
rac e
毎

オラクルの潜在能力を引き出す

実践的チユーニングガイド

ガイ・ハリソン=著
比嘉 康饉=訳

ピアソンロエデュケーション

IDATABASE IDEVELOPERIS(31口 IDE

Or5cle SQL High Performance Tuning

ｍ

　

　

ヽ

ｍ

ｉｍ

ｔｎ

一

Ｓ

Ｅ

”

一

ｍ

　

■̈

´

Ｒ
　
Ｊ

´

C)P三二
'A~「
A3A3二

||.

プ
■

一

一り

　

・

Ｆ

一　

・

|・■・
 . ‐|■

|11 11
一
一
　
　
　
　
　
　
　
一

・
　

●
贅
●

．
　

　

　

　

　

． 一

・　・
・・・・・・・・・・　・　　　　　　　　　　　　　　　　　　　　　　　・‐・一一

オラクルの潜在能力を引き出す
実践的チユー

=ング
ガイド

ガイ・ハリソン=著
比嘉 康雄=訳

Pearson
Education

Japan---.
ピアソン・エデュケーション

.‐ 11・

rac eS
躙緻特

●
■
■

ユ

オラクルの潜在能力を引き出す

実践的チューニングガイド

ガイ・ハリソン=著
比嘉康雄 =訳

ビアソン

|`■ ■ヽ|||||||||||■ |●‐■■||11

L二三二三二二」

本書に掲載されているシステム名、製品名等は、一般にその開発元の商標または登録商標です。本書では、本書を

制作する目的でのみそれらの商品名、団体名を記載しており、出版社としては、その商標権を侵害する意志、目的の

ないことを申し述べておきます。

訳者まえがき

本書を手にした方は、現在開発中のシステムのパフォーマンスが悪く、改善策を模索中かもし

れない。あるいは、より良いシステムを開発するために、データベースのチューニング理論を学ぼ

うとしているかもしれない。

この本は、そのような要望にきっと答えてくれるだろう。データベースのチューニングの理論や

テクニックを体系立てて説明しているのはもちろんのこと、SQL文 に対してオラクルがどのような

実行計画を立てているのか、チューニング後に実行計画がどのように変わったのか、チューニング

前後でパフォーマンスがどのように変わったのかを豊富な例題とともに説明している。また、著者

が実際にチューニングを行った実例がもとになったケーススタディもあるので、パフォーマンスの

改善をしなければならない局面のポイントもつかむ事ができる。

データベースの設定が適切かどうかを判定するスクリプトも記載しているので、より実践的にチュー

ニングを学ぶ事ができる。単に本書を読むだけではなく、実際に実行して試して欲しい。

この本を読み終わる頃には、SQL文を見ると、オラクルがどのような実行計画を立ててSQL文を

実行するのか大体わかるようになるだろう。効率良く処理するためには、どのようなインデックス

が必要なのかもわかるようになるはずだ。いつも手元に置いて、パフォーマンスの良いアプリケー

ションを開発するための手引書にして欲しい。

1999年 11月 比嘉康雄

|

|::||::::|:|::::三
:||:::|||||:||||:||||||||||||||||||||||||||口 |||||)

Iまじめに

最近、オラクルRel狙onal Daねbase Management System(RDBMsの 人気は、急激に増加してい

る。その人気の高まりにともなって、オラクルを使ったシステムのパフォーマンスを改善したいと

いう要望も増加している。このように、パフォーマンスを重要視するようになったのは、次のよう

な要因に基づいていると考えられる。

オラクル・データベースは現在、過去のものよりも実質的に規模が大きくなっている。5年前に

は、平均的な規模が数100メ ガバイ トかそこらだったのが、今日では小さいといわれるデータベー

スでさえ数ギガバイトある。

データベースの平均的なサイズが増加しているように、サポートするユーザ数も増加している。

初期のオラクル・データベースは、ダウンすることがそれほど重要視されない小規模なアプリケー

ションで主に使われていたが、今では、ミッション・クリティカルで高いパフォーマンスを期待さ

れる大規模なアプリケーションで使われている。

ユーザ数が増えたので、過去には許されたような反応の遅れやスループットの低さは、もはや受

け入れられなくなっている。

オラクルを使ったアプリケーションのパフォーマンスが、開発時には受け入れられるものだった

が、本番でのデータ量やトランザクション率では、突然低下してしまうということは、良くあるこ

とである。このようなことが起こる理由はいくつか考えられるが、効果的でないSQL文が最も大き

な原因であろう。

SQLは、比較的たやすく学ぶことができるが、非手続き型言語であるために、パフォーマンスに

関する問題が不明瞭になってしまう傾向がある。そのため、効果的なSQL文 を書くことは、機能的

に正しいSQL文 を書くよりもかなり難しい。加えて、SQL文のパフォーマンスを注意深くモニタリ

ングしたリチューニングする必要性があまり理解されていないので、モニタリングやチューニング

に必要なツールやテクニックもあまり知られていないようである。

他に、よくチューニングされたSQL文 が必要になるのは、データウェア・ハウスやOn―Line

Andytical Processing(OυF)においてである。これらのデータベースは、しばしば非常に大きく

て、多くの複雑な問合せを必要となる。これらの問合せに対するSQL文が不十分なものなら、完了

するまでに数時間から数日、あるいは、完了に失敗 してしまうかも知れない。

オラクルを使ったアプリケーションのパフォーマンスが悪くなり始めると、よくチューニングの

専門家が呼ばれて、ベンチマーク・テストやチューニングが行われる。たいていの場合、その専門

家は、オペレーティング・システムをチューニングし、オラクルの構成パラメータを変えて1/0な

どの再調整をする。最終的には(運が良けれ|め 、パフォーマンスを10～ 20%改善できることもある。

これらのチューニングをしているときに明白になるのは、アプリケーションに含まれるSQL文

が、パフォーマンスを決める上で最も重要な要因であるということである。SQL文をきちんとチュ

はじめに 曜靡鰊:|:111:|||:

―エングできたなら、パフォーマンスを100%以上増加させることも夢ではないだろう。しかし、ジ

レンマが存在する。パフォーマンスの問題が表面化した頃にSQL文 を変えることは、難しいのであ

る。さらに、パフォーマンスの専門家は、SQL文 を理解しチューニングするために必要なアプリケ

ーションの知識が無く、その一方で、開発者は、SQL文のパフォーマンスを改善するために必要な

知識を持っていないことが多い。

大体において、アプリケーションのパフォーマンスを改善する最も良い方法は、そこで使ってい

るSQL文を効果的にすることである。そのために、開発者もSQL文 をチューニングする能力を獲得

する必要がある。

この本の目的は、SQLのプログラマに、SQL文 をチューニングするための理論や実践方法、特定

のタイプに応じた最適化法を提供することである。既存のSQL文を調査して問題を解決したり、シ

ステムのデザインやサーバのチューニングといったSQL文のチューニングを超えたパフォーマンス

の問題も簡単に探求できるようになれるだろう。この本のガイドラインに従うことで、開発と本番

の両方で良いパフォーマンスを発揮するSQL文を書くことができ、既存のSQL文の非効率的な部分

を見つけ出し修正できるようになれる。その結果、SQL文はその最も良いポテンシャルを発揮する

ようになるだろう。

|
|

::::::隋魏D

対象読者
この本は、DBA(Daね base Administrator)に 特化したものではない。しかし、DBAに も興
味深い内容になっている。パフォーマンスを要求されるデータベース・システムに関する

あらゆる人にとって役に立つだろう。想定している読者は次のような人々である。

オラクルを使ったアプリケーションの開発者。これらの開発者は、DelphiやVisud Basic

などの開発ツールのコードの中に、SQL文を埋め込む必要がある。また、ストアド・プロ

シージャをツールの中から呼び出すこともある。これらのSQL文が効果的でなければ、パ

フォーマンスの問題を抱えることになるだろう。

データ・ウェアハウスのような意思決定システムに関わっている人々。これらのデータ

ベースは、大規模で、複雑な問合せを必要とするため、SQL文が効果的でないと、想定し

ている時間以内に問合せが終了しないかもしれない。

本書の学び方
この本を最初から最後まで読む必要はない。どの部分を読むかは、読者の経験による。

データベース理論のレビューを飛ばして、SQLチ ューニングの詳細に進みたいかもしれな

い。しかし、SQLの レビューとSQLの チューニングを超えての章は別である。ほとんどの

読者は目を通したほうが良いだろう。

この本の主な章は、次のようになっている

はじめに :

今、読んでいる章だ。この章には、SQLチューニングの重要性のレビューとチューニ

ング過程の概要が含まれている。

SQLの レビュー :

この章では、SQLの歴史と基本的な機能を振り返る。SQLを知って間も無い方にとっ

ては有益な章になるだろう。また、この本の後で用いられるSQLの基本的な概念も定

義している。SQLの経験が豊富な方は飛ばしても良い。

SQLの処理とインデックス :

これらの章では、オラクルがSQL文を解釈して特定のデータを取得・変更するメカニ

ズムについて説明する。問合せオプティマイザの役割、インデックス、ハッシングの

概念、SQLの分析など、とても重要なトピックスをいくつか紹介する。この章は、理

論を重要視している。少なくともこれらのトピックスを理解していなければ、チューニ

ングに成功することは難しいだろう。この章は、すべての読者が読むことを奨励する。

はじめに 口躍躙

SQLの実行 トレース :

この章では、SQLの処理をトレースして解釈する方法を説明する。 トレース・診断ユ
ーティリティを理解することは、SQLチ ューニングにとって必要不可欠である。

庶profというツールや、EXPIノ咀N PIAN文 にあまりなじみが無いのなら、この章をス

キップするべきではない。

SQLチューニング :

これらの章では、特定のSQL文のタイプや環境に対するチューニングのガイドライン

を説明する。これらの章を最初から最後まで読みとおすことは有益だろう。そして、

この本のリファレンスとして使われる部分である。次の章が含まれている。

ロ テーブルアクセスのチューニング

ロ ジョインとサブクエリの最適化

ロ ソー トとグループ化の最適化

ロデータ操作文の最適化

□ PL/SQL文の使い方と最適化

□ その他の トピック

[コ パラレルSQL

SQLチューニングのケーススタディ :

この章では、SQL文を示してチューニング過程を最初から最後までトレースする例を

いくつか紹介する。この章の練習を通じて、過去の章で学んだ理論、テクニック、原

則を実践する。過去の章を補足する意味合いがある。

SQLチューニングを超えて :

これらの章では、すでに十分にチューニングされたSQLのパフォーマンスを改善する

テクニックを紹介する。これらのテクニックには、オラクルの内部的なアーキテクチ

ャや文書化されていない機能の理解が含まれている。上級者用の内容なので、大勢

の読者は、興味を引かないかもしれない。他に、SQLのパフォーマンスに影響を与え

るデザインの問題についても議論する。

付録 :

用語集には、この本で使われている多くの技術用語が含まれている。いくつかの章を

スキップした読者にとって、技術用語の定義を確認するのに有益だろう。また、特

「

鰈吻市一弔難一〓■
一

サンプル・ データベース
できる限り、どのようなSQLチ ューニングの原則も例題とともに示している。これらの

例題は、
~下

記のダイアログのサンプル・データベースに基づいている。このデータベース

は、データモデリングの善し悪しを示しているのではなく、幅広いSQL文を示すための基

礎として用いている。

サンプル・ データベースの構造
この本に含まれる多くの例は、さまざまな最適化によって得られたパフォーマンス値の

グラフィカルな表現とともに示される。これらのパフォーマンスの測定値は、ノヽイエンド

のUNⅨ SMPマ シンから、486マシンまで幅広いハードウェアを使って集められている。測

定値は、最適化を測定するのに適した、経過時間か論理的なデータベース1/0(block read9

のどちらかで示されている。

謝辞
この本は、私の家族のサポートや励まし無しでは、完成しなかっただろう。執筆活動を

引き受けたことで、長時間家族を犠牲にしてしまった。この本は、妻であるJenni、 子供た

ちのCh五stOpher、 Katherine、 Michaelに 棒げたいと思う。

私の同僚であり友人でもあるSteve Adams、 Nick Goldsmith、 Michael Farrarに は、技術

的あるいは一般的な貴重なアドバイスや、いくつかの訂正をしてもらった。また、Tony

Jambuに もだいぶお世話になった。彼らの貢献には、本当に感謝している。

ここ数年、世界規模のオラクル専門家のコミュニティは、Intemadona1 0racle User

GЮup(IOUG)、 インターネットのメーリングリスト/ニューズグループなどである。このコ

ミュニティの多くの参加者が、経験不足のユーザを助けながら、時間、知識、専門的技術

を共有 し、いろいろな所にいるオラクル・ユーザの啓蒙活動をしている。私もこのコミュ

ニティから多くのことを学んだ。助けてくれた多くの人々に感謝したい。

オース トラリアにいるPe“r SharmanOsharman@au.oracle.com)は 、オラクルの新しい

機能や技術的な情報を豊富に含んだオラクルDBAメ ーリングリストを開いている。このメ

ーリングリストも、執筆中の私に多くの助けを与えてくれた。このようなすばらしいサー

ビスを提供してくれたPeterにも感謝している。

第5章 と第8章は、最初Orade Technical Joumal(現 在はOReview)に 掲載されたものだ。

これらの章を再掲載することを許してくれたKathleen OiConnorに も感謝している。

定の環境やリソースに対するクライアントやサーバの設定についても詳細に説明して

いる。

は (||||||||||lilllllllll‡
|‡ |||る :は::i:::::|::11:|1111111:||‐

プレンティスホール社のMark Taubは 、この本を最初に提案してくれて、執筆中ずっと私

を励ましてくれた。編集者のNick Radhuberに も感謝同様にしている。最後に、姪の

Angela、 Evelyn、 Ma“ e、 CatheAneに も一言いいたい。この本を捧げるかわりに、この文

章を贈る。

第1章 チューニングの基礎
1.1 はじめに。・・・・・・・

2.22

22.3

2.2.4

2.2.5

1.2 なぜSQLをチューニングするのか。・

1.2.l チユーニングの動機 ……・・・・…… … …・…・・・……

12.2 スケーラビリティ… …・・・・… … …・―・・…・…
l.2.3 SQ[チ ューニングに対する良く見られる反対理由……

1.2.4 いつSQLをチューニングすべきか… …・……・・…・…

1.3 SQLのチューニングプロセス・・・・・・・・・・・・・・・・・・・・・・・・・
1.3.1 チューニング環境の設定 …・・・・・… … …・・……・…

1.3.2 SOLの パフォーマンス測定ツール・…・…・…・・……

1.3.3 SQLの チューニング …・・・・…… …・………・……・・

１

１

２

２

３

３

／

８

０

２

… …・・・・12

・・・・・・・・131.4 まとめ・・

第2章 SQLレビユー・・・°・・・00… 0・ 00・・・・¨ ・̈0000・ 0・・・・00000・・・・・015

2.1 はじめに。・・・・・・・・・・・・・・・

2.2 SQLの歴史・・・・・・・・・・・・・・

2.2.l SQLデータベース以前

リレーシ∃ナルモデル・…・・

SQLと リレーショナルモデル

ANSI標準 ・… … …・・・…

SQLの将来 ……・・・……・…・

2.3 SQLの タイプ
2.3.1 データ操作言語 (Dolo Monipulo‖ on Lon9U09e)
2.3.2 データ定義言語 (Dob Defin面 on Longuo9e)・ …

2.4 クエリの操作
241 サブクエリ……
242 相関サブクエリ
2.4.3 結合 ……・・……

244 集合演算子・…
2.4.5 集合関数 ………

2.5 ビュー

2.6 NULL値と3論理値 ・・・…・・・・・・・・・・

2.ア トランザクション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

９

１

２

２

２

２

４

５

５

５

６

１

２

２

２

２

２

２

２

２

２

２

・・・・・・・・。2ア2.8 ANSI標準に対するオラクルの拡張

18

目次⊂目は躙|

2.8.1 階層クエリ…`・・・・・・・……・…………・…………………

2.8.2 外部結合…………・・・・・…・。・…・……・…………… …

2.9 非手続き的なデータ処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

2.10 まとめ・・

フ
′
（
∠

28

29

29

第3章 SQL文・・・・・00・ 0000・ 0・・・・・・・・・・¨00000・・・・・・・・・・。・・・・・・・・0031

3.l SQL文の処理・・・・・・・・・・・・・・・・・・・・

3.2 SQL文の処理の概要 ・・・・・・・・・・・・・・

3.2.l カーソル……・…・・……・。・…

3.3 解析
3.3.l SQL文の共有 ・―・……・・… … 。・・・。・・・・・。・・・・・・・・・・・・・・・・……

3.3.2 ノヾインド変数・… ………・・…・・・・・・・・・・・・・・・… …・・…・…・……

3.3.3 再帰SQL…・・・……・・・・……………・・―・・・・・・・・・・・・・・・・・・・・・……

3.4 SQLの実行 ・・・・・・・・・・・・・・…・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

3.4.1 実行とフェッチ・…・・・・…………………・・・・…・…_…・…・・・…。・・
34.2 結果セット・・…・…・・・・……… … …・・・・・・…・… …・・・・・・・・・・・・

3.4.3 データの取得・……・・・・………・―・・・・・…‐…・・…・………・・・.。・・・

344 テーブルの結合 ……・・・・・・・・・・・・・…・・・・・・・…・・・・・・・…・・…・・…
3_4_5 ソー トとグルーピング …… … ……・・・・…・・・…・・・―・・……・…

346 データの修正
3.5 クエリの最適化・・・・

3.51 最適化の手順
3.5.2 オブティマイザの選択 。・・・・・… …………・……… … …

353 文の自動変換・・・・・・・・・・・…… … …………………・…・・
354 ルールベースオブティマイザの詳糸卜 …………… … …・
3.55 コストベースオプティマイザの詳細・・・・…・…… …・…

3.56 統計情報の収集 ……・…・・・・・・・・・・・・・・・・・・・…… … …

35ア コストベースオプティマイザを使うためのガイドライン
3.5.8 オプテイマイザゴールの設定…・・・・・・・・・・・・・・・・・・・・・

3.5.9 ヒントの使用・……・・・…・………・…・―・・・…・・・・・・・・・

35.10 ヒントを使用したアクセスパスの変更・・・………… …・

35.ll ヒントを使用した結合順序の変更…・…・・………………

3.5.12 ヒントの構文エラー・・。・・・・… …・…・・・・…… … …・

3.5.13 インデックスを使わないアクセスパスの選択… …・・・

3.6 まとめ・・

第4章 インデックスとクラスタ 00・・・・・・・・000・・・・・・・0・・・ ・̈・・・・・・・・053

4.1 1ま じめに・・・・・・・・・・

4.2 BЧreeイ ンデックス

１

２

２

２

３

４

６

６

６

６

６

８

８

８

０

０

１

２

２

４

４

６

６

ア

８

０

０

１

２

３

３

３

３

３

３

３

３

３

３

３

３

３

３

４

４

４

４

４

４

４

４

４

４

４

５

５

５

５

Ｑ
Ｖ
　

‘
４

へ
）

ｒ０

4.3

4.4

4.5

4.6

4.ア

421 インデックスの選択性………………… …・・…………
4.2.2 ユニークインデックス…・…………… … ……………

4.2.3 日音黙のインデックス…………・……・…………………

4.2.4 結合インデックス…… ………・… … … ……・・……

425 インデックスマージ… …‐・……… ……………・・・…
42.6 N∪ LLイ直・……………………・……………・……・・…・…

4.2.ア 外部キーとロック…… ………・…… 。.・ …・……・・…

インデックスクラスタ 。…・・・・・・・・・・・・・…・・・・・・・・・・

八ッシュクラスタ・・・・・・・・・・・・・・・・・・・

4.4.1 ノヽッシュクラスタの重要事項・……

4.4.2 ノヽッシュクラスタの構造……・……

4.4.3 しヽつ八ッシュクラスタを使うか。…

ビットマップインデックス・・・・・・・・・・・

45.1 ビットマップインデックスの特徴・

4.5.2 ビットマップインデックスの弱点・

インデックス構成テーブル・・・・・・・・・・・

まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

第5章 SQLの トレース・¨。・・・・・・・・・・・・・・・・・・・

はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

EXPLAIN PLAN・・・・・・・・・・・・・・・・・・・・・・・・・・・・

52.l EXPttN PLANの 実行…・………・…… …・

52.2 プランテーブル … …… …・…‐….… …
52.3 プランテーブルのデータの整形 …・… …
524 実行計画の解釈・・・…・・……`… …… …
5.2 5 0PERATIONと OPTION… ……・・………・…

5.2 6 EXPLAR PLANを 使うときのガイ ドライン・

52.ア EXPLAN PLANユーティリティ……………

5.1

5.2

３

３

５

６

ア

ア

８

８

８

９

０

１

３

３

６

６

６

６

６

６

６

６

６

６

／

ア

ア

ア

5.3 SQLTRACEの使用・・・・・・・・・・・・・・ ・・・・・・ア5

5.3.l SQ[の トレース方法の概要 ………… …………・………… … ………/5
5.3.2 SQL_TRACEを 使うための準備 ………… ……・…・・…・………………75
5.3.3 SQL_TRACEの セッション内での開始……… ……・….… …・… … …ア5

5.3.4 他のセッシ∃ンのトレース …・……・…………………………・………フ6

53.5 トレースフアイルの位置 ………・……… ………・・……・… ……・…フア
5.3 6 1kPrOfのイ吏しヽ方 ・……………………….… …………・……………………ア8

5.3.ア トレース時の問題点… ………・……・… ………・・…… ……………80
5.3 8 1kprofの出力結果の読み方 ……・・・…・… …・…・……… ……………80

5.4 SQL*PlusのAUTOTRACE機 能の使い方 ・・・・・・・・・・・・・・・・・・・…・・・・・・・82
5.4.l A∪TOTRACE機能を使うために必要なこと・……………・…・…・……82

‐礼

目次 lCは痣靱:::|11::1111::|

542 A∪TOTRACEの オプシ∃ン …

■43 パフォーマンス統計の読み方
544 SQL文の経過時間の測定 ……

5.5 まとめ

第6章 テーブルアクセスのチューニング ・̈・0・・・000…・000000・ 00000・・

はじめに 。・

テーブル全走査とインデックス検索・・・・・

6.21 オブティマイザはどうやつてテーブル全走査とインデックス検索を選

6.1

6.2

・83
・83
・85

。86

87

・・87

・・88

′3ヽ 6Dか ………………・…………

62.2 列のヒストグラムの使用 … …

6.3 予期せぬテーブル全走査とその対策
631 1=(nol equols)の使用 … ……

632 N∪ LL値の検索 …………...… …

6.3.3 NOTN∪ LL値の検索…………・…

634 列に対する関数や演算子の使用

6.4 インデックス参照の最適化・・・・・・・・

64.1 結合インデックス・・…・… …

6.4 2 LIKE句の使用…………・…….…

6.43 0R句やN句を使ったクエリー

6.5

6.6

CACHEヒ ントの使用・

パラレルクエリの利用

配列フェッチ… …・―

88

89

90
90
92

93

94

95
95

9ア

98

64.4 インデックスマージ・・・…・・・… … …… …・・―・… … …

6.4 5 1kprofを使つて効率の悪いインデックスを調査する・………・…

646 関数が適用される列に対する検索……・……………・……………

八ッシュクラスタ参照の最適化 … ………・……… … … …… …

テーブルアクセスの最適化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

66.1 八イウォータマークを低くする………………………・……・.…

662 テーブルの作成パラメータPCTFREEと PCT∪ SEDを最適化する …
66.3 ブロックサイズを大きくする… ……………………・………・…

664 サイズが大きくて滅多にアクセスしない列を別テーブルに移す

…100
… 101

…102

・・103

・・106
… 10ア

… 10ア

…109
-109

6.65

6.6.6

6.6ア

6.ア まとめ

第7章 結合の最適化とサブクエリ・・000・ 0000000・ 0・・00・・・000000000・ 113

ア.1 はじめに。・・・・・・…・・・・・・・

ア.2 ベストな結合を選ぶ。・・・・・・

ス21 ソートマージ結合/八ッシュ結合対ネストさねたループ結合 …・…114
/.22 ネストさねたループ結合とソートマージ結合の例……・…・……… l15

……・・109
………110
……・・110

・・・・・・111

113

114

::鰈絣D

ア.23 ノヽッシュ結合を使う。・・・……
ア.24 結合のパフオーマンスの比較
/2.5 オプティマイザゴールと結合
ス26 結合の最適化……

ア.3 最適な結合順序の選択 。

/.3.1 ヒントを用いて結合をコントロールする・

ア.4 インデックスクラスタを用いた結合の最適化・

ア.5 外部結合・・

ア.6 スター結合

階層クエリ・・・・・・・・・・・・・・

単純サブクエリ・・・・・・・・・・

IN演算子を含むサブクエリ

.・ ……・・・……・・・・・…116
………・……・・。・・…・・11ア

… ・・………………・…l19
・・・・・・・・……・……・・l19

・・・・・・・・・・・・・・・・・・120
……・……・・……・・・・120

・・・・・・・・・・・・・・・・・・121

・・・・・・・・・・・・・・・・・。123

・・・・・・・・・・・・・・・・・。124

・・・・・・・・・・・・・・・・・。127

・・・・・・・・・・・・・・・・・・129

・・・・・・・・・・・・・・・・・・131

・・・・・・・・・・・・・・・・・。133
………・・・・・・…・・・・・136
・・・……・・・….…・・・・13ア

……・・・・・・… 。・・・…13ア

・・・・・・・・・・・・・・・・・・142

・・・・・・・・・・・・・145
。・・・・・・・・・・・・146
…・………・……146

・146
・14ア

・]48
・148

。150
・150
・152
・153
・155

・・・・・・・156
''・ …・.・ 156
…・・・・…158
…… .・・・159

・・・・・・・160

ア.ア

7.8

ア.9

第8章 ソートとグループ化の最適化・・・・0・・・・・・・・・・0・ 00000000・ 。000145
8.1 1よ じめに・・・・・・・・・・・・

8.2 ソー ト・・・・・・・・・・・・・・

8.21 ソートの問題…・

ア.10 相関サブクエリ・・・・・・

ア.10.l EXISTSを 用いた相関サブクエリ

ア.10 2 EXISTS′ IN′結合の比較 ・・…・・・

ス103 反結合
ア.11 まとめ・・・・・・

8.22

82.3

8.2.4

8.2.5

8.3 グループ演算
表の行数を数える

最大値と最小値…

グループ化… …

HA∨NC句 ……・・

不必要なソートの回避…・・・・・……・・・……・。・…… 。・

インデックスを用しヽてソートを避ける。・・・… … ・・…

パラレルクエリオプションの活用…・ヽ。・……。・・・・・…

データをソートする場合どのアプローチを用いるかつ

8.3.1

8.32

833
8.3.4

8.4 集合演算子
8.4.]∪ NIONと∪NION A[L・ ・

8.4.2 1NTERSECT… …・・・・・…

8.4.3 MIN∪ S・・・。・…・…・・・・

8.ア まとめ・・・・・・・・・・・・・・・・・・・・

第9章 データ操作の最適化・°°°°・°°00000・ 00000・・・000・ 0・ 000・・00000163

目次 CIE鰺躙 :|::|:|::|

9.1 1よ じめに。・・・

9.2

9.3

9.4

DMLに含まれるサブクエリの最適化・・

TRUNCATE対 DELETE・・・・・・・・・・・・・・・̀

インデックスとDMLのパフォーマンス

・。163

・・164

・。164

・・164

・。165

。・165
…165
。・168

…168

・。170
…1ア○

…1ア 1

・・171

9.5 酉醐」挿入・・・

9.6 トランザクションの最適化・・・・・・・・・・・・

9.6.1 ディスクリートトランザクシ∃ン…

9.6.2 SET TRANSACTION文 を用いる ……

963 トランザクションのCOMAAIT・ …・
9.ア 外部キー・・・・・・
971 外部キーがパフォーマンスに与える影響
9ス2 外部キーとロック… … … 。・・・・・・・…

9.8 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

第10章 PL/SQLの使い方とチューニング…000・・・・・・・・・・000・・・00・ 00173

はじめに・・・・ ・・173

10.4

PげSQLレビュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・…・・・・・・・・・・173

PL/SQLの特徴。・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・…・・・・・・・・・・・・。lZ
103.1 解析の削減 … ……・… … … … ・… ・…・…… …・……… …lア4

10.3.2 クライアントサーバの間の トラフィックの緩和 。・。・・・……・……1ア4

10.3.3 PL/SQLを 用いてデータの処理方式を決定する……・…・・・・・・…lア4

SQL文の代わりにPL/SQLを用いる。…・・・・・・・・・・・・・・・・・・・・・・・・・・174

10.4.l PL/SQLを 非正規化に用いる……………・・…。・・・・・・・・・・・・・……・lア5

PL/SQLの最適化・・・・・・・・・・・・・…・・・・・・・・・・・・・・・・・・・・・・・・・・・・。176

10.5.l コー ドの最適化・……。・・・・・・・・・・・…・・・・……・…・…・…・…・・・176

10.5.2 無名ブロックのかわりにストアドプログラムを用いる …………」80

10.5.3 パッケージを用いる ………。・。・・・………・…………・……………・181

10.54 トリガ対ストアドプログラム …・・・・・・・…・…… …………………182
10.55 トリガで∪PDATEOF句 とい/HEN句を用いる。・・・・・・・・………・……182
10.5.6 明示的にカーソルを用しヽる 。…・…・…・……・―・……。・。・・・・…184

10.5.ア νγHERE C∪ RRENT OF句 ・……・……・・…………・・・・・………・……184
10.5.8 PL/SQLテ ーブルによるキャッシュ・・・……・・・…・……・・・・…・。・186

まとめ・・188

10.5

10.6

第11章 その他のトビックス・・・・・・・・・・ ・̈・e・・。・・‥・・0。・・・・・・・・・・0189

11.1 1ま じめに。・・・・・・・・・・・・・・・・・・・・・…・・・・・・・・・・・・・・・・・・・・・・・・・・・189

11.2 ビューの最適化…・・・・・・・・・・・・・…・・・・・・・・・・・・・・・・・・・・・・・・・・。190

10.1

10.2

10.3

11.3

11.4

1121 ビューにヒントを用いる
112.2 パーティシ∃ンピュー・

1123 パーティシ∃ンテーブル
スナップショットを用いる …

1131 スナップショットログ・

分散SQL・・・・・・・・・・・・・・・・・・・

オラクルが分散SQLを実行する手順

分散結合 ………・………・………・…

ビューを用いて分散結合を改善する

最適な駆動サイ トの選択 ……… …

分散結合のパフォーマンスの比較 .

11.5 シークエンス

11.6

117

11.51 シークエンスのキャッシング …・……… …

11.5.2 スキップされた連続数 …・……………… …

DECODEを用いる 。・・・・・・・・・・・・・・・・・・・・・・・・・・

データ定義言語・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

11.ア .1 ∪NRECO∨ERABLE句 ……・…・…………………

11.ア .2 REB∪ |[D句 …………・……………・………… ・

1173 パラレルオプシ∃ン … …・……… ………

まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11.8

・191

・191

・193

・194
・195

。196
・196
・19ア

・198
・199
・201

。201
・203
・204

・205
。206
・20ア

・20ア

・20/
。207

11_4.l

ll.4.2

11.4.3

l14.4

11.45

第 12章 バラレル処理・・・・・・・・・・・000000・・00000000・・・・・¨ 000。 00000209

12.1 はじめに・・209

12.2 パラレル処理を理解する。・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・210
12.21 どのSQL文がパラレル処理できるか…。・・―・…・……… …・・…211
12.2.2 パラレル度数によるパフォーマンスの改善 ……………… ………211

122.3 パラレル処理に適した条件 ……… … ……………… … … ……212
12.2.4 パラレル度数 ……・……・・・・・…… … …… …………… … ……213
12.25 クエリコーディネータ ……・…………… ・…………… …・……214
12.2.6 パラレルスレーブプール ……・…… … … …………… …・・・…215

12.3 パラレルクエリ・・・・・・・・・・・・・・・・・

123.1 パラレルクエリを使う ………

123 2 PARALLELヒ ント… … … ……

12.3.3 パラレルSQL文の実行計画・…

12.3.4 パラレル処理のチューニング

12.4 パラレルクエリの例・・・・・・・・・・・・・・・・・…・・・・・・・・・・・・・・・・・・・・・・219
12.4.1 パラレルでネストされたループ結合をパラレル処理する … ……219
12.4.2 ノヽッシュ結合 …… … ……………・・.・ 。・・……・・… … … ……220

・・・・・・・・215
………・…215
…………216
・― .… …216
…………21ア

I議:|::|:::蟷骰D

目次α囃蒻:薔||:||::菫
|

1243 ソー トマージ結合 ……・……・・…・…………… … ……・…………220
1244 反結合 …………・…………・……………・…・….… ………・………221
124.5 集合演算子 ・…………・……………・……… …….…・……………222
1246 グループ演算 ……・………・…………・・.… … … …………………223
12.4.ア パラレルクエリのパフォーマンス ………… ……・……。・・・……223

12.5 パラレルDDLと D皿 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・… ・・・・・・・・… 225
12.5.l CREATE INDEXの パラレル処理…… …・…………・… …… ・… …225

12.5.2 CREATE TABLE AS SELECTのパラレル処理 … … … … … … … 225

1253 パラレルD皿…… ・… … …・・・・・・… …… … … …… … … 226
12.6 まとめ・・22ア

第13章 SQLチ ューニングのケーススタディ。00・・…00000000・ …・・・・・229

13.1

13.2

13.3

はじめに 229

ケーススタディ1:結合インデックスを用いる 229

ケーススタディ2:ルールベースオプティマイザ、インデックスマージ、

バインド変数 ・・232

ケーススタディ3:次第に機能が低下するクエリ 235

ケーススタディ4:数字の領域検索・・・・・・・・・・・・・・・・・・・・・・・・・・・。240

ケーススタディ5:FIRST ROWSアプローチ・・・・・・・・・・・・・・・・・・・・。244

まとめ 24ア

第14章 データモデルとアプリケーション設計 0・・000000・・・・00・・・・00249

13.4

13.5

13.6

13.ア

14.1

14.2

14.3

|よじめに・・・ ・・・・・・249

設計プロセスのチューニング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・250

142]パ フォーマンスに不可欠な事項を早い段階で定義する ・…………250
14.2.2 主要な処理を特定する ………・・……………… ………… ‐・……250

14.2.3 パフォーマンスを可能な限り早い段階で計測する ………‐………250

142.4 重要な部分のプロトタイプ化を検討する ………… ……………・250

効率的なデータモデルの設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・。251

1431 論理および物理データモデル ・……………・……… ………………251
1432 論理データモデルから物理データモデルヘの変換 ・………………251
14.3.3 ブトIE芳訂ヒ …………・………・………………・……・・.…・……………25/

14.4 アプリケーシヨン設計・・258
1441 ロック戦略 ………………・…・・・・………… ……… …・・…・・・…258
1442 キャッシュ・……………・・・・………………・…… … ……・………260
144.3 クライアントとサーバの処理の分害」……… … …・……・………261

・・・・・・・・・・26114.5 まとめ・・・

|

:鰈MD

第15章 高パフォーマンスのデータベース構築 Oe00・・・ ・̈・・・・・・00・・・263
15.1 はじめに。・・。263

15.2 オラクル・アーキテクチャのレビュー・・・・・・・・・・・・・・・・・・・・・・・・・・263

15.3 ノヽ― ドウェアの設定。・・・265
15.3.1 メモリの設定 … …・・・・・・・・・…… … ……・…・… 。・・・・・・・・265
15.3.2 ディスク装置の見積り・…………… … … …・・・…・・・・・・・・・・…266
15_3.3 CP∪・・・・・・・・・・.… 。・・・・・・・…・…・…・………・…………。・…。・・…2アO
15.3.4 ネットワーク・…・・…………・・・・・・・・・・・・・・・…・・…∵… …・…ソ 1

15.4 データベースの構築・・・。272
15.4.1 バックアップ戦略 ……………・……・・・・・・・・・・・・……・・…・……2ア2

15.4.2 データブロックのサイズ・…・………・・・・・・・・・・・・………………2ア2

15.4.3 リドゥログ・・・―・・・・・・・・・・・・・・・・…・…・…・・……・……。・・・・・2ア3

154.4 アーカイプの最適化・・・・…・・……・…・…・・・・・・・・・・・・・・…・……2ア 3
154.5 データファイル1/○の最適化…・…・…・・・・・・・・・・・・・・……………2ア 3
15.4.6 テーブルスペースの設計とエクステントのサイズを決定する際の原則

・・・・・…・・・―・………・・…・・……・・・・・・・・・・・・・・・・・・・・……・・…2ア5

15.4.ア ROLLBACKセグメントの設定 ・……・… …・・・…………・……・・・…2ア6
154.8 TEMPOARAYテ ーブルスペース・……・・…・……・・・…・・・・・・…・…276
15.4.9 SCAのサイズの決定 。・・・・・・・…・…・・…・………・・・・・・・・・・・・・・・2アア
15.4.10 マルチスレッドサーバ・………・… …・。・・・・・・・・・… …・……2ア9
15.4.11 パラレルサーバ … …・・…・…・… 。・。・・・・・・…・… … Ⅲ… …280
15.4.12 RAWパ ーティション・・・…………………………・・・……。・・・・・・・280

15.5 まとめ ・・・281

第16章 データベースサーバのチュ…ニング・00・・ ・̈・・・・・・・。・・・・・・0283

16.1 はじめに 283

16.2

16.3

16.4

オペレーティングシステムのパフォーマンスの評価・・・・・・・・・・・・・。284
16.2.1 オペレーティングシステムのモニタリング ………・……・………・284
16.2.2 メモリ不足 ・・・… …・…………・・・・・… 。・・・・・・・・・・・・・…………284
16.2.3 1/○障害・・…・・・………・・・・・・・…・・・・・・・……・・・・・・・・…・・・……285
1624 CP∪障害計…・・・…。・・・・・・・…・・…・…・…・・・……・・………・…・・・・286

SQL文の処理フロー・・・。287

パフォーマンスチューニング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・289
16.4.1 メモリチューニング・・・………・・・・・・… ……・…・・・・…・…・・・・・289
16.4.2 1/○ チューニング・・・・・・・・・・・・・・・・・… …・・・・…・…・………・・…295

1643 リソースの競合 .・ …・・・・・・・・・・・…・…・・・・・・・・・・・・…・・・…301

まとめ・・・。30916.5

ヽ

　

．ゼ

_転 ..彰:::l,_澪

雖:懸∫̂彦ぶξ
辟

15維４鍵
″

♂

響

4

凩

ヅ魃

,,

絆
今

｀`
tti鰺癸 ♂
_‐ ヽ、 ゆ聟″

苺 ・
1営
本` ‐～ヽ‐_

1.l Iまじめに

この本の目的は、読者がオラクルを使った環境で効果的で、高いパフォーマンスを発揮するSQL文 を

書けるようになり、既存のSQL文のパフォーマンスを改善できるようにすることである。まえがきで述

べたように、SQL文のパフォーマンスを改善することが、オラクルを使ったアプリケーションのパフオ

ーマンスを改善するのに最も効果的である。さらに、SQL文の改善は、アプリケーション開発のすべて

のステージで役に立つ。

この章では、SQL文 をチューニングする動機、あまリチューニングされていないSQL文のデメリット、

チューニングからもたらされるパフォーマンス上の利点などについて細かく検討する。そして、チュー

ニングの共通事項についても検討していく。

この章で扱う項目は以下のとおりである。

ロ パフォーマンス管理全般におけるチューニングの位置づけ

□ 効果的なチューニング環境の確立

ロ チューニングを成功させるために必要なスキルとツール

ロ チューニングに含まれる各ステップの概要

ヽ
．

ヽ

~爾珈珀

■ 11:||:|:||`::議

=置
力,;:lf:肇 |||:|||:`::|::;:

・
11

::|:::::躙隕亦

1日2 なぜSQLをチユーニングするのか
SQLチ ューニングの目的や重要性は、説明する必要が無いほど自明のことだ。しかし、SQLチ ューニ

ングと同様に困難で時間のかかる訓練に入る前に、何を学習するのか、予想されるコス トや利益はどの

ようになっているのかを理解しておく必要がある。

1.2.1 チューニングの動機
SQLチ ューニングは、必ずしも容易ではない。SQLチ ューニングは、SQLを最初に書いてテストする

よりもさらに時間のかかることが多い。どうしてそのような面倒なことをするのだろうか。SQLチュー

ニングという困難なことをするのには、いくつか理由がある。それは次のとおりだ。

ロ オラクルを使ったアプリケーションの対話的な処理のレスポンスを改善するためだ。アプリケー

ションのレスポンス時間の大部分は、データベースのデータを取得したり、更新することで占めら

れる。SQLを チューニングすることで、論外に時間がかかっていたものが、受け入れられるレベル

までレスポンス時間を減らすことができる。センセーショナルに時間を削減できる場合もある。

ロ バッチのスループットを改善するためだ。バッチシステムは、何千、何万行のデータを厳格に決め

られた時間の範囲で処理しなければならないかもしれない。バッチジョブで使われているSQLを改

善することで、与えられた時間の範囲でより多くの行を処理できるようになり、ジョブを完了でき

るようになるだろう。バッチジョブが突然制限時間を超えて著しく悪化するまで、バッチの処理時

間の問題は表面化しないことも多い。たとえば、デイリー・レポートが24時間を超えるような場合

である。

図 1.l Paterns of applicatiOn scalability.

●第1章 チューニングの基礎(1蜃鰈鰈躙:

ロ アプリケーションのスケーラビリティを確保するためだ。システムヘの負荷 (ユーザやデータ量の

増加)が増えても、パフォーマンス (レ スポンス時間やスループット)の劣化は、緩やかに抑える

ことが望ましい。 しかし困ったことに、多くのアプリケーションでは負荷が増加すると、急激にパ

フォーマンスは劣化 してしまう。図1.1で負荷が増えたときのパフォーマンスの劣化の様子を示す。

ロ システムの負荷を減 らすためだ。厳密にいえば、パフォーマンスが許容範囲に収まっている場合で

さえ、チューニングすることで、他の目的のためにリソースを開放する事が出来る。

ロ ハードウェアのアップグレードを避けるためだ。ハー ドウェアの費用を実際に負担している人々に

とって、これは強い動機になる。パフォーマンスがでないことを解決するために、ハー ドウェアの

アップグレードが推奨されることは一般的ではない。この解決策は、チューニングを避けることが

出来るという利点はあるが、スケーラビリティのないアプリケーションは、すぐに限界に達 して更

なるハードウェアのアップグレードを要求するので、無意味な結果に終わることが多い。

1.2.2 スケ…ラビリティ
図1.1でアプリケーションのスケーラビリティの一般的なパターンを不す。良くチューニングされたア

プリケーションは、ユーザ数やデータ量が増加しても要求されるパフォーマンスを発揮することができ

る。 しかし、適切にチューエングされていないアプリケーションは、要求が増えると急激にパフォーマ
ンスを悪化させてしまう。悪化のパターンはいくつか考えられる。

□ 線形 (一定)の悪化。これはあまり深刻な問題ではない。悪化の程度は予想が出来、ハー ドウェア

のアップグレー ドで対処できる。

□ 指数的な悪化。これは重大な問題である。悪化の程度は予想が出来ず、ハードウェアのアップグ

レードでは、不十分かもしれない。

ロ ボトルネック。これは突然壁にぶち当たったようなものだ。前もった警告もなく、ハードウェアの

アップグレードでも解決できない。

1.2.3 SQLチューニングに対する良く見られる反対理由
パフォーマンスの良いSQLを書くことは、機能的なSQLを書くことよりさらに難しいので、チューニ

ングプロセスに対する抵抗があるかもしれない。ありがちな反対理由は次のようなものである。

EIオプティマイザが自動的にSQLを チューニングしてくれる。

□ SQLチ ューニングは、私の専門分野ではない。

□ 私はSQLを 書き、それを誰かがチューニングしてくれる。

[コ 後で、SQLをチューニングしよう。

□ SQLを チューニングする余裕はない。

オプティマイザがチューニングしてくれる

オプティマイザについては、第3章で詳しく議論する。オプティマイザはオラクルの一部であり、SQL

を実行するのに最も効率的な方法を探し出そうと試みる。オラクルのリリースごとにオプティマイザは

賢くなっていて、SQLを効率的に実行 してくれることも多い。しかし、SQLプ ログラマなら知ることが

できるアプリケーション固有のデータの性質については、考慮することができない。手短に言えば、オ

プティマイザは確かにチューニングをしてくれるが、経験を積んだSQLプ ログラマほど良い仕事はでき

ないのだ。

私は、SQLプログラマではないので専門外だ

クライアント・サーバのアプリケーション開発では、SQLの コーディングは、Delphiや Visual Basic

などの開発ツールを使う上で、最も専門的な知識が要求される重要な部分だ。これらのプログラマ達は、

SQLプログラミングは専門外で、SQLチ ューニングには責任はないと考えているかもしれない。しかし、

それは危険なことだ。開発言語のコーディングよりもSQLの コーディングのほうが、アプリケーション全

体のパフォーマンスに影響を及ぼすことが多いのである。一般的に、SQLを書くのなら、そのパフオー

マンスについても責任を持つ必要がある。

自分の書いたSQLを 他の誰かがチューニングしてくれる

アプリケーションのSQLを チューニングすることは、DBAの責任だとしばしば考えられている。でも、

普通はSQLを書いた人が、チューニングに必要な情報を持っているものだ。

たとえば、他人のSQLを DBAが チューニングしようとするとき、そのSQLが何をしたいのかを調べるた

めに、かなりの時間を費やさなければならないだろう。SQLを書いた人と同じくらい、扱っているデー

タの意味を理解 しなければならない。チューニングするときに間違って、SQLの 意味を変えてしまう可

能性もある。

SQLを書いた人が、SQLのチューニングをすることが最 も確実で効率的なのである。

後でチューニングしよう

この態度の問題点は、ソフトウェア開発のクオリティコントロールにおける遅延の問題と同じである。

このことは、コス トを増大させる原因として良く知られている。たとえば、開発時に取り掛かっていれ

ば、ソフトウェアの欠陥を修正するのに1時間ですんだものが、システムのテス トのときに取 り掛かれば

10時間必要で、製品になった段階だと、20時間必要とするかもしれない。

同じことがSQLの チューニングについてもいえる。時間が経てば経つほどチューニングは難 しくなる。

後でSQLを チューニングすると広範囲にわたってテス トする必要が出てくる。SQLは書いたときにチュー

ニングしなければならない。

チューニングしている余裕はない

実際に、チューニングせずに済ますことは多分できない。効率的なSQLの実装に失敗すると不必要な

ハードウェアのアップグレードにつながり、ユーザの生産性は落ち、不満が増えてプロジェク トがキャ

ンセルされる場合 もある。

開発サイクルの早い時期にチューニングを行わないと、結局後で多大な努力が必要になる。ほとんど

の場合、チューニングされていないシステムは、チューニングされたシステムよりもより高価なハード

ウェアを必要とする。数週間アプリケーションのチューニングに時間をかけていれば避けられたかもし

●第1章 チューニングの基礎 □麒躙::|::|||

パフォーマンスの

要求仕様

アプリケーション

設計

データベースの

物理設計

ハードウェアの

要求仕様

チューニングを含

アプリケーション

チューニング

ベンチマークと

パフォーマンステス ト

製品のパフォーマンス

の監視と変更

オラクルサーバと

オペレーティングシステム

のチューニング

チューニングプロセスの全体図

図1.2 パフォーマンス管理の全体図

れないハードウェアのアップグレードに何百万 ドルかかることもある。

SQLのチューニングは常にコストを節約してくれる。

SQLチ ューニングは、チューニングプロセス全体の1つの側面にすぎない。図1.2でチューニングプロセ

スの全体図を示す。チューニングのその他の要素は次のようになっている。

ロ パフォーマンス要求仕様 :最初の要求仕様のフェーズで、パフォーマンスの要求仕様についてもは

っきりさせておいたほうが良い。これらの要求は、一秒当たりのトランザクション数やレスポンス

時間などで特定される。この時の要求仕様が、その後のチューニングロ標になる。

ロ アプリケーション設計 :こ の段階で、アプリケーションの機能やアーキテクチャが決定される。こ

の決定によって、パフォーマンスの要求仕様やシステムの可能性も固まる。データベースの論理設

計もこの時に行われる。

ロ データベースの物理設計 :論理モデルによって定義されたデータは、物理モデルによってテーブル

やインデックスなどにマッピングされる。通常は、この物理設計がアプリケーションのパフォーマ

ンスの限界を決めるα一度決定された物理モデルを変更する事は、既存のプログラムに影響を与え

るので難しくなる。たとえば、既存のプログラムを修正せずに、2つのテーブルを1つにまとめるこ

とは恐らくできない。

アプリケーションやデータベースの設計を変更して、パフォーマンスを改善することができる。し

かし、プログラムの実装後に設計を変更することは、コストもかかり実行不可能な場合も多い。そ

のため、実装前に設計を最適化することが重要である。14章で、アプリケーションやデータベース

設計について議論する。

ロ ハードウェア要求仕様 :ハ ードウェア要求仕様は、通常アプリケーションでベンチマークやパフォ

ーマンステストが行われる前に立てられる。ハードウェアの能力は、システムのパフォーマンスに

重大な影響を与えるだろう。15章では、ハードウェアの規模 も含めて議論する。

ロ アプリケーションチューニング (SQLを 除く):このチューニングには、パフォーマンスを改善す

るためのアルゴリズムの変更などが含まれる。たとえば、必要になるたびにファイルを再読み込み

するのではなく、メモ リにキャッシュして使うような変更である。

ロ アプリケーションチューニング (SQL):データベース中心のアプリケーションでは、SQLチュー
ニングによって、パフォーマンスを最も大きく改善できる。SQLのパフォーマンス改善が、この本
の主な焦点になる。

ロ ベンチマークとパフォーマンステスト:ベ ンチマークやパフォーマンステストは、しばしば、シス

テムの実装よりも優先される。ハードウェア要求仕様を固めるよりもベンチマークを優先する場合

もある。

ロ オラクルサーバのチューニング :こ のプロセスでは、SQLや データモデルを変更せずに、アプリケ
ーションのパフォーマンスを改善する。このチューニングでは、構成パラメータを変更したり、複

数のディスクにデータファイルを分散することなどを行う。

ロ オペレーティングシステムのチューニング :これは、オラクルサーバのチューニングに似ている。

このプロセスでは、オペレーティングシステムの設定を変更 したり、リソースの再構成などを行う。

加えて、必要ならば、さらにリソースが追加される場合もある。オラクルサーバやオペレーティン

グシステムのチューニングは、ボトルネックや、リソースの競合が起こったときに特に有効である。

:構11:::::::::で蝙 歩

●第1章 チ■三ニング⊇基礎(■國鱚躙礫::

しかし、SQLのチューニングほど実質的には改善できない。16章で、さらに詳 しく説明する。

ロ ハードウェアのアップグレード:これは、パフォーマンスの実質的な改善につながる。しかし、非

常にコストがかかることが多い。加えて、ハードウェアのアップグレードは、アプリケーションに

スケーラビリテイがない場合、効率が悪くなってしまうことも多い。たとえば、パフォーマンスを

2倍に改善するために、4倍のリソースが必要になるような場合もある。

図1.3に これらのチューニングプロセスによって、期待されるパフォーマンス改善の可能性を示す。こ

の図から、実行することが難 しいアプリケーションやデータベース設計の変更や、コス トのかかるハー

ドウェアのアップグレードを除いて、SQLのチューニングが最も実用的であることがわかる。

1.2.4 しヽつSQLをチューニングすべきか

理想的には、SQLは書かれたときにチューニングすべきである。開発の工程が進むにつれて、チュー

ニングのコス トも増加し、予想されるパフォーマンスの改善の度合いは低下する。これには、いくつか

の要素が考えられる。

アプリケーションには、設計の大部分を再実装することなしに変更することは、不可能な部分も存在

する。たとえば、データベースの設計は、ほとんどのプログラムの基礎になっている。設計の段階では、

データモデルを容易に変更することが出来るが、それ以降の段階で変更すると、新しいデータモデルに

合わせるために、すべてのプログラムを再実装しなければならないかもしれない。

最初に書いたときにSQLを チューニングした場合は、テストは一度で済む。しかし、最初のテストが

終わった後で、SQLをチューニングした場合は、もう一度テストをやり直さなければならない。そのう

図1.3 さまざまなチューニングプロセスにおけるパフォーマンスの改善度

鰈鳳D

図1.4 システムのライフサイクルにおけるコストと利益

え、SQLが最初に書かれたときは、機能的な要求やテーブル設計がしっかり把握できているが、後から

チューニングする場合は、もう一度ロジックなどを確認する必要が出てくる。

一度本番稼動したシステムは、チューニングを実行するにもしばしば制限を受ける。たとえば、デー

タ量の多いテーブルのインデックスを作成したり更新する間、アプリケーションは実際に利用できなく

なる。一日中稼動させなければいけないシステムでは、このようなインデックスの作成は重大な問題な

のである。

図1.4に 開発のライフサイクルのさまざまな段階におけるチューニングのコストと利益を示す。

ここで議論してきたように、開発プロセスのできる限り早い時期にチューニングすることは、効率的

で経済的である。

パフォーマンスの問題は、アプリケーションが本番稼動するまで、あるいはストレステストを実行する

まで、無視されていることが多い。このことは、チューニングの仕事を難しくするが、それでもパフォー

マンスを改善するには、SQLを チューニングすることが最も効果的である。

1.3 SQLのチューニングプロセス

この本には、SQLを チューニングするための豊富なテクニック、ガイ ドライン、サンプルなどが含ま

れるが、あらゆる状況を網羅するものではない。しかし、一般的な状況で効果的なアプローチを取るた

めのよい指針になるだろう。

SQLの チューニングには、非常に多くの試行錯誤が必要になる。しかし、この試行錯誤は、行き当た

りばったりではなく科学的に行わなければならない。SQLチ ューニングの専門家は、理論に基づいた一

定の手順を繰 り返 しながら、最善のSQLを 確立しようと試みる。科学者のように、SQLの専門家は、最

善のSQLが見つかるまで、データを集め理論に基づいたテス トを何度も繰 り返すのである。

(0)第 1車 チューニングの基礎 G口睫躙|||

テーブル、インデックス、データ

量などを調査してチューニングの

準備をする

終了

は い

SQLを トレースしたりtkprofを
使って、実行計画を分析する

いい フL

パフォーマンスを改善すると

思われる代替案を考える

図1.5 SQLのチューニングプロセス関連図

図1.5に は、強調しておきたい3つのポイントがある。

□ 最初は、対話的な処理である。満足な結果が出るまで、その処理を繰り返すことになる。

□ 2番目は、SQLのパフォーマンスを測定するツールである。測定なしで、チューニングの効果を知

る方法はないのである。そのため、パフォーマンスを測定するツールには、良く精通しておかなけ

ればならない。

□ 3番目は、インデックスの作成や変更などのSQL文である。このようなSQLを効果的にするために

は、オラクルがどのようにSQLを処理しているのか理解し、そのオプションについても精通してお

く必要がある。そのためこの本では、特定のタイプのSQLを改善する例とともに、オラクルのSQL

の処理の仕方についても詳細に説明する。

SQLは 最適化されているか

SQLを チューニングする

ヒントを使う
インデックスの

追加、変更を行う
SQLを 書き換える

且
∨

1.3.1 チュ…ニング環境の設定
チューニングを始める前に、SQLを効果的かつ適切に測定するための環境を作成する必要がある。そ

して、データベースの構造やデータ量についても詳細に把握しておく必要がある。

本番稼動時には何百万行もあるテーブルが、開発時には数10行 しかなかったり、開発者がインデック

スの存在や、SQLを チューニングするためのツールの存在を知らないようなプロジェクトがたくさんあ

る。そのような環境では、SQLを チューニングすることは不可能である。

チューニング環境について考慮しなければならない点は次のとおりである。

ロ データ量が実際の環境に近いこと。

ロ データモデルの ドキュメントが入手でき、理解し易いものであること。

ロ システムのパフォーマンス要求仕様が明確であること。

ロ パフォーマンスの測定が、ツールによって適切に行えること。

実際のデータ量の確保

多くのシステムでは、開発時には良好のパフォーマンスを示していたのに、本番稼動時には急にパフ

ォーマンスの問題が表面化する場合があるようだ。一般的にこのようなケースは、開発時のデータ量が

本番稼動時より少ない場合に良く起こる。事実、空のテーブルに対してSQLを発行している開発者を見
つけ出すのは、そう難しいことではない。

実際のデータ量で開発するのは、少なくとも2つの利点がある。

□ SQLのパフォーマンスに関する問題を本番稼動前に知ることができる。

□ 開発時のチューニングの効果を本番稼動時にも期待することができる。

実際のデータ量とは何か ? 理想的なチューニング環境では、データ量は、本番稼動時の環境とほぼ
正確に一致することが望ましい。不幸なことに、リソースなどの制限から、このような理想的な環境を

実現することは難しい。

ターゲットとなる環境と同じデータ量のチューニング環境を作ることができないのなら、チューニン

グのためにターゲットの環境を使うという方法もある。SQLがクエリだけで (タ ーゲットの環境のデー

タを変更しない)、 システムのピーク時でなければ、ターゲットの環境を使ってテストをするというのも

1つの選択肢になる。

しかし、本番環境に対して特別なSQLを実行するような機会がなかったり、そのような行動が許され
ていないことが実際は多い。

次の原則は、開発やチューニング環境において、データ量を確保するときの指針になるだろう。

ロ コードや参照テーブルのような小さなテーブルは、チューニングとターグットの環境のサイズを一

致させる。

□ 上記よりも大きなテーブルは、インデックスを使って選択される行の少なくても10倍から100倍の

行を用意する。

10)第 1章 チューニングの基礎 C[屁輻 ::::::::|:::響

□ いくつかのテーブルの行数を減らす場合は、同じ割合で減らす。たとえば、ある大きなテーブルを

ターグット環境の5%のサイズにしたのなら、その他の大きなテーブルのサイズも5%にするという

ことである。

表1.1にサンプルデータベースでの例を示す。

テーブル名 ターゲット

環境のサイズ

チューニング

環境のサイズ

DEPIAR′
「

i卜4ENTS 100

PRODUCi■S 100

EMPLC)YEES 5,000

SALES

100

1,000

1,000,000 200,000

4,000

50,000

参照テーブルなので、ターゲット環境と

チューニング環境のデータ量を一致させる。

参照テーブルなので、ターゲット環境と

チューニング環境のデータ量を一致させる。

チューニング環境をターゲット環境の20%の

データ量にする。

チューニング環境をターゲット環境の20%の

データ量にする。

チューニング環境をターゲット環境の20%の

データ量にする。

参照テーブルなので、ターゲット環境と

チューニング環境のデータ量を一致させる。

チューニング環境をターゲット環境の20%の

データ量にする。

100

CUST01VIERS 20,000

SALESREG10N 500

C014:卜4ENlS 250,000

500

表1.1 サンプルデータベースにおけるチューニング環境のデータ量の例

ドキュメント

SQLを チューニングするときは、テーブル定義、インデックス定義、テーブルサイズ、テーブル間の

関連などについて、知っておく必要がある。これらの情報を入手 していないのなら、手探りで仕事をす

るはめになるだろう。もし、ツールを使ってデータベースが作成 されている場合は、同じツールを使っ

てこれ らの情報を取得できる。また、データディクショナリから必要な情報を取得する方法もある。

システム要求を知る

データベースに対するパフォーマンス要求 を定義しておくことは、常に望ましいことである。別の言

い方だと、“十分な速さとはどれぐらいなのか"を明らかにしておくということである。たとえばオンラ

インシステムでは、どれ くらい素早くクエ リがデータを返すのか?5秒、1秒、1秒以下なのかを明確にす

るということだ。この要求にしたがって、どれくらいチューニングの努力を続けるのかが決まる。

コメン ト

蒻]「111=2

1.3.2 SQLのパフォーマンス測定ツ…ル
オラクルは、SQLの実行計画や消費されるリソース量 (CPU、 ディスク1/0な ど)を明らかにするツ
ールを提供している。これらのツールは次のようなものである。

□ E測■AN PIAN― このコマンドによって、SQLに対するオラクルの戦略 (実行計画)を知ることが

できる。

□ SQL_TRACE― この機能によって、sQLの実行計画をトレースできる。

□ tkprof― このユーティリティによって、SQLの トレース結果を理解 しやすいアウ トプットに変換で

きる。

これらのツールは、強力である。しかし、残念なことに使いにくい。第5章で、これらのツールを使う

ためのガイ ドラインを説明する。

1.3.3 SQLのチュ…ニング
SQLのパフォーマンスは、いくつかのテクニックを積み上げることで改善できる。

□ SQLを書き直す。

ロ オラクルがデータを取得して処理するときに特定のアプローチをとるように、オラクルに対して明

確な指示 (ヒ ントと呼ばれる)を出す。

ロ インデックスやクラスタを作成あるいは変更する。

ロ テーブルの構造を変える。

テクニックを組み合わせて結果を出すには、次のことを理解しておく必要がある。

ロ オラクルがどのようにSQLを処理するのか。

ロ オラクルの行う処理に対してどのような影響を与えることができるのか。

ロ インデックスやクラスタを効果的に使うにはどうしたら良いのか。

□ さまざまなタイプのSQLに よる複数のアプローチの可能性

さらに次のようなスキルを身につけることで、あらゆる場面に対応できるようになる。

ロ アプリケーションやデータベースを効果的に設計することは、高パフォーマンスのアプリケーショ

ンにするための本質的な要素であるё根本的な設計が悪ければ、SQLのチューニングは失敗してし

まう。

ロ オラクルサーバのパフォーマンスをモニタリングしチューニングする知識は、非常に価値がある。

この知識によって、SQLは最適化され、ボトルネックを避けることができるだろう。

章 チューニングの基礎 □瞑輻

1.4 まとめ

オラクルデータベースのサイズ、ユーザ数、パフォーマンスに対する期待は増加している。そのため、

パフォーマンスを改善することに注目が集まっている。しかし、残念なことに興味のほとんどは、デー

タベースの設定を調整することに向けられ、SQLを チューニングすることは、否定的に受け止められが

ちであった。

SQLを チューニングすると、レスポンス時間、スループット、スケーラビリティを改善し、ハードウェ

アのアップグレードといったコス トを避けることができる。SQLのチューニングは、システムのライフ

サイクルのどの段階でも有効だが、できるだけ早いうちに行ったほうが効果的である。

SQLのパフォーマンスを改善するには、次のような方法がある。

ロ インデックスの追加あるいは変更。

□ SQLの書き換え。

ロ ヒントの使用。

ロ テーブルの構造の変更。

本番環境に近いデータ量でテスト環境を作成し、理解しやすいドキュメントを入手し、パフォーマン

スの要求使用を明確に定義したなら、チューニングはきっと成功するだろう。

SQLのチューニングを効果的にするには、次の要素が必要になる。

ロ オラクルのSQLの処理の仕方に対する理解。

ロ インデックスの効果的な使い方。

□ tkprotEXPLttN PIANな どのチューニングツールの使い方。

ロ ヒントの使用。

ロ アプリケーション、データベースの設計原則の理解。

ロ オラクルサーバのアーキテクチャに対する理解。

蘇
~

'i`■亀
`

ノ

．．
〓〓^
一

`|

ヽ
,,j°

鵞

碑

‥
・■
■
．

・

一
絆

ビユ

●

，
絆
■

″

・■・‐―

ヽ

，
４

二
■

ｔ

■

一翠燿

・
１

・
　

　

，

お

●

．

2日 1 :ま じめに

この章では、簡単にSQL言語を振り返る。SQL言語にあまり慣れていない読者や、SQLの知識をもう

一度新たにしたい人々が対象である。ANSI標準やオラクル独自のSQLについて、広範囲にわたって説明

するものではない。

この章で扱う項目は以下のとおりである。

□ SQLと リレーショナルデータモデルの歴史

□ AN創標準とオラクル独自のSQL

ロ データ操作言語とデータ定義言語

E]NLLL値の使い方

ロ トランザクション

□ 結合、サブクエ リ、集合を含んだクエリ

□ 非手続き言語であるSQLの性質

1中 …

褒

.

・
毬 1掟

lt

ζ
´

ポヽ
＾

2日2 SQLの歴史
2.2.l SQLデータベース以前
SQLと リレーショナルデータベースが開発される前に主に使われていたのは、ネットワークモデルと

階層モデルのデータベースである。階層モデルは、IMSの ようなメインフレームベースのシステムで数

多くの成功を収めた。ネットワークモデルは、CODASYLの データベースで良く使われていた。

階層モデルは、親と子のレコードを持つ木のようなデータモデルで表現される。木を操作し、データ

を取得するために、DL/1の ような特別な言語が用いられていた。あらゆるデータ構造を階層で表現する

ことは難しいので、いくつかのアプリケーションでは、特別な工夫をしなければならなかった。

ネットワークモデルでは、データ構造をより柔軟に表現できる。このモデルでは、レコードはポイン

タ経由でリンクされる。たとえば、子レコードの中には親レコードのポインタが含まれる。ポインタの

機能がモデルを柔軟にしているが、データに簡単にアクセスできないという欠点もある。

どちらのモデルもデータの保存、取得に困難がともなう。そのため、熟練したプログラマでなければ

これらのモデルを扱うことができなかった。結果、MIS部門は多くのバックログを抱えていた。これら

のモデルの実装は複雑で、予想されるクエリを基に実装していたため、予想できないようなデータの組

み合わせが発生した場合は、簡単に対応することは難しかった。

Sales-Product

Customer-for-Sale Sales_rep{or-Sale

Deparlment-f or-sales-rep

図2.1 1階層データモデルでは、Customers、 Sa:es RepにsentatⅣ e、 Depanmentの情報を得るために

各Sa:esの行ごとに余分な繰り返しをする必要がある

Product

Sales

Sales
Representative

Custmer

Department

(|)第 2章 SQLレ ビュー □餃躙::!|

ProductCustomer Department

Sales Sales
Representative

図2.2 ネットワークデータモデル

2.2.2 リレーショナルモデル
1970年 6月 にE.FoCodd博 士は、大規模な共有データに対するリレーショナルモデルと呼ばれる論文を発

表した。この論文の中でCodd博士は、数学的な理論に基づいてコンピュータシステムにデータを格納す

るモデルについて述べた。

リレーショナルモデルの数学的な根拠はある程度複雑だが、エンドユーザの目に触れる部分は単純で

ある。このモデルでは、データは2次元の表 (リ レーション)で表現される。テーブルの行は伝統的なモ

デルのレコードに相当し、列はフィールドに相当する。1つ以上の列がプライマリキーとして定義され、

行を一意に識別するために用いられる。

リレーショナルデータベースでは、テーブルはポインタではなく列の値によって関連付けられる。

リレーショナルデータベースに対する操作はレコード単位ではなく、レコードの集合単位に行われる。

そして、そのアウトプットは、それ自身がリレーショナルに処理できるテーブル (リ レーションあるい

は結果セット)である。

リレーショナルモデルでは、データの論理的な形式は物理的な形式に影響されない。それは、データ

が実際にどこに格納されているのか知らなくても、データを操作できるということを意味する。

最初のリレーショナルデータベースシステムは、1974年から1978年にわたってIBMに よって開発され

たSystem Rと 呼ばれるプロトタイプシステムである。このシステムではStructured English QUEry

Lnguage(SEQUEDと 呼ばれる言語が用いられた。その後、名前はSQLに簡略化された。

最初の商業ベースのリレーショナルデータベースシステムは、1979年にリリースされたオラクルバー

ジョン2(バージョン1はプロトタイプ)であった。IBMは、1981年にSQL/DSを リリースし、続いて

1983年にメインフレームで成功を収めたDB/2を リリースした。

最初は貧弱なパフォーマンスしか発揮できなかったにもかかわらず、リレーショナルデータベースは、

階層/ネ ットワークデータベースに代わって急速に広まっていった。1985年には、データベースは少なく

てもリレーショナルであることが要求された。そのため、当時の商業ベースのデータベースは、ネット

ワークモデルの上にリレーショナルモデルを実装して、その要求に対応しているものが多かった。

リレーショナルモデルのすべての機能を実装したデータベースはほとんどなく、リレーショナル風の

データベースが多かったが、1980年代後半から1990年代には、リレーショナルデータベースは広く受け

入れられ、非リレーショナルデータベースは急速に衰え消えていった。

|::::|::|::|:||:::咆 鋏 已

2.2.3 SQLと リレーショナルモデル
リレーショナルデータベースには、リレーショナル操作を実装する言語のサポー トが求められる。そ

の言語に必要な特徴は次の通りである。

ロ データの集合に対する操作 (レ コードごとの処理ではない)。

□ 物理的な格納場所を意識 しないデータの操作 (た とえば、テーブルが実際に格納されているファイ

ル名を指定しなくてもよい)。

□ 非手続き型の処理 (データをどのように取得するのかは、DBMSに 任されている)。

SQLは、オラクルを含めたほとんどのリレーショナルデータベースで実装されている。

リレーショナルモデルが出る前は、データベースにアクセスするための言語は手続き型であった。デー

タにアクセスするためには、行データを前もって取得する必要があった。次の例は、あるCustomerの

Sales合計を取得している。

MOVE '99991 TO CUSTOMER― NO IN CUSTOMER

OBTAIN CALC CUSTOMER

L00P:

OBTAIN NEXT SALES WITHIN CUSTOMER― SALES

ADD SALE― 畑 OUNT IN SALES TO SALES― TOTAL

... Do someth■ng w■ th the data ...

GOTO LOOP

上記の例は、非リレーショナルデータベースにみられる2つの共通的な特徴を示している。

□ DBMSはデータの取得の仕方を正確に指示される。

ロ データは1度に1行処理される。

対照的に、 リレーショナルデータベースでは、データを取得するのに非手続き言語を使 う。取得する
データを特定するだけで、所得の仕方は特定しない。

SELECT SUMi(sale_value)

FROM sa■ es

WHERE customer id = 9999

最初の例では、行の順序とデータを取得するメソッドが特定されていたが、2番目の例では、テーブル

ヘアクセスするメソッドは定義 されておらず、実際にどのようにしてデータを取得するのかは、

DataBase Management Sys“ mの判断に任されている。SQL(Stmcmred Quew Lnguage)は 、SQL/DS

に対する非手続き型のデータアクセス言語としてIBMに よって開発された。

●第2章 SQLレビュー q麒餡::::::|

SQLと リレーショナルデータベースは、今では切っても切 り離せない関係だが、SQL自身はリレーショ

ナルモデルの一部ではない。そのため、データアクセス言語がSQLではないデータベースも存在する。

INGRESの早期バージョンにおけるQUELの ような非SQL言語もいくつか開発されたが、SQLの方が急速

に支持を集めデータベースアクセス言語のデファクトスタンダードになった。

2.2.4 ANSi標準
ANSI SQll票準委員会は1982年に結成され、最初の標準を1986年にリリースした。この標準はSQし86と

して一般に知られており、ほとんどのSQLの 実装の基礎になっている。その後1989年にSQL89、 1992年

にSQL92がそれぞれリリースされた。

SQし89は、クエリやデータ操作のような一般的なSQLを 定義していたが、スキーマの変更、セキュリ

ティの管理、データの整合性を保つ機能などが欠けていたため、オラクルを含めたデータベースベンダ

は独自の拡張を行い、SQLに方言を生み出す元になった。

SQし92は、SQLの文法や機能に多くの拡張を追加し、SQL89に 欠けていた機能が盛り込まれている。

2.2.5 SQLの 将来
SQ13と して知られるANSIの次期標準は、まだ開発中である。この標準は、次のように拡張されるだ

ろう。

ロ ストアド・プロシージャやトリガのようなSQLに 対する手続きの拡張。

□ 部品の組み合わせのような階層的なクエリ。

ロ オブジェクト指向のサポート。これには、ユーザが任意のデータモデルを定義したり、データやス

トアド・プロシージャのカプセル化などが含まれる。

2.3 SQLのタイプ
2.3.1 デ・―夕操作言語 (Data Manipuiation Language)
データ操作言語 (DML)を使い、データベースに対 してデータを取得、追加、更新、削除することが

できる。これらの機能は、SELECT、 INSEKr、 UPDATE、 DELETE文によって提供される。

SELEC丁

最 も良く使われるSQLの操作は、SELECT文 である。この文は、選択、結合のような標準的なリレーシ

ョナル操作を実装する。

SELECI文 を単純な構文で表すと次のようになる。

SELECT '|」名のリヌ、ト

FROMテーブル名のリスト
WHERE結合条件やクエリの条件

絋 |五22

GROUP BY列名の リス ト
HAVINGグループの条件

SELECT文の形式は、多くの他のSQl」桑作の基礎となる。ビューの作成、サブクエリ、クエリの結果か

らテーブルを作成する場合などに用いられる。

:NSERT

INSERT文は、1つのテーブルに新 しい行を追加する。単純な構文で表すと次のようになる。

INSERT INTOテ ーブル名

(列名のリス ト)

VALUES(値のリス ト)

VALUES旬 の か わ りに クエ リを使 う こ と もで きる。

■NSERT INTO テーブリレ名

(列名のリス ト)

クエリ

INSERT INTO customers
(customer-id, customer_name, contact_surname,
contact_firstname, addressl, address2, zipcode,
date_of_birth, phoneno, sales_rep_id)
SELECT customer_id, customer_name, contact_surname,
contact_firstname, addressl-, address2, zipcode,
date_of_birth, phoneno, sales_rep_id

FROM customer_upload

UPDATE

UPDATE文 は、1つテーブル内の行を更新する。単純な構文で表すと次のようになる。

UPDATEテーブル名
SET列名 =イ直
WHEREクエリの条件

値は、サブクエ リを使うこともできる。例を挙げると次のようになる。

UPDATE customers c

SET sales-rep_id =

例を挙げると次のようになる。

●第2章 SQLレビュー 褻餃輻:||::

(SELECT manager_id
FROM employees e

WHERE e.surname = c.contact_surnane
AND e.firstname = c.contact_firstname
AND e.date_of_birth = c.date_of_birth)

WHERE (contact-surname, contact-firstname, date_of_birth) IN
(SELECT surname, firstname, date_of_birth

FROM employees)

DELETE

DELETE文 は、テーブルから1行以上を削除する。単純な構文で表すと次のようになる。

DELETE FROMIテーブリレ名

研IEREクエリの条件

2.3.2 デ…夕定義言語 (Data Definition Language)
データ定義言語 (DDL)を使い、データベースに対して、オブジェクトを作成あるいは変更すること

ができる。定義についての詳細は、オラクルサーバSQLリ ファレンスマニュアルを参照してほしい。テー

ブルの場合だと次のようになる。

CREATE TABLE

DROP TABLE

ALTER TABLE

CREATE TALBEな どな どで は、 クエ リを使 うこ と もで きる。例 を挙 げ る と次 の よ うにな る。

CREATE TABLE customer sales totals AS

SELECT custoimer_name′ SU][(sale_value)sale_total
FROM sa■ es s′ customers c
WHIERE s.customer ■d = c.customer id

GROUP BY c.customer name

SQLチ ュ ーニ ングに重要 な他 の DDL文 と して 、 CREATE INDEX文 が挙 げ られ る。 イ ンデ ックスは、 デ

ータを取得するパフォーマンスを改善したり、行の一意性を確保することに使われる。

:難
:||:|:||:i::巫餞祓当

2口4 クエリの操作
2.4.1 サブクエリ
サブクエリとは、他のSQL文の中に現れるクエリのことである。ネストしたSQL文 は、SELECT、

INSERT、 UPDATE、 DELETEの よ うな多 くの SQL文 で用 い られ る。

次の例では、賃金の最も低い従業員の数を求めている。

SELECT COUNT(丼)

FROM eimp■oyees

WHERE salary =

(SELECT MIN(salary)

FROM employees)

2.4.2 1相関サブクエリ

相関サブクエ リとは、親のクエ リの値 を使っているサブクエ リの ことである。相関サブクエ リを使っ

て、UPDATE、 INSERT、 DELETEの ように結合 を使 えないSQL文で も、結合 と同様の結果を得 ることが

できる。

次の例では、cusbmersテ ーブルが子のサブクエ リの中で使われている。

UPDATE customers c

sFi'l' sa Les reD ad =

(SELECT
".""n..-td

FROM employees e
WHERE e.surname = c.contact_surname
AND e, firstname = c.contacL_firstname
AND e.date-of_birth = c.date_of_birth)

WHERE (contact-surname, contact-firstname, date-of-birLh) IN
(SELECT surname, firstname, date-of-birth

FROM employees)

2.4.3 結合
結合は、2つ以上のテーブルの対応する列の値に基づいて、データを併合する。

内部結合

内部結合は、結合操作の中で最も良く使われる操作である。1つのテーブルの行が別のテーブルの行の

共通のキーの値に基づいて結び付けられる。他のテーブルに一致するデータが無い場合には、その行は

結果には含まれない。次の例では、employeesと departmentsテ ーブルがdepanmentid列で結びつけれて

いる。

●第2章 SQLレ三 三二 GM塚 隋 鑢::::::|

SELECT department-name, surname. salary
FROM empfoyees e, departments d
WHERE e.department-id = d.department-id

セータ結合

>,BE′Ⅳ距 ENの ような等号以外の比較演算子に基づいた結合はセータ結合 と呼ばれる。例を挙げると

次のようになる。

SELECT customer-id, regionname

FRoM customers, safesregion
WHERE phoneno BETWEEN lowphoneno AND highphoneno

外部結合

外部結合は、内部結合と同様に1つのテーブルの行が別のテーブルの行の共通のキーの値に基づいて結

び付けられるが、他のテーブルに一致するデータが無い場合でも、その行が結果に含まれる点が内部結

合とは異なる。オラクルでは、外部結合は(+)記号が使われるが、これはANSI標準とは異なっているので

注意 しなければならない。例を挙げると次のようになる。

SELECT department-name, surname

FRoM employees e, deparLments d

WHERE e.department-id(+) = d.department-id

これを実行すると従業員のいない部門も結果に含まれることになる。

反結合

反結合は、他のテーブルにない行を抽出するために用いられる。この結合は、サブクエ リとIN句 、

EXISTS旬 の否定を組み合わせて実装 される。次の2つ の例では、customersテ ーブルに存在 しない

emp10yeesの データが対象になる同様のクエリである。

SELECT surname, firstname, date-of-birth
FROM employees

WHERE (surname, firstname, date-of-birth) NOT IN
(SELECT contact-surname, contact-firstname, daLe*of-birth

FROM customers)

SELECT surname′ firStname′ date_of_b■ rth

FROM employees e

WHERE NOT EXISTS

(SELECT ★

FROM cuStomers c

WIIERE c.cOntact surrkune = e.surname

鰈::::ま1難24

AND c.contact_firstname = e.firstname
AND c.date_of_birth = e.date_of_birth)

自己結合

自己結合では、あるテーブルは自分自身に結合 される。次の例では、employeesテ ーブルの

em口oyee_idと manage■idが結合される。これによって、マネージャとその部下を知ることができる。

SELECT m.surname manager, e,surname empfoyee
FROM employees m, employees e

WHERE e.manager_id = m. empfoyee_id

2.4.4集合演算子
SQLに は、結果セットを直接扱える演算子がいくつか用意されている。これらの集合演算子は、結果

セットの和、差、積をとることができる。

最も良く使われる演算子はUNIONで、結果セットの和をとるために用いられる。デフォル トでは、そ

れぞれの結果セットの重なる部分は削除される。UNION ALLの 場合は、重なる部分もそのまま残される。

次の例では、顧客と従業員のリストが返される。顧客である従業員は、一度しかリストされない。

SELECT contact_surname, conLact_firstname,
FROM customers

TINION

SELECT surname, firstname, date_of_birth
FROM employees

date of birth

MIWSは、最初の結果セットから、2番目の結果セットに含まれる行を除いて返す。次の例では、従業
員ではない顧客が返される。

SELECT contact_surname, contact_firstname, date_of_birth
FROMl customers

MINUS

SELECT surnalne′ f■ rstname′ date_of_birth
FROM employees

INTERSECTは 、両方の結果セットに含まれる行だけを返す。次の例では、従業員である顧客だけが返

される。

SELECT contact_surname, contact_firstname, date of birth
FROM customers

INTERSECT

SELECT surname′ firstname′ date_of_b■ rth

FROM employees

●第2宅 三型些生三二 CE睫 躙 l

どの集合演算子も、列数が同じで、対応する列同士のデータモデルの互換性がなければならない。

2.4.5 集合関数
集合関数は、グループ化されたデータを要約した情報を提供する。グループ化は、GROUP BY旬 によ

って行われる。集合関数を使う場合、その選択リストは、GROUP BYで 指定した列と集合関数だけで構

成されなければならない。

集合関数には次のようなものがある。

グループの平均値を求める。

グループに含まれる行数を求める。

グループに含まれる最大値を求める。

グループに含まれる最小値を求める。

グループの標準偏差値を求める。

グループのすべての値の合計を求める。

次の例は、部門ごとの給料の平均値を求めている。

2.5 ビュー

ビューは、保存されたクエリあるいは仮想テーブルと考えることができる。ユーザには、論理的なテー

ブルとしてみえるが、実際はクエリの定義である。1つ以上のテーブルから構成され、論理的に可能であ

れば更新することもできる。顧客ごとに売上の合計を求めるビューは次のようになる。

CREATE VIEW customer-safes-tota1-v AS

SELECT customer-name, SUM(sa1e-value) sale-Eota1
FROM sales s, customers c

WHERE s,customer-id = c.customer-id
GROUP BY c.cusLomer name

2.6 NULL値と3論理値

NULL値は、データが割り当てられていないことを表す。リレーショナルデータベースの世界では、

NULL値が予想しない結果を引き起こすことがあるので、時 熱々い議論の対象になる。たとえば次のクエ

リには、テーブルのすべての行は含まれない。なぜなら、ゴobがMJLLであるデータは含まれないためだ。

E avc

tr coumt

n uax

E urs
E sronev

E suu

SELECT department_id, SUM(salary)
FROM employees
cRoUP BY department-id

ilil11::|::|::i:11:::::::鰊‡|]凩lllllllll)

SELECT COUNT(★
)

FROM people

WHERE job= IACCOUNTANTI

OR 〕ob l= 'ACCOUNTANT'

NULL値 の概念 は 、伝 統 的 で直 感 的 な 2論 理値 (TRUE/FALSE)を 新 しい 3論 理 値

(TRUE/FALSE/UNKNOWN)に 拡張す る。 jobが UNKNOWNで あるとい うことと、jObが

'ACCOUNTANTIで はないということが異なる意味を持つのは、理にかなっていると思うかもしれないが、
NULL値の概念を理解していない人にとっては、しばしば予想 しない結果を生み出す。

ここでは、これ以上追求しないが、SQLのチューニングにおいて、NULL値の扱いが重要であるという
ことは百っておこう。

2.フ トランザクション
トランザクションは、作業の論理的な単位である。 トランザクション中のSQL文は全部まとめて実行
するか、どれも実行しないかのいずれかになる。 トランザクションの重要なポイントは、次のとおりで
ある。

Elト ランザクシ ョンは、最初 にオ ラクル に接続 した とき、 あるいは、前の トランザ クシ ョンが終 了 し

た直後 か ら開始 され る。 また、 ALTER SESS10N SET TRANSACTION文 、 DBMS_TRANSAC―
TION.BEGIN_DISCREATE_T碍 ⅧSACTIONを実行 した ときに開始す ることもで きる。

ロ トランザクション中に行に加えた変更は、他のセッションからは見ることができない。

ロ トランザクション中に変更した行はロックされ、 トランザクションが完了するまでは、他のセッシ
ョンから変更することはできない。

ロ トランザクションは、COttIT、 ROLLBACKの 発行、あるいはセ ッションの終了時 (正常終了時に

はcottIT、 異常終 了時にはROLLBACKが 発行 される)に終了す る。また、DDLを 実行 したときも
暗黙のcmNITが発行 されるため、 トランザクションは終了する。

□ com⊂ Tが発行されると、 トランザクション中に加えられた変更は、すべて永続的なものになり、
他のセッションから見ることができる。また、ロックもすべて解除される。

□ ROLLBACKが 発行されると、 トランザクション中に加えられた変更はすべて破棄され、ロックもす
べて解除される。

(|)第 2章 SQLレ ビュー em輻咆::::|||||:11‐

2.8 ANSI標準に対するオラクルの拡張

ANSI標準 で は 、 ENTRY、 INTERMEDIATE、 FULLの 3つの レベル を定 義 して い る。

オラクルでは、SQL92 ENTRYレ ベルにバージョン7.3で適合した。これは、最も要求の低いレベルで

ある。実際、SQL92 ENTRYレ ベルは、SQし89に とても良く似ている。

オラクルは、ANSI標準に対して、いくつかの拡張を行っている。これらの機能の中には、激蟷I標準で

定義されていないものもある。また、後になってANSI標準に加えられた機能を先取りしているものもあ

るが、標準とは異なる方法での実装になっている。

ANSIと の互換性が重要な場合は、次のSQL文 を発行することで対応できる。

ALTER SESSION SET FLAGGER

ENTRY I TNTERMEDTATE I null
]
OFF

ENTRY、 INTERMEDIATE、 FULLがANSI標準のそれぞれのレベルに対応している。

2.8.1 1階層クエリ

階層クエリは、同一テーブルの親子関係の行を抽出するクエリで、部品の構成関係を調べるときによ

く用いられる。子レコードは親レコードに結合され、その親レコードはさらにその親レコードに結合さ

れ、階層が終わるまで、その連鎖は続けられる。

たとえばemp10yeesテ ーブルでは、manageLid列がマネージャのemployee」 dに対応する。それぞれの

従業員に対するマネージャは、自己結合で簡単に知ることができる。

SELECT e.surname employee, m.surname manager

FROM employees e, employees m

wH-EjR.Ei e. manager_f o = m. employee_ao

ORDER BY m.surname

EMPLOYEE MANAGER

JAMES

BURNS

FRYER

MILLS

STOKES

JOHNSON

WALKER

COSLEY

P00LE

JENSEN

GOSLEY

JAMES

KEYWORTH

KEYWORTH

MILLS

MILLS

POOLE

REID

REID

REID

階層的に従業員の情報を表示するには、CONECT BY句 とSTART WITH旬 を次のように組み合わせて
使う。

SELECT RPAD(. `′ LEVEL ' 3) |l surname emlployee
FROM e:mployees

START WITH manager_id = 0

CONNECT BY PRIOR eimp■ oyee_■ d = manager_■ d

EMPLOYEE

REID

GOSLEY

J7口4ES

BURNS

P00LE

WALKER

JENSEN

KEYWORTH

FRYER

MILLS

STOKES

JOHNSON

このように階層クエリを行うと親子関係が把握 しやすくなる。

ANSI標準のSQLでは、このような階層問い合せは提供されていないが、SQ13では定義されると予想 し

ている。

2.8.2 外部結合
SQし92では、外部結合の機能を提供している。それは、FROM旬に明示的に結合方法を指定することで

行う。次の例では、従業員がいない部署でも、部署ごとに最低1行は表示される。

SELECT department_ ame′ surname
FROM depart:ments d LEFT OUTER JO■ N employees e

ON d.departiment_■ d = e.department_■ d

オラクルでは、SQし92よ りも数年前に外部結合が実装されたので、SQL92と は異なり、WHERE旬 に

(+)演算子を使うことで外部結合を行う。上記の外部結合をオラクルで実装すると次のようになる。

SELECT department_name, surname

FROM departments d, employees e

WHERE d.departmenL_id = e.department_id(+)

隋亜□

●第2章 SQLレビューCロロ饉屁玲

オラクルの実装方法は、(+)を置く位置が直感的ではないので混乱しやすい。データがないときに

NULLになるテーブルの列に (+)を 追加すると覚えることで忘れにくくなる。

2.9 非手続き的なデータ処理

リレーショナルデータベースが現れる前は、複数のデータを処理するためには、1件1件 レコードごと

に手続き的な処理する必要があった。しかし、リレーショナルデータベースではSQLを使って、集合を

非手続き的に直接処理できるので、簡単で効率的である。

許容できるパフォーマンスを発揮できないという批判が、初期のリレーショナルデータベースに対し

てしばしばあった。それは、非リレーショナルデータベースのポインタと、 リレーショナルデータベー

スのインデックスの効率性に対する批判であった。

しかし、リレーショナルモデルによって、データのモデルを理論的に処理できるようになり、ハード

ウェアの処理能力も上がっていったので、このような批判は徐々に消えていった。

今日では、リレーショナルデータベースのデータ量は、1980年代初期の10倍から100倍のサイズになっ

ている。スループットやレスポンス時間に対するユーザの要求も以前より高い。リレーショナルデータ

ベースのベンダは、どのベンダの実装が優れているのかを示すために、定期的にベンチマークの比較結

果を公表している。明らかにユーザのコミュニティも依然としてパフォーマンスに対して関心を持って

いる。

リレーショナルデータベースは、どのようなアプリケーションに対しても、たいていは許容できるパ

フォーマンスを提供しているが、ほとんどのデータベースは潜在的な能力を発揮できずにいる。非手続

き的であるというSQLの性質がその原因の1つかも知れない。SQLでは、データヘのアクセスパスを特定

せずにデータを取得することができる。データヘのアクセスパスは、パフォーマンスを決める上で重要

なポイントだが、通常その決定はデータベース自身に任されている。データベースエンジンの決定が、

常に最適だとは限らないので、そこにチューニングの余地がある。

最終的に、リレーショナルデータベースのエンジンはとても賢くなり、チューニングの必要はなくなる

かもしれない。でも現実は異なる。今現在、パフォーマンスの高いシステムを作るためには、SQLを チ

ューニングしなければならない。

2.10 まとめ
リレーショナルデータベースは、データをテーブルに貯える。テーブル間は、共通のデータ値によっ

て関連付けられる。ユーザは、物理的な実装の詳細を知らなくてもデータベースに対してSQLを発行で

きる。

リレーショナルデータベースは、階層モデルやネットワークモデルのデータベースよりもデータヘの

柔軟なアクセス方法を提供したので、他を圧倒し優位に立った。SQL(StmctuК d Query Lmguage)は 、

リレーショナルデータベースのデータを操作するために定義された言語である。

SQLは、ANSIに よって標準化作業が進められている。オラクルのSQLは 、そのSQし92 ENTRYレ ベル

に適合している。さらに階層問い合せなどANSI標準を拡張した機能もある。

:|:|:|:|:||:|:|:|::|:鰈 隋D

SQLを おおざっぱに分類すると次のようになる。

□ SELECT、 INSERT、 UPDATE、 DELETEの よ うにデ ー タを操作 す るた めの Data Manipulation

hngutte(DML)。

ロ テーブルやインデックスなどのデータベースオブジェク トを作成す るためのData Definition

hn製電e(DDL)。

クエリの発行は、リレーショナルデータベースに対 して最も行われることの多い操作の1つである。

典型的な操作には次のようなものがあるc

□ 結合 :2つ 以上のテーブルを共通のキーの値に基づいて結び付ける。

ロ サブクエリ :他のSQL文の中に現れるクエリ。

□ ORDER BY句 :ソ ー トされ た結 果 を返 す 。

□ GROUP BY句 :行をグループ化 し要約 した情報を返す。

MJLL値は、割り当てられていない値で、3論理知 (TRUE、 FALSE、 UNKNOWN)の UNIttOWNで ある。
作業の論理的な単位で、SQL文 をグループ化したものをトランザクションという。 トランザクション
中のSQL文は全部まとめて実行するか、どれも実行しないかのいずれかになる。colttITは 、 トランザク
ション中に加えられたすべての変更をデータベースに永続化し、ROLLBACKは 、すべての変更を破棄し

て元の状態に戻す。

3.l SQL文の処理

この章では、オラクルがどのようにSQL文を処理して結果を返すのかを学ぶ。SQL文の処理の仕方を

理解することは、オラクルを知る上で重要なポイントである。

オラクルがどのようにSQL文を処理しているのかを十分に理解せずにSQLを チューニングすることも

可能だ。しかし、そのことを学ぶことで多くの無駄な努力を省くことができるだろう。第1章で述べたよ

うに、SQLのチューニングは、多くの試行錯誤を含んだ反復処理である。SQL文の処理の仕方を学ぶこ

とで、無駄な努力を減らし直接最善の結果を導き出せるようになる。

この章で扱う項目は、以下のとおりである。

ロ オラクルがSQL文を受け取ってから実行するまでに行う処理の概要。

□ SQL文の解析処理。その処理で、SQL文にエラーがないか、同一のSQL文が前に実行されていない

か確認し、実行に備えて準備を行う。

ロ テーブル操作、インデックスフェッチ、ソー トのようなオラクルがデータを取得するメカニズムの

概要。

□ 結合や集合演算子のような複数のテーブルを扱う操作の概要。

ロ オラクルの トランザクション処理の概要。

ロ オプティマイザの詳細。

′

■:11:lir'

‐■111鳥・ .
ノ

薔
`_″

椰
 饉

ダ
.｀

レ:

`,',

“
.…■ ._,・

■・li■ ...,

3日2 SQ L文の処理の概要
図3.1に SQL文を実行するまでに含まれる各段階の概要を示す。

3.2.1 カーソル
カーソル、あるいはコンテキストエリアは、オラクルがSQL文 とそれに結び付けられた情報を貯える

メモリ内の場所である。ここには、SQL文 を解析した結果、実行計画、現在行へのポインタなどが含ま

れている。

SQL文の実行が完了するとカーソルに割り当てられていたメモリは、他の目的のために開放されるこ

ともあれば、再実行に備えて保存されることもある。

ほとんどのツールでは、カーソルの割り当ては、クライアント側のツールによって行われ、プログラ

マにとって透過的である。プログラムのインターフェースを持つツール (Pro・ Cや Oracle CaH

Intedace[OCI]な ど)では、プログラマが明示的にカーソルを作成・破棄することができる。

3.3 解析
解析は、SQL文を実行するための準備をする処理である。これは、コンパイラが高級言語をマシン語

に変換する処理に相当する。

分析処理には、次のようなフェーズがある。

□ SQL言語の規則に準拠 しているか、すべてのキーワードや演算子は有効で正 しく使われているかな

どの構文的なチェックを行う。

ロ テーブルや列が有効であるかなどの意味的なチェックを行う。

ロ ユーザがオブジェク トに対する特定の操作を実行する権限があるかどうかのセキュリティチェック

を行う。

□ SQL文の実行計画を決定する。実行計画とは、オラクルがデータにアクセスするために実行する一

連の処理の計画である。

●第3章 SQL文 (1竃鱚躙蜀:||:

カーソル作成

SQL文の解析

バインド変数の

設定

SQL文の実行

行のフェッチクエリ

再実行つ

カーソルを

閉じる

カーツルに対するメモリの割り当て。

構文とセキュリティのチェック。共有プールに同一のSQL文がないかのチェック。
実行計画の決定。

プレイスホルダに値を割り当てる。

クエリの場合は行を取得するための準備をし、それ以外の場合はSQL文 を実行する。

YES
データがなくなるまで行を取得する。

NO

バインド変数を再設定することで、SQL文 を再実行する。

カーソルに割り当てられたメモリを開放 しカーソルを破棄する。

図3.l SQL文 の処理概要

SQL文の解析は、1/0負荷が高いと目立たないときもあるが、オーバーヘッドの大きい高価な処理であ

る。そのため、解析の回数をできるだけ減らすことが重要になってくる。

3.3.l SQL文 の共有
不必要な解析を避けるために、オラクルは実行計画とともに最近実行したSQL文をキャッシュしてい

る。技術的にいえば、SQL文のキャッシュは、共有プール (15章でより詳しく説明する)の SQLエ リア

に保持される。SQL文が発行されると、同一のSQL文が存在するかどうかをキャッシュに対してチェッ

クする。もし一致する文があった場合は、オラクルはキャッシュの実行計画を使うので、解析のオーバ

―ヘッドを避けることができる。

オラクルは、共有プール内の一致する文を探し出すのに、ハッシュのアルゴリズムを使っている。こ

れは、SQL文のテキストを数学的な処理で数字に変換 し、共有プール内のSQL文の検索に数字が使える
ので高速に検索できるということを意味する。数学的に変換しているため、スペースや大文字小文字を

含めて正確に一致 しないと同一のSQL文 とは見なされない。実際は、ハ ッシュ値を求める処理を高速化

するためにほとんどのバージョンでは、最初と最後の64バ イ トを対象にしていると思われる。

このSQL文のキャッシュのおかげで、異なるプログラム間でもSQL文 を共有することができる。しか

し、SQL文のキャッシュを大きくとってもそれほどメリットは出ないだろう。キャッシュを大きくとる

よりも、リテラルをハードコードせずにバインド変数を使った方が効果的だ。

3.3.2 バイン ド変数
SQL文の中に実行のたびに値が変わるような変数が含まれる場合がある。これらの変数は、行を特定

するために使われることが多い。

たとえば、次のようにリテラルを使ってemp■ oyee_idが 1234のデータを取得できる。

SELECT firstname, surnalne

FROM employees
WHERE empl-oyee_id = 1234

次に別の従業員を対象にする場合は、1234の リテラルを新しい値に変えて再実行する。もちろん、こ

れで新たな従業員のデータを取得できる。しかし、共有プールでのマッチングはテキストの同一性に基

づいていたことを思い出してほしい。実行のたびにemp■ Oyee_idは 変わるので、SQL文のマッチングは

失敗して毎回再解析されてしまう。

このようにリテラルが異なるだけで再解析されてしまうのを防ぐために、バインド変数を使うという

方法がある。バインド変数 (ホ ス ト変数ということもある)と は、プログラム言語や開発ツールで使わ

れる変数への参照で、SQL文の中で使われるときは、プレフィックスにコロン(:)をつけて使う。次に

SQL・ Rusでの例を示す。VARIABLEは 変数を定義するコマンドである。

VARIABLE employee_number_ws NUMBER

SELECT firstname, surname

FROM employees
WHERE employee_id = : employee_number_ws

バインド変数には、大きな2つのメリットがある。

ロ バインド変数の値が変わるだけなら、再実行するときにSQL文を再解析する必要がない。

ロ バインド変数を含んだテキス トが同一であれば、バインド変数の値が変わっても同一のSQL文とみ

なされるので、SQL文のキャッシュにヒットする。

逆に、バインド変数を使わずリテラルをプログラム中にハードコーディングしてしまうと次のよう

●第3章 (11働鯰鰤 :3::i:|:麟

なデメリットがある。

ロ リテラルの値が変わるたびに再解析が必要になる。

E]SQL文のキャッシュがヒットしない。

[三|リ テラルだけが異なるようなSQL文が複数キャッシュされてしまうので、他のSQL文がキャッシュ

されにくくなる。

□ 新 しいSQL文 を共有プールに確保するときに、オラクルは内部ロック (ラ ッチ)を取得する必要が

ある。いくつかのオラクルのバージョンでは、酷使 されるような状況下で、ラッチを取得するため

の競合がパフォーマンスのボトルネックになることがあった。

図3.2に 解析するために必要な処理の流れを示す。SQL文 の再解析を避けたり、SQLを共有するための

処理に注目してほしい。

No

∽
０
メ

∽
０
メ

ハッシュ値の計算解析が必要
'

見つかったか
'

るもの

SQLエ リアの回ック
ォブジェクト
一致するか

'

SQLの解析

SQLの実行
SQLエ リアヘ

SQLの保存

図3.2 SQL文を解析するときの処理の流れ

3.3.3 再帰SQL
再′り尋sQLは、解析などのためにオラクルが自分自身に対して発行するSQLで ある。たとえば、SQL文

のすべてのテーブル名、列名が有効かどうかを検査するために、オラクルはデータディクショナリと呼

ばれるいくつかのテーブルをチェックする必要がある。通常これらの情報はメモリ (ディクショナリキ

ャッシュ)内に見つけることができるが、見つからない場合は、情報を取得するために自分自身に対し

て再帰SQLを 発行する。解析中に再帰SQLは何度も発行されるので、解析の回数を減らすことで再
'り

吊

SQLの回数も減らすことができる。

3口4 SQLの実行
3.4.1 実行とフェッチ
SQL文が解析されて、すべての変数に値が割り当てられると、SQL文 を実行する準備が整う。INSERT、

UPDATE、 DELETE文 の よ うに結果 セ ッ トが帰 って こない SQL文 は、その ま ま実 行 す る ことで SQL文 は完

了する。

SELECT文のように結果セットが帰ってくるSQL文 は、実行する (カ ーソルを開く)こ とでカーソルを

フェッチする準備が整う。行のソートやロックが必要になるような特定のクエリの場合は、カーソルを

開くとオラクルはすべての行を取得する。そうでない場合は、カーソルを開いたときに単純に最初の行

にレコードのポインタを位置づけるだけだ。

カーソルがフェッチされるとオラクルはクライアントにデータを返す。 まだ取得していないデータの
場合は、データベースからデータを取得する。クライアントは、プログラムで扱えるようにフェッチし

たデータをホスト変数に保存する。

配列フェッチ

フェッチで複数行を返すこともできる。このようなフェッチを配列フェッチと呼ぶ。配列フェッチは、

1行ずつ毎回フェッチするよりもフェッチの回数を減らすことができるので効率的である。SQL★ Husの

ようなクライアントツールは、自動的に配列フェッチを行っている。Pro'Cの ような自動的に配列フェ

ッチを行わないツールでは、明示的に行う必要がある。

3.4.2 結果セット
クエリによって返される結果は、結果セットとして参照される。結果セットは行と列で構成されてい

るので、クエリの結果を含んだ一時的なテーブルだと考えても良いだろう。結果セットは、操作の途中

に作成されることもある。たとえば、3つのテーブルを結合するときに、最初2つのテーブルが結合され

一時的な結果セットが作成される。次にその結果セットと3つ 目のテーブルが結合されて最終的な結果セ

ットが作成されクライアントに返される。

3.4.3 デ…夕の取得
オラクルがデータを取得する方法はいくつかある。最も一般的な方法を次に示す。

(|)第3章 SQL文 CER躙:::;::|:

ロ テーブルを全走査してテーブル全体を読み込む。

□ ROWIDを使って特定の行にアクセスする。

ロ インデックスを使って行を特定する。

ロ ハッシュキーを使って行を特定する。

ここでは、簡単にそれぞれのアクセス方法について説明する。詳細については第6章で述べる。

テーブル全走査

テーブル全走査は、最も単純な方法で常に適用可能である。このアクセス方法では、すべての行のデ

ータをメモリに読み込む。テーブル全走査をするために、オラクルはテーブルに割 り当てられている最

初のブロック (データを保存する基本的な単位)か らハイウォータマークのブロックまで一気に読み込

む。ハイウォータマークとは、データを保存 したことのあるブロックの中で、最も最後のブロックのこ

とである。たとえば、テーブルを作成した直後に10ブロック分のデータを挿入すると、10番 目のブロッ

クがハイウォータマークになる。ハイウォータマークはデータを削除 しても変わらないので、テーブル

の全データを削除しても10番 目のブロックがハイウォータマークのままである。これをリセットするに

は、TRINCATE TABLE文 を使うかテーブルを再作成する。

ROWiDアクセス

ROWIDと は擬似的な列である。擬似的というのは、SELECTで きる列だが実際にテーブルには存在しな

い列だからである。ROWIDは 行の物理的な位置を示 している。ROWIDを使うとオラクルは直接行データ

を読み込むことができるので、この方法が最も速いアクセス方法になる。

ROWIDで アクセスする典型的な理由は次のとおりである。

ロ インデ ックスには行の位置 を特定するためにROWIDが 含まれる。

ロ カーソルの現在行は、ROWIDを使って (WHERE CURRENT OF CURSOR)更 新 され る。

インデックス参照

インデックスは、ソートされたキーの値とROWIDで構成される。そのため、キー値に基づいたデータ

を素早く取得できる。

オラクルは、B'treeや Bitmapイ ンデックスなどをサポートしているが、詳しい内容は第4章で説明

する。

ハッシュキー参照

ハッシュ関数は、ハッシュ値を求めるために列の値に適用される数学的な関数である。

ハッシュクラスタは、キー列のハッシュ値に基づいてデータが物理的に格納されているテーブルであ

る。詳しい内容は第4章で説明する。

3.4.4 テ…ブルの結合
結合によって、2つ以上のテーブルのデータを関連付ける事ができる。結合は対応する列の値によって

行われる。この節では、いくつかのオラクルの結合ロジックについて説明する。結合の最適化について

は第7章で詳しく述べる。

ソートマージ結合

ソー トマージ結合では、最初それぞれのテーブル (あ るいは前の操作で作成 された結果セット)が結
合に使う列の値でソートされる。次にソー トされた結果セットを結合に使う列に基づいて1つに併合する。

そのため最終的な結果セットはソートされている。しかしこれはサブ次的な結果で必ず保証されている

わけではない。

ネストされたループ結合

ネストされたループ結合では、1つのテーブル (小 さいテーブル、あるいは結合する列にインデックス

のないテーブル)を全走査し、もう1つのテーブルをインデックスを使いアクセスする。

ハッシュ結合

ハッシュ結合では、最初に小 さい方のテーブルに対してハッシュテーブルを作成する。次に小さい方

のテーブルを読み込み結合する列のハッシュ値を計算してハッシュテーブルにアクセスする。

この結合は、ハッシュテーブルがメモリ内に収まったときや、2つのテーブルのサイズがかなり異なる

ときなどには、とても効率的に機能する。

3.4.5 ソ… 卜とグル…ビング
ソートは、次のようなSQL文で必要になる。

□ ORDER BY旬 によるソー ト。

□ c∝NT、 wⅨなどの よ うな集合関数。

□ UNION、 INTERSECTION、 MINUSな どの集合演算子。

オラクルはソートのためにメモリ上のエリア (構成パラメータのSOК「 AREA_SIZEで 大きさが定義 さ

れている)を使う。メモリだけで足りない場合には、ディスク上のエリア (TEMPOWRYセ グメン ト)
を使ってディスクソートを行う。結合の最適化については第8章で詳 しく説明する。

3.4.6 データの修正
データ操作言語を (DML)使って、データを挿入、更新、削除することができる。DMLの最適化につ
いては第9章で詳しく説明する。

オラクルはUPDATE、 DELETE文 を行 うとき、いったん共有メモ リ上にデータ (ブロック)を読み込ん

でから、そのデータに対 して処理 を行 う。この とき、対象になる行 をデ ィスクか ら読み出してメモ リに

展開する部分がオーバヘ ッドが大 きい。また、インデ ックスの数の多いテーブルは、インデックスも同

●第3章 SQL文 口蟷輻 11

時に更新しなければならないので、高価な処理になる。

挿入とフリーリスト

挿入が実行されると、オラクルは新しい行を挿入するのに十分なスペースのあるブロックを探す。こ

のために、オラクルはフリーリス トと呼ばれる挿入可能なブロックのリストをテーブルごとに1つ以上保

持している。フリーリス トが1つの場合、あるテーブルに同じに挿入が行われるとフリーリストの競合が

起こる。このような競合は複数のフリーリス トを作成することで防ぐことができる。複数のフリーリス

トについては第16章で説明する。

配列挿入

配列挿入は、配列フェッチの概念に類似 している。オラクルでは、一括で複数行の挿入が可能である。

1行ずつ挿入するよりも一括で挿入した方が、発行するSQL文の数を減らすことができるので効率的であ

る。

ロック

複数のセッションで同一行を同時に更新したときに矛盾が生じないようにオラクルではロックの機能

が実装されている。オラクルのロックは次のような特徴がある。

□ 行単位のロックであるため、ロックの範囲が最小限ですみ、複数セッションの同時実効性が高い。

ロ ロックが参照を妨げない。ロックのかかっている行を他のセッションが参照するとロックのかかる

前の値がみえる。

□ COWIT、 ROLLBACK文 が発行 され る とすべ ての ロ ック は開放 され る。

□ LOCK TABLE文 で 、 明不 的 にテ ー ブル全 体 をロ ックで き る。

□ SELECT文だけならロックはされない。

E]SELECT FOR UPDATE文 で、参照で もロックをかけることができる。

ロ ビットマップインデックスのあるデータを更新するとブロック単位でロックがかかる。

□ 参照整合性のために、ロックがかかる場合がある。

コミット

トランザクション中に加えられた変更は、直接ディスク上のデータベースファイルには加えられない。

SGA(共有メモリ)内のバッファキャッシュにブロックごといったんコピーされ、そのコピーに対して

変更が加えられる。

コミットを実行するとトランザクション中に加えられたすべての変更は永続化される。オラクルでは、

変更がすべて永続化されることを保証するために、コミット時にトランザクションのログ (redo log)を

ディスクに書き出す。バッファキャッシュ内の変更されたブロックは、パフォーマンスを上げるために、

コミットとは非同期にディスクに書き込まれる。このようにデータを変更してコミットを行うと必ずデ

ィスク1/0が発生するので、大量のデータを更新する場合は、論理的にまとめられるならそのまとまった

単位でコミットを行った方がディスク1/0の 回数が減るのでパフォーマンスが良くなる。

3.5 クエリの最適化

ほとんどのSQL文では、データを取得する方法がいくつもある。SQL文 を解析するときに、オラクル

は複数の方法の中から最適だと思われるものを選び出す。このようなデータヘの最適なアクセスパスを

決定する処理をクエリの最適化という。クエリの最適化は、SELECT文 だけではなく、WHERE句 を伴った

その他のSQL文に対しても適用される。

オラクルでクエリの最適化を行っている部分は、オプティマイザとして知られている。

オラクルは、クエリの最適化に対して2つのアプローチ方法をサポートする。

ルールベースオプティマイザは、オラクルに元からあったオプティマイザである。このオプティマイ

ザは、さまざまなアクセスパスを一定のルールに基づいて評価して最適なアクセスパスを決定する。デ

ータの量や選択性は考慮しないので、誤った判断をすることもある。たとえば、1ブロック内に収まって

いるような少量のデータを検索するときに、インデックスが使用可能なら、このオプティマイザはイン

デックスを使うアクセスパスを選択する。インデックスを使うとインデックスのブロックと実データの

あるブロックの読み取りが必要である。しかし、テーブルの全走査 (全ブロックの読み取り)を選択し

ていれば、1つのブロックの読み取るだけで良かったかもしれない。

コストベースオプティマイザは、オラクル7か ら導入された。このオプティマイザが、ルールベースオ

プティマイザより優れているのは、データ量や分布の偏り (データの選択性)の情報を基にアクセスパ

スを決定できる点である。そのため、2件のデータと200万件のデータを区別してアクセスパスを決定で

きる。

3.5,1 最適化の手順
両方のオプティマイザの目的は、効率的な実行計画を立てることにある。SQLは非手続き的な言語な

ので、データを取得するときにそのアクセスパスを指定できない。オプティマイザが実行計画 (ア クセ

スパス)を決定する。

たとえば、:次のSQL文 を見てほしい。

SELECT DISTINCT customer name

FROMl custoェ rter s c′ sales s′ employees e
WHERE S.sales date > SYSDATE - 7

AND e.surname = 'Flintstonel

AND e.f■rstname = 'Fredi

AND c.sa■ es_rep_id = e.employee_■ d

AND s.customer ■d = c.customer ■d

オプティマイザは、データを取得する最適なアクセスパスを決定しなければならない。次のようない

くつかのアプローチが考えられる。

1.先週のsa■ esデータを取得する。そのとき、custOmers、 emp10yeesテ ーブルとのマッチングを

行い、 surnameが Fl■ ntstone、 firstnameが Fredの データを対象にする。

●第3章 SQL文 (|||:|||:::::::|:i:||||||

2.surnameが F■ intstone、 firstnameが Fredの emp■ Oyeesの ァータを取得する。取得 したデー

タのemp10yee_idを 使って、customers、 salesテーブルとのマッチングを行いsale_dateが

先週のデータを対象にする。

3.すべてのcustOmersア ータを取得する。そのとき、emp■。yees、 sa■ esテーブルとのマッチング

を行い、 surnameが Flintstone、 firstnameが Fredで・sale_date力 先`週のデ
｀
―夕を文寸象にす

る。

どのアプローチを採用するかで、結果を取得するまでの時間は大きく変わってくる。最後の方法が恐

らく最も時間がかかるだろう。それは、custOmersの データをすべて読み込まなければならないためだ。

オプティマイザが最後の方法を選択することはたぶんないだろう。

3.5.2 オプティマイザの選択
コストベースオプティマイザが実装されてからもう数年が経つが、多くのシステムはまだルールベー

スオプティマイザを使っている。これにはいくつか理由がある。

□ 初期のコストベースオプテイマイザは、あまり賢くなかったので、ルールベースオプティマイザを

使った方が、しばしば良好なパフォーマンスを得ることが出来た。

ロ ルールベースオプティマイザ用にチューニングされた既存のシステムをコストベースオプティマイ

ザ用に変換するのは、再チューニングを必要とするかもしれないのでリスクがあった。

□ 開発者やDBAがルールベースオプティマイザに慣れていた。

ロ コス トベースオプティマイザは、データが変わると実行計画も変わる可能性がある。これは、開発

時と本番時で実行計画が変わるかもしれないので、前もって動作を予想することが難しいいうこと

を意味する。

これらの欠点にもかかわらず、コストベースオプティマイザはたいていの場合、正しい実行計画を立

て、既存のシステムについてもうまく機能する。コストベースオプティマイザがうまく機能しないとき

があっても、ヒントを使うことで正しい実行計画を立てさせることができる。

コストベースオプティマイザはリリースごとに改良されているが、ルールベースオプティマイザはオ

ラクル7の最初のリリース以来ほとんど変わっていない。

コス トベースオプティマイザはチューニングされていないSQL文に対して特に有効に機能する。一般

的なユーザが入力した複雑なSQL文や意思決定システムなどには有益だろう。

このようなコストベースオプティマイザの利点にもかかわらず、SQLをチューニングする必要はない

などと思ってはいけない。確かに、コストベースオプティマイザはたいていの場合、最適なインデック

スや駆動テーブルを選んでくれるが、パフォーマンスのでないSQL文 を書き直してはくれないし、有効

なインデックスを作成することはない。どちらのオプティマイザを使ってもきちんとチューニングすべ

きである。

111111111111111:ill:::::|:::ク :::‡‡||‡ |::||||||||||||||||||)

3.5,3 文の自動変換
あるSQL文は論理的に等しいSQL文 に変換できる場合がある。効率的なSQL文 に変換可能なら、オラ
クルが自動的に変換する場合がある。たとえば、次のサブクエリを含んだIN句 は結合に自動変換される。

SELECT employee_id, surname, firstname
FROM empl-oyees

WHERE department_id IN
(SELECT department_id
FROM departmenLs
triHERE locaLion = 'Melbourne,)

結合を使えば次のようになる。

SELECT e.employee_id, e.surname, e.firstname
FROM employees e, departments d
WHERE d.location = 'Melbourne'

AND d.department_id = e.department_id

自動変換の別の例として、OR旬の変換がある。たとえば、次のOR旬はUN10N ALL旬 に自動変換される。

SELECT department name

FROM departments
WHERE location = 'Melbourne'

OR location = 'London'

UN10N ALL句 を使うと次のようになる。

SELECT department_name
FROM departments
WHERE location = 'Melbourne,

UNION ALL

SELECT department_name
FROM departmenl-s
hIHERE location = 'London'

3.5.4 ルールベースオプテイマイザの詳細
ルールベースオプティマイザの基本的なアプローチは次のようになる。

1.WHERE句に含まれるそれぞれのテーブルに対して、あらゆる可能なアクセスパスを検討 し、ランク

付けをする。

2.ラ ンクの最も低い (コ ス トの低い)ア クセスパスを選択する。

SQL文 CZ餃鰤::::i::|11111

3.残 ったテーブルに対 して、あらゆる可能なアクセスパスを検討し、ランク付けをする。

4.ラ ンクの最も低い (コ ス トの低い)ア クセスパスを選択する。

表3.1にルールベースオプティマイザのアクセスパスのランクを示す。このランクはオラクルのバージ

ョンによって変化することがあるので、マニュアルの方も参照してほしい。

ランク 操作

７

８

９

１

１

１

１

１

１

ROWIDに よるアクセス。

クラスタ結合による単一行アクセス。

ユニークキー、あるいはプライマ リキーであるハッシュクラスタキーによるアクセス。

ユニークキー、あるいはプライマ リキーによるアクセス。

クラスタ結合による複数行アクセス。

クラスタキーによるアクセス。

インデックスクラスタキーによるアクセス。

複合インデックスによるアクセス。

単一列のインデックスによるアクセス。

インデックスによる閉じた範囲 (た とえば 0く=列 く=10)検索

インデックスによる開いた範囲 (た とえば 0く=列)検索

ソートマージ結合によるアクセス。

インデックスのある列のMAX、 MIN。

インデックスのある列のORDER BY。

テーブルの全走査

表3.1 ルールベースオプティマイザのアクセスパスのランク

これらのランクを完全に記憶することは難しいので、基本的な原則を覚えておくとよいだろう。

□ 単一行の参照は、複数行の参照より優先される。

ロ インデックスを使う方が優先される。

□ 等号による参照は、範囲参照より優先される。

□ 閉じた範囲参照は、開いた範囲参照より優先される。

結合の順序を決定するルールは複雑だが、簡単に要約すると次のようになる。

□ 駆動テーブル (結合の最初のテーブル)は最もアクセスパスのランクの低いテーブルが選ばれる。

□ 結合のサ1原番は、FROM旬 に現れる最後のテーブルから (FROM旬 に現れる順番の逆に)選ばれる傾向

がある。

|:|111::::::蝙減り

3.5.5 コス トベ…スオプティマイザの詳細
コストベースオプティマイザも多くの可能なアクセスパスを検討する。実行計画をいくつか作成し

それぞれのコストを見積もり、最もコストの低いものを選択する。

コストの計算は、次のような要因が考慮される。

ロ データベースを読み込んで分析 した結果。

ロ ソートの有無。

ロ パラレル操作の適用性。

コストベースオプティマイザは、すべての可能な実行計画を検討しているわけではない。すべてを検

討するとオーバーヘッドが大きくなってしまうためである。

選択される実行計画はテーブルの統計情報に依存していて、その統計情報は測定するタイミング次第

で変わる可能性があるため、コストベースのアプローチは、ルールベースのアプローチと比べて前もっ

て振る舞いの予想を立てることが難しい。

3.5.6 統計情報の収集
コストベースオプティマイザが実行計画のコストを計算するために使う統計情報は、ANALYZE
TABLE文 を使って収集される。その単純な構文は次のようになる。

ANALYZE 'IABLE __))'Z
IcALCULATE srATrsrrcs I nsrruarr srATrsrrcs
ISAMPLE N ROWS I PERSENT]]

ANALYZE TABLE文は、テーブルやインデックスから統計情報を取得し、その情報をデータディクシ

ョナリに格納する。そして、その格納された情報にコストベースオプティマイザがアクセスしてSQL文

のコストを計算する。収集される情報は次のようなものである。

ロ テーブルの行数、使用されているブロック数、使用されていないブロック数、行の平均長など。

ロ インデックスの異なるキーの数、 リーフブロックの数、b―treeの 深さなど。インデックスについて

は、第4章で詳 しく説明する。

ANALYZE TABLE文 は、正確な統計情報 をとるためにCOMPUTE STATISTICSオプションをつけてテー

ブル とインデ ックスの全 ブロックを読 み取 ることもで きる し、時間 を節約す るためにESTIMATE
STATISTICSオ プシ ョンをつけて、い くつかのサンプルか ら全体の情報 を見積 もることもできる。たと

えば次の文は、emp■ Oyeesテ ーブルの 10%の サンプルを使って全体の統計情報 を見積もる。

ANALYZE TABLE emp■ oyees

ESTIMATE STATISTICS 10 PERSENT

●第3章 S鼈菜G四藤躙欲|||

CALCULATE STATISTICSオ プシ ョンをつけてすべての行を分析す るのは、巨大なテーブルの場合、

あまり現実的ではない。非常に時間がかかるか、TEMPORARYセ グメン トの容量不足で失敗 してしまう

だろう。このような場合は、ESTIMATE STATISTICSオ プションを使 って10%か ら25%のサンプルをとる

ことで、コス トの計算には十分に正確 な情報を取得できる。

ヒストグラム

オラクル7.3よ り前には、オプティマイザはインデックスの異なるキーの数は知っていたが、キー値の

分布 (偏 り)ま では知らなかった。そのため、異なるキー値が少ない場合は、インデックスに使われな

いことがしばしばあった。しかし、あるキー値を持つ行数が少ない場合、そのインデックスは有効に働

くのである。

たとえば、利き腕の列にインデックスが作成されていたとする。異なるキー値は、右利き、左利き、

両利きの3つ しかないので、前のオプティマイザだとおそらくインデックスには使わないだろう。右利き

のデータを検索するなら、90%以上が該当するので確かにインデックスには適していないが、両利きのデ

ータを検索するなら、1%未満しか該当しないので、インデックスとして有効なのである。

ヒス トグ ラ ム を作 成 す るため に 、 オ ラクル はANALYZE TABLE文 を次 の よ うに拡張 した 。

ANALYZE TABLE _-))UA I

FOR COLUMNS ,|]'ZI- I

FOR ALL COLUMNS I

FOR ALL INDEXED COLUMNS

STZE n

ヒストグラムの対象を選択した列だけにするのか、すべての列にするのか、インデックス付きの列に

するのかを選択することができる。通常は、データが均一に分散していない列だけを対象にすると良い

だろう。

ヒストグラムとバインド変数

バインド変数を使っていると、解析の段階ではどのような値が割 り当てられるのか分からないので、

オラクルはヒス トグラムを利用できない。つまり、列のヒス トグラムを利用するためには、列の値を

SQL文 にハー ドコーディングする必要がある。たとえば、次の文はヒス トグラムを利用できない。

SELECT COUNT(■)

INTO :output_bind

FROM emp■ oyees

WHERE sa■ ary > :max_ alary

次のように、値をハードコーディングすると、salaryに 作成したヒストグラムを利用できる。

SELECT COUNT(■)

INTO :output_b■nd

FROM employees

WHERE salary > 100000

そのため、バインド変数を使って解析数を減らすのか、バインド変数を使わずにヒストグラムを利用

するのかSQL文やデータの性質に合わせて決定しなければならない。

3.5.フ コス トベ…スオプティマイザを使うためのガイ ドライン
コストベースオプティマイザを使う方が、ルールベースオプティマイザを使うより良い結果を生むこ

とが多く、チューニングをより簡単にすることができる。しかし、コストベースオプティマイザのポテ

ンシャルをフルに引き出すには、いくつかしておかなければならないことがある。

1.テ ー ブ ル を 定 期 的 に 船 硫 LYZEす る 。

2.す べ て の テ ー ブ ル を ANALYZEす る 。 い く つ か の テ ー ブ ル し か ANALYZEし て い な け れ ば 、 コ ス トベ

ースオプティマイザは、最適な決定ができないだろう。

3.他の条件がすべて等しいなら、コストベースオプティマイザは、FROM旬 の最初にあるテーブルを

駆動テーブルに選び、FROM旬 に現れるサ1贋番にテーブルを結合する。この動作は、ルールベースオ

プティマイザの逆なので、注意してほしい。結合の順番を指定したい場合は、FROM旬 にその順番

で記述すると良い。また、結合の順番をヒントで指定することもできる。

4.分布が偏っていて、異なる値の数が少ない列のヒストグラムを作成する。ヒストグラムを有効に使

うためには、SQL文 にバインド変数を使わず値を明示的に指定する。

5.データの量や分布によって、コストベースオプティマイザの実行計画が変化するので、開発/チ ュ
ーニング環境を本番環境と類似したものにする。

6.バ ッチ処理を行っているテーブルは、バッチ処理の後にANALYZEす る。

3.5.8 オプテイマイザゴールの設定
オプティマイザゴールは、実行計画を立てるときの全体的なアプローチの仕方を決定する。その内容

は次のようになっている。

1. RULE

オプティマイザは、ルールベースのアプローチをとる。

2. CHOOSE

SQL文に現 れ るテーブル がANALYZEさ れて いれば、コス トベ ースの アプローチ を と り、そ うでなけれ

ばルールベースのアプローチをとる。

●第3章 SQL文 ∈呵鰈輻 :::||:111i111

3. ALL ROT′ J`S

すべての行を処理する時間を最少にするように実行計画を作成する。これはコス トベースオプティマ

イザのデフォル トの動作である。バッチ処理のようなスループットを重要視する処理に適 している。

4. FIRST ROWS

最初の行をすぐに返すように実行計画を作成する。これは、レスポンス性を重要視する対話的な処理

に適している。

オプティマイザゴールを設定するには次のような方法がある。

1.データベース構成ファイル (■ nitく SID>.ora)に設定して、データベースのデフォル トの動作を

決める。たとえば、レスポンス時間を重要視する場合は、次のように設定する。

OPTIMIZER MODE=FIRST ROWS

データベース構成ファイルでオプティマイザゴールを設定 しなかったときのデフォル トの設定は、

CH00SEに なる。

2.ALTER SESSION文 を使って、デフォル トの設定を変えることができる。設定 を変 えた後は、次に

設定 を変 えるまで同一の設定が使われ る。 たとえば、ルールベースにするには次のようにする。

ALTER SESS10N SET OPTIMIZER GOAL = RULE

3.ヒ ントを使って、個別のSQL文 ごとにオプティマイザゴールを設定できる。たとえば、スループッ

トを重要視する場合は次のようにする。

SELECT /*+ ALL_ROWS */ *

FROM empfoyees

WHERE manager-id =

(SELECT empfoyee-id
FROM empfoyees

WHERE surname = 'FlinLstone'
AND firstname = 'Fred')

3.5.9 ヒントの使用
SQL文 にヒントを埋め込んで、オプティマイザの動作に影響を与えることができる。結合の順序、結

合の種類などを細かく指示できる。

ヒン トはSQL文の中に、 コメントとして現 れ る。SELECT、 INSERT、 UPDATE、 DELETE文 などの後 に
コメン トのデ リミタ (/☆)と プラス記号 (+)が続 くと、オプテ ィマイザはヒン トが指定 されたことを認

鰤 |||148

識する。 (―)を使ったコメントだとオラクルのバージョンによっては、ヒントを認識しないので、ヒン

トを使う場合は (/ナ・/)を 使った方が無難だろう。たとえば、ルールベースオプティマイザを使うには

次のようにする。

SELECT /★ + RULE ★/ ★

FROM employees

WHERE salary > 1000000

表32に一般的に使われるヒン トを示す。

ヒント 効 果

CH00SE

RULE

FIRST ROWS

ALL ROWS

FULL(テ ーブル名)

INDEX(テーブル名 インデ ックス名)

INDEX_DESC(テ ーブル名 インデ ックス名)

usE_NL (7*))vh)

usE_MERGE (f-tru41

ORDERED

オプティマイザゴールをCH00SEにする。

オプティマイザゴールをRULEに する。

オ プ テ ィマ イザ ゴ ール をFIRST_ROWSに す る。

オプティマイザゴールをALL_ROWSにする。

指定されたテーブルを全走査する。

指定されたテーブルの指定されたインデックスを使う。

指定されたテーブルの指定されたインデックスを逆順に

使う。

指定されたテーブルが結合されるときに、ネストされた

ループ結合が使われる。

指定されたテーブルが結合されるときに、ソートマージ

結合が使われる。

FROM旬に記述された順番にテーブルを結合する。

表3.2 ヒントとその効果

SELECT /*+ FULL(C) FULL(d) */
e.employee_id, e. surname, e. firstname
FROM employees e, departments d

WHERE d.locat.ion = 'Melbourne'
AND d.department-id = e.department-id

3.5.10 ヒン トを使用したアクセスパスの変更
ヒントは特定のアクセスパスをオプティマイザに選択させるためにしばしば使われる。この時最も使

われる方法の1つがインデックスの指定である。典型的なのは、次のような使い方だ。

スペースで分けることで、複数のヒントを記述することができる。たとえば次のようにして、

employees、 departmentsテ ーブルを全走査させることができる。

SQL文 留藤躙

SELECT /*+ rNDEx(e employee-mgr-idx) */ surname

FRoM employees e

I^IHERE department-id = :L

AND manager-id = :2

次のようにして、複数のインデックスの中から、適当なものをオプティマイザに選ばせることもできる。

SELECT

/*+ INDEX(e empfoyee-saI-idx employee-mgr-idx) */

surname

FROM employees e

I/IHERE department-id = :1

AND manager-id = :2

また、インデックスを指定せずにテーブルに作成されているインデックスの中から、適当なものをオ

プティマイザに選ばせることもできる。

SELECT /十 + INDEX(e)■ / Surname

FROiMl employees e

WHERE departiment_id = :1

AND manager_id = :2

AND_EQUALSヒ ン トを使 って、 イ ンデ ックス をマ ー ジ させ る こともで き る。

SELECT /*+ AND_EQUALS(

e employee-dept-idx employee-mgr-idx) */ surname

FROM employees e

WHERE department-id = :1

AND manager-id = :2

デフォル トだとオラクルは昇順にインデックスを読み込むが、次のようにして降順にインデックスを

読み込ませることもできる。

SELECT /*+ INDEX-DESC(e employee-sa1-idx) */ surname

FROM empfoyees e

WHERE salary < :1

FULLヒ ントを使ってインデックスを使わないようにすることもできる。次のような場合が該当する。

ロ ルールベースオプティマイザを使っていて、オプティマイザが選択性の悪いインデックスを選んで

しまう。

ロ コストベースオプティマイザを使っていて、オプティマイザは選択性の良いインデックスを選んで

いるが、特定の値は選択性が悪いことが分かっている場合 (た とえば、loo歳以下の人々をすべて

検索する場合)。

FULLヒ ントを使うには次のようにする。

SELECT /* FULL(e) */ surname
FROM employees e

WHERE department_id = :1
AND manager_id = :2

3.5.11 ヒン トを使用した結合順序の変更
ヒントを使うその他の理由としては、テーブルの結合順序の変更がある。

ORDEREDヒ ントは、他のすべての条件 (データの量や分布の偏り、インデックスなど)が等しいなら、
FROM句に現れた順序にテーブルを結合するようにオプティマイザに指示する。

通常、コストベースオプティマイザはテーブルの統計情報を基に結合順序を決定するが、特定の順序

で結合させたいときには、このヒントが有効である。.次の例では、employees、 departmentsの 順序
で結合する。

SELECT /*+ ORDERED */ d.department_name, e.surname
FROM employees e, departments d
WHERE d.department_id = e.department_id

AND d.department_name = :1

3.5.12 ヒン トの構文エラー
ヒントの構文にエラーがあった場合、たとえばプラス記号 (+)を 忘れたり、無効なヒントが指定され

た場合など、オラクルはエラーやワーニングを出さずに単にコメントとして無視する。そのため、

EXPLAIN PLAN文 やtkprofユ ーティリティを使って、ヒン トが有効に働いていることを確かめること
が重要になってくるが、これらのユーティリティについては第5章で詳しく取 り上げる。

良くあるミスとしては、テーブル名のエイリアスの問題がある。テーブル名にエイリアスが使われて

いる場合には、ヒン トでもそのエイリアスを使わなければならない。スキーマ名 (ユ ーザ名)は、たと
えFROM旬に現れて場合でも、ヒントに書 く必要はない。

次のようなクエ リがあったとする。

SELECT surname′ f■ rstname

FROM employees e

WiFIERE salary > ■000

このクエリについての有効/無効なヒントの例を挙げる。

|:|::::::::魃襴D

第3章 SQL文 CE馘躙 ::::::|:|

ヒント

/大 + INDEX(e sa■ ary_idx)'/

/' INDEX(e sa■ ary_idx)★ /

/*+ INDEX(employees safary-idx) */

/*+ INDEX(e sa■ ary_idx ★/

/夫 + INDEX(e′ sa■ ary_idx)*/

/*+ TNDEEX(e sal-ary_idx) */

/*+ fNDEx(e aaaaaa_idx) */

有効。salary_idxイ ンデックスは使われるだろう。

無効。プラス記号 (+)が抜けている。

無効。FROM句では、employeesの エイリアスが使わ

れているが、ヒントでは使われていない。

無効。右ブラケットが抜けている。

有効。ただし、エイリアスの後のカンマ(,)は必要ない。

無効。ヒントのスペルが間違っている。

無効。存在しないインデックスを指定している。

表3.2 ヒントの例

3.5.13 インデックスを使わないアクセスパスの選択
ヒントを使わなくても、オプティマイザに特定のインデックスを使わせないように指定することがで

きる。

列に対して直接的に関数や演算が行われると、その列のインデックスは選択されない。たとえば、

surname列 にインデックスが作成されていた場合、次のクエリはインデックスを使用する (可能性が高い)。

SELECT '

FROM employees

WHERE surname = IFl■ ntstonet

次のクエリは、surname列 に関数が使われているので、インデックスは使用されない。||は文字列を

連結する関数である。

SELECT ■

FROM employees

WHERE surname ll '` = IF■ ■ntstonel

たとえば、sa■ ary列 にインデックスが作成されていた場合、次のクエ リはインデックスを使用する

(可能性が高い)。

解説

SELECT ★

FROM employees

WHERE salary > ■00000

次のクエリは、sa■ ary列に演算が行われているので、インデックスは使用されない。

SELECT ★

FROM employees

WHERE salary ■ 0 > ■00000

3.6 まとめ
この章では、オラクルがどのような手順でSQL文 を処理 しているのかを学んだ。これを理解すること

は、チューニングにとって非常に重要なことである。

ロ カーソルは、オラクルがSQL文 を処理するための情報を管理するためにメモリ上に割り当てた領域

である。

□ 解析 (SQL文を実行するための準備)は、貴重なCPUリ ソースを消費してしまう。カーソルを再利
用したり、バインド変数を使うことで、解析回数を減 らすことができる。

ロ オラクルは、データのクエリや更新を一括で配列処理することができる。配列処理はスループット

をかなり改善することができる。

ロ オラクルには、アクセスパスを最適化するために2つのオプティマイザがある。

ロ ルールベースオプティマイザは、テーブルやインデックスのタイプに応 じて最適なアクセスパスを

決定する。

ロ コス トベースオプティマイザは、データの量や分布の偏 りといった統計情報に基づいてアクセスパ

スを決定する。

ロ コストベースオプティマイザがたいていの状況では良い選択となる。

□ どのオプティマイザを選んでも、SQLの プログラマがオプティマイザに指不をして、最適な実行計

画を立てるように誘導できる。

|:::躙晰

"

卜
ヽ

一
↓
¨

ヽ
■，・ａ

一，一

又

』
褒
・ヤ・…

~

‘
烙

』

子
．̈ぉ
一一ヾ̈
一

′,｀ `″・ 1
,こ __゛

・「 ■
,警1''

ザ '

″

ラスタ

■
　
・

・、

一

五
ゲ
・

守

…・
｀

鮭

鯖
饉

:・ ,“ :

ソ

ノ́

イン 〒′

4.l Iまじめに

この章では、オラクルが提供するインデックスとクラスタの機能について学ぶ。インデックスとクラ

スタは、パフォーマンスを上げるために最初からオラクルに備わっている機能である。これらの機能を

理解して有効に活用することが、SQLのパフォーマンスを改善する上で最重要課題になる。

インデックスの利点は、コストなしには実現できない。大きなテーブルに対してインデックスを作成す

ることは、非常に時間のかかる処理であり、業務中には実行できないことも多い。加えて、データの挿入、

更新、削除を行うときは、同時にインデックスも更新しなければならないのでオーバーヘッドが大きくな

る。また、インデックスは格納するためのスペースを要求する。大きなテーブルにインデックスを作成す

ると、インデックスそのもののデータ量も大きくなってしまうので、決して軽んじることはできない。

インデックスやクラスタについて正確な判断を下すことは、重要だが難しい。インデックスは更新の

オーバヘッドになるので、単純に追加すれば良いというものではない。また、インデックスはテーブル

のデータ量に応じたディスクのスペースも要求する。メリットとデメリットをきちんと把握することが

重要なのである。

オラクルがインデックスやクラスタをどのように実装しているのか、以下の項目について説明する。

ロ オラクルのデフォルトのインデックスであるBЧКeイ ンデックスの構造。

□ 複数列の (結合)イ ンデックス。

□ 参照整合性によって作成される暗黙のインデックス。

□ 1つ以上のテーブルの共通のキー値に基づくクラスタ (イ ンデックスクラスタ)。

ロ ハッシュキーを使ったクラスタ (ハ ッシュクラスタ)。

賊

醸:::::璽隋 財

4口2 B*‐treeインデックス

B=― tree(B」 anced Tree)イ ンデックスは、オラクルにおけるデフォルトのインデックスの構造であ
る。図4.1に オラクルのB'一 treeイ ンデックスの構造を示す。

，
ヾ
ヽ
ヽ
日
ヾ
゛

ヽ
咄
Ｖ
ヰ
ヽ
口
ヾ
ヽ

一ヽ

―

】

ヽ

口

く

０

A― K
L‐Z

A‐ D
E―G
H― K

Ｏ

Ｒ

Ｚ

Ｌ
．
Ｐ

Ｓ

ADAMS
BAKER
COOK
DAVIS

EDAM
FERRAR
GOUGH

HARRIS
JONES
KANE

LOWE
MILLER
ODEON

PRINCE
QUEEN
RICHARDS

SMITH
VALDEZ
WINTON

インデックスブロックは、双方向にリンクされる。

図4.l B★ treeイ ンデックスの構造

B★―treeイ ンデックスは階層的な木構造である。木の一番上は、ヘッダブロックと呼ばれる。このブ

ロックは、キー値の範囲と他のブロックのポインタのリス トを管理 していて、キー値が指定されるとど

のブロックを読めば良いかが分かるようになっている。ブランチブロックは、構造的にはヘッダブロッ

クと同じであり、リーフブロックあるいは1つ下の階層のブランチブロックのポインタとキー値の範囲の

リストを管理 している。リーフブロックは、最下位層のブロックであり、キー値 とテーブルの行の位置

を表わすア ドレス (ROWID)の リス トを管理 している。つまり、リーフブロックを読んではじめてデー
タの物理的な位置を特定できるのである。

図4.1に基づいて、ォラクルがどのようにインデックスを読むのかを追ってみよう。BAKERの データに

アクセスするものとする。最初にヘッダブロックを読み取りBで始まるデータは、Aか らKのデータを管

●第4章 インデツクスとクラスタG国は躙隋:′ ||

理 している左側のブロックで管理 されていることを知 る。次にそのブランチブロックを読み取 り、Bで

始まるデータは、Aか らDの データを管理 している左側の リーフブロックにあることを知 る。最後にリー

フブロックか らBAKERの デー タのROWIDを 取得 す る。実際にBAKERの データを取得す るにはさらに

ROWIDに 基づいてテーブルのブロックを読む必要 がある。

リーフブロックには、前後のリーフブロックのポインタも含まれている。それは、く、>、 BETWEENな

どの範囲検索をスムーズに行うためである。

リーフブロックの深さ (階層)はすべて同じである。すべてのリーフブロックは、通常1つのヘッダブ

ロックと1つ以上のブランチブロックを通じてアクセスされる。

B=― treeイ ンデックスは、ェ
"wの
ような伝統的なインデックスの方法と比べて次のような利点がある。

□ すべてのリーフブロックは同じ深さなので、パフォーマンスの予測が立て易い。つまりどのような

キー値でもブロックを読み取る1/0の数は一緒である。

E]B夫―treeイ ンデックスは大きなテーブルに対 して、良いパフォーマンスを発揮する。それは、大

きなテーブルでもインデックスの深さは、たいてい4プロック (1つのヘッダブロック、2つのブラ

ンチブロック、1つの リーフブロック)に収まることが多いからである。通常、ヘッダブロックは

メモリ内にロード済みで、ブランチブロックもロードされていることが多く、実際の物理的なディ

スクとの1/0は、1,2ブロックで済むことが多い。

□ B■―treeイ ンデックスは、範囲検索もサポー トしている。これは、前後のリーフブロックのポイ

ンタを持つことで実現 している。

B■ _treeイ ンデックスは、柔軟で効率的なクエ リをサポー トしてくれる。しかし、データを更新する

ときには、その構造を維持するために、オーバーヘッドがかかる。たとえば、図4.1の ダイアグラムに

NⅣENの データを追加する場合を考えてみよう。新しい行を追加するためには、し0のデータを管理 し

ているリーフブロックに、新 しいエントリを追加 しなければならない。もし、このブロックに空きスペ

ースがあるなら、追加のコス トはたいしたことはない。

しかし、このブロックに空きスペースがない場合にはどうなるのだろうか。

そのような場合には、インデックスの分割が行われる。新しいブロックが割り当てられ、既存のブロ

ックの半分のデータが新しいブロックに移される。リーフブロックが追加/更新されたので、そのブロッ

クを参照しているブランチブロックもあわせて更新する必要がある。もし、そのブランチブロックに空

きが無ければ、リーフブロックと同様に分割が起こる。このブロックの分割は、フリースペースが見付

かるまで、階層を遡って行われる。今、見てきたように、インデックスの分割は高価な処理である。

インデックスの分割は、キー値が昇順に挿入 された場合には避けることができる。これは人エキーを

使うことの利点の1つである。人エキーについては第14章で説明する。また、新しいエントリのためにイ

ンデックス内に十分なフリースペースを確保する方法でも、インデックスの分割を減らすことができる。

これ|ま、 CREATE INDEX文 のPCTFREE旬
~で
指矢ヒする。

:躙MD

4.2.1 インデックスの選択性
列あるいは列のグループの選択性は、インデックスが有効に働くかどうかを判断する上で、重要な指

針となる。重複しているキー値が少なければ、選択性は優れている (イ ンデックスは有効に働く)と い

える。たとえば、誕生日を表わす列は (たぶん)選択性は優れているが、性別を表わす列は (たぶん)
選択性は悪いだろう。

選択性の優れているインデックスは、特定のキー値で対象となるデータを絞り込めるので、効率的に

機能する。コストベースオプティマイザはさまざまなインデックスの中から、選択性の最も優れている

インデックスを選択してくれる。

4.2.2 ユニ…クインデックス
ユニークインデックスは重複したキー値を持たないインデックスである。重複した値を持つ列にユニ

ークインデックスを作成しようとすると、オラクルがエラーを返す。同様に、ユニークインデックスが

作成されている列に、重複した値を持つデータを挿入してもエラーになる。

ユニークインデックスは、パフォーマンスを改善するというよりは、重複した値を防ぐために使われ

るのが一般的である。しかし、重複した値を持たないということは、選択性が極めて優れているという

ことなので、パフォーマンス改善に関しても効果的に機能する。そのため、ルールベースオプティマイ

ザもコス トベースオプティマイザもユニークインデックスを好んで選択する。プライマリキーは、NULL
値を許さない (NOT NULL制約)ユニークインデックスだと考えると良い。

4.2.3 暗黙のインデックス
暗黙のインデックスは、プライマリキーやユニーク制約を実装するためにオラクルによって自動的

(暗黙)に作成されるユニークインデックスである。

4.2.4 結合インデックス
結合インデックスは、複数の列で構成されるインデックスである。WHERE句 でしばしば複数の列が指

定される場合は、それらの列に対して結合インデックスを作成することは、良い考えである。たとえば、

次のようなクエリがあったとする。

SELECT surname, firstname
FROM employees
WHERE surname = :1

AND firstname = :2

このような場合に、次のようなインデックスを作成すると効果的に機能する。

CREATE INDEX employee_name_■ dx

ON einp10yees(Surname′ f■rstnaine)

●第4章 インデツクスとクラスタ(1蔵茫鰈躙:

このインデックスは、surnameを 単独で指定したときにも、機能することができるので、surname単

独のインデックスの代わりに使うこともできる。しかし、firstnameを単独で指定した場合には機能し

ないので、そのようなクエリが多い場合には、firstname単独のインデックスが必要になる。これは、

結合インデックスの最初の列から連続して列が指定されていれば機能するという規則による。たとえば、

A、 B、 Cの順序でインデックスが指定されていた場合に、その結合インデックスが機能するかどうかは

次のようになる。

指定 した列 機能する

Ａ
　
Ｂ
　
Ｃ

Ｂ

　

Ｃ

　

Ｃ

Ａ

　

Ａ

　

Ｂ

○

×

×

○

×

×

表4.1 結合インデックスの部分指定

図4.2に さまざまなアクセスパスにおける1/0リ クエストの数を示す。明らかに結合インデックスのほ

うが効果的である。

図4.2 アクセスパスの違いによる1/0数の比較

結合インデックスのガイドライン

次のガイドラインに従って、結合インデックスに含める列やサ1贋序を決定すると良いだろう。

□ WHERE句 でしばしば一緒に使われる列を結合インデックスに指定する。

□ 班ERE旬に単独で使われることもある列は、インデックスの最初の列に指定する。

□ 選択性の優れている|1頂に列の最初の方から指定する。

選択リスト(SELECT旬の後に指定される列)に現れる列もすべて結合インデックスに含めてしまえば、
テーブルをアクセスする必要がないので、さらにパフォーマンスを上げることができる。

結合インデックスについては、第6章で詳しく説明する。

4.2.5 インデックスマージ
WHERE旬 に複数の列が現れ、それらの列に対して結合インデックスがなく、それぞれの列に個別にイ
ンデックスがある場合には、アクセスパスにインデックスマージが選ばれることもある。

オラクルはインデックスをマージするために、それぞれのインデックスから値が一致するすべての行

を取得し、次に得 られた複数の結果セ ットをマージして最終的な結果セッ トを作成する。たとえば、

surnameと firstname列 に個別にインデックスがあり、"ェan smithHを 検索するクエリが発行された

場合、オラクルはsurnameが ‖smithHである行とfirstnameが ‖Ian'!で ある行をそれぞれ取得 し、次に
どちらの結果セットにも含まれる行を選び出す。

インデックスマージは、それと等価な結合インデックスよりも (複数のインデックスを読むので)非
効率的であるので、実行計画にしばしばインデックスマージが選ばれる場合には、適切な結合インデッ

クスの作成を検討 した方が良い。

4.2.6 NULL値
NULL値 は、インデックスに含まれない。結合インデックスの場合には、すべての列の値がNULL値な
らインデックスには含まれない。これは、NULL値の検索にはインデックスが利用できないということを

意味する。つまり、WHERE旬 でIS NULL条件が指定された場合には、アクセスパスにテーブル全走査が
選ばれる。大きいテーブルの場合には、テーブル全走査は重い処理なので、NULL値の扱いには気をつけ
た方が良い。

4.2.7 外部キーとロック
参照整合性制約を使って、親テーブルにないデータを子テーブルに挿入することを防ぐことができる。

たとえば次の文は、departmentsテ ーブルのdepartment_idに データが存在しなければ、
employeesテ ーブルのdepartment_idに は値を設定できないように制約をかける。

ALTER TABLE elnp■ oyees

ADD CONSTRAINT fkl_employees

FOREICN KEY(department_id)

REFERENCES departments(department_■ d)

制約が有効になると、無効な(departmentsテ ーブルに存在しない)department_idを 持つ行を挿入
したり、emp■ Oyeesテ ーブルでdepartment_idが使われているのにdepartmentsテ ーブルからその
データを削除しようとすると、オラクルはエラーを返すので、テーブル間の整合性が保たれるようにな

る。

注意しなければならないのは、外部キー (上記の例ではemp■。yeesの department_id)に インデッ

●第4章 インデックスとクラスタG[之跛鶉輻:|:|:|::11:il

クスが作成 されていないと、オラクルはどちらかのテーブルに (通常の行ロックよりもロックの範囲が

大きい)テ ーブルレベルのロックをかけてしまう点だ。バージョン7.1以前では、子表 (上記の例では

emp■ 。yees)に データが挿入されると親表 (上記の例ではdepartxlnents)に テーブルレベルのロック

がかかる。バージョン7.2以降では親表のデータを更新すると、子表のロックを必要とする。このような

ロックは、外部キーにインデックスを作成することで回避できる。外部キーは結合に使われることも多

いので、パフォーマンスの点からも外部キーのインデックスは有効である。ただし、インデックスには

多少のオーバーヘッドが伴うので、どの程度ロックの競合が起こっているのかを調査 した上で、外部キ

ーにインデックスを作成するのかどうかを決めると良い。

4.3 インデックスクラスタ

インデックスクラスタは、1つ以上のテーブルの関連する行を同一のセグメント内に格納する。共通の

クラスタキー値を持つ行が一緒に格納されるのである。理論的には、結合される行が同一のブロックに

存在しているので、結合処理は速くなる。しかし、次のような弱点もある。

□ 他のテーブルの行もクラスタ内に含んでいるので、テーブルの全走査を行った場合には、通常のテ

ーブル全走査よりも遅くなる。

ロ クラスタの構造を維持 しなければならないので、挿入処理は遅くなる。

図4.3に インデックスクラスタの構造を示す。さらに詳しい説明は第7章で行う。

Product lD Product_description Normal Value

20 Defiant 1 01 20000

30 Entable 1 701 80000

Product Table

Sales Table

lndex Cluster of Sales and Product

図4.3 インデックスクラスタの構造

Product lD Customer Sale_date Other Columns....

20 12 7‐ May‐96

30 1-Jan-96

30 12‐ Dec-96

Product lD Producldescription Normal Value

Customer lD Sale_date Other Columns....

ProductlD Produc!-description Normal Value

20 Defant 1 01 20000

Customer ID Sale_date Other Columns....

12 7‐May-96

ProductlD Product_description Normal Value

30 Entable 1 701 80000

Customer lD Sale_date Other Columns.

1-Jan‐ 96

12-Dec-96

●第4章 インデックスとクラスタ(la躍痣躙隋il

4.4 ハッシュクラスタ
ハッシングとは、キー値を数学的な計算でハッシュキーに変換する仕組みである。オラクルのハッシ

ュクラスタでは、キー値をハッシュキーに変換し、同一のハッシュキーを持つ行を一緒に格納している。

ハッシュキーは、オラクルにデータの物理的な位置を教えてくれるので、通常のインデックス参照のよ

うに余分なインデックスブロックの読み込みが発生しない。

4.4.1 ハッシュクラスタの重要事項
クラスタキーは選択性が優れてい (重複したクラスタキーが少なく)な ければならない。プライマリ

キーなどは、クラスタキーの良い候補となる。

ハッシュクラスタは、キー値からデータの物理的な位置が分かるので、一致検索には適しているが範

囲検索やHKE検索には向いていない。範囲検索が多いなら、通常のB'_treeイ ンデックスを使った方が

良い。

4.4.2 ハッシュクラスタの構造
ハ ッシ ュ ク ラス タ を作 成 す る と きに は 、予想 され るハ ッシ ュキー値 の 数 を指定す る。 これ に は、

CREATE CLUSTER文のHASH KEYS句 が使 われ る。CREATE CLUSTER文 の SIZE句 は、それぞれのハ ッシ

ュキ ーの ブロックサ イズ を決定す る。 HASH KEYSと SIZE旬 にハ ッシュク ラス タの初期サイズ は依 存 じ

てい る。

ハッシュクラスタのパフォーマンスは、HASH KEYSと SIZE旬の設定にかかっている。もしHASH

KEYS旬の値が大きすぎると、データの入っていないハッシュキーのブロックが多くなり、テーブル全走

査に時間がかかるようになる。またHASH KEYS旬 の値が小さすぎると、1つのハッシュキーに割り当て

られる行数が多くなるので、ブロック内で行を特定する時間が増え、1つのブロックに入りきれなかった

行は、追加のブロックに連鎖することになる。連鎖が起こると余分なブロックの1/0が増えるので、ハッ

シュクラスタのメリットが薄れてしまう。SIZE句 の値が少なすぎても同様に連鎖が起こる。

オラクルはクラスタキーをハッシュキーに変換するために、デフォル トで内部的なアルゴリズムを使

う。このアルゴリズムは、ほとんどの状況に対してうまく機能する。もし、うまく機能しない場合があ

っても、PL/SQLで書いた独自のアルゴリズムを使うこともできる。

図4.4にハッシュクラスタの例を示す。そのダイアグラムからいくつか重要なことが読み取れる。

[|ハ ッシュキーは、ハッシュクラスタ内のオフセットを表わしている。そのため、ハッシュキーが分

かれば、オラクルは直接その関連したブロックを読み取ることができる。

□ ハッシュキーに対するスペースが多すぎると、無駄が生じ、通常のテーブルよりも、余分にブロッ

クを読まなければならないので、テーブル全走査のパフォーマンスは悪くなる。

ロ ハッシュキーに対するスペースが少なすぎると、1つのブロックに入りきれなかった行は追加のブ

ロックに連鎖する。連鎖が起こると余分なブロックの1/0が発生するので、パフォーマンスは悪く

なる。たとえば図4.4では、emp10yee_idが ∽のデータが追加のブロックに連鎖している。

Table nclustered)

Cluster Key Hash Key

10

12

15

89

34

54

69

Table of conversion from cluster key to hash key

Hash cluster of the Employee Table

69 Ryder VVi‖ lam 3/06/40

Employee_ id Surname Firrtname Date of Birth

10

12

Potter

Thomas

Jean Luc

Dianna

21/04/23

5/03/47

15 Jones Katherine 11/11/34

89 Smith Montgomery 19/02/20

34 Cane Beverly 0/09/38

54 Main Leonard 7/05/30

69 Ryder Wi‖ iam 3/06/40

Hash Key Employee_ id Surname Firrtname Date of Binh

10 Potter Jean Luc 21/04/23

15 Jones Katherine 11/11/34

1 11 Smith Ben 23/05/78

2 Thomas Dianna 5/03/47

89 Smith Montgomery 19/02/20

34 Cane Beverly 0/09/38

54 Maln Leonard 7/05/30

図4.4 ハッシュクラスタの構造

三二三二

“

′971

(|)第4章 インデックスとクラスタ (l蜻躙 :::::::|:::|:||111:11111

4.4.3 いつハッシュクラスタを使うか
次のような条件を満たすときに、ハッシュクラスタを使うと良い。

ロ テーブルのデータは、ほとんどクラスタキーの等号条件でアクセスされるc

ロ クラスタキーの範囲検索はめったに行われない。

ロ テーブルの全走査はめったに行われない。

ロ テーブルのサイズは固定である。あるいは、サイズが変わるたびにハ ッシュクラスタを再作成する

ことができる。

ハッシュクラスタの最適化については、第6章で詳しく説明する。

4.5 ビットマップインデックス
ビットマップインデックスは、オラクル7.3か ら新たに導入された。ビッ トマップインデックスでは、

列のユニークな値に対して、ビットマップを作成する。それぞれのビットマップは0か 1で構成 され、あ

る行がその値を取るときには1そ うでないときには0になる。特定の条件に一致するデータを取得するに

は、特定のビットマップに1が立っている行を対象にすれば良いので、オラクルは高速に検索を行 うこと

ができる。また、複数の条件の組み合わせでも、1と 0の論理演算をするだけで済むので、高速に処理で

きる。

ビットマップは、列のユニークな値に対して行ごとに作成 されるので、ユニークな値の数が少ない列

に適 している。

図4.5に ビットマップインデックスの例を示す。

4.5.1 ビットマツプインデックスの特徴
1と 0のビット計算だけで済むので、集合関数 (た とえば、SUM、 COUNT)に適している。
複数のビットマップインデックスを任意の順序で組み合わせて使えるので、 (列の順序が重要な)結合
インデックスよりも柔軟である。

通常のインデックスよりもたいていの場合、非常にコンパクトである。

ビットマップは、列のユニークな値に対して行ごとに作成されるので、選択性の劣っている (ユニー

クな値の数が少ない)列に適している。

(複数の)ビ ットマップの操作はビット演算なので、コンピュータで効率よく処理できる。
この行が条件を満足する。

4.5.2 ビットマップインデックスの弱点
更新のときに、ビットマップインデックスは、ブロック単位にロックされる。そのため、更新処理の

多いテーブルにビットマップインデックスを作成すると、ロック待ちが起こってパフォーマンスが低下

する可能性がある。

lncome Own_homeMarital StatuS Children_ynGender

S20,000M Manied

YSingle $30,000M

$12,000Divorced

$70,000 YIrilarried

$20,000 YMarried

Single S10,000M

$13,000Ir/arried

Male Female

Bitmap index on
gender

Manred Single Divorced

Bitmap index on Marital Status Bitmap index on
own_home

Select * from survey where sex ='Male'and marital-status='single'and own-home='Yes'

AND

Single

AND EQUALS ‐嘔―――――――――This row satisfies the query

Yes No

Male Yes

図4.5 ビツトマップインデックスの例

C)第4章 インデックスとクラスタ国は蒻::|

4.6 インデックス構成テーブル

結合インデックスのところで、選択リスト (SELECT句 の後に指定される列)に現れる列をすべてイン

デックスに含めてしまえば、テーブルにアクセスする必要がないので、パフォーマンスを上げることが

できるということを説明した。

さらに、テーブルのすべての列が結合インデックスに含まれている状況を考えてみてほしい。そのよ

うな場合、テーブルはアクセスする必要のない余分なものになる。

このような問題を解決するために、オラクルのバージョン8か ら、インデックス構成テーブルが導入さ

れた。このテーブルは、他のテーブルと同じように使うことができるが、内部的にはB大―treeイ ンデッ

クスのフォーマットでデータが格納される。そのため、テーブルとインデックスで2重にデータを持つ必

要がなく、キーの参照だけでデータにアクセスできるので、検索速度は速くなる。インデックス構成テ

ーブルは、CREATE TABLE文 のORANIZATIONキ ~ワ ~ド を使って作成する。たとえば次のようになる。

CREATE TABLE iot tab■ e

(pk_col■ NUMBER′

pk_co12 NUMBER′

data_co■■ VARCHAR2(30):NOT NULL′

data_co12 LONG′

CONSTRAIINT iot_table_pk

PRIMARY KEY(pk_coll, pk_CO■ 2))

ORGANIZAT■ ON INDEX

PCTTHRESHOLD 50

0VERFLOW TABLESPACE ■ong_tbs

インデックス構成テーブルは、プライマリキーに対するBた treeイ ンデックスとして構成される。プ

ライマリキーとその他の列がB贅 _treeの リーフブロックに格納される。しかし、リーフブロックに格納

されるのは、行の全体長のPCTTHRESHOLD%ま でで、後の残 りはOVERFLOW TABLESPACE内 のブロック

に連鎖 される。上記の例では、行長の50%以上は■ong_tbsテ ーブルスペースに格納 される。

データの良くアクセスする部分以外を別のテーブルスペースに切り離して管理することができるので、

B☆―tree部分が比較的コンパクトになり、効率的な処理が可能になる。そのため、頻繁にアクセスする

列、サイズの小さい列はリストの最初の方で指定し、めったにアクセスしない列、サイズの大きい列は

リストの最後の方に指定するようにし、良くアクセスする部分をPCTTHRESHOLDで 指定すると良い。

インデックス構成テーブルには、プライマリキー以外のインデックスを作成することが出来ない。こ

れは、ROWIDに よるアクセスが出来ないためである。

インデックス構成テーブルは、次のような状況に適している。

ロ クエリはすべてプライマリキーを使って行うことが出来、別のインデックスを使う必要がない。

□ 頻繁にアクセスする部分が比較的小さい。

4.フ まとめ
SQLを効率的に実行するなら、インデックスやハッシングをうまく使わなければならない。オラクル

は次のような方法をサポートしている。

□ B★―treeイ ンデックスは、一致検索/範囲検索のどちらに対してもうまく機能し、柔軟性が高い。

ロ インデックスクラスタは、複数のテーブルがしばしば結合されるときには、効率的な処理が可能に

なる。

ロ ハッシュクラスタは、静的なテーブルに対して高速な検索を可能にする。

ロ ビットマップインデックスは、集合関数やユニークな値の数が少ない列を組み合わせたクエリに有

効である。

B夫―treeイ ンデックスはほとんどのアプリケーションに適している。Bオーtreeイ ンデックスを使うと

きには、次のガイドラインに従うと良い。

□ 選択性の優れている (重複する値の数が少ない)列は、B・―treeイ ンデックスに適している。
□ WHERE旬 に良く使われる列は、インデックスを作成する候補になる。

□ 頻繁に更新する列にインデックスを作成すると、オーバーヘッドが大きくなるので、避けた方が良い。

□ WHERE句 に複数の列が一緒に使われることが多い場合は、結合インデックスの作成を考えてみると

良い。選択性の優れている列から順に列を並べると部分的な利用 (先頭から順に指定する)も 可能
になるので効率的である。

□ 外部キーにインデックスを作成すると、ロックを避けることができる。

クラスタやビットマップインデックスを使う場合には、:次のガイドラインに従 うと良い。

□ 複数のテーブルがいつも結合されて使われ、更新があまりないような場合は、インデックスクラス

タの使用を考えると良い。

□ 一致検索がほとんどでテーブル全走査は少なく、テーブルのサイズがあまり変わらないような場合

は、ハッシュクラスタの使用を考えると良い。

ロ クエリの条件に選択性の悪い列を複数組み合せることが多く、更新はあまりないような場合は、ビ

ットマップインデックスの使用を考えると良い。意思決定システムやデータウェァハウスなどには、

特に有効である。

ロ プライマリキーでの一致検索や範囲検索がほとんどで、その他のインデックスを必要としない場合、

インデックス構成テーブルの使用を考えると良い。

5.1 はじめに

この章では、オラクルがどのようにSQLを 実行するのかを調べるツールについて説明する。これらの

ツールなしでは、SQLが どのように処理 されているのかを理解することは難 しいだろう。これらのツー

ルを使って、SQLの実行にどれだけリソースを使用するのかも正確に測定することができる。

この章で扱う項目は次のとおりである。

□ EXPLAIN PLAN文 はオラクルがどのようにデータを取得するのか (実行計画)を 明らかにしてく

れる。

[三I SQL_TRACEを 設定すると、SQL文の実行計画と消費したリソースが トレースファイルに書き出さ

れる。

E]tkprofは sQL_TRACEの 設定で書き出された トレースファイルを理解しやすいように整形する。

□ SQL★ Plusの AUTOTRACEコ マンドは、実行したSQL文の実行計画と統計情報を出力する。

これらのツールは、必ずしも使いやすいとはいえないが、どのバージョンのオラクルでも使うことが

できる (AUTOTRACEは バ~ジ ョン7.3か ら)ので、使いこなせば強力な武器になる。その他の便利なツー

ルもあるが、常に利用可能だとは限らない。

tl■ ‐■議

」す .・ 4

.´ 議

. b

絆
‘

5.2 EXPLAIN PLAN

EXPLAIN PL′顕文を使って、オラクルが立てたSQLの実行計画を調べることができる。実行計画はプ

ランテーブルに挿入 されるので、その結果をSELECT文 で取得する。

5.2.l EXPLAiN PLANの 実行
EXPLAIN PLAN文 の構 文は次 の とお りで あ る。

EXPLAIN PIJAN ISET STATEMENT_ID = 77- F/7I-TDI
twro 7-))DZt
FOR SQLX

ステートメントlD:SQL文 をユニークに識別するためのID。 テーブルには複数のSQL文の実行計画が

格納されるので、このIDを使って特定のSQLを識別する。

テーブル名 実行計画を格納するためのテーブル名。EXPLAIN PrW文 を実行する前に、存在
している必要がある。テーブルの構造がオラクルの想定と一致していれば任意の

名前をつけることができるが、オラクルからテーブル作成のスクリプ トが提供さ

れているので、それを利用すると良いだろう。テーブル名を指定 しないと、

plan_tab■ eと いうテーブル名が使われる。オラクル提供のスクリプ トを使えば、

p■an_tableと いう名で自動的にEXPLAIN PVN用のテーブルが作成される。

SQL文 実行計画を調べたいSQL文。構文が有効で、適切な権限を持っていなければなら

ない。バインド変数も使うことができる。

5.2.2 プランテーブル
オ ラクル は 、 プ ラ ンテーブル を作 成 す るSQLの ス ク リプ トを提 供 して い る。 その ス ク リプ トは 、

utlxplan.sq■ と言 う名前で、通常 はくORACLE_HOME>/rdbms/adminデ ィレク トリに格納 されてい る。
Windowsの場合 はバ ー ジ ョンごとにrdbmsの 部分がRDBMS73,RDBMS80の よ うに異 なってい る。

EXPLAIN PLr劇文は、実行計画の各ステップ毎にプランテーブルに行を挿入する。

プランテーブルの構造は表5.1のようになっている。

列名 説明

STATEMENT ID

TIMESTAMP

REMARKS

SET STATEMENT_ID旬 に よって設 定 され るID。

EXPLAIN PL畑 文 が実行 され た 日付 と時間。

EXPLAIN PLAN文では設定されない項目で、自分自身のコメントに使うこと
ができる。

SQLの トレース ∈餃腱

列名 説明

ID

PARENT ID

POSITION

OPERATION

OPTIONS

OBJECT NODE

OBJECT O■ DヾER

OBJECT NAME

OBJECT_INSTANCE

OBJECT TYPE

OPTIMIZER

SEARCH COLUMNS

OTHER

OTHER TAG

COST

CARDINALITY

BYTES

各ステップ毎につけられるID。

このステップの親のID。 別の言い方だと、このステップの直前に実行される

ステップのID。

同じ親を持つステップ中の順番。

実行 され る操 作 の種類 。 た とえば、TABLE ACCESSや SORTな ど。

操 作 の追 加 情 報 。 た とえば 、 TABLE S“ N操 作 なの場合 、 FULLやBY ROWID

など。

分散クエリの場合に、オブジェクトを参照するために使われるデータベースリ

ンク名を表す。

オブジェク トの所有者。

オブジェク ト名。

SQL文中のオブジェクトの位置。

オ ブ ジ ェ ク トの種類 (TABLE、 INDEXな ど)。

SQL文の実行に影響を与えるオプティマイザゴール。

未使用。

分散クエリの場合、リモートデータベースに対して発行されたSQL文。

パラレルクエリの場合、スレーブプロセスによって発行されたSQL文。

OTHER列の値の種類を表す。

オプティマイザによって見積られた操作の想定的なコストを表す。

各ステップ毎に影響を与えると予想される行数を表す。

各ステップ毎に返されると予想されるバイト数。

表5.1 プランテーブルの構造

5.2.3 プランテーブルのデータの整形
プランテ ー ブルのデータをわ か りやす く捉 えるため には、階層 的 なクエ リを実行す ると良い。階層 的

なクエ リの ため に、オ ラクル は独 自にSELECT文のCONNECT BY句 を用意 してい るので、次 のようにID

とPARENT_IDを 結び付 ける。

SELECT LPAD('
"

2 * LEVEL) I I

RTRIM(OPERATION) II II
RrRrM(oPrroNs) ll ll
RTRIM (OBJECT-NAME) AS EXECUTiONJIAN

FROM plan-table
CONNECT BY PRIOR ID = PARENT-ID

START WITH ID = 0

饉:::::蝙陽D

た とえば次 の よ うに、EXPLAIN PL川 句 を実 行 した とす る。

EXPLAIN PLAN FOR

SELECT /'+ RULE ★/
e.surname′ e.firstname′ e.date_of_birth
FROM employees e′ custolmers c

WHERE e.surname t c.cOntact surname

AND e.f■ rstname = c.contact_f■ rs tnarne

A.ND e.date_of_b■ rth = c.date_of_b■ rth
ORDER BY e.surname′ e.fェ rstname

この実行結果を上記の階層クエリを使って出力すると次のようになる。

EXECUT■ ON PLAN

SELECT STATEMENT

SORT ORDER BY

NESTED L00PS

TABLE ACCESS FULL CUSTOMERS

TABLE ACCESS BY ROWID EMPLOYEES

INDEX RANGE SCAN EMPLOYEES_BOTHNAMES_IDX

5.2.4 実行計画の解釈
前の節で示したような実行計画を解釈するには、次のような原則を踏まえて、ある程度の練習をつむ

と良い。

1.レ ベルの高い (右側にある)ア クセスパスの方が先に実行される。

2.同 じレベルの場合、上のアクセスパスの方が先に実行される。

3.ア クセスパスは他のアクセスパスを含む場合 がある。たとえば、TABLE ACCESS BY ROWIDが 、
INDEX NⅧGE SCNを 含んでいる場合、インデックスを範囲検索 して得 られたROWIDを 使って、
テーブルにアクセスするということを意味する。

これらの原則を頭において、前の節の実行計画を解釈してみよう。

1. 最 もイ ンデ
｀
ン トされ て い るア クセスパ ス は、 INDEX RANGE SCAN EMPLOYEES_BOTHNAMES_IDX

で あ る。 この イ ンデ ックス参 照 はTABLE ACCESS BY ROWID EMPLOYEESに 伴 って実行 され る。

2. rNlex RANGE scAN EMpLoyEES-BoTHNAMES_rnx&raeLr ACCESS By RowrD EMpLoyEES

(口)第 5章 SQLの トレース 啜玲鰊|:|::11

の 組 み 合 わ せ と 同 一 レ ベ ル で 、 最 も上 方 に あ る ア ク セ ス パ ス は 、 TABLE ACCESS FULL

CUSTOMERSで あ る。 つ ま り、 この ア ク セ スパ スが、実 行 計 画 の最初 の ステ ップで あ る。

3. TABLE ACCESS BY ROWID EMPLOYEESIま 、TABLE ACCESS FULL CUSTOMERSと 同 じ lン 浴ミル
~(》

、

後の方にあるステップなので、同一の親を持ち、後で実行されるステップであることがわかる。こ

れは、customersテ ーブル を全走査 して得 られ る各行のcOntact_surname、
cOntact_firstnameを使って、emp■ Oyees_bOthnames_■ dxにアクセスし、その結果得られた

ROWIDを使 って emp■ oyeesテ ーブル に ア クセスす る とい うこ とを意味 す る。

4.NESTED L00PSは 、custOmerS、 emp■ OyeeSテ ~ブルヘ ア クセスす るステ ップの親 で ある。これ は 、

custOmers、 emp■ Oyeesテ ーブルヘアクセスするステップを繰り返し実行することを意味する。

5. SORT ORDER BYは 、 NESTED LOOPSC)親である。 これは、 NESTED L00PSC)結果をソー トする

ことを意味する。

5.2.5 0PERAT10NとOPT10N
ア ク セ スパ スは、プ ラ ンテ ー ブルのOPERATIONと OPTIONで定 義 され る。表 5.2に その 内容 を示 す 。

分類 OPERAT10N OPT10N 説明

7*J)V7,17 TABLE ACCESS FULL

TABLE ACCESS

TABLE ACCESS

TABLE ACCESS

テーブルのすべての行を読み込む (ハ イウォータ

マークのブロックまで読み込む)。

インデックスクラスタ経由でアクセスされる。

ハッシュクラスタ経由でアクセスされる。

ROWIDを 使ってアクセスされる。インデックスの

参照と組み合わされることが多い。

複数のインデックスが組み合わされる。

ユニークインデックスを等号検索する。

インデックスを範囲検索する。

自己結合で階層クエリが行われる。

2つの結果セットがソー トされてマージされる。

ソー トマージを使った外部結合。

最初のテーブルは全走査されて、もう1つのテーブル

は最初のテーブルの行ごとに一致検索が行われる。

ネス トされたループを使った外部結合。

2つの結果セットがマージされる。ソー トマージ結

合が横 (列)の結合なのに対 して、このマージは

縦 (行)の マージである。インデックスが設定 さ

れた列に対 して複数のOR句が使われたとき (た と

CLUSTER

HASH

BY ROWID

UNIQUE SCAN

R′NGE SC州

OUTER

NESTED L00PS OUTER

CONCATENATION集合演算

イ ンデ 、ソクス走 査 AND―EQUAL

INDEX

INDEX

結 てヽ 1柔イ乍‐ COmttCT BY

MERGE JOIN

MERGE JOIN

NESTED L00PS

分類 OPERATION OPT10N 説明

集合関数

その他

INTERSECTION

MINUS

UN10N―ALL

UNION

VIEW

COWT

COUNT

SORT

SORT

SORT

SORT

FOR UPDATE

FILTER

REMOTE

STOPKEY

AGGEREGATE

JOIN

UNIQUE

GROUP BY

えば、a=l ora=2)に、この操作が選択されるこ

とが多い。

2つの結果セットの両方に (共通 して)存在する行

を返 す。 INTERSECTION句 が使 わ れ た ときに、 こ

の操作が選択される。

最初の結果セットから2つ 目の結果セットに含まれ

る行が取り除かれる。MINUS句 が使われたときに、

この操作が選択される。

2つ の結果セットが縦にマージされる。UNION
ALL句が使われたときに、この操作が選択される。

2つの結果セットが縦にマージされ、重複する行は

取り除かれる。UNION句 が使われたときに、この

操作が選択される。

結果セットを格納するために、一時的なテーブル

が使われる。

結果セットの行数を調べるために使われる。

結果セットの行数が一定件数に達した場合に、処

理 を止めるときに用いられ る。 たとえば、

ROWこ刑 く10が冊ERE句で使われたときに、この

操作が選択 される。

wⅨなどの集合関数が使われたときに用いられる。
マージ結合をするために、ソートされる。

重 複す る行 を取 り除 くために、 ソー トされ る。

DISTINCT句 が使われたときに、この操作が選択

されることが多い。

GROUP BY句 が使われたときに、この操作が選択

される。

FOR UPDATE句 で行 が ロ ック され る と き |こ 、 この

操作が選択される。

結果セットから基準に一致しない行が取 り除かれ

る。

データベースリンク経由でリモー トデータベース

にアクセスする。

順序が使われる。SEQUENCE

表5.2 0PERAT:ONと OPT!ON

(口)第5章 SQLの トレース

|

曖蟷躙::||

5.2.6 EXPLAIN PLANを使うときのガイドライン
EXPLAIN PLNヽ文によって作られる実行計画は、オプティマイザゴール (RULE,COST,FIRST_ROWSな

ど)やテーブルに対する統計情報が存在するかに依存 している。そのため、開発 (テスト)環境と本番

環境でデー単量や分析が異なる場合には、実行計画も異なるものになる可能性があるので、十分に注意

しなければならない。

EXPLAIN PrN文 を実行するときには、適切なSTATEMENT_IDを つけて個々の実行計画を区別できる

ようにしなければならない。

5.2.7 EXPLAIN pLANユーティリティ
EXPLNN PIAN文 を使って実行計画を分析するには、次のようなステップが必要になる。

□ plan_tableが 存在 しなければ最初 に作成す る。

□ EXPLAIN PLF劇 1文 を実行す る。

□ EXPLAIN PUN文の実行結果 を整 形 す る。

これ らのステップを毎回手動で実行す るのは煩雑 なので、スクリプ トに組み込むとよい。次のスクリ

プ ト (xplan.sq■)は、SQL文 を記述 したファイル名 を入力するとその実行計画を表示 して くれ る。

windOwsの 場合 は 、utlxplanの パ スの rdbmsの 部分 をオ ラクル のバ ージ ョンに あわせ て、

RDBMS73,RDBMS80な どと書き換えてほ しい。

set termout off
set feedback off
set verify off
set echo off

0'/rdbmS/adm■ n/utlxplan

column mysessionid noprint new-value -mysessionid
select userenv('SESSIONID') as mysessionid from dual;

sets pagesize 0

set termout on

set feedback off

spool xplan

prompt
accept filename char prompt 'Generating Execut.ion plan for > '

geL &filename

explain plan set statement-id = '&-mysessionid' for

G&filename

prompt

select operation ll' Opimizer=, I i optimizer from plan_tabfe
where staLement_id = ,&_mysessionid, and id = 0;

SeleCt lpad(' '′ 2 ★ level) ||
rtr・ m(° perat・ °n) || ' 1 11 rtr・ m(options) ||
rtr■ m(Obj ect_name)

as execution_plan

from plan_tab■ e

where statement_id = '&_mysess■ onidl
Connect by prior ■d = parent_ d

start with id = 1,

spool off
seL termout off

delete from plan_table where statement_id = '&_mysessionid,;

set termOut On

set feedback On

set ver■ fy on

set echo on

実行結果は、たとえば次のようになる。

SQL> Gxplan

SQL> set termout off

Generating Execution plan for > dnameename

1 select dname, ename

2 FROM emp e, dept d
3* WHERE e.deptno = d.deptno

SELECT STATEMENT Op■ m■ Zer=CHOOSE

MERGE JOIN

SORT J01N

TABLE ACCESS FULL DEPT

SORT JOIN

TABLE ACCESS FULL EMP

||

●第5章 SQLの_畳―スCE冒蟷輻::|:||

5.3 SQ L TRACEの使用

□ SQL_TRACEを 開始 して 、 トレース結 果 を フ ァイル に書 き出す 。

□ tkprOfユ ーティリティを使って、 トレースファイルを理解しやすいように整形する。

SQLの トレース機能としkprOfユ ーティリティは、チューニングの強力な道具になる。しかし、使い方

が分かり難いところがあり、出力結果を理解することが難しい場合もある。そのため、広く使われるに

はいたっていないが、もっとも有益な機能の1つなので、ぜひ使いこなしてほしい。

5.3.l SQLの トレース方法の概要
SQL_TRACE/tkprofを 使 う と き の 、 一 般 的 な チ ュ ー ニ ン グ サ イ ク ル は 次 の よ う に な る 。

1.イ ンス タ ンス あ るい はセ ッシ ョンに対 して 、 SQL_TRACEを 開始 す る。

2.ト レースファイルを見つけ出す。

3.ト レースファイルをtkprOfユ ーティリティで整形する。

4.整形された結果を解釈する。

5.解釈した結果に基づきSQL文をチューニングする。

5.3.2 SQL_TRACEを 使うための準備
SQL_TRACEを イ吏うため に |ま 、 構成 フ ァイル (initくSID>.ora)の sQL_TRACE,TIMED_STATICTICS

の項目を適切に設定する必要がある。

5.3.3 SQL_TRACEの セッシヨン内での開始
セッション内でSQL_TⅣてEを開始するには、:次のSQL文を実行する。

ALTER SESSION SET SQL_ RACE=TRUE

EXPLAIN PL′ 劇文は、非常に有益であるが完壁ではない。たとえば、特定のSQL文 を実行するために

必要なリソースについて知ることはできない。

幸運なことにオラクルは、実行計画だけではなく、CPUや 1/0な どのリソースの使用状況もレポー トし

てくれる機能を提供 している。この機能を使えば、実行計画の各ステップでアクセスされる行数さえも

知ることができる。

この機能は、本質的に2つの部分から構成 されている。

PL/SQLで はALTER SESSION文 を直接発 行 で きないので 、次 の よ うにDBMS_SESSIONパ ッケー ジ を利

用する。

DBMS-SESSION. SET_SQL-TRACE (TRUE)

開発ツール 構文

SQL'P■ us

Pro■ C

PL/SQL

ALTER SESSION SET SQL-TRACE=TRUE

EXEC SQL ALTER SESSION SET SQL-TRACE=TRUE

DBMS_SESSION. SET-SQL-TRACE (TRUE)

表5.3 さまざまなクライアントによるSQL_TRACEの 開始

構成ファイル(initく SID>.ora)で 、SQL_TRACEを 開始するとすべてのセッションに対してトレース

が開始されてしまうので、チューニングする部分を特定してそのセッションに対してSQL_TRACEを 開始

すると良いだろう。

5.3.4 1他のセツシヨンの トレース

すべてのセッションや自分のセッションではなく、ある特定のセッションのトレースを欲しい場合も

あ る。 ・その た めに、 DBMS_SYSTEM.SET_SQL_TRACE_IN_SESSIONと い うフ
°
ロシー ジ ャカ`オ ラクル か ら

提供されている。このプロシージャを実行するには、SYSユ ーザでログオンして次のようにEXECUTE権

限を与える必要がある。

SQL> connect sys/chanqe_on_inst.a11

たとえば、あるユーザ (自分)の すべてのセッションをトレースするには、次のスクリプ ト
(tracesessionosql)を 実行すると良い。

BECIN

FOR SeSs_rec IN (

SELECT SID′ SERIAL#
FROM VSSESS10N

WHERE USERNAME = USER)

L00P

SYS.DBMS_SYSTEM.SET_SQL_TRACE_工N_SESSION(

SeSS_reC.Sid′ SeSS_reC.serial#′ TRUE),
END LOOP′

表5.3に さまざまなクライアントから、SQL_T]Uに Eを 開始するときの例を示す。

SQL> grant execute on dbms_systtem to scottt;

(|)第5章 SQLの トレース GI囃鰤 :::|

EN:D,

/

vssession仮想テーブルはDBA権限のあるユーザーが参照できるようになっているので、上記のスク

リプトを実行する前に次のsQL文を実行する。

GRANT SELECT on w-$session To J--X-&

5.3.5 トレースフアイルの位置
トレー ス フ ァイル を作 成 した後 に しな け れ ば な らないの は 、 トレース フ ァイル の位 置 を探 す こ とだ 。

トレー ス フ ァイル は、構 成 フ ァイル (initく SID>.ora)の USER_DUMP_DESTで 指 定 され たデ ィ レク ト

リに書 き出 され る。USER_DモШ P_DESTの 値 は 、次 の よ うな クエ リで確認 す る こ と もで きる。

SELECT value

FROM vSparameter

WHERE name = 'uSer_dump_dest'

vsparameter仮想テーブルは、DBA権限のあるユーザが参照できるようになっているので、上記の

クエリは、SYSあ るいはSYSTEMユーザで実行すると良い。また、次のようにして特定ユーザに参照権

限を与えても良いだろう。ユーザ名をPUBHCにすると任意のユーザで参照できるようになる。

GRANT SELECT oN v-$parameter To a-+Ja

トレースファイルの名前はプラットホームに依存するが、たいていの場合は次のようになる。NTの場

合はheaderの後のアンダースコア (_)がつかない。

headerJid. trc

headerは 通常oraで、pidはオラクルサーバプロセスのプロセスIDである。サーバプロセスのプロセ

スIDは、次のスクリプト (pid.sql)で確認できる。

SELEcT p.spid AS PID

FROM vSprocess p′ vSsess■ on S

WHERE s.audsid = USERENV(ISESSIONID

ANE)s.paddr=p.addr′

UNⅨの場合はこのままで問題ないが、NTの場合は5桁の16進数になっているので、先頭の1バイトを

削除して10進数に変更する。たとえば、PIDが 10066の場合はトレースファイル名はor厠0102士cになる。

vsprocess仮想テーブルは、DBA権限のあるユーザが参照できるようになっているので、上記のクエ

リを特定ユーザで実行するためには、次のようにして参照権限を与えると良い。ユーザ名をPUBHCにす

ると任意のユーザで参照できるようになる。

GFANT SELECT ON v_$process TO l-UA

トレースをしているユーザが1人だけなら、ファイルの作成時間から目的のファイルを探し出すことも

できる。

5.3.6 tkprofの使い方
トレースファイルが見つかった後は、tkprofユ ーティリティを使って、見やすいように整形する。
tkprOfの基本的な構文は次のとおりである。

tkprof トレースファイル 出カファイル exp■ ain=ューザ名/パスワー ド sOrt=(ソー
トオプシヨン)

表5.4に 基本的な引数の説明を示す。

引数 説 明

トレースファイル

出カファイル

exp■ ain=ユーザ名/パスワード

SQL_TRACEの機 能 で作 成 された生 の トレース フ ァイル

tkprofに よって整形されたトレース情報

SQLの 実行プランを作成するためにオラクルに接続するためのユーザ

名とパスワード。exp■ ain句 がない場合は、実行計画は作成されない。

トレースしたSQL文 を指定したソートキーの降II頂にソー トする。sort

句がないとSQL文の発行された時間順にソートされる。

sorr= (y - l- +-)

表5.4 Tkprofの引数

ソートキー

ソートキーは、2つの部分から構成 される。最初の部分はSQL文 を処理するステップのタイプで、2番

目の部分は統計値の項目を示す。たとえば、物理的なディスクの1/0に着目したい場合は、ソー トキーに

prsdsk、 exedsk、 fchdskを指定する。表5.5に ソー トキーの最初の部分、表5.6に ソー トキーの2番目

の部分の説明を示す。

最初の部分 説明

ｓ
　
　
ｅ
　
　
，ｎ

ｒ
　
　
Ｘ
　
　
Ｃ

ｐ

　

ｅ
　

ｆ

解析。SQL文を実行計画に変換す る。

実行。SQL文 が実際に実行 (open cursor)さ れる。

フエッチ。SELECT文 での行の検索。

表5.5 ソートキーの最初の部分

● 第5章 SQLの トレース 囃鶉躙::::′
:::::11:1警|

2番目の部分 説明

cnt

cpu

e■ a

dsk

qry

処理された回数。

処理に費やされたCPU時間 (単位は秒)。

処理に費やされた経過時間 (単位は秒)。

ディスクから物理的に読み込んだデータブロック数。

一貫モードでアクセスされたバッファ数。通常、SELECT文 は一貫モードでアクセス

される。

現行モー ドでアクセス されたバ ッファ数。通常、INSERT、 UPDATE、 DELETE文 は現

行モー ドでアクセス され る。

ライブラリ・キャッシュ・ ミスの回数。

処理 された行数。

cu

m■ s

表5.6 ソートキーの2番 目の部分

その他のオプション

通常のチューニングには、上記のオプションの指定でほとんど間に合うが、さまざまな環境に適 した

チューニングを行えるように表5.7の オプションも用意されている。

オプション 説明

tkprofが一時的に実行計画を保存するテーブルを指定する。指定 され

るユーザは、テーブルに対 してINSERT,DELETE,SELECT文 を発行する権

限がなければならない。表が存在しない場合は、前述の権限に加 えて

CREATE TABLE,DROP TABLE文 を発行する権限も必要になる。1複数ユ

ーザがTABLEに 異なる値を指定することで、一時的な実行プランを処理

するときにお互いのデータを破壊するような状況を防ぐことができる。

出力するSQL文の数を指定する。このオプションを指定しなかった場合

には、 トレースしたすべてのSQL文が出力される。

同一のSQL文を1つ にまとめるかどうかを指定する。デフォル トはyesで

ある。

再帰SQL文 を出カファイルに含めるかどうかを指定する。デフォル トは

yesで ある。

トレース中に発行されたSQL文 (再帰SQL文 は含まれない)を格納する

ファイル名を指定する。もう一度同様のテス トを行いたい場合などに利

用する。

トレース結果の統計情報をデータベースに格納するためのSQLス クリプ

トを指定する。

表5.7 その他のオプション

tab■ e=ス キーマ.テ ーブル名

pr.nt=出 力するSQL文の数

aggregate=yes/ino

sys=yes/n。

recOrd=フ ァイル名

■nsert=フ ァイル名

5.3.フ トレ…ス時の問題点
トレースファイルを整形するときに次のような問題点に遭遇するかもしれない。

1.ト レースファイルを読むことができない。

トレースファイルは、UNⅨの場合、通常、OS上のdbaグループに属 しているユーザしか読めないよう

になっている。一般のユーザでも読めるようにするためには、設定ファイル (面 tくSID>.ora)の 隠しパ

ラメータ_TRACE_FILES_PUBLIC=trueを設定すると良い。

2.ト レースファイルが複数に分散 して しまう。

これは、マルチスレッドサーバ に接続 しているときに起 こる。SQL文が複数のサーバで処理 されるた

めである。 これ を防 ぐためには、専用サーバ に接続 す ると良い。専用 サ ーバに接続す るためには、

tnsnames.Oraの COIWECT_DATAセ クションに (SERVER=DEDICATED)と 記述 してあるサーバに接続

する。

5.3.8 tkprofの出力結果の読み方
tkprOfの出力結果は、大きく分けて3つの部分で構成されている。図5.1を 見ながら読み方を説明する。

図5‐l tkpЮ fの出力結果

くA>

select /ナ ■RULE ★/1
e.surname′ e.firstname′ e.date_of_birth

from emp10yees e

Where eXiStS (Select l

from customers c

where e.surname = c.contact_surname

and e.f■ rstname = c.contact_f■ rstname

and e.date_。 f_b■ rth=C.date_。f_birth)

order by e.surname′ e.firstname

call count(4) cpu(5)elapsed(6)disk(7)(■ uery(8)current(9)rows(10)

Parse(1)

Execute(2)

Fetch(3)

0.00

0.00

0.00

0.43 0

0.00 0

323.74 204161

0

0

2■ 2083

0

0

2400 151

Total ■3 0.00 324.17 204161 2112083

Misses in library cache during parse: 0(11)
Optimizer hint: RULE

Parsing user id: 12 (SQLTUNE)

2400 151

●第5章 SQLのトレース(1亜洟隋靱::

<c>

Rowsf

0

800

800

801

4■ 09475

Execution Planm

SELECT STATEMENT HINT: RULE

FILTER

TABLE ACCESS (BY ROWID)OF :EMPLOYEESI

INDEX (RANGE SCAN)OF 'EMPLOYEE_BOTHNA14ES_IDXl (NON― UNIQUE)

TABLE ACCESS HINT: 細 ALYZED (FULL)OF 'CUSTOMERSi

<A>

l

2

実行したSQL文

解析、実行、フェッチにおける統計情報

解析 SQL文 の構文や、アクセスするオブジェクトの有効性やセキュリティがチェック

される。この段階で、オプティマイザが実行計画を決定する。

実行 SQL文 を 実 行 (カ ー ソ ル を オ ー プ ン)す る 。 こ の 段 階 で 、
INSEIご,UPDATE,DEL31Eの場合はデータを変更する。

フェッチ クエリから行が返される。SELECr文だけが対象。
回数

CPU時間 (単位は秒)。

経過時間 (単位は秒)。

ディスクから物理的に読み込まれたデータブロック数。

一貫モー ドでアクセスされたバ ッファキャッシュのブロック数。一貫モードでは

他の トランザクションの更新の影響を受けない。

現行モードでアクセスされたバ ッファキャッシュのブロック数。FOR UPDATE句

のあるSELECT文、INSERr、 UPDATE、 DELBI｀E文では、バッファは現行モード

でアクセスされる。

SELECT文ではフェッチのときに、INSERr,UPDATE,DELETE文 では実行のとき

に処理された行数。

共有SQLエ リアに解析済みのSQLが見つからなかった回数。

実行計画 各ステップで処理された行数も表示される。explainオ プションが指定されなかっ
た場合は表示 されない。

3

4

5

6

7

8

9

10

くB>11

くC>

図5.1の結果をさらに詳しく分析すると次のようになる。

1.1行を処理するためにアクセスされたブロック数は、(query+curent)/Ю ws=(212083+2400)

/151=1420で ある。この値が大きすぎるのは、customersテ ーブルのcontact_surname,

cOntact irstname,date_of_birthの 列にインデックスが作成されていないので、employeesテ ーブル

の1行を処理するごとにcustomersテ ーブルを全件検索していることが原因の1つである。

2.Fetch(rows)よ りFetch(count)が 少ないことから、配列フェッチを行っていることがわかる。

配列フェッチはパフォーマンスを上げるのに有効である。

3.バ ッファのキャッシュのヒット率は、1-disk/(quew+current)=1-204161/(212083+2400)

=0.05で ある。0.9以上であることが望ましいので、この値は低すぎる。日中にデータベースが最も

アクセスされる時間帯で、キャッシュのヒット率が0.9以下の場合は、設定ファイル (mtくSID>.ora)

のDB_BLOCK_BUFFERSの値を増やすことを検討すると良い。

5.4 SQL*PIusのAUTO丁RACE機能の使い方
これまで見てきたように、sQL_TRACEと しkprofの機能は強力である。しかし、使いやすいとはいえ

ず、手間や時間がかかるのが難点である。

もっと簡単に トレース機能を使えるように、オラクル7.3の SQL☆ Plus3.3か らは、SET AUTOTRACEコ マ

ンドが用意 された。

5.4.l AUTOTRACE機 能を使うために必要なこと
AUTOTRACE機能を使うためには、いくつかの動的パフォーマンステーブルを参照するための権限と、
ユーザごとのプランテーブルが必要である。

最初にSYSユーザでログオンしてplustraceロ ールを作成する。このロールは、次のようにして作成

する。

SQL> connect sys,/change_on_install

UNⅨの場合

SQL> G?/sq1p1us/admin/pfustrce

WindOwsの 場合

SQL> 0?/plus80/p■ ustrce

次 にAUTOTRACEの 機 能 を使 いたいユ ーザ に p■ ustraceロ ール を与 える。

SQL> grant pfust.race to scott

最後にプランテーブルを作成する。

SQL> connect scottt/tiger

::|:::||:::|:i:::鍮MD

●第5章 SQLの トレース (1饉鰤 :i:i::||:|II

UNⅨの場合

SQL> 0?/rdbms/adm■ n/utlxplan

WindOwsの 場合

SQL> 0'¥rdbms80¥admin¥utlxplan

5.4.2 AUTOTRACEのオブション
AUTOTRACEコ マ ン ドに は表 5.8の よ うなオ プ シ ョンが ある。

オプション 説明

OFF

ON

TRACEONLY

EXPLAIN

STATISTICS

AUTOTRACEを 中止 す る。

AUTOTRACEを 開始 す る。

AUTOTRACEを 開始 し、 クエ リ結果 を表示 しない。

実行計画を表示する。

パフォーマンス統計を表示する。

表5.8 AUTOTRACEの オプション

EXPLAINや STATISTICSは 、ONや TRACEONLYと 組み合わされて使われる。EXPLAINと STATISTICS

のどちらも指定 されない場合は、両方が指定 されたとみなされる。

たとえば、クエリ結果と実行計画を表示したい場合は、次のように指定する。

SET AUTOTRACE ON EXPLAIN

クエリ結果を表示せずにパフォーマンス統計だけを表示する場合は、次のように指定する。

SET AUTOTRACE TRACEONLY STATISTICS

5.4.3 パフォーマンス統計の読み方
AUTOTRACEの 出力結果の実行計画の部分はすでに説明したので、表5.9でパフォーマンス統計について

説明する。

統計項目 説明

再帰的SQL文の実行回数。再帰的SQL文 は、データ

ディクショナリなどへのアクセスのために、オラク

ルが内部的に発行するSQL文。

recursive cafls

統計項目 説明

db b■ ock gets

consistent gets

physical reads

redo size
bytes sent via SQL*Net to client
bytes received via SQL*Net from client
SQL*Net roundtrips tolfrom client
sorts (memory)

sorrs (disk)

rows processed

現行モードでアクセスしたバッファキャッシュのブ

ロック数。現行モー ドでは、ブロックは更新のため

にアクセスされる。

一貫モードでアクセスしたバッファキャッシュのブ

ロック数。一貫モー ドでは、ブロックの内容は他の

セッションの影響を受けない。

ディスク上にアクセスしたブロック数。physica■

readsが ディスクヘの物理的なアクセスであるのに

文寸し、 db b■ ock getsと cons■ stent getsは メ

モリヘの論理的なアクセスになる。

育成したREDOロ グのバイト数。

クライアントヘ送信したバイト数。

クライアントから受信したバイ ト数。

クライアントヘ送受信 したメッセージ数。

メモリ内でソー トした回数。

ディスク上の一時表領域でソー トした回数。

処理された行数。

表5.9 AUTOTRACEの パフォーマンス統計

チューニングのポイントとしては以下の項目がある。

1.1行を処理するためにアクセスしたブロック数
1行 を処理するためにアクセスしたブロック数は、(db b10ck gets + cOnsistent gets)/
rows processedで 求められる。この値が大きい場合は、効率的な実行計画が作成されていないので、
インデックスの追加や見直し、ヒントの使用などを検討する。同一の実行結果をもたらすSQL文なら、
この値が少ないほうが効率的である。

2.バ ッファキャッシュのヒット率
バ ソヽフアキヤッシュσ)ヒ ッヽト率は、 1-physica■ reads / (db b■ 。ck gets + consistent
gets)で求められる。日中にデータベースが最もアクセスされる時間帯で、この値が0.9以下の場合は、
設定 フ ァイ ル (initく SID>.ora)の DB_BLOCK_BUFFERSの 値 を増 や す こ と を検 討 す る。 た だ し、

DB二BLOCK_BUFFERSの 値 を大 き く取 りす ぎる とOSレ ベ ル で ス ワ ップ が起 こる可 能性 が あ るの で注 意 し

なけれ ば な らな い 。

3. sotts(disk)

sorts(disk)が 1以上の場合は、メモリ上でのソー ト領域で足りずに、ディスク上の一時表領域が

SOLの トレース 個餃輻 ::

使われている。この値が大きいなら、構成ファイル (initく SID>.ora)の SORT_AREA_SIZE(メ モリ

上のソー ト領域のサイズ)を大きくとることで、パフォーマンスを改善できる可能性がある。ただし、

メモ リ上のソート領域はサーバプロセスごとに確保されるので、あまり大きな値を指定するとOSレベル

でスワップの起こる可能性がある。専用サーバ接続では、接続 しているクライアント数だけサーバプロ

セスが起動される。

5.4.4 SQL文 の経過時間の測定
SQL★ Rusでは、SET TIMING ON/OFF機 能を使って、SQL文 ごとの経過時間 (Windowsで は1/1000秒

単位だが1/100未満は正確に計測できない)を測定できる。複数のSQL文の経過時間を測定したい場合は、

TIMING START/STOP機 能 を使 う。 SET TIMINGコ マ ン ドで表示 され る時 間 は、SQL文 を発 行 して か ら

クエ リ結 果 がすべ て表 示 され るまでの 時 間 なの で、次 の よ うに SET AUTOTRACE TRACEONLYコ マ ン ド

と組 み合 わせ ると良 い 。

SQL> set aulotrace traceonly
SQL> set timing on
SQL> select * from emp,'

14レコードが選択されました。

経過 :00:00:02.64

実行計画

O SELECT STATEMENT Optimizer=CH00SE

1 0 TABLE ACCESS (FULL)OF 'EIMIP'

統計表示

recursiwe caps t,o/from client
sorts (memory)

sorts (disk)
rows processed

ブロックの経過時間を測定するには、次のようなスクリプト(timingsql)を実行する。

c2307* cat timing.sql
set termout off
set autotrace off
timing start
insert into dept(deptno, dname)

walues (99, 'test') ;

delete from dept where deptno = 99;

conmitt;
set termouL on

timing stop

SQL> Ot■ ming

経過 :00:00:00.19

5.5 まとめ

この章では、SQL文 をチューニングす るためにオラクルか ら提供 されているいくつかのツール を見て

きた。これらのツールを使って、SQL文の実行計画やステ ップごとに要求 されるリソースの量 を調べる

ことができる。

EXPLAIN PV氣文は、SQL文の実行計画を調べるために使うことができる。EXPLAIN PrW文 を使う

ためには、最初にプランテーブルを作成 しておく必要がある。その後、EXPLAIN PLAN文 を実行するこ

とで、プランテーブルに実行計画が挿入 される。プランテーブルの内容を分かりやすく表示するには、

整形用のSQL文を実行する。

このように、EXPLAIN PLAN文 を実行 して、SQL文の実行計画を得るためには、いくつかのステップ

を踏まなければならないので、5.2.7節 で紹介したようなxplan.sqlな どのスクリプ トを利用して自動化す

ると良い。

SQL_TRACEは 、 チ ュ ーニ ングに役 に立 つ 詳細 な情報 を提 供 して くれ る。 デ ー タベ ース全 体 に対 して ト

レ ー ス を 開 始 す る と き に は 構 成 フ ァ イ ル (initく SID>.ora)に sQL_TRACE=TRUE,

TIMED STATISTICS=TRUEの 項 目を追 加 す る。 セ ッシ ョンに対 して トレース を開始 す る と きは 、ALTER

SESSION SET TIMED_STATISTICS = TRUE (オ
~ラ
クル 7.3以 1降),ALTER SESSION SET

SQL_TRACE= TRUE,DBMS_SESSION.SET_SQL_TRACE(TRUE)な どを実 行 す る。

トレースの結果は、構成ファイル (initく SID>.ora)の USER_DUMP_DESTで指定されたディレクト

リに格納される。 トレースファイル名には、サーバプロセスのプロセスIDが含まれるので、5.3.5節で紹
介したp■ d.sq■ などのスクリプトを利用 してファイルを特定 したり、タイムスタンプからファイルを特

定する方法もある。

トレースファイルは、tkprOfを使って理解しやすいように整形する。結果を見るポイントとしては、

1行を処理するためにアクセスしたブロック数 =(query+current)/rowsや 、バッファキャッシ

ュのヒット率 =■ ― disk/(query+current)な どがある。
より手軽にSQL文の実行計画やパフォーマンス情報を調べる手段としてSQL'Plusの AUTOTRACE機 能が

ある。sQL_TRACEと tkprofか ら得ることができる詳細な情報には及ばないが、1固々のSQL文 をチュー

ニングするためには十分な情報を提供 してくれる。

―日
ノヽ

‐‐■ 1口

「

・ｔ
ｔ

:麟 `11
一
Ｊ

.、
0■

オ .ヽ

・ Ⅲ ll11111‐ |||||:|.

=メ
F

.、
縦
・■

■

|=.‐

ゆ

‡

マ

'キ
|.

' お.

■

‐

「

¨̈
一

・

ｒ

ｉ
■

一
　

　

・

、

ｒ

，

　

　

一

，
辞

■

■
１

一

・一
け

，
―
一

●
，
‘
つ―
●
　
一―

■
．
■

■
　

　

　

●

11‐
 ・

・
 ‐.■‐1ざ・

111:::|:||:::ヽ ..‐ .I .・ ‐・
|`'|:111.=

テーブルアク

6.l Iま じめに

この章では、単一のテーブルにアクセスするSQL文のパフォーマンスを改善する方法を学ぶ。複数の

テーブルアクセスする複雑なクエ リも、単一のテーブルにアクセスするクエリの組み合わせに分解でき

るので、単一のテーブルにアクセスするSQL文を最適化できれば、それを複数のテーブルにアクセスす

るSQL文 にも応用できる。

通常、テーブルにアクセスする方法はいくつか考えられる。テーブル全走査は常に可能である。イン

デックス走査は、テーブルにインデックスが作成されていれば可能である。1つのテーブルに複数のイン

デックスが作成 されている場合もある。ハッシュクラスタによるアクセスも選択肢の1つだ。

オプティマイザが常に最適なアクセスパスを選んでくれるとは限らないので、いくつかのアクセスパ

スの中で何が最適なのかを判断する必要がある。さらに、インデックスやハッシュクラスタなどの作成

が有効なのかどうかを判断する必要 もある。

この章で扱う主な項目は次のとおりである。

ロ テーブル全走査とインデックス検索。

□ 予期せぬテーブル全走査とその対策。

ロ インデックス参照の最適化。

ロ ハッシュクラスタ参照の最適化。

ロ テーブルアクセスの最適化。

、■|||:||お 黎́

6.2 テーブル全走査とインデックス検索
テーブルから行を取得するために、最も良く用いられるのは次の2つの方法である。

ロ テーブル全走査。テーブルのすべての行を読み込む。条件が設定されている場合は、対象なのかど

うかを行ごとに判断する。

ロ インデックス検索。対象の行なのかどうかを判断するためにインデックスが使われる。

最初の頃、SQLのプログラマはしばしばテーブル全走査は避けるように教えられる。しかし、テーブ
ル全走査のほうが、インデックス検索よリリソースの消費が少なくて済むこともある。対象データがテ
ーブルの広範囲に及ぶ場合には、このことは真実である。インデックス検索は、インデックスブロック

と実テーブルブロックの両方の読み取りを必要とする。そのため、対象範囲が広い場合にはインデック

スブロックを読み取るオーバーヘッドがテーブルを全走査するオーバーヘッドを超えてしまうのである。

それでは、テーブル全走査とインデックス検索をどのように使い分ければ良いのだろうか。これまで

一般的にいわれていたのは、テーブル全体のデータの20%(20と いう数字は人によって変わる)以下のデ
ータが対象になるなら、インデックス検索を行ったほうが良く、それより多くのデータが対象になるな

ら、テーブル全走査のほうが効率的だというものだ。しかし、これは必ずしも正しくない。なぜなら、

データの分布やデータ量というものを考慮に入れていないからである。

たとえば、1つのブロックに5行はいるようなテーブルがあり、そこに25行のデータが5ブロックに格納

されているとする。そして、1から5の値を取る列Aにインデックスが作成されているとしよう。各ブロッ

クに列 Aの値 が 1か ら5で あ る行 が それ ぞれ 含 まれてい た とす る と、 SELECT = FROM テーブル WHERE

列A=1と いうクエリは、5ブロックすべてが対象になる。この場合、テーブル全体の20%のデータが対象
であるが、インデックスブロックの読み込みが無い分、テーブル全走査のほうが効果的なのである。ま

た、データ量が少なくて数ブロックに収まっているような場合も、インデックスブロックを読むより、

テーブルの全ブロックを直接読み込んだほうが効率的だろう。

つまり、テーブル全走査とインデックス検索のどちらが効率的なのかは、何%が対象になるのかで決め

るのではなく、アクセスしたブロック数が少ないほうで決めると良い。アクセスしたブロック数の測定

には、第5章 で説明 したSQLオ PlusのAUTOTRACE機 能 を使 うと良いだろう。SET AUTOTRACE
TRACEONLY STATIsTIcsコ マン ドで得 たパ フォーマンス統計の論理的なアクセスブロック数 (db
b■OCk getS+consistent gets)が ここで必要 となるブロック数である。

6.2.1 オプティマイザはどうやってテ…ブル全走費とインデックス検索を選ぶのか
ルールベースオプティマイザは、たいていの場合、テーブル全走査よりもインデックス検索のほうを

好む。これは、テーブルサイズに関する情報がない場合は、インデックスに基づくアクセスパスのほう

が安全だからである。確かにある状況下では、インデックス検索よりもテーブル全走査のほうが速い場

合もあるが、劇的に速くなるわけではない。しかし、データ量が多くなれば、テーブル全走査はインデ

ックス検索よりも何100倍 も遅くなるで可能性があるのだ。そのために、ルールベースオプティマイザは、

インデックス検索を好むのである。

●第6章 テープルアクセスの左_三二≧グC日國洟鰈輻|

コストベースオプティマイザは、データの分布といったさらに詳しい情報を持っている。その結果、

インデックスが利用可能であっても、テーブル全走査のほうがコストがかからないと判断した場合には、

テーブル全走査のほうを選択する。しかし、この決定は次のような理由で間違うこともある。

□ 候補となるインデックスのデータの分布が偏っている場合。この後に説明するが、列に
ヒストグラ

ムを作っていない場合、コストベースオプティマイザは、異なる値をあまり持っていないインデッ

クスを無視するだろう。

□ OPTIMIZER_GOALに ALL_ROWSが 指 定 され た 、 あ るい はCHOICEが 指 定 され た (デフ ォル トで は、

OPTIMIZER_GOALは ALL_ROWSに な る)の に 、 レ ス ポ ン ス 時 間 を要 求 し て い た 場 合 。

OPTIMIZER_GOALが ALL_ROWSだ と全体 の ス ル ー プ ッ トを重 要 視 す るので 、 イ ンデ ック ス検 索 が

選択されない場合もある。レスポンス時間が重要なら、たいていの場合、インデックス検索が適し

ている。

□ 統計情報を更新していない場合。テーブルのサイズが小さかった頃に統計情報を作成し、その後テ

ーブルのサイズは大きくなったにもかかわらず、統計情報が更新されていない場合、コスト
ベース

オプティマイザは、テーブルのサイズが小さいと勘違いして、テーブル全走査を選択する可能性が

ある。

コストベースオプティマイザが、適したインデックスを使うようにするには、次のようにすると良い

だろう。

ロ データの分布がばらついているインデックス付きの列には、ヒストグラムを作成する。ヒストグラ

ムを利用するには、バインド変数を使わずに値をハードコーディングする必要がある。

ロ レスポ ンス時 間 を重 要視 す るな ら、 ヒン トにFIRST_ROWSを 指 定 す る。

ロ テーブルのデータ量や分布が変化した場合は、常に統計情報を更新する。

6.2.2 列のヒス トグラムの使用
列のヒストグラムは、コストベースオプテイマイザにデータの分布状況を提供する。この情報を活用

することで、コストベースオプティマイザは、テーブル全走査を行うのかインデック
ス検索を行うのか

を適切に判断できる。このことは、ある列がデータの分布が偏っているときに、特に当てはまる。

たとえば、利き腕の情報を持つ列があった場合、右利き,左利き,両利きの3つの異なる値しか持たない

が、左利きあるいは両利きの割合は (一般的に)非常に少ない。そこで、この列にインデックスが作成

されていた場合、利き腕 =左利き (両利き)を条件としたクエリには有効に機能するだろう。

列に対してヒストグラムを作成するには、たとえば次のようなSQL文 を実行する。

ANALYE TABLE emp

STATISTICS SAMPLE 20 PERCENT

FOR COLU10CS jOb SIZE 10′ Sal SIZE 20

|

il::i::躙

滸 D

20%程度のサンプルの分析でも、ほぼ正確な見積りを得ることができる。時間も短縮できるので通常は
これで十分だろう。

ヒストグラムとバインド変数

ヒス トグラムを利用することで、コス トベースォプティマイザはデータの分布状況に応じた実行計画

を立てることができる。しかし、バインド変数を使うとコス トベースォプティマイザは、ヒス トグラム

を利用できなくなる。これは、SQL文 を分析する段階ではまだバインド変数の値が決まっていないため
である。

SQL文の再解析を防ぐためにはバインド変数を使うことが有用であるが、ヒス トグラムは利用できな
くなる。では、どうしたら良いのだろうか。次のような指針に基づいて、バインド変数とヒス トグラム

を使い分けると良いだろう。

列のヒス トグラムを作成 して困ることはほとんどないので、次のコマンドでインデックス付きの列に

は、ヒス トグラムを作成 しておく。

ANALyZE TABLE 7-7lLfi BsrrlrarE srATrsrrcs sAMpLE 20 pERCENT

FOR ALL INDEXED COLUMNS

再解析を防ぐという意味で、何度も繰 り返 し使われるようなSQL文にはバインド変数を使う。それ以
外の場合は、ヒス トグラムを利用できるように、バインド変数は使わない。繰 り返 し使われるSQL文 で
も、データの分布に偏りがある列が条件に含まれるような場合には、バインド変数は使わずに値をハー

ドコーディングする。

6.3 せぬテーブル全走萱とその対策

インデックスが利用可能な場合でも、SQL文の条件によっては、ォプティマイザがインデックス検索
を選択しないこともある。主なケースは次のとおりである。

□ !=(not equals)の使用。

□ NULL値の検索。

□列に対する関数の使用。

6.3.1 :=(not equals)の 使用
オラクルは、!=(nOt equals)が 使われている場合、インデックスを選択しない。すべての行から
ある値に一致する行を除くときには、たいていの場合、テーブル全走査をしたほうが速いからである。
しかし、データの大部分を占める値に!=(nOt equals)が 使われた場合は、一致するデータは少な
いので、インデックスが有効に機能することもある。

たとえば、VALID、 OVERDUE、 CNCELEDの 状態をとるstatus列がcustOmersテ ーブルにあり、95%
以上のデータがVALIDの状態だとしよう。このとき、VALIDで ないデータを取得したい場合は、次のよ

(口)第 6章 テープルアクセスのチューニング

うなクエリを実行する。

SQL >select * from customers
2 where status != 'VALID';

実行計画

0

SELECT STATEMENT optimizer=CH00SE

TABLE ACCESS (FULL)OF ICUSTOMERS'

予想 とおり、status列 にインデックスが作成 されていても、オプテ ィマイザは、テーブル全走査を選

んでいる。l=(not equals)が 使われた場合には、インデックスは選択 されないのである。それでは、

インデ ックスを使 うために、status I= iVALIDlを status IN(10VERDUEI′ iCハ祀ELED:)と 置き

換 えてみよう。表現は変わったが論理的な意味は前 と同 じである。

SQL> select. * from customers
2 where status in('O\/ER-DUE', 'CANCELED');

実行計画

0

SELEcT STATEMENT Opt■ m■ Zer=CH00SE

TABLE ACCESS (FULL)OF 'CUSTOMERS

1 select /*+ USE-CoNCAT INDEX(customers customer-status-idx) */ *

2 ftom cusEomers

3* where status in('OVERDUE', 'CANCELED')

SQL> /

実行計画

O SELECT STATEMENT OptiimiZer=CH00SE

1 0 CONCATENAT10N

2 1 TABLE ACCESS (BY ROWID)OF 'CUSTOMERS'

3 2 1NDEX (RANGE SCA.N)OF icUSTOMERS_STATUS_IDXI

4 1 TABLE ACCESS (BY ROWID)OF 'CUSTOMERSl

5 4 1NDEX (RANGE SCAN)OF 'CUSTOMERS_STATUS_■ DXl

(NON― UNIQUE)

(NON― UNIQUE)

|

回 鰤 ::::::::|

実行計画は前と同じで、テーブル全走査が選択されている。これは、status列 が3つの異なる値しか

取らないために、インデックスを使うよりはテーブル全走査を使ったほうがコストがかからないとオプ

ティマイザが判断したためである。実際はデータの分布に偏りがあリインデックスが有効に機能するの

で、オプティマイザに次のようなヒントを与える。

status列 にヒス トグラムが作成されている場合は、ヒントを与えなくてもオプティマイザは適切な実

行計画を立てることができる。

SQL> analyze table customers compute statist.ics for
2 all indexed columns;

表が分析されました。

SQL> sel"ect * from customers
2 where status in (,OVERDUE, , ,CANCELED') ;

実行計画

0 SELECT STATEMENT Opt.imizer=CHOOSE

1 O CONCATENATION

2 1. TABLE ACCESS (BY ROWTD) OF 'CUSTOMERS'

3 2 INDEX (RANGE SCAN) OF 'CUSTOMERS_STATUS_IDX'
4 1. TABLE ACCESS (BY ROWID) OF 'CUSTOMERS'

5 4 INDEX (RANGE SCAN) OF 'CUSTOMERS STATUS TDX'

(NON― UNIQUE)

(NON― UNIQUE)

しかし、ヒス トグラムが作成されていても!=(not equals)が 使われた場合は、オプティマイザは
インデックスを使用しない。インデックスを有効に利用するためには、!=(nOt equa■ s)を IN、 ORな
どで置き換え、ヒントやヒス トグラムを使 う必要がある。

6.3.2 NULL値 の検索
第4章で説明したように、インデックスを構成するすべての列がNULL値の場合、インデックスにその
項目は含まれない。その結果、NULL値を検索するためにインデックスを利用することはできない。たと
えば、customersテ ーブルのstatus列 の1%がNULL値 を持つとしよう。そのときに、NULL値の検索を
すると次のようになる。

SQL> select * from customers
2 where status is null;

実行計画

0 SELECT STATEMENT Optimizer=CHOOSE
1 O TABLE ACCESS (T'UII) OF 'CUSTOMERS

NULL値の検索にはインデックスを利用できないので、オプティマイザは予想とおり、テーブル全走査
を選択している。しかし、NULL値の割合は1%であり選択性に優れているので、是非ともインデックス
を利用したい。そのためには、既存の列のNULL値 をNULL値を意味する適当な値 (この場合はモNKNO▼酬

(口)第6章 テーブルアクセスのチューニング □餃輻 illl

とする)に置き換え、新規行で列の値が指定されなかった場合にはデフォル トの値が設定されるように

次のSQL文 を実行する。

SQL> update customers set status = 'UNKNO!!N' where status is nulI;

SQL> alter table customers modify status default 'UNKNOWN' not nu1l;

準備が整ったので、status=lUNKN釧脳 'を条件としたSQL文 を実行してみる。

SQL> select /*+ INDEX(customers customer-status-idx) */ *

2 from customers where status = 'UNKNOWN';

実行計画

O SELECT STATEMENT optim■ zer=CH00SE

1 0 TABLE ACCESS (BY ROWID)OF 'CUSTOMERSt

2 1 ■NDEX (Iヽ ANGE SCAさこ)OF ICUSTOMERS_STATUS_IDX' (NON― UNIQUE)

このように、NULL値の検索で、NULL値の割合が少なく選択性に優れている場合は、NULL値をNUIエ

値を意味する適当な値で置き換えることで、インデックスを利用してパフォーマンスを向上させること

ができる。そのときに、列に対してNOT NULL制約とデフォル ト値の割り当てを忘れないようにしなけ

ればならない。

6.3.3 NOT NULL値の検索
NOT NULL値の検索は、NULL値の場合と違ってインデックスが利用できる。しかし、コストベース

オプティマイザはNOT NULL値の検索にテーブル全走査を選ぶことが多い。たとえば、次のSQL文 を見

てみよう。

SQL> sefect count(*) from customers

2 where process-f1ag is not nu1l;

実行計画

O SELECT STATEMENT Opt■ m■ zer=CH00SE

1 0 SORT (AGGREGATE)

2 ■ TABLE ACCESS (FULL)OF 'CUSTOMERS

prOcess_flagの NOT NULL値の割合は少なく (1%)、 行数をカウントするだけなので実際のテーブ

ルのデータを読む必要がないにもかかわらず、オプティマイザはテーブル全走査を選択している。この

ような場合には、インデックスを使うようにオプティマイザにヒントを与える。

1 select /*+ INDEX(customers customersjrocess_f1ag_idx)
2 count(*) from customers
3* where process_flag is not. nu1l

SQL> /

実行計画

O SELECT STATEMENT Opt■ mizer=CH00SE

1 0 SORT (A GGREGATE)

2 1 1NDEX (FULL SCAN)OF iCUSTOMERS_PROCESS_FLAG_IDX: (NON=UNIQUE)

実際のテーブルにはアクセスせずに、インデックスのアクセスだけで済んでいることが分かる。次の

SQL文 と比べると、テーブルにアクセスしているかどうかが良く分かるだろう。

I select /*+ INDEX(customers customersjrocess_f1ag_idx) */
2 ★ from customers

3★ where process_flag ■s not nul■

SQL> /

実行計画

0 SELECT STATEMENT Optimizer=CHOOSE
1 O TABLE ACCESS (BY ROWID) OF 'CUSTOMERS'

2 1. INDEX (FULIT SCAN) OF 'CUSTOI4ERS_PROCESS_FI,AG_IDX' (NON_UNIQUE)

6.3.4 列に対する関数や演算子の使用
WHERE旬 で、列に対して関数や演算子が使われると、オラクルはインデックスを利用できない。たと
えば次の例を見てみよう。

SQL> select * from emp

2wheresal*2>2000;

実行計画

O SELECT STATEMENT Opt■ mizer=CH00SE

1 0 TABLE ACCESS (FULL)OF 'EMP'

列に対して掛け算が実行されているので、オラクルはインデックスを使わずにテーブル全走査を選択

している。sa■ '2>2000の 条件を意味的に等価なsal>2000/2に 書き換えると、sal列に作成
されているインデックスを利用することができる。

SQL> sefect * from emp

::1111111111:1111111i1111:|る ::黎囃熙

(0)第 6章 テープルアクセスのチューニング婢躙:::::::::|:|::|:::警 111

2 where sal > 2000 / 2,

実行計画

O SELECT STATEMENT Opt■ m■ zer=CH00SE

1 0 TABLE ACCESS (BY ROWID)OF IEMPI

2 ■ INDEX (Iも 俎NGE SCAN)OF 'EMP_SAL_IDXl(NON― UNIQUE)

WHERE句で、列に対 して関数や演算子が使われている場合には、それと意味的に等価なSQL文 に置き

かえられないか検討すると良い。

インデックスをわざと使わないように、列に対してダミーの演算 (数値型の列 '1,文字列型の列 ||")

を使う方法もあるが、可読性を考えると/'十 FULL(テ ーブル名)・ /ヒ ントを使 うほうが良いだろう。

6.4 インデックス参照 レ
L

経験の浅いSQLプ ログラマは、とりあえずインデックスを使っていればクエリは効率的に行われてい

ると思い込みやすい。しかし、インデックスに基づいた検索にはさまざまな種類があり、それぞれの状

況に応じて最適なインデックスの使い方は異なってくる。ここでは、インデックス参照を最適化する方

法を学ぶ。

すべての方法における最も基本的なテクニックは、インデックスを作成した後にコストベースオプテ

ィマイザが最適な実行計画を立てられるようにテーブル (イ ンデックスを作成した列)をぶ ALYZEす る

ことである。忘れがちなので習慣にしておくと良いだろう。

6.4.1 結合インデックス
検索条件に複数の列が含まれるなら、それらの列で結合インデックスを作成することで、クエリを効

率的に行うことができる。また、複数のインデックスがマージされるなら、それらのインデックスを構

成している列で結合インデックスを作成すると良い。

結合インデックスを最適化するためには、次のようなポイントがある。

□ WHERE句 で参照されるすべての列を結合インデックスに含める。

□ 結合インデックスの列のlil贋番を最適化する。

□ 選択リスト (ク エリで取得する列のリスト)に含まれる列数が少ない場合には、結合インデックス

に選択リストの列も含める。

班把RE旬で参照 され るすべての列を結合 インデックスに含める

customersァ ーフ
゛
ル て`、cOntact_surnameが SMITHで あるデータが100f牛 、 contact_surnameが

SMITHか つcontact_firstnameがJOHNで あるデータが2件あったとしよう。 ここで、次のSQL文 を実

行す る。

SELECT contact_surnarne, contact_firstname/ phoneno

FROM customers

WHERE contact surname = 'SIMITH l

AND contact f■ rstname = `JOHNI

インデックスがcOntact_surname列 にだけ作成されている場合には、実テーブルの100件分のデータ

を読み込む必要があるが、cOntact_surname、 cOntact_firstname列 に結合インデックスが作成さ

れている場合には、実テーブルの2件分のデータを読み込むだけですむ。このように、WHERE句 で参照さ

れるすべての列を結合インデックスに含めることが、結合インデックスを作成するときの基本である。

結合インデックスの列の順番を最適化する

結合インデックスを構成するすべての列が、WHERE旬で指定されていなくても、先頭部分の列が指定

されていれば、その結合インデックスを利用することができる。たとえば、次のような結合インデック

スが作成されたとする。

CREATE INDEX sOmetable_a_b_c_idx ON sometable(a′ b′ c)

この場1合、 a、 aと b、 aと bと cがWHERE旬で指定されたときにはsOmetab■ e_a_b_c_idxイ ンデック

スを利用できるがb、 c、 bと c、 aと cがWHERE句で指定されたときにはこのインデックスを利用できない。

つまり、WHERE句で頻繁に使われる列のll贋番で結合インデックスを並べることで、他のクエリでもこ

のインデックスを利用できるようになる。

結合インデックスを利用できない列の組み合わせが、WHERE旬 で頻繁に指定される場合には、別途イ

ンデックスを作成する必要がある。しかし、インデックスの数が増えるとデータの更新 (挿入、更新、

削除)時の処理に、インデックスをメンテナンスする分のオーバーヘッドがかかるので、更新処理の多
いテーブルの場合には、状況に応じて判断しなければならない。

また、WHERE句で使われる頻度が同程度の場合には、より選択性の良い列順に並べるとインデックス

を効率的に利用できる。

結合インデックスに選択リストの列も含める

選択リスト (ク エリで取得する列のリスト)に含まれる列数が少ない場合には、結合インデックスに

選択リストの列も含めると、オラクルはインデックスにアクセスするだけでデータを取得できる。たと

えば、次のSQL文 を見てみよう。

SELECT contact_ urname′ contact_ ■rstname

FROM customers

WHERE contact_surname = :SMITH'

AND Contact firstnalne = :JOHN'

phoneno

インデックスがcOntact_surname、 cOntact_firstnamJI」だけに作成されている場合は、 インデ

(口)第6章 テープルアクセスのチューニング 111::i::i::|||||||||||

ックスにアクセスしてROWID(行の物理的なアドレス)を取得した後に、phOnen。 を取得するために

ROWIDを 使って実テーブルにアクセスする必要がある。このような場合に、cOntact_surname、

cOntact_firstname、 phoneno列 に結合インデックスを作成すると、インデックスにアクセスするだ

けで必要なデータを取得できるので、実テーブルにアクセスする必要は無くなる。

選択リストに含まれる列数が多いと、このようなインデックスはオーバーヘッドが大きくなるが、少

ない場合には、実テーブルのアクセスをする必要が無くなるのでパフォーマンスを改善できる。

6.4.2 LIKE旬の使用
ワイル ドカー ド (%:任意の文字列、_:任意の一文字)を使った一致検索に、LIKE句を使うことができ

る。たとえば、.次のクエリはcontact_surnameが HARDで始まるデータを返す。

sQL> select * from customers
2 where contact-surname like 'HARDt';

実行計画

O SELECT STATEMEl『r Optimizer=CH00SE

1 0 TABLE ACCESS (BY ROWID)OF 'CUSTOMERSI

2 1 lNDEX (RANGE SCAN) OF iCUSTOMERS_CONTACT_SURNAME_IDX' (NON―

UNIQUE)

このクエリは、contact_surname列 にインデックスが作成されていれば、そのインデックスを利用

できる。

逆に、ワイル ドカー ドで始まるHKE検索は、最初の文字が決定できないので、次の例のようにインデ

ックスを利用できない。

SQL> select * from customers
2 where contact-surname like 'tRDY';

実行計画

SELECT STATEMENT Opti:mizer=CH00SE

TABLE ACCESS (FULL)OF 'CUSTOMERSl

通常、ワイル ドカードで始まるLIKE検索は、インデックスを使うよりもテーブル全走査を実行したほ

うが効率的だが、インデックスのアクセスだけで済むような場合は、実テーブルよりもインデックスの

方がデータ量が少ないので、インデ ックスをアクセスしたほうが効率的になる。たとえば次のような

COUNT(・)の クエリだ。

1 select /*+ INDEX(customers customers_contact_surnalne_idx)
2 count(*) from customers
3* where contact_surname like 'tRDY'

SQL> /

実行計画

O SELECT STATEMENT Opt■ m■ zer=CH00SE

1 0 SORT (AGGRECATE)

2 1 1NDEX (RANGE SCAN) OF iCUSTOMERS_CONTACT_SURNAME_IDXl (NON―

UNIQUE)

ワイル ドカードで始まるLIKE検索でも、インデックスのアクセスだけで済むような場合には、インデ

ックスを利用したほうが効率的なので、INDEXヒ ントを使って積極的に利用して欲しい。

6.4.3 0R旬やIN旬を使つたクエリ
IN句 を使ったクエリは、可能ならオラクルによって内部的に、OR句 を使ったクエリに変換される。た

とえば、次の2つのクエリは、内部的に同一である。

SELECT + FROM emp

WHERE ename IN('SMITH'′ 'ALLEN')

SELECT ★ FROM emp

WHERE ename = iSMITHl

OR ename = IALLEN!

内部的に同一でも、文字列としてはこの2つのSQL文 は異なるので、ライブラリキャッシュは効かない

(再解析が行われる)。 余分な解析を避けるために、実際に使 うときにはどちらかに統一したほうが良い。

コス トベースオプティマイザは、OR(IN)句 を使ったクエ リをインデックスが利用可能なら、インデ
ックス検索に基づいた実行計画を立てて実行する傾向が強い。たとえば、次の例を見て欲しい。

SQL> select * from customers
2 where scatus in ('VALID' , ' OVERDUE')

実行計画

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 CONCATENATION

TABLE ACCESS (BY ROWID)OF ICUSTOMERSI

INDEX (RANGE SCAN)OF iCUSTOMERS_STATUS_IDX:

TABLE ACCESS (BY ROWID)OF ICUSTOMERS'

INDEX (RANGE SCAN)OF 'CUSTOIMERS_STATUS_IDXl

(NON―UNIQUE)

(NON―UNIQUE)

:饉
11111:|11:::11登:蝙封D

テーブルアクセスのチューニング Cは鰤::::li:|:::|:|:1難

|

SQL> selecL * from customers
2 where sTaIuS in('VALID,, 'OVERDUE', ,CANCELED.);

実行計画

O SELECT STATEMENT Opt■ :m■ zer=CH00SE

1 0 CONCATENATION

2 1 TABLE ACCESS

3 2 1NDEX (RANGE

4 1 TABLE ACCESS

INDEX (RANGE

TABLE ACCESS

O SELECT STATEMENT Optim■ zer=CH00SE

1 0 CONCATENATION

2 1 TABLE ACCESS (BY ROWID)OF ICUSTOMERS'

3 2 1NDEX (Iヽ ANGE SCAN)OF 'CUSTOMERS_STATUS_IDXl

4 1 TABLE ACCESS (BY ROWID)OF 'CUSTOMERS'

5 4 1NDEX (RANGE SCAN)OF 'CUSTOMERS_STATUS_IDXl

(BY ROWID)OF 'CUSTOMERSI

SCAN)OF 'CUSTOMERS_STATUS_IDXl

(BY ROWID)OF ICUSTOMERSi

SCAN)OF 'CUSTOMERS_STATUS_IDX'

(BY ROWID)OF iCUSTOMERSI

SCAN)OF ICUSTOMERS_STATUS_IDX'

(NON― UNIQUE)

(NONLUNIQUE)

(NON― UNIQUE)7 6 1NDEX (IヽANGE

statusが VALIDのデータの割合は95%なので、上記のクエリは、インデックスを使うよりもテーブル

全走査を行ったほうが効率的である。そのような場合には、次のようにFULLヒ ントを活用する。

SQL> select /■ + FULL(customers)夫 / ★ frOm CuStomers

2 where status ■n('VALID'′ 'OVERDUEI′ 'CANCELEDl),

実行計画

O SELECT STATEMENT Opt■ m■ zer=CH00SE

1 0 TABLE ACCESS (FULL)OF 'CUSTOMERS

逆に、オプティマイザはテーブル全走査を選択するが、実際にはインデックスを使ったほうが効率的

な場 合 には、次 の よ うにUSE_CONCATと INDEXヒ ン トを使 うと良 い。

■ select /★ + USE_CONCAT INDEX(customers customers_status_■ dx)★ /

2 ' from customers

3■ where status in(10VERDUE'′ 'CANCELED!)

SQL> /

実行計画

(NON― UNIQUE)

(NON―UNIQUE)

6.4.4 インデックスマ…ジ
検索条件に複数列が指定されて、それぞれの列に個別にインデックスが作成されていた場合、オラク

ルはインデックスマージを行うかもしれない。インデックスマージが実行されると、オラクルはそれぞ

れのインデックスを使ってROWID(行の物理的なアドレス)の リストを取得し、各リストに共通に含ま

れるROWIDを 選び出す。たとえば次のクエ リを見てほしい。理⑪―EQUALの 部分でインデックスマージが

行われている

SQL> select /★十 RULE ■/ =
2 from customers

3 where contact surname = tSMITH;

4 and date_of_birth = To_DATE(119660119:′ 'YYYYMMDD'),

実行計画

0 SELECT STATEMENT Optimizer=RulE
1 O TABLE ACCESS (BY ROWID) OF 'CUSTOMERS'

2 L AND-EQUAL .- 427yJ7<-)
3 2 INDEX (RANGE SCAN) OF 'CUSTOMERS_CONTACT-SURNAME-IDX'

UNIQUE)

4 2 INDEX (RANGE SCAN) OF 'CUSTOMERS-DATE_OF-BIRTH_IDX'
I]NTQUE)

(NON―

(NON―

この 例 の 場 合 、 COntact_surname ='SMITH'の 条 件 に一 致 す る行 の ROWIDが 38エ ン トリ、

date_of_birth=TO_DATE(1196601■ 97′ :YYYYmOD〕)の条件 に一 致 す る行 の ROWIDが 2エ ン ト

リ、それぞれのインデックスから取得されて、2つのリス トに共通に含まれているROWIDが インデックス

マージによって1エ ントリ取得される。

ルールベースオプティマイザは、インデックスの選択性を知らないため、しばしばインデックスマー

ジを行う。それに対 して、コス トベースオプティマイザは、インデックスの選択性を知っているため、

選択性に優れたインデックスを選び、余分なインデックスの検索を避けることができる。次の例ではコ

ス トベースオプティマイザに処理させている。

SQL> select 十

2 from customers

3 where contact_surname = 'SMIITH'

4 and date_of_birth = TO_DATE('■ 96601191′ :YYYYMMDDl)′

実行計画

O SELECT STATEMENT Optim■ zer=CH00SE

1 0 TABLE ACCESS (BY ROWID)OF 'CUSTOMERS:

2 1 1NDEX (RANGE SCAN) OF 'CUSTOMERS_DATE_OF_BIRTH_■ DX' (NON―
UNIQUE)

:||:|:::::|:輻⑮ED

(D第6章 テープルアクセスのチューニング□蛯躙:

コストベースオプティマイザは、選択性に優れたCUSTOMERS_DATE_OF_BIRTH_IDXイ ンデックスを

使い、不必要なインデックスは使っていないことが分かる。

一般的にインデックスマージは効率的でないことが多いので、実行計画にインデックスマージ (AND―

EQUAL)が現れるような場合は、次の項目を検討 して欲しい。

□ 検索条件に使われる複数列で、結合インデックスを作成する。

□ INDEXヒ ントを使い選択性に優れたインデックスをオプティマイザに選択させる。

6.4.5 tkprofを 使つて効率の悪いインデックスを調査する

tkprOfの出力で最も有益な機能の1つは、実行計画の各ステップごとに処理した行数を示してくれる

ことだ。インデ ックスの場合、この行数はインデックスを使って取得 されたROWIDの数を示している。

もしこの行数とクエリで処理された行数あるいは、後続の処理で処理 された行数に大きな不一致がある

なら、おそらくそのインデックスは効果的に機能していないだろう。

たとえば次の出力結果を見て欲 しい。

selecL contact-surname, conLact-f irst.name

from customers c

where contacE_surname=' SMITH'

and contact-f irstname=' STEPHEN'

call count cpu elapsed disk query current rows

Parse

Execute

Fetch

0.00

0.00

0.00

0.06

0.00

0.03

0

0

88

Total

Rows

3 0.00 0.09 0

0

43

44

Execution Plan

SELECT STATEMENT HINT: CH00SE

TABLE ACCESS HINT: ANALYZED (BY ROWID)OF iCUSTOMERS'

INDEX (RANGE SCAN)OF ICUSTOMERS_NAME_IDXl(NON― UNIQUE)

このクエリは3行だけしか返していないのにもかかわらず、インデックスは44行も処理をしていて、イ

ンデックスが効果的に機能していないことが分かる。なぜ効果的に機能していないのだろうか。それは、

このインデ ックスがcOntact_surname列 にしか作成 されていないことに原因があった。
contact_surname、 cOntact_firstname列で構成される結合インデックスを作成してもう一度、

tkprOfの 出力結果を見てみよう。

ca■ 1 count cpu elapsed disk query current rows

Parse
Execute
Fetch

TOLAl

1 0.00

1 0.00

1 0.00

3 0.00

0.08

0.00

0.07

0.15 2 0

Rows Execution Pfan

SELECT STATEMENT HINT: CH00SE

INDEX (RANCE SCAN)OF 'CUSTOMERS_NAME_IDXl (NON― UNIQUE)

インデックスが処理した行数とクエリで処理 した行数が一致 しているので、今ではこのインデックス

は効果的に機能 していることが分かる。

この例で分かるように、インデックスが処理 した行数とクエリで処理した行数に大きな相違が見られ

る場合は、適切な結合インデックスが作成されているか確認してみよう。

6.4.6 関数が適用される列に対する検索
インデックスが作成されている列に関数が適用されると、そのインデックスを使うことができなくな

る。たとえば、大文字と小文字を区別せずに検索を行う場合、次のようなSQL文が必要になる。UPPER
は文字列を大文字に変換する関数である。

SELECT custo:mer_id′ customer_name
FROMl customers

WHERE UPPER(contact_surname)= uPPER(:1)

AND UPPER(COntaCt_f■ rStname)= UPPER(:2)

UPPER関数が列に適用されているので、cOntact_surname、 cOntact_firstnameに 作成されてい

るインデックスを利用できない。それでは、どうしたら良いだろうか。

答えの1つ として、常に大文字で格納される列を追加し、 トリガを使って列が更新 されるときに自動的
に大文字の列をメンテナンスする方法がある。たとえば、次のスクリプトのようになる。

:難:11111::::1愧麒

a.lter table customers add upper_contact_surnme varchar2 (30) ;

alter Lable customers add upper_contacL_firstname varchar2(30) ;

create or replace trigger customers_upper_name_trg
before insert or update of contact_surname,contact_firstname
on cus t.omers

for each row

: NEW. upper_contact_firstname : =upper (: NEW. contac t_firstname) ;

テーブルアクセスのチューニング (口饉鰤 :::::::|:11

: NEW. upper-contact-surname : =upper (: NEW. contact-surname)

end,'

update customers
set upper-contact-surname=upper (contacL-surname) /

upper-contact-f irstname=upper (contact-f irstname)

create index customer-uppername-idx on customers
(upper-contacL-surname, upper-contact-f irs tname) ;

これで、大文字と小文字を区別しない検索をインデックスを利用して次のように行うことができる。

SELECT customer ld, customer-name
FROM customers

WHERE upper-contact-surname = UPPER(:1)
AND upper-contact-firstname = UPPER(:2)

この例のように、関数が適用される列に対 してインデックス検索を行いたい場合は、オリジナルの列

に関数を適用した後の値を持つ参照用の列を追加 し、参照用の列のメンテナンスは トリガを使って自動

的に行うと良い。

6.5 ハッシュクラスタ参照の最適|

ハッシュクラスタでは、クラスタキーの値が数学的な計算でノヽ ッシュ値に変換され、そのハッシュ値

を使って行にアクセスする。ハ ッシュ値は行の物理的な位置を示 しているので、キーを使ってインデッ

クスにアクセスする必要が無 く、単に数学的な計算だけでオラクルは行の物理的な位置を知ることがで

きる。

第4章でも説明したようにハ ッシュクラスタには次のような問題がある。

□ 各ハ ッシュキーに割り振ったスペースが不十分だった場合には、ブロックの連鎖が起こり、結果と

して行を取得するために余分な1/0が必要になる。

□ 各ハ ッシュキーに割り振ったスペースが過剰だった場合には、無駄なスペースが増え、テーブル全

走査のパフォーマンスが劣化する。

この よ うな問題 に対処 す るた め には、CREATE CLUSTER文 の 2つの項 目の設定 が重要 に な る。

□ HASHKEYS:予 想されるハ ッシュ値の数。オラクルは、指定された値を最も近い素数に切り上げる。

□ SIZE:ハ ッシュ値に対 して割り当てられるス トレージのバイ ト数。

|

i:i躙
□D

図6.1 適切な設定のハッシュクラスタ、不適切な設定のハッシュクラスタ、クラスタ化されていない
インデックスの作成されたテーブルに対するキー値検索による読み込みプロック数。

図6.2 適切な設定のハッシュクラスタ、不適切な設定のハッシュクラスタ、クラスタ化されていない
インデックスの作成されたテーブルに対するテーブル全走査による読み込みブロック数。

(0)第6章 テープルアクセスのチューニング□魃隋

図6.1と図6.2は、インデックスの作成されたテーブルと2つの異なる設定のハッシュクラスタに対する、

キー値検索とテーブル全走査で要求された読み込みブロック数を示している。

キー値検索の場合、適切に設定されたハッシュクラスタはインデックスの作成されたテーブルよりも

良いパフォーマンスを発揮しているが、適切に設定されていないハッシュクラスタはかなリパフォーマ

ンスが悪化していることが分かる。

テーブル全走査の場合、ハッシュクラスタ化されていないテーブルの方がパフォーマンスが良く、ハ

ッシュクラスタ化されていて設定が不適切だとさらにパフォーマンスが悪化することが分かる。

つまり、クエリのほとんどがキー値検索である場合、ハッシュクラスタは有効だが、適切に設定され

ていないとかえってパフォーマンスを悪化させてしまう。

ハッシュクラスタを最適化するためには、HASHKEYSと SIZEを適切に設定する必要があり、その設定

のためには次のパラメータが必要だ。

ロ ハッシュクラスタ内の行数。

ロ ハッシュキーの重複しない値の数 (キー列がユニークな列の場合、ハッシュクラスタ内の行数に一

致する)。

□ ハッシュクラスタ内における行の平均長。

これ らの情報 が取 得 で きれ ば 、 HASHKEYS、 SIZEは次 の よ うに計算 で き る。

□ HASHKEYS=ハ ッシュキ ~の 重 複 しない値 の数

□ SIZE=(ハ ッシュクラスタ内の行数 /ハ ッシュキーの重複しない値の数)■ ハッシュクラスタ内

における行の平均長・ 1.1

ハ ッシュテーブルに格納したいデータがすでにクラスタ化されていないテーブルに格納 されていて、

そのテーブルがANALYZEさ れているなら、次のようなクエリを使って、行の平均長と行数を調べること

ができる。

SQL> select aVg_row_len′ lnlュm_rows

2 from user_tables

3 where table name=ICUSTOMERS'

4 /

AVG_ROW_LEN NUM_ROWS

50 5150

ハ ッシュキーの重複 しない値の数は、次のクエリで調べることができる。

sQL> select num-distinct

|:illl:111::i::|::躙熙

2 from user_tab_columns

3 where table_name=ICUSTOMERS'

4 and colurm■ _name='CONTACT SURNAlヽ lE'

5 /

NUM DISTINCT

670

これで、custOmersァ ーブルのcOntact_surnameを ハッシュキーにして (cOntact_surnameが ハ

ッシュキーに適しているかどうかはここでは議論しない)、 ハッシュクラスタに格納するための準備が整

つた。HASHKEYSは 670で良いので、SIZEを計算してみよう。

SIZEI = (5■ 50 / 670) ★ 50 ★ ■.■ =‐ 423

ハッシュクラス タ内の行数、ハ ッシュキーの重複 しない値の数、ハ ッシュクラスタ内における行の平

均長が変化すると、HASHKEYS、 SIZEの値 も変化するので、ハ ッシュクラスタを再作成する必要がある。
そうしないと、図 6.1,図 6.2で見たように、パフォーマンスが落ちてしまう。

HASHKEYS、 SIZEを 決定するパ ラメータが変化 し、その度にハッシュクラスタを再作成することが現

実的でないのなら、ハ ッシュクラスタを使 うことは止めたほ うが良い。

ハッシュクラスタを使うかどうかのガイドラインをまとめると次のようになる。

□ 等価条件によるクエリが頻繁に行われる場合には、ハッシュクラスタの使用を検討する。その際、

クラスタキーには、等価条件で使われる列 (列の組み合わせ)を指定する。

ロ テーブル全走査が頻繁に行われる場合には、ハッシュクラスタを使用しない。

ロ データの行数、重複しない値の数、行の平均長を見積もることができない場合には、ハッシュクラ

スタを使用しない。

ロ データの行数、重複しない値の数、行の平均長が変化し、その度にハッシュクラスタを再作成する

ことが現実的でないのなら、ハッシュクラスタを使用しない。

ロ クラスタキー値が頻繁に修正される場合、ハッシュクラスタをメンテナンスするコストが通常のイ

ンデックスよりも大きくなるので、ハッシュクラスタを使用しない。

6日6 テープルアクセスの最適化
インデックスアクセスを最適化しても、結局最後は実テーブルに (ほ とんどの場合)ア クセスするの
で、テーブルアクセスを最適化することは重要である。テーブルアクセスのパフォーマンスは、基本的

に読み込むブロック数に依存するので、読み込むブロック数が少ない程、パフォーマンスは良くなる。

そのテーブルアクセスを最適化するには次のような方法がある。

(|)第 6章 テーブルアクセスのチューニング ⊂躙輻:

ロ テーブルを再作成することによって、ハイウォーターマークを低くする。

EI PCTFREEを 減らし、PCTUSEDを増加させることで、それぞれのブロックに多くの行を格納する。

ロ ブロックサイズを大きくする。

ロ ザイズが大きく、滅多にアクセスしない列は、別テーブルに分離する。

□ CACHEヒ ントを使って、オラクルがメモリ上にテーブルの内容を維持するようにする。

ロパラレルクエリを利用する。

□配列フェッチを使う。

6.6.1 ハイウォータマークを低くする
オラクルは、テーブル全走査を行うときにテーブルに割り当てられているすべてのブロックを走査し

ているわけではない。たとえば、最初、テーブルに大きなスペースが割り当てられてデータ量はまだ少

ない場合、オラクルはどのブロックまでデータがあるのか知っているので、テーブル全走査を行っても

データのないブロックは読み込まない。

テーブル全走査が要求されると、オラクルは最初のブロックからかつてデータを含んでいた最も最後

のブロックまで読み込む。この最も最後のブロックはハイウォータマークと呼ばれる。たとえば、デー

タが挿入されてlooブロックまで使われたとしよう。このとき、テーブル全走査が行われると、通切に

looブ ロックを読み込む。次にテーブルの全データを削除する。それでもまだハイウォータマークは、

100番 目のブロックにあるので、テーブル全走査を行うと、データが無いにもかかわらず100ブロックを

読み込んでしまう。

つまり、大量の行削除を行ってもハイウォータマークは低くならないので、テーブル全走査のときに

無駄なブロックを読み込んでしまう。

ハ イウォータマークを リセットするには、TRUNCATE文 を実行するしかない。DELETE文ですべてのデ

ータを削除 してもだめで ある。TRUNCATE文 はロールバ ックのための情報 を書 き出さないので、実行を

キャンセル (ロ ールバ ック)す ることがで きないので、注意する必要がある。

データを失 うこと無 しにハイウォータマークを適切な値に設定するためには、テーブルを再作成する。

そのためには、テーブル をエクスポー トした後に削除 (DROP,TRUNCATE)し 、エクスポ
~卜 したデ ~タ

をインポー トし直す。 これで、テーブル全走査 を行 うときにデータの無い無駄なブロックの読み込みを

避 けることができる。

6.6.2 テーブルの作成バラメータPCTFREEとPCTUSEDを最適化する
それぞれのブロックに格納されている行数を増やせば、テーブル全走査のときに読み込むブロック数

を減 らす ことがで き る。 その ために重 要 なパ ラメ ー タは PCTFREEと PCTUSEDで あ る。

PCTFREEは 、行のデータ量を増加させるような更新のためにブロックに予約されるスペースの割合で

ある。PCTFREEに 到達 したブロックは、フリーリス ト (挿入可能なブロックのリスト)か ら除かれるの

で、この割合を超えるような行の挿入は行われない。

PCTUSEDは 、PCTFREEに 到達して挿入不可になった後に、DELETE文の実行で行が削除されて、再び

挿入が可能になるブロックのデータ部分の割合である。つまり、データ部分の割合がPCTUSED以 下にな

ると再びそのブロックがフリーリスト (挿入可能なブロックのリスト)に追加されて、行の挿入が可能

になる。

テーブルに挿入と削除が行われる場合は、平均的なブロックの使用率はだいたい次の式のようになる。

PCTUSED + (100 - PCTFREE ― PCTUSED)/ 2

PCTFREEと PCTUSEDの デ フォル トの値 は 10と 40な の で 、 これ を上記の式 に代 入 す ると65%に な る。

40 + (100 - 10 - 40)/ 2 = 65

これは、デフォル トの設定だとブロックの約2/3しか平均的に使われていないということを意味する。

ブロックの使用率を上げるとデータを格納するために必要なブロック数が減り、その結果、テーブル全

走査の1/0も 減 らす事ができる。たとえば、PCTFREE,PCTUSEDを 5,75に 設定するとブロックの使用率は

85%になり、テーブル全走査の1/0は36%(1/0.65-1/0.85)ぐ らい減 らすことができる。

少なくともPCTFREE
で確保されたスペー

スが残っている間は

行が挿入される。

PCTFREEの 限界に達
するともう行の挿入は行

われない (フリーリストか

ら除かれる)。

行の削除によって、

PCTUSEDまでブロック
の使用率が減るまで行

の挿入はできない。

PCTUSEDま でブロック
の使用率が減ると、再

びPCTFREEの限界に
達するまで、行の挿入が

可能になる。

図6.3プロックの使用率におけるPCTFREEと PCTUSEDの効果

PCTFREEと PCTUSEDを 調整することで、ブロックの使用率が増加 し、テーブル全走査のパ フォーマン

スは改善されるが、い くつか気を付けなければならないことがある。

PCTFREEが 小さく、テーブルの更新が頻繁にある場合には、行移行が起こることがある。行移行は、

更新時に行のデータ量が増えてそのブロックに収まらなくなり、別の新しく割り当てられたブロックに

格納されるときに発生する。そのとき元のブロックには、新しいブロックのポインタが保存されるので、

元のブロックから移行先のブロックをたどることができる。この行移行が起こった行にアクセスする場

合には、複数のブロックにアクセスしなければならず余分な1/0が発生し、パフォーマンスは低下する。

行移行については、第16章で詳しく説明する。

PCTFREE 101%,PCTFREE 109イL PCTFREE 10くる PCTFREE 10,%)

(|)第 6章 テーブルアクセスのチューニング CEコ藤魃!|

PCTFREEを 小 さくとった場合 には、CREATE TABLE文 のINITRANSの設定を考慮 しなければならない。

INITWWSにはITL(Interested Transaction List)数 を設定する。デフォル トは1である。ブロックを更新

するトランザクションは必ず

「

Lを獲得しなけらばならない。追加のITLは、PumREEで確保されたスペ

ースから割り当てられるがP(rFREEを小さく取りすぎて、ITLが獲得できない場合には、そのトランザ

クションはITLが獲得できるまで待たされる。そうなると、行レベルのロックが、ブロックレベルのロッ

クになってしまう。

PCTUSEDを 大きく取り過ぎると、DML操作のパフォーマンスが落ちてしまうことがある。それは、わ

ずかなスペースの空ができると直ぐにINSEIご可能になリフリーリストに登録されるので、フリーリスト

のメンテナンスコストがかかってしまうためである。

6.6.3 プロックサイズを大きくする
ブロックサイズは、テーブル全走査に大きな影響を与える。たいていの場合、ブロックサイズを大き

く取れば、テーブル全走査のパフォーマンスを改善できる。ブロックサイズは、データベースを作成す

るときに決められ、その後変更することはできない。バッファキャッシュもブロック単位に設定するの

で、ブロックサイズが大きいと軽い更新が多いシステム (OLTP)では、キャッシュの効率が悪くなって

しまう。適切なブロックサイズについては第15章で詳しく説明する。

6.6.4 サイズが大きくて滅多にアクセスしない列を別テーブルに移す

サイズが大きくて滅多にアクセスしない列を別テーブルに移すと、通常処理でアクセスするブロック

数を減らす事ができるので、パフォーマンスを改善できる。たとえば、LONG型の列などにこのテクニ

ックが使える。サイズが大きく頻繁にアクセスする列を別テーブルに移すと、テーブル間の結合が増え、

かえってパフォーマンスを落としてしまうので注意しなければならない。

6.6.5 CACHEヒ ントの使用
オラクルはディスクから読み込んだデータファイルを、一ESGAに あるバッファキャッシュに読み込

んでからアクセスする。そうすることで、必要なデータがバッファキャッシュにあったときにディスク

1/0を避けることができる。

バッファキャッシュに空きが無い場合には、最も最近アクセスされていないブロックが破棄され、新

しいブロックのための空きが作られる。最も最近ァクセスしたブロックがリストの先頭に置かれ、あま

リアクセスされないブロックは自動的にリストの最後のほうに追いやられるので、空きブロックが必要

なときはリストの最後のブロックから破棄することで、最も最近アクセスされていないブロックを破棄

することができる。

このアルゴリズムは、LRU(baゞ Recently Used)ア ルゴリズムと呼ばれる。しかし、テーブル全走

査はこのLRUアルゴリズムの例外で、アクセスしたブロックはLRUリ ストの最後に置かれる。なぜなら、

テーブル全走査はそれほどしばしば行われず、そのときアクセスしたブロックに近い将来再びアクセス

することはあまりないだろうとオラクルが予想するからだ。これは、テーブル全走査でアクセスしたブ

ロックは、ほとんどすぐにキャッシュから破棄されてしまうことを意味する。この戦略で、インデック

ス参照によってアクセスされた少量のブロックが、テーブル全走査によってアクセスされた大量のブロ

ックによって追い出されることを防ぐことができる。

このアプローチの欠点は、短期間でテーブル全走査を繰り返すと、2度 目のアクセスではキャッシュが

効かずに再びディスクからデータを読み込まなければいけないことである。直ぐに同じテーブルにテー

ブル全走 査 を繰 り返 す こ とが分 か って い るな ら、 CACHEヒ ン トを使 うことがで き る。 CACHEヒ ン トに よ

って、直ぐにブロックが破棄されることはなくなるので、テーブル全走査を短期間に繰り返してもキャ

ッシュされたデータを読むことができ、余分なディスク1/0を避けることができる。CACHEヒ ントは次の

ように使う。

SELECT /★ CACHE(employees)★ / ★

FROM employees

この キ ャ ッシュ句 は 、 CREATE TABLE、 ALTER TABLE文 で も使 うこ とが で き る。 CACHEヒ ン トは

NOCACHEヒ ン ト
‐
で上書 きで きる。

CACHEヒ ントを非常に大きなテーブルに対 して使うことは避けるべきである。他のクエリのためのブ

ロックがバ ッファキャッシュから追い出され、データベース全体のパフォーマンスが悪くなってしまう。

CACHEヒ ントは、あまり大きくないテーブルに対して繰り返 しテーブル全走査を行 うときに使うことが

良いだろう。

6.6.6 パラレルクエリの利用
テーブル全走査のパフォーマンスを著しく改善する方法の1つに、オラクル7.1か ら導入されたパラレ

ルクエリを利用する方法がある。パラレルクエリは次の項目を満たしているときに効果的に機能する。

□ 複数のCPUが ある。

□ CPUの 能力に余力がある。

ロ テーブルのデータが複数のディスクに分散 している。

この トピックは重要かつ複雑なので第12章で詳 しく説明する。

6.6.7 配列フェッチ
オラクルは、1回のフェッチで複数行を配列に取得する手段を提供している。この機能は配列フェッチ

と呼ばれ、データベースに発行するSQL文の数を減らし、ネットワークのトラフィックを削減すること

ができる。いくつかのツールでは、配列フェッチを使うために明示的に処理しなければならないが、

SQL★Plusの ように自動的に配列フェッチを使うツールもある。

配列フェッチを使うことでパフォーマンスを改善することができるが、最適な配列のサイズはアプリ

ケーションによって異なってくる。配列を大きく取るとそれだけメモリを消費してしまうので、速度と

メモリのバランスの取れた配列のサイズをテストを通じて探し出して欲しい。

●第6章 テーブルアクセスのチューニング{ビ財躙靡::眩

':|:i:|11:'il

この章では、単一のテーブルヘのアクセスを最適化する方法を学んだ。ここで学んだ最適化は、複数

テーブルヘアクセスするときにも応用できる。

テーブルからデータを取得するときに決めなければならない最も基本的なことは、テーブル全走査を

するのかインデックスあるいは、クラスタを使うのかを決めることである。あるデータの選択性が優れ

ているときには、インデックスを使うことが効果的である。あるデータの全体に占める割合が何%以下な

ら選択性に優れているといえるかどうかは状況によって異なるが、一般的には20%前後であろう。

コス トベースオプテ ィマイザは、クエ リによって返 される行数を予想して、テーブル全走査とインデ

ックス走査のコス トを見積もる。この見積もりは、データの分布が偏っていると不正確なものになって

しまう。そのような場合には、検索される列にヒス トグラムを作成することで、見積もりの精度を改善

することができる。 しかし、ヒストグラムはバインド変数を使うと利用することができないので、注意

する必要がある。またあるタイプのクエ リはインデックスを利用できないので、予期せぬテーブル全走

査が起きアプリケーションのパフォーマンスを悪化させてしまう。主なタイプは次のようなものである。

□ NULL値 に対する検索。

□ !=(NOT EQUAloを 条件に使った検索。

□ 列に対する関数や演算子の使用。

WHERE旬 に複数の列が現れる場合は、それらの列に結合インデックスを作成することで、パフォーマ

ンスを改善できる場合がある。結合インデックスを使うときのポイントは次のとおりである。

□ WHERE句 で参照 されるすべての列を結合インデックスに含める。

□ 結合インデックスの列の順番をWHERE句 で使われる頻度や選択性を考慮、して最適化する。

□ 選択リスト (ク エリで取得する列の リス ト)に含まれる列数が少ない場合には、結合インデックス

に選択リストの列 も含める。

ハッシュクラスタは次の条件を満たすことができれば、伝統的なB来―treeイ ンデックスよりもパフォ

ーマンスが良くなる。

ロ テーブルのデータは、ほとんどクラスタキーの等号条件でアクセスされる。

ロ クラスタキーの範囲検索はめったに行われない。

ロ テーブルの全走査はめったに行われない。

ロ テーブルのサイズは固定である。あるいは、サイズが変わるたびにハ ッシェクラスタを再作成する

ことができる。

CREATE CLUSTER文 の HASHKEYS、 SIZEの 値 は次 の よ うに計算で きる。

6.フ まとめ

HASHKEYS=ハ ッシュキーの重 複 しな い値 の数

SIZE=(ハ ッシュクラスタ内の行数 /ハ ッシュキーの重複しない値の数)'ハ ッシュクラスタ内に
おける行の平均長・ 1.1

テーブル全走査が多い場合には、次のような方法でテーブルアクセスを最適化できる。

□ PCTFREEを 減 ら しPCTUSEDを 増 や す ことで 、 そ れ ぞれ の ブロ ック に格 納 され る行数 を増 や す 。 そ

の場合、行移行や行連鎖、DMLのパフォーマンス低下などに気を付けなければならない。
□ 大量の行削除があった場合には、テーブルを再作成することによってハイウォータマークをリセッ

トする。

□ LONG型の列のようにサイズが大きくて滅多にアクセスしない列を別テーブルに移す。

□ あまり大きくないテーブルに対して繰り返しテーブル全走査を行うときに、バッファキャッシュが

有効に機能するようにCACHEヒ ントを使う。

ロ パラレルクエリ機能を使って、テーブル全走査のパフォーマンスを改善する。

ヽ●

機、、

■‐ ・ヽ ■′

鯰

,_‐
,, 1ド

“
●

ふ.´´彗ヽ `
f‐ Fylll::|::ヽ
「
・ 1'

/クエ`リ結合の

フ.1 1ま じめに

この章では、2つ以上のテーブルを結合するときにパフォーマンスを向上させる方法を学ぶ。アプリケ

ーションで実際に使われるSQL文は結合を含むことが多く、対象のテーブルを効率よく結合させること

がオラクルSQLを使いこなすカギになってくる。もちろん、オラクルのオプティマイザは結合の種類や、

結合されるテーブルの順序を可能なかぎり最適にするように機能する。しかし、結合を行う場合、その

アルゴリズムに限界があったり、データの統計がなかったり、オプティマイザが最適な結合を選ぶこと

ができないとこがしばしばある。このような場合にはユーザがヒントや他の手段を用いて結合を最適化

する必要がある。

サブクエリは結合の親戚である。サブクエリは、クエリをSQL文の中に組み込む。さらにサブクエリ

は、結合と同じような演算を行うことができる。その上、結合より効率よく実行できる場合もある。ま

た、サブクエリは、2つめのテーブルに一致しない行を1つめのテーブルから取り出すような、結合の逆

の表現をすることもできる。

サブクエリは複雑なクエリを書くことを可能にする。クエリが複雑になるほど、オプティマイザが最

適な解を見つけることができなくなる可能性が高くなる。

この章では、いつサブクエリを用いるのか、サブクエリのパフォーマンスを向上させるためにはどの

種類のサブクエリを用いるのか見ていく。

この章で扱う項目は以下のとおりである。

ロ ネストされたループ結合、ソートマージ結合、ハッシュ結合などのさまざまな結合種類の中から最

適な結合を選ぶ。

讐…・ヽ・
ヽ

`■
■‐.

護豪′薫,t.II

・'`壕 'ヽ ,・

‐ ヽ■ ・ヽ .

夕
Ｌ
な

屏

■_.

ヾ .

□ 最適な結合順序を選ぶ。

□ 結合のパフォーマンスの向上のためにテーブルをクラスタ化する。

□ 外部結合、スター結合、階層的自己結合などの特別な結合のパフォーマンスを改善する。

ロ サブクエリの利用と最適化

□ 逆結合の最適化

第3章ですでに見たように、以下の方法でオラクルは結合を行う。

ロ ネストされた結合では、オラクルは、駆動テーブルのそれぞれの行について参照テーブルをサーチ

する。このタイプのアクセスは、参照のテーブルにインデックスがあるときによく使われる。イン

デックスがないと駆動のテーブルを1行処理するごとに、参照のテーブルを走査する必要がある。

ロ ソートマージ結合を実行する場合、オラクルはそれぞれのテーブル(あ るいは結果セット)を結合に

使う列の値に基づいてソートしなければならない。ソー ト後、2つのテーブル (あ るいは結果セッ

ト)はソートに使って列の値を基にマージされる。

ロ ハッシュ結合を実行する場合、オラクルは、2つのテーブルのうち小さい方にたいしてハッシュテ

ーブルをつくる。このハッシュテーブルは、インデックスがネス トされたループ結合で使われるの

と同じように、一致する行を探すのに使われる。

フ.2.1 ソ… トマージ結合/ハッシュ結合対ネストされたループ結合
ある意味では、ソートマージ結合もハッシュ結合も同じ仲間だと考えられる。つまり、これらの結合

は同じような:F晨境で優れたパフォーマンスを発揮する。他方、ネストされたループ結合はそれとは異な

る種類の環境に適している。

ソートマージ結合/ハ ッシュ結合とネストされたループ結合のどちらを選ぶかは、次の指針に従うと良い。

□ 処理能力対応答時間。たいていの場合、ネストされたループ結合は応答時間の点で、ソー トマージ

結合/ハ ッシュ結合は処理能力の点で優れている。

□ 結合を可能にするインデックスの有無。たいてい、ネス トされたループ結合は、参照テーブルで結

合を可能にするインデックスが使えるときのみ有効である。

ロ ソー トに必要なメモリとCPUがあるか。大規模なソー トはリソースを大幅に消費し、実行を遅らせ

る可能性がある。ソー トマージ結合は2つのソー トを行なう。他方、ネス トされたループ結合はソ

ー トは行なわない。ハッシュ結合も、ハ ッシュテーブルをつくるためのメモリを必要とする。

ロ ソー トマージ結合とハッシュ結合は、平行して実行することでより大きな効果を発揮する可能性が

ある。

藩::1111::::鰈麒卸

フロ2 ベストな結合を選ぶ

(口)第 7章 結合の最適化とサブクエリ 嘴隕鰤:::|::::::||:酵
||

表7.1は、2つの結合テクニックのどちらを用いるかを決定する場合の一般的なガイドラインである。

Aを Bに結合させる場合

(こ の順序で)

ソー トマージ結合/ハ ッシュ結合

を考える必要があるか

Bについてインデックスを用いてネストさ

れたループ結合を考える必要があるか

AもBも」ヽさい。 ある

Bから行の小さな部分集合を選

ぶだけ。

最初の行をできるだけ早く取り

出す。

すべての行をできるだけ早く取り ある。
出す。

Aをテーブリレ全走査し、ノヾラレル

クエリを使う。

ある。

インデックスを使ってAから行を取

り出し、パラレルクエリを使う。

メモリが制限され、

SC)RT_ RE:A_IZEカ シI、 さヽ 。`

ない。Bをテーブル全走査するの

はコストがかかる。

ない。AとBの両方がソートマージ

結合される、あるいはハッシュテ

ーブルが作成されるまで、最初の

行は返されない。

ある。Aに対してはパラレルクエリ

を使えないが、Bに対してはパラ

レルクエリを使える。

たぶん、状況によって変わる。大

規模なソートが必要でそれを行

なうためのメモリが限られている

場合、ソートマージ結合はたいヘ

んな負荷になる可能性がある。

たぶん、テーブルの大きさ次第

ある。インデックスがBにアクセスす

る1/0の数を減少させる。

ある。インデックスを使ってBがフェッ

チされるとすぐ行は返される。

たぶん、状況によって変わる。

ない。インデックス彩こ索にはパラレル

クエリを使えない。

ある。ネストされたループ結合はソー

トをしないので、メモリの制限の影

響をそれほど受けない

ある。

表7.1ソ ートマージ結合かネストされたループ結合か

フ.2.2 ネス トされたル…プ結合とソー トマージ結合の例
USE_NLヒ ントを用いてネス トされたループを使うようにオプティマイザに指不できる。ここで、

USE NLヒ ントを用いて特定されたテーブルは結合中の参照テーブル、つまり結合順序で2番目のテーブ

ル、であることを思い出してほしい。ネストされたループの場合、このテーブルは結合を可能にするイ

ンデックスを含んでいることが多い。逆に、インデックスがない場合には、駆動テーブルを1行処理する

塚蜀:::|::|::二::‐6

たびに、参照テーブルを全走査 しなければならないので、パフォーマンスが悪くなる。次の例は、以下

の結果をもたらすヒントと実行計画を示している。

sel-ect /*+ oRDERED USE_NL(e) */
count (*)

from customers c,
employees e

where c . sales_rep_id=e . employee_id

Rows Execution Plan

0

0

99500

100000

100000

SELECT STATEMENT COAL: CH00SE

SORT(AGGREGATE)く ― COUNT(■)のためのソー ト
NESTED LOOPS

TABLE ACCESS GOAL: ANALYZED (FULL)OF

INDEX GOAL: ANALYZED (UNIQUE SCAN)OF

(UNIQUE)く ― インデ ックス検索

'CUSTOMERSI

PK EMPLOYEES'

次の例は、ソートマージ結合を強行するためにUSE_MERGEを 用いた同じクエリである。実行計画は、
テーブル全走査と、結合の対象のテーブルそれぞれのソートを示 している。

SC1ECL /*+ ORDERED USE-MERGE(E) */
counE (*)

from customers c,
employees e

where c . sales_rep_id=e . employee_id

Rows Execution Plan

0

0

99500

100000

100000

800

800

SELECT STATEMENT

SORT (ACGRECATE)

MERGE JOIN

SORT (JOIN)

TABLE ACCESS

SORT (JOIN)

TABLE ACCESS

GOAL: CH00SE

<- colrNr (*lAlcbAY-f

く―結合のためのソー ト

GOAL: ANALYZED (FULL)OF
く―結合のためのソー ト

GOAL: 畑 ALYZED (FULL)OF

ICUSTOMERS'

lEMPLOYEES:

フ.2.3 ハッシュ結合を使う
ネストされたループ結合よリソートマージ結合が適している場合、ハッシュ結合を使ってパフォーマ

ンスをさらに向上させることも可能である。一方のテーブルがもう一方のテーブルよりはるかに大きい

ときには、ハッシュ結合のパフォーマンスはソートマージ結合をしのぐ。読者のデータベースの設定次

第では、オプティマイザが適当だと判断した場合、ハッシュ結合が選択されることがある。そうでなけ

結合の最適化とサブクエリ α痣蒻i

れば、次の例のようにUSE_HASHヒ ントを使わなければならないかもしれない(ハ ッシュ結合の順序を正

確 にす るた め に、ORDERヒ ン トとUSE」nSHヒ ン トを使 うことは良 い こ とで ある)。

select /*+ ORDERED USE-HASH(e) */
count (*)

from customers c,
employees e

where c . sales-rep-id=e . employee-id

この構文は次の実行計画をもたらす。この計画とソー トマージ結合の実行計画を比べると、テーブル

をソー トマージする必要がなかったことがわかる。示されたSORI｀ (AGGREGATE)は COUNT(・)の ために

実行されている。

Rows Execution Plan

0

0

100000

100000

800

SELECT STATEMENT

SORT (AGGREGATE)

HASH JOIN

TABLE ACCESS

TABLE ACCESS

GOAL: CH00SE

<- couNr rlakbaY-F

GOAL: ANALYZED (FULL)OF iCUSTOMERSi

COAL: ANALYZED (FULL)OF TEMPLOYEES'

ソートマージ結合に適している状況では、ハッシュ結合はたいていソートマージ結合以上のパフオー

マンスを発揮する。ハッシュ結合はソートを必要としないので、テーブルが大きすぎてソートのための

メモリが足りないような場合、目を見張るようなパフォーマンスの向上が見込めるだろう。ハッシュ結

合をソートマージの代わりにオプティマイザに選択させるには、構成ファイル(initSID.ora)で

HASH_JOIN_ENABLED=TRUEと設定する。

フ.2.4 結合のパフォーマンスの比較

図7.1は、3つの結合を用いて次の構文を実行したときに要した時間を示している。

sefect counL(*)
from customers c,

employees e

where c . sales-rep-id=e . employee-id

5.08

2109

図7.l CUSTOMERSと EMPLOYEESの 中にあるすべての行を対象とした結合技術とそれらの比較

図7.1の結果が示すように、2つのテーブルのすべての行を結合する作業ではネス トされたループのパ

フォーマンスが一番劣る。ソー トマージ結合のパフォーマンスの方が優れており、ハ ッシュ結合のパフ

ォーマンスはさらに良い。

テーブルの中のすべてあるいはほとんどの行を結合する場合は、ネストされたループ結合を使わずに、

ソートマージ結合かハッシュ結合を使うと良いだろう。

確かに、ネストされたループ結合は、複数のテーブルのすべての行を結合させるのには不向きである。

インデックスを読み込むオーバーヘッドがあるためだ(すべての行を読み込むならインデックスは必要が

ない)。 しかし、参照テーブルの部分集合が小さいときには向いている。たとえば、次の例で営業の

c01■n Jamesの 情報を取り出すために顧客データと従業員データを結合させる。

select /求 + ORDERED USE_NL(c) ★/ c.cus toimer_name
from

employees e,
customers c

where c . sales_rep-id=e . employee_id
and e. surname= 'JAMES '

and e. f irstname=' COLIN'

図7.2は 、上の例で使われたそれぞれの結合の結果を示している。参照テーブルの部分集合が小さく、

参照テーブルに結合を可能にするインデックスがあるなら、ネス トされたループ結合は他の結合よりは

るかに優れている。

鰊
一辱

諄

一

一鵞
拳

●第7章 結合の最適化とサブクエリ (□躊鯰躙漑 |:|11:11:|:||

005

255

図7.2 従業員の小さな部分集合と対応する顧客の行の結合に使われたさまざまな結合手法のパフォーマンス

フ.2.5 オプティマイザゴールと結合
結合の結果、参照テーブルからすべての行が返される場合にはソートマージ結合/ハ ッシュ結合が、参

照テーブルから返される行の数が少ない場合にはネストされたループ結合が最も効率的であることを学

んだ。同様に、処理能力を優先にするときはソートマージ結合/ハ ッシュ結合、応答時間を優先にすると

きはネス トされたループ結合が理想的であることを学んだ。構成ファイル (initSID.ora)で

OPTIMIZER_MODE=ALL_ROWS(デ フ ォル ト)を 設 定 して い る場 合 、 コス トベ ー ス オ プテ ィマ イザ は ソ ー ト

マージ結合/ハ ッシュ結合を選ぶ傾向が強 く、オプティマイザゴールがFIRST_ROWSの 場合、ネス トされ

たループ結合を選ぶ傾向が強い。

ルールベースオプティマイザは、ほとんどの場合、ソー トマージ結合/ハ ッシュ結合よりもインデック

スに基づいたネス トされたループ結合を好む。ユーザがルールベースオプティマイザからコス トベース

オプティマイザに初めて移行したとき、しばしば応答時間の悪化に気付く。調べてみると、前はネス ト

されたループ結合を用いて実行されたSQL文が、現在はソー トマージ結合を用いて実行されていること

がわかる。問題なのは、コス トベースオプティマイザのデフォル トの設定が処理能力 (ALL_ROWS)で

あることであり、この設定がソートマージ結合の増加に結びついてしまうということである。これは、

オプティマイザゴールを正 しく設定して、結合を最適化する場合とくに重要である。目的が応答時間な

ら、オプティマイザゴールをFIRST_ROWSに 設定しよう。

第 3章で述べ た よ うに 、 オ プテ ィマ イザ ゴ ール は、構 成 フ ァイル (initSID.ora)の OPTIMIZER_MODE

をFIRST_ROWSあ るい はALL_ROWSに
‐
設 定 :す る ことで調 整 で き る。

フ.2.6 結合の最適化

結合を最適化するには、次のような方法がある。

ロ ネストされたループ結合については、結合に使われるインデックスがWHERE句 で使われている列

をできるだけ多く含んでいることを確認する。インデックスが選択 リス ト内の列も含んでいる場合

(あ まり多くなければ)、 なお理想的だ。

ロ ソー トマージ結合については、データベースのソー トのためのパラメータを最適化する。ディスク

を使わずメモリ内だけでソー トが実行できれば理想的だ。

ロ テーブル全走査を実行する場合、第6章の最適化のガイドラインを参考にする。

ロ ハッシュ結合を実行する場合、データベースの構成パラメータも重要となる。

フ.3 最適な結含順序の選択

最適な結合順序を選択するのは難しい。結合順序の組み合わせは数多くあるのだ。数学に強い人は、

結合順序の組み合わせの数はFROMの テーブル数によって決まることがわかるだろう。たとえば、FROM

旬の中に5つのテーブルがあれば、組み合わせの数は、次のように120に なる。

5!=5× 4× 3× 2× 1=120

コストベースオプティマイザはさまざまなアクセス方法のコスト、処理する行数や結合順序を考慮し

て実行計画を立てる。ルールベースオプティマイザは、より単純なルール (ア クセス方法の優先順位)に

基づいて実行計画を立てる。実際のデータがオプティマイザの仮定と異なっていた場合には、どちらの

オプティマイザも最適な実行計画の作成に失敗するだろう。最適な結合順序の選択は、自分自身で行え

なければならない。そのために、次のガイドラインを参考にすると良い。

□ 最も少ない行数を返すテーブルを駆動テーブル (結合サ1贋序の最初のテーブル)にする。テーブルに

WHERE条件がある場合には、この条件を考慮して駆動テーブルが返す行数を最小にする。

□ 駆動テーブルと結合されるテーブルの部分集合が小さく、結合にインデックスが利用できるならネ

ストされたループ結合を用いることを検討する。結合されるテーブルの部分集合が大きい場合は、

ソートマージあるいはハッシュ結合を用いる。

ロ ネストされたループ結合を可能にするインデックスに、結合されるテーブルのWHERE旬のすべての

列が含まれているか確認する。

フ.3.1 ヒン トを用いて結合をコン トロ…ルする

オプティマイザの選んだ結合方法が完璧からはほど遠いものである場合、次のヒントを用いてオプテ

ィマイザに適切な結合方法をアドバイスできる。

□ ORDEREDヒ ン トは、オプテ ィマ イザ に対 しテ ー ブル が FROM句 に あ らわ れ た順序 で テ ー ブル を結合

するように指示をする。

□ FULL、 INDEXなどのヒントを用いて、駆動テーブルに適したアクセス方法を指示する。

□ USE_NL、 USE_MERGEな どの ヒ ン トを用いて、特 定 の結合方法 を指 示 す る。

USE_NL、 USE_MERGEな どの ヒ ン トを用 い る場合 、 ヒ ン トで特定 され て い る テ ーブル が結 合 の 2番 目の

テーブルであることを覚えておくことが重要である。たとえば、結合の順序がA、 B、 Cの場合、ヒント

結合の最適化とサブクエリ ⊂舅鰤

USE_NL(B)はAと Bと の ネ ス トされ た結合 とな る。 ヒ ン トUSE_NL(C)はBと Cと の ネ ス トされ た結合 とな

る。 ヒ ン トUSE_NL(A)は意 味 を な さない、 なぜ な らAは駆動 テ ー ブル だか らで あ る。

次 の例 は これ らの ヒン トの使 い方 を示 して い る。 ORDEREDは テ ー ブル をFROM旬 に あ らわれ たチ1贋序 と同

じサ1原序 で 結 合 す る よ うオ プ テ ィマ イ ザ に 指 示 す る 。 INDEXヒ ン トは 、 prOductsテ ー ブ ル の

pk prOductsイ ンデ ックス を使 用 す るよ うオ プ テ ィマ イザ に指示 す る。USE_NLは 、 ネ ス トされ たル ー

プ 結 合 で sa■ esテ ー ブ ル が prOductsテ ー ブ ル に 結 合 され る よ うオ プ テ ィ マ イ ザ に指 示 す る 。

USE_MERGEは 、 ソー トマ ー ジ結 合 を使 って customersテ ーブル がprOductsテ ー ブル とsa■ esテ ー ブル

か ら作成 され た結果 セ ッ トに結 合 され るよ うオ プ テ ィマ イザ に指示 す る。

select /*+ ORDERED INDEX(p pkjroducts) USE-NL(s)

USE_MERGE (cl * /
p . product-descript ion,
s.sa1e_date,
c . customer_name

from products p,
c=l ac e

customers c
where p. produc!-id=s . product-id
and s, customer-id=c. customer-id
and c.customer_name='SMITH and sons'
and p.product_id=1

実行計画 :

MERGE

SORT JO■ N

NESTED L00PS

TABLE ACCESS BY ROWID PRODUCTS

INDEX UNIQUE SCAN PK_PRODUCTS

TttLE ACCESS FULL SALES

SORT JO■ N

TABLE ACCESS FULL CUSTOMERS

く― USE_MERGEヒ ントの効果

く― USE_NLヒントの効果

く― INDEXヒ ントの効果

7.4 インデックスクラスタを用いた結合の最適化

第3章でインデックスクラスタを紹介した。それは、1つ以上のテーブルの関連する行を同一のセグメ

ント内に格納する。共通のクラスタキー値を持つ行が一緒に格納される。ある意味では、インデックス

クラスタは2つ以上のテーブルを前結合させているのである。そのため、インデックスクラスタは結合の

パフォーマンスを向上させる。たとえば、次のクエリの場合、sales_rep_id/emp■ Oyyee_idの列に

基づいて、employeesテ ーブルとcustomersテ ーブルにインデックスクラスタをつくることでパフォ

ーマンスを改善できる。 ,

sel-ect e. surname, c. contact_surname
frorn employee_c1us e,

customer_clus c

where e. employee_id=c. sales_rep id
and e.employee_id=20

RowS -Lxecu L ron PIan

0

3333

■

1

3333

SELECT STATEMENT HINT: CH00SE

NESTED LOOPS

TABLE ACCESS (BY ROWID)OF IEMPLOYEE_CLUS'

INDEX 〈UNIQUE SCAN)OF IEMPLOYEE_CLUS_■ 0:

TABLE ACCESS (CLUSTER)OF 'CUSTOMER_CLUSI
(UNIQUE)

図7.3は、2つのテーブルをクラスタ化すると、結合のパフォーマンスが大幅に向上する可能性がある

ことを示している。

インデックスクラスタを用いれば結合のパフォーマンスを向上させることができるにもかかわらず、

実際に使われることはほとんどない。確かに、インデックスクラスタは結合を改善することができるの

だが、他のテーブルの行もクラスタ内に含んでいるので、テーブル全走査を行う場合には、通常のテー

ブルを全走査するよりも遅くなる。また、クラスタを維持しなければならないので、クラスタキーの更

新処理は遅くなる。

図7.3 テーブルのクラスタ化がもたらした結合のパフォーマンスの向上

図7.4は 、テーブルのクラスタ化がどのようにテーブル全走査のパフォーマンスに影響をあたえている

かを示している。

047

1隋軋励

● 第7章 結合の最適化とサブクエリ
IC国
は躇瑕輻 :::|::

065

0.02

図7.4 EMPLOYEESテ ーブルについてクラスタ化が行なわれた場合と、
クラスタが行なわれなかった場合のテーブル全走査に所要した時間

クラスタ化の欠点のために、オラクルのスペシャリス トのほとんどは、テーブルが常に結合 されたも

のとしてアクセスされる場合でない限り、テーブルをクラスタ化しない。また、テーブルの非標準化

(第 14章 を参照)も代替手段として用いることができる。

フ.5 外部結合

第2章 を思い出していただければわかるが、外部結合では、あるテーブルに一致する行がなくても、別

のテーブルから行が返される。

たとえば、従業員を含まない部署も取得するための外部結合は、次のようになる。データを含まない

側のテーブルの列に外部結合演算子(+)を使うことを覚えておいて欲しい。

sefect /*+RULE*/ d.departmenL_name, e. surname

from departments d,employees e
where d. department-id=e . department-id (+)

Execution Plan:

MERCE JOIN OUTER

SORT JOIN

TABLE ACCESS FULL DEPARTMENTS

SORT JOIN

TABLE ACCESS FULL EMPLOYEES

外部結合の使い方を誤っているクエリに遭遇するかもしれない。たとえば、次のクエリを見て欲 しい。

select /*+RULE*/ d. department_name, e. surname

from departments d,employees e

鰤彰D

wtrere d. department_id=e . department_id (+)

and surname = 'sMITH',

このクエリは、データを含まない方のテーブルの列に条件を設定しているので、外部結合は無意味で

ある。なぜなら、surname=ISMITH'の 条件を満たさなければならないので、従業員のいない部署の

行は除外されるためである。返される結果は、内部結合の場合と同じになる。

7.6 スター結合
スタースキーマは、主要な情報が含まれている大規模なファクトテーブルと、そのファクトテーブル

内の特定の項目に関する情報が含まれている小規模な複数のディメンションテーブルから構成される。

たとえば、図7.5は、salesテ ーブルがファクトテーブルで、products、 departments,emp■ Oyeesテ

ーブルがディメンションテーブルであるスタースキーマを示している。

PRODUCTS DEPARTM
23Ω峰 0
PRODuCT DESCRIPT10N
NORMAL VALUE

皿』M斑退
VARCHAR2(40)
NUMBER

2旺塾B:L張 N■ lD
DEPARTMENT NAME
MANAGER ID
LOCAT10N

皿」M則譲
VARCHAR2(40)
NUMBER
VARCHAR2(40)

SALES
QЩヨ0」旦巳p
圧Ю2じ■lD
壁LEDEL
EMPLOYEE ID
REG10NNAME
DEPARTMENT ID
QUANTITY
SALE VALUE
SALES REP ID

NUl延工旦
NUl虹狙B
Q咀工
NUMBER
VARCHAR2(40)
NUMBER
NUMBER
NUMBER
NUMBER

PRODUCTS
CuSTOMERID
SURNAME
FIRSTNAME
ADDRESSl
ADDRESS2
ZIPCODE
DATE OF BIRTH
PHONENO
MANAGER ID
SALARY
Sl~ATuS

DEPARTMENT ID
COMMENT ID

NUMBER
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(6)
DATE
VARCHAR2(12)
NUMBER
NUMBER
VARCHAR2(9)
NUMBER
NUMBER

図7.5 スタースキーマ

(|)第 7章 結合の最適化とサブクエリ GEM輻 :|||:::

ディメンションテーブル間には関係がない。関係が存在するのはディメンションテーブルとファク ト

テーブルの間だけである。ファク トテーブルとディメンションテーブルを結合するクエリはスタークエ

リと呼ばれ、スタークエリによって結合されて初めて意味のあるデータになる。

このスタークエリは、ルールベースオプティマイザでは、比較的大きいファクトテーブルとディメン

ションテーブルの結合の繰り返 しで処理される。

select /*+RULE */ sum(sa1e_va1ue)

from departments d, <- 7-l l>r=>7-))t

employees e, <- i4 /.>>=:/7-))t
producLs p, .- 74 /)!=>--))1,
sales s <- 7zJ l7-))1,

where p.product-descriPtion='oracle Tune Tool mk 2'

and e. surname=' MCLOUGHLIN'

and e. f irstname=' FREDERTCK'

and d.department-name='Dat.abase Products'
and p. product-id=s. product-id
and e . employee-id=s . sal-es-rep-id
and d. department-id=s. department-id

Rows Execution Plan

0

8

8

9

1212

200000

200000

200000

1212

SELECT STATEMIEINT COAL: HINT: RULE

SORT (ACGREGATE)

NESTED L00PS

NESTED L00PS

NESTED L00PS

TABLE ACCESS GOAL: ANALYZED (FULL)OF 'SALES' く― フアクトテ~フリレ

TABLE ACCESS (BY ROWID)OF IPRODUCTSI く― デイメンションテーブル

INDEX (【 Лヽ ■QUE SCAN)OF :PK_PRODucTs' (IЛ N■QUE)

TABLE ACCESS (BY ROWID)OF :EMPLOYEES' く― デイメンションテーブル

INDEX (UN■ QUE SCAN)OF 'PK_EMPLOYEES: (UNIQUE)
TABLE ACCESS (BY ROWID)OF :DEPARTMENTSi く― アイメンションテープリレ

INDEX (UNIQUE SCAIN)OF 'PK_DEPARTMENTS' (UNIQUE)

ルールベースオプティマイザは、ファクトテーブルを全走査するので、ファクトテーブルが巨大な場

合、かなりの処理コストがかかる。それに対して、コストベースオプティマイザはスタークエリを認識

し、特別な手段を用いて実行することができる。スタークエリを実行するコストベースオプティマイザ

のアプローチは次のようになる。

□ すべてのディメンションテーブルについて結果セットを取り出す。WHERE句の条件にもよるが、
たいていの場合、それぞれのディメンションテーブルが返す行数は少ない。

ロ ディメンションテーブルから得られた結果セットを直積結合させる。たとえば、それぞれのディメ

ンションテーブルが返した行数が2,5,2だ った場合、20(2× 5×2)の結果セットが得られる。

□ 結合された結果セットのそれぞれの行に対応するファクトテーブルの行を取り出す。ファクトテー

ブルのアクセスには(ディメンションテーブルに結合するための列で構成された)結合インデックス

が使われる。

このアプローチは、ディメンションテーブルの結果セットの組み合わせ(直積)が比較的小さい、ファ

クトテーブルのアクセスに結合インデックスが使えるという仮定に基づいている。この仮定が成立 した

場合、スター結合はかなリパフォーマンスを改善できる。

ココス トベースオプティマイザがスタースキーマを認識し、この最適化を自動的に実行することもあ

るが、STARヒ ン トを用いてスター結合を選択 させることもできる。次の例では、emp■。yees、

departments、 productsテ ーブルがこの順序で直積結合され、得られた結果セットとsalesテ ーブル

が結合インデックス(sales_rep_depts products_idx)を 使ったネストされたループで結合されている。

sefect /*+ STAR */ sum(sale_value)

Rows Execution Plan

from departments d, .- i4 /))=>--))l-)
employees e, .- 7 4 l)) =>7-))t
products p, <- 7i />r=>--))1,
sales s <-)y2l--))l)

where p.product_descri-ption='Oracle Tune Tool mk 2'
and e. surname='MCLOUGHLIN'

and e. f irstname=' FREDERICK,

and d.department_name='Database Products'
and p.product_id=s. product_id
and e . employee_id=s . sales_rep_id
and d . department_id=s . department_id

SELECT STATEMENT GOAL: CH00SE

SORT (AGGREGATE)

NESTED L00PS

MERGE JOIN (CARTESIAN) く― 直積糸吉合
MERGE JOIN (CARTESIAN)く ― 直1積結合
TABLE ACCESS (BY ROWID)OF TEMPLOYEESI

INDEX (RANGE SCAN) OF 'EMPLOYEES_SURNAMEl

QUEUNI

SORT (JOIN)

(NON―

i::|111::||||:111:::|::::赳 |:ま茫凸||は illllll)

(0)第 7章 結合の最適化とサブクエリ咽鶉:曇 |:||||:|1難
|:

TABLE ACCESS (FULL)OF 'DEPARTMENTS'

SORT (JOIN)

TABLE ACCESS (FULL)OF IPRODUCTSi
TABLE ACCESS GOAL: .ANALYZED (BY ROWID)OF ISALES'

INDEX GOAL: ANALYZED (RANGE SCAN)OF
'SALES_REP_DEPT_PRODUCT_IDXl (NON―UNIQUE) く― 糸吉合イ

ンデックス

図7.6は、ルールベースオプティマイザとコス トベースオプティマイザ (ス タークエリの最適化なし)と
コス トベースオプティマイザ (ス タークエリの最適化あり)のパフォーマンスの比較である。STARヒ ント

がパフォーマンスの大幅な向上に結びついていることがわかる。ファクトテーブルが大きければ大きい

ほどこの効果は大きくなる。テーブル全走査をしなくても済むためである。

図7.6 スタークエリの最適化

フロ7 階層クエリ
第2章で、COIWECT BY句を用いた階層クエリについて学んだ。階層クエリは自己結合の特別なケース

である。階層クエリではテーブルのある列が同じテーブルの別の行のキーを指し示す。そしてまた、こ

の行が別の行を指し示すのだが、これが階層の1番上まで到達するまで続けられる。

emp■ oyeeテ ーブルの場合、manager_idの列がemp10yee_idの 行を指し示している。全体の階層を
知りたい場合、次のクエリを用いる。

select rpad(' ',leve1*3) | lsurname employee
from employees
start with manager_id=0
connect by prior employee_id=manager_id,.

3.43

006

大きなテーブルについての階層 クエ リの効率 を高めるには、START WITH句 とconttCT BY句 に関す

るインデ ックスが必要となる。上記のクエ リのケースではmmager_idについてインデ ックスが必要とな

るということである。manager_idについてのインデ ックスがなければ、上記の階層 クエ リの実行計画

は次のようになる。

Rows Execution Plan

0

800

800

1

640000

SELECT STATEIMENT

CONINECT BY

TABLE ACCESS

TABLE ACCESS

TABLE ACCESS

HINT: ANALYZED

HINT: ANALYZED

HINT: ANALYZED

(FULL)OF I EIMPLOYEES'

(BY ROWID)OF 'EMIPLOYEESI

(FULL)OF IEMPLOYEESi

emp10yeesテ ーブルについての2番目のテーブル全走査で、640,000の行が取り出されたことに注目し

て欲しい。employeesテ ーブルには800の 行しかなかった。なぜ、640,000も の行が取 り出されたのだろ

うか。emp■ Oyeesテ ーブルのそれぞれの行に対 し、一致するmanager_idが あるかとうかを調べるため

にさらにemp■ Oyeesテ ーブルを全走査しているためである。つまり、800行のそれぞれに対し、800行の

テーブル全走査を実行しなければならないのだ。すなわち、800× 800=640,000と なる。manager_idに

ついてインデ ックスを作成す ると次のような実行計画になる。START WITH句 とCOMECT BY旬 に対 し

てインデックスが有効に機能 していることが分かる。

Rows Execution Plan

0

800

2

SELECT STATEMENT HINT: CH00SE

CONNECT BY

INDEX (RANGE SCAN) OF 'EMPLOYEES_MANAGER_IDX! (NON―

UNIQUE) く― START WITHイ コ〕

TABLE ACCESS HINT: ANALYZED (BY ROWID)OF iEMPLOYEESi

TABLE ACCESS HINT: ANALYZED (BY ROWID)OF `EMPLOYEES'

INDEX (RANGE SCAN) OF :EMPLOYEES_MANAGER_IDXI (NON―

UNIQUE)く― CONNECT BY句

1

799

1599

図7.7 階層クエリを効率的に実行するために、インデックスを作成したことによつて、もたらされたパフォーマンスの向上

HINT: CHOOSE

● 1第7章 結合の最適化とサブクエリ CE墓祗隋は:::||::11::

階層の部分検索を望むことがある。たとえば、特定の部署について従業員の階層を検索する場合、

WHERE句 で条件を加えることも可能である。

select rpad(' ',leve1*3) | lsurname employee

from employees
where department-id= (sef ect department-id

from departments
where department-name=' Compiler products

START with managrer_id=0

connect by prior employee-id=manager-id

不幸なことに、オラクルはWHERE句 を用い行を除外する前に階層を築いてしまう。いいかえれば、

WHERE旬 の条件が適用される前にSTART WITH句 とcomJECT BY句 が実行されてしまうのだ。このよう

な場合には、START WITH旬 で条件を設定できるようにする。つまり、階層の一部を選ぶ場合には

START WITH句 を使う。

sefect rpad(",leve1*3) | lsurname employee

from employees
START with manager-id= (sefect rnanager-id

from departments
where department-name=' Compiler products')

connect by prior empf oyee-id=manaqer-1d

図7.8 :選択基準をmERE句 からSTART WITH旬に変えることで階層クエリのパフォーマンスを向上させる

階層クエリは、結合を含むことはできないし、相関サブクエリを含むこともできない。あまり複雑な

クエリには利用できないことをおぼえておくべきである。

7日8 単純サブクエリ

鰤
3,204

霧
22

躙

第2章で述べたように、サブクエリとはSQL文の中のSELECT文のことである。単純サブクエリは親ク

エリの影響を受けない。たとえば、次のクエリは最低賃金の従業員数を返す。

sefect count(*)
from employees

where salary=(select min(safary)
from employees)

Rows Execut.ion Plan

SELECT STATEMENT HINT: CHOOSE

SORT (AGGREGATE) く― COUNT(★)の実イ〒
FILTER く―最低賃金の従業員の検索

TABLE ACCESS (FULL)OF IEMPLOYEESl

SORT(AGGRECATE)く ― :最低i賃1金(1)取得
TABLE ACCESS (FULL)OF IEMPLOYEES'

上記の実行計画では、テーブル全走査が2回実行されているのでパフォーマンスは期待できない。次の

ようなPL/SQLを使えば、テーブル全走査を1回に押さえることができる。

declare
―― sa■ary順に従業員情報を取得するためのカーソル

cursor emp_ sr ■s

select emp■ 。yee_■ d′ surnalme′ f■ rstname′ date_of_b■ rth′ salary

from employees

order by salary,

■aSt_Salary emp■ Oyees.salary%TYPE, 一― 直 前 の sa■ aryを 保 存 す る

counter number:=0, 一― 行数のカウンタ

begin

for emp_rOw in emp_csr loop

――直前のsalaryよ りも値が大きければループを抜ける

eX■ t When (counter > 0)and (emp_row.salary > ■ast_salary),

――カウンタを更新する

counter:=counter■ ■,

―― salaryを保存する

last_salary:=emp_rOw.salary′

end ■oop,
一― 最低賃金の従業員数を設定する

:m■n_salary_count:=counter,

0

0

800

800

800

800

end;

・
　

ヽ
″

曖
Ｆ
】
颯‐
蟷

10)第 7章 結合の最適化とサブクエリ cu躙蒻:||:::1彗 i

PL/SQLを 使う以外に、このクエリを最適化するためには、salary列 にインデックスを作成する。こ

れにより実行計画は、2つの比較的手軽なインデックス検索に変わる。

Rows Execution Plan

O SELECT STATEMENT HINT: CH00SE

O SORT (ブ GヽGREGATE)

2 1NDEX (RANGE SCAN)OF IEMPLOYEE_SAL_IDX' (NON― UNIQUE)

■ SORT (AGGREGATE)

l INDEX (RANGE SCAN)OF 'EMPLOYEE_SAL_IDXl (NON― UNIQUE)

インデックスを利用すると、salary順の従業員の情報を取得するためにテーブル全走査をする必要が

ないので、PL/SQLのパフォーマンスも改善できる。図7.9にその結果を示す。

図7.9 インデックスの有無によるサブクエリとPνSQLのパフォーマンスの比較

フ.9 iN演算子を含むサブクエリ

IN演算子を含むサブクエリはきわめて一般的である。これらのサブクエリは結果を子クエリから返し、

親クエリに結合 させる。たとえば、次のクエリは従業員であるすべての顧客数を返す。

select count(*)
from customers

where (contact-surname, contact-firstname, date-of-birth) in
(select surname, firsLname, date-of-birth
from employees)

IN句 を用いたサブクエリのほとんどは、結合に変換することが可能である。たとえば、次の結合は前

の例と同じ結果を返す。

select count(*)
from customers c,

employees e
where c . contac t_surname=e . surname

and c . contact-firstname=e . firstname
and c . date_of_birth=e . date_of_birth

INサブクエリが結合に変換できない場合、オラクルはサブクエリを実行し、その結果セットを一時的

につくる。一時的につくられた結果セットが親クエリに、おそらくソー トマージ結合を使って結合され

る。たとえば、次のような実行計画をもたらす。

Rows -Eixecutaon P-Lan

O SELECT STATEMENT GOAL: CH00SE

O SORT (AGGREGATE) く― COUNT(■)(万)実行

O MERGE JOIN く― 一 時 的 な 結 果 セ ッ トと customersの 結 合

99928 INDEX GOAL: ANALYZED (FULL SCAN)OF

'SURNAME_FIRSTNAME_DOB' (NON― UNIQUE)く ― customersσ)取イ尋
SORT (JOIN)

VIEW く―一時的な結果セ ットの作成
SORT(UNIQUE)く ―重複するデータを取り除く
TABLE ACCESS(FULL)OF 'EMPLOYEES' く―処理の開女台

オラクルがINサ ブクエリを結合に変換できる場合、結合に対 して適切なインデックスを利用すること

が可能である。サブクエリアプローチでは、一時的な結果セットがつくられるので、インデックスを持

つことはできない。次の実行結果は、INサブクエリが結合に変換されたときのものである。

Rows Execution Plan

800

800

800

800

0

0

0

800

800

SELECT STATEMENT GOAL:

SORT (AGGRECATE)

NESTED LOOPS

TABLE ACCESS (FULL)OF

INDEX GOAL: ANALYZED
ISURNAME FIRSTNAME DOB

るインデックスアクセス

CH00SE

lEMPLOYEESi

(RANGE SCAN)OF
(NoN-uNrQUE) <- cusromerslalid

(口)第7章 結合の最適化とサブクエリα痣躙:

2,523

3,234

99,957

100,151

図7.10 1Nを用いたサブクエリと相当する結合との比較

INサ ブクエリが結合に変換できる場合、オプティマイザはインデックスを使ったネストされたループ

結合やハッシュ結合などを使うことが可能になるので、結合はINサ ブクエリのパフォーマンスをしのぐ。

図7.10は、INサ ブクエリアプローチに対してネストされたループ結合/ハ ッシュ結合がすぐれている点を

示している。

INサ ブクエリのほとんどは結合に変換可能で、オラクルはこの作業を自動的に行なう。結合により、

オプティマイザはインデックス/ハ ッシュ結合の利点を生かすことができる。自動的な変換に頼るよりも

可能なら明示的にINサブクエリを結合に変換したほうが良いだろう。

7.10 相関サブクエリ
相関サブクエリでは、親クエリが返したそれぞれの行に対し、子クエリが実行される。たとえば、次

のサブクエリは各部署で一番高い賃金の従業員を探し出す。これを行なうために、親クエリの各行に対

してサブクエリ (部署の最高賃金を求める)を実行する。

select departiment_id′ emp■ Oyee_id′ surna]me′ firstname

frOm emp10yees elく ―エイリアスelを設定する。

Where Salary=(

se■ ect max(salary)く ―子クエリは親クエリの各行に対して実行される

from emp10yees

where department_id=el.department_id)く ―親クエリの値が参照される

サブクエ リは何回も実行 されなければならないので、効率よく実行されなければならない。このため

には、サブクエリに対して適当なインデックスが必要になる。サブクエリにインデックスを利用できな

い場合次のように効率の悪い実行計画になってしまう。

Rows -Eixecutron PIan

SELECT STATEMENT HINT: CH00SE

FILTER

TABLE ACCESS (FULL)OF 'EMPLOYEES' く― 1親ク Iニ リ

SORT (AGGRECATE)

TABLE ACCESS (FULL)OF 'EMPLOYEES' く― 子ク :工:リ

テーブルには800し か行がないのにもかかわらず、子クエリでは、約500,000も の行を取り出している。

これは、子クエリを800回 も実行し、それぞれの回につきテーブル全走査を行なってしまったからである。

明らかに、子クエリのテーブル全走査を避ける必要がある。depaimentidに ついてインデックスを作成

した場合、次の実行計画がもたらされる。

0

800

800

97789

497600

Rows Execrrt-i on PIan

SELECT STATEMENT HINT: CHOOSE

FILTER

TABLE ACCESS (FULL)OF lEMPLOYEES'

SORT (AGGREGATE)

TABLE ACCESS (BY ROWID)OF 'EMPLOYEESI

INDEX (Iヽ ANGE SCADT)OF I DEPARTIMIENT_■ DX (NON―UNIQUE)

特定の部署に属する従業員を取 り出すためにインデックスが使われている。しかし、最高賃金を求め

るために賃金の値が必要になるので、ROWIDを 使って実テーブルにアクセスしている。その結果、状況

はさらに悪 くなってしまった (図 7.11参照)。 しかし、departmentidと salaryについて結合インデックス

を作成した場合、次の実行結果がもたらされる。

0

800

800

97789

97789

98410

Rows Execution Plan

0

800

800

97789

98410

SELECT STATEMENT HINT:

FILTER

TABLE ACCESS (FULL)OF

SORT (AGGRECATE)

INDEX (RANGE SCAN)OF

CH00SE

'EMPLOYEES'

lDEPARTMENT_SAL_IDXl (NON― UNIQUE)

インデックスにsalaりの値が含まれているので、実テーブルヘアクセスする必要がない。図7■ 1は得ら

れた1/0の著 しい改善を示している。

相関サブクエ リについては、サブクエリが完全に最適化されているかどうかを確認する。できるなら、

実テーブルにアクセスすることなく、インデックスだけでサブクエリを実行できるようにする。

SQL文で、このクエリをこれ以上改善することはおそらくできないだろう。しかし、PL/SQLを 使えば、

これらの行をさらに速く取り出すことが可能となる。

壕||:||:|:lmmu

●第7章 結合の最適化とサブクエリC畷爾隕躙顆::::|:|::

declare
__department_idと salaryの降順に

一― 従業員情報を取 り出すためのカーソル

cursor emp_ sr ■s

select department_id′ surname

from emp■ oyees

order by department_id′ sa■ary desc,

last_department_■ d emp10yees.department_■ dtTYPE′

counter inumber:=o,

begin

for eimp_row ■n emp_csr loop
_― department_idが変わつたので従業員情報を出力する

__department_idこ とに最初の従業員は最も給料が高い

■f (Counter = 0) Or (emp_row.department_id
last_department_■ d)then

dbms_。 utput.put_1・ ne(to_char(emp_row.department_・d)||'

emp_row.surname),

end ■f′

||

__department_.dを保存する

last_department_id := emp_row.department_■ d′

counter:=counter+■ ,

end loop′

end;

このアプローチを用いれば、employeesテ ーブルの全走査 1回で済む。部署ごとに最初の行には部署

内で最高の賃金を持つ従業員があらわれる。 1つの部署で2人の従業員が最高賃金を持っている場合、こ

のPL/SQLは 使えないことに注意する。しかし、これを実行できるように修正することは可能である。

このアプローチを用いた場合、1/0が理論上の最小となる。インデックスを用いる必要もなかったのだ !

Rows Execution Plan

0

800

800

SELECT STATEMENT HINT: CHOOSE

SORT (ORDER BY)

TABLE ACCESS (FULL)OF IEMPLOYEES

3,138

45

197,664

図7.11 相関サブクエリに使われたさまざまなインデックスの効果とPυSQL

7.10.l EXISTSを用いた相関サブクエリ
EXISTSは特別な演算子で、相関サブクエリの中でしか使われない。EXISTS演算子はサブクエリが1
つ 以上 の行 を返 した場合 TRUEを 返 し、 そ うで ない場 合 FALSEを 返 す 。 た と えば、次 の クエ リはEXISTS

演算子を用いて、従業員の存在する部署についてのみ部署の詳細を返す。

select * from departments where exists
(select. * from employees where department_id=departments.department_id)

EXISTS旬 を含むSQL文を最適化する方法は、基本的に相関サブクエリを最適化する方法と同じである。

相関クエリでは、最適化のためにサブクエリで使われている列に適切なインデックスを作成した。

employees.department_id列 にインデックスがない場合、上記のSQL文から次の実行計画がもたら
される。deparetmentsテ ーブルの各行ごとにemp■ Oyeesテ ーブルが全走査されている。

Rows Execution Pl_an

0

51

51

40800

SELECT STATEMENT

FILTER

TABLE ACCESS

TABLE ACCESS

HINT: CH00SE

H工 :NT: 細 ALYZED (FULL)OF lDEPARTMENTS
HINT: 畑 ALYZED (FULL)OF 'EMPLOYEES'

employees.department_id列 にインデックスがある場合、次のような実行計画がもたらされる。

Rows Execution Plan

O SELECT STATEMENT

51 FILTER
HINT: CH00SE

●第7章 結合の最適化とサブクエリ C聾藪鰺靡輻

51

51

フ.10.2 EXISTS,IN,結 合の比較

たいていの場合、EXISTS句 を用いたクエリは、INや結合でも表現できる。たとえば、次の2つの文は

前にEXISTSを用いた例と同じ結果を返す。

select * from d.epartments where department-id in
(select distinct departmenL-id from empl-oyees) ;

適 切 なイ ンデ ック スが存在す る場 合 、 EXISTSが最 もパ フ ォーマ ンス が 良 くな る。 これ は 、 EXISTSが

行の存在チェックをするだけで済むのに対し、INや結合はDISTINCT(重複する値を取り除く)処理のた

め に、 ソー トが必 要 に な るためで あ る。図 7.12に EXISTS、 IN、 結合 のパ フ ォーマ ンス を不 す 。

図7.12 EXISTS、 lN、 結合のパフォーマンス

フ.10.3 反緒含
反結合は、あるテーブルから、別テーブルの一致する行を除いた結果を返す。これは通常の結合とは

反対の作業なので反結合と呼ばれる。

NOTiNを用いた反結合

おそらく、最も自然で広く使われている反結合の表現方法はNOT INを 用いたものである。たとえば、

次のクエリは顧客でないすべての従業員を返す。

023

001

TABLE ACCESS HINT: ANALYZED (FULL)OF 'DEPARTMENTS:

INDEX (RANGE SCAN)OF IEMPLOYEE_DEPT_lDXl (NON=UNIQUE)

select distinct d.*
from departments d, emPloYees e

where d . department-id=e . department-id t

select surname, firstname, date_of_birth
from employees

where (surname,firstname,date of birth) not in
(select contact_surname, contact_f irstname, date_of_birth
from customers)

NOT INを 用いて反結合を表現するのは自然なことなのだが、このクエリは、ルールベースオプティマ

イザでは効率的に実行できない。上記の例では、ルールベースオプティマイザがemp■ Oyeesテ ーブルの

各行についてcustOmersテ ーブルの全走査を行い、一致する行がなかった場合、employeesテ ーブル
の行が返される。ルールベースオプティマイザはcustOmersテ ーブルのインデックスを用いない。なぜ
なら、サブクエリの中にWHERE句 はないからだ。実行計画は次のようになっている。

Rows Execution Plan

0

800

800

80000000

SELECT STATEMENT

FILTER

TABLE ACCESS

TABLE ACCESS

GOAL: HINT: RULE

GOAL: ANALYZED (FULL)OF lEMPLOYEESI

GOAL: 畑 ALYZED (FULL)OF ICUSTOMERS'

employeesテ ーブルは800行 、custOmersテ ーブルは100,000行 あるので、80,000,000(800× 100,000)
もの行が取り出されてしまう。

コス トベースオプティマイザはcustOmersテ ーブルのインデックスを使って、ネス トされたテーブル
全走査を避けることができる。上のクエ リについてのココス トベースォプティマイザの実行計画は次の

ようになる。

Rows ExecuLion Plan

0

800

800

800

SELECT STATEMENT GOAL: CH00SE

FILTER

TABLE ACCESS GOAL: AN・ ALYZED (FULL)OF 'EMPLOYEES'
INDEX GOAL: ′OJALYZED (RANGE SCAN)OF iSURNAME_FIRSTNAME_DOBI

(NON―UNIQUE)

効率ははるかに良くなった。しかし、ルールベースオプティマイザははNOT INサ ブクエリを効率よく
扱うことができない。ルールベースオプティマイザを用いる場合、次に説明するNOT EXISTSな どの他の

反結合を用いる。

NOT EXISTSを 用いた反結合

NOT INを NOT EXISTsを 使ったクエ リに置 き換えると次のようになる。

select surname, firstname, date of birth

‐菫11::|::::::::餃録〕

(口)第7章 結合の最適化とサブクエリ {|||口

||||||||||||||||||||||||||||||||||:る ::::::::|::||::||||||||

from employees
where not exists

(select *

from customers

where contact-surname=employees . surname

and contac t-f irs tname=employees . f irsLname
and date-of-birth=employees.date-of birth)

Rows Execution Plan

SELECT STATEMENT GOAL: CH00SE

FILTER

TABLE ACCESS GOAL: ANALYZED (FULL)OF 'EMPLOYEESi

INDEX GOAL: ANALYZED (RANGE SCAN)OF ISURNAME_FIRSTNAME_DOB

(NON― UNIQUE)

このスタイルのクエリを用いて、オプティマイザに対しemployeesテ ーブルのそれぞれの行について

一致するcustomersテ ーブルの行を求めるように指不を出すことができる。サブクエリにWHERE句があ

るので、ルールベースオプティマイザでもインデックスを用いることができる。オプティマイザゴール

に左右されない最適な実行計画を得るために、NOT IN反結合をNOT EXISTS反 結合に、明示的に変換す

ると良い。

MINUSを用いた逆結合

反結合に、MINUS演算子を使うこともできる。2つの結果セットの列数が同じで、対応する列の型に

互換性 が あ る こ とが条件 で あ る。 た とえば 、 :次の クエ リは、われ わ れ の NOT INやNOT EXISTSサ ブ クエ

リと同じ結果を返す。

select surname, f irstname, date-of-birLh
from employees

minus
select contact-surname, contac t-f irs tname, date-o f-birth
from customers

0

800

800

800

Rows Execution Plan

0

100795

800

800

100000

100000

GOAL: CHOOSE

GOAL: ANALYZED

COAL: ANALYZED

SELECT STATEMENT

MINUS

SORT (UNIQUE)

TABLE ACCESS

SORT (UNIQUE)

TABLE ACCESS

(FULL)OF

(FULL)OF

IEMPLOYEES

iCUSTOMERS

|

瘍D
MINUS演算子はインデックスを用いないが、無駄なループも行わない。データの性格によっては、検

討する価値がある。しかし、2つの結果セットの列数が同じで、対応する列の型に互換性があることが条

件なので、たとえば、emp■ Oyee_idを 取り出すのにMINUS演算子は使うことができない。

次のSQL文はエラーになる。

SeleCt Surname′ f・ rStname′ date_of_birth′ employee_id く― ,|」数が異なる
from eimployees

Select contact_surname′ contact_firstname′ date_Of_birth

from customers

外部結合を用いた反結合

外部結合を使って反結合を実行することもできる。外部結合は外側のテーブルに内側のテーブルの行

に一致するものがなくても、それらの行をNULLと して含む。この特徴を、内側のテーブルに一致するも
のがない行のみを含むために用いることができる。外部結合を使った反結合は次のようになる。

select
from

where
and

and

and

e. surname, e. firstname, e. date_of_birth
employees e, customers c
c.corrtacL surname (+) =e.surname
c . contact_f irstname (+) =e. f irstname
c . date_o f_birth (+) =e . date_of_blrth
c. contact_surname is nul"1

Rows Execution Plan

SELECT STATEMENT GOAL: CH00SE

FILTER

NESTED L00PS (OUTER)

TABLE ACCESS GOAL: ANALYZED (FULL)OF

INDEX GOAL: ANALYZED (RANGE SCAN)OF

'SURNAME_FIRSTNAME_DOB!(NON― UNIQUE)

'EMPLOYEES'

反結合ヒントを用いる

反結合はしばしばパフォーマンス悪化の一因となり、反結合を最適化するのにいろいろ選択肢がある

ので、オラクル7.3か ら反結合のために特定のヒントが導入された。これらのヒントにより、ソー トマー

ジを使っても、ハッシュ結合を使ってもNOT INを 用いた反結合を実行できるようになった。関連するヒ

ン トはWSH_AJあ るいはMERGE_AJで 、これ らの ヒン トはNOT INサ ブクエ リの中にあらわれなければな
らない。たとえば、次のクエ リは反結合にハ ッシュ結合を用いる。

select surname, f irstname, date_of_birth
from employees

0

800

0

800

800

●第|

7章 結合の最適化とサブクエリ 留痣輻|

where (surname, firstname,date-of-birth) not in
(select /*+ HASH-AJ */ contact-surname,conEact-firstname,
date-of-birth

from customers)

Rows Execution Plan

0

28009

800

100000

100000

SELECT STATEMEINT GOAL: CH00SE

HASH JOIN (ANTl)

TABLE ACCESS GOAL: .ANALYZED (FULL)OF iEMPLOYEES:

VIEW
TA.BLE ACCESS GOAL: .ANALYZED (FULL)OF ICUSTOIMERS'

反結合のヒントを用いるには、次のことが真でなければならない。

ロ コス トベースオプティマイザが作動する状態である。

□ 反結合の列はNULLで あつてはならない。これは、テーブルの定義上NULLであってならないという

ことを意味する。

□ 子クエリは相関サブクエリではない。

□ 親クエリはOR句 を含まない。

E]構 成 フ ァイル (initSID.ora)のALWAYS_ANTI_JOINが MERGEあ るい はHASHを実行 す る よ うに設

定 され てい るか 、 あ るい はサ ブ クエ リの 中にMERGE_AJ,HASH_AJヒ ン トが含 まれてい る。

反結合テクニックの比較

図7.13は 、これまでみてきた逆結合のパフォーマンスを比較 している。われわれの例に関するかぎり、

NOT IN(ハ ッシュ逆結合)が最もパフォーマンスが良く、ルールベースオプティマイザを用いたNOT IN

逆結合が最もパフォーマンスが悪い。

曇||:|:|:|:;|:1魃滸 D

1,235

3,2

6,430
982,41

図7.13 さまざまな逆結合テクニックの比較。

結合は基本的な演算であり、効率的に実行されなければならない。オラクルには3つのタイプの基本的

な結合演算がある。

ロ ネストされたループ結合は、適切なインデックスがある(内部)テ ーブルの小さな部分集合が結合さ

れる場合に理想的である。オプティマイザゴールがΠRSr_ROWSの場合、ココストベースオプティ
マイザがこの結合を好む傾向がある。

ロ ソートマージ結合は、テーブルの大きな部分集合が結合される場合に理想的である。オプティマイ

ザゴールが ALL_ROWSの場合、コストベースオプティマイザがこの結合を好む傾向がある。

ロ ハッシュ結合には、コストベースオプティマイザとオラクル7.3以上が必要となる。この結合は、

ソートマージ結合を用いることができるような環境のほとんどの場合に理想的である。特に、1つ

のテーブルがもう1つのテーブルより大きいような場合に効率が良い。

たくさんのテーブルが結合の対象となる場合、結合順序の最適化は難しくなる。しかし、最適化を行

なう上で考慮しなければならないことが2つある。

□ (WHERE旬の条件を実行した上で)行数の最も少ないテーブルを駆動テーブルにする。テーブルの

結合順序はORDERヒ ントを使うことでオプティマイザに指示できる。

フ.11 まとめ

●第7章 結合の最適化とサブクエリ {EIM蘊 ::::::|:彗 |

□ あとにつづく結合が効率的であることを確認する。

USE_MERGE、 USE_NL、 USE_HASHな どのヒントを用いて特定の結合アプローチをオプティマイザに

指示できる。

インデックスクラスタは、1つ以上のテーブルの関連する行を同一のセグメン ト内に格納する。共通の

クラスタキー値を持つ行が一緒に格納される。ある意味では、インデックスクラスタは2つ以上のテーブ

ルを前結合させているのである。そのため、インデックスクラスタを用いれば結合のパフォーマンスを

向上 させることができるが、テーブル全走査などの他の演算の能力が低下する可能性がある。

スタークエリはデータウェアハウスで広 く用いられている。スタースクエリは、主要な情報が含まれ

ている大規模なファク トテーブルと、そのファクトテーブル内の特定の項目に関する情報が含まれてい

る互いに関連しない小規模な複数のデ ィメンンョンテーブルが結合されるクエ リである。たいていの場

合、ルールベースオプティマイザではスタークエリを効率的に実行できない。スタークエリを最適化す

るには、コストベースオプティマイザに創■Rヒ ントを指示する。

階層クエリのパフォーマンスを改善するには、START WITH句 とCOヽNECT BY旬 に関するインデックス

を作成する。階層の一部分のみ取り出したい場合は、Ⅲ ERE句 よりもSTART WITH句で条件を指定する。

サブクエリは親クエリの行と子クエリの行を関連づけることができるという点で結合に近い存在であ

る。子クエリは、親クエリの実行中何度も実行される傾向がある。ゆえに、サブクエリが効率良く実行

されることが重要である。サブクエリは、実テーブルヘアクセスせずに、インデックスアクセスだけで

実行されることが好ましい。

反結合は、あるテーブルから、別テーブルの一致する行 を除いた結果を返す。ルールベースオプテ イ

マイザが用いられている場合、NOT INで はなくNOT EXISTSを 使って反結合 を実行するようにす る。コ

ス トベースオプティマイザが用いられている場合、オラクル 7.3か ら導入されてい るHASH_AJヒ ン トを使

って反結合のパフォーマ ンスを向上させ ることができる。

●

０

ソートと

8.1 :まじめに

SQL文 で、データをソー トしたり、グループ化することができる。この章では、そのようなSQL文の

パフォーマンスを向上させる方法を学ぶ。

ソー トを明示的に指示 している場合 (た とえば、ORDER BY句)、 あるいは内部的にソー トが必要な場

合・ (た とえば、INTERSECT句)、 オ ラクルはデータの ソー トをしなければならない。ソー トはコンピュ

ータの リソースを大幅 に消費し、クエ リのパ フォーマ ンスに大きな影響 を与 える可能性がある。そのた

め、オラクルがソー トを行うタイミング、ソー トを回避する方法、ソー トの最適化の方法を知ることは、

パフォーマンスの改善に役に立つ。

GROUP BY句 は 共 通 す る値 を持 つ 行 を集 計 し、 そ れ ぞ れ の グル ー プ につ い て要 約 した 行 を返 す 。

COUNT(・)、 AVG、 SUMな どの グル ー プ 関 数 の 実 行 で は 、 ほ とん どの場 合 ソ ー トが必要 に な る。 また、

UNION、 INTERSECT、 MINUSな どの 集 合 演 算子 もまた、 たいていの場 合 ソー トが必要 にな る。

この章で扱う項目は以下のとおりである。

[lオ ラクルは、いつ、どのようにソートを行うか。

ロ ソートが起こす潜在的なパフォーマンス上の問題。

□ 予期しない不必要なソートを避ける。

□ GROUP BY句 とグループ関数の使い方と最適化。

□ 集合演算子を用いた2つの結果セットの和、積、差。

□ MIMJSお よび INTERSECT演算 子 の かわ りの選択 肢 。

:.1:'

拇

で`'`
●
燃

Ｉ

争

鶴

8.2 ソー:ト

ソートは、コンピュータを使って実行 される最も一般的な演算の1つである。特に、データの検索でよ

く使われる。オラクルもその例外ではない。次のような場合にオラクルがソー トを行う可能性がある。

ロ インデ ックス を作成す る。

□ GROUP BY句 や DISTINCT句 を用 いてデータをグル ープ化 したり重複 した値 を取 り除 く。

□ ORDER BY句 で明示的にソー トす る。

ロ ソートマージ結合を用いて表や結果セットを結合させる。

□ UNION、 INTERSECT、 あ るい はMINUSと い った集合 演 算 子 を用 い る。

ソートはシステムリツースを大幅に消費する可能性がある。次のことを念頭においておく必要がある。

□ CPUは常に消費される。CPUの 消費量は、ソー トの対象となる結果セットのサイズに比例する。

ロ オラクルは、ソー トを行うとき作業エリアをメモリ内に確保する。その大きさは、構成ファイル

(■nitSID.ora)の SORT_AREA_SIZEで 決定される。

ロ ソー トに必要なエリアがメモリだけでは足りない場合、オラクルはディスク上のテンポラリテーブ

ルスペースを使 う。これはディスクソートとして知られている。ディスクソートが必要な場合、テ

ンポラリテーブルスペースにセグメントが確保され、そのセグメントのディスク1/0が発生する。

ディスクソー トはメモリソー トよりも、はるかに大量のシステムリソースを消費する。デ ィスクソー

トを減らすためには、構成ファイル (initsID.ora)の SORT_AREA_SIZEを 適切 に設定する必要がある。

8.2.1 ソー トの問題
SQL文でソートが必要な場合、最初の行が返されるまえにすべての行がアクセスされ、ソートが実行

される。そのため、処理能力が重要な処理には向いているが、応答時間が重要な処理にはあまり向かな

い。ユーザとの対話的な処理が必要な場合には、FIRr_ROWSヒ ントを使ってソートを避けると良い。

8.2.2 不必要なソ… 卜の回避
ソートの必要のないときに、うっかリオラクルにソートの指示を出してしまうことがある。よく見か

けるのは次のような場合だ。

□ 不必要 な DISTINCT旬 の使用 。 ほ とん どの場合 、重 複 す る行 を除外 す るた め にDISTINCT句 は ソー

トを行なう。その事を知らずに、習慣的にDISTINCT句を使っているプログラマもいる。また、
RADの開発ツールが自動的にDISTINCT句を使ってSQL文 を組み立てている場合もある。重複する

行がないような場合(テ ーブルからプライマリキーを含んだ列を取り出すときには行は重複しな

い)、 重複する行があってもかまわない場合、DISTINCT句 を使うべきではない。

●第8章 ソートとグループ化Q量:型些 (E磁闊颯漑:|:::||:|||:||

□ UNION ALLの かわ りにUNIONを 使 う。UNION演算子は、2つの結果セッ トの和を取 り、重複する行

を取 り除 く。重複す る行を取 り除 くときにソー トが必要になる。UNION ALLは 重複す る行 も含む

ので、ソートの必要がない。重複する行を除外する必要がないかぎり、UNION ALLを 使うべきで

ある。

8.2.3 インデックスを用いてソー トを避ける
ORDER BY句 の列にインデックスがある場合、オラクルがソートにインデックスを利用 して、ソート

の作業そのものを行わない可能性がある。インデックスは元々ソー トされているためだ。ただし、イン

デ ックスにはNULL値が含まれていないので、ソー トのためにインデックスを使う場合には、ORDER

BY旬の列はNOT NULLの 定義がされていなければならない。

インデックスを用いれば確かに、ソー トを行なう必要がなくなるかもしれないが、インデックスブロ

ックと実ブロックの両方を読むという負担の方が、ソー トの負担より大きいかもしれない。しかし、イ

ンデックスを用いれば、最初の行を取 り出して直ぐにその行を返すことができるので、素早い応答時間

が期待できる。

一方、ソー トを行なうと、最初の行が返 されるまえにすべての行を取 り出してソー トしなければなら

ないので、応答時間は期待できない。そのため、ORDER BY旬 の列にインデックスがある場合、コスト

ベ ー スオ プテ ィマ イザ は、オプテ ィマ イザ ゴール が FIRST_ROWSの 場 合 、 イ ンデ ックス を用 いて応答時

間を重視し、オプティマイザゴールがALL_ROWSの場合、テーブル全走査とそのソート処理を選択する

だろう。

もちろん、この選択はWHERE句 でどれくらい行が絞り込まれているかでも変わってくる。インデック

スブロックと実ブロックの両方を読むという負担を避けるには、選択リストのすべての列とORDER BY

旬のすべての列を含むインデックスを作成する。こうすれば、オラクルはインデックスブロックを読み

込むだけで、クエ リを実行することができる。たとえば、次のクエリは、contact_surname、

contact_firstname、 date_。 f_birth、 phoneno列 にインデックスが用いられている場合最適化さ

れる。

select contact-surname\ contact-f irstname. date-of-birth, phoneno

from customers c1

order by contact-surname. contact-firstname. date-of-birth

図8.1は さまざまなアクセス方法によるパフォーマンスの比較である。ORDER BY句の列と選択リスト

の列を含んでいるインデックスを用いるのが、最初の行へのアクセスでもすべての行へのアクセスでも、

他の方法より速い。そうでなければ、すべての行を取 り出す場合にはテーブル全走査が良く、最初の行

のアクセスにはインデックスと実テーブルアクセスが良い。

取り出す対象が最初の行でもすべての行でも、ORDER BY句 の列と選択リストの列を含むインデック

スはすぐれたパフォーマンスを発揮する。ORDER BY旬 の列だけについてのインデックスは最初の行の

取り出しを速めることはできるが、すべての行を取り出す場合には、たいていの場合、テーブル全走査

とソート処理より遅くなってしまう。

221

2045

図3.1 さまざまなソート技術のパフォーマンスの比較

8.2.4 バラレルクエリオプションの活用
テーブル全走査により行を取り出す場合、パフォーマンスを向上させるために、パラレルクエリオプ

ションを用いることができる。パラレルクエリオプションを効果的に用いるには、特定の条件が満たさ

れ、データベースが正しく設定されている必要がある。第12章で、パラレルクエリオプションの設定と

最適化について詳しく学ぶ。

次のような場合、パラレルクエリオプションの利点を生かすことができる。

ロ ホストコンピュータが複数のCPUを持っている。

ロ ホストコンピュータのCPUの能力に余裕がある。

ロ データファイルが複数のディスク装置上に存在する (そ うでなければ、クエリがディスク1/0に制

限される可能性がある)。

パラレルクエリは、テーブル全走査とソー トのパフォーマンスを向上させることに役に立つが、CPu
リソースを大量に消費する可能性がある。パラレルクエリのスレーブ数を調整 し、システム全体のパフ

ォーマンスを低下させることなくパラレル処理を最適化できるようにする必要がある。

8.2.5 データをソー トする場合どのアプローチを用いるか ?
ソートを避けるためにインデックスが使えることを学んだ。また、それは処理能力よりも応答時間を

最適化する場合に効果的であることも学んだ。さらに、テーブル全走査とソートを行なう場合、パラレ

ルクエリオプションを使えることも学んだ。図8.1は さまざまなアプローチの応答時間の比較である。記

録された時間は次のクエリの結果である。

●第8章 ソートとグループ化の最適化{Eヱ璽藤鰈輻

select contact-surname. contsact-f irstname. date-of-birth, phoneno

from cusLomers c

order by contact-surname. contact-firstname. date-of-birth

オプティマイザに特定の実行計画を選択させるために、次のようにヒントを使った。

インデックスと実テーブルアクセス

/・+INDEX(c surname_■rstname_dob)=/

cOn●ct_sumame、 cOnねct_■rstname、 date_of_birthについてのインデ ックスを用い、ORDER BY句 で指

定 された順序で行 を返す。これは ソー トを回避す るが、phonenoが インデ ックス中にないので、さらに

実テーブルをアクセスする必要がある。

テーブル全走査

/★+田比③☆/

テーブル全走査と返された行のソートを実行する。

インデックスのみ

/=+INDEX(c surnane_■rstnaine_dob_phoneno)大/

ORDER BY句 と選択リストのすべての行を含むインデックスを用い、実テーブルにアクセスすること

なく、正しい順序で行を返す。

パラレルクエリ

/☆+PAttLLELc2)★ /

2つのパラレルサーバプロセスを使ってテーブル全走査を行い、取得した行を次の2つのパラレルサー

バプロセスを使ってソートする。

図8■の結果から、次の結論を下すことができる。

□ ORDER BY旬 の列をすべて含んだインデックスを使うことで、最初の行を素早く取り出すことがで

きる。しかし、すべての行を取り出す場合には、パフォーマンスは低下する。

ロ テーブル全走査とソート処理を行うことは、すべての行を取り出す場合に向いている。しかし、最

初の行を取り出すためにもテーブル全走査を行わなければならないので、応答時間が重要な処理に

は向かない。

□ ORDER BY句 と選択リストのすべての列を含んだインデックスを使うことで、最初の行を取り出す

場合や、すべての行を取り出す場合のパフォーマンスを向上させることができる。これは、ソート

処理や実テーブルヘのアクセスをする必要がないためである。

ロ パラレルクエリオプションを使うことで、テーブル全走査とソート処理のパフォーマンスを向上さ

せることができる。

i:||::11::::|:|:il:::ま鯰||||||||1鰤||||||)

8.3 グループ演算
グループ演算 には、GROUP BY句 あるいはグループ関数を用いる。MAX、 MIN、 SUM、 AVG、 COUNTが
グループ関数の例である。

グループ演算が返 した各行は、もとデータにある複数行のデータを要約するα

8.3.1 表の行数を数える
グループ演算の最も広く使われている用途の1つに、表の中にあるすべての行を数えるCOUNT関数があ

る。また、この関数はうわさや誤解の対象にもなっている。以下は、COUNT関 数について言われている

ことの一部である。

□ 表の中の行数を数える場合、プライマリキーとCOUNT(丼)を用いる。プライマリキーのほうが実テ

ーブルよりもサイズが小さいので、プライマリキーを用いた方が速くなる。

□ 表の中の行数を数える場合、coモNT(・)を用いる。オラクルはCOUNT(☆)を最適化できる。

□ 表の中の行数を数える場合、COUNT(0)を 用いる。定数を用いて表の中のすべての列を読む手間を
はぶくことができる。

どれが正 しいだろうかPSQL☆Plusの AUTOTRACEで 調べると次のようになる。

SQL> se■ ect /★ 十1NDEX(employees) '/ coullt(★)from employees,

実行計画

O SELECT STATEMENT Opt■ m■ zeF=CH00SE

1 0 SORT (AGGRECATE)

2 1 1NDEX (FULL SCAさ T)oF ISYS_C008151 (UNIQUE)

統計表示

0

0

77

0

0

588

681

4

1

0

1

recursive ca1ls
db block gets
consistent gets
physical reads
redo size
bytes sent via SQL*Net to cfient
bytes received via SQL*Net from client
SQL*Net roundt.rips tolfrom cfient
sorts (memory)

sorts (disk)
rows processed

●第8章 ソートとグループ化の最適化 徊蜃輻 :::|:::111i11)|

SQL> select count(*) from employees;

実行計画

SELECT STATEMENT Opt■ m■ zer=CHOOSE

O SORT (AGGREGATE)

l TABLE ACCESS (FULL)OF IEMPLOYEES'

統計表示

0

3

324

3■ 3

0

588

658

4

■

0

1

recursive calls
db block gets
consistent gets
physical reads
redo size
bytes sent via SQL*Net to client
bytes receiwed via SQL*Net from client
SQL*Net roundtrips tolfrom client
sorts (memory)

sorts (disk)
rolvs processed

SQL> select count(0) frOim emp10yees′

実行計画

O SELECT STATEMENT Opt■ m■ zer=CH00SE

1 0 SORT (ACGREGATE)

2 ■ TABLE ACCESS (FULL)OF 'EMPLOYEES

統計表示

0

3

324

3■ 3

0

588

recursive ca11s
db block gets
consistent gets
physical reads
redo slze
bytes sent via SQL*Net to client
bytes receiwed via SQL*Net from client
SQL*Net roundLrips to,/from client
sorts (memory)

sorts (disk)
rows processed

db block getsと consistent getsの 合計 (メ モ リ上のバ ッファブロックを読み込んだ数)を見てみ

ると、プライマ リキーとCOUNT(夫)を使った場合が 77、 colNTo、 COUNT⑨ を使った場合が327な ので、
プライマ リキーcolNT(★)を使 った方が効率的に行数 を数えることがで きることが分かる。

8.3.2 i最大:値と最小値

特定の列の最大値と最小値を求める作業も、広く行なわれている演算の1つである。対象の列のインデ

ックスを用いることで、効率的に最大値と最小値を求めることができる。たとえば、次のようにインデ

ックスがある場合とない場合を比べてみる。

インデックスがない場合

SQL> select max(salary) from employees,

実行計画

O SELECT STATEMENT Opt■ :mizer=CH00SE

1 0 SORT (AGGREGATE)

2 1 TABLE ACCESS (FULL)OF 'EMPLOYEESi

統計表示

0

3

324

319

0

586

661

4

1

0

1

recursive ca11s

db block qets
consistent gets
physical reads
redo size
byt.es sent via sQL*Net to cfient
bytes received via SQL*Net from client
SQL*Net roundtrips tolfrom client.
sorts (memory)

sorts (disk)
rows processed

インデックスがある場合

SQL> select max(salary) from employees

実行計画

O SELECT STATEMENT Optinizer=CH00SE

1 0 SORT (AGGRECATE)

2 1 1NDEX (FULL SCAN)OF 'SALARY_EMPLOYEES'(NON― UNIQUE)

:|||:::|::::::蒻躙MD

(0)第 8章 ソートとグループ化の最適化∈財鰊

統計表示

0

0

2

■

0

588

66■

4

■

0

■

recursive calfs
db block gets
consistent gets
physical reads
redo size
bytes sent via SQL*Net to client
bytes receiwed via SQL*Net from client
sQL*Net roundtrips tolfrom cl-ient
sorts (memory)

sorts (disk)
rows processed.

db block getsと cOnsistent getsの 合計 (メ モリ上のバッファブロックを読み込んだ数)を見てみ

ると、インデックスがない場合が327、 インデックスがある場合が2なので、インデックスを使った方が

効率的に最大値や最小値を求めることができることがわかる。

8.3.3 グループ化
GROUP BY句 を用いて、指定された列についての集計値を返すことができる。たとえば、次の文は部

署ごとに従業員数、最低給与、平均給与、最高給与を同時に返す。

select department-id, count (*), min (salary), avgr (salary), max (salary)
from employees

group by department-id

実行計画

SELECT STATEMENT Opt■ miZer=CH00SE

SORT (GROUP BY)

TABLE ACCESS (FULL)OF 'EMPLOYEES'

統計表示

0

3

324

322

0

92■

733

4

2

recursive calls
db block gets
consistent gets
physical reads
redo size
bytes sent via SQL*Net to client
bytes received via SQL*Net from client
SQL*Net roundtrips tolfrom cl-ient
sorts (memory)

0 sorts (disk)
3 rows processed

このクエリを効率的に実行するには、どうしたら良いだろうか。答えは、GROUP BY句 と選択リスト
のすべての列を含んだ結合インデックスが存在し、結合インデックスの先頭の列の並びがGROUP BY旬
の列の並 び と同 じで、GROUP BY旬 の列 がNOT NULLと 定義 され て い る場合 で ある。つ まり、
department_id,salary列 に結合 インデックスが存在 し、department_id列 がNOT NULLと 定義 され
ている必要がある。

SQL> create index dept_sal_employees on

employees (department_id, salary),.

SQL> after table employees modify department_id not nu11;

SQL> select /*+INDEX(employees dept_sa1_employees) */
2 department_id, count (*),min (safary), avg (salary),max(salary)
3 from employees group by department_id;

実行計画

0 SELECT STATEMENT Optimizer=CHOOSE
I 0 soRT (cRouP BY NOSORT)

2 1 TNDEX (FULL SCAN) OF 'DEPT_SAL EMPLOYEES' (NON_UNIQUE)

統計表示

recursive cafls
db block gets
consistent gets
physical reads
redo size
bytes sent via SQL*Net to clienL
bytes received via SQL*Net from cl-ient
SQL*Net roundtrips tolfrom client
sorLs (memory)

sorts (disk)
rows processed

db block getsと consistent getsの 合計 (メ モリ上のバッファブロックを読み込んだ数)を 見てみ

ると、インデックスがない場合が327、 インデックスがある場合が116なので、インデックスを使った方

が効率的に集計値を求めることができることがわかる。

11111:i:|:::|:||:i懲 ::輻猾

(|)第8章 ソートとグル ER隋 ::!!:i::数

8.3.4 HAVING旬
HAVING句 を用いて、GROUP BY句 によって取 り出された行に、さらに条件を付けることができる。た

とえば、次のクエ リは従業員が4人より多い部署が対象になる。

select department-id, count (*), min (salary), avg (salary), max (saf ary)

from ernployees
group by department-id
hawing count (*) >4

これはHAVING句 の有効な使い方である。集計のあとで絞り込みをしている。しかし、WHERE旬 と混

同してはならない。WHERE旬の条件は集計の前に適用されるが、HAVING旬の条件は集計の後に適用され

る。集計する行が少ない程パフォーマンスは良くなるので、集計後の絞り込みが必要なければ(条件にグ

ループ関数を使わないのなら)、 できるだけWHERE句を使ったほうが良い。次の例はHAVING句 を用いて、

HOBARTに ある部署の給与に関する統計を与えてくれる。

select d. department-name , d . locaLion, max (e . salary)
from departmenLs d,

employees e
where d. deparEment-id=e . department-id

group by department-name, d. focation
having d. Iocation=' HOBART'

Rows Execution Plan

0

50

799

799

801

SELECT STATEMENT

FILTER

SORT (GROUP BY)

MERGE JOIN

INDEX (RANGE

UNIQUE)

SORT (JOIN)

TABLE ACCESS

HINT: CHOOSE

く― HAVING句 の適用

SCAN) OF 'EMPLOYEE_DEPT_SAL_IDX: (NON―

HINT: ANALYZED (FULL)OF IDEPARTMENTSi

51

51

この実行計画から、F■LTER句 で除外される前に、departments,employeesテ ーブルから取り出さ

れたすべての行がソートマージ結合されなければならないことがわかる。

一方、WHERE句を用いると次の計画が得られる。

sefect d.department-name, d. location.max (e. salarfy)
from departments d,

employees e
where d. deparLment-id=e . department-id

and d. Iocation=' HOBART'

:1鰤漑D

group by department_name, d. location

Rows Execution Plan

0

100

100

5■

SELECT STATEMENT HINT: CH00SE

SORT (GROUP BY)

NESTED LOOPS

TABLE ACCESS HINT: ANALYZED (FULL)OF iDEPARTMENTS` く―
WHERE句のう直用

TABLE ACCESS HINT: ANALYZED (BY ROWID)OF 'EMPLOYEESI

INDEX (RANGE SCAN)OF l EMIPLOYEE_DEPT_IDX' (NON― UNIQUE)

100

102

HAVING句 では、SORT(GROUP BY)で 799行処理 していたのが、WHERE句 では100行 で済んでいる。集
計後の絞 り込みが必要なければ (条件にグループ関数を使わないのなら)、 できるだけWHERE句 を使 った

ほうが効率的であることがわかる。

8.4 集合演算子
UNION、 MIMJS、 INTERSECTな どの集合演算子は、複数の結果セットの列数が同 じで、対応する列の

型に互換性がある場合に、その結果セッ トを組み合わせて1つの結果セットをつ くる。

オラクルは集合演算を次のように行なう。

□ それぞれの構成するクエリを実行する。

□ 構成するクエリの結果セットをソー トする。

□ 集合演算子の種類によって、結果セットの和、積、差が取られる。

例外はUN10N ALL演算子である。この演算子は、構成するクエリの結果セットのソー トを必要とし
ない。

集合演算の一般的な最適化の方法は次のとおりである。

□ 構成するクエリをそれぞれ最適化する。

ロ ソー トのためにデータベースの設定(SOR「_ARI〕A_SIZEな ど)を最適化する。

□ 選択 リストに含まれているすべての列の結合インデックスの作成を検討する。このようなインデッ

クスを使うことで、ソー トや実テーブルヘのアクセスが不要になる。

これらの原則に従うと同時に、集合演算子を論理的に同等な別のSQL文に置き換えることで、パフォ
ーマンスを向上させることができる。

8.4.l UN10Nと UN10N ALL
いJION演算子は、間違いなく集合演算子の中でもっともよく用いられる。UNION演算子は2つの結果セ

●第8章 ソートとグルーZl堕量迪些 ⊂
=爾
鯰隧絋:

ットに重複して存在する行を除外するのに対し、u¶ION ALLは 重複した行を含めてすべての行を返すと

いう点が異なる。たとえば、次のクエリはすべての顧客と従業員を返すのだが、顧客や従業員が同じ名

前や生年月日を持っていた場合、それらのデータは1度 しか報告されない (おそらく同一人物なので、2

回も報告したくない)。

select contact-surname, contact-firstname, date-of-birth
from customers

union
select surname, f irsEname, date-of,birth

from employees

Rows Execution PIan

GOAL: CH00SE0

100800

100800

100000

800

SELECT STATEMENT

SORT (UNIQUE)

UN10N―ALL

TABLE ACCESS

TABLE ACCESS

く―重複の除外にソートが必要

COAL: .ANALYZED (FULL)OF iCUSTOMERSi

GOAL: ANALYZED (FULL)OF lEMPLOYEES'

対応するu肛ON ALL文は、customersテ ーブルとemployeesテ ーブルの双方に一致する行がある場

合、一致した行を2度報告する。

select contact-surname, contact-f irstname, date-of-birth
from customers

union all
select surname, firstname, date-of-birth

from employees

Rows Execution Plan

0

100800

100000

800

GOAL: CH00SE

UN■ON ALL文 にSORT(UNIQUE)が ないことを除けば、UNION文とUNION ALL文 がほとんど同じである

ことに気付くかもしれない。重複した行を取り除く必要がないなら、UNION ALL演算子を使ってソート

作業を取り除くことで、クエリを大幅にスピードアップすることができる。上の例では、uJION ALL演

算子が要した時間は12.34秒で、いJION演算子は22.74秒だった (図 8.2参照)。

UNION文 を使う場合でも、ソートのところで述べたように、関連するすべての列を含んだ結合インデ

ックスを作成することで、ソー トを回避 しクエリのパフォーマンスを向上させることができる。

custOmersフーーブルσ)cOntact_surname、 contact_firstname、 date_Of_birth夕 |」を′含んだ結合

SELECT STATEMENT

UN■ ON― ALL

TABLE ACCESS

TABLE ACCESS

GOAL: ANALYZED (FULL)OF 'CUSTOMERSI

GOAL: ANALYZED (FULL)OF 'EMPLOYEESi

鱗:::瑕骰〕

インデックスがあった場合、UN10Nを 実行するのに要した時間は22.74秒から15.75秒に短縮できたっ

8.4.2 1NTERSECT
INTERSECT演算子は、2つ のテーブルあるいは結果セッ トに共通な行を返す。たとえば、次の
INTERSECT文 は、従業員でもある (すくなくとも同じ名前と生年月日を持っている)顧客を返す。

select contact_surname, contact_firstname, date_of birth
from cust.omers

intersecL
select surname, f irstname, date_of_birth

from employees

Rows Execution Plan

0

100795

100000

100001

SELECT STATEMENT GOAL: CH00SE

INTERSECTION

SORT (UNIQUE)

INDEX (FULL SCAさJ)OF iSURNAIME_FIRSTNAME_DOB_PHONEN0

(NON― UNIQUE)

SORT (UNIQUE)

TABLE ACCESS GOAL: ANALYZED (FULL)OF IEMPLOYEESI

800

800

また、INTERSECTク エ リを結合 として表わす こともできる。ソー トマージ結合が実行 された場合、そ
のパフォーマ ンスはINTERSECTの パ フォーマンスに類似 しているだろう。その理由は、INTERSECTや

ソー トマージ結合を実行するときに、どちらの場合 もソー トやマージを実行 しなければならないからだ。

しかし、結合 を用いて、ネス トされたループ結合、あるいはハ ッシュ結合を実行することもできる。

INTERSECTの 対象となるデータによっては、これが大幅にパフォーマンスを向上させる可能性がある。
1つの結果セットがテーブル全体の一部分で、もう一方の結果セットに適当なインデックスがあるような

場合、ネス トされたループ結合の方がINTERSECTよ り効果的となる可能性がある。また、テーブルの大

部分が対象 になるような場合 は、ハ ッシュ結合が有力な選択肢 となる。たとえば、すでにみた

INTERSECT文の例を次のように書き換えることができる。

SE]ECT/ *+ORDERED USE-HASH (C) */
c.cont.act_surname,c.contact_firstname, c.date of birth

from
employees e,
customers c

where e . surname=c . conLact_surname
and e. f irstname=c. contact_f irstname
and e.date_of_birth=c.date of birth

(0)第8章 ソートとグループ化の最適化 □明跛::::::|:::|:|::|:|1撃 |

Rows Execution Plan

O SELECT STATEMENT COAL: CH00SE

HASH JOIN

TABLE ACCESS GOAL: 畑 ALYZED (FULL)OF 'EMIPLOYEES'

INDEX (FULL SCAN) OF ISURNAME_FIRSTNAl′ IE_DOB_PHONENOl

UNIQUE)

28009

800

100001 (NON―

所要時間は7.79秒から1.69秒 に短縮された (図8.2参照)

8.4.3 MiNUS
第7章で、MINUS演算子が逆結合 (た とえば、NOT INを 用いたサブクエリ)のかわりにどのように使

われ得るか学んだ。たとえば、次のようなMINUS文 をみてみよう。

select contac t_surname, contac t_f irstname, date-of_birth
from customers

minus
sefect surname, firstnname, date_of_birth

from employees

Rows Execution Plan

0

100795

100000

100000

800

800

SELECT STATEMENT

MINUS

SORT (UNIQUE)

TABLE ACCESS

SORT (UNIQUE)

TABLE ACCESS

GOAL: CH00SE

COAL: ANALYZED

GOAL: ANALYZED

(FULL)OF 'CUSTOMERSI

(FULL)OF 'EMIPLOYEES'

上記のMINUS文 を次のようなハ ッシュ逆結合として表わすことができる。

select/'IFULL(CUSTOMERS)★ /

contact_surname′ contact_f■ rstname′ date_of_b■rth

from customers

Where (COntaCt_Surname′ contact_firstname′ date_of_birth)nOt in

(select/夫 +HASH_AJ夫 /

surname′ firstname′ date_of_birth

frOm emp■ OyeeS)

Rovns Execution Pl-an

O SELECT STATEMENT GOAL: CH00SE

2398 HASH JOIN (AINTI)

TABLE ACCESS GOAL: ANALYZED (FULL)OF 'CUSTOMERSl

VIEW

TABLE ACCESS GOAL: ANALYZED (FULL)OF 'EMPLOYEES'

次の条件が真の場合、ハッシュ逆結合を使ってパフォーマンスを大きく改善できる。われわれの例で

は、所要時間は22.38秒から14.64秒に短縮された。

ハッシュ逆結合を使うには、次の条件が必要となる。

ロ コス トベースオプティマイザが作動する状態である。

□ 逆結合の列はNULLで あってはならない。これは、テーブルの定義上NULLであってならないとい

うことを意味する。

□ 子クエリは相関サブクエリではない。

□ 親クエリはOR句を含まない。

□ 設定 ファイル (■ nitSID.ora)のALWWS_′ⅧTI_JOINが HASHを 実行するように設定されているか、

あるいはサブクエ リの中にHASH_AIヒ ン トが含まれている。

図8.2 集合演算子と他の選択肢のパフォーマンス

8.フ まとめ
ソートはリソースを大量に消費する可能性があるので、ソートを回避することでクエリのパフォーマ

ンスを大幅に向上させることができる。オラクルがソートを行なう主な原因は次のとおりである。

100000

800

800

●第8章 ソー トとグループ化の最適化 C瞑舅躙 :i::i:|:::li1111

□ ORDER BY句 でソー トが明示的に指定 されている。

□ GROUP BY句 を用いて集計 された情報 を返す。

ロ ソー トマージを用いた表の結合。

□ UNION、 MINUS、 INTERSECTな どの集合演算。

オラクルに対 し、不必要 なソー トをするような指示をうっか り出 してしまうのはめず らしいことでは

ない。これは、不要なDISTINCT句 や、u肛 ON ALLのかわ りにUNIONを 用いたりするときに、しば しば

起 きる。

ソートを行なわずにORDER BY句を実行するためにインデックスを用いることができる。処理能力よ

り応答時間を最適化する場合、あるいはインデックスのみでクエリを完全に実行できる場合に、効果を

発揮す るだ ろ う。 オプテ ィマ イザ ゴ ール が FIRST_ROWSの 場 合 、 ソー トを回避 す るた め にオ ラクル が イ

ンデックスを用いる可能性がある。

GROUP BY句は、指定された列のそれぞれの組み合わせに対し、集計値を返す。グループ関数はそれ

ぞれのグループの数、最大値、最小値、平均値などの集計値を求めることができる。グループ演算を最

適化するには次の方法がある。

ロ インデックスだけで集計値を求められる場合、グループ化のパフォーマンスは大幅に改善できる。

ただし、これが可能となるのは、GROUP BY旬 と選択リストのすべての列を含んだ結合インデック

スが存 在 し、結合 イ ンデ ックスの先 頭 の列 の並 び がGROUP BY句 の列 の並 び と同 じで、GROUP BY

句の列がNOT NULLと 定義されている場合である。

□ 行数を数えるために、NOT MttL定 義された列のインデックスを利用することで、ソートを回避し、

パフォーマンスを改善できる。オラクルは、COUNT(★)を 自動的に最適化するので、定数や列を数

えるよりもcolNT(夫)を使った方が良い。

UNION、 INTERSECT、 MIMJSな どの集 合 演 算 子 を用 いて 、複 数 の結果 セ ッ トを組 み合 わ した り比 較 し

たりすることができる。集合演算子のポイントは、次のとおりである。

□ UNION演算子はしばしば使われるが、重複する行を除外するためにソートを必要とする。UNION

ALLは重複する行を除外しないのでソートの必要がない。重複する行を除外する必要がないかぎり、

UNIONよ りUNION ALLを 用 い るべ きで あ る。

□ 集合演算子のINTERSECTや MINUSを 、ハッシュ結合やハッシュ逆結合を使ったSQL文 に書き換え

ることで、パフォーマンスを改善できる場合がある。

‐・
':| ‐■■1.・

■
.‐`. ‐.・‐:|:|111:ヽ
1■

ド

.t、髪

|ヽ||:|::‐

′

最適f

.¨ ■̈ _`.ぉ
, 1 .■ Ⅲ

■. 1.. . .

¬

「
′

9.1 1まじめに

この 章 で は 、 デ ー タ操 作 言 語 (DMDの パ フ ォ ー マ ンス に 関 す る問題 を扱 う。 INSERT、 UPDATE、

DELETEと い つ たDMLを 用 い て 、 オ ラクル の デ ー タベ ースに含 まれ て い る情報 を変 更 す ることがで き る。

DMLは 、 クエ リを含 む こ とが 多 いの で 、 クエ リを最適 化す る技 術 を用 いてDMLを 最適 化 で きる。

リレーショナルデータベースの機能の1つ に、複数のDMLを グループ化できることがある。このよう

なグループ化されたDMLは 、 トランザクションとして知られている。 トランザクションは、単位として

成功するか失敗するかのどちらかである。

この章で扱う主な項目は以下のとおりである。

□ DMLに含まれるクエリの最適化。

□ PL/SQLを 用いて相関更新を最適化する。

□ TRUNCATEを 用いてすべての行を削除する。

ロ インデックスがDMLのパフォーマンスに与える効果。

□ 配列処理を用いてバッチ処理のパフォーマンスを向上させる。

ロ ディスクリートトランザクションを用いる。

ロ コミットの回数を調整 してバッチ処理の性能を向上させる。

□ 外部キーによるロックとパフォーマンスに与える影響。

十 撒
“
、

,'・ ●

=黎
ζ,;■、・
‐

一
　

ｒ
　
・饉

9.2 DMLに れるサブクエリの最適化

UPDATE文 とDELETE文は たい て いWHERE句 を合 み 、WHERE旬 に よって どの行 が更 新 され た り削除 され

るかが指 定 され る。 この よ うなWHERE句 は暗黙 の クエ リが実行 され る。 また、 INSERT文 やUPDATE文 が

サブクエリを含むこともある。サブクエリによって挿入されるデータ、あるいは更新 される行の値が決

定される。これらの文のパフォーマンスを最適化するための第一のステップは、WHERE句 やサブクエ リ

を最適化することである。

これまで学んできた方法は、これらのサブクエリや冊題RE句の最適化にも応用できる。。

TRUNCATE TABLE文 は、最小の負担でテーブルのすべての行を削除する。DELETE文 を用いてテーブ
ルの行を削除すると、ロールバックセグメントやリドゥログヘの負担が増す。それに対し、TRUNCATE

文はテーブルのハイウォータマークをリセットするだけなので、ロールバックセグメントやリドゥログ

に負担をかけない。そのため、DELETE文に比べて、かなり効率的に全データを削除できる。しかし、
TRUNCATE文 はロールバックの情報を書き出さないので、実行すると元に戻すことができない。また、

第6章で説明したように、ハイウォータマークをリセットすることで、テーブル全走査のパフォーマンス

を改善することもできる。つまり、テーブルのすべての行を削除する必要があり、元に戻すことが必要

でない場合には、DELETE文 よりもTRUNCATE文 を用いるべきである。

9.4 インデックスとDMLのパフォーマンス
前の章で、クエリのパフォーマンスを向上させるためにインデックスをどのように用いるかを重点的

に学んだ。インデックスはクエリのパフォーマンスを改善することができるが、逆にDMLのパフォーマ

ンスを低下させてしまう。行が挿入、削除されたりする場合、テーブルのすべてのインデックスはメン

テナンスされなければならない。また、インデックスの作成された列が更新された場合も、そのインデ

ックスをメンテナンスする必要がある。

そのため、パフォーマンスの向上にあまり寄与しないインデックスは作成してはいけない。また、パ

フォーマンスを向上に寄与するインデックスでも、頻繁に使われない場合は、更新の多いテーブルには

作成しないほうが良い。

バッチ処理で、大量の行を挿入、更新、削除する場合、バッチ処理の前にインデックスを取り除き、

バッチ処理が終わった後にインデックスを作り直すとパフォーマンスを改善できることがある。

多くのインデックスが作成されたテーブルの削除は負担が大きいのだが、この作業を軽減するために

は、ステータス列を用いた論理的な削除をすることができる。そのようなテーブルに対するクエリは、

論理的に削除をされた行を取り除く条件(た とえば、ステータス !=削除)をⅢ佃RE旬 に持っていれば良い。

9日3 TRUNCATEヌ寸DELETE

●第9章 データ操作の最適化 (□翻魏躙靱 ill

9口5 配列挿入
オラクルは、1つの操作で複数の行をテーブルに挿入できる。これは配列挿入と呼ばれる。これにより、

クライアントとオラクルの間の トラフィックを減らすことができる。また、実行されるSQLの命令数も

削減される。配列処理は挿入のパフォーマンスに劇的な効果を与えることができる。

図9.1は、配列サイズが挿入のパフォーマンスに与える影響を示している。

図9.1 配列サイズが挿入のパフォーマンスに与える影響

9.6 トランザクションの最適化
トランザクションとは論理的に1つ にまとめ られたDMLの セ ッ トのことで、これ らの文は1つの単位 と

して成功 あるいは失敗す る。オラクルでは、COWITや ROLLBACK文 の直後、あるいは最初にDMLが実

行 され るとき トランザクシ ョンは開始 され、coⅢ41TやROLLBACK文 の実行、あるいはプログラムが終了

するときに終了する。

9.6.1 ディスクリ…トトランザクション
オラクルには、ある条件を満たした トランザクションのオーバーヘッドを減 らし、パフォーマンスを

向上させる機能がある。この機能は、ディスクリートトランザクションとして知られている。

ディスクリートトランザクションがどのように機能するのかを理解するために、オラクルが通常の ト

ランザクションでどのようにDMLを処理するのか見てみよう。たとえば、次の文を考える。

update customer_account
set balance=baf ance-2 0

where customer_id=3

この文が実行 される場合、オラクルは次の処理を行なう。

□ 対象となる行を含むデータブロックが取り出される。ブロックがメモリ内 (SGA内)にない場合、
オラクルはディスクからブロックを取り出す。

□ 更新前の行と同じイメージを持つ行が、ロールバ ックセグメン トにコピーされる。ROLLBACKが実

行されると、オラクルはこの更新前のイメージを使って、行を元の状態に復帰させる。また、更新

前のコピーは他のセッションによっても使われる。他のセッションが、更新中の行にアクセスする

と、オラクルは更新前のコピーを取り出し、他のセッションに返す。そのため、他のセッションは

まだ確定 されていないデータを読む(dirサ read)と いうことがなくなる。

□ ba■ance列の値が、メモリ中のデータブロックに書き込まれる。

□ 変えられた値を記録するエン トリがメモリ内のリドウログバッファに書き込まれる。 リドゥログは

トランザクション情報の詳細 も含んでいる。システムが正常にSHUTDOWNさ れていない場合に、
トランザクションを再実行するためにこれらの情報が使われる。

□ cowITが実行された場合、 リドゥログエントリはディスク上の リドゥログファイルに書き込まれ、
変更は永続的になる。

□ ROLLBACKが実行された場合、ロールバックセグメントの更新前のコピーがブロックを更新前の状
態に戻すのに用いられる。

ディスクリー トトランザクションでは、データブロックおよびリドゥログヘの変更は、最後の瞬間、

つまり、トランザクションが完了するまで延期される。colwITが 実行されるまで何も変更 されないため、
ロールバックセグメントに対するエン トリーはない。

この手法の結果、ディスクリー トトランザクションは次の制限を持つ。

ロ ディスクリー トトランザクションでは、コミットが実行されるまで、データブロックの行は変更さ

れないので、 トランザクションは行の変更された値を見ることはできない。
ロ ディスクリー トトランザクションは分散 トランザクションになることはできない。つまり、ディス

クリー トトランザクションは別のデータベースのデータを変えることができない。

□ 参照整合性を含むテーブルはディスクリートトランザクションにとって問題となることがある。た

とえば、従業員テーブルに部署テーブルヘの参照整合性が設定されている(従業員テーブルの部署

コードは、必ず部署テーブルに存在しなければならない)と しよう。新しい部署を加え、同じディ

スクリートトランザクション内でこの部署に従業員を加える場合、新しい部署はまだ、本当の意味

で加えられていないためにこの操作は失敗するだろう。

ロ ディスクリートトランザクションは同じブロックを2回変更することはできない。

ロ ディスクリー トトランザクションで変更したブロックに他のセッションはアクセスできない。更新

●第9章 データ操作の最適化 Cmm隕躙:鷺:|::11::|

中のブロックにアクセスがあった場合、オラクルはロールバックセグメン トの情報を元に、変更前

の情報を返そうとする。しかし、ディスクリートトランザクションは、ロールバックセグメン トに

情報を書き込まないので、オラクルは更新前の情報を取得できずにエラーを返す。

これ らの制限はたいへん厳 しいので、デ ィスクリー トトランザクションの評価は低く、実際のシステ

ムではほとんど使われていない。

しか し、これらの制限をクリアできる場合、ディスクリー トトランザクションを使ってパフォーマン

スを改善できる。たとえば、次のディスクリー トトランザクションは、通常の トランザクションの平均

して80%の時間で実行を完了した。

dbms-transactrion. beqin-discreate-transaction ;

■nsert into sales (CUSTOMER_ID′

PRODUCT_ID ′

SALE_DATE ′

QUANTITY ′
SALE_VALUE)

values (p_CuStOmer_ユ d′

p_product_id′

sysdate′

p_quant■ ty′

p_va■ ue)′

update customer_balance

set balance=ba■ ance― p_ a■ ue

where customer_id=p_customer_■ d,

corunit;

図9.2 ディスクリートトランザクションと通常の トランザクションの実行時間の比較

9.6.2 SET TRANSACT10N文 :を用いる
SET TWNSACT10N文 によ り、 トラ ンザ クシ ョンの 性 格 をコ ン トロール す ることがで き る。 これ らの

オプションはパフォーマンスにも影響を与える。

SET TRANSACTiONオ プション 使用について

USE ROLLBACK SEGMENTセ グメン ト名 このオプションにより、 トランザクションで使われるロール
バックセグメントを特定することができる。オラクルはたい

てい、負荷分散アルゴリズムを用いてロールバ ックセグメン

トをトランザクションに割り当てる。そのため、あるトラン

ザクションがどのロールバックセグメントに割り当てられる

のかは、実行時までわからない。しかし、 トランザクション
が数多くの行 (た とえば、大量の更新)に影響を与えること

がわかっている場合、特定の大きなロールバックセグメント

が割り当て られるように宣言するとよい。 トランザクショ
ン中のロールバックセグメントの動的な拡張が避けられるの

で、パフォーマンスが向上する。また、ロールバ ックセグメ

ントの動的な拡張の際、エクステントの割り当てに失敗する

こともなくなる。

READ ONLY このオプションにより、 トランザクション中にデータを更新
しないことをオラクルに宣言する。これにより、 トランザク
ション中のどの時点でも、データの状態が同じであることが

保証される。通常は、他のセッションで変更されたデータは、

(他のセッションで)COMMITさ れた時点で、自分の トランザ

クションに反映されてしまう。このオプションを長く連続す

るクエリを含んだトランザクションに対して用いると、パフ

ォーマンスを低下させてしまう。その理由は、更新前のイメ

ージを得るためにロールバックセグメントにアクセスし、さ

らなる1/0が必要となるためだ。

9.6.3 トランザクシヨンの00MMIT
COMMITが実行されると、 トランザクションで更新した内容が確定される。 トランザクションが
cowITさ れるとオラクルは次の処理を行う。

□ 対象となるロールバックセグメン トでは、 トランザクションはcomttT済 みとしてマークされる。
□ (メ モリ上の)リ ドゥログバッファに、トランザクションがconIIT済みであるというエン トリが書

き込まれる。

ロ リドゥログバ ッファの内容が、ディスク上のリドゥログファイルに書き込まれる。

(0)第 9章 データ操作の最適化

上記でわかるように、COMMITは 常にある程度のディスク1/0を 必要とするため、プログラムが

COMMITす る回数が増えれば、その分ディスク1/0の負担が増える。

通常、 トランザクションをcomETす るタイミングについては、パフォーマンスヘの配慮より、アプリ

ケーションのデザインや、ユーザが何を必要としているのかによって決定される。たとえば、
ユーザが

アプリケーションで保存(確定)ボタンを押した場合、 トランザクションはcolttITさ れる。

他方、バッチ処理を行なっている場合、どれだけの頻度でco卜NITす るのかについていくつかの選択肢

がある。たとえば、次のPL/SQLコ ードで、変数cmmitfの値を変えることでCOMMITす る回数を調整で

きる。

DECLARE

counter_■ nuber:=0,

status_l varchar2(10),

com.tf number,_looo, 一―コミ ッ ト(Dタヨ度

BECIN

FOR customer_row .n (se■ ect■ from custOmer_balance)L00P

counter_1:=counter_■ ■1,

IF cuStoimer rOW.ba■ anCeく O THEN

status_■ :='DEBIT'′

ELSE

status_■ :=iCREDIT:,

END IF,

UPDATE customers

SET status=status ■

WHERE custoimer_id=CuS toimer_rOW.CuStomer_id′

IF cOunter l>=cOmmitf THEN
――cOnmitfで設定した行数ことにco、皿ITする

c onTn■ t,

counter_1:=0,

END ■F,

END LOOP,

conunit,

END

図9.3はcoα ITの さまざまな頻度に対する所要時間を不している。coⅢ41Tの頻度を減らすことで、こ

の作業に所要する時間を減少できることが分かる。

図9.3 大量の更新プログラム るCOMMITの頻度の変更とその効果

9.フ 外部キー
外部キー制約によって、外部キーを持つ列は親テーブルに存在 しない値を参照することができなくな

る。たとえば、次の制約によりsalesテ ーブルのcustOmer_id列 はcustomersテ ーブルに存在しない
customer_idを 参照することができなくなる。

alter table sales
add constraint fk1_safes foreign key (cust.omer_id)
references customers (cust.omer_id)

9.フ .1 外部キーがパフォーマンスに与える影響
外部キーが設定されていると、salesテ ーブルにcustOmer_id列 が設定されるたびに、オラクルは
cusbmersテ ーブルにプライマリキーの存在チェックを行う。驚くには値しないが、これはsdesテ ーブル
ヘの挿入あるいはcustOmeLid列の更新を遅くする (図9.4参照)。 データベース内の一貫性を保つには参
照整合性を用いるのが有効で、一般的におすすめである。しかし、挿入や外部キーの更新への影響に注

意する必要がある。

●第 9皇 データ操作の最適化 (EI鱚隋欲::::||:|:|::i:|

10.47

,

858

鱚鱚鱚

獅

図9.4 夕1部キーの制限がsalesテ ーブルヘの挿入に与える影響

9.フ.2 外部キーとロック
外部キーにインデックスが作成されていない場合、親テーブルに対する削除、あるいは子テーブルが

参照している列に影響を与える親テーブルの更新は、影響のある子テーブルのロックが発生する。この

ロックが問題になる場合は、外部キーにインデックスを作成すると良い。その場合、親テーブルの挿入、

更新、削除に対して、子テーブルにロックは発生しない (オ ラクル73以上)。

9口8 まとめ
この章では、INSERT、 UPDATE、 DELETEと いったDMLの パフォーマンスや、 トランザクションのパ フ

ォーマンスを向上 させる方法 を学んだ。

DMLを最適化するおもな原則は次のとおりである。

ロ クエ リのパ フォーマンスを最適化するときのように、DMLの サブクエリやWHERE句 を最適化する。

ロ インデ ックスはINSERT、 UPDATE、 DELETEの 作業を遅 くする。頻繁に更新 される列に対 してイン

デックスを作成する場合には、本当にパフォーマンスが向上するのか、注意深く検討しなければな

らない。

ロ テーブルのすべての行を削除する必要があり、元に戻すことが必要でない場合には、DELETE文 よ

りもTRNCATE文 を用いる。

□ 多くの行の挿入を行なう場合、配列挿入を用いてパフォーマンスを大幅に向上させることができる。

□ 親テーブルに対する削除、あるいは子テーブルが参照している列に影響を与える親テーブルの更新

があるような場合、外部キーにインデックスを作成する。

□ 特定の条件を満たすことができる場合、ディスクリートトランザクションを使ってパフォーマンス

を改善できる。

ロ バッチ処理を行う場合、coMITの 回数を減 らす事でパフォーマンスを改善できる。

軍
′
，
′
″

』
　
　
稼

ヽ

~‐
り

‐ ‐ ‐ 1「

亀ず
'I:穐

毅:::、、‐`
'罐

贅

__′
ヽ

t鷺

´́
/

濾 謂
照::'‐■
,:oF.撼` .

倅金

Ｆ

・が

，

●●

● .

海.薔

第
■

，
』

剣

・

´
　

¨
多

　

●

一一̈一̈■
・，
■

・

■●●●

唸
-.-"

b

.書｀‐‐

h
F

よよ|||■ |■ ,‐

ぽ

、.^'

緑 苺
´

…●
'=コ
‐ ■
r

`・

1 ■ ・

‐
¨

PL/SQLの使し

10.1 1まじめに

この章では、PL/SQLを使って、従来のSQL文のパフォーマンスを改善する方法について学ぶ。また、

PL/SQLの プログラムをチューニングする方法についても学ぶ。

この章で扱う主な項目は以下のとおりである。

□ PL/SQLレ ビュー

□ PL/SQLの特徴。

□ SQL文の代わりにPL/SQLを用いる。

□ PL/SQLの最適化。

10日2 PL/SQLレビュー

PL/SQLは、標準的なSQL言語を手続き型言語として機能拡張したオラクル社の製品である。条件分岐

やループ処理ができるのはもちろんのこと、データのカプセル化、オーバーロード、例外処理、情報隠

蔽などの機能も提供されるので、本格的なプログラミングが可能である。

PL/SQLプ ログラムは、ブロックによって構成される。ブロックはその中に更にブロックを持つことが

出来、任意の数のネストが可能である。このブロックは、基本的に宣言部、実行部、例外部から構成さ

れ、宣言部、例外部は任意となっている。このブロック構造は、問題を分割して処理する段階的詳細化

のアプローチをサポートしている。

また、PL/SQLブ ロックは、コンパイルしてデータベースに格納することもできる。このコンパイル済

ゝ

凸
‐ みで直ぐに実行できるプロックのことをストア ドプログラムと呼ぶ。ス トアドプログラムには、手続き

(ス トア ドプロシージャ)と 関数 (ス トアドファンクション)が ある。 トリガもまた、PL/SQLブ ロックの1
つである。

10.3 PL/SQLの特徴
PL/SQLは 、従来のSQL言語では苦手な手続き的な処理を行うことができる◇また、パフォーマンスの

点でも、さまざまなメリットがある。それでは、PL/SQLの主な特徴を見てみよう。

10.3.1 解析の削減
ス トア ドプログラムは、コンパイルされたかたちでデータベースの内部に保管されている。これは、

ストア ドプログラム内のSQLは すでに解析されていることを意味 している。SQL文 が実行されるとき、

構文や権限のチェック、あるいは実行計画の決定をする必要はない。

SQL文が実行 されると、オラクルは共有プールに同じSQL文がないかどうかをチェックする。見つか

らなかった場合、そのSQL文に対 して、構文や権限チェック、あるいは実行計画の決定を行わなければ

ならない。解析のコストは大きいので、ス トアドプログラムによって解析を削減することは、パフォー

マンスの改善に有効である。

10.3.2 クライアントサーバの間のトラフイックの緩和
従来のSQL文に基づいたC/Sシステムでは、SQL文 とデータがクライアントとサーバの間を行き来する。
例え、クライアントとサーバが同じマシン上にあっても、この トラフィックは処理の遅れの原因となり

得る。クライアントとサーバが違うマシンの場合、ネットヮークが間に入るため、負担はよリー層大き

くなる。

ストアドプログラムは、複数のSQL文がサーバに保管されているので、クライアントからストアドプ
ログラムを起動するというメッセージを送るだけで、複数のSQL文 を実行できる。その結果、クライア
ントとサーバ間のトラフィックも減少する。特に、サーバでの更新処理がほとんどで、結果をクライア

ントに返す必要がない場合、ストアドプログラムを用いて大幅にパフォーマンスを改善できる。

10.3.3 PL/SQLを用いてデータの処理方式を決定する
第2章で学んだように、SQLは 非手続き型言語である。データをどのように取り出すかどうかは、
RDBMSに任せれている。これはプログラマの仕事を単純にするのだが、逆にチューニングすることが難
しくなる。

PL/SQLを 用いる場合、データをどのように取り出すかを明示的に指定できる。そのため、複雑なSQL
文を実行する場合、パフォーマンスを大幅に改善できる可能性がある。

10.4 SQL文の代わりにPL/SQLを用いる

前の節で、PL/SQLの メリットを学んだ。しかし、どのような状況にもPL/SQLが適 している訳ではな

●第10章 PL/SQLの使い方とチューニング □痣鰤:i:!:::|:11111111111

い。PL/SQLを 標準SQLの かわりに使った方が良いのは次のような場合だ。

ロ トリガでテーブルに変更があったタイミングで、特定の処理を実行したい場合。
□ 大量のデータを返す必要がない場合。たとえば、更新処理を行なう場合、あるいはひとつの値か行

を取り出す場合。

□ 手続き的な処理が必要で、標準SQLでは実行できない場合。

□ 複雑な処理が必要なため、オプティマイザに実行計画を任せるより、データの取出し方や処理の仕

方を明示的に指定したい場合。

10.4.l PL/SQLを非正規化に用 しヽる
第6章で、名字と名前を大文字で保管するのに、トリガ(PL/SQDを 用いた。また、トリガをテーブル

の非正規化に用いることもできる。たとえば、emp■ oyee_nameと department_nameが 知りたい場合、

次のようにemp10yeesテ ーブルとdepartmentsテ ーブルを結合させる必要がある。

select e - employee-name, d. department-name

from departments d,employees e

where d.departmenL-id = e,department-id

非正規化を行い、employeesテ ーブルにdepartmentnameの コピーを持つことで、employeesテ ーブル

とdepartmentsテ ーブルを結合させる必要がなくなる。そのコピーの作業を トリガを次のように使って自

動的に行うことができる。

create or replace trigger cutomer-insupdl
before insert or update of deparEment-id on employees

for each row
declare

cursor dept-csr (cp-dept-id number) ls
select department-name

from deparLments
where department-id=cp*dept-id ;

open dept_csr (:new.deparLment-id) ;

fetch dept-csr into :new.department-name;
close dept-csr;

end;

create or replace trigger department-insUpdl
before insert or update of department-nane on departmenLs

for each row
begin

update employees
set department_name= : new. department_name

where department_id = :new.department_id;
end;

結果として結合が避けられるなら、この種の非標準化は大幅にパフォーマンスを改善することができ

る。たとえば、すべてのemp10yee_nameと department_nameを返すクエリの場合、必要な1/0は
2,414ブ ロックからたったの67ブ ロックに減少した。

図10.l employee_nameと depariment_nameを 返すクエリに対する非正規化の影響

テーブルの非正規化には細心の注意が必要である。第14章で、テーブルの非正規化の長所 と短所を学

ぶ。しかし、処理速度が重要なら、 トリガを用いて、非正規化されたデータのメンテナンスを自動化し、
パフォーマンスを改善できることを覚えておいて欲 しい。

10日5 PL/SQL(D蜀謝直1ヒ

PL/SQLを使って標準SQLのパフォーマンスを改善できる。しかし、PL/SQLを 最適化して、 さらにパ
フォーマンスを向上させる可能性がある。主な最適化の方法は次のとおりである。

□ 他の手続き言語に適用される最適化の技術を、PL/SQLの手続き処理に適用する。

□ PνSQLで繰り返し処理するロジックをストアドプログラムに置き換えると、解析の負担を軽くす

ることができる。

□ PL/SQLの 特定の技術を使って (た とえば、明示的なカーソル、CURRENT OF CURSOR、 PL/SQL

テーブル)データベースヘのアクセスを最適化で きる。

10.5.1 コ… ドの最適化
我々はたいていPL/SQLを データーベースアクセス言語としてとらえ、PL/SQLプログラム内部での

●第10章 PL/SQLの 使い方とチューニング C□日祗鰈靡:翁 :|:11111::|

SQLの最適化の作業に力を入れる。しかし、手続き言語としてPL/SQLは 、他の言語と同様な最適化の原

則に従うのである。データベースヘアクセスしない場合、PL/SQLそ のものがかなりの割合でCPUの リソ

ースを消費してしまう可能性がある。手続き処理を最適化する、基本的な原則が次のとおりである。

ロ ループ処理を最適化する。

□ 条件文 (た とえばIF)を最適化する。

□ 再帰呼び出しを避ける

ループ処理の最適化

L00P句は、繰り返し処理を実行するときに用いられる。非効率的なループはパフォーマンスに重大

な影響を及ぼす可能性がある。ループを最適化する2原則は次のとおりである。

ロ ループ内の繰 り返しの回数を最小にする。それぞれの繰り返しがCPUを 消費してしまうので、ルー

プ内の作業を完了したら、EXIT文を用いてループから出る。

ロ ループの外側に置くことのできる文がループの内側にないことを確認する。ループの内側にある文

でループの外側のループカウンタに対する演算を行っている場合、内側でのループの間は、外側の

ループカウンタは変化しないので、その文はループの外側で実行できる可能性がある。ループの外

側で実行することにより、その文の実行回数を減らすことができる。

次はコードの一部であるが、ループ組み立てのまずさ示している。

FOR counterl in ■..500 L00P

FOR counter2 in l..500 L00P

modcOunterl:=mOd(counterl′ ■0),一 -250′ 000回実行する

modcounter2:=imod(counter2′ ■0),

sqrtl:=sqrt(cOunterl),一 ―このループの外側に置くことが可能である

sqrt2:=sqrt(counter2)′

IF modcounter■‐O THEN

IF modcounter2=O THEN
――何か作業をする

ENI)IF′

ENI)IF,

END L00P,

END L00P,

このコードには次のような問題がある。

□ 外側と内側のループはそれぞれループカウンタが10で割り切れる場合だけ、実行すれば良いのにも

かかわらず、実際には1から500の間のすべての値をループの対象にしている。これは、実際に必要

な回数の10倍 もの頻度で実行されていることを示 している。

次のコードは、上記のループ処理を最適化したものだ。

WIIILE counterl く = 500 L00P

sqrtl:=sqrt(counterl)′ ―-50回実行する

WHILE counter2 く= 500 L00P
sqrt2:=sqrt(counter2),

一―何か作業をする

counter2:=counteF2+10, 一-10σ)士曽力日
END L00P,

counterl:=counter■ ■■0,

END L00P,

この例ではWHILE句 を用い、ループカウンタを10づつ増やしている。その結果、内側のループを500回

ではなく50回実行するだけで済むようになった。また、MOD関 数も実行する必要がない。さらに、

cOunter■ に対するSQRT関数は内側のループから外側のループに移動した。これにより、最初の例では

250,000回 も実行されたのが、この例ではたった50回の実行で済むようになった。

パフォーマンスの点で2番目の例は最初の例をはるかにしのぐ。最初の例は完了するのに111秒 (ほ とん

ど2分)費やした。2番 目の例は完了するのにたったの0.02秒 (ほ とんど一瞬)し か費やさなかった。このよ

うに、ループ処理の最適化はパフォーマンスを大幅に改善できる可能性がある。

図10.2 非最適化されたループ、および最適化されたループに費やした時間

□ cOunter■ についてのsQRT関数とMOD関数は、内側のループに含まれている。これは、内側のルー

プの間counterlの値が変わらなくても、ループが繰 り返 されるごとに毎回実行されることを意味す

る。これは、実際に必要な頻度よりも500倍 も多い頻度で実行されていることを示している。

(D第 10章 PL/SQLの使い方とチューニング C国飩魃:|::|:|:||1華 :|

:F文の最適化

複数の条件を持つIF文の場合、オラクルはIF文が条件を満たすまで、それぞれの条件を評価する。一

度条件を満たすと、オラクルは続く条件を評価する必要はない。ゆえに、最も起こる確率が高い順に条

件を並べると、IF文を評価する回数を減らすことができる。

次のコードは非最適化されたIF文 を示 している。最初の条件は10,000ル ープのうちたった9回だけ条件

を満たす。最後のEISE条件は10,000ル ープのうち9,910回条件を満たす。最も起こる確率が高い条件が最

後にきているので、無駄な条件評価が多くなっている。

FOR counter■ IN l..■ 000 L00P

IF counterl く 10 THEN

――何か処理をする

ELSIF counter■ く 20 THEN

―一何か処理をする

ELSIF counterl く 30 THEN

――何か処理をする

ELSIF counterl く 40 THEN

――何か処理をする

ELSIF counterl く 50 THEN

――何か処理をする

ELSIF counterl く 60 THEN
――何か処理をする

ELSIF counterl く 70 THEN

――何か処理をする

ELSIF counterl く 80 THEN

――何か処理をする

ELSIF counterl く 90 THEN

――何か処理をする

ELSE― ―最も起こる確率が高い条件

――何か処理をする

END IF,

END L00P′

次の例は、最適化されたIFブロックを示している。さて、もっとも一般的に満たされる表現はIF構造の

最初にある。もっとも繰り返される表現については、この最初の評価のみが実行されなければならない。

FOR counterl ■n l..■ 000 L00P

IF counter■ >= 90 THEN

―― 何か処理をする

ELSIF counter■ く 10 THEN

――何か処理をする

ELSIF counterl く 20 THEN
――何か処理をする

ELSIF counter■ く 30 THEN

――何か処理をする

ELSIF counterl く 40 THEN
――何か処理をする

ELSIF counterl く 50 THEN
――何か処理をする

ELSIF counterl く 60 THEN
――何か処理をする

ELSIF counterl く 70 THEN
――何か処理をする

ELSIF counterl く 80 THEN

――何か処理をする

ELSE

――何か処理をする

IF文 を最適化することで、実行するの所要した時間が1.22秒から0.21秒に短縮された。

図10.3 最適化、また非最適化されたlF文の実行の所要時間

再帰呼び出しは、自分自身を呼び出す処理である。再帰呼び出しを使って、プログラム上の複雑な間

題をエレガン トに解決できることも多いが、大量にメモリやスタックを消費する傾向がある。

再帰呼び出しの多くは、ループ処理で再構築することが可能である。再帰呼び出しをループ処理で置

き換えることで、リソースの消費を押さえ、パフォーマンスを改善することができる。

10.5.2 無名プロックのかわりにス トア ドプログラムを用いる
名前のついていないPL/SQLブ ロックは、無名ブロックと呼ばれる。無名ブロックは、通常のSQL文 と

同じように解析され実行される。PL/SQLブロックは、複数のSQL文から成り立っているので、解析処理

も通常のSQL文 よりも重くなる。そのため、PL/SQLブ ロックは前もってコンパイルして、ストアドプロ

グラムとしてデータベースに格納した方が良い。ス トアドプログラムは、すでに解析済みなので、解析

処理のオーバーヘッドをなくすことができる。

021

122

END IF′

END L00P,

●第10章 PL/SQLの使い方とチューニング (□蜃洟隋蝙 :|

たとえば、次の無名PL/SQLブ ロックは0.19秒 で実行される。

DECLARE

CIIRSOR qet-dept-csr (cp-dept-id number) IS

SELECT deparEment-name
FROM departments

WHERE department-id=cp-dept-id ;

BEGIN

oPEN ge!-dept-csr(3);
FETCH get-dept-csr into :dept-name,'

CLOSE qet_dept-csr;
END;

ス トアドプログラムに変換した場合、実行に要した時間は0.12秒に短縮された。たった0.07秒だが、

37%も の短縮なのである。この数字は、PL/SQLブ ロックがOLTP環境で頻繁に実行される場合重要な意

味を持つ可能性がある。

図10.4 ストアドプログラム、および無名PνSQLプ ロックの実行に要した時間

10.5.3 ′1ッケ…ジを用いる
パッケージとは、関連する手続き、関数、カーソル、変数の定義などを1つ にまとめたものだ。通常、

パッケージは仕様部と本体で構成され、本体は要らない場合もある。仕様部は、他のアプリケーション

ヘのインターフェースであり、本体はその実装を記述する。

パッケージの利点は次のとおりである。

□ 関連する手続き、関数、カーソルなどをカプセル化できるため、個々のパッケージの役割が明確に

なり理解しやすくなる。

□ 仕様部でインターフェースを定義しておけば、本体(実装)がなくてもコンパイルできる。仕様部が

コンパイル済みなら、他のプログラムでは、そのパッケージを参照できるので、開発の初期段階で

012

ロジックを実装する必要がない。また、本体のロジックを変更しても、仕様部のインターフェース

が変わらないなら、そのパッケージを参照するプログラムはリコンパイルする必要がない。

□ 手続き、関数、カーソルなどについて、それがパブリック(パ ッケージ外からアクセスできる)なの

か、プライベー ト(パ ッケージ内からしかアクセスできない)なのかを指定できる。プライベートな

機能を変更する分には、パッケージの利用者に影響を与えないで済むので、メンテナンスや機能拡

張が容易になる。

ロ セッションで、パッケージに初めてアクセスしたときに、パッケージ全体がメモリにロードされる。

そのため、それ以降のパッケージに関連する手続き、関数の呼び出しはディスクヘの1/0が必要な

くなり、高速に実行できる。

共有メモリ内にパ ッケージをキープする

パッケージは共有メモリに読み込まれて実行されるが、共有メモリは限 りのある資源なので、しばら

くするとLRUア ルゴリズムに従って、古いパッケージは共有メモリから追い出される。追い出されたパ

ッケージを再び実行 したい場合、オラクルはもう一度、そのパッケージを共有メモリに読み込まなけれ

ばならない。このような再読み込みによるパフォーマンスの低下を防ぐために、使用頻度の高いパッケ

ージをdbms_shared_poolパ ッケージを使って、共有メモリ内にキープすることができる。

たとえば、complex_pakageを共有メモリ内にキープするには、sysユーザで次のようにする。

SQL> exec dbms*shared3ool . keep ('compf exjakage, , 'p') ;

dbms_shared_poolパ ッケージを使 うためには、あらか じめsysユ ーザでdbmspool.sqlス ク リプ トを実行

しておく必要がある。dbmspool.sdス ク リプ トは、UNⅨの場合、sORACLE_HOME/ra)ms/adminデ ィレ
ク トリに存在す る。他の環境の方は、自分の :[景境に合わせて読み替えて欲 しい。

10.5.4 トリガ対ストアドプログラム
オラクル7.3よ り前のバージョンでは、 トリガはコンパイルされてないかたちでデータベースに記憶さ
れていた。その結果、オラクルが最初に トリガを実行する前にコンパイルする必要があった。そのため

7.3よ り前のバージョンでは、できるだけ多くのコードをトリガから取り出し、ストアドプログラムに置

き換えると、実行するときにコンパイルする必要がなくなるので、パフォーマンスを改善することがで

きる。

10.5.5 トリガでUPDATE OF旬 とWHEN旬を用いる
CREATE TRIGGER文 のUPDATE OF句 によって、指定 された列が更新 された場合のみ、 トリガを実行
させることがで きる。似たような方法で、WHEN句 を用いて、ある条件が満たされた場合のみ、 トリガを
実行させることもで きる。

これらの旬によ り、 |ヽ リガが不必要 に実行 されなくなるので、 トリガが作成 されたテーブルに対する
更新のパフォーマンスを改善することができる。

たとえば、次のトリガはemployeesテ ーブルのどの列が更新されても必ず実行される。

●第10章 PL/SQLの 使し とチューニング (1%鰤::|:||:11111

CREATE OR REPLACE TRIGGER CMPIOYEE_UPd

BEFORE

ON

FOR

BECIN

IF

UPDATE OR INSERT

EMPLOYEES

EACH ROW

:new.salary > 100000 THEN

:new. adjusted-salary: =complex-function (:new. salary) ;

END IF,

END,

次の トリガは、sa■ ary列が更新された場合、またはsa■ ary列の新しい値が100,000よ り大きい場合の

み実行される。

CREATE OR REPLACE TRIGGER emp■ oyee_upd

BEFORE UPDATE OF SALA_RY OR INSERT

ON EMPLOYEES

FOR EACH ROW

WHEN (neW.Salary > ■00000)

BEGIN

new. adjusted-salary: =complex-function (:new. salary) ;

END

トリガを必要な場合のみ実行させることで、更新作業のパフォーマンスを改善できる。

1.81

1.81

1.91

図 10.5 トリガの 負 担 を減 らす ため にWHEN句 とUPDATE OF句 を用 い る

6.03

10.5.6 明示的にカーソルを用いる
SELECT INTO句 を使えば、明示的にカーソルを使わなくても、処理することが可能となる。たとえば、

次のようになる。

上記の文が実行 されると、オラクルは自動的にカーソル を作成 し、この文 を処理する。この ように自

動的に作成されるカーソルは、暗黙のカーソルと呼ばれる。

暗黙のカーソルは、プログラミングには便利であるが、明示的にカーソル を使 う処理と比べて、パ フ

ォーマンス的には不利になる。なぜなら、SELECT INTO句 は1行 しか戻せないので、オラクルは2行 日が

ないことを常にチェック(フ ェッチ)し なければならず、余分なフェッチが生 じるためだ。

上記の文を明示的にカーソルを使って処理すると次のようになる。

begin
select

into
from

where

and

and

end;

DECLARE

CURSOR

SELECT

FROM

WHERE

AND

AND

BEGIN

OPEN

FETCH

CLOSE

END′

contact_firs tname

; firstname
cus tomers
contact_surname= ' SMITE '

contac t_f irstname=' STEPHEN'

date_of_birth=' 2 6-MAR-44' ;

get_cust_csr is
contac t_firs tname

cus tome rs
contact_surname= ' SMITH '

contact firstname=' STEPHEN'

dar.e_of_birth=' 2 6-MAR-44, ;

geL_cust_csr;
get_cust_csr inlo : firstname;
geE_cust_csr,'

10.5.7 WHERE CURRENT OF旬
カーソルをフェッチして何らかの処理を行い、そのフェッチした行に対して、更新処理を行いたい場

合がしばしばある。たとえば次のような場合だ。

DECLARE

neWSal Dπ JMBER′

CURSOR emp_csr is

SELECT 力 from elnployees

WHERE sa■ ary > 50000,

11:111:|::||:||:i1111隋囃わ

(|)第 10章 PL/SQLの使い方とチューニング G眩鰤

BEGIN

―― カーソルループを使いemp_rowに 自動的にフェッチする

FOR emp_rOw IN emp_cSr L00P

―― 何らかの処理を行う

newsal := somefunc(emp_rOWoSalary),

UPDATE employees

SET sa■ ary = newsal

―― プライマリキーを使つて更新する

WHERE employee_■ d = emp_row.employee_■ d′

END L00P′

END′

更新はプライマリキーを用いているので、インデックスを利用した効率的な処理になる。しかし、フ

ェッチした行の位置をオラクルは知っているはずなので、わざわぎプライマリキーを使う必要はない。

現在 フェッチ している行の位置を知るには、WHERE CURRENT OF句 を使えば良い。WHERE CURRENT

OF句 を使 うと、オラクルはROWID(行の物理的なア ドレス)に よって、現在行を特定する。ROWIDを 使 う

と、オラクルは行の物理的なアドレスを特定できるので、インデックスを使わない直接的な更新が可能

になる。この手法を使うと、先ほどの例は次のようになる。

DECLARE

newsal NUMBER′

CURSOR emp_csr ■s

SELECT = from employees

W■IERE salary > 50000
-― 冊ERE CURRENT OF句 を使うため には、FOR UPDATE句の追加が必要

FOR UPDATE′

BECIN
―― カーソルループを使いemp_rowに 自動的にフェッチする

FOR emp_row IN emp_csr LOOP

――何 らかの処理を行 う

newsal := somefunC(emp_rOW.Sa■ ary),

UPDATE emp■ oyees

SET salary = newsal

―― 冊 IERE CURRENT OF句 を 使 つ て 更 新 す る

WHIERE CURRENT OF emlp_csr,

END L00P,

END,

WHERE CURRENT OF句 を使 うと、ROWIDを使った直接的な更新が可能になるので、パフォーマ ンスを

向上 させ ることができる。 しかし、次のような副作用もあるので気を付けなければならない。

ロ クエリが選択したすべての行は、最初の行が返される前に、更新のためにロックされる。他のセッ

ションでもそのテーブルに関して更新がある場合は、ロック待ちが生 じる可能性がある。

ロ ロックは、リソースを消費する。クエリが選択 した行が多いとそれだけリソースの消費も増えてし

まう。

上記のような副作用を防ぐためには、ROWIDを 独自で処理すれば良い。たとえば次のようになる。

DECLARE

neWsal lNUMBER′

CURSOR emp_csr ■s

SELECT e.row■ d′ e.= frOm employees e
WHERE salary > 50000′

BEGIN

――カーソルループを使いemp_rowに 自動的にフェッチする
FOR eimp_ ow IN emp_ sr L00P

―― 何 らかの処理を行う

newsal := sOmefunc(emp_row.salary)′

UPDATE employees

SET salary = newsa■

―― ROWIDを 使つて更新する

WHERE ROWID = emp_rOw.rOwid,

END L00P,

ENDi

この技術を用いて、ロックの負担と不必要なインデックスアクセスの負担の双方を回避することがで

きる。

しかし、ROWIDを使った更新にも弱点がある。クエリが選択した行に対してロックをかけないので、
カーソルをオープンしてから更新する間に、他のセッションによって行が更新される可能性があるのだ。

他のセッションによって更新された行を上書きしてしまうことを防ぐためには、更新する部分を次のよ

うに書換えれば良い。

UPDATE employees
SET safary = newsa.I

WHERE ROWID = emp_row.rowid
AND Salary = emp_row.salary;

10.5.8 PL/SQLテ…ブルによるキャッシュ
PL/SQLテ ーブルは他の言語の配列に類似している。配列のように、PL/SQLテ ーブルは添え字でアク
セスするが、配列と違い、前もって配列数を決めてその領域を確保する必要はない。ただし、確保され

ていない領域にアクセスすると例外が生じる。そのPL/SQLテ ーブルの性質とパッケージ(の変数)はセッ
ション中は存続するという性質を利用して、キャッシングを行うことができる。たとえば、empnOに 対

するenameを キャッシングする場合、次のようになる。

0章 PL/SQLの使い方とチューニング G瞼輻 :

CREATE OR REPLACE PACKAGE cache ename ■S

FUNCT10N get_ename(p_empnO emp.empnOtTYPE)RETURN VARCHAR2,

END caChe_name,

/

CREATE OR REPLACE PACKACE BODY cache_ename IS
―― PL/SQLテーブルの型

TYPE ename_table_type IS

TttLE OF emp.enameRTYPE INDEX BY BINARY_INTEGER,

一― PL/SQLテ~ブル
ename_ta,b■ e ename_table_type,

一一 enaneを取得するためのカーソル

CURSOR ename_cur(cp_empnO emp.empnotTYPE) IS

SELEcT ename FROM emp WHERE empno = cp_mpnO,

FUNCT10N get_ename(p_empnO emlp.empnOお TYPE)RETURN VARCHAR2 1S

my_enalne emp.ename%TYPE′

BEGIN
―― ename_tab■eへ添え字でアクセス

BEGIN

my_ename := ename_table(p_empnO),

一― まだ領域が確保されていない場合は例外が発生する

EXCEPT■ ON

WHEN NO_DATA_FOUND THEN
―― enameを 取得する

OPEN ename_cur(p_empno),

FETcH ename_cur INTO my_ename′

CLOSE ename_Cur,

一 empnOに 対する領域を確保する

ename_table(p_empn。) := mly_ename,

END′

RETURN my_ename′

END′

END cache_ name′

/

パ ッケージを使ったPL/SQLテ ーブルによるキャッシュは、セッション中存続するので、何回も同じ関

数が呼び出されるとき、このキャッシュは効果がある。逆に、関数を呼び出す回数が少ない場合や、何

度もオラクルに接続 し直す場合は、かえってキャッシュによるオーバーヘッドが生じるだろう。

オラクルは、最近ァクセスしたデータブロックを共有メモリにキャッシュするので、プログラムでキ

ャッシュするかどうかを迷うかもしれない。実際、PL/SQLテーブルによるキャッシュは、オラクルの共

有のメモリにデータがキャッシュされていたとしても、パフォーマンスの改善につながる。なぜなら、

PL/SQLテ ーブルをキャッシュすることで、オラクルに対するクエリの実行回数を大きく削減できるため

である。

10.6 まとめ

この章では、特定の演算のパフォーマンスを向上させるためにPL/SQLを 標準SQLのかわりにどのよう
に用いることができるかを学んだ。PL/SQLは 次の点で標準SQLよ り優れている。

ロ データベース内にコンパイルされたかたちで記憶 させることができる。これにより、解析の負担が

軽減される。

ロ サーバで実行されるため、クライアントとサーバ間の トラフィックを緩和することができる。

□ 標準SQLではできない、データアクセス方法の明示的な指定を可能にする。

PL/SQLを 標準SQLの かわりに使って、パフォーマンスを改善することができるが、PL/SQLの コード

自身を更にチューニングすることもできる。主なチューニング項目は次のとおりである。

□ 通常の言語と同様に、繰り返し処理、条件処理、再帰処理などを最適化する。

□ 無名ブロックのかわりにストアドプログラムを使って、解析を減らす。

ロ パッケージを用いる。

ロ トリガでUPDATE OF旬 とWHEN句 を使い、 トリガの余分な実行を避ける。
□ 明示的にカーソルを用いる。

□ ROWIDを使って現在行を更新する。

□ PL/SQLテ ーブルを使ってデータをキャッシュする。

:黎MD

マ‘
′
力

●
〓

綺ヵ憑̂当°∫ポ

ックス

蝙
浮鵞 、無
蓋ダ轟 ,111::|'露 211:||:`:lili

1:が

′
0●・

″
`理幡藤態賢τ

~畷
｀
N鮮
…

ち

第

鞣

計

' ,,

｀`ヽ`
、
「
膠f鰈

・ :Lヽ ,夢
.F

o i `iや ｀、、._^、
、

慶

″

欝

苺

.凝 .感 .爾

← ■

砕 継警 i

=.1■

1 lEl Iま じめに

これまでの章で、SQL文を最適化するさまざまな方法を学んだ。テーブルアクセス、結合やサブクエ

リ、ソートとグループ化、DML、 PL/SQLな どの基本的な項目である。

それ以外に、特別な最適化のテクニックもある。この章では、パーティション、分散処理 といったあ

まリー般的ではない項 目に関する最適化のテクニックについて説明する。

この章で扱う主な項 目は以下のとおりである。

ロ ビューの最適化。

匡|オ ラクル7のパーティションビュー、あるいはオラクル8のパーティションテーブルを用いたテーブ

ルの分割。

ロ スナップショットを用いたサマリ情報の保管。

ロ スナップショットのリフレッシュの最適化。

□ 分散SQLの最適化。

ロ シークエンスの利用。

□ DECODE文を用いた複数テーブルヘのアクセス回避。

ロ データ定義言語 (DDL)の最適化。

終 …・

く

｀
ヽ

11口2 ビューの最適化
ビューは、仮想テーブルあるいは、データベースに保存 されたクエリと考えていいだろう。ビューが

アクセスされると、ビューのクエリ定義がデータディクショナリから取り出され実行される。たとえば、

次のビューを作成 したとしよう。

create view department_srrnmary_view as

selecL d. departmenL_name,

count (e. salary) employee_count,
sum(e. salary) total_salary

from departments d,
employees e

where e.department_id = d,department_id
g'roup by d. department_name

次のクエリーを実行して、特定部署の要約情報を得ることができる。

select * from department_summary_view
where department_name ='Database development,

ビューにWHERE旬 が追加 される場合、オ ラクルはビューのクエ リ定義に、このWHERE句 をマージする。

上記のクエ リは次のクエ リと等 しくなるだろう。

select d.department_ame′

COunt(e.Salary)employee_count′

Sum(e.salary) tOtal_salary

from departments d′

employees e

where e.department_id = d.department_■ d

and d.depar枷 吟int_name = lDatabase developimenti く― WHERE.旬 の追カロ
group by d.departiment_name

結局、ビューはクエリなので、ビューを最適化する場合にもっとも重要なのは、ビューの基になって

いるクエリを最適化することである。我々が用いたビューの例についていえば、departmentsテ ーブル

とemp■ oyeesテ ーブルの結合がすでに最適化されていることを確認しなければならないということであ

る。このビューの結合についていえば、各表のすべての行が結合の対象となるので、ソートマージある

いは、ハッシュ結合が適切だろう。

しかし、ビューに対してWHERE句が追加された場合は、最終的に実行されるクエリも変わるので、最

適化の方法も変わってくる。たとえば、department_samに ry_viewを 用いて特定の部署に対してク
エリを行なう場合、emp■ oyeesテ ーブルのdepartment_■ d列にインデックスを作成した方が、処理効

●第11章 その他のトピックスα瞑鰤::||:|:|:||::|111

率は良くなる。つまり、ビューの最適化は、最終的に実行されるクエリに対して行わなければならない

ということだ。

11.2.1 ビュ…にヒン トを用いる
ビューの定義にヒントを組み込むこともできる。ビューは結局クエリなので、クエリに対するヒント

のテクニックをそのまま使うことができる。特に、複数のテーブルを結合したクエリをユーザが必要と

する場合は、必要ならインデックスを作成し、ヒントを使って結合を最適化すると良い。

11.2.2 バ…ティションビュー
パーティションビューを用いて、複数のテーブルを論理的に1つ にまとめることができる。パーティシ

ョンビュー自体は、複数のテーブルをUN10N ALLで結合したビューである。あるデータがどのテーブル

に所属するかは、そのテーブルに対するチェック制約によって判断される。

テーブル(パーティションビュー)の一部分だけのアクセスで良い場合、アクセスする実テーブルを絞

り込むことができるので、パーティションビューは効果的に機能する。

たとえば、salesテ ーブルのsa■ e_date列 に基づいて、パーティションビューを作成する場合、次の

ようになる。

create tabfe sales1 as

selecL * from sales
where sale_date < to_date(,01-JAN-93,,,dd-mon-l6a') ;

after tabfe sales1 add constraint sljartition_chk
check (sale_date < '01-.TAN-93') ;

create table sales2 as

select ★ from sa■ es

Wllere Sale_date betWeen to_date('01-JAN■ 941′ 'dd― :mon― lyy l)

and to_date(131-DEC-94'′ 'dd―mon―yyl)′

afLer table safes2 add constraint s2jartition_chk
check (sale_date between '01-JAN-94, and ,31-DEC-94,) ;

―他のテーブルについても同様に設定する

creaLe or repface view partitioned_sales as

select * from sales1
union a1l-

sefect * from sales2
union afl-

select * from sales3
union al1

|:躙綸2

select * from sa1es4

union all
select * from sales5;

partitiOned_salesビ ューのWHERE句 でsa■ e_dateに関する条件が指定されると、パーティション

ビューを構成するそれぞれのテーブルのチェック制約に従って、オプティマイザは、どのテーブルにア

クセスする必要があるのかを決定する。

次のクエ リの結果は、パーティションビューによって適切なテーブルのみがアクセスされたことを示

している。

select sum (sale_value)
f rom parti t ioned-sales
where sal-e-date between '01-,JAN-96' and '31-JUL-96'

ROWS itxecutaon P'l"an

0

23120

23120

23120

23120

0

0

0

0

(FULL)

(FULL)

(FULL)

(FULL)

(FULL)

SELECT STATEMENT GOAL:CH00SE

SORT(AGGRECATE)

VI El・7 0F IPARTITIONED_SALESi

UN10N―ALL (PARTITION)

TABLE ACCESS GOAL:ANALYZED

TABLE ACCESS GOAL:ANALYZED

TABLE ACCESS GOAL:ANALYZED

TABLE ACCESS GOAL:ANALYZED

TABLE ACCESS GOAL:ANALYZED

OF

OF

OF

OF

OF

ISALESl'

lSALEs2'

ISALES31

'SALES4'

'SALES51

図11.1は 、上記のクエリを行なうために必要な1/0を 、パーティションビューと通常のテーブルとで比

較したものである。通常のテーブルに対して上記のクエリを実行すると、オプティマイザはテーブル全

走査を選択する。パーティションビューを使って、テーブル全走査を回避することで、このクエリを実

行するのに必要な1/0は大幅に削減 された。アクセスされるテーブルの割合があまりにも大きすぎて、イ

ンデックスが有効に機能しない場合、パーティションビューはきわめて有効である。

しか し、 パ ー テ ィシ ョン ビ ュ ー は ア プ リケ ー シ ョ ン を複 雑 に して し ま う。 な ぜ な ら 、 INSERT、

UPDATE、 DELETE文 を実行 す る と きに、パ ーテ ィシ ョンに使 った列 の値 に基づ いて 、 どの テ ー ブル に ア

クセス しな けれ ば な らないか を決 定 しなければ な らな い ためで あ る。

取り出す対象の割合は小さいが、取り出す行数は多い場合、インデックスより、パーティションビュ

ーが有効である。しかし、パーティションビューはアプリケーションを大幅に複雑にし、管理の面での

負担も増やす。

11

図11.1 テーブル全走査とパーティションビューの1/0の比較

11.2.3 パーティションテーブル
パーティションビューは、管理の面で負担が大きかったので、オラクル8か らパーティションテーブル

が導入された。パーティションテーブルはパーティションビューに類似している。しかし、パーティシ

ョンビューが複数のテーブルで構成されるのに対し、パーティションテーブルは1つのテーブルが特定の

列の値に対応した複数のパーティションで構成されている。

パーティションビューと異なり、テーブルに挿入された行は自動的に適切なパーティションに導かれ

る。そして、パーティションビューのように、コストペースオプティマイザは、特定の列の値に応じた

パーティションにのみアクセスする実行計画を立てる。そのため、管理を複雑にすることなく、パーテ

ィションビューと同様のパフォーマンス上の利点を得ることができる。

前記のパーティションビューをパーティションテーブルに置きかえると次のようになる。

トビックス C距靡隋:::::|:|

create table sa■ es_partition

(列の定義)

partit■ on by range (sale_date)

(partit■ orl s■ values less than (to_date('■ 9930■ 01

part■ tion s2 values less than (to_date(119940101'
一―他のパーテ ィシ∃ンについても同様に設定する

partition s5 values greater than (maxva■ ue))′

′
lyy,らこαndd'))′

lyyyymmddi))′

パーティションテーブルは、パーティションビューにあった次のような問題点を解決している。パー

ティションの機能を使う場合は、パーティションテーブルを使った方が良い。

□ 複数のテーブルを扱うので、管理が複雑になる。

□ DMLはパーティションビューではなく、それぞれのテーブルに直接実行する必要があるため、対

象となるテーブルを常に意識しなければならない。

ロ パーティションビューは、結局クエリなので、解析の負担がかかる。その負担は、パーティション

229

ビューを構成するテーブルが増えるほど重くなる。

11.3 スナップショットを用いる
ビューがデータベースに保管されたクエリと考えられるなら、スナップショットはデータベースに保

管されたクエリの実行結果と考えられる。ビューと同様、スナップショットはクエリに基づいている。

ビューは、アクセスされるときにそのクエリが実行されるのに対し、スナップショットには、一定の間

隔で実行したクエリの結果が貯えられる。スナップショットは、すでに実行 したクエリの結果を貯えて

いるため、クエ リの内容が複雑であればあるほど、スナップショットの方が、クエリを直接実行するよ

りもパフォーマンスが良くなる。しか し、スナップショットは一定の間隔で実行されているため、常に

最新の状態だとは限らない。このことに注意して使いこなせば、スナップショットを用いて、等 しいク

エリやビューのパフォーマンスを改善できる。たとえば、特定の顧客の購入代金の合計を出すことが頻

繁に求められる場合、次のようにビューを作成するアプローチもある。

create or replace view sales_by_customer_v as

sef ect c . cust.omer_id, c. customer_name, sum (s, sale_va1ue) sale_vaf ue

frorn sales s,customers c

where s.customer_id(+) = c.customer_id
group by c. cusLomer_id, c. customer_name;

select * from sales_by_customer_v
where custome:r id = 747

このアプローチはあまり効率的ではない。なぜなら、このクエ リが実行されるときに、必ず

custOmersテ ーブルとsalesテ ーブルの結合が行なわれるからである。クエリの返す結果が完全に最新

のものでないことが気にならなければ、ビューと同じクエリに基づいて、:次のようにスナップショット

を作成することができる。

create snapshot. sales_by_customer_snp as

select c . customer_id, c. customer-name, sum (s . sale_va1ue) sale_value
from safes s,customers c

where s.customer_id(+) = c.customer*id
group by c. customer_id, c. customer_narne

このスナップショットに対するクエリが必要とする1/0は、ビューに対するクエリよりもはるかに少な

い。テーブルの結合やグループ関数(sum)の実行にともなう1/0の負担は、スナップショットが最後に更

新されたときに発生しているため、スナップショットに対してクエリを行なう場合には、その負担をす

る必要がないためである。

|■ ||:||:|:||:':|||11:::::虫 塚D

●第11皇 その他のトビックスC饉嗽瞼隋饒:::|:||:|||:'i

3,571

図11.2 ビュー、クエリ、スナップショットの1/0比較

図11.2はスナップショットと、それと同様のクエリとビューのパフォーマンスを比較 している。パフ

ォーマンスの点でクエリはビューを上回った。その理由は、結合の実行計画にある。オプティマイザは、

ビューについてはソー トマージを選択 し、クエリについてはネス トされたループ結合を選択 した。この

例のように、特定の部署に対するクエリの場合は、ネス トされたループ結合の方がパフォーマンスは良

くなる。このスナップショットはパフォーマンスの点で、クエリ、ビューをはるかにしのいだ。スナッ

プショットの場合、更新時に結合が実行されているので、スナップショットに対するクエリを実行した

ときには、結合済みの結果を返すだけで良いためだ。スナップショットが返す結果が、完全に最新のも

のでなくても良い場合、結合や複雑なクエリには、スナップショットを用いるとよい。

11.3.1 スナップショットログ
スナップショットログは、単純なクエリに基づいたスナップショットのリフレッシュ作業の最適化に

用いることができる。単純なクエリとは、関数、GROUP BY句、CONNECT BY句、結合、集合演算など

を含まないクエ リのことだ。スナップショットログを使った高速リフレッシュでは、テーブルに加えれ

れた変更内容 (ス ナップショットログ)に もとづいて、差分更新を行うので、すべてのデータを更新する

完全 リフレッシュに比べて、更新時の負担が減り、パフォーマンスを改善することができる。

スナップショットログの利用は、元のテーブルに対するDMLを遅くする。なぜなら、各DMLを実行し

たときに、その内容がスナップショットログヘ書き込まれるからだ。複数のセッションによって、同時

に元テーブルヘDMLが実行される場合は、元テーブルとスナップショットログに複数のフリーリストを

作成する必要があるかもしれない。

図11.3 スナップショットログの更新 (1000回更新)に与える効果

スナップショットログを使うと、リフレッシュのパフォーマンスを改善できるが、DMLの実行は遅く

なってしまう。どちらのパフォーマンスが重要なのかを決める必要がある。

ここで主に考慮しなければならないのは次の項目だ。

□ 元のテーブルに対するDMLの割合が高くなるほど、スナップショットログを保管する負担が増す。

□ 完全リフレッシュはテーブル全走査を必要とするので、元のテーブルが大きくなるほど、リフレッ

シュの負担が増す。そのような場合は、スナップショットログを使い、リフレッシュの負担を軽く

することができる。他方、小さいテーブルについては、完全リフレッシュの負担が小さいので、ス

ナップショットを使用しない方が良い。そうすることで、DMLに負担をかけることがなくなる。

大きくて、更新処理が多いテーブルは、スナップショットを作成してリフレッシュを速くするか、

スナップショットを作成せずDMLのパフォーマンスを重視するのかを、本番環境と同様な環境で、
テストをして決める必要がある。

11.4 分散SQL
分散SQL文は、2つ 以上のオラクルデータベースにアクセスする。複数のデータベースの間は、

NeS(SQL☆ Net)で接続される。たとえば、次のSQL文で、リモー トデータベースのテーブルを参照できる。

select e.surnarne′ e.employee_■ d′ e
frolm employeesenode2 eく ―Inode2

where e.surnaine=lSMITH'

and e.f■ rstname=IDAVIDl

firstname

はリモー トデータベースを参照する

11.4.1 オラクルが分散SQLを実行する手順
オラクルは、次のようにして分散クエリを実行する。

11i::菫
:||:||:::::漑鯰≫

●第11章 その他のトビックス(日は躙輻 ::

□ 分散SQL文で参照するすべてのテーブルが同じデータベースに存在する場合、実行に際して文全体

がそのデータベースに送られる。

□ 分散SQLで参照するテーブルが複数のデータベースに存在する場合、コス トオプティマイザは、非

分散SQLの場合と同じように、コストを見積もって実行計画を作成する。しかし、この予測は勘よ

り少しましな程度だろう (コ ストベースオプティマイザは、他のデータベースヘのネットワーク接

続のコストを正確に見積もることはできないだろう)。

□ 対象となった複数のリモートデータベースに対し、SQL文 を送る。ソート、結合、その他の演算は、

クエリが実行されている場所 (駆動サイト)で行なわれる。

ロ リモートデータベースは、送られたSQL文に対して実行計画を作成し、それに基づいて実行した結

果をローカルデータベースに返す。

11.4.2 分散結合
分散結合は、分散SQL処理の中で最も一般的なものの1つである。次の例は、2つのリモートデータベ

ースが関わる3つの結合を示している。

sel,ect
dp . department_nile, e . surname / c . customer-nme

from employees@node2 e,

departments@node1 dp,

cusLomersgnode2 c

where dp. department-id=e. deprtment-id
and c . sales-rep-id=e . employee-ld
and dp.department_name='Database Products'

Rows Execucion Plan

66

■00000

100000

SELECT STATEMENT HINT: CH00SE

MERGE JOI:N

SORT (JOIN)

NESTED L00PS

REMOTE[NODEl.WORLD]

SELECT I'DEPARTMENT_ID‖ ′1:DEPARTMENT_NAMI:"FROM"DEPARIMENIIS・

DP WHERE IiDEPARTMENT Nフ 墟4E:'=:Database Products'

REMOTE[NODE2.WORLD]

SELECT''EMPLOYEE_IDl'′ :ISURNAMEl'′ ''DEPARTMENT_ID‖ FROM
I'EMPLOYEES': E W・ HERE :IDEPARTMEINT ID'' = :■

SORT(JOIN)

REMOTE[NODE2.lA70RLD]

SELECT‖ CUSTOMER_NAl征 F'′ ''SALES_REP_IDl' FROM !iCUSTOMERS'' C

0

6646

66

66

■

次のようにこの実行計画は解釈できる。

1.オ ラクルは、日Daねbase ProductsII部 署のdepartment_■ dを取り出すために、nOdelに クエリを送る。

2.返 された結果セット (こ のケースでは1つ)の それぞれの行に対し、オラクルはnode2に クエリを

送り、department_idに 対する従業員情報を取 り出す。

3.その後、オラクルはnode2に クエリを送り、すべての顧客を取り出す。そして顧客は、ステップ2

で得られた結果セットとソー トマージされる。

このテーブルごとにクエリをリモートデータベースに送るというアプローチの問題点は、たとえ複数

のテーブルが同じノード上に存在したときでも、オラクルはテーブルごとにクエリを送ってしまうこと

だ。このアプローチは、リモートデータベースに対するリクエストの数を増やし、ネットワークの負荷

を増やしてしまう。

11.4.3 ビュ…を用いて分散結合を改善する
分散結合が同一ノードで行われるなら、リモートデータベースで、関連するテーブルを結合するビュ

ーを作成し、ローカルでは、そのリモートビューを参照することで、分散結合のパフォーマンスを向上

させることができる。

先ほどの例では、emp■ oyeesと customersが 同一ノードにあるので、node2で次のようなビューを

作成する。

creaLe view employees_and_customers
as selecL e.surname,e,enployee_id,e.firstname,e.departnent_id,c.customer_name

from employees e,customers c

where c . sales_rep_id=e . employee_id

次に、このリモートビューを利用して、次のようなクエリを実行する。

sefect
d. department_name, e . surname, e . cus tomer_name

f rom employees_and_customersGnode2 e,

departments@nodel d
where d. department_id=e - department_id

and d.department_name=' Database Products'

Rows Execution Plan

SELECT STATEMENT HINT: CH00SE

NESTED L00PS

REMOTEINODEl.WORLD]

SELECT 'lDEPARTIMIENT_IDl'′ ‖DEPARTMENIt_NAMEIIFROM"DEPttT卜 ΞNTSI' D

0

6646

1

「

111:||||||:|::|:::|:1莉骰耐

(|)第 11章 その他のトビツクス 明蜀鰤:::':||:|::111:|::||:I:

6646

WHERE !IDEPARTMENT N2NME"='Database Products'

REMOTE[NODE2.WORLDl

SELECT IISURNAME・ ′':DEPARTMENT_ID・ ′'iCUSTOMER_NAME'' FROM

・EMPLOYEES_AND_CUSTOMERS'I E WHERE I'DEPARTMENT_IDl' = :■

この例だと、employeesテ ーブルとcustOmersテ ーブルの分散結合をリモー トデータベースで閉 じ

た結合に変更したため、大幅にパフォーマンスを改善できた。分散結合が同一サイ トで行われる場合は、

そのリモー トサイトで、結合を行うビューを作成すると良い。

11.4.4 最適な駆動サイ トの選択
駆動サイトでSQL文 は最適化され、結合やソート処理が行なわれる。駆動サイトは、次のようにして

決定される。

□ SQL文で参照されたテーブルのすべてが同じリモートノードに存在する場合、オラクルはSQL文全

体をリモートノードに送り、そのリモー トノードが駆動サイトとなる。たとえば、次のクエリは

node3が駆動サイトになる。

selec t:

from
dp. department_name, e. surname

employees@node3 e,

departmentsGnode3 dp

dp . department-id=e . department-idwhere

Execution Pfan:

SELECT STATEMENT REMOTEく ― リモー トノー ドが駆動サイ トにな つた

NESTED L00PS

TABLE ACCESS FULL DEPARTMENTS

TABLE ACCESS BY ROWID E]ヽIPLOYEES

INDEX Iυ NヽGE SCAN EMPLOYEE_DEPT_ID

Elリ モ ー トテーブル に対 して INSERT、 UPDATE、 DELETEを 実 行 す る場 合 、 オ プ テ ィマ イザ が リモ ー

トサイトにSQL文 を送る場合がある。たとえば、次のINSERTはnodelで 実行される。

insert into junk@node1

select. e. surname, d. department-name

from employees e/
departments d

where e . department-id=d . department-id

Execution Pfan:

INSERT STATEMENT REMOTEく ― リモ ー トノ ー ドが 駆 動 サ イ トに な つ た

MERGE JOIN

SORT JO■N

REMOTE(!): SELECT"DEPARTMENT_■ D'!′ 'lDEPAPRTMENT_NAME"

FROM iDEPARTMENTS・ A2く ― オ リジナルサイ トでの実行

SORT JOI:N

REMOTE(1): SELECT ''SURNAME・ ′:'DEPARTMENT_■ D"

FROM・ EMPLOYEES・ A3く ― オ リジナルサイ トでの実行

□ 文書 化 され て いない ヒン ト、 DRIVING_SITE(テ ー ブル名)を使 って 、 ドライ ビ ング サ イ トを指定 で

きる。オラクルのバージョンによっては、このヒントが安定しない場合もあるので、このヒントを

用いる場合には注意が必要である。次の例はDRIⅥNG_S「Eヒ ントの効果を示している。

select /*+ driving_site(e) */
dp . department_name, e . surname, c . cus tomer_name
from employeesGnodel e,

departments@node1 dp,
customers c

dp . department_id=e . department_id
e.surname=ISMITH'

e.f■ rStname='DAVID'

c.sa■ es_rep_■ d=e.employee_id

where

and

and

and

Execution Plan

SELECT STATEMENT REMOTEく ― リモー トノー ドが駆動サイ トになった
NESTED LOOPS

NESTED LOOPS

TABLE ACCESS BY ROWID EMPLOYEES

INDEX RANGE SCAN EMPLOYEES SURN:AME

TABLE ACCESS BY ROWID DEPARTMIENTS

INDEX UNIQUE SCAN PK_DEPARTMENTS

REMOTE(1)

SELECT 'iCUSTOMER_NAME!'′ i'SALES_REP_ID ii FROM 'lCUSTOMERS・

'ISALES REP ID'' = :■

AlWHERE

適切な駆動サイトを指定することで、分散SQLのパフォーマンスを大きく改善できる。駆動サイトを

指定する場合、次の点を考慮すると良い。

□ 結合やソー トはCPUが 中心的役割を果たす処理なので、駆動サイ トはパワフルなコンピュータであ

る方が望 ましい。

ロ ネットワークの トラフィックは、分散SQLのパフォーマンスを決定する大きな要因の1つである。

爾::|:1111:|:|:|:蝙蝙〕)

(0)第 11章 その他のトビツクス q鰈躙

そのため、ローカルデータを最も含んだサイ トが駆動サイトとして望ましい。

□ 駆動サイ トはクエリの最適化や結合を実行するので、オラクルの最新バージョンがインス トールさ

れたサイ トの利用がパフォーマンスの改善に (たぶん)つながる。たとえば、オラクル8と オラクル7

間の分散結合では、オラクル8を駆動サイトに利用すると、ハッシュ結合ゃパーティションテーブ

ルなどの機能が使えるようになる。

11.4.5 分散結合のパフォーマンスの比較

図11.4は、クエリによる分散結合、リモートビューによる分散結合、スナップショットによる分散結

合の所要時間の比較である。リモートビューは、クエリによる分散結合よりもパフォーマンスが良く、

スナップショットはさらにパフォーマンスが良いことが分かる。スナップショットを用いれば、ほとん

ど常にパフォーマンスの改善が可能であるが、最新の結果を表していない可能性があることを忘れては

いけない。

図11.4 クエリによる分散結合、リモートビューによる分散結合、スナップショットによる分散結合

11.5 シークエンス

シークエンスを使えば、効率的に連続する数字を作成することができる。プライマリキーが、値に特

に意味を持たず、連番であれば良いような場合に、シークエンスは有効である。シークエンスを使わず

に連番を得る従来の方法は、次のように採番テーブルを使う方法である。

CREATE or replace procedure get-seq-table(nbr nulnber)as

cursor get-seq-csr is
select last-sequence+1

from seguence-tab1e
for update;

i number;

new_sequence number;

BEGIN

:||::|:::|::::::ly躙鰤

FOR ■ in l..nbr LOOP

OPEIN get_seq_csr,

FETCH get_seq_csr ■nto new_sequence

CLOSE get_seq_csr,
一一 連番に関する処理をする

UPDATE sequence_table

SET last_sequence=new_sequence,

C0111・ IIT,

END L00P′

END

このやり方には、次のような問題がある。

□ 同じ連番を複数の人が取得しないように、FOR UPDATE句 でテーブルをロックする必要があるが、
そのために、ロックの競合が起こる場合がある。

□ 連番を取り出し、行をロックし、連番を更新するために1/0が必要となる。これは トランザクショ

ン処理のオーバーヘッドを増加させてしまう。

シークエンスを使い、こういった負担のかなりの部分は回避できる。前の例を、シークエンスを使っ

て書き直せば次のようになる。

CREATE or replace procedure get_seq_1(nbr number)as

■ number,

new_sequence number′

CURSOR get_seq_csr is

SELECT seq_■ .nextval froim dual′

BECIN

FOR i in l..nbr L00P

OPEN get_seq_csr,

FETCH get_seq__csr into new_sequence′

CLOSE get_seq__csr′

―一連番に関する処理をする

END L00P,

END′

dualテ ーブルヘのアクセスは、それほど負担がかかる処理ではないが、シークエンスの増加分を増や

すことで、さらに負担を軽減できる。たとえば、増加分が500の シークエンスは次のように作成する。

create sequence seq 500 increment by 500

このシークエンスは、500ご とに増加するので、500の 間プログラム内で連番を振ることで、dualテ ー

●第1 1章 その他のトピツクス (|||!|:1冬|||||]1鍼 :!|:il:::::||:11

ブルヘのアクセスを減らすことができる。そのためには、次のようにプログラムを変更する。

CREATE or replaCe prOCedure get_Seq_.500(nbr nulnber)aS

i number,

new_sequence number′

CURSOR get_seq_csr ■s

SELECT seq_500.nextval from dual′

BEGIN

FOR i ェn l..nbr LOOP

―-500こ とあるいは初回にシークエンスの値を取得する

IF mod(i′ 500)=O or i=l THEN

OPEN get_seq_csr,

FETCH get_Seq__csr into new_sequence′

CLOSE get_seq___csr,

ELSE

newisequence := new_sequenCe + 1,

EDこ1)IF′

END L00P,

END′

図11.5 採番テーブルとシークエンスを使つて2,000の 連番を処理したときの所要時間

11.5.1 シークエンスのキャッシング
シークエンスの効率が優れている理由の1つ に、それらの数字がSGAと呼ばれるオラクルの共有のメモ

リ内でキャッシングされることがあげられる。初期設定では、20の連続数字がキャッシュされる。その

後、オラクルは、20回の間キャッシュされた数字をクライアントに返し、キャッシュの分がなくなると、

またオラクルは、データベースにあるシークエンスにアクセスしてその値を取得する。クライアントが

シークエンスにアクセスするたびに、オラクルがデータベースにある実際のシークエンスにアクセスし

029

512

|||:|::|:|::11::i:鶉絋飩

ている訳ではないので、パフォーマンスが改善できるのである。

シークエンスに対するアクセス頻度が高い場合は、キャッシュサイズを増やすことで、パフォーマン

スを改善できる。たとえば、次のようにしてキャッシュサイズに100を 割り当てる。

creaUe sequence seq_cached cache 100

また、CREATE SEQUENCE文 は、ORDER旬 を指定す ることもできる。ORDER句が用い られると、オラ
クルパラレルサーバ (OPS)システムで、連続する数字が要求サ1原に作成 されることが保証 される。非OPSシ

ステムでは、連続する数字は常に要求順に生み出されるので、ORDER句は指定する必要がない。逆に
OEDER句を指定してしまうと、キャッシュの仕組みが無効になってしまうので、非OPSシ ステムでは指

定してはならない。OPSシ ステムでも、連続する数字が要求||1頁に作成される必要がない場合 (た とえば、

連続する数字をプライマリキーに使う場合)は、ORDER句 を指定しないことで、キャッシュの機能を利用
できるようになる。

図 11.6 CACHE句 とORDER句 が シー クエ ン ス のパ フ ォーマ ンス に あ た える効果

11.5.2 スキップされた連続数
シークエンスは、連続数を割り当てるための効率的な方法である。しかし、シークエンスには欠点も

ある。連続数がスキップされることがあるのだ。次の状況で連続数がスキップされる。

ロ トランザクシ ョンが連続数 を取得 した後、ロールバ ックされるとその連続数はスキ ップされて しま

い、再び割 り当てられることはない。

ロ オラクルサーバーがSHUTDOWNし た場合、キャッシュされている連続数は失われる。
E]パ ラメータオ青成 ファイリレ(in■ tく sID>.ora)の SEQUENCE_CACHE_ENTRIES(シ ークエ ンスをLRUリ

ストで管理する数)を超えるシークエンスがアクセスされた場合には、古いキャッシュがメモリか

ら追い出されるため、追い出されたシークエンスの連続数は失われてしまう。

16

2228

50.1

6311

●第1 1章 その他のトビツクス (1:L躙 |:::::|:::|::||:雷

連続数に、欠けが生じると困る場合、シークエンスではなく、採番テーブルを使う必要がある。その

場合、採番テーブルをロックする時間を最小にするために、 トランザクションの最後に、連続数を取得

すると良いだろう。

11.6 DECODEを 用いる

DECODE関数は、SQL文でIF文に類似した演算を行うためのオラクル独自の機能である。あまり、利

用されていない機能だが、うまく使えば、かなリパフォーマンスを向上させることができる。

たとえば、25歳未満、25歳から40歳、40歳より上の顧客の数を求めるとしよう。標準SQLを用いると

次のようになる。f_ageは 、誕生日から年齢を求めるユーザ定義の関数である。

select'<25' age,count(*)
from customers

where f_age (age) <25

union afl
select '25-40' age, count (*)

from customers
where f-age(date-of-birth) between 25 and 40

union aIl
sefect'>40' age,counE(*)

from customers
where f_age(date_。 f_birth)>40

上記のクエリは確かに要求とおりの結果を返す。しかし、実行には3回テーブルヘアクセスすることが

必要となる。カテゴリの数が増えた場合、さらにアクセスする回数が増え、パフォーマンスはさらに低

下する。

DECODE関 数とSIGN関数を用いれば、customersテ ーブルに一度アクセスするだけで同じ結果を返すこ

とができる。

select sum (decode (sign (f-age (date-of-birth) -2 5), -L, L, 0)) under-2 5,

sum (decode (sign (f-age (date-of-birth) -2 5), -1, 0,

decode (sign(f-age (date-of-birth) -40), -1, 1, 0) \ \ 25-to-40,
sum(decode (sign (f-aqe (date-of-birth) -40), L, L, 0)) over-40

from cusLomers

SQL文が複雑で理解しづらいだろう。最初の記述 (25歳未満の記述)について考えてみる。

□ f_age関数は顧客の年齢を返す。年齢から25を引くと、顧客が25歳未満の場合負の数が返される。

□ SIGN関数は、その結果が0未満の場合‐1を返す。結果が0よ り大きい場合1を返す。

□ DECODE関 数は、SIGN関数が-1を返す場合1を返し、そうでなければ0を返す。言い換えれば、

i驚
||:||:::|:11:::|:凩 :漑鰤〕

DECODE関 数は、顧客の年齢が25未満の場合1を返し、そうでなければ0を返す。

□ SUM関数は、DECODE関 数の結果の合計を求める。顧客の年齢が25未満であればDECODE関 数は1
を返すので、ま別関数は25歳未満の顧客の数を返すことになる。

25歳から40歳の顧客数を求めるにも類似するテクニックが使われている。25歳未満ならDECODE関数
が0を返す、25歳未満でなければ、40歳未満でないかをテス トし、40歳未満ならDECODE関 数が1を返す。
それ以外 (40歳以上)な らDECODE関 数は0を返す。

DECODE関数を用いた場合、UNIONを 用いた場合と比べて、ブロックの読み込みがわずか1/3で済ん
だ。カテゴリの数が増えた場合、この差はより顕著となるだろう。

図11.7 UN!ONを用いた場合と、DECODEと SiCNを用いた場合の比較

11.7 データ定義言語

データ定義言語 (DDDの CREATE、 ALTER、 DROP文などを使って、データベースオブジェクトを作成、
変更、削除することができる。通常、DDLの実行は一瞬であり、パフォーマンスを気にする必要はない。
しかし、次のような場合は、DDLのパフォーマンスが重要になる。

□ あるテーブルを元に新 しいテーブル を作成する場合 (CREATE TABLE AS SELECT)。

ロ インデックスを(再)作成する場合。

これらの処理のパフォーマンスを改善するには、次のような方法がある、

□ UNRECOVERABLE句 を使 う。

□ ALTER INDEX文 の REBUILD句 を使 う。

ロ パラレルサーバの機能を使う。

825

(0)第 11章 その他のトビックス (1:厄瑕 ::::::|:1::::||:|:

11.フ.l UNRECOVERABLE旬
一 時 的 な 目的 で 、 テ ー ブ ル を使 い た い と き が あ る。 その よ うな場 合 に は 、 CREATE TABLE AS

SELECT文 を使 うことがで きる。 た とえば 、次 の よ うに して emp■ Oyeesテ ー ブル の コ ピー を作 る こ とが

で きる。

CREATE TABLE temp_employees AS SELECT ☆ FROM employees

内部 的 に は、 emp■ Oyeesテ ー ブル に対 す る クエ リの結果 を、 temp_emp■yeesテ ー ブル に挿 入 して い

るの で 、元 の emp10yeesテ ー ブル が大 きけれ ば 、 この CREATE TABLE文 も時 間 が か か る。 この よ うな場

合 に、次 の よ うにUNRECOVERABLE句 を使 って 、所 要 時 間 を短縮 で き る。

CREATE TABLE temp_employees UNRECOVERABLE AS SELECT ☆ FROM employees

UNRECOVERABLE句 を使うと、オラクルはリドゥログを書き出さないので、確かにパフォーマンスを

改善できる。しかし、リドゥログを書き出さないということは、処理はロールバックできず、バックア

ップからデータベースを回復したときも、その新しいテーブルは復帰しないということを意味する。そ

の 点 を理 解 した上 で 、一 時 的 な テ ー ブル をUNRECOVERABLE句 を使 って作 成 (CREATE TABLE AS

SELECT)す ると良いだろう。なぜなら、一時的なテーブルは、後から復帰できなくてもかまわないからだ。

インデ ックスを作成する際にも、UNRECOVERABLE句 を使 うことができる。 しか し、インデックスに

対 して用いる場合は、一時的なテーブルにインデ ックスを作成す る場合にとどめておいたほうが良い。

そうでなければ、後から復帰できないと困るためである。

11.フ .2 REBUILD旬
ALTER INDEX文のREBUILD旬 により、インデックスはそれ自体を元データとして再構築できる。こ

れは、テーブルを元データとして用いるよりも大幅に速い。その理由は、インデックスのほうがデータ

小さく、すでにソートされているからだ。

11.フ .3 パラレルオプション
クエ リを用 いて テーブル を作 成 す る場合 (CREATE TABLE AS SELECT)は 、オ ラ クル のパ ラレル処 理

能 力 の利 点 を生 かす こ とが で き る。UNRECOVERABLE句 ととパ ラ レル機 能 を一緒 に用 い る ことで 、 さ ら

に処 理 能 力 を改 善 で きる。 第 12章でパ ラ レル DDLの 詳細 を学ぶ 。

11.8 まとめ
この章では、SQL文のパフォーマンスを改善するためのさまざまな技術を学んだ。

ロ ビューの最適化は、ビューが基づくSQL文の最適化の作業が必要となる。また、ビューに条件の追

加や結合処理が指定される場合は、最終的に実行されるSQL文の最適化も必要となる。その、最適

|||:::|:::::::蟷MD

化にはヒントが有効である。

ロ オラクル7では、パーティションビューを使うことで、大きなテーブルに対するクエリの負担を軽

減することができる。オラクル8では、パーティションテーブルを使って、パーティションビュー

で必要だった管理上の負担を減らし、さらにパフォーマンスを改善できる。

ロ スナップショットは複雑なクエリの結果を保管することができる。データが最新のものでなくても

かまわないなら、結果の素早い取り出しを可能にする。

□ 対象となる元テーブルが大きく、変更される割合が相対的に小さい場合は、スナップショットログ

を作成することで、単純スナップショットのリフレッシュのパフォーマンスを改善することができる。

□ 分散SQLは、適切な駆動サイトを決定することが重要である。また、同じリモートホスト上のテー

ブルが結合される場合は、リモートビューを使うことで、ネットワーク結合の負荷を減らすことが

できる。

ロ シークエンスを使うことで、連続数を効率的に作成できる。キャッシュサイズを増やせば、さらに

パフォーマンスを改善できる。ただし、抜け番が起こる可能性があるので注意しなければならない。

□ DECODE関数とSIGN関数を組み合わせて使い、複雑な集合演算のパフォーマンスを改善できる。

□ 一時的な 目的で、テーブルや インデックスを作成する場合に、UNRECOVERABLE句 を使って リドゥ

ログの作成 を抑え、パ フォーマ ンスを改善す ることができる。また、REBUILD句 を使って、イン

デックスを効果的に再構築することもできる。

12.1 1まじめに

SQL文のパフォーマンスを向上させるのにオラクルのパラレル処理を活用できる。この章ではその利

用法を学ぶ。

非パラレルの環境では、それぞれの処理が順々に行われる。つまり、ある作業が終わってから次の作

業が始まる。同時に複数の作業が行われることはない。その場合、複数のCPUが あるような環境では、

順々に処理するだけではCPUを有効に活用することはできない。

パラレル処理により、SQL文の実行は複数の作業に分解され、それぞれの処理が同時に(パ ラレルで)

実行できるようになる。それぞれの処理は異なるCPUを 利用できるので、複数のCPUが あるような環境

では、コンピュータのリツースをより効果的に利用することができる。

SQL文をパラレル処理することで、確かにパフォーマンスを改善できる。しかし、すべてのSQL文が

パラレル処理を行なうことができるわけではないし、すべての環境に適切であるということでもない。

この章では、SQL文 がどのようにパラレル処理されるのかを学ぶ。また、どのような環境にパラレル

処理が向いていて、どうすればその機能を最大限に生かすことができるのかを学ぶ。

この章で扱う主な項目は以下のとおりである。

ロ パラレル処理を理解する。

ロ パラレル度数によるパフォーマンスの改善。

ロ パラレル処理に適 した条件。

ロ パラレル処理の活用法。

ロ パラレル処理の解析と最適化。

●
・
¨
・
〓
Ｌ

iti■■

=■
'11:|・

1・‐

暫

‐脅犠ヽ
“l ‐

‐ ｀`
 Fナ ｀

1′ ´
=11111111111:|:|:::‐

1■
・

1 .■
t,.::蟹
:‐:=

1 .′ オど
.・

ず _._

|:■ ■ .~

ぷ
螢

第

ψl .́

薔‐■ ‐r●
■ ,■. .・
rlⅢ浴:|111,

李0螢

customersテ ーブルから

行をフェッチする

行をソー トする

ロ パラレルクエリの例。

[三|パラレルDMLと パラレルDDLを 用いる。

12口2 バラレル処理を理解する
パラレル処理を使 うと、SQL文 を複数の作業に分けて実行することができる。複数のCPUが利用でき

る環境では、複数のCPUを フル活用し、これらの作業を同時に、つまリパラレルで、行なうことができる。

たとえば、次のクエリを考えてみよう。

SELECT CONTACT_SURNAlVlE′ CONTACT_FIRSTNAME′ DATE_OF_BIRTH′ PHONENO

FROM CUSTOMERS Cl

ORDER BY CONTACT_SURNAME′ CONTACT_FIRSTNAME′ DATE_OF_BIRTH

パラレル処理を使わずに実行すると、1つの処理がcustOmersテ ーブルのすべての行をフェッチする

ことになるだろう。また、同じ処理で、ORDER BY句 を満たすために行のソートを行なうことになるだ

ろう。

処理A

図12.l SQL文の連続 (非パラレル)実行

オラクルに、この文をパラレル処理するように指不を出すことができる、この場合ヒントを用いて、

次のように実行する。

SELECT /'+PARALLEL(Cl,2)■ /

CONTACT_SURNAME′ CONTACT_FIRSTNAME′ DATE_OF_BIRTH′ PHONENO

FROM CUSTOMERS Cl

ORDER BY CONTACT_SURNAMIE′ CONTACT_F IRSTNAIME′ DATE_OF_BIRTH

パラレル処理が可能な場合、このクエリは2つの流れに沿って実行することができる。さらに、フェッ

(|)第12章 バラレル処理 嘔瑕躙::::|:|111i::|:|:li革

チやソート処理も分割して実行することができる。図12.2が示すように、計5つの処理がこのクエリに関

わることになるだろう。

12.2.1 どのSQL文がパラレル処理できるか
オラクルは、すべてのSQL文 をパラレル処理できるわけではない。テーブル全走査やパーティション

を処理する場合に、パラレル処理が可能になる。次のSQL文が代表的な例である。

□ 少なくとも1つのテーブル全走査を含むクエリ。

ロ インデックスの作成、あるいは再作成。

□ CREATE TABLE AS SELECT文で、元テーブルを全走査す る場合。

ロ パーテ ィシ ョンテーブルに対するDML(オ ラクル8のみ)。

処理A 処理B

処理C 処理D

処理E

図12.2 SQL文 のパラレル処理

12.2.2 パラレル度数によるパフォーマンスの改善
パラレル処理によるパフォーマンスの改善は、ホス トコンピュータ、オラクルの設定、SQL文 それぞ

れが、パラレル処理に適していなければならない。パラレル処理を行なうための条件が整えば、パラレ

ル処理の度数 (並行して行なわれる処理の数)に応じたパフォーマンスの改善が期待できる。たとえば、

パラレル処理の度数が3で、パラレル処理を行なうための前提条件がすべて満たされれば、SQL文 を3倍

に近い(パ ラレル処理による若干のオーバーヘットがある)速度で実行することができる。

行をフェッチする

―ブルから
行をフェッチする

―ブルから

行をソー トする(A― K) 行をソー トする(L― Z)

行を組み合わせる

:ill::|:||11:::|::::鰊 陪〕

図12.3は、テーブル全走査を行なう文に対 し、パラレル処理の度数を増やすことで得 られるパフォー

マンスの改善の様子を示 している。ホス トコンピュータは8つのCPUと 1つの高パフォーマンスのディス

クアレイで構成されていた。パラレル度数が2の場合、パフォーマンスは大幅に改善 された。パラレル度

数が増加するにつれ、パフォーマンスの改善の割合は減少し、パ ラレル度数がCPUの数を超えるとほと

んど改善はなくなった。

図12.3 パラレルの度数とパフォーマンスの改善

12.2.3 バラレル処理に適した条件
パラレル処理を効果的に実行するためには、以下の条件を満たしたいることが必要である。

ホストコンピュータ(パラレルシステム)が複数のCPUを持っている
パラレル処理を効果的に実行するためには、ホストコンピュータ(パ ラレルシステム)が複数のCPUを

持っている必要がある。CPUが 1つ しかなければ、処理を1つずつ順次に実行したほうが、パラレル処理
のオーバーヘットがない分速いだろう。パラレル処理のほとんどは、CPUを必要とするので、処理を分

割してオペレーションシステムがマルチタスクで処理しても、結局CPU待ちになってしまう。

アクセスされるデータが複数のディスクドライブに分散している

オラクルは、アクセスしたデータブロックを共有メモリにキャッシュしているので、通常のクエリで

は、ディスクにアクセスすることなくメモリにアクセスするだけで済むことが多い。しかし、パラレル

処理される典型的な演算の1つであるテーブル全走査は、大量のディスクアクセスが必要になる。アクセ

●第12章 バラレル処理(口痣鰺鰈鑽::|

スされるディスクが1つ しかないと、テーブルアクセス処理を複数に分割しても、結局ディスクアクセス

待ちになり、パラレル処理の利点を生かすことはできない。

テーブルを構成するデータファイルを複数のディスクに分散させるためには、ストライピングという

オペレーションシステムあるいはRttDOの機能を使うか、テーブルをパーティション化し、パーティシ

ョンごとに、異なるディスクに存在するデータファイルを割り当てると良いだろう。

OLTP環境ではない

OLTP環境のように、短い トランザクションが多い環境には、パラレル処理は不向きである。このよう

な環境では多くのユーザが高い割合で トランザクションを行なう。作動可能なCPUも すでにフル稼動し

ているだろう。その理由は、並行して行なわれているそれぞれの トランザクションが異なるCPUを用い

ることができるからだ。パラレル処理は、CPUを 大量に消費するので、他の トランザクションのパフオ

ーマンスを低下させる可能性がある。そのため、OLTP環境では、パラレル処理はオフピーク時に実行す

る必要があるだろう。

SQL文が最低1つのテーブル全走査あるいはパーティション走査を行なう

パラレル処理が可能なのは、テーブル全体あるいはパーティションに対 して処理する場合だけである。

非パーティションテーブルに対してテーブル全走査を行う場合は、ROWIDで処理が分割され、パーティ

ションテーブルに対しては、パーティションごとに処理が分割される。

ホストコンピュータに余力がある

サーバがフル稼動している場合、パラレル処理の利点を十分に活かすことはできないだろう。パラレ

ル処理が威力を発揮するのは、処理能力に余裕があり、複数のCPUを持つマシンで作業が行なわれてい

る場合である。マシン上のすべてのCPUが フル稼働している場合、パラレル処理のためにCPUが消費さ

れ、パフォーマンスは低下してしまうだろう。

12.2.4 バラレル度数
パラレル度数は、並行して行なわれる作業の流れの数を決定する。もっとも単純なケースでは、この

度数は、パラレル処理をサポートするパラレルスレーブの数となる。しかし、複数の段階を持つ処理に

対しては、パラレル度数よリパラレルスレーブが多い可能性がある。

図12.4は、度数が2のパラレル処理に対し、パラレルスレーブがどのように割り当てられるかを示して

いる。それぞれのSQL文に対し、割り当てられるパラレルスレーブの数は、パラレル度数に左右される。

ほとんどのSQL文は、単なるテーブル全走査だけで成りっているわけではない。複数の段階がある場

合には、それぞれの段階に対して、オラクルはパラレルスレーブのセットを割り当てる。たとえば、

SQL文 がGROUP BY句 やORDER BY句 を含む場合、テーブルアクセス処理、グループ処理、ソート処理を

するために3つのセットが必要になる。しかし、ソート処理は最初のテーブルアクセス処理のパラレルス

レーブのセットを再利用できるので、合計4つのパラレルスレーブが用いられるだけで済む。オラクルは、

パラレルスレーブを再利用するので、割り当てられるパラレルスレーブの数がパラレル度数の2倍 を超え

ることはない。

process #1
Parallel

Cuery
Co"ordinator

process #2
Para‖ el

Customer
Table

SELECT/・ +PARALLEL(C,2)γ 'FROM CUSTOMER

SCAN

SELECT/'+PARALLEL(C,2)☆ /'FRC)M SALES S
ORDER BY CuSTOMER ID

SCAN

SELECT/・+PARALLEL(C,2)7・ CUSTOMER_ID,SUM(SALE_VALUE)
FROM SALES S
GROUP BY CuSTOMER ID
ORDER BY2

Process#l switches frOm scan tO sOn

SCAN SORT
GROUP BY

SORT
GROUP BY

図12.4 バラレル度数に対して、パラレルスレーブ、クエリコーディネータがどのように割り当てられるか。

12.2.5 クエリコ…ディネータ
SQL文にはクエ リ以外の文も含まれるが、どのようなSQL文であっても文がパラレルに処理される場

合、クエリコデ ィネータプロセスが必要 となる。クエリコーディネータは、パラレルスレーブを作動さ

せ、パラレル演算の結果の最終的な受け取り手になる。ほとんどの環境で、クエリコーディネータの機

能は、SQLを実行するサーバプロセス (シ ャドウプロセス)が受け持つ。

process #1
Parallel Parallel

process #3

Cuery
Co-ordinator

process #2
Parallel Para‖ el

process#4

Sales
Table

Para‖ el

process#1
Para‖ el

process#3 process #1

Parallel

Cuery
Co-ordinator

process #2
Parallel Parallel

process #4
Para‖ el

process#2

Sales
Table

SCAN

●第12章 バラレル処理 ([鰈隋駿::::|:|||:||:||

12.2.6 パラレルスレーブプール
オラクルは、パラレル処理で利用可能なパラレルスレーブプロセスをプールしている。プールするパ

ラレルスレーブプロセス数は、構成ファイル(initく SID>.ora)で、最小値と最大値を設定することがで

きる。

オラクルは、スレーブが不足 していて、プールが最大値 に達 していない場合、さらにスレーブを作成

す る。また、一定時間 (PARALLEL_SERVER_IDLE_TIMEパ ラメータ)以上アイ ドルだったスレーブは、

プールの最小値以下でなければ終了す る。

文を実行するのに必要なパラレルスレーブ数が十分でない場合、次の結果のうちのいずれかが起る。

□ いくつかのスレープは利用可能だが、要求したパラレル度数を満たすことができない場合、パラレ

ル度を減らして実行される。

□ 利用可能なスレーブがない場合、SQL文は順次処理 される。

□ PARALLEL_MIN_PERCENTパ ラメ ー タが設 定 され て い た場合 、その値 よ り利 用可能 な ス レー ブの割

合が小さい場合エラーになり、リソースが足りない場合には、パラレル処理を順次処理することも

不可にできる。たとえば、スレーブを8つ要求し、利用可能なスレーブが5つの場合、その割合は

(5/8=62%)な の で 、PARALLEL_MIN_PERCENTが 62よ り小 さい場合 エ ラー にな る。

12.3 パラレルクエリ

パラレルクエリは、オラクルのパラレル機能の中で最 もよく使われる機能である。パラレルクエリに

より、テーブル全走査を含むSQL文 をパラレルで実行することができる。パラレルクエリは、オラクル

のパラレル戦略の中心なので、これについては特に詳 しく学ぶ。パラレルクエリの原則をパラレルDML

やパラレルDDLな どの他のパラレル機能に用いることもできる。

12.3.1 バラレルクエリを使う

SQL文がPAⅣ乳LELヒ ントを含んでいたり、PARALLEL句 がテーブルに定義 されている場合、パラレル

クエ リが使われ る。ただし、パラレル機能が働 くのは、テーブル全走査、あるいはパーテ ィシ ョンテー

ブルに対する操作が行われた場合である。

PARALLEL句

CREATE TABLE文 、あるいはALTER TABLE文のPARALLEL旬 によって、クエリのパラレル度数の初期

値を指定することができる。デフォル トはパラレルではない。これは、パラレルヒントが用いられない

かぎり、デフォル トでは、パラレルクエリは作動しないことを示している。

たとえば、

ALTER TABLE SALES PARALLEL(DEGREE4)

は、salesテ ーブルの全走査を、パラレル度数4で実行するということを意味する。

ALTER TABLE SALES NOPARALLEL

は、PARALLELヒ ントが用いられない限り、パラレル機能が作動しないことを、明示的に指定する。

12.3.2 PARALLELヒ ント
PARALLELヒ ン トは オ プテ ィマ イザ に対 し、対象 とな る テ ー ブル にパ ラ レル クエ リを用 い る よ うに指

示をする。形式は次のようになる。

/★ +PAIaLLEL(テ ー ブ ル 名 あ る い は エ イ リ ア ス [′ パ ラ レル 度 数])夫 /

このヒントにより、テーブルはパラレル処理される。パラレル度数が指定されていない場合、初期設

定時のパラレル度数 (上記参照)が採用される。あらゆるヒントがそうであるように、SQL文でエイリ
アスが参照される場合には、PARALLELヒ ントでも同じエイリアスを参照する必要があることをおぼえ

ておく。

PARALLELヒ ントを用いてテーブルヘのアクセスを並行に行なうことはできるが、PA:υ工」LELヒ ントを

用いても他の結合などの他の演算がパラレルに行なわれないことに注意。また、テーブル全走査以外の

アクセス方法を用いてテーブルにアクセスする場合には、PARALLELヒ ントが無視されることにも注意

する。場合によっては、パラレルが行なわれるようにFULLヒ ントを用いてテーブル走査を強行してもよい。

12.3.3 パラレルSQL文の実行計画
パラレルSQL文に対してEXPLAIN PLANを 実行し、plan_tableの Other_tag列 を調べることで、ど
のステップをパラレルで処理するのか調べることができる。表12.1は パラレルSQL文に用いられる
。ther_tag夕 」の1直である。

other_tar)値 意味

SERIAL(あ るい は空 白)

SERIAL FROM REMOTE

SERIAL TO PARALLEL

PARALLEL TO PARALLEL

パラレル処理なしでこのステップは実行された。

リモートサイ トで連続実行された。

連続実行の出力は、次のパラレル処理に送られる。

このタグは、処理結果を次のパ ラレル処理に渡すというこ

とを意味する。たとえば、パラレルテーブル走査が結果を

パラレルソー トに渡すような場合だ。

パラレル処理の トップレベルのステップ。結果は、クエ リ

コーディネータに送られる。

PRALLEL TO SERIAL

●第12章 バラレル処理

意味

PARALLEL COMBINED WITH PARENT

PARALLEL COMBINED wITH CHILD

このステップの出力は、同じプロセス内の次のステップヘ

送られる。

このステップの出力は、同じプロセス内の次のステップヘ

送られる。

表12.l plan」 able内 のother_tag列 の値

パラレルクエリでは、OBJECT_NODE列 は、各処理による出力の使用順序を示す。そのため、どのよう

にパラレル処理が実行されるのかを理解するために有効である。たとえば、次の実行計画では、

OBJECT_NODEか ら、同じプロセスがソート結合とマージ結合を行なうことがわかる。

SELECT STATEMENT

SORT ORDER BY (PA RALLEL_TO_SERIAL) :Q■ 93003

MERGE JOIN (PARALLEL_TO_PARALLEL) :Q■ 93002

SORT JOIN(PARALLEL_COIMBINED_WITH_PARENT) :Q193002

TABLE ACCESS FULL SALES (PARALLEL_TO_PARALLEL) :Q193000

SORT JOIN (PARALLEL_COMBINED_t・ 71TH_PARENT) :Q■ 93002

TABLE ACCESS FULL CUSTOIMERS (PARALLEL_TO_PARALLEL) :Q■ 93001

12.3.4 バラレル処理のチュ…ニング
パラレル処理を最適化するには、SQL文の最適化以外に、オラクルの設定もパラレル処理用に最適化

しなければならない。パラレル処理を最適化するときに考慮しなければならない主な項目は次のとおり

である。

ロ パラレル処理を行なえるようにオラクルを設定する。

□ 適切なときのみパラレルクエリを用いる。

ロ パラレル度数を適切に設定する。

ロ テーブルをNttLYZEす るc

ロ ハッシュ結合のように、パラレル向きの演算を用いる。

ロ パラレル処理用にデータベースを設計する。

ロ パラレル処理を行なえるようにオラクルを設定する

これまでに学んだチューニングテクニックのほとんどとは異なり、パラレル処理は、オラクルが適切

に設定されていないと、全く効果を発揮 しない可能性がある。考慮 しなければならない主な項目は次の

とおりである。

([緻鰤 ::::::|:1計

other_tagσ)値

□ 適切な数のパラレルスレーブをサポートできるようにデータベースを設定する。

ロ データベースを構成するデータファイルは複数のディスク装置にまたがらなければならない。これ

は、ス トライピングというオペレーティングシステムを用いても、データファイルを手作業で分配

しても可能である。

適切な場合のみパラレルクエリを用いる

パラレルクエリは、リソースを大量に消費する可能性がある。パラレルクエリを用いても、それに値

するパフォーマンスの向上がない場合、必要以上にリソースを消費したと考えられる。次の条件に該当

する場合、パラレルクエリを用いるのは避けたほうが良いだろう。

ロ ホス トコンピュータにCPUがたった1つ しかない場合、あるいは、アクセスされるデータが複数の

ディスク装置にまたがって存在していない場合。

□ CPUが フル稼動している場合。パラレル処理は、CPUの リソースを大量に消費するので、CPUがす
でに限界近くで動作している場合は、かえってパフォーマンスを低下させてしまう。

テーブルをANALYZEす る

テーブル全走査を複数のパ ラレルスレーブで分割処理するときには、コス トベースオプティマイザは、

テーブルや インデックスをANALYZEし たときの情報 を使 う。そのため、パラレル処理す るテーブルは、

定期的あるいは大きく変更があったようなときは、mttLYZEし た方が良い。

パラレル向きの演算を用いる

パラレルクエリのように大量のデータにアクセスする場合に、効果的に機能する演算がいくつかある。

主な演算は次のようなものだ。

ロ ビットマップインデックス

□ STAR結合

ロ ハッシュ結合

□ AJ_HASHあ るいはAJ_MERGEヒ ントを用いた結合

ロ パーティションビューとパーティションテーブル

パラレル処理用にデータベースを設計する

パラレル処理でテーブルにアクセスすることが多い場合、パラレル処理を行なうためにそのデータベ

ースをつぎのように最適化できる。

|

||:::il警

::輻餞 〕

ロ デ フ ォル トで テ ー ブル がパ ラ レル で処 理 され る よ うに 、 CREATE文 あ るい はALTER TABLE文 の

PARALLEL句 を用い る。

ロ テーブルの行の大きな部分集合にアクセスする場合のパフォーマンスを改善するために、パーティ

ションビューかパーティションテーブルを用いる。

●第12章 パラレル処理C璽釉颯隋鮨:i:

□ 1/0を分散させるためにテーブルを:複数のディスク装置にまたがって存在 させる。単一のディスク

装置だけだと、パラレルで処理しても結局ディスク1/0待ちになってしまう。

ロ パラレルクエリはテーブル全走査に基づいているので、テーブルアクセスを最適化する。第6章で

示 された、PCTFREE/PCTUSEDを効率 よくセッティング したり、LONG列 を置 き換えたりといった

テクニックを用い る。

12日4 バラレJレクエリの例
次の例で、さまざまなクエリに対しパラレルクエリをどのように効果的に用いるのか学ぶ。

以下の例では、初期設定オプションのNOPARALLELを用いてテーブルを作成 した。また、パラレル度

数はデフォル トを用いた。

12.4.1 バラレルでネス トされたル…プ結合をバラレル処理する

ネス トされたループ結合は多くの場合インデックスを用いるので、この結合がパラレルで行なえるこ

とに驚くかもしれない。しかし、駆動テーブルがテーブル全走査に基づいているかぎり、パラレルでテ

ーブル全走査とインデックス検索を行なうことが可能となる。

次の文の実行計画は、salesテーブルとcustOmersテ ーブルの間のパラレルでネストされたループさ

れた結合を示している。

select,/*+ordered use-n1(c) para11e1 (s) *l
c. cusLomer-narne/ s. safe-date, s. safe-va1ue

from sales s,customers c

where c. suctomer-id=s. customer-id
and s. sale_date>sysdate-3 65

order by c. suclomer-name, s, sale-date

Expfain Plan

SELECT STATEMENT

SORT ORDER BY (PARALLEL-TO_SERIAL)

NESTED LOoPS (PARALLEL_TO_PARALLEL) <_) \- IJ)1,)T +7 I-.d1.1ICfi86

TABI]E ACCESS FULL SALES (PARALLEL_COI4BINED-WITH-PARENT)

TABLE ACCESS BY ROWTD CUSTOMERS (PARALLEL_COMBINED_WITH_PARENT)

INDEX RANGE SCAN PK_CUSTOMERS (PRALLEL_COMBINED_WITH-PARENT)

EXPLAIN PLrNは 、ネス トされたル ープ結合がパラレルに実行 されたことを不す。salesテ ーブルはパ

ラレルに走査 され、それ を走査した同 じプロセスがcustomersテ ーブルに対 して もインデックス検索 を

行なっている。

12.4.2 ハッシュ結合
ハッシュ結合はパラレル処理に理想的である。結合の対象の両方のテーブルがテーブル全走査でアク

セスされるなら、結合全体をパラレルで行うことができる。

sel-ect /*+para11el (s) parallef (c) */
c. customer_name, s. sale_date, s. sale_walue

from customers c, safes s

where c. customer_id=s. customer_id
and s. safe_daEe. sysdate-365

order by c. customer_name, s. sale_date

Explain Plan:

SELECT STATEMENT

SORT ORDER BY(PARALLEL_TO_SERIAL)

HASH JOI:N(PARALLEL_TO_PARALLEL)

TABLE ACCESS FULL SALES(PARALLEL_TO_PARALLEL)

TABLE ACCESS FULL CUSTOMERS(PARALLEL_TO_PARALLEL)

12.4.3 ソー トマージ結合
ソートマージ結合もパラレル処理に向いている。結合されたすべてのテーブルに対する走査がパラレ

ルに行なわれるなら、結合全体がパラレルで実行される。

selecE /*+ordered use_merge (c) parallel (s) para11e1 (c) */
c. cusL.omer_name, s. sale_date, s. sale_walue

from sales s,customers c

where c. customer_id=s. cust.omer_id
and s. sale_date. sysdate-3 65

order by c. customer_name, s. sale_date

Explain elan

SELECT STATEMENT

SORT ORDER BY(PARALLEL_TO_SERIAL)

MERGE JOIN(PARALLEL_TO_PARALLEL)

SORT JOIN(PARALLEL_COMBINED_WITH_PARENT)

TABLE ACCESS FULL SALES(PARALLEL_TO_PARALLEL)

SORT JOIN(PARALLEL_COMBINED_WITH_PARENT)

TABLE ACCESS FULL CUSTOMERS(PARALLEL_TO_PARALLEL)

salesテ ーブルとcustomersテ ーブルに対するテーブル全走査およびソー ト、マージがパラレルで行

●第12章 バラレル処理d口甕鰺躙::i::|:111:||

なわれている。両方のテーブルに対するソートマージ結合がパラレルで行なわれることを確認すること

が重要である。1つのテーブルしかパラレルで行なわれなかった場合、文に対するパラレル処理能力全体

が低下してしまう。

12.4.4 反結合
次のクエリでは、customersテ ーブルとsalesテ ーブルの結合をパラレルで行った後、NOT INを 連

続で実行していることが分かる。

select ,/*+ordered use-nl (c) paraIlel (s) */
c. cusEomer-name, s . sale-date, s . sale-value

from sales s,customers c

where c. customer-id=s. customer-id
and s. sale_date>sysdate-3 65

and c.cusLomer-id not in (select customer-id from bad-customers)

order by c. customer-name, s. sal-e-date

Explain Plan:

SELECT STATElMIENT

SORT ORDER BYく ― ソー トが連続で行なわれる

F■LTEER く― NOT INが連続で行なわれる

NESTED L00PS(PARALLEL_TO_SERIAL)

TABLE ACCESS FULL SALES (PARALLEL_COMBINED_WITH_PARENT)

TABLE ACCESS BY ROWID CUSTOMERS(PARALLEL_COMBINED_WITH_PARENT)

INDEX RANGE SCtt PK_CUSTOMERS(PARALLEL_COMBINED lAJITH_PARENT)

TABLE ACCESS FULL BAD CUSTOIMERS

前 の例 で は、NOT INを 連続 で実 行 して い たが、PARALLEL句 を使 うこ とに よ り、NOT INも パ ラ レル

で実行することができる。

select,/*+ordered use_nI(c) para11e1(s) */
c.customer-name, s. sale-date, s. sale-value

from sales s,eustomers c

wtrere c . customer-id=s . customer-id
and s.saIe-date > sysdate-365
and c.customer-id not in (

sefect /*+hash-aj para1le] (bad-customers) *,/cust.omer-id

from bad-customers)
order by c. customer_name, s. safe-date

-E:xPIatn Pf an:

SELECT STATEMENT

SORT ORDER BY(PARALLEL_TO_SERIAL) く― ソー トがパラレル化される
HASH JOIN NWI(PARALLEL_TO_PARN」 LEL)く ― 反結合がパラレル化される
NESTED L00PS(PARALLEL_TO_PARALLEL)

TABLE ACCESS FULL SALES (PARALLEL_COMBINED_WITH_PARENT)

TABLE ACCESS BY ROWID CUSTOMERS(PARALLEL_COMBINED_WITH_PARENT)

INDEX RANGE SCAN PK_CUSTOMERS (PARALLEL_COMBINED_WITH_PARENT)

VIEW(PARALLEL_TO_PARALLEL)く ― パラ レルでの実行
TABLE ACCESS FULL BAD_CUSTOMERS (PARALLEL_COMBINED_WITH_PARENT)

12.4.5 集合演算子
uJIONす るテ ー ブル すべて をテー ブル 全 走 査 す るな ら、UNIONをパ ラ レル で行 な うことがで き る。

sefect / *+para]lef (customers) *,/ conttact_surname, contact_firstname
from customers

union
select /*+parallel (employees) */ surname, firstname

from employees

Explain Plan:

SELECT STATEMEINT

SORT UNIQUE (PARALLEL_TO_SERIAL)

UN10N―ALL (PARALLEL_TO_PARALLEL)

TABLE ACCESS FULL CUSTOMERS (PARALLEL_COMBINED_WITH_PARENT)

TABLE ACCESS FULL EMPLOYEES (PARALLEL_COMBINED_WITH_PARENT)

しかし、INTERSECTと MINUSの 場合、テーブルアクセスはパ ラレルで実行できても、INTERSECTと

MIゝWS自 身はパ ラレルで実行できない。

sef ect / *+para1 lel (customers) * / contact_surname, contac t_f irstname
from customers

minus
select /*parallel (employees) */ surname, firstname

from employees

Explain Pfan

SELECT STATEMENT

MINUS く― MINUSはパラ レル化されてない

SORT UNIQUEく ― ソー トはパラレル化されていない

TABLE ACCESS FULL CUSTOMERS (PARALLEL_TO_SERIAL)

SORT UNIQUE く― ソー トはパラ レル化されていない

●第12章 ノヾラレル処理

TABLE ACCESS FULL EMPLOYEES (PARALLEL_TO_SERIAL)

MINUSは NOT IN(ハ ッシュ反結 合)で表 現 で き、工NTERSECTは 結 合 で表現 で きる こ とを第 8章で学 ん だ

こ とをおぼ えて い るだ ろ うか。 この よ うに、 INTERSECTや MINUSを結 合 やNOT IN(ハ ッシュ反結合)に

置 き換 える こ とに よって、パ ラ レル クエ リの利 点 を生 かす こ とがで き る。

12.4.6 グル…プ演算
先行す る演算 がパ ラレルで行 なわれ る場合 、グル ープ演算や ソー ト演算 も自動的 にパ ラレルで行 なわ

れ る。た とえば、次 の例 ではORDER演算 お よびGROUP BY演 算 がパ ラレルで行 なわれてい ることを示 し

ている。

select /*+parafle1 (s) paralfel (c) */

sale_tota1
from sales s,customers c

where s . customer-id=c . customer-id
group by c.customer_name
order by 2 desc

customer-name, sum (sale-value))

Explain Plan:

SELECT STATEMENT

SORT ORDER BY (PARALLEL_TO_SERIAL)

SORT GROUP BY (PARALLEL_TO_PARALLEL)

HASH JOIN (PARALLEL_TO_PARALLEL)

TABLE ACCESS FULL CUSTOMERS (PARALLEL_TO_PARALLEL)

TABLE ACCESS FULL SALES (PARALLEL_TO_PARALLEL)

12.4.フ パラレルクエリのパフォ…マンス
図12.5は、パラレルクエリの実行が、これまでの例で用いたさまざまなタイプのクエリのパフォーマ

ンスを改善した様子を示している。ちなみに、経過時間の短縮は平均して75%であった。結果は、オラク

ルの設定や、データの性質によって異なってくるので、1つの例として見て欲しい。

|
|

|:!蒻
鰤

図12.5 パラレルクエリがもたらしたパフォーマンスの改善

(0)第 12章 バラレル処理 Cは躙::||:|::::|::11:|:||:な

12.5 バラレルDDLと DML
CREATE TABLEな どのデータ定義言語 (DDL)文は、多くの場合 ―‐瞬で実行され、比較的負担も少な

い。しかし、DDL文の中にはリソースに対する要求が高く、何時間もかかってしまうものもある。次の

ような場合、パラレル処理によリパフォーマンスを改善することができる。

□ CREATE INDEX文 が大きなテーブルを処理すると何時間もかかる場合がある。そのような場合、

すでに存在しているインデックスを再構築したり、パラレル処理をすることでパフォーマンスの改

善を図ることができる。

□ CREATE TABLE AS SELECT文 は 、 テ ー ブル を作成 し、 クエ リの結果 をその テ ー ブル に挿 入 す る。

複雑な処理をするために一時的にテーブルを作成したり、定期的に要約テーブルを作成したり、あ

るいは存在しているテーブルを再構築する場合に、この文が実行されることがある。

12.5.l CREATE INDEXの パラレル処理
インデックスの作成には、テーブル全走査に加え、インデックス化される列のソートが必要となる。

これらの処理をパラレル化することでパフォーマンスを改善できる。

インデックスパラレルで作成するには、単にP′R俎」LEL句 を加えればよい。たとえば、次のようにする。

create sales-idx1 on safes(sa]e-date) parallel(degree 5)

これで、パラレル度数5の インデックス作成を実行することができる。5つのスレーブがテーブルを走

査し、ソー トやインデックス化を行う。

5つのスレーブのそれぞれは、固有のエクステントを作成 し、それに書き込みを行なう。これは、イン

デックスが、少なくとも用いられたパラレル度数と同じ数のエクステントを持つことを意味する。

しかし、インデックス作成のパラレル処理にはあまり好ましくない側面もある。いったんインデック

スの作成が完了すると、オラクルはつくられたエクステン トから空きスペースを削ってしまうのだ。こ

れはスペースの無駄をはぶくために行なわれていると考えられる。しかし、これによリエクステン トの

サイズはばらばらになる。エクステン トのサイズがそろっていない場合、フラグメンテーションが起き

やすくなる(第 15章参照)。

この欠点にもかかわらず、パラレルでインデックスを作成することは、インデックス作成に要する時

間を短縮するのにもっとも効率のよい方法である。大きなテーブルのインデックス作成に何時間もかか

るような場合は、パラレル処理を検討したほうが良い。

12.5.2 CREATE TABLE AS SELECTの パラレJレ 1処理
CREATE TABLE AS SELECT文 でパ ラ レル クエ リを利 用 す る こ とがで きる。 これ は、一時的 な テ ー ブ

ルや、非標準化された要約テーブル (詳細は第14章)作成する場合に役立つだろう。たとえば、次の

CREATE TABLE AS SELECT文 はパ ラ レル処理 され る。

create table customer_sa1es_totals as
sefect /*+para]}e1 (s) paraflef (c) */ cust.omer_name, sum(sa1e_value)
sale_totaf

from sales s,customers c

where s. customer_id=c. customer_id
grroup by c. customer_name

Explain PIan:

CREATE TABLE STATEMENT

CREATE AS SELECT (PARALLEL_TO_SERIAL)

SORT GROUP BY (PARALLEL_TO_SERIAI」)

HASH JO■ N (PARALLEL_TO_PARALLEL)

TABLE ACCESS FULL CUSTOMERS (PARALLEL_TO_PARALLEL)

TABLE ACCESS FULL SALES (PARALLEL_TO_PARALLEL)

12.5.3バラレルDML
オ ラクル 8で は 、パ ラレル SELECT文 に基づ くINSERT文 をパ ラ レル で 行 な うことがで き る。 また、 テ
ーブル がパ ー テ ィシ ョン化 され て い るな ら、UPDATE文 や DELETE文 もパ ラ レルで行 な う こ とがで きる。
この機能 は、 UPDATE文 あるい は DELETE文 を各パ ー テ ィシ ョンご とにパ ラ レル で適用 す る こ とで実現 さ

れてい る。 もち ろん、 これ は、UPDATE文 やDELETE文 の パ ラ レル度 数 が テ ー ブル 内のパ ー テ ィシ ョン数

を決 して超 え な い ことを意味 す る。

たとえば、:次のようにしてパラレル度数4で、更新することができる。emp10yeesテ ーブルは最低4つ

のパーティションを含むと仮定する。

update /*+para11e1 (e,4) */ employees e

set safary=salary*1. 1;

●第12章 バラレル処理 CR鰤 ::::::馘

12.6 まとめ
この章ではオラクルのパラレルSQLの 能力について学んだ。パラレルSQLは、テーブル全走査のパフ

ォーマンスを改善する最も効率的な方法のひとつである。

パ ラレルSQLは、パ ラレルスレーブと呼ばれる複数のプロセスをSQL文 の実行に割り当てる。SQL文

の実行は複数の流れに分割され、複数のスレープによって処理される。パラレル度数がパラレルで実行

される流れの数を決定する。

パ ラレルSQLは適切な環境下でないとその威力を発揮できない。適切な環境とは、次のような場合で

ある。

ロ ホストコンピュータが複数のCPUを持っていて、データベースが複数のディスク装置にまたがって

存在している。

□ SQL文が、最低1つの大きなテーブルの全走査に基づいている。

[コ ホストコンピュータ上のCPUに余力がある。

パラレルSQLは次のような場合に用いることができる。

ロ テーブル全走査が行われる。

ロ テーブルがパ ーテ ィション化 されている。

ロ インデックス作成。

E]CREATE TABLE文 がクエリに基づいてヽヽる。

□ UPDATE文 とDELETE文 がパーテ ィションテーブル上 に存在する

□ INSERT文 がパ ラレルクエリに基づいている (オ ラクル8のみ)。

(オ ラクル8のみ)。

パラレルSQLを最適化するには、次のような方法がある。

□ EXPLAIN PL′N(あ るいは実行計画を作成するツール)を用い、パラレルSQLの実行計画を検査す

る。other_tag列 を用い、各ステップがパラレルで処理されているかをチェックする。

ロ パラレルSQLを行なえるようにサーバが設定されていることを確認する。1/0がボトルネックにな

らないように、テーブルは複数のディスク装置に分散されなければならない。

□ 適切なパラレル度数を設定する。

EIテ ーブル をANALYZEす る。

ロ ハッシュ結合、ビットマップインデックス、反結合、パーティションテーブルなどのパラレル向き

のアプローチを用いる。

SQLチューニン

13.1 1まじめに

この章では、SQLチューニングの実例を学ぶ。

これまで、チューニングの様々な原則やテクニックを学び、さまざまな環境に対応できるようになっ

た。この章では、本物のアプリケーションのパフォーマンスを改善するには、ここまでにすでに学んだ

SQLチ ューニングの原則をどのように用いるのかを学ぶ。

以下で用いられる例は実際のアプリケーションで用いられたものなので、プライバシおよびセキュリ

ティを配慮して、テーブルや列に多少手を加えなければならなかった。中には、理解を促すためにSQL

文そのものに手が加えられたものもある。たとえば、長く複雑な選択 リストが'に書き換えられるといっ

たようにだ。しかし、■profの結果や、他のパフォーマンスに関する数値は変えていない。

13日2 ケーススタディ1:結合インデックスを用いる
この例では、大規模なマーケティングのデータベースがあり、そのパフォーマンスに周期的に問題が

起こり、過度の1/0を引き起こしていた。調査の結果、選出された従業員にマーケティングの契約を割り

当てるというバ ッチジョブが、数時間ごとに実行されていることが分かった。また、tkprofを 使い、そ

のジョブを調べてみると、やはりCPUと 1/0リ ソースを大量に消費 していることが判明した。しkprOfの

結果を図13.1に示す。

`ヽ

. ,
.::::111= ti .」ヽ
・r・・11_■ '
=・ ,I「 S
''I● |||:|::111

姜ざ ,

予贔′

，鑢

珍恣礫
』

ヽ

.|■ 1,I,F',・●|■・|

~`~ ,●

ヽ´ '=・

る|''°

タディ

第

Select oa.cOntactno ′oa.contactュ d ′
tO_Char (appOintmentdate ′ `dd/1r m/yyyy hh24:m■ :ss'

from ass■ gninents Oa

、vhere oa.employeeno = :e■

and appo■ nしmentdate is null

and oa.status = 'I'

and rownum =1(4)

order by appo■ntmentdate desc for update

call count cpu efapsed dlsk query current

Parse
Execute
FeLch

27

27(■)

27

0.06

11.37

0.01

0.10

52.05

0.0■

0

6■ 7

0

0

61282(3)

0

0

0

5(2)

Rows Execution Pfan

SELECT STATEMENT

FOR UPDATE

SORT (ORDER BY)

COUNT (STOPKEY)

TABLE ACCESS (BY ROWID)OF IASSIGNMENTSi

IN.DEX (RANGE SCAN)OF IASSIGNMEN■IS_111 (NON― UNIQUE)

0

0

0

0(6)

1130

113■ (5)

図13.1 最適化前のtkpЮfの結果 結果中の数字はコメントの中で参照されている

チューニングの最初のステップは、tkprOfの結果分析および解釈である。この結果から何がわかるだ

ろうかP

1.文が27回 (1参照)実行されているにもかかわらず、たった5行 しか返されなかった(2)。

2.こ れらの行の検索には、61,282のブロックの読み込み(3)-1回 の実行あたり2,269ブ ロック、あるい

は返される1行あたり12,256ブ ロックーが必要である。

3.ROMヾUШ句(4)が文の実行それぞれがひとつの行しか返さないことの確認のために用いられた。

4.EXPLAIN PL赳 はヽ 、 イ ンデ ックスASSIGNEMENTS_I■ が該 当す る行 を取 り出す の に用 い られ た こ

とを示 して い る。 EXPLAIN PLrWを 実 行 す る と、 この イ ンデ ックス を持 った列 と 1,131行 が一 致 し

た(5)。 しかし、すべての選択条件を満たした行はなかった(6)。

返される1行あたり12,256ブ ロックの読み込みを必要としたということは、適切なインデックスが使わ

1瑾
:::|:颯塚D

(0)第 13章 SQLチ ューニングのケーススタデイ

れていない可能性が高い。インデックスassignments_ilは 、emp■ oyeeno列 に基づいていた。これは、

選択条件があまり厳しくない。なぜなら、1人の従業員が何百というアポイントメントを持っている可能

性があるからだ。

WHERE句 で、指定される列をすべてインデックスに含めるという原則を覚えているだろうか。この原

則に基づいて、status列 とass■ gndate列をassignments_ilに 加えると、図13.2のようになり、パ

フォーマンスは大きく改善された。

cal■ count cpu

O.■ 1

0.14

0.0■

efapsed disk query current rolvs

Parse

Execute
Fetch

33

33

27

0.13

0.53

0.0■

4

21

0

0

30

0

0

0

10

■7

92

0

Rows Execution Plan

SELECT STATEMENT OPTIMIZER HINT: RULE

FOR UPDATE

SORT (JOIN)

COUNT (STOPKEY)

TABLE ACCESS (BY ROwID)OF IASSIGNMENTS

INDEX (RANGE SCAN)OF 'ASSIGNMENTS_11' (NON― UNIQUE)

図13.2 結合インデックスを作成 した後の、ケーススタディ1のtkpЮfの結果。

結合インデックスを加えた後は、返される1行 あたりで読み込まれるブロックの数は12,256か ら12、 つ

まり99.8%も の減少に結びついた。SQL文やアプリケーションのデザインを変更することなく、パフォー

マンスを改善できた。適切なインデックスの重要性が分かっていただけただろう。

0.67

図13.3 i結合インデックスを作成 し、ケーススタディ1が得たパフォーマンスの改善

(12番陪躙 :::|:::1111

この ケ ー スについては、ORDER BY旬につ いて考 えるべ き点 がある。SQL文はappointmentdateに

対す るORDER BY句 を含む。 しか し、WHERE旬によ りappointmentdateは MLLで あることが条件 なの
で、この ORDER BY句 は不必要で ある。

13口3 ケーススタディ2:ルールベースオブテイマイザ、イン
デックスマージ、バインド変数

この例では、オンライン照会ツールが最適化を必要とした。応答時間の大幅な短縮が求められ、各

SQL文を完全に最適化する必要があった。特定されたSQL文のうちの1つが図13.4に示されている。

select comment text
from conEacts, conrments

where contacts. contactid=906
and contacL.s. resultcode=200
and contacts . commentid=conunents . commentid

cafl count cpu elapsed disk guery current rows

Parse

Execute
Fetch

0.03

0.00

0.00

0.05

0.00

0.04

Misses in library cache d.uring parse: 1

Rows Execution Plan

SELECT STATEMENT

NESTED L00PS

TABLE ACCESS (BY ROWID)OF 'CONTACTS'(4)

AND― EQUAL(3)

INDEX(RANGE SCAN)OF iCONTACTS_RESULTCODE_IDX'(NON― UNIQUE)(1)

INDEX (RANGE SCAN)OF iCOINTACTS_CONTACTID_IDXl(NON― UNIQUE)(2)

TABLE ACCESS (BY ROWID)OF iCOM:MENTSI(6)

INDEX (UNIQUE SCAN)OF iCOIMMI_PK_PRIMl(UNIQUE)(5)

図13.4 最適化前のケーススタディ2についてのtkpЮ fの結果

最初みたところでは、このSQLは よくチューニングされているようにみえる。一回の実行あたり読み

込みが必要なブロックの数はたった14で、文が処理される速度は1秒の1/10以下だった。しかし、アプリ

ケーションの設計としては、アプリケーション全体を通してSQL文は1秒間に何千回実行できる必要があ

った。つまり、パフォーマンスをさらに改善しなければならなかったのである。

SQLチ ューニングのケーススタディ 磁巡鼈|

このSQL文 を解釈すると次のようになる。

1.ま ず、cOntacts_resultcode_idx(1)を 用い、特定のresultcOdeに 一致するcOntactsの リ

ストを得る。

2.次に、cOntacts_cOntactid_idx(2)を 用い、特定のcOntactsidに 一致するcOntactsの リス

トを得る。

3.双方のリス ト(3)に存在するそれぞれの行に対し、結果にアクセスし、cmmentidを得る。

4.取得したcOmmentidを使ってcmm pk_primイ ンデックスにアクセスし、適切なcOmments行を

取得する⑥。

可能な改善が2つ考えられる。

□ 1つの行を得るのに2つのインデックスを用いる(イ ンデックスマージ)のは効率が悪く、そのような

場合は、結合インデックスを使った方が良いという原則を覚えているだろうか。その原則に従い、

cOntactid列 とresultcode列で構成される結合インデックスを作成する。

El contactsテ ーブルで必要な情報は、conmentid列だけである。そのため、新しいインデックス

にcOrmentid列 を加えれば、contactsテ ーブル本体にアクセスする必要はまったくなくなる。

下記のtkprOfの結果は、改善された実行計画を示している。1/0は 1/2に なり(7)、 cOntactsの テ

ーブルにアクセスする必要はなくなった(8)。

SE1ECT / *+TNDEX (CONTACTS CONTACTS_AND_RESULTS-IDX) * / COMMENL-LEXT

from contacts, conrments

where contacts.contactid = 906

and contacLs.resulLcode = 200(d)
and contacts. commentid = comments. commentid

call count cpu elapsed disk query current rows

Parse

Execute

Fetch

0.04

0.00

0.01

29

0

7(7)

0.04(a)

0.00

0.01(b)

Misses in library cache during parse: l-(c)

Rows Execution Pfan

O SELECT STATEMENT

1醸
:::靡漑鋏D

NESTED LOOPS

INDEX (RANGE SCAN)OF iCONTACTS AND_RESULTS_IDX'(NON― UNIQUE)(8)

TABLE ACCESS (BY ROWID)OF iCOMMENTS'

INDEX (UNIQUE SCAN)OF 'COMM_PK_PRIM'(UNIQUE)

図13.5 インデックスの最適化後のケーススタディ2のtkprofの結果

もたらされた1/0の改善を素直によろこぶかもしれない。しかし、この文の実行に所要した時間の80%

が文の解析に費やされていることがわかる (aお よびb参照)。 このSQL文では、パラメタはバインド変数

ではなく文字 (H906"や "200")と して埋め込まれている。そのため、ライブラリキャッシュミスが起こっ

ている(c)。 バイン ド変数を使うことで、解析の負担を軽減できることは、第3章ですでに学んだ。パラ

メタの値が異なるだけなら、一度の解析だけで済むからである。

バインド変数を使った結果が、図13.6で ある。説明に要 した時間は75%ま で短縮され、実行全体に要し

た時間は60%ま で短縮 された。ライブらいのキャッシュミスも減っている(d)。

select /☆ +INDEX(CONTACTS CONTACTS_AND_RESULTS_IDX)☆ / comment_text

from contacts′ c onunent s

where contacts.contactid = :1

and contacts.resu■ tcode = :2

and contacts.com■ lent■ d = coェn■、ents.colnlnent■ d

call counL cpu elapsed disk query current rows

Parse
Execute
Fetch

0.00

0.00

0.01 0.0■

Misses in Iibrary cache during parse: 0(d)

Rows Execution Plan

O SELECT STATEMENT

l NESTED L00PS

2 ■NDEX (RANGE SCAN)OF iCONTACTS_AND_RESULTS_工 DX'(NON UNIQUE)
l TttLE ACCESS (BY ROWID)OF 'COMMENTS'

1 ■:NDEX (UNIQUE SCAN)OF iCOMM_PK_PRIM'(UNIQUE)

図13.6 バインド変数対応後のケーススタディ2のtkprofの結果

この例は役に立つチューニングの原則を数多く示している。

(|)第 13章 SQLチ ューニングのケーススタデイ (1仄鰤 :‡::::!|:llli:華

□ 最初の例でみたように、結合インデックスを作成することで、パフォーマンスを大幅に改善するこ

とができる。

□ SELECTリ ストの列もインデックスに加える。この作業によリテーブルアクセスが回避できるなら、

パフォーマンスを一層改善することができる。

□ SQL文が十分に効率的であるようにみえる場合でも、改善の余地が残されていることがよくある。

□ 1/0が少ないSQL文では、解析の最適化は1/0の最適化と同程度重要になることがある。

ロ バインド変数を用いて解析の負担を大幅に軽減することができる。

図13.7 ケーススタデイ2で結合インデックスおよびバインド変数を用いた最適化の効果

13.4 ケーススタデイ3:次第に機能が低下するクエリ

このケースでは、バッチ処理を行うジョブを取得するためにクエリが実行されるが、ジョブの数が増

えるほど、パフォーマンスが悪化することが判明した。

図13.8は、クエリとそのtkprOfの 結果を示 している。

SELECT ★

FROM job_queue al

WHERE al.コ Ob_ype = :bl

AND al.〕 ob_statuS = :b2

0RDER BY al.DOb_Sequence

FOR UPDATE OF job_status (1)

call

Parse

Execute

Fetch

■

1

1(4)

0

1583(4)

0

0

0

1(2)

count cpu elapsed disk query current rows

0 0

■53 3473(3)

0 3

002

0.05

0.0■

0.51

0.00

0.00

0.52

0.00

total 3 0.52 0.52 153 3476 1583 1

Rows Execution PIan

SELECT STATEIMENT OPTIMIIZER HIINT: CH00SE

FOR UPDATE

TABLE ACCESS OPTIMIZER HINT: ANALYZED (BY ROWID)

OF IJOB_QUEUEI

15395 INDEX (RANGE SCAN)OF IJOB_QUEUE_lIXI (NON― UNIQUE)

図13.8 最適化前のケーススタディ3のSQL

このクエリの問題は、FOR UPDATE句 (1)に ある。FOR UPDATE句 は、最初の行を取り出す前に、すべ

ての行を取得してロックをしなければならない。そのため、1行取り出す(2)のに5,056(3つ ブロックにア

クセスする必要があるのだ。件数が増えるとそれだけ遅くなる原因もまさしくここにある。

このケースで選択された解決策は、次のようなものだ。

1.処理可能な最初の行をフェッチする。しかし、行をロックしない。今後の処理のために、この行の

ROWIDを取り出す。

2.こ のROWIDを用い行をロックする。ただし、フェッチとロックの間に他のセッションによって、行
が更新された可能性もあるので、フェッチしたときと同一条件でロックする。

3.ロ ック可能なら、取得 したROWIDを返す。ロック不可なら再度、フェッチを試みる。

create or repLace function f_get_next_fi1e
(pjgm_name varchar2,
p_j ob_status varchar2)

return rowid as

cursor get_nxt_f i1e_csr
(cpJgrm_name varc:har2,
cp_job_status varctrar2) is

sel-ect a.rowid a_rowid
from job_queue a

where j ob_t)4)e=cpJgm_name
and j ob_status=cp_j ob_s taLus

order by a. job_sequence;

cursor lock_file_csr
(cp_rowid rowid,
cpJgm_name varchar2,

0

15377

15386

(口)第 13章 SQLチ ューニングのケーススタデイ q陶躙:量 ||:|::|:||::11:|:

cp_job_status varchar2) is
select rowid

from job_queue

where rowid=cp-rowid
and j ob_type=cpJgm_name
and j ob_s tatus=cp_j ob-s tatus
for update;

get_nxt_f i I e_row ge t_nxt_f i I e-c s r? rowt)4)e ;

f ock_f i1e_row lock-f i1e-csrtrowtll>e ;

1_max_reEries number : =5 ;

1-attempt_count number : =0 ;

begin

wh■ le l_attempt_count く 1_maX_retr■ es loop

――処理可能な行を探す

open get_nxt_f■ ■e_csr(p_pgm_name′ p_〕。b_StatuS)′

fetch get_nxt_file_csr ■nto get_nxt_file_row′

if get_nxt_fi■ e_csrtnotfound then

close get_nxt_file_csr′

return(nu■ 1), 一―処理可能な行がない。

end if′

close get_nxt-f iIe-csr ;

――選択した行をロックし、処理可能かどうかを検証する。

open lock-f i 1 e-c sr (get-nxt-f i f e-row. a-rowi d
pJgm-name, p_j ob-status) ;

fetch lock_file_csr into lock_file-row;

if lock_f i1e_csrBnotfound then

――行が見つからない。

一―別のプロセスがステータスを更新している。

close lock_ ■■e_ sr,

■_attempt_count := ■_attempt_count + 1,

exit, 一―また、利用可能な行を探す。
else

close lock_file_csr;
return (getr._nxt_f i1e_row. a_rowid) ;

end if;

end loop′

――選択可能な行が見つからなかった。

return(nu■ 1),

end;

図13.9 ケーススタディ3のパフォーマンス改善のためPL/SQL。

必要なクエ リの数は1つから2つ になったが、オリジナルのアプローチよリロックの負荷が減っている。

図13.10は、PL/SQLブ ロックの2つのクエリのうちの最初のクエリのtkprOfの 結果を不している。ク

エリの実行には、インデックスだけで十分だったことがわかる(8)。 また、必要なブロックの数⑨ も2つ

だけだったこともわかる。

select a.rowid a_rowid
from job_queue a

where job_type=:1
and j ob-stat.us= :2

order by a. job_sequence

call count cpu elapsed disk query current rows

Parse

Execute
Fetch

0.00

0.00

0.00

total 3 0.01 0.00 0 2(9) 0

Rows Execution Plan

SELECT STATEMENT OPTIIMIIZER HINT: CH00SE

INDEX (RANGE SCAIN) OF 'JOB_QUEUE_■ IXl (NON― UNIQUE)(8)

図13.10 2つのクエリのうち最初のクエリのtkpЮfの結果

図13■ 1は、PL/SQL関数の2つのクエリのうちの2番 目のクエリのtkprOfの結果を示している。クエリ

が、ROWIDを用い、インデックスやテーブルにアクセスせず(lo)に必要とされた行を求めることができ

たことがわかる。また、この作業のために読み込んだブロックの数はたった3つだったこともわかる(11)。

sefect rowid
from job_queue

|

|111:|||||11,::|::li:膠魏:‡嗽lll::llll)

(口)第 13章 SQLチューニングのケーススタディ 舅赳鰤を::i::i::|:||||::'

where rowid=:1
and job-t1pe=:2
and job-sLatus=:3
for update

call count cpu elapsed disk query current rows

Parse
Execute
Fetch

0.00

0.01

0.00

0.01

0.01

0.00

total 3 0.01 0.02 0 3 3(11) 1

Rows Execution Plan

SELECT STATEMENT OPTIM■ZER HINT: CH00SE

FOR UPDATE

TABLE ACCESS OPTIMIZER HINT: ANALYZED (BY ROWID)(10)

OF IJOB_QUEUEI

図13.11 2つ のクエリのうちの2番目のクエリのtkprofの結果

新しいアプローチは必要とされた行を、たった5ブロックしか読み込まずに取り出した。前のアプロー

チでは、5,056も のブロックを読み込む必要があった。

この例は、次のような原則を示している。

□ FOR UPDATE句 は、応答時間を短縮する試みをしばしば無駄にしてしまう。その理由は、FOR

UPDATE句 は、たとえ実際にフェッチされる行が1行でも、該当するすべての行の取 り出しとロック

を要求するからだ。

□ 後で行なう処理のためにROWIDを セーブすることで、再びその行にアクセスする場合に1/0の 負担

を軽減することができる。

|::::::::靡鰈D
|

5,053

図13■ 2 PνSQLを用い、ケーススタディ3を改善した結果

13.5 ケーススタディ4:数字の領域検索
負荷の高い トランザクション処理システムがあり、このシステムの電話番号の変換処理が必要とされ

た。1。w_numberと high_numberの 範囲で、変換する数字が指定され、low_nurtterと high_nurtter

で重複する部分はなかった。

当初、■。w_numberと high_numberはインデックス化され、BETWEEN演算子を用いたクエリが作成

された。しかし、このクエリの結果は期待外れだった。図13.13が示すtkprOfの結果は、一致する行を

得るのに13ブ ロックの1/0と 、2,000行を超えるインデックスアクセスが必要だったことを示している。

select conversion_code
from number_range

where :1 between low_number and high_number

call count cpu elapsed disk guery currenL rows

Parse

Excute

Fetch

tota■

0.0■

0.00

0.03

0.04

0.01

0.00

0.03

0.04

0

0

13

13

Rows Excution Plan

SELECT STATEMENT HINT: CH00SE

TABLE ACCESS(BY ROWID)OF 'NUMBER_RANGE'

INDEX (RANGE SCAN)OF INUMBER_RANGE_HILOW_IDXl(NON― UNIQUE)

0

1

2087

図13.13 最適化前の領域検索

(|)第13章 SQLチ ューニングのケーススタディ (|||||||||||||||||||||‡‡蜻i:る ::::::::1111111:||||

このクエ リの問題は、我々はテーブルについての前提となる知識があるが、オラクルはこの前提を知

らないという点にある。我々はテーブル内の領域に重複はないことを知っている。さらに、われわれい

は■。w_numberが high_nurめ erよ り常に小 さいことがわかっている。また、こういった前提が分かって

いれば、一致する行を1つでもみつけたら、さらに行を求める必要がないことがわかるだろう。しかし、

オラクルは重複する領域がないことや、low_nШわerが常にhigh_nurtterよ り小 さいことを理解できな

い。その結果、ある範囲に一致する行が見つかっても、他に一致する行を検索に行 くので、結局すべて

のインデックスをアクセスすることになる。

この文のパフォーマンスの改善のために試みられる作業の最初のステップは、クエリにROWNUM=■ と

いう条件を加え、いったん一致する行が求められたら、クエリが検索を中止するようにすることである。

残念ながら、RttNW条件はインデックス検索の後に用いられるため、パフォーマンスの改善は認められ

なかった。

select conversion-code
from number_range

where :1 betwen 1ow-number and high-number and rownum=1

call count cpu elapsed disk query current rows

Parse

Execute

Fetch

0.01

0.00

0.03

0.01

0.00

0.03

0

0

12

total 3 0.04 0.04 0 12 0 ■

Rows _Eixecutaon P_Lan

SELECT STATEMENT HINT: CHOOSE

COUNT(STORKEY)

TABLE ACCESS (BY ROWID)OF :NUMBER_RANGEI

INDEX (RANGE SCAN)OF INUMBER_RANGE_HILOW_IDX'(NON― UNIQUE)

図13■ 4 最適化がうまく行かなかったケース

標準のSQLで は、範囲に関する前提を生かすことができないので、PL/SQLを 用いることが決定された。

図13.15は、このPL/SQL関数を示している。

create function rangre-lookup(pl>honeno varchar2)

return nurnber as

cursor range-csr (cpjhoneno varchaar2) is
sel ec t 1 ow_number, hi gh_number, c onvers i on-code

from number_range
where high-number >= cp3honeno
order by high_number;

begin

fOr r ■n range_Cur (p_phoneno)loop

■f range_FOw.■Ow_number く= p_phoneno THEN

一致する行が見つかつた

return (range_row.conversion_code),

end ■f′

end loop,

return(-1);

end;

図13.15 効率のいい領域探索を実行するPUSQL関数

high_numberに インデックスを用いてこのPL/SQLを実行すると、図13.16に示される実行計画をもた

らす。

selec t Iow_number, hi gh_number, convers i on_code
from number_range

where high_nr-unl:er >= : l-

order by high_number

cal 1 c ount cpu

O.00

0.00

0.00

0.00total 0.00

Rov,/s Execution Plan

SELECT STATEMENT HINT: CH00SE

TABLE ACCESS (BY ROWID)OF 'NUMBER_RANGE'

INDEX (RANGE SCAN)OF 'NUMBER_RANGE_HIIDXl (NON― UNIQUE)

elapsed disk query current rows

Parse

Execute
FEICh

0.00

0.00

0.00

3 0 1

図13.16 PySQL関数実行時のtkprofの 結果

‐粋

(|)第 13章 SQLチューニングのケーススタデイ (|||||||||||||||||||||||||||||||||||||||::|||:::::::i:::::111:|:||:||111

PL/SQLを実行し、1/0を 13か ら3に減少 させることができた。 さらに、high_number、 low_number、

cOnversiOn_cOdeに ついて結合インデックスを作成し、テーブルヘのアクセスを回避すると、1/0条件

も2に減少 した。

ca■■ count cpu elapsed disk query currenL rows

Parse

Execute

Fetch

0.00

0.00

0.00

0.00

0.00

0.00

total 3 0.00 0.00 0 1

Rows Execution Plan

SELECT STATEIMIENT HINT: CH00SE

INDEX (RANGE SCAN)OF INUMBER_RANGE_HI_LOW_SWITCHl(NON―UNIQUE)

図 13■ 7 high_number、 10W_number,COnVerSiOn_COdeに 結 合 イ ンデ ッ ク ス を作 成 し

PVSQL関数を実行したときのtkprofの結果

このケーススタディは次の原則を示す。

ロ オプティマイザは個人のデータについて、その個人ほど決して理解していない。直観的にみて明ら

かにみえることでも、オプティマイザは考慮することができない。

ロ オプティマイザが領域検索を効率よく実行することは難しい。

□ PL/SQLを 用いた手続きアプローチは、パフォーマンスの点ですぐれた結果をもたらすことができる。

図13.18 ケーススタディ4の領域検索の問題を解決するために用いられたPビSQLの パフォーマンス

‐響
‐

13.6 ケーススタディ5:FIRST1_ROWSアプローチ
仕事を管理するシステムのインタラクティブなアプリケーションが、画面上にいくつかの リストを表

示していた。このリストはあらゆる仕事アイテムから成り、それらのアイテムは優先順、日付の順番で

示されていた。もともとこのシステムは、オラクル7.1を用いて実行 されていた。

開発フェーズでは、この画面のパフォーマンスは容認できるものだった。しかし、本番フェーズで、

パフォーマンスは急激に低下 した。図13.19に最初のクエリのtkprOfの結果を示す。

select *

from work_fist
where job_status =

order by priority,
'ready'
j ob_due_date

call counl cpu efapsed disk

0

0

1490

query current rows

Parse

Execute
Fetch

0.03

0.00

3.42

3.45

0.04

0.00

■4.29

0

0

■489

0

0

15

total 14.33 1490 ■489 32 ■5

Rows Execution PIan

SELECT STATEMENT HI:NT: CH00SE

SORT (ORDER BY)

TABLE ACCESS HINT: ANALYZED (FULL)OF 'WORK_LIST

0

966

14999

図13.19 最適化前のクエリの実行結果

tkprO fの 結果は、15,000行のテーブルについてテーブル全走査が行なわれたことを示 している。そし

て、適切なjOb_statusを 持つ行が、priority、 job_due_date順にソー トされた。このクエリが取

り出した行数はたった15だ った。しかし、テーブルから|ま 15,000行 が取 り出され、966行がソー トされた。

画面が示しているのはクエリの最初の15行だけだ。 しかし、オプティマイザは、そのことを知らないの

で、ソー ト処理が必要な場合、たいていテーブル全走査を行う。そのため、テーブルの行数が増えるに

従って、応答時間は悪化していた。

次に、job_status,priority、 job_due_dateについて結合インデックスが作成 された。しかし、
job_statusは 固有の値を数個しか含んでいなかったので、オラクル7■のオプティマイザは、このインデッ

クスを使わないという決定を下した。それは、FIRST_ROWSヒ ントを与えても同じであった (図 13.20参照)。

Select /■ +first_rows '/ ■

SQLチューニングのケーススタデイ 僣睫躙

from work-1ist
where job_status = 'READY'

order by priority, job-due-date

ca■ ■ counL cpu elapsed d■ sk

0

0

■490

query current rows

Parse
ExecuLe
l'etcn

0.02

0.00

3.26

0.02

0.00

11.65

0

0

1489 32 15

0

0

0

15

15

totaf 3 3.28 11.67 1490 ■489 32 15

Rows Execution Plan

0

966

14999

call

SELECT STATEMENT HI:NT: FIRST_ROWS

SORT (ORDER BY)

TttLE ACCESS HINT: 洲 ALYZED (FULL)OF 'WORK_LIST'

図13.20 FIRST_ROWSヒ ントの仕様が失敗したときの結果。

FIRST_ROWSヒ ントが失敗したため、今度は、INDEXヒ ントを用いた。図13.21は 、その結果もたらさ

れたtkprOfの結果である。インデックスを用いて最初の15行を取り出すのに必要とされた1/0は 1521か

らたった31に減少した。さらに、work_listテ ーブルのサイズの増加は応答時間の増加につながらないよ

うになった。

select /*+ index(WORK-LIST WORK-STAT-PRI-DATE-IDX) */ *

from WORK_LIST

where job-sLaaus=' READY'

order by priority, job-due-date

count cpu elapsed disk query current rows

Parse
Execute
Feech

0.02

0.00

0.03

0.03

0.00

0.21 3■

total 3 0.05 0.24 6 3■

Execution Pl-an

O SELECT STATEMENT HINT: CH00SE

15 TABLE ACCESS EINT: ANALYZED (BY ROWID)OF IWORK_LISTI

15 1NDEX HINT: ANALYZED (RANGE SCAN)OF 'WORK_STAT_PRI_DATE_工 DX'

Rows

|:111:1111::ll:::蛉鰈飩

(NON― UNIQUE)

図13.21 1NDEXtン トを用いて最適化されたクエリ

INDEXヒ ン トで もこのチ ューニ ング は可能 で あ る。 しか し、 イ ンデ ック ス名 の変更 や 、直 感 的 な分 か

りやす さを考 え る と、FIRST_ROWSヒ ン トを使 った方 が 良 いだ ろ う。オ ラ クル 7.3に ア ップ グ レー ドした

後、FIRST_ROWsヒ ン トは我 々の要 望 とお りに機 能 した 。

Select /・ + first_rows =/ '

from WORK LIST

Where 」Ob_Status=!READYl

order by priOr■ tiy′ job_due_date

call count elapsed disk query current rowscpu

O.02

0.00

0.02

Parse

Execute

Fetch

0.02

0.01

0.0■

0

0

3■

0

0

■5

total 3 0.04 o.04 7 31 15

Rows Execution Pfan

SELECT STATEMENT GOAL: HINT: FIRST ROWS

TABLE ACCESS GOAL: .ANALYZED (BY ROWID)OF

INDEX GOAL: ANALYZED (RANGE SCAN)OF

'WORK_STAT_PRI_DATE_IDXl(NON― UNIQUE)

'WORK LIST:

図13.22 オラクル7.3の FIRST_ROWSヒ ントを用いたクエリ

このケーススタディは次のような注目すべき点がいくつかある。

ロ デフォル トの設定では、コス トベースォプティマイザは応答時間より処理能力を重要視す る。つま

り、クエ リか ら対象となるすべての行を取 り出すのに費やす時間を最小化 しようとする。 しか し、

会話的なアプ リケーションにとっては、最初の行 を取 り出すのに要 した時間の方が重要なことが し

ばしばある。 コス トベースォプテ ィマイザがFIRST_ROWS戦略を選択す るのを促すのに次の方法が
ある。FIRST_ROWSヒ ン トを用いる、構成 ファイル (initく SID>.ora)の OPTIMIZER_MODEを
FIRST_ROWS設定する、 ALTER SESSION SET OPTIMIZER_GOALを 用いる。
□ 応答時間を最適化する場合、結果のソートが必要なら、ソートする項目にインデックスを作成しな

ければならない。

(|)第 13章 SQLチ ューニングのケーススタデイ (lI::|はM::::::::::::||:

Elオ ラクルの各バージョンでコス トベースオプティマイザの改善がはかられている。バージョン7.2

以前では、コス トベースオプティマイザの決定に問題点があることがあり、適切なヒントを用いて

それらの決定を書き直す必要が生じることがある。

図13.23 ケーススタディ5で、INDEXあ るいはFIRST_ROWSヒ ントを用いた最初の行の検索の改善

13.7 まとめ

この章では、SQL文 のチューニングについて実例を詳 しく見てきた。これまでの章で学んできたツー

ルやテクニックが、SQL文のパフォーマンスの向上のために実際にどのように用いられるのか学んだ。

これらの例で実際に見てきた改善は、応答時間あるいはデータベース1/0の点で、80%程度のものから

99.9%の ものまであった。こういった改善をSQLを チューニングすることで実現するのは決して珍しいこ

とではないし、SQLチ ューニングが大きな効果を持つ理由ともなっている。

この章で示された例で、これまでの章で紹介されたSQLチューニングの原則や技術がすべて組み合わ

さっているわけではない。しかし、この章で用いられた例は次の基本的な原則を示している。

□ SQL文の実行に要した時間、実行計画、そしてリソース消費の計測がSQLチ ューニングの主要素で

ある。これ らの計測のためにもっともひろく用いらているツールは、tkprofと SQL★ Plusの

A」Ю■IこCE機能である。

□ SQL文 が未チューニングで、1/0集 中型である場合、SQL文の解析の負担は比較的少ない。しかし、

いったんSQL文 が1/0の 点で効率を高めると、解析に要した時間の割合が重要になる可能性がある。

解析の負担を軽減することで、すでによくチューニングされているSQL文を一層速くすることがで

きる。

ロ インデックス化を効果的に行なうことは、クエリのパフォーマンスを改善するもっとも効果的な方

法の1つである。WHERE句内のすべての列を含む結合インデックスが多くの場合、パフォーマンス

の改善をもたらす。インデックスに選択 リス トにあらわれるもの列も加えると、さらに、テーブル

アクセスも回避できる。

□ 1つのSQL文だけでは実行不可能にみえる演算があるが、PL/SQLのような手続きアプローチを用い

いることで、こういった演算をより効率よく実行できる可能性がある。

□ 応答時間を短縮するために最適化が必要なSQL文がある場合、ΠRS「_ROWSヒ ントを用いたアプロ
ーチが有効である。オラクルのバージョンによっては、ΠRr_ROWSヒ ントが有効に機能しない場
合があるので、そのような場合には、INDEXヒ ントを使う必要がある。

|

:::::隋鋏D

データモデルとア

14.l Iまじめに

これまで、データモデルの変更はできないと想定してきた。この想定は現実的である。データモデル

を変更すると、テーブルの変更によるアプリケーションの再作成などが必要になる場合もある。

しかし、データモデルはSQL文のパフォーマンスに大きな影響を及ぼすことがある。チューニングの

後半で、データモデルの変更なしでSQL文の効率を高めるのは困難であるという結論に達することもあ

る。これは、SQLのチューニングには、適したデータモデルを選択する必要があることを示している。

効率的なSQLやパフォーマンスの高いアプリケーションをサポートする適切なデータモデルを選択す

る基本的な原則がある。この章では、そういった原則のいくつかをさらに発展させる。

この章で扱う主な項目は以下のとおりである。

□ 効率的なデータモデル。

□ NULL値。

□ 非正規化。

アプリケーションの構造も、SQLのパフォーマンスに大きな影響を与える。この章で検討するアプリ

ケーション上の問題は、以下のとおりである。

□ 適切なロック戦略を用いる。

ロ データベースの1/0負荷を減らすためにデータをキャッシュする。

ロ クライアントとサーバの処理の分割を検討する。

ψ

解食ュ議
瘍感爾ぶ0舞範驚

０
′

′ 墾′
苺
ゝ

=.‐
´

第

ヽ

1111:|::||||li:|:i::::隋舅孵 _

14.2 設計プロセスのチユーニング
データベースやアプリケーションの設計の上で、考慮しておいたほうが良い問題がいくつかある。こ

の章に含まれているガイドラインは、その良い指針になるだろう。開発の段階では、もうパフォーマン

スのチューニングをするのに、手後れな場合もある。設計プロセス段階のチューニングも重要である。

14.2.1 パフォーマンスに不可欠な事項を早い段階で定義する
多くのアプリケーションは、非常に短期間で開発される。そのため、パフォーマンスに必要な諸条件

を検討したり、定義することに失敗することがある。実際、パフォーマンスがボトルネックになって、

失敗するシステムは、このような場合が多い。

アプリケーションのパフォーマンスに必要な諸条件は、アプリケーションの機能上の必要条件とまっ

たく同じくらいに重要である。システムおよび特定のモジュールには、パフォーマンスを実現するため

の必要条件があるが、それらの条件はシステム開発サイクルの早期、多くの場合必要条件の分析中に定

義されることが望ましい。

パフォーマンスの必要条件を早い段階で定義することで、それらの条件をシステムのモデリング、設

計、そして構築のために生かすことができる。システムの必要条件の一部として、パフォーマンスは検

討されなければならず、納品の段階で検証される対象となる。

パフォーマンスの必要条件が早い段階で定義されていない場合、十分に受け入れられるレベルのパフ

ォーマンスを実現する試みがなされず、システムのパフォーマンスは期待外れなものになるだろう。

14.2.2 主要な処理を特定する
ほとんどのアプリケーションは、常に実行されている中心となる処理がある。たとえば、バンキング

システムでは、預け入れと引き落としがすべての処理の99%を 占める可能性がある。これらの主要な処理

を特定し、パフォーマンスに問題がないように、設計の段階から考慮する必要がある。

14.2.3 パフォーマンスを可能な限 り早い段階で計測する
開発の各フェーズでシステムのパフォーマンスを計測する。これは大量の現実的なテス トデータを必

要とする可能性があり、大がかりな作業になるかもしれない。しかし、システムのパフォーマンスを早

い段階で計測することで、パフォーマンス上でさまざまな問題が起ったときにそれらの問題を特定し、

解決することができる。従来のアプローチは、総合テス ト時にボリュームあるいはス トレステストが行

なわれるまでパ フォーマンスの計測を行わないので、パフォーマンスが乏しくなってしまう危険性が高

くなる。

14.2.4 重要な部分のプロトタイプ化を検討する
システムのパフォーマンスが重要な場合、本格的な開発フェーズに入るまえに、重要な部分をプロト

タイプ化した方が良い。こうすることで、システムに必要とされているパフォーマンスを前もって検証

することができる。プロトタイプが、必要とされているパフォーマンスの実現が不可能であることを示

●第14章 データモデルとアプ里ケーション設計C2菫緻靡漑祠::i:||::|:||

す場合でも、少なくともシステムの大半が開発されるまえに設計を変更することができる。

14.3 効率的なデータモデルの設計

よく設計されたデータモデルは、頑強で効率的なアプリケーションを構築するための重要な要素であ

る。これに対し、あまりうまく設計されていないデータモデルは、パフォーマンス上の目標の達成を困

難にし、アプリケーションの寿命を短 くする。

ソフ トウェア開発の多くの側面がそうであるように、データモデルの欠陥の修正にかかるコス トは、

開発のライフサイクルが進むにつれて増加する。そのため、パフォーマンスに必要な条件をデータモデ

ル設計のなるべく早い段階で取り込むことが重要である。

14.3.1 論理および物理デ…タモデル
データモデルは、論理及び物理の2段階で構成される。論理データモデルは、データ項目を分析する過

程でつくられる。論理データモデルの目的は、ビジネスの必要条件が正確に定義されていることと、さ

らなる設計の基礎として機能することである。

そして、論理データモデルが完成すると、物理データモデルの設計に移る。リレーショナルデータベ

ースでは、物理データモデルはデータベースのテーブル、インデックス、ビュー、キー、その他の特徴

を記述する。従来の手法では、論理データモデル化の間は、パフォーマンスに必要な条件が無視され、

物理データモデル化に入って始めて検討されていた。

パフォーマンスが重要なアプリケーションでは、ビジネスの必要条件を犠牲にすることなく、パフォ

ーマンスの必要条件を満たすように、論理データモデルを設計した方が良い。このようなアプローチは、

論理データモデルと物理データモデルの相違を小さくし、物理データモデルのパフォーマンスを高める

ことができるだろう。

14.3.2 論理データモデルから物理デ…タモデルヘの変換
ほとんどの手法では、パフォーマンスの必要条件を検討するには、物理データモデル設計が最も適切

な段階とみなしている。残念ながら、論理データモデルの設計者は、SQLの チューニングに関する専門

知識はあまり持っていない。逆に、SQLの チューニングの知識を持つアプリケーション開発者は、ほと

んどの場合、論理データモデルの設計には関わっていない。

チューニングの知識のない設計者が作成した論理モデルを、そのまま物理データモデルヘ変換すると、

高パフォーマンスのアプリケーションは期待できない。パフォーマンスを求めるなら、パフォーマンス

の必要条件を満たすように物理データモデルを設計する必要がある。この作業は時間がかかるが、開発

時のチューニングの負担を大きく削減できる。論理データモデルの設計から、チューニングを考慮に入

れておけば、さらに効率は良くなるだろう。

エンティティをテーブルにマッピングする

データの論理的な固まりであるエンティティは、物理的にはテーブルとしてしばしば表現される。対

CUS丁OMERS

EMPLOYEES

PEOPLE

象となる実体がサブタイプを含む場合を除いては、この変換はきわめて単純に行なわれる。

サブタイプは、エンティティの分類に用いられる。親エンティティは、共有する属性を持ち、サブタ

イプは、それぞれの分類に応じた属性のセットを持っている。

図14.1は peOp■ eエ ンティティがどのようにcustOmersと emp10yeesか ら成るサブタイプに分類 され

るか示している。

図14.1 サブタイプを含むエンティティ関係図

サブタイプをテーブルに変換する場合、次の選択肢がある。

1.ス ーパータイプと各サブタイプ用のテーブルを作る。スーパータイプのテーブルは、各サブタイプ

に共通の列だけを含む。

2.ス ーパータイプと各サブタイプのすべての属性を持つテーブルを作る。一般的に、他のサブタイプ

の属性から成る列はNULLと なる。3. スーパータイプのテーブルを作ることなく、各サブタイ
プについてテーブルを別々に作る。スーパータイプの属性は、それぞれのテーブルで複製 される。

図14.2は、サブタイプをテーブルヘ変換する場合の3つの選択肢である。

●第14章 データモデルとアプリケーション設計 G口鷹蜃靡褥蝙:

PEOPLE

PERSONAL ID
CUSTOMER ID
SURNAME
FIRSTNAME
DATE OF BIRTH

ADDRESSl
ADDRESS2
ZIPCODE
COMMENT ID
STATUS

NUMBER
NUMBER
VARCHAR2(40)

VARCHAR2(40)
DATE
VARCHAR2(40)

VARCHAR2(40)
VARCHAR2(6)
NUMBER
VARCHAR2(5)

CuSTOMERSEMPLOYEES
PERSONAL ID
SALES REP ID
PROCESS FLAG

NUMBER
NUMBER
NUMBER

PERSONAL ID
MANAGER ID
SALARY
FIRSTNAME

NUMBER
NUMBER
NUMBER
NUMBER

1.ス ーパータイプと各サブタイプ用のテーブルを作る。

PEOPLE2

PERSONAL ID
CuSTOMER ID
SURNAME
FIRSTNAME
DATE OF BIRTH
ADDRESSl
ADDRESS2
ZIPCODE
COMMENT ID
STATuS
DEPARTMENT ID
MANAGER ID
PROCESS FLAG
SALARY
SALES REP ID

NUMBER
NUMBER
VARCHAR2(40)
VARCHAR2(40)
DATE
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(6)
NUMBER
VARCHAR2(5)
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

2.ス ーパータイプと各サブタイプのすべての属性を持つテーブルを作る。

EMPLOYEES2

CuSTOMER :D NUMBER
COMMENT ID NUMBER
CuSTOMER_NAME VARCHAR2(40)
CONTACT_SURNAME VARCHAR2(40)
CONTACT_FIRSTNAME VARCHAR2(40)
ADDRESSl VARCHAR2(40)
ADDRESS2 VARCHAR2(40)
ZIPCODE VARCHAR2(6)
DATE OF BIRYH DATE
PHONENO VARCHAR2(12)
SALES REP ID NUMBER
COMMENT ID NUMBER
STATus VARCHAR2(9)
PROCESS FLAG NUMBER

EMPLOYEES2

PERSONAL ID
SURNAME
FIRSTNAME
ADDRESSl
ADDRESS2
ZIPCODE
DATE OF BIRTH

PHONENO
MANAGER ID
SALARY
STATuS
DEPARTMENT ID
COMMENT ID

NUMBER
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(6)
DATE
VARCHAR2(12)
NUMBER
NUMBER
VARCHAR2(9)
NUMBER
NUMBER

3.各サブタイプについてテーブルを別々につくる。

図14.2 サブタイプをテーブルヘ変換する場合の3つの選択肢

||:111:||:illll:::11::::211抒 ||][]眩 ill))

これら3つの実装方法がパフォーマンスにもたらす結果は大きく異なる。表14.1は 、一般のデータベー

ス演算に関する3つの実装方法のパフォーマンスの比較である。

演算 単一テーブル 各サブタイプとスーパータイプの

テーブルを別々 に作成する

各サブタイプのテーブルを作る。

タイプなしで各サブタイプの

テーブルを作る。

新しい行の挿入 1回の挿入。

行の更新 1回の更新。

スーパータイプとサブタイプの

2回の挿入。

たいてい1回の更新。

スーパータイプとサブタイプの

両方列の更新が必要な場合、

2回の更新が必要。

スーパータイプと

サブタイプの結合が

必要。最も遅い。

1回の挿入。

1回の更新。

1回のテーブル

アクセス。

余分な列は取得 しない。

すべての列を

フェッチする

1回のテーブルアクセス。

ただし、余分な列を

取得 している。

表14.1 さまざまなサブタイプの実装方法によるパフォーマンスの比較

サブタイプを実装する場合には、スーパータイプと各サブタイプのすべての属性を持つテーブルを作

るか、各サブタイプについてテーブルを別々に作る方が良いだろう。

人工的なプライマリキーを用いる

エンティティの個々の実体 (行)を ユニークに識別するための自然キーは、それら固有の属性から構成

される。人エキーは意味のある列の情報を含まず、行をユニークに識別するするためだけに存在する。

データベースの世界では、人エキーと自然キーでは、どちらの方に利点があるかについて議論が続いて

いる。

自然キーは複数の列から構成 されるかもしれないし、どんなデータモデルもこれを構成する可能性が

ある。これとは対照的に、人エキーは多くの場合、1つ列に割り当てられる連続する数字である。たとえ

ば、sa■ esテ ーブルの自然キーは、custOmer_id、 product_id、 sa■ e_date列 で構成 されるが、人

エキーを使えば、シークエンスを使った連続値が割 り当てられる1つの数値列で済む。

データのモデル化や設計の観点からみた自然キーの長所はあるが、パフォーマンスの観点からみた場

合、人エキーには次のような長所がある。

□ 人エキーは、たいてい1つの数値列から構成される。自然キーが非数値や連続列で構成されている

場合と比べて、キーが短くなるので、結合が効率的になる。

□ 人エキーは、意味のある情報を含まないので、更新の必要はない。自然キーが更新された場合、参

照している外部キーすべてに対する更新が必要となるだろう。これは1/0の負担を大幅に増やす。

(|)第 14章 データモデルとアプリケーション設計 CM蝙:::||::|::|::::|::

□ 人エキーは、インデックスを小さくし、インデックスツリーの階層を浅くする可能性がある。これ

によリインデックスアクセスが最適化される。

VARCHAR2デ ータモデル とCHARデ ータモデルを使い分 ける

オラクルは文字列に対 しVARCHAR2デ ータモデルとCHARデータモデルを提供 している。

CHARデータモデルは、長 さが固定 された文字列である。CHAR列 に定義 された長さより短い文字列が

挿入 された場合、残 りの部分はスペースで埋められる。たとえば、
lFrediと い う値がCWR⑥ の列 に挿入

されると、lFred Iの値 になる。CHAR(6)の 列は常に6バイ トになる。

名前が示すように、VARCHAR2デ ータモデルは可変の文字列 を扱 う。VARCH月貶列に定義 された長 さ

より短 い文字列が挿入 された場合、残 りの部分はスペースで埋め込まれることはなく、そのまま挿入 さ

れる。

VARCHAR2データモデル とCHARデ ータモデルは比較 を行なうときに、空 白を埋め込むかどうかのロジ

ックが異なる。検索 を行 う場合は、気 を付 けなければならない。

VARCHAR2デ ータモデルは、CHARデータモデルと違 って、必要な分のスペースしか必要としないので、

テーブルやインデ ックスが小 さくな り、アクセスが効率的になり、デ ィスクの容量 も節約で きる。 しか

し、CHARデータモデル にも利点はある。CHARデ ータモデルは、あらか じめスペースが確保 されている

ので、更新の時に特にスペースを確保す る必要はない。それに比べて、VARCHAR2デ ータモデルは、余

分なスペースは確保されていないので、更新して列の長さが長くなり、ブロック内に空が見つからない

と、別のブロックに連鎖する。このような行連鎖は、テーブルやインデックスアクセスのパフォーマン

スを低下させる。VARCHAR2列の長さが長くなるような更新が行われるようなテーブルは、前もって余

分なスペースcumREDを 確保しておいた方が良いだろう。

LONGデ ータモデルをVARCHAR2デ ータモデルで置き換える

LONGデータモデルは、2ギガバイ トの大容量を扱うことができる。しかし、機能的な観点からみれば、

LONGデータモデルには次のような多くの制限がある。

□ 1テ ーブルに1列だけ使用することができる。

ロ インデックスを作成できない。

□ 整合性制約に指定できない。

□ WHERE旬 、GROUP BY旬 、ORDER BY句 、COINECT BY句 、DISTINCT演算子 と一緒に使用できない。

□ SUBSTRな どの文字列関数で使 えない。

□ 副問い合せやUNION等の集合演算には使えない。

EMPLOYEES2

EMPLOYEE ID
FIRSTNAME
S∪ RNAME
ADDRESSl
ADDRESS2
ZIPCODE
DATE OF BIRTH
PHONENO
MANAGER ID
SALARY
STATUS
DEPARTMENT ID
COMMENTS

NUMBER
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(6)
DATE
VARCHAR2(12)
NUMBER
NUMBER
VARCHAR2(9)
NUMBER
LONG

図14.3 長い文字列を蓄えるためにLONG列 を用いる

このようにLONGデ ータモデルには多 くの制限があるため、長い文字列 を扱 う必要がある場合には、別

テーブルでVARCHAR2デ ータモデル を使 って管理する方が良い。VARCHAR2列 は、オラクル7では2000バ

イ ト、オラクル8では4000バ イ トまで扱 うことができる。

図14.4は このアプローチを示している。もちろん、ここではコメントを取り出すためにcmmentsテ ー

ブルを結合する必要があり、余分な処理が必要になる。しかし、コメントについて検索を行いたいなら、

このように別テーブルでVARCHAR2デ ータモデルの明細を用いて管理した方が良い。

EMPLOYEES2

EMPLOYEE ID
F!RSTNAME
SURNAME
ADDRESSl
ADDRESS2
ZIPCODE
DATE OF B:RTH
PHONENO
MANAGER ID
SALARY
STATUS
DEPARTMENT ID
COMMENT ID

NUMBER
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(6)
DATE
VARCHAR2(12)
NUMBER
NUMBER
VARCHAR2(9)
NUMBER
NUMBER

COMMENTS

COMMENT ID
COMMENT LINE
COMMENT TEXT

NUMBER
NUMBER
VARCHAR2(80)

図14.4 別テーブルでVARCHAR2デ ータモデルの明細を使った管理

●第14章 データモデル生ヱプリケーション設計C2回は晰褥:::|:|:||:||:|||:||

NULL値

第6章で学んだように、NULL値はSQLの パフォーマンスに大きな影響を及ぼすことがある。覚えてお

いたほうが良いNULL値の特徴は、次のとおりである。

□ NULL値はインデックス化されず、WHERE句で使 うと常にIS NULL句 を用いたテーブル全走査を必

要とする。

□ NULL値を用いて行の長さを小 さくすることができ、テーブル全走査のパフォーマンスを改善する

ことができる。

□ 列の値のほとんどがNULL値で、クエリがNULL値以外の値を求めている場合、その列にインデッ

クスを作成すると、列のインデックスがコンパク トになり効率もよくなる。

上記のようなNULL値の特徴を考えると、ある列をNULL値で検索する必要がある場合には、その列を

NOT NULLと して定義し、NULL値 を表す適当な値を割り当てると良いだろう。たとえば、status列に

NULL値 を割り当てる場合には、NULL値 を意味する'UNKNOWNlと いう文字列を割り当てることができる。

NULL値を意味する値の割り当ては、DEFAULT機能を使えば、SQL文を発行する側からすると透過的

になる。

DEFAULT機能 とは、ある列にDEFAULT〕 UNI∝帥N:と 定義 しておけば、その列に値が挿入 されるとき、

何の値 も割り当て られていなければ、自動的に'UNKNOWN'が割 り当てられるという機能である。

文字データの場合、NULL値を別の値で表現することは比較的容易だが、数値データの場合、適切な値

を決定することは困難であることが多い。たとえば、年齢の列にNULL値を意味する-1を割り当てるとし

よう。確かに、年齢が未定であるクエリには適しているが、年齢の平均値、最大値、最小値を求めるよ

うなクエリを歪めてしまう。このような場合には、非正規化して、AGE_UNЮЮmJ列 を設け、その列がY

の行を検索するような工夫が必要になるかもしれない。

14.3.3 非正規化
正規化は、データモデルから重複やグループの繰り返しを取り除き、キー属性が正確に定義されてい

ることを確認するプロセスである。論理データモデルかを行うときに、データモデルは正規化される。

正規化されたデータモデルはそれ自体で十分に効率的で、維持も明らかに簡単である。しかし、非正

規化も特定の状況下ではパフォーマンスを改善するが、特有の危険をともなう。

□ 非正規化により特定のトランザクションやクエリのパフォーマンスが改善されることもある。しか

し、他の演算を非効率的にすることを避けられないことがある。たとえば、繰り返されているグル

ープは、詳細テーブルヘの結合を避けるので、役に立つ非正規化にみえる。しかし、繰り返される

グループから平均などの数値情報を取り出すのは難しくなる。

□ 非正規化は、ほとんど常に挿入や更新の負担を増やす。

□ 非正規化は、重複する情報を導入するので、情報の不一致の原因になる。これが起るのは次の場合

である。非正規化されたデータを維持するアプリケーションコードにバグがある場合。あるいは、

非正規化されていることを知らずにデータを操作するアプリケーションがあった場合。このような

不一致が起きると、原因を突き止め、修正することは困難な作業となる。

非正規化の整合性の維持をアプリケーションで行うのは難 しい。このような場合は、 トリガを使って、
非正規化の整合性を維持するロジックをデータベース自身に持たせることができる。たとえ、非正規化

されていることを意識 していないアプリケーションがあったとしても、データベースが非正規化の整合

性を維持してくれる。

結合を回避するために列の値を複製する

結合を回避するために、関連するテーブル内に存在する列の値を複製することがある。第10章で、

department_name列 をemp■ Oyeesテ ーブル内に複製した例を見た。department_name列 が変更され

ない場合には、結合を避けることができるので、この非正規化は極めて効果的である。

要約テーブル

集計を行なうクエ リは非常に手間がかかることがあり、リソースを大量に消費して、日中には行なえ

ないことがよくある。解決策の1つ として、この情報を確保する要約テーブルの作成がある。

この要約テーブルは次の方法で作成できる。

ロ リアルタイムで要約情報が必要な場合、ソースデータが変更されるときには要約データはかならず

更新されなければならない。たとえば、salesテーブルが変更された場合、sales」 o●1_by_customer

テーブルの更新のためにトリガを用いることができる。このアプローチは、オンライン集計の負担

なしで、リアルタイムの合計へのアクセスを可能にするが、salesテ ーブルの トランザクション処理

に多少悪い影響を及ぼすことがあるだろう。

ロ リアルタイムの要約情報が必要ない場合、オフピーク時に、要約テーブルを構築することができる。

オラクルのスナップショット機能がこのアプローチを実行する上で有効な手段となる。このアプロ

ーチには、 トランザクション処理のピーク時の負担を取 り除くことができるという強みがあるが、
要約情報の新しさの点では劣る。

14.4 アプリケーション設計
アプリケーション設計は、SQL文のパフォーマンスに対し、データモデルのような直接的で根本的な

効果は持たないだろう。しかし、アプリケーション設計は、パフォーマンスに大きな影響を与える。

14.4.1 ロック戦略
オラクルがテーブルの行をロックするのは、行が更新された場合か、FOR UPDATE句 を用いて行が選

択された場合である。すでにロックされた行に対し、別のセッションがさらにロックを必要とするSQL

文を実行した場合、すでに行なわれているロックが解除されるまで、その処理はずっとロックの解除待

ちになる。FOR UPDATE NOWAIT旬 を使って、ロック中なら直ぐにエラーでリターンできるようにする

::||:||:|:::|:|:::::‡躊猷D

(|)第 14章 データモデルとアプリケーション設計 cm鰤 ::l::|:|:1黒

こともできる。ロックの解除をあまり長 く待つと、処理の面でも応答時間の面でも問題となる。高いパ

フォーマンスを持つアプリケーションにするには、ロック待ちを最小化しなければならない。

悲観的ロック戦略

自分が行をフェッチしてから更新する間に、他のセッションがこの行を更新してしまうかもしれない

と悲観的に予想し、フェッチしたときに行をロックし、更新した後にロックを解除する戦略が、悲観的

ロック戦略である。悲観的ロック戦略は、行のフェッチと更新の間に他のセッションから何の変更も行

われていないことが、保証されるがロックの時間が長くなってしまうの言う欠点がある。たとえば、対

話的なアプリケーションでは、ユーザがロックしたまま、席を外してしまうかもしれない。

楽観的ロック戦略

自分が行をフェッチしてから更新するまでの間に、他のセッションがこの行を更新することはないだ

ろうと楽観的に予想 し、フェッチしたときに行をロックしない戦略が、楽観的ロック戦略である。ただ

し、他のセッションが実際にその行を更新 していないということを確認するために、更新のときに

WHERE句で更新前のすべての列の値が同一かどうか確かめたり、 (更新ごとに採番される)更新通番が、

更新前と同一かどうかを確かめたりする必要がある。そのさい、実際に他のセッションがその行を更新

していた場合は、ユーザに通知し、再度更新を行ってもらう必要があるだろう。

図14.5は、楽観的および悲観的ロック戦略を図説 している。それぞれの戦略は長所と短所を持ってお

り、戦略の選択はアプリケーションのパフォーマンスに影響を及ぼす。適切なロック戦略を選ぶ場今、

次の点を考慮に入れる。

□ 楽観的ロック戦略は、ロックの時間が短い。これはロックが問題を引き起こす可能性を低くする。

□ 対話的なアプリケーションでは、悲観的ロック戦略は、ロック時間が長時間に及んでしまう可能性

がある。これは対話的なアプリケーションでは一般的な現象で、ロック中であることをユーザが気

づかず席を立つと、行が何時間もロックされたままになってしまう。

□ 楽観的ロック戦略の楽観的な予想が外れることが多い場合、つまり、フェッチと更新の間に他のセ

ッションがその行を更新することがかなリー般的に行なわれている場合、楽観的ロック戦略はバッ

チ処理のパフォーマンスを低下させる。また、更新の大部分が拒否されるので、ユーザーのストレ

スがたまる。

111i111::|:i::11::::‡ ||::蜀1茫||1願|||||)

Retrieve and lock the
row

Ivlodily the
10W

Optimistic locking stradegy

Perform application processing or
wait lor user interaction

Commit

図14.5 楽観的および悲観的ロック戦略

14.4.2 キヤツシユ
いかにうまくクエリをチューニングできても、やはリクエリの実行はそれなりの負担となる。できる

だけクエリの実行回数を減らすことが、パフォーマンスの改善につながる。

クエリの実行回数を減らすのに最も効果のある方法の1つに、アプリケーション内でよくアクセスされ

るデータをキャッシュする方法がある。キャッシュされたデータは、多くの場合、配列かPL/SQLテ ーブ

ルに確保される。データを検索する必要がある場合、プログラムは最初にキャッシュを走査し、すでに

キャッシュされているかどうかを調べる。キャッシュ内にデータが見つかった場合は、データベースア

クセスする必要はなく、キャッシュのデータをそのまま使う。キャッシュ内にデータが見つからなかっ

た場合は、データがデータベースから取り出され、キャッシュ内に蓄えられる。キャッシュの例につい

ては第10章で詳しく見た。

キャッシュに適するのは、小さくて、変化がなく、頻繁にアクセスされるテーブルのデータである。

キャッシュを実行する際、検討すべき点がいくつかある。

ロ キャッシュは、クライアントプログラム側のメモリを消費する。多くの環境で、クライアント側の

メモリは余分にあり、あまり問題にはならないだろう。しかし、大きなテーブルやメモリに制限が

ある環境では、キャッシュを行うとページングやスワッピング (ページングおよびスワッピングの

詳細については第16章を参照)を引き起こし、パフォーマンスを低下させる可能性がある。

ロ キャッシュが比較的小さい場合、全件走査 (キ ャッシュの最初のデータから最後のデータまで調べ

る)しても、パフォーマンスに問題が起こる可能性は少ないだろう。しかし、キャッシュが大きい

場合には、全件走査によってパフォーマンスが低下する可能性がある。優れたパフォーマンスを維

持するには、ハッシュやバイナリサーチなどの高度なサーチ技術を実行することが必要になるだろう。

ロ プログラムが実行されている間に、キャッシュの対象となっているテーブルが更新されることがあ

”
ｏ
一
Ｃ
ヽ
う

ｏ
■
ｏ
ヽ
”
う
０

一
『ヽ

”
０
“
一つ

∪
Ｃ
「
０
」
０
コ

０
「
一〇
０
バ

Retrieve and lock the

Modi″ therow if

unchanged or return

Commit

Pessimistic locking stradegy

(0)第 14章 データモデルとアプリケーション設計 (||||||||||||||||||1鰈
:蝙 :ま :!:|:::||li:

る。テーブルの更新内容をキャッシュに反映させるのは、それなりにコストがかかってしまう。こ

のため、変化の多いテーブルは、キャッシュに向かない。

14.4.3 クライアントとサーバの処理の分割

早期のクライアントサーバシステムに関するガイドラインは、できるだけ多くの処理をサーバで実行

ことを提唱している。その理由は、一般的に、サーバの処理能力がクライアントの処理能力よりも数倍

優れていたからだ。しかし、近年クライアントマシンの処理能力は向上している。また、ローエンドの

ハードウェアをデータベースサーバに用いることも多くなってきている。こういった変化にともない、

サーバとクライアントの処理能力の差はそれほどでもなくなり、クライアントとサーバのどちらで処理

を実行するのか考慮したアプリケーション設計が必要となっている。

たとえば、ユーザの指示に基づいて、大量のデータを任意にソートしなければいけないアプリケーシ

ョンがあった場合、サーバで処理して、何度も大量のデータがネットワークを流れるよりも、クライア

ント側でソートしたほうが、処理効率は良いだろう。また、大量のデータを更新する必要があった場合、

クライアント側で処理し、大量の更新データがネットワークを流れるよりも、サーバ側でバッチ処理し

たほうが効率が良いだろう。

14.5 まとめ

SQL文のチューニングは、アプリケーションのパフォーマンスを劇的に改善することができる。しか

し、データモデルやアプリケーション設計は、しばしばチューニングに制限を加え、その能力を最大限

に発揮させないことがある。

この章では、高パフォーマンスを可能にするデータモデルおよびアプリケーション設計をするための

ガイドラインをいくつか説明した。

効率が良く、パフォーマンスの高いアプリケーションを設計するのに基本的に重要なのは、設計の過

程からチューニングを考慮することである。パフォーマンスの必要条件を早い段階で特定する。そして、

これらの条件を計測 し、テス トする方法をプロジェクト計画のなかで確立する。

物理データモデルの開発をする場合は、次の基本原則を覚えておく。

□ 結合の負担を避けるために、スーパータイプと各サブタイプは同一のテーブルにする。

□ 人エプライマリキーの作成にシークエンスを利用する。これらのキーは結合および探索の点で自然

キーよりしばしば効率が優れている。

□ CHARデ ー タモデル よ りVARCHAR2デ ー タモ デル を用 い る。 その理 由 は、VARCHAR2は 列 を短 く し、

テーブル全走査やインデックスアクセスを効率的にする。

□ できるだけLONG列 を避ける。LONG列をVARCHAR2の別テーブルにすることを検討する。

□ NULLと なる可能性がある列 を作成す るときに注意する。 クエ リがこれらのNULL値を検索す ると

き、インデ ックスを用いた検索が不可能になる。DEFAULTオ プションとともにNOT NULLを 用い

ることを検討する。

非正規化は、クエリのパフォーマンスの改善のために、重複する情報をデータモデルに導入するプロ

セスである。整合性の維持や更新のパフォーマンスの点でデータモデルの非正規化は、多くの危険性を

持つので、実行には慎重さが求められる。しかし、非正規化が適切に実行された場合、クエリのパフオ

ーマンスを大幅に改善することができる。非正規化には、次のものがある。

□ 結合を回避するために列の値を複製する。

□ 集計演算をおさえるために、集計した値を維持する。

ロ データ長が長く、あまリアクセスされない列を別のテーブルに移す。

ロ リアルタイムあるいは定期的に更新される要約テーブルを維持する。

□ 可能なら、 トリガやスナップショットを用いて非正規化を実行する。こうすることで、結果が不一
致になる危険性を取り除いたり、アプリケーション論理を簡素化できる。

効果的なアプリケーション設計は、データモデルほどではないが、チューニングに大きな影響を与える。

ロ アプリケーションに対 し適切なロック戦略を用いる。楽観的ロック戦略は、ロックが行なわれる期

間を短縮 し、優れたパフォーマンスをもたらす。同じ行を他のセッションが更新することが多い場

合、悲観的ロック戦略を用いる。ただし、ユーザの都合で、ロック状態が長く続 く可能性がある。

□ 可能なところでは、アプリケーション内でキャッシュを用い、データベースヘの要求数を減らす。

ロ クライアントサーバ環境では、クライアン トとサーバの間の処理の分担が適当であることを確認す

る。最近のクライアントは、処理能力が向上 している。

第

■ロロ●
‐リ

^

'々‐ザ
|…

lII.4.

｀三

ヽ

.“

‐

'″
要,‐ ●

≒

．

‘
´

■|´
・`
■

餞
一
μ
ヽ

ヽ

“
●●な

ヽ ●

Ｉ

ｋ
，

._‐ ヽ .,_■
■ 1 ..'“

I■ :、ぶ:・ :'I

局パフォーマンス

15.1 はじめに

データベースを適切に設定するということは、SQL文をチューニングすることと同様に、パフォーマ

ンスに大きな影響を与える。この章では、データベースの設定についての入門的な知識を説明する。

サーバの設定については、さまざまな問題が存在する。この章で扱う主な項目は以下のとおりである。

ロ メモリ、ディスク装置、ネットワーク、CPUを適切に設定する。

□ RttD装置を用いる。

ロ リドゥログの位置やバ ックアップの設計。

ロ アプリケーションに適 したテーブルスペースの設計。

□ 共有メモリエリア (SGA)の設定。

ロ マルチスレッドサーバ、パラレルサーバなどのオプション機能を用いる。

ロ オラクルの設定に関する高度な問題。

15.2 オラクル・アーキテクチャのレビュー

データベース設定の詳細に入る前に、オラクルの基本的なアーキテクチャを把握する必要がある。オ

ラクルのアーキテクチャの詳 しい内容はこの本の範囲外だが、詳細が必要ならマニュアルを参照すると

良い。

図15.1は、オラクルの基本的なアーキテクチャを示している。

_I・■

き、=・
・ 1、 .‐■|

ご
=

「‘
‘
′
′
′

Oracle Client
(eg,SQL'Plus)

Besult,'

Redo Burer Entries

Blocks
System Global Area (SGA)

Oracle Shared [,4emory

Redo Lb9 Enmes

Complo惨 d Lo9S Archivbd Logs

▼鰤 鰊

Rollback
Segments

Temporary
Segments

Tablespace

図15.l Basic Oracle databese components

ロ データファイルは、データベースを構成するファイルで、物理的な記憶単位である。

ロ テーブルスペースは、データベースを構成するセグメント (お もにテーブルとインデックス)を含

む論理的な記憶単位である。テーブルスペースは、複数のデータファイルで構成することができる

が、データファイルは、1つのテーブルスペースにしか属することはできない。

ロ セグメントは、テーブル、インデックス、ロールバックセグメント、テンポラリセグメントなどの

オブジェク トを含む。セグメントは、1つのテーブルスペースしか属することはできない。

ロ ロールバックセグメントは、変更した内容を変更前の状態に戻せるように、変更前のイメージを格

納する。

ロ テンポラリセグメントは、ソー トの時にメモリが足りなくなる(SORT_ARI〕A_SIZEを超える)と 、デ

ィスクを使ってソートをするために使われる。

ロ リドゥログファイルは、障害が起きた場合に、データベースを回復させるために使われる。データ

Shared Pool

and other info)

Buifer Cache

(Data Blocks)
Oracle Seryer

Process

Database
VVriter

(DBVV R)

Tables lndexes

Tablespace

Redo Bufler
(Transactions)

Lo9 Writer

(LGWR)
Archiver

(ARCH)

Archive Log
Destination

:|||::::::躙炒濶D

Parse Requests

(|)第15章 高パフォーマンスのデータベース構築 Cは鰤:ま :|:::|:1111:|:111

ブロックは、COMMITを実行したときにデータファイルに書き込まれるとは限らない (遅延書き込

み)が、リドゥログは、データベースの整合性を保証するために、comttTを実行したときには、常

にリドゥログファイルに書き込まれる。

ロ システムグローバルエリア(SGA)は 、共有メモリであり、複数のプロセスによって共有 される情報

を蓄えるのに用いられる。

ロ バッファキャッシュは、SGA内のエ リアのことで、データファイルのブロックのコピーを含む。バ

ッファキャッシュの目的は、頻繁にアクセスするデータをメモリに持つことで、ディスク1/0を 削

減することである。

□ 共有プールは、キャッシュされたSQL文やPL/SQL文 、データディクショナリ情報、あるいはプラ

イベートな作業の情報 (マルチスレッドサーバの場合)を含む。

ロ リドゥログバ ッファは、まだ書き込みが行なわれていないリドゥログのエントリを含む。リドゥロ

グバッファは周期的にリドゥログファイルに書き込 まれ、COMMITが 実行される場合は、常にリ

ドゥログファイルが書き込まれる。

ロ サーバプロセスは、接続されたユーザのSQL文 を処理する。専用サーバ構成の場合は、1ユ ーザに1

サーバプロセスが割 り当てられるが、マルチスレッドサーバ構成では、数多くのユーザを少数のサ

ーバプロセスで処理することができる。

ロ バックグラウンドプロセスは、インスタンスごとに作成される一式のプロセスで、ある特定の機能

を実行する。たとえば、DBWRはバ ッファキャッシュの変更されたブロックをデータファイルに書

き込む。LGWRは、リドゥログバ ッファの内容をリドゥログファイルに書き込む。ARCHは、終了

したリドゥログをバ ックアップエ リアにコピーする。その他、SMON、 PMON等はさまざまな管理

機能を実行する。

15日3 ハー ドウェアの設定
ハードウェアのリソースをアプリケーションにあわせて最適化する手続きは複雑で、常にうまく行く

とは限らないが、ここでは、そのガイドラインを説明する。対象となるリソースには次のものがある。

ロ メモリ:各データベース処理やユーザ処理、またオラクルの共有メモリエリアに必要。

ロ ディスク:データを蓄えるのに十分なサイズと、1/0に 必要なスペックを満たす十分な数を持っている。

□ CPU:オ ラクルおよびユーザ処理に必要なスペックを満たす必要がある。

ロ ネットワーク:ク ライアントとサーバ間の情報のやり取 りに必要なスペックを満たす必要がある。

15.3.1メ モリの設定
パフォーマンスを適切なレベルで維持するには、ホス トコンピュータ上に十分な空メモリが必要であ

る。ほとんどのオペレーティングシステムで、必要なメモリは次の式で得ることができる。

memory = system + (#users*user-overhead) + SGA

+ (#servers*server size)

式の中の用語は、次のようになる。

□ systemは、オペレーティングシステム及びデーモン(サ ービスプロセス)な ど、システムを動かす

上で必要なメモリの値である。ただし、オラクルに関するメモリは含まない。

□ +usersは サーバ上に存在するユーザプロセスの数である。クライアントサーバシステムでは、サ

ーバ上にクライアントが存在しない可能性がある。他方、バッチシステムでは、ユーザはサーバ上

に存在するバッチプログラムのことである。

□ user_overheadは、各ユーザプロセスが必要とするメモリである。これはそれぞれのアプリケー

ションに固有であり、一般的には、オペレーティングシステムのユーティリティを用いてその値を

測定する。

□ SGAは、システムグローバルエリアのサイズのことである。SGAに 必要なサイズは、アプリケーシ

ョンによって異なる。メモリのチューニングの中で、SGAの チューエングは最も重要である。マル

チスレッドサーバ構成の場合、専用サーバ構成よりも、追加のメモリをSGAに割り当てる必要がある。

□ +serversは 、サーバ上で実行されるオラクルのプロセス数である。専用サーバ構成の場合、この

値は、オラクルに接続するユーザ数に、オラクルのバックグラウンドプロセスの数を加えた値にな

る。マルチスレッドサーバ構成の場合、1つのサーバプロセスが複数のユーザをサポー トすること

ができるので、この数はずっと少なくなる。

□ server sizeは 、オラクルのサーバプロセスに必要とされるメモリの量である。これは、オラク

ルのバージョンやオペレーティングシステムに左右 される。しかし、UNIXではこの値はほとんど

1.5か ら2MBの間である。

例として、UNⅨサーバに必要なメモリのサイズを考えてみよう。同時に作業を行なうユーザの数がお

よそ500で、クライアントサーバシステムが用いられるとする。高性能UNIXマ シンが必要となるので、

システムのオーバーヘッドは、およそ150MBと 想定する。専用サーバ設定で、最大50のパラレル処理を

行なうことにする。SGAの サイズがどれくらいになるのか完全に把握することはできない。しかし、そ

れが200MBを こえることはないだろう。

以上から、バックグラウンドプロセスの数は、6+50(最小 +パラレルスレーブ)と なる。サーバプロ

セスは、ユーザ数分必要なので、500に なる。1つのプロセスあたり1.5MB必要と仮定すると、サーバプ

ロセスに必要となるメモリの合計は、(500+6+50)・ 1.5MB=834MBと なる。システムのオーバーヘッドゃ

SGAに必要なメモリを加えると、計834MB+200MB+150MB=1,184MBと なる。

予期しなかったオーバーヘッドに対処するために、さらに幾らかメモリを追加しておいた方が良いだろう。

32ビ ットのアーキテクチャでは、最大2GBの メモリしかサポートされない場合もある。必要なメモリ

のがハードウェアの最大メモリを超える場合、マルチスレッドサーバやトランザクションモニタや3層シ

ステムにして、必要なメモリを軽減することができる。

15.3.2 ディスク装置の見積り
サーバを設定する上で確認しておかなければならない重要な項目として、ディスク1/0が障害にならな

いことの確認がある。メーカーによってディスク装置のパフォーマンスの間に差があるかもしれないが、

(0)第15章 高パフォーマンスのデータベース構築 Cは鰈:::|:|::|:|:||:||||||||:|||||:|

とくに、ディスク装置がRND設定 (詳細はのちほど)に なっている場合、ディスクの数が重要になる。

可能なら、アプリケーションの物理1/0を 見積り、この数値を設定をサポートするために必要な装置の

数を決定した方が良い。

データファイルには幾つのディスクが必要か

単純な例として、OLTPシステムのうち、 トランザクションの99%が、単なる行のフェッチや更新だと
する。トランザクションレートのピークが特定され、毎秒50ト ランザクションになった。

3つか4つのインデックスブロック (ヘ ッドブロック、1つか2つのブランチブロック、1つのリーフブロ

ック)、 そして1つのテーブルブロックをアクセスする場合、行をフェッチするのに必要な1/0は4.5ブ ロ

ックとなる。

取 り出されたときの状態で行 をロックするためにFOR UPDATE句 を用いる。この作業は、ブロック内

トランザクシ ョンリス トを更新す るための1/0と 、ROLLBACKセ グメン トを更新するための1/0を さらに

必要とする。そのため、行をロックするのに必要な1/0は 2ブ ロックとなる。

ROWIDを 用いた行の更新は、実 ブロックとROLLBACKセ グメン トの更新を行なうための1/0を 必要 とす

る。そのため、行を更新するのに必要な1/0は 2ブ ロックとなる。

行のcmШ ITは、リドゥログに対する1/0を必要とする。そのため、行をcolNITす るのに必要な1/0は

1ブロックとなる。ただし、リドゥログを専用ディスクに書き込む場合は、この1/0の見積りは不要になる。

1つのトランザクションのために必要な1/0は総計およそ9.5(4.5+2+2+1)と なるようにみえる。オー

バーヘッドや行連鎖などの特別な状況に備えて、この評価を2倍にする。つまり、1回の トランザクショ

ンあたり18の1/0が 必要になる。

オラクルのバッファキャッシュによって、ディスク1/0を減らすことができる。バッファキャッシュの

ヒットレートを80%と想定すると、ディスク1/0は論理1/0の 20%に なる。 トランザクション・レートのピ
ークが毎秒およそ50なので、1秒ごとに必要なディスク1/0は次のようになる。

18★ 0.2★ 50,=180

リドゥログのディスク

トランザクションがcmttITさ れる場合、リドゥログバッファのエントリは、ディスクに書き込まれな

ければならない。リドゥログの書き込みの特徴は、データファイルの書き込みとは大きく異なる。デー

タファイルは、ランダムにアクセスされるが、 リドゥログには、シークエンスに書き込みが行われる。
つまり、ディスクドライブは、アクセスするデータブロックを探す(ヘ ッドを余分に動かす)必要がない。

そのため、シークエンス1/0は、ランダム1/0よ りかなり早くなる。ディスクドライブが、シークエンス

1/0専用に使われた場合、たいていのディスクドライブは、毎秒およそ100の 1/0を 実行できるだろう。

更新が頻繁に行われるアプリケーションは、できるだけリドゥログは、専用のディスクドライブに置い

毎秒20の ランダム1/0を実行することが可能なディスクを使うと想定する。その場合、180/20=9の デ

ィスク装置が必要になる。RAD装置を使うとまた条件も変わってくるが、必要なディスク装置の数の見
積りの基本は理解してもらえただろう。

た方が良い。

ディスクサィズ

ここまでの議論から、サイズの大きいディスクドライブよりも、サイズの小さいディスクドライブを

複数組み合わせた方が、パフォーマンスが良くなるということがわかっただろう。残念ながら、ディス

クサイズは大きくなりつつあり、コストパフォーマンスは、大きなディスクドライブの方が高い。その

結果、より大きなディスクドライブが購入される場合が多い。しかし、8GBのディスクドライブは、2つ

の4GBディスクより2倍遅い場合があることを覚えておいて欲しい。

RAID

RttD(Redundant Array of lnexpensive Disks)は 、フォル トトレラントやパフォーマンスの点から、そ

の人気は高まっている。RADの レベルは数多くあり、RttDの設定や、実行するRNDの レベルの決定に

は検討すべきことが数多くある。

ストレージベンダが、提供 しているRttDの レベルで、最も一般的なのは、次の3つである。

□ RAIDOは、しばしばストライピングと呼ばれる。この設定では、論理ディスクは複数の物理ディス

クから構築される。論理ディスクに含まれるデータは、複数の物理ディスク上に均等に広がってい

る。1/0は分散され、複数の物理ディスクを同時にアクセスできるため、パフォーマンスは高い。

しかし、RADOに は、凡長性がないので、1つの物理ディスクが作動しない場合、すべてのディス

クにアクセス不能になる。

□ RAIDlは、ミラーリングと呼ばれる。この設定では、論理ディスクは2つの物理ディスクで構成さ

れる。1つの物理ディスクが万が一作動しない場合でも、作業は他の物理ディスクを用いて継続さ

れる。各ディスクは固有のデータを持ち、書き込み作業は並列で行なわれるので、書き込みのパフ

ォーマンスに悪い影響はない。

□ RND5で は、論理ディスクは複数の物理ディスクによって構成される。ストライピング (RttDO)
でデータが物理ディスク上に分散して存在するように、データは物理ディスク上に分散して存在す

る。しかし、物理ディスク上のデータの特定の割合は、パリティデータである。これは、1つのデ

ィスクが作動しない場合も、残りのディスクからデータを復元するために必要な情報を含んでいる。

RAIDのパフォーマンス

RNDOも RAD5も 、複数の装置に1/0を 分散 し、同時進行で行なわれるランダムな読み込みのパフオー

マンスを改善する。しかし、RttD5は 書き込み1/0の機能を低下させる。その理由は、データブロックと

パリティブロックの両方が読み込まれてから、更新 しなければならないからだ。

読み込みや書き込みがシークエンスに行なわれている場合、RADOも RAD5もパフォーマンス上のメ

リットは特にない。

RttDO+RAIDlの データファイルに対するパフォーマンス、そしてRAID lの リドゥログに対するパフ

ォーマンスは、一般的に他のどの設定に比べても優れている。しかし、RAD5は RAIDO+RADlよ りも

ディスクスペースを必要としない。書き込みの量が多くない環境には、RAID5は適している。

::鰈MD

(|)第 15章 高パフォーマンスのデータベース構築 個同靡:::|:|:|||111

1.RAIDな し。 2.RAIDO。 データは複数のディスクに分散される。
しかし、凡長性はない。

5.RAIDO+RAIDl

3.RAIDl。 4.RAID5。 データはパリティブロック付きで、
データは2つのディスクに複製される。 :複 数のディスクに分散される。

図15.2 RAID設定

講:|11111i:||:iま:|:鶉慮熙

状況 RA:DO RA:Dl RAIDO+RAIDl RA:D5

データファイルの

読み込みが多い。

データファイルの

書き込みが多い。

パフォーマンス

良好。

パフォーマンスに

特に効果はない。

パフォーマンスに

特に効果はない。

パフォーマンス

良好。

)s1 t*-">7
Hh+.

パフォーマンス

良好。

パリティブロック

とデータブロックの

両方が読み込まれ、

更新されなければ

ならないので

パフォーマンスは

低くなる。

パリテ ィ・ブロック

とソースブロックの

両方が読み込 まれ、

更新されなければ

ならないので

パフォーマンスは

低くなる。

あ り

1/デ ィスク数

パフォーマンス

リドゥ・ログ シークエンス1/0な ので

パフォーマンスに

特に効果はない。

な し

な し

パフォーマンス

良好。

あ り

100%

シークエンス1/0なので

フォーマンスに

特に効果はない

あ りディスク障害に

対する凡長性

ディスクの負担

(追加のディスクが必要)

100%

表15.1 異なるRA:Dレベルの特徴

15.3.3 CPU
システムを構築する前に、ディスクやメモリは比較的正確に予測できる。それに比べ、CPUの 予測は

はるかに難しいので、次の手法のいくつかを用いて、適切なスペックを予想すると良い。

□ 類似するシステムのCPUの スペ ックを調べる。類似するシステムとは、類似するトランザクショ

ン・タイプ (た とえば、OLTPや 01L´F)、 トランザクションレー ト、処理方式 (た とえば、クライ
アントサーバやバッチ)、 データの量やアプリケーションの性質を持つシステムのことである。

□ 本番環境のハードウェアを手に入れるまえに、テス ト環境で本番相当のボリュームテス トを行い、

CPUの スペックを予測する。

ロ システムがハードウェアの面で大幅な投資を必要 としたり、所属 している組織が重要なクライアン

トであるような場合、メーカはしばしばベンチマークテストのを行なうためのハードウェアを供給

してくれる。その場合、プロ トタイプを作成して、必要なCPUの スペ ックを予測することができる。

□ CPUを増設できるハードウェアを入手する。大規模なオラクル・アプ リケーションのほとんどは、

複数のCPUを持つシンメトリックマルチプロセッサ (SMP)上で実行 されている。CPUを増設する

機能を持つマシンを入手して、CPUの スペックが不十分であるときに備えることができる。

●第15章 高パフォーマンスのデータベース構築 鰺曰!釉::|:i::|:|:|||:|||:|:111

CPUの追加がもたらす改善

SMPマ シンにCPUが加えられるにしたがって、複数のCPU間のコーディネーションのオーバーヘッド
が増加する。これは、CPUが増えるにすたがって、処理能力の増加の割合が少なくなることを示してい

る。CPUを 1つ から2つ に増やすと処理能力をほとんど2倍にすることができるかもしれない。しかし、
CPUを 4つから8つに増やしても50%の改善にしかならない可能性がある (図 15.3参照)。

複数のCPUを持つシステムは複数のCPU間のオーバーヘッドの点で問題があるので、数個の強力な
CPUを 持つ方が、能力の劣るCPUを数多く持つよりも賢明である。CPUの数を倍にすることが処理能力
を倍にするなどと考えてはならない。

図15.3 SMPコ ンピュータにCPUを加えることで得られた処理能力の改善

15.3.4 ネットワ…ク
分散データベースの設計や、クライアントサーバシステムといったァプリケーションの多くで、ネッ

トワークの設定は、アプリケーションのパフォーマンスに大きな影響を及ぼす。

CPUが そうだったように、システムの構築や評価の前にネットワークの要件を見積もることは難しい。
ゆえに、CPUの スペックの決定に用いられたアプローチを参考にして欲しい。

ネットワークを設計したり選択したりする場合、次の原則を頭に入れる。

EIほ とんどのクライアントサーバアプリケーションで、クライアントをネットワークにつなげるのに

イーサーネットが用いられる。マルチメディアアプリケーションのような大量のデータをやり取り

するアプリケーションの場合、ネットワークの負荷が高いので、ATMや他の上級者向けのネット

::蝙鋏2

ヮーキングソリューションが好ましいことがある。

ロ イーサーネット・ネットワークが飽和状態になった場合の解決方法は、たいていネットワークを数

多くのサブネットワークに分解することである。

15.4 データベースの構築

CPU,メ モリ,ネ ットヮークが適切に設定されていることを確認した。これで、高パフォーマンスのデ
ー

タベースを設計する準備ができた。

15.4.1 バックアップ戦略
データベースのバックアップ戦略は、データベースの最適化の設定に大きな影響を及ぼす。オラクル

は、データベースが稼働中でもバックアップが可能であり、任意の時点の状態に戻すこともできる。こ

のようなオンラインバックアップと時点リカバリを可能にするためには、データベースはアーカイブロ

グモードで作動する必要がある。

ァーカイブログモードでは、リドゥログを別のアーカイブ用ディレクトリにコピーする必要がある。

この作業は、リドゥログの1/0に加えて、さらにアーカイブログの1/0も 必要とする。リドゥログは、サ

イクル的に再利用されるが、再利用をしようとしたときに、まだアーカイブ済みでなければ、その処理

は、アーカイブが完了するまで延期される。リドウログが小さいと頻繁にアーカイブする必要が出てく

るCOが増える)。 リドウログが大きすぎると再利用をしようとしたときに、まだアーカイブが完了して

いない可能性が出てくる。そのため、リドゥログのサイズは、アプリケーションの性質にあわせて最適

化されなければならない。

15.4.2 データブロックのサイズ
データブロックは、オラクルがデータを蓄える場所としては最小の単位である。データファイル、バ

ッファキャッシュ、テーブル、そしてオラクルの構造のほとんどすべてはデータブロックで構成される。

データブロックのサイズは、データベースが作成されるときに設定され、それ以降はデータベースが再

構築されないかぎり変更できない。

オラクルが推奨するデータブロックのサイズは、オペレーティングシステムのブロックサイズの整数

倍である。高パフォーマンスのデータベースシステムでは、データブロックのサイズが少なくともオ
ペ

レーティングシステムのブロックサイズと同じ大きさであることを確認する。オペレーティングシステ

ムのブロックの部分的な1/0は 、著しく非効率的なことがあるので、オペレーティングシステムのブロッ

クサイズが8Kの場合、2Kのブロックを処理する方が8Kの ブロックを処理するよりも時間がかかる可能性

がある。

ブロックサイズをオペレーティングシステムのブロックサイズより大きくすることは、テーブル全走

査をしばしば行なうアプリケーションにとって非常に効果的である。テーブルを走査するために必要な

1/0の数が軽減されるからだ。OLTPア プリケーションでは、ブロックサイズは小さいことが望ましい

(た だし、オペレーティングシステムのブロックサイズより小さくてはならない)。 ほとんどのテーブル

ァクセスが、インデックス経由で1行 しかアクセスされないためである。

(0)第 15章 高パフォーマンスのデータベース構築 CはM::ラ ::||:||:|:111

15.4.3 リドゥログ
トランザクションがcon41Tさ れるとき、リドゥログはファイルヘ実際に書き込まれなければならない。

書き込み作業は、COMMITし たことをユーザに返すまえに完了しなければならない。ゆえに、リドゥログ́

への書き込みは、更新が頻繁に行なわれれているアプリケーションの処理能力を制限することがある。

リドゥログファイルが、専用のディスク装置上にある場合、リドゥログヘの1/0は最適化される。最適

化された場合、コミットされたときに、ディスクヘッドはすでに正しい位置にあり、書き込みの時間は

最短になるだろう (デ ィスクヘッドは書き込む位置を探す必要はない)。

ログの書き込みは、シークエンスに行なわれ、LGWRのみがこの作業を実行するので、ストライピング

の点で利点はほとんどない。RttD5は、データブロックとパリティブロックの両方に書き込みしなけれ

ばならないため、リドゥログに使うとパフォーマンスは低下するだろう。

リドゥログの切り替えを行なうと、チェックポイントが発生し、チェックポイントが完了するまで、

そのリドゥログは再利用できない。そのため、リドゥログの数を増やし、リドゥログがチェックポイン

トの前に再利用のために必要とされる可能性を下げることができる。また、リドゥログのサイズを増加

させ、チェックポイントの発生を減らすこともできる。

リドゥログに対して、専用のディスク装置を割り当てるなら、リドゥログに対するディスクの使用可

能な容量も大幅に増える。64か ら256Mのログサイズも、10や20の リドゥログを用いた設定も可能である。

15.4.4 ア…カイプの最適化
アーカイブログはオンラインログのコピーで、バックアップからデータベースをある時点まで復帰さ

せるために用いられる。また、オンラインバックアップをする場合にも必要になる。

いったん、リドゥログファイルがいっぱいになり、オラクルが次のリドゥログファイルに移ると、

ARCHは、いっぱいになったリドゥログファイルを別の場所にコピーする。ARCHの読み込みの対象のリ

ドゥログファイルが、LGWRの書き込み中のリドゥログファイルと同じ物理ディスク装置上に存在する場

合、LGWRの シークエンス書き込み作業が妨害されるだろう。その場合、更新のパフォーマンスは低下する。

そのため、アーカイブのパフォーマンスの最適化が重要となる。リドゥログファイルを2つの装置に交

互に配置して、ARCHと LGWRの 間の競合を最小にすることができる。ARCHの読み込み処理で、LGWR
が書き込んでいるディスク装置のヘッドを動かすことはない。ARCHは少なくてもLGWRと 同じスピード

で書き込みができなければならないので、アーカイブ先は、専用のディスク装置、あるいはRAIDO +1

のいずれかになるだろう。

15.4.5 データファイル:/0の最適化
オラクルは、バ ッファキャッシュ内で、要求 されたデータが見つからない場合、データファイルから

バッファキャッシュにデータを読み込む。ディスクの1/0待ちは、サーバプロセスが遅延する最も一般的

な原因の1つである。そのため、ディスク1/0を 減 らせばパフォーマンスは改善できる。

次の作業がデータファイル1/0の最適化をもたらす。

ロ バッファキャッシュの理想的なヒットレートを得る。

□ 多くのディスクにまたがってデータファイルをストライピングする。

□ DBWRの パフォーマンスを最適化する。

バッファキャッシュのヒットレー ト

必要なデータがすでにバ ッファキャッシュ内に存在する場合、ディスクを読み込む必要がなくなる。

このようにしてディスクの読み込みを減らす方法は、データベースに対して行う最適化の中で、最も重

要なものの1つである。ヒットレー トが低くかったり、読み込むディスクの絶対数が大きすぎる場合、バ

ッファキャッシュのサイズを増やすことは、パフォーマンスの改善に大きく貢献する。

バッファキャッシュのサイズの決定についてはのちほど、モニタリングについては第16章でさらに詳

しく述べる。

データの分散

まず最初に、日標の1/0レ ートをサポートするのに十分な数のディスクがあることを確認しなければな

らない。また、ディスク上にデータが均等に分散していること、および負荷が集中しているディスクが

ないことを確認をしなければならない。

データを分散するのに次の3つの方法がある。

EI:&唖 DOあ るいはオペレーションシステムストライピング。

□ R:虹D5。

ロ オラクルによるストライピング。

RttD5は 、読み込みのパフォーマンスを改善することはできるが、書き込みのパフォーマンスは低下

してしまう。

一般的には、パフォーマンスを考慮する場合、RADOが好ましい。R」DOが実行不可能な場合、複数
のディスク装置にまたがって存在するテーブルスペースを、手作業でストライプ化 しなければならない。

複数のディスク装置にファイルをそれぞれ作成 し、それらのファイルをテーブルスペースに複数割り当

てることで、オラクルによるス トライピングを実現できる。ただし、エクステントは、複数のデータフ

ァイルに跨ることはできないので、1つのエクステントで構成されるテーブルは、手作業ではス トライピ

ングできない。この場合、エクステントのサイズを調整 (小 さく)し、エクステントを複数に分割する必

要がある。

DBWRを最適化する

DBWRは 、バ ッファキャッシュ内の変更されたデータブロックをデータファイルに書き込む。DBWR
は書き込みをCOMMITと は非同期に行なう。これは、クライアントはDBWRの書き込みの完了を待つ必

要は決してないことを意味する。オラクルは、ほとんどの場合、データブロックをいったんファイルか

らバッファキャッシュに読み込んでから処理する。そのとき、バ ッファキャッシュに空ブロックがない

と、DBWRが更新済みのブロックをデータファイルに書き出し、空いたブロックにデータを読み込む。
そのため、DBWRの処理が遅れた場合、空ブロックができるまで待機する必要がある。
このように、DBWRの 最適化は、データベースの処理能力を維持する上で重要である。DBWRを 最適

轟:||::||:|::は :躊歩

●第15章 高パフォーマンスのデータベース構築Cコ隧隕躙躙||:11::|

化する最善の方法は、複数のディスク装置に1/0を分散し、オラクルがこれらの装置にパラレルで書き込

みをすることを可能にすることである。

データファイルヘの書き込みの並列化は、次の2通りのやり方で実現できる。

□ 構成ファイル(面tくSID>.ora)の DB_WRITERSパ ラメタを用い、複数のDBWRを 設定する。

ロ オペレーティングシステムの非同期1/0を使う。DBWRは 1/0の完了を待つ必要がないので、複数

のディスク装置に対する書き込みをパラレルに行うことができる。

これまでの経験では、オペレーティングシステムの非同期1/0は、複数のDBWRよ リパフォーマンスの

点で効率が優れて。しかし、非同期1/Oは すべてのプラットフォームで使用可能とはかぎらないし、特別

な手法が必要となるかもしれない。オペレーティングシステムによっては、非同期1/0がRAW装置を必

要とする場合もある。

複数のDBWRを設定する場合、物理ディスクの数と同じ数のDBWRを設定すると、DBWR間の競合が

減り、パラレル書き込みの利点を生かすことができるかもしれない。

15.4.6 テ…ブルスペースの設計とエクステントのサイズを決定する際の原則
テーブルスペースは、テーブル、インデックス等のデータベースオブジェクトを格納する論理的な記

憶単位である。

以下のテーブルスペースが標準的なものである。

□ SYSTEMテ ーブルスペースは、SYSユ ーザが所有するオブジェク ト (お もにデータディクシ ョナ リ

テーブル)を含む。

E]TOOLSテ ーブルスペ ースは、SQL■ Plusな どのオラクルのツールによって使用 される。一般的には、

SYSTEMユ ーザがこのテーブルスペースを所有する。

□ ROLLBACKテ ーブル スペースは、ROLLBACKセ グメン トのみ を含む。ROLLBACKセ グメン トは拡大

した り収縮 したりす る。また、ROLLBACKセ グメントは、空 きスペースが細分化 されたり、他のオ

ブジェクトに使われることがないように、独立したテーブルスペースにすることが重要である。

□ TEMPORARYテ ーブル スペースは、デ ィスクソー トに使ったがTEMPORARYセ グメン トや、中間的な

結果セットを含む。

いったん、これらの標準テーブルスペースがつくられれば、アプリケーションのデータを保つテーブ

ルスペースの作成に進むことができる。

エクステントは、複数の連続したブロックから構成される物理的な記憶単位である。エクステン トは、

連続 した空ブロックから割 り当てられるので、空スペースが細分化すると、連続 した空ブロックが見つ

かりにくくなり、エクステントの割り当てに失敗する場合もある。

エ ク ス テ ン トの初 期 サ イズ を適 当 な サ イズの整数 倍 に して 、 テー ブル の 設 定パ ラ メ ー タ

PCTINCREASE(次 のエクステン トを作成す るとき、元のエクステ ン トよりもどれだけの割合増加 させ る

かを決定する値)を 0に す ることで、空スペ ースの細分化をある程度避けることがで きる。それで も、あ

る一定期間ごとに、オラクルのエクスポート、インポートユーティリティを使って、データベースを再

編成すると良い。

15.4.フ ROLLBACKセ グメン トの設定
ROLLBACKセ グメントの設定は、データベースのパフォーマンスに重大な影響を及ぼすことがある。

特にデータを変更するトランザクションはそうである。データベース内のデータを変更するあらゆる演

算は、ROLLBACKセ グメント内にエントリを作成しなければならない。他のセッションによって変更さ

れてまだconHTさ れていないデ ー タ を読 む クエ リも、 ROLLBACKセ グ メ ン ト内に あ るデ ー タにアクセス

しなければならない。

ROLLBACKセ グメン トが小 さす ぎる場合、ROLLBACKセ グメン トは トランザクションの間大 きく拡大 し、

のちに縮小 しもとの大きさに戻 る可能性がある (ROLLBACKセ グメン トの理想的なサイズが特定されて

いる場合)。 ROLLBACKセ グメン トの拡大や縮小は、オーバーヘ ッドを伴 うので、ROLLBACKセ グメン ト

のサイズを適切 な値 に指定することは重要である。

これらのパ フォーマンスに関わる問題同様、うまく設定 されていないROLLBACKセ グメン トは、 トラ
ンザクションを失敗 (ROLLBACKセ グメントの拡大の失敗)さ せた り、クエ リを失敗 (ス ナ ップショッ

トが古すぎる)さ せ る可能性がある。

以下のガイ ドラインが、ROLLBACKセ グメントを設定するためのスター ト地点となるだろう。

□ ROLLBACKセ グメントの数は、現在同時進行で活発に行なわれている トランザクシ ョンの最大数の

少なくとも1/4は なければな らない。バッチ環境では、同時進行で行なわれてい る作業それぞれに

対しROLLBACKセ グメン トを割 り当てる。

□ OPTIMAL、 あるいはMINEXTENTSを 、ROLLBACKセ グメン トがす くなくとも10か ら20のエクステン

トを持つように設定する。これは、 トランザクションがエクステントを使用するときに生じるトラ
ンザクション間の競合を小さくする。

□すべてのエクステントを同じサイズにする。

ロバッチ更新処理のようなROLLBACKエ ントリを大量に作成するようなトランザクションに対して、

大 き な ROLLBACKセ グ メ ン トを割 り当 て る 。 ROLLBACKセ グ メ ン トの 割 り 当 て は 、 SET

TIuNSACTION USE ROLLBACK SEGMENT文 を用 い る。

ROLLBACKセ グメントを最適化す る方法はあるが、理論だけでこの設定を決定することは困難である。

ROLLBACKセ グメン トは慎重に監視 されなければならない。ROLLBACKセ グメン トのモニ タの方法につ

いては第16章で述べる。

15.4.8 TEMPOARAYテ ーブルスペース
第8章で述べ たように、メモ リ内で完了されない ソー ト演算は、TEMPOARYセ グメン トを使ってディス

クソー トが行われ る。また、中間的な結果セットのためにTEMPOARYセ グメントが使われ る場合もある。

CREATE USERあ るいはALTER USERコ マンド内のTEMPORARY TABLESPACE旬によって、割 り当てられ

るTEMPOARYセ グメン トが指定 され る。TEMPOARYセ グメントのために最低 1つのテーブルスペースを割

(|)第 15章 高パフォーマンスのデータベース構築 α麒躙:|

り当てなければならない。

オラクル7.3以前は、TEMPOARYテ ーブルスペースは通常のテーブルスペースと同じ特徴 を持 っていた。

また、TEMPOARYセ グメン トも、テーブルやインデ ックスなどの他のセグメン トとほとんど同 じ方法で

スペースが割り当てられていた。初期設定時のエクステントがまず割り当てられ、これが不十分な場合

に 、 必 要 に応 じて エ ク ス テ ン トが さ ら に割 り当 て られ た 。 CREATE TABLESPACEあ る い はALTER

TABLESPACE文 の 設 定 に従 ってエ ク ス テ ン トのサ イズ が決 定 され てい た。

オ ラクル 7.3以降 は 、 TEMPOARYテ ー ブル スペ ー ス を明確 なか た ち で つ く るため に、 TEMPOARY句 が

CREATE TABLESPACE文 に加 え られ た 。 この テーブル スペ ー スは、TEMPORARYセ グメ ン トを含 み 、 この

セグメントはあらゆる処理に用いることができる。このセグメントは、一度作成されると削除されるこ

とはなく再利用されるので、セグメン トやエクステントの割り当てが原因となるオーバーヘッドが取り

除かれる。

TEMPOARYテ ー ブル スペ ース内の エ ク ス テ ン トの サ イ ズ は、 (SORT_AREA_SIZEの 整 数倍 +セ グ メ ン

トヘ ッダーの ブ ロ ックサ イズ)に す る と良 い。

オラクルのいずれのバージョンを使 うにせよ、TEMPOARYテ ーブルスペースは同時に存在する

TEMPOARYセ グメントすべてを維持できる程度の大きさを持っていなければならない。大きさが十分で

ない場合、ソートが必要なSQL文でエラーが返される可能性がある。ディスクソートの大きさをあらか

じめ決定することは難しいので、最初の予測を見直し、訂正する必要があるかもしれない。オラクル72

以 育ilで はDBA_SEGMENTS (SEGMENT_TYPE=lTEMPORARYi)、 オ ラクリレ7.3以降 で はvsSORT_SECMENTを

用 いて 、TEMPOARYセ グ メ ン トの サ イズ を測 ることが で き る。

15.4.9 SGAのサイズの決定
SGAのサイズの設定は、データベースのパフォーマンスに大きな影響を与える。これは驚きに値しない。

バッファキャッシュによってディスク1/0を削減したり、共有SQLエ リアのキャッシュによってSQL文の

再解析の必要性を取り除いたりすることで、SGAはパフォーマンスの改善を行なっているからである。

SGAを構成するさまざま部分の理想的な大きさをまえもって決定することは困難である。この章では、

SGAを 構成する要素の概略と、サイズを決める上で一般的に考慮しなければならないことを説明する。

第16章では、SGAの使用状況をモニタする方法を学ぶ。

一般的に、SGAがメインメモリ内に収まるなら、SGAのサイズを大きくしすぎてもパフォーマンスに

影響を与えない。ゆえに、余分なメモリがある場合には、SGAのサイズを増やすのはたいてい悪い選択

ではない。

バッファキャッシュ

すでに見たように、SGAのバッファキャッシュはメモリ内にデータブロックをコピーして、ディスク

1/0の必要性をなくす。次の原則は、バッファ・キャッシュのサイズの決定に深く関わる。

□ 処理の際ディスクからデータブロックを読む必要をなくすためにバッファキャッシュのサイズを設

定する。一般的に、90%か それ以上のヒットレー トになるまでSGAの サイズを増やす。これは、読

み込み作業の リクエストの90%が、ディスクアクセスを必要とすることなく、キャッシュで満たさ

れることを意味する。ただし、SGAを 増やすことでスワップが起きていないか (メ インメモリ内に

収まっているか)常に確認する必要がある。

□ 物理1/0レ ー トに応じた、ヒットレー トになるように設定する。たとえば、論理1/0レ ー トが毎秒

500の場合、90%の ヒットレー トなら毎秒50の読み込みを必要とする。このレー トは、おそらく2つ

のディスク装置で十分満たされるだろう。しかし、論理1/0レ ー トが毎秒5,000の場合、90%の ヒッ

トレー トなら、毎秒500の読み込みが必要になる。このレートは、おそらく20前後のディスク装置

を必要とする。ディスク装置が10しかないなら、95%以上のヒットレー トを狙う必要がある。

バッファキャッシュのサイズのチューニングは、最も基本的で重要である。必要な場合に増やせるよ

うに、メモリに十分な空きがあることをを確認しなければならない。

一般的に、ヒットレー トは90%以上になるようにし、1/0レ ー トによっては、さらに高いヒットレー ト

をねらう必要がある。適切なヒットレー トになるまで、SGAのサイズを増やすが、その時オペレーティ

ングシステムがスワップを起こしていないか注意する必要がある。

共有プール

共有プールもSGA内にあり、パフォーマンスに大きく影響を与える。共有プールの主な構成要素は、

次のとおりである。

EIラ イブラリーキャッシュ。SQLやPL/SQLブロックの解析結果を蓄える。ライブラリキャッシュの

目的は、解析 されたSQL文 をキャッシングし共有して、SQLやPL/SQLの 解析にかかる負担を軽く

することである。

ロ データディクショナリキャッシュ (しばしばローキャッシュと呼ばれる)は、データディクショナ

リ情報をキャッンュする。データディクショナリは、データベースオブジェク トの情報を含んでい

る。データディクショナリは頻繁に参照されるので、この特別なエリア内でキャッシュされている。

ロ マルチスレッドサーバ構成の場合、カーソル情報などのユーザプロセスに関する情報は、共有プー

ル内に蓄えられる。共有プールのこの部分はユーザグローバルエリア (UGA)と 呼ばれる。

データベース構成パラメタ (SHARED_POOL_SIZE)が共有プールのサイズを決定する。なお、共有プ

ールを構成する要素の個別のサイズを別々に指定することはできない。そのため、最適化を実現できる

設定がみつかるまで、共有プールをモニタし、チューニングすることが必要となる。

共有プールのサイズを決定する際、次の事柄を考慮することが大切である。

□ 共有プールの初期設定値 (3.5MB)は 、多くのアプリケーションにとっては小さすぎる。

ロ アプリケーションがパッケージを多用する場合、共有プールのサイズを増やす。

ロ マルチスレッドサーバ構成の場合、大きな共有プールが必要になるかもしれない。メモリの量は、

ユーザ数や、同時に使用されるカーソル数によって左右される。大きなソートエリアやハッシュエ

リアが割り当てられていないかぎり、セッションあたりに必要なメモリが200Kを 超えることはま

ずない。

●第15章 高パフォーマンスのデータベース構築 C躍隕隕隋輻:::||:|:

50MBか それより大きい共有プールが割り当てられることもめずらしくない。マルチスレッドサーバが

用いられている場合、数百MBの共有プールが要求されることもある。しかし、専用サーバ構成に比べて、

トータルのメモリ消費量は減らすことができる。

リドゥログバッファ

リドゥログバ ッファは、リドゥログエントリを含む (図15.1を 参照)。 リドゥログは周期的に、あるい

はCOMMITが 起きたときに、リドゥログファイルに書き込まれる。共有プールの他のエリアと異なり、

リドゥログバ ッファのサイズをあまり大きくするのは得策ではない。リドゥログバ ッファが大きすぎる

場合、LGWRが ファイルに書き込まなければならない量が増えて、時間がかかってしまう。

15.4.10 マルチスレッドサ…バ
オラクルのマルチスレッドサーバ (MTS)構成は、複数のクライアントプログラムがオラクルのサー

バプロセスを共有することを可能にする。

マルチスレッドサーバ構成なしだと、各クライアントに対して、専用のサーバが割り当てられる。ク

ライアント数が増えると、その数分、専用サーバが割り当てられるので、消費するメモリ量がかなりの

負担になる。その場合、マルチスレッドサーバ構成にして、必要なサーバ数を減らし、メモリの消費量

も押さえると良い。

Program.
CIlent

Program

cnent
Program

Program

Program
Client

Program

Client

Prog

Program

Prog rarn
Client

Program

Client
Program

Program

Shared
Server

Chent
P

Chent CHent
Prograrn

Client
Program Program.

Chent

.Program

Client

Dispatcher

Shared
Server

図15.4 マルチスレッドサーバと専用サーバの比較

‐

‐

‐

‐

‐

‐
ヽ

適切な状況のもとでは、マルチスレッドサーバは必要なメモリを減らすことができる。また、サーバ

プロセスの数を減らすことで、内部的な競合を防ぐことができる。しかし、場合によっては、マルチス

レッドサーバは、パフォーマンスにきわめて悪い影響を及ぼす可能性がある。ユーザプロセスを共有サ

ーバに割り当てるディスパッチ処理が遅れた場合、パフォーマンスは大幅に劣化する。

マルチスレッドサーバを実行する前に、次のことを検討しよう。

ロ アプリケーションはマルチスレッドサーバ向きかどうか。

□ 1つのサーバプロセスにどれだけのユーザを割り当てるか。

マルチスレッドサーバは、対話的なアプリケーションに適切である。ユーザがデータを理解したり、

何をするか考えている間、あるいは単にタイプするのに忙しい間でも、対話的なアプリケーションは、

考える(待つ)時間を必要とするからである。こういったアプリケーションは、サーバがアイドル状態で

あることが多いので、多くのユーザをサーバに割 り当てることができる。他方、バ ッチ処理やデータの

ロードのようなアプリケーションは、リソースを集中的に消費する傾向があり、マルチスレッドサーバ

(共有サーバ)の恩恵を受けることができない。

アプリケーションがマルチスレッドサーバ向きだと判断された場合、ユーザのサーバに対する割合は、

ユーザのサーバに対する処理がアイドル状態である時間の割合に左右 される。時間の90%がアイドル状態

である場合、ユーザ10に対 し1つの共有サーバで良いかもしれない。ディスパッチャ(ューザを共有サー

バに割り当てる)の数はたいていサーバの数より少ない。サーバ5か ら10に対し、1つのディスパッチヤが

適切だろう。

15.4.11 バラレルサーバ
もう1つの重要事項は、パラレルサーバの設定である。第12章で見たように、パラレルクエリは個別の

クエリのパフォーマンスに大きくかかわる。しかし、OLTP環境にはパラレルクエリは不適切である。ほ

とんどの トランザクションは、テーブル全走査を用いず、インデックスを使ってテーブルにアクセスす

るからだ。しかし、バッチ処理では、短時間で大量データを処理する必要があり、そのような環境では、

パラレルクエリが用いられるかもしれない。その場合、パラレルスレーブの数を適切に設定することが

重要である。もう一度、第12章のガイドラインを注意深く見直して欲しい。

15.4.12 RAWパーティション
データファイルは、ファイルシステム (FAT、 NTFS、 UFS、 JFS等)上、あるいはRAWパ ーティショ
ン上につくられる。RAWパーティションはオペレーティングシステムのバッファを経由せず、直接ディ
スクに1/0することを可能にする。

しかし、RAWパーティションの利用は管理上かなりの負担となり、データベースのバックアップや設
定を複雑にする。RAWパ ーティションの利用は、オラクルの利用者の間でも論争の対象で、適切な利用
法に関する明確な同意はまだ得られていない。しかし、次の立場がひろく認められているようだ。

□ 1/0がボトルネックになっていない場合は、RAWパ ーティションに変更してもアプリケーションの

‡:|:i:i:|:|::::::‡ :i‡賤||1醸 ||||||||||||||)

第15章 高パフォーマンスのデータベース構築 饉浙薇|:::|||:||:|

パフォーマンスに改善は見込めない。

ロ データのロードが多いアプリケーションでは、RAWパーティションを利用することで、パフォー

マンスを改善できる可能性がある。

15.5 まとめ
この章では、高いパフォーマンスを実現するために、オラクルデータベースを設定する際の原則を手

短に説明した。これらのガイドラインは、SQLのチューニングのためのすぐれた基礎を提供するだろう。

しかし、データベースおよびサーバの設定は、SQL文のチューニングの代わりではないことを覚えておく。

サーバが適切に設定されていることは、優れたデータベースおよびSQLチ ューニングの前提条件であ

る。次の項目を確認しよう。

ロ ユーザ数から、メモリ条件を予測することができる。

EIデ ィスク1/0のパフォーマンスは、システムに割り当てられたディスクの数や、ディスクにまたが

ってデータを分散する技術に左右される。

□ RAID5は1/0を 分散する手段として人気が高まっていて、凡長性を経済的に提供する。しかし、書

き込みが中心のアプリケーションには適していない。また、リドゥログを決してRttD5で 用いては

ならない。読み込み中心のデータは、RND5向 きである。

□ CPUや ネットワークの条件を正確に予測することは困難である。初期の予測では、経験、専門メー

カのアドバイス、類似するシステムとの比較が役に立つだろう。より正確な予測には、ベンチマー

クテスト、あるいはシステムのシミュレーションを用いると良い。設定が発展の余地を持っている

ことを確認することが、多くの場合賢明な選択である。

高パフォーマンスのデータベースを構築するとき、次の項目を確認しよう。

ロ データベースの用途を理解する。 トランザクションのタイプやバックアップ戦略を理解する。

ロ データブロックのサイズの設定は重要である。データベースが作成された後は、ブ
ロックのサイズ

を変えることはできない。少なくともオペレーティングシステムのブロックサイズと同じ大きさの

ブロックサイズを選ぶ。OLTPの アプリケーションは、大量のデータにアクセスすることは少ない

ので、サイズの小 さいブロックを選びバ ッファキャッシュなどの効率を良くする。データウェア
ハ

ウス等、大量のデータにアクセスするアプリケーションは、サイズの大きいブロックを選びアクセ

スするプロックの数を減らすと良い。

ロ リドゥログの処理能力は、頻繁に更新を行なうアプリケーションにとって重要な要素である。理想

的には、リドゥログは専用のディスク装置に割り当てられるべきである。リドゥログはR亙D5装置

上にあってはならない。

ロ データベースがァーカイブログモードの場合、リドゥログが2つの専用ディスクの間で交互に用い

られると、パフォーマンスはベストになる。アーカイプログも専用ディスク上にあった方が良い。

ロ データファイルは複数のディスクにまたがってストライプ化された方が良い。RHDO+1のパフオ

―マンスの方がたいてい優れているが、読み込み中心の場合、RAD5で も良いだろう。ス トライピ
ングやRttD技術が不可能な場合、テーブルスペースに対しス トライプ化を手作業で行なうことも
できる。

□ ROLLBACKセ グメントは、通常の トランザクションの場合、拡張する必要が生じないように設定さ
れなければならない。また、極めて大規模の トランザクションが必要になった場合に備えて、拡張

を可能にする十分な空きスペースを持つように設定されなければならない。

□ TEMPOARYテ ー ブル スペ ース は 、 オ ラクル 7.3以降 で は 、TEMPORARY句 を用 い、エ クス テ ン トの割
り当て を最 適 化 す る。 どのバ ー ジ ョンで も、エ ク ス テ ン トの サ イズ を (SORT_AREA_SIZEの 整数倍
+1ブ ロックのサイズ)に なるようにする。

ロ マルチスレッドサーバ構成にして、オペレーティングシステムのメモリを節約することができる。

しかし、共有サーバに割り当てられたユーザの割合が多すぎる場合、あるいはリソース消費型の処

理の場合、サーバ上で競合が起 り、パフォーマンスが低下する。

□ DBWRの パフォーマンスが最適化されていることを確認する。これには、ディスクのス トライピン
グの確認と、DBWRが複数のディスクに並列で書き込みを行なえるようにすることが必要である。
オペレーティングシステムの中には、DBWRが 非同期1/0を 用いて書き込みを行なうことができる
もの もあ る。 DB_WRITERSパ ラ メ タ を用いて複 数 の DB駅 を立 ち あげ る こ ともで きる。
ロ データファイルやリドゥログをファイルシステムのかわりに、RAWパーティションを用いること
で、オペレーティングシステムのバッファを経由せず、直接ディスクに1/0す ることができる。し

かし、RAWパ ーティションの管理は難しく、すべてのアプリケーションに適している訳ではない。
しかし、1/0がボトルネックになっているアプリケーションは、その利点を生かすことができるか

もしれない。

1聾:::::蟷鰈飩

■|`、|.● , t,~

鸞

~

._`,_.

嘔

~‐
り

‐ ‐ ‐ l「

、,・,1・■・ .

●・●
,■ ●

擁

●●

第 "

:や “・
.'1,― ・

11・

`|ふ

・す
・

IIr・
″事

I
,「

Ｌ
■

ご

|´

・，
一一ヤ

４
．
一〓一
●

争

‘
，

・

●

―

■
_:11.ヽ

.′

■.=・ |,.:■ 411説
`|

々繊

・

・
，
〓
‐
・●
中
い
１
１

●

１

〓

′‐‘
―
電
・督・

↓

∴
●

キ́
″
―‐，―
・
■
　
．

.:・

■
・・
　
　
一、

霊
メ
■̈

■
１

●
一
　
・

．

・〓
ギ
，
■
・　

・

角

ヽ

データベースサ

16.1 はじめに

たとえ、SQLが完壁にチューニングされた後でも、SQLの パフォーマンスにがっかりすることがある

かもしれない。その場合、原因はデータベースの設定 ミスである可能性がある。第15章で紹介されたガ

イドラインを用いてサーバの設定を行えば、このような障害が起る危険性は減るはずだ。適切な設定に

するには、オペレーティングシステムやオラクルのパフォーマンスを正確にモニタする必要がある。

この章で扱う主な項目は以下のとおりである。

ロ オペレーティングシステムをモニタリングし、メモリ、CPU、 ディスク1/0の障害やリソース不足

を突き止め、改善する。

ロ オラクルのプロセス構成の概略と、発生する可能性のある障害や非効率性。

ロ オラクルをモニタする方法。

□ 高度なトレース。

□ その他の一般的なオラクルのパフォーマンスチューニング。

す●

″́・へ

・≪

16口2 オペレーティングシステムのパフォーマンスの評価
パフォーマンスの乏しいアプリケーションをチューニングするときに、最初にすることはオペレーテ

ィングシステムのチューニングである。CPU、 メモリ、ディスク1/0等の主なリソースを供給するのはオ

ペレーティングシステムだからである。オペレーティングシステムをモニタリングして、システムリソ

ースが足りないことや、リソースの障害 (た とえば、負荷が集中しているディスク)を突き止めるなけ

ればならない。

16.2.1 オペレーティングシステムのモニタリング
さまざまなオペレーティングシステムやハー ドウェアに対してオラクルを用いることができる。その

ため、すべての環境に対して詳細に説明することはできない。しかし、通常のオペレーティングシステ

ムは、なんらかのツールを使ってモニタリングを行ない、リソースの使われかたを明らかにすることが

可能である。これらのツールの詳細については、オペレーティングシステムのマニュアルを読む必要が

ある。

いくつかのUNⅨには、sar(シ ステム・アクティビティ・レポータ)が含まれる。このプログラムは、

CPU、 メモ リ、ディスクのパフォーマンス値を集めることができる。BSDに基づいたUNIXのいくつかは、

s肛を含まないかもしれない。 しかし、Ⅶ
“
ねtと よばれるプログラムが提供されている。vmst誠は、sarほ

ど包括的ではないが、類似するパフォーマンス情報を提供してくれる。

s肛やvlnst江以外にbpと 呼ばれるプログラムがいくつかのUN:Ⅸで使用可能である。このプログラムは、

パフォーマンスの情報の要約と、 トップ表示を行なう。
Windows NTは 、その名もパフォーマンスモニタというGUIベースのプログラムがある。このツールは

メモリ、CPU、 ページング、ディスクvo情報へのアクセスを可能にする。

16.2.2 メモリ不足
コンピュータ上で使用可能なメモリが不足すると、多くの場合パフォーマンスは大幅に低下する。

ほとんどのオペレーティングシステムは、仮想メモリをサポートする。このメモリによって、使用可

能なメモリ量は増えるが、物理メモリが足りなくなると、ディスクの一部をメモリ代わりに使うので、

パフォーマンスは大幅に低下する。やはり、ディスクアクセスは、メモリアクセスに比べてかなり遅い

のである。

物理メモリ内に存在しないページがアクセスされた場合、ページフォルトが起り、データがディスク

(たいてい、スワップファイルと呼ばれるファイル、あるいはプログラムの実行可能なファイル)か ら取

り出され、物理メモリに読み込まれる。物理メモリが大幅に不足している場合、たいていのオペレーテ

ィングシステムは、メインメモリ内のデータで最近アクセスが行なわれていないものをさがす。そして、

必要な空きメモリが確保されるまで、データをメインメモリからスワップファイルに移す。スワップフ

ァイルとメインメモリの間のデータの動きはページングとして知られる。

物理メモリの空きが大幅に不足している場合、オペレーティングシステムがメインメモリから実行プ

ログラム全体を移動させることがある。これは、スワッピングとして知られる。スワッピングは、メモ

リが危機的に不足していることを示す。

:::|:::鰈鋏EコD

(口)第 16章 データベースサーバのチューニング饉躙絋:::::||:|::|::|:||

スワッピングやベージングの許容レベルはオペレーティングシステムによって異なる。しかし、以下

の原則がほとんどのオペレーティングシステムに対して適用される。

ロ スヮッピングは行なわれるべきではない。

ロ ページイン(デ ィスクからメモリにデータが読み込まれること)は、通常に発生するので、あまり気

にする必要はない。しかし、ページアウト(メ モリからディスクにデータが移動される)は、メイン

メモリが足りなくなっていることを示す。過度のページアウトが起こっている場合には、物理メモ

リが足りない。

ロ オラクルのサーバプロセスやSGAは、物理メモリメモリ上になければならない。仮想メモリは、す

べての物理メモリが使い果たされたときでも、コンピュータが引き続き演算を行なうことを可能に

するが、多くの場合パフォーマンスが大幅に低下する。

メモリ不足の対処法

オペレーティングシステムをモニタし、物理メモリが不十分であるという結論に達した場合には、次

の対処法がある。

ロ メモリを追加する。

ロ メモリの消費を減らす。

メモリを追加することが可能でない場合、オラクルのメモリ消費を減らすことも可能である。この実

行に以下の方法がある。

E]オ ラクルの サ ーバ プ ロセスが消 費 す る メモ リを減 らす 。主 なパ ラメ タに は 、 SORT_AREA_SIZEと

HASH_AREA_SIZEが あ る。 これ らの パ ラメタは 、 ソ ー トやハ ッシュ結 合 に割 り当て られ る メ モ リ

の量をコントロールする。これらのパラメタが不必要に高く設定されている場合、メモリが無駄に

浪費される可能性がある。

□ SGAの サイズを減らす。バッファキャッシュ、あるいは共有プールのサイズが大きすぎ、メモリを

浪費している可能性がある。

ロ オラクルのサーバプロセスの数を減らす。マルチスレッドサーバ構成にして数を減らすことができ

る。これは、メモリ消費を減らす効率の良い方法かもしれないが、バッチ処理などのリソース消費

型のアプリケーションの場合、パフォーマンスが低下する可能性がある。

16.2.3 1/0障害
ディスク1/0の障害も、データベースのパフォーマンスが乏しくなる主な原因の1つである。これらの

障害は、ディスク装置が読み込みや書き込みの要求についていけないときに必ず起こる。これは、losね t

等のツールを使って認識できる。

ディスクビージーの割合を確認する。常に、ディスクビージーが50%を超えている場合、そのディスク

に対する1/0を減らす必要がある。

特定のディスクが障害を起している場合、とるべき手段はディスク上に畜えられたファイルのタイプ

によって決定される。

ロ ディスクがオラクルのデータファイルを含む場合、複数のディスク装置にまたがって1/oを分散さ

せるべきである。1/0を分散させる方法は、RttDの利用、オペレーティングシステムのス トライピ

ング、テーブルスペースの手動ス トライピング等がある。

ロ ディスクがリドゥログを含む場合、同じディスク上に他に活発にアクセスされるファイルがないこ

とを確認する。できれば専用デ ィスクにした方が良い。アーカイブログモードの場合、2つ の専用

ディスクに交互にリドゥログを配置し、LGWRと ARCHの 競合を防ぐ。

16.2.4 CPU障害
CPUの使用率が高いことは、悪いことではない。しかし、常にCPU使用率が高い場合は、何か非効率
的な処理が行われている可能性がある。オラクルにおけるCPUの使用が過度になる原因には、次のよう

なものがある。

□ 非効率的なSQL。 過度な1/0を 必要とするSQL文は1/0に負荷をかけるだけでなく、CPUに対 しても

多くの負荷をかける可能性がある。オラクルの論理1/0のほとんどがメモリ内で起り、オラクルの

共有メモリの操作はCPU集中型の演算になるからだ。

□ 過度のソー ト。ソートは、きわめてCPU集中型になる可能性がある。アプリケーションがメモリ内
でソー トをきわめて高い頻度で行なう場合、CPUリ ソースはかなり消費 される。偶発的なソー トを

取り除いたり、インデックスを用いて希望する順序で行を取り出したりすれば、この負担を軽減す

ることができるかもしれない。こういった問題は第7章で扱われている。

□ 過度の解析。第3章で、SQL文の解析の負担について取り扱った。解析 もCPUリ ソースを消費する。
アプリケーションで、バインド変数を使わずに、値を直接SQL文 に埋め込んでいると、値が変わる

たびにSQL文 を再解析する必要がある。過度に解析が行われると、CPUリ ソース不足になる可能性

もある。

CPUリ ソースが不足する場合、使用可能なCPUの数を増やすか、CPUを アップグレードするか、CPu
への需要を減らす しかない。たいていの場合、CPUの 数を増やすよりもCPUの速度を上げる方が効率が

良い。

CPUの負荷を減 らすには、無駄なソー トを避け、バインド変数を用いて不必要な解析を減 らす。もし、
コンピュータが複数のCPUを持っている場合、パラレルサーバを使えば、CPUを より効率的に使 うこと

ができる。

(口)第 16章 データベースサーバのチューニング

これから、オラクルのどこで障害が起こっているかをモニタリングする方法を学ぶが、その前に、

SQL文の処理フローを理解しておく方が良いだろう。図16.1にその概要を示す。以下の説明で出てくるラ

ッチという単語は、オラクルがSGAを更新するときに、複数のプロセスが同時に更新しないため(排他)

に用いる内部ロックのことである。

Redo Buffer Entries
鰈
ヽヽヽ

Parse Requests n
sQL漑 Results

Blocsk

菫
System GIobal Area (SGA)

Oracle Shared Memory
ヨ

1.SQL 2.解析の要請 3,6データブロック 5.結果セット 7.リ ドゥログバッファ 8.変更されたブロッ

ク 9.リ ドゥログエントリ 10.ロ グのアーカイブ

図16.1 オラクルインスタンス内の処理フロー

オラクルインスタンス内の処理フローを理解するために、以下の短いSQLト ランザクションを考える。

select * from employees
where employee-id=:1

for update of salary;

update employees

set salarY=:2
where employee-id=:1;

Redo Buffer

(Transaction)

Log Writer

(LGVVR)

Oracle Client
(e.g.,SQL-Plus)

Shared Pool
Statements

and other

Buffer Cache

(Date BIocks)
Oracle Server

Process

Ddebase
Writer

(DBWR)

Archiver

(ARCH)

AЮhive Log

Destindion

commit;

16.3 SQL文の処理フロー

図

“

.1の数字が入ったラベルは、次の処理に対応する。

1.ク ラ イ ア ン トは (SQL'Plus等)が サ ーバ プ ロセスに対 しSELECT文 を送 る。

2.サーバプロセスは、共有プール内で一致するSQL文 を探す。一致するものが見つからなければ、サ
ーバプロセスはSQLを解析し、その結果を共有プールにキャッシュする。SQL文の解析にはCPUが

必要で、共有プール内への解析結果の挿入にはラッチが必要である。

3.サーバプロセスはバッファキャッシュ内で要求されたデータブロックを探す。見つかった場合、デ
ータブロックはLRUリ ス トの最新の部分に移動される。これも、ラッチを必要とする。

4.ブ ロックがバッファキャッシュ内で見つからなかった場合、サーバプロセスはブロックをディスク

から読み込む。これにはディスク1/0が必要となる。バッファキャッシュ内に新 しいブロックを読

み込むにはラッチが必要である。

サーバプロセスは、取 り出された行をクライアント処理に返す。

クライアントがUPDATE文 を実行するとき、共有メモリ内の該当するブロックを変更する。

7.更新 した内容がリドゥログバッファに書き込まれる。

8.DBWRは、変更されたブロックをバッファキャッシュからデータファイルにコピーする。更新を行
なうサーバプロセスは、ブロックの書き込みを待つ必要はない。

9.conITし た場合、LGWRは リドゥログバッファの内容をリドゥログファイルにコピーする必要があ
る。この書き込み作業が完了するまでは、colttIT文 はサーバプロセスにコントロールを返さない。

10.ア ーカイブログのモードの場合、ARCHが リドゥログファイルをアーカイブ先にコピーする。コピ

ーが完了するまで、そのリドゥログファイルを再利用することはできない。

11.あ る一定のインターバル、あるいはリドゥログの切り替えが起ったとき、オラクルはチェックポイ

ントを実行する。チェックポイントは、バッファキャッシュ内の変更されたブロックをディスクヘ

書き込む。チェックポイントが完了するまで、リドゥログファイルを再利用することはできない。

●第16章 データベースサーバのチューニングC甕緻躊晰は::番

16.4 パフォーマンスチューニング

サーバ上の障害を正しく判断、改善するには、オラクルのパフォーマンスを測定しなければならない。

動的パフォーマンスビュー (Vsではじまるテーブル)がオラクルのパフォーマンスについての究極の

情報源である。このビューは、正真正銘のビューではないが、オラクルの内部メモリの構造を示す。な

お、この動的パフォーマンスビューはSQLを用いて問い合わせをすることができる。特別に権限を割り

当てていなければ、sys、 systemユ ーザだけがこのビューの問い合わせができる。このビューが含む情報

の量は豊かで、ここからパフォーマンスについてきわめて重要な情報を得ることができる。しかし、VS

ビューを直接用いるには経験が必要である。外部のツールを使い、動的パフォーマンスビューの内容を

グラフィカルに見ることもできるが、常に利用可能とは限らない。原始的ではあるが、SQL★Husの スク

リプ トを使 って、モニ タリングで きるように しておいた方 が良いだろう。オ ラクル も

SORACLE_HOME/rdbms/adminに ut■ bstat.sql′ ut■ estat.sqlス クリプ トでモニタリング機能を提

供 している。

それでは、主な項目を説明しよう。この後に出てくるSQL文 は、systemユ ーザあるいはws“mユーザ

と同等の権限を持ったユーザで実行して欲 しい。あるいは、動的パフォーマンスビューは、すべてのユ

ーザにとって有益な情報を提供するので、次のスクリプ ト(grantse■ ectvdollar.sql)を sysユーザ

で実行 して、すべてのユーザcUBHoに 参照可能にしても良い。

SET ECH0 0FF

SET FEED OFF

SET PAGES 0

SP00L vdollar.tmp

SELECT 'GFANT SELECT ON ' I I

view-name | |

, TO PUBLIC,'
FROM dba-views

WHERE view-name LIKE ',V_$8

SPOOL OFF

SET ECH0 0N

SET FEED ON

Ovdollar.tmp

16.4.1 メモリチューニング
オラクルのチューニングのうち、メモリのチューニングは、最も基本的で重要である。

システムグローバルエリア(SGA)は 、共有メモリであり、オラクルのサーバプロセス間で共有 される。

そのおもな目的は、メモリにデータをキャッシングし、アクセスを迅速にすることである。そのため、

SGAは常にメインメモリ内に存在する必要がある。SGAのバ ッファキャッシュ、ライブラリキャッシュ、

ディクショナリキャッシュ、リドゥバッファキャッシュなどで構成されている。

SGAの内容は、次のようにして確認できる。

SQL> sefect * from v$sgastat,.

P00L NAME BYTES

shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared poof
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool
shared pool

47264

1_3107200

163840

1066452

279664

1040

640

127860

■5572

21■ 432

25664

■120

4480

50084

25268

2096

48868

58000

59520

■62068

665600

660520

201404

84000

10■ 3808

28800

37440

1513032

4■22884

149600

470700

105716

565200

44896

106788

fixed sgra

db_b1ock-buf fers
1og_buffer
free memory

miscellaneous
table definiti
fixed aflocation callback
character set object
tabl-e columns

transacLions
latch nowait faifs or sle
KGK heap

KGFF heap

state objects
PLlSQL MPCODE

PLS non-lib hp

SYSTEM PARAMETERS

DML locks
branches
State objects
db_bfock_buf fers
KQLS heap

PLISQL DIANA

db_handles
dictionary cache
messages

enqueue_resourc es

library cache

sq1 area
processes
sessions
kt.lbk state objects
event statistics per sess
trans ac t ion_branches
db_bl- ock_hash_bucket s

|::|:|:||:|:::::::憮MD

(口)第 16章 データベースサーバのチューニング 肉鰤漑:|:|:|:|::::||:|::|::|::|

この節では、次の項目を説明する。

ロ バッファキャッシュ

ロ ライブラリキャッシュ

ロ ディクショナリキャッシュ

ロ リドゥログバッファ

バッファキャッシュ

バッファキャッシュのヒット率は、必要とされたデータブロックをバッファ・キャッシュ内で見つけ

ることができた割合を示す。ほとんどのアプリケーションでは、この値は90%を超えることが望ましい。

この値は、vSsysstatビューの統計値を使って、次のように計算できる。

1 - physical reads/(db block gets + consistent gets)

phys■ cal reads:デ ータファイルにアクセスしたブロック数。

db b■ ock gets:現行モー ドでバッファキャッシュにアクセスしたブロック数。

cons・ stent gets:一 貫モー ドでバッファキャッシュにアクセスしたブロック数。

a)b■ Ock gets+cOnsistent gets:メ モリにアクセスした総ブロック数。

実際にSQL文で取得するには次のスクリプ ト⑩ufc¨heratiosql)を実行する。

SELECT a.ratio 'ibuffer caChe h■ t rat■ o・ ′

decode(s■ gn(a.rati。 - 0.9)′ 1′
1バッファキャッシュのヒット率はOKです '′
IDB_BLOCK_BUFFERSを

増 や しま し ょ う ')

"notes・

FROMI(SELECT l ― p.value / (11.va■ ue 十 ■2.value)rat■ o

FROM vヽ sysstat p′ vSsysstat ll′ vSsySStat 12

Wξ[ERE p.name = 'physical readsI

A]ND ll.name = ldb block getsi

A:ND 12.na:me = :cons■ stent getsl)a,

実行結果

SQL> @bufcacheraLio

buffer cache hit ratio notes

se45L2363)\,y77+P y! tAY-'y F*ltoxCd-

||:|:||::||:躙鰈曰

もし、バ ッファキャッシュのヒット率が90%未満である場合は、構成パラメータ(initSID.ora)の

DB_BLOCK_BUFFERSの値を増やすことを検討すると良い。ただし、テーブル全走査をしたブロックは、

デフォル トでは、LRUリ ストの先頭には追加されない。そのため、バッファキャッシュのヒット率が低

くてもそのことが原因ならあまり気にすることはない。なぜなら、テーブル全走査を何度も繰り返すこ

とはあまりないからだ。もし、そのようなプログラムがいるなら、ロジックそのものに問題がある可能

性がある。

バッファキャッシュの設定を最適化するには、バ ッファキャッシュの使用状況もモニタする必要があ

る。特に、バ ッファで使われていないブロックがある場合には、バッファキャッシュを大きく取りすぎ

ている可能性がある。そのチェックには、次のスクリプ ト(bufcachefreeratio.sql)を sysユ ーザで、

最も業務の忙 しいときに実行する。

SELECT a.rat■ o l'buf cache free rat■ o・ ′

deCOde(Sign(a.ratio)′ ■′

'バ ッファキャッシュが余分にあまつています 1′

'バ ッファキャッシュに無駄はありません 1)

'inotes・

FROMI(SELECT b.free / c.total ratio

FROM (SELECT count(｀) free

FROM xSbh

WHERE state = 0)b′

(SELECT count(力)total FROM xSibh)c)a

実行結果

SQL> ebuf cachef reeratio

buf cache free ratio not.es

oバ ッフアキャッシュに無駄はありません

最もアクテ ィブな時間帯に、空 ブロックがあるな ら、バ ッファキャッシュが大 きす ぎる可能性が高い。

DB_BLOCK_BUFFERSを 減 らし、その分のメモ リを他 に割 り当てることで、パフォーマンスを改善できる

可能性がある。

ライブラリキャッシュ

ライブラリキャッシュには、SQL文の解析された結果が格納されている。ライブラリのキャッシュミ

スは、解析コール、実行コールのどちらかで発生する。

アプリケーションがSQL文 を実行するとき、すでに解析済みかどうかキャッシュを調べ、なかった場

合には、解析 しその結果をキャッシュに格納する。これが解析コールのキャッシュミスである。解析コ

ールのキャッシュミスを減らすには、SQL文でバインド変数を使うと良い。

(|)第 16章 データベースサーバのチューニング {|||!|:|||||||||‡
|]1麒:蜀 :;:::::|:::111illl:

実行するたびに解析しているSQL文を探し出すには、次のSQL文 (sqlarea.sql)を 実行する。

SELECT sq1-Eext, parse-cal-l-s, executions
FROM vSsqlarea

WHERE parsing-user-id != 0

AND parse-ca]1s = executions;

また、オラクルのプリコンパイラを使っている場合は、HOLD_CURSOR=yes,RELEASE_CURSOR=no

のオプションを設定することで、解析コールの回数を減らすことができる。

アプリケーションがSQL文 を実行するとき、解析された表現が、他のSQL文の解析表現を格納するた

めに、割り当て解除される場合がある。その場合、オラクルは暗黙(自動的)に そのSQL文を再解析し、

キャッシュに格納する。これが実行コールのキャッシュミスである。実行コールのキャッンュミスを減

らすには、共有プールのメモリの割り当てを増やす。共有プールのメモリの割り当ては、構成ファイル

(initSID.orう のSHARED_P00L_SIZEで行う。

ライブラリキャッシュの ヒット率は、vs■ ibrarycacheビ ューの統計値 を使い、次の式で求め られる。

(pinS ― re10adS) / pins

pins:実行コールの回数。

reloads:再解析した回数。

実際にSQL文で取得するには次のスクリプ ト(libcacheratio.sql)を実行する。

SELECT a.ratio '11■ brary cache hit rat■ o・ ′

decode(Sign(a.ratio - 0.99)′ 1′

'ライブラリキャッシュのヒット率は十分です '′

'SHARED_POOL_SIZEを 増 や しま し ょ う
1)

"notes・

FROMI(SELECT surt(pins ― re■ oads) / sum(pins)ratio

FROM vSlibrarycache)a′

実行結果

sQL> Ld r a-bcacneraE ao

fibrary cache hit raLio notes

987972797 SHARED_P00L_SIZEを 増や しま しょう

ライブラリキャッシュのヒット率は、99%以上であることが望ましい。99%未満である場合は、構成パ

ラメ ー タ(initSID.ora)の SHARED_POOL_SIZEの 値 を増 や す ことを検 討 す る と良 い。

ディクショナリキャッシュ

ディクショナリキャッシュには、データベース内のオブジェクトの構造についての情報がキャッシュ

される。たとえば、ディクショナリ情報には、あるテーブルに属している列名や、列の型などの情報が

含まれる。そのため、SQL文を解析するときにこの情報はしばしばアクセスされる。

ディクショナリキャッシュのヒット率は、vsrowcacheの 統計値を使って、次の式で求められる。

(geLs - getmisses) / gets

gets:デ ィクショナリにアクセスした回数。

getm■ sses:キ ャッシュミスになった回数。

実際にSQL文で取得するには次のスクリプト(rowcacheratiO.sql)を 実行する。

SELECT a.rat■ o ''row cache llit rat■ ol'′

deCOde(S■ grl(a.rat■ o - 0.95)′ 1′

'ディクシ∃ナ リキャッシュは十分です 1′

'SWRED_P00L_SIZEを 増やしま しょう ')
llnotes'1

FROMI(SELECT sum(gets ― getm■ sses)/ s urn(gets)rat■ o
FROM vSrowcache)a,

実行結果

SQL> .arowcacheratio

row cache hit ratio notes

995070588デ イクショナリキャッシュは十分です

デ ィクショナ リキャッシュのヒッ ト率は95%以上であることが望ましい。95%未満の場合は、構成パラ

メータ(initSID.ora)の SHARED_POOL_SIZEの 値 を増やすことを検討すると良い。

リドゥログバッファ

リドゥログバッファのサイズは、構成ファイル(initSID.ora)の LOC_BUFFERで設定する。リドゥロ

グバッファのサイズが小さすぎると、バッファを使用するときに待機しなければいけない場合がある。

そのチェックは、次のスクリプト(redOwaitratiO.sq■)で行う。

SELECT a.ratio "redo space wait ratio,',

deCOde(S■ gn(a.rat■ o - 0.0■)′ 1′
ILOG_BUFFERを

増や しましょう 1′

(|)第 16章 データベースサーバのチューニング {|||||||||||||||||||||||||||||:::::|:::|::::::::|:||:|||:

,LOG_BUFFERI*+AC!-'
)

'notes il

FRoM (SELECT r.vafue ,/ w.value ratio
FRoM v$sysstat r, v$sysstat w

WHERE r.name = 'redo Iog space requests'
AND w.name = 'redo writes') a;

実行結果

SQL> @redowaitratio

redo space wait ratio notes

oao2454s9 Loc BUFFERlttSJei

スペース待機の割合は1%以 下であることが望ましい。 1%を 超える場合は、構成ファイル

(initSID.ora)の LOG_BUFF□ Rの値 を増 や す こ とを検 討す る と良 い。

16.4.2 1/0チ ューニング

どんなにメモリの割り当てを最適化しても、1/0がボトルネックになっては、アプリケーションのパフ

ォーマンスは乏しくなってしまう。ここで説明するのは、次の項目である。

ロ ソー ト

ロ リドゥログ

□ 行移行と行連鎖

ロ テーブル全走査の割合

ソー ト

オ ラクル は、 ソー トが必要 な とき、構成 フ ァイル (initSID.ora)の SORT_AREA_SIZEで指定 したサ

イズでソート作業が収まる場合には、メモリ上でソートを行い、指定したサイズで収まらない場合には、

TEMPORARYセ グメ ン トを使 ったデ ィス ク ソ ー トが行 われ る。 メモ リソー トに比 べ て デ ィス クソー トは遅

い の で 、 SORT_AREA_SIZEを 適切 に設 定 し、 で きるだ け デ ィス ク ソー トは避 け る こ とが重要 で あ る 。

SORT_AREA_SIZEは サ ーバ プ ロセス ご とに (ソ ー トに使 用 した と きに)確保 され るの で 、不必要 に大 きな

値 を設 定 して は な らない 。

SORT_AREA_SIZEは 、最小書き込みバッファ(たいていのプラットフォームでは32K・2)の 10倍 (640Ю

以上に設定すると、大量のソートを行う場合に、バッファキャッシュをバイパスして、直接ディスクに

書き込むことができるようになるので、パフォーマンスを改善できる。直接書き込みを利用するには、

構成 フ ァイル (■ nitSID.ora)の SORT_DIRECT_WRITESを AUTOあ るい はTRUEに 設 定 す る必要 が あ る。

TRUEに 設 定 した と きに は、 ソ ー トにす で に割 り当 て られ た メ モ リに加 え て 、

|:|:|:11:|::|:鰈欲厖

SORT_WRITE_BUFFERS'SORT_WRITE_BUFFER_SIZEの 追加のメモ リが割り当てられる。メモリを効率

的に使うには、AUTOに設定 して、直接書き込みバ ッファをオラクルが自動的に割り当てるようにする

と良い。

ソートが効率的に行われているかをチェックするには、次のSQL文 (memorysortratio.sql)を 実行

する。

SELECT a.ratio l(memory sort ratiO・ ′

decode(sign(a.ratio - 0.95)′ 1′
:SORT_AREA_SIZEは ~十分 です 1′

'SORT_AREA_SIZEを 増 や しま しょう 1)

"notes・

FROM (SELECT m.value / (m.value + d.va■ ue)rat■ o

FROM vSsysstat lm′ vSslysstat d

WHERE m.name = Isorts (memory)1

AND d.name = Isorts (disk)1)a′

実行結果

sQL> Gmemorysortratio

memory sort ratio notes

9 9 9 483 B 4s soRr_AREA_srzE(*+rled

メモ リソ ー トの割合 は 95%以 上 で あ る こ とが望 ま しい。 95%未 満 の場合 は、構 成 フ ァイル

(initSID.ora)の SORT_AREA_SIZEの 値を(最小書 き込みバ ッファの整数倍で)増やす ことを検討すると

良い。できれば、最小書き込みバ ッファの10倍以上 に設定しよう。

ソー トに使われるテーブルスペースは、CREATE USER文 のTEMPOⅣRY TABLESPACE句 で指定するが、

何も指定 しないと、SYSTEMテ ーブルスペースが使われてしまう。TEMPORARYテ ーブルスペースは、専

用のものを使 ったほうが良いので、SYSTEMテ ーブルスペースを使 っているユーザがいないか、次のSQL

文(usertempts.sql)で 確認す る。

SELECT username, temporary_tablespace
FROM dba_users

tr{HERE temporary_Labfespace ='SYSTEM' ;

実行結果

SQL> Gusertempts

USERNAME TEMPORARY TABLESPACE

(|)第 16章 データベースサーバのチューニング Cは躙錮:::i:::i:1彗 :i

DBSNMP SYSTEM

TEMPO:日 RヽYテ ー ブリレスペ ースは、 cREATE TABLESPACE文 で 、TEMPORARY旬 、NOLOGGING句 を指定

し、エ クステ ン トサ イズ をSORT_AREA_SIZEの 整数 倍 +ブ ロ ックサ イズ 、PCTINCREASEを 0に設 定 す る。

た とえば 、SORT_AREA_SIZEが 640K、 DB_BLOCK_SIZEが 4Kの 場合 、次 の よ うに設定す る。

CREATE TABLESPACE temp02

DATAFILE 1/Oradata1/dbs/rtgs/temp02.dbf

DEFAULT STORAGE(

INITIAL 6404K

NEXT 6404K

PCTINCREASE O)

NOLOGGING

TEMPORARY,

SIZE 128080K

リドゥログ

データブロックが変更されると、リドゥログバッファに対し、その内容が記録される。リドゥログに

は、変更内容がすべて記録されているため、データベースに障害が発生すると、リドゥログを元にデー

タベースを回復できる。

リドゥログは、NOARCHIVELOGモ ー ドとARCHIVELO Gモ ー ドの2つ の方法がある。
NOARCHⅣELOGの場合は、リドゥログバッファがいっぱいになって、次のリドゥログに切り替わった

場合 (チェックポイント)でも何も行わないが、ARCHⅣELOGモ ードの場合は、次のリドゥログに切り替

わったとき(チ ェックポイント)に 、元のログをARCHプ ロセスが、アーカイブ先にコピーする。

NOARCHⅣ ELOGモ ードは、単にログを切り替えるだけなので、最終的に以前のトランザクションの更

新情報を上書きしてしまうが、ARCHⅣELOGモ ードのときは、更新情報をすべて保存しているので、何

か障害が起こっても元の状態に復元できる。

リドゥログには、更新内容がすべて記録されるため、更新が頻繁に行われるアプリケーションでは、

リドゥログのチューニングが重要になる。リドゥログは、シークエンスに書き込まれるので、専用のデ

ィスクを使うことが望ましい。また、ARCHⅣELOGモ ードを使う場合には、アーカイブ処理と競合が起

こらないように、専用ディスクを2台用意し、交互にリドゥログを配置すると良い。

リドゥログに対する書き込み処理のパフォーマンスを改善するには、チェックポイントの頻度を減ら

すことが必要になる。そのためには、次の方法がある。

ロ リドゥログのサイズをかなり大きくする。

□ 構成ファイル (initSID.orめ のLOG_CHECKPOINT_INTERVAL(オ ペレーションシステムのブロック

サ イ ズ 単 位)を リ ド ゥ ロ グ フ ァ イ ル の サ イ ズ よ り も 大 き な 値 に す る 。

LOG_CHECKPOINT_INTERVALは 、前回のチェックポイントから、指定されたサイズの リドゥロ

グがディスクに書き込まれた時点で、チェックポイントを実行したいときに設定する。

□ 構成 ファイル (initSID.ora)の LOG_CHECKPOINT_TIMEOUT(秒 単位)を 0に す る。

LOG_CHECKPOINT_TIMEOUTは 、前回のチェックポイントから、指定 された経過時間後にチェ
ックポイントを実行させたいときに設定する。0の場合は、タイムアウ トは起こらない。

上記のように設定すると、確かにチェックポイントの回数は、減らせるが万一何か障害が起こったと

きに、回復に時間がかかってしまう。しかし、現在のシステムでは、ほとんど障害は起こらないので、

上記のチューニングはかなり有効である。

行移行と行連鎖

UPDATE文が行のデータ量を増やし、元のデータブロックに収まらなくなった場合、オラクルは、行
全体を格納できるデータブロックを探 し、その新しいブロックに行全体を格納する。これを行移行とい

う。行全体が1つのデータブロックに収まらない場合には、行をいくつかに分割 し、別々のブロックに格

納する。これを行連鎖という。

行移行、行連鎖が起 こると、UPDATE文のパフォーマンスが悪くなり、SELECT文 も分割された行を読
むために、複数ブロックの読み込む必要があり、余分な1/0が増える。

行連鎖が起こっているかどうかは、次のSQL文 (getchainrow.sq■)で確認する。

COLUⅦC name FORMAT A30

SELECT name, value
FROI{ v$sysstat

WHERE name = 'tab1e fetch conti-nued row,,.

実行結果

SQL> Ggetchainrow

NAME VALUE

table fetch continued row ■5980

行連鎖が起 こっている場合は、テーブルのPCTFREEが 適切でない可能性が高い。そのため、テーブル

をANALYZEし て 、行連鎖が起 こって い ることを確 か め る必要 が あ る。 そのためには、最 初 に

SORACLE_HOME/rdbms/a伽 ■n/utlchainosqlを 実行 してcha.ned_rOwsテ ーブルを作成す る。次に

以下のスクリプ ト(ana■yzechain.sql)を 実行 して、テーブル を分析する。

SET ECH0 0FF

SET FEED OFF

SET PAGES 0

SPOOL anafyzechain. tmp

●第16章 データベースサーバのチューニングdE獲囃餃躙:::::::::::||:|:|

SELECT ITRUNCATE TABLE chained_rows,1

FROM dual′

SELECT 'ANATJYZE TABLE ' I I

tname | |

' LIST CHAINED ROWS;'

FROM tab
I/,IHERE tabtype = 'TABLE' ;

SP00L OFF

SET PAGES 20

SET FEED ON

SET ECH0 0N

Ganalyzechain. tmp

SELECT t.table_name, t.pct_free
FROM (SELECT DISTINCT table-name

FROM chained_rows) c,
user_tables t

WHERE c.tabfe-name = t.tabl-e_name;

行連鎖が起こっているテーブルを確認したら、次のスクリプト(resolvechain.sql)で 行連鎖を解消

する。

DECLARE

varSQL VARCHAR2(200)′

PROCEDURE exec(varSQL_IN IN VARCHAR2)AS

nuinCur INTECER := dbms_sql.open_cursor()

numRows INTEGER,

BECIN

dbms_output.put_■ ine(varSQL_IN),

dbms_sql.parse(numCur′ varSQL_IN′ dbms_sql.NATIVE)′

num.Rows := dbms_sql.execute(numCur),

dbms_sql.close_cursor(numCur),

EXCEPT10N

WHEN OTHERS THEN

dbms_sq■ .close_cursor(nl」 mCur)′

END,

BEGIN

FOR r IN (SELECT DISTINCT table_name FROM chained_rows)L00P

1主||::::::鯰財髄D

varSQL : =

'cREArE rABLE 'l I

r.table_name ll '_tmpaS' ll
,SELECT * FROM ' I I

r.table-name | |

' WHERE ROWID IN(SELECT head_rowid ' I I

'FROM chained_rows WHERE table_name = , I I

r.table_name ll ')';

exec (varSQL) ;

varSQL :=

'DELETE FROM ,l
I

r. t.abl-e name I I

' WHERE ROWID IN(SELECT head_rowid ' | |

'FROM chained_rows WHERE table_name =

r.table_name ll ')';

exec (varSQL) ;

varSQL : =
,TNSERT rNTO , ll
r. table nme I I

' SELECT * FROM' ll
r.table_name | | '_tmp';

exec (varSQL) ;

||

varSQL : =
,DRoPTABLE' ll
r.table-name | |

'_trnip'′

exec (varSQL) ;

END LOOP;

END;

テーブル全走査の割合

アプリケーションのテーブル全走査の割合が多いときには、適切なインデックスが作成されていない

可能性がある。このことを調べるには、vssysstatの table scans(■ Ong tab■ es)と table scans

(shOrt tables)の割合を調べる。ここで、scans(1。ng tables)は テーブル全走査を行った数、
table scans(shOrt tab■ es)はインデックス走査を行った数である。

実際に調べるには、次のスクリプト(tab■ efu■■scanratiO.sql)を実行する。

隕靡蜀i::::|:||:|:

SELECT a.rat■o ''table full scan ratio"′

deCode(Sign(a.rat■ 0 - 0.1)′ ■′

'テーブル全走査の割合が高すぎます '′

'テーブル全走査の割合は適切です 1)

・1■otesl!

FROM (SELECT ■.value / (1.va■ue + s.Value)ratio

FROM vSsysstat l′ vSsysstat s

IJH:ERE l.name = ttab■ e scans (10ng tables)1

A]ヽ II)s.nそ江ne = ttable scans (short tableS)')a,

実行結果

SQL> Gtablefullscanratio

t.able fulI scan ratio notes

043476722テ ーブル全走査の割合は適切です

テーブル全走査の割合は、10%以下であることが望ましい。テーブル全走査の割合が10%を超える場合、

適切なインデックスが作成されているかどうかチェックすると良い。

16.4.3 リソースの競含
オラクルは、複数のサーバプロセス、バックグラウンドプロセスから成り立っているので、プロセス

間で、リソースの競合が起こる場合がある。特に、SGAに は、複数のプロセスがアクセスするので、ラ

ッチを使って、内部的なロックを行い、排他制御を行う必要がある。ラッチの情報は、vslatchで調べ

ることができる。ラッチの種類には、wi■■ing― tO―waitと 如mediateの 2つがある。wil■ ing― to―

waitは 、要求したラッチが取得できない場合、スリープしてから再びラッチを要求するのに対し、

inmediateは要求したラッチが取得できない場合、スリープせずに処理を継続する。vs■ atchの 以下の

項目は重要である。

gets:willing― tO― waitの ラッチの取得に成功した数。

misses:最初のwi■ ling― tO―waitの ラッチの取得に失敗 した数。

irrtrnediate_gets:mmediateの ラッチの取得に成功した数。

・ rmediate_misses:最初のinmed■ ateの ラッチの取得に失敗した数。

この節では、以下のリソース競合について学ぶ。

[ヨ バッファキャッシュラッチ

EIラ イブラリキャッシュラッチ

[三]リ ドゥログバッファラッチ

(|)第16章 データベースサーバのチューニング

:||||:|:|11::|||ll魏躙飩

ロ ロールバックセグメント

ロ フリーリスト

バッファキャッシュラッチ

キャッシュバ ッファチェインラッチとキャッシュバ ッファLRUチェインラッチによって、オラクルは

バッファキャッシュ内のデータブロックを保護している。

バッファキャッシュに新しいブロックを読み込むとき、またはバッファキャッシュをディスクに書き

込むときに、キャッシュバッファチェインラッチが必要になる。キャッシュバ ッファチェインラッチの

競合は、1/0の多いデータベースの特徴である。ラッチの競合が起きている場合には、バッファキャッシ

ュのサイズを増や し、バッファキャッシュに対 し新 しいブロックが読み込 まれる割合 を下げるか、

SQL■mderの ダイレクトロード機能を使ってバッファキャッシュをバイパスするなどの方法を使って、

ラッチの競合をある程度を下げることができる。

キャッシュバ ッファチェインラッチの競合は、次のスクリプ ト(cachebuflatchrati。 .sql)を使っ

て確認できる。

SELECT a.rat■ o l'c.ache buf ■atch m■ ssl'′

deCOde(S■ gn(a.rati。 - 0.0■)′ 1′

'DB_BLOCK_BUFFERSを 増や しま しょう '′

'DB_BLOCK_BUFFERSを 増やす必要 はありません ')
i'notesi'

FROM (SELECT misses /

decode(gets′ 0′ 1′ gets)rat■ 0

FROM vSlatch

WHERE name = tcache buffers cha■nsl)a,

SELECT a.ratio ''cache buf inlmed ■atch m■ ss 11′

deCOde(S■ gn(a.ratio - 0.01)′ 1′

'DB_BLOCK_BUFFERSを 増や しま しょう '′

'DB_BLOCK_BUFFERSを 増やす必要はありません 1)

・notest'

FROM (SELECT ■■uned■ate_m■ sses /

deCOde(ilmnediate_gets′ 0, 1′ inuned■ ate_gets)rat■ 0

FROM vSlatch

WHERE name = icache buffers cha■nsl)a′

実行結果

SQL> Gcachebuf f atchratio

cache buf fatch miss notes

000035318 DB_BLOCK_BUFFERSを 増 や す 必 要 は あ りま せ ん

(0)第 16章 データベースサーバのチューニング⊂聘蜀:1111111:||:奎 11

000007555 DB_BLOCK_BUFFERSを 増 や す 必 要 は あ り ま せ ん

キャッシュバ ッファチェインラッチのwining― tO― waitラ ッチ ミスが1%を超える場合、あるいは、

immedtteラ ッチミスが1%を超える場合には、DB_BLOCK_BUFFERSを 増やす事を検討すると良い。

バッファキャッシュのLRUリ ス トにアクセスするとき、キャッシュバッファLRUチ ェインラッチが必

要になる。システム上のLRUラ ッチの数は、オラクルによって、CPUの数の1/2に 自動的に設定される。
シングルCPUの システムでは、LRUラ ッチの数は、自動的に1に なる。もし、LRUラ ッチの競合が起きて

いる場合 |こ は、 設定ファイル (in■ tSID.ora)の DB_BLOCK_LRU_LATCHESC)4直 をCPUの数 C)1/2か ら
CPUの数の間で、増やすと良い。

キャッシュバ ッファLRUチ ェインラッチの競合 は、次のスクリプ ト(cachebuflatchrat■。.sq■)を

使って確認で きる。

SELECT a.rat■o llcache buf LRU ■atch m■ ss II′

deCOde(S■ gn(a.rat■ o - 0.01)′ ■′
:DB_BLOCK_LRU_LATCHESを

増や しま しょう 1′

'DB_BLOCK_LRU_LATCHESを 増やす必要はあ りません ')
・notes'

FROM・ (SELECT m■ sses /

deCode(getS′ 0′ 1′ gets)rat■ 0

FROM vSlatch

WHERE name = 'cache buffers lru clhainl)a,

SELECT a.ratiO `'cache buf LRU ■rrビned latch miss・ ′
deCOde(S■ gn(a.ratiO - 0.01)′ ■′

'DB_BLOCK_LRU_LATCHESを 増や しま しょう 1′

'DB_BLOCK_LRU_LATCHESを 増やす必要はあ りません 1)

1'notesi'

FR01Vl(SELECT inlmed■ ate_Inisses /

deCOde(■:mmediate_gets′ 0′ 1′ ■lmmed■ ate_gets)rat■ o

FROM vSlatch

WHERE name = 'cache buffers lru cha■ n')a,

実行結果

SQL> @cachebuf lrulatchratio

cache buf LRU latch miss notes

000241128 DB_BLOCK_LRU_LATCHESを 増 や す 必 要 は あ り ま せ ん

cache buf immed latch miss notes

:躙麒D

cache buf LRU irmed latch miss notes

000494882 DB_BLOCK_LRU_LATCHESを 増やす必要はあ りません

キャッシュバッファLRUチ ェインラッチのwill■ ng― tO―waitラ ッチミスが1%を超える場合、あるい

は、immediateラ ッチ ミス が 1%を 超 え る場 合 に は 、 DB_BLOCK_LRU_LATCHESを CPUの 数 の 1/2か ら

CPUの数の範囲で、増やす事を検討すると良い。

ライブラリキャッシュラッチ

ライブラリキャッシュラッチによって、オラクルは、共有プール内のライブラリキャッシュの解析結

果を保護する。

ライブラリキャッシュラッチは、ライブラリキャッシュに新しい解析結果を追加するときに、取得す

る必要がある。解析する前に、オラクルは同一のSQL文がすでに解析されていないか、ライブラリキャ

ッシュをさがす。そのような文が見つからなかった場合、オラクルはSQL文の解析を行ない、ライブラ

リキャッシュラッチを獲得し、新しい解析結果を挿入する。ライブラリキャッシュラッチに競合が起る

のは、アプリケーションがバインド変数を使わずに、共有することができないSQLを生み出す場合であ

る。ライブラリキャッシュラッチの競合が起きた場合、アプリケーション内のバインド変数の利用法を

見直したほうが良い。

ライブラリキャッシュラッチの競合は、次のスクリプト(libcachelatchrat■ o.sql)を使って確認

できる。

SELECT a.ratio '11■ b cache ■atch m■ ss 11′

decode(Sign(a.rat■ 0 - 0.0■)′ 1′
:できるだけバインド変数を使いましょう 1′

:ライブラリキャッシュラッチの競合は起きていません :)

''notes・

FROM (SELECT misses /

decode(getS′ 0′ 1′ getS)ratio
FROM vSlatch

WHERE name = '1■ brary cachei)a′

SELECT a.ratio l'lilb CaChe ■■llned latch miss"′

deCOde(Sign(a.ratio - 0.01)′ ■′
:できるだけバイン ド変数を使いましょう 1′

:ライブラリキャッシュラッチの競合は起きていません 1)

linotes‖

FROM (SELECT irninediate_m■ sSeS /

decode(immediate_getS′ 0′ ■′ immediate_getS)ratio
FROM vSlatch

WHERE name = 11■ brary cachel)a,

実行結果

●第16章 データベースサーバのチューニングC電鯰巫玲絋:::::|::|:|11:|::

SQL> @libcachelaLchrat.io

fib cache latch miss notes

.000187209ラ イブラリキャッシュラッチの競合は起きていません

lib cache immed l-atch miss noLes

000055279ラ イブラリキャッシュラッチの競合は起きていません

ライブラリキャッシュラッチのwi■■ing― tO― waitラ ッチミスが1%を超える場合、あるいは、

irmediateラ ッチミスが1%を超える場合には、アプリケーションでできるだけバインド変数を使うよう

にSQL文 を見直したほうが良い。

リドウバッファラッチ

リドゥアロケーションラッチとリドゥコピーラッチによって、オラクルは、 リドゥバッファヘのアク
セスをコントロールしている。

更新が発生すると、リドゥアロケーションラッチを使って、リドゥバッファに領域が割り当てられる。

リドゥアロケーションラッチは、1つ しかないため、一度にリドゥバッファに領域を割り当てることので

きるプロセスは1つだけである。

リ ドゥバ ッファに領域 が割 り当て られ た後 、その領域 に、 リ ドゥエ ン トリが コ ピー される。その と き、

リ ドゥエ ン トリのサ イズ がLOG_SInLL_ENTRY」 咀X_SIZE以下の場合 には、 リ ドゥアロケーシ ョン ラ ッ

チ を そ の ま ま 使 っ て 、 コ ピ ー す る こ と が で き る 。 リ ド ゥ エ ン ト リ の サ イ ズ が

LOG_SI阻LL_ENTRY_MAX_SIZEを 超 える場合 には、 リ ドゥア ロケーシ ョンラ ッチ を開放 し、 リ ドゥコ ピ

ーラッチを取得して、コピーを行う。マルチCPUシ ステムでは、複数のリドゥコピーラッチを使うこと

ができる。リドゥコピーラッチの数は、構成ファイル(initSID.ora)の LOG_SIMULTANEOUS_COPIES

で設定することができる。この値は、CPUの 数の2倍まで増やすことができる。シングルCPUの システム

で は、 リ ドゥコ ピー ラ ッチ が 1つ しか ないの で 、 LOG_帥ALL_ENTRY_WⅨ _SIZEに 関係 な く、 リ ドゥア

ロケーションラッチを使って、リドゥエントリがコピーされる。

リドゥアロケーションラッチの競合は、次のスクリプ ト(redoaloclatchrado.sql)を 使って確認できる。

SELECT a.rat■ o 'iredo alloc wa■ t latch missil′

deCOde(Sign(a.rati。 - 0.0■)′ 1′
lLOG_9広LL_ENTRY_WⅨ _SIZEを減 らしま しょう :′

lLOG_S〕鳳LL_ENTRY_WⅨ _SIZEを減 らす必要はあ りません `)

"notes・

FR()M (SELECT m■ sses /

deCOde(getS′ 0′ ■′ getS)rat■ o
FROM vSlatch

WHERE name = rredo a1locat■ onl)a′

111:1111:|:||:::|1鰈蒻】D

SELECT a.ratio ltredO al10C ■Ir瞑led latch m■ ssi'′

decode(s■gn(a.ratio - 0.01)′ 1′
ILOG_SMALL_ENTRY」 曇X_SIZEを減らしましょう :′

'LOG_跡慣LL_ENTRY_WⅨ_SIZEを減らす必要 はあ りません 1)

“notes"

FROM (SELECT immediate_misses /

decode(immed■ ate_getS′ 0′ 1′ i:mmediate_gets)rat■ 0

FROM vSlatch

WHERE rlame = 'redo a■ ■ocationl)a′

実行結果

SQL> @redoaf f oclatchratio

redo alfoc wait latch miss notes

000■ 2■ 524 LOG_SInLL_ENTRY_》 ∝ く_SIZEを 減 ら す 必 要 は あ り ま せ ん

redo al1oc immed latch miss notes

O LOG_mttLL_ENTRY_WⅨ _SIZEを減らす必要 はあ りません

リドゥア ロケ ーションラッチ の willing― tO― waitラ ッチ ミスが 1%を 超 える場合 、 あ るいは、

irmediateラ ッチ ミスが1%を 超 える場合には、LOG_SMALL_ENTRY MAX_SIZEを 減 らす事 を検討する

と良い。

リドゥコピーラッチの競合は、次のスクリプ ト(redoalloclatchratio.sql)を 使って確認で きる。

SELECT a.ratio l'redo copy wait latch m■ sS'i′

decode(s■ gn(a.rat■ o - 0.01)′ 1′
lLOG_SIMULTANEOUS_COPIESを 増やしましょう 1′

lLOG_S mttLTNJEOUS_COPIESを 増やす必要はあ りません !)

・notes:'

FROM (SELECT m■ sses /

deCOde(getS, 0′ 1′ getS)rat■ O

FROM v51atch

WHERE name = lredo copy')a′

SELECT a.ratio 'iredo copy iruned latch m■ ss''′

deCOde(S■ gn{a.rat■ 0 - 0.0■)′ 1′

'LOG_SIMULTANEOUS_COPIESを 増やしま しょう '′

'LOG_SIMULTZWEOUS_COPIESを 増やす必要はあ りません 1)

1'notes・

FROM (SELECT ■mmed■ ate_m■ sses /

decode(i:mmediate_getS′ 0, 1′ ■m旺ted■ate_getS)ratユ 。

(|)第 16章 データベースサーバのチューニング C匿蛛|:il:||1舞 |

FROM vSlatch

WHERE name = 'redo copy')a,

実行結果

SQL> Gredocopyf at.chratio

redo copy wait latch miss noLes

771428571 LOG_SIMULTANEOUS_COPIESを 増や しま しょう

redo copy immed latch miss notes

000277566 LOG_SIMULTANEOUS_COPIESを 増やす必要はあ りません

リドゥコピーラッチのw■■■■ng― tO―waitラ ッチミスが1%を超える場合、あるいは、inmediateラ ッ

チ ミスが 1%を超 え る場合 には 、 LOG_SIⅢ JLTttEOUS_COPIESを 増 や す事 を検討 す る と良 い。

ロールバックセグメント

更新がおきると、更新前のイメージがロールバックセグメントに書き込まれる。ロールバックセグメ

ントの数が少ない場合、競合が起きる可能性がある。

ロールバックセグメントの競合は、次のスクリプト(undOwaitratiO.sql)を 使って確認できる。

SELECT c■ ass′ rat■ o′

deCode(S■ gn(rat■ 0 - 0.01)′ 1′
:□―ルバックセグメントを増やしましょう !′

'□―ルバックセグメントの競合は起きていません ')

notes

FROM (SELECT w.c■ ass′ w.count / 1.し otal rat■ o

FROM vSwa■ tstat w′

(SELECT suin(value)total

FROM vSsysstat

WHERE name IN(1(■ b block gets'′

'COnSiStent getS'))1
WHERE w.class LIKE 12undoを '),

実行結果

SQL> Gundowaitratio

CLASS RATIO NOTES

|:::奪 ::|:1餞漑≫

save undo block

save undo header

system undo header

system undo block

undo header

undo block

o□―ルバックセグメントの競合は起きていません
o□―ルバックセグメントの競合は起きていません
o□―ルバックセグメントの競合は起きていません
o□―ルバックセグメントの競合は起きていません
o□―ルバックセグメントの競合は起きていません
o□―ルバックセグメントの競合は起きていません

ブロック待機の割合が、1%を 超える場合、ロールバックセグメン トの追加を検討すると良い。なお、

同時 トランザクション数とロールバックセグメン トの数の推奨値は以下の表のようになる。

同時 トランザクション数 (n) □―ルバックセグメン ト数の推奨値

n く ■6

16 く= n く 32

32 く=n

4

8

n/4

フリーリス ト

オラクルは、挿入可能なブロックを探すために、フリーリス トを使っている。そのため、複数のセッ

ションで同時に挿入が行われる場合は、フリーリス トの競合が起こる可能性がある。また、ブロックの

使用率がPCTUSEDを 下回った場合に、挿入可能なブロックとして、そのブロックがフリーリストに再登

録されるので、更新、削除の場合もフリーリス トの競合が起こる可能性がある。フリーリス トのデフォ

ル ト値は1で ある。

フリーリス トの競合は、次のスクリプト(free■ istwaitratio.sq■)を使って確認できる。

SELECT ratio l'free ■ist wait ratio:'′

decode(s■ gn(rat■ o - 0.01)′ 1,

'アクティブなテーブルのフリーリストを増やしましょう '′

'フ リーリストの競合は起きていません ')
!inotes''

FROM (SELECT w.count / ■.total ratiO

FROM vSwa■ tstat w′

(SELECT surl(value)total
FROM vSsysstat

WHERE name IN(ldb block getsi′

'cons■ stent getSI))1

WIIERE w.class = :free listi),

実行結果

SQL> Gf reelistwaitratlo

(|)第 16章 データベースサーバのチューニング □鰺輻::

free Iist wait ratio notes

oフ リーリストの競合は起きていません

フリーリストの競合の割合が、1%を超える場合、挿入、更新、削除が多いテーブルのフリーリストを

増やすことを検討すると良い。その手順は次のようになる、

1.テ ーブルのエクスポー ト

2.表の削除

3.FREEH釘パラメータを増やしてテーブルを再作成する。

4.IGNORE=yオ プションで、データをインポートする。

16.5 まとめ

この章では、オラクルのパフォーマンスや競合の状態をモニタする手法を学んだ。オラクルのパフオ

ーマンスを分析する前に、オペレーティングシステムのパフォーマンスの検査をする必要がある。それ

ぞれのオペレーティングシステムによって、その方法は異なるが、基本的な原則は次の通りである。

□ 物理メモリの不足は、ほぼ間違いなくパフォーマンスの大幅な低下をもたらす。メモリ不足は、し

ばしば、高い割合のページングやスワッピングとしてあらわれる。vmstatや sarな どのユーティリ

ティを使って、定期的に監視する必要がある。

□ 特定のディスクが継続してビジーな場合、1/0に障害が起る可能性がある。データファイルを複数

のディスク装置上に分散したり、バッファキャッシュのサイズを大きくしたり、SQL文 をチューニ

ングすることで、1/0負荷を軽減することができる。

□ CPUの使用率が高いことは、必ずしも障害ではない。CPUの能力を十分に使っているといえる。しか

し、継続してCPUの使用率が高い場合は、無駄な処理がCPUリ ソースを消費している可能性がある。

解析を減らしたり、ソートなどのリソース集中型の処理を減らす事で、CPUの負荷を軽減できる。

オラクルのアーキテクチャは、複数のサーバプロセス、バックグラウンドプロセスが、共有メモリと

データファイルの間で、複雑な相互作用を行なう。一部にボトルネックがあると、全体のパフォーマン

スが悪くなってしまう可能性がある。共有メモリや1/0ばかりでなく、プロセス間の競合もモニタする必

要がある。

共有メモリについては、次の項目をチューニングする。

ロ バッファキャッシュ。バッファキャッシュのヒット率は、必要とされたデータブロックをバッフ

ァ・キャッシュ内で見つけることができた割合を示す。ほとんどのアプリケーションでは、この値

は90%を超えることが望ましい。

E〕 ライブラリキャッシュ。ライブラリキャッシュには、SQL文の解析された結果が格納されている。

ライブラリキャッシュのヒット率は、99%以上であることが望ましい。

ロ ディクショナ リキャッシュ。ディクショナリキャッシュには、データベース内のオブジェク トの構

造についての情報がキャッシュされる。ディクショナリキャッシュのヒット率は95%以上であるこ

とが望ましい。

ロ リドゥログバ ッファ。リドゥログバ ッファのサイズが小 さすぎると、バッファを使用するときに待

機しなければいけない場合がある。スペース待機の割合は1%以下であることが望ましい。

1/0については、次の項目をチューニングする。

ロ ソー ト。オ ラクルは、ソー トが必要 なとき、SORT_AREA_SIZEで指定 したサイズでソー ト作業が

収まる場合には、メモリ上でソー トを行い、指定 したサイズで収 まらない場合には、TEMPORARY
セグメン トを使 ったディスクソー トが行われる。メモ リソー トの割合は95%以上であることが望ま

しい。また、 SORT_AREA_SIZEは 、最小書 き込みバ ッファ(た いていのプラッ トフォームでは

32K'2)の 10倍 (640Ю以上に設定す ると、大量のソー トを行 う場合に、バ ッファキャッシュをバイパ

スして、直接ディスクに書き込むことができるようになるので、パフォーマンスを改善できる。

ロ リドゥログ。データブロックが変更 されると、リドゥログバッファに対し、その内容が記録 される。

リドゥログに対する書き込み処理のパフォーマンスを改善するには、チェックポイントの頻度を減

らすことが必要になる。

□ 行移行と行連鎖。行移行、行連鎖が起こると、UPDATE文のパフォーマンスが悪くなり、SELECT

文も分割された行を読むために、複数ブロックの読み込む必要があり、余分な1/0が増える。定期

的に、行移行、行連鎖は解消しておく必要がある。

ロ テーブル全走査の割合。アプリケーションのテーブル全走査の割合が多いときには、適切なインデ

ックスが作成 されていない可能性がある。テーブル全走査の割合は、10以下であることが望ましい。

リソースの競合については、次の項目をチューニングする。

ロ バッファキャッシュラッチ。キャッシュバッファチェインラッチとキャッシュバッファLRUチ ェイ

ンラッチによって、オラクルはバ ッファキャッシュ内のデータブロックを保護 している。キャッシ

ュバッファチェインラッチの競合が起きている場合には、バッファキャッシュのサイズを増やし、

バッファキャッシュに対し新しいブロックが読み込まれる割合を下げるか、SQL*IЮ aderの ダイレ

クトロー ド機能を使ってバッファキャッシュをバイパスするなどの方法を使って、ラッチの競合を

ある程度を下げることができる。キャッシュバッファLRUチ ェインラッチの競合が起きている場合

には、DB_BLOCK_LRU_LATCHESの値をCPUの数の1/2か らCPUの数の間で増やす。

ロ ライブラリキャッシュラッチ。ライブラリキャッシュラッチによって、オラクルは、共有プール内

のライブラリキャッシュの解析結果を保護する。ライブラリキャッシュラッチの競合が起きた場合、

アプリケーション内のバインド変数の利用法を見直す。

ロ リドゥログバ ッファラッチ。リドゥアロケーションラッチとリドゥコピーラッチによって、オラク

ルは、リドゥバ ッファヘのアクセスをコントロールしている。リドゥアロケーションラッチの競合

::彗 |||:::|:11:|::::量輻鉤

(|)第 16章 データベースサーバのチューニング cm躙 :::::|:||:|::|:華

が起 きて い る場合 に は 、 LOG_SlmLL_ENTRY」 後 X_SIZEを減 らす事 を検 討 す る。 リ ドゥコ ピー ラ

ッチ の 競 合 が起 きて い る場 合 には、LOC_SIMULTNJEOUS_COPIESを 増 やす事 を検 討 す る

ロ ロールバックセグメント。更新がおきると、更新前のイメージがロールバックセグメントに書き込

まれる。ロールバックセグメントの数が少ない場合、競合が起きる可能性がある。ロールバックセ

グメントのブロック待機の割合が、1%を超える場合、ロールバックセグメントの追加を検討する。

ロ フリーリスト。オラクルは、挿入可能なブロックを探すために、フリーリストを使っている。その

ため、複数のセッションで同時に挿入が行われる場合は、フリーリストの競合が起こる可能性があ

る。フリーリストの競合の割合が、1%を超える場合、挿入、更新、削除が多いテーブルのフリーリ

ストを増やすことを検討する。

魏鼈 `A爾躊鶉

A「ER SESSIC)N SET SQL TRACE・

ALい′AYS_ANTI」〇IN… ………… ・
ANALYZE TABLE・ ……………………

On。 lyzechOin.sql・・・ ・ ・ ・・ ・・・ ・・

AUTC)TR,A([〕 E・ … … ……・ ・…
AUTOTRACEの オプシヨン … ・…
AVG… ………・ ・ ・・…………

瞼蝙艤B羅諫辣

B■reeイ ンデックス ・ … ……
bufcocheF「 eerOlio sql… ………・・ ・

buた。cherOlio sq卜 ……・ ・ … …・―

隋蝙爾CM輻粽
cOchebufl。 lch「。||。 sql・ ・・・・ ・・・・・・

CACHEヒ ン ト……… … … ……

choined「 owsテーブル … … ……

CONNECT DATA ・……
COUNT… ………・ ・………・……
COUNT関数 …… … … … … …
CREATE CL∪ STER文のHASH KEYS句

CREATE CL∪ STER文のSIZE句 …… …

CREATE TABLE AS SELECT… … ・・

鰈漑MD饉玲鰈・

DB 3L()CK BUFFERS… ………・・………・……

DB BLOCK LRUい 、TCHES ……… ・… ……
D3VVRITERS・ ・・・・・………・…・・ ・・・・・・……

DB/2… ・・―・・…… ・……・・・・・ ・……
DBMS S[SSI()N.SET SQL TRACE・ … ・ ……
dbms_shored_p。 。l keep ……・・・・・ ・・・・…・・・

DBMS SYSTEM SET SQL TRACE IN SESSIC)N

D3VVR ・・ ・・・・・・・・ ……………・・・・・・ ・……

DECODE… ……・ ……………・……………・…

DISTINCT… ………・ ・…………… ・………
DRIVINC SITE… ……… ・………… ・…………

鸞輻 ,E欲躙
EXISTS ・・・・

EXP臥 IN PLAN

FIRST RC)ヽへ/S・・

f「eelis、 vclilrOliO sql

・ア5

160
・44
298

82
・83

25

140
285
155
293

蜀靱:IG藝 :,躙孝:

getchoinrow.sql " "
grontselectvdollo r. sq I

:肇

`護

躙 H場:蝠燒

HASH A」 ・ ・…
HASH AREA SIZE
HAVNG句 ・…
HC)LD CURSOR

鰈隋鰈 l粽輻鰈

N演算子を含むサブクエリ ・・ …
IN句 …………… ・……………・…
INITRANS ― ・・…………………
INTERSECT… …………………・……

ioslol ・ ・・・・・・・・・ ・・・・・・・・・・

ITL… ………… ・・ ……… ………

晰魃 IL憾篤鶉鶴

|lbcOchel。 lchrOllo sql ・・・・・

LIKE句 … … ……… … ・
L(DG BUFFER… ・ ・ ・……
LOC CHECKP()INT INTERVAL

LOC CHECKPOINT TIMEOUT・
LOC SiA/ヽ∪LTANEO∪ S COPIES

tOC SMALL ENTRY´ vへAX SIZE
LRU …………… …

:欝 :`::饉 ::::轟 M躙 :塚
、́′ヽA〉← … … … ・ ・… …

memo「 ysorlrollo sq卜 …

MERGE A」・・…………

′vヽIN … ………・・ ・

～
へIN∪ S・ … …………
MINUSを用いた逆結合

::::|:|::::議 :::ミ :|1妻:::IN鰈 11N:

NO… … … ………… ・
NOT EXISTSを 用いた反結合
NOTINを用いた反結合…
NOT NULL値の検索… ……

NULL値 ・……………・……

NULL値と3論理値 … ……
NU[L値の検索… …

298
289

・54
292

291

292

303
2ア5
・1ア

・ア6
182
・ア6
2ア4
205
146

200

136

68

304
・9/
294
29ア

298
305
305
109

・33
138

13/
・93
25ア

25
・92

,黎躙 F鑢鶉蝙

244

308

:::::::蝙蛛画口D

98
109

140
……… ……………25

索引 α蜃躙::

晰躙 101隋靡

○円IMIZER GOAL
(1)PTIハムIZER AAC)DE

ORDEREDヒ ント・

ORDERヒ ント……

OR句 ・ … …

隧鰊:鱗 P雖躙

P∧ RALLELヒ ント

PARALLEL句 ……

PCTFREE…・……

PCTUSED… ……

PL/SOLテ ーブル

壌輻鶉 R麒:輻 :

R∧ ID … ・… ・・…
RAIDO… ……… ……
R∧ID l… …… ・………

RAID5… ……・ ・……

RAWパーティシ∃ン
REBUILD句 … ・………

redo(】‖oclolchroliO sql

redovvoll「olio sql・・・・・

RELEASE CURS(DR・ …

resOlvechoin sql・・・・・・

ROLLBACKセ グメン ト

「OwcOcherOlio sql ・・・・

ROWIDア クセス ・・

躙鰈艤S鰈塚蝙

SEQUENCE CACHE ENTRIES―・…

SET TlMING… …・・ ・…… ・・…
SET TRANSACTION文 … ………
SHARED POC)L SIZE …・ ……… ・

SORT∧ REA SIZE… ………… ・…

SORT DIRECT VVRITES …… ・・

SQL TRACE… ……・……… ………
SQL/DS… …… …………・…………
sqloreo sql・ ・・ ・・・・・・ ・・・・ ・・ ・

SQL文の共有……・・ ……… ……

SQL文の経過時間の測定…… … …

STARヒ ント …… ……… ………
STDDEV・ ・… …… ・ ・…… ・……

SUM…・ … ・……… …… ……

Sysbm R… ・・…… ・………… ・…

靡鼈鰺T艤靡鰈

bblefu‖sconЮ‖o.sq卜 … ・…………

・89
119
120

11ア

98

TEMPOARAYテーブルスペース

liming sql・ ………………・・……

lkprOf …・ ・…………・……

lop… … ……… ………… …

lrOcesessiOn sql ・・・・・ ・ ・・・・・

TRUNCATE ・… ・……………

襲籍輻鷺U炸躙 :

undowol‖ ollo sql・

∪NION… ・………
∪NION ALL・ ・・…

UNRECOVERABLE句
∪SE HASHヒ〕ノト・

USE NLヒ ント・・

∪SER DUハムP DEST・

useriempls sql ……

u‖choin sql… ・ ・…

鰈熔辣V鑢饒辣

v$lotch " "'
v$librorycoche

v$rowcoche
v$sysstot "
vmstot " '

隕隕辣W輻 輻

VVHERE C∪ RRENT C)F… … ・……

蝙隋 X鱗躙鶉

xp10n.sq卜 ・‐・・ ・・・・ ・・・・・・・・・・・・・

隋鰈麟Y隧躙鰈

YES―・ … …… ………… ……

輻輻 ア輻躙

アーカイブ………・………… ・・
暗黙のインデックス ………・………

鰈躙饉オ 隋玲

オプティマイザー・…………………

オプティマイザゴール……・ ……

オプティマイザゴールの設定……

オプティマイザの選択 ……… ……

解析 …… …
改善の可能性

階層クエリ・…

階層的なクエリ

階層モデル ・

276
85
・ア8

284
ア6

164

216
215
10ア

10ア

186

.268

.268

268
268
・280
・20ア

′306
294
293
・299
2ア6
・294
-3ア

301

293

294
291

284

298

８

　

　

　

ア

　

　

　

３

2ア 3

・56

300

輻躙 :,力 蹂
`ζ

輻

32

:華lil::蝙馴Э

仮想メモリ… ……・
カーソル … ………
外部キー … … ……
外部キーとロック ・・…
外部結合…… ………
外部結合を用いた反結合

輻輻キ輻鰊
キャッシュ ……・………… …… …
キヤツシュバッフアLRUチ ェインラッチ
キヤツシユバツフアチェインラッチー

共有プール ……… …・ ・… …
イ予移行 ・…… ・……… ・… ・ ・ ・
行連鎖…… … …… … …

絋鰈:ク 輻隋

クエリコーディネータ・… … …
駆動サイト……… …………… …

グループ演算 … …………
グループ化… ……・… … ・

:11:li:|::|:||::|:|:111:1癬 ケ 1:111:|:::|:||:::i:|:||||:`|111:lil:

結果セット… ……・ ……
結合 … …… ・…1・
結合インデックス ・・…

結合インデックスの部分指定

瞼鍼鰈コ 雉鰈蝙

コストベースオプテイマイザ ………

コストベースオプテイマイザの詳細
コミット …… ・……… …… …

魃蝙 サ 鰈鰊

再帰SQL・ ・…・……………・
最小書き込みバッファ …・ ……
最大値と最小値… ・…・ …
サーバプロセス・ ・…… ………

サブクエリ ー・ …… … …

餘躙 シ 鰺晰

シークエンス ・……・ ・…… …
システムグローバルエリア ・ …

集合演算子 …… … … ………
集合関数 …… ……・…… …
自己結合 ― ・ ・…… ………
実行計画の解釈・・……・……

実行とフェッチ……・……

人工的なプライマリキー…… …

鰈隋 ス 隋躙

スキップされた連続数・……・・

スター結合… … … … …………
ストライビング… ……… ………

スナップショットログ ………
スナップシ∃ットを用いる ……
スワッピング… …… ………
スワップフアイル… ……・………

:醸 :護:聰:薫 セ魃蝙

セグメント

セータ結合

11::奎 :|:::翻 ::雛 ソ 鬱:儡 :蕉:

相関サブクエリ ー …

挿入とフリーリスト…

ソート…・ ……

ソートとグルーピング

ソートマージ結合・・

::隋魃 夕 漑輻

単純サブクエリ

鰈隧 テ 躙輻

テーブルスペース … … ………
テーブル全走査………………

テーブル全走査の割合… .… …
テーブルの結合 …・ ・・………

テンポラリセグメント………・・

ディクショナリキャッシュ ………

ディスクビージー…… ・………・
ディスクリートトランザクシ∃ン・

データ操作言語 ・ ・…………
データ定義言語 …… ・…… ……
データファイル… … …・…… …

データブロック… ……… ………

鋏饒‐卜鰈輻

統計情報の収集 ― ・・
トランザクション…

トレースフアイルの位置 …

動的パフォーマンスビュー

漑鰊‐ナ・鰈蛹議案
内部結合

輻隋ネ諫隋
ネストされた結合 ……… ・…
ネストされたループ結合 ……… …

…・ 260
・ …303
……302
265′ 2ア 8

……298
… ・298

204
124

268
195

194
284
284

264
・23

129

40
44

39

36
295
152

265
・22

・44
・26
アア

289

254

22

114
・38

索引 ⊂贔鰤::11::|::|:::

ネットワークモデル

1,11::|:::::::::1::麟 :盆 ハ 驚茎1麟::磁 |:菫|

八イウォータマーク ー ・ ・…

配列挿入・ … … … … ……

配列フェッチ ー… …
八ッシュキー参照 … …・………

八ッシュクラスタ ー ……

八ッシュ結合 … ・ ……
反結合 …………… ……………

反結合ヒントを用いる…・…

バインド変数… ・ … ……
バックアップ…… …… ……

バックグラウンドプロセス・

バッファキャッシュ ー・ ・
バッフアキヤッシュのヒット率

パッケージ ー … …
パーティションテーブル ー

パーティションビュー…………

パフォーマンス統計の読み方 …

パラレルスレーブプール ・…

パラレル度数 … … …………

輻輻 ヒ 輻 蠅

悲観的ロック戦略 …… ……………
ヒストグラム… …… … … ・一
ヒストグラムとバインド変数 …… …

非同期1/O ・ … ……… ・ …
ヒント……… … … ……
ヒントとその効果 一 ……… ・・ …

ヒントの構文エラー………・…………

ヒントを使用したアクセスパスの変更

ヒントを使用した結合順序の変更 ……

ビットマップインデックス ……… …

ビュー・一 ・…… … … … ・…

鰈隋俯フ
1魃
蝙

不必要なソート … … …… …

フリーリスト… …… … ……

ブランチブロツク ・ …・ ・
ブロックサイズ ・… …・ …
分散結合 …… … ……………
文の自動変換 … … …・ ・
プランテーブル …………………

プランテーブルのデータの整形

ヘッダブロック
ページアウト
ページイン……

ページフォルト….… ・… …

鰈鰈 マ 魃躙

マルチスレッドサーノい ・…

輻輻 ミ :`黎蜀

ミラーリング … ・………

鰈漑漑コ_屁咆魏

ユニークインデックス ……

輻輻 孝iラ 蝙鋏粽

ライブラリキャッシュ・…… ……

ライブラリキャッシュラッチ ……

楽観的ロック戦略…… …・ ・一

ラッチ … … …… …… ……

1靱:櫻 レ輻輻攀|

列に対する関数や演算子の使用

鋏鰈 □ 躙 隋

ロック・…・ ・ … ・…
□―ルバックセグメント・ ……

|:I輻::Э り :糠蝙|

リドゥバッフアラッチ

リドゥログ … …

リドゥログバッファ…

リドゥログフアイル…

リーフブロック ・ ・
リレーショナルモデル

鰈輻ル魃鶉

ルールベースオプティマイザ……… … ・40′ 232
ルールベースオブティマイザのアクセスパスのランク
… ・一・ ・ …・ …… ・43

ルールベースオプティマイザの詳細 … ……………42

16 284

56

10ア′164
………・ ・ 39

36′ 110

3ア

61′ 103

38,114′ 116′ 220
23′ 13ア′221

140
34′ 90′ 232
・ ・2ア 2
・265

265′ 2アア

…・ 291
181

193
… ………191
… ・……83
・ ・ 215

… … 2]]′ 213

2/9

268

292
304
259
28ア

94

39′ 258
264′ 30ア

146
308
54
109

19ア

42
68
・69

４

５

５

５

８

８

::熔晰 :′ヽ 議輻 (:;登

著者略歴

Guy Harrison(ガ イ・ハリソン)

10年以上にわたって、データベースに関わるシステム開発、システム管理、コンサルタントに従事。い

くつかの大規模アプリケーションのパフォーマンスチューニングを統括した。

訳者略歴

比嘉 康雄 (ひが やすお)
1968年生れ。1992年、東京工業大学・生命理学部卒業。同年、電通国際システム株式会社入社。

現在、株式会社電通国際情報サービスの金融システムコンサルティング部で、金融系のシステム開発

の業務に従事。データベースが得意分野。シャンパーニュとブルゴーニュのワインをこよなく愛する。

●本書の内容に関するご質問は、小社出版部宛まで必ず
書面にてお送りください。電話による内容のお問い合
わせはご容赦ください。また、本書の範囲を超えるご

質問につきましてはお答えできかねる場合もあります
のであらかじめご承知おきください。

Oracle SQLチユーニング
Orac!eの潜在能力を引き出す実践的チューニングガイド

1999`年111

2001`年 6

初版第1刷発行
初版第3刷発行

日日

同
国

月

月

■著者

■訳者

■発行人

■発行所

■編集

■lDTPラゴーデイン

■装 頓

■印刷 十 製本

ガイ・ハリソン

比嘉 康雄

三輪 幸男

株式会社ピアソン・エデュケーション

〒 160‐0023東京都新宿区西新宿 &14-2イ 西新宿 KFビル 101
出版営業部 電話 (03)3365-9005
出版編集部 電話 (o3)3365-9006

FAX(03)3365-9009

江田 直史
株式会社あとらす二十一

株式会社あとらす二十一

昭和情報プロセス株式会社

Tmslation Copyright O 1999 by Psmon Education Japan.
Oracle SQL: High-Perfommce Tming by Guy Harisofl
CoplTight @ 1997 by Pretice HaIl PfR Prentice-Hall, Inc., A Simon & Schuster Company.
A.ll Rights Resetred.

Published by anmgement with the original Publisher, prentice-Hall, Inc., A simon & schuster compatry.

No part of this book may bc“ pЮ duccd or ta■smittcd m aly bml or by any mcans,clcctromc or mcchaical,mcludmg
photocopying,rccOrdlng Or by any i:f10rinatiOn stOragc rctrlcval systcin,withOut pcrllIIssion from the Publlshcr.

本書の内容を、いかなる方法においても無断で複写、転載することは禁じられています。

(株)ピ アソン・エデュケーションは、 1日 (株)プ レンティスホール出版と旧アジソン・ウェスレイ・パプリッシャーズ (株)が統合
した会社です。

PrintCd inJapan

ISBN4-89471‐ 1イ9-4

ISBN4-89471-149-4 C3004 ¥4500E

株式会社ピアツッ・エデュケーション
定価 (本体4,500円 十税)

|||‖ |||||||‖ ||||‖ |||‖ ||‖ |

9784894711495

|‖ |‖‖|‖ ||||||‖‖||||‖ |
923004045008

本書では、業務アプリケーションを開発する上で、不可欠なチュー

ニングテクニックを紹介し、様々なSQL文の実行計画を分析す

ることで、実践的な知識と実際にパフォーマンスを改善するため

のノウハウをマスタする。単にチューニング理論を説明するだけ

ではなく、実例を元に、体験的にチューニングの効果をつかむこ

とができる。データベースプログラマ、システム管理者必携。

１
■
―
―
―

―
―
―
＝
―
―
―
―
―
―
―
―
１
１
ｌ

ｌ
ｌ
ｌ
ｌ
ｌ
ｌ
‥
‥
ｌ

ｌ
ｉ
ｌ
ｌ
●ｌ
１
１
１
１
１
Ｉ
ｌ
ｌ
ｌ
ｌ
ｌ
ｌ
ｌ
ｌ
ｌ
■
ｌ
ｌ
ｉｌ
ｉ
‥
‥
‥
‥
ｉ
ｌ

ｌ
１
１
‥
１
‥
１
１
１
‥
‥
ｉ
ｌ
ｉ

ｉ
ｌ
ｌ
ｌ
ｉ
ｌ
１
１
ロ
ー
ー

ー

日
Ｊ
Ｉ
■

，‐
―
ロ
ー
■
■

