
ai165349994311_swkt2_cover.pdf 1 2022/05/26 2:32

cocoa01@gmail.com

cocoa01@gmail.com

cocoa01@gmail.com

ii

本書を手に取ってくださった皆さんへ

　『知識ゼロから学ぶソフトウェアテスト』の初版を書いてから、はや17年。
2013年に改訂し、初版から改訂版まで毎年しっかり売れ続け17刷になりま
した。その間に筆者の周りで常に起こっていることは、「テストの仕方はわ
かったからバグが出ない仕組みを教えてくれ」でした。バグが出
てからつぶすよりは、バグが出ないようにする。まっとうな考え方です。
　そこで本書では、数ある品質の書籍の中で、唯一と思われるバグを出
さない仕組みを書きました。以下、本書の大きな枠組みをまず簡単に要
約します。

上流品質向上のためのテスト［第2章］
　この章では、上流品質とはなにか、ちまたで言われているShift Left（シ
フトレフト）というものがどういう効果をもたらすかを説明しています。

開発者テストの基本の基本［第3章］
　開発者はテスト手法について知ってるようで、実は知らなかったりしま
す。テストのプロのような品質概念の知識はいりませんが、境界値テスト
といった基本的なテスト手法は知るべきであり、それが多くの開発中のテ
ストに役立ちます。

コードベースの単体テスト［第4章］
　単体テストは全員の開発者が知っていると言うかもしれませんが、ほと
んどの開発者が本当はよく知らない、不思議な技術です。膨大なサンプル
コードが載っている書籍もありますが、本質を言い当てている書籍は少な
いと思います。本書で単体テストの本質を理解し実践力を培ってください。

cocoa01@gmail.com

iii

単体テストの効率化――楽勝単体テスト［第5章］
　プロジェクト後半でのバグを少なくするために単体テストでバグをなくし
ませんか？　また、「出荷後にバグが出るのは、システムテストでつぶすこ
とのできない種類のバグが存在するからですよ！」と言っても、どこの会社
からも返ってくる言葉は「やりたいのですが、単体テストをやっている時間
がありません」です。時間がないから単体テストをやるわけなのですが、
単体テストの領域は日本のソフトウェア開発で一番理解が欠ける技術領域
です。本書では効率的で、楽な単体テストの方法を説明します。

システムテストの自動化［第10章］
　上流でテストをすれば、下流でのテストは減っていきます。ほとんどな
くなると言っても過言ではありません。ただ日本の多くの組織で協力会社
まかせの手動のマニュアルテストをやっていたりします。「下流工程の品質
向上のための活動を労働集約的に行うよりは、労働集約なのだから手動で
はなく自動でやりましょう」という考えは、上流テストへのまず一歩という
ふうにも考えられます。その中で正しいシステムテストの自動化は、実は
大きな開発効率の改善にもなりえます。

アジャイル・シフトレフトのメトリックス［第13章］
　品質というのを定量的に示すことは非常に重要です。品質は良すぎても

（予算というものがある）、悪すぎてもいけません。アジャイル・シフトレフ
トのメトリックスもウォーターフォール時代のメトリックスが適用しにくく
なっています。アジャイル・シフトレフトに特化したメトリックスを説明し
ます。

cocoa01@gmail.com

iv

アジャイルにおける要求仕様［第14章］
　ウォーターフォールでもアジャイルでも要求仕様は重要です、その要求
仕様からどのように品質を上げるかを説明します。

cocoa01@gmail.com

v

増補・改定について

　『ソフトウェア品質を高める開発者テスト』が出版されてから1年余り、
コロナ渦の中でこの本は多彩な反響のなか増刷が決まりました。通常であ
れば、なにも文章を変えずに増刷になるところですが、アジャイルテスト
の方法論があまりにも少ないことに無学な筆者は気づきました。そして案
の定、発刊して評判は非常によかったのですが、講演や本の説明をすると、
皆様からの質問はアジャイルと結びつけたものばかりでした。シフトレフト
は正しい、アジャイルも正しい、そして同じような方法論でその開発は進
められている。希望的観測も含め。
　しかしシフトレフトとアジャイルのコンセプトは非常に異なるので、ア
ジャイルとシフトレフトを一緒くたに扱うことは非常に文章構成上難しいで
す。なので初版ではあまりアジャイルを主張せずに書きました。まあ楽を
してしまったのです。しかしやはり多くのコンサルを行う中で、アジャイル
とシフトレフトを組み合わせながらやらないと、品質が上がらないことに気
づきました。
　初版本においてはアジャイルを脇役として書いていたので、構成は非常
にシンプルで、スムーズに書けたと思っています。しかし改訂版ではア
ジャイル品質について多くの記述を入れたため、構成が複雑になっており、
読者がわかりやすく読めるかは非常に危うくなってしまいました。
　筆者の筆の力の及ぶ限り、うまくシフトレフトとアジャイルの融合を説明
したかったのですが、品質とアジャイルの関係がふわっとしており、その
定義の論文も少ないので困難を極めました。
　内容を理解するにあたっては読者の努力を求める改訂版になってしまい
ましたが、その分新しい技術や知識を入れたので、本書がきっと役に立つ
ものになると信じています。

cocoa01@gmail.com

目次

vi

本書を手に取ってくださった皆さんへ ii
増補・改定について v

第1章
はじめに 1
1.1　上流品質 2

1.2　アジャイルでの品質 6

 1.2.1 アジャイルテストとは 7

第2章
上流品質向上のためのテスト 11
2.1　上流品質活動 13

2.2　さぼる・逆らう人のための上流テスト講座 15

 2.2.1 上流品質と出荷後の品質 16

 2.2.2 上流品質と残バグのリスク 18

2.3　まとめ 22

第3章
開発者テストの基本の基本 25
3.1　開発者がこれだけは知っておくべきテスト手法 28

 3.1.1 境界値テスト 29

 3.1.2 状態遷移テスト 34

目 次

cocoa01@gmail.com

vii

第4章
コードベースの単体テスト 37
4.1　コードベースの単体テストとは 39

4.2　命令網羅（C0カバレッジ） 40

4.3　分岐網羅（C1カバレッジ） 42

4.4　よくある単体テストの間違い――コードベースの単体テスト 43

4.5　知っているようで知らないコードベースの単体テストの書き方 45

 4.5.1 一般的なテスト方法（TDD） 46

4.6　網羅率――コードベースの単体テストの成否を計測する 51

第5章
単体テストの効率化――楽勝単体テスト 55
5.1　コードの複雑度 58

5.2　 どこを単体テストすればよいか？
――単体テストやってる暇ありませんという人のために 61

 5.2.1 単体テストのやる箇所を絞る 62

 5.2.2 筆者の独自手法――ファイルを2つにぶった切る 65

 5.2.3 明確なメリット 67

第6章
機能単位の単体テスト 73
6.1　開発者がやるべき単機能のテスト 74

 6.1.1 例ソート機能の単体テスト 75

6.2　ブラックボックステスト・ホワイトボックステスト 80

cocoa01@gmail.com

目次

viii

第7章
リファクタリング 85
7.1　やはり複雑です、そのコード！　書けません、単体テスト 87

7.2　ファイルのコードのリファクタリング 89

7.3　ビッグクラスのリファクタリング 90

 7.3.1 CKメトリックス 90

7.4　複雑度を下げるリファクタリング 96

7.5　出口は1つ 99

7.6　MVC分離 100

第8章
コードレビュー 107
8.1　コードレビューとは 108

8.2　ペアプログラミング 112

第9章
統合テスト 117
9.1　統合テストのパターン 118

 9.1.1 統合テスト重視の実例 119

9.2　APIテストとAPIバグ密度の考え方 122

9.3　カオスエンジニアリング 124

 9.3.1 カオスエンジニアリングと品質＆生産性 130

cocoa01@gmail.com

ix

第10章
システムテストの自動化 133
10.1　最悪のシステムテスト 136

10.2　キーワード駆動型自動テスト 140

10.3　妄想な自動化 142

第11章
探索的テスト 145

第12章
まとめ――テスト全体のデザイン 151
12.1　単体テストなしで疲弊する組織 153

第13章
アジャイル・シフトレフトのメトリックス 155
13.1　ミューテーションテスト 158

 13.1.1 ミューテーションテストの考え方 159

 13.1.2 ミュータントの中身 161

 13.1.3 ミューテーションテストの問題点 170

 13.1.4 ミューテーション網羅率という考え方 171

13.2　ユーザーストーリと信頼性メトリックス 173

 13.2.1 オペレーショナルプロファイル 174

13.3　信頼度成長曲線のメトリックス 176

cocoa01@gmail.com

目次

x

第14章
アジャイルにおける要求仕様 183
14.1　ユーザーストーリの利点 188

第15章
開発者テストの実サンプル 191
15.1　単体テスト 194

 15.1.1 Setup――簡単なアプリを作る 194

 15.1.2 単体テストを作る 199

15.2　コード網羅測定 204

 15.2.1 コード網羅ツールの準備 204

 15.2.2 一番簡単な網羅（命令網羅） 205

 15.2.3 分岐網羅 207

最後に 211

あとがき 214

著者略歴 218

参考文献 219

索引 228

cocoa01@gmail.com

xi

図目次
図1.1　Shift Left 3

図1.2　アジャイル品質を支える4つのボックス 8

図1.3　各開発手法におけるソフトウェア開発ライフサイクル［BES17］ 10

図2.1　Capers Jonesの言う正しい状態 12

図2.2　Capers Jonesの言うカオスな状態 12

図2.3　 上流工程でのバグ発見数の割合と出荷後の品質［IPA17］ 16

図2.4　レーリー特性1 18

図2.5　レーリー特性2 20

図2.6　レーリー特性3 20

図2.7　レーリー特性4 21

図2.8　要求のバグの修正工数［KAR14］ 21

図3.1　境界値 30

図3.2　状態遷移図 34

図3.3　メモ帳ソフトウェア 34

図3.4　メモ帳ソフトウェアの状態遷移 35

図4.1　オリジナルのフォルモデルソフトウェア 38

図4.2　命令網羅の抜け 41

図4.3　分岐網羅 43

図4.4　入出力処理 44

図4.5　赤・緑・リファクタリングのサイクル 47

図4.6　テスト結果（失敗） 49

図4.7　正しいソースにしてみる（成功） 49

図4.8　Hewlett Packard社におけるコード網羅率の例 52

図4.9　Motorola社におけるコード網羅率の例 52

図4.10　Googleにおけるコード網羅率の例 53

図5.1　フローチャート 60

図5.2　2：8の法則 63

図5.3　Hotspotの考え方 64

図5.4　コード分析とアクション 66

cocoa01@gmail.com

目次

xii

図5.5　下流テスト費用の削減例 68

図5.A　 ブラックボックステストとホワイトボックステストの定義 72

図6.1　ソート機能 75

図6.2　同姓でのソート 77

図6.3　年齢でのソート 78

図6.4　複雑なデータのソート 79

図6.5　ホワイトボックステストとブラックボックステスト 82

図7.1　単体テストの流れ 88

図7.2　クラスの抽出 94

図7.3　バグだらけのビッグクラスの抽出 95

図7.4　プログラムサイズと複雑度・労働時間の関係 98

図7.5　品質が担保されないカオスアーキテクチャ 101

図7.6　品質が担保されるアーキテクチャ 102

図7.7　Viewのテストは苦手 103

図8.1　一般的なプルリクエスト 110

図8.2　品質を考えたプルリクエスト 110

図8.3　単体テストの圧倒的なテストスピード 111

図8.4　 ペアプログラミングと一人での
プログラミングでのプロジェクト完了時間の差 114

図8.5　 ペアプログラミングと一人での
プログラミングでのテストケースの成功値 115

図9.1　統合テストアプローチ 119

図9.2　少し乱暴だけど、統合テストのしやすいアーキテクチャ 120

図9.3　Pre-conditionテストアプローチ 121

図9.4　APIテストでの境界値テスト 122

図9.5　AWS上のカオスエンジニアリングツール 125

図9.6　機能要求と非機能要求 128

図9.7　アジャイル開発におけるシステムテストの姿 130

図9.8　プロジェクトの人数の増加と欠陥数 131

図9.9　チームの人数と生産性およびその効率 131

図10.1　理想的な自動テスト（再掲） 134

図10.2　残念な日本の典型的な自動化挫折パターン（管理職の妄想） 135

cocoa01@gmail.com

xiii

図10.3　Dorothy Grahamのレベル定義［DOR19］ 138

図10.4　キャプチャー・リプレイツールの問題点 139

図10.5　キーワード駆動テスト 140

図10.6　キーワード駆動テストをするUI 141

図10.7　自動化が継続されない典型的なパターン［ISHI14］ 142

図10.8　典型的な自動化挫折パターン（管理職の妄想） 143

図11.1　Viewの部分は探索的テスト（再掲） 147

図11.2　Race Condition 150

図12.1　バグを見つけるべき順序（間違っている組織） 152

図12.2　単体テストの圧倒的なテストスピード（再掲） 153

図12.3　バグを見つけるべき順序（疲弊した組織） 154

図13.1　アジャイル品質を支える4つのボックス（再掲） 157

図13.2　定常状態 160

図13.3　問題のないケース 160

図13.4　問題のあるケース 161

図13.5　テスト網羅リポート 166

図13.6　テスト結果詳細リポート（失敗） 167

図13.7　テスト結果詳細リポート（成功） 168

図13.8　State of Mutation Testing at Google［PET18］ 171

図13.9　ユーザーストーリとオペレーショナルプロファイル 175

図13.10　旧来のウォーターフォールでの信頼度成長曲線 177

図13.11　信頼性の本質 178

図13.12　信頼度成長曲線 180

図14.1　Kent Beckのストーリカード 185

図14.2　Kent Beckのストーリカードの図［SAS99］ 186

図14.3　Kent Beckのストーリカード（ユースケース） 187

図14.4　ウォーターフォールモデルの要求バグの費用［KAR14］ 189

図15.1　Empty Activity作成 195

図15.2　フォルダー構造 195

図15.3　 テストピラミッドの階層
（Androidデベロッパーのドキュメントより）［GAD21］ 197

図15.4　簡単なコードを追加 199

cocoa01@gmail.com

目次

xiv

図15.5　 テスト実行1――「calc」を右クリックして
「Go To」→「Test」を選択 200

図15.6　 テスト実行2――「JUnit」のバージョンを選択し、
「plus」のチェックボックスをチェック 200

図15.7　 テスト実行3――「.../app/src/test/java/com/example/empty」
ディレクトリを選択 201

図15.8　テスト実行4――フレームの作成 201

図15.9　テスト実行5――失敗テストの記述 202

図15.10　テスト実行6――失敗テストの実行 203

図15.11　テスト実行7――実行結果 203

図15.12　JaCoCoの設定 205

図15.13　 単体テストの結果保存フォルダー
（empty/app/build/reports/coverage/debug） 207

図15.14　 単体テストの結果
（empty/app/build/reports/coverage/debug/index.html） 207

図15.15　単体テストの結果（分岐あり） 209

図A.1　経営がソフトウェア開発に求める像 212

図A.2　実際のソフトウェア開発 212

cocoa01@gmail.com

1
はじめに

上流品質

アジャイルでの品質

1.1

1.2

cocoa01@gmail.com

2

第1章　はじめに

　まず本書の骨子となる部分を定義したいと思います。定義と聞いて重苦
しくなるのはわかりますが、やはり方向性を明確にしないと理解が難しいの
で、ちょっとつまらないかもしれませんが、読んでみてください。もちろん
現場で単体テストだけ困ってるんだ！　みたいな人は読み飛ばし、各テク
ニックの章を読んでいただいてもけっこうです！

1.1

上流品質

　「上流品質」という言葉がよく使われます。そしてなぜかそれが大事なこ
とのようにあちこちの研究会などで話されています。「上流品質ってなん
だ？」と昔は思っていましたが、今はなんとなく理解できます。
　筆者は多くのテスト技術をアメリカで学びました（まあ日本食が恋しい
からと言って、アメリカから逃げ帰ってしまいましたが）。英語でDevelopers
Test, Requirement Quality（開発者テスト、品質要求）という言い方はし
ますが、上流品質という言い方はあまりしません。ところが、なぜか日本
ではいつも上流品質という言葉が品質のトピックとされます。それは強い
て言うならShift Left（シフトレフト）です。しかし、Shift Leftがそれほど
アメリカで使われるかと言えば、日本の上流品質という言葉に比べるとあ
まり使われていないような印象です。

　Shift Leftという言葉を聞き慣れない方に軽く説明すると、図1.1のよう
に品質の向上活動を設計コーディングフェーズにもっていくという活動で
あり、その結果により様々な品質面のメリットがあります。もちろんその

cocoa01@gmail.com

3

11. 上流品質

様々なメリットは後々紹介します。

計画・設計 開発・ビルド テスト
デプロイ・
リリース

品質向上
度合い Shift Left

モデル
従来の品質
モデル

図1.1　Shift Left

　日本のソフトウェアの一番の問題は、要求から設計からコーディングか
ら、すべてのフェーズで起こったバグを、最終工程のテストでつぶそうと
することに起因します。筆者はすでに老害の領域に入る古参のソフトウェ
アエンジニアですが、いつの時代からか、もしくはどこかのソフトウェアド
メインからか、バグは最後につぶすようになった気がします。

　筆者が以前の職場である米・Microsoftから日本に戻ったとき、なぜこん
なにソフトウェア開発スタイルが遅れているのか、なぜ開発者は自分の書
いたコードに対して無頓着なのかと驚きました。

　ソニー時代、そしてソニーを辞めてからも品質コンサルタントをやってき
ましたが、幸か不幸か、おそらく日本でもまれな上流品質を向上させるコ
ンサルタントをやっています。一般的には品質なりテストなりの専門性を持
つ人は、ソースコードを見ない、もしくは見慣れていない、ということがあ
ります。そういった人は、バグ曲線を見たり、「テストケースが足りません
ね～」なんて言ったりします。

cocoa01@gmail.com

4

第1章　はじめに

　ただ、あまり筆者はこの手の品質改善のやり方は好きではありません。
人間が要求仕様を作成し、その要求仕様の10倍以上のソースコードを人間
が書いて、そのソースコードがダメダメだからバグが出ると筆者は考えて
います。

　そのため、いつも品質が上がらない製品について相談を受けるときはま
ず「ソースコード見せてください」と言います。まれにお客さんによって
は、「契約上でソースは見せられないんですが、それ以外の部分で品質を見
ていただけないでしょうか？」と言われることがありますが、当然そういう
仕事は受けません。氷山の一角でしか品質を判断できないからです。要求
仕様が立派でも、ソースコードが汚いプロジェクトはいくらでもありま
す。200行一切コメントがないソースコードや、if文の中にswitch文があっ
てそのcase文の中にswitch文がある等々。

　先に述べたように、品質コンサルタントでも、ソースコードをバリバリ読
める人がいるかというと、日本ではその数は非常に少なく、片手で収まる
ほどではないかと思います。短い時間で多量のソースコードを読み解き

（もちろんツールも使いますが）、その膨大な（たいてい100万行以上の）
ソースコードの中で、なにがダメかを特定するのは難しい技術であり、並
の開発者にはできません。もちろん、ある程度優秀な人が訓練を積めばで
きますが、そういう優秀な人はたいてい品質領域ではなく、開発の領域で
バリバリプログラムを書く仕事に就くものです。

　筆者の才能はないかもしれませんが（でも努力はしました、日本で一番
様々なソースコードを見ているという自負はあります）、膨大なソースコー
ドの中から、その組織の根本的な問題を見出すスキルを長年のコンサル的

cocoa01@gmail.com

5

11. 上流品質

な仕事から習得しました。その技術を自分一人の中で閉じるのは、個人的
にはあまりに寂しいものです。そこで、本書でその技術の一面を、これか
らソフトウェア品質を向上させたいというエンジニアに開示します。

　Microsoft、SAP、ソニーと一貫して上流品質の職に従事してきたレアな
存在としても本書を書き進めたいですし、これまで貴重な経験もしてきて、
良くも悪くも一流の会社を渡り歩いてきた知見を形にしたいと考えました

（嫌な自慢話と思う人もいるかもしれませんが……）。今もって世界を代表
する企業で経験した上流品質の改善活動を、読み物として読んでいただい
てもよいでしょう。

　最初に本書の目的は2つあります。

●Shift Leftすること（Agileで品質を担保すること）
●楽をすること

　上流品質を向上（Shift Left、もしくはAgileでの品質担保）させるには、
やはりそれなりのテクニックが必要です。しかし、そのテクニックが包括的
に書かれている本は少ないですし、また、高等教育機関でも教えられてい
ません。そのため、本書の内容が、上流品質の向上を求めている開発エン
ジニア、テストエンジニアにとって少しでも助けになればと願っています。

　市場問題を起こすと、どの組織でも再発防止活動をします。その防止策の
多くは、「レビューを追加する」「単体テストをちゃんとやる」的なものだっ
たりします。しかし、多くの組織において再発防止活動は反省文で終わり、
再度同じような市場問題を起こします。なぜなら、上流品質の向上というも

cocoa01@gmail.com

6

第1章　はじめに

のは、大きな活動であり、予算や人員が多く必要な活動であると考えられて
いるからです。なので、上司もエンジニアも、「まあ反省会では、ああ言っ
たけど、現実的にはムリだよね！」感を暗黙の了解として、反省会のアク
ションアイテムは遂行されません。そして、毎年それが繰り返されるのです。

　本書では「コストが増加しない」「人員を増員しない」という状況でも上
流品質を上げる活動を提言します。じゃなければ皆さんやらないですよね？

1.2

アジャイルでの品質

　アジャイルの品質とはなんでしょうか？　たぶん真剣に考えたことがある
人は少ないのではないでしょうか？　筆者も本書を書く前まではなんとなく
ぼんやりとしかイメージしてなかったのでここで明確化したいと思います。

　まずアジャイルとはなにかということを品質視点で紐解いていきましょ
う。一番わかりやすいScrumの手法を提案した原典をもとに考えてみたい
と思います［TAK86］。Scrumとは、

●不安定な状態を保つ（Built-in insability）
●プロジェクトチームは自ら組織化する（Self-organizing project teams）
●開発フェーズを重複させる（Overlapping development phases）
●マルチ学習（“Multilearning”）

cocoa01@gmail.com

7

12. アジャイルでの品質

●柔らかなマネジメント（Subtle control）
●学びを組織で共有する（Organizational transfer of learning）

だそうです。さらに、この文献には「Multidisciplinary team whose members
work together from start to finish.」と書いてあるのですが、品質の観点か
ら筆者はこの一文が一番重要だと思っています。多彩な機能を持つチーム
が一緒に初めから終わりまで作業する。テスト担当者も開発者も初めから
最後まで一緒に作業する。コーディングフェーズは開発者が、コーディン
グが終わったらテスト担当者がテストではなく、コーディングしながらテス
トするのがScrumだと筆者は理解しています。そういう意味ではシフトレ
フトとScrumは大枠で言えば似ています。シフトレフトは開発で出たバグ
は開発中に見つけるのですから。

マルチ学習（“Multilearning”）：Scrumではマルチな学習は必要になり
ます。チームで一丸となって取り組むのですぐ隣の人がなにをやってるの
かを理解する必要がありますし、たとえば隣の人が非常に忙しければその
人を手伝う必要があります。本書を読んで品質・テストについて開発者の
皆さんが学んでいるということはScrum的には正しい行動になります。逆
にテスト担当者が開発スキルを理解し、リファクタリング指南をすることも
重要なマルチ学習になります。このようにScrumの基本を理解しつつ臨機
応変に品質の担保をチームで行うのがアジャイルの品質担保だと考えます。

アジャイルテストとは

　筆者が考えるアジャイルテストとは、図1.2に示すような概念の定義が必
要だと思います。

1.2.1

cocoa01@gmail.com

8

第1章　はじめに

開発者の品質
フレームワーク

開発者の具体的な作業指針
（上記フレームのブレークダウン）

テスト担当者の
品質フレームワーク

テスト担当者の具体的な作業指針
（上記フレームのブレークダウン）

図1.2　アジャイル品質を支える4つのボックス

　4つのボックスをアジャイルという短いライフサイクルの中で満たさなけ
ればなりません。ここでなぜ4つもボックスが必要かを少し述べてみます

（ちとつまらない話ですがw）。

　アジャイルでは開発者とテスト担当者でタッグになって同じイテレーショ
ンの時間内に品質担保をしなければなりません。単体テストもユーザース
トーリに対する品質も、開発者だけで品質の良いソフトウェア開発を成し
遂げるのは難しいと考えます。

　ウォーターフォールモデル（Vモデル）では、開発者はテスト担当者に品
質の責任を押し付けることが可能でしたが、アジャイルではそうはいきま
せん。品質の活動や費用は少なく見積もっても半分以上は開発チーム側に
シフトしていきます。シフトレフトという言い方でもいいですが、さらに二
週間とかいう時間の制約があるシフトレフトになります。なので、まず開発
者とテスト担当者という2つの役割分担というボックスが必要になります。
開発者がなにをやって、テスト担当者がなにをやるとか、ユーザーストー
リに対してどういったアプローチをするとか、非機能部分のテストはどうす

cocoa01@gmail.com

9

12. アジャイルでの品質

るとか、探索的テスト（詳細は第11章を参照）はするのしないのとか。テ
スト担当者にとっておなじみのIEEE 829（テスト計画書）的なものです。

　次は作業指針というボックスについての説明です。開発者の具体的な作
業指針は、どのようにメトリックスを達成するかの具体的なアクティビティ
を定義します。基本的にはデータに基づいた品質活動が常に重要だと筆者
は考えます。開発者テストではコード網羅率を何％達成すべきで、コード
品質（複雑度やCKメトリックス（詳細は第7章を参照））はどのように達
成するか等々のゴールとして定義されたメトリックスを達成するために、な
にを行うかを定義します。

　テスト担当者の具体的な作業指針は今後一番難しくなる領域だと思いま
す。なぜなら、スクラム・アジャイルにおいてどのようにシステムテストで
バグを見つけるかが定義されていないからです（図1.3参照）。開発者が品
質をどう上げるかは定義されていますが。

　それでは今までウォーターフォールモデルでやっていたシステムテスト
は必要ないのでしょうか？　そこまで割り切れる組織はまだまれだと思って
います。やはり最終工程でソフトウェアを触っているとバグが見つかりま
す。ですからアジャイルでも品質データを達成目標とした、アジャイル用
のシステムテストが必要になるかと考えます。他にもユーザーシナリオから
テストケースを抽出してイテレーション期間の中で行うことも重要です
し、2週間という短い期間で終了するにはもう探索的テストしかテスト手法
は残ってないような気もします（詳細は第11章を参照）。

cocoa01@gmail.com

10

第1章　はじめに

Adaptive
software
development

Scrum

Project management

Covered

Not covered

Process

practices/activities/
workproducts

Rational unified
process

Pragmatic
programming

Open source
software

Feature-driven
development

Extreme
Programming

Dynamic systems
development
method

Crystal family of
methodologies

Concept
creation

Requirements
specification

Design Code Unit test Integration
test

System
test

Acceptance
test

System
in use

Agile modeling

図1.3　各開発手法におけるソフトウェア開発ライフサイクル［BES17］

アジャイルにおいてはシステムテストの活動が定義されていな
い、ゆえにシフトレフトの活動は必須であり、なおシステムテ
ストですべき活動は自組織で定義しなければならない

　アジャイルにおいては、データに基づいた（メトリックスベース）のシス
テムテストを自組織で決めなければなりません。ウォーターフォールモデル
でバグの数をライフサイクル全体で数えて、バグの数が寝てきたな～、そ
れではリリースしよう！　なんて会話は今後一蹴される世界になります。そ
ういう意味ではシステムテストをどうやるかより、どう定量的に計測するか
が重要で、本当の意味での信頼度成長曲線を書く必要があると思っていま
す（信頼度成長曲線の詳細のついては第13章を参照）。

cocoa01@gmail.com

2
上流品質向上の
ためのテスト

上流品質活動

さぼる・逆らう人のための上流テスト講座

まとめ

2.1

2.2

2.3

cocoa01@gmail.com

12

第2章　上流品質向上のためのテスト

　先に述べたように、日本で定説化・定型化されている、すべての工程の
バグをシステムテストで解決しようとすると、絶対にうまくいきません。も
ちろんアジャイルで、最後のイテレーションですべてのバグをシステムテ
ストでみつけようとすることも。Capers Jones［JON08］という世界的に著名
な学者もカオスな状態になると説いていますし、皆さんも体感しているで
しょう（図2.1・図2.2）。

バグの発生
した時点

要求 設計 コーディング テスト 保守

バグが発見
された時点 要求 設計 コーディング テスト 保守

図2.1　Capers Jonesの言う正しい状態

バグの発生
した時点

要求 設計 コーディング テスト 保守

バグが発見
された時点 要求 設計 コーディング テスト 保守

カオスな状態

図2.2　Capers Jonesの言うカオスな状態

cocoa01@gmail.com

13

21. 上流品質活動

　なにより製品開発のピークを後半に作ることは（Shift Right）、期日通り
に製品を出荷するという意味でもリスクをはらんでいますし、突然最後の
フェーズでテスト部隊（たいてい協力会社）が入ってきて、無計画に操作
し、バグをたくさん出すというのは健全な製造業として正しい姿ではありま
せん。

　工学において機械設計、電気設計もそんな無茶なことはやっていません。
たとえば、バイクが設計書通りにできあがっているか否かを、試作のバイ
クをいきなり乗り回し、「あー、ここ設計通り作られてないですね！」なん
ていう機械設計製造があったら、あぶなっかしくてしょうがありません。部
品一つ一つの信頼性を事前にチェックし、設計書通りにできあがるかを確
認していってから、組み立て後のチェックを行います。しかし、ソフトウェ
ア業界では、下流工程においてソフトウェア設計はおろか、簡単なコード
も書けない協力会社の人がたくさんやってきて、できあがったものをデタラ
メに操作し、バグを出すのは日常の光景だったりします。

　ほんと日本のソフトウェア開発現場はヤバい。

2.1

上流品質活動

　まず上流品質を上げるための活動をざっくり見てみましょう。まあイコー
ル本書の目次となるわけですが。

cocoa01@gmail.com

14

第2章　上流品質向上のためのテスト

品質向上 = システムテストをちゃんとやる

　先に説明したように、あまり成熟しない組織ほど上記のような図式で考
えています。本書では、そのような方々のために、上流品質の担保につい
ていくつかの提案をしていきます。

●要求仕様・ユーザーストーリの明確化
●クラスや関数構造をシンプルに保つ
●単体・統合テストの実行
●レビューの実施

それらの品質の側面を考慮し素早く実行する！

　それだけのことです。それをしっかり実行すれば、出荷間際の休日出勤
や、再現できないバグをチーム一丸で苦労して再現させ修正したり、最後
の最後で修正したバグがエンバグで再度ビルドしなおして出荷したりなど、
いわゆるエンジニアリング作業で嫌なことはかなり減ります。このことを本
書で詳しくゆっくり説明していきます。

cocoa01@gmail.com

15

22. さぼる・逆らう人のための上流テスト講座

2.2

さぼる・逆らう人のための
上流テスト講座

　前節を読み、

そうだよねー！　「要求仕様やユーザーストーリの明確化」「クラスや
関数構造をシンプルに保つ」をしなきゃ！

というエンジニアもいると思いますが、

「単体・統合テストの実行」「レビューの実施」、そんなことはわかって
るよ、上流でやるのが正しいのも。でも忙しくてできないじゃん！

というエンジニア（逆らうエンジニア）もかなりいます。多くの組織で……。

■マネジメントは上流で品質を担保したいが、部下のエンジニアリング
部門が乗り気ではない。すぐ彼らは「忙しい！」と言うので、マネジ
メントとしてはあきらめかけている。

■エンジニアも上流で品質を改善したいが、忙しくてそれどころではない。

　そんなジレンマを多くの組織で抱えているのではないでしょうか？

cocoa01@gmail.com

16

第2章　上流品質向上のためのテスト

上流品質と出荷後の品質

　忙しいと言って逆らう人々を説得
したいので、まず図2.3［IPA17］を見
ていただけないでしょうか？ これは
独立行政法人情報処理推進機構から
出てきた数値で、あきらかに上流で
品質を担保したほうが、出荷後の品
質は上がると書いてあります。※1

　また、そのゴールとしては上流工程では85%以上のバグを発見できれば、
たいていのプロジェクトが大きなスケジュール遅れや、出荷後の致命的な
バグの発見はないと筆者は考えます。85%のバグを検出するのは正しい
コーディングだけではダメで、要求仕様、さらに設計段階でのバグの検出

（正しい設計への熟慮）が必要です。

　なにを言わんとしているかというと、いくら後半工程でバグを見つけて
も、出荷後の不具合が減るかどうかはおのずと限界がある、ということで
す。ある種の（集合体とも言えるかもしれない）バグというのは、システ
ムテストでは見つからないことが証明されています。表2.1に示すように統
合テストで見つかるバグは多くて40%。システムテストで見つかるバグは

※1　 「品質が良い」としたグループは発生不具合密度が0.02件/KSLOC未満、「品質が悪い」
としたグループは発生不具合密度が0.02件/KSLOC以上。KSLOC（キロソースライン）
はKilo Source Lines Of Codeの略で、ソースコードの行数が1,000行のこと。

2.2.1

100％

50％

0％

85 ％

出荷後品質が良い

上
流
工
程
で
の
バ
グ
発
見
数
の
割
合

66 ％

出荷後品質が悪い

図2.3　 上流工程でのバグ発見数の割合と
出荷後の品質［IPA17］※1

cocoa01@gmail.com

17

22. さぼる・逆らう人のための上流テスト講座

多くて55%。大規模のベータテストで60～75%のバグが見つかりますが、
大規模ベータテストなしでは（普通の製品は大規模ベータテストは行わな
い）、テストだけではかなり広いエリアのバグを見逃します。

表2.1　Beizerのバグ検出［BEI90］※2

QA活動の種類 （Activity） レンジ
カジュアルなデザインレビュー
Informal design review 25%～40%

フォーマルデザインインスペクション
Formal design inspection 45%～65%

インフォーマルなコードレビュー
Informal code reviews 20%～35%

カジュアルコードインスペクション
Informal code inspection 45%～70%

モデル化やプロトタイプの作成
Modeling and prototyping 35%～80%

個人的なコードチェック
Personal desk-checking of code 20%～60%

ユニットテスト
Unit test 15%～50%

新機能のテスト
New function （component） test 20%～35%

統合テスト
Integration test 25%～40%

回帰テスト
Regression test 15%～30%

システムテスト
System test 25%～55%

小規模のベータテスト（10サイト以下）
Low-volume beta test（< 10site） 25%～40%

大規模のベータテスト（1000 サイト以上）
High-volume beta test（> 1000site） 60%～75%

※2　 古い文献だが、Capers Jones［JON08］や、2004年に書かれたSteve McConnellの書籍
『Code Complete』［MCC04］にも引用されているので、それなりの価値のあるデータである。

cocoa01@gmail.com

18

第2章　上流品質向上のためのテスト

上流品質と残バグのリスク

　上流でバグをつぶさないと、多くのバグを後半の工程で見つけることに
なるため、その網の目をくぐり抜けて、出荷後にバグを顧客に見つ
けられてしまうというリスクがあります。

　ソフトウェア工学において、この開発工数と摘出されるバグの関連性は、
図2.4のような特性を持つことが多いです。たとえば、Putnam［PUT05］が次
のように言っています。

早期のコードインスペクション
、レビュー、繰り返し

型開発、周期的構築などに重点
をおくと欠陥摘出曲線

は開発の初期（すなわち左側）
に移動する

Lawrence H. Putnam

時間軸

人員

ソースコードの開発率

摘出されるバグ数

出荷日

図2.4　レーリー特性1

2.2.2

cocoa01@gmail.com

19

22. さぼる・逆らう人のための上流テスト講座

　まさに金言です。シフトレフト的でもあるし、アジャイルならイテレー
ション期間内に致命的なバグはある程度つぶしておく必要があります。ア
ジャイルで各イテレーションですべてのバグをつぶす必要はありませんが

（当然次のイテレーションでユーザーストーリが変わる恐れがあるので）、
単体テストを書いている以上、単体テストで見つけられる致命的なバグは
つぶすべきだと思います。
　避けるべき事態は、コーディング工数に比例して、またプログラム量に
比例してエラーを作り込み（当然単位行数当たりのバグ混入率はどの組織
も同様なので）、最後にレビューやインスペクションを十分に実施すること
なく、テスト開始し大部分のエラーは統合テストやシステムテストで見つけ
ることです。ここで怖いのは、次の2点です。

●プロジェクトの後半でバグをつぶすコストは、前半のコストの数倍か
かる→効率が悪い=お金がかかる

●プロジェクトの後半でバグをつぶすと、つぶしきれず出荷後のバグに
なるリスクがある

　プロジェクトの後半のシステムテストで多くのバグを見つけると、図2.5の
ように出荷日以降にバグが出ることがあり、それはラッキーかアンラッキー
に依存します。前回うまくいったからって、今回うまくいくとは限りません。

cocoa01@gmail.com

20

第2章　上流品質向上のためのテスト

時間軸

摘出されるバグ数

ここでテストを止めるので
さらにバグが市場流出する
可能性がある

運が悪いと出荷後に
多くの不具合出荷日

図2.5　レーリー特性2

　もし単体テストやレビュー、インスペクションを十分したらどうなるかと
いうと、図2.6のようになります。

時間軸

人員

ソースコードの開発率

摘出されるバグ数

出荷日

図2.6　レーリー特性3

　ぱっと見では、これ（図2.6）とレーリー特性1（図2.4）のグラフの形は
変わらないかもしれませんが、実態としてはかなり異なるものです。レー
リー特性2（図2.5）の最悪のシナリオが成り立ちません。レーリー特性3

（図2.6）では、たとえシステムテストの後半にバグが発見されたとしても、

cocoa01@gmail.com

21

22. さぼる・逆らう人のための上流テスト講座

プロジェクト期間内なので、市場バグ発生になりません。Shift Leftによる
効果です（図2.7）。

摘出されるバグ数

時間軸 出荷日

万が一システムテストで不測なバグが
発見されても、プロジェクト期間なの
でパニックにならず修正ができる

図2.7　レーリー特性4

　さらにバグの修正にかかる工数が開発ステージに依存するのは周知の事
実です（図2.8）。

1 3
10

100

要
求

ア
ー
キ
テ
クト

シ
ス
テ
ム
テ
スト

出
荷
後

図2.8　要求のバグの修正工数［KAR14］

cocoa01@gmail.com

22

第2章　上流品質向上のためのテスト

　図2.8のKarl Wiegersだけではなく、Capers Jonesも開発ステージが1進
むと修正工数が倍になると言っています※3。単体テストで見つけられるバグ
が統合テストで見つかればコストは倍になるといったように。

　システムテストに依存したプロジェクトにレーリー特性を当てはめると、
ソフトウェアテスト工学的にも、そして統計学的にも、ある確率で出荷後
に確実に致命的なバグが発生します。

2.3

まとめ

　本章は重要な章なのでまとめを書きます。

理論的に証明されている
上流テストをしない = 出荷後のバグが発生する

●上流テストをしなければ（もしくはイテレーション内でしっかりした
テストをしなければ）、下流テストをいくらしても大きなリスクを持っ
て出荷することになる

※3　 Capers Jonesが来日した際、一緒に食事をしたときに言っていた。

cocoa01@gmail.com

23

23. まとめ

●上流テストをしなければ、多くのバグを後半でつぶすことになり、出
荷日を優先することにより、ある確率でつぶしきれないバグが残る可
能性がある

●同じバグを上流工程でつぶす場合と、下流工程でつぶす場合には下流
工程での場合にはコストが数倍になる。プログラミングのできないコ
ストの安いテスト担当者をシステムテストフェーズで雇うことのメ
リットは皆無である。バグ1件当たりの発見・修正コストが高くなる
●最終段階の致命的バグ、もしくは出荷後のバグによるプロジェクト混
乱コストが一番高いのはプロジェクトに関わる全員がわかるはずで
ある

　上流でテストしないと、致命的な市場バグが発生し、開発コストが余計
かかります。筆者は心理学者ではありませんが、あとにくる痛みを忘れよ
うとするのが人間ではないでしょうか？　学生の頃なら、まだ試験まで時
間があるから、今日はちょっと遊んじゃおうと思って遊んでしまい、試験前
に徹夜をするということも。これでうまくすれば乗り切れるかもしれませ
ん。しかし、乗り切れる場合もあるけど、乗り切れない場合もあるのです。

　出荷後にバグが出るのはわかっているけど、予算もないし、マネー
ジャーも出荷日や機能実装しか考えが及ばず、出荷後のリスク（バグによ
る売上低下や、市場バグのコスト）について組織全体で目をつぶっていな
いでしょうか？

　そのようなことにならないように、コストを最小限に抑えつつ、市場での
バグを出さないような手法について、本書で説明していきます。

cocoa01@gmail.com

cocoa01@gmail.com

3
開発者テストの
基本の基本

開発者がこれだけは知っておくべきテスト手法3.1

cocoa01@gmail.com

26

第3章　開発者テストの基本の基本

　まずは単体テストから説明していきます。おもいっきりテスト手法につい
ての話です。つまらないかもしれませんが、がんばって読んでください。

　筆者はコンサルタントとしてどこに行っても、誰に聞いても、

「単体テスト！　もちろんやってます」

と言われます。そして、

筆者「単体テストケースを見せてください」
相手「やってるんだけど、ソースコードには落としてないんです」
筆者「そしたらテストケースだけでも見せてください」
相手「あれ？　単体テストケースどこに保存してあったっけ？」

こんな変な回答が返ってくるのが単体テストの定番です。

　また、多くの単体テストを行ってない組織では、もちろん設計書も書い
ていません。そのような場合、UMLを使って膨大な設計図を書けとは言い
ませんが、それでもクラス図とシーケンス図だけは書いてくだ
さいと言います。クラス図があれば、ビッグクラスを防ぐことができます
し、リファクタリングの効果も見える化できます。これについてはあとの章
で詳しく説明します。

　いきなり大枠の開発スタイルやテストの本質の説明なしに単体テストか
ら説明しても理解しにくい恐れがあるので、まずはテスト手法の大枠から
説明していきます。

cocoa01@gmail.com

27

3

ソフトウェア開発時に行うテストの手法リスト

●単体テスト
●組み合わせテスト
●境界値テスト
●状態遷移テスト
●探索的テスト
●統合テスト
●システムテスト

　実は、ソフトウェア開発はテストだらけです。いったいどれをやればよい
のか？　なんのテストに力を入れて、なにを省けばよいのか？　もちろん
全部やったら予算と人員が許しません。

　まず上記のリストでは、テスト手法と、ライフサイクルの中で行うテスト
がぐちゃぐちゃになっているからよくわかりません。マネジメントとしてラ
イフサイクルの中のどこで、どういう適切なテスト手法を適用するかという
のは重要な知識です。もしそれを勉強している暇がない場合は、品質の全
体の設計ができるコンサルタントと契約するのも悪いアイディアではない
でしょう。コンサルタントというと、高いお金を払って継続的に来てもらう
イメージが強いですが、「全体の品質計画を見て、適切なテスト手法を選ん
でもらい、10個ぐらいサンプルのテストケースを書いてもらう」というの
がコンサルの賢い使い方です。それぐらいだと1週間程度でできるので、コ
ンサル費用を抑えられます。ただし、ソフトウェアの品質に関わる費用は
どんな文献を見ても開発費全体の40%はくだらないので、ある程度テスト
戦略的なところにもう少し各社お金をかけてもよいかもしれません。

cocoa01@gmail.com

28

第3章　開発者テストの基本の基本

　各テストライフサイクルの中で、適切なテスト手法を組み合わせること
は重要です。テストライフサイクル（単体テスト → 統合テスト → システ
ムテスト）の各段階で、適切なテスト手法（境界値テスト・組み合わせテ
スト・状態遷移テスト）を行う必要があります。

　よくあるダメな例が、「単体テストはやってるけど、その単体テストには
境界値テストという概念が入っていない」というもの。「ただ単に関数を呼
び出して網羅率を図るのが単体テスト」と思っている人がたくさんいます。
もっとひどい例だと、「関数を呼び出してエラー処理をassertするだけ」と
いったケースもあります。

3.1

開発者がこれだけは
知っておくべきテスト手法

　さて、前節でテスト手法の混乱を紹介しましたが、筆者は単体テストで
は以下の3つの手法を理解・実践できれば十分だと考えています※1。

●境界値テスト
●状態遷移テスト
●組み合わせテスト

※1　 もちろんさらにつっこんだ技術の取得を目指す方は、筆者の書いた『知識ゼロから学ぶソ
フトウェアテスト【改訂版】』（ISBN：9784798130606）を読んでいただきたい。

cocoa01@gmail.com

29

31. 開発者がこれだけは知っておくべきテスト手法

　ただし、組み合わせテストは、実践では限定的に使う手法なので、注意深
く利用する必要があります（テスト範囲が氷山の一角になりかねないので）。

境界値テスト

　まずは、一番重要な境界値テスト※2を紹介していきます。ぶっちゃけて
言うと、このテストさえちゃんとやっていれば、80%以上のバグはつぶせ
るかもしれません。

境界値テストは、文字通り「境界をテストする」テスト手法です。一
般に（要求仕様の）境界でバグが出ます。テスト担当者も執拗に境界にな
る値を入力してバグを出そうとします。プログラムで境界と呼ばれる場所
には常にバグが潜んでいるので、境界値の近くは詳しくテストする必要が
あります。まず次のような要求仕様を考えてみましょう。

サンプル要求仕様

入力 A（1から999までの数が入力可能）
入力 B（1から999までの数が入力可能）
出力 C
A × B = C

※2　 読者の中には同値分割テストは？　と思う方がいると思いますが、開発者が同値分割テス
トを行う必要はない。元々テスト手法の中には境界値テストとか同値分割テストという概
念はなく、ドメインテストと言われていた。ある共通ドメインに対してどういう入力をす
るかという考え方である。if文に入った以降のことは無視していいので、様々なデータの
バリエーションはテストケースとして入れる必要はない。

3.1.1

cocoa01@gmail.com

30

第3章　開発者テストの基本の基本

　これをプログラムで書くと、以下のようになります。

if(a > 0 && a <= 999){

 // 正しい値が入力されたときの処理

}

else{

 // 間違った値が入力されたときの処理

}

　図3.1でいうと「このへん」と書かれた周辺は分析をしてテストをする必
要があります。

このへん

このへん1

999

1 999
0

こ
の
へ
ん

こ
の
へ
ん

図3.1　境界値

　上記のサンプルプログラムで説明すると、1と999の周りの数値は非常に
バグになりやすい入力値です。なぜならプログラムは、無効な値と有効な
値の間に条件文が必要となり、その文が正しく書けているかをチェックす

cocoa01@gmail.com

31

31. 開発者がこれだけは知っておくべきテスト手法

る必要があるからです。

　さて最も簡単な例として、以下のような要求仕様があるとします。

要求仕様

1ページ未満の印刷をユーザーが要求した場合にエラーを表示すること。

　この場合、4つのタイプのバグが起こり得る可能性があります。

　まずは、正しいコードを見てみましょう。

if(a >= 1){

 // 印刷処理

}

else{

 // エラー処理

}

　このケースだと、以下のような4つのコーディングエラーが起こる可能性
があります。「こんなエラーなコード書くわけないじゃん！」とおっしゃる
開発者もいるかもしれません。しかし、開発者は膨大な数の分岐を日々書
いています。プロジェクト期間中、数百数千という分岐を書くこともあるで
しょう。それを毎回適切に書くのは逆に不可能だと思いませんか？

cocoa01@gmail.com

32

第3章　開発者テストの基本の基本

 タイプ1 >と>=の間違い（閉包関係バグ※3）
　たとえば、開発者が「>=」とタイプすべきところを「>」とミスタイプし
た場合※4。こんなコードはバグになります。

if(a > 1){

 // 印刷処理

}

else{

 // エラー処理

}

 タイプ2 数字の書き間違い、要求仕様の読み違い等々
　たとえば、開発者が「1」と書くべきなのに、間違って「2」と書いてし
まった場合。こんなコードもバグになります。

if(a >= 2){

 // 印刷処理

}

else{

 // エラー処理

}

※3　 >と>=の間違いを閉包関係バグと呼ぶ。<=と<を間違えた場合も同様。
※4　 日本語は難しい。以下と未満がある。以下は「=>」、未満は「>」。わかっちゃいるけど、

コーディングで間違える。英語は1 or lowerもしくはlowerのように書くので、文章をそ
のままコピペすれば間違えないので楽である。

cocoa01@gmail.com

33

31. 開発者がこれだけは知っておくべきテスト手法

 タイプ3 境界がない
　これは、開発者が条件文を書くのを忘れてしまった場合（else句がコメ
ントアウトされたまま）。

if(a >= 2){

 // 印刷処理

}

/*else{

 // エラー処理

} */

 タイプ4 余分な境界
　これは、余計な境界を開発者が書いてしまった場合。

if(a >= 2 && a < 10){

 // 印刷処理

}

else{

 // エラー処理

}

　上記で書かれている境界値のバグを見つけるためには、境界値をテスト
する必要があります。なので、4つのバグが見つかるようなテストケースを
書き、それが正しい処理をしているかどうかを判断する単体テストを書き
ます。多くの単体テストは、上記のバグを見つけるためのテストケースにな
ります。

cocoa01@gmail.com

34

第3章　開発者テストの基本の基本

状態遷移テスト

状態遷移テストとは、要は「状態」をモデル化しテストを行おうと
いう手法です。まず状態遷移とは、大きく分けて状態（state）と遷移

（transition）によって表現されます。図3.2のように、ある状態から他の状
態に移るためには遷移（transition）が発生します。たとえば、あるアプリ
が起動している状態を状態Aとし、アプリが起動していない状態を状態B
とします。状態Aから状態Bに移るためにはアプリ終了遷移（多くは終了ボ
タンを押す）を経る必要があります。

状態A 状態B
入力X

図3.2　状態遷移図

　さて、上記が状態遷移の基本ですが、これだけではよくわからないかも
しれないので、実際にメモ帳ソフトウェアを使って見てみましょう（図3.3）。

図3.3　メモ帳ソフトウェア

3.1.2

cocoa01@gmail.com

35

31. 開発者がこれだけは知っておくべきテスト手法

　まずここでは、「ファイルを開くダイアログの操作」と「ユーザー入力機
能」だけを考えてみます（図3.4）。状態遷移テストでは、状態遷移マト
リックスを使うのが一般的です。そこで上記の操作を状態遷移マトリッ
クス（表3.1）にまとめてみました。

起動

終了

メニューコマンド

ダイアログ閉じる

ダイアログ
オープン

システム 入力待ち

図3.4　メモ帳ソフトウェアの状態遷移

　表3.1では、状態（state）とイベント（event：たいていの場合は入力）
の組み合わせにより、アプリがどのような状態（state）になるかを示して
います。状態遷移テストでは、ソフトウェアがこのマトリックスの項目通り
に動作しているかをチェックします。NAは「Not Applicable」の略で、設

表3.1　状態遷移マトリックス

状態（state）
イベント（event）

システム 入力待ち ダイアログオープン

起動 入力待ち
NA（2つ目のインスタ
ンスが起動しないこと
を確認）

NA（2つ目のインスタ
ンスが起動しないこと
を確認）

メニューコマンド NA ファイルダイアログ
オープン NA

入力 NA 入力待ち NA
ダイアログ閉じる NA NA 入力待ち

アプリケーション終了 NA システム NA（終了しないこと
を確認）

NA（Not Applicable）：適用不可
システム：アプリケーションが起動していない状態

cocoa01@gmail.com

36

第3章　開発者テストの基本の基本

計上ではそのようなイベントは発生しないという意味です。たとえば、ダイ
アログが表示されているときに文字入力ができてしまうのはバグになります。

　状態遷移テストでは、クラスや関数レベルで単体テストが終わったのち、
そのクラスがインスタンスになり、他の関数やインスタンスが呼び出される
か等々をチェックします。

　状態遷移テストは、システム全体のテストです。そのように考えると、
上流テストというより下流テストの範疇に入ることが多いです。しかし、開
発者が状態遷移の機能に無頓着で大丈夫かというとそうでもありません。
　たとえば、上記の状態遷移マトリックスは、正常の状態遷移だけを考慮
したものです。実は、ある状態から（もしくはあるパラメータがセットされ
ないと）次の状態に遷移できないこと、もしくはこの状態から（もしくはあ
るパラメータがセットされていると）次の状態に遷移できないことを知らせ
るエラーメッセージを出すなど、状態遷移にまつわるエラー処理や例外処
理がたくさんあります。
　開発者はそれを正しく文章化し、テスト担当者に伝えることが
非常に重要な活動です。さもなければ、自分でテストする必要があります。
もしそのどちらかが欠けてしまうと、当然そのまま市場バグにつながりま
す。たいていの場合、多くの組織は状態遷移しないエラー処理について要
求仕様に書きませんし、書かないような組織は開発者自身がテストするこ
ともありません。そんな状態では、詳細な状態遷移の情報がテスト担当者
に伝わるわけがありません。

cocoa01@gmail.com

4
コードベースの
単体テスト

コードベースの単体テストとは

命令網羅（C0カバレッジ）

分岐網羅（C1カバレッジ）

よくある単体テストの間違い
――コードベースの単体テスト

知っているようで知らない
コードベースの単体テストの書き方

網羅率
――コードベースの単体テストの成否を計測する

4.1

4.2

4.3

4.4

4.5

4.6

cocoa01@gmail.com

38

第4章　コードベースの単体テスト

　単体テスト（英語で言えばunit test）の定義の迷走の歴史は長い。ま
ず1970年の「Managing the Development of Large Software Systems」と
いう論文にさかのぼります（図4.1）。

SYSTEM
REQUIREMENTS

SOFTWARE
REQUIREMENTS

SYSTEM
DESIGN

PROGRAM
DESIGN

CODING,
UNIT TEST

INTEGRATION,
SYSTEM TEST

OPERATIONS,
MAINTENANCE

図4.1　オリジナルのフォルモデルソフトウェア

　ここで言うコーディングと単体テスト（CODING, UNIT TEST）が単体
テストになります。しかし日本で仕事をしていると、単機能のテスト（プリ
ントできまっせ、URLジャンプしまっせなど）も単体テストと言われる
ケースがあります。実はソフトウェア開発において用語の定義は非常に重
要なので、開発をスタートする前に単体テストはコードに対する確か
らしさを確認するテストなのか、あるいは単機能に対するテス
トなのかを明確にしたほうがよいでしょう。

cocoa01@gmail.com

39

41. コードベースの単体テストとは

4.1

コードベースの単体テストとは

　「コードベースの単体テスト」は聞き慣れない用語かもしれませんが、本
書ではこの用語を使って説明していきます。
　実は、「単体テスト」には厳密な定義がなく、ISTQB（https://www.
istqb.org/）の用語集にもありません。いや、昔はありましたが、今はあり
ません。それほどあいまいな用語であり、いつもISTQBなど会議でもめて
いました。
　コードベースの単体テストを厳密に言えば、関数の網羅率を計測し
ロジックの確からしさを確認するホワイトボックステストに
なります。本章では、これをコードベースの単体テストと呼びなが
ら進めていきます。
　コードベースの単体テストは、厳密なソフトウェア品質を求められる自動
車や医療のソフトウェアでは確実に行われなければならないテストであり、
ISOなどで行うことがルール化されています。少しその基本的なところを見
ていきましょう。
　単体テスト（コードベース）は、以下のことをチェックします。

●プログラムを実行する中で、システム上異常な振る舞いを行わない
（null pointer、0による除算など）
●入力値とそれに対応する期待値を出力すること
●すべての分岐が正しく処理されること（境界値テスト）

cocoa01@gmail.com

40

第4章　コードベースの単体テスト

4.2

命令網羅（C0カバレッジ）

　命令網羅テストまたはC0網羅と呼ばれる、網羅（テスト網羅性の水準）
を説明します。
　実は、命令網羅はあまり意味のあるテストとは言えません。極論を言え
ば、役に立ちません［BEI90］。なぜなら境界値テストがちゃんとなされてい
るか否かが計測できないからです。しかし、網羅率ツールが命令網羅しか
サポートしてなかったり、テスト手法として紹介されたりしているので、今
回は短く説明します。たとえば、以下のようなコードがあったとします。

if(con1 == 0){

 x = x + 1;

}

if(con2 > 1){

 x = x * 2;

}

＜テスト基準＞
　テストで少なくとも１回はプログラムのすべての命令文（ステート）を実
行する。

cocoa01@gmail.com

41

42. 命令網羅（C0カバレッジ）

　そうすると図4.1のすべての四角を通るパスをテストしますが、これだと
水色矢印の部分を通るテストが抜けます（図4.2）。

テストできないパス

図4.2　命令網羅の抜け

　はい、そうです。これが命令網羅は不完全なテストと言われるゆえん
だったりします。なので、次の節で出てくる分岐網羅をしなければいけま
せん。しかし多くの組織でいまだ命令網羅で単体テストを達成しようとし
ています。命令網羅だけでは先に挙げた、

●すべての分岐が正しく処理されること（境界値テスト）

が達成されません、コードの単体テストは労力のかかる仕事です、中途半
端な命令網羅はせずにしっかり分岐網羅をすることをおすすめします。

cocoa01@gmail.com

42

第4章　コードベースの単体テスト

4.3

分岐網羅（C1カバレッジ）

　分岐網羅またはC1網羅と呼ばれるテストがあります、これはC0網羅の
問題を解決する網羅手法です、ほとんどのケースでは、この網羅手法で単
体テストを行ったほうがよいでしょう。

分岐網羅
　それぞれの判定条件がTRUE、FALSEの結果を、少なくとも１回ずつ持
つようテストケースを書きます。

　先のプログラム例では、

テストケース１：con1 = 0, con2 = 2

テストケース２：con1 = 1, con2 = 0

という2つのパターンのデータでテストすれば、テストが完了になります
（図4.3）。

cocoa01@gmail.com

43

44. よくある単体テストの間違い――コードベースの単体テスト

図4.3　分岐網羅

4.4

よくある単体テストの間違い
――コードベースの単体テスト

　前節での単体テストの網羅の考えはググれば書いてありますし、セミ
ナーなどで説明するオーソドックスな考えなので疑う余地はありません。た
いていの場合は、

「あー、そうなんだー、分岐網羅をしなきゃね」

cocoa01@gmail.com

44

第4章　コードベースの単体テスト

という感じで理解していただけたと考えます。ところが、これが現場に展
開されると、

網羅性さえ気を付ければいいんだ！

という考えになってしまいます。「おいおいそんなこと言ってないよ」と
思ったものの、たいていの書籍やWebページの情報には、親切に関数の
in/outをチェックすること、関数の責務が達成されてるこ
とも同時に注意しましょうなんてことは書かれていません。

　上記のような簡単な例ならよいのですが、一般にソースコードは巨大で
各関数も数百行になり、何らかの計算結果を戻す処理をしたり、出力処理
をしたり、計算処理をしたりします（図4.4）。なので、網羅することは品
質基準であり、目的は単体レベルの処理機能のバグをなくすこ
とです。

出力処理

入力処理

関数

図4.4　入出力処理

cocoa01@gmail.com

45

45. 知っているようで知らないコードベースの単体テストの書き方

入力値のパターンを100%網羅するようにし、それに対
する期待処理が正しいかチェックすることが効果的な単体テス
トです。しかし、たびたびメンドウだと言って、期待処理を確認
せずにコードが網羅されていることに満足しています（ただ
単に網羅率を上げるためだけの入力値を入れているだけ。それは非常にま
れなる偶然ではなく、複数の組織でそういう状態に陥っていることを筆者
は実見しました）。そして、次のフェーズである統合テストで、本来は単体
テストで見つけるべきバグを発見し、品質担保で苦しんでいる組織が多い
のではないのでしょうか？　コードベースの単体テストは、ほとんどの
バグを見つけられる（私見では80％以上のバグを見つけられる）テス
ト手法です。しっかりテストをすることにより、後工程でのバグの数は著し
く減るので、分岐網羅により多くのテスト工数を割くことをおす
すめします。

4.5

知っているようで知らない
コードベースの単体テストの書き方

　ときどき、日本人ほど単体テストが嫌いな人種はいないんじゃないかと
考えます。Microsoftでも、当然のように皆ちゃんと単体テストをやってい
ました。なんで嫌いなんでしょう？　自分の書いたソースコードに自信があ
るのかな？　もしくは、生産性を低くして残業代をもらいたいのでしょう
か？　もしくは、夜遅くまで非効率なデバッグをやってることを上司に見せ
たいのでしょうか？

cocoa01@gmail.com

46

第4章　コードベースの単体テスト

　Kent Beckだって

プログラミングとテストを両方
行うほうが、

プログラミングだけよりも早く
ソフトウェア

開発を完成できる
Kent Beck

と言っています。

　世の中には、便利なテスト駆動開発というものがあります。有名なので
ご存じの方も多いと思いますし、アジャイル開発と非常に融合性が高いの
で、これを用いることを本書では推奨します。もちろん、この手法は
ウォーターフォールモデルでも適用できます（というより、現代のスピード
感を持った開発にはこのやり方は必須です）。定義としては、次の通り。

●実際のソースコードを書き始める前にテストケースを書く
●すべてのテストコードは自動化する
●バグはすぐに修正する
●プロのテスト担当者を入れる［LAR04］

一般的なテスト方法（TDD）

　まず一般論的なテストの方法を説明します。ゼロから関数を書くやり方
です。
　Kent Beck［BEC02］的なTest-Driven Development（TDD）を使って説明

4.5.1

cocoa01@gmail.com

47

45. 知っているようで知らないコードベースの単体テストの書き方

をします。TDDは、日本語ではテスト駆動開発です。テストコードを先に
書いてそれから、中身（処理）を書きます。日本では、処理を書いてから
テストを書く人たちばかりなので、まあ一般的な順番とは逆ですね。間
違ってマネージャーに「テストをしてから、プログラムを書きます」と言っ
たら、マネージャーから「こいつなに言ってんの？」という目で見られるで
しょうけど……。
　まずTDDのステップは、以下のようになります。

●赤：失敗するテストを書く
●緑：テストに通るような最小限のコードを書く
●リファクタリング※1

　上記の3つを図4.5のように繰
り返していきます。ちゃんと繰り
返していけば、テストケースが
積み上がり、それがJenkinsや
CircleCIで常にビルドされるよ
うになり、安心して開発ができ
ます。もちろん、ドラスティック
に開発期間中の品質が改善しま
す。

※1　 本章でのリファクタリングは、第7章「リファクタリング」で出てくるリファクタリングと
は性質が異なる。TDDの場合、「スピードを重視した実装コードから一般的なコーディン
グお作法に直す」という意味なので、厳密な意味ではリファクタリングと言いたくない。
しかし、超著名なKent Beckの定義したものなので、本書ではそのままリファクタリング
という用語を使用する。

RED

GREENREFACTOR

図4.5　赤・緑・リファクタリングのサイクル

cocoa01@gmail.com

48

第4章　コードベースの単体テスト

　まず赤では、失敗するテストを書きます。リスト4.1は非常に簡単なソー
スコードです。a + b = cという計算をするもので、この計算を単体テスト
します。もちろん計算ルーチンは入ってないので（便宜上コメントアウトし
てあります）、テスト結果はfailとなります。

リスト4.1　失敗ソース

public int plus(int a, int b) {

 int c = 9999;

 // c = a + b;

 return c;

}

　よりイメージしやすいように、実際のAndroid Studioでのテストコード
を見てみると、リスト4.2のようなソースコードになります。

リスト4.2　テストコード

public class CalcTest1 {

 private calc mcalc;

 @Test

 public void plus() {

 mcalc = new calc();

 assertEquals(3, mcalc.plus(2,1), 0);

 }

　テストコードでは’2’と’1’を引数として渡して、ちゃんと3が返ってくる
かをチェックしています。よりイメージしやすいように見てみると、
Android Studioでは図4.6のようにテスト失敗（もちろん期待通り）になり
ます。期待するべきものが3に対して、9999が返り値ですよと。

cocoa01@gmail.com

49

45. 知っているようで知らないコードベースの単体テストの書き方

図4.6　テスト結果（失敗）

　次に、緑（Green）にするため、正しい処理を入れます。コメントアウト
を外してみます。

リスト4.3　正しいソースにしてみる

public int plus(int a, int b) {

 int c = 9999;

 c = a + b;

 return c;

}

　そうすると、Android Studioでは図4.7のようなテスト結果が表示されま
す。まあなんかそっけない感じで。

図4.7　正しいソースにしてみる（成功）

　簡単ですね、誰でもできます。本書を読んで、「なんだ単体テスト簡単で
はないか！　うちのチームでもさっそく導入しよう！」と思う課長がいるか

cocoa01@gmail.com

50

第4章　コードベースの単体テスト

どうかわかりませんが、現実問題としては単体テストはかなり難しいと言わ
ざるを得ません。なぜなら、ゼロからコードを書くことが少ない
からです。多くの組織では、長い間しょってきたレガシーのソースコード
に改変を加えます。レガシーコードのリファクタリングについてはあとの章
で述べますが、基本的に単体テストをちゃんと積み上げたチームには毎日
以下のようなご褒美があると筆者は信じています。

単体テストケースが十分なので、なにかあったらすぐに問題がわかります。
週40時間労働で元気一杯なので、多少後ろ向きな作業でも前向きにで
きます。
たとえリファクタリングで他の人の部分が動かなくなっても、短いサイ
クルでビルド・テストを繰り返すため、バグを埋め込んでもすぐに発見
され、軽く「ごめん」と言えば許してくれます。

　またRobert Martinによれば［MAR04］、

テストを最初に書くことは、ソ
フトウェアを呼び出し

やすい形式に設計することにつ
ながるのだ

Robert C. Martin

　インターフェースを明確に保つことはプログラミングにとって重要です。
関数を呼び出すときに、その引数だけを明確にするのではなく、依存する
前提条件や依存する関数をより明確にすれば自分だけではなく、そのクラ
スやAPIを使う人にとっても有益な情報になります。

cocoa01@gmail.com

51

46. 網羅率――コードベースの単体テストの成否を計測する

4.6

網羅率――コードベースの
単体テストの成否を計測する

　単体テスト網羅率をどれくらいにするか――コンサルタントをしていて、
よくたずねられる質問です。自動車などのミッションクリティカルなソフト
ウェアの場合は、100%と自信を持って答えます。しかし、ミッション
クリティカル以外のソフトウェアでも、十分なコードベースでの単体テスト
を行うことは、後半工程のバグを減らし、ソフトウェア品質の向上に十分
役に立ちます。その場合、筆者は自信を持って80%と言い切ってしまい
ます。実際は言い切れないのですがw。
　筆者は、数十年にわたるテスト関連の論文は目を通しています。しかし、
まっとうな論文には、その網羅率のゴールは書いてありません。もちろん、
ISOやIEEEの規格にも書いてありません。なぜなら、それを書いて致命的
なバグが出ると責任を取らなければならないからです。

　なぜ筆者は80%を主張するかと言うと、ソースコードの20%程
度はエラーハンドリングの処理なので、そこまで単体テス
トで網羅する必要がないだろうと考えているからです。実際に
Boris Beizerという著名なテスト学者もそう言っています（彼の本にはもち
ろん書いてありませんが、カンファレンスの質問でそう答えていました）。

　ちょっと古いデータになりますが、Hewlett Packard社のコード網羅率の
データがあります（図4.8）［GRA93］。コードの網羅率を計測しないと、自分

cocoa01@gmail.com

52

第4章　コードベースの単体テスト

たちの単体テストでコー
ド網羅率を上げる努力が、
本当に実のある努力なの
かがなかなか確認できま
せん。自分たちの労力
の50％をつぎ込んだ単体
テストが、実際は全体の
ソースコードの20%しか
テストしてない場合もあ
るからです。

　 図4.9はMotorola社 の
XPプロジェクトでのコー
ド網羅率で、平均は84%
です。こんな感じの高い
コード網羅率を実現でき
れば「すごい！」につき
ます。

19151173 171395 21 231

◆
◆

◆◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆◆

◆

◆
◆

100

80

60

40

20

0

網羅率（％）

プロジェクト名

平均

図4.8　Hewlett Packard社におけるコード網羅率の例

42 31

◆

◆
◆

◆

95%

78%
88%

73%

95%95%95%

78%78%78%
88%88%88%

73%73%73%

100

80

60

40

20

0

網羅率（％）

プロジェクト名

図4.9　Motorola社におけるコード網羅率の例

cocoa01@gmail.com

53

46. 網羅率――コードベースの単体テストの成否を計測する

　さて、新しいところでいうと、Googleのコード網羅率のデータです
（図4.10）。Hotspot※2的アプローチかと思いきや、ちゃんと網羅率は担保し
ています。ほとんどのプロジェクトで70%をオーバーしています。

4 12 20 28 36 44 52 60 68 76 84 92 100

Histogram of average coverage over one month

Coverage（percentage）

Count

N
um
be
r
of
 p
ro
je
ct
s

0 8 16 24 32 40 48 56 64 72 80 88 96

図4.10　Googleにおけるコード網羅率の例

　Googleは内部ガイドラインがあるらしく［GOO20］、

●網羅率60%：許容範囲（acceptable）
●網羅率75%：推奨（commendable）
●網羅率90%：模範的(exemplary)

だそうです。とてもリーゾナブル（合理的）な基準です。Googleには、い
くつか興味深い基準があります。

※2　 Hotspot手法については次章で説明する。

cocoa01@gmail.com

54

第4章　コードベースの単体テスト

低いコード網羅は大きいエリアがテストされていない。
（Low code coverage number does guarantee that large areas of
the product are going completely untested.）
高いコード網羅だからって品質が高いわけじゃない。もし高品質を確認
したい場合はMutation Test※3を使うのも手です。
（A high code coverage percentage does not guarantee high
quality in the test coverage.）
よく変更されるコードは網羅されるべき。
（Make sure that frequently changing code is covered.）
レガシーコードの網羅率をほっとくのはいいけど、でも少し網羅率を上
げていきましょう。
You can adopt the ‘boy-scout rule’ (leave the campground
cleaner than you found it).

　まあ誘導尋問のようになってしまいますが、Googleとあなたの組織のお
かれた状況はそれほど変わるものではありません。Googleにしろ、レガ
シーコードを網羅するのは困難だと感じています。1かゼロかという判断で
はなく、そこは大人の判断でだんだんと網羅率を上げていくのは悪くない
アイディアです。しかし、日本の多くの会社は、1かゼロの判断のときにゼ
ロのほうに行ってしまうことが多い気がします。そう「臭いものにはふたを
してしまおう」です。それが期待値を計測しない、車や医療のコード網羅
率だったりするのかもしれません。

※3　 Mutation Test（Mutation Testing）：諸説あるようだが、mutant（変異、バグありコー
ド）をコードにわざと埋め込み、そのバグを既存の単体テストが発見できるかを確認す
る、単体テスト自体の品質を確認する手法。

cocoa01@gmail.com

5
単体テストの効率化
――楽勝単体テスト

コードの複雑度

どこを単体テストすればよいか？
――単体テストやってる暇ありませんという人の
ために

5.1

5.2

cocoa01@gmail.com

56

第5章　単体テストの効率化――楽勝単体テスト

　筆者が品質コンサルに入るときは、まずコードの中身を見ます。そして
単体テストをやっているか否かのインタビューをします。インタビューをす
る場合、99%以上※1は以下のようなストーリーが展開されます。コンサル

（筆者）と開発リーダー（相手）の会話です。

筆者「品質が悪く、スケジュールが常に遅れていると聞いてますが」
相手「はい、ちゃんとやってるつもりなのですが、常に後半の工程で
バグが多発してしまいます」
筆者「まずはコード見せてください、単体テスト書いてますか？」
相手「はい、書いてます！」（自信ありげ）
筆者「なにか単体テストの基準みたいなものはありますか？　なんで
もいいです、Wikiに書いた走り書きみたいなものでも」
相手「この計画文書になります」
筆者「ほー、開発されたコードはすべて単体テストで網羅となってま
すね。素晴らしいです。それじゃ、単体テストのソースコードを見せ
てもらえますか？」
相手「ちょっと担当者に聞いてみます」

　上司の開発担当者のところへ行く。そして、戻ってきて、

相手「単体テストは正式コードではないので、開発者はチェックイン
してないそうです」
筆者「そうですか、残念です。そしたら開発の主担当のハードディス

※1　 言い過ぎと思うかもしれないが、体感的にはこんな感じ。品質が改善しない組織というの
は驚くほど似た組織である。

cocoa01@gmail.com

57

5

クにある単体テストのコードをサーバーにコピーしていただけますか？」
相手「はい……」

　またかよー、という感じで開発者のところに行く。そして、戻ってきて、

相手「単体テストのソースは残してないそうです……」

　またいつものパターンかよ?　と嫌気がさしてきて最終決着の言葉を吐く。

筆者「それではきっと、開発者はデバッガーなどでコードが通ってい
るかチェックしているのですよね？」
相手「そうみたいです……」
筆者「それだと先ほど提示いただいた文書のように、書いたソースの
すべてが網羅できているか確認できないですよね？」
相手「……」
筆者「……」

　空気が凍ってしまった。当然、その横には部長が座っている。仕方がな
いので助け舟を出す。

筆者「まあどこの組織でもこんなものですよ（ほんと）。まずきっと単
体テストをどう書いて、どう組織としてその品質を担保するかというこ
とがわからないんですよね。レガシーコードもたくさんあるし。多量の
ソースコードをどう効率的に網羅的にテストしていくかを一緒に考えま
しょう」
相手（少し笑顔に）

cocoa01@gmail.com

58

第5章　単体テストの効率化――楽勝単体テスト

　コンサルタントに入ると、常にこんな会話がなされます。でも、しょうが
ないんですよね。単体テストを教科書的にすると膨大な単体テストを強い
られ、その結果として、単体テストをやっているようにみかけをごまかすし
かないんです。
　筆者からすると品質関連の多くの書籍は、ほとんどの組織で実施するに
は著しく困難な単体テストのやり方を書いているようにしか見えません。
　そんなエンジニアや組織のために、新しい（それほど新しくないけど）
手法を説明していこうと思います。網羅率もすべてのコードに対して計測
する必要はありません。2：8の法則（パレートの法則）の2の部分だけ計
測すればよいのです。

5.1

コードの複雑度

　次節から「ソースコードの複雑度」という言葉が出てくるので、複雑度
について説明します。ただし、ちょっと乱暴な言い方ですが、「こんな感じ
なのね！」のような軽い気持ちで読み飛ばしていただいてけっこうです。
要は、

●複雑度が高い=ifとかswitch文がたくさんある
●複雑度が低い=ifとかswitch文が少ない

と認識いただければと。

cocoa01@gmail.com

59

51. コードの複雑度

　複雑度は、その数値によりソフトウェアのメインテナンス性が測れると言
われ、複雑度が高ければメインテナンス性が低く、複雑度が低ければメイ
ンテナンス性が高いことになります。

　余談ですが、複雑度が考案されたのは1970年［MCC76］というけっこう昔
で、そのときは単体テスト数を数える方法として提案されました。そうで
す、複雑度を下げることは単体テスト数を減らすことなので、非常に重要
な指標なのです。

C（複雑度） = e - n + 2

e：プログラムに含まれるルートの数

n：プログラムに含まれる分岐点の数

　リスト5.1のプログラムを使って例を1つ示してみましょう。

リスト5.1　複雑度の例

func1()

{

 if(i > 0)

 {

 switch(n)

 {

 case 0:

 // do something

 case 1:

 // do something

cocoa01@gmail.com

60

第5章　単体テストの効率化――楽勝単体テスト

 case 3:

 // do something

 default:

 // do something

 }

 }

 else{

 printf(“Hello !”);

 }

}

　このプログラムのノードとルートを
図示すると、図5.1のようになります。

　　 C（複雑度） =
　e－n + 2 = 9 － 6 + 2 = 5

　したがって、複雑度は5になるとい
うことです。

1

1

2

5

8

6

9

3

4

3 4 5 6 7

2

図5.1　フローチャート

cocoa01@gmail.com

61

52. どこを単体テストすればよいか？――単体テストやってる暇ありませんという人のために

5.2

どこを単体テストすればよいか？――単体
テストやってる暇ありませんという人のために

　この節は、単体テストをやってる時間はありませんと言ってし
まうエンジニアのためのものです。筆者が品質コンサルタントとして呼ば
れたとき、よくあるのが次のようなストーリーです。

相手「品質が悪いのでどうにかしてください」
筆者「そうですね、単体テストで上流品質を担保しない限り、市場バ
グは減らないですね！」

　ということで、現場のマネージャーは、部下のエンジニアに「単体テス
トをやって」と言います。そして、3か月後にまたその会社に行くと、単体
テストをやった形跡はありません。そこで、その会社のマネジメント層と再
度話すと、

相手「いやー、エンジニアたちは出荷間際で忙しくてそれどころでは
なかったです。この出荷が終われば単体テストに時間を割きます」

　でも出荷が終わっても、このような組織は単体テストを書きません。

　当然のことです。現場はやれ会議資料の作成だ、やれバグ修正だと疲弊
しています。そこにさらに膨大な単体テストの業務を追加する余裕などこ

cocoa01@gmail.com

62

第5章　単体テストの効率化――楽勝単体テスト

れっぽっちもありません。それが日本の現実であり、このようなソフトウェ
アの開発現場はいつまでもブラックな状態から抜けきれません。
　本書で書くべき話題ではありませんが、ソフトウェア開発の現場の非効
率さの問題もあるものの、マネジメント単独の問題も多々あります。ソフト
ウェアの品質が100%ということはまずありません。特に、現代のソフト
ウェアは20年前に比べて複雑になっています。それなのに「バグをゼロに
しろ」と今でも言っている会社が日本にはあります。バグはゼロにはなりま
せんし、ソフトウェアはハングアップします。バグもハングアップもユー
ザーにとってはちょっとイラッとするものの、そのソフトウェアがユーザー
が望む機能を十分に提供してさえいれば、それほど腹を立てることもあり
ません。しかし、重箱の隅をつつくテストをしたり、その小さなバグを修正
したりするので、エンジニアの現場が疲弊してしまいます。

　疲弊を招くもう1つの例としては、たとえば市場で出たバグの再発防止
の8割は「レビューをしっかりしましょう」もしくは「テストケースを追加
しましょう」であることです。改善とは、今ある仕事を効率的に
し（残業時間を減らし）、かつ品質を上げることです。今あ
る仕事も減らさず、さらにタスクを追加するというのは、ソフトウェア開発
では改善とは言わないと筆者は強く信じます。

　以降では、効率的な単体テストをし、今ある仕事を減らし、さらに品質
を上げるという方向性を示していきます。

単体テストのやる箇所を絞る

　古くから2：8の法則の正当性が言われてきました（図5.2）。ソフトウェ

5.2.1

cocoa01@gmail.com

63

52. どこを単体テストすればよいか？――単体テストやってる暇ありませんという人のために

アの2割の部分から8割のバグが出ると。品質の研究者だけでなく、現場の
エンジニアも含め、そうなんじゃないかなー、って思っていたわけです。し
かし、学術的エビデンスや、実際どうやって2割を選ぶのかという方法論が
確立されていませんでした。コードの複雑度が高い2割に８割のバグが含ま
れるのではないかと研究する人もいましたが、複雑度はたいていソース
コード行数と比例するため、複雑度が高いとはいえ、それが統計的優位性
を持ってバグが偏在しているという事実は認められませんでした※2。

20 ％

20 ％

0％

20%を抽出

テスト・レビュー

80 ％

図5.2　2：8の法則

　しかし、最近（と言ってもここ10年で）どこからバグが出るかがわかっ
てきました。実はソフトウェア構造ではなく、「あるファイルが一定期間に
特に直近何回変更されたか、その回数が多いファイルからバグが出る」と
のことです。品質の研究者としてはけっこうビックリな結果で、個人的には
大発見だと思っています。

※2　 1つだけ論文があるが、博士課程の学生の論文程度のものなので無視してしまうことにする。

cocoa01@gmail.com

64

第5章　単体テストの効率化――楽勝単体テスト

　論文が発表されてから、その派生論文がたくさん出ましたが、総括する
とほとんどのバグはソースコードファイルの10%～20%
から出るということです。

コードの20％を網羅してちょちょっと探索的テストをすれば、
テストは終わり！　遊びに行こう！

　その20%を抽出する計算式は色々ありますが、基本的な考え方は、

●直近の変更回数に重みをつけ、過去に変更されたファイルはそれほど
重みをつけない

となります。これを図示したものが図5.3です。

Hotspot値：High

4月 （time） 12月

バ
グ
修
正

バ
グ
修
正

バ
グ
修
正

Hotspot値：Low

4月 （time） 12月

バ
グ
修
正

バ
グ
修
正

バ
グ
修
正

図5.3　Hotspotの考え方

　バグの出やすさを数値化したものをHotspotと呼びます。Hotspotの値の
高いファイルからバグが出るという定義になります。

cocoa01@gmail.com

65

52. どこを単体テストすればよいか？――単体テストやってる暇ありませんという人のために

　以下のような計算式からHotspot値を求めます。計算式の中身を理解で
きなくても、なんとなく値が出てきて、その値が高いとソース
をチェックしたりするぐらいのゆるい理解で問題ありません。

筆者の独自手法――ファイルを2つにぶった切る

　オーソドックスな方法だとファイルの変更回数だけを考慮しますが、筆
者は単体テストを行う優先順位の指標としてファイル行数の長さ※3を
加えます。直近の変更回数とファイル行数が長いものから単
体テストを行っていけばよいという考え方です。実際にファイル行
数の長さは2番目にバグ密度と相関関係があると言われています。

　ただし筆者としてはそのやり方だと物足らないので、もう1つ複雑度と
いうひねりを加えます。複雑度とコード行数との相関関係は、実は複雑度
とバグ密度よりもあります。ファイル単位（関数単位ではない）での複雑
度の総数はある意味、ファイル行数の長さと等価と考えられます。

　たとえば表5.1のような表を作って、総複雑度（ファイル全体の複雑度の
総数）とHotspotの値を明確にします。

※3　 LOC（Line of Code）の量（ファイル内のコード行数）。

5.2.2

cocoa01@gmail.com

66

第5章　単体テストの効率化――楽勝単体テスト

表5.1　総複雑度とHotspot

総複雑度 Hotspot
file1.java 102 33
file2.java 35 29
file3.java 172 80
file4.java 30 78

　一目でfile3.javaがなんか危ないなというのがわかります。複雑度も高い
し、Hotspot値も高い。でも、よくよく見るとなんかfile4.javaもなんか変で
す。複雑度が低い割にHotspot値が高い。まあ、こういうファイルは、中身
を自分の目で見るしかありません。たとえば定義ファイルで、皆がその初
期値を見ながら変更しているというのは安心なパターンですが、簡単な構
造なのになぜか変更回数が多い場合があります。そこはケースバイケース
なので、無視してよい場合もありますし、その変更が複雑度以外のコード
自身の欠陥によるバグを発生させている場合もあります。後者の場合は、
もちろん何らかのアクションが必要になります。この判断をするために、筆
者は図5.4のような図をプロットするようにしています。

リファクタリング

コードの再考

複雑度

Hotspot値

ココからしかバグが出ない！

●
●

●

●

●

●

●
●

図5.4　コード分析とアクション

cocoa01@gmail.com

67

52. どこを単体テストすればよいか？――単体テストやってる暇ありませんという人のために

　図5.4の「リファクタリング」エリアは、シンプルにリファクタリングを
すればよいでしょう。リファクタリングに関してはあとの章で詳しく説明し
ますが、「リファクタリングする時間がないんですよねー」とうだうだ言っ
ているエンジニアに対しては、まずはファイルを2つにぶった
切ってくださいなどと乱暴なコンサルをしたりします。

　実際、ファイルを2つにぶった切るだけで、かなり品質の向上を感じるこ
とができます。コードの長いファイルは、先に説明したようにビッグクラス
だったり、きれいな構造にできず、どこにも行き場のない関数群のゴミ捨
て場だったりします。開発者自身ももちろん、そんなファイルがあることに
納得していないものの、心に余裕がなく、うまく整理できない関数群であ
るケースが多いでしょう。それを2つにぶった切るということは、開発者に
気づきのチャンスを与えることになるケースが多いのです。開発者は乱暴
に2つにぶった切るだけではなく、たいていの場合、プログラム全体をきれ
いにしたりもします。

明確なメリット

　前項で説明した手法は、いくぶんテクニックが必要なやり方です。コー
ド網羅率などのメトリックスを測らなければならないですし、単体テストが
必要なファイルや不必要なファイルの切り分けといった高度な作業が必要
になるかもしれません。場合によってはコードの読み書きができるコンサ
ルタントが必要になり、余計なコストがかかるかもしれません。しかし、そ
の余計なコストを大きく上回るメリットがあります。
　一般的に組織は、単体テストをやらず、大きなコストをシステムテスト
につぎ込んでいます。しかし、本手法を適用すれば、1/5程度の単体テスト

5.2.3

cocoa01@gmail.com

68

第5章　単体テストの効率化――楽勝単体テスト

のコストで、大きくシステム
テストを減らし、さらに市場
に出てからの不具合を削減で
きます（図5.5）。膨大なシス
テムテストを探索的テストで
減らす方法については、第11
章で述べます。

単体テストに潜む闇

　数少ない顧客や、友達をなくしそうなので、あまり書きたくありません
が……。単体テストを必須とする業界標準や製品は多いです。医療・自動
車など様々な重要インフラや、人の生死に関わるソフトウェアなどで、実
はあまりちゃんと単体テストをやっていない例が日本では一定数ありま
す。さすがにアメリカやヨーロッパではそういった事例はあまり見ません
が、日本の現場にはけっこうあるのです。まあそのことは先の章で説明し
ましたが、このコラムではもう少しダークサイドの例に触れます。

　仕事柄、多くの品質の良否が人命への影響や大きな損害を与えるプロ
ジェクトのコンサルタントをしています。そういったプロジェクトの場合
は、単体テストは必須です。もちろん人命・損害は関係ない、無料の
Androidアプリ開発の場合は、ちゃんと単体テストをする必要はありませ
ん。開発スピードや実際の開発コストを考えるとやったほうがよいです
が、やらなくてもハングアップしたり、アプリをダウンロードしなければ

Hotspotベースの
単体テスト

必要単体テスト数
1/5に削減

探索的テスト 下流テスト工数1/3

単体テスト
確からしさ
チェック

図5.5　下流テスト費用の削減例

cocoa01@gmail.com

69

52. どこを単体テストすればよいか？――単体テストやってる暇ありませんという人のために

※4

※4　 定義してない場合も実はあったりする。FDA（Food and Drug Administration）とか。
「規格なんだからしようよ！」と思うが、筆者も規格側に立つとやはり敵を増やすような定
義はできなかったりする。

※4

よいだけなので致命的な実害はありません。しかし、重要なインフラや生
死に結びつくようなソフトウェアは……。

　たとえば、次のような会話をしたのは1回や2回ではありません。

「このソフトウェアはインフラの一部なので、ちゃんと単体テストし
ませんか？」
「病院でこのソフト止まっちゃまずいですよね？　ちゃんと単体テス
トしましょうよ！」
「え、このソフト止まったら、車の制御まずいですよね？　ちゃんと
単体テストしましょうよ！」

とコンサルの領域を超えて、顧客に指南することが多いのです。これは老
婆心で言っているのではなく、採算度外視の本心で言ってたりします。
だって致命的に困るでしょう。

　もちろん、そういったミッションクリティカルなソフトウェアや、イン
フラ全体を混乱に陥れるようなソフトウェアの開発では、開発プロセスに
コード網羅何十％以上と定義してあり※4、見かけ上は網羅していたりします。
　筆者がコンサルに入る場合は、まずソースコードを見せてもらう、と話
しましたよね。

　そして、そういったミッションクリティカルな製品の複雑度をまず計測
します。ストーリーとしてはいつも同じでシンプルで、ほとんどのケース
で相違はありません。筆者はこれまで数百のコンサルをしていますが、ほ
とんどすべてのケースで以下のようなお決まりの展開となります（まあ、
私にコンサルを頼む時点で品質がよいプロジェクトではないので）。

cocoa01@gmail.com

70

第5章　単体テストの効率化――楽勝単体テスト

筆者　複雑度を計測する
↓
筆者「単体テストやってますよね？　これ人命に関わるソフトですから」
↓
相手「はい、もちろんやってます」
↓
筆者「すいません、ここの単体テストケース見せてください」（と
言って複雑度が40を超えるモジュールを指す）
↓
相手「ここに単体テストのソースがあります」（けげんそう）
↓
筆者「網羅率は担保されていますが、期待値チェックしてませんよ
ね？」（言われた相手は機嫌を悪くする）
↓
相手「はい、発注側からは網羅率を100%と言われてますので、その
指示通りやっています。発注書では網羅率以外の期待値チェックにつ
いて言及されていません」
（……気まずい雰囲気が流れる……）

　後日、発注側のプロダクトマネージャー（PM）と話すと……。

筆者「このプロセスドキュメントには網羅率100%としか書いてない
ので、ソフトウェア全体にわたって期待値チェックのない単体テスト
になってしまっています。これでは、ただ単にムダな投資です。この
単体テストはまったく意味がありません」
PM「……」

　たいていの場合、自分の技術領域を凌駕していることを言われて「ポ
カーン」という反応です。だいたい、ムダな投資の意味が理解できませ
ん。この後の会話の展開は、

cocoa01@gmail.com

71

52. どこを単体テストすればよいか？――単体テストやってる暇ありませんという人のために

PM：いかにして筆者の話を重要でないことにするかの算段を頭の中
で必死にする
筆者：ここで責めてもなにも出てこないので打つ手なし（ちゃんと単
体テストをするには遅すぎるケースがほとんどなので）

といったことになります。

　日本のソフトウェアエンジニア、もう少しがんばってほしい。

テストの矛盾
（単体テスト・ブラックボックステスト・ホワイトボックステスト）

　最近、コンサルをやっていると、まずは用語の定義から入ることが多い
です。まったくもってつまらない作業ですが、実はすごく重要だったりし
ます。「単体テストとは？」という定義も、各社、それが「コードベース」
だったり、「UIで各々の機能を確認する」だったり、どこも統一感がまっ
たくありません。単体テストにおけるブラックボックステストとホワイト
ボックステストも、明確に定義しようとすると、膨大な時間がかかります。

　ISTQBの用語集（https://glossary.istqb.org/en/search/）を見ると、次
のように書いてあります。

ブラックボックステスト（blac
k-box test technique）：A

test technique based

on an analysis of the spec
ification of a component o

r system.（特定のコン

ポーネントまたはシステムの分
析をベースとしたテスト技術）

ホワイトボックステスト（whi
te-box test technique）：A

 test technique only

based on the internal stru
cture of a component or s

ystem.（特定のコンポー

ネントまたはシステムの分析を
内部構造に注力し、それをベー

スとしたテスト技術）

cocoa01@gmail.com

72

第5章　単体テストの効率化――楽勝単体テスト

　まあそうなんですけどね、でもこれじゃよくわかりませんよね……。本
書で示しているように、単に網羅しただけのテストをホワイトボックステ
ストとしたり、単に同値分割や境界値条件を使って入力すればブラック
ボックステストとしたり、テストに関して確固たる定義を持って望んでい
る組織は少ないのが現状です。筆者としては、だいたんに（また皆に怒ら
れちゃうけど）勝手に定義してみました。でも皆さんの会社で使えると思
いますよ。

ブラックボックステスト：要求仕様によって定義された入力・
出力値を、仕様通りにシステムもしくはコンポーネントが振る舞う
かを確認するテスト。
ホワイトボックステスト：要求仕様によって定義された入力・
出力値を、仕様通りにシステムもしくはコンポーネントが振る舞う
かをコード網羅によって確認するテスト。欠陥なく100%網羅され
ていればテストは成功とする。もし網羅が不足している場合には、
何らかの欠陥もしくは要求仕様の不備が認められる。

　文章だけだとわかり
にくいので、図にした
ものが図5.Aです。そ
うです、本質的にはブ
ラックボックステスト
とホワイトボックステ
ストは同じなのです。

　　　

ブラックボックステスト ホワイトボックステスト

if(a = 0)
 a = a + 1;
else

出力値チェック

入力値

出力値チェック

入力値

網羅
チェック

図5.A　 ブラックボックステストと
ホワイトボックステストの定義

cocoa01@gmail.com

6
機能単位の
単体テスト

開発者がやるべき単機能のテスト

ブラックボックステスト・ホワイトボックステスト

6.1

6.2

cocoa01@gmail.com

74

第6章　機能単位の単体テスト

　前章では、コードベースでの単体テストを説明しました。本章では、
Webアプリのようなそれほど高品質を要求されないものの場合、あるいは
コードベースの単体テストをやったがさらにUIから機能単位の単体テスト
をやりたい場合（特に複雑な機能）のテストについて説明していきます。

6.1

開発者がやるべき単機能のテスト

　先にも説明したようにISTQBをはじめとした規格を読んでも、単体テス
トに対する明確な解は書いてありません。テストに精通した開発者なら、
本書の展開が不自然であることを感じるでしょう。先に示したコードベース
の単体テストはホワイトボックステストで、本章で示す機能単位の単体テ
ストはブラックボックステストです。本来なら開発後半（下流）のシステ
ムテストとして説明する部分かもしれません。ただし、本書は上流テス
トという立ち位置をとっており、テスト担当者がするシステムテストの説
明は省いています。コード網羅をして、単機能のテストをする
のは開発者の責務だと筆者は考えています。なので、あえて本章では
機能単位の単体テストを、開発者が確認すべきテストとして紹介します。

　一般的には、UIからなにかを入力して、期待する値が表示されることが
単体テストと、シンプルに考えがちです。しかし、開発者が機能別の単体
テストをして複雑な機能について的確に適応することによって、バグを見
逃すことや膨大な無意味なテストケースを書くことがなくなります。

cocoa01@gmail.com

75

61. 開発者がやるべき単機能のテスト

 例 ソート機能の単体テスト

　今回はよくある教科書的なつまらない単体テストの例ではなく、図6.1の
ような複雑なデータをソートするような機能確認をします（同じデータの場
合はそのデータの右のデータの多寡によりソートされます）。

名前 年齢 入社年度 ランク

Tanaka 20 2012 A

Takahashi 34 2000 B

Suzuki 40 1997 D

Yoshida 33 2005 A

図6.1　ソート機能

　たぶん初心者は4つの▽ボタンを押して、年齢通りソートできてるな、入
社年度ごとにソートできてるな、ランクごとにソートできてるな、のように
表示を確認して、「単体機能確認できました！」と報告するでしょう。しか
し、テストのプロは違います。確実にこの部分からバグを見つけ出すべく、
そして最適な数のテストケースを作成していきます。まず機能単位の単体
テスト手法の基本は、

●単機能境界値
●組み合わせ

です。

6.1.1

▼ ▼ ▼ ▼

cocoa01@gmail.com

76

第6章　機能単位の単体テスト

単機能境界値
　まず境界値を考えてみましょう。簡単なところでいうと年齢です。まず
人間が生きられる年齢は０～150歳ぐらいですかね、ゼロ歳が入社できるか
はおいといて。なので、

●プログラムが０歳をエラーなく処理できるか
●その境界の-1歳をエラー処理できるか

を見ます。そして、上限の境界は150歳ぐらいですかね、また1000歳でエ
ラーが出ますかね、と境界を探りながらテストをしていきます。ここで

「1000歳でも処理していいんじゃん！」という意見もありますが、大きい数
の処理はコンピュータは苦手ですし、表示エリアからはみ出します。適切
なエラー処理ということを常に考える必要があります。
　また、年齢にアルファベットが入っていた場合にどうなるか、というよう
な確認も必要です。

　もう1つの境界値は、

●データの件数がゼロのとき
●データの件数が1のとき
●データ件数がとても大きいとき

です。これらも境界値テストになります。

cocoa01@gmail.com

77

61. 開発者がやるべき単機能のテスト

組み合わせ
　次に組み合わせを考えていきましょう。一般的に組み合わせる場合は必
ずそこからバグが出やすいかという考えが必要になります。もしそ
の考えがないと、必要なテストケース数が爆発してしまいます。それでは、
ソートプログラムでどういう場合にバグが出るのでしょうか？
　少し複雑なデータで考えてみましょう。組み合わせを考える場合は、1,
2, nを常に頭に入れる必要があります。データが「1」つの場合にソフト
ウェアがちゃんと動いているかは、左記の単機能境界値で確認しました。
次は「2」です。

　当然、同姓が2人いた場合を考えなければならないので、同姓の名前が
あった場合、年齢が正しくソートできているかを確認します。次のような
データを作成して、正しくソートできるかを見てみましょう。

名前 年齢 入社年度 ランク
Tanaka 30 1996 D
Tanaka 20 2012 A
… … … …

　はい、同姓のTanakaさんの次のデータの年齢でソートされていますね！
（図6.2）

名前 年齢 入社年度 ランク

Tanaka 20 2012 A

Tanaka 30 1996 D

図6.2　同姓でのソート

▼

cocoa01@gmail.com

78

第6章　機能単位の単体テスト

　年齢でのソートを確認してみます。次のようなデータを作成して、入社
年度でソートされているかチェックしてみましょう（図6.3）。

名前 年齢 入社年度 ランク
Suzuki 20 2016 A
Tanaka 20 2012 A
… … … …

名前 年齢 入社年度 ランク

Tanaka 20 2012 A

Suzuki 20 2016 A

図6.3　年齢でのソート

　というように2つの組み合わせで、その機能がちゃんと動いているか確認
する必要があります。同じように入社年度とランクの組み合わせ、ランク
と名前の組み合わせとテストケースを作成する必要があります。

　しかし、読者はひょっとして、複雑なデータを作って色々テストを試し
たいかもしれません。同年齢の場合は次の入社順序でソート、入社順序が
同じ場合は次のランクでソート、ランクが同じ場合は次の名前でソートな
ど（図6.4）。たしかにこういうソートはケースとしてはありえますが、これ
はnのケースなので書き始めると無限大の数になります。
　こんなテストケースを書くのは宝くじを当てるようなものです。なので、

まず「1」「2」を確実に網羅し、nというテストケースの数
を適切数（たいてい数個）書けば品質的にはほとんど問題
はありません。

▼

cocoa01@gmail.com

79

61. 開発者がやるべき単機能のテスト

名前 年齢 入社年度 ランク

Suzuki 19 1997 D

Suzuki 20 1998 B

Suzuki 20 2000 A

Suzuki 20 2000 C

Yoshida 20 2000 C

Abe 20 2000 D

Tanaka 40 2008 F

図6.4　複雑なデータのソート

　「それでもバグが出たらどうするんですか？」と言ってくる人はいますが、
いつも筆者は自信を持って、

「そんなバグはまず出ません。また、ほとんどの場合、バグは検出でき
ません！　確率統計的（即席のあやしい計算式を示し）に検出するに
はxx億円かかりますが、その費用かけます？」

と聞き返します。今まで1人も「よしその費用をかけよう！」と言った人は
いませんでした。

　たしかに開発者が思いもよらない変なコードを書いてしまい、3つ以上の
条件でのバグが出ることはあります。しかし、それを防ぐための適切なテ
スト手法がないのも事実なので、あきらめるしかありません。機能単体
の単体テストでの組み合わせのバグ検出確度は、コード
ベースの単体テストよりかなり低いという認識を持つ必要はあり

▼

cocoa01@gmail.com

80

第6章　機能単位の単体テスト

ます。そしてまた、このようなバグを見つけるのは、テスト担当者ではな
く、開発者もしくはそのコードをレビューしているレビュワーだというこ
とを忘れてはいけません。現代の巨大ソフトウェアでは、開発者自身もテ
スト担当者の意識を持つことが重要です。

　余談ですが、こういった単機能が複雑な場合は自動化テストを
おすすめします。まあ、一晩中、自動化したテストを流しておけば安
心感がかなり得られますよ。

6.2

ブラックボックステスト・
ホワイトボックステスト

　今までコードベースでの単体テストや機能単位の単体テストを説明して
きました。「それでは、私の製品はどちらの単体テストをやるのですか？　
それとも両方やるのですか？」という問いが想定されます。しかし、現実
世界において筆者の長いコンサルタント経験から、それを問われることは
実は少なかったりするのも事実です。なぜなら、各社・各事業部で昔から
のやり方があり、それを疑問を持たず踏襲しているので、あまり現場の担
当者はドラスティックな改善に前向きではありません。品質が悪くなけれ
ば、今まで踏襲したやり方でテストケースを追加したりして泥縄的にしの
いでいます。

cocoa01@gmail.com

81

62. ブラックボックステスト・ホワイトボックステスト

　よくある会話だと、

筆者「御社の製品の品質は、特にコード品質が悪いので、ホワイト
ボックスでの単体テストを追加したらどうでしょうか？」
相手「そんな時間も予算もありません、何年間も開発し続けた膨大な
ソースコードの単体テストを一からやるなんて土台ムリです！」

と一蹴されますが、それでも食い下がり、

筆者「いえいえ、現代のソフトウェア理論では、ソースコード全体
の20％程度をテストすれば十分な品質になる単体テスト手法もありま
すが、どうですか？」※1

　しかしだいたいの場合、その後連絡がなくなります。要は新たなテスト
手法を追加したくないのが日本のソフトウェア組織らしいです。

　コードベースでの単体テストをやるか否かは、そのテストで防げた市場
問題が発生したか否かで判断すればよいのです。これと同様の悩みは、ブ
ラックボックステストとホワイトボックステストのどちらをやるかという判
断です。これもブラックボックステストですべてのバグを見つけられれば、
ブラックボックスよりコストのかかるホワイトボックステストをやる必要は
ありません。一般的にブラックボックステストとホワイトボックステストで
見つけることができるバグの範囲が違うのは、本書でもすでに説明した通
りです※2。

※1　 https://www.publickey1.jp/blog/11/post_193.html
※2　 詳細は、p.71のコラム「テストの矛盾（単体テスト・ブラックボックステスト・ホワイト

ボックステスト）」を参照のこと。

cocoa01@gmail.com

82

第6章　機能単位の単体テスト

　もう少し詳しく説明すると、図6.5のようなイメージです。ホワイトボッ
クステストを省くと、バグがいくつか残ります。しかし、それが軽微なバグ
ならば問題ありません。たとえば、無料スマホアプリでたまに動かなくなっ
たりしても致命的な実害がないなら、ホワイトボックステストをやらなくて
も問題ありません。

ブラックボックス
テスト

ホワイトボックス
テスト

ブラックボックス
テスト

ホワイトボックス
テスト

ブラックボックス
テストだけ

図6.5　ホワイトボックステストとブラックボックステスト

cocoa01@gmail.com

83

62. ブラックボックステスト・ホワイトボックステスト

　それでは、車に搭載されるソフトウェアはどうでしょうか？　最近の車の
中身はコンピュータだらけなので、そのソフトウェアに問題が起これば、事
故を引き起こして最悪の場合は死者が出ます。特に、車のエンジンやミッ
ションコントロールのソフトウェアは、ホワイトボックステストが必須で
す。しかし、カーナビゲーションのソフトウェアのほとんどは、ホワイト
ボックステストをやっていません。まあ、カーナビが故障したら困るけど、
スマホの地図でなんとか代用できますしね。

cocoa01@gmail.com

84

第6章　機能単位の単体テスト

組み合わせテストとシステムテストの怪

　組み合わせテストは、デシジョンテーブル、All-pairなどがあります。
本章では、多くの人が必要としている組み合わせテストのやり方について
説明しましたが、組み合わせテストは一番コストのかかる方法です。その
ため、できるだけしないほうがよいでしょう。
　しかし日本のソフトウェア開発環境では、多くの組織が組み合わせテス
トに頼り切っていたり、組み合わせが足らないからバグが出たと思い込ん
だりして、多くの品質費用をこの組み合わせテストに使っています。
　まあ、担当者としては楽だからです。たとえば、市場バグが出たとしま
す。そのバグはほとんど、ある入力のある組み合わせによって発生します
が、テストケースにはその組み合わせは入っていませんでした。このよう
な場合、「それでは、その組み合わせをテストケースとして追加しましょ
う。また、再発防止として、そのパターンの組み合わせも500ケースほど
追加しておきましょう」というストーリーになりがちです。

　バグの発見をシステムテストに依存している組織はたいてい、そのシス
テムテスト部分を協力会社に依存しています。まあ、協力会社もテスト
ケースが増えれば、お金がもうかるので、「そうですね。組み合わせテス
トを増やしたほうがいいと思います」と言ったりします。
　しかしふと立ち止まって考えてみると、「あれ？　このバグはif文を書
いたけど、else文を書き忘れたから出たんだよね。それは要求仕様でその
例外処理を明確にしなかったからだよね？」などと我に返るわけです。な
にかおかしいと思いませんか？　要求仕様の不明確さが原因のバグを、組
み合わせテストで発見するようにするって。

cocoa01@gmail.com

7
リファクタリング

やはり複雑です、そのコード！　
書けません、単体テスト

ファイルのコードのリファクタリング

ビッグクラスのリファクタリング

複雑度を下げるリファクタリング

出口は1つ

MVC分離

7.1

7.2

7.3

7.4

7.5

7.6

cocoa01@gmail.com

86

第7章　リファクタリング

「てめーコード汚ねーよ、複雑度40超えてるじゃん、このswitch文の
中のif文の中のif文どうにかしろよ！　てめーの少ない脳みそじゃどう
いう振る舞いしてるか理解できねーだろ！」
「あー、そうかい。そしたら複雑度下げてやるよ！　コードが書き終
わったのにリファクタリングしろって言うんだな！　バグったらおめー
のせいだからな！」

　リファクタリングの目的とはなんでしょうか？　コードを読みやすくする
ため？　コードのメインテナンス性を上げるため？　筆者は、ソフトウェア
品質を担保するためにはリファクタリングは必須だと考えています（必須と
してない日本の企業の多さには辟易していますが……）。リファクタリ
ングなしには上流・アジャイル品質が担保できないからで
す。筆者はリファクタリングには2つの流れがあると考えています。

●コードの本質論からリファクタリングを推奨する（Martin Fowler推奨）
●XPのプラクティスでのリファクタリング（Kent Beck推奨）

　もちろん2人とも世界的に著名なソフトウェア工学の学者なので、まった
くもって正論を書籍で展開しています［FOW99］［BEC02］。
　XPのプラクティスでのリファクタリングは、コード構造を変えるという
よりは、コーディングのリズムを整えるためのものです。このXPのリファ
クタリングについては第4章で説明しましたね。
　本章では、コードの品質の本質論からのリファクタリングについて考え
てみましょう。

cocoa01@gmail.com

87

71. やはり複雑です、そのコード！　書けません、単体テスト

7.1

やはり複雑です、そのコード！　
書けません、単体テスト

　さて、いきなりですが、単体テストをやるべきファイルが絞られました。
ファイルの中身を見ると複雑な条件が詰まっています。たとえば、

 c = a + b;

なら簡単に単体テストが書けますよね。しかしながら、実世界のコードは
著しく複雑です（もちろん、前任者がなにも考えずに書いてしまったコー
ドのことです）。

　いきなり複雑なコードに対して「よーし、やるぞ！　リファクタリン
グ！」と言って、コードを変更するのは無謀以外のなにものでもありませ
ん。まず、複雑な関数をテストする単体テストを書きましょう。しかし残念
ながら、ある程度複雑なので、単体テストを書くのはかなりメンドウな作
業だったりします。そこで筆者は、図7.1のような流れでリファクタリング
することをおすすめします。

cocoa01@gmail.com

88

第7章　リファクタリング

ファイルの総複雑度（ファイルに入っている関数の複雑度の総数）が
高ければ、まずは２つとか３つにファイルをぶった切る。
シンプルなぶった切りだけなら単体テストはいらない

それでも複雑度が下がらない場合、
既存の複雑な関数コードに対して単体テストを書く

Mockを書く

網羅率を測定し、網羅率が75%になるまで
単体テストを追加する

リファクタリングを行う

単体テストを実行し、結果が同じか確認する

図7.1　単体テストの流れ

　このリファクタリングに際して、筆者は次のことに注意します。

●複雑度を下げる
●出口を1つにする
●MVCを分離する
●ファイルのコードを短くする

cocoa01@gmail.com

89

72. ファイルのコードのリファクタリング

7.2

ファイルのコードの
リファクタリング

　なぜファイルのコードが長くなるかと言うと、責務が適切に分けら
れてないからだと筆者は考えます。それには、大きく3つのパターンが
あります。

●とりあえず、どこのファイルにもなんとなく収まらないから、ここに
入れちゃおう

●クローンコードがたくさんある
●ビッグクラスによるファイルの肥大化

　「とりあえず、どこのファイルにもなんとなく収まらないから、ここに入
れちゃおう」というファイルは、筆者もよく作ってしまいます。無能な筆者
だからなせる技かもしれませんが、なんかうまく設計できなくて、とりあえ
ず関数群の塊をどっかのファイルに入れちゃいます。そして、ファイル名
にother.javaなんてつけちゃって、結局そこからけっこうな数のバグが出て
しまうわけです。

　「クローンコード」とは、似た関数をコピペして使うために、どうしても
ファイルのコードが長くなってしまうことです。たしかに関数化はメンドウ
ですが、メンドウがらずに、頭を使って関数化をしましょう。昔話をする
と、C言語で関数を使うとプログラムの実行スピードが遅くなって、クロー

cocoa01@gmail.com

90

第7章　リファクタリング

ンコードが正当化された場面もありました。しかし、CPUがマルチコアで
あることが当然の現代では、そんな言いわけは通用しません。

7.3

ビッグクラスのリファクタリング

　ビッグクラスのリファクタリングも、ファイルのコードを短くするリファ
クタリングの1つです。あまり関連性のない複雑度の高いファイルは乱暴に
ぶった切ればよいですが、筆者の経験からするとビッグクラスがファイル
のコードを長くしていることのほうが多いのです。

CKメトリックス

昔々あるところに、C言語と1つのLinux OSで書かれたソフトウェア
がありました。そのソースコードを割って見てみると、きれいな構造を
した完ぺきなCプログラムソースがありました。

という時代は素晴らしいですね。筆者の書斎の積年の堆積物――膨大なあ
まり役に立たないソフトウェアの工学本――の中にRobert Glassが1990年
に書いた『Measuring Software Design Quality』［GLA90］という本がありま
す。そこには、構造化プログラミングでのメトリックスをどう測り、品質向

7.3.1

cocoa01@gmail.com

91

73. ビッグクラスのリファクタリング

上させるかが書いてあります。たとえば、「複雑度※1は増やすな」などの話
がとくとくと書いてあるわけです。あるいは、もっと古い、Richard Linger
が1979年に書いた『Structured Programming』［LIN79］では、「完ぺきな構
造化プログラミングとは」について書いてあります。

　時代は移り、オブジェクト指向が登場して、C++やJavaといったプログ
ラミング言語が考えだされます。そしてそこでは、CK Metrics［CHI94］※2な
るものが出てきます（CKメトリックスは、1つのメトリックスではなく、い
くつかのメトリックスの集合体です）。簡単に言うと「クラス構造が複雑だ」
とか、「1個のクラスにたくさんメンバーをつっこんでるとバグになっちゃう
よ」といったメトリックスです。
　難しく書くと、たとえば、WMC（Weighted Methods Per Class：クラス
当たりの平均メソッド数）というものがあります。

　「ここで1つのクラスc1、メソッドをM1, …… Mnと仮定した場合に、ク
ラス群をc1, c 2, …… c nとする」ってな感じになります。要は、「平均WMC
はすべてのプログラムのすべてのメソッドを数えて、それをすべてのクラス
の数で割ればよい」という話です。Chidamberによる、あるサンプル調査

※1　 複雑度についての詳細は、p.58を参照のこと。
※2　 Chidamberという人とKemererという人が定義したメトリックスなので、このように呼ば

れている。McCabe数（複雑度）のように超有名なメトリックスかというとそうでもない
が、Object Orientedな世界では有名なメトリックスである。しかしなぜメトリックスの
名前だけ、考案した個人の名前がついてしまったのか……。

cocoa01@gmail.com

92

第7章　リファクタリング

の論文では、

クラス1つ当たりのメソッドの
ほとんどが0-10に固まって

いて、大きいのはまれである。
一番大きい値としては、1つ

のクラス当たり106のメソッド
があった

Shyam Chidamber

と報告されています。しかし、Chidamberの論文では「どのくらいのメ
ソッド数が適宜であったか」については言及してないので、筆者たち一般
ピープルは困ってしまいます。だいたい、ソフトウェア工学はある新しいも
のが定義されると、定義した人が「こういう値が適当だ」と言い、それが
世の中のデファクトスタンダードになるわけです。McCabe数の場合も、オ
リジナルの論文に「10以上がダメだ」と書いてあったので、現在でもそれ
が標準になっています。

　筆者の私見では、McCabe 20以下、そしてWMC 20以下
と皆に押しつけています。まあ会社ではこの辺の領域で私に逆らう人がい
ないのをよいことに。

　CKメトリックス群では、WMC以外にDIT（Depth of Inheritance Tree：
平均クラス継承の深さ）やNOC（Number of Children：平均子クラス数）
などがあり、適宜プロジェクトによって使い分けていただけばよいでしょう。

　さて、オブジェクト指向のメトリックスの研究が進んできたのが1994年
なので、そろそろアーキテクチャパターンなり、ビューなりのパースペク

cocoa01@gmail.com

93

73. ビッグクラスのリファクタリング

ティブのメトリックス（定量的な良し悪し）が出てきて当然ですよね！　し
かし……色々調べたのですが［LUN00］［CLE01］［DOB02］、本書のような一般的
なエンジニアリングの本で紹介できるメトリックスはいまだ出てきていま
せん。

　WMCは非常に重要なメトリックスで、実は筆者はWMCと複雑度の2つ
のメトリックスしか現場で使っていません。データをとっておけばよかった
なと思うのですが。

　さて、WMC値が大きい場合はどうかというと、それはバグの温床で
す。

バグの出やすい、コードの長いファイルはほとんどの場合、
クラスファイルが適切ではない！

　繰り返しになりますが、コンサルで現場に入りソースコードを分析して
いると、コードが長いファイル（バグが出るファイル）というのは、ほとん
どの場合、クラスがビッグクラスか、各メンバーシップ関数が不適切に長
い場合がほとんどです。筆者の感覚としては80%を超えます。
　品質の観点から言えば、CKメトリックスの値が高いものは、
リファクタリングすべきです。メインテナンスするのも楽ですし、
単体テストも書きやすいからです。WMCのサイズを小さくするには、
Martin Fowlerの言うクラスの抽出という手法があります。要は、図7.2の
ように大きいクラスをぶった切るというやり方です。

cocoa01@gmail.com

94

第7章　リファクタリング

Home

Name
Prefecture
City

getAddress()

Address

Prefecture
City

getAddress()

Home

Name

getAddress()

図7.2　クラスの抽出

　クラスは抽象化されるべきです。しかし、抽象化というのは抽象的であ
るので、クラスのメソッドの数に関しては自由度を持たせてしまいます。そ
のため、プロジェクトでは、クラスのサイズについて厳密な定義を持ち、
もしクラスサイズがその定義を超えたなら「必ずクラスの抽出を行う」とい
うことを徹底したほうがよいでしょう。

　では、ぶった切るメリットはなんでしょう？　たとえば、図7.3のように、
致命的に大きいクラス（ビッグクラス）がバグだらけなので、ぶった切っ
たとしましょう。

　そうすると1つのビッグクラスが2つのちょいデカいクラスになりますね。
そうなるとファイルが2つになり、当然Hotspot値が減っていきます。うま
くいけばHotspotベースでの単体テスト対象ファイルから外れる可能性もあ
ります。

　これだと、他のファイルが単体テストをやるべきリストに上がってくるの
で、同じではないか、と言う人もいるかもしれません。たしかにそうです。
しかし、リストに上がってきたそのファイルは、構造が複雑ではなく、もち

cocoa01@gmail.com

95

73. ビッグクラスのリファクタリング

ろんクラスサイズが小さいものが上がってくるので、単体テストがより書き
やすくなります。

　コードを修正しても、すぐにJenkinsやCircleCIで単体テストが走るよう
になっているから、submit前に自分のミスがわかります。そして、すぐに
修正するから、チーム全体に自分のバグ入りのsubmitがバレるような、は
ずかしい思いもしません。単体テストがチェックインごとに走ることで安心
して小さい単位でチェックインできるから、ステキです。

　こんな感じの開発スタイルになれば、もう残業なんてする必要はありま
せん。そんな成熟したチームが市場バグで苦しんでいるなんて話も聞いた
ことがありません。

ファイルが小さくなるので、
バグが出なくなり、単体テス
トがいらなくなる

2つにぶった切る

図7.3　バグだらけのビッグクラスの抽出

cocoa01@gmail.com

96

第7章　リファクタリング

　最後に、1つだけ言っておくべきことがあります。品質の観点から言う
と、ビッグクラスは、構造化言語のさらに前世代のカオスな言語体系と同
じです。アセンブラや構造化を提供しないBasic（グローバル変数を多用せ
ざるを得ないプログラミング言語）のようなプログラムになり、ソフトウェ
ア品質が一気に下がります。多数の関数群にアクセスされるprivate変数は
まったくプライベートではなくなり、グローバル変数となってしまいます。

7.4

複雑度を下げるリファクタリング

　複雑度は先にも軽く説明しましたが、少し詳しく言うとプログラムの
制御の流れを有効グラフで表現して、そのグラフの持つ性
質に基づいてプログラムの複雑性を表す方法です。関数ごとに
複雑度の数を示してくれて、数が大きければ複雑で、小さければシンプル
です。たとえば、複雑度が30を超えるとバグの修正がかなり困難になり、
修正したと思っても完全に修正しきれなかったり、他のバグを生んだりす
る可能性があります。複雑度はすごい昔に提案されたメトリックスですが、
今でもかなり使ってます（なんと1970年代の論文です）。

cocoa01@gmail.com

97

74. 複雑度を下げるリファクタリング

複雑度がでかい = バグを生む悪い関数

複雑度が小さい = バグのない関数

　複雑度とバグ数の相関関係については20年以上議論されてきており、い
まだ最終結論には至っていません。しかし、多くの読者は、たとえばコー
ドが50行ある関数からバグが出ると、そのデバッグに時間がかかることは
わかっているでしょう。複雑度とバグ数に関しては議論の余地はあります
が、複雑度の高い関数のバグはデバッグ時間が非常にかかります。さらに
言えば、複雑な関数は単体テストが非常に書きにくく、要はテストするの
に時間がかかるのです。

　品質の悪いプロジェクトは、まず複雑度の高い関数のリファクタリング
を積極的に行ったほうがよいでしょう。表7.1は、学術誌のデータではない
ため信ぴょう性に乏しいものの、あながちうそではないデータです。

表 7.1　複雑度とバグ混入確率

循環的複雑度 複雑さの状態 バグ混入確率
10以下 非常に良い構造 25%
30以上 積極的なリスクあり 40%
50以上 テスト不可能 70%
75以上 いかなる変更も誤修正を生む 98%

　ファイルのソースコードを見て直感的に「こりゃ複雑度高いな～、だっ
てifの中にswitch入ってるし」――こう思うと複雑度が40を超えるぐらい
です。そうすると、だいたい2回に1回はバグ修正に失敗します。

cocoa01@gmail.com

98

第7章　リファクタリング

　複雑度の高い箇所を修正するとだいたい50%は失敗するのですから、プ
ロジェクト後半でのバグ修正はやめたほうがよいでしょう。

　しかし、初期段階や中期段階でのバグ修正は積極的に行う
べきです。

品質の悪いコードは恐れずリファクタリングすべき。
リファクタリングに失敗してもバグは出るし、
しなければそこを修正したときにバグは出る。

　余談ですが、複雑度が高い関数が多ければ多いほど、労働時間は増加し
ます（図7.4）。残業を減らしたきゃ、複雑度を下げるしかあり
ません。

FP当たりの
労働時間

複雑度低い ＜＝10
平均的な複雑度 10－20
高い複雑度 ＞＝20

1FP 10FP 100FP 1000FP 10000FP 100000FP

30

23

15

8

0

図7.4　プログラムサイズと複雑度・労働時間の関係

cocoa01@gmail.com

99

75. 出口は1つ

7.5

出口は1つ

　コーディングスタンダードは守るべきです。守れば守るほど、保守性は
上がっていきます。しかし、品質担保において最も重要なコーディングス
タンダードは、関数の出口を1箇所もしくは2箇所にすること。

２箇所の場合は必ず、入り口でのパラメータのエラー
チェックのみで、絶対に関数の真ん中でreturnしないよ
うに※3。

　単体テストとは先に述べたように、in、outの振る舞いのみをチェックし
ています。もちろん、その関数が何らかの責務（計算や、データベースに
保存など）があったとしても、その責務をチェックするのはあまり得策であ
りません（もちろんチェックしたほうがよいですが、単体テストの複雑性が
増します）。シンプルに計算や、データベース保存を関数の最下層で行い、
その保存や返り値だけをチェックするような単体テストがシンプルで保守
しやすいのです。

※3　 唯一の例外として、入り口すぐのところで、不適切な値が入ったときにそのままreturnで
返すことは許容できるかと思う。ただその場合は単体テスト的に問題ないか、他の処理に
影響ないかを注意深く確認する必要がある［DOK16］。

cocoa01@gmail.com

100

第7章　リファクタリング

7.6

MVC分離

　MVC（Model View Controller）分離は、ソフトウェアの品質を考える
場合、非常に重要な設計です。これさえやっていれば、少なくとも筆者は
そのプロジェクトのリーダーに対しては怒りません。なぜなら、MVC以外
の品質問題はリカバー可能だからです。ファイルのサイズが長ければ、
ぶった切ればよい話ですし、もし複雑度が高ければ、局所的なリファクタ
リングをすればよいのです。

　しかし、MVCアーキテクチャが担保されてないプロジェ
クトは不幸です。MVCが分離されてないソフトウェアを、プロジェク
ト途中でMVC分離するのは容易ではありません（図7.5）。かなりきつい
……。なぜなら、ソフトウェアの全体に手を入れなければならないからで
す。すごく優秀な人を連れてきて、全体を見させるか、綿密な計画を練っ
てチームでやるか。どちらにしろ大変な作業なのです。

　しかし、日本の多くの組織のソフトウェアはMVC分離ができていませ
ん。それは、中小企業の規模の小さいソフトウェアではなく、何万個も売
れる組み込みソフトや日本を支えるような基幹ソフトウェアでの話です。

　ちょっと気の利いた人なら「MVC！　当然やるよ！」と言いますが、実
際その人がリードするプロジェクトでもできてないことが多いのです。言う

cocoa01@gmail.com

101

76. MVC分離

は易く行うは難し。リーダーがソフトウェアアーキテクチャに知見があった
としても、ほとんどの場合、そのメンバーにソフトウェアアーキテクチャの
知見がありません。困ったものです……。

　アメリカの大学では、私が通った三流大学のコンピュータ・サイエンス
の学部でも、ちゃんとアーキテクチャを教えます。もちろんアメリカは学歴
主義なので、多くの開発者は大学院まで進学して学び、そういったMVCの
アーキテクチャを実装することに対して異論はありませんし、皆粛々と
MVC分離されたコードを書いています。まあ書けなきゃクビだし。

　なぜか日本のコンピュータ・サイエンスの教育は、アメリカに比べて極
めて遅れています。ちゃんとアーキテクチャを教えているのか、ソフトウェ
アテストについて教えているのか、甚だ疑問です。おっと、教育論の本で
はないのでほどほどに……。

Controller

ViewInterface

Model

MVCが
分離されていない

図7.5　品質が担保されないカオスアーキテクチャ

cocoa01@gmail.com

102

第7章　リファクタリング

　ということで、MVC分離は、最初の設計段階でちゃんと考
えて遂行すべきです。図7.6は、MVCモデルの派生のAndroid用の
MVVM（Model View ViewModel）モデルです。もちろん本質的には
MVCモデルですが、Androidに特化しています。多くの言語で、独自の言
語に特化したMVCオープンソースが利用可能です。

ViewModel

単体テスト界面

プレゼンテーションロジック

UIロジック

データバイディング
とコマンド

Notification
送信

Model

ビジネスロジック

View

図7.6　品質が担保されるアーキテクチャ

　ここで重要なことは、

テストの界面をGUIに持たない

にあります。MVCの最もよい点はViewを分離するところにあります。特
にViewをなるべく小さくしたほうがよいのです。たとえば、JavaScriptに
計算を入れたりする開発者がいますが、Viewには計算やロジックを入れて
はいけません。なぜなら、Viewのテストは人間が見たり、GUIをコント
ロールする自動スクリプト（たいていツールは高価で、スクリプト開発はメ

cocoa01@gmail.com

103

76. MVC分離

ンドウ）にしなければならないからです（図7.7）。

　たとえば、Viewの部分をプログラムの5%だけにしてしまえば、95%の
テストは非常に安価で実行スピードの速い単体テストで終了します。

Model

ControllerView

自動テスト

手動テスト

この界面をたたけば、
UIの変更に影響されない

Update

探索的テストで実施、UIの
変更に対して耐性がある

図7.7　Viewのテストは苦手

　表7.2はViewを分離する理由のまとめです。技術的な理由、そしてもち
ろん仕事ですから不条理な理由もあります。

表7.2　Viewを分離する理由のまとめ

技術的な
理由

●Viewのテストは時間がかかり、UIの変更は頻繁に起こる
●Viewのテストは単体テスト化が困難で、コストのかかるシステムテス
トになるため

●コード上でViewとコントロールを分離する（例：JavaScriptに計算を
持たせたい）

不条理な
理由

●いくら事前に説明しても、企画と上司はものができてからUI変更を命
令する

●企画と上司は出荷直前でもUI変更はできると信じ、それを命令する

cocoa01@gmail.com

104

第7章　リファクタリング

デザインパターン

　デザインパターンの中で一番有名なパターンは、Erich Gammaらが書い
た「デザインパターン」［GAM94］です。C++やJavaなどでソースコードを
書く場合は、このパターンを使うのが王道です。ただしこれはアーキテク
チャのパターンとしてではなく、それより小さい粒度で定義されていま
す。C++をメインで使うためのコーディングパターンといったほうがよい
かもしれません。当然、粒度が小さく、コーディングに重きをおいている
ので、品質特性の保守性に対してのみしか寄与しないという意見がありま
す［LAT11］。とは言っても、筆者はソースコードを書く人はデザインパ
ターンをバリバリ使ってほしいと考えます。
　Gammaが定義しているデザインパターンは、以下のように23種類あり
ます。

●Abstract Factoryパターン
●Builderパターン
●Factory Methodパターン
●Prototypeパターン
●Singletonパターン
●Adapterパターン
●Bridgeパターン
●Compositeパターン
●Decoratorパターン
●Facadeパターン
●Flyweightパターン
●Proxyパターン
●Chain of Responsibilityパターン
●Commandパターン

cocoa01@gmail.com

105

76. MVC分離

●Interpreterパターン
●Iteratorパターン
●Mediatorパターン
●Mementoパターン
●Observerパターン
●Stateパターン
●Strategyパターン
●Template Methodパターン
●Visitorパターン

　デザインパターンのアプローチ自体はたしかに古く、C/C++に偏った考
え方だという批判をする人も多いですが、現代のJava/Kotlin/Swift/
Pythonなどのプログラミング言語でもこの考え方は十分通用します。た
だし、23のデザインパターンを忠実にすべて履行しろというのも酷な話
で、数年しか開発経験のない開発者にそれを求めるのはムリです。しか
し、経験の少ない若い開発者は、このデザインパターンを一つ一つ覚えて
実務で適用できるようになっていけば、キャリアパスの大きなアドバン
テージになりますよ。

cocoa01@gmail.com

cocoa01@gmail.com

8
コードレビュー

コードレビューとは

ペアプログラミング

8.1

8.2

cocoa01@gmail.com

108

第8章　コードレビュー

8.1

コードレビューとは

　コードレビューに関するデータは、現在主流のアジャイルスタイルでは
少ないのが現状です。ウォーターフォールの世界では、割合ちゃんとした
データがとられていたので、そのデータは参考にできます。Boris Beizerが
書いた表8.1がその代表です。

　レビューとは、基本的に他人の書いたものを指摘するのではな
く、本人が気づくことに重点をおくものです。しょせん他人の書
いたコードなんて一瞬で理解するのはムリですから。なので指摘というよ
り、「ここはなぜこういうふうになっているの？」という問いかけ形式にす
ると、本人に気づきがあります。そのことによって、人は成長したりするの
で、非常に重要な活動なのです。

　さらに言えば、レビューはテストよりも効率的なバグ発見手
法ということを、あまり皆さん意識していないような気がします［KAR04］。
レビューですべての欠陥を見つけることはできないですし、テストで確実
に動作を確認したいという気持ちはわかりますが、きっちりとしたレビュー
プロセスを組み入れることは安価で効率的な品質向上の手法なのです。

　最近は、クラウドでのCircleCIなどを使った高速ビルドやGitHubでの効
率的な作業のほか、GitHubとSlackを連携したりもできるので、非常に効
率の良いレビューができます。

cocoa01@gmail.com

109

81. コードレビューとは

　筆者の個人的なおすすめは、なるべくコードレビューの前に機
械が検出できるバグは検出しておいて、人は本当に最小限
のことしかやらない仕組みにしておくことです。
　たとえば、図8.1は一般的なレビュープロセスです。これを図8.2のよう
に変えると、どうでしょう？

表8.1　Beizerのバグ検出［BEI90］（再掲）

QA活動の種類 （Activity） レンジ
カジュアルなデザインレビュー
Informal design review 25%～40%

フォーマルデザインインスペクション
Formal design inspection 45%～65%

インフォーマルなコードレビュー
Informal code reviews 20%～35%

カジュアルコードインスペクション
Informal code inspection 45%～70%

モデル化やプロトタイプの作成
Modeling and prototyping 35%～80%

個人的なコードチェック
Personal desk-checking of code 20%～60%

ユニットテスト
Unit test 15%～50%

新機能のテスト
New function （component） test 20%～35%

統合テスト
Integration test 25%～40%

回帰テスト
Regression test 15%～30%

システムテスト
System test 25%～55%

小規模のベータテスト（10サイト以下）
Low-volume beta test（< 10site） 25%～40%

大規模のベータテスト（1000 サイト以上）
High-volume beta test（> 1000site） 60%～75%

cocoa01@gmail.com

110

第8章　コードレビュー

レビュー
プルリクエスト マージ

図8.1　一般的なプルリクエスト

レビュー

単体テスト実行

実行結果

プルリクエスト マージ

図8.2　品質を考えたプルリクエスト

　図8.2では、レビューを行う前に単体テストの結果が出ています。単体
テストが失敗しているのに、レビューする意味はありませ
ん。こんな仕組みを取り入れていけば、どんどん組織の開発効率が良く
なっていきます。「そしたら、システムテストの自動化もその仕組みに入れ
てしまえばいいじゃないか！」と、実は筆者も入れてみました。ところが
SeleniumもAppiumも実行速度がクソ遅い。

cocoa01@gmail.com

111

81. コードレビューとは

　それに並行実行するにも、PCなりインスタンスなりをたくさん立ち上げ
なきゃなりませんし、さらに失敗した場合の原因追究（実際のバグなのか、
テストコードのバグなのか）に時間がかかります。

　もしそれが関数単体の単体テストなら、実行速度も速いですし、並列で
のテストの実行も簡単にできます（図8.3）。

システムテスト（自動化）
60分

統合テスト
10分

単体テスト
3分

図8.3　単体テストの圧倒的なテストスピード

　本書で一貫して主張し続けた、上流へのテストの移行の目的は品質の改
善が主ですが、実はそれ以上に開発の効率の改善だと考えます。バグ
は作ってしまったら、すぐに修正すれば、本当に手のかからないものです。

バグを入れ込まないように工夫をする組織は多いですが、
それは間違いだと筆者は考えています。だってどんなに気をつけたって
人は間違うものですし、たいていの人は反省しません（特に筆者は）。

バグを入れないようにする仕組みではなく、
入れてもすぐに発見できる仕組みにすることが重要

cocoa01@gmail.com

112

第8章　コードレビュー

8.2

ペアプログラミング

　ペアプログラミングは生産性のみならず品質の向上に著しく寄与します。
その品質や生産性への寄与はすでに確立されているので、安心して取り組
める技術だと思います。もちろん2人で1つのことをやるので短絡的に考え
てみるとコストが倍かかる技術ですが、やり方次第ではそのコスト負担を
大きく凌駕する技術です［WRA10］［VAL10］［ICI20］。

　ただ問題はあまり使われていないというところです。アメリカの調査で
は21％の組織しか使っていないそうです［SUN16］。日本になるとそれよりさ
らに下がると思われます。まあペアプロに対する理解やメリットの説明が
足らないのでしょうね……。はい、メリットを少しずつ説明させてくださ
い。あとシフトレフトでもアジャイルでもシステムテストの比率が下がるの
で、ペアプログラミングである程度のコスト負担は許容できるかと。

　Kent Beck［BEC05］によればペアプログラミングとは、

稼動対象のソースコードはすべ
て2人の開発者が1台

のマシンに向かって作成される
。もちろん1つのキー

ボード、1つのマウスしか使わ
れない

Kent Beck

cocoa01@gmail.com

113

82. ペアプログラミング

と定義されています。人によってはあまり嬉しくない光景かもしれません。
さほど仲が良くもない同僚と朝から1台のPCをシェアーしてくっつきあい
ながら（くっつく必要はないがモニターももちろん1つなのでくっつかざる
をえない）、朝から晩までプログラムする。たしかに効率は上がるかもしれ
ないが……。

　しかし才のあるKent Beckはそういう場合にと、ちゃんと『XPエクスト
リーム・プログラミング入門』に以下の条件があればたとえ気まずい同僚
同士のペアプログラミングでも効果は絶大だと記述しています。

コーディング規約によって、つまらない口論が減る。
すべての人がリフレッシュされていて、休養十分なので、無駄な議論を
することが少なくなる。
ペアが一緒にテストを書き、実装に取り掛かる前にお互いの理解を合わ
せる機会を持てる。
ペアはネーミングや基本設計を決めるメタファを持っている。
ペアはシンプルな設計を行っているので、現在の進行状況を理解してい
る。

　そう言われれば、なんか不仲な2人でもペアプログラミングできるかもし
れないと思ってしまいます。しかしもちろん月に100時間も残業するような開
発者はペアプログラミングなんてきっとできません。「そのタコなお前のソー
スコード！」とか言ってしまい、取っ組み合いの喧嘩になってしまいます。

　ペアプログラミングの効率性に関しての研究はいくつか良いものがあり
ます。まず以下の図8.4はWilliams［WIL00］の研究の成果です。

cocoa01@gmail.com

114

第8章　コードレビュー

0 8040 100（％）6020

ペアでプログラム

一人でプログラム

開発者1

開発者2

開発者3

図8.4　ペアプログラミングと一人でのプログラミングでのプロジェクト完了時間の差

　この結果をどう見るかもまたビミョウです、40％早いなら2人別々な仕事
のほうが効率が高いという言い方もできます。Williamsは論文で2人で
作ったほうが質がいいのだから、この40％というのはとてもいい結果だと
言っています。

　ただこれもいつもというわけではなく、やはりケースによっては一人でプ
ログラムしたほうが効率的でありソースコード品質も変わらないこともあり
ます。Dybå［DYB07］は以下の表8.2のようなケースバイケースでペアプログ
ラミングと一人での作業を分ける提案をしています、もっともなことだと思
います。

表8.2　ペアプログラミング適用のためのガイドライン

開発者のレベル タスク難易度 ペアプログラミング向き？
初級 簡単 YES

難しい YES
中級 簡単 NO

難しい YES
上級 簡単 NO

難しい NO

cocoa01@gmail.com

115

82. ペアプログラミング

　ペアプログラムはより複雑なシステムの開発などの場合に力を発揮しま
す。逆にどーでもいい簡単なソフト開発で、かつそれを上級者が行う場合
は一人で行うほうがよいです。そしてそれが初級者の開発者で行う場合は
ペアプログラミングのほうが効率的です。実はソフトウェアというのはシス
テムのすべてが複雑というのはありえません。ある部分は高いプログラミン
グスキルがいりますし、ある部分はそれほどいりません。個人的には難し
い部分は熟練のプログラマに一人でやらせ、簡単な部分は新入社員のよう
な開発者にペアプログラミングでやらせるのがいいのではと思ってい
ます。

　ソースコード書くのが早けりゃいいかっていうと、そうではありません。
品質の高いソースコードである必要があります、もちろん。

　ペアプログラミングは確実にソースコード品質を上げます。Dybå［DYB07］

が11の研究論文を調べたら、すべてにおいてペアプログラミングはソース
コード品質を上げているという結果を出しています。

0 8040 1006020

ペアでプログラム

一人でプログラム

開発者1

開発者2

開発者3

開発者4

（％）

図8.5　ペアプログラミングと一人でのプログラミングでのテストケースの成功値

cocoa01@gmail.com

116

第8章　コードレビュー

　図8.5のグラフ［WIL00］でもわかるように、ほとんどのケースでペアプロ
グミングを行ったほうが、テストのパス比率が高いです。この結果は当分
の間ひっくりかえらないと思われるので、品質重視もしくはアジャイルでの
開発の製品はペアプログラミングを積極的に採用すべきだと筆者は考え
ます。

　最後にペアプログラミングは幸せになるという結果がちょっと出ていま
す。なんとWilliams［WIL00］の調査によると96％の開発者がペアプログラミ
ングのほうが、一人でプログラミングするより幸せだと感じているそうで
す。まあ常に孤独なソフトウェアエンジニアなので、そういう結果もありえ
るかなーとちょっと思ってしまいます。

　賛否の分かれるペアプロですが、確実に言えることは複雑な製品［SUN16］

（コードも含む）の場合は効率および品質の向上が望めるので試すべき手法
だと思います。

　筆者は多くのコンサルを通じて、非常に複雑で汚いコードをたくさん見
てきました。なぜここまでほっておくのであろう？　といつも不思議でし
た。そしてその場所からバグが出るのをチーム全体で見ないふりをしてい
るケースはたくさんあります。もちろんそこのコードは変えなきゃならない
のですが、変えればバグが出ます。日本人は優しいですから、その場所か
らバグが出てもその変更した人を責めたりしません。しかしそんなことを長
い間何回も続けるより、少なくとも2人でその複雑なコードをどうバグの出
ないコードに修正するかを悩むのは悪い活動ではないと思うのですが。

cocoa01@gmail.com

9
統合テスト

統合テストのパターン

APIテストとAPIバグ密度の考え方

カオスエンジニアリング

9.1

9.2

9.3

cocoa01@gmail.com

118

第9章　統合テスト

　「単体テストが終わった！」――しかしシステムテストに入るのはまだ早い
ですよ。単体（たいてい関数単位）でしか品質が担保されていません。統
合テスト※1のやり方は、組織によって考え方が分かれます。

9.1

統合テストのパターン

　筆者の経験では、単体テストをしっかりやった後の統合テストのパター
ンとして大きく3つのパターンがあります。

●単体テストと探索的テストをやり、統合テストとシステムテストはや
らない
●単体テストをやり、統合テストもしっかりやる。さらにシステムテス
トもやる。品質重視パターン
●単体テストをやらず、統合テストとシステムテストをやる。日本的な
後半重視パターン

　どのパターンを選択するかは開発組織において、与えられた時間と予算
を鑑み、最適解を目指せばよいでしょう。

※1　 統合テストのやり方もまた、ISTQBやISOでの定義は不明確である。本章では筆者の統合
テストのやり方をおすすめするが、それが決定的なすべてではない。

cocoa01@gmail.com

119

91. 統合テストのパターン

　図9.1は、標準的な統合テストのアプローチです。最善ではありません
が、大きな統合テストでの活動を設定し、単体テストやシ
ステムテストを省くという統合テスト重視の手法もあります。あまり
これをやっている組織はありませんが、実はけっこう有用だったりします

（本書の一貫した主張からは矛盾しますが……）。

単体テストで
見つけるべきバグ

統合テストで
見つけるべき
バグ

システムテストで
見つけるべきバグ

図9.1　統合テストアプローチ

統合テスト重視の実例

　20年のテストコンサル経験の中で、この統合テスト重視の実例は3例し
かありませんが、3例ともなぜだかプロジェクトとしてすごくうまくいきま
した。

　その中の1例を説明します。そのチームは以前の製品でバグに悩んでいま
した。特にアーキテクチャを考えなかったため、開発者がただ思うがまま
にコードを書いており、システムテストフェーズで単体テストでつぶすよう
な単純なバグが多く出ていました。

9.1.1

cocoa01@gmail.com

120

第9章　統合テスト

　システムテストで多くのバグが出るのは、ソフトウェアを管理する立場と
しては非常に注意しなければならない兆候です。当然、出荷後に致命的な
バグが出て、担当エンジニアたちは会社から評価されず、最悪のボーナス
額でした。

　次のバージョンでは、チームメンバーなりに考え、少々乱暴ですが、ぐ
ちゃぐちゃだったソフトウェアアーキテクチャをアプリレイヤ（ほとんど
GUI）とミドルウェアレイヤ（GUIから呼ばれるAPI群）に分ける変更を
しました（図9.2）。

アプリケーション

ミドルウェア

ココを叩く
All-pairや直交表いらず

ドライバー ドライバー

図9.2　少し乱暴だけど、統合テストのしやすいアーキテクチャ

　そして、そのミドルウェアレイヤに対してAPIテストをして、徹底的にミ
ドルウェアから関数を叩き（実行し）ました。APIテストで徹底的に関数を
叩くのは、実は技術的に難しいことが1つあります。関数を呼び出しても、
エラー処理ですぐ弾かれてしまうという点です。Pre-conditionという事前
状態を適切に処理しなければ、関数の内部までテストができません。

cocoa01@gmail.com

121

91. 統合テストのパターン

　当然ですが、その関数を使うに
は、たとえばハンドラーなど他の
関数を呼ばなければなりません。
そのチームでは、単体の関数を呼
ぶ際に他の関数との依存関係をで
きるだけ最小にするように設計し
ました（図9.3）。

　APIテスト（統合テスト）をするうえで、Mockやらstub/driverやらを用
意するのは実にメンドウなものです。そのメンドウは、いざAPIテストをし
ようと思ったときにたいてい露見します。しかし、設計段階でほんの
少しの工夫をするだけで、APIテストは簡単に実行できま
す。チームとしての満足感も上がりますよ。

●UIに一番近いレベルでテストができるので、品質の安定性が実感できる
●GUIベースのテストではないので、テストスクリプトのメインテナン
ス性が非常に高い

●GUIベースではないので、非常にテスト実行スピードが速い。チェッ
クインごとにすべてのテストケースを実行することも可能。メインテ
ナンスコストが安いということは、スクリプトが途中でスクリプト自
身のバグによって止まることが非常に少ない

関数呼び出し

エラー処理

正常処理

Pre-condition

Pre-condition

図9.3　Pre-conditionテストアプローチ

cocoa01@gmail.com

122

第9章　統合テスト

9.2

APIテストとAPIバグ密度の考え方

　統合テスト（APIテスト）をする場合、どういうふうにやればよいのか、
どこまでやれば完ぺきなのか、という疑問がわくでしょう。しかし、業界標
準も学会の規定もないので、自分たちで決める必要があります。

　筆者は、APIに入力パラメータがある場合は、そのパラ
メータに対して境界値テストをして、できればそのAPIを
様々な形で叩き、状態遷移まで網羅できれば完ぺきと考えま
す（図9.4）。

境界値内

テストする

境界値外 境界値外

図9.4　APIテストでの境界値テスト

　本質的には単体テストと変わらないかもしれませんが、統合テストでは
網羅率を計測しないことも選択でき、網羅工数も削減できます。また、状
態遷移テストも追加され、よいことずくめです。

コード網羅率を追加しない代わりに、どのくらい境界を
網羅したかを計測することをおすすめします。

cocoa01@gmail.com

123

92. APIテストとAPIバグ密度の考え方

　たとえば、以下のような関数があったとします。

int Music_Play(int, int, int)

●1番目のintには、整数（1-127）が入力可能
●2番目のintには、整数（1-127）が入力可能
●3番目のintには、4つの選択肢のうちの1つの定数（整数）が入る

　それらの入力可能な整数、定数以外の値が入ったら、関数はエラーで処
理を返します。

リスト9.1　関数のテストケース

int Music_Play(int, int, int); // <- 2 Boundary for valid and invalid

int Music_Play(int, int, int); // <- 2 Boundary for valid and invalid

int Music_Play(int, int, int);

 // <- 4 Boundary ENC_AAC; ENC_MP3; ENC_PCM, invalid

　1番目のパラメータには、最小値と最大値の境界値である0, 1, 127, 128
の4つのケースを入れます。4パターンのテストケースです。

　2番目のパラメータも同様に、最小値と最大値の境界値である0, 1, 127,
128の4つのケースを入れます。4パターンのテストケースです。

　3番目のパラメータには、4つの選択肢の定数を入れ、さらにその4つ以
外の定数（無効な値）を1つ入れます。5パターンのテストケースです。

cocoa01@gmail.com

124

第9章　統合テスト

　全部足すと、4＋4＋5＝13パターンです。API網羅率は筆者独自の
用語ですが、13パターンのうち、3つのテストケースを実行したら、勝手に
API網羅率23%（3/13）と言ったりしています。このAPI網羅率は論理的
ではないかもしれませんが、実務で十分使用できると筆者は考えています。

　いまだ日本の組織には、組み合わせテストと称して膨大な数のシステム
テストをやっているケースがありますが、システムテスト自体の組
み合わせテストは、対コスト面でまったく無意味です。しか
し、APIテストならば、多少なりとも組み合わせテストをや
ることは許容できます。なぜなら、数字の組み合わせをする処理を
ほんのちょっと入れるだけで、高速なAPIの組み合わせテストができてし
まうからです。

9.3

カオスエンジニアリング

　カオスエンジニアリング［PRI18］［BAS16］という言葉を聞いたことがありま
すか？　簡単にいうと、システムのプロセスやらCPUやら、仮想マシンや
らをランダムに止めたりして、システム全体が致命的な状態に陥らないよ
うなシステム設計をするためのツールです。

cocoa01@gmail.com

125

93. カオスエンジニアリング

図9.5　AWS上のカオスエンジニアリングツール

　たとえばAWS上にはすでにこのカオスエンジニアリングツールは実装さ
れており、割合簡単に実行できます。たとえば図9.5のようなツールで、
asw:ecs:stop-instancesをアクションとして選ぶと、インスタンスを自動的
に止めてくれたりします。

cocoa01@gmail.com

126

第9章　統合テスト

　ミューテーションテスト（第13章を参照）がソースコードレベルで壊し
ていたのを、今度はシステムレベルで壊します。たぶん読者の皆さんは、
筆者と同じことを感じているかもしれません。今後のテストは品質を保証
するというより、ぶっ壊してソフトウェアを保証するというスタイルにどん
どん進んでいくかもしれません。今後のカオスエンジニアリングはあらゆ
るところを「ぶっ壊す」ことを目指しています。言い換えれば非機能テスト
に近づいています。たとえばCPUに負荷をかけるとか、ネットワークのス
ピードを少し落としてあげるとか。

　厳密に言うとカオスエンジニアを説明することはシフトレフトにも、ア
ジャイルテストにも関連ないかもしれません。しかし今後の中・大規模シ
ステムには必要なテスト手法です※2。

　カオスエンジニアリングを説明するとき、いつも思うのはみずほ銀行は
こういうことを考えてシステムを構築していたのだろうか？　ATMが障害
が起こしたときに、システム全体が止まらないように。ハードディスクが物
理的に壊れたときに、システム全体が止まらないように。筆者が思うに、
みずほ銀行はそういったカオスな状態でのテストはせずに、古くからの膨
大なテストケースを書いて、それが成功した失敗したというようなシステム
開発およびテストをしていたのではないでしょうか？

※2　 カオスエンジニアリングは単体だけで動くアプリには必要ないかもしれない。たとえば
Androidアプリとか。ただ、そのAndroidアプリがクラウドサーバーに接続すれば必要に
なってくるだろう。ソフトウェアは肥大化し、複雑化は避けられない。小さいアプリは少
額のテストで、大きいシステムはテストの資源をたくさんつっこむというのが今後の傾向
だと思う。たとえばソフトウェアのサイズが倍になれば、テストの資源を倍にするという
方程式はあまり成り立たないような気がする。ソフトウェアのサイズが倍になれば、テス
トに必要な資源は4倍になるかもしれないというのは読者の方はわかってもらえると思う。
そういう意味で、今後のソフトウェアテストにおけるカオスエンジニアリングは非常に重
要だと筆者は考える。

cocoa01@gmail.com

127

93. カオスエンジニアリング

　古くからのシナリオテストは、

ユーザー登録シナリオテストケース1

●ステップ：
 1. ログインする
 2. ユーザー登録画面で、ユーザー登録をする
 3. 登録されたユーザーに対して、xxxをする
 4. 登録されたユーザーを削除する
●期待結果：xxxがデータベース上で削除されてないことを確認する

みたいな一連のシナリオを多量にテストしたりします。そして市場バグが出
たら、シナリオテストケースが足りませんね！　もっとテストケース追加し
ましょう！　みたいな話に陥る。現代の複雑で肥大化した不安定（クラウ
ドやオートスケール）なシステムでそんなシナリオテストはやってられませ
ん。いかにして無限のシナリオを自動化して、全部網羅的にはできないに
しろ、効率的に行っていくかを考えなければなりません。

　本書では一貫して上流品質は大切である、丁寧に単体テストをすべきだ
と主張してきました。しかし実際にはそれでは足らない。その足らない部
分をVモデルの主張するところの統合テスト、そしてシステムテストと階段
を上がるように理論上はテストするべきかもしれません。しかしその理論
を実践するには一般の企業ではお金も人員も足りません。

　少し余談になるかもしれませんが、筆者は図9.6に示されるような考えを

cocoa01@gmail.com

128

第9章　統合テスト

勧めています。

単体テスト
（ホワイトボックステスト）

統合テスト・システムテスト
（ブラックボックステスト）

図9.6　機能要求と非機能要求

　統合テストとシステムテストという概念は一緒くたにしませんか？　単体
テストにお金と人員をシフトしたら、統合テストとシステムテストを別々に
やっている時間はありませんよね？

　膨大なブラックボックステストが存在する中で、その一つ一つを検討し
統合テストやシステムテストに割り振るにはあまりにもコストがかかりすぎ
ます。それなら1つか2つのブラックボックステスト手法を選んで、最終工
程のテストでやるのはどうでしょうか？　とも言っています。その最有力候
補がカオスエンジニアリングです。

　少しカオスエンジニアリングについて詳しく説明します。カオスエンジニ
アリングはNetflixによって考案されたテストとされています。その目的は、

●Endineers shoud view a collection for services running in
production as a single system.（エンジニアが様々なサービス実行
状況を1つのシングルシステムとして見れる）

cocoa01@gmail.com

129

93. カオスエンジニアリング

●We can better understand thes system’s behavior by injecting
real-world input (for example, transient network failure) and
observing what happends at the system boundary.（本当の入力
値（異常値）を入れることによりシステムの振る舞いが理解でき、シ
ステムの境界でなにが起こるかを監視できる）

となっています。すでに現存するすべてのソフトウェアは複雑です。単一
のソフトウェアとして見ることも難しい世の中です。それならばシステムの
境界値を入れることにより、システム全体の振る舞いを見ることは非常に
重要です。そうです、ある意味境界値テストになります。

　カオスエンジニアリングは、少なくとも筆者の経験から大きなメリットが
いくつもあります。たとえばソニー時代にMicrosoft Azureの東京リージョ
ンと大阪リージョンの両方が落ちたときがありました。Microsoftと大規模
の契約をしたので、Microsoftが謝りに来ましたが、落ちた時間が数時間程
度であったこともありビジネスには大きな影響はありませんでした。その頃
震災があったので、震災対策で大阪と東京にリージョンを持っていました
が、やはり日本以外にもリージョンを持つべきだと思いました。たしかに
ネットワークのレイテンシーがその当時致命的な問題でしたが、それでも
日本国内以外に持つことは重要です※3。

　またMicrosoft USのExchangeチームでテスト担当者をやっていたとき
に、100人以上のテスト担当者が働いていました。複雑なサービスがいくつ

※3　 レイテンシーが問題なら、レイテンシーを調整するようなカオスエンジニアリングのテス
トを行えばいい。

cocoa01@gmail.com

130

第9章　統合テスト

も絡み合い、依存性の強いシステムでした。ビルドができるたびにどっか
のサービスがこけていて、システム全体が立ち上がらず、そういった調整
に苦労した経験があります。そのときたしかにサービスを落としてテストす
る担当はいましたが（たしかExchange経由のメールが消えないことを
チェックするという意味で）、100人の中で1人しかいませんでした。

　Microsoft Exchangeより大規模なシステムは当然今後たくさん出てきま
す。こういったカオスエンジニアリング的テストのアプローチはミューテー
ションテストと同等に今後重要になってくるのではないでしょうか。

カオスエンジニアリングと品質＆生産性

　筆者は本書を通じて以下のような図を説明したいのかもしれません
（図9.7）。マイクロサービスが流行っていますが、ソフトウェアを小さく分
割して開発することは効率の面でも、品質の面でもメリットがあります。

少人数で
の開発

マイクロサービス

少人数で
の開発

システム全体の品質

コード網羅率・ミューテーション網羅率

カオスモンキーテスト

マイクロサービス

少人数で
の開発

マイクロサービス

図9.7　アジャイル開発におけるシステムテストの姿

9.3.1

cocoa01@gmail.com

131

93. カオスエンジニアリング

　実際に小さいチームのほうが上流（コーディング工程）でのバグ検出率
が高いです（図9.8）。

10 100 1000

ソースコード行数（単位： 1000行）

10000

1000

100

10

1

20人以上の
プロジェクト

5人以下の
プロジェクト

シ
ス
テ
ム
統
合
テ
ス
ト
か
ら

完
全
稼
動
ま
で
に
摘
出
し
た
バ
グ
数

図9.8　プロジェクトの人数の増加と欠陥数

　下記の図9.9のようにチームの人数が増えれば増えるほど、1人当たりの
生産性が落ちてきます［LIT04］。

生産性

10 20 30 40 50 60 70

チームの人数

Conte氏の研究結果

1人が1人分働いた
ときの理想値

40

30

20

10

Jones氏の
研究結果

図9.9　チームの人数と生産性およびその効率

cocoa01@gmail.com

132

第9章　統合テスト

　第1章で説明したアジャイルの本質をもう1回思い出してみてください。

●不安定な状態を保つ（Built-in insability）
●プロジェクトチームは自ら組織化する（Self-organizing project teams）
●開発フェーズを重複させる（Overlapping development phases）
●マルチ学習（“Mutilearning”）
●柔らかなマネジメント（Subtle control）
●学びを組織で共有する（Organizational transfer of learning）

　すべてが小さいチームで、自発的に開発することがアジャイルの本質の
1つです。その個々のチームがマイクロサービス単位とイコールならば、さ
らに良いです。個々のマイクロサービスが、そのチームによって品質が担
保され、往々にしてチーム間のコミュニケーション（人という意味および、
マイクロサービス間）のまずさからバグが生み出されますが、それをカオ
スエンジニアリングで担保すれば品質の多くの部分が保証されるのではな
いでしょうか。

cocoa01@gmail.com

10
システムテストの
自動化

最悪のシステムテスト

キーワード駆動型自動テスト

妄想な自動化

10.1

10.2

10.3

cocoa01@gmail.com

134

第10章　システムテストの自動化

　本章のテーマは、システムテストの自動化です。前章でシステムテス
トはなるべくやめて、上流でテストするのが善策と述べまし
た。筆者の主張の矛盾は重々承知のうえですが、日本の多くの組織ではシ
ステムテストでさえ、マニュアルでやっているところがほとんどです。その
ため、単体テストの網羅率を計測しながら、軽い探索的テス
トで素早く出荷という手法を最終的なゴールにするとしても、その1ス
テップとしてシステムテストを自動化し開発スピードや品質を
上げていくのもやぶさかではないと考えています。

　さらにやはり「システムテストの自動化を書いてほしい」という需要は多
いので、矛盾しまくりな筆者の主張ではありますが、本章でシステムテスト
の自動化について書いてみたいと思います。

　本来であれば、第9章でも見た図10.1のような進め方が理想です。はい、
もちろん。

単体テストで
見つけるべきバグ

統合テストで
見つけるべき
バグ

システムテストで
見つけるべきバグ

図10.1　理想的な自動テスト（再掲）

　しかし、実際の現場では、（前章で書いたような）図10.2が現実なのかも
しれません。

cocoa01@gmail.com

135

10

統合テストで
見つかったバグ

UIテスト

統合テスト

単体テスト

単体テストで
見つかったバグ

膨大なバグを
システムテストで
見つけている

図10.2　残念な日本の典型的な自動化挫折パターン（管理職の妄想）

　日本で「テストの自動化」と言うと、図10.2のようなやり方で、膨大な
システムテストケースを自動化しようとするアプローチです。それが成功し
ているとカンファレンスで発表する人もいますが、継続的に成功している
かというと甚だ疑問です。

　実際、筆者が自動化のコンサルで呼ばれたときも、多くの顧客が図10.2
のようなシステムテストケースを自動化しコスト削減したいと言います。
うーむ……。

　まあ、そういうアプローチも悪くはありません。お客様は神様ですし、高
いコンサルタントのコストを支払ってくれます。しかし、「システムテスト
を自動化する」という本質的によくない選択をして、さらに悪いことに

cocoa01@gmail.com

136

第10章　システムテストの自動化

「キャプチャー・リプレイ※1の自動化テストをしたい」と言い出します。

　どうして最悪の自動化アプローチをとろうとするのでしょうか？　気持ち
としては多少わかりますが、「現場を知らない」「技術を知らない」中間管
理職がソフトウェア品質を改善しようとすると、たいてい「システムテスト
の自動化」と「キャプチャー・リプレイ」を組み合わせてきます。

　そんなとき、筆者はコンサルタントとしてどうするのか？　はい、その現
場から逃げます。そういうプロジェクトがうまくいく確率はゼロ％な
ので。

10.1

最悪のシステムテスト

もうそろそろ、キャプチャー・リプレイの自動化
やめませんか？

　キャプチャー・リプレイの自動化とは、ユーザーの操作を記録して、そ
れを再生する、GUI上での自動化テストのことです。なぜか日本では、こ

※1　 キャプチャー・リプレイについては次節で詳しく説明する。

cocoa01@gmail.com

137

101. 最悪のシステムテスト

れが自動化テストのやり方として主流です。しかし、キャプチャー・リプレ
イの自動化は、かなり愚劣なやり方と言わざるを得ません。

　キャプチャー・リプレイの自動化には、ユーザーの操作を記録・再生す
るキャプチャー・リプレイツールを使います。たとえば、

●マウスでボタンを押す ：Button_Push, x=200, y=300

●テキストを「aaa」と入力する ：Type, "aaa"

という感じで、ツールに「Button_Push, x=200, y=300: Type, "aaa"」と
記録していく機能を持っています。記録し終わったら、それを再生させま
す。もちろん記録した直後ならば、同じようなテストを何千回・何万回と
正確にやってくれます。

　しかし、もしそのツールを使って自動化をして、その後、対象ソフトウェ
アのUIが変更になったら？　開発者がボタンの位置をx=200, y=300から違
う位置に動かしたら？　そのスクリプトが100個あったら？（もういちど100
回ユーザー操作しますか？※2）

　図10.3は、Dorothy Grahamが定義したテスト自動化のレベルです。

※2　 ツールメーカーも工夫して、「オブジェクトで登録する」などの機能を追加していますが、
キャプチャーを何度も繰り返さなければならないという根本の解決には至っ
ていない。今後この分野はAI（Artificial Intelligence）に期待するが、ここ数年でそれが
実現できるとは思えない。

cocoa01@gmail.com

138

第10章　システムテストの自動化

レベル
※ 再現性の低い
ものから順に

記述レベル 概要

Level 1 線形スクリプト
手動で作成するか、手動の
テストをキャプチャーして
記録する方法

Level 2 構造化スクリプト 選択と繰り返しのプログラ
ミング構造を使用する方法

Level 3 共有スクリプト

スクリプトを他のスクリプ
トから呼び出すようにして
再利用する方法。ただし、
共有スクリプトには構成管
理下にある公式なスクリプ
トライブラリが必要

Level 4 データ駆動スクリプト
コントロールスクリプトを
使ってファイルあるいはス
プレッドシートにあるテス
トデータを読み込む方法

Level 5 キーワード駆動スクリプト

ファイルあるいはスプレッ
ドシートに、コントロール
スクリプトまで含めたテス
トについての情報のすべて
を格納してしまう方法

図10.3　Dorothy Grahamのレベル定義［DOR19］

　テストの自動化では、どんな自動化でも、メインテナンスコストを
最小限に抑えることが一番重要です。逆に言うと、最初にスクリプト
を作るときにいくらかかっても、メインテナンスコストが安ければいくらで
も自動化テストは再利用できます。

　キャプチャー・リプレイツールは、初回のスクリプト作成コストは安いも
のの、その後のメインテナンスコストは最悪です。極論かもしれま
せんが、筆者はキャプチャー・リプレイツールで自動化するぐらいなら、

手動テストのほうがずっと安くつくと考えます（図10.4）。

日本のほと
んどの組織
がまだこの
レベル

cocoa01@gmail.com

139

101. 最悪のシステムテスト

開発中

費用

開発完了

メインテナンス

自動化で一番重要なのは
メインテナンス期間中のコスト

キーワード駆動型
ツール

キャプチャー・
リプレイツール

図10.4　キャプチャー・リプレイツールの問題点

　キャプチャー・リプレイツールは、スクリプトのボリュームが大きくなれ
ばなるほど、メインテナンス性が悪くなります。それもそのはず、同じよう
なテストをするスクリプトでも、関数化せずにひたすらコピペするようなも
のだからです。なので、どんどんコピペが増え、UI変更を1箇所加えただ
けで、すべてのスクリプトが動かなくなることがあります。

　繰り返しになりますが、単体テストでもシステムテストでも、自動化で一
番考えなければならないのはメインテナンス性です。初回の自動化ま
でのスピードやコストがいくら安くても、継続して自動化ができな
ければ意味はありません。

　要は、多くのツールメーカーの宣伝、特にキャプチャー・リプレイの宣
伝に惑わされ、最初は楽しいけど、だんだんつらくなっていく構図です。

cocoa01@gmail.com

140

第10章　システムテストの自動化

10.2

キーワード駆動型自動テスト

　キャプチャー・リプレイ型の自動テストは最悪と説明しましたが、本節
ではシステムテストの自動化の最良の選択の1つである、キーワード駆動
型のテスト手法を説明します。

キーワード駆動テストは、2つの属性を効率的に使います。1つはア
クションワード、もう1つはデータです。簡単に図示すると、図10.5のよう
になります。

ドライバースクリプト

テストデータアクション

テスト結果判断

図10.5　キーワード駆動テスト

cocoa01@gmail.com

141

102. キーワード駆動型自動テスト

　ポイントは、アクション（キーワード）とデータを明示的に分けて使うと
ころです。アクションもテストデータも一度定義したら、似て非なるも
のを作らないことがメインテナンス性を向上させます。

　たとえば、図10.6のようなUIをテストするとしましょう。表で整理する
場合は表10.1のようになります。

ほにゃらら銀行

ユーザー ID ログイン

パスワード
パスワード
リセット

図10.6　キーワード駆動テストをするUI

表10.1　ログインテスト

アクション データ（ユーザーID） データ（パスワード）

ログイン
"juichi" "pass1"

"juichi takahashi" ""
"" "あいう"

パスワードリセット Don’t care Don’t care

　たとえば、Webアプリではログインが何十箇所も出てきますよね。しか
し、そのログインスクリプトを、必ず1つのドライバースクリプトにまとめ
なければならないのがキーワード駆動テストです。繰り返しになりますが、
キャプチャー・リプレイツールでは、ログインというアクションは何百箇所
に分散され、UIが変更されるたびに余儀なく何百箇所の変更が発生します

（図10.7）。これに対して、キーワード駆動テストでは1箇所の変更で済みま
す。

cocoa01@gmail.com

142

第10章　システムテストの自動化

自動化してなんか嬉しい
ことあったっけ？

なんかめんど
くさくね？

テスト書くの
楽しい ！

よっしゃ ！
自動化や ！

メンテつらい・・・
時間がかかるわ・・・

効果上げてないからやめろってさ、
ほんとうちの会社クソだな

楽しい

つらい

図10.7　自動化が継続されない典型的なパターン［ISHI14］

10.3

妄想な自動化

　自動化の問題は、経営陣も巻き込むと、さらに複雑な状況、致命的でカ
オスな状況に陥ります。自動化ツールはかなり高価です。エンジニアの
チームで、おいそれと買える値段ではありません。
　しかし、現場を知らない経営者が、ある日突然（ほんと思いつきみたい
に）テストコストを減らそうとします。「なんでこんなに人が必要なんだ。

cocoa01@gmail.com

143

103. 妄想な自動化

自動化ツールがあるじゃないか。それ買って人件費減らせよ！」なんて命
令が突然下ることはよくあります。気の弱い中間管理職はすぐに自動化
ツールメーカーの営業を呼んで、デモしてもらい、なんの予備学習もなく
ツール導入を決めたりします（図10.8）。まあ、このようなケースがすごく
多いのは期末の予算が余っているから、なんて安易な理由だったりします。

経営陣は「自動化すれば手動コストがゼロだ」という
妄想を持つ。
基本的に自動化コストのほうが高くなるが、開発全
体での時間・コストの寄与で考えるべき

よっしゃ ！
自動化や ！

効果上げてないからやめろってさ、
ほんとうちの会社クソだな

楽しい

つらい

図10.8　典型的な自動化挫折パターン（管理職の妄想）

cocoa01@gmail.com

cocoa01@gmail.com

11
探索的テスト

cocoa01@gmail.com

146

第11章　探索的テスト

　本書はテスト担当者向けの専門書ではないので詳しく書きませんが、探
索的テストは単体テストを十分行った組織には非常に役に立つ手法で
す。探索的テストの定義は、以下のようになります。

ソフトウェアテストの1つのスタイル

●個人に自由意志を持たせるとともに責任をより明確にする
 － 個人のテスト活動である
●継続的にテスト活動を洗練させる
●探索的テストは以下の活動を行う
 － テスト関連の学習
 － テスト設計
 － テスト実行
 － テスト結果を報告

　はい、わかりましたねって感じではないですね……。まあ、ぶっちゃけ
て言えば、スキルのあるテスト担当者が責任を持って、テストケースを書
かずに※1、テストの学習とテスト実行を高速に行う手法です。
　筆者は、テスト全体に占めるテストケース作成・実行の度合いは全シ
ステムテスト活動の80％を超えるのではないかと考えています。
それを、要求仕様を完ぺきに理解したスキルのあるテスト担当者がやれ
ば、10倍のスピードでできると信じています。

※1　 ドキュメントをまったく書かないという意味ではなく、テスト設計書は書く。

cocoa01@gmail.com

147

11

　たとえば、テストを協力会社に任せた場合にかかる費用が70万円と仮定
します。その10倍のスピードでやるので、スキルのあるテスト担当者に
1か月間任せると、700万円分のアウトプットが出ます。スキルのあるテス
ト担当者とはいえ、月の給与は700万を超えないので、非常にお得なテス
ト手法だと思いませんか？

　余談ですが、探索的テストの提唱者は筆者の大学院時代の指導教官Cem
Kaner博士です。

　図11.1は第7章でも示しましたが、このようにViewの部分は探索
的テストをやり、テストを非常に短い時間で済ますことをお
すすめします。ただし、それは十分に上流での品質保証業務を
やった組織に限ります。

Model

ControllerView

自動テスト

手動テスト

この界面をたたけば、
UIの変更に影響されない

Update

探索的テストで実施、UIの
変更に対して耐性がある

図11.1　Viewの部分は探索的テスト（再掲）

cocoa01@gmail.com

148

第11章　探索的テスト

　筆者は、以下のクライテリア（テスト条件）を十分網羅していれば、短
い時間での探索的テストでシステムテスト工程を終わらせてよいと考えて
います。

●コード網羅がおおむね、80%以上である
●網羅基準が分岐網羅である
●アーキテクチャがMVC分離されている
●各関数のMcCabe数が20以下であり、クラスメンバー関数の数が10
以下である

●すべての要求仕様がレビューされている
●Race Condition（競合）のバグに対して十分対策がされている

　条件としてはやや複雑ですが、この条件を満たした場合には、探索的テ
ストだけで出荷しても品質は問題ないと考えられます。そう、あなたを悩ま
せている膨大なシステムテストのコストを1/10にできます。

　もちろん、現状の日本では、上記の基準を満たせる組織やチームは10%
に満たないと思われます。しかし、ここで読者を喚起します！　上記の条
件を満たせば、あなたの製品は最後の要求仕様を実装したら、簡易な探索
的テストをしたあと数日で出荷できます。

　膨大なテストケースを書く必要もないですし、外注にテスト要員をお願
いする必要もありません。ステキな世界じゃありませんか？

cocoa01@gmail.com

149

11

　先ほどの条件の1つに、

●Race Condition（競合）のバグに対して十分対策がされている

と書きましたが、いきなりRace Conditionという専門用語が出てきました
ね。Race Conditionは日本語では「競合状態」です。典型的には図11.2の
ように、ある1つのデータに複数のタスクやプロセスやスレッドがアクセス
できる状態のことで、そのタイミングによってはバグになります。ただし、
たいていそのタイミングは簡単ではなく、図11.2の例でも次のように複雑
です。

●Task AがData（データ）に書き込むためにDataをロックしたとき
に、Task Bがアクセスしてデータの読み込みができない

●Task Bは、Task Aが処理を終わったあとにDataを読み込みに行くべ
きなのに、処理前に読み込みに行ってしまい、Dataがゼロで返ってき
てしまう

●Task BがDataのロックを解除するのを忘れて、他のTaskがDataに
アクセスできなくなってしまう

cocoa01@gmail.com

150

第11章　探索的テスト

Data

Task A

Task B

図11.2　Race Condition

　Race Conditionの問題は、その機能品質がテストではまず担保で
きないところにあります。図11.2のように2つのタスクがアクセスするだ
けならまだよいですが、現代のソフトウェアでは多くのプロセスやスレッド
がデータを共有しています。典型的には、データベースを使うアプリなど
はこういった問題を常に抱えています。

　さて、ではどうやってRace Conditionの品質保証をしたらよいのでしょ
うか？　それは、コードレビューしかありません。簡単なバグなら
静的解析ツールが見つけてくれますが、複雑な場合は見つけてくれません。

cocoa01@gmail.com

12
まとめ――
テスト全体の
デザイン

単体テストなしで疲弊する組織12.1

cocoa01@gmail.com

152

第12章　まとめ――テスト全体のデザイン

　ソフトウェア全体をどうテストしていくかの設計やコンセプトはとても重
要ですが、かなりの組織で間違っています。

単体テストで多くのバグを見つけることが重要と述べ続けて
きました。しかし、多くのバグを単体テストではなく、システムテストで見
つけようとすると、図12.1のようになり、たいてい最悪の結果になります。

はい！　致命的なバグが残ったまま出荷され、顧客に怒ら
れます。

統合テストで
見つけるべきバグ

UIテスト

統合テスト

システムテスト

単体テストで
見つけるべきバグ

膨大なバグを
システムテストで
見つけている

図12.1　バグを見つけるべき順序（間違っている組織）

cocoa01@gmail.com

153

121. 単体テストなしで疲弊する組織

　また、単体テストは、スピードが重要であり、スピードが上がるテスト手
法です。チェックインしたら、すぐに単体テストをして、バグが見つかると
すっごく嬉しいです。フルビルドせずに、単体テストのためだけの
小さいビルドと単体テストを短いサイクルで繰り返すべきで
す。第8章でも見ましたが、図12.2のように圧倒的なテストスピードです。

システムテスト（自動化）
60分

統合テスト
10分

単体テスト
3分

図12.2　単体テストの圧倒的なテストスピード（再掲）

12.1

単体テストなしで疲弊する組織

　前節で説明した単体テスト中心の開発スタイルでなければ、確
実に組織は疲弊していきます（図12.3）。

cocoa01@gmail.com

154

第12章　まとめ――テスト全体のデザイン

システムテストは手動。ここで膨大な
バグをつぶすのはムリ！

統合テストで
見つけるべきバグ

単体テストで
見つけるべきバグ

膨大なバグを
システムテストで
見つけている

図12.3　バグを見つけるべき順序（疲弊した組織）

　手動のシステムテストでバグを見つけ続けることのデメリットは数多くあ
り、確実に組織のモチベーションをむしばんでいきます。

●同じようなテストを手動でやるので、テストエンジニアのキャリアパ
スが見えなくなり、誰も品質のスペシャリストになりたくなくなる

●同じようなバグを人間が見つけ、同じようなバグを開発者が修正する。
バグの混入と、発見のタイミングがずれるので、バグの混入を防ぐ活
動がしにくい

cocoa01@gmail.com

13
アジャイル・
シフトレフトの
メトリックス

ミューテーションテスト

ユーザーストーリと信頼性メトリックス

信頼度成長曲線のメトリックス

13.1

13.2

13.3

cocoa01@gmail.com

156

第13章　アジャイル・シフトレフトのメトリックス

　シフトレフトとアジャイルの世界では今まで使っていた品質のメトリック
スを一度廃棄して、ゼロベースで考える必要があるかもしれません（今ま
で品質を一生懸命学んで来た人には酷ですが……）。

　まずメトリックスという言葉を本章では使います。日本人にはあまり馴染
みのない英語ですが、英語風に発音すると「メイトリックス」になります。
読者は学者ではないため、正確に用語を理解する必要はありませんので、
何らかの数値的、量的な指標と理解していただければと思います。本章は
品質が良し悪しの判断は気分とかではなく、数値的な指標で判断しましょ
う！　という説明をする章です。

　ウォーターフォール時代の品質はライフサイクルを通しての、要求から
テストまでのVモデルに対する品質です。しかしアジャイルやらシフトレフ
トになると、コーディングと同時に品質保証になるわけですから、今までの
メトリックスじゃ役に立たない。「品質はすべてのイテレーション終了後
じゃないとわかりません！」なんてスピード感のないメトリックスではよい
品質のものを効率よく作ることはできません。

　アジャイルの品質保証については、というよりすべての品質保証はデー
タ（メトリックス）で判断すべきだと思います。

cocoa01@gmail.com

157

13

開発者の品質
フレームワーク

開発者の具体的な作業指針
（上記フレームのブレークダウン）

テスト担当者の
品質フレームワーク

テスト担当者の具体的な作業指針
（上記フレームのブレークダウン）

図13.1　アジャイル品質を支える4つのボックス（再掲）

　もう1回、上記の図13.1を参照していただくと、どういう品質にしたい
か・どういう定量的な品質ゴールをおくか、そしてその定量的な品質ゴー
ルに対してどのようなテストを達成するかがアジャイルでの品質担保では
重要だとわかります。本章ではアジャイルにおける定量的品質について説
明をしていきます。

　筆者が考える代表的なアジャイルに適合しうる品質メトリックスとして
は、

●コード網羅率（C0ではなくC1）
●ミューテーションテスト
●CKメトリックス
●Hotspot
●信頼度成長曲線

のようなものが挙げられます。その他適用可能なメトリックスはあるかもし
れませんが、適宜組織のアジャイル形態に合わせ取捨選択する必要があり

cocoa01@gmail.com

158

第13章　アジャイル・シフトレフトのメトリックス

ます（ちと無責任だがしょうがない）。幸い膨大なメトリックスの研究が
ウォーターフォール時代になされましたので、それを再利用するのもよい
選択かと思います。

13.1

ミューテーションテスト

　コードベースの単体テストの網羅率は重要なメトリックスになりますが、
しかし網羅率にはいくつかの抜け道があり、そのメトリックスが不適切にな
る場合があります。

●網羅しているが、期待値をチェックしていない、もしくは甘い

　現実的に、エンジニアが職業としてこんなことをやっていいのかという
疑いがかかるような網羅戦略を行っている企業は、少ないとは思いますが
存在します。医療や自動車等々のミッションクリティカルなソフトウェアで
は条件分岐の網羅率を規定され、それを出荷基準としているものがありま
す。そしてある種のツールは網羅率100％にする単体テストを自動生成して
くれます。言い方は悪いですが、そのツールを利用すれば労せず網羅率
が100％達成されるのです。

　あるいはソフトウェア品質の担当者が網羅率！　網羅率！　とうるさいか
らめんどくさいので期待値チェックをせずに単体テストをしている人もいる

cocoa01@gmail.com

159

131. ミューテーションテスト

かもしれません。またあるいは、これは正当な理由ですが、単体テストが
網羅されているのになぜか致命的な市場不具合が出てしまうこともありま
す（例えばRace condition）。

　そういった多種多様の単体テストをやっているのに品質の上がらない組
織にはミューテーションテストはうってつけのテスト手法です。本章はメト
リックスの章ですがミューテーションテストの説明を行います。矛盾してい
るようですが、単体テストの確からしさを計測する手法としてミューテー
ションテストと呼ぶことが多いのです。なので読者には申し訳ありませんが
このままミューテーションテストと呼んでいきます。ミューテーションテス
トの考案は1980年［OFF80］だと言われています。ほとんどのテスト手法
が1970年、1980年代に生まれているのを見るとそれほど新しい手法ではあ
りません。今までほとんど注目されなかったテスト手法ではありますが、今
後注目されるテスト手法だと筆者は考えています。Googleでもかなり採用
されているテスト手法のようです［PET18］。

ミューテーションテストの考え方

　ミューテーションテストではまず単体テストケースを用意しなければなり
ません。残念ながら十分単体テストが書けていない組織ではミューテー
ションテストはできません※1。

※1　 単体テストがどれくらい網羅すべきかは、常に企業におけるソフトウェア開発では問題に
なる。ミューテーションテストにおいても同様で、筆者はコンサルティングをやる場合は
最低分岐網羅（C1）で80％は担保してくださいと言う。それでも20％部分は網羅してい
ないので、20％部分にバグが仕込まれた場合はミューテーションテストとしては正常な状
態ではない。なので95％より下の網羅率の組織は、コードを網羅していない部分にバグ
（ミュータント）が仕込まれた場合の準備はしておくべきかもしれない。

13.1.1

cocoa01@gmail.com

160

第13章　アジャイル・シフトレフトのメトリックス

　まずミューテーションテストをする前に、すべての単体テストが通ってい
ることを確認します（図13.2）。

プログラム

単体テスト

成功

実行

定常状態

図13.2　定常状態

　その後ミューテーションテストツールでミュータント（バグ）を仕込みま
す（図13.3）。

プログラム

単体テスト

バグを仕込む

失敗

実行

ミューテーションテスト（問題のないケース）

図13.3　問題のないケース

cocoa01@gmail.com

161

131. ミューテーションテスト

　当然バグが強制的に仕込まれるわけですから、単体テストケース群の一
部で、バグが報告されるわけです（図13.4）。ちゃんとテストが書けていれ
ば。

プログラム

単体テスト

バグを仕込む

成功

実行

ミューテーションテスト（問題のあるケース）

図13.4　問題のあるケース

　しかし、あるケースではバグが報告されない場合があります。その理由
としては単体テストケースが網羅すべきコードを網羅していなかった、もし
くは網羅はしていたが期待値チェックをしていない等が考えられます。も
し上記の問題のあるケースがあった場合は単体テストに不備があるので、
単体テストを改善する必要があります。

ミュータントの中身

　ミューテーションテストはある程度手練のテスト手法なので、今度は実
際のツールの振る舞いを見ながら説明していきます。たとえば以下のよう
なシンプルなコードがあったとします。

13.1.2

cocoa01@gmail.com

162

第13章　アジャイル・シフトレフトのメトリックス

if (a && b) {

 c = 1;

} else {

 c = 0;

}

　上記のコードで単体テストをすべて実行するとパスします。でもひょっと
したら期待値をチェックしていないから成功なのかも？　と疑いたくなりま
す。いちいち全部のコードで疑いをかけると開発者との人間関係は破綻す
るし、時間的にも許されません。そこでミュータント（作為的にコードを変
更する）を入れます。たとえば以下のようなコードです。

if (a || b) {

 c = 1;

} else {

 c = 0;

}

　作為的に&&を||に変更します。エラーのコードを入れるのですから、既
存のテストコードの一部は失敗するはずです。あれあれ？　単体テストは
あいかわらず100％パスしている。もしそういう現象があったなら、単体テ
ストが何らかの形で適切ではありません。

　次は実際にツールを使ってみましょう。本書はなるべくツールに依存す
る形で書きたくなかったのですが、ミューテーションの章だけはInttelJと
ミューテーションツールのPitestを使ってみます［PIT21］。

cocoa01@gmail.com

163

131. ミューテーションテスト

リスト13.1　テストするプログラム

package com.daisuzz.samplepitest;

public class FizzBuzzGenerator {

 public String generate(int number) {

 if (number % 3 == 0 && number % 5 == 0) {

 return "FizzBuzz";

 }

 if (number % 3 == 0) {

 return "Fizz";

 }

 if (number % 5 == 0) {

 return "Buzz";

 }

 return String.valueOf(number);

 }

}

　上記は3の倍数や5の倍数を判定するプログラムです。このプログラムの
結果は以下のようになります※2。

1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz ……

　上記プログラムをテストするテストコードは以下のようになります※3。

※2　 紙面の都合上コンソール出力とは異なる形で書いている。
※3　 いくつか説明に必要のない場所はサンプルプログラムとは違う形で書いている。

cocoa01@gmail.com

164

第13章　アジャイル・シフトレフトのメトリックス

リスト13.2　テストコード

public class TestFizzBuzzGenerator {

 FizzBuzzGenerator fizzBuzzGenerator = new FizzBuzzGenerator();

 @Test

 public void returnFizzBuzzIfInputIsDivisibleByThreeAndFive() {

 int input = 30;

 String actual = fizzBuzzGenerator.generate(input);

// assertEquals("FizzBuzz", actual);

 }

 @Test

 public void returnFizzIfInputIsDivisibleByThree() {

 int input = 6;

 String actual = fizzBuzzGenerator.generate(input);

 assertEquals("Fizz", actual);

 }

 @Test

 public void returnBuzzIfInputIsDivisibleByFive() {

 int input = 10;

 String actual = fizzBuzzGenerator.generate(input);

 assertEquals("Buzz", actual);

 }

 @Test

 public void returnNumberIfInputIsIndivisibleByThreeOrFive() {

 int input = 13;

 String actual = fizzBuzzGenerator.generate(input);

 assertEquals(String.valueOf(input), actual);

 }

}

　テストケースとしては、

cocoa01@gmail.com

165

131. ミューテーションテスト

1. "30"（3と5の倍数）を入れて、"FizzBuzz"が返り値になること
2. "6"（3の倍数）を入れて、"Fizz"が返り値になること
3. "10"（5の倍数）を入れて、"Buzz"が返り値になること
4. "13"を入れて、そのままの値が帰ってくること

　上記の4つです。はい、もちろんツッコミどころがあるテストケースです
が、ツッコミを入れるのがミューテーションテストなので正しい例です。

リスト13.3　テスト結果

===

- Mutators

===

> org.pitest.mutationtest.engine.gregor.mutators.

EmptyObjectReturnValsMutator

>> Generated 4 Killed 3 (75%)

> KILLED 3 SURVIVED 1 TIMED_OUT 0 NON_VIABLE 0

> MEMORY_ERROR 0 NOT_STARTED 0 STARTED 0 RUN_ERROR 0

> NO_COVERAGE 0

> org.pitest.mutationtest.engine.gregor.mutators.

ConditionalsBoundaryMutator

>> Generated 1 Killed 0 (0%)

> KILLED 0 SURVIVED 0 TIMED_OUT 0 NON_VIABLE 0

> MEMORY_ERROR 0 NOT_STARTED 0 STARTED 0 RUN_ERROR 0

> NO_COVERAGE 1

> org.pitest.mutationtest.engine.gregor.mutators.

VoidMethodCallMutator

>> Generated 1 Killed 0 (0%)

> KILLED 0 SURVIVED 0 TIMED_OUT 0 NON_VIABLE 0

cocoa01@gmail.com

166

第13章　アジャイル・シフトレフトのメトリックス

> MEMORY_ERROR 0 NOT_STARTED 0 STARTED 0 RUN_ERROR 0

> NO_COVERAGE 1

> org.pitest.mutationtest.engine.gregor.mutators.MathMutator

>> Generated 4 Killed 2 (50%)

> KILLED 2 SURVIVED 2 TIMED_OUT 0 NON_VIABLE 0

> MEMORY_ERROR 0 NOT_STARTED 0 STARTED 0 RUN_ERROR 0

> NO_COVERAGE 0

> org.pitest.mutationtest.engine.gregor.mutators.

NegateConditionalsMutator

>> Generated 5 Killed 4 (80%)

> KILLED 4 SURVIVED 0 TIMED_OUT 0 NON_VIABLE 0

> MEMORY_ERROR 0 NOT_STARTED 0 STARTED 0 RUN_ERROR 0

> NO_COVERAGE 1

図13.5　テスト網羅リポート

cocoa01@gmail.com

167

131. ミューテーションテスト

　上記がテスト結果になります（リスト13.3、図13.5）。Line Coverageは
命令網羅※4で、どのぐらいの行数網羅できているかを表示します。

図13.6　テスト結果詳細リポート（失敗）

　ここではいくつかのテストケースの欠如が指摘されています（図13.6）。

※4　 本書では一貫して分岐網羅を推奨しているので、本ツールの命令網羅の測定ではなく、分
岐網羅をサポートするツールの使用を推奨する。

cocoa01@gmail.com

168

第13章　アジャイル・シフトレフトのメトリックス

if (number % 3 == 0 && number % 5 == 0) {

 return "FizzBuzz";

　たとえば、replaced return value with ""というミュータントとで、テス
トケースがうまくサポートされていないという警告が出ています。return
"FizzBuzz"をreturn 0に変えてもテストケースはエラーを検出されていない
ことになります。テストプログラムを見てみると、

// assertEquals("FizzBuzz", actual);

　上記のverificationがコメントアウトされていますね。このコメントを外
せばちゃんと全部成功するようになります（図13.7）。

図13.7　テスト結果詳細リポート（成功）

cocoa01@gmail.com

169

131. ミューテーションテスト

　Active mutatorsはこのツールでどのミュータントをサポートしているか
を表示しています。代表的なものをいくつか紹介すると、

●CONDITIONALS_BOUNDARY(Conditionals Boundary Mutator)

なるものがあります。たとえば以下のように書くべきコードが、

if (a < b) {

 // do something

}

開発者が間違って

if (a <= b) {

 // do something

}

上記のようなコードを書いてしまったとします。当然分岐処理を適切にテ
ストする境界値分析をちゃんとして、テストケースを入れれば、ミュー
テーションテストは成功します。続いて

●Math Mutator(MATH)

ですが、たとえば以下のようなコードは、

cocoa01@gmail.com

170

第13章　アジャイル・シフトレフトのメトリックス

int a = b + c;

以下のようなコードに変更されます。

int a = b - c;

ミューテーションテストの問題点

　本節ではミューテーションテストについて解説しましたが、ミューテー
ションテストを実施するには、開発スキルが必須になります。現状の日本
のテスト担当者の多くがコードを書けないことを考えると、かなりハードル
の高いテスト手法かもしれません。また開発者に対してミューテーション
テストが有用であることを適切に説明する必要も出てくるでしょう。

　様々な理由からミューテーションテストは高価だとか、導入が困難だと
言われています［JIA11］［ZHA19］。しかし多くの端折るやり方も存在するのも
事実です［REA14］［ZHA19］。ミューテーションテストは非常にパワフルな手法
です。非公式な方法でもどんどん端折る運用を適用しても良いと思います。

　またファンダメンタルな問題に、ミューテーションテストではかなり誤検
出が発生します。それをいちいち見ていかないと正しい結果になりません。
たとえばエラー処理コードにミュータントを入れて、それがテスト失敗とし
て警告されたとしても、その結果を見て開発者がソースコードを直すとは
思えません。

13.1.3

cocoa01@gmail.com

171

131. ミューテーションテスト

図13.8　State of Mutation Testing at Google［PET18］

　しかし上記のようなレビューの仕組みを入れれば、開発者は少しはスト
レスなく協力的になるのでしょうか？　上記の右にはNot Usefulボタンが
あり、ミュータントがあまり有用でなくて修正する必要がない場合は押せる
ような仕組みがあります。そうすれば次回からこのコードの部分はミュータ
ントの生成をやめるような工夫ができます。

ミューテーション網羅率という考え方

　ミューテーションテストをメトリックスの章に入れた都合上、その結果を
数字で表さないとなりません。でもそれがとっても難しいのです……。理
論的には、

13.1.4

cocoa01@gmail.com

172

第13章　アジャイル・シフトレフトのメトリックス

網羅率 ＝
テストされたミュータントの数
生成できるミュータントの総数

になります。問題点は生成できるミュータントの数がある意味無限大に近
い数になることです。たぶん数学的には有限に落とし込むことは可能ですが、
私たち実務にあたるエンジニアにとっては無限大と感じてしまうでしょう。

　たとえば、

return a + b;

のミューテーションテストをするときには、

return a - b;

return a * b;

return a / b;

return 0 - b;

retirm 0 + b;

cocoa01@gmail.com

173

132. ユーザーストーリと信頼性メトリックス

等々、数十のミューテーションテストケースが考えられます。なので演算
ベースのミュータントの生成はある程度絞った形で行う必要性があること
は理解いただけるかと思います。

　学術的にも適正なミューテーション網羅率はまだ研究途上であり、適切
な網羅率に近づけるためのミュータント生成テクニックもありますが
［USA10］、まだ実務の適応には少しハードルが高いかもしれません。ちょっ
と乱暴な言い方かもしれませんが、コードカバレジはプロダクト全体で厳
格に、ミュータント網羅率は小さいグループ単位で適宜自由に決めてもい
いかもしれません。

13.2

ユーザーストーリと
信頼性メトリックス

　ユーザーストーリはアジャイルにおいて重要な文書です。もちろんその
文章は絶対テストに使うべきです。本節ではユーザーストーリからどのよう
にテストケースに展開し、その結果をどのようなメトリックスとして生成す
るかを説明します。

　ここで初めに断っておかなければならないのは、本節はかなりディープ
な信頼性工学のアプローチを使います。もし読者が開発者で品質工学や信
頼性工学の基礎知識がない場合は、できればチーム内の品質保証の役割の
人と話し合いながらできれば紐解いていただければありがたいです。

cocoa01@gmail.com

174

第13章　アジャイル・シフトレフトのメトリックス

オペレーショナルプロファイル

　いきなりオペレーショナルプロファイルという概念について説明します。
まあちょっと、え、突然？　となるかもしれませんが、順を追って説明した
いと思います。

　オペレーショナルプロファイルという概念はソフトウェアの信頼性工学の
大家のJ. D. Musaという人が発案したアイディアです。J. D. Musa［MUS98］

はすでに過去の人ですが……。直にチュートリアルを受け非常に優しい性
格に感銘を受けたことがあるので、思い出すと少し悲しいですが……。と
いうのはおいといて……。

　オペレーショナルプロファイルは今では古臭い技術になりあまり使う人
はいませんが、アジャイルの時代になり再考される技術だと筆者は思いま
す。アジャイルではたくさんのユーザーストーリがあり、それをどうシステ
ムテストに工学的に反映させていくかは大きな課題です。当然ユーザース
トーリから探索的テストを行ってもいいですが、いかんせんちょっと数値を
出すという面では探索的テストは弱い。

　まあそうなると学問的に確立されている、メトリックスが信頼性という指
標でとれるオペレーショナルプロファイルという概念は最適です（オペ
レーショナルプロファイルといういかつい名前だが、私たちがいい加減な
感じで使うにはそれほど難しくない）。

オペレーション：あるシステムの状態から、次のシステムの状態に遷移さ
せるオペレーション（Operation: a major system task performed for an

13.2.1

cocoa01@gmail.com

175

132. ユーザーストーリと信頼性メトリックス

initiator with control returned to the system when it is complete [so a
new operation can start].）※5

と定義されています。またユースケースと非常に似ているともMusaは言っ
ています［MUS98］。ならば、ユーザーストーリとも似ていると言ったらそれ
ほど怒られないと思うのですがいかがでしょう。

ユーザー
ストーリ1

ユーザー
ストーリ2

ユーザー
ストーリn

ユーザー
ストーリ3

図13.9　ユーザーストーリとオペレーショナルプロファイル

　たとえば図13.9を見てください。あるユーザーストーリ1があり、そこか
ら2を実行して3を実行してnを実行して、ユーザーストーリ1が実行でき
る状態に移ります。いわゆるユーザーストーリベースの状態遷移テストに
なります。それを繰り返し実行し、多くの場合膨大な時間を実行し、どれ
だけバグが出たかを見れば、そのソフトウェアの信頼性は数値的に判断で
きます。

※5　 英語からの正しい訳ではない。しかし後々のテスト手法を説明するのに便宜的に変えた。
本質は捉えていると考えている。

cocoa01@gmail.com

176

第13章　アジャイル・シフトレフトのメトリックス

13.3

信頼度成長曲線のメトリックス

　信頼度成長曲線の説明は難しい（申し訳ありませんが）ので、ここも少
し覚悟して読んでいただきたいです。前節で説明したユーザーストーリ
ベースのテスト（オペレーションプロファイルベースのテスト）をどのよう
にメトリックス化するかを本節では説明します。

　まず日本ではほとんど信頼度成長曲線は正しく理解されず運用されてき
ました。たとえば以下のようなグラフ（図13.10）を作成して、「グラフは
寝たから、そろそろ出荷しようか！」などと言っている人がいました。なん
だその”寝た”っつのはー、とツッコミたかったのですが、まだ若かりし頃
の日本の会社にいた私は言えませんでした……。さらに筆者の怒りに追い
打ちをかけるように、「この曲線はロジスティック曲線※6かなー、ゴンペル
ツ曲線※7かなー」なんて言う上司がいたりして、その日の居酒屋での筆者
のグチネタが決まったりしていました。

※6　 人口増加等を予測する曲線。当然ソフトウェアのバグの数とはまったく関係ない。
※7　 死亡率に関する曲線。当然ソフトウェアのバグの数とはまったく関係ない。

cocoa01@gmail.com

177

133. 信頼度成長曲線のメトリックス

バ
グ
デ
ー
タ
ベ
ー
ス
に
登
録
さ
れ
た

残
り
の
バ
グ
数

開発時間

図13.10　旧来のウォーターフォールでの信頼度成長曲線

　少ししつこく、ウォーターフォール時代の間違った信頼度成長曲線を説
明しましたが、ここでまず正しい信頼度成長曲線を説明します。少し数学
的要素が入りますがご容赦願います。

　信頼性の本質は以下のような図（図13.11）で示せます。バケツ（ソフト
ウェア）の中にテストを開始する前はバグが5つあって、テストすることに
よりバグが4つ見つかりましたが、バケツの中にバグが1つ残ってしまいま
した。そのまま出荷したら、どれくらいの時間を操作したら再度バグに遭
遇するでしょうか？　です。どれくらいの時間がいわゆるMTBF（平均故
障間隔：Mean Time Between Failure）になります。

cocoa01@gmail.com

178

第13章　アジャイル・シフトレフトのメトリックス

テスト後

図13.11　信頼性の本質

　ここで1つの解決できない問題が生じます。なぜなら信頼性工学ではバグ
は有限であり、ソフトウェアテスト技術においてバグは無限であるとい
う矛盾があります。幸か不幸か1970年代にソフトウェアテストの基礎を
作ったと言われるMyers［MYE79］が「プログラムのある部分でエラーがまだ
存在している確率は、すでにその部分で見つかったエラーの数に比例する」
とか、その後に続くテストの巨匠＆恩師のCem Kaner［KAN99］が「バグを
全部見つけるのは無理だと心得よ」なんて言ってしまうので、テストの人
はバグの数は無限だと思い、信頼性の人はバグが有限だと思い、現代の混
乱に続いています。

　まあそういうことで、本章ではバグの数は有限という立場で述べます
（他の章はバグの数は無限という立場で記述してあります、だってしょうが
ないんだよねー）。以下が信頼度成長曲線の基本の式です。ギリギリ高校の
数学で習ったと思いますが。

cocoa01@gmail.com

179

133. 信頼度成長曲線のメトリックス

　ここで は時間軸に対する信頼性、aは期待するフォールト（バグ）※8

の総数、bはバグの発見率※9です。たとえばユーザーストーリをある時間実
行して（1つのユーザーシナリオではなく、なるべく全体のソフトウェアを
網羅する形で）バグの発生が以下のように起こったとしましょう（表13.1）。

表13.1　サンプル信頼度成長

テスト実行時間（週） 発見されたバグの数
1 90
2 63
3 44
4 31
5 22
6 15
7 11
8 7
9 0

　そんでもって信頼度成長曲線は以下のような図になります（図13.12）。
基本的には毎週のフォールトをプロットして の式を近
似してあげればいいわけです。多少数学を駆使していただければ近似曲線
を描けます。

※8　 本書ではバグと統一したかったが、信頼性工学ではフォールトやfailureという表現が一般
的なため、本章のみフォールトという表現を用いる。

※9　 専門的な人のために。ここでのモデルは単位時間当たりの1個当たりのフォールト発見率
を一定としている、いわゆるCFDR（Constanf Fault Detection Rate）。当然テストの過
程でフォールト発見率は一定でないし、それをパラメータとして鑑みるのが信頼性工学だ
と考えられるが、まあ実務で普通のソフトなら一定で良しとしてもよいだろう、きっと。
そしてこれを指数形ソフトウェア信頼度成長モデルという。

cocoa01@gmail.com

180

第13章　アジャイル・シフトレフトのメトリックス

◆ ◆

◆

◆
◆
◆ ◆ ◆ ◆

0 5

◇ ◇

◇

◇
◇
◇ ◇ ◇ ◇

10 15

250

200

150

100

50

0

週

フォールト 指数型モデル

フ
ォ
ー
ル
ト
の
数

◇

図13.12　信頼度成長曲線

　計算過程で、このケースの場合あと10.3個ぐらい残りのフォールトがあ
り、次にバグが発見される平均時間（MTBF）は0.31週ぐらいと求めるこ
とができます。MTBFは2.17日（0.31週*7日）になるので、このまま出荷
したら2.17日に1回何らかの問題が起こるのかー、でもこのソフトはユー
ザーは1日に1時間ぐらいしか使わないし、だいたいPCも毎日電源落とし
て帰るから。MTBFは2.17日でいいやー、っていうようなビミョウな工
学的（？）なアプローチができるわけです。

　「実際の顧客が最も使うと思われるオペレーション（オペレーショナルプ
ロファイル = ユーザーストーリ）をした際のMTBF」を信頼度成長曲線を
描いて予測するという方法です。

cocoa01@gmail.com

181

133. 信頼度成長曲線のメトリックス

　たとえばイテレーションごとにこの信頼度成長曲線を書いていけば、最
終的にどういうMTBFになればリリースするかといった定量的な基準を作
ることができます。

　1つ付け加えなければいけないのは、アジャイル開発では2週間などのイ
テレーションになります。品質をそれほど要求されないソフトウェアなら代
表的なユーザーストーリを数時間流して、信頼性を計測すればいいですが、
高信頼ソフトウェアをアジャイルで開発する場合は問題が生じます。2週間
を超える時間でリブートなしに運用するようなサーバーソフトウェアなど
は、イテレーションを複数回行ったあとにしか信頼性のメトリックスが算出
できないのは致し方ないことになります。

cocoa01@gmail.com

182

第13章　アジャイル・シフトレフトのメトリックス

古きソフトウェア品質技術

　J. D. Musaの概念は旧電話交換機での品質保証のために考案されまし
た。2000年に入りソフトウェアが複雑になり、こういった古い概念は不
要になるのかと思われたのですが、実はアジャイルで使えると思って使っ
ています。ソフトウェア品質は1960年代から半世紀以上の研究の歴史が
あります。多くは現代では使えないと思われますが、いくつかは読者の現
代の新しいアジャイルプロジェクトで使えると思っています。Cem Kaner
の探索的テスト、J. D. Musaのオペレーショナルプロファイル（信頼性工
学）。2つとも古い時代のコンピューティングに適応するための技術です
が、今のアジャイル品質の時代にはピッタリの技術です。異論はあるかも
しれませんが、アジャイルはエンジニアの感覚知の総集編な気がします。
全然間違いではない方向性ですが、特に品質に関する学術データの裏付け
が少ないです、ウォーターフォールに比べて。ウォーターフォールを捨て
てアジャイルに飛び込むのではなく、ウォーターフォールの知識を再適用
しながらアジャイルとうまく付き合うのも手ではないでしょうか。

cocoa01@gmail.com

14
アジャイルにおける
要求仕様

ユーザーストーリの利点14.1

cocoa01@gmail.com

184

第14章　アジャイルにおける要求仕様

　要求仕様はソフトウェア開発の根幹であり、その品質の多寡が最終成果
物の品質に大きく影響を与えます。アジャイルが全盛になる前だとそうい
う説明でよかったのですが、アジャイル時代に要求仕様的なものはどうい
うふうに扱うべきなのか、アジャイルでは要求仕様という言葉は使わず、
ユーザーストーリという言い方をします。

　アジャイルソフトウェア開発宣言には、

包括的なドキュメントよりも動くソフトウェアを

と書いてあります。この一文が拡大解釈されアジャイルはドキュメントを書
かなくていいというふうになってしまう風潮があります。しかしそれは違い
ます。ドキュメントがウォーターフォールモデルと異なる形で書くことが推
奨されているだけのことです。

要求管理の世界はアジャイルで
は根本的には異なる。

単純に言えば、一般的にアジャ
イル開発においては

こうした文章は存在しない
Dean Leffingwell

［LEF10］

　さてそれでは要求とストーリはなにが本質的に違うのでしょう。要求は
必須のものですが、ストーリはよりよいプロダクトを作るための、プロダク
トオーナと開発チームでの約束です。約束と言っても必ず守るものではな
く、利益に変更があるならばそちらに方針を移します［LEF10］。

cocoa01@gmail.com

185

14

　よいストーリは以下の基準を満たします。

●ストーリは顧客と開発チームによって自然言語で書かれ、両者にとっ
て理解可能である

●ストーリは短く簡潔で的を射ている。詳細な仕様ではなくむしろ会話
の約束事である

●それぞれのストーリはユーザーが何かしらの価値を与えるものでなく
てはならない

　ふむふむなんとなく理解できてきました。ユーザーストーリが初めて出て
くるのはKent Beckの『XPエクストリー・プログラム入門』なので、少し
見てみます（図14.1）［BEC01］。

図14.1　Kent Beckのストーリカード

cocoa01@gmail.com

186

第14章　アジャイルにおける要求仕様

　ここには、

●ストーリ番号：1275
●アクティビティ種類：新規
●タスク：SPLIT COLA：2週間ごとの支払い期間中に変更された場合、
1週目は古い価格で支払うが、2週目以降は新しいCOLAの価格で支
払う。それはシステム設計上で実行され、自動的に支払いがなされる

と手書きの文字で書いてあります。せっかくのKent Beckのユーザーストー
リの例なのでもう少し読み解いてみましょう（オリジナルの原著を深追い
することは本質の理解を深めるので）。図にすると以下のような処理になり
ます（図14.2、14.3）。

2週間ごとの支払い処理

新しい
COLAの
時給計算

古い時給で1週目の支払いをする
新しい時給で2週目の支払い処理をする

COLAの
時給処理

古い
COLAの
時給計算

1週目の
支払い処理

2週目の
支払い処理

図14.2　Kent Beckのストーリカードの図［SAS99］

cocoa01@gmail.com

187

14

システム

2 週間ごとの処理

COLA分割

Extends
支払いマネージャ 支払いのデータベース

図14.3　Kent Beckのストーリカード（ユースケース）

　こう書くとアジャイルが要求ではなく、ストーリという形をとったのも納
得いくのではないでしょうか？　またアジャイルは形式的なものを排除した
ので、要求データベースを使ってレビューワーがどうとかこうとかやる必要
はありません。ポストイットを壁に貼り付ければいいのです。

　少し意地悪な読者からこういう質問がくるかもしれません。「それでは非
機能要求はどう記述するのだ」。

　旧来の要求仕様なら「ボタンを押してから20msecでトップ画面が立ち上
がる」と書くところでしょう。ユーザーストーリなら、「十分短い時間で立
ち上がる」でよいのかもしれません。顧客がプロトタイプを見て、素早く
立ち上がっていると感じていただければいいのですから。

　ユーザーストーリの定義は重要なので、もう1つの定義を展開しておきま
す［LEF10］。

cocoa01@gmail.com

188

第14章　アジャイルにおける要求仕様

●独立している（Independent）
●交渉可能（Negotiable）←　ここは要求仕様とはかなり異なる。要求
に関しては顧客とは交渉しないので

●価値がある（Valuable）
●見積もり可能（Estimatable）
●小さい（Small）
●テスト可能（Testable）

　アジャイルに関してテストしないなどの誤解がありますが、ユーザース
トーリはテスト可能なユーザーストーリであるべきです。そうなった場合、
イテレーションの終了までにすべてのユーザーストーリは終了させるという
のが自然の理だと思いませんか？

14.1

ユーザーストーリの利点

アジャイル品質で重要なことは、開発者がイテレーションの中
で実装するまっとうなユーザーストーリを書き、それをテスト
担当者がイテレーション期間

4 4 4 4 4 4 4 4 4

にチェックすることです

cocoa01@gmail.com

189

141. ユーザーストーリの利点

　ウォーターフォールモデルにおいて要求の欠陥が出荷後に出ることによ
る大きな影響には長らく悩まされてきました。私のような品質の専門家に
とって、要求のエラーは最悪です。もしそれが市場で発見されれば、膨大
な損失になります。場合によっては損害は100倍にもなります（図14.4）。
なので要求仕様はコストをかけて、よってたかってレビューするべきです。

3
10

100

要
求

ア
ー
キ
テ
クト

シ
ス
テ
ム
テ
スト

出
荷
後

1

図14.4　ウォーターフォールモデルの要求バグの費用［KAR14］

　アジャイル開発の品質の問題点は多々あるかもしれませんが、ユーザー
ストーリをイテレーションの終わった瞬間にステークホル
ダーと確認することは、なによりも素晴らしいことです！
品質の専門家にとって。ウォータフォールの要求問題の呪
縛から完全に解き放たれます。

　その1点だけでも品質の観点からアジャイルは採用されるべきかもしれま
せん。

cocoa01@gmail.com

cocoa01@gmail.com

15
開発者テストの
実サンプル

単体テスト

コード網羅測定

15.1

15.2

cocoa01@gmail.com

192

第15章　開発者テストの実サンプル

　前章の第14章までは理論編でした。ここで筆を止めてもよいですが、単
体テストを導入するうえでいつも「実際にどうやってやるの？」といった話
が出てきます。システムテストなら「拙書の『知識ゼロから学ぶソフトウェ
アテスト』を読んで！」と言って、少しサンプルのテストケースを書いてあ
げればよいですが、単体テストはちとハードルが高いのです。そのため、
どれだけ大変かを体現すべく、この章で実例を書きました。たしかに単体
テストは大変ですが（特に個人の作業ではなく、組織に根付かせるのは）、
ちゃんと単体テストをすれば、その大変な作業を大きく凌駕するメリット

（下流工程でのバグの嵐を避けること）を享受できるはずです。

　実サンプルのコードは、本当は言語非依存にしたかったのですが、結局
Javaを選びました。もちろんPythonやC/C++でも書けますが、なんだか
んだで単体テストが必要な開発で一番使われている言語はJavaですし、
表15.1のようなデータもあります。もし読者が他のプログラミング言語を
使っているのなら、その言語に読み替えてください。

cocoa01@gmail.com

193

15

表15.1　日本で使われている開発言語［IPA20］

開発言語 第1回答［件］ 比率
a ：アセンブラ 1 0.1％
b ：COBOL 230 15.3％
c ：PL/I 4 0.3%
d ：Pro*C 7 0.5%
e ：C++ 64 4.2%
f ：Python 4 0.3%
g ：C 105 7.0%
h ：VB 65 4.3%
i ：PHP 12 0.8%
j ：JavaScript 18 1.2％
k ：Ruby 2 0.1％
m：PL/SQL 43 2.9%
n ：ABAP 2 0.1%
o ：C# 129 8.6%
p ：Visual Basic.NET 139 9.2%
q ：Java 612 40.6%
r ：Perl 1 0.1%
s ：Shellスクリプト 3 0.2%
t ：Delphi 6 0.4%
u ：HTML 5 0.3%
v ：XML 1 0.1%
w：その他 55 3.6%

合計 1,508 100.0%

cocoa01@gmail.com

194

第15章　開発者テストの実サンプル

15.1

単体テスト

　さて、まずはコードベースの単体テストを書いてみましょう。Javaを言
語として選んだので、少しテストシステムが難しいAndroidアプリの単体
テストを書いてみます。Androidではない、普通のJavaのサンプルコード
ならもう少し簡単なはずです。このコードは以下の環境で試しました。

●Android Studio 2021.1.1 Patch 2
●macOS Monterey, version 12.1, CPU Apple M1, Mem 16G

Setup――簡単なアプリを作る

　まず、Empty Activityを作ってみます（図15.1）。Activityの概念などに
ついては、たとえば「Android」「初心者」「プログラム」といったキーワー
ドでググっていただければ、初心者用の知識集がたくさん出てきますので、
そちらを参照してください。

15.1.1

cocoa01@gmail.com

195

151. 単体テスト

図15.1　Empty Activity作成

　最初にひっかかりそうなのがフォルダー構造です（図15.2）。

図15.2　フォルダー構造

　なぜかテストな感じのフォルダーが2つありますね。

cocoa01@gmail.com

196

第15章　開発者テストの実サンプル

src/androidTest

src/test

　なんだこりゃ、と思うかもしれませんが、Googleいわく［GAD21］、

● src/androidTest 　ディレクト
リには、実際のデバ

イスまたは仮想デバイスで実行
するテストを配置し

ます。この種のテストには、
統合テストとエンド

ツーエンドテストに加えて、J
VMだけではアプリ

の機能を検証できない場合のテ
ストがあります。

● src/test 　ディレクトリには
、単体テストなど、

ローカルマシンで実行するテス
トを配置します。

https://developer.android.com/training/testing/fundamentals?hl=ja

　ふむふむ。ここではテストスクリプトのメインテナンス性を損なうGUI
からのテストはしないので、とりあえずsrc/androidTestは無視して、
src/testにスクリプトを追加していきます。余談ですが、上記の説明と同
じページに図15.3がありました。はい、筆者がずっとしてきた主張と合致
しております。

cocoa01@gmail.com

197

151. 単体テスト

of tests

Fidelity
Execution time
Maintenance
Debugging

UI Tests

Integration Tests

Unit tests

テスト ピラミッド。 アプリのテストスイートに含める必要が

ある3つのテストカテゴリを示しています

図15.3　テストピラミッドの階層（Androidデベロッパーのドキュメントより）［GAD21］

　さらに、この図の説明を引用すると、次の通り。

cocoa01@gmail.com

198

第15章　開発者テストの実サンプル

図に示すテストピラミッドは、
3つのテストカテゴリ

（小規模、中規模、大規模）に
ついて、アプリで扱う

べき程度を示しています。

● 小規模テスト は、1つのクラスごとにアプリ
の動作

を検証する単体テストです。

● 中規模テスト は、モジュール内のスタック
レベル

でのインタラクション、または
関連するモジュール

間のインタラクションを検証す
る統合テストです。

● 大規模テスト は、アプリの複数のモジュー
ルにま

たがってユーザーが経験する過
程を検証するエンド

ツーエンドテストです。

小規模テストから大規模テスト
へとピラミッドの段階

が上がるにつれて、各テストの
再現性は向上しますが、

実行時間と保守及びデバッグの
労力が増大します。し

たがって、統合テストより単体
テストを増やし、エン

ドツーエンドテストより統合テ
ストを増やす必要があ

ります。各カテゴリのテストの
割合はアプリのユース

ケースに応じて異なりますが、
一般的には、小規模テ

スト70%、中規模テスト20%
、大規模テスト10%の

割合でテストを作成することを
おすすめします。

　なかなか良いことが書いてあります。

cocoa01@gmail.com

199

151. 単体テスト

単体テストを作る
　正しい単体テストでは境界値条件を考える必要がありますが、ここでは
一番簡単な例を追加してみます（図15.4）。

c = a + b

c = a / b

図15.4　簡単なコードを追加

　追加したあと、クラス名の「calc」を選択（カーソルを当てて右クリッ
ク）し、「Test」を実行します（図15.5）。実際にテストを実行するには、ま
だいくつかのステップが必要です。

15.1.2

cocoa01@gmail.com

200

第15章　開発者テストの実サンプル

図15.5　テスト実行1――「calc」を右クリックして「Go To」→「Test」を選択

　図15.6のような画面が表示されるので、Testing libraryで「JUnit4」を
選択し※1、とりあえず「plus」のテストだけ作成してみます。

図15.6　テスト実行2――「JUnit」のバージョンを選択し、「plus」のチェックボックスをチェック

※1　 執筆時点（2022年3月）では、JUnit3/4/5、Groovy JUnitを選べるが、おそらく1年経
つと状況が変わってくる項目であるため、JUnitとGroovyの違いについては解説しない。

calcを右クリック

plusをチェック

cocoa01@gmail.com

201

151. 単体テスト

　図15.7で「.../app/src/test/java/com/example/empty」ディレクトリを
選択して［OK］ボタンを押すと、コードの外枠のようなものが生成されま
す（図15.8）。

図15.7　テスト実行3――「.../app/src/test/java/com/example/empty」ディレクトリを選択

図15.8　テスト実行4――フレームの作成

選択

cocoa01@gmail.com

202

第15章　開発者テストの実サンプル

　とりあえず、失敗テストを追加してみます。「4 = 1 + 2 ではない」という
ものです。

assertEquals(4, mcalc.plus(1, 2), 0); // Added test code

　画面上では、図15.9のような感じです。

図15.9　テスト実行5――失敗テストの記述

　図15.10のように、失敗テスト（calcTest）を右クリックして「Run
‘calcTest’」で実行してみます。

cocoa01@gmail.com

203

151. 単体テスト

図15.10　テスト実行6――失敗テストの実行

　当然、「4 = 1 + 2」ではないので、テスト結果はfail（期待するもの＝失
敗）で返ってきます（図15.11）。

図15.11　テスト実行7――実行結果

calcTestを
右クリック

cocoa01@gmail.com

204

第15章　開発者テストの実サンプル

　以下のように正しい結果で定義してみます。

assertEquals(3, mcalc.plus(1, 2), 0); // Added test code

　これを実行すると、テストは成功します。当然、assertは起こりません
し、「PASS!　おめでとう!」とも言ってくれません。次節では、ここに分岐
コードを加えて、コード網羅率を測定してみます。

15.2

コード網羅測定

　コード網羅の設定はメンドウです（実際やるとかなりメンドウですが、こ
の辺の技術の進化は速いので、すぐに簡単になるはずです）。

コード網羅ツールの準備

　まず、次のどちらのツールを選ぶかを決めます。

●JaCoCo
●IntelliJ Code Coverage

15.2.1

cocoa01@gmail.com

205

152. コード網羅測定

　執筆時点（2022年3月）では、Kotlinの場合はJaCoCoがハンドルでき
ません。とりあえず自動テストに特化した確認なので、一番簡単そうな
JavaとJaCoCoの組み合わせで進めてみます。
build.gradleに、以下のdebugセクションを加えます（図15.12）。

debug{

 testCoverageEnabled true

}

図15.12　JaCoCoの設定

一番簡単な網羅（命令網羅）

　テストするソースは、15.1節の単体テストと同様のものを使います（リ
スト15.1）。単体テストのコードは、リスト15.2です。

15.2.2

cocoa01@gmail.com

206

第15章　開発者テストの実サンプル

リスト15.1　テストするソースコード

package com.example.empty;

public class calc {

 public int plus(int a, int b) {

 int c = a + b;

 return c;

 }

 public int div(int a, int b){

 int c = a / b;

 return c;

 }

}

リスト15.2　単体テスト（命令網羅）

public class calcTest {

 private calc mcalc;

 @Test

 public void plus() {

 mcalc = new calc();

 assertEquals(0, mcalc.plus(0,0), 0); // Added test code

 }

}

　なんとなく、単体テストを実行したらplus(int a, int b)だけテストさ
れるのは想定できますね。

$./gradlew createDebugCoverageReport

cocoa01@gmail.com

207

152. コード網羅測定

を実行すると、ちょっと深いフォルダーの先に、網羅率のリポートが作成さ
れます（図15.13・図15.14）。

図15.13　単体テストの結果保存フォルダー（empty/app/build/reports/coverage/debug）

図15.14　単体テストの結果（empty/app/build/reports/coverage/debug/index.html）

plus(int, int)の部分は100%網羅されています（もちろん分岐がない
ので）。それでは分岐網羅がちゃんと動いているか見てみましょう。

分岐網羅

　まずは、JaCoCoで分岐網羅がちゃんと動いているか見てみます。開発者
の方は「命令網羅と分岐網羅の差は網羅率が単に10％程度違うだけ」とい
う評価を下す場合がありますが※2、テスト屋さんにとっては命令網羅は品質
保証上、何の役にも立ちません。なぜなら、一番重要なテスト手法である

※2　 一般的なソフトウェアの場合、分岐のほうが10%程度低くなる。

15.2.3

cocoa01@gmail.com

208

第15章　開発者テストの実サンプル

「境界値テスト」がちゃんとされているか否かの判断は、命令網羅ではでき
ないからです。

　少し乱暴ですが、テストされる関数が分岐されているかどうかだけ確認
するために、テストするソースコードをリスト15.3のように変更します。こ
のコードでは、分母にゼロが来た場合、そのままreturn 0で抜けてしまい
ます。

リスト15.3　テストするソースコード（分岐網羅版）

public class calc {

 public int plus(int a, int b) {

 int c = a + b;

 return c;

 }

 public int div(int a, int b){

 if (b == 0){

 return 0;

 }

 else {

 int c = a / b;

 return c;

 }

 }

}

　テストコードでは、リスト15.4の2行を追加します。いわゆる正常系
で、2 / 1 = 2という正常処理のケースです。

cocoa01@gmail.com

209

152. コード網羅測定

リスト15.4　単体テスト（分岐網羅）

public class calcTest {

 private calc mcalc;

 @Test

 public void plus() {

 mcalc = new calc();

 assertEquals(3, mcalc.plus(2, 1), 0); // Added plus test code

 assertEquals(2, mcalc.div(2, 1), 0); // Added div test code

 }

}

　この結果は、図15.15のようになります。

図15.15　単体テストの結果（分岐あり）

　div関数の分岐が50%網羅されています。ここでCxtyという数値があり
ますが、これはCyclomatic Complexity（サイクロマチック複雑度）のこと
で、McCabe数とも言います※3。こんな感じで関数の複雑度を出してくれる
のはすごくステキ！　分岐網羅すべきテストケース数とCxtyの数値は同じ
です。Cxtyが高ければ、単体テストを作るコストは比例的に上がります。

※3　 Cyclomatic Complexity（McCabe数）は、McCabeが考案した「プログラムの複雑さ
（複雑度）」を示す指標［MCC76］。

cocoa01@gmail.com

cocoa01@gmail.com

211

 最後に

最後に

　あとがきの前に、少しだけまとめの文章を書きます。ソフトウェア工学
は2000年代初頭の段階で、出てくるべき考えはすべて出切った、と筆者は
考えています。学ぶべきことは多いですが、新たなドラスティックなソフト
ウェア開発技術は当分生まれないでしょう。そうであれば、以下の3つの技
術を適宜組み合わせて最適なやり方をすれば、それが世界最高水準のソフ
トウェア開発なわけです。あなたの組織はGoogleと同じ開発手法を使うこ
とになります。

上流品質担保の手法

●アジャイルでの要求変更が頻発する中での高速開発
●CI/CDのツールと手法による高速のデリバリ
●Hotspotを利用した効率的な単体テスト

　ここ20年、日本の経営者のソフトウェア開発に対する理解度が上がった
とは思えません。「ソフトウェア開発なんて、ささってやって、新しい技術
革新やろうぜ！」というのが経営者の本心でしょう（図A.1）。しかし、ま
だ多くのソフトウェアの現場で、非効率な開発や、それに伴う多量なバグ
の処理によって、ソフトウェアの開発に大きな資本が必要だったりします。
もちろん、不勉強な経営者や開発マネージャーが、その非効率を後押しし
ています。

cocoa01@gmail.com

212

顧客が感じる
魅力

まあまあの品質に
仕上げる期間

魅力的な品質に
仕上げる期間

GO
AL

図A.1　経営がソフトウェア開発に求める像

　そして図A.2のように、バグとの戦いに力尽き、顧客に訴求する魅力的な
ソフトウェアを開発する時間がなくなります。

顧客が感じる
魅力

まあまあの品質に
仕上げる期間

品質

バグつぶしに疲れて、
ソフトウェアの魅力を
追加できない

図A.2　実際のソフトウェア開発

cocoa01@gmail.com

213

 最後に

　しかし、先に挙げた3つの上流品質担保の手法により、特に開発後半
に致命的なバグが続発することはなくなるはずです。あるい
は、バグ管理ツールなるものも必要なくなると思われます。なぜなら、
ほとんどのバグは、発見されたらすぐに修正され、そのバ
グが再発しないような単体テストが書かれるからです。

　現状、日本のソフトウェア開発力は致命的に弱いと言えます。多くの組
織では、アーキテクチャを鑑みないソフトウェアを作り、多くのバグをテス
トの協力会社に出してもらい、大量のバグ修正をプロジェクトの後半に
やっています。

　そういうことをやらないように、本書の読者が少しだけでも自組織の体
質改善を試みていただければ、多くの時間を本書につぎ込んだ筆者として
は嬉しい限りです。

cocoa01@gmail.com

214

あとがき

　あいかわらず薄い本を書いている筆者でした……よく読者から怒られま
す――「薄くて高い！」。

　ただ、内容は薄くないと自負しています。なぜなら、いつも本に書く文
章の100倍以上の文献に目を通していてそれを要約し、自分の20年以上の
経験を混ぜているからです。

　たまにAmazonの書評に、「自分の経験を押しつけている」といった批判
的な意見を見ますが、それは甘んじて受けます。ソフトウェア開発はすで
に巨大なものになり、ウォーターフォールモデル、アジャイルモデルなどさ
まざまな開発スタイルがあり、それを全部書くことは不可能です。なので、
筆者のうまくいかなかったたくさんの経験や、少しうまくいった経験を書く
ことになります。本書はある読者には役に立ち、ある読者にはまったく役に
立たないかもしれません。しかし、多くの論文と筆者の長い経験は、もし
読者が品質トラブルに陥ったときに、良い解決パターンの引き出しになる
と考えています。

　上流品質やアジャイルでの品質の問題は、多岐にわたります。ソフト
ウェア開発やテストといった単一の技術エリアならば、頭のよい人ならうま
く仕事をハンドリングできます。しかし、上流・アジャイル品質の場合は、

cocoa01@gmail.com

215

 あとがき

「品質に関する深い知見」「開発者と同等のプログラミング能力」「多くの失
敗経験」、この3つがないと解決できません。今後品質を向上させるエンジ
ニアは多彩なスキルセットが必要となってくると想像します。ウォーター
フォル時代のテスト担当者はアジャイル時代の品質に対応するため多くの
様々な知識取得を強いられるかもしれません。

　そういう意味では、Microsoft、SAP、ソニーという巨大企業で多くの失
敗をさせてもらった筆者の経験が読者の役に立つと幸いです。

　ただ1つだけ、うまく書けなかった点があります。それは、非機能に対す
る扱いです。非機能品質（特にパフォーマンス・セキュリティ・信頼性）、
いわゆる非機能のバグに対してどのように上流・アジャイルテストをする
のか、どのようにコーディングすると非機能品質が担保できるかについて
はあえて書きませんでした。それは、本書の構成をさらに複雑にし、読者
の新しい領域に対する理解を妨げるような気がしたからです。それでは、
どうやって非機能の品質をテストで担保するのでしょうか？

　実は非機能品質とは、機能品質が組み合わされたものだったり、機能品
質のバグなのに非機能品質のバグと名前を変えたりしています。たとえば、
ファジングテスト※1で見つかるセキュリティバグの多くは、境界値テストの
欠如からくるバグだったりします。要は、機能を組み合わせて、その組み
合わせた機能群を抽象度の高い言い方をするのが非機能とも考えられます

（ちょっと乱暴ですが）。

※1　 https://www.ipa.go.jp/security/vuln/fuzzing.html

cocoa01@gmail.com

216

　なので、「基本機能テストをしっかりブレークダウンして、それを網羅す
れば問題がない」という立ち位置で非機能を考えていただければ、あなが
ち間違いではありません。

　本書では、テストで利用するツールについても、実際のツール名を挙げ
て説明しました。しかし、ツールは日々進化するものです。最新のツール
動向についてはGoogle検索などで情報収集し、最新・最適なツール選択を
してください。

☆☆☆

　これまで筆者にさまざまな経験を与えてくれた方々へ感謝を込めて。
SAP、シアトルのMicrosoft本社、ソニー本社に勤めさせていただいたのは
大きな経験でした。一人のライフサイクル（人生）の中で、こういった多
様な組織でテストを経験する日本人は非常に少ないでしょう。また、これ
まで多くの著名な学者たちと幸運ながら出会えたのも大きな経験となりまし
た。『ピープルウエア』など多数のソフトウェア工学書の著者であるTom
DeMarcoとは、空港に迎えに行った際、「寿一、このIEEE softwareのア
ジャイルの記事見たか！」と話をさせてもらったのが記憶に残っています。
ソフトウェア品質の研究者であるCapers Jonesとは、かなり長い時間、話
をさせてもらいましたが、FP（Function Point）一筋で異論はあったもの
の（常にFPベースで議論）、すべてのソフトウェア問題を定量的に解決し
ようとする一直線な姿は圧巻でした。

　テスト周りでは、『How Google Tests Software』の著者であるJames
Whittakerや、世界で一番売れたテスト本の著者／探索的テストの考案

cocoa01@gmail.com

217

 あとがき

者／筆者の大学院時代の指導教官のCem Kanerに長い時間、指導を受けた
のは特筆すべきことです。開発や品質に関する世界トップの彼らと意見交
換するたび、筆者は常にソフトウェア品質について真摯に考えさせられま
した。

　そういった意味では、本書は私のお世話になった組織や多くの研究者の
意見の寄せ集めなのかもしれません。

　最後に、妻の支えや、執筆のため家族との時間を犠牲にする父に対して
子どもたちの真優・暖が優しく接してくれたこと――それらは長い執筆時間
のストレスを大きく軽減させてくれました。ここに深い感謝の念を示します。

 情報工学博士　高橋 寿一

cocoa01@gmail.com

218

著者略歴

高橋寿一（たかはし じゅいち）
　情報工学博士。1964年東京生まれ。フロリダ工科大学大学院にてCem
Kaner博士（探索的テスト手法考案者）、James Whittaker博士（『How
Google Tests Software』著者）にソフトウェア品質の指導を受けたあと、
広島市立大学にてソフトウェア品質研究により博士号取得。Microsoftシア
トル本社・SAPジャパンでソフトウェアテスト業務に従事、ソニー（株）ソ
フトウェア品質担当部長を経て、株式会社AGEST執行役員。

その他の著書
●『知識ゼロから学ぶソフトウェアテスト』翔泳社（日本で一番売れてい
るソフトウェアテストの書籍）

●『知識ゼロから学ぶソフトウェアプロジェクト管理』翔泳社
●『現場の仕事がバリバリ進む ソフトウェアテスト手法』技術評論社

cocoa01@gmail.com

219

 参考文献

参考文献

　本書では、なるべく参考文献を多用し、筆者の経験による教訓を書きま
した。しかし、それが筆者の単なる思い込みでは読者に失礼なので、すべ
ての思い込みが参考文献によって証明されているときのみ、本書に展開し
ました（あのPMは非常にムカついたから本書に展開して悪口書いてやろう
といったことはしていません）。

　参考文献は、20年前、30年前に刊行されたものも含まれます。それが今
でもAmazonで販売されているということは、夏目漱石レベルの名著（？）
であり、今でも通用すると信じています。

　ソフトウェア工学の基礎研究は、2000年代前半に完了している感があり
ます。なので、2010年代の最新の書籍を参考にしたかったのですが、多く
の基礎的技術を立証した人が最近は書籍を書いていないため、古い書籍が
含まれています。

　また、本書を読み進めるうえで、読んでいただきたい書籍を「推奨する
参考文献」として以下に示します。最近、20代、30代の多くのエンジニア
のソフトウェア基礎力がなくなっているように感じます。思えば、私たちが
若輩であった頃は、ソフトウェア工学の研究が盛んで、多くの著名な研究
者と直接会話する機会があり、さらには書店にいけば研究者が執筆した著

cocoa01@gmail.com

220

名な書籍を手にとって見ることができました。しかし、現在はそういった著
名な書籍を書店で見かけることが少なくなり、若い人が直属の上司からそ
ういった書籍を推薦されることもないだろうと考え、ここで推薦させてもら
います（ギリギリAmazonで買えそうな書籍、かつ本書を読み進めたあと
に理解を深めることができるものたちです）。

推奨する参考文献
　参考文献の中には、日本語訳されているのもあります。本書の執筆に際
しては、参考資料の精度を上げるため、多くの場合に原書（英語）での参
照を行いました。以下は特に推奨する参考文献です。本書では概要程度し
か説明できなかった重要な内容が、これらの参考文献では十分に展開され
ています。

［KAR14］ Karl Wiegers，Joy Beatty，『Software Requirements，Third Edition』，
Microsoft Press，2013　ISBN：9780735679665

 日本語訳『ソフトウェア要求 第3版』，日経BP，2014　
ISBN：9784822298395

［MCC04］ Steve McConnell，『Code Complete: A Practical Handbook of Software
Construction，Second Edition』，Microsoft Press，2004
ISBN：9780735619678

 日本語訳『Code Complete 第2版 上　完全なプログラミングを目指して』，
日経BP，2005　ISBN：9784891004552

 『Code Complete 第2版 下　完全なプログラミングを目指して』，日経BP，
2005　ISBN：9784891004569

［FOW99］ Martin Fowler，Kent Beck，John Brant，William Opdyke and Don Roberts，
『Refactoring: Improving the Design of Existing Code』，Addison-Wesley
Professional，1999　ISBN：9780201485677

 日本語訳『新装版 リファクタリング　既存のコードを安全に改善する』，オー
ム社，2014　ISBN：9784274050190

cocoa01@gmail.com

221

 参考文献

その他の参考文献

［ABR02］ Pekka Abrahamsson，Outi Salo，Jussi Ronkainen，Juhani Warsta，"Agile
software development methods Review and analysis"，VTT Technical
Research Centre of Finland，VTT Publications 478，2002
 Web https://www.vttresearch.com/sites/default/files/pdf/publications
/2002/P478.pdf

［BAS16］ Ali Basiri，Niosha Behnam，Rund de Rooij，Lorin Hochstein，Luke
Kosewski，Justin Reynolds，and Casey Rosenthal，"Chaos Engineering"，
IEEE Software，May/June 2016

［BEC01］ Kent Beck，『XPエクストリーム・プログラミング入門―ソフトウェア開発の
究極の手法』，ピアソンエデュケーション，2001　ISBN：9784894712751

［BEC02］ Kent Beck，『Test Driven Development: By Example』，Addison-Wesley
Professional，2002　ISBN：9780321146533

 日本語訳『テスト駆動開発』，オーム社，2017　ISBN：9784274217883

［BEC05］ Kent Beck，『XPエクストリーム・プログラミング入門―変化を受け入れる』，
2005，ピアソンエデュケーション　ISBN：9784894716858

［BEI90］ Boris Beizer，『Software Testing Techniques 2nd Edition』，Van Nostrand
Reinhold，1990　ISBN：9780442206727

 日本語訳『ソフトウェアテスト技法　自動化、品質保証、そしてバグの未然
防止のために』，日経BPマーケティング，1994　ISBN：9784822710019

［BES17］ "The Agile Manifesto for Software Development"，BEST WEBSITE NOW，
2017
 Web https://bestwebsitenow.com/developer-news/agile-manifesto-
software-development/

［CAO08］ Lan Cao，Balasubramaniam Ramesh，"Agile Requirements Engineering
Practices: An Empirical Study"，IEEE Software，January/February，2008

［CHI94］ Shyam Chidamber and Chris Kemerer，"A Metrics Suite for Object Oriented
Design"，IEEE Transactions on Software Engineering，vol. 20，Issue 6，
1994.

cocoa01@gmail.com

222

［CLE01］ Paul Clements，Rick Kazman，and Mark Klein，『Evaluating Software
Architectures: Methods and Case Studies』，Addison-Wesley Professional，
2001　ISBN：9780201704822

［DOB02］ Liliana Dobrica and Elia Niemelä，"A Survey on Software Architecture
Analysis Methods" IEEE Transactions on Software Engineering，vol. 28，
Issue 7，2002

［DOK18］ 独立行政法人 情報処理推進機構（IPA），"組込みソフトウェア開発向けコー
ディング作法ガイド［C言語版］ESCR Ver.3.0"，2018
 Web https://www.ipa.go.jp/files/000064005.pdf

［DOR19］ Dorothy Graham，Rex Black，and Erik van Veenendaal，『Foundations of
Software Testing ISTQB Certification，4th edition』，Cengage Learning
EMEA，2019　ISBN：9781473764798

［DYB07］ Tore Dybå，Erik Arisholm，Dag Sjoberg，Jo Hannay，and Forrest Shull，
"Are Two Heads Better than One? On the Ef fect iveness of Pair
Programming"，IEEE Software，Nobember/December，2007

［FEN98］ Norman Fenton，Shari Lawrece Pfleeger，『Software Metrics』，PWS
Publishing Company，1998

［ICH20］ 市谷聡啓，新井剛，小田中育生，『いちばんやさしいアジャイル開発の教本―
人気講師が教えるDX (デジタルトランスフォーメーション) を支える開発手
法』，インプレス，2020　ISBN：9784295008835

［IPA17］ 独立行政法人情報処理推進機構（IPA），"ソフトウェア開発データが語るメッ
セージ「設計レビュー・要件定義強化のススメ」～定量データに基づくソフト
ウェア開発のプロセス改善を目指して～"，2017
 Web https://www.ipa.go.jp/files/000058505.pdf

［IPA20］ 独立行政法人情報処理推進機構（IPA），"ソフトウェア開発分析データ集
2020"，2020
 Web https://www.ipa.go.jp/files/000085879.pdf

［ISHI14］ 石川達也，三浦一仁，前川博志，"テスト自動化のパターンと実践"，2014　
 Web https://www.slideshare.net/Posaune/ss-42682479

cocoa01@gmail.com

223

 参考文献

［JIA11］ Yue Jia and Mark Harman，"An Analysis and Survey of the Development of
Mutation Testing"，IEEE Transactions on Software Engineering，vol.37，
Issue5，2011

［JON08］ Capers Jones，『Applied Software Measurement: Global Analysis of
Productivity and Quality Third Edition』，McGraw-Hill Education，2008　
ISBN：9780071502443

［GAD21］ Androidデベロッパー（Android Developers）「テストの基礎」　
 Web https://developer.android.com/training/testing/fundamentals
?hl=ja

［GAM94］ Erich Gamma，Richard Helm，Ralph Johnson，John Vlissides，『Design
Patterns: Elements of Reusable Object-Oriented Software』，Addison-
Wesley Professional，1994　ISBN：9780201633610

 日本語訳『オブジェクト指向における再利用のためのデザインパターン（改
訂版）』，SBクリエイティブ，1999　ISBN：9784797311129

［GLA90］ David N. Card，Robert L. Glass，『Measuring Software Design Quality』，
Prentice Hall，1990　ISBN：9780135685938

［GRA93］ Robert B. Grady，"Practical Results from Measuring Software Quality"
Communications of the ACM，vol. 36，No. 11，1993

［GOO20］ Carlos Arguelles，Marko Ivankovic，and Adam Bender，‘Code Coverage
Best Practices'
 Web https://testing.googleblog.com/2020/08/code-coverage-best-
practices.html?utm_source=feedburner&utm_medium=email&utm_cam

［KAN02］ Stephen H. Kan，『Metrics and Models in Software Quality Engineering』，
Addison-Wesley Professional，2002　ISBN：9780201729153

［KAN99］ Cem Kaner，Jack Falk，Hung Q. Nguyen，『Testing Computer Software』，
Wiley，1999

 日本語訳『基本から学ぶソフトウェアテスト』，日経BP，2001　ISBN：9784
822281137

cocoa01@gmail.com

224

［KAR04］ Karl E. Wiegers，『Peer Reviews in Software: A Practical Guide』，Addison-
Wesley Professional，2001　ISBN：9780201734850
日本語訳『ピアレビュー　高品質ソフトウェア開発のために』，日経BP，
2004　ISBN：9784891003883

［LAR04］ Craig Larman，『Agile and Iterative Development: A Manager's Guide』，
Addison-Wesley Professional，2003　ISBN：9780131111554

 日本語訳『初めてのアジャイル開発』，日経BP，2004　
ISBN：9784822281915

［LAT11］ Anthony J. Lattanze，『Architecting Software Intensive Systems: A
Practitioners Guide』，Auerbach Publications，2008　ISBN：9781420045697

 日本語訳『アーキテクチャ中心設計手法　ソフトウェア主体システム開発の
アーキテクチャデザインプロセス』，翔泳社，2011　ISBN：9784798122373

［LEF10］ Dean Leffingwell，『Scaling Software Agility: Best Practices for Large
Enterprises』，Addison-Wesley Professional，2007　ISBN：9780321458193

 日本語訳『アジャイル開発の本質とスケールアップ　変化に強い大規模開発
を成功させる14のベストプラクティス』，翔泳社，2010　
ISBN：9784798120409

［LIN79］ Richard C. Linger，Harlan D. Mills，and Bernard I. Witt，『Structured
Programming: Theory and Practice』，Addison-Wesley，1979　
ISBN：9780201144611

［LIT04］ Todd Little，"Value Creation and Capture: A model of the Software
Development Process"，IEEE Software，May/June，2004

［LUN00］ Chung-Horng Lung and Kalai Kalaichelvan，"An Approach to Quantitative
Software Architecture Sensitivity Analysis". International Journal of
Software Engineering and Knowledge Engineering，vol. 10，No. 1，2000

［MAI10］ Neil Maiden and Sara Jones，"Agile Requirements，Can We Have Our
Cake and Eat It Too"，IEEE Software，May/June，2010

cocoa01@gmail.com

225

 参考文献

［MAR04］ Robert Martin，『Agile Software Development』，Pearson Education
Limited，2013

 日本語訳『アジャイルソフトウェア開発の奥義』，SBクリエイティブ，2004　
ISBN：9784797323368

［MYE79］ Glenford J. Myers，Corey Sandler，Tom Badgett，『The Art of Software
Testing』，Wiley，1979

 日本語訳『ソフトウェア・テストの技法』，近代科学社，2006　ISBN：9784
764903296

［MCC76］ Thomas J. McCabe，"A Complexity Measure". IEEE Transactions on
Software Engineering，vol. SE-2，No. 4，1976
 Web https://ieeexplore.ieee.org/document/1702388

［MUS98］ John D. Musa，『Software Reliability Engineering』，McGraw-Hill，1998　
ISBN：9780079132710

［NET11］ "The Netflix Simian Army"，Netflix Technology Blog，2011
 Web https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

［OFF01］ Jefferson Offutt and Roland Untch，"Mutation 2000: Uniting the
Orthogonal"，The Springer International Series on Advances in Database
Systems，vol 24，1901.

［PET18］ Goran Petrovic and Marko Ivankovic，“Steate of Mutation Testing at
Google”，Proceedings of the 40th International Conference on Software
Engineering，SEIP，2018

［PIT21］ Pitest，2021
 Web https://pitest.org/

［PRI18］ Principles of chos engineering，2018
 Web https://principlesofchaos.org/ja/

cocoa01@gmail.com

226

［PUT03］ Lawrence H. Putnam，Ware Myers，『Five Core Metrics: The Intelligence
Behind Successful Software Management』，Dorset House，2003　
ISBN：9780932633552

 日本語訳『初めて学ぶソフトウエアメトリクス　プロジェクト見積もりのた
めのデータの導き方』，日経BP，2005　ISBN：9784822282424

［REA14］ Pedro Reales，Macario Polo，José Luis Fernández-Alemán，Ambrosio
Toval，Mario Piattini，“Mutation Testing” IEEE Software，May/June，
2014

［ROY70］ Winston W. Royce，"Managing The Development of Large Software
Systems”，Proceedings of IEEE WESCON，1970

［SAS99］ M. Angela Sasse and Chris Johnson，"Human-Computer Interaction
INTERACT ’99"，IFIP TC. 13，International Conference on Human-
Computer Interaction，1999

［SAV97］ S. Savage，M. Burrows，G. Nelson，P. Sobalvarro，and T. Anderson，
“Eraser: A dynamic data race detector for multithreaded programs”，ACM
Transactions on Computer Systems，Vol.15，Issue4，1997

［SHI93］ 山田茂，高橋宗雄，『ソフトウェアマネジメントモデル入門―ソフトウェア品
質の可視化と評価法―』，共立出版，1993　ISBN：9784320026353

［SUN16］ Weny ing Sun，George Marakas，Migue l Agu i r re -Ur re ta，"The
Effectiveness of Pair Programming Software Professionals' Perceptions"，
IEEE Software，July/August，2016

［TAK86］ Hi ro taka Takaeuch i，Iku j i ro Nonaka，"The New New Produc t
Development Game"，Harvard Business Review，January，1986

［TIL15］ Stefan Tilkov，"The Modern Cloud-Based Platform"，IEEE Software，
March/April，2015

［USA10］ Macario Polo Usaola and Pedro Reales Mateo，"Mutation Testing Cost
Reduction Techniques: A Survey"，IEEE Software，May/June，2010

cocoa01@gmail.com

227

 参考文献

［WAS19］ 鷲崎弘宜，"アジャイル品質パターン (Agile Quality，QA2AQ)"，2019　
 Web https://www.slideshare.net/hironoriwashizaki/agile-quality-
qa2aq-148971486

［WIE03］ Karl Wiegers『ソフトウェア要求―顧客が望むシステムとは』，日経BPソフ
トプレス，2003　ISBN：9784891003548

［WIL00］ Laurie Williams，Robert Kessler，Ward Cunningham，and Ron Jeffries，
“Strengthening the Case for Pair Programming”，IEEE Software，July/
August，2000

［WNI20］ Titus Winters，Tom Manshreck，and Hyrum Wright，『Software
Engineering at Google』，O’Reilly，2020　ISBN：9781492082798
日本語訳『Googleのソフトウェアエンジニアリング―持続可能なプログラミ
ングを支える技術、文化、プロセス』，オライリージャパン，2021　ISBN：
9784873119656

［WRA10］ Stuart Wray，"How Pair Programming Really Works"，IEEE Software，
January/Februally，2010

［ZHA19］ Jie Zhang，Lingming Zhang， Mark Harman，Dan Hao，Yue Jia，Lu
Zhang，“Predictive Mutation Testing” IEEE Transactions on Software
Engineering，vol.45，Issue9，2019

cocoa01@gmail.com

228

［数字］
2：8の法則 62

［A］
APIテスト 120, 121
～での境界値テスト 122
～とAPIバグ密度の考え方 122

API網羅率 124

［B］
Beizerのバグ検出 17, 109
Boris Beizer 51, 108
build.gradle 205

［C］
C0網羅（C0カバレッジ） 40
C1網羅（C1カバレッジ） 42
Capers Jones 17, 22
～の言う正しい状態／カオスな状態

 12
CK Metrics 91
CKメトリックス 91
～の値が高いもの 93

Code Complete 17
Cyclomatic Complexity 209

［D］
Depth of Inheritance Tree 92
Developers test 2

索引

DIT 92
Dorothy Graham 137

［E］
Erich Gamma 104

［F］
FDA（Food and Drug Administration）

 69

［G］
GitHub 108

［H］
Hotspot 64
～値を求める計算式 65
～の考え方 64

［J］
JaCoCo 204

［K］
Karl Wiegers 21
Kent Beck 46, 112
～のストーリカード 185

KSLOC 16

［L］
LOC（Line of Code） 65

cocoa01@gmail.com

索引

229

［M］
Martin Fowler 93
McCabe数 209
Measuring Software Design Quality

 90
MTBF（平均故障間隔） 177
Mutation Test（Mutation Testing）

 54
MVC（Model View Control） 100
MVC分離 100, 102
品質が担保されないカオスアーキテク
チャ 101

品質が担保されるアーキテクチャ 102
MVVM（Model View ViewModel） 102

［N］
NA（Not Applicable） 35
NOC（Number of Children） 92

［P］
Pre-condition 120
テストアプローチ 121

Putnam 18

［R］
Race Condition 149
～の品質保証 150
～の問題 150

requirement quality 2
Richard Linger 91
Robert Glass 90

［S］
Shift Left 2
Shift Right 13
Steve McConnell 17
Structured Programming 91

［T］
TDD（Test-Driven Development） 46
～のステップ 47

［U］
unit test 38

［V］
View 102
～のテストは苦手 103
～の部分は探索的テスト 147

［W］
WMC（Weighted Methods Per Class）

 91
～値が大きい場合 93

［あ］
アプリ終了遷移 34

［い］
一般的なテスト方法 46
イベント（event） 35

［お］
オペレーショナルプロファイル 174

cocoa01@gmail.com

230

［か］
改善 62
開発工数と摘出されるバグの関連 18
開発者テスト 2
テスト全体のデザイン 151

開発の効率の改善 111
下流テスト費用の削減例 68
関数
～の出口 99
～のテストケース 123

［き］
キーワード駆動型自動テスト 140
キーワード駆動テスト 140
～の例 141

機能単位の単体テスト 74
組み合わせ 75, 77
～手法の基本 75
単機能境界値 75, 76

キャプチャー・リプレイ 136
～の自動化 136
～の問題点 137

境界 29
境界値 30
境界値テスト 29
>と>=の間違い（閉包関係バグ） 32
境界がない 33
数字の書き間違い、要求仕様の読み違
い等々 32

余分な境界 33
競合状態 149
キロソースライン 16

［く］
組み合わせ（機能単位の単体テスト） 77
組み合わせテスト 27, 84
クライテリア 148
クラス当たりの平均メソッド数 91
クラス図 26
クラスの抽出 94
クローンコード 89

［こ］
コードの複雑度 58
コード分析とアクション 66
コードベースの単体テスト 39, 43
書き方 45
実サンプル 194
～の成否を計測する 51

コード網羅 74
～測定の実サンプル 204

コード網羅率 51
Google 53
Hewlett Packard 52
Motorola 52
～を追加しない 122

コードレビュー 108
一般的なレビュープロセス 110

［さ］
サイクロマチック複雑度 209
残バグ 18

［し］
システムテスト 9, 14

cocoa01@gmail.com

索引

231

最悪の～ 136
システムテストの自動化 134
Dorothy Graham のレベル定義 138
キーワード駆動型自動テスト 140
自動化が継続されない典型的なパターン

 142
典型的な自動化挫折パターン

 135, 143
妄想な自動化 142

自動テスト 134
シフトレフト 2
出荷後のリスク 23
状態（state） 34
状態遷移 34
メモ帳ソフトウェアの～ 35

状態遷移図 34
状態遷移テスト 34
状態遷移マトリックス 35
上流テスト 15
～と出荷後の品質 16

上流品質 2
～と残バグのリスク 18
～と出荷後の品質 16

上流品質活動 13
上流品質担保の手法 211
信頼度成長曲線 176

［せ］
遷移（transition） 34

［そ］
総複雑度 65

ソースコードの複雑度 58
ソート機能の単体テスト 75

［た］
単機能境界値 75, 76
単機能のテスト 38, 74
探索的テスト 146
単体テスト 38
機能単位の～ 74
コードベースの～ 39, 43
実サンプル 194
ソート機能の～ 75
どこを単体テストすればよいか？ 61
～なしで疲弊する組織 153
～に潜む闇 68
～の圧倒的なテストスピード

 111, 153
～の効率化 56
～の流れ 88
～の間違い 43
～のやる箇所を絞る 62
筆者の独自手法 65
網羅率 51
～を行う優先順位の指標 65

［ち］
知識ゼロから学ぶソフトウェアテスト

 28

［て］
適切なテスト手法 28
デザインパターン 104

cocoa01@gmail.com

232

テスト駆動開発 46, 47
テスト手法
開発者がこれだけは知っておくべき～

 28
適切な～ 28
～の大枠 26

テスト条件 148
テスト全体のデザイン 152
テストの自動化 134
テストの矛盾 71
テストライフサイクル 28

［と］
統合テスト 118
APIテストとAPIバグ密度の考え方

 122
～重視の実例 119
～のパターン 118
標準的なアプローチ 119

［に］
入出力処理 44

［は］
バグ検出 17
バグ修正 98

［ひ］
ビッグクラス 94, 96

～のリファクタリング 90
品質基準 44
品質の悪いプロジェクト 97

品質要求 2

［ふ］
ファイル行数の長さ 65
ファイルのコードのリファクタリング

 89
複雑度 58, 96
CKメトリックス 90
単体テスト 65
～とバグ混入率 97
～の例 59
～を下げるリファクタリング 96
～を求める式 59

ブラックボックステスト 80
～の定義 71, 72

プログラムサイズと複雑度の関係 98
プロジェクトの後半でバグをつぶす 19
分岐網羅 42
実サンプル 207

［へ］
平均クラス継承の深さ 92
平均子クラス数 92
閉包関係バグ 32

［ほ］
ホワイトボックステスト 80
～の定義 71, 72

［み］
ミュータント（バグ） 160, 162
ミューテーションテスト 158, 159

cocoa01@gmail.com

索引

233

～の考え方 159
～の問題点 170

ミューテーション網羅率 171

［め］
命令網羅 40
実サンプル 205, 207
～の抜け 41

メトリックス 156

［も］
網羅 40
網羅率 51
～の測定（実サンプル） 204

［よ］
要求のバグの修正工数 21

［り］
リファクタリング 86, 88

XPのプラクティスでの～ 86
コードの品質の本質論からの～ 86
ビッグクラスの～ 90
ファイルのコードの～ 89
複雑度を下げる 96

［れ］
レーリー特性

開発工数と摘出されるバグの関連
 18

システムテストで多くのバグを見つけ
た場合 19

単体テストやレビューやインスペク
ションを十分した場合 20

レビュー 109
一般的なレビュープロセス 109

cocoa01@gmail.com

ソフトウェア品質を高める開発者テスト　改訂版
アジャイル時代の実践的・効率的でスムーズなテストのやり方

2022年6月15日　初版 第1刷発行

著　者	 高橋 寿一（たかはし じゅいち）

発行人	 佐々木 幹夫

発行所	 株式会社 翔泳社（https://www.shoeisha.co.jp）

印刷・製本	 日経印刷株式会社

© 2022 Juichi Takahashi

※�本書に記載されたURL等は予告なく変更される場合があります。

※�本書に記載されている会社名、製品名はそれぞれ各社の商標および登録商標です。

※本書では、TM、®、©は割愛させていただいている場合があります。
※�本書は著作権法上の保護を受けています。本書の一部または全部について、株式会社翔泳社から文書による許諾を得ずに、

いかなる方法においても無断で複写、複製することは禁じられています。

※�本書へのお問い合わせについては、下記の内容をお読みください。

※�落丁・乱丁本はお取り替えいたします。03-5362-3705までご連絡ください。

ISBN978-4-7981-7639-0　Printed in Japan

DTP＆本文デザイン　株式会社シンクス

装丁　イイタカデザイン 飯高 勉

■本書内容に関するお問い合わせについて
　本書に関するご質問、正誤表については下記のWeb サイトをご参照ください。
　お電話によるお問い合わせについては、お受けしておりません。
　正誤表	 ● https://www.shoeisha.co.jp/book/errata/
　刊行物Q&A	 ● https://www.shoeisha.co.jp/book/qa/
　インターネットをご利用でない場合は、FAX または郵便にて、下記にお問い合わせください。
　送付先住所 〒160-0006　東京都新宿区舟町5
　（株）翔泳社 愛読者サービスセンター　　FAX 番号：03-5362-3818

ご質問に際してのご注意
　本書の対象を越えるもの、記述個所を特定されないもの、また読者固有の環境に起因するご質問等にはお答えできま
せんので、あらかじめご了承ください。
※�本書の出版にあたっては正確な記述につとめましたが、著者や出版社などのいずれも、本書の内容に対してなんらか

の保証をするものではなく、内容に基づくいかなる結果に関してもいっさいの責任を負いません。

cocoa01@gmail.com

この電子書籍の全部または一部について、著作権者ならびに株式会社翔泳社に無断で
複製（コピー）、転載、公衆送信をすること、改変・改ざんすることを禁じます。
また、有償・無償にかかわらずこのデータを第三者に譲渡することを禁じます。

2022年06月09日　電子書籍版発行
※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。
※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。
※本電子書籍は同名出版物を底本として作成しました。

cocoa01@gmail.com

	カバー
	表紙
	本書を手に取ってくださった皆さんへ
	増補・改定について

	目次
	第1章　はじめに
	1.1　上流品質
	1.2　アジャイルでの品質
	1.2.1　アジャイルテストとは

	第2章　上流品質向上のためのテスト
	2.1　上流品質活動
	2.2　さぼる・逆らう人のための上流テスト講座
	2.2.1　上流品質と出荷後の品質
	2.2.2　上流品質と残バグのリスク
	2.3　まとめ

	第3章　開発者テストの基本の基本
	3.1　開発者がこれだけは知っておくべきテスト手法
	3.1.1　境界値テスト
	3.1.2　状態遷移テスト

	第4章　コードベースの単体テスト
	4.1　コードベースの単体テストとは
	4.2　命令網羅（C0カバレッジ）
	4.3　分岐網羅（C1カバレッジ）
	4.4　よくある単体テストの間違い――コードベースの単体テスト
	4.5　知っているようで知らないコードベースの単体テストの書き方
	4.5.1　一般的なテスト方法（TDD）
	4.6　網羅率――コードベースの単体テストの成否を計測する

	第5章　単体テストの効率化――楽勝単体テスト
	5.1　コードの複雑度
	5.2　どこを単体テストすればよいか？――単体テストやってる暇ありませんという人のために
	5.2.1　単体テストのやる箇所を絞る
	5.2.2　筆者の独自手法――ファイルを2つにぶった切る
	5.2.3　明確なメリット

	第6章　機能単位の単体テスト
	6.1　開発者がやるべき単機能のテスト
	6.1.1　［例］ソート機能の単体テスト
	6.2　ブラックボックステスト・ホワイトボックステスト

	第7章　リファクタリング
	7.1　やはり複雑です、そのコード！書けません、単体テスト
	7.2　ファイルのコードのリファクタリング
	7.3　ビッグクラスのリファクタリング
	7.3.1　CKメトリックス
	7.4　複雑度を下げるリファクタリング
	7.5　出口は1つ
	7.6　MVC分離

	第8章　コードレビュー
	8.1　コードレビューとは
	8.2　ペアプログラミング

	第9章　統合テスト
	9.1　統合テストのパターン
	9.1.1　統合テスト重視の実例
	9.2　APIテストとAPIバグ密度の考え方
	9.3　カオスエンジニアリング
	9.3.1　カオスエンジニアリングと品質＆生産性

	第10章　システムテストの自動化
	10.1　最悪のシステムテスト
	10.2　キーワード駆動型自動テスト
	10.3　妄想な自動化

	第11章　探索的テスト
	第12章　まとめ――テスト全体のデザイン
	12.1　単体テストなしで疲弊する組織

	第13章　アジャイル・シフトレフトのメトリックス
	13.1　ミューテーションテスト
	13.1.1　ミューテーションテストの考え方
	13.1.2　ミュータントの中身
	13.1.3　ミューテーションテストの問題点
	13.1.4　ミューテーション網羅率という考え方
	13.2　ユーザーストーリと信頼性メトリックス
	13.2.1　オペレーショナルプロファイル
	13.3　信頼度成長曲線のメトリックス

	第14章　アジャイルにおける要求仕様
	14.1　ユーザーストーリの利点

	第15章　開発者テストの実サンプル
	15.1　単体テスト
	15.1.1　Setup――簡単なアプリを作る
	15.1.2　単体テストを作る
	15.2　コード網羅測定
	15.2.1　コード網羅ツールの準備
	15.2.2　一番簡単な網羅（命令網羅）
	15.2.3　分岐網羅

	最後に
	あとがき
	著者略歴
	参考文献
	索引
	奥付

