

電子書籍閲覧に関するご注意

　本書では、プログラムリストに専用の等幅フォントを使用しています。ビューアによって以下の作業が必要
になります。
・Kindle Paperwhiteの場合：フォント設定画面で「出版者のフォント」を選択
・kobo Androidアプリの場合：フォント画面で「オリジナル」を選択

目次

電子書籍閲覧に関するご注意

はじめに

あなたのサービスをたくさんの人に届けよう！
対象読者
この本を読むとわかること
この本の構成

第1章　DiscordとDiscord Bot
1.1　ゲーマーに大人気！ボイスチャットサービスDiscord
1.2　Discord Botの正体
1.3　Discord Botで「Hello, world!」

第2章　shovel - 日本語読み上げDiscord Bot
2.1　50万人が使う読み上げBot「shovel」
2.2　shovelの機能
2.3　shovelユーザーの声

第3章　shovelのシステム構成
3.1　shovelのシステム全体構成
3.2　shovelの必要スペックは？　サーバー性能公開
3.3　shovelを助けるミドルウェアたち
3.4　shovelを見守る監視体制を実現するツール

第4章　shovelのソフトウェア構成
4.1　shovel本体を俯瞰する
4.2　cog - shovelを構成する歯車たち
4.3　shovelの機能を請け負うモジュール
4.4　多くの外部パッケージがshovelを支えている
4.5　shovelが使う外部アプリケーション

第5章　大勢に使ってもらえるサービスを目指して
5.1　たくさんの人にサービスを使ってもらうには
5.2　shovelの戦略 - ユーザーを逃がさない！
5.3　システムの品質について考える
5.4　開発プロセスを俯瞰する

第6章　品質を上げるための設計のポイント
6.1　ユーザビリティを考える
6.2　ユーザビリティの実例 - shovelの工夫
6.3　異常系に漏れなく対応しよう
6.4　漏れた異常系を後からみつける
6.5　ログはBotを良くするヒントの宝庫！
6.6　アプリケーションログはBotの活動日記

第7章　開発環境 - 開発効率と品質をあげる礎
7.1　コードを書き、動かす環境を整えよう
7.2　環境を3系統用意しよう
7.3　環境をつくる手順
7.4　コード変更なしに環境を切り替える方法

第8章　実装 - いざ、コーディング

8.1　実装の流れ
8.2　リファクタリングで保守性を担保！
8.3　保守性を高める実装
8.4　ユーザビリティのための実装

第9章　テスト - コードの品質をまもる、最後の砦

9.1　テストとは何なのか
9.2　テストを設計しよう
9.3　テストを実施しよう

第10章　Discord Botのテスト自動化

10.1　テスト自動化とは
10.2　Botのテストに欠かせないモジュール「jishaku」
10.3　テスト自動化の実装方法を紹介！

第11章　アップデートのための作業

11.1　アップデートリハーサルをしよう
11.2　本番アップデートの実施
11.3　「2系統アップデート」でダウンタイム大幅短縮！

第12章　Botの土台作りのダイジェスト

12.1　どこでBotを動かすか検討しよう
12.2　サーバーのセットアップをダイジェストで紹介！
12.3　DBでデータを永続化しよう
12.4　バックアップ設定

第13章　セキュリティ - Botとユーザーを守る壁

13.1　知らないうちに犯罪に加担しないために
13.2　サーバーのセキュリティを固めよう
13.3　Botを狙う攻撃手法を知ろう

第14章　監視 - 24時間みまもり体制

14.1　みまもり＋非常アラート＝監視
14.2　何を監視する？
14.3　監視に役立つツール
14.4　Botをツールから監視できるようにしよう

第15章　バックアップ - 安心を確保する
15.1　バックアップの必要性
15.2　さまざまなバックアップ

15.3　バックアップの作法

第16章　運営 - ユーザーと接しよう

16.1　情報発信の拠点をつくろう
16.2　ユーザーとどう関わるか考える
16.3　サービスを段階的に公開するメリットとデメリット
16.4　サービスの印象をデザインする
16.5　効果的な広報でBotを知ってもらおう
16.6　Botに機能を追加する
16.7　Botから機能を削除する - 破壊的変更
16.8　動作詳細ログでアプリケーションを分析する

第17章　Bot運営の金銭面
17.1　サービス運営は儲かるのか？
17.2　サービス運営で出ていくお金
17.3　サービス運営で入ってくるお金
17.4　shovelのお金事情

おわりに

あとがき - 個人開発のよろこび
謝辞

はじめに

あなたのサービスをたくさんの人に届けよう！

　筆者は2019年5月、日本語読み上げDiscord Bot「shovel（シャベル）」を一般公開しました。
　「shovel」を一般公開すると決意したのは2018年9月。当時の筆者はBtoBソフトウェア開発経験はあ
れど、インフラから運営まで一手に担当する個人開発サービス運営の経験は皆無。技術面から運営面ま
でわからないことでいっぱいでした。本当に多くの壁にぶち当たりましたが、そのたびに調査したり有識者に
助言を受けたりすることで、なんとか乗り越えてきました。当初は想像もしていませんでしたが、shovelは公
開から1年間で50万人のユーザーに利用してもらえるまでに成長しました。
　本書はその経験を題材・実例として「サービスを作り、一般公開し、知ってもらい、運営する」うえで必要
なこと（つまり、2018年9月当時の筆者が知りたかったこと）についてまとめたものです。
　本文中の実例は、Discord Botで説明します。ですが、フロントエンドがDiscord Botであるというだけ
で、Discord以外のBotやWebサービスなど、さまざまなサービスと共通である内容も多く含まれます。もちろ
ん、Discord Botを公開したい方にとっては、すぐに実用に供することのできる有用な情報となるはずです。
　「作った！　動いた！　そこまではできたけど……」
　そんな個人開発者が、もう一歩踏み出す場面で、この本が道しるべのひとつになることを願います。
　2020年8月　北浦 望

対象読者

　・プログラミング、サービス運営に興味がある人
　・日本語読み上げDiscord Bot「shovel」に興味がある人
　・Discord Botを本格的に運営したい人
　・サービスを作ってみたが、公開するのになんとなく躊躇している人
　・サービスを公開しているが、これでいいのか不安な人
　・サービスを公開したが、思うようにユーザーが増えなかった人

この本を読むとわかること

　・サービスをたくさんの人に使ってもらう方法
　・サービスの土台となるサーバー設定
　・サービスを攻撃から守るセキュリティ設定
　・よいサービスを作るための開発プロセス
　・サービス運営の障害と乗り越え方
　・Discord Bot「shovel」の設計

この本の構成

　第1部では筆者の個人開発サービスであるDiscord Bot「shovel」を解剖し、システム構成とコードの内
部構造を説明します。Discord Botに興味がない方も、第2部以降を理解するために、軽く目を通してお
いてください。第2部では、よいBotを作るための考え方と、開発プロセスについて説明します。第3部では、
shovelの稼働率99.98%がどのように裏打ちされているかをお見せします。第4部ではshovelの運営とお金
のことについて、個人開発で限られたリソースをどのようにやりくりしているか、工夫していることをお話します。

第1章　DiscordとDiscord Bot

　この章では、本書のさまざまな解説の例として扱うDiscord Bot「shovel」についての理解を助けるため
に、Discordというサービスについて簡単に説明します。また、discord.pyを使い、Pythonで簡単な
Discord Botを作ってみます。すでにDiscordやdiscord.pyを知っている方は読み飛ばしていただいてかまい
ません。

1.1　ゲーマーに大人気！ボイスチャットサービスDiscord

1.1.1　ゲーマー向けボイスチャットサービス

　Discord（ディスコード）は、2015年に開始したゲーマー向けのボイスチャットサービスです。公式ウェブサ
イトによると、ユーザー数は全世界でなんと2.5億人とのことです。基本的な機能はすべて無料で利用でき
ます。ゲーマーの間では、オンラインプレイでボイスチャットをする手段として、第一の選択肢としてあがるサービ
スです。ボイスチャットがメインのサービスではありますが、テキストチャットも利用できます。代替ツールとして
は、Skype、LINEなどが挙げられます。

1.1.2　Discordの仕様

　Discordでは多彩なコミュニティを作ることが可能です。任意のメンバーを集めたクローズドなコミュニティか
ら、コミュニティに参加するための招待URLを公開しているオープンなコミュニティまで、Discordにはさまざまな
コミュニティがあります。
　Discordでは、このコミュニティを指して「サーバー」と呼びます。ユーザーが「サーバー」を作成し、そこに他のユ
ーザーを招待します。しかし「サーバー」という名前を本書で使うと、一般名詞の「サーバー」と混同してしまい
ややこしいので、本書では、Discordの開発者用公式ドキュメントに倣って「Guild」と呼ぶことにします。
　Discordユーザーは、100個までのGuildに参加できます。それぞれのGuildにはいくつかの「チャンネル」が
あります。テキストチャットは「テキストチャンネル」、ボイスチャットは「ボイスチャンネル」で行います（図
1.1）。ボイスチャットは「誰かに電話をかける」というような一般的な通話とは異なり、ボイスチャンネルに入
室し「誰かが参加するのを待つ」または「すでに始まっている通話に参加する」というスタイルで行います。

図1.1: Discordの仕様

1.1.3　Discord Botについて

　TwitterやSlackと同じように、DiscordでもBotを作ることができます。会話ログの保存をしたり、特定単
語に反応するような単純なBotから、Botを通じてRPGやカードゲームがプレイできるようなBotまで、さまざま
なBotが存在しています。つづいて、Botの仕組みについて詳しく解説します。

1.2　Discord Botの正体

1.2.1　Botはどこで動いているか

　そもそもBotとは何なのでしょうか。まず、Botではない通常のユーザー（人間）がDiscordを利用する場
合の接続方法について見ていきましょう（図1.2）。ユーザーは、光回線や4G回線でインターネットに接続
された端末（スマートフォン、PC）を持っています。この端末から、アプリやWebブラウザを通じてDiscordに
アクセスしています。

図1.2: Discordのアプリから接続する通常ユーザー

　では、Botはどうでしょう。人間が操作するのではなく、プログラムだけがDiscordに接続するのがBotです
（図1.3）。Botには普段見慣れたDiscordアプリのような操作画面は通常存在しません。黒い画面でコ
マンドをタイプして動かすプログラムが、Botを操作します。
　たとえば誰かのテキストチャット発言をキャッチし、それにテキストで反応するようなプログラムを書くと、
Discordのテキストチャットで反応するBotができあがります。

図1.3: Discordに接続するBotプログラム

1.2.2　Discord Botアカウントとは

　Discord Botを動かすには、まずDiscordのWebサイトでBotアカウントを作成します。すると、トークンと
いう文字列が割り振られます。BotのプログラムはそのトークンをAPIサーバーに渡すことで、Botとしてログイン
できます。トークンは、いわばIDとパスワードがセットになったようなものです。

1.2.3　Botが稼働するために必要なもの

　上記の説明のとおり、Botは最低限「プログラムを動かすコンピューター」と「インターネット回線」と「トーク
ン」があれば、家庭用のPCでもどこでも動かすことができます。次の節では、あなたのPCで実際にBotを動か
してみましょう！

1.3　Discord Botで「Hello, world!」

1.3.1　discord.pyとdiscord.ext.commandsフレームワークの紹介

　discord.pyは、PythonでDiscord Botを作る際にもっともよく使われているAPIラッパーです。特徴とし
て、モダンなPythonインターフェイス、レートリミット制御、Discord API完全準拠、速度とメモリ効率の両
立が挙げられます。GitHubでソースコードが公開されています。
　discord.pyには、discord.ext.commandsという拡張フレームワークがあります。拡張フレームワークという
と敷居が高い印象を受けますが、このフレームワークを使うとBotが簡単に実装できます。筆者が開発してい
るshovelも、このフレームワークに沿って設計されています。
　ここではdiscord.ext.commandsフレームワークについて学びながら、小さなBotを作ってみましょう。

1.3.2　前提条件

　discord.pyを動かすには、Python3.5.3以上が必要です。お手元の環境に3.5.3以上のPythonが使え
る環境をご用意ください。また、「Botアカウント」・「トークン」を事前に作成・取得しておいてください。作成し
たBotアカウントは、自分の管理するGuildに追加しておきます。Botアカウント・トークンについては、筆者の
記事（https://cod-sushi.com/discord-py-token/）を参考にしてください。

1.3.2.1　CLIを開く
　本節でのライブラリーのインストールやプログラムの実行は、OS上のCLIから行います。Linuxならターミナ
ル、Windowsならコマンドラインプロンプトを開いてください。Windowsでコマンドラインプロンプトを開くに
は、windowsメニューを開いてcmdと入力し、エンターキーを押します。

1.3.2.2　discord.pyをインストールする

　Bot開発を支援するライブラリー「discord.py」をインストールしましょう。リスト1.1のOSコマンドを実行しま
す。

リスト1.1: discord.py インストール方法

$ python3 -m pip install -U discord.py<Enter> ←Linuxの場合

$ py -3 -m pip install -U discord.py<Enter> ←Windowsの場合

　次に、正しくインストールが完了したか確認します。リスト1.2のOSコマンドを実行してください。

リスト1.2: discord.pyがインストールできたか確認する

$ python3 -m pip show discord.py<Enter> ←Linuxの場合

$ py -3 -m pip show discord.py<Enter> ←Windowsの場合

　数行のパッケージ情報が出力されれば、正常にインストールできています。

1.3.3　BotをDiscordに接続してみよう

　手始めに、BotをDiscordに接続するコードを書きます。テキストエディターを開き、リスト1.3の内容を入力
してください。入力できたら、「bot.py」という名前を付けて保存します。

リスト1.3: BotをDiscordに接続する（bot.py）

from discord.ext import commands

TOKEN = "<取得したトークン>"

bot = commands.Bot("?")

bot.run(TOKEN)

　この簡単なコードを実行してみましょう。CLIにリスト1.4のように入力します。

リスト1.4: Botプログラム実行方法

$ python3 bot.py<Enter> ←Linuxの場合

$ py -3 bot.py<Enter> ←Windowsの場合

　このOSコマンドを実行したら、確認のため一度Discordを開きます。あなたのGuildにいるBotがオンライ
ン（緑色の表示）になっていたら成功です！

1.3.4　イベントを使ってみよう

　さて、BotとしてDiscordにログインする処理は実装できました。ですがこのままでは、このBotは何の役にも
立ちません。そこで、イベントに反応して処理をするようコードを変更してみましょう。イベントとは、Discord上
で発生するさまざまな出来事です。イベントの例の一部を以下に挙げます。
　・Botが準備完了したとき（on_ready）
　・チャンネルにメッセージが投稿されたとき（on_message）
　・Guildからメンバーがいなくなったとき（on_member_remove）

　その他すべてのイベントについての情報は、後述するdiscord.pyの公式ドキュメントに掲載されています。
それぞれのイベントについて、イベントごとに呼ばれるイベントリスナーのメソッド名が決まっているので、そのメ
ソッドで処理内容を定義します（図1.4）。

図1.4: イベントを起点とした動作

　では、「Botが準備完了したとき」のイベントを拾って、ログインしたBotアカウントのユーザー名をCLI上に表
示する処理を実装してみましょう。リスト1.3で書いたコードのbot.run(TOKEN)の直前に、リスト1.5の内容
を追加してください。

リスト1.5: イベントを使った処理

@bot.event

async def on_ready():

 print(f"ログイン完了 ユーザー名: {bot.user.name}")

　動作確認を行います。先ほどと同じく、リスト1.4のようにOSコマンドを実行してください。CLIにログイン完
了 ユーザー名: <Botアカウントのユーザー名>と出力されたら成功です。　

1.3.5　Botのコマンドを定義してみよう

　さて、いよいよ最後の仕上げです。ユーザーからの「コマンド」を受け取って処理を行うようコード変更してみ
ましょう。この「コマンド」とは、ここまでに出てきた「OSコマンド」とは違うものです。本書では、単に「コマンド」
と言った場合Botのコマンドを指し、「OSコマンド」と言った場合はCLIで実行可能なコマンドを指します。
　Botにコマンドを実装したいときは、コマンド名をそのままメソッド名に採用し、@bot.command()デコレー
タを付けたメソッドを定義すれば完了です。リスト1.6をごらんください。このコードを、先ほどと同じく、

bot.run(TOKEN)の前に追加します。

リスト1.6: コマンドの定義

@bot.command()

async def hello(ctx):

 await ctx.send(f"hello, {ctx.author.name}.")

　最後の動作確認です。Discordを開いて、?helloと入力してみましょう。うまくいけば、図1.5のように、あ
いさつをしてくれるはずです。

図1.5: コマンドによるユーザーへのあいさつ

1.3.6　おつかれさまでした！

　これでBotがひとつ完成しました！　ネットワークプログラミングやDiscord APIへの接続のプロトコルの知
識もまったく必要なく、簡単に書けるのがおわかりかと思います。DiscordでBotを作りたければ、このフレーム
ワークを利用して開発すると効率が良いでしょう。最後に、作ったBotの全体像をリスト1.7に掲載しておきま
す。

リスト1.7: Botのコード全体（bot.py 完成版）

from discord.ext import commands

TOKEN = "<取得したトークン>>"

bot = commands.Bot("?")

@bot.command()

async def hello(ctx):

 await ctx.send(f"hello, {ctx.author.name}.")

@bot.event

async def on_ready():

 print(f"ログイン完了 ユーザー名: {bot.user.name}")

bot.run(TOKEN)

1.3.7　実用Bot実装のヒント

　上記では本当に最小限のコードのみ示しましたが、実際にBotを作る場合は、もっと多様な処理を入れ
たくなるはずです。そのときに参考となるのは、「discord.py公式ドキュメント」と「RoboDanny」です。

1.3.7.1　公式ドキュメントを読もう

　discord.pyにできることは、すべて公式ドキュメントに書いてあります。公式ドキュメントは英語で書かれて
いますが、基本的な機能については有志によって日本語に翻訳されています。ドキュメントは、discord.py
のGitHub（https://github.com/Rapptz/discord.py）からリンクされています。

1.3.7.2　RoboDannyを参考にしよう
　Botを開発するうえで、discord.py開発リーダーであるDanny氏が公開しているRoboDannyというBot
のコード（https://github.com/Rapptz/RoboDanny）は非常に参考になります。shovelのクラス構成
も、RoboDannyを一部参考にしています。RoboDannyは、discord.pyのサンプルコードの宝庫であり、
discord.pyのベストプラクティスです。実装や設計に迷ったときは、一度RoboDannyのコードを読むことを
推奨します。

第2章　shovel - 日本語読み上げDiscord Bot

　この章では、筆者が運営する個人開発サービスである日本語読み上げDiscord Bot「shovel」について
紹介します。shovelが開発された経緯、shovelの機能、ユーザーの声など、個人開発サービスの開発・運
営の実例としてお読みください。

2.1　50万人が使う読み上げBot「shovel」

2.1.1　shovelとは

　shovelは、Discordのテキストチャットの内容を音声合成し、ボイスチャンネルに流すBotです（図
2.1）。このような機能は、TTS（Text To Speech, 読み上げ）と呼ばれます。発言ユーザーごとに違う声
で読み上げるので、慣れると音声を聞いただけで発言者が誰なのかわかる、というのが大きな特徴です。

図2.1: shovelの機能

　 shovel を 使 っ て み た い 方 は 、 ま ず は shovel の 公 式 Twitter ア カ ウ ン ト
（https://twitter.com/shovel_discord）をごらんください。

2.1.2　開発の動機

　shovelを開発するきっかけとなったのは、筆者のゲーム仲間でした。2018年初旬、Twitterを経由して親
しくなった4人でDiscordのGuildに集まり、ボイスチャットを繋いでゲームをすることが筆者の日課になってい
ました。筆者はマイクを使って話していましたが、集まるのが主に深夜帯であったこともあり、友人のうちふた
りはボイスチャットを聞くことはできても声を発することは難しい、いわゆる「聞き専」でした。会話だけをしてい
るときはDiscordの画面を見ることができるため不便ではないのですが、ゲームに集中していると聞き専の人
の発言を見逃してしまいます。見逃しが申し訳ないと筆者が発言したところ、ゲーム仲間のひとりが「チャット
を読み上げてくれるBotがあるといいのではないか」と言いました。これがshovel誕生のきっかけです。

2.1.3　開発の経緯

　2018年3月、shovelの前身である「しゃべりマス」が誕生しました。当時は、前述のGuildや、筆者のごく
親しい友人の管理するGuildのみで利用していました。このときは複数Guildでの利用は想定しておらず、
異常系への対応も非常に甘いものでした。また、筆者の家庭用PC（Windows OS）上の仮想環境で
動いているUbuntuで稼働させていたため、Botは普段オフラインになっており、使用したいときにはPCおよび
仮想環境を立ち上げる必要がありました。ただしユーザーごとに声を設定できるという機能はこのときすでに
実装されていました。
　実のところ、筆者は周囲の親しい友人に使ってもらったことで満足していました。しかし、前述のゲーム仲
間から強い後押しをもらい、誰かの役に立てるのであればと世の中へ公開することに決めました。2018年9
月、「talker」という開発名を付け、実用化に向けたコード修正を開始しました。shovelの原型はこのコード
修正でできあがりました。正確には修正というより、ほぼすべて作り直したといえます。複数Guildでの利用
を想定した作りに変更するなどの機能面を強化したほか、親しい友人向けだったために緩い言葉遣いだっ
たメッセージを修正する作業もこのときに行いました。
　そして、令和はじめの日である2019年5月1日、ついに「shovel」という名称でサービス開始したのです。
2020年8月現在も、継続的に利用Guildは増加しつづけています（図2.2）。

図2.2: shovel開発の経緯

2.1.4　基本情報

　2020年8月現在、ユーザー数は50万人超、導入Guildは約4万となっています。ピークタイムには、同時
に1500程のGuildで、1分間あたり1万文字以上の読み上げを行っています。音声の合成および再生を行
うという性質上、必要とされるスペックは大きいです。
　 shovel は 、 KAGOYA Japan の VPS で 動 作 し て い ま す 。 shovel の 稼 働 率 は ス リ ー ナ イ ン ク ラ ス
（99.98%）で、30日あたりの停止時間は5分以下です。

2.2　shovelの機能

　ここでは、shovelの機能について簡単に説明します。すべてに目を通す必要はありませんが、今後の解
説でshovelを例に説明する場面がありますので、都度ご確認ください。また、shovelのTwitterアカウントで
招待URLを紹介しています。本書を読んでいただく際には、shovelの動きを思い浮かべると理解もスムーズ
です。Discordをお使いの方は、ぜひ一度触ってみてください。

2.2.1　基本的な使い方

　shovelは、!shではじまる文字列をテキストチャンネルに送信することで操作します。このような文字列を
「コマンド」と呼びます。

2.2.1.1　読み上げの実施

　!sh sコマンドでそのチャンネルを読み上げを開始します。メンバーが全員ボイスチャンネルから抜ける
か、!sh eコマンドが呼ばれると、読み上げを終了します。

2.2.1.2　単語登録

　!sh awコマンドで、単語と読みを辞書に登録できます。登録した単語は、そのGuildでの読み上げにの
み使用されます。!sh export_wordで辞書のファイルへのエクスポート、!sh import_wordでファイルからの
辞書インポートが行えます。

2.2.1.3　その他の機能
　shovelには、他にもさまざまな便利な機能があります。詳細は前述のTwitterアカウントで紹介している
説明書をごらんください。

2.2.2　shovel RGB

　Discord Botは、ひとつのGuildにつき同時にひとつのボイスチャンネルにしか接続できません。shovelで
は、同時に複数のボイスチャンネルに接続して読み上げができるよう、3機体制を取っています。青いアイコ
ンのメインshovel「shovel」と、赤・緑アイコンのふたつのサブshovel「shovel_red」「shovel_green」があり
ます。サブshovelに対してはGuild設定や声設定は行えず、読み上げの開始・停止コマンドのみ使えます。
赤、緑、青と3色揃っているので、これらを「shovel RGB」と呼んでいます（図2.3）。

図2.3: shovel RGB

2.3　shovelユーザーの声

2.3.1　アンケートの概要

　2019年9月6日から8日にかけて、shovelユーザーにアンケートを実施し、100件以上の回答を頂きまし
た。ここでは、そのアンケートの結果をもとに、shovelがどのように使われているかをご紹介します。

2.3.2　アンケート結果

2.3.2.1　shovelの用途

　まずは、shovelの用途についてです。図2.4をごらんください。Discordのユーザー層のとおり、圧倒的にゲ
ーム中の通話での利用が多いようです。次いで雑談、作業通話（絵を書くなどの作業をしながら通話する
こと）となりました。「その他」では、用途を問わず、聞き専の方がいるときに使っているとのことでした。

図2.4: shovelの用途 アンケート結果

2.3.2.2　shovelの好きなところ

　次に、shovelの好きなところを聞きました。自由入力で回答していただき、分類して集計した結果が以
下です。これ以外にも、その他、「素直なところ」「アイコンがかわいい」「全部」などの回答をいただきました。
　・ユーザーごとに細かく声を設定できる（33件）
　・辞書登録によってカスタマイズできる（10件）
　・画面を見なくてもテキストチャットの内容がわかる（9件）
　・声を出せない人とも一緒に楽しく会話できる（8件）
　・話し方がかわいい、聞きやすい（7件）
　・遅延が少ない、動作が軽い、高品質（6件）
　・自分好みにカスタマイズできる（5件）

　・運営者の対応速度、要望の反映（3件）
　・複数のボイスチャンネルで使える（2件）
　声設定機能は「しゃべりマス」開発初期からあったshovelのコアと言える機能であり、ユーザーもこの機能
を便利に感じていることがわかります。また、「画面を見なくてもテキストチャットの内容がわかる」「声を出せ
ない人とも一緒に楽しく会話できる」という点は、まさにshovelを使って実現したいと筆者が常日頃考えて
いることであり、ユーザーがDiscordを楽しむ手伝いができていると受け止めています。また、Botとしての品質
の高さ、運営を評価するコメントも頂いています。

第3章　shovelのシステム構成

　前章では個人開発サービスの表側について述べました。つづいて、個人開発サービスの舞台裏を覗いて
みましょう。この章では、shovelの全体構成について図を使って説明し、組み込んだプロダクトの概要とその
スペックについて紹介します。それぞれの構成要素についての詳しい説明や採用理由は第12章「Botの土
台作りのダイジェスト」をごらんください。

3.1　shovelのシステム全体構成

　shovelはVPS上で稼働しています。shovelのシステム全体構成を図3.1に示します。VPSには、shovel
本体のコードだけでなく、OS、ミドルウェア、外部アプリケーション、外部パッケージが入っており、それらが協
調して動作することによりshovelのサービスとして稼働しています。

図3.1: shovelシステム全体構成

　この章では、OSを含むサーバースペック、ミドルウェアと監視用のツールを紹介します。第4章「shovelのソ
フトウェア構成」では、shovel本体のコードや、外部アプリケーション、外部パッケージについて説明します。

3.2　shovelの必要スペックは？　サーバー性能公開

3.2.1　家庭用PCからVPSへ

　第2章でも述べましたが、shovelの前身であるBot「しゃべりマス」は家庭用PCで稼働していました。親し
い友人だけで使っていましたので、負荷は少なく、信頼性が低くても問題にならないため、わざわざサーバー
を借りる必要がなかったからです。しかし、サービスとして公開するにあたり、図1.3で示したようにVPSで稼働
させることにしました。

3.2.2　VPS

　2020年8月現在、KAGOYA JapanのKVMプランを利用しています。他社と比較して性能に対しての価
格が安いという理由で契約しましたが、サポート品質も他社サービスに引けを取りません。これまでに数回
問い合わせなどを行いましたが、すべてのケースで迅速で丁寧なサポートのサービスを受けられ、大変満足し
ています。

3.2.3　サーバースペック

　OSはUbuntu16.04、メモリ8GB、CPUは6コアです。2020年8月現在、shovelのピークタイムにおいて、
メモリ・CPUともに80%ほど使用しています。

3.3　shovelを助けるミドルウェアたち

3.3.1　DB

　shovelでは、データを永続化する手段としてDBを採用しています。MySQLから派生したオープンソースの
DBMSであるMariaDBを採用しています。DBサーバーはshovelと同じVPS上に構築してあります。

3.3.1.1　DBのバックアップ

　データが不慮の事故で消失してしまわないように、バックアップをとっています。しかし、作成したバックアッ
プをVPS内に保存していては、VPSにアクセスできなくなるようなトラブルがあったときに意味がありません。そ
こで、VPSとは違う場所、具体的にはGoogle Driveに転送しています（図3.2）。

図3.2: shovelのDBデータバックアップ

　バックアップは、cronで自動化しています。毎日、接続数がもっとも少なくなる時間帯にバックアップを実
施します。同様に、週次バックアップも実施しています。

3.3.2　HTTPサーバー

　後述の監視ツールやログ閲覧ツールのフロントエンド用ミドルウェアを動作させるため、HTTPサーバーを設
置してあります（図3.3）。HTTPサーバーとしてはnginxを採用しています。HTTPサーバーは運営のみを目
的として使用していますが、Let's EncryptのSSL証明書でHTTPS化しています。

図3.3: HTTPサーバーの用途

3.4　shovelを見守る監視体制を実現するツール

　shovelでは、信頼性を高めるためにシステムの監視を実施しています。既存のツールを用いることで効率
化していますので、ここではそのツールについてご紹介します。監視の目的や詳しい内容については第14章
「監視 - 24時間みまもり体制」で述べていますのでご参照ください。

3.4.1　監視対象

　CPU、メモリ、ネットワーク、ファイルI/Oの状況など、システムの状態を監視しています。
　また、shovelの状態も監視しています。監視している指標は、読み上げメッセージ数・読み上げ文字
数、メッセージの投稿から読み上げまでにどのくらいラグ（遅れ）があるか、導入Guildの数、エラー発生数
など、多岐にわたります。とにかく多様なデータを取っておき、何かあったときに遡って調査できるようにしてい
ます。

3.4.2　監視ツール

　監視ツールとしてMuninを採用しています。Muninとは記録されたシステムデータをWebで閲覧したり、シ
ステムデータの推移によってサーバー管理者にアラートを上げることが可能なフロントエンドツールです。Munin
は、プラグインを作成することで独自の監視項目を追加できます。この仕組みを使い、shovelの各種データ
をMuninで収集しています。現時点の数値だけでなく継続的なデータの推移を追跡することで、今後必要
となってくるスペックを見積もる際などに役立ちます。Muninの代替ツールとしてMackerelという高機能な
監視ツールがありますが、無料利用の範囲では監視項目数が制限されていたため、コストの点でMuninに
軍配が上がりました。
　プラグインからshovelの状態を監視するために、shovelには監視ツールに状態を配信する機能が備わっ
ています。これについては、第8章「実装 - いざ、コーディング」で述べます。

第4章　shovelのソフトウェア構成

　この章では、shovelのソフトウェア構成に注目し、より詳細にサービスの内側を見ていきます。まずshovel
のクラス図と読み上げ処理を題材としたシーケンス図により、shovelのクラス同士が協調して動作しているこ
とを示します。そのあと、shovelを構成する個々のパーツについて詳細に見ていきます。Pythonや
discord.pyによる詳細な実装についても踏み込みますが、本書ではサービスの設計・実装についてはshovel
を例として解説するため、Pythonやdiscord.pyによる開発をしない方も軽く目を通していただければと思い
ます。

4.1　shovel本体を俯瞰する

4.1.1　クラス構成

図4.1: shovelクラス図

　shovel本体は、さまざまなパッケージから構成されています。UML2.0に基づくクラス図を図4.1に示しま
す。また、Open JTalk、ffmpegといった外部アプリケーションも動作に必須となります。このクラス図では、厳
密にはクラスではないモジュールも便宜上クラスとして描画しています。

4.1.2　動作の例 - 読み上げ処理のシーケンス図

　ここでは、shovelのクラス・モジュールが協調して処理をしていることの例として、読み上げ処理のシーケンス
図を掲載します。

4.1.2.1　読み上げ処理の全体
　読み上げ処理の全体を図4.2に示します。shovelはメッセージ受信イベントを検知後、まずは音声合成
を行います。次に、合成した音声を再生します。

図4.2: 読み上げ処理の全体シーケンス図

4.1.2.2　音声合成
　図4.3は、受信したメッセージ文字列がwavファイルになるまでの流れを示したものです。読み上げに必要
なデータをDBから集め、モジュールOpenJTalkに渡すための文字列を作った後、読み上げ音声合成を行いま
す。

図4.3: 音声合成処理のシーケンス図

4.1.2.3　音声再生

　最後に、Guildのボイスチャンネルに音声を流します（図4.4）。discord.pyのVoiceClientクラスに音声
再生を指示し、再生が終了したら合成音声の入ったwavファイルを削除します。

図4.4: 音声再生処理のシーケンス図

4.2　cog - shovelを構成する歯車たち

4.2.1　cogとは

　図4.1にあるとおり、shovelには、cogsというパッケージがあります。このパッケージには、discord.pyのフレー
ムワークの構成要素であるcogと呼ばれるクラスが含まれます。
　cogは一言でいうと、「ある機能に関連するコマンド定義とイベントハンドラーをまとめたもの」です。このcog
をBotに追加すると、さまざまな機能をもつBotができあがるというわけです（図4.5）。

図4.5: cogを集めてBotを作る

　cogは英語で「歯車」という意味で、その意味が示すとおり、cogを組み合わせるとBotができあがります。
cogを使わずにBotを作ることももちろん可能です。しかし、Botの機能が増えてくると、コマンドや必要となる
イベントリスナーも増加します。cogを使わず、単一のファイルにBotの処理をまとめて書いていると、そのファイ
ルがどんどん肥大します。ある機能の実現のためにコードを変更したときに、まったく関係ない機能に影響が
出てしまうこともありえます。独立したcogを作って組み合わせる構成を採用すると、そのような問題が解決
できます。
　たとえばshovelであれば、Bot開発者である筆者が操作するためのコマンドを管理するAdmin、Guildの
設定を管理するためのSetting、ユーザーの声設定を生成・保存するUserSettingなどのcogが存在します。
これらのcogは基本的に相互に依存することはなく、あるcogを削除しても、他のcogに影響することはありま
せん。
　以降では、shovelのcogの一部を紹介します。

4.2.2　Yomiage

　shovelのコア部分となるcogです。読み上げ機能全般について、ユーザーとのやりとりおよび各機能の連
携を行います。ユーザーからの読み上げ開始指示を受けてボイスチャンネルに接続を行う、ボイスチャンネルか
らshovel以外がいなくなったら自動的に読み上げを終了する、読み上げ中のテキストチャンネルに投稿があ

ったら音声合成を行うなど、適切なタイミングで処理を請け負うモジュールに指令を出す役割といえるでしょ
う。
　またこのcogはBotプログラムの停止をトリガーとして、その時点で読み上げ実施中のテキストチャンネルが
あれば、Guild IDとボイスチャンネルID、読み上げ中のテキストチャンネルIDをDBに書き出します。そしてBot
の開始時にはそのデータを読み出し、自動的に再接続を行います（図4.6）。これにより第6章「品質を上
げるための設計のポイント」で紹介している自動復帰機能が実現できます。

図4.6: 自動再接続のしくみ

　このcogは他のcogと比較してやることが多く複雑なので、実際の仕事の多くはConnection、
OpenJTalk、Speakableという3つのモジュールにまかせています。これらのモジュールの責務については、次節
で紹介します。

4.2.3　Admin

　Bot開発者、すなわち筆者の使うコマンドが含まれます。たとえば、stop_botは、その時点で読み上げを
実施しているテキストチャンネルにメンテナンスを開始する旨を通知し、すべてのボイス接続を切断してから
Botを安全に停止するコマンドです。また、monitorは、Botやサーバーの負荷状況を表示するコマンドです。

　このcogに属するすべてのコマンドは、discord.ext.commands.Cogクラスに備わっている、cog_checkと
いうcog全体の権限を設定する仕組みにより、Bot開発者しか利用できないようになっています。ユーザーに
使わせたくないコマンドは、このcogに入れます。

4.2.4　Setting

　ユーザーからの各Guildの設定についてのコマンドを受け付け、その内容をDBに書き込む処理を行います。
具体的には、読み上げ文字数上限や、名前を読み上げるかどうかなどを設定するためのコマンドが含まれ
ま す 。 Bot の 操 作 方 法 に か か わ る prefix の 設 定 な ど の 一 部 の 重 要 な コ マ ン ド は 、
discord.ext.commands.checkによるコマンドごとの権限設定により、Guildの管理者権限を持つユーザー
しか使えないように設定しています。
　また、Guildに関するDBのデータを削除するのもこのcogの役割です。Guildからキックされる等、Guildが
切断されたというイベントを検知すると、そのGuildに関するデータ、たとえば登録された単語やprefixなどに
ついての設定をすべて削除します。

4.2.5　UserVoice

　ユーザーの声設定に関連するコマンドを含みます。update_voiceコマンドは、ユーザーの声設定を更新す
るコマンドです。また、声を設定されていないユーザーの声設定を生成するのもこのcogの役目です。声設定
の生成は、ユーザーIDをseedとしてPython標準モジュール「random」を用いて行います。

4.2.6　Sub

　これは他のcogとはすこし毛色の違うcogで、shovel_red、shovel_greenといったサブshovelのための
cogです。サブshovelは単独でも使えますが、メインshovelとは異なり、単語登録や声設定、Guild設定な
どのコマンドを備えていません。そこで、招待時や読み上げ開始時などのタイミングで、そのGuildにメイン
shovelがいるか確認します。いなかった場合、「このGuildにshovelを招待してくれたら、もっと便利に使えま
すよ」というメッセージ（図4.7）を送信します。

図4.7: メインshovelを招待するよう勧めるメッセージ

4.3　shovelの機能を請け負うモジュール

4.3.1　モジュールとは

　Pythonでは、クラスや関数の定義が記述されたファイルをモジュールと呼びます。ひとつのファイルにすべて
を記述してしまうと、どこに何が書いてあるのかわからなくなるだけではなく、関係のない処理同士が思わぬ
結びつきを持ってしまうおそれがあります。責務に応じて、適切な大きさのモジュールに分割しましょう。以下で
はshovelのモジュールの責務や実装について述べます。

4.3.2　Connection

　本モジュールの責務は、shovelを各Guildのボイスチャンネルへ接続させることで、Yomiage cogからの指
示を受けて動きます。ボイスチャンネルへの接続には多様な要素があります。そのため、再現性の低い不具
合が発生しやすく、多くの例外処理やユーザーへのメッセージが必要となります。そこで、「ボイスチャンネルへ
の接続」という単一の処理ではありますが、専用のモジュールにまとめました。ボイスチャンネルの接続に関わ
る要素には、以下のようなものがあります。
　・読み上げを実施中か、そうでないか
　・読み上げ中の場合、読み上げが行える状態か
　・Guildの権限、Guildチャンネルの権限、Roleの権限、shovelの権限
　・Guildのリージョン
　・Discord APIの稼働状態
　ここで取り上げただけでもわかるように、接続に関わる要因は多岐にわたるため、実際は起きてみないとわ
からない不具合も多々あります。その中でも極力ユーザーが快適に使えるよう、ひとつひとつの不具合に対
応する「適切なエラーメッセージ」と「解決方法」を伝えるため、細かく場合分けを行っています。ユーザーに的
確なエラーメッセージを伝えるのは、サポートにかかる時間を減らすことにもつながります。

4.3.3　OpenJTalk

　 本 モ ジ ュ ー ル の 責 務 は 、 Open JTalk に よ る 音 声 合 成 を 行 う こ と で す 。 Python 標 準 モ ジ ュ ー ル
「subprocess」を使い、OSコマンド「open_jtalk」を呼び出して音声合成を行います。音声合成に使う
「open_jtalk」は、処理自体はすぐに終わるものとはいえ、メモリ消費は大きくなります。そのため、偶然にも
数十の音声合成が同時に走ってしまうとメモリ不足に陥るおそれがあります。よって、同時に実行する
「open_jtalk」の数を制限しています。

　また、OSコマンドの呼び出しにはsubprocess.asyncio.create_subprocess_execメソッドを用いること
で、OSコマンドインジェクション攻撃への対策をしています。

4.3.4　Speakable

　本モジュールの責務は、ユーザーの投稿した文字列から、モジュールOpenJTalkに渡す文字列、つまり実際
に読み上げるための文字列を作成することです。たとえば、「afk」を「りせき」と単語登録しているGuildで、
「ちょっとafkします」という投稿があったとしましょう。このとき、「ちょっとafkします」という文字列をうけとり、「ち
ょっとりせきします」という文字列を返すのがこのモジュールの仕事です。
　このモジュールの具体的処理は以下のようになっており、上から順番に実施します。処理が多岐にわたる
ので、複雑にならないよう、下記の箇条書きにあるような変換処理はひとつひとつ関数として独立していま
す。変換処理の例を、図4.8に示します。
　・複数行のテキストを1行にする
　・URLを「URL省略」という文字列に変換する
　・Guildに登録されている単語について、「読み」に変換する
　・Guild絵文字をIDに変換する
　・通常の絵文字をキーワードに変換する
　・記号を削除する
　・英語をカタカナ読みに変換する
　・「w」を「わら」に、「www...」を「わらわら」に変換する
　・過剰な繰り返しを削除する
　・規定文字数以上であれば、末尾を省略する

図4.8: 文字列変換の例

4.3.5　Log

　本モジュールの責務は、3つの出力先（図4.9）にログを出力することです。ログの出力内容など、詳細は
第6章「品質を上げるための設計のポイント」で紹介します。
　1. 標準出力
　2. ファイル
　3. DB

図4.9: shovelの3つのログ出力先

　標準出力、ファイル出力はPython標準ライブラリーのlogging.FileHandlerやlogging.StreamHandler
で 実 現 可 能 で す 。 DB へ の 出 力 を 実 現 す る た め に 、 独 自 ク ラ ス の DBLogHandler が あ り ま す 。
DBLogHandlerは、logging.FileHandlerやlogging.StreamHandlerと同様にlogging.Handlerを基底
クラスとするハンドラーです。このハンドラーはログを受け取ってDBへ書き出す処理を行いますが、ログを受け取
るたびにひとつひとつ書き出すのは効率が悪いです。そこで、受け取ったログはハンドラー内部で保持し、一定
時間ごとにまとめてDBへ書き出す方式をとっています。
　shovelが使用するDBライブラリーであるpeewee3.8には非同期処理のインターフェイスがありません。DB
への書き出しには時間がかかる場合もあります。書き出しで処理が長時間止まってしまうと、Discordサーバ
ーとの疎通確認やイベント処理などに影響するおそれがあります。なので、非同期処理としてDBへの書き出
しを行うために、discord.Client.loopでBotのイベントループを入手し、loop.run_in_executor関数を通じて
DB書き出し処理を呼び出しています。

4.3.6　Database

　本モジュールの責務は、DBへの接続を行い、データの読み書きを行うことです。shovelはpeeweeという
ORMを使用していますが、それをさらに包み、各モジュールに提供しているのがこのクラスです。機能を満たす
だけであれば、各モジュールで直接peeweeを操作してもまったく問題はありません。それどころか、わざわざモ
ジュールDatabaseを通すことはコーディングの量も動作する際の処理の量も増え、煩雑になることを意味しま

す。ではなぜこのようなモジュールを用意しているのでしょうか。ひとことで言えば、モジュール間の結合度を下げ
て保守性を向上するためです。詳しくは第8章「実装 - いざ、コーディング」の「保守性を高める実装の例」の
節で詳しく説明します。

4.3.7　Notify

　本モジュールの責務は、ユーザーに送信するすべてのメッセージの種別と内容（メッセージ文字列および出
力する情報の種類）を保持することです。shovelは、ユーザーにエラーメッセージや処理完了メッセージなどさ
まざまなメッセージを送信します。shovelには多くのモジュールがありますが、それらのモジュールの中に直接メ
ッセージ内容を書くことはしていません。メッセージ内容はモジュールNotifyが保持していますので、メッセージを
出力したいモジュールはモジュールNotifyへメッセージ内容を取りにきて、それをそのまま送付します。
　このような設計にしているのには理由があります。図4.10をごらんください。ユーザーに送信するメッセージの
定義をひとつのモジュールにまとめると、すべてのメッセージを見通しよく管理することができ、フォーマットや文
言を揃えやすくなります。また、異なるモジュールから同じような内容のメッセージを送る必要が生じたとき、コ
ピーコード（同じコードが別の箇所に複数存在すること）の発生を抑制します。以上のような利点をふまえ、
文言を包括的に管理する本モジュールを用意しています。

図4.10: メッセージを集約するモジュールがあるメリット

4.4　多くの外部パッケージがshovelを支えている

　ここでは、shovelで使っている外部パッケージを紹介します。

4.4.1　外部パッケージを使う理由

　本書において「外部パッケージ」とは、開発者が書くコードから利用するパッケージのうち、標準ライブラリー
に含まれず、pipやダウンロード等で導入する必要があるものを指します。Pythonには便利で充実した標準ラ
イブラリーが存在しますが、アプリケーションの仕様によってはそれだけでは不足していることもあります。そんな
ときは「車輪の再発明」に陥らないよう、外部パッケージの利用を検討しましょう。

4.4.2　外部パッケージ導入の注意点

　外部パッケージは便利ですが、注意点もあります。パッケージにはライセンスが添えられていることが大半で
すので、よく読んで理解したうえで使うようにしましょう。ライセンスがないパッケージは、開発者にライセンスを
確認しましょう。ライセンスがないからといって、自由に使っていいわけではありません。また、使いたいパッケー
ジのライセンスだけでなく、そのパッケージが依存するパッケージやアプリケーションのライセンスまで含めてしっか
り確認する必要があります。

4.4.3　discord.py

　PythonでDiscord Botを作る際にもっともよく使われているAPIラッパーです。特徴として、モダンな
Pythonインターフェイス、レートリミット制御、Discord API完全準拠、速度とメモリ効率の両立が挙げられ
ます。
　少ないコード記述量ですぐにBotを開発できるいっぽうで、非同期処理（async/await）やデコレーターを
多用するので、プログラミング初心者が少々つっこんだことをすると詰まりやすいという面もあります。
　discord.pyについては、第1章「DiscordとDiscord Bot」で詳しく説明していますので、そちらもごらんくだ
さい。

4.4.4　peewee + PyMySQL

　peeweeは、Python用ORMです。ORMは、DBのデータをオブジェクト指向プログラムで扱いやすくするた
めの手法です。ORMには賛否両論ありますが、shovelでは書きやすさを優先し、採用しました。Pythonの
ORMモジュールとしては高機能なSQLAlchemyも人気ですが、shovelにはシンプルなもので必要十分だっ
たのでpeeweeを採用しています。

　実際にshovelで使っているのはMariaDBですが、前述のとおりMariaDBはMySQLと互換性がありますの
で、PyMySQLを使います。こちらもMITライセンスでリリースされています。

4.4.5　Click

　Clickは、Pythonアプリケーションにコマンドラインインターフェイスを組み込むためのパッケージです。通常コ
マンドライン引数を扱うためには複雑な記述が必要になりますが、Clickを使えば簡単に引数つきプログラム
を作成できます。リスト4.1をごらんください。

リスト4.1: Click コードサンプル(click_sample.py)

= click_sample.py

import click

@click.command()

@click.option('--count', required=True, type=int)

@click.option('--name', required=True, type=str)

def say_hello(count, name):

 for i in range(count):

 print(f"こんにちは、{name}さん")

if __name__ == "__main__":

 say_hello()

　このPythonプログラムは、リスト4.2のように使用できます。--helpオプションで表示される内容は自動的
に生成されます。

リスト4.2: Click 動作サンプル

$ python3.7 click_sample.py --name cod --count 3<Enter>

こんにちは、codさん

こんにちは、codさん

こんにちは、codさん

$ python3.7 ./click_sample.py --help<Enter>

Usage: click_sample.py [OPTIONS]

Options:

 --count INTEGER [required]

 --name TEXT [required]

 --help Show this message and exit.

　shovelでは、リスト4.3のように、デバッグレベルの指定や、読み込む設定ファイルの指定に使用していま
す。

リスト4.3: Clickを利用したオプション指定付きでのshovelの起動

$ python3.7 launcher.py --level DEBUG --config_file config_red.py<Enter>

4.4.6　jishaku

　discord.pyの開発・デバックを支援するライブラリーです。ある程度の規模のDiscord Botを運用される方
ならぜひ導入するべきライブラリーです。詳細は、第10章「Discord Botのテスト自動化」にて紹介します。

4.4.7　alkana.py

　アルファベットをカタカナ読みに変換するためのライブラリーです。たとえば、「Happy」を「ハッピー」に変換し
ます。当ライブラリーは、筆者が開発し、PyPIに登録したものです。読み上げに際し英単語をカタカナ読みに
変換したかったのですが、Pythonライブラリーでライセンスに不安のない方法が見当たらなかったため開発し
ました。
　変換に用いているオリジナルデータは、PCの高度利用をバリアフリー化することを目的としたプロジェクト、
BEPの辞書データであるbep-eng.dicです。

4.5　shovelが使う外部アプリケーション

4.5.1　外部アプリケーションを使う判断

　アプリケーションを作る際には、とくに理由がなければ単一のプログラムで構成します。単一プログラム内で
はデータのやり取りの記述がシンプルですし、メモリ上のやりとりで済むためスピードも出ます。もしここで、プロ
グラムをメインとサブのふたつに分割した場合、データのやりとりにオーバーヘッドが発生し、プログラムが遅くなっ
てしまいます。また、メインプログラムからサブプログラムを呼び出す構成にした場合、メインプログラムが終了し
た際にサブプログラムのプロセスを終了するなどの処理も必要になりますから、複雑になります。
　ですが、それでもあえてプログラムを分けたほうが良いケースもあります。たとえば、CPU負荷の高い処理に
ついて、プログラムを分割して負荷の高い処理を他のプロセスに任せると、メインプロセスのCPU使用率を低
く保ち、サービス本来の処理が滞る可能性を抑えられます。このとき、CPUがマルチコアであればパフォーマン
ス向上も期待できます。また、shovelにおけるOpen JTalkのように、使用したいアプリケーションが別プログラ
ムとして提供され、別プロセスとして動作させることが要件として決まっている場合もあります。すべての機能
を単一のプログラムで完結させる必要はありませんが、無理に分けることもありません。アプリケーションの要
件に応じて、別のプログラムを呼び出すことを検討するとよいでしょう。
　以下では、shovelが使う外部アプリケーションについて述べます。

4.5.2　Open JTalk

　Open JTalkは、修正BSDライセンスでリリースされているオープンソースの日本語TTSアプリケーションです。
コマンドラインから起動し、標準入力で音声合成対象の文字列を受け取ると、形態素解析ののち音声合
成を行い、wavファイルを生成します（図4.11）。

図4.11: Open JTalkの動作

　HTSファイルという音声データを与えることで声質を変更可能で、shovelではmeiという女性ボイス音源を
利用しています。また、発話スピードや声のトーンも簡単に調整可能なので、shovelの特徴である多様な読
み上げボイスの作成という点で大きな役割をはたしています。

4.5.3　ffmpeg

　ffmpegは、LGPLまたはGPLでリリースされている動画や音声を記録・編集・再生できるオープンソースのア
プリケーションで、豊富な機能が特徴です。
　shovelでは、Open JTalkで合成した音声をボイスチャンネルへ流す前に必要に応じて編集するために使
用しています。また、discord.pyもボイスチャット機能で音声再生やエンコードを行うためffmpegを使用して
います。

第5章　大勢に使ってもらえるサービスを目指して

　この章では、個人開発というお金も時間も限られた条件下でサービスを作り、多くのユーザーに使ってもら
えるようにするうえで、とくに重要な「品質」とそれを担保するための方法について述べます。また、shovelへ
の機能追加を例として、サービスの開発プロセスについて説明します。

5.1　たくさんの人にサービスを使ってもらうには

5.1.1　利用者数はどう決まる？

　単純な計算ですが、増えたユーザー数から、減ったユーザー数を引くと、現在のユーザー数になります。ユー
ザー数を増やしたいのであれば、ユーザーを増やし、同時にユーザーを減らさないことにも気を配る必要があり
ます。（図5.1）

図5.1: たくさんの人にサービスを使ってもらうには

5.1.2　ユーザーを増やす

　サービスをたくさんのユーザーに使ってもらいたいのであれば、マーケティング分野で行われる基本的な分析
からやってみるのがいいでしょう。たとえば3C分析をSWOT分析と組み合わせて、3つのC（ユーザー・競合・
自サービス）についてSWOTを書き出してみるのもひとつの方法です。そこから、今後の方向性や戦略を考
えてみましょう。
　また、広報活動をするなかでの情報展開と周知を通じて、ユーザーの新規獲得も期待できます。すでに
サービスを運営していて、ユーザーを増やしたいのであれば、サービス内容を随時改善し、その内容をユーザー
に告知します。また、広報キャンペーンを打ってみるのもよいでしょう。

5.1.3　個人開発の経営判断は不合理でもOK！

　通常の企業がサービス運営をするのであれば、自社の力が及ばない部分に原因があってビジネスとして
成立しない場合は撤退の判断をする必要があります。ですが、すべてを自分ひとりで引き受ける個人開発
では、不合理な状況があっても、責任の持てる範囲で自分のしたいことを最大限貫くことができます。これ

は個人開発のおもしろいところのひとつです。需要がなくても、競合がいても、あなたがそのサービスを作りた
いと思ったなら作ってかまわないのです。
　とはいえ、あまり人気がない分野において、すでに競合サービスが幅を利かせていたら、自分のサービスを
使ってもらうのは難しいように思われます。確かに人が多く競合サービスもない分野のほうが、人気サービス
になるのは簡単でしょう。しかし、諦めることはありません。人気がないジャンルでも、これから人気になるかも
しれませんし、うまくいけば自分の手でそのジャンルの人気を出すこともできるかもしれません。それに、すでに
広く使われている競合サービスがあったとしても、ユーザーがそれを使っている理由は「それしかないから」なの
かもしれないのです。

5.1.4　ユーザーを減らさない

　仮に100万人のユーザーがサービスに流入したとして、そのサービスがずっとダウンした状態だとしたらどうで
しょうか。ユーザーはがっかりして離脱してしまい、そしておそらくはもう帰ってこないでしょう。これは極端な例で
すが、どんなサービスでもユーザーの信頼を得られなければ、いずれ去られてしまいます。たくさんの人に使って
もらえるようになるためにはユーザーを増やすことも大切ですが、それと同じくらい、ユーザーを減らさないことも
大切です。サービスがユーザーの満足を満たすということは、ユーザーを増やすうえでの必須条件です。

5.2　shovelの戦略 - ユーザーを逃がさない！

5.2.1　顧客満足度第一

　前節と矛盾するようですが、筆者はshovelについてのマーケティング分析は行っていません。その代わり
に、前節でいう「ユーザーを減らさない」という一点、つまり「サービスの品質」を重視して開発・運営を行って
います。ユーザーのニーズをしっかり捉えた機能を備えたサービスを、高いレベルの品質で提供していれば、離
脱は少なく、さらにユーザーも口コミで増えていくであろうという考えに基づいて、この戦略をとっています。

5.2.2　shovelの満足度を支える要素

　shovelのユーザーは、ゲームやTRPG、作業通話や勉強会など、さまざまな用途で読み上げを必要として
います。shovelはそれに対し、読み上げを聞いただけで誰の発言かわかるユーザー声設定、応答速度
100ms未満での読み上げ、スリーナインクラス（99.98%）の稼働率、わかりやすいユーザーインターフェイス
といったサービスを提供しています。
　稼働率については、月あたりのダウン時間は5分以下を目標としています。その対策として、万が一読み
上げが行えない状態になっていると、開発者である筆者にアラートがあがるようになっています。また、
shovelの応答速度は常にサービス内部で計測しており、一定期間継続して閾値を超えつづけると、こちら
もアラートがあがります。サーバーの死活監視についても同様です。
　これらはすべて、システムの品質を高めようという意識によるものです。では、システムの品質とは一体何
なのでしょうか。次節からはそれを見ていきます。

5.3　システムの品質について考える

5.3.1　FURPS+

　システムの品質について深く理解するために、FURPS+というモデルを見てみましょう。FURPS+ は、ソフト
ウェアの品質を測定する指標のモデルであり、その名称は指標の頭文字に由来します。それぞれの指標は
下記のとおりです。
　・機能性（functionality）
　システムが期待される機能を持っているかどうか。
　・使いやすさ（usability）
　操作方法やUIなどを含むシステムの挙動に一貫性があり、明快であるか。
　・信頼性（reliability）
　故障しづらいかどうか。故障した際、安全であるか。
　・性能（performance）
　要求への応答速度はどうか。
　メモリ・CPU・ネットワーク・記憶容量等のリソース消費量はどうか。
　・保守性（supportability）
　機能の追加削除などの変更がしやすいかどうか。
　・プロジェクト上の制約（plus constraints）
　実装方法や、インターフェイスの制約はあるか。

5.3.2　とくに重視していること

　筆者がサービスを開発・運営するうえでもっとも重視しているのは、「使いやすさ」「信頼性」「保守性」の3
点です。まずは、この3つの指標をなんとなく頭にいれておいてください。

5.3.2.1　使いやすさ（Usability）
　shovelは、ユーザーの期待したとおりに、または期待以上に動き、使いやすいサービスであること目指して
います。これについては、第6章「品質を上げるための設計のポイント」で詳しくお話しします。

5.3.2.2　信頼性（Reliability）
　ユーザーがshovelを使いたいと思ったとき、常にすぐに使えることを目指しています。このために、正常系だ
けでなく異常系も考え得る限りの洗い出しを行い、エラーを処理しています。異常系の洗い出しについて
は、第6章「品質を上げるための設計のポイント」で述べます。また、shovelに問題が発生したときや、サー

バーに故障があったときにも即座にサービスを復帰させるための仕組みを整えています。これについては、第
14章「監視 - 24時間みまもり体制」をごらんください。その他にも、アップデート時にダウンタイムを最小化す
る工夫もしています。これについては、第11章「アップデートのための作業」で解説しています。

5.3.2.3　保守性（Supportability）

　機能を追加削除する際に不便のないよう、普段からshovelのコードを整頓しておくことを心がけていま
す。これについては、第8章「実装 - いざ、コーディング」で詳しく述べます。コードだけでなく、周辺要素（DB
やWebサーバー等）についても同様です。

5.4　開発プロセスを俯瞰する

　ここから先の第6章から第11章では、shovelに機能を追加する際、実際にどのような手順を踏んでいる
かを具体的に紹介します。この章で述べた「品質」を担保するために各手順で行っているさまざまな工夫に
ついてもお話しします。個別の手順の解説へと進む前に、まずプロセス全体を俯瞰してみましょう（図
5.2）。

図5.2: 開発プロセス

5.4.1　追加する機能を決める

　Botに追加する機能について検討し、決定します。このプロセスについては、第16章「運営 - ユーザーと接
しよう」で詳しく触れます。

5.4.2　仕様検討・テスト設計

　追加する機能が決まったら、機能の詳細な仕様を詰めていきます。仕様を検討しながら、同時にテスト
設計も行います。この手順については、第6章「品質を上げるための設計のポイント」で詳しく紹介していま
す。ユーザーからの要望に由来する機能を実装する際には、この手順が非常に重要です。たとえば、「NGワ
ードを登録したい」という要望があったとします。これは「ある単語を読み上げないようにしたい」であったり、

「NGワードを発言したユーザーに警告を出したい」であったり、さまざまな意味に解釈できます。あいまいな機
能のイメージを、一意に解釈できる具体的かつ詳細な機能仕様に落とし込むのが本手順の目的です。
　前述のとおり、この手順は、テスト設計と同時に行います。たとえば、「NGワードの登録は10個まで」とい
う仕様が決まると、同時に「10個より多くのNGワードを登録できないこと」というテストを行う必要が出てき
ますので、仕様検討とテスト設計は表裏一体の関係といえます。これについては、第9章「テスト - コードの
品質をまもる、最後の砦」でより詳しく触れます。

5.4.3　実装・テスト

　決定した仕様に沿って実装します。動作確認は随時、開発用Botで行います。簡単な仕様であれば、
一気にコーディングしてテストを行います。それに対し、複合的・大規模な機能追加の場合は、少しずつ開
発・テスト・リファクタリングを繰り返しながら実装をすすめていきます。DBの構造変更が必要なケースでは、
マイグレーション用のスクリプトの記述もここで行います。実装についての詳細は、第8章「実装 - いざ、コーデ
ィング」で紹介します。
　目に見える不具合が取れ、設計したテストを実施し、致命的な不具合が発生していないことを確かめる
ことができたら、運用テストに移行します。テストの実施については、第9章「テスト - コードの品質をまもる、
最後の砦」で詳しく紹介します。

5.4.4　運用テスト

　テスト用フォルダーのコードを最新版に同期し、テスト用Botをアップデートします。テスト用Botをしばらく
（一晩程度のことが多いです）稼働させ、問題が発生しないことを確認します。ここではじめて自分以外
のユーザーが操作するため、思いもよらない不具合やエラーが発見されることもあります。

5.4.5　アップデートリハーサル

　DB構造など、重大な部分の変更を伴うアップデートである場合、アップデートの手順書作成を行い、リ
ハーサルを実施します。アップデートのリハーサルと本番アップデートについての詳細は第11章「アップデートの
ための作業」で紹介します。

5.4.6　本番アップデート実施

　本番環境のコードを最新版に同期します。リハーサルで行ったのと同じ手順でDB構造をアップデートし、
本番環境Botをアップデートし、再起動します。この時点で不具合が発生することは稀ですが、念には念を
入れ、ここでもテストを実施します。問題ないことがわかったら、ユーザーへのリリース通知を実施します。リリ

ース時、ユーザーに不便をかけないための工夫については第11章「アップデートのための作業」、リリース通知
については第16章「運営 - ユーザーと接しよう」で詳細を紹介します。

第6章　品質を上げるための設計のポイント

　この章では、サービスを作る上での設計のポイントについて述べます。まずは「使いやすさ」を向上させるた
めの考え方について、具体例としてshovelの機能を例に挙げながら説明します。次に、「信頼性」を向上さ
せるために有効な手段である「異常系」を見つける方法と、異常系への対応方法について述べます。最後
に、サービスのログの重要性について、具体例を挙げながら説明します。

6.1　ユーザビリティを考える

6.1.1　ユーザビリティとは

　ユーザビリティという言葉が指すものごとは大変多様なのですが、一言で表すならば「使いやすさ」のことだ
と筆者は考えています。この本では、「ユーザーがそのシステムを使いやすいと感じるかどうか」をユーザビリティ
と呼ぶことにします。

6.1.2　地味だけど重要なユーザビリティ

　この問題の難しいところとして、ユーザビリティが優れていること自体を売りにしづらいということがあります。
ユーザビリティが優れているシステムは、それをユーザーに感じさせません。ユーザーがしたいことを、したいように
できる。そんな透明さがユーザビリティ設計のめざすところです。ですので、ユーザビリティが優れているというだ
けでユーザーを増やせるわけではありません。
　ですが、ユーザビリティが損なわれているシステムは、ユーザーにたえずストレスを与えます。どんなに優れた
機能をそなえていても、ユーザビリティを疎かにしていては、その機能は結果的にユーザーを困惑させるだけの
存在に成り果てます。たとえばshovelが人間のようになめらかな読み上げを行うBotであったとしても、漢字
がまったく読めなかったり、読み上げるまでに5分のタイムラグがあったりするようでは、だれもshovelを使わな
いでしょう。

6.2　ユーザビリティの実例 - shovelの工夫

　ここでは、shovelのユーザビリティを高めるうえで工夫していることをいくつか実例として紹介します。参考
にしてみてください。

6.2.1　ユーザーに送信するメッセージの工夫

6.2.1.1　Botがユーザーに送信する文言はとても大切！
　サービスを開発する際、ユーザーに表示するメッセージの内容に気を配るべきなのは当然ですが、Botにお
いてはことさら重要です。なぜなら、一般的なWebアプリケーショと異なり、Botは説明書や補足事項をユー
ザーに見てもらうことが難しいためです。外部に充実した説明書があってもユーザーがそれを知る手段はあり
ません。「Botを導入したはいいけど、その後どうしたら使えるのかわからなかった」というのもよく聞く話です。
また、わかりやすい文言は、サービス開発者がユーザーからの問い合わせに対応することによる時間的拘束
を減らすということにも繋がります。

6.2.1.2　Embedを使ったわかりやすい通知
　shovelでは、ユーザーに通知するメッセージはすべて、Discord Embedというフォーマッで表示します。
Discordを利用している方なら見覚えがあると思いますが、図6.1のようなものです。

図6.1: Discord Embedの例

　リンクなどを貼ったときに自動的にEmbed形式のものが表示されることはありますが、原則ユーザーが任
意のEmbedを投稿することはできません。Botのメッセージとユーザーの投稿を明確に区別できるという点に
着目し、shovelがユーザーに通知する内容はすべてEmbedにしました。

6.2.1.3　Embedには色を設定できる！

　また、Embedを使うメリットはもうひとつあります。それは、Embedには色を設定できるという点です。図
6.1の画像にあるように、メッセージを囲む枠の左に太い線があり、この色を自由に設定できます。shovelで
はこの色を用途に応じて図6.2のように使い分けています。

図6.2: Embed色の用途

　このように使い分けるメリットは2点あります。1点目は、ユーザーが見たときにわかりやすい点です。一貫
性をもって色を使うことで、はじめてshovelを使う人でも、メッセージの内容をよく読まなくても、「なにか失敗
したな」「成功したな」と直感的にわかります。2点目は、開発者である筆者自身がメッセージの目的を考え
ながら記述できる点です。どの色を付けるべきかということを考えるのは、自分がいまユーザーに何を伝えたい
かを具体的に検討することに等しく、曖昧で不明瞭になりがちなメッセージをわかりやすいものに改善できた
のです。これは筆者にとっても思いもよらない効果でした。

6.2.1.4　Embedにはリンクを挿入できる！
　他にも、図6.2のEmbedには最下部に小さな文字で一言書く「footer」という欄があります。そこに、「さ
らに細かい説明はリンク先にありますよ」と表示することで、操作方法がわからないユーザーを説明書に誘
導できます。

6.2.2　色だけに頼らないUI（アイコン）

　shovelには、メインのshovel「shovel」と、サブのshovel「shovel_red」「shovel_green」があります。こ
れらはそれぞれ青、赤、緑のアイコンです。このうち、赤と緑には色覚バリアフリーであるよう「R」と「G」という
文字を入れています。これによって、アイコンの色が判別しにくい方にも、一目でshovelを見分けられるよう
になっています。（図6.3）

図6.3: shovelRGB それぞれのアイコン

6.2.3　時間がかかる処理をユーザーに通知

　ボイスチャンネルへの接続には時間（短くて1秒未満、長くて数秒）がかかります。ユーザーがBotにコマ
ンドを送ってからBotが反応するまでに時間がかかると、ユーザーは不安に思い、コマンドを連続で送信してし
まうこともあります。これを防ぐため、接続を開始する前に接続中であることを示すメッセージ（図6.4）を送
信します。このメッセージは、接続が完了、または接続に失敗すると削除されるので、ユーザーの邪魔になり
ません。
　また、Discordのボイスチャット接続に関する不具合は、ボイスのリージョンを変更すると解決することもし
ばしばです。そこで、接続がうまくいかない際にはリージョンを変更することを薦めるメッセージも一緒に出して
います。

図6.4: 接続中であることを示すメッセージ

6.2.4　投稿から読み上げまで0.1秒！

　shovelがオープンベータ化して2週間ほどのことです。夜間のピークタイムに読み上げ対象Guildが数百に
達すると、読み上げるまでに1～5秒程度の遅延が発生するようになりました。これは、ゲーム中のコミュニケ
ーションにはとても実用に耐えないと感じる数値です。ゲーマーのユーザーが多いshovelにとってこの遅延は大
きすぎる、早急に対応する必要がある、と筆者は判断しました。
　さっそく動作詳細ログを調査したところ、読み上げ音声を合成する処理がボトルネックとなっていることが
わかりました。その処理はOpen JTalkプロセスを起動して実施されるのですが、第4章「shovelのソフトウェ
ア構成」で述べたとおり、Open JTalkプロセスの同時実行数には上限を設けてあります。この遅延が発生
した当時、同時実行を1プロセスまでに限定しており、そのために処理が追いついていなかったのです。
　本処理は数理工学の初歩の待ち行列理論モデルで近似できます。混雑している時に窓口を増やすと
劇的な待ち時間削減効果を見込めることがわかっています。必要なリソースを計算したうえで、3プロセスま
で同時実行可能に変更しました。結果として、遅延は0.1秒以下になりました。
　この遅延時間はユーザビリティに直結するものであり、リソース拡張の判断にも関わってくるものです。現
在も常に監視し、1秒を超え続けるとアラートが上がるように設定しています。

6.2.5　読み上げ順序の保証

　shovelの読み上げ機能で特徴的なのが、「必ずメッセージをshovelが受信した順に読み上げを行う」と
いう点です。読み上げは、まず音声合成を行い、その結果を再生する、というステップを踏んで行われま
す。音声合成は文章が長いほど時間がかかります。単に「音声合成が終わり次第どんどん再生する」方
法をとってしまうと、とても長い文章のあとに、とても短い文章が来た場合、あとに来た文章が先に読み上
げられてしまいます。長文のメッセージのあとに、「うん」というメッセージが投稿された場合に、「うん」が先に
読まれてしまっては、画面を見ていない人は混乱します。読み上げる順番が正確であることは、読み上げ
Botとしては必須の機能といえるでしょう。
　ここで、メッセージを受信した順番の通りに読み上げを行うための仕組みを紹介します。まずGuildごとに
配列を用意します。次に、音声合成を行う前に、その配列にメッセージIDを入れます。最後に、音声合成
が終わったら、配列の先頭が自分のIDと一致するまでsleepを繰り返します。これにより、メッセージの長短
にかかわらず、順に音声を再生することが可能になります（図6.5）。

図6.5: 読み上げ順序が保証されるしくみ

　1. キューに並ぶ
　2. 音声合成を行う
　3. キューの先頭に到達し、かつ音声合成が完了していたら音声再生を開始する
　4. 音声再生が終わったらキューから抜ける

6.2.6　音声合成用文字列のこだわり

　投稿から読み上げ文字列への変換は、ユーザーからの要望も多様な部分であり、Botの使い心地にも
直結します。工夫している点について、いくつか紹介します。

6.2.6.1　ユーザー登録単語が最優先

　読み上げ文字列の作成は、大きく分けて2種類の変換によって行われます。ひとつはshovelがあらかじ
め備えているデフォルトの変換、もうひとつはユーザーがGuildごとに登録した単語による変換です。変換は、
後者を優先して実施し、デフォルトの変換処理がユーザー登録単語の邪魔をしないようにします。

6.2.6.2　より長い単語からマッチ

　単語は、より長いものからマッチさせます（図6.6）。たとえば、「DB」が「データベース」、「DBMS」が「デー
タベースマネジメントシステム」と登録されているGuildがあるとします。ここで「DBMS動きました」というテキス
トメッセージの読み上げが「データベースMS動きました」とならないよう、「DB」よりも先に「DBMS」を先にマッ
チさせます。

図6.6: より長い単語からマッチする

6.2.6.3　再帰的な単語マッチ
　単語の「読み」にさらに別の単語が含まれているときも、なるべく再帰的に変換します（図6.7）。
　たとえば、「afk」が「離席」、「離席」が「グッバイ」と登録されている場合、「afkします」という投稿が「グッ
バイします」と読まれるよう、再帰的に変換を行います。ただし、無限ループに陥らないよう、回数には上限
を設けています。

図6.7: 再帰的な単語マッチ

6.2.7　ユーザーに負担の小さい再起動

　shovelは、アプリケーションを再起動しても、ボイスチャンネルへの接続状態を損ないません。もちろんアプ
リケーションを終了しているあいだの読み上げを行うことはできませんが、起動時に前回の接続状態を復元
するようなつくりになっています。開発上・運営上の都合によりBotを再起動せざるを得なくなった際にも、
十数秒のあいだ読み上げが途切れる以外の影響をユーザーに与えることがありません。この仕組みについて
は、第4章「shovelのソフトウェア構成」で解説しています。

6.2.8　ユーザーの使用を中断しない更新

　再起動時にユーザーの接続状態を復帰する機能があるとはいえ、一時的にでも読み上げが途切れるの
は望ましくありません。少しでもBotの再起動回数を減らすため、可能な限りモジュールのリロードによるアッ
プデートを行うようにしています（図6.8）。モジュールのリロードを実装する方法については、第8章「実装 -
いざ、コーディング」をごらんください。

図6.8: Bot再起動と動的リロードの比較

6.2.9　短いダウンタイム

　ダウンタイムはそのまま、サービスをあてにしてくれているユーザーに不便をかける時間です。ダウンを伴う作
業は、ダウンタイムができるだけ短くなるように手順を工夫しましょう。
　少し興味深い計算をしてみます。shovelのダウンタイムは、月間平均5分ほどであり、稼働率が99.98%
であることはすでに述べました。これはアップデートに伴う再起動や、サーバー移行作業の所要時間などをす
べて含む数字です。いっぽう、shovelのユーザ数は50万人。ここで、ダウンタイムに全員がアクティブだったと
仮定して、ダウンタイムとユーザ数を掛け合わせてみます。すると、のべダウンタイムはなんと40,000時間、
1,736日にものぼるのです。0.02%のダウン時間を多いと考えるか、少ないと考えるかは人それぞれですが、
筆者自身はもっと減らしていかなければならないと感じています。ダウンタイムを短くするための工夫について
は、第11章「アップデートのための作業」で紹介しています。

6.3　異常系に漏れなく対応しよう

6.3.1　正常系と異常系

　プログラミングにはエラーがつきものです。ここでのエラーとは、「プログラムが指示を処理している間に起きる
障害」という意味です。エラーが発生した場合の動作を、「異常系」の動作と呼ぶことにします。対義語は
「正常系」の動作、これは最初から最後まで問題が起きることなく処理完了するパターンの動作です。
（図6.9）

図6.9: 正常系と異常系

　バグの少ないプログラムとは、システムの状態や入力について多くのパターンを想定して、異常系の各ケー
スを洗い出し、それらに適切に対応できているプログラムといいかえることができます。shovelを開発する際
は、信頼性とユーザビリティを高めるため、異常系を極力見逃さないことに心血を注いでいます。
　では、どうすれば異常系を漏れなく見つけることができるのでしょうか。これについて考えていきましょう。

6.3.2　異常系の洗い出しテクニック

　ここでは、異常系を漏れなく発見するための手順についてお話しします。

6.3.2.1　題材：読み上げ上限文字数の設定機能
　異常系を洗い出す手順を説明する題材として、shovelの「読み上げ上限文字数の設定」(図6.10)につ
いて考えてみましょう。これは、shovelが投稿を読み上げるときの文字数の上限を!sh read_limitコマンド
で設定するという機能です。読み上げ文字数上限を100に設定すると、100文字目以降はすべて「以下
略」に置き換えられ、読まれなくなります。

図6.10: 読み上げ上限設定処理の例

6.3.2.2　登場する要素を書き出す
　目的に関係する条件と、ユーザーが行う操作に、どのようなものがあるかをすべて書き出します。読み上
げ文字数の設定に関連する要素を洗い出しましょう。項目の洗い出しは、まずは正常系の処理の流れを
追うことで行います。お話を追いながら登場人物を羅列するイメージで、出てくる要素をすべて書き出しま
す。要素を書き出すと、以下のようになります。
　1. ユーザーの権限
　2. ユーザーの入力＝読み上げ上限文字数
　3. DB＝読み上げ上限文字数の保存先
　4. 結果通知先チャンネル

6.3.2.3　各要素についてパターンを検討する
　次に、この各要素について、起きうる事態、取り得る値のパターンを書き出します。ひとつひとつの要素に
ついて順番に検討しましょう。書き出した結果は以下のようになります。
　ユーザーの権限
　1. ユーザーにコマンドを操作する権限がある
　2. ユーザーにコマンドを操作する権限がない
　ユーザーの入力
　1. 正常な値
　2. 数値以外の値
　3. 下限以下の値
　4. 上限以上の値
　DB
　1. 書き込みに成功する
　2. 書き込みに失敗する
　3. 接続不良が起きている
　結果通知先チャンネル

　1. 通知に成功する
　2. 通知に失敗する
　それぞれの要素の1番目のパターンは、「正常系」の動作のパターンです。

6.3.2.4　要素同士の掛け合わせが必要か検討する

　要素同士に関連のあるもの同士のパターンを掛け合わせることで、すべての異常系動作を洗い出すこと
ができます。関連のない、または意味のない要素同士について掛け合わせることはありません。今回であれ
ば、「ユーザーにコマンドを操作する権限がない」場合は、それ以降のコマンドの内容を実行することはないの
で、「ユーザーの権限」のパターンを「読み上げ上限文字数」や「DB」のパターンと掛け合わせる必要はないで
しょう。しかし、「ユーザーにコマンドを操作する権限がない」場合、その旨を「結果通知先チャンネル」に通知
する必要があります。つまり、「ユーザーの権限」のパターンと「結果通知先チャンネル」のパターンに関しては、
掛け合わせが必要になります。図6.11のように表を描いて、このような掛け合わせの必要性を整理します。

図6.11: 各要素の掛け合わせが必要かの検討

6.3.2.5　表を使ってすべての異常系を書き出す
　こうして、それぞれの要素同士の関連の有無が検討できました。単純な機能ですが掛け合わせると膨
大な数になり、すべて書き出すのはとても大変な作業だという予測がつきます。そこで、このようなパターンを
すべて網羅するためには、表を使ったパターン洗い出し（図6.12）が便利です。

図6.12: 読み上げ文字数の設定 正常系・異常系全パターン

　この表には合わせて14のパターンがあり、1が正常系、2～14が異常系となっています。また、1～14と書
いてある列のひとつひとつがパターンをあらわしています。たとえばパターン1は、「ユーザーにコマンドを操作する
権限がある」「正常な値」「書き込みに成功する」「通知に成功する」というパターンです。このように、表を使
って組み合わせを確認することで、パターンが網羅できているかの見通しがよくなり、把握もしやすくなりま
す。

6.3.3　異常系への対応を考える

　異常系が洗い出せたら、これらひとつひとつについてどのように対応するかを検討します。対応といって
も、「異常が発生した」というログを出すだけでもかまいませんし、場合によっては「なにもしない」という対応
になることもあります。異常系への対応を考える際には、各異常系についてのリスク評価を実施し、対応を
決定します。つまり、その異常系の発生頻度、異常系による影響の大きさ、対応にかかるコスト、対応した
ことで軽減できる影響、それらを見比べて、どのような対応をするか決定しましょう（図6.13）。

図6.13: 異常系への対応を検討する

　たとえば「DBへの書き込みに失敗する」という異常系は、発生頻度こそ低いものの、ユーザーの要求した
指示が果たせないため、影響は大きくなります（図6.14）。よって、「異常でデータが登録できなかったの

で、リトライしてみるようユーザーに通知する」という対応をすることに決めるのです。

図6.14: DBへの書き込み失敗時の対応を検討する

6.4　漏れた異常系を後からみつける

　前節の手順で、「読み上げ上限文字数の設定」のような単純な機能ですら、異常系すべてを洗い出し
てみると膨大な数になることがわかりました。異常系を完璧に洗い出し、その対応も決め、そのとおりに実
装したとつもりでいても、まだ検討できていない異常系は隠れているかもしれません。そのような異常系を見
つけるための方法を紹介します。

6.4.1　漏れた異常系を見つける方法1 - 実際に使ってみる

　Botを動作させ、自分の手でいろいろな操作をひととおり実行します。前述の方法であぶりだしたパターン
をすべて試し、想定どおりの動きになっていることを確かめてみるほか、気の向くままに思いつきで操作してみ
ます。手を動かしていると、他にも検討すべき条件や操作があることに気づくかもしれません。そのときは条
件や操作の項目を追加し、あたらしいパターンについて検討しましょう。これは一般に「モンキーテスト」と呼ば
れている手法です。サルが操作するかのごとく、適当に操作して不具合や見逃しをあぶりだすのです。

6.4.2　漏れた異常系を見つける方法2 - 大勢にテストしてもらう

　自分ひとりでは限りがありますので、実際に使ってテストしてもらうのはもっとも有効な異常系のあぶり出
し方法です。ユーザーが多ければ環境もその数だけあり、「そうきたか！」というような不具合をたくさん見つ
けることになるかもしれません。
　とはいえ、テストしてくれるユーザーは、あくまでサービスに価値があるから使ってくれているというだけです。
品質に問題があるBotは、Guildからキックされて終わりです。それだけで済むのであればまだよいのですが、
Botの不具合でGuildに迷惑をかけることがあっては一大事です。オープンなテストを実施する際は、まず自
分の中で完璧といえる状態にしてから提供するようにしましょう。

6.4.2.1　人海戦術への過信は禁物

　shovelで実際にあった事例を紹介します。あるとき、「DMによるコマンドに反応しない」という不具合が
発生しました。この不具合は機能追加によるアップデートのなかで埋め込まれ、アプリケーションログを確認
したことで気付くまでの数日のあいだに数十件発生していました。この間、ユーザーからの報告はありません
でした。
　不具合が発生したり、サービスがうまく動かなかったからといってユーザーが必ず報告してくれるわけではあ
りません。大抵の場合は不便だなと思っておしまいです。ですので、不具合が発生したことをアプリケーション

ログなどから発見できる仕組みを作っておくことが重要です。また、不便をかけたにもかかわらず自分の時間
を使って報告してくれるユーザーはたいへん貴重です。丁寧にお礼を伝えましょう。

6.5　ログはBotを良くするヒントの宝庫！

6.5.1　ログの意義

　なぜログが必要なのでしょうか。まず、Botに不具合や異常が発生したときに何が起きたのかを調査する
ために役立ちます。どのような利用状況で、どのような操作をし、どのような結果になったのかということが残
っていれば、不具合の原因を推測しやすくなります。次に、想定外の不具合が発生した際、ログによって気
づくこともあります。これらはトラブルを未然に防ぐことや、万が一ダウンしても、そのダウンタイムを短くするこ
とに寄与します。また、ログを確認することで、使われている機能・そうでない機能を知ることもできます。ユー
ザーの操作に対して異常が多く出ているコマンドは、使い方がわかりにくいコマンドであるとわかります。その
ようなログを見つけ出して機能を改善することで、ユーザビリティを高め、問い合わせを減らすことができま
す。ログの活用については、第16章「運営 - ユーザーと接しよう」で詳しく紹介します。
　このように、ログはBotを改善するための情報の宝庫です。もちろん、情報の宝庫にするためには適切な
ログを過不足なく出すことが必須です。では、どうすればそのようなログを出力できるのでしょうか。ここから
は、それについて見ていきましょう。shovelでは、大きく分けて2種類のログを出力しています。

6.5.2　アプリケーションログ

　アプリケーションログは、機能が動作したことや動作の結果を、ログレベルとともに自由な文字列で残すロ
グです。例をリスト6.1に示します。アプリケーションログは、いわばBotの動作日誌のようなものです。

リスト6.1: ログ例

08/18 02:16:13 [INFO] MainThread cogs.yomiage (450) : shovelがボイスチャンネルから退出

08/18 02:16:13 [INFO] MainThread speechconf (80) : キャッシュから各種設定を削除

08/18 02:16:13 [INFO] MainThread speechconf (82) : 削除完了

6.5.3　動作詳細ログ

　アプリケーションログが「ログレベル」と「ログ文字列」という形式であるのに対し、動作詳細ログは内容に
準拠した本システム独自のフォーマットで出力します。アプリケーションログはすべてDBの「ApplicationLog」
というテーブルに格納します。それに対し動作詳細ログは、読み上げログは「YomiageLog」、ユーザー通知
ログは「NotifyLog」といったように、それぞれ独自のテーブルに格納します。

6.5.3.1　動作詳細ログの保存期間

　動作詳細ログはその性質上、Botを稼働させた時間とユーザー数の両方に比例して容量が大きくなって
いきます。そのため、著しく容量が大きくなるような詳細なログは、期間を区切って削除または移動（アーカ
イブ）するようにするとよいでしょう。
　たとえばshovelでは、読み上げ詳細ログは毎日集計して日次読み上げログとして別のテーブルに記録
し、読み上げ詳細ログ自体は2週間以上前のものは削除するようにしています。

6.6　アプリケーションログはBotの活動日記

6.6.1　どんなときに出す？

　アプリケーションログは、アプリケーションの流れを追うためのものです。ですから極端な話、アプリケーション
のすべての経路でアプリケーションログを出してもよいのです。しかし、それだとあまりにも量が多くなり、意味
のあるログが埋もれてしまいます。そこで、基本的には下記のようなときにアプリケーションログを出すとよいで
しょう。

6.6.1.1　異常が発生したとき
　実際にトラブルが発生して、問題判別のためにログを調べることを考えてみてください。あなたはそのトラブ
ルの引き金になる異常をログから探そうとするはずです。もし想定内の異常だからといってログを残していな
ければ、何の記録も残っておらず、調査の手がかりが失われてしまいます。想定内であっても、異常のログを
残しておくことはとても重要です。そうすれば、ユーザーからの問い合わせに対して、その動作は想定されたも
のである旨と対応方法について回答することができるでしょう。
　では、想定外の異常についてはアプリケーションログを残さなくてもよいでしょうか？　もちろん、残せるの
であれば残したいところです。しかし、想定外の異常はその性質上、意図的に残すことは不可能です。です
が、想定外であっても例外などを適切に捕捉し、少しでも取りこぼしがないように扱いたいものです。

6.6.1.2　低頻度の定期処理を行ったとき

　開発者専用コマンドが実行されたときの処理や、月替り時の処理、1日1回の処理など、低頻度の処
理については、開始と終了をログに出力しておいてもよいでしょう。「低頻度」という表現は曖昧ですが、重
要なログを押し流すほどの物量であるかどうかを基準に検討すると良いでしょう。とくに、ユーザーと開発者、
どちらにも処理の様子が見えないバッチ処理は、たとえばパフォーマンス低下が発生していても気づきにくい
ものです。処理の様子をログに残しておき、ときどきチェックしましょう。

6.6.2　アプリケーションログレベル

　shovelはPython標準モジュール「logging」に倣い、DEBUG、INFO、WARNING、ERRORという4段
階のログレベルを採用しています。Botを稼働させる際は、通常INFO以上のアプリケーションログを出力して
います。DEBUGを出力すると、物量が多すぎるからです。
　ログには、それぞれ適切なアプリケーションログレベルを割り当てましょう。こうしておくことで、時間がないと
きにも必要なアプリケーションログだけを閲覧できるようになるはずです。shovelでは、図6.15のようにアプリ
ケーションログレベルを使い分けています。

図6.15: アプリケーションログレベルの用途

6.6.3　出してはいけないアプリケーションログ

　アプリケーションログはサーバー上に置き、Bot開発者しか見られないようになっています。しかし、何かの原
因で流出するなどの事故の際にも致命的な事態を招かないよう、アクセストークンやBotの情報をアプリケ
ーションログに出力しないことを徹底してください。
　また、ユーザーの個人情報や投稿したメッセージの内容など「Botは扱う必要があるが、たとえBot開発者
であっても閲覧不可能であるべき情報」もあります。このような情報についても、うっかりアプリケーションログ
に出すことがないよう、細心の注意を払いましょう。見てないから大丈夫、では通用しません。「起こりうるこ
とは起きる」と考え、どうやっても見られないようにしておく必要があります。

6.6.4　アプリケーションログの出力先

　shovelでは、「標準出力」「ファイル出力」「DBへの出力」という3つの出力先へとアプリケーションログを
出力しています。標準出力は、リアルタイムにアプリケーションログを閲覧するときに使います。本格的に監
視を行うというよりは、正しく動いているかどうかを眺めるイメージです。ファイルは、Botの全体的な稼働状
況をあとから時系列に沿って確認したいときに使います。
　アプリケーションログを活用するためにもっとも重要なのが、DBへの出力です。DBに格納することで、統計
的な観点からアプリケーションログを活用できます。また、Webインターフェイス等、外部へ開示する際にも手
軽に扱えます。どのように活用するかについては次項で見ていきます。

6.6.5　アプリケーションログの活用方法

　せっかく出力して蓄積しているログなので、有効に活用したいものです。shovelにおけるログの活用例をご
紹介しましょう。
　まず、ダイジェストの作成です。毎朝、前日のDBの内容のうち、WARNING、ERRORレベルのログを抜き
出し、csv形式にしてGoogle Driveにアップロードしています（図6.16）。これはcronでシェルスクリプトを
動かすことで実装しています。こうしておけば、開発者がDBにアクセスしなくても、重要なBotのアプリケーショ
ンログを簡単に確認できます。出先でSSHログインできないが、早急にログを確認したいときなどに活用でき
ます。

図6.16: ログのダイジェスト作成

　つぎに、Munin Pluginによるアプリケーションログ出力状況のグラフ化です。WARNING、ERRORレベル
のアプリケーションログが何件発生しているかという数値をグラフに出力することで、著しく異常件数が伸び
ているときなど、Botになにか問題が発生した場合にひと目でわかります。また、Muninによるデータ蓄積に
より、継続的な発生件数の推移も確認できるため、Botの品質を監視できます。

第7章　開発環境 - 開発効率と品質をあげる礎

　この章では、Botを開発するために必要な環境作りについてお話しします。ここでの「開発環境」とは、開
発サイクルを円滑にまわすことに関わるすべてのことを指します。具体的には、以下についてお話しします。
　・コードを書くエディター
　・書いたコードを実行するための実行環境
　・開発・テスト・本番の環境切り替え
　・開発・テスト・本番環境でのコードの同期法

7.1　コードを書き、動かす環境を整えよう

7.1.1　コーディングと実行は開発の基本単位

　コードを書いて実行する、というのはもっとも小さく基本的な開発のサイクルです。このサイクルを快適にま
わせる環境を整えましょう。以下の3点さえ満たしていれば、どのような環境でもかまいません。
　1. コードがかきやすく、誤りに気づきやすい
　2. すぐ実行できる
　3. 作業ミスが起きにくい
　たとえば、コードを書いたあと動作確認をするために、毎回手作業でコードをサーバーにアップロードすること
が必要なようでは問題です（2と3に違反）。コーディング中の誤字（typo）に実行するまで気付かない
ような環境も望ましくありません（1に違反）。この条件を満たすのであれば、IDEでも、テキストエディターで
も、好みのものを使ってかまいません。

7.1.2　shovelの場合 - 開発環境は雲の上

　shovelを開発する際は、運営用のサーバーにSSHログインし、テキストエディター「vim」でコーディング後、
コマンドラインからPythonを実行して動作確認しています。この環境のメリットはふたつあります。1点目は
本番とほぼ同じ環境での動作確認がすぐに行える点です。Gitなどのツールを使えばコードの同期はすぐ行
えるとはいえ、コード変更とデバッグをくりかえし行う際には、手順はひとつでも減らしたいものです。2点目
は、外出時などにBotにトラブルが発生したとき、SSHログインができるPCさえ用意すれば、すべてがいつもど
おりの環境を使えるという点です。コードの修正が必要となったとき、エディターがいつもと違うとさらに思わぬ
ミスを埋め込んだりする可能性がありますが、shovelはサーバー上のvimで開発しているため、そのようなリス
クを減らせます。
　デメリットとしては、開発環境を動かすことにより、肝心のshovelが使えるスペックを圧迫する可能性が
あるという点です。今の所、sshdとvimの使用メモリをあわせても、Bot自体の使うメモリと比較して著しく
小さいので、この点についてはほぼ無視できるといって良さそうです。

7.2　環境を3系統用意しよう

7.2.1　環境の5要素

　Botを動かすのに必要な要素のセットを「環境」と呼びます。ここでは、環境についてわかりやすく説明す
るために、shovelを例として説明します。shovelをあなたのBotやシステムに置き換えながらお読みください。
　shovelがサービスとして成立するために必要な要素は図7.1の5つです。

図7.1: shovelに必要な5要素

　・サービスのインターフェイスとなるBot
　・そのBotを自由に使えるGuild
　・shovelのコード
　・Python実行環境（インタプリタ本体と外部パッケージ一式）
　・DBとその中身のデータ
　このほか、ネットワークやOS含むサーバーが必要ですが、shovelではすべての環境を同じサーバーで構築し
ているため、一覧からは省いています。

7.2.2　3つの環境

　shovelは、前述の5要素がすべて揃った「開発（develop）環境」で開発しています。規模は小さいな
がら、サービスとして成立するための環境を作り、その中で開発しているわけです。ユーザーに公開するための
「本番（product）環境」も同じ5つの要素が揃っています。ただし本番環境のGuildは、専用に用意した
ものではなく、利用者であるユーザーの管理するそれぞれのGuildです。
　開発、本番のほかにもうひとつ、「テスト（test）環境」を準備しましょう。開発環境には最低限のデータ
しかなく、十分なテストが実行できません。かといって、すでにユーザーが利用しているBotを開発者の都合で

たびたび止めるわけにもいきません。shovelでは開発系で実施可能な範囲のテストをした後、もう少し本
番に近い環境で、統合テストや少人数の運用テストを実施して本番運用に備えます。そのためのテスト環
境を作り、そこでテストができるように準備しています。
　shovelでは、と言いましたが、どんなシステムでも常設の環境として最低でも「開発（develop）」「テス
ト（test）」「本番（product）」の3系統を稼働させるのがよいでしょう（図7.2）。

図7.2: 3つの環境

　この他に、たとえば手順の複雑なアップデート作業のためのリハーサル環境を作り、リハーサルだけ実施し
て廃棄することもあります。必要に応じて他の環境を作ることも選択肢に入れましょう。

7.3　環境をつくる手順

7.3.1　テスト環境を作ってみよう

　各環境はデータが混じったり、実行するコードが混じったりしないよう、しっかり分離されている必要があり
ます。ここでは、各環境の分離を確保しながら構築する方法について、テスト環境を作る場合を題材として
記します。テスト環境を題材にしてはいますが、開発環境を作る際にも同じ手順を踏みます。
　繰り返しになりますが、ひとつの環境を構築するために必要な要素は次の5つです。
　・Bot
　・Guild
　・コード
　・Pythonの環境
　・DB
　順に見ていきましょう。

7.3.2　テスト用Botの作成

　すでに述べたように、shovelには「開発」「全体公開前の運用テスト」「本番」のそれぞれの段階に対応
する環境が用意されており、それぞれの環境に対応するBotたちが存在します。図7.3をごらんください。

図7.3: 各フェーズに対応するBot一覧

　これらのBotは完全に独立したBotとして動作します。Botアカウントが違うのはもちろん、DBも独立してい
ます。

7.3.3　テスト用Guildの作成

　各Botは導入Guildも異なります。Bot「shovel_develop」は開発用Botのため、テストが不十分な状
態で運転することもあります。そのため、重大な不具合発生の危険性があります。友人であっても大きな迷

惑をかけることはあってはならないので、開発者と試験対象Botしかいない開発用Guildで動作確認を行っ
ています。
　Bot「shovel_test」は、多少の不具合を許容できるGuild、具体的に言うと開発者が管理するごく親し
い友人の常駐するGuild、友人の管理するGuildで試運転させてもらっています。
　このようにBotを段階的にリリースすることで、致命的な不具合を起こして本番環境のユーザーの体験を
損なう可能性を減らせます。

7.3.4　実装時のコード移行の流れ

　図7.4をごらんください。まず、「develop」のコードを編集します。このとき、Bot「shovel_develop」で動作
確認しながら開発します。ある程度開発が完了したら、「test」にコードを同期し、Bot「shovel_test」を稼
働させて友人の協力を得ながら運用テストを実施します。運用テストで問題が発生した場合、また
「develop」でのコード修正と動作確認をやり直します。運用テストで問題が発生しなければ、ようやくリリー
スです。「product」にコードを同期し、Bot「shovel」を稼働させます。各ディレクトリのコード同期は、
GitHubのリポジトリーを通して行います。

図7.4: 実装時のコード移行の流れ

　重要なのは、「test」や「product」で直接ファイル操作を行わないことです。あくまで、「develop」からコ
ードを同期してくるようにします。これは、修正したらまずは動作確認、どんな簡単な変更でもぶっつけ本番
でリリースをしないことを守るためのルールです。
　また、GitHubのHookを利用した自動デプロイ等は行っていません。あくまでGitとGitHubはバージョン管
理としてのツールとして利用し、デプロイやリリースのタイミングは別途管理するためです。

7.3.5　venvによるPython環境の分離

　Pythonのパッケージ管理ツールであるpipは、デフォルトでOSのグローバル領域にモジュールをインストール
します。このとき、「Bot1ではdiscord.pyのv0.xを動かしたいが、Bot2ではdiscord.pyのv1.xを動かしたい」
等の要求が出てくると、手順が煩雑になります。そもそも、あるプロジェクトのみで使うモジュールをグローバル
領域にインストールするというのに違和感もあります。
　そこで、venvを使います。venvを使えば、プロジェクトごとにPythonインタープリターや外部パッケージのバ
ージョンをすぐに切り替えられるようになります。プロジェクトごとに作成する仮想環境ディレクトリ内のみにイ
ンストールされるので、当然プロジェクト間でバージョンの衝突を起こすこともなくなります。
　また、使いたいパッケージは直接OSコマンドのpipで指定するのではなく、requirements.txtに記述し、
pip install -r requirements.txtでインストールします。requirements.txtはプロジェクトの一部としてリポジ
トリーに登録しておきます。
　このとき、requirements.txtにはそれぞれのパッケージのバージョンも指定しておきましょう。パッケージは、
未指定であればその時点での最新版がインストールされるので、思わぬアップデートによりBotの機能が壊れ
てしまうことあります。各パッケージの変更を常に把握し、細かく追従するつもりがないのであれば、バージョン
は固定しておきましょう。こうしておくことで、リポジトリーさえあればどこでもすぐに同じ環境を再現できます。

7.3.6　DBとその中身のデータ

　DBはそれぞれの環境ごとに用意します。中身のデータはそれぞれで異なりますので、DBMS内に環境ごと
のDBを作成しておきましょう。また、DBに思わぬ変更が発生しないよう、DBMSのユーザーも環境ごとに作
成しておくのが良いでしょう。

7.4　コード変更なしに環境を切り替える方法

7.4.1　環境切り替えの重要性

　前の節では、同じBotでも、開発と本番でBotアカウントや参加Guildを分けるべきであるということについ
てお話ししました。また、DBも環境ごとに作成しました。でも各環境のshovelがそれぞれのBot、Guild、DB
を切り替える仕組みはどのように実現すればいいのでしょうか？
　コードを直接編集してパラメーターを変更するというのがもっとも単純明快ですが、これは良い方法だとは
いえません。理由は2点あります。まず、手作業で編集しているとミスが発生します。次に、テスト用にコード
を変更したつもりが、製品版をそのコードで動かしてしまうという誤りも発生し得ます。
　そこで、環境ごとにコードをまるごと複製し、環境により動作を変更したい部分のみを設定ファイルでカス
タマイズするという方法をとります。この方法はDiscord Botでないアプリケーションにも適用できますが、以
下ではPythonおよびdiscord.pyを例として具体的に説明します。

7.4.2　フォルダー・ファイル構成

　shovelのフォルダー構成をリスト7.1に示します。これは環境切り替えに関連するファイルを抜粋したもの
です。

リスト7.1: shovel開発 フォルダ構成

bot/

├── develop (開発用)

│ ├── .gitignore (1)

│ └── shovel/

│ ├── config.py (2)

│ └── config.py.sample (3)

├── test (テスト用)

│ └── developと同様

└── product (本番用)

 └── developと同様

　それぞれのファイルの用途を見ていきましょう。

7.4.2.1　.gitignore

　config.pyには、トークンやDBパスワードなどの非公開にすべき文字列が含まれます。これらはバージョン
管理ツールのリポジトリーに登録すべきでない情報ですし、開発系・テスト系・本番系で共有しない情報で
す。そのため、リスト7.2のように、.gitignoreファイルにconfig.pyを記入しておきます。しかし、このままでは、
config.pyというファイルが必要であることや、どのように書けばいいかの情報がリポジトリーに登録されませ
ん。そこで、config.py.sampleを用意します。

リスト7.2: .gitignore

config.py

7.4.2.2　config.py.sample
　config.pyのテンプレートとなるファイルです。これをリポジトリに登録しておくことで、ファイルの項目を管理
できます。項目の追加・削除があった場合、コードの変更と同時に、config.pyの項目の変更も履歴に残
るので安心ですね。テンプレートはリスト7.3のように書きます。

リスト7.3: config.py.sample

DISCORD_TOKEN = "discord_bot_token"

DB_USER = "username"

DB_PASSWORD = "password"

DB_NAME = "table_name"

DB_HOST = "db_host"

DB_PORT = 00000

IS_DEBUG = False

7.4.2.3　config.py
　それぞれのディレクトリにconfig.pyというファイルを配置します。これが環境切り替えのキモとなるファイル
です。それぞれの環境用に個別のconfig.pyを作成することで、全環境で共通のコード本体を使いながら、
パラメーターを環境ごとに切り替えられます。内容の設定例をリスト7.4、リスト7.5に示します。

リスト7.4: テスト用config.py サンプル

= これはテスト版の設定例です。

DISCORD_TOKEN = "test_discord_token.XXXXXXXXXXXXXXXXXXX"

DB_USER = "test_user"

DB_PASSWORD = "test_user_password"

DB_NAME = "test_db"

DB_HOST = "localhost"

DB_PORT = 12345

IS_DEBUG = True

リスト7.5: 本番用config.py サンプル

= これは製品版の設定例です。

DISCORD_TOKEN = "product_discord_token.XXXXXXXXXXXXXXXXXXX"

DB_USER = "product_user"

DB_PASSWORD = "product_user_password"

DB_NAME = "product_db"

DB_HOST = "sample.com"

DB_PORT = 54321

IS_DEBUG = False

第8章　実装 - いざ、コーディング

　この章では、もっとも狭義での「プログラミング」であるコーディングについて説明します。リファクタリングによ
る技術的負債の返済、shovelを例にした実装上の工夫についてもお話します。

8.1　実装の流れ

8.1.1　shovelの場合

　shovelは、図8.1のとおり、以下4つのステップを回すことで開発を行っています。
　・設計
　・コーディング
　・テスト
　・リファクタリング

図8.1: 4つのステップ

　設計とはいえ、事前にクラス図や関数仕様書を書くといったような細かい内部設計はしていません。もち
ろん大きな機能を実装するときは、どのようなクラス分割にすればうまいつくりになるか、実装する前に考え
ることはあります。このときもそれぞれのクラスのメソッドひとつひとつについて考えることはせず、それぞれのクラ
スの責務とインターフェイスについてのみ検討します。
　また、3つのタイミングでリファクタリングを行っています。まず、機能が完成したとき。次に、機能を追加す
るとき。最後に、技術的負債（後述します）が蓄積されたときです。

8.1.2　まずは動くものをつくろう

　はじめてメッセージの読み上げに成功した読み上げBotは、たったひとつ、40行のPythonファイルにすべて
が入っていました。クラスもなく、エラー処理もログもなく、変数の命名も適当な、ただ「メッセージを読み上げ
ることができる」というだけのコードでした。機能追加に伴い、コード追加とリファクタリングを繰り返すことで、
shovelは育ってきました。discord.ext.commandsフレームワークを使ったBotへとリファクタリングしたのは、
はじめてメッセージの読み上げに成功したときから、約1年後のことでした。

　綺麗なつくりにすることも保守性という観点でとても大切ですが、保守性を気にしてBotができあがらない
ようでは本末転倒です。まずはとにかく書きましょう。バージョン管理含む開発環境をしっかり整っていれば、
どんどん書いてどんどん壊すことができます。shovelが19ファイル、延べライン数は4,000行という大きなプロ
ジェクトになった今も、この考え方は変わりません。

8.2　リファクタリングで保守性を担保！

8.2.1　リファクタリングとは

　リファクタリングとは、アプリケーションの動作自体はそのままに、コードをきれいにすることを指します。きれ
いにする、というと漠然としていますが、自分なりの「よいコード」にしていく作業だと思っていただければと思い
ます。重要なのが「アプリケーションの動作自体はそのまま」という点です。コードの中身だけではなく、アプリ
ケーションの振る舞いを変えてしまうのはリファクタリングとは呼べないことに注意してください。リファクタリング
はあくまで、コードの構造を整理することを目的とした作業です。

8.2.2　リファクタリングの帽子

　「実装の帽子をリファクタリングの帽子に被りなおす」という言葉を聞いたことがあるでしょうか。これは、
「実装=ひたすら機能の完成や不具合の修正をめざしたコーディング」と、「リファクタリング=機能を損なうこ
となくコードを整理する作業」は同時に行ってはいけない、ということを示した格言です。まずは不格好なコー
ドでも構わないので動くコードを完成させ、後からきれいに直すのがセオリーです。とはいえ、ボロボロなコード
で大きなものを作ってしまうと後が大変なので、段階を追って実装とリファクタリングを繰り返すのがよいでし
ょう。たとえば、「ユーザーからメッセージを受け取ったら、その内容を加工して同じチャンネルに投稿する」とい
う機能を実装したいときであれば、以下のようにします。
　1. ユーザーからメッセージを受け取る処理を実装し、メッセージ内容をログに出してみる。
　2. 1のコードをリファクタリングする。動作確認を行う。
　3. ユーザーから受け取ったメッセージを、そのまま同じチャンネルに投稿する処理を実装する。
　4. 3のコードをリファクタリングする。動作確認を行う。
　5. メッセージの内容を加工する処理を追加する。
　6. 5のコードをリファクタリングする。動作確認を行う。
　7. すべてのコードをリファクタリングする。動作確認を行う。
　今回の例のように、ひとつひとつの処理が単純である機能にここまでの詳細なサイクルは必要ありません
が、複雑な機能についても、考え方は同じです。書く、動かす、リファクタリングする、というサイクルを自然
に回せるようにするとよいでしょう。

8.2.3　リファクタリングと自動テスト

　アプリケーションの動作を変更しないことがリファクタリングの条件です。つまり、リファクタリングの前後でア
プリケーションの振る舞いが変わっていないことを保証する仕組みをととのえる必要があります。リファクタリン

グを実施するプロジェクトでは同時に自動テストの仕組みが整備されていることが大半です。
　しかし、Discord BotやWebアプリケーションでは、テストコードからコマンドの発火などのイベントを擬似的
に起こすのは難しく、メッセージをテキストチャンネルに送信するといった仕様を単体テストで確かめることは難
しいです。つまり、テストコードによる単体テストの自動化でカバーできる範囲が限られています。なので、リフ
ァクタリングを実施する際には丁寧な動作確認をするようにしましょう。
　shovelではjishakuというライブラリーを利用し、テスター代理Botを使った自動回帰テストの仕組みを作
っています。リファクタリング前後にこの自動回帰テストを実施することで、shovelの振る舞いに変化がない
ことを保証しています。jishakuによるテスト自動化については、第10章「Discord Botのテスト自動化」をご
らんください。

8.2.4　よいコードの基準

　よいコードとは何か、というテーマは奥が深く語りきれないものではありますが、自分なりに気をつけている
詳細な観点をリストアップしてみました。コードについては、Dustin Boswell、Trevor Foucher、角征典『リ
ーダブルコード』（2012　オライリー・ジャパン）という有名な書籍があります。これは業種や言語、趣味業
務をとわず、ぜひ一度読んでいただきたい書籍です。ためになるだけでなく、ユーモアたっぷりで読み物として
とてもおもしろい本です。

8.2.4.1　読みやすいか　

　・変数名・関数名・クラス名は適切か
　・命名に統一感はあるか
　・モジュール、クラス、メソッドの大きさは適切か
　・スマートさを求めるあまり可読性を失っていないか

8.2.4.2　修正しやすいか

　・同じようなコードが分散して存在してはいないか
　・共通処理を切り出せる部分はないか
　・依存を適度に切り離したつくりになっているか

8.2.4.3　オブジェクト指向の原則に沿っているか
　・各モジュール、クラスに不自然なインターフェイスはないか
　・各モジュール、クラスのメンバーは責務にあっているか
　・責務が多すぎるクラスは存在しないか

8.2.5　技術的負債はこまめに返済しよう

　前項では、まずは動くコードを書き上げて、その後リファクタリングすればよいという話をしました。ここで、
「とりあえず動くコード」をそのままにしておくと、何が起きるでしょうか？　この「とりあえず動くがあまり品質の
よくないコード」のように先送りにした問題を指して、「技術的負債」と呼びます。コードにたまった技術的負
債は、すこしの仕様変更をするだけのコード変更に多くの時間がかかったり、ある機能のためのコード修正を
したときまったく関係ないはずの機能に影響が出るなどの事態を招きます。
　サービスを運営していると、機能を追加したり、不具合を修正することについ集中してしまいがちです。し
かし、そのような技術的負債をそのまま放置した場合、コードを触る余分なコストがかかりつづけるだけにはと
どまらず、そのコストは増えていきます。技術的負債が発生していることがわかったら、可及的速やかに解消
すべきです（図8.2）。

図8.2: 技術的負債があるということ

　技術的負債は、たとえ細やかにリファクタリングしていても、ふと気付くとコードに紛れ込んでいるもので
す。機能追加などのためにコードを触っていて、改善すべき実装や効率化できる処理に気づいたときは、コー
ド中にコメントで内容をメモしておきましょう。もちろんコード中ではなくGitHubのissueや手元のTODOリスト
にメモしても構いません。すぐに手をつけたくなるかもしれませんが、途中の作業がある中でリファクタリングを
するのは、変更管理の観点からもパフォーマンスの観点からも好ましくありません。機能追加や不具合修正
などの合間、独立したタイミングで要改善部分の修正を行うとよいでしょう。

8.3　保守性を高める実装

8.3.1　Databaseモジュールの存在意義

　第4章「shovelのソフトウェア構成」では、「Database」というモジュールがあることをお話しました。繰り返
しになりますが、機能を満たすだけであれば、各モジュールで直接peeweeを操作してもまったく問題はありま
せん。それどころか、わざわざこのモジュールを通すのは、コーディングの量も動作する際の処理の量も増え、
煩雑になることを意味します。なぜこのようなつくりになっているのでしょうか。ここで、データへのアクセス方法
が変わるときのことを考えてみましょう。たとえば以下のようなときです。
　・peeweeではなくSQLAlchemyに乗り換えたくなったとき
　・ORMの利用をとりやめ、独自にDBへアクセスする処理を書きたくなったとき
　・DBではなく、まったく違うデータソースとのやりとりに変更したくなったとき

8.3.1.1　Databaseモジュールがないとき
　このようなとき、各モジュールにpeeweeの利用を前提としたコードが散らばっていたらどうなるでしょうか？　
そのすべてを洗い出し、それぞれについて新しい方式のものに修正を行い、さらには各モジュールの他の部分
に影響が出ていないかをひとつひとつ確認する必要が出てくるでしょう。その検証はすべてを作り直したとき
と同じような、大変な作業になります（図8.3）。

図8.3: Databaseモジュールがないとき

8.3.1.2　Databaseモジュールがあるとき
　データアクセスがひとつのモジュールに統一されている場合はどうでしょうか。まず、モジュール「Database」
以外を触る必要は一切ありません。変更の前後でインターフェイスが変わらないようにだけ気をつけていれば
いいので、コードの変更も難しくありません。そしてテストですが、もちろんデータへのアクセス方法を変更した

ことによる影響が出ていないか全体を確認することは必要です。しかし、ロジックの誤りを埋め込んだり、まっ
たく関係のないコードにバグを埋め込んだりする可能性は少ないと言えるでしょう（図8.4）。

図8.4: Databaseモジュールがあるとき

　データにアクセスするためのモジュールを用意することで、データアクセスの方式が柔軟になり、保守性が高
い設計となっていることがおわかりいただけたでしょうか。このように、実装・処理にオーバーヘッドをかけても、
依存関係を減らすことには、非常に大きな価値があるのです。

8.4　ユーザビリティのための実装

8.4.1　モジュールの動的リロードの実装例

　第6章「ユーザーの使用を中断しない更新」にてモジュールのリロードによるアップデートについて触れました。
ここでは、モジュールのリロードによるアップデートを実現するためのshovelの実装について説明します。
　Pythonの標準モジュール「importlib」には、reloadという関数があります。これは以前にインポートされた
モジュールをリロードするという処理です。モジュールのリロードは、開発者専用cogAdminに含まれるコマンド
として実装しています。内容をリスト8.1に示します。

リスト8.1: reload_module コード

@commands.command()

async def reload_module(self, ctx, module_name=None):

 if not module_name:

 await ctx.send("モジュール名が必要です。")

 return

 try:

 import importlib

 module = importlib.import_module(module_name)

 importlib.reload(module)

 except (ModuleNotFoundError,

 ImportError) as e:

 await ctx.send("モジュールのリロードに失敗しました。")

 await ctx.send(e)

 else:

 await ctx.send("モジュールのリロードに成功しました。")

8.4.1.1　動的リロードを意識したモジュール実装

　動的リロードの対象となるモジュールを実装する際にも注意が必要です。グローバル変数の初期化は、グ
ローバル変数が定義されていないことを確認のうえで行う必要があります。すでに一度初期化を終え、必要
なデータが入っているグローバル変数が、リロード時に初期値で上書きされないようにするためです。また、
from <module> import <name>形式でインポートされた関数やクラスは、reload後も以前のコードの
ままとなります。リロードされることを想定する場合、import <module>でモジュールごとインポートし、
<module>.<name>の形式でインポートするようにしましょう。例をリスト8.2に示します。

リスト8.2: reloadを想定したモジュールの処理

= 悪い例

from mymodule import mymethod

mymethod()

words = {}

= 良い例

import mymodule

mymodule.mymethod()

try:

 words

except NameError:

 words = {}

　Discord Botにおけるcogのリロードは、jishakuを導入すればかんたんに行えます。Discord上でjishaku
reload mycogコマンドを実行すると、mycogはリロードされます。

第9章　テスト - コードの品質をまもる、最後の砦

　この章では、テストについてお話します。ソフトウェアのテストは非常に奥が深いものであり、本書では筆者
の方法と考え方についてを簡単に説明します。また、テストに関する用語（単体テスト、結合テストなど）
は業界や組織によって方言があることや、本書の内容が普遍的に正しいわけではない点をご了承くださ
い。

9.1　テストとは何なのか

9.1.1　Botの動作をテストで確認しよう

　「親しい友人向けにBotを運営していて、使ってるうちにおかしい動作が見つかったので直す」という経験
は、Bot開発者なら誰にでもあるのではないかと思います。実はこれは立派なテストです。また、友人に使っ
てもらうまえに、自分用のGuildを作り、そこでBotをためしに動かしてみたこともあるでしょう。これもテストと
いえます。テストというのは堅苦しいものでも、大げさなものでもなく、「Botが思ったとおりに動くことを確かめ
る」という目的で行われるすべてのことを指している言葉なのです。第6章「品質を上げるための設計のポイ
ント」にて、正常系だけでなく異常系も漏れなくあぶり出し対応を検討する必要があると述べましたが、テス
トというのは、正常系、異常系、すべての動作が仕様通りになっていることを確認するものです（図9.1）。

図9.1: すべてのパターンの動作が仕様通りであることを確認する

9.1.2　テストの種類

　ひとくちにテストといっても、さまざまなものがあります。もっとも小さなテストは、プログラムの関数、メソッド
が仕様通りに実装されていることを確認するもので、単体テストとよばれます。実際にアプリケーションを実
運用と同じように操作し、仕様書どおりに動くことを確認するテストもあり、これはソフトウェア結合テストと
呼ばれます。shovelでは、「機能のテスト」「回帰テスト」「実稼働によるテスト」という3つのテストを実施して
います。

9.1.2.1　機能のテスト
　機能追加時、機能改修時に実施するテストです。そのとき触った機能と、関連する機能について、正常
系・異常系すべてを網羅するテストをします。実装がすべて終わってからテストするというよりは、実装とテス
トを繰り返して少しずつ機能を作りあげ、最後にすべてのテストを再度実施するという手順で開発を行って
います。

　この「機能のテスト」については、次節で詳細な設計・実施手順を紹介します。

9.1.2.2　回帰テスト
　機能追加の実装とテストを完了し、いよいよ新バージョンのBotをリリースしようというときに大切なのが、
触っていない機能をふくめた全体のテストです。「触っていないのだから何もかわっていない、テストなど不要
ではないか」と思われるかもしれませんが、同じプロセスに存在するコードを触った以上、絶対に影響がない
とは、まず言い切れるものではありません。新機能開発中はその機能に関連する部分を重点的に動かし、
その他をあまり動かさないケースが多く、新機能と直接関係のない箇所に不具合が生じていた場合に発見
が遅れます。また、利用している外部パッケージのアップデートや、利用している外部APIの仕様変更などに
より不具合が発生することもあります。ですので、「Bot全体の機能が正しく動いていること」を網羅的に確
認することは重要です。
　回帰テストは、基本的には「機能に対するテスト」で実施したテスト項目を再利用します。ただし、機能
を実装したときと同じような細かいテストは必要ない場合もあります。「機能に対するテスト」のテスト項目の
うち、重要な部分のみピックアップして実施すればよいでしょう。

9.1.2.3　実稼働によるテスト

　これをテストと呼ぶかどうかは議論がありますが、実運用もテストの一環として見ることもできます。実際に
運用を開始して多くの人の手で使ってもらい、不具合が出ないかを確認します。また、一部のユーザーを対
象にして本リリース前に新規機能を先行提供し、見つかった不具合を修正したり、反応をみて全体へ適
用するかどうか検討するといった評価を行うこともあります。

9.2　テストを設計しよう

9.2.1　テスト設計を行うことのメリット

　さきほど述べたように、「なんとなく操作して反応を確認する」「友人に使ってもらう」というのもテストです
が、これは設計されていないテストです。これでも不具合を見つけることはできます。それでは、わざわざテス
トを設計することのメリットはなんでしょうか。
　まず、適切に設計されたテストを実施することで、機能について網羅したテストを行えるので、安心して
Botをリリースできます。テストを設計・実施すれば不具合が一切なくなるかというと、そうではありません。し
かし、「少なくともこういう条件でこの機能に不具合が起きることはない」「確認すべきことはすべて確認した」
という安心を得られます。ユーザーから不具合報告が上がっても、それがテストしたはずの内容であれば、冷
静に対応できます。設計されていない曖昧な動作確認を実施しただけでは、すべてを確認したという保証
はできないので、アプリケーションの品質にいまいち自信が持てないままになってしまいます。
　また、テスト設計をすることで、仕様の設計漏れに気づくこともあります。仕様の設計をする際には、どう
しても実現したい機能そのものに目が行き、異常系を捕捉しそこねてしまいがちです。テスト設計は不具合
が起きそうな部分を探すという意地悪な目線で検討するので、仕様設計時に見逃したものにも気づきや
すいのです。
　最後に、テストを設計し手順を整理しておくと、テストフェーズを自分ではない誰かに任せられます。この
「誰か」にはあなた以外の人間はもちろん、テスト用Botやアプリケーションなどのプログラムを含みます。

9.2.2　テスト項目を決める

　仕様を決めることは、テスト項目を決めることに等しいといえます。ですので、shovelでは新しい機能を追
加するとき、まずはテスト設計をすることからはじめます。
　まずは、どのようなことを確認したいかをリストアップします。たとえば、「複数行を読み上げるかどうかの設
定を追加し、設定がONであれば2行目以降を読み上げる」という機能をBotに追加するときのことを考え
ましょう。確認すべき内容は2点です。
　・複数行を読み上げるかどうかの設定ができること
　・複数行読み上げ設定がONのとき、2行目以降も読み上げること
　文章にすると簡単ですが、これらが本当に意図通りに実装されているかを確認するには、もう少し細かい
手順が必要です。

9.2.3　テスト項目の細分化

　テスト項目を挙げたら、確実に確認するためにもっと細かい項目を考えていきます。前項に挙げた例でい
うと、「複数行を読み上げるかどうかの設定ができる」という項目には、「設定のON、OFFを自由に設定で
きる」という意味が込められています。そこで、それを確認できるよう、項目を細分化します。
　・複数行を読み上げるかどうかの設定ができること
　- 複数行読み上げ設定をONにできること
　- 複数行読み上げ設定をONにしたあと、OFFにできること
　- 複数行読み上げ設定をON→OFF→ONにできること
　- 複数行読み上げ設定に異常な値を渡すと、エラーになること
　同様に、「複数行読み上げ設定がONのとき、2行目以降も読み上げる」についても細分化します。この
仕様の行間には、「複数行読み上げ設定がOFFのときは、2行目以降は読み上げない」という仕様が隠
れています。これをテストで明確に確かめておかないと、後々「どんな設定でも複数行読んでしまう」という不
具合が発生しているとわかったときに、いつから発生していた不具合なのかがわからなくなってしまいます。ま
た、2行目以降を読み上げるかそうでないかという処理を追加することで、1行の読み上げにも影響が出る
ことも考えられます。そうでないことを保証するため、単一行の読み上げについてもテストをしておきます。
　・複数行読み上げ設定がONのとき、複数行投稿の2行目以降も読み上げること
　- 複数行読み上げ機能がOFFのとき、複数行投稿の2行目以降は読み上げないこと
　- 複数行読み上げ機能がONのとき、1行のみの投稿を正常に読み上げること
　- 複数行読み上げ機能がOFFのとき、1行のみの投稿を正常に読み上げること
　このように、テスト設計は、仕様に込められた暗黙の処理の実装を決めることと裏表の関係です。そのた
め、仕様設計とテスト設計は平行して相互補完的に行っていくと、どちらかいっぽうだけに漏れがないか頭
を悩ませるより効率がよいといえます。テスト項目の設計については、第6章の異常系に関する記述も参考
にしてください。

9.2.4　テスト手順の記述

　次にテスト手順を記述します。これは、Botのような小規模なアプリケーションならそこまで神経質にすべて
記述する必要はありませんし、テスト実施者が自分しかいないなら、項目を見れば何をするのかわかりま
す。ですが、テスト項目を見ただけでは何をするべきかわからないような複雑な手順である場合や、テスト実
施者が開発者以外である場合は、テスト手順を記録しておくようにしましょう。
　手順には、それぞれの手順を実行したあとの確認項目もあわせて記入しましょう。手順の実施後に確認
することがない場合、「なし」としてもかまいません。また、ひとつのテスト項目に対してひとつの手順を用意す
る必要もありません。たとえば、前項で「複数行を読み上げるかどうかを設定できること」にはテスト項目が4
つありましたが、このテストはすべて、図9.2の手順でまとめて行えます。

図9.2: テスト手順の例

　ここで重要なのが、あくまで「テスト項目の検討」と「テスト手順の作成」は分けて行うべきであるということ
です。前者では、「何をテストすべきか」を考えます。後者では、「テスト項目のテストを実施するために必要
な手順はなにか」を考えます。テスト項目を考えるとき、テスト手順が同時に浮かんで来ることもあります
が、あくまで別のものとして分けて書いておきましょう。これをひとまとめにしてしまうと、「ひととおりの操作をし
た。だからすべてのテストができた」と考えてしまいがちです。
　次に、手順とテスト項目の対応を明文化しておくことも大切です。上記のように、テスト手順を表にして
いるなら、各テスト項目に連番を振り、「テスト項目No.」の列を設けてそこに記入しておくとよいでしょう。

9.3　テストを実施しよう

9.3.1　試験を実施し、記録を残す

　設計した手順どおりにテストを実施します。テストを実施したら、実施した日付とバージョン番号（ない場
合、Gitのrevisionでも可）、試験結果（合格・不合格）を記録しておきます。それぞれのテスト項目に
ついて、結果をひとつひとつ記録しなくても構いません。すべてのテストが合格となったことをまとめて記録し
ておいてもOKです。ひとつひとつの結果を記録したい場合、テスト手順の表をコピーして結果を書き入れて
いけばよいでしょう。
　万が一、テスト実施中にテスト設計自体の誤りを見つけた場合は、面倒でもテスト実施を中断し、テス
ト仕様の誤りを修正してから続行するようにしましょう。もし修正を後回しにして、そのまま忘れてしまった場
合、実際のテスト内容と記録上のテスト内容に食い違いが発生します。これでは、もはやテストを行った意
味がありません。誤字程度の単純な誤りでも、かならず修正してからテストを実施しましょう。

9.3.2　エビデンスを残す

　テストを実施したら、エビデンス（証拠）を残しておくのが通例です。自分が実施したテストにもエビデン
スは必要です。なぜなら、「合格」としたテスト項目に関連する不具合が出たとき、「本当にそのとき合格で
あったか」を確認する手段になるからです。テスト結果のエビデンスがない場合、実際は不合格のはずなの
に見間違いで合格にしてしまった項目があるかもしれないと思っても、あとで特定できません。不具合箇所
を特定するにはテストをやりなおさねばならないのです。そのような事態を避けるためにも、テスト結果のエビ
デンスは残すようにします。Discord Botのテストであれば、テスト用Guildのログがそのままエビデンスになり
ます。

9.3.3　テストが「不合格」となったら

　テストを実施していると、テストが「不合格」、つまり意図しない動作になっていることがあります。このとき
注意したいのが、「テスト不合格」＝「バグ、不具合」ではない、という点です。テストに不合格なのであれば
不具合じゃないかと思われるかもしれません。もちろん大半は実装の誤りによるバグであることが多いです。
しかし、テスト設計に誤りがある可能性や、テスト設計で想定している仕様より実際の動作のほうがユーザ
ーにとって自然でわかりやすい可能性もあります。（図9.3）。

図9.3: テストの不合格＝バグではない

　そのため、テストが「不合格」となったら、その不合格をどのように取り扱うかを検討しなくてはいけません。
テストを修正するのか、コードを修正するのか、仕様を再検討するのか、柔軟に検討しましょう。もちろん、
修正後は再度テストを行います。すべてのテスト項目が「合格」になるまでテストを繰り返しましょう。

第10章　Discord Botのテスト自動化

　この章では、テストを自動化することの意味と、Discord Botのテストを自動化する方法を紹介します。
また、テストの自動化に使っているライブラリー「jishaku」についても紹介します。

10.1　テスト自動化とは

10.1.1　なぜ自動化するのか？

　テスト自動化をするモチベーションは多岐にわたります。筆者がshovelのテストを自動化するうえで、感じ
ているメリットについて記します。

10.1.1.1　手順の漏れと誤りを防げる

　テストを手作業で行っていると、手順に抜けが生じたり、見間違いで合否判定を誤ることがあります。テ
ストの実施を自動化することで、このようなヒューマンエラーの起きる余地がなくなります。

10.1.1.2　リファクタリングがしやすくなる

　リファクタリングとは、「アプリケーションの振る舞いを変えることなく内部構造を変更する」ことです。リファ
クタリングの条件、「アプリケーションの振る舞いを変えることなく」を保証するためにはテストが必要です。自
動化によりテストの実施にかかる手間が減ることで、リファクタリングに取り組みやすくなります。

10.1.1.3　どのようなテストをしたかがわかりやすくなる
　テストを自動化する際には、自動化用のデータ（テストコード含む）を用意します。このデータには実施し
たテストの手順と合否判定のロジックが含まれますので、テストを実施してから時間がたってもどのようなテス
トをしたかが一目瞭然です。ただしテストの意図まではわからないので、テスト仕様書を作るか、テストコード
内のコメントなどで補足する必要があります。

10.1.2　何を自動化するのか？

　自動化できる対象は2点あります。まずは「機能のテスト」です。アプリケーションを実装する際は、設計し
たテストに基づき、テストコードを書きます。ここで書いたテストにすべて合格すれば、機能の開発が終了した
といえます。次に、「回帰テスト」も自動化できます。機能のテストに用いたテストコードは、そのまま回帰テス
トに流用できます。しかし、テストによっては時間経過を必要とするものもあり、そのようなテストについては回
帰テストからは省いてもよいでしょう。

10.1.3　どうやって自動化するのか？

　discord.pyのコマンド処理には、discord.Messageやdiscord.Contextといったデータクラスが密接に絡
んできます。これらのデータクラスの内容を齟齬なく作成するのは困難です。筆者はshovelのUIテストを自
動化したいと考えたとき、既存のユニットテストフレームワークをそのまま適用するのは難しいと感じました。

　しかし、機能が増えるにつれ、回帰テストを行うのにかかる時間も増えていき、どうしてもUIテストの自動
化をしたいと考えるようになりました。調査の結果、既存のフレームワークに頼るのは諦め、自分でテスター
Botを作って自動化することにしました。
　筆者がここで紹介するのは、いわゆるテストクラスというのではなく、単なるBotプログラムです。テスター
Botが行えるのは、コマンドを発行すること、そのコマンドに対するshovelの応答結果をチェックすることです。
次節からは、このテスターBotの実装方法について説明します。

10.2　Botのテストに欠かせないモジュール「jishaku」

10.2.1　jishakuとは

　jishakuは、discord.ext.commandsフレームワークで作られたDiscord Botをデバッグ・テストするための
ライブラリーです。MITライセンスでリリースされています。

10.2.2　jishakuにできること

　jishakuを組み込むと、具体的にどのようなことができるのでしょうか。jishakuをBotに導入すると、
jishaku <jishakuコマンド>という形式で、さまざまなjishakuコマンドを使うことができます。jishakuコマンド
を使うと柔軟にBotをデバッグできるため、デフォルトでBotのオーナーしか利用できないようになっています。
jishakuコマンドの使用方法の一部を紹介します。

10.2.2.1　柔軟なコマンド実行
　jishaku su <member> <command>コマンドは、memberで指定したユーザーがcommandで指定
したコマンドを実行したとして、Botに処理を実行させるものです。具体例を見るのがわかりやすいでしょう。
図10.1をごらんください。

図10.1: jishaku suコマンド 使用例

　shovelにおけるgvコマンドは、コマンド実行ユーザーの声設定を表示するコマンドです。前半は、通常通
りgvコマンドを実行した様子です。発言ユーザー「cod」の声設定を表示しています。後半では、発言ユーザ
ーは前半と同じ「cod」であるにもかかわらず、shovelは「shovel_green」の声設定を表示しています。
　このsuコマンドを使用できることが、jishakuを自動テストに用いる最大のポイントです。大半の自動テス
トでは、Botがそのままコマンドを発行すればよく、jishakuを使わなくてもかまいません。しかし、それではテス
トできないものもあります。たとえば、Guildの管理者権限を持つユーザー（以下、管理者ユーザーと呼ぶ）
しか実行できないコマンドについて「管理者ユーザーがコマンドを実行しようとしたとき、実行できること」「一
般ユーザーがコマンドを実行しようとしたとき、実行できないこと」を確認したいとします。このとき通常であれ
ば、「管理者ユーザー」と「一般ユーザー」の両方からコマンドを実行する必要があります。しかしjishaku su <
一般ユーザー>、jishaku su <管理者ユーザー>のようにjishaku suコマンドを使ってコマンド実行ユーザーを
切り替えることで、単一のテスターBotからのコマンド発行で両方のテストが行えるのです。
　 こ の ほ か に も 、 指 定 し た channel で コ マ ン ド command を 実 行 す る jishaku in <channel>
<command>コマンドもあります。

10.2.2.2　Pythonコードの実行

　jishaku python <argument>コマンドを使用すれば、BotにPythonコードを実行させることができます。
コード中では、_bot、_ctx、_message等の特別なコンテキスト変数を使うことができます。例として、リスト
10.1をごらんください。

リスト10.1: Pythonコード実行の例

!sh jishaku py ```py

await _ctx.send(len(_bot.voice_clients))


```

　これは、shovelのjishakuコマンドを使って、shovelに対して現在のボイスチャンネル接続数を出力させる
命令のサンプルです。実行すると、図10.2のようになります。平日昼間のため、かなり接続数は少なめで
す。

図10.2: jishaku pyコマンド 使用例

10.2.2.3　コードの閲覧
　jishaku cat <filename>コマンドを仕様すれば、filenameで指定したファイルのソースコードを閲覧でき
ます。シンタックスハイライト（ソースコードが見やすくなるよう色などをつけて表示すること）はファイルの拡張
子や内容から自動で設定されます。また、ファイルの内容が長くなる場合、自動的にページ分割されて表
示されます。jishaku cat <filename>#L10-20のように、ファイルの一部を行指定して読み込むこともでき
ます。
　Botコマンドの処理内容を見たい場合、もっと便利な方法があります。jishaku source <command>
コマンドを使用すれば、commandで指定したコマンドのコードを閲覧できます。図10.3は、jishaku source
を使い、shovelのコマンドread_nameのコードを閲覧する例です。



図10.3: jishaku sourceコマンド 使用例

10.2.3　jishakuの導入

10.2.3.1　インストール

　jishakuパッケージはPyPIに登録されているため、pipコマンドでパッケージ名を指定することで簡単にインス
トールできます。また、GitHubリポジトリーを指定して、開発版をインストールすることもできます。リスト10.2
をごらんください。

リスト10.2: jishakuのインストール

安定版のインストール


$ python3 -m pip install -U jishaku<Enter>


開発版のインストール


$ python3 -m pip install -U git+https://github.com/Gorialis/jis

haku@master#egg=jishaku<Enter>

10.2.3.2　Botへの組み込み

　jishakuをBotに追加するには、Botインスタンスに対してjishaku cogを追加します。リスト10.3をごらんく
ださい。

リスト10.3: jishakuをBotに追加するサンプルコード

from discord.ext import commands


bot = commands.Bot(command_prefix="$")


bot.load_extension("jishaku") # Botへjishaku cogを追加している




...


bot.run("<Discord Botトークン>")



10.3　テスト自動化の実装方法を紹介！

10.3.1　構成

　ここからは、jishakuとテスターBotを使ったテスト自動化の仕組みについてお話します。テスト自動化の全
体図を図10.4に示します。ここに出てくる「テスターBot」は、shovelや試験用Bot、開発用Botとは完全に
別のBotです。テスターBot用のBotアカウントを取得しておいてください。

図10.4: テスト自動化の構成要素

10.3.2　自動テストのためにshovelを修正するポイント

　テスターBotから自動テストを行えるようにするため、shovelにも少し手を入れる必要があります。

10.3.2.1　設定ファイルにテスターBotのIDを追加

　自動テストに向けて、テスターBotを特別扱いする処理を組み込みます。その準備段階として、まず設定
ファイルにテスターBotのIDを追加しましょう（リスト10.4）。

リスト10.4: config.py 追加内容

...


TEST_BOT_ID = <テスターBotのID>



10.3.2.2　テスターBotからのコマンド受付を追加

　discord.ext.commandsフレームワークでは、Botから送られたコマンドは無視するようになっています。こ
の制限を取り除くため、リスト10.5のようにコードを追加します。

リスト10.5: テスターBotからコマンドを実行できるようにするコード

class Shovel(commands.Bot):


    ...


    async def process_commands(self, message): ←①


        if message.author.id == config.TEST_BOT_ID: ←②


            ctx = await self.get_context(message)


            await self.invoke(ctx)


        else:


            await super().process_commands(message) ←③

　1. コマンドの実行処理を行うprocess_commandsをオーバーライドします。
　2. メッセージ送信者のIDが、config.TEST_BOT_IDと一致するか確認します。
　一致する場合、続く2行で、コマンドを実行する処理を実施します。
　3. 一致しない場合、通常のprocess_commandsに処理させます。

10.3.2.3　テスターBotからjishakuを実行できるようにする
　jishakuコマンドはBotのオーナー以外には実行できません。なので、テスターBotをオーナーとしてみなすよう
コードを追加します。リスト10.6をごらんください。

リスト10.6: テスターBotからjishakuコマンドを実行できるようにするコード

class Shovel(commands.Bot):


    ...


    async def is_owner(self, user: discord.User): ←①


        if user.id == config.TEST_BOT_ID: ←②


            return True


        else:


            return await super().is_owner(user) ←③

　1. Botオーナー判定処理を行うis_ownerをオーバーライドします。
　2. 判定対象ユーザーのIDが、config.TEST_BOT_IDと一致するか確認します。
　一致する場合、Trueを返します。



　3. 一致しない場合、通常のis_ownerに処理させます。

10.3.3　テスターBotのコード

　次はテスターBotを見ていきます。

10.3.3.1　config.py

　テスターBotのパラメーターを管理するファイルです。トークンを含むので、Gitの管理対象からは外しておき
ましょう。リスト10.7をごらんください。TARGET_PREFIX、TARGET_IDには、テストしたい対象のプレフィック
スとIDをそれぞれ記述します。このパラメーターがあることでテスト対象のshovel（本番用shovel、開発用
shovelなど）を切り替えることができます。

リスト10.7: config.py

TOKEN = "<テスターBotのトークン>"


PREFIX = "<テスターBotのプレフィックス>"


TARGET_PREFIX = "<テスト対象Botのプレフィックス>"

TARGET_ID = <テスト対象BotのID>

10.3.3.2　tester_bot.py

　テスターBotのソースコードの内容です。リスト10.8をごらんください。コマンド発行に用いる値と、コマンド実
行結果の判定に使う値をリストに入れ、順次テストを実行しています。

リスト10.8: tester_bot.py

from discord.ext import commands


import discord


import asyncio


import config





OK_COLOR = discord.Color.blue()


NG_COLOR = discord.Color.red()





OK_EMOJI = '\N{WHITE HEAVY CHECK MARK}'


NG_EMOJI = '\N{CROSS MARK}'





bot = commands.Bot(command_prefix=config.PREFIX)










@bot.command()


async def read_limit(ctx):


    def check(m):


        return m.author.id == config.TARGET_ID and m.channel == ctx.channel





    params = (


        (4, NG_COLOR),


        (5, OK_COLOR),


    )





    for param in params:


        await ctx.send(f"{config.TARGET_PREFIX}jsk su TestUser "


                       f"read_limit {param[0]}")


        try:


            msg = await bot.wait_for('message', check=check, timeout=3)


        except asyncio.TimeoutError:


            await ctx.send(NG_EMOJI)


            continue


        result = (msg.embeds and msg.embeds[0].color == param[1])


        await msg.add_reaction(OK_EMOJI if result else NG_EMOJI)





bot.run(config.TOKEN)

10.3.4　動作イメージ（スクリーンショット）

　まずテスターBotを実行します。

リスト10.9: テスターBotの実行

$ python tester_bot.py<Enter>

　テスターBotとテスト対象BotがいるGuildで、!test read_limitを実行すると、自動でテストが実行され、
合格となった場合チェックマークリアクションが付きます。図10.5をごらんください。ここでは、テスターBotは
「soil」という名前で登場しています。

図10.5: テスターBot動作結果



10.3.5　さらに実用化するためのアイデア

　以上の説明では、テストの判定結果を表示するために、「コマンドを発行されたshovelが応答した、その
メッセージにリアクションをつける」という方法を示しました。しかしこの方法だと、テスト項目数が多くなったと
き、すべてのテスト結果を確認するのは大変です。実際のshovelのテストにおいてはこれまでに書いたものを
発展させ、さまざまな工夫をしています。スペースの都合上ここではすべてを紹介できませんが、限られた時
間で効率的にテストを実施するための主な施策を以下に紹介します。
　・テスト終了時、実施したテストの数、合格したテストの数を表示する
　・不合格となったテストの数と関数名を表示する
　・テスト結果のうちひとつでも不合格のものがあれば、警告を表示する
　・discord.ext.taskを利用し、定期的に自動で回帰テストを実行する
　・回帰テストの結果をWebhookで通知する



第11章　アップデートのための作業

　実装とテストを終えたら、いよいよサービスのアップデートです。この章では、アップデートをより安全に実施
するための「アップデートリハーサル」について述べます。また、shovelの大規模アップデートの際に行っている、
ダウンタイムを短くするための工夫についても説明します。



11.1　アップデートリハーサルをしよう

11.1.1　アップデートの副作用

　そもそもアップデートとは、バグ修正や機能追加など、ユーザーによりよいサービスを提供するために行われ
るものですので、ユーザーにとっては喜ばしいことであるはずです。しかし、アップデートに時間がかかりすぎてユ
ーザーがサービスを使えない時間が多く発生したり、アップデートの過程でユーザーのデータを壊してしまったりし
ては元も子もありません。
　アップデートを実施する際には、ユーザーのデータを損なわないことや、サービスのダウンタイムを最小限に抑
えることが重要です。このとき有効なのが、アップデートリハーサルです。

11.1.2　アップデートリハーサルの意義

　アップデートリハーサル（以下、リハーサル）の目的は、アップデートにかかわる作業手順を検証することで
す。作業手順の検証には2段階あります。1段階目は、まずBotの稼働を止めてDB構造を変更しその後
再びBotを動かす、といった「アップデート手順書」を作成すること。2段階目は、前段階で作成した「アップ
デート手順書」のとおりに作業をすれば、アップデートが正しくスムーズに完了するのを確認することです。これ
らの作業は、「本番環境」をできる限り模した「リハーサル環境」で検証します。

図11.1: 本番アップデートの前に、リハーサル環境で検証する

　いきなり本番環境でアップデートを実施せず、リハーサル環境をつくる理由は、トラブルの可能性をすこし
でも減らし、サービスのダウン回数と時間を減らすためです。リハーサルは、本番同様のデータをわざわざ用
意しなければならない点、二度手間となる点で、面倒なものではあります。しかしリハーサルを省くと、思わ
ぬトラブルでサービスが起動できなくなったり、DBに置かれたユーザーデータを損なってしまったりといった重大
な事態に繋がります。ユーザーの利便性向上のために行うはずのアップデートでユーザーに不便を強いては本
末転倒です。ミスや誤りの可能性があるアップデート作業をするときは、面倒でもリハーサルをしっかり行いま
しょう。



11.1.2.1　テストとリハーサルの違い

　テストはあくまで「サービス本体の機能のテスト」です。機能が意図通りに実装されているか、異常系に対
して網羅した対応ができているかを確認するのがテストです。リハーサルは、データの移行手順やアップデート
の順番など、「アップデート手順の検証」が目的です。

11.1.3　アップデートリハーサルをやってみよう

　ここでは、アップデートリハーサルの手順を紹介します。

11.1.3.1　アップデート手順書作成

　DB構造を変更した場合など、コードを更新する以外にアップデートのための手順が必要である場合、アッ
プデートの手順書を作成します。リスト11.1は、実際にshovelのアップデート時に使用したアップデート手順
書です。便宜上「手順書」と呼んでいますが、これはシェルスクリプトなどにしてしまってもかまいません。

リスト11.1: アップデート手順書 例

1. DBのバックアップをとる。


2. DBスキーマ変更：WordテーブルにGuild Snowflakeカラムを追加する


3. DBデータ操作：WordテーブルのGuild Snowflakeカラムを埋める

4. DBスキーマ変更：Guildテーブルの主キー・Wordテーブルの外部キーの制約をそれぞれ落とす


5. DBスキーマ変更：GuildテーブルのGuild Snowflakeカラムに主キー制約、


   WordテーブルのGuild Snowflakeカラムに外部キー制約をつける


6. コード変更：Guildテーブルの主キーとしてSnowflakeを参照するように変更


7. Botの起動に失敗する場合、一度DBからバックアップを戻し、データを復元する。


   6で行ったコード変更を元にもどす。

11.1.3.2　後退の手段を確保

　アップデート手順書に書くべきこととして、「後退手順の準備」と、「後退判断のタイミングと基準」があり
ます。リスト11.1でいうと、1が「後退手順の準備」、7が「後退判断のタイミングと基準」にあたります。
　後退手順とは、行ったアップデートについて、ソースコードやDBの内容などを含め、すべてをアップデート前
の状態に戻す手順です。この手順を用意していない場合、アップデートによって本番環境のサービスがサービ
ス提供できない状態に陥った際、取り返しの付かない事態を招くおそれがあります（図11.2）。

図11.2: 後退手順がないとき



　このような場合でも、後退手順があれば、DBとコードをアップデート直前の状態に戻し、すぐにサービスの
運用を再開できます（図11.3）。

図11.3: 後退手順があるとき

　もちろん、そもそもそのような状態に陥らないようリハーサルをするのですが、万が一の事態に備えて二重
三重の準備をしておくことが、サービスの稼働率を上げることに繋がるのです。

11.1.3.3　リハーサル準備

　アップデート手順書が作成できたら、なるべく本番に近い環境を用意します。本番に近い環境の例とし
て、DBのデータがあります。本番環境のデータをすべて複製したデータをリハーサル用データとして使用しま
す。shovelの場合、BotアカウントおよびGuildについては、開発用Botおよび開発用Guildを使います。
　本番と同じデータをリハーサルに用いる理由は、データの内容、とくにデータの数が大幅に違うと、計算量
や入出力待ち時間に違いが生じるためです。本番と異なる環境でしかテストを行っていなかったために、い
ざ本番で動かしたとき、テストでは起きなかったはずの不具合が顕在化してしまった、というケースはしばしば
聞く話です。リハーサルでもこれと同じことに注意する必要があります。

11.1.3.4　リハーサルの実施



　アップデート手順書通りに作業を実施し、あらためてテストを行います。この過程でアップデート手順書に
誤りや記載漏れを見つけたときは、その都度修正します。



11.2　本番アップデートの実施

11.2.1　本番アップデートを実施する

　importlib.reloadやdiscord.ext.commands.Bot.reload_extensionにより、再起動せずにアップデー
トできる場合は、リハーサルが完了次第すぐにアップデートします。
　再起動が必要である場合は、ユーザーに影響の少ないタイミングにサービスの再起動を行います。サービ
スの内容とユーザー層にもよりますが、shovelであれば午前6～10時頃の接続数がもっとも少ないので、こ
こで再起動し、アップデートを行います。また、ユーザーへのリリース通知をしたい時間から逆算してアップデー
トの時間を決めるのもよいでしょう。もちろん、事前にDBのバックアップも必ず行いましょう。

11.2.2　動作確認をする

　サービスの再起動を含め、アップデートが完了したら、まずは通常通りサービスが動いていることを確認しま
す。無事に起動し、通常通り動作していることが確認できたら、念には念を入れ、ここでもテストを実施しま
す。



11.3　「2系統アップデート」でダウンタイム大幅短縮！

11.3.1　大規模アップデートのジレンマ

　ダウンタイムは極力短くしたいものです。しかし、サーバーのOSを変更したい場合や、ミドルウェアを載せ替
えたいときなど、どうしてもサービスを長期間ダウンさせないと行えない作業というのは存在します。そんなとき
に検討していただきたいのが、一時的な2系統運用です。
　これは、スナップショット（サーバーの内容をまるごと保存するバックアップのこと。詳細は第15章「バックア
ップ - 安心を確保する」で解説）を利用してまったく同じサーバーをもうひとつ立ち上げ、そこで通常の運用
を継続するというものです。アップデート作業はその裏で実施します。これだけではわかりにくいでしょうから、
次項をごらんください。

11.3.2　詳細な実施手順

　もともとあるVPSのことを、VPS①と呼びます。新しく作成するVPSのことを、VPS②と呼びます。
　1. サービスの運用を停止する。
　2. VPS①をシャットダウンし、VPS①のスナップショットをとる。
　3. 2.で取得したスナップショットから、VPS②を生成する。
　4. VPS②を起動し、サービス運用を開始する。
　5. 4.で運用を開始したサービスが正常に動作していることを確認する。
　6. VPS①を起動し、アップデートに必要な変更を施す。
　7. VPS②のサービス運用を停止する。
　8. VPS②のDBのバックアップを取得し、VPS①に転送する。
　9. 8.で転送したバックアップの内容を、VPS①のDBにリストアする。
　10. VPS①でサービス運用を開始する。
　11. 10.で運用を開始したサービスが正常に動作していることを確認する。
　12. VPS②をシャットダウンし、削除する。

11.3.3　2系統アップデートのメリット・デメリット

　メリットはなんといってもダウンタイムの短さです。先ほどの図からもわかりますが、サービスを止めたまま作
業すると、かならず作業所要時間より長いダウンタイムが発生します（図11.4）。

図11.4: 通常のダウンタイム



　2系統アップデートを行うことで、大幅な時間短縮が見込めます（図11.5）。

図11.5: 2系統ダウンタイムの比較

　ただし次のようなデメリットもあります。IPアドレスの一時的な変化と、サーバーを2台稼働させることによる
金銭的負担です。Discord Botの場合、BotクライアントのIPアドレスが変わってもサービスには何ら影響は
ありません。HTTPサーバーを利用したWebアプリケーション部分など、IPアドレスにかかわる部分があれば影
響を受けますが、サーバーでのリダイレクト設定やDNS設定で対応可能です。周辺部分は諦めて縮退運
転するという手もあります。また金銭的負担については、VPSであれば日単位でサーバーをレンタルできるた
め、shovel程度の軽量なシステムであれば、1日数百円以下で済みます。



第12章　Botの土台作りのダイジェスト

　この章では、サービスが動作する土台であるサーバーについてお話しします。shovelはVPS上で動いていま
す。なぜVPSなのか？　それはこのサービスの信頼性を低コストで確保するにはVPSがもっとも適切だったか
らです。そこをくわしくお話ししたあと、VPSの契約から基本のセットアップまでの過程をダイジェストで見てい
きましょう。



12.1　どこでBotを動かすか検討しよう

12.1.1　Bot運営にサーバーを使うわけ

　Botを動かすだけなら、必ずしもサーバーが必要なわけではありません。ここでの「サーバー」とは、「サービスを
提供することに主な目的をおいた、インターネットに接続されたコンピューター」のことを指します。shovelは
discord.pyというPython用ライブラリーを使って開発されています。なので、Pythonが動いて、インターネッ
トに接続できるなら、普通のPCでshovelを動かすことも可能です。
　では、なぜわざわざサーバー代を払ってまでサーバーで動かしているのでしょうか。これには3つの理由があり
ます。第一に、利便性の問題です。自分用のPCでBotを動かしていると、24時間PCを立ち上げっぱなしに
しなければなりません。不意に停電やインターネット回線の不調が発生した場合にBotが止まってしまいます
し、再起動を自由に行うこともできなくなります。第二に、セキュリティの問題です。私用PCには個人情報
や重要なデータが保存されている可能性があり、思わぬ事故で情報漏洩が発生した際に被害が出ます
（図12.1）。第三に、機能上の問題です。個人PCの多くはWindowsです。家庭用のWindowsOSで
WebサーバーやDBサーバーを立てて安定稼働させることも可能ではあります。しかし、もともとUNIX系のソフ
トをWindowsに移植したものを使うことになり、前例も少ないため、インストールや設定に関する情報量の
少ない傾向があります。また、個人用のWindowsのライセンスはサーバーとしての利用に制限があります。

図12.1: 個人PCの情報漏洩リスク

　これらの理由から、本格的なBot運営をする場合は、自宅PCではなくサーバーを用意するべきだと考えま
す。ただし、親しい友人向けにお試しで作ってみる場合や、DBなどのミドルウェアが不要な場合などは、必
ずしもこの限りではありません。

12.1.2　自宅サーバーではなくVPSを選ぶ理由



　自宅サーバーは一見手軽なように見えますが、実運用に堪えるレベルのサーバーを一般住宅に設置して
安定稼働させるというのは想像以上に大変です。一般家庭用のネットワークは稼働率や速度容量、固定
IPアドレスが持ちづらいなどの点で十分とは言えません。また、温度管理や停電・落雷対策も楽にできるも
のではありません。夏場はサーバーを冷やすエアコンの電気代だけで数千円、数万円に上るでしょう。他に
も、運営者の自宅が停電したときにユーザー全員がBotを使えなくなってしまったり、運営者の家族が動画
を見るたびにBotの反応が遅くなったりしている可能性もあり得ます。そのような状態では、実用的なBotを
ユーザーに提供できているとはいえないでしょう。それに、メモリやCPUのスペックを上げると、そのたびにお金
がかかります。故障への対応も自分でしなければなりません（図12.2）。

図12.2: 自宅サーバーの弱点

12.1.3　PaaSではなくVPSを選ぶ理由

　自宅サーバー以外でアプリケーションを稼働させる場合、VPS以外には、HerokuやAWS等のPaaSを利
用するという手段もあります。これらの挙動に精通している場合、もちろん選択肢として検討して構いませ
ん。しかし、これらのツールに触れるのもBot開発もはじめてだという方には、難しく感じてしまう可能性が高
いです。なぜなら、このようなツールには普通のサーバーにはない特殊な制約が存在するからです。
　何をするにもまず、ツールを掌握することが必要になります。そうでないと、うまくいかない場合に原因がど
こにあるのかを切り分けにくくなります。もちろん、使ってはいけないわけではありません。うまく使えば費用を
抑えつつ高いパフォーマンスを得られるでしょう。



12.2　サーバーのセットアップをダイジェストで紹介！

12.2.1　サーバーの入手 - VPSの契約

　まずはサーバーを入手します。ここではVPSを契約します。
　VPSを契約する際には、まずOSを選択します。契約後、選択したOSがインストールされた状態のサーバー
が手に入りますので、コントロールパネルから電源を入れて起動してみましょう。また、サーバー作成前に、作
成するサーバーへのSSHログインに使用する公開鍵を設定できるサービスも一般的です。これを設定しておけ
ば、SSHでのパスワードログインを一切行わずに済むため、安全性が高まります。

12.2.2　セキュリティ設定

　契約して起動が完了した瞬間から、サーバーはすでに全世界に向けて公開されています。もし初期設定
を後日にまわすのであれば、セットアップが完了次第、VPSのコントロールパネルから電源を落としておきまし
ょう。「ぽっと作っただけのサーバーなんて、誰も来ないよ」と思う方もいるかもしれません。しかし、攻撃者はIP
アドレスを総当たりして攻撃を繰り返しています。
　もちろん、長いパスワードを設定して破られにくくしておけば、立ち上げておくだけで乗っ取られる可能性も
低くはなるでしょう。ですが、念には念を入れ、セキュリティを万全にするまで電源をオフにして攻撃不能の
状態にしておくことは、決して無駄なことではありません。このセキュリティ設定は多岐にわたるため、第13章
「セキュリティ - Botとユーザーを守る壁」で詳細に述べます。

12.2.3　HTTPサーバの導入

　SSHでログインすれば、サーバーにアクセスできます。しかし、出先でスマートフォンしかないときにSSHを使っ
てサーバーの状態を確認するのは、現実的には少々厳しいのではないでしょうか。そこで普段から、もっと手
軽にサーバーの状態を確認できるように、HTTPサーバーを設置しておくとよいでしょう。HTTPサーバーがあれ
ば、サーバーから配信したコンテンツをブラウザひとつで見られるようになります。ただし、HTTPサーバーのセット
アップは環境に応じて手順が異なるため、ここでの詳しい手順の解説は省略します。ご自身の環境に応じ
て調べてみてください。

12.2.4　HTTPS化設定

　HTTPサーバーを立てたら、SSL証明書を設定しておきます。自己責任でHTTPのままでも構いませんが、
ユーザーがアクセスする可能性のある場合や、パスワードを入力したりする用途があるならHTTPS化しておい



たほうが安心です。SSL証明書は、Let's Encrypt等の無料のものから有料のものまで種類も豊富なため、
提供するサービスに応じて適切なものを選択しましょう。
　注意点ですが、IPアドレス（xxx.xxx.xxx.xxx形式のもの）に対してSSL証明書を発行することはできま
せん。独自ドメインは年間数百円程度の費用で簡単に発行できるので、日頃よりひとつは持っておくと、
色々と融通がきいて便利です。筆者も、別件で使用しているドメインのサブドメインをVPSに割り振り、
Let's EncryptのSSL証明書を適用しています。

12.2.5　監視の仕組みをととのえる

　サーバーの動作が正常であることを確かめるためや、サーバースペックが過不足ないか確認するため、サー
バーの監視を行います。詳細は第14章「監視 - 24時間みまもり体制」でお話しします。

12.2.6　アプリケーションのインストール

　Botに必要なアプリケーションをインストールします。Linux OSへのインストールには、大きく分けて3つの方
法があります。インストールしたいアプリケーションや必要なバージョンなどの情報を総合し、最適な方法を決
めましょう。
　1. apt、yumなどのOSコマンドでインストールする
　2. バイナリファイルをダウンロードする
　3. コードをダウンロードし、ビルドする



12.3　DBでデータを永続化しよう

12.3.1　DBの必要性

　データを永続化する手段について考えていきましょう。ここで「データの永続化」とは、「Botアプリケーション
が終了しても、Botに登録した設定など、次回以降の起動に引き継ぎたいデータが失われないようにするこ
と」を指します（図12.3、図12.4）。shovelであれば、各Guildの辞書や読み上げ設定、ユーザーのボイス
設定などが永続化すべきデータです。

図12.3: データの永続化をしていない場合

図12.4: データの永続化をしている場合

　永続化する手段は主にふたつあります。ひとつはファイルへの書き込みです（図12.5）。ファイル入出力
はどの言語でも簡単に行えますし、DBサーバーを用意する必要がなく、手軽に扱うことができます。また、フ
ァイルフォーマットにもよりますが、テキスト形式のファイルであれば内容の確認もファイルを開くだけなので簡
単です。しかしいっぽうで、OSレベルのファイル入出力自体にはロック機構は保証しづらいため、アプリケーシ



ョン内でも排他制御が必要になります。複数アプリケーションから操作することとなったとき（たとえば、Bot
設定をWebインターフェイス経由で行えるようにしたくなった場合など）にも、複数アプリケーション間での排
他制御を行わなければなりません。また、大量の書き込み・削除を行っているとパフォーマンスが低下する原
因にもなります。

図12.5: ファイルでの永続化

　もうひとつの選択肢が、DBの利用です（図12.6）。DBMS（MySQLやPostgresql等）は、「管理シ
ステム」の名のとおり、データをDBに格納するさまざまな懸念事項の処理を請け負ってくれるものです。たと
えば、複数のアプリケーションから同じデータへの書き込みが発生した際にエラーを発生させたり、複数のデー
タの格納を行いたい際に、同一タイミングで確定させたりすることが可能です。また、大量のデータ入出力の
パフォーマンスを最適化し、最低限のディスク入出力でデータの読み書きを実現してくれます。いっぽうで、利
用するにはDBMSをインストールし、常時稼働させておく必要が出てくるため、単なるファイルよりも環境構
築や運用のハードルが高くなります。

図12.6: DBでの永続化

　まとめると、ファイル入出力は手軽に試せる反面、パフォーマンスや排他制御の点で難があります。DBは
初期設定の必要があり、データの格納方法もユーザーには一見不透明ですが、入出力やデータの書き込
みタイミングの衝突に対応する機構があり、信頼性とパフォーマンスが高さに期待がもてます。どちらもメリッ
ト・デメリットがあるので、用途に応じて選択しましょう。試し開発のときはまずファイルを使い、本格的な運
営を始めたいときにDBへ移行するという手順を踏むというのもよいでしょう。DBの設定で行き詰まって、Bot
開発自体を諦めてしまうことだけは避けたいものです。



12.3.2　DBMSの導入

　PostgreSQL、MariaDBなどのDBMSを導入します。MariaDBは、MySQLから派生したオープンソースの
DBMSです。



12.4　バックアップ設定

　データが不慮の事故で消失してしまわないように、バックアップをとっておきましょう。また、作成したバック
アップをサーバー内に保存していてはサーバーに何かあったときに意味がないので、VPSとは違う場所に転送し
ておきます。詳細は、第15章「バックアップ - 安心を確保する」で紹介します。



第13章　セキュリティ - Botとユーザーを守る壁

　この章では、個人開発サービスを運営する上で欠かせないセキュリティについてお話しします。実装の本
筋からは外れるため、技術のチュートリアルなどで触れられることは少ない話題ですが、攻撃による被害を
防ぐことはサービスの信頼性確保において絶対必要です。まずはOSのセットアップにおけるセキュリティにつ
いて述べ、続いてBotを運営する上でとくに気をつけるべき攻撃手法について解説します。



13.1　知らないうちに犯罪に加担しないために

13.1.1　「お試しだから」は通用しない

　VPSは手軽にオンラインで契約が完結しますし、自宅サーバーも電源を入れて稼働を開始するだけなら、
難しいことではないでしょう。しかし、サーバーを安全に運用していくのは、簡単なことではありません。サーバー
を運用しはじめた瞬間から、サーバー管理人はそのサーバーを守る責任を負います。「何かあったら解約すれ
ばよい」という、安易な考えではいけないのです。
　なぜなら、悪意ある第三者によるサーバーの乗っ取りを許すというのは、攻撃者の新たな攻撃を手助け
することに等しいからです。あなたのサーバーが使えなくなるだけなら作り直せばよいだけです。しかし、DDoS
攻撃の踏み台にされたり、違法ファイルの倉庫にされたり、最悪の場合、あなたの法的責任が問われる事
態にもなりかねません。VPSサービスによっては、そのような異常な挙動がみられるサーバーは自動的にシャッ
トダウンしてくれる場合もありますが、それはあくまでサービスとしての最終ラインであり、本来はその前にサー
バー管理者が止めるべきなのです（図13.1）。サービスを利用してくれるユーザーのデータを預かることがある
なら、なおさらです。

図13.1: サーバー管理者の負う責任

　もちろん、人間なら誰しもミスはあるものです。サーバーを乗っ取られることもあるでしょう。それもひとつの
経験といえるかもしれません。しかし、サーバーを守る方法についてはインターネットと書籍、いずれにも多くの
知見があり、対策を打ちやすい部分でもあります。万全を期すよう努力しましょう。

13.1.2　万全はない、安心はしない

　セキュリティに万全はありません。どんな技術で守っても、そのときは安心でも将来的に破られる可能性
はつきまといます。万全の備えをしたつもりでいても、何かの間違いで守れてはいなかったということも、起こ
り得るでしょう。そのため、「大丈夫なはず」がひとつふたつ崩れても問題ないようにしておくことが重要です。
例を以下に示します。
　・機密データは、自分以外にアクセスできないはずの場所に置いたうえで、万全を期して暗号化しておく



　・DBにおいて、特定のテーブルにしかアクセスせず、読み込みのみ行うアプリケーションには、該当テーブル
の読み込み権限のみを持たせる

　・絶対に漏れてはいけないデータはそもそも保持しない

13.1.3　セキュリティリスクの管理

　前項と矛盾するようですが、サービス運営するうえでは、絶対に漏れてはいけないデータを保持せざるを得
ない場面もあります。そこで大切になってくるのがセキュリティリスク（以下、この項ではセキュリティリスクのこ
とをリスクと呼びます）の管理です。
　まず、アプリケーションと、アプリケーションにかかわる要素（ユーザー、DB、バックアップサーバー、etc）をリ
ストアップします。そして、それらのインターフェイスを順番に整理します。その各インターフェイスに関して、どの
ようなリスクがあるかを洗い出します。洗い出したそれぞれのリスクについて、発生する見込み、発生した際
の被害の大きさから評価し、対応を決めます。リスクは、ある程度受容することも大切です。杞憂といえる
ような心配事についてまですべて予防策を講じようとすると、多大なコストがかかります。そのようなケースに
ついて、予防はせず発生時の対策のみ決めておくこともリスク管理のうちです。本筋のサービス開発にリソー
スを確保することを忘れないようにしましょう。



13.2　サーバーのセキュリティを固めよう

　VPSにしろ、自宅サーバーにしろ、これだけやれば絶対安心ということはありません。ですが、サーバーのセキ
ュリティを高めるために行うべきことは共通しています。ここでは、最低限行うべきセキュリティ対策の手順を
紹介します。

13.2.1　パッケージのアップデート

　OSをセットアップしたら、付属ソフトウェアのバージョンが古いままになっていないか確認しましょう。バージョ
ンが古いと、既知の脆弱性を突いた攻撃に遭う危険性も高まります。パッケージ管理ツール（apt、yum
等）を使い、アップデートするようにしましょう。パッケージ管理ツールを使っても万全であるとはいえません。と
はいえ、ひとつひとつ確認するのは大変なので、［使用しているOSとバージョン］+［脆弱性］等で検索
するなどして、対応すべき脆弱性がないかを調べるとよいでしょう。

13.2.2　プロセス設定

　OSコマンドのpsを使い、デフォルトで動いているプロセスを確認します。そして、OSの起動スクリプトを確
認し、自分のサービスを運営する上で不要なプロセスは動かないようにしておきましょう。このとき、psコマンド
で出てくるプロセスの顔ぶれをよく見て、見慣れておくとよいでしょう。もちろん、すべてのプロセスの挙動を完
全に把握するに越したことはありませんが、それはすぐには難しいことです。せめてサーバーに不審な挙動がみ
られたとき、プロセス一覧に見慣れないものが紛れていることを見抜ける程度には、通常動いているプロセス
を見慣れておくことを推奨します。
　また、いわゆるウェルノウンポートで動作しているプロセスや、デフォルトのポート番号が広く知られているプ
ロセスについて、ポート番号設定をデフォルト以外へ変更しておくことを強くおすすめします。たとえば、
「mysql」「sshd」などがそれにあたります。どれだけ面倒でも、「sshd」だけはかならず変えておきましょう。
sshdログインを使った攻撃の数が激減します。

13.2.3　ユーザーの作成

　ルート権限を必要としないような作業は、別途作成したユーザーで行うのがよいでしょう。また、セキュリテ
ィのレベルにもよりますが、可能であれば作業用ユーザーがOSコマンドのsudoを使えるようにしておくと便利
です。sudoコマンドをインストールし、OSコマンドのgpasswdを使って作業用ユーザーをsudoグループに追加
しておきます。



13.2.4　rootログインの禁止

13.2.4.1　rootログインを禁止する意義

　UNIX系のサーバーでは、rootログインは不可に設定しておくのが一般的です。その上で、作業をするため
には、まず通常ユーザーでログインし、root権限の必要な操作のみsudoを利用して実行します。その理由
はふたつあります。
　まず、rootログインの可能な状態だと、攻撃者にサーバーを乗っ取られやすくなります。ユーザー名が分かっ
ていてシステムの全権を握れるrootは、攻撃者にとって絶好の標的であるため、真っ先に破ろうとしてきま
す。rootログインを不可に設定しておくと、このポイントを破られる可能性をゼロにできます。
　次に、root権限についてですが、これはシステムの破壊すら可能な絶大なものです。操作ミスは絶対に
許されません。作業するにあたり、ログインするたびにそんな権限を持つ必要がそもそもないのです。この場
合は、通常ユーザーでログインして、root権限を必要とするOSコマンドのみ明示的にsudoを利用し、root
権限を付与して実行するのがよいでしょう。
　rootログインを禁止するには、次のような設定が有効です。
　・rootのシェルを変更しておく
　・sshのrootログインを禁止しておく
　・TTYのrootログインを禁止しておく
　・PAMのrootアクセスを禁止しておく

13.2.4.2　sudoが使えるならrootをとられるのと同じでは？
　ここまで読まれた方は、「いくらroot権限を取られないようにしたとしても、OSコマンドのsudoを使えるユー
ザーとしてログインされてしまったら、root権限を取られるのと同じくらいまずいのではないか？」と思われるか
もしれません。たしかにその通りです。ではなぜ、ことさらrootログインを防ぐのでしょうか。ここは、攻撃者の気
持ちになって考えてみましょう。
　まずあなたは、サーバーAにSSHログインを試みようと、sshdが待ち受けるポート22へ向かいます。しかしこ
のポートは封鎖されていました。なんとか総当たりでsshdのポートを探し当てたあなたは、rootでのパスワード
ログインを試行します。しかし、サーバーAはrootログインを禁じており、まだアカウント名も未知であるほかの
ユーザーでしかログインできないようです。そのうえ、パスワードログインは受け付けてくれず、数百文字以上の
文字列からなる暗号鍵を合致させないと入れないことがわかりました。なんとかユーザーとしてログインできて
も、サーバーAのroot権限を取れるとは限らないと思ったあなたは、サーバーAを諦め、サーバーBに向かいまし
た。するとどうでしょう、なんとこのサーバーB、rootでのSSHパスワードログインを許可しています。あなたは辞
書型攻撃でパスワードを破り、無事サーバーBのroot権限を取ることができました。サーバーAとサーバーB、ど
ちらがroot権限を取られやすいか、言うまでもありませんね。



　ご理解いただけたでしょうか。もちろん、実際の攻撃は、人の手ではなく自動化されたプログラムによって
行われているため、この例のように「根負け」ではなく「破るための必要な計算量が多すぎる」という形で諦
めることになります。たとえるなら、人感センサーのライトに照らされても人間は平気ですが、人感センサーの
ついている家をあえて狙う泥棒が少ないのと同じです。これがrootログインを禁じる理由です。

13.2.4.3　キー閉じ込めに注意！

　SSHのrootログインを禁止する際には注意が必要です。まずは、作業用ユーザーのSSH設定を行い、実
際に作業用ユーザーとしてSSHログインできることを確かめます。そしてその後、rootユーザーによるログインを
禁止するよう、設定を変更しましょう。
　これを怠ると、作業用ユーザーとrootユーザーのどちらでもログインすることができなくなり、図13.2のよう
に、まるで車の中にキーを閉じ込めてしまうような事態になってしまうのです。ちなみに筆者も一度これをやっ
てしまい、設定の初期段階だったので、諦めてVPSを作り直したことがあります。筆者のようにVPSを作り直
さなくても、VPSサービスのダッシュボードからコンソールにログインする方法などでなんとかリカバリーできること
もあります。ですが、はっきり言ってとても面倒な作業です。

図13.2: サーバーのキー閉じ込め？

13.2.5　SSHの設定

13.2.5.1　ポート番号変更

　「プロセス設定」の項でも述べましたが、sshdだけはかならず使用するポート番号を変更しましょう。SSH
のポートを22のままにしておくと、一晩で数千回のログイン試行を受けることになります。ちなみに、これは筆
者がはじめて立てたVPSで実際に経験したことです。

13.2.5.2　パスワードログインは厳禁



　OSによっては、sshdの設定でパスワードログインがデフォルトで「yes」になっていることもあるでしょう。これを
そのままにしておくことは厳禁です。OSのログインパスワードは、長くてもせいぜい数十文字でしょう。それに
対して、暗号鍵ファイルの長さは、暗号化方式にもよりますが、数百文字以上です。もちろんセキュリティの
堅牢さは鍵の長さだけに依存するものではありませんが、総当り攻撃を想定した場合、数十文字のほうが
圧倒的に破りやすいことは誰の目にも明らかです（図13.3）。

図13.3: パスワードと暗号鍵ファイルの比較

13.2.6　ファイアウォールの設定

　各種サービスのポート設定ができたら、パケットフィルタリングを設定し、不要なポートへのアクセスは完全
に遮断してしまいましょう。基本的にすべてのパケットを破棄するようポリシーを設定し、各サービスで使うと
設定したポートのみを開放しておきます。
　注意すべき事柄として、ここでもSSHログインの鍵閉じ込めは起き得ます。sshdのポートを22から新ポート
に変更したのち、ファイアウォールでポート22を閉じ、新ポートを開放して適用したつもりで再起動をします。し
かし、設定ミスによりsshdのポートが22のままになっていると、SSHログインができなくなってしまいます。実
は、なんと筆者はこれもやってしまったことがあります。

13.2.7　Logwatchの導入

　事前にセキュリティを高める設定ではありませんが、何かあったときにすぐ気がつけるよう、logwatchを導
入し、日次メールレポートを送付するよう設定しておくとよいでしょう。logwatchは、サーバー上で動作するさ
まざまなサービス（cron、SSH、HTTPなど）のログを横断して解析し、人間が読みやすい形式のレポートに
まとめてくれるアプリケーションです。「昨日」「過去1か月」「X月X日～X月X日」といった形で時間帯を指定
すると、その範囲のレポートが取得できます。



13.3　Botを狙う攻撃手法を知ろう

13.3.1　Botに特徴的な脆弱性

　Discord Botは、サーバー内部を直接ユーザーにさらけ出しているわけではありません。しかし、ユーザーから
の入力を扱うという性質上、「ReDoS脆弱性攻撃」「SQLインジェクション」「OSコマンドインジェクション」
「ディレクトリトラバーサル」の4つの攻撃には注意が必要です。

13.3.2　ReDoS脆弱性攻撃

　ReDoSは、特殊なパターンで照合処理を行うことにより、照合対象文字列が長くなるにつれ、処理時
間が爆発的に増加することを利用した攻撃です。
　Botの機能によっては、ユーザーが入力した正規表現パターンを扱うこともあるかもしれません。そんなとき
は「re2」を使いましょう。re2は、Googleによって開発された、ReDoS脆弱性攻撃への対策を行った正規
表現モジュールです。さまざまな言語でのラッパーが公開されており、Pythonにもラッパーモジュール「pyre2」
があります。
　re2では、入力文字列の大きさに対して処理時間が線形となるよう保証されています。re2が目指すの
は爆発的に処理時間が延びないようにすることですので、同じ入力に対しPython標準モジュール「re」のほ
うが高速となることもあります。ReDoSのおそれがない場合など、状況に応じて使い分けましょう。

13.3.3　SQLインジェクション

　ユーザーが入力した文字列をSQLクエリに組み込むつくりのアプリケーションで、ユーザーが入力した文字
列によっては、意図しないSQLクエリが実行されてしまう脆弱性をついた攻撃です。
　PythonでSQLを利用するモジュールを使っていれば、モジュール側で引数部分を自動的にエスケープしてく
れることが多いです。しかし、思わぬ事故を防ぐためにも、自分の利用しているモジュールがどのようなSQLイ
ンジェクション対策をしているかは把握しておく必要があります。

13.3.4　OSコマンドインジェクション

　引数などとしてユーザーが入力した文字列をシェルコマンド文字列に組み込むつくりのアプリケーションで、
ユーザーが入力した文字列によっては、意図しないシェルコマンドが実行されてしまう脆弱性をついた攻撃で
す。
　ユーザーの入力した文字列を使ってコマンドラインを操作するときは、ユーザーが入力した文字列を適切に
エスケープする必要があります。とはいえ、攻撃の手法は多岐にわたるため、手動で実装するのは好ましくあ



りません。Python標準モジュール「subprocess」は、OSコマンドインジェクションへの対策を意識して設計さ
れています。ドキュメントを読むと、runおよびPopen関数のパラメーターにshellがあり、これがFalseであれば
自動的にエスケープが行われる旨の解説があります。また、shell=Trueの場合であっても、shlex.quote()
関数を使えば適切にエスケープが行える旨も解説されています。

13.3.5　ディレクトリトラバーサル

　ユーザーが入力した文字列をファイルパスとして展開する処理の脆弱性を突き、本来アクセスできないは
ずのファイルにアクセスする攻撃です。ユーザーが指定した文字列をファイル名にするのではなく、ユーザーの
IDや、メッセージのIDなどでファイル名を作成するようにすることが対策となります。また、アプリケーションの
実行ユーザーに、データを配置するフォルダーより上位のフォルダーへのアクセス権限を持たせないことも対策
のひとつです。
　FlaskやDjangoなどのWebアプリケーションフレームワークには、ディレクトリトラバーサルを引き起こさないパ
ス結合関数safe_joinが用意されています。

13.3.6　その他気をつけるべきこと

　本節では、Botがとくに注意すべき攻撃手法について紹介しました。Webアプリケーションへの攻撃手法
について学ぶ際には、徳丸浩『安全なWebアプリケーションの作り方　脆弱性が生まれる原理と対策の実
践 第2版』（2018　SBクリエイティブ）がおすすめです。
　またBotを攻撃から守るには、Bot自身のコードだけでなく、Botから利用しているOSコマンドや外部パッケ
ージの脆弱性についても日頃から気にかけておく必要があります。
　shovelを例として説明します。shovelでは、読み上げを行うためにユーザーが入力したメッセージのテキス
トを音声合成エンジンに標準入力経由で渡す処理があります。万が一音声合成エンジンに脆弱性が発
見された場合、その処理が攻撃の起点にされるおそれがあり、すみやかに対応する必要があります。音声
合成エンジンに限らずshovelから利用しているOSコマンドなどの脆弱性情報には、日々気を配っていま
す。



第14章　監視 - 24時間みまもり体制

　サービスを動かしていると、「ちゃんと動いているんだろうか？」「サーバースペックは過不足ないだろうか？」
といった心配が出てきます。この章では、サービスの運用状態を監視し、その結果を蓄積し、運営に活かす
方法についてお話しします。個人開発サービスでも手軽に扱える無料の監視ツールについても紹介します。



14.1　みまもり＋非常アラート＝監視

14.1.1　監視の概念

　Botがうまく動いているか心配なとき、あなたは何をするでしょうか？　エラーが出たらアプリケーションログ
を出力するよう実装してターミナルをじっと見つめていれば、すぐにエラーの発生に気付けますね。しかし、あな
たが24時間そうやってターミナルを見つめ続けることは不可能です。
　そこで、あなたはBotのエラー発生状況を計測・記録するプログラムを作るかもしれません。そして、エラーが
起きたら大きな音でブザーが鳴るしくみを作るかもしれません。このように「Botの動作状況を見守り、障害
発生を素早く検知し対応する体制でダウンタイムの最小化を図る」ことが監視の目的です。
　本書では、監視という言葉について、以下のように定義します。
　・規定された項目について、データを収集する。必要であれば、収集したデータを時系列順に蓄積する。
　・データを利用して、条件に基づいてアラート（警告・ブザーなど目立つ通知をすること）をあげる。

14.1.2　監視の目的

　なぜBotを監視する必要があるのでしょうか。理由はいくつかあります。

14.1.2.1　異常をみつけるため
　致命的なエラーが発生し、Botが利用できなくなったとしたら、あなたならどうしたいですか？　状況が許
すなら、すぐに対応して正常な状態にしたいと思うのではないでしょうか。適切な監視体制を作っていれば、
これが可能になります。「Botが正常な状態ではない」ことを判定するしくみを作り、この判定がONになった
ら何らかの方法でアラートを上げるようにしておきます（図14.1）。アラートの方法としては「メールを送る」
「ブザーを鳴らす」などが挙げられます。

図14.1: 異常をアラート通知する



14.1.2.2　目と心を離すため

　矛盾するようですが、監視のしくみを整える目的は、Botから目を離すためです。適切な監視体制が整
っていれば、自分がターミナルを見つめ続ける必要はなくなります。「エラー発生時にはアラートが上がって、通
知が来る」とわかっていれば、Botの様子を5分おきにチェックする必要もなくなるでしょう。「なにか起きている
のでないか」とそわそわしたり、不安にとらわれたりすることもなく、本来すべきことに集中できるのです。開発
の時間と心の余裕を確保するためにも、監視のしくみを整えるとよいでしょう。

14.1.2.3　データを利用するため

　ユーザーに「最近、Botの調子が悪いように思う」と指摘を受けたら、あなたはどうしますか？　自分もその
Botを毎日ヘビーに使っているとしたら、自分の使い心地から、「たしかにそうかも」だったり「気のせいだよ」だ
ったり、何かしら判断できるかもしれません。しかしそうでなかったとしたら、ユーザーの報告のとおり本当に調
子が悪いのか、それともユーザーの気のせいなのか、判断がつきません。さらにいえば、自分が問題なく使え
ているとしても、他の環境でもうまく動いているとは言い切れません。
　このようなときのために、Botの状態を表すデータを定常的に監視し、データとして蓄積しておきます。たと
えば、あなたに毎日体温を測る習慣があれば、発熱時にいつもと違うことが定量的にわかります（図
14.2）。また、毎日測っていれば、微熱にもすぐに気付けるでしょう。システムについても同じことがいえま
す。

図14.2: 普段からデータをとっておく重要性



14.2　何を監視する？

14.2.1　システムの何を監視するか

　一般的なサーバー監視では、ネットワーク、DB、メモリやCPUなど、インフラやミドルウェアの状態を監視し
ます。これらを監視しておくことで、リソースが逼迫していることや、逆にスペックが過剰であることをすみやか
に発見できます。また、Botに障害が発生した際には、アプリケーションに問題が発生したのか、OSで問題
が発生したのかを切り分ける必要が生じます。このとき、システムの監視が役に立ちます。図14.3は、図
14.4と同じ時間帯のCPU負荷グラフです。CPU負荷は、読み上げメッセージ数と文字数と同期しているこ
とがわかります。

図14.3: CPU使用率の監視グラフ

14.2.2　サービスの何を監視するか

　システム監視の他に、サービス特有の数値を監視することも必要です。Discord Botであれば、基本的に
は、参加Guild数、延べユーザー数、ユニークユーザー数を監視対象とするとよいでしょう。これらの指標か
ら、Botがどれくらい使われているかがわかります。また、発生したERRORログ、WARNINGログの数を監視
するのもよいでしょう。Botの調子が悪いとき、それらが通常に比べてどのような数になっているかを見ること
で、定量的に把握できます。



　shovelでは、これらに加え、単語登録の総数、声設定の総数、直近の読み上げメッセージ数と文字
数、ボイス接続数を監視しています。単語登録の総数を監視することで、shovelがどれくらい活発に使わ
れているかがわかります。声設定の総数を監視すると、shovelを楽しんでくれているユーザーの数がわかるで
しょう。読み上げメッセージ数と文字数・ボイス接続数からは、shovelにかかっている負荷がわかります。図
14.4は、「読み上げメッセージ数と文字数」のMuninグラフです。0時付近に負荷のピークがあるということ
や、午前中はほとんど読み上げが行われていないことが一目でわかりますね。

図14.4: 読み上げメッセージ数と文字数の監視グラフ



14.3　監視に役立つツール

14.3.1　サーバー監視はツールに頼ろう

　ここでは監視のためのツールを紹介します。サーバーを運用するなら、サーバー監視は必ず実施することで
す。皆がやることですから、既存のツールも充実しています。それらのツールに助けてもらうのが楽に、かつ効
率良く監視を行うコツといえるでしょう。いずれのツールも、CPUやメモリなどの基本的なシステムリソースに
関連する状態や数値だけでなく、そのサービス独自の数値（たとえばshovelなら利用ユーザー数や接続
Guild数など）を監視する仕組みを備えています。

14.3.2　Munin

　Muninは、データロギングツールRRDtoolのフロントエンドアプリケーションです。監視対象サーバーにクライ
アントサービスをインストールするだけで監視をはじめることができます。監視によって収集したRRDtoolデータ
は、Webサーバーを経由し、どこからでも見やすく閲覧できます。また、プラグインの仕様も単純明快で、ユー
ザーが監視したい項目を自由に増やせます。監視項目の値が規定の閾値を超えたらアラートを上げること
もでき、メールの送信で通知できます。カスタマイズすればWebhookでの通知も可能です。
　Muninサービスの配置についてですが、監視対象とは別のサーバーを用意するか、または、監視対象サー
バーにMuninのホストサービスを配置することになります。監視対象とMuninサービスを同一サーバーに同居
させる構成だと、監視対象サーバー自体に不具合が発生した場合、なんのアラートも発生せず、すべてのデ
ータがとれなくなってしまうのが弱点です。

14.3.3　Mackerel

　Mackerelは、株式会社はてなが開発したサーバー監視SaaSです。Muninと同様に、監視対象サーバー
にクライアントサービスをインストールするだけで監視をはじめることができます。監視データは洗練されたデザ
インのWebサイトで閲覧できるほか、アラートの設定などのカスタマイズもWeb上で実施可能です。ユーザー
の任意の項目を監視するチェックプラグインを作成することもできます。Muninと比較しての利点として、
Muninのデータ更新が5分おきであることに対し、Mackerelは1分に1回データ更新を行います。
　Mackerelには無料プランが存在し、10項目まで監視できます。しかし、10項目ではサービス運用には足
りません。Muninからの移行サポートも充実しているので、まずはMuninを利用し、サービスの規模が大きく
なりより本格的な監視を行いたくなったタイミングでMackerelへの以降を検討するとよいでしょう。



14.4　Botをツールから監視できるようにしよう

14.4.1　Botのデータを監視するには

　ここでは前節で紹介した「Munin」などの監視ツールに、サービス独自の数値を監視させる方法について
お話しします。たとえば、Botが導入されているGuildの数（以下、Guild数）をMuninで監視するにはどう
したらよいでしょうか。Botプログラム内では、Guild数はリスト14.1のように短いコードで簡単に求められま
す。

リスト14.1: 準備完了時、Guild数をCLIに表示するサンプルコード

import discord


token = "XXXXX"


client = discord.Client()





@client.event


async def on_ready():


    print(f"current guild count: {len(client.guilds)}")





client.run(token)

　つづいて、この数値をどのように監視プログラムに受け渡すかを考えていきます。これには、いくつかの方法
があります。

14.4.2　プロセス間通信で監視

　プロセス間通信による受け渡しは、もっとも外部要因の影響を受けにくい監視方法です（図14.5）。メ
リットは、アプリケーションと監視プログラムの間の通信が生きていれば必ずデータをとれることと、外部データ
ソースを経由する方法と比較して、よりタイムラグのないデータがとれるという点です。

図14.5: プロセス間通信で監視



　プロセス間通信の方法はいくつかの選択肢があります。監視は重要なシステム要素であるとはいえ、あく
までサービスの運用をより便利にするための補助的な機能です。選択肢のなかから、できるだけコストのかか
らない方法を選びましょう。プロセス間メッセージによる通信は、OSの仕様に依存する部分が大きく移植性
も低いため、コストのかかる可能性があります。あまりコストをかけず、簡易的に通信できる手段としては、ソ
ケット通信、とくにUDP通信が手軽に扱えるでしょう。

14.4.3　外部データソース経由で監視

　DBや共有メモリ、ファイルなど、アプリケーションの外部にデータを書き込み、監視側と直接のつながりを
持たないようにする方法もあります（図14.6）。テキストファイルやバイナリファイル、共有メモリは手軽です
が、ロック機構を導入する必要があります。可能であれば、DBを利用するのが手軽でしょう。

図14.6: 外部データソース経由で監視

　この方法で注意すべき点は2点あります。1点目は、DBMSがダウンするなど、依存する外部データソース
に不具合が発生した場合、データの蓄積が停止してしまうことです。2点目は、タイミングによっては監視デー
タにタイムラグが発生することです。たとえば、5分おきに監視対象プログラムからデータが書き込まれ、5分お
きに監視プログラムがデータを読み込むとします。このとき、もっとも悪い場合、最大5分近いタイムラグが発
生してしまいます（図14.7）。これは、リアルタイムにデータを反映したい監視対象には不向きです。

図14.7: 監視データにタイムラグが発生する理由



　shovelでは、読み上げ文字数や導入Guild数の監視について、この方法を採用しています。分単位で
実態に追従する必要がないためです。



第15章　バックアップ - 安心を確保する

　個人開発サービス運営にはトラブルがつきものです。トラブルは起きないのが一番ですが、備えがあれば
安心です。この章では、サービスを運営するうえで欠かせない、各種データのバックアップについて述べます。



15.1　バックアップの必要性

15.1.1　バックアップとは

　バックアップとは、ある時点での対象の状態を保存しておき、何かあったとき復元できるようにすることをい
います。たとえばDBのバックアップを定期的にとっておくと、削除してはいけないテーブルを誤って削除してしま
った際などに、バックアップしておいたDBからテーブルを復元できます（図15.1）。

図15.1: バックアップ

15.1.2　バックアップがなかったら？

　ここで、もし定期的にバックアップを取っていなかったらどうなるかを考えてみましょう。データが損なわれたこ
とに気づいたあなたは、「いつか取ったスナップショットやDBバックアップがあるはずだ、あれはどこに置いたっ
け」と懸命に思い出しながら、大あわてで探してきて復旧することになるでしょう。復旧までに何時間もかか
るかもしれませんし、大事なユーザーのデータはずいぶん前の状態に戻ってしまい、二度と取り戻すことはでき
ません。バックアップが見つかればいいですが、最悪、サービスの継続が不可能になります。

15.1.3　バックアップをとっておこう

　このような事態を防ぐために、計画的なバックアップを行います。万が一データが損なわれたときにも、復
旧までの時間を最小化することが目的です。定期的なバックアップの取得と素早いリストア手順の確立
は、信頼性確保のため、継続的に運用するシステムには必須の仕組みといえるでしょう。



15.2　さまざまなバックアップ

　バックアップにはさまざまな粒度・種類があります。どれかひとつをやっていれば安心というわけではなく、そ
れぞれのバックアップの用途を理解し、システムに必要なバックアップをもれなく行うようにしましょう。

15.2.1　コードのバックアップ

　これはサービス運営をしている開発者の大半が行っているものと思われます。Gitでバージョン管理し、
GitHubにリポジトリを作っていればバックアップできているといえるでしょう。ありがちなミスが、「開発版だか
らローカルのリポジトリにしかコミットしていなかった」というものです。開発版だからリモートリポジトリに送らな
いでいると、マシンになにかあったとき、復元できません。開発用ブランチを切るなどしてリモートリポジトリへ
送るようにしましょう。もちろんこのリモートリポジトリは、ローカルリポジトリとは別の場所に作成したものであ
る必要があります。

15.2.2　サーバーの各種設定のバックアップ

　サーバーにインストールしているミドルウェアやサービス、たとえばnginxやMySQLなどの設定もバックアップし
ておきましょう。サーバーに接続できなくなったときや、誤って設定を変更してしまったときに、復元できるように
しておくことが大切です。設定が完了次第そこから変更しないという場合は、設定後サーバー外部に設定フ
ァイルをバックアップしておきます。いっぽうで、性能調整などのために頻繁に更新するのであれば、cronなど
を使い、定期的にバックアップをとるようにしましょう。

15.2.3　DBのバックアップ

　サービスを運営する上でもっとも注意して扱う必要があるのは、ユーザーのデータです。これは、「漏洩」「消
失」このどちらも絶対に防がないといけません。自分の管理するDBにあっても、そのデータは自分のものでは
ありません。ユーザーの大切なデータを預かっているという意識を持ちましょう。漏洩についての対策は第13
章「セキュリティ - Botとユーザーを守る壁」で触れていますので、ここでは「消失」をどのように防ぐかを考えま
す。
　DBに格納したデータは、サーバーのデータ消失、プログラム上の誤り、メンテナンスの操作ミスなど、さまざま
な不慮の事故による消失のリスクに常に晒されています。この対策として、バックアップをとることが有効で
す。しかし、毎日すべてのデータをバックアップしていては容量を使いすぎてしまいます。日次バックアップでユ
ーザーがよく更新するデータをバックアップし、週次バックアップですべてのデータをバックアップするなど、頻度
と対象を検討して設定しましょう。たとえば、RPGゲームのような機能を提供するBotのように、ユーザーデータ



が大幅にロールバックすると大きな損害が出る場合であれば1時間、またはもっと細かい周期でバックアップ
を作成してもよいかもしれません。

15.2.4　スナップショット

　これはその他のバックアップとはすこし毛色のちがうものです。仮想サーバーの場合、サーバー全体のバック
アップとして使用できる「スナップショット」を取得できます（図15.2）。

図15.2: スナップショットとは

　これは、VPSやレンタルサーバーであれば管理用メニューからボタンひとつで取得できることが多いです。何
かあった際にサーバーをまるごと復元できるという、最後の砦としての安心感を得られます。
　スナップショットの取得にはシステムの停止が必要であることもあり、大半のレンタルサービスでは、スナップ
ショットの保管にはデータ容量に対応した月額料金がかかります。スナップショットの作成頻度や保存期間
は、システムの運用形態と運営資金に応じて判断しましょう。



15.3　バックアップの作法

15.3.1　バックアップのスケジューリング

　バックアップは定期的に決まった内容を行うものであり、うっかり忘れることがあってはならないものです。こ
のような作業を確実に行うためにはサーバーに肩代わりさせるのが一番なので、cronを使います。バックアッ
プ用のシェルスクリプトを作成し、OSコマンドのcrontab -eで登録します。
　スナップショットのようにサーバー管理者が手作業で行うしかない作業は、予定アプリで管理するなど、忘
れない仕組みを作りましょう。

15.3.2　バックアップしたデータの保存先

　作成したバックアップをサーバー内に保存していては、サーバーのデータにアクセスできなくなると取り出せな
くなってしまい、バックアップとしての意味を成しません。バックアップファイルは、図15.3のように、サーバーの
外部に保存しておく必要があります。shovelでは、バックアップの転送先をGoogle Driveにしています。
Google Driveへのアップロードには、Google Drive用CLIツール「gdrive」が便利です。

図15.3: バックアップはサーバーの外部で保存する



第16章　運営 - ユーザーと接しよう

　個人開発サービスの醍醐味は、ユーザーと直接触れ合えることではないでしょうか。この章では、技術以
外の面からサービス運営についてお話しします。shovelの運営方針についても紹介しますが、あくまで参考
程度に読んでいただき、この章の内容に縛られることなく、あなたのサービスに合った運営方法を見つけてく
ださい。



16.1　情報発信の拠点をつくろう

16.1.1　情報発信の拠点

　サービスを運営するうえで、ユーザーに情報を展開するための情報発信の場を持つ必要があります（図
16.1）。WebサービスであればWebサイト自体が情報発信の場となりますし、WebサイトとTwitterアカウ
ントなど、複数の情報発信の場を設けてもかまいません。このとき、情報発信の拠点をどこにするかをはっき
り決めておきましょう。情報を受け取るユーザーが、「情報が複数の媒体に散らばって発信されており、どこを
見たらいいのかわからない」という状態になることは避けましょう。
　情報発信の拠点では、すべての重要な情報をまっさきに発信するようにし、過去の情報も履歴として見
られるようにしておきます。拠点でない情報発信媒体では、拠点で発信した情報をピックアップして発信し
ます。もちろんすべての情報を発信してもかまいません。また、媒体限定のキャンペーンなどについてはこの限
りではありません。

図16.1: 情報発信の拠点

16.1.2　公式Guildの概要

　shovelの情報発信の拠点は、Discord上のshovel公式Guildです。公式Guildのチャンネルの構成
を、リスト16.1に示します。

リスト16.1: shovel公式Guild チャンネル一覧

shovel公式Guild


├── NEWS


│   ├── #はじめに


│   ├── #アップデート


│   └── #おしらせ




└── COMMUNITY


    ├── #質問


    └── #困ったこと

　NEWSカテゴリ以下には開発者だけが書き込めるチャンネルがあり、shovelについての情報発信に使い
ます。COMMUNITYカテゴリ以下にはGuild参加者全員が書き込めるチャンネルで、ユーザーからshovelに
ついての質問や要望を挙げていただくためのチャンネルです。

16.1.3　不要な通知は極力ユーザーに送らない

　情報発信を目的としたGuildであるという性質上、大切なときだけ通知を送るようにしています。Guild
参加時のウェルカムメッセージはオフにしているほか、デフォルトではメンション以外の投稿はユーザーに通知し
ないよう設定しています。
　また、Discordでは、「@everyone」という文字列を含めた投稿をすることでGuild参加者全員にメンシ
ョン通知を送れます。メンション通知を受け取ると、Guildのアイコンに図16.2のように印が付きます。

図16.2: メンションを受け取ったときの通知表示

　shovel公式Guildでは、この「@everyone」の使用タイミングを以下のように限定しています。
　・shovelが大きなアップデートを行ったとき
　・コマンド変更など、shovelの使い方に変更が生じたとき
　・shovelが使用できないような、重大な不具合が発生したとき
　些末なことで通知を連発していると、大事なお知らせも見逃されてしまいます。@everyoneメンションの
用途を適切に限定することで、「shovel公式Guildに通知マークが出ているときは、大事なお知らせがあ
る」とユーザーに感じてもらえるでしょう。

16.1.4　雑談チャンネルは用意しない

　意見が分かれるところではありますが、shovel公式Guildはあくまで情報発信・サポートを目的とした
Guildとして運営しています。
　shovel公式Guildでは、shovelに関係しない投稿は一切ご遠慮いただいています。Guild運営開始直
後、雑談チャンネルを用意してほしいという要望は多く頂きました。たしかに雑談によりユーザー同士やユー
ザーと開発者が身近になり、よりよいBotを作るための意思疎通ができたり、ユーザー同士のコミュニティがで



きるというメリットはあります。いっぽうで、トラブルへの対応や、トラブルを防ぐためのルールを管理するコスト
が大きくなることも予想できました。とれる時間はすべて開発にかけたいということを考え、雑談チャンネルは
設けないことにしました。同様に、質問／要望チャンネルにおける雑談もご遠慮いただいています。
　メンションではない投稿は、通知こそ送られませんが、設定によってはGuildアイコンの横に未読をあらわ
すマークが付きます（図16.3）。雑談でこの未読マークをつけないようにすることは、前述の「不要な通知は
極力ユーザーに送らない」という目標にも適っていると考えています。

図16.3: 未読メッセージがあるときの通知表示

16.1.5　アップデート通知

　サービスをアップデートした際には、ユーザーにアップデート通知を行います。アップデート通知では、追加し
た機能の用途や魅力がしっかり伝わるよう、表現方法を工夫しましょう。長過ぎるアップデート通知は読ま
れませんので、簡潔にわかりやすく表現しましょう。
　アップデートは既存ユーザーに満足してもらうために行います。同時に、新規ユーザーを増やすチャンスでも
あります。TwitterなどのSNSで魅力的なアップデート通知を投稿して、ユーザー増加を狙いましょう。投稿す
るタイミングですが、できれば、多くのユーザーがアクティブで、SNSを見ているユーザーの多いタイミングを狙い
ます。筆者の経験上、一般的には11:00～13:00頃、16:00～18:00頃に情報拡散されやすい傾向があり
ます。しかしDiscordユーザーにはゲーマーが多く、夜間活動型が多いためか、shovelのお知らせについては、
21:00～23:00頃に活発に拡散されているようです。

16.1.5.1　Botからのアップデート通知は慎重に
　Discord Botの場合、アップデート時、Botにアップデート内容を各Guildのテキストチャンネルに投稿させ
るという実装もアイデアとして浮かぶかもしれません。結論からいうと、これは避けたほうがよいでしょう。ユー
ザーの立場に立ってみると、「何も操作していないBotが突然テキストチャンネルにメッセージを投稿する」とい
うのはあまり良い印象を与えません。Bot開発者は低頻度に抑えていると思っていても、ほとんど投稿のな
いGuildであれば「Botだけがたくさん喋っている」という印象になります。最悪の場合、Guildからキックされ
てしまうかもしれません。また、集中して真剣な会話をしているところにBotが急に割り込んでしまう可能性も
あります。
　どうしてもBotからアップデート内容を通知したいのであれば、なにかユーザーから命令を受けたとき、その
結果と一緒に投稿したほうがよいでしょう。それも、しつこくならないようにするべきです。



16.2　ユーザーとどう関わるか考える

16.2.1　ユーザーサポートのラインを決める

　ユーザーサポートをどのくらい行うかというのは、開発者自身で自由に決めてよいことです。まったく対応し
ないのでもかまいませんし、極力要望には応じるとしてもかまいません。どのようにしてもよいのですが、1点だ
け推奨するならば、どのユーザーにも一貫性のある対応をするのがよいでしょう。あるユーザーには手厚くサポ
ートし、要望を受け入れるが、他のユーザーにはろくに答えない、といった対応をしてはユーザーに不信感を与
えます。もしそれがダイレクトメールなどの他人には見えない場であったとしても望ましくありません。
　これは、ひどい要求をするユーザーにも丁寧に対応するべきという話ではありません。自分の中で、「ひどい
要求は無視する」「このような質問には答えない」といったルールを定め、常にそのルールにしたがって対応す
るのがよい、ということです。

16.2.2　shovelのユーザーサポート

　shovelでは、公式Guildで質問と要望を受け付けています。Twitterに関しては情報発信の場であると
し、フォローやリプライは行っていません。

16.2.2.1　質問への対応
　説明書に書いてあるような基本的な使い方について尋ねられることも多いのですが、簡単に答えられる
質問であれば、その場で答えてしまいます。もちろん説明書を読んでもらえたらありがたいのですが、説明書
を読むのもなかなか大変なので、悩むようなら聞いてもらって構わないと考えています。いっぽうで、説明に
時間がかかりすぎることであったり、何往復もやりとりが必要であるような質問やサポート依頼には原則対
応しないことにしています。shovelの開発・運営に使える時間は限られており、一人のユーザーに長時間対
応できないからです。

16.2.2.2　要望への対応
　実装したいと思っていた機能についてユーザーに要望を頂くこともあれば、まったく思いもよらなかったことに
ついて要望を頂き、なるほどと思って取り入れさせてもらうこともあります。たとえば、以下はユーザーの要望
から追加した機能の例です。
　・発言者の名前読み上げ
　・絵文字読み上げ
　・単語を「読まない」よう登録（NGワード）
　・コマンド利用者制限機能



　・spoiler（ネタバレ）を読まない
　これは余談ですが、はじめshovel公式Guildには「要望」というチャンネルがありました。「要望」チャンネ
ルには、「～～を～～する機能を追加してほしい」という具体的な機能についての要望を多くいただきまし
た。しかし、これでは、そのユーザーが本質的に何に困っているのかがわからず、その機能を追加して問題解
決につながるのかどうかがわかりませんでした。
　そこで、「困ったこと」というチャンネル名に変更しました。それ以来、ユーザーが困っていること自体について
報告していただけるようになり、より本質に近い対応ができるようになりました。チャンネル名ひとつで書き手
の表現が変わるというのは興味深いと感じました。



16.3　サービスを段階的に公開するメリットとデメリット

16.3.1　shovelの段階的サービス公開

　ここでは、shovelがどのようにサービスを公開してきたかをお話しします。shovelは段階的にサービスの公
開範囲を広げ、徐々にユーザーを増やしました（図16.4）。

図16.4: shovelの段階的サービス公開

16.3.2　まずはクローズドベータテストから

　サービス開始から2か月とすこしの間、shovelはクローズドベータテストという形で公開しました。具体的に
は、特定の条件を満たすGuildでないと、shovelを利用できないというものです。特定の条件とは、
「shovel公式Guildに参加しているメンバーがいる」というものでした。このような形態での公開とすることで、
まずは開発者から確実に情報が届く利用者だけに利用してもらうことができました。
　サービス開始時は、開発者である筆者のTwitterアカウントのフォロワー数は10に満たないという状態でし
た。shovelを使ってくれる人たちに情報が届くのかという不安がありました。ですが、さまざまな方に情報拡
散を手伝っていただき、ありがたいことに1週間で500を超えるアカウントにリツイート（拡散）していただける
こととなりました。
　クローズドベータテストで、ユーザー数の増加の推移やBotの稼働状態とシステム負荷の相関を観察し、マ
シンスペックを増強したうえで、オープンベータテストに移行しました。

16.3.3　オープンベータテストへの移行

　2019年7月中頃、shovelはオープンベータテストへと移行しました。このときから、shovel公式Guildに参
加していなくても、誰でもshovelを自分のGuildへ招待可能になりました。オープンベータテストへの移行をし
たあと、ユーザーの増加ペースが以前の3倍程度になりましたが、事前にマシンスペックを増強していたため、
ユーザーの利用への影響はほぼありませんでした。



16.3.4　クローズドベータテストを経由する意味

　オープンベータテストにして以降、ユーザーの増加ペースが3倍程度になったと述べました。この数字は、クロ
ーズドベータテストのときの「まず公式Guildに参加して、その後Botを招待する」という手順はわかりにくく、
導入をあきらめていた潜在的なユーザーが多かったことを示しています。
　これはある意味、使ってくれるはずだったユーザーを逃してしまったといえます。しかし、必ずしもこれがデメリ
ットであるとは言い切れません。導入のハードルが下がるということは、多様なユーザーが、大人数で一気に
流入することを意味します。Bot稼働の初期、足りない機能や不具合も多い中、多様なユーザーからの要
望に対応するのは非常に負荷が高いものです。ですから、まずはその面倒な導入手順を踏んでくれるよう
な、自分のBotに強い関心を持ってくれているユーザーだけに使ってもらい、ゆっくり確実に改修の初期段階
を踏みます。これは前述のデメリットを補ってあまりあるものです。
　目先の損失を惜しむより、そのとき利用してくれているユーザーに価値を提供しながら、ゆっくりとBotを育
てて行くことに集中しましょう。爆発的な拡散の機会を逃しても、価値あるBotを継続的に安定して提供し
ていれば、ユーザーは少しずつ、確実に増えていきます。shovelでは、広報ツイートの拡散が止まったあとも、
利用Guildは指数関数的に増加しつづけています。おそらく、参加しているGuildでshovelが使われている
のを見たユーザーが自分のGuildにもshovelを導入したり、shovelを使ったユーザーが友達に紹介したり、と
いった口コミ的な広がり方をしているのだと推測しています。



16.4　サービスの印象をデザインする

16.4.1　サービスの印象の重要性

　サービスの印象とは、ここでは「サービスの名称（ネーミング）」と「サービスのビジュアル（アイコンやロ
ゴ）」を指します。とくにDiscord Botの場合、ユーザーの目の前に表示されるのはアイコンと名前、あとは発
言する内容のみです。アイコンと名前の重要性がおわかりいただけると思います。
　サービスの印象は、テイクアウト飲食店のパッケージに例えることができます。パッケージデザインの善し悪し
で飲食物の味は変わりませんが、買ったときの嬉しさや持ち歩いているときの気分に影響する可能性はあ
ります。サービスもこれと同じことがいえます。

16.4.2　ネーミング

　サービスの名称は、ターゲットとするユーザー層に親しまれやすいよう命名します。そのサービスがファミリー向
けなのか、子供向けなのか、若者向けなのか、その層の気持ちになって最適な名前を考えましょう。名称は
長くなってもかまいませんが、その場合覚えやすい・呼びやすい略称を付けましょう。

16.4.3　アイコン

　サービスの内容、またはネーミングと一致したアイコンを作成します。shovelの場合、ネーミングに一致した
アイコンです。唯一無二のビジュアルを付けるのもよいですが、親しまれやすい図案でわかりやすくそのサービ
スを表すのもよいでしょう。その場合、他者の権利を侵害しないよう十分に気を配りましょう。

16.4.4　注意点

16.4.4.1　他者の権利を侵害しないこと
　アイコンやロゴ、イメージ画像を作る際には、他者の権利を侵害しないようにしましょう。他者が作成した
イラストなどを勝手に使わないというのはもちろん、「フリー素材」と銘打たれていてもロゴを作る際の素材と
しては利用できないものもあります。規約をしっかり確認しましょう。

16.4.4.2　既存の類似ツールと被っていないか

　名前やアイコンの印象が他ツールと被っていないかを確認します。唯一無二の名前というものはありませ
んが、同ジャンル・類似ツールで名前被りが発生していないかはしっかり調査しましょう。

16.4.4.3　サービスの品質が最優先



　いくら覚えやすい名前を付けたとしても、その名前が悪い印象で覚えられてしまえば逆効果です。かっこ
いい名前と素敵なロゴがあっても、サービスとしての品質が悪くてはユーザーは離れてしまいます。サービスとし
ての品質を高く保つことがもっとも重要であることにかわりはありません。

16.4.5　shovelの印象デザイン

　shovelのネーミングとアイコン作成は、年代性別をとわず、多くのDiscordユーザーに使ってほしいという思
いで行いました。まずはネーミングです。毎日使う道具のようにBotを身近に感じてほしかったので、無機質で
スマートな名前にしたいと考えました。しかし、ただスマートなだけでは面白くありません。そこで、「しゃべる」と
「シャベル」をかけ、「shovel」という名前に決めました。
　次にアイコンについてです。Discordのメインユーザー層はゲーマーであり、筆者自身もゲームが好きです。そ
こで、レトロゲームやMinecraftをイメージしたshovel独自のドット絵を作成し、これをアイコンに設定しまし
た。



16.5　効果的な広報でBotを知ってもらおう

16.5.1　Twitterアカウントの設置

　shovelは、公式Twitter（https://twitter.com/shovel_discord）で情報発信を行っています。
shovelの情報発信の拠点は公式Guildです。なので、Twitterは、アップデートや障害の概要を手短に告
知し、公式Guildに誘導するという補助的な役割です。
　また、公式GuildはDiscord内にありますので、当然ながらDiscordに障害が発生したときは情報を発
信できません。このようなときに、TwitterアカウントがあればDiscordの障害によりshovelが使えないことを
広報できます。Discordに障害が発生しているときに読み上げが使えないことを周知しても意味がないので
はと思われるかも知れませんが、障害の影響を受けているのが一部のGuildやBotだけという事態もよくあ
ることですので、周知は必要です。

16.5.2　拡散される情報

　shovelを紹介する広報ツイートは2020年8月現在、900近くリツイート（拡散）されています。この広報
ツイートには、Discordのテキストチャンネルでshovelを呼び出し、複数のユーザーが登場し、名前読み上げ
や単語登録といった基本的な機能を紹介する1分弱の動画を添付しています。短いながら、shovelの魅
力をしっかりと紹介したからこそ、これだけ拡散していただけたものと考えています。



16.6　Botに機能を追加する

16.6.1　機能を追加するかの検討

　機能は、アイデアとして浮かんでくることもあれば、ユーザーからの要望という形で上がってくることもありま
す。もちろん、これらすべてをBotに実装できるわけではありません。機能を追加するかどうかは「Botの責務
としてふさわしいか」「ユーザーの需要があるか」「開発者である自分が追加したいか」という3つの指標で検
討します。
　機能を追加することには注意が必要です。詳細は次の節でお話ししますが、削除するならはじめから付
けないほうがよいこともあります。

16.6.1.1　Botの責務としてふさわしいか

　まず、最低限の条件です。Discord Botは、ユーザーにできることなら基本的になんでもできます。そのた
め、「こんなことができてほしい」という要望にすべて応えていると、なんでも屋Botができ上がってしまいます。
親しい友人向けのBotならなんでも屋Botになっても構わないでしょう。しかし大勢に使ってもらいたいならそ
れではいけません。機能が増えれば増えるほど操作方法は複雑になり、使うハードルは上がります。同じ
GuildにいるユーザーがそのBotを使っている様子を見た他のメンバーに魅力が伝わることはないでしょう。多
機能すぎて何が売りのBotなのかわからないからです。そのBotの強みが何であるか、そのBotの責務は何な
のかをつきつめて検討し、責務にふさわしくない機能は思い切って諦めましょう。新しいBotの開発をはじめて
もいいかもしれませんね。

16.6.1.2　需要があるか
　この観点で検討する際に注意しなければいけないのが、追加するよう要望をうけた機能が、そのまま需
要がある機能であるとは言えない点です。ユーザーは自分でも認識していない要望を持っているものです。そ
の潜在的な要望も含め、ユーザーの需要を見抜けるかというところがBot運営のおもしろいところです。「潜
在的な要望なら見つけようがないじゃないか」というのはそのとおりで、その見積もりが正しいかどうかはリリー
スするまでわかりません（残念ながら大外れだったこともあります）。
　そこで有効なのが、実装しようか迷っている機能についてユーザーに紹介し、欲しい機能はどれかというア
ンケートをとることです。しかし、個人的には投票数が少なかったからと言ってその機能を欲しいと言ってくれ
たユーザーの期待を裏切ることはしたくないため、あまり実施していません。ベータテストのごく初期に1度だけ
アンケートをとったことがありますが、選択肢にあった機能は最終的にすべて実装してしまいました。アンケート
はあくまで、実装は決まっている機能について開発の優先順位付けをする参考に使うのがよいと考えていま
す。



16.6.1.3　開発者である自分が追加したいか

　いろいろな指標がありますが、結局のところ、開発者である自分が欲しいと思うかどうかに帰結するので
はないでしょうか？　場合によりますが、大抵の場合、開発者は自分が欲しいBotを作っています。使いた
い機能を自由に実装できることは個人開発のメリットです。自分がほしいと思った機能は追加してよいとい
えるでしょう。もちろん、前述のふたつの指標との兼ね合いも検討しましょう。



16.7　Botから機能を削除する - 破壊的変更

16.7.1　破壊的変更は避けよう

　Botを運営していると、あまり使われていない機能を削除したり、コマンド名をより適切なものに修正した
くなることがあります。このように、ユーザーのBotの使い方に影響を与えるようなことを、Botの破壊的変更と
呼ぶことにします。Botの破壊的変更は、基本的には避けるべきことです。ここでは、機能の削除とコマンド
名の変更について、実例とともに述べます。

16.7.2　機能の削除

　ユーザーにとって、今まであった機能が削除されるというのは、もとからその機能がないことよりずっとマイナ
スです。利用ユーザーの数が少ない機能だったとしても、あるユーザーからすると、普段から頻繁に使っている
機能かもしれません。ですので、機能を追加するときは、その機能の需要とその後の他機能に及ぼす影響
などを鑑み、本当に追加してよいか慎重な検討が必要です。
　shovelには、以前「辞書リンク機能」というものがありました。あるGuildで登録した単語たちを、他の
Guildから参照して使用できるという機能です（図16.5）。

図16.5: 辞書リンク機能

　しかし、この辞書リンク機能をいざリリースしたところ、1か月ほどたっても使用Guildが全体の0.1%にも満
たず、コマンド自体ほぼ使われてもいない、超マイナー機能となってしまいました。
　この機能は、単語登録内容というプライベートなデータを共有するという性質上、セキュリティを高めるた
めの例外処理やチェックが多くなっています。そのうえ、読み上げ・単語登録というshovelのコアな部分に
食い込んでいます。そのため、ちょっとした改修時に、本機能に影響がないかを気にする大きなコストがかか
っていました。そこで、shovelがそのときベータテスト中であったこと、今後の実装コストと使用状況、類似機
能である「import_word」「export_word」で代替できることなどを鑑みて、機能を削除することに決めまし



た。せっかく実装した機能を削除するのは残念だという気持ちもありましたが、なによりこの機能を使用して
くれているGuildがあるのに削除してしまうというのが大変申し訳なく、機能の削除は二度としないようにし
ようと反省しました。
　ちなみに、辞書リンク機能が使われなかった理由として思い当たる節はいろいろあります。中でも、使用
できるユーザーが限られており（ふたつ以上のGuildのオーナーしか使えないコマンドでした）、使い方がやや
こしい（連鎖的な辞書リンクはできないなど）というのが何よりの原因だったと分析しています。繰り返しに
なりますが、それでも使用してくれていたユーザーには申し訳ないことをしてしまいました。

16.7.3　コマンド名の変更

　続いて、コマンドの変更による破壊的変更についてです。shovelでは、辞書をファイルに書き出すコマンド
と、ファイルから読み込むコマンドが存在します。これらのコマンドはもともと、書き出しは「word_list」、読み
込みは「add_word_list」というコマンド名でした。しかし、「単語のリストを表示」という意味のコマンド文字
列と、辞書のファイル書き出しという処理内容に齟齬があることに気づきました。また、add_word_listと
add_wordという似たコマンドが存在していることから、ユーザーが混乱していることもわかりました。これらの
理由から、機能との対応がはっきりしている「export_word」「import_word」にコマンド文字列を変更する
ことにしました。
　コマンド変更も、ユーザーを混乱させるという意味では避けたほうがよいことですが、機能の削除ほど神経
質にならなくてもかまいません。コマンド変更時には、公式Guildなどでアナウンスをするとともに、alias（別
名）として古いコマンドを使用できるようにしておくというのも有効な手段です。discord.pyでは、どのalias
でコマンドが実行されたかが取得できます。コマンド変更後一定期間はaliasとして古いものを残しておき、
古いコマンドが使われていた場合、機能は実行しつつも、このコマンドは名前が次のように変わりました、と
ユーザーに通知する処理を入れるのです。



16.8　動作詳細ログでアプリケーションを分析する

16.8.1　運営のヒントはユーザーの声だけではない

　ユーザーとの接点は、直接のコミュニケーションだけではありません。ユーザーとサービスのインタラクションも
接点のひとつです。サービス利用時のユーザーの振る舞いを動作詳細ログとして蓄積・分析することで、ユー
ザーが声にださない要望を見つけることができ、Botの改善につながることがあります。もちろんユーザーの会
話内容など、プライバシーにかかわる内容については一切記録していません。

16.8.2　読み上げ文字数の分析でわかること

　shovelの実例で説明します。「YomiageDetailLog」には、読み上げた投稿ひとつひとつについて、
Guild ID、チャンネルID、投稿の文字数、合成音声のファイルサイズ等を保存しています。繰り返しになり
ますが、発言の内容などプライバシーにかかわる内容は保存していません。これらを集計することにより、「ど
のGuildが多くshovelを使っているか」や、「shovelが今日読み上げた文字数は何文字か」といったことが
わかります。さらにこれらを集計・分析すると、「50文字以上の投稿は全体の1割程度だが、その1割の投
稿により全体の30%程度の読み上げファイルサイズが占められている」といったことがわかります。この分析を
もとにして、「読み上げ文字数は50文字前後を上限とすることでユーザー全体のサービスの満足度が上がる
のではないか」などという仮説を立てることができ、Botの改善につながります。
　さらに、読み上げ件数が増加傾向にある場合、その上昇傾向とメモリやCPUの逼迫状況を照らし合わ
せ、サーバースペックの増強の必要があるかを確認します。これにより、リソースが足りなくなる前に手を打つ
ことができ、Botのダウンを未然に防ぐことができます。

16.8.3　コマンドログの分析でわかること

　また、「CommandLog」には、ユーザーがshovelに対して指示した内容が保存されています。このログを
分析することで、よく使われているコマンドや、逆に使われていないコマンドを見つけることができます。使わ
れていないコマンドは、削除して機能を整理するか、使いやすいように改善する必要があるでしょう。
　このように、動作詳細ログの分析を行うことで、ユーザー全体に利益のある仕様変更やサーバーのスペック
変更を行うことができるのです。



第17章　Bot運営の金銭面

　ここでは、個人開発サービス運営を行ううえで出ていくお金と入ってくるお金について紹介します。また、
shovelの金銭事情についても少し紹介します。筆者は会計・経理については素人です。公的な手続きを
行う場合は本書を参考にするのではなくご自身で調査を行ってください。



17.1　サービス運営は儲かるのか？

17.1.1　Discord Botの傾向

　Discord Botのユーザーは、当然Discordユーザーに限られます。また、Discordがゲーマーに人気であり、
若年層が多いというユーザー分布の特徴があります。以上の条件から、ユーザー層を選ばないWebアプリケ
ーション等と比較して、収益化しづらいという側面はあります。
　ですが、Discordは全世界に2.5億人のユーザーを持つ巨大なプラットフォームです。Botの機能やジャンル
を工夫すれば、Webアプリケーションより手軽に使ってもらいやすいぶん、ユーザーを増やしやすいかもしれま
せん。たとえば、ユーザーに対してプレミアムプランを提供しているBotも存在します。
　この章では、サービス運営の収入・支出を紹介しています。収益化を目指す方は参考にしてみてくださ
い。

17.1.2　収入を得るのはいいことばかりではない

　個人開発サービスを有償提供することのメリットは、もちろん、資金を得ることによって運営に余裕が出る
ことです。では、デメリットはなんでしょうか。まず、ライセンスの問題です。無償利用、個人利用であれば無
料で利用できるが、商用利用には制限のあるリソースは数多くあります。サービスに使っているライブラリーだ
けではなく、広報に用いているグラフィックについても注意が必要です。フォントや素材によっては、使用用
途による制限があるかもしれません。
　また、無料の個人開発サービスの運営は、自分の意志で行えることが楽しみのひとつです。ですが、万が
一莫大な運営資金の提供を受けるようなことがあった場合、自分ひとりのサービスとして気ままに運営する
ことができなくなってしまうかもしれません。
　もちろん収入を得たからといって、すべてユーザーのいいなりになる必要はありません。それに、サービスの対
価としてお金をもらっているだけであれば、契約にある以上の過剰な責任感を持つ必要はありません。です
が、お金をもらう以上はプロの運営者となるわけですから、無料で運営するのと同じ意識でいることはできま
せん。いっぽうこれを逆手にとると、プロとして運営するという経験を得られるというのはある意味メリットかも
しれません。



17.2　サービス運営で出ていくお金

　サービス運営に必要となるお金は、主に「インフラ利用料」「各種利用料」「人件費」です（図17.1）。

図17.1: 出て行くお金

17.2.1　インフラ利用料

　一言でいうと、「サービスを動かすためにかかるお金」です。自宅PCで運用している場合、電気代とインタ
ーネット回線費がそれにあたります。VPSで運営しているのであれば、その費用がインフラ利用料です。
Herokuなどの無料枠で運用すれば無料です。どれくらいのコストがかかるのかというのは、サービスの利用
者数や処理内容、要求する性能によってかなり幅があります。軽量なDiscord Botであれば、まずは月
1000円程度で十分まかなえるでしょう。

17.2.2　各種利用料

　サービスを運営するのに必要なツールやアプリケーションに対してかかるお金です。「各種」と書いたように、
作りたいサービスによってその内容は多岐にわたりますが、代表的なものを数点紹介します。

17.2.2.1　外部サービス利用料

　監視ツールやストレージサービスなど、サーバーと連携して動作する外部サービスの利用料です。利用する
外部サービスの種類によりますが、前述の「インフラ利用料」としてまとめて数えてしまってもよいでしょう。

17.2.2.2　ソフトウェアのライセンス料
　有償ソフトウェアを利用してシステムを構築する場合、ライセンス料が必要です。個人利用と商用利用
ではライセンス料が大幅に異なる場合が多いので、ソフトウェアを導入する際はライセンスの内容をしっかり
と確認しましょう。

17.2.2.3　素材の利用料

　システムによっては、画像や写真などの素材を有料で調達する必要があります。また、デザイナーやイラス
トレーターに有償でロゴやイラストを作成してもらう場合、それもサービスのための支出といえます。



17.2.3　人件費

　開発者に支払われる賃金です。とはいえ、小規模なサービスであれば基本的に開発者はあなた一人で
しょう。その場合お金としての支出はありませんが、人件費をゼロ円で見積もるのはやめましょう。それはつま
りあなたの働いた価値をゼロと見積もるということです。あなたは何時間もかけてサービスをつくるという仕事
をしたのです。サービスの開発や運営をしているぶんだけ、他の仕事で収入を得られるはずの時間が減って
います。少なくともその分を計上すべきです。
　もちろんすべての開発がビジネスを意識して行われるべきとはまったく思いませんが、開発にコスト意識を
持つことは必要です。開発をテンポよくすすめサービスの運営を長く続けるためにも、人件費を意識すること
は有効な手段であるといえるでしょう。



17.3　サービス運営で入ってくるお金

　サービスからお金を得るには、主に「有料プラン」「単発有償サポートプラン」「投げ銭」「広告収入」という
4つの方法があります（図17.2）。

図17.2: 入ってくるお金

17.3.1　有料プラン

　月額や年額でユーザーにお金を頂き、対価として機能を提供する方法です。対価には、「機能の追加」
「制限の解除」があります。「機能の追加」は、有料プランユーザーのみが使える機能を用意するという方法
です。いっぽう「制限の解除」は、無料ユーザーにも機能を提供し、期間内で一定の利用量に達するとその
機能が制限されて使えなくなるところを、料金を支払えば制限なく使えるなどの方法です。
　有料プランを採用するメリットとして、価値ある機能を提供さえできていれば、安定して収入を得続けら
れるということが挙げられます。また、ユーザーがサービスにどれくらいの価値を感じてくれているかが、お金とい
う価値で可視化されるので、モチベーションにつながるでしょう。
　有料ではあるものの、機能は何もかわらないという応援プランを採用することもできます。これについては
投げ銭にあたるので、「投げ銭」の項をごらんください。

17.3.2　単発有償サポートプラン

　サービスの導入や設定についての単発サポートを有償で提供する方法です。説明書だけでは使い方がわ
からないユーザーや、時間のないユーザーのために、導入や設定をサポートするかわりにお金を頂くという方法
です。1時間以内の対応、というように時間を区切って単発で提供します。
　単発有償サポートプランの存在は、そこから収入を得られる以外のメリットがあります。あるユーザーが開
発者に対し、難しい内容のサポートを要求したときのことを考えてみましょう。その要求は少しの時間では解
決できないと判断した開発者はユーザーの要求を断るでしょう。このとき、ユーザーは不親切だと感じ、開発



者もサポートを提供できなかったことを申し訳なく思うでしょう。結局、どちらも残念な思いを抱えることにな
ります。ここで単発有償サポートプランがあればどうでしょうか。難しい要求があった時点で、開発者は単発
有償サポートプランの存在を伝えます。「その要求は有償プランで対応できます」とだけ伝えればいいので、
言葉を選ぶコストがありません。そこで、有償でもかまわないとユーザーが言えば、開発者は収入を得ること
ができますし、ユーザー側もお金を払って気兼ねなくサポートを受けることができます。
　もちろん時間に余裕があればこのようなプランは必要ないかもしれません。金目当てか、というような批判
もあるでしょう。しかし、ひとりのユーザーに時間をかけることでサービスの開発に遅れが生じるとしたら、それは
すべてのユーザーの損失となってしまいます。厚意でサポートをするのは自由ですが、個人開発という時間が
限られている中で自分の時間をどう使うかということには常に敏感でいる必要があります。

17.3.3　投げ銭

　投げ銭とは、ユーザーに金銭の対価を提供せず、ただ応援のためにお金を頂くことをいいます。投げ銭の
窓口として、PayPalやBOOTHを利用している開発者を見たことがあるかもしれません。投げ銭はあくまでい
ち開発者として応援を受ける行動であり、直接的にサービスの価値をビジネスに利用しているわけではあり
ません。そのため、前述したような商用利用に特別な条件が課されているライセンスの制約を回避できる場
合もあります。もちろん投げ銭としてでも収入を得ているのであれば、商用利用とみなすというライセンスも
多いため、必ず自身でよく確認しましょう。
　直接的な金銭の受け取りではありませんが、Amazonほしいものリストから贈り物を募集している開発
者もよく見かけますね。

17.3.4　広告収入

　ユーザーに直接課金するのではなく、Webサイトなどに貼る広告を通じて間接的に収入を得る方法で
す。ただし、Discord Botについては注意が必要です。Discord APIを利用した広告配信は2020年8月現
在利用規約で禁止されており、Botから広告を投稿することは規約違反にあたります。広告を配信するの
であれば、説明書や紹介ブログなど間接的なものをプラットフォームにする方法があります。



17.4　shovelのお金事情

17.4.1　支出

　まずサーバー代についてお話しします。shovelは約3万のGuildに導入されており、音声合成をサーバー内
で行いボイスチャンネルに流すという、処理内容もネットワーク使用量もやや負荷の高いBotであるといえま
す。shovelは、Kagoya VPSのKVMプラン（8GB）を利用しています。年間約10万円ほどです。監視ツー
ルや関連アプリケーションはすべて無料のものを使っています。あとは開発者である筆者自身の人件費で
す。

17.4.2　収入

　shovelには有料プランはないので、shovel自体から得られる収入は0円です。shovelの説明書を掲載
しているブログからの広告収入が少しありますが、shovelのみで収益化できているという状態ではありませ
ん。

17.4.3　shovelの収益化

　「使用料を払いたい」「有料プランを用意してほしい」という声を多く頂いており、少額とはいえ金銭的な
持ち出しがあるのも事実なので、投げ銭インターフェイスとしてpixivFANBOXを利用しています。また、読み
上げ速度や品質を向上させた有料プランのshovelを提供することも検討中です。



おわりに



あとがき - 個人開発のよろこび

　すべての責任と裁量が自分にある、それが個人開発です。これまで趣味程度の小さなアプリケーションし
か開発したことがなかった筆者にとって、shovelを広く世間に公開するというのはとても大きなチャレンジでし
た。そもそも、友人の強いすすめがなければ、やろうとも思わなかったでしょう。結局、公開すると決意してか
らリリースするまでに8か月もかかってしまいました。
　ですが、今となっては、本当にやってよかったという思いしかありません。shovel（の前身であるBot）を
作ったときに筆者自身が感じた「便利！」という気持ちを、使ってくれたユーザーが共有してくれたであろうこ
と。ユーザーのDiscordでのコミュニケーションが今までよりもっと楽しくなったであろうこと。今も接続中の
Guildの数を見ながら、その数字の向こうにいるユーザーのことを想像し、本当に嬉しい気持ちになります。も
ちろん、身近な人に喜ばれるのも嬉しいことです。ですが、50万人という普通に生きているだけでは手が届
かない人数に対し、価値あるBotを提供できたというのは、自分にとって非常に大きな出来事でした。
　いま何かサービスを作りたいと思っている人や、作ったサービスを広く公開することに二の足を踏んでいる方
がいたら、ぜひとも勇気を出して、一歩踏み出してみてください。ちょっとした苦労はあるでしょうが、そのすべ
ては糧になります。そして、それ以上の楽しみ、喜びを得ることができるでしょう。この本がその一歩を踏み出
す手助けをできるとしたら、こんなにうれしいことはありません。



謝辞

　この本を書くにあたって、たくさんの方にお世話になりました。その内容についてはここでは書き切れないの
で、名前だけ挙げさせていただきます。本当にありがとうございました。まず、お忙しい中査読を引き受けてく
ださったのは次の13名の方々です。感謝にたえません。おかげさまで心強い思いでこの本を出せました。
（あいうえお、abc順）
　・石本敦夫 様（@atsuoishimoto）
　・かんだ 様
　・香田ユウ 様（@aromarious）, https://aromarious.com/
　・さちえ 様（@curry_solodev）, https://triokini.com/
　・するめ 様
　・丹内駿 様（@1ntegrale9）
　・なちゅ。様（@itacchiku）, https://note.mu/itacchiku
　・ひよこ 様
　・aiotter 様, https://github.com/aiotter
　・anpontan 様
　・Devon R 様, https://github.com/Gorialis
　・mxkitaura 様
　・Tomo 様
　本の執筆にあたっていろいろと支えてくださったのは次の方々です。ありがとうございました。
　・父、母、友人M、犬
　また、shovelユーザーの皆様がいなければこの本を書くことはありませんでした。拙い開発と運営のBotに
もかかわらず、いつもたくさん利用していただき、本当にありがたく思っています。これからもshovelをよろしく
お願い致します。
　最後に、shovelを公開することを強く勧めてくれたうえに、私がshovelの開発・運営で壁に当たるたび
最低限の的確なヒントを出して解決へと導き、本書の執筆にも多くのアドバイスと手助けをして下さった香
田ユウ氏に深く感謝の意を表します。
　2020年8月　北浦 望



著者紹介

北浦 望・cod（きたうら のぞみ）

ソフトウェアエンジニア。プログラミング歴は業務含め7年ほど。趣味で開発・運営する日本語読み上げDiscord Bot「shovel」はサービス公開
から1年間で50万ユーザーを突破。趣味としてグラフィックデザインにも取り組む。好きな寿司ネタはサーモンと炙りえんがわ。Twitter ID:
@cod_sushi /技術中心ブログ: https://cod-sushi.com


◎本書スタッフ
アートディレクター/装丁：岡田章志＋GY
編集協力：深水 央
デジタル編集：栗原 翔



技術の泉シリーズ・刊行によせて
技術者の知見のアウトプットである技術同人誌は、急速に認知度を高めています。インプレスR&Dは国内最大級の即売会「技術書典」
（https://techbookfest.org/）で頒布された技術同人誌を底本とした商業書籍を2016年より刊行し、これらを中心とした『技術書典シリ
ーズ』を展開してきました。2019年4月、より幅広い技術同人誌を対象とし、最新の知見を発信するために『技術の泉シリーズ』へリニューアル
しました。今後は「技術書典」をはじめとした各種即売会や、勉強会・LT会などで頒布された技術同人誌を底本とした商業書籍を刊行し、
技術同人誌の普及と発展に貢献することを目指します。エンジニアの“知の結晶”である技術同人誌の世界に、より多くの方が触れていただく
きっかけになれば幸いです。


株式会社インプレスR&D
技術の泉シリーズ　編集長　山城 敬











https://techbookfest.org/


●お断り
掲載したURLは2020年7月1日現在のものです。サイトの都合で変更されることがあります。また、電子版ではURLにハイパーリンクを設定して
いますが、端末やビューアー、リンク先のファイルタイプによっては表示されないことがあります。あらかじめご了承ください。



●本書の内容についてのお問い合わせ先
株式会社インプレスR&D　メール窓口
np-info@impress.co.jp
件名に「『本書名』問い合わせ係」と明記してお送りください。
電話やFAX、郵便でのご質問にはお答えできません。返信までには、しばらくお時間をいただく場合があります。
なお、本書の範囲を超えるご質問にはお答えしかねますので、あらかじめご了承ください。
また、本書の内容についてはNextPublishingオフィシャルWebサイトにて情報を公開しております。
https://nextpublishing.jp/

mailto:np-info@impress.co.jp
https://nextpublishing.jp/


技術の泉シリーズ



著　者
編集人
企画・編集
発行人
発　行

個人開発サービス運営実践入門
50万人が使うDiscord Bot「shovel」の舞台裏

2020年9月18日　初版発行Ver.1.0（リフロー版）

北浦 望
山城 敬
合同会社技術の泉出版
井芹 昌信
株式会社インプレスR&D

〒101-0051

東京都千代田区神田神保町一丁目105番地

https://nextpublishing.jp/

◉本書は著作権法上の保護を受けています。本書の一部あるいは全部について株式会社インプレスR＆Dから文書による許諾を得ずに、い
かなる方法においても無断で複写、複製することは禁じられています。
©2020 Nozomi Kitaura. All rights reserved.
ISBN978-4-8443-7864-8




	電子書籍閲覧に関するご注意
	目次
	はじめに
	あなたのサービスをたくさんの人に届けよう！
	対象読者
	この本を読むとわかること
	この本の構成

	第1章 DiscordとDiscord Bot
	1.1 ゲーマーに大人気！ボイスチャットサービスDiscord
	1.2 Discord Botの正体
	1.3 Discord Botで「Hello, world!」

	第2章 shovel - 日本語読み上げDiscord Bot
	2.1 50万人が使う読み上げBot「shovel」
	2.2 shovelの機能
	2.3 shovelユーザーの声

	第3章 shovelのシステム構成
	3.1 shovelのシステム全体構成
	3.2 shovelの必要スペックは？ サーバー性能公開
	3.3 shovelを助けるミドルウェアたち
	3.4 shovelを見守る監視体制を実現するツール

	第4章 shovelのソフトウェア構成
	4.1 shovel本体を俯瞰する
	4.2 cog - shovelを構成する歯車たち
	4.3 shovelの機能を請け負うモジュール
	4.4 多くの外部パッケージがshovelを支えている
	4.5 shovelが使う外部アプリケーション

	第5章 大勢に使ってもらえるサービスを目指して
	5.1 たくさんの人にサービスを使ってもらうには
	5.2 shovelの戦略 - ユーザーを逃がさない！
	5.3 システムの品質について考える
	5.4 開発プロセスを俯瞰する

	第6章 品質を上げるための設計のポイント
	6.1 ユーザビリティを考える
	6.2 ユーザビリティの実例 - shovelの工夫
	6.3 異常系に漏れなく対応しよう
	6.4 漏れた異常系を後からみつける
	6.5 ログはBotを良くするヒントの宝庫！
	6.6 アプリケーションログはBotの活動日記

	第7章 開発環境 - 開発効率と品質をあげる礎
	7.1 コードを書き、動かす環境を整えよう
	7.2 環境を3系統用意しよう
	7.3 環境をつくる手順
	7.4 コード変更なしに環境を切り替える方法

	第8章 実装 - いざ、コーディング
	8.1 実装の流れ
	8.2 リファクタリングで保守性を担保！
	8.3 保守性を高める実装
	8.4 ユーザビリティのための実装

	第9章 テスト - コードの品質をまもる、最後の砦
	9.1 テストとは何なのか
	9.2 テストを設計しよう
	9.3 テストを実施しよう

	第10章 Discord Botのテスト自動化
	10.1 テスト自動化とは
	10.2 Botのテストに欠かせないモジュール「jishaku」
	10.3 テスト自動化の実装方法を紹介！

	第11章 アップデートのための作業
	11.1 アップデートリハーサルをしよう
	11.2 本番アップデートの実施
	11.3 「2系統アップデート」でダウンタイム大幅短縮！

	第12章 Botの土台作りのダイジェスト
	12.1 どこでBotを動かすか検討しよう
	12.2 サーバーのセットアップをダイジェストで紹介！
	12.3 DBでデータを永続化しよう
	12.4 バックアップ設定

	第13章 セキュリティ - Botとユーザーを守る壁
	13.1 知らないうちに犯罪に加担しないために
	13.2 サーバーのセキュリティを固めよう
	13.3 Botを狙う攻撃手法を知ろう

	第14章 監視 - 24時間みまもり体制
	14.1 みまもり＋非常アラート＝監視
	14.2 何を監視する？
	14.3 監視に役立つツール
	14.4 Botをツールから監視できるようにしよう

	第15章 バックアップ - 安心を確保する
	15.1 バックアップの必要性
	15.2 さまざまなバックアップ
	15.3 バックアップの作法

	第16章 運営 - ユーザーと接しよう
	16.1 情報発信の拠点をつくろう
	16.2 ユーザーとどう関わるか考える
	16.3 サービスを段階的に公開するメリットとデメリット
	16.4 サービスの印象をデザインする
	16.5 効果的な広報でBotを知ってもらおう
	16.6 Botに機能を追加する
	16.7 Botから機能を削除する - 破壊的変更
	16.8 動作詳細ログでアプリケーションを分析する

	第17章 Bot運営の金銭面
	17.1 サービス運営は儲かるのか？
	17.2 サービス運営で出ていくお金
	17.3 サービス運営で入ってくるお金
	17.4 shovelのお金事情

	おわりに
	あとがき - 個人開発のよろこび
	謝辞


