0941a28e46568

40f0でありmasterブランチにはその後のコミットが存在しないため、このマージでは分

岐がありません。git mergeの出力結果を見ると、Fast-forwardでマージされていること

がわかります。

cocoa01@gmail.com

40

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

40

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

develop 9a1df
"adding second greeting"

be1eb
"move from a.txt to b.txt"

1162a
"first greeting"

master

master

git merge（Fast-forward）における管理情報の差分を見てみます。

マージ後の管理情報の差分

$ tree .git
.git
├── ORIG_HEAD
├── index
├── logs
│ ├── HEAD
│ └── refs
│ ├── heads
│ │ └── master
│
└── refs
 ├── heads
 │ └── master

Fast-forwardのマージでは、objects/以下に変化がないことに注目してください。

objects/以下のオブジェクトには、全く更新が行われていないことがわかります。では、

Fast-forwardマージによって何が変わったのでしょうか？

index

$ git status
On branch master
Your branch is ahead of 'origin/master' by 2 commits.
 (use "git push" to publish your local commits)
nothing to commit, working directory clean

git statusを見てみると、origin/masterよりコミット 2つ分（今回は git mvと b.txtの

更新です）進んでいると表示されています。.git/refs/headsを確認してみます。

merge前の .git/refs/heads/master

$ cat .git/refs/heads/master
1162a5173ee3a6b9dff9a1d0941a28e4656840f0

cocoa01@gmail.com

41

01

02

03

41

01

02

03

02

git merge前のmasterは、1162a5173ee3a6b9dff9a1d0941a28e4656840f0を指し

ています。

merge後の .git/refs/heads/master

$ cat .git/refs/heads/master
9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4

git merge後のmasterは、9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4を指し

ています。では、マージ後のmasterブランチの git logを確認してみます。

コミットログ

$ git log --graph --pretty=format:"%H %s"
* 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

master ブランチの参照が、1162a5173ee3a6b9dff9a1d0941a28e4656840f0(fir

st greeting) か ら、9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4(adding second

greeting)まで移動していることを、参照ファイル .git/refs/heads/masterのハッシュ値の

更新で管理していることがわかります。

Fast-forwardでは、blobオブジェクト・treeオブジェクト・commitオブジェクトに変更

を加えることなく、参照を変えるだけで効率的にマージが完了していることがわかります。

git merge（recursive merge）と管理情報
Fast-forwardでない場合のマージは、どのように管理されるのでしょうか？　異なる

マージ戦略の状態を作り出して、実際に管理情報の動きを見てみます。最初に、masterブ

ランチの途中 be1eb7e8911a20d7c616d20057928d72965f23a1("move from a.txt to

b.txt")から topic_nonffというブランチを作成して、分岐した状態を作ります。

topic_nonffブランチの作成

$ git branch
 develop
* master

"move from a.txt to b.txt"から topic_nonffブランチを作成
$ git checkout -b topic_nonff be1eb7e8911a20d7c616d20057928d72965f23a1
Switched to a new branch 'topic_nonff'
$ git branch
 develop
 master
* topic_nonff

cocoa01@gmail.com

42

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

42

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

#topic_nonffブランチでコミットログを確認
$ git log --graph --pretty=format:"%H %s"
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

作成した topic_nonffは、masterの途中からチェックアウトしているので、topic_nonff

ブランチに直接コミットを加えると、起点となる be1eb7e8911a20d7c616d20057928

d72965f23a1("move from a.txt to b.txt")から、分岐した状態を作り出すことができます。

ここでは、topic_nonffブランチに、c.txtを追加してみます。

topic_nonffブランチへの c.txtの追加

#c.txtの作成
$ echo 'Good bye' > c.txt
$ ls -a
. .. .git b.txt c.txt
$ cat c.txt
Good bye

#c.txtのコミット
$ git add c.txt
$ git commit -m "adding farewell greeting"
[topic_nonff 3e05e6a] adding farewell greeting
 1 file changed, 1 insertion(+)
 create mode 100644 c.txt

この時点の、topic_nonffブランチのコミットログは以下のようになっています。

topic_nonffブランチのコミットログ

$ git log --graph --pretty=format:"%H %s"
* 3e05e6abc129077bf33d2a3b2f22c69d11681d78 adding farewell greeting
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

9a1df
"adding second
greeting"

be1eb
"move from a.txt to b.txt"

1162a
"first greeting"

master
3e05e
"adding farewell
greeting"

topic_nonff

commit オブジェクト 3e05e6abc129077bf33d2a3b2f22c69d11681d78("adding

cocoa01@gmail.com

43

01

02

03

43

01

02

03

02

farewell greeting")の parentを確認します。

3e05e6abc129077bf33d2a3b2f22c69d11681d78を確認

$ git cat-file -t 3e05e6abc129077bf33d2a3b2f22c69d11681d78
commit
$ git cat-file -p 3e05e6abc129077bf33d2a3b2f22c69d11681d78
tree b51a64ab272b1fb317739f51f85e71ebf411b2ab
parent be1eb7e8911a20d7c616d20057928d72965f23a1
author Seigo Kawamura <seigo_kawamura@example.com> 1439016695 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1439016695 +0900

adding farewell greeting

parent は、be1eb7e8911a20d7c616d20057928d72965f23a1("move from a.txt to

b.txt")となっています。

topic_nonffをmasterにマージするために、masterブランチをチェックアウトします。

masterブランチのチェックアウト

$ git checkout master
Switched to branch 'master'
Your branch is ahead of 'origin/master' by 2 commits.
 (use "git push" to publish your local commits)
$ ls -a
. .. .git b.txt

masterブランチのコミットログは以下のようになっています。

masterブランチのコミットログ

$ git log --graph --pretty=format:"%H %s"
* 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

現在masterブランチが参照している、commitオブジェクト 9a1df1574f7aa38c6ab1

d54c54432cde8a5b57d4("adding second greeting")の parentも見ておきます。

9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4を確認

$ git cat-file -t 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4
commit
$ git cat-file -p 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4
tree a88781bdbf18ee9ff43912ce0df57cbc17dfe70d
parent be1eb7e8911a20d7c616d20057928d72965f23a1
author Seigo Kawamura <seigo_kawamura@example.com> 1438931924 +0900

cocoa01@gmail.com

44

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

44

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

committer Seigo Kawamura <seigo_kawamura@example.com> 1438931924 +0900

adding second greeting

masterブランチと topic_nonffブランチが参照しているコミットは、どちらも parent

として be1eb7e8911a20d7c616d20057928d72965f23a1("move from a.txt to b.txt")

を指しています。表にすると、以下のようになります。

ブランチ ブランチの参照 コミットの parent

master 9a1df157 ("adding second greeting") be1eb7e ("move from a.txt to b.txt")

topic_nonff 3e05e6ab ("adding farewell greeting") be1eb7e ("move from a.txt to b.txt")

topic_nonffブランチをmasterブランチにマージしてみます。

topic_nonffブランチをmasterブランチにマージ

#ブランチの確認
$ git branch
 develop
* master
 topic_nonff

#topic_nonffブランチを masterブランチにマージ
$ git merge topic_nonff
Merge made by the 'recursive' strategy.
 c.txt | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 c.txt

このマージでは、Gitによってマージ先とマージ元の共通の祖先が自動探索され、マー

ジコミットが生成されます。git mergeコマンドが表示するマージ方法について、Fast-

forwardではなく、Merge made by the 'recursive' strategy.と表示されています。Gitには

いくつかのマージ戦略がありますが、ここでは、デフォルトの 'recursive'戦略を解説します。

2つのブランチ topic_nonffの参照しているコミットが、masterの参照しているコミット

を先祖としないため、共通の先祖 be1eb7e8911a20d7c616d20057928d72965f23a1

("move from a.txt to b.txt")が Gitによって探索され、2つの子孫 9a1df1574f7aa38c6ab

1d54c54432cde8a5b57d4 ("adding second greeting")と 3e05e6abc129077bf33d2a3

b2f22c69d11681d78 ("adding farewell greeting")の間で 3方向マージを行っています。

cocoa01@gmail.com

45

01

02

03

45

01

02

03

02

6dda9
Merge branch `topic_nonff`

9a1df
"adding second
greeting"

be1eb
"move from a.txt to b.txt"

master

1162a
"first greeting"

3e05e
"adding farewell
greeting"

topic_nonff

管理情報には何が起こっているでしょうか。ここでは、マージ前とマージ後の管理情報

の差分を見ていきます。まずは、masterブランチのコミットログを見てみます。

masterブランチのコミットログ

$ git log --graph --pretty=format:"%H %s"
* 6dda908edca4e4d2024d1d37a7474eff504abab4 Merge branch 'topic_nonff'
|\
| * 3e05e6abc129077bf33d2a3b2f22c69d11681d78 adding farewell greeting
* | 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
|/
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

be1eb7e8911a20d7c616d20057928d72965f23a1("move from a.txt to b.txt")から

分岐して、生成されたマージコミット 6dda908edca4e4d2024d1d37a7474eff504abab

4("Merge branch 'topic_nonff'")で収束していることが、図から読み取れます。

マージコミットとは
recursiveマージ後の管理情報の差分を見ていきます。

マージ後の管理情報の差分

$ tree .git
.git
├── ORIG_HEAD
├── index
├── logs
│ ├── HEAD
│ └── refs
│ ├── heads
│ │ ├── master

cocoa01@gmail.com

46

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

46

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

│ │
│
├── objects
│ ├── 2a
│ │ └── c5cf7d7da24e2556b9aa494fb2d6b1d09f2303
│ ├── 6d
│ │ └── da908edca4e4d2024d1d37a7474eff504abab4
│
└── refs
 ├── heads
 │ ├── master

objects/の下のマージ後の差分を見ると、わずかに 2つのオブジェクトが増えただけで

す。

差分となる 2つのオブジェクト

├── objects
│ ├── 2a
│ │ └── c5cf7d7da24e2556b9aa494fb2d6b1d09f2303
│ ├── 6d
│ │ └── da908edca4e4d2024d1d37a7474eff504abab4

commitオブジェクト 6dda908edca4e4d2024d1d37a7474eff504abab4を見てみま

す。

6dda908edca4e4d2024d1d37a7474eff504abab4を確認

$ git cat-file -t 6dda908edca4e4d2024d1d37a7474eff504abab4
commit
$ git cat-file -p 6dda908edca4e4d2024d1d37a7474eff504abab4
tree 2ac5cf7d7da24e2556b9aa494fb2d6b1d09f2303
parent 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4
parent 3e05e6abc129077bf33d2a3b2f22c69d11681d78
author Seigo Kawamura <seigo_kawamura@example.com> 1439017678 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1439017678 +0900

Merge branch 'topic_nonff'

この commitオブジェクトでは、parentが 2つになっていることに気が付きましたか？

parentが指している 2つのコミットオブジェクトは、先ほどの履歴の通り、3e05e6abc1

29077bf33d2a3b2f22c69d11681d78("adding farewell greeting")と、9a1df1574f7aa

38c6ab1d54c54432cde8a5b57d4 ("adding second greeting")です。マージコミットは

このような、分岐を束ねる役割を担います。

cocoa01@gmail.com

47

01

02

03

47

01

02

03

02

2つになった parent

* 6dda908edca4e4d2024d1d37a7474eff504abab4 Merge branch 'topic_nonff'
|\
| * 3e05e6abc129077bf33d2a3b2f22c69d11681d78 adding farewell greeting
* | 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting

ここで、重要なのは、3e05e6abc129077bf33d2a3b2f22c69d11681d78("adding

farewell greeting") と、9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 ("adding

second greeting")のコミットオブジェクトには修正が入っていないという点です。このよ

うな、Gitでは、複雑なマージであっても、1つのコミットでまとめる効率のいい管理手

法が取り入れられています。

最後に、objects/のもう 1つの差分ファイルは、treeオブジェクトです。マージによって、

b.txtとc.txtが同一ディレクトリに並びましたが、そのスナップショットを記録しています。

2ac5cf7d7da24e2556b9aa494fb2d6b1d09f2303を確認

$ git cat-file -t 2ac5cf7d7da24e2556b9aa494fb2d6b1d09f2303
tree
$ git cat-file -p 2ac5cf7d7da24e2556b9aa494fb2d6b1d09f2303
100644 blob 73670329a9741fd52674409adb06149e535988aa b.txt
100644 blob c0ee9ab00ab41be0d401f00f7a4aaf2e478f9f1e c.txt

git rebaseと管理情報
git rebaseで管理情報がどのように変更されるのかを見ていきます。準備として、先ほ

どの git merge後のmasterの状態から、git merge(recursive merge)前と同じ祖先の分岐

状態を作り出します。

masterから祖先の分岐状態を作り出す

$ git branch
 develop
* master
 topic_nonff

#masterブランチのコミットログを確認
$ git log --graph --pretty=format:"%H %s"
* 6dda908edca4e4d2024d1d37a7474eff504abab4 Merge branch 'topic_nonff'
|\
| * 3e05e6abc129077bf33d2a3b2f22c69d11681d78 adding farewell greeting
* | 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
|/
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

cocoa01@gmail.com

48

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

48

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

"adding second greeting"から rebase_mainブランチを作成
$ git branch rebase_main 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4

"adding farewell greeting"から rebase_topicブランチを作成
$ git branch rebase_topic 3e05e6abc129077bf33d2a3b2f22c69d11681d78

#作成されたブランチを確認
$ git branch
 develop
* master
 rebase_main
 rebase_topic
 topic_nonff

rebase_mainブランチの indexを 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4

("adding second greeting")に、rebase_topicブランチの indexを 3e05e6abc129077bf3

3d2a3b2f22c69d11681d78 ("adding farewell greeting")に指定しました。これで 2つの

ブランチ rebase_mainと rebase_topicの共通の祖先は、be1eb7e8911a20d7c616d200

57928d72965f23a1 ("move from a.txt to b.txt")になりました。これで準備は完了です。

ブランチ ブランチの参照 コミットの parent

rebase_main
9a1df157 ("adding second
greeting")

be1eb7e8 ("move from a.txt to
b.txt")

rebase_topic
3e05e6ab ("adding farewell
greeting")

be1eb7e8 ("move from a.txt to
b.txt")

9a1df
"adding second
greeting"

be1eb
"move from a.txt to b.txt"

1162a
"first greeting"

rebase_main
3e05e
"adding farewell
greeting"

rebase_topic

rebase_topicブランチを、rebase_mainブランチへと Fast-forwardを使って取り込むこ

とを試みます。その流れの中で、git rebaseによって、管理情報がどう変更されるかを見

ていきます。

まずは、rebase_topicブランチをチェックアウトします。

rebase_topicブランチのチェックアウト

$ git checkout rebase_topic
Switched to branch 'rebase_topic'

cocoa01@gmail.com

49

01

02

03

49

01

02

03

02

$ git branch
 develop
 master
 rebase_main
* rebase_topic
 topic_nonff

rebase_topicブランチの git rebase前のコミットログは以下のようになっています。

rebase前の rebase_topicブランチのコミットログ

$ git log --graph --pretty=format:"%H %s"
* 3e05e6abc129077bf33d2a3b2f22c69d11681d78 adding farewell greeting
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

rebase_topicブランチで、git rebaseを実行します。

rebase_topicブランチにおける rebase

$ git rebase rebase_main
First, rewinding head to replay your work on top of it...
Applying: adding farewell greeting

Applying: adding farewell greetingと表示され、コミットログが修正されたことがわか

ります。rebase_topicのコミットログを見てみます。

rebase後のコミットログ

$ git log --graph --pretty=format:"%H %s"
* 16e3f2ebee95a4f1fe3170be98872841d7992aae adding farewell greeting
* 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

163f2
"adding farewell
greeting"

9a1df
"adding second
greeting"

be1eb
"move from a.txt to b.txt"

rebase_topic

1162a
"first greeting"

rebase_main
3e05e
"adding
farewell
greeting"

cocoa01@gmail.com

50

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

50

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

rebase_topicブランチの最新のコミットを注意深く見てください。"adding farewell

greeting"というコミットメッセージは同じですが、ハッシュ値が、3e05e6abc129077b

f33d2a3b2f22c69d11681d78から 16e3f2ebee95a4f1fe3170be98872841d7992aae

に変わっています。ハッシュ値は変わりましたが、git rebaseコマンドによって、 "adding

second greeting"というコミットと、"adding farewell greeting"というコミットが一直線

に並びました。管理情報の差分を見てみます。

ブランチ ブランチの参照 コミットの parent

rebase_main 9a1df157 ("adding second greeting") be1eb7e8 ("move from a.txt to b.txt")

rebase_topic 16e3f2eb ("adding farewell greeting") 9a1df157("adding second greeting")

rebase後の管理情報の差分

$ tree .git
.git
├── HEAD
├── ORIG_HEAD
├── index
├── logs
│ ├── HEAD
│ └── refs
│ ├── heads
│ │ ├── rebase_topic
│
├── objects
│ ├── 16
│ │ └── e3f2ebee95a4f1fe3170be98872841d7992aae
│ ├── 2a
│ │ └── c5cf7d7da24e2556b9aa494fb2d6b1d09f2303
│ ├── c0
│ │ └── ee9ab00ab41be0d401f00f7a4aaf2e478f9f1e
│
└── refs
 ├── heads
 │ ├── rebase_topic

まず、rebase_topicブランチの参照が更新されています。

.git/refs/heads/rebase_topic

$ cat .git/refs/heads/rebase_topic
16e3f2ebee95a4f1fe3170be98872841d7992aae

rebase_topicブランチの参照は、16e3f2ebee95a4f1fe3170be98872841d7992aae

であることは先ほどコミットログで確認した通りです。objects/ディレクトリ以下の差分

を見ていきます。

cocoa01@gmail.com

51

01

02

03

51

01

02

03

02

16e3f2ebee95a4f1fe3170be98872841d7992aaeを確認

$ git cat-file -t 16e3f2ebee95a4f1fe3170be98872841d7992aae
commit
$ git cat-file -p 16e3f2ebee95a4f1fe3170be98872841d7992aae
tree 2ac5cf7d7da24e2556b9aa494fb2d6b1d09f2303
parent 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4
author Seigo Kawamura <seigo_kawamura@example.com> 1439016695 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1439023949 +0900

adding farewell greeting

commitオブジェクト 16e3f2ebee95a4f1fe3170be98872841d7992aae("adding fare

well greeting")が新規に作成されました。parentは、9a1df1574f7aa38c6ab1d54c544

32cde8a5b57d4("adding second greeting")となっており、祖先を変更したコミットを作

成することによって、コミットログが分岐せずにまっすぐ並ぶようになりました。このよ

うな git rebaseは、同じ内容で parentの異なる新しいコミットを作成することによって、

起点となる祖先を変更することができます。

もともとの commitオブジェクト 3e05e6abc129077bf33d2a3b2f22c69d11681d78

("adding farewell greeting")はどうなっているのでしょうか？　実はそのまま存在しています。

commitオブジェクト 3e05e6abc129077bf33d2a3b2f22c69d11681d78

├── objects
│ ├── 3e
│ │ └── 05e6abc129077bf33d2a3b2f22c69d11681d78

3e05e6abc129077bf33d2a3b2f22c69d11681d78

$ git cat-file -t 3e05e6abc129077bf33d2a3b2f22c69d11681d78
commit
$ git cat-file -p 3e05e6abc129077bf33d2a3b2f22c69d11681d78
tree b51a64ab272b1fb317739f51f85e71ebf411b2ab
parent be1eb7e8911a20d7c616d20057928d72965f23a1
author Seigo Kawamura <seigo_kawamura@example.com> 1439016695 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1439016695 +0900

adding farewell greeting

古いコミット3e05e6abc129077bf33d2a3b2f22c69d11681d78("adding farewell gree

ting")の parentは、be1eb7e8911a20d7c616d20057928d72965f23a1("move from a.txt

to b.txt")を指しています。新しいコミットの parentは、9a1df1574f7aa38c6ab1d54c54

432cde8a5b57d4("adding second greeting")となっていたのは先ほど見た通りです。

それでは、rebase_mainブランチをチェックアウトして、rebase_topicブランチをマー

ジしてみます。現在の rebase_mainブランチの状態を確認します。

cocoa01@gmail.com

52

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

52

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
中
級
編
〜

rebase_mainブランチのチェックアウト

$ git checkout rebase_main
Switched to branch 'rebase_main'
$ git branch
 develop
 master
* rebase_main
 rebase_topic
 topic_nonff

merge前の rebase_mainブランチのコミットログ

$ git log --graph --pretty=format:"%H %s"
* 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

rebase_topicブランチを rebase_mainブランチにマージします。

rebase_topicブランチを rebase_mainブランチにマージ

$ git merge rebase_topic
Updating 9a1df15..16e3f2e
Fast-forward
 c.txt | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 c.txt

Fast-forwardと表示されていることを確認してください。「git merge(non Fast-forward)」

の節と同じ分岐状態において、git rebaseを利用することによって、Fast-forwardでマージ

することができました。

マージ後の rebase_mainブランチのコミットログ

$ git log --graph --pretty=format:"%H %s"
* 16e3f2ebee95a4f1fe3170be98872841d7992aae adding farewell greeting
* 9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 adding second greeting
* be1eb7e8911a20d7c616d20057928d72965f23a1 move from a.txt to b.txt
* 1162a5173ee3a6b9dff9a1d0941a28e4656840f0 first greeting

コミットログに分岐はなく、グラフがきれいにまっすぐ並んでいます。

cocoa01@gmail.com

53

01

02

03

53

01

02

03

02

rebase_main

163f2
"adding farewell
greeting"

9a1df
"adding second
greeting"

be1eb
"move from a.txt to b.txt"

rebase_topic

1162a
"first greeting"

rebase_main

マージ後の管理情報の差分

$ tree .git
.git
├── ORIG_HEAD
├── index
├── logs
│ ├── HEAD
│ └── refs
│ ├── heads
│ │ ├── rebase_main
│
└── refs
 ├── heads
 │ ├── rebase_main

rebase_topicブランチの rebase_mainブランチへのマージは、Fast-forwardで実施され

たため、先ほど見てきた通り、参照のみが更新されます。objects/の下のオブジェクトに

は変更が発生しません。

.git/refs/heads/rebase_main

$ cat .git/refs/heads/rebase_main
16e3f2ebee95a4f1fe3170be98872841d7992aae

rebase_mainブランチの参照は、コミットログの通り、16e3f2ebee95a4f1fe3170be9

8872841d7992aae ("adding farewell greeting")となりました。

cocoa01@gmail.com

54

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

54

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

git gcと管理情報
実際に皆さんがチーム開発で利用しているリポジトリは、今まで説明した管理ファイル

の構成とは少し違っていると思います。これまで見てきた Gitの管理情報は、開発が進む

につれ、さらに効率の良い方法で管理されていきます。今までの管理情報の知識を踏まえ

て、実際にどのような方法で効率よく管理されているかを見ていきます。

リポジトリで作業するにつれて、/objectsディレクトリの下に、オブジェクトが増えて

いきますが、このままでは膨大な量のオブジェクトファイルが作成されることになります。

Gitには、オブジェクトファイルを圧縮しパックファイル（"packfile"）を作成することに

よって、より少ない容量でオブジェクトを管理する仕組みがあります。それに対して、こ

こまで見てきたオブジェクトファイルは、緩いオブジェクトフォーマット（"loose object

format"）と呼ばれます。

Gitは、git fetchや、git merge、git am、そしてプッシュ時（パックファイル転送）の実

行時に、git gc --autoという、--autoオプション付きのコマンドを実行します。この --auto

オプションは、git version 2.5時点では、6700以上のオブジェクトファイル（緩いオブジェ

クトフォーマット）か、50以上のパックファイルがある場合にのみ、git gcを実行します。

ここでは、直接 git gcを実行して、どのようにファイルが管理されるのかを見てみます。

gcの実行

$ git gc
Counting objects: 15, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (9/9), done.
Writing objects: 100% (15/15), done.
Total 15 (delta 2), reused 0 (delta 0)

git gc実行後の管理ファイルの差分は以下の通りです。多くのファイルが作成・更新さ

れています。

管理ファイルの変更差分

$ tree .git
.git
├── info
│ └── refs
├── logs

いよいよ上級編です。管理情報がどのように圧縮されているか、addや commitのコ
マンドがどのように動いているか理解を深めます。

Gitのバージョン管理の仕組みを知る　
～上級編～03

cocoa01@gmail.com

55

01

02

03

55

01

02

0303

│ ├── HEAD
│ └── refs
│ ├── heads
│ │ ├── develop
│ │ ├── master
│ │ ├── rebase_main
│ │ ├── rebase_topic
│ │ └── topic_nonff
│ └── remotes
│ └── origin
│ └── master
├── objects
│ ├── info
│ │ └── packs
│ └── pack
│ ├── pack-b124a0cc0961d0a7f27d195a38a5370fa95de3a4.idx
│ └── pack-b124a0cc0961d0a7f27d195a38a5370fa95de3a4.pack
├── packed-refs
└── refs
 ├── heads
 ├── remotes
 │ └── origin
 └── tags

.git/objects/ディレクトリの下と、.git/refs/ディレクトリの下にあるこれまで見てき

たファイルが全て消えました。まずは、.git/refs/の下を見てみます。.git/refs/以下の、

headsと remotes/originと tagsは、ディレクトリなので、refs/以下には参照を格納したファ

イルがないことがわかります。これらの参照は、新規に作成された .git/packed-refsに格

納されています。

.git/packed-refs

$ cat .git/packed-refs
pack-refs with: peeled fully-peeled
9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 refs/heads/develop
6dda908edca4e4d2024d1d37a7474eff504abab4 refs/heads/master
16e3f2ebee95a4f1fe3170be98872841d7992aae refs/heads/rebase_main
16e3f2ebee95a4f1fe3170be98872841d7992aae refs/heads/rebase_topic
3e05e6abc129077bf33d2a3b2f22c69d11681d78 refs/heads/topic_nonff
1162a5173ee3a6b9dff9a1d0941a28e4656840f0 refs/remotes/origin/master
2fbe3fe9c638172f9bdf4a264e4698d69de2715e refs/tags/version1.0
^1162a5173ee3a6b9dff9a1d0941a28e4656840f0

.git/packed-refsには、各ブランチの参照が格納されているのがわかります。先ほどの

Fast-forwardマージ後の rebase_mainの先頭が、変わらず 16e3f2ebee95a4f1fe3170be

98872841d7992aae("adding farewell greeting")を参照しています。もともと、.git/refs/

フォルダで管理されていた情報が、git gc後、.git/packed-refsにまとめて格納されたこと

cocoa01@gmail.com

56

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

56

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

がわかります。この操作は内部的には、git pack-refsによって行われています。

.git/objects/pack/以下には、パックファイルが格納されています。パックファイルのイ

ンデックスファイルを見てみます。

pack-b124a0cc0961d0a7f27d195a38a5370fa95de3a4.idx

$ git verify-pack -v .git/objects/pack/pack-b124a0cc0961d0a7f27d195a38a5
370fa95de3a4.idx
6dda908edca4e4d2024d1d37a7474eff504abab4 commit 317 205 12
16e3f2ebee95a4f1fe3170be98872841d7992aae commit 56 67 217 1 6dda908edca4
e4d2024d1d37a7474eff504abab4
3e05e6abc129077bf33d2a3b2f22c69d11681d78 commit 267 174 284
9a1df1574f7aa38c6ab1d54c54432cde8a5b57d4 commit 103 108 458 1 3e05e6abc1
29077bf33d2a3b2f22c69d11681d78
be1eb7e8911a20d7c616d20057928d72965f23a1 commit 267 174 566
1162a5173ee3a6b9dff9a1d0941a28e4656840f0 commit 209 135 740
2fbe3fe9c638172f9bdf4a264e4698d69de2715e tag 162 142 875
2ac5cf7d7da24e2556b9aa494fb2d6b1d09f2303 tree 66 71 1017
b51a64ab272b1fb317739f51f85e71ebf411b2ab tree 66 72 1088
a88781bdbf18ee9ff43912ce0df57cbc17dfe70d tree 33 43 1160
0c1ce4b2d1da852658cb88f686cd8d43c90df5e4 tree 33 44 1203
1a24d97271e9e771f2717927f9b7a0a158ecc1fe tree 33 44 1247
73670329a9741fd52674409adb06149e535988aa blob 28 35 1291
c0ee9ab00ab41be0d401f00f7a4aaf2e478f9f1e blob 9 18 1326
b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1 blob 13 22 1344
non delta: 13 objects
chain length = 1: 2 objects
.git/objects/pack/pack-b124a0cc0961d0a7f27d195a38a5370fa95de3a4.pack: ok

従来、objects/の下にあったオブジェクトファイルへの参照が並んでいます。.git/

objects/pack/pack-b124a0cc0961d0a7f27d195a38a5370fa95de3a4.idxは、参照イン

デックスを格納し、各オブジェクトの実データは zlibで圧縮され、pack-b124a0cc0961

d0a7f27d195a38a5370fa95de3a4.packに格納されています。各データがどのぐらい小

さくなっているかは、オブジェクトタイプの横に、サイズ・パックファイル内のサイズ・パッ

クファイル内のオフセットの順に、表示されています。

例えば、blobオブジェクト b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1 ("good

morning")は、もともとのサイズが 13バイトで、パックファイル内では 22バイトである

ことがわかります（※データサイズが極端に小さいと、このように、圧縮のメリットが得

られない場合があります）。

パックの効率的な格納を見るために、少し大きめのテキストをコミットして実験します。

まずは、ファイルを作成します。普通にテキストエディタで作成しても構いません。

ファイル d.txtの作成

$ git branch
* rebase_main

cocoa01@gmail.com

57

01

02

03

57

01

02

0303

#（省略）

good nightを 10回つぶやく d.txtを作成
$ for i in {1..10}; do echo "good night"; done > d.txt
$ ls
b.txt c.txt d.txt
$ cat d.txt
good night
good night
good night
good night
good night
good night
good night
good night
good night
good night

d.txtが作成されました。まずは、このままコミットします。

コミット

#d.txtをコミット
$ git add d.txt
$ git commit -m "adding good night"
[rebase_main 676b023] adding good night
 1 file changed, 10 insertions(+)
 create mode 100644 d.txt

#コミットログの確認
$ git log --graph --pretty=format:"%H %s"
* 676b02302df075fa4f7836569d4ae413c7d5c46e adding good night
#（省略）

#commitオブジェクトの確認
$ git cat-file -p 676b02302df075fa4f7836569d4ae413c7d5c46e
tree a5d9af000f84e892e6e384dae96197a24f661f47
#（省略）

#treeオブジェクトの確認
$ git cat-file -p a5d9af000f84e892e6e384dae96197a24f661f47
#（省略）
100644 blob d332a58376635708a0f763b6637791761e63c18e d.txt

#blobオブジェクトの確認
$ git cat-file -p d332a58376635708a0f763b6637791761e63c18e
good night
#（省略）
good night

d.txtのデータの blobオブジェクトは、d332a58376635708a0f763b6637791761e

cocoa01@gmail.com

58

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

58

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

63c18eです。サイズを見ておきます。

d332a58376635708a0f763b6637791761e63c18eのサイズ

$ git cat-file -s d332a58376635708a0f763b6637791761e63c18e
110

blobオブジェクトのサイズは 110バイトでした。次に、d.txtの末尾に、適当な文字列

を追加して、コミットします。

d.txtの編集を追加コミット

#d.txtの最後の行に bye bye!を追記してコミット
$ echo 'bye bye!' >> d.txt
$ git add d.txt
$ git commit -m "adding bye bye"
[rebase_main 84036e1] adding bye bye
 1 file changed, 1 insertion(+)

#コミットログを確認
$ git log --graph --pretty=format:"%H %s"
* 84036e1e4638ee5410dc23dfdb10cf83dafedca8 adding bye bye
（省略）

#commitオブジェクトを確認
$ git cat-file -p 84036e1e4638ee5410dc23dfdb10cf83dafedca8
tree 5e01ba00479820f21f04f944bb40e9a60a8fc8aa
#（省略）

#treeオブジェクトを確認
$ git cat-file -p 5e01ba00479820f21f04f944bb40e9a60a8fc8aa
#（省略）
100644 blob 9f6420eb248d65f290e20b8a6f928cebd99a9f8c d.txt

#blobオブジェクトを確認
$ git cat-file -p 9f6420eb248d65f290e20b8a6f928cebd99a9f8c
good night
#（省略）
good night
bye bye!

変更後の d.txtにあるデータの blobオブジェクトは、9f6420eb248d65f290e20b8a6f

928cebd99a9f8cでした。サイズを見ておきます。

9f6420eb248d65f290e20b8a6f928cebd99a9f8cのサイズ

$ git cat-file -s 9f6420eb248d65f290e20b8a6f928cebd99a9f8c
119

cocoa01@gmail.com

59

01

02

03

59

01

02

0303

変更前のデータを格納する blobオブジェクトのサイズは 110バイト、変更後のデータ

を格納する blobオブジェクトのサイズは、119バイトでした。ここで、git gcを実行して、

パックファイルの中身を確認してみます。

gc実行後のパックファイルを確認

$ git gc
#（省略）

$ git verify-pack -v .git/objects/pack/pack-57697f7f370e0d736da6133a8b19
f8613caf135f.idx
#（省略）
9f6420eb248d65f290e20b8a6f928cebd99a9f8c blob 119 31 1755
d332a58376635708a0f763b6637791761e63c18e blob 4 14 1786 1 \ 9f6420eb24
8d65f290e20b8a6f928cebd99a9f8c

変更後のデータを格納する blobオブジェクト 9f6420eb248d65f290e20b8a6f928ce

bd99a9f8cは、元データサイズ 119バイト、パックファイル内で 31バイトとそのまま

圧縮されてパックファイルに格納されていることがわかります。しかし、編集前の blob

オブジェクト d332a58376635708a0f763b6637791761e63c18eのサイズを見てみる

と、元データサイズは、4バイトとなり、もともとのサイズ、110バイトとはかけ離れて

います。そして、d332a58376635708a0f763b6637791761e63c18eから、9f6420e

b248d65f290e20b8a6f928cebd99a9f8cへの参照が格納されています。

ハッシュ値 blobオブジェクトのサイズ パック時のサイズ パックファイル内のサイズ

9f6420eb 119 119 31

d332a583 110 4 14

実は、パックファイルに格納する場合は、このように、git gcの直前のデータは元通り

格納し、それより前のデータは差分で格納することで、さらに効率よくデータを小さく格

納できるようになっています。今回の例では、119バイトと 110バイトの合計 229バイ

トの blobデータが、31バイトと 14バイトの合計 45バイトまで小さくなっていること

がわかります。他のバージョン管理システムよりも、Gitの格納データが小さい理由は、

このように可能な限り効率よくデータを格納する仕組みにあります。

この項では、Gitの管理がファイルを利用してどのように行われているかを見てきまし

た。複雑な操作に対する Gitの柔軟性は、このようにシンプルな手法を組み合わせること

によって、非常に効率の良い工夫された管理方法で支えられています。Gitには多彩なコ

マンドが用意されており、使いこなしていく上で、挙動が理解できないときは、管理ファ

イルやオブジェクトがどのように変化するかを見ることによって、理解を進めることがで

きます。

cocoa01@gmail.com

60

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

60

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

indexファイルの中身を覗く
Gitは、"https://github.com/git/git" で開発されています。ソースコードをちょっと覗い

て、.git/indexにどんな値が入っているのかを覗いてみます。ここでは、「git addと管理ファ

イル」時点での、.git/indexファイルを見ていきます。まず、.git/indexファイル全体の構

造は以下のようになっています。

ヘッダ

Indexへのエントリ
エントリ数分の
繰り返し

・・・

拡張 (Extends)

ヘッダ・エントリ・拡張の大きく 3つの部分からなり、エントリ部分は、インデックス

にエントリされたファイル数分だけ繰り返しとなります。今回は、「git addと管理ファイル」

時点での構成になるので、エントリ数は a.txtの 1つです。

ヘッダ（Header）

最初はヘッダ部分です。.git/indexファイルの構造のヘッダ部分は、cache.hにある

cache_header構造体です。

cache.h

#define CACHE_SIGNATURE 0x44495243 /* "DIRC" */
struct cache_header {
 uint32_t hdr_signature;
 uint32_t hdr_version;
 uint32_t hdr_entries;
};

hdrはヘッダ（header）の略です。各メンバー 4バイトずつ、CACHE_SIGNATUREに

規定されたキャッシュ署名、バージョン、エントリ数が並んでいます。この構造体の通

りにファイルに書き出されているとすると、.git/index/ファイルの 0バイト目から順に、

cache_header構造体のメンバーの値が並んでいることになります。.git/indexファイルを、

4バイトずつヘッダに沿って表示してみます。

cocoa01@gmail.com

61

01

02

03

61

01

02

0303

.git/indexのヘッダを確認

#最初の 4バイトは署名
$ hexdump -C -n 4 .git/index
00000000 44 49 52 43 |DIRC|
#次の 4バイトはバージョン
$ hexdump -C -s 4 -n 4 .git/index
00000004 00 00 00 02 |....|
#次の 4バイトはエントリ数
$ hexdump -C -s 8 -n 4 .git/index
00000008 00 00 00 01 |....|

署名は、ソース上の CACHE_SIGNATUREの defineと同じ "DIRC"という文字列が格納

され、バージョンは "2"、エントリ数は「git addと管理ファイル」時点では、"a.txt"だけ

なので "1"となっています。ここまでのヘッダは、.git/indexファイルに対して 1組のみ

格納されています。

エントリ（Entry）

ヘッダ部分に続いて、.git/indexファイルのエントリ部分を見てみます。メモリ上の

データのエントリは、read-cache.cの中で、cache_entryという構造体へ格納して管理し

ていますが、ディスク上に書き出す前に、ondisk_cache_entryへのコピーが行われ、.git/

indexファイル内の格納は、以下の ondisk_cache_entry構造体の形式にならいます。少し

だけ見やすくなるように、構造体にコメントを入れておきます。

read-cache.c

struct ondisk_cache_entry {
 struct cache_time ctime; //ステータス変更時間（秒・ミリ秒）：8バイト
 struct cache_time mtime; //更新時間（秒・ミリ秒）：8バイト
 uint32_t dev; //データのあるデバイスの ID:4バイト
 uint32_t ino; //inode：4バイト
 uint32_t mode; //モード：4バイト
 uint32_t uid; //user id：4バイト
 uint32_t gid; //group id：4バイト
 uint32_t size; // file size：4バイト
 unsigned char sha1[20]; //SHA-1 hash：20バイト
 uint16_t flags; //フラグ：2バイト
 char name[FLEX_ARRAY]; //名前：可変サイズ
};

ctimeとmtimeを格納する構造体 cache_timeは、「秒」と「ミリ秒」を格納する構造

体です。

read-cache.h

struct cache_time {

cocoa01@gmail.com

62

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

62

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

 uint32_t sec; //秒：4バイト
 uint32_t nsec; //ミリ秒：4バイト
};

.git/indexに、先頭 12バイトのヘッダに続いて、上記の構造体 ondisk_cache_entryの

メンバーの順番通りに、最初のエントリのデータが格納されているはずです。実際に、.git/

index内のエントリのデータと、構造体を照らし合わせて、どのような値が入っているの

かを見ていきます。

「git addと管理ファイル」の時点では、a.txtという 1ファイルを git addした状態です。

格納データとしての期待値は、a.txtの 1エントリのみです。

まずは、ファイルのステータス変更時間 ctimeと更新時間mtimeです。.git/indexのヘッ

ダ部分のサイズ 12バイトをスキップし、そこから cache_time構造体にならって、4バ

イトずつ見ていきます。

ctimeとmtimeを確認

#ctime ステータス変更時間：秒
$ hexdump -s 12 -n 4 .git/index
000000c 55 c0 a9 25
#ctime ステータス変更時間：ミリ秒
$ hexdump -s 16 -n 4 .git/index
0000010 00 00 00 00
#mtime 更新時間：秒
$ hexdump -s 20 -n 4 .git/index
0000014 55 c0 a9 25
#mtime 更新時間：ミリ秒
$ hexdump -s 24 -n 4 .git/index
0000018 00 00 00 00

ステータス変更時間も、更新時間も、「秒」のパラメータにのみ 55c0a925が格納され

ています。

Unixtimeを日時フォーマットに変換

#16進数から 10進数に変換
$ printf "%d\n" 0x55c0a925
1438689573
#Unixtimeを時刻フォーマットに変換
$ date -r 1438689573
2015年 8月 4日 火曜日 20時 59分 33秒 JST

16進数から 10進数に換算すると、1438689573秒です。dateコマンドの -rオプショ

ン（MacOS）を利用して、Unixtime（秒）を日付に換算すると、2015/08/04 20:59:33

となります。a.txtのタイムスタンプを、確認してみます。

cocoa01@gmail.com

63

01

02

03

63

01

02

0303

ファイルのタイムスタンプを確認

#更新時間の確認
$ ls -l a.txt
-rw-r--r-- 1 01008453 191071026 13 8 4 20:59 a.txt
#ステータス更新時間の確認
$ ls -lc a.txt
-rw-r--r-- 1 01008453 191071026 13 8 4 20:59 a.txt

どちらも、2015/08/04 20:59になっており、.git/indexに格納されている時刻と一致

します。

.git/indexに次に格納されているのは、構造体のメンバー devの 4バイトです。データ

のあるデバイスの IDを格納しています。現在まで見た、28バイト分をスキップして、29

バイト目から 4バイト分を見ます。

デバイス ID

#格納されているデバイス ID
$ hexdump -s 28 -n 4 .git/index
000001c 01 00 00 04
#10進数に変換
$ printf "%d\n" 0x01000004
16777220

.git/indexには、デバイス IDとして 16777220が格納されていました。statコマンド

の -rオプション（MacOSの場合）を使い、実際のデバイス IDを確認します。

ファイル格納先デバイス IDを確認

$ stat -r a.txt
16777220 10084559 0100644 1 969153908 191071026 0 13 1439974653
1438689573 1438689573 1438689573 4096 8 0 a.txt

デバイス IDとして格納されている 16777220と一致しました。

.git/indexに次に格納されているのは、構造体のメンバー inodeです。文字通りファイ

ルの inodeを格納しています。今まで見てきた、32バイト分をスキップして、33バイト

目から 4バイト分を表示します。

格納されている inode

#格納されている inode
$ hexdump -s 32 -n 4 .git/index
0000020 00 99 e0 cf
#10進数へ変換
$ printf "%d\n" 0x0099e0cf
10084559

cocoa01@gmail.com

64

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

64

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

inodeの値として、10084559が格納されていました。lsコマンドの -liオプションを使っ

て、inodeを表示してみます。

inodeを確認

$ ls -lin a.txt
10084559 -rw-r--r-- 1 969153908 191071026 13 8 4 20:59 a.txt

格納されている inodeと、出力された inodeのどちらも、10084559で一致しており、

正しく inodeが格納されています。

.git/indexに次に格納されているのは、モードを格納するmodeの 4バイトです。37バ

イト目から 4バイトを表示します。

mode

#modeの確認
$ hexdump -s 36 -n 4 .git/index
0000024 00 00 81 a4
#modeの 8進数換算
$ printf "%o\n" 0x81a4
100644

モードは、8進数換算で 100644として格納されていることがわかります。a.txtのパー

ミッションを確認してみます。

パーミッションを確認

#パーミッションの 8進数表示
$ stat -f '%A' a.txt
644

a.txtのパーミッションは 644となっており、格納データの下位 9bitの 8進数換算が

644となっていたことより、一致していることがわかります。「git commitと管理ファイル」

においてもモードについて触れていますが、モードの先頭 4ビットはタイプを表しており、

8進数 100000というマスクは「通常のファイル」を意味します。100000とパーミッショ

ン 644との論理和 100644は、「実行できない通常のファイル」を意味します。

続いて、41バイト目からの uid（ユーザー ID）、45バイト目からの gid（グループ ID）

の 2つの構造体メンバーを一気に見ていきます。

uidと gid

#格納されているユーザー ID
$ hexdump -s 40 -n 4 .git/index
0000028 39 c4 1d 74
$ printf "%d\n" 0x39c41d74

cocoa01@gmail.com

65

01

02

03

65

01

02

0303

969153908
#格納されているグループ ID
$ hexdump -s 44 -n 4 .git/index
000002c 0b 63 83 32
$ printf "%d\n" 0x0b638332
191071026

ユーザー IDに 969153908、グループ IDに 191071026が格納されています。lsコ

マンドを使って、a.txtに属しているユーザー IDとグループ IDを確認します。

uidと gidを確認

$ ls -n a.txt
-rw-r--r-- 1 969153908 191071026 13 8 4 20:59 a.txt

ユーザー IDに 969153908、グループ IDに 191071026が表示され、正しく .git/

indexに格納されていることがわかります。

次のメンバーは、sizeです。まずは、49バイト目から格納されているファイルサイズ

を確認します。

サイズ

#格納されているファイルサイズ
$ hexdump -s 48 -n 4 .git/index
0000030 00 00 00 0d
#10進数へ変換
$ printf "%d\n" 0x0d
13

ファイルサイズとして 13という数値が格納されていました。実際のファイルサイズを

見てみます。

サイズを確認

#サイズの確認
$ ls -n a.txt
-rw-r--r-- 1 969153908 191071026 13 8 4 20:59 a.txt

格納されている数値と同じ、13バイトであることが確認できます。

次のメンバー sha1への期待値は、a.txtのデータを格納する blobオブジェクトのハッ

シュ値、b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1です。53バイト目から 20

バイト分表示してみます。

cocoa01@gmail.com

66

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

66

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

sha1

#sha1の確認
$ hexdump -s 52 -n 20 .git/index
0000034 b1 eb 87 38 7a 92 aa 01 e2 bd 12 dd f8 a7 fa b2
0000044 8d da 14 e1

16進数を追っていくと、b1eb87387a92aa01e2bd12ddf8a7fab28dda14e1がそのま

ま格納されています。

続いては、フラグ flagです。フラグはファイルの状態管理のために利用されます。

flag

#flagの確認
$ hexdump -s 72 -n 2 .git/index
0000048 00 05

このフラグは、ファイルシステム側の管理情報ではなく、gitの管理情報となります。

cache.hで定義されている以下の定数の論理和（OR）が格納されています。

cache.h

#define ADD_CACHE_OK_TO_ADD 1 /* Ok to add */
#define ADD_CACHE_OK_TO_REPLACE 2 /* Ok to replace file/directory */
#define ADD_CACHE_SKIP_DFCHECK 4 /* Ok to skip DF conflict checks */
#define ADD_CACHE_JUST_APPEND 8 /* Append only; tree.c::read_
tree() */
#define ADD_CACHE_NEW_ONLY 16 /* Do not replace existing ones */
#define ADD_CACHE_KEEP_CACHE_TREE 32 /* Do not invalidate cache-tree
*/

今回 git addした a.txtは、git addする条件に問題がないので、「ADD_CACHE_OK_TO_

ADD」と「ADD_CACHE_SKIP_DFCHECK」の論理和が格納されています。フラグには、

その他に拡張マスクも存在していますが、ここでは説明を割愛します。

続いて、構造体のメンバー nameにファイル名が格納されています。

ファイル名

#nameの確認
$ hexdump -C -s 74 -n 6 .git/index
0000004a 61 2e 74 78 74 00 |a.txt.|

メンバー nameには、期待通り、ファイル名 a.txt（終端文字を含む）が格納されています。

今回は a.txt1ファイルのみのエントリとなるので、エントリ部分はここで終わりになり

ます。エントリ数に応じて、エントリが繰り返しされます。

cocoa01@gmail.com

67

01

02

03

67

01

02

0303

拡張（Extends）

エントリ終了後のここからのデータは、拡張（Extends）部分です。.git/indexに、拡張デー

タを持つことができるよう設計されています。「git addと管理ファイル」の段階では、拡

張データは格納されていません。拡張には署名が付いています。ファイル名に続く、4バ

イトは拡張を見分けるための署名です。

拡張の署名

$ hexdump -C -s 80 -n 4 .git/index
00000050 00 00 00 00 |....|

今回は、拡張がないので、署名にオール 0が格納されています。拡張がある場合（cached

treeまたは、resolve undo)は、署名の後に 4バイト分のデータサイズが格納され、その

後にデータサイズ分のデータが続きます。今回は、データサイズもデータも、ありません。

最後に、.git/indexの SHA-1ハッシュ値が 20バイト格納されています。

SHA-1ハッシュ

$ hexdump -s 84 -n 20 .git/index
0000054 0d 5c 15 da 94 91 56 95 00 64 83 a0 b3 ff 0a 1d
0000064 7a 90 12 7e

以上 104バイトで、「git addと管理ファイル」時点の .git/indexファイルは終わりです。

indexファイルのサイズを確認

$ ls -ln .git/index
-rw-r--r-- 1 969153908 191071026 104 8 4 21:00 .git/index

今回の事例では、1ファイルしかステージングされておらず、エントリ数も少ないた

め、非常にシンプルでしたが、ステージングされるファイルの数が増えればエントリが増

え、もう少し複雑になります。ただ、普段、意識することはありませんので安心してくだ

さい。.git/indexファイルはステージングされたファイルの情報を管理しているというこ

とがわかれば、問題ありません。

git addと commitの動きをシェルで実装して理解する
Gitは、通常利用する高レベルの機能以外に、管理ファイル自体を操作する低レベルな

コマンドが提供されています。低レベルコマンドを使って、git addと git commitを実装し、

コマンドの動きを理解しましょう。

cocoa01@gmail.com

68

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

68

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

git addを実装する

まずは git addでファイルを追加するところから考えていきます。git addでは、管理ファ

イルに対して、どのような作業が行われていたでしょうか？

• blobオブジェクトファイルを作成する

• ステージングする

という 2つの機能を一度にこなしていました。

blobオブジェクトを作成する

Gitの低レベル関数には、git hash-objectというコマンドがあります。このコマンドは、

オプション指定なしでファイル名を渡すと、指定したファイルからハッシュ値を算出します。

hash-objectでハッシュ値の算出

#ファイルの作成
$ touch new_file.txt
$ echo "it's new." > new_file.txt
#hash-objectでハッシュ値の算出
$ git hash-object new_file.txt
7262b8e6091c85b9d363f30037e4f6cdbb570b20

blobオブジェクトのハッシュ値が算出されています。実際に、オブジェクトを作成する

には、-wオプションを利用します。

hash-objectで blobオブジェクトの作成

#hash-objectで blobオブジェクトの作成
$ git hash-object -w new_file.txt
7262b8e6091c85b9d363f30037e4f6cdbb570b20
#作成されたオブジェクトの確認
$ git cat-file -t 7262b8e6091c85b9d363f30037e4f6cdbb570b20
blob
$ git cat-file -p 7262b8e6091c85b9d363f30037e4f6cdbb570b20
it's new.

blobオブジェクトが作成されました。ファイルからではなく、標準入力からもオブジェ

クトを作成できますが今回は利用しません。

標準入力からオブジェクトを作成

echo "it's new" | git hash-object -w --stdin

cocoa01@gmail.com

69

01

02

03

69

01

02

0303

ステージングする

blobオブジェクトの作成ができたら、後は、ステージングすれば、git addの動きを再

現できます。オブジェクトからステージングを行うには、git update-indexコマンドを利

用します。

update-indexコマンドで new_file.txtをステージングする

#update-indexコマンドで new_file.txtをステージングする
$ git update-index --add new_file.txt
#ステージングされたか確認する
$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
 (use "git push" to publish your local commits)
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: new_file.txt

git update-indexコマンドの、--addオプションを利用して、new_file.txtをステージン

グしています。変更の追加であれば、--addオプションは不要です。

git-add.shを実装する

ここまでで、新規ファイル追加の git addコマンドは作成できそうなので、シェルで実

装して git-add.shを実装してみましょう。git-add.shの中身は以下のようになっています。

git-add.shの中身

#!/bin/bash

#指定のファイルがあったら
if [-e $1]; then

#そのファイルの中身でオブジェクト作成
git hash-object -w $1
#ステージングする
git update-index --add $1

fi

これを、git-add.shとして保存し、実行パーミッションを付ければ完成です。エラーハ

ンドリングにも対応しておらず、ファイル修正の場合には対応していませんが、ファイル

追加してステージングするまでの動きを確認するには十分でしょう。git-add.shの動作確

認をしておきます。

cocoa01@gmail.com

70

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

70

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

git-add.shの動作確認

#初期化
$ git init
Initialized empty Git repository in /workspace/git-add-commit/.git/
#ファイルの作成
$ touch sample.txt
$ echo "sample" > sample.txt
#git-add.shの実行
$../git-add.sh sample.txt
d64a3d962e787834f9b43312cdcdb96ef357709a
#ステージングの確認
$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: sample.txt

ステージングまで行われました。最後にblobオブジェクトが作成されたかを確認します。

動作確認

#blobオブジェクトが作成された確認する
$ git cat-file -t d64a3d962e787834f9b43312cdcdb96ef357709a
blob
$ git cat-file -p d64a3d962e787834f9b43312cdcdb96ef357709a
sample

git addコマンドと同じように動作することができました！次は git commitです。

git commitを実装する

git commitで、修正差分をコミットするとき、どんなことが行われているでしょうか？

• ステージングの内容に沿って treeオブジェクトを作成する

• HEADがシンボリック参照しているブランチが参照するコミット IDのハッシュを親

とした commitオブジェクトを、作成した treeオブジェクトを使って作成する

• 作成した commitオブジェクトに HEADと、HEADがシンボリック参照しているブラ

ンチの参照を新しいコミット IDに移動

かなり多くの手続きが 1つの git commitコマンドに集約していることがわかります。1

つ 1つの動作を低レベルコマンドで実行していきます。

cocoa01@gmail.com

71

01

02

03

71

01

02

0303

treeオブジェクトを作成する

現在ステージングしている内容を元に、格納すべきワーキングディレクトリの状態を判

断してツリーオブジェクトを作成します。実際には、一連の低レベルコマンドの中で最も

簡単で、git write-treeコマンドを実行するだけで完了します。

treeオブジェクトを作成する

#treeオブジェクトを作成する
$ git write-tree
d1ac811bbf067073c4b59232eb6f39d8fc6bc2f8
#treeオブジェクトの確認
$ git cat-file -t d1ac811bbf067073c4b59232eb6f39d8fc6bc2f8
tree
$ git cat-file -p d1ac811bbf067073c4b59232eb6f39d8fc6bc2f8
100644 blob d64a3d962e787834f9b43312cdcdb96ef357709a sample.txt

git write-treeコマンドの実行の結果、treeオブジェクトが作成され sample.txtと blob

オブジェクトの参照が格納されていることがわかります。

commitオブジェクトを作成する

まず、親となるコミット IDを参照するため、現在のコミット IDを把握する必要があ

ります。現在の HEADがリファレンス参照しているコミット IDを確認するには、git rev-

parseコマンドを利用します。

コミット IDを確認

#コミット IDの確認
$ git rev-parse HEAD
7d11569398309646da20ef0c6fb012db00946a5d

commitオブジェクトを作成するためには、git commit-treeコマンドを利用します。コ

ミットコメントを入れるには、-mオプションを利用します。また、-pオプションを利用

して、親となるコミット IDを指定します。親コミット IDを指定しないと、コミット履歴

を参照したときに先祖がたどれないコミットとなってしまいます。今回は、上で調べた現

在のコミット IDに続けた履歴にしたいので 7d11569398309646da20ef0c6fb012db0

0946a5dを -pオプションで指定します。

commitオブジェクトを作成する

#treeオブジェクトを使って commitオブジェクトを作成する
$ git commit-tree d1ac811bbf067073c4b59232eb6f39d8fc6bc2f8 -m "commit
test" -p 7d11569398309646da20ef0c6fb012db00946a5d
5f973977897dabd7fe88771e293787b715255005
#作成した commitオブジェクトを参照する
$ git cat-file -t 5f973977897dabd7fe88771e293787b715255005

cocoa01@gmail.com

72

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

72

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

commit
$ git cat-file -p 5f973977897dabd7fe88771e293787b715255005
tree d1ac811bbf067073c4b59232eb6f39d8fc6bc2f8
parent 7d11569398309646da20ef0c6fb012db00946a5d
author Seigo Kawamura <seigo_kawamura@example.com> 1443933149 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1443933149 +0900

commit test

parentに、7d11569398309646da20ef0c6fb012db00946a5dが指定された commit

オブジェクトが作成されいていることを確認できました。しかし、この時点では、commit

オブジェクトが作成されただけで、HEADと、HEADが参照しているmasterブランチは、

1つ前のコミット IDを参照しています。

作成した commitオブジェクト 5f973977897dabd7fe88771e293787b715255005

がまだ参照されていません。

参照を移動する

参照を移動するには、git update-refコマンドを利用します。HEADや、ブランチのリファ

レンスを指定することで、参照を特定のコミットに移動できます。今回は、HEADおよび

HEADがリファレンス参照しているブランチを移動したいので、HEADを指定します。

参照を移動する

#参照を移動する
$ git update-ref HEAD 5f973977897dabd7fe88771e293787b715255005
#masterの参照が移動したか確認する
$ git rev-parse master
5f973977897dabd7fe88771e293787b715255005
#HEADのリファレンス参照を確認する
$ git rev-parse HEAD
5f973977897dabd7fe88771e293787b715255005
#コミット履歴を確認する
$ git log --oneline
5f97397 commit test
7d11569 Final fix for release 1.00

参照が 5f97397（"commit test")に移動していることがわかります。親のコミット

7d11569へと、コミット履歴もたどれています。

同様に、git update-refコマンドにブランチを指定することで、ブランチの参照を好き

なコミットに移動することもできますので活用してみてください。

例

#使用例
$ git update-ref <ブランチ名 > <コミット ID>

cocoa01@gmail.com

73

01

02

03

73

01

02

0303

git-commit.shを実装する

ここまでの手続きを 1つのシェルにまとめることで、git commitをトレースすることが

できます。一連のコマンドを並べ、直前の結果を次に受け渡ししながら順番に実行してい

きます。

git-commit.shの基本的な実装は以下のようになっています。

git-commit.shの実装

#!/bin/bash

#現在のステージングの状態で treeオブジェクトを作成
TREEOBJ=`git write-tree`
#HEAD現在リファレンス参照しているコミット IDを取得
CURRENTHASH=`git rev-parse HEAD`
#先ほど取得したコミット IDを親とした commitオブジェクトを作成
COMMIT=`echo $1 | git commit-tree $TREEOBJ -p $CURRENTHASH`
#作成したコミットに HEADがシンボリック参照しているブランチの参照を移動
git update-ref HEAD $COMMIT

このままでも正常系では動作しますし、git-commit.shとして保存し、実行パーミッショ

ンを付ければ完成なのですが、リポジトリにおける初回コミットでは、commitコマンド

の役割はもう少し複雑です。

• masterブランチを作成する

• 親コミットを指す parentの値は前のコミットではなく、なし、あるいは、オール 0

という作業があります。すでにブランチが 1つ以上存在し、コミットが存在するかどう

かによって多少動きを変える必要がありますので、今回は、実験的に初回コミットをする

人も多いということで、ハンドリングを少し増やします。修正した git-commit.shは以下

のようになります。

修正した git-commit.sh

#!/bin/bash

#現在のステージングの状態で treeオブジェクトを作成
TREEOBJ=`git write-tree`
#ブランチ数をカウント
NUM_OF_BRANCH=`git branch | wc -l`

if [$NUM_OF_BRANCH = 0];then
 #ブランチが 1つもない
 #親コミット IDのない commitオブジェクトを作成
 COMMIT=`echo $1 | git commit-tree $TREEOBJ`
 #masterブランチを作成
 git branch master $COMMIT
 #作成したコミットに HEADがシンボリック参照しているブランチの参照を移動

cocoa01@gmail.com

74

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

74

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

 git update-ref HEAD $COMMIT
else
 #HEAD現在リファレンス参照しているコミット IDを取得
 CURRENTHASH=`git rev-parse HEAD`
 #先ほど取得したコミット IDを親とした commitオブジェクトを作成
 COMMIT=`echo $1 | git commit-tree $TREEOBJ -p $CURRENTHASH`
 #作成したコミットに HEADがシンボリック参照しているブランチの参照を移動
 git update-ref HEAD $COMMIT
fi

修正した git-commit.shでは、ブランチの数を数えて、ブランチが存在していない場合に、

masterブランチを作成しています。HEADは、git initの時点からmasterブランチをすで

にリファレンス参照しているので、作成する必要はありません。また、ブランチが存在し

ない、リポジトリの初回コミットでは、git commit-treeの -pオプションを使用していません。

あくまで暫定対応ですが、動作はします。では、やってみましょう。先ほど、git-add.

shでステージングした sample.txtをそのままコミットしてみます。

git-commit.shの実行

#git-commit.sh実行前のステージングの確認
$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: sample.txt

#git-commit.shの実行
$../git-commit.sh "adding sample.txt"
#実行後のブランチの確認（今回は初回コミットなので masterが作成されます）
$ git branch
* master
#masterブランチの参照の確認
$ git rev-parse master
e46b50af137ce63e9a2ccc5a18f4116a69ee944f
#masterブランチをリファレンス参照している HEADの確認
$ git rev-parse HEAD
e46b50af137ce63e9a2ccc5a18f4116a69ee944f
#masterブランチのコミット履歴の確認
$ git log master --oneline
e46b50a adding sample.txt
#作成されたコミットオブジェクトの確認
$ git cat-file -t e46b50a
commit
$ git cat-file -p e46b50a
tree 30ebb81289ebdcdb08633ef3999df098c963c290

cocoa01@gmail.com

75

01

02

03

75

01

02

0303

author Seigo Kawamura <seigo_kawamura@example.com> 1443966333 +0900
committer Seigo Kawamura <seigo_kawamura@example.com> 1443966333 +0900

adding sample.txt

コミットコメント "adding sample.txt"を入れて、git-commit.shを実行しました。結果

を確認すると、初期化したばかりのリポジトリにおける初回コミットであるため、master

ブランチが作成されています。masterブランチの参照を確認すると、参照は作成された

コミット IDに移動しており、初期設定ではmasterブランチをリファレンス参照している

HEADに関しても同様に同じコミット IDが参照されています。作成されたコミットオブ

ジェクトは、parentの値を持っていません。（通常の git commitにおける初回コミットで

はオール 0の parent値が挿入されます）

例が初回コミットになってしまったので、2回目以降のコミットを、git-add.shと git-

commit.shを連続実行してみましょう。

git-add.shと git-commit.shの動作確認

#ファイルの追加
$ touch sample2.txt
$ echo "sample2" > sample2.txt
#git-add.shの実行
$../git-add.sh sample2.txt
d45470ccf4d3ee8d677f2ca51ccafec005c42ec7
#ステージングの確認
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: sample2.txt

#git-commit.shによるコミット
$../git-commit.sh "2nd commit"
#masterブランチの参照の確認
$ git rev-parse master
b4f990933bae5d6ff2c8b5a44193adf406ebc5d8
#masterブランチをリファレンス参照している HEADの確認
$ git rev-parse HEAD
b4f990933bae5d6ff2c8b5a44193adf406ebc5d8
#masterブランチのコミット履歴
$ git log master --oneline
b4f9909 2nd commit
e46b50a adding sample.txt
#commitオブジェクトの確認
$ git cat-file -t b4f9909
commit
$ git cat-file -p b4f9909
tree bf7c67bca6e13bf21b07519f885598d976e469af

cocoa01@gmail.com

76

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

76

G
it

の
バ
ー
ジ
ョ
ン
管
理
の
仕
組
み
を
知
る　

〜
上
級
編
〜

parent e46b50af137ce63e9a2ccc5a18f4116a69ee944f
author Seigo Kawamura <seigo_kawamura@r.example.com> 1443967123 +0900
committer Seigo Kawamura <seigo_kawamura@r.example.com> 1443967123 +0900

2nd commit

先ほどの実行履歴でコミットした e46b50a("adding sample.txt")の commitオブジェク

トを parentとして持つ b4f9909("2nd commit")が作成され、masterブランチの参照と、

HEADのリファレンス参照が新しいコミットに移動しています。

ひと口に git addや git commitといっても、この節で見てきた通り、内部的にはさまざ

まな処理が行われています。コマンドの内部で行われている一連の処理を理解することで、

コマンド実行時にどの部分に何が起きているかを把握し、より Gitを使いこなしていける

ように、練習として触ってみてください。

まとめ
以上で「上級編～ Git内部の仕組みを理解する、は終了です。ここで抑えておきたいポ

イントは、以下の通りです。

• Gitは Gitオブジェクトによって履歴が管理されている

• ワーキングディレクトリで見えているファイルやディレクトリの実態と異なり、リポ

ジトリはメタデータと実態にわけたオブジェクトで管理している

• 主に、メタデータ (commitオブジェクト・treeオブジェクト）とファイルの中身の管

理（blobオブジェクト）によって管理する

• 全てのオブジェクトはオブジェクトの中身に応じて SHA-1で生成された一意なハッ

シュ値を持つ

• オブジェクトの中のデータが全く同一であれば、同じハッシュ値が生成されるため、

同じオブジェクトが再利用される

• Gitは全ての変更履歴をその時点のスナップショットで保管しており、オブジェクト

間の差分管理はしていない

• コミット IDは commitオブジェクトのハッシュ値であり、タイムスタンプ・メール

アドレス等を含むため実質世界に唯一の IDとなる

• ブランチはコミットへの参照であり、HEADはブランチ参照への参照（リファレンス

参照）である

• ブランチは先頭への参照しか情報として持たず、各ブランチの履歴はコミットの

parentを親へ親へとたどる事で実現される

• recursiveマージによる統合は、複数の parentをもつマージコミットを作成すること

で実現し、他には何の変更もないシンプルな方法である

• rebaseは同じ内容のコミットを別の parentに付け替えた新しいコミットを行うだけ

cocoa01@gmail.com

77

01

02

03

77

01

02

0303

で実現される

• Indexにはワーキングディレクトリ上のファイルの情報が格納される

• git addでは、blobオブジェクトの作成とステージングの２つの操作が行われる

• git commitでは、treeオブジェクトの作成後、parentを参照しながら commitオブジェ

クトの作成を行い、作成した commitオブジェクトにブランチの参照を移動する

Git全体の運用をまかされた時に、思い通りにブランチ構成を維持したり、特定のブラ

ンチの履歴を繰り返し行われるマージを通して思い通りに維持するのは、難しいことです。

メンバーが増えていけば、トラブルもその分だけ増え、緊急のトラブルシュートや、Git

の管理におけるクリティカルな操作が求められる場面が増えてくるでしょう。その時に、

これまで通して学んできた Gitの内部構造を把握しておくことで、何が正しい処置で、何

をやってはいけないのかの切り分けが一段とクリアになってきます。この知識があれば、

低レベルなコマンドを自分で調べて、その時管理ファイルがどう変更されそうかなどを想

像できるようになっており、新しいトラブルでも動揺することなく対応できます。また、

普段のブランチの維持や履歴の変更も、ぐっと楽になっていることと思います。

一度通しで上級編を読むことができた人は、ぜひ実際に手を使いながら管理ファイルを

見ていただければと思います。Gitのブラックボックスだと思っていた部分が明らかにな

ることで、最初にもっていたイメージと、全く違った動作に見えてくるでしょう。あとは、

Gitによるバージョン管理を楽しんでください！

cocoa01@gmail.com

78

デザイン　宮嶋章文

企画・ディレクション　関根康浩

編集・DTP　株式会社リブロワークス

エンジニアのための Gitの教科書［上級編］
Git内部の仕組みを理解する

2016年 1月 19日　初版 1刷発行

著 者 河村 聖悟

発 行 人 佐々木 幹夫

発 行 所 株式会社 翔泳社（http://www.shoeisha.co.jp）

©2016 Seigo Kawamura
＊ 本書は著作権法上の保護を受けています。本書の一部または全部について（ソフトウェアおよびプログラムを
含む）、株式会社翔泳社から文書による許諾を得ずに、いかなる方法においても無断で複写、複製することは禁
じられています。
＊ 本書へのお問い合わせについては、2ページに記載の内容をお読みください。
＊ 落丁・乱丁はお取り替えいたします。03-5362-3705までご連絡ください。

ISBN 978-4-7981-4591-4

cocoa01@gmail.com

※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。
※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。
※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。

この電子書籍の全部または一部について、著作権者ならびに株式会社翔泳社に無
断で複製（コピー）、転載、公衆送信をすること、改変・改ざんすることを禁じます。
また、有償・無償にかかわらずこのデータを第三者に譲渡することを禁じます。

cocoa01@gmail.com

	表紙
	はじめに
	Section-01 Gitのバージョン管理の仕組みを知る～初級編～
	Section-02 Gitのバージョン管理の仕組みを知る～中級編～
	Section-03 Gitのバージョン管理の仕組みを知る～上級編～
	奥付

