
パフォーマンス改善と事前対策に役立つ

▲

■■■ ‐
・
・

 TIIIIIIIIIIIIIIIIIIIII‐ |||

本気で学ぶ実践的な

考え方とテクニック

加藤祥平・中島益次郎 著

現場で生かせ

惜しみなく伝授!

′′:

´
一・

‐口■ロ

■
■
ョ

SQLパフォーマンス問題の本質

効果的な解決法&予防法を詳解!!

この…冊ですべてマスター

「IT'「=~=~~~

|1理解度をはかる例題を掲載 嘔‖日
SHOEISHA

週

パフォーマンス改善と事前対策に役立つ D
D

■
■■■■

■■■■

_ ▲ ▲

ング
本気で学ぶ実践的な

考え方とテクニック

1加藤祥平 0中島益次郎 著

駆
¨

劃

Ｄ
ピ
Ｆ

パフォーマンス改善と事前対策に役立つ

S
■■■■

ング■■■■

本気で学ぶ実践的な

考え方とテクニック

加藤祥平・中島益次郎 著

S=
SHOEISHA

●1

■‐
‐
'

1囀 ■‐

=■ “
・
''―

|' .'

.
‐・
‐ ・・ ・‐'・

｀
'‐
・―
=||. ~・

・

.・・

 .|・
.|●|

‐.

・

●

●

率
．
１

‐

― ‐ . | ~ .

11 _ ・ ■|

鋼
熙機器一、．、̈
．̈．

・ 1.

. |‐ ||||■■・ |■■‐ |■ |

:す
・鶴推鶴翻
まま・
ケ 1淵

_ , 鑑J■■■

麒盗

翔泳社 ecoProjedの ご案内

株式会社 翔泳社では地球にやさしい本づくりを目指します。制作工程において

以下の基準を定め、このうち4項 目以上を満たしたものをエコロジー製品と位

置づけ、シンボルマークをつけています。
/JheCt

装丁用紙 無塩 素漂 白パルプ使用紙 あるい は

再生循環資源 を利用 した紙

有毒な有機塩素化合物発生の軽減 (無塩素

漂白パルプ)

資源の再生循環促進 (再生循環資源紙)

○

本文用紙 材料の一部に無塩素漂白パルプ ある

いは古紙を利用

有毒な有機塩素化合物発生の軽減 (無塩素

漂白パルプ)
ごみ減量・資源の有効活用 (再生紙)

製版 CTP(フ ィルムを介さずデータから
直接プレートを作製する方法)

枯渇資源 (原油)の保護、産業廃棄物排出
量の減少

○

印刷インキ*
○

難細裂化ホットメルト 細裂化しないために再生紙生産時に不純物

としての回収が容易

製本 メル ト

装丁加工 植物性樹脂フィルムを使用 した加工

あるいは フィルム無使用加工

パール、メタリック、蛍光インキを除く

本書内容に関するお問い合わせについて

●免責事項

※本書の出版にあたっては正確な記述に努めましたが、著者および出版社のいずれも、本書の内容に対してなんら

かの保証をするものではなく、内容やサンプルに基づくいかなる運用結果に関してもいっさいの責任を負いません。

※本書に記載されている画像イメージなどは、特定の設定に基づいた環境にて再現される一例です。

※本書に記載された URL等は予告なく変更される場合があります。

※本書に記載されている会社名、製品名はそれぞれ各社の商標および登録商標です。

※本書ではTM、 ①、◎は割愛させていただいております。

本書に関するこ質問、正誤表については、下記のWebサイトをこ参照ください。

ご質問 http://www.seshop.com/book/qa/

正誤表 http://wwwseshop.com/book/errata/

インターネットをこ利用でない場合は、FAXまたは郵便で、下記にお問い合わせください。

〒 160‐0006 東京都新宿区舟町 5

(株)翔泳社 編集部読者サポート係

FAX番号 :03-5362‐ 3818

電話でのこ質問は、お受けしておりません◇

○

|

1枯渇資源 (原油)の保護、生産可能な農業

1資
源の有効利用

植物油 を含 んだインキ

|

1枯渇資源 (原油)の保護、生産可能な農業

1資
源の有効利用

|

はじめに

システム構築プロジェクトに関わる皆さんであれば、多くの方々がサービスイン直前

のパフォーマンス問題に直面した経験をお持ちではないでしょうか?

。 来週サービスインなのにパフォーマンスが想定の 1/10しか出ていない……

。運用中にパフォーマンスが悪くなつてきた。改善を依頼されたが、どうしようか……

私たち Oracleコンサルタントもサービスイン直前やシステム運用後にパフォーマンス

問題が発生し、困っているお客様のご支援を多く経験してきました。最初は画面が遅い、

バッチが遅いという話から始まりますが、突き詰めていくと、結局はSQLのパフォーマ

ンスに問題があり、プロジェクト後半で時間がない中で、SQLチ ューニングを必死で行

なうといった現場を多く見てきました。

このような SQLパフォーマンス問題、SQLチューエングの苦労を世の中のプロジェク

トから少しでも減らしたいと思い本書の執筆を始めました。

本書では以下の 3つのテーマを掲げています。

。 SQLパフォーマンス問題の発生理由を捉える (Partl)

o SQLパフォーマンス問題を「解決」する (Par曖)

。 SQLパフォーマンス問題を「予防」する (Part3)

起こってしまったSQLパフォーマンス問題は何としても「解決」しなくてはなりません。

そのための SQLチューエングのテクニックやノウハウから説明していきます。

また、ほとんどの現場においてパフォーマンス問題は起こるべくして起きたケースが

多いと感じています。パフォーマンス問題を起こさないためにはどうするべきか?フ
°
ロ

ジェクトの初期の段階で、何か工夫はできないのだろうか?といつた「予防」の観点で

も話を進めていきたいと思います。

今、まさにSQLパフォーマンス問題に直面している、何とかしなくてはならない、手

早くSQLチューエングスキルを身に付けたいという読者の方はPart2の “解決編"をぜ

ひ読んでみてください。定型的にできる基礎的な SQLチューニングから、Oracleのアー

|

キテクチャを踏まえた応用編に至るまでステップアップしながら説明をしています。

とはいえ、読者の方々のさらなるステップアップとして、SQLチューエングのテクニッ

クといった表面上の話だけでなく、SQLパフォーマンス問題の本質を考え、システム全

体視点、プロジェクト全体視点にまで、ぜひ視野を広げて頂きたいとも思っています。

そのような思いも加味して構成した本書を読みながら、

SQLパフォーマンス問題の本質を知り、その解決テクニックを身に着けた上で、その

予防のためにプロジェクトレベルでの発信できるようになる。

とステップアップしてもらえればと思っています。

ステップアップされた読者の方々がプロジェクト内で活躍し、少しでもSQLパフオー

マンス問題が減れば幸いです。

【謝辞】

この本を手に取って頂いたすべての皆様、本書の執筆にあたり図版作成に協力してく

ださった瀬尾美里さん、岩本友香さん、丼上真美さん、コンテンツ作成に協力してく

れた内田慎介さん、本書の執筆を陰ながら支えてくれた家族に感謝します。

2011年 12月

加藤 祥平、中島益次郎

【免責事項】

本書はOracle Databaseの 製品サポートとは無関係ですので、本書を元にOracleサポートに問

い合わせることはご遠慮ください。また、本書で紹介するチューニングアドバイザ機能などを使

用するためには、追加ライセンスなどが必要な場合があります。詳しくはOracle社ホームページ

(http:/ん岬woraclecojp/)を確認願います。また、本書図中の E■eTHse Managerの 画面などは

説明の都合上、一部加工してあります。

|

iV

趙灘 ::il:111 li:i:轟
CONTENTS

目

次

機 ||
CHAPTER l SQLチ

ュ … ニ ン グ は な ぜ 必 要 か ? 2

澤

SQLパフオーマンス問題とは?
確認問題 ……… .… …………
回答例

CHAPTER 2な
ぜ SQLで パ フ オ ー マ ン ス 問 題 が 起 き や す い の か ?

２

５

５

　

６

SQLの言語的特徴 .… …………… … … … .…
記法に対する柔軟性が高い

処理ロジックを意識させないコーディングができる

処理方法はデータベースに任されている .… …

確認問題 ……… … ………… … … .… …
回答例

CHAttER 3な
ぜ SQLパ フ ォ … マ ン ス 問 題 で 苦 し む の か ? 10

６

６

７

８

９

９

蝙‐■

SQL文を記述する際の状況……… .

SQLのパフォーマンス確認フエーズ
ブロシェクトスケジュール上の問題
修正範囲の問題

SQLの設計/記述を行なうフェーズ
設計者/DBA/開 発者の分担構造 .

確認問題 ………… ...… …
回答例

10
11
11

12

13
14
15
15

甕 |

16
16

17
18
18

CHAttER嗜 瞼 Lパフオーマンス問題の「照測 と 自開盲」 16

SQLパフォーマンス問題が減らない要因や課題
課題を解決するためのテーマ

本当の意味での SQLチューニング … `… ……
確認問題 …… .… ……………… .… .… ……
回答例

いけER 5 SQLはどのように処理されるのか 19

Oracieデータベースの構成要素 … .… … .… …
SQL処理の流れ .… ………… .… ……………
SQLはどうやって処理されているのか (参照編)
SQLはどうやって処理されているのか (更新編)
確認問題 … .… ………… .… ……… …………
回答例

９

１

２

３

６

６

１

２

２

２

２

２

|

V

PART

m SQLパラォーマン不問題の琴申と原因を探る

瑕多
.

目 ‐

CHAttER 6 SQLパ
フ オ … マ ン ス 問 題 の 解 決 ア プ ロ ー チ

チューニングとは ……………………… .…
SQLチューニングが必要となる理由
SQLチューニングの流れ
SQLパフオーマンス問題への解決アプローチ
確認問題 …………………………… .… .…
回答例

CWTER 7定
型的な SQLチ ュ…ニング 32

SQL記述の際に最低限守るべきルール……………………
定型的なSQLチ ューニングとは?… … .… … .… ………
定型的な SQLチ ューニングの定義
定型的な SQLチューニングが可能な範囲
SQLコーディングルールを守る意味は?.… …………、…
SQLコ ーディングルールの目的
定型的な SQし コーディンクルール

SQLコ ーディンクルールに記載すべきそのほかのルール
SOLコ ーディングルールのカテコリ

性能問題を避けるための SQLコ ーディングルール…… .…
バインド変数を使用する
WHERE句の条件指定時は索引列に関数を使用しない
使用方法やノウハウをもとにした SQLコーディングルール
レコードの存在チェックは「rownumく =1」 を使用する
ビューに対する結合の回避

可読性や管理性を高めるためのルール … … .… ……… .…
管理用コメントの付与
WHERE句 内の条件の記述順序

現場の運用ポリシーを反映させるためのルール .… ……
ヒント句の運用ルール

SQLコ ーディングルール活用のポイント...… ……… .…
SQLコ ーディングルールを守るためには

チューニング時の第一ステップとしてルールを使う………
定型的なチューニングのまとめ …………………… .… …
定型的なチューニングと非定型的なチューニング

確認問題 ……… ..… ……………… .… ……………
回答例

CHAttER簿
非 定 型 的 な チ ュー ニ ン グ

定型的なチューニングから “頭を使う"チューニングヘ
非定型的な SQLチ ューニンクの定義
非足型的なチューニングの進め方

オプテイマイザヘのインプット情報とその使われ方 .…
SQLテ キスト
オフシェクト構造

初期化ハラメー タ

続計情報

ヒン |ヽ 句

実行計画の確認とそのチューニング…… .… … .… …
実行計画の確認か必要 になるケースとは ?

実行計画の読み方

実行計画の判断ホイ ン |ヽ

VI

PART h SQLザ

マITマ
ン
神 雫
を「み i‐ する 27

28

…28
29
30

…30
.31
31

…32
_33
33
34

_36
36
37
38
38

…40
40
42
_43
43
44

_47

50

.50
51

.52

.52
54

.54
55

」“
一．溺
５７
.61

データアクセス方法の判断指針

表結合方法、順序の判断指針

表の結合方法、順序の検討の例

非定型的チューニングのまとめ

確認問題 ………… .… ………
回答例

80
92
104

120
121
122

目

次

I

漑
'●

CHAttER I議 oncい ァ_キテクチャに基づ いた SQLチ ューニング
｀
 123

123
123
125
128
129

130
130
134
138

139
140
140

CHA「ER 10
アプリケーションロジックを意識した SQLチューニング 142

142
143
144
145
149

150
151
151

CHAPTER ll論理設計におけるSQLチューニング 152

Oracleアーキテクチヤの理解が必要な理由…… .… ……
SQL単体以外のパフォーマンス問題とは

'
多重処理でなぜ問題が表面化するのか?

Oracleの ロッキングメカニズム

ロツクの競合がバフォーマンスに影響を与える

アーキテクチャを意識 した SQLチューニングの例………
当初の状況
oracleア ーキテクチャからの分析とチューニング

チューニング効果の確認

Oracleアーキテクチャを意識したチューニングのまとめ
確認問題 ……… .… 、………………………… .… …
回答例

アプリケーションロジックを考慮する必要性 ….…

アプリケーション観点での注意ポイント…………
その SQLは本当に必要なのか
SQL発行回数を減らす
SQL発行形態のチューニング

アプリケーションを意識したチューニングのまとめ

確認問題…………………………………………
回答例

設計と!江 ………… ..… ………… …
論理設計と物理設計の違しヽ …… …… …

論理設計の進め方 .… ………………
正規化の作業
正規化の目的
正規化の手順
正規化の例

論理設計のチューニング .… ………… .

業務最適化の目的

性能最適化の目的

分割化 統合化
冗長化
要約化

論理設計を含めたチューニングのまとめ

確認問題 ……………………… ,… …
回答例

152
153
153
155
155
156
156

160
161

163
163
169
170

171
172
172

:

||

饉葺r

蟷 |.,I.|

■1

111

CHAPTER疵
謳 パ フ ォ

_マ
ン ス 問 題 を 起 こ さ な い た め に は 174

SQLパフオーマンス問題の「解決」から「予防」へ………
SQLのパフオーマンス問題が発生する要因……………
フェーズに関する問題
体制に関する問題～PM 設計者 DBA 開発者の分担構造
SQLパフオーマンス問題を予防するために ……………
確認問題 .… … … … … .… .… …… …………… ……
回答例

CHAPTER 13計
画 フ ェ … ズ

174
175
175
176

177
177
178

圏t'

計画フェーズに関わる各担当の役割 … …… .… …… .… …
PMの役割
DBAの 役割

計画フェーズにおける SQLパ フオーマンス問題の考慮事項
ハフォーマンス問題を意識したプロジェクト計画

プロジェクト全体を通しての対応例………… .… ………
WBS作成時の改善タスクの考慮
品質管理計画の策定

PMOへ のテクニカルメンパーの参画
要所での性能チームの設置

計画フェーズに関するまとめ…… .… Ⅲ…………… .… …
確認問題 … .… … … …… .… ……… … .… … .… ……
回答例

CHAPTER撫
導 要 件 定 義 フ ェ… ズ

181
181

183
184
184
184
185

186
186
187

何ができるかを確認する …………… .

要件定義フェーズに関わる各担当の役割
PM′ 設計者の役割
DBAの役割

要件定義フェーズにおける予防策… .…
ハフィーマンス要件の策定は妥当か '
フロトタイフ検証ての考慮ホイン ト

既存ンステムのアセスメン ト

要件定義フェーズに関するまとめ… .…

確認問題 … .… ………………………
回答例

CHAttER 15設計フェーズ

188
188
188
189
189
190
190
190

191
191
191

鰈・ |

設計フェーズでの考慮ポイント……… .… …… .… ……
方式設計では

論理設計では

物理設計では

アプリケーション設計では

設計フェーズに関わる各担当の役害に …… ………………
PMの役割
設計者の役割
DBAの役割
設計フェーズにおける SQLパ フオーマンス問題の予防策
チューニングのしやすさを意識したアプリケーション設計

設計フェーズに関するまとめ… .… … .… ……………… .

.195
195

.202

Vlll

PART響 籠菫: _~~跛
 SQLパフォーマンス問題を「予防」する 173

179

188

192

ν
”

確認問題

回答例

203
203

一■204 目

次

鰈 |‐ |‐

li

SQLコーデイングルールの目的………………… .… …
開発フェーズに関わる各担当の役害L… ………… .… …
PMの役割
DBAの役割
開発者の役割

開発フエーズにおけるSQLパフォーマンス問題の予防策
開発フエーズに関するまとめ … .… …… .… …… .… …

確認問題 …… .… …… .… …………………・・………
回答例

CHAPTER 17テストフェーズ

.204

.204
204
205
205

.206

.207

.207
207

208

mll‐ lt.

テストフェーズでよくある問題 …………………… ,… …
テストフェースの時間的制約

テストフェースの質

テス トフェーズに関わる各担当の役割 ………… … ………
PMの役割
DBAの役害11
開発者の役割

テス トフェーズにおける SQLパ フォーマンス問題の予防策
テストフェーズで考慮すべき性能インブツト

SQL性能テストとテストフエースのマツビング

テス トフェーズに関するまとめ ……………… … .… ……

確認問題 …………… .… …………………・… … … ……
回答例

CHAPTER 18運
用 フ エ ー ズ

.208
208
208

.209
209
209
209

210
211

215

.225

.226
226

227

運用フエーズでの考慮ポイン ト……………… … ..…

定常的なレスボンス監視や性能情報の傾向を把握しておく

インブットに変更がある場合には、統計情報や実行計画、

レスボンスの変動影響を確認する

統計情報は実データとのギヤツプを可能な限りなくす

インプツトや統計情報に変更があった場合には、実行計画、

パフォーマンス影響を確認したうえで、本番環境に適用する

定常監視および定期的な性能分析/傾向分析の必要性 .

統計情報運用の勘所… .… …… .… …。..… … … .―・
オプティマイザの特性と統計情報

統計情報の特性と収集タイミング

データ特性ことの統計情報収集方針

統計情報収集設計のスムーズな進め方

実行計画を管理するメリッ ト

運用フエーズに関するまとめ ………………… .… .…

確認問題 ………… .… ………………………・…・…
回答例

CHAPrER 19実
際 の プ ロ ジ エ ク ト で ど こ ま で や る べ き か

227
229

229
229

漑|:=

最低限実施すべきこと………….… …………
高いパフォーマンス要件が求められる場合…._
プロジェクトの途中からでもできること …._
どのプロジエクトでもぜひ取り入れてはしいこと

確認問題 …………… .… …………………・―
回答例

８

９

９

０

１

月

４

４

４

５

５

圧
ヽ

２

２

２

２

２

´
∠

IX

:沐 11萱望壁里笙生三主___

229

..231

..232
232
233
236
_ 239
_240

.246

.247
247

248

|■1鵬,=1魏1轟,1:計|
露t, へ̂ 『Database Administrator」 から
目:[IITIZU 「Dat旦12ase Archltect」 _全 __

「解決」から「予防」へ……… .… ……………………
「DB Admmistrator」 から「DB Architect」 へ .… ……
DB Architectの スキル…………. .… … ….… …
フロシエク |ヽ フエースでの関わ り方

フロシェク トメンハーとの関ゎ り方

本書のまとめ… .… ………… ..… … …… ..… …
確認問題 ……… …………… .… … …… . ._
回答例

253

254

254
255
256
258
259

260
260
260

261

261
262
263
264

268
268

.273

APPENDIX 付 録

SQLチ ューニング案の検討…… .… ………
トライ&エラーの実例 ～テス ト環境構築
トライ&エラーの実例 ～現状の確認
トライ &エラーの実例 ～チューニング試行錯誤
チューニング対象 SQLの特定と効果測定 .

遅いSQLは どうやって見つけるのか

索引.

lX

壼 嚢 馨 轟 藝 轟

PART

■
目

電
轟

■|■

SQLパフォーマンス問題の

憑躊颯憑はI SQLチューニングはなぜ必要か?

| ‐蝙鼈艤饒鷺なぜSQLでパフォーマンス問題が
起きやすいのか?

::::番::鸞|111i飩R‐ なぜ SQLパフォーマンス問題で

苦しむのか7

::鷺 ::1肋辮 ||:l:に SQLパフォーマンス問題の「解決」と

「予防」

:::::::::|:|:11:|:眩 :顧::::I SQLはどのように処理されるのか

鰈 |

1つにSQLパフォーマン
大きな課題になりがち

i感どうし

SQLパフオーマンス問題とは?

そもそもSQLパフォーマンス問題とは、どういう問題でしょうか。まず、SQLのパフオー

マンス問題の全体像を図 1を見ながら考えてみましょう。

多いのはなぜか
'

少しでも

減らせないか
'

発生する

マンス問題が

問題の解決に
コストがかかる

(Orできない)

問題が発生せずに済むのは

残念ながら少数

2

図 l SQLパフォーマンス問題が起こると ¨

:曇無チ
=■
1車|ン|ダIま|

|| なぜ必要|か,|

パフオーマンス問題鐵なかなか穣|

プロジェクトにおいてSQLパフオーマンス問題が……

SQLパフォーマンス問題
が発生しない

問題を容易に

解決できる

本書では、SQLパフォーマンス問題をSQLに関連したパフォーマンス問題と定義し

ます
注1。

パフォーマンス問題とは、パフォーマンス要件を満たさない状況であり、パフォーマ

ンス要件は以下の 2つに分解できます。

● レスポンス要件

● スループット要件

「レスポンス要件」は、その処理に対してどの程度の時間で結果が返ってくるかを表

わし、「スループット要件」は、単位時間ごとの処理をどれだけ行なえるかを表わします。

これらの要件を満たせないのは、主に次の 2つの要因が存在する状況にあるからです。

● 無駄な処理

0無駄な待機

「無駄な処理」とは、本来想定していない処理のことです。例えば、無駄な SQL解析

処理や本来の対象データ以上のデータにアクセスしてしまうことなどが挙げられます。

無駄な処理に要する時間によリレスポンスが劣化するのは当然ですが、加えて無駄に

CPUパワーを費やしてしまうことで、本来の処理ができず、結果としてスループットを

低減させることにもつながります。

「無駄な待機」とは、必要な処理を行なえずに無駄な時間を費やしてしまう状態です。

例えば、いわゆる「ロック待ち」をしていて、ほかの処理が終了するまで待機せぎるを

得ない状況が考えられます。これは、レスポンスの劣化を引き起こすだけでなく、複数

の処理が互いに待機しあうなどしてスループットも低下する可能性もあります。

つまり、SQLのパフォーマンス問題を解決するためには、これらの無駄な処理や待機

を改善する必要があります。

では、以降で SQLパ フォーマンス問題、すなわち SQLがパフォーマンス要件を満た

せない状況がなぜ発生しやすいのか、また発生した場合その解決が困難なのはなぜなの

か、ということを見てみましょう。

一」風
∽
Ｏ
ｒ
チ
ュ
ｉ
ニ
ン
グ
は
な
ぜ
必
要
か
？

3 I

|

注 1:もちろんパフォーマンス要件が明確になつていなけれ|よ パフォーマンス問題なのかどうかも分からなくなつて

しまうと言えます。

4

■
■
一

∽
Ｏ
Ｆ
チ
ュ
‥
ニ
ン
グ
は
な
ぜ
必
要
か
？

確認問題

鏃
”
一

1.レスポンス要件、スループット要件の違いを説明してください。

2.パフォーマンス要件の達成を阻害する要因をいくつか挙げてください。

3.自身の経験や担当プロジェクトにおいて SQLパフォーマンス問題が発生したケー

スを挙げてみてください。

回答例

5

1

・ | .

SQLの言語的特徴

SQLは間い合わせ言語の 1つであり、どのようなデータを取得したいか、またはどの

ようなデータを更新/挿入/削除するかを定義することで、該当の処理をデータベース

に対して実行させます。つまリデータベースに対して処理内容を定義できますが、通常

の手続き型プログラミング言語のようにどのような処理をしてほしいかまでは基本的に

は記述しません
注1(図

1)。

まずこのような言語的な特徴が、SQLパフォーマンス問題に組付く理由について考察

します。

図 l SQLとプログラミング言語の違い

記法に対する柔軟性が高い

SQLは処理の内容を記述しますが、その記述ルールは非常に柔軟性に富んでいます。

そのため同一の処理内容に対して、複数の記述方法が考えられます。次の2つの SQL

議

6

注1:ヒント句のように、どのように処理させるかを指定する方法もありますが、ここでは SQL単体の話で進めます。

靡謳揚餞祠躙
・ |||‐ |● 1 1・ 11・ |1 1 '

´ ・ |‐ | |‐

ア鈍 ス議議です。尋 で|よ、SIQLでなぜパシ

'■

議 銅饉が趨き

ゃ警ぃるれ をあ崚由霧。凛な事こ1嵐もた1響畿‐攣量プ
ー翻グー警黒
―
ング

&"'i .rt::::;t i r.r:l.i;t:

手続き型言語

Java、 C、 Pbri

問い合わせ言語

・ ‐もQビ・

文を見てください。

これらのSQL文は、ともに「給料が 1000ドルの 1.1倍以上の人の社員番号と社員名

を取得する」という処理を表わしています。返される結果はまったく同一です。ただし、

前者に比べて後者は、データアクセスの際に索引を使用できずにパフォーマンスが悪化

する可能性が高い記述形式であると言えます。

ほかの例としては、複数の表を結合して結果を取得するにしても、単純な結合として

記述する方法もあれば、副問い合わせを使用して記述する方法もあります。SQLの文法

としてはいずれも問題なく、結果も正当な結果が返ってきます。しかし、文法として間

題がなければそれで良いのでしようか?

また、印刷すると数ページにも渡るSQL文をよく見かけます。製品の制限にかからな

い限り、SQL文をこのように長大化することも可能です。しかし、そのような見た目が

複雑なSQL文や長大化したSQL文は、パフォーマンス問題につながるケースが多いよ

うに思われます。

結果が導出できればどのような記述方法でも良いのかつ

パフォーマンス問題を低減させるには、SQL文の記述方法に対して一定のルールが必

要になると言えるでしょう。

処理ロジックを意識させないコーディングができる

例えば、SELECT文 であれば「どの表とどの表を、どういう条件で結合し、こういう

条件に合うデータを取ってきてほしい」と記述すると、結果を返してくれます。このとき、

「どういう条件で結合する」といった定義はできますが、実際に結合する処理のロジック

な
ぜ
賃
ド
で
パ
フ
ォ
ー
マ
ン
ス
問
題
が
起
き
や
す
い
の
か
？

7

|

SELECT empno

‐ FROm emp

WHERE salary >= 1000 *1.1

SELECT empno

, ename

FRoM emp

|JHERE satary / 1-1 >= 1000

一一
　

●
二

一
２

一

Ｆ
Ｌ

|

までは書きません。極端に言えば、後はデータベースが勝手に処理を行なって結果を返

してくれれば問題ないという記述の仕方です。

開発者が自身でこのような機能を、手続き型言語で実現しようとすると、「このデータ

集合とあのデータ集合を、このアルゴリズムを使用して結合する」としなければなりま

せん。手続き型言語であれば、自身の記述するロジックの正当性や効率性をある程度は

考えやすいですが、結果さえ返してくれればそれで良いと考えられがちな SQLでは、処

理結果の正当性は気にしても、効率性にまではなかなか気が回りません。つまりSQLは、

次の問題を内在していると考えられます。

開発者が処理の効率性にまで意識を回しにくくなってはいないか ?

開発者としては「まずは正しいデータを取得しなくてはならない」と考えるのが当然

ですが、「正しいデータを正しいパフォーマンスで取得する」という意識がどうしても低

くなりがちです。そのような状況で記述した SQL文では、パフォーマンス問題を引き起

こす可能性はやはり高くなってしまいます。

'11:|■
.

処理方法はデータベースに任されている

処理内容から処理方法を生成し、実際に処理を行なうのはデータベースに任されてい

ます。つまり、データベースが良い処理方法を導出し実行できるかどうかの多くは (も

ちろんその機能、性能にも依存しますが)、 インプットされる情報にかかっています。処

理方法の導出に使用するインプット情報としては、主に次の 3つがあります。

。 SQL文 自体

§ データ構造 (表構成、索引構成など)

。 データ内容 (表の行数、どの値が多いかなど)

SQLの処理方法を導出するオプティマイザは、バージョンとともに進化していますが、

そのインプットとなるSQL文の構造によってはその真価が発揮しきれない場合もありま

す。データベースからより良い処理方法を導出し、実行できるようなSQL文の記述の仕

方が望まれますが、そのような意識を持ってSQLを設計/記述しているでしょうか?

8

データベース内での処理内容を意識した

SQLの設計/記述になつているかつ

アプリケーション開発者にとって、データベースはブラックボックスになりがちです。

しかし、それで本当に良いのでしようか?データベースを 1人のユーザーだけで使用し

ているシステムは、ほとんど存在しません。

データベースに対して、同時に実行されるトランザクションの数やどのような処理 (参

照や更新)を行なうのかなど、自分が作成したSQL文以外の処理も意識して、使用する

データベースの特性に沿ったSQLの設計/記述が必要になると言えるでしよう。

一爾

籍

確認問題

な
ぜ
毀
］Ｆ
で
パ
フ
ォ
ー
マ
ン
ス
問
題
が
起
き
や
す
い
の
か
？

饉.

1.手続き型言語 (Java/C等)と問い合わせ言語 (SQL)の違いを説明してください。

2.SQLの記述方法が柔軟なことにより起こりがちな問題の例を挙げてください。

3.ename,empnO(7)2列 からなるemp表にて、「SELECT ename FROM emp WHERE

empno=10」 というSQLを処理するプログラムをイメージしてみてください。

回答例

9 l

|

澱

SQL文を記述する際の状況

プロジェクトの工程の中で、SQL文が関連するフェーズとしては図1のようなケース

が一般的ではないでしょうか。設計者 (アーキテクト)、 DBAによるSQL設計から始まり、

開発者によるコーディングを経て DBA、 開発者によるテスト、分析、チューニングが行

なわれ、サービスインに向かうことが多いと思われます。

要件定義 設計 開発 テスト 運用

PM 鰈

設計者 や

DBA 鰊
開発者 罐ト
図 l SQL記述とテストフェーズ

1101

黎

靱 顆鰊

テスト

分析

」□
な
ぜ

∽
Ｏ
Ｆ
パ
フ
ォ
ー
マ
ン
ス
問
題
で
苦
し
む
の
か
？

日驚_'皇lirittF_三ニヒ5壁:誤iZI~生 」
SQL文のパフオーマンス確認はほとんどのケースでプロジェクトの後半、つまリテス

トフェーズから行なわれます。さらに、テストフェーズは単体テスト→結合テスト→性

能テストヘと進みますが、パフォーマンス問題が顕在化するのは性能テストが始まって

からというケースが多いのではないでしようか。

ここまで来るとプロジェクトもほぼ終盤であり、ここで問題が発生してしまうと、主に

以下の 2つの要因から非常に苦しい状況になることが予想されます。

プロジェクトスケジュール上の問題

プロジェクト終盤は当然ながら、サービスインの期日が迫っています。サービスイン

までの残りわずかな時間でパフォーマンス問題を解決する必要があり、これがチューニ

ングの難易度を上げていると言えるでしょう。

OracbにおいてはOracle Enterpnse Managerや SQLチ ューニングアドバイザなど、

SQLパフォーマンス問題の把握、分析、チューニングを容易に行なうための機能を提供

しているので、チューニングに対する負荷は減ってきていると言えます。

ll

|

しかし、そもそもSQLパフォーマンス問題の発覚と、それを解決するための SQLチュー

ニングがサービスイン直前になってしまうことを避ける方法はないのでしょうか?なん

とかしたいという思いがあったとしても、次のような声が上がってくることが多いのが実

情です。

。 後のフェーズになるまで、パフォーマンステストができない

。単体レベルではパフォーマンスは問題なかったのに、多重テストになつた途端に

遅くなった

後のフェーズでさらに苦しい状況になるのが目に見えているにも関わらず、初期フェー

ズでそのままやり過ごしてしまうのはいかがなものかと思います。

プロジェク トの早期フェーズから

パフォーマンス問題を見つけられないか ?

Oracleコ ンサルタントがプロジェクトに早期フェーズから入るケースでは、このよう

な問題を発生させないための仕組みや、SQLのパフォーマンス確認を早期に行なう工夫

を仕込みます。もちろんそのような仕組みや工夫をプロジェクトに埋め込むために多少

の苦労は必要ですが、サービスイン直前の苦労と比べた結果、受け入れてもらえること

が多いです。

修正範囲の問題

プロジェクト終盤では、システムの機能はある程度まででき上がっており、いざ修正

するとしても、その影響範囲の確認が困難になります。また、修正するだけなら容易だ

としても、修正に対する機能確認テストのために、多くの時間と工数を要することになっ

てしまいます。

SQLチューニングの結果をプログラムに反映させる範囲が不明であり、変更したこ

とに起因して別の影響が発生しないかの確認が困難なことから、結果として適用できる

チューニング手段の幅が狭められてしまうケースが非常に多くあります。これもSQLパ

フォーマンス問題の解決が難しくなる要因と言えるでしょう。

12

|

チューニング、修正の範囲と

それによる影響を特定しやすくできないかつ

修正の影響が不明で、結局は手を出せないことが分かっているのなら、事前に影響を

特定しやすくする工夫をするべきです。

■‐1・ |

SQLの設計/記述はどのフェーズから行なうものなのでしようか。SQLパフォーマン

ス問題が発生してしまった多くのプロジェクトでは、開発フェーズが始まってからプロ

グラムコーディングとともに設計や記述するケースが多く、特に下記のような問題が起

こりがちです。

● 設計者の想定と異なるSQLが記述される可能性がある

● 設計者がSQLま で想定して設計していない可能性がある

一般には開発フェーズの前、データベースの論理設計レベルにて、各エンテイテイに

対するアクセスパターンを想定します。通常はそのアクセスパターンがSQLに移行され

るべきであり、これが SQL設計になります。通常のプログラム設計と同様、SQL設計も

十分に行なうべきですが、これがおろそかにされると、設計者の意図とは異なるSQL文

が記述されてしまう可能性があります。

逆に論理設計の段階で、設計者がアクセスパターンを十分に吟味しきっていない状況

も考えられます。このような場合、特にパフォーマンス問題が発生する可能性は大きく

なりますし、チューエングは非常に困難となります。実際、根本的なチューニングを行

なうためには表レベルでの設計の再検討が必要になることがありますが、テストフェー

ズなどでこのような問題が発生するとその修正範囲は大変大きくなります。実質チュー

ニング不可となり、どうしようもなくなる可能性すらあります。

プロジェク トの早期フェーズでパフォーマンス問題を

把握するには、どこまで早期にするべきか ?

」回

SQLの設計/記述を行なうフェーズ

な
ぜ
∽
Ｏ
Ｆ
パ
フ
ォ
ー
マ
ン
ス
問
題
で
苦
し
む
の
か
？

_」

l

|

13

つまり、先ほどから「早期フェーズ」と書いてきましたが、「開発フェーズ」や「テス

トフェーズ」よりも早期の「設計フェーズ」、それも設計の初期段階である「論理設計フェー

ズ」からSQLパ フォーマンス問題の芽を摘むことが重要であると言わぎるを得ません。

欄 :

設計者/DBA/開 発者の分担構造
フェーズのみならず体制面でも考察してみます。ある程度の規模のプロジェクトにな

ると複数のチームによる並行開発となります。業務関連の設計、開発を行なう業務チー

ムや、データベースをはじめとしたインフラ関連を扱う基盤チームと分かれるのが一般

的でしょう。

このようなチーム構成に起因して SQLパフォーマンス問題の解決が困難になる要因も

あります。例えば、以下のような状況です。

O SQLチューニングは業務チームに実施させるべきか'基盤チームに実施させるべ

きか?

。 データベース観点での問題 SQL文 と、業務プログラムとの対応付け

SQLは業務処理とデータベースの橋渡し部分であり、SQLパ フォーマンス問題を解

決するには、その両者を意識してチューニングする必要があります。しかし、業務チー

ムが業務処理のみ、基盤チームがデータベースのみしか分からないような状況ではな

かなかチューエングが進みません。双方の知識をある程度は身に付けるか、チューニ

ング時に密接に協力しなくてはならないでしょう。

業務観点、データベース観点での知識、

技術の連携がスムーズに行なわれているかつ

また、サービスイン直前でデータベース全体に対してパフォーマンス影響の大きい

SQL文を基盤チーム側が特定し、SQLチューニング案まで検討できたとします。しかし、

SQLチューニングはそれで終わりではありません。SQLチューニング案を業務アプリケー

ションに組み込み、効果を確認しなくてはなりません。この際に、次のような問題にな

りやすい点があります。

|

14

e問題となる SQL文を発行したアプリケーションを特定できるかどうか

特にサービスイン直後にSQLパフォーマンス問題が発生した場合、原因をどれだけ

容易に特定できるかは非常にシビアに求められます。SQLチューニングが簡単にできた

としても、それがアプリケーションに反映されるまでに数時間かかるようでは、影響は

多大になってしまいます。

問題の SQL文がどの業務アプリケーションから
発行されたかを容易に特定できるかワ

一銀

壼

確認問題

な
ぜ

∽
Ｏ
Ｆ
パ
フ
ォ
ー
マ
ン
ス
問
題
で
苦
し
む
の
か
？

1.プロジェクトの後半になってSQLパフォーマンス問題が発生しがちな理由を挙げて

ください。

2プロジェクト後半になってSQLパフォーマンス問題を解決しにくくなる要因を挙げ

てください。

3.SQLパフォーマンスはプロジェクトのどのフェーズから本来は検討するのがベスト

でしょうか
'

回答例

15

|

一
　

　

一

鰈‐|||||

SQLパフォーマンス問題が減らない要因や課題

課題を解決するためのテーマ

まず、Chapter2「なぜSQLでパフォーマンス問題が起きやすいのか?」 で挙げた課

題に対して、以下のテーマを挙げて解決を図ることにします。

テーマ :良い SQLの書き方とは?

テーマ :パフォーマンスを意識してSQLを考えてみよう

テーマ :データベースのアーキテクチャを意識した SQLが書ければ一人前

これらは SQLパフォーマンス問題をいかにして解決するかについての議論とも言える

でしよう。そして、これらは技術的課題でもあります。

次に、Chapter3「なぜ SQLパフォーマンス問題で苦しむのか?」 で挙げた課題に対

するテーマです。

テーマ :SQLパフォーマンス問題を予防するための工夫とは?

テーマ :SQLパフォーマンス問題に着実に対処するための工夫とは?

´
０
「
エ

爾 :‐ ||■■■■:

1饉:曇|ノ
1犠牲|■マンス:蘭1藻10
と1費詢鰭11

C:HAPTER

Chapter2、 11・ ||: .. ‐′‐ ・‐ || . | .

:|||| 11 ‐ ・ |= 11::・ | | .. ・ .

:|:
‐ 1■・ |||111:=■ |||‐

‐|‐ _ ― :|

‐
_■ ■ 11'‐ .11■ ■ | |・

‐
― _.||‐

‐ ||■・
■
・
・
: ||_|■

||||― |■ ` .‐
‐ ‐.|■‐ _‐ ‐

・■|■・ |‐・ 1.■■‐1 -・ ‐|■ _ |■・. .. . : ._ ‐.._ . _

11 ・ | ・
‐
′ _

これらは、SQLパフオーマンス問題をいかに予防、対処するかの議論とも言えます。

また、上記の技術的課題を含め、プロジェクト全体の課題としても捉えることができる

と思います。この関連を図 1に示します。

図 1 課題 とテーマ

譜 |

本来は SQLチューニングが必要となること自体を避けるべきです。そのため、本書で

は最終的に、SQLパフォーマンス問題を発生させないために、事前にどんな工夫ができ

るかを伝えたいと思います。しかし、SQL問題に直面している現場も多いことを考慮し、

本書では、以下の順番で解説を進めていきます。

田
∽
Ｏ
Ｆ
パ
フ
オ
ー
マ
ン
ス
問
題
の

「解
決
」
と

「予
防
」

本当の意味での SQLチューニング 1

|

なぜSQLでパフォーマンス問題!が
起きやすいのか

'

なぜSQLパフォーマンス
問題で苦しむのか'

17

識を回しにくくなつてはいないか?」

「データベース内での処理内容を
意識したSQL設計/記述になつて
いるか

'」

SQLを塾述する際の状況

か
'」
 ‐
「チューニング、修正の範囲とそれによ
|る影響を特定しやすくできないか劉
・「プロジエクトの早期フェーズでパフォー
マシス問題を把握するには、とこまで早
期とするべきか?」 |‐||■|
「業務観点、データベニズ観点|で|の知
識、技術の連携がスムニズ|1行なわれて
いるか?」

「問題のSQL文がどの業務アプリケー
ションから発行されたかを容易に特定で

きるか?」

||'SQLパフォーマンス問題を解決する

・2 SQLパフォーマンス問題を予防/対処する

まずはIF,がしっかりできないと話になりません。SQLパフォーマンス問題に直面した

としても解決できるノウハウを身に付けていきましょう。そして、 21の予防や対処がど

こまでできるかが本当の勝負になりますので、ここまで視野を広げ、工夫をしてほしい

と思います。その工夫は、「開発」「テスト」のときに仕掛けるのでは遅いということは

すでに述べたとおりです。それ以前のフェーズである「設計」「要件定義」フェーズや

プロジェクトの計画段階にどのような工夫を入れておくべきか、そういったノウハウを

伝えていきます (図 2)。

図 2 本書の進め方

t
確認問題 一　

　
一‐1.SQLパフォーマンス問題が発生する原因や解決すべき課題を挙げてください。

回答例

|

要件定義 設計 開発 テスト 運用

PM I籐璽|

設計者 ヅ

DBA 鰊

開発者 嗽

→Pa■2

∩
）
「
■

:J

ヤヽ

以降の章で 考えてい SQLが
ング対象Oracle

のSQLが 内部で バ ‐1_す

るよう

爾

oracleデータベースは、SGA(System Globd Area)と 呼ばれるメモリ領域と、複数のバッ

クグラウンドプロセスから構成される「Oracleインスタンス」と、データなどを格納す

るための物理的なフアイル群で構成されています (図 1)。

SGAとは Oradeデータベースヘアクセスするユーザーが共有して使用するメモリ領

域で、起動/停止時に自動的に領域の割り当てや解放が行なわれます。共有プール、デー

タベースバッファキャッシュ、REDOロ グバッフアなどのコンポーネントで構成されてい

ます。

共有プールは、SQLや PL/SQLに 関する情報を保持するためのライブラリキャッシュ

と、権限やオブジェクトの構成情報を保持するためのディクショナリキャッシュで構成

されています。

データベースバッファキャッシュは、データフアイルから読み込まれたデータプロッ

クのコピーが格納される領域で、データファイルに対するディスク1/0を軽減するため

のキャッシュエリアです。

REDOロ グバッフアはデータブロツクの変更履歴を格納するための領域で、COMM「

が発行されるとLGWR注
1に
よりREDOログフアイルに書き込まれます。REDOロ グフア

イルに変更履歴が書き出されることで変更内容が保証されます。

注1:バックグラウンドプロセスの一部。サーバープロセスはクライアントからの処理を直接実行するが、これらのバッ

クグラウンドプロセスは裏方役として、データベースの管理のためのさまざまな処理を行ないます。LGWRは、主に
コミット時にREDOログフアイルに書き込みを行なうプロセスであり、DBWRはデータフアイルヘの書き込みを行なう
プロセスです。

Oracleデータベースの構成要素

０
０
Ｆ
は
ど
の
よ
う
に
処
理
さ
れ
る
の
か

Ｑ
）
「
ユ

輌 |||■ ‐■■||‐・‐

まず、Oracleデータベースの構成要素を何も見ずに書き出せるようになりましょう。

結果

ル 制御ファイル REDOロ グファイル アーカイブフアイル

EXECUTE

FETCH

Oracieインスタンス

SGA

REDOログ
バッファ

バックグラウンドプロセス

\y7t*t v)t

匡図

匡図

共有プール

CD
∈D

データフアイル

1201

図 1 0raCleデ ータベースの構成要素

SYSTEM

UNDO

⊂亘⊃

SQLチューニングを行なう前に、その SQLが Orade内部でどのようなリソースをど

のように使用して実行されるのかをイメージして、さまざまな SQLチューニングに必要

な性能情報を確認すると、SQLが処理されるどの部分が遅延原因であるのかを確認しや

すくなります。イメージするのが難しい場合は、実際に簡単な図を書いてみるのも良い

でしょう。筆者もSQLチューニングを行なうときは、なるべく図を書いてからさまざま

な関連情報を足し、最適なチューニング方法を考察しています。

田彗
‐

SQL処理の流れ

次に、SQLが実行されていく大きな流れを説明してしましょう。SQLが処理されると、

図 2のように大きく分けて 3つのフェーズで処理が進みます。

解析フェーズでは次の作業を実行します。

O SQL文の構文および意味上の妥当性も含めた文法チェック
。 その SQL文を実行する権限があるかを確認

O SQL文の解析済みの情報がライブラリキャッシュに存在するかの確認。存在しな

ければ、ライブラリキャッシュに解析済みの情報を格納。このフェーズで SQL文

の実行計画が作成される

SQL文の文法チェック
SQL文の解析
実行計画を決定

SQL文の実行

結果を返す

(SELECT文 のときのみ)

図 2 SQL処理の流れ

実行フェーズでは、解析フェーズで作成されたSQL文の実行計画をもとに処理が行

なわれます。フェッチフェーズは参照SQL(SELECT文)などで必要なフェーズとなります。

参照結果の行が選択されて順序付け (ソート処理が必要な場合)が行なわれます。

「

~~~

一剛
０
０
Ｆ
は
ど
の
よ
う
に
処
理
さ
れ
る
の
か

|

21

解析フエーズ(PARSE)

実行フエーズ(EXECUT)



甍 ||111‐

‐‐

SQLはどうやって処理されているのか(参照編)

もう少しOracleアーキテクチャを意識しながらSQLが処理されている様子を見てい

きましょう。まずは参照編として、SELECT文 で結果を取得するまでの流れを見ます。

ここでの流れについても、ぜひ頭の中で処理の流れがイメージできるようにしておきま

しょう (図 3)。

ISQL文 を解析して、共有プール
上に解析済み結果を保持

SQL

SQL

SQL SQL

[検索対象のデータが、
データベースバッファ
キャッシュ上に存在する
かを確認

FI― ]キャッシュ上にデー
タが存在していねば、結

果をサーバープロセス

ヘ返す

d,-2キャッシュ上にデー
タが存在してない場合
は、データフアイルから

検索対象のデータを

キャッシュ上に展開。展
開されたキャッシュ上の

データをサーバープロ

セスヘ返す

共有プール

REDOログフアイルデータフアイル

図3 参照処理の流れ

.TアプリケーションからDBサーバーヘ接続すると、DBサーバーでサーバープロセ

ス注2が起動します。アプリケーションからSQLが発行されると、その接続に対応

したサーバープロセスが処理を行ないます。まず最初に、SQL文を解析します (解

析フェーズ)。 この時点で、共有プール内のライブラリキャッシュに SQL文の実

注2:SQLXPlusや APサーバーなどのクライアントからOracleへ接続した場合に生成されるプロセス。クライアント
から実行された SQLを実際に処理するプロセスであると言えます。

22

|  |

.■
‐ ‐~‐        _‐■‐―

REDOロ グ ■

ノヾッフア



行計画を含む解析済み情報が格納されます。すでに、そのSQL文の解析済み結

果がライブラリキャッシュ上に存在する場合は、解析作業は行なわれず、ライブ

ラリキャッシュ上の解析済み結果を再利用します

.21解析処理が終わると、解析により作成された実行計画
注3に
沿って処理が実行され

ます。検索対象のデータがデータベースバツフアキヤツシユ上に存在するかを確

認します

を一」ここで、データベースバッファキャッシュ上にデータが存在していれば、検

索条件のデータを取得して結果をサーバープロセスヘ返し、サーバープロセスが

アプリケーションヘ結果を返します

121-2データベースバッフアキヤツシユ上にデータが存在しない場合は、データファ

イルから検索条件のデータをキャッシュ上に展開します。展開されたキャッシュ上

のデータを取得して、結果をサーバープロセスヘ返し、サーバープロセスがアプ

リケーションヘ結果を返します

参照 (SELECT文 )SQLが結果を返すまでの流れは理解できましたか?図などを見な

がら流れをイメージできるようになるまで何度も流れを追ってみてください。また、SQL

を実行するときに、SCA内がどのような状態であれば、そのSQLの処理が早く済みそう

であるかも併せて考えてみましょう。

「

一慶
０
０
Ｆ
は
ど
の
よ
う
に
処
理
さ
れ
る
の
か

・瀑.

SQLはどうやつて処理されているのか(更新編)|

次は、更新処理の流れについて見ていきましょう。ここでは、UPDATE文で更新処理

が行なわれるまでの流れを見ます。この流れも、ぜひ頭の中で処理の流れがイメージで

きるようにしてください (図 4、 5)。

1,SQL文 を解析して、実行計画を作成する

・2｀ 更新対象のデータプロック
注」
をデータベースバッファキャッシュヘ展開する

.0,実際の更新処理をデータプロックに対して行なう前に、更新処理の更新履歴を

REDoロ グバッファに記録。REDOロ グバッフアに更新履歴が記録された後で、

データベースバッファキャッシュ上のデータプロックの行データに対して更新処

注 3:SQLの 処理過程を表わしたもの。SQLはこの実行計画に沿って処理されていくため、実行計画の良し悪しがパ

フォーマンスの良し悪しにほぼ直結します。「実行プラン」「プラン」とも言います。

注41 0radeではデータをブロックで管理しています。ブロツク内には通常は複数の行が格納されています。

|

23



理が行なわれる

14:更新内容を確定するために、アプリケーションからCOMMI丁 が発行されると、

REDOロ グパッファ内に記録されている更新履歴を LGWRが REDOロ グファイ
ルヘ書き出す (OraCleデ ータベースは、更新履歴を REDOログファイルに書き
出すことで変更内容が保証される)

も 実際に変更されたデータベースパッファキャッシュ上のデータブロックは、更新処

理とは別タイミングでDBWRによリデータファイルヘ書き出しが行なわれる

.|'SQL文
を解析して、共有プール

上に解析済み結果を保持

SQL SQL

'更
新対象のデータが、

データベースバッファ

キヤッシュ上に存在する

かを確認

‐
2‐― ]キャッシュ上にデー
タが存在していれば、結

果をサーバープロセス
ヘ返す

2-2キャッシュ上にデー
タが存在してない場合

は、データファイルから

更 新 対 象 のデー タを

キヤッシュ上に展開。展

開されたキャッシュ上の

データをサーバープロ

セスヘ返す

1 更新(update)|

■→厄
一ＳＱＬ　繰
目■

.    |||

データフアイル REDOログファイル

共有プール

図 4 更新処理の流れ①

ｄ
ｉ
つ
４

REDOログ

■‐ バッファ

■



SQL

結果

データベースパッフアキャッシュ

データフアイル

REDOログファイル

SQL
.3.更 新履歴をREDOロ グ
バッフアに記録後、データ

ベースバッファキャッシュ

内の行データを更新する

バッファ

.5SQLの処理とは非同期
|こ、DBWRに よリデータ
ベースバッファキャッシュ

内の変更内容がデータ

フアイルに反映される

● COMMITが 発行 されると、
LCWRが REDOログバッファ内
の更新履歴をREDOロ グファイ
ルに書き出す

図 5 更新処理の流れ②

なぜ、実際に変更されたデータプロックが更新処理とは別のタイミングでデータフア

イルに書き出される必要があるのでしょうか。この点に疑間を持った人は、チューエン

グセンスを持っていると言えます。結論から先に言うと、WRITE 1/0の貿の違いです。

REDOロ グフアイルは、更新履歴のみを書き出せば良いので、履歴データを順々に書き

出すだけのシーケンシャル 1/0で済みます。データファイルは更新済みのデータプロッ

クがデータファイル内の複数の箇所に書き出す可能性があるため、ランダム 1/0で書き

出す必要があるのです
注5。

シーケンシャル yOはディスクのシークを最小限に抑えることができるため、ランダ

ム1/0に 比べて書き出しのレスポンスが早いというメリットがあります。シーケンシャ

注5:シーケンシヤル 1/0とは、連続して格納されている物理データに対する 1/0のこと。デイスク上で読み込みを行

なうヘッドの動きを最小化しながらアクセスできます。ランダム 1/0は、文字どおりさまざまな場所に格納されている

物理データに対する1/0のこと。ヘッドの動きが大きくなるため、一般にシーケンシヤル 1/0よ リランダム 1/0のほう

が遅くなります。

０
０
Ｆ
は
ど
の
よ
う
に
処
理
さ
れ
る
の
か

|

25

更新(update)

共有プール

彗ミ‐ _

5



ル1/0の恩恵を受けるためにも、:REDOロ グファイルの物理的な配置には注意が必要と

なります。データフアイルと同じディスクにREDOログフアイルを置くと、シーケンシャ

ル1/0の恩恵を受けづらいのです。

更新 (UPDATE文)SQLによリデータが変更されるまでの流れは理解できましたか?

更新データを保証する仕組みやバックグラウンドプロセスの役割なども含めて、更新処

理の流れをイメージできるようになるまで何度でも流れを追ってみてください。

1.Oracleデ ータベースの構成要素としてのプロセス群、メモリ領域群、ファイル群を

挙げ、図示してみてください。

2 SQLの処理における3フ ェーズとその処理内容を挙げてください。

3.SQLの処理過程におけるライブラリキャッシュの用途、目的および、SQLパフオー

マンスヘの影響を説明してください。

確認問題

ヨ答例

本章の図 1

タファイルに関する

.ェ
ーズでは、

できるよ

SGA、 テ'一

なります。

ェックや、

われます。

に処理が

26



目 雙 |!響 l嘩難 難

PART

●
●
一　
　
一●

●
―

―

■

　

●
―

．一一一・　　　　．
〓一一・

SQLバフオー

1魏祓:諫蒻 5QLパフォーマンス問題の

解決アプローチ

麟鞣lヵ:緻隕瀑|1定型的なSQLチューニング

は麒粽洟
‐
‐|1非定型的なチューニング

‐
mЯ:な鎮ざ||1 0racleアーキテクチャに基づいた

SQLチューニング
‐
瑕i::麒鑢蚤鷲覇アプリケーションロジツクを意識した

SQLチューニング

論理設計におけるSQLチューニンク



●
・
　

■

　

．．

■

　

　

―

　

　

一

日な空」菫 型 ______」
一口に「SQLチューエング」と言いますが、「チューニング」という言葉について皆さ

んはきちんと説明できるでしょうか。本書では、「チューエング」を次のように定義します。

チューニング……顧客の要件を達成するために行なう分析、改善案検討、実装、テス

ト作業のこと。要件を達成できて、はじめてチューニングは終了する。

つまリチューエング作業とは、顧客の要件を達成できていない状況に対して、その要

件を達成するための作業です。要件を達成していない原因を調査し、その原因を取り除

いたり抜本的な見直しを行なったりしながら改善案を検討し、その改善案を実際に適用

して要件を達成したかを確認する流れとなります。要件を達成できなければ、チューニ

ング作業は永遠に続くことになります (図 1)。

要件を満たしている

2

要件を満たしていない

8

図 1 チューニングの一般的な流れ

15Q=′:事
‐
71オ|■1宰:摯1来

. ‐ 1.  ・ |■
|

1‐

・ 11 .~  ..  1  ・    |  1  1‐ 1  ‐,  I I‐   ‐| |||‐
‐‐
.

|  |

パフオ=マンス要件の設定

チユーニング案の検討/実装



チューニングにもいろいろな種類がありますが、ここでは主にパフォーマンスチュー

ニングを主題とします。パフォーマンスチューニングとは、パフオーマンス要件
注〕を達

成するための作業とも言えます。逆に、パフォーマンス要件に達していない状態ではパ

フォーマンス問題
注2が
発生しているとして、チューニング作業が必要な状態と言えるで

しょう。

したがって、ここで言うSQLチューエングとは、分析や検討対象がSQLであるパフォー

マンス要件に対するチューニング作業であると言い換えられます。

SQLチューニングが必要となる理由

SQLチューニングが必要となる理由を考えてみましょう。SQLチューエングは、どち

らかと言えば面倒な作業であり、できればやりたくないものです。それなのに、なぜ必

要になるのでしようか。知ってしまえば簡単なことなのですが、それを理解している人

が関わったか、理解していない人が関わったかによって、システムのパフォーマンスに

大きな違いが出てきます。

SQLチューニングが必要となる理由には、Pa■ 1(Chapter2)で も挙げたように、以

下の3つがありました。

o SQLの記述の柔軟性が高い

o処理ロジックを意識させないコーディングが可能
o処理方法がデータベースに任されている

つまり、SQLは処理方法を考慮せずに結果だけを考えれば良く、どのような書き方で

もできてしまうので、パフオーマンスを意識せずに記述できてしまう言語だと言えます。

このことが、パフオーマンス問題を引き起こします。

SQL文をコーディングする当初からパフォーマンスを意識してコーディングしていれ

ば、パフォーマンス問題の発生は抑制できるでしょう。しかし、現実のシステム開発で

はSQLの処理結果については十分に考慮するものの、パフオーマンスについては考慮し

きっておらず、結果的にパフォーマンス上あまり良くない書き方に陥っている場合が多々

見られます。このようなケースでは、システム開発が進んだ段階でパフォーマンス問題

が発生し、SQLチューニングをせぎるを得ない状況となるのです。

注11システムにおけるパフォーマンス要件とは、対象の処理や業務に対する処理時間や処理量で表わされることが

多い。性能要件と言い換えることもあります。

注 2:パフォーマンス要件を達していない状況やその問題。

∽
０
に
パ
フ
ォ
ー
マ
ン
ス
問
題
の
解
決
ア
プ
ロ
ー
チ

|

29



SQLチューニングの流れ

前述のとおり、SQLチューニングとはSQLに対するパフォーマンス要件が満たされな

い場合に、それを改善する作業です。一般的な流れは、以下のようなものになります。

まず、パフォーマンス要件を満たさない SQLがあるかどうかの確認から始まります。

すべての SQLがパフォーマンス要件をクリアできていれば、SQLをチューニングする必

要はありません。

次に、パフォーマンス要件をどの程度クリアしていないのかという現状を把握したう

えで、その原因や理由を調べます。そして、要件を満たすためにどのような修正や変更

を加えるかを検討し、チューニング案を作成します。

その後、チューエング案を適用してチューニング効果を測定します。そこでパフォー

マンス要件をクリアしていれば、それでチューニングは完了となります (図 2)。

要件を満たしている

図 2 SQLチ ユーニングの一般的な流れ

鰈 |||

11‐

SQLパフオーマンス問題への解決アプローチ

以降の章ではチューニングの具体的な方法を説明します。大きく分けて、3とおりの

アプローチがあります。

麟 定型的な SQLチユーニング
「良い SQLの書き方とは ?」 に対するノウハウであり、ほぼ機械的にできるSQLチュー

ニングです。最低限守るべきコーディングガイドのレベルでの話が主題となります。単

純にコーディングガイドを紹介するのではなく、そのコーディングガイドが必要となる

根拠を Oracleアーキテクチャの話を取り入れながら解説します。

|

SQLパフォーマンス状況の確認

要件を満たしていない

30

パフォーマンス要件を満たさないSQLを把握

SQLチューニング案の検討

SQLチューニング案を実装

完了



口1非定型的な SQLチューニング
「パフォーマンスを意識したSQL」 を記述する第一歩として機械的でなく、自分自身

でSQL文を分析して実行するような、頭で考える必要のあるチューニングを行ないます。

SQLチューニングのポイントである実行計画の良し悪しを判断し、自ら改善できるよう

になってもらうことが目標です。

翻|アーキテクチャを踏まえた SQLチューニング
上記2つのSQLチューニングを行なって、実行計画上は問題がなかったとしても、ま

だ問題が起こる可能性はあります。そのような場合には、SQL文の実行状況や処理状況

をアーキテクチヤも含めて考察する必要があります。そこで、Oracleの アーキテクチヤ

はもちろん、アプリケーションのアーキテクチヤも含めて考察しながら行なうチューニ

ング方法を伝授します。
一■

黎 |::

確認問題
」

1.チューニングとは何かを説明してください。

2.SQLパフォーマンス問題の解決アプローチを3つ挙げてください。

回答例

「
ユ
『
Ｊ

０
０
Ｆ
パ
フ
オ
ー
マ
ン
ス
問
題
の
解
決
ア
プ
ロ
ー
チ



爾″

SQL記述の際に最低限守るべきルール

Partl(Chapter2)で はSQLパフオーマンス問題がなぜ多いのか、そしてSQLパフォー

マンス問題の解決、すなわちSQLチューニングがなぜ難しいのかを考察しました。そして、

SQLパフォーマンス問題が多い理由の 1つとしてSQLの言語的特徴を挙げました。記法

に対する柔軟性が高いことや、処理ロジックを意識させなくともコーディングが可能であ

るという言語的特徴が、パフォーマンス面においては逆に負の面となりかねないことを理

由の 1つとして解説しました。つまり、いくらSQLの柔軟性が高くても、パフォーマン

ス問題を発生させないようにするにはある程度守るべきルールがあるということです。

そこで、本章ではSQLチューニングの第一歩として、SQL文を記述する際に最低限

守るべきルールや、実施すべきチューニングについて紹介します。このようなルールや

チューニング方法は、いわば“定型的"なチューニングであり、特に深く考えずにそのま

ま定型的に適用したとしても、パフォーマンス問題に対してそれなりの効果はあるでしょ

つ。

しかし、そうしたルールやチューニング方法をこの書籍ですべて紹介できるわけでは

ありませんし、それをただ適用するだけの技術者というのもあまり歓迎されないでしょ

う。そこで、本書ではいくつかの定型的なルールやチューエング方法に対して、その目

的や、なぜそれが必要なのかといった根拠を Oracleアーキテクチャゃ現場ノウハウを

含めながら紹介していきたいと思います。

l

|

つ
こ
う
０

構

●I‖■定型的な
sQL勝犠■ニシゲ

本章で1よ SQLチューニングの第一歩として、定壁的なSQLチ量…二
ングについて紹介します。SQL露繊 の際:こ畿イ疑1限守鶴べきルールや、

実施すべきチューエングなど機械‐鋳|こ邁
‐
澤で畿る謡が壺題となります。

ただし機械的に適用する|こして鶴:を機議議獲鹸範1憲機解したうえで
菫議したし島ので曳そこでO轟0'あ |'1苺書参議

'苺

現場ノウAウ
‐警ギー?彎響彎1警摯|‐彎||||:|ヽ1筆||■■||



鰈 11111

「チューニング」と言うと、とても複雑な作業であると思われがちですが、実際には

ピンからキリまであります。データベースの構造やアプリケーションロジックレベルで

のチューニングは、多くのことを考慮する必要があり、確かに難解な場合もありますが、

ある程度機械的に判断できるような対応も多くあります。本章ではこういった機械的に

対応できる、定型的な SQLチューニングに焦点を当てていきましょう。

定型的なSQLチューニングの定義

本書では、定型的な SQLチューニングを以下のように定義します。

<定型的な SQLチ ューニング>

● 機械的に判断、対応できるSQLチューニング

● チューニング時に最低限チェックすることがあるSQLチューニング

● コーディング時に最低限守らなくてはいけないことがある SQLチューニング

これらは、SQLチューニングをする際の「最低限のルール」であるとも言えるでしょう。

「ルールを守る」ことは予防策にも解決策にもなります。SQLチ ューエングを行なう際

には、このルールに即した記述、実行が行なわれているかをチェックし、そうでない場

合にはルールに即するように変更することで対応できます。また SQLテキストを記述す

る際にも、最低限このルールを守れば事前の予防にもつながります (図 1)。

定型的なSQLチューニングとは?

一
一財
嘴
帥
』

定

型

的

な

り
Ｏ
Ｆ

チ
ュ

ー

ニ
ン

グ

|

33



パフォーマンス問題を誘発しやすいSQLの言語的特長
ィ記法に対する柔軟性が高い
/処理ロジックを意識せずコーディングが可能

チューニング

図 1 最低限のルール

定型的なSQLチューニングが可能な範囲

M SQLテキスト
SQLテキストそのものです。これまでに説明したとおり、SQLテキストの記法は非常

に柔軟性が高いと言えます。結果を取得することだけを考えた場合、何とおりもの記述

の仕方が考えられます。とはいえ、どのような記述方法でも良いのでしょうか?

パフォーマンスや管理性を考慮すると、やはり良い記述方法や悪い記述方法がありま

す。SQLテキストの記述方法にパフォーマンスを考慮した独自のルールを追加すること

により、ある程度は記述方法の枠組みを作ることが重要です (このようなルールをコー

ディングルール/コーディングガイドとも呼びます)。

パフォーマンス問題が発生したSQLテキストがこのルールに従っているかどうかを判

断することにより、チューニングの必要性の判断が比較的容易になると言えます。

SQLテキストのみで定型的にチユーニングすることも可能。
ただし、このような内容はコーディング時から実施しておくべき

□実行計画

SQLが Oracle内部でどのように処理されるかは、SQLやデータの統計情報、初期化
パラメータからオプティマイザが生成した実行計画に基づいて変わります。SQLのパ

34

璃蝙颯鐸



フォーマンスは、どのような実行計画で処理されるかに依存していると言っても過言で

はありません。

実行計画は LIS丁 1のようなツリー構造で表示できます。

SQLテキストはコーディングルールの下、ある程度は機械的に判断/対応できますが、

実行計画の良し悪しを機械的に判断するのは難しいでしよう。例えば、表全体を読むフ

ルスキャンが良いか、索引スキャンが良いか、どの表から結合を開始すれば良いかなど

は、取得対象のデータ量や結合の方法に依存します。

ただし、実行計画に表われるキーワードをもとにすれば、懸念するべき実行計画であ

るかを判断できる場合があります。最終的な判断までは至らなかったとしても、パフォー

マンス問題につながりかねない要素を見つける意味で役立ちます。

実行計画のみから定型的なチューニングは困難。

ただし、懸念するべき実行計画を把握することは可能

LISTl 実行計画の表示

I Id I Operation I Name

SELECT STATE‖ [NT              I

NESTED L00PS                 I

TABLE ACCESS FULL           I

TABLE ACCESS BY INDEX RO‖ IDI

INDEX RANGE SCAN          I

※この例では、DEPT表をフルスキャンで取得しながら、EMP_IDX索 引を使用した索引スキャンで EMP表をネステッ
ドループ結合しています。フルスキャンとは表の全データを網羅的に読み込む手法であり、ネステッドループ結合とは

外部表 (ここで 1よ DEPT表 )1行ことに、内部表 (EMP表 )と結合できないかを探していく結合方法です。

」■
定
型
的
な

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

旧
絆
EMP.

35 1



鮮

SQLコーディングルールを守る意味は?

ここまでで、定型的な SQLチ ューニングとはどのようなもので、どこまで行なうかを

理解していただけたと思います。次は、実際に SQLテキストを記述する際のルールとし

て用いられる「SQLコーディングルール」について解説します。SQLコーティングルー

ルの重要性とそのルールがどのような理由で作成されたのかを知ることで、SQLコーディ

ングルールの目的と守る意味を理解しましょう。

SQLコーディングルールの目的

実際に開発を行なう際に、SQLテキストを記述する要件として大きく次の 2つが挙げ

られると思います。

●データを正しく取得/挿入/更新/削除する
12'適切な時間内に処理を行なう

l

|

36



①については、SQLテキスト単位で注意深く確認を行なっているはずです。しかし、デー

タを正確に処理できたとしても、適切な時間内で処理できなければ、最終的に②の要件

は満たせません。

また、データベースは 1人で使用するケースはほとんどありません。さまざまな要件

を持つ多数のSQLが実行されます。そのため、SQL文を記述するうえで、何のルールも

なく、上記の2つの要件さえ満たしていれば問題がないかというと、そういうわけでは

ありません。そこで、SQL文を記述する際のルールとして用いるのがSQLコーディング

ルールです。一般的な SQLコーディングルールの目的は、次のとおりです。

<SQLコ ーデイングルールの目的>
・],開発者のスキルに依存しない一定の品質の確保

121開発者のスキルに依存しない性能の確保

(5,,開発者間の意思疎通の向上

|ム・開発者間に共通認識の理解による生産性の向上

|,SQL文の再利用性の向上
16 SQL文に可読性を持たせることによる保守性の向上

「セ)運用ポリシーに沿ったルールの適用

定型的なSQLコ…ディングルール

SQLテキストを記述するときにデータベースのアーキテクチャを意識しなかったこと

によって、性能問題を引き起こす可能性があります。また、ある条件 (データの質や使

用方法)によって性能問題が起こる可能性もあります。これらの性能問題を引き起こさ

ないためにも、SQLのコーディングルールを策定し、記載しておきます (前述の目的①②)。

Partlにも書きましたが、SQLは同じ処理内容に対して複数の記述方法が考えられ、

記述法に対する柔軟性が非常に高い言語です。このような言語的特徴の観点から、開発

者の生産性や再利用性の向上のために、また、人員交代や DB管理者など、SQL作成者

以外の人も理解しやすいように、可読性を意識したコーディングルールも含めておく必

要があります (前述の目的①～⑤)。 性能問題が発生してコンサルタントが改善作業を

行なうときも、可読性を意識したSQLコーディングルールが存在するシステムなら、論

理設計とSQL要件に対するSQLテキスト記述の理解にかかる時間は非常に短くて済み

ます。性能問題が発生した際の問題解決までのリードタイムを短縮するためにも、SQL

コーディングルールは重要になります (前述の目的⑥)。

」■
定
型
的
な

０
０
Ｆ
チ

ュ
ー
ニ
ン
グ

37

|



SQLコーディングルールに記載すべきそのほかのルール

前述した定型的なルールのほかに、運用ポリシーの観点から必要なルールも記載して

おきます (前述の目的0)。 例えば、データベース定義文の使用可否や運用上の例外事項、

RDBMS固有の SQL関数の使用可否などです。また、運用体制としての例外申請フロー

や責任者についても記載しておく必要があります。業務チームとインフラチームが、別々

に開発/テストや運用を行なっているケースは非常に多いと思います。チーム間の連携

や担当範囲の明確化も、SQLの性能問題を事前に対処するための非常に重要な要素です。

ゆえに、SQLコーディングルール内で運用ポリシーも考慮したルールが記載されている

ことが重要になります。

SQLコーディングルールのカテゴリ

記載すべきSQLコーディングルールを整理すると、大きくは次の4つのカテゴリに分

けることができます。

く言E戦すべきSQLコ ーディングルールのカテゴリ>

Dアーキテクチャに伴う性能問題を避けるためのSQLコーディングルール
‐2使用方法やノウハウをもとに性能問題を避けるためのSQLコーディングルール
′
]可読性や管理性を高めるためのSQLコーディングルール

●運用ポリシーを考慮したSQLコ ーディングルール

以降では、これらのカテゴリごとに実際に、一般的な SQLコーディングルールに記載

されている例をもとに、具体的に説明していきます。実際のSQLコーディングルールは

多岐に渡ります。すべてのルールについて解説できないので、いくつか抜粋します。そ

こからSQLコーディングルールの目的や守る意味を理解してください。さらに、DB管

理者の方やインフラチームの方は、SQLコーディングルールとして、どのようなルール

を記載しておくべきかを併せて考えながら読んでください。一般的なSQLコーディング

ルールの構成内容については、表 1の「SQLコーディングルールチェックリスト」も確

認してください。

|

38



く重要度の定義>
LVl・ 性能劣化に関わらず守るべき必須事項

LV2 性能に影響するため守るべき必須事項
LV3・ 要件に応じて検討すべき検討事項

くルールの定義>(前ページに挙げた4つのカテゴリに対応)
Rl アーキテクチャに伴う性能問題を避けるための SQLコ ーディ
ングルール

R2・使用方法やノウ八ウをもとに性能問題を避けるための SQL
コーディングルール

R3-可読性や管理性を高めるSQLコーディングルール
R4-運用ポリシーを考慮した SQLコ ーディングルール

コーディングスタイルの統一

コメン

R3

て てrし

バイ Rl 修正 載

暗黙の型変換が使用されていないか
'

Rl 修正

SELECT句
,ヽか? R2

ているかつ SQL

R2 SQL

R2

してし かヽ
'※

SQL

ヒン SQL修正

掲載

掲載

WHERE句

∧=,<>,NOT)
NULL 条件

ているかつ

HAVING 6]I.T6ffi D[A,I WHEHE つ SIQL修正

文

文 | るヽか

DELETE文と .TE文を使い分けているか
'
2

分割コミットは検討済みか
'

R2 SQL修正

かヽ
'

結合するテーブル数は6 , R] 修正

ビューを使用した結合はないか
'

3 R2 ピュー定義を参照し元表を用いて結合 掲載

定
型
的
な

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

SQLコーディングルールチェックリスト (次ベージヘ続く)

39

=計算
・関数

■■■ |  ~‐
…

一鋼

'7

置



掲載

データ取得方法

を

R2 検討、SQL修正
R2 検討、SQL修正

BY

DECODE関数、CASE文の使用は検討済みか
'

とUN10N ALLの適切な使い分けがされているか
'

※実行計画を固定化させるための運用ポリシーを反映するSQLコーテイングルールの例です。

表 l SQLコーディングルールチェックリスト (続き)

■縦
~~                     ~ ~~

日憑_墜壁里更墜型聖墜整型聖型受生三二ニイング生T′ヒ
まず、SQLのコーディング方法によって性能問題が発生する可能性があることを知っ

ておく必要があります。データベースのアーキテクチャを理解し、そのアーキテクチャ

に沿った SQLコーディング方法をSQLコーディングルール内に記載しておきます。ゆ

えに、このルールに関する内容は性能問題に深く関わるため、原則として必ず守る (守

らせる)必要があります。

それでは、各ルールを詳細に見ていきましょう。

バインド変数を使用する

アーキテクチャに沿ったルールは、今では当たり前になっていますが、バインド変数

の利用などが分かりやすく良い例だと思います。

.は靱辣曇::::WHERE旬 に条件を指定する場合は、バインド変数を使用すること。

c国霞陶)一般にOLTP系ではバインド変数を使用しないと、本来必要でない再解析

が多発し、CPU負荷の上昇や共有プール内のほかの SQL用の解析結果を

追い出すことにつながります。その結果、データベース全体のスループッ

ト低下を招く可能性が高くなります (図 2)。

婢炒辟鰺 アプリケーションでSQLを生成するような場合には特に注意してください。

SQLの内部に値を直接付け加えるのではなく、(JDBCであれば)sdint、

setStgringな どを使用し、必ずバインド変数を使用してください。

I :10

なお、このルールは一般に OLTP向けのガイドとなります。DWH系のシステムでは



バインド変数を使わないことで値データの異なるSQLを共有させずに、SQLごとに最適

な実行計画で処理を行なったほうが性能が良くなる場合もあります。

C団口DI_lST 2を確認してください。

バインド変数化
されたSQL

一 ― )

バインド変数化
されてしヽないSQL

………>歴亜 ′́

SQLことに共有プールの領域が必要となり、領域を圧迫
する可能性がある

SQLの 再解析が多発し、CPU負荷が上昇する

共有プール内の解析済みSQLを追い出すことによリデー
タベース全体のスルーブット低下を招く可能性がある

図 2 バインド変数を使用する理由

LIST2 バインド変数の使用

るリテラ

同一のSQL

WHERE

――バイン

SELECT /*

ビ
― ― ― → 定

型
的
な

り
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

ケーバープロセス

SQL SQL SQL SQL

プロセス

―プロセス

サーバープロセ

SQL SQL SQL SQL

SQL

空きがない

FROM

137を

サーバ‐プロセス

サーバープロセス

41 1



WHERE旬の条件指定時は索引列に関数を使用しない
SQLテキストの記述によっては索引が使用されないことがあります。そのようなこと

がないように、SQLコーディングルール内にSQLコーティング方法を記載しておく必要

があります。その例を 1つ見てみましょう。

黎輻躙

嶼轟濾

籠轟勘

WHERE旬の条件を指定する場合に、索引列に対して関数を使用しないこ

と。関数を必要とする場合は、列に対して関数を使用するのではなく、右

辺の値に対して適用可能であるかを検討してください。

索引列に対して関数を使うと、索引が使用されなくなってしまいます。また、

列に対して関数を記述すると、すべての行に対して関数の計算を行なうた

め、関数のオーバーヘッドが大きくなります。

索引を使用する列に関数を使用する必要がある場合は、あらかじめファン

クション索引を作成しておくこともできます。ただし、ファンクション索

引を使用する場合は、更新処理や格納効率、初期化パラメータ (queⅣ_

rewrite_integ「 ity=trusted)な どを別途考慮する必要があります。ファンク

ション索引を作成する場合は例外申請書に内容を記載して、DBAチームに

打診/承認を得ましょう。その後、DBAチームにて使用の妥当性を検討し

ます。

LiST3を 確認してください。■皿D

LIST3以外にも、NULL値の検索や暗黙の型変換、LIKE句の中間一致、後方一致、「!」

「=」「,」「く」「>」 の使用など、SQLテキストの記述によって索引を使用できない状態が

発生しないように注意してください。SQLコーディングルール内には、アーキテクチャ

を考慮し、かつ必ず準拠させるルールも記載しておく必要があります。

LiST3 索引列に関数を使用する

は使用さ

:)=1

1421

を使用するため



を避け

躙

使用方法やノウハウをもとにした
SQLコーデイングルール

アーキテクチャに伴うSQLコーディングルールとは異なり、SQLの使用方法や性能に

関するノウハウをもとにSQLコーディングに関するルールを記載します。

SQLの使用方法についてもSQLコーディングルールとして記載しておくことは、性能

を考えるうえで非常に重要です。このルールに関する内容は性能問題に深く関わるため、

原則必ず守る (守らせる)必要があります。

それでは、ルールの詳細を見ていきましょう。

レコードの存在チェックは「rownum<〓 1」 を使用する

隕躊躙聰 レコードの存在チェックは「rownum<=1」 をWHER匡 旬に使用して実行
してください。

●日回D条件に一致する行を1行見つけた時点でSQLを終了するため、高速に実
行することができます (図 3)。

c口田■)LiST4を確認してください。

LIST4以外では、表の件数を確認する場合にNULL値の考慮を行なうルールなどにつ

いても、SQLコーディングルール内に記載しておく必要があります。

一‐■
定
型
的
な

∽
Ｏ
Ｆ
チ

ュ
ー
ニ
ン
グ

43

FRO‖  emp

WHERE hiredate >=

AND hiredate く

TO_DAT=(119811117:′

TO_DATE(119811118:′

:YYYY‖‖DD:)
:YYYY‖ MDD=)′

|



empno salary
1243 1900
4324 2000
6525 2000
1536 2100
1346 2200
7543 2300
1465 3500
6372 4800

salary>2000の従業員が存在するか
'

1件

5件

図 3 レコード取得する動作

LIST4 レコードの存在チェックにrownum<=1を使用する

ビューに対する結合の回避

:|1隕鶉鉤蜀:ビューとビューの結合や、ビューと表の結合は回避してください。このよう

な結合によリデータを取得したい場合はビュー定義を参照し、ビューの元

表を使用して SQL文を記述してください。

嘔圏国Dビ ューを結合に用いると、データを取得するために本来必要な表以外の余
計な表にアクセスする可能性があります。このような状況が生じた場合、

直積結合の発生などで、必要以上のデータアクセスが発生し、性能問題が

生じる可能性があります。

|‖ |

enη pno salary
1243 1900
20004324

6525 2000
1536 2too l,
1346 2200 ヽ
フ543 2300
1465 3500
6372 4800

――上記の SQLで は複数行の値が返る場合は、

一 無駄が多い

SELECT /*‐ TARGET_FUNC00N_000‖ */

COUNT(1)   _

FROM (SELECT o■ plnO _ 
‐

FRO‖

“
‖HER[lsalary > :bl

AND rownum く=: 1)′

<=11こよリスキャンは終了する。存在
1行あるかないかの確認で十分

件見つけた時点で



ビューには、複雑なSQLを隠蔽することができたり、表示する列を制限させたりする

用途があります。ビューの定義を理解して使用する場合は、非常に有用なオブジェクト

となります。しかし、ビューはあくまでも論理的な定義です。ビューを使用した複雑な

SQLをコーディングする場合は、ビューの定義を意識して、性能問題が発生しないよう

に注意してください (図 4)。 ビュー同士を使用した処理を行なう場合は、新しいビュー

を作成することも検討してください。

LIST5 ビューに対する結合の回避

た

E三 二

曰
定
型
的
な

ｏ
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

|

L15

畷羅轟機| ビューの結合を必要とする場合は、DBAチームヘ確認してください。DBA

チームが妥当性を検討します。

0団口D LiST5を確認してください。

SELECT e.empno

′,・ ename

′ dianame

′j.jobnane

FROM emp e        .‐ ._       ‐‐‐―

‐. ′ deltld
‐
 ′ ]Ob j

WHERE e.deptno = d.deptno   ‐_‐ .

AND e.jollo=j.i6616ノ

CREATE OR REPLACE VIEW v=EMP_SAI_AS

SELECT e.empno        _■ |■_        |‐

‐|´
・e.ename

, s.fi nyear

′s. satary      .     ―‐・

FROFemp e・ ■|  ・ ‐・
|′
lζ al s

W}IERE e.empno 二 b.empno(十 )メ       ー‐・‐
.       _     _■ _     ■―‐

――上記あビューを使用して 
‐

――以下の SQLを 実行することができます。

SELECT /* NG USING VIEW */1

_ 1輸pno ‐
_    ′ n..ename

, n-dname

, s.finyear
, s. salary

FRoM v_emp_name n



V EMP NAME

ernpno

ename

dnanne

iObname

ノ
//

V-EMP_SAL

a empno

ename

finyear

salary

ヽ
―
―

フ
匿

図 4 ビューを使用した結合処理の動作

1461
1   1
1 1

, v_emp_sal s

I,HERE n.empno = s.empno;

-- *ffiEr*rl,lTat)L-
-- Hl**il' b v 2 t 

^ 
t, t; Ei n'*r#fi!r-f 

"
SELECT /{. OK */

e.empno

, e.ename

, d.dname

, s.finyear
/ s.salary

FRo[tl emp e

, dept d

/ sal s
IIHERE e.deptoo = d.deptno

AND e.empno = b.empno;

ヽ
「

―
ノ

一　
プ
二

ｒ

Ｈ

Ｌ

dname ename

dname



璽露・

SQLコーディング時の基本的なスタイルを統一しておきます。コーディングスタイル

の統一には、可読性を高め、保守性や管理性を向上するという目的があります。性能間

題が発生し、改善作業を行なうときに、可読性を意識したSQLコーディングルールをも

とにSQLが記述されていると、SQL要件とSQLテキスト記述の妥当性を判断する時間

が非常に短くて済みます。性能問題が発生した際の問題解決までのリードタイムを短縮

するためにも、コーディングスタイルに対するルールは非常に重要になります。

一般的なルールとして記載されている内容について、見ていきましょう。

管理用コメントの付与

:||:薔:躙:麒 ::判:I SQLに管理用コメントを追加します。管理コメントの命名規則を定義し、

それに従ってコメントを記載してください。どのモジュールからどのような

目的で発行されたものであるかが分かるような命名規則にしておく必要が

あります。

G回回DI管理用コメントを記載しておくことで、チューニングやデバックの際に原

因であるSQLを発行しているプログラムの特定が容易になります。また、

SQLの発行状況などのトレンド把握も容易になります。

曜曝轟D管 理用コメントをあまり綱かく分類すると、解析情報を共有すべき「同一

のSQL」 が同一でなくなつてしまう懸念があります。

プログラムや SQLを特定するのに必要十分な区分で管理用コメントの付加をお願い

します。汎用的な SQLがコメントによって、同一の SQLでなくなってしまっては、本末

転倒です。汎用 SQLに対するコメントの命名規則も定義しておく必要があります。

G回IDI LIS16を 確認してください。

可読性や管理性を高めるためのルール

定
型
的
な

０
０
Ｆ
チ
ュ
ー
ニ
ン
グ

|

LIST6 管理用コメントの付与

47

フ



/* 0racle0El'l */ setect s.sid, s.serial#
from v$session s where s-sid =
(select sid from v$mystat where rownum=1)

WHERE句 内の条件の記述順序
‐:麒屁粽琲 WHERE旬における条件の記述順序は次の順序に従つて記述してください。

■ 結合条件

結合条件をすべて先に記述します。結合のペアごとにグループ化して

記述してください。

21絞り込み条件

絞り込み条件は、次の順序で条件に使用する列が含まれる表ごとにグ

ループ化して記述してください。

(1)リ テラル値のみの条件

(2)計算式を使用した条件

(3)関数を使用した条件

(4)副問い合わせを使用した条件

「E 副問い合わせを含んだ条件

条件に副問い合わせが含まれている場合は、条件旬の最後に表ごとに

グループ化して記述してください。

咽目麗コ)WHERE旬内の記述順序を統一することにより、可読性を高めるためです。
チューニング時には、WHERE句の条件から処理の妥当性やチューニング
アプローチを検討します。WHERE旬の可読性を高めておくことで、チュー
ニング時の生産性も向上します。

1481
1   1
1 1



曜賑轟鶴 細かすぎるルールを定義することで、開発効率が低下することがないよう

に注意してください。

□ 皿■D LIST7を 確認してください。

LiST7 VVHERE句 内の記述順序

可読性や管理性を高めるためのルールとしてどのようなものを定義しておくべきか理

解できたのではないでしょうか。ここで紹介したルールは、Javaや Cな どのプログラミ

ング言語を使用した開発時に、各言語のコーディングルールが存在するのと同じ考え方

です。SQLも言語です。SQLコーディングルール内でスタイルに対するルールも定義し

てください。これらの紹介したルール以外にも、大文字/小文字の取り扱い方や列名や

表の別名の使用に関するルールなども考慮しておく必要があります。

」■
定
型
的
な

り
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

:彗| ¬

現場の運用ポリシーを反映させるためのルール

SQLコーディングルールの中には、現場の運用ポリシーを反映させるためのルールも

設定します。ルールの設定により、プロジェクト内の体制を考慮して管理性を向上させ

ています。ここで示す例は、すべてのプロジェクトで適用できるものではありませんが、

例をもとにルール作成の考え方を理解してください。対照的な例を挙げておきます。

49 :

|

SELECT /* AAA-EI'IPADMIN0I -0002 
*/

e.empno

, e.ename

, e.sa[ * 12 + b,sat * 2

FR0M emp e

, bonus b

, dept d

IIHERE e.deptno = d.deptno

AND e.ename = b.ename

AND e.job = 'ANALYST'

AND e-hiredate > To_DATE('198A/12/17' , 'YYYY/ilil/DD' )

AND d. toc = ' NE|,J YORK '

AND e.sa[ > (
SELECT avg(sat)

FR0l'l emp);



ヒント旬の運用ルール

藝 ヒント旬の使用を制限するルール例

.11::::::勒鰊‡》SQL内でのヒント旬の使用を禁上します。

鰹 圏 醸 ヒント句を使用していた場合に、SQLチューニングの判断によリヒント句

の書き換えが必要となる可能性があります。コード変更を極力行なわせな

いために、ヒント旬の使用を禁止します。また、SQLのパフォーマンスは、

DBAチームが最終的には判断を行ないます。開発チームの判断により、ヒ

ント句を追加することを禁止します。DBAチ ームにより実行計画の固定化

が必要と判断した場合は、「ストアドアウトライン」により対応を行ないます。

曜璧機蒻 ヒント旬による対応が必要と判断された場合は、例外申請書に内容を記載

後、DBAチームに打診/承認を得ましょう。DBAチームにてヒント旬によ

る対応の妥当性を検討します。

鱚 ヒント旬の使用を検討するルール例

1,m蝙魃軋 SQL内でのヒント旬の使用を検討します。

観鋼● アプリケーションロジックから外部ファイルに記載しておいたSQLを 呼び

出す運用を行なつているので、SQLチューニングの判断によリヒント句を

使用して改善を行なうことを検討します。SQLのパフォーマンス管理は、

業務チームが最終的に判断して行なってください。しかし、業務チームの

判断のみで、ヒント句を追加することは禁止します。改善作業は、業務チー

ムが行ないますが、DBAチームの承認が必要です。

ヒント旬による対応以外が必要と判断された場合は、例外申請書に内容を

記載後、DBAチームに打診し、承認を得ましょう。DBAチームにてヒント

旬による対応以外の妥当性を検討します (例 :ス トアドアウトラインの使用、

統計情報の変更など)。

x
.'.
SQLコーディングルール活用のポイント

本章で説明した SQLコーディングルール以外のルールについても成り立ちの理由や

根拠があるので、現在関わっているプロジェクトですでに存在しているSQLコーディン

グルールを少し読み直してみてください。また、現在開発中の方は、SQLコーディングルー

1501
1   1
1 1



ルに記載されているルールが守られているかどうかを確認してください。SQLコーディ

ングルールを守るということが、SQLチ ューニングの第一歩であるということを理解し

て活用してください。

また、定期的にSQLコーディングルールのルールを見直してください。守られていな

いルールがあれば、なぜ守られていないのかを開発チームと共有しながら、ルールその

ものを追加、修正、削除などを行なうものであることも理解しておいてください。

SQLコーディングルールの中身については、理解していただけたと思います。次は、

SQLコーディングルールの作成時や使用時のポイントをまとめておきます。

SQLコーデイングルールを守るためには

開発者にとって、SQLコーディングルールは役立つ反面、煩雑に思われてしまうこと

もあります。プロジェクトで SQLコーディングルールを作成するときは、多くの場合、

次の点に注意します。

開発者がコーディングを行なう際に、

直観的に分かりやすいルールとなるように心がける

そのため、SQLコーディングルールは次のような構成をとるようにしています。

目 SQLコーディングルールの構成
SELECT句やWHERE句などのコーディング要素ごとに章立てとします。例えば、開

発者が SELECT句を記述する際には、SELECT句の章を重点的に見てもらえば良いこと

になります。

晰ISQLコーディングルールの要素
主に SQLコーディングルールの指針や理由、注意点、例を記述します。指針は見た

だけでそのルールの意味が分かる内容となるように心がけます。そのルールが必要とな

る理由を明確にし、例外などの注意事項も明らかにします。

l■|コーディングチェックシート

プログラムレビューと同様に、SQLコーディングに対するレビューも実施すると万全

」曰
定
型
的
な

∽
Ｏ
Ｆ
チ

ュ
ー
ニ
ン
グ

51



です。SQLごとにSQLコーディングルールの各項目が守られているかどうかを第二者の

視点で確認すると良いでしよう。

■口感  ~~~~

:‖ューニング甲の第
=不

テ書 しT些―ルを里う
Oracleコ ンサルタントがSQLチューエングを行なう場合も、これまで紹介してきたよ

うなSQLコーディングルールが満たされているかをまず確認します。実際に表 1のよう

なチェックシートと同等の内容の確認を行なってから、さらに深い分析に入ります。

SQLチューニング初心者の方はまず、チェックシートと見比べながら、逸脱している

コーディングがないかどうかを見るところからスタートするのが良いでしょう。

,|
議 定型的なチューニングのまとめ
薫

これまで何度か、SQLパフォーマンス問題が多い理由の 1つとして、SQLの言語的特

徴を挙げました。記法に対する柔軟性が高いことや、処理ロジックを意識しなくてもコー

ディングが可能であることは、開発を行ないやすくする反面、パフォーマンスにおいて

は負の面=パフォーマンスの問題になりかねないということでした。そのようなパフォー

マンス問題を発生させないようにするには、ある程度守るべきルールがあるということ

も説明しましたが、そのようなルールやチューニング方法が、本章で解説した “定型的"

なチューニングであり、特に深く考えることなくそのまま適用したとしても、パフォーマ

ンス問題に対してそれなりの効果が表われるはずですし、最低限実施すべきチューエン

1521



グであると言えるのです (図 5)。

柔軟な言語だからこそ、守るべきルールが存在する

大きく4つのカテゴリに分かれる
・|,アーキテクチャに伴う性能問題を避けるためのルール

1使用方法やノウ八ウをもとに性能問題を避けるためのルール

“
可読性や管理性を高めるためのルール

中運用ポリシーを考慮したルール

ルールを活用するにはポイントがある

。開発者にも直観的に分かりやすいものにする

.iルールが必要となる理由を明確にし、指針、注意点、例なども加える

.=プログラムレビューと同様にSQLコーディングもレビュー(チェックシートでチエツク)

図 5 定型的なSQLチューニング

定型的な SQLチューニングの対象としては、「SQLテキスト」「実行計画」があります。

実行計画の妥当性を定型的に正確に判断することは困難ですが、例えば、OLTP系の

システムであれば、実行計画内のFULLや CARTESIANを性能問題が発生する可能性が

ある処理と定義することで、網羅的にチェックを行なうことも可能です。

SQLテキストに対しては、コーディングルールやガイドを作成し、対応していくのが

一般的です。SQLの記述方法に対してパフォーマンスや管理性を考慮した独自のルール

を追加することにより、ある程度の記述方法の枠組みを作ることが重要になります。パ

フォーマンス問題が発生した場合、まずは対象の SQLテキストがコーディングルールに

従っているかどうかをチェックしていきましょう。

また、本章では、SQLコーディングルールヘ記載すべき内容として、次のものを紹介

しました。

一回
定
型
的
な

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

|

53



。 アーキテクチャに伴う性能問題を避けるための SQLコーディングルール

● 使用方法やノウハウをもとに性能問題を避けるための SQLコ ーディングルール

● 可読性や管理性を高めるための SQLコーディングルール

。 運用ポリシーを考慮したSQLコ ーディングルール

コーディングルールに則った開発が行なわれているかのチェックも重要です。コーディ

ングチェックシートなどの利用も考えられますが、大量の SQL文のチェックを効率化す

るには、Oracle Databaseで は「SQLチ ューニングアドバイザ」機能などの自動化機能

を利用することも考えられます。

なお、ルールをそのまま適用するだけであれば簡単ですが、そのルールに込められた

意図や目的をきちんと理解し、納得したうえで適用/チェックすることが大切です。

定型的なチューニングと非定型的なチューニング

本章で紹介したようなルールは本来、コーディング時に適用するべきものです。チュー

エング時に、このような定型的なルールが守られていない SQLがないように予防してお

きましょう。

このような定型的なルールは重要ですが、これだけで十分ではないことは皆さんもご

存じだと思います。

例えば、SQLだけでは良し悪しを判断できず、データ構造やデータの中身まで考慮し

たうえでチューニングを行なう必要のあるケースなどがあります。判断の仕組みはある

程度は定型的なルールとして確立できますが、それを適用するには、その状況から考察

を進めなくてはなりません。

次章では、このように単純なルールでは済まずに考慮が必要となる、いわゆる非定型

的なSQLチューエングについて紹介します。

1.定型的なSQLチ ューニングの定義を挙げてください。

2.SQLコ ーティングルールの目的を7つ挙げてください。

3.SQLコ ーティングルールの 4つのカテゴリを挙げてください。

確認問題
■
●
●
‘

■
，

|

5L[



回答例

０
０
Ｆ
チ
ｉ

ｌ

ニ
ン

ク̈

1551
1   1

1 1

「

7



警

定型的なチユーニングから
“頭を使う"チユーニングヘ

111

前章では、定型的なSQLチューニングとして、SQLコーディングルールを紹介しまし

た。コーディングルールは、そのまま適用すべきものなので、いわば何も考えずにでき

るチューニングとも言えます。つまり、コーディング時からコーディングルールが徹底

されているプロジェクトでは、定型的な問題がチューエング時に発生することは非常に

少なくなります (図 1)。

璃騨匿得られる効果

! ;xawxt;x.

図 1 定型的なチューニングから非定型的チユーニングヘ

1561
1   1
1 1

黒意1轟1島1違
_.    _   __   

―.■|_   ‐    
‐



本章では、もう少し “頭を使う"チューニングに話を進めていきます。

Oracleで SQLを実行する際には、まずオプティマイザが実行計画を生成します。実

行計画とは、SQLをどう処理するかを定義したものであり、SQLのパフォーマンスは実

行計画に大きく依存します。

チューニングにおいても、オプティマイザが生成した実行計画が適切であるかどうか、

それより良い実行計画がないかどうかを検討する作業が大部分を占めます。SQLチュー

エングのポイントである実行計画の良し悪しを判断し、自ら改善できるようになること

を目的として説明を進めていきます (図 2)。

SQL文の実行処理は「実行計画」で定義されるため、
CBO(コストベースオプティマイザ)が決定する実行計画の

良し悪しがSQL文のパフォーマンスに影響する。

図 2 非定型的チューニングのポイントと理解すべきこと

非定型的なSQLチューニングの定義

これから説明する「非定型的なSQLチューニング」とは、以下のようなSQLチュー

エングを想定しています。

定型的な解がない、頭で考える必要のある SQLチ ューニング

頭で考えなくてはならないポイントとしては、例えば次のようなケースがあります。

0索 引を使うほうが良いのか、使わないほうが良いのかつ

● 表の結合順序はどのような順番が良いか ?

一■
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

▼

57 1



このようなポイントは、対象の SQLによって解が異なりますが、ある程度は共通する

判断指針があります。

Oracleにとっての「頭」とは、オプティマイザであると言えるでしょう。たいていのケー

スでは、オプティマイザが適切な実行計画を生成してくれますが、どうしても人が判断

しなくてはならないケースも出てきます。そのような場合に、人がどのように判断する

べきかを説明していきます。

非定型的なチューニングの進め方

Oracleのコストベースオプティマイザを使用している状況での、一般的なチューニン

グの進め方を解説します (図 3)。

N0

YES ステップ1

ますはCBOがどのような情報をもとに実行
計画を決定するかを理解する

。CBOのインプット情報を把握する
。インプット情報の改善方法を整理する

YES

N0 ステップ2
次にCBOが決定した実行計画が妥当である
かどうかを判断するための指針を理解する

。「実行計画」を理解、分析する

.,「実行計画」が妥当か判断する

|

58

図 3 非定形的なチユーニングの進め方

‐
オプティマイザヘの
インプット情報は妥当かつ

自身で実行計画を検討



朧 ステップ 1:オブティマイザヘのインプット情報のチューニング

|オプテイマイザヘのインプット情報の収集

まず、オプティマイザにインプット情報が適切に伝わっているかどうかを確認します。

SQLの処理が定義されている実行計画は、オプティマイザによって生成されます。オプ

ティマイザはSQLテキストをはじめ、各種情報をもとに実行計画を生成します。実行計

画を生成する際には、インプット情報をもとにさまざまな計画に対してコスト計算や比

較が行なわれ、最終的に最もコストの低い実行計画が選択されます。すなわち、最適な

実行計画が生成されるかどうかは、インプット情報次第と言っても過言ではありません。

オプティマイザヘのインプット情報には図4に示すものがあります。各情報の詳細は

後述しますが、これらのインプット情報をまずは収集し、それらがオプティマイザヘの

入力として妥当かどうかを確かめます。また、これらのインプット情報は、後で実行計

画の妥当性を自身で判断したり、自分で実行計画を作成したりする際にも役立つ情報と

なります。

これらのインプット情報が

オプティマイザのコスト計算に

与える影響を理解しよう。

図4 ォブテイマイザヘのインプット情報

1オプティマイザヘのインプット
:1簡報の修正

オプティマイザヘのインプット情報が妥当でない場合は修正します。妥当ではない例

とその修正例を次に挙げます。

C SQLテキストがコーデイングルールに従っていない → 従うように修正する

● 統計情報がデータの実態と異なっている→ 統計情報を再収集する

インプット情報が正確であればあるほど、オプティマイザは高い精度で効率的な実行

計画を生成します。コストベースオプティマイザを使用したチューニングの第一歩とし

て、オプティマイザヘのインプット情報を修正することで、より最適な実行計画が生成

」■
魃
畿

非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

「
「
Ｊ

一―

■

一

・
■

■

‐

一

千

１

一

Ｆ
」
＼
↓／

|

59



できるように試行してみることは非常に重要です。

インプット情報を修正したら、SQLのパフォーマンスが向上しているかどうかを確認

します。パフォーマンスを直接確認できれば理想ですが、データが用意できないなど難

しい場合は、実行計画を確認することで対応します。

なお、SQLテキストの修正であれば該当 SQLに対する影響確認のみで済みますが、

オブジェクト構造や初期化パラメータ、統計情報を変更する場合は、対象のオブジェク

トにアクセスするSQL、 またはすべてのSQLのパフォーマンスを改めて確認する必要が

あります (表 1)。

※事前に統計収集されていない場合には、動的サンプリングや内部デフォルト値が使用される場合がある

表 1 インプット情報の詳細、改善方法、注意点の一覧

圏 ステップ2:オプティマイザが出力した実行計画へのチユーニング

田自身で適切な実行計画を検討する

対象のオブジェクトにアクセスするSQLをすべて確認することが困難な場合や、単純

な初期化パラメータの修正や統計情報の再収集で対応できない場合には、自身で適切な

・ 実際に発行されるSQL
テキストそのもの

コーディングルールを

遵守 しているか確認

し、ルールに従つてい

ない箇所を修正

・ 索引やテーブルの属性な

どのデータ構造を格納す

る情報

●同 じ表を使用するほかの

SQLに 影響することを考慮
する

0データベースの初期化

バラメータの一部
。VSSYS_ PTIMiZER_
ENVビューで一覧可

●インスタンスレベルで設定値

を変更する場合、すべての
SQL文に影響を与えるため
注意が必要
●セッションレベルで設定値を

変更可能なパラメータもある

ため状況に応じて使い分ける

0データディクショナリに

格納された表統計、列統

計、索引統計など (※ )

統計情報を再収集また

1よ固定化

・ 再収集によりSQLパフォー
マンスが悪化する可能性もあ

るため必ず実行計画や性能の

確認する

●SQLテキスト内に、/*+
(ヒント句

*/を
追加する

改善する実行方法が明

確な場合は、索引の使

用や結合順序、結合方

法などをヒント句で指

定する

確実に実行計画が固定化さ

れるヒント句を指定する必

要がある

インプット情報 説明 改善方法 注意点

,オフジェクト構造 WHERE句条件に適し
た索引が作成されてい

るかを確認し、明らか

に索引が不足している

場合は索引構成を変更

環境に適した値に設定

されているか確認し、

必要に応じてパラメー

タ値を変更

1 60



実行計画を検討せぎるを得ません。例えば、データが次のような状態となり、統計情報

の適切な収集が困難な場合が挙げられます。

● データの偏りが激しく、頻繁に変わる

oデータが大きく増減する

このようなときは、自身で実行計画を検討し、検討結果の実行計画になるようにオプ

ティマイザヘ指示を伝える必要があります。

諷自身で実行麺 を検討できると……

このように、基本的にはオプティマイザに与えるインプット情報を修正し、期待する

パフォーマンスになるよう試行しながらチューエングすることを、まず検討します。

しかし、統計情報の適切な収集が困難な場合や、データが用意できずに直接パフォー

マンスを確認できない場合などでは、オプティマイザが生成した実行計画が妥当である

かを確認したり、自身で検討したりしなければならないケースが出てきます。自身で実

行計画を検討できるのであれば、SQLを実行する以前の段階から、ある程度はパフオー

マンスの予測もできるようになるでしょう。

実際の現場では、オプティマイザを正しく理解し、インプット情報の妥当性を通切に

判断したうえで、必要に応じて自身で実行計画を検討できる人材が求められます。

そこで、本章ではオプティマイザヘのインプット情報に重点を置いて説明していきます。

非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

.`●■

オプティマイザがコスト計算を行なう場合のインプット情報の詳細と、それがどのよ

うに影響しているかを説明していきます。これを理解しておくと、SQLのチューエング

時の視点が広くなるでしよう。すべての要素は多岐に渡っており、限られた紙面での解

説は難しいため、ここでは特にオプティマイザのコスト計算に重要な値について解説し

ます。

SQLテキスト

まずは、オプティマイザが効率的な実行計画を選択しやすくなるように、コーディン

グルールを守っているかを確認し、必要に応じて修正しましょう (図 5)。 例えば、索引

オプテイマイザヘのインプツト情報とその使われ方

61

|



を使用できない記述の SQLテキストの場合、たとえ索引スキャンが効率的であったとし

ても、オプティマイザは索引スキャンを採用できません。詳細については Chapter6を

参照してください。

SQLテキストとはSQL文そのものを指す。

図5 SQLテ キストのチェックポイントと改善手法

オブジエクト構造

SQLがアクセスするオブジェクトの情報も、オプティマイザヘの重要なインプット情

報です。どのような表にアクセスしているか、その表にはどのような索引が付与されて

いるかをまず把握する必要があります。またビューを使用している場合には、そのビュー

のテキストも必要になります。

オプティマイザはこれらの情報をディクショナリ情報から収集します。自身でチュー

ニングする場合も、ディクショナリ情報や設計書をベースに、表、索引、列定義、ビュー

テキストといった情報を収集しておきましょう。

明らかに索引が不足していると分かる場合などは、索引構成を変更して再度実行計画

を確認します。ただし、索引構成を変更すると、その表にアクセスするすべての SQLの

実行計画が変化する可能性があります。そのため、ある程度設計や構築が進んだ段階に

おける索引構成の変更は、慎重に行なう必要があります (図 6)。

アクセスするオブジェクトの情報を把握することが重要。

同じ表を使用するほかのSQLに影響するので慎重に!

颯×

瀾ざ

|

レに従つていない箇所を修正

62

図 6 ォブジェクト情報収集のチェックポイントと改善手法

ポインドコ■ディングル■ルを連守しているか確認

ディクショナリから対象SQLに関連するオブジェクト情報
|(表索引、列定義、使用するビユーのテキスト)を収集し、
WHERE句条件に適した索引が作成されているかを確認

ポイント:



初期化パラメータ

初期化パラメータも、オプティマイザが実行計画を生成するためのインプット情報の

1つです。そのため、初期化パラメータ値がオプティマイザにどのような影響を与える

のかを把握しておかなくてはなりません。初期化パラメータには、オプティマイザがコ

ストを判断するうえでの基礎情報となる値が存在するので、オプティマイザに影響を与

える初期化パラメータ値は、使用する環境に合わせて適切に設定しておく必要があるの

です。

すでに運用中のシステムで、オプティマイザに影響のある初期化パラメータ値を変

更した場合は、すべてのSQLの実行計画が変動する可能性があるので、注意が必要で

す。オプティマイザに影響を与える初期化パラメータは、VSSYS_OPTIMIZER_ENVで

確認できます。その中でも、特にシステムに合わせて確認すべきパラメータはdb_nle_

multiblock_read_cou籠 、。ptimizer_index_cachhg、 Optim2er_index_cost_adjで す。

田l db_fi:e_rnultiblock_read_00unt

このパラメータは、全表スキャンまたは高速全索引スキャン時に単一1/0で読み取ら

れるデータブロツク数を指定します。デフォルト値は、効率的に実行できる最大 1/0サ

イズからOr∝leが自動的に算出します。この値が大きいほど、全表スキャンまたは高速

全索引スキャンのコストが低く見積もられるため、実行計画として選択されやすくなり

ます。Oracle Database 10g R2以 後では自動的に算出されるため、基本的にデフォルト

値で良いでしょう。全表スキャンと索引スキャンの特徴を図7に示します。

empno=6525の 条件で検索した場合
全表スキャン 索引スキャン

Hヽ′,′M 未使用領域

一．炸鸞瑕鱚非定型的なチューニング

1631
1   1

1  1

empno salary
1243 1900
4324 2000
6525
1536 2100
1346 2200

図 7 全表スキャンと索引スキャンの特徴

込むことで、1/0効率が上がる



鳳 optimizeLindex_caching
このパラメータは、索引ブロツクがバッフアキャッシュ上でヒットすると考える割合を

指定します。デフォルト値は「0」 です。この値に応じて、索引走査やネステッドループ

結合のコストを調整します。この値が大きいほど、索引がキャッシュ上にある、すなわち

高速にアクセスできると考えられるので、実行計画に索引スキャンが選択されやすくなり

ます。

デフォルト値は、データウェアハウス (以下、DWH)系システム寄りの設定とも言え
ます。一般的なOLTP環境では、索引ブロックはキャッシュ上にヒットする確率が高い

ため、「90」 などと設定すると良いでしょう。

轟 optimizeLindex_cOst_adi

索引アクセスのコストを通常の何%で計算するかを指定します。デフォルト値は「100」

です。この値が小さいほど索引アクセスのコストを低く見積もるように修正され、実行

計画として索引スキャンが選択されやすくなります。

デフォルト値は、DWH系システム寄りの設定です。例えば OLTP環境では、索引スキャ
ンが大前提と考えられるため、「25」 などと設定して、索引走査のコストを意図的に低く

見積もらせる場合もあります。

■初期化バラメータの修正
パフォーマンス問題が、少数の SQLの問題であった場合、SQLチューニングのために

初期化パラメータを変更することはあまり現実的ではありません。システムの大部分の

SQLが本来は索引スキャンを想定しているのに全表スキャンに偏っている場合などは、

OptimiZetindex_costadjなどを変更するケースが考えられますが、これは本当にどう

しようもない場合の奥の手とも言えます。

むしろ、データベース設計時にオプティマイザ関連のパラメータを適切に設計してお

くほうが重要になります (図 8)。

そのほか、オプティマイザに影響を与える初期化パラメータの代表的なものを表 2に

まとめておきます。こちらも参考にしてください。

|

6叫



オプテイマイザがコストを判断する際の基礎情報となるため、

設定値が実行計画を左右する。

“

ざ

インスタンスレベルで設定値を変更する場合には、すべて

のSQL文注意に影響を与えるため、十分な注意が必要。

セッションレベルで設定値を変更可能なパラメータもあ

るため、状況に応じて使い分けよう。

図8 パラメータ値の設定ポイントと改善手法

「

~~~~~

一■
非
定
型
的
な
チ

ュ
ー
ニ
ン
グ

Oracleの リリース番号に基づいて一連のオプティマイザ機能を使用可能に

するためのパラメータ。デフォルト値はリリース番号と同じです

インスタンス起動時のオブティマイザのモードを設定します

ALL_ROWS:最 高のスループットを得ることを優先するモード
FIRST_ROWS_n:最 初の n行を最短で得ることを優先するモード

サーバープロセスが使用できるメモリ (PGA)サイズのターゲットを指定
します。大量のメモリを割り当てるほど、これらのメモリを必要とする操

作のコストは減少します

SQL文のリテラル値をバインド変数に変換する操作に影響します
FORCE:リ テラルがわずかに異なつても、そのほかが同じSQL文であれば、
その異なるリテラルが SQL文の意味に影響しない限り、カーソルが共有さ
れます

SIMILAR:リ テラルがわずかに異なつても、そのほかが同じSQL文であ
れば、その異なるリテラルが SQL文の意味または計画が最適化される程度
のいずれかに影響しない限り、カーソルが共有されます

EXACT:同 一のテキス トを含む文のみに、前述のカーソルの共有が許可さ
れます

Oracle Database 1 0g新 機能の動的サンプリング機能の動作を制御しま

す。動的サンプリングとは、事前に収集された統計情報が存在しない表に

対して SQL文を発行した際に、64ブロック (デフォルト)のブロックサ
ンプリングを取得する機能です

このパラメータをtrueに設定すると、オブティマイザはスタークエリのた

めのスター型変換のコストを計算できます。スター型変換により、さまざ

まなファクト表の列でビットマツプ索引が結合されます (ビットマップス

タージヨインはOraCle Enterprise Editionの オプシヨン機能)

1651
1 1
1 1

表 2 その他のオプティマイザに影響を与える代表的な初期化パラメータ

バラメータ名 概 要

optirni2erl rnode‐ ..

pga_aggFe`

統計情報

統計情報は、オブジェクトやデータの実際の状況に関する詳細情報です。初期化パラ

メータをオプティマイザがコスト判断するうえでの基礎情報というならば、統計情報は、

オプティマイザがコスト判断するうえで直接的に影響を与えるインプット情報です。

統計情報と実際のデータ状況との差が大きい場合は、実際のデータ状況をもとにコス

トを算出するのではなく、統計情報をもとにコストが算出されるため、結果的に実際の

データに対して非効率な実行計画が生成される場合があります (図 9)。 要は、非効率な

実行計画が生成される主要な原因として、必要な統計情報の欠落や陳腐化が考えられる

とも言えます (図 10)。

統計情報とデータの状態の差が大きいと実際のデータに対して非効率な実行計画が
生成される場合がある。

図9 統計情報とデータの実態がかけ離れた場合

オブジェクトやデータの状態を表わしオプティマイザのコスト計算に直接的に
影響するのでデフォルト値を使用せず実データをもとに値を収集しましょう。

璃舞

実行計画に大きな影響を与えるため、再収集によりSQLパフォー
マンスが悪化する可能性もある。必ず実行計画や性能の確認をし
よう。

|

夕を読

マ

な た

実際の件数:100万行

データ読ん

全表スキャン
非効率な

66

図 10 統計情報のチェックポイントと改善手法

①表の件数が1000行のときに統計情報を取得した

量が増大した

③オプティマイザは
統計情報から件数

④しかし結果として、100万行を全

ポイント:1必要な統計情報が欠落していないか、取得した統計情報と
実デ‐夕の傾向が乖離していないかどうかを確認

回表統計

表の主要な統計情報として表 3に挙げる情報があります。これらの情報は ALL_

TABLES、 ALL_TAB_STATISTICSデ ィクショナリビューなどから確認できます。

統計情報にはデフォルト値が定義されています。デフォルト値は固定値のものと、デー

タ状況により変動する値があることに注意してください。

実際の表や索引にはさまざまな定義、データがあります。そのため、デフォルト値はあ

くまで仮の値であると認識しておきましょう。表、索引に限らず、統計情報のデフォルト

値は基本的に使用せず、実際のデータをもとに統計情報を収集するようにしましょう。

表 3 表の主要な統計情報

■索引統計
索引の主要な統計情報として、表 4に挙げる情報があります。これらの情報はALL_

INDEXES、 ALL_IND_STATISTICSディクショナリビューなどから確認できます。

一」□
非
定
型
的
な
チ

ュ
ー
ニ
ン
グ

表の行数です。行数が多ければ、

大きい表ということになり、全

表スキヤンよりも索引スキヤン

が採用されやすくなるでしょう。

また結合順序にも影響します

NUM ROWS ブロック数× (ブロックサイズ
ー24)/100行

1行当たりの平均サイズです AVG ROW LEN 20バイト

HWMまでのブロック数です BLOCKS 実際のブロック数

索引のブロック数です LEAF BLOCKS 25

Bツ リー索引の高さを表わします。高
さが高いと、リーフブロックまでたど

るブロック数が増えるため、索引スキャ

ンのコストが増加します

BLEVEL

索引列データの表での分散度合いを表わ

します

CLUSTERING FACTOR 800

■■■ ルト1直

表 4 索引の主張な統計情報

続計情報 概要 ディクショナリ列
.デ
フォルト値

II][理

1671

クラスタリングフアクタとは、索引を作成した列のデータが、実際の表ヘアクセスす

るときの分布度合いを表わしています。この値が大きければ大きいほど、索引を作成し

た列のデータが表全体へまんべんなく分布していることを意味します。

クラスタリングフアクタは、インデックス値の最小値から最大値まで走査しながら、

隣り合うインデックス値の指し示す表プロックが同一の場合はカウントアップせずに、

異なる場合にカウントアップして走査することで算出します。

例えば、図 11でクラスタリングフアクタの算出方法を考えてみましょう。索引 Aでは、

インデックス値 4と 5、 8と 9、 cと dの間で表ブロックが異なるため、クラスタリングフア

クタは 3と算出されます。一方、索引 Bのクラスタリングフアクタは索引 A、 表 Aと同

様のデータを保持しているにも関わらず、クラスタリングフアクタはかなり大きくなりま

す (図 11の例では 13になるはずです)。

図 11の例において、インデックス値 1から4に、索引を使用してアクセスする場合

のアクセスブロック数を考えてみましょう。

クラスタリングフアクタが大きい(B)場合、索引を使わずに表を直接スキャンするほうが
アクセスブロック数が少なく、効率的

図 11 クラスタリングフアクタ

索引 Aの場合、索引Aで 2ブロック、表 Aで 1ブロックの計 4ブロックアクセスで

済みますが、索引Bの場合は、索引アクセスは同じ2ブロックでも表 Bに対して4ブロッ

クアクセスせねばならず、計 6ブロックアクセスとなります (図 11の中の色が付いてい

るブロックにアクセスします)。 この場合、索引を使わずに表 Bに直接アクセスしたほう

がアクセスブロック数という意味では効率的です。

つまり、クラスタリングフアクタが大きく、実際の表でのデータが分散している状況

索引A

|キ ///
／

／

′

／

′
ノ

」 | プ/1

索引B

其=

|

68

||

12ブロック
11ブロック

Ａ３

Ａ

索
表

:2ブロック
:4ブロツク

では、索引スキャンよりも表スキャンを選択するほうが効率的なケースが多くなりやす

いと言えるでしよう。

自身でチューニングを行なう場合、クラスタリングフアクタまで考慮することは少な

いですが、Oracleの オプティマイザはこのような物理格納状況まで含めて実行計画を検

討していることを知っておきましょう。

日 列統計

列の主要な統計情報として表 5に挙げる情報があります。これらの情報はALL_TAB_

COL_STATISTICSデイクショナリビューなどから確認できます。

表 5 列の主要な統計情報

ロヒストグラム
ヒストグラムは、列データの分布状況の統計情報です。ヒストグラムを使用すること

により、表のセレクティビティのコスト見積もり精度を高めることができます。均一でな

いデータ配分が存在する場合は、有効な情報になります。ヒストグラムには頻度分布ヒ

ストグラムと高さ調整ヒストグラムの 2種類が存在します。

明示的にヒストグラムの種類を指定して統計情報を取得するのではなく、列内の個別

値数と取得時に指定するヒストグラムのバケット数により、どちらのヒストグラムで取

得されるかが決定します。

E頻度分布ヒストグラム

列内の個別値がバケット数以下の場合に、それぞれの値が何行あるのかを正確に把握

できます (図 12)。

一」回
非
定
型
的
な
チ

ュ
ー
ニ
ン
グ

列内の値の 種 類 を表わします。NDV
(Number of Distinct Value)と呼ぶこと

もあります。NDVが大きいほど、条件で絞
り込める可能性が高くなります。すなわち索

引スキャンが有効になりやすくなります

NU↑vl DiSTINCT カーディナリ
ティ/32

NUM NULLS 0列内のNULL値の数です

列データの分布状況の統計情報です。ALL_
TAB HISTOGRAMSデ ィク シ ョ ナ リ
ビューで詳細を確認できます

69

|

統計情報 概要 ディクショナリ列 デフォルト値

‐″
,■ ,マ●
~~~

1●■■t.

■■,●‐●



国吻 蜃

つのバケットに分割した場合

列の値それぞれが 1つのバケットに対応します。

個別値の数が指定されたバケット数以下であれば、頻度分布ヒストグラムが生成されます。
それぞれの個別値が正確に何行あるかを把握できます。

図 12 頻度分布ヒストグラム

日高さ調整ヒストグラム

列内の個別値がバケット数より多い場合に、指定バケット内に列値を均等に配置して、

ポピュラ値をもとに偏りを把握できます (図 13)。

12件のデータ(個別値 4種類)

回□□□□□□回回□□ 匝コ
日

く募全体を4

口

く非全体を4つのバケットに分割

バケット内の最大値が同じ値の場合を、ポピュラ値と言います。

この例では、1が2つのパケット内の最大値を示しているので、1がポピュラ値です。
4つのパケットに分割しているので、1バケットは全体の25%を表わしています。
ゆえに、1は全体の50%(2バケット)に分布しているとオプテイマイザは判断します。

図 13 高さ調整ヒストグラム

圏システム統計

システム統計は、オプティマイザに対してシステムのハードウェア特性 (1/0と CPU

のパフォーマンスおよび使用率など)をもとにコスト算出を最適化するためのインプッ

ト情報です。通常の SQLチューニングではここまで意識することは少ないかと思います

が、簡単に説明しておきます。

システム統計の収集方法には NOWORKLOAD統計とWORKLOAD統計の 2つのオプ

ションがあります。

□ 蜃 □ □ □ □ □ □

1701

12件のデータ

□□□□□□□回回匡]国匝
=|



目NOWORKLOAD統 計
インスタンス起動時にデータベースに対して、アクティビティがない状況の情報です。

インスタンス起動時にsysaux_statsS内 に値が存在しない場合に取得されます (表 6)。

表 6 NOWORKLOAD統 計

饉VVORK駐OAD統 計
コストをより有効に利用するために、明示的にシステム統計を取得すると、オプティ

マイザのコスト算出精度が向上します。統計情報を収集するときに、負荷特性を考慮し、

オンライン時間帯とバッチ時間帯などの負荷の質が異なる時間帯で別々に取得して、負

荷特性を考慮したコスト算出により最適な実行計画を生成することができます (表 7)。

表 7 WORKLOAD統 計

システム統計の WORKLOAD統計を正しく取得することで、オプティマイザがコスト

を見積もるときに、処理完了までの所要時間という観点から最適化を行ないます。また、

データベースに対するワークロードを考慮した最適化を行なうことができます。

回
E三

|

非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

インスタンス起動時の CPU速度 (MHz)

ディスクシーク時間+ディスク回転遅延時間+OSオ ーバーヘッド時間 (ミ リ秒)

1ブロックの平均転送速度

1ブロックのランダムリードの平均レスポンス時間 (ミリ秒)

複数ブロックのシーケンシャルリードの平均レスポンス時間 (ミ リ秒)

1秒当たりの平均サイクル数 (MHz)

マルチブロックリード時の 1回当たりの平均読み込みブロック数

1/0サブシステムが提供可能な最大 1/0ス ループット (bytes/sec)

1/0ス レープ単位での平均 1/0スループット (bytes/seC)

71

統計情報 説明

統計情報 説明



轟 統計情報の修正

統計情報の修正は DBMS_STATSパ ッケージを使用します。統計情報は実行計画に大

きな影響を与えるインプット情報であるため、再収集によりSQLパ フォーマンスが大き

く向上される可能性がある反面、逆の状況になるケースがないとも言えません。統計情

報を再収集した場合には、関連するSQLの実行計画やパフォーマンスを確認することを

お勧めします。

ヒント句

ヒント句は、直接オプティマイザに指示を与えることができます。ヒント句の使用は、

上級者向きの手段となります。そのSQLの実行計画がベストであるか、またデータ増加

や結合順序、結合方法も判断できているときに、必要なヒント句を使用して、実行計画

を固定化させます。ヒント旬により実行計画が完全に固定化できない場合は、部分的な

実行計画の変動余地が残るので、注意が必要となります。

72
1



=||

実行計画の確認とそのチューニング

実行計画の確認が必要になるケースとは?

ここまで非定型的な SQLチューエングの流れと、その最初のステップであるオプティ

マイザヘのインプット情報の扱いについて以下のことを説明しました。

<ステップ 1のまとめ>

O SQLチューニングの肝は「実行計画」である

●「実行計画」はコストベースオプティマイザにより生成されている

● コストベースオプティマイザの入力情報

●入力情報をどう改善するのか

基本的にチューニングは、オプティマイザに与えるインプット情報を修正するのが簡

単ですが、適切な統計情報の収集が困難な場合や、データが用意できず、直接パフォー

マンスを確認できない場合には、オプティマイザが生成した実行計画が妥当であるのか

を確認しなければならないケースも出てきます。

そこで、ここではステップ 2として、以下を目標に説明していきます。

くステップ 2のポイント>

。 自分で実行計画の妥当性を判断できるようになる
。 自分で適切な実行計画を作成できるようになる

チューニングの進め方は図 14のような流れになります。

N0

N0

」■
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

|

YES

YES

図 14 チューニングの進め方

73

パフォーマンスを確認し妥当であればチユ

「

ニング完了



国実行計画の妥当性を判断できるようになるために

実行計画の妥当性は、定型的に判断できるものではありません。しかし、以下のよう

な要素に分解すると、ある程度は定型的な知識に落とし込むことができます。

o実行計画の読み方
o実行計画のどのポイントに着目して検討を行なうべきか
o着 目したポイントに対する妥当性判断の指針

つまり、実行計画を正しく読むことができ、重点的に確認すべきポイントを的確に捉

えられること。そして、そのポイントに対して何が良いのかの判断指針を知っているこ

とが重要になります。

実行計画の読み方

それでは、実際の実行計画の例を見ながら、実行計画を読むためのポイントを見てい

きましょう。

囲 実行計画の表示例

LiS丁 1の SQL文を実行した場合を例に説明します。この例は、部署名が
lRESEARCHI

の社員の名前を、社員番号順にEMP表とDEPT表から取得するSQL文です。

LISTl 実行したSQL文

Oracle Ente叩nse Manager(以 下、EM)を使用すると、実行計画を容易にかつグラフィ

カルに確認できます。図 15、図16は、Oracle Database llg Rlの EMにて表示した表形式、

グラフ形式の実行計画です。

17叫 |

|   |

| |

SELECT /* 6ET…  NAME_FROM_DNA‖ E ■1/

empno                  _

′ ename

・ ′job
. FRO‖
 emp e ‐‐・■.

′ dept d              ―

WHERE e.deptno = d.d(〕 ptno

AND d.dname = lRESEARCH:
~_ORDER 3Y empno′



▼ヽ ESl■ DL(

11“

また、SQL*Plusの AUTOTRACE機 能を使用した例を LiS丁2に示します。主な情報の

意味を表 8に挙げておきます。

図 15 EMで表示した実行計画

■
非
定
型
的
な
チ

ュ
ー
ニ
ン
グ

鹸
鶏鰤

‐‐ ・…―・   И  ‐ヽ‐‐・ ―

O■lD

彗
SOL‡洟

策`■′

=

澤鐵

'「 :

回<憂亜≡∋

:はく医亜亜憂己)
｀ヽ
、

＼

//

無 /
、ヽ.、
ヽ、
“ヽ .

//

/■
・・

不要 いいえ
子ラツチ番号 0

■71

gン時間(秒)■62
飩′Sq疇簡(秒 )0』0
,ava●簡(秒,0.00鰊

計
一繭一

）
一鋤一 合計解析

ハーH暉折
子カーンル
ロード濠信枷彗
無効に

最大カーンル
"ズ

(КO)

すべて0カーフルサイズ(KB)
枷コロード寺間

最新ロード崎問

あ
ｍ
あ
ｍ

呻６・・・５・０２７口一一一̈一摯̈

モジュー,'3叶口us
ア
～
シ

晰 スキーマSК
睫/mLツースで行番号)=羹餞延華1」曇菫

=墜
IV■‐

SQLプロフアイ,'VA
Sg_.計担璽ベースラインN′A

図 16 EMで表示した性能統計情報

1751

④EMP表へのアクセス

「●並行性0待薇(01'):
1鸞CPV(99.9F)  :



LiST2 SQL*Plusの AUTOTRACE機 能で表示した実行計画

ld オペレーション lD

操作 Operation オペレーション内容

オブジェクト Name オペレーシヨン対象のオブジェクト名

順序 オペレーションの実行順序

行/バイト Rows/Bytes 該当オペレーションでアクセスされる行数/パイト数

76

SQL〉 Oget_ename

実行計画

Plan hash

IId l I Name I RoHs I Bytes I Cost (%CPU)I lime I

SELECT 
‐
STATE‖ENT

SORT ORDER BY

NESTED L00PS

NESTED L00PS

TABLE ACCESS FULL

41  1361
4 1   136 1

1        1

41 1361
11  131
41    1
・
4‐1‐    84 1

5  (20)1 00:00:01 1

5  (20)1 00:00:01 1

1           1

4  (0)1 00:00:01 1

3   (0)1 00100:01 1

0   (0)1 00100:01 1

1  (0)1 00:00:01 1

DEPT

INDEX RANGE SCAN          I E‖P~IX2
1:‐_ _「 .― ‐|

TABLE ACCESS BY INDEX ROりIDi E‖P.‐ ‐|‐‐

PrediCate lnfOrmatiOn (identified by OperatiOn ld‐ ).F

4 - fi lter(:lD''.I:DNA‖ EI'=:RESEARCH:)

5 - access(:IE7'.'rDEPTNO''=i'Dl'.!:DEPTNO‖ )

0 recursive caI ls
0 db btock gets

5 consistent gets

0 physical reads

0 redo size

771 bytes sent via SQL*Net to client
520 bytes received via SQL*Net from ctient

2 SQL*Net roundtrips toltrom client
1 sorts (memory)

0 sorts (disk)

3 rous processed

EM l SQL*p:us 意味



該当オペレーションに対するオプティマイザのコスト評価値コスト Cost

該当オペレーションに要するCPU時間割合CPU(%)
該当オペレーションに要する時間Time時間

問い合わせ内のブロックことの名称やオブジエクトの別名。

副問い合わせを使用した SQL文で有用になる場合あり
問い合わせブロック名

/オブジェクトの別名

該当オペレーションで適用された条件句など
Predicate
lnformation述語/フィルタ

表 8 1実行計画の主な情報の意味

|■1実行計画を読むためのルール

実行計画はツリー構造で表わされており、基本的には以下のシンプルなルールで読む

ことができます。

● インデントで整形されたツリー構造になつている

oツリー構造の深いオペレーションから実行される

o同一のレベルであれば、上に表示されているものから

o結合方法の次のレベルに結合対象の表が表示される (結合操作ありの場合)

つまり、このSQL文は、実際には次のような方法で結果を取得していることが分かり

ます。

」■
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

1771

EM SQL*oluS 意味



.■I DEP丁 表に対 してフルスキャンを行なつており、EMP表に対しては索引 EMP_
IX2を使用した索引スキャンが行なわれている

121 DEPT表とEMP表はネステッドループ結合で結合されている
|■,結合順序は DEPT表から先にアクセスし、EMP表を結合している
‐
II最後にソート処理が行なわれている

また、実行計画のオペレーションごとに適用された絞込条件も表示されます。図 15

内の「述語」「フィルタ」カラムから、次の情報が読み取れます。

(5'DEPT表に対するフルスキャンの際に、「"D".‖ DNAME"〓iRESERCHl」 が適用さ

れている

CIEMP表に対する索引スキャンの際に、「"E"."DEPTNO"〓 "Dl"DEPTNO"」 が適用
されている

実行計画の判断ポイント

さて、上記の実行計画のどの部分で妥当性の判断をする必要があるのでしょうか ?

基本的な判断ポイントにはデータアクセス方法、結合方法、結合順序の 3つがありま

す (図 17)。

〔
Ｕ
７
′



ロデータアクセス方法
LISTlの SQLでは、DEPT表には表全体にアクセスするフルスキャンが行なわれてい

たのに対し、EMP表は索引を使用してアクセスしています。このように、表スキャンが

良いか、索引スキャンが良いかなど、表へのアクセスの方法についての妥当性を判断す

る必要があります。

■結合方法

表を結合する際の方法も判断ポイントになります。Oracleではネステッドループ結合、

ハッシュ結合、ソートマージ結合の 3種類の結合方法が用意されていますが、いずれの

方法で結合するべきでしようか。その妥当性も検討します。

鰯結合順序

表を結合する順序も重要です。いずれの表から結合するかによってパフオーマンスが

大きく変わります。結合する表数が多くなればなるほど、結合順序のパターンは増加し

ますが、どのような順序で結合するべきかも検討することになります。

そのほか、不要なソート処理が行なわれていないかなど、確認するべきポイントはい

くつかありますが、基本的には上記の「アクセス方法」「結合方法」「結合順序」3点に

ついて検討する必要があります。

Execution Plan

O SELECT Optimizer=CHOOSE (Cost=s 661d=14 Bytes=392)
l  HASH J101N(Cost=5 Card=1 4 Bytes=392)
2  TABLE ACCESS(FULL)10F:DEPTi(Cost=2 Card=4 Bytes=44)
3  TABLE ACCESS(FULL)OFIEMP:(Cost=2 Card=14 Bytes=238)

/

匹萱憂rl
データアクセス方法

表結合方法

表結合順序

」ロ
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

 ヽ_――――――――¬
‐ゝ」表結合順序」
り L―一二」

診
〉EMP表へのアクセスはフルスキャンで良いか'

》
)2つの表を結合するには八ッシュ結合が最適か?

〉
〉DEPT表を先に読むのは適切かワ

図 17 実行計画の判断ポイントは 3つ

1791

1 1

‐表結合方法



データアクセス方法の判断指針

■データアクセス方法の種類
それでは、実行計画の妥当性を判断する要素の 1つであるデータアクセス方法につい

て、データヘのアクセス方法の種類や妥当性を判断するには何を考慮すべきかを解説し

ます。さっそく見ていきましょう。

データアクセス方法の要素には、基本的に次の2つがあります。

嘔〕表を直接参照する

2索引を利用して参照する

0は、データが入っている表のブロックすべてにアクセスして、データを取得する方

法です。0は、索引を使用して索引から該当する表ブロックにアクセスする方法です (索
引列のみを参照する場合は、索引アクセスだけで完結します)。

SQLチューニングを難しく考えて (思って)いる方もいるかもしれませんが、最終的
にはデータを取得する方法は、この 2つしかないのです。2つ しかないと思えば、少し

は気が楽ですね。この2つのデータアクセス方法から選択する際は、どのような点に考

慮して判断するのかをきちんと理解してください。索引を利用して参照する方法は、索

引の使い方によってさらに細かいパターンがあります (図 18)。 詳細は、後述する索引

のスキャンの箇所で説明します。

Ｌ
Ｐ
ア
　

ｌ
ｌ
ｌ
■
■
目
Ｆ
Ｆ
Ｉ

図 18 データアクセス方法は2種類

1801
1   1
1 1



■表のスキャン

まず、表を直接参照するパターンです。この場合、表の全データを読むことになるため、

「表フルスキャン」とも呼ばれます。表フルスキャンの特徴については既に説明している

ので、ここでは処理の全体の流れを図示するに留めます(図 19)。 表を直接参照するパター

ンが、どのように実行計画で表示されるかを理解してください (図 20)。

く表フルスキャン (TABLE ACCESS FULL)>
o HWM(High Water Mark)ま での全ブロックを読み込む

o表がパーテイション化されている場合、一部のツールでは「TABLE ACCESS

FULL」 となっていても表全体にアクセスするとは限らず、特定のパーティション

のみにアクセスしている可能性がある

SQL―………>

結果 ← ――
ヽ

一回
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

ロ データブロック(使用中、SELECT対象データあり)

ロ データブロック(使用中、SELECT対象データなし)
圏 データブロック(HWM以後、未使用)

サーバープロセス

実際

國 圏 圃 圏
圃 圃

鯰 y囃 鯰 吻
表

図 19 表フルスキャンの処理イメージ

81

|



図 20 表フルスキヤンの実行計画例

日索引のスキャン

索引を利用してデータヘアクセスするパターンは、索引の使われ方によっていくつか

存在します。図 21を見ながら、さまざまな索引を利用したアクセスパターンを想像して

ください。また、各アクセスパターンがどのように実行計画で表現されているかを理解

してください。

次に、索引を利用してデータヘアクセスするパターンの例を 5つ挙げます。

SQL……――●

結果← ―… こ`[‐1..._ __=′  .

N:キー値
dataN:デ ータ
dbaN:データブロッ
rowidN:ROWID

クのアドレス

図 21 索引スキャン

l①索引のレンジスキャン (lNDEX RANGE SCAN)
索引のレンジスキャンは、SQLの条件で範囲選択されるような場合に使用されます。
ルートやブランチブロックから、選択範囲内のリーフブロックを検索します (図 22)。

索引

表ブロック

表

l

|

82

リーフブ由ック内のキー

値の前後のキー値を格納
しているリーフブロック
のアドレスを持つてしヽる

リーフブロックにキー値とROWID
が記録されており、それをもとに表
ブロツクにアクセスする



該当するリーフブロック内の ROWIDをもとに実際の表データを参照します。SQLが索

引列のみを必要としている場合は、表データヘの参照は行なわれず、リーフブロック内

に格納されているデータから値を返します。また、索引には索引列はソートして格納さ

れているため、索引を使用して ORDER BY句 を満たせる場合は、ソート処理を回避する

ことも可能です (図 23)。

lNDEX RANGE SCAN

きキー値の範囲でリーフ・ブロックをスキャンして条件に該当する

複数エントリを返す。

図 22 索引のレンジスキャンの処理イメージ

図23 索引スキャンの実行計画①

l②索引の一意スキャン (lNDEX UNQUE SCAN)
索引の一意スキャンは、SQLの条件で単一の値が選択されるような場合 (列が等価条

件で指定されている)に使用されます (図 24)。

単一の値が選択される条件としては、該当する表の列に対して unique制約、または

pHmav key制約が存在する必要があります。ルートやブランチプロックから単一値の

範囲内のリーフプロックを検索します。該当するリーフブロック内の 1つの ROWIDを

もとに実際の表データを参照します。SQLが索引列のみを必要としている場合は、表デー

タヘの参照は行なわれず、リーフプロック内に格納されているデータから値を返します

(図 25)。

」■

雌
♂:沈

非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

田

ＱＬ

root

Bl

11 L12 L13 L21 L22

1831
1   1
1 1

一 一 一 一 ― 一 一 ― 一 ― 一 一 一 →

r索引レンジスキャンの例。この _ヽ´′
1例では表にはアクセスせず、索 /
W型:聖堅堅竪リ

B2



INDEX UNIQUE SCAN

“
条件に該当する1エントリを返す。
レUNIQUE索引の列に対して、等価条件を使用している場合のみに出力さ
れるオペレーションである。

図 24 索引の一意スキャンの処理イメージ

図 25 索引スキャンの実行計画②

日③索引のフルスキャン (:NDEX FULL SCAN)

索引のフルスキャンは、SQLの条件で索引列の値が選択されている必要はありません。

索引のフルスキャンが選択される条件としては、SQLで参照される列がすべて索引に含

まれている場合、かつ少なくとも索引列の 1つにNOT NULL制約が付いている場合です。

このアクセス方法が選択されるのは、索引列のみの参照でソート処理が必要な場合です。

表データをフルスキャンしてソートするのではなく、ソート済みの索引をフルスキャン

することで、ソート処理が回避できます。ルートやブランチブロックから、リーフプロッ

ク全体を検索します。注意点は、索引の全ブロックがシーケンシャルアクセスされる (1/

0に 1ブロックずつ読み込まれる)点です (図 26)。

|

root

Bl

Lll L12 L13 L21 L22

卜
ぷ〕鵠 .八翻    Sぽ

撃
=l_____

84



『oot

Bl B2

11 L12 L13 L21 L22

:NDEX FULL SCAN

」|リーフブロックをフルスキャンして、条件に該当するエントリを返す。
●・リンク順にスキャンするため、キー値でソートされた順にエントリを返す。
,返された値がソートされているため、その後のソート処理を省略できる
場合がある。

図 26 :素引のフルスキャンの処理イメージ

目④索引の高速フルスキャン (lNDEX FAST FULL SCAN)

索引の高速フルスキャンは、SQLの条件で索引列の値が選択されている必要はありま

せん。索引の高速フルスキャンが選択される条件としては、SQLで参照される列がすべ

て索引に含まれており、かつ少なくとも索引列の 1つにNOT NULL制約が付いている場

合です。これは、索引のフルスキャンと同じ条件です。索引のフルスキャンとの違いは、

ソート処理の有無です。索引のフルスキャンは、索引の構造を利用したソート処理の回

避が可能ですが、索引の高速フルスキャンは、ソート処理の回避ができません。SQLの

要件により、索引の高速フルスキャンが可能であるか否かを判断する必要があります。

では、なぜ索引の高速フルスキャンではソー ト処理が回避できないのでしょうか。そ

れは、索引ブロックをマルチプロックで読み込むため、取得されるデータを索引キーで

並べられないからです。マルチブロックアクセスかつパラレル処理も可能なので、索引

のフルスキャンよりも高速です。また、表のブロックよりも索引のブロック数が少ない

場合 (一般的には索引ブロックのほうが少ない)は、表のフルスキャンよりも高速にな

ります (図 27)。

非
定
型
的
な
チ

ュ
ー
ニ
ン
グ

1851
1 1

8



セグメントヘッダ

root

Lll

Bl

L21

L22

B2

INDEX FAST
FULL SCAN

・ ツリー構造を意識せずに、セグメントヘッダから順にブロックをフル
スキャンするため、返つてくる値はソートされない。
中マルチブロックリードやバラレル実行を行なうことができる。

図27 索引の高速フルスキャンの処理イメージ

l⑤索引のスキップスキャン (NDttX SKIP SCAN)

索引のスキップスキャンは、複数列で作成された索引が、SQLの条件で索引列の第

1列が指定されていない場合でも索引スキャンを行なうことができます。内部的には、

第 1列の値をもとに論理的な副索引を作成して索引スキャンを可能にします。第 1列

の値をもとに副索引が作成されるため、第 1列の値の個別値が非常に少ない場合に有

効に動作します。また、索引数を減らすことで、表データの更新処理を効率化するこ

とも可能です。表のフルスキャンより索引のスキップスキャンのほうが効率が良いかど

うか判断基準となります。または、新たに索引を作成すべきかも判断する必要がありま

す (図 28)。

lNDEX SKiP SCAN

‐複合索引の第1列目に対する条件指定がなく、2列目以降の列に対して条件
指定があつた場合に採用される可能性がある。
■INDEX RANGE SCANと 比較すると、効率が悪いオペレーションである。

1861
1    1

1  1

root

Bl

Lll L13 L21

図 28 索引のスキップスキャンの処理イメージ



■そのほかのデータアクセス方法
そのほかのデータアクセス方法として、ROWDス キャンも挙げておきましょう。

ROWIDスキャンは、索引からROWID情報を取得して、ROWIDを もとに表データに

アクセスして該当データを取得するなどの第 2ステップとして内部的に使用されます。

SQLの条件として、ROWDを指定して該当データを取得することも可能です。

ROWDは、データが格納されている場所を表わす内部表現です。ROWIDは データ

が格納されている場所をもとにデータアクセスできるため、単一行を取得するのに最も

高速な方法です。実行計画上は「TABLE ACCESS BY USER ROWD」 と表示されます。

封 何をもつて判断するのか ?
ここまでの説明で、どのようなデータアクセス方法があり、そのデータアクセス方法

はどのようなものかを理解していただけたと思います。それらのデータアクセス方法の

どれを選択するかが、SQLチューエングを行なううえで非常に重要です。ここからは、デー

タアクセス方法を選択するうえで、どのような点を考慮すべきかについて説明します。

SQLチューニングを行なう過程で、実行計画の妥当性を判断するときに一番重要な要

素は、実行計画を変更することで、SQLによるデータの取得を最小のプロックアクセス

で行なえるようにすることです。

これは、データアクセス方法を判断する指針ではなく、SQLチューエング指針と言え

ますが、非常に重要です。データアクセス方法を判断する指針も、SQLチューニング指

針と同様の前提で判断を行ないます。

チューエング対象のSQLが表全体からどのくらいの割合でヒットするのか、そのSQL

の条件で指定された値は、列の個別値がどのような状態であるのかなどによって、どの

ようなデータアクセス方法にすべきかどうかを検討します。また、実行計画の妥当性を

判断するうえでさらに重要な要素として、システムリソースの使用状況やOracleのキャッ

シュ効率などのインスタンス全体も意識して考慮できるとベストです。

SQLで参照する表のデータ変動が今後どのように推移するのかによっても、データア

クセス方法の妥当性を検討します。極端な例ですが、データベースバッフアが枯渇して

いて、索引のレンジスキャンの範囲が非常に広く、かつ今後その選択範囲のデータ量が

増加傾向にあるような場合を考えてみましょう。表のフルスキャンヘ実行計画を変化させ

ると、SQLレスポンスは若干増加します。この場合は、1/O効率 (表のフルスキャンはマ

ルチブロックアクセスのため)の良いデータアクセスを選択することになるので、性能の

安定度を高められます。ただし、通常は逆にデータ量が増えて、選択範囲の量がそれほ

非
定
型
的
な
チ

ュ
ー
ニ
ン
グ

|

87

8



ど変わらないケースのほうが多いでしょう。この場合は索引スキャンを選択するべきです。

既存のオブジェクトの構成だけで判断するのではなく、必要な列へ索引を作成して索

引スキャンさせることも検討すべきです。索引を追加する場合は、索引を作成する対象

表を参照する SELECT文の実行計画が変動することによるレスポンス低下や、更新処理

のレスポンス低下を確認する必要があります。

ロセレクティビティとカーディナリティ

データアクセス方法をはじめ、実行計画の妥当性を判断するうえで非常に重要な要素

であるセレクティビティについても解説しておきます。

セレクティビティとは、SQLの条件や条件の組み合わせにヒットする行の割合を示す

ものです (図 29)。 オプティマイザも実行計画を生成する際にセレクティビティを考慮

します。データアクセス方法や、表の結合方法、結合順をどのように行なえば最適であ

るかを判断するために使用されます。データアクセス方法を例に示すと、次のように判

断されます。

セレクティビティが高い → 表のフルスキャンのほうが効率的

セレクティビティが低い → 索引スキャンのほうが効率的

■セレクティビティ(選択率)=条件を適用した結果の行数/全体の行数
■計算方法は、ヒストグラム(※ )の有無により異なる

算出方法の例 (ヒストグラムが存在しない場合)

※データの分布統計情報。ヒストグラムを取得している場合、CBOはヒストグラムをもとにセレクティビティを算出する。
※SQL文 にバインド変数が使用されている場合は、バインドピーク機能の有無とヒストグラムの有無でセレクティビティの算
出方法が変わる。

図29 セレクティビティとは

簡単な例として、性別の列の個別値数 (NDV)を 2(「女性」と「男性」の 2種類)

とすると、「女性」という値の行のセレクティビティは 1/2となり、セレクティビティが

|

1/NDV
Number of Distinct Va!ue(列に含まれる値の種類)

データが―様に分布していると仮定するので等価条件のセレクティビティは

1/NDVとして計算される。

(HIVAL― X+1)/(HiVAL― LOヽ′V∨AL+1)行

88

等価条件COL=`X'



高いと判断します (図 30)。 ここで、ヒストグラムと何が違うの?と疑間に思った方は

鋭いですね。セレクティビティは、SQLの条件で指定された列にヒストグラムが存在す

れば、データの分布状態が分かるため、ヒストグラムからセレクティビティを算出します。

ヒストグラムが存在しない場合は、列のNDVを使用して、一様に分布していると仮定

してセレクティビティを算出します。ヒストグラムが存在していれば、条件で指定され

た行がデータに対して、どの程度までヒットするのか正確に判断できるということです

(図 31)。

伊1)SELECT*FROM customer WHERE′ 性男l」=`男 1生 '

性別列は、「男性」「女性」の2種類=NDVは 2。 SQLのセレクティビティは1/2として計算
される。

実際のデータでは男性の比率が 10%だつたとしても50%の割合で条件にヒットすると予測
を立てて実行計画を算出する。

図 30 セレクティビティの計算例

一」■
非
定
型
的
な
チ

ュ
‥
ニ
ン
グ

田中 隆二 関東 男性

井上 みき 東北 女性

工藤 朋子 関東 女性

本井 美由紀 九州 女性

日高 千尋 関東 女性

齋藤 美佳 関東 女性

7 若木 泉水 関東 女性

108 佐々木 千枝 東北 女性

D09 立花 真由 関西 女性

〕10 宮原 希美 関東 女性

000001
〕00002
000003
000004
000005
000006

891



・ カーディナリティ=表の行数×セレクティビティ

例)SELECT*FROM customer WHERE性 別=`男 l性 '

1万行の表

セレクティビティは1/2

1;石×1/2=5000イテ

000001 田中 隆二 関東 男性

000002 井上 みき 東北 女性

000003 工藤 朋子 関東 女性

女性000004 本井 美由紀 九州

000005 日高 千尋 関東 女性

木村 あかね 関東 女性

図 31 カーディナ リティとは

複数の条件が指定された場合は?バインド変数で指定されていた場合は?と疑間に

思った方は、さらに鋭いですね。これら2つの疑間について説明しておきます。

|い 複数の条件が指定された場合のセレクティビティは?

論理演算 (AND、 OR、 NO丁)を使用して、複数の条件が指定されている場合は、

次の表のように個々の条件のセレクティビティを合成し、全体のセレクティビティ

を決定します。

Sl=条件 Plのセレクティビティ S2=条件P2のセレクティビティ
表 9 複数の条件が指定された場合のセレクティビティの計算方法

② バインド変数で条件指定された場合のセレクティビティは?

バインド変数で条件指定された場合のセレクティビティは、バインドピーク (バイ

ンド変数内の値を先読みする)機能の有無で異なります。

● バインドピーク機能が有効な場合

SQLの解析 (ハードパース)時にセットされていたイ直でセレクティビティが算出さ

Pl AND P2 Sl*S2

P10R P2 Sl+S2- (Sl*S2)

1-SlNOT Pl

|

90

セレクティビテイの合成‐|■||‐|||

010000



れ、リテラル値で条件指定した場合と同じということになります。注意点は、その

後にバインド変数値が異なる SQLで実行された場合も、ハードパース時に値で算

出されたセレクティビティにより導き出された実行計画で実行されるという点です。

ヒストグラムが存在する場合は、ヒストグラムの値をもとにセレクティビティを算出

します。

● バインドピーク機能が無効な場合

条件が等価条件で指定された場合は、1/NDVが セレクティビティとなります。

条件が等価条件以外で指定された場合は、O.05と 固定値がセレクティビティとなり

ます
注1。

くセレクティビティとバイン ド変数の関係>

● バインドピーク機能とは
。バインド変数内の値を先読みする

● バインドピーク機能が有効な場合
・SQLの解析 (ハードパース)時にセットされた値で算出される

。ヒストグラムが存在する場合はヒストグラムの値をもとに算出される

。その後にバインド変数値が異なるSQLが実行されても、ハードパース時の値

で算出された実行計画が使われる

● バインドピーク機能が無効な場合
・条件が等価条件で指定された場合、1/NDVがセレクティビティになる

。条件が等価以外で指定された場合、0.05の固定値がセレクティビティになる

。ヒストグラムが存在しても使用されない

ロデータアクセス方法の判断指針

データアクセス方法の判断指針は以下のとおりです。

(Dセ レクティビティをもとに表のフルスキャンか索引スキャンかを考察する

基本的には、CBOの動作と考察ポイントは同様です。セレクティビティが低けれ

ば索引スキャン、高ければ表のフルスキャンと判断し、SQLレスポンスを確認しま

す。一般的な目安として、読み込むブロック数が表全体の 10%未満 (小さい表で

は15%)の場合は索引スキャンが有利となり、それ以上の場合は表のフルスキャン

のほうが効率的であると言われます。

非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

注 1:ヒストグラムが存在してもバインドピーク機能が無効の場合は使用されません。

91

|

8



‐
2・ 表のデータ量の増加傾向や SQLの選択範囲のバランスで考察する

これは、今後のデータ量やデータの質の変化で、選択率がどのように変化するか

を事前に確認し (実際のデータで確認できない場合は、現在の選択率を参考に推

測する)、 長期的な SQLレスポンスの安定化を考慮します。

31つの SQLを最適化することだけを検討するのではなく、インスタンスや OSリ

ソースなどのシステム全体の最適化も意識して考察する必要がある

`1適当な索引がない場合は、索引の付与も検討する。ただし、その場合はほかの

SQL文への影響も調査する必要がある

表結合方法、順序の判断指針

ここまで、非定型的なSQLチューニング時における実行計画の妥当性を判断するため

に、データアクセス方法の判断指針について説明しました。

一般的なデータモデルで構築した場合は、複数の表を結合して結果を取得します。複

数の表を結合してデータを取得する場合は、データアクセス方法だけで実行計画の妥当

性を判断するのではなく、表の結合方法や結合順序についても妥当性を判断する必要が

あります。ここでは、複数の表を結合する場合に、実行計画の妥当性をどのように判断

すべきかに重点を置いて、次に挙げる目標をもとに説明していきます (図 32)。

e 自分で実行計画の妥当性を判断できるようになる

o 自分で適切な実行計画を作成できるようになる

|

つ
こ
Ｑ
）

図 32 チユーニングの進め方

オブテイマイザが生成した
実行計画|よ適切か

'

パフォーマンスを確認し、

妥当であればチユーニング完了



鴫 実行計画の判断ポイント

これまでの復習も兼ねて、基本的な実行計画の判断ポイントである3つの要素を示し

ておきます。

ロアクセス方法

表スキャンが良いか、索引スキャンが良いかなど、表へのアクセスの方法についての

妥当性を判断する必要があります。

:結合方法

表を結合する際の方法も判断ポイントになります。Oracleではネステッドループ結合、

ハッシュ結合、ソートマージ結合の3種類の結合方法が用意されていますが、いずれの

方法で結合するべきであるか、その妥当性も検討します。

圏結合順序

表を結合する順序も重要です。いずれの表から結合するかによって効率は大きく変わ

ります。結合する表数が多くなればなるほど、結合順序のパターンは増加し、どのよう

な順序で結合するべきかを検討することになります。

そのほかにも不要なソート処理が行なわれていないかなど、確認するべきポイントは

ありますが、基本的には以上の 3点について検討する必要があります。

■表の結合方法の種類

表の結合方法の要素には、基本的に次の 4つがあります。

Oネステッドループ結合

②ハッシュ結合

IЭ ソートマージ結合

0直積結合

一般的に業務で使用しているSQLは、1つの表にアクセスしてデータを取得するので

はなく、論理設計に基づいた各表のリレーションシップに沿って、複数の表を結合して

データを取得することがほとんどだと思います。SQLチューニングを考える場合は、単

純に論理設計に基づいて SQLを作成するだけではなく、結合される表がどのような結合

方法や結合順序で実行されるかを意識する必要があります。まず、どのような結合方法

」■
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

|
93 5



が存在するのかを理解し、それぞれの結合方法の特徴を理解しましよう。それでは、各

結合方法の特徴を解説していきます。

Eネステッドループ結合

ネステッドループ結合は、名前から想像されるようにループ処理をネスト (入れ子構

造)にして結合処理が行なわれます (図 33)。 プログラムを書いたことがある方なら、

処理の流れをイメージしやすいと思います。一般的に外部ループで参照される表は外部

表、内部ループで参照される表は内部表と呼ばれています。ネステッドループ結合処理

のポイントは、外部表で返された行数だけ内部表に対するループ処理が発生する点です。

そのため、外部表のことを駆動表と呼ぶ場合もあります。単純に処理回数だけを考慮す

ると、外部表から返される行数が少なければ内部表に対するループ数が減るので、条件

指定で返される行数が少ない表を外部表に指定します。「カーディナリティが小さい表

を外部表に指定する」とも言い換えられます。

ネステッドループ結合は、実行計画上で図34のように表現されます。実際に業務で

使用しているSQLなどで確認してみてください。

O NESTED L00PS
外部表

内部表

Wh‖ el
外部表から絞り込み条件に合致する1行を取得する

外部ループ

1行もなければループから抜ける
Wh‖ e{
内部表から絞り込み条件、結合条件に合致する 1
取得した行を結果として返す
1行もなければルー る

Ｌ
・
ｑ
）

図 33 ネステッドループ結合の処理概要

ネステッドループ:結合

外部表へのアクセス 内部表へのアクセス



合致する行をフェッチする。

1で取得する行数分4～ 5を繰り返す (ポイント11

EMP表の索ヨ!EMP_lX2を索引レンジスキャン
フェッチした行と結合する行を特定する。

EMP表にアクセスして特定した行を取得する。

(ポイント2)

部表とP表が内 る。な

にRC`RESEA H(D AME=条件 N

4.

5.

図 34 ネステッドループ結合の実行計画例

また、いくら外部表から戻される行数が少なくても、内部表を表の全件検索しなけれ

ばならないような場合には、パフオーマンスは悪くなります。内部表に対する絞り込み

条件と、外部表との結合条件で索引が効率的に使用されているかなどの内部表に対する

データアクセス方法も考慮する必要があります (図 35)。

非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

ｒ
３
Ｑ
）



1!

2 21

3 3!

4 4! 24

51 120
61 720

フ 7! 5040
81 40320

動作概要

ヽ最初に外部表にアクセスする。
,外部表から戻された行数分、内部表にアクセスして条件に合致するデータを戻す。

ポイント

1.カーディナリティが小さい表を外部表とする
・外部表のカーディナリティが内部表の参照回数となる。
・実レコード件数ではなくカーディナリティが小さい表を外部表とする。
2.内部表のアクセス効率を上げる
・内部表の結合列に索引があると効率的。
・内部表の結合列に索引がないと、内部表の全件検索を繰り返すため効率が悪く
なる場合がある。

図 35 ネステッドループ結合の動作概要とポイント

麟ハッシュ結合

ハッシュ結合は、名前からは処理の動作が想像しにくいのではないでしょうか。しかし、

「ハッシュ値を使用して結合する」ということは想像はできたと思います。実際のハッシュ

結合の動作を図 36に示します。

ハ
０
Ｑ
）



結果 ←一一―

SQL―一― ●――中一、

>蟷儡

一回
図36 ノヽッシュ結合の処理概要

プログラムを書いたことのある方は、連想配列 (ハッシュテーブル)を作成して、別

のデータと条件に該当するデータを連想配列キーから取得する処理と表現すると想像し

やすいかもしれません。ハッシュ結合処理は、一方の表から結合キーをもとにメモリ内

(PGA)にハッシュテーブルを構築しますが、ハッシュテーブルがメモリ内に収まりきる

かが重要なポイントになります。ハッシュテーブルが PCA内に収まりきらない場合は、

一時表領域のTEMPフアイルを使用しながら他方の表との結合処理が行なわれます。他

方の結合キーによっては、TEMPフアイルに対するディスク 1/0が発生するために、そ

の分がォーバーヘッドとなります。ハッシュ結合の場合も、先にカーデイナリティが小

さい表から結合されることを考慮します (図 37)。

実行計画上は、次のように表示されます (図 38)。 実際に業務で使用しているSQLな

どで確認してみてください。

非
定
型
的
な
チ

ュ
ー
ニ
ン
グ

八ッシュ データ

1.datal a八ッシュ値 1

′ヽッシュ値 2 2,data2a
八ッシュ値 21 21,data2 1 a

ハッシュ値 20 20.data20a

2,輝 1叡a2●・ 21,dath21a1.datal a

3.data3a ′ 12,dataヽ IPa5,data5a

表B
1

datal l a

data2 1 b 3.data3b

1 datal b 2.data2b

o,data1 0b 9,data9b

12b
data5b

19b
11,datal l b

data20b

７
′
Ｑ
）



C)HASH JOIN
八ッシュテーブル対象表

他方の表

表 1

結合キー
表2

L
フ 4
4

隋
動作概要

ル表1から抽出条件に合致する結果セットを返す。

・ 結果セットの結合キーをもとにハッシュ表をPGA内 に作成する。

=表2から絞込条件に合致する結果セットを返す。

“
結果セットの結合キーを順にハッシュし、八ッシュ表と照らし合わせて結合条件に
該当する行を特定する。

ポイント

1.カーディナリティが小さいほうを先に処理する
・PCA上に作成される八ッシュ表が小さくなるため、結合処理が効率的になる。
2-時 表領域への1/0が発生する可能性がある
・八ッシュ表がメモリ内に収まらない場合、一時表領域を使用するため、ディスク
1/0の発生により性能が劣化しやすい。
・PCA_AGGREGATE_TARGETも しくはHASH_AREA_SiZEを 考慮する。
3等価条件でのみ使われる
。結合条件が等価結合でない(範囲指定)場合、八ッシュ結合は使われない。
4アクセス方法は必ずフルスキャン
・八ッシュ結合の場合は、必ず表のフルスキャンもしくは索引のフルスキャンとな
る合がある。

HASH関数 HASH関数

HASH関数

1 9〔〕|

|   |

| |

図 37 ノヽッシュ結合の動作概要とポイント



図 38 八ッシュ結合の実行計画例

ロソートマージ結合

ソートマージ結合は、名前からある程度は想像できると思います。実際のソートマー

ジ結合の動作を図 39、図40に示します。ソートマージ結合のポイントは、各表の結合キー

がソートされて PCA内に保持されることです。ソートに必要な領域が PGA内に収まり

きらない場合は、一時表領域の TEMPフアイルが使用されるため、ソートされた結合キー

同士をマージするときにディスク1/0が発生し、その分がオーバーヘッドとなります。

結果

一団
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

<-....'

SQL

l

|

図39 ソートマージ結合の処理概要

99



ソート ソート

表 1 表 2

動作概要

,,表 1の結果セットを結合列でPGA内でソートする。
■表2の結果セットを結合列でPCA内でソートする。
11ソート処理はシリアルに実行される。

■ソート結果をPCA内でマージして結果を返す。

ポイント

1-時表領域への1/0が発生する可能性がある
。ソート処理がメモリ内に収まらない場合、一時表領域を使用するため、ディスク
1/0の発生により性能が劣化しやすい。

・PGA_AGGREGATE_TARGETも しくはSORT_AREA_SIZEを考慮する
2.表 1は一定条件でソート処理が回避できる(表2のソートは回避できない)
・表 1は、結合列に索引が定義されNOT NULL制約が存在する場合、索引フル
スキャンを実行することでソート処理を回避できる。

・表2は、ソートを行いながら結合を進めるため、ソート処理は回避できない。

図 40 ソートマージ結合の処理概要とポイント

前章のデータアクセス方法のときも少し触れましたが、取得する列に索引があり、

NOT NULL制約が存在する場合は、索引のフルスキャンを行なうことでソート処理を回

避できます。ソートマージ結合の場合も、取得する列と結合キーに索引が存在する場合

に、ソート処理を回避することが可能です。実行計画例を図 41に挙げます。実際に業

務で使用しているSQLな どで確認してみてください。

|

100

躊



図 41 ソートマージ結合の実行計画例

目直積結合

直積結合は、名前そのままの処理となるのでイメージしやすいと思います。中学や高

校のときに習った直積集合と同じ考えです。結合条件が存在しない場合に、各表の行デー

タ同士を結び付ける処理になります (図 42)。

図 42 直積結合の実行計画例

3表以上の結合が行なわれる際に、結合条件が存在する場合でも直積結合が選択され

ることもあります。直接の結合関係にない小さな表同士の直積結合を行ない、結合条件

のある一方の表と結合するような場合もありえます (図 43)。

一日
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

11011
1   1

1  1

動作のステツプ

表をフ



直積演算

結果セット1 結果セット2

動作概要
■結果セット1の全行と結果セット2の全行を直積(掛け算)する。

ポイント
■2つの行ソースに対する結合条件がない場合に直積が選択される。
,結合条件に漏れがないか確認する。

図 43 直積結合の動作概要とポイント

■表結合の判断指針
ここまでの説明で、どのような表の結合方法があり、その表の結合方法はどのような

ものなのかを理解できたと思います。それらの表結合方法のどれを選択するかが、SQL

チューニングを行なう際には非常に重要になります。ここからは、表の結合方法を選択

するうえで、どのような点を考慮すべきかについて説明します。

目何をもって判断するのか ?

SQLチューエングを行なう過程で、実行計画の妥当性を判断するときに一番重要な要

素は、実行計画を変更して SQLが行なうデータの取得を最小のブロックアクセスででき

るようにすることです。これは、データアクセス方法のところでも説明した内容です。

複数の表からデータを結合して、最終的に得たいデータを取得する場合も基本的には

同じ考えですが、表の結合方法の動作の違いによって、必要とするリソース (CPUやメ

モリなど)量は異なります。通常の業務処理は、さまざまな SQLが並列で実行されるた

め、表の結合方法を判断するポイントとして、リソースの使用状況も考慮すべきです。

最近のシステムは、リソースに余裕があるシステムが多いのであまり考慮しませんが、

簡単な例を示してみます。例えば、ハッシュ結合やソートマージ結合の同時処理が大量

に実行される際に、PCAや物理メモリが圧迫されるような場合は、レスポンス要件内で

あれば、レスポンスは低下してもネステッドループ結合へあえて変更することで、リソー

ス使用面を改善するようなチューニングアプローチを検討することもあります。複数の

表からデータを取得する場合は、レスポンスのみを考慮するのではなく、全体に最適な

アクセス件数 量n件×m件

frozl



SQLチューニングを心がけることが大切です。また、並列して処理される処理も考慮して、

リソース使用状況も確認すべきです。

圏表結合方法、順序の判断指針

o大量のデータ同士を結合する必要がある場合は、ハッシュ結合かソートマージ結

合を検討する

基本はハッシュ結合を検討し、索引によリソート回避が可能、かつ索引列のみのデー

タ取得などでデータアクセス方法としてもメリットがある場合は、ソートマージ結合も

検討します。

。 結合順序は、基本的にカーディナリティが小さい表から結合する

ネステッドループ結合やハッシュ結合を検討する場合は、カーディナリティが小さい

表から結合することで、レスポンスやリソース使用量が改善できます。

olつの SQLを最適化 (レスポンス改善)することだけを検討するのではなく、イ

ンスタンスや OSリ ソースなどのシステム全体の最適化も意識して、結合方法を

検討する

o適当な索引がない場合は索引の付与も検討する。ただし、その場合はほかの SQL

文への影響も調査する必要がある

適切な索引を付与することで、ネステッドループ結合やソートマージ結合の処理が改

善する場合は、索引の付与を検討します。例えば、ネステッドループ結合時の内部表が

表のフルスキャンになっている場合などです。

oデータ量の変動やデータの質が変わった場合は、結合方法や結合順序の妥当性を

再検討する

通常、データの変動があったとしても統計情報が正しく取得されていれば、オプテイ

マイザが最適な結合方法、結合順序で実行計画を作成してくれます。しかし、統計情報

を固定化して運用している場合や、あるいはヒント句で結合方法、結合順序を固定化し

非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

l

|

103



ている場合は、データ変動のタイミングで現在の結合方法、結合順序の妥当性を判断し

ます。

表の結合方法、順序の検討の例

ここからは、今まで紹介したデータアクセス方法や結合方法をもとに、実際に実行計

画を評価するためのノウハウを紹介していきます。

燿 題材の SQL文
実際の実行計画の評価イメージをつかみやすいように、SQL文の具体例をもとに説明

していきます。

尋SQL文と現状の実行計画
SQL文と仮に現状の実行計画が、LIS丁 3、 図44のとおりだとします。

LIST3 チユーニング対象のSQL文

量1041
1    1

1  1



図44 現状の実行計画

懲索引の定義、統計情報

実行計画を評価するためには、既存の索引の情報も重要になります (LIS丁 4)。 また、

統計情報も明らかにしておきます (LIS丁 5)。

索引定義

TABLE NA‖ E

」□
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

lD′ CLASS′ ZONE

TAB3

TAB4

TAB5 TAB5 PK

ID′  CLASS′ DEPTH

CLASS′ ID

TAB4_PK     CODE  .

TAB4_11  ‐_‐ CLASS′ CODE

Primary

CLASS

DATA, CLASS, NU}I

Key

Unique Key

NUM′  DATA

11051
1   1

1    1

LiST5 表の統計情報

.KIND

TABl        TABl_PK

TABl_Ul

TAB2

ID

ID′  END_DATE

Primary Key

Unique Key

Primary KeyTAB2_PK

TAB2 11

TAB2_12

TAB3_PK

TAB3_11

‐275SCOTT  TABl

SCOTT  TABl

ID

_I START"TE



現状の分析

E表の結合関係を明らかにする

表同士の結合関係を図示すると、実行計画の分析がやりやすくなります。図示する際

のコツは以下のとおりです。対象のSQLに関連する表のER図を作成するイメージです

(図 45～ 48)。

もちろん慣れてくれば、毎回このような図を描く必要はありませんが、SQLチ ューニ

ングが苦手な方や、複雑な SQL文のチューエングを行なう場合には図46のような図解

が威力を発揮します。

「,)表の結合関係をクリアにする

。SQL文、索引定義情報、統計情報
。WHERE旬 に含まれている列
。結合されている列同士の結合関係

。推移律

・セレクティビティとカーディナリティ

0結合順序のスタートポイントを見つける
・どれくらい絞れるか

。絞り込める表 (ス タートポイント)はどれか

11061

1 1

SCOTT TABl   ‐・‐― END‐lpATE

SCOTT TAB2

SCOTT TAB2 CLASS

お

１７

275

282

282

17442

17442

834030

834030

834030

1

274

8210

834030

1

834030

SCOTTI__TAB3

SCOTT  TAB3

SCOT‐T・ TAB4

SCOTT  TAB4

SCOTT  TAB4

ID

CLASS

CODE

FLAG

CLASS

SCOTT  TAB5

SCOTT  TAB5 CLASS

椰

，



O登場するオブジェクトを抽出し、WHERE句の列を書き出す

TAB5

NUM=:bl
CLASS TAB2

ＩＤ

一
CLASS

TAB4

CODE=:b2
FLAC=`Y'
CLASS

TAB3
ＩＤ

一
CLASS

図45 ER図の作成手順①

結合列を結ぶ

TABl

ID

START DATEく =:b3+1
END DATE>:b3

列名  索引の使用できる列

列名  索引の使用できる列
●――● 結合されている列

」団
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

11071

TAB5

TAB2
NUM=:bl
CL墨§ヽ

⊇ヽ
|)CLASS｀ 、`、ヽ

TABl

DD
START DATE<=:b3キ 1
END DATE>:b3

rAffi -,-
TAB4

IDr
D:lASS

CODE=:b2  _′″
FLAG=`Y'/
CLASS r

図 46 ER図 の作成手順②



●A=BかつB=Cであれば、A=Cである論理条件を見つける

図47 ER図の作成手順③

○カーディナリティとセレクティビティを整理する

'り

名  索引の使用できる列
0→ 結合されている列

TABl

.TEく=:b3+1
END DATE>:b3

列名  索引の使用できる列
●→ 結合されている列

TAB5

TAB2
NUM=:bl
CLASSヽ

TA31

●D
START DATEく =:b3+1
END DATE>:b3

TAB4

CODE=:b2  
“
″

FLAG=`Y/
CLASS r

TAB5

、TAB2
NUM=:bl

｀
口ヽ

)型笙 S)ヽ、

TAB3

TAB4

=:b2
=`Y'

〔
Ｕ
ハ
Ｕ
■
■

図48 ER図の作成手④

C:カーディナリティ
S:セレクテイビティ

Si1/132

C1282/273‐ 1

S:1/273

C1275/275織 1
S:1/275C:133/133=1

S11/133  ‐

Ci275/5=66
S:1/5 S:1/1



目結合|1顕序のスター トポイントを明らかにする

実行計画がツリーで表わされていることからも分かるように、同時に複数の表を一度

に結合することはできません。つまり、表の結合は順序立てて実施していく必要があり

ます。結合順序のパターンは表数に依存します。例えば、2表だったら2とおり、3表だっ

たら6とおり、4表だったら24とおりと、結合する表数の階乗数分のパターンがあるこ

とは前に述べたとおりです。

CBOのように機械的にいくつものパターンを評価できるのであれば、多くのパターン

を検証することも可能ですが、人手で評価する場合は、検証パターンはおのずと限られ

ます。

そこで、次のようなルールをもとに結合順序を考慮すると良いでしょう。

oできるだけ少ない行に絞り込める表から結合を開始する

できる限り評価対象の行数を少なくしながら結合することで、その次の表と結合する

際の負荷が減ることを期待したルールです。例えば、100行が評価対象として残ってい

る状態で次の表と結合すると、100行すべてに対して、次の表との結合評価をしなくて

はなりませんね。評価対象が 10行であれば、負荷が減ることは明らかです。

そこで、絞り込み条件を使用しながら、どの表から結合を開始するべきかをまず考え

ます。

例えば、TAB5では絞り込み条件「NUM=:bl」 により 1行にまで絞り込めることが、

カーディナリティから分かります。逆に、TAB3では絞り込み条件が付いていないため、

TAB3か ら結合を開始した場合、TAB3の全件数分である 17442行を評価しなくてはな

りません。この例では、結合順序のスタートポイントは TABl、 TAB4、 TAB5のいずれ

かが妥当であると言えるでしょう (図 49、 50)。

一」働
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

1109[



⑭どれくらい行が絞れるか考える

図 49 結合順序のスタートポイントを明らかにする①

①絞り込める表(スタートポイント)の候補を出す

列名  索引の使用できる列

列名  索引の使用できる列
●――● 結合されている列

0

|

TAB4

=:b2
FLAG=

、TAB3

ID_
涯 1:A:::::ミ

:ミミ
ミ
ミ ト ヽ

TAB

ID

ART DATEく =:b3+1
END DATE>:b3

=275

\TABE //
NUIril =:b1l

TCLASS TAB2
ＩＤ

一

TAB5

NUM=:bl
TAB2

TABl

START DATE<=:b3+1
END DATE>:b3

ノ
′

TAB4
r

おヽ、ヽ
=ニー全式ミ
ーTT―、 〆

「
T=:b2

FLAG=

ll

図 50 結合順序のスタートポイントを明らかにする②

Ci1 33/132=]
Si1/132

C:282/273=]
・S:1/273  _

C1133/]33=1
S:1/133

C1275/275=1
S:1/275

Ci275/5=55
S:1/5

C:133/132=1
S:1/132

C:282/273=‐ 1

‐S:1/273  -

C:275/275=1
S:1/275C:133/133=]

S:]/133

C1275/5==55
S:]/5

Ci275/1=275
Sl1/1

Gカーデイナリテン
SIセレクティビティ



目現状の実行計画の理解

図 51は、HSTlの実行計画を先ほど作成した図 49、 50の表現に合わせて図解したも

のです。

図 51 現状の実行計画の理解

この実行計画では、TABlか ら結合が開始されています。TABlに対する絞り込み条

件は範囲検索になっています。TABlの件数は 275行ですので、範囲検索に与えられた

パラメータによっては、0行から275行までヒットすることになります。ここでは、仮に

X件ヒットしたとします。この X件が 275件すべてに近いのであれば、表のFULLスキャ

ンも妥当だと言えますが、表全体の 10%も満たない場合は、索引のレンジスキャンとな

るように、ID、 END_DATE、 START_DATEカ ラムに対して、新しい索引を付与すること

も検討します (ほかのアクセスパスについても、妥当性を確認してみてください)。

次に、ネステッドループ結合によりTAB2と結合します。ネステッドループ結合の動作

を思い浮かべると、TABlの X行それぞれの ID列の値を使用して、TAB2に アクセスし

ていることが分かります。すなわち、TAB2の ID列で絞り込んでのアクセスが X回行な

われていると言えます。TAB2の D列のカーディナリティは 1であり、1行まで絞り込め

るため、TABlと TAB2を結合した後に残っている評価対象は X行のままです (図 52)。

団
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

|

TAB5

TAB2

\ 
NUIvI = :bl

/CLASSQ

TABl

ART DATEく =:b3+1
END DATE>

TAB4

FLAG

lll

C:カーディナリティ
S:セレクティビテイ

列名  索引の使用できる列
o――● 結合されている列

C:133/132=1
S:1/132.

C:282/273=1
Si1/273

⊇N卜、
CLASS｀ 、ヽヽ

C1275/275=1
S:1/275C:133/133=1

Si1/133

・C:275/1=275
S:1/1    _

C:275/5==55・
Si]/5



Execution Plan

SELECT STATEMENT GOALiCHOOSE
SORT(AGGRECATD

TABLE ACCESS GOAL:ANAピYZED(BY:NDEX ROVピ ID)10F'TAB41
1NDEX G(DAL:ANALYZED(UNIQUE SCAN)OF ITAB4_PKl(UNIQUE)
―TABLE ACCESS GOAL:ANALYZED(BYINDEX ROヽへ′:D)10F'TAB51
1NDEX GOAL:ANALYZED(UNIQUE SCAN)OFITAB5_PKl(UNIQUD

f_フえIガス百∬i要∬ 1勢誨華111な71行オ■
^|

図 52 TAB]と TAB2を結合

同様に、次の結合であるTAB3を見てみます。これもネステッドループ結合をしてい

ますが、ID列のカーディナリティは 635行となっています。すなわち、TAB3に は ID

列を用いて絞り込み検索を行ないますが、1回のアクセス当たり平均 635行ヒットする

ことになります。以上から、TAB3には X回アクセスし、結果としてX× 63.5行が評価

対象として残ることになります (図 53)。

|

|

l12



Execution Plan

SELECT STATEMENT GOAL:CH00SE
SORT(AGGREGATD
L00PS

INDEX GOAL:ANAビYZED(UNIQUE SCAN)10F ITAB4_PK'(UNIQUD
TABLE ACCESS GOAL:ANALYZED(BYINDEX ROWID)OF'TAB5'
INDEX GOAL:ANALYZED(UNIQUE SCAN)10F lTAB5_PKl(UN!QUE)

f″えIガえする■百j :事難書:梁孵|ヽ帯ネ
'

図 53 TABlと TAB3を結合

次はTAB4の結合です。TAB4の結合状況は少し複雑です。

TAB4を結合する際に、使用できる絞り込み条件を見てみましょう。TAB3の結合まで

で CLASS列の値が分かっています。このことから、TAB4へは CODE、 FLAG、 CLASSの

3列を使用して絞り込めることが分かります。TAB3ま ででX× 635行が残っているので、

TAB4へのアクセス回数は X× 635回です。しかし、TAB4の CODE列はユニークなの

で一意検索されます。そのため、評価対象としては TAB4のデータは 1種類しか残らな

いはずです。ただし、評価対象が 1行になるとは限りません。これは、TAB3の CLASS

列のカーデイナリティが 2だからです。つまり、TAB3では CLASSの値 1種類に対して、

平均して 2行存在することが分かります。そのため、CLASS列は 1種類しか残っていな

非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

|

l13



いので、評価対象行数は最終的に2行残ります (図 54)。

Execution Plan

SELECT STATEMENT GOAL:CHOOSE
SORT“GGREGATD

LOOPS

―TABLE ACCESS G(DAL:ANALYZED(BY INDEX ROVVID)OF'TAB51
1NDEX GOAL:ANA[YZED(UNIQUE SCAN)10F'TAB5_PKl(UNIQUE)

る処理 ‐外部表になる行ソニス :饉:苺表|=な|な結|シ1著ス:

[00PS

③

図 54 TAB3と TAB4を 結合

最後に、TAB5にネステッドループ結合します。評価対象行は 2行残つているため、

TAB5へのアクセスは 2回です。NUM、 CLASS列の 2列を使用して絞り込めます。結果

として、1行もしくは 2行が残ることになり、この行が結果として返されます (図 55)。

ll斗

|  |



Execution Plan

SELECT STATEMENT GOALi CH00SE
SORT

『″ぇ
=ガ
ス百inlj :事:携1善:1曜割暫警纂i 鰈巫躙躙蒻輻靡輻

図 55 TAB2と TAB5を結合

以上の流れをもとに、各表のアクセス回数、評価対象行をまとめると、図 56のよう

になります。最初の TABlでヒットする行数に大きく依存していると考えられますね。

」Ⅲ
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

|

115



④

③

②

図 56 各表のアクセス回数、評価対象行

②

①

③

①

|

TAB5

TAB2/
NUM=:bl
CL△SSヽ

`、

_ヽ
ＩＤ

一

DCL△SSt
TABl

START DATEく=
TE>ib3TAB3

TAB4
´ ″ ″

′

DIttf
00DE=:b2   _´
FLAG=.Y/
cL△ss``r″ 、

1回 X行
X回 X× 1行

X回 X×63.5イ詈Ｔ

一
Ｔ一 X×613.5 回2行

2回 lo「 2行

l16

「

~~~~~~~~~~~~~~~~~~~~~~~~~~

TAB2

より良い実行計画案の検討

田業務チームからの情報

このように、実際にヒットする件数の詳細が予測できない場合には、データ分布を自

ら調べたり、業務を詳しく知っている担当者にヒアリングしたりする手もあります。

本章の例では、各表へのアクセス回数は TABlの範囲検索にヒットする行数に依存し

ます。例えば、10行程度ヒットする場合では、TAB2、 TAB3に は 10回、TAB4には約

635回ものアクセスが行なわれることになります。

このような不確定な要素があった場合、業務観点でヒアリングすると良いでしょう。

願別の実行計画の検討

先ほどの実行計画はTABlを結合順序のスタートポイントとしていましたが、ここで

は別の表をスタートポイントとしてみましょう。例えば、TAB4をスタートポイントとし

てみます (図 57)。

④

②

非
定
型
的
な
チ

ュ
ー
ニ
ン
グ

iC:カーディナリティ |

l SIセレクティビティ |

_ヽ_二三二二二三ニノ

列名 索引の使用できる列
●――● 結合されている列

l

|

TAB5

TA32

｀NUM=:bl
′Q墜鎚 ヽ

｀D▼ヽ
奥塾聾｀、

、TABl
C:282/17=16.5
S:1/17

さlD
ラ31ART_IDATEく=:b3+1
/END_DATE>:b3、 、

C:17442/274=63.5
S:]/274

TAB3 C:275/1=275
S:1/1

TAB4

C:83万 /83万三1
S:1/83万

/

図 57 別の実行計画案

l17

Ci1 33/132=1
Si1/132

C:282/273‐ 1
S:1/273

Ci275/275‐ 1
Si1/275‐C:133/133=1

S:1/133

8

各表のアクセス回数、評価対象行を図 58にまとめると、TAB4をスタートポイントに

した場合は元の実行計画に比べて各表へのアクセス回数が少なく、より効率的な実行計

画であると推察できます。

②

図 58 各表のアクセス回数、評価対象行

また、TAB5から結合を開始する順序が残っています。これは読者の方自身でトライ

してみてください (結果としては、図 58の実行計画案が最も効率的になるはずです)。

ここまで、例をもとに話を進めてきました。実行計画をどのように検討すべきかを図

59～ 61にまとめましたので、これらの図を使っておさらいしてください。

③

①

④

③

①

|

TAB5

TAB2
NUM=:bl

ID

TABl

START DATEく =:b3+1
END DATE>ib3

TAB3

TAB4 Z

FLAC=.Y'ノ Ct3心
CLAtt r tOiツ

1回 1行

1回 1行

2回 2行
2回 2行

2回 lor 2行

l18

TAB4
索引ユニーク

薮

麒

鶉

蝸

銹

レ

撼
週
個
Ⅷ
Π

鷲

図 59 実行計画の検討チャート

0それぞれの特性と考慮点から「検討」「検証」「判断」する。

=最適な索引が使用されているか'
=適切な索引が作成されているか'
■WHERE句条件が適切か(コーディング、条件指定)?
■表のフルスキャンのほうが効率的か(索引を使用しても10%以上の表デー

タアクセスなど)?

=ネステッドループ結合で内部表のフルスキャンが発生していないか'
・ カーァィナリティの小さい表から結合されているか'

魃
SQLによるデータの取得を最小のブロックアクセスで行な
うことが原則。しかし、SQL単体を最適化 (レスポンス改善)
するアプローチだけでは不十分。

図 60 SQL単体の最適化

」目
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

I

|

全パターンを検証
するのは難しい

意識するのは

OSQL単体の
最適化

●システム全体の
最適化

SQL単体の最適化

119

0実行計画の違いによる必要リソース(CPU、 メモリなど)のバランスで判断
…サーバ上でOracle以外のアプリケーションが動作し物理メモリが圧迫され
ている
→八ッシュ結合やソートマージ結合が同時に実行されて物理メモリが圧迫さ
れないか

・ CPU使用率が高い
→無駄なソート処理がないか、ネステッドループ結合によりCPU負荷が高く
なつていないか

鰊
SQLパフオーマンス問題を解決するには
SQL単体の最適化だけではなく、システム全体の最適化を
踏まえて判断することが重要である。

図 61 システム全体の最適化

¬

非定型的チユーニングのまとめ

本章では、“頭を使う''非定型的なチューニングの定義とその進め方、オプティマイザ

ヘのインプット情報、実行計画の読み方と実行計画の妥当性を判断するポイントで必要

となるデータアクセス方法の判断指針、表の結合方法、結合順序について説明しました。

とくにSQLチューエングを行なううえで、実行計画を正しく読み解き、問題点を解消

するための選択肢を理解しておくことは非常に重要な知識となります。

実行計画とは、SQLを どう処理するかを定義したものであり、SQLのパフォーマンス

は実行計画に大きく依存します。チューニングにおいても、オプティマイザが生成した

実行計画が適切なものであるか、より良い実行計画がないかどうかを検討する作業が大

部分を占めます。検討ポイントには、例えば次のようなケースがあります。

e索引を使うほうが良いのか、使わないほうが良いのかつ

0表の結合順序はどのような順番が良いか?

このようなポイントはSQLによって解は異なりますが、ある程度の共通した判断指針

はあります。

とはいえ、このような検討は少なからず大変であり、コストがかかります。すべての

SQLについて最初からこのような検討を行なうのではなく、オプティマイザヘのインプッ

ト情報が妥当であるかを最初にチェックするべきだと紹介しました (図 62)。

l1201

1 1

図 62 非定型的なSQLチューニングの進め方

インプット情報については「これであれば絶対」という解があるわけではなく、シス

テムに応じてインプットは変わります。これらのインプットに対する検討、決定方針を

紹介しました (図 63)。

図 63 オプテイマイザヘのインプット情報

次章では、非定型的チューニングでもパフォーマンス問題が解決しない場合、さら

なるチューニングを行なうために知っておくべき Or∝ leアーキテクチャについて解説

します。

」躍
非
定
型
的
な
チ
ュ
ー
ニ
ン
グ

鱚 |

確認問題

1.コストベースオプティマイザのインプット情報を5つ挙げてください。

2.実行計画の判断ポイントを3つ挙げてください。

3.実行計画の妥当性を判断する一番の重要な要素を挙げてください。

|

121

回答例

|

l122

0たたll‐ ヤに
■二
=:TT■

ノ′フ_1‐ 二〆 ノ基づいたSQl

前章まで、SQL文自体に起因するパフォーマンス1鷲鑢:こどのように対
処すべきかについて学んできましたが、SQ転艤体驚畿剛化してもパ

フオーマンス問題が解決しないケ早スも 4のような購題

構改讐すうに|よ、SQL単体ギ|ォ軍華

攣麟
鰺

量

SQL単体以外のパフオーマンス問題とは?

■

Oracleアーキテクチャの理解が必要な理由

ほとんどのパフォーマンス問題は、前章までの定型的/非定型的なSQLチューニング

で改善できますが、さらにハイトランザクションな環境では、Oracleアーキテクチャを

意識したチューニングが必要な場面もあります。しっかり知識として身に付けておきま

しょう。

０
『●
ｏ
一ｏ
ア
ー
キ
テ
ク
チ
ャ
に
基
づ
い
た

ｏ
Ｏ
Ｆ
チ

ュ
‥
ニ
ン
グ

SQLのパフォーマンス問題が発生したときに、統計情報などを最適化して実行計画を

改善しただけでは性能要件を満たせないこともあります。例えば、多重処理に起因する

問題や設計に起因する問題が発生した場合がそれに当たります。

隕多重処理に起因する問題

単体テスト時にSQL単体のパフォーマンス問題が発生したので、SQLチューニングを

行ない、性能も改善したのに結合テストやシステムテスト時に限って、パフォーマンス

問題が発生するというような経験をされた方もいると思います。では、単体テストと統

合/システムテストにはどのような違いがあるのでしょうか。

|| |

r23 I

単体テストは、モジュール単位で正しく動作することがテストされますので、SQL単

体のパフォーマンス問題がクリアされればテストとしては特に問題ありません。しかし、

統合/システムテストヘと進んでいくと、テストされる機能範囲が広くなり、より複雑

な処理がデータベースに対して行なわれます。より複雑な処理とは多重処理を意味しま

す。SQLの実行計画のチューエングは、SQL単体に対しては非常に有効ですが、多重処

理に対してのチューニングは実行計画のチューニングとは異なる考え方で行なう必要が

あります。このような問題に対しては、特にOracleアーキテクチャを意識する必要があ

ります。

同 アプリケーションロジックに起因する問題

SQL単体では問題ないのに、期待するような性能を発揮できない原因の 1つとして、

SQLを発行するロジックそのものに問題が内在している場合があります。

モジュールが共通化できていないために、同じような処理を何度も記述し、メモリの

ロード負荷が増加していたり、ループ処理の非効率的なロジックによるCPU負荷が増加

してたりすると、発生しやすくなります。

SQL単体を改善するよりも、アプリケーションロジックそのものを改善するほうが効

率的なチューニングとなる場合もあります。このような問題に対しては、アプリケーショ

ンの仕組みを意識する必要があります。

国設計に起因する問題

大量のデータを取得する処理や複雑に表を結合してデータを取得する処理などの際

には、SQL単体の実行計画は問題がなくても期待通りの性能を得られないケースがあ

ります。

これらの原因としては、表の論理/物理設計などの表構成そのものが起因してパ

フォーマンス問題が発生している可能性があります。また、大量データを取得する表や

アクセス頻度の高い表が属するデータフアイルのディスク配置が分散されていない場合

や、データモデルの不備によりSQL文が複雑化しているケースなどもあります。このよ

うな問題に対しては、データ構成やディスクのパフォーマンスを考慮した論理/物理設

計を意識する必要があります。また、その設計のもととなっている業務要件やシステム

要件も意識する必要があります。

このように、実際のチューニング現場では、統計情報や実行計画に対する SQLチュー

ニングテクニックだけではなく、Oracleや アプリケーションのアーキテクチャ、論理/

物理設計、そして業務要件までも意識しなくてはならないケースが出てきます。以降では、

124

このようなケースのチューエングテクニックについて話を進めていきますが、まずはそ

のケースの 1つである多重処理を行なった場合に発生しやすい問題について、Oracle

アーキテクチャを意識しながらSQLチューニングを考えていきましょう (図 1)。

N0

N0

前章までの説明

N0 本章からのターゲット

図 1 チューニングの進め方

多重処理でなぜ問題が表面化するのか?

前述したように、単体テスト時には特に問題が発生しなかったのに、総合/システム

テストに問題が発生する理由には、多重処理が起因しているケースが挙げられます。では、

なぜ多重処理を行なうとパフォーマンス問題が表面化するのでしようか。

ここで、多重処理で問題となりやすい「ロック」の競合について、アーキテクチャの

観点から少し深く考察してみましょう。

舅]データベースのトランザクションに求められるもの

通常のシステムにおいて、業務に必要な処理は単体で行なわれることがなく、多重で

処理されることがほとんどです。多重処理を行なうことを考慮して、システム要件にデー

タベースを含めていると言っても過言ではありません。データベースもこのような多重

処理を行なうことを想定して作られています。

」吻
０
３
ｏ
一ｏ
ア
ー
キ
テ
ク
チ
ャ
に
基
づ
い
た
り
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

|

YES

YES

NOYES

125

SQL単体以外のチューニング

多重処理チューニング

また、データベースは多重処理を行なうだけではなく、同時にデータの整合性も保つ

必要があります。そこで、データベースはトランザクション処理のために必要な 4つの

特性を持っています。それが、トランザクションのACID特性 (詳細は下のコラム「ACID

特性」を参照)です。

トランザクションの一貫性や独立性を実現させるのに最も良い方法は、1つのトラン

ザクションをシリアルに実行することです。しかし、それでは単位時間当たりに実行で

きるトランザクション数が少なくなり、パフォーマンスが低下します。そこで、データベー

スはトランザクションの(ANS1/1SOで定義されている)分離レベルをサポートすることで、

同時実行性を向上させます。ちなみに、Oracleは基本的に「READ COMMITTED」 モー

ドで動作します (詳細は次ページのコラム「ANS1/1SO SQL規 格によるトランザクション

の分離レベル」を参照)。

ちよっと、横道に逸れましたが、多重処理を行なううえで、Oracleア ーキテクチャは

同時実行性を考慮したトランザクションの分離レベルを実現するためのロールバックセ

グメントや、データの整合性を確保するためのロックを実装しています。

i126

雉隕一〇３ｏ一ｏアーキ
テ
クチ
ャに基づ
いた
りＯＦチ
ュー
ニング

r27l

同時実行性への影響度

吉
同

低

Oracleのロツキングメカニズム

データの整合性を確保するためには、ロックが必要です。ご存じのとおり、Oracle

Datめaseでもデータの整合性を確保するために、エンキュー、ラッチなど、さまざまなロッ

キングメカニズムを使用していますので、ここでそのメカニズムを紹介していくことに

しましょう。

脇エンキュー

エンキューとは共有、排他などのロックモードを持つことができ、ロックが獲得でき

ない場合はキューイングされ、先に待機を開始したセッションから先にロック獲得の権

利を得る FIFO(First ln First Out)型 のロックです。

エンキュー自体は、Oracle RDBMS内の汎用的な排他制御のためのサービスとして実

装されており、それがさまざまな局面で利用されています。例えば、DML表ロックや行
ロック、リカバリ時にデータフアイルを保護するロック、制御フアイルの同時更新を防

ぐためのロック、順序オブジェクトでの発番を保護するロックなどはすべてエンキュー

で実装されています。

エンキューを獲得できず待機する場合、待機イベント「enqueue」 などで待機します。

エンキューにもいろいろな種類がありますが、log以後では待機イベント名「enq:……」

を見ると、どのエンキューで競合が発生しているかが分かりやすくなりました。

田 ラッチ

ラッチとは、SGA内の共有データ構造を保護する低レベルな直列化メカニズムです。

1

|

128

な し

な し

な し

共有プール上でのメモリの割り当てや解放、バッファキャッシュ上でのバッファの探索、

ライブラリキャッシュ上でのオブジェクトの探索、セッションの開始、チェックポイント

の開始、ログバッフアの割り当てなど、多くの処理がラッチによって保護されています。

ほかのプロセスがラッチを確保しているために、ラッチ獲得に失敗した場合、次回で

獲得を試行するまでにスピン (一定回数、空ループ処理を行なうこと)して待機する特

徴があります。スピン後に試行しても獲得できなかった場合は、エンキューと同様にス

リープして待機します。

ラッチを獲得できずスリープする場合、待機イベント「latch free」 などで待機します。

ラッチにもいろいろな種類がありますが、10g以後ではエンキューと同様に、待機イベ

ント名「hch:……」を見ると、どのラッチで競合が発生しているかが容易に分かるよう

になっています。

l■ その他
RAC環境などのインスタンス間でデータの整合性を確保するには、グローバルロック

などがあります。また、ラッチよりもさらに高速なMutexロ ックもあります。

ロックの競合がパフォーマンスに影響を与える

Oracle Databぉ eが、エンキューやラッチなどのロッキングメカニズムをさまざまな局

面で利用することで、データの整合性が確保されていることは理解できたと思います。

ある処理がラッチを要求して、すぐにラッチを利用して処理を行なうことができれば特

にパフオーマンス問題は起きませんが、別の処理がすでにラッチを取得している場合は

どうでしょうか?そのラッチが利用できるまで待機する必要があります。

すでにお分かりのように、多重処理を行なうとラッチなどで競合が発生する可能性が

高くなります。競合が発生すると、ラッチ獲得のための待ち行列が発生することで SQL

のレスポンスが悪化し、スループットも悪化します。どのような処理でエンキューやラッ

チを必要とするのか (Oracleアーキテクチヤ)を理解しておくことで、開発時に多重処

理を意識した対応をして予防を行ないます。また、ラッチ競合などでパフォーマンス間

題が発生したときには解決に必要な知識となります。

それでは、多重処理でパフォーマンス問題が発生したときに、どのような観点でボト

ルネックを特定し、oracleアーキテクチャを意識した SQLチューニングを行なっていく

のかを、実際のチューニング例をもとに解説していきましよう。

」一螂攣攣０３２ｏアーキテクチャに基づいたりＯＦチューニング

1129雇

| |

■紺
~~~~~~~~~ ~~~ 

― ― ―
|

日轟7ニナテクチャを意識したSQLチユーニングの例|

以前、筆者があるベンチマークプログラムでスケーラビリティの測定をしていた際に

発生した問題を例に、アーキテクチャを意識したSQLチューニングの考え方を紹介して
いきましょう。

当初の状況

嘴ベンチマークプログラムの特性と仕組み
この際に使用したベンチマークプログラムは、Oracle Databaseに 対して多重で負荷

をかけるツールでした。多重度や SQLの発行間隔を変更することでスループットを上げ、
DBに対する負荷を大きくさせ、各処理のレスポンスの変化を測定するものです (図 2)。

APサーバー

ベンチマークプログラム 多重度、SQL実行間隔を調整し
レスポンスを測定

実行
コントロール部スレッド

DBサーバー

サーノ
プロセス

②測定用SQL
を発行

図2 ベンチマークプログラムのイメージ

蠍1301

1 1

ベンチマークプログラムを

終了させる場合、以下のSQLを実行
UPDATE Statiab SET status=stop

STATUSが goならば処理継続。



輻発行するSQL文
このベンチマークプログラムの各スレッドでは、測定対象 SQL文とステータスチェッ

クSQL文の2種類のSQL文を発行していました。

日測定対象 SQL文

参照処理と更新処理を行なうために、いくつかのSQL文を発行していました。スケー

ラビリティ検証のため、参照処理と更新処理の比率を変更することもできるようになっ

ていました。

1ステータスチエツク SQL文

各スレッドが、ベンチマークプログラムの開始と終了を確認するために、次のSQL文

を使用していました。

SELECT status FR0!l stat-tab tdHERE id = 1;

」一螂攣攣０■●ｏ一ｏアーキテクチャに基づいたりＯＦチューニング

つまり、測定対象の SQL文を発行する前に上記の SQL文を発行し、飢dが “exec"で

あれば、ベンチマークプログラム実行中であると判断して測定対象であるSQL文を実行

しますが、“stop''に更新されていればループ処理を終了して、そのスレッドを終了させ

る仕組みになっていました。

■ベンチマークプログラムを実行してみる

ある程度まで多重度を上げて試験をしたところ、スケーラビリティが落ちている状況

が見られました。

|

131



瞬ボトルネックの特定

Oracle EnteTrise Manager(以下、EM)を使用してインスタンス状況を確認すると、
CPU時間以外に待機イベント「1試ch i cache bu∬ ers ch血司「cursori pin S」 「cursori

pin S wat on X」 が発生していることが分かりました (図 3)。

ヒ:聖
=`謳
曽:¨中____________________ ●壌蝙炒釉鰺

卜ヽ |ヽ´…′ヽ■
''ま

´
'力

:ti菫

'||ップ・ァクティビティ
トお事嬌。あ

'彗

ジあ晟轟占麟機薫離は.勇
'あ“

厖ま晨あ:うあしま111

“

”

“

鋭

″

「

い

auerei.x
1!*;sk

qrCeer,firir
e@4(
{d:$t:x!

iqrsfr3r.1r
S!.*E tn
ili* Er

図3 トップアクティビティ

また、この待機イベントはベンチマークプログラムのステータスチェックSQL文の実

行中に発生していることも確認できました (図 4)。 つまり、ステータスチェックsQL文

がボトルネックになっていると考えられます。

畳
|

132



pin

ld. h; oa!h. htrs chaii.
lqltet n!rra& b clieut

圏
目
圏
圏
艤

`L=11,1 1tl,自nl.1.1」 .|

DI=鴨え111 111肇譲1)

:'螂 ′ヽ
"調 11■1■ 1議 1

=:,

図 4 SQL文の詳細

ロボトルネック SQL文の実行計画
EMの「SQLの詳細」画面中の「統計」―「プラン」タブから、該当SQL文の実行計

画や実行時統計を確認できます。実行計画と実行時統計を見ると、これ以上のチューニ

ングの余地はない状況になっていることが分かるはずです。

実行計画は「INDEX RANGE SCAN」 のみとなっています (図 5)。 これは索引「STAT_

TAB_Ⅸ l」 がID列、STATUS列 に対する複合索引であることによるものです。絞り込み

条件の ID列とSELECT対象であるSTATUS列 がともに索引に含まれているため、わざ

わざ表までアクセスする必要がないのです (図 6)。

図 5 ステータスチェックSQL文の実行計画

」■
０
８
ｏ
一ｏ
ア
ー
キ
テ
ク
チ
ャ
に
基
づ
い
た

∽
Ｏ
Ｆ
チ

ュ
ー
ニ
ン
グ

11331

1 1



図6 1表「STAT_TAB」 と索引「STAT_TAB_IX l」 の詳細

そのため、実行時統計の「1実行当たり」の「バッフア読み取り」が 1となってい

ます (図 7)。 すなわち、1実行当たり 1ブロックしかアクセスしていません。SQLチュー

ニングの 1つのターゲットとしてアクセスブロック数の低減がありますが、これ以上の

低減はできません。

図 7 ステータスチェックSQL文の実行時統計

つまり、実行計画からのSQLチューニングは実施し尽くしていると言えます。それに

も関わらず、この SQL文がボトルネックになっている状況です。

本章ではスケーラビリティを測定しようとしていますが、測定対象の SQL文ではなく、

ベンチマークプログラム自体のステータス確認 SQLがボトルネックとなってしまってい

ては元も子もありません。なんとかしてチューニングをしなくてはなりません。

Oracleアーキテクチヤからの分析とチューニング

そこで、Oracleアーキテクチャの観点から詳細分析を行ないます。CPU時間以外は目

立った待機イベントが発生しているため、この待機イベントがなぜ発生したのかを分析

することにします。

1341
|

|

|   "Ⅲ ● V‐●
…

督 |

■実行当たりのパッフア読み
‐
1取り数は1ブロックのみ



ピ|「:atch:cache buffers chains」 に対する分析とチューニング案

ロアーキテクチャ観点からの分析

待機イベント「latch i cache bumers ChanS」 はバツフアキヤツシユ内のプロックを管

理するチェーンを保護するラッチに対する競合です。

Oracleのバッフアキヤツシュ内に保管される各ブロックは、バケットとチェーンで管

理されています。各プロックのアドレスをもとに、格納されているバケットとチェーン

が決まります。個々のチェーンはラッチによって保護されており、そのチェーン上のブ

ロックにアクセスしている間、ラッチを保持することになります。これは、そのブロック

を参照する場合でも同様です (図 8)。

そのため、ある特定のプロックに対して複数プロセスからアクセスされると、そのブ

ロックが管理されているチェーンを保護するラッチヘの競合が発生する場合があります。

図 8 ブロックを管理するチェーン

腱動作推測

本章のベンチマークプログラムでは、すべてのスレッドがステータスチェックSQL文

により、同一表の同一行にアクセスしています。すなわち全スレッドが同一ブロックに

アクセスしていることになるため、「hch:cache bumes chains」競合が発生しやすくなっ

ていたと考えられます。

|チューニング案

この競合を解消するためには、特定プロックに対するアクセスを分散させれば良いと

言えます。

各スレッドがアクセスするブロックを分散させることにより、該当ブロックを管理す

」願
０
３
ｏ
一Φ
ア
ー
キ
テ
ク
チ
ャ
に
基
づ
い
た

り
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

135

|

サニバープロセズ

サーバープロセス

サニバ■プロセス

サーバニプロセス



るチェーンも複数に分散されるため、競合の可能性は減ることになります。

そこで、次のようなチューニング案を考えました (図 9)。

APサーバー

DBサーバー

図 9 ベンチマークプログラムのイメージ

これにより、各スレッドが異なるブロックにアクセスすることになるため、「latch

cache bu∬ iers chains」 競合の低減を期待できるわけです。

O STA丁_丁ABに複数の行を格納する。また 1行 1プロックとなるように PCTFREE

を調整する

● 各スレッドはそのスレッド:Dを使用して、異なる行に対してアクセスさせるよう

にする

つまり、ステータスチェックのSQL文を次のように変更します。

える)

136

コントロール部

ベンチマークプログラム

| |



目「cursOr:pin S」「cursor:pin S wait on X」 に対する分析とチューニング案

薔アーキテクチヤ観点からの分析

待機イベント「cursor:pin S」 「CurSOr:pin S Wait On X」 は、共有プール上のカーソ

ル情報 (SQL文や実行計画など)を保護するためのロックに対する競合です (以前のバー

ジョンでは「limv CaChe」 ラッチ競合として表われていたものです)。

あるSQL文がはじめて実行された場合、その実行計画は解析され、共有プール上に

保管されます (ハードパース)。 2回日以降は、共有プール上にキャッシュされている限

り、実行計画を最初から解析するのではなく、キャッシュされた結果を再利用できます (ソ

フトパース)。 SQL文の解析処理は重い処理であるため、このようにソフトパースを活用

することで、一般的には効率的になります。

ただし、別のプロセスが該当のSQL文の実行計画を生成している可能性があるため、

ソフトパースにおいても内部でロックがとられます。この際に競合が起こると、「cursor:

ph s」「cuβOr:pin S wait on X」 の待機が発生することになります。

つまり、ある特定のSQL文を複数プロセスから多重に実行すると、これらの待機イベ

ントによる競合が発生する場合があるのです。このロックは非常に軽いロック処理なの

ですが、あまりに多重で実行される場合には、稀に競合が発生することになります。

目動作推測

本章のベンチマークプログラムでは、すべてのスレッドがステータスチェツクSQL文

を発行しています。まさに、上記の発生条件にヒットしているとも言えます。

願チューニング案

この競合を解消するためには、各スレッドが発行するステータスチェツクSQL文を異

なるSQLテキストにすれば良いと言えます。

そこで、次のようなチューニング案を考えました。

。 各スレッドはそのスレッドiDをコメントとして付加したSQL文を組み立てて発行

することにする

一燿
０
３
ｏ
一ｏ
ア
ー
キ
テ
ク
チ
ャ
に
基
づ
い
た
り
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

ll〔)71

1   1

id=:Bl



これにより、各スレッドが異なるSQL文を発行することになるため、ソフトパースの

際の競合の発生は低減できるでしょう。もちろんコメントが異なるだけなので、返され

る結果は同一になります。

ただし、スレッド数があまりに多い場合、異なるSQL文の発行により、共有プールに

キヤッシュ済みの実行計画がキヤッシュアウトしてしまう可能性があることにも注意し

ておきます。実際にはスレッドIDを直接コメントに付与するのではなく、「MOD(スレッ
ドID,100)」 の結果を付与しました (バインド変数を使用せずに、スレッドIDをリテラ

ル値として直接 SQL文に埋め込む案もあります)。

チューニング効果の確認

ここまでのチューエング案を実装したベンチマークプログラムを実行したところ、図

10のとおりの効果が表われました。

嘘∋ デ
‐夕のギ重藝F菫口要¬蟻

首畑

豫
1毬

,コ7,アイン・■,●●ン

“
ヽ
コ
　
器
ａ
　
，
　
“
螢
競

I

|

138

図 10 チユーニング効果



今回実施した SQLの変更は次のとおりです。

このような SQLの変更は通常の SQLチューニングのテクニックではまず思いつかな

いでしょう。しかし、発生している事象をOmcleアーキテクチャの観点から分析するこ

とで、このようなチューニング案を考え付くことができるようになるはずです。

もちろん本章のチューニング案は、どのようなケースでも有効になるチューニング案

ではありません。皆さんのプロジェクトでも、本章のチューエング案を発案するに至っ

た考え方を参考にして、Oracleア ーキテクチャに基づいたSQLチューニングを意識し

て考えてみてください。

鐵

Oracteアーキテクチャを意識した
チューニングのまとめ

」腰
ほとんどのパフォーマンス問題のケースでは、非定型的な SQLチューニングで改善で

きますが、さらにハイトランザクションな環境では、Oracleアーキテクチャを意識した

チューニングが必要な場面も出てきます。Oracleアーキテクチャの理解は、どのような

場面で問題が起こり得るのか、またどのように対処するべきかを判断する重要な知識と

なります。

oracleアーキテクチャを意識した SQLチューニングの例として、あるベンチマークプ

ログラムの例を説明しました。ボトルネックとなっていた SQL文は、プログラムのステー

タスチェック用に発行されていた「SELECT status FROM stat tab WHERE id=1:」 であ

り、索引スキャンを行なっていて、ブロックアクセス数は 1ブロックという、SQLチュー

ニングの観点からはチューニングされ尽くしている状態でした。

しかし、複数プロセスが特定データに集中してアクセスしていたことにより、ラッチ

競合が発生していました。また、同一 SQL文を多くのプロセスがソフトパースするとい

う競合も発生していました。

０
３
ｏ
一ｏ
ア
ー
キ
テ
ク
チ
ャ
に
基
づ
い
た

∽
Ｏ
Ｆ
チ

ュ
ー
ニ
ン
グ

11391

SELECT status FROM stat_t‐ ab WHERE ld = 1′

↓                                        _‐

SELECT /* くスじ′ッ ドID> */ status FROM stat_

tab W‖ ERE ld― =・●:Bl     _

(バインド変数 :Blに は実行時にスレ,ド IDを与える)



これに対して、次のようなチューニング案を適用し、これに基づいてステータスチェッ

クのSQL文を変更しました。

o STAT_TABに同一データを持つ複数の行を格納する。また、1行 1プロックとな

るように PCTFREEを調整する

o各スレッドはそのプロセス :Dを使用して、異なる行に対してアクセスさせるよう
にする

o各スレッドが実行するSQL文にコメントを入れて、異なるSQLテキストとする

これにより、各プロセスが異なるブロックにアクセスすることになるため、ラッチ競

合を低減できました。

このようなチューニング案を考え付くようになるには、発生している事象をOracleアー

キテクチャの観点から分析することが大切です。

霧

1跨 確認問題

1.SQLパフォーマンス問題を考える場合に、SQL単体での問題以外に考えられる間

題を3つ挙げてください。

2.ACID特性を説明してください。

3.エンキューを説明してください。

4.ラッチを説明してください。

回答例

11401

■■■|



「

~

０
３
ｏ
一ｏ
ア
ー
キ
テ
ク
チ
ャ
に
基
づ
い
た
０
０
Ｆ
チ
ュ
ー
ニ
ン
グ

1411

F・こ:`
飩



歳1覇嵩晟1鷹|た1彗て
―■■
=||―

  |||li・     ■111

:111      ・

‐ショ ツ

.11■■.,| .

N0

1-■″
t′ ヽ 、 よ

前々章までの説明

■
‐i― . ■・ 11・

 ・  .

‐
・
. || 11

礁_7プリケ
「
セヨン里ノック1菫慮する些要竺 」

SQL単体を最適化してもパフォーマンス問題が発生し得るケースとして、アプリケー

ションロジックと設計に起因する問題の説明に入る前に、図 1を見ながら前章のおさら

いをしておきましょう。

本章からのターゲット

図 1 チューニングの進め方

YES

N0

前章のターゲット

Ir+zl



前章では、筆者が以前、あるベンチマークプログラムでスケーラビリティの測定をし

ていた際に発生した問題を例に、Oracleア ーキテクチヤを意識したSQLチューニングの

考え方を紹介しました。

このベンチマークプログラムでは、負荷を生成する各プロセスがベンチマークプログ

ラムの実行状態を判断するために、ステータスチエツクの SQL文を発行しており、バッ

ファキャッシュのハッシュチェーンに対するラッチ競合である「1■ch i cache butters

chains」 や、共有プール上のカーソル情報へのアクセス競合である「cursor:ph S」「cursor:

pin s wait On x」 がボトルネックになっていました。このような競合が発生してしまった

原因と対策をOracleアーキテクチャの観点から分析し、チューニングを行ないました。

このケースでは無事チューニングができましたが、そもそもステータスチェックのた

めにSQL文を発行することが妥当であったかというところを考えるべきでしよう。実際

の現場のアプリケーションでも、このようなケースが見受けられます。SQLはデータを

容易に扱えますが、どのような場合でもSQLの使用が適しているのかどうかは考えてみ

るべきです。また、SQLの発行方法についても、ある程度考慮すべきでしょう。

ここからは、アプリケーションが SQLを発行する際に注意すべき事項を説明していき

ます。

・■

アプリケーション観点での注意ポイント 一」一̈呻】アプリケーションロジツクを意識した００Ｆチューニング

アプリケーションロジックとSQLの関連は、主に次の観点から注意して見ていきます。

o SQL文を発行する必要があるのか

o SQL文 の発行回数を減らせないか

o SQL文の発行方法は効率的か

まず行ないたいのは、そのSQL文を発行する必要があるかどうかを確認することです。

本当にデータベースにアクセスする必要があるのかどうかを検討するべきでしょう。

さらに、SQLの発行回数はできるだけ少なくします。また、SQL文の実行方法が効率

的かどうかについても考慮してみましょう。

l

|

lL[3



その SQLは本当に必要なのか

SQLチューニングの方法を解説する書籍の内容としては矛盾しているようですが、
SQLは発行しないで済むのであれば、それに越したことはありません。まずは、アプリケー

ションが必要とするデータを本当にデータベースに格納する必要があるのかを検討しま

しょう。

例えば、SQL文の必要性自体に疑念が生じる使われ方としては、SQL関数を使用して

いるケースやアプリケーションの一時的な情報の格納場所として、データベースを使用

しているケースがあります。

冨 SQL関数の使用
データベースで用意されているSQL関数を使用するためにSQLを発行しているケー

スがあります。例えば、次のような例です。

SELF“ TRI‖く:bl).lNTO:b2FROM dual′

DUAL表に対するアクセスであるとはいえ、この SQL文を実行するためには、実行計
画を生成したり、データをデータベースとクライアント間で転送したりする必要があり

ます。プログラム側のTRIM関数相当の機能を使用するべきでしょう。

ll叫 |



ロアプリケーションの一時情報の格納

アプリケーションの一時的な情報の格納場所として、データベースを使用している場

合は注意が必要です。

前章で説明したベンチマークツールの例のような、アプリケーションのステータス情

報や Webユーザーのセッション情報などの一時的な情報は、データベースを使用せず

に想 サーバー側で持つようにするべきです (図 2)。

N

饒
SQL発行

図 2 アプリケーションの一時情報の格納先

特に、このようなステータス情報、セッション情報は頻繁に変更/参照される可能性

があり、必然的にSQL実行回数が増加することが予想されます。そのため、前章で説明

したようなラッチ競合などにより、データベースの性能に大きな影響を与えてしまう可

育ヒ′陛があります。

データベースは基本的に永続的な保護が必要なデータの格納先とし、一時的な情報は

格納しないようにしましょう。

SQL発 行回数を減 らす

oracleではSQL文が発行されるたびに内部的に多くの処理 (文の解析、インデック

ス評価、変数バインド、物理的ブロックアクセスなど)を実行しています。したがつて、

データベースヘのアクセス回数を減らすことができれば、これらの内部処理に関わるオー

バーヘッドを低減することができます。

」一̈”】アプリケーションロジックを意識した∽ＯＦチューニング

11451

APサーバー

SQL発行

SQL発行

DBサーバー

APサーバー ステータス表



国 DECODE関数/CASE文の使用
複数の SQL文は DECODE関数を使用して 1つにまとめることが可能な場合がありま
す。DECODE関数は、次のように等価条件を使用する場合に有効です。

DECODE(abc′  condi tiOnl′  resultl′  c61dition2′  result2′  Condi tion3′  ...′ default)

DECODE関数は abcと cond遍onに記述された条件が 1つずつ比較されます。abcが
condnonに 等しい場合は対応する resultを 、abcがどの condltiOnに も一致しない場合

には deねultが返されます。deねultが指定されていない場合はNULLが返されます。
また、CASE文を使用しても複数の SQL文をまとめることが可能な場合があります。
DECODE関数では等価条件のみしか扱えませんが、CASE文では不等号を使用した条件
など、DECODE関数よりも複雑な処理を行なうことが可能になります。
ただし、SQLを まとめたために構文自体が複雑になりすぎると、CPU時間が増えるこ

とになります。したがって、常に SQL自体の実行計画を採取し、検討することをお勧め

します。

■同一結果を返すSQL文の扱い
同一の結果を返す SQL文を複数回発行しているアプリケーションも、ロジックを

チューニングする余地があります。複数箇所で同一のデータが必要であれば、そのデー

タをアプリケーション内で保存しておくことにより、再度そのデータが必要となったとし

ても、SQL文を発行することなくアクセス可能となります。

特に、次に挙げる形態のアプリケーションでは、気づかないうちにこのような状況が

発生しがちです。

。 ループ内部で SQL文を発行するアプリケーション
。 高度にモジュール化、サブプロシージャ化されたアプリケーション

図 3では、メインモジュールからモジュール A、 モジュール Bを呼び出していますが、
これらのモジュールはともに「SELECT name FROM masterA WHEREid=id」 を発行し

ています。このケースでは引数として与えられる「:id」も、1回のループの中では同一です。

つまり、この SQL文をモジュール A、 B内部ではなく、メインモジュールの各ループ実
行の 1回だけ実行すれば良いとも言えます (図 4)。 これにより、このSQL文の発行回
数は半減します。

|

146



SELECT  ̈FROM tabA′ tabB WHERE

SELECT ・  FROM WHERE

SELECT ― FROM tabD′  tabE WHERE ¨

SELECT ― FROM tabF WHERE ¨

図 3 モジュール内部、ループ内部の SQL文

WHERESELECT  ・ FROM tabA′  tabB

SELECT … FROM tabC

SELECT … FROM tabD′  tabE WHERE

SELECT … FROM tabF WHERE

」回
ア
プ
リ
ケ
ー
シ
ョ
ン
ロ
ジ
ッ
ク
を
意
識
し
た

り
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ図4 チューニング案その 1

11471



さらに、図 5ではメインモジュール内で「masterA」 から結果をループ外で取得し、

配列にあらかじめ確保しておきます。このようなアプリケーションロジックのチューニン

グを行なえば、SQL文の発行回数は激減します。図5では10回から1回に減少してい

ます。

図5 チューニング案その2

ただし、アクセス回数を減らすために、大量にアプリケーション側でメモリを消費

しないように気を付けてください。例えば、大量のデータを一度に呼び出してメモリに

キヤッシュする仕組みを作ると、ガーベジコレクションなどで逆に性能が劣化する可能

性もありますので、メモリ使用量とのトレードオフを考慮してください。

なお、このような観点での分析は、アプリケーションロジックから追うよりもデータ

ベースの稼働状況から追ったほうが効率的な場合があります。例えば、アプリケーショ

ンの単体試験の際にSQLト レースを取得し、発行されるSQL文をパラメータも含めて

分析することで、無駄にSQL文が繰り返し実行されていないかどうかを簡単に把握でき

ます。

瑕 適切なコミット間隔

SQL文の発行回数とは少し趣きが異なりますが、コミットを発行する間隔にも注意し

てください。特に、多量の DML文を一括実行する場合にはすべての更新を 1回でコミッ
トするのではなく、適度な行数 (例 :1000行ごとなど)の更新ごとに分割してコミット

することをお勧めします。

|

148



1つのトランザクションで多量の更新処理を行なうと、次のような弊害があります。

O UNDOセグメントのサイズ拡張、およびそれに伴う領域不足によるトランザクショ

ンの失敗

● トランザクション失敗時のロールバックにかかる時間の長大化
。 トランザクション失敗時の再実行量の増大

なお、コミット処理は LGWRによるディスクヘの同期処理を含むため、コミット頻度

をあまり短くしすぎるとスループットが低下することに注意してください。

SQL発行形態のチューニング

SQLの発行方法についても考慮するべきです。例えば、配列フェッチや配列バイン

ドの使用などは、SQLではなく、アプリケーション自体に手を入れる必要がありますが、

大量データを使用するようなアプリケーションでは大きな効果が見込めます。

y ROWNUM関数の有効利用
多量の件数がヒットする問い合わせに対しては、事前のヒット件数チェックを行ない、

しきい値を超える場合には検索をそこで停止し、ユーザーに条件の再指定を求める警告

を返すようにしましょう。しきい値での検索の停止はROWNUM擬似列が有効です。
ユーザーが自由に条件を指定して検索を実行する場合、条件が甘いと非常に大量の行

数がヒットすることがあります。これは単にレスポンスが遅くなるというだけでなく、多

量の CPU時間および1/0が使用されるということです。同様の処理が並列して複数実

行された場合、システムのリソースが枯渇し、システム全体のスローダウンを招く恐れ

があります。

なお、すべてのSQLに対して事前のヒット件数チェックを行なう必要はありません。

予期せず大量の行数が戻される可能性のある自由検索に対してのみ実施することをお勧

めします。

は大量データを扱う場合の配列の利用
大量データを読み込み、PL/SQLや JDBCの配列、索引付き表などに代入する場合は、

配列に直接フェッチすることを検討してください。このような処理を、PL/SQLではバル

クフェッチとも言います。

一回
ア
プ
リ
ケ
ー
シ
ョ
ン
ロ
ジ

ッ
ク
を
意
識
し
た

∽
Ｏ
Ｆ
チ

ュ
ー
ニ
ン
グ

149
l

|



通常のフェッチでは、1件取得するごとに配列や索引付き表に代入する必要がありま

すが、配列を使用すると、配列や索引付き表に対して一括で代入が可能となり、効率的

です。ただし、一度にフェッチするサイズが大きいと、アプリケーション側のメモリを

圧迫する可能性があるので注意してください。

また、異なるバインド値の DML文を繰り返し実行する場合には、配列を使用して一

括でDML文を実行することを検討してください。このような処理を、PL/SQLではバル

クバインドとも言います。バルクバインドは、バインド値ごとに何度もDML文を SQL

エンジンに送信するのではなく、配列にあらかじめ更新対象のデータを入れておき、一

括してDML文を実行するため、パフォーマンスの向上を図ることが可能です。

馳カーソルキャッシュ/文キャッシュの使用
カーソルキャッシュ (IDBCでは文キャッシュ)を使用し、クローズしたカーソルの再

実行の負荷を最小限にしてください。コネクションプールを使用する環境においても、

文キャッシュは物理コネクションに関連付けられるため、非常に有効です。

プリコンパイラ系のアプリケーションでは、「HOLD_CURSOR=Y」 によってカーソル

キャッシュを有効化できます。PL/SQLはデフォルトでカーソルキャッシュを使用してい

ます。sesslon_cached_cursorsパ ラメータに指定された値が上限です。

また、コネクションプールを提供するAPサーバーは、APサーバー側の機能として文

キャッシュを提供している場合があります。この場合、ユーザーアプリケーション側で

特に意識することなく、文キャッシュが利用されます。APサーバー側の設定項目 (キャッ

シュサイズなど)を確認してください。

アプリケーションを意識したチューニングのまとめ

前章の例では、結果として無事チューニングができましたが、そもそもステータス

チェックのためにSQL文を発行することが妥当であったかどうかを考えるべきです。実

際の現場のアプリケーションでも、このようなケースが時々あります。このため、SQL

チューニングを行なってもパフォーマンス問題が解決できない場合は、次の観点でアプ

リケーションロジックを見直し、妥当性を確認しなくてはならないケースも出てきます。

o SQL文 を発行する必要があるのか?

O SQL文の発行回数を減らせないか?

l1501

1 1



e SQL文の発行方法は効率的か?

SQL文が発行されるたびに、内部的には多くの処理 (文の解析やインデックス評価、

変数バインド、物理的ブロックアクセスなど)を実行しています。したがって、データベー

スヘのアクセス回数を減らすことができれば、これらの内部処理に関わるオーバーヘッ

ドを低減することが可能となります。

また、SQLの発行方法についても考慮するべきです。例えば、配列フェッチや配列バ

インドの使用などは、SQLではなくアプリケーション自体に手を入れる必要があります

が、大量データを使用するようなアプリケーションでは大きな効果が見込めます。

■葺'

■算
■も

1.

2.

3.

確 認
墜 _____ _____|

アプリケーションロジックとSQLの関連 を確認する3つのポイントを挙げてくだ

さい。

1つのトランザクションで大量の更新処理を行った場合の弊害を3つ挙げてください。

SQL発行時に考慮すべきチューニング方法を3つ挙げてください。

回答例 一回
ア
プ
リ
ケ
ー
シ
ョ
ン
ロ
ジ

ッ
ク
を
意
識
し
た

の
Ｏ
Ｆ
チ

ュ
ー
ニ
ン
グ

11511

1「



..‐  |・ 1111‐
.:||:‐| ‐| ‐

|||||.||‐

| | | | ‐||‐
||||||‐

||||‐| ‐|■
1

_‐‐ ..  _・
, _・・|「‐・||■■|・

‐‐‐

._■|■|‐
‐―
‐
・ ‐: ・・・

‐・ ‐

__―■■||■・ '・
・‐‐li  l:=.1:1.‐

..___ .■ _‐ _・._                 ~‐

1 ・.

蜘

して、ま餞1単体の

■スにおしヽて、裁 時にど
|きかについて説響してしヽき議す。
―
のパフオーマン て

彎Ⅲに説明し警 r‐ ||・ _=―

にSQL
なう芳

'三

く考え方)を
‐_'ti ti.111::  |_

|   ・         ・ :11.111

饉■
・

設計とは
■千:._~三
~_  _ _  ___   _ _ 

」

最初に、本章の設計に関する説明範囲を図1に定義しておきます。本章では、一般的

に「論理設計」、「物理設計」と呼ばれるフェーズを対象とします。

本章の前半では論理設計/物理設計の基本的な内容のうち、SQLパフォーマンスに関
わる部分を説明します。後半では、特に論理設計時に行なうチューニングの考え方を説

明します。

I rsz

図 1 設計に関する説明範囲

本章前半の範日  本章後半の範囲

■



,議 |

まずは、基本的なところから押えていきましょう。論理設計と物理設計の違いを簡単

にまとめておきます。論理設計時には、アプリケーションから見たデータベースの構造

を設計する必要があります。ここの設計が不十分なシステムは、アプリケーションから

発行されるSQL文が複雑すぎたり、逆に単純でもデータ量が膨大になったりする可能性

があります (図 2)。

概念設計、論理設計 物理設計

データブロック データベース

エクステント 物理属性

セグメント

表領域

フアイルや
ディスクヘの
マッピング

'アプリケ
ーシヨンから見たデータベースの構造を設計 

“
表領域、データファイルの設計

■表、列、データ型、桁数などの決定      
“
各フアイルのディスク上への物理配置を決定

■キー、リレーション、整合性規約などの決定  Ⅲインスタンス設計 (初期化パラメータ)
=索引候補、パーティシヨン候補の決定    巾容量設計

図 2 論理設計と物理設計の違い

論理設計と物理設計の違い
論
理
設
計
に
お
け
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

,|ド .

論理設計の進め方
■謳

概念設計時は、トップダウンアプローチやボトムアップアプローチを駆使して、業務

のデータ分析を行ないます。本章では、ボトムアップアプローチを例に進めていきます。

ボトムアップアプローチは、業務が必要としている情報を、既存システムの画面や帳票、

ファイルなどをもとに抽出します。それらの情報を正規化、統合化、最適化することに

よって整理しながら論理データモデルを構築していきます (図 3)。 これを論理設計と呼

びます。まずは正規化について、説明しておきましょう。

|

153

11

」



一
票
´
帳

´

エンティティ
マトリクス作成

ERD妥当性
確認

靡

画面

現行機能モデル

すでにあるものからシステムにとつての理想系を

導出していくため、正規化の作業が重要となる

154

図 3 データ分析のボトムアッフアプローチ



論
理
設
計
に
お
け
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

正規化の作業

皆さんは、これまでに一度は「正規化」という言葉を耳にしたことがあると思います。

正規化とは、どのようなことを行なうことを指すのでしょうか。リレーショナルデータベー

スは、データを表形式で扱います。つまり、業務で必要なデータを表形式に変換してい

く必要があります。そのために、データを正規化する作業が必要となるのです。ここでは、

正規化の例を示しますが、実際に発行されるSQLが どのように影響を受けるのかを意識

しながら読み進めてください。

正規化の目的

データの正規化とは、データ項目が重複しないように効率良くグループ化することで

す。正規化の目的は、データ表現の柔軟性の向上や冗長性の排除、整合性の確保、保守

性の向上などになります。

まずは、正規化によるメリットを考えてみましょう。

。 データの整合性 (重複データが存在しないため、データの一貫性が保ちやすい)

。更新処理の高速化 (表当たりの索引数が減るため、更新処理が高速化できる)

。 同時処理の改善 (表が最適に分割されるため、表に対するロック影響を最小化で

きる)

|

ｒ
Ｄ
ｒ
Ｄ
■
■

11



非常にシンプルなシステムの場合は、正規化をしなくても大きな表にすべてのデータ

項目を持つことができ、重複データが存在してもSQL文が非常にシンプルになるので、

特に性能問題やデータの整合性などを心配する必要はないでしょう。しかし、近年のデー

タベースはさまざまな業務システムから高速にアクセスされるうえに、大量のデータを

保持しています。このようなシステムの場合は、データの整合性の管理や保守性、性能

面で正規化のメリットが出てきます。

正規化の手順

データを正規化する目的とメリットを理解したところで、次は実際にどのような考え

に沿ってデータを正規化していくのかを説明していきます。正規化は、非正規形のデー

タから第 1正規化、第 2正規化、第 3正規化のステップを経て行なわれます (図 4)。

繰り返し項目の排除/分離

キー項目の一部に依存した項目の

排除/分離

データ項目に依存した項目の
排除/分離

図 4 正規化の手順

リレーショナルデータベースでは、分解されたデータ集合は第 3正規形の条件を満た

していることが理想とされています。実際の設計時は、これらのステップを意識する必

要はなく、熟練者であれば、非正規形から直接第 2正規形を作り上げることができます。

正規化の例

それでは、実際に図 5のような帳票が存在しているとして、非正規形から第 3正規形

までの作業の流れを見ていきます。

卿
↓
団
↓
醐
↓
団
↓
醐
↓
司
Ｆ
醐

鋼

匝

鋼

匠

叙

匝

紳

|

156



受注番号

受注年月日

納期

顧客コード

顧客名

顧客住所

999-99999
2008年 8月 10日

2003羊 11月 30日

XXXXXX
XXXXXX〉 1朱式会社

東京都XX区XXtt19‐ 99‐ 99

合計

消費税

頂 番 商品コード 商品名 単 価 数量 小 計

朧1第 1正規化、第 2正規化
第 1正規化の作業は、繰り返し項目の排除と分離です。もう少し詳しく書くと、繰り

返し項目を排除して新たにエンティティを設け、1:nの関係で表現できるようにする作

業です (図 6)。

第1正規化 :繰り返し項目の排除/分離
第2正規化 :キー項目の一部に依存した項目の排除/分離

非正規形          第1正規形

目園嘱餅

繰り返し項 目を

別エンティティ

として分離

論
理
設
計
に
お
け
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

繰
り
返
し
項
目

図 5 帳票

第 2正規化に該当する項 目がないため、
この形が第2正規形と言え|う |■

図 6 第 1正規化、第 2正規化

1s7 I



本章の例では、第 1正規化の時点で第 2正規化を満たしているため、第 1正規化の

作業が終わった時点で、第 2正規形であると言えます。

なお、第 1正規化すら行なわなかった場合は、例えば SQLに対して、繰り返し項目に

対するソートなどの操作をSQLで表わしにくいため、アプリケーションロジックでソー

ト処理を行なう必要が出てくるといった影響を与えることが考えられます。

これは、商品コードでソートして出力したい場合などに、商品コード1、 商品コード2、

商品コード3などのカラムをSQL文で取得した後に、アプリケーションでソート処理を

行なうことなどを指します。

目第 3正規化
第 3正規化の作業は、データ項目に依存した項目の排除と分離です。言葉で説明する

とイメージしにくいと思いますので、図 7を確認してください。

第3正規化 :データ項目に依存した項目の排除/分離

第2正規形               第3正規形

導出可能

)ヽ

項目に(D)マーク

商品コードに依存
顧客コードに依存

図 7 第 3正規化

導出可能項目の意味を簡単に説明します。

例に示した小計、合計、消費税の項目は、別の項目から算出可能な項目を意味します。

例えば、商品の単価が分かるので、数量分を掛け合わせて小計を導き出すことができま

す。正規化の観点からは、導出可能な項目は排除することが前提ですが、集計処理が必

要なため、性能面の観点から項目を残す場合もあります。性能最適化過程で検討すべき

項目であることが分かるように、注釈を付けて残しておくと良いでしよう。

|

1581

コード

う



口統合化

統合化とは、各業務のデータを正規化した後に、同じ識別項目を持つエンティテイ

を 1つにまとめる作業のことを言います。正規化の例で使用したデータと異なりますが、

簡単な例を図 8に示しておきます。

」ロ

営業側で正規化した

受注エンティテイ

統合化した

受:,主エンティテイ

生産側で正規化した

受注エンテイテイ

論
理
設
計
に
お
け
る
０
０
Ｆ
チ
ュ
ー
ニ
ン
グ

告業務で正規化した後で、同じ識別項目(例では

受注番号)を持つエンテイテイを1つにまとめる。

図 8 統合化

珈 非正規化

正規化を行なうことにより、表は分割されていきます。そのため、正規化を徹底した

場合、SQLの結合表数が増える可能性が大きくなります。結合表数が多いSQLは SQL

文が複雑になり、SQL解析時間が増加するなどのパフオーマンス劣化をもたらしやすく

なります。第 3正規化まで行なった後に、データのロード時間やオンラインおよびバッ

チ処理の更新処理時間を考慮して非正規化を行なうことで、表の結合数を減らすことを

検討します。また、アプリケーションロジックの難易度の考えからも、非正規化を検討

する場合があります
注1。

更新レコードの重複度などを考慮して、原則として第 1正規形は維持するように、

非正規化作業を行ないます。非常に稀なケースですが、参照系のデータで、かつ 1レコー

ドに絞り込める検索のみが行なわれるような場合は、第 1正規形でも崩すことがあり

ます。

また、設計者がはじめから非正規化を行ない、その情報しか資料に残っていないこと

があります。この場合は、後任者が設計書を読み返したときに、なぜ非正規化を行なっ

たのかが継承されないので、非常に多くの場面で混乱を招くことになります。非正規化は、

11591

1 1

注1:データの整合性の観点から、更新処理の時間軸を意識した処理フローが複雑化する場合があるためです。



あるべき第 3正規形を導き出してから、業務ロジックや性能などの考慮点をドキュメン

トなどに残したうえで行なうことをお勧めします。

::
論理設計のチユーエング

前項では、論理設計のうち正規化/統合化までの流れを説明しました。ここからは論
理設計時に SQLのパフォーマンスを意識して性能最適を行なう方法 (考え方)を中心

に説明を行ないます (図 9)。

N0

N0

N0 本章のターゲット

図 9 チユーニングの進め方

SQLのパフォーマンス問題が発生したときに、どのような点に着目して論理設計を確

認すべきかを理解してください。開発者の方は、論理設計フェーズに関わることが少な

いことから、SQLと論理設計の関係をイメージするのは難しいかもしれません。しかし、

論理設計次第で SQL文の書き方が変わるという理解で読み進めてください。また、開発

時に設計の不備をSQLの観点から改善できるように、論理設計の知識を少しでも習得し

ておくと良いでしょう。

l1601

1 1

YES

N0YES

前章のターゲット

YES

囲驚
■
遭

一“
”
ヽ
〓

Ｖ

ヽ
」

Ｆ■

Ｌ

日

し

今までの説明

SQL単体以外のチユーニング

設計チューニング

チューニング完了



以降の説明で対象としているのは、図 10の とおりです。

本章前半の範囲  本章後半の範囲

図 10 設計に関する説明範囲

前項ではデータを正規化することで、データの整合性の確保や保守性の確保、更新処

理/同時処理のパフォーマンス改善など、正規化のメリットおよびその流れについて説

明しました。以降では、業務観点/性能観点から正規化後に論理設計を最適化する流れ

を説明します。

正規化の作業 (概念 DB設計)は、データそのものやデータ構造の視点で分析し、設

計を行ないます。概念 DB設計は、あくまでもデータを主観において作成するものです。

最終的に論理設計を行なうには、業務観点での最適化作業と性能を意識した最適化作業

が必要になります。

それでは、作業の流れを見ていきましょう。

業務最適化の目的

業務最適化の目的は、データに主観を置いて作成された概念 DB設計が、業務要件や

業務プロセスに基づいて業務機能が実装可能であるかを検証し、必要に応じて設計を見

直すことにあります。業務最適化では、主に次のような作業を行ないます。

●業務観点から必要な情報 (データ)の抜け漏れの確認 (主キー設定の妥当性など

も含む)

②業務処理に必要なリレーションの確認

0時間経過を考慮した最適化

ここでは趣旨からはずれるため、詳細な作業内容については割愛しますが、時間経過

を考慮した最適化の作業について簡単に説明しておきましょう。

」ロ
論
理
設
計
に
お
け
る
０
０
Ｆ
チ
ュ
ー
ニ
ン
グ

161‖



雷時間経過を考慮した最適化作業

概念 DB設計時に作成するERモデルでは、時間経過が表現できません。ゆえに、業

務最適化作業時には業務プロセスや業務処理、データのライフサイクルの観点から確認

を行ない、データの流れを意識しながらERモデルを最適化します。図 11に簡単な例を

示しておきます。

歴]―極]一種□―嘔亜トギ司
エンティティ

出荷のエンティティがないが大丈夫か
'

図 11 時間経過を考慮した最適化作業

また、各エンティティの発生/修正/参照/削除は、どの業務が行なうのかという観

点からも整合性が確保されているかを確認します。一度は、聞いたことや見たことがあ

る方もいるのではないでしょうか。エンティティとプロセスのマトリクスを用いて検証を

行なうCRUD分析です。表 1に簡単な例を示しておきます。

C:1生成 (Create)、 R:参照 (Reference)
U:修正 (Update)、 D:削除 (Delete)

表 l CRUD分析

エンティティとプロセスのマトリクスを用いて、データの流れの観点から矛盾などが

発生していないかを考慮します。また、ここで重要な点は、データベース負荷が高いと

思われるプロセス (業務)やエンティティ (テーブル)をマトリクスなどから認識して

おくことです。これは、次に述べる性能最適化を検討する対象となります。

R R ∪

R

R

CRUD R

CRUD R

|

162

ビジネスプロセス :



性能最適化の目的

性能最適化の目的は、特に負荷が高いと思われる業務やテーブルに着目し、性能要件

と処理トラフィックに対応した高速なアクセスが可能となるように設計を見直すための

作業です。主に、次のような作業を行ないます。

11,システム要件や業務要件定義などから性能上は注意すべき事項の確認

.2,概念 DBモデルとCRUD分析、業務トランザクション量などからアクセス頻度が

高いエンティティの特定および対応策の検討

15り 業務機能要件や運用管理要件の観点から対応策の検討。この時点でデータベース

固有の機能を意識して対応策を検討する場合もある

それでは、実際にどのような観点で性能を意識した最適化作業を行なっていくのかを

見ていきましょう。論理設計時の性能最適化作業では、負荷が高いと思われるテーブル

に対してどのように処理が行なわれるのかを考慮し、エンティティの分割化や統合化、

冗長化、そして要約化を行ないます。

分割化/統合化

分割化/統合化とはどのような作業であるのかを、まず図12で説明しておきます。

論
理
設
計
に
お
け
る
０
０
Ｆ
チ
ュ
ー
ニ
ン
グ

|

暑|は
1つの表に統合して実装するかワ

統合

上位
エンティティ

サブセット
エンテイテイ

3つの表に分割して実装するかワ

サブセット表

ベース表

従属表

概念モデル
エンテイテイ

図 12 分割化/統合化の概念

163

11



概念図で説明すると少し難しいですね。どのようにデータにアクセスされるかによっ

て、テーブルを分割化すべきか、そしてテーブルを統合化すべきかの例を示しながら説

明していきましょう。

囲 ある顧客管理用データの実装を検討する例

図 13は、ある顧客管理用データを実装するに当たって、3つのパターンを検討した

内容です。

個人/法人区分

パターン①

蝙靱祓
サブセット表に
分割して実装

パターン②

隋躙鮨
ベース表と
サブセット表に
分割して実装

パターン③
匡=す__・,、ヒニ■■,ノ
統合した表で実装

顧客テーブル

顧客番号

顧客名
個人/法人区分
性別
代表者名

性別

図 13 顧客管理用データの実装パターン

パターン①と②が分割化を考慮した実装で、パターン③が統合化を考慮した実装と

なっています。業務要件やアクセス頻度から顧客管理用データの参照のされ方が異なる

場合に、どのように実装しておくと性能面でメリットがあるのかを見ていきましょう。

個人顧客と法人顧客で業務プロセスが異なる場合と同じ場合について検討してみ

ます。

11641

法人顧客
テーブル

顧客番号(FK〕

代表者名



轟 個人顧客と法人顧客で業務プロセスが異なり、別々にアクセスする頻度

が高い場合

個人顧客と法人顧客で、業務プロセスがまったく異なる要件だった場合を仮定してみ

ましょう。

この場合、個人顧客と法人顧客のデータに別々にアクセスする可能性が高くなります。

同時に読み込まなければならないことは稀でしょう。

さて皆さん、ここで個人顧客データを読み込むSQL文を考えてみてください。顧客管

理用データを3つのパターンで実装した場合に、個人顧客データのみを取得するSQL

文はどのようになるでしょうか?併せて性能面からも考えて、どのSQL文が一番効率的

であるかも考えてみてください。ここで一度考えてから、先へと読み進めてみてください。

ロバターン○

パターン①は、個人顧客と法人顧客のテーブルが分かれているため、FROM句で個人

顧客テーブルのみを指定することで絞り込むことが可能です (図 14)。

個人顧客テーブル

SELECT顧 客番号′ 顧客名′ 性別
FROM  イ国人顧客テーブル′~~~=~~~~

1

FROM句で個人顧客に
絞られている

個人顧客テーブルを
全表走査してデータを
取得する

↓
最初から検索対象が
絞り込まれているため
走査件数が少なくなる

顧客番号 顧客番号 性別

001 Aさん 男

002 Bさん 女

003 Cさん 男

004 Dさん 男

図 14 個人顧客と法人顧客で業務プロセスが異なる場合 (パターン①)

曇パターン②

パターン②は、顧客テーブルと個人顧客テーブルを結合することで、個人顧客データ

を絞り込むことになります (図 15)。

回
論
理
設
計
に
お
け
る
０
０
Ｆ
チ
ュ
ー
ニ
ン
グ

1165,

| |



個人顧客テーフル 顧客テーブル

SELECT顧 客番号′ 顧客名′ 性別
FROM

WHERE ブル

テーブルを等価結合することが

個人顧客を絞り込むことになる
個人顧客テーブルを全表走査、

取得した顧客番号で顧客テーブルを
インデックススキャンして結合

↓
結合する分 1行のデータを読むコストは高くなる

性別 顧客番号 顧客名顧客番号

001 - ―男― 001 Aさん

ヽ

`嚢

003-ヽ 002 B社

_ヽ男004-_ 003 Cさん

004 Dさん

005 E社

図 15 個人顧客と法人顧客で業務プロセスが異なる場合 (パターン②)

ロパターン③

パターン③は、1つのテーブルに個人顧客データと法人顧客データが存在しています

ので、顧客テーブルの区分をWHERE条件に指定することで、個人顧客データを絞り込

むことになります (図 16)。

図 16 個人顧客と法人顧客で業務プロセスが異なる場合 (パターン③)

3つのパターンから次のようなことが言えます。

oパターン①は、個人顧客を絞り込むときに表として存在しているため、検索対象

となるデータ件数がほかのパターンに比べて少なくて済む

oパターン①は、業務プロセスで必要とされる区分とテーブルの構造が同じである

ため、そのほかの絞り込み条件が発生しても生産性が高い。また、データの保守

性の観点からも望ましい

oパターン②は、個人顧客データを取得するために、個人顧客テーブルと顧客テー

ブルを結合する必要があるため、パターン①より性能的に不利

l1661

1 1

個人顧客テーブル

SELECT顧客番号′ 顧客名′ 性別
FROM  顧客テーブル
WHERE 廻2v笙法塾憂董盆_ニ イロ/ヽ '′

顧客テーブルを
て

個人顧客を選択

個人/法人区分を検索条件として指定す
る必要がある

顧客番号 顧客名 区分 性別 代表者名

001 Aさん 個人―一男一

002 B社 法人 Bさん

003 Cさん 個人―

004 Dさん 個人―

Eさん005 E社 法人



● パターン②は、個人顧客データを更新処理するときに、個人顧客テーブルと顧客

テーブルの2つに対して処理が発生する

oパターン③は、個人/法人区分で条件指定を行ない、個人顧客データの絞り込み

を行なうが、「個人」と「法人」の2種類の値しか存在しないため、カーディナリティ

の低い項目となる。ゆえに、索引スキャンによる十分な絞り込みが期待できない

可能性が高い。パターン①の対象データ件数より多くのデータを取得する必要が

あるため、性能的に不利

oパターン③は、顧客テーブル 1つに個人と法人のデータが存在するために、業務
プロセスで必要とされる区分とテーブル構造が異なることとなる。業務ロジック

(SQL文)で意識しておく必要があるため、生産性や保守性の観点からも望まし

いとは言えない

上記の理由により、「個人顧客と法人顧客で業務プロセスが異なり、個人顧客データ

と法人顧客データが別々にアクセスされる場合」は、パターン①の実装が有効であると

判断できます。

鶉個人顧客と法人顧客の業務プロセスが同じなので、同時にアクセスする

頻度が高い場合

3つの実装可能なパターンは変わりませんが、業務要件の違いでアクセスのされ方が

異なる場合はどうでしょうか。次は、個人顧客データと法人顧客データに同時にアクセ

スするケースについて考えてみましょう。

Eパターン①

パターン①は、個人顧客と法人顧客のテーブルが分かれているため、UNION ALL句

を使用して 2つのテーブルからデータを取得する必要がありそうです (図 17)。

SELECT顧 客番号′ 顧客名
性別′ null代 表者名

ブル

FROM

2つのテーブルの検索結果を
合わせて読み込まなければならない

〓回
論
理
設
計
に
お
け
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

図17 個人顧客と法人顧客で業務プロセスが同じ場合 (パターン①)

11671

1 1

顧客名
null 代表者名



ロパターン②

パターン②は、個人顧客データと法人顧客データを同時に取得する場合に、共通情報

にアクセスする場合と個別の情報まで含めて同時に取得する必要があるかで、SQL文が

変わってきそうです (図 18)。

SELECT顧 客番号′ 顧客名
FROM  顧、客テーブル ,~~下~
共通情報にアクセスする場合は
1つのテーブルヘのアクセス
で済むが……

SELECT
FROM

顧客名′ 性別
ル

ブル

WHERE

読み込もうとすると表結合が必要

図 18 個人顧客と法人顧客で業務プロセスが同じ場合 (パターン②)

ロパターン③

パターン③は、個人顧客データと法人顧客データが 1つのテーブルに存在するので、

顧客テーブルのみにアクセスすればデータの取得が可能です (図 19)。

SELECT顧 客番号′ 顧客名′
性別′ 代表者名

FROM  麗蜜21■2:ル′
↑

どの項目でも1つのテーブルヘの
アクセスで取得可能

図 19 個人顧客と法人顧客で業務プロセスが同じ場合 (パターン③)

皆さんは、どのパターンを選びましたか?

本章の例では、さらに細かい業務プロセスによって選択が変わってきそうです。仮に、

個人顧客データと法人顧客データに同時にアクセスするのが共通項目のみで、詳細な個

別項目には顧客番号指定でアクセスするようなケースの場合は、共通項目のみが 1つの

テーブルで実装されているパターン②が性能面で有利となります。

パターン①、③は取得する行数は同じですが、共通項目のみのテーブルのため、列数

が少ないです。そのため、1ブロック内のレコード数が多いと想像できます。つまり、パター

ン①、③より②が有利と言えるでしょう。

168



仮に個別項目にも同時にアクセスする場合は、結合オーバーヘッドや更新処理、生産

性などを考慮すると、パターン③が有利と言えるでしょう。

なんとなく、分割化/統合化がどのような作業であるのかイメージしていただけたと

思います。業務プロセスや業務処理を意識して、どのようにデータにアクセスされるか

によって、論理設計を見直す必要があります。皆さんも、現在業務で使用しているSQL

文とデータの取得要件から実際の設計を確認してみてください。

冗長化

冗長化の作業は、データの正規化のところでも触れましたが、非正規化作業となりま

す。また、繰り返し項目を列に持たせることで 1行に収め、1/0特性の向上を図ること

を目的としています。繰り返しの数が非常に少ない場合や複数表に対する結合階層や結

合パターンが非常に多くなる場合以外は、原則として冗長化は禁止しておくことをお勧

めします (図 20)。

第 1

論
理
設
計
に
お
け
る
０
０
Ｆ
チ
ュ
ｉ
ニ
ン
グ

親表項目

親表項目 子表項目

図20 冗長化

次に、メリットとデメリットを示しておきます。

eメ リツト

親表とそれに付随する子表のデータにセットでアクセスする場合、対象となるデー

タプロックが少なくて済みます (表結合が必要ありません)。

。 デメリット

子表のデータを項目単位に串刺しでアクセスする場合、対象となるデータプロック

が多くなります。

11691

1 1

子表

11

親表



1行のサイズが大きくなるため、移行行、連鎖行が発生しやすくなります。

汎用性が低くなり再利用しにくくなるので、仕様変更やシステムを新しくする際のコ

ストがかかります。

璽 クラスタ表による冗長化の対応

親表と子表が必ずセットでアクセスされる場合は、クラスタ表を使用して冗長化への

対応を行なう場合もあります。クラスタ表のメリットは、論理的な関係を変更すること

なく物理的に同じ場所 (同じブロック)に格納できるという点です (図 21)。

データブロック

図 21 クラスタ表

要約化

要約化の作業は、データの観点から作成した概念 DBモデルに存在しない、業務で必

要となる要約データを持たせることで、1/0特性や業務ロジック性能の向上を図ること

を目的としています (図 22)。

1.親表への要約項目追加

3.導出項目の追加

導出項目

2.要約表の追加

4.同一項目の二重管理

|

親表のデータ

170

図 22 要約化



黎 マテリアライズドビューによるサマリ表の実装

DWHシステムなどは、大量のデータを取り扱うため、この要約化の作業によリサマ

リ表の作成を検討することが多いと思います。そのサマリ表の実装で用いられるのがマ

テリアライズドビューです。データの集計結果を実体として持たせられるので、集計処

理の性能向上を図ることができます (図 23)。

SELECT文による集計結果を格納

SELECT a.顧 客コード′
SUM(b.金 額)合計金額

FROM  受注 a′ 受注項目 b
WHERE a.受 注番号=b.受注番号
GROUP BY a.顧、客コード′

図 23 マテリアライズドビュー

」回
論
理
設
計
に
お
け
る
０
０
Ｆ
チ
ュ
ー
ニ
ン
グ

難 ||

論理設計時の性能最適化作業とは、負荷が高いと思われるテーブルに対して、どのよ

うに処理が行なわれるのかを考慮しながらエンティティの分割化や統合化、冗長化、要

約化を行なう作業です。

分割化/統合化とは、どのようにデータにアクセスされるかによって、テーブルを複

数テーブルに分割化すべきか、逆に統合化すべきかを検討する作業です。

冗長化の作業は非正規化作業とも言えます。繰り返し項目を列に持たせることで 1行

に収め、1/0特性の向上を図ることを目的としています。繰り返しの数が非常に少ない

場合や複数表に対する結合階層、結合パターンが非常に多くなる場合以外は、原則とし

て冗長化は禁止しておくべきです。ただし性能要件をもとに、特別に非正規化すること

も検討する場合があります。

SQLのパフォーマンス問題が発生したときに、SQL単体では最適化されてもパフォー

マンスが出ない場合は、本章での論理設計時に性能最適化の作業で考慮した点が実際の

実装時に考慮されているかを確認できるようにしましょう。

本章の解説は、論理設計フェーズに関わったことがない開発者の方には、少しイメー

ジしにくい部分もあったかもしれません。しかし、運用フェーズに入ってからの論理

設計の変更は、ほとんど不可能に近いものです。業務や性能面から論理設計の不備を

開発フェーズ中に指摘し、未然に性能問題を予防できるようにするためにも、論理設

論理設計を含めたチューニングのまとめ

|

171



計の知識を少しでも身に付けておいてください。そして、実際のプロジェクトやシス

テムで、業務で使用しているSQL文とデータの取得要件から実際の設計を確認してみ

てください。

次章からは、システム開発プロジェクト全体を通して、SQLパフォーマンス問題を予

防したり、分析/解決を効率化したりするために考慮すべき事項を説明していきます。

隕
 確認問題
1.データの正規化の目的を説明してください。

2.SQLチューニング観点における正規化のメリットを3つ挙げてください。

3.設計時の性能最適化作業を説明してください。

回答例

l1721



■攀揉魃轟彗
PART

SQLバフォー
「予防」する

薔量靱‡蝙l魏|パフォーマンス問題を起こさないためには

1薇徳贔簸計画フェーズ

蛉:祠漑:11鰊 要件定義フェーズ

:鷺 :::1難饉:1麟 :|:11鶴 :1設計フェーズ

畿難鮮鯵:|||:攀 開発フェーズ

:i:::|11:::1111:11:轟 :111:||:||:41111::||::テ
ストフエーズ ー|

辮11:|111i:l:|:il:il:::ill:|:|::i:|:縫 運用フェーズ

"緊

||::|:|:|:::::::攀
実際のプロジェクトでどこまでやるべきか



t SQLパフォーマンス
澱―ズや

おける

てヽ詳しく解説してし

SQLパフオーマンス問題の「椰謝uから「予防」ヘ

Part2では、SQLパフォーマンス問題に直面した場合に、どのような点を考慮して改

善すべきかといったSQLパフォーマンス問題を「解決」するためのノウハウについて、

主に次の点を中心に説明を行ないました。

0定型的なSQLチューニング
● 非定型的な SQLチューニング

● アーキテクチャを意識したSQLチューニング

e SQL単体以外も意識したSQLチ ューニング

システムやプロジェクトにおいて一番良いのは、SQLパフォーマンス問題を素早く解

決できることではなく、SQLパフォーマンス問題を起こさないことです。しかし、実際

にプロジェクトを進めるうえで、すべての SQLパフォーマンス問題をなくすことは非常

に困難と言わぎるを得ません。

重要な点は、SQLパフォーマンス問題を運用フェーズに持ち込まないことでしょう。

プロジェクトフェーズの上流から適切にSQLパフォーマンス問題を意識して対策を行な

えば、運用フェーズにおいてSQLパフォーマンス問題を減らすことは可能なのです。

蒸フォ■マンス問題を|

|1起こさないため腱億1

.‐ tヽ■1 |■■. 1■■
‐‐1■‐ ・...             |‐ ‐ ||||■ |・

I rz+



この Pan3では、SQLパフォーマンス問題を起こさないように、フ
°
ロジェクトの上流

フェーズから「予防」するためのノウハウについて話を進めていきます (図 1)。

図 l SQLパフォーマンス問題の「解決」と「予防」

鐵 ::|||‐

SQLパフォーマンス問題の予防に必要なのは、プロジェクトフェーズの上流から対応

策を意識しておくことです。また、各フェーズで担当者間の連携や役割を明確にして対

応に取り組む体制作りも非常に重要です。限られたプロジェクトの時間の中で、いかに

して後工程のフェーズに SQLパフォーマンス問題の課題を持ち込まないようにするかが

ポイントだと言えるでしょう。

SQLパフォーマンス問題の対応を先送りしないためにも、各フェーズで何をすべきか、

各フェーズに携わる担当者はどのような役割を担っているのかを理解しておく必要があ

ります。

まず「予防」の説明に入る前に、SQLパフォーマンス問題の発生の原因となる傾向に

ついておさらいしてみましょう。

フェーズに関する問題

瞼ISQLのパフォーマンス確認はテストフェーズから始まる傾向がある
SQL文のパフォーマンス確認は多くのケースでプロジェクトの後半、テストフェーズ

から行なわれます。さらに、テストフェーズは単体テスト→結合テスト→性能テストと

進みますが、パフォーマンス問題が顕在化するのは性能テストが始まってからというケー

スが多いのではないでしょうか ?

しかし、性能テストの段階まで来るとプロジェクトもほぼ終盤です。そこで問題が発

一ロ
パ
フ
オ
ー
マ
ン
ス
問
題
を
起
こ
さ
な
い
た
め
に
は

SQLのパフォーマンス問題が発生する要因

開発 テスト 運用計画 要件定義 設計

PM   轟驀
設言情 鬱

DBA :t'

開発者
,摯警■tl'

OSQL問題を「予防」するためのノウハウを伝える
→Part3

17s I



生してしまうと、主にプロジェクトスケジュール、修正範囲の点から非常に苦しい状況

になることが多くなります。

|プロジエクトスケジュール上の問題

プロジェクト終盤となるとサービスインの期日が迫ります。サービスインまでの残り

わずかな時間でパフォーマンス問題を解決する必要があり、これがチューニングの難易

度を上げていると言えるでしょう。

目修正範囲の問題

また、プロジェクト終盤では、システムの機能はある程度はでき上がっており、いざ

修正するとしてもその影響範囲の確認が困難になります。修正だけなら簡単にできても、

修正に対する機能確認テストのために多くの時間と工数を要することになります。

麟SQこ の設計/記述:ま主 :こ開発フェーズから始まる傾向にある

SQLの設計、記述はどのフェーズから行なうことが多いでしょうか。SQLパフォーマ

ンス問題が発生する多くのプロジェクトでは、開発フェーズに入ってからプログラムコー

ディングとともに記述するケースが多いようです。

その場合は、次に挙げる可能性をはらむ危険があります。

● 設計者の想定と異なる SQLが記述される可能性

僣 設計者が SQLま で想定して設計していない可能性

体制に関する問題～PM/設計者/DBA/開 発者の分担構造
フェーズのみならず体制面でも考察してみます。ある程度の規模のプロジェクトにな

ると、複数のチームによる並行開発となるでしょう。業務関連の設計、開発を行なう業

務チームと、データベースをはじめとするインフラ関連を扱う基盤チームに分かれるの

が一般的です。このようなチーム構成に起因して SQLパフォーマンス問題の解決が困難

になる要因もあります。例えば、次のような状況です (図 2)。

。 SQLチ ューニングは業務チームに実施させるべきか、基盤チームに実施させるべ

きかを判断しなくてはならない状況

。 データベース観点での問題 SQL文と、業務プログラムとを対応付けなくてはなら

ない状況

|

176



計画 要件定義 設計 開発 テスト 運 用

PM  IW

設計者 燿鮨
DBA  辟鬱

開発者 も

一」ロ

図 2 プロジェクトフエーズ、担当とDBAの関わる役割

鍛 .・

多くの方は、これまで述べたような問題に遭遇したプロジェクトに思い当たるのでは

ないでしようか。そして、実際に問題が発生してから次のようなことができていればと

思った方も多いでしよう。

●|プロジェクトの早期フェーズからパフォーマンス問題を見つけられないか

o業務観点、データベース観点での知識、技術の連携がスムーズに行なえないか

これらの事項は、フェーズごとや担当ごとに場当たり的に対処しても実現は難しいと

言えます。SQLパフォーマンス問題を発生させないという明確な目的を持ち、プロジェ

クト全体で仕掛けを作ることが重要です。

限られたプロジェクトの時間の中で、いかにしてSQLパフォーマンス問題の課題を後

工程のフェーズに持ち込まないかを意識するには、各フェーズで何をすべきか、そして

各フェーズに携わる担当者はどんな役割を担っているのかを知っておく必要があります。

では、いよいよ以降の章よりSQLパフォーマンス問題を予防するために各フェーズで

何をすべきか解説していきましょう。

圏籍

SQLパフォーマンス問題を予防するために

確認問題

パ
フ
ォ
ー
マ
ン
ス
問
題
を
起
こ
さ
な
い
た
め
に
は

遭
饉

1.自身の経験や担当したプロジェクトにおいて、フェーズ面、体制面からSQLパフオー

マンス問題につながってしまったケースを挙げてみてください。

2.上記で挙げた問題に対して、プロジェクトにおいてどのフェーズでどのような手段

を取っておけば、その問題発生を防ぐことができたか考察してみてください。

|

1177



回答例

11781
1   1

1  1



ロ
計画フェーズで実施する作業として、

概要レベルでの検討や、プロ

。 し のフエーズで立て

すので、こ

計画フェーズに関わる各担当の役割

計
画
フ
ェ
ー
ズ

隋 |ltlll

PMの役割

システム全体要件、構成の概要レベルでの検討において、SQLが直接関連することは

まずないでしょう。しかし、プロジェクトのスケジュールや体制を立案するに当たり、ま

ずプロジェクトの特性やリスクを洗い出し、その施策や対応をスケジュールと体制に含

めていく方法があります。この洗い出し作業の中に、パフォーマンス問題やSQL問題に

関するリスクを可能な限り入れておくことが重要です。

このフェーズでSQLが直接関係する議論が少ないことや、問題として顕在化している

わけではないため、見過ごしがちになりますが、SQLパフォーマンス問題はどのプロジェ

クトでも発生する可能性の高いリスクであると言えます。このリスクを的確に認識し、

問題をできるだけ顕在化させないための施策や、顕在化したときの対応を行ないやすい

ような施策を打つべきでしよう。

PM(プロジェクトマネージャ)や PMを補佐するメンバーが SQLパフォーマンス間

題とそれに対する施策を考えられるかがキーとなります。また、そのような検討ができ

るテクニカルなメンバーがこの段階で参画しているかも重要になります (図 1)。

17e fr

_.11■■いヽ
_′
ハ



パフォーマンス問題を

考慮したリスク検討、ス

ケジュール、体制の立案

図 1 リスク検討におけるパフォーマンス問題の考慮

DBAの役割

計画フェーズの作業に DBAが直接関わることは残念ながらなかなかないでしょう。そ

れだけでなく、計画フェーズにDBAが参画すること自体が稀であると言えます。そのた

め、計画フェーズが開始されてから上記のような事項を PMに意識させる機会を作るの

は非常に困難です。

では、どうすれば良いのでしょうか。最も容易なのは、1つ前のプロジェクト終了時

にPMに伝えておくことです。システムがサービスインし、プロジェクトチームが解散

する際に、DBAが自身の視点でそのプロジェクトにおいて発生してしまったパフォーマ

ンス上の問題について、どうしておけばその問題が発生しなかったかをぜひ PMに伝え

てください (図 2)。

前プロジェクト 新プロジェクト

PM警國
DBA鶉

:‖ |■

:l:

図 2 DBAからPMへのプロジェクト終了時の考慮事項の伝達

本章を参考に、「計画フェーズでこのようにしておけば、問題が発生しなかった可能

性が高い」と訴え、PMが次のプロジェクトの際に少なからず SQLパフォーマンス問題

に対するリスクやその施策を考慮してくれるよう働きかけてください。

すなわち、計画フェーズの段階で重要なのは次の 3つであると言えるでしょう。

運用開始後、パフォーマンスに

関する問題や、事前に実施す
べきだつた事項をまとめ、次回
に活用すべき旨を報告する

11801

パフォーマンス問題

に対するリスク、施策

の重要性の働きかけ

このフェーズでDBAが参画で
きなかつたとしても、PMがパ
フォーマンスに関する考慮を

してくれれば良い



計
画
フ
ェ
ー
ズ

ヽ
コ

O PMが SQLパフォーマンス問題を意識してプロジェクト計画を立てているか

。 計画段階でテクニカルなメンバーが参画しているか

。 DBAが PMに SQLパフォーマンス問題のリスクを的確に伝えられるか

計画フェーズにおける
SQLパフォーマンス問題の考慮事項

先に述べたとおり、DBAが計画フェーズに直接関かわる場面は少ないと思います。し

かし、PMにリスクを伝えるためには、どのようなことを考慮しなければならないかを把

握しておく必要があります。ここでは、計画フェーズにおいて考慮すべきポイントを説

明しておきます。

パフォーマンス問題を意識したプロジェクト計画

まず、計画フェーズでパフォーマンス問題を意識した計画とはどのようなものなのか、

説明していきます。

国 プロジェクト計画はどのように進めていくか

PMの役割において計画フェーズで行なう作業は多岐に渡ります。プロジェクトロ

標の選定と明確化、タスクを詳細化しその関連などを表した WBS(Work Breakdown

Structure)の 作成とスケジュール策定、組織計画や人員計画など、プロジェクト全体を

見通した計画が行なわれます。

まず、プロジェクト計画をどのように立てるかを共有しましょう。一般的には次のよ

うなタスクがあるはずです。

oプロジェクトの特性を把握
,0プロジェクトを進めるに当たってのリスクを把握

O リスクを顕在化させないための予防策を検討し、計画に反映

このようなプロジェクト計画立案の際に、パフォーマンス問題の発生を予防するため

の対応策を加えていくことが重要です。

181



躙パフォーマンスを重視すべきプロジェクト特性とは

どのようなシステム構築においてもパフォーマンス要件は必ずありますが、特に次の

ような特性を持っているプロジェクトでは、パフォーマンス問題に注意して計画を立て

るべきです。

日顧客からのパフォーマンス要件が厳格である場合

例えば、「～秒以内に画面表示する」「～ TPS以上のスループットを担保する」など

の要件が明確であり、かつ重視される場合には、その要件を達成するために、詳細にパ

フォーマンスリスクを洗い出し、要件の実現性をプロトタイプ検証などの計画に入れる

などの対応を検討します。

目処理量の変動傾向が見えにくい場合

一般ユーザー向けの Webシステムなどは使用ユーザー数の見積もりが難しいことも

あり、予期せぬ処理量の増大などが発生する可能性があります。このような場合は、同

時アクセス負荷テストやボリュームテストなどの精度を意識したスケジュール設定や体

制などの対応を検討します。

鬱ミッションクリティカルなシステムである場合

当然のことですが、顧客の業務継続性を左右しかねないようなクリティカルなシステ

ムでは、パフォーマンスについては十分に検討しなければなりません。さらに、パフォー

マンスのみならず、要件フェーズや設計フェーズでシステム構成のフィジビリティテス

トなどの対応も検討します。

ほかにも、既存のハードウェアを流用しなくてはならないため、ハードウェアリソー

スが乏しい、アプリケーションパッケージではなくカスタムでアプリケーションを作成

する必要がある、開発要員の確保やスキルに不安があるなど、パフォーマンスに影響が

出かねないプロジェクト特性がある場合には、そのような特性を十分に洗い出しておく

必要があります。

闘パフォーマンス問題のリスクと予防策
パフォーマンス問題に関するリスクに対し、発生の可能性やリスクが顕在化した場合

の影響度を明確化したうえで、どのような予防策をとるべきかを十分に検討する必要が

あります。

11821



なお、発生の可能性や影響度については、前述のとおリプロジェクトの特性から検討

することになります。例えば、スケジュールがタイトなプロジェクトでは、スケジュール

関連のリスクが顕在化する可能性が高くなります (表 1)。

表 | パフォーマンス問題対応策と整理の例

このようなパフォーマンスリスクを PMが理解していれば良いのですが、ほかの業務

などもあるため、そこまで重視されないこともあるのが現状です。パフォーマンス問題

に詳しい DBAが、なんらかの方法で上記のようなリスクと対応策を PMヘフィードバッ

クできるように動いてみてください。前述したように、プロジェクト終了時に伝えるのも

1つの手です。

一

１

■
一

―

―
●

計
画
フ
ェ
…
ズ

,コ _|

パフォーマンスリスクに対するより具体的な対応策は以降の章で詳しく説明していき

ますが、まずは計画フェーズにおいて考慮すべきプロジェクト全体を通じた対応策を挙

げておきます。

プロジェクト全体を通しての対応例

コーディングガイドの徹底中 中開発
SQL開発者のスキルが低く、SQL
のコーディング品質が悪い

大 中

テストフェーズの十分なバッ

ファ作成

開発フェーズが遅延しないた

めの施策

テスト
開発フェーズが遅延し、十分な試験

を行なうスケジュールがとれない

要件確認時からのテス トシナ

リオ検討
中 大テスト

性能試験時のテストシナリオ、テス

トデータが用意できない

大
単体試験時からのパフォーマ

ンス確認
」ヽテスト

多重性能試験で1よ じめてパフォーマ

ンス問題が発生する

大
チューニングを行ないやすい

アプリケーション設計検討
SQLチューニング案はあるが、アプ
リケーシヨンに実装できない

大テスト

大
性能試験の試験計画の徹底、

試験分析の徹底
中運 用

性能試験でパフォーマンス問題が発

生していなかつたのに、運用開始後

にパフォーマンス問題が発生する

11831
1   1

1   1

フエ■ズ 醸コ麺 園籠籠



WBS作成時の改善タスクの考慮

失敗プロジェクトに多くあるケースとして、W間 の作成からスケジュール策定を行な
う過程で、改善作業に対するタスクが見積もられていない点が挙げられます。ほとんど

のフェーズで、メインの作業タスクやその成果物に対するレビューなどは見積もられて

いますが、レビュー後に問題が発生した場合の改善作業タスクはほとんど考慮されてい

ません。その影響で、次フェーズにパフォーマンス問題などの課題を残したままプロジェ

クトが進み、致命的な問題へと発展するケースがよくあります。

品質管理計画の策定

企業内の情報システムの大規模化や複雑化に伴って、システム品質の重要性は急速に

高まりつつあります。品質向上のためにテストフェーズの工数や要員をきちんと確保し

たと自負しているプロジェクトに限って、前フェーズの遅延によリテストフェーズが削減

されるケースをよく目にします。そのようなことになるのは、プロジェクト計画時の品質

に対する考え方が根本的に間違つているからなのです。品質の確認と改善作業はテスト

フェーズのみで行なうものではなく、各フェーズ内で行なうものです。各フェーズで品

質の確認と改善作業をどのように行なうべきかを明確にするために、計画フェーズでは

品質管理計画を策定することをお勧めします。また、品質管理計画を策定するだけでな

く、プロジェクトに参加する各担当者に品質基準の考え方や方針を明確に伝えておく必

要もあります。

PMOへのテクニカルメンバーの参画
現在、情報システムで利用する技術は非常に多様化しており、1つの要件を満たすた

めに、いくつもの技術要素を考える必要が出てきています。

プロジェクトの計画や推進において、これら複数の技術要素をいかに最適化できるか

という点がパフォーマンス問題を予防する非常に重要な要素となります。

そのため、PMや PMを補佐する PMO(Project Management Omce)に は、DBAに
限らず、プロジェクト計画策定のために技術的判断が必要な要素のスキルを持つテクニ

カルメンバーを加えて、各フェーズの計画作成を行なうことを検討してください (図 3)。

184



●パフォーマンス問題を考

慮したリスク検討、スケジ

ュール、体制の立案
●プロジェクトの推進

PN/O(Project lvlanagement Office)

封

ヅ
計
画
フ
ェ
ー
ズ

図 3 PMへ のテクニカルメンバーの補佐

要所での性能チームの設置

一般的なプロジェクトにおいては、業務ロジックを扱う業務チーム、インフラ部分を

扱う基盤チーム、その間の共通処理を扱う業務共通チームといった複数チームによる体

制がとられるので、パフオーマンス問題が発生した場合、その切り分けや問題解決には

多くのメンバーが関わることになります。その結果、パフォーマンス問題が発生すると、

どの部分が問題なのかの切り分けが困難となったり、ひいては責任の押し付け合いも発

生しかねません。

このようなリスクヘの対応として、各フェーズの最終検討時などの要所に性能チーム

を設置することがあります。性能に対してプロジェクトに横断的に責任を持つチームを

置くことで、問題の切り分けや解決が迅速になるケースが多々見受けられます。パフォー

マンス問題は最終的にデータベースや SQLに 帰着することが多いため、この性能チーム

に DBAが参画すればより良いでしょう。

なお、性能チームを独立して設置することが困難であれば、基盤チームが肩代わりす

ることも可能です。ただし、PMやチームリーダーとともにパフォーマンス問題の解決に

対して十分な権限が与えられる必要があります (図 4)。

●パフォーマンス問題に対

するリスク、施策の重要性

の働きかけ

11851

1 1



一………一―――――性能チーム

業務チーム

図 4 性能チームの設置

リーダー リーダ早

基盤チーム

鋏穆
翁 浙

イ墓ヱζ‐ 開義・
li:■ :■r・     |_

(1,鰊 |́:はも'‐~‐・     ジヽ′・

,｀
'

計画フェーズに関するまとめ

プロジェクト計画立案の際には、SQLパフォーマンス問題の発生を予防するためのエッ

センスを加えていくことが重要です。SQLパフォーマンス問題に詳しいDBAが、なんら

かの方法で、SQLパフォーマンス問題に関するリスクと対応策をPMヘフィードバック
できるように動くことが重要になります。

パフォーマンスを重視すべきプロジェクト特性とその理由を挙げてください。

2.PMOチームにおいてテクニカルメンバーを参画させることのメリットを挙げてくだ

さい。

3.プロジェクトにおける性能チームを設置することによるメリットを挙げてください。

確認問題
一ド

臓
■
■

　

１

日
國
硼
一

性能チームの設置、権限付与

l1861

1 1



回答例

」回
計
画
フ
ェ
ー
ズ

７

′

ｎ
ｖ
ｌ
エ



寵:旦がL至する11多確蓑崎 _______|
要件に対する実現性の確認の手段の 1つには、プロトタイプ試験があります。ある程

度の業務要件とパフォーマンス要件が定まってきた段階で簡易なプロトタイプを作成し

て、どの程度のパフォーマンスを実現できるかを測定することにより、後のフェーズで

のリスクを低減できます。この段階では細かな要件や機能が確定しているわけではなく、

少ない時間での試験となります。SQLパフォーマンスの観点で、試験が妥当なのかを

DBAがガイド、レビューできると良いでしょう。

また、既存システムからの移行である場合には、既存システムのパフォーマンスにつ

いて、この段階でアセスメントを行なっておくとより安心です。パフォーマンスボトルネッ

クが存在する場合には、新規システムにおいてどう対処していくのかをあらかじめ検討

することができます。

澪|

要件定義フェーズに関わる書担当の役割

PM/設 計者の役割

要件定義の際に、その実現性を十分に考慮して顧客と折衝することを心がけるべきで

1

188

|.澪

:表1幕lmlジ墓|‐交:
.||:|l        l     .      

―  .  :■
_..

■||.|‐    ..・||.  .・■■‐|‐ ‐.|_||=■|.‐  ・ |■■■■■・
~‐

 ■ |_|‐ ・
■■__  _・・ ■・ ‐‐ 11t■ _ |― .■■■.   ‐|■■   .‐ .:‐ ■  .
‐
_|'―
‐
・|‐
‐   ‐‐I     ‐ :・‐     ‐|:|||     ‐・ 11■― ‐..||■・ .‐

:‐  ・   
‐  ‐
・
:‐   '|■ ■|  ・■・ 11‐

.|. 111■ ■‐ ..  ‐|| ・

|‐ ■‐    ..■ .|_‐



す。実現性が曖昧な要件については、あらゆる意味でのバッフアをとるか、プロトタイ

プなどによる実現性の検証、有識者の参画をスケジュール、体制面で盛り込んでおきま

しょう。特にパフォーマンス要件については、プロトタイプ検証の支援も含めて DBAの

参画を盛り込むべきです。

DBAの役割

プロトタイプ検証や既存システムのパフォーマンスアセスメントを通じて、早期フェー

ズから業務ロジックやシステム方式に関する検討に参画するようにしましょう。プロト

タイプ検証は業務ロジックを概要レベルで把握するには良い機会です。

プロトタイプ検証を行なう場合は、後のテストフェーズの章 (Chapter17)で解説す

るとおり、テストシナリオやテストデータの観点でガイド、レビューを行ない、結果分析、

ボトルネックの把握、改善案を提示します。

回
要
件
定
義
フ
ェ
ー
ズ

_..‐ ■

.111 要件定義フェーズにおける予防策

このフェーズにおける重要なポイントは、次の 3つであると言えるでしょう (図 1)。

O PM/設計者が SQLパフォーマンス問題を意識して要件を検討しているか

o SQLパフォーマンスが考慮されたプロトタイプ試験が行なわれているか

o既存システムがある場合はそのアセスメントが行なわれているか

一
　

　

　

　

一

Ａ

　

Ｉ
Ｉ

Ｄ８
一
・
一一″̈̈一一一̈一・”一̈一一′

‐

．

　

　

一
率

一

一

一げ
一一〓
一
■

実現性を考慮した

要件定義実施

既存システムのパフォーマン

スアセスメントの実施要件に

対する実現性考慮アドバイス

実現性確認のため

の体制の策定

業務ロジック、プロトタイプ

試験時の考慮事項の共有、

プロトタイプ試験の実施

図 1 実現性を考慮した要件定義

Ｑ
）
〔
０
「
上



パフオーマンス要件の策定は妥当か?

封パフォーマンス要件の明確化

そもそもパフォーマンス問題とは、パフォーマンスロ標や要件を達成していない状況

のことを言います。それを避けるために、要件定義フェーズにおいては、顧客とコミュ

ニケーションを取りながらパフォーマンスロ標を明確に策定することが重要になります。

パフォーマンスロ標がなくては、どこまでパフォーマンスチューニングを行なえば問題

から抜け出せるかが分からず、泥沼にはまる可能性があります。なお、パフォーマンス

要件を策定する際には、パフォーマンス確認を行なうシナリオを共有したうえで、その

シナリオのスループットやレスポンスについて明確化するべきです。この時点でシナリ

オを共有しておくと、パフォーマンステスト時のシナリオ策定が容易になります。

隕 システム内部でのパフォーマンス要件の明確化

また、顧客要件だけでなく、システム内部でのパフォーマンス要件も明確化しておく

べきです。例えば、アプリケーションロジックでは何秒、SQL実行には何秒という形で

明確化しておくと、SQLパフォーマンス問題が発生したときの SQLチューエングのゴー

ルが明確になります。SQLに どの程度の時間を要するかの確認は、プロトタイプ検証を

実施するのが良いでしょう。

プロトタイプ検証での考慮ポイント

プロトタイプ検証の目的は、要件に対するシステム方式を根本的に変更する場合や、

新機能の検討を行なっている場合などに実現性を確認することです。注意点は、要件

が曖昧すぎる段階でプロトタイプ検証を行なってしまうと、検証結果と実際の環境での

パフォーマンスに大きなギャップが存在する事態が起こり得る点です。少ない時間の中

でプロトタイプ検証を行なう必要がありますので、ほぼ要件 (パフォーマンス要件も含

む)が定まった段階で、検証シナリオの作成や検証データの作成を行なうようにしてく

ださい。

既存システムのアセスメント

プロトタイプ検証は、システム方式の根本的な変更や新機能を使用して実現性を確認

するための作業です。既存システムから大幅な変更がないシステム構築プロジェクトの

場合は、プロトタイプ検証を行なう必要はありません。このようなプロジェクトで必要

11901



なのは、既存システムのアセスメントを実施しておくことです。既存システムのアセス

メントを実施し、既存システムのボトルネックを特定しておきます。新システムヘ移行

を行なうタイミングで設計や方式を改善することで、パフォーマンス問題の予防策とし

ます。

率11

要件定義フェーズに関するまとめ
匡

炒
パフォーマンスロ標を顧客と明確に策定することが重要になります。パフォーマンス

目標がなくては、どこまでパフォーマンスチューニングを行なえば問題から抜け出せる

かが分からず、泥沼にはまる可能性があります。また、その要件に対する実現性も重視

してください。要件に実現性があるかどうかを、プロトタイプ検証や既存システムのア

セスメントを通じて検討することができるかが、このフェーズでの重要なポイントです。

確認問題

1.パフォーマンス要件を明確化しないことによるリスクを挙げてください。

2パ フォーマンス要件策定における考慮ポイントを挙げてください。

3.パフォーマンス要件の実現性考慮の方法の検討案を挙げてください。

回答例

要
件
定
義
フ
ェ
ー
ズ

一
一●
一
踊

191



●

■
　

　

　

　

●

●

，
．
　

　

　

・
．
一
■
・

一

一

・

・
　

　

　

　

　

　

　

　

・

●
●

．
　

―
一
●

.フェ

設計フェーズでの考慮ポイント

方式設計では

システム全体の方式やサイジングの検討などを行なう方式設計においては、直接的に

SQLパフォーマンスが関わる部分は少ないと言えます。ただし、次の場合にはパフォー

マンス問題について方式レベルで注意するべきでしょう。この場合は、DBAや DBに詳

しいメンバーが方式設計に深く参画するべきです。

0システム間連携において SQLレベルでの連携 (データベースリンク)が行なわれ
る方式がとられる

● 既存システムからの移行であり、既存システムにおいてなんらかのパフォーマン

スボトルネックが発生している

論理設計では

論理設計の段階で、SQLが ある程度見えてきます。想定される表アクセス方法に

ついて確認し、レビューするようにしてください。論理設計における考慮ポイントは、

Chapterllで説明したとおりです。問題が発生する前に、論理設計の段階でこれらの考

慮ポイントを設計に盛り込んでください。

|

つ
こ
０
）

麗    1.||

護計葬
=■
ズ

設計漁 ―ズ鏡入ると●
‐
懇Qに量1鐵達して―くる糠分が多くなってきます。

設議|シェース:の猥寺点がらパフ豪ニマン員1義慧撫|し|を設議F轟菫1警|=ック
をな1奪
‐
ちこと|で1テ

ー
ストシ置■1蒸‐での隅|‐簿を予轡||てしヽき1恭しょう:爆た、



論理設計を行なうアーキテクトがSQLを意識するかどうかがポイントとなります。論

理設計の成果物に対して、SQLに詳しいDBAがレビューを行なうと良いでしよう。

物理設計では

物理設計段階で手腕を発揮するのはDBAです。データベース固有の機能、設定や索

引設計について、DBA主導で設計を進めていきます。

DBAは一般に基盤チームに所属し、設計範囲は表領域までとし、オブジェクト設計、

索引設計については業務チームや業務共通チームが担当するというケースもあります

が、これらの設計は SQLパ フォーマンスに大きく影響します。

オブジェクト設計や索引設計についての勘所を DBAがガイド、スキルトランスフアー

をしたり、設計後のレビューを徹底したりすることが重要です。

アプリケ…ション設計では

アプリケーション設計については、直接 DBAが絡むことは難しいと言えます。しかし、

SQL文の発行形態がシステム全体の性能に大きな影響を与えかねないということは、こ

れまでで説明してきたとおりです。

また、万一パフォーマンス問題が発生した場合にも、原因分析やチューエングの適用

をしやすくするための工夫を入れておくと良いでしょう。

l圏 ||‐

」剛
設
計
フ
ェ
ー
ズ

設計フェーズに関わる各担当の役割

PMの役割

PMはデータベースの使い方、SQLの発行方法がシステム全体のパフォーマンスに大

きく影響することをきちんと認識し、必要に応じてDBAが十分にガイド、レビューを行

なえる体制を整えるべきです。

1麒|データベース、SQLに関する考慮事項、ガイドの事前周知
各設計において、データベースやSQLレベルで考慮すべき事項をDBAが各設計者に

ガイドできる体制を整えておきます。

ｎ
Ｊ
Ｑ
）
「
エ

|



願品質チェックの体制作り

各設計におけるレビューミーティングなどにおいて、DBAが提示したガイドに従って

設計が行なわれているかどうかをチェックする体制を整えます。この段階では検討範囲

が広く、複雑に絡み合うため、チェックリストを作ることは困難ですが、設計ガイドが

どのように反映されたかについて情報を共有し、妥当性を確認してください。

設計者の役割

設計者は DBAか らの考慮事項を各種設計に反映することを検討すべきです。特に論

理設計、アプリケーション設計においても、パフォーマンスに影響する可能性がある事

項については DBAのガイドを積極的に取り入れるべきでしょう。また、方式検討や設計

レビューの際に、データベースに関連する事項については DBAも含めたレビュー会を実

施すると良いでしょう。

DBAの役割

ここまでに説明したように、DBAが直接関わる範囲外の設計において、SQLパ フォー

マンス問題を起こさせないようなアクションをどれだけとれるかが重要になります。

DBAが積極的にガイド、レビューを行なっていくようにしてください。

すなわち、この設計フェーズでは次の点を DBAがほかのプロジェクトメンバーに浸透

させられるかがポイントになります (図 1)。

。 チューニングのしやすさを意識してアプリケーション設計をしているか

。 設計者が SQLパフォーマンスを意識して論理設計をしているか

。 データベース機能固有の考慮事項は何か

。 索引設計を十分に行なっているか

11941



円滑なガイド、レビュー

実施の仕組み作り

設計ガイドに即した

設計実施

設計ガイドの作成

ガイド遵守の徹底 ガイド作成指示

ガイド提示、説明
レビューの実施

図 1 設計ガイド/レビューの徹底

設計フェーズにおける
歯 SQLパフォーマンス問題の予防策

設計フェーズにおいて DBAがほかのプロジェクトメンバーに浸透させるべき 4つの

ポイントを示しましたが、その中から、特にアプリケーション設計者と綿密な調整が重

視される「チューエングのしやすさを意識してアプリケーション設計をしているか」に

ついて詳細に説明しましょう。

チュ…ニングのしやすさを意識したアプリケーション設計

パフォーマンス問題を 100%防止することはやはり困難です。そのため、万一パフオー

マンス問題が発生した場合は、いかに早急に問題を切り分けたり、分析/対処したりで

きるかが重要になります。

チューニングを行ないやすいアプリケーションと行ないにくいアプリケーションでは、

問題発生時の復旧時間が大きく変わってきます。

ここでは、チューニングのしやすさを意識したアプリケーション設計について説明し

ます。これらの話は主にアプリケーション設計者が考慮すべき内容ですが、アプリケー

ション設計者はなかなかここまで思い至らないことが多いのです。設計段階でプロジェ

クトに DBAと して参画したら、ぜひこのような内容を現場の PMやアプリケーション開

発者に提案してみてください。

ｕ
；
′

冷
ヽゝ

」国

輻 ||||||||

設
計
フ
ェ
‥
ズ

|

195



輻パフォーマンス問題の切り分けを容易にする

パフォーマンス問題が発生した場合、どこでその問題が発生しているのかを切り分け

ていくことが重要です。切り分けを容易にする仕組みをあらかじめ導入しておくと良い

でしょう。

ロアプリケーシ菫ン|こよるタイムスタンプ取得

Oracleでは Orade E並 erprise Manager(EM)や AWRなどにより、SQL文の実行時

間の記録を確認できますが、ある程度は平均化された情報となってしまうため、直接的

に切り分けるには図2のようにアプリケーション側でタイムスタンプを取得し、各処理

でのパフォーマンスを記録できるようにしておくと良いでしよう。

クライアント アプリケーション  データベース
ユ_

AP処理

SQL実行

AP処理

SQL実行

AP処理

脇一一一

図 2 アプリケーションによるタイムスタンプの記録

このようにしておくことにより、ボトルネックがアプリケーションなのか、SQLなのか、

はたまた間のネットワークなのかの切り分けが実施しやすくなります。

常時タイムスタンプを記録するとデータ量が膨大になったり、CPUな どの使用リソー

ス量に影響が出たりする可能性があるため、テスト時や問題発生時のみ取得可能なよう

に準備しておくのがベストです。また、このようなデータを取得したとしても、リソース

的に問題がないようなサイジングを行なっておくとさらに良いでしょう。

覇 SQLとアプリケーシヨンの特定を容易にする
日SQL管理用コメント

Oracleでは、Oracle Enterprise Managerや AWR、 STATSPACKを使用し、ボトルネッ

クのSQL文をデータベースの観点から特定するための機能が備わっています。

問題があるSQL文を特定し、SQLチューエング案まで検討できたとしても、そのSQL

文がどのアプリケーションから発行されたものなのかを特定できないと、実際に修正は

最低限のアプリケーションヘのクライアン

トからの入出カポイントのタイムスタンプ

を記録しておく。また、SQL発行開始と完
了のポイント(矢印)でもタイムスタンプを

記録できるようにしておくことにより、アプ

リケーションの問題なのか、SQLの問題な
のかを切り分けしやすくなる

|

196



完了しません。比較的多くの方がこの問題に該当したことがあるのではないでしょうか。

筆者が以前 SQLパフォーマンス問題でチューニングを担当した案件では、SQLチュー

ニングはほんの数分で完了したものの、問題となるのはどこから発行されたSQL文かを

アプリケーション担当者が特定するまでに数時間かかってしまっていました。特定でき

れば、SQL文にヒント句を埋め込むだけなので修正は容易でしたが、この特定に時間が

かかったために、顧客の業務に大きな影響が発生してしまいました。

Chapter7で も書きましたが、このような問題を予防するには、SQLに管理用コメント

による識別子を入れることをお勧めします (LiS丁 1、 2)。

SQL文には、Oracle9iま でであればHash Vdue、 Oracle log以 後であればSQL IDと

してOracleが独自にSQL文の識別子を設定します。また、発行元のModde名も特定

できます。しかし、上記の管理用コメントを追加することにより、さらに次のメリットが

得られます。

。 Hash Valueや SQL:Dを見ただけでは SQLのイメージがわかないので、どのア

プリケーションから発行されたのかを特定しにくい。しかし、ユーザーが独自に付

与した管理用コメントであれば、コメントを見ただけでどのアプリケーションから

発行されたものかを特定しやすくなる

o Module名 を利用してアプリケーションを特定することも可能だが、ここにはアプ

リケーションプログラム名までしか出力されないので、アプリケーション内のモ

ジュールの特定までには至らないことが多い。管理用コメントであれば、アプリケー

ション内のモジュール特定も容易になる

。 Hash Va!ueや SQL:Dは SQLテキストから算出されるので、SQLチューニング

を行なってSQL文内にヒント句を埋め込むと、値が変わつてしまう。そのため、

チューニング後の SQL文を探し出すことが難しくなる。管理用コメントであれば、
ヒント句を埋め込んでも変わらないため、チューニング後の SQL文を特定するこ

とも容易になる

LISTl SQL管 理用コメントの例

設
計
フ
ェ
ー
ズ

11971

15

蒸

|■
‐



LIST2 AWR/STATSPACKレ ポートヘの出力例

日SQL管理用コメントの導入

SQL管理用コメントは、アプリケーション設計に大きく関わります。また、アプリケー

ション設計者や開発者の作業にも大きく影響するため、プロジェクト全体を巻き込んで

の導入が必要となります。

そのため、DBAはまずPMに対して問題であるSQLか らのアプリケーション特定が困

難な場合の影響を伝え、その対応策としてSQL管理用コメントを採用することをぜひ提

案してください。そのうえで、PMに SQL管理用コメントの導入を判断してもらい、管

理用コメントの規約の作成や、開発者が管理用コメントを遵守するように、アプリケー

ション設計者と開発者に指示を出してもらいます。

SQL管理用コメントの規約を作る際の詳細なガイドは、DBAが直接設計者に説明して

ください。注意事項などはChaμer7の コーディングガイドで説明していますが、プロ

グラムや SQLを特定するのに必要十分な区分で管理用コメントを定義してください。管

理用コメントをあまりにも細かく分類すると、解析情報を共有すべき「同一の SQL」 が

同一でなくなってしまう懸念があります。

なお、AP設計者はSQL管理用コメントとモジュール名やプログラムソース名を対応

付けるような表などを作成して管理するとより良いでしょう (図 3)。

|

198

CPU Etapsd

Buffer Gets Executions Gets per Exec %Totat Time (s) Time (s) Hash Vatue

419,978 300 1,399.9 0.1 31.02 95.25 2478983204

Modute: SQL*Ptus

SELECT /* AAA-EMPADMIN01-0001 *l ename FROM emp I,HERE empno = :b1

Elapsed CPU Etap per % Total
Time (s) Time (s) Executions Exec (s) DB Time SAL Id

1 1 2 0.6 2.7 5lbbkcd9zusjw

Module: emagent0consdbll. jp.oracte.com (TNS V1-V3)

/* 0racleoEfi */ with maxl as (select :'l as select-lab,=z as select-priv fr
om duat) select 'setect-any-table', subsIr(SYS-C0NNECT-BY-PATH(C, ''>'),3.512)
path, c from ( setect nutI p, name c from system-priv
itege-map where name = 'SELECT ANY TABLE' union select granted-



SQL管理用コメントの重要性
を認識し、SQL管理用コメント
の規約作成とその連守をAP
設計者、開発者に指示

問題SQLか らアプリケー
ション特定が困難である
リスクを提示→SQL管理

SQL管理用コメントの

用コメントの提案

SQL管理用コメント規約作成
時の考慮事項をガイド

図 3 SQL管理用コメントの設計

国SQL管理用コメントの澪」用

テストフェーズなどでSQLパフォーマンス問題が発生した場合は、DBAが分析して

チューニング案を作成することが多いと言えます。チューエング案をSQL管理用コメ

ントとともに AP設計者と開発者に伝えることにより、迅速な実装が期待できるでしょ

う (図 4)。

Ａ

　

Ｉ

掘

・
・
お
一ヽ「一・・一一一一議
黎

Ｉ

．―
轟
一「｝
■

一一一”一̈一一〓
一一一一一一 」ビ

設
計
フ
ェ
ー
ズ

■OBA‐

,II=‐■|:0,
ま:|.‐ |:1111:::
彦11,|:||:|||||:|||:|:|

問題SQL文の管理用コメントと
SQLチユーニング案を提示

DBAからのガイドと
AP設 計に即した規
約、管理方式を作成。

開発時には遵守する

ことを徹底する

SQL管理用コメントの重要性を提案
する資料を作成し、PMへ提示
管理用コメントの考慮事項ガイドを

AP設計者に提示

SYSl MOD1 001 SYSl MODl.iava

SYSl MOD1 002 SYSl MODl.iava
SYSl MOD2 001 SYSl MOD2pc

問題SQL文の特定。SQLチュー
ニング案を検討し、該当SQL文
のSQL管理用コメントをもとに
AP設計者に修正を依頼する

SQL管理用コメント プログラムソース名

SYSl MODliavaSYSl MOD1 001

SYSl MOD1 002 SYSl MODl.iava
SYSl MOD2 001 SYSl MOD2.pc

SQL管 理用コメントをもとに、問題SQL文 を発
行しているプログラムソースを特定。プログラム

の修正などを行ない、チューニング案を実装する

199

図 4 SQL管理用コメントを利用した問題修正



申 コーディング時の SQL関連範囲を局所化する
これまで、SQLコーディングガイドや規約の重要性を説明してきましたが、このよう

なガイドや規約を遵守することは比較的困難であると言えます。特にシステム規模が大

きなプロジェクトにおいては、コーディングを行なう開発者の人数も増えてしまい、全

体にガイドや規約を浸透させるのに苦労することが多くあります。その結果として、ガ

イドや規約を守りきれず、結果として SQLの品質が低下する可能性も出てきます。

このようなリスクを低減させるためのアプリケーション設計としてアプリケーションロ

ジックとSQLア クセスプログラムの分離する方法が考えられます。

ロアプリケーションロジックと SQLアクセスプ回グラムの分離
アプリケーション開発者は、どちらかというとアプリケーションロジックの組み立て

には詳しくても、データベースや SQLの特性、コーディング時の考慮事項にはあまり

詳しくない傾向があります。アプリケーションロジックのコーディングには工数がかか

るケースが多く、アプリケーション開発者の人数もそれに応じて多くならぎるを得ませ

ん。しかし、データベースや SQLにまで詳しいアプリケーション開発者は少ないのが

実情です (図 5)。

SQLコーディングガイドの
作成とSQLアクセスプログ
ラム開発者へのガイド

SQL発行

SQL結果

DBA

儡 Eコ アプリロジック

疇T SQLアクセス部SQL
コーディングガイド

図 5 -般的なアプリケーシヨンロジックとSQL発行形態

このような問題を解決するために用いるのが、アプリケーションロジックとSQLアク

セスプログラムとの分離です (図 6)。

2

|

DBAのガイドをもとに
SQLアクセスプログラムを開発

ｎ
Ｕ
ハ
Ｕ



SQLを意識しないでア
プリケーシヨンロジック

をコーディング可能

DBAのガイドをも
とにSQLアクセス
プログラムを開発

SQLコーディングガイドの
作成とSQLア クセスプロ
グラム開発者へのガイド

畢「1言
:

赳|:
｀

わ

:)

:|IP'■

鮮
`|:|:11::駁

.

I::|::P'1警 ii鱗 .
1:`:撃
:rll:::::鸞
・

SQL
コーディングガイド

SQL男釜イ予

アプリケーション      SQLア クセス
ロジック         プログラム

図 6 アプリケーションロジックと SQLプログラムの分離

これにより、SQLに関連する部分を開発するアプリケーション開発者が少数に局所化

できるため、DBAとの連携も行ないやすくなり、ガイドの徹底が可能となります。また

SQLアクセスプログラムにタイムスタンプ出力機能などを付与することで、前述のよう

なパフォーマンス問題発生時におけるアプリケーションロジックとSQLの切り分けも容

易になることが期待できます。

ロチューニング時の修正範囲を局所化する

問題 SQL文に対するチューニング案が分かり、その SQL文を発行するアプリケーショ

ン内のモジュールや修正箇所が特定できたとしても、実際に修正できるかとなると、ま

た別の問題になってきます。一般にアプリケーションに対する手直しが入ると、再テス

トが必要になります。アプリケーションのリコンパイルを行なうと、単体レベルのテスト

だけでなく、結合テストまで実施することを規約化しているプロジェクトも多くあり、再

テストの困難さからアプリケーションの修正、すなわちチューエング案の実装を断念せ

ぎるを得ないケースもたくさんあります。

もちろん、再テストを実施するのはとても重要です。しかし、再テストの範囲を局所

化し、テストの負荷を下げることを事前に考慮しておくと良いでしよう。テストの負荷

を下げるには、プログラムとSQL文とを分離する方法が考えられます。

】
ー

|

設
計
フ
ェ
ー
ズ

201



難プログラムと SttL文の分議

プログラムの修正を行なうと、リコンパイルや再テストが必要となってしまいます。

そこで、プログラムとSQL文を分離することで、プログラムの修正を行なわずにSQL

文の修正やヒント句の追加を可能にします。

具体的には、SQL文をパラメータフアイルやプロパティフアイルの中に記述し、プロ

グラムはそれらのフアイルからSQL文を取得して実行する形態があります。

SQLの書き換えが必要な場合は、結果の確認を含めて十分なテストが必要となります

が、ヒント句の付与のみのチューニングであれば、結果は変わりません。そのため、テ

ストを最小限にするという選択肢が増えます (単体レベルでの性能向上の確認は必要で

すが)。

また、SQL文だけがフアイル化されていると、次のようなメリットもあります。

●アプリケーションから独立するので、SQL文だけをSQL★ Plusな どで実行しやす

くなる。つまり、実行計画の確認をDBAがアプリケーションから分離して行なえ

るようになる

O SQL管理用コメントと併せて管理することで、よリチューニング対象を特定しや

すくなる

輻 ||:11・

設計フェーズにおいてのDB論理設計や物理設計は重要ですが、アプリケーション設

計もSQLチューエングにおいて特に重要です。

パフォーマンス問題を 100%防止することはやはり困難です。そのため、万一パフォー

マンス問題が発生した場合に、いかにして早急に問題を切り分けるか、分析や対処でき

たりするかが重要になります。チューニングを行ないやすいアプリケーションと行ない

にくいアプリケーションでは、問題発生時の復旧時間が大きく変わってきます。特にア

プリケーション設計では、パフォーマンス問題の切り分けを容易にしたり、SQLからア

プリケーションの特定を容易にしたりするなどの工夫をいくつか紹介しましたので、参

考にしてください。

設計フェーズに関するまとめ

12021
1   1
1    1



,1“

:薔 |,

確認問題

SQLに関し、設計フェーズにて特にDBAに求められる役割を挙げてください。

DBAが SQL発行に関するアプリケーション設計についてもプロジェクト内で言及

するべきである理由を挙げてください。

「SQL管理用コメント」のメリットを挙げてください。

■甕

1.

2.

3.

回答例

画
設

|

計  |
フ  l

i l

12031



驚

`‐ SQLコーデイングルールの目的

まず最初に、SQLコーディングルールの目的をおさらいしておきましよう。以下の4

点でした。

。 開発者のスキルに依存しない一定の品質および性能を確保するため

● 開発者間の意思疎通の向上および容易な理解による生産性の向上のため

o SQLの可読性を持たせ、保守性および再利用性を向上させるため

。 運用ポリシーに沿ったルールを適用するため

これらを意識しながら読み進めてください。

鐵 F
開発フェーズに関わる書担当の役割

PMの役割

PMは、SQLの書き方が SQLのパフォーマンス問題に発展する可能性があることを認

識しておく必要があります。そのためには、SQLコーディングを性能問題に発展させな

いためのチェック体制を構築しておく必要があります。

構築時のポイントは、業務チームや開発者 (開発ベンダ)への周知、SQLコーディン

グルールの作成および配布、品質チェックの体制作りの3つです。

1

|

204

開発ツ‖攣|ぶ|

||| ‐.: .■・・ 1 :  |||                     ‐‐1■■

・ ' _ . :17.|ヽ ‐~11 11.|  |■ _                .. . . . |・ |■ ‐

‐ 1111111■ |■・ ||   |



目業務チームや開賭  (開発ベンダ)への周知

SQLの書き方が性能問題を引き起こす可能性があることを認識させておく必要があり

ます。

ESQLコーディングルールの作成および配布

開発フェーズに入る前に、DBAと SQLコーディングルールの作成を行なっておきます。

また、作成したSQLコーディングルールを開発者へ配布しておく必要があります。SQL

コーディングルールのすべてを開発者が理解するのが難しい場合、SQLコーディングの

チェックリストなどを作成して配布しても良いでしよう。開発人員の交代などに対する

一定の品質を確保するためにも非常に重要です。

爾品質チェックの体制作り

設計フェーズに引き続き、品質チェックの体制作りが重要です。開発中にSQLをコー

ディングするうえで発生した疑間点などを開発者が DBAチームヘ質問できるような体制

も、事前に整えておくと良いでしょう。また、業務ロジックの処理フローなどの仕様を

検討するミーティングにDBAを参加させるなど、データベースの性能を意識した業務

ロジックを事前に検討できる体制を構築しておくことが性能問題を考えるうえでは非常

に重要です。

DBA C)イ雙害|!

DBAは、SQLコーディングルールの選定および作成、また作成された SQLのレビュー

が主な役割となります。SQLパフォーマンス問題を予防するためにも、開発フェーズで

のSQLの品質チェックにDBAが積極的に参加することが重要になります。

開発者の役割

開発者もSQLの書き方が SQLのパフォーマンス問題に発展する可能性があることを

認識しておく必要があります。このフェーズでは、開発者が重要なキープレイヤーとな

ります。業務要件を満たせるSQLを書けば終了ではなく、SQLコーディングルールに沿っ

たSQLとなっているかを確認することが非常に重要です。ペアプログラミングによるダ

ブルチェック体制や開発メンバー内で処理フローや SQLの品質チェックを行なうなどの

体制を用意しておくことも重要です。

」国
開
発
フ
ェ
‥
ズ

12051



すなわち、このフェーズではプロジェクト体制も含め、次の 2つのポイントに対応で

きるかが重要になります (図 1)

● SQLコ ーディングルールが作成されているか

o開発者が SQLコ ーディングをどれだけ意識しているか

SQLコーディングルールの目的
●開発者のスキルに依存しない一定の品質および性能を確保するため
●開発者間の意思疎通の向上および容易な理解による生産性の向上のため
oSQLに可読性を持たせ、保守性の向上および再利用性を向上させるため
0運用ポリシーに沿ったルールを適用するため

ガイド遵守の徹底

PMIII‐

:|::i:||||11111111.||111:1111F

橿・
‐´

ガイドおよびルール作成指示

ガイド提示、説明
レビューの実施

DBA‐

■:恭ヽ|:|::||||:|、
21,|‐二1111:麟 ‐■

:■母

凛

図 1 開発フェーズのプロジェクト体制

開発フェーズにおける
SQLパフオーマンス問題の予防策

前述したように、SQLの品質を高めるには開発者が開発にとりかかる前にSQLコーディ

ングガイドやルールの目的を正しく理解し、個々に作成するSQLの品質を意識する必要

があります。

開発フェーズ前には、DBAが SQLコーディングルールの作成を行なった後に開発者

向けの SQLコーディングについての勉強会などを行ない、開発者が品質の高いSQLを

コーディングできるように考慮することも重要です。その後で、SQLコーディングルー

ルのチェックリストを配布して、開発者自身で SQLの品質をチェックできるようにして

12061

円滑なガイド、品質チェックの

仕組み作り

SQLコーディングルールに即した
コーディング実施

SQLコ ーディングガイド
およびルールの作成



おくことも効果的です。開発者の負荷とならないように考慮して、SQL品質の向上をど

のように行なえば効果的であるかを各プロジェクトでも検討してみてください。

艤I

開発フェーズに関するまとめ

確認問題

」
開発フェーズでは、SQLコーディングガイドやルールの徹底が重要です。SQLの品質

を高めるには、開発者が開発にとりかかる前にSQLコーディングガイドやルールの目的

を正しく理解し、個々に作成するSQLの品質を意識しておく必要があります。SQLコー

ディングルールに関する勉強会を催したり、チェックリストを利用したりして、開発者

自身でSQLの品質を向上できるようにしておくことが効果的です。 」国
開
発
フ
ェ
‥
ズ

麟 |,'

1.開発フェーズにて特にDBAに求められる役割を挙げてください。

2.SQLコ ーディングガイドの重要性を4点挙げてください。

回答例

12071



テスト るために

■■|,:::難 '~
■日O

=≧

」::二トフェーズでよくある問題
よくあるテストフェーズでの問題は、大きく分けて2つ存在しています。それは時間

と質に関する問題です。

テストフェーズの時間的制約

y PMの見積もりが甘い
PMがプロジェクトスケジュールを作成する時点でテストフェーズの見積もりを軽視

しているプロジェクトをよく見かけます。リリース時期から逆算すると、どうしても開発

優先となることは否めませんが、往々にしてテストフェーズが削減されます。

ロプロジェクトフェーズの遅延影響
プロジェクトの遅れが発生しているにも関わらず、経営的判断によリリリース時期が

変更できないプロジェクトでよく見られるケースです。プロジェクト途中での要件の追

加や大幅な仕様変更に伴って、開発フェーズで遅れる経験をされた方も多いと思います。

その遅れを取り戻すために、よく耳にするのがテストフェーズの時間短縮です。

テストフェーズの質

圏テスト体制の不備

業務チームや開発チームのみでテストを実施しているプロジェクトがよく見受けられ

‖2081

1 1

饉 ●:|‐ ||. |

C:HAPTER

●

t ・      ||  ●,|:1     11■ ||‐       :

‐‐■‐‐■‐・
・・   ■ ||■■■■■||■■||||・ ||■■|■||■ . _ .|・ :

| 
■ .|―|■・・ ■ _‐  t



ます。担当している業務や処理のみの性能を確認してテストを終了することで、SQLパ

フォーマンスの全体最適化が行なわれず、リリース後にSQLパフォーマンス問題が発生

するケースがあります。

ロテストシナリオの不備

大規模なシステムで多く見受けられますが、最繁負荷時の負荷の掛け方に問題があり、

システム性能を正確に把握できないまま性能問題が内在した状態でリリースし、SQLパ

フォーマンス問題へ発展するケースがあります。また、システム性能を正確に把握でき

なかったことで、運用時の定常監視でベースライン (しきい値)を適切に設定できず一

般的な値で設定され、パフォーマンス劣化を事前に検知できないケースもよく見受けら

れます。

m‐‐‐|‐ |

テストフェーズに関わる各担当の役割 テ
ス
ト
フ
ェ
ー
ズ

量

PMの役割

PMは、テストフェーズに適切な時間を確保することが大切です。テストフェーズで

パフォーマンス問題が発見できた際に改善にかかる時間なども考慮してプロジェクト計

画を立てておく必要があります。また、最終的に DBAによるSQLパフォーマンス性能

の妥当性を判断させるための体制作りも必要となります。各テストフェーズ内での役割

分担やゴールを決めておくことも重要になります。

DBAの役割

テスト時の性能改善だけでなく、テストシナリオの妥当性や改善にも関わることが

DBAに とっては非常に重要です。SQLパフォーマンス問題を予防するためにも、テスト

フェーズで長期的な安定稼働を意識した性能の妥当性、およびシステム全体の最適化を

意識した妥当性をDBAが判断し、適切な改善案を提示することも大切な要素となります。

開発者の役割

開発者や業務チームは、本番相当のテストシナリオやテストデータなどのテストフェー

ズに必要な情報を早い段階で用意することで、質の高いテストを早い時期から行なうこ

209

|

17



とが可能となります。つまり、なるべく早い段階でそれらのデータを用意するように計

画しておくことが重要なのです。

すなわち、このフェーズでは次に挙げるポイントにプロジェクト計画時や体制も含め

て対応できるかが重要になります (図 1)。

C テスト体制は十分に準備されているか

。 テストフェーズの期間は適切に用意されているか

。 テストフェーズの期間は改善に必要な時間が考慮されているか

。 SQL問題を適切に発見するためのテストシナリオは計画されているか

。 SQL性能の妥当性を判断するための体制作りが考慮されているか

ガイド遵守の徹底 テスト計画上の
考慮ポイントの提示

甲肇煮|

.,1褒 ||‐
‐
|  ・ :. .

:MII｀̀.る

'|.:｀

'‐

テストシナリオ、データに
関するガイド、レビュー

図 1 +分なテスト計画、体制

■11 1

テストフェーズにおける
SQLパフオーマンス問題の予防策

限られた時間の中でSQLパフォーマンス問題を予防するために、質の高いテストをど

のように行なうべきなのでしようか。

そのためには、テストフェーズで考慮すべき性能インプットにどのようなものがある

のか、それらを踏まえたうえで各テストフェーズでは何をどこまで確認するべきなのか

を知っておく必要があります。

ガイドに即したシナリオ、デー

タの準備、テストの実施
テストシナリオ、データに関するガイドの準備
テスト実施、分析、チューニング

十分なテスト期間の確保

テスト体制の検討

210



テストフェーズで考慮すべき性能インプット

SQLパフォーマンス問題に対し、テストフェーズで効果的かつ効率的にテストを行な

うには、テストフェーズで考慮すべき性能データを理解しておく必要があります。まずは、

テストフェーズで用意すべきインプットとは何かを理解してください。

■性能とSQLの依存関係
それでは、SQLに対してどのようなテストを行なえるのかを整理してみましょう。

SQLに対するテストには、大きく分けて機能面のテストと性能面のテストの2種類があ

ります。ここでは性能面のテストを考察します。

まず、SQLの性能に何が依存するかを整理します。図2は Chapter8で 説明したコス

トベースオプティマイザのインプット、アウトプットをベースにSQLと性能の依存関係

を表わしたものです。

SQL性能インプット

図 2 SQLの性能依存関係と性能インプット

SQLの性能をテストする場合に最も容易かつ確実な方法は、対象の SQL文を実行し、

そのレスポンスを測定する方法です。測定した結果が、性能要件を満たしているかどう

かをチェックするだけで良いことになります。

ただし、レスポンス測定で評価するためにはシステムがサービスインした後と変わら

ない状態でテストされることが重要です。つまり、その前提として実行計画とデータ、ハー

ドウェアをはじめとする環境がサービスイン後と同等であるということが必要になりま

す。また、実行計画をサービスイン後の本番と同等にするには、オプティマイザヘのイ

」ロ
テ
ス
ト
フ
ェ
ー
ズ

|

実行計画

211



ンプット情報となるSQLや索引を含めたオブジェクト構造、パラメータ、統計情報が本

番と同等であることが必要になります。

すなわち、レスポンスで SQLの性能を確認するには、そのインプットすべてが本番と

同等でなくてはなりません。逆に言えば、インプットのいずれか、およびハードウェア

をはじめとする環境を本番と同等にできない場合は、レスポンスを測定して性能を確認

したとしてもサービスインでは実際のパフォーマンスが変化し、パフォーマンス問題を

引き起こしてしまう可能性が残ります。

鰯 SQLテキストに対する考慮ポイント

圏SQLテキストはコーディングルールに則つているか
単体レベルの試験前には、何よりもまず SQLテキストが性能を意識してコーディング

されているかが重要になります。開発フェーズの段階で、コーディングルールに沿った

コーディングが行なわれているかどうか品質を確認すると良いでしょう。

oシステム負荷が高いと想定される処理
● 頻繁に実行される処理

● 処理要件が定義されている処理

● 複数の処理が同時に走ることが想定される場合には、シナリオも同時に実行する

。バッチ Aとバッチ Bが同時に実行される場合
。オンライン中にバッチ Cも同時に実行される場合

なお、シナリオを作成する場合は、シナリオが利用するパラメータやデータを現実的

に分散させる必要があります。偏りがあると、テストデータの偏りと同様にパフォーマ

ンスに影響を与える可能性があります。

う
ι
ｌ
エ
つ

‘

E性能テス ト対象の SQLIま妥当か

多重試験においては、性能テストの対象となる SQLが正しく選択されているかどうか

も重要です。言い換えると、性能テストのシナリオが妥当なものかどうかを確認する必

要があると言えます。

性能テストのゴールである性能要件を確認できるような、限りなく本番に近い状態を

再現できるシナリオを選択することが重要です。さらに、シナリオ選択の際には次の点

にも注意しておくと良いでしょう。



ロオブジェクト構造に対する考慮ポイント

1妥当な索引が付与されているか

“オブジェクト構造"と言いますが、テストフェーズで特に注意すべきなのは索引の状

態です。表の論理設計や物理設計などもSQLパフォーマンスには影響しますが、そのよ

うな考慮ポイントは設計段階でつぶしておくべきです。

性能テストが始まる前に、可能な限りある程度の索引付与を完了したいところです。

性能テストが始まってからSQLパフォーマンス問題が発生すると、索引付与のチューニ

ングをしようとしてもその表を使用するすべての SQL文の実行計画に影響が懸念される

ため、索引付与が難しくなる場合があります。

鯰 バラメータに対する考慮ポイント

躍オプティマイザ関連バラメータは妥当か

オプティマイザ関連のパラメータが妥当に設定されているかどうかも確認しておきま

す。性能テストが進んでからの変更は、全SQL文に影響が発生する可能性があるため、(最

後の奥の手として使う以外は)できるだけ避けるべきです。テスト開始前にはChapter8

を参考にして、適切なパラメータが設定されているかを確認しておきます。

園 データに対する考慮ポイント

|データ量

可能な限り本番を想定したデータ量を用意します。テストデータ量が少ないと、見か

け上のパフォーマンスが良くなってしまい、本来のパフォーマンス問題を顕在化させら

れないという懸念があります。とはいえ、テストフェーズによってはどうしてもデータ量

が不足してしまう可能性もあります。その場合の考慮ポイントは次項で説明します。

Eデータの質

データの内容の分布についても、可能な限り本番を想定することが理想です。分布が

正しくないとパフォーマンス問題を顕在化させられないという懸念に加えて、本来であ

れば発生し得ないパフォーマンスとなり、結果として無駄な分析を行なってしまう可能

性もあります。

例えば、本来は複数の種類があるデータを少ない種類のデータでテストしてしまうと、

そのデータがキヤッシュされてパフォーマンスが向上したり、逆にデータヘのアクセス

競合によリパフォーマンス劣化につながったりする可能性があります。

一」ロ
テ
ス
ト
フ
ェ
ー
ズ

|

213



これもテストフェーズによっては、十分な質を用意できない可能性もあります。その

場合の考慮ポイントは次項にて説明します。

圏 統計情報に対する考慮ポイント

ロ適切な統計情報 lよ取得さねてしヽるか

オプティマイザは、実行計画検討時にいちいちデータにアクセスしていては本末転倒

なので、統計情報からデータの状態を問接的に把握しています。運用フェーズでの考慮

ポイントの詳細は次章で触れますが、統計情報を取得しない場合のデフォルト統計情報

は、実際の表データとかけ離れている可能性があるばかりか、表のサイズなどにより変

化する統計情報となっています。

デフォルト統計情報が適するシステムはかなり少ないと言えるので、適切なタイミン

グで統計情報を必ず取得しましょう。

統計情報はただ取得すれば良いわけではありません。実際のデータ量や質とかけ離れ

た統計情報であった場合は、実行計画も適切に生成されない可能性があります。

統計情報の質を上げる方法は、本番と同等のデータから統計情報を収集する、テスト

データを使用して統計情報を収集する、手動で設定するの 3つです。

田①本番と同等のデータから統計情報を収集する

最も容易な方法は、データを本番と同等に揃えて統計情報を収集する方法です。

日②テストデータを使用して統計情報を収集する

データを本番と同等に揃えることができなかった場合は、最低限は次のような統計情

報の観点で、本番データに似せたテストデータを作成して統計情報を収集します。

● 行数、行サイズ

o列ごとの値の種類
0列ごとの値の分布状況

圏③手動で設定する

テストデータの用意も困難であれば、最後に残された手段は手動で統計情報を設定す

ることになります。上記の観点に加え、ブロック数などを見積もり、DBMS_STATSSET_

TABLE STATSな どで設定して対応することになります。

|

214



本番データから得られる統計情報の精度や、収集の容易さから考えると、11が最も容

易です。可能な限りOの方法で収集すべきですが、単体テストフェーズなどで十分なデー

タが用意できない場合でも、②もしくは0の方法で統計情報を設定しておくことを検討

しましょう。

辟 一般的なテストフェーズの流れ

まずは、皆さんとテストフェーズの共通認識を持つために、一般的なテストフェーズ

について簡単に説明します。プロジェクトによっては、テストフェーズの前提や考え方

が若干異なる部分もあるかと思います。しかし、ここではテストフエーズの前提条件と

なるSQLに対して、どのような性能テストが実施可能であるかという共通認識を持つた

めの説明なので、差異があってもご了承ください。

ここまで、各フェーズにおけるSQLのパフォーマンス問題に対してどのような予防策

をとれるのかを説明してきましたが、今までフェーズと言っていた工程は、ウオーター

フォール開発モデルをイメージしたものです。ウオーターフオール開発モデルと聞くと、

開発プロセスを定義しているだけだと思う方もいると思いますが、IS012207で示され

ているように、このモデルは品質を作り込んでいくプロセスと、コードやシステムを統

合して品質の検証を行なうテストのプロセス (V字モデル)で構成されています。

図3に示すように、V字モデルはシステムを開発する過程 (品質を作るプロセス)を

1つ 1つ確認するための過程 (品質を検証するプロセス)で構成されています。

「

I=三

日
テ
ス
ト
フ
ェ
ー
ズ

l

|
215

SQL性能テストとテストフエーズのマツピング

SQLの性能テストを実施する場合に、どのような性能インプットが必要であるかを理

解できたと思います。ここからは、テストフェーズの一般的な前提条件をもとに、SQL

に対する性能テストをどこまで確認できるのか、そしてどこまで確認すべきかを説明し

ていきます。各テストフェーズでSQL性能を判断するのに必要な情報 (SQL文の質、初

期化パラメータ、統計情報、実データなど)や検証環境により、SQLに対して何を判断

できるのかを理解し、テストフェーズの早い段階でそれらの情報および環境を用意する

ことが、SQL性能の妥当性を判断するうえで重要であるということを理解してください。

テストフェーズと言っても、各プロジェクトで方法や前提条件が異なると思います。

筆者が想定している一般的なテストフェーズの前提を簡単に説明してから、各テスト

フェーズでどのようなSQL性能に対する妥当性判断が可能であるかを説明していき

ます。



運用テスト

結合テスト

単体テスト

検証

図 3 V字モデル

V字モデルのテストフェーズは、単体テスト→結合テスト→システムテスト→運用テ

ストと進んでいきます。テストフェーズの目的は 2つあります。1つはバグを取り除くこ

とです。そしてもう 1つは、業務要件を満たした動作を保証することです。

V字モデルで開発を行なう場合は、後フェーズに現フェーズの作業を持ち越さないこ

とが成功モデルとされています。SQLの性能に対するテストフェーズでも同様のことが

言えます。SQLの性能に対するテストフェーズで重要なポイントは、各テストフェーズ

での SQLの性能に対するゴールを設定することです。また、そのゴールを満たすために、

どのようなデータや環境を用意しておくべきかを知っておく必要があります。

■どのタイミングでどこまで確認するか
ここからは、SQLの性能に対するテストフェーズの話を重点的に説明していきます。

先ほど説明したように、SQLの性能に対するテストフェーズでも、後フェーズに現フェー

ズの作業を持ち越さないことが SQLの性能問題を予防する重要なポイントとなります。

単体テストフェーズから本番環境と同等の環境 (H/Wスペック)やデータを用意できる

プロジェクトでは、単体テストフェーズからSQLレスポンスに対する妥当性を判断でき

ます。

しかし、単体テストフェーズなどの初期段階から本番と同等の環境やデータを用意で

きないプロジェクトがほとんどだと思います。その場合に、どのような環境であればど

|

ハ
０

つ
こ

システム
テスト

」

に =華
壺 亘
=⇒ 仁

亜 璽 亜 亘

=



のような SQLの性能に対する妥当性判断が可能であるのか、逆の言い方をすれば、どの

ような環境を用意できればどのようなSQLの性能に対する妥当性判断が可能になるのか

を知ることが重要です。これにより、テストフェーズの早い段階から効果的な予防策を

実施できるようになります。

それでは、各テストフェーズで一般的に用意できる環境やデータの前提を意識しなが

ら、各テストフェーズにおけるSQLの性能に対するテストのゴールを説明していきます。

a単体テス ト

単体テストの目的は、モジュール単位で正しく動作するかどうかを検証することです。

このテストフェーズでは、主に開発者自身がテストするのが一般的です。この時点では、

本番と同等の環境 (H/Wな ど)でテストを行なうことは難しいでしょう。CPU数などの

H/Wスペックが劣る開発機でテストを行なっているプロジェクトも多いと思います。ま

た、テスト用のデータもある程度は開発者が本番を意識しているはずですが、ダミーデー

タでテストを行なっているケースが多いのではないでしょうか。

このテストフェーズでの SQL性能テストのゴールは次のとおりです。

e SQLコ ーディングルールを満たすこと
e必要な索引の付与

開発フェーズで準拠すべき SQLコーディングルールが保証されているかを単体テスト

で検証する必要があります。簡単な検証と思えるかもしれませんが、単体テストで SQL

テキストが性能を意識してコーディングされているかを検証することは非常に重要です。

後のテストフェーズでSQLテキストを変更すると、単体テストレベルからテストをやり

直す必要があり、時間も含めたコストが余分にかかります。

単体テストフェーズでは、H/Wスペツクの劣る環境やダミーデータでのテストとなる

ので、SQLレスポンスや実行計画の妥当性を判断できません。ただし、明らかにデータ

量から判断して SQLレスポンスが劣るものに対しては、実行計画をチェックして必要な

索引が付与されているかを確認しておく必要があります。索引の付与は、索引を付与し

た表の列にアクセスするそのほかの SQL文の実行計画に影響を与えます。また、索引は

その表の更新処理にも影響を与えます。安易に索引を付与するのではなく、DBAに 一度

相談して索引効果と影響範囲を判断してもらってから先に進めてください。

匡三
==

テ
ス
ト
フ
ェ
ー
ズ

12171

1 1



チューニン

ット」として

単体テスト時

りのSQL

218



試験を実施する期間を設定す

る。その間、定期的に共有プー

ルを検索させる設定を選ぶ

彎 `‐

ゾ
''拗「
鍮 1｀ ′`｀

''｀  経コ 趣聾:^,k。 _“鍋,

++rlr+@- ja

,iis f,r,4r ,t **gi

収集対象のSQL文を効率的
に取得できるように絞り込み

を行なう

:重⊃廷∋

SQLチューニングセットの

収集設定の実施

SQL収集などは特に気にせず、
アプリケーションテストを実施

EM

SQL

SQL

SQL

SQL
定期的に共有プールを

スキャンし、条件に合致

したSQLが保存される

SQL

SQL

SQL

サーバー

SQL
チューニングセツト

テ
ス
ト
フ
ェ
ー
ズ

巨コ

12191



澪ヵ_m・・ "‐ "斑:ち:留:震'■
:こ

=2∋
警 珊 l絡 憲 1: 

力 ~撃

鐵 :諭

黙 LT"'y

摯
一
〓
呻

螂

¨

嚢

“
●

簗

）一
”

■

■

二

二

＾

嘉
慧

チェックが付けられている

て

コーデイング

索引が不足している旨の
メッセージが出力されてい
るケース

索引が使用できないコー
ディングになつている旨の
メッセージが出力されてしヽ
るケース

220

=墜
菫輌
"■
コ  ー



テ
ス
ト
フ
ェ
ー
ズ

17

2211



日結合テスト

結合テストの目的は、機能単位で正しく動作するかどうかを検証することです。この

テストフェーズでは、主に開発者自身がテストするプロジェクトもあれば、テストチー

ムが行なうプロジェクトもあると思います。この時点での前提は、単体テストと同じく

H/Wスペックの劣る開発機でテストを行なっていると仮定します。結合テスト時におけ

るSQLに対する性能テストのゴールは次のとおりです。

実行計画の妥当性判断を行なう

実行計画の妥当性を判断するために必要な性能インプットは、SQLテキストとオブジェ

クト構造 (索引)、 初期化パラメータ、統計情報です。SQLテキストと索引は、単体テ

ストで用意していることが前提となるので、結合テストを行なう前に本番想定の初期化

パラメータと本番想定のデータから取得または算出した統計情報を用意しておく必要が

あります。このテストフェーズでもH/Wスペックや実データが用意できないことを前提

としているため、SQLレスポンスの妥当性判断はできません。

このテストフェーズで重要なポイントは、統計情報の質です。本番データ、または本

番と同等のデータから取得した統計情報を用意できる場合は特に問題ありませんが、本

番想定のデータを見積もって手動で統計情報を作成する場合は、実データが最大にな

る件数を想定して統計情報を作成する必要があります。結合テスト時に手動で統計情報

を設定して実行計画の妥当性を判断したにも関わらず、システムテストやリリース後に

SQLパフォーマンス問題が発生する場合があります。

これは、結合テスト時に手動で作成した統計情報と、システムテストやリリース後の

実際のデータにギャップが生じた場合に発生します。特に、手動で算出した統計情報よ

り実データが非常に多くなった場合に、SQLのパフォーマンス問題が発生する可能性が

あります。手動で算出した統計情報より実データが少ない場合は、最適な実行計画では

ない可能性はありますが、データ量が少ないためSQLのレスポンス影響は小さくなりま

す。逆に、実データが手動で算出した統計情報よりも非常に多い場合は、最適な実行計

画ではないうえにデータ量が多いため、SQLの レスポンス影響が顕在化するケースが多

く見られます。どのような統計情報を用意すべきか、必ず DBAに判断させて実行計画

の妥当性を判断できる環境を用意することが重要です。

|

222



ロシステムテス ト

システムテストの目的は、システム全体の機能が正しく動作することの検証です。また、

各種負荷テストを実施して性能の妥当性を検証します。このフェーズは主にテストチー

ムが作業を担うプロジェクトが多いと思われます。この時点の前提としては、本番機で

テストを行なうことを想定しています。また、データも本番と同等のものが用意される

ことを想定しています。

システムテスト時におけるSQLに対する性能テストのゴールは、次のとおりです。

SQLレスポンスの妥当性判断を行なう

SQLレスポンスの妥当性を判断するのに必要な性能インプットは、本番データまたは

本番と同等のデータです。結合テストまでに用意した性能インプット (SQLテキスト、

索引、初期化パラメータ、統計情報)も存在するという前提です。システムテストで重

要なポイントは、テストデータの質になります。本番と同じデータでテストできるプロジェ

クトは問題ありませんが、本番と同等のデータを手動で用意する場合は、データの量お

よび質 (値の中身)が重要です。

SQLレスポンスを判断するためにデータ量ばかりに気をとられ、単一データや単調な

値を増幅させて作成したようなテストデータや想定以上にランダムなデータでテストを

行なうことで、リリース後にSQLのパフォーマンス問題を引き起こしてしまうケースが

見受けられます。未来のデータ量を想、定したボリュームテストを行なう場合などは、特

にデータの質について注意が必要です。

また、スループットなどの検証用に性能限界テストを実施するときは、本番想、定のト

ランザクションモデルをもとに負荷を実行できるかが重要になります。このようなテス

トを実施する場合は、Oracle LOad Testingや Oracle Test Managerな どの負荷テスト用

のツールを使用すれば、短時間に質の高いテストを行なえます。

圏受け入ねテスト′/運用テスト

受け入れテスト/運用テストの目的は、顧客の要件定義を満たしているか、また実運

用想定で機能や性能、ユーザビリティなどで問題がないかの検証です。このフェーズは、

顧客が実際に作業を担当して要件の最終確認を行なうことになります。

受け入れテスト/運用テスト時におけるSQLに対する性能テストのゴールは、次のと

おりです。

テ
ス
ト
フ
ェ
ー
ズ

|

223

17



業務要件 (性能要件)の最終判断

SQLに対する性能に関する作業は、すでに完了していることが前提となります。実運

用を想定してテストを行ない、想定していた業務要件 (性能要件)が満たされているか

を確認します。ここまでの内容をまとめると、表 1のようになります。

※ 1 本番と同等のデータから取得または算出された統計情報が用意できていると想定。また、手動で算出する場合は、
実データの最大件数を想定

※2 本番と同等のデータの質および量が用意できていると想定

表 l SQL性能テストのゴールと必要な性能インプット

ここまでの説明で、テストフェーズという限られた時間内に質の高いテストを実施し、

SQLの性能に対する判断を行うために、どのような環境やインプットを用意すべきか、

またそれらを理解することがいかに重要であるかが分かっていただけたと思います。こ

のような前提は、プロジェクトの計画フェーズでも考慮しておくと、体制なども含めた

環境およびテストフェーズのスケジュールを適切に見積もることが可能となります。

12241

1 1

モジュール単位で正

しく動作するかをテ

ストする

機能単位で正

しく動作するか

をテストする

システム全体の機

能および性能に問

題がないかをテス

トする

顧客の要件定義を満

たしているか、また

実運用想定で問題が

ないかをテストする

要件定義 × × ○

SQLテキスト ○ ○ 〇 ○

初期イレ ラヾメータ × ○ ○ ○

ミ引 ○ ○ ○ ○

統計情報 ○
※1

○ ○

× ○
※2

○

OSQLコーディング
ガイドを満たす
0必要な索引の付与

●実行計画の

妥当性判断

。SQLレ スポンス
の妥当性判断
●スループットの

妥当性判断

●業務要件 (性能要

件)の最終判断

||1結熾テスト システムテスト

目的

性
能
イ
ン
プ
ッ
ト

実データ



艘■

限られた時間の中でSQLパフォーマンス問題を的確に検知するための質の高いテスト

にはどのような準備が必要であるかを説明しました (図 4)。

SQL性能インプツト

テストフェーズに関するまとめ

「

~

|

テ
ス
ト
フ
ェ
ー
ズ図 4 SQLの性能依存関係

SQLの性能をテストする場合、最も容易な方法は、そのレスポンスを測定することで

す。測定した結果が性能要件を満たしているかどうかをチェックするだけで良いことに

なります。

ただし、レスポンスで評価するためには、その前提としてデータと実行計画がサービ

スイン後と同等である必要があります。また、実行計画がサービスイン後と同等である

には、オプティマイザヘのインプット情報である SQLや索引を含めたオブジェクト構造、

パラメータ、統計情報が本番相当である必要があります。

しかし、現実のプロジェクトではこれらのインプットが揃うのはかなり後のフェーズ

になってしまうことが多くなります。各インプットの特性を把握し、本番相当にできな

い場合の影響、リスクを考慮してテストを進める必要があります。

実行計画

225

17



蝙 ||

確認問題

1.SQLに 関し、テストフェーズにて特に DBAに求められる役割を挙げてください。
2.実データに近いテストデータを早期に用意することのメリットを挙げてください。

3.本番データをテスト時に用意することができなかった場合に考慮すべき事項を挙げ

てください。

回答例

ltzza
|



驚|

運用フエーズでの考慮ポイント

システムの長期的な安定稼働を考慮すると、主に次の 3つが適切に設計されているか

が重要になります。

o定常監視
●統計情報収集や索引の再構築などのメンテナンス設計

o定期的な性能分析または傾向分析

大規模システムの場合などは、専任のDBAチームを構成し、業務を横断的に管理す

る体制を構築しておくことで、全社的にシステムの安定化を図ることが可能となります。

また、運用ノウハウのナレッジを一元管理するという意味でも有効と言えるでしよう。

運用フェーズ時にジョブスケジューラなどを使用して監視を行なっているシステムは

多く見受けられます。しかし、定期的に性能分析や傾向分析も行なっているシステムは

非常に少ないようです。安定しているから性能分析を行なわなくて良いのではなく、デー

タ量の変化や処理数の変化などに応じて性能分析を行なうことで、内在しているSQLパ

フォーマンスに関わる事象を提えておくことが非常に重要になります。性能情報の傾向

を把握しておくことが、運用フェーズでの予防策の第一歩となります。

すなわち、運用フェーズにおける性能確認では、次のポイントが重要になります。

一回
運
用
フ
ェ
‥
ズ

2271

溝|・■■|■ ■

運用フェーズ穂 |

なわれているかが重要になリ
ー
護擁:|



6定常監視が行なわれているか
。 SQL性能に関わるメンテナンス設計が計画および実施されているか
。 定期的な性能分析が計画および実施されているか

り SQL性能の妥当性を判断するための体制作りが考慮されているか

また、実際の現場におけるSQLパフォーマンス問題の予防策で、多くのプロジェク

トにおいて話題に上がるのは統計情報の運用と、それに伴う実行計画、レスポンスの影

響把握でしょう。

ここで、SQLパフォーマンスに関するオプティマイザに関するインプットとアウトプッ

トの図を再掲します (図 1)。

② インプットに変更がある場合に
は、統計情報や実行計画、レスポ
ンスの変動影響を確認する

図 l SQLパフォーマンスに関するオプティマイザに関するインフットとアウトブット

運用フェーズにおいては各インプツトやアウトプットの変化を把握し、適切に管理す

ることが重要な予防策となります。

以下、運用フェーズにおけるSQLパフォーマンスの向上、安定化に向けての基本的な

考え方をまとめます。

実行計画

①定常的なレスポンス監視や性能

情報の傾向を把握しておく

③統計情報は実データとの
ギャップを可能な限りなくす

④ インプットや統計情報に変更があつた場合
には、実行計画、パフオーマンス影響を確認
したうえで、本番環境に適用するのがベスト

ｎ
Ｕ
う
∠
ら
∠



定常的なレスボンス監視や性能情報の傾向を把握しておく

SQLパフォーマンス問題に限った話ではありませんが、通常から性能情報、性能基礎

値を取得しておくことが重要です。そうした情報があると、パフォーマンスが悪化した

際に、正常な状態に比べて何が変化したのかを比較することができ、問題分析や対応策

検討等が効率化します。

インプットに変更がある場合には、統計情報や実行計画、
レスポンスの変動影響を確認する

運用中にパラメータや環境に対するリソース追加、新規業務追加等により、オブジェ

クト構成を変更したり、索引を追加したりすることはよくあります。そうした場合には、

新規業務の SQLだけでなく、関連するSQLの実行計画についても変動が発生する可能

性があることを考慮しておくことが重要です。

後述のように実行計画やレスポンスの変動を事前に確認し、本番環境に適用するかど

うかを判断することが重要です。

統計情報は実データとのギャップを可能な限りなくす

オプティマイザは統計情報を介してデータの情報を把握するため、データの状態に近

い統計情報であればあるほど高い精度での実行計画を算出しやすくなります。

では、統計情報は常に再収集を続けるべきなのでしょうか。統計情報はオプティマイ

ザヘの大きなインプットであり、インプットである統計情報が変更されると、そのアウ

トプットである実行計画も変化する可能性があります。通常、この変化は統計情報の精

度が上がれば、パフォーマンスが向上する方向に変化してくれるはずです。ただし、統

計情報の収集タイミングとデータ変動によっては、統計情報と実データにギャップが発

生し、逆にパフォーマンスが低下するような実行計画に変化してしまう可能性がないと

は言えません。

そのため、統計情報は可能な限り実データとギャップが発生しないように収集し、収

集した場合、その結果として生成される実行計画の妥当性やパフォーマンスヘの影響を

確認するアプローチがベストです。

インプットや統計情報に変更があつた場合には、実行計画、

パフォーマンス影響を確認したうえで、本番環境に適用する

運
用
フ
ェ
ー
ズ

|

統計情報の再収集を含め、インプットが変化したら、できる限り実行計画やパフオー

229



マンスを確認するようにしましょう。

実行計画やパフォーマンスの確認は本番環境への適用前に、テスト環境等によって事

前確認する方法や、後述のようなSQL Plan Managementと いった実行計画の変更自体

を制御する機能もあります。こうした方法、機能を用いて、実行計画を適切に管理する

とよいでしょう。

なお、実行計画やパフォーマンスの確認はコストを要することもあるので、確認が省

かれたり、統計情報の再収集を行なわなかったりするようなケースも多々見受けられま

すが、このようなアプローチは一概に良いとは言えません。

正直なところ、これは統計情報収集の難しさでもあります。可能な限リデータの状態

を近づけるためには頻繁に統計情報を収集すべきですが、統計情報の収集のたびに実行

計画が変動の正当性を確認する必要も出てきます。

実行計画を管理 (固定化)するためにインプットを管理 (固定化)する方法もありま

すが、そうした場合、よりよい実行計画やパフォーマンスを見つけることができず、逆

に「もったいない」状態にもなりえます。

実行計画を適切に把握、事前チェックするアプローチをプロジェクト内に取り入れら

れないかを、まずは検討することが重要です。

230



'■

,・

定常監視および定期的な性能分析/
傾向分析の必要性

運用フェーズにおけるSQLパフォーマンス問題の予防策の 1つとして、定常監視およ

び定期的な性能分析/傾向分析が挙げられます。

それでは、運用フェーズにおける定常監視の目的には、どのようなことが考えられる

でしょうか。一般的に、定常監視の目的として挙げられるのは次の 3つです。

oサービスダウンや致命的エラーが発生 したコンポーネントを即座に突き止める
。 性能問題の発生を迅速に検知して原因を特定する

。 業務に対して表面化していない性能問題の兆候を迅速に検知する

適切に定常監視を行なうことで、大きく分けて 2つの効果を得ることができます。

ロダウンタイムの短縮

障害やエラー、または遅延を即座に突き止めることで、業務に影響を与える時間を最

小限に抑えられるようになります。

鱚 プロアクティブな性能問題の検知による業務影響の回避

性能問題が顕在化する前に、予兆を捉えて事前に予防策を検討および対処することが

可能となります。

定常監視を行なう場合は、そのシステムに合ったベースライン (しきい値)を設定し

て監視を行なう必要があります。運用の現場では、ベースラインが決まっていない状況

で定常監視を実施しているシステムを多く見かけます。このままでもある程度の監視効

果は期待できますが、検知の取りこぼしや過剰なアラートの発生により、運用効率や効

果を低下させる原因となります。そこで、運用フェーズにおけるSQLパフォーマンス間

題のもう1つの予防策として、定期的な性能分析/傾向分析が必要となります。

性能分析/傾向分析の目的には、どのようなことが考えられるでしようか。一般的に、

性能分析/傾向分析の目的としては次のようなことが考えられます。

。 現状のサービス品質やリツース使用状況などを把握する

0性能問題が発生していない状況においても、ボトルネックを把握する

一回
運
用
フ
ェ
ー
ズ

12311

1 1



。業務量の変化によってリツース量不足に陥り、性能問題が顕在化する前に対処計

画を立案する

現状のサービス品質とリソース使用量の変動を時系列情報として把握し、今後の業務

量の変化予測と照らし合わせることで、性能問題やリソース不足問題の発生を事前に予

測し、プロアクティブなチューエングやリソース増強計画の立案に役立てます。また、

性能分析によって得られた性能情報をもとに、定常監視のベースラインを作成します。

運用フェーズでは、SQLパフォーマンス問題で業務影響が発生する前にいかに検知

し、対応できるかが重要なポイントです。取得した性能データを評価するときに属人的

にならない、かつ一元的にDBAに情報が即時に伝わるためにも、運用管理ツールであ

るOracle Enterprise Managerな どのツールを導入して運用を行なうことは非常に効果

的です。

鼈
|: 続計情報運用の勘所

これまで統計情報の重要性については何度か触れてきました。皆さんも統計情報が

SQLのパフォーマンスを考慮するうえで、どれくらい重要な要素なのかということはす

でに理解していただいたと思います。

ここからは、オプティマイザ統計情報の管理方法について説明していきます。統計情

報運用の設計を行なううえで、我々コンサルタントがどのような点を考慮して顧客の環境

に合った運用設計を行なっているのかをお見せしますので、その内容をベースに、皆さ

んのシステムの特性に合わせて、どのように統計情報を管理すべきかを検討してみてく

ださい。

オプテイマイザの特性と統計情報

統計情報は、オプティマイザやデータの実際の状況に関する詳細情報です。初期化パ

ラメータのことをオプティマイザがコスト判断するうえでの基礎情報というならば、統

計情報はオプティマイザがコスト判断するうえでの直接的に影響を与える情報です。

統計情報と実際のデータ状況との差が大きい場合は、統計情報をもとにオプティマイ

ザがコストを算出するため、実際のデータを取得する処理において、結果的に非効率な

実行計画が生成される可能性があります。要は、非効率な実行計画が生成される主要な

原因として、必要な統計情報の欠落や陳腐化が考えられるとも言えます (図 2)。

12321



②その後、データ量が

増大した

④しかし、結果として100万行を全データ読んで
しまうことになり、パフォーマンス問題が発生

①表の件数が1000行のときに
統計情報を取得した

③オプテイマイザは統計情報から

件数が1000行だと分かるので、
全データを読んでもパフォーマ

ンスに影響はないだろうと判断
統計情報上の件数
1000行

図 2 統計情報とデータの実態がかけ離れた場合

統計情報と実際のデータでギヤップが発生した場合に、どのような影響が実行計画

に対して発生する可能性があるのかを事前に知っておくと、実行計画の変動に対するパ

フォーマンスヘの影響も予測できるようになります。また、実際にSQLチューニングを

行なう場合には、現在の実行計画を確認して、その実行計画の妥当性を判断する必要が

あります。妥当性を判断するための知識としても、統計情報がオプティマイザヘ与える

影響を知っておく必要があります。

統計情報の特性と収集タイミング

では、統計情報はどのようなタイミングで収集するべきでしようか。表1～ 3は表、索引、

列の統計情報の一部を抜粋したものです。

一回
運
用
フ
ェ
ー
ズ

2

|

表の行数。行数が多ければ、大

きい表ということで全表スキャ

ンよりも索引スキャンが採用さ

れやすくなると思われる。また

結合順序にも影響する

N∪M ROヽ A′S ブロック数× (ブロックサイズ
ー24)/100行

20バイトI t'n*r.oa+Ev<l AVG ROW LEN

BLOCKS 実際のブロック数luwvt*:ea)o>ew
表 1 表統計情報の一例

う
Ｊ
■
）

■■ _.        ・

tr*i.tfU7.(

行の平均長

ブロック数



リーフプロツタ数|1索引のブロック数 LEAF BLOCKS 25

索引の高さ   |
|

|

|

|

Bツリー索引の高さを表す。高さがあると、リー
フブロックまでたどるブロック数が増えるため、

索引スキャンのコストが増加する

DISTINCT KEYS

多「 Jゝ7リ
ング

1索

引列データの表での分散度合いを表わします BLEVEL 800

表 2 索引統計情報の一例

表 3 列統計情報の一例

これらの表からも分かるとおり、データ量やデータの種類は統計情報に大きく影響し

ます。したがって、統計情報の収集に当たっては、データの量や質に対して注意を払う

べきであり、これらが大きく変動する場合には、その収集タイミングは特に考慮するべき

です。

圏 データ量が多いタイミングで統計情報を収集する

統計情報は基本的にデータ量が多い状態で取得するべきです。統計情報にデータ量

が多いと記録されている場合、オプティマイザは絞り込みの効果を検討し、十分な絞り

込みが期待できる場合は、フルスキャンではなく索引スキャンを選択するように検討し

ます。

一方、データ量が少ないと記録されている場合には、フルスキャンによる1/0効率の

向上などのフアクターも絡み、索引スキヤンではなくフルスキャンが選択される場合も

あります。実際のデータ量が少ない状態であれば、そのままフルスキャンであったとし

てもパフォーマンスにはそれほどの影響は出ないかもしれません。しかし、運用が進ん

でデータ量が増加していった場合でも、統計情報上のデータ量が少ない場合はフルス

キャンが採用され続けるかもしれません。この場合、データ量に応じてパフォーマンス

が徐々に劣化してしまう可能性があります (図 3)。

列内の値の種類を表わす。NDV(Number
of Distinct Value)と 呼ぶこともある。

NDVが大きいほど、条件で絞り込める可能
性が高くなり、索引スキャンが有効になりや

すくなる

NUM DiSTINCT カーディナリティ
/32

列内の NULL値の数 NUM NULLS 0

列データの分布状況の統計情報。ALL_TAB_
HISTOGRAMSデ ィクショナリビューで詳
細を確認できる

|

234

■‐.・1 ‐■

1デ,フォルト値

列内の個別値数

列内の NULL数

ヒストタラム



レスポンス

フルスキャン

索引スキャン

性能
臨界点

データ数

統計情報取得

図 3 実データと統計情報上のデータ量の差による性能劣化

このような状況を考慮すると、データ量はできるだけ多い状態で統計情報を収集した

ほうが、パフォーマンスの安定性を期待できると言えるでしょう。実際のデータ量が少

ないケースでは、フルスキャンでも索引スキャンでもパフォーマンスはそれほど変わり

ません。しかし、オプティマイザが統計情報からデータ量が少ないと勘違いをしてフル

スキャンを採用したものの、実際はデータ量が多くフルスキャンに時間を要してしまう

というSQLパフォーマンス問題は現場でもよく発生するパターンの 1つです。

画|データの値の種類が多いタイミングで統計情報を収集する

データの質については、特にデータの値の分布状況に注意する必要があります。例え

ば、同じ 100万件のデータがあったとします。全データが同じ値だった場合、フルスキャ

ンを採用したほうが効率的です。一方、データがすべて異なる場合は、基本的には索引

スキャンにより十分に絞り込んだうえで検索できないかを考慮するべきです。

データ量に対する検討と同様のことが、データの質に対しても言えることになります。

データの値の種類が少なければ、フルスキャンでも構いませんが、実際のデータの値の

種類が増えてきた状態でもフルスキャンが採用され続けると、非効率になりかねません。

データの種類が多い状況で統計情報が採取されていれば、索引スキャンが採用されやす

くなります。

運
用
フ
ェ
ー
ズ

|

データ量が増加すると、フルスキャ

ンは索引スキャンに比べて大幅に

性能が劣化する

データ量が少ない

タイミングで統計

情報収集

235

ｎ
）
■
凸



データ特性ごとの統計情報収集方針

オプティマイザと統計情報の特性を考慮すると、統計情報を収集するタイミングは、

データの特性に大きく依存することがお分かりかと思います。では、具体的にデータの

特性ごとにどのようなタイミングで統計情報を収集するべきかをまとめます。

蝠 データの量/質が特に変動しない表
このような表に対しては、統計情報をいつ取得しても良いと言えるでしょう。稼働開

始直後に統計情報を収集して固定化しても、定期的に統計情報を収集したとしても特に

大きな違いは出ません (図 4)。

▲サービスイン

血

データ量や質が運用経過に関わらずほぼ一定の

場合は、どのタイミングで統計情報を収集しても

問題ない。通常はサービスインの直前に統計情

報を取得し、そのまま固定化することが多い

図 4 データの量/質が特に変動しない表

12361

∩ ∩ ∩



囲データが継続的に増加する表

履歴表など稼働開始当初は少量のデータだったとしても、運用が進むにつれてデータ

量が増加する表は、統計情報の収集に注意するべきです (図 5)。

▲サービスイン

①定期的に収集

②テストデータで
収集

図5 データが継続的に増加する表

例えば、稼働開始直後に統計情報を収集し、そのまま再収集を行なわなかった場合は、

統計情報は少ないデータ量として記録されたままです。すなわち、オプティマイザはフ

ルスキャンを選択しやすくなりますが、運用が進んでデータ量が増加してもずっと同じ

実行計画では、パフォーマンスが徐々に劣化してしまう可能性があります。

このような表に対する統計情報の収集方法としては、主に次の案があります。

e一定期間ごとに統計情報を収集する

o稼働開始時に想定される最大データ量のテストデータを用いて続計情報を収集し、

そのまま固定化する

一定期間ごとに統計情報を取得するのも 1つの手です。ただし、どこかのタイミング

で実行計画が変動する可能性があることに注意が必要です。統計情報を収集したら、実

行計画の確認やパフォーマンスの確認を行ないたいところです。

テストデータを用意できるのであれば、稼働開始時にテストデータを使用して統計情

報を収集し、そのまま固定化することによって安定したパフォーマンスを期待できます。

艤 自 由 自 由 爾

運
用
フ
ェ
ー
ズ

データが継続的に増加する表の場合には①定期的に収集する、または

②テストデータで収集するかが主に想定される。想定最大データを用

意できるのであれば、サービスイン前にテストデータで統計情報を収

集し、固定化するケースが多い。用意できなければ定期的に統計情報

収集することになるよ 実行計画変動の可能性はある

237 m

-18



明データの量/質が頻繁に変動する表
データの量や質が頻繁に変動する表についても、統計情報の収集はシビアになるべき

です (図 6)。 例えば、オンライン中にデータが増加し、バッチ処理によってデータが一

括削除されるようなトランザクション系の表や、バッチ処理前後で大きくデータ量が変

動する表は注意が必要です。またデータ量だけではなく、ステータス列のような列につ

いても同じです。バッチ処理で、データの値の種類が大きく変動する列もよく見られます。

▲サービスイン :

a  n 型蝙
餘

‐也
圏

①定期的に収集

②テストデータで
収集

図 6 データの量/質が頻繁に変動する表

このような表に対しては、データ量が多いときやデータの種類が多いときに統計情報

を収集できるようにしていれば、基本的に間違いは少ないと言えます。オンライン中に

データが増加し、バッチ処理によってデータが一括削除されるようなケースでは、バッ

チ処理開始前に統計情報を収集するのが妥当でしょう。

飩 それ以外の特性の表

データの変動特性が予想できない表など、上記の特性に分類できない表についても可

能な限り、データ量が多い、データの種類が多いときに統計情報を収集するようにします。

データの量、質が頻繁に変動する場合も、①定期的に収集するか、
または②テストデータで収集して固定化するかを検討する。想定
最大件数のテストデータが用意できれば②を採用し、できない場
合はデータの量や種類が最も多いタイミングで統計情報を取得
する

12381



統計情報収集設計のスムーズな進め方

統計情報収集運用が難しい背景に、この運用設計は DBAだけではできないというこ

とがあります。統計情報の適切な運用を行なうためには、統計情報とオプティマイザの

特性を熟知している必要ももちろんありますが、それ以上にデータの特性が大きな影響

を与えます。このデータの特性を最もよく知っているのは、一般的に DBAではなくアプ

リケーション設計者/開発者でしよう。

そこで統計情報収集設計をする場合には、DBA単独では行なわず、アプリケーション

設計者/開発者も交えて検討することをお勧めします。以下の方針で統計情報収集を行

なっていくと良いでしよう。

躙 注意すべきデータ特性のガイド

DBAは統計情報とオプティマイザの特性をもとに、注意すべきデータ特性についてま

とめます。具体的には本章で説明したとおり、「データ量が継続的に増加する表」「デー

タの量/質が頻繁に変動する表」となります。

圏 アプリケーション設計者/開発者による選別

上記ガイドをもとに、アプリケーション開発者はシステムの各表に特に注意すべき特

性の表がないかどうかを確認します。特に「データの量/質が頻繁に変動する表」につ

・一い隋嘴輻運用フェーズ

1239



いては、どのタイミングで変動するかについても整理して DBAに報告します。

M DBAによる統計情報収集運用の方針検討と実装
アプリケーション開発者が選別した結果をもとに、統計情報の収集タイミングを設計

し、実装します。すべての表に対して統計情報収集タイミングが同じにできればそれに

越したことはありませんが、「データ量が継続的に増加する表」「データの量/質が頻繁
に変動する表」が存在する場合には、個別のタイミングにて統計情報収集することも積

極的に検討するべきです。

圏 実行計画管理時代の到来

統計情報収集の重要性、また、どのような点に注意して統計情報を収集すべきかは理

解していただけたと思います。実データと統計情報のギャップを減らすことでより良い

実行計画を算出できますが、統計情報を含むインプット変更による実行計画変化の確認

ができなかったり、実際に性能影響が出たり、運用に手間を要するところがありました。

実際には、テスト環境等で同等のインプットを再現しながら事前にテストを行い、実

行計画やパフォーマンスを確認し、効果を確認できた場合、それを本番環境に適用する

ようなアプローチをとっていました。

そうした実行計画の確認や本番環境への適用をより効率的に、かつ安心して実施する

ために、Oracle llgで は SQL Plan Management(SPM)を はじめとしたいくつかの新

機能が導入されています。それらの機能を活用することで、実行計画の変化に強く、性

能影響を事前に防ぎ、運用の手間を減らすことができるようになりました。

ここからは、こうした新機能の活用について、解説していきます。これら新機能の使

い方や考え方を理解し、実際に活用することで、今までの統計情報管理、性能管理の考

え方やアプローチから、新しい実行計画管理時代に変化してきていることが実感できる

と思います。ぜひ、実際の現場でも活用してみてください。

実行計画を管理するメリット

SPMを活用することで運用時に得られるメリットは、大きく分けて 3つ存在します。

● 突発的な実行計画の変動を制御できる

O最適な実行計画を判断して適用することができる
。 実行計画の変動を制御できるため、統計情報収集のリスク軽減となる

I

|

240



それぞれのメリットについては後ほど説明しますが、まず、SPMの機能紹介をしてお

きます。

鳳巡〔SQL P:an Managementの機首ヒ
SQL Plan Management(SPM)は、Oracle llgか らの新機能となります。SPMを使

用すると、SQLごとの実行計画の履歴を保存し、統計情報の変更などによって別の実行

計画が候補として生成された場合でも、その実行計画の使用の是非を指定するまで実際

には使用させないようにすることができます (図 7)。

SPMに は、「SQL計画ベースライン」の概念があります。SQL計画ベースラインとは、

SQLごとの実行計画の履歴をまとめたものです。また、SQL計画ベースラインに格納さ

れている実行計画ごとに「ACCEPTED」「FIXED」 といった属性が付けられており、オプテイ

マイザは「FI測 ED」や「ACCEPTED」 がYESの実行計画を優先して使用することになります。

SQL計画ベースラインはデイクシヨナリDBA_SQL_PLAN_BASELINEで 確認することが

できます。

SQL計画ベースラインは初期化パラメータ「Optimize■ capthre_sql_plan_baselines」

を TRUEに した状態で SQLを実行するか、AWRスナップショットや共有プールから

DBMS_SPMパッケージを使用すると作成できます。また、ステージング表を通じて

SQL計画ベースラインをエクスポート/インポートすることも可能です。なお、SQL計

画ベースラインは「SQL計画ベース」と呼ばれるSYSAUX表領域上に保存されます (SQL

計画ベースの制限は、デフォルトでSYSAUX表領域のサイズの 10%程度であり、それ

を超えた場合はアラートがアラートログに生成されます)。

SQL計画ベースライン上の実行計画は、デフォルトでは最初に生成された実行計

画のみが ACCEPTED=YESと なります。それ以外の実行計画が生成されたとしても、

ACCEPTED=NOと して保管されます。オプティマイザは SQLテキストや統計情報

をもとに実行計画を作成した後、SQL計画ベースラインに対して該当の実行計画の

ACCEPTED属 性を参照、します。YESであればそれが採用されますが、NOであれば、そ

のほかのACCEPTEDが YESの実行計画が選択されて返されます。ACCEPTED属 性は任

意に変更することが可能であるため、新規に生成された実行計画を確認して妥当なもの

であれば、その実行計画を ACCEPTED=YESと 変更することで、その実行計画がはじめ

て採用されます。

」回
運
用
フ
ェ
ー
ズ

|12Lll i
l   l
l l



lnccrnreoSQLiHANDLEI PLAN=NAME

SYS_SQヒ 111 SYS_SQL_PLAN_aaaaa YES N0

SYS_SQL_1ll SYS_SQL_PLAN_bbbbb N0 N0

SYS SQL 222 SYS_SQL_PLAN_ccccc I YES.-I N0
SYS SQL 222 SYS_SQL_PLAN_dddd N0 N0

SYS_SQL_222 SYS SQL PLAN eeeee NO‐―」 N0

OPTIヽ41ZER_CAPTURE_SQL_
PLAN_BASELINES=TRUE

DBA SQL PLAN BASELINE
DBMS_SPM LOAD_
PLANS FROM
SQLSET

DBMS_SPM PACK_
STGTAB BASELlNE

|ヽ'|:′
:11111111`1,1雪

IFT'1予

鰈
ステージング表

SQL Plan Managementの 動作

2L[2

| |



バインド変数値

、鮮 ,“||:竿 1:

飾士
":■

●:

鷺暴■す、

ヒ塾生主豊三」

x=1で 最適化された実行計画
伊」)INDEX SCAN

x=10000で 最適化さねた実行計画
例1)TABLE FULL SCAN

運
用
フ
ェ
ー
ズ

lz+ef

CB0



圏メリット1:突発的な実行計画の変動を制御できる
SPMで管理されたSQLは、SPMで現在使用可能と判断されている実行計画で処理が

実行されます。仮に統計情報と実データのギャップが激しい場合に、性能劣化が起こり

うる実行計画をオプティマイザが出してきた場合でも、SPMによって制御することがで

きます。突発的な実行計画の変動をSQL単位でSPMにより管理することが可能となり

ます。

冬メリット2:最適な実行計画を判断して適用することができる
突発的な実行計画の変動を制御できると同時に、実データの質の変化により統計情報

も変わり、よりよい実行計画へ変化させる必要も出てきます。実行計画を SPMで管理

することで、DBAなどの管理者が実行計画の変化の性能改善度合いを判断し、よりよい

実行計画へ改善させることができます。

SQL計画ベースライン
/各 SQLことの最初に取得された計画履歴
/承 認済みの計画履歴 SQL計画履歴(未承認)

SQL計画履歴(未承認)
/書 SQLことの2番目以降に取得され、かつ承認されていない計画履歴

ｄ
‐
ユ
・

，
」

SQL管理ベース(SMB)

SQL計画ベースライン

SYS SQL PLAN l

未承認だつた実行計画を承認し、実行計画を

段階的に最適化していく

SYS_SQヒ PLANP

図 8 SPMによる実行計画の改善

SQL計画履歴



翼 メリット3:実行計画の変動を制御できるため、統計情報収集のリスク

軽減となる

SQLパフォーマンスを考慮するうえで、統計情報収集の重要性は、すでに認識して頂

いていると思います。SPMにより実行計画を管理できるようになったことで、統計情報

収集の性能影響リスクを大幅に軽減することができます。今までの運用で、突発的な性

能影響を考慮して、頻繁な統計情報収集を躊躇されていた方も多いと思います。また、

lSQLに最適な実行計画は 1つだという考え方が残っている方もいらっしゃるのではな

いでしょうか ?

SPMで管理されているSQLは、統計情報収集による実行計画の変動を制御できます。

SPMにより統計情報収集とオプティマイザが生成する実行計画の関係を直接的に切り

離すことで、統計情報収集リスクを軽減することが可能です。SPMで実行計画を管理す

ることで、より積極的な統計情報収集を実施し、より精度の高い実行計画を SQLに与え

ることができるようになります。今までの守りの統計情報収集から、攻めの統計情報収

集へ運用方針を変更することができるようになります (図 9)。

SPM

図 9 SPMによって管理されている SQLは自動的に実行計画が変化しなしヽ

一凰
瞼

運
用
フ
ェ
‥
ズ

|

SPMによつて、実行計画が管理さ
れているため、自動的に実行計画が

変動する事は無い

2L[5

|



対象表にアクセスす

るSQLすべて
SQL隼ユイ本 SQL単体

制御の難易度 統計情報の固定化は

容易だが、適切な実

行計画で固定化され

ないリスクあり

適切な実行計画を探し

出し、確実に固定化で

きるヒン ト句を SQL
に埋め込む必要あり

オプティマイザが生成した実
行計画の妥当性確認は必要
(SQLを直接書き換える必要
なし)

インプット (統計情

報や初期化パラメー

タなど)に依存

実行計画が固定化でき

る適切なヒント句次第

インプット (統計情報や初期

化パラメータなど)に依存

再収集時は実行計画

が変化し性能影響の

可能性がある

実行計画が固定化でき

ているヒント句であれ

ば基本的に変化しない

SQL計画ベースライン上で
承認された実行計画に固定さ

れる (管理することにより最

適な実行計画へ変化させてい

くことも可能)

■
■
■驚
運用フェーズに関するまとめ

運用フェーズでは、SQLパフォーマンス問題で業務影響が発生する前に、いかに検知

して対応できるかが重要なポイントになります。現状のサービス品質とリソース使用量

の変動を時系列情報として把握し、今後の業務量の変化予測と照らし合わせることで、

性能問題やリソース不足問題の発生を事前に予測し、プロアクティブなチューエング、

そしてリソース増強計画の立案に役立ててください。

また、オプティマイザ統計情報の運用にも十分に注意を払うべきです。現場からも統

計情報をどのように管理すべきかといった質問を多く受けます。我々コンサルタントが

統計情報運用の設計を行なううえで、どのような点を考慮して顧客の環境に合った運用

設計を行なっているのかを解説しました。

なお、統計情報収集運用が難しい背景には、この運用設計は DBAだけではできない

ということがあります。統計情報収集運用は、データの特性に大きく影響を受けます。

このデータの特性を最もよく知っているのはDBAではなく、一般的にアプリケーション

設計者/開発者でしよう。そこで、統計情報収集の設計を行なう場合には、DBA単独で

はなくアプリケーション設計者/開発者も交えて検討することをお勧めしました。

雛
購

246

“

ント章
=●
■ |`■

影響範囲

実行計画の精度

実行計画の変化の
タイミング _



11確認問題

1.運用フェーズにおける性能確認において、特に DBAが考慮すべき事項を挙げてく

ださい。

2統計情報の収集タイミングに対する考慮事項を挙げてください。

3.突発的な性能変動を抑えつつ、最適な実行計画を取るための実行計画の管理アプ

ローチを考察してみてください。

□
ロ
ロ日

運
用
フ
ェ
ー
ズ

回答例

2+71



口
■

:姜,

最低限実施すべきこと

最低限の予防として、SQLコーディングルールはどのプロジェクトにおいてもほぼ必

須であると言えるでしょう。多くの開発者が SQLコーディングを行なう場合には特に重

要です。SQLコーディングルールを使用することで、システム全体の SQL品質の底上げ

が期待できるうえに、いざパフォーマンス問題が起こった際の最初の定型的なチェック

にも使用できます。

SQLコーディングルールを作成&開発者へ配布して終わりではなく、コーディング後

のチェックが必要になりますが、多くのSQL文をチェックするにはコストがかかります。

SQLチューエングアドバイザなどのツールを使用するのも1つの手です。

また、オプティマイザ統計情報の管理についても必ず考慮しておくべきです。デフォ

ルトで Oracleが統計情報を自動で収集してくれますが、自動化の裏で何が行なわれて

いるかを知らずに自動化に任せるのと、それらを検討した結果として自動化に任せるの

とではまったく異なります。Chapter18で説明した内容を参考に、ぜひ検討してみてく

ださい。

|

2叫8

響・    ..

C:HAPTER

1睾
1曜
:攀|で1中:ジIタトで,

| l   i  l1 1.  11:   ..   ・ ‐   ・・     ::   .   _

|||‐          |.  ..   ・   .1~‐ | .=.  |‐・ _|   |・

・
‐
.  11-  ‐■■  |■・ 1 

‐■■1■|.■ .■
.   :|‐   ― .・   ‐・ :__―

| ‐li                    l       ‐       ・11     ■・      .1 1    '「
・    |

. ■・| _.|■ . ‐■11■ ‐‐ _■■■ ‐ `|■■  ‐■|‐   li  l.‐   ‐■■.■
‐|・
=■

■|・ ―■・ .:    .I  . . . _‐|:  .■・ |.. ‐|・・ ||■ |‐
.‐・ ■■■1 .||■

‐

|     .  1   11:   ■           ‐

・11‐ ‐‐||||:|‐ ‐‐‐  ‐‐ ‐
・
   ―
・
' ‐ . ‐

|‐ |    ‐■_.  ‐‐111.‐ ‐ ‐‐‐|_|_・ ‐ ・‐・ ‐.‐ | ‐
―‐

11・
 ‐

|

_11‐     ‐・||‐‐ ・‐‐・■| .‐・
‐・・ it・・.‐・ ‐||11'   ―|・ .― ‐   ・――|―.   ‐.



高いパフォーマンス要件が求められるシステムの場合は、プロジェクト全体でパフオー

マンスに対する対応を検討するべきです。Chapter13で 説明したとおり、プロジェクト

計画段階においては、パフォーマンスに対するリスクを具体的に挙げたうえで対応を検

討するように、PMや PMO(プロジェクトマネジメントオフィス)に訴えることが非常

に重要です。

対応策はプロジェクトによって異なりますが、特に効果が大きいと考えられるのは「性

能チーム」を作ることでしよう。業務チームや基盤チームのリーダー、技術有識者を交

えた性能チームにて、機能問題と同レベルで性能問題を検討し、パフォーマンス問題を

早期から解決していくことが非常に重要です (図 1)。

〈 性能
チームの設置、権限付与

高いパフォーマンス要件が求められる場合

……………………………性能チーム

一 業務チーム ―̈一、、

|リーター蓄
基盤チーム 」回

リーダー
実
際
の
プ
ロ
ジ
ェ
ク
ト
で
ど
こ
ま
で
や
る
べ
き
か

図 1 性能チームの設置

■
=鬱
~~~ ~~            ~

日量ヱ里空クトの壺里,壁で望こ生_ 」
DBAはプロジェクトの途中や設計フェーズ、構築フェーズ、またはテストフェーズか

ら本格的に参画することも多いと思われます。参画直後は、最初にそれまでに作成され

た設計書や定義書などを確認したり引き継いだりするはずです。この際に、パフォーマ

ンス問題が発生しそうな内容がないかどうかをぜひ意識してください。

12491
1 1

1 1

熔 |||||||

例えば、パフォーマンス要件は明確に定義されているか、要件の実現性はどのように

検討されているかなどの設計根拠について確認することが重要です。懸念がある場合は

そのままにせず、ぜひリーダーや PMにそのリスクと対応の方向性を報告し、改善に向

けて動いてみてください。そのままにして、後のフェーズでSQLパフォーマンス問題が

発生して、苦労することになるより良いですよね。

|・

`lit .|

どのプロジェクトでもぜひ取り入れてほしいこと

プロジェクトを実際に動かしているのは人間です。多くの問題は人同士の連携ミスや

思い込み、思い違いから発生しがちです。特にプロジェクトの多くでは、業務チーム (設

計者や開発者)と基盤チームの情報連携について、課題を抱えているのではないでしょ

うか ?

データベースや SQLは、システムのいわば中間に位置しています。データベースや

SQLを上手く使うには、業務側観点で考慮することもあれば、インフラ観点で考慮する

こともあります。業務チームにしてみれば、インフラの観点から考慮することはそれほ

ど深く行なうことができず、基盤チームにはその逆になってしまいがちです。特に、SQL

コーディングやパフォーマンス問題発生時の切り分けや統計情報運用においては、両者

の連携が非常に重要になります (図 2)。

ｎ
）

ｒ
３
＾
∠

図 2 システム内でのデータベースの位置付け

Part3では、各種フェーズにて図 2のような連携のイメージを説明しました。業務チー

ム (設計者や開発者)と基盤チーム (DBA)が積極的に情報を提供し合い、システム全

体の観点で検討を進めることが SQLをはじめとするパフォーマンス問題を予防、そして

解決するために非常に重要になります。もちろん、そのような風通しの良さを PMがプ

ロジェクトとして「公式」に認めることで、よリスムーズになるはずです。

=

確認問題

1.プロジェクトにおいて実際に対応できそうな予防策を考察してみてください。

回答例

鰺

」園
実
際
の
プ
ロ
ジ
ェ
ク
ト
で
ど
こ
ま
で
や
る
べ
き
か

円

額 1麟 鐵1躍馨 鸞
PART

4
「解決」からF予防」へ～

輻鰤:躊袂隋||「 Database Administrator」 から

「DatabaseArchitect」 ′ヽ ‐

轡構
'~~~ ~~ ~ ~ ~~ ~ ~,

日薫里型F量「予り_主 _ __
潜在化するパフォーマンスリスクをゼロに近づけるには、プロジェクトフェーズの早

い段階で技術的観点からパフォーマンスに関する指針を取り込んでおくことが非常に重

要です (詳細についてはPttt3の各フェーズの予防策を参照してください)。

ここで重要なのは、PMも含めプロジェクトに関わるメンバー全員が、パフォーマン

ス問題に起きてから対応するのではなく、予防のために何をすべきかを考えながら連携

する必要があるということです (図 1)。 このように考え方を変えていくことがパフォー

マンス問題を解決する一番の特効薬になります。

難しいことかもしれませんが、読者の皆さん 1人 1人がパフォーマンス問題とは予防

するものであると意識して作業を行なえば、少しずつ変わってくるはずです。

計画 要件定義 設計 開発 テスト 運用

PM I爾
|‐

‐|■ 1,'● ||||■ |

設計者 饉務‐

DBA 鰊

開発者

1

|
254

図 1「解決」から「予防」ヘ

鑽憑靡蒻揚麒
|: 1・ . ||1111 1

■ .||_ | .| _ | ‐ .・ _:|| | ―‐_ . ・
■
.■ _ . ・ ・ ..: | ・ ・■

‐ || .|・ . ● 1‐ |.

・ _● .‐ ■ . . ・ ‐ 1‐ ― ・ |、 ' ・ |_|. .● =‐

廟 .■
=■
・

性能問題が起きる前の「予防」 性能問題が起きてからの「解決」

漑 ||'

近年は企業経営や企業活動のインフラとして、ITは必要不可欠な存在となっています。

経営戦略においても、データおよび情報の重要性は非常に大きくなっており、そのうえ

企業が抱えるデータ量も、年々増加傾向にあります。rに求められる要求の重要性が増

せば増すほど、データベース管理者に求められる役割やスキルも増加している状況なの

です。

変化に強く、より高いビジネスバリューを生む

「

インフラストラクチャを構築して管

理し、さらに運用を効率的にこなしていく次世代データベース管理者を、同じDBAでも

「DB A仕」五strator」 ではなく、「DB Architect」 と呼ぶようになってきました。

もちろん、構築や管理、運用を効率的にこなすためには、パフォーマンス問題が発生

しない、または発生させない予防的対応策の

「

インフラの構築や、それらのスキルを持っ

た人材が必要となります。つまり、本書の Pttt2で解説した「解決」編の内容のみで対

応していただけでは、DB Administratorと は百えてもDB Archtectと は言えません。「解

決」と「予防」両方に対応できるデータベース管理者になって、はじめて DB ttchitect

と言えるでしよう (図 2)。

DB Adrrlinistrator

DB Architect

図2 「DB AdministratO可 から 「DB Archltect」 へ、

ここからは本書のまとめとして、DB Architectと はどのような役割を担っているのか

について考えてみたいと思います。DB Administr■orと DB Architectと いう言葉の違い

だけでは、何に違いがあるのかよく分からない方もいると思います。そこで、プロジェ

クトフェーズでの関わり方やプロジェクト体制での動き方、DB Arclutectの スキルにつ

いて話を進めていきます。

「DB Administrator」 から「DB Architect」 ヘ

．」【̈”】「。・Ｓ・σ・ｏ。＞Ｑ中ゴ̈・ｏ・・・。こ・かヽう「Ｕ。・Ｓ・。・ｏ。＞「。〓・ｏ。Ｌ　ヘ

ｇ

ヽ

一

１

１

，

ギ・・・陥
・‘，一・ヽ、

一

（じ

l

|

255

ｇ

　

　

　

＾

■
―
′，４
，，，
饉
■
―
―
，，
・〓
′

Ｆ

′‘́ヽ
籠ヽ
―
―
く

Ｃ

圏雪

DB Architectのスキル

‐ビジネス戦略

DB Administratorと DB Archtectの 違いを もう少 し分か りやす くするために、

Enterprise Architecture(以 下、EA)の考え方を例に説明します。DB Archtectが どの

ようなスキルを持ったエンジエアであるのかをイメージしてみてください。

EAと は、情報技術の変化に素早く対応できるように「全体最適」の観点から組織の

業務手順や情報システムの標準化、組織の最適化を進め、さらに効率の良い組織運営を

図るために業務プロセスや情報システムの構造、利用する技術などを整理/体系化した

ものです。EAは表 1に挙げる 4つの要素に分割され、定義されています。

表 l EAの 4つの要素

これだけではまだ分かりにくいので、EAの 4つの要素について、業務視点/システ

ム視点でスキルの範囲を表現してみました (図 3)。

業務視点 システム視点

ユーザー _
BA

DA

・‐・・・・・・・・・・・‐・・‐・・・・・・・―・・・・ ‐̈・DB Admlnistrator ・ヽ4・・ "ヽ・ ‐̈Ⅲ“・・・・・・…Ⅲ・‐・‐‐‐‐‐…

1

BA(Business Architecture) 業務分析や業務フローなどについて、共通化/合理化を実現すべき姿
を体系的に示したもの

ArchitectuЮ) 各業務/システムにおいて利用される情報の内容や、各情報間の関連
性を体系的に示したもの

AA(Application Architecture) 業務処理に最適な情報システムの形態を体系的に示したもの

TA(Technoloey Architecture) 実際にシステム構築する際に利用する諸々の技術的構成要素、および
セキュリティ基盤を体系的に示したもの

鶯
鰈
鰈

256

図 3 EAを 例にした DB A「chitectの スキル

DB Architect

SQLチューニング時には必然的にデータベースの論理設計やそのSQLが参照するデー

タ量、またはデータの質を確認する必要があります。そして、アプリケーションがどの

ようにSQLを発行するのかなど、ループや条件分岐の使い方などのアプリケーションに

関する部分にも対応する必要があります。

DB Architectは 、データベースを中心とした業務フローやアプリケーションのアーキ

テクチャなどに関する知識を習得することで、自然とアプリケーション開発者や設計者

とも共通用語を使ってコミュニケーションをとることができます。さらに、それによって

顧客が考える業務改善の方向性なども見えてきます。

システム規模がさほど大きくない場合は、以前のDB Admidstratorの ようにデータ

ベース管理のスペシャリストとしての役割が非常に重要でした。しかし、近年のシステ

ムやプロジェクトでは、複雑化や大規模化により、データベース管理だけでなく、デー

タベースを中心としてプロジェクトフェーズの上流における要件定義や設計時のデー

タのあり方に関わることや、開発時にアプリケーションのあるべき姿、そしてセキュ

リティおよび品質を管理する必要性も求められてきます。これに対応できるのが、DB

Archtectで す。

SQLパフォーマンス問題を未然に防ぐための流れは、まさにDB Architectと しての視

点や動き方、スキルであると言えるでしょう。

」四
「‥
ｌ
ヨ̈ヨ̈…
『」から「０●‥
菫
１
ヘ

７

・

Ｆ
Ｄ

，
６

●プロジエクトの解散や、担当者が異動しても、DB Architectチームにノウハウが蓄積される
●フイードバックを蓄積することで、長期的サイクルの中でも効率化や標準化、品質向上が見込める
O DB Architectチ ームのメンバーが少数でも効果を見込める

DB Architectチーム

Aシステム Bシステム Aシステム

プロジエクトフエーズでの関わり方

次は、DB Architectの プロジェクトでの関わり方について話を進めます。これまでの

DB Adminstratorは、図 4に示すように開発フェーズ以降のデータベース管理業務のス

ペシャリストとしての役割が非常に重要でした。DB Architectも 、データベース管理の

スペシャリストの部分は今でも非常に重要な役割の 1つです。

図4 プロジェクトフェーズでの関わり方

プロジェクトは全体最適を求められ、また標準化活動も行なわれるようになってきま

した。さらに、システム全体を意識したセキュリティ要件や品質なども重要視されてい

計 画 要件定義 設計 開発 テスト 運用

DB Architect 麟 . _■ _―
.111 圏目購 目■■

DB Administmtor 像響 ||.||||‐
・

■ 目■■

l

|

258

ます。プロジェクトとしてもDB Administratorの枠組みの中だけで活動するのではなく、

データベースを中心としてプロジェクト全体に関わる DB Architectと しての人材が求め

られています。

つまり、DB Architectは プロジェクトフェーズの上流から関わることで、プロジェクト

全体の最適化や品質向上に貢献する関わり方が求められていることになります。

プロジェクトメンバーとの関わり方

DB Architectは 、スキルの幅を論理設計やアプリケーションアーキテクチャまで伸ば

すことで、設計者や開発者と深く関わる必要があります。今までの DB Administrabrは

どちらかと言うと受け身の立場で、インフラやデータベースに関する部分に対する質問

や管理を行なう作業者になっていたケースが多かったのではないでしょうか。

効率化や品質を考慮すると、PMに対して技術的観点からのプロジェクト計画や効率

化、そして品質の部分で技術的オブザーバーとして報告することも、非常に重要な役割

と考えます。また、設計者や開発者と対等に会話できるスキルをもとに、パフォーマン

ス問題などを意識しながら、ガイドを提供するなど、設計者や開発者の作業に関わって

いくことが求められます。DB Architectが技術的な知識を中心としてプロジェクトメン

バーのハブ (Hub)役となるように動くことで、プロジェクト全体が効率化できると筆

者は考えています (図 5)。

く
統計情報運用に関する方針の承認

DBAと協業する旨を指示

統計情報運用がDBAだけでなく、
設計者や開発者にも関連すること
て収集方針をPMに報告

Ｗ
・

一■
【
”

Ｆ
　
・

Ｉ
●
―

■

■
一一一許

一

統計情報で注意すべきデータ特性
について説明や分類を依頼

11■ | ■ . |. ‐■・ ‐・| ― |■ |'

DBAに報告
鶉

「
Ｕ
●
Ｓ
Ｏ
●
∽
ｏ
＞
一
ヨ

５̈
一∽
■
●
”ｏ
こ

か
ら

「
０
●
Ｓ
Ｏ
”
∽
０
＞
３
コ
６̈
０
Ｌ

ヘ

オフティマイザや統計情報に関する説明、注意

すべきデータ特性のガイドを作成

設計者からの分類に従つて統計情報の収集方法

を策定方針に従って、統計情報収集を実施

12591

DBAからのガイドに従って、データ特
性ことに表を分類してDBAに報告

図 5 プロジェクトメンバーとの関わり方 (統計情報収集に関する動き方の例)

ｎ
〕

，
』

■ |

鰺 :::|:

本書のまとめ
髯

ここまで、いかにして SQLのパフォーマンストラブルを解決するか、また予防できる

かについて話してきました。

本章が最終章ということで、Partlか ら3までの内容を振り返りつつ、本気で SQLパ

フォーマンス問題に取り組むには「解決」から「予防」へと考え方を変える必要があること、

またSQLパフォーマンス問題を未然に防ぐためにも、DBAが DB Administratorか らDB

Archtectへ変化することの必要性について解説しました。これらが、皆さんのさらなる

スキルアップの指針になればと考えています。

確認問題

1.本書の内容を振り返り、DB Archibctへ 変化するために不足している考え方を挙げ

てみてください。

回答例

12601

1 1

□
付
　
録

|::■ ||

SQLチューニング案の検討
■1

SQLチューニングは短期で習得できるものではありません。初心者は、基本的には試

行錯誤によってSQLチューニングに取り組まざるを得ないでしょう。また、あまりに複

雑なSQLのチューニングでは、SQLチューエングに慣れたDB管理者でもトライ&エラー

を繰り返しながら行なわぎるを得ないケースもあります。

そのため、最も初歩的な SQLチューニング案の検討方法として、このようなトライ&

エラーでのチューニングの例を説明します。言い換えると、この方法はSQLチューエン

グの進め方におけるチューニング案の検討/実装/効果確認を、検討は甘くても繰り返

して実施しているものです (図 1)。

要件を満たしている 要件を満たしていない

図 l SQLチューニングの一般的な流れ

議 Ⅲ■

■| _ ,

12611

トライ&エラーの実例 ～テスト環境構築

イメージしやすくするために、SQL*Plusで SQLを実行しながらチューニング案を検

討していく流れで説明します。

まず、テスト用の環境を作ってみます。ここではユーザー名を「TEST」 としており、

Oracle Databaseのサンプルスキーマ「SCOT詢 から、「EMP」 表、「DEPTdept」 表に類

したテーブルを作成しながら説明します (LIST」)。 ぜひ皆さんも自由に使える環境があ

れば、同様に試してみてください。

LIS丁2のようなフアイルを作成し、SQL*PItlsを 実行しているディレクトリに配置して

ください。

LISTl テスト用環境の作成

|

つ
４
一
〇

，
」

――デ■ブルを作成 しtデータを投入する。 ___ ・―・ ‐

CREATE TABLE emp AS_SELECI ■ FRO‖ scott_=empメ
ー
|・
 ‐

CREATE TABLE・ deptく dtptno しヽ田BER′ dname VARCHAR2(14)′ loc VARCHAR2(13))″
INSERT INTO dept SEL[CT ■ FROM scott.dept′ ■ ‐ ―

3ECIN I ・
 ・

‐‐ ~―FOR 1 lN 100..30100 L00P . _._ ‐‐_ ||

lNSERT INTO DEPT‐ VALUES(I′ :TEζ十1夕 :'ESTl)メ

‐・ END L00P′ _ ‐

END′ ‐

/ . ‐_ |・ ―・

――統計情報 を収集する。 ‐

eXeC dbmS._stats.gather_table_stats(ownname=>:TEST:′ tabname=>lEMPI)′・・

eXeC dbmS_StatS.gather_table_stats(‐ ownname=>:TESTl′ tabname=>:DEPTl)メ

: チユーニング対象のSQL文

―̈以下の内容をtest.sqlと して保存する。
SELECT/■ IFT_ENttE_FRO‖ _DNA‖E■ /
―. empno

′ ename . .._ ._ _

_ ■‐jOb・
‐ ・

FROm emp e ‐ _

′ dept・ | ‐ ・
 ‐

_‐WHERE‐e.deptno = d.deptno

AND

ORDER

d.dname = 'RESEARCH'

BY empno; 」曰
トライ&エラーの実例 ～現状の確認

では、まずは現状のパフォーマンスを確認しましょう (LiS丁 3)。

付
　
録

― 先ほど

atest,sql

トファイル

263:

LIST3 現状のパフォーマンスを確認

set autotrace on

set timing on

また実行時間も1零示されるようにして
,‐
11,||

E‖PNO ENA‖ E JOB

7369 S‖ITH

75`6.・ JONES

7788 SCOTT

7876 ADAMS

7902 FORD

Etapsed: 00100:00.00

Execution Plan

Plan hash valuez 32324586?4

CLERK

‖ANAGER

ANALYST

I ld I 0peration I Name I I Cost (%CPU)_|_Time l

1 0 1 SELECT STATEMENT I 1 14 1 448

1 1 1 SORT ORDER 3Y 1 1 14 1 448

1* 2 1 HASH J011 1 1 14 1 448 1

1 3 1 TABLE ACCESS FULLI E‖ P l 14 1 294 1

1* 4 1 TABLE.ACCESS FULLI DEPT 1 6001 1 66011 1

30

30

29

3

25

(7)100:00:011

(7)|. 00:00101 1

(4)1 00:00:01 1

(0)1 00100:01 1

(0)1 00:00101 1

Predicate inforlnation (ldentified by operatぅ。n id):

2■●:ttt皇 ("E`:."DEPTNO"=“ D:f.“ D[PTNO")

4=‐■it`卜("D・ .HDNAMEli=:RESEARCH=)

さっそく実行統計を見てみましょう。まず「recurs市e calls」 が 0になっているか、そ

れ以上減らなくなるまで「@testsql」 を実行します。recursive calとは、Oracleが SQL

実行時に内部的にSQLを実行している場合などにカウントアップされるものです。チュー

ニング対象の SQLによる実行統計を的確に把握するために最初に確認し、O以上だった

場合は何回か対象 SQLを実行してみてください。

次にレスポンスを見てみます。ここでの例は扱うデータ量が少ないので 0秒となって

います。そのためレスポンスで評価できないので、バッフア読み取り量である「cOnsistent

gets」を見てみましょう。この状態では95ブロックにアクセスしていることが分かります。

実行計画を見ると、EMP表もDEPT表もフルスキャンしており、結合走査はハッシュ

結合であることが分かります。本来はこの時点でパフォーマンス要件を達成しているか

を確認し、達成しているのであればこれ以上チューニングする必要はなくなるのですが、

ここではチューニングを続けることにします。

トライ&エラ…の実例 ～チューニング試行錯誤

では、試行錯誤の一歩日としてLIST4のようにDEPT表のdeptno列 に索引を付けて

みましょう。

126叫 |

Stati sti cs

0

0

95

0

0

656

416

2

1

0

5

recursive cal Is
db btock gets

consistent gets

physical reads
redo size
bytes sent via SQL*Net to ctient
bytes received via SQL*Net from ctient
SQL*Net roundtrips tolfrom client
sorts (memory)

sorts (disk)
rows processed

索引 DEPT_IX]の追加

CREATE INDEX dept_ix1 0N dept(deptno)′
‐
 |~― |

exec dbms_stats.gather_index_stats(ownname=>:T[ST[′ indname=>:DEPT_IXll)メ

再度、testsqlを実行してみます (LIST5)。 どうやらせっかく作成した索引を使用せず、

バッファ読み取り量も変わっていないようです。

さらに試行錯誤ということで、今度はDEPT表の DNAME列にも索引を作成してみま

す。実際にはSQL文のWHERE句の絞り込み条件にDNAME列を使用した条件がある

ため、先ほどの索引よりこちらのほうが良いはずです (LIST6)。

残念ながら変化がありませんでした。このようなケースも実際に発生することがあり

ます。この場合は、ヒントを使用してオプティマイザに索引を使用するようにガイドし

ます。「testsq」 を「testlsql」 にコピーし、LiST7のように書き換えてください。

では、実行してみましょう (LIST3)。

LIST5 索引DEPT_IXlの効果確認

重要部分以外は省略する。

SELECT STATEMENT I

SORT ORDER BY I

‖ASH J01N l (4)|

6601

(0)1 00:00:01

(0)1 00:00101

Stati sti cs

LIST6 索引 DEPT_lX2の追加

CREATE INDEX dept_ix2 0N dept(dname)′

gather-jndex-stats(oHnname=>'TEST',

SORT ORDER BY

HASH JOIN

一■
付
　
録

SELECT STATE‖ ENT

12651

I 0peration I Name I

”

ｍ

η

‥

ら

O rё lしたile Oま■||
95 conslltent geヽ■

Atest. sq I

I Id I Operation I Name I Rows I Bytes llme I

σ

Ｏ

“

“

‐”

”

-448‐

448

448

TABL[ACCESS FULLI E‖P I 141
FULLI DEPT I 6001 1

LIST7 索引 DEPT」 X2を使用させるヒントの付与

■
一，
■
一

●
・
　
一
●
一
●
　
●

LIST8 ヒントの効果確認

atestl.sql

I Id I 0peration

14 1 448 1

14 1 448 1

14 1 294 1

6001 1 66011 1

60011 1DPT_曖

operation id):

0 recursive cal [s
6 consistent gets

´
０
ハ
０
つ
‘

(0)100:00:011

(0)1 00:00:01 1

I Name I Rous I Bytes I Cost (ZCPU)I Time I

36 (6)l 00:00:01 I

36 (6)l 00:00:01 I

35 (3)l 00:00:01 I

3 (0)l 00:00:01 I

31 (0)l 00:00:01 I

14 (0)l 00:00:01 I

2 - access(':E!'.!:DEPTN01'=:`D:′ .!:DEPTNO'1)

5 - access(''Di'.::DNAMEl:=[RESEARCH「)

Statistics

索引 DEPT_IX2が使用されたことが分かりましたか?また、バッフア読み取り量が 6

ブロックに削減されています。これは大きなチューニング効果であると言えるでしょう。

さらに高速化を狙ってみましょう。今度は EMP表に対して、結合条件で使用してい

る DEPT列に対する索引を付けてみます (LiS丁 9)。

LIST9 索引 EMP」 Xlの追加とその効果

EMP表は、新たに作成したEMP_IXlによる索引スキャンに変わりました。また、結

合方法が、それまでのハッシュ結合からネステッドループ結合に変化していることも分

かると思います。結果として、バッファ読み取り量がさらに1ブロック削減されて5プロッ

クになっています。

これでおそらく限界だと思われるので、ここで完了し、SQLチューニング案として

testlsqlが でき上がりました。

なお、この実行計画が完璧だ、これ以外の実行計画にはしなくて良いと判断した場合

は、SQLチューニング案として LiS丁10のように完全にヒントを指定し、この実行計画

に固めることもできます。

付
　
録

円

Atestl.sql

‐
|・ Id 1 0peration I Name I Rows I Bytes I Cost (%cPU)l Tilne I

0 1 SELECT STATEMENT

l l SORT ORDER BY

2 1 NESTED L00PS

141

I NESTED LOOPS 14

I TABLE ACCESS BY INDEX ROI,IIDI DEP1 I 6001 I 66011 I

I INDEX RANGE SCAN I DEPT-IXz I 6001 I I

I INDE)(RANGE SCAN I EI{P-IX1 I 5 I I

I TABLE ACCESS BY INDEX ROIIJID I EMP I 1 I 21 I

34 (6)100:00:011

34 (6)1 00:00101 1

1 1
33 (4)100,00:011

31 (0)1 00100:01 1

‐14 (0)| _00:00:01 1

0(0)100100:0■ 1

1 (0)100:00:011

Statisti cs

5 consistent gets

LiST1 0 完全にヒントを指定した例

ほかのヒントやヒントの用法については、マニュアル『Omcle Databぉ eパフォーマン

ス・チューニング・ガイド1lgリ リース 1(11.1)』 に記載されているので、ぜひ参考に

してください。

=書
ゞ
■
チューニング対象SQLの特定と効果測定

実際にSQLのチューニング作業を行なう場合に、チューニング対象のSQLを どのよ

うに特定するのかという質問を現場でもよく耳にします。また、実際に索引を追加したり、

ヒント句を使用したりしてSQLチューニングを行なったが、どのチューエング案を採用

すべきか、また効果をどのように判断するべきかという質問も多く聞きます。ここでは、

一般的な例を示しながら、どのように判断すべきかを見ていきましょう。

遅いSQLはどうやって見つけるのか

ここで、遅いSQLと はどのようなSQLなのかもう一度考えてみましょう。「結果が返っ

てくるまでに時間がかかっているSQLに決まっている」と思われた人がほとんどだと思

います。これは、半分正解です。SQLをチューニングするということは、性能を改善す

る作業を意味します。

それでは、性能とは何でしようか。一般的に、性能とはレスポンス
注〕とスループッ

|

268

注1:レスポンスタイム (応答時間)の意味。SQLが発行されて結果が返つてくるまでの時間。

SELECT /* GET-ENAIiIE-FROII-DNAME {./
/*+ l-51P111616 "'

INDEX(d dept-ix2)
INDEX(e emp-ix1)

USE-NL(e)
*l

empno

/ ename

, iob
FRolr4 emp e

, dePt d

[',HERE e.deptno = d.deptno
AND d.dname = 'RESEARCH'

0RDER BY empno;

卜注2で表現されます。ゆえに、SQLチューニングもSQLのレスポンスとスループットを

意識して作業を行なう必要があります。そこで、遅いSQLを次のように定義しておきま

しょう。

.1:レスポンスが悪い SQL(レ スポンスを意識)

0レスポンスはさほど悪くないが、処理量が多いSQL(スループットを意識)

レスポンスが悪い SQLを決める判断材料としては、各業務処理のレスポンス要件を

考慮する必要があります。極端な話をすると、レスポンス要件が満たされていれば、遅

いSQLとは言えないということになります。チューニングを行なう必要がないからです。

どこまでチューニングを行なうのかの判断材料にもなるので、SQLチューニングを行な

う場合は業務チームなどの担当者からその SQLのレスポンス要件を確認しておく必要が

あります。

当 遅い SQLの確認方法
遅いSQLを確認する方法としては、次のようなものがあります。

O dbms_monitor.session_trace_enable

e SQL★Plusの AUTOTRACE

● v$SQLなどのパフォーマンスビュー

o Oracle Enterprise Managerな どのツール類

o AWRレポートや Statspackレポート

ここでは AWRレポー ト注3から確認する方法を説明します。そのほかの確認方法につ

いては、皆さんの環境を使用して実際に確認してください。

表 1に示す AWRレポー トの SQL情報から遅い SQLま たは処理量の多い SQLを捉

えるには、特に 5つの項目 (Elapsed Time、 CPU Time、 Buffer Ceも、Physicd Reads、

Executions)に ついて詳細な確認を行ないます。LiSTllが Elapsed Timeで 出力された

内容です。

注 2:単位時間あたりの SQL処理数。例え|よ 1秒間に 100SQLしか実行できないシステムと1秒間に 1万 SQL実
行できるシステムの違い。

注3:Oracleの 稼働状況をまとめたレポート。Oracle内の処理量や処理状況を確認できます。

」■
付
　
録

12691

SQL文の経過時間が長い SQL文情報がレポートされる。
%Total DB Timeでソートされて出力される。
%Total DB Timeは 、インスタンスの総 SQL経過時間に対するその SQL文の
経過時間の割合。インスタンスに与えるインパクトと考えて良い

CPU Time SQL文の CPU使用時間が長いSQL文情報がレポートされる。
%Total DB Timeで ソートされて出力される。CPU Timeの項目で出力されて
いる %Total DB Timeは 、CPU Timeで 計算されているのではなく Elapsed
Timeで計算されている

Buffer Gets アクセスしたデータベースバッファ内のブロック数が多い順にレポートされる

Physical‐ Reads ディスクから読み込んだ回数が多い順にレポートされる

Executions ‐_ 実行回数が多い順にレポートされる。Elapsed Timeや BuFer Getsな どの性能
情報で変動が見られた場合に、EXeCutiOnSの Rows per Execで 1実行あたり
の処理件数に変動がなかつたかを併せて確認する

Parse Calls 解析コール数が多い順にレポートされる

Version Count 子カーソルが多い順にレポートされる。子カーソルが多くなつている原因を調査す
るには、V$Sql_shared_cursorビ ューから確認してほしい

ライブラリキャッシュのメモリを多く占有している順にレポートされる。無名な
PlySQL文が存在している場合は、パッケージ化などを検討してほしい

Cluster Wait Tirne RAC環境のみ出力される。グローバルキャッシュイベントの待ち時間が SQL文
の経過時間に影響を与えている順にレポートされる

表 l AWRレポートの SQL情報

LiSTl l[lapsed Timeで 出力された内容

(s) Executions Exec (

coll = 1

61.5

tabl

ここで注目すべき項目は、Elap per Exec(s)で す。Elapsed Tlme以 外の項目でも 1

実行あたり (perExec)の情報が出力されているので、同じ考え方で値を確認していき

ます。

Elapsed Time(s)は累積値なので、「Elapsed Time(s)=Executions*Elap per Exec(s)」

という式が成り立ちます。Elapsed Timeが 増加している理由が、Executions(SQL文の

実行回数)が増加したのか、Elap per Exec(一 SQL実行あたりの経過時間)が増加し

たのかを確認する必要があります。性能が変動している場合は、Elap per Execの値が

変動します。

チューニングすべき SQL文の決め方は、次のようになります。

. ‐■||| ・ ‐ |

Elapsed Time

Sharable lvlemory

12701

.1匡lap per Exec(s)の 1直が大きい、かつ Executionsが少ない SQL文に着目する

2E!apsed Time(s)と %Tda!DB Timeが大きい順にチューニングを実施する

・3.上記に該当するSQL文 をチューニングし終わったら、E:ap per Exec(s)は大き

くないが、Executionsが大きいために 日apsed Time(s)、 %Tota!DB Timeが

大きな SQL文を確認する。このときに、Elap per Exec(s)が小さすぎない (0」

以上などのルールを決める)SQL文を確認対象とする

%Total DB Theはインスタンスの総SQL経過時間に対するその SQL文の経過時間

の割合で、インスタンスに与えるインパクトと考えてください。先に①②のSQL文に着

目する理由は、チューニング余地が多いので簡単に効果が見込める可能性が高いためで

す。その後、③のSQL文の改善を検討します。

ここでは、少し踏み込んだ内容を紹介しました。ここではAWRレポートから確認す

る方法を例にしましたが、その他の取得方法でもSQL実行あたりの経過時間の情報を取

得可能です (elapsed umeや 経過時間などと表現されています)。 これらの情報をもとに、

実際に遅い SQL文を特定できます。EMなどのツールでは、よリグラフィカルかつ一元

的に情報を確認できます (図 2、 3)。

図 2 EMで遅い SQLを確認する例

」翫
付
　
録

12711

一
一
　

　

―

・

一い　̈
螂，
一一”一一一‘

・饉一　　　̈

―
為

聰

図 3 EMで遅い SQLの詳細情報を確認する例

■SQLチユーニング効果の確認方法
SQLチューニング効果の最も簡単な確認方法は、遅いSQLを確認する方法をSQL

チューニング後に改めて確認し、チューニング前の情報と見比べることで改善度を確認

する方法です。ここでは、スループットの考え方を簡単に説明します。

レスポンスは実際に実行した経過時間をもとに判断できるので、改善具合を確認する

ことは容易でしょう。あるSQLのチューニングを行ない、チューニング方法が複数考え

られたとします。また、そのチューエング方法の違いはあるが、実測した経過時間もほ

とんど差がないという場合もあります。

そのようなときは、ほかの SQL処理に与える影響を考えて、1実行あたりのバッフア

読み取りや 1実行あたりのディスク読み取りの少ないチューニングパターンを選択して

ください。1つの SQLの処理量が減れば、現在のシステムリソースでより多くのSQL実

行が可能になります。要は、スループットを上げることが可能ということです。SQLチュー

ニングを行なう場合は、SQLのレスポンスだけを意識するのではなく、処理量を減らせ

れば、データベース全体としての性能が向上することを意識してチューニングパターン

の選択を検討してください。

12721

1 1

麗 111鴬 響難11構:醸
INDEX

F

L

A

LGVVR

索

弓l

ACCEPTED 241

ACID特性 … _ …… . …126
ALL_lND_STATISTICS …… 67

ALL INDEXEs . ……. … …… . _ . 67

ALL_TAB_COL_STATlsTIcs… .. . … .. 69

ALL_TAB_STATIsTlcs. .67

ALL TABLES _ .̈_… 67

ANSI/ISO SQL規格 . .¨ … … 」27
AtOmlcity … … 126
AUTOTRACE構鯖t.. . 75,77
AVVR . . …. _ ̈ ……269

Cardinallty Feedback 243

CARTESIAN 53
CASE文 144.146
cOnslstency 126

CRUD分 本`看 162

D

DB Administrator . ……… ………255

DB ArchiteCt .… … 255

DB ArchiteCtチ ーム …. . …… . .257

db_file_multiblock read_00unt_ …63

DBA . … 180.194.255

DBMS_STATs .. 72
DBMS_STATS SET_TABLE_STATS. 214
DECODE関 数 144.146

DML文 148.150
DUAL表 144
Durab‖ lty 127

EA 256
EⅣI → 0「 acle Ente「 prise Manager

enqueue 128

Enterprlse Archltecture 256

ER図 106
ER・Eデリレ 162

FIXED

FULL

241

53

H

INVISIBLE 221
1NVISiBLE INDEX 221

1sOlatiOn 126

.1

JDBCの配列 .
149

19

‖

Mutexロ ック 129

N

NOT N∪LL制約 84.85.100

NOWORKLOAD統計. . … .71

0

OLTP系 ___ 40.53
0ptimizer_lndex_caching 64

0pti「 nizer_index_00st_adi 64

0PTIMIZER ⅣAX PERMUTAT10NS _ . 95

0PTIMIZER_USE_INVISIBLE_lNDEXES .221

C)racle Enterprlse Manager 48,74.78,196

C)racle Load TeStlng . 223

C)「acle Test Manage「 223

0racleイ ンスタンス 19
0racleデータベース . 19
0RDER BY句 … … . . . 83

273

|

P

PL/SQL 149
PM →ブロジェクトマネージャ
PM0 184,249
primary key ff!,fl 83

Project lvlanagement Office............l A4

READ COMMITTED _ 127
READ UNCOMMITTED . 127
REDOロ グパッフア .. 19

19

REPEATABLE RAED… 127
ROVVID… …. 83,87
ROWIDスキャン …… . 87
rownum <= l
ROWNUM関数 …… 149
ROWNUM疑似列 . 149

S

SERIALIZABLE 127
SGA 19
SPM 241
SQL 6
SQLID 197

SQL Plan N,4anagement 230.241

V字モデル 215

‖

VVBS 18]

Aヽ′HERE●〕 .40,42.43.48,107
WOrk BreakdOヽ ′ヽn StruCture … …. 1811

WORKLOAD統計 … … 71

あ

アーキテクチャ 40.123
アプリケーションロジック 124.138,142.200

REDOロ グファイル

一員性 126
インデックス評価 145

43 インプット情報 8.59

い

つ

エンキュー … 128

お

遅い SQL ._. 268

アプリケーション設計 193

オブジエクト構造 _ 60.62.213
57.95.232

オプテイマイザ関連パラメータ

か

213

カーソルキヤツシユ . ..]50
カーソル共有機能 ._. …242
カーディナリテイ 106
外部表

可読性

関数のオーバーヘッド

管理性

管理用コメン ト

き

既存の索引の情報 105

ウオーターフォール開発モデル …215
ウォーターフォール型のプロジェクト 230
受け入ねテスト_. ……… 223
運用テスト … …… .216.223
運用ポリシー __ ._ .38.49

え

SQLア クセスプログラム 200
SQL関数 _ 38.144
SQL管理用コメント 196
SQL計画ベースライン … 241
SQLコ ーディングルール 36.51.204.205,248
SQLチユーニングアドバイザ 52.58.218
SQLチユーニングセット .¨ _ 218
SQLテキスト..… 34.53.60.61.212.218
SQLト レース 148
STATSPACK 196

TRIM躍8:数| ̈ . . _144
unique市」11L …… … … 83
uSe_inVISible_indeXeS. . . . …. 221

V

オプティマイザ ..

Systerrl Global Area 19

1

94
47
42
47
47

221 機能画のテスト 21]

274

VISIBLE

キユーイング

共有プール 19

しきい値 149,209

識別子: . . …. _ . 197
システムテスト. .216.223
システム統計 70

実行計画 …………… ._..34.53,218.229
～の管理 . ̈ _… …. … .240
～の妥当性……… .. 74
～の判断ポイント . …… …… .93
実行統計 78

128

161

124
業務最適化

業務要件

」膨
クラスタ表 170
クラスタリングフアクタ 68
グローバルロック 129

け

傾向分析 227
結合順序 79
～のスタートポイント 109
結合条件 48

結合方法 79

索

弓:

自動統計収集 .. .71

シナリオ選択 .212
自動統計情報収集 236

絞り込み条件 48

修正範囲 176

169

冗長性の排除 …… 155
初期化パラメータ .. __ 60.63

条件の記述順序 _ … .48
結合テスト _175,216,222 冗長化

検索の停止 _ 149
原子性 126 処理方法 8

高速全索引スキャン 63
コーデイングルール 53
コストベースオブテイマイザ 211
～のアウトプット 211
～のインプット 211
固定化 230
コミット間隔 148

さ

処理量の変動傾向 … _… …182

す

推移律]07

スケーラブル]31

ステータス情報 145

ストアドアウトライン 50

131.269スループット

～要件 ._ 3

せ

索引アクセスのコスト … 64
索引スキヤン . .… … . .234
索引付き表 . ..149
索引統計…… .… …67

索引の一意スキャン …̈ … 83
索引の高速フルスキヤン… ... 85
索引のスキップスキヤン . 86
索引のスキヤン 82

索引の付与 217.220

索引のフルスキヤン … 84.100
索引のレンジスキヤン 82
索引ブロック … … …64
サマリ表 … … .… …… 17]

再テスト. 201 正規化 155

155

性能インプツト 211.222.223

性能最適化 . _ 163
性能チーム . . ………… … 185

性能テスト………… .… .175.215
性能統計情報 … … . ………………77
性能分析 ._ … ……… .227
性能面のテスト … .¨ …… .. 211
性能問題 ……… . 37
設計…………… . … _ 152
設計者 …. …… ……… .194
セッション情報… . 145
セレクティビティ. ..88.106
選択率 … ._ …………… 88
全表スキヤン__ … …… … ……63

整合性の確保. _…

し

|

シーケンシャルアクセス 84

275

そ

ソートマージ結合 99

た

ダーティーリード … ._ ………127

～の保留 239
統合化 159,163
動的サンプリング 72
独立性 126
トツプダウンアプローチ 154
トライ&エラー 262
トランザクション処理 126
トランザクションの分離レベル 127

第 1正規化 157

157

158

128

127

196

第 2正規化

第 3正規化

待機イベント

耐久性

タイムスタンプ

～出力機能 201

高さ調整ヒストグラム 70
多重試験 ̈. . .ぃ _ …212
多重処理 … .. 123
単体テスト…. 175,216.217

内部表 94

ね

チェックシート 218
チエックリスト 205
チューニング 28
～効果 138,272
～対象の SQL 268

101直積結合

て

定常監視 227.231

データ… . … 213
データアクセス方法 _… … … 79
～の判断指針 ……… _ 80,91
データの整合性 …̈ … __.… 126
データブロック数

データ分析 154
データベース定義文 38
データベースバッファキャッシュ 19
データベースリンク]92
テクニカルメンバー 184
テストシナリオ 209
テスト体制 208
テストフェーズ 175,215,216
手続き型プログラミング言語

と

6

統計情報 60,66.105.214,229,232
～の再収集 229

233～の収集タイミング

ネステッドループ結合 64.94

は

90

バインド値 150

バインドピーク機能 90

バインド変数1 ._ . .40,90
八ッシュ結合■ .. … .96
パフォーマンスアセスメント … _189
パフオーマンスチユーニング .… 29
パフォーマンス統計 67

パフォーマンスボトルネック …… … 192
パフォーマンス問題. .… …………3,29
SQL～ _ .… 2
～の切り分け … .196
パフォーマンス要件 … 3.29
パフォーマンスリスク . _183.254
パフォーマンス劣化 36

パラメータ

八―ドパース

ち

63 パラメータファイル
213
202

バルクバインド

バルクフェッチ

判断指針

データアクセス方法の～ _80.91

表結合順序の～ 92

表結合方法の～ 92

ひ

ヒストグラム _69.88
ブト:正|六月化 159
ヒット件数チェック 149
ビュー 44.62
表結合順序の判断指針

150

149

～の特性 .233 表結合の判断指針 . … … 102

12761

表結合方法の判断指針 92

表統計 67

表同士の結合関係 106

表のスキャン 8]

表フルスキャン 81

品質管理計画]84

ヒン ト句 50.60.72,202

頻度分布ヒス トグラム 69

い

め

命名規則 47

メンテナンス設計 227

ロジック処理 . … … 144
ロッキングメカニズム _ . _128
ロック . .… _ …3.125,128
論理演算 … …… 90
論理設計 _ ……………… ._124,153.192
論理データモデル … … ………… 」53

よ

索

弓l
ら

フアジーリード

フアントムリード

127

127

フィジビリティテスト … …… .182
副問い合わせ .. ̈. .48
物理設計 124.193

物理的ブロックアクセス 145
フルスキヤン 234
プロジェクトマネージャ (PM) 179,249
プロジェクトマネジメントオフィス →PMO
プロジェクトメンバー 259
プロトタイプ検証 189
プロトタイプ試験 188
プロパティファイル 202
分割化 163
文キャッシュ 150
文の解析 145

r、

ペアプログラミング . _ 205
ベースライン … 209
変数バインド 145

ベンチマークプログラム 130

方式設計 192
保守性 47
～の向上 155
ボトムアップアプローチ 154
ボトルネック 132

マテリアライズドビュー . .… 171
マルチブロックアクセス .85

ラッチ 128
じメ

列統計 69

ろ

リコンパイル 201
リレーショナルデータベース 155

例外申請書… …42.50

例外申請フロー . 38
レコードの存在チェック . _¨ 43
レスポンス 13].229.269
～測定

～要件

211

3

無駄な処理

無駄な待機

3

3

む

12771

1 1

171

加藤祥平 (か とうしょうへい)

日本オラクル株式会社テクノロジーソリューションコンサルテイング統括本部に所属。Oracle Databasc/
Exadataを軸に、さまざまなシステムの企画/設計/チ ューニング/運用に関するコンサルテイングに従
事。最近はコンサルティングサービスの提案活動にも力を入れており、システム基盤全体に対するアーキ
テクトとして日々を過ごしている。自宅に検証用のRAC環境あり。沖縄に住んでいる弟家族の家に、家族、
両親と年に何回か行っており、次回、昨年生まれた息子と共に行けることをとても楽しみにしている。

中島益次郎 (なかしまますじろう)

日本オラクル株式会社テクノロジーソリューションコンサルティング統括本部に所属。福岡生まれの九
州男児。DB職人道を極めるべく、日々努力を怠らない。コンサルタントとして、 ミッションクリティ
カルシステムの運用/チューニング/ト ラブル対応などに従事。最近では、データベースだけでなくセ
キュリティを語れるコンサルタントとして、日々奮闘中。CISSP。

※Oracleコ ンサルティングのURLは 次のとおり。
http:〃 WWW・∝ aCle.∞ m/jp/prOduCtS/COnSdthノ hdeX■11」

※本書は『基礎から学ぶ Oracle SQLチ ューニング』(2009年 9月 16日 刊 ISBN978479812066‐ 9)を 一部加筆・

改稿した新装版です。

記事初出

●月刊 DBマ ガジン2008年 5月 号～ 2009年 5月号連載
「本気で学ぶSQLチ ューニング」(全 13回)
0月刊 DBマ ガジン2009年 6月 号 特集 3
「絶対に身に付けたいSQLチ ューニングの基礎知識」

装丁 :イ イタカデザイン飯高 勉

本文デザイン :株式会社 トップスタジオ デザイン室 (轟木 亜紀子)
DTP:株式会社 トップスタジオ

かいぜん じぜんたいさく やくだ
パフォーマンス改善と事前対策に役立つ
オラクル エスれ―エル

Oracle SQLチ ューニング

2011年 12月 19日 初版第 1刷発行

加藤祥平 (か とうしょうへい)

中島益次郎 (なかしまますじろう)

佐々木 幹夫

株式会社 翔泳社 (h‖p://wwwshoeisha.co.ip)

株式会社 ワコープラネット

者

　

人

所

本製

行

行

。昴

著

　

発

発

印

0201l KATC),Shohei、 NAKASH:MA,Masuiiro

*本書は著作権法上の保護を受けています。本書の一部または全部について

(ソ フトウェアおよびプログラムを含む)、 株式会社翔泳社から文書による許

諾を得ずに、いかなる方法においても無断で複写、複製することは禁じられ

ています。

*本書へのお問い合わせについては、1ページに記載の内容をお読みください。

*落丁・乱丁はお取り替えいたします。03‐ 5362‐3Ю 5ま でご連絡ください。

iSBN978‐ 4-7981-2538-1 Printed in Japan

/JheCt

D

パフォーマンス改善と事前対策に役立つ

oracne
Cコ|′
r｀
lT 本気で学ぶ実践的な
武:,1ゝく」:」L」 考え方とテクニック

チ=Lニング

〔‖:
SHOE:SHA

||‖ ||||||||||||‖ ||||||||‖ ||

(:)FaCle

SOLl ‐‐
チュLニング

9784798125381

|‖ |||‖ |||||||||||||||||||‖ |

嶽 量]鷹:

1923055026001

lSBN978‐ 4‐7981-2538-1

C3055¥2600巨

株式会社翔泳社
定価 :本体2,600円 +税

Panl SOLパフォーマンス問題の理由と原因を探る

Chapter 01 SQLチ ューニングはなぜ必要か
'

Chapter 02 なぜSOLでパフォーマンス問題が起きやすいのか'
Chap“ r03 なぜSOLパフォーマンス問題で苦しむのか

'

Chapter 04 SOLパフォーマンス問題の「解決」と「予防」

Chapter 05 SOLは どのように処理されるのか

par2 SOL′ フヾォーマンス問題を「解決」する

Chapter06 SOLパ フォーマンス問題の解決アプローチ

Chaメ er 07 定型的なSQLチューニング

Chaメ er 08 非定型的なチューニング

chapter o0 0racl● アーキテクチャに基づいたSOLチューニング

Chapter 10 アプリケーションロジックを意識したSOLチューニング

chapter ll 論理設計におけるSOLチューニング

Part3 SOLパ フォーマンス問題を「予防」する

Chapter 12 パフォーマンス問題を起こさないためには

Chapter 13

Chapter 14

Cha"eF 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

計画フェーズ

要件定義フェーズ

設計フェーズ

開発フェーズ

テストフェース'

運用フェーズ

実際のプロジェクトでどこまでやるべきか

part 4「解決」から「予防」ヘ

～パフォーマンス問題を減らすために

Chapter 20「 Database Administrator」 から

「Database AЮ hiね ct」ヘ

S=
SHOEISHA

轟

明朝軍

