

ご利用の前に必ずお読みください

本書は紙書籍『WEB+DB PRESS plusシリーズ ［増補改訂］ビッグデータ
を支える技術 ラップトップ1台で学ぶデータ基盤のしくみ』（ISBN978-4-297-
11952-2）を元に製作した電子書籍です。紙書籍とはデザインやレイアウトが
異なり、ご覧になる端末により表示が異なる場合があります。表示設定は端末
の標準設定を推奨します。配信後に補足訂正等でデータの再配布を行う場合
があります。更新方法は購入先の電子書店のヘルプ等をご確認ください。

本書は情報提供のみを目的としており、掲載内容の運用結果について技
術評論社および著者は一切の責任を負いません。掲載内容は特に断りのない
限り執筆時点より以前の情報のため、変更される場合があります。特に、ソフト
ウェアはバージョンアップされる場合があり、本書での説明とは機能内容や画面
図などが異なってしまうこともありえます。

以上をあらかじめご承諾の上、ご利用をお願いします。
本文中に記載されている製品の名称は、すべて関係各組織、各社の商標または登録

商標です。

本書に記載された内容は、情報の提供のみを目的としております。したがって、本書を参

考にした運用は必ずご自身の責任と判断において行ってください。

本書記載の内容に基づく運用結果について、著者、ソフトウェアの開発元/提供元、㈱技

術評論社は一切の責任を負いかねますので、あらかじめご了承ください。

本書に記載されている情報は、とくに断りがない限り、2021年1月時点での情報に基づい

ています。ご使用時には変更されている場合がありますので、ご注意ください。

本書に登場する会社名、製品名は一般に各社の登録商標または商標です。本文中で

は、™、Ⓒ、Ⓡマークなどは表示しておりません。

本書について　改訂にあたって

本書は『ビッグデータを支える技術』の増補改訂版です。
「ビッグデータ」（big data ）という言葉が広く用いられるようになって数年が

経ち、以前であれば簡単には手を出せないと思われた大規模なデータ処理も、
少し勉強すれば誰にでも扱えるものになってきました。筆者が前著『Googleを支
える技術』（技術評論社、2008）の執筆にあたり「MapReduce」について学
んでいた当時、それはどこか遠くの世界のように感じられたものですが、今ではもう
ありふれた技術になったのですから時代は変わったものです。

コンピュータの性能向上に伴い、ますます多くの物事がシステム化され、効率
良く運用される時代になってきています。身近なところでは、たとえば「スマホで買
い物をして、翌日には届けてもらえる」というとき、その背後では「決済システム」
「在庫管理システム」「配送システム」などの多数のシステムが連携して動いていま
す。

そのすべてのシステムがデータを生み出し、データを通してつながっています。デー
タを見ることで、今どこで何が起きているのかを把握し、そして次に何が起きるだろ
うかと予想できます。データに基づいて次の指示を出すサイクルを自動化し、その
プロセスをまたシステムへと組み込むことで、さらなる仕事の効率化が図れます。

「機械学習」（machine learning ）の技術などの発展によって、データを使
ったシステム開発への期待は以前にも増して高まっています。今後もデータを活用
して業務を改善する、あるいは「データ処理そのものをシステムの一部とする」こと
が増えてくるのは間違いありません。

本書の内容
本書のテーマは「自動化されたデータ処理」です。ビッグデータと言うと、多くの

人は「データ分析」を思い浮かべるかもしれませんが、本書で取り上げるのはデー

タの活用方法ではなく、「データ処理をどのようにシステム化するか」という問題で
す。

データの活用が重要であることに変わりはありませんが、だからと言ってデータの
処理方法を知らなくても済むわけではありません。本書はおもに、これから「ビッグ
データの技術を学ぼう」というエンジニアに向けて、最初に知っておくべき基本的な
データ処理の概念を広く取り上げることを目的としています。

データ分析における八割の時間は、データを準備するために費やされるとも言
われています。世間では「データサイエンティストとして雇われたのに、データの前処
理ばかりやっている」などといった嘆きも耳にします。「データを準備する」というエン
ジニアリングの部分を効率化しなければ、データ分析の苦労がなくなることはあり
ません。

そのため本書では、まずはじめにデータ処理の過程で使われるソフトウェアやデ
ータベース、プログラミング言語や可視化ツールなどの特徴を整理し、データを効
率良く扱うための下地を整えます。その上で「ワークフロー管理」（workflow
management ）や「ストリーム処理」（stream processing ）などといった「デ
ータ処理を自動化する技術」を見ていきます。

本書はなるべく平易な技術解説に努めており、ソフトウェアやシステム開発に
興味のある人であれば問題なく読み進められるようにと心掛けています。実際に
データを扱う業務に携わる人に加えて、「データ処理のシステム開発とはどのよう
なものか」に関心のある人にも広く読んでもらえればと思っています。

本書はビッグデータの世界で使われる技術とその役割を、次々と見ていく体
裁としています。個々の技術について踏み込んだ解説はしておらず、一つ一つの
話題はネットで調べればわかることばかりです。そのためすでにこの分野で経験の

ある人からすると物足りなく思えるかもしれませんが、なるべく初学者が幅広い知
識を得られることを目指して執筆しています。

本書で扱わない内容
データを利用する目的は多々ありますが、ここでは例として二つの分野を取り

上げましょう。一つは「ビジネスインテリジェンス」（business intelligence ）と呼
ばれる分野で、企業の業績などを集計して、経営上の意思決定に役立てようと
するものです。もう一つは「データマイニング」（data mining ）と呼ばれる分野
で、統計解析や機械学習などのアルゴリズムを駆使して、データから価値ある情
報を見つけ出そうとするものです。

この二つの分野は重複する部分もありますが、基本的には必要な知識体系
がまったく異なります。ところが、ビッグデータの技術はどちらの分野でも利用され、
両方から強く影響を受けているため、どちらを主要な目的とするかで学ぶべき内
容が変わります。一般的には、それぞれの分野の専門家に依頼してシステムを
作り上げるところですが、本書では各分野の基礎知識を少しずつ取り上げていま
す。

ビジネスインテリジェンスからは、データの可視化に関する考え方を紹介していま
す。とりわけ近年では「BIツール」（business intelligence tool ）と呼ばれる可
視化ソフトウェアが普及したことで、経営者でなくともプロジェクト単位でデータを
見る人が増えています。本書では本格的なビジネスインテリジェンスについては説
明しませんが、「MPPデータベース」（MPP database ）のようなBIツールに関連
する技術は取り上げています。

データマイニングからは、対話的なデータ分析環境の考え方を紹介しています。
たとえば、「ノートブック」（notebook ）と呼ばれるソフトウェアや、「データフレー
ム」（data frame ）と呼ばれるデータ構造などは、データマイニングの世界から

取り入れられたものです。本書ではデータマイニングそのものについては説明しませ
んが、そこで用いられるツール群は知っておく価値があります。

本書ではなるべく汎用的なデータ処理の技術を取り上げているため、特定の
業界に特化したノウハウについては説明していません。たとえば、ビッグデータの技
術が最もよく使われる分野の一つは「Webのアクセス解析」です。とりわけ「デジ
タルマーケティング」（digital marketing ）の業界では、顧客の行動分析から
ネット広告の配信に至るまで、あらゆる用途でWebのアクセスログを活用します。
しかし、その詳細は本書で扱える範囲を超えています。

また、近年ではあらゆるものをインターネットに接続する「IoT」（Internet of
Things ）が話題になっていますが、これも本書では取り上げていません。IoTは
ビッグデータとの関連も深く、たとえば、データマイニングの一分野である「異常検
知」（anomaly detection ）の技術で機械の故障を早期発見するといった試
みもありますが、こうした応用も本書の対象外です。

ただし「多数のデバイスからデータを集める」ためのしくみは、ビッグデータの根幹
となる要素の一つであり、その基本となる考え方は説明しています。たとえば、リ
アルタイムの「メッセージ配送」（message delivery ）や「重複排除」
（deduplication ）、そしてデータを格納するための「分散ストレージ」
（distributed storage ）などの技術です。

本書の後半では「特徴量ストア」（feature store ）や「MLOps」
（machine learning operations ）のような機械学習に関連する話題も取り
上げますが、機械学習の技術そのものは本書では扱いません。機械学習を活
用したシステム開発で必要となるデータ処理の基盤や、日々のデータ処理を自
動化する「オーケストレーション」(orchestration)の概念について理解を深めるこ
とが本書の目的となります。

本書の想定読者と前提とする予備知識について
本書はビッグデータを扱うエンジニアや、作業を自動化したいと考えるデータサ

イエンティストをおもな対象としています。エンジニアが対象であるのは、データ処
理のためにスクリプト言語や自動化ツールを用いるためです。読み進めるにあた
り、プログラミングに精通している必要はありませんが、システム開発の一般的な
知識はある程度必要になります。

オペレーティングシステム（OS）やリレーショナルデータベース（RDB）の基本
的な知識は前提とします。SQLのクエリを読めることも想定しますが、読めなくて
も支障はありません。ただし、テーブルの「結合」（join）のような概念は理解し
ている必要があります。

プログラムのサンプルコードを読むにはPythonの知識が必要です。とは言え、
第6章までは最小限のサンプルコードしか載せておらず、読み飛ばしてしまっても問
題ありません。一方、第7章では多数のサンプルプログラムを使って、データ処理
の実例を示しています。

動作確認環境と本書の補足情報について
サンプルコードの実行には「Ubuntu 20.04 LTS」（AMD64版）を利用しま

す。ホストOSには「macOS Big Sur 11.1」を用いて、仮想マシンを作成するため
に「Multipass」を導入しました。WindowsでもMultipassが使えることは確認し
ており、サンプルコードの多くはそのまま動きますが、Webの管理画面など一部機
能へのアクセスは制限される場合があります。

仮想マシンを作成するには最低でも8GBのメモリと20GBのディスクの空き容
量が必要です。サンプルコードの実行過程では20GB近くのファイルをダウンロード
することになるため、Wi-Fi環境での実行を推奨します。仮想マシンでなくとも、
Ubuntuの実行環境さえあればサンプルコードは動かせます。少なくともPythonと

Java、そしてDockerさえ使える環境であればほとんど変更なしに動くはずです。
一部のコードは「Google Colab」（Colaboratory）を使って、Webブラウザだけ
で動作確認できるようにもしてあります。本書の補足情報は、

https://gihyo.jp/book/2021/978-4-297-11952-2から
た ど

辿れます。
ビッグデータの処理には多数のコンピュータが使われますが、その技術を学ぶの

には1台のラップトップがあれば十分です。そのため本書で紹介するソフトウェア
は、どれも手軽に試せるオープンソースのものか、少なくとも無償版のあるものを選
んでいます。ただし、一部のクラウドサービスなどは有償契約を前提としており、無
償で使い続けられるとは限らないので注意してください。

本書ではHadoopやSparkなどの分散システムの概要を説明しますが、それら
の具体的な設定方法は取り上げていません。最近はクラウドサービスを使ってシ
ステム構築することも増えており、実際の設定は利用するサービスによって異なり
ます。環境に応じてドキュメントを参照してください。

本書の構成
第1章「ビッグデータの基礎知識」は導入として、ビッグデータの技術が生まれた

歴史的な背景を説明し、基本となる用語を整理しています。ここではビッグデータ
との対比として、以前からある「スモールデータの技術」についても取り上げます。
簡単なPythonスクリプトによるデータ処理や、BIツールの考え方を知ることで、第
2章以降の技術に話を繋げます。

第2章「ビッグデータの探索」では、データの「対話的な集計と可視化」がテーマ
となります。とりわけデータの性質がまだわかっていない初期の段階では、データの
集計を何度もやり直すことで、徐々にデータに対する理解を深めるものです。第2
章ではデータを秒単位で集計するための「データマート」（data mart ）の性質に
ついても説明します。

https://gihyo.jp/book/2021/978-4-297-11952-2

第3章「ビッグデータの分散処理」では、HadoopやSparkなどの「分散処理の
フレームワーク」を使ってデータを加工、集計し、データマートを作り上げるプロセスを
中心に説明します。データを集計するためにどの製品を選ぶかというのは非常に
悩ましい問題ですが、第3章ではいくつかの選択肢とそれらの特徴を比較してい
ます。

第4章「ビッグデータの蓄積」では、「データを集めて保存する」手順を説明しま
す。これは単純なようで奥の深いテーマです。たとえば、何百万台ものセンサー機
器からデータを集める場合、それをデータベースに書き込むだけでも大きな負荷と
なります。第4章では、いくつかの分散ストレージの特徴を取り上げつつ、分散スト
レージにデータを取り込む「データインジェスション」（data ingestion ）のプロセス
を説明します。

第5章「ビッグデータのパイプライン」では、「データ処理を自動化する」手順を説
明します。データ処理の自動化には、定期的にスケジュール実行される「バッチ処
理」と、絶え間なく実行される「ストリーム処理」とがあります。第5章ではSparkを
例として、バッチ処理とストリーム処理とが統合されたフレームワークを取り上げる
と共に、障害に強いデータ処理を実現するための「ワークフロー管理」の考え方に
ついても説明します。

第6章「ビッグデータと機械学習」では、機械学習の前処理としてビッグデータ
がどのように加工されるのかを説明します。機械学習では「特徴量」(feature)と
呼ばれる数値データを大量に必要とするため、集めたデータを定期的に、あるい
はリアルタイムに集計して「特徴量ストア」(feature store)へと格納します。その
過程では第3章から第5章で解説するビッグデータの技術が使われます。

最後に、第7章「［実践］ビッグデータ分析基盤の構築」は応用編として、第
6章までに取り上げたソフトウェアを利用して「過去の気温と降水量の推移」を集

計するサンプルプログラムを動かします。最初はデータの特徴が何もわかっていな
いところからスタートするので、pandasとSparkを用いた対話的なセッションでデー
タを分析します。

そうしてデータの理解が進み、そのデータで何を実現したいのかが定まれば、本
番環境を想定して「データ処理の自動化」に取り組みます。第7章ではワークフロ
ー管理のソフトウェアとして「Prefect」を導入し、毎日1回データマートを更新する
バッチ処理を走らせます。

Prefectでは日々のデータ処理を実行する各タスクをDockerコンテナとして動
かせます。近年では「サーバーレスアーキテクチャ」(serverless architecture)の普
及により、自分でサーバー管理する必要のないシステムが人気を集めていますが、
第7章の最後では「コンテナ化されたワークフロー」を実現するステップについても解
説しています。

改訂版のおもな変更点
今回の改訂版では新しく「ビッグデータと機械学習」と題して新章(第6章)を書

き起こしたのと同時に、第7章のサンプルコードを全面的に刷新し、より現代的な
データ処理の実例を手軽に学べるようにと努めました。

第6章は発展を続ける機械学習の分野に一歩踏み込んだ内容となっていま
す。「特徴量ストア」や「MLOps」のような機械学習のフレームワークを実現するた
めに、第5章までに学んだビッグデータの技術がどのように生かされるのかを説明し
ています。

第7章のサンプルコードでは、Twitterからデータ収集することはやめて、単純に
テキストファイルをダウンロードする形へと変更しました。データ構造化のプロセスは
HiveからSparkへと変更し、ワークフロー管理もAirflowからPrefectへと変更しま
した。

ソフトウェアのインストール手順はUbuntuのパッケージ、もしくはDockerコンテナ
を使うように変更しました。事前に設定済みのDockerコンテナを配布しており、
以前よりも手軽に実行できるはずです。データ処理のワークフローを実装する部分
でもDockerを活用しており、モダンなデータパイプラインの実装例として参考にし
てもらえればと思います。

その他の小さな変更点として、データの可視化ツールは無償で使える「Google
データポータル」と「Metabase」を中心とした解説に書き直すことで、より手軽に
可視化の手順を試してみられるようにしました。

一方で、元々小節で取り上げるにとどめていましたが、初版にあったクラウドサ
ービスの比較(旧6.4節「クラウドサービスによるデータパイプライン」)は削除していま
す。クラウドサービスは変化が早く、書籍の内容はすぐに陳腐化してしまうことがお
もな理由です。

とはいえクラウドサービスの重要性が失われたことはなく、ビッグデータの基盤を
考える上でクラウドサービスが第一の選択肢となる状況は今も変わりません。本
書を通して、自分にとって必要な技術は何かという理解を深め、実際のサービス
選択の一助となることを願っています。

本書ではビッグデータに関する多数の技術を取り上げますが、その中からどれ
を選ぶべきかという「正解」は用意していません。ビッグデータの技術は日々発展
を続けており、何が正しい答えかは筆者にもわかりません。

本書で例として取り上げたソフトウェアは、どれも筆者の個人的な知識や経験
から選んだものであり、あらゆるソフトウェアを客観的に評価した結果ではありませ

ん。あくまで理解を深めるための一例として紹介するものであり、特定のソフトウェ
アやサービスを推奨するものでないことはご理解ください。

本書で取り上げることができたのは、ビッグデータの技術を使いこなすために必
要な知識のうちの一部でしかありませんが、これから学習を進めるにあたって、本
書の解説が少しでも助けになれば幸いです。

2021年1月　西田 圭介

目次●［増補改訂］ビッグデータを支える技術　ラップトップ1台で学ぶデータ基

盤のしくみ

本書について　改訂にあたって
本書の内容

本書で扱わない内容

本書の想定読者と前提とする予備知識について

動作確認環境と本書の補足情報について

本書の構成

改訂版のおもな変更点

第 1 章　

ビッグデータの基礎知識
1.1 　［背景］ビッグデータの定着

分散システムによるデータ処理の高速化　ビッグデータの扱いづらさを
乗り越える二大技術

ビッグデータ技術への要求　HadoopとNoSQLの台頭

Hadoop　多数のコンピュータで大量のデータ処理

NoSQLデータベース　頻繁な読み書き＆分散処理に強みあり

HadoopとNoSQLデータベースの組み合わせ　現実的なコストで大規模データ処理

を実現

分散システムのビジネス利用の開拓　データウェアハウスとの共存
自分でできる！ データ分析の間口の広がり　クラウドサービスとデー
タディスカバリで加速したビッグデータ活用

データディスカバリの基礎知識　セルフサービスのBIツール

新しい分散データ処理システムの台頭　Hadoopからの脱却
データベースの高速化

クラウドサービスによるデータ転送

モダンな分散データ処理のフレームワーク

ビッグデータを活用した応用分野の広がり　レポーティング、デジタルマ
ーケティング、人工知能

レポーティング　BIツール、モニタリング、ダッシュボード

デジタルマーケティング　マーケティングオートメーション

人工知能　特徴量エンジニアリング、MLOps

データオーケストレーション

1.2 　ビッグデータ時代のデータ分析基盤
［再入門］ビッグデータの技術　分散システムを活用してデータを加
工していくしくみ

データパイプライン　データ収集からワークフロー管理まで

データ収集　バルク型とストリーミング型のデータ転送

ストリーム処理とバッチ処理

分散ストレージ　オブジェクトストレージ、NoSQLデータベース

分散データ処理　クエリエンジン、ETLプロセス

ワークフロー管理

データウェアハウスとデータマート　データパイプラインの基本形
データレイク　あらゆるデータをそのまま貯蔵

データレイクとデータマート　必要なデータはデータマートにまとめる

データ分析基盤を段階的に発展させる　チームと役割分担、スモール
スタートと拡張

アドホック分析とダッシュボードツール

データマートとワークフロー管理

データを集める目的　「検索」「加工」「可視化」の3つの例
データの検索

データの加工

データの可視化

確証的データ解析と探索的データ解析
1.3 　［速習］スクリプト言語によるアドホック分析とデータフレーム

データ処理とスクリプト言語　人気のPythonと、データフレーム
データフレーム、基礎の基礎　「配列の配列」から作成
Webサーバーのアクセスログの例　pandasのデータフレームで簡単処
理

データの前処理で使えるpandasの関数

時系列データを対話的に集計する　データフレームをそのまま用いてデ
ータ集計
SQLの結果をデータフレームとして活用する

実行結果を確認するところではデータフレームを使う

1.4 　BIツールとモニタリング
スプレッドシートによるモニタリング　プロジェクトの現状を把握する
データに基づく意思決定　KPIモニタリング

月次レポート　スプレッドシートによるレポート作成とその限界

変化を捉えて詳細を理解する　BIツールの活用
モニタリングの基本戦略とBIツール　定期的なレポートによる変化の把握と再集計

手作業と自動化すべきこととの境界を見極める

手作業で済むことは手作業で済ませる

自動化したいときにはデータマートを作る

1.5 　まとめ

第 2 章　

ビッグデータの探索
2.1 　基本のクロス集計

トランザクションテーブル、クロステーブル、ピボットテーブル　クロス集
計の考え方

ピボットテーブル機能によるクロス集計

ルックアップテーブル　テーブルを結合して属性を増やす
BIツールによるクロス集計

pandasによるクロス集計

SQLによるテーブルの集約　大量データのクロス集計の事前準備
データ集約➡「データマート」➡可視化　システム構成はデータマートの
大きさで決まる

2.2 　列指向ストレージによる高速化
データベースの遅延を小さくする

データ処理の遅延　遅延の小さいデータマート作成のための基礎知識

「圧縮」と「分散」によって遅延を小さくする　MPPの技術

列指向データベースのアプローチ　カラムを圧縮してディスクI/Oを減らす
行指向データベース　各行がディスク上で一連のデータとして書き込まれる

列指向データベース　カラムごとにデータをまとめておく

MPPのアーキテクチャ　並列化によってマルチコアを活用する

MPPデータベースと対話型クエリエンジン

2.3 　アドホック分析と可視化ツール
Jupyter Notebookによるアドホック分析　ノートブックに分析過程
を記録する

ノートブック内での可視化

ノートブックによるワークフロー　一連のタスクをまとめて実行

ダッシュボードツール　定期的に集計結果を可視化する
Metabase　SQLによるクエリの実行結果をそのまま可視化

Kibana　Elasticsearchと組み合わせてリアルタイムに可視化

Googleデータポータル　大勢が参照する定期的なレポートを作成

BIツール　対話的なダッシュボード
1つのデータを多角的に分析する

2.4 　データマートの基本構造
可視化に適したデータマートを作る　OLAP

多次元モデルとOLAPキューブ

MPPデータベースと非正規化テーブル

テーブルを非正規化する
ファクトテーブルとディメンションテーブル

スタースキーマと非正規化　ファクトテーブルを中心に複数のディメンションテーブルを結合

非正規化テーブル　データマートに正規化は必要ない

多次元モデル　可視化に備えてテーブルを抽象化する
モデルの定義を拡張する

2.5 　まとめ

第 3 章　

ビッグデータの分散処理
3.1 　大規模分散処理のフレームワーク

構造化データと非構造化データ
スキーマレスデータ　基本書式はある、スキーマは定めない

データ構造化のパイプライン　テーブル形式にして列指向ストレージに長期保存

列指向ストレージの作成　分散ストレージ上に作成して効率良くデータ集計

Hadoop　分散データ処理の共通プラットフォーム
分散システムのコンポーネント　HDFS、YARN、MapReduce

分散ファイルシステムとリソースマネージャ　HDFS、YARN

分散データ処理とクエリエンジン　MapReduce、Hive

Hive on Tez

対話型クエリエンジン　ImpalaやPresto

Spark　インメモリ型の高速なデータ処理
MapReduceを置き換える　Sparkの位置付け

3.2 　クエリエンジン
データマート構築のパイプライン
Hiveによる構造化データの作成

列指向ストレージへの変換　データ集計の高速化（バッチ型クエリエンジン向け）

Hiveで非正規化テーブルを作成する

サブクエリ内でレコード数を削減する　早い段階でファクトテーブルを小さくする

データの偏りを避ける　分散システムの性能発揮のために

対話型クエリエンジンPrestoのしくみ　Prestoで構造化データを集計
する

プラグイン可能なストレージ　1つのクエリの中から複数のデータソースに接続可能

CPU処理の最適化　読み込みもコードも並列実行

インメモリ処理による高速化　クエリ実行には極力、対話型クエリエンジンを

分散結合とブロードキャスト結合

列指向ストレージの集計　Prestoによる高速集計

データ分析のフレームワークを選択する　MPPデータベース、Hive、
Presto、Spark

MPPデータベース　完成した非正規化テーブルの高速集計に向いている

Hive　データ量に左右されないクエリエンジン

Presto　速度重視＆対話型特化のクエリエンジン

Spark　分散システムを使ったプログラミング環境

3.3 　データマートの構築
ファクトテーブル　時系列データを蓄積する

テーブルパーティショニング　物理的なパーティションに分割

データマートの置換

サマリーテーブル　レコード数を削減する
スナップショットテーブル　マスタの状態を記録する
履歴テーブル　マスタの変化を記録する
［最終ステップ］ディメンションを追加して非正規化テーブルを完
成させる

データ集約の基本形

3.4 　まとめ

第 4 章　

ビッグデータの蓄積
4.1 　バルク型とストリーミング型のデータ収集

オブジェクトストレージとデータインジェスション　分散ストレージにデー
タを取り込む

データインジェスション

バルク型のデータ転送　ETLサーバー設置の必要性
ファイルサイズの適正化は比較的簡単

データ転送のワークフロー　ワークフロー管理ツールとの親和性

ストリーミング型のメッセージ配送　次々と送られてくる小さなデータを
扱うために

Webブラウザからのメッセージ配送　Fluentd、Logstash、Webイベントトラッキング

モバイルアプリからのメッセージ配送　MBaaS、SDK

デバイスからのメッセージ配送　MQTTを例に

メッセージ配送の共通化　異なる部分と共通する部分を分離して考える

4.2 　［性能×信頼性］メッセージ配送のトレードオフ
メッセージブローカ　ストレージの性能問題を解決する中間層の設置

プッシュ型とプル型　スケーラビリティ向上とファイルサイズ適正化

メッセージルーティング

メッセージ配送を確実に行うのは難しい　信頼性の問題と3つの設
計方式

at most once

exactly once

at least once　重複排除は利用者に任されている

重複排除は高コストなオペレーション
オフセットを用いた重複排除

ユニークIDによる重複排除

エンドツーエンドの信頼性

ユニークIDを用いた重複排除の方法　NoSQLデータベース、SQL

データインジェスションのパイプライン　長期的なデータ分析に適したス
トレージ

重複を考慮したシステム設計　ビッグデータシステムにおける「重複」の考え方

4.3 　時系列データの最適化
プロセス時間とイベント時間　データ分析の対象はおもにイベント時間
プロセス時間による分割と問題点　極力避けたいフルスキャン
時系列インデックス　イベント時間による集計の効率化❶
述語プッシュダウン　イベント時間による集計の効率化❷
イベント時間による分割　テーブルパーティショニング、時系列テーブル

データマートをイベント時間で並び替える

4.4 　非構造化データの分散ストレージ
［基本戦略］NoSQLデータベースによるデータ活用
分散KVS　ディスクへの書き込み性能を高める

Amazon DynamoDB

ワイドカラムストア　構造化データを分散して格納する
Apache Cassandra

ドキュメントストア　スキーマレスデータを管理する
MongoDB

検索エンジン　キーワード検索でデータを絞り込む

Elasticsearch

Splunk

4.5 　まとめ

第 5 章　

ビッグデータのパイプライン
5.1 　ワークフロー管理

［基礎知識］ワークフロー管理　データの流れを一元管理する
ワークフロー管理ツール

ワークフロー管理ツールとタスク

基本機能とビッグデータで求められる機能

宣言型とスクリプト型　ワークフロー管理ツールの種類

エラーからのリカバリー方法を先に考える
リカバリーとフローの再実行

リトライ　何度も繰り返すエラーは自動化したい

バックフィル　一定期間のフローを連続して実行するしくみ

冪等な操作としてタスクを記述する　同じタスクを何度実行しても同
じ結果になる

アトミック操作

冪等な操作　追記と置換

冪等な追記

アトミックな追記

ワークフロー全体を冪等にする
タスクキュー　リソースの消費量をコントロールする

ボトルネックの解消

タスク数の適正化　大き過ぎず、小さ過ぎず、程良く分割

5.2 　バッチ型のデータフロー
MapReduceの時代は終わった　データフローとワークフロー

MapReduceのしくみ

MapReduceに代わる新しいフレームワーク　DAGによる内部表現
SparkにおけるDAG

データフローとワークフローとを組み合わせる
データを取り込むフロー
データを書き出すフロー
データフローとSQLとを使い分ける　データウェアハウスのパイプラインとデ
ータマートのパイプラン

対話的なフロー　アドホック分析のパイプライン

5.3 　ストリーミング型のデータフロー
バッチ処理とストリーム処理とで経路を分ける
ストリーム処理とバッチ処理とを統合する

Spark StreamingにおけるDAG

ストリーム処理の結果をバッチ処理で置き換える　ストリーム処理の
二つの問題への対処

ラムダアーキテクチャ　バッチレイヤ、サービングレイヤ、スピードレイヤ

カッパアーキテクチャ

アウトオブオーダーなデータ処理
本来のデータの姿は「イベント時間」から得られる

イベント時間ウィンドウイング

5.4 　まとめ

第 6 章　

ビッグデータと機械学習
6.1 　特徴量ストア

機械学習のための特徴量ストア
特徴量エンジニアリング　属性と特徴量

特徴量のデータ形式　データフレームとして扱う

特徴量ストア　ビッグデータと機械学習の境界線

特徴量ストアのデータパイプライン　オンラインとオフライン

訓練と推論　オンラインとオフラインの使い分け

特徴量ストアによるデータ管理
データリネージ　データの依存関係を追跡する

データの検証　特徴量のスキーマを定義する

タイムトラベル　任意の時点にデータを巻き戻す

バージョニング　特徴量の変更履歴を記録する

特徴量ストアの実装例
Michelangelo

Hopsworks

Feast

特徴量ストアをいつ作るか？

6.2 　MLOps
機械学習のためにデータパイプラインを構築する
MLOpsの全体構成　三段階の発展

MLOpsと特徴量ストア
Kubeflow　機械学習のオーケストレーション

Kubeflow Fairing　訓練とモデル登録

オーケストレーション　設定や管理を自動化する

Kubeflow Pipelines　Pythonによるスクリプト型のワークフロー

その他の機能　Metadata、Katib、Tools for Servingなど
6.3 　まとめ

第 7 章　

［実践］ビッグデータ分析基盤の構築
7.1 　ノートブックとアドホック分析

学習にあたって
サンプルデータの内容　5分ごとの気温
作業環境の構築　MultipassでUbuntu 20.04を起動する

Python実行環境の整備　venvによる仮想環境

ノートブックの実行　JupyterLab

PythonスクリプトによるCSVファイルの収集
データの内容を確認する　pandas

分析しやすく加工する　カラム名をセット、日時の標準化

統計値を確認する　describe

外れ値を除外する

Sparkによる分散環境を整える
テキストファイルのアドホック処理　SparkセッションとSparkコンテキスト

RDDからデータフレームを作成する

Spark SQLによるデータの集計

列指向ストレージに変換する　Parquet形式

可視化によるデータ検証　Tableau Public
データの集計と可視化を相互に繰り返す　探索的データ解析

7.2 　バッチ型のデータパイプライン
Dockerによる環境構築　ラップトップ上での開発環境

Dockerのインストール

オブジェクトストレージ　MinIO
構造化データの管理　Hiveメタストア
オブジェクトストレージへのデータ転送
ETLプロセス　Spark
クエリエンジンによるデータ集計　Presto

パーティションを用いた時間の絞り込み

データマートを作成する

外部データベースによるデータマート　PostgreSQL

ダッシュボードツールによる可視化　Metabase
SQLの実行結果をグラフにする

特徴量エンジニアリング　SQLとSpark
SQLによる特徴量エンジニアリング

Sparkによる特徴量エンジニアリング

機械学習　線形回帰による推論

特徴量ストアの読み書きを標準化する

7.3 　ワークフロー管理ツールによる自動化
Prefect　スクリプト型のワークフロー管理

フローの定義　Python関数としてタスクを実装する

コンテキスト

パラメータ

タスクのライブラリ化　再利用性の高いタスクを実装する

ワークフローの開発プロセス　タスクの実装とテストとを繰り返す

タスクの自動テスト　pytest

バッチ型のデータパイプラインを定義する
データの収集　オブジェクトストレージへの保存

ワークフローの並列実行　LocalDaskExecutor

ETLプロセス　ワークフローのコンテナ化

データマートの作成　YAMLで宣言的に定義する

本番環境におけるワークフロー管理
Prefectサーバー　Prefect UI、GraphQL API、PostgreSQL

Prefectエージェント　サーバー経由でフローを実行する

失敗したフローのリスタート　フローランを繰り返し実行する

ソースコードを修正して再実行　フローのバージョンを更新する

ワークフローのオーケストレーション　ロジックと構成定義とを分離する
フローのストレージ　Dockerコンテナとして実行する

フローの実行環境　マルチスレッドを有効にする

実行結果の永続化　オブジェクトストレージに書き出す

スケジュール実行　CronClock

フローの登録　ラベルを付けて管理する

フローの階層化　フローを実行するフロー

Dockerエージェント　エージェントの常時起動

Kubernetesエージェント　コンテナ化されたエージェント

タスクが消費するリソースを制御する

作業環境の削除　multipass delete
7.4 　まとめ

索引

Column 　

スモールデータ＆ビッグデータの活用　スモールデータの技術も重要

ビッグデータの技術と機械学習の技術
データパイプラインの大きな流れは変わらない　ツール選びの2つのヒント

基幹系システムと情報系システムを分離しよう
スモールデータの技術をうまく使っていく
テーブルの縦横変換❶［SQL編］
テーブルの縦横変換❷［pandas編］
スループットとレイテンシ
リソース消費を制限する　列指向ストレージ×MPPによる高速化と注意点

データを取り出さずに集計する　HTAP、並列クエリ

データマートは必要なくなるか？
可視化ツールの選択の指針　どれを使う？

ブレイクダウン分析
Amazon RedshiftとGoogle BigQueryの違い
Mesosによるリソース管理

サマリーテーブルからの数値計算に注意
スナップショットの日付に注意
Fluentdによるメッセージ配送
メッセージブローカと信頼性
［基礎知識］ACID特性とCAP定理
フルスキャンによる全文検索
モバイル機器の時計は狂っている（!?）　壊れたデータは除外する

自家製のワークフロー管理ツール
ワークフローのバージョン管理
タスク内部でのリトライ制御
ストリーム処理による1次集計
ディープラーニングの特徴量
クラウドサービスとしての特徴量ストア
Sparkか、それともSQLか　バッチ処理によるデータ生成を考える

データパイプライン、ワークフロー、オーケストレーション
Pythonによるワークフロー管理の歴史
Google Colabによるサンプルコードの実行
Sparkとpandas
CSVファイルによる簡易的なデータマート
デスクトップ型のBIツールとWeb型のBIツール
実務におけるETLプロセス
クエリエンジン「Trino」はPrestoの後継となるか？
Airflowにおけるタスク定義

Airflowにおけるコンテキスト
Airflowにおけるタスクのテスト実行
Daskによるデータフレームの分散処理
Prefectサーバーとエージェントの関係　1つのサーバーで集中管理する

コンテナ化したワークフローの開発スタイル

本章ではビッグデータの周辺技術が生まれた歴史的背景を振り返ると共に、
その基本となるものの考え方や用語を整理します。
1.1節では、ビッグデータの代表的な技術である「Hadoop」や「NoSQLデータ

ベース」などの役割を取り上げ、従来から用いられてきた「データウェアハウス」を
中心とする技術との違いを説明します。
1.2節では「データパイプライン」のシステム構成を説明します。ビッグデータはま

ず最初に「データレイク」へと格納され、そこから一部のデータを「データマート」とし
て取り出します。
1.3節では、Pythonによる「対話的なデータ処理」について説明します。表形

式のデータを抽象化した「データフレーム」を使って、簡単なテキストデータの加工
と集計を行います。
1.4節では「スプレッドシート」と「BIツール」を使って、長期的なデータの変化を

「モニタリング」する考え方を説明します。

※ URL https://jupyter.org

https://jupyter.org/

1.1
［背景］ビッグデータの定着

「分散システムの発展」と「クラウドサービスの普及」によって、大量のデータを
効率良く処理することが難しくなくなりました。本節では、「ビッグデータ」という
言葉が広がるまでの歴史を簡単に振り返ります。

note
本節ではビッグデータのおもな歴史について説明します。

・2011年まで　➡HadoopやNoSQLデータベースなどの基盤技術の発展

・2012年まで　➡クラウド型データウェアハウスやBIツールの普及

・2013年頃から　➡ストリーム処理やアドホック分析環境の拡充

・2014年頃から　➡分散型クエリエンジンの普及、Hadoopからの脱却

・2016年頃から　➡マーケティングオートメーション、データオーケストレーションなど

分散システムによるデータ処理の高速化　ビッグデータの扱いづらさを乗
り越える二大技術

ここ数年でデータを分析するための環境は大きく変わり、大量のデータを活用
して新たな価値を生み出したり、意思決定のために利用したりするのも珍しいこ
とではなくなりました。クラウドサービスの普及によって技術的な制約は少なくな
り、その気になれば誰にでもデータを分析できる時代になりました。

ビッグデータ（big data ）という言葉をメディアでよく目にするようになったの
は、2011年後半から2012年にかけて、多くの企業がデータ処理に分散システム
を導入し始めた頃からでしょうか。それ以前にもコンピュータによるデータ処理は行

われていましたが、ある頃から「ビッグデータ」という言葉があちこちで使われるよう
になり、データをビジネスに活用しようという動きが活発になりました。

その後もビッグデータという言葉が廃れることはなく、今では一つの技術分野と
して定着したと言っても良いでしょう。その一方で、ビッグデータの技術が大きな苦
労もなく安心して使えるものになったとは今なお言い難く、実際にデータを集めて
何かしようとすると、まだまだ苦労は絶えないのが実情ではないでしょうか。

ビッグデータの扱いが難しいのには二つの理由があります。一つは「データの分
析手法を知らない」こと、そしてもう一つは「データ処理に手間と時間が掛かる」こ
とです。データがあってもそこから価値を引き出せないのでは意味がありませんし、
知識があっても時間を取られたのではできることは限られます。この二つは車の両
輪のようなもので、両者が揃ってはじめて価値ある情報が得られます。

このうち前者の問題については、本書では一切議論しません。何か知りたい情
報がすでにあるとして、それを「いかに効率良く実行するか」を考えるのが本書の
目的です。可能な限り少ない労力で欲しい情報を得られるように、今どのような
技術が使えるのかを順に見ていきます。

ビッグデータ技術への要求　HadoopとNoSQLの台頭
ビッグデータの技術として最初に取り上げられるのが「Hadoop」と「NoSQL」の

二つです（図1.1）。

インターネットの普及によって、世界中からアクセスされるシステムが増えるにつ
れて、伝統的なリレーショナルデータベース（RDB）では扱えないほどの大量のデ
ータが次々と集められるようになりました。そうして蓄えたデータを処理するには、
従来とは異なるしくみが必要でした。HadoopとNoSQLは、それぞれ異なるニー
ズを満たすために生まれています。

Hadoop　多数のコンピュータで大量のデータ処理
Hadoopは「多数のコンピュータで大量のデータ処理を行う」ためのシステムで

す。たとえば、全世界のWebページを集めて検索エンジンを作るには、膨大なデー
タを保存しておけるストレージと、そのデータを次々と処理し続けられるしくみが必
要です。そのためには何百台、何千台という単位でコンピュータが利用され、それ
を管理するのがHadoopというフレームワークです。

Hadoopは元々、Googleで開発された分散処理のフレームワークである
「MapReduce」を参考にして作られています（MapReduceのしくみは第5章を

参照）。初期のHadoopでMapReduceを動かすには、データ処理の内容を記
述するためにJava言語によるプログラミングが必要とされ、誰にでも簡単に使える
ものではありませんでした。

そこで、SQLのようなクエリ言語をHadoop上で実行するためのソフトウェアとし
て「Hive」が開発され、2009年にリリースされました。Hiveの導入によってプログラ
ミングせずにデータを集計できるようになったことで、多くの人がHadoopを用いた
分散システムの恩恵を受けられるようになり、徐々に利用者を拡大することにな
りました（表1.1）。

NoSQLデータベース　頻繁な読み書き＆分散処理に強みあり
一方、NoSQLは伝統的なRDBの制約を取り除くことを目指したデータベース

の総称です。NoSQLデータベースにはさまざまな種類があり、多数のキーと値を関
連付けて保存するキーバリューストア（key-value store / KVS）、JSON
（JavaScript Object Notation 、テキストベースで軽量なデータ交換フォーマッ
ト）のような複雑なデータ構造を保存するドキュメントストア（document
store ）、複数のキーを用いて高いスケーラビリティを実現するワイドカラムストア
（wide-column store ）などが代表的です（表1.2）。

NoSQLデータベース製品は、それぞれ目指すゴールが異なるので単純な比較
はできませんが、RDBよりも高速な読み書きが可能である、分散処理に優れる、
といった特徴を備えています。集めたデータを後から集計するのが目的である
Hadoopとは異なり、NoSQLはアプリケーションからオンラインで接続して利用す
るデータベースです。

HadoopとNoSQLデータベースの組み合わせ　現実的なコストで大規模デー
タ処理を実現

この二つを組み合わせることで「NoSQLデータベースに書き込み、Hadoopで
分散処理する」という流れが2011年の終わりまでに定着し、そして2012年から
一般に広がるようになりました。

世界的なスケールで増え続けるデータに対して、従来の技術では不可能であ
るか、あるいは高価なハードウェアが必要とされたケースでも、「現実的なコストで
データを処理できるようになってきた」というのが当時の技術的な背景です。

分散システムのビジネス利用の開拓　データウェアハウスとの共存

一部の企業では以前から、データ分析の基盤としてエンタープライズデータウェ
アハウス（enterprise data warehouse /EDW、またはデータウェアハウ
ス/DWH）が導入されてきました。全国各地から送られてくる店舗の売上や、顧

客情報などが長期にわたって蓄積され、それを分析することで業務改善や経営
判断に役立てられました。

分散システムの発展により、従来であればデータウェアハウス製品が使われてき
たケースでも、Hadoopが利用されることも増えてきました。多くのデータ分析ツー
ルがHadoopへの対応を表明し、大量のデータを保存、集計するために
HadoopやHiveが利用されるようになります。その結果、Hadoopの導入を技術
的にサポートするビジネスが成り立つようになり、そのときに使われるようになったキ
ーワードが「ビッグデータ」です。

伝統的なデータウェアハウスでも大量のデータを扱うことは可能であり、むしろ多
くの点でHadoopよりも優れています。しかし、欠点もあります。いくつかのデータウ
ェアハウス製品は安定した性能を実現するために、ハードウェアとソフトウェアが一
体化したアプライアンス（appliance ）として提供されます。データ容量を増や
すにはハードウェアを入れ替える必要があるなど、後から拡張するのが容易ではあ
りません。そのため、加速度的に増え続けるデータの処理はHadoopに任せて、
比較的小さなデータ、あるいは重要なデータだけをデータウェアハウスに入れるとい
った使い分けが行われるようになります。

たとえば、夜間バッチなどの深夜の大量のデータ処理でHadoopが使われま
す。夜間バッチでは、毎日の取引データなどを深夜に集計し、翌朝までにレポート
にまとめます。データ量が増えるとバッチ処理に時間が掛かり、レポートの完成が
遅れて業務に支障が出ます。そこで拡張性に優れたHadoopにデータ処理を任
せることで、データウェアハウスの負荷を軽減しようというわけです（図1.2）。

自分でできる！ データ分析の間口の広がり　クラウドサービスとデータデ
ィスカバリで加速したビッグデータ活用

同じ頃から、クラウドサービスの普及によってビッグデータの活用が加速されるこ
とになりました（表1.3）。「多数のコンピュータで分散処理する」のがビッグデータ
の技術の特徴ですが、そのためのハードウェアを揃えて管理するのはそう簡単では
ありません。クラウドの時代になり、時間単位で必要なだけリソースを確保できる
ようになったことで、やり方さえ覚えればいつでも利用を始められる環境が整いま
した。

2012年の終わりにAmazon Redshiftが発表されると、データウェアハウスをク
ラウド上に作るのも珍しくはなくなりました。以前のデータウェアハウスは、大企業
のIT部門が多大な労力を掛けて構築するような限られたものでしたが、今ではよ
り小さなプロジェクト単位でデータウェアハウスを作り、独自にデータ分析の基盤を
整えることも一般的になってきています。

Column

スモールデータ＆ビッグデータの活用　スモールデータの技術も重要

ビッグデータとの対比として、従来の技術でも扱えるような小さなデータをスモールデー

タ（small data ）と呼びます。イメージとしては、1台のラップトップでストレスなく処理

できるのがスモールデータです。レコード数にしてざっと数百万から数千万件、データ量に

して数GB（gigabyte ）までならスモールデータと言って良いでしょう。

ビッグデータもスモールデータも、どちらもただのデータであり、そこに本質的な違いはあ

りません。ビッグデータの時代になると、今までは捨てるしかなかったデータまでもが処理

されるようになった、というだけの話です。データ分析の手法はスモールデータの頃からす

でにあるので、後は「効率」の問題です。

スモールデータの技術は、ビッグデータの技術にも増して重要です。社内で作成され

たExcelファイル、WebからダウンロードしたCSVファイルなど、世の中は大量のスモールデ

ータで溢れています。効率的なスモールデータの扱い方を知らないまま、ビッグデータの技

術だけを学んでも十分ではありません。両者は適材適所で使い分けるのが理想的で

す（図C1.1）。

データディスカバリの基礎知識　セルフサービスのBIツール
時を同じくして、データウェアハウスに蓄えたデータを可視化するための手法とし

てデータディスカバリ（data discovery ）が人気を集めるようになりました。デー
タディスカバリとは「対話的にデータを可視化することで価値ある情報を見つけよ
うとするプロセス」のことを指して、2012年頃から使われるようになった言葉です注

1。
データディスカバリは「セルフサービスのBIツール」とも呼ばれます。BIツール

（business intelligence tool ）とは、古くからデータウェアハウスと組み合わせ
て利用されてきた経営者向けの可視化システムで（図1.3）、大企業のIT部門
によって導入されるような大掛かりなものでした。セルフサービスのBIツールは、それ
を個人でも導入できるくらいに単純化しており、それによってますます多くの人が
自分でデータを見るようになりました。本書で「BIツール」と言うときには、データディ
スカバリのためのセルフサービスのBIツールを意味するものとします。

新しい分散データ処理システムの台頭　Hadoopからの脱却

ビッグデータを代表するシステムとして発展してきたHadoopでしたが、その問題
点も認識されるにようになりました。当時のHiveは日常的なデータ分析に利用す
るにはあまりにも遅く、多くのエンジニアが不満を抱いていました。2013年になる
と、Hiveに代わる技術として「Impala」や「Presto」のようなSQLに特化した分散
型のクエリエンジンが相次いでリリースされました（表1.4）。また、MapReduce
よりも効率の良いデータ処理の実現を目指して「Apache Spark」（第3章で後
述）のような新しい分散データ処理のフレームワークも登場しました。

こうした新しいソフトウェアの登場により、2015年頃をピークとしてビッグデータの
技術はHadoopに依存しない方向へとシフトします。ほとんどの人はデータ分析
のためにSQLが使えれば十分であり、Hadoopのような汎用的なフレームワークを
必要とはしていません。保守管理の難しいHadoopに頼るのではなく、SQLには
SQLに適したクエリエンジンやデータウェアハウスを用いる方が理にかなっています。

本書執筆の時点では、ビッグデータを扱うシステムは図1.4のような構成になる
ことが多くなっています。

データベースの高速化

まず一つのアプローチとして、図1.4❶のように業務用のデータベースを高速化す
る形でビッグデータに対応しようとする流れがあります。この場合、Hadoopやデー
タウェアハウスなどは用いられず、単一のデータベースだけでデータ処理が完結しま
す。

たとえば、2014年に登場した「Amazon Aurora」では、MySQLや
PostgreSQLのストレージ部分を分散することで大量のデータを読み書きできるよ
うになっており、ストレージが64TB（terabyte ）まで自動的に拡張されます。ビ
ッグデータのために特別なシステムを導入しなくても、従来どおりのやり方を変えず
に大量のデータを扱えるようになっています。

2017年になるとHTAP（Hybrid Transaction/Analytical Processing ）と
呼ばれる処理に対応したデータベースも発表されるようになりました。HTAPに対
応したデータベースではアプリケーションからオンライン接続したときのトランザクショ
ン性能と、データウェアハウス並みの大規模な集計機能の両立を目指して開発
が進められています（第2章『2.2　列指向ストレージによる高速化』のコラム「デ
ータを取り出さずに集計する」を参照）。

こうした技術を活用することで、「データウェアハウスは構築しない」のも一つの
選択肢になっています。最新のデータをリアルタイムに知りたいときには、業務デー
タベースを直接参照するのが一番です。データの増加が穏やかなシステムや、デー
タの集計そのものが業務の一部であるアプリケーションなどでは検討する価値が
あるかもしれません。

クラウドサービスによるデータ転送
データベースの高速化にも限界があるので、多くの場合は何らかのデータウェア

ハウスを構築してからデータを分析します。そのときによく使われるのが、図1.4❷
のようなクラウドサービス（SaaS/Software as a Service ）を活用したデータウェ

アハウスの構築です。どこからデータを集めるかに応じて、業務用のRDBから定期
的にデータを取り出す方式や、あるいはWebサイトに埋め込んだJavaScriptから
データを集める方式などが用いられます。

スマートフォンのアプリや、IoTデバイスからデータ収集するような場合（第4章で
後述）であっても、たとえば、Googleのサービスなら「Cloud Firestore」注2、
Amazonのサービスなら「AWS IoT」注3など、各分野に特化したデータ収集のしく
みが提供されています。比較的簡単なセットアップだけでデータを集められるよう
になり、自分で分散システムを構築する必要はなくなりました。

モダンな分散データ処理のフレームワーク
データをそのままではうまく取り込めず、事前に加工が必要となるような場合に

も、Hadoopに代わって図1.4❸のような新しい分散データ処理のフレームワークが
用いられるようになりました。2015年に発表された「Google Cloud Dataflow」
注4では、JavaやPythonを用いた分散データ処理をクラウド上で実行できます。ま
た、「AWS Glue」注5であれば、Apache Sparkによるデータ処理を実行できま
す。そうして加工したデータをデータウェアハウスに投入することでSQLによる集計が
可能となります。

かくして現在のクラウド環境では、Hadoopの存在を意識することはほとんどな
くなり、データウェアハウスの構築と運用に集中できるようになってきています。

ビッグデータを活用した応用分野の広がり　レポーティング、デジタルマー
ケティング、人工知能

今も毎年のように次々と新しいサービスがリリースされているものの、現在使わ
れているビッグデータの技術はおおむね2016年頃には確立され、データ量に左右
されないデータ分析の基盤が完成しました。それに伴い応用分野も広がり続けて
います。

筆者の知る限り、ビッグデータはおもに3つの目的で利用されています。意思決
定者に向けた「レポーティング」、顧客獲得のための「デジタルマーケティング」、そし
て大量のデータを活用する「人工知能」の分野です。

レポーティング　BIツール、モニタリング、ダッシュボード
従来のデータウェアハウスでは、集めたデータはBIツールと組み合わせることでレ

ポーティング（reporting ）のために使われてきました。この場合、レポートを作る
のは企業のIT部門やコンサルタントであり、レポートを見るのは経営者やマネージ
ャーでした。

ビッグデータの技術も、初期の頃はレポーティングに使われることが多く、Web
サービスやモバイルアプリなどの利用動向が分析されていました。外部の専門家
にデータ分析を依頼する必要性はなくなり、サービスやアプリの企画、開発チーム
が自分たちでレポートを作成し、意思決定するようになりました。

レポートの作成にはいくつかのパターンがあります。一つは手作業による方法
で、SQLでクエリを書いてデータを集計し、その結果をスプレッドシートやプレゼン資
料などにまとめます。前述したBIツールが使われるときもあります。複雑なデータ分
析は今でも手作業でレポートを作成するのが一般的です。

日次レポートや月次レポートのような定期的なレポート作成はモニタリング
（monitoring ）とも呼ばれます。モニタリングの代表的な方法はダッシュボー
ド（dashboard ）を作成することで、毎日確認したい指標を1つの画面に集め
ます（第2章で後述）。ダッシュボードだけでは把握しきれない詳細な情報は、

表形式のレポートにまとめるときもあります。ダッシュボードや表形式のレポート作
成にはBIツールが使われます。

デジタルマーケティング　マーケティングオートメーション
インターネットを使ったデジタルマーケティングが普及したことで、オンライン広告

やWebプロモーションなどの成果がデータとして収集されるようになりました。そうし
て集めたデータを分析し、より効果的な販促活動を行うことが現在のマーケティン
グ担当者には求められます。

2016年頃から、顧客の一人ひとりに対して個別対応をするマーケティングオー
トメーション（marketing automation ）が広まりました。たとえば、Webサイト
でメールアドレスを登録したら、数日ごとにサービスの案内が送られてきた経験のあ
る人も多いでしょう。マーケティングオートメーションツールを活用すると、顧客の新
規登録や商品購入などを起点として、あらかじめ設定したルールに従ってアクショ
ンを起こす（たとえば、メールを送る）ことを自動化できます。

マーケティングオートメーションを実現するには、顧客の一人ひとりについての詳
しいデータが必要です。デジタルマーケティングの世界では、自社で集めた顧客デ
ータはCDP（Customer Data Platform ）と呼ばれるデータストアに統合されま
す。顧客データをデータウェアハウスに集めた後、毎日加工、集計することで「顧
客IDをキーとしてすべての属性データを結合」します。そうして作り上げた属性デー
タで顧客を分類し、顧客ごとのマーケティング活動へと役立てます。

マーケティングオートメーションは自社開発するよりも、既存のクラウドサービスを
活用することが多いかもしれません。しかし、自社の顧客データは自社のデータベ
ースに入っているので、うまくデータ連携しなければ使うことができません。そのため
業務システムやデータウェアハウスから日々の取引データを取り出して、顧客中心
のデータ処理を行うような自動化されたシステムが構築されます。

人工知能　特徴量エンジニアリング、MLOps
人工知能の分野では、機械学習のためにビッグデータが用いられます。機械

学習ではしばしば特徴量（feature ）という形式でデータを表現します。たとえ
ば、顧客ごとに過去の訪問回数、問い合わせ回数、購入金額など、何百もの
数値データを用意して、それを分析することで顧客の傾向を学習します。このよう
なデータ処理を特徴量エンジニアリング（feature engineering ）と呼びます。

どのような特徴量を作成すれば良い結果が得られるかは事前にはわからない
ため、満足いく結果が出るまで何度も特徴量の作成と機械学習を繰り返しま
す。特徴量というものは同じデータからいくらでも作り出せます。商品の購入履歴
があれば、「これまでの購入回数の合計」や「最後に購入してからの経過日数」
など、考えられる特徴量は無数にあります。

2017年には機械学習のために「特徴量に特化したデータストアを構築する」と
いう考え方が広まり、ビッグデータの技術を活用した特徴量ストア（feature
store ）が作られるようになりました（第6章で後述）。2018年になると
MLOps（Machine Learning Operations ）という言葉も誕生し、機械学習
の開発から運用までのプロセスを自動化する取り組みが続けられています。

Column

ビッグデータの技術と機械学習の技術

機械学習で利用される技術は、ビッグデータの技術とはまったくの別物です。どちら

も大量のデータ処理をするので一部で共通する部分はあるものの、本書で取り上げる

ような大規模な分散データ処理は、機械学習ではあまり使われません。

ビッグデータの技術　多種多様なデータを扱う

ビッグデータというのは単にデータ量が多いだけでなく、多種多様なデータを扱うとこ

ろに特徴があります。データの書式や転送方法もばらばらで、それらを1ヵ所に集めるこ

とでデータを分析しやすくします。

ビッグデータの技術ではおもにテキストデータが扱われます。Webサイトのアクセスログ

や、データベースから抽出した取引データ、あるいはCSVファイルやJSONファイルなどに

は、どれも大量のテキストが含まれます。そのようなデータを標準的なフォーマットに加工

し、データ量を減らすために圧縮し、そうして長期にわたって蓄えたデータを集計するのが

「ビッグデータの技術」です。

機械学習の技術　プロセッサの性能を限界まで引き出す

一方、機械学習とはおもに数値計算をするものです。各種の統計解析や、画像や

音声の解析、あるいはディープラーニングのような行列演算を繰り返すことでデータを分

析します。機械学習ではプロセッサによる計算時間が支配的であり、計算速度を上

げるために工夫が必要です。

GPUを使った並列計算などはその代表的なものであり、すべてのデータを数値化し

て小さなメモリに詰め込んでから一気にまとめて計算します。つまり、メモリ上に載せら

れた大量の数値データに対して、プロセッサの性能を限界まで引き出すことで実行時

間を短縮しようとするのが「機械学習の技術」です。

技術の組み合わせ　適材適所で技術を使い分ける

分析の元となるデータは最初から数値化されているわけではなく、大量のテキストデ

ータ等を集計することで得られます。したがって「ビッグデータの技術で加工、集計したデ

ータを機械学習の技術で分析する」といった風に組み合わせて利用されます。

本書のテーマはビッグデータで、機械学習の技術については詳しくは取り上げていま

せんが、機械学習の分野でも便利なツールが次々と開発されているので、データを扱う

機会の多いエンジニアはそちらも学んでおきましょう。

データオーケストレーション
複雑化するデータ処理を滞りなく実行するために、管理ツールの開発も続いて

います。日々のレポーティング、マーケティング活動、そして機械学習の改善のため
には、毎日データウェアハウスで大量のクエリを実行し、その結果を次のシステムへ
と送り出す必要があります。データ処理に必要な計算リソースを確保し、各工程
を自動化することをデータオーケストレーション（data orchestration ）と呼びま
す。音楽のオーケストラに優秀な指揮者が必要なのと同様に、データオーケストレ
ーションのためにも全体の流れを指揮する優れたツールが必要です。

2015年以降、データオーケストレーションに使われる「ワークフロー管理」（後
述）のためのソフトウェアがいくつも開発されるようになりました。機械学習であれ
ば、集めたデータから将来を予測するモデルを作成し、そのモデルが妥当であるか
を評価し、そして完成したモデルを本番環境へとデプロイします。そのような一連
の作業を自動化するためにワークフローが記述されます。

2017年頃からはDockerを用いた「ワークフローのコンテナ化」も進められるよう
になりました（第7章で後述）。データ収集やクエリの実行、そして機械学習と
いった一連のタスクは、それぞれが独立したコンテナとして実装され、それらが
次々と実行されることでデータ処理が前に進むようになりました。

便利なソフトウェアやクラウドサービスが次々と開発される一方で、APIなどを駆
使してそれらのサービスを結び付けるしくみがますます重要になっています。ビッグデ
ータをどう集計するかが問題であった時代はすでに終わり、日々の業務をいかに
効率化して生産性を高められるかというチャレンジが現在も続いています。

以上のように、ビッグデータの技術というのは一つではなく、目的に応じて多数
の技術を組み合わせることで実現されています。以前と比べると技術上の制約
は少なくなり、知識さえあれば誰にでも扱えるものになったとはいえ、あまりにも多
くの選択肢があるために何が自分にとって必要なツールなのかわからない人も多
いかもしれません。

本書ではなるべく基礎となるビッグデータの技術を取り上げることで、どの技術
が何のために存在するのかを体系的に理解できるように解説を進めます。
HadoopやNoSQLを含めた基盤システムの概要についても説明し、その強みや
問題点についても取り上げるようにしています。各技術の役割を知ることで、自
分にとって必要なものが何かを理解し、欲しい情報をいつでも取り出せるようにし
ていきましょう。

注1　2021年現在では、データディスカバリとは言わずに単に「BIツール」とだけ呼ぶことが多

いです。

（本文に戻る）

注2　 URL https://firebase.google.com/products/firestore/

（本文に戻る）

注3　 URL https://aws.amazon.com/iot/

https://firebase.google.com/products/firestore/
https://aws.amazon.com/iot/

（本文に戻る）

注4　 URL https://cloud.google.com/dataflow/

（本文に戻る）

注5　 URL https://aws.amazon.com/glue/

（本文に戻る）

https://cloud.google.com/dataflow/
https://aws.amazon.com/glue/

1.2
ビッグデータ時代のデータ分析基盤

ビッグデータの技術が従来のデータウェアハウスと異なるのは、多数の分散シ
ステムを組み合わせて拡張性の高いデータ処理のしくみを作るところです。ここで
は両者の違いについて説明します。

［再入門］ビッグデータの技術　分散システムを活用してデータを加工
していくしくみ

本書で取り上げる「ビッグデータの技術」とは、分散システムを活用しながらデー
タを次々と加工していく一連のしくみです。これは実際には図1.5のように、複数
のサブシステムを組み合わせることで実現されます。

データパイプライン　データ収集からワークフロー管理まで
一般に、次々と受け渡されていくデータによって構成されるシステムのことをデー

タパイプライン（data pipeline ）と呼びます。

ビッグデータのデータパイプラインは、どこからデータを集めて何を実現したいのか
によって変化します。最初の頃は単純な構成でも済みますが、やりたいことが増
えるにつれてシステムは徐々に複雑化し、それをどのように組み合わせるかが問
題となってきます。

データ収集　バルク型とストリーミング型のデータ転送
データパイプラインは、データを集めるところから始まります。データはさまざまな場

所で生成され、それぞれが異なる形をしています。データベースに書き込まれた取
引データ、ファイルサーバーに蓄積されたログファイル、スマートフォンなどのモバイル
アプリから集めるイベントデータや、あるいは組み込み機器から送られてくるセンサ
ーデータなど、それぞれが異なる技術でデータを転送します。
データ転送（data transfer ）の方法には、大きく分けて

・バルク型（bulk ）

・ストリーミング型（streaming ）

の2種類があります（図1.5❶❷）。バルク型とは、すでにどこかにあるデータをま
とめて取り出す方法であり、データベースやファイルサーバーなどから定期的にデータ
を集めるのに使います。一方、ストリーミング型とは、次々と生成されるデータを絶
え間なく送り続ける方法であり、モバイルアプリや組み込み機器などから広くデー
タを集めるのに用いられます。

ストリーム処理とバッチ処理
従来であれば、データウェアハウスで扱うようなデータにはおもにバルク型の方法

が用いられてきました。しかし、モバイルアプリなどの増加によって、ビッグデータの
世界ではむしろストリーミング型の方法が主流となってきています。そうすると受け

取ったデータをリアルタイムに処理したくなります。これをストリーム処理（stream
processing ）と呼びます。

たとえば、過去30分間に届いたデータを集計してグラフを作るには、時系列デ
ータベース（time-series database ）のようなリアルタイム処理に向いたデータ
ベースがよく利用されます（図1.5❸）。ストリーム処理の結果を時系列データベ
ースに格納することで、今何が起きているのかをただちに知ることができるようにな
ります。

その一方で、ストリーム処理は長期的なデータ分析には向かない、という問題
があります。たとえば、過去1年分のデータを分析しようとすると、データ量は一気
に何千倍、何万倍にも増加します。リアルタイムのデータ処理と、長期的なデータ
分析とを一つのシステムで実現するのは、不可能ではないにしても、そう簡単なこ
とではありません。

長期的なデータ分析のためには、より大量のデータを保存して処理するのに適
した分散システムが導入されます（図1.5❹❺）。そこで必要なのはストリーム処
理ではなく、ある程度まとまったデータを効率良く加工するためのバッチ処理
（batch processing ）のしくみです。

分散ストレージ　オブジェクトストレージ、NoSQLデータベース
集めたデータは分散ストレージ（distributed storage ）に格納されます

（図1.5❷❹）。ここで言う分散ストレージとは、多数のコンピュータとディスクから
成るストレージシステムの総称です。データの格納方法にはいくつかの選択肢があ
ります。代表的なのはオブジェクトストレージ（object storage ）で、ひとまとま
りのデータに名前を付けてファイルとして保存します。クラウドサービスである
Amazon S3などが有名です。

NoSQLデータベースを分散ストレージとして用いることもあります。アプリケーショ
ンから多数のデータを読み書きするには、NoSQLデータベースが性能的に優れて
います。ただし、データ容量を後からいくらでも増やせるようなスケーラビリティの高
い製品を選ぶ必要があります。

分散データ処理　クエリエンジン、ETLプロセス
分散ストレージに蓄えたデータを処理するには、分散データ処理（distributed

data processing ）のフレームワークが必要です（図1.5❻❼）。MapReduce
が使われてきたのはこの部分であり、データの量や処理の内容に応じて多くのコン
ピュータリソースが必要とされます。分散データ処理のおもな役割は、後から分析
しやすいようにデータを加工し、その結果を外部のデータベース等へと書き出すこと
です。

多くの人は、データの集計にSQLを使うことに慣れています。ビッグデータをSQL
で集計するには二つの方法があります。

一つは、分散ストレージ上のデータをSQLで集計するためのクエリエンジン
（query engine ）を導入することです。Hiveはその一つの例ですが、今では
Hiveよりも高速な対話型クエリエンジン（interactive query engine ）も開
発されるようになってきています。

もう一つは、外部のデータウェアハウス製品を利用することです。そのためには
分散ストレージから取り出したデータを、データウェアハウスに適した形式に変換し
ます。この一連の手順をETL（extract-transform-load ）プロセスと呼びま
す。つまり、データを「取り出し」（extract ）、それを「加工」（transform ）
し、そしてデータウェアハウスに「読み込み」（load ）ます（図1.6）。

ワークフロー管理
データパイプライン全体の動作を管理するために、ワークフロー管理

（workflow management ）と呼ばれる技術が用いられます。毎日決まった
時間にバッチ処理をスケジュール実行したり、エラーが発生した場合に管理者に
通知したりするといった目的で利用されます。

データパイプラインが複雑化するにつれて、それを1ヵ所からコントロールしなけれ
ば、全体の動きを把握するのが困難になってきます。ビッグデータの処理には大な
り小なりシステムの障害がつきものなので、エラー発生時に処理をやり直すための
しくみ作りが欠かせません。

以上のように、ビッグデータのデータパイプラインを実現するには多くの技術とソ
フトウェアが利用されます。そのすべてが必要というわけではありませんが、より良
いデータ分析環境を構築するには、それぞれの特徴を理解しておくことが必要で
す。

note
個々の技術については、以下の章で詳しく取り上げます。

・第3章　➡分散データ処理のフレームワーク、クエリエンジン

・第4章　➡バルク型、ストリーミング型のデータ収集、分散ストレージ

・第5章　➡ワークフロー管理、バッチ処理、ストリーム処理

データウェアハウスとデータマート　データパイプラインの基本形

まずは「データパイプラインの基本形」として、従来どおりのデータウェアハウスを
構築するプロセスから見ていきます（図1.7）。

データウェアハウスは、Webサーバーや業務システムで利用される一般的なRDB
とは異なり「大量のデータを長期保存する」ことに最適化されています。まとまった
データを一度に転送することには優れている一方で、少量のデータを頻繁に読み
書きするのには向いていません。典型的な使い方としては、業務システムから取
り出したデータを1日の終わりにまとめて書き込んで、それを夜間のうちに集計して
レポートを作成したりします。

業務システムのためのRDBや、ログなどを格納したファイルサーバーは、データウェ
アハウスから見るとデータソース（data source ）と呼ばれます。そこに保存され
たローデータ（raw data 、生データ）を取り出して、必要に応じて加工し、そして
データウェアハウスに格納するまでの流れがETLプロセスです。データウェアハウスの
構築ではETLツールと呼ばれる専用のソフトウェアがよく利用されます。

データウェアハウスは業務にとって重要なデータ処理に用いられるので、あまり好
き勝手に利用してシステムの負荷を上げるのは困りものです。そのためデータ分析
のような目的には、データウェアハウスから必要なデータだけを取り出してデータマー

ト（data mart ）を構築する場合があります。データマートはBIツールと組み合わ
せる形で、データを可視化するためにも利用されます。

データウェアハウスもデータマートも、SQLでデータの集計を行います。そのため最
初にテーブルの設計をきちんと定めてからデータを投入します。特にBIツールでデー
タを見る場合には、あらかじめ可視化に適した形でテーブルを用意しなければなり
ません。そのため、データウェアハウスを中心とするパイプラインでは、事前のテーブ
ル設計やETLプロセスが比較的重要です。

データレイク　あらゆるデータをそのまま貯蔵

ビッグデータの時代になると、ETLプロセス自体が複雑化します。すべてのデータ
がデータウェアハウスを想定して作られているわけではありません。他社から受け取
ったテキストファイルやバイナリデータなど、そのままではデータウェアハウスに取り込
めないものもあります。まず先にデータがあり、後からテーブルを設計するのがビッグ
データです。

あらゆるデータをそのままの形で蓄えておいて、それを後から必要に応じて加工
するしくみが必要です。ビッグデータの世界では、あちこちから流れ込んでくる「デー
タを蓄えた湖」になぞらえて、データの貯蔵場所をデータレイク（data lake ）と
呼びます（図1.8）。

※ 参考「Big Data Requires a Big, New Architecture」 URL

https://www.forbes.com/sites/ciocentral/2011/07/21/big-data-requires-a-big-

new-architecture/

具体的には、任意のデータを保存できる分散ストレージが「データレイク」として
利用されます。データの書式は自由ですが、多くの場合はCSVやJSONなどの汎
用的なテキスト形式が用いられます。

データレイクによってデータウェアハウスを置き換えると、図1.9のようなデータパイ
プラインを構築することになります。先の図1.7と比較すると、未加工のローデータ
をそのままストレージに保存するという点が異なります。

https://www.forbes.com/sites/ciocentral/2011/07/21/big-data-requires-a-big-new-architecture/

データレイクとデータマート　必要なデータはデータマートにまとめる
データレイクは単なるストレージであり、それだけでデータを加工できるわけではあ

りません。そこで利用されるのがMapReduceなどの分散データ処理の技術です。
データ分析に必要なデータを加工、集計してデータマートとして取り出すことで、そ
こから先はデータウェアハウスの場合と同じようにデータ分析を進められます。

データ分析基盤を段階的に発展させる　チームと役割分担、スモールス
タートと拡張

前述のとおり、データ分析に必要となる技術は多岐にわたるため、それはしば
しばチームによる仕事となります。とりわけシステムの構築と運用、自動化などを
担当するデータエンジニア（data engineer ）と、データから価値ある情報を引
き出すデータアナリスト（data analyst ）とでは、求められる知識も利用するツ
ールも異なります（図1.10）。

しかし、現実には常にチームで役割分担できるとは限りません。これからデータ
分析を始めようというときには、最初は一人か二人でスタートするのがほとんどで
しょう。本業の片手間にデータを見ている人も多いかと思います。そのような状況
で最初から完璧なものを作るのは難しいので、なるべく小さなシステムからスタート
して、後から段階的に拡張していくことになります。

アドホック分析とダッシュボードツール
本書では最終的にデータパイプラインの自動化について説明しますが、最初は

自動化のことなどは考えずに、手作業でデータを集計できれば十分です。これを
「その場限りのデータ分析」という意味でアドホック分析（ad hoc analysis ）と
呼びます。SQLのクエリを手で書いて実行することや、スプレッドシート（表計算ソ
フトウェア）でグラフを作ることまで含めて、あらゆる手作業がアドホック分析には
含まれます。

アドホック分析ではデータマートのようなものは作らずに、データレイクやデータウェ
アハウスに直接接続することが多くなります（図1.11❶）。ここでは人にとって作

業しやすい環境が好まれます。クエリを実行してすぐに結果を確認できるような対
話型の分析ツールが利用されます。

手作業でデータ分析するだけではなく、定期的にグラフやレポートを作りたいと
きもあるでしょう。そのような場合に導入されることが多いのが、ダッシュボードツー
ル（dashboard tool ）です（第2章で後述）。いくつかのダッシュボードツール
はデータマートがなくても動作するように設計されており、設定したスケジュールでデ
ータレイクやデータウェアハウスに接続してクエリを発行し、その結果からグラフを生
成します。

Column

データパイプラインの大きな流れは変わらない　ツール選びの2つのヒント

ビッグデータを扱うには多数の選択肢があり、ツール選びにはどうしても迷ってしまいま

す。とはいえ、どれを選んでも実際にやることはそう大きく変わるわけではありません。達

成したいゴールが同じなら、後は手順の問題に過ぎません。基本的には、次の2点さえ

押さえておけば大きな問題になることはないでしょう。

・保存できるデータ容量に制約がないこと

・データを効率良く取り出す手段があること

新しいツールやサービスが次々と開発されていますが、データパイプライン全体の基本

的な流れは変わりません。本書であれば、データを集めて蓄積し、それを集約してデー

タマート化し、そして可視化ツールから接続するのが大きな流れです。重要なのはこのよ

うなデータの流れを作ることであり、その過程で使われる技術は交換可能です（図

C1.2）。

技術は時代と共に変わります。データ分析の環境は発展し続けるものなので、まず

はできるところから始めて、徐々に不足を補っていけば良いでしょう。最終的には、全体

の流れを統括するワークフロー管理が重要になってきます。これについては第5章で詳し

く取り上げます。

データマートとワークフロー管理
複雑なデータ分析では、最初にデータマートを構築してから分析したり可視化

したりするようになります（図1.11❷）。とりわけ可視化にBIツールを使う場合
は、集計速度を上げるためにデータマートがほぼ欠かせません。データマートの構
築はバッチ処理として自動化されることが多いため、その実行管理のためにワーク
フロー管理ツールを利用します。
ワークフロー管理を導入する段階になると、データ分析というよりもエンジニアリ

ングの作業が多くなるため、人手が足りないうちは必要ありません。しかし、データ
処理を自動化して長期的に運用していくためには、安定したワークフロー管理は
欠かせないものとなります。

データを集める目的　「検索」「加工」「可視化」の3つの例

データを集めてから何を行うかは、達成したい目的が何なのかによって変わりま
す。

ここでは例として図1.12のような3つのパターンを考えます。

データの検索
まずは「データの検索」（図1.12❶）として、大量のデータの中から条件に合う

ものを見つけたい場合があります。たとえば、何かシステム障害が発生したときに
その原因を特定するとか、顧客から問い合わせがあった場合にログを確認するよ
うなケースです。いつ何が必要かもわからないので、システムログや顧客の行動履
歴など取れるデータはすべて取っておくようにします。

データの検索にあまり時間が掛かるのでは意味がなく、必要なときに素早く取
り出せるようでなくてはなりません。そのためシステムにはリアルタイムなデータ処理
や、あるいは検索エンジンを使ってキーワードを見つけるような機能が求められま
す。

データの加工
次に「データの加工」（図1.12❷）として、業務システムの一部としてデータ処

理の結果を利用したい場合があります。Webサイトでお勧め商品を提案すると

か、センサーデータの異常を検知して通知するといったケースです。この場合は目
的がはっきりしているので、必要なデータを計画的に集めてデータパイプラインを設
計します。

データの加工には自動化が欠かせません。そのためワークフロー管理を導入し、
入念にテストを繰り返してシステムを構築します。SQLではなくプログラミング言語
を用いる場合もあります。これはデータ分析というよりはシステム開発の世界とな
ります。

データの可視化
そして「データの可視化」（図1.12❸）として、データを視覚的に見ることによっ

て知りたい情報を得る場合があります。統計解析ソフトウェアやBIツールなどでグ
ラフを作り、そこから洞察を得たり意思決定に役立てたりするようなケースです。

データの可視化は試行錯誤の連続であり、確かな答えはありません。アドホッ
ク分析の環境を整えて、何度もデータの集計を繰り返します。可視化を高速化
するにはデータマートも必要です。集計結果をダッシュボードにまとめて、継続的に
変化をモニタリングしたいときもあります。

このうちどれを優先するかによってシステム構成は変わります。本書ではおもに
「データの可視化」を題材として、アドホックなデータ分析環境の整備や、データマ
ートを構築するパイプラインの自動化に取り組みます。可視化だけがデータを活用
する手段ではありませんが、可視化のために必要な基礎知識の多くは他の用途
のためにも応用できるでしょう。

Column

基幹系システムと情報系システムを分離しよう

コンピュータシステムはしばしば基幹系システム（mission-critical system ）と情

報系システム（information system ）とに区別されます。

前者はビジネスの根幹に関わる重要なシステムで、これが停止すると業務が止まる

ため、入念にテストを繰り返して慎重に運用されます。一方、後者は社内コミュニケー

ションや意思決定などのために利用されるシステムで、こちらは停止したとしてもその影

響範囲は限られるため、基幹系システムほど厳しい運用ポリシーにはなりません。

データを扱うシステムでは、それが基幹系システムなのか情報系システムなのかを区

別し、両者を混在しないようにします。社内でしか必要とされない機能を基幹系システ

ムに組み込むと、その運用ポリシーに縛られて後から更新するのが難しくなります。デー

タを効率良く分析するには、それを情報系システムとして分離しなければなりません。

「データ」というのは基幹系システムと情報系システムとを繋ぐものです。基幹系シス

テムは、その実行過程をログファイルやデータベースなどに記録します。情報系システム

は、そのデータをコピーするところから始まります。データをコピーすることなしに、情報系シ

ステムが基幹系システムに接続してはなりません。基幹系システムに想定外の負荷が

掛かると、業務に悪影響を及ぼす可能性があります。

基幹系システムの一部としてビッグデータを組み込むのでもない限り、データ分析シス

テムは原則として「情報系システム」として扱います。そのため、あらゆるデータは最初に

コピーすることから始まります。同じデータを何度も取り出せるとは限らないので、一度コ

ピーしたデータは消さないように注意します。その上で、分析に必要なデータだけを加工

して利用します。

確証的データ解析と探索的データ解析

一般にデータ分析とは、仮説を立ててそれを検証する確証的データ解析
（confirmatory data analysis ）と、データを見ながらその意味を読み取ろうと
する探索的データ解析（exploratory data analysis ）とに分けられます。

前者がおもに統計学的なモデル作成によるデータ分析であるのに対して、後
者はデータを可視化することによって人の力でその意味を読み取ろうとします。人
の感覚とは優れたもので、過去の推移をグラフにするだけでも、今何が起きてい
て今後どうなるのかをある程度は予測できたりするものです。

本書ではこの探索的データ解析のプロセスをざっくりと「データの探索」と呼ん
で、対話的にデータを集計し、可視化するための環境を作ります。具体的には、
スクリプト言語を使ったデータ処理や、BIツールを使ったダッシュボードの作成など
です。

一方、本書では確証的データ解析については意図的に説明していません。統
計解析や機械学習などは、残念ながら本書で扱える範囲を超えています。本
書のゴールはデータパイプラインを自動化するところまでであり、そこから先のデータ
分析はまた次の課題です。

第2章からは、ビッグデータを探索するプロセスについて説明します。しかし、その
前にまず準備段階として、以下では「スモールデータの探索」について説明します。
つまり、分散システムをまったく使わない、1台のコンピュータによるデータの探索で
す。

スモールデータの技術は、本来ならそれだけでも1冊の本で学ぶべき内容です
が、本章ではその基本となる考え方だけを簡単に取り上げます。実際にスモール
データを扱うかどうかは別として、「何ができるのか」を知っておくことがまずは重要

です。もし自分の解決したい問題がスモールデータの技術で十分なら、それを覚え
る方が遙かに時間を節約できるでしょう。

1.3
［速習］スクリプト言語によるアドホック分析とデータ
フレーム

「データ」はさまざまな場所に存在しており、それを集める過程でスクリプト言
語がよく用いられます。本節では、Pythonによるデータ処理の考え方について
説明します。

データ処理とスクリプト言語　人気のPythonと、データフレーム

データを分析するには、まずはデータを集めなければなりません。とりわけアドホ
ックなデータ分析では、はじめて見るデータを扱うことも珍しくありません。ファイル
サーバーからダウンロードする場合もあれば、インターネット経由のAPIで取得するも
のもあります。そのままではBIツールには読み込めず前処理（preprocessing ）
が必要なデータもあります。

このとき、よく用いられるのがスクリプト言語です。データ分析の分野でよく使わ
れるスクリプト言語はいくつかありますが、中でも人気があるのは「R」（R言語）
と「Python」の二つです。Rは元々統計解析のために開発された言語で、データ
分析の専門家の間で人気があります。一方、データエンジニアの間ではPython
の人気が高く、その背景には次のような理由があります。

・統計解析に特化したRと比べると、Pythonは汎用のスクリプト言語として発展してきた

歴史があり、幅広い分野のライブラリが入手できる。特に外部システムのAPIを呼び出

したり、複雑な文字列処理が必要となったりするようなデータの前処理に向いている

・Pythonは科学技術計算の分野で長年使われてきた実績があり、NumPyやSciPyと

いった数値計算のライブラリや、機械学習のフレームワークが充実している。データ処理

の分野では、Rにおける「データフレーム」（後述）のモデルをPythonで実装したライブ

ラリpandasがよく使われる

とりわけ「データフレーム」のプログラミングモデルは効果的で、データ処理のスクリ
プト化を考える上で欠かせない存在となっています。これはデータエンジニアとして
は最初に覚えておきたいツールなので、その基本的な考え方を簡単に説明しま
す。以下ではいくつかのサンプルコードを挙げますが、まずは何ができるのかだけ把
握できれば十分です。

note
Python環境の構築については、以下の章で詳しく取り上げます。

・第7章　➡ノートブックとアドホック分析

データフレーム、基礎の基礎　「配列の配列」から作成

データフレーム（data frame ）は、表形式のデータを抽象化したオブジェクト
です。スプレッドシートにおける1つのシート、あるいはデータベースにおける1つのテー
ブルを、まるごと1つのオブジェクトにしたものと思えば良いでしょう。

表形式のデータは縦と横の2次元の配列から成るので、「配列の配列」を用意
すればデータフレームを作成できます。

 配列の配列からデータフレームを作る

 In [1]: import pandas as pd

 : pd.DataFrame([['2021-01-01', 'x', 1], ['2021-01-02', 'y', 2]])

 Out[1]:

 0 1 2

 0 2021-01-01 x 1

 1 2021-01-02 y 2

データフレームを使うと、スクリプト言語の中でデータの加工や集計ができるよう
になります。そのままでは分析しづらいJSONデータやテキストデータなどでも、一度
データフレームに変換してしまえば、後は表計算と変わりありません。

Webサーバーのアクセスログの例　pandasのデータフレームで簡単処理

ここでは例として、リスト1.1のようなWebサーバーのアクセスログを考えましょう。
このようなデータをデータウェアハウスやBIツールにそのまま読み込むことはできませ
ん。

リスト1.1　Webサイトのアクセスログ※

 x.x.x.x - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo..." 200 6245

 x.x.x.x - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countd..." 200 3985

 ...

※サンプルデータ「NASA-HTTP - The Internet Traffic Archive」

URL ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

そこでPythonの正規表現を用いてパースします。次のようにファイルの各行を
分解してカラム名を付けます。

 In [2]: import re

 : import pandas as pd

ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

 :

 : ログの各行にマッチする正規表現

 : pattern = re.compile('^\S+ \S+ \S+ \[(.*)\] "(.*)" (\S+) (\S+)$')

 :

 : 正規表現でパースする関数（一致しない行は読み捨てる）

 : def parse(path):

 : for line in open(path, 'rb'):

 : for m in pattern.finditer(line.decode(errors='ignore')):

 : yield m.groups()

 :

 : ログファイルを読み込んでデータフレームに変換

 : columns = ['time', 'request', 'status', 'bytes']

 : pd.DataFrame(parse('NASA_access_log_Jul95'), columns=columns)

 Out[2]:

 time request status bytes

 0 01/Jul/1995:00:00:01 -0400 GET /history/apollo... 200 6245

 1 01/Jul/1995:00:00:06 -0400 GET /shuttle/countd... 200 3985

 ...

 [1891714 rows x 4 columns]

これで約189万レコードから成るデータフレームが完成しました。pandasのデータ
フレームはメモリ上に展開されるため、数百万行くらいのスモールデータなら極めて
高速にデータ処理が可能です。

少しデータを加工しましょう。Out[2]の出力を見ると、"time"カラムの値が扱い
にくい書式なので、標準的な時間のフォーマットに変換します。これには

to_datetime()関数が使えます。

 データフレームを変数に格納

 In [3]: df = pd.DataFrame(parse('NASA_access_log_Jul95'),

columns=columns)

 "time"カラムを上書き（タイムゾーン切り捨て）

 In [4]: df.time = pd.to_datetime(df.time, format='%d/%b/%Y:%X',

exact=False)

 結果を確認

 In [5]: df.head(2)

 Out[5]:

 time request status bytes

 0 1995-07-01 00:00:01 GET /history/apollo... 200 6245

 1 1995-07-01 00:00:06 GET /shuttle/countd... 200 3985

期待する結果が得られたので、CSVファイルに保存します。これでBIツールに読
み込めば可視化するのも簡単です。

 CSVファイルとして保存

 In [6]: df.to_csv('access_log.csv', index=False)

 結果を確認

 In [7]: !head -3 access_log.csv

 time,request,status,bytes

 1995-07-01 00:00:01,GET /history/apollo/ HTTP/1.0,200,6245

 1995-07-01 00:00:06,GET /shuttle/countdown/ HTTP/1.0,200,3985

データの前処理で使えるpandasの関数
表1.5に、データの加工に便利なpandasの関数をいくつかまとめます。このよう

な一連のデータ処理は、データ分析の前処理としてよく実行されます。とりわけ時
間の書式を合わせるといった標準化を最初に済ませることで、後々のデータ分析
が楽になります。

時系列データを対話的に集計する　データフレームをそのまま用いてデー
タ集計

データフレームを用いて、そのままデータを集計することもできます。pandasには
時系列データ（time-series data ）を扱うための豊富な機能があり、時間をイ
ンデックス指定することで時系列データ分析を行えます。先ほどのCSVファイルを
読み込んで、1日ごとのアクセス数を数えてみましょう。

 CSVファイルの読み込み（時間をパース）

 In [1]: import pandas as pd

 : df1 = pd.read_csv('access_log.csv', parse_dates=['time'])

 時間をインデックス指定

 In [2]: df2 = df1.set_index('time')

 インデックスによる時間の絞り込み

 In [3]: df3 = df2['1995-07-01' : '1995-07-03']

 1日ごとのアクセス数をカウント

 In [4]: df3.resample('1d').size()

 Out[4]:

 time

 1995-07-01 64714

 1995-07-02 60265

 1995-07-03 89584

 Freq: D, dtype: int64

データフレームの分析では、上記のように新しい変数に次々と値を代入しなが
らデータを加工します。そうすると前の状態に戻って処理をやり直したり、複数の
値を比較したりするのも簡単だからです。

アドホック分析では、試行錯誤しながら何度もデータ処理を繰り返すものなの
で、このように変数をうまく使って少しずつデータ分析を進めます。

Column

スモールデータの技術をうまく使っていく

pandasは分散システムではないので、それ自体ではスモールデータは扱えてもビッグ

データには対応できません。あまり大量のデータを読み込もうとするとメモリ不足でエラー

になるか、そうでなくとも長時間待たされることになるでしょう。

pandasはビッグデータの技術と使い分ける形で利用されます。ビッグデータを集計す

るには、分散ストレージから大量のデータを読み込むことが必要です。そのためネットワー

ク通信が発生し、どうしても一定の待ち時間があります。アドホックなデータ分析の効

率を高めるには、ある程度データ量を削減できたところで、そこから先はスモールデータと

して処理するのも一つの方法です。

pandasを使えば、複数のデータソースからデータを読み込んで結合したり、SQLとス

クリプト言語を使い分けたりして処理を進めるのも難しくありません。スモールデータには

スモールデータの技術を使う方が効率的であり、無理にビッグデータの技術を使う必要

はありません。

SQLの結果をデータフレームとして活用する
データフレームの欠点は、慣れるまではどうしても学習に時間を取られることで

す。SQLに慣れた人であれば、データの集計にはSQLを使いたいと思うかもしれま
せん。

データフレームはクエリを実行した結果からでも作れます。それによって複雑なデ
ータの集計にはSQLを使いながら、データフレームによる対話的なデータ処理の恩
恵を受けられます。

先ほどと同じ集計をSQLで実行してみましょう。ここではSQLiteを利用して、図
1.13のようにテーブルを作成しておきます。SQLの実行結果を読み込むには、次の

ようにread_sql()関数を利用します。先ほどのOut[4]の結果と一致していること
がわかります。

 データベースに接続

 In [1]: import pandas as pd

 : import sqlalchemy

 : engine = sqlalchemy.create_engine('sqlite:///sample.db')

 クエリを実行してデータフレームに変換

 In [2]: query = '''

 : SELECT substr(time, 1, 10) time, count(*) count

 : FROM access_log

 : WHERE time BETWEEN '1995-07-01' AND '1995-07-04'

 : GROUP BY 1 ORDER BY 1

 : '''

 : pd.read_sql(query, engine)

 Out[2]:

 time count

 0 1995-07-01 64714

 1 1995-07-02 60265

 2 1995-07-03 89584

図1.13　　SQLiteによるテーブル作成

 $ sqlite3 sample.db # データベースに接続

 SQLite version 3.16.0 2016-11-04 19:09:39

 Enter ".help" for usage hints.

 テーブルを作成

 sqlite> CREATE TABLE access_log (

 ...> time timestamp,

 ...> request text,

 ...> status bigint,

 ...> bytes bigint

 ...>);

 区切り文字を指定

 sqlite> .separator ,

 CSVファイルからロード

 sqlite> .import access_log.csv access_log

実行結果を確認するところではデータフレームを使う
以上のように、データフレームは表形式のあらゆるデータを手軽に扱えることか

ら、アドホックなデータ分析からスクリプトによるデータ処理に至るまで、幅広く利
用されています。

ビッグデータのアドホック分析も、基本となる考え方はpandasでSQLを実行す
るのと変わりありません。データを集計するところではデータウェアハウスやデータレイ
クを利用しつつ、その実行結果をデータフレームに変換してしまえば、後はスモール
データと同じように対話的なデータの確認や加工ができるようになります。

1.4
BIツールとモニタリング

「データの探索」において重要なのは、まず全体像を捉えた上で徐々に細部
へと深めていくことです。本節では、全体を知るためのレポート作成と、細部を知
るためのBIツールの使い方を説明します。

スプレッドシートによるモニタリング　プロジェクトの現状を把握する

データを見たいときに見るのがアドホック分析であるとすれば、より計画的にデー
タの変化を追い掛けるのがモニタリング（monitoring ）です。たとえば1ヵ月ご
と、あるいは1週間ごとといった定期的なスケジュールで同じ集計を繰り返し、その
推移を定点観測することで何が起きているのかが見えてきます。

データというのは現状を把握するための一つのツールとして使えます。もしそこに
異常を示すサインがあれば、何か行動を起こす必要があるかもしれません。つま
り、自分の次の行動を決めるための材料としてデータを見るという考え方です。

ここでは例として、あるプロジェクトの収支をモニタリングすることを考えます。店
舗でいくつかの商品を販売しており、その結果どれだけの利益が出ているか知り
たいと思ったとしましょう。過去3ヵ月間の収入と支出、そして利益をまとめたとこ
ろ、図1.14のようになったとします。

これを見ると、収入は順調に伸びているにもかかわらず、利益はほとんど増えて
おらず、利益率が徐々に減少していることに気が付きます。なぜ利益が増えない
のかを知るために、支出の内訳を調べると図1.15のようになったとします。おもに
商品の仕入れが増加しているようなので、利益のないまま売上を伸ばしているの
だとわかります。

データの集計結果から読み取れるこうした数字に対して、どんな行動を起こす
べきかは自明ではありません。数字の持つ意味を正しく理解するには、「その背
景で何が起きているのか」という数字には出ない予備知識が必要です。たとえ
ば、利益率の低下は商品の値引きによる結果であり、予定されたものかもしれま
せん。

データの変化をモニタリングし、もし予想と異なる動きがあれば、そのときには行
動を起こさなければなりません。これには人の判断が必要です。まずは全体の数
字から現状を把握し、そこで得られた洞察に従って詳細を調べることで、データに
対する理解が深まります。それを何度も繰り返すことで、今何が起きているのか
が見えるようになってきます。

データに基づく意思決定　KPIモニタリング

プロジェクトの現状を把握するための数字として、業界ごとに重要な指標とさ
れるKPI（key performance indicator ）がよく用いられます。図1.16は、いく
つかの業界で用いられるKPIの例です。ビッグデータを集計することで、このような
KPIを定期的にモニタリングしている人も多いでしょう。

KPIのモニタリングで意識したいのは、それが行動可能（actionable ）である
かということです。つまり、その結果次第で自分の次の行動が決まるかどうかで

す。行動可能な数字を作るには、それが良いのか悪いのかという判断基準が必
要です。簡単なのは目標を定めることです。良くも悪くも目標と比べて結果が異
なるなら、行動を起こさなければなりません。

自分の行動を決めるときに直感に頼るのではなく、客観的なデータに基づいて
判断することを「データドリブン（data-driven ）な意思決定」と言います。以
下では、意思決定の材料としてデータを用いる一つの方法を紹介します。

月次レポート　スプレッドシートによるレポート作成とその限界
目標と実績をモニタリングするために、月に1回の「月次レポート」を作りましょ

う。ここには自分にとって重要な指標をまとめます。Webサイトのアクセス数でも、
エラーの発生率でも何でもかまいません。仮に収支を把握したいのであれば、図
1.17のようなレポートが考えられます。こうして見ると原価率が目標を上回っている
ことが一目瞭然です。

今も昔も、このようなレポート作成に用いられるのはスプレッドシートです。原始
的ではありますが、手入力で数字を打ち込めるくらいの方が柔軟性があります。
下手にこれをシステム化すると、後から手を加えるのが難しくなります。

スプレッドシートでは難しいことが二つあります。一つは、レポートに入力する数
字をどこかで計算しなければなりません。そのために用いられるのがデータウェアハ
ウスであり、そこで実行されるバッチ処理です。これはワークフローとして自動化でき
ます（第5章で後述）。もう一つは、詳細な内訳を調べられるようにすることで
す。今の例であれば、商品別の売上や原価をすぐに確認できるようでなければ、
変化の原因に辿り着けません。そのために利用されるのが「BIツール」です。

変化を捉えて詳細を理解する　BIツールの活用

BIツールがどのようなものかを知るには、実際に使ってみるのが一番です。もしも
使ったことがなければ、無償で使えるものがいくつもあるので試してみると良いでし
ょう（表1.6）。

ここでは例として「Googleデータポータル」注6を使います。Googleデータポータ
ルはおもに社内レポートやダッシュボードの作成などに使われるサービスですが、個
人でもGoogleアカウントさえあれば無償で利用できます。
図1.18は、先ほどpandasで作ったCSVファイル注7をGoogleデータポータルで開

いたところです。グラフの種類を選んで表示項目を選択すると、集計結果がグラ

フとして表示されます。ここではログの時間（"time"）とバイト数（"bytes"）を
選択しているので、毎日のデータ転送量の推移が集計されています。

BIツールはExcelなどと比べると大量のデータ集計に適しており、数百万レコード
程度のスモールデータならわずかな時間で結果を表示してくれます。作成したグラ
フをダッシュボードにまとめて共有するのも簡単です。

BIツールに読み込ませる情報を増やすことで、可視化できる範囲が広がりま
す。たとえば、どのページのアクセスが増えていたのか知りたいとしましょう。図1.19
は、毎日のデータ転送量をリクエスト（"request"）ごとに再集計して色分けし
たところです。これによってアクセスの急増したページが一目でわかります。

モニタリングの基本戦略とBIツール　定期的なレポートによる変化の把握と再集
計

データの動きをモニタリングするための基本的な戦略は、まずは定期的なレポー
トによって重要な変化を捉えることです。そして、その原因を知りたくなったときに
は、元となるデータに戻って再集計を繰り返しながら詳細を見ていきます。

BIツールはそのためのソフトウェアであり、データを詳しく探索したいときに力を発
揮します。とりわけ「セルフサービスのBIツール」であれば、適切なデータさえ用意で
きれば、それを可視化するのは難しいことではありません。

問題は、常に理想的なデータがあるとは限らないことです。思いどおりの集計
結果を得るには「可視化しやすいデータ」を作らなければなりません。

Tip　BIツールは、自分でデータを見るために。
自分の知りたい情報は、最終的には自分で調べる以外にありません。データの可視

化というのは恣意的なものなので、他人が作ったレポートからわかるのは断片的な情

報に過ぎません。BIツールは「自分でデータを見る」ためのソフトウェアであり、集計の切

り口をさまざまに切り替えながら知りたい情報を探り出します。

手作業と自動化すべきこととの境界を見極める
一つ具体的な例として、先に図1.14で取り上げた「月次収支レポート」をBIツ

ールで作ることを考えましょう。「収入」や「支出」を一つの表にして見たいので、そ
れらの数字をまとめたデータさえあれば、図1.20のような画面を作成できます。支
出の内訳まで表示できているので、細部を見るという目的も達成しています。

BIツールでこのような画面を作るには、元となるデータは図1.21のような形式に
なっている必要があります。しかし、最初からこう都合良く整理されたデータがある
ことなど、まずありません。きちんと設計されたデータがない限りは、自分の思うよう
な画面は作れないというのがBIツールの限界です。

手作業で済むことは手作業で済ませる
大企業であれば、その道の専門家がデータウェアハウスのテーブルを設計し、さ

らにレポートの作成に必要なデータをバッチ処理で集計し、その上でBIツールの画
面を作ります。しかし、専門家でもない人間が同じことをするのは大変です。

自分が知りたい情報を知るだけなら、見た目のことは一切考えずに、すでにあ
るデータをそのまま使って画面を作るので十分です。たとえば、もし「収入」と「支
出」が別々のデータベースに書き込まれているなら、それぞれ別の画面を作って確
認すれば良いことです。

「月次レポート」のように一覧性の高いものが必要なときは、各画面から数字
を拾ってきて、スプレッドシートに手作業で転記すれば済みます。BIツールのために
新しくテーブルの設計から始めるよりも、月に一回の手作業の方がおそらく簡単
でしょう。

自動化したいときにはデータマートを作る
頻繁に更新するデータや、多人数で共有されるデータなど、重要性の高いもの

は順に自動化していきます。可視化の元となるデータを、SQLやスクリプトを使っ
て生成し、それをBIツールから読み込みます。具体的には、次のような方法が考
えられます。

❶BIツールから直接データソースに接続する

・利点　➡システム構成が単純になる

・欠点　➡BIツール側で対応していないデータソースには接続できない

❷データマートを用意して、それをBIツールから開く

・利点　➡どのようなテーブルでも自由に作成できる

・欠点　➡データマートの設置や運用に手間が掛かる

❸Web型のBIツールを導入し、CSVファイルをアップロードする

・利点　➡スクリプトで自由にデータを加工できる

・欠点　➡データの作成やアップロードにプログラミングが必要

本書ではこのうち、最も汎用性が高い❷の方法、つまりデータマートを経由す
る可視化の方法を中心に説明していきます。データマートを作るのには手間が掛
かりますが、一度わかってしまえば、結局はそれが一番覚えることが少なくて済み
ます。

注6　 URL https://datastudio.google.com

（本文に戻る）

注7　GoogleデータポータルにアップロードできるCSVファイルは100MB（megabyte）が上

限となるため、行数を半分程度に減らしています。

（本文に戻る）

https://datastudio.google.com/

1.5
まとめ

本章では、ビッグデータの歴史とその周辺技術を駆け足で紹介しました。
2011年までに、HadoopやNoSQLデータベースのような分散システムの技術が
確立し、既存のデータウェアハウスを補完、ないし置き換えるものとして広がり始
めました。これが「ビッグデータ」の名前でビジネスとなり、現在へと至ります。
クラウドサービスやBIツールの普及もあって、ここ数年でビッグデータの技術はず

いぶん身近なものになりました。それは実際には「多数の技術の集合体」であ
り、データ収集からクエリエンジン、ワークフロー管理に至るまでさまざまな選択肢
が提供されています。利用者はその中から自分に必要な技術を選択しなけれ
ばならず、その一つ一つを少しずつでも説明することが本書の主たる目的となり
ます。

ビッグデータでは多様なデータが扱われるため、それを蓄えるストレージを「デー
タが流れ込む湖」に喩えて「データレイク」と呼びます。蓄えられたデータは分散シ
ステムで加工、集計され、データマートへと書き出されます。そこにBIツールなどか
らアクセスし、欲しいときに欲しい情報へと辿り着けるようにします。
Pythonなどのスクリプト言語を用いると、データフレームを用いて表形式のデ

ータを処理できます。これは特にローデータ（生データ）を扱う機会の多いデータ
エンジニアにとって有用です。SQLで集計した結果をスクリプトで処理したいとき
にも役立ちます。ビッグデータの分析も、最終的にはこれと同じことをいかに大規
模に実行するかという問題です。

究極的には、ビッグデータもスモールデータも同じように分析できるのが理想で
す。しかし現実には、ビッグデータを扱うのはまだまだスモールデータほど簡単では

ありません。本章ではまず予備知識として、スモールデータの技術を簡単に取り
上げました。次章からはこれをビッグデータへと展開していきます。

本章ではデータを可視化する環境を整えることで、大量のデータを効率良く
探索できるように準備します。
2.1節では「クロス集計」の考え方を説明します。最初にスプレッドシートの「ピ

ボットテーブル」の機能を取り上げ、それと同じことをBIツール、SQL、そして
Pythonから実行する方法を説明します。2.2節では「列指向ストレージ」の考え
方を説明します。大量のデータを「圧縮」して「分散」し、それを多数のCPUコア
で集計する「MPPデータベース」のしくみも説明します。2.3節では、いくつかの
「可視化ツール」の特徴を取り上げます。対話的なデータ分析に用いる「ノートブ
ック」や、定期的にグラフを更新してくれる「ダッシュボードツール」、そして対話的
なダッシュボードのための「BIツール」について説明します。2.4節では、データマー
トの設計について説明します。BIツールでは「OLAP」と呼ばれるデータ分析の考
え方が取り入れられており、それに適した「非正規化テーブル」を作ることでデー
タを可視化しやすくなります。

2.1
基本のクロス集計

データの可視化において、まず基本となるのが「クロス集計」です。ここではスプ
レッドシートを用いたクロス集計の概念を理解し、BIツールやSQLで同じことをで
きるようにしていきます。

トランザクションテーブル、クロステーブル、ピボットテーブル　クロス集
計の考え方

図2.1❶は、ある商品の売上をまとめたレポートです。行方向（縦）には商品
名が並び、列方向（横）には売上月が並びます。行と列が交差（cross ）す
るところに数値データが入ることから、これをクロステーブル（cross table ）と呼
びます。Excelなどのスプレッドシートでこうしたレポートを手作りしている人も多いで
しょう。

クロステーブルは人にとって見やすいレポートですが、データベースでは扱いにくい
データ形式です。データベースに新しい行を追加するのは簡単ですが、列を増やす
のは大変です。そのためレポートの元となるデータは図2.1❷のように行方向にの
み増加するようにして、列方向にはデータを増やさないようにします。これをトラン
ザクションテーブル（transaction table ）と呼びます。

トランザクションテーブルからクロステーブルへと変換する処理をクロス集計
（cross tabulation ）と呼びます。少量のデータをクロス集計するのに便利な
のが、スプレッドシートのピボットテーブル（pivot table ）の機能です。もしも使っ
たことがなければ今すぐに覚えましょう。Excelを使うのが一般的ですが、Google
スプレッドシートでも使えます。ここでは例としてGoogle スプレッドシートを利用しま
す。

ピボットテーブル機能によるクロス集計
サンプルデータとして図2.2❶の販売データを使います。データを多角的に集計

できるように「店舗ID」や「商品ID」「顧客ID」を追加しています。クロス集計した
いデータを範囲選択して、メニューの［データ］から［ピボット テーブル］を選択し
て新しいシートを作成します。このときピボットテーブルの［行］として「店舗ID」と
「商品ID」、［列］として「売上日」、［値］として「金額」をセットすると、図
2.2❷のようなクロステーブルが表示されます。

ピボットテーブルでは行と列がクロスした部分の「値」が自動的に集計されま
す。何も指定しなければ数値の合計（SUM）が計算されますが、他にも平均
値（AVERAGE）や「総計に対する割合」などが計算できます。ピボットテーブル
の［行］や［列］にセットする項目を変えることで、自分の興味ある項目につ
いての集計結果をすぐに得られるのがピボットテーブルの魅力です。

ピボットテーブルをグラフとして可視化したものをピボットグラフ（pivot
graph ）といいます。Googleスプレッドシートでは、ピボットテーブルを選択してグ
ラフを挿入することで作成できます。BIツールなどのグラフも内部的には同じことを
しており、クロス集計はデータを可視化する上での基礎となります。

ルックアップテーブル　テーブルを結合して属性を増やす

トランザクションテーブルに新しい項目を追加するのではなく、別のテーブルと結
合したい場合もあります。たとえば、「商品ID」を使って「商品名」や「商品カテゴ

リ」を参照するような形です。
このとき用いられるのがルックアップテーブル（lookup table ）です。たとえば

図2.3のように商品情報を1つのテーブルにまとめておけば、後から属性を追加した
り変更したりするのも簡単になります。

トランザクションテーブルとルックアップテーブルとは互いに独立して管理できま
す。トランザクションテーブルは業務データベースなどから取り出してくるのに対して、
ルックアップテーブルはデータ分析の都合で作り替えてもかまいません。たとえば、
商品カテゴリなどは自由に変えられる方が分析しやすくなります。

BIツールによるクロス集計
BIツールを使うことでもルックアップテーブルを結合できます。図2.4❶は、先程

のスプレッドシートをGoogleデータポータルのエクスプローラで結合しているところで
す。一つめのデータソースとして「販売履歴」シートを選択し、別のデータソースとして

「商品」シートを結合します。これでデータベース上でテーブルを結合するのと同様
に、2つのシートが結合されます。

この状態でグラフの種類として［ピボット テーブル］を選択すると、結合した属
性（ここでは「商品名」）を用いてクロス集計を行えます（図2.4❷）。一度こ
うしてグラフやテーブルを作ってしまえば、後からルックアップテーブルを更新して集
計をやり直すのも簡単です。たとえば、商品のカテゴリを変更して再集計したいと
思ったときには、スプレッドシートを修正してリロードするだけで済みます。

pandasによるクロス集計
スクリプトでクロス集計を実行したければ、pandasを利用するのが簡単です。

ここでは例として、先ほどの図2.3のスプレッドシートをExcel形式でダウンロードした
ファイル（販売データ.xlsx）があるとします。2つのテーブルを結合するには
merge()を実行します。

 In [1]: import pandas as pd

 トランザクションテーブルを読み込む

 In [2]: df1 = pd.read_excel('販売データ.xlsx', '販売履歴')

 ルックアップテーブルを読み込む

 In [3]: df2 = pd.read_excel('販売データ.xlsx', '商品')

 テーブルを結合する

 In [4]: df3 = pd.merge(df1, df2, on='商品ID')

 In [5]: df3

 Out[5]:

 売上日 店舗ID 商品ID 顧客ID 金額 商品名 商品カテゴリ

 0 2021-01-01 11 101 1001 57500 商品A 食料品

 1 2021-02-01 12 101 1003 57500 商品A 食料品

 2 2021-03-01 12 101 1003 60000 商品A 食料品

 3 2021-01-01 11 102 1002 2400 商品B 電化製品

 4 2021-02-01 11 102 1002 5800 商品B 電化製品

 5 2021-03-01 11 102 1002 12400 商品B 電化製品

期待どおりにカラムが追加されたので、これをpivot_table()でクロス集計しま
す。

 In [6]: df3.pivot_table('金額', ['店舗ID', '商品名'], '売上日',

 : aggfunc='sum')

 Out[6]:

 売上日 2021-01-01 2021-02-01 2021-03-01

 店舗ID 商品名

 11 商品A 57500.0 NaN NaN

 商品B 2400.0 5800.0 12400.0

 12 商品A NaN 57500.0 60000.0

pandasではデータフレームさえ作成できれば、どのようなデータであっても結合で
きます。read_csv()でCSVファイルを読み込んだり、read_clipboard()でクリップ
ボードからコピーしたりすることもできます。あるいはスクリプトで動的にカラムを作る
ことも可能です。次のコードは独自に定義したPython関数で商品カテゴリを生
成しています。

 商品カテゴリを関数でセット

 In [7]: def category(row):

 : return {101: '食料品'}.get(row['商品ID'], 'その他')

 : df1['商品カテゴリ'] = df1.apply(category, axis=1)

 In [8]: df1.head(2)

 Out[8]:

 売上日 店舗ID 商品ID 顧客ID 金額 商品カテゴリ

 0 2021-01-01 11 101 1001 57500 食料品

 1 2021-01-01 11 102 1002 2400 その他

SQLによるテーブルの集約　大量データのクロス集計の事前準備

ピボットテーブルによるクロス集計は手軽ですが、あまり大量のデータを扱うこと
はできません。BIツールやpandasなら数百万レコードは集計できますが、それ以
上になると遅過ぎて使いものにならなくなります。大量のデータをクロス集計する
には、SQLを使ってデータの集約（aggregation ）、つまりsum()などの集約関
数（aggregate functions ）を用いたデータ量の削減を考える必要がありま
す。

たとえば、業務データベースに販売履歴が保存されているとします。そのすべて
を取り出してクロス集計するのではなく、最初にSQLで集計を行います。仮に月
次の販売履歴を知りたいのであれば、図2.5のようにして月ごとにデータを集約し
ます。元となるデータがどれほど多くても、こうして集約してしまえばデータ量は大幅
に少なくなります。

図2.5　　SQLによるデータの集約

 date_trunc('month', ...)で月初日に切り上げて金額を合計する

 postgres=# SELECT date_trunc('month', "売上日")::DATE AS "売上日",

 postgres-# "店舗ID",

 postgres-# "商品ID",

 postgres-# "顧客ID",

 postgres-# sum("金額") AS "金額"

 postgres-# FROM "販売履歴"

 postgres-# GROUP BY 1, 2, 3, 4

 postgres-# ;

 売上日 | 店舗ID | 商品ID | 顧客ID | 金額

 ------------+--------+--------+--------+-------

 2021-03-01 | 12 | 101 | 1003 | 60000

 2021-01-01 | 11 | 101 | 1001 | 57500

 2021-01-01 | 11 | 102 | 1002 | 2400

 2021-02-01 | 11 | 102 | 1002 | 5800

 2021-02-01 | 12 | 101 | 1003 | 57500

 2021-03-01 | 11 | 102 | 1002 | 12400

 (6 rows)

SQLの実行結果を見ると、クロステーブルではなくトランザクションテーブルの形
になっていることがわかります。したがって、これをさらにクロス集計することで任意
のクロステーブルが得られます。

データを集約するのに優れたSQLと、クロス集計に優れた可視化ツールとを組
み合わせることで、理屈の上ではどれほどデータ量があったとしてもクロス集計は
可能です。そのため本書では図2.6のように、データをまず「SQLで集約」し、そして
「可視化ツールでクロス集計」するという二段階のステップで考えます。ここで前者
をデータ集約のプロセス、後者を可視化のプロセスと呼ぶことにしましょう。

Column

テーブルの縦横変換❶［SQL編］

ExcelやBIツールなどに頼ることなく、どうしてもSQLでクロス集計したいときもありま

す。たとえば、クロステーブルを中間テーブルに書き出したいとか、あるいはSQLの実行結

果をメールに貼り付けて送りたい、といった場合です。これは少し手間がかかりますが、

できないことではありません。

図C2.1❶のように多数の行から成るテーブルを縦持ち（vertical ）、図C2.1❷のよ

うに多数のカラムから成るテーブルを横持ち（horizontal ）と言います。縦持ちが「ト

ランザクションテーブル」、横持ちが「クロステーブル」であると考えるなら、この2つのテーブ

ルは「クロス集計」によって変換可能であるとわかります。

ピボット
一般に、縦持ちと横持ちの相互変換をテーブルの縦横変換、あるいはピボット

（pivot ）と呼びます。詳しい説明は省きますが、標準のSQLでピボットするには、次

のようなクエリを実行する必要があります。

 postgres=# SELECT uid,

 postgres-# sum(CASE WHEN key = 'c1' THEN value END) AS c1,

 postgres-# sum(CASE WHEN key = 'c2' THEN value END) AS c2,

 postgres-# sum(CASE WHEN key = 'c3' THEN value END) AS c3

 postgres-# FROM vtable

 postgres-# GROUP BY uid

 postgres-# ;

 uid | c1 | c2 | c3

 -----+----+----+----

 101 | 11 | 12 | 13

 102 | 21 | 22 | 23

 (2 rows)

カラムの数だけ記述を繰り返すことになるので、どうしても冗長な感じになってしまい

ます。中にはピボットのために特別な構文を備えているデータベースもありますが、基本

的にSQLはピボットには向いていないので、特別な理由がない限りは外部のアプリケー

ションを使う方が簡単です。

アンピボット
上記のクエリは縦持ちを横持ちに変換することはできますが、その逆は実行できませ

ん。横持ちから縦持ちへと変換する操作はアンピボット（unpivot ）と呼ばれます。

次のクエリは、SQLでアンピボットを実行したところです。これもやはりカラムの数だけ記

述を繰り返すことになるので、なるべく避けたい書き方です。

 postgres=# SELECT uid, 'c1' AS key, c1 AS value FROM htable

 postgres-# UNION ALL

 postgres-# SELECT uid, 'c2' AS key, c2 AS value FROM htable

 postgres-# UNION ALL

 postgres-# SELECT uid, 'c3' AS key, c3 AS value FROM htable

 postgres-# ;

 uid | key | value

 -----+-----+-------

 101 | c1 | 11

 102 | c1 | 21

 101 | c2 | 12

 102 | c2 | 22

 101 | c3 | 13

 102 | c3 | 23

 (6 rows)

次のようにunnest()を用いる方法もあります。この場合もカラム名を列挙する必要

はありますが、UNION ALLを何度も繰り返す必要はなくなるのですっきりします。

unnest()を使った書き方は、カラムの中に最初から配列としてデータが格納されている

場合などにも用いられます。

 postgres=# SELECT t1.uid, t2.key, t2.value FROM htable t1

 postgres-# CROSS JOIN unnest(

 postgres-# array['c1', 'c2', 'c3'],

 postgres-# array[c1, c2, c3]

 postgres-#) t2 (key, value)

 postgres-# ;

 uid | key | value

 -----+-----+-------

 101 | c1 | 11

 101 | c2 | 12

 101 | c3 | 13

 102 | c1 | 21

 102 | c2 | 22

 102 | c3 | 23

 (6 rows)

Column

テーブルの縦横変換❷［pandas編］

pandasを利用できるようであれば、そちらでピボット/アンピボットする方が簡単で

す。SQLでデータを集約すると、次のように縦持ちのテーブルが返されるので、これを「デ

ータフレーム」として操作します。

 SQLで集約した結果は縦持ちのテーブルとなる

 In [1]: query = '''

 : SELECT uid, key, sum(value) value FROM vtable GROUP BY 1, 2

 : '''

 : vtable = pd.read_sql(query, engine)

 : vtable

 Out[1]:

 uid key value

 1 101 c1 11

 2 101 c2 12

 3 101 c3 13

 4 102 c1 21

 5 102 c2 22

 6 102 c3 23

ピボット
ピボットにはpivot()を利用します。カラム名などは自動生成され、SQLと比べるとか

なりシンプルになります。ただし、カラムの値があまりにも多いと、巨大なクロステーブルを

作ろうとして大量のメモリとCPUを消費し、最終的にはプロセスが停止することもあるの

で注意が必要です。

 pivotで横持ちのテーブルに変換

 In [2]: vtable.pivot('uid', 'key', 'value')

 Out[2]:

 key c1 c2 c3

 uid

 101 11 12 13

 102 21 22 23

 pivot_tableで複雑なクロス集計も可能

 In [3]: vtable.pivot_table('value', ['uid'], ['key'], aggfunc='sum')

 Out[3]:

 key c1 c2 c3

 uid

 101 11 12 13

 102 21 22 23

アンピボット
アンピボットにはmelt()を利用します。

 In [1]: htable

 Out[1]:

 uid c1 c2 c3

 0 101 11 12 13

 1 102 21 22 23

 In [2]: htable.melt('uid', var_name='key', value_name='value')

 Out[2]:

 uid key value

 0 101 c1 11

 1 102 c1 21

 2 101 c2 12

 3 102 c2 22

 4 101 c3 13

 5 102 c3 23

データ集約➡「データマート」➡可視化　システム構成はデータマートの大
きさで決まる

データ集約と可視化の間に入るのが「データマート」です。一般に、データマート
が小さくなるほど可視化するのは簡単ですが、同時に元データに含まれていた情
報が失われてしまい、可視化のプロセスでできることが少なくなります。ピボットテ
ーブルやBIツールで対話的にデータを探索したい場合には、それだと都合が良くあ
りません。

データ集約のプロセスではなるべく多くの情報を残したいところですが、そうする
とデータマートが巨大化し、結局はうまく可視化できなくなる恐れがあります。これ
はトレードオフの関係にあり、必要に応じてどの程度の情報を残すか決めなけれ
ばなりません。

最終的には「データマートの大きさ」によってシステム構成が決まります。データ量
を数百万件程度にまで削減できるなら、すべてのデータを可視化ツールに取り込
めるので、特別なシステムは必要ありません。しかし、そこまで小さくすることができ

ないのであれば、後述するように遅延の小さいデータベースを用いてデータマートを
作ることが必要です。

2.2
列指向ストレージによる高速化

メモリに載り切らないほどの大量のデータを短時間で集計するには、あらかじ
めデータを集計に適した形に変換しておくことが必要です。本節では集計効率
の高いデータベースのしくみを見ていきます。

データベースの遅延を小さくする
データ量が増えるにつれて、集計に掛かる時間は長くなります。数秒で終わっ

ているうちは気にならなかったデータの集計が、何分も待たされるようになると作
業効率はそれ以上に悪化します。待ち時間が増えると作業の手が止まったり、
複数の作業を並行するようになって思考が中断されてしまったりして、あらゆる作
業が遅くなります。

秒単位でデータを集計するには、最初からそれを想定したシステムを用意しな
ければなりません。データを集める段階ではそこまでのことを考えたりはしないの
で、しばしば図2.7のように三階層のシステムを作ります。

元となるデータは、容量的な制約が少なくて大量のデータを処理できるデータレ
イクやデータウェアハウスに格納します。そこから欲しいデータを抽出してデータマート

を構築し、ここでは常に秒単位の応答が得られるようにします。

データ処理の遅延　遅延の小さいデータマート作成のための基礎知識
データ処理の応答が早いことを「遅延が小さい」、あるいは「レイテンシ

（latency ）が小さい」と言います。データマートを作るときにはなるべく遅延の小
さいデータベースを必要としますが、それには大きく分けて二つの選択肢がありま
す。

簡単なのは、すべてのデータをメモリに載せることです。最近であれば数GBから
数十GBのメモリを用意するのも難しくありません。それに収まるくらいのデータ量で
あれば遅延もそう大きくはなりません。

仮に1レコードの大きさが500バイトだとすると、1千万レコードで5GBになりま
す。その程度のデータ量なら、MySQLやPostgreSQLなどの一般的なRDBがデー
タマートに適しています。RDBは元々遅延が小さく、さらに多数のクライアントが同
時接続しても性能が悪化しにくいため、大勢のユーザーが利用する本番環境の
データマートとして特に優れています。

一方、RDBはメモリが不足すると急速に性能が悪化します。数億レコードを超
えるようなデータの集計では、常にディスクI/Oが発生することを想定して、それを
いかに効率化するかが鍵となります。

「圧縮」と「分散」によって遅延を小さくする　MPPの技術
高速化のために用いられる手法が「圧縮」と「分散」です。データを可能な限り

小さく圧縮し、それを複数のディスクへと分散することで、データの読み込みに伴う
遅延を小さくします。

分散されたデータを読み込むには、マルチコアを活用しつつディスクI/Oを並列
化するのが効果的です。そのようなアーキテクチャをMPP（massive parallel
processing /大規模並列処理）と呼び、大量のデータを分析するためのデータ

ベースで広く採用されています。たとえば、Amazon RedshiftやGoogle
BigQueryなどがその例です。

MPPはデータの集計に最適化されており、データウェアハウスやデータ分析用の
データベースで特によく利用されます。少し前までは、MPPデータベースは専門のコ
ンサルタントに依頼して導入するような大掛かりなものでしたが、クラウドサービス
の普及などもあり、今では導入するのも簡単になり広く利用されるようになってき
ました。

以下では、MPPの技術をデータマートにも活用することを想定して、その基本
的なしくみを簡単に説明します。

列指向データベースのアプローチ　カラムを圧縮してディスクI/Oを減らす

データの圧縮を考える上で覚えておきたいのが列指向（column-
oriented ）の概念です。ビッグデータとして扱われるようなデータの多くはディスク
に置かれているので、クエリに必要な最小限のデータだけを読み込むことで遅延
が小さくなります。

そのために用いられる方法が「カラム単位でのデータ圧縮」です。一般に、業務
システムなどで用いられるデータベースはレコード単位の読み書きに最適化されて
おり行指向データベース（row-oriented database ）と呼ばれます。たとえば、
Oracle DatabaseやMySQLなどの一般的なRDBはどれも行指向データベースで
す。

これに対して、データ分析に用いられるデータベースはカラム単位の集計に最適
化されており、列指向データベース（column-oriented database ）、またはカ
ラムナーデータベース（columnar database ）と呼ばれます。たとえば、
TeradataやAmazon Redshiftなどが列指向データベースの例です。

行指向データベース　各行がディスク上で一連のデータとして書き込まれる
行指向データベースでは、テーブルの各行を一つの塊としてディスクに保存しま

す（図2.8）。そうすると新しいレコードを追加するときにファイルの末尾にデータを
書き込むだけなので、高速な追記が行えます。日々発生する大量のトランザクシ
ョンを遅延なく処理するために、データの追記を効率的に行えるようにしているの
が行指向データベースの特徴です。

行指向データベースでは、データの検索を高速化するために「インデックス」
（index ）を作成します。もしインデックスがないとしたら、保存されているすべて
のデータを読み込まなければ目的のレコードを見つけることができず、大量のディス
クI/Oが発生して性能が低下します。したがって、適切なインデックスが使われる
ようチューニングすることが重要とされます。

一方、データ分析ではどのカラムが使われるかは事前にはわからないので、イン
デックスを作成したとしてもほとんど役に立ちません。必然的に、大量のデータ分
析は常にディスクI/Oを伴います。そのため、インデックスに頼らない高速化の手
法が必要です。

Column

スループットとレイテンシ

データ処理の性能はよく二つの数字によって示されます。

一つは「一定時間に処理できるデータの総量」（＝スループット/throughput ）

で、これはおもにバッチ処理などの大規模なデータ処理で重視されます。もう一つは「デ

ータ処理が終わるまでの待ち時間」（＝レイテンシ）で、これはおもにアドホックなデー

タ分析などで重視されます。

スループットとレイテンシは両立するとは限りません。一部のシステムは非常に高いス

ループットを実現しますが、レイテンシも大きくアドホック分析には向きません。逆にレイ

テンシを小さくすることに特化したシステムでは、スループットを高めることには力を入れて

いないものもあります（図C2.2）。

データウェアハウスやデータレイクは大量のデータを扱うために、どちらかと言うとスルー

プットを重視した設計となっています。一方、データマートに求められるのはレイテンシの

短縮です。そのためには十分なメモリを用意するか、あるいはディスクI/Oの削減が欠か

せません。

列指向データベース　カラムごとにデータをまとめておく
データの分析では、しばしば一部のカラムだけが集計の対象になります。たとえ

ば、ある店舗の総売上を知りたいときに顧客情報は必要ありません。行指向デ
ータベースではレコード単位でデータが保存されているために、必要のないカラムま
でディスクから読み込まれます。

一方、列指向データベースではデータをあらかじめカラム単位にまとめておくこと
により、必要なカラムだけを読み込むことでディスクI/Oを減らします（図2.9）。

列指向データベースは、データの圧縮効率でも優れています。同じカラムには、
しばしば同じようなデータが並びます。とりわけ同じような文字列の繰り返しは非
常に小さく圧縮できます。データの種類にもよりますが、列指向データベースは無
圧縮の行指向データベースと比べると1/10以下に圧縮できることもあります。

MPPのアーキテクチャ　並列化によってマルチコアを活用する

クエリの遅延を減らすもう一つの工夫が、MPPのアーキテクチャによるデータ処
理の並列化です（図2.10）。

行指向データベースでは通常、1つのクエリは1つのスレッドで実行されます。多
数のクエリを同時実行することで複数のCPUコアを活用できますが、それでも
個々のクエリが分散処理されるわけではありません。行指向データベースでは、各
クエリは十分に短い時間で終わることが期待されており、1つのクエリを分散処理
するような状況は想定されません。

一方、列指向データベースでは話が変わります。ディスクから大量のデータを読
み込むので、どうしても1回のクエリの実行時間は長くなります。加えて、圧縮さ
れたデータの展開などにCPUリソースを必要とするため、マルチコアを活用して高
速化しようという話になります。

MPPでは、1つのクエリを多数の小さなタスクに分解し、それらをできる限り並
列に実行します。たとえば、1億レコードから成るテーブルの合計（sum()）を集
計するために、それを10万レコードで区切って1,000個のタスクに分けるなどです。
各タスクはそれぞれが独立して10万レコードの合計を集計し、最後にすべての結
果が集められて総合計が計算されます。

MPPデータベースと対話型クエリエンジン
クエリがうまく並列化できるなら、MPPを使ったデータの集計はCPUコア数に比

例して高速化されます。ただし、ディスクからの読み込みがボトルネックにならない
よう、データは均等に分散される必要があります。

MPPではそのしくみ上、高速化のためにCPUとディスクの両方をバランス良く
増やす必要があります。そのため、いくつかの製品はハードウェアとソフトウェアが一
体化したアプライアンスとして提供されます。このようにハードウェアレベルでデータの
集計に最適化されたデータベースを「MPPデータベース」と呼びます。

MPPのアーキテクチャは、Hadoopと共に使われる対話型クエリエンジンでも採
用されています。その場合、データを保存するのは分散ストレージの役割です。た
だし、データを列指向で圧縮しない限りはMPPデータベースと同等の性能にはな
りません。そのため、Hadoop上で列指向のストレージを作るためのライブラリがい
くつか開発されています（第3章で後述）。

「MPPデータベース」と「対話型クエリエンジン」のどちらを選ぶかはケースバイケー
スです。システムの安定性やサポート体制といった点では商用のMPPデータベース
の方が長年の実績がありますが、Hadoopとの相性という点では対話型クエリエ
ンジンの方が利便性で勝ります。

いずれにしても、数億レコードを超えるようなデータマートの遅延を小さく保つに
は、データを列指向のストレージ形式で保存することが必要です（表2.1）。その
ため、特に区別が必要ない限りは、MPPデータベースと対話型クエリエンジンのど
ちらを使う場合にでも「列指向ストレージに変換する」という表現を本書では使用
します。

Column

リソース消費を制限する　列指向ストレージ×MPPによる高速化と注意点

列指向ストレージとMPPの考え方を組み合わせることで、データの集計は大幅に高

速化されます。ただし、それに伴ってクエリのリソース消費量も増大します。1つのクエリ

が多数のコアを活用するということは、システムのすべての計算リソースを簡単に使い切

ってしまえるということでもあります。誰か一人が不用意に巨大なクエリを実行すると、

他のユーザー全員がその影響を受けます。

一部の商用MPPデータベースでは、そのような過剰な負荷が発生することのないよう

に、ユーザーごとにシステムリソースを制限できるものもあります。もしそのような機能がな

いのであれば、システムに想定外の負荷が発生していないか注意深く監視しなければ

なりません。たとえば、長時間動き続けているクエリがあれば管理者に通知したり、強

制終了したりするようなルールが必要です。

想定外の過剰な負荷は、しばしばクエリの書き間違いといった簡単なミスから生じ

ます。そのような問題には早めに対処しなければ、後からより大きな問題に繋がりかね

ません。

Column

データを取り出さずに集計する　HTAP、並列クエリ

一般に「データベースにオンライン接続して1レコードずつ書き込む処理」をOLTP

（online transaction processing ）と呼び、「大量のレコードをデータ分析のために

集計する処理」をOLAP（online analytical processing ）と呼びます。一般的な

RDBはOLTPに適しており、MPPデータベースはOLAPのために設計されています。OLTP

とOLAPは大きく性質が異なるため、従来のデータベースはどちらか一方に特化するの

が普通でした。

2017年頃から、両者の性質を併せ持つデータベースが多数開発されるようになり、

HTAP（Hybrid transaction/analytical processing ）と呼ばれています。

なぜHTAPが必要なのか?　ETLの負荷をなくす

MPPデータベースを利用するには、業務データベースから定期的にデータを転送する

「ETLプロセス」が不可欠です。扱うデータの性質によっては、それが大きな負荷となる

場合があります。

たとえば、商品の情報を記録したマスタテーブルがあるとして、数千万点の商品が登

録されているとします。毎日新しく登録される商品データを転送するだけなら大きな負

荷にはなりませんが、商品の価格が変更になるなどして、過去に登録されたデータも上

書きされるとしたらどうでしょうか。毎日すべての商品データをスナップショットするとした

ら、日々何千万件ものレコードを転送することになります。結果として、ETLプロセスには

何時間も掛かることが珍しくありません。

ETLプロセスはどうしても時間が掛かるものなので、実行できるのはせいぜい一日に1

回です。一方、近年のアプリケーションにはリアルタイム性が求められるようになってお

り、データを集計するためだけにNoSQLデータベースが使われるときもあります。もし業

務データベースからデータを取り出すことなく高速に集計できるなら、ETLプロセスそのも

のをなくすことができるし、リアルタイムなデータの集計も簡単になります。

HTAPのしくみ　TiDBのアーキテクチャ

HTAPは特定の技術ではなく「OLTPとOLAPとを両立させる」という概念に付けられ

た名称なので、具体的な実装の方法は製品によって異なります。いくつかの製品は大

量のメモリを活用することでディスクI/Oを削減します。別の製品では多数のノードに負

荷分散することで高速化を実現します。

一例として、オープンソースのHTAPデータベースとして開発されている「TiDB」注aで

は、図C2.3のようなアーキテクチャが採用されています。アプリケーションから接続すると

きにはMySQL互換のプロトコルが利用され、OLTPに適したトランザクション処理が行

われます（図中の「TiDBクラスタ」）。一方、データを分析するときにはSparkから接

続することで、OLAPに適したデータ処理を実現しています（図中の「TiSpark」）。

出典： URL https://github.com/pingcap/tidb

TiDBに書き込まれたデータは分散ストレージへと格納されます（図中の「Storageク

ラスタ」）。その分散ストレージにSparkから直接アクセスすることで、ETLプロセスの必

https://github.com/pingcap/tidb

要なしにデータ分析を始められるのがTiDBの特徴となります。

並列クエリ実行
既存のデータベースでも集計速度の高速化は実現されています。たとえば、

「Amazon Aurora」はデータベースのストレージ部分を分散することでディスクI/Oを高

速化していますが、それに加えて「Parallel Query」を有効にすることで、クエリの実行

が複数のノードに分散されます注b。

クエリ実行の並列化は、2016年にリリースされたPostgreSQL 9.6以降でもサポート

されており注c、1つのクエリが複数のCPUコアを活用できるようになりました。

クエリを並列化するだけでは、データの圧縮まで行うMPPデータベースには性能的に

及ばないものの、以前と比べて大量のデータを集計できるようになってきているのは確か

です。データ量が100倍、あるいは1000倍になってもスケールするシステムを考えるならビ

ッグデータの技術は欠かせませんが、そうでなければ既存技術の延長でシステムを構築

した方が良い場合もありそうです。

業務データベースは後から置き換えるのが困難なだけに、データ量がどれくらいまで増

えても大丈夫なのかを見積って、自分にとって必要なシステムは何なのかを慎重に見

極めたいものです。

注a　 URL https://pingcap.com/products/tidb

（本文に戻る）

注b　 URL https://aws.amazon.com/rds/aurora/parallel-query/

（本文に戻る）

注c　 URL https://www.postgresql.org/about/news/postgresql-96-released-1703/

（本文に戻る）

https://pingcap.com/products/tidb
https://aws.amazon.com/rds/aurora/parallel-query/
https://www.postgresql.org/about/news/postgresql-96-released-1703/

2.3
アドホック分析と可視化ツール

データを可視化するためのソフトウェアは多種多様であり、それぞれが異なる
特徴を備えています。本節では可視化のプロセスで用いられる機会の多い、い
くつかの可視化ツールの特徴を説明します。

Jupyter Notebookによるアドホック分析　ノートブックに分析過程を
記録する

どのようなデータ分析でも、最初はアドホック分析から始まります。欲しいデータ
がどこにあるのかもわからなかったり、集計時間がまるで予測もできなかったりする
うちは、何度も試行錯誤を繰り返しながらデータを見ていくものです。そのような
過程では、対話型の実行環境がよく使われます。

ここではオープンソースの対話型ツールとして人気のある「Jupyter Notebook」
注1について説明します。科学の分野ではよく実験ノートの重要性が言われます
が、アドホック分析の過程も後から再現できるようにノートに留めておくと役立ちま
す。Jupyter Notebookはそのために利用されるツールの一つで、Pythonや
Ruby、R言語などのスクリプト言語を実行するのに用いられます。

Jupyter Notebookを起動するとWebブラウザが立ち上がるので、利用する
言語を選んで新しいノートブック（notebook ）を作成します。ノートブックの中
では、Pythonスクリプトや外部コマンドを実行できます（図2.11）。実行の内容
はすべて記録され、過去に遡って編集したり再実行したりすることも可能です。
Markdown形式で注釈を入れて見栄えを良くしたり、画像や数式を埋め込ん
だりすることもできるようになっています。

アドホック分析でクロス集計の結果を見たいときには、スプレッドシートやBIツー
ルを立ち上げるまでもなく、ノートブックの中から実行できます。特に、SQLの結果
をクロステーブルに変換したいだけなら、この方法で何度でもクエリ実行とクロス集
計を繰り返せます。

Jupyter NotebookはWebアプリケーションですが、しばしばローカルホストで起
動します。アドホック分析ではCSVやExcelなどのファイルを読み書きすることも多
いため、リモートで起動するとファイルのアップロードやダウンロードに手間が掛かり
ます。ノートブックを他の人と共有したいときには、「Google Colab」注2のようなク
ラウドサービスを使うのが簡単です。

note
Jupyterのインストール方法等については、以下の章で詳しく取り上げます。

・第7章　➡ノートブックとアドホック分析

ノートブック内での可視化
Jupyter Notebookでは、作業中のデータフレームからグラフを作成してノートブ

ックに組み込むことができます。これにはいくつかのライブラリがありますが、中でも
有名なのが「matplotlib」です（図2.12）。

※ URL https://matplotlib.org

https://matplotlib.org/

matplotlibは科学技術計算などの分野で使われる可視化ライブラリの一つ
で、学術論文などでよく見かける複雑なグラフを、Pythonを使って生成します。
可視化のためにプログラミングが必要で、最初はどうしても手間が掛かりますが、
データ分析の過程で同じようなグラフを何度も作り直す場合には非常に有用で
す。

一方、マウス操作だけで対話的にグラフを作りたいときには、無理にノートブッ
クを使うよりも、スプレッドシートやBIツールなどの可視化ツールに切り替える方が
簡単です。データフレームを可視化ツールに受け渡すには、一度CSVファイルに保
存して読み込みます。第7章では、ノートブックとBIツールを組み合わせる具体的
な例を取り上げます。

ノートブックによるワークフロー　一連のタスクをまとめて実行
ノートブックは「簡易的なワークフローの実行」にも使えます。データ処理のための

一連のタスクをノートブックにまとめておいて、メニューの［Kernel］から［Restart
＆Run All］を選ぶと、すべてのセルが最初から順に実行されます。たまに手作
業で実行するだけのワークフローならこれで十分です。

ノートブックの中では、次のように感嘆符（!）でコマンドを始めることにより、任
意の外部コマンドを実行できます。そのため特別なプログラミングの知識がなくと
も、あらゆるデータ処理を一つのノートブックという形にまとめておくことができます。

 外部コマンドを実行する

 In [1]: !cp source.csv target.csv

手作業によるアドホック分析と、定期的なデータ処理の自動化とでは、必要
となる知識もツールもまったく異なります。どうしても自動化したい強い理由がない
限りは、ノートブックを中心とするアドホック分析の環境を整える方が先決です。

手作業では面倒だと思うようになったら、それから自動化に取り組むのでも遅く
はありません。

ダッシュボードツール　定期的に集計結果を可視化する

アドホック分析とは対照的に、定期的にクエリを実行してレポートを作成した
り、グラフを集めてダッシュボードを作ったりしたいときには、専用のダッシュボードツ
ールやBIツールなどが使われます。

ダッシュボードツールとBIツールの違いはそれほど厳密なものではありませんが、
前者では複数のデータソースに接続して一つずつグラフを追加するように設計され
ているのに対して、後者ではデータマートやインメモリデータベースに大量のデータを
取り込んでから対話的なデータ探索を行えるように設計されています。たとえば、
グラフをクリックして詳細な表示に切り替えたり、集計の元となったローデータを表
示したりするなど、時間を掛けてじっくりとデータを見たいときにはBIツールが適して
います。

一方、ダッシュボードツールでは最新のデータを網羅的に確認できることが期待
されます。何百ものグラフを少なくとも毎日の自動更新、場合によってはリアルタ
イムに更新し、それを大勢が見ることのできるようにキャッシュを活用して表示を高
速化します。決まった指標の日々の変化をモニタリングしたいときにはダッシュボー
ドツールが最適です。

ここではオープンソースのダッシュボードツールである「Metabase」、リアルタイムの
可視化ツールである「Kibana」、そしてクラウドサービスである「Googleデータポータ
ル」について説明します。

Metabase　SQLによるクエリの実行結果をそのまま可視化

「Metabase」注3は、表2.2のような複数のデータソースに対応したオープンソース
のダッシュボードツールで、おもにSQLで実行したクエリの結果を可視化するのに
使われます。MetabaseはWebベースのアプリケーションですが、単体でインストー
ル可能なパッケージやDockerコンテナの形式でも配布されており、ラップトップにイ
ンストールして動かすこともできます（第7章で後述）。

Metabaseでは最初に管理者が接続先のデータソースを登録しておけば、利
用者はいつでも自由にクエリを発行できます。完成したダッシュボードをただ見る
のではなく、利用者が自分でデータを探索するためのインターフェースとして適して
います。

Metabaseには「X-ray」と呼ばれる機能があり、登録済みのデータソースを自
動的に解析して、データの性質に合わせたダッシュボードを自動生成してくれます
（図2.13）。そのためBIツールやSQLの知識がない人であっても、テーブルの一覧
を開いて画面をクリックしていくだけで大まかにデータの内容を把握できます。

Metabaseは対話的なダッシュボード（interactive dashboard ）を作るの
にも使えます。時間等でデータを絞り込むためのフィルタをダッシュボードに追加す
ると、フィルタを選択するだけで集計をやり直して画面が更新されます。ただし、
Metabase自体にはデータを取り込むような機能はなく、すべての集計はバックエ
ンドのデータソースで実行されます。そのため、接続するデータソースには即座に集
計を完了させられるだけの高い性能が求められます。

Metabaseではブラウザから直接SQLを入力してクエリを実行し、その場でグラ
フにすることも可能です。SQLに慣れた人であれば、ちょっと気になったことをSQL
で書いて可視化したり、毎日チェックしたいことをクエリに書いておいて確認したり
という、日々のデータ集計の基本となるインターフェースとして利用できます。

社内にデータに興味を持つ人が何人もいて、その人たちがいつでもデータを集
計して結果を共有できるようなツールを求めている場合には、Metabaseは1つの
選択肢になるでしょう。

Kibana　Elasticsearchと組み合わせてリアルタイムに可視化
「Kibana」注4はJavaScript製の対話的な可視化ツールで、とりわけリアルタイ

ムなダッシュボードを作る目的でよく利用されます（図2.14）。検索エンジンであ
る「Elasticsearch」注5のフロントエンドとして開発されているため、導入には
Elasticsearchが必須です。

※ URL https://www.elastic.co/kibana

https://www.elastic.co/kibana

KibanaはElasticsearch以外のデータソースには対応しておらず、可視化したい
データはすべてElasticsearchに格納しなければなりません。そのため、RDBなどに
格納されたデータを見るのには使えませんが、可視化用のデータストアとして
Elasticsearchを採用する場合にはベストな選択肢となります。

Elasticsearchは全文検索（full-text search ）に対応したデータストアです
（第4章で後述）。そのためキーワードでテキストデータを検索したい場合にとくに
力を発揮します。その一方で、SQLを使ったデータ分析のためにElasticsearchを
使うことはできません。じっくり時間を掛けてデータを探索するというよりは、検索
条件に合うデータを素早く可視化するのに向いたツールです。

IoTデバイスやモバイルアプリから集めたデータをリアルタイムに可視化したり、サ
ーバーのログを集めて障害検知やセキュリティ対策に役立てたりすることが目的で
あれば、Kibanaは1つの選択肢になります。

Googleデータポータル　大勢が参照する定期的なレポートを作成
「Googleデータポータル」はオンラインで使える無償の可視化サービスです（図

2.15）。BIツール機能も備えていますが、データ分析に使うというよりはダッシュボ
ードの作成や共有に適しています。Googleデータポータルは非常に多くのデータソ
ースに対応しており、とりわけ「Google Workspace」や「Google Cloud
Platform」のようなGoogleのクラウドサービスからデータを取り込んで可視化する
ことが簡単にできるようになっています。

ビッグデータを扱う場合には、「BigQuery」注6と組み合わせることで集計から
可視化までの流れをスムーズに実現できます。BigQueryには「BI Engine」注7と
呼ばれるインメモリのデータ集計エンジンが備わっており、Googleデータポータルか
ら接続したときにはデータがメモリ上で集計されて表示が高速化されます。

Googleデータポータルも対話的なダッシュボードに対応しており、時間によるフ
ィルタを簡単にセットできるようにデザインされています。月次や週次のレポートを
作り、定期的にモニタリングするような用途に適しています。その一方で、アドホッ

クにデータを探索するような使い方にはとくに向いているということもなく、自分で
データを見るときよりも他人のためにレポートを作るときに使いたいツールです。

Googleデータポータルで作成したダッシュボードはメールアドレスだけで簡単に
共有できるため、Google Workspaceを導入している企業にとっては、全社員
が参照する月次レポートや週次レポートなどを作成するツールとして1つの選択肢
になるでしょう。

Column

データマートは必要なくなるか？

コンピュータの性能向上によりデータの集計速度は年々向上しており、データマートを

作らずとも済むケースが増えています。極論すれば、無限に大量の計算リソースを使え

るならデータウェアハウスさえあれば十分であり、データマートは不要です。毎回すべての

データを集計し直せば済むからです。

このまま性能の向上が続けば、いずれデータマートは不要になるのかもしれません。現

時点でそれに近いと思えるのが「BigQuery＋BI Engine」の組み合わせで、大量のデ

ータを集計するときにはBigQueryのパワーを使いつつ、ダッシュボードを表示するときに

はBI Engineのインメモリ集計による高速化がシームレスに統合されています。

もっとも本書の執筆時点では、BI EngineはGoogleデータポータルにしか対応してお

らず、他のBIツールからは利用できません。BI Engineのために確保できるメモリの量は

有限であり、データ量が増えるとBigQueryに大きな負荷を与えてしまいます。メモリに

収まるほど小さいデータを扱うのでもない限り、結局のところ「データの大きさを無視して

可視化することなどできない」のが現状です。

それなら、最初から正しいデータマートの作り方を覚える方が建設的です。何も難し

いことをしなくても、データウェアハウスの内部に中間テーブルを作って、それをデータマート

として使うのであればそう手間でもありません。

後は、性能との兼ね合いでシステム構成が決まります。対話的なダッシュボードでは

フィルタの条件を変えるたびに多数のクエリが発行されるため、そこから接続するデータ

マートには早い応答が求められます。仮にGoogleデータポータルを使うなら、可視化に

必要なデータはすべてBI Engineに乗せるつもりで、そこに収まるくらいに小さくしたデータ

マートをBigQuery上に作成すると良いでしょう。可能であるなら、ダッシュボードのように

多人数から参照されるデータマートは、なるべく専用のデータベースに分離する方が性

能的に安定します。

BIツール　対話的なダッシュボード

数ヵ月単位の長期的なデータの推移を可視化したり、集計の条件を細かく切
り替えられるダッシュボードを作るには、BIツールの利用が適しています。

BIツールでは、すでにあるデータをそのまま読み込むだけではなく、時間を掛けて
データを分析しやすく加工することがよくあります。たとえば、同じような商品を一
つのグループにまとめたり、IPアドレスを位置情報に変換するなどです。そのため、
可視化に適したデータマートを作ってから読み込むことを前提とします。

BIツールではしばしば1つ、または少数のデータソースから多数のグラフを作りま
す。クロス集計のところでも見たように、データというのはクロステーブルの行と列に
何を選ぶか、つまり集計の軸をどう取るかによって無数の見方があります。

1つのダッシュボードに表示できる情報量には限界があるので、いくつかの主要
な画面だけを先に作った上で、後は画面上で集計の条件を変えられるようにしま
す。図2.16は、商用BIツールである「Tableau Desktop」に付属のサンプルから対
話的なダッシュボードを表示したところです。画面上で地域や商品カテゴリを絞り
込むと、それに応じて詳細が表示されていることがわかります。

BIツールでは何を見たいかに応じて多数のダッシュボードを作りますが、そこに表
示するデータは画面上で絞り込めるようにデザインします。同じようなグラフをいく
つも作る必要はありません。最初に1つテーブルを用意し、その詳細を辿れる対
話的なダッシュボードを提供する形となります。

1つのデータを多角的に分析する
対話的なダッシュボードを作るには、その元となるデータをすべて含んだ1つのテ

ーブルを作成します。テーブルからは多数のダッシュボードを作ります。全体の数字
を俯瞰できるものが少なくとも一つと、それを分解して主要な指標をまとめたもの
がいくつかあると良いでしょう（図2.17）。

BIツールで可視化できる内容を増やそうとすると、データウェアハウスにすでにあ
るテーブルをそのまま使おうとしてもうまくいかず、バッチ処理によるデータマート作り
が欠かせなくなってきます。知りたいことが増えるたびにデータマートにテーブルを作
り、そこから派生して多数のダッシュボードが生まれるのがBIツールにおける可視化
の流れです。

Column

可視化ツールの選択の指針　どれを使う？

可視化のためのソフトウェアやサービスには有償無償を問わず多くのものがあるため、

何を選べば良いのか迷います。これから新しくシステムを導入しようという場合には最

初に次の3つを試してみてはいかがでしょうか。

❶スプレッドシート　Googleスプレッドシートなど

オンラインのスプレッドシートとして、たとえばGoogleスプレッドシートなどが利用できま

す。スプレッドシートは導入が簡単で、ピボットテーブルを使ったクロス集計やグラフ作成

も難しくありません。KPIモニタリングのように、多数の指標を定期的に更新するには表

形式のレポートの方がわかりやすいときもあります。クラウドサービスであれば他のチームメ

ンバーとも共有しやすく、APIなどでデータを自動更新することも可能です。

スプレッドシートの欠点は、大量のデータを扱えないことと、複雑なダッシュボードを作

るのが難しいことでしょうか。そこに不都合を感じることさえなければ、スプレッドシートを

中心とするレポート作成は最初の選択肢となります。

❷ダッシュボードツール　MetabaseやGoogleデータポータルなど

ダッシュボードツールとして、MetabaseのようにSQLを実行するタイプのものを導入し

ます。これにはSQLの知識が必要ですが、逆にそれ以外の知識は必要ありません。BI

ツールのためにデータマートを設計するよりも、1つずつSQLを書いてグラフを作る方が良

い、という人はとくにダッシュボードツールが向いています。

Googleデータポータルのようなクラウドサービスもダッシュボードに向いています。ダッシ

ュボードは大勢が参照するものなので、OAuthなどでユーザー認証しやすいものを使うと

運用が楽になります。

ダッシュボードツールはアドホックにデータを分析するよりは、どちらかと言うと継続的

なモニタリングのために利用します。同じクエリを定期的に繰り返すことで現状を把握し

たいときに導入すると良いでしょう。

❸ノートブック　Jupyterなど

ノートブックを中心とするアドホック分析の環境としてJupyterを導入します。これには

プログラミングの知識が必要ですが、基本的にはクエリの実行とクロス集計、そして

CSVファイルの読み書きくらいを覚えれば十分です。可視化のためにはExcelやBIツール

を組み合わせるのが簡単です。

この方法のメリットは、手元のラップトップ1つで実行できるのでサーバーを用意する必

要もなく、データを見ることそのものに集中しやすいことです。作業の過程を記録に残

し、後から確認できることも重要です。

本格的なデータ分析チームであれば、「AI Platform Notebooks」注aのようなクラウ

ドサービスを導入することで、データ分析環境をコンテナ化して他のメンバーと共有すると

いう選択肢もあります。

あらゆる用途に適した万能のツールは残念ながらありません。まずは以上の3つの中

から自分に合うものを見つけて、そこから発展させていくと良いのではないでしょうか。

なお、リアルタイム性が重視される場合には、Kibanaのようなリアルタイム処理を想

定したダッシュボードツールが欠かせません。これには時系列データに適したデータストア

が必要となるため、システム運用の負担は相対的に大きくなります。よほど特別な理

由がない限りは、定期的なデータ処理から取り組むことをお勧めします。

BIツールは使う人を選ぶので、万人向けではありません。毎日データばかり見る人に

とっては生産性を上げるツールとなり得ますが、それにはBIツールに固有の知識が不可

欠であり、慣れないうちは思うようなダッシュボードを作れずにかえって苦労するかもしれ

ません。最初は簡単なダッシュボードツールから始めてみて、それに不満を感じるように

なってから覚えるのでも良いかもしれません。

注a　 URL https://cloud.google.com/ai-platform-notebooks

（本文に戻る）

注1　 URL https://jupyter.org

（本文に戻る）

注2　 URL https://colab.research.google.com

（本文に戻る）

注3　 URL https://www.metabase.com/

（本文に戻る）

注4　 URL https://www.elastic.co/kibana

（本文に戻る）

注5　 URL https://www.elastic.co/elasticsearch/

（本文に戻る）

注6　 URL https://cloud.google.com/bigquery

（本文に戻る）

注7　 URL https://cloud.google.com/bi-engine/docs/overview

（本文に戻る）

https://cloud.google.com/ai-platform-notebooks
https://jupyter.org/
https://colab.research.google.com/
https://www.metabase.com/
https://www.elastic.co/kibana
https://www.elastic.co/elasticsearch/
https://cloud.google.com/bigquery
https://cloud.google.com/bi-engine/docs/overview

2.4
データマートの基本構造

BIツールで対話的にデータを見ようとすると、可視化に必要な情報だけを集め
たデータマートが欠かせなくなってきます。本節ではデータマートの設計において基
本となる考え方を整理します。

可視化に適したデータマートを作る　OLAP

BIツールにおいて中心となる概念の一つにOLAP（online analytical
processing ）と呼ばれるしくみがあります注8。最近のBIツールはOLAPの概念
を知らなくても使えるように工夫されているため、その存在を意識することはほとん
どありませんが、データマートを構築するときにはいくらか予備知識があると助けに
なります。

多次元モデルとOLAPキューブ
OLAPはデータの集計を効率化するアプローチの一つです。一般に、業務シス

テムにおけるRDBでは表形式にモデル化されたデータをSQLで集計します。一方、
OLAPでは「多次元モデル」（後述）のデータ構造をMDX
（multidimensional expressions ）などのクエリ言語で集計します。データ分
析のために作られた多次元データをOLAPキューブ（OLAP cube ）と呼び、それ
をクロス集計するしくみがOLAPです（図2.18）。

コンピュータの性能がまだそれほど高くなかった頃、データの集計には長い時間
が掛かったため、OLAPを高速化するには工夫が必要でした。たとえば、クロス集
計のあらゆる組み合わせを事前に計算してデータベース内にキャッシュしておき、ク
エリが実行されると集計済みの結果を返す、といったしくみが用意されていまし
た。

BIツールは元々OLAPのしくみを使ってデータを集計するためのソフトウェアで
す。したがって、データマートも以前はOLAPキューブとして作成されていました。

MPPデータベースと非正規化テーブル
しかし、近年ではMPPデータベースやインメモリデータベースなどの普及によって、

事前に計算を済ませる必要はなくなってきています。そのため、OLAPキューブのた
めに特別なしくみを用意するのではなく、BIツールとMPPデータベースを組み合わ
せてクロス集計することが増えています。

BIツールで思ったとおりのグラフを作るには、すでにあるテーブルをそのまま可視
化しようとするのではなく、作りたいグラフに合わせて「多次元モデル」を設計しま
す。ただし、MPPデータベースに多次元モデルの概念はないので、それに代わる
「非正規化テーブル」（後述）を用意します。そうして作成した非正規化テーブ
ルをBIツールから開くことで、従来からのOLAPと同等の可視化を実現できるよう
になります。

「可視化に適したデータマートを作る」とは、このように「BIツールのための非正規
化テーブルを作る」というプロセスです。以下では、このプロセスをもう少し具体的
に説明します。

テーブルを非正規化する
データベースの設計では、しばしばテーブルを「マスタ」や「トランザクション」に区

別します。時間と共に生成されるデータを記録したのがトランザクション
（transaction ）で、トランザクションから参照される各種の情報がマスタ
（master ）です。トランザクションは一度記録したら変化しないのに対して、マ
スタの方は状況に応じて書き換えられます。

ここでは例として、図2.19のようなテーブルの関係を考えます。「販売履歴」のみ
がトランザクションで、他はすべてマスタとして扱います。これはRDBでは一般的な
リレーショナルモデル（relational model ）です。テーブルを分解するために正
規化（normalization ）の概念を学んだ人も多いでしょう。

データ分析の場面では、このように正規化されたリレーショナルモデルから出発
して、それとは逆のことを行います。

ファクトテーブルとディメンションテーブル
データウェアハウスの世界では、トランザクションのように事実が記録されたもの

をファクトテーブル（fact table ）、そこから参照されるマスタデータなどをディメン
ションテーブル（dimension table ）と呼びます。集計の元になる数値データ、
たとえば販売額などはおもにファクトテーブルに記録され、ディメンションテーブルは
おもにデータを分類するための属性値として利用されます。

スタースキーマと非正規化　ファクトテーブルを中心に複数のディメンションテーブルを
結合

データマートを作成するときには、図2.20❷のようにファクトテーブルを中心とし
て複数のディメンションテーブルを結合するのが良いとされます。図にすると星型に
なるので、これをスタースキーマ（star schema ）と呼びます。

ディメンションテーブルを作成するには、正規化によって分解されているテーブル
をなるべく結合して1つのテーブルにまとめます。その結果としてデータが冗長になっ

てもかまいません。正規化とは逆のことを行うので、これを非正規化
（denormalization ）と呼びます。

データマートでスタースキーマが用いられるのには二つの理由があります。一つは
単純であるため理解しやすく、データ分析が簡単になることです。リスト2.1は、ス
タースキーマのテーブルをSQLで結合するクエリです。クエリの書き方が決まっている
のでSQLを自動生成しやすく、BIツールはスタースキーマのテーブルに対して効率良
くクエリを発行できるようにデザインされています。

リスト2.1　スタースキーマにおけるテーブル結合

 SELECT ...

 FROM 販売履歴

 LEFT JOIN 商品 ON 商品.商品ID = 販売履歴.商品ID

 LEFT JOIN 店舗 ON 店舗.店舗ID = 販売履歴.店舗ID

 ;

 売上日 | 商品ID | 店舗ID | 金額 | 商品名 | 商品カテゴリ | 店舗名

 -----------+--------+--------+-------+--------+--------------+--------

 2021-01-01 | 101 | 11 | 57500 | 商品A | 食料品 | 店舗A

 2021-01-01 | 102 | 11 | 2400 | 商品B | 電化製品 | 店舗A

 ...

もう一つは性能上の理由です。データ量が増えるにつれて、ファクトテーブルは
ディメンションテーブルよりも遙かに大きくなり、そのデータ量が集計の時間を左右
します。ファクトテーブルがメモリ量を超えた時点でディスクI/Oが発生し、その待ち
時間がクエリの遅延となります。そのためファクトテーブルをなるべく小さくすること

が高速化のために重要となり、ファクトテーブルにはIDのようなキーだけを残して、
それ以外はディメンションテーブルに追い出してきたわけです。

非正規化テーブル　データマートに正規化は必要ない
以上の話は、以前であれば納得いくものでしたが、MPPデータベースのような

列指向ストレージを持つシステムが普及したことで事情が変わりました。列指向ス
トレージではカラム単位でデータが保存されるため、カラムの数がいくら増えても性
能には影響しません。それなら最初からファクトテーブルにすべてのカラムを含めて
しまって、クエリの実行時にはテーブルの結合などしない方が簡単です。

加えて、列指向ストレージにはカラム単位でのデータ圧縮があります。文字列を
そのまま格納したとしても十分に小さく圧縮されるので、ディスクI/Oの増大は抑
えられます。かくしてデータをディメンションテーブルに追い出す理由はほとんどなく
なり、「1つの巨大なファクトテーブル」さえあれば十分だという話になります注9。

データマートにスタースキーマが用いられたのは過去の話であり、少なくとも性能
上の問題は列指向ストレージによって解決されます。図2.20❸のように、スタース
キーマからさらに非正規化を進めて、すべてのテーブルを結合したファクトテーブルを
非正規化テーブル（denormalized table ）と呼びます。多くの場合、データマ
ートは非正規化テーブルにするのが最も単純であり、そして十分に効率的な方法
です。

列指向でないデータベースを使う場合には、非正規化テーブルはデータ量が増
大するので好ましくありませんが、それでも数百万レコード程度のスモールデータな
ら問題になることはないでしょう。もしメモリを大幅に上回るデータ量になるなら、
列指向ストレージを使うべきです。したがって、「データマートは非正規化テーブルと
して作る」ことを本書では想定します注10。

Tip　データウェアハウスとスタースキーマ
データマートではなく、「データウェアハウスのテーブル構造」としてはスタースキーマは優

れています。データを蓄える段階ではファクトテーブルとディメンションテーブルとに分離し

ておいて、それを分析する（データマートを作る）段階になってから結合して非正規化

テーブルを作ります。

多次元モデル　可視化に備えてテーブルを抽象化する

非正規化テーブルを用意したら、それを多次元モデル（multidimensional
model ）によって抽象化します。これはBIツールの基本となるデータモデルで、テ
ーブルとカラムの集合をわかりやすく整理して名前を付けたものです。

多次元モデルではカラムをディメンション（dimension ）とメジャー
（measure ）とに分類します。数値データとその集計方法を定義したのがメジ
ャーであり、クロス集計における行や列に用いるのがディメンションです（図
2.21）。

図2.22は、Googleデータポータルでディメンションやメジャーがどのように扱われ
るかを示しています。Googleデータポータルではメジャーのことを指標
（metrics ）と呼びます。ディメンションを行や列に指定すると、それらの組み合
わせに対して指標が計算されます。ここでは「金額」の合計（SUM）を計算して
います。

多次元モデルにおけるディメンションとは、「2次元」などの言葉で用いられる次
元（dimension ）のことです。元となるデータを多数のディメンションから成る多
次元空間であると考えると、それを行と列から成る2次元の表へと写像するのが
クロス集計です。言葉で説明すると難しいですが、基本となる考え方はピボットテ
ーブルと変わりありません。

モデルの定義を拡張する
BIツールを用いたデータの可視化は、典型的には次のような手順になります。

最初に、可視化したいメジャーとディメンションを決めます。たとえば、毎月の商品
の売上を知りたければ、「金額」がメジャーであり、「売上日」や「商品名」がディメ
ンションとなります。

データマートに非正規化テーブルを作り、それをBIツールで可視化します。グラフ
を見ているうちに、商品をグループ分けして集計したくなったとしましょう。そのとき
は非正規化テーブルに新しいカラムを追加し、そこに商品グループを書き込みま
す。これで新しいディメンションが追加されるので、それを使って新しいグラフを作り
ます。

このように多次元モデルの定義は、後から拡張することが可能です。データ分
析のニーズに応じて、非正規化テーブルには多数のカラムが追加され、そこから多
数のグラフが生成されるようになります。

こうして作られる非正規化テーブルを集めたものが、BIツールのためのデータマー
トです。一度グラフを作ってしまえば、後は非正規化テーブルを更新するだけで、
それを参照するすべてのグラフが更新されます。ワークフロー管理ツールなどを利用
して、データマートを定期的に自動更新することで、日々のデータの動きを確認で
きるようになります。

Column

ブレイクダウン分析

BIツールでデータを見るときに、ある数字がどこから来ているのか、その内訳を把握し

たいときがよくあります。複雑なデータを分析しやすくするには、データをいくつかのグルー

プ（あるいはカテゴリ、クラスタなど）に振り分けて、それぞれのグループごとに内容を整

理するのが効果的です。これをブレイクダウン分析（breakdown analysis ）と呼び

ます。

ブレイクダウン分析では、データを振り分けるために専用のディメンションをファクトテー

ブルに追加して、そこにグループ名を書き込みます。たとえば、図C2.4では「属性1」をグ

ループ名、「属性2」をサブグループ名として、グループごとに個別のダッシュボードを作成

しています。

具体的には、ダッシュボードを作るときにフィルタリングの条件として「属性1='A'」の

ような式を指定することで、そのグループに属するレコードだけが確実にダッシュボードの

集計に含まれるようにします。そうすると、各レコードは必ずどこか一つのグループに属す

ることになるため、すべてのレコードを漏れなく一つのダッシュボードに振り分けられます。

注8　 URL https://en.wikipedia.org/wiki/Online_analytical_processing

（本文に戻る）

注9　「Using the right data model in a data mart」

URL https://www.slideshare.net/datamgmt/using-the-right-data-model-

in-a-data-mart

（本文に戻る）

注10　スタースキーマにした方が良い場合もあります。多数のファクトテーブルから共通して参

照されるテーブルがある場合などはスタースキーマで良いでしょう。

（本文に戻る）

https://en.wikipedia.org/wiki/Online_analytical_processing
https://www.slideshare.net/datamgmt/using-the-right-data-model-in-a-data-mart

2.5
まとめ

本章ではビッグデータを探索するための基礎知識として、可視化のシステムを
中心に説明しました。とりわけピボットテーブルを使ったクロス集計の考え方は、
データを探索的に見ていく上で基本となる概念なので、実際に手を動かしなが
ら感覚として理解することをお勧めします。

対話的にデータを可視化し、その詳細を知るためには秒単位での高速な集
計が求められます。データ量が十分に少ないうちは、すべてのデータをBIツールに
取り込むことも可能ですが、メモリに載り切らないほどの大量のデータを扱うには
列指向ストレージが必要です。MPPデータベースを利用すると、クエリの並列化
による高速化が実現できます。

可視化に利用されるツールとしては、おもにアドホック分析で用いるノートブッ
クや、継続的なモニタリングに使われるダッシュボード、あるいは対話的にデータ
を可視化するためのBIツールなどがあります。BIツールを使う場合には、見たいデ
ータを1ヵ所に集めてデータマートを構築します。

データマートを作るときには、トランザクションのように事実が記録されたファクト
テーブルに、マスタデータなどのディメンションテーブルをすべて結合した非正規化
テーブルを作成します。テーブルの内容がメモリに載るくらい小さければRDBをデー
タマートとして使えますが、そうでなければMPPデータベースなどを利用して、列指
向でデータが格納されるようにした方が良いでしょう。

BIツールで非正規化テーブルを開くことで、伝統的なOLAPによるデータの集
計と同じように多次元モデルを用いたデータ分析が可能となります。多次元モデ

ルではデータをメジャーとディメンションに振り分けて定義することで、ピボットテー
ブルと同様のクロス集計を大量のデータに対して実行できるようになります。

以上で可視化の準備が整ったので、次章からはデータレイクを中心とするビッ
グデータの技術を用いて、データマートを作る手順を見ていきます。

Column

Amazon RedshiftとGoogle BigQueryの違い

データウェアハウスのためのクラウドサービスとして比較されることの多いAmazon

RedshiftとGoogle BigQueryですが、両者の内部的なしくみはまったく異なります。

中でも最大の違いは、Redshiftが専有リソース（dedicated resource ）であるの

対して、BigQueryは共有リソース（shared resource ）であるところでしょうか（図

C2.5）。

❶Redshiftは伝統的なMPPデータベースの流れを汲んでおり、ストレージと計算ノー

ドが一体化された環境で効率良くクエリが実行されるようになっています。リソースは

専有されており、他のユーザーに利用されることはないので性能的に安定します。ノード

数を増やすとストレージ容量と計算能力がどちらも増加し、データ量に対して一定の

性能が維持されます注a。

一方、❷BigQueryはその設計思想として、数千台ものハードディスクにデータを分

散することで高速化を実現します注b。それを一社で専有するには多過ぎるので、必

然的に共有型のシステムとなります。結果として、自分でノードを管理する必要のない

フルマネージド型のサービスとなっています。

注a　「Amazon Redshift Clusters」

URL https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-

clusters.html

（本文に戻る）

注b　「BigQuery under the hood」

URL https://cloud.google.com/blog/products/gcp/bigquery-under-the-hood

（本文に戻る）

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html
https://cloud.google.com/blog/products/gcp/bigquery-under-the-hood

本章では分散システムの代表的なフレームワークである「Hadoop」と
「Spark」を用いたデータ処理について説明します。
3.1節では、「構造化データ」と「非構造化データ」の違いを取り上げた上で、

Hadoopで構造化データを作って集計するまでの流れを説明します。また、
HadoopとSparkの違いについても説明します。
3.2節では、Hadoop上で構造化データを集計するための「クエリエンジン」に

ついて説明します。とりわけバッチ型のクエリエンジンである「Hive」と、対話型ク
エリエンジンである「Presto」とを比較し、それらの使い分けについても説明しま
す。
3.3節では、データウェアハウスやデータマートを構成する各種のテーブルについ

て説明します。SQLの集約関数を使ってレコード数を削減した「サマリーテーブ
ル」、マスタ情報を定期的にコピーした「スナップショットテーブル」などの役割を取
り上げ、それらを結合して非正規化テーブルを作るまでの流れを説明します。

3.1
大規模分散処理のフレームワーク

多数のコンピュータでデータ処理を分散するためには、その実行を管理するた
めのフレームワークが欠かせません。本節ではHadoopとSparkを中心とする分
散システムのしくみを見ていきます。

構造化データと非構造化データ
SQLでデータを集計する場合、最初にテーブルのカラム名やデータ型、テーブル

間の関係などをスキーマ（schema ）として定めます。スキーマが明確に定義さ
れたデータを構造化データ（structured data ）と呼びます。従来のデータウェア
ハウスでは、データは常に構造化データとして蓄積することが普通でした。

一方、ビッグデータは構造化データであるとは限らず、自然言語で書かれたテキ
ストデータや、画像や動画などのメディアデータも含まれます。そのようなスキーマを
持たないデータは非構造化データ（unstructured data ）と呼ばれ、そのままで
はSQLでうまく集計することができません（図3.1）。

非構造化データを分散ストレージなどに格納し、それを分散システムで加工し
ようというのがデータレイクの考え方です。データを加工する過程でスキーマを定義
し、構造化データへと変換することで他のデータと同じように分析できるようになり
ます。

スキーマレスデータ　基本書式はある、スキーマは定めない
CSVやJSON、XMLなどのデータは、書式こそ決まっているもののカラムの数や

型などが明確ではなく、スキーマレスデータ（schemaless data ）と呼ばれます
注1。NoSQLデータベースのいくつかはスキーマレスデータに対応しており、データレイ
クでは大量に蓄えられたスキーマレスデータを効率良く処理することも求められま
す。

近年ではインターネット経由でやり取りするデータを中心として、JSON形式を
用いることが特に多くなってきています。新しいデータをダウンロードするたびにスキー
マを定めていたのでは手間が掛かるため、JSONはJSONのまま保存して、そこから
データ分析に必要なフィールドだけを抽出する方が簡単です。元データさえそのま

ま保存できていれば、最初からすべてのフィールドを取り出さずとも、後からいくら
でも追加の情報を引き出せます。

データ構造化のパイプライン　テーブル形式にして列指向ストレージに長期保存
そこで図3.2のようなデータパイプラインを考えます。各データソースから集めた非

構造化データ、あるいはスキーマレスデータは、最初に分散ストレージへと格納され
ます。これにはWebサーバーのログファイルや、業務用のデータベースから取り出し
たマスタデータなどが含まれます。

分散ストレージに集められたデータは、明確なスキーマを持たないものも多いた
め、そのままではSQLで集計することができません。そのため最初に必要となるの
は、スキーマを明確にしたテーブル形式の「構造化データ」へと変換することです。

構造化データは通常、データの圧縮率を高めるために列指向ストレージとして
保存します。つまり、第2章で見たように、MPPデータベースへと転送するか、ある

いはHadoop上で列指向のストレージ形式に変換します。本書では特に断りの
ない限り、構造化データは常に列指向ストレージとして保存するものとします。

構造化データのうち、時間と共に増加するデータをファクトテーブル、それに付随
するデータをディメンションテーブルとして扱います。この段階ではテーブルの結合は
行いません。データマートについて考えるのはもう少し先の話です。ここではまずデー
タを構造化し、SQLで集計可能なテーブルを作ることだけを考えます。

列指向ストレージの作成　分散ストレージ上に作成して効率良くデータ集計
MPPデータベースでは、製品によってストレージの形式が固定されており、利用

者がその詳細を知らなくても済むようになっていますが、Hadoopでは利用者が
自分で列指向ストレージの形式を選択し、そして自分の好きなクエリエンジンから
それを集計できます。

Hadoopで使える列指向ストレージにはいくつかの種類があり、それぞれ特徴
が異なります。「Apache ORC」注2は構造化データのための列指向ストレージで、
最初にスキーマを定めてからデータを格納します。一方、「Apache Parquet」注3

はスキーマレスに近いデータ構造となっており、JSONのような入り組んだデータであ
ってもそのまま格納することが可能です。第7章では、Apache Parquetによるスト
レージ形式（Parquet形式）を列指向ストレージとして利用します。

非構造化データを読み込んで列指向ストレージに変換する過程では、データの
加工や圧縮のために多くの計算リソースが消費されます。そこで利用されるのが
HadoopやSparkなどの分散処理のフレームワークです。

Hadoop　分散データ処理の共通プラットフォーム

今ではビッグデータを代表するシステムとして知られるようになったHadoopです
が、歴史的にはオープンソースのWebクローラーである「Nutch」注4のための分散フ

ァイルシステムとして、2003年頃から開発が始まっています。その後、2006年には
単体のプロジェクトとして独立し、Apache Hadoopとしてリリースされました（表
3.1）。

Hadoopは単体のソフトウェアではなく、分散システムを構成する多数のソフト
ウェアからなる集合体です（図3.3）。2013年にリリースされたHadoop 2から
は、YARN（後述）と呼ばれる新しいリソースマネージャの上で複数の分散アプ
リケーションが動作する構成となっており、大規模な分散システムを構築するため
の共通プラットフォームとしての役割を担うようになりました。

分散システムのコンポーネント　HDFS、YARN、MapReduce
Hadoopの基本となるコンポーネントは、分散ファイルシステム（distributed

file system ）である「HDFS」（Hadoop Distributed File System ）、リソー
スマネージャ（resource manager ）である「YARN」（Yet Another
Resource Negotiator ）、そして分散データ処理（distributed data
processing ）の基盤である「MapReduce」の3つです。それ以外のプロジェクト
はHadoop本体とは独立して開発されており、Hadoopを利用する分散アプリケ
ーションとして動作します。

すべての分散システムがHadoopに依存しているわけではなく、Hadoopを一
部だけ利用する、あるいはまったく利用しない構成もあります。たとえば、分散ファ
イルシステムとしては「HDFS」を使いながら、リソースマネージャには「Mesos」、分
散データ処理には「Spark」を使うといった構成も可能です。このように、多様なソ
フトウェアの中から自分に合ったものを選択し、それらを組み合わせることでシステ
ムを組み上げるのがHadoopを中心とするデータ処理の特徴です。

分散ファイルシステムとリソースマネージャ　HDFS、YARN

Hadoopで処理されるデータの多くは、分散ファイルシステムであるHDFSに格
納されます。これはネットワーク接続されたファイルサーバーのような存在ですが、多
数のコンピュータにファイルをコピーすることで冗長性を高めるという特徴がありま
す。

一方、CPUやメモリなどの計算リソースはリソースマネージャであるYARNによっ
て管理されます（図3.4）。YARNはアプリケーションが使用するCPUコアやメモリ
をコンテナ（container ）と呼ばれる単位で管理します。Hadoopで分散アプリ
ケーションを実行すると、YARNがクラスタ全体の負荷を見て空きのあるホストから
コンテナが割り当てられます。

分散システムは多くの計算リソースを消費しますが、ホストの数によって使える
リソースの上限が決まります。限られたリソースで多数の分散アプリケーションが同
時実行されるので、アプリケーション間でリソースの取り合いになります。リソースマ
ネージャは、どのアプリケーションにどれだけのリソースを割り当てるかを管理するこ
とで、すべてのアプリケーションが滞りなく実行されるように制御します。

リソースマネージャを用いると、アプリケーションごとに実行の優先順位を決めら
れます。それほど重要でないバッチ処理には低い優先順位を与えることで、他に
誰もリソースを使わないときにだけ実行されるようになります。そうして優先される
タスクから順に実行することで、限られたリソースを無駄なく活用しながらデータ処
理を進めることが可能となります。

Tip　YARNコンテナ

コンテナと言うと仮想化技術Dockerを思い浮かべる人もいるかもしれません。

YARNにおけるコンテナは、Dockerコンテナのようにすべてのリソースを仮想化して隔離

するものとは違って、CPUやメモリなどの使用量のみを制限します。

分散データ処理とクエリエンジン　MapReduce、Hive
MapReduceもYARN上で動作する分散アプリケーションの一つであり、分散

システムでデータ処理を実行するのに利用されます。MapReduceでは任意の
Javaプログラムを走らせることができるため、非構造化データを加工するのに適し
ています。

一方、SQLなどのクエリ言語によるデータ集計が目的であれば、そのために設
計されたクエリエンジンを利用します。「Apache Hive」注5はそのようなクエリエン
ジンの一つで、クエリを自動的にMapReduceプログラムへと変換するソフトウェア

として開発されました。初期のHiveの実行特性はMapReduceに依存しており、
これは利点であると共に欠点ともなりました。

MapReduceは元々大量のデータをバッチ処理するためのシステムです。一度
実行すると、分散ファイルシステムから大量のデータを読み込めますが、その一方
で小さなプログラムを実行するにはオーバーヘッドが大き過ぎて、数秒で終わるよう
なクエリの実行には向いていません。その性質を引き継いだHiveも同様であり、
時間の掛かるバッチ処理には適していましたが、アドホックなクエリを何度も実行
するのには不都合でした（図3.5）。

Hive on Tez
Hiveを高速化するための取り組みの一つとして開発されているのが「Apache

Tez」注6です。Tezは従来のMapReduceを置き換えることを目的としたプロジェク

トであり、MapReduceにあったいくつかの欠点を解消することで高速化を実現し
ています。

たとえば、MapReduceのプログラムでは、1回のMapReduceステージが終わ
るまでは次の処理に進むことができませんでした。Tezではステージの終わりを待つ
ことなく、処理の終わったデータを次々と後続の処理へと受け渡すことで、クエリ
全体としての実行時間を短縮します（図3.6）。

現在のHiveはMapReduceだけでなく、Tezを使っても動作するように書き換
えられており、「Hive on Tez」と呼ばれます。これに対して、古いHiveは「Hive
on MR」と呼んで区別されます。

Tip　Hive on MR3 on Kubernetes

Hadoopを使わずにKubernetes上でHiveを実行するための「Hive on MR3 on

Kubernetes」も開発されており、2020年にリリースされました。

対話型クエリエンジン　ImpalaやPresto
Hiveを高速化するのではなく、最初から対話型のクエリ実行だけに特化した

クエリエンジンも開発されており、「Apache Impala」注7と「Presto」注8の2つが代
表的です。

MapReduceやTezは長時間のバッチ処理を想定して、限りあるリソースを有
効活用するように設計されています。一方、対話型クエリエンジンでは、瞬間最
大速度を上げるためにあらゆるオーバーヘッドが排除されており、使えるリソースを
最大限に活用してクエリを実行します（図3.7）。その結果、対話型クエリエン
ジンはMPPデータベースと比べても遜色のない応答時間を実現しています。

Hadoopではこのように、性質の異なるクエリエンジンを目的によって使い分け
ます。大量の非構造化データを加工するような重いバッチ処理では、スループット
が高くてリソースを有効活用できるHiveを利用します。一方、そうして完成した構
造化データを対話的に集計したいときには、遅延の小さいImpalaやPrestoなど
が適しています。

Hadoopでは多数のクエリエンジンが開発されており注9、それらは総称して
「SQL-on-Hadoop」と呼ばれます。SQL-on-Hadoopは、どれもまだMPPデータ
ベースほどの長い歴史があるわけではなく、機能的に追いついていない点もありま
すが、分散ストレージに格納されたデータをすぐに集計できる点で優れています。

Spark　インメモリ型の高速なデータ処理

「Apache Spark」注10も、MapReduceよりも効率の良いデータ処理を実現す
るプロジェクトとして開発が進められています。Hadoopの延長線上にあるTezと
は異なり、SparkはHadoopとは別の独立したプロジェクトです。

Sparkの特徴は大量のメモリを活用して高速化を実現することです。
MapReduceが開発された時代には、処理すべきデータ量から比べると遙かに少
ないメモリしか使えなかったため、MapReduceはその処理の大半をディスクの読
み書きに費やしていました。これはTezも同様で、データ処理の過程で作られる中
間データは基本的にディスクへと書き出されます。

しかし、コンピュータで扱えるメモリの量が増えてくると、何でもディスクで読み書
きするのではなく、なるべく多くのデータをメモリに載せたままにしておいて、ディスク
には何も書かないという選択が現実的なものになります。その場合、コンピュータ
が異常停止すると途中まで処理した中間データは消えてしまいますが、そのときに
は処理をやり直して、失われた中間データをまた作れば良いというのがSparkの
考え方です（図3.8）。

MapReduceを置き換える　Sparkの位置付け
SparkはHadoopを置き換えるものではなく、MapReduceを置き換える存在

です。たとえば、分散ファイルシステムであるHDFSや、リソースマネージャである
YARNなどは、Sparkからでもそのまま利用できます。Hadoopを利用しない構成
も可能であり、分散ストレージとしてAmazon S3を利用したり、あるいは分散デー
タベースであるCassandraからデータを読み込んだりするようなことも可能です。

Sparkの実行にはJavaランタイムが必要ですが、Spark上で実行されるデータ
処理にはスクリプト言語が使えることも魅力です。標準でJava、Scala、
Python、そしてR言語に対応しており、ドキュメントも充実しているため導入しや
すくなっています。

Sparkでは、SQLでクエリを実行するための「Spark SQL」や、ストリーム処理を
実行するための「Spark Streaming」といった機能が最初から組み込まれていま
す。そのため大規模なバッチ処理だけでなく、SQLによる対話的なクエリ実行や、
リアルタイムのストリーム処理にまで広く利用されています。

note
Sparkの実行例については、以下の章で詳しく取り上げます。

・第7章　➡ノートブックとアドホック分析

注1　厳密には、JSONやXMLなどのフォーマットは「半構造化データ」（semi-structured

data）と呼ばれます。半構造化データに対して明示的にスキーマを定めることは可能

であり、すべてのJSONデータやXMLデータがスキーマレスというわけではありません。しか

し、本書では特に区別することは考えずに、すべてをスキーマレスデータとして扱います。

（本文に戻る）

注2　 URL https://orc.apache.org

（本文に戻る）

注3　 URL https://parquet.apache.org

（本文に戻る）

注4　 URL https://nutch.apache.org

（本文に戻る）

注5　 URL https://hive.apache.org

（本文に戻る）

注6　 URL https://tez.apache.org

https://orc.apache.org/
https://parquet.apache.org/
https://nutch.apache.org/
https://hive.apache.org/
https://tez.apache.org/

（本文に戻る）

注7　 URL https://impala.apache.org

（本文に戻る）

注8　 URL https://prestodb.io

（本文に戻る）

注9　Apacheプロジェクトに登録されているオープンソースソフトウェアだけでも、本書で取り

上げている「Apache Hive」「Apache Impala」「Spark SQL」の他、「Apache Drill」

「Apache HAWQ」「Apache Kylin」「Apache Phoenix」「Apache Tajo」などのプロ

ジェクトがあります。

（本文に戻る）

注10　 URL https://spark.apache.org

（本文に戻る）

https://impala.apache.org/
https://prestodb.io/
https://spark.apache.org/

3.2
クエリエンジン

SQL-on-Hadoopによるデータ処理の具体的な例として、本節では「Hive」
による構造化データの作成と、「Presto」による対話的なクエリの実行について
説明します。

データマート構築のパイプライン
Hadoopによる構造化データの作成と、それを用いたクエリの実行がどのような

ものであるのかを知るために、ここからは実際にクエリエンジンを用いてデータマート
を作るまでの流れを見ていきます。一つの例として、図3.9のようにHiveとPresto
を組み合わせたデータパイプラインを考えます。

まず最初に、分散ストレージに格納されたデータを構造化し、列指向のストレー
ジ形式で保存します（図3.9❶）。これは多数のテキストファイルを読み込んで
加工するという負荷の大きい処理になるため、Hiveを利用します。

そして完成した構造化データを結合、集約し、非正規化テーブルとしてデータマ
ートへと書き出します（図3.9❷）。列指向ストレージを用いたクエリの実行に
は、Prestoを使うことで実行時間を短縮できます。

Hiveで作成した各テーブルの情報は、Hiveメタストア（Hive metastore ）
と呼ばれる特別なデータベースに格納されます。これはHiveだけでなく、他のSQL-
on-Hadoopのクエリエンジンからも共通のテーブル情報として参照されます。

note

HiveメタストアやPrestoを使ったデータの集計は、以下の章で説明します。

・第7章　➡バッチ型のデータパイプライン

Hiveによる構造化データの作成
まずはHiveを使って構造化データを作成します。ここでは例として、第1章で作

成したアクセスログのCSVファイル（access_log.csv）を読み込みます。次のよう
に端末からHiveを起動し、CREATE EXERNAL TABLEで外部テーブル
（external table ）を定義します。

 Hiveを起動

 % hive

 ...

 外部テーブル「access_log_csv」を定義

 hive> CREATE EXTERNAL TABLE access_log_csv(

 > time string, request string, status int, bytes int

 >)

 > CSV形式であることを指定

 > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'

 > パスを指定（ディレクトリ内のすべてのファイルが読み込まれる）

 > STORED AS TEXTFILE LOCATION '/var/log/access_log/'

 > CSVのヘッダ行をスキップ

 > TBLPROPERTIES ('skip.header.line.count'='1');

 OK

 Time taken: 1.938 seconds

「外部テーブル」とはHiveの外にあるファイルを参照し、あたかもそこにテーブルが
存在するかのように読み込むための指定です。上記の例で
は、"access_log_csv"というテーブル名を参照してデータを取り出すことで、テキス
トファイルが読み込まれて構造化データへの変換が行われます。

HiveをはじめとするSQL-on-Hadoopのクエリエンジンの多くは、MPPデータベ
ースのようにデータを内部に取り込まずとも、テキストファイルをそのまま集計するこ
とができます。たとえば、次のようにクエリを実行すると、外部テーブルとして指定し
たパスに含まれるすべてのCSVファイルが読み込まれて集計されます。

 ステータスごとのレコード数を数える

 hive> SELECT status, count(*) cnt

 > FROM access_log_csv GROUP BY status LIMIT 2;

 ...

 OK

 200 1701534

 302 46573

 Time taken: 8.664 seconds, Fetched: 2 row(s)

このようにデータをその場で集計できる性質は、特にアドホックにデータを分析し
たいときには有用で、時間を掛けてデータを転送することなく知りたい情報を得ら
れます。

とはいえ、CSVファイルをそのまま集計するのは非効率です。クエリを走らせるた
びに毎回テキストを読むことになるので、とても高速とは言えません。上記の場
合、元データは200万レコードにも満たないにもかかわらず、集計には8秒以上掛

かっています。これではあまりにも遅いので、列指向ストレージへの変換を行いま
す。

列指向ストレージへの変換　データ集計の高速化（バッチ型クエリエンジン向け）
ここではテーブルを列指向のストレージ形式であるORC形式に変換します。

Hiveの場合、テーブルごとにストレージ形式を指定できます。次のように新しいテー
ブルを作成し、外部テーブルから読み込んだデータをすべて書き込みます。

 ORC形式のテーブル「access_log_orc」に変換

 hive> CREATE TABLE access_log_orc STORED AS ORC AS

 > SELECT cast(time AS timestamp) time,

 > request,

 > status,

 > cast(bytes AS bigint) bytes

 > FROM access_log_csv;

 OK

 Time taken: 15.993 seconds

 ORC形式のテーブルを集計する

 hive> SELECT status, count(*) cnt

 > FROM access_log_orc GROUP BY status LIMIT 2;

 ...

 OK

 200 1701534

 302 46573

 Time taken: 1.567 seconds, Fetched: 2 row(s)

ORC形式への変換にはやや時間が掛かりますが、変換後のテーブルの集計は
1.5秒にまで短縮されました。ファイルサイズも、元のCSVファイルと比べると10分
の1以下にまで小さくなります。このようにテキストデータを列指向ストレージに変換
することで、データの集計は大幅に高速化されます。しかし、その作成は時間の
掛かるプロセスなので、Hiveのようなバッチ型のクエリエンジンで実行するのに適し
ています。

上記のクエリでは、SELECT文で元データを型変換して新しいテーブルを作って
います。このクエリを書き換えることで、どのようなテーブルでも作成できます。第1
章で取り上げたように、テキストデータから正規表現を使ってカラムを抽出したり、
日時の書式を変換したりするくらいであれば、Hiveのクエリとして実行することも
可能です。

つまり、元データがテキストであれ、スキーマレスデータであれ、それがHiveから読
み込める形式であれば何であっても、クエリを少し書き換えるだけでどのようなテー
ブルでも作り出せます。これがHiveを用いたデータ構造化のプロセスとなります。

Hiveで非正規化テーブルを作成する
データの構造化が完了したら、次はデータマートの構築です。すなわち、テーブル

を結合、集約して「非正規化テーブル」を作ります。このとき、Prestoのような対
話型クエリエンジンを使うか、それともHiveのようなバッチ型のクエリエンジンを使
うかで考え方が変わります。

HiveとPrestoの違いについては後述しますが、時間の掛かるバッチ処理では
原則としてHiveを使うべきでしょう。たとえば、非正規化テーブルが数億レコードに

もなると、それをデータマートに書き出すだけでもかなりの時間を要します。そうする
と、クエリエンジン自体の性能は最終的な実行時間にはさほど影響しなくなりま
す。それならバッチ型のシステムを使うほうがリソースの利用効率を高められます。

非正規化テーブルの作成には何時間も掛かることも珍しくなく、なるべく効率
の良いクエリを書く必要があります。ここではHiveのクエリを改善する例として、
「サブクエリ内でレコード数を削減する」方法と「データの偏りを避ける」方法を説
明します。これらの最適化は、Hiveに限らず、ビッグデータを集計するときには常
に意識しておくことが大切です。

サブクエリ内でレコード数を削減する　早い段階でファクトテーブルを小さくする
HiveのクエリはSQLとよく似ていますが、その特性は一般的なRDBとはまったく

異なります。Hiveはデータベースではなく、データ処理のためのバッチ処理のしくみ
です。そのため、読み込まれるデータ量を気にしながらクエリを書かないと思うよう
に性能が出ず、悩まされることになります。

ここでは例として、リスト3.1❶のようなクエリを考えましょう。ファクトテーブル
（"access_log"）とディメンションテーブル（"users"）を結合し、WHEREで条
件を絞り込むだけの単純なクエリですが、このようなクエリを実行するのは非効率
です。ファクトテーブルを絞り込む条件が何もないので、このままではすべてのデータ
を読み込んでから結合し、その後でWHEREによる絞り込みを行うことになりま
す。

リスト3.1 　Hiveにおけるサブクエリの最適化

 ❶非効率なクエリの例

 テーブルを結合してからWHEREで絞り込む

 SELECT ...

 FROM access_log a

 JOIN users b ON b.id = a.user_id

 WHERE b.created_at = '2021-01-01'

 ❷より効率的なクエリの例

 SELECT ...

 FROM (

 最初に時間でファクトテーブルを絞り込む

 SELECT * access_log

 WHERE time >= TIMESTAMP '2021-01-01 00:00:00'

) a

 JOIN users b ON b.id = a.user_id

 WHERE b.created_at = '2021-01-01'

クエリエンジンが生成する実行プランは、利用するソフトウェアのバージョンやデータ量によって

も変わるため、実際にどのような書き方が良いかは実行してみなければわからない。思うよう

に性能が出ないときには、ログなどを見てどこで時間が掛かっているのかを確認する。

その結果、大量の中間データが生成され、そしてその大部分を捨てるという無
駄の大きな処理となります（図3.10）。データ量が少ないうちはそれでも問題に
なることはありませんが、長期に及ぶ大量のデータを集計するときには、ファクトテ
ーブルの大きさを無視することはできません。

基本的にはリスト3.1❷のように、サブクエリの中でファクトテーブルを小さくする
のが確実です。Hiveがクエリを最適化してくれる場合もあるので、サブクエリ化は
必ずしも必要ではありませんが、なるべく意識して「早い段階でファクトテーブルを
小さくする」ことがビッグデータの集計では大切です。

たとえば、最終的にGROUP BYでデータを集約したいのであれば、テーブルを結
合する前にサブクエリの中で集約しておけるかもしれません。データ量を削減して
からテーブルを結合する方が、クエリの実行時間は短くなるでしょう。

データの偏りを避ける　分散システムの性能発揮のために
高速化を妨げるもう一つの問題がデータの偏り（data skew 、データスキュ

ー）です。たとえば、分散システムでSELECT count(distinct ...)（以下、
distinct count）を実行するのは、他の処理と比べて時間が掛かります。重複
のない値を数えるにはデータを1ヵ所に集めなければならず、分散処理が難しくな
るためです。

少し複雑な例を考えます。アクセスログを集計することで、日々のユニークユー
ザー数の推移を知りたいとしましょう。これにはリスト3.2❶のようなクエリが考えら

れます。このクエリはdistinct countを使っていますが、実際にはそれほど遅くはな
りません。

リスト3.2 　Hiveにおけるdistinct countの高速化

 ❶非効率なクエリの例

 distinct countは分散されない

 SELECT date, count(distinct user_id) users

 FROM access_log GROUP BY date

 ❷より効率的なクエリの例

 SELECT date, count(*) users

 FROM (

 最初に重複をなくす

 SELECT DISTINCT date, user_id FROM access_log

) t

 GROUP BY date

distinct countは分散されずとも、GROUP BYによるグループ化は分散処理さ
れます。もし30日分のデータがあるとすれば、このクエリは最大で30分割されるの
で、十分に速く実行されます。ただし、それは1日あたりのデータ量がほぼ均等で
あることが条件です。もしもデータに偏りがあると問題が表面化します。

日付ではなく、Webページごとのユニークユーザー数を知りたいとしましょう。
Webページのアクセス数には大きな偏りがあり、1つのページだけが他の100倍ア
クセスされていてもおかしくありません。そうすると、そのページに対するdistinct

countだけが極端に遅くなり、全体としてクエリの実行時間が伸びることになりま
す。これがデータの偏りの問題です。

分散システムの性能を発揮するには、こうしたデータの偏りをなるべくなくして、
すべてのノードに均等にデータが分散されるようにしなければなりません。この例で
あれば、リスト3.2❷のようにSELECT DISTINCTで重複をなくすことで、負荷をう
まく分散しながらデータ量を削減できます。

同じようにデータの偏りを起こしやすい構文として、テーブルの結合やORDER
BYによる並べ替えなどがあります。これらの構文も一部のノードにデータが集中す
ることによって偏りが発生します。

Tip　ベストプラクティス

一般に陥りやすい問題とその回避方法をまとめた文書として、大抵のクエリエンジン

で「ベストプラクティス」や「クエリ最適化」といったドキュメントが用意されています。新し

いシステムを使うときには必ず目を通すようにしましょう。

対話型クエリエンジンPrestoのしくみ　Prestoで構造化データを集計す
る

Hiveのようなバッチ型のクエリエンジンは、大量の出力を伴う大規模なデータ
処理には適していますが、小さなクエリを何度も実行するような対話型のデータ
処理には向いていません。クエリ実行の遅延を小さくすることを目的として開発さ
れいるのが「対話型クエリエンジン」です。

この分野でよく参照される技術は、2010年にGoogleから発表された
「Dremel」注11です。DremelはGoogle BigQueryの中核となる技術の一つで、
何千ものコンピュータに分散した列指向ストレージを用いて集計を高速化します。

現在ではHadoopと組み合わせて利用できる類似のソフトウェアがいくつも開
発されており、Hiveに代わる対話型クエリエンジンとして利用されるようになりまし
た（表3.2）。

ここでは例として、2013年末にFacebookからリリースされた「Presto」について
見ていきます。Prestoは本書執筆時点でもまだバージョン1.0がリリースされていな
いものの、2016年にはAmazon Web Servicesにも組み込まれるなど注12、すで
に多数のプロジェクトで利用されています。

プラグイン可能なストレージ　1つのクエリの中から複数のデータソースに接続可能
Prestoの一つの特徴が「プラグイン可能なストレージ設計」です。一般的な

MPPデータベースでは、ストレージと計算ノードとは密に結合されており、最初にデ
ータをロードしなければ集計を始めることができません。一方、Prestoは専用のス
トレージというものを持たず、Hiveと同様にさまざまなデータソースから直接データを
読み込みます（図3.11）。

※出典：「Presto | Overview」 URL https://prestodb.io/overview.html

PrestoではHiveメタストアに登録されたテーブルも読み込めます。そのため
Hiveで作成した構造化データをさらに集計するといった目的に適しています。
CSVのようなテキストデータをPrestoで読み込むことも可能ですが、その場合は
Hiveと比べて特別優れているわけでもありません。Prestoがその性能を最大限
に発揮するには、元となるストレージが列指向のデータ構造になっている必要があ
ります。

PrestoはとりわけORC形式の読み込みに最適化されており注13、それをスケー
ラビリティの高い分散ストレージに配置することで最大の性能を発揮します。デー
タの読み込みを高速化するには、Prestoクラスタは分散ストレージとネットワーク

https://prestodb.io/overview.html

的に近い場所に設置した上で、それらを可能な限り高速なネットワークで結ぶよ
うにします。

PrestoではHiveメタストア以外にも、さまざまなデータソースをテーブルとして参
照できます。たとえば、1つのクエリの中で、分散ストレージ上のファクトテーブルと、
MySQLのマスタテーブルを結合することも可能です。CassandraのようなNoSQL
データベースに格納されたデータを集計したいときにもPrestoが役立ちます。

CPU処理の最適化　読み込みもコードも並列実行
PrestoはSQLの実行に特化したシステムで、クエリを解析して最適な実行プラ

ンを生成し、それをJavaのバイトコードに変換します。バイトコードはPrestoのワーカ
ーノードに配布され、それがランタイムシステムによってマシンコードにまでコンパイル
されます。

コードの実行はマルチスレッド化され、1台のマシンで何百ものタスクが並列実
行されます。列指向ストレージからの読み込みも並列化され、データが届くたびに
処理が進みます。そのためPrestoのCPU利用効率は高く、メモリとCPUリソース
さえ十分にあるなら、データの読み込み速度がクエリの実行時間を決めることに
なります。

本書執筆の時点では、PrestoはYARNやMesosのような汎用のリソースマネ
ージャを使うようにはなっていません。PrestoクラスタはPrestoのためだけに常に待
機しており、クエリの実行にコンピュータの全リソースを使います。リソースが不足す
ると、後から実行されたクエリは先のクエリが終了するまで待たされます。そうする
と遅延が発生するので、Prestoクラスタは常に余裕のある状態でなければなりま
せん。

Prestoのクエリは一度実行が始まると割り込めないため、あまりに大きなクエ
リを走らせるべきではありません。そのクエリに大部分のリソースを持っていかれて、

他のクエリを実行できなくなる恐れがあります。とは言え、大部分のクエリは短時
間で終了してリソースが解放されるので、よほどのことがなければ問題に気づくこと
もありません。

Tip　Prestoのリソース管理

Prestoでも優先順位付きのスケジューリング機能の開発は進められています。いず

れは商用MPPデータベースと同等の高度なリソース管理を行えるようになるかもしれま

せん。

・「Resource Group Configuration」

URL https://prestodb.io/docs/current/admin/resource-groups.html

インメモリ処理による高速化　クエリ実行には極力、対話型クエリエンジンを
Hiveとは異なり、Prestoはクエリの実行過程でディスクへの書き込みを行いま

せん。すべてのデータ処理をメモリ上で行い、メモリが不足すると空きができるまで
待たされるか、あるいはエラーとなって失敗します。その場合は設定変更などでメ
モリの割り当てを増やすか、あるいはクエリを書き換えてメモリ消費を減らす必要
があります。

扱うデータ量がいくら増えても、それに比例してメモリ消費が増えるわけではあ
りません。たとえば、GROUP BYによるデータの集約は、ただの繰り返し処理なの
でメモリ消費量はほぼ固定です。今や多くのデータ処理は、コンピュータを数十台
も並べればメモリ上で実行できることが多くなり、メモリを増設するのも難しいこと
ではありません。ほとんどのクエリにとって、中間データをディスクに書くのは無駄な
オーバーヘッドにしかならなくなっています。

https://prestodb.io/docs/current/admin/resource-groups.html

そうするとメモリ上でできることはメモリ上で実行し、どうしてもディスクを必要と
する一部のデータ処理だけをHiveなどに任せる方が効果的です。何時間も掛か
るような大規模なバッチ処理や、巨大なテーブル同士の結合などにはディスクを
活用するのが間違いありませんが、それ以外の短時間のクエリ実行には対話型
クエリエンジンを使うのが効率的です。

分散結合とブロードキャスト結合
テーブルの結合はしばしば大量のメモリを消費します。特に2つのファクトテーブ

ルを結合するような場合には、非常に多くの結合キーをメモリ上に保持し続けな
ければなりません。Prestoは初期設定では分散結合（distributed join ）を
行うようになっており、同じキーを持つデータは同じノードに集められます（図
3.12）。

分散結合ではノード間のデータ転送のためにネットワーク通信が発生し、少な
からずクエリの遅延を招きます。片方のテーブルが十分に小さい場合には、ブロー

ドキャスト結合（broadcast join ）を有効にすることで、処理を大幅に高速化
できる可能性があります。この場合、結合されるテーブルの全データが各ノードにコ
ピーされます（図3.13）。

スタースキーマのように、1つのファクトテーブルに複数のディメンションテーブルを結
合するケースでは、ディメンションテーブルはメモリに十分収まるくらいに小さいこと
がほとんどです。したがって、最初に一度だけコピーを済ませてしまえば、ファクトテ
ーブルを再配置する必要もなくなり、テーブルの結合はずっと速くなります。

Prestoでブロードキャスト結合を有効にするには、分散結合の方法を明示的
に指定します注14。さらにクエリの中のSELECT文で、最初にファクトテーブルを指
定して、それにディメンションテーブルを結合する必要があります。

列指向ストレージの集計　Prestoによる高速集計
以上のようなしくみによって、Prestoでは列指向ストレージの集計を極めて高

速に実行できます。実際にORC形式のテーブルを読み込んでみると、数百万レコ
ード程度のデータ量なら1秒未満で集計できることが確認できます。

 Prestoを起動（Hiveメタストアを利用）

 % presto --catalog hive --schema default

 ORC形式のテーブルを集計

 presto:default> SELECT status, count(*) cnt

 -> FROM access_log_orc GROUP BY status LIMIT 2;

 status | cnt

 --------+---------

 200 | 1701534

 302 | 46573

 (2 rows)

 Query 20170520_152030_00005_u8m9e, FINISHED, 1 node

 Splits: 50 total, 50 done (100.00%)

 0:00 [1.89M rows, 7.96MB] [4.85M rows/s, 20.4MB/s]

データ分析のフレームワークを選択する　MPPデータベース、Hive、
Presto、Spark

以上でテキストデータを構造化し、対話的に集計するまでの基本的な流れが
できました。後はこれを多数のコンピュータに展開すれば、ビッグデータを集計する
ための最低限の準備は整います。

実際の運用では、自分でデータセンターにサーバーを設置することから始めるの
ではなく、既存のクラウドサービスなどを利用してシステムを構築することが多いか
もしれません。Amazon Redshiftなどのデータウェアハウスサービスを利用する場
合もあるでしょう。そのため、本書では具体的なシステム構築の手順は説明しま
せんが、数ある選択肢の中から何を選べば良いのかを少し考えてみます。

MPPデータベース　完成した非正規化テーブルの高速集計に向いている
構造化データをSQLで集計するだけであれば、従来からのデータウェアハウス製

品やクラウドサービスを利用するのが一番です。機能的にも性能的にも、あるい
はシステムの安定性を考えてみても、Hadoopを中心とするビッグデータの技術は
データウェアハウス製品の後を追っている状態であり、それに勝るものではありませ
ん。

MPPデータベースはストレージと計算ノードが一体化しており、最初にETLプロセ
スなどでデータを取り込む手順が必要です。その部分さえ完成すれば、後はSQL
だけでデータを集計できるので、本章で取り上げる技術はどれも必要ありません。

一方で、拡張性や柔軟性といった点では分散システムの方が有利です。大
量のテキスト処理が必要な場合や、データ処理をプログラミングしたい場合、ある
いはNoSQLデータベースに格納されたデータを集計したい場合などには、分散シ
ステムのフレームワークを組み合わせることになるでしょう。

可視化のためのデータマートとして考えるなら、MPPデータベースは有力な選択
肢です。BIツールとMPPデータベースとの組み合わせには長年の実績があり、完
成した非正規化テーブルを高速に集計するのに最適です。

Hive　データ量に左右されないクエリエンジン
Hadoop上の分散アプリケーションは、元々高いスケーラビリティと障害耐性を

目標に設計されています。何千台ものハードウェアを利用するのが前提となるの
で、その一部で障害が発生することは日常的であり、それでも全体としては処理
を続けられるようにシステムが構築されます。

Hiveはその延長で開発されたクエリエンジンであり、大規模なバッチ処理を着
実に実行するという点で実績があります。特にテキストデータを加工したり、列指

向ストレージを作ったりするといった重い処理は、どうしても処理時間が長くなる
傾向にあり、Hiveで実行するのに向いています。

Tezの登場によって、Hiveは対話的なクエリでも使われるようになってきていま
す。しかしHiveの利点は対話性というよりも、その安定性にあると言えるでしょ
う。TezはMapReduceを置き換えるものなので、その障害耐性を引き継いでいま
す。Hive on Tezも同様で、中間データは今もディスクに保存される設計となって
いるようです注15。

分散システムのトレンドはインメモリのデータ処理へと移っており、Hiveが必要と
されるケースは少なくなってきていますが、データ量に左右されないクエリエンジンが
求められる場合には一つの選択肢となります。

Presto　速度重視＆対話型特化のクエリエンジン
PrestoはHiveの対極を行くクエリエンジンで、速度のためにさまざまなものを犠

牲にしています。クエリの実行中に障害が起きるとエラーになって最初からやり直
しです。メモリが不足するとクエリを実行できない場合もあります。しかし、元々実
行が十分に速いので、エラーになったらやり直せば良いと割り切って使います。

Prestoはウィンドウ関数をはじめとする標準SQLに準拠しており、日常的なデ
ータ分析のために頻繁に利用するクエリエンジンです。Hadoopだけでなく、
MySQLやCassandra、MongoDBなど多くのデータストアに対応しており、あらゆ
るデータをSQLで集計するための中心的な存在になり得ます。

Prestoは対話的なクエリの実行に特化しているため、テキスト処理が中心と
なるETLプロセスやデータの構造化には向いていません。列指向ストレージの作成
に使えないわけではありませんが、それに適しているということもありません。データ
の構造化にはHiveやSparkを使う方が良いでしょう。

Prestoのクエリは短時間に大量のリソースを消費するため、あまり無茶な使い
方をすると他のクエリを実行できなくなります。時間の掛かるバッチ処理はHiveに
任せるかクラスタを分けるなどして、Prestoは対話的なクエリのために余裕を持た
せておく方が良いでしょう。

Spark　分散システムを使ったプログラミング環境
SparkはSQLに特化したクエリエンジンではありませんが、ここでは比較のために

取り上げます。Databricksによる2016年の調査注16によると、Sparkユーザーの
約4割はSpark SQLを利用しているとのことなので、これを主力のクエリエンジンと
している人も多いでしょう。

Sparkもインメモリのデータ処理が中心であり、Prestoと同様に対話的なクエ
リの実行に適しています。しかし、Sparkの利点はSQLというよりも、ETLプロセス
からSQLに至るまでの一連の流れを、一つのデータパイプラインとして記述できるこ
とにあります。

本節では、Hiveによるデータの構造化と、PrestoによるSQLの実行について説
明しましたが、Sparkではその両方を1つのスクリプトの中から実行できます。つま
り、テキストデータを読み込んで列指向ストレージに変換し、それをさらにSQLで集
計して結果を書き出す、などといった一連のプロセスを1回のデータ処理として記
述できるようになります。

Sparkは分散システムを使ったプログラミング環境なので、一度使い方を覚え
てしまえば、ETLプロセスだろうと機械学習だろうと、あらゆるデータ処理に利用で
きます。これはデータエンジニアや、プログラミングスキルの高いデータサイエンティス
トにとって強力な武器となります。

Sparkではメモリをどう管理するかが重要です。何度も利用するデータはキャッ
シュに載せたり、あるいはディスクに退避させることでメモリを解放したりして、メモ

リの使い方をプログラマーがある程度コントロールできます。これはプログラムを書く
人間にとっては普通のことですが、データ分析の環境としてはやや難易度の高い
作業となるかもしれません。

データ処理を一種のプログラミングと考えて、そのための実行環境が欲しいので
あれば、Sparkは一つの選択肢となります。一方、SQLを使いたいだけであれば、
最初からSQLに特化したクエリエンジンやMPPデータベースを使った方が簡単で
す。

Column

Mesosによるリソース管理

分散システムで利用されるリソースマネージャはYARNだけでなく、「Apache Mesos」
注aも人気を集めています。MesosはOSレベルの仮想化技術を用いており、分散アプ

リケーションを隔離するために厳密なリソース制御を行います。技術的にはDockerと同

じくLinuxのコンテナ技術が用いられ、Dockerイメージを用いてプログラムを実行すること

も可能です。

たとえば「このプログラムをCPU 2コア、4GBのメモリで実行したい」と頼むと、Mesos

はクラスタの中にそのとおりのリソースを確保してアプリケーションに渡します。イメージとし

ては、リクエストのたびにOSの仮想環境が作られるような感じでしょうか。

それではMesosの方がYARNよりも優れているかと言うと、そうとも限りません。

YARNはHDFSと連携することで、データがどこにあるかという情報を用いてアプリケーシ

ョンを実行します。Hiveのような大規模なバッチ処理は、なるべくデータの近くで実行す

る方が効率が良いので、YARNを用いるのが適しています。MesosはHDFSのことを知

らないので、同じことを実現するには利用者が工夫しなければなりません。

Sparkなどの一部のフレームワークでは、YARNとMesosの両方がサポートされていま

す。既存のHadoopクラスタやMesosクラスタがあるなら、そこから自分の望むだけのリ

ソースを借りてきて分散アプリケーションを実行する、といったことも可能となります。

注a　 URL https://mesos.apache.org

（本文に戻る）

注11　「Dremel: Interactive Analysis of Web-Scale Datasets」

URL https://research.google/pubs/pub36632/

（本文に戻る）

https://mesos.apache.org/
https://research.google/pubs/pub36632/

注12　「Amazon Athena-Amazon S3上のデータに対話的にSQLクエリを」 URL

https://aws.amazon.com/jp/blogs/news/amazon-athena-interactive-sql-

queries-for-data-in-amazon-s3/

（本文に戻る）

注13　「Even faster: Data at the speed of Presto ORC」 URL

https://engineering.fb.com/2015/03/17/core-data/even-faster-data-at-

the-speed-of-presto-orc/

（本文に戻る）

注14　「Properties Reference - join-distribution-type」

URL https://prestodb.io/docs/current/admin/properties.html

（本文に戻る）

注15　 URL https://cwiki.apache.org/confluence/display/Hive/Hive+on+Tez/

（本文に戻る）

注16　「Apache Spark Survey 2016 Results Now Available」

URL https://databricks.com/blog/2016/09/27/spark-survey-2016-

released.html

（本文に戻る）

https://aws.amazon.com/jp/blogs/news/amazon-athena-interactive-sql-queries-for-data-in-amazon-s3/
https://engineering.fb.com/2015/03/17/core-data/even-faster-data-at-the-speed-of-presto-orc/
https://prestodb.io/docs/current/admin/properties.html
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Tez/
https://databricks.com/blog/2016/09/27/spark-survey-2016-released.html

3.3
データマートの構築

分散システムを準備できたら、可視化のためのデータマートを作る手順に入り
ます。本節ではその過程で必要となる各種のテーブルの役割と、非正規化テー
ブルを作るまでの流れを説明します。

ファクトテーブル　時系列データを蓄積する

ビッグデータの分析はデータを構造化するところから始まりますが、その中でも圧
倒的に大部分を占めるのがファクトテーブルです。ファクトテーブルが十分に小さけ
ればメモリに載せることもできますが、そうでなければ列指向ストレージでデータを
圧縮しなければ高速な集計は行えません。

ファクトテーブルの作成には、追記（append ）と置換（replace ）の2つの
方法があります。追記は新しく届いたデータだけを差分で追加します。一方、置
換は過去のデータを含めてテーブル全体を置き換えます（図3.14）。

テーブルパーティショニング　物理的なパーティションに分割
効率だけを考えると追記が圧倒的に有利です。しかし、追記には次のような

潜在的な問題があります。

・追記に失敗して気づかずにいると、ファクトテーブルの一部が欠損する

・追記を間違って複数回実行すると、ファクトテーブルの一部が重複する

・後からファクトテーブルを作り直したくなった場合の管理が複雑になる

こうした問題が起きる可能性を軽減するには、テーブルパーティショニング
（table partitioning ）と呼ばれる手法が有効です。これは1つのテーブルを複
数の物理的なパーティションに分割することで、パーティション単位でまとめてデータ
を書き込んだり削除したりできるようにするものです。

典型的には1日に1回、あるいは1時間に1回といった頻度で新しいパーティショ
ンを作成し、それをファクトテーブルに付け加えます。各パーティションは毎回置換
するようにして、もしすでに存在するなら上書きします。そうしてデータが重複する
可能性を排除しながら、必要に応じて何度でもデータの書き込みをやり直せるよ
うにします（図3.15）。

データマートの置換
テーブルパーティショニングはデータウェアハウスを構築するのには有用ですが、デ

ータマートを作る場合には、単純にファクトテーブルを置換することが多いかもしれ
ません。データマートのデータ量は限られているため、よほど巨大なテーブルを作るの
でもない限りは、毎回置換するのも難しくありません。たとえば、日次レポートのた
めに過去30日分のデータを毎日取り出して置き換える、などです。

ファクトテーブル全体を置換することには多くの利点があります。まず、途中でデ
ータが重複したり欠損したりする可能性はまずありません。テーブルを最初から作
り直したくなったとしても、クエリを1回実行するだけで済みます。スキーマの変更な
どにも柔軟に対応できます。古いデータは自動的に消えていくので、データマートが
拡大し続けることもありません。

唯一懸念されるのは処理時間です。あまりにもデータ量が多いと書き込みに
時間が掛かるため、現実的な選択でなくなります。MPPデータベースであれば、
書き込みを並列化することである程度は高速化できます。それでも時間が掛か

り過ぎる場合には、データマート側でもテーブルパーティショニングを行うか、あるい
は既存のテーブルに追記した上で注意深く見守ることになります。

一つのデータ処理にどれくらいの時間が掛かるかは、ビッグデータのパイプライン
を考える上で一つの指標となります。目安は、各データ処理が1時間以内に完
了するようにワークフローを組むことです。1時間足らずでファクトテーブルを作れる
なら毎回置換すれば十分です。それが難しい場合にのみ、追記を用いたワークフ
ローを考えるようにします。

Tip　データ量を最初に見積もる
大量のデータを書き出すときには、最初に集計期間を十分に小さく絞り込んで、ど

れくらいの時間が掛かるか確かめましょう。いきなり1年分のデータを処理したりすると、

想像以上に時間が掛かっていつ終わるのかも予想がつかなくなったり、途中でディスク

が溢れて失敗したりということにもなりかねません。

サマリーテーブル　レコード数を削減する

ファクトテーブルをある程度まとめて集約することで、データ量は大幅に削減され
ます。これをサマリーテーブル（summary table ）と呼びます。とりわけデータを1
日単位で集計した日次サマリー（daily summary ）は、日々のレポートを作
成する過程でよく用いられます（図3.16）。日次サマリーをうまく作れば、元デー
タがどれほど大量にあってもデータマートはそれほど大きくはなりません。

サマリーテーブルを作るには、必要なカラムを選んで数値データを集約するだけ
です。図3.17は、Hiveを用いて日次のサマリーを作成したところです。このようにテ
ーブルの集約によって生成されるレコード数は、カラムの値の組み合わせの数によ
って決まるため、実際にどれくらい小さくなるかは実行してみるまでわかりません。

図3.17　　日次サマリーを作成する

 1日ごとのアクセス数とバイト数を集計する

 hive> CREATE TABLE access_summary STORED AS ORC AS

 > SELECT time, status ディメンション

 > count(*) count, sum(bytes) bytes メジャー

 > FROM (

 > "time"を日付で切り捨て

 > SELECT cast(substr(time, 1, 10) AS date) time, status, bytes

 > FROM access_log_orc

 > 集計範囲を絞り込む

 > WHERE time BETWEEN '1995-07-10' AND '1995-07-20'

 >) t

 > GROUP BY time, status ディメンションでグループ化

 > ;

 ...

 Time taken: 4.231 seconds

 51レコードにまで削減された

 hive> SELECT * FROM access_summary;

 OK

 1995-07-10 200 65970 1.376570168E9

 1995-07-10 302 1472 101439.0

 ...

 1995-07-19 404 639 0.0

 Time taken: 0.124 seconds, Fetched: 51 row(s)

各カラムが取る値の数の大きさをカーディナリティ（cardinality ）と呼びま
す。「性別」のように取り得る値が少ないものはカーディナリティが小さく、「IPアドレ
ス」のように多数の値があるものはカーディナリティが大きくなります。

サマリーテーブルを小さくするには、すべてのカラムのカーディナリティを小さくしな
ければなりません。IPアドレスのように多数の値があるものは、それを位置情報
（国や地域など）に変換するなどして、カーディナリティを下げる工夫をしないと
レコード数は減らせません。

カーディナリティを無理に下げると、元々あった情報が大きく失われるため、必
要以上に減らす必要はありません。最終的なレコード数が数億件くらいに収まる

なら、何も集約せずにMPPデータベースに書き出しても良いでしょう。しかし、それ
以上のデータ量は可視化の効率を下げるので、うまくバランスを考えてやることが
必要です。

スナップショットテーブル　マスタの状態を記録する

マスタデータのように更新される可能性のあるテーブルに対しては、二つの考え
方があります。一つは定期的にテーブルを丸ごと保存する方法で、これをスナップ
ショットテーブル（snapshot table ）と呼びます。もう一つは変更内容だけを保
存する方法で、これを履歴テーブル（history table 、後述）と呼びます。

後々のデータ分析のことを考えると、スナップショットテーブルの方が扱いが簡単
です。マスタテーブルのレコード数が多いとスナップショットテーブルは巨大になります
が、そのためのビッグデータの技術なので、ここでは気にしないでおきましょう。スナッ
プショットテーブルは時間と共に大きくなるので、これも一種のファクトテーブルとし
て扱います。

Column

サマリーテーブルからの数値計算に注意

サマリーテーブルの作成は、多次元モデルからディメンションを削減する（次元を減ら

す）のと同じ効果があります（図C3.1）。ディメンションが少なくなると、それだけ分析

できる内容は減りますが、メジャーとして計算される結果に変わりはありません。なるべ

く最初に不要なディメンションを取り除くことでデータマートが小さくなり、その後の可視

化が高速化されます。

ただし、すべてのメジャーが同じように計算されるわけではないので注意が必要です。

たとえば、平均値（avg）はサマリーテーブルを使うとうまく計算できません。「平均の

平均」は「全体の平均」とは異なる、という問題です。サマリーテーブルから正しい平均

を出すためには、合計値（sum）と個数（count）をそれぞれメジャーに含めた上

で、BIツールなどで動的に平均値を計算する必要があります（計算フィールドなどと呼

ばれる）。

ユニーク数のカウントもサマリーテーブルでは扱いにくい数値です。たとえば、日次のユ

ニークユーザー数から月次のユニークユーザー数を算出することはどうやってもできません。

BIツールでユニークユーザー数を正しく出すには、SELECT DISTINCTを使って重複を取

り除いた小さなテーブルを作っておく必要があります。

Column

スナップショットの日付に注意

スナップショットの日付には注意が必要です。ここでは例として、深夜0時にスナップ

ショットを取得すると考えましょう。つまり、1日の始まりの状態を記録するようにします。

これをトランザクションデータと結合すると図C3.2のようになります。トランザクションデ

ータの集計ではよく時間を切り捨てます。たとえば、1月1日から1月2日までに発生した

イベントであれば、1月1日の集計結果となります。しかし、その日に発生したイベントの

マスタデータは、0時時点のスナップショットにはまだ含まれません。この時間差を考慮し

ないままテーブルを結合すると、「サインアップ当日のユーザー情報が得られない」などと

いったことが起こります。

この種の問題を回避するには、スナップショットは1日の始まりにではなく、1日の終

わりに取得すると考えるのも一つの方法です。たとえば、「1月1日の終わり」として1月

1日23時59分、あるいは1月2日0時0分の状態を記録します。そうするとスナップショッ

トとトランザクションが同じ時間範囲を意味するようになるので、直感的なテーブルの結

合が可能となります。

スナップショットテーブルは、別のファクトテーブルと結合することで、ディメンション
テーブルとしても使えます。次のようにスナップショットの日付を指定することで、過
去のマスタテーブルをいつでも参照できます。

 2021-01-01時点のマスタを参照

 WITH users AS (

 SELECT * FROM users_snapshot WHERE date = '2021-01-01'

)

 ファクトテーブルとマスタを結合

 SELECT ... FROM fact_table f

 JOIN users u ON u.id = f.user_id

あるいはファクトテーブルとスナップショットテーブルとを日付を含めて結合するこ
ともあります。これは日々変化するマスタ情報を用いてデータを分析したいときに
有効です。たとえば、顧客情報として会員ステータスが含まれており、それが時間
と共に変化しているとしましょう。会員ステータスに応じてデータを分析するには、
最新のマスタテーブルを見るだけでは不十分であり、スナップショットテーブルとの
結合が必要となります。

 日付を含めてスナップショットと結合

 SELECT ... FROM fact_table f

 JOIN users_snapshot u ON u.id = f.user_id AND u.date = f.date

スナップショットはある時点のテーブルの状態を記録したものなので、後から作
り直すことができません。そのためスナップショットテーブルは、データレイクやデータウ
ェアハウスのような永続的なストレージに格納し、消さないように気を付けます。

Tip　スナップショット時に非正規化する
正規化されたデータベースでは、マスタ情報が多数のテーブルから構成されることも珍

しくありません。それらのテーブルを一つ一つスナップショットするのではなく、あらかじめす

べてのテーブルを結合して非正規化した状態でスナップショットしてもかまいません。デー

タを分析するときには最終的にすべてのテーブルを結合することになるので、最初から非

正規化されている方が楽になります。

履歴テーブル　マスタの変化を記録する

定期的にすべてのデータをスナップショットするのではなく、変更のあったデータだ
けを差分でスナップショットする場合や、変更があるたびにその内容を記録した履
歴テーブルが作られる場合もあります。こうしたテーブルはデータ量を減らすのには
役立ちますが、ある瞬間の完全なマスタテーブルを後から復元することが難しくな
るので、ディメンションテーブルとしては使いづらくなります。

それでも履歴からマスタテーブルを復元したいときには、次のようなクエリを実行
します。

 SELECT * FROM (

 SELECT *,

 "user_id"ごとに最新のレコードを1として連番を付ける

 ROW_NUMBER() OVER (PARTITION BY user_id ORDER BY date DESC)

number

 FROM users_history

 直近の365日分のデータを対象とする

 WHERE date >= current_date() - INTERVAL '365' DAYS

) t

 番号が1（=最新）のものだけを採用する

 WHERE number = 1

ここでは履歴を過去365日まで遡って、その中から最新のレコードだけを選択す
ることで、マスタテーブルに近いものを再構築しています。しかし、このような複雑な
処理を後から実行するくらいなら、最初から完全なスナップショットを作っておく方
がよほど簡単です。マスタ関係のテーブルは、基本的に毎日スナップショットするも
のとして考える方が良いでしょう。

［最終ステップ］ディメンションを追加して非正規化テーブルを完成
させる
最後のステップとして、ファクトテーブルとディメンションテーブルを結合して非正

規化テーブルを作ります。ディメンションテーブルとしてはスナップショットを用いるだ
けでなく、目的に応じて各種の中間テーブルが作られます。

たとえば、Webサイトのアクセス解析であれば、セッションIDを用いてユーザーの
動向を分析したいと思うでしょう。例として、セッションごとの「初回アクセス時間」
と「最終アクセス時間」をまとめましょう。これをアクセスログと結合することで、初
回アクセスからの経過日数などがわかります。

 セッション情報を格納したテーブル「sessions」を作成

 CREATE TABLE sessions AS

 SELECT session_id,

 min(time) AS min_time, 初回アクセス時間

 max(time) AS max_time 最終アクセス時間

 FROM access_log GROUP BY session_id

セッションIDは、そのままではカーディナリティが非常に大きく、テーブルを集約し
ても小さくならないばかりか、可視化するのもままなりません。そこでもっとカーディ
ナリティの小さなディメンションを作って結合し、可視化に必要のないカラムはなる
べく取り除きます。それによって可視化しやすく、データ量の少ない非正規化テー
ブルが完成します（図3.18）。

データ集約の基本形

データを集約するための典型的なクエリをまとめると、リスト3.3のようになりま
す。まず最初に、ファクトテーブルから必要なデータを取り出します。このとき時間に
よる絞り込みや、参照するカラム数を減らすことでデータの読み込みが高速化さ
れます。

リスト3.3　SQLによるデータ集約の例（Presto）

 クエリの結果はデータマートに書き出す（またはCSVとして保存）

 SELECT

 -- ディメンション

 date_trunc('day', a.time) time, 1日単位でグループ化

 -- 追加のディメンション

 date_diff('day', b.min_time, a.time) days, 訪問からの日数

 -- メジャー

 count(*) count

 FROM (

 ❶ファクトテーブルから必要なカラムだけを取り出す

 SELECT time, session_id FROM access_log

 まず集計期間を絞り込む

 WHERE time BETWEEN TIMESTAMP '2021-01-01' AND TIMESTAMP '2022-

01-01'

) a

 ❷ディメンションテーブルと結合

 JOIN sessions b ON b.session_id = a.session_id

 ❸グループ化

 GROUP BY 1, 2

続けて、それをディメンションテーブルと結合し、データマートに格納したいカラム
を選びます。このとき、なるべくカーディナリティを小さくすることが重要です。セッシ
ョンIDのように多数の値を持つものを出力に含めることは避けて、可視化のプロ
セスで利用したいディメンションだけを追加するようにします。

そして最後に、グループ化してメジャーの値を集約します。これで十分に小さい
非正規化テーブルが作られるので、後はその結果をデータマートに書き出すか、あ
るいはCSVファイルとして保存すれば完了です。

3.4
まとめ

本章では可視化に適したデータマートを構築することを目的に、分散システム
によるデータ処理の基本的な流れについて説明しました。ビッグデータの世界で
は、そのままではデータウェアハウスに取り込めないテキストファイルなどの非構造
化データ、あるいはスキーマレスデータなどを扱うことも多く、そのようなデータを多
数のコンピュータで分散処理するしくみが求められます。

中でもHadoopとSparkの2つは分散処理のフレームワークとして広く利用さ
れています。Hadoopは分散ファイルシステムからリソースマネージャ、そして
MapReduceによる分散データ処理に至るまでの総合的なコンポーネントを提
供し、多くの分散アプリケーションの共通プラットフォームとして利用されます。一
方、Sparkは大量のメモリを活用した高速なデータ処理の基盤となり、
MapReduceに代わる分散プログラミング環境として使われます。

HadoopやSparkを活用してSQLを実行するための「SQL-on-Hadoop」と
呼ばれるソフトウェアも多数開発されています。Hiveはディスク上で大量のデータ
処理を行うため、大規模なバッチ処理に適しています。一方、Prestoはメモリ
上での高速な集計に特化しており、対話的なクエリ実行に適しています。SQL-
on-Hadoopだけでなく、従来からあるMPPデータベースなども適材適所で使い
分けながらビッグデータの集計は行われます。
データの構造化さえできてしまえば、後はデータウェアハウスと同じ考え方でデー

タマートを構築できます。最初にファクトテーブルやディメンションテーブルを用意し
て、それらを結合、集約しながら可視化に適した非正規化テーブルを作ります。
ディメンションとして使うようなデータは、普段から定期的にスナップショットして履

歴を蓄えておくようにします。最終的にディメンションのカーディナリティが小さくな
るようにさえ工夫すれば、非正規化テーブルは十分に小さく集約可能です。

本章ではデータを収集し、分散ストレージへと格納するまでのプロセスを見て
いきます。
4.1節では「バルク型」と「ストリーミング型」のデータ転送について説明します。

集めたデータを分散ストレージへと格納するプロセスを「データインジェスション」と
呼び、その過程で処理のしやすい均質なデータを作ります。
4.2節では、ストリーミング型のデータ転送である「メッセージ配送」のしくみと、

その注意点を説明します。メッセージ配送のシステムでは、性能を優先するため
に「信頼性」が犠牲になる場合があります。
4.3節では、メッセージ配送における「プロセス時間」と「イベント時間」の区別

について説明します。イベント時間を考慮してデータを集計するときには、「述語
プッシュダウン」などの最適化を考慮してストレージを構築します。
4.4節では、いくつかの「NoSQLデータベース」の性質と使い分けについて取り

上げます。NoSQLデータベースは、それ単体では高度な集計機能を持たないも
のが多いため、クエリエンジンと組み合わせる形でデータ分析します。

4.1
バルク型とストリーミング型のデータ収集

データの転送には、バルク型とストリーミング型の2種類のツールが使われま
す。本節では、それぞれの方法で分散ストレージへとデータが格納されるまでの
流れを見ていきます。

オブジェクトストレージとデータインジェスション　分散ストレージにデータを
取り込む

ビッグデータはほとんどの場合、スケーラビリティの高い分散ストレージ
（distributed storage ）へと格納されます。分散型のデータベースが利用され
る場合もありますが、まず基本となるのは大量にファイルを保存するためのオブジ
ェクトストレージ（object storage ）です（図4.1）。Hadoopであれば
「HDFS」、クラウドサービスであれば「Amazon S3」などが有名です。

オブジェクトストレージでは、多数のコンピュータを用いてファイルを複数のディス
クにコピーすることで、データの冗長化と負荷分散を実現している。

オブジェクトストレージへのファイルの読み書きはネットワーク経由で行いますが、
その背後には多数の物理的なサーバーやハードディスクがあります。データは常に
複数のディスクにコピーされ、一部のハードウェアが故障してもデータが失われること
はありません。データの読み書きが多数のハードウェアに分散されることで、データ
量が増えても性能が落ちることのないように工夫されています。

オブジェクトストレージのしくみはデータ量が多いときには優れていますが、少量
のデータに対しては逆に非効率であることには注意が必要です。たとえば、100バ
イトの小さなファイルを頻繁に読み書きすることはオブジェクトストレージには向いて
いません。データ量に対して通信のオーバーヘッドが大き過ぎるためです。

データインジェスション

ビッグデータとしてよく扱われるのは時系列データ、つまり時間と共に生成され
るデータですが、それを頻繁にオブジェクトストレージに書き込むと大量の小さなフ
ァイルが作られてしまい、時間と共に性能を低下させる要因となります。小さなデ
ータは適度にまとめて、一つの大きなファイルにすることで効率が良くなります。

それとは逆に、ファイルが大きくなり過ぎることにも問題があります。ファイルサイ
ズが増えるとネットワーク転送に時間が掛かり、予期せぬエラーの発生率も高まり
ます。仮に1TBのファイルを100Mbpの回線で転送すると約24時間掛かります。
そのような巨大なデータは一度に処理するのではなく、適度に分割しておく方が
問題が起きにくくなります。

ビッグデータはただ集めれば良いというものでもなく、後から処理しやすいように
準備しておく必要があります。オブジェクトストレージで効率良く扱えるファイルサイ
ズは、ざっと1MBから1GBの間くらいです。それより小さいデータはまとめて一つに
し、大きいデータは複数に分割することを考えます（図4.2）。

集めたデータを加工することにより、集計効率の高い分散ストレージを作る一
連のプロセスをデータインジェスション（data ingestion ）と呼びます。これには
データの収集から、構造化データの作成、分散ストレージへの長期的な保存など
が含まれます。

バルク型のデータ転送　ETLサーバー設置の必要性

前述のとおり、データ転送のしくみにはバルク型とストリーミング型の2種類があ
ります。両者は技術的な特性も用いられるツールもまったく異なるため、その性質
を理解した上で使い分けなければなりません。

伝統的なデータウェアハウスで用いられてきたのはおもに「バルク型」の方式で、
データベースやファイルサーバー、あるいはWebサービスなどから、それぞれのやり方
（SQLやAPIなど）でまとめてデータを取り出します（図4.3）。ビッグデータを扱

う場合にも、過去に蓄積した大量のデータがすでにあるときや、既存のデータベー
スからデータを抽出したいときにはバルク型のデータ転送を行います。

元となるデータが最初から分散ストレージに保存されているのでもない限りは、
データ転送のためにETLサーバーを設置することになります。ETLサーバーでは、構
造化データの扱いに適したデータウェアハウス向けのETLツールや、オープンソースの
バルク転送ツール、あるいは自作のスクリプトなどを用いてデータを転送します。

ファイルサイズの適正化は比較的簡単
バルク型のツールでファイルサイズを適正化するのは比較的簡単です。ETLプロ

セスは1日ごと、あるいは1時間ごとといった頻度で定期的に実行するものなの
で、その間に蓄えられたデータは一つにまとめられます。もしそうなっていないのであ
れば、転送方法を見直した方が良いでしょう。たとえば、100個のファイルを転送
するのに100回の転送を繰り返していたのではまとめようがありません。1回の転
送ですべてのファイルを対象とするように変更しましょう。

大き過ぎるデータは転送ツールの側で分割できます。とはいえ、あまりにも大量
のデータを一度に転送しようとするのは危険です。たとえば、過去数年分の何TB
ものデータを1回で転送するべきではありません。仮にそのように転送してしまうと、
開始から数時間後にディスク溢れでエラーになる、などとといったトラブルを何度も
経験することになるでしょう。

データ量が多いときには、1ヵ月ずつ、あるいは1日ずつ転送するような小さなタ
スクに分解し、1回のタスク実行が大きくならないように調整します。ワークフロー
管理ツールを使うと、このようなタスク実行を管理しやすくなります。タスクを適度
に小さくすることで、ディスク溢れのような潜在的な問題を回避できるのと同時
に、もし途中で問題が起きてもやり直すのが簡単になります。

データ転送のワークフロー　ワークフロー管理ツールとの親和性
データ転送の信頼性が重要な場合には、可能な限りバルク型のツールを使う

べきです。ストリーミング型のデータ転送（後述）は、後からやり直すのが簡単で
はありません。何か問題が起きたときに何度でもデータ転送をやり直せるのはバル
ク型の利点です。

バルク型のデータ転送は、ワークフロー管理ツールとの相性が優れています。スト
リーミング型の転送はその性質上、リアルタイムで動き続けるのが前提となりワー
クフローの一部として実行されるものではありません。過去のデータを漏れなく取り
込んだり、失敗したタスクを再実行したりすることを考えるのであれば、バルク型の
転送を行う方が間違いがありません。

以上のような性質から、バルク型のデータ転送はワークフロー管理ツールと組み
合わせて導入します。定期的なスケジュール実行やエラー通知などはワークフロー

管理ツールに任せます。毎日のマスタデータのスナップショットや、信頼性が重視
される課金データの転送などは、他のバッチ処理と合わせてワークフローの一部に
組み込むと良いでしょう。

ストリーミング型のメッセージ配送　次々と送られてくる小さなデータを扱
うために

今まさに作られて、まだどこにも保存されていないデータは、その場で転送するし
かありません。多くのデータは通信機器やソフトウェアによって生成され、ネットワー
ク経由で送られます。そのようなデータをバルク型のツールで集めるのは不可能な
ので、「ストリーミング型」のデータ転送が必要です。ここでは例として「Webブラウ
ザ」、スマートフォンの「モバイルアプリ」、そしてセンサー機器など各種の「デバイス」
からデータを集めることを考えます（図4.4）。

これらのデータ転送に共通するのは、多数のクライアントから次々と小さなデー
タが送られてくることです。このようなデータ転送のしくみを一般にメッセージ配送

（message delivery ）と呼びます。メッセージ配送のシステムでは、送受信さ
れるデータ量と比較して通信のためのオーバーヘッドが大きくなるため、それを処理
するサーバーには高い性能が求められます。

送られてきたメッセージを保存するにはいくつかの方法があります。一つは、小さ
なデータの書き込みに適したNoSQLデータベースを用いることです。この場合、
HiveのようなクエリエンジンからNoSQLデータベースに接続してデータを読み出すこ
とになります。

あるいは分散ストレージに直接書き込むのではなく、図4.4のようにメッセージキ
ュー（message queue ）やメッセージブローカ（message broker ）などの中
継システムに転送する場合もあります。この場合、書き込まれたデータは一定の
間隔で取り出されて、まとめて分散ストレージへと保存されます。

Webブラウザからのメッセージ配送　Fluentd、Logstash、Webイベントトラッキ
ング

自社開発のWebアプリケーションなどでは図4.5❶のように、Webサーバーの中
でメッセージを作って配送します。このとき転送効率を高めるために、サーバー上で
一旦データを蓄えてからまとめて送ることが多いでしょう。このようなケースでは
「Fluentd」注1や「Logstash」注2のようなサーバー常駐型のログ収集ソフトウェアが
よく用いられます。

別の方法としては図4.5❷のように、JavaScriptを用いてWebブラウザから直
接メッセージを送る場合もあります。これはWebイベントトラッキング（web
event tracking ）として知られるものです。利用者からするとHTMLページにタ
グを埋め込むだけで済むため、各種のアクセス解析サービスやデータ分析サービス
などで採用されています。集められたデータはそのまま別のサーバーに転送したり、
API経由でまとめて取得し、それを分散ストレージに取り込んだりすることで他のデ
ータと組み合わせた分析が可能となります。

Column

Fluentdによるメッセージ配送

分散ストレージにデータを中継するメッセージブローカの役割として、ログ収集ソフトウェ

アである「Fluentd」を用いることが考えられます。Fluentdは内部に効率的なバッファリ

ング機構を持ち、一定の時間間隔あるいは一定のサイズで外部にデータをまとめて書

き出すことができます。必要に応じて部分的にデータを書き換えたり、複数のストレージ

にコピーしたりすることも可能です（図C4.1）。

ただし、Fluentdは元々メッセージブローカとして設計されているわけではないので限

界もあります。たとえば、複数台でデータを冗長化することはできず、仮にノードがクラッ

シュしてバッファが失われると未送信のデータは消えてなくなります（とはいえ、ディスク

上のバッファが消えない限りは再送できるので、実際にはそれほどリスクは高くありませ

ん。あくまで可能性の話です）。また、メッセージを一方的に送り出すことしかできず、

外部から要求して取り出すことはできません。配送に成功したメッセージはすぐに消えて

しまうので、後から送信をやり直すこともできません。メッセージブローカに求められる機

能については4.2節で詳しく説明します。

モバイルアプリからのメッセージ配送　MBaaS、SDK
モバイルアプリは通信方法だけを見るとHTTPを話すクライアントの一つなの

で、メッセージ配送のしくみはWebブラウザと同じです。モバイルアプリでは自前で

サーバーを立てるのではなく、MBaaS（mobile backend as a service ）と呼
ばれるバックエンドの各種サービスを利用することもあります。その場合には図
4.6❶のように、バックエンドのデータストアに格納したデータをバルク型のツールで
取り出すことになるでしょう。

あるいは図4.6❷のように、モバイルアプリに特化したアクセス解析サービスを経
由してイベントデータを集めます。この場合、サービスから提供されるモバイル用の
便利な開発キット（SDK）を用いてメッセージを送ることになるでしょう。モバイル
アプリはオフラインになることも多いため、発生したイベントは一旦SDKの内部に
蓄えられ、オンラインになったときにまとめて送信されるように作られています。

モバイル回線は通信が不安定であり、通信エラーに伴うメッセージの再送が何
度も発生します。その結果、データが重複する可能性も高くなり、何らかの重複
排除（後述）のしくみが必要となります。SDKを導入する場合には、データの重
複に対してどのような対策が行われているのか確認した方が良いでしょう。

デバイスからのメッセージ配送　MQTTを例に

IoTなどのデバイスからのメッセージ配送は、本書執筆の時点ではまだ業界標
準と呼べるものがなく、多くの規格が乱立しているようです。ここでは一つの例とし
て、MQTTについて見ておきましょう。MQTT（MQ telemetry transport ）は
TCP/IPを用いてデータ転送するプロコトルの一つで、一般にPub/Sub型メッセー
ジ配送（Pub/Sub message delivery ）と呼ばれるしくみを提供します。
「Pub/Sub」というのは配信（publish ）と購読（subscription ）の略であ
り、チャットシステムやメッセージングアプリ、あるいはプッシュ通知などのシステムで
よく用いられる技術です。

MQTTでは、最初に管理者によってトピック（topic ）が作られます。これは
メッセージを送受信するためのチャットルームのようなもので、そのトピックを購読す
ればメッセージが届くようになり、トピックに配信すると購読中の全クライアントに
送られます。このようなメッセージのやり取りを中継するサーバーをMQTTブローカ
（MQTT broker ）、メッセージを受け取るシステムをMQTTサブスクライバ
（MQTT subscriber ）と呼びます（図4.7）。

MQTTでデータを集めるには、まずトピックを作成してそれを購読します。そして
各デバイスがトピックにメッセージを配信するようにプログラムを書くと、後はMQTT

が定めるルールに従ってメッセージ配送が行われます。MQTTの特徴の一つとし
て、ネットワークから切断された場合にでも後から再送するしくみがプロトコルレベ
ルで考慮されています。HTTPではそのようなしくみは自分で考える必要がありま
すが、MQTTではすでに用意されたしくみを使うことができます。

メッセージ配送の共通化　異なる部分と共通する部分を分離して考える
以上のように、メッセージ配送のしくみはどこからデータを集めるかによってまった

く異なります。そのため環境によって異なる部分と、共通する部分とを分離して
考えましょう。

本書では、メッセージが最初に生成される機器をクライアント（client ）、そ
のメッセージを最初に受け取るサーバーをフロントエンド（ frontend ）と呼びま
す。フロントエンドの役割は、クライアントとの間の通信プロトコルをきちんと実装す
ることです。悪意のある攻撃からデータを守るために暗号化やユーザー認証を実
装し、性能上の問題を解決するために高いスケーラビリティも必要です。

フロントエンドが受け取ったメッセージは、そのままメッセージブローカに転送しま
す。分散ストレージにデータを格納するのはメッセージブローカから先の役割です。こ
うして役割を分離することにより、フロントエンドはただデータを受け取ることだけに
専念し、そこから先の難しい問題については背後の共通システムに任せられま
す。

注1　 URL https://www.fluentd.org

（本文に戻る）

注2　 URL https://www.elastic.co/logstash/

（本文に戻る）

https://www.fluentd.org/
https://www.elastic.co/logstash/

4.2
［性能×信頼性］メッセージ配送のトレードオフ

クライアントの数が増えてくると、ストリーミング型のメッセージ配送の「性能」と
「信頼性」を両立することは難しくなります。本節ではメッセージブローカを中心と
するメッセージ配送のしくみと、その限界について説明します。

メッセージブローカ　ストレージの性能問題を解決する中間層の設置

メッセージ配送によって送られてきたデータを、分散ストレージに保存するときに
は注意が必要です。データ量が少ないうちは問題にならずとも、書き込みの頻度
が増えるにつれてディスクが性能の限界に達し、それ以上は書き込めなくなる恐
れがあるからです。とりわけ外部から送られてくるメッセージの量はコントロールでき
ないため、急なデータ量の増加に対応するのは簡単ではありません。

仮に書き込み性能の限界によりエラーが発生すると、ほとんどの場合クライア
ントはメッセージを再送しようとします。しかし、性能的な限界に達しているところ
でいくら再送しても、負荷が高まるばかりで何も解決しません。結局、どうにかし
て書き込み性能を上げるか、あるいはクライアントが再送を諦めて負荷が下がる
まではエラーが継続することになります。

大量のメッセージを安定して受け取るためには、頻繁な書き込みへの性能が
極めて高く、しかも必要に応じていくらでも性能を上げられるストレージが必要で
す。分散ストレージが必ずしもそのような性質を備えているとは限らないので、ビッ
グデータのメッセージ配送システムではしばしばデータを一時的に蓄える中間層が
設置されます。これをメッセージブローカ（message broker ）と呼びます（図
4.8）。

ビッグデータのための分散型メッセージブローカとしては、オープンソースであれば
「Apache Kafka」注3、クラウドサービスであれば「Amazon Kinesis」注4などが有
名です。

プッシュ型とプル型　スケーラビリティ向上とファイルサイズ適正化
メッセージ配送のシステムでは、送信元の都合でデータを送るものをプッシュ型

（push ）、受信側の都合でデータを取り寄せるものをプル型（pull ）と呼び
ます。メッセージブローカはデータの書き込み速度を調整するための緩衝帯となり、
プッシュ型からプル型へとメッセージ配送のタイミングを変換します。

メッセージブローカにデータをプッシュするものをプロデューサ（producer ）、プ
ルするものをコンシューマ（consumer ）と呼びます。メッセージブローカは高頻

度なデータの書き込みに対して最適化されており、複数台のノードに負荷分散す
ることで性能を引き上げることのできるスケーラビリティの高い実装となっています。
そのため、プッシュ型のメッセージ配送はすべてメッセージブローカに向けるようにし
て、そこから一定の頻度でプルしたデータを分散ストレージに書き込むことにより、
性能上の問題を避けられます。

プル型のメッセージ配送は、ファイルサイズの適正化のためにも役立ちます。フロ
ントエンドは大量のメッセージを受け取るため、そのまま保存すると非常に多くの
小さなファイルが作られてしまいます。コンシューマはメッセージブローカから一定の
頻度でデータをプルすることによって、適度にまとまったデータを分散ストレージへと
書き込みます。

メッセージルーティング
具体的な数字で考えてみましょう。あるシステムが100万台のデバイスから1分

ごとに100バイトのメッセージを受け取るとします（図4.9）。システム全体が受け
取るのは毎秒1.7万メッセージ、データ量にして1.66MB（=13.28Mbps）になり
ます。データ量だけ見るとそれほど多いわけではありませんが、毎秒1.7万回の書
き込みに耐えられるデータベースを用意するのは大変です。

そのため、フロントエンドではメッセージブローカにデータをプッシュするようにして、
それをコンシューマからまとめてプルします。仮に1秒ごとにプルすると一度に読み込
まれるデータ量は1.66MBなので、それをリアルタイムに処理するのも難しくありま
せん。このように短い頻度で次々とデータを取り出して処理するのがストリーム処
理（stream processing ）です。

メッセージブローカに書き込んだデータは、複数の異なるコンシューマから読み込
むことができます。それによってメッセージがコピーされ、データを複数の経路へと分
岐させられます。これをメッセージルーティング（message routing ）と呼びま
す。たとえば、メッセージの一部をリアルタイムな障害検知に使いつつ、同じメッセ
ージを長期的なデータ分析のために分散ストレージに格納することも可能となりま
す。

メッセージ配送を確実に行うのは難しい　信頼性の問題と3つの設計
方式

性能問題に加えて、避けては通れないのが信頼性（reliability ）の問題で
す。特にモバイル回線のような信頼性の低いネットワークでは、必ずメッセージの
重複や欠損が発生します。それをどのように扱うかは導入するシステムによって異
なります。多くの場合は、以下のいずれかを保証するように設計されます。

・at most once　➡メッセージは一度しか送られない。ただし、途中で失敗して消える

可能性がある（欠損する）

・at least once　➡メッセージは間違いなく届けられる。ただし、同じものが何度も届く

可能性がある（重複する）

・exactly once　➡メッセージは欠損することも重複することもなく、一度だけ届けられ

る

at most once
分散システムでは、ネットワークの障害などによってさまざまなエラーが発生しま

す。何が起きても絶対にメッセージを送り直したりしないのが"at most once"で
す。しかし、大抵はデータの欠損を避けるために再送（retransmission ）が行
われます。再送を行うシステムでは"at most once"を保証するのは難しくなりま
す。エラーを検知したからと言って、メッセージが送られていないとは限らないからで
す。

たとえば、次のようなケースを考えます。2つのノード間でTCP/IPでメッセージを送
ります。データの転送が終わり、受信完了を示す"ack"が返される直前にネットワ
ーク通信が遮断されたとします。すると、送信元ではタイムアウトを検知して再送
が始まります。一方、受信側からするとメッセージをすでに受け取り終わっているの
で、タイムアウトによる通信断を待つことなくデータ処理を進めてしまうかもしれま
せん。その後、接続が再開されるとメッセージが再送されてくるので、これによって
重複が発生します。

exactly once
一般に、ネットワークで分断された2つのノードがある場合に、両者の通信内容

を保証するには間に立つコーディネータ（coordinator ）の存在が不可欠で
す。メッセージの送信側も受信側も、互いの情報をコーディネータに伝えることで、
問題が起きたときにはコーディネータの指示に従ってそれを解決します。これによっ
て"exactly once"は実現できます。しかし、これには二つの問題があります。

第一に、分散システムではコーディネータが常に存在するとは仮定できません。
コーディネータとの通信が途絶えることもあれば、コーディネータ自身が停止すること
もあります。そのたびにシステムを止めるわけにもいかないので、コーディネータ不在
の場合にどうするかというコンセンサス（consensus ）を定めることになります。
これは分散システムの設計において難しい問題の一つであると言われており注5、
多くの場合は短時間の障害が発生する可能性を受け入れることになります。

もう一つは性能上の問題で、コーディネータに判断を仰いでいたのでは時間が
掛かり過ぎるということです。特にメッセージ配送のように広く分散したシステムで
は、コーディネータに頼ることなく処理を進めたいところです。

以上のような理由から、メッセージ配送システムではコーディネータは導入せず
に、"exactly once"ではなく"at least once"、つまりメッセージが重複する可能
性を考慮の上でシステムを構築します。

at least once　重複排除は利用者に任されている
仮にメッセージが再送されても、それを取り除くしくみさえあれば、見掛け上は

重複がないように見せることは可能です。そのためのしくみを重複排除
（deduplication ）と呼びます。

たとえば、TCP/IPによるネットワーク通信を考えます。インターネットの標準であ
るIP通信は、そのままではデータの欠損も重複も起こり得る信頼性のないメッセー

ジ配送方式です。そこでTCPではメッセージの受信確認のために"ack"というフラ
グを導入し、"at least once"を実現しています。そのためメッセージの再送による
重複が起こりますが、すべてのTCPパケットにはそれを識別するシーケンス番号が
埋め込まれており、それを用いて重複排除が行われます。つまり、同じ番号のパ
ケットは重複しても破棄されているわけです。

メッセージ配送のシステムは常にこれと同じ問題を抱えています。どこか中央に
コーディネータが存在するのでもない限りは"exactly once"は実現できず、必
ず"at most once"、もしくは"at least once"での転送が行われます。そして後
者であれば重複排除しない限りはメッセージの重複が起こり得ます。

ここで注意しなければならないのは表4.1に示すように、多くのメッセージ配送シ
ステムは"at least once"を保証する一方で、重複排除は利用者に任されてお
り、TCP/IPのように自動で重複を取り除いてくれたりはしないということです。

Tip　信頼性のないメッセージ配送

メッセージ配送のツールが信頼性について何も保証していない場合もあります。たと

えば、JavaScriptによるデータ収集はあまり信頼できません。Webページを閉じるだけで

簡単に動作が停止してしまうからです。

重複排除は高コストなオペレーション
メッセージを重複排除するには、同一のメッセージを過去に受け取っていないか

判定する必要があります。TCPではメッセージにシーケンス番号を付けますが、メッ
セージ配送における重複排除ではシーケンス番号はあまり使われません。すべて
のメッセージに一連の番号を付けるには、どこか1ヵ所に処理を集中させる必要が
あり、性能向上が難しくなるためです。そのため代替案として、次のような方法が
用いられます。

オフセットを用いた重複排除
一つはファイル転送の考え方と同様の方法です。送信すべきデータにファイル

名などの名前を付けて、それを小さなメッセージに載せて配送します。各メッセージ
には、ファイル内の開始位置（オフセット）を付け加えます。仮にメッセージが重
複しても、同じファイルの同じ場所が上書きされるだけなので問題になりません。
システムによって"at least once"が保証されているなら、いずれはファイルが再構
成されてデータ転送が完了します。

この方法は、バルク型のデータ転送のようにデータ量が固定の場合にはうまく機
能します。一方、ストリーミング型のメッセージ配送でこの方式を採用しているもの
はほとんどありません。

ユニークIDによる重複排除
ストリーミング型のメッセージ配送でよく使われるのは、すべてのメッセージに

UUID（Universally Unique Identifier ）などのユニークIDを付ける方法で
す。この場合、メッセージが増えるにつれてIDが爆発的に増えるので、それをどう
管理するかが問題となります。過去に転送されたすべてのIDを覚えておくのは現

実的でなく、だからと言ってIDを破棄すれば遅れて届いたメッセージが重複しま
す。

現実的には、最近受け取ったIDだけを覚えておき（たとえば、直近1時間な
ど）、それよりも遅れてきたメッセージの重複は許容することになります。重複のほ
とんどは一時的な通信エラーによって発生するため、それさえ取り除ければ99％
の信頼性は達成できるからです。

エンドツーエンドの信頼性
重複も欠損もない信頼性の高いメッセージ配送を実現するのは簡単ではな

く、すべてのソフトウェアで十分な信頼性が実現されていると期待することはできま
せん。メッセージ配送における性能と信頼性はトレードオフの関係にあり、一方を
優先すると他方が犠牲になります。

ビッグデータのメッセージ配送では、しばしば信頼性よりも「効率」の方が重視さ
れます。そのため途中経路では"at least once"を保証する一方で、「重複排除
は行わない」ことが標準的な実装となります。そもそも重複排除とはエンドツーエ
ンドで実行しなければ意味がありません。つまり、クライアントが生成したメッセー
ジを、最終到達地点である分散ストレージに書き込む段階で重複のない状態に
しなければなりません。

ここまで見てきたように、ストリーミング型のメッセージ配送はクライアントからフロ
ントエンド、そしてメッセージブローカやコンシューマを含めた多数の要素で構成され
ます。その一部で重複排除が実現されても、他の場所で重複が起きる可能性
があります。

メッセージ配送の最終的な信頼性は、途中経路の信頼性の組み合わせで決
まります。途中に1ヵ所でも"at most once"があればメッセージを欠損する可能
性があり、"at least once"があれば重複する可能性があります。信頼性の高い

メッセージ配送を実現するには、途中の経路をすべて"at least once"で統一した
上で、クライアント上ですべてのメッセージにユニークIDを含めるようにし、そして経
路の末端で重複排除を実行する必要があります。

ユニークIDを用いた重複排除の方法　NoSQLデータベース、SQL
ユニークIDを用いて重複排除するにはいくつかの方法がありますが、ここでは代

表的な二つの方法を説明します。
一つは、分散ストレージとしてNoSQLデータベースを用いることです。たとえば、

後述するCassandraやElasticsearchなどはその性質上、データを書き込むときに
ユニークIDを指定することになっており、同じIDのデータは上書きされます。そのた
め、重複があったとしても変化は起こらず、結果として重複排除が実現されます。

もう一つはリスト4.1のように、SQLで重複排除することです。届いたデータは一
旦そのままオブジェクトストレージなどに保存しておいて、後から読み込む段階で
重複を取り除きます。これは力技とも言える大規模なデータ処理になるため、メ
モリ上で実行するのはほとんど不可能であり、Hiveのようなバッチ型のクエリエン
ジンで実行します。

リスト4.1 　SQLを用いて重複排除する

 DISTINCTを用いる方法

 SELECT DISTINCT unique_id, col1, col2, ... FROM table1;

 GROUP BYを用いる方法

 SELECT max(col1) col1, max(col2) col2, ... FROM table1 GROUP BY

unique_id;

データインジェスションのパイプライン　長期的なデータ分析に適したスト
レージ

以上のような一連のプロセスを経て、最後にデータを構造化して列指向ストレ
ージへと変換することで、ようやく長期的なデータ分析に適したストレージが完成し
ます。これが「データインジェスションのパイプライン」です（図4.10）。

実際にどのようなパイプラインを作るかは要件次第であり、必要に応じてシステ
ムを組み換えます。書き込み性能に不安がなければメッセージブローカは不要で
あり、クライアントやフロントエンドからNoSQLデータベースに直接データを書き込ん
でも良いでしょう。多少の重複が許されるなら重複排除も省略できます。

データの集計にクエリエンジンを用いる場合には、構造化したデータを列指向
のストレージ形式でオブジェクトストレージに保存します。MPPデータベースを用いる
なら、定期的にデータをロードすれば完成です。これらの一連のプロセスは、次章
以降でワークフローの一部として説明します。

重複を考慮したシステム設計　ビッグデータシステムにおける「重複」の考え方
一般にストリーミング型のメッセージ配送では、途中で明示的に重複排除のし

くみを導入しない限りは、常に重複の可能性があると思った方が良いでしょう。ビ
ッグデータを扱うシステムには非常に高い性能が求められるため、ごくわずかな重
複は無視される傾向にあります。

これは実際にはそれほど大きな問題ではありません。モバイル回線のように不
安定な通信経路は別として、データセンターのような安定した回線であれば、何
もせずとも99％以上の信頼性を確保できる可能性が高いでしょう。その程度の
誤差は許容した上で、日頃から「冪等な操作」（第5章で後述）を心掛けるこ
とで、「重複があっても問題にならない」ようなシステムを設計することが推奨され
ます。

どうしても信頼性が重視されるときには、ストリーミング型のメッセージ配送を避
けるのが一番です。たとえば課金データのように誤差が許されないものは、トラン
ザクション処理に対応したデータベースにアプリケーションから直接書き込むべきで
す。その上でバルク型のデータ転送を行うことで、重複も欠損も確実に避けられ
ます。

Column

メッセージブローカと信頼性

メッセージの「重複」や「欠損」は確率的に発生するものではなく、ネットワークやハー

ドウェアの一時的な障害に伴って引き起こされる設計上のトレードオフです。システムが

安定して動いている限りは発生しないので、なるべく障害を起こさないことが信頼性を

高めるために重要です。

最も避けたいのは、クライアントが送信したメッセージを受け取り損ねることです。再

送のしくみがあれば欠損は避けられるものの、代わりに重複の可能性が高まります。そ

のため、メッセージを最初に受け取るフロントエンドからメッセージブローカに至る流れは、

常に安定した書き込みが可能となるようにスケーラブルな実装を選びたいところです。

メッセージブローカを使うと書き込み性能が向上するだけでなく、後続の処理を安定

化するのにも役立ちます。たとえば、分散データベースをメンテナンスで停止するような場

合にでも、メッセージブローカさえ動いていればデータを受け取り損ねることはありません。

また、何らかの理由で過去に遡って処理をやり直したくなったとしても、プル型のシステ

ムであれば一定期間は何度でも同じデータを取り出せます。

以上のように、メッセージブローカはメッセージ配送の安定性を高める上で有用です

が、メッセージブローカ自体に障害が起きることもあるので油断は禁物です。メッセージブ

ローカの中で重複が発生する可能性もあります。システムを設計する上では、こうした

制約を見極めながら「性能」と「信頼性」を両立する必要があります。

注3　 URL https://kafka.apache.org

（本文に戻る）

注4　 URL https://aws.amazon.com/kinesis/

（本文に戻る）

https://kafka.apache.org/
https://aws.amazon.com/kinesis/

注5　「Consensus_（computer science）」

URL https://en.wikipedia.org/wiki/Consensus_(computer_science)

（本文に戻る）

https://en.wikipedia.org/wiki/Consensus_(computer_science)

4.3
時系列データの最適化

ストリーミング型のメッセージ配送では「メッセージが届くまでの時間の遅れ」が
問題となります。本節では、遅れて届くデータが集計速度に与える影響につい
て説明します。

プロセス時間とイベント時間　データ分析の対象はおもにイベント時間

スマートフォンからデータを集めようとすると、メッセージが数日遅れで届くことも
珍しくありません。ユーザーが電波の届かない場所に出掛けたり、バッテリーが切
れたりすることもあるからです。モバイルアプリによっては、画面が切り替わると次に
アプリが起動されるまでメッセージが送信されない場合もあります。いずれにして
も、数日程度の遅延を見越してデータ分析を考えなければなりません。

クライアント上でメッセージが生成される時間をイベント時間（event
time ）、サーバーがそれを処理する時間をプロセス時間（process time ）と
呼びます。多くの場合、データ分析の対象となるのは「イベント時間」であるため、
この時間のズレが厄介な問題を引き起こします。

プロセス時間による分割と問題点　極力避けたいフルスキャン

例として、モバイルアプリのアクティブユーザー数を集計することを考えます。遅れ
てくるデータがあるということは、過去の集計結果が毎日少しずつ変わるというこ
とです。より実態に近い集計結果を得るには、「イベント時間」から数日が経過し
たところで過去に遡って集計しなければなりません（図4.11）。

その一方で、分散ストレージにデータを取り込む段階では、イベント時間ではな
く「プロセス時間」を用いるのが普通です。たとえば、2021年1月1日に届いたデー
タには20210101のような名前を付けます。そして、それらのファイルには、イベント
時間で見ると多数の過去データが含まれた状態になります（図4.12）。

この状態から、過去のある1日に発生したイベントを集計したいとしましょう。た
とえば、1月1日に発生したイベントであれば、それよりも後に作られるすべてのファ
イルに含まれている可能性があります。1ヵ月後の2月1日に、それまでに作られた
すべてのファイルを開いて、そこから1月1日のデータだけを抜き出せばかなり正確
な結果が得られるでしょう。

しかし、少し考えればわかることですが、1ヵ月の間に作られる何十万というファ
イルの中から特定の1日のデータだけを見つけるのは非常に無駄の多い処理とな
ります。このようなことが起きる原因は、データがイベント時間では並べ替えられて
おらず、すべてのデータを読み込まなければ目的のイベント時間が含まれているか
わからないからです。

多数のファイルを全探索するクエリをフルスキャン（full scan ）と呼び、これ
がシステムの負荷を大きく高める要因となります。それでもどうにかしてしまうのが
ビッグデータの技術ではありますが、不必要にフルスキャンを繰り返すのは限られ
たリソースの無駄使いであり、可能な限り避けたいところです。

時系列インデックス　イベント時間による集計の効率化❶

イベント時間の扱いを効率化するために、データを並べ替えることを考えましょ
う。これにはいくつかの方法があります。

一つはRDBでインデックスを作るのと同じように、イベント時間に対してインデッ
クスを作成することです。たとえば、Cassandraのような時系列インデックス
（time-series index ）に対応した分散データベースを用いると、最初からイベ
ント時間でインデックスされたテーブルを作ることができます注6。

時系列インデックスを使うと、ごく短かい範囲の特定の時間に絞り込んだデー
タの集計を高速に実行できます。ある時間帯に発生したイベントを調査したり、
リアルタイムなダッシュボードを作るような場合に有用です。一方、長期にわたる

大量のデータを集計する場合には、分散データベースはあまり効率的ではありま
せん。長期的なデータ分析では、より集計効率の高い列指向ストレージを継続
的に作りたいところです。

述語プッシュダウン　イベント時間による集計の効率化❷

そこで毎日1回、新しく届いたデータをバッチ処理で変換することを考えます。
列指向ストレージでは、RDBと同等のインデックスを作成することはできませんが、
最初にデータを並べ替えることは可能です。そこで図4.13のように、イベント時間
でデータを並び換えてから列指向ストレージに変換するようにします。

列指向ストレージでは「カラム単位の統計情報」を用いて最適化が行われます
注7。たとえば、時間であれば各カラムの最小値（開始時間）や最大値（終了
時間）などがすべてのファイルにメタ情報として格納されており、それらの情報を
参照することで、どのファイルのどの部分に目的のデータが含まれているかがわかり
ます。

この統計情報を用いて、必要最小限のデータだけを読み込むようにする最適
化を述語プッシュダウン（predicate pushdown ）と呼びます注8。列指向スト
レージを作るときには、なるべく読み込むデータ量が少なくて済むよう図4.14のよう
にデータを並べ替えておくことで、述語プッシュダウンによる最適化が働いてフルス
キャンを避けられます。

Tip　頻繁な書き込みは最適化の効果を下げる
述語プッシュダウンを最大限に生かすには、集計時のデータ読み込みが最小限で済

むように、なるべく多くの連続するデータを1ヵ所に配置することです。データを並べ替え

るのはそのためです。逆に言うと、データが十分に連続して配置されなければ最適化の

効果は上がりません。

列指向ストレージは、あまり頻繁に作るべきではありません。たとえば、列指向ストレ

ージを1分間隔で作ったりすると、多数のファイルに細かくデータが分散されることにな

り、その中でいくら並べ替えが行われていたところで、データの読み込みは細かく分断さ

れることになってしまいます。

イベント時間による分割　テーブルパーティショニング、時系列テーブル

イベント時間によるデータの絞り込みをもっと効率良くする方法を考えてみま
す。プロセス時間でファイルを分割している限りは、同じイベント時間のデータがど
うしても多数のファイルに分散されます。そのため正確な集計結果を得るために
は、非常に多くのファイルを開かなければならなくなります。

そこで、イベント時間を使ってテーブルを分割することを考えます。前章ではテー
ブルを物理的に分けるテーブルパーティショニングの考え方を説明しました。中でも
時間を用いて分割されたテーブルは時系列テーブル（time-series table ）と呼
ばれます。ここでは図4.15のように、イベントの発生日時をパーティションの名前に
含めることにします。たとえば、1月1日に発生したイベントであれば、それがいつ届
いたのかによらず"event_0101"というパーティションに追加するものとします。

このやり方がうまくいくかどうかは、時系列テーブルへのデータの追記をどう実装
するかに掛かっています。新しく届いたデータを新しいファイルとして作ることには潜
在的な問題があります。過去のイベント時間を持つデータは、わずかながらも何
年にもわたって送られてくる可能性があります。そのため、時系列テーブルを構成
する各パーティンションには、毎日少しずつデータが追加されます。

結果として、分散ストレージには大量の小さなファイルが作られることになり、次
第にクエリの性能が悪化していきます。イベント時間から時系列テーブルを作るの
であれば、小さなデータを効率良く追記できる分散データベースを用いるか、ある
いはあまりに古いデータは捨てるといった工夫が必要になります（本章『4.4　非
構造化データの分散ストレージ』のコラム「モバイル機器の時計は狂っている
（!?）」を参照）。

データマートをイベント時間で並び替える

もっと良いのは、イベント時間による並び換えを考えるのはデータマートだけにし
ておくことです。データインジェスションの段階ではイベント時間のことは考えずに、
プロセス時間だけを使ってデータを蓄えます。そこからデータマートを作る段階で、イ
ベント時間による並び換えをまとめて行うようにします（図4.16）。そうすればファ
イルが断片化されることもなく、常に最適なデータマートを維持し続けることができ
ます。

注6　「Advanced Time Series Data Modelling」

URL https://www.datastax.com/blog/advanced-time-series-data-

modelling

（本文に戻る）

注7　 URL https://orc.apache.org/docs/indexes.html

（本文に戻る）

https://www.datastax.com/blog/advanced-time-series-data-modelling
https://orc.apache.org/docs/indexes.html

注8　「ORCFILE IN HDP 2: BETTER COMPRESSION, BETTER PERFORMANCE」

URL https://blog.cloudera.com/orcfile-in-hdp-2-better-compression-

better-performance/

（本文に戻る）

https://blog.cloudera.com/orcfile-in-hdp-2-better-compression-better-performance/

4.4
非構造化データの分散ストレージ

NoSQLデータベースを活用すると、データをただ集めて保存するだけでなく、ア
プリケーションからオンラインで利用したり、リアルタイムに集計したりすることも可
能となります。本節では、いくつかのNoSQLデータベースの特徴を説明します。

note
本節は以下のWebページなどを参考にしています。

・「DB-Engines Ranking」 URL https://db-engines.com/en/ranking/

［基本戦略］NoSQLデータベースによるデータ活用
ビッグデータのための分散ストレージには、必要に応じていくらでも拡張できるス

ケーラビリティや、データを構造化せずとも格納できる柔軟性が求められます。中
でも基本となるオブジェクトストレージは任意のファイルを保存できることが利点で
すが、その一方で多くの欠点もあります。

まず、オブジェクトストレージ上のファイルは書き換え困難です。一度ファイルを
書き込むと、それをまるごと入れ替える以外の方法では変更できません。ログファ
イルのように後から変更することがないものはそれでもかまいませんが、データベース
のように頻繁に書き換える用途には向いていません。書き込みの頻度が高いデー
タは別途RDBに保存して定期的にスナップショットを取るか、あるいは何らかの分
散データベース（distributed database ）に格納するようにします。

https://db-engines.com/en/ranking/

とりわけ重要なデータは、トランザクション処理について考慮されたデータベース
に書き込むのが原則です。ストリーミング型のメッセージ配送などではトランザクシ
ョン処理は行われないので、確実な書き込みを保証するのは困難です。ほとんど
のアプリケーションでは一般的なRDBでも十分な書き込み性能を得られるはずで
すが、それでは不十分な場合には分散データベースを検討することになるでしょ
う。

また、オブジェクトストレージに格納したデータを集計できるようになるまでには時
間が掛かる、という問題もあります。列指向ストレージを作ることで集計は高速
化されるものの、その作成にはどうしても時間が掛かってしまいます。データを書き
込んですぐに活用したい場合には、リアルタイムの集計や検索に適したデータスト
アが必要です。

特定の用途に最適化されたデータストアの総称としてNoSQLデータベースとい
う言葉がよく使われます。以下では、NoSQLデータベースの例として「分散KVS」
「ワイドカラムストア」「ドキュメントストア」、そして「検索エンジン」の特徴を見ていき
ます。

分散KVS　ディスクへの書き込み性能を高める

分散KVS（distributed key-value store ）は、あらゆるデータをキーと値の
ペアとして格納するように設計されたデータストアの総称です。オブジェクトストレー
ジも広い意味では分散KVSの一種ですが、ここではもっと「小さなデータ」を想定
します。具体的には、数KB程度のデータを毎秒何万回も読み書きするようなケー
スです。

分散KVSではすべてのデータに固有のキーを付けて、それを負荷分散のために
利用します。キーが決まると、その値をクラスタ内のどのノードに配置するかが決ま

ります。このしくみによってノード間の負荷を均等に分散し、ノードを増減するだけ
でクラスタの性能を変えられるようになっています（図4.17）。

最も単純な場合には、1つのキーに1つの値のみが割り当てられます。システム
によってはキーに複数の値を割り当てたり、あるいは逆に複数のキーの組み合わせ
に対して値を割り当てたりするものもあります。一言に分散KVSと言っても実装は
様々であるため、その使い勝手はシステムによって大きく異なります。

Amazon DynamoDB
ここではクラウドサービスに統合された例として、Amazon Web Services

（AWS）の「Amazon DynamoDB」注9を見ておきましょう。DynamoDBは常
に安定した読み書き性能を実現するようにデザインされた分散型のNoSQLデー
タベースで、1つまたは2つのキーに結び付ける形で任意のスキーマレスデータを格納

できます。JSONのように入れ子になったデータ構造も扱えるため、単純な分散
KVSと言うよりはドキュメントストア（後述）としても使えます。

DynamoDBはP2P型の分散アーキテクチャを持ち、あらかじめ設定した秒間の
リクエスト数に応じてノードが増減されるという特徴があります。そのため、データの
読み書きに遅延が発生すると困るようなアプリケーションで役立ちます。たとえ
ば、ユーザーからのリクエストにユニークIDを付けてDynamoDBに保存するとしま
す。ユーザーが増えて書き込み頻度が上昇すれば、それに応じて設定を変えるだ
けで性能が上がり、データベースによる遅延が発生することのないように運用でき
ます。

DynamoDBのデータを分析するには、同じくAWSのサービスであるAmazon
EMRやAmazon Redshiftなどと組み合わせることで、Hiveによるバッチ処理を
実行したり、あるいはデータウェアハウスにデータ転送したりできるようになっていま
す。DynamoDBに固有の機能である「DynamoDB Streams」を用いると、デー
タの変更をイベントとして外部に転送し、リアルタイムなストリーム処理を行えます
（図4.18）。

DynamoDBだけに限らず、NoSQLデータベースは一般に、アプリケーションから
最初にデータを書き込む場所として利用されます。NoSQLデータベース自体は、
大量のデータを集計する機能を持たないものが多く、データ分析のためには外部
にデータを取り出す必要があります。ただし、RDBなどと比べると読み込み性能が
高いため、クエリエンジンから接続しても性能上の問題は起きにくくなります。その
ため、アドホック分析などではデータを事前にコピーすることなく、必要時に直接接
続して利用されます。

Tip　DynamoDB StreamsとKinesis Data Streams

AWSにはDynamoDB Streamsとは似て非なるものとして「Kinesis Data

Streams」というサービスもあります。Kinesisはデータベースではなくメッセージブローカで

す。DynamoDBはデータベースとして使えますが、メッセージブローカは一方向のメッセー

ジ配送にしか使えません。しかし、メッセージブローカの方が単純な分だけずっと効率の

良いデータ転送を実現します。

Column

［基礎知識］ACID特性とCAP定理

分散データベースを詳しく説明するのは本書の目的ではありませんが、NoSQLデータ

ベースを理解する上で「ACID特性」と「CAP定理」については知っておいた方が良いでし

ょう。

ACID特性はトランザクション処理に求められる4つの性質で、

・原始性（atomicity ）

・一貫性（consistency ）

・独立性（isolation ）

・耐久性（durability ）

を意味します。一般的なRDBはこれらを満たしており、信頼性のあるトランザクション処

理を実現していると言えます。

一方で、ACID特性を満たしながら分散システムを構築するのは難しく、その限界に

ついて提唱されたのがCAP定理です。一般に分散システムでは

・一貫性（consistency ）

・可用性（availability ）

・分断耐性（partition-tolerance ）

の3つを同時に満たすことはできず、どれか一つが犠牲になるとされます。

CAP定理は限られた条件でのみ成り立つものであり、分散システムではトランザクシ

ョン処理を実行できないという意味ではありません注a。しかしながら、現実には性能上

の理由により、NoSQLデータベースの中にはACID特性を満たしていないものがあるので

注意が必要です。つまり、RDBと同じように信頼性のあるトランザクション処理を実行

できるとは限りません。

結果整合性

NoSQLデータベースのいくつかは、CAP定理のうち「一貫性」か「可用性」かのどちら

かを選んでいます。つまり、一貫性を優先して可用性を諦める（短時間の障害発生

を受け入れる）か、逆に可用性を優先して一貫性を諦める（古いデータを読むことが

ある）かの選択です。中でもよく見るのが結果整合性（eventual consistency ）の

概念で、「書き込んだデータをすぐに読み出せるとは限らない」というものです。

結果整合性でも、時間が経てばいつか最新のデータを読み出せることは保証されて

いますが、それがいつになるのかはわかりません。前述のAmazon DynamoDBなどは

その例で、規定の動作としては結果整合性が保証されるようになっています。結果整

合性はAmazon S3でも長らく取り入れられていて、既存のオブジェクトを上書きしたり

削除したりした場合には、その変更が反映されるまでに時間が掛かっていましたが、

2020年12月になってようやく解消されました注b。

歴史的にNoSQLデータベースの多くはRDBの限界を超えるために開発されてきたた

め、ACID特性を部分的に諦めるか、あるいは何らかの制約を設けることで高い性能を

実現しています。そのためNoSQLデータベースを使うならば、最初にその制約をよく理

解しておかなければ予期せぬ挙動に悩まされることになります。

NoSQLはRDBの常識が通用しないので、学習コストが高くなりがちです。本書では

NoSQLデータベースの特徴を取り上げてはいますが、その利用を推奨するものではあり

ません。何か特別な理由があるのでもなければ、強い一貫性が保証された信頼性の

あるデータベースを用いる方が安全です。

注a　「12年後のCAP定理：“法則”はどのように変わったか」 URL

https://www.infoq.com/jp/articles/cap-twelve-years-later-how-the-rules-have-

changed/

（本文に戻る）

https://www.infoq.com/jp/articles/cap-twelve-years-later-how-the-rules-have-changed/

注b　「Amazon S3 Update - Strong Read-After-Write Consistency」 URL

https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-

consistency/

（本文に戻る）

ワイドカラムストア　構造化データを分散して格納する

分散KVSを発展させて、2つ以上の任意のキーでデータを格納できるようにした
ものがワイドカラムストア（wide-column store ）です。「Google Cloud
Bigtable」注10や「Apache HBase」注11そして後述する「Apache Cassandra」な
どが代表的です。

ワイドカラムストアでは、内部的に行キーとカラム名の組み合わせに対して値を
格納します。テーブルに新しい行を追加するのと同じように、カラムもいくらでも追
加できる構造になっており、何億ものカラムを作ることさえ可能です。つまり、1つ
のテーブルに縦と横の2次元（またはそれ以上の多次元）でデータを書き込める
ようにしたのがワイドカラムストアの特徴です（図4.19）。

https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/

Apache Cassandra
ここではオープンソースのワイドカラムストアである「Apache Cassandra」注12を

見ておきましょう。Cassandraは内部的なデータストアとしてワイドカラムストアを用
いつつも、「CQL」と呼ばれる高レベルのクエリ言語を実装しており、図4.20のよう
にSQLと同じ感覚でテーブルを操作できます。

図4.20　 　Cassandraによるテーブルの作成とクエリの実行

 テーブルの作成

 cqlsh> CREATE TABLE access_log(

 ... user_id int,

 ... time timestamp,

 ... path text,

 ... PRIMARY KEY (user_id, time)

 ...);

 1行追加

 cqlsh> INSERT INTO access_log(user_id, time, path)

 ... VALUES (1001, '2021-01-01 00:00:00', '/login');

 結果を確認

 cqlsh> SELECT * FROM access_log;

 user_id | time | path

 ---------+---------------------------------+--------

 1001 | 2021-01-01 00:00:00.000000+0900 | /login

 (1 rows)

Cassandraでは最初にテーブルのスキーマを定める必要があり、構造化データ
のみ扱えるようになっています。これは一見するとRDBのようですが、クエリの意味
はSQLとは多くの点で異なります。たとえば、INSERT INTOは「追記、または更
新」（いわゆる"upsert"）として動作し、同じキーを持つレコードが存在すれば上
書きされます。

CassandraはP2P型の分散アーキテクチャを持ち、指定したキーによって決まる
ノードに、そのキーに関係するすべての値を格納します。ユーザーIDをキーとする場
合、そのユーザーに関するレコードは1つのノードに集められ、そのノードの中でクエリ
が実行されます。そのため多数の独立したキーがある場合に、うまく処理を分散
することができます。

たとえば、全世界で1億人のアクティブユーザーがいるメッセージサービスがあると
して、各ユーザーが毎日数十のメッセージを書き込むとします。テーブルには毎日
数十億レコードが追加されます。この場合、ユーザーIDをキーとしてデータを分散
し、さらにメッセージのタイムスタンプでレコードを分けることで、ユーザーごとのタイム

ラインが構築されます。CQLでは、このような巨大テーブルを複合キー
（compound key ）を用いて実現します注13。

ワイドカラムストアもデータを集計するのには向いていません。集計のためには、
分散されたすべてのノードからデータを集めてくる必要があるからです。Hiveや
Presto、Sparkなどのクエリエンジンは、どれもCassandraからの読み込みに対応
しており、データを分析するにはそれらを用いてデータを取り出します（図4.21）。

※参考「BI, Reporting and Analytics on Apache Cassandra」 URL

https://www.slideshare.net/VictorCoustenoble/bi-reporting-and-analytics-on-

apache-cassandra/

ドキュメントストア　スキーマレスデータを管理する

NoSQLデータベースを代表するもう一つの形がドキュメントストア（document
store ）です。ワイドカラムストアがおもに「性能の向上」を目的としているのに対
して、ドキュメントストアではおもに「データ処理の柔軟性」が目的となります。具

https://www.slideshare.net/VictorCoustenoble/bi-reporting-and-analytics-on-apache-cassandra/

体的には、JSONのように複雑に入り組んだスキーマレスデータをそのままの形で格
納してクエリを実行できるようにします。

単純な分散KVSでもJSONをテキストとして保存することはできますが、それに
対して複雑なクエリを実行できるとは限りません。ドキュメントストアでは、配列や
連想配列（マップ型）のような入れ子になったデータ構造に対してインデックスを
作ったり、ドキュメントの一部だけを置き換えたりするようなクエリが簡単に実行で
きるようになります。

ドキュメントストアの利点は、スキーマを定めることなくデータ処理を行えるところ
にあり、外部から取り寄せたデータを格納するのに特に適しています。自社開発
のアプリケーションなどでは明示的にスキーマを定めた方が良いことも多いので、ド
キュメントストアはどちらかと言うと参照系のデータやログの保存などに向いていま
す。

Tip　RDBとドキュメントストア

ここ数年で、MySQLやPostgreSQLのようなRDBにもドキュメントストアの機能が組

み込まれるようになりました。高い信頼性を必要とするデータ処理では、RDBの内部で

トランザクションの一部としてドキュメントを更新するのが安全です。

MongoDB
「MongoDB」注14はオープンソースの分散型ドキュメントストアで、JavaScriptや

各種のプログラミング言語を用いてデータを読み書きします（図4.22）。歴史的
に性能を優先して信頼性を犠牲にしてきたために批判されることも多いものの注

15、その手軽さからかNoSQLデータベースの中でも特に高い人気があります。

図4.22　 　MongoDBによるデータの読み書き（JavaScript）

 データを書き込む

 > db.users.insert({user_id: 1234, name: "user1"})

 WriteResult({ "nInserted" : 1 })

 データを見つける

 > db.users.find({user_id: 1234})

 {

 "_id" : ObjectId("58f182d09e64b6f69c945628"),

 "user_id" : 1234,

 "name" : "user1"

 }

MongoDBも複数のノードにデータを分散できますが、それ自体は大量のデー
タを集計するのに向いているわけではありません。データ分析が目的である場合に
は、やはりクエリエンジンから接続するなどしてデータを取り出す必要があります。

検索エンジン　キーワード検索でデータを絞り込む

検索エンジン（search engine ）は、NoSQLデータベースとは少し性質が異
なりますが、格納したデータをクエリで見つけ出すという点では類似する部分も多
く、特にテキストデータやスキーマレスデータを集計するのによく用いられます。

検索エンジンの特徴は、テキストデータを全文検索するために転置インデックス
（以下のコラムを参照）を作るところです。そのため、データを書き込むシステム
負荷やディスク消費量は大きくなりますが、そのお陰でキーワード検索が大幅に高
速化されます。

NoSQLデータベースの多くが性能向上のためにインデックスの作成を制限して
いるのとは対照的に、検索エンジンは積極的にインデックスを作ることでデータを

探すことに特化しています。結果として、検索エンジンはデータの集計にも適して
おり、特に異常検知やセキュリティチェック、顧客サポートのように即応性が求めら
れる用途で直近のデータを見るために使われます。

検索エンジンは長期的にデータを蓄えるというよりは、リアルタイムな集計シス
テムの一部として利用されます。たとえば、メッセージ配送されてきたデータを分散
ストレージに格納する一方で、同じデータを検索エンジンにも転送してリアルタイム
性の高いデータ処理のために活用します（図4.23）。

Column

フルスキャンによる全文検索

検索エンジンは、テキストデータを検索するために転置インデックス（inverted

index ）を作成します。つまり、テキストに含まれる単語を分解し、どの単語がどのレコ

ードに含まれるかという索引を先に作っておくことで検索を高速化します。もし転置イン

デックスがなければ、すべてのテキストをフルスキャンしなければ目的のレコードを見つけら

れず、検索効率は著しく低下します。

以前であれば、検索エンジンを使わずにフルスキャンするなど考えられないことでした

が、ビッグデータの技術の発展により、それもあり得ないことではなくなってきています。

SQLでも正規表現でキーワードを見つけたり、パターンに一致する文字列を抜き出すこ

とはできるので、後は処理速度だけの問題です。

たとえば、Google BigQueryを利用すると、大量の計算リソースを利用して、数秒

でビッグデータのフルスキャンが可能です。クエリを走らせるたびにすべてのデータを読み

込むことになる（=お金が掛かる）ので、非常に効率の悪いやり方ではありますが、実

行の頻度が多くなければ問題になることもありません。

検索エンジンは独自のクエリ言語を用いるものが多く、SQLに慣れた人にとっては学

習コストが高くなります。日頃から頻繁にログ検索する人はともかくとして、稀にしかテ

キストデータを扱うことがないのであれば、SQLを中心とするデータ分析のしくみをそのま

ま用いて検索する方が簡単です。

Elasticsearch
オープンソースの検索エンジンとして人気を集めているのが「Elasticsearch」で

す。ログ収集ソフトウェアである「Logstash」、可視化ソフトウェアである「Kibana」
と組み合わせて「ELKスタック」、あるいは「Elasticスタック」注16としてよく利用され
ます。

Elasticsearchには任意のJSONデータを格納できるためドキュメントストアと似
ていますが、何も指定しなければすべてのフィールドにインデックスが作られるという
特徴があります。テキストデータでは転置インデックスが構築されます。そのため、
単純なドキュメントストアと比べると書き込みの負荷が大きく、必要に応じて明示
的にスキーマを定めることでインデックスを無効化するといったチューニングが必要と
なります。

Elasticsearchは独自のクエリ言語による高度な集計機能を備えています。
列指向ストレージにも対応しており注17、それ単体でデータを集計するための基盤
となります。ただし、標準のクエリ言語は人手で書くには複雑過ぎるため、
Kibanaのようなフロントエンドを利用するか、あるいはプログラムの中から呼び出
すのがおもな使い方となります。

Tip　ドキュメントストアとしてのElasticsearch

Elasticsearchを検索エンジンとしてではなく、汎用のドキュメントストアとして、任意

のスキーマレスデータを読み書きするのに使うケースもあるようです。特に頻繁にデータを

集計するアプリケーションでは、Elasticsearchの集計機能が役立つでしょう。ただし、そ

の成り立ちから考えるならば、あくまで検索と集計を目的とした参照用データストアとし

て考えるのが安全です。

Splunk
オープンソースではありませんが、商用の検索エンジンである「Splunk」注18もテ

キストデータを集計するためのツールとして知られています。Splunkが得意とするの
は、主としてWebサーバーやネットワーク機器などから出力されるログファイルや

JSONファイルで、テキスト処理しなければ分析できないような非構造化データで
す。たとえば、次のようなログがあるとします。

 2021-01-01 00:00:00 [INFO] user connected: user1

 2021-01-01 00:00:01 [INFO] user connected: user2

 2021-01-01 00:00:02 [INFO] user connected: user3

Splunkは検索エンジンなので、キーワードを入力すればそれを含むログが見つ
かります。直近のデータから順に検索されるため、日々発生する各種のイベントを
素早く見つけたり、レポートを作成したりするような目的で利用されます（図
4.24）。

Splunkのおもしろいところは、検索の実行時にテキストからフィールドが抽出さ
れることです。最初にキーワード検索によってログを見つけると、パターンマッチにより
キーと値が抜き出されます。その結果、検索を行うたびにデータが構造化されるよ
うになっており、クエリを書き換えることでどのようなテーブルでも柔軟に作り出せま
す。

図4.25では先ほどのログデータを用いて、正規表現でユーザー名を抜き出して
テーブルとして出力したところです。Splunkではパイプライン（|）を用いて、データ
を次々と加工します。このような対話的なクエリを用いてデータを抽出、フィルタリ
ングしながら、最終的にクロス集計や可視化までを1つの画面で実行できるよう
になっており、テキストデータを素早くアドホック分析したいときに役立ちます。

Column

モバイル機器の時計は狂っている（!?）　壊れたデータは除外する

スマートフォンから送られてくるデータを見ていると、まだPCが誕生したばかりの1970

年代のデータや、何百年も先の未来からやってきたデータが少なからず出てきて驚かさ

れます。もちろん本当にそのような過去や未来からデータが届いたわけではなく、単に時

計が狂っていただけのことでしょう。

メッセージ配送の時点で時間の正しさを検証することなく、送られてきたイベント時

間をそのまま信じてしまうと使えないデータが多数含まれることになります。筆者が以前

調べたところでは、イベント時間の99％以上は直近の10日以内のものでしたが、残り

1％弱のデータは過去から未来へと広く分布していました。そのように明らかに時間のお

かしいデータは、なるべく早い段階で除外して集計対象から外すべきです。

ビッグデータの集計では、最初に対象となるデータを時間で絞り込みます。このとき

集計効率を上げるために、テーブルを時間でパーティションに分けることがあります。しか

し、その時間が何百年にも分布していると、分散ストレージに大量の小さなファイルが

生成されることになり、その読み書きのために時間の大半が費やされます。わずか1％

弱の壊れたデータのために、クエリの実行性能が著しく悪化するのです。そのような問

題を未然に防ぐためにも、遠い過去や未来の時間を含むデータは、それを分散ストレー

ジに取り込む前に除外するのが一番です。

注9　 URL https://aws.amazon.com/jp/dynamodb/

（本文に戻る）

注10　 URL https://cloud.google.com/bigtable/

（本文に戻る）

注11　 URL https://hbase.apache.org

https://aws.amazon.com/jp/dynamodb/
https://cloud.google.com/bigtable/
https://hbase.apache.org/

（本文に戻る）

注12　 URL https://cassandra.apache.org

（本文に戻る）

注13　「Using a compound primary key」

URL https://docs.datastax.com/en/cql-

oss/3.3/cql/cql_using/useCompoundPrimaryKey.html

（本文に戻る）

注14　 URL https://www.mongodb.com

（本文に戻る）

注15　「Broken by Design: MongoDB Fault Tolerance」

URL https://hackingdistributed.com/2013/01/29/mongo-ft/

（本文に戻る）

注16　 URL https://www.elastic.co/elastic-stack/

（本文に戻る）

注17　「Elasticsearch as a column store」

URL https://www.elastic.co/blog/elasticsearch-as-a-column-store/

（本文に戻る）

注18　 URL https://www.splunk.com

（本文に戻る）

https://cassandra.apache.org/
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useCompoundPrimaryKey.html
https://www.mongodb.com/
https://hackingdistributed.com/2013/01/29/mongo-ft/
https://www.elastic.co/elastic-stack/
https://www.elastic.co/blog/elasticsearch-as-a-column-store/
https://www.splunk.com/

4.5
まとめ

本章では、データを集めて分散ストレージに格納するまでの「データインジェス
ションの流れ」について説明しました。ビッグデータを効率良く集計するには、長
期的なデータ分析を想定したストレージ作りが欠かせず、データを取り込むプロセ
スはどうしても複雑なものとなります。

あまり頻繁にデータをコピーするとデータが細かく分断されて、集計効率は
徐々に悪化します。バルク型のデータ転送であれば、一度にまとめて大量のデー
タをコピーするので問題にはなりませんが、ストリーミング型のデータ転送では小さ
なメッセージが大量に送られてくるため、それを定期的にまとめて書き込むような
工夫が必要となります。

多数のクライアントからリアルタイムにデータを集めるには、メッセージ配送のし
くみが用いられます。メッセージブローカを導入することで分散ストレージへの書き
込み速度を安定化させられます。メッセージを複数の経路へとルーティングするこ
とで、同じデータをストリーミング処理とバッチ処理との両方で利用することも可
能となります。

メッセージ配送では効率を重視してトランザクション処理を行わないことが多
いので、潜在的にデータが重複したり欠損したりする可能性があります。一般に
はデータの欠損を避けるために"at least once"なデータ転送を行いますが、そう
して重複したデータを取り除くのは利用者の責任です。実際には多少の重複は
許容した上で、信頼性が求められる部分ではバルク型のデータ転送を行うのが
現実的です。

メッセージ配送のしくみは使わずに、NoSQLデータベースなどの分散ストレージ
にアプリケーションから直接データを書き込む方法もあります。NoSQLデータベー
スはデータの読み書きには優れているものの、大量のデータを集計できるわけでは
ありません。集計のためにはクエリエンジンから接続してアドホックに分析する
か、あるいは定期的にデータを取り出して長期的なデータ分析に備えます。

本章ではデータパイプラインを自動化するためのしくみを見ていきます。
5.1節では「ワークフロー管理」の考え方を説明します。ワークフロー管理ツール

を導入すると、データを処理する「タスク」を定期的に実行し、エラーが発生した
場合にでも「リカバリー」しやすくなります。ただし、そのためにはワークフローを「羃
等」に実装することが必要です。
5.2節では、「DAG」の内部表現を使った「データフロー」の考え方を説明しま

す。データフローとワークフローとを適材適所で組み合わせて、「バッチ処理」のデー
タパイプラインを作ります。
5.3節では、データフローを用いた「ストリーム処理」について説明します。ストリ

ーム処理の結果を、後からバッチ処理によって置き換える「ラムダアーキテクチャ」
の考え方も取り上げます。

5.1
ワークフロー管理

定期的なデータ処理を自動化し、安定してバッチ処理を実行するために、ワ
ークフロー管理ツールを導入します。本節では、その基本的な考え方について説
明します。

［基礎知識］ワークフロー管理　データの流れを一元管理する

企業内の定型的な業務プロセス（申請、承認、報告など）のような、決まっ
た仕事を円滑に進めるためのしくみを一般にワークフロー管理（workflow
management ）と呼びます。ワークフロー管理の機能は多くの業務システムに
組み込まれており、日々のタスクを管理するのに利用されていますが、このしくみ
が定期的なバッチ処理の実行にも都合が良いことから、データ処理の現場でもよ
く利用されます。

日々の業務には手動のものと自動化されたものとがありますが、ここでは自動
化されたワークフローのみを想定します。タスクは決められたスケジュールに従って自
動的に実行され、何か異常が発生した場合には人が介在して問題を解決しま
す。

ワークフロー管理ツール
ワークフロー管理ツールのおもな役割は「定期的にタスクを実行する」ことと「異

常を検知してその解決を手助けする」ことです。
従来は業務用に開発されたワークフロー管理ツールが、そのままデータ処理にも

使われていました。しかし、ここ数年でデータパイプラインの実行に特化したオープン

ソースのワークフロー管理ツールがいくつも開発されるようになり、徐々に利用者を
増やしています（表5.1）。

ワークフロー管理ツールとタスク
データパイプラインの実行過程では、データを次から次へと移動しながら決まっ

た処理を繰り返します。このとき実行される個々の処理をタスク（task ）と呼
びます（図5.1）。タスクをただ実行するだけであれば特別なツールは必要なく、
自作のスクリプトを走らせるだけでもデータパイプラインは実現できます。

基本機能とビッグデータで求められる機能
ワークフロー管理のために専用のツールが使われるのは、タスクの実行に失敗す

ることがあるからです。データパイプラインが複雑になり、タスクの数が増えてくる
と、失敗したタスクを実行し直すのも徐々に難しくなってきます。ワークフロー管理
ツールは、主として次のような機能を提供します。

・タスクを定期的なスケジュールで実行し、その結果を通知する

・タスク間の依存関係を定めて、決められた順に漏れなく実行する

・タスクの実行結果を保持し、エラー発生時には再実行できるようにする

こうした基本機能に加えて、Hadoopのジョブを簡単に呼び出せるようにした
り、集計結果をデータマートへと書き込む機能を提供したりすることによって、デー
タパイプラインのすべてのタスクを一元管理しやすくしたものが「ビッグデータのため
のワークフロー管理ツール」です。

宣言型とスクリプト型　ワークフロー管理ツールの種類

ワークフロー管理ツールには大きく分けて二つの種類があります。一つはXMLや
YAMLなどの書式でワークフローを記述するタイプで、本書ではこれを宣言型
（declarative ）のツールと呼びます（リスト5.1）。

リスト5.1　Digdagによるワークフロー定義の例（YAML）※

 timezone: UTC

 +step1:

 sh>: tasks/shell_sample.sh

 +step2:

 py>: tasks.MyWorkflow.step2

 param1: this is param1

 +step3:

 rb>: MyWorkflow.step3

 require: tasks/ruby_sample.rb

※参考：「Workflow definition - Digdag 0.9.42 documentation」

URL https://docs.digdag.io/workflow_definition.html

宣言型のツールでは、あらかじめ提供された機能しか利用できませんが、その
範囲内なら最小限の記述でタスクを定義できるのが特徴です。誰が書いても同
じようなワークフローになるので保守性が高まります。同じクエリをパラメータだけ変
えて何度も実行したり、あるいはワークフローを機械的に自動生成したりする場合
にも宣言型のツールが使われます。

https://docs.digdag.io/workflow_definition.html

もう一つはスクリプト言語でワークフローを定義するタイプで、本書ではこれをス
クリプト型（scripting ）のツールと呼びます（リスト5.2）。

リスト5.2　Airflowによるワークフロー定義の例（Python）

 シェルスクリプトのテンプレートを定義

 SCRIPT = '''

 aws s3 cp --recursive s3://example/logs/{{ ds }}/ .

 '''

 シェルスクリプトを実行するタスクを登録

 task = BashOperator(task_id='data_transfer', bash_command=SCRIPT)

スクリプト型のツールの特徴はその柔軟性です。通常のスクリプトと同じように
変数や制御構文を使えるので、タスクの定義をプログラミングできます。スクリプト
言語によるデータ処理をタスクの中で実行することも可能です。たとえば、ファイル
の文字コードを変換してからサーバーにアップロードする、などといったタスクはスクリ
プト型のツールが得意とするところです。

ETLプロセスにはスクリプト型のツール、SQLの実行には宣言型のツール、などと
使い分けるのも一つの方法です。一般に、データ収集の過程では何らかのスクリ
プト処理が必要になることも多く、スクリプト型のツールを使うことで柔軟にワーク
フローを組み立てられます。一方、データを集めてしまえば後は定型の処理ばかり
なので、そこから先は宣言型のツールを使う方が簡潔です。

Column

自家製のワークフロー管理ツール

ビッグデータのワークフロー管理ツールには、これといった業界標準はありません。業務

用のツールに慣れた人はそれをそのまま利用するし、ソフトウェア開発に慣れた人はオー

プンソースのツールを選ぶことも多いでしょう。データウェアハウス向けの商用ETL製品に

は、組み込みのワークフロー管理機能が付いてきます。各種のクラウドサービスでは、そ

のサービスに特化したワークフロー管理機能が提供されます。

結局のところ、ワークフローというのは個々の環境に強く依存したものにならざるを得

ず、特定の目的に適したものほど他の用途では使いにくくなるのかもしれません。既存

のものには満足できずに、新たなツールを自作する人も大勢います。実際一定以上の

規模になると、最終的には自家製のツールを作っているケースをよく見かけます。

note
スクリプト型のワークフローについては、以下の章で詳しく取り上げます。

・第7章　➡ワークフロー管理ツールによる自動化

エラーからのリカバリー方法を先に考える
データパイプラインを日々走らせていると、何らかの予期せぬエラーが必ず発生

します。それが一時的な障害にしろ、実装上の不具合にしろ、速やかに問題を
解決してタスクを再実行しなければなりません。

この対応に手間取ると被害が拡大します。たとえば、1日のアクセスログを集
計するのに、4時間のバッチ処理を走らせているとします。もしこの処理が失敗し、
また4時間掛けてやり直すとしたら、その日のワークフローに大きな遅延が発生しま
す。後続のタスクの中には、予定された時間までに終わらないと新たな問題を起

こすものがあるかもしれません。そうすると一つの失敗が連鎖的に拡大していき、
最終的にはすべてのタスクを最初からやり直すことになって、1日を無駄にするか
もしれません。

ビッグデータを扱っているとさまざまなエラーが発生します。ネットワークの一時的
な障害や、ハードウェアの故障をはじめとして、ストレージの容量不足、クエリの増
加による性能不足など、日常的に発生するものから滅多に起きないものまで
様々です。そのすべてを事前に想定することは不可能なので、あらかじめ予期せ
ぬエラーが発生する可能性を考慮して、エラー発生時の対処方法を決めておくこ
とが重要です。

ワークフロー管理では、タスクの実行順序を決めるのと同時に、エラーからどのよ
うに回復するかというプランを定めます。何か問題が起きても速やかに回復できる
ようなエラーに強いワークフローを構築し、毎日のデータ処理を安定して実行できる
ように努めます。

リカバリーとフローの再実行
エラーの中には、通信エラーのように何度かやり直せば成功するものと、認証エ

ラーのように何度やり直しても失敗するものとがあります。前者の場合にはしばらく
待てば済むことですが、後者の場合には人手で対処する必要があります。エラー
から回復するまでには数日を要する場合もあります。ハードウェアの交換に時間が
掛かるとか、あるいは休日に発生した問題を週明けに対処する、などです。

エラーには無数の可能性があるので、ワークフロー管理では基本的にはエラーか
ら自動回復できるものとは考えません。代わりに、手作業によるリカバリー
（recovery ）を前提としてタスクを設計します。失敗したタスクはすべて記録し
て、それを後から再実行できるようにします（図5.2）。

ワークフロー管理ツールによって実行される一連のタスクを、ここではフロー
（flow ）と呼ぶことにします。各フローには実行時に固定のパラメータが与えられ
ます。日次のバッチ処理であれば、特定の日付がパラメータとなります。同じフロー
に同じパラメータを渡すと、まったく同じタスクが実行されるようにします。そうすると
フローが途中で失敗しても、後から同じパラメータで再実行が可能になるからで
す。これがリカバリーの基礎となります。

ワークフロー管理ツールの多くは、過去に実行したフローとそのパラメータを自動
的にデータベースに記録するようになっています。そのため、失敗したフローを選択し
て再実行するだけでリカバリーが完了します（図5.3）。Webブラウザでエラーの
詳細を確認し、クリック1つで再実行できるようなツールを選ぶと良いでしょう。多
くのエラーは一時的なものであり、時間を空けて再実行するだけで解決する場合
が多いからです。

Column

ワークフローのバージョン管理

オープンソースのワークフロー管理ツールは、いずれもテキストファイルによってワークフロー

を定義します。これはワークフローを「バージョン管理する」のに適しています。ソフトウェア

開発の世界では、分散バージョン管理システムであるGitを用いてソースコードを管理す

るのが一般的になりましたが、同じようにワークフローもGitなどでバージョン管理すると良

いでしょう。

スクリプトにせよSQLにせよ、ワークフローの大部分は元々テキスト情報です。複雑化

したデータパイプラインの構築は、もはやシステム開発と何ら異なるものではないので、ソ

フトウェア開発の世界で培われてきたバージョン管理の手法を導入することをお勧めし

ます。

Tip　タスクをなるべく小さく保つ
ビッグデータのワークフローは数時間に及ぶこともあるため、エラーのたびに最初からや

り直すのでは時間が掛かり過ぎます。大きなタスクは分割して、適度に小さな複数の

タスクからフローを構成するようにしましょう。問題が起きても途中から再開できるため、

スケジュールの遅れを最小限に抑えられます。

リトライ　何度も繰り返すエラーは自動化したい
何度も発生するエラーについては、なるべく自動化して人手を介さずにリカバリ

ーしたいものです。簡単なのはタスク単位の自動的なリトライ（retry ）、つまり
単純な再実行です。すぐにリトライしても失敗を繰り返すことが多いので、リトライ
間隔を5分か10分くらい空けると成功しやすくなります。

タスクをリトライするのは簡単ですが「リトライ回数」には注意が必要です。リト
ライが少ないと、障害から回復する前にリトライが終了してタスクの実行に失敗し

ます。逆にリトライが多過ぎると、タスクがいつまでも失敗しないので、重大な問
題が起きていても気づかなくなります。

どの程度のリトライ回数が良いかはタスクの性質によって異なります。理想的
にはまったくリトライせずに、すべてのエラーを通知するのが好ましいでしょう。エラー
の原因をその都度調べて、エラーが起きないように対策するのが正しい解決策で
す。

それでも予期せぬエラーは発生するものなので、そのときには無理のない範囲
で手作業でリカバリーします。ログを見て想定外の問題が起きていないか必ず確
認します。エラーが起きていても、データ転送には成功している場合もあります。タ
スクの内容によっては、リトライするとデータが重複するものもあります。安易なリト
ライは想定外の問題を隠してしまいます。

リトライを繰り返しても問題のないタスクであれば、1回か2回のリトライを実行
しても良いでしょう。しかし、それ以上はタスクのリトライで対処するのではなく、正
しい問題解決方法を見つけるべきです。

バックフィル　一定期間のフローを連続して実行するしくみ
失敗したフローをリカバリーするもう一つの手段は、フロー全体を最初から実行

し直すことです。そのために利用できるのがバックフィル（backfill ）の機能で
す。

バックフィルとは、パラメータに含まれる日時を順に変えながら、一定期間のフ
ローを連続して実行するしくみです。タスクの失敗が何日も続いた後にまとめて再
実行したい時や、新しく作ったワークフローを過去に遡って実行したい場合などに
使います（図5.4）。

バックフィルによって大量のタスクを実行するときには性能上の注意が必要で
す。たとえば、新しく日次のフローを作ったとして、それをバックフィルすることで過去
30日分のデータを処理したいと思うかもしれません。1日のデータ量は大したことが
なくても、その30倍のデータを一度に処理しようとすると大きな負荷が掛かりま
す。その結果、普段なら起きることのないエラーが大量に発生する場合がありま
す。

大規模なバックフィルを行うときは、自動的なリトライはすべて無効化して、エ
ラーはすべて通知した方が良いでしょう。試しに少しずつバックフィルを実行し、ど
のようなエラーが起きるか、あるいは起きないかを確認します。エラーが多発するな
ら、実行速度を落とすなどして負荷を下げる必要があります。最後に、エラーにな
ったタスクだけを再実行すれば、すべてのバックフィルが完了します。

べき と う

冪等な操作としてタスクを記述する　同じタスクを何度実行しても同じ
結果になる

リカバリーの前提として忘れてはならないのが、再実行の安全性です。タスクを
途中まで実行して失敗したときに、その途中経過が消えずに残っていると、タスク
の再実行によってデータが混在して問題になります。各タスクは原則として「最後
まで成功」するか「失敗して何も残らない」のどちらかであるべきであり、「途中まで
成功」のような中途半端な状態は許されません。

アトミック操作
たとえば、SQLを実行するタスクがあり、その中でINSERT文を2回呼び出して

いるとします。もし1つめのINSERTが終わったところでエラーになると、タスクが再実
行されたときに同じデータがまた書き込まれてしまうかもしれません（図5.5）。

この問題を回避する一つの方法は、各タスクがシステムに変更を加えるのを一
度きりにすることです。トランザクション処理に対応したデータベースであれば、複
数の書き込みを1回のトランザクションとして実行できますが、そうでなければ、書
き込みが必要な数だけタスクを分割するようにします。これは一般にアトミック操
作（atomic operation ）と呼ばれる考え方で、ワークフローに含まれるタスクを
すべてアトミックな操作として実装することで、リトライ時の安全性を高められま
す。

ただし、アトミック操作でも問題を起こす可能性はあります。タスクの実装上の
不具合などで、アトミック操作の直後に問題が発生すると、アトミック操作自体
は成功しているのにもかかわらず、ワークフロー管理ツールはそれをエラーとみなす場
合があるからです。

たとえば、データベースにデータをロードするタスクがあるとします。ネットワーク経
由でロード命令を発行し、その直後に通信が切れてエラーになったとします。この
場合、ロード命令がキャンセルされるか、それとも実行が続けられるかはデータベー
スに問い合わせてみなければわかりません。ワークフロー管理ツールはエラーの内容
には関知しないので、もしロード命令の実行が続いていれば、リトライで重複が発
生します。

そのようなわずかな可能性も許されない場合には、アトミック操作に依存した
フローを作ってはなりません。少なくともワークフロー管理ツールによる自動的なリト
ライは避け、エラーの内容をきちんと確認した上で手動でリカバリーするべきです。

冪等な操作　追記と置換
より確実なのは「同じタスクを何度実行しても同じ結果になる」ようにすること

です。これを
べき と う

冪等な操作（idempotent operation ）と呼びます。SQLであれ
ば「テーブルを消してから作り直す」のが冪等な操作の例です（リスト5.3）。この

ようなタスクであれば、もし途中でエラーになって再実行しても、もう一度テーブルを
作り直すところから始まるので重複は起こりません。

リスト5.3　SQLにおける冪等なテーブル作成の例

 テーブル「t1」がもしあれば削除する

 DROP TABLE IF EXISTS "t1";

 テーブル「t1」を作成する

 CREATE TABLE "t1" (...);

 テーブル「t1」にデータを書き込む

 INSERT INTO "t1" ...;

各タスクをどうやって冪等にするのかを考えるのは利用者の責任です。原則と
しては、常にデータを上書きすることです。一般に、ワークフローの各タスクは追記
（append ）、または置換（replace ）のどちらかを行います。たとえば、分散
ストレージにファイルをアップロードするのであれば、毎回新しいファイル名を作ると
データを追記することになり、同じファイル名で上書きすると置換することになりま
す。

追記を繰り返すとデータが重複しますが、置換は繰り返しても結果が変わらな
いので冪等であると言えます。つまり、冪等なタスクを作るためには、タスクに与え
られたパラメータをうまく使って固有の名前を生成し、何度実行しても常に置換が
行われるように設計すれば良いということです。そうでなければ冪等なタスクには
ならず、自動でリカバリーするのが難しいフローになります。

冪等な追記
しかし現実には、常に冪等なタスクを実装できるとは限りません。たとえば、

SQLによるテーブルへの書き込みでは、その日のデータだけをINSERT文で既存の

テーブルに追記したいときもあるでしょう。この場合、そのタスクはアトミックに実行
することはできますが、そのままでは冪等にはなりません（図5.6❶）。

過去のすべてのデータを置換すれば冪等にはなりますが、それでは負荷が大き
くなります。INSERTの前に既存のデータを削除（DELETE）すれば、間接的にデ
ータを置換することになりますが、一般にテーブルから一部のデータだけを削除する
のは非効率であり、予期せぬ性能の劣化を招く可能性もあるので注意が必要
です。

そこで用いられるのが「テーブルパーティショニング」の考え方です。たとえば、テー
ブルを1日ごと、あるいは1時間ごとのパーティションに分割し、パーティション単位で
置換を行うようにします（図5.6❷）。

パーティションの全データを削除するには、TRUNCATE文やINSERT
OVERWRITE文などの効率の良い命令が使えます。そうするとタスク単位の冪
等性を保ちながら、見た目上は1つの時系列テーブルにデータが追記されていくよ
うなワークフローを組むことが可能です。

テーブルパーティショニングの実装はシステムによってまったく異なるため、具体的
な実行内容は利用するシステムに合わせる必要があります。たとえば、Hiveや
Google BigQueryは標準でパーティショニングに対応していますが、Amazon
Redshiftにはパーティショニングの概念はなく、同じことをするにはUNION ALLを
使ったビューを作成するか注1、あるいはRedshift Spectrumの外部テーブルを使っ
てパーティショニングする必要があります注2。

タスクを冪等にするのが難しければ、諦めてアトミックな追記だけで運用しま
す。その場合、タスクを再実行するとデータが重複する可能性があるため、自動
的なリトライは必ず無効化し、エラー発生時には手作業でリカバリーした方が良
いでしょう。

Column

タスク内部でのリトライ制御

リトライだけでは解決しづらいのが「エラーがどれだけ続くのかわからない」ケースです。

とりわけ第三者のサービスからAPIでデータを取得するような場合、サービスのメンテナン

スで数時間の停止があったり、あるいはAPIの呼び出し制限が掛かったりすることもあり

ます。

そのような「予期されるエラー」についてはワークフロー管理ツールのリトライに頼るので

はなく、タスクの内部で明示的に対処するべきです。ワークフロー管理ツールはエラーの

種類を区別しないので、予期されるエラーと想定外のエラーとが混在すると、本当に重

要な問題を見逃してしまいます。

エクスポネンシャルバックオフ
多くのデータ転送ツールやクライアントライブラリには、リトライ回数を細かく制御する

ためのオプションがあります。タスクの内部でリトライを制御することで、エラーの発生その

ものを回避します。とりわけ何時間ものリトライが予想される場合には、そのエラーだけ

に絞ってリトライ制御を行います。リトライ回数を増やしつつ、少しずつリトライ間隔を伸

ばすためにエクスポネンシャルバックオフ（exponential backoff ）を有効にします。

リストC5.1は、Pythonで実装されたタスクの中で、限られた条件でのみリトライを行

う例です。リトライ間隔を倍々に増やしながら最大で7回、約1分間のリトライを繰り返

し、それでも失敗する場合にはタスクがエラーとなります。こうしてエラーの発生確率を下

げることで、ワークフロー管理ツールには想定外の問題だけが通知されるようにします。

リストC5.1　Pythonによるエクスポネンシャルバックオフ

 from retry import retry

 SomeErrorが発生した場合にはリトライを繰り返す

 （リトライ間隔を1秒、2秒、4秒... と増やしながら最大7回実行）

 @retry(exceptions=SomeError, tries=7, delay=1, backoff=2)

 def get_something():

 return make_call('https://api.example.com/...')

 def my_task1():

 res = get_something() リトライが必要な処理

 ...

タイムアウト
それとは逆に、タスクがいつまでも終わらなくて問題になる場合もあります。たとえ

ば、システムのリソース不足で実行時間が通常よりも伸びる、エラーは発生しないけれど

も実行が止まっている、といったケースです。このような問題を検知するには、ワークフロー

管理ツールの側でタイムアウトを指定するのが確実です。

利用するツールによっては、タスクごとに想定される実行時間や終了予定時間を設

定して、その時間を超えると通知してくれるものもあります。そのタスクが満たすべき基

準を定めるという意味で、ワークフロー管理におけるSLA（service level

agreement ）と呼ばれます。

アトミックな追記
複雑なフローでは、1つのテーブルに何度もデータを書き込みたいときがありま

す。その場合には追記を繰り返すのではなく、一度中間テーブルを作成してから、
最後に一度だけ目的のテーブルに追記するのが安全です（図5.7）。これならも
しフローの実行途中で問題が起きても、中途半端にデータが書き込まれることは
なく、最悪の場合でも中間テーブルを削除してもう一度最初からやり直せます。

これをSQLで記述するとリスト5.4のようになります。前半部分（タスク1）で
は中間テーブルを作成するためにテーブルを置換しているので、この部分は冪等で
す。しかし、最後のINSERT文（タスク2）だけは単純な追記となっており、全体
としては冪等ではありません。ただし、最後の書き込みは1回で行われるので、こ
れはアトミックな操作にはなっています。そのため、フローが失敗した場合には何も
書き込まれず、失敗したタスクを再実行すればリカバリーが完了します。

リスト5.4　追記をアトミックにすることで重複リスクを軽減する

 タスク1：中間テーブルの作成（置換）

 DROP TABLE IF EXISTS "t1";

 CREATE TABLE "t1" (...);

 INSERT INTO "t1" ...; 何回かに分けてデータを書き込み

 INSERT INTO "t1" ...; ...

 タスク2：対象のテーブルにまとめて書き込む（追記）

 INSERT INTO "target_table"

 SELECT * FROM "t1";

ワークフロー全体を冪等にする
データパイプラインを安定して運用するためには、そこに含まれるタスクやフローを

可能な限り冪等にすることです（図5.8）。データインジェスションのパイプライン
では、テーブルパーティショニングを導入することでパーティション単位の置換が可能
です。バルク型のデータ転送についても、ワークフロー管理ツールから日時をパラメー
タとして渡すことで、置換型のタスクを実装できるでしょう。

データマートを構築するフローでも、なるべく追記は避けてテーブルごと置換する
ようにします。その過程で作られる中間テーブルも可能な限り置換するのが望まし
いですが、性能上の理由などから追記せざるを得ない場合もあるでしょう。

各タスクを冪等にするのは理想ですが、必須ではありません。最終的にワーク
フローが安定して実行される限りは、タスクが冪等でなくとも動作に支障はありま
せん。追記が問題視されるのは、リトライ時に重複の可能性があるからであり、そ
の点にさえ注意していれば、通常の運用で問題となることはまずありません。

ただし、何らかの理由で一度成功したタスクを取り消して、もう一度やり直さな
ければならないときもあります。たとえば、データ自体に問題が見つかって修正する
ような場合です。冪等なタスクはそのような場合にでも安全にやり直せますが、
追記が含まれているとそうはいきません。

再実行の安全性を高めるためには、少なくとも各フローが全体として冪等にな
るように実装するべきです。たとえば、最初に中間テーブルを初期化するタスクを
実行し、その後から追記のタスクを続けます。それならフロー全体を最初からやり
直せば安全です。すべてのフローがそのように実装されていれば、安心してワークフ
ローを再実行できるでしょう。

タスクキュー　リソースの消費量をコントロールする

ワークフロー管理ツールに求められるもう一つの大きな役割が、外部システムの
負荷コントロールです。タスクの大きさや同時実行数を変えることでリソースの消
費量を調整し、すべてのタスクがスムーズに実行されるようにします。

ここでは例として、ファイルサーバーから分散ストレージへのファイル転送を考えま
す。2MBの未圧縮テキストファイルが全部で1万、合計20GBあるとします。このう
ち1つのファイルを圧縮して転送するのに5秒掛かるとします。これを単純に1万回
繰り返すと約14時間です。このタスクをワークフロー管理ツールで実行しましょう。

最初に考えるのは並列化です。データ転送に8コアのサーバーが利用できるとし
ましょう。まずは単純に、1つのファイルを1つのタスクとして考えます。各タスクはフ
ァイルサーバーからファイルを取り出し、圧縮し、そして分散ストレージへと転送しま
す。このような一連の手順はシェルスクリプト化して、ワークフロー管理ツールの中
から呼び出せます。

この場合、ファイルの数だけタスクを実行することになります。あまりに大量のタ
スクを同時実行するとサーバーが過負荷になるので、ある程度のところで制限しな

ければなりません。そのために用いられるのがジョブキュー（ job queue ）、ある
いはタスクキュー（task queue ）と呼ばれるしくみです（図5.9）。すべてのタ
スクは一旦キューに格納され、一定数のワーカープロセスがそれらを順に取り出す
ことで並列化が実現されます。今の場合、8つのワーカーを起動すれば、8並列で
のタスク実行を実現できます。

ボトルネックの解消
しかし実際には、8コアのサーバーに対して8つのワーカーでは少な過ぎます。各タ

スクはCPUを使うだけでなく、ディスクI/OやネットワークI/Oも消費します。ワーカー
の数を増やしていけば、まだまだ実行速度を上げられます。8コアのサーバーなら20
程度のタスクを同時実行しても問題ないでしょう。

ワーカーを増やし過ぎると、どこかがボトルネックになって性能向上が頭打ちにな
るか、あるいはエラーが発生し始めます。これはワークフローを実行するサーバーの内
部的な要因と、外部的な要因とに分けらます。前者の場合は、表5.2のような
対策によって改善できるかもしれません。

しかし、後者の場合にはその問題を取り除くことはできません。たとえば、ファイ
ルのコピーがエラーになるなら、ファイルサーバー側が性能の限界なのかもしれませ
ん。だとするとワーカーを増やすのは逆効果で、問題が起きない程度にまでワーカ
ーを減らす必要があるでしょう。同じように、分散ストレージへの書き込み頻度が
多過ぎてエラーになるなら、書き込みの頻度を減らすような工夫が必要です。

タスク数の適正化　大き過ぎず、小さ過ぎず、程良く分割
そもそもの問題として「1つのファイル転送を1つのタスク」として考えることが間

違いです。小さなタスクを多数実行するとオーバーヘッドばかりが大きくなり、実行
時間の増加やエラー発生率を高める要因となります。1つのファイルを5秒で処理
できるのなら、数百ファイル程度をまとめて1つのタスクにするのが適正サイズで
す。

タスクには日時がパラメータとして渡されることを思い出しましょう。各タスクは
指定された時間のデータをまとめて処理するように実装します。仮にファイルが1年
かけて作られたものだとすると、図5.10のようにタスクを1日ごとに分割することで、
生成されるタスクの数は365個にまで減らせます。

タスクを大きくすると、それを効率良く実行できる余地が生まれます。小さなフ
ァイルをまとめて1つのファイルにしたり、複数のファイルを一度にアップロードしたり
するようなコマンドが使えるかもしれません。そのようなタスクを、さらに複数のワー
カーで同時に走らせることで、全体として処理効率を最大化できる組み合わせを
見つけます。

こうした最適化のプロセスは、Hadoopのような分散システムを利用する場合
でも変わりません。タスクが大き過ぎる場合には分割し、小さ過ぎる場合には一
つにまとめることで、各タスクが適度な大きさになるように調整します。その上で複
数のタスクを同時実行するようにワーカーの数を増やしておけば、限られた計算リ
ソースを無駄なく活用することができます。

最終的には、ワークフロー管理ツールに登録されるタスクはどれも大き過ぎず、
小さ過ぎず、程良く分割された多数のタスクが複数のワーカーから呼び出されてい
る状態になります。もしも負荷の上昇などで遅延やエラーが起きるようであれば、
タスクの大きさを変えたりリソースを増強したりするなどして問題を解決します。こ

のようにデータパイプライン全体がスムーズに実行されるようにコントロールするのも
ワークフロー管理ツールの役割です。

注1　「Use Time-Series Tables - Amazon Redshift」

URL https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-

time-series-tables.html

（本文に戻る）

注2　「Creating external tables for Amazon Redshift Spectrum - Amazon

Redshift」

URL https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-

external-tables.html

（本文に戻る）

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-time-series-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html

5.2
バッチ型のデータフロー

複雑なテキスト処理や、多段階のデータパイプラインを実装するために、プログ
ラミング言語でデータ処理を実装したいときもあります。本節では、DAGを用い
たバッチ型の分散データ処理の考え方を説明します。

MapReduceの時代は終わった　データフローとワークフロー

分散ストレージへのデータ転送が完了すれば、そこから先は分散システムのフレ
ームワークが使えます。このときSQLだけでデータを処理するのではなく、プログラミ
ング言語を用いてデータパイプラインを記述したくなる場合もあります。

以前からMapReduceを使ったデータ処理では、MapReduceプログラムをワー
クフローのタスクとして登録することで、多段階の複雑なデータ処理が行われてき
ました。その後の技術的な発展により、現在では多段階のデータ処理をそのまま
分散システムの内部で実行できるようになってきています。以下ではこれをデータ
フロー（data flow ）と呼んで、外部ツールに依存するワークフローとは区別して
扱います（表5.3）。

ここ数年の傾向として、バッチ処理とストリーム処理とが統合され、両者は統
一的なフレームワークから実行されるようになりました。この分野は今もまだ発展

途上ではありますが、今後はどれほど複雑なデータパイプラインでも、単一のプロ
グラムとして実行することが増えてくるのかもしれません。

MapReduceのしくみ
かつてはビッグデータの代表的な技術であったMapReduceですが、今ではもう

過去の技術であると見なされており、新たに利用されることはなくなってきていま
す。Googleでは次世代の技術としてMillWheelというフレームワークを開発して
おり、クラウドサービスであるGoogle Cloud Dataflowの内部でも使われています
注3。HadoopではTezが開発されており、SparkもMapReduceに代わるフレーム
ワークとして人気を集めています。

とはいえ、MapReduceの考え方自体は今でも目にする機会が多いので、ここ
で簡単にそのしくみを振り返っておきましょう。例として、テキストファイルに含まれる
単語を数える処理を考えます（図5.11）。

データ処理を分散したいので、ファイルを一定サイズで区切って小さなデータの
塊（「split」などと呼ばれる）を作ります（図5.11❷）。最初のステップは「分
割したデータを読み込んで、その中に含まれる単語を数える」ことです（図
5.11❸）。一つ一つの処理は独立しているので、これは多数のコンピュータに分
散できます。

分散処理の結果は、最後に集めなければなりません。複数のコンピュータが同
じ単語を数えている場合もあるので、次のステップとして「単語ごとに数を合計」し
ます（図5.11❹）。

分割されたデータを処理する第一のステップを「Map」（図5.11❸）、その結
果を集めて集計する第二のステップを「Reduce」（図5.11❹）と呼びます。この
ようにMapとReduceを繰り返しながら、目的とする結果が得られるまで次々と
データを変換していくしくみがMapReduceです。

MapReduceはそのしくみ上、MapとReduceの一つのサイクルが終わらないと
次の処理に移りません。複雑なデータ処理では、MapとReduceを何度も繰り返
さないと求める結果が得られないため、一つのサイクルから次のサイクルに移るま
での待ち時間が少なからず発生します。

とりわけアドホックなデータ分析で求められるような遅延の小さい集計は、
MapReduceで実現するのは困難です。「MapとReduceを繰り返す」という考え
方そのものは今でも有効ですが、初期のMapReduceの実装は無駄が大きく、
もはや時代に合わない設計となってしまったのです。

MapReduceに代わる新しいフレームワーク　DAGによる内部表現

新しいフレームワークに共通するのがDAG（directed acyclic graph ）と呼
ばれるデータ構造です（図5.12）。日本語では「有向非循環グラフ」と呼ばれま

す。DAGそのものは何かの技術ではなく、数学やコンピュータアルゴリズムで用いら
れるデータモデルの一つです。DAGは、次のような性質を持ちます。

・ノードとノードが矢印で結ばれる（有向）

・矢印をいくら辿っても同じノードに戻らない（非循環）

データフローでは、実行すべき一連のタスクをDAGによるデータ構造として表現
します。図中の矢印はタスクの実行順序を示しており、その依存関係を保ちなが
らうまく実行順序を決めることで、すべてのタスクを漏れなく完了させることができ
ます。後は、これをどれだけ効率良く実行できるかという問題です。

従来のMapReduceも「Map」と「Reduce」の2種類のノードから成るシンプル
なDAGであると考えることができます。ただし、一つのノードで処理が終わらなけれ
ば次の処理に進めないという非効率なものでした。

一方、データフローではDAGを構成する各ノードがすべて同時並行で実行され
ます。処理の終わったデータは、ネットワーク経由で次々と受け渡され、
MapReduceにあった待ち時間をなくしています。

SparkにおけるDAG
DAGはシステムの内部的な表現であり、利用者がその存在を意識することは

ほとんどありません。データフローに限らず、Hive on TezやPrestoのようなクエリエ
ンジンでもDAGは採用されており、SQLからDAGのデータ構造が内部で自動生
成されています。一方、Sparkのようなデータフローのフレームワークでは、プログラミ
ング言語を用いてより直接的にDAGのデータ構造を組み立てます。
リスト5.5は、Sparkでデータ処理を行うPythonスクリプトの例です。これは内

部的には図5.13のようなDAGを生成します。各ノードは、その名前が示すように
MapやReduceに相当する処理を行っており、処理内容が増えるにつれてDAG
もより複雑なものになっていきます。

リスト5.5　単語を数えるSparkプログラム

 ❶ファイルからデータを読み込む

 lines = sc.textFile("sample.txt")

 ❷ファイルの各行を単語に分解

 words = lines.flatMap(lambda line: line.split())

 ❸❹❺単語ごとのカウントをファイルに出力

 words.map(lambda word: (word, 1)) \

 .reduceByKey(lambda a, b: a + b) \

 .saveAsTextFile("word_counts") ここで実行開始

DAGによるプログラミングの特徴が遅延評価（lazy evaluation ）です。プロ
グラムの各行は、実際にはDAGのデータ構造を組み立てているだけであり、その
場では何の処理も行いません。まずはDAGを構築し、その後で明示的に、ある
いは暗黙的に実行結果を要求することによって、ようやくデータ処理が開始され
ます。

MapReduceのようにMapやReduceを一つずつ実行するのではなく、最初に
データパイプライン全体をDAGとして組み立ててから実行に移すことで、内部のス
ケジューラが分散システムにとって効率の良い実行計画を立ててくれるのがデータ
フローの優れたところです。

データフローとワークフローとを組み合わせる
データフローでプログラミングするようになると、データの入出力をすべて一つの

DAGとして記述できます。そうするとワークフロー管理ツールを使わずとも、任意の
データパイプラインを実行できるのではないかと考えてしまいますが、話はそう簡単

ではありません。実際には両者は補完関係にあり、うまく使い分けるべき存在で
す。

たとえば、タスクを定期的に実行したり、失敗したタスクを記録してリカバリーし
たりするようなことはデータフローではできません。そのような目的には、やはりワーク
フロー管理が必要です。そのためデータフローのプログラムもまた、ワークフローの一
部として実行される一つのタスクであると考えられます。

分散システムの中でのみ実行されるデータ処理であれば、それは一つのデータフ
ローとして記述できます。たとえば、中間テーブルを作って、それを次のクエリで読
み込むのであれば、別のタスクとして分離する必要はありません。その一方で、分
散システムの外部とデータをやり取りする場合には、いつどのようなエラーが発生す
るかもわからないため、リカバリーのことを考えるとワークフローの中から実行するの
が確実です。

データを取り込むフロー
データフローから読み込むデータは、性能的に安定した分散ストレージに配置す

るようにします。特にフローが完成するまでの開発時には、同じデータを何度も読
み込んではテストするので、分散ストレージにコピーされたデータだけを利用します。
さもなければ、外部のデータソースに何度も接続することになって性能問題を引き
起こすかもしれません（図5.14）。

外部のデータソースからデータを取り込むときには、バルク型の転送ツールでタス
クを実装するようにします（図5.15❶）。データソースからの読み込み速度はどう
やっても限界があり、データフローを使ったからといって速くなるとも限りません。そ
れよりもエラーの発生に対して確実に対処し、コピーを終わらせてしまうことが先決
です。そのためのタスク実行には、ワークフロー管理ツールを使うのが向いていま
す。

データのコピーさえ完了すれば、そこから先はデータフローが得意とするところです
（図5.15❷）。テキストデータの加工や、列指向ストレージへの変換などといった
負荷の大きい処理はデータフローとして実行できます。そこまでを1つのタスクとして
実装すれば、定期的にデータを取り込むためのワークフローが完成します。

データを書き出すフロー
データの集計結果を外部システムに書き出す場合には、ちょうど逆の関係が成

り立ちます。データフローの中から大量のデータを外部に転送するのは避けた方が
無難です。書き込みに長い時間が掛かると、いつまでも実行が完了せずにリソー
スを消費し続けたり、最悪の場合には書き込みに失敗して最初からデータ処理
をやり直したりすることにもなりかねません。

データフローの出力はCSVファイルのような扱いやすい形式に変換し、一旦分
散ストレージに書き込みます（図5.16❶）。保存さえ終わってしまえば、データフ
ローの役割は終わりです。空いたリソースを使って、次のタスクを実行することがで
きるでしょう。

外部システムにデータを転送するのはワークフローの役割です。バルク型の転送
ツールを使ってタスクを実装するか、あるいは外部システムの側からファイルを読み
込むように指示を出します（図5.16❷）。たとえば、データマートとしてMPPデー
タベースを利用するなら、分散ストレージからファイルをロードするコマンドを発行で
きるでしょう。

データフローとSQLとを使い分ける　データウェアハウスのパイプラインとデー
タマートのパイプラン

以上のようなデータ入出力に加えて、SQLによるクエリの実行までを組み合わ
せることで、バッチ型のデータパイプラインは完成します。すべての処理をデータフロ
ーとして実装したい場合は別として、おもにデータ分析を目的とする場合には、
SQLでクエリを走らせることも多いでしょう。それを呼び出すのもワークフローの仕事
です。

SQLをMPPデータベースで実行する場合と、分散システム上のクエリエンジンで
実行する場合とに分けて考えてみます。前者は典型的な「データウェアハウスのパ
イプライン」、後者は「データマートのパイプラン」となります。

データウェアハウスを構築する場合には、図5.17❶のように、ロードされるデータ
を作るところまでがデータフローの役割です。非構造化データを加工して、CSVファ
イルなどを作って分散ストレージに書き込みます。そこから先のタスク実行や、SQL
によるクエリの実行はワークフローに任せます。

クエリエンジンを使ってデータマートを構築する場合には、図5.17❷のように、構
造化データを作るところまでがデータフローの役割となります。分散ストレージ上の
データを日々のバッチ処理で加工し、列指向のストレージ形式で保存しておきま
す。クエリエンジンを使ったSQLの実行や、その結果をデータマートへと書き出すの
はワークフローから実行します。

対話的なフロー　アドホック分析のパイプライン
アドホックなデータ分析では、これとはまた違ったパイプラインとなります。そもそ

もアドホック分析では多くのデータ処理を手作業で行うので、ワークフローは必要
ありません（図5.18）。

まだ構造化されていないデータをアドホックに分析するときには、データフローは
非常に有用です。ローデータ（生データ）に直接接続し、スクリプト言語を使って
その場でデータを加工、集計することができます。データを構造化するところまで終
わればその後の集計は高速であり、クエリエンジンによるSQLの実行と比べても
遜色のない処理速度が得られます。

分析したいデータがすでに構造化されている場合には、クエリエンジンを使って
それを参照します。コマンドラインやノートブックの中からSQLを実行することもでき
ますが、可視化ツールとクエリエンジンとを直接接続する場合もあります。これに
はODBCやJDBCのドライバが用いられます。

ただし、クエリエンジンと可視化ツールとの組み合わせは無数にあり、まだまだ
安定して接続できない場合も多いようです。安定したワークフロー運用を求める
場合には、実績のあるRDBやMPPデータベースをデータマートにする方が確実で
す。

注3　「Cloud Platform at Google I/O - new Big Data, Mobile and Monitoring

products」

URL https://developers.googleblog.com/2014/06/cloud-platform-at-

google-io-new-big.html

（本文に戻る）

https://developers.googleblog.com/2014/06/cloud-platform-at-google-io-new-big.html

5.3
ストリーミング型のデータフロー

データ処理のリアルタイム性を高めるには、バッチ処理とはまったく異なるデー
タパイプラインが必要です。本節ではDAGを用いたストリーム処理のしくみについ
て説明します。

バッチ処理とストリーム処理とで経路を分ける
バッチ処理を中心とするデータパイプラインの欠点は、データを分析可能になる

までに時間が掛かることです。集計効率を高めるために列指向ストレージを作ろ
うとすると、データを蓄えて変換するのにどうしても一定の時間が必要です。よりリ
アルタイムに近いデータ処理では、そのようなステップをすべて省略した別系統の
パイプラインを作ります。

ここで言う「リアルタイム」とは、概ね「イベントの発生から数秒後には結果がわ
かる」ものを指します。もっと時間の長い、たとえば1時間後にわかれば良いという
ことであれば、バッチ処理でも間に合うのでストリーム処理は必要ありません。スト
リーム処理を導入するのは即応性が求められるケースに限られます。

リアルタイム性の高いデータ処理システムは古くからいくつもあり、たとえば表
5.4のようなものが用いられます。これらはビッグデータという言葉が使われるよりも
以前から大量のデータを処理しており、それぞれの専門分野ではうまく機能しま
す。一方、本書で想定するようなイベントデータ、たとえば何百万台ものスマートフ
ォンから送られてくるメッセージを処理しようとしても、そのまますぐに使えるわけで
はありません。

前章では、リアルタイムなメッセージ配送のしくみとして、メッセージブローカを中
心とするデータの流れを取り上げました。そうして受け取ったデータを分散ストレー
ジに格納するところから始まるのがバッチ処理だとすると、分散ストレージを経由
せずに処理を続けるのがストリーム処理（stream processing ）です（図
5.19）。

バッチ処理とストリーム処理とは、互いに欠点を補完する関係にあります。バッ
チ処理は1年を超えるような長期的なデータ分析を想定したストレージを構築す
るところから始まります。そうすると一度にまとまったデータを処理しないと効率が
落ちるため、1時間ごとといった比較的大きな単位でデータを取り込みます。した
がって、バッチ処理のサイクルが回るまではデータを見ることができず、リアルタイム
の集計には向いていません。

ストリーム処理はリアルタイム性こそ高いものの、過去のデータを扱うのには不
向きです。処理内容を変更すると新しく届いたデータには適用されますが、すでに
処理の終わった過去データが変更されるわけではありません。これから届くデータ
にしか興味がないならストリーム処理が適していますが、過去データを集計したい
ならバッチ処理の方が優れています。

ストリーム処理とバッチ処理とを統合する
ストリーム処理のためのフレームワークはいくつかありますが、本書ではバッチ処

理と同様に、DAGによるデータフローを記述するものについて説明します。バッチ処
理ではまず先にデータがあり、それを小さく分割してDAGに流し込みます。一方、
ストリーム処理では絶え間なくデータが生成され、それがDAGの中を流れることに
よって処理が進みます（図5.20）。

バッチ処理のように実行時にデータ量が決まるものを有限データ（bounded
data ）、ストリーム処理のように際限なくデータが送られてくるものを無限データ
（unbounded data ）と呼びます。この両者は性質の違いこそあれ、データを
小さく分割してDAGで実行するという点では変わりありません。

そのため、DAGを用いたデータフローでは、バッチ処理とストリーム処理とを同じ
ようにプログラミングすることが可能となってきます。たとえば、ストリーム処理のため
のDAGに手を加えて、分散ストレージ上の過去データ、つまり有限データを読み込
むようにすれば、それはもうバッチ処理となります。

Spark StreamingにおけるDAG
具体的な例として、Sparkにおけるプログラミングモデルを見てみましょう。

Sparkは元々バッチ処理のための分散システムでしたが、「Spark Streaming」と

呼ばれる機能が統合されたことで、現在ではストリーム処理までが透過的に扱え
るフレームワークとなっています。

リスト5.6は、Spark Streamingでストリーム処理を行うPythonスクリプトで
す。前述のバッチ処理のスクリプト（リスト5.5）と比較すると、データを読み書き
する初期化の部分に違いこそあれ、データ処理の中心となる部分（Map処理と
Reduce処理）はまったく同じであることがわかります。

リスト5.6 　単語を数えるSpark Streamingプログラム

 1秒ごとのストリーム処理を行う

 sc = SparkContext("local[2]", "NetworkWordCount")

 ssc = StreamingContext(sc, 1)

 TCPポート9999からデータを読み込む

 lines = ssc.socketTextStream("localhost", 9999)

 入力の各行を単語に分解

 words = lines.flatMap(lambda line: line.split())

 単語ごとのカウントをコンソールに出力

 words.map(lambda word: (word, 1)) \

 .reduceByKey(lambda a, b: a + b) \

 .pprint()

 ストリーム処理を開始

 ssc.start()

バッチ処理はデータの処理が終わると終了しますが、ストリーム処理はプログラ
ムを停止するまで延々と実行が続けられます。バッチ処理とストリーム処理とでは
達成したい目的が異なるので、実際には両方で同じコードを動かすことはあまり

ないかもしれませんが、このように一つのフレームワークで統合的にデータ処理を記
述できるのもデータフローの利点です。

Column

ストリーム処理による1次集計

データ量があまりにも多くて、そのすべてを保存したくない場合には、データ量を削減

するためだけにストリーム処理が用いられます。たとえば、明らかに不要なデータが送ら

れてくるなら、最初にそれを取り除くことでストレージ使用量を減らせるでしょう。あるい

は1秒ごとの統計値だけを記録したい場合には、その集計をストリーム処理に任せるこ

とができます。

仮に1万台のデバイスから1秒ごとにデータを集めると、生成されるデータは1日で8億

件を超えます。そのすべてを残しておきたいというのでもなければ、最初にストリーム処理

した結果だけを保存すれば済みます。たとえば、統計的なデータ分析にしか興味がな

ければ、ちょうどサマリーテーブルを作るのと同じように、分析に必要なディメンションだけ

を残して1秒ごとにデータを集約すれば良いでしょう。

ストリーム処理の結果は、メッセージブローカに書き戻して再利用できます。その後は

削減されたデータを通常のメッセージ配送と同様に、一方ではバッチ処理のために分散

ストレージに格納しつつ、他方ではリアルタイムなレポートのために時系列データベースな

どに転送できます（図C5.1）。

分散ストレージにも性能上、あるいはコスト上の限界があります。データ量があまりに

多くてその限界を超えるなら、ストリーム処理を用いて現実的な流量へと削減すること

が一つの選択肢となります。

ストリーム処理の結果をバッチ処理で置き換える　ストリーム処理の二
つの問題への対処

ストリーム処理には潜在的に二つの問題があります。一つは「間違った結果を
どのように修正するか」です。プログラムの不具合や、一時的な障害などによって
予期せぬ結果となった場合に、過去の結果を修正したくなることもあるでしょう。
しかし、ストリーム処理は原則として新しく届いたデータを処理するのみであり、
「時間を巻き戻す」という概念は基本的にはありません。

もう一つは「遅れてくるデータの扱い」です。前章でも取り上げたように、メッセー
ジ配送には遅延がつきものですが、それをイベント時間で集計すると問題になり

ます。集計が終わった後になって届くデータも多数あるので、ストリーム処理の結
果は本質的に不正確にならざるを得ません。

これらの問題に対する伝統的な対処方法は、ストリーム処理とは別にバッチ
処理を走らせて、後者の結果を正とすることです。これは定期的なレポートでもよ
く用いられる方法です。たとえば日次レポートを速報値とし、月次レポートを確定
値として作り分けるなどです。ストリーム処理の結果も、バッチ処理の結果が出る
までの暫定値として利用する限りは問題となりません。

ラムダアーキテクチャ　バッチレイヤ、サービングレイヤ、スピードレイヤ
これを発展させた考え方として、ラムダアーキテクチャ（lambda

architecture ）が導入される場合もあります。ラムダアーキテクチャでは、データパ
イプラインを図5.21のような三つのレイヤに区分します。すべてのデータは必ずバッ
チレイヤ（batch layer ）で処理します。過去のデータを長期的なストレージに
蓄えて、何度でも集計をやり直せるようにします。バッチレイヤは大規模なバッチ
処理を実行できる一方で、1回の処理には長い時間が掛かります。

※参考　 URL http://lambda-architecture.net

バッチ処理の結果にはサービングレイヤ（serving layer ）を通してアクセスし
ます。ここには応答の早いデータベースを設置し、集計結果をすぐに取り出せるよ
うにします。サービングレイヤから得られる結果をバッチビュー（batch view ）と
呼びます。バッチビューは定期的に更新されますが、リアルタイムの情報を得ること
はできません。

そこで、別経路でストリーム処理を行うためのスピードレイヤ（speed layer ）
を設置します。スピードレイヤから得られる結果をリアルタイムビュー（realtime
view ）と呼びます。リアルタイムビューはバッチビューが更新されるまでの間しか利
用されず、古いデータは順次削除されていきます。

最後に、バッチビューとリアルタイムビューの両方を組み合わせる形でクエリを実
行します。たとえば、直近24時間の集計結果はリアルタイムビューを参照し、それ
以前のデータにはバッチビューを用いることができるでしょう。この組み合わせによっ

http://lambda-architecture.net/

て、バッチ処理とストリーム処理の欠点を補おうとするのがラムダアーキテクチャで
す。

ラムダアーキテクチャの良いところは、リアルタイムビューの結果はいずれバッチビ
ューで置き換えられるということです。ストリーム処理の結果は一時的にしか利用
されず、しばらく待てばバッチ処理による正しい結果が得られます。そのため、スト
リーム処理が不正確でも長い目で見れば問題になりません。バッチ処理さえ安
定して動いている限りは「ストリーム処理をやり直す必要はない」というのがラムダ
アーキテクチャの考え方です。

カッパアーキテクチャ
ラムダアーキテクチャの問題点として、開発効率の悪さが挙げられます。スピード

レイヤとバッチレイヤは、どちらも同じような処理を実装することになるので二度手
間です。そのためラムダアーキテクチャを単純化したカッパアーキテクチャ（kappa
architecture ）が選ばれる場合もあります注4。

カッパアーキテクチャでは、ラムダアーキテクチャからバッチレイヤとサービングレイヤ
を完全に取り除いて、スピードレイヤのみを残します。代わりにメッセージブローカの
データ保持期間を十分に長くして、何か問題が起きたときにはメッセージ配送時
間を過去にセットし直します。そうすると過去のデータが再びストリーム処理へと流
れてきて、実質的に再実行が行われます。ストリーム処理の内容が冪等になって
いれば、出力データが上書きされて新しい結果へと書き換えられます。つまり、バ
ッチ処理と同じような過去データの一括処理を、ストリーム処理だけで実行しよう
というわけです。

カッパアーキテクチャの懸念点は負荷の上昇です。ストリーム処理のデータフロー
に大量の過去データを流し込むと、平常時と比べて何倍、あるいは何十倍もの
計算リソースを一時的に消費することになります。しかし、クラウドサービスの普及

によって、そのようなリソースを確保するのは難しいことではなくなったので、必要に
応じて「ストリーム処理をやり直す方が簡単だ」というのがカッパアーキテクチャの考
え方です。

アウトオブオーダーなデータ処理
バッチ処理に頼ることなく、ストリーム処理で正しい集計結果を得るための努

力も続けられています。そのとき問題となるのは遅れてくるメッセージ、つまりプロセ
ス時間とイベント時間との差異です。これは技術的にはアウトオブオーダー（out
of order ）なデータ処理と呼ばれます。ここではその概要だけを簡単に説明しま
す。

note
アウトオブオーダーなデータ処理については、以下のブログや論文で詳しく取り上げら

れています。

・「Streaming 101: The world beyond batch」

URL https://www.oreilly.com/radar/the-world-beyond-batch-

streaming-101/

・「The Dataflow Model: A Practical Approach to Balancing Correctness,

Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data

Processing」

URL https://research.google/pubs/pub43864/

本来のデータの姿は「イベント時間」から得られる

https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/
https://research.google/pubs/pub43864/

前述のとおり、ストリーム処理とは、基本的にはプロセス時間によるリアルタイ
ムなデータ処理です。データが届いた途端に集計を始めるので、時間に対して特
別な操作を行わない限りは、その出力はプロセス時間と結び付いたものになりま
す。この性質が予期せぬ混乱を招きます。

たとえば、メンテナンス等の理由でストリーム処理を一時的に止めたとします。
再起動後に貯まっていたデータ処理が再開されますが、その様子をダッシュボード
等で可視化すると、流れてくるデータ量が突然変化したように見えるかもしれませ
ん。実際に送られてくるデータ量は変わらずとも、ストリーム処理のシステム上の都
合で集計結果が変わることになるわけです。

同じような現象は、メッセージ配送の経路上のどこでも起こり得ます。どこかで
遅延が起きるたびにストリーム処理の結果が揺らいでいたのでは、何を信じて良
いのかわからなくなります。結局のところ、プロセス時間で集計している限りは本
来のデータの姿はわからず、データが最初に生成された時間、つまり「イベント時
間」で集計しなければ正しい結果は得られません。

イベント時間ウィンドウイング
ストリーム処理では、しばしば時間を一定の間隔で区切ってウィンドウ

（window ）を作り、その中でデータの集計を行います。たとえば、過去1時間
のイベント数の推移をグラフにしたければ、データを1分間隔の60個のウィンドウに
区切り、それぞれのウィンドウでイベント数を数えます。

イベント時間によってウィンドウを分けることをイベント時間ウィンドウイング
（event-time windowing ）と言います。イベント時間で見ると、メッセージ配
送されてくるデータは順不同に並んでいる、つまりアウトオブオーダーな状態にある
ため、これを適切に並べ替えて集計結果を更新しなければなりません（図
5.22）。

そのためには過去のウィンドウの状態を保持しながら、データが届くたびに該当
するウィンドウの集計をやり直す必要があります。データを無限に保持し続けるこ
とはできないので、一定以上遅れてきたデータは無視することも必要です。イベン
ト時間ウィンドウイングのためには、これらのことを考慮しながらDAGを記述するこ
とになります（リスト5.7）。

リスト5.7 　Google Cloud Dataflowにおけるウィンドウの例※

 PCollection<KV<String, Integer>> scores = input

 2分間隔のウィンドウを作成

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))

 集計結果を出力するタイミング（トリガー）を設定

 .triggering(

 AtWatermark()

 .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

 .withLateFirings(AtCount(1))))

 .apply(Sum.integersPerKey());

※出典：「Streaming 102: The world beyond batch」

URL https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/

注4　「カッパ（κ）」はギリシャ文字で「ラムダ（λ）」の1つ前の文字で、ラムダアーキテクチ

ャを単純化したことからこの名前になったようです。 URL

https://milinda.pathirage.org/kappa-architecture.com/

（本文に戻る）

https://www.oreilly.com/radar/the-world-beyond-batch-streaming-102/
https://milinda.pathirage.org/kappa-architecture.com/

5.4
まとめ

本章ではビッグデータのデータパイプラインを構築するための技術として、ワーク
フローとデータフローの考え方について説明しました。
ワークフロー管理ツールは複数のシステムに命令を出すための司令塔のような

役割であり、各種タスクのスケジュール実行やエラーからのリカバリーを助けます。
ビッグデータの集計には障害がつきものです。いざというときに困らないために

も、可能な限り冪等なタスクを実装するなどして、日頃からリカバリー可能なワー
クフローを記述することが大切です。さもなければトラブルのたびに時間を奪われ
ることになり、生産的な活動ができなくなります。

ワークフロー管理ツールは、外部システムに与える負荷を調整する役割も担い
ます。タスクの大きさや同時実行数をうまくコントロールして、安定したタスク実行
とリソースの有効活用とを両立します。ワークフローに登録するタスクは、どれも大
き過ぎず、小さ過ぎず、程良く分割することで効率の良い実行が可能となり、エ
ラー発生時の影響も小さく抑えられます。

分散ストレージにデータを取り込んだ後はデータフローの出番です。以前であれ
ばワークフロー管理が必要とされた複雑なデータパイプラインでも、DAGという形で
フローを記述することによって、分散システムの内部で効率良く実行できるように
なりました。バッチ型のデータフローをスクリプト化してしまえば、データの構造化や
データマートの構築といったプロセスを単独のタスクとしてワークフローから呼び出
せます。
リアルタイムなデータ処理のためには、ストリーミング型のデータフローを実行で

きます。ただし、ストリーム処理は間違った集計をやり直すのが難しく、必然的に

バッチ処理と組み合わせて二系統のデータ処理を行うことになります。これは一
般にラムダアーキテクチャとして知られますが、システムを複雑化する要因となるた
め、どうしても必要というのでもない限りはストリーム処理の導入には慎重になる
べきでしょう。

本書で取り上げた各種の分散システムをまとめると図5.Bのようになります。こ
れはあくまで一例であり、実際にはもっと単純な構成もあれば、逆にもっと複雑に
入り組んだシステムになることもあります。いずれにしてもデータパイプラインの安定
した運用のためにはワークフロー管理が不可欠であり、まずはワークフロー管理ツー
ルをきちんと使い込み、安定性を高めることが大切です。

本章では、ビッグデータと機械学習の関係について見ていきます。機械学習
では大量のデータから過去の傾向を学習することで、将来を予測するための「モ
デル」を作り上げます。ビッグデータを活用してモデルを何度も「訓練」することに
より、より正確な予測結果を「推論」できるようになります。
6.1節では「特徴量ストア」の考え方を説明します。機械学習の元となるデー

タ（特徴量）は特徴量ストアへと格納され、それを使って訓練や推論が実行
されます。特徴量を作成することを「特徴量エンジニアリング」と呼び、その過程
でビッグデータが集計されます。特徴量ストアには大量のデータが格納されるた
め、そこでもビッグデータの技術が用いられています。
6.2節では「MLOps」について簡単に説明します。MLOpsは機械学習の開

発と運用の効率を上げるための取り組みですが、本書でこれまでに取り上げた
「ノートブック」や「ワークフロー管理」などのソフトウェアが取り入れられており、これ
から機械学習の環境を構築するときには知っておきたい概念です。データパイプ
ラインの自動化に使われる「オーケストレーション」の概念についても説明します。

※ URL https://docs.microsoft.com/en-us/azure/architecture/example-

scenario/mlops/mlops-technical-paper

https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-technical-paper

6.1
特徴量ストア

ビッグデータを機械学習に利用する場合、集めたデータを加工することで機械
学習の訓練や推論に適した特徴量を生成します。特徴量を保存してチームと
共有するには「特徴量ストア」と呼ばれる特別なデータストアを作成します。

機械学習のための特徴量ストア
本書をここまで読み終えた読者であれば、次のステップとして特徴量ストア

（feature store ）の構築に興味を持つかもしれません。特徴量ストアは2018
年頃から広がり始めた比較的新しいコンセプトであり、本書の執筆時点ではまだ
確立された技術ではありませんが、今後のデータ基盤を構築する上で欠かせない
コンポーネントになると考えられます。ここではその基本的な考え方を紹介します。

特徴量エンジニアリング　属性と特徴量
データ分析の過程では、しばしば顧客の分類などに用いる属性

（attribute ）を作成します。たとえば、顧客ごとに「最後に商品を購入した日」
や、これまでの「購入金額の累計」などが属性として保存されます。データ分析が
高度化するにつれて、属性の数はどんどん増えます。業界によっては顧客ごとに
数百以上の属性を作成することも珍しくありません。

データマートに属性を保存する場合、たとえば表6.1のような形式のテーブルを
作成します。テーブルには顧客ごとに1つのレコードを作成し、各レコードには数百
の属性値を格納します。

機械学習を使う場合にも、同じようにして多数の属性データを作成します。た
だし、文字列のようなそのままでは機械学習に適さないデータは数値データへと変
換します。たとえば、顧客の性別が「男性/女性」という文字列になっているなら、
それを「0/1」という数値に変換します。あるいは顧客の誕生日を年齢に変換す
ることもあるでしょう。このように、機械学習のために加工されたデータのことを特徴
量（feature ）と呼びます。

特徴量を作成する一連の作業は特徴量エンジニアリング（feature
engineering ）と呼ばれ、しばしばPythonによるプログラムとして実装されま
す。

特徴量のデータ形式　データフレームとして扱う
特徴量は、pandasやSparkのデータフレームとして扱われます。たとえば、表

6.1のテーブルであれば次のような特徴量として表現されます。ここでは「最終購
入日」を日付として格納する代わりに「現在までの経過日数」を特徴量として扱
っています。

 In [1]: import pandas as pd

 : 特徴量を作成する

 : features = pd.DataFrame({

 : 'customer_id': [1, 2, 3], # 顧客ID

 : 'gender': [0, 1, 0], # 0=男性 1=女性

 : 'days_from_last_sales': [657, 230, 167], # 最終購入日からの経過日数

 : 'total_sales_amount': [8000, 1000, 6000], # 累計購入金額

 : })

 : features

 Out[1]:

 customer_id gender days_from_last_sales total_sales_amount

 0 1 0 657 8000

 1 2 1 230 1000

 2 3 0 167 6000

「顧客ID」のような識別子は特徴量ではなくエンティティ（entity ）と呼ばれ
ます。また、複数の特徴量をまとめて一つにしたものを特徴量セット（feature
set ）、または特徴量グループ（feature group ）などと呼びます。特徴量セ
ットはエンティティごとに作られます。たとえば、顧客や商品、店舗などのエンティテ
ィのそれぞれについて特徴量セットを作成します。

特徴量はどのような方法で作成してもかまいません。データウェアハウスから
SQLで集計することもあれば、ローデータを直接Pythonで加工することもあるでし
ょう。すでにあるデータ基盤を活用したり、あるいは不足するデータを自分で補った
りすることで、それぞれのエンティティに関連する特徴量を集めてデータフレームへと
変換していきます。

特徴量ストア　ビッグデータと機械学習の境界線
どのような特徴量が役立つかは事前にはわからないため、試行錯誤しながら

多数の特徴量が作られます。たとえば、「最終購入日」という属性データは、その

ままの文字列としては機械学習の役には立ちません。しかし「現在までの経過日
数」という数値に変換してみると、どれだけ最近購入されたのかが定量的にわか
ります。あるいは、もっと具体的に「過去7日以内に一度でも購入したかどうか」を
1つの特徴量として「0/1」で表現する方が機械学習しやすいかもしれません。

このように同じデータからでも作り出せる特徴量は無数にあります。特徴量エン
ジニアリングはいわば職人の世界であり、これまでは機械学習のエンジニアやデー
タサイエンティストが各々のやり方で独自に実装していました。このプロセスを少し
でも標準化して生産性を上げようとして開発されているのが特徴量ストアです。

「特徴量ストア」は特徴量の読み書きに特化したデータストアです。機械学習
では特徴量を使ってモデルを「訓練」することにより過去の傾向を学習し、そして
完成したモデルで「推論」することにより未来を予想します。そのときに必要となる
データを特徴量エンジニアリングによって作り上げ、そして特徴量ストアへと格納し
ます（図6.1）。

特徴量ストアを作るためにビッグデータを使うとしても、特徴量そのものがビッグ
データになるとは限りません。特徴量は顧客などのエンティティ単位で集計された
値であるため、仮に顧客が数百万人なら作られるレコード数も数百万件に過ぎ
ません。特徴量ストアから取り出されるデータはスモールデータになることが多いと
考えられます。

もともと機械学習のライブラリはCSVファイルなどを読み込んでメモリ上で計算
するものも多く、ビッグデータの技術が必要となるケースは限られます。従来のETL
プロセスを特徴量エンジニアリングにまで発展させて、組織内の誰もが使える特
徴量ストアを構築することがデータエンジニアの役割となります。そうして完成した
特徴量ストアからデータを取り出して機械学習を実装するのがデータサイエンティ
ストの役割です。つまり、特徴量ストアは「ビッグデータと機械学習の世界を隔て
る境界線」となります。

特徴量ストアのデータパイプライン　オンラインとオフライン
特徴量として使われるのはデータレイクに格納されたデータばかりではありませ

ん。リアルタイムなデータが必要となる場合もあります。たとえば、直近5分の株価
の動きを見て、次の価格を予測するようなプログラムを書くとしたら、ストリーム処
理を使ってリアルタイムに特徴量を生成します。

特徴量ストアではリアルタイムに更新される特徴量と、定期的に更新される
特徴量との両方を扱える必要があります。前者をオンライン（online ）の特徴
量、後者をオフライン（offline ）の特徴量と呼びます。

オンラインの特徴量には、ストリーミング型のメッセージ配送（4.2節）やストリ
ーミング型のデータフロー（5.3節）が使われます（図6.2❶）。完成した特徴量
はNoSQLデータベースのような高頻度の読み書きに耐えられるデータストアに格
納されます。

一方、オフラインの特徴量では、オブジェクトストレージ（4.1節）やバッチ型の
データフロー（5.2節）が使われます（図6.2❷）。過去に蓄えられた長期的な
データを集計することで、毎日一回といった頻度で特徴量を計算します。

訓練と推論　オンラインとオフラインの使い分け
機械学習のフェーズでは、おもにオフラインの特徴量を用いて訓練

（training ）が行われます（図6.2❸）。特徴量ストアには事前に集計済み
のデータが格納されるため、読み出すときには大規模なデータ処理は必要ありま
せん。ただし、多数ある特徴量のうち一部だけを読み出したり、簡単なデータ処
理をしてから読み出したりすることもあるため、データの読み出しにはクエリエンジン
やデータフローが利用されます。

訓練が完了するとモデル（model ）がモデルレジストリ（model
registry ）に登録され、それが推論（prediction ）のために使われます（図
6.2❹）。推論にはオンラインとオフラインの2種類があります。オンラインの推論
は、本番環境のオンラインサービス（Webサービスなど）と結合され、ユーザーから
のリクエストに応じてリアルタイムに結果を返します。一方、オフラインの推論はバ
ッチ処理として定期的に実行されます。

推論のためにはモデルと特徴量の両方が使われます。オンラインの推論は瞬
時に完了させる必要があるため、遅延なくデータを読み出せるオンラインの特徴
量だけが利用されます。

以上のように、オンラインとオフラインという性質の異なる2つのシステムにデータ
を供給するのが特徴量ストアの特徴です。このようなデータストアを構築した上
で、誰でも簡単に特徴量を読み書きできるようにAPIやライブラリを整備しなけれ
ばなりません。

Column

ディープラーニングの特徴量

「特徴量」という言葉は、機械学習の一つの手法である「ディープラーニング」

（deep learning ）でも使われますが、その意味合いは本節で取り上げるものとはか

なり異なります。伝統的な機械学習の特徴量は「人が定義するもの」であり、特徴量

エンジニアリングをするのも人です。一方、ディープラーニングでは特徴量の計算自体が

機械化されるため、生成された特徴量は人が見て理解できるものではなくなります。

画像認識や音声認識、あるいは自然言語処理などといった分野では、「猫の写真

の特徴」や「『あ』という声の特徴」などのように単純には数値化できない特徴量が扱

われます。そうした特徴量を手作業で作るのは困難なので、ディープラーニングでは機

械的なアルゴリズムで特徴量を作って訓練や推論に用います。そのような特徴量が特

徴量ストアに格納されることはありません。

ディープラーニングでは画像や音声などの「非構造化データ」をそのまま「大量の数値

データ（バイナリデータ）」として処理します。本書でこれまでに取り上げてきたようなデ

ータ構造化のプロセスは存在せず、まったく異なるデータパイプラインを構築する必要が

あります。

特徴量ストアによるデータ管理
特徴量ストアには単に特徴量を保存するだけではなく、「機械学習を本番運

用したときに陥りがちな問題」を回避するために有用な機能が取り入れられま
す。

Googleのエンジニアによる2015年の論文「Hidden Technical Debt in
Machine Learning Systems」注1には、「機械学習によってもたらされる典型的
な技術的負債とその回避策」がまとめられています。たとえば、業務システムで生
成されるデータが変更になったときに機械学習に悪影響が及ぶことを避けるため

に、データ構造にバージョンを付けて管理したり、想定外のデータが生成されてい
ないかを監視したりする方法です。

然るべき準備をしないまま機械学習を取り入れると、長期的に保守するのが
難しいシステムになってしまいます（図6.3）。

※出典： URL https://papers.nips.cc/paper/5656-hidden-technical-debt-in-

machine-learning-systems.pdf

特徴量ストアで機械学習の技術的負債がすべてなくなるわけではありません
が、いくつかの問題を軽減するために、以下のような機能が開発されています。

データリネージ　データの依存関係を追跡する
データがどこからどこへとコピーされ、誰によって使われているかという依存関係を

示したものをデータリネージ（data lineage / データの系統）と呼びます。データ
リネージを適切に管理できていないと、データパイプラインは簡単に壊れてしまいま
す。たとえば、データベースのスキーマを変更するだけで、ETLプロセスはエラーを出し
て動かなくなります。

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

アプリケーションを開発するときに、そのアプリケーションが正しく動作するかどう
かは念入りにテストされますが、データベースに書き込んだデータが他のシステムで
どう使われるかは知るすべがありません。アプリケーションの開発チームが本番環
境を更新した途端に、データパイプラインの後方にあるシステムが壊れて動かなく
なった経験のある人も多いでしょう。

データリネージを管理する1つの方法はデータカタログ（data catalog ）を整
備することです。データカタログというのは、組織内にあるすべてのデータのメタデー
タ（スキーマやデータサイズなど）や、データ間の依存関係をまとめて管理するソフ
トウェアです。Googleでは「Goods」と呼ばれるデータカタログを構築しており、自
動化されたシステムによってデータリネージを検知しています注2。

特徴量ストアを作るだけではデータカタログの代わりにはなりませんが、特徴量
のデータ入出力を明確にすることで、後から調査するのが容易になります。このよ
うな機能をデータの起源（data provenance ）の追跡（tracking ）と呼び
ます。特徴量ストアによっては特徴量と一緒にデータの起源まで管理できるもの
や、特徴量の一覧を検索できるものもあり、データリネージを把握する助けになり
ます。

データの検証　特徴量のスキーマを定義する
データの検証（data validation ）も特徴量ストアの重要な機能です。RDB

でテーブルのスキーマを定義するのと同じように、特徴量ストアでは特徴量セットの
スキーマを事前に定義するようになっています。もし期待する特徴量が存在しなか
ったり型が違っていたりする場合には、特徴量を書き込む時点でエラーが発生し
ます。早い段階で問題を検出することにより、後になって問題に気づくことを避け
られます。

タイムトラベル　任意の時点にデータを巻き戻す

タイムトラベル（time travel ）は過去の任意の時点へとデータを巻き戻す
機能です。具体的にはスナップショットテーブルと同様にして、タイムスタンプと共
に特徴量を保存することで、過去の特徴量をいつでも読み出せるようになりま
す。

特徴量ストアに固有の機能として、時間的に正確な結合（point-in-time
correct join ）という機能が提供されることもあります。すべての特徴量が同じ
タイムスタンプで保存されるわけではないので、完全一致でタイムスタンプを比較
したのでは特徴量が見つからないことになります。時間的に正確な結合では、指
定したタイムスタンプに近い特徴量を自動的に見つけることにより、その時点での
特徴量がすべて埋まった状態で値を返してくれます。

バージョニング　特徴量の変更履歴を記録する
バージョニング（versioning ）は特徴量を保存した履歴をすべて記録して、

過去の任意のバージョンを取り出せるようにする機能です。タイムトラベルは時間
的な履歴だけを保存する概念ですが、バージョニングでは特徴量セットの追加/
削除やスキーマ変更を含めた完全な状態が保存されます。アプリケーションのソー
スコードをバージョン管理するのと同様に、特徴量のデータセットをバージョン管理
して正確な変更履歴を追跡することが目的です。

機械学習では、あるデータセットで得られた結果が、別のデータセットでは異な
る結果になる場合があり、再現性の危機（reproducibility crisis ）と呼ばれ
ています。Natureによる2016年の調査によると、「科学者による実験のうち70%
が再現できなかった」として話題になりましたが注3、機械学習の分野でも同じこと
が起きています。機械学習のソースコードと同時に、データセットまで正確にバージ
ョン管理することによって、再現性を確保できると考えられています。

特徴量ストアの実装例
特徴量ストアはまだ新しい技術であり、誰にでも導入を勧められる段階ではあ

りませんが、オープンソースの実装やクラウドサービスも登場してきており、これから
次第に利用者を増やしていくと考えられます。

以下では、いくつかのよく知られた特徴量ストアのアーキテクチャとその特徴を
紹介します。

note
本節は、以下のWebページなどを参考にしています。

・「Feature Store for ML」 URL https://www.featurestore.org

Michelangelo
MichelangeloはUberが社内システムとして構築している機械学習プラットフ

ォームで、2017年のブログでその概要が公表されました注4。その後、各社から同
様のシステムが発表されるようになり、現代的な特徴量ストアの原型となったシ
ステムであると考えられます。

Michelangeloは、オンラインとオフラインの2つの特徴量ストアを持ちます（図
6.4）。オンラインではNoSQLデータベースであるCassandraが用いられ、オフライ
ンではHadoopによるオブジェクトストレージ（HDFS）の上にHiveテーブルが作ら
れます。

https://www.featurestore.org/

※参考： URL https://eng.uber.com/michelangelo-machine-learning-platform/

オンラインのデータはまずメッセージブローカであるKafka（第4章『4.2　［性能
×信頼性］メッセージ配送のトレードオフ』の「メッセージブローカ」）へと集められ、
そこからストリーム処理によってオンラインの特徴量が作られます。生成された特
徴量は、リアルタイムの推論サービスから使えるようにCassandra特徴量ストアに
格納されると同時に、バッチ処理からも使えるようにHive特徴量ストアにも保存
されます。

オフラインのデータは最初にデータレイクへと格納された後、SparkやHiveによる
特徴量エンジニアリングを経て、Hive特徴量ストアへと書き出されます。一部の
特徴量はリアルタイムの推論でも利用されるため、定期的にCassandra特徴量
ストアにもコピーされます。

https://eng.uber.com/michelangelo-machine-learning-platform/

Michelangeloに固有の機能として、特徴量の読み込みにはScala言語を使
った独自のDSL（ドメイン固有言語）が用いられています。オンライン
（Cassandra）とオフライン（Hive）のどちらから読み込むときにも同じDSLで
データを加工することにより、モデルを訓練するときと推論するときとで特徴量の
食い違いが起きることのないようになっています。

note
オフラインの訓練ではおもにPythonが用いられるのに対して、オンラインの推論は

Javaなどで実装されることもあります。DSLにより特徴量ストアへのアクセス層を統一す

ることで言語による違いを避けられます。一方、DSLよりも柔軟性の高いデータ処理の

ために、UberではPythonだけでデータにアクセスできる「PyML」というプロジェクトも立

ち上げています。

・「Michelangelo PyML: Introducing Uber’s Platform for Rapid Python

ML Model Development」 URL https://eng.uber.com/michelangelo-

pyml/

Hopsworks
Hopsworks注5はオープンソースの機械学習プラットフォームで、機械学習のパ

イプラインを組み立てる「HopsML」、特徴量ストアである「Feature Store」、オブ
ジェクトストレージである「HopsFS」などのシステムから構成されます。

Hopsworksもオンラインとオフラインの2つの特徴量ストアを持ちます（図
6.5）。オンラインの特徴量はMySQL Clusterに格納され、オフラインではHDFS
互換のオブジェクトストレージであるHopsFSの上にHiveテーブルが作られます。

https://eng.uber.com/michelangelo-pyml/

※参考： URL https://github.com/logicalclocks/hopsworks

Hopsworksでは特徴量エンジニアリングにSparkを利用します。Sparkでデー
タフレームを作成して次のようなコードを呼び出すと、メッセージブローカである
Kafkaを経由して特徴量ストアへと書き出されます。オンラインとオフラインのどちら
の特徴量ストアへと書き出すかはパラメータとして指定します。

 from hops import featurestore

 オンラインとオフラインの両方の特徴量ストアに書き込む

 featurestore.insert_into_featuregroup(

 features_df, "featuregroup_name", online=True, offline=True,

mode="append")

オンラインの特徴量は、次のようにSQLの構文でデータフレームとして読み出せ
ます。

 クエリの結果をオンラインの特徴量ストアから読み込む

 query = "SELECT feature FROM featuregroup_name WHERE primary_key=x"

https://github.com/logicalclocks/hopsworks

 features_df = featurestore.sql(query, online=True)

オフラインの特徴量は、一度オブジェクトストレージへと書き出してから利用する
こともできます。次のコードでは、特徴量をまとめてTFRecord形式のファイルに書
き出してから、TensorFlowのデータセットとして読み込んでいます。

 import tensorflow as tf

 指定した特徴量をTFRecord形式のファイルとして書き出す

 features_df = featurestore.get_features(["feature"])

 featurestore.create_training_dataset(

 features_df, "dataset_name", data_format="tfrecords")

 ファイルをTensorFlowのデータセットとして読み込む

 dataset_dir = featurestore.get_training_dataset_path("dataset_name")

 input_files = tf.io.gfile.Glob(dataset_dir + "/part-r-*")

 schema =

featurestore.get_training_dataset_tf_record_schema("dataset_name")

 def decode(example_proto):

 return tf.io.parse_single_example(example_proto, schema)

 dataset = tf.data.TFRecordDataset(input_files)

 .map(decode)

 .shuffle(shuffle_buffer_size)

 .batch(batch_size)

 .repeat(num_epochs)

以上のように、Hopsworksの特徴量ストアはSparkやKafkaなどのオープンソー
スソフトウェアを積極的に活用したプラットフォームとなっています。

Feast
Feast注6はGoogle Cloudなどのクラウド環境を念頭に置いて開発が進めら

れている特徴量ストアで、MLOpsフレームワークの1つである「Kubeflow」（後
述）の特徴量ストアとして採用されています注7。元々はGoogle Cloudでなけ
れば使えませんでしたが、バージョン0.8からはAWSのようなGoogle以外のクラウ
ド環境もサポートされました。

Feastではオンラインの特徴量ストアとしてRedisを利用しており、特徴量を書
き込む過程ではKafkaやSparkなどが利用されます（図6.6）。一方、オフライン
の特徴量ストアとしては、以前はBigQueryが採用されていたものの、0.8ではそ
の実装が取り除かれており、設計を見直している最中のようです。

※参考： URL https://docs.feast.dev/concepts/architecture

https://docs.feast.dev/concepts/architecture

Feastでは最初に特徴量の定義（スキーマ）をPythonで記述し、それを
「Feastコア」というサービスに登録します。特徴量の作成そのものはFeastの外部
で実装し、完成した特徴量はKafkaやオブジェクトストレージなどにいったん転送し
ます。そしてAPIを通じてデータインジェスションのジョブを実行することにより、事前
の定義に従って特徴量ストアへとデータが転送されます。

特徴量を読み込む手順は比較的単純であり、特徴量の名前を渡してその値
を受け取ることしかできません。MichelangeloのDSL、あるいはHopsworksの
SQLのような構文はなく、必要な特徴量はあらかじめすべて作成して特徴量スト
アに格納しておくか、あるいは取り出した後で自分で加工する必要がありそうで
す。

特徴量ストアをいつ作るか？
こうして見ると、いずれの特徴量ストアも同じようなアーキテクチャになっているこ

とがわかります。「オフラインの訓練」と「オンラインの推論」とでは求められる性能
が大きく異なるため、性質の異なる2つの特徴量ストアが作り分けられます。

いずれのシステムもパイプラインの前段にKafkaを置いて、ストリーム処理によっ
てオンラインの特徴量ストアが更新されます。そして同じ特徴量をオフラインの特
徴量ストアにも履歴として蓄えることにより、訓練用のデータとしても使えるように
なっています。

逆に言うと、オンラインの推論を必要としないケースであれば、ここまで複雑なシ
ステムは必要ありません。たとえば、オフラインでデータを分析してレポートを作るだ
けならもっと単純化したシステムでも十分です。完成したモデルを活用してリアル
タイムなオンラインサービスを提供するようなケースでは特徴量ストアが役立ちま
す。

小規模な機械学習プロジェクトであれば、特徴量ストアは必要ありません。特
徴量ストアが効果を発揮するのは、データサイエンティストが3人以上いて特徴量
をチームで共有するのが難しくなってからだと言われています。本節で取り上げた
ような技術が必要だと感じられたら、導入を検討してみてください。

Column

クラウドサービスとしての特徴量ストア

特徴量ストアは単一のソフトウェアではなく、メッセージブローカであるKafkaや、

NoSQLデータベース、オブジェクトストレージなどの複数のコンポーネントから構成される

ため、クラウドサービスとして提供されるケースが増えています。

汎用的な機械学習のプラットフォームである「Amazon SageMaker」や「Google

Cloud AI Platform」では、そのサービスの一部として特徴量ストアが提供されます。

SageMakerでは「Feature Store」注aが2020年12月にリリースされました。AI

Platformでも近日中のリリースが予告されています。特徴量ストアの今後の普及が期

待されます。

注a　https://aws.amazon.com/sagemaker/feature-store/

（本文に戻る）

Column

https://aws.amazon.com/sagemaker/feature-store/

Sparkか、それともSQLか　バッチ処理によるデータ生成を考える

これまでに見てきたように、データレイクを使った特徴量エンジニアリングではSparkが

事実上の標準となり、昔ながらのデータウェアハウスを作ることはせずにローデータを直接

加工、集計して特徴量が作られています。

その一方で、機械学習以外の用途、つまりレポーティングなどでは、まだまだデータウ

ェアハウスとSQLを使うのが一般的です。世の中にはSparkがわかる人よりもSQLを書

ける人口の方が圧倒的に多く、今後もSQLはデータを集計するための中心的な存在

であり続けるでしょう。

しかしながら、SQLで複雑なデータパイプラインを記述するのは簡単ではありません。

属性テーブルを一つ作るにしても、属性の数だけ異なるクエリを実行しなければならず、

多数の中間テーブルを作成してから最後に結合するようなワークフローが記述されます。

dbt　SQLに特化したデータ管理

この分野で人気を集めているのが、オープンソースの宣言型ワークフロー管理ツールで

ある「dbt」注aです。dbtはデータウェアハウスでSQLを実行することに特化したツールであ

り、クエリをGitで管理できることに加えて、データの検証やデータリネージのような機能も

実現しています（図C6.1）。

※出典： URL https://docs.getdbt.com/docs/building-a-dbt-project/documentation/

dbtには汎用的なワークフロー管理の機能はなく、データウェアハウスの中で中間テー

ブルやデータマートを作成することしかできません。データウェアハウスにデータを取り込ん

だ後から加工する「ELT」の「T」の部分を担当する存在です（第1章『1.2　ビッグデー

タ時代のデータ分析基盤』の図1.6「ETLプロセス」を参照）。

データレイクの非構造化データをPythonで加工する「ETLにはSpark」、データウェアハ

ウスの構造化データをSQLで加工する「ELTにはdbt」のようにツールを使い分けていくの

も良いかもしれません。

注a　 URL https://www.getdbt.com

（本文に戻る）

注1　 URL https://papers.nips.cc/paper/5656-hidden-technical-debt-in-

machine-learning-systems.pdf

https://docs.getdbt.com/docs/building-a-dbt-project/documentation/
https://www.getdbt.com/
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

（本文に戻る）

注2　「Goods: Organizing Google's Datasets」 URL

https://research.google/pubs/pub45390/

（本文に戻る）

注3　Monya Baker「1,500 scientists lift the lid on reproducibility」（Nature、

Vol.533、pp.452-454、26 May 2016）

（本文に戻る）

注4　 URL https://eng.uber.com/michelangelo-machine-learning-platform/

（本文に戻る）

注5　 URL https://www.logicalclocks.com/hopsworks

（本文に戻る）

注6　 URL https://feast.dev/

（本文に戻る）

注7　「Introducing Feast: an open source feature store for machine learning」

URL https://cloud.google.com/blog/products/ai-machine-

learning/introducing-feast-an-open-source-feature-store-for-machine-

learning

（本文に戻る）

https://research.google/pubs/pub45390/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://www.logicalclocks.com/hopsworks
https://feast.dev/
https://cloud.google.com/blog/products/ai-machine-learning/introducing-feast-an-open-source-feature-store-for-machine-learning

6.2
MLOps

機械学習システムを効率良く開発・運用するための取り組みを総称して
「MLOps」と呼ぶようになりました。本節ではKubeflowを例としてMLOpsの概
要を説明します。

機械学習のためにデータパイプラインを構築する
機械学習のプロジェクトではデータを整備して分析するだけでなく、作成したモ

デルを本番環境にデプロイして運用し、その効果を継続的にモニタリングします。
このような開発・運用はしばしば複数のエンジニアによるチームワークとなりますが、
従来から使われてきた「DevOps」という言葉を機械学習の分野にも適用し、
「機械学習システムを効率良く開発・運用する」ための取り組みを「MLOps」と
呼ぶようになりました。

MLOpsは機械学習に特化した概念なので、ここでその全貌について解説する
ことはとてもできませんが、本書でこれまでに取り上げてきたツール群とも共通する
要素が多々あります。以下ではMLOpsの位置付けについて「ビッグデータの技術
との関係性」という観点から見ていきます。

もしもこれから機械学習のシステムを作るのであれば、最初からMLOpsに特
化したツールを導入するのが合理的かもしれません。仮にそうでなくともデータ処
理におけるMLOpsの位置付けを理解しておくことで、今後それが必要になったと
きにスムーズに導入を検討することができるでしょう。

MLOpsの全体構成　三段階の発展

MLOpsというのは抽象的な概念であり特定のシステムを指すものではありま
せんが、Googleによる解説注8が公開されているので、それに沿って全体の構成
を見ていきます。

MLOpsは組織の成熟度に応じて段階的に発展するものであり、最初は手作
業から始まります。Googleによる解説ではこれを「レベル0」のMLOpsと呼んでい
ます。レベル0ではモデルを作るところまでがデータサイエンティストの仕事です。完
成したモデルは手作業でクラウドのモデルレジストリに登録され、運用担当者へと
渡されます。

これを発展させた「レベル1」のステップとして、自動化されたパイプラインが構築
されます。この段階では完成したモデルではなく、機械学習のソースコードが共有
されます。運用担当者は受け取ったソースコードを利用して、モデルの構築から本
番環境へのデプロイまでの一連のパイプラインを実装します。

レベル1を更に発展させた「レベル2」のステップとして、CI/CDが導入されます
（図6.7）。レベル2ではシステム全体が一つのパイプラインとなり、ソースコードを
リポジトリに入れるだけで本番環境が自動的に更新されます。Googleによる解
説ではこれをMLOpsの完成系としています。

※出典： URL https://cloud.google.com/solutions/machine-learning/mlops-

continuous-delivery-and-automation-pipelines-in-machine-learning

MLOpsと特徴量ストア
図6.7を見ると、開発環境と本番環境の両方から「特徴量ストア」が参照され

ていることがわかります。開発時にはデータサイエンティストが機械学習の実験を

https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

繰り返すために特徴量ストアが参照されます（❶）。そして同じデータがオフライ
ンの訓練時にも利用されます（❹）。完成したモデルが本番環境へと配布され
た後、オンラインの推論時にも同じ特徴量ストアが参照されます（図中「推論サ
ービス」）。

前節ではいくつかの特徴量ストアのアーキテクチャを取り上げましたが、それらは
単体で用いられるのではなく、いずれもMLOpsの一部として導入されています。
MichelangeloはまさにMLOpsのためのシステムですし、Hopsworksの特徴量
ストアはHopsMLと呼ばれるMLOpsフレームワークの一部です。Feastは
Kubeflowの特徴量ストアとして使われています。

つまり、特徴量ストアはMLOpsとは切り離せない関係にあり、MLOpsフレーム
ワークを選ぶと必然的に特徴量ストアの選択肢も限られてきます。MLOpsフレー
ムワークには、有償のクラウドサービスから無償のオープンソースソフトウェアまで多
数の選択肢がありますが（表6.2）、以下ではKubeflowを例としてその代表的
な機能を見ていきます。

Kubeflow　機械学習のオーケストレーション

「Kubeflow」はKubernetes上で動作するMLOpsのフレームワークで、表6.3の
ようなコンポーネントから構成される多数のソフトウェアの集合体です。その多くは
機械学習のためのものですが、「ノートブック」や「特徴量ストア」のように本書です
でに取り上げたコンポーネントも含まれます。

Kubeflowを起動し、管理コンソールを開くと図6.8のような画面になります。
左のメニューから「Notebook Servers」を選んで、複数あるDockerイメージの中
から一つを選択すると、新しくJupyter Notebookのコンテナが起動されます。
Dockerイメージには機械学習でよく使われるライブラリがあらかじめインストールさ
れており、ノートブックを開くだけですぐにコーディングを開始できます。

※ URL https://www.kubeflow.org/docs/components/central-dash/overview/

ノートブックの中では特徴量ストアからデータを読み込んだり、完成したモデルを
メタデータサービスに登録したりといった、機械学習でよくあるタスクを実行できま
す。そうしたタスクを支援するために多数のサーバーを立てておく必要があり、
Kubeflowはそのために何十ものコンテナをKubernetesで実行します注9。

Kubeflow Fairing　訓練とモデル登録
「Fairing」は機械学習をクラウドで実行し、完成したモデルをデプロイするため

に使えるライブラリです。ノートブックの中から使えるようにデザインされています。
まず最初に、リスト6.1のような感じで機械学習を実行するスクリプトを用意し

ます。これは、単体で実行できるようにしておきます。

リスト6.1 　機械学習のスクリプトの例（model.py）

 import tensorflow as tf

 def main(_):

 機械学習の実装

 classifier = tf.estimator.LinearClassifier(...)

 ...

 訓練と評価を実行する

 tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)

 完成したモデルを登録する

 classifier.export_savedmodel(export_dir, ...)

https://www.kubeflow.org/docs/components/central-dash/overview/

 if __name__ == '__main__':

 tf.app.run()

そして、次のようなコードをノートブックから実行します。これで機械学習のスクリ
プトを組み込んだDockerコンテナが作成され、それがKubernetesのクラスタ上で
実行され、その結果としてモデルが登録されます。

 In [1]: from kubeflow import fairing

 :

 : コンテナに含めるファイル

 : output_map = {

 : "Dockerfile": "Dockerfile",

 : "model.py": "model.py",

 : }

 : コンテナ内で実行するコマンド

 : command=["python", "/opt/model.py", ...]

 :

 : ❶Pythonスクリプトを実行する

 : fairing.config.set_preprocessor('python', ...)

 : ❷Dockerコンテナを作成する

 : fairing.config.set_builder(name='docker', ...)

 : ❸KubernetesでTFJobを実行する

 : fairing.config.set_deployer(name='tfjob', ...)

 : 以上の構成で実行開始

 : fairing.config.run()

オーケストレーション　設定や管理を自動化する
ノートブックは開発中には多用しますが、自動化のためには手作業を離れてパ

イプラインを構築しなければなりません。Kubeflowに限らず、MLOpsのフレームワ
ークはどれも組み込みのワークフロー管理ツールを備えており、機械学習の訓練や
デプロイのために多段階のパイプラインを記述できます。

MLOpsでは「ワークフロー管理」ではなく「オーケストレーション
（orchestration ）」という言葉がよく使われます。ソフトウェアの世界では、オー
ケストレーションとはインフラ管理の分野でよく使われる用語で、「クラウドオーケス
トレーション」や「コンテナオーケストレーション」など、さまざまなシステムの構築や設
定管理を自動化するときに用いられます。

英語の「オーケストレイト」（orchestrate ）という言葉は、「望んだ結果を得
るために、多数の構成要素に指示を出して組織的に動かす」といったニュアンス
を含みます。複数の独立したサーバーに対して、中央からAPIで指示する（オーケ
ストレイトする）ことで目的を達成するのがオーケストレーションの概念です。

MLOpsでもワークフローという言葉は使われますが、オーケストレーションはそれ
よりも上位の概念であり、「機械学習のワークフローをオーケストレイトする」と言う
ときには「機械学習の一連のタスク（=ワークフロー）がうまく実行されるようにシ
ステムを組織する」のような意味になります。

Kubeflow Pipelines　Pythonによるスクリプト型のワークフロー
Kubeflowには「Pipelines」と呼ばれるオーケストレーションの機能があります

が、これは内部的には「Argo」注10というワークフロー管理ツールを用いており、その

上にSDKや管理用のUIを被せたものとなっています。
Kubeflow Pipelinesを使ったワークフローの実装はリスト6.2のようになります。

各タスクはDockerコンテナとして実装されます。機械学習のタスクなどは、コンテ
ナの中に必要なものを全部詰め込んでおいて、それをパイプラインの一部として実
行します。

リスト6.2 　Kubeflow Pipelinesによるワークフローの例※

 import kfp

 from kfp import dsl

 タスク❶：コンテナでgsutilコマンドを実行

 def gcs_download_op(url):

 return dsl.ContainerOp(

 name='GCS - Download',

 image='google/cloud-sdk:279.0.0',

 command=['sh', '-c'],

 arguments=['gsutil cat $0 | tee $1', url, '/tmp/results.txt'],

 file_outputs={

 'data': '/tmp/results.txt',

 }

)

 タスク❷：コンテナでechoコマンドを実行

 def echo2_op(text1, text2):

 return dsl.ContainerOp(

 name='echo',

 image='library/bash:4.4.23',

 command=['sh', '-c'],

 arguments=['echo "Text 1: $0"; echo "Text 2: $1"', text1, text2]

)

 タスクを順に呼び出すワークフローを定義

 @dsl.pipeline(name='Parallel pipeline')

 def download_and_join(

 url1='gs://ml-pipeline/sample-data/shakespeare/shakespeare1.txt',

 url2='gs://ml-pipeline/sample-data/shakespeare/shakespeare2.txt'

):

 download1_task = gcs_download_op(url1)

 download2_task = gcs_download_op(url2)

 echo_task = echo2_op(download1_task.output, download2_task.output)

※出典：「pipelines/parallel_join.py at master - kubeflow/pipelines - GitHub」

URL

https://github.com/kubeflow/pipelines/blob/master/samples/core/parallel_joi

n/parallel_join.py

こうして実装されたワークフローは、ArgoのYAMLファイルへと書き出されます。
ArgoはKubernetesでワークフローを管理するための宣言型のツールであり、
YAMLの記述に従って次々とコンテナを実行します。

Column

https://github.com/kubeflow/pipelines/blob/master/samples/core/parallel_join/parallel_join.py

データパイプライン、ワークフロー、オーケストレーション

ビッグデータの世界では「データパイプライン」「ワークフロー」「オーケストレーション」の三

つの言葉が同じような文脈でよく使われます。それぞれ微妙に意味が異なるので、ここ

で改めて筆者の解釈をまとめておきます。

データパイプライン
ソフトウェア技術では「データパイプライン」というのは「連続して実行されるデータ処

理」を意味する一般的な用語です。データ処理を行なう複数のプロセスやサーバーが並

んでいて、その間を次々とデータが受け渡されていく実装がデータパイプラインと呼ばれ

ます。

データパイプラインという言葉はバッチ処理でもストリーム処理でも使われます。実装

の手段は問いません。

ワークフロー
一般にバッチ処理は「定期的に実行されるプロセス」として実装され、ストリーム処理

は「停止することなく動き続けるプロセス」として実装されます。前者の「バッチ処理によ

る一連のタスク」を「データワークフロー」、あるいは単に「ワークフロー」と呼びます。ストリー

ム処理は停止したら再起動するだけなのでワークフローではありません。

ワークフローもさまざまな業界で用いられる一般的な用語ですが、基本的には「タス

ク」という単位で仕事を定めて、「どのような条件でタスクを実行するか」を明確に定義

します。タスクを順に実行するだけのこともあれば、複数のタスクを並列処理したり、フ

ローチャートのように分岐が発生したりする場合もあります。

「ワークフロー管理」という概念には、単にタスクを実行するだけでなく、タスクが失敗

したときのエラー通知やリカバリーの支援など、ワークフローを正常に完了させるための総

合的な機能が含まれます。

オーケストレーション
「オーケストレーション」はインフラを含めた自動化に重点を置いた言葉であり、ワーク

フローを実行するのに必要なシステムリソースを確保することまでが想定されます。従来

のワークフロー管理ツールでは、先にコンピュータを用意してから、与えられたリソースの中

でタスクを実行するのが前提でした。現代的なデータ処理では「必要なリソースは必要

なときに確保する」ことが当たり前となり、タスクの実行管理とリソースの管理とは切り

離せないものとなっています。

具体的には、コンテナ技術で動的にリソースを割り当てながらワークフローを実行する

ことが増えており、インフラ管理の分野で使われてきたオーケストレーションという言葉

が、そのままワークフローの実行にも用いられるようになりました。

これからコンテナファーストの時代になり、データ処理をコンテナとして実装するのが当

たり前になってくると、オーケストレーションという言葉を使うことがますます増えてくるかも

しれません。

その他の機能　Metadata、Katib、Tools for Servingなど

これ以外にもKubeflowには機械学習に使われるいくつかの機能が統合され
ています。

「Metadata」はいわゆるアーティファクトレジストリ（artifact registry 、生成
物の登録所）のサービスで、次のようなデータに名前を付けて管理する機能が提
供されます。

・機械学習の元となるデータセット

・機械学習の結果として生成されるモデル

・モデルを評価した結果として生成されるメトリクス

「Katib」はハイパーパラメータチューニングのためのサービスで、機械学習の最適
なモデルを自動的に見つけ出すために使われます。

「Tools for Serving」はモデルサービングのためのソフトウェアであり、完成したモ
デルをAPIサーバーとして起動してオンラインの推論を実行するために利用されま
す。

以上のように、MLOpsのフレームワークでは機械学習を支援するために多くの
機能が提供されますが、その過程で実行される特徴量エンジニアリングやデータ
パイプラインにはビッグデータの技術も使われるため、良い組み合わせを考えていく
必要がありそうです。

Column

Pythonによるワークフロー管理の歴史

ワークフロー管理ツールの開発には長い歴史があり、この10年の間に次々と新しいソ

フトウェアが登場しています。筆者の知る限りでは、Pythonを使ったオープンソースのワー

クフロー管理ツールは三つの世代に分類されます。

第一世代のワークフロー管理　Luigi

Pythonを使ったスクリプト型のツールとして最初に有名になったのが、2012年にリリ

ースされた「Luigi」注aです。シンプルなワークフローエンジンとして、今でも根強い人気が

あります。Luigiはサーバーを必要としない単体のライブラリであり、Pythonスクリプトを

単純に実行するだけでデータパイプラインを走らせることができるため、コンピュータ1台で

実行するタイプの処理に向いています。

Luigiの特徴は、データベースを使わずにローカルファイルなどにタスクの実行結果を記

録していくことです。ファイルが存在すればタスクが完了したとみなされます。ファイルを

次々と加工するようなデータ処理、とりわけ機械学習系のタスク実行によく使われま

す。

Luigiはコマンド引数一つで簡単にマルチプロセス化でき、8コアのインスタンスで8プロ

セスを起動して1万のタスクを実行する、などといった用途にも向いています。たとえば、

遠隔地のFTPサーバーから大量のファイルをダウンロードしたいとします。Luigiではファイ

ル1つにつきタスクを1つ作成し、それをマルチプロセスで並列実行します。もし途中でエ

ラーが発生しても、もう一度スクリプトを実行すればすでにダウンロードの完了したファイ

ルはスキップされます。

第二世代のワークフロー管理　Airflow

HiveやPrestoの開発元であるFacebookでは、自社のデータパイプラインを支える技

術として「Dataswarm」というフレームワークを開発していました。Dataswarmはオープン

ソースにはなっておらず、その実装を見ることはできませんが、基本的なコンセプトが

2014年のPyDataというイベントで発表されています注b。

その設計思想にインスパイアされて、2015年にAirbnbからオープンソースソフトウェア

として発表されたのが「Airflow」注cです。Airflowは2019年にはApacheプロジェクトに

も正式登録され、「Google Cloud Composer」でも採用されるなど、この分野では

最も広く使われるソフトウェアの1つとなりました。

Airflowの特徴は、ワークフロー管理のためにサーバーを構築し、データベースでステータ

ス管理するようになったことです。タスクの冪等性を重視することで、失敗からのリカバリ

ーが簡単になり、大規模なワークフローを安定的に運用できるようになりました。

なぜAirflowでは駄目なのか　より効率的なワークフロー管理を求めて

Airflowはその歴史的な背景からして、大規模なデータパイプラインの実行を念頭に

おいて設計されています。たとえば、Airflowで実行するタスクは数分から数時間かかる

ような大きなものが中心であり、数秒ごとに次々と実行するような小さなタスクには適

していません。

Airflowの欠点を克服するために、2017年から開発が始まった「Prefect」というワー

クフロー管理ツールでは、「なぜAirflowでは駄目なのか」注dという記事を発表し、9つ

以上の点でAirflowとの比較をしています。

実際にPrefectがAirflowよりも優れているかの判断はここでは控えますが、Prefect

はAirflowと比べて短時間で終了するタスクに適した実装となっています（第7章で後

述）。コンピュータの性能向上によりデータ処理は年々速くなっており、「個々のタスク

はすぐ終わるけれども、そのようなタスクが大量にある」といった場合にはPrefectが使い

やすいかもしれません。

Airflowが得意とする領域は、かつてはHiveクエリの実行、現在であればさまざまな

バッチ処理やETLプロセスの実行など、時間の掛かるデータ処理です。つまり「失敗した

ら困るもの、最初からやり直すのが大変なもの」を管理するためのシステムがAirflowで

あり、そのようなワークフローには今でもAirflowの方が便利だと筆者は感じます。

第三世代のワークフロー管理　Prefect、Kubeflow、Metaflow

Airflowよりも後発の次世代型ワークフロー管理ツールでは、コンテナのオーケストレー

ションまでを含めた、より柔軟でスケーラビリティの高い設計が取り入れられています。

MLOpsのフレームワークであるKubeflowやMetaflowなどでは、ワークフローをコンテナと

してクラウド上で実行できます。

PrefectはMLOpsではなく汎用的なワークフロー管理ツールですが、こちらもコンテナ

による実行が標準機能として取り込まれています。データ処理や機械学習のパイプライ

ンは、JavaやPythonを含めて多数のライブラリに依存することが多いため、コンテナとし

て実行環境をまとめることが今後も増えてくるでしょう。

注a　 URL https://github.com/spotify/luigi

（本文に戻る）

注b　 URL https://asiliconvalleyinsider.com/2016/05/01/data-engineering-facebook/

（本文に戻る）

注c　「Airflow: a workflow management platform | by AirbnbEng | Airbnb Engineering

& Data Science | Medium」 URL https://medium.com/airbnb-

engineering/airflow-a-workflowmanagement-platform-46318b977fd8

（本文に戻る）

注d　「Why Not Airflow?. An overview of the Prefect engine for Airflow users」

URL https://medium.com/the-prefect-blog/why-not-airflow-4cfa423299c4

（本文に戻る）

https://github.com/spotify/luigi
https://asiliconvalleyinsider.com/2016/05/01/data-engineering-facebook/
https://medium.com/airbnb-engineering/airflow-a-workflowmanagement-platform-46318b977fd8
https://medium.com/the-prefect-blog/why-not-airflow-4cfa423299c4

注8　「MLOps: Continuous delivery and automation pipelines in machine

learning」 URL https://cloud.google.com/solutions/machine-

learning/mlops-continuous-delivery-and-automation-pipelines-in-

machine-learning

（本文に戻る）

注9　Kubeflowを実行するには最低でも16GBのメモリが必要であり、非力なマシンでは起

動することさえできません。Google Cloudのようなクラウド環境でセットアップするのが

簡単です。

（本文に戻る）

注10　 URL https://github.com/argoproj/argo

（本文に戻る）

https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://github.com/argoproj/argo

6.3
まとめ

本章では、ビッグデータの技術が機械学習でどのように用いられるかを説明し
ました。機械学習では特徴量と呼ばれる多数の数値データが必要になるため、
ローデータを加工、集計することでデータフレームを作成し、それを特徴量ストアに
格納します。ローデータから特徴量を作成するまでの一連のプロセスを特徴量エ
ンジニアリングと呼びます。

特徴量ストアに格納したデータは、機械学習の訓練と推論の両方から参照
されます。訓練がおもにバッチ処理としてオフラインで実行されるのに対して、推
論はWebサービスなどのオンラインのシステムからも実行されます。性質の異なる
要求に応えるために、特徴量ストアもオンライン（NoSQL）とオフライン（オブ
ジェクトストレージ）の二種類が用意されます。

機械学習のプロセスでは、データサイエンティストによる試行錯誤が何度も繰
り返されるため、データを管理するための適切なしくみがなければ技術的負債が
生まれがちです。特徴量ストアには、特徴量やモデルがどのように作られたのか
を追跡するためのデータリネージや、意図した特徴量が保存されることを確かめ
るデータの検証、過去に遡って特徴量を取り出すためのタイムトラベル、あるい
はバージョニングなどといった機能があり、新たな技術的負債が生まれる可能
性を軽減します。

本番環境の機械学習システムの効率的な開発と運用を推進するために、
MLOpsと呼ばれる取り組みが始まっています。MLOpsフレームワークの一つとし
て、Kubeflowの機能をいくつか紹介しました。Kubeflowでは管理コンソールか

らJupyterノートブックを作成し、機械学習の訓練やモデルのデプロイを実行でき
ます。

Kubeflowには複雑なデータパイプラインをコンテナとして実行するための
Pipelinesと呼ばれる機能もあります。MLOpsでは機械学習をコンテナ化するこ
とが多いため、従来のワークフロー管理に加えてコンテナの作成まで含めたオーケ
ストレーションが実現されています。

本章ではいくつかのオープンソースソフトウェアを使って、実際にデータを処理す
るサンプルコードを実行します。ソフトウェアの実行環境としては「Ubuntu
20.04」を利用します。1台のコンピュータのみを利用して、「オブジェクトストレー
ジ」や「データマート」などといったよく使われるコンポーネントを動かすための最小
限の環境を構築します。
7.1節では、Jupyterノートブックを使って対話的なアドホック分析の例を示し

ます。最初にスモールデータをpandasで扱う例を取り上げ、次に同じことを
Sparkで実行します。加工したデータはBIツールで可視化して結果を確認しま
す。
7.2節では、7.1節と同じことをバッチ処理として実装し直します。ここでは

Dockerを使ってサービス一式をコンテナとして起動します。SparkによるETLプロ
セス、Prestoによるデータ集計、データマートの作成や可視化、特徴量エンジニ
アリングの例なども駆け足で見ていきます。
7.3節では、ワークフロー管理ツールであるPrefectを使って、バッチ処理のワー

クフロー化に取り組みます。サーバーを使わない単体スクリプトとしてのワークフロ
ー実装や、本番環境を想定した「ワークフローのコンテナ化」を通して、ワークフロー
管理やオーケストレーションの理解に努めます。

※出典： URL https://github.com/apache/airflow

https://github.com/apache/airflow

7.1
ノートブックとアドホック分析

これまでに取り上げてきた各種の概念を振り返りつつ、PythonとSQLでデー
タ処理を行います。最初は対話的なアドホック分析でデータの性質を理解し、
その後より実務的なワークフロー管理へと置き換えます。

note
本節では以下のソフトウェアについて説明します。

・ノートブック　➡JupyterLab 2.2.9

・データ整形　➡pandas 1.1.4

・分散データ処理　➡Apache Spark 3.0.1

学習にあたって
本章ではなるべくオープンソースのソフトウェアを使って、ラップトップ 1台でデータ

処理できる環境を作ります。ただし、本章で扱う内容は実際の業務でそのまま
使われるものではないことには注意してください。本当のビッグデータはラップトップ
1台で扱えるものではなく、クラウドサービスなどを活用してシステム構築します。そ
のため利用するサービスに固有の知識が必要であり、本章で構築するような環
境が実際に使われることはありません。

特定のクラウドサービスについて詳しく説明する代わりに、本章ではビッグデータ
のために「どのような技術が利用され、どのような手順でデータ処理が実行される
か」という一つの流れを説明することにしました。実務で使われる環境がどのよう

なものであれ、データを加工する手順や注意点にはそう大きな違いはありません。
具体的な例を見ながら、各種のソフトウェアで何ができるのかを把握し、改めてデ
ータ処理の基本的な手順を確認してください。

本章の後半では、コンテナ技術を活用したデータ処理の例も取り上げていま
す。とりわけデータエンジニアとして、効率的なデータ基盤を作り上げる立場の人
にとっては、コンテナ技術は欠かせないものになってきています。データ処理におい
てコンテナがどう利用されるかという例を確かめながら、より効率的な基盤作りに
役立てることを意識してもらえればと思います。

サンプルデータの内容　5分ごとの気温

以下ではサンプルデータとして、米国の海洋大気庁（National Oceanic
and Atmospheric Administration 、NOAA）が公開している「Quality
Controlled Datasets」注1を用いて、米国各地の気温を分析することを考えま
す。

Quality Controlled DatasetsのWebサイトからは何種類かのファイルをダウ
ンロードできますが、最も詳細な5分単位のデータを参照します。本書の原稿執
筆時点で157の観測所があり、1日に生成されるレコード数はおよそ23万件にな
ります。

Webサイトで「Sub-hourly」を開いてファイルをダウンロードすると、リスト7.1の
ような内容になっていることが確認できます。一見するとTSV（Tab-separated
values ）形式のように見えますが、実際には固定長のテキストファイルで、区切
り文字はタブではなく複数のスペース文字が並んでいます。ファイルにはヘッダ行
がなく、詳しい仕様はドキュメント注2を参照する必要があります。

リスト7.1 　Sub-hourlyファイルの例

 23583 20200101 0005 20191231 1505 3 -158.61 59.28 -17.5 0.0...

 23583 20200101 0010 20191231 1510 3 -158.61 59.28 -17.5 0.0...

 23583 20200101 0015 20191231 1515 3 -158.61 59.28 -17.6 0.0...

 ...

各ファイルには、その年の1月1日から現在までの気象データが記載されていま
す。ファイルは一日に何度か更新され、同じURLからその時点での最新データが
得られます。ファイルは観測所ごとに分割されており、すべてのデータを取得するに
は観測所の数だけダウンロードを繰り返す必要があります。

作業環境の構築　MultipassでUbuntu 20.04を起動する

Ubuntu 20.04でデータ分析の環境を作ります。WindowsやmacOSを使って
いる場合は「Multipass」注3で仮想マシンを作るのが簡単です注4。Multipassを
インストールしてから、端末で次のようにコマンドを実行します注5。

 Ubuntu 20.04の仮想マシンを作成する（CPU4コア、メモリ4GB、ディスク20GB）

 % multipass launch -n primary --cpus 4 --mem 4G --disk 20G 20.04

 Launched: primary

 Mounted '/Users/bigdata' into 'primary:Home'

multipass listでIPアドレスを確認しておきます注6。このアドレスはWebブラウザ
から仮想マシンに接続するときに使います注7。

 % multipass list

 Name State IPv4 Image

 primary Running 192.168.64.2 Ubuntu 20.04 LTS

仮想マシンを作るときに名前を「primary」にしておくと、ホストマシンのホームデ
ィレクトリが仮想マシンの「Home」にマウントされます。ホストと仮想マシンとの間
でファイルを受け渡すには、このディレクトリを使うのが簡単です。

 仮想マシンにログイン

 % multipass shell

 Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-53-generic x86_64)

 ...

 Homeの内容を確認。ホストのホームディレクトリにアクセスできる

 ubuntu@primary:~$ ls Home

 Applications Desktop ...

Python実行環境の整備　venvによる仮想環境
仮想マシンでPython 3.8が最初から使えます。venvで仮想環境を作り、その

中で作業を続けます。

 Python 3.8がインストールされている

 ubuntu@primary:~$ python3 --version

 Python 3.8.5

 追加パッケージをインストール

 ubuntu@primary:~$ sudo apt update

 ubuntu@primary:~$ sudo apt install -y gcc python3-dev python3-venv

 ubuntu@primary:~$ sudo apt install -y openjdk-8-jre-headless

 仮想環境を作成。以下、スクリプトはすべてこの環境で実行する

 ubuntu@primary:~$ python3 -m venv ~/env

 ubuntu@primary:~$ source ~/env/bin/activate

 基本パッケージを更新

 (env) ubuntu@primary:~$ pip install --upgrade pip wheel

ノートブックの実行　JupyterLab
本章で実行するスクリプトをGitHubのリポジトリに上げてあるので、手元に取

り寄せておきます。

 GitHubのリポジトリをcloneする

 (env) ubuntu@primary:~$ git clone \

 https://github.com/wdpressplus-bigdata/wdpressplus-bigdata.git

 以下、cloneしたディレクトリで作業する

 (env) ubuntu@primary:~$ cd wdpressplus-bigdata

アドホック分析のために、JupyterLabを起動します。Webブラウザを開いて
「http://<仮想マシンのアドレス>:8888」に接続し、端末に表示されたトークンの
値を入れるとログインできます。

 パッケージのインストール

 (env) ...$ pip install jupyter jupyterlab

 JupyterLabを起動（リモートからの接続を許可する）

 (env) ...$ jupyter lab --ip 0.0.0.0 --no-browser --notebook-dir=notebooks

 ...

 http://primary:8888/?token=c3051d5e...

 or http://127.0.0.1:8888/?token=c3051d5e...

作成済みのノートブックが表示されるので、それらを順に開いて実行すること
で、本章の内容を実際に動かしてみることができます（図7.1）。

PythonスクリプトによるCSVファイルの収集
紙面の都合上、以下では端末からスクリプトを実行します。
まずは、Pythonを使ってデータを取ってみましょう。リスト7.2のスクリプトを次の

ようにして実行すると、2つのファイルをダウンロードして「raw」ディレクトリに保存し
ます注8。

 リスト7.2のスクリプトを実行

 (env) ...$ python scripts/download.py

 Saved raw/CRNS0101-05-2020-AK_Aleknagik_1_NNE.txt

 Saved raw/CRNS0101-05-2020-AK_Bethel_87_WNW.txt

リスト7.2 　ファイルをダウンロードするPythonスクリプト
（scripts/download.py）

 import pathlib

 import requests

 ファイルをダウンロードする関数

 def download_file(filename): ファイルをダウンロード

 prefix = 'https://github.com/wdpressplus-bigdata/uscrn/raw/main'

 （最新データを取得するには次のアドレスを用いる）

 # prefix =

'https://www1.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01'

 r = requests.get(f"{prefix}/2020/{filename}")

 r.raise_for_status()

 出力先ディレクトリを作成

 path = pathlib.Path('./raw')

 path.mkdir(parents=True, exist_ok=True)

 保存

 with open(path / filename, 'wb') as f:

 f.write(r.content)

 print(f"Saved {path / filename}")

 2つの観測所のデータをダウンロードする

 FILES = [

 'CRNS0101-05-2020-AK_Aleknagik_1_NNE.txt',

 'CRNS0101-05-2020-AK_Bethel_87_WNW.txt',

]

 for filename in FILES:

 download_file(filename)

Column

Google Colabによるサンプルコードの実行

Ubuntu 20.04の環境がなくても手軽にサンプルコードを実行できるように、

「Google Colab」でノートブックを開けるようにしてあります。GitHubのリポジトリから

「notebooks」のフォルダをWebブラウザで開くと、「7-1.ipynb」というファイルに本節の

サンプルコードがあります注a。ファイル上部の「Open in Colab」からGoogle Colabを

開けます。ただし、次節以降ではDockerを利用するため、Google Colabで実行する

ことはできません。

注a　 URL https://github.com/wdpressplus-bigdata/wdpressplus-

bigdata/tree/main/notebooks

（本文に戻る）

データ収集のコツは、集めたデータにはなるべく手を加えずに、そのままの形でい
ったんオブジェクトストレージなどに保存することです。データの加工が必要だとして
も、保存したデータを改めて読み込むようにします。データを処理する過程ではさま
ざまなエラーが発生する可能性があります。データ収集の段階であまり複雑なこと
をすると予期せぬエラーが発生し、データを取りこぼしてしまう恐れがあります。

その観点からすると、このスクリプトにはまだ課題があります。たとえば、何の例
外処理もしておらず、エラーが発生すると中断してしまいます。通信エラーなどの一
時的なエラーであれば自動的にリトライした方が良いかもしれません。リトライ時に
はデータが重複しないように注意が必要です。こうした問題は、7.3節でワークフロ
ーを導入するときに改めて考察します。

データの内容を確認する　pandas

https://github.com/wdpressplus-bigdata/wdpressplus-bigdata/tree/main/notebooks

pandasを使ってデータの内容を確認します。今回のような固定長フィールドの
テキストファイルを読み込むにはread_table()関数が使えます。

 パッケージをインストール

 (env) ...$ pip install pandas

 Jupyter consoleを起動

 (env) ...$ jupyter console

 Jupyter console 6.2.0

 ...

 In [1]: import glob

 : import pandas as pd

 :

 : def read_tables():

 : ファイルの数だけ繰り返す

 : for path in glob.glob('./raw/*.txt'):

 : テキストファイルをデータフレームに変換

 : yield pd.read_table(path,

 : delimiter='\s+', 1つ以上の空白で区切る

 : header=None, ヘッダなし

 : dtype='str') 文字列として読み込む

 :

 : df = pd.concat(read_tables())

 : df.head(2) 先頭の2行を表示

 Out[1]:

 0 1 2 3 4 5 6 7 8 9 ... \

 0 26656 20200101 0005 20191231 1505 3 -164.08 61.35 -20.8 0.0 ...

 1 26656 20200101 0010 20191231 1510 3 -164.08 61.35 -20.8 0.0 ...

 ...

 [2 rows x 23 columns]

分析しやすく加工する　カラム名をセット、日時の標準化
多くのカラムがあってわかりにくいので、興味のある対象だけに絞ります。ここで

は気温の時間推移を調べます。ドキュメントを参照しつつ「temperature」（気
温）などのカラム名をセットします。

 カラム名をセット（wbannoは観測所番号、utc_date/utc_timeは日付/時間）

 In [2]: df1 = df[[0, 1, 2, 8]]

 : df1.columns = ['wbanno', 'utc_date', 'utc_time', 'temperature']

 : df1.head(2)

 Out[2]:

 wbanno utc_date utc_time temperature

 0 26656 20200101 0005 -20.8

 1 26656 20200101 0010 -20.8

日付と時間も標準的な形式に変換しておきます。データ分析の世界では、日
時は「2020-01-01 00:00:00」のように表記するか、あるいは「ISO 8601形式」
（2020-01-01T00:00:00Zなど）にするのが一般的です。pandasでは
to_datetime()関数を用いることで、文字列から標準的な日時（datatime
型）へと変換してくれます。

 日付と時間を連結してdatetime型に変換する

 In [3]: df2 = df1.copy()

 : df2.index = pd.to_datetime(df2['utc_date'] + df2['utc_time'])

 : df2.drop(columns=['utc_date', 'utc_time'], inplace=True)

 : df2.head(2)

 Out[3]:

 wbanno temperature

 2020-01-01 00:05:00 26656 -20.8

 2020-01-01 00:10:00 26656 -20.8

統計値を確認する　describe
ここで一度、describe()関数を使ってデータの全体像を確認します。見やすく

するため、.T（転置行列、transposeの略）を使って縦と横を入れ替えて表示
しています。

 In [4]: df2.describe().T

 Out[4]:

 count unique top freq

 wbanno 192360 2 26656 96180

 temperature 192360 569 0.3 1182

countには値を持つレコードの数が入っており、空欄がどれくらいあるのか知る
のに役立ちます。もしcountが0ならすべて空欄なので、そのカラムは無視して良
いかもしれません。

uniqueはユニークな値の数、つまりカーディナリティを意味します。もしこの値が
1ならすべての値が同一であり、もしcountの値と一致すればすべての値が異なる
ということになります。ここでは2つの観測所データを読み込んだので、wbannoの
unique値は2になっています。

topは最頻値、つまり最も多く登場した値で、freqは最頻値が登場した頻度
です。上の結果では、temperature（気温）のcountが「192360」、topが
「0.3」、freqが「1182」になっているので、192360件ある観測データのうち、気温
が0.3だったものが1182件あったという意味になります。

数値データについては、もっと統計的な集計ができます。temperatureを実数
に変換してからdescribe()をやり直します。

 実数型に変換して統計値を出力する

 In [5]: df2['temperature'] = df2['temperature'].astype('float')

 : df2.describe().T

 Out[5]:

 count mean std min 25% 50% 75% max

 temperature 192360.0 -9.160542 325.703007 -9999.0 -5.0 3.7 10.2 24.8

meanは平均値、stdは標準偏差、minは最小値、maxは最大値で、各カラ
ムがどのような値を取るのかわかります。25%～75%はパーセンタイル
（percentile ）と呼ばれるもので、値を並べた時に下から25%、50%、75%の
位置にくる値を示します（50%が中央値）。たとえば、年収のように偏りの大き
い数値では、少数の高所得者の影響で平均値が引き上げられることがよくあり
ます。パーセンタイルを見ることで、数値が大まかにどう分布しているのか知ること
ができます。

外れ値を除外する
上の結果を見ると、temperatureの最小値が-9999.0になっており、一目で

おかしいと気がつきます。ドキュメントを確認すると、正常に観測できなかった場合
に-9999.0が格納されるようです。このような値が入っていると後で集計するときに
困るので、空欄に置き換えてしまいましょう。

 -9999.0を空欄に置き換える

 In [6]: df3 = df2.copy()

 : df3.loc[df3['temperature'] == -9999.0, 'temperature'] = None

 : df3.describe().T

 Out[6]:

 count mean std min 25% 50% 75% max

 temperature 192156.0 1.445045 11.572591 -32.0 -5.0 3.7 10.2 24.8

これで最低気温は-32.0度となり、より現実的な数字になりました。countが
減っているので、いくつかの値が空欄に置き換わったことがわかります。ここまで準
備が整えば、データフレームをいったんファイルに保存して、本格的なデータ分析を
始められます。

このようにして対話的にデータを見ることで、最初にやるべきデータ処理（いわ
ゆる前処理）が明確になります。今回の場合、次のような作業が必要でした。

・連続する空白でフィールドを区切る

・文字列を連結して標準的な日時の書式に変換する

・-9999.0という値を空欄に置き換える

Sparkによる分散環境を整える

以上のような前処理は、どのようなデータを扱うときでも大なり小なり発生しま
す。データ量が増えるとpandasだけで処理するのは難しくなるので、ここからは
Sparkによる分散処理に切り替えます。ローデータを読み込んで、後続の処理の
ために一括変換します。

次のように、pysparkを用いることで、Pythonで対話的にSparkを実行できま
す。

 pysparkをインストール

 (env) ...$ pip install pyspark==3.0.1

 Jupyter consoleを起動

 (env) ...$ jupyter-console

 ...

 Sparkセッションを作成

 In [1]: from pyspark.sql.session import SparkSession

 : spark = SparkSession.builder.getOrCreate()

 : spark

 Out[1]: <pyspark.sql.session.SparkSession at 0x7fc6f8f1c0a0>

Sparkでは、クライアントからサーバーに命令を送ることでプログラムを実行しま
す。クライアントのことをドライバプログラム（driver program ）と呼び、
Jupyterなどと組み合わせることで対話的なデータ処理を実行しやすくなります。

ドライバプログラムは指示を出すだけなので、ラップトップのような非力なマシン
でも実行できます。本番環境ではデータセンターのSparkクラスタに接続するよう
な使い方が想定されますが、何も指定しなくてもローカルホストでSparkプロセス
が起動するので、マルチコアを活用して並列処理を行えます。

テキストファイルのアドホック処理　SparkセッションとSparkコンテキスト
Sparkには構造化データにアクセスするための「Sparkセッション」と、テキストな

どの低レベルなデータにアクセスするための「Sparkコンテキスト」という二つの概念
があります。CSVファイルのように構造化されたデータならSparkセッションが使えま
すが、今回はテキストファイルを読み込むのでSparkコンテキストでファイルを読み
込みます。

Sparkではパスを指定するだけで、その中にあるすべてのファイルを読み込めま
す。Sparkコンテキストで読み込んだデータは「RDD」（Resilient Distributed
Dataset ）と呼ばれます。次の例では、テキストファイルを1行1レコードとして読
み込んでおり、全部で192360レコードから成るRDDが作成されています。

 指定したディレクトリにあるファイルを読み込んでRDDを作成

 In [2]: rdd = spark.sparkContext.textFile('./raw/*')

 : rdd.take(2) 2行表示

 Out[2]:

 ['26656 20200101 0005 20191231 1505 3 -164.08 61.35 -20.8 ...',

 '26656 20200101 0010 20191231 1510 3 -164.08 61.35 -20.8 ...']

 RDDのレコード数を数える

 In [3]: rdd.count()

 Out[3]: 192360

RDDを使うと、MapReduceと同じように任意のPython関数をMapや
Reduceとして適用できます。先ほどのpandasによるデータ処理で得られた知見
を元に、データを構造化するプログラムを書いてみましょう。

 In [4]: from datetime import datetime, timezone

 : from pyspark.sql import Row

 :

 : def parse_line(line):

 : 空白でフィールドを区切る

 : f = line.split()

 : 観測所番号

 : wbanno = f[0]

 : 日付と時間をdatetime型に変換

 : dt = datetime.strptime(f[1] + f[2], '%Y%m%d%H%M')

 : dt = dt.replace(tzinfo=timezone.utc)

 : 気温を実数に変換(-9999.0は除外する)

 : temperature = None if f[8] == '-9999.0' else float(f[8])

 : Rowオブジェクトを作成

 : return Row(timestamp=dt, wbanno=wbanno,

temperature=temperature)

 :

 : rows = rdd.map(parse_line)

 : rows.take(2)

 Out[4]:

 [Row(timestamp=datetime.datetime(2020, 1, 1, 0, 5, tzinfo=...), ...),

 Row(timestamp=datetime.datetime(2020, 1, 1, 0, 10, tzinfo=...), ...)]

Sparkでは構造化された1つのレコードをRowというオブジェクトとして扱います。
上記のプログラムでは1行のテキストデータから1つのRowオブジェクトを作成するた

めにmap()を呼び出しています。

RDDからデータフレームを作成する
次に、データフレーム（data frame ）を作成します。

 RDDからデータフレームを作成する

 In [5]: df = rdd.map(parse_line).toDF()

 : df

 Out[5]: DataFrame[timestamp: timestamp, wbanno: string, temperature:

double]

 タイムゾーンをUTCにセットする

 In [6]: spark.conf.set("spark.sql.session.timeZone", 'UTC')

 データフレームの先頭2行を表示

 In [7]: df.show(2)

 +-------------------+------+-----------+

 | timestamp|wbanno|temperature|

 +-------------------+------+-----------+

 |2020-01-01 00:05:00| 26656| -20.8|

 |2020-01-01 00:10:00| 26656| -20.8|

 +-------------------+------+-----------+

 only showing top 2 rows

Sparkにおけるデータフレームはpandasのデータフレームと同様に、表形式のデー
タを抽象化したオブジェクトです。データフレームを通して集計用のメソッドを呼び
出すことで、外部データをあたかも1つのテーブルのようにして扱えます。これが
Sparkにおける構造化データ作成のプロセスとなります。

完成したデータフレームにdescribe()関数を適用すると、pandasによる集計結
果と一致していることがわかります。

 データフレームの統計値を表示

 In [8]: df.describe().show()

 +-------+------------------+------------------+

 |summary| wbanno| temperature|

 +-------+------------------+------------------+

 | count| 192360| 192156|

 | mean| 25119.5|1.4450451716313355|

 | stddev|1536.5039938292543|11.572590880335754|

 | min| 23583| -32.0|

 | max| 26656| 24.8|

 +-------+------------------+------------------+

Spark SQLによるデータの集計
データフレームが完成すれば、Spark SQLでデータを集計できます。次のようにビ

ューを作成してからクエリを実行します。

 データフレームを一時的なビューとして登録

 In [9]: df.createOrReplaceTempView('uscrn')

 観測所ごとに最低気温と最高気温を集計

 In [10]: query = '''

 : SELECT

 : wbanno,

 : 最低気温を記録した日時とその気温

 : min_by(timestamp, temperature) timestamp_min,

 : min(temperature) t_min,

 : 最高気温を記録した日時とその気温

 : max_by(timestamp, temperature) timestamp_max,

 : max(temperature) t_max

 : FROM

 : uscrn

 : GROUP by

 : 1

 : '''

 : spark.sql(query).show()

 +------+-------------------+-----+-------------------+-----+

 |wbanno| timestamp_min|t_min| timestamp_max|t_max|

 +------+-------------------+-----+-------------------+-----+

 | 23583|2020-02-01 16:15:00|-32.0|2020-08-17 00:20:00| 24.8|

 | 26656|2020-02-09 15:15:00|-30.8|2020-05-30 23:05:00| 23.3|

 +------+-------------------+-----+-------------------+-----+

Sparkのデータフレームはpandasとは異なり、作成した直後は何の処理も行い
ません。データの読み込みは遅延され、メモリ上でDAGが組み立てられるだけで
す。実際に集計結果が必要になったときに、ようやくデータ処理が開始されます。
ここまでに組み立てたSparkのデータパイプラインは、概念的には図7.2のようなイ
メージになります。

列指向ストレージに変換する　Parquet形式
Sparkでは明示的にデータをキャッシュするように指定しない限り、クエリを実行

するたびに毎回データソースからの読み込みを行います。クエリの実行速度がどの
程度になるのかは、バックエンドのストレージ性能にも依存します。テキストファイル
を毎回読み込むのは効率が悪いので、最適化のためにデータを列指向ストレージ
へと変換します。

 列指向ストレージとして保存（デフォルトでParquet形式となる）

 In [11]: df.write.save('./uscrn-parquet')

 指定したパスに複数のファイルが作られる

 In [12]: !ls ./uscrn-parquet

 _SUCCESS

 part-00000-500366fa-9215-40a9-906e-a132ba22b4f8-c000.snappy.parquet

 part-00001-500366fa-9215-40a9-906e-a132ba22b4f8-c000.snappy.parquet

これで次からは、構造化の終わったデータフレームを読み込むところから始めら
れます。

 データフレームを読み込む

 In [13]: df = spark.read.load('./uscrn-parquet')

 観測所ごとに平均気温を計算

 In [14]: df.groupBy('wbanno').avg('temperature').show()

 +------+------------------+

 |wbanno| avg(temperature)|

 +------+------------------+

 | 23583|2.4658855466799405|

 | 26656|0.4228013165020489|

 +------+------------------+

可視化によるデータ検証　Tableau Public

データを構造化できたら、可視化してみましょう。グラフを見ることでデータの重
複や欠損などの問題に気づきやすくなります。最初にグラフを作るときには、なる
べく小さな時間単位（たとえば分単位）で可視化すると、異常な値が紛れ込
んでいないか見つけやすくなります。データ量が多過ぎると時間が掛かるので、あ
る程度小さなCSVファイルを作ってから可視化します。

Sparkは分散システムなので、何も指定しなければ処理結果が多数のファイル
へと書き出されます。これは大量のデータを書き出すときには良いのですが、今回
のようにCSVファイルを作成したいときには不都合です。coalesce()関数を使う
と、分散処理の結果を1ヵ所に集めて1つのファイルにまとめることができます。

 3ヵ月のデータを抽出

 In [15]: df = spark.read.load('./uscrn-parquet')

 : df1 = df.where("timestamp >= '2020-01-01' AND timestamp < '2020-

04-01'")

 レコード数を確認しておく

 In [16]: df1.count()

 Out[16]: 52414

 CSV形式でファイルに書き出す（一つのファイルにまとめる）

 In [17]: df1.coalesce(1).write.save('./export', format='csv', header=True)

 出力ファイルを確認

 In [18]: !ls ./export

 _SUCCESS

 part-00000-39315e91-2d95-4062-8fa5-4cc18ad3731e-c000.csv

 デスクトップにコピー

 In [19]: !cp ./export/*.csv ~/Home/Desktop/

手元のCSVファイルからグラフを作るときには、筆者はよくBIツールのTableauを
利用します。数百万レコード程度のデータ量ならストレスなく可視化できるため、
アドホック分析ではとくに重宝します。図7.3は「Tableau Public」を用いて観測
所別の気温の推移を分単位でグラフにしたものです。前述したように-9999.0の
データを除外していなければ、このような自然なグラフにはならないので異常に気
づくことができます。

Column

Sparkとpandas

Sparkとpandasは親和性が高く、相互にデータフレームを変換できます。大量のデー

タ処理はSparkで実行し、ある程度データ量が削減できたら、そこから先はpandasで

続けるといったことも可能です。

 パッケージをインストール

 (env) ...$ pip install pyarrow

 Jupyter consoleを起動

 (env) ...$ jupyter-console

 Sparkセッションを作成

 In [1]: from pyspark.sql.session import SparkSession

 : spark = SparkSession.builder.getOrCreate()

 : spark.conf.set("spark.sql.session.timeZone", 'UTC')

 Sparkのデータフレームとしてロードする

 In [2]: df = spark.read.load('./uscrn-parquet')

 Sparkによる集計結果をpandasのデータフレームに変換

 In [3]: df1 = df.groupBy('timestamp').avg().toPandas()

 pandasで更にデータ処理を続ける

 In [4]: df1.sort_values(by='avg(temperature)', ascending=False).head(2)

 Out[4]:

 timestamp avg(temperature)

 43454 2020-07-17 00:50:00 22.9

 7468 2020-08-17 02:55:00 22.7

Sparkで作成した列指向ストレージをpandasから直接読むこともできます。

 Parquet形式のファイルを読み込み

 In [5]: import pandas as pd

 : df = pd.read_parquet('./uscrn-parquet')

 pandasでデータを集計

 In [6]: df1 = df.groupby('timestamp').mean()

 : df1.sort_values(by='temperature', ascending=False).head(2)

 Out[6]:

 temperature

 timestamp

 2020-07-17 00:50:00 22.9

 2020-08-17 02:55:00 22.7

データの集計と可視化を相互に繰り返す　探索的データ解析
アドホック分析の過程では、以上のような一連の対話的なデータ処理をノート

ブックの中から実行します。データのことがまだよくわかっていない段階では、何度
も同じような集計を繰り返したり、プログラムでデータを加工したりすることが多い
ため、ノートブックに実行の過程を残しながら作業します。このときBIツールを組み
合わせると、マウス操作で対話的にグラフを作成しながらデータを探索できます。
ノートブックとBIツールとの間でデータを交換するには、CSVファイルを作成してから
読み込んだり、あるいはデータマートに書き出してから接続したりする方法がよく用
いられます。

BIツールに慣れないうちは、思うようにグラフを作れずに苦労するものですが、結
局のところ先にデータを加工しなければ思いどおりの可視化はできません。であれ

ば、一方でデータを加工するためにノートブックを開き、他方でデータを可視化する
ためにBIツールを開いて、両者を交互に操作するのが効率的です。

図7.4は、筆者の作業中のデスクトップ画面です。ノートブックの中ではデータソ
ースに接続し、SQLなどでデータを集計してからCSVファイルに結果を書き出しま
す。その隣では、BIツールでCSVファイルを開いてグラフを作成しています。可視化
の結果が気に入らなかったり、もっと詳しく調べたくなったときには、ノートブックに
戻ってデータ処理をやり直します。そしてBIツールに戻ってリロードすればグラフが更
新されるので、これを満足いく結果が得られるまで何度も繰り返します。

探索的データ解析では、このような試行錯誤の結果がノートブックに蓄積され
ます。そうしてデータの特徴がわかってくれば、それを踏まえてワークフローを開発
し、継続的なデータ処理の自動化に取り組みます。

Column

CSVファイルによる簡易的なデータマート

アドホック分析の過程では、作業中のデータを保存する簡易的なデータマートとして

CSVファイルを使うと便利です。CSVファイルの読み書きは、ほとんどあらゆる分析ツール

や可視化ツールが対応しているという点で優れています。作業が終わったときにはファイ

ルを削除するだけで済み、人に渡すのも簡単なので、誰かにデータ分析を頼みたいとき

にも使えます。

CSVファイルの読み書きには、pandasであればread_csv()やto_csv()を用います。

数百万レコード程度のスモールデータならストレスなく扱えます。それ以上のデータになる

と、MPPデータベースなどで集約した結果をデータフレームとして読み込み、それをCSVフ

ァイルに出力します。

ビッグデータの技術も年々高速化しているとはいえ、およそスモールデータを扱う限り

においてはローカルホストでのインメモリ処理が一番です。結局、ネットワークI/Oとディス

クI/Oをすべてなくした状態でのデータ集計が最も高速であり、インメモリのデータフレーム

やBIツールでデータを探索できるならそれに越したことはありません。

メモリに収まるくらいのデータ量であれば、CSVファイルとして読み書きしても大きな負

荷にはなりません。サーバーで集約したデータをCSVファイルに保存し、そこから先はイン

メモリでデータを見るというのが一つの典型的なデータ探索のプロセスとなります。

Column

デスクトップ型のBIツールとWeb型のBIツール

BIツールには、手元のコンピュータにインストールするデスクトップ型のものと、サーバーに

インストールする（あるいはクラウドサービスとして提供される）Webアプリケーションとの

二種類があります。どちらを利用するかはユーザーの好みによるところも大きいですが、

少なくともアドホック分析にはデスクトップ型が適しているように思います。データを可視

化するときに、次のような症状に悩まされた人も多いのではないでしょうか。

・グラフの表示に時間が掛かり、なぜ遅いのか原因がわからない

・色分けしようとしたら、何百にも分割されてまともに表示されない

こうした問題で手が止まるのは、時間の無駄でしかありません。可視化というのは画

像処理であり、それには必然的にデスクトップ型のツールが優れています。どのようなグ

ラフが作られるかも予測できないアドホック分析では、なるべくデスクトップで作業する

方が余計なトラブルを避けられます。

ネットワークによる遅延
可視化が遅くなる要因には、クエリの実行に時間が掛かったり、グラフの描画が遅

かったりする場合もありますが、意外と気づきにくいのがネットワークの帯域です。仮にク

エリの結果が数百MBになったとして、帯域が20Mbpsだとすると、データの転送だけで

数分間待たされます。こうなると、データの集計がいくら高速でも意味がありません。

そもそもグラフ表示のために数百MBものデータを転送するのが間違いです。きちんと

設計されたレポートの中であれば、そのようなクエリを発行することはまずないでしょう

が、アドホックなデータ分析ではつい非効率なクエリが実行されることもあるものです。

データマートを最初に小さく集約するのは、このような潜在的な問題を取り除くことも

一つの目的です。データをBIツールに取り込んでしまえば、もはやネットワーク通信は発

生しません。それによって可視化の性能が安定し、データを見るという本来の作業に集

中しやすくなります。

ダッシュボードとレポート作成
アドホック分析のためではなく、可視化の結果を共有することが目的であれば、

Web型のBIツールを導入するのが最適です。常に最新の情報を確認したいダッシュボ

ードや、ワークフローの一環としてレポート作成を自動化したい場合にもWeb型のツール

が使われます。

たとえば、第2章で取り上げた「Googleデータポータル」なら、GmailやGoogle

Workspaceのユーザーであれば誰でも使えるので、社内でダッシュボードを共有するの

に適しています。あるいは、社内コミュニケーションにMicrosoft Teamsを導入している

会社なら、「Power BI」注aを使うとダッシュボードをタブに埋め込んで共有できます

（図C7.1）。用途に応じて、自分に合ったものを選びましょう。

※ URL https://powerbi.microsoft.com/en-us/blog/power-bi-teams-up-with-

microsoft-teams/

ダッシュボードのソースコード管理　Looker

SQLやワークフローはGitでコード管理しているのに、ダッシュボードの作成だけ手作業

なのは面倒でならない、と思ったことはないでしょうか。

Gitでコード管理できる数少ないBIツールとして人気を集めているのが、Google

Cloudの「Looker」注bです。Lookerは他の多くのBIツールとは異なり、LookMLと呼

ばれるマークアップ言語でコーディングすることでダッシュボードを作成するという、エンジニ

ア向けのBIツールです。

第2章で取り上げたような多次元モデルをテキストファイルで定義し、それをどのよう

に見せるかを一つ一つコーディングしていきます。最初の実装は大変ですが、ひとたびダ

ッシュボードが完成すれば、あとはコピー&ペーストで同じようなダッシュボードを量産でき

るため、慣れれば慣れるほど生産性が上がります。

完全にエンジニア向けのシステムなので使う人を選びますが、これを導入するとワーク

フローのデータ収集から可視化までを一貫してコード管理できるようになります。興味の

ある人は導入を検討してみてください。

注a　 URL https://powerbi.microsoft.com/ja-jp/

（本文に戻る）

注b　 URL https://looker.com/google-cloud

（本文に戻る）

注1　 URL https://www.ncdc.noaa.gov/crn/qcdatasets.html

（本文に戻る）

https://powerbi.microsoft.com/en-us/blog/power-bi-teams-up-with-microsoft-teams/
https://powerbi.microsoft.com/ja-jp/
https://looker.com/google-cloud
https://www.ncdc.noaa.gov/crn/qcdatasets.html

注2　 URL

https://www1.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/READ

ME.txt

（本文に戻る）

注3　 URL https://multipass.run

（本文に戻る）

注4　Windows 10 Homeには仮想マシンを作る機能（Hyper-V）がなく、事前に

VirtualBoxをインストールしておく必要があります。

（本文に戻る）

注5　うまく起動できないときは、OSのファイアウォールを無効にしてからやり直します。

（本文に戻る）

注6　VirtualBoxを使うとIPアドレスが表示されません。その場合、後述する「Google

Colab」などを用いてサンプルコードを実行してください。

（本文に戻る）

注7　「/etc/hosts」などにIPアドレスを書いておくと便利です（例：「192.168.64.2

primary」）。

（本文に戻る）

注8　NOAAのWebサイトからではなく、GitHubにコピーしたファイルをダウンロードするように

してあります。ソースコード内のコメントを外すとNOAAから最新のデータをダウンロードで

きます。

（本文に戻る）

https://www1.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/README.txt
https://multipass.run/

7.2
バッチ型のデータパイプライン

本番環境での運用を念頭に置いて、より実践的なデータパイプラインを考え
ます。多くの組織では、データの集計にはSQLを使うことが多いため、パイプライ
ンの前半ではETLプロセスにより構造化データを作成します。その後、クエリエン
ジンで集計したデータをダッシュボードツールで可視化します。最後に機械学習
のシンプルな例として、特徴量エンジニアリングと線形回帰も実行してみます。

note
本節では以下のソフトウェアについて説明します。

・ETL、特徴量エンジニアリング　➡Spark 3.0.1

・クエリエンジン　➡Presto 0.242

・データマート　➡PostgreSQL 11

・ダッシュボードツール　➡Metabase 0.37

Dockerによる環境構築　ラップトップ上での開発環境

ここからはDockerで環境を構築します。セットアップを簡単にするため、一部の
ソフトウェアは設定が完了した状態で配布しています。

大まかな流れとしては、図7.5のようなステップでタスクを実行します。集めたデ
ータははじめにオブジェクトストレージに格納し、一日一回の頻度でパーティショニン
グ（第3章『3.3　データマートの構築』の「テーブルパーティショニング」を参照）し
た時系列テーブルへと変換します。ここではSparkを利用します。ただし、前節で

取り上げたような対話的な使い方ではなく、定期的なバッチ処理として実行しま
す。

次に、Prestoを使って時系列テーブルのデータを集計します。集計結果は
PostgreSQLに格納してデータマートにするケースと、ダッシュボードツールから
Prestoへと直接接続するケースの二つを説明します。ダッシュボードツールとしては
Metabaseを利用します。

Dockerのインストール
まずはUbuntu 20.04でDockerの実行環境を作ります。JupyterLabを起動

したままであれば終了し、ここからは端末で作業します。

 % multipass shell

 Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-53-generic x86_64)

 ...

 Dockerをインストール

 ubuntu@primary:~$ sudo apt install -y docker.io docker-compose

 Docker用のグループ設定

 ubuntu@primary:~$ sudo usermod -aG docker $USER

 設定を反映させるために再ログイン

 ubuntu@primary:~$ exit

 logout

 % multipass shell

 Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-53-generic x86_64)

 ...

ビルド済みのコンテナ一式を取り寄せます。

 ubuntu@primary:~$ source ~/env/bin/activate && cd wdpressplus-bigdata

 コンテナのイメージ一式をダウンロード

 (env) ubuntu@primary:~/wdpressplus-bigdata$ docker-compose pull

 Pulling datamart ... done

 Pulling metabase ... done

 Pulling metastore ... done

 Pulling metastore-db ... done

 Pulling minio ... done

 Pulling presto-cli ... done

 Pulling presto-server ... done

 Pulling spark-submit ... done

 Pulling python ... done

 Pulling jupyter-console ... done

オブジェクトストレージ　MinIO

オブジェクトストレージとして「MinIO」を起動します。MinIOはコンテナとして動く
オブジェクトストレージで、Amazon S3と互換性のあるAPIが提供されます。ローデ
ータを保存する場所を「datalake」、構造化したデータを保存する場所を
「warehouse」と呼ぶことにします。ワークフローで利用する「prefect」というバケッ
ト（bucket ）も作っておきます。

 MinIOをバックグラウンドで起動（ログを見たければ-dを外す）

 (env) ...$ docker-compose up -d minio

 Creating wdpressplus-bigdata_minio_1 ... done

 AWS CLIをインストール

 (env) ...$ pip install awscli

 MinIOのアクセスキーをセット

 (env) ...$ export AWS_ACCESS_KEY_ID=accesskey

 (env) ...$ export AWS_SECRET_ACCESS_KEY=secretkey

 保存先のバケットを作成する

 (env) ...$ for name in datalake warehouse prefect; do \

 aws --endpoint-url http://localhost:9000 \

 s3api create-bucket --bucket $name; done

構造化データの管理　Hiveメタストア

SparkからPrestoへとテーブル情報を受け渡すために「Hiveメタストア」（第3
章『3.2　クエリエンジン』の「データマート構築のパイプライン」を参照）を起動しま
す（Hiveメタストアが利用するデータベースとしてPostgreSQLも起動しておく）。

 PostgreSQLを起動

 (env) ...$ docker-compose up -d metastore-db

 Creating wdpressplus-bigdata_metastore-db_1 ... done

 データベースを初期化する（初回のみ）

 (env) ...$ docker-compose run --rm metastore /initSchema

 ...

 Initialization script completed

 schemaTool completed

 ...

 Hiveメタストアを起動

 (env) ...$ docker-compose up -d metastore

 Creating wdpressplus-bigdata_metastore_1 ... done

オブジェクトストレージへのデータ転送
ダウンロードしたファイルをそのままオブジェクトストレージへと転送します。これが

データレイクとなります。ファイルのパスには必ず日付を入れて、いつダウンロードし
たかがわかるようにします。ここでは単純化のために「2020-01-01」としておきま
す。

 リスト7.2のスクリプトを実行

 (env) ...$ python scripts/download.py

 Saved raw/CRNS0101-05-2020-AK_Aleknagik_1_NNE.txt

 Saved raw/CRNS0101-05-2020-AK_Bethel_87_WNW.txt

 テキストファイルをアップロードする（2020-01-01付け）

 (env) ...$ aws --endpoint-url http://localhost:9000 \

 s3 cp --recursive ./raw s3://datalake/uscrn/2020-01-01

 upload: raw/CRNS0101-05-2020-AK_Aleknagik_1_NNE.txt to s3://datalake/...

 upload: raw/CRNS0101-05-2020-AK_Bethel_87_WNW.txt to s3://datalake/...

ETLプロセス　Spark

オブジェクトストレージからローデータを読み込んで、構造化されたテーブルを作
成します。ここではSparkを利用して、リスト7.3のようなスクリプトを実行します。こ
れがETLプロセスとなります。

リスト7.3 　テキストファイルを時系列テーブルへと変換する
（scripts/warehouse.py）

 from datetime import datetime, timezone

 from pyspark.sql import SparkSession, Row

 from pyspark.sql.functions import lit

 import sys

 date = sys.argv[1]

 Sparkセッションを作成

 spark = (SparkSession

 .builder

 .config('hive.metastore.uris', 'thrift://metastore:9083')

 .enableHiveSupport()

 .getOrCreate())

 データを構造化する関数

 def parse_line(line):

 f = line.split()

 wbanno = f[0]

 dt = datetime.strptime(f[1] + f[2], '%Y%m%d%H%M')

 dt = dt.replace(tzinfo=timezone.utc)

 temperature = None if f[8] == '-9999.0' else float(f[8])

 return Row(timestamp=dt, wbanno=wbanno, temperature=temperature)

 ❶データレイクのテキストファイルを読み込む（日付を指定）

 rdd = spark.sparkContext.textFile(f"s3a://datalake/uscrn/{date}/*")

 ❷データフレームに変換する

 df = rdd.map(parse_line).toDF()

 ❸年をパーティションとしてテーブルに書き出す

 df = df.withColumn('year', lit(date[:4]))

 df.write.partitionBy('year').saveAsTable('uscrn', mode='overwrite')

 作成したテーブルを確認

 spark.sql('show tables').show()

Sparkスクリプトの実行にはspark-submitを使います。このスクリプトは毎日
実行することになるので、日付を引数として渡して、いつのファイルを取り込むのか
指定できるようにしてあります（リスト7.3❶）。

 (env) ...$ docker-compose run --rm spark-submit \

 scripts/warehouse.py 2020-01-01 # ローデータの日付を指定

 ...

 +--------+---------+-----------+

 |database|tableName|isTemporary|

 +--------+---------+-----------+

 | default| uscrn| false|

 +--------+---------+-----------+

 ...

 年ごとにパーティショニングされたファイルが作成されている

 (env) ...$ aws --endpoint-url http://localhost:9000 \

 s3 ls --recursive s3://warehouse/

 2020-12-05 20:23:10 0 uscrn/_SUCCESS

 2020-12-05 20:23:10 747708 uscrn/year=2020/part-00000-16dab62e-

cf66-...

 2020-12-05 20:23:10 742744 uscrn/year=2020/part-00001-16dab62e-

cf66-...

今回のサンプルデータには年初（1月1日）から現在までのデータが含まれて
いるため、年ごとにパーティションを分けることで、毎日その年のデータを置き換えま
す。リスト7.3❸では、データフレームにyearというカラムを追加し、そのカラムでパー
ティションが分離されるようにしてあります。加えて、テーブルを保存するときのオプ
ションとして「overwrite」を指定することで、スクリプトを実行するたびに毎回パー
ティションが置き換えられます。

note
ダウンロードするファイルが一日単位で分割されているときには、パーティションとして

日付を指定（例：pt=2021-01-01）することで、毎日その日のデータだけが置き換

えられるような時系列テーブルを作ります（第5章『5.1　ワークフロー管理』の「冪等な

追記」を参照）。

クエリエンジンによるデータ集計　Presto

テーブルが完成したので、クエリエンジンとして「Presto」を使ってデータを集計し
ます。Prestoはサーバー/クライアント型のシステムなので、先にPrestoサーバーを起
動しておきます。

 Prestoサーバーを起動

 (env) ...$ docker-compose up -d presto-server

 Creating wdpressplus-bigdata_presto-server_1 ... done

続けて、クライアントを起動すると、次のようにしてSQLでクエリを実行できま
す。前節でSpark SQLで集計したのと同じ結果が得られています。

 Prestoサーバーに接続

 (env) ...$ docker-compose run --rm presto-cli

 Hiveメタストアを利用

 presto> use hive.default;

 USE

 テーブル一覧を表示

 presto:default> show tables;

 Table

 uscrn

 (1 row)

 クエリを実行

 presto:default> SELECT wbanno,

 -> min_by(timestamp, temperature) timestamp_min,

 -> min(temperature) t_min,

 -> max_by(timestamp, temperature) timestamp_max,

 -> max(temperature) t_max

 -> FROM uscrn

 -> GROUP BY 1

 -> ;

 wbanno | timestamp_min | t_min | timestamp_max | t_max

 --------+-------------------------+-------+-------------------------+-------

 23583 | 2020-02-01 16:15:00.000 | -32.0 | 2020-08-17 00:20:00.000 | 24.8

 26656 | 2020-02-09 15:15:00.000 | -30.8 | 2020-05-30 23:05:00.000 | 23.3

 (2 rows)

 Query 20201205_112926_00003_rayee, FINISHED, 1 node

 Splits: 50 total, 50 done (100.00%)

 0:04 [192K rows, 1.42MB] [53.6K rows/s, 405KB/s]

Column

実務におけるETLプロセス

本節ではETLプロセスの例としてSparkを取り上げましたが、実際にはSparkのような

分散システムが必要になるケースは限られます。元となるデータがCSVやJSONなら、オ

ブジェクトストレージからデータウェアハウスに直接転送する方が簡単です。文字列を加

工するくらいの簡単な処理なら、「データウェアハウスに取り込んでからSQLで加工す

る」、つまり「ELT」を実行するのも難しくありません（第6章『6.1　特徴量ストア』のコラ

ム「Sparkか、それともSQLか」）。

ワークフロー＋スクリプト処理
仮にプログラムによる前処理が必要だとしても、データ量がそれほど多くないのであれ

ば、ワークフローの一部としてシェルスクリプトやPythonスクリプトを実行するだけで十分

です。ワークフロー管理はいずれにせよ必要になるので、まずはその枠組みだけでETLプ

ロセスを実装し、どうしても性能的に厳しい場合にのみ代替手段を検討すると良いか

もしれません。

ETLツール　Embulk

スクリプトを書かずに済ませたいときには、ETLツールを使うという選択肢もあります。

たとえば、MySQLに格納されたテーブルをデータウェアハウスに転送するようなありがちな

データ転送にはETLツールが向いています。

オープンソースのバルク型転送ツールである「Embulk」注aは手軽に使えるETLツールと

して人気があります。MySQLからデータウェアハウスへと直接データ転送したり、あるい

はCSVなどの形式でオブジェクトストレージへと書き出してデータレイクを作ったりする目

的で利用されます。Embulkはプラグイン方式のデータ転送ツールであり、プラグインを差

し替えることでさまざまなデータベースやデータ形式に対応できます。

分散データ処理　AWS Glue、Google Cloud Dataflow

過去数年分のデータをまとめて処理するような大規模なETLプロセスでは、分散デー

タ処理のしくみを検討します。一時的に大量の計算リソースを確保するには「AWS

Glue」（Spark）注bや「Google Cloud Dataflow」注cのようなクラウドサービスが利

用できます。

注a　 URL https://www.embulk.org

（本文に戻る）

注b　 URL https://aws.amazon.com/jp/glue/

（本文に戻る）

注c　 URL https://cloud.google.com/dataflow

（本文に戻る）

パーティションを用いた時間の絞り込み
ビッグデータを集計するときには、読み込まれるデータ量を常に意識します。たと

えば、2000年より前のデータがどれだけあるか知りたくて次のようなクエリを実行し
たとします（そのようなデータはないので、結果は0件になります）。

 単純なWHEREによる絞り込みではフルスキャンになる

 presto:default> SELECT count(*) FROM uscrn

 -> WHERE timestamp < DATE '2000-01-01';

 _col0

 0

 (1 row)

https://www.embulk.org/
https://aws.amazon.com/jp/glue/
https://cloud.google.com/dataflow

 Query 20201205_113016_00004_rayee FINISHED, 1 node

 Splits: 19 total, 19 done (100.00%)

 0:01 [192K rows, 1.22MB] [256K rows/s, 1.62MB/s] 1.22MBが読み込まれた

出力をよく見ると、このクエリの実行で「1.22MB」のデータが読み込まれたと表
示されています。列指向ストレージやデータウェアハウスではテーブルのインデックス
のようなものは作られずにフルスキャンが実行されます。データ量が少ないうちはそ
れでも問題になることはありませんが、データ量が増えるにつれて次第に遅くなる
恐れがあります。

可能なときには、なるべくパーティションを使ってデータを絞り込みましょう。今回
のデータであれば「year」というカラム名でパーティショニングされているので、それを
明示的にクエリに含めることで読み込まれるデータ量が削減されます。

 パーティションを絞り込むことで読み込むデータ量を減らせる

 presto:default> SELECT count(*) FROM uscrn

 -> WHERE year < '2000' AND timestamp < DATE '2000-01-01';

 _col0

 0

 (1 row)

 Query 20201205_113043_00005_rayee, FINISHED, 1 node

 Splits: 1 total, 1 done (100.00%)

 0:00 [0 rows, 0B] [0 rows/s, 0B/s] データ量が0になった

データマートを作成する
可視化に備えてデータマートを作成します。データマートを作るときにはパーティシ

ョニングはせずに、毎回テーブルを置換します（第3章『3.3　データマートの構築』
の「データマートの置換」を参照）。

 元テーブルには192360行が格納されている

 presto:default> SELECT count(*) FROM uscrn;

 _col0

 192360

 (1 row)

 データマートのスキーマ（名前空間）を作成する

 presto:default> CREATE SCHEMA IF NOT EXISTS datamart;

 すでにテーブルが存在すれば削除する（置換）

 presto:default> DROP TABLE IF EXISTS datamart.uscrn_summary;

 サマリーテーブルを作成。668行にまで削減された

 presto:default> CREATE TABLE datamart.uscrn_summary AS

 -> SELECT date_trunc('day', timestamp) time,

 -> wbanno,

 -> avg(temperature) avg_temperature

 -> FROM uscrn GROUP BY 1, 2

 -> ;

 CREATE TABLE: 668 rows

可視化にBIツールを使うと、グラフを表示するたびにSQLが自動生成されるた
め、いくらパーティションが分かれていてもフルスキャンされる可能性が高くなりま
す。データマートではパーティションは役に立たないと割り切って、フルスキャンされて
も困らない程度のデータ量に削減します。

外部データベースによるデータマート　PostgreSQL
データマートを外部データベースに作成する例として「PostgreSQL」を導入しま

す。次のコマンドでサーバーを起動します。

 (env) ...$ docker-compose up -d datamart

 Creating wdpressplus-bigdata_datamart_1 ... done

PostgreSQLにデータを書き込む方法は、いくつか考えられます。たとえば、
CSVファイルをCOPY命令で読み込んだり、あるいはEmbulkのembulk-input-
prestoプラグインとembulk-output-postgresqlプラグインとを組み合わせたり
する方法もありますが、ここではpandasを使ってデータ転送します。リスト7.4のス
クリプトを次のように実行します。

 リスト7.4のスクリプトを実行

 (env) ...$ docker-compose run --rm python scripts/datamart.py

 time wbanno avg_temperature

 0 2020-01-06 00:00:00.000 26656 -26.207292

 1 2020-01-09 00:00:00.000 26656 -21.814931

 uscrn_summary created

リスト7.4 　クエリの実行結果をPostgreSQLに書き出す
（scripts/datamart.py）

 import pandas as pd

 import sqlalchemy

 from pyhive import presto

 Prestoでクエリを実行してデータフレームに変換

 query = '''

 SELECT date_trunc('day', timestamp) time,

 wbanno,

 avg(temperature) avg_temperature

 FROM uscrn GROUP BY 1, 2

 '''

 conn = presto.connect(host='presto-server', port=8080)

 df = pd.read_sql_query(query, conn, parse_dates=['timestamp'])

 print(df.head(2))

 結果をPostgreSQLに書き出す

 uri = "postgresql://datamart:datamart@datamart:5432/datamart"

 engine = sqlalchemy.create_engine(uri)

 df.to_sql('uscrn_summary', index=False, if_exists='replace', con=engine)

 print('uscrn_summary created')

ダッシュボードツールによる可視化　Metabase

「Metabase」を使って可視化します。Dockerコンテナを起動して、初期化が
完了するまでしばらく待ちます。

 Metabaseを起動。しばらく時間が掛かるので-dは付けない

 (env) ...$ docker-compose up metabase

 Creating wdpressplus-bigdata_metabase_1 ... done

 ...

 metabase_1 | ... INFO metabase.core :: Metabase Initialization COMPLETE

初期化が済んだらWebブラウザで「http://<仮想マシンのアドレス>:13000」
を開いて初期設定します。画面の指示に従ってログイン用のユーザーを作り、デー
タベースとしてPrestoを表7.1のように設定します。

設定が完了したら、画面上部の［データを見る］から［Presto］-
［datamart］-［Usc Rn Summary］を選択すると、先ほど作成したデータマ
ートが表形式で表示されます。画面下部の［ビジュアライゼーション］をクリックし
て［線］を選ぶとグラフが表示されます。

グラフに名前を付けて保存すると、そのグラフをダッシュボードへと追加できま
す。追加したいグラフの数だけデータマートに複数のテーブルを作成し、それらを順
に可視化していくことでダッシュボードが完成します。

SQLの実行結果をグラフにする
データマートを作るのが面倒なときは、右上にある「SQLを書く」のボタンを押す

と、図7.6のようにその場でSQLを実行して可視化できます。

クエリを書くときには、システムの負荷を考慮しなければなりません。ダッシュボ
ードツールではグラフとクエリが一対一で対応しており、ダッシュボードを表示するた
びにクエリが発行されるため、バックエンドのクエリエンジンに多大な負荷を掛ける

可能性があります。多数のグラフが含まれるダッシュボードを何度も表示すると、
Prestoサーバーがリソース不足でコンテナごと落ちてしまうこともあるので注意が必
要です。

ダッシュボードツールは個人的にデータを見たり、少人数でグラフを共有するとき
には手軽で便利ですが、大人数で利用するときには性能的な問題が起きない
ように気をつけなければなりません。設定画面からキャッシュを有効にしたり、
PostgreSQLのような外部データベースをデータマートにすることで負荷を軽減でき
ます。

Tip　対話的なダッシュボードとSQL

Metabaseではダッシュボードにフィルタをセットすることで、対話的なダッシュボードを

作ることができます。ただし、自分でSQLを書く場合には、クエリに埋め込むパラメータを

明示的に記述しなければなりません※。データマートを作ってから可視化する方法であ

れば、マウス操作だけでフィルタをセットできます。

※ URL https://www.metabase.com/docs/latest/users-guide/13-sql-

parameters.html

特徴量エンジニアリング　SQLとSpark

第6章では機械学習のための「特徴量ストア」の概念を取り上げましたが、そ
の基本的な手順を確かめるために、ごく簡単な特徴量エンジニアリングを実行し
てみましょう。以下ではPostgreSQLを特徴量ストアの代わりに使って、観測所ご
との特徴量をいくつか読み書きします。

SQLによる特徴量エンジニアリング

https://www.metabase.com/docs/latest/users-guide/13-sql-parameters.html

すでに構造化されたデータを集計するだけなら、特徴量の作成はデータマートの
作成と何ら変わりません。リスト7.5のスクリプトでは観測所ID（wbanno）をエ
ンティティとして、それに関連する3つの特徴量（最低気温、平均気温、最高気
温）を集計しています。このとき作成されるテーブル
（temperature_features）が特徴量セットとなります。

リスト7.5 　観測所ごとの気温の特徴量
（scripts/temperature_features.py）

 import pandas as pd

 import sqlalchemy

 from pyhive import presto

 Prestoでクエリを実行して特徴量を作成

 query = '''

 SELECT wbanno,

 min(temperature) t_min, 最低気温

 avg(temperature) t_avg, 平均気温

 max(temperature) t_min 最高気温

 FROM uscrn GROUP BY 1

 '''

 conn = presto.connect(host='presto-server', port=8080)

 features = pd.read_sql_query(query, conn)

 print(features)

 結果をPostgreSQLに書き出す

 uri = "postgresql://datamart:datamart@datamart:5432/datamart"

 engine = sqlalchemy.create_engine(uri)

 features.to_sql('temperature_features',

 index=False, if_exists='replace', con=engine)

 print('temperature_features created')

 リスト7.5のスクリプトを実行

 (env) ...$ docker-compose run --rm python scripts/temperature_features.py

 wbanno t_min t_avg t_max

 0 26656 -30.8 0.422801 23.3

 1 23583 -32.0 2.465886 24.8

 temperature_features created

Column

クエリエンジン「Trino」はPrestoの後継となるか？

PrestoはもともとFacebook社内で開発されたオープンソースソフトウェアですが、開

発方針の違いから主要な開発メンバーがFacebookを退社し、2019年に

「PrestoSQL」という名前の新しいプロジェクトがスタートしました。

同じような名前の2つのプロジェクトがあってしばらく混乱が続いていましたが、最終

的にFacebookがPrestoの商標を登録したことにより、「PrestoSQL」は2020年末に

「Trino」と名称変更することになりました注a。

本書ではサンプルコードの実行にFacebook版のPrestoを利用していますが、今後

はTrinoの方が人気を集めることになるかもしれません。

注a　 URL https://trino.io/blog/2020/12/27/announcing-trino.html

（本文に戻る）

Sparkによる特徴量エンジニアリング
特徴量エンジニアリングではアドホック分析と同様に、データレイクに蓄えられ

たローデータをSparkで集計することができます。特徴量の作成だけを目的とする
なら、データウェアハウスは作らずにSparkだけでデータ処理を統一するのも一つの
方法です。

本章ではここまで気温だけを見てきましたが、Sparkで降水量の特徴量も作
成しましょう。リスト7.6のスクリプトではローデータから「降水量」
（precipitation ）を抽出し、1日あたりの平均降水量と最大降水量を計算し
ています。特徴量セットの名前はprecipitation_featuresとしてPostgreSQLに
保存しています。HiveメタストアもPrestoも使わずに、特徴量の作成だけをシン
プルに実装できていることがわかります。

https://trino.io/blog/2020/12/27/announcing-trino.html

リスト7.6 　観測所ごとの降水量の特徴量
（scripts/precipitation_features.py）

 from pyspark.sql import SparkSession, Row

 import sqlalchemy

 import sys

 date = sys.argv[1]

 Sparkセッションを作成

 spark = SparkSession.builder.getOrCreate()

 データを構造化する関数

 def parse_line(line):

 f = line.split()

 precipitation = None if f[9] == '-9999.0' else float(f[9])

 return Row(wbanno=f[0], date=f[1], precipitation=precipitation)

 Sparkのデータフレームを作成

 rdd = spark.sparkContext.textFile(f"s3a://datalake/uscrn/{date}/*")

 df = rdd.map(parse_line).toDF()

 df.createOrReplaceTempView('uscrn')

 Spark SQLでクエリを実行して特徴量を作成

 query = '''

 SELECT wbanno,

 avg(precipitation) p_avg, 平均降水量

 max(precipitation) p_max 最大降水量

 FROM (

 SELECT wbanno, date, sum(precipitation) precipitation

 FROM uscrn GROUP BY 1, 2

)

 GROUP by 1

 '''

 features = spark.sql(query).toPandas()

 print(features)

 結果をPostgreSQLに書き出す

 uri = "postgresql://datamart:datamart@datamart:5432/datamart"

 engine = sqlalchemy.create_engine(uri)

 features.to_sql('precipitation_features',

 index=False, if_exists='replace', con=engine)

 print('precipitation_features created')

 リスト7.6のスクリプトを実行

 (env) ...$ docker-compose run --rm spark-submit \

 scripts/precipitation_features.py 2020-01-01

 ...

 wbanno p_avg p_max

 0 23583 3.270958 48.4

 1 26656 0.865432 17.0

 precipitation_features created

機械学習　線形回帰による推論
せっかくなので完成した特徴量を使って機械学習をしてみましょう。単純な例

として「線形回帰」（linear regression ）を実装します。たとえば、観測所の
「最低気温と最高気温」の組み合わせから「平均降水量」を学習します。

まずは、特徴量を読み込みます。エンティティごとに特徴量セットを結合するこ
とで、一つの大きなデータフレームを作成します。

 Jupyter consoleをコンテナとして起動

 (env) ...$ docker-compose run --rm jupyter-console

 特徴量ストアに接続

 In [1]: import sqlalchemy

 : import pandas as pd

 : uri = "postgresql://datamart:datamart@datamart:5432/datamart"

 : engine = sqlalchemy.create_engine(uri)

 特徴量をデータフレームとして読み出す

 In [2]: df1 = pd.read_sql_table('temperature_features', con=engine)

 : df2 = pd.read_sql_table('precipitation_features', con=engine)

 : df3 = pd.merge(df1, df2, on=['wbanno']) wbannoで結合

 : df3

 Out[2]:

 wbanno t_min t_avg t_max p_avg p_max

 0 26656 -30.8 0.422801 23.3 0.865432 17.0

 1 23583 -32.0 2.465886 24.8 3.270958 48.4

データフレームから機械学習に用いる特徴量を選択して値を取り出します。そ
れを線形回帰モデルで学習します。

 線形回帰モデルを作成する

 In [3]: from sklearn import linear_model

 :

 : X = df3[['t_min', 't_max']].values 最低気温と最高気温

 : y = df3[['p_avg']].values.flatten() 平均降水量

 :

 : regr = linear_model.LinearRegression()

 : regr.fit(X, y) Xとyの関係を学習

 Out[3]: LinearRegression()

完成したモデルを使って降水量を推論します。学習に用いたデータと一致する
結果が得られました。

 最低気温と最高気温から降水量を推論する

 In [4]: regr.predict([[-30.8, 23.3], [-32.0, 24.8]])

 Out[4]: array([0.8654321, 3.27095808])

特徴量ストアの読み書きを標準化する
特徴量の作成に用いたリスト7.5やリスト7.6のスクリプトでは、PrestoやSpark

によるデータ処理の結果を、pandasのデータフレームに変換してからPostgreSQL

へと書き出しました。これだけシンプルな特徴量エンジニアリングですら、特徴量の
読み書きには雑多なプログラミングが必要であり、うまく管理しなければ技術的

負債が積み上がってしまうことも想像に
か た

難くありません。
特徴量エンジニアリングでは途中のデータ処理をどのように実装しようとも、最

終的にデータフレームさえ完成してしまえば、それを特徴量ストアへと書き出す手
順は同じです。特徴量ストアを読み書きする手順はライブラリ化するなどして組
織内で標準化しておけば、将来に対する負債が少しでも軽減できるかもしれませ
ん。

本節で取り上げた特徴量ストアはあまりに単純すぎるため、第6章で紹介した
データリネージやタイムトラベルなどの機能には対応できません。特徴量ストアの
技術は発展途上なので今後どのような実装が登場するかはまだわかりません
が、毎年のように新しいソフトウェアやサービスが登場しているので、使いやすいも
のがないか探してみてください。

7.3
ワークフロー管理ツールによる自動化

データパイプラインを定期的に実行するために、エラー発生時のリカバリーを念
頭に置きつつワークフローを設計します。ここではオープンソースのワークフロー管理
ツールである「Prefect」注9を利用します。

note
本節では以下のソフトウェアについて説明します。

・ワークフロー管理　➡Prefect 0.13.19、Airflow 2.0.0

Prefect　スクリプト型のワークフロー管理

PrefectはPythonでワークフローを記述するスクリプト型のツールで、2019年に
最初のバージョンがリリースされた比較的新しいソフトウェアです。主要な機能は
オープンソースとして公開されている一方で、管理機能であるWebコンソールはクラ
ウドサービスとしても提供されています。同じくスクリプト型のツールとして有名な
「Airflow」注10とも比較しつつ、スクリプト型のワークフロー管理の大まかな実装方
法を見ていきます。

Prefectは一部でDockerの機能を利用するため、コンテナ化せずに仮想マシ
ンに直接インストールします。

 % multipass shell

 Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-53-generic x86_64)

 ...

 ubuntu@primary:~$ source ~/env/bin/activate && cd wdpressplus-bigdata

 パッケージをインストール

 (env) ...$ pip install boto3 prefect==0.13.19

note
ワークフローは通常、バッチ処理として実行されますが、Prefectのワークフローはノート

ブックから対話的にも実行できるように設計されています。本節のサンプルコードの一部

は、Google Colabでも実行できるようにしてあります。

・ URL https://github.com/wdpressplus-bigdata/wdpressplus-

bigdata/tree/main/notebooks/7-3.ipynb

フローの定義　Python関数としてタスクを実装する
Prefectでワークフローを実行するスクリプトはリスト7.7のように記述します。ここ

では2つのタスクを定義しています。Prefectでは一度に実行するタスクの集合を
フロー（flow ）と呼びます。フローは単純にPythonスクリプトとして実行可能
で、結果は次のようになります。

 (env) ...$ python flows/hello.py

 ... Beginning Flow run for 'hello'

 ... Task 'get_message': Starting task run...

 ... Task 'get_message': finished task run for task with final state: 'Success'

 ... Task 'print_message': Starting task run...

 Hello, world!

https://github.com/wdpressplus-bigdata/wdpressplus-bigdata/tree/main/notebooks/7-3.ipynb

 ... Task 'print_message': finished task run for task with final state: 'Success'

 ... Flow run SUCCESS: all reference tasks succeeded

リスト7.7 　Prefectのサンプルスクリプト（flows/hello.py）

 from prefect import task, Flow

 1つめのタスク

 @task

 def get_message():

 return 'Hello, world!'

 2つめのタスク

 @task

 def print_message(msg):

 print(msg)

 タスクを実行するフローを作成

 with Flow('hello') as flow:

 msg = get_message()

 print_message(msg)

 if __name__ == '__main__':

 flow.run() 実行開始

Prefectにおけるタスクは、Pythonの関数として実装します。関数呼び出しが
終われば成功、例外が発生すれば失敗です。こうして定義したタスクの実行をコ
ントロールするのがFlowオブジェクトです。ここでは2つのタスクを実行するフローを
作成しています。

Prefectはタスクの集合を内部的にDAGとして表現しており、フローを作成する
だけでは実行は始まりません。スクリプトの最後でflow.run()を呼び出すか、ある
いはフローを実行するためのエージェントプロセス（後述）に指示を出すことで動
き始めます。

Prefectでは、タスクの結果を次のタスクの引数として渡すことで依存関係が
決まります。リスト7.7では、1つめのタスクの結果であるmsgを2つめのタスクに渡
すことによって、1つめのタスクが先に実行されることが保証されます。このような依
存関係のないタスクは同時並列で実行されます。

Tip
依存関係はあるけれども受け渡す引数がないときには、明示的に

set_dependencies()のようなメソッドを呼び出すことで依存関係を定めます。

・ URL https://docs.prefect.io/core/concepts/flows.html#imperative-api

コンテキスト
タスクが実行されるときには、付随する情報がコンテキスト（context ）として

渡されます。たとえば、表7.2のような変数を参照できます。日々のデータ処理で
は、ファイル名やクエリの中に日付を入れることがよくあるので、次のような形でコ
ンテキストの値を頻繁に参照します。

https://docs.prefect.io/core/concepts/flows.html#imperative-api

 import prefect

 @task

 def download():

 コンテキストの値を参照する

 print(f"Donwload ftp://server/{prefect.context.yesterday}/app.log")

Column

Airflowにおけるタスク定義

ワークフローをDAGとして表現するのは Airflowでも同じです。2020年12月にリリー

スされた「Airflow 2.0」からは、Prefectと同様にタスクを関数として定義できるようにな

り、両者のワークフロー定義はどちらも似たようなものになりました。

その一方で、タスク実行のしくみは大きく異なります。たとえば、あるタスクの実行結

果を次のタスクへと渡すことを Airflowでは「Xcom」と呼び、値が一度データベースへと

格納されます。あまり大きな値を返すと性能上の問題を引き起こすため、Airflowでは

大きなデータはオブジェクトストレージなどに保存すべきです。

一方、Prefectではすべてのタスクが値を返すことを前提として設計されており、デフ

ォルトではローカルストレージに値が格納されます注a。結果として、PrefectとAirflowと

ではタスクの実行結果に対する考え方が変わります。

たとえば、あるタスクがpandasでデータ処理を行うとします。Airflowであれば、その

結果はCSVファイルなどにしてオブジェクトストレージに保存し、後続のタスクでそのファイ

ルを読み込みます。「1つめのタスクと2つめのタスクが同じファイル名を参照する」ことに

よって暗黙的にデータが受け渡されます。

Prefectでは、1つめのタスクがpandasのデータフレームをそのまま返却し、2つめのタ

スクでデータフレームを受け取って処理を続けます。データのシリアライズや中間ファイルへ

の書き出しなどはPrefectが面倒を見てくれるため、より自然な関数呼び出しに近い形

でデータパイプラインを記述できます。

Airflowでは小さな処理は一つにして、ある程度まとまった単位でタスクを実装する

ことが推奨されますが、Prefectでは逆に小さく分割することが推奨されています。タスク

実行のオーバーヘッドが小さいので、普通に関数を呼び出す感じで次々とタスクを繋げ

るのがPrefectのやり方です。

注a　 URL https://docs.prefect.io/core/concepts/results.html

https://docs.prefect.io/core/concepts/results.html

（本文に戻る）

日次のバッチ処理では、しばしば前日のデータが処理の対象となります。その
ようなときにはprefect.context.yesterdayを用いて、対象となるファイルや時間
範囲を指定します。

コンテキストの値は実行時に決定されることには、注意が必要です。エラーが発
生してタスクを再実行する場合、それが翌日以降になるとコンテキストの日付も
変わるため、想定と違う日付のデータが処理されてしまうかもしれません。再実行
しても日付が変わらないようにするには、たとえば次のようなタスクを実行して日
付を固定化する方法が考えられます。

 タスクを実行すると結果が保存される

 @task

 def get_date():

 return prefect.context.yesterday

Prefectでは一度成功したタスクの結果は保存されるので、それに依存したタ
スクは再実行しても同じ値を受け取ります。変わってほしくない値はタスクとして
分離することで、エラー発生時の対応をシンプルにすることができます。

パラメータ
別の考え方として、パラメータ（parameter ）を使う方法もあります。リスト

7.8のフローでは「date」というパラメータを作成し、もしそれがセットされていればコ
ンテキストよりも優先します。

リスト7.8 　日付をパラメータとして受け取るフロー

 import prefect

 from prefect import task, Flow, Parameter

 @task

 def download(date):

 パラメータが渡されたときにはそれを優先する

 target_date = date or prefect.context.yesterday

 print(f"Donwload ftp://server/{target_date}/app.log")

 with Flow('download') as flow: パラメータを作成する

 date = Parameter('date', default=None)

 download(date)

パラメータの値は、フローを実行するときにコマンドライン、またはWebコンソール
から渡します。仮にエラーが発生した場合、もし同じ日のうちに再実行するならパ
ラメータ指定は必要はありませんが、翌日以降になった場合には明示的に日付
を指定してリカバリーします。

リカバリーを念頭においたときに、どのやり方が運用しやすいかは実行するフロー
にもよりますが、Prefectはその設計思想としてパラメータを活用することで柔軟性
を高めているため、「過去の日付にはパラメータを使う」という方式で運用を統一
するのが良いかもしれません。

Tip

Prefectでは日時をパラメータとしてループを回すことによってバックフィルを実現しま

す。

・ URL https://docs.prefect.io/core/faq.html#does-prefect-support-

backfills

タスクのライブラリ化　再利用性の高いタスクを実装する
スクリプト型のワークフロー管理の利点はタスクを自由にプログラミングできると

ころにありますが、よく実行するタスクはライブラリ化して再利用したいものです。
Prefectには「Task Library」という出来合いのライブラリがあり、それらを使うとタ
スクを簡潔に記述できます。たとえば、PostgreSQLに接続してクエリを実行した
ければリスト7.9のように記述します。

リスト7.9 　PostgreSQLでクエリを実行するタスク

 from prefect import Flow

 from prefect.tasks.postgres.postgres import PostgresExecute

 PostgreSQLでクエリを実行するタスク

 pg = PostgresExecute('postgres', 'postgres', 'localhost')

 with Flow('create-table') as flow:

 フローにタスクを登録する

 pg('CREATE TABLE t1 AS SELECT ...', commit=True)

とはいえ、出来合いのライブラリでは機能が足りず、追加の開発が必要になる
のもよくあることです。そのため筆者は既存のライブラリの有無よりも、自分で簡

https://docs.prefect.io/core/faq.html#does-prefect-support-backfills

単にライブラリを作れるかどうかを重視します。Pythonには多数の便利なパッケー
ジがあるので、それらを使えるなら不都合はありません。

Prefectでタスクをライブラリ化するのは簡単で、リスト7.10のようにTaskクラス
のサブクラスを作るだけです。作成したクラスに引数を渡してインスタンス化する
と、タスクが生成されます。こうして作成したクラスを別ファイルに分離すれば、自
作ライブラリの完成です。

リスト7.10 　タスクをクラスとして定義する

 from prefect import Task, Flow

 新しいタスクのクラスを定義する

 class LogTask(Task):

 タスクの作成時に初期化を行う

 def __init__(self, prefix, **kwargs):

 super().__init__(**kwargs)

 self.prefix = prefix

 タスク実行時にはrunメソッドが呼ばれる

 def run(self, message):

 print(f"{self.prefix}: {message}")

 タスクを作成する（インスタンス化）

 log = LogTask('INFO')

 タスクを登録。実行すると「INFO: message」と出力される

 with Flow('task-class') as flow:

 log('message')

Column

Airflowにおけるコンテキスト

時間に対する考え方は、AirflowとPrefectとで大きく異なる点の一つです。Airflow

はすべてのタスクを時間と関連付けて保存します。タスクが実行されるたびに時間も固

定化されるため、コンテキストの値は再実行しても変化しません。

Airflowは、その設計思想として「タスクの冪等性」を重視します。一度実行を始め

たタスクは、何度実行しても同じ結果になるように実装するのが原則です。再実行す

るだけで時間の範囲が変わるようなタスクはAirflowの思想に反します。

タスクの名前も固定されます。Airflowではスクリプトをロードするときにタスク名をセ

ットします。そのためタスクの名前と時間さえ指定すれば、いつでも任意のタスクを実行

できます。その反面、実行時に動的にタスクが作られるような柔軟なワークフローを記

述するのは難しくなります。

AirflowとPrefectの思想の違い　制約を選ぶか、自由を望むか

そのようなAirflowの仕様に対するアンチテーゼとして生まれてきたのがPrefectであ

り、意図して設計思想が変更されています。Prefectでは時間が特別に扱われること

はなく、単に現在時刻がコンテキストにセットされるだけです。実行時の動的なタスク生

成も可能であり、比較的柔軟にパイプラインを組むことができます。

Prefectのドキュメントには「各タスクは冪等じゃなくても良い」とさえ書かれています注

a。もちろん冪等にするのに越したことはないけれども、そうするかどうかはユーザーに任せ

るというのがPrefectの姿勢です。

障害にどう備えるかの判断はユーザーに委ねて、それよりも「自由度を優先したのが

Prefect」であり、それとは逆に障害対策を優先して利用者に「制約を課すのが

Airflow」だと言えるかもしれません。これは思想の違いであり、どちらが良いと言えるも

のでもありませんが、より確実性が求められる業務ではAirflowの方が安心できるかも

しれません。

注a　 URL https://docs.prefect.io/core/getting_started/why-

prefect.html#idempotency-preferred-but-not-required

（本文に戻る）

ワークフローの開発プロセス　タスクの実装とテストとを繰り返す
ワークフロー管理ツールを導入する目的の一つはエラーになったタスクを再実行

することですが、Prefectではタスクの状態を保存するのはサーバーを使うときだけ
であり、ローカルでの開発時には毎回タスクの状態がリセットされて最初からやり
直すようになっています。開発中はスクリプトの最後でflow.run()を実行します
が、このときデータベースは参照されず、実行の状態はメモリ上にしか保持されま
せん。

開発中はタスクの実装と並行して何度もテストを走らせるものなので、同じタ
スクを繰り返さずに済ませる方法がいくつか用意されています。たとえば、タスクの
実行結果をファイルにキャッシュして再利用する方法注11や、タスクの状態を強制
的にセットして実行を回避する方法注12などです。

ただ、いずれもソースコードに手を加える必要があり、あまり簡潔な方法とは言
えません。flow.run()は毎回すべてのタスクを実行するのだと割り切って、なるべく
小さなテスト用のデータセットを用意するのが良いかもしれません。

タスクの自動テスト　pytest
Prefectでは一般的なソフトウェア開発と同様に、テストデータやテストコードを

用意してタスクをテストすることが推奨されています。標準でpytestを使ったテスト
の実行に対応しており、リスト7.11のようなコードで簡単にテストを記述できます。
そうして個々のタスクをテストしてからフロー全体の動作確認を行うようにすれば、

https://docs.prefect.io/core/getting_started/why-prefect.html#idempotency-preferred-but-not-required

開発中に何度もフローを走らせることはありません。Prefectはこのように、ソフトウ
ェア開発の視点で設計されたワークフロー管理ツールとなっています。

 (env) ...$ pip install pytest

 (env) ...$ pytest flows/testflow.py

 ============================= test session starts

=============================

 platform darwin -- Python 3.8.5, pytest-6.1.2, py-1.9.0, pluggy-0.13.1

 rootdir: /home/ubuntu/wdpressplus-bigdata

 collected 1 item

 flows/testflow.py . [100%]

 ============================== 1 passed in 1.17s

リスト7.11 　タスク単位でテストを記述する（flows/testflow.py）

 from prefect import task, Flow

 テスト対象のタスク

 @task

 def get_message():

 return 'Hello, world!'

 テスト関数（実際にはファイルを分ける）

 def test_get_message():

 タスクをテスト実行

 with Flow('test') as flow:

 task1 = get_message()

 state = flow.run()

 実行結果をチェック

 assert state.result[task1].result == 'Hello, world!'

Tip
PrefectのタスクはJupyterノートブックの中からでも実行できるため、開発中はノート

ブックで対話的に実装、テストし、完成したところからスクリプトに移していくのも一つの

方法です。その場合、タスクごとにテスト用の小さなフローを定義して、ノートブックの中

でflow.run()するのが簡単です。

Column

Airflowにおけるタスクのテスト実行

Airflowではairflow tasks testコマンドを用いて、任意のタイミングで指定したタスク

を実行できます。このときデータベースは参照されず、タスクの依存関係も無視して指定

したタスクのみが実行されます。そのためタスクを一つずつ実装してはテストしたり、ある

いはトラブル発生時に特定のタスクだけを再実行してリカバリーしたりといったことが簡

単にできます。

その反面、ワークフローに含まれる一連のタスクを依存関係に従って実行するのは少

し面倒です。Airflowではワークフローを実行するのにデータベースが必須です。初期設

定ではSQLiteによるローカルデータベースが作られるものの、そのままではタスクを逐次

実行することしかできません。テスト時間短縮のために並列化するにはPostgreSQLな

どでテスト環境の構築が必要となります。

Prefectでは短時間で終了する多数のタスクを一つのフローとして手軽に実行できる

のに対して、Airflowでは比較的大きなタスクをタスク単位で実行するのに適していると

いう、両者の違いがここでも表われています。

バッチ型のデータパイプラインを定義する
それではいよいよ実際に、7.2節のデータパイプラインをワークフローとして実装し

ていきます。まず最初にMetabase以外のコンテナ一式が起動していることを確
認します。もし起動していないものがあるなら、docker-compose upで再起動
しておきます。

 各コンテナが起動していることを確認（Metabaseは不要）

 (env) ...$ docker-compose ps

 Name ... State Ports

 wdpressplus-bigdata_datamart_1 ... Up 5432/tcp

 wdpressplus-bigdata_metabase_1 ... Exit 143

 wdpressplus-bigdata_metastore-db_1 ... Up 5432/tcp

 wdpressplus-bigdata_metastore_1 ... Up 9083/tcp

 wdpressplus-bigdata_minio_1 ... Up 0.0.0.0:9000->9000/tcp

 wdpressplus-bigdata_presto-server_1 ... Up 8080/tcp

データの収集　オブジェクトストレージへの保存
はじめにローデータを集めてオブジェクトストレージに保存します。7.1節では2つの

ファイルをダウンロードしましたが、実際には100以上のファイルがあるので、ファイル
ごとに1つのタスクとして分割します。観測所の一覧をTSVファイルとしてダウンロー
ドできるので、それを最初のタスクとします（リスト7.12のタスク❶）注13。

リスト7.12 　データを収集するフロー（flows/download.py）

 タスク❶：観測所の一覧をダウンロード

 @task

 def get_filenames():

 year = prefect.context.yesterday[:4]

 NOAAから最新のデータをダウンロードする

 url = 'https://www1.ncdc.noaa.gov/pub/data/uscrn/products/stations.tsv'

 df = pd.read_csv(url, delimiter='\t', header=None)

 result = []

 現在も運用中（Operational）のものだけを抜き出す

 for _, row in df.loc[df[12]=='Operational'].iterrows():

 state = row[2]

 location = row[3].replace(' ', '_')

 vector = row[4].replace(' ', '_')

 result.append(f"CRNS0101-05-{year}-{state}_{location}_{vector}.txt")

 return result[:10] 最初の10件だけを返す

 タスク❷：ファイルをオブジェクトストレージに転送（リトライあり）

 @task(max_retries=2, retry_delay=datetime.timedelta(seconds=60))

 def download_file(filename):

 year = prefect.context.yesterday[:4]

 NOAAから最新のデータをダウンロードする

 prefix =

'https://www1.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01'

 ファイルをストリーム転送する（ローカルに保存しない）

 r = requests.get(f"{prefix}/{year}/{filename}", stream=True)

 r.raise_for_status()

 MinIOへの接続情報

 minio_params = {

 'endpoint_url': prefect.context.minio_url,

 'aws_access_key_id': 'accesskey',

 'aws_secret_access_key': 'secretkey',

 }

 s3 = boto3.Session().client('s3', **minio_params)

 オブジェクトストレージにアップロード

 bucket_name = 'datalake'

 object_name = f"uscrn/{prefect.context.yesterday}/{filename}.gz"

 s3.upload_fileobj(r.raw, bucket_name, object_name)

 prefect.context.logger.info(f"uploaded to

s3://{bucket_name}/{object_name}")

 return f"s3://{bucket_name}/{object_name}"

 フロー❶：フローを定義する

 with Flow('download') as flow:

 filenames = get_filenames() タスク❶

 download_file.map(filenames) タスク❷（map）

 if __name__ == '__main__':

 コンテキストをセットする

 with prefect.context(minio_url='http://localhost:9000'):

 フローを並列実行する

 flow.run(executor=LocalDaskExecutor())

続けてタスク❷では、ファイル名を受け取ってオブジェクトストレージへとデータ転
送します。ダウンロードに失敗したときに備えて、60秒間隔で2回まで自動的にリ
トライするように指定しています。

タスクをリトライするときには、その過程で重複が発生することのない「羃等な
処理」になっていることを確認します。たとえば、ファイルのパスをタスクごとに固定
して、毎回上書きされるように実装します。ここではコンテキストの日付
（yesterday）を使ってパスを決めています。

ワークフローの並列実行　LocalDaskExecutor
リスト7.12のフロー❶では、一連のタスクを実行するフローを定義しています。タ

スク❶はダウンロードすべきファイルの一覧をリストとして返しますが、タスク❷で
は.map()を指定することでリストの各要素についてタスクが実行されます。つま
り、このフローではタスク❶が1回、タスク❷が10回、合計して11回のタスク実行
が行われます。

そして最後に、コンテキストをセットしてからflow.run()を呼び出します。ここでセ
ットしたコンテキストは、後で本番環境で実行するときに上書きできます。ローカル
でテスト実行するときの初期値をセットしておくと便利です。

flow.run()はデフォルトではタスクを逐次実行するようになっており、並列処理
は行いません。このフローは多数のファイルをダウンロードするので、並列化した方
が時間を短縮できます。Prefectでタスクを並列実行するには
LocalDaskExecutorを用いるのが簡単です。デフォルトではCPUコアと同数のマ
ルチスレッドでタスクが実行されます。

これで準備が整ったので、次のようにしてワークフローを実行します。

 (env) ...$ python flows/download.py

 ...

 ... Task 'download_file[1]': Starting task run...

 ... Task 'download_file[2]': Starting task run...

ETLプロセス　ワークフローのコンテナ化
次はSparkによるETLプロセスです。ここでは「ワークフローのコンテナ化」の例とし

て、spark-submitのスクリプトをDockerコンテナに組み込みましょう。

まずベースとなるDockerイメージを用意します注14。最低限必要なのは、
Pythonを使えるようにすることだけです。「python:3.8」注15のようなシンプルなも
のでかまいません。

今回実行するフローでは、SparkのためにJavaをインストールし、Spark本体の
コードと関連するライブラリも必要です。筆者が用意したコンテナがあるので、以下
ではそれを使います（ソースはwdpressplus-bigdata内の
「containers/spark/Dockerfile」）。

コンテナ内で実行するフローは、リスト7.13のようになります。前節のspark-
submitのスクリプトをそのまま外部プログラムとして呼び出しています。

リスト7.13 　spark-submitを呼び出すフロー（flows/warehouse.py）

 実行するコマンド文字列（コンテキスト埋め込み）

 spark_submit_command = StringFormatter(template='''

 spark-submit --packages org.apache.hadoop:hadoop-aws:3.2.0 \

 /opt/scripts/warehouse.py {yesterday}

 ''')

 bashでコマンドを実行するタスク

 bash = ShellTask(log_stderr=True, return_all=True)

 with Flow('warehouse') as flow:

 bash(command=spark_submit_command())

Column

Daskによるデータフレームの分散処理

Prefectは内部的に「Dask」注aというPythonの分散処理フレームワークを利用して

おり、設定次第でさまざまな分散処理の方法に対応しています。たとえば、リモートに

立ち上げたDaskクラスターでタスクを実行したり、あるいはKubernetesクラスタのコンテ

ナに分散したりすることも可能です注b。

Daskはそれ自体がビッグデータのフレームワークであり、pandasのようなデータフレーム

を分散システム上で扱うことを得意としています。pandasに慣れているエンジニアにとっ

ては、Sparkよりも軽量で手軽に使えるツールとして人気があります。

データフレームによる集計にはDaskを利用し、それ以外の雑多なタスクにはPrefect

を用いることで、Pythonだけで大規模なデータ処理が可能となります。腕に自信のあ

るエンジニアは挑戦してみてください。

注a　 URL https://dask.org

（本文に戻る）

注b　 URL

https://docs.prefect.io/orchestration/execution/dask_k8s_environment.html

（本文に戻る）

Prefectにはフローのコード配置を決める「ストレージ」という概念があり、
「Dockerストレージ」を用いることでフローのコードを含んだコンテナを作成できます
注16。コンテナの作成はノートブックなどから対話的に実行することもできるし、スク
リプトとして実行してもかまいません。

対話的に実行するなら次のようになります。ここではイメージのビルドだけをして
いますが、パラメータとしてregistry_urlを指定すると、完成したイメージをレジスト

https://dask.org/
https://docs.prefect.io/orchestration/execution/dask_k8s_environment.html

リに登録するところまで実行してくれます。日頃からノートブックを使っているなら、
こうしたオペレーション系の作業をノートブックにまとめておくのも良いかもしれませ
ん。

 Jupyter consoleを起動

 (env) ...$ jupyter-console

 フローをモジュールとしてロードする

 In [1]: from flows.warehouse import flow

 In [2]: from os.path import abspath

 : from prefect.environments.storage import Docker

 :

 : Dockerストレージ

 : storage = Docker(

 : ベースとなるイメージ

 : base_image='wdpbigdata/spark:latest',

 : 新しく作成するイメージの名前

 : image_name='warehouse',

 : レジストリに登録する場合はコメントを外す

 : # registry_url='ghcr.io/MY-PROJECT',

 : 追加でコピーするファイルを指定

 : files={

 : abspath('scripts/warehouse.py'): '/opt/scripts/warehouse.py',

 : },

 :)

 : フローを組み込んでイメージをビルド

 : storage.add_flow(flow)

 : storage.build()

 ...

 Successfully built 685f920fecc9

 Successfully tagged warehouse:2020-12-05t11-54-25-892453-00-00

 Out[2]: <Storage: Docker>

note
Prefectは、フローのコードをcloudpickleでシリアライズしてからコンテナのイメージに埋

め込みます。Jupyterのような対話的なセッションで作成したフローを、そのまま直接

Dockerイメージに埋め込むことも可能です。

データマートの作成　YAMLで宣言的に定義する
最後にデータマートを作成します。これはETLプロセスとは別のフローとして実装

します。ETLプロセスは一度実装するとそう頻繁に変更しませんが、データマートに
はよく手を加えるので分けて管理します。

データマートを作るときには多数のSQLを実行するため、Pythonスクリプトに直
接クエリを埋め込むよりも、テーブルの数だけファイルを分けた方が見通しが良くな
ります。とりわけ非正規化テーブルの作成はSQLで何百行にもなることが珍しくな
く、スクリプトに埋め込むと可読性が悪くなります。

筆者はよくYAMLファイルにタスクの詳細を分離します。たとえばリスト7.14のス
クリプトでは、「queries」というディレクトリからYAMLファイルを読み込んで、ルー
プを回してファイルの数だけタスクを生成しています。

リスト7.14 　タスクの詳細を外部ファイルから読み込む
（flows/datamart.py）

 タスク❶：Prestoでクエリを実行する

 @task

 def presto_query(query):

 import pandas as pd

 from pyhive import presto

 conn = presto.connect(host='presto-server', port=8080)

 return pd.read_sql_query(query, conn, parse_dates=['timestamp'])

 タスク❷：結果をPostgreSQLに書き出す

 @task

 def datamart_replace(df, table):

 import sqlalchemy

 uri = "postgresql://datamart:datamart@datamart:5432/datamart"

 engine = sqlalchemy.create_engine(uri)

 df.to_sql(table, index=False, if_exists='replace', con=engine)

 フローを定義。タスクの詳細はYAMLファイルから読み込む

 with Flow('datamart') as flow:

 for path in glob.glob('queries/*.yml'):

 params = yaml.safe_load(open(path))

 df = presto_query(params['query']) タスク❶

 datamart_replace(df, params['table']) タスク❷

タスクの詳細はリスト7.15のようにYAML形式で記述します。Pythonで実装す
るのは、YAMLの記述に従ってタスクを実行するロジックの部分だけです。こうして
おくとスクリプトによる実装をシンプルに保ちながら、宣言型ワークフローの簡潔さ
と、スクリプト型ワークフローの柔軟性の両方を手に入れることができます。

リスト7.15 　タスクの詳細を定義したYAMLファイル
（queries/uscrn_summary.yml）

 table: uscrn_summary

 query: |

 SELECT date_trunc('day', timestamp) time,

 wbanno,

 avg(temperature) avg_temperature

 FROM uscrn GROUP BY 1, 2

現場のニーズに合わせて自由にワークフローを組み立てられるのがスクリプト型
ワークフロー管理の利点なので、自分にとって最も記述しやすい方法を考えてみて
ください。

本番環境におけるワークフロー管理
ここからはPrefectのサーバー機能を見ていきます。タスクを定期的に実行した

り、エラーからリカバリーしたりといった日常的なオペレーションには、常時稼動する
サーバーが欠かせません。Prefectではクラウドサービスとして提供されるサーバーも
使えますが、自分でホスティングできるオープンソース版もあるので、ここではオープ
ンソースのサーバー機能でワークフローを実行します。

Prefectサーバー　Prefect UI、GraphQL API、PostgreSQL

PrefectサーバーはDockerイメージとして提供されており、JavaScriptで実装さ
れたWeb UI、GraphQLによるAPIサーバー、そしてPostgreSQLデータベースなど
から構成されます。prefect server startコマンドでコンテナ一式をダウンロードして
起動します。

 Prefectサーバーを起動

 (env) ...$ prefect server start

 Pulling postgres ... done

 Pulling hasura ... done

 Pulling graphql ... done

 Pulling apollo ... done

 Pulling towel ... done

 Pulling ui ... done

Multipassによる仮想マシンの中で起動する場合、少しだけ初期設定が必要
です注17。Webブラウザから「http://<仮想マシンのアドレス>:8080」を開くと設
定画面に誘導されるので、［Prefect Server GraphQL endpoint］として
「http://<仮想マシンのアドレス>:4200/graphql」を入力し、左上のメニューから
［Dashboard］を開くと図7.7の画面が表示されます。

最初は何も登録されていないので、新しくフローを登録しましょう。まずは準備
として、フローを登録するためのプロジェクトを作成します。サーバーを起動したま
ま、新しい端末を開いて以下のコマンドを実行します。

 % multipass shell

 Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-53-generic x86_64)

 ...

 ubuntu@primary:~$ source ~/env/bin/activate && cd wdpressplus-bigdata

 バックエンドとしてPrefect Serverを利用する

 （クラウドサービスでは prefect backend cloud を実行）

 (env) ...$ prefect backend server

 Backend switched to server

 新しいプロジェクトを作成する

 (env) ...$ prefect create project "My Project"

 My Project created

Prefectエージェント　サーバー経由でフローを実行する
エラー発生時の動きを確認するために、リスト7.16のようなランダムで失敗する

フローを用意します。50%の確率で失敗するタスクを8つ登録しているので、確率
的には4つのタスクが失敗します。

リスト7.16 　タスクを逐次実行するフロー（flows/random_errros.py）

 from prefect import task, Flow

 import random

 一定確率で失敗するタスク

 @task

 def random_error():

 if random.random() < 0.5:

 raise RuntimeError()

 フローにタスクを8つ登録する

 with Flow('random-errors') as flow:

 for _ in range(8):

 random_error()

 サーバーに登録する

 flow.register(project_name='My Project')

 エージェントを起動する

 flow.run_agent()

スクリプトの最後ではflow.run()の代わりに2つのメソッドを実行しています。
flow.register()はサーバーにフローのメタ情報を登録し、このフローがサーバーの管
理下に入ります。flow.run_agent()はサーバーと常時接続し、指示を待ち受ける
エージェントを起動します。

スクリプトを実行すると、次のようにエージェントが起動して待ち状態となりま
す。

 (env) ...$ python flows/random_errors.py

 ...

 [2020-09-14 02:44:20,143] INFO - agent | Waiting for flow runs...

ここでWebブラウザの管理画面から［FLOWS］を開くと、いま登録したフロー
（random-errors）が表示されるので、クリックしてフローの管理画面を開きま
す。右上にある［QUICK RUN］ボタンを押すと、先ほど起動したエージェントで
フローの実行が始まり、管理画面には実行の経過がリアルタイムに表示されます
（図7.8）。失敗したタスクは赤く表示されます。

失敗したフローのリスタート　フローランを繰り返し実行する
管理画面で赤くなったタスクのログを開いて、エラーの原因を確認します。画面

上部の［RESTART］を押すと、エラーになったタスクがリスタートされます。すべて
のタスクが成功するまでリスタートを繰り返しましょう。

Prefectではフローを実行するたびにフローラン（flow run ）と呼ばれるレコー
ドが作られ、データベースで状態管理されます。フローを再実行するには、既存の
フローランを途中からリスタートするか、あるいは新しいフローランを作成して最初か
ら実行するかのどちらかになります。リスタート時には失敗したタスクのみが再実
行されます。そのため仮に追記型のタスクがあったとしても、比較的安全にパイプ

ラインを実行できます（第5章『5.1　ワークフロー管理』の「リカバリーとフローの再
実行」を参照）。

ソースコードを修正して再実行　フローのバージョンを更新する
システムの障害やフローの不具合が原因で、いくらリスタートしても成功しないと

きもあります。ソースコードを修正したときには、もう一度flow.register()を呼んでフ
ローを再登録します。フローはバージョン管理されるようになっており、再登録のた
びに新しいバージョンが作られます。

フローのバージョンを上げたときにはリスタートするのではなく、新しいバージョンで
もう一度実行し直します。その場合、一度成功したタスクも再度実行されるので
注意が必要です。Prefectは基本的にフロー単位で実行やリスタートを制御する
ようになっており、なるべく小さくフローを分ける方がリカバリーしやすいワークフローと
なります。

管理画面で簡単にリカバリーできないときには、リカバリーだけのために新しいフ
ローを作成します。前述のとおりフローはflow.run()でいつでも実行できるので、リ
カバリーのために一時的にソースコードを修正し、スクリプトとして直接実行するこ
とで必要なタスクを走らせることを筆者はよくやっています。

Column

Prefectサーバーとエージェントの関係　1つのサーバーで集中管理する

Prefectではサーバーとエージェントとの役割分担が明確であり、エージェントにはタス

クを実行するための最低限の機能しかありません。タスクの状態管理やログの保存な

どはサーバー側に実装されており、エージェントの役割はサーバーの指示を受けてタスクを

実行することだけです。

1つのサーバーに対してエージェントはいくつでも接続可能で、ネットワーク的に分離さ

れていてもかまいません。エージェントはサーバーに向けてHTTPリクエストしか発行しない

ので、社内ネットワークのようなファイアーウォールの内側に置くこともできます。データ転

送などの機密性が求められるタスクはプライベートネットワークで実行しつつ、全体の管

理はサーバーに集約するのがPrefectの管理モデルです。

1つのエージェントで1つのフローだけを実行することもできるし、複数のフローを担当さ

せることも可能です注a。KubernetesやAWS Fargateのようなコンテナ環境でも動作

するようになっており、利用するインフラに合わせて柔軟に構成を変えられます。

注a　 URL https://docs.prefect.io/orchestration/tutorial/multiple.html

（本文に戻る）

ワークフローのオーケストレーション　ロジックと構成定義とを分離する

本番環境におけるフローの実行、とくにコンテナ化されたワークフローの実行に
は、もう少し詳しいシステムの構成定義が必要です。フローをコンテナとして実行
するには、後述する「Dockerエージェント」が使われます。このときエージェントのみ
が常時起動され、サーバーから指示があるとエージェントが新しくコンテナを立ち上
げてフローを実行します。

厳密には、コンテナを使ったタスクの実行には次のような方法が考えられます。

https://docs.prefect.io/orchestration/tutorial/multiple.html

・タスクごとに独立したコンテナを起動する

・フローごとにコンテナを起動し、そのコンテナの中で一連のタスクを実行する

・常時起動のワーカーをコンテナとして起動し、ワーカーにタスクの実行を依頼する

Prefectは現時点では二番目と三番目の方法に対応していますが、ここでは
二番目の「フローごとにコンテナを起動する」方法について説明します。各タスクが
それほど計算リソースを必要としない限りは、フロー単位でソースコードやコンテナを
分離して管理するのが最もシンプルです。

「フローをどのように実行するか」というシステム構成の定義は、「フローのロジック
（タスクの実装）」とは別のファイルに分けて記述することをお勧めします。以下
では、これまでに作成した3つのフローをコンテナ化するための、より実際的な手順
を説明します。完成したスクリプトは「flows/register.py」にあります。

フローのストレージ　Dockerコンテナとして実行する
外部モジュールとして定義されたフローを読み込んでから、Dockerストレージを

flow.storageにセットします（リスト7.17）。Python以外の追加ソフトウェアを
必要としないシンプルなフローであれば、ベースとなるDockerイメージや
Dockerfileの指定は省略できます。その場合、フローの実行に必要な追加の
Pythonパッケージをpython_dependenciesとして指定すると、それらがインスト
ールされた新しいイメージが自動的にビルドされます。

リスト7.17 　フローのストレージをセットする

 from prefect.environments.storage import Docker

 フローをモジュールとしてロードする

 from flows.download import flow

 Dockerストレージをセット

 flow.storage = Docker(

 パッケージをインストール

 python_dependencies=[

 'boto3',

 'pandas',

],

 環境変数（コンテキストの上書き）

 env_vars={

 'PPREFECT__CONTEXT__MINIO_URL': 'http://minio:9000',

 },

)

flow.storageをセットしてからflow.register()を呼ぶと、自動的にDockerイメ
ージがビルドされ、その情報がサーバーへと登録されます。自分でビルドする必要は
ありません。

env_varsを指定するとコンテナの中で環境変数がセットされます。環境変数
の名前をPREFECT__CONTEXT__で始めることで、Prefectのコンテキストが上書
きされます。開発環境や本番環境などの環境に依存した設定はコンテキストの
値を参照するように実装し、コンテナのビルド時、あるいはエージェントの起動時に
環境変数をセットします。

note

環境変数はDockerイメージの中に組み込まれるため、秘密鍵をセットするのには向

いていません。セキュリティを高めるには、秘密鍵はコンテナの実行時に読み込むべきで

す。Prefectでは「Secrets」注1というしくみが提供されています。

注1　 URL https://docs.prefect.io/orchestration/concepts/secrets.html

（本文に戻る）

フローの実行環境　マルチスレッドを有効にする
フローに含まれる各タスクをコンテナ内で実行するときにはLocalEnvironment

をセットします（リスト7.18）。このときLocalDaskExecutorを指定することでマ
ルチスレッドが有効になります。複数のタスクを並列実行したいときに使えます。

リスト7.18 　フローの実行環境をセットする

 from prefect.engine.executors.dask import LocalDaskExecutor

 from prefect.environments.execution.local import LocalEnvironment

 マルチスレッドで実行する

 flow.environment = LocalEnvironment(executor=LocalDaskExecutor())

実行結果の永続化　オブジェクトストレージに書き出す
フローの実行が終了するとコンテナは削除されます。Prefectはデフォルトでは各

タスクの実行結果をローカルファイルに保存するようになっており、それらのファイル
もコンテナと一緒に削除されます。フローが成功したときには何も問題ありません
が、失敗すると困ったことになります。

失敗したフローをリスタートすると、すでに成功したタスクの結果はファイルから
読み込まれますが、コンテナ環境ではファイルが見つからずにエラーになります。こ

https://docs.prefect.io/orchestration/concepts/secrets.html

の問題を回避するには、タスクの結果をオブジェクトストレージに書き出すなどして
永続化しなければなりません。リスト7.19では、S3Resultを使うことでMinIOに結
果を書き出すようにしています。

リスト7.19 　フローの実行結果を永続化する

 from prefect.engine.results import S3Result

 タスクの実行結果を永続化する

 flow.result = S3Result(

 bucket='prefect',

 boto3_kwargs={

 'endpoint_url': 'http://minio:9000',

 'aws_access_key_id': 'accesskey',

 'aws_secret_access_key': 'secretkey',

 },

)

スケジュール実行　CronClock
フローが定期的に実行されるようにスケジュールを登録します注18。たとえば、

cronの書式で「UTC 0:00」に実行されるようにスケジュールするなら、リスト7.20
のようにCronClockをセットします。

リスト7.20 　フローをスケジュール実行する

 from prefect.schedules import Schedule

 from prefect.schedules.clocks import CronClock

 フローのスケジュールをセット（毎日UTC 0:00に実行）

 flow.schedule = Schedule(clocks=[CronClock("0 0 * * *")])

フローの登録　ラベルを付けて管理する
以上のような設定をフローごとに行ってからflow.register()でサーバーに登録し

ます（リスト7.21）。このとき labelsをセットすることで、フローにラベルを付けられ
ます。ここで指定したラベルによって、どのエージェントでフローを実行するかが決定
されます。ここではDockerコンテナとして実行するフローに「docker」というラベルを
付けています。

リスト7.21 　サーバーにフローを登録する

 ラベル（"docker"）を付けてサーバーに登録する

 flow.register(project_name="My Project", labels=['docker'])

完成したスクリプトを次のように実行すると、これまでに作成した3つのフローが
順にビルドされてサーバーへと登録されます。

 各フローのイメージをビルドしてサーバーに登録する

 (env) ...$ PYTHONPATH=. python flows/register.py

 Step 1/9 : FROM prefecthq/prefect:0.13.19-python3.8

 ...

 Successfully tagged download:2020-12-05t11-59-28-154509-00-00

 Flow URL: http://localhost:8080/flow/a0a15e26-0638-464f-a1ff-

4f406e1c3c87

 └── ID: 5417bcb0-9497-4d73-a105-66764af58928

 └── Project: My Project

 └── Labels: ['docker']

 Step 1/10 : FROM wdpbigdata/spark:latest

 ...

 Successfully tagged warehouse:2020-12-05t12-04-02-796258-00-00

 Flow URL: http://localhost:8080/flow/63c044e2-6fe9-4f80-88ee-

a41809b5f079

 └── ID: b7ac33b0-73ba-49a5-8887-7afb9af7f5f4

 └── Project: My Project

 └── Labels: ['docker']

 Step 1/9 : FROM wdpbigdata/python:latest

 ...

 Successfully tagged datamart:2020-12-05t12-04-07-764243-00-00

 Flow URL: http://localhost:8080/flow/2df3110a-b4c1-48f9-a890-

13c50fc7c6e5

 └── ID: 0f8bbcb6-747a-4374-b76b-e302fc6ca3cb

 └── Project: My Project

 └── Labels: ['docker']

フローの階層化　フローを実行するフロー
フローごとのコンテナが完成すれば、それらを順に実行することで最終的なデー

タパイプラインが完成します。フローに実行順序があるときには、それらのフローの
依存関係を明確に定めます。リスト7.22では、フローの実行を制御する上位のフ

ローを作成しています。このようにして作成したフローをスケジュール実行することで、
時間になったら一連のフローを確実に実行することができます。

リスト7.22 　フローを実行するフロー（flows/daily_batch.py）

 フローを実行するタスク。waitを付けると実行完了を待つ

 a = StartFlowRun(flow_name='download', project_name='My Project',

wait=True)

 b = StartFlowRun(flow_name='warehouse', project_name='My Project',

wait=True)

 c = StartFlowRun(flow_name='datamart', project_name='My Project',

wait=True)

 フローを順に実行するフロー

 with Flow('daily_batch') as flow:

 a.set_downstream(b)

 b.set_downstream(c)

こうしたフローをさらに階層的に積み上げていくことで、より複雑な多階層のフロ
ーを構築することも可能となります。Prefectでは比較的小さくフローを分割し、フ
ロー間の関係もまた一つのフローとして構造的にパイプラインを記述できます。

note
Prefectではフロー単位でコードを分割できます。フローごとにソースコードのリポジトリを

分割し、実行時のコンテナを分離し、フローを実行するエージェントを分けることもできま

す。そうして開発されたフローは最終的に一つのサーバーに集約され、プロジェクト名とフ

ロー名を用いて上位のフローが構築されます。

Dockerエージェント　エージェントの常時起動
コンテナ化されたフローを実行するには、Dockerエージェントを使うのが簡単で

す。次のようにして起動できます。

 Dockerエージェントを起動する

 (env) ...$ prefect agent docker start \

 コンテナ間通信のネットワーク

 --network wdpressplus-bigdata_default \

 ラベルを指定

 -l docker

Prefectでは複数のエージェントを起動できますが、各エージェントがどのフローを
実行するのかを決めるためにラベルを指定します。フローを登録するときのラベル
と、エージェントを起動するときのラベルとを一致させることで、どのエージェントを使
うかが決まります。

Dockerエージェント経由でフローが実行される様子を確かめるために、リスト
7.22のフローを実行してみましょう。新しく端末を開いて、次のように実行します。
このときWebの管理画面を開くと、3つのフローが順に実行されていく様子を見る
ことができます。

 % multipass shell

 Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-53-generic x86_64)

 ...

 ubuntu@primary:~$ source ~/env/bin/activate && cd wdpressplus-bigdata

 リスト7.22のフローを実行する

 (env) ...$ python flows/daily_batch.py

 ... | Beginning Flow run for 'daily_batch'

 ... | ...

 ... | Task 'Flow download': Finished task run for task with final state: 'Success'

 ... | ...

 ... | Task 'Flow warehouse': Finished task run for task with final state:

'Success'

 ... | ...

 ... | Task 'Flow datamart': Finished task run for task with final state: 'Success'

 ... | Flow run SUCCESS: all reference tasks succeeded

Kubernetesエージェント　コンテナ化されたエージェント
Prefectではサーバーからの指示を受け取るために、エージェントを常時起動して

おく必要があります。コンテナ環境ではエージェントを1つだけ立ち上げておいて、す
べてのフローの実行を任せるのが簡単です。

せっかくDockerを使うのなら、エージェント自体をコンテナとして実行したいと思
うかもしれません。Prefectを本番環境で運用するときには、KubernetesやAWS
Fargateのようなコンテナ実行環境にエージェントをデプロイすると良いでしょう。た
とえば、Kubernetesであれば次のようなコマンドを実行します。

 Kubernetesにエージェントをデプロイ

 (env) ...$ prefect agent kubernetes install --rbac | kubectl apply -f -

 deployment.apps/prefect-agent created

 role.rbac.authorization.k8s.io/prefect-agent-rbac created

 rolebinding.rbac.authorization.k8s.io/prefect-agent-rbac created

Kubenetes環境では、エージェントは常時起動のプロセス（Deployment）
としてデプロイされ、そこから実行される各フローはJobとして動きます注19。したがっ
て、どれほどフローの数が増えたとしても、Kubenetes側で適切なリソース管理が
できていればスケーラビリティを確保できます。

タスクが消費するリソースを制御する
ここまでくれば、あとは実行するタスクの負荷に応じてリソースを分配するだけで

す。各コンテナに割り当てるCPUやメモリなどのリソースの量はエージェントが決定
します。デフォルトでは割り当てられるリソースがかなり少ないので、prefect
agent kubernetes installなどに追加のオプションを指定することで調整します
注20。

リソースに余裕があるなら並列度を高めます。タスクの数が多いときには、
LocalDaskExecutorなどを用いてマルチスレッド、もしくはマルチプロセスで実行し
ます。あるいはタスクを複数のフローに分割したり、DaskExecutorを使ったりする
ことで、複数のコンテナに負荷を分散することも考えられます。

あまり並列度を高め過ぎると、問題になる場合もあります。たとえば、データベ
ースへの同時接続や、第三者サービスのAPI呼び出しなどは抑制しなければエラ
ーの発生率が高まります。Prefectにはサーバー単位でリソース消費を抑制するた
めの「同時実行制限」の機能があり、大規模なワークフローでエラーの発生を抑え
るために利用できます注21。

作業環境の削除　multipass delete

最後に以下のコマンドを実行して、これまでの作業内容をすべて削除します。

 仮想マシンを削除する

 % multipass delete primary

 削除されたことを確認

 % multipass list

 Name State IPv4 Image

 primary Deleted -- Not Available

 削除状態の仮想マシンをディスクから完全に削除

 % multipass purge

Column

コンテナ化したワークフローの開発スタイル

ワークフローをコンテナとして開発すると、本番環境での運用は楽になりますが、開発

そのものが楽になるわけではありません。コンテナとして動作するソフトウェアをどう開発

すると楽なのか、筆者はいまも試行錯誤の連続ですが、ここでは5つの手法を取り上げ

ておきます。

ローカルで開発してからコンテナ化する
単純なのは、開発中にはコンテナ技術は一切使わずに、本番環境にデプロイすると

きにコンテナ化することです。この場合、開発環境と本番環境とが厳密には一致しな

いので環境固有の問題が起きやすくなります。

本節のサンプルコードでは、データ収集のフロー（flows/download.py）をこの方法

で実行しています。

コンテナでソースコードをマウントする
普段から開発環境をコンテナ化することで、本番環境との差異が小さくなり、他の

エンジニアと環境を共有するのも容易になります。

Pythonを使ったワークフローでは、ソースコードをコンパイルする必要がないため、開発

中はコンテナにソースコードをマウントして直接実行します。たとえば、ソースコードが「src」

にあるなら、次のようにします。

 % docker run --rm -v src:/app/src -w /app python:3.8 python

src/workflow.py

コンテナのイメージ（ここでは「python:3.8」）は、あらかじめ必要なパッケージをイン

ストールしたものをビルドしておきます。

オプション-vでソースコードを「/app/src」にマウントし、-wで作業ディレクトリを

「/app」に移しています。これであたかもローカルで実行するかのようにpython

src/workflow.pyという引数でスクリプトを実行できます。

本節のサンプルコードでは、spark-submitやデータマート作成のスクリプト

（scripts/datamart.py）をこの方法で実行しています。

コンテナ化したJupyterノートブック
近年ではJupyterノートブックで開発することも増えています。Prefectによるワークフロ

ーはノートブックの中からでも実行できるため、開発中はコンテナ化したノートブックを作

るのも一つの方法です。

これは本番環境にデプロイするようなワークフローではお勧めできませんが、手作業で

実行するだけのものなら開発を単純化できます。たとえば、リモートから多数のファイル

をダウンロードし、それを加工し、それからデータ分析するようなノートブックがあるとしま

す。

最初の二つの作業（ダウンロードと加工）をワークフローのタスクとして実装し、実行

結果をファイルに書き出す（PrefectならLocalResultを用いる）ようにしておけば、ノー

トブックを何度実行し直しても最初の1回しかタスクが実行されないようになります。

ワークフロー管理ツールには、タスクの並列実行のような便利な機能も多いので、対

話的なデータ処理でも使い方次第では役立ちます。

本節のサンプルコードでは、機械学習のためにjupyter-consoleをコンテナとして実

行し、そこからデータマートへと接続しています。

コンテナを用いた実行環境の分離
一部のタスクの実行環境をコンテナに分離し、それをAPIのようにして使いたい場合

があります。

たとえば、古いバージョンのJavaでしか動かないソフトウェアを使うなど、他のものとは

一緒にしづらいタスクは専用のコンテナに分離したいものです。そのような特殊なコンテ

ナを使うときには、Daskのような軽量な分散システムを使うのも一つの方法です。

コンテナにはワークフローから利用するパッケージだけをインストールし、dask-workerを

起動します。このコンテナはネットワーク経由で使うので常時起動しておきます。

後は通常どおりワークフローを開発し、Dask経由で実行します（Prefectなら

DaskExecutorを用いる）。ワークフローのコードはネットワーク経由で渡されるので、コン

テナの側は起動したまま変更する必要はありません。

タスク単位でコンテナを切り替える
Daskをうまく使うとタスクごとに実行するコンテナを切り替えることもできます。それに

は複数のDaskワーカーを起動し、カスタムリソース注aを指定します。たとえば、GPUの使

えるコンテナがあるなら「GPU=1」のようなオプションを付けてワーカーを起動し、Prefect

のタスクでは次のようにタグを指定します。

 @task(tags=['dask-resource:GPU=1'])

 def my_gpu_task():

 # GPUを使うデータ処理

Javaのように起動に時間の掛かるソフトウェアでは、コンテナだけでなくJavaプロセスを

常時起動して使い回したいときもあります。そのようなときには、Actor注bを使ってコン

テナ内でプロセス間通信を実装します。

こうなってくると、もはやワークフロー管理というよりも分散システムの開発なので必要

とする人は限られるでしょうが、ワークフローが高度化するにつれて多数のコンテナを活

用したデータ処理が必要になるときもあるので、興味のある人は学んでみてください。

注a　 URL https://distributed.dask.org/en/latest/resources.html

（本文に戻る）

注b　 URL https://distributed.dask.org/en/latest/actors.html

（本文に戻る）

注9　 URL https://www.prefect.io

（本文に戻る）

注10　 URL https://airflow.apache.org

（本文に戻る）

注11　 URL https://docs.prefect.io/core/concepts/persistence.html

（本文に戻る）

注12　 URL https://docs.prefect.io/core/advanced_tutorials/local-

debugging.html#resuming-failing-flows

（本文に戻る）

注13　データ量を減らすために、ファイルを10件だけに制限しています。なお、NOAAのサイト

からすべてのファイルをダウンロードしようとすると途中でエラーが発生します。興味のあ

る人は原因を調べて回避策を考えてみてください。

（本文に戻る）

注14　 URL

https://docs.prefect.io/orchestration/recipes/configuring_storage.html

（本文に戻る）

注15　 URL https://hub.docker.com/_/python

https://distributed.dask.org/en/latest/resources.html
https://distributed.dask.org/en/latest/actors.html
https://www.prefect.io/
https://airflow.apache.org/
https://docs.prefect.io/core/concepts/persistence.html
https://docs.prefect.io/core/advanced_tutorials/local-debugging.html#resuming-failing-flows
https://docs.prefect.io/orchestration/recipes/configuring_storage.html
https://hub.docker.com/_/python

（本文に戻る）

注16　 URL https://docs.prefect.io/orchestration/tutorial/docker.html

（本文に戻る）

注17　 URL https://docs.prefect.io/orchestration/server/deploy-local.html

（本文に戻る）

注18　 URL https://docs.prefect.io/core/concepts/schedules.html

（本文に戻る）

注19　 URL https://docs.prefect.io/orchestration/tutorial/k8s.html

（本文に戻る）

注20　 URL https://docs.prefect.io/orchestration/agents/kubernetes.html

（本文に戻る）

注21　 URL https://docs.prefect.io/orchestration/concepts/task-concurrency-

limiting.html

（本文に戻る）

https://docs.prefect.io/orchestration/tutorial/docker.html
https://docs.prefect.io/orchestration/server/deploy-local.html
https://docs.prefect.io/core/concepts/schedules.html
https://docs.prefect.io/orchestration/tutorial/k8s.html
https://docs.prefect.io/orchestration/agents/kubernetes.html
https://docs.prefect.io/orchestration/concepts/task-concurrency-limiting.html

7.4
まとめ

本章ではビッグデータの技術を用いて「データパイプライン」を構築する例とし
て、オープンソースソフトウェアによるデータ処理の手順を説明しました。1台のコン
ピュータを使った単純な構成しか取り上げられませんでしたが、各ソフトウェアの
具体的な動きをイメージできたのではないでしょうか。
アドホックな分析環境の例として、JupyterとSparkを組み合わせて対話的

なデータ処理を行いました。ノートブックやスクリプト言語を使ったデータ処理は覚
えることが多く、最初の学習コストは高くなりますが、頻繁にデータを分析する人
にとっては効果的な方法です。機械学習のように大量の計算リソースを必要と
するケースであれば、クラウド上にノートブックを開くことでリモートの計算リソース
に素早くアクセスできます。

長期的な運用を前提とするバッチ処理では、対話的な実行よりも保守性の
良さを念頭に置きつつ、ETLプロセスなどのデータパイプラインを実装します。本章
ではSparkを使ったスケーラビリティの高いETLプロセスについて説明しましたが、
実際の運用ではローデータを直接データウェアハウスに取り込めるケースも多いの
で、適材適所でベストなツールを選択します。
複雑なデータパイプラインを制御するには「ワークフロー管理ツール」を使いま

す。スクリプト型のワークフロー管理ツールとしてPrefectを利用すると、単体のス
クリプトとして実行可能なワークフローをシンプルに記述できます。スクリプト型の
ツールを使うにはプログラミングの知識が必要ですが、データ収集では元々スクリ
プトがよく使われるので、データパイプライン全体を一つのワークフローとして透過
的に記述できます。

Prefectはワークフローのコンテナ化にも対応しており、Dockerコンテナのイメー
ジをビルドしてデプロイすることで、クラウド上での実行が容易になります。
Kubernetesのようなコンテナ実行環境と組み合わせることで、スケーラビリティの
高いワークフローの実行が可能です。データ処理に必要なライブラリをフロー単位
でコンテナにまとめられるため、最初に覚えることは増えるものの長期的に保守し
やすいデータパイプラインを構築できるでしょう。

SparkのようにETLプロセスで使える分散データ処理の技術と、Prefectのよう
にAPI呼び出しの司令塔となるワークフロー管理の技術とを組み合わせること
で、どれほど複雑なデータパイプラインでも構築できます。日々増え続けるデータ
に立ち向かうため、本書の知識が少しでも役立つようであれば幸いです。

索引

A/B/C
ACID特性
Airflow
Argo
at least once
at most once
Aurora

BI Engine
BIツール
BigQuery
Bigtable
CAP定理
Cassandra
CDP

Cloud Dataflow
CouchDB
CQL

D/E/F
DAG
Dask
distinct count
Docker
Dockerエージェント

Dockerストレージ
Dremel
DWH
DynamoDB
EDW

Elastic MapReduce
Elasticsearch
Elasticスタック
ELKスタック
ELT

Embulk
EMR
ETL
ETLサーバー
ETLツール
ETLプロセス
exactly once

Feast
Fluentd
Flume

G/H/I/J
Google Colab
Googleデータポータル
Hadoop
HBase
HDFS

HDInsight
Hive
Hive on MR
Hive on Spark
Hive on Tez

Hiveメタストア
Hopsworks
HTAP
Impala
IoT
JDBC
JupyterLab

Jupyter Notebook

K/L/M/N
Kafka
Kibana
Kinesis
KPI
Kubeflow
Logstash
Luigi

MapReduce
matplotlib
MBaaS
MDX
merge()
Mesos

Metabase
Metaflow
Michelangelo
MillWheel
MinIO
MLflow

MLOps
MongoDB
MPP
MPPデータベース
MQTT

MQTTサブスクライバ
MQTTブローカ
Multipass
NoSQL

NoSQLデータベース
Nutch

O/P/R
ODBC
OLAP
OLAPキューブ
OLTP
ORC
ORC形式
P2P型

pandas
Parquet
Prefect
Presto
Pub/Sub型メッセージ配送
Python

R（言語）
RDB
RDD
Redis
Redshift
Riak

S/T/U/W/Y
S3
SDK
SLA（ワークフロー管理）
Spark
Spark SQL

Spark Streaming
Sparkコンテキスト
Sparkセッション
split
Splunk

SQL-on-Hadoop
Tableau Desktop
Tableau Public
Tez
TiDB

unnest()
UUID
Webイベントトラッキング
YARN

ア行
アウトオブオーダー
アドホック分析
アトミック操作
アプライアンス
アンピボット

イベント時間
イベント時間ウィンドウイング
インデックス
ウィンドウ

エクスポネンシャルバックオフ
エージェント
エンタープライズデータウェアハウス

エンティティ
オーケストレーション
オブジェクトストレージ
オフセット

オフラインの特徴量
オンラインの特徴量

カ行
外部テーブル
確証的データ解析
カッパアーキテクチャ
カーディナリティ

カラムナーデータベース
機械学習
基幹系システム
キーバリューストア

行指向データベース
クエリエンジン
クライアント
クラウドサービス
クロス集計

クロステーブル
訓練
計算フィールド
結果整合性
月次レポート
欠損

構造化データ
行動可能
購読
コーディネータ
コーディネータ/ワーカー型

コンシューマ
コンセンサス
コンテキスト
コンテナ

サ行
再現性の危機
再送
サービングレイヤ
サマリーテーブル

時間的に正確な結合
時系列インデックス
時系列データ
時系列データベース

時系列テーブル
縦横変換
集約
集約関数
述語プッシュダウン

情報系システム
ジョブキュー
人工知能
信頼性
推論
スキーマ

スキーマレスデータ
スキュー
スクリプト型
スタースキーマ
ストリーミング型

ストリーム処理
スナップショットテーブル
スピードレイヤ
スプレッドシート

スモールデータ
スループット
正規化
宣言型
全文検索
属性

タ行
タイムアウト
タイムトラベル
対話型クエリエンジン
対話的なダッシュボード

多次元モデル
タスク
タスクキュー
ダッシュボード
ダッシュボードツール

縦持ち
探索的データ解析
遅延評価
置換

置換（ファクトテーブルの作成）
置換（ワークフローのタスク）
重複

重複排除
追記（ファクトテーブルの作成）
追記（ワークフローのタスク）

ディープラーニング
ディメンジョン
ディメンジョンテーブル
デジタルマーケティング

データアナリスト
データインジェスション
データウェアハウス
データエンジニア

データオーケストレーション
データカタログ
データ構造化
データ収集

データスキュー
データソース
データディスカバリ
データ転送
データの起源の追跡

データの検証
データパイプライン
データフレーム
データフロー
データポータル

データマート
データリネージ
データレイク
データワークフロー

テーブルパーティショニング
転置インデックス
ドキュメントストア
特徴量

特徴量エンジニアリング
特徴量グループ
特徴量ストア
特徴量セット

トピック
ドライバプログラム
トランザクション
トランザクションテーブル

ナ行
生データ　➡ ローデータ
日次サマリー
ノートブック

ハ行
配信
バージョニング
バックフィル
バッチ処理
バッチビュー
バッチレイヤ

パーティショニング
パラメータ
バルク型
半構造化データ
非構造化データ

非正規化
非正規化テーブル
ビッグデータ
ピボット
ピボットテーブル

ファクトテーブル
プッシュ型
プル型
フルスキャン
ブレイクダウン分析
フロー

プロセス時間
プロデューサ
ブロードキャスト結合
フローラン
フロントエンド

分散KVS
分散結合
分散ストレージ
分散データ処理
分散データベース

分散ファイルシステム
並列クエリ実行
冪等な操作

マ行
前処理
マーケティングオートメーション
マスタ
無限データ
メジャー

メッセージキュー
メッセージ配送
メッセージブローカ
メッセージルーティング

モデル
モデルレジストリ
モニタリング

ヤ行
夜間バッチ
有限データ
ユニークID
横持ち

ラ行
ラムダアーキテクチャ
リアルタイム
リアルタイムビュー
リカバリー

リソースマネージャ
リトライ
リレーショナルモデル
履歴テーブル

ルックアップテーブル
レイテンシ
列指向
列指向ストレージ

列指向データベース
レポーティング
ログ収集
ローデータ

ワ行
ワイドカラムストア
ワーカー
ワークフロー
ワークフロー管理

ワークフローのコンテナ化

著者略歴

西田 圭介　Keisuke Nishida
フリーランスのソフトウェアエンジニア。複数のスタートアップで開発やデータ分析な
どを担当した。現在は趣味の開発にも勤しみつつ、執筆活動を続けている。著
書に『Googleを支える技術 ……巨大システムの内側の世界』（技術評論社、
2008）がある。

装丁・本文デザイン
西岡 裕二

図版
さいとう 歩美

本文レイアウト
酒徳 葉子 （技術評論社）

電子版書籍について

本書は紙の書籍『WEB+DB PRESS plusシリーズ ［増補改訂］ビッグデー
タを支える技術 ラップトップ1台で学ぶデータ基盤のしくみ』（ISBN978-4-297-
11952-2）を電子書籍化したものです。紙書籍とは一部レイアウトやデザイン
が異なります。本書の更新履歴や補足情報は技術評論社ウェブサイトをご参
照ください。

本書の一部または全部を著作権法の定める範囲を超え、無断で複写、複
製、転載、テープ化、ファイルに落とすことを禁じます。造本には細心の注意を
払っておりますが、万一、ページの乱れやページの抜け等がございましたら、小社
クロスメディア事業部までお知らせください。

http://gihyo.jp/book

電子版奥付

書名
WEB+DB PRESS plusシリーズ

［増補改訂］ビッグデータを支える技術

ラップトップ1台で学ぶデータ基盤のしくみ

電子版発行日
2021年2月13日 初版 第1刷発行

著者
西田 圭介

発行者
片岡 巌

発行所
株式会社技術評論社
東京都新宿区市谷左内町21-13

電話
03-3513-6150 販売促進部
03-3513-6180 クロスメディア事業部

電子版製本
株式会社リ・ポジション

©2021　Keisuke Nishida
ISBN978-4-297-11953-9

	本書について 改訂にあたって
	本書の内容
	本書で扱わない内容
	本書の想定読者と前提とする予備知識について
	動作確認環境と本書の補足情報について
	本書の構成
	改訂版のおもな変更点
	第1章 ビッグデータの基礎知識
	1.1 ［背景］ビッグデータの定着
	分散システムによるデータ処理の高速化 ビッグデータの扱いづらさを乗り越える二大技術
	ビッグデータ技術への要求 HadoopとNoSQLの台頭
	Hadoop 多数のコンピュータで大量のデータ処理
	NoSQLデータベース 頻繁な読み書き＆分散処理に強みあり
	HadoopとNoSQLデータベースの組み合わせ 現実的なコストで大規模データ処理を実現
	分散システムのビジネス利用の開拓 データウェアハウスとの共存
	自分でできる！ データ分析の間口の広がり クラウドサービスとデータディスカバリで加速したビッグデータ活用
	Column スモールデータ＆ビッグデータの活用 スモールデータの技術も重要
	データディスカバリの基礎知識 セルフサービスのBIツール
	新しい分散データ処理システムの台頭 Hadoopからの脱却
	データベースの高速化
	クラウドサービスによるデータ転送
	モダンな分散データ処理のフレームワーク
	ビッグデータを活用した応用分野の広がり レポーティング、デジタルマーケティング、人工知能
	レポーティング BIツール、モニタリング、ダッシュボード
	デジタルマーケティング マーケティングオートメーション
	人工知能 特徴量エンジニアリング、MLOps
	Column ビッグデータの技術と機械学習の技術
	データオーケストレーション
	1.2 ビッグデータ時代のデータ分析基盤
	［再入門］ビッグデータの技術 分散システムを活用してデータを加工していくしくみ
	データパイプライン データ収集からワークフロー管理まで
	データ収集 バルク型とストリーミング型のデータ転送
	ストリーム処理とバッチ処理
	分散ストレージ オブジェクトストレージ、NoSQLデータベース
	分散データ処理 クエリエンジン、ETLプロセス
	ワークフロー管理
	データウェアハウスとデータマート データパイプラインの基本形
	データレイク あらゆるデータをそのまま貯蔵
	データレイクとデータマート 必要なデータはデータマートにまとめる
	データ分析基盤を段階的に発展させる チームと役割分担、スモールスタートと拡張
	アドホック分析とダッシュボードツール
	Column データパイプラインの大きな流れは変わらない ツール選びの2つのヒント
	データマートとワークフロー管理
	データを集める目的 「検索」「加工」「可視化」の3つの例
	データの検索
	データの加工
	データの可視化
	Column 基幹系システムと情報系システムを分離しよう
	確証的データ解析と探索的データ解析
	1.3 ［速習］スクリプト言語によるアドホック分析とデータフレーム
	データ処理とスクリプト言語 人気のPythonと、データフレーム
	データフレーム、基礎の基礎 「配列の配列」から作成
	Webサーバーのアクセスログの例 pandasのデータフレームで簡単処理
	データの前処理で使えるpandasの関数
	時系列データを対話的に集計する データフレームをそのまま用いてデータ集計
	Column スモールデータの技術をうまく使っていく
	SQLの結果をデータフレームとして活用する
	実行結果を確認するところではデータフレームを使う
	1.4 BIツールとモニタリング
	スプレッドシートによるモニタリング プロジェクトの現状を把握する
	データに基づく意思決定 KPIモニタリング
	月次レポート スプレッドシートによるレポート作成とその限界
	変化を捉えて詳細を理解する BIツールの活用
	モニタリングの基本戦略とBIツール 定期的なレポートによる変化の把握と再集計
	手作業と自動化すべきこととの境界を見極める
	手作業で済むことは手作業で済ませる
	自動化したいときにはデータマートを作る
	1.5 まとめ

	第2章 ビッグデータの探索
	2.1 基本のクロス集計
	トランザクションテーブル、クロステーブル、ピボットテーブル クロス集計の考え方
	ピボットテーブル機能によるクロス集計
	ルックアップテーブル テーブルを結合して属性を増やす
	BIツールによるクロス集計
	pandasによるクロス集計
	SQLによるテーブルの集約 大量データのクロス集計の事前準備
	Column テーブルの縦横変換❶［SQL編］
	Column テーブルの縦横変換❷［pandas編］
	データ集約➡「データマート」➡可視化 システム構成はデータマートの大きさで決まる
	2.2 列指向ストレージによる高速化
	データベースの遅延を小さくする
	データ処理の遅延 遅延の小さいデータマート作成のための基礎知識
	「圧縮」と「分散」によって遅延を小さくする MPPの技術
	列指向データベースのアプローチ カラムを圧縮してディスクI/Oを減らす
	行指向データベース 各行がディスク上で一連のデータとして書き込まれる
	Column スループットとレイテンシ
	列指向データベース カラムごとにデータをまとめておく
	MPPのアーキテクチャ 並列化によってマルチコアを活用する
	MPPデータベースと対話型クエリエンジン
	Column リソース消費を制限する 列指向ストレージ×MPPによる高速化と注意点
	Column データを取り出さずに集計する HTAP、並列クエリ
	2.3 アドホック分析と可視化ツール
	Jupyter Notebookによるアドホック分析 ノートブックに分析過程を記録する
	ノートブック内での可視化
	ノートブックによるワークフロー 一連のタスクをまとめて実行
	ダッシュボードツール 定期的に集計結果を可視化する
	Metabase SQLによるクエリの実行結果をそのまま可視化
	Kibana Elasticsearchと組み合わせてリアルタイムに可視化
	Googleデータポータル 大勢が参照する定期的なレポートを作成
	Column データマートは必要なくなるか？
	BIツール 対話的なダッシュボード
	1つのデータを多角的に分析する
	Column 可視化ツールの選択の指針 どれを使う？
	2.4 データマートの基本構造
	可視化に適したデータマートを作る OLAP
	多次元モデルとOLAPキューブ
	MPPデータベースと非正規化テーブル
	テーブルを非正規化する
	ファクトテーブルとディメンションテーブル
	スタースキーマと非正規化 ファクトテーブルを中心に複数のディメンションテーブルを結合
	非正規化テーブル データマートに正規化は必要ない
	多次元モデル 可視化に備えてテーブルを抽象化する
	モデルの定義を拡張する
	Column ブレイクダウン分析
	2.5 まとめ
	Column Amazon RedshiftとGoogle BigQueryの違い

	第3章 ビッグデータの分散処理
	3.1 大規模分散処理のフレームワーク
	構造化データと非構造化データ
	スキーマレスデータ 基本書式はある、スキーマは定めない
	データ構造化のパイプライン テーブル形式にして列指向ストレージに長期保存
	列指向ストレージの作成 分散ストレージ上に作成して効率良くデータ集計
	Hadoop 分散データ処理の共通プラットフォーム
	分散システムのコンポーネント HDFS、YARN、MapReduce
	分散ファイルシステムとリソースマネージャ HDFS、YARN
	分散データ処理とクエリエンジン MapReduce、Hive
	Hive on Tez
	対話型クエリエンジン ImpalaやPresto
	Spark インメモリ型の高速なデータ処理
	MapReduceを置き換える Sparkの位置付け
	3.2 クエリエンジン
	データマート構築のパイプライン
	Hiveによる構造化データの作成
	列指向ストレージへの変換 データ集計の高速化（バッチ型クエリエンジン向け）
	Hiveで非正規化テーブルを作成する
	サブクエリ内でレコード数を削減する 早い段階でファクトテーブルを小さくする
	データの偏りを避ける 分散システムの性能発揮のために
	対話型クエリエンジンPrestoのしくみ Prestoで構造化データを集計する
	プラグイン可能なストレージ 1つのクエリの中から複数のデータソースに接続可能
	CPU処理の最適化 読み込みもコードも並列実行
	インメモリ処理による高速化 クエリ実行には極力、対話型クエリエンジンを
	分散結合とブロードキャスト結合
	列指向ストレージの集計 Prestoによる高速集計
	データ分析のフレームワークを選択する MPPデータベース、Hive、Presto、Spark
	MPPデータベース 完成した非正規化テーブルの高速集計に向いている
	Hive データ量に左右されないクエリエンジン
	Presto 速度重視＆対話型特化のクエリエンジン
	Spark 分散システムを使ったプログラミング環境
	Column Mesosによるリソース管理
	3.3 データマートの構築
	ファクトテーブル 時系列データを蓄積する
	テーブルパーティショニング 物理的なパーティションに分割
	データマートの置換
	サマリーテーブル レコード数を削減する
	スナップショットテーブル マスタの状態を記録する
	Column サマリーテーブルからの数値計算に注意
	Column スナップショットの日付に注意
	履歴テーブル マスタの変化を記録する
	［最終ステップ］ディメンションを追加して非正規化テーブルを完成させる
	データ集約の基本形
	3.4 まとめ

	第4章 ビッグデータの蓄積
	4.1 バルク型とストリーミング型のデータ収集
	オブジェクトストレージとデータインジェスション 分散ストレージにデータを取り込む
	データインジェスション
	バルク型のデータ転送 ETLサーバー設置の必要性
	ファイルサイズの適正化は比較的簡単
	データ転送のワークフロー ワークフロー管理ツールとの親和性
	ストリーミング型のメッセージ配送 次々と送られてくる小さなデータを扱うために
	Webブラウザからのメッセージ配送 Fluentd、Logstash、Webイベントトラッキング
	Column Fluentdによるメッセージ配送
	モバイルアプリからのメッセージ配送 MBaaS、SDK
	デバイスからのメッセージ配送 MQTTを例に
	メッセージ配送の共通化 異なる部分と共通する部分を分離して考える
	4.2 ［性能×信頼性］メッセージ配送のトレードオフ
	メッセージブローカ ストレージの性能問題を解決する中間層の設置
	プッシュ型とプル型 スケーラビリティ向上とファイルサイズ適正化
	メッセージルーティング
	メッセージ配送を確実に行うのは難しい 信頼性の問題と3つの設計方式
	at most once
	exactly once
	at least once 重複排除は利用者に任されている
	重複排除は高コストなオペレーション
	オフセットを用いた重複排除
	ユニークIDによる重複排除
	エンドツーエンドの信頼性
	ユニークIDを用いた重複排除の方法 NoSQLデータベース、SQL
	データインジェスションのパイプライン 長期的なデータ分析に適したストレージ
	重複を考慮したシステム設計 ビッグデータシステムにおける「重複」の考え方
	Column メッセージブローカと信頼性
	4.3 時系列データの最適化
	プロセス時間とイベント時間 データ分析の対象はおもにイベント時間
	プロセス時間による分割と問題点 極力避けたいフルスキャン
	時系列インデックス イベント時間による集計の効率化❶
	述語プッシュダウン イベント時間による集計の効率化❷
	イベント時間による分割 テーブルパーティショニング、時系列テーブル
	データマートをイベント時間で並び替える
	4.4 非構造化データの分散ストレージ
	［基本戦略］NoSQLデータベースによるデータ活用
	分散KVS ディスクへの書き込み性能を高める
	Amazon DynamoDB
	Column ［基礎知識］ACID特性とCAP定理
	ワイドカラムストア 構造化データを分散して格納する
	Apache Cassandra
	ドキュメントストア スキーマレスデータを管理する
	MongoDB
	検索エンジン キーワード検索でデータを絞り込む
	Column フルスキャンによる全文検索
	Elasticsearch
	Splunk
	Column モバイル機器の時計は狂っている（!?） 壊れたデータは除外する
	4.5 まとめ

	第5章 ビッグデータのパイプライン
	5.1 ワークフロー管理
	［基礎知識］ワークフロー管理 データの流れを一元管理する
	ワークフロー管理ツール
	ワークフロー管理ツールとタスク
	基本機能とビッグデータで求められる機能
	宣言型とスクリプト型 ワークフロー管理ツールの種類
	Column 自家製のワークフロー管理ツール
	エラーからのリカバリー方法を先に考える
	リカバリーとフローの再実行
	Column ワークフローのバージョン管理
	リトライ 何度も繰り返すエラーは自動化したい
	バックフィル 一定期間のフローを連続して実行するしくみ
	冪等な操作としてタスクを記述する 同じタスクを何度実行しても同じ結果になる
	アトミック操作
	冪等な操作 追記と置換
	冪等な追記
	Column タスク内部でのリトライ制御
	アトミックな追記
	ワークフロー全体を冪等にする
	タスクキュー リソースの消費量をコントロールする
	ボトルネックの解消
	タスク数の適正化 大き過ぎず、小さ過ぎず、程良く分割
	5.2 バッチ型のデータフロー
	MapReduceの時代は終わった データフローとワークフロー
	MapReduceのしくみ
	MapReduceに代わる新しいフレームワーク DAGによる内部表現
	SparkにおけるDAG
	データフローとワークフローとを組み合わせる
	データを取り込むフロー
	データを書き出すフロー
	データフローとSQLとを使い分ける データウェアハウスのパイプラインとデータマートのパイプラン
	対話的なフロー アドホック分析のパイプライン
	5.3 ストリーミング型のデータフロー
	バッチ処理とストリーム処理とで経路を分ける
	ストリーム処理とバッチ処理とを統合する
	Spark StreamingにおけるDAG
	Column ストリーム処理による1次集計
	ストリーム処理の結果をバッチ処理で置き換える ストリーム処理の二つの問題への対処
	ラムダアーキテクチャ バッチレイヤ、サービングレイヤ、スピードレイヤ
	カッパアーキテクチャ
	アウトオブオーダーなデータ処理
	本来のデータの姿は「イベント時間」から得られる
	イベント時間ウィンドウイング
	5.4 まとめ

	第6章 ビッグデータと機械学習
	6.1 特徴量ストア
	機械学習のための特徴量ストア
	特徴量エンジニアリング 属性と特徴量
	特徴量のデータ形式 データフレームとして扱う
	特徴量ストア ビッグデータと機械学習の境界線
	特徴量ストアのデータパイプライン オンラインとオフライン
	訓練と推論 オンラインとオフラインの使い分け
	Column ディープラーニングの特徴量
	特徴量ストアによるデータ管理
	データリネージ データの依存関係を追跡する
	データの検証 特徴量のスキーマを定義する
	タイムトラベル 任意の時点にデータを巻き戻す
	バージョニング 特徴量の変更履歴を記録する
	特徴量ストアの実装例
	Michelangelo
	Hopsworks
	Feast
	特徴量ストアをいつ作るか？
	Column クラウドサービスとしての特徴量ストア
	Column Sparkか、それともSQLか バッチ処理によるデータ生成を考える
	6.2 MLOps
	機械学習のためにデータパイプラインを構築する
	MLOpsの全体構成 三段階の発展
	MLOpsと特徴量ストア
	Kubeflow 機械学習のオーケストレーション
	Kubeflow Fairing 訓練とモデル登録
	オーケストレーション 設定や管理を自動化する
	Kubeflow Pipelines Pythonによるスクリプト型のワークフロー
	Column データパイプライン、ワークフロー、オーケストレーション
	その他の機能 Metadata、Katib、Tools for Servingなど
	Column Pythonによるワークフロー管理の歴史
	6.3 まとめ

	第7章 ［実践］ビッグデータ分析基盤の構築
	7.1 ノートブックとアドホック分析
	学習にあたって
	サンプルデータの内容 5分ごとの気温
	作業環境の構築 MultipassでUbuntu 20.04を起動する
	Python実行環境の整備 venvによる仮想環境
	ノートブックの実行 JupyterLab
	PythonスクリプトによるCSVファイルの収集
	Column Google Colabによるサンプルコードの実行
	データの内容を確認する pandas
	分析しやすく加工する カラム名をセット、日時の標準化
	統計値を確認する describe
	外れ値を除外する
	Sparkによる分散環境を整える
	テキストファイルのアドホック処理 SparkセッションとSparkコンテキスト
	RDDからデータフレームを作成する
	Spark SQLによるデータの集計
	列指向ストレージに変換する Parquet形式
	可視化によるデータ検証 Tableau Public
	Column Sparkとpandas
	データの集計と可視化を相互に繰り返す 探索的データ解析
	Column CSVファイルによる簡易的なデータマート
	Column デスクトップ型のBIツールとWeb型のBIツール
	7.2 バッチ型のデータパイプライン
	Dockerによる環境構築 ラップトップ上での開発環境
	Dockerのインストール
	オブジェクトストレージ MinIO
	構造化データの管理 Hiveメタストア
	オブジェクトストレージへのデータ転送
	ETLプロセス Spark
	クエリエンジンによるデータ集計 Presto
	Column 実務におけるETLプロセス
	パーティションを用いた時間の絞り込み
	データマートを作成する
	外部データベースによるデータマート PostgreSQL
	ダッシュボードツールによる可視化 Metabase
	SQLの実行結果をグラフにする
	特徴量エンジニアリング SQLとSpark
	SQLによる特徴量エンジニアリング
	Column クエリエンジン「Trino」はPrestoの後継となるか？
	Sparkによる特徴量エンジニアリング
	機械学習 線形回帰による推論
	特徴量ストアの読み書きを標準化する
	7.3 ワークフロー管理ツールによる自動化
	Prefect スクリプト型のワークフロー管理
	フローの定義 Python関数としてタスクを実装する
	コンテキスト
	Column Airflowにおけるタスク定義
	パラメータ
	タスクのライブラリ化 再利用性の高いタスクを実装する
	Column Airflowにおけるコンテキスト
	ワークフローの開発プロセス タスクの実装とテストとを繰り返す
	タスクの自動テスト pytest
	Column Airflowにおけるタスクのテスト実行
	バッチ型のデータパイプラインを定義する
	データの収集 オブジェクトストレージへの保存
	ワークフローの並列実行 LocalDaskExecutor
	ETLプロセス ワークフローのコンテナ化
	Column Daskによるデータフレームの分散処理
	データマートの作成 YAMLで宣言的に定義する
	本番環境におけるワークフロー管理
	Prefectサーバー Prefect UI、GraphQL API、PostgreSQL
	Prefectエージェント サーバー経由でフローを実行する
	失敗したフローのリスタート フローランを繰り返し実行する
	ソースコードを修正して再実行 フローのバージョンを更新する
	Column Prefectサーバーとエージェントの関係 1つのサーバーで集中管理する
	ワークフローのオーケストレーション ロジックと構成定義とを分離する
	フローのストレージ Dockerコンテナとして実行する
	フローの実行環境 マルチスレッドを有効にする
	実行結果の永続化 オブジェクトストレージに書き出す
	スケジュール実行 CronClock
	フローの登録 ラベルを付けて管理する
	フローの階層化 フローを実行するフロー
	Dockerエージェント エージェントの常時起動
	Kubernetesエージェント コンテナ化されたエージェント
	タスクが消費するリソースを制御する
	作業環境の削除 multipass delete
	Column コンテナ化したワークフローの開発スタイル
	7.4 まとめ

	索引

