

Ruby on Rails 6実践ガイド［機能拡張編］

黒田努

はじめに

　本書は、2019年12月に出版された『Ruby on Rails 6実践ガイド』の続編です。
2014年7月に発売された『実践Ruby on Rails 4 機能拡張編*1』をRuby on Rails（以
下、Rails）バージョン6向けに大幅加筆を施したものです。ただし、Chapter 3は『実践
Ruby on Rails 4: 現場のプロから学ぶ本格Webプログラミング』の最終章に基づいていま
す。

[*1] 『実践Ruby on Rails 4 機能拡張編』は電子書籍として発売されました。Amazonからプリント・オ
ン・デマンド（POD）で製本された書籍を入手することができましたが、単行本として一般の書店で流通し
ませんでした。

　私たちは本編で企業向け顧客管理システムBaukis2を開発してきました。この機能拡
張編でもそれを続けることになります。全体は4部に分かれます。最初のPart IではBaukis2
の開発環境構築手順とソースコードの概要をおさらいします。本書単独で読まれる方は、
本編で導入された「フォームオブジェクト」、「サービスオブジェクト」、「モデルプレゼンター」など
の概念についてここで学んでください。

　本書のテーマは多岐にわたります。クッキー、リクエスト元のIPアドレス、Ajax、データベー
ストランザクション、排他的ロック、ツリー構造のデータ、など。しかし、おそらくRails初学者の
多くが最も難しく感じるのは、Chapter 6以降で扱う「多対多の関連付け」でしょう。

　Baukis2では、顧客向けの各種プログラム（催し物、イベント、講習会、セミナー、キャ
ンペーンなど）とプログラムへの申込者が多対多（N対N）で関連付けされます。すなわ
ち、ひとりの顧客は複数のプログラムに申し込むことができて、ひとつのプログラムには複数の
顧客が申し込めます。現実のWebアプリケーションでは、しばしばこのような関連付けを持つ
データベース設計が必要となります。最終章（Chapter 12）では、顧客からの問い合わせ
にタグ付けする機能を作る過程で、多対多の関連付けが再び登場します。

　この機能拡張編の特色はもうひとつあります。それは、HTMLフォームのさまざまなバリ
エーションを紹介していることです。複数の入力欄を持つ検索フォーム（Chapter 3）、チェ
ックボックス「次回から自動でログイン」付きのログインフォーム（Chapter 4）、チェックボッ
クス群を用いて複数のオブジェクトを一括で更新したり削除したりするフォーム（Chapter 5,
7）、確認画面付きの入力フォーム（Chapter 9）、などです。特にRailsで業務システムを
開発する場合、要求仕様に応じて自由にHTMLフォームを設計・実装する力が求められま
す。一種のレシピ集として本書を活用してください。

　プロフェッショナルとしてRailsアプリケーション開発現場で活躍したい読者の皆様に、本
書が役に立てば幸いです。

　2020年2月吉日

　黒田努

本書の表記

本文内で注目すべき要素は、太字で表記しています。

コマンドラインのプロンプトは % または $ で示されます。

実行結果の出力を省略している部分は、“...”あるいは(省略)で表記します。

長いコマンドラインでは、行末に \ を入れ、改行しています。

% sudo apt-get install \

 apt-transport-https \

(省略)

行番号に + が付いている行は、追加する行、 - が付いて薄い文字で示される行は、
削除する行を表します。また、リストで注目すべき箇所は下線で示されます。

LIST spec/experiments/string_spec.rb

 :

 11 - example "nilの追加" do

 11 + xexample "nilの追加" do

 12 s = "ABC"

 13 s << nil

 14 expect(s.size).to eq(4)

 15 end

 16 end

 17 end

本書で使用するコード
　本書で使用するサンプルコードは、以下のURLから入手できます。なお、サンプルコード

に関しては、随時更新される可能性がありますのでご了承ください。

https://github.com/kuroda/baukis2

　各章終了時点におけるソースコード一式を入手するには、ブランチを切り替えてくださ
い。ブランチ名はbook2-chNNのような形式となっています。NNの部分を章番号で置き換えて
ください。例えば、Chapter 7に対応するブランチはbook2-ch07です。本書の開始時点に
対応するブランチはbook2-ch00です。

https://github.com/kuroda/baukis2

読者サポートページ

https://www.oiax.jp/jissen_rails6

https://www.oiax.jp/jissen_rails6

本書で使用した実行環境

オペレーティングシステム

macOS 10.15（Catalina）

Ubuntu 18.04

Windows 10 (May 2019 Update 1903)

仮想環境

Docker CE 19.03

Docker Composer 1.24

Docker Desktop for Macintosh

Oracle VirtualBox 6.0 (for Windows)

本書では仮想化ソフトウェアとしてDockerを採用しています。筆者は本書執筆時点でDocker for
Windowsが十分に安定していないと判断したため、Windowsはサポート対象外としています。
Windowsユーザーの方には、Oracle VirtualBoxを使ってUbuntu 18.04の仮想マシンを構築し、そ
の上でDockerを利用することをお勧めします。

開発環境

Ruby 2.6

Ruby on Rails 6.0

PostgreSQL 11

目次

1. 大扉

2. はじめに

1. 本書の表記

2. 本書で使用するコード

3. 読者サポートページ

4. 本書で使用した実行環境

3. 第1章　Baukis2の概要と環境構築手順

1. 1.1　顧客管理システムBaukis2

2. 1.2　Baukis2のセットアップ、起動、終了

4. 第2章　Baukis2ソースコードの要点

1. 2.1　アプリケーション本体

2. 2.2　テストコード

5. 第3章　検索フォーム

1. 3.1　顧客検索フォーム

2. 3.2　検索機能の実装

3. 3.3　演習問題

6. 第4章　次回から自動でログイン

1. 4.1　顧客のログイン・ログアウト機能

2. 4.2　自動ログイン機能の追加

3. 4.3　RSpecによるテスト

7. 第5章　IPアドレスによるアクセス制限

1. 5.1　IPアドレスによるアクセス制限

2. 5.2　許可IPアドレスの管理

3. 5.3　演習問題

8. 第6章　多対多の関連付け

1. 6.1　多対多の関連付け

2. 6.2　プログラム管理機能（1）

3. 6.3　パフォーマンスの改善

9. 第7章　複雑なフォーム

1. 7.1　プログラム管理機能（2）

2. 7.2　プログラム管理機能（3）

3. 7.3　プログラム申込者管理機能

4. 7.4　演習問題

10. 第8章　トランザクションと排他的ロック

1. 8.1　プログラム一覧表示・詳細表示機能（顧客向け）

2. 8.2　プログラム申し込み機能

3. 8.3　排他制御

4. 8.4　プログラム申し込み機能の仕上げ

11. 第9章　フォームの確認画面

1. 9.1　顧客自身によるアカウント管理機能

2. 9.2　確認画面の仮実装

3. 9.3　確認画面の本実装

4. 9.4　演習問題

12. 第10章　Ajax

1. 10.1　顧客向け問い合わせフォーム

2. 10.2　問い合わせ到着の通知

13. 第11章　ツリー構造

1. 11.1　問い合わせの一覧表示と削除

2. 11.2　メッセージツリーの表示

3. 11.3　パフォーマンスチューニング

14. 第12章　タグ付け

1. 12.1　問い合わせへの返信機能

2. 12.2　メッセージへのタグ付け

3. 12.3　タグによるメッセージの絞り込み

4. 12.4　一意制約と排他的ロック

5. 12.5　演習問題

15. 付録A　演習問題解答

16. 著者紹介

17. 奥付

第1章　Baukis2の概要と環境構築手順

本書『Ruby on Rails 6実践ガイド: 機能拡張編』は、書籍『Ruby on
Rails 6』（以下、本編と呼ぶ）の続編です。このChapter 1では、機能拡
張編単独で読まれる読者のためにサンプルアプリケーションの概要と環境構
築手順を解説します。

1.1　顧客管理システムBaukis2
　Baukis2は、Ruby on Railsの学習用に作られた顧客管理システムです。読者の皆さ

んには本書を通じて段階的にBaukis2を構築しながら、Railsアプリケーションの開発プロセス
を体験していただきます。本節では、Baukis2の概要を説明します。

本節の内容は、本編Chapter 1の内容を再構成したものです。

　このシステムの利用者は、職員（staff members）と管理者（administrators）と
顧客（customers）に分類されます。各利用者がBaukis2でできることを以下にまとめます
（★印は本編で実装されていないことを示します）。

全利用者共通：

ログイン・ログアウト　※自分自身でアカウントを登録する機能はない。

職員：

顧客情報の管理（一覧表示、詳細表示、新規登録、更新、削除）。顧客情報に
は、氏名、性別、生年月日、メールアドレス、パスワード、自宅住所、勤務先、電話番
号などが含まれる（図1.1、図1.2、図1.3）。

顧客情報の検索。★

プログラム（各種イベント、セミナーなど）の管理（一覧表示、詳細表示、新規登
録、更新、削除）。★

プログラム参加者の管理（一覧表示、承認・キャンセルフラグの設定）。★

顧客からの問い合わせの管理（一覧表示、詳細表示、検索、返信、タグ付け）。
★

図1.1: 顧客の一覧表示

図1.2: 顧客の編集フォーム(1)

図1.3: 顧客の編集フォーム(2)

管理者：

職員の管理（一覧表示、新規登録、更新、削除）。

職員のログイン・ログアウト記録の閲覧。

許可IPアドレスの管理（一覧表示、新規登録、削除）。★

自分自身のパスワードの変更。★

顧客：

自分自身のアカウント情報の変更。★

自分自身のパスワードの変更。★

プログラムへの申し込みとキャンセル。★

職員への問い合わせ。★

職員からのメッセージ（返信）の管理（一覧表示、詳細表示、返信、削除）。★

　これらの他に、Baukis2には以下のような仕様があります。

職員および管理者は1時間以上にわたってBaukis2を利用しないと自動的にログアウト
させられる。★

職員および管理者は許可IPアドレス以外からアクセスできない。ただし、この機能の利
用は設定ファイルで無効化できる。★

各利用者別のトップページのURLを設定ファイルで変更できる。デフォルトの設定は次
の通り。

職員 …… http://baukis2.example.com/

管理者 …… http://baukis2.example.com/admin

顧客 …… http://example.com/mypage

1.2　Baukis2のセットアップ、起動、終了
　この項では、本書（機能拡張編）を本編とは独立して読まれる方のために、本編最

終章（Chapter 18）終了時点での開発環境をセットアップし、Baukis 2 の起動と終了を
行う手順を説明します。本編から引き続いて学習を進める方は、この節を読み飛ばしてくだ
さい。

1.2.1　DockerとDocker Composeのバージョンを確認

　本書では、仮想化環境構成ツールであるDockerとDocker Composeを利用します。
ターミナルで以下のコマンドを順に実行して、これらのツールがインストールされているかどうかを
調べてください。

$ docker --version

Docker version 19.03.2, build 6a30dfc

$ docker-compose --version

docker-compose version 1.24.1, build 4667896b

　DockerとDocker Composeをインストールする手順は、本編Chapter 2で説明されて
います。本編をお持ちでない方は、「mac docker compose install」あるいは「ubuntu
docker compose install」というキーワードでネット検索し、なるべく新しい情報を探してくだ
さい。

1.2.2　Rails開発用コンテナ群の構築

　ターミナルで以下のコマンド群を順に実行します。

% git clone https://github.com/oiax/rails6-compose.git

% cd rails6-compose

% ./setup.sh

　1番目のコマンドではバージョン管理システムGitのコマンドgitを利用しています。Gitをイ
ンストールする手順は、本編Chapter 2で説明されています。本編をお持ちでない方は、
「mac git install」あるいは「ubuntu git install」というキーワードでネット検索し、なるべく新
しい情報を探してください。

Ubuntuの場合、ここで「Got permission denied while trying to connect to the Docker
daemon socket at unix:///var/run/docker.sock: ...」というエラーメッセージが出るかもしれません。
その場合は、sudo usermod -aG docker $(whoami)コマンドを実行し、Ubuntuからログアウトして、
再ログインしてください。

1.2.3　Baukis2のセットアップ

　ターミナルで以下のコマンド群を順に実行します。

% docker-compose up -d

% docker-compose exec web bash

　2番目のコマンドでwebという名前のDockerコンテナを起動し、bashを立ち上げていま
す。本書ではこのコンテナを「webコンテナ」と呼びます。

　続いて、以下のコマンド群を順に実行します。

$ git clone -b book2-ch00

https://github.com/kuroda/baukis2.git

$ cd baukis2

$ bin/bundle

$ yarn

　データベースを初期化します。

$ bin/rails db:setup

Created database 'baukis2_development'

Created database 'baukis2_test'

Creating staff_members....

Creating administrators....

Creating staff_events....

Creating customers....

　いったん、webコンテナから抜けます。

$ exit

1.2.4　hostsファイルの設定

　顧客管理システムBaukis2の仕様に、3種類の利用者（職員、管理者、顧客）ごと
のトップページを別々のURLに設定できる、というものがありました。これからこの仕様を踏まえ
て開発を進めるには、仮想マシン上で動いているRailsアプリケーションに特定のホスト名でア
クセスする必要があります。

　そこでlocalhostに相当する127.0.0.1というIPアドレスにexample.comと
baukis2.example.comという2つのホスト名を設定することにしましょう。

　作業はホストOS側で行います。どのOSでもhostsというファイルを管理者権限で編集
します。hostsファイルのあるディレクトリはホストOSによって異なります。macOSの場合
は/private/etcディレクトリに、Ubuntuの場合は/etcディレクトリにあります。

　テキストエディタでhostsファイルを開き、次の1行を追加してください。

127.0.0.1 example.com baukis2.example.com

もしあなたのhostsファイルに127.0.0.1で始まる行がすでに存在した場合でも、その行を消したりコメン
トアウトせずに、単純にこの1行を追加してください。

1.2.5　Baukis2の起動

　ターミナルで以下のコマンド群を順に実行します。

% docker-compose exec web bash

$ cd baukis2

$ bin/rails s -b 0.0.0.0

1.2.6　Baukis2に職員としてログインする手順

　ブラウザでhttp://baukis2.example.com:3000を開きます。画面右上の「ログイン」リ
ンクをクリックして、ログインフォームを開き、メールアドレス欄にtaro@example.com、パスワード
欄にpasswordと入力して「ログイン」ボタンをクリックします。

1.2.7　Baukis2に管理者としてログインする手順

　ブラウザでhttp://baukis2.example.com:3000/adminを開きます。画面右上の「ログ
イン」リンクをクリックして、ログインフォームを開き、メールアドレス欄にhanako@example.com、
パスワード欄にfoobarと入力して「ログイン」ボタンをクリックします。

1.2.8　Baukis2に顧客としてログインする手順

　ブラウザでhttp://example.com:3000/mypageを開きます。画面右上の「ログイン」リン
クをクリックして、ログインフォームを開き、メールアドレス欄にsato.ichiro@example.jp、パス

ワード欄にpasswordと入力して「ログイン」ボタンをクリックします。

顧客向けのログイン機能は本書（機能拡張編）のChapter 4で作成します。現時点で
は、このURLにアクセスしてもエラーとなります。

1.2.9　Baukis2の終了

　webコンテナ上でCtrl＋Cを入力すると、Baukis2が終了します。学習を終了または中
断する場合は、exitコマンドでwebコンテナから抜けてください。

　コンテナ群を停止するにはターミナルで次のコマンドを実行します。

% docker-compose stop

第2章　Baukis2ソースコードの要点

本章では、『Ruby on Rails 6実践ガイド』の本編で作成したサンプルア
プリケーションBaukis2のソースコードについて要点を解説します。

2.1　アプリケーション本体

2.1.1　ルーティング

　configディレクトリにあるroutes.rbは、Railsアプリケーションの要となるファイルです。
このファイルにHTTPクライアント（ブラウザ）からのリクエストをどのアクションが処理するかを
記述します。

　本編終了時点でのconfig/routes.rbのコードは次の通りです。

LIST config/routes.rb

 1 Rails.application.routes.draw do

 2 config = Rails.application.config.baukis2

 3

 4 constraints host: config[:staff][:host] do

 5 namespace :staff, path: config[:staff][:path] do

 6 root "top#index"

 7 get "login" => "sessions#new", as: :login

 8 resource :session, only: [:create, :destroy]

 9 resource :account, except: [:new, :create,

:destroy]

 10 resource :password, only: [:show, :edit, :update

]

 11 resources :customers

 12 end

 13 end

 14

 15 constraints host: config[:admin][:host] do

 16 namespace :admin, path: config[:admin][:path] do

 17 root "top#index"

 18 get "login" => "sessions#new", as: :login

 19 resource :session, only: [:create, :destroy]

 20 resources :staff_members do

 21 resources :staff_events, only: [:index]

 22 end

 23 resources :staff_events, only: [:index]

 24 end

 25 end

 26

 27 constraints host: config[:customer][:host] do

 28 namespace :customer, path: config[:customer][:path]

do

 29 root "top#index"

 30 end

 31 end

 32 end

　このファイルを理解するためのポイントが３つあります。

1. 2行目のRails.application.config.baukis2は何か。

2. constraintsメソッドはどのような役割を果たすのか。

3. namespaceメソッドはどのような役割を果たすのか。

　これらについては本編Chapter 9で解説されていますが、以下ごく簡単に説明します。
Rails.application.config.baukis2はconfig/initializersディレクトリの
baukis2.rbで定義されたハッシュを返します。初期状態では次のように定義されています。

LIST config/initializers/baukis2.rb

 1 Rails.application.configure do

 2 config.baukis2 = {

 3 staff: { host: "baukis2.example.com", path: "" },

 4 admin: { host: "baukis2.example.com", path: "admin"

},

 5 customer: { host: "example.com", path: "mypage" }

 6 }

 7 end

　Rails.application.config.baukis2が返すハッシュを変数configにセットすれば、

config[:staff][:host]

で、"baukis2.example.com" という文字列を取得できます。

　config/routes.rbで3回使われているconstraintsメソッドは、HTTPリクエストに対
して制約（条件）を設定します。15-25行をご覧ください。

LIST config/routes.rb

 :

 15 constraints host: config[:admin][:host] do

 :

 25 end

 :

　hostオプションに対して "baukis2.example.com" という文字列を指定しています。こ
れは、HTTPリクエストのホストがこの文字列であるという制約において、do ... endに書か
れた設定が有効になる、という意味です。

　続いて、16-24行をご覧ください。

LIST config/routes.rb

 :

 16 namespace :admin, path: config[:admin][:path] do

 17 root "top#index"

 18 get "login" => "sessions#new", as: :login

 19 resource :session, only: [:create, :destroy]

 20 resources :staff_members do

 21 resources :staff_events, only: [:index]

 22 end

 23 resources :staff_events, only: [:index]

 24 end

 :

　namespaceメソッドは、名前空間を設定します。ここでは名前空間 :admin を設定す
ることによって、do ... endの内側で設定されるルーティングのURLパス、コントローラ名、ル
ーティング名に影響が及びます。具体的には、以下の３つの効果が現れます。

1. URLパスの先頭に "/admin" が付加される。

2. コントローラ名の先頭に "admin/" が付加される。

3. ルーティング名の先頭に "admin_" が付加される。

　18行目には次のように書いてあります。

 get "login" => "sessions#new", as: :login

　もしも名前空間が設定されていなければ、URLパスは /login、コントローラ名は
sessions、ルーティング名は :login ですが、名前空間 :admin が設定されていますので、
URLパスは /admin/login、コントローラ名はadmin/sessions、ルーティング名は
:admin_loginとなります。

　なお、URLパスの "admin" の部分はnamespaceメソッドのpathオプションで変更可能
です。Baukis2の場合は、config/initializers/baukis2.rbで config[:admin]
[:path] の値を書き換えれば、URLパスが変化します。

2.1.2　Strong Parameters

　Strong Parametersはマスアサインメント脆弱性と呼ばれるWebアプリケーション特有
のセキュリティホールへの対策としてRailsが用意している仕組みです（本編Chapter 11参
照）。

　次に示すstaff/accountsコントローラのソースコードをご覧ください。

LIST app/controllers/staff/accounts_controller.rb

 1 class Staff::AccountsController < Staff::Base

 2 def show

 3 @staff_member = current_staff_member

 4 end

 5

 6 def edit

 7 @staff_member = current_staff_member

 8 end

 9

 10 def update

 11 @staff_member = current_staff_member

 12 @staff_member.assign_attributes(staff_member_params)

 13 if @staff_member.save

 14 flash.notice = "アカウント情報を更新しました。"

 15 redirect_to :staff_account

 16 else

 17 render action: "edit"

 18 end

 19 end

 20

 21 private def staff_member_params

 22 params.require(:staff_member).permit(

 23 :email, :family_name, :given_name,

 24 :family_name_kana, :given_name_kana

 25)

 26 end

 27 end

　12行目をご覧ください。

 @staff_member.assign_attributes(staff_member_params)

　Strong Parametersが無効である状態では、ここは次のように書けます。

 @staff_member.assign_attributes(params[:staff_member])

　すなわち、フォームから送られてきたパラメータをそのままassign_attributesメソッドの
引数に渡せます。しかし、Strong Parametersを有効にした場合、例外
ActionController::ParameterMissingが発生します。

　プライベートメソッドstaff_member_paramsの中身は次の通りです。

 params.require(:staff_member).permit(

 :email, :family_name, :given_name,

 :family_name_kana, :given_name_kana

)

　このように書くことで、パラメータの第1階層のキーとして :staff_member が含まれること
が確認され、そしてパラメータの第2階層のキーとしては列挙された5つのキー
（:email、:family_name、など）以外のものが拒絶されることになります。

2.1.3　ActiveSupport::Concern

　Baukis2ではActiveSupport::Concernという仕組みが繰り返し使われています。使
用例を見てみましょう。

LIST app/models/concerns/email_holder.rb

 1 module EmailHolder

 2 extend ActiveSupport::Concern

 3

 4 included do

 5 include StringNormalizer

 6

 7 before_validation do

 8 self.email = normalize_as_email(email)

 9 end

 10

 11 validates :email, presence: true,

"valid_email_2/email": true,

 12 uniqueness: { case_sensitive: false }

 13 end

 14 end

　ActiveSupport::Concernを利用して定義されたモジュールは、
app/controllers/concernsディレクトリまたはapp/models/concernsディレクトリに配置
します。前者はコントローラ用モジュールの置き場所、後者はモデル用モジュールの置き場所
です。

　2行目をご覧ください。

 extend ActiveSupport::Concern

　このようにモジュール定義の中でActiveSupport::Concernモジュールをextendすると、
クラスメソッドincludedが使えるようになります。このメソッドはブロックを取り、ブロック内のコ

ードがモジュールを読み込んだクラスの文脈で評価されます。

　includedブロック内のコード（5-12行）をご覧ください。

 include StringNormalizer

 before_validation do

 self.email = normalize_as_email(email)

 end

 validates :email, presence: true,

"valid_email_2/email": true,

 uniqueness: { case_sensitive: false }

　あるクラスがこのEmailHolderモジュールをincludeすると、クラス定義の過程でこれら
のコードが評価（実行）されます。例えば、Customerクラス定義の冒頭は次のように書か
れています。

LIST app/models/customer.rb

 1 class Customer < ApplicationRecord

 2 include EmailHolder

 3 include PersonalNameHolder

 4 include PasswordHolder

 :

　2行目でEmailHolderモジュールをincludeしていますね。この結果、Customerクラス
定義の中で次のように書いたのと同じ効果が得られます。

 include StringNormalizer

 before_validation do

 self.email = normalize_as_email(email)

 end

 validates :email, presence: true,

"valid_email_2/email": true,

 uniqueness: { case_sensitive: false }

　ActiveSupport::Concernモジュールに関しては、本編Chapter 6, 14, 17で説明され
ています。

2.1.4　値の正規化

　次に示すのはモデルクラスAddressのソースコードからの抜粋です。

LIST app/models/address.rb

 :

 7 before_validation do

 8 self.postal_code =

normalize_as_postal_code(postal_code)

 9 self.city = normalize_as_name(city)

 10 self.address1 = normalize_as_name(address1)

 11 self.address2 = normalize_as_name(address2)

 12 end

 :

　ここで使われている2つのメソッドnormalize_as_postal_codeとnormalize_as_name

は、いずれも値の正規化（normalization）を行うメソッドで、StringNormalizerモジュー
ルの中で次のように定義されています。

LIST app/models/concerns/string_normalizer.rb

 :

 10 def normalize_as_name(text)

 11 NKF.nkf("-W -w -Z1", text).strip if text

 12 end

 :

 18 def normalize_as_postal_code(text)

 19 NKF.nkf("-W -w -Z1", text).strip.gsub(/-/, "") if

text

 20 end

 :

　NKFは日本語特有の各種文字列変換機能を提供するモジュールです。
normalize_as_nameメソッドは与えられた文字列に含まれる全角の英数字、記号、全角
スペースを半角に変換し、先頭と末尾にある空白を除去して返します。
normalize_as_postal_codeメソッドは、normalize_as_nameメソッドと同様の変換をした
上で、さらにマイナス記号を除去します。

　この種の正規化をバリデーションの前に行うのは、入力フォームの使い勝手をよくするた
めの工夫です。例えば、マイナス記号が含まれていても含まれてなくても郵便番号として受
け付け、住所の中に含まれる英数字が全角でも半角でもエラーになりません。

2.1.5　フォームオブジェクト

　フォームオブジェクトは、Railsの正式な用語ではなく、Railsコミュニティで使われるよう
になった概念です。本書では「form_withメソッドのmodelオプションの値として指定できるオ
ブジェクト」という意味で用いています。

　次に示すのは、管理者ログインフォームのためのフォームオブジェクトAdmin::LoginForm

のソースコードです。

LIST app/forms/admin/login_form.rb

 1 class Admin::LoginForm

 2 include ActiveModel::Model

 3

 4 attr_accessor :email, :password

 5 end

　単純に言えば、ActiveModel::Modelモジュールをincludeしたクラスはform_withメソ
ッドのmodelオプションの値として指定できるので、それはフォームオブジェクトだということにな
ります。フォームオブジェクトAdmin::LoginFormはemailおよびpasswordという2つの属性を
持ちます。これらの属性が、ログインフォームの中に配置されるメールアドレス欄とパスワード欄
を生成するために利用されます。

　Admin::LoginFormは、admin/sessionsコントローラのnewアクションで使われています
（8行目）。

LIST app/controllers/admin/sessions_controller.rb

 :

 4 def new

 5 if current_administrator

 6 redirect_to :admin_root

 7 else

 8 @form = Admin::LoginForm.new

 9 render action: "new"

 10 end

 11 end

 :

　そして、Admin::LoginFormオブジェクトのセットされたインスタンス変数 @form は、ERB
テンプレートで次のように使用されます。

LIST app/views/admin/sessions/new.html.erb

 1 <% @title = "ログイン" %>

 2

 3 <div id="login-form">

 4 <h1><%= @title %></h1>

 5

 6 <%= form_with model: @form, url: :admin_session do |f|

%>

 7 <div>

 8 <%= f.label :email, "メールアドレス" %>
 9 <%= f.text_field :email %>

 10 </div>

 11 <div>

 12 <%= f.label :password, "パスワード" %>

 13 <%= f.password_field :password %>

 14 </div>

 15 <div>

 16 <%= f.submit "ログイン" %>

 17 </div>

 18 <% end %>

 19 </div>

　フォームオブジェクトを用いると、データベーステーブルと対応関係を持たないフォームを
form_withメソッドで生成できます。フォームオブジェクトに関しては、本編8-1節で解説して
います。

2.1.6　サービスオブジェクト

　サービスオブジェクトもフォームオブジェクト同様にRailsの正式用語ではありません。サー
ビスオブジェクトはアクション（コントローラのパブリックなインスタンスメソッド）と同様に、ある
まとまった処理を行います。例えば、ユーザー認証のような処理です。この処理をサービスと呼
びます。

　サービスオブジェクトのコードを配置するディレクトリは決まっていませんが、本書では
app/servicesディレクトリを使用します。

　次に示すのは管理者の認証を行うサービスオブジェクトAdmin::Authenticatorのソー
スコードです。

LIST app/services/admin/authenticator.rb

 1 class Admin::Authenticator

 2 def initialize(administrator)

 3 @administrator = administrator

 4 end

 5

 6 def authenticate(raw_password)

 7 @administrator &&

 8 @administrator.hashed_password &&

 9

BCrypt::Password.new(@administrator.hashed_password) ==

raw_password

 10 end

 11 end

　これを利用しているのは、admin/sessionsコントローラのcreateアクションです。

LIST app/controllers/admin/sessions_controller.rb

 :

 13 def create

 14 @form = Admin::LoginForm.new(login_form_params)

 15 if @form.email.present?

 16 administrator =

 17 Administrator.find_by("LOWER(email) = ?",

@form.email.downcase)

 18 end

 19 if

Admin::Authenticator.new(administrator).authenticate(@form.pas

sword)

 20 if administrator.suspended?

 21 flash.now.alert = "アカウントが停止されています。"

 22 render action: "new"

 23 else

 24 session[:administrator_id] = administrator.id

 25 session[:admin_last_access_time] = Time.current

 26 flash.notice = "ログインしました。"

 27 redirect_to :admin_root

 28 end

 29 else

 30 flash.now.alert = "メールアドレスまたはパスワードが正しくありませ
ん。"

 31 render action: "new"

 32 end

 33 end

 :

　19行目をご覧ください。

リスト2.1:

 if

Admin::Authenticator.new(administrator).authenticate(@form.pas

sword)

　まずAdmin::Authenticatorクラスのインスタンスを作り、そのインスタンスメソッド
authenticateにパスワード文字列を渡すことで、ユーザー認証を行っています。

　サービスオブジェクトに関しては、本編8-2節で解説しています。

2.1.7　モデルプレゼンター

　モデルプレゼンターは、ERBテンプレートのソースコードを効率よく記述するためのオブジェ
クトです。Railsの公式用語ではありません。本書ではapp/presentersディレクトリにモデル
プレゼンターのソースコードを配置します。次項で説明する「フォームプレゼンター」とともにプレ
ゼンターというオブジェクトに分類されます。

　次に示すのはCustomerモデルのためのモデルプレゼンターCustomerPresenterからの
抜粋です。

LIST app/presenters/customer_presenter.rb

 1 class CustomerPresenter < ModelPresenter

 2 delegate :email, to: :object

 3

 4 def full_name

 5 object.family_name + " " + object.given_name

 6 end

 7

 8 def full_name_kana

 9 object.family_name_kana + " " +

object.given_name_kana

 10 end

 11

 12 def birthday

 13 return "" if object.birthday.blank?

 14 object.birthday.strftime("%Y/%m/%d")

 15 end

 :

　そして、親クラスModelPresenterのソースコードは次の通りです。

LIST app/presenters/model_presenter.rb

 1 class ModelPresenter

 2 include HtmlBuilder

 3

 4 attr_reader :object, :view_context

 5 delegate :raw, :link_to, to: :view_context

 6

 7 def initialize(object, view_context)

 8 @object = object

 9 @view_context = view_context

 10 end

 11

 12 def created_at

 13 object.created_at.try(:strftime, "%Y/%m/%d

%H:%M:%S")

 14 end

 15

 16 def updated_at

 17 object.updated_at.try(:strftime, "%Y/%m/%d

%H:%M:%S")

 18 end

 19 end

　モデルプレゼンターはインスタンス生成の際に2つの引数を取ります。第1引数はモデル
オブジェクト、第2引数はビューコンテキストです。ビューコンテキストとは、ERBテンプレートにお
いてself変数が指し示すオブジェクトです。ビューコンテキストは、すべてのヘルパーメソッドを
インスタンスメソッドとして所持しています。

　モデルプレゼンターの定義で用いられているクラスメソッドdelegateは、委譲と呼ばれる
プログラミング技法を実現します。CustomerPresenterの2行目をご覧ください。

 delegate :email, to: :object

　CustomerPresenterオブジェクトでemailメソッドが呼び出されると、object属性に処
理が委譲されます。object属性にはCustomerオブジェクトがセットされていますので、結局
はCustomer#emailメソッドが呼ばれることになります。

　CustomerPresenterは、staff/customers#indexアクションのERBテンプレートで使
用されています。

LIST app/views/staff/customers/index.html.erb

 :

 20 <% @customers.each do |c| %>

 21 <% p = CustomerPresenter.new(c, self) %>

 22 <tr>

 23 <td><%= p.full_name %></td>

 24 <td><%= p.full_name_kana %></td>

 25 <td class="email"><%= p.email %></td>

 26 <td class="date"><%= p.birthday %></td>

 27 <td><%= p.gender %></td>

 28 <td class="actions">

 29 <%= link_to "詳細", [:staff, c] %> |

 30 <%= link_to "編集", [:edit, :staff, c] %> |

 31 <%= link_to "削除", [:staff, c], method:

:delete,

 32 data: { confirm: "本当に削除しますか？" } %>

 33 </td>

 34 </tr>

 35 <% end %>

 :

　21行目でCustomerPresenterオブジェクトを作って変数pにセットしています。23-27
行では、そのpに対してfull_name、full_name_kana、email、birthday、genderメソッド
を呼び出すことで、顧客の各属性値を適宜変換してERBテンプレートに埋め込んでいます。

　モデルプレゼンターには、モデルの肥大化を防ぐというメリットがあります。full_nameの
ようなERBテンプレートでしか使わないメソッドをモデルに定義するよりも、モデルプレゼンターと
して分離した方がアプリケーション全体としてはソースコードの見通しがよくなります。

2.1.8　HtmlBuilder

　HtmlBuilderは、HTMLソースコードの断片を生成するmarkupメソッドを提供するモジ
ュールです。筆者独自の工夫です。そのソースコードは次の通りです。

LIST app/lib/html_builder.rb

 1 module HtmlBuilder

 2 def markup(tag_name = nil, options = {})

 3 root = Nokogiri::HTML::DocumentFragment.parse("")

 4 Nokogiri::HTML::Builder.with(root) do |doc|

 5 if tag_name

 6 doc.method_missing(tag_name, options) do

 7 yield(doc)

 8 end

 9 else

 10 yield(doc)

 11 end

 12 end

 13 root.to_html.html_safe

 14 end

 15 end

　markupメソッドは、Gemパッケージnokogiriが提供するNokogiri::HTML::Builderク
ラスを利用しています。本編でもmarkupメソッドの中身については説明を省略し、使い方だ
けを解説しています。以下、markupメソッドの用例を列挙します。

例①

markup do |m|

 m.span "*", class: "mark"

 m.text "印の付いた項目は入力必須です。"

end

　この例は全体で次のようなHTMLコードを生成します。

*印の付いた項目は入力必須です。

例②

markup do |m|

 m.div(class: "notes") do

 m.span "*", class: "mark"

 m.text "印の付いた項目は入力必須です。"

 end

end

　これは次のようなHTMLコードになります。

<div class="notes">*印の付いた項目は入
力必須です。</div>

例③

markup(:div, class: "notes") do |m|

 m.span "*", class: "mark"

 m.text "印の付いた項目は入力必須です。"

end

　この例と次の例は同一のHTMLコードを生成します。

markup do |m|

 m.div(class: "notes") do

 m.span "*", class: "mark"

 m.text "印の付いた項目は入力必須です。"

 end

end

　HtmlBuilderモジュールに関しては、本編15-2節で説明しています。

2.1.9　フォームプレゼンター

　フォームプレゼンターは、HTMLの部品を生成するためのオブジェクトです。インスタンス
生成の際に2つの引数を取ります。第1引数はフォームビルダー、第2引数はビューコンテキス
トです。

　次に示すのは、FormBuilderクラスのソースコードからの抜粋です。

LIST app/presenters/form_presenter.rb

 1 class FormPresenter

 2 include HtmlBuilder

 3

 4 attr_reader :form_builder, :view_context

 5 delegate :label, :text_field, :date_field,

:password_field,

 6 :check_box, :radio_button, :text_area, :object, to:

:form_builder

 7

 8 def initialize(form_builder, view_context)

 9 @form_builder = form_builder

 10 @view_context = view_context

 11 end

 :

 20 def text_field_block(name, label_text, options = {})

 21 markup(:div, class: "input-block") do |m|

 22 m << decorated_label(name, label_text, options)

 23 m << text_field(name, options)

 24 m << error_messages_for(name)

 25 end

 26 end

 :

 52 def error_messages_for(name)

 53 markup do |m|

 54 object.errors.full_messages_for(name).each do

|message|

 55 m.div(class: "error-message") do |m|

 56 m.text message

 57 end

 58 end

 59 end

 60 end

 61

 62 def decorated_label(name, label_text, options = {})

 63 label(name, label_text, class: options[:required] ?

"required" : nil)

 64 end

 65 end

　text_field_blockメソッド（20-26行）をご覧ください。HtmlBuilderモジュールが提
供するmarkupメソッドを用いてinput-blockというclass属性を持つdiv要素を生成してい
ます。div要素の中に3つの部品が配置されています。第1の部品はラベルです。
decorated_labelメソッドにより生成されます。第2の部品はテキスト入力欄。text_field
メソッドにより生成されます。このメソッド呼び出しはフォームビルダーの同名メソッドに委譲さ
れます（5-6行参照）。第3の部品はエラーメッセージです。error_messages_forメソッド
により生成されます。

　この種の複雑な構成を持つHTMLの断片をERBテンプレートだけで生成しようとする
と、ソースコードが読みにくくなりがちです。フォームプレゼンターの中でmarkupメソッドをうまく
利用すると、ソースコードの可読性が上がります。

　フォームビルダーの使用例は次のようになります。

LIST app/views/admin/staff_members/_form.html.erb

 1 <%= markup do |m|

 2 p = StaffMemberFormPresenter.new(f, self)

 3 m << p.notes

 4 p.with_options(required: true) do |q|

 5 m << q.text_field_block(:email, "メールアドレス", size:
32)

 6 m << q.password_field_block(:password, "パスワード",
size: 32)

 7 m << q.full_name_block(:family_name, :given_name,

"氏名")

 8 m << q.full_name_block(:family_name_kana,

:given_name_kana, "フリガナ")

 9 m << q.date_field_block(:start_date, "入社日")

 10 m << q.date_field_block(:end_date, "退職日",

required: false)

 11 end

 12 m << p.suspended_check_box

 13 end %>

　StaffMemberFormPresenterクラスはFormPresenterクラスを継承しています。そのイ
ンスタンスを変数pにセットして、HTMLフォームの部品を生成しています。フォームプレゼンター
に関しては、本編15-3節で説明しています。

　4行目で使用されているwith_optionsは、RailsがObjectクラスに追加したインスタン
スメソッドです。このメソッドを利用すると、同じオプションを繰り返し指定するのを避けること
ができます。変数pと変数qは基本的に同じ働きをします。ただし、変数qに対するメソッド呼
び出しではデフォルトでrequired: trueというオプションが付加されます。

2.2　テストコード

　『Ruby on Rails 6実践ガイド』本編では、テスト（ソフトウェアによる
自動テスト）に関してもかなりのページ数を割いて説明しました。本節で
は、その概要を説明します。

2.2.1　RSpec

RSpecの基礎知識

　Ruby on Railsに標準で組み込まれているテストフレームワークはMiniTest
（Test::Unitの機能強化版）ですが、本書ではRSpec（アールスペック）を採用しました。

　RSpecのテストコードはspecディレクトリに配置します。specディレクトリの直下には
RSpecの設定ファイルであるspec_helper.rbとrails_helper.rbがあります。また、specデ
ィレクトリの直下には以下の8つのディレクトリが存在します（括弧内は用途）。

experiments （RubyやRailsが提供する機能を実験するためのテスト）

factories （ファクトリー、後述）

features （Capybaraによるテスト）

models （モデルのテスト）

requests （リクエストのテスト）

routing （ルーティングのテスト）

services （サービスオブジェクトのテスト）

support （テスト用のモジュールなど）

　これらのディレクトリのうち、experimentsディレクトリとservicesディレクトリは本書独
自のものです。また、factoriesディレクトリとsupportディレクトリにはテストを補助するファ
イルが置かれます。

　RSpecによるテストを記述したファイルはspecファイルと呼ばれます。specファイルのファ
イル名は、必ず末尾が _spec.rb で終わります。

エグザンプルとエグザンプルグループ

　MiniTest（Test::Unit）の用語でテストケースに相当する概念を、RSpecではエグザン
プル（example）と呼びます。また、複数の関連するエグザンプルをまとめたものをエグザン
プルグループ（example group）と呼びます。

　次に示すのはStaffMemberモデルのspecファイルからの抜粋です。

LIST spec/models/staff_member_spec.rb

 1 require "rails_helper"

 2

 3 RSpec.describe StaffMember, type: :model do

 4 describe "#password=" do

 5 example "文字列を与えると、hashed_passwordは長さ60の文字列にな
る" do

 6 member = StaffMember.new

 7 member.password = "baukis"

 8 expect(member.hashed_password).to

be_kind_of(String)

 9 expect(member.hashed_password.size).to eq(60)

 10 end

 11

 12 example "nilを与えると、hashed_passwordはnilになる" do

 13 member = StaffMember.new(hashed_password: "x")

 14 member.password = nil

 15 expect(member.hashed_password).to be_nil

 16 end

 17 end

 18

 19 describe "値の正規化" do

 20 example "email前後の空白を除去" do

 21 member = create(:staff_member, email: "

test@example.com")

 22 expect(member.email).to eq("test@example.com")

 23 end

 :

　describe ... doとendで囲まれた範囲がエグザンプルグループで、example ... do
とendで囲まれた範囲がエグザンプルです。上記の例ではエグザンプルグループが二重の入
れ子になっています。エグザンプルの範囲を示すメソッドはexampleの他にspecifyやitを用
いることができます。

expectメソッド

　前掲のspecファイルの8行目をご覧ください。

 expect(member.hashed_password).to be_kind_of(String)

　式member.hashed_passwordの値がStringクラス（あるいはその子孫クラス）のイン
スタンスであることを確かめています。もしそうでなければ、この行を含むエグザンプルが失敗し
たとみなされます。

　このexpectメソッドを用いたテストの記述法は、RSpec 3における標準です。RSpec
2.xにおいては、次のように書くのが標準でした。

 member.hashed_password.should be_kind_of(String)

　しかし、この書き方はRSpec 3では非推奨となっています。

テストの実行

　RSpecのテストを実行するには、bin/rspecコマンドを使用します。次のコマンドはspec

ディレクトリにあるすべてのテストを実行します。

$ rspec

　spec/modelsディレクトリ以下のすべてのテストを実行するには、次のコマンドを使用し
ます。

$ rspec spec/models

　次のコマンドはspec/routing/hostname_constraints_spec.rbに書かれたすべての
エグザンプルを実行します。

$ rspec spec/routing/hostname_constraints_spec.rb

　次のコマンドはspec/routing/hostname_constraints_spec.rbの14行目にあるエ
グザンプルだけを実行します。

$ rspec spec/routing/hostname_constraints_spec.rb:14

2.2.2　ファクトリー

　次に、spec/factoriesディレクトリにあるファイル群について説明します。ファイル
administrators.rbのソースコードをご覧ください。

LIST spec/factories/administrators.rb

 1 FactoryBot.define do

 2 factory :administrator do

 3 sequence(:email) { |n| "admin#{n}@example.com" }

 4 password { "pw" }

 5 suspended { false }

 6 end

 7 end

　このファイルの目的はAdministratorモデルに対するファクトリーを定義することです。フ
ァクトリーとは、定型的なモデルオブジェクトを生成するオブジェクトのことです。上記のように
:administrator という名前のファクトリーを定義すれば、次のような簡潔なコードで
Administratorオブジェクトを生成できます。

create(:administrator)

　このときに生成されるAdministratorオブジェクトの各属性の値は、ファクトリーの定義
に沿って機械的に決まります。password属性は常に "pw" で、suspended属性は常に
falseです。email属性は、このファクトリーが呼ばれた回数により
"admin1@example.com"、"admin2@example.com"、…のようになります。特定の属性の値
を変更したい場合は、次のように書きます。

create(:administrator, suspended: true)

　また、生成したAdministratorオブジェクトをデータベースに保存したくない場合は、
createメソッドの代わりにbuildメソッドを用います。

build(:administrator)

　次に示すのは、実際の使用例です。

LIST spec/requests/admin/staff_members_management_spec.rb

 1 require "rails_helper"

 2

 3 describe "管理者によるログイン管理", "ログイン前" do

 4 include_examples "a protected admin controller",

"admin/staff_members"

 5 end

 6

 7 describe "管理者による職員管理" do

 8 let(:administrator) { create(:administrator) }

 9

 10 before do

 11 post admin_session_url,

 12 params: {

 13 admin_login_form: {

 14 email: administrator.email,

 15 password: "pw"

 16 }

 17 }

 18 end

 :

　8行目でファクトリーが使用されています。

　8行目で使用しているletは「メモ化されたヘルパーメソッド」を定義するメソッドです。単
純化して言えば、create(:administrator)によって作られるオブジェクトを返すヘルパーメ
ソッドadministrator（14行目で使用されています）を定義します。「メモ化されたヘルパ
ーメソッド」については、本編11-1-4項「リクエストのテスト」で解説しています。

2.2.3　Capybara

　Capybara（カピバラ）とは、WebブラウザとWebアプリケーションの間で交わされる
HTTP通信をエミュレート（模倣）するためのライブラリです。これをRSpecに組み込むと、

Railsアプリケーションのテストをより直感的に記述できるようになります。

　Capybaraを利用したspecファイルはspec/featuresディレクトリにまとめてあります。
次に示すのは顧客の電話番号管理機能に関するspecファイルからの抜粋です。

LIST spec/features/staff/phone_management_spec.rb

 1 require "rails_helper"

 2

 3 feature "職員による顧客電話番号管理" do

 4 include FeaturesSpecHelper

 5 let(:staff_member) { create(:staff_member) }

 6 let!(:customer) { create(:customer) }

 7

 8 before do

 9 switch_namespace(:staff)

 10 login_as_staff_member(staff_member)

 11 end

 12

 13 scenario "職員が顧客の電話番号を追加する" do

 14 click_link "顧客管理"

 15 first("table.listing").click_link "編集"

 16

 17 fill_in "form_customer_phones_0_number", with: "090-

9999-9999"

 18 check "form_customer_phones_0_primary"

 19 click_button "更新"

 20

 21 customer.reload

 22 expect(customer.personal_phones.size).to eq(1)

 23 expect(customer.personal_phones[0].number).to

eq("090-9999-9999")

 24 end

 :

　Capybaraを使用したspecファイルでは、エグザンプルグループの範囲を示すのに
featureメソッドを、エグザンプルの範囲を示すのにscenarioメソッドを用います。

　14行目をご覧ください。

 click_link "顧客管理"

　この式は「顧客管理」というラベルを持つリンクをクリックせよ、とCapybaraに命じま
す。Capybaraは現在のページのHTML文書を解析して、そのようなリンクを探し、そのリンク
先を開きます。Capybaraを利用すると、あたかもユーザーがブラウザで操作をしているような
感覚でテストを記述できます。

第3章　検索フォーム

Chapter 3では、フォームオブジェクトを用いてBaukis2に顧客検索機能を
追加します。Relationオブジェクトに複数の検索条件を追加し、それらを組
み合わせて該当するレコードを絞り込む方法について解説します。

3.1　顧客検索フォーム

この節では、Baukis2の顧客一覧ページに検索フォームを追加します。

3.1.1　顧客検索機能の仕様

　現在、顧客一覧ページ（staff/customers#indexアクション）にはすべての顧客がフ
リガナ順で表示されています。この節では、このページの上部に図3.1のような検索フォームを
設け、検索条件に該当する顧客のみがリストアップされるようにします。

図3.1: 顧客の検索フォーム

　この検索フォームには、2点特徴があります。1つは、生年月日を入力するテキストフィー
ルドがなく、その代わりに誕生年、誕生月、誕生日という3つのドロップダウンリスト（セレクト
ボックス）が存在することです。誕生年には「1900」から今年までの西暦年が選択肢として
含まれています。誕生月は「1」から「12」まで。誕生日は「1」から「31」までです。年と月と日
に別々のドロップダウンリストを用意したことにより、特定の生年月日で顧客を検索するだけ
でなく、4月生まれの顧客だけを抽出したり、4月1日生まれの顧客だけを抽出したりできるよ
うになります。

　もう1つの特徴は「住所の検索範囲」というドロップダウンリストです。このリストにはデフ
ォルト値の「」（空白）の他に「自宅」「勤務先」という2つの選択肢があり、ここで選んだ値
が都道府県と市区町村による検索の振る舞いに影響を与えます。デフォルトでは
addressesテーブルのすべてのレコードが検索対象となるのですが、例えば「自宅」を選んだ場
合は、typeカラムに"HomeAddress"という値がセットされているaddressesテーブルのレコード
だけが検索対象となります。なお、「住所の検索範囲」の値は電話番号による検索には影
響を与えません。

3.1.2　データベーススキーマの見直し

インデックスの必要性

　さて、この検索機能を実装するためには、現在のデータベーススキーマを少し見直す必要
があります。さまざまなカラムを基準とした検索が行われるのですが、テーブルに十分なインデッ
クスが設定されていないので、このままでは顧客アカウントの数が増えたときに検索に時間が
かかるようになります。

　そこで、customersテーブルとaddressesテーブルに追加のインデックスを設定するための
マイグレーションスクリプトを作成します。以下のコマンドを順に実行してください。

$ bin/rails g migration alter_customers1

$ bin/rails g migration alter_addresses1

　rails g migrationコマンドは、引数に指定した名前のマイグレーションファイルの骨組
みを生成するコマンドです。名前は何でもよいのですが、既存のマイグレーションファイルと重
複しないようにする必要があります。

Railsのドキュメントやチュートリアルでは、マイグレーションの内容に即した名前を選ぶように書いてあるこ
とが多いのですが、筆者はたいていalter_XXXN（XXXはテーブル名、Nは連番）という形式の名前を
採用しています。マイグレーションの内容をコンパクトに表現する名前を選ぶのは意外に難しいもので
す。クラス名のようにずっと使い続けるものでもありませんので、そんなに頑張って命名しなくてもいいと
私は考えています。

customersテーブルへのインデックス追加

　customersテーブルのマイグレーションスクリプトを次のように書き換えます。

LIST db/migrate/20190101000006_alter_customers1

 1 class AlterCustomers1 < ActiveRecord::Migration[6.0]

 2 def change

 3 + add_column :customers, :birth_year, :integer

 4 + add_column :customers, :birth_month, :integer

 5 + add_column :customers, :birth_mday, :integer

 6 +

 7 + add_index :customers, [:birth_year, :birth_month,

:birth_mday]

 8 + add_index :customers, [:birth_month, :birth_mday]

 9 + add_index :customers, :given_name_kana

 10 + add_index :customers, [:birth_year,

:family_name_kana, :given_name_kana],

 11 + name: "index_customers_on_birth_year_and_furigana"

 12 + add_index :customers, [:birth_year,

:given_name_kana]

 13 + add_index :customers,

 14 + [:birth_month, :family_name_kana,

:given_name_kana],

 15 + name:

"index_customers_on_birth_month_and_furigana"

 16 + add_index :customers, [:birth_month,

:given_name_kana]

 17 + add_index :customers, [:birth_mday,

:family_name_kana, :given_name_kana],

 18 + name: "index_customers_on_birth_mday_and_furigana"

 19 + add_index :customers, [:birth_mday, :given_name_kana

]

 20 end

 21 end

　まず、3～5行でcustomersテーブルに新たなカラムを3つ追加しています。すべて整数型
で、生年月日を年、月、日に分けて記録するためのものです。email_for_indexと同様に、
索引・検索のためのカラムです。

　7～8行では誕生年、誕生月、誕生日のためのインデックスを設定しています（次ペー
ジのコラム参照）。

　9行目では「フリガナ（名）」のカラムにインデックスを設定しています。すでに「フリガナ
（姓）」と「フリガナ（名）」の組に対する複合インデックスが設定されていますが、これでは
「フリガナ（名）」単独で検索する場合に検索が遅くなります。

　10～19行では、誕生年とフリガナ、誕生月とフリガナ、誕生日とフリガナの組み合わせ
で検索が行われた場合のことを考慮して、さまざまな組み合わせによる複合インデックスを設
定しています。

　10～11行をご覧ください。

 add_index :customers, [:birth_year, :family_name_kana,

:given_name_kana],

 name: "index_customers_on_birth_year_and_furigana"

　add_indexメソッドにnameオプションを付けて、インデックスの名前を指定しています。

　データベーステーブルのインデックスには名前が必要なのですが、add_indexメソッドはデ
フォルトでテーブル名とカラム名を組み合わせてインデックス名を生成するので、通常私たちが
インデックス名を意識することはありません。しかし、インデックス名の長さには制限
（PostgreSQLでは63バイト）があるため、複合インデックスとして組み合わせるカラムの個
数が増えるとこの制限を超えることがあります。このような場合には、nameオプションを用いて
インデックス名を指定する必要があります。

　add_indexメソッドが生成するインデックス名は、次の手順で作られます。

1. "index_"、テーブル名、"_on_" を連結する。

2. 単独のインデックスであればカラム名を追加する。

3. 複合インデックスであれば、すべてのカラム名を "_and_" で連結して追加する。

　したがって、3個のカラムを用いた複合インデックスを設定する場合、テーブル名とカラム
名の長さの合計が63文字を超えるとPostgreSQLで文字数オーバーとなります。

複合インデックス

　一般に、X、Y、Zという3つのカラムに対して複合インデックスが設定されている場
合、カラムX単独の検索、カラムXとY を組み合わせた検索、そして3つのカラムを組み
合わせた検索で、この複合インデックスが活用されます。

　しかし、カラムY単独の検索、カラムZ 単独の検索、あるいはカラムYとZを組み合
わせた検索では、この複合インデックスは利用されません。またカラムXとZ を組み合わ
せた検索では、カラムXに基づいてレコードを絞り込むところまではこの複合インデックス
が利用されますが、そこからさらにカラムZ に基づいてレコードを絞り込む処理には利用
されません。

　すべての組み合わせによる検索を最適化したければ、次の3つのインデックスを別
途設定する必要があります。

1. カラムYとZに対する複合インデックス

2. カラムXとZに対する複合インデックス

3. カラムZに対するインデックス

　ただし、検索項目の数が増えてくると組み合わせの数は膨大になり、すべての組
み合わせに対してインデックスを設定するのは現実的ではなく、適宜省略することにな
ります。customersテーブルの場合、例えば「誕生年」と「誕生日」を組み合わせた複
合インデックスや「誕生月」と「誕生日」と「フリガナ（姓）」を組み合わせた複合イン
デックスは設定していません。

addressesテーブルへのインデックスの追加

　addressesテーブルのマイグレーションスクリプトを次のように書き換えます。

LIST db/migrate/20190101000007_alter_addresses1

 1 class AlterAddresses1 < ActiveRecord::Migration[6.0]

 2 def change

 3 + add_index :addresses, [:type, :prefecture, :city]

 4 + add_index :addresses, [:type, :city]

 5 + add_index :addresses, [:prefecture, :city]

 6 + add_index :addresses, :city

 7 end

 8 end

　3～4行では「住所の検索範囲」が限定された場合に使用するインデックスを設定し、5
～6行では逆に「住所の検索範囲」が限定されない場合に使用するインデックスを設定して
います。

　マイグレーションを実行して次に進みましょう。

$ bin/rails db:migrate

データベース管理システムはインデックスのデータをメモリに読み込むことで、検索の高速化を図ります。
したがって、インデックスを多く設定すれば、その分だけメモリ消費量が増えることになります。やみくもに
インデックスを設定すればかえってシステムのパフォーマンスが低下する可能性があります。

3.1.3　誕生年、誕生月、誕生日の設定

Customerモデルの修正

　customersテーブルに索引用カラムを3つ追加しましたので、Customerオブジェクトの保
存時にそれらのカラムへ自動的に値がセットされるようにしましょう。Customerクラスのソースコ

ードを次のように書き換えてください。

LIST app/models/customer.rb

 :

 13 validates :birthday, date: {

 14 after: Date.new(1900, 1, 1),

 15 before: ->(obj) { Date.today },

 16 allow_blank: true

 17 }

 18 +

 19 + before_save do

 20 + if birthday

 21 + self.birth_year = birthday.year

 22 + self.birth_month = birthday.month

 23 + self.birth_mday = birthday.mday

 24 + end

 25 + end

 26 end

　birthday属性にはDateオブジェクトまたはnilがセットされています。nilでなければ、
yearメソッド、monthメソッド、mdayメソッドによって日付の年、月、日を取得し、birth_year
属性、birth_month属性、birth_mday属性に値をセットします。

SQL文によるマイグレーション

　Customerモデルを書き換えたことによって、これからデータベースに保存されるCustomer

オブジェクトに関しては誕生年、誕生月、誕生日のデータが用意されることになります。しか
し、すでにcustomersテーブルに保存されているレコードに関しては、データが空です。
birth_year、birth_month、birth_mdayという3つのカラムを更新するマイグレーションスクリ
プトを書いて実行する必要があります。

もちろんbin/rails db:resetコマンドを実行してシードデータを初めから作り直せば、すべての
Customerオブジェクトの関して誕生年、誕生月、誕生日が用意されることになります。しかし、すでに
Baukis2が実運用環境で使われている場合は、そういうわけには行きません。

　update_customers1という名前のマイグレーションスクリプトの骨組みを作成します。

$ bin/rails g migration update_customers1

　そして、スクリプトの中身を次のように書き換えてください。

LIST db/migrate/20190101000008_update_customers1

 1 class UpdateCustomers1 < ActiveRecord::Migration[6.0]

 2 - def change

 3 - end

 2 + def up

 3 + execute(%q{

 4 + UPDATE customers SET birth_year = EXTRACT(YEAR

FROM birthday),

 5 + birth_month = EXTRACT(MONTH FROM birthday),

 6 + birth_mday = EXTRACT(DAY FROM birthday)

 7 + WHERE birthday IS NOT NULL

 8 + })

 9 + end

 10 +

 11 + def down

 12 + execute(%q{

 13 + UPDATE customers SET birth_year = NULL,

 14 + birth_month = NULL,

 15 + birth_mday = NULL

 16 + })

 17 + end

 18 end

　これまでのマイグレーションスクリプトではchangeメソッドを1つだけ持つクラスが定義され
ていましたが、今回はupメソッドとdownメソッドを定義しています。upメソッドにはマイグレーショ

ンを進める処理、downメソッドにはマイグレーションを取り消す（ロールバックする）処理を記
述します。

　マイグレーションスクリプトで使用できるメソッドの中には、マイグレーションを進める目的と
取り消す目的の両方でそのまま使えるものがあります。これまで登場したcreate_table、
add_index、add_foreign_key、add_columnなどのメソッドがこのグループに属します。これら
のメソッドだけを用いたマイグレーションを行う場合は、changeメソッドの中にマイグレーションを
進める処理を定義するだけで、マイグレーションのロールバックも可能になります。

　しかし、今回使用するexecuteメソッドはそうではありません。そのため、upメソッドと
downメソッドを定義する必要があるのです。

　executeメソッドは引数に指定した文字列をSQL文として実行します。今回のマイグレ
ーションスクリプトで言えば %q{ と } で囲まれた範囲がSQL文です（2カ所）。

　1番目のSQL文をご覧ください。

UPDATE customers SET birth_year = EXTRACT(YEAR FROM

birthday),

 birth_month = EXTRACT(MONTH FROM birthday),

 birth_mday = EXTRACT(DAY FROM birthday)

 WHERE birthday IS NOT NULL

　SQLの文法を解説することは本書の範囲を超えますが、簡単に説明しておきましょう。

　customersテーブルを更新するSQL文です。EXTRACTは日付から要素を取得する関数
で、EXTRACT(YEAR FROM birthday)と書けば、birthdayカラムの値から年要素を取得でき
ます。EXTRACT関数でbirthdayカラムの年要素、月要素、日要素を取得し、それを
birth_yearカラム、birth_mdayカラム、birth_mdayカラムの値としてセットしています。
WHERE以下には更新処理をする範囲を限定するための条件が書かれています。birthdayカ
ラムがNULLでないレコードが更新処理の対象となります。

　次に、2番目のSQL文をご覧ください。

UPDATE customers SET birth_year = NULL,

 birth_month = NULL,

 birth_mday = NULL

　こちらはWHEREによる条件指定はありません。customersテーブルのすべてのレコードにつ
いて、birth_yearカラム、birth_mdayカラム、birth_mdayカラムの値にNULLをセットしていま
す。

マイグレーションでSQLを用いる理由

　読者の中には、顧客の生年月日を更新するマイグレーションファイルの中で、以
下のようにActiveRecordを用いて処理をすれば良いのではないかと感じた方もいるか
もしれません。

def up

 Customer.where.not(birthday: nil).each do |customer|

 birthday = customer.birthday

 customer.update_columns(

 birth_year: birthday.year,

 birth_month: birthday.month,

 birth_mday: birthday.day

)

 end

end

　現状のBaukis2のソースコードであれば問題ありませんが、将来的に機能を拡張
する中で仮にCustomerモデルの名称が変更されたり、モデル自体が存在しなくなった
場合を考えてください。

　その状態でマイグレーションを初めから実行し直すと、上記のupメソッドを実行しよ
うとしたタイミングでCustomerモデルが存在しないので、エラーが発生してマイグレーショ
ンが途中で失敗してしまいます。

　このように、データベースに既に存在するレコードの値を更新する処理をマイグレーシ
ョンの中で実行する際は、Rails側で定義したモデルに依存せずにSQLを用いるべきで
す。

　マイグレーションを実行してください。

$ bin/rails db:migrate

　通常はこれで作業完了ですが、今回はロールバック用のメソッドdownを自作しましたの
で、念のためロールバックがうまく行くことも確認しましょう。次のコマンドを実行してください。

$ bin/rails db:rollback

　bin/rails db:rollbackは、最後に実行されたマイグレーションスクリプトの効果を取
り消します。ロールバックが成功すると次のような結果がターミナルに表示されます。

== 20190101000008 UpdateCustomers1: reverting

=================================

-- execute("\n UPDATE customers SET birth_year = NULL,\n

birth_month = NULL,\n birth_mday = NULL\n ")

 -> 0.0029s

== 20190101000008 UpdateCustomers1: reverted (0.0029s)

========================

　もしロールバックで失敗した場合、upメソッドとdownメソッドを両方ともに調べて原因を
探ってください。スペルミスなどがあれば修正した上で、マイグレーションを先頭からやり直し、
シードデータを投入します。

$ bin/rails db:migrate:reset

$ bin/rails db:seed

実行済みのマイグレーションスクリプトに誤りを発見した場合にはdb:migrate:resetタスクでマイグレー
ション全体をやり直すことをお勧めします。db:resetタスクは、前回行ったマイグレーションによってできた
データベース構造を復元するので、うまく行かない場合があります。

　その上で、改めてロールバックを行い、動作確認をしてください。

$ bin/rails db:rollback

　ロールバックに成功したら、最後にもう一度マイグレーションを実行してから次に進んでく
ださい。

$ bin/rails db:migrate

マイグレーションのロールバック

　マイグレーションのロールバックはそれほど頻繁に使用する機能ではありません。し
かし、実運用環境でマイグレーションを実施したことによって何か不具合が発生した場
合には、大至急データベースを元に戻さなければなりませんので、開発環境においてロ
ールバックが正常に機能することを確認しておくことはとても大切です。

　なお、マイグレーションの中には、効果を取り消せない種類のものもあります。例え
ば、テーブルやカラムを削除するようなマイグレーションです。その場合は、マイグレーション
スクリプトのdownメソッドに

raise ActiveRecord::IrreversibleMigration

とだけ書いて、例外ActiveRecord::IrreversibleMigrationを発生させるように
してください。

3.1.4　検索フォームの表示

フォームオブジェクトの作成

　データベーススキーマの見直しが終わりましたので、検索フォームの表示機能に着手しま
す。まず、フォームオブジェクトStaff::CustomerSearchFormを作成します。

LIST app/forms/staff/customer_search_form.rb (New)

 1 class Staff::CustomerSearchForm

 2 include ActiveModel::Model

 3

 4 attr_accessor :family_name_kana, :given_name_kana,

 5 :birth_year, :birth_month, :birth_mday,

 6 :address_type, :prefecture, :city, :phone_number

 7 end

　例によってActiveModel::Modelをインクルードし、検索フォームの各フィールドに対応す
る属性を定義しています。

indexアクションの修正

　次にstaff/customers#indexアクションを書き換えます。

LIST app/controllers/staff/customers_controller.rb

 1 class Staff::CustomersController < Staff::Base

 2 def index

 3 + @search_form = Staff::CustomerSearchForm.new

 4 @customers = Customer.order(:family_name_kana,

:given_name_kana)

 5 .page(params[:page])

 6 end

 :

　フォームオブジェクトを作ってインスタンス変数 @search_formにセットしています。

検索フォーム用の部分テンプレートの作成

　検索フォームのための部分テンプレート_search_form.html.erbを作成します。

LIST app/views/staff/customers/_search_form.html.erb (New)

 1 <%= form_with model: @search_form, scope: "search", url:

:staff_customers,

 2 html: { method: :get, class: "search" } do |f| %>

 3 <%= markup do |m|

 4 p = FormPresenter.new(f, self)

 5 m << p.text_field_block(:family_name_kana, "フリガナ
（姓）:")

 6 m << p.text_field_block(:given_name_kana, "フリガナ
（名）:")

 7 m.br

 8 m << p.drop_down_list_block(:birth_year, "誕生年:",

 9 (1900..Time.current.year).to_a.reverse)

 10 m << p.drop_down_list_block(:birth_month, "誕生月:",

1..12)

 11 m << p.drop_down_list_block(:birth_mday, "誕生日:",

1..31)

 12 m.br

 13 m.div do

 14 m << p.drop_down_list_block(:address_type, "住所の検
索範囲:",

 15 [["自宅住所のみ", "home"], ["勤務先のみ", "work"

]])

 16 end

 17 m << p.drop_down_list_block(:prefecture, "都道府県:",

 18 Address::PREFECTURE_NAMES)

 19 m << p.text_field_block(:city, "市区町村:")

 20 m.br

 21 m << p.text_field_block(:phone_number, "電話番号:")

 22 m << f.submit("検索")

 23 end %>

 24 <% end %>

　1～2行をご覧ください。

<%= form_with model: @search_form, scope: "search", url:

:staff_customers,

 html: { method: :get, class: "search" } do |f| %>

　htmlオプションのサブオプションmethodにシンボル:getが指定されています。フォームデー
タを（デフォルトのPOSTメソッドではなく）GETメソッドで送信せよ、という意味です。
staff/customers#indexアクションはGETメソッドによるアクセスを受け付けるのでこのように
しています。また、htmlオプションのサブオプションclassに"search"という文字列が指定され
ています。こちらは、生成されるform要素のclass属性に"search"を指定せよ、という意味
になります。

　8～9行をご覧ください。

 m << p.drop_down_list_block(:birth_year, "誕生年:",

 (1900..Time.current.year).to_a.reverse)

　1900..Time.current.yearで、1900から今年の西暦年までのRangeオブジェクトが作
られます。これをto_aメソッドで配列に変換し、reverseで要素の順序を逆にしています。

　13～16行をご覧ください。

 m.div do

 m << p.drop_down_list_block(:address_type, "住所の検索範
囲:",

 [["自宅住所のみ", "home"], ["勤務先のみ", "work"]])

 end

　「住所の検索範囲」を指定するためのドロップダウンリストを生成しています。選択肢の
データには二重に入れ子になった配列を指定しています。内側の配列1個が1つの選択肢に
対応していて、1番目の要素が表示用の文字列、2番目の要素がデータ送信用の値となり
ます。

ERBテンプレートの本体の修正

　staff/customers#indexアクションのERBテンプレート本体に部分テンプレートを埋め込
みます。

LIST app/views/staff/customers/index.html.erb

 :

 4 <div class="table-wrapper">

 5 <div class="links">

 6 <%= link_to "新規登録", :new_staff_customer %>

 7 </div>

 8 +

 9 + <%= render "search_form" %>

 10

 11 <%= paginate @customers %>

 :

スタイルシートの作成

　最後にスタイルシートで検索フォームのビジュアルデザインを整えます。

LIST app/assets/stylesheets/staff/search.scss (New)

 1 @import "colors";

 2 @import "dimensions";

 3

 4 form.search {

 5 padding: $wide;

 6 border: solid $dark_gray 1px;

 7 background-color: $very_light_gray;

 8 div.input-block {

 9 display: inline-block;

 10 margin: $moderate $very_wide $moderate 0;

 11 label { margin-right: $moderate; }

 12 }

 13 }

　ブラウザで職員としてBaukis2にログインし、顧客の一覧ページを開くと図3.2のような画
面が表示されます。

図3.2: 顧客の一覧ページに検索フォームを設置

3.2　検索機能の実装

検索フォームから送信されてくるデータを受け取って、該当する顧客を検
索して、リスト表示する機能を実装します。

3.2.1　indexアクションの修正

　staff/customers#indexアクションを書き換えます。

LIST app/controllers/staff/customers_controller.rb

 1 class Staff::CustomersController < Staff::Base

 2 def index

 3 - @search_form = Staff::CustomerSearchForm.new

 3 + @search_form =

Staff::CustomerSearchForm.new(search_params)

 4 - @customers = Customer.order(:family_name_kana,

:given_name_kana)

 5 - .page(params[:page])

 4 + @customers = @search_form.search.page(params[:page])

 5 end

 6 +

 7 + private def search_params

 8 + params[:search]&.permit([

 9 + :family_name_kana, :given_name_kana,

 10 + :birth_year, :birth_month, :birth_mday,

 11 + :address_type, :prefecture, :city, :phone_number

 12 +])

 13 + end

 14

 15 def show

 16 @customer = Customer.find(params[:id])

 17 end

 :

　前項（3-1-4項「検索フォームの表示」）でform_withメソッドのscopeオプション
に"search"を指定しましたので、フォームから送信されてくるパラメータにはプレフィックス（本
編16-3-4項「ERBテンプレート本体の作成」参照）として"search"が付いています。したがっ
て、params[:search]でフォームの各フィールドに入力された値をハッシュ（正確には、
ActionController::Parametersオブジェクト）として取得できます。これをフォームオブジェ
クトに引数として渡すことにより、フォームオブジェクトの各属性に値を設定できます。

　ただし、params[:search]をそのままフォームオブジェクトに渡すとStrong Parameters
が働いて例外ActiveModel::ForbiddenAttributesErrorが発生します。そこで、プライベ
ートメソッドsearch_paramsを定義して、検索に使用できる属性だけをフィルタリングします。

　メソッドsearch_paramsの中身の第1行をご覧ください。

 params[:search]&.permit([

本編で学んだ書き方をそのまま真似すれば、次のようになるはずです。

 params.require(:search).permit([

しかし、このように書くと、ダッシュボードから顧客管理ページに遷移したときに、例外
ActionController::ParameterMissingが発生します。パラメータに"search"が含まれな
いからです。そこで、paramsのキーに"search"が含まれるかどうかのチェックをスキップしていま
す。

　ダッシュボードから顧客管理ページに遷移した場合は、params[:search]はnilを返し
ます。そのnilに対して&.演算子を適用するとnilが返ります。検索フォームからindexアクシ

ョンが呼ばれた場合は、params[:search]はActionController::Parametersオブジェクト
を返します。このオブジェクトに対して &. 演算子を適用すると、permitメソッドが呼び出され
ます。

　4行目ではフォームオブジェクトのsearchメソッド（後述）を呼び出して、顧客リストを
取得しています。searchメソッドからの戻り値はRelationオブジェクト（本編13-3-3項
「indexアクションの修正」参照）です。そして、これのpageメソッドを呼び出してページネーシ
ョンに対応しています。

&.演算子とtryメソッドについて

　search_paramsの中で利用されている&.（ぼっち演算子）はRuby 2.3で追加
された比較的新しい演算子です。object&.methodと書くことで「objectがnilの場合
は nilを返し、 nilでない場合はmethodを呼び出す」という処理を実行できます。

　さて、&.が登場する以前に上記のような「nilチェックを行うことなく安全にメソッド
を呼び出したい」というケースでは、RailsのActiveSupportモジュールの中で定義されて
いるtryメソッドが用いられていたため、他のRailsプロジェクトのソースコード上で見かける
ことがあるかもしれません。

　&.演算子もtryメソッドも「レシーバがnilの場合にnilを返す」という点では同様
の働きをしますが、レシーバがnilでない場合の挙動は少し異なっているため注意が必
要です。

　tryメソッドは「レシーバがそのメソッドを呼び出せる場合のみ呼び出す」という処理
を行うため、例えば、nilでないオブジェクトfooから呼び出すことのできないメソッドbar

を呼び出そうとしたときに両者の間で以下のような違いが発生します。

foo&.bar の場合は、例外NoMethodErrorが発生する。

foo.try(:bar) の場合は、nilが返る。

これはtryメソッドが事前にrespond_to?メソッドを使用して「そのメソッドを呼び出せ
るかどうか」をチェックしていることによる違いです。このように、必ずしも &. 演算子はtry

の代わりとはならないので注意が必要です。

3.2.2　フォームオブジェクトの修正（1）

　検索フォームには多くの検索項目がありますので、最終的なフォームオブジェクトの修正
箇所はかなりの量になります。説明をしやすくするため、2つの工程に分けてフォームオブジェク
トを修正します。第1工程では、「フリガナ（姓）」「フリガナ（名）」「誕生年」「誕生月」
「誕生日」の5項目による検索ができるようにコードの実装を行います。

検索条件の設定

　Staff::CustomerSearchFormのソースコードを次のように修正します。

LIST app/forms/staff/customer_search_form.rb

 1 class Staff::CustomerSearchForm

 2 include ActiveModel::Model

 3

 4 attr_accessor :family_name_kana, :given_name_kana,

 5 :birth_year, :birth_month, :birth_mday,

 6 :address_type, :prefecture, :city, :phone_number

 7 +

 8 + def search

 9 + rel = Customer

 10 +

 11 + if family_name_kana.present?

 12 + rel = rel.where(family_name_kana:

family_name_kana)

 13 + end

 14 +

 15 + if given_name_kana.present?

 16 + rel = rel.where(given_name_kana: given_name_kana)

 17 + end

 18 +

 19 + rel = rel.where(birth_year: birth_year) if

birth_year.present?

 20 + rel = rel.where(birth_month: birth_month) if

birth_month.present?

 21 + rel = rel.where(birth_mday: birth_mday) if

birth_mday.present?

 22 +

 23 + rel.order(:family_name_kana, :given_name_kana)

 24 + end

 25 end

　9～13行をご覧ください。

 rel = Customer

 if family_name_kana.present?

 rel = rel.where(family_name_kana: family_name_kana)

 end

　ここの処理内容を理解するために、まず「ヤマダ」という「フリガナ（姓）」を持つ顧客を
検索するにはどういうコードを書けばよいかを考えてください。答えは

Customer.where(family_name_kana: "ヤマダ")

です。これは次のように書き換えられます。

rel = Customer

rel.where(family_name_kana: "ヤマダ")

　さらに「ヤマダ」という文字列をfamily_name_kanaで置き換え、family_name_kanaに
中身があるかどうかを確認する条件式を加えれば、9～13行の処理と同じになります。

　ローカル変数relにはRelationオブジェクトがセットされています。Relationオブジェクト
のwhereメソッドは、別のRelationオブジェクトを返します。15～21行では、この性質を生か
して、さまざまな検索条件を次々とRelationオブジェクトに追加しています。

　最後に、23行目でソート順を指定します。

 rel.order(:family_name_kana, :given_name_kana)

　Relationオブジェクトのorderメソッドの戻り値も、別のRelationオブジェクトです。結
局、searchメソッド全体の処理内容をひと言で表現すれば、さまざまな検索条件を
Relationオブジェクトに溜めて返す、ということになります。

動作確認

　では、動作確認をしましょう。ブラウザで顧客一覧ページを開き、検索フォームの「フリガ
ナ（名）」に「ジロウ」と入力して「検索」ボタンをクリックすると、図3.3のような画面になりま
す。

図3.3: 顧客をフリガナ（名）で検索した結果

3.2.3　フォームオブジェクトの修正（2）

　では、フォームオブジェクト修正の第2工程です。都道府県、市区町村、電話番号によ
る検索に対応します。Staff::CustomerSearchFormクラスのソースコードを次のように書き直
してください。

LIST app/forms/staff/customer_search_form.rb

 21 rel = rel.where(birth_mday: birth_mday) if

birth_mday.present?

 22 +

 23 + if prefecture.present? || city.present?

 24 + case address_type

 25 + when "home"

 26 + rel = rel.joins(:home_address)

 27 + when "work"

 28 + rel = rel.joins(:work_address)

 29 + when ""

 30 + rel = rel.joins(:addresses)

 31 + else

 32 + raise

 33 + end

 34 +

 35 + if prefecture.present?

 36 + rel = rel.where("addresses.prefecture" =>

prefecture)

 37 + end

 38 +

 39 + rel = rel.where("addresses.city" => city) if

city.present?

 40 + end

 41 +

 42 + if phone_number.present?

 43 + rel =

rel.joins(:phones).where("phones.number_for_index" =>

phone_number)

 44 + end

 45 +

 46 + rel = rel.distinct

 47

 48 rel.order(:family_name_kana, :given_name_kana)

 49 end

 50 end

　24～33行をご覧ください。

 case address_type

 when "home"

 rel = rel.joins(:home_address)

 when "work"

 rel = rel.joins(:work_address)

 when ""

 rel = rel.joins(:addresses)

 else

 raise

 end

　address_type属性には、空文字または"home"または"work"という文字列がセットさ
れており、その値によって処理を切り替えています。

　Relationオブジェクトのjoinsメソッドは、レコードの検索においてテーブル結合を行うた
めのメソッドです。簡単に言えば、他のテーブルのカラムの値に基づいてレコードを絞り込む、と
いうことです。joinsメソッドの引数には、モデルのクラスメソッドhas_manyやhas_oneで定義さ
れた関連付けの名前を使用します。joinsメソッドもwhereメソッドやorderメソッド同様に
Relationオブジェクトを返します。

Customerモデルにはすでに :home_address と :work_address という関連付けが定義されています。
未定義の関連付け :addresses については、このすぐ後で定義します。

　続いて、35～37行をご覧ください。

 if prefecture.present?

 rel = rel.where("addresses.prefecture" =>

prefecture)

 end

　addressesテーブルのカラムprerectureを対象とする検索条件を追加しています。カラ
ム名にドット（.）が含まれる場合、ドットの左側がテーブル名、右側がカラム名として解釈さ
れます。このように他のテーブルのカラムを対象とする検索を行うためには、joinsメソッドでテ
ーブル結合を行わなければなりません。

ここで、私たちが単一テーブル継承を採用した効果が現れています。自宅住所と勤務先を同じ
addresesテーブルに記録することにしたため、このように単純な条件による検索が可能になりました。

　39行目でも同様にaddressesテーブルのcityカラムを対象とする検索条件を追加して
います。

 rel = rel.where("addresses.city" => city) if

city.present?

　42～44行では、電話番号を対象とする検索条件を追加しています。

 if phone_number.present?

 rel =

rel.joins(:phones).where("phones.number_for_index" =>

phone_number)

 end

　joinsメソッドとwhereメソッドをつなげて書いていますが、考え方は23～40行で行って
いることと同じです。フォームの電話番号フィールドに値が記入されていれば、phonesテーブル
を結合したうえで、phonesテーブルのnumber_for_indexカラムに基づいて顧客を絞り込みま
す。

　46行目では検索結果から重複を取り除くためdistinctメソッドを用いています。

 rel = rel.distinct

この記述がないと、例えば、電話番号下4桁に「0000」を指定して検索した場合に「佐藤
一郎」という顧客が2件表示されてしまいます。なぜなら、この顧客は個人電話番号と自宅
電話番号の下4桁がともに「0000」であるからです。なお、distinctメソッドの代わりに、別
名のuniqメソッドを用いることもできます。

Customerモデルの修正

　Staff::CustomerSearchForm#searchメソッドの中で、Customerモデルの未定義の関
連付けaddressesを使用しましたので、これを定義しましょう。

LIST app/models/customer.rb

 1 class Customer < ApplicationRecord

 2 include EmailHolder

 3 include PersonalNameHolder

 4 include PasswordHolder

 5

 6 + has_many :addresses

 7 has_one :home_address, dependent: :destroy, autosave:

true

 8 has_one :work_address, dependent: :destroy, autosave:

true

 :

　この関連付けは検索でしか使いませんのでautosaveオプションを指定する必要はありま
せん。

　基本的にはこれでいいのですが、次のようにソースコードの簡略化が可能です。

LIST app/models/customer.rb

 1 class Customer < ApplicationRecord

 2 include EmailHolder

 3 include PersonalNameHolder

 4 include PasswordHolder

 5

 6 - has_many :addresses

 6 + has_many :addresses, dependent: :destroy

 7 - has_one :home_address, dependent: :destroy, autosave:

true

 7 + has_one :home_address, autosave: true

 8 - has_one :work_address, dependent: :destroy, autosave:

true

 8 + has_one :work_address, autosave: true

 9 has_many :phones, dependent: :destroy

 10 has_many :personal_phones, -> { where(address_id:

nil).order(:id) },

 11 class_name: "Phone", autosave: true

 :

　修正前のコードではCustomerオブジェクトが削除される際に、関連付けられた
HomeAddressオブジェクトとWorkAddressオブジェクトをそれぞれ削除していますが、修正後の
コードでは2つのオブジェクトを一挙に削除します。ソースコードの簡略化に加え、処理回数が
減るというボーナスもあります。

動作確認

　では、動作確認をしましょう。ブラウザで顧客一覧ページを開き、検索フォームの誕生月
から「1」を選んで「検索」ボタンをクリックすると、図3.4のような画面になります。

　ただし、シードデータの顧客生年月日はランダムに選ばれているので、表示される件数は
これとは異なるかもしれません。もし1件も表示されない場合は、その他の誕生月を選んで検
索をしてみてください。

図3.4: 顧客を誕生月で検索した結果

　また、検索フォームの他のフィールドにも適宜値を入力して、想定されるような検索結果
となるかどうかを確かめてください。

3.2.4　検索文字列の正規化

　ここまでで検索機能はおおむね完成です。最後にユーザービリティ向上のために、検索
文字列を正規化する機能を追加しましょう。例えば、検索フォームの「フリガナ（姓）」の入
力欄にひらがなや半角のカタカナが入力された場合、全角のカタカナに変換されたうえでデー
タベースの検索にかかるようにします。

　フォームオブジェクトのソースコードを次のように書き換えてください。

LIST app/forms/staff/customer_search_form.rb

 1 class Staff::CustomerSearchForm

 2 include ActiveModel::Model

 3 + include StringNormalizer

 4

 5 attr_accessor :family_name_kana, :given_name_kana,

 6 :birth_year, :birth_month, :birth_mday,

 7 :address_type, :prefecture, :city, :phone_number

 8

 9 def search

 10 + normalize_values

 11 +

 12 rel = Customer

 :

 51 rel.order(:family_name_kana,

:given_name_kana).page(page)

 52 end

 53 +

 54 + private def normalize_values

 55 + self.family_name_kana =

normalize_as_furigana(family_name_kana)

 56 + self.given_name_kana =

normalize_as_furigana(given_name_kana)

 57 + self.city = normalize_as_name(city)

 58 + self.phone_number =

normalize_as_phone_number(phone_number)

 59 + .try(:gsub, /\D/, "")

 60 + end

 61 end

　3行目でStringNormalizerモジュールをインクルードします。54～60行でプライベートメ
ソッドnormalize_valuesを定義し、10行目でそれを呼び出しています。

　電話番号に関しては、全角英数字を半角に変換した後で、数字以外の文字（正規
表現は \D）をすべて除去するという処理をしています。

　ブラウザで検索フォームを開き、「フリガナ（名）」にひらがなで「じろう」と入力したり、電
話番号の途中にマイナス記号を追加したりして、検索機能を試してみてください。

3.3　演習問題

問題1

　性別で顧客を検索する機能をBaukis2に加えるため、以下の各作業を行ってくださ
い。

1. customersテーブルのgenderカラムとfamily_name_kanaカラムとgiven_name_kanaカラ
ムの組に複合インデックスを設定するマイグレーションスクリプト（alter_customers2）
を作成し、マイグレーションを実行する。なお、インデックス名には
"index_customers_on_gender_and_furigana" を用いること。

2. Staff::CustomerSearchFormクラスにgender属性を追加する。

3. 顧客の検索フォームに「性別」ラベルと、「男性」、「女性」という選択肢を持つドロップダ
ウンリストを設置する。なお、設置場所は「誕生日」のドロップダウンリストの右側とす
る。

4. 性別で顧客を検索できるようにStaff::CustomerSearchFormクラスのsearchメソッド
を書き換える。

5. searchパラメータに含まれるキーgenderが許可されるように、staff/customersコントロ
ーラのプライベートメソッドsearch_paramsを書き換える。

問題2

　郵便番号で顧客を検索する機能をBaukis2に加えるため、以下の各作業を行ってくだ
さい。

1. addressesテーブルのpostal_codeカラムにインデックスを設定するマイグレーションスクリ
プト（alter_addresses2）を作成し、マイグレーションを実行する。なお、他のカラムと
の複合インデックスは設定しなくてよい。

2. Staff::CustomerSearchFormクラスにpostal_code属性を追加する。

3. 顧客の検索フォームに「郵便番号」フィールドを設置する。なお、設置場所は「電話番
号」フィールドの左側とし、フィールドのsize属性は7とすること。

4. 郵便番号で顧客を検索できるようにStaff::CustomerSearchFormクラスのsearchメ
ソッドを書き換える。ただし、郵便番号の検索範囲は、都道府県や市区町村と同様
にaddress_typeパラメータの値によって切り替えること。また、検索実行前に検索文字
列の正規化を行うこと。

問題3

　phonesテーブルに対して電話番号下4桁のためのインデックスを設定するマイグレーショ
ンスクリプト（alter_phones1）を作成し、マイグレーションを実行してください。

【ヒント】 PostgreSQLの関数を用いてインデックスを設定する例は、db/migrateディレクトリにある
20190101000000_create_staff_members.rbの中にあります。PostgreSQLで文字列カラムxの末尾
から4文字を得るにはRIGHT(x, 4)と書きます。

問題4

以下の各作業を行い、電話番号下4桁で顧客を検索する機能を実装してください。

1. Staff::CustomerSearchFormクラスにlast_four_digits_of_phone_number属性を
追加する。

2. 顧客の検索フォームに「電話番号下4桁」フィールドを設置する。なお、設置場所は「電
話番号」フィールドの右側とし、フィールドのsize属性は4とすること。

3. 「電話番号下4桁」で顧客を検索できるように、Staff::CustomerSearchFormクラスの
searchメソッドを書き換える。また、検索実行前に検索文字列の正規化を行うこと。

4. searchパラメータに含まれるキーlast_four_digits_of_phone_numberが許可される
ように、staff/customersコントローラのプライベートメソッドsearch_paramsを書き換え
る。

各章末の演習問題は次章以降の展開に影響を与えます。つまり、演習問題で指示されたとおりに
Baukis2を修正したという前提で次の章の説明が始まります。必ず演習問題を解いてから次に進んで
ください。なお、演習問題の解答は巻末付録に掲載されています。

第4章　次回から自動でログイン

Chapter 4では、顧客のログイン・ログアウト機能を作ります。基本的には
職員や管理者のログイン・ログアウト機能と同等ですが、ひとつだけ違いがあ
ります。それはログインフォームに「次回から自動でログイン」というチェックボッ
クスがあることです。

4.1　顧客のログイン・ログアウト機能

ユーザー認証の仕組みは、本編Chapter 7とChapter 8で職員と管理者
のログイン・ログアウト機能を作る際に詳しく解説しました。本節では管理者
のログイン・ログアウト機能をほぼ真似する形で、顧客のログイン・ログアウト
機能を実装します。コードの説明は原則として省略します。

4.1.1　ルーティング

　config/routes.rbを次のように書き換えます。

LIST config/routes.rb

 :

 27 constraints host: config[:customer][:host] do

 28 namespace :customer, path: config[:customer][:path]

do

 29 root "top#index"

 30 + get "login" => "sessions#new", as: :login

 31 + resource :session, only: [:create, :destroy]

 32 end

 33 end

 34 end

4.1.2　コントローラ

　app/controllers/customerディレクトリに、新規ファイルbase.rbを次のような内容で
作成します。

LIST app/controllers/customer/base.rb (New)

 1 class Customer::Base < ApplicationController

 2 before_action :authorize

 3

 4 private def current_customer

 5 if session[:customer_id]

 6 @current_customer ||=

 7 Customer.find_by(id: session[:customer_id])

 8 end

 9 end

 10

 11 helper_method :current_customer

 12

 13 private def authorize

 14 unless current_customer

 15 flash.alert = "ログインしてください。"

 16 redirect_to :customer_login

 17 end

 18 end

 19 end

　customer/sessionsコントローラのソースコードを生成します。

$ bin/rails g controller customer/sessions

　生成されたソースコードを次のように書き直します。

LIST app/controllers/customer/sessions_controller.rb

 1 - class Customer::SessionsController <

ApplicationController

 1 + class Customer::SessionsController < Customer::Base

 2 + skip_before_action :authorize

 3 +

 4 + def new

 5 + if current_customer

 6 + redirect_to :customer_root

 7 + else

 8 + @form = Customer::LoginForm.new

 9 + render action: "new"

 10 + end

 11 + end

 12 +

 13 + def create

 14 + @form = Customer::LoginForm.new(login_form_params)

 15 + if @form.email.present?

 16 + customer =

 17 + Customer.find_by("LOWER(email) = ?",

@form.email.downcase)

 18 + end

 19 + if

Customer::Authenticator.new(customer).authenticate(@form.passwo

rd)

 20 + session[:customer_id] = customer.id

 21 + flash.notice = "ログインしました。"

 22 + redirect_to :customer_root

 23 + else

 24 + flash.now.alert = "メールアドレスまたはパスワードが正しくありませ
ん。"

 25 + render action: "new"

 26 + end

 27 + end

 28 +

 29 + private def login_form_params

 30 + params.require(:customer_login_form).permit(:email,

:password)

 31 + end

 32 +

 33 + def destroy

 34 + session.delete(:customer_id)

 35 + flash.notice = "ログアウトしました。"

 36 + redirect_to :customer_root

 37 + end

 38 end

　customer/topコントローラのソースコードを次のように書き直します。

LIST app/controllers/customer/top_controller.rb

 1 - class Customer::TopController < ApplicationController

 1 + class Customer::TopController < Customer::Base

 2 + skip_before_action :authorize

 3 +

 4 def index

 5 render action: "index"

 6 end

 7 end

4.1.3　ビュー

ログインフォームのERBテンプレート

　管理者用ログインフォームのERBテンプレートを、app/views/customer/sessionsディレ
クトリにコピーします。

$ cp app/views/admin/sessions/new.html.erb

app/views/customer/sessions

　そして、コピーされてできたERBテンプレートを次のように書き換えます。

LIST app/views/customer/sessions/new.html.erb

 1 <% @title = "ログイン" %>

 2

 3 <div id="login-form">

 4 <h1><%= @title %></h1>

 5

 6 - <%= form_with model: @form, url: :admin_session do |f|

%>

 6 + <%= form_with model: @form, url: :customer_session do

|f| %>

 7 <div>

 8 <%= f.label :email, "メールアドレス" %>
 9 <%= f.text_field :email %>

 10 </div>

 11 <div>

 12 <%= f.label :password, "パスワード" %>

 13 <%= f.password_field :password %>

 14 </div>

 15 <div>

 16 <%= f.submit "ログイン" %>

 17 </div>

 18 <% end %>

 19 </div>

　6行目のurlオプションの値を :admin_session から :customer_session に書き換え
ています。

ヘッダの部分テンプレート

　管理者ページのヘッダの部分テンプレートを、app/views/customer/sharedディレクトリ
に上書きコピーします。

$ cp -f app/views/admin/shared/_header.html.erb

app/views/customer/shared

　そして、顧客ページの部分テンプレートを次のように書き換えます。

LIST app/views/customer/shared/_header.html.erb

 1 <header>

 2 - <%= link_to "BAUKIS2", :admin_root, class: "logo-mark"

%>

 2 + <%= link_to "BAUKIS2", :customer_root, class: "logo-

mark" %>

 3 <%= content_tag(:span, flash.notice, class: "notice")

if flash.notice %>

 4 <%= content_tag(:span, flash.alert, class: "alert") if

flash.alert %>

 5 <%=

 6 - if current_administrator

 6 + if current_customer

 7 - link_to "ログアウト", :admin_session, method: :delete

 7 + link_to "ログアウト", :customer_session, method:
:delete

 8 else

 9 - link_to "ログイン", :admin_login

 9 + link_to "ログイン", :customer_login

 10 end

 11 %>

 12 </header>

フォームオブジェクト

　app/forms/customerディレクトリを作成し、そこに管理者ログインフォームのためのフォー
ムオブジェクトをコピーします。

$ mkdir -p app/forms/customer

$ cp app/forms/admin/login_form.rb app/forms/customer

　そして、コピーされてできたフォームオブジェクトを次のように書き換えます。

LIST app/forms/customer/login_form.rb

 1 - class Admin::LoginForm

 1 + class Customer::LoginForm

 2 include ActiveModel::Model

 3

 4 attr_accessor :email, :password

 5 end

スタイルシート

　名前空間adminのスタイルシートのうち必要なものを
app/assets/stylesheets/customerディレクトリにコピーします。

$ cp app/assets/stylesheets/admin/flash.scss

app/assets/stylesheets/customer

$ cp app/assets/stylesheets/admin/sessions.scss

app/assets/stylesheets/customer

　sessions.scssに含まれる "magenta" をすべて "yellow" で置き換えてください。

LIST app/assets/stylesheets/customer/sessions.scss

 :

 11 - border: solid 4px $dark_magenta;

 11 + border: solid 4px $dark_yellow;

 12 background-color: $very_light_gray;

 13

 14 h1 {

 15 background-color: transparent;

 16 - color: $very_dark_magenta;

 16 + color: $very_dark_yellow;

 :

　_colors.scssを次のように書き換えてください。

LIST app/assets/stylesheets/customer/_colors.scss

 :

 10 $dark_yellow: #888844;

 11 $very_dark_yellow: darken($dark_yellow, 25%);

 12 +

 13 + /* 赤系 */

 14 + $red: #cc0000;

 15 + $pink: #ffcccc;

 16 +

 17 + /* 緑系 */

 18 + $green: #00cc00;

　layout.scssを次のように書き換えてください。

LIST app/assets/stylesheets/customer/layout.scss

 :

 17 header {

 18 padding: $moderate;

 19 background-color: $dark_yellow;

 20 color: $very_light_gray;

 21 - span.logo-mark {

 22 - font-weight: bold;

 23 - }

 21 + a.logo-mark {

 22 + float: none;

 23 + text-decoration: none;

 24 + font-weight: bold;

 25 + }

 26 + a {

 27 + float: right;

 28 + color: $very_light_gray;

 29 + }

 30 }

 :

4.1.4　サービスオブジェクト

　app/services/customerディレクトリを作成します。

$ mkdir -p app/services/customer

　そして、そこに新規ファイルauthenticator.rbを次の内容で作成します。

LIST app/services/customer/authenticator.rb (New)

 1 class Customer::Authenticator

 2 def initialize(customer)

 3 @customer = customer

 4 end

 5

 6 def authenticate(raw_password)

 7 @customer &&

 8 @customer.hashed_password &&

 9 BCrypt::Password.new(@customer.hashed_password) ==

raw_password

 10 end

 11 end

4.1.5　動作確認

図4.1: 顧客トップページ

　ブラウザでhttp://example.com:3000/mypageを開くと、図4.1のような画面が表示さ
れます。

　そして、右上の「ログイン」リンクをクリックすると、図4.2のような画面に切り替わります。

図4.2: 顧客ログインフォーム

　メールアドレス欄に「sato.ichiro@example.jp」、パスワード欄に「password」と入力し
て、「ログイン」ボタンをクリックすると図4.3のような画面となります。

図4.3: ログイン後の顧客トップページ

　その他、以下の点について動作確認を行ってください。

「ログアウト」リンクをクリックすると、トップページに戻る。ヘッダ部分には「ログアウトしま
した。」というメッセージが表示される。

ログインフォームのメールアドレス欄に存在しないメールアドレスとデタラメなパスワードを入
力して「ログイン」ボタンをクリックすると、ヘッダ部分に「メールアドレスまたはパスワードが
正しくありません。」というメッセージが表示される。

4.2　自動ログイン機能の追加

顧客のログインフォームに「次回から自動でログインする」というチェックボッ
クスを追加します。顧客がこのチェックボックスをチェックしてログインすると、ブ
ラウザを終了しても、同じブラウザでBaukis2の顧客ページにアクセスすればロ
グイン状態が継続します。

4.2.1　ビューの修正

フォームオブジェクト

　まず、フォームオブジェクトCustomer::LoginFormのソースコードを次のように書き換えてく
ださい。

LIST app/forms/customer/login_form.rb

 1 class Customer::LoginForm

 2 include ActiveModel::Model

 3

 4 - attr_accessor :email, :password

 4 + attr_accessor :email, :password, :remember_me

 5 +

 6 + def remember_me?

 7 + remember_me == "1"

 8 + end

 9 end

　4行目で、チェックボックス「次回から自動でログインする」に対応するremember_me属性
を追加しています。また、6-8行でこのチェックボックスの状態をtrueまたはfalseで返す
remember_me? メソッドを定義しています。

ERBテンプレート

　続いて、顧客のログインフォームにチェックボックスを追加します。

LIST app/views/customer/sessions/new.html.erb

 :

 11 <div>

 12 <%= f.label :password, "パスワード" %>

 13 <%= f.password_field :password %>

 14 </div>

 15 + <div>

 16 + <%= f.check_box :remember_me %>

 17 + <%= f.label :remember_me, "次回から自動でログインする" %>
 18 + </div>

 19 <div>

 20 <%= f.submit "ログイン" %>

 21 </div>

 22 <% end %>

 23 </div>

スタイルシート

　最後に、スタイルシートを修正してビジュアルデザインを整えます。

LIST app/assets/stylesheets/customer/sessions.scss

 :

 32 input[type="submit"] {

 33 padding: $wide $wide * 2;

 34 }

 35 + input[type="checkbox"]+label { display: inline-

block; }

 36 }

 :

図4.4: 顧客ログインフォームにチェックボックスを追加

　この結果、顧客のログインフォームの表示は図4.4のように変化します。

4.2.2　コントローラの修正

createアクションの修正

　自動ログイン機能を実装します。customer/sessionsコントローラのcreateアクションを
次のように書き直してください。

LIST app/controllers/customer/sessions_controller.rb

 13 def create

 14 @form = Customer::LoginForm.new(login_form_params)

 15 if @form.email.present?

 16 customer =

 17 Customer.find_by("LOWER(email) = ?",

@form.email.downcase)

 18 end

 19 if

Customer::Authenticator.new(customer).authenticate(@form.passwo

rd)

 20 - session[:customer_id] = customer.id

 20 + if @form.remember_me?

 21 + cookies.permanent.signed[:customer_id] =

customer.id

 22 + else

 23 + cookies.delete(:customer_id)

 24 + session[:customer_id] = customer.id

 25 + end

 26 flash.notice = "ログインしました。"

 27 redirect_to :customer_root

 28 else

 29 flash.now.alert = "メールアドレスまたはパスワードが正しくありませ
ん。"

 30 render action: "new"

 31 end

 32 end

 33

 34 private def login_form_params

 35 - params.require(:customer_login_form).permit(:email,

:password)

 35 + params.require(:customer_login_form).permit(:email,

:password, :remember_me)

 36 end

 :

　20-25行をご覧ください。

 if @form.remember_me?

 cookies.permanent.signed[:customer_id] = customer.id

 else

 cookies.delete(:customer_id)

 session[:customer_id] = customer.id

 end

　この部分は顧客の認証が成功したときに実行されます。顧客がチェックボックス「次回
から自動でログインする」をチェックしていたかどうかで処理が分岐しています。チェックしていな
い場合、これまで通り、セッションオブジェクトに顧客のIDが記録されます。しかし、チェックして
いた場合、クッキーに顧客のIDが記録されます。

セッションオブジェクトとクッキーの関係については、本編7-3-2項「current_staff_memberメソッドの
定義」を参照してください。

　さて、アクションの中でクッキーに値をセットする場合、普通は次のように書きます。

cookies[:customer_id] = customer.id

　しかし、このようにセットされたクッキーの値は、ブラウザ側で閲覧可能かつ変更可能で
す。つまり、customer/sessionsコントローラのソースコード21行目をこのように書き換えた場

合、クッキーの書き換え方を知っている人であれば誰でも、任意の顧客になりすまして
Baukis2の顧客向けページにログインできることになります。

　クッキーの値を閲覧不可かつ変更不可にするには、次のように書きます。

cookies.signed[:customer_id] = customer.id

　こうすれば、顧客なりすましの問題は解決されます。

　ただし、デフォルトではクッキーの情報はブラウザ終了時に消滅してしまいます。永続的に
情報を残したい場合は、次のように書いてください。

cookies.permanent.signed[:customer_id] = customer.id

　permanentメソッドを用いると、クッキーの有効期限が20年後に設定されます。もし有
効期限を1週間後に設定したい場合は、次のように書いてください。

cookies.signed[:customer_id] = {

 value: customer.id,

 expires: 1.week.from_now

}

destroyアクションの修正

　customer/sessionsコントローラのdestroyアクションを次のように書き直してください。

LIST app/controllers/customer/sessions_controller.rb

 :

 38 def destroy

 39 + cookies.delete(:customer_id)

 40 session.delete(:customer_id)

 41 flash.notice = "ログアウトしました。"

 42 redirect_to :customer_root

 43 end

 44 end

　クッキーに記録した顧客のIDを消去するには、次のように書きます。

cookies.delete(:customer_id)

　23行目では顧客がチェックボックス「次回から自動でログインする」をチェックせずにログ
インしたため、クッキーを消しています。39行目では顧客がログアウトしたため、クッキーを消去
しています。

current_customerメソッドの修正

　Customer::Baseクラスで定義されているcurrent_customerメソッドを次のように書き
換えます。

LIST app/controllers/customer/base.rb

 :

 4 private def current_customer

 5 - if session[:customer_id]

 6 - @current_customer ||=

 7 - Customer.find_by(id: session[:customer_id])

 5 + if customer_id = cookies.signed[:customer_id] ||

session[:customer_id]

 6 + @current_customer ||= Customer.find_by(id:

customer_id)

 7 end

 8 end

 :

　クッキーまたはセッションオブジェクトに記録された顧客IDを用いて、現在ログインしている
顧客に対応するCustomerオブジェクトを取得し、インスタンス変数 @current_customer に
セットしています。

4.2.3　動作確認

　これで顧客の自動ログイン機能は完成です。ブラウザで顧客のログインフォームを開き、
以下の点について動作確認を行ってください。

チェックボックス「次回から自動でログインする」をチェックした状態で適当な顧客として
Baukis2にログインした後で、（ログアウトせずに）ブラウザを終了し、再び起動したブラ
ウザでBaukis2の顧客ページを開くとログイン状態が維持されている。

チェックボックス「次回から自動でログインする」をチェックしていない状態で適当な顧客
としてBaukis2にログインした後で、（ログアウトせずに）ブラウザを終了し、再び起動し
たブラウザでBaukis2の顧客ページを開くとログアウト状態になっている。

4.3　RSpecによるテスト

4.3.1　クッキーの値のテスト

　RSpecによる自動ログイン機能のテストを書きましょう。まずは、クッキーの値が閲覧不
可の状態になっているかどうかを確認します。

　spec/requestsディレクトリにcustomerディレクトリを作成してください。

$ mkdir -p spec/requests/customer

　そして、そのディレクトリに新規ファイルauto_login_spec.rbを次のような内容で作成し
ます。

LIST spec/requests/customer/auto_login_spec.rb (New)

 1 require "rails_helper"

 2

 3 describe "次回から自動でログインする" do

 4 let(:customer) { create(:customer) }

 5

 6 example "チェックボックスをoffにした場合" do

 7 post customer_session_url,

 8 params: {

 9 customer_login_form: {

 10 email: customer.email,

 11 password: "pw",

 12 remember_me: "0"

 13 }

 14 }

 15

 16 expect(session).to have_key(:customer_id)

 17 expect(response.cookies).not_to

have_key("customer_id")

 18 end

 19

 20 example "チェックボックスをonにした場合" do

 21 post customer_session_url,

 22 params: {

 23 customer_login_form: {

 24 email: customer.email,

 25 password: "pw",

 26 remember_me: "1"

 27 }

 28 }

 29

 30 expect(session).not_to have_key(:customer_id)

 31 expect(response.cookies["customer_id"]).to match(/[0-

9a-f]{40}\z/)

 32 end

 33 end

　第1のエグザンプルでは「次回から自動でログインする」チェックボックスをチェックせずにロ
グインした場合、顧客のidの値がクッキーではなくセッションオブジェクトにセットされることを確
認しています。

　17行目をご覧ください。

 expect(response.cookies).not_to

have_key("customer_id")

　RSpecのエグザンプル内ではresponseメソッドがActionDispatch::TestResponseオ
ブジェクトを返します。そして、このオブジェクトのcookiesメソッドはクッキーの内容をハッシュと
して返します。そのハッシュに "customer_id" というキーを持たなければ、テストが成功しま
す。

　have_keyは述語マッチャー（predicate matchers）の一種です。have_keyマッチャー
が使用されると、RSpecはターゲットの has_key? メソッドを呼び出します。その戻り値が真で
あればテストが成功、偽であればテストが失敗します。

　response.cookiesが返すハッシュは単なるHashクラスのインスタンスです。すなわち、キ
ーとしてのシンボルと文字列を同列に扱うHashWithIndifferentAccessクラスのインスタンス
ではありません。そして、このハッシュのキーはすべて文字列です。そのため、have_keyメソッド
の引数には :customer_id ではなく "customer_id" のように文字列で指定する必要があ
ります。

　第2のエグザンプルでは「次回から自動でログインする」チェックボックスをチェックしてログ
インした場合、顧客のidの値がセッションオブジェクトではなくクッキーにセットされることを確
認しています。

　31行目をご覧ください。

 expect(response.cookies["customer_id"]).to match(/[0-

9a-f]{40}\z/)

　次に示すのは閲覧不可（signed）のクッキーの値の例です。

eyJ(省略)9fQ==--6a0793ad692719e1afd7d81f1e951b137130d1d0

　末尾に40桁の16進数を持つことが特徴ですので、そのことを正規表現を用いて調べて
います。

　テストを実行すると、2つのエグザンプルは両方とも成功します。

$ rspec spec/requests/customer/auto_login_spec.rb

..

Finished in 1.19 seconds (files took 1.08 seconds to load)

2 examples, 0 failures

4.3.2　クッキーの有効期限のテスト

　続いて、クッキーの有効期限が正しくセットされているかどうかを確かめます。先ほど作成
したspecファイルを次のように書き換えてください。

LIST spec/requests/customer/auto_login_spec.rb

 :

 30 expect(session).not_to have_key(:customer_id)

 31 expect(response.cookies["customer_id"]).to match(/[0-

9a-f]{40}\z/)

 32 +

 33 + cookies =

response.request.env["action_dispatch.cookies"]

 34 + .instance_variable_get(:@set_cookies)

 35 +

 36 + expect(cookies["customer_id"][:expires]).to be >

19.years.from_now

 37 end

 38 end

　33-34行をご覧ください。

 cookies =

response.request.env["action_dispatch.cookies"]

 .instance_variable_get(:@set_cookies)

クッキーの有効期限を取得するためのpublicなメソッドは用意されていないので、
instance_variable_getメソッドによってインスタンス変数の値を取得しています。この結
果、ローカル変数cookiesには各クッキーの属性を含むハッシュがセットされます。permanent
メソッドで設定されたクッキーの有効期限は20年後です。

　36行目では、クッキーの "customer_id" キーの有効期限を取得し、それが現在から19
年後以降であるかどうかを調べています。

 expect(cookies["customer_id"][:expires]).to be >

19.years.from_now

　テストを実行して、すべてのエグザンプルが成功することを確かめてください。

$ rspec spec/requests/customer/auto_login_spec.rb

..

Finished in 1.18 seconds (files took 1.1 seconds to load)

2 examples, 0 failures

テストを書くのが難しいケース

　私はクッキーの有効期限を調べるためにinstance_variable_getメソッドを用い
てオブジェクトのインスタンス変数の値を取得しました。しかし、インスタンス変数の名前
や用途は予告なく変更される可能性があるので、できればこの種の「ハック」は避ける
べきです。

　生のクッキー文字列はHTTPヘッダのSet-Cookieフィールドに書かれており、その
値はresponse.header["Set-Cookie"]で取得できます。したがって、その値を自分で
解析するという方法もありますが、テストのコードはかなり複雑なものになります。

　このように、対象物によってはテストを書くのが難しいケースもあります。今回、私は
このテストコードを書くに当たってネットで情報を検索したり、
ActionDispatch::TestResponseオブジェクトの中身を調べたりしました。正直に白
状すれば、かなりの時間を要しています。

　実際のところ、ブラウザを用いた目視テストで自動ログイン機能がうまく動いている
ことは確認されているので、このテストを書くことの意味はそれほど大きくはありません。
現実の開発プロジェクトにおいては、テストを書くのに要する時間とテストによって得られ
る便益が釣り合うかどうかをよく見極めることが大切です。

第5章　IPアドレスによるアクセス制限

Chapter 5では、接続元のIPアドレスによってアクセスを制限する機能を
Baukis2に追加します。本章での開発プロセスを通じて、モデルの複数属性
の組み合わせに対してバリデーションを行う方法、ANDとORで連結された
複雑な条件式でデータベース検索を行う方法、複数のレコードを一括削除
する方法などを学びます。

5.1　IPアドレスによるアクセス制限

本節では、IPアドレスによるアクセス制限の機能をBaukis2に追加しま
す。許可IPアドレスのリストをデータベースで管理し、接続元IPアドレスがその
リストにない場合、アクセスを拒否するようにします。

5.1.1　仕様

　セキュリティ強化のため、許可IPアドレス以外からのアクセスを制限する機能をBaukis2
に追加します。対象範囲は、職員ページです。管理者ページにおけるアクセス制限機能は章
末の演習問題で作成します。

　この機能の主な仕様は以下の通りです。

アクセス制限機能を用いるかどうかをアプリケーションレベルで設定できる。

IPバージョン4にのみ対応する。

許可IPアドレスをデータベーステーブルで管理する。

許可IPアドレスにはワイルドカード（*）フラグを指定できる。このフラグがOnの場合、第
1オクテットから第3オクテットまでが一致する任意のIPアドレスが許可される。

　IPバージョン4のアドレスは32ビットの数値です。この数値をそのまま10進数や16進数で
表記すると人間には分かりにくいため、通常は8ビットずつ4つのセクションに分解し、
192.168.0.1 のような形式で表記します。この表記ではドット（.）がセクション区切りで、

各セクションの値は10進数で表されます。このとき、各セクションのことをオクテットと呼びま
す。

5.1.2　準備作業

設定ファイル

まず、アクセス制限機能を利用するかどうかを設定ファイルで選択できるようにしましょう。
config/initializersディレクトリのbaukis2.rbファイルを次のように書き換えてください。

LIST config/initializers/baukis2.rb

 1 Rails.application.configure do

 2 config.baukis2 = {

 3 staff: { host: "baukis2.example.com", path: "" },

 4 admin: { host: "baukis2.example.com", path: "admin"

},

 5 - customer: { host: "example.com", path: "mypage" }

 5 + customer: { host: "example.com", path: "mypage" },

 6 + restrict_ip_addresses: true

 7 }

 8 end

　2行目のconfigは、Rails::Application::Configurationクラスのインスタンスを返
すメソッドです。このオブジェクトはRails自体あるいはアプリケーションに組み込まれたGemパッ
ケージの各種設定を保持しており、アプリケーション固有の設定も追加できます。ここでは
baukis2という項目を追加し、それにハッシュをセットしています。このハッシュに真偽値を持つ
キー :restrict_ip_addressesを追加しました。この値がtrueのとき、IPアドレスによるアクセ
ス制限機能を有効にします。

例外処理方法の変更

　次に、ApplicationControllerクラスのソースコードを次のように書き換えます。

LIST app/controllers/application_controller.rb

 :

 7 include ErrorHandlers if Rails.env.production?

 8 + rescue_from Forbidden, with: :rescue403

 9 + rescue_from IpAddressRejected, with: :rescue403

 10

 11 private def set_layout

 12 if

params[:controller].match(%r{\A(staff|admin|customer)/})

 13 Regexp.last_match[1]

 14 else

 15 "customer"

 16 end

 17 end

 18 +

 19 + private def rescue403(e)

 20 + @exception = e

 21 + render "errors/forbidden", status: 403

 22 + end

 23 end

　ここで追加したコードは本編6-5節でErrorHandlersモジュールに移したのですが、元に
戻します。なぜなら、例外ForbiddenやIpAddressRejectedは他の例外と異なり、自然に
Baukis2を使用していても発生するもの、つまり機能の一部だからです。なお、元に戻す際に
名前空間ApplicationController::が不要となる点に注意をしてください。この結果、
developmentモードやtestモードでもこれらの例外が捕捉され、ユーザー向けのエラー画面が
表示されるようになります。

　この変更に合わせてErrorHandlersモジュールのソースコードを次のように変更します。

LIST app/controllers/concerns/error_handlers.rb

 1 module ErrorHandlers

 2 extend ActiveSupport::Concern

 3

 4 included do

 5 rescue_from Exception, with: :rescue500

 6 - rescue_from ApplicationController::Forbidden, with:

:rescue403

 7 - rescue_from ApplicationController::IpAddressRejected,

with: :rescue403

 6 rescue_from ActiveRecord::RecordNotFound, with:

:rescue404

 7 rescue_from ActionController::ParameterMissing, with:

:rescue400

 8 end

 9

 10 private def rescue400(e)

 11 render "errors/bad_request", status: 400

 12 end

 13 -

 14 - private def rescue403(e)

 15 - @exception = e

 16 - render "errors/forbidden", status: 403

 17 - end

 13

 14 private def rescue404(e)

 :

5.1.3　AllowedSourceモデル

マイグレーションスクリプト

　では、IPアドレス制限機能の実装に入ります。まず、許可IPアドレスを保存するためのテ
ーブルallowed_sourcesを作成します。

$ bin/rails g model AllowedSource

　マイグレーションスクリプトを次のように書き換えてください。

LIST db/migrate/2019010100012_create_allowed_sources.rb

 1 class CreateAllowedSources < ActiveRecord::Migration[6.0]

 2 def change

 3 create_table :allowed_sources do |t|

 4 + t.string :namespace, null: false

 5 + t.integer :octet1, null: false

 6 + t.integer :octet2, null: false

 7 + t.integer :octet3, null: false

 8 + t.integer :octet4, null: false

 9 + t.boolean :wildcard, null: false, default: false

 10

 11 t.timestamps

 12 end

 13 +

 14 + add_index :allowed_sources,

 15 + [:namespace, :octet1, :octet2, :octet3, :octet4

], unique: true,

 16 + name:

"index_allowed_sources_on_namespace_and_octets"

 17 end

 18 end

　カラムnamespaceには、"staff" や "admin" のような名前空間の名前が記録されま
す。また、カラムoctet1、octet2、octet3、octet4には第1オクテットから第4オクテットの値
（0〜255）が格納されます。

　マイグレーションを実行します。

$ bin/rails db:migrate

バリデーション

　AllowedSourceモデルにバリデーションコードを追加します。

LIST app/models/allowed_source.rb

 1 class AllowedSource < ApplicationRecord

 2 + validates :octet1, :octet2, :octet3, :octet4, presence:

true,

 3 + numericality: { only_integer: true, allow_blank:

true },

 4 + inclusion: { in: 0..255, allow_blank: true }

 5 + validates :octet4,

 6 + uniqueness: {

 7 + scope: [:namespace, :octet1, :octet2, :octet3],

allow_blank: true

 8 + }

 9 end

　2-4行では属性octet1、octet2、octet3、octet4の値が入力必須であることおよび0
から255までの整数値であることを確認しています。

　inclusionタイプのバリデーションで0から255までの範囲にあることが確認されるので、
numericalityタイプのバリデーションは不要のように思えますが、必要です。なぜなら、"XYZ"
のような文字列がこれらの属性に代入されると、整数0に変換されてしまい、inclusionタイ
プのバリデーションではエラーにならないからです。numericalityタイプのバリデーションは、変
換前の値に対して行われるので、正しくエラーと判定されます。

　5-8行では属性namespace、octet1、octet2、octet3、octet4の値の組み合わせが
一意であることを確認しています。バリデーションの対象属性はoctet4ですが、scopeオプショ
ンに配列 [:namespace, :octet1, :octet2, :octet3] を指定しているので、5つの属
性の組み合わせに関してuniquenessタイプのバリデーションが実施されます。

ip_address= メソッド

　次に、AllowedSourceオブジェクトを作るときに、IPアドレスを文字列でも指定できるよ
うに ip_address= メソッドを作成します。

LIST app/models/allowed_source.rb

 :

 5 validates :octet4,

 6 uniqueness: {

 7 scope: [:namespace, :octet1, :octet2, :octet3],

allow_blank: true

 8 }

 9 +

 10 + def ip_address=(ip_address)

 11 + octets = ip_address.split(".")

 12 + self.octet1 = octets[0]

 13 + self.octet2 = octets[1]

 14 + self.octet3 = octets[2]

 15 +

 16 + if octets[3] == "*"

 17 + self.octet4 = 0

 18 + self.wildcard = true

 19 + else

 20 + self.octet4 = octets[3]

 21 + end

 22 + end

 23 end

　与えられた文字列をドット（.）で分割し、各オクテットにセットしています。第4オクテッ
トにアスタリスク（*）が指定された場合には、octet4属性に0をセットし、wildcardフラグを
Onにします。

RSpecによるテスト

　AllowedSource#ip_address= メソッドのテストを書きましょう。

LIST spec/models/allowed_source_spec.rb

 1 - require 'rails_helper'

 1 + require "rails_helper"

 2

 3 RSpec.describe AllowedSource, type: :model do

 4 - pending "add some examples to (or delete) #{__FILE__}"

 4 + describe "#ip_address=" do

 5 + example "引数に「127.0.0.1」を与えた場合" do

 6 + src = AllowedSource.new(namespace: "staff",

ip_address: "127.0.0.1")

 7 + expect(src.octet1).to eq(127)

 8 + expect(src.octet2).to eq(0)

 9 + expect(src.octet3).to eq(0)

 10 + expect(src.octet4).to eq(1)

 11 + expect(src).not_to be_wildcard

 12 + expect(src).to be_valid

 13 + end

 14 +

 15 + example "引数に「192.168.0.*」を与えた場合" do

 16 + src = AllowedSource.new(namespace: "staff",

ip_address: "192.168.0.*")

 17 + expect(src.octet1).to eq(192)

 18 + expect(src.octet2).to eq(168)

 19 + expect(src.octet3).to eq(0)

 20 + expect(src.octet4).to eq(0)

 21 + expect(src).to be_wildcard

 22 + expect(src).to be_valid

 23 + end

 24 +

 25 + example "引数に不正な文字列を与えた場合" do

 26 + src = AllowedSource.new(namespace: "staff",

ip_address: "A.B.C.D")

 27 + expect(src).not_to be_valid

 28 + end

 29 + end

 30 end

　テストを実行します。

$ rspec spec/models/allowed_source_spec.rb

...

Finished in 0.19519 seconds (files took 1.11 seconds to load)

3 examples, 0 failures

5.1.4　クラスメソッド include?

最初の実装

　続いて、AllowedSourceモデルにクラスメソッド include? を追加します。

LIST app/models/allowed_source.rb

 :

 20 self.octet4 = octets[3]

 21 end

 22 end

 23 +

 24 + class << self

 25 + def include?(namespace, ip_address)

 26 + return true if

!Rails.application.config.baukis2[:restrict_ip_addresses]

 27 +

 28 + octets = ip_address.split(".")

 29 +

 30 + condition = %Q{

 31 + octet1 = ? AND octet2 = ? AND octet3 = ?

 32 + AND ((octet4 = ? AND wildcard = ?) OR wildcard =

?)

 33 + }.gsub(/\s+/, " ").strip

 34 +

 35 + opts = [condition, *octets, false, true]

 36 + where(namespace: namespace).where(opts).exists?

 37 + end

 38 + end

 39 end

　このメソッドの第1引数には "staff" または "admin" を、第2引数には
"192.168.0.1" のようなIPアドレスを表す文字列を指定します。IPアドレス制限機能を無効
にしている場合には、直ちにtrueを返します（26行目）。

　35行目をご覧ください。

 opts = [condition, *octets, false, true]

　ローカル変数conditionには、プレースホルダー記号（?）付きの条件式がセットされて
います。またローカル変数octetsには指定されたIPアドレスの各オクテットの値を要素として
持つ配列がセットされています。これらを用いて新たな配列を作り、ローカル変数optsにセット
しています。

　octetsの前に添えられたアスタリスク（*）は、配列をその場に展開します。つまり、35
行目は次のコードと同値です。

 opts = [condition, octets[0], octets[1], octets[2],

octets[3], false, true]

　36行目をご覧ください。

 where(namespace: namespace).where(opts).exists?

　引数namespaceと35行目で定義した配列optsを用いてデータベーステーブル
allowed_sourcesを検索し、該当するレコードが存在するかどうかを調べています。配列
optsの第1要素にはプレースホルダー記号（?）付きの条件式がセットされています。そして、
第2要素以下の値がそれぞれプレースホルダーの位置に埋め込まれて最終的な条件式が作
られます。

RSpecによるテスト

　AllowedSource.include? メソッドをテストするためのエグザンプルを追加します。

LIST spec/models/allowed_source_spec.rb

 :

 27 expect(src).not_to be_valid

 28 end

 29 end

 30 +

 31 + describe ".include?" do

 32 + before do

 33 +

Rails.application.config.baukis2[:restrict_ip_addresses] = true

 34 + AllowedSource.create!(namespace: "staff",

ip_address: "127.0.0.1")

 35 + AllowedSource.create!(namespace: "staff",

ip_address: "192.168.0.*")

 36 + end

 37 +

 38 + example "マッチしない場合" do

 39 + expect(AllowedSource.include?("staff",

"192.168.1.1")).to be_falsey

 40 + end

 41 +

 42 + example "全オクテットがマッチする場合" do

 43 + expect(AllowedSource.include?("staff",

"127.0.0.1")).to be_truthy

 44 + end

 45 +

 46 + example "*付きのAllowedSourceにマッチする場合" do

 47 + expect(AllowedSource.include?("staff",

"192.168.0.100")).to be_truthy

 48 + end

 49 + end

 50 end

　テストを実行します。

$ rspec spec/models/allowed_source_spec.rb

......

Finished in 0.14209 seconds (files took 1.07 seconds to load)

6 examples, 0 failures

5.1.5　コントローラの修正

before_actionの追加

　AllowedSource.include? メソッドを用いて、実際に接続元のIPアドレスをチェックする
機能をコントローラに組み込みます。

LIST app/controllers/staff/base.rb

 1 class Staff::Base < ApplicationController

 2 + before_action :check_source_ip_address

 3 before_action :authorize

 4 before_action :check_account

 5 before_action :check_timeout

 6

 7 private def current_staff_member

 8 if session[:staff_member_id]

 9 @current_staff_member ||=

 10 StaffMember.find_by(id:

session[:staff_member_id])

 11 end

 12 end

 13

 14 helper_method :current_staff_member

 15 +

 16 + private def check_source_ip_address

 17 + raise IpAddressRejected unless

AllowedSource.include?("staff", request.ip)

 18 + end

 19

 20 private def authorize

 :

　requestはrequestオブジェクト（本編6-3-2項「ERBテンプレートの作成」参照）を返
すメソッドです。request.ipは接続元（クライアント）のIPアドレスを文字列で返します。

テストの修正

　check_source_ip_addressメソッドをbefore_actionに追加したことにより、いくつかの
RSpecエグザンプルが失敗するようになります。

$ rspec spec

..FFFFFFFF................................FFFFFFF............

...

Failures:

 1) 職員による顧客管理 職員が顧客（基本情報のみ）を追加する

 Failure/Error:

 within("#login-form") do

 fill_in "メールアドレス", with: staff_member.email

 fill_in "パスワード", with: password

(以下省略)

　そこで、spec/rails_helper.rbを次のように修正します。

LIST spec/rails_helper.rb

 :

 15 RSpec.configure do |config|

 16 config.fixture_path = "#{::Rails.root}/spec/fixtures"

 17 config.use_transactional_fixtures = true

 18 config.infer_spec_type_from_file_location!

 19 config.filter_rails_from_backtrace!

 20 config.include FactoryBot::Syntax::Methods

 21 config.include ActiveSupport::Testing::TimeHelpers

 22 +

 23 + config.before do

 24 +

Rails.application.config.baukis2[:restrict_ip_addresses] =

false

 25 + end

 26 end

　各エグザンプルの実行前にIPアドレス制限機能が無効化されるため、すべてのテストが
成功します。

$ rspec spec

...

...

Finished in 24.91 seconds (files took 1.1 seconds to load)

64 examples, 0 failures

RSpecによるテスト

　IPアドレスによるアクセス制限が正しく動作していることを確かめるためのspecファイルを
作りましょう。

LIST spec/requests/staff/ip_address_restriction_spec.rb (New)

 1 require "rails_helper"

 2

 3 describe "IPアドレスによるアクセス制限" do

 4 before do

 5

Rails.application.config.baukis2[:restrict_ip_addresses] = true

 6 end

 7

 8 example "許可" do

 9 AllowedSource.create!(namespace: "staff", ip_address:

"127.0.0.1")

 10 get staff_root_url

 11 expect(response.status).to eq(200)

 12 end

 13

 14 example "拒否" do

 15 AllowedSource.create!(namespace: "staff", ip_address:

"192.168.0.*")

 16 get staff_root_url

 17 expect(response.status).to eq(403)

 18 end

 19 end

　testモードでは、request.ipは常に "127.0.0.1" を返します。HTTPレスポンスのステー
タスは、アクセスが許可された場合は200となり、拒否された場合は403となります。

　テストを実行します。

$ rspec spec/requests/staff/ip_address_restriction_spec.rb

..

Finished in 0.08123 seconds (files took 1.04 seconds to load)

2 examples, 0 failures

5.1.6　動作確認

　では、最後にブラウザで動作確認を行いましょう。まず、IPアドレスによるアクセス制限機
能を無効にします。

LIST config/initializers/baukis2.rb

 1 Rails.application.configure do

 2 config.baukis2 = {

 3 staff: { host: "baukis2.example.com", path: "" },

 4 admin: { host: "baukis2.example.com", path: "admin"

},

 5 customer: { host: "example.com", path: "mypage" },

 6 - restrict_ip_addresses: true

 6 + restrict_ip_addresses: false

 7 }

 8 end

　Baukis2を再起動して、職員用トップページにアクセスしてください。 通常の職員向けト
ップページが表示されればOKです。動作確認が終わったら、baukis2.rbの変更を元に戻
し、Baukis2を再起動します。

　ここでブラウザをリロードすると図5.1のようなエラーが画面が表示されます。

図5.1: エラー画面

　次にエラー画面に表示されたIPアドレスを許可IPアドレスに登録します。ただ
し、"172.19.0.1" の部分は開発環境によって異なる可能性がありますので、実際のエラー
画面に表示されたIPアドレスで置き換えてください。

$ bin/rails r 'AllowedSource.create!(namespace: "staff",

ip_address: "172.19.0.1")'

　そして、ブラウザをリロードし、通常の職員向けトップページが表示されればOKです。

5.2　許可IPアドレスの管理

本節では、管理者が許可IPアドレスの管理（新規追加と削除）を行う
機能を作成します。複数個のレコードを一括削除するアクションの実装例で
す。

5.2.1　仕様

　管理者ページに、図5.2のような許可IPアドレスの管理フォームと表を設置します。

図5.2: 許可IPアドレスの管理フォームと表

　フォーム左上の４つのテキスト入力欄に許可したいIPアドレスの４つのオクテットを入力
し「追加」ボタンをクリックすると、許可IPアドレスが追加されます。

　また、削除したいIPアドレスをチェックして「チェックしたIPアドレスを削除」ボタンをクリック
すると、許可IPアドレスが一括削除されます。

5.2.2　ルーティング

　config/routes.rbを次のように書き換えてください。

LIST config/routes.rb

 :

 15 constraints host: config[:admin][:host] do

 16 namespace :admin, path: config[:admin][:path] do

 17 root "top#index"

 18 get "login" => "sessions#new", as: :login

 19 resource :session, only: [:create, :destroy]

 20 resources :staff_members do

 21 resources :staff_events, only: [:index]

 22 end

 23 resources :staff_events, only: [:index]

 24 + resources :allowed_sources, only: [:index, :create

] do

 25 + delete :delete, on: :collection

 26 + end

 27 end

 28 end

 :

　許可IPアドレス管理機能のコントローラはadmin/allowed_sourcesです。アクションは、
index、create、deleteの3つ。deleteアクションでは一括削除を行いますので、コレクション
ルーティングとして設定します（本編9-2-2項「ルーティングの分類」参照）。

5.2.3　許可IPアドレスの一覧表示

ダッシュボードにリンクを設置

　管理者用ダッシュボードに「許可IPアドレス管理」へのリンクを設置します。

LIST app/views/admin/top/dashboard.html.erb

 1 <% @title = "ダッシュボード" %>

 2 <h1><%= @title %></h1>

 3

 4 <ul class="menu">

 5 <%= link_to "職員管理", :admin_staff_members %>

 6 <%= link_to "職員のログイン・ログアウト記録",

:admin_staff_events %>

 7 + <%= link_to "許可IPアドレス管理",

:admin_allowed_sources %>

 8

　ブラウザで管理者としてログインすると、図5.3のような画面が表示されます。

図5.3: ダッシュボード画面

indexアクション

　admin/allowed_sourcesコントローラの骨組みを生成します。

$ bin/rails g controller admin/allowed_sources

　indexアクションを実装します。

LIST app/controllers/admin/allowed_sources_controller.rb

 1 - class Admin::AllowedSourcesController <

ApplicationController

 1 + class Admin::AllowedSourcesController < Admin::Base

 2 + def index

 3 + @allowed_sources = AllowedSource.where(namespace:

"staff")

 4 + .order(:octet1, :octet2, :octet3, :octet4)

 5 + end

 6 end

　AllowedSourceモデルのためのプレゼンターを作成します。

LIST app/presenters/allowed_source_presenter.rb (New)

 1 class AllowedSourcePresenter < ModelPresenter

 2 delegate :octet1, :octet2, :octet3, :octet4,

:wildcard?, to: :object

 3

 4 def ip_address

 5 [octet1, octet2, octet3, wildcard? ? "*" : octet4

].join(".")

 6 end

 7 end

　許可されたIPアドレスを "127.0.0.1" や "192.168.0.*" のような文字列として返すメ
ソッドip_addressを定義しています。

　indexアクションのERBテンプレートを作成します。

LIST app/views/admin/allowed_sources/index.html.erb (New)

 1 <% @title = "許可IPアドレス一覧" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 <table class="listing">

 6 <tr>

 7 <th>IPアドレス</th>

 8 <th>作成日時</th>

 9 </tr>

 10 <% @allowed_sources.each do |s| %>

 11 <% p = AllowedSourcePresenter.new(s, self) %>

 12 <tr>

 13 <td class="ip"><%= p.ip_address %></td>

 14 <td class="date"><%= p.created_at %></td>

 15 </tr>

 16 <% end %>

 17 </table>

 18 </div>

　スタイルシートを書き換えます。

LIST app/assets/stylesheets/admin/tables.scss

 :

 21 th, td { padding: $narrow }

 22 - td.email, td.date { font-family: monospace }

 22 + td.email, td.date, td.ip { font-family: monospace }

 23 td.boolean { text-align: center }

 :

　許可IPアドレスを２つ追加します。

$ bin/rails r 'AllowedSource.create!(namespace: "staff",

ip_address: "127.0.0.1")'

$ bin/rails r 'AllowedSource.create!(namespace: "staff",

ip_address: "192.168.1.*")'

　ブラウザで管理者ダッシュボードから「許可IPアドレス管理」リンクをクリックすると、図5.4
のような画面が表示されます。

図5.4: 許可IPアドレス一覧

5.2.4　許可IPアドレスの新規登録フォーム

　続いて、許可IPアドレスのリストの上に新規登録フォームを設置します。まず、
admin/allowed_sources#indexアクションのコードを次のように書き換えてください。

LIST app/controllers/admin/allowed_sources_controller.rb

 1 class Admin::AllowedSourcesController < Admin::Base

 2 def index

 3 @allowed_sources = AllowedSource.where(namespace:

"staff")

 4 .order(:octet1, :octet2, :octet3, :octet4)

 5 + @new_allowed_source = AllowedSource.new

 6 end

 7 end

　そして、同アクションのERBテンプレートを次のように書き換えます。

LIST app/views/admin/allowed_sources/index.html.erb

 1 <% @title = "許可IPアドレス一覧" %>

 2 <h1><%= @title %></h1>

 3

 4 - <div class="table-wrapper">

 4 + <div id="generic-form" class="table-wrapper">

 5 + <div>

 6 + <%= render "new_allowed_source" %>

 7 + </div>

 8 +

 9 <table class="listing">

 :

　部分テンプレート _new_allowed_source.html.erb を作成します。

LIST app/views/admin/allowed_sources/_new_allowed_source.html.erb (New)

 1 <%= form_with model: @new_allowed_source,

 2 url: [:admin, @new_allowed_source] do |f| %>

 3 <div>

 4 <%= f.label(:octet1, "新規許可IPアドレス") %>

 5 <%= f.text_field(:octet1, size: 3) %>

 6 <%= f.text_field(:octet2, size: 3) %>

 7 <%= f.text_field(:octet3, size: 3) %>

 8 <%= f.text_field(:last_octet, size: 3) %>

 9 <%= f.submit "追加" %>

 10 </div>

 11 <% end %>

　4つ目の入力欄は整数の他にアスタリスク（*）も入力できるので、last_octetという
属性を別途用意します。

LIST app/models/allowed_source.rb

 1 class AllowedSource < ApplicationRecord

 2 + attr_accessor :last_octet

 3 +

 4 validates :octet1, :octet2, :octet3, :octet4, presence:

true,

 :

　ブラウザで許可IPアドレス一覧ページを開くと、図5.5のような画面が表示されます。

図5.5: 許可IPアドレスの入力フォームとリスト

5.2.5　許可IPアドレスの追加

createアクション

　admin/allowed_sources#createアクションを実装します。

LIST app/controllers/admin/allowed_sources_controller.rb

 1 class Admin::AllowedSourcesController < Admin::Base

 2 def index

 3 @allowed_sources = AllowedSource.where(namespace:

"staff")

 4 .order(:octet1, :octet2, :octet3, :octet4)

 5 @new_allowed_source = AllowedSource.new

 6 end

 7 +

 8 + def create

 9 + @new_allowed_source =

AllowedSource.new(allowed_source_params)

 10 + @new_allowed_source.namespace = "staff"

 11 +

 12 + if @new_allowed_source.save

 13 + flash.notice = "許可IPアドレスを追加しました。"

 14 + redirect_to action: "index"

 15 + else

 16 + @allowed_sources =

 17 + AllowedSource.order(:octet1, :octet2, :octet3,

:octet4)

 18 + flash.now.alert = "許可IPアドレスの値が正しくありません。"

 19 + render action: "index"

 20 + end

 21 + end

 22 +

 23 + private def allowed_source_params

 24 + params.require(:allowed_source)

 25 + .permit(:octet1, :octet2, :octet3, :last_octet)

 26 + end

 27 end

　Strong Parametersのフィルターにフォームから送信されたパラメータを通すため、プライ
ベートメソッドallowed_source_paramsを定義しています。

AllowedSourceモデル

　最後に、AllowedSourceモデルのコードを次のように書き換えます。

LIST app/models/allowed_source.rb

 1 class AllowedSource < ApplicationRecord

 2 attr_accessor :last_octet

 3 +

 4 + before_validation do

 5 + if last_octet

 6 + self.last_octet.strip!

 7 + if last_octet == "*"

 8 + self.octet4 = 0

 9 + self.wildcard = true

 10 + else

 11 + self.octet4 = last_octet

 12 + end

 13 + end

 14 + end

 15

 16 validates :octet1, :octet2, :octet3, :octet4, presence:

true,

 17 numericality: { only_integer: true, allow_blank: true

},

 18 inclusion: { in: 0..255, allow_blank: true }

 19 validates :octet4,

 20 uniqueness: {

 21 scope: [:namespace, :octet1, :octet2, :octet3],

allow_blank: true

 22 }

 23 + validates :last_octet,

 24 + inclusion: { in: (0..255).to_a.map(&:to_s) + ["*"

], allow_blank: true }

 25 +

 26 + after_validation do

 27 + if last_octet

 28 + errors[:octet4].each do |message|

 29 + errors.add(:last_octet, message)

 30 + end

 31 + end

 32 + end

 33

 34 def ip_address=(ip_address)

 :

　追加されたコードは、すべてlast_octet属性に関連しています。before_validationブ
ロックでは、last_octet属性にアスタリスク（*）がセットされているかどうかで処理を切り替
えています。アスタリスクなら、octet4属性に0をセットしてwildcardフラグを立てます。そうで
なければ、last_octet属性の値をoctet4属性にそのままセットします。

　23-24行をご覧ください。

 validates :last_octet,

 inclusion: { in: (0..255).to_a.map(&:to_s) + ["*"],

allow_blank: true }

　last_octet属性の値があるリストに含まれているかどうかを確認しています。式
(0..255).to_a.map(&:to_s) は、0から255までの整数を文字列に変換したものの配列を
返します。それと配列 ["*"] を連結することで、last_octet属性に記入可能なすべての
値を列挙しています。

　26-32行ではafter_validationコールバックが定義されています。

 after_validation do

 if last_octet

 errors[:octet4].each do |message|

 errors.add(:last_octet, message)

 end

 end

 end

　octet4属性に登録されたエラーメッセージをすべてlast_octet属性のものとして登録し
直しています。presenceタイプとuniquenessタイプのバリデーションがoctet4属性に対して行
われますが、octet4属性に対応する入力欄はフォーム上に存在しないため、フォーム上にエラ
ーの状態を表現できません。しかし、octet4属性で生じたエラーをlast_octet属性のエラーと
してしまえば、入力欄の背景色をピンク色に変えることができます。

動作確認

　ブラウザで許可IPアドレス一覧ページを開き、以下の項目について動作確認を行ってく
ださい。

新規許可IPアドレスとして「192.168.2.*」を追加できる。

新規許可IPアドレスとして「192.168.2.999」を追加しようとすると、last_octet属性の
入力欄の背景色がピンク色になる。

何も記入せずに「追加」ボタンをクリックすると、４つの入力欄の背景色がすべてピンク
色になる。

既存の許可IPアドレス「127.0.0.1」を新規許可IPアドレスとして追加しようとすると、
last_octet属性の入力欄の背景色がピンク色になる。

5.2.6　許可IPアドレスの一括削除フォーム

　本章の締めくくりとして、許可IPアドレスの一括削除機能を作成します。まず、indexア
クションのERBテンプレートを次のように書き換えます。

LIST app/views/admin/allowed_sources/index.html.erb

 1 <% @title = "許可IPアドレス一覧" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form" class="table-wrapper">

 5 <div>

 6 <%= render "new_allowed_source" %>

 7 </div>

 8 +

 9 + <%= form_with scope: "form", url:

:delete_admin_allowed_sources,

 10 + method: :delete do |f| %>

 11 <table class="listing">

 12 <tr>

 13 + <th>削除</th>

 14 <th>IPアドレス</th>

 15 <th>作成日時</th>

 16 </tr>

 17 - <% @allowed_sources.each do |s| %>

 17 + <% @allowed_sources.each_with_index do |s, index| %>

 18 <% p = AllowedSourcePresenter.new(s, self) %>

 19 - <tr>

 20 - <td class="ip"><%= p.ip_address %></td>

 21 - <td class="date"><%= p.created_at %></td>

 22 - </tr>

 19 + <%= f.fields_for :allowed_sources, s, index: index

do |ff| %>

 20 + <%= ff.hidden_field :id %>

 21 + <tr>

 22 + <td class="actions"><%= ff.check_box :_destroy

%></td>

 23 + <td class="ip"><%= p.ip_address %></td>

 24 + <td class="date"><%= p.created_at %></td>

 25 + </tr>

 26 + <% end %>

 27 <% end %>

 28 </table>

 29 + <div class="buttons">

 30 + <%= f.submit "チェックしたIPアドレスを削除",

 31 + data: { confirmed: "本当に削除しますか。" } %>

 32 + </div>

 33 + <% end %>

 34 </div>

　これまでの用法とは異なり、modelオプションを指定せずにform_withメソッドを使用し
ています。この場合、特定のモデルオブジェクトと結びつかないフォームが生成されます。

　fields_forメソッドに指定するindexオプションについては、本編18-3-1項「個人電話
番号の入力欄表示」で説明しました。複数のオブジェクトを含むフォームにおいて、このindex

オプションに与えた数値がオブジェクトを識別するための番号となります。

　fields_forブロックの内側では隠しフィールドとしてid属性の値が埋め込まれ（20行
目）、_destroy属性のためのチェックボックスが生成されます（22行目）。

　AllowedSourceモデルに _destroy 属性を追加します。

LIST app/models/allowed_source.rb

 1 class AllowedSource < ApplicationRecord

 2 - attr_accessor :last_octet

 2 + attr_accessor :last_octet, :_destroy

 3

 4 before_validation do

 :

　ブラウザで許可IPアドレス一覧ページを開くと、図5.6のような画面が表示されます。

図5.6: 許可IPアドレスの削除ボタンを表示

5.2.7　許可IPアドレスの一括削除

サービスオブジェクト

　許可IPアドレスの一括削除フォームから送られてくるデータを受ける処理はやや複雑にな
りますので、アクション内に全部記述するのは適切ではありません。サービスオブジェクト（本
編8-2節）を作ることにしましょう。

　app/services/adminディレクトリに、新規ファイルallowed_sources_deleter.rbを
次の内容で作成します。

LIST app/services/admin/allowed_sources_deleter.rb (New)

 1 class Admin::AllowedSourcesDeleter

 2 def delete(params)

 3 if params && params[:allowed_sources].kind_of?

(ActionController::Parameters)

 4 ids = []

 5

 6 params[:allowed_sources].values.each do |hash|

 7 if hash[:_destroy] == "1"

 8 ids << hash[:id]

 9 end

 10 end

 11

 12 if ids.present?

 13 AllowedSource.where(namespace: "staff", id:

ids).delete_all

 14 end

 15 end

 16 end

 17 end

　許可IPアドレスの一括削除フォームからは、次のような構造のパラメータが送られてきま
す。

{

 allowed_sources: {

 "0" => { id: "1", _destroy: "0" },

 "1" => { id: "2", _destroy: "1" },

 "2" => { id: "3", _destroy: "1" },

 "3" => { id: "4", _destroy: "0" }

 }

}

　この場合に、idが2と3のAllowedSourceオブジェクトを削除するのが、このdeleteメソッ
ドの目的です。allowed_sourcesパラメータの値がハッシュである場合、valuesメソッドは次
のような配列を返します。

[

 { id: "1", _destroy: "0" },

 { id: "2", _destroy: "1" },

 { id: "3", _destroy: "1" },

 { id: "4", _destroy: "0" }

]

　4-10行をご覧ください。

 ids = []

 params[:allowed_sources].values.each do |hash|

 if hash[:_destroy] == "1"

 ids << hash[:id]

 end

 end

eachメソッドで配列の要素（ハッシュ）を１個ずつ取り出し、そのハッシュの :destroy キ
ーの値が "1" である場合は、:id キーの値を配列idsに加えています。ループが終了した時点
では、配列idsに削除すべきAllowedSourceオブジェクトの主キーがたまります。

　これを用いてallowed_sourcesテーブルから該当するレコードを一括削除します（13行
目）。

 AllowedSource.where(namespace: "staff", id:

ids).delete_all

deleteアクション

　では、サービスオブジェクトAdmin::AllowedSourcesDeleterを用いて
admin/allowed_sourcesコントローラにdeleteアクションを追加しましょう。

LIST app/controllers/admin/allowed_sources_controller.rb

 :

 23 private def allowed_source_params

 24 params.require(:allowed_source)

 25 .permit(:octet1, :octet2, :octet3, :last_octet)

 26 end

 27 +

 28 + def delete

 29 + if

Admin::AllowedSourcesDeleter.new.delete(params[:form])

 30 + flash.notice = "許可IPアドレスを削除しました。"

 31 + end

 32 + redirect_to action: "index"

 33 + end

 34 end

　Admin::AllowedSourcesDeleterのdeleteメソッドはインスタンスメソッドとして定義さ
れていますので、newでインスタンス化する必要があります。

動作確認

　ブラウザで許可IPアドレス一覧ページを開き、以下の項目について動作確認を行ってく
ださい。

一括削除フォーム内のチェックボックスをまったくチェックせずに「削除」ボタンをクリックし
た場合、許可IPアドレス一覧ページがそのままもう一度表示される（フラッシュメッセージ
は表示されない）。

一括削除フォーム内の複数の許可IPアドレスにチェックして、「削除」ボタンをクリックす
ると、「許可IPアドレスを削除しました。」というフラッシュメッセージが表示され、それらの
許可IPアドレスが削除されている。

5.3　演習問題

問題1

　管理者ページに対してIPアドレスによるアクセス制限機能を追加してください。

問題2

　Baukis2を再起動してから、以下の操作を順に行ってください。

1. 管理者用トップページにアクセスして403エラーが発生することを確かめてください。

2. エラー画面に表示されたIPアドレスを名前空間adminの許可IPアドレスとして登録してく
ださい。

3. ブラウザを再読み込みして、管理者用トップページが正常に表示されることを確認してく
ださい。

問題3

　問題1で作った機能をテストするspecファイルを作成し、テストが成功することを確認し
てください。作成するディレクトリはspec/requests/adminで、ファイル名は
ip_address_restriction_spec.rbとします。

問題4

　環境変数RESTRICT_IP_ADDRESSに1をセットしてサーバーを起動した場合にのみIPアド
レスによるアクセス制限機能が有効となるようconfig/initializersディレクトリの
baukis2.rbを変更してください。

　また、実際にこの環境変数に1をセットしてサーバーを起動し、IPアドレスによるアクセス制
限機能が有効となることを確認してください。

第6章　多対多の関連付け

Chapter 6からChapter 8までの3章で、顧客向けの各種プログラム（催
し物、イベント、講習会、セミナー、キャンペーンなど）とプログラムへの申込
者を管理する機能を作成します。本章ではこの機能に必要なモデル群を定
義しつつ、多対多で関連付けられたモデル群の基本的な取り扱い方法を
学習します。

6.1　多対多の関連付け

この節では、プログラム申込者管理機能に必要なテーブルやモデルを定
義しながら、多対多で関連付けられたモデル群をどのように取り扱えばよい
のかを学びます。

6.1.1　プログラム管理機能の概要

　本章からChapter 8では、Baukis2にプログラムとプログラムへの申込者を管理する機
能を追加します。ここでいう「プログラム」とは、催し物、イベント、講習会、セミナー、キャンペー
ンなどの総称です。Baukis2にアカウントを持つ顧客だけが申し込めます。職員は申込者リス
トを見て、申し込みを承認したり、取り消したりします。

　話を単純にするため、プログラムの設定項目は以下の7つとします。

タイトル

説明

申し込み開始日時

申し込み終了日時

最小参加者数

最大参加者数

登録職員

　最小参加者数と最大参加者数の入力は省略可能で、その他は入力必須です。申し
込み開始日時が来ると顧客はプログラムに申し込めるようになります。そして、プログラムへの
申込者が最大参加者数に達するか申し込み終了日時を過ぎると、申し込みの受付が止ま
ります。

　顧客は複数のプログラムに申し込めますが、１つのプログラムには１回しか申し込めま
せん。また、顧客はあるプログラムに申し込んだ後で申し込みをキャンセルできますが、キャン
セル後に同じプログラムに申し込みを行うことはできません。また、申し込み終了日時が設定
されている場合、その時刻以降はキャンセルできません。

6.1.2　データベース設計

データベース設計を考える

　以上のようなプログラム申込者管理機能を作るために、どのようなデータベース設計を
行えばいいでしょうか。まず、プログラムの情報を記録するためのprogramsテーブルを作るのが
出発点です。問題は、「申込者」あるいは「申し込む」という概念をどうデータベースで表現す
るかです。

　こういう場合、すでに存在するテーブル（あるいは、それを表現するモデルクラス）の相
互関係を整理してみることをお勧めします。

　今回は以下の３つのテーブル（モデルクラス）について考えてみましょう。

staff_members （StaffMember）

programs （Program）

customers （Customer）

　職員とプログラムの間には、１対多の関連が存在します。ある職員がプログラムを登録
すれば、その職員はプログラムにとっての登録職員となります。職員と顧客の間には、（少な
くともプログラム申込者管理機能の文脈では）特別な関連はありません。そして、プログラム

と顧客の間には、本章のテーマである多対多の関連が存在します。各プログラムは複数の顧
客を抱えており、各顧客は複数のプログラムに所属しています。

　以上のような複雑な関係性を整理するときには、図6.1のようなクラス図（本項のコラ
ム参照）を描いてみると便利です。

図6.1: クラス図1

　図に描かれた3個の長方形はクラスを表します。長方形と長方形を結んでいる線は、ク
ラス同士が関連付けられていることを示します。そして、線の両端にある1あるいはアスタリス
ク記号（*）は、多重度を表しています。多重度とは関連付けできるオブジェクトの個数を
表現する概念です。線の両端に1と * が置かれていればクラスとクラスが「１対多の関連」に
あることを示し、線の両端に * と * がクラスとクラスが「多対多の関連」にあることを示しま
す。

　さて、リレーショナルデータベースにおいて多対多の関連を表現するためには、２つのテー
ブルを結び付けるテーブル（リンクテーブル）を定義するのが簡便です。そのテーブル名を
entriesとし、モデルクラス名をEntryとしましょう。すると、先ほどのクラス図は図6.2のように
書き換えられます。

図6.2: クラス図2

　リンクテーブルentriesの各レコードは、プログラムと顧客を結ぶ“糸”のようなものと考え
てください。このテーブルには、外部キーとして使われる2つのカラムprogram_idとcustomer_id

を定義します。これらのカラムによって“糸”の両端がどのプログラムと顧客に結び付けられてい
るかが分かります。一般に、「多対多の関連」はリンクテーブルを用いて「１対多の関連」を
２つ組み合わせたものに変換することができます。

クラス図とは

　クラス図とは、統一モデリング言語（Unified Modeling Language; UML）に
含まれる図（ダイアグラム）の１つです。私は言語体系としてのUML自体はあまり好
きではありませんが（複雑すぎるので）、クラス図はしばしば利用します。といっても、
UMLツールを用いてクラス図を作成することはほとんどありません。頭の整理のために、
紙とボールペンで（あるいは、ホワイトボードとマーカーで）手書きのクラス図を描くだけ
です。

　私が使用するクラス図は極めてシンプルなものです。UMLの仕様ではクラス図に
クラスの属性やメソッドなども記述できるようになっていますが、私は長方形の中にクラ
ス名だけを書きます。そして、関連するクラス同士を線で結び、線の両端に多重度の
記号を添えます。この程度の雑なクラス図でも、データベース設計の問題点を浮かび上
がらせるのに役立ちます。

マイグレーションスクリプト

　では、以上の設計方針に基づいてマイグレーションスクリプトを作成しましょう。まず、スク
リプトの骨組みを生成します。

$ bin/rails g model program

$ bin/rails g model entry

　specファイルを削除します。

$ rm spec/models/program_spec.rb

$ rm spec/models/entry_spec.rb

　programsテーブルのマイグレーションスクリプトを次のように書き換えます。

LIST db/migrate/20190101000013_create_programs.rb

 1 class CreatePrograms < ActiveRecord::Migration[6.0]

 2 def change

 3 create_table :programs do |t|

 4 + t.integer :registrant_id, null: false #

登録職員（外部キー）

 5 + t.string :title, null: false #

タイトル

 6 + t.text :description #

説明

 7 + t.datetime :application_start_time, null: false #

申し込み開始日時

 8 + t.datetime :application_end_time, null: false #

申し込み終了日時

 9 + t.integer :min_number_of_participants #

最小参加者数

 10 + t.integer :max_number_of_participants #

最大参加者数

 11

 12 t.timestamps

 13 end

 14 +

 15 + add_index :programs, :registrant_id

 16 + add_index :programs, :application_start_time

 17 + add_foreign_key :programs, :staff_members, column:

"registrant_id"

 18 end

 19 end

　entriesテーブルのマイグレーションスクリプトを次のように書き換えます。

LIST db/migrate/20190101000014_create_entries.rb

 1 class CreateEntries < ActiveRecord::Migration[6.0]

 2 def change

 3 create_table :entries do |t|

 4 + t.references :program, null: false, index: false

 5 + t.references :customer, null: false

 6 + t.boolean :approved, null: false, default: false #

承認済みフラグ

 7 + t.boolean :canceled, null: false, default: false #

取り消しフラグ

 8

 9 t.timestamps

 10 end

 11 +

 12 + add_index :entries, [:program_id, :customer_id],

unique: true

 13 + add_foreign_key :entries, :programs

 14 + add_foreign_key :entries, :customers

 15 end

 16 end

　マイグレーションを実行します。

$ bin/rails db:migrate

6.1.3　Entryモデルとプログラムモデル

モデルクラス

　続いて、モデルクラス群に関連付けのコードを追加します。まずは、Entryモデルから。

LIST app/models/entry.rb

 1 class Entry < ApplicationRecord

 2 + belongs_to :program

 3 + belongs_to :customer

 4 end

　外部キーprogram_idを通じてProgramモデルを参照し、外部キーcustomer_idを通じて
Customerモデルを参照しています。

　次に、Programクラス。

LIST app/models/program.rb

 1 class Program < ApplicationRecord

 2 + has_many :entries, dependent: :destroy

 3 + has_many :applicants, through: :entries, source:

:customer

 4 + belongs_to :registrant, class_name: "StaffMember"

 5 end

　2行目では、ProgramモデルとEntryモデルの間に「１対多の関連付け」を設定していま
す。EntryモデルはProgramモデルとCustomerモデルを連結する役割を持ちますので、リンク
モデルと呼びます。

　続いて、3行目をご覧ください。

 has_many :applicants, through: :entries, source: :customer

　ここでProgramモデルとCustomerモデルの間に「多対多の関連付け」を設定しています。

　このコードを一般化したものが次の式です。

has_many X, through: Y, source: Z

　そして、このコードの意味を模式的に表現したのが図6.3です。

図6.3: 多対多の関連付けの模式図

　この図において、円で囲んだP、E、Cはモデルオブジェクトです。すなわち、Programモデ
ル、Entryモデル、Customerモデルのインスタンスです。１個のPは複数個のEを持ち、１個の
Eは１個のCを持っています。

　X、Y、Zはすべて関連付けの名前です。今回、クラスメソッドhas_manyで定義したい関
連付けがXです。YとZは他の場所で定義されている関連付けです。Yは、program.rbの2行
目で定義されています。

 has_many :entries, dependent: :destroy

　また、Zはentry.rbの3行目で定義されています。

 belongs_to :customer

　Pから関連付けYをたどると複数のEにたどりつきます。そして、それぞれのEから関連付け
Zをたどると複数のCに至ります。このとき、関連付けYと関連付けZを“合成”して、新たな関
連付けXを定義しようとするのが、

 has_many :applicants, through: :entries, source: :customer

というクラスメソッド呼び出しの意図です。

　同様に、CustomerモデルからProgramモデルに対しても「多対多の関連付け」を定義し
ます。

LIST app/models/customer.rb

 :

 6 has_many :addresses, dependent: :destroy

 7 has_one :home_address, autosave: true

 8 has_one :work_address, autosave: true

 9 has_many :phones, dependent: :destroy

 10 has_many :personal_phones, -> { where(address_id:

nil).order(:id) },

 11 class_name: "Phone", autosave: true

 12 + has_many :entries, dependent: :destroy

 13 + has_many :programs, through: :entries

 14

 15 validates :gender, inclusion: { in: %w(male female),

allow_blank: true }

 :

　Programモデルの場合とほぼ同様ですが、13行目でsourceオプションが指定されてい
ない点が異なります。sourceオプションを省略しない場合、ここのコードは次のようになりま
す。

 has_many :programs, through: :entries, source: :program

has_manyメソッドの引数の単数形がsourceオプションの値と等しい場合、sourceオプショ
ンは省略できます。

　最後に、StaffMemberモデルの側からProgramモデルとの関連付けを定義します。

LIST app/models/staff_member.rb

 1 class Entry < ApplicationRecord

 2 include EmailHolder

 3 include PersonalNameHolder

 4 include PasswordHolder

 5

 6 has_many :events, class_name: "StaffEvent", dependent:

:destroy

 7 + has_many :programs, foreign_key: "registrant_id",

 8 + dependent: :restrict_with_exception

 9

 10 validates :start_date, presence: true, date: {

 :

　テーブルprogramsからテーブルstaff_membersテーブルを参照しているカラム（外部キ
ー）の名前 "registrant_id" をforeign_keyオプションに指定しています。参照先テーブル
の名前から外部キーの名前が推定できる場合（外部キーの名前がstaff_member_idであっ
た場合）は、foreign_keyオプションは省略可能です。

　dependentオプションにシンボル :restrict_with_exceptionを指定しているのは、安
全のための措置です。いま、ある職員と関連付けられたプログラムが１個以上存在している
とします。その場合、職員だけを削除しようとするとデータベース側でエラーが発生します。外
部キー制約違反となるからです。そこで、その職員の削除を試みると例外が発生するように
設定しています。

これまでのようにdependentオプションに :destroyオプションを指定すれば外部キー制約違反によるエ
ラーは発生しなくなります。しかし、常識的に考えれば、職員アカウント削除の副作用としてプログラム
のデータが消えるべきではないでしょう。

職員管理機能の修正

　ここで少し寄り道をして、管理者による職員管理機能を修正します。1個以上のプログ
ラムを持つ職員は削除できないことになりましたので、その仕様を反映させておきます。

　まず、StaffMemberモデルに deletable? メソッドを追加します。職員が持っているプロ
グラムの個数が0の場合にtrueを返すメソッドです。

LIST app/models/staff_member.rb

 :

 21 def active?

 22 !suspended? && start_date <= Date.today &&

 23 (end_date.nil? || end_date > Date.today)

 24 end

 25 +

 26 + def deletable?

 27 + programs.empty?

 28 + end

 29 end

　そして、admin/staff_members#destroyアクションを次のように書き換えてください。

LIST app/controllers/admin/staff_members_controller.rb

 :

 49 def destroy

 50 staff_member = StaffMember.find(params[:id])

 51 - staff_member.destroy!

 52 - flash.notice = "職員アカウントを削除しました。"

 51 + if staff_member.deletable?

 52 + staff_member.destroy!

 53 + flash.notice = "職員アカウントを削除しました。"

 54 + else

 55 + flash.alert = "この職員アカウントは削除できません。"

 56 + end

 57 redirect_to :admin_staff_members

 58 end

 59 end

シードデータの投入

　次に、programsテーブルにシードデータを投入するスクリプトを作成します。

LIST db/seeds/development/programs.rb (New)

 1 staff_members = StaffMember.order(:id)

 2

 3 20.times do |n|

 4 t = (18 - n).weeks.ago.midnight

 5 Program.create!(

 6 title: "プログラム No.#{n + 1}",

 7 description: "会員向け特別プログラムです。" * 10,

 8 application_start_time: t,

 9 application_end_time: t.advance(days: 7),

 10 registrant: staff_members.sample

 11)

 12 end

　20個のプログラムを作成しています。うち1個は現在申し込み受付中で、1個は来週か
ら申し込み受付が開始されます。残り18個は過去のプログラムで、すでに申し込み期間が
終了しています。

　さらに、entriesテーブルにシードデータを投入するスクリプトを作成します。

LIST db/seeds/development/entries.rb (New)

 1 programs = Program.where(["application_start_time < ?",

Time.current])

 2 programs.order(id: :desc).limit(3).each_with_index do |p,

i|

 3 Customer.order(:id).limit((i + 1) * 5).each do |c|

 4 p.applicants << c

 5 end

 6 end

　受け付け開始日時をすぎたプログラムを新しい順に3個選び、それぞれに顧客を関連
付けています。顧客の数はそれぞれ5人、10人、15人です。

　4行目をご覧ください。

 p.applicants << c

　プログラムと顧客は多対多で関連付けられていますが、関連付けを行う書き方は1対
多の関連付けの場合と同じです。

　db/seeds.rbを書き換えます。

LIST db/seeds.rb

 1 - table_names = %w(staff_members administrators

staff_events customers)

 1 + table_names = %w(

 2 + staff_members administrators staff_events customers

 3 + programs entries

 4 +)

 5

 6 table_names.each do |table_name|

 :

　シードデータを投入し直します。

$ bin/rails db:reset

6.2　プログラム管理機能（1）

この節では、職員によるプログラム管理機能のうち、プログラムの一覧表
示機能と詳細表示機能を実装します。プログラムの新規登録・更新・削除
など、残りの機能は次章で扱います。

6.2.1　プログラムの一覧表示

　まず、プログラムのリストを表示する機能を作りましょう。

ルーティング

　config/routes.rbを次のように書き換えてください。

LIST config/routes.rb

 :

 4 constraints host: config[:staff][:host] do

 5 namespace :staff, path: config[:staff][:path] do

 6 root "top#index"

 7 get "login" => "sessions#new", as: :login

 8 resource :session, only: [:create, :destroy]

 9 resource :account, except: [:new, :create]

 10 resource :password, only: [:show, :edit, :update]

 11 resources :customers

 12 + resources :programs

 13 end

 14 end

 :

リンクの設置

　職員ページのトップ（ダッシュボード）に「プログラム管理」へのリンクを設置します。

LIST app/views/staff/top/dashboard.html.erb

 1 <% @title = "ダッシュボード" %>

 2 <h1><%= @title %></h1>

 3

 4 <ul class="menu">

 5 <%= link_to "顧客管理", :staff_customers %>

 6 + <%= link_to "プログラム管理", :staff_programs %>

 7

indexアクション

　staff/programsコントローラの骨組みを生成します。

$ bin/rails g controller staff/programs

　staff/programs#indexアクションを実装します。

LIST app/controllers/staff/programs_controller.rb

 1 - class Staff::ProgramsController < ApplicationController

 1 + class Staff::ProgramsController < Staff::Base

 2 + def index

 3 + @programs = Program.order(application_start_time:

:desc)

 4 + .page(params[:page])

 5 + end

 6 end

　受け付け開始日時でソートした上で、pageメソッドを呼び出してページネーションに対応
しています。

モデルプレゼンター

　Programモデルのためのプレゼンターを作成します。

LIST app/presenters/program_presenter.rb (New)

 1 class ProgramPresenter < ModelPresenter

 2 delegate :title, :description, to: :object

 3 delegate :number_with_delimiter, to: :view_context

 4

 5 def application_start_time

 6 object.application_start_time.strftime("%Y-%m-%d

%H:%M")

 7 end

 8

 9 def application_end_time

 10 object.application_end_time.strftime("%Y-%m-%d

%H:%M")

 11 end

 12

 13 def max_number_of_participants

 14 if object.max_number_of_participants

 15

number_with_delimiter(object.max_number_of_participants)

 16 end

 17 end

 18

 19 def min_number_of_participants

 20 if object.min_number_of_participants

 21

number_with_delimiter(object.min_number_of_participants)

 22 end

 23 end

 24

 25 def number_of_applicants

 26 number_with_delimiter(object.applicants.count)

 27 end

 28

 29 def registrant

 30 object.registrant.family_name + " " +

object.registrant.given_name

 31 end

 32 end

number_with_delimiterは、引数に与えられた数値に3桁区切りのコンマを追加するヘ
ルパーメソッドです。プレゼンターの中でそのまま使えるようにするため、2行目でこのメソッドを
view_contextに委譲しています。

　26行目をご覧ください。

 number_with_delimiter(object.applicants.count)

　多対多の関連付けapplicantsを用いて、プログラムへの申込者数を計算しています。
次節では、この部分について再検討します。

ERBテンプレートの本体

　staff/programs#indexアクションのためのERBテンプレートを作成します。

LIST app/views/staff/programs/index.html.erb (New)

 1 <% @title = "プログラム管理" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 <div class="links">

 6 <%= link_to "新規登録", :new_staff_program %>

 7 </div>

 8

 9 <%= paginate @programs %>

 10

 11 <table class="listing">

 12 <tr>

 13 <th>タイトル</th>

 14 <th>申し込み開始日時</th>

 15 <th>申し込み終了日時</th>

 16 <th>最小参加者数</th>

 17 <th>最大参加者数</th>

 18 <th>申し込み件数</th>

 19 <th>登録職員</th>

 20 <th>アクション</th>

 21 </tr>

 22 <%= render partial: "program", collection: @programs

%>

 23 </table>

 24

 25 <%= paginate @programs %>

 26

 27 <div class="links">

 28 <%= link_to "新規登録", :new_staff_program %>

 29 </div>

 30 </div>

　partialオプションとcollectionオプション付きで呼び出すrenderメソッドの使い方に
ついては、本編Chapter 13で紹介しました。プログラムの個数分だけ、この位置に部分テン
プレートが埋め込まれます。

部分テンプレート

　Programモデルのためのプレゼンターを用いて、部分テンプレートを作成します。

LIST app/views/staff/programs/_program.html.erb (New)

 1 <% p = ProgramPresenter.new(program, self) %>

 2 <tr>

 3 <td><%= p.title %></td>

 4 <td class="date"><%= p.application_start_time %></td>

 5 <td class="date"><%= p.application_end_time %></td>

 6 <td class="numeric"><%= p.min_number_of_participants %>

</td>

 7 <td class="numeric"><%= p.max_number_of_participants %>

</td>

 8 <td class="numeric"><%= p.number_of_applicants %></td>

 9 <td><%= p.registrant %></td>

 10 <td class="actions">

 11 <%= link_to "詳細", [:staff, program] %> |

 12 <%= link_to "編集", [:edit, :staff, program] %> |

 13 <%= link_to "削除", [:staff, program], method:

:delete,

 14 data: { confirm: "本当に削除しますか？" } %>

 15 </td>

 16 </tr>

スタイルシート

LIST app/assets/stylesheets/staff/tables.scss

 :

 23 td.boolean { text-align: center; }

 24 + td.numeric { text-align: right; }

 25 td.actions {

 :

動作確認

　ブラウザでBaukis2に職員としてログインして「プログラム管理」リンクをクリックすると、図
6.4のような画面が表示されます。

図6.4: プログラム管理画面

6.2.2　プログラムの詳細表示

showアクション

　staff/programs#showアクションを作成します。

LIST app/controllers/staff/programs_controller.rb

 1 class Staff::ProgramsController < Staff::Base

 2 def index

 3 @programs = Program.order(application_start_time:

:desc)

 4 .page(params[:page])

 5 end

 6 +

 7 + def show

 8 + @program = Program.find(params[:id])

 9 + end

 10 end

ERBテンプレート

　staff/programs#showアクションのERBテンプレートを作成します。

LIST app/views/staff/programs/show.html.erb (New)

 1 <% @title = "プログラム詳細情報" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 <% p = ProgramPresenter.new(@program, self) %>

 6

 7 <table class="attributes">

 8 <tr><th>タイトル</th><td><%= p.title %></td></tr>

 9 <tr><th>申し込み開始日</th>

 10 <td class="date"><%= p.application_start_time %>

</td></tr>

 11 <tr><th>申し込み終了日</th>

 12 <td class="date"><%= p.application_end_time %></td>

</tr>

 13 <tr><th>最小参加者数</th>

 14 <td class="numeric"><%=

p.min_number_of_participants %></td></tr>

 15 <tr><th>最大参加者数</th>

 16 <td class="numeric"><%=

p.max_number_of_participants %></td></tr>

 17 <tr><th>申し込み件数</th>

 18 <td class="numeric"><%= p.number_of_applicants %>

</td></tr>

 19 <tr><th>登録職員</th><td><%= p.registrant %></td></tr>

 20 </table>

 21

 22 <div class="description"><%= p.description %></div>

 23 </div>

スタイルシート

　app/assets/stylesheets/staffディレクトリに新規スタイルシート
divs_and_spans.scssを次の内容で作成します。

LIST app/assets/stylesheets/staff/divs_and_spans.scss (New)

 1 @import "colors";

 2 @import "dimensions";

 3

 4 div.description {

 5 margin: $wide;

 6 padding: $wide;

 7 background-color: $very_light_gray;

 8 }

動作確認

　プログラムの一覧表で適当な行の「詳細」リンクをクリックすると、図6.5のような画面が
表示されます。

図6.5: プログラム詳細画面

6.3　パフォーマンスの改善

この節では、「N+1問題」の解消を通じてプログラムの一覧表示機能のパ
フォーマンスを改善します。特に、複数のテーブルを結合してクエリの回数を
減らす技法について解説します。

6.3.1　includesメソッドによる改善

　プログラムの一覧を表示する際にターミナルに表示されるログを見ると、programsテーブ
ルからSELECTするクエリの後で、customersテーブルからSELECTするクエリとstaff_members

テーブルからSELECTするクエリが交互に10回繰り返されていることが分かります（図6.6）。

図6.6: N+1問題の存在を示すログ

　本編13-4節で説明したN+1問題が発生しています。本編で問題になったのは、職員
のログイン・ログアウト記録のリストを表示する際に、職員のデータをどう取得するか、というこ
とでした。 ERBテンプレート側で職員のデータを1つずつ取得すると、10件の記録を表示する
のに最大で11回のデータベースへのアクセスが発生していました。しかし、includesメソッドを
使えばデータベースへのアクセス回数が劇的に減りました。

　プログラム管理機能にも同じ構図があります。各プログラムへの申込者数を表示するた
め10件のプログラム情報を表示するのに、10回該当する顧客を数えています。また、各プロ
グラムには「登録職員（registrant）」という名前で職員が関連付けられています。10件
のプログラム情報を表示するのに、最大で10回も職員のデータを取得しなければなりません。

　ログの末尾には次のような出力が出ています。

Completed 200 OK in 1081ms (Views: 653.1ms | ActiveRecord:

265.7ms | Allocations: 69330)

ActiveRecord: 265.7msの部分に着目してください。データベース関連の処理に0.27秒
ほどかかっています。具体的な時間はコンピュータの状態により大きく左右されるので、この数
字だけでは遅いとも速いとも言えませんが、これから行う改善策の効果を見るための基準に
なります。

ブラウザを何度かリロードしてみると、ログに出力される具体的な処理時間はかなり変動することが分
かります。パフォーマンス改善を厳密に行うためには、処理時間を複数回計測して平均を取る必要が
あります。

　まず、staff_membersテーブルへのクエリ回数を減らしましょう。
staff/programs#indexアクションを次のように書き換えてください。

LIST app/controllers/staff/programs_controller.rb

 1 class Staff::ProgramsController < Staff::Base

 2 def index

 3 @programs = Program.order(application_start_time:

:desc)

 4 - .page(params[:page])

 4 + .includes(:registrant).page(params[:page])

 5 end

 :

　簡単ですね。プログラムの一覧を再表示してからログを見ると、確かにクエリの回数が減
っています。しかし、筆者のマシンではデータベース関連の処理にかかる時間にはほとんど改善
が見られませんでした。おそらくは申込者数を取得する処理の方により大きな時間がかかっ
ているのでしょう。

6.3.2　スコープの定義

　さて、他のパフォーマンス向上策を考える前に、少しソースコードの整理をしておきましょ
う。現在、staff/programs#indexアクションのコードは次の通りです。

 @programs = Program.order(application_start_time: :desc)

 .includes(:registrant).page(params[:page])

　Programクラスにorder、includes、pageと数多くのメソッドが鎖のようにつながってお
り、ごちゃごちゃしています。モデルクラスにスコープを定義すると、ソースコードをすっきりさせるこ
とができます。

　Programモデルのソースコードを次のように書き換えてください。

LIST app/models/program.rb

 1 class Program < ApplicationRecord

 2 has_many :entries, dependent: :destroy

 3 has_many :applicants, through: :entries, source:

:customer

 4 belongs_to :registrant, class_name: "StaffMember"

 5 +

 6 + scope :listing, -> {

 7 + order(application_start_time: :desc)

 8 + .includes(:registrant)

 9 + }

 10 end

　クラスメソッドscopeを用いて :listing という名前のスコープを定義しています。モデル
クラスのスコープとは、検索条件の組み合わせに名前を付けたものです。scopeメソッドの第2
引数はProcオブジェクトで、その中にwhere、order、includesなどの検索条件を指定する
メソッドを記述します。

　定義されたスコープ :listing を用いると、staff/programs#indexアクションのコード
は、次のように短くなります。

LIST app/controllers/staff/programs_controller.rb

 1 class Staff::ProgramsController < Staff::Base

 2 def index

 3 - @programs = Program.order(application_start_time:

:desc)

 4 - .includes(:registrant).page(params[:page])

 3 + @programs = Program.listing.page(params[:page])

 4 end

 :

　今後は、パフォーマンス向上のためにindexアクションを書き換えることはなくなります。

6.3.3　集計対象の変更による改善

　次に私が目を付けたのは、ProgramPresenterの次の部分です。

LIST app/presenters/program_presenter.rb

 :

 25 def number_of_applicants

 26 number_with_delimiter(object.applicants.count)

 27 end

 :

　object属性にはProgramオブジェクトがセットされていて、そのapplicants（申込者）
の人数を数えています。しかし、applicantsの代わりにentries（申し込み）の個数を数え
ても同じことです。関連付けapplicantsは関連付けentriesと関連付けcustomerの合成
ですので、entriesの個数を数えた方が効率が良さそうです。

　そこで、ProgramPresenterのソースコードを次のように書き換えます。

LIST app/presenters/program_presenter.rb

 :

 25 def number_of_applicants

 26 - number_with_delimiter(object.applicants.count)

 26 + number_with_delimiter(object.entries.count)

 27 end

 :

　プログラムの一覧を再表示してからログを見ると、クエリの回数は従来どおりですが、
JOINを用いた複雑なクエリが行われなくなっています（図6.7）。

図6.7: 単純なクエリの繰り返しが記録されたログ

　また、データベース関連の処理にかかる時間も短縮されています。筆者のマシンでは、
ActiveRecord: 76.8msのような0.1秒を切る値が出るようになりました。

6.3.4　テーブルの内部結合（INNER JOIN）

　現行のコードでは、プログラムの申込者数をプログラムごとに数えています。つまり、10件
のプログラムを表示するために、10回データベースに申込者数を数えさせていることになりま
す。要するに、ここにも「N+1問題」が存在します。1回のクエリで10件分の申込者数を取得
できないものでしょうか。

　もちろん、できます。program.rbを次のように書き換えてください。

LIST app/models/program.rb

 1 class Program < ApplicationRecord

 2 has_many :entries, dependent: :destroy

 3 has_many :applicants, through: :entries, source:

:customer

 4 belongs_to :registrant, class_name: "StaffMember"

 5

 6 scope :listing, -> {

 7 - order(application_start_time: :desc)

 7 + joins(:entries)

 8 + .select("programs.*, COUNT(entries.id) AS

number_of_applicants")

 9 + .group("programs.id")

 10 + .order(application_start_time: :desc)

 11 .includes(:registrant)

 12 }

 13 end

　スコープ :listing に3つのメソッドjoins、select、groupを追加しています。

　joinsメソッドは別のテーブルを結合します。すなわち、そのテーブルの値を検索結果に
取り込みます。引数には、関連付けの名前を指定します。ここでは :entries を指定するこ
とで、entriesテーブルを結合しています。

シンボル :entries はテーブルの名前ではなく、Programモデルでクラスメソッドhas_manyにより定義さ
れた関連付けの名前です。

　selectメソッドの引数には、テーブルから値を取得するカラムのリストをコンマ区切りで指
定します。ドットの左側がテーブル名で右側がカラム名です。アスタリスク（*）は「すべてのカ
ラム」という意味です。

selectメソッドを用いない場合、テーブルから単純にすべてのカラムの値を取得します。つまり、select
メソッドを用いないことと、"programs.*" という引数を与えて selectメソッドを呼び出すことは、同じ
意味です。

　ここでは、programsテーブルのすべてのカラムの値に加え、

COUNT(entries.id) AS number_of_applicants

という値を取得するように指定しています。SQLの関数COUNTは引数に指定したカラムの
値がNULLでないレコードの個数を返します。entriesテーブルのidカラムにはNOT NULL制
約が課せられていますので、結局のところentriesテーブルのレコード数を数えているのと同じ
です。そして、SQLの演算子ASは左辺の値に別名を付けますので、私たちは
number_of_applicantsという“カラム”として、entriesテーブルのレコード数を得ることになり
ます。

　selectメソッドで指定したカラムのリストにCOUNTのような集計関数が含まれている場
合、原則としてgroupメソッドの呼び出しが必須となります。COUNT関数はレコードの集合をグ
ループに分けて、グループごとにレコード数を数え上げます。groupメソッドはグループ化の基準
となるカラムを設定します。

　ここではgroupメソッドに引数として "programs.id" が指定されており、COUNT関数の
引数にはentries.idがされていますので、entriesテーブルの全レコードがカラムprogram_id

を基準にグループに分けられます。そして、グループごとのレコード数がnumber_of_applicants

という“カラム”の値となります。

　この結果、ProgramPresenter#number_of_applicantsメソッドのコードは次のように
書き換えられます。

LIST app/presenters/program_presenter.rb

 :

 25 def number_of_applicants

 26 - number_with_delimiter(object.entries.count)

 26 + number_with_delimiter(object[:number_of_applicants])

 27 end

 :

　また、この書き換えによってstaff/programs#showアクションのコードも次のような修正
が必要となります。

LIST app/controllers/staff/programs_controller.rb

 1 class Staff::ProgramsController < Staff::Base

 2 def index

 3 @programs = Program.listing.page(params[:page])

 4 end

 5

 6 def show

 7 - @program = Program.find(params[:id])

 7 + @program = Program.listing.find(params[:id])

 8 end

 9 end

　このアクションのERBテンプレートでもProgramPresenter#number_of_applicantsメソ
ッドを呼び出しているため、number_of_applicantsという“カラム”を含む検索結果をデータ
ベースから受け取る必要があるためです。

　では、動作確認をしましょう。ブラウザをリロードすると図6.8のような表示になります。

図6.8: 申込者数が0のプログラムが表示されない

申込者数が0のプログラムが表示されていません。何が起こっているのでしょうか。以下、結
合する側のテーブル（entries）をX、結合される側のテーブル（entries）をYとして説明
しましょう。

　joinsメソッドはYの外部キー（program_id）を用いてXとYを結合します。しかし、普
通にjoinsメソッドでテーブルを結合すると、Yからまったく参照されていないXのレコードが検索
結果から除外されてしまいます。つまり、少なくとも1件以上の申し込みのあったプログラムし
か検索されないのです。その結果、一覧表に3件しかプログラムが含まれていなかったのです。

　参照されていないレコードを含まないような検索結果を返すテーブルの結合を、SQL用
語で内部結合（INNER JOIN）と呼びます。

6.3.5　テーブルの左外部結合（LEFT OUTER JOIN）

　では、申し込みのないプログラムが一覧表に含まれるように修正を行いましょう。
Programモデルのソースコードを次のように修正してください。

LIST app/models/program.rb

 :

 6 scope :listing, -> {

 7 - joins(entries)

 7 + left_joins(:entries)

 8 .select("programs.*, count(entries.id) AS

number_of_applicants")

 9 .group("programs.id")

 10 .order(application_start_time: :desc)

 11 .includes(:registrant)

 12 }

 13 end

　joinsメソッドをleft_joinsメソッド（あるいは、別名のleft_outer_joinsメソッド）
で置き換えると、結合する側のテーブル（左辺）のレコードはすべて（右辺から参照されてい
なくても）検索結果に残るようになります。これをSQL用語で左外部結合（LEFT OUTER
JOIN）と呼びます。

　ブラウザをリロードすると申込者数が0のプログラムも表示されるようになりました。ログを
見るとentriesテーブルに対するクエリの繰り返しが解消されています。また、データベース関
連の処理にかかる時間がさらに短縮されています。筆者のマシンでは、おおむね0.05秒以下
で完了するようになりました。パフォーマンス改善策を講じる前と比較すると約5分の1の時間
で済んでいます。

第7章　複雑なフォーム

Chapter 7では前章に引き続き、顧客向けの各種プログラムとプログラム
への申込者を管理する機能を作成します。本章のテーマは「複雑なフォー
ム」です。Railsの標準的な書き方に沿うだけでは作りにくい、若干イレギュラ
ーな仕様に立ち向かうためのノウハウを紹介します。

7.1　プログラム管理機能（2）

前章ではプログラム管理機能のうち、 プログラムの一覧表示機能と詳細
表示機能を実装しました。この節では、プログラムを新規登録・更新するた
めのフォームを表示するところまでを作ります。

7.1.1　プログラム新規登録・更新フォームの仕様

　職員がプログラムを新規登録・更新するフォームのビジュアルデザインとして、私が想定し
ているのは図7.1のようなものです。

図7.1: プログラム新規登録・更新フォーム

　注目すべきは、申し込み開始日時と申し込み終了日時の時刻を入力するためのドロ
ップダウンリストです。本章のテーマは「複雑なフォーム」ですが、その最初の例がこれです。一
見簡単そうに見えますが、なかなか複雑です。

　申し込み開始日時は、application_start_timeという1個のデータベースカラムに対
応しています。しかし、フォーム上では、日付入力、時間選択、分選択という3つのフィールド
に分かれます。フォームから送信されるデータを処理する側では、3つのフィールドの値を組み合
わせて日時（Datetime）型の値に変換します。また、バリデーションによるエラーメッセージ
は、日付入力欄の下に表示されます。これらの多くの要素がうまく協調して動くようにしなけ
ればなりません。

7.1.2　仮想フィールド

　まず、Programモデルが受け付け開始日時および受け付け終了日時の日付、時間、
分の値を一時的に保持できるようにします。

LIST app/models/program.rb

 :

 10 .order(application_start_time: :desc)

 11 .includes(:registrant)

 12 }

 13 +

 14 + attribute :application_start_date, :date, default:

Date.today

 15 + attribute :application_start_hour, :integer, default:

9

 16 + attribute :application_start_minute, :integer,

default: 0

 17 + attribute :application_end_date, :date, default:

Date.today

 18 + attribute :application_end_hour, :integer, default: 17

 19 + attribute :application_end_minute, :integer, default: 0

 20 end

　Railsが提供するクラスメソッドattributeは、モデルクラスにインスタンス変数を読み書
きするメソッドを追加します。すなわち、モデルクラスに読み書き可能な属性を定義します。

　14行目をご覧ください。

 attribute :application_start_date, :date, default:

Date.today

日付型の属性application_start_dateを定義しています。そのデフォルト値は今日の
日付となります。

　Ruby標準のクラスメソッドattr_accessorでも同様に属性を定義できますが、
attributeで定義された属性には型が設定される点に特徴があります。例えば、ある属性に
整数（integer）という型を設定すれば、書き込みメソッドの引数に与えられた文字列は
暗黙の内に整数に変換されます。これは、HTMLフォームから送られてくる値を処理するのに
適した特徴です。

　本書では、クラスメソッドattributeで定義された属性を仮想フィールドと呼ぶことにしま
す。モデルクラスにおいて仮想フィールドはデータベーステーブルのカラムに対応する通常のフィー
ルドと同様に扱えます。つまり、バリデーションの対象となります。ただし、通常のフィールドとは
異なり、仮想フィールドの値はデータベースに保存されません。

7.1.3　仮想フィールド群の初期化

　仮想フィールドはデータベーステーブルのカラムとの対応を持たないので、初期状態では
単にデフォルト値がセットされるだけです。既存のプログラムに関しては、すでに設定されている
開始日時と終了日時から仮想フィールド群の値を計算してセットする方法を用意しましょう。
Programモデルのソースコードを次のように書き換えてください。

LIST app/models/program.rb

 :

 18 attribute :application_end_hour, :integer, default: 0

 19 attribute :application_end_minute, :integer, default: 0

 20 +

 21 + def init_virtual_attributes

 22 + if application_start_time

 23 + self.application_start_date =

application_start_time.to_date

 24 + self.application_start_hour =

application_start_time.hour

 25 + self.application_start_minute =

application_start_time.min

 26 + end

 27 +

 28 + if application_end_time

 29 + self.application_end_date =

application_end_time.to_date

 30 + self.application_end_hour =

application_end_time.hour

 31 + self.application_end_minute =

application_end_time.min

 32 + end

 33 + end

 34 end

仮想フィールド群を初期化するメソッドinit_virtual_attributesを定義しています。こ
のメソッドの名前は、Railsで決まっているものではありません。Baukis2独自のものです。受け
付け開始日時および受け付け終了日時の値（日時型）から日付、時間、分の値を作っ
て、それぞれの仮想フィールドにセットしています。

7.1.4　newアクションとeditアクションの実装

　staff/programsコントローラにnewアクションとeditアクションを追加します。

LIST app/controllers/staff/programs_controlller.rb

 :

 6 def show

 7 @program = Program.listing.find(params[:id])

 8 end

 9 +

 10 + def new

 11 + @program = Program.new

 12 + end

 13 +

 14 + def edit

 15 + @program = Program.find(params[:id])

 16 + @program.init_virtual_attributes

 17 + end

 18 end

　editアクションでは、編集対象となるProgramオブジェクトを取得してから
init_virtual_attributesメソッドを呼び出して仮想フィールド群を初期化しています。この
初期化プロセスは自動で実行されないので、このように明示的に呼び出す必要があります。

7.1.5　FormPresenterの拡張

　これまで作ったフォームと異なり、プログラムの新規登録・編集フォームには各入力欄の
右もしくは右下に入力値に関する指示（文字数制限、期間制限など）が表示されていま
す。そこで、FormPresenterクラスを少し拡張します。

LIST app/presenters/form_presenter.rb

 :

 20 def text_field_block(name, label_text, options = {})

 21 markup(:div, class: "input-block") do |m|

 22 m << decorated_label(name, label_text, options)

 23 m << text_field(name, options)

 24 + if options[:maxlength]

 25 + m.span "（#{options[:maxlength]}文字以内）",

class: "instruction"

 26 + end

 27 m << error_messages_for(name)

 28 end

 29 end

 30

 31 def password_field_block(name, label_text, options =

{})

 :

　text_field_blockメソッドにmaxlengthオプションを指定すると、その値はinput要素
のmaxlength属性として使われると同時に、入力欄の右に文字数制限に関する情報が表
示されるようになります。

　さらに、数値入力フィールドを出力するためのnumber_field_blockをFormPresenter

クラスに追加します。

LIST app/presenters/form_presenter.rb

 :

 27 m << error_messages_for(name)

 28 end

 29 end

 30 +

 31 + def number_field_block(name, label_text, options = {})

 32 + markup(:div) do |m|

 33 + m << decorated_label(name, label_text, options)

 34 + m << form_builder.number_field(name, options)

 35 + if options[:max]

 36 + max =

view_context.number_with_delimiter(options[:max].to_i)

 37 + m.span "（最大値: #{max}）", class: "instruction"

 38 + end

 39 + m << error_messages_for(name)

 40 + end

 41 + end

 42

 43 def password_field_block(name, label_text, options =

{})

 :

　このメソッドは、text_field_blockメソッドと同様にテキスト入力欄を生成しますが、
input要素のtype属性に "number" という値が指定されるため、HTML5に対応したブラウ
ザでは、数値入力に適したユーザーインターフェースが適用されます。また、maxオプションを指
定すれば、その値はinput要素のmax属性として使われると同時に、入力欄の右に数値制
限に関する情報が表示されるようになります。

　HTML5に対応していないブラウザでは、numberタイプのinput要素は普通のテキスト入
力欄として表示され、max属性の値は無視されます。

7.1.6　ProgramFormPresenterの作成

　続いて、Programモデル用のフォームプレゼンターを作成します。

LIST app/presenters/program_form_presenter.rb (New)

 1 class ProgramFormPresenter < FormPresenter

 2 def description

 3 markup(:div, class: "input-block") do |m|

 4 m << decorated_label(:description, "詳細",

required: true)

 5 m << text_area(:description, rows: 6, style:

"width: 454px")

 6 m.span "（800文字以内）", class: "instruction",

style: "float: right"

 7 end

 8 end

 9

 10 def datetime_field_block(name, label_text, options =

{})

 11 instruction = options.delete(:instruction)

 12 markup(:div, class: "input-block") do |m|

 13 m << decorated_label("#{name}_date", label_text,

options)

 14 m << date_field("#{name}_date", options)

 15 m << form_builder.select("#{name}_hour",

hour_options)

 16 m << ":"

 17 m << form_builder.select("#{name}_minute",

minute_options)

 18 m.span "（#{instruction}）", class: "instruction"

if instruction

 19 end

 20 end

 21

 22 private def hour_options

 23 (0..23).map { |h| ["%02d" % h, h] }

 24 end

 25

 26 private def minute_options

 27 (0..11)

 28 .map { |n| n * 5}

 29 .map { |m| ["%02d" % m, m] }

 30 end

 31 end

　descriptionメソッドは、プログラムの詳細を入力するテキストエリアを生成します。文
字数制限に関する情報を右下に配置するために、styleオプションを用いて細かく調整して
います。

　datetime_field_blockメソッドは、日付、時間、分という3つの入力欄の組を生成し
ます。受け付け開始日時（application_start_time）と受け付け終了日時
（application_end_time）の両方に対応するため、このメソッドには少し工夫がしてありま
す。

　第1引数nameには、"application_start" あるいは "application_end" のように、
属性の名前から末尾の "_time" を除いたものを指定します。そして、メソッドの中で必要に
応じてnameに "_date"、"_hour"、"_minute"などの文字列を追加して、各フィールドの名
前を生成しています。例えば、13行目をご覧ください。

 m << decorated_label("#{name}_date", label_text,

options)

　ここでは "#{name}_date" のように文字列の中にnameを埋め込ん
で、"application_start_date" あるいは "application_end_date" のようなフィールド名
を作っています。

　次に、22-24行をご覧ください。

 private def hour_options

 (0..23).map { |h| ["%02d" % h, h] }

 end

式0..23は、配列[0, 1, ..., 22, 23]に相当するRangeオブジェクトを作ります。こ
れをmapメソッドで次のような配列に変換しています。

[

 ["00", 0],

 ["01", 1],

 ...,

 ["22", 22],

 ["23", 23]

]

式 "%02d" % h は、整数hを2桁の文字列に変換します。hが10未満の場合は、先頭に
"0" を付け加えます。

　このプライベートメソッドhour_optionsは、15行目においてフォームビルダーのselectメソ
ッドへの第2引数を作るために使われています。selectメソッドは第2引数に指定された配列
の各要素を用いてドロップボックスの選択肢を作りますが、上記のような入れ子の配列を第
2引数として受け取った場合は、各要素、すなわち内側の配列の第1要素を選択肢のラベ
ル文字列、第2要素を選択肢の値として使用します。

　続いて、26-30行をご覧ください。

 private def minute_options

 (0..11)

 .map { |n| n * 5}

 .map { |m| ["%02d" % m, m] }

 end

このメソッドは、次のような配列を返します。

[

 ["00", 0],

 ["05", 5],

 ["10", 10],

 ...,

 ["50", 50],

 ["55", 55]

]

0から11までの12個の整数を表すRangeオブジェクトに対して2度mapメソッドを適用してい
ます。1回目の呼び出しでは、各整数に5を掛けて5ずつ離れた0から55までの整数の配列を
作ります。2回目の呼び出しでは、hour_optionsメソッドと同様に配列の配列を作り出して
います。このminute_optionsメソッドは、5ずつ離れた0から55までの整数を選ぶドロップボッ
クスを生成するために使われます。

　datetime_field_blockメソッドにはもうひとつ工夫したところがあります。11行目をご
覧ください。

 instruction = options.delete(:instruction)

　ハッシュoptionsから :instruction キーを削除して、その値をローカル変数
instructionにセットしています。そして、この変数を18行目で使用しています。

 m.span "（#{instruction}）", class: "instruction" if

instruction

　つまり、instructionオプションを指定すると、その値が括弧で囲まれて時刻選択ドロッ
プダウンリストの右に表示されます。

7.1.7　ERBテンプレート本体の作成

　staff/programs#newアクションのERBテンプレートを作成します。

LIST app/views/staff/programs/new.html.erb (New)

 1 <% @title = "プログラムの新規登録" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form">

 5 <%= form_with model: @program, url: :staff_programs do

|f| %>

 6 <%= render "form", f: f %>

 7 <div class="buttons">

 8 <%= f.submit "登録" %>

 9 <%= link_to "キャンセル", :staff_programs %>

 10 </div>

 11 <% end %>

 12 </div>

　staff/programs#editアクションのERBテンプレートを作成します。

LIST app/views/staff/programs/edit.html.erb (New)

 1 <% @title = "プログラムの編集" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form">

 5 <%= form_with model: @program, url: [:staff, @program

] do |f| %>

 6 <%= render "form", f: f %>

 7 <div class="buttons">

 8 <%= f.submit "更新" %>

 9 <%= link_to "キャンセル", :staff_programs %>

 10 </div>

 11 <% end %>

 12 </div>

7.1.8　部分テンプレートの作成

　続いて、プログラム情報の各入力フィールドを生成する部分テンプレートを作成します。

LIST app/views/staff/programs/_form.html.erb (New)

 1 <%= markup do |m|

 2 p = ProgramFormPresenter.new(f, self)

 3

 4 m << p.notes

 5 m << p.text_field_block(:title, "タイトル", maxlength: 32,

required: true)

 6

 7 p.with_options(required: true) do |q|

 8 m << q.datetime_field_block(:application_start, "申し
込み開始日時",

 9 instruction: "現在から1年後まで")

 10 m << q.datetime_field_block(:application_end, "申し込み
終了日時",

 11 instruction: "開始日時から90日後まで")

 12 end

 13

 14 p.with_options(size: 6) do |q|

 15 m <<

q.number_field_block(:min_number_of_participants, "最小参加者数",

 16 max: 1000)

 17 m <<

q.number_field_block(:max_number_of_participants, "最大参加者数",

 18 max: 1000)

 19 end

 20

 21 m << p.description

 22 end %>

　5行目でtext_field_blockメソッドにmaxlengthオプションを指定して、タイトル入力
欄の右に文字数制限の指示を表示しています。同様に、7-12行では
datetime_field_blockメソッドにinstructionオプションを、14-19行では
number_field_blockメソッドにmaxオプションを指定して、各入力フィールドの右に日時や数
値の上限に関する情報を表示しています。

7.1.9　スタイルシートの調整

　app/assets/stylesheets/staffディレクトリにあるスタイルシートform.scssを次のよ
うに書き換えます。

LIST app/assets/stylesheets/staff/form.css.scss

 :

 24 color: $red;

 25 }

 26 + span.instruction { font-size: $small; color:

$dark_gray; }

 27 }

 28 div.input-block {

 :

7.1.10　表示確認

　それでは、ブラウザで表示確認を行いましょう。適当な職員としてBaukis2にログインし、
「プログラム管理」ページを開いて、適当なプログラムを選んで「編集」リンクをクリックすると、
図7.2のような画面が表示されます。

図7.2: プログラムの編集ページ

　そして、「キャンセル」リンクでプログラム一覧に戻り、右上の「新規登録」リンクをクリック
して、同じようなフォームが表示されることを確認してください。

7.2　プログラム管理機能（3）

この節では、プログラムを新規登録・更新する機能を実装し、プログラム
管理機能を完成させます。

7.2.1　プログラムの新規登録と更新

createアクション、updateアクション

　プログラムの新規登録処理と更新処理を実装していきます。staff/programsコントロ
ーラにcreateアクションとupdateアクションを追加してください。

LIST app/controllers/staff/programs_controller.rb

 :

 14 def edit

 15 @program = Program.find(params[:id])

 16 @program.init_virtual_attributes

 17 end

 18 +

 19 + def create

 20 + @program = Program.new

 21 + @program.assign_attributes(program_params)

 22 + @program.registrant = current_staff_member

 23 + if @program.save

 24 + flash.notice = "プログラムを登録しました。"

 25 + redirect_to action: "index"

 26 + else

 27 + flash.now.alert = "入力に誤りがあります。"

 28 + render action: "new"

 29 + end

 30 + end

 31 +

 32 + def update

 33 + @program = Program.find(params[:id])

 34 + @program.assign_attributes(program_params)

 35 + if @program.save

 36 + flash.notice = "プログラムを更新しました。"

 37 + redirect_to action: "index"

 38 + else

 39 + flash.now.alert = "入力に誤りがあります。"

 40 + render action: "edit"

 41 + end

 42 + end

 43 +

 44 + private def program_params

 45 + params.require(:program).permit([

 46 + :title,

 47 + :application_start_date,

 48 + :application_start_hour,

 49 + :application_start_minute,

 50 + :application_end_date,

 51 + :application_end_hour,

 52 + :application_end_minute,

 53 + :min_number_of_participants,

 54 + :max_number_of_participants,

 55 + :description

 56 +])

 57 + end

 58 end

　構造は、admin/staff_membersコントローラのcreateアクションおよびupdateアクション
とほぼ同じです。ただし、22行目に注目してください。

 @program.registrant = current_staff_member

　各プログラムには必ず登録した職員を記録しなければならないので、このように記述して
います。

Programモデル

　次に、フォームから文字列として送られてくる日付、時間、分の値をDateTimeオブジェク
トに変換して、application_start_time属性およびapplication_end_time属性にセット
するコードをProgramモデルに追加します。

LIST app/models/program.rb

 :

 31 self.application_end_minute =

application_end_time.min

 32 end

 33 end

 34 +

 35 + before_validation :set_application_start_time

 36 + before_validation :set_application_end_time

 37 +

 38 + private def set_application_start_time

 39 + if t = application_start_date&.in_time_zone

 40 + self.application_start_time = t.advance(

 41 + hours: application_start_hour,

 42 + minutes: application_start_minute

 43 +)

 44 + end

 45 + end

 46 +

 47 + private def set_application_end_time

 48 + if t = application_end_date&.in_time_zone

 49 + self.application_end_time = t.advance(

 50 + hours: application_end_hour,

 51 + minutes: application_end_minute

 52 +)

 53 + end

 54 + end

 55 end

　35-36行をご覧ください。

 before_validation :set_application_start_time

 before_validation :set_application_end_time

　ここまでに現れた用例では、クラスメソッドbefore_validationは常にすべてブロックを
従えていましたが、ここでは引数にシンボルを与えています。この場合、このシンボルに対応す
るメソッドがバリデーションの前処理として実行されます。

　1番目のメソッドset_application_start_timeは38-45行で定義されています。

 private def set_application_start_time

 if t = application_start_date&.in_time_zone

 self.application_start_time = t.advance(

 hours: application_start_hour,

 minutes: application_start_minute

)

 end

 end

application_start_dateの値がnilでなければ、Dateオブジェクトのin_time_zoneメソ
ッドで日時オブジェクト（ActiveSupport::TimeWithZoneオブジェクト）に変換し、変数tに

セットします。そして、advanceメソッドでそのtを前に進めることにより、時と分をセットしていま
す。

2番目のメソッドset_application_end_timeでもほぼ同様の処理が行われています。

動作確認

　まだバリデーションの仕組みを作っていませんが、この段階でいったん動作確認をしておき
ましょう。ブラウザでプログラムの新規登録フォームを開き、各入力フィールドに有効な値を入
力して「登録」ボタンをクリックしてください。ページのヘッダ部分に「プログラムを登録しまし
た。」というフラッシュメッセージが出ること、プログラムの件数が増えていること、申し込み開始
日時と申し込み終了日時が正しく記録されていること、などを確認してください。同様に、プ
ログラムの編集フォームからの更新処理が正しく機能することも確認してください。

7.2.2　バリデーション

　プログラムの新規登録処理と更新処理にバリデーションの仕組みを導入します。

Programモデル

　Programモデルにバリデーションを導入します。

LIST app/models/program.rb

 :

 47 private def set_application_end_time

 48 if t = application_end_date&.in_time_zone

 49 self.application_end_time = t.advance(

 50 hours: application_end_hour,

 51 minutes: application_end_minute

 52)

 53 end

 54 end

 55 +

 56 + validates :title, presence: true, length: { maximum: 32

}

 57 + validates :description, presence: true, length: {

maximum: 800 }

 58 + validates :application_start_time, date: {

 59 + after_or_equal_to: Time.zone.local(2000, 1, 1),

 60 + before: -> (obj) { 1.year.from_now },

 61 + allow_blank: true

 62 + }

 63 + validates :application_end_time, date: {

 64 + after: :application_start_time,

 65 + before: -> (obj) {

obj.application_start_time.advance(days: 90) },

 66 + allow_blank: true,

 67 + if: -> (obj) { obj.application_start_time }

 68 + }

 69 + validate do

 70 + if min_number_of_participants &&

max_number_of_participants &&

 71 + min_number_of_participants >

max_number_of_participants

 72 + errors.add(:max_number_of_participants,

:less_than_min_number)

 73 + end

 74 + end

 75 end

　56行目をご覧ください。

 validates :title, presence: true, length: { maximum: 32 }

lengthタイプのバリデーションを用いて、文字数が32文字に収まっているかどうかを確認し
ています。

　58-68行では、dateタイプのバリデーションを用いてapplication_start_time属性と
application_end_time属性の値をチェックしています。これらの属性は日時型であり日付
型ではありませんが、dateタイプのバリデーションが利用可能です。

dateタイプのバリデーションはRails標準の機能ではなく、本編Chapter 3で導入したGemパッケージ
date_validatorが提供する機能です。

　67行目をご覧ください。

 if: -> (obj) { obj.application_start_time }

　ifオプションを用いて、バリデーションの実施条件を指定しています。Procオブジェクトの
戻り値が偽であれば、64-66行で記述されているapplication_end_time属性に対するバリ
デーションは行われません。Procオブジェクトへの引数objは、このProgramオブジェクト自身を
指しています。つまり、申し込み開始日時がセットされていなければ、申し込み終了日時に
関するバリデーションはスキップされます。

　69-74行では、min_number_of_participants属性の値が
max_number_of_participants属性の値よりも大きい場合にエラーを登録しています。

min_number_of_participants属性およびmax_number_of_participants属性に関しては、その値
が1以上1,000以下の整数であることも確認すべきです。これについては、章末演習問題の題材としま
す。

翻訳ファイル

　Programモデルに関するエラーメッセージを日本語で表示するため、翻訳ファイルを用意
します。

LIST config/locales/models/program.ja.yml (New)

 1 ja:

 2 activerecord:

 3 attributes:

 4 program:

 5 title: タイトル

 6 description: 詳細

 7 application_start_time: 申し込み開始日時

 8 application_start_date: 申し込み開始日

 9 application_end_time: 申し込み終了日時

 10 application_end_date: 申し込み終了日

 11 min_number_of_participants: 最小参加者数

 12 max_number_of_participants: 最大参加者数

 13 errors:

 14 models:

 15 program:

 16 attributes:

 17 application_start_time:

 18 after_or_equal_to: には2000年1月1日以降の日付を
指定してください。

 19 before: には現在から1年後までの日時を指定してください。

 20 application_end_time:

 21 after: には申し込み開始日時よりも後の日時を指定してくださ
い。

 22 before: には申し込み開始日時から90日以内の日時を指定
してください。

 23 max_number_of_participants:

 24 less_than_min_number: には最小参加者数以上の数を
指定してください。

　新規の翻訳ファイルを追加したので、ここでBaukis2の再起動が必要です。

プレゼンター

　申し込み開始日時、申し込み終了日時、説明の各フィールドにエラーメッセージを表示
するため、ProgramFormPresenterクラスのソースコードを次のように書き換えます。

LIST app/presenters/program_form_presenter.rb

 1 class ProgramFormPresenter < FormPresenter

 2 def description

 3 markup(:div) do |m|

 4 m << decorated_label(:description, "詳細",

required: true)

 5 m << text_area(:description, rows: 6, style:

"width: 454px")

 6 m.span "（800文字以内）", class: "instruction",

style: "float: right"

 7 + m << error_messages_for(:description)

 8 end

 9 end

 10

 11 def datetime_field_block(name, label_text, options =

{})

 12 instruction = options.delete(:instruction)

 13 + if object.errors.include?("#{name}_time".to_sym)

 14 + html_class = "input-block with-errors"

 15 + else

 16 + html_class = "input-block"

 17 + end

 18 - markup(:div, class: "input-block") do |m|

 18 + markup(:div, class: html_class) do |m|

 19 m << decorated_label("#{name}_date", label_text,

options)

 20 m << date_field("#{name}_date", options)

 21 m << form_builder.select("#{name}_hour",

("00".."23").to_a)

 22 m << ":"

 23 m << form_builder.select("#{name}_minute",

("00".."59").to_a)

 24 m.span "（#{instruction}）", class: "instruction"

if instruction

 25 + m << error_messages_for("#{name}_time".to_sym)

 26 + m << error_messages_for("#{name}_date".to_sym)

 27 end

 28 end

 :

　13-18行をご覧ください。

 if object.errors.include?("#{name}_time".to_sym)

 html_class = "input-block with-errors"

 else

 html_class = "input-block"

 end

 markup(:div, class: html_class) do |m|

　引数nameには "application_start" あるいは "application_end" という文字列が
セットされていますので、13行目の include? メソッドの引数には
:application_start_time または :application_end_time というシンボルが渡されま
す。すなわちapplication_start_time属性またはapplication_end_time属性にエラーが
登録されているかどうかで、18行目のdiv要素のclass属性を切り替えています。

　なぜこのようなことをしているかと言えば、こうしないとラベルの色や入力欄の背景色がエ
ラーの状態を正しく反映しないからです。

　申し込み開始日が現在から1年以上後の日付であった場合、
application_start_time属性にエラーが登録されます。しかし、申し込み開始日の入力
欄の名前はapplication_start_dateですので、このinput要素の背景色がピンク色になり
ません。また、時間と分を選択するドロップダウンリストの背景色も変化しません。そのため、
申込開始日の入力欄と2つのドロップダウンリスト全体を囲むdiv要素のclass属性に
"with-errors" という値を追加し、スタイルシートで色を変えられるようにしています。

スタイルシート

　スタイルシートを修正します。

LIST app/assets/stylesheets/staff/form.scss

 :

 50 div.field_with_errors {

 51 display: inline;

 52 padding: 0;

 53 label { color: $red; }

 54 input, textarea { background-color: $pink; }

 55 }

 56 + div.with-errors {

 57 + label { color: $red; }

 58 + input { background-color: $pink; }

 59 + }

 60 div.error-message {

 :

動作確認

　では、動作確認をしましょう。適当なプログラムの編集フォームを開き、申し込み開始日
に「2020-04-02」、申し込み終了日に「2020-04-01」、最小参加者数に「100」、最大参
加者数に「50」と入力し、「更新」ボタンをクリックしてください。すると、図7.3のようにエラーメ
ッセージがフォームに表示されます。

図7.3: エラーメッセージ

　申し込み終了日が申し込み開始日よりも前であるため、また最大参加者数が最小参
加者数よりも小さいため、バリデーションエラーが発生しています。

7.2.3　プログラムの削除

　最後に、プログラムの削除機能を追加して、プログラム管理機能を完成させましょう。

LIST app/controllers/staff/programs_controller.rb

 :

 54 :max_number_of_participants,

 55 :description

 56])

 57 end

 58 +

 59 + def destroy

 60 + program = Program.find(params[:id])

 61 + program.destroy!

 62 + flash.notice = "プログラムを削除しました。"

 63 + redirect_to :staff_programs

 64 + end

 65 end

　プログラムの一覧表から適当なプログラムを選んで「削除」リンクをクリックし、そのプログ
ラムが削除されることを確認してください。

7.3　プログラム申込者管理機能

この節では、「複雑なフォーム」のもうひとつ例として、プログラムへの申し込
みのフラグを一括して変更する機能を作ります。

7.3.1　多数のオブジェクトを一括編集するフォーム

フォームの仕様

　図7.4は、今回作成するフォームのビジュアルデザインです。15人の顧客からプログラムに
申し込みが行われていて、申込者の氏名が列挙されています。各氏名の右には「A」と「C」と
いう見出しの付いた２つのチェックボックスがあります。「A」列のチェックボックスは申し込みが
承認された（approved）かどうかを示すフラグ、「C」列のチェックボックスは申し込みがキャ
ンセルされた（canceled）かどうかを示すフラグを編集するために設けてあります。

　職員はこれらのチェックボックスをチェックしたりチェックを外したりして、表の下にある「申
し込みのフラグを更新する」ボタンをクリックすると、すべての申し込みのフラグを一括して変更
できます。

図7.4: 多数のオブジェクトを一括編集するフォーム

ERBテンプレートの本体と部分テンプレート

　では、このビジュアルデザインを忠実に表現するビューを作りましょう。まず、
staff/program#showアクションのERBテンプレートを次のように書き換えます。

LIST app/views/staff/programs/show.html.erb

 :

 21 <div class="description"><%= p.description %></div>

 22 +

 23 + <%= render "entries_form" if

@program.number_of_applicants > 0 %>

 24 </div>

　そして、app/views/staff/programsディレクトリの下に新規ファイル
_entries_form.html.erb を次の内容で作成してください。

LIST app/views/staff/programs/_entries_form.html.erb (New)

 1 <%

 2 entries =

@program.entries.includes(:customer).order("entries.id").to_a

 3 cols = 4

 4 rows = entries.size / cols

 5 rows += 1 unless entries.size % cols == 0

 6 %>

 7 <table class="entries">

 8 <tr>

 9 <% cols.times do %>

 10 <th></th>

 11 <th>氏名</th>

 12 <th>A</th>

 13 <th>C</th>

 14 <% end %>

 15 </tr>

 16 <% rows.times do |i| %>

 17 <tr>

 18 <% cols.times do |j| %>

 19 <% index = i * cols + j %>

 20 <% e = entries[index] || break %>

 21 <%= markup(:div, class: "entry") do |m|

 22 m.th index + 1

 23 m.td e.customer.family_name + " " +

e.customer.given_name

 24 m.td do

 25 attributes = { type: "checkbox" }

 26 attributes[:checked] = "checked" if e.approved?

 27 m.input attributes

 28 end

 29 m.td do

 30 attributes = { type: "checkbox" }

 31 attributes[:checked] = "checked" if e.canceled?

 32 m.input attributes

 33 end

 34 end %>

 35 <% end %>

 36 </tr>

 37 <% end %>

 38 </table>

　2-5行で、この部分テンプレートで使用する各種ローカル変数に値をセットしています。

entries =

@program.entries.includes(:customer).order("entries.id").to_

a

cols = 4

rows = entries.size / cols

rows += 1 unless entries.size % cols == 0

　変数entriesにはEntryオブジェクトの配列がセットされます。列の数を示す変数cols

の値は4で固定です。ここでいう「列の数」とは、１行に表示する申し込みの数のことです。

　行の数を示す変数rowsは配列の要素数と変数colsの値から計算されます。申し込
み数を4で割り（小数点以下は切り下げ）、申込数が4で割り切れなければ1を加えます。

　16-37行で配列entriesから１つずつEntryオブジェクトを取り出して、表の各セルを生
成しています。19-20行をご覧ください。

 <% index = i * cols + j %>

 <% e = entries[index] || break %>

　変数iには現在の行番号、変数jには現在の列番号がセットされています。いずれも0
が最初の番号です。iに列数をかけてjを加えると配列のインデックスになります。それを変数
indexにセットすれば、entries[index]で現在のEntryオブジェクトを取得できます。ただし、
配列の数が4で割り切れない場合は、entries[index]がnilを返す場合があります。そのと
きは、breakでループを抜けます。

　次に24-28行をご覧ください。

 m.td do

 attributes = { type: "checkbox" }

 attributes[:checked] = "checked" if e.approved?

 m.input attributes

 end

　「A」列のチェックボックスを含むセルを生成しています。25-26行でハッシュattributes
にinput要素の属性をセットし、27行でinput要素を生成しています。申し込みがすでに承
認済みであれば、チェックボックスをチェックします。

　さて、すでにお気づきかとは思いますが、この部分テンプレートで作るチェックボックスは
formタグで囲まれていません。つまり、チェックボックスに設定された値がそのままフォームデータ
として送信されません。事実、各チェックボックスにはname属性もvalue属性もありません。

　すぐあとで見るように、私たちはJavaScriptプログラムでこれらのチェックボックスの状態を
調べ、データを加工してフォームの隠しフィールドにセットし、加工されたデータをフォームからアク
ションに向けて送信します。

スタイルシート

　app/assets/stylesheets/staffディレクトリに新規ファイルentries.scssを作成しま
す。

LIST app/assets/stylesheets/staff/entries.scss (New)

 1 @import "colors";

 2 @import "dimensions";

 3

 4 div.table-wrapper {

 5 table.entries {

 6 tr:nth-child(1) {

 7 th { text-align: center; }

 8 }

 9 tr {

 10 th:nth-child(4n+1) {

 11 padding: $moderate; width: 30px; text-align:

right;

 12 }

 13 td { background-color: $very_light_gray; }

 14 }

 15 }

 16 div.button-wrapper {

 17 margin: $wide;

 18 text-align: center;

 19 button { padding: $moderate; }

 20 }

 21 }

表示確認

　ブラウザで表示確認をします。プログラム一覧表示ページで申込件数が15のプログラム
を探し、その「詳細」リンクをクリックすると、図7.5のような画面が表示されます。

図7.5: プログラム詳細情報画面

7.3.2　隠しフィールドとJavaScriptプログラム

　次に、申込者の一覧表の下に「申し込みのフラグを更新する」というボタンを設置しま
す。このボタンはformタグで囲まれていて、formタグの内側には隠しフィールドが何個か埋め

込まれています。職員がこのボタンをクリックすると、これら隠しフィールドの値がデータとしてア
クションに送られます。各隠しフィールドの値はJavaScriptプログラムによってセットされます。

ルーティング

　「申し込みのフラグを更新する」ボタンで送信されるフォームデータを受けるアクションを
config/routes.rbに追加します。

LIST config/routes.rb

 :

 4 constraints host: config[:staff][:host] do

 5 namespace :staff, path: config[:staff][:path] do

 6 root "top#index"

 7 get "login" => "sessions#new", as: :login

 8 resource :session, only: [:create, :destroy]

 9 resource :account, except: [:new, :create]

 10 resource :password, only: [:show, :edit, :update]

 11 resources :customers

 12 - resources :programs

 12 + resources :programs do

 13 + resources :entries, only: [] do

 14 + patch :update_all, on: :collection

 15 + end

 16 + end

 17 end

 :

　programsリソースを定義するresourcesメソッドにブロックを加え、ブロックの中でリソース
entriesを定義しています。本編Chapter 13で解説した「ネストされたリソース」です。ただ
し、リソースentriesを定義するresourcesメソッドのonlyオプションに空の配列が渡されてい
るため、基本の7アクションは設定されません。その代わりに、PATCHでアクセスするための
update_allアクションが設定されています。

　このupdate_allアクションは、単独のEntryオブジェクトを書き換えるものではなく、複
数個のEntryオブジェクトを一括更新します。そのため、onオプションに :collection が指定
されています。つまり、update_allアクションには対象オブジェクトを特定するためのパラメータ
"id" が渡りません。

フォームオブジェクトの作成

　次に申し込みリストのためのフォームオブジェクトStaff::EntriesFormを作成します。

LIST app/forms/staff/entries_form.rb (New)

 1 class Staff::EntriesForm

 2 include ActiveModel::Model

 3

 4 attr_accessor :program, :approved, :not_approved,

:canceled, :not_canceled

 5

 6 def initialize(program)

 7 @program = program

 8 end

 9 end

　Programオブジェクトを保持するprogram属性の他に4つの属性が定義されています。こ
れらの使用目的については、後述します。

部分テンプレートの修正

　部分テンプレート _entries_form.html.erb を次のように修正します。

LIST app/views/staff/programs/_entries_form.html.erb

 :

 21 <%= markup(:div, class: "entry") do |m|

 22 m.th index + 1

 23 m.td e.customer.family_name + " " +

e.customer.given_name

 24 m.td do

 25 - attributes = { type: "checkbox" }

 25 + attributes = { type: "checkbox", class:

"approved" }

 26 + attributes["data-entry-id"] = e.id

 27 attributes[:checked] = "checked" if e.approved?

 28 m.input attributes

 29 end

 30 m.td do

 31 - attributes = { type: "checkbox" }

 31 + attributes = { type: "checkbox", class:

"canceled" }

 32 + attributes["data-entry-id"] = e.id

 33 attributes[:checked] = "checked" if e.canceled?

 34 m.input attributes

 35 end

 36 end %>

 :

　input要素にclass属性とdate-entry-id属性を追加しています。いずれも、後述す
るJavaScriptプログラムが使用します。data-entry-id属性にはEntryオブジェクトの主キー
（id）の値がセットされることを覚えておいてください。

　さらに、同じ部分テンプレート _entries_form.html.erb の末尾を次のように修正しま
す。

LIST app/views/staff/programs/_entries_form.html.erb

 :

 40 </table>

 41 +

 42 + <div class="button-wrapper">

 43 + <%= form_with model: Staff::EntriesForm.new(@program),

scope: "form",

 44 + url: [:update_all, :staff, @program, :entries],

 45 + html: { method: :patch } do |f| %>

 46 + <%= f.hidden_field :approved %>

 47 + <%= f.hidden_field :not_approved %>

 48 + <%= f.hidden_field :canceled %>

 49 + <%= f.hidden_field :not_canceled %>

 50 + <%= button_tag "申し込みのフラグを更新する", type:
"button",

 51 + id: "update-entries-button" %>

 52 + <% end %>

 53 + </div>

　フォームオブジェクト Staff::EntriesForm を用いてフォームを生成しています。４つの隠
しフィールドが埋め込まれています。フォームの下部にはヘルパーメソッドbutton_tagでbutton

要素を生成しています。

JavaScriptプログラム

　app/javascript/staffディレクトリに、新規のJavaScriptプログラム
entries_form.jsを次の内容で作成してください。

LIST app/javascript/staff/entries_form.js (New)

 1 $(document).on("turbolinks:load", () => {

 2 $("div.button-wrapper").on("click", "button#update-

entries-button", () => {

 3 approved = []

 4 not_approved = []

 5 canceled = []

 6 not_canceled = []

 7

 8 $("table.entries input.approved").each((index, elem)

=> {

 9 if ($(elem).prop("checked"))

 10 approved.push($(elem).data("entry-id"))

 11 else

 12 not_approved.push($(elem).data("entry-id"))

 13 })

 14

 15 $("#form_approved").val(approved.join(":"))

 16 $("#form_not_approved").val(not_approved.join(":"))

 17

 18 $("table.entries input.canceled").each((index, elem)

=> {

 19 if ($(elem).prop("checked"))

 20 canceled.push($(elem).data("entry-id"))

 21 else

 22 not_canceled.push($(elem).data("entry-id"))

 23 })

 24

 25 $("#form_canceled").val(canceled.join(":"))

 26 $("#form_not_canceled").val(not_canceled.join(":"))

 27

 28 $("div.button-wrapper form").submit()

 29 })

 30 });

　全体として「申し込みのフラグを更新する」ボタンがクリックされたときに実行すべき処理
を記述しています。

　8-13行をご覧ください。

 $("table.entries input.approved").each((index, elem) =>

{

 if ($(elem).prop("checked"))

 approved.push($(elem).data("entry-id"))

 else

 not_approved.push($(elem).data("entry-id"))

 })

　申し込みリストの表の内側にあるinput要素（チェックボックス）のうち、class属性に
"approved" という値を持つものをすべて選択し、eachメソッドでループしています。$(elem)
は個々のinput要素を指します。$(elem).prop("checked") はそのinput要素がチェックさ
れているかどうかをtrueまたはfalseで返します。

　また、$(elem).data("entry-id") はinput要素のdata-entry-id属性の値を返し
ます。これは各Entryオブジェクトの主キー（id）の値です。そして、それをpushメソッドで配
列の末尾に追加します。

　8-13行の処理の結果、配列approvedには「A」列のチェックボックスがチェックしてある
Entryオブジェクトのid値が集められ、配列not_approvedには「A」列のチェックボックスがチェ
ックされていないEntryオブジェクトのid値が集められます。

　次に、15-16行をご覧ください。

 $("#form_approved").val(approved.join(":"))

 $("#form_not_approved").val(not_approved.join(":"))

　$("#form_approved") はid属性に "form_approved" という値を持つ要素を指しま
す。該当する要素は1つしかありません。部分テンプレート _entries_form.html.erb の末
尾に追加されたフォームにある最初の隠しフィールドです。valメソッドはフォームの入力フィール
ドに指定された値をセットします。approved.join(":") は、配列approvedのすべての要素
をコロン（:）で連結してできる文字列を返します。すなわち最初の隠しフィールドには
"1:2:5:8:10:13" のようなコロン区切りの数字列がセットされます。同様に、2番目の隠しフ
ィールドには、配列not_approvedに追加されたEntryオブジェクトのid値をコロン（:）で連
結した文字列がセットされます。

　18-26行の処理は、8-16行の処理と本質的には同じです。「C」列のチェックボックスの
状態から、配列canceledと配列not_canceledを作り、要素をコロン（:）で連結して隠し
フィールドにセットします。

　最後に28行目をご覧ください。

 $("div.button-wrapper form").submit()

　これで4個の隠しフィールドを持つフォームからデータが送信されます。

　そして、app/javascript/packsディレクトリのstaff.jsを次のように書き換えてくださ
い。

LIST app/javascript/packs/staff.js

 :

 4 require("channels")

 5

 6 import "../staff/customer_form.js";

 7 + import "../staff/entries_form.js";

表示確認

　ブラウザで表示確認をします。前回の表示確認と同様に、プログラム一覧表示ページで
申込件数が15のプログラムを探し、その「詳細」リンクをクリックすると、図7.6のような画面が
表示されます。

図7.6: 「申し込みのフラグを更新する」ボタンが出現

　ページの下部に「申し込みのフラグを更新する」ボタンが現れました。

7.3.3　多数のオブジェクトの一括更新処理

　では、4個の隠しフィールドにセットされた値を受け取る側を実装しましょう。まず、
staff/entriesコントローラの骨組みを作ります。

$ bin/rails g controller staff/entries

　そして、update_allアクションを実装します。

LIST app/controllers/staff/entries_controller.rb

 1 - class Staff::EntriesController < ApplicationController

 1 + class Staff::EntriesController < Staff::Base

 2 + def update_all

 3 + entries_form =

Staff::EntriesForm.new(Program.find(params[:program_id]))

 4 + entries_form.update_all(params)

 5 + flash.notice = "プログラム申し込みのフラグを更新しました。"

 6 + redirect_to :staff_programs

 7 + end

 8 end

　フォームから送られてくるパラメータをそのままStaff::EntriesFormオブジェクトの
update_allメソッドに渡しています。

　フォームオブジェクトStaff::EntriesFormにupdate_allメソッドを追加します。

LIST app/forms/staff/entries_form.rb

 :

 6 def initialize(program)

 7 @program = program

 8 end

 9 +

 10 + def update_all(params)

 11 + assign_attributes(params)

 12 + save

 13 + end

 14 +

 15 + private def assign_attributes(params)

 16 + fp = params.require(:form).permit([

 17 + :approved, :not_approved, :canceled, :not_canceled

 18 +])

 19 +

 20 + @approved = fp[:approved]

 21 + @not_approved = fp[:not_approved]

 22 + @canceled = fp[:canceled]

 23 + @not_canceled = fp[:not_canceled]

 24 + end

 25 +

 26 + private def save

 27 + approved_entry_ids =

@approved.split(":").map(&:to_i)

 28 + not_approved_entry_ids =

@not_approved.split(":").map(&:to_i)

 29 + canceled_entry_ids =

@canceled.split(":").map(&:to_i)

 30 + not_canceled_entry_ids =

@not_canceled.split(":").map(&:to_i)

 31 +

 32 + ActiveRecord::Base.transaction do

 33 + @program.entries.where(id: approved_entry_ids)

 34 + .update_all(approved: true) if

approved_entry_ids.present?

 35 + @program.entries.where(id: not_approved_entry_ids)

 36 + .update_all(approved: false) if

not_approved_entry_ids.present?

 37 + @program.entries.where(id: canceled_entry_ids)

 38 + .update_all(canceled: true) if

canceled_entry_ids.present?

 39 + @program.entries.where(id: not_canceled_entry_ids)

 40 + .update_all(canceled: false) if

not_canceled_entry_ids.present?

 41 + end

 42 + end

 43 end

　27行目をご覧ください。

 approved_entry_ids = @approved.split(":").map(&:to_i)

　インスタンス変数 @approvedの値は、"1:2:5:8:10:13" のようなコロン区切りの数字
列です。それをコロン（":"）で分割して配列に変え、各要素をto_iメソッドで整数にしたも
のをローカル変数approved_entry_idsにセットしています。28-30行の処理も、27行目の処
理と本質的には同じです。

　33-40行では4つのデータベース操作が行われています。それらはトランザクションとして
実行されるので、4つの操作の一部だけが完了することはありません。

　33-34行をご覧ください。

 @program.entries.where(id: approved_entry_ids).

 update_all(approved: true) if

approved_entry_ids.present?

　式 @program.entries.where(id: approved_entry_ids) は、@programと関連付
けられたEntryオブジェクトのうち、主キーの値が配列approved_entry_idsのいずれかの要
素にマッチするものだけを選択します。そして、update_allメソッドで選択されたEntryオブジェ
クトのapproved属性の値をtrueに一括更新しています。35-40行の処理も、33-34行の処
理と同じです。

　では、動作確認を行いましょう。プログラム一覧表示ページで申込件数が15のプログラ
ムを探して、その詳細ページを開いてください。そして、申し込みリストのチェックボックスを適宜
チェックしたりチェックを外したりして、「申し込みのフラグを更新する」ボタンをクリックしてくださ

い。すると、ページのヘッダに「プログラム申し込みのフラグを更新しました。」というフラッシュメッ
セージが表示されるはずです。そして、もう一度同じプログラムの詳細ページを開き、各チェック
ボックスの状態がさきほど変更した通りになることを確かめてください。

7.4　演習問題

問題1

　Programモデルのmin_number_of_participants属性および
max_number_of_participants属性に対し、1以上1000以下の整数であることを確認する
バリデーションを追加してください。ただし、これらの属性には値が設定されない場合もある点
に留意してください。

　数（整数や浮動小数点数）に関して型や値の範囲をチェックするには、numericalityタイプのバ
リデーションを使います。具体的な使い方については、https://api.rubyonrails.org/ で調べてくださ
い。左上の検索ボックスに「validates_numericality_of」と入力すると、使用できるオプションの意味
や使用例が表示されます。

問題2

　すでに顧客からの申し込みがあるプログラムを削除しようとすると例外が発生するように
Programモデルのソースコード修正してください。

　Programモデルのソースコードの2行目でクラスメソッドhas_manyを用いてEntryモデルと関連付けてい
ます。現在、dependentオプションに :destroy というシンボルが指定されていますが、この値を変更し
ます。

　どのような値が設定できるかを調べるには、https://api.rubyonrails.org/ の検索ボックスに
「has_many」と入力してください。クラスメソッドhas_manyの説明の中にある「Options」セクションで、
dependentオプションの使い方が詳しく説明されています。

https://api.rubyonrails.org/
https://api.rubyonrails.org/

問題3

　プログラムに対して顧客からの申し込みがあるときにfalseを返し、ないときにtrueを返
すメソッドdeletable? をProgramモデルに追加してください。

問題4

すでに顧客からの申し込みがあるプログラムについては職員が削除しようとした場合に「こ
のプログラムは削除できません。」という警告がフラッシュメッセージとして表示されるように、
staff/programs#destroyアクションのコードを修正してください。

第8章　トランザクションと排他的ロック

Chapter 8では、データベース処理の中でも特に繊細な取り扱いを要する
領域、トランザクションと排他的ロックについて学びます。主題は、データベー
スの一貫性です。どのようにしてデータに不整合が発生するのでしょうか。そ
れを防ぐにはどうすればいいのでしょうか。

8.1　プログラム一覧表示・詳細表示機能（顧客向け）

この節では、Baukis2の顧客向けサイトにプログラムの一覧表示・詳細表
示機能を追加します。基本的には6-2節で説明したことの繰り返しですの
で、細かい説明は省略します。本章のテーマである「トランザクションとロック」
の話は、次の節から始まります。

8.1.1　ルーティング

　ルーティングの設定を次のように変更します。

LIST config/routes.rb

 :

 35 constraints host: config[:customer][:host] do

 36 namespace :customer, path: config[:customer][:path]

do

 37 root "top#index"

 38 get "login" => "sessions#new", as: :login

 39 resource :session, only: [:create, :destroy]

 40 + resources :programs, only: [:index, :show]

 41 end

 42 end

 43 end

　customer/programsコントローラにはプログラムの一覧表示をするindexアクションとプロ
グラムの詳細表示をするshowアクションのみを作ります。

8.1.2　顧客トップページの修正

　顧客トップページに「プログラム一覧」リンクを設置します。まず、customer/top#index
アクションを次のように書き換えてください。

LIST app/controllers/customer/top_controller.rb

 1 class Customer::TopController < Customer::Base

 2 skip_before_action :authorize

 3

 4 def index

 5 - render action: "index"

 5 + if current_customer

 6 + render action: "dashboard"

 7 + else

 8 + render action: "index"

 9 + end

 10 end

 11 end

　そして、顧客のダッシュボードページのERBテンプレートを作成します。

LIST app/views/customer/top/dashboard.html.erb (New)

 1 <% @title = "ダッシュボード" %>

 2 <h1><%= @title %></h1>

 3

 4 <ul class="menu">

 5 <%= link_to "プログラム一覧", :customer_programs %>

 6

8.1.3　プログラムの一覧と詳細

　続いて、顧客がプログラムの一覧および詳細情報を閲覧する機能を作ります。

indexアクションとshowアクション

　customer/programsコントローラの骨組みを生成します。

$ bin/rails g controller customer/programs

　indexアクションとshowアクションを追加します。

LIST app/controllers/customer/programs_controller.rb

 1 - class Customer::ProgramsController <

ApplicationController

 1 + class Customer::ProgramsController < Customer::Base

 2 + def index

 3 + @programs = Program.published.page(params[:page])

 4 + end

 5 +

 6 + def show

 7 + @program = Program.published.find(params[:id])

 8 + end

 9 end

Programモデル

　Programモデルにpublishedスコープを定義します。

LIST app/models/program.rb

 :

 6 scope :listing, -> {

 7 left_joins(:entries)

 8 .select("programs.*, COUNT(entries.id) AS

number_of_applicants")

 9 .group("programs.id")

 10 .order(application_start_time: :desc)

 11 .includes(:registrant)

 12 }

 13 + scope :published, -> {

 14 + where("application_start_time <= ?", Time.current)

 15 + .order(application_start_time: :desc)

 16 + }

 17

 18 attribute :application_start_date, :date, default:

Date.today

 :

スコープという概念については、6.3.2「スコープの定義」を参照してください。

indexアクションのERBテンプレート

　customer/programs#indexアクションのERBテンプレートを作成します。

LIST app/views/customer/programs/index.html.erb (New)

 1 <% @title = "プログラム一覧" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 <%= paginate @programs %>

 6

 7 <table class="listing">

 8 <tr>

 9 <th>タイトル</th>

 10 <th>申し込み開始日時</th>

 11 <th>申し込み終了日時</th>

 12 <th>最小参加者数</th>

 13 <th>最大参加者数</th>

 14 <th>アクション</th>

 15 </tr>

 16 <%= render partial: "program", collection: @programs

%>

 17 </table>

 18

 19 <%= paginate @programs %>

 20 </div>

　表の各行を生成する部分テンプレートを作成します。

LIST app/views/customer/programs/_program.html.erb (New)

 1 <% p = ProgramPresenter.new(program, self) %>

 2 <tr>

 3 <td><%= p.title %></td>

 4 <td class="date"><%= p.application_start_time %></td>

 5 <td class="date"><%= p.application_end_time %></td>

 6 <td class="numeric"><%= p.min_number_of_participants %>

</td>

 7 <td class="numeric"><%= p.max_number_of_participants %>

</td>

 8 <td class="actions"><%= link_to("詳細", [:customer,

program]) %></td>

 9 </tr>

showアクションのERBテンプレート

　customer/programs#showアクションのERBテンプレートを作成します。

LIST app/views/customer/programs/show.html.erb (New)

 1 <% @title = "プログラム詳細情報" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 <% p = ProgramPresenter.new(@program, self) %>

 6 <table class="attributes">

 7 <tr><th>タイトル</th><td><%= p.title %></td></tr>

 8 <tr><th>申し込み開始日時</th>

 9 <td class="date"><%= p.application_start_time %>

</td></tr>

 10 <tr><th>申し込み終了日時</th>

 11 <td class="date"><%= p.application_end_time %></td>

</tr>

 12 <tr><th>最小参加者数</th>

 13 <td class="numeric"><%=

p.min_number_of_participants %></td></tr>

 14 <tr><th>最大参加者数</th>

 15 <td class="numeric"><%=

p.max_number_of_participants %></td></tr>

 16 </table>

 17

 18 <div class="description"><%= p.description %></div>

 19 </div>

スタイルシート

　職員向けの各種スタイルシートを顧客向けのディレクトリにコピーします。

$ pushd app/assets/stylesheets

$ cp staff/tables.scss customer/

$ cp staff/pagination.scss customer/

$ cp staff/divs_and_spans.scss customer/

$ popd

　app/assets/stylesheets/customer/tables.scssに含まれるcyanをyellowで置き
換えてください。

LIST app/assets/stylesheets/customer/tables.scss

 :

 15 - border: solid $moderate $very_dark_cyan;

 15 + border: solid $moderate $very_dark_yellow;

 :

表示確認

　ブラウザでBaukis2の顧客向けサイトに加藤亀子さんとしてログインし、「プログラム一
覧」リンクをクリックすると、図8.1のような画面が表示されます。

図8.1: プログラム一覧画面

　加藤亀子さんのメールアドレスは「kato.kameko@example.jp」、パスワードは
「password」です。

　続いて、表の１行目の「アクション」列にある「詳細」リンクをクリックすると、図8.2のよう
な画面が表示されます。

図8.2: プログラム詳細画面

8.2　プログラム申し込み機能

並列的に走る複数のプロセスが同一のテーブルに変更を加えようとすると
き、処理の順序によっては意図せざる結果を招きます。この節では、排他的
ロックという仕組みを利用してデータの不整合を防止する方法を解説しま
す。

8.2.1　仕様の確認

　Chapter 6から作ってきたプログラム管理機能の仕上げとして、顧客がプログラムに申し
込みを行う機能をこれから作成します。Chapter 6の冒頭で説明したプログラム管理機能の
仕様のうち「申し込み」に関するものは以下の5点にまとめられます。

1. 申し込み開始日時から申し込み終了日時まで、申し込みを受け付ける。

2. プログラムへの申込者が最大参加者数に達すると、新たな申し込みはできない。

3. プログラムには最大参加者数が設定されていない場合もある。

4. 顧客は複数のプログラムに申し込めるが、１つのプログラムには１回しか申し込めな
い。

5. 顧客は申し込みをキャンセルできるが、キャンセル後は同一のプログラムに申し込むこと
はできない。

　本節のテーマである「排他制御」との関連で注意を要するのは、2番目の仕様です。最
大参加者数までの残りが1のときに、2名の顧客AとBがほぼ同時に申し込みを行っても申込

数が超過しないようにしなければなりません。

8.2.2　「申し込む」ボタンの設置

　まず、顧客向けのプログラム詳細表示ページに「申し込む」ボタンを設置するところまで
進みます。

ルーティング

　ルーティングの設定を次のように書き換えてください。

LIST config/routes.rb

 :

 35 constraints host: config[:customer][:host] do

 36 namespace :customer, path: config[:customer][:path]

do

 37 root "top#index"

 38 get "login" => "sessions#new", as: :login

 39 resource :session, only: [:create, :destroy]

 40 - resources :programs, only: [:index, :show]

 40 + resources :programs, only: [:index, :show] do

 41 + resource :entry, only: [:create] do

 42 + patch :cancel

 43 + end

 44 + end

 45 end

 46 end

 47 end

　リソースprogramsにネストされた単数リソースentryを定義しています。顧客とプログラム
が特定された文脈において、それらと関連付けられたEntryオブジェクトは0個または1個しか
存在しないので、idパラメータなしで取得できます。そのため単数リソースとして定義します。

　customer/entriesコントローラにはcreateアクションとcancelアクションを作ります。前
者ではプログラムへの申し込みを行い、後者ではプログラムへの申し込みを取り消します。この
2つのアクションのHTTPメソッドとURLパスのパターンは次のようになります。

create
POST /customer/programs/:program_id/entry

cancel
PATCH /customer/programs/:program_id/entry/cancel

showアクションのERBテンプレートの書き換え

　customer/programs#showアクションのERBテンプレートを次のように書き換えます。

LIST app/views/customer/programs/show.html.erb

 :

 18 <div class="description"><%= @program.description %>

</div>

 19 +

 20 + <div><%= p.apply_or_cancel_button %></div>

 21 </div>

プレゼンターの拡張

　ProgramPresenterクラスにapply_or_cancel_buttonメソッドを追加します。

LIST app/presenters/program_presenter.rb

 1 class ProgramPresenter < ModelPresenter

 2 delegate :title, :description, to: :object

 3 - delegate :number_with_delimiter, to: :view_context

 3 + delegate :number_with_delimiter, :button_to, to:

:view_context

 :

 29 def registrant

 30 object.registrant.family_name + " " +

object.registrant.given_name

 31 end

 32 +

 33 + def apply_or_cancel_button

 34 + if false

 35 + # TODO: キャンセルボタンの表示

 36 + else

 37 + status = program_status

 38 + button_to button_label_text(status), [:customer,

object, :entry],

 39 + disabled: status != :available, method: :post,

 40 + data: { confirm: "本当に申し込みますか？" }

 41 + end

 42 + end

 43 +

 44 + private def program_status

 45 + if object.application_end_time.try(:<, Time.current)

 46 + :closed

 47 + elsif object.max_number_of_participants.try(:<=,

object.applicants.count)

 48 + :full

 49 + else

 50 + :available

 51 + end

 52 + end

 53 +

 54 + private def button_label_text(status)

 55 + case status

 56 + when :closed

 57 + "募集終了"

 58 + when :full

 59 + "満員"

 60 + else

 61 + "申し込む"

 62 + end

 63 + end

 64 end

　apply_or_cancel_buttonメソッドは、ボタン1個だけを持つHTMLフォームを生成しま
す。フォームデータの送信先とボタンのラベルテキストは、顧客がすでにこのプログラムに申し込
んでいるかどうかで変化します。プログラムに申し込み済みの場合の実装は後回しにします。

　ヘルパーメソッドbutton_toの使い方はlink_toメソッドに準じます。disabledオプション
にtrueを与えると、ボタンが無効（文字がグレーになり、クリックしても無反応）になります。

　プライベートメソッドprogram_statusは、プログラムの申し込み終了日時が設定されて
いて、それが現在時刻よりも前であれば :closed を返し、プログラムの最大参加者数が設
定されていて、それが現時点でも申込者数以下であれば :full を返し、さもなくば
:available を返します。

　プライベートメソッドbutton_label_textは、メソッドprogram_statusが返すシンボルに
応じて3種類の文字列を返します。

表示確認

　さきほど表示したプログラムの詳細ページをブラウザでもう一度開き、図8.3のように画面
左下にボタンが表示されることを確認してください。

図8.3: 申し込みボタンが表示された

8.2.3　申し込みを受け付ける

　続いて、顧客が「申し込む」ボタンをクリックした後の機能を作りましょう。

最低限の実装

　customer/entriesコントローラの骨組みを作ります。

$ bin/rails g controller customer/entries

　customer/entries#createアクションを実装します。

LIST app/controllers/customer/entries_controller.rb

 1 - class Customer::EntriesController < ApplicationController

 1 + class Customer::EntriesController < Customer::Base

 2 + def create

 3 + program =

Program.published.find(params[:program_id])

 4 + program.entries.create!(customer: current_customer)

 5 + flash.notice = "プログラムに申し込みました。"

 6 + redirect_to [:customer, program]

 7 + end

 8 end

　アクションの中では、指定されたプログラムとログイン中の顧客（current_customer）
を連結するレコードをentriesテーブルに挿入し、customer/programs#showアクションに戻
る、という処理を行っています。

　プログラムへの申込数が最大参加者数未満であることを確かめていませんが、これでい
ちおう動きます。Baukis2の顧客向けページに加藤亀子さんとしてログインした状態で、「プロ
グラムNo.19」の詳細ページを開いて「申し込む」ボタンをクリックしてみましょう。ページのヘッ
ダ部分に「プログラムに申し込みました。」というメッセージが表示されます。

　そして、ブラウザをもう1つ開いて（あるいは、ブラウザのタブをもう1つ開いて）職員とし
てBaukis2にログインし、「プログラムNo.19」の詳細情報ページを表示してください。すると、
加藤亀子さんが申込者一覧に加わっているはずです。

最大参加者数の超過チェック

　次に、プログラムへの申込数が最大参加者数に達したら、申し込みを受け付けないよう
にcreateアクションを書き換えます。

LIST app/controllers/customer/entries_controller.rb

 1 class Customer::EntriesController < Customer::Base

 2 def create

 3 program = Program.published.find(params[:program_id])

 4 - program.entries.create!(customer: current_customer)

 5 - flash.notice = "プログラムに申し込みました。"

 4 + if max = program.max_number_of_participants

 5 + if program.entries.where(canceled: false).count <

max

 6 + program.entries.create!(customer:

current_customer)

 7 + flash.notice = "プログラムに申し込みました。"

 8 + else

 9 + flash.alert = "プログラムへの申込者数が上限に達しました。"

 10 + end

 11 + else

 12 + program.entries.create!(customer:

current_customer)

 13 + flash.notice = "プログラムに申し込みました。"

 14 + end

 15 redirect_to [:customer, program]

 16 end

 17 end

　最大参加者数が設定されていないプログラムの場合は、これまでと変わりません。設定
されている場合は、現在の参加者数が最大参加者数よりも少ないときだけ、プログラムへの
申し込みを受け付けます。

　動作確認は以下の要領で行ってください。まず、顧客サイトからログアウトして「加藤鶴
子」さん（メールアドレスは「kato.tsuruko@example.jp」、パス ワードは「password」）とし

てログインし直します。そして、「プログラムNo.19」の詳細ページを開き、そのままの状態を保ち
ます。

　別のブラウザで職員として「プログラムNo.19」の最大参加者数を6にセットします。これ
でこのプログラムは満員です。そして、顧客サイトを開いているブラウザに戻り、「申し込む」ボ
タンをクリックします。このとき「プログラムへの申込者数が上限に達しました。」というフラッシュ
メッセージが表示され、ボタン上のラベルテキストが「満員」に変化すればOKです。

サービスオブジェクトに機能を抽出する

　createアクションのソースコードが長く複雑になってきましたので、サービスオブジェクトを
新たに作成して、それにcreateアクションの機能の一部を抽出することにしましょう。
app/services/customerディレクトリに、新規ファイルentry_acceptor.rbを次のような内
容で作成してください。

LIST app/services/customer/entry_acceptor.rb (New)

 1 class Customer::EntryAcceptor

 2 def initialize(customer)

 3 @customer = customer

 4 end

 5

 6 def accept(program)

 7 if max = program.max_number_of_participants

 8 if program.entries.where(canceled: false).count <

max

 9 program.entries.create!(customer: @customer)

 10 return :accepted

 11 else

 12 return :full

 13 end

 14 else

 15 program.entries.create!(customer: @customer)

 16 return :accepted

 17 end

 18 end

 19 end

　createアクションの機能の大半を、Customer::EntryAcceptorクラスのacceptメソッ
ドに移しました。メソッドからの戻り値としては、申し込みを受け付けた場合はシンボル
:accepted、申込者数超過で受け付けられなかった場合はシンボル :fullを返します。

　このサービスオブジェクトを用いてcreateアクションを書き換えると次のようになります。

LIST app/controllers/customer/entries_controller.rb

 1 class Customer::EntriesController < Customer::Base

 2 def create

 3 program = Program.published.find(params[:program_id])

 4 - if max = program.max_number_of_participants

 5 - if program.entries.where(canceled: false).count <

max

 6 - program.entries.create!(customer:

current_customer)

 7 - flash.notice = "プログラムに申し込みました。"

 8 - else

 9 - flash.alert = "プログラムへの申込者数が上限に達しました。"

 10 - end

 11 - else

 12 - program.entries.create!(customer: current_customer)

 13 - flash.notice = "プログラムに申し込みました。"

 14 - end

 4 + case

Customer::EntryAcceptor.new(current_customer).accept(program)

 5 + when :accepted

 6 + flash.notice = "プログラムに申し込みました。"

 7 + when :full

 8 + flash.alert = "プログラムへの申込者数が上限に達しました。"

 9 + end

 10 redirect_to [:customer, program]

 11 end

 12 end

8.3　排他制御

一般にWebアプリケーションは同時に複数のユーザーからのアクセスを受け
付けるため、レースコンディションと呼ばれる問題が発生しやすいです。この問
題を解決するためには排他制御という仕組みを導入する必要があります。

8.3.1　レースコンディション

　Customer::EntryAcceptorクラスのソースコードの8-9行をご覧ください。

 if program.entries.where(canceled: false).count <

max

 program.entries.create!(customer: @customer)

　申込数が上限に達していなければ、ここでデータベースに対して次のような目的のクエリ
が順に発行されることになります。

1. プログラムへの現在の申込数を取得する。

2. entriesテーブルにレコードを挿入する。

　いま、あるプログラムPの申込数が上限よりも1だけ少ない状態で、二人の顧客AとBが
ほぼ同時にPに申し込みを行ったとします。顧客Aのための処理の開始がほんの一瞬だけ早
かったとすると、たいていは表8.1のように事態は進行するはずです。

表8.1: 顧客Bの申し込みが拒否される場合

顧客Aのための処理 顧客Bのための処理

① プログラムへの現在の申込数を取得

② entriesテーブルにレコードを挿入

③ プログラムへの現在の申込数を取得

　②で顧客Aの申し込みが受理されて、申し込みが上限に達します。そして、③で顧客B
の申し込みは拒否され、顧客Bのブラウザに「プログラムへの申込者数が上限に達しました。」
という残念なメッセージが表示されます。

　しかし、表8.2のように事態が進む可能性もあります。

表8.2: 顧客Bの申し込みが拒否されない場合

顧客Aのための処理 顧客Bのための処理

① プログラムへの現在の申込数を取得

② プログラムへの現在の申込数を取得

③ entriesテーブルにレコードを挿入

④ entriesテーブルにレコードを挿入

　なぜなら、実運用環境におけるRailsアプリケーションはマルチプロセスあるいはマルチスレ
ッドで動作しており、複数のアクションが並列で実行されるからです。

　この場合、想定外のことが発生します。②で顧客Bが申し込めるかどうかをチェックした
段階では、まだ1件分余裕があるので、顧客Bの申し込みは拒否されません。そして、③と④
で順に顧客Aと顧客Bからの申し込みが受理されます。その結果、申込数が1件超過してし
まうのです。

　こういうことは滅多に起きないように思われるかもしれませんが、そうとも限りません。何
かのきっかけで申し込みが殺到すれば容易に発生します。また、滅多に起きないバグは発見
されにくいため、かえって厄介であるとも言えます。

　上記のように、並列で走る複数の処理の結果が、順序やタイミングによって想定外の
結果をもたらすことをレースコンディション（race condition）と呼びます。

8.3.2　排他的ロック

　データベース処理におけるレースコンディションは、排他的ロックをうまく利用することで解
決できます。EntryAcceptor#acceptメソッドのコードを次のように書き換えてください。

LIST app/services/customer/entry_acceptor.rb

 :

 6 def accept(program)

 7 - if max = program.max_number_of_participants

 8 - if program.entries.where(canceled: false).count <

max

 9 - program.entries.create!(customer: @customer)

 10 - return :accepted

 11 - else

 12 - return :full

 13 - end

 14 - else

 15 - program.entries.create!(customer: @customer)

 16 - return :accepted

 17 - end

 7 + ActiveRecord::Base.transaction do

 8 + program.lock!

 9 + if max = program.max_number_of_participants

 10 + if program.entries.where(canceled: false).count

< max

 11 + program.entries.create!(customer: @customer)

 12 + return :accepted

 13 + else

 14 + return :full

 15 + end

 16 + else

 17 + program.entries.create!(customer: @customer)

 18 + return :accepted

 19 + end

 20 + end

 21 end

 22 end

　メソッド全体をActiveRecord::Base.transactionブロックで囲んでトランザクションと
し、トランザクションの冒頭で program.lock! を実行しています。モデルオブジェクトのインス
タンスメソッド lock! は、そのオブジェクトが指すテーブルレコードに対して排他的ロックを取得
します。なお、排他的ロックをするにはすでにトランザクションが開始されている必要がありま
す。

　いまあるセッションAがトランザクションを開始し、あるテーブルXの特定のレコードRに対す
る排他的ロックを取得したとします。

　以後、「セッション（session）」という言葉を、データベース管理システム（DBMS）へ
の「接続（connection）」とほぼ同義で使用します。Rails用語のセッション（ユーザーのロ
グイン状態を示す概念）とは意味が異なりますので、注意してください。

　すると、セッションAがトランザクションを終了するまで、他のセッションはRに対する排他
的ロックを取得できません。

　つまり、顧客AとBがほぼ同時にあるプログラムへの申し込みを行い、顧客Aのための処
理でEntryAcceptor#acceptメソッドが一瞬早く呼び出された場合、顧客Bのための処理は
program.lock! のところで待たされます。顧客Aの申し込みが受理されるまで、顧客Bのため
の処理は program.lock! から先に進めません。これで、レースコンディションは解決です。

　私たちは排他制御が機能していることをどのように確かめればよいのでしょうか。RSpec
のエグザンプルを書いて確かめるべきところですが、並列処理が絡んだテストは非常に複雑
で、本書のレベルを超えます。このテーマについて興味のある方は、
https://hairoftheyak.com/posts/testing-concurrency-in-rails/を参照してください。

https://hairoftheyak.com/posts/testing-concurrency-in-rails/

排他的ロックと外部キー制約

　EntryAcceptor#acceptメソッドの排他制御は、programsテーブルの特定のレコ
ードRに対する排他的ロックを複数のセッションが同時に取得できないという事実に依
拠しています。しかし、Baukis2の別の場所にRへの排他的ロックを取得せず、entries
テーブルにRを参照するレコードを挿入するような処理が書かれていたらどうなるでしょう
か。この挿入処理をブロックできないのでしょうか。

　結論から言えば、ブロックできます。ただし、正しく外部キー制約を設定している場
合に限ります。

　テーブルXとテーブルYが外部キー制約付きで関連付けられているとき、あるセッショ
ンAがテーブルXのレコードRの排他的ロックを取得すると、セッションAのトランザクション
が終了するまで他のセッションはRを参照するレコードをテーブルYに挿入することができ
ません。

　Baukis2の例で言えば、programsテーブルとentriesテーブルは外部キー制約付
きで関連付けられています。entriesテーブルの各レコードがprogramsテーブルの特定の
レコードを参照しています。

　あるセッションAが特定のプログラムの排他的ロックを取得すると、セッションAのト
ランザクションが終了するまで、他のセッションはそのプログラムとある顧客を結び付ける
ようなEntryオブジェクトを作ることができません。

8.4　プログラム申し込み機能の仕上げ

レースコンディションを解決したことで、プログラム申し込み機能はほぼ完成
しました。申し込み期間と二重申し込みをチェックする機能と申し込みを取
り消す機能を加えて仕上げとしましょう。

8.4.1　申し込み終了日時のチェック

　申し込み終了日時を過ぎたプログラムに関しては、プログラム詳細ページに無効化され
た「募集終了」ボタンが表示されるため、普通は申し込めません。しかし、申し込み終了日
時間際のプログラムでは、顧客が詳細ページを開いた瞬間からボタンを押す瞬間の間に期
限が切れる可能性があります。その場合、申し込みを拒否しなければなりません。

　そこで、Customer::EntryAcceptor#acceptのコードを次のように書き換えます。

LIST app/services/customer/entry_acceptor.rb

 :

 6 def accept(program_id)

 7 + return :closed if Time.current >=

program.application_end_time

 8 ActiveRecord::Base.transaction do

 9 program.lock!

 :

　また、これに合わせてcustomer/entries#createアクションのコードを書き換えます。

LIST app/controllers/customer/entries_controller.rb

 :

 4 case

Customer::EntryAcceptor.new(current_customer).accept(program)

 5 when :accepted

 6 flash.notice = "プログラムに申し込みました。"

 7 when :full

 8 flash.alert = "プログラムへの申込者数が上限に達しました。"

 9 + when :closed

 10 + flash.alert = "プログラムの申し込み期間が終了しました。"

 11 end

 :

8.4.2　申し込み開始日時のチェック

　申し込み開始日時を迎えていないプログラムは顧客には存在自体が見えないので、そ
のようなプログラムへの申し込みが行われることは論理的にありえません。しかし、将来
Baukis2に加えられる変更（バグ）によって、申し込み開始前のプログラムが顧客に見えて
しまう可能性はありますので、その芽を摘んでおきましょう。

　Customer::EntryAcceptor#acceptのコードを次のように書き換えます。

LIST app/services/customer/entry_acceptor.rb

 :

 6 def accept(program_id)

 7 + raise if Time.current <

program.application_start_time

 8 return :closed if Time.current >=

program.application_end_time

 9 ActiveRecord::Base.transaction do

 10 program.lock!

 :

　論理的にありえない事態なので、例外を発生させています。

　customer/entries#createアクションの1行目で、
Program.published.find(params[:program_id])のようにpublishedスコープを付けて該
当するプログラムを検索しているので、アクション側で申し込み開始日時のチェックは済んで
いるとも言えます。しかし、サービスオブジェクトはコントローラから独立した存在として、それ自
体でデータの整合性を保てるように実装すべきです。

8.4.3　二重申し込みのチェック

　次に、顧客が同じプログラムに二回以上申し込めないようにする制限を追加します。二
重申し込みは十分にありえる事態です。顧客が「申し込み」ボタンをクリックした後、なかな
かレスポンスが返ってこないなどの理由でいったん接続を切ってもういちど「申し込み」ボタンを
クリックすることがあります。

　そこで、Customer::EntryAcceptor#acceptメソッドのコードを次のように書き換えま
す。

LIST app/services/customer/entry_acceptor.rb

 :

 6 def accept(program_id)

 7 raise if Time.current <

program.application_start_time

 8 return :closed if Time.current >=

program.application_end_time

 9 ActiveRecord::Base.transaction do

 10 program.lock!

 11 - if max = program.max_number_of_participants

 11 + if program.entries.where(customer_id:

@customer.id).exists?

 12 + return :accepted

 13 + elsif max = program.max_number_of_participants

 14 if program.entries.where(canceled: false).count <

max

 15 program.entries.create!(customer: @customer)

 :

　申し込み終了日時のチェックとは違って、メソッドの戻り値は :acceptedにしています。

　ところで、二重申し込みのチェックをトランザクションの内側で記述しているのはなぜでし
ょうか。それは、ここにもレースコンディションの芽が存在するからです。ある顧客が間髪入れず
に2回連続して同一のプログラムに申し込んだ場合、排他的ロックを取得してから二重申し
込みのチェックをしないと、判定を間違える可能性があります。

8.4.4　申し込みのキャンセル

　最後に、顧客がプログラムへの申し込みを取り消す機能を作成します。

　まず、ProgramPresenterクラスのソースコードを次のように書き換えてください。

LIST app/presenters/program_presenter.rb

 1 class ProgramPresenter < ModelPresenter

 2 delegate :title, :description, to: :object

 3 - delegate :number_with_delimiter, :button_to, to:

:view_context

 3 + delegate :number_with_delimiter, :button_to,

:current_customer,

 4 + to: :view_context

 5

 6 def application_start_time

 7 object.application_start_time.strftime("%Y-%m-%d

%H:%M")

 8 end

 :

 34 def apply_or_cancel_button

 35 - if false

 35 + if entry = object.entries.find_by(customer_id:

current_customer.id)

 36 + status = cancellation_status(entry)

 37 + button_to cancel_button_label_text(status),

 38 + [:cancel, :customer, object, :entry],

 39 + disabled: status != :cancellable, method:

:patch,

 40 + data: { confirm: "本当にキャンセルしますか？" }

 41 else

 42 status = program_status

 43 button_to button_label_text(status), [:customer,

object, :entry],

 44 disabled: status != :available, method: :post,

 45 data: { confirm: "本当に申し込みますか？" }

 46 end

 47 end

 :

 66 "申し込む"

 67 end

 68 end

 69 +

 70 + private def cancellation_status(entry)

 71 + if object.application_end_time.try(:<, Time.current)

 72 + :closed

 73 + elsif entry.canceled?

 74 + :canceled

 75 + else

 76 + :cancellable

 77 + end

 78 + end

 79 +

 80 + private def cancel_button_label_text(status)

 81 + case status

 82 + when :closed

 83 + "申し込み済み（キャンセル不可）"

 84 + when :canceled

 85 + "キャンセル済み"

 86 + else

 87 + "キャンセルする"

 88 + end

 89 + end

 90 end

　35-40行をご覧ください。

 if entry = object.entries.find_by(customer_id:

current_customer.id)

 status = cancellation_status(entry)

 button_to cancel_button_label_text(status),

 [:cancel, :customer, object, :entry],

 disabled: status != :cancellable, method: :patch,

 data: { confirm: "本当にキャンセルしますか？" }

現在ログインしている顧客と結びついたEntryオブジェクトを取得して変数entryにセット
し、それがnilでなければ36-40行のコードを評価します。

　button_toメソッドの第2引数には、cancelアクションのURLを生成するための配列を
指定しています。配列の各要素は順に、アクション名、名前空間、Programオブジェクト、
Entryオブジェクトです。アクション名を先頭に記述する点に注意してください。

　プライベートメソッドcancellation_statusは、プログラムの申し込み終了日時が設定
されていて、それが現在時刻よりも前であれば :closed を返し、顧客がすでにそのプログラム
に申し込んでいて、その申し込みをキャンセルしていれば :canceled を返し、さもなくば
:cancellable を返します。

　プライベートメソッドcancel_button_label_textは、メソッドcancellation_statusが
返すシンボルに応じて3種類の文字列を返します。

　次に、customer/entriesコントローラにcancelアクションを追加します。

LIST app/controllers/customer/entries_controller.rb

 :

 12 redirect_to [:customer, program]

 13 end

 14 +

 15 + # PATCH

 16 + def cancel

 17 + program =

Program.published.find(params[:program_id])

 18 + if program.application_end_time.try(:<,

Time.current)

 19 + flash.alert = "プログラムへの申し込みをキャンセルできません（受付
期間終了）。"

 20 + else

 21 + entry = program.entries.find_by!(customer_id:

current_customer.id)

 22 + entry.update_column(:canceled, true)

 23 + flash.notice = "プログラムへの申し込みをキャンセルしました。"

 24 + end

 25 + redirect_to [:customer, program]

 26 + end

 27 end

　では、動作確認をしましょう。顧客サイトからログアウトして「加藤亀子」さん（メールアド
レスは「kato.kameko@example.jp」）としてログインし直します。そして、「プログラム
No.19」の詳細ページを開いて「キャンセルする」ボタンが表示されていることを確認します。こ
の状態を維持したまま、別のブラウザを開き、職員としてログインし「プログラムNo.19」の申し
込み終了日時を適当な過去の日時に設定します。そして、元のブラウザに戻って「キャンセ
ル」ボタンをクリックします。そして、「プログラムへの申し込みをキャンセルできません（受付期
間終了）。」と警告するフラッシュメッセージが表示され、ボタンが「申し込み済み（キャンセ
ル不可）」に変化することを確認してください（図8.4）。

図8.4: キャンセル不可のときの画面表示

　続いて、別のブラウザに再び移って、「プログラムNo.19」の申し込み終了日時を適当な
未来の日時に設定します。そして、元のブラウザに戻って、画面をリロードして「キャンセル」ボ
タンをクリックします。すると、ページヘッダに「プログラムへの申し込みをキャンセルしました。」と
いうメッセージが表示されます。また、再び表示された「プログラムNo.19」の詳細ページの下

部にあるボタンには「キャンセル済み」と書かれ、無効化されていることを確認してください
（図8.5）。

図8.5: プログラムへの申し込みがキャンセルされた

第9章　フォームの確認画面

Chapter 9では、フォームの確認画面について説明します。顧客が自分
自身のアカウント情報を更新フォームに入力して「確認画面へ進む」ボタンを
クリックすると、次のページでは入力内容が表示されます。確認画面で「更
新」ボタンをクリックすれば、修正内容がデータベースに保存され、「訂正」ボ
タンをクリックすれば、入力フォームに戻ります。このようなユーザーインターフェ
ースをRailsで作るには、どうすればいいでしょうか。

9.1　顧客自身によるアカウント管理機能

この節では、顧客自身によるアカウント管理機能を普通のやり方（確認
画面をはさまない）で作成します。確認画面は次節で追加します。

9.1.1　ルーティング

　ルーティングの設定を次のように変更します。

LIST config/routes.rb

 :

 35 constraints host: config[:customer][:host] do

 36 namespace :customer, path: config[:customer][:path]

do

 37 root "top#index"

 38 get "login" => "sessions#new", as: :login

 39 resource :session, only: [:create, :destroy]

 40 + resource :account, except: [:new, :create,

:destroy]

 41 resources :programs, only: [:index, :show] do

 :

　顧客にとって「自分自身のアカウント」は1個しか存在しないので、単数リソースaccount

を定義します。また、Baukis2では顧客自身がアカウントを登録したり、削除したりできないの
で、不要なアクション（new、create、destroy）をルーティングから除外しています。

9.1.2　顧客トップページの修正

　顧客ページのヘッダに「アカウント」リンクを設置します。

LIST app/views/customer/shared/_header.html.erb

 :

 9 link_to "ログイン", :customer_login

 10 end

 11 %>

 12 + <%= link_to "アカウント", :customer_account if
current_customer %>

 13 </header>

　スタイルシートを修正します。

LIST app/assets/stylesheets/customer/layout.scss

 :

 17 header {

 18 padding: $moderate;

 19 background-color: $dark_yellow;

 20 color: $very_light_gray;

 21 a.logo-mark {

 22 float: none;

 23 text-decoration: none;

 24 font-weight: bold;

 25 }

 26 a {

 27 float: right;

 28 color: $very_light_gray;

 29 + margin-left: $wide;

 30 }

 31 }

 :

　ブラウザを開き、顧客としてBaukis2にログインすると図9.1のような画面が表示されま
す。

図9.1: 顧客向けのダッシュボード画面

9.1.3　アカウント詳細表示

　続いて、customer/accountsコントローラの骨組みを生成します。

$ bin/rails g controller customer/accounts

　customer/accountsコントローラにshowアクションを追加します。

LIST app/controllers/customer/accounts_controller.rb

 1 - class Customer::AccountsController <

ApplicationController

 1 + class Customer::AccountsController < Customer::Base

 2 + def show

 3 + @customer = current_customer

 4 + end

 5 end

　staff/customers#showアクションのERBテンプレートを
app/views/customer/accountsディレクトリにコピーします。

$ cp app/views/staff/customers/show.html.erb

app/views/customer/accounts/

　新しくできたERBテンプレートを次のように書き直します。

LIST app/views/customer/accounts/show.html.erb

 1 - <% @title = "顧客詳細情報" %>

 1 + <% @title = "アカウント情報" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 + <div class="links">

 6 + <%= link_to "編集", :edit_customer_account %>

 7 + </div>

 8 +

 9 <table class="attributes">

 10 <tr><th colspan="2">基本情報</th></tr>

 11 <% p1 = CustomerPresenter.new(@customer, self) %>

 :

　ブラウザで顧客のトップページを開き、ヘッダ右寄りの「アカウント」リンクをクリックすると
図9.2のような画面が表示されます。

図9.2: 顧客のアカウント情報画面

9.1.4　アカウント編集機能

　次に、アカウント編集機能を作成します。実装手順は職員による顧客アカウントの編
集機能とほぼ同じです（本編Chapter 16〜18を参照してください）。概略を列挙すれば
次の通りです。

1. フォームオブジェクトCustomer::AccountFormを作る

2. customer/accountsコントローラにeditアクションとupdateアクションを追加する

3. 自宅住所フィールドと勤務先フィールドの表示・非表示を切り替えるJavaScriptプログラ
ムを作る

フォームオブジェクト

　Customer::AccountFormを作ります。既存のフォームオブジェクトStaffCustomerForm

のソースコードをひな形として流用します。

$ cp app/forms/staff/customer_form.rb

app/forms/customer/account_form.rb

　次のように書き換えます。

LIST app/forms/customer/account_form.rb

 1 - class Staff::CustomerForm

 1 + class Customer::AccountForm

 2 include ActiveModel::Model

 3

 4 attr_accessor :customer, :inputs_home_address,

:inputs_work_address

 5 delegate :persisted?, :save, to: :customer

 6

 7 - def initialize(customer = nil)

 7 + def initialize(customer)

 8 @customer = customer

 9 - @customer ||= Customer.new(gender: "male")

 9 self.inputs_home_address =

@customer.home_address.present?

 10 (2 - @customer.personal_phones.size).times do

 11 @customer.personal_phones.build

 12 end

 :

 74 private def customer_params

 75 @params.require(:customer).except(:phones).permit(

 76 - :email, :password,

 76 :family_name, :given_name, :family_name_kana,

:given_name_kana,

 77 :birthday, :gender

 78)

 :

　顧客が自分自身のアカウントを新規登録することはなく、顧客は自分自身のメールア
ドレスとパスワードを変更できない、という仕様をソースコードに反映させています。

editアクションとupdateアクション

　customer/accountsコントローラにeditアクションとupdateアクションを追加します。

LIST app/controllers/customer/accounts_controller.rb

 1 class Customer::AccountsController < Customer::Base

 2 def show

 3 @customer = current_customer

 4 end

 5 +

 6 + def edit

 7 + @customer_form =

Customer::AccountForm.new(current_customer)

 8 + end

 9 +

 10 + def update

 11 + @customer_form =

Customer::AccountForm.new(current_customer)

 12 + @customer_form.assign_attributes(params[:form])

 13 + if @customer_form.save

 14 + flash.notice = "アカウント情報を更新しました。"

 15 + redirect_to :customer_account

 16 + else

 17 + flash.now.alert = "入力に誤りがあります。"

 18 + render action: "edit"

 19 + end

 20 + end

 21 end

　staff/customersコントローラのeditアクションとupdateアクションとほぼ同じです。ソー
スコードを比較して、どこが変化しているか確かめてください。

ERBテンプレート

　ERBテンプレートも、staff/customersコントローラからコピーしたものをベースに作ります。

$ pushd app/views/staff/customers

$ cp edit.html.erb ../../customer/accounts

$ cp _customer_fields.html.erb ../../customer/accounts

$ cp _form.html.erb ../../customer/accounts

$ cp _home_address_fields.html.erb ../../customer/accounts

$ cp _phone_fields.html.erb ../../customer/accounts

$ cp _work_address_fields.html.erb ../../customer/accounts

$ popd

　ERBテンプレートの本体edit.html.erbを次のように書き換えてください。

LIST app/views/customer/accounts/edit.html.erb

 1 - <% @title = "顧客アカウントの編集" %>

 1 + <% @title = "アカウントの編集" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form">

 5 <%= form_with model: @customer_form, scope: "form",

 6 - url: [:staff, @customer_form.customer] do |f|

%>

 6 + url: :customer_account do |f| %>

 7 <%= render "form", f: f %>

 8 <div class="buttons">

 9 <%= f.submit "更新" %>

 10 - <%= link_to "キャンセル", :staff_customers %>

 10 + <%= link_to "キャンセル", :customer_account %>

 11 </div>

 12 <% end %>

 13 </div>

　部分テンプレート _customer_fields.html.erb を次のように書き換えてください。

LIST app/views/customer/accounts/_customer_fields.html.erb

 1 <%= f.fields_for :customer, f.object.customer do |ff| %>

 2 <%= markup do |m|

 3 p = CustomerFormPresenter.new(ff, self)

 4 p.with_options(required: true) do |q|

 5 - m << q.text_field_block(:email, "メールアドレス", size:
32)

 5 + m << q.text_field_block(:email, "メールアドレス", size:
32,

 6 + disabled: true)

 6 - m << q.password_field_block(:password, "パスワード",
size: 32)

 7 m << q.full_name_block(:family_name, :given_name,

"氏名")

 8 m << q.full_name_block(:family_name_kana,

:given_name_kana, "フリガナ")

 9 end

 :

　その他の部分テンプレートに関しては、修正の必要はありません。

JavaScriptプログラム

　JavaScriptプログラムについても、「職員による顧客管理」のために作ったものを流用し
ます。

$ pushd app/javascript

$ mkdir customer

$ cp staff/customer_form.js customer/account_form.js

$ popd

　そして、app/javascript/packsディレクトリに新規ファイルcustomer.jsを次の内容で
作成します。

LIST app/javascript/packs/customer.js (New)

 1 require("@rails/ujs").start()

 2 require("turbolinks").start()

 3 require("@rails/activestorage").start()

 4 require("channels")

 5

 6 import "../customer/account_form.js";

　さらに、顧客用のレイアウトテンプレートを次のように書き換えます。

LIST app/views/layouts/customer.html.erb

 :

 9 - <%= javascript_pack_tag "application", "data-

turbolinks-track": "reload" %>

 9 + <%= javascript_pack_tag "customer", "data-turbolinks-

track": "reload" %>

 :

スタイルシート

　職員用のform.scssを顧客用のディレクトリにコピーします。

$ cp app/assets/stylesheets/staff/form.scss

app/assets/stylesheets/customer

　そして、次のように書き換えます。

LIST app/assets/stylesheets/customer/form.scss

 : :

 11 - border: solid 4px $dark_cyan;

 11 + border: solid 4px $dark_yellow;

 : :

動作確認

　では、ブラウザで動作確認をしましょう。顧客のアカウント情報表示ページで「編集」リン
クをクリックすると、図9.3〜図9.5のような画面が表示されます。メールアドレスの入力欄が
無効化されていること、パスワード入力欄が存在しないことを確認してください。

図9.3: アカウントの編集画面(1)

図9.4: アカウントの編集画面(2)

図9.5: アカウントの編集画面(3)

9.2　確認画面の仮実装

この節では、前節で作成したアカウント編集機能に「確認画面」を追加し
ます。ただし、確認画面を表示するためのERBテンプレートとして詳細画面の
ものを流用して仮実装します。確認画面を表示する機能は次の節で完成
させます。

9.2.1　ルーティング

　ルーティングの設定を次のように変更します。

LIST config/routes.rb

 :

 35 constraints host: config[:customer][:host] do

 36 namespace :customer, path: config[:customer][:path]

do

 37 root "top#index"

 38 get "login" => "sessions#new", as: :login

 39 resource :session, only: [:create, :destroy]

 40 - resource :account, except: [:new, :create,

:destroy]

 40 + resource :account, except: [:new, :create,

:destroy] do

 41 + patch :confirm

 42 + end

 43 resources :programs, only: [:index, :show] do

 :

　名前空間customerの単数リソースaccountにconfirmアクションを追加しています。こ
のアクションへはPATCHメソッドでアクセスします。

9.2.2　編集フォームの修正

　customer/account#editアクションのERBテンプレートを次のように書き換えます。

LIST app/views/customer/accounts/edit.html.erb

 1 <% @title = "アカウントの編集" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form">

 5 <%= form_with model: @customer_form, scope: "form",

 6 - url: :customer_account do |f| %>

 6 + url: :confirm_customer_account do |f| %>

 7 <%= render "form", f: f %>

 8 <div class="buttons">

 9 - <%= f.submit "更新" %>

 9 + <%= f.submit "確認画面へ進む" %>

 10 <%= link_to "キャンセル", :customer_account %>

 11 </div>

 12 <% end %>

 13 </div>

　書き換え前はupdateアクションに対してフォームデータを送信するように書かれていました
が、送信先をconfirmアクションに変更しました。また、ボタンのラベル文字列も変えていま
す。

　ブラウザで編集フォームを表示し直すと、図9.6のようになります。

図9.6: 「確認画面へ進む」ボタンを設置

9.2.3　フォームオブジェクトの修正

　確認画面を「仮実装」します。すなわち、editアクションのERBテンプレートをそのまま流
用して、confirmアクションを作ります。ビジュアルデザインとしては確認画面のように見えませ
んが、実質的には確認画面として機能します。

　フォームオブジェクトCustomer::AccountFormを次のように修正してください。

LIST app/forms/customer/account_form.rb

 1 class Customer::AccountForm

 2 include ActiveModel::Model

 3

 4 attr_accessor :customer, :inputs_home_address,

:inputs_work_address

 5 - delegate :persisted?, :save, to: :customer

 5 + delegate :persisted?, :valid?, :save, to: :customer

 6

 7 def initialize(customer)

 :

　valid? メソッドをcustomer属性に委譲（delegate）しています。すなわち、このフォー
ムオブジェクトのインスタンスメソッド valid? が呼ばれると、customer属性の valid? メソッド
を呼び、その戻り値を返します。

9.2.4　confirmアクション

　customer/accountsコントローラにconfirmアクションを追加します。

LIST app/controllers/customer/accounts_controller.rb

 :

 6 def edit

 7 @customer_form =

Customer::AccountForm.new(current_customer)

 8 end

 9 +

 10 + # PATCH

 11 + def confirm

 12 + @customer_form =

Customer::AccountForm.new(current_customer)

 13 + @customer_form.assign_attributes(params[:form])

 14 + if @customer_form.valid?

 15 + render action: "confirm"

 16 + else

 17 + flash.now.alert = "入力に誤りがあります。"

 18 + render action: "edit"

 19 + end

 20 + end

 21

 22 def update

 :

　中身はupdateアクションとほぼ同じです。違うのは14-15行です。updateアクションの
対応する部分と比較してください。

 if @customer_form.save

 flash.notice = "アカウント情報を更新しました。"

 redirect_to :customer_account

　つまり、confirmアクションではフォームオブジェクトをデータベースに保存する代わりに、バ
リデーションだけを行い、バリデーションに成功すれば確認画面を表示するのです。

9.2.5　confirmアクションのERBテンプレート

　confirmアクションのERBテンプレートを次のように作成します。

LIST app/views/customer/accounts/confirm.html.erb (New)

 1 <% @title = "アカウントの更新（確認）" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form">

 5 <%= form_with model: @customer_form, scope: "form",

 6 url: :customer_account do |f| %>

 7 <p>以下の内容でアカウントを更新します。よろしいですか？</p>

 8 <%= render "form", f: f %>

 9 <div class="buttons">

 10 <%= f.submit "更新" %>

 11 <%= f.submit "訂正", name: "correct" %>

 12 </div>

 13 <% end %>

 14 </div>

　customer/accounts#editアクションのERBテンプレートとほぼ同じです。form_withの
urlオプションの値（5行目）が異なる他、6行目にp要素が追加され、10行目が「キャンセ
ル」リンクから「訂正」ボタンに変わっています。

9.2.6　動作確認

　動作確認をします。顧客のアカウント編集フォームを開き、適宜内容を変更してから
「確認画面へ進む」ボタンをクリックし、図9.7と図9.8のような画面が表示され、「更新」ボタ
ンをクリックして顧客のアカウント情報が更新されればOKです。

図9.7: 仮実装されたアカウント確認画面(1)

図9.8: 仮実装されたアカウント確認画面(2)

　なお、「訂正」ボタンはまだ正しく機能しません。「更新」ボタンを押した場合とまったく同
じ動きになります。

9.3　確認画面の本実装

この節では、前節で仮実装したアカウント編集機能を完成させます。隠し
入力欄を用いて見えないフォームを出力するという方法で確認画面のビジュ
アルデザインをそれらしいものに変えます。

9.3.1　確認画面用プレゼンターの作成

　「仮実装」から「本実装」に移行します。確認画面用のフォームプレゼンターを作成しま
す。これまで作成したフォームプレゼンターはすべて目に見える入力欄を生成するためのもので
したが、今回作成するのは隠し入力欄（hidden fields）を生成するためのフォームプレゼン
ターです。

　app/presentersディレクトリに新規ファイルconfirming_form_presenter.rbを次の
ような内容で作成してください。

LIST app/presenters/confirming_form_presenter.rb (New)

 1 class ConfirmingFormPresenter

 2 include HtmlBuilder

 3

 4 attr_reader :form_builder, :view_context

 5 delegate :label, :hidden_field, :object, to:

:form_builder

 6

 7 def initialize(form_builder, view_context)

 8 @form_builder = form_builder

 9 @view_context = view_context

 10 end

 11

 12 def notes

 13 ""

 14 end

 15

 16 def text_field_block(name, label_text, options = {})

 17 markup(:div) do |m|

 18 m << decorated_label(name, label_text)

 19 if options[:disabled]

 20 m.div(object.send(name), class: "field-value

readonly")

 21 else

 22 m.div(object.send(name), class: "field-value")

 23 m << hidden_field(name, options)

 24 end

 25 end

 26 end

 27

 28 def date_field_block(name, label_text, options = {})

 29 markup(:div) do |m|

 30 m << decorated_label(name, label_text)

 31 m.div(object.send(name), class: "field-value")

 32 m << hidden_field(name, options)

 33 end

 34 end

 35

 36 def drop_down_list_block(name, label_text, choices,

options = {})

 37 markup(:div) do |m|

 38 m << decorated_label(name, label_text)

 39 m.div(object.send(name), class: "field-value")

 40 m << hidden_field(name, options)

 41 end

 42 end

 43

 44 def decorated_label(name, label_text)

 45 label(name, label_text)

 46 end

 47 end

　FormPresenterのソースコードと比較してください。値を画面上に表示するためのコード
が付け加わり、text_fieldメソッドやselectメソッドが呼ばれていたところが、すべて
hidden_fieldメソッドに置き換わっています。バリデーションが成功した場合しかこのフォーム
プレゼンターは使われませんので、エラーメッセージを表示するerror_messages_forメソッドが
存在しません。また、必須入力項目を示す赤いアスタリスク（*）をラベルの肩に付ける必
要がないため、notesメソッドは単に空文字を返すだけのものとして、decorated_labelメソッ
ドは単にlabelメソッドを呼ぶだけのものとして定義されています。

　続いて、ConfirmingFormPresenterを継承するConfirmingUserFormPresenterクラ
スを定義します。

LIST app/presenters/confirming_user_form_presenter.rb (New)

 1 class ConfirmingUserFormPresenter <

ConfirmingFormPresenter

 2 def full_name_block(name1, name2, label_text, options =

{})

 3 markup(:div, class: "input-block") do |m|

 4 m << decorated_label(name1, label_text)

 5 m.div(object.send(name1) + " " +

object.send(name2),

 6 class: "field-value")

 7 m << hidden_field(name1)

 8 m << hidden_field(name2)

 9 end

 10 end

 11 end

　ConfirmingCustomerFormPresenterクラスを定義します。

LIST app/presenters/confirming_customer_form_presenter.rb (New)

 1 class ConfirmingCustomerFormPresenter <

ConfirmingUserFormPresenter

 2 def gender_field_block

 3 markup(:div, class: "input-block") do |m|

 4 m << decorated_label(:gender, "性別")

 5 m.div(object.gender == "male" ? "男性" : "女性",

class: "field-value")

 6 m << hidden_field(:gender)

 7 end

 8 end

 9 end

　さらに、ConfirmingAddressFormPresenterクラスを定義します。

LIST app/presenters/confirming_address_form_presenter.rb (New)

 1 class ConfirmingAddressFormPresenter <

ConfirmingFormPresenter

 2 def postal_code_block(name, label_text, options)

 3 markup(:div, class: "input-block") do |m|

 4 m << decorated_label(name, label_text)

 5 m.div(object.send(name), class: "field-value")

 6 m << hidden_field(name, options)

 7 end

 8 end

 9 end

9.3.2　ERBテンプレートの修正（1）

　確認画面用のフォームプレゼンターを利用して、確認画面を実装します。まずは、
confirmアクションのERBテンプレート本体を修正してください。

LIST app/views/customer/accounts/confirm.html.erb

 :

 5 <%= form_with model: @customer_form, scope: "form",

 6 url: :customer_account do |f| %>

 7 <p>以下の内容でアカウントを更新します。よろしいですか？</p>

 8 - <%= render "form", f: f %>

 8 + <%= render "confirming_form", f: f %>

 9 <div class="buttons">

 10 <%= f.submit "更新" %>

 :

　部分テンプレート _confirming_form.html.erb を作成します。

LIST app/views/customer/accounts/_confirming_form.html.erb (New)

 1 <fieldset id="customer-fields">

 2 <legend>基本情報</legend>

 3 <%= render "customer_fields", f: f, confirming: true %>

 4 </fieldset>

 5 <% if f.object.inputs_home_address %>

 6 <div>

 7 <%= f.hidden_field :inputs_home_address %>

 8 </div>

 9 <fieldset id="home-address-fields">

 10 <legend>自宅住所</legend>

 11 <%= render "home_address_fields", f: f, confirming:

true %>

 12 </fieldset>

 13 <% end %>

 14 <% if f.object.inputs_work_address %>

 15 <div>

 16 <%= f.hidden_field :inputs_work_address %>

 17 </div>

 18 <fieldset id="work-address-fields">

 19 <legend>勤務先</legend>

 20 <%= render "work_address_fields", f: f, confirming:

true %>

 21 </fieldset>

 22 <% end %>

　3、11、20行目のrenderメソッドでconfirmingというパラメータを部分テンプレートに渡
している点に留意してください（このパラメータの意味は、次の項で説明します）。

　部分テンプレート _form.html.erb を次のように修正します。

LIST app/views/customer/accounts/_form.html.erb

 1 <%= FormPresenter.new(f, self).notes %>

 2 <fieldset id="customer-fields">

 3 <legend>基本情報</legend>

 4 - <%= render "customer_fields", f: f %>

 4 + <%= render "customer_fields", f: f, confirming: false

%>

 5 </fieldset>

 6 <div>

 7 <%= f.check_box :inputs_home_address %>

 8 <%= f.label :inputs_home_address, "自宅住所を入力する" %>

 9 </div>

 10 <fieldset id="home-address-fields">

 11 <legend>自宅住所</legend>

 12 - <%= render "home_address_fields", f: f %>

 12 + <%= render "home_address_fields", f: f, confirming:

false %>

 13 </fieldset>

 14 <div>

 15 <%= f.check_box :inputs_work_address %>

 16 <%= f.label :inputs_work_address, "勤務先を入力する" %>

 17 </div>

 18 <fieldset id="work-address-fields">

 19 <legend>勤務先</legend>

 20 - <%= render "work_address_fields", f: f %>

 20 + <%= render "work_address_fields", f: f, confirming:

false %>

 21 </fieldset>

9.3.3　ERBテンプレートの修正（2）

　部分テンプレート _customer_fileds.html.erb を次のように修正します。

LIST app/views/customer/accounts/_customer_fields.html.erb

 1 <%= f.fields_for :customer, f.object.customer do |ff| %>

 2 <%= markup do |m|

 3 - p = CustomerFormPresenter.new(ff, self)

 3 + p = confirming ?

ConfirmingCustomerFormPresenter.new(ff, self) :

 4 + CustomerFormPresenter.new(ff, self)

 5 p.with_options(required: true) do |q|

 6 m << q.text_field_block(:email, "メールアドレス", size:
32,

 7 disabled: true)

 8 m << q.full_name_block(:family_name, :given_name,

"氏名")

 9 m << q.full_name_block(:family_name_kana,

:given_name_kana, "フリガナ")

 10 end

 11 m << p.date_field_block(:birthday, "生年月日")

 12 m << p.gender_field_block

 13 m.div(class: "input-block") do

 14 m << p.decorated_label(:personal_phones, "電話番号")

 15 m.ol do

 16 p.object.personal_phones.each_with_index do

|phone, index|

 17 - m << render("phone_fields", f: ff, phone:

phone, index: index)

 17 + if confirming

 18 + m << render("confirming_phone_fields", f:

ff, phone: phone,

 19 + index: index)

 20 + else

 21 + m << render("phone_fields", f: ff, phone:

phone, index: index)

 22 + end

 23 end

 24 end

 25 end

 26 end %>

 27 <% end %>

　パラメータconfirmingの値が真である偽であるかによって、フォームプレゼンターと電話番
号用の部分テンプレートを切り替えています。

　部分テンプレート _home_address_fileds.html.erb を次のように修正します。

LIST app/views/customer/accounts/_home_address_fields.html.erb

 1 <%= f.fields_for :home_address,

f.object.customer.home_address do |ff| %>

 2 <%= markup do |m|

 3 - p = AddressFormPresenter.new(ff, self)

 3 + p = confirming ?

ConfirmingAddressFormPresenter.new(ff, self) :

 4 + AddressFormPresenter.new(ff, self)

 5 p.with_options(required: true) do |q|

 6 m << q.postal_code_block(:postal_code, "郵便番号",

size: 7)

 7 m << q.drop_down_list_block(:prefecture, "都道府県",

 8 Address::PREFECTURE_NAMES)

 9 m << q.text_field_block(:city, "市区町村", size: 16)

 10 m << q.text_field_block(:address1, "町域、番地等",

size: 40)

 11 end

 12 m << p.text_field_block(:address2, "建物名、部屋番号等",

size: 40)

 13 m.div(class: "input-block") do

 14 m << p.decorated_label(:personal_phones, "電話番号")

 15 m.ol do

 16 p.object.phones.each_with_index do |phone, index|

 17 - m << render("phone_fields", f: ff, phone:

phone, index: index)

 17 + if confirming

 18 + m << render("confirming_phone_fields", f:

ff, phone: phone,

 19 + index: index)

 20 + else

 21 + m << render("phone_fields", f: ff, phone:

phone, index: index)

 22 + end

 23 end

 24 end

 25 end

 26 end %>

 27 <% end %>

　部分テンプレート _work_address_fileds.html.erb を次のように修正します。

LIST app/views/customer/accounts/_work_address_fields.html.erb

 1 <%= f.fields_for :work_address,

f.object.customer.work_address do |ff| %>

 2 <%= markup do |m|

 3 - p = AddressFormPresenter.new(ff, self)

 3 + p = confirming ?

ConfirmingAddressFormPresenter.new(ff, self) :

 4 + AddressFormPresenter.new(ff, self)

 5 m << p.text_field_block(:company_name, "会社名", size:

40, required: true)

 6 m << p.text_field_block(:division_name, "部署名",

size: 40)

 7 m << p.postal_code_block(:postal_code, "郵便番号",

size: 7)

 8 m << p.drop_down_list_block(:prefecture, "都道府県",

 9 Address::PREFECTURE_NAMES)

 10 m << p.text_field_block(:city, "市区町村", size: 16)

 11 m << p.text_field_block(:address1, "町域、番地等",

size: 40)

 12 m << p.text_field_block(:address2, "建物名、部屋番号等",

size: 40)

 13 m.div(class: "input-block") do

 14 m << p.decorated_label(:personal_phones, "電話番号")

 15 m.ol do

 16 p.object.phones.each_with_index do |phone, index|

 17 - m << render("phone_fields", f: ff, phone:

phone, index: index)

 17 + if confirming

 18 + m << render("confirming_phone_fields", f:

ff, phone: phone,

 19 + index: index)

 20 + else

 21 + m << render("phone_fields", f: ff, phone:

phone, index: index)

 22 + end

 23 end

 24 end

 25 end

 26 end %>

 27 <% end %>

　確認画面に電話番号を表示するための部分テンプレート
_confirming_phone_fields.html.erb を次の内容で新規作成します。

LIST app/views/customer/accounts/_confirming_phone_fields.html.erb (New)

 1 <%= f.fields_for :phones, phone, index: index do |ff| %>

 2 <%= markup(:li) do |m|

 3 text = ff.object.number

 4 text += " （優先）" if ff.object.primary?

 5 m.span(text, class: "field-value")

 6 m << ff.hidden_field(:number)

 7 m << ff.hidden_field(:primary)

 8 end %>

 9 <% end %>

　fields_forメソッドのindexオプションについては、本編18-2節を参照してください。

9.3.4　フォームオブジェクトの修正

　フォームオブジェクトCustomer::AccountFormを次のように修正してください。

LIST app/forms/customer/account_form.rb

 :

 24 def assign_attributes(params = {})

 25 @params = params

 26 - self.inputs_home_address =

params[:inputs_home_address] == "1"

 26 + self.inputs_home_address =

params[:inputs_home_address].in? %w(1 true)

 27 - self.inputs_work_address =

params[:inputs_work_address] == "1"

 27 + self.inputs_work_address =

params[:inputs_work_address].in? %w(1 true)

 :

　チェックボックスがOnであるときフォームから送られてくるのは "1" という文字列ですが、
隠し入力欄の値がtrueであるときフォームから送られてくるのは "true" という文字列となる
ため、このような変更が必要となります。

9.3.5　スタイルシート

　最後にスタイルシートを修正して、ビジュアルデザインを調整します。

LIST app/assets/stylesheets/customer/form.scss

 :

 26 span.instruction { font-size: $small; color:

$dark_gray; }

 27 + div.field-value { margin-left: $wide; font-

weight: bold; }

 28 + div.readonly { color: $dark_gray; }

 29 + span.field-value { font-weight: bold; }

 30 }

 31 div.input-block {

 :

9.3.6　動作確認

　ブラウザで動作確認を行います。顧客が自分自身のアカウントを編集するフォームを開
いて、「確認画面に進む」ボタンをクリックすると、図9.9のような画面が表示されます。

図9.9: アカウント更新の確認画面(1)

　でも、おかしいですね。自宅住所フィールドと勤務先フィールドが表示されません。
JavaScriptプログラムのせいです。次の項で直しましょう。

9.3.7　JavaScriptプログラムの修正

　前項で発覚した問題（確認画面に自宅住所セクションと勤務先セクションが表示さ
れない）に対応します。まず、確認画面でフォーム全体を取り囲んでいるdiv要素のclass属
性に "confirming" という値を設定します。

LIST app/views/customer/accounts/confirm.html.erb

 :

 4 - <div id="generic-form">

 4 + <div id="generic-form" class="confirming">

 :

　そして、JavaScriptプログラムを次のように修正します。

LIST app/javascript/customer/account_form.js

 :

 15 $(document).on("turbolinks:load", () => {

 16 + if ($("div.confirming").length) return;

 17 toggle_home_address_fields();

 :

　確認画面では自宅住所セクションや勤務先セクションの表示・非表示を切り替える処
理を行わないようにしています。

　もう一度、ブラウザで確認画面を開くと、図9.10のように自宅住所セクションが表示さ
れたままになります。そしてページ下部の「更新」ボタンをクリックすると、顧客のアカウント情

報が更新されます。

図9.10: アカウントの更新の確認画面(2)

9.3.8　訂正ボタン

　続いて、「訂正」ボタンを実装します。customer/accountsコントローラのupdateアクショ
ンを次のように書き換えてください。

LIST app/controllers/customer/accounts_controller.rb

 :

 22 def update

 23 @customer_form =

Customer::AccountForm.new(current_customer)

 24 @customer_form.assign_attributes(params[:form])

 25 - if @customer_form.save

 26 - flash.notice = "アカウント情報を更新しました。"

 27 - redirect_to :customer_account

 28 - else

 29 - flash.now.alert = "入力に誤りがあります。"

 30 - render action: "edit"

 31 - end

 25 + if params[:commit]

 26 + if @customer_form.save

 27 + flash.notice = "アカウント情報を更新しました。"

 28 + redirect_to :customer_account

 29 + else

 30 + flash.now.alert = "入力に誤りがあります。"

 31 + render action: "edit"

 32 + end

 33 + else

 34 + render action: "edit"

 35 + end

 36 end

 37 end

　この修正の意味を理解するため、app/views/customer/accountsディレクトリの
confirm.html.erbの8-11行をご覧ください。

 <div class="buttons">

 <%= f.submit "更新" %>

 <%= f.submit "訂正", name: "correct" %>

 </div>

　フォームビルダーのsubmitメソッドにはnameオプションを与えることができます。これは
input要素のname属性の値として用いられます。nameオプションのデフォルト値が "commit"
です。フォームが送信されると、クリックされたボタンのname属性をキーとするパラメータも同時
に送信されます。つまり、「更新」ボタンがクリックされると "commit" というキーのパラメータ
が、「訂正」ボタンがクリックされると、"correct" というキーのパラメータがupdateアクションに
渡ります。

　したがって、params[:commit] に値がセットされているかどうかで、どちらのボタンが押さ
れたのかが判定できるというわけです。

　では、動作確認をしましょう。ブラウザでアカウント編集画面を開いて、生年月日を
「1970/01/01」に変更し、確認画面に進んでから、「訂正」ボタンをクリックしてください。図
9.11のように編集画面が表示され、生年月日の入力欄に「1970/01/01」という値が入って
いればOKです。

図9.11: 「訂正」ボタンでアカウント編集画面に戻る

9.3.9　Capybaraによるテスト

　最後に、本章で作った機能のspecファイルを作成しましょう。まず、準備作業として
RSpec用のヘルパーメソッドlogin_as_customerを作成します。

LIST spec/support/features_spec_helper.rb

 :

 7 def login_as_staff_member(staff_member, password =

"pw")

 8 visit staff_login_path

 9 within("#login-form") do

 10 fill_in "メールアドレス", with: staff_member.email

 11 fill_in "パスワード", with: password

 12 click_button "ログイン"

 13 end

 14 end

 15 +

 16 + def login_as_customer(customer, password = "pw")

 17 + visit customer_login_path

 18 + within("#login-form") do

 19 + fill_in "メールアドレス", with: customer.email

 20 + fill_in "パスワード", with: password

 21 + click_button "ログイン"

 22 + end

 23 + end

 24 end

　中身はすぐ上で定義されているlogin_as_staff_memberメソッドとほぼ同じです。

ヘルパーメソッドlogin_as_staff_memberについては、本編17-1節で解説しています。

　specファイルを置くディレクトリを作ります。

$ mkdir -p spec/features/customer

　specファイルを作成します。

LIST spec/features/customer/account_management_spec.rb (New)

 1 require "rails_helper"

 2

 3 feature "顧客によるアカウント管理" do

 4 include FeaturesSpecHelper

 5 let(:customer) { create(:customer) }

 6

 7 before do

 8 switch_namespace(:customer)

 9 login_as_customer(customer)

 10 click_link "アカウント"

 11 click_link "編集"

 12 end

 13

 14 scenario "顧客が基本情報、自宅住所、勤務先を更新する" do

 15 fill_in "生年月日", with: "1980-04-01"

 16 within("fieldset#home-address-fields") do

 17 fill_in "郵便番号", with: "9999999"

 18 end

 19 click_button "確認画面へ進む"

 20 click_button "訂正"

 21 within("fieldset#work-address-fields") do

 22 fill_in "会社名", with: "テスト"

 23 end

 24 click_button "確認画面へ進む"

 25 click_button "更新"

 26

 27 customer.reload

 28 expect(customer.birthday).to eq(Date.new(1980, 4, 1))

 29 expect(customer.home_address.postal_code).to

eq("9999999")

 30 expect(customer.work_address.company_name).to eq("テス
ト")

 31 end

 32

 33 scenario "顧客が生年月日と自宅の郵便番号に無効な値を入力する" do

 34 fill_in "生年月日", with: "2100-01-01"

 35 within("fieldset#home-address-fields") do

 36 fill_in "郵便番号", with: "XYZ"

 37 end

 38 click_button "確認画面へ進む"

 39

 40 expect(page).to have_css("header span.alert")

 41 expect(page).to have_css(

 42 "div.field_with_errors

input#form_customer_birthday")

 43 expect(page).to have_css(

 44 "div.field_with_errors

input#form_home_address_postal_code")

 45 end

 46 end

　テストを実行し、2個のエグザンプルが成功することを確認します。

$ rspec spec/features/customer/account_management_spec.rb

..

Finished in 5 seconds (files took 1.73 seconds to load)

2 examples, 0 failures

9.4　演習問題

問題1

　職員が自分自身のアカウントを編集する機能に確認画面を加えてください。

問題2

　前問の機能追加に合わせて、spec/requests/staffディレクトリにある
my_account_management_spec.rbを修正してください。

問題3

　職員が自分自身のアカウントを編集する機能に関するCapybaraによるテストを作成し
てください。

第10章　Ajax

Chapter 10から最終章（Chapter 12）までの3章で、Baukis2に問い
合わせ管理機能を追加します。これにより顧客が問い合わせをし、職員が
顧客に返信し、顧客がさらに返信することができるようになります。本章で
は、顧客からの問い合わせが届くと、ほぼリアルタイムでBaukis2の職員ペー
ジ上に通知が表示される機能を、Ajaxの技術を利用して作ります。

10.1　顧客向け問い合わせフォーム

本題のAjax技術の説明に入る前に、準備作業として顧客向け問い合
わせフォームを作成しましょう。前章で解説した「確認画面」の復習も兼ねて
います。

10.1.1　問い合わせ管理機能の概要

　Chapter 10から最終章（Chapter 12）までの3章では、Baukis2に問い合わせ管理
機能を追加します。この機能の仕様は以下のようなものです。

顧客は件名と本文を入力して問い合わせを行える。

職員ページのヘッダには未処理の問い合わせの件数が表示される。

職員は問い合わせに返信できる。

顧客は職員からの返信に対して返信できる。

職員は顧客からのメッセージ（問い合わせ、返信）に対してタグを設定できる。

10.1.2　データベース設計

　はじめに、問い合わせの内容を格納するためのデータベーステーブルmessagesを作りま
す。このテーブルには、顧客からの問い合わせだけでなく職員からの返信と顧客からの返信も
格納します。

$ bin/rails g model message

$ rm spec/models/message_spec.rb

　マイグレーションスクリプトを次のように修正します。

LIST db/migrate/20190101000015_create_messages.rb

 1 class CreateMessages < ActiveRecord::Migration[6.0]

 2 def change

 3 create_table :messages do |t|

 4 + t.references :customer, null: false #

顧客への外部キー

 5 + t.references :staff_member

職員への外部キー

 6 + t.integer :root_id

Messageへの外部キー

 7 + t.integer :parent_id

Messageへの外部キー

 8 + t.string :type, null: false

継承カラム

 9 + t.string :status, null: false, default: "new"

状態（職員向け）

 10 + t.string :subject, null: false

件名

 11 + t.text :body

本文

 12 + t.text :remarks

備考（職員向け）

 13 + t.boolean :discarded, null: false, default: false

顧客側の削除フラグ

 14 + t.boolean :deleted, null: false, default: false #

職員側の削除フラグ

 15

 16 t.timestamps

 17 end

 18 +

 19 + add_index :messages, [:type, :customer_id]

 20 + add_index :messages, [:customer_id, :discarded,

:created_at]

 21 + add_index :messages, [:type, :staff_member_id]

 22 + add_index :messages, [:customer_id, :deleted,

:created_at]

 23 + add_index :messages, [:customer_id, :deleted,

:status, :created_at],

 24 + name: "index_messages_on_c_d_s_c"

 25 + add_index :messages, [:root_id, :deleted,

:created_at]

 26 + add_foreign_key :messages, :customers

 27 + add_foreign_key :messages, :staff_members

 28 + add_foreign_key :messages, :messages, column:

"root_id"

 29 + add_foreign_key :messages, :messages, column:

"parent_id"

 30 end

 31 end

　このmessagesテーブルでは、単一テーブル継承（本編Chapter 16参照）の仕組みを
利用します。そのため文字列型のtypeカラムを定義しています。

　単一テーブル継承は、オブジェクト指向プログラミングの継承概念をリレーショナルデータ
ベースで擬似的に実現する方法です。Ruby on Railsではtypeカラム（あるいは、モデルクラ
スのinheritance_column属性に指定されたカラム）にクラス名を記録することで、単一テー
ブル継承を実現しています。

　root_idカラムとparent_idカラムは、メッセージのツリー構造を表現するために用いま
す。起点となる顧客からの問い合わせをルート（root）と呼びます。そして、問い合わせと
返信の間の関係を親子の関係として表します。問い合わせは返信にとっての親であり、返
信は問い合わせにとっての子となります。

　24行目のnameオプションについては、既に3-1-2項「データベーススキーマの見直し」で説
明をしています。

　マイグレーションを実行します。

$ bin/rails db:migrate

10.1.3　モデル間の関連付け

　続いて、モデル間の関連付けを行います。まず、親クラスとなるMessageモデルを次のよ
うに定義します。

LIST app/models/message.rb

 1 class Message < ApplicationRecord

 2 + belongs_to :customer

 3 + belongs_to :staff_member, optional: true

 4 + belongs_to :root, class_name: "Message", foreign_key:

"root_id",

 5 + optional: true

 6 + belongs_to :parent, class_name: "Message",

foreign_key: "parent_id",

 7 + optional: true

 8 end

　メッセージと顧客、メッセージと職員との間の関連付けを行っています。メッセージが顧客
からの問い合わせであれば、customerが指すのはメッセージの送信者ですが、メッセージが職
員からの返信であればcustomerが指すのはメッセージの宛先です。また、メッセージのルート
（root）と親（parent）との関連付けも宣言されています。

　顧客からの問い合わせの場合、staff_member、root、およびparentはnilとなるの
で、2番目以降のbelongs_toメソッドにはoptional: trueオプションを付けています。このオ

プションを省くと、例えば職員が割り当てられていないメッセージでバリデーションエラーが発生
します。

　app/modelsディレクトリに新規ファイルcustomer_message.rbを次のように作成しま
す。このクラスが顧客からの問い合わせ（あるいは、返信の返信）を表現します。

LIST app/models/customer_message.rb (New)

 1 class CustomerMessage < Message

 2 end

　同ディレクトリに新規ファイルstaff_message.rbを次のように作成します。職員からの
返信を記録するためのモデルクラスです。

LIST app/models/staff_message.rb (New)

 1 class StaffMessage < Message

 2 end

　最後に、顧客とメッセージの間の関連付けを行います。

LIST app/models/customer.rb

 :

 13 has_many :programs, through: :entries

 14 + has_many :messages

 15 + has_many :outbound_messages, class_name:

"CustomerMessage",

 16 + foreign_key: "customer_id"

 17 + has_many :inbound_messages, class_name:

"StaffMessage",

 18 + foreign_key: "customer_id"

 19

 20 validates :gender, inclusion: { in: %w(male female),

allow_blank: true }

 :

　関連付けoutbound_messagesでは顧客が送信したメッセージ（問い合わせ、返信へ
の返信）のリストを取得できます。関連付けinbound_messagesでは職員から受け取ったメ
ッセージ（返信）のリストを取得できます。

10.1.4　バリデーションなど

　次に、Messageモデルにbefore_validationコールバックとバリデーションを追加します。

LIST app/models/message.rb

 1 class Message < ApplicationRecord

 2 belongs_to :customer

 3 belongs_to :staff_member, optional: true

 4 belongs_to :root, class_name: "Message", foreign_key:

"root_id",

 5 optional: true

 6 belongs_to :parent, class_name: "Message", foreign_key:

"parent_id",

 7 optional: true

 8 +

 9 + before_validation do

 10 + if parent

 11 + self.customer = parent.customer

 12 + self.root = parent.root || parent

 13 + end

 14 + end

 15 +

 16 + validates :subject, presence: true, length: { maximum:

80 }

 17 + validates :body, presence: true, length: { maximum: 800

}

 18 end

　before_validationブロックには、Messageオブジェクトのバリデーションが実行される直
前に実行されるべき処理を記述します。11行目では、親メッセージのcustomerをそれ自身の
customerとしてセットしています。12行目では、親メッセージのrootをそれ自身のrootにセッ
トしています。ただし、親メッセージがルートである場合はrootを持っていないので、親メッセー
ジ自体をrootにセットします。

10.1.5　ルーティング

　顧客が問い合わせを送信する機能に関わるルーティングの設定を行います。

LIST config/routes.rb

 :

 45 resources :programs, only: [:index, :show] do

 46 resources :entries, only: [:create] do

 47 patch :cancel

 48 end

 49 end

 50 + resources :messages, only: [:new, :create] do

 51 + post :confirm, on: :collection

 52 + end

 53 end

 54 end

 55 end

　とりあえず、customer/messagesコントローラにはnew、create、confirmという3つのアク
ションを追加します。

　顧客アカウント編集用の確認画面を実装した9-2-1項「ルーティング」では、既にデータ
ベース上に存在するレコードを書き換える処理だったため、確認用のアクションconfirmを
PATCHメソッドで呼ぶことにしました。一方、今回は新しいレコードを追加する処理のため、
confirmアクションをPOSTメソッドで呼んでいます。

　また、confirmアクションはresourcesメソッドにネストされているため、コレクションルーテ
ィング（本編9-2-2「ルーティングの分類」参照）として指定をする必要があります。なぜな
ら、この指定をしない場合のURLパスは/mypage/messages/:message_id/confirmとなり、
不必要なパラメータmessage_idが含まれてしまうからです。

10.1.6　newアクション

　customer/messagesコントローラの骨組みを生成します。

$ bin/rails g controller customer/messages

　customer/messagesコントローラにnewアクションを追加します。

LIST app/controllers/customer/messages_controller.rb

 1 - class Customer::MessagesController <

ApplicationController

 1 + class Customer::MessagesController < Customer::Base

 2 + def new

 3 + @message = CustomerMessage.new

 4 + end

 5 end

　顧客から送信する問い合わせを表現するCustomerMessageモデルのインスタンスを作
り、インスタンス変数 @message にセットしています。

　newアクションのためのERBテンプレートを次のように作成します。

LIST app/views/customer/messages/new.html.erb (New)

 1 <% @title = "新規問い合わせ" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form">

 5 <%= form_with model: @message, url:

:confirm_customer_messages do |f| %>

 6 <%= render "form", f: f %>

 7 <div class="buttons">

 8 <%= f.submit "確認画面へ進む" %>

 9 <%= link_to "キャンセル", :customer_root %>

 10 </div>

 11 <% end %>

 12 </div>

　フォームの送信先はcustomer/messagesコントローラのconfirmアクションです。

　部分テンプレートを作成します。

LIST app/views/customer/messages/_form.html.erb (New)

 1 <%= markup do |m|

 2 p = FormPresenter.new(f, self)

 3 p.with_options(required: true) do |q|

 4 m << q.text_field_block(:subject, "件名", size: 40,

maxlength: 80)

 5 m << q.text_area_block(:body, "本文", rows: 6,

maxlength: 800,

 6 style: "width: 454px")

 7 end

 8 end %>

　FormPresenterクラスにtext_area_blockメソッドを追加します。

LIST app/presenters/form_presenter.rb

 :

 59 def drop_down_list_block(name, label_text, choices,

options = {})

 60 markup(:div, class: "input-block") do |m|

 61 m << decorated_label(name, label_text, options)

 62 m << form_builder.select(name, choices, {

include_blank: true }, options)

 63 m << error_messages_for(name)

 64 end

 65 end

 66

 67 + def text_area_block(name, label_text, options = {})

 68 + markup(:div, class: "input-block") do |m|

 69 + m << decorated_label(name, label_text, options)

 70 + m << text_area(name, options)

 71 + if options[:maxlength]

 72 + m.span "(#{options[:maxlength]}文字以内)", class:

"instruction",

 73 + style: "float: right"

 74 + end

 75 + m << error_messages_for(name)

 76 + end

 77 + end

 78 +

 79 def error_messages_for(name)

 :

textareaタグにバリデーションエラー用の背景色が適用されるようにスタイルシートを修正し
ます。

LIST app/assets/stylesheets/customer/form.scss

 :

 52 div.field_with_errors {

 53 display: inline;

 54 padding: 0;

 55 label { color: $red; }

 56 - input { background: $pink; }

 56 + input, textarea { background: $pink; }

 57 }

 58 div.with-errors {

 :

　Messageモデルに関するエラーメッセージを日本語で表現するため、翻訳ファイルを用意
します。なお、バリデーションに失敗したときのエラーメッセージを表示する機能は次の項で実
装します。

LIST config/locales/models/message.ja.yml (New)

 1 ja:

 2 activerecord:

 3 attributes:

 4 message:

 5 subject: 件名

 6 body: 本文

　新規の翻訳ファイルを追加したので、ここでBaukis2の再起動が必要です。

　顧客ページのヘッダに「問い合わせ」リンクを設置します。

LIST app/views/customer/shared/_header.html.erb

 :

 12 <%= link_to "アカウント", :customer_account if
current_customer %>

 13 + <%= link_to "問い合わせ", :new_customer_message if

current_customer %>

 14 </header>

　ブラウザで顧客ページにログインし、ヘッダ部分にある「問い合わせ」リンクをクリックする
と、図10.1のような画面が表示されます。

図10.1: 新規問い合わせフォーム

10.1.7　confirmアクション

　customer/messagesコントローラに確認画面を表示するconfirmアクションを作ります。

LIST app/controllers/customer/messages_controller.rb

 1 class Customer::MessagesController < Customer::Base

 2 def new

 3 @message = CustomerMessage.new

 4 end

 5 +

 6 + # POST

 7 + def confirm

 8 + @message =

CustomerMessage.new(customer_message_params)

 9 + @message.customer = current_customer

 10 + if @message.valid?

 11 + render action: "confirm"

 12 + else

 13 + flash.now.alert = "入力に誤りがあります。"

 14 + render action: "new"

 15 + end

 16 + end

 17 +

 18 + private def customer_message_params

 19 + params.require(:customer_message).permit(:subject,

:body)

 20 + end

 21 end

　前章で作成したcustomer/accountsコントローラのconfirmアクションとほぼ同様の処
理です。

　ERBテンプレートを作ります。

LIST app/views/customer/messages/confirm.html.erb (New)

 1 <% @title = "新規問い合わせ（確認）" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form">

 5 <%= form_with model: @message, url: :customer_messages

do |f| %>

 6 <%= render "confirming_form", f: f %>

 7 <div class="buttons">

 8 <%= f.submit "送信" %>

 9 <%= f.submit "訂正", name: "correct" %>

 10 <%= link_to "キャンセル", :customer_root %>

 11 </div>

 12 <% end %>

 13 </div>

　部分テンプレートを作成します。

LIST app/views/customer/messages/_confirming_form.html.erb (New)

 1 <%= markup(:div) do |m|

 2 p = ConfirmingFormPresenter.new(f, self)

 3 m.div "以下の内容で問い合わせを送信します。よろしいですか？"

 4 m << p.text_field_block(:subject, "件名")

 5 m << p.text_area_block(:body, "本文")

 6 end %>

　ConfirmingFormPresenterクラスにtext_area_blockメソッドを追加します。

LIST app/presenters/confirming_form_presenter.rb

 :

 36 def drop_down_list_block(name, label_text, choices,

options = {})

 37 markup(:div) do |m|

 38 m << decorated_label(name, label_text)

 39 m.div(object.send(name), class: "field-value")

 40 m << hidden_field(name, options)

 41 end

 42 end

 43 +

 44 + def text_area_block(name, label_text, options = {})

 45 + markup(:div) do |m|

 46 + m << decorated_label(name, label_text)

 47 + value = object.send(name)

 48 + m.div(class: "field-value") do

 49 + m << ERB::Util.html_escape(value).gsub(/\n/, "

")

 50 + end

 51 + m << hidden_field(name, options)

 52 + end

 53 + end

 54

 55 def decorated_label(name, label_text)

 56 label(name, label_text)

 57 end

 58 end

　49行目をご覧ください。

 m << ERB::Util.html_escape(value).gsub(/\n/, "
")

　顧客が本文に入力した文字列の中に含まれる特殊文字をエスケープした上で、改行
文字が含まれていれば、それを
 タグで置き換えています。

　では、動作確認をしましょう。ブラウザで顧客からの問い合わせフォームを開き、件名フィ
ールドと本文フィールドに適宜入力して、「確認画面に進む」ボタンをクリックし、図10.2のよう
に表示されればOKです。

図10.2: 新規問い合わせの確認画面

10.1.8　createアクション

　最後にcustomer/messages#createアクションを実装します。

LIST app/controllers/customer/messages_controller.rb

 :

 13 flash.now.alert = "入力に誤りがあります。"

 14 render action: "new"

 15 end

 16 end

 17 +

 18 + def create

 19 + @message =

CustomerMessage.new(customer_message_params)

 20 + if params[:commit]

 21 + @message.customer = current_customer

 22 + if @message.save

 23 + flash.notice = "問い合わせを送信しました。"

 24 + redirect_to :customer_root

 25 + else

 26 + flash.now.alert = "入力に誤りがあります。"

 27 + render action: "new"

 28 + end

 29 + else

 30 + render action: "new"

 31 + end

 32 + end

 33

 34 private def customer_message_params

 35 params.require(:customer_message).permit(:subject,

:body)

 36 end

 37 end

　前章で作成したcustomer/accountsコントローラのcreateアクションと同じ構成で作ら
れています。顧客が「送信」ボタンをクリックすれば params[:commit] に値がセットされてい
るので、メッセージを保存します。顧客が「訂正」ボタンをクリックした場合は、問い合わせフォ
ームをもう一度表示します。

　問い合わせフォームの確認画面から「送信」ボタンと「訂正」ボタンをそれぞれクリックし
て、正しく動作することを確認してください。

10.2　問い合わせ到着の通知

この節では、顧客からの新規（未処理の）問い合わせの件数を職員ペ
ージのヘッダ部分に表示する機能を作ります。件数表示はAjax技術により
定期的に自動更新されます。

10.2.1　ルーティング

　まず、staff/ajax#message_countアクションへのルーティングを追加します。

LIST config/routes.rb

 :

 14 resources :programs do

 15 resources :entries, only: [] do

 16 patch :update_all, on: :collection

 17 end

 18 end

 19 + get "messages/count" => "ajax#message_count"

 20 end

 21 end

 :

messages/countというパスへのアクセスをStaff::AjaxControllerコントローラに振り向
けています。このコントローラ名は、Railsの標準的な命名法から外れています。このコントロー
ラはAjaxリクエスト専用のアクションが集められる特別なものなので、特別な名前を与えるこ
とにしました。

10.2.2　countアクション

　staff/ajaxコントローラの骨組みを作成します。

$ bin/rails g controller staff/ajax

$ rmdir app/views/staff/ajax

　生成されたコントローラのファイルを次のように書き換えます。

LIST app/controllers/staff/ajax_controller.rb

 1 class Staff::AjaxController < ApplicationController

 2 + before_action :check_source_ip_address

 3 + before_action :authorize

 4 + before_action :check_timeout

 5 +

 6 + # GET

 7 + def message_count

 8 + render plain: CustomerMessage.unprocessed.count

 9 + end

 10 +

 11 + private def check_source_ip_address

 12 + unless AllowedSource.include?("staff", request.ip)

 13 + render plain: "Forbidden", status: 403

 14 + end

 15 + end

 16 +

 17 + private def current_staff_member

 18 + if session[:staff_member_id]

 19 + StaffMember.find_by(id: session[:staff_member_id])

 20 + end

 21 + end

 22 +

 23 + private def authorize

 24 + unless current_staff_member &&

current_staff_member.active?

 25 + render plain: "Forbidden", status: 403

 26 + end

 27 + end

 28 +

 29 + private def check_timeout

 30 + unless session[:last_access_time] &&

 31 + session[:last_access_time] >=

Staff::Base::TIMEOUT.ago

 32 + session.delete(:staff_member_id)

 33 + render plain: "Forbidden", status: 403

 34 + end

 35 end

　本書におけるこれまでのコントローラの作り方と異なり、Staff::AjaxControllerは
Staff::Baseではなく、ApplicationControllerを継承しています。なぜでしょうか。それ
は、ブラウザがこのコントローラのアクションを呼び出す権限がないときに、サーバーが返すべきレ
スポンスが異なるからです。

　例えば、職員が利用停止になった場合、Staff::Baseを継承するコントローラでは次の
ように定義されたプライベートメソッドauthorizeで職員のトップページにリダイレクトされます。

 private def check_account

 if current_staff_member && !current_staff_member.active?

 session.delete(:staff_member_id)

 flash.alert = "アカウントが無効になりました。"

 redirect_to :staff_root

 end

 end

　Ajaxコールを受けるコントローラではリダイレクションをする必要はなく、単にステータス
403でレスポンスを返せば十分です。「Forbidden」というテキストを返していますが、これはあ

くまでデバッグ用の参考情報に過ぎません。もしリダイレクションをしてしまうと、リダイレクショ
ン先のページのHTML文書がAjaxコールの戻り値となります。JavaScriptプログラムとしては問
い合わせ件数を知りたいだけなのに、そんなものを受け取っても仕方がありません。

　次にCustomerMessageモデルにunprocessedスコープを定義します。

LIST app/models/customer_message.rb

 1 class CustomerMessage < Message

 2 + scope :unprocessed, -> { where(status: "new", deleted:

false) }

 3 end

　statusカラムの値が "new" で、deletedフラグが偽である顧客からのメッセージ（問い
合わせ）のみを抽出するためのスコープです。

スコープとは検索条件の組み合わせに名前を付けた物です。scopeメソッドの第2引数はProcオブジェ
クトで、その中にwhere、order、includesなどの検索条件を指定するメソッドを記述します。詳しくは
6-3節を参照してください。

10.2.3　ヘッダ

　職員ページのヘッダ部分に「新規問い合わせ」リンクを表示するためのヘルパーメソッド
number_of_unprocessed_messagesを定義します。

LIST app/helpers/staff_helper.rb (New)

 1 module StaffHelper

 2 include HtmlBuilder

 3

 4 def number_of_unprocessed_messages

 5 markup do |m|

 6 m.a(href: "#") do

 7 m << "新規問い合わせ"

 8 anchor_text =

 9 if (c = CustomerMessage.unprocessed.count) > 0

 10 "(#{c})"

 11 else

 12 ""

 13 end

 14 m.span(

 15 anchor_text,

 16 id: "number-of-unprocessed-messages",

 17 "data-path" => staff_messages_count_path

 18)

 19 end

 20 end

 21 end

 22 end

　先ほど作ったCustomerMessageのunprocessedスコープを用いて新規問い合わせの件
数を調べ、その数が0より大きければ、括弧の中に入れてリンク文字列に加えています。後で
JavaScriptプログラム側でその部分の数字を書き換えやすいように、件数表示部分を span
タグで囲みid属性を設定しています。また、本節の冒頭で新たに追加したURLへのパスを生
成するヘルパーメソッドstaff_messages_count_pathを用いて、data-path属性にも値をセ
ットしています。

　ヘッダにリンクを設置します。

LIST app/views/staff/shared/_header.html.erb

 :

 12 <%= link_to "アカウント", :staff_account if
current_staff_member %>

 13 + <%= number_of_unprocessed_messages if

current_staff_member %>

 14 </header>

　動作確認をします。ブラウザで職員ページにログインすると、図10.3のようにヘッダに「新
規問い合わせ(2)」のようなリンクが表示されます。もちろん、括弧の中の数字は読者の皆さ
んが前節で何件問い合わせを送信したかによって変化します。

図10.3: ヘッダに新規問い合わせの数が通知される

10.2.4　Ajax

　いよいよ、本章のメインテーマであるAjaxにたどり着きました。

JavaScriptプログラム

　app/javascript/packsディレクトリにあるstaff.jsを次のように書き換えてください。

LIST app/javascript/packs/staff.js

 :

 6 import "../staff/customer_form.js";

 7 import "../staff/entries_form.js";

 8 + import "../staff/messages.js";

　準備が整いましたので、１分ごとに新規問い合わせ件数を調べて職員ページのヘッダ
を更新するJavaScriptプログラムを書きましょう。app/javascript/staffディレクトリに新規
ファイルmessages.jsを次の内容で作成してください。

LIST app/javascript/staff/messages.js (New)

 1 function update_number_of_unprocessed_messages() {

 2 const elem = $("#number-of-unprocessed-messages")

 3 $.get(elem.data("path"), (data) => {

 4 if (data === "0") elem.text("")

 5 else elem.text("(" + data + ")")

 6 })

 7 .fail(() => window.location.href = "/login")

 8 }

 9

 10 $(document).ready(() => {

 11 if ($("#number-of-unprocessed-messages").length)

 12

window.setInterval(update_number_of_unprocessed_messages, 1000

* 60)

 13 })

　まずは、関数update_number_of_unprocessed_messagesの中身をご覧ください。

 const elem = $("#number-of-unprocessed-messages")

 $.get(elem.data("path"), (data) => {

 if (data === "0") elem.text("")

 else elem.text("(" + data + ")")

 })

 .fail(() => window.location.href = "/login")

　$.getはjQueryのメソッドです。この部分は、次のパターンに従っています。

$.get(X, (data) => {

 Y

})

.fail(Z)

　XがAjaxでアクセスするAPIのURL、Yがアクセスの結果を受けて実行するコードを示しま
す。引数dataにはAPIから戻ってくるデータが格納されており、Yの中でその値を参照できま
す。また、.fail(Z)を指定すると、Ajaxによるアクセスが失敗したときにZが実行されます。

　新規問い合わせの件数を表示するためのspan要素のid属性には "number-of-
unprocessed-messages" という値が設定されています。その事実を利用して、このspan要
素を変数elemにセットしています。

　このspan要素のdata-path属性には、新規問い合わせ件数を調べるAPIのURLパスが
セットされています。data- で始まる名前を持つ属性の値は、jQueryのdataメソッドで取得
できます。

　このURLパスに対してjQueryの $.get メソッドを用いてAjax呼び出しを行います。APIか
らのレスポンスは新規問い合わせ件数を表す文字列です。その値が "0" であればspan要素
の中身を空にし、そうでなければその値をカッコで囲んだ文字列でspan要素の中身を置き換
えます。

　一方で、職員が途中で利用停止になったり、アクセスが許可されるIPアドレスが変更さ
れたり、セッションタイムアウトが発生する可能性もあります。その際は、
Staff::AjaxControllerで設定したbefore_actionコールバックにより、サーバーからはステ
ータスコード403が返却されます。

　Javascript側ではステータスコード403を受け取ると「Ajaxによるアクセスが失敗した」と
判断し、.fail()以下のコードを実行してログインページへとリダイレクションをするようにしてい
ます。

　次に、9-11行のコードをご覧ください。

$(document).ready(() => {

 if ($("#number-of-unprocessed-messages").length)

window.setInterval(update_number_of_unprocessed_messages,

1000 * 60)

})

　window.setIntervalは第1引数に指定した関数を一定間隔で呼び出す関数です。
呼び出し間隔は第2引数にミリ秒単位で指定します。ここでは60,000ミリ秒（＝1分）とい
う間隔を指定しています。

　ただし、職員がログインしていない状態ではヘッダーに問い合わせ件数を表示しないため
Ajaxによるアクセスは不要です。Javascriptプログラムでは数値0がfalseと判定される事実
を利用して、$("#number-of-unprocessed-messages").lengthの値を調べた上で、
window.setIntervalが実行されるように条件を指定しています。

　また、$(document).readyメソッドが呼ばれている点に注目してください。同じディレクト
リにあるentries_form.jsなどでは次のような書き方がされています。

$(document).on("turbolinks:load", () => {

 ...

})

$(document).onメソッドの第1引数に "turbolinks:load" が指定されています。この違
いはとても重要です。

　Baukis2では、Turbolinks（画面遷移を高速化させるライブラリ）という仕組みが有
効であるため、Baukis2の職員用サイト内でリンクをクリックして画面遷移しても、ページ全体
のリロードは発生しません。その際、turbolinks:loadというイベントが発生します。

　もしmessages.jsにおいて、$(document).onメソッドの第1引数に
"turbolinks:load" を指定すると、画面遷移のたびにwindow.setIntervalメソッドが呼
ばれます。このメソッドの効果はページ全体のリロードが発生するまで有効なので、1分おきに
新規問い合わせ件数を調べる処理が多重に登録されてしまうことになります。つまり、画面
遷移を繰り返すと、1分未満の間隔で頻繁にAjax呼び出しが行われてしまうのです。

　$(document).readyメソッドを使用した場合、ブラウザのアドレスバーにURLを入力した
り、ブラウザをリロードしたりして、ページ全体が読み込まれた直後にしか
window.setIntervalメソッドが呼ばれません。

　このような仕組みにより、職員ページのヘッダに表示される新規問い合わせ件数は1分
おきに自動的に更新されます。

動作確認

　では、動作確認をしましょう。

　ブラウザでタブを2つ開き、Baukis2に一方で顧客としてログインし、他方で職員としてロ
グインします。そして、職員ページのヘッダにある「新規問い合わせ」の数字を確認した上で、
顧客ページから新たに問い合わせを送信します。そして、職員ページのタブを選択し、ページを
更新せずに待ちます。1分以内に「新規問い合わせ」の数字が1増えれば、成功です。

　また、さらに別のタブを開いて管理者としてログインします。対象となる職員の利用停止
フラグをONに切り替えて、職員としてログインしているタブを選択し、1分以内にログインペー
ジにリダイレクトされていればOKです。その他、セッションタイムアウトや許可IPアドレスの変更
が起こった場合についての説明は割愛します。

10.2.5　アクセス制限

　最後に、staff/ajax#message_countアクションに対するアクセス制限を加えます。こ
のアクションはAjaxでしか使用しないので、ブラウザで直接アクセスできないようにします。

　まず、ApplicationControllerクラスにreject_non_xhrというプライベートメソッドを定
義します。

LIST app/controllers/application_controller.rb

 :

 19 private def rescue403(e)

 20 @exception = e

 21 render "errors/forbidden", status: 403

 22 end

 23 +

 24 + private def reject_non_xhr

 25 + raise ActionController::BadRequest unless

request.xhr?

 26 + end

 27 end

　XHRはXMLHttpRequestの略で、「Ajaxによるリクエスト」を意味します。requestオブ
ジェクト（本編6-3節参照）の xhr? メソッドは、リクエストがAjaxによるものかどうかを判定
します。

　次に、例外ActionController::BadRequestを捕捉するコードをErrorHandlersモジ
ュールに加えます。

LIST app/controllers/concerns/error_handlers.rb

 1 module ErrorHandlers

 2 extend ActiveSupport::Concern

 3

 4 included do

 5 rescue_from StandardError, with: :rescue500

 6 rescue_from ActiveRecord::RecordNotFound, with:

:rescue404

 7 + rescue_from ActionController::BadRequest, with:

:rescue400

 8 rescue_from ActionController::ParameterMissing, with:

:rescue400

 9 end

 :

rescue400メソッドに関しては、本編11-1節で解説しています。本編では、フォームから送信されたデー
タがStrong Parametersで拒否された場合にrescue400メソッドを使用しました。

　このreject_non_xhrメソッドが、staff/ajax#message_countアクションの前に実行さ
れるようにします。

LIST app/controllers/staff/messages_controller.rb

 1 class Staff::AjaxController < ApplicationController

 2 before_action :check_source_ip_address

 3 before_action :authorize

 4 before_action :check_timeout

 5 + before_action :reject_non_xhr

 6

 7 # GET

 8 def messsage_count

 9 render plain: CustomerMessage.unprocessed.count

 10 end

 :

職員がstaff/ajax#message_countの結果をブラウザで見ること自体に特段のリスクはありませんの
で、ここで行ったアクセス制限に大きな意味はありません。requestオブジェクトの xhr? メソッドを用い
たアクセス制限のやり方を紹介するための単なる例であると考えてください。

第11章　ツリー構造

Chapter 11では、メッセージ（顧客からの問い合わせおよび返信）を一
覧表示する機能を作ります。ただし、単なる一覧表示ではなく、ある問い合
わせを起点とする返信のやり取りをツリー状に表示します。

11.1　問い合わせの一覧表示と削除

この節では、職員ページに顧客からの問い合わせをリスト表示する機能と
特定の問い合わせを削除する機能を実装します。本編で類似の機能を繰
り返し作ってきましたので、細かい説明は省いて実装手順を淡々と示して行
きます。

11.1.1　ルーティング

　config/routes.rbを次のように書き換えます。

LIST config/routes.rb

 :

 19 get "messages/count" => "ajax/message_count"

 20 + resources :messages, only: [:index, :show,

:destroy] do

 21 + get :inbound, :outbound, :deleted, on:

:collection

 22 + end

 :

　inbound、outbound、deletedは、それぞれ「問い合わせ一覧」、「送信一覧」、「ゴミ
箱」を表示するためのアクションです。いずれの場合も複数のデータベースレコードへのアクセス
が発生するため、コレクションルーティングとして設定しています。

11.1.2　リンクの設置

　職員ページのダッシュボードにメッセージ管理のためのリンクを設置します。

LIST app/views/staff/top/dashboard.html.erb

 1 <% @title = "ダッシュボード" %>

 2 <h1><%= @title %></h1>

 3

 4 <ul class="menu">

 5 <%= link_to "顧客管理", :staff_customers %>

 6 <%= link_to "プログラム管理", :staff_programs %>

 7 + メッセージ管理

 8 +

 9 + <%= link_to "問い合わせ一覧",

:inbound_staff_messages %>

 10 + <%= link_to "返信一覧",

:outbound_staff_messages %>

 11 + <%= link_to "全メッセージ一覧", :staff_messages %>

 12 + <%= link_to "ゴミ箱", :deleted_staff_messages %>

 13 +

 14 +

 15

　また、ヘッダの「新規問い合わせ」リンクが正しいURLを参照するように、ヘルパーメソッド
number_of_unprocessed_messagesを書き換えます。

LIST app/helpers/staff_helper.rb

 :

 4 def number_of_unprocessed_messages

 5 markup do |m|

 6 - m.a(href: "#") do

 6 + m.a(href: inbound_staff_messages_path) do

 7 m << "新規問い合わせ"

 :

　ブラウザで職員ページにログインすると、図11.1のような画面が表示されます。

図11.1: 職員のダッシュボードにリンクを設置

11.1.3　メッセージ一覧

スコープの設定

　メッセージ管理の各ページ（問い合わせ一覧、返信一覧、全メッセージ一覧、ゴミ箱）
を表示するアクションを実装しやすくするため、Messageモデルに3つのスコープnot_deleted、
deleted、sortedを設定します。

LIST app/models/message.rb

 :

 16 validates :subject, presence: true, length: { maximum:

80 }

 17 validates :body, presence: true, length: { maximum: 800

}

 18 +

 19 + scope :not_deleted, -> { where(deleted: false) }

 20 + scope :deleted, -> { where(deleted: true) }

 21 + scope :sorted, -> { order(created_at: :desc) }

 22 end

アクションの実装

まず、コントローラの骨組みを生成します。

$ bin/rails g controller staff/messages

　生成されたコントローラファイルに4つのアクションindex、inbound、outbound、deleted
を追加します。

LIST app/controllers/staff/messages_controller.rb

 1 - class Staff::MessagesController < ApplicationController

 1 + class Staff::MessagesController < Staff::Base

 2 + def index

 3 + @messages =

Message.not_deleted.sorted.page(params[:page])

 4 + end

 5 +

 6 + # GET

 7 + def inbound

 8 + @messages =

CustomerMessage.not_deleted.sorted.page(params[:page])

 9 + render action: "index"

 10 + end

 11 +

 12 + # GET

 13 + def outbound

 14 + @messages =

StaffMessage.not_deleted.sorted.page(params[:page])

 15 + render action: "index"

 16 + end

 17 +

 18 + # GET

 19 + def deleted

 20 + @messages =

Message.deleted.sorted.page(params[:page])

 21 + render action: "index"

 22 + end

 23 end

　いずれのアクションもMessageモデルで設定したスコープを利用して、インスタンス変数
@messagesをセットしています。なお、inbound, outbound, deletedではindexアクションと共
通のテンプレートを利用します。

ERBテンプレート

　これらのアクションで共通して使用するERBテンプレートを作ります。

LIST app/views/staff/messages/index.html.erb (New)

 1 <%

 2 @title =

 3 case params[:action]

 4 when "index"; "全メッセージ一覧"

 5 when "inbound"; "問い合わせ一覧"

 6 when "outbound"; "返信一覧"

 7 when "deleted"; "メッセージ一覧（ゴミ箱）"

 8 else; raise

 9 end

 10 %>

 11 <h1><%= @title %></h1>

 12

 13 <div class="table-wrapper">

 14 <%= paginate @messages %>

 15

 16 <table class="listing">

 17 <tr>

 18 <th>種類</th>

 19 <th>送信者</th>

 20 <th>受信者</th>

 21 <th>件名</th>

 22 <th>作成日時</th>

 23 <th>アクション</th>

 24 </tr>

 25 <% @messages.each do |m| %>

 26 <% p = MessagePresenter.new(m, self) %>

 27 <tr>

 28 <td><%= p.type %></td>

 29 <td><%= p.sender %></td>

 30 <td><%= p.receiver %></td>

 31 <td><%= p.truncated_subject %></td>

 32 <td><%= p.created_at %></td>

 33 <td class="actions">

 34 <%= link_to "詳細", staff_message_path(m) %> |

 35 <%= link_to_if m.kind_of?(CustomerMessage), "削
除",

 36 staff_message_path(m), method: :delete %>

 37 </td>

 38 </tr>

 39 <% end %>

 40 </table>

 41

 42 <%= paginate @messages %>

 43 </div>

モデルプレゼンター

　Messageモデルのためのモデルプレゼンターを作成します。

LIST app/presenters/message_presenter.rb (New)

 1 class MessagePresenter < ModelPresenter

 2 delegate :subject, :body, to: :object

 3

 4 def type

 5 case object

 6 when CustomerMessage

 7 "問い合わせ"

 8 when StaffMessage

 9 "返信"

 10 else

 11 raise

 12 end

 13 end

 14

 15 def sender

 16 case object

 17 when CustomerMessage

 18 object.customer.family_name + " " +

object.customer.given_name

 19 when StaffMessage

 20 object.staff_member.family_name + " " +

object.staff_member.given_name

 21 else

 22 raise

 23 end

 24 end

 25

 26 def receiver

 27 case object

 28 when CustomerMessage

 29 ""

 30 when StaffMessage

 31 object.customer.family_name + " " +

object.customer.given_name

 32 else

 33 raise

 34 end

 35 end

 36

 37 def truncated_subject

 38 view_context.truncate(subject, length: 20)

 39 end

 40

 41 def created_at

 42 if object.created_at > Time.current.midnight

 43 object.created_at.strftime("%H:%M:%S")

 44 elsif object.created_at >

5.months.ago.beginning_of_month

 45 object.created_at.strftime("%m/%d %H:%M")

 46 else

 47 object.created_at.strftime("%Y/%m/%d %H:%M")

 48 end

 49 end

 50 end

　38行目のtruncateメソッドは引数に渡された文字列を省略した形で表示するヘルパー
メソッドです。lengthオプションを指定することで省略後の文字数を設定することができます。
なお、このオプションを指定しない場合の省略後の文字数は30文字になります。

　created_atメソッドは、メッセージの作成日時を読みやすいフォーマットの文字列に直し
ます。今日作成されたメッセージであれば時刻のみを表示し、半年前よりも新しいメッセージ
であれば年を省略しています。

11.1.4　シードデータの投入

　開発用のシードデータを投入するスクリプトを作成します。db/seeds.rbを次のように書
き換えてください。

LIST db/seeds.rb

 1 table_names = %w(

 2 staff_members administrators staff_events customers

 3 - programs entries

 3 + programs entries messages

 4)

 :

　db/seeds/developmentディレクトリに、新規ファイルmessages.rbを次のような内容で
作成してください。

LIST db/seeds/development/messages.rb (New)

 1 customers = Customer.all

 2 staff_members = StaffMember.where(suspended: false).all

 3

 4 s = 2.years.ago

 5 23.times do |n|

 6 m = CustomerMessage.create!(

 7 customer: customers.sample,

 8 subject: "これは問い合わせです。" * 4,

 9 body: "これは問い合わせです。\n" * 8,

 10 created_at: s.advance(months: n)

 11)

 12 r = StaffMessage.create!(

 13 customer: m.customer,

 14 staff_member: staff_members.sample,

 15 root: m,

 16 parent: m,

 17 subject: "これは返信です。" * 4,

 18 body: "これは返信です。\n" * 8,

 19 created_at: s.advance(months: n, hours: 1)

 20)

 21 if n % 6 == 0

 22 m2 = CustomerMessage.create!(

 23 customer: r.customer,

 24 root: m,

 25 parent: r,

 26 subject: "これは返信への回答です。",

 27 body: "これは返信への回答です。",

 28 created_at: s.advance(months: n, hours: 2)

 29)

 30 StaffMessage.create!(

 31 customer: m2.customer,

 32 staff_member: staff_members.sample,

 33 root: m,

 34 parent: m2,

 35 subject: "これは回答への返信です。",

 36 body: "これは回答への返信です。",

 37 created_at: s.advance(months: n, hours: 3)

 38)

 39 end

 40 end

 41

 42 s = 24.hours.ago

 43 8.times do |n|

 44 CustomerMessage.create!(

 45 customer: customers.sample,

 46 subject: "これは問い合わせです。" * 4,

 47 body: "これは問い合わせです。\n" * 8,

 48 created_at: s.advance(hours: n * 3)

 49)

 50 end

　シードデータを投入します。

$ bin/rails db:reset

11.1.5　動作確認

　ブラウザで職員トップページから「問い合わせ一覧」リンクをクリックすると図11.2のような
画面が表示されます。

図11.2: 問い合わせ一覧画面

　「返信一覧」リンクをクリックすると図11.3のような画面が表示されます。

図11.3: 返信一覧画面

　「全メッセージ一覧」リンクをクリックすると図11.4のような画面が表示されます。

図11.4: 全メッセージ一覧画面

　「ゴミ箱」リンクをクリックすると図11.5のような画面が表示されます。

図11.5: ゴミ箱画面

11.1.6　問い合わせの削除

　staff/messagesコントローラにdestroyアクションを追加します。

LIST app/controllers/staff/messages_controller.rb

 :

 18 # GET

 19 def deleted

 20 @messages =

Message.deleted.sorted.page(params[:page])

 21 render action: "index"

 22 end

 23 +

 24 + def destroy

 25 + message = CustomerMessage.find(params[:id])

 26 + message.update_column(:deleted, true)

 27 + flash.notice = "問い合わせを削除しました。"
 28 + redirect_back(fallback_location: :staff_root)

 29 + end

 30 end

　他のコントローラのdestroyアクションとは異なり、対象となる問い合わせをデータベース
から完全に削除せずにdeletedフラグをtrueにセットしています。この結果、その問い合わせ
は「ゴミ箱」に移動します。

　35行目で使用されているredirect_backメソッドは、このアクションの呼び出し元の
URLにリダイレクションを行います。RailsはリクエストヘッダHTTP_REFERERの値を呼び出し元
のURLとして使用します。このリクエストヘッダが設定されていない場合に備えて、
redirect_backメソッドのfallback_locationオプションを指定します。このオプションは必
須です。

Rails 5.0まではredirect_toメソッドにシンボル :back を指定することで、redirect_backメソッドと同
様の働きをさせることができました。しかし、redirect_toメソッドにはfallback_locationのようなオプ
ションを指定できないため、Rails 5.1でこの用法は廃止されました。

　動作確認のため、ブラウザで問い合わせ一覧から適当な問い合わせを選んで「削除」
リンクをクリックしてください。対象となった問い合わせが「ゴミ箱」に移動すればOKです。

11.2　メッセージツリーの表示

この節では、メッセージ（顧客からの問い合わせおよび返信）の詳細表
示機能を作ります。単に、メッセージの件名、本文などを表示するだけでな
く、そのメッセージの起点となった問い合わせと関連付けられたすべてのメッセ
ージをツリー状に表示します。

11.2.1　showアクション

　まず、staff/messages#showアクションを追加します。

LIST app/controllers/staff/messages_controller.rb

 :

 18 # GET

 19 def deleted

 20 @messages =

Message.deleted.sorted.page(params[:page])

 21 render action: "index"

 22 end

 23 +

 24 + def show

 25 + @message = Message.find(params[:id])

 26 + end

 27

 28 def destroy

 :

　ERBテンプレートを作ります。

LIST app/views/staff/messages/show.html.erb (New)

 1 <% @title = "メッセージ詳細" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 <table class="attributes">

 6 <% p = MessagePresenter.new(@message, self) %>

 7 <tr><th>種類</th><td><%= p.type %></td></tr>

 8 <tr><th>送信者</th><td><%= p.sender %></td></tr>

 9 <tr><th>受信者</th><td><%= p.receiver %></td></tr>

 10 <tr><th>件名</th><td><%= p.subject %></td></tr>

 11 <tr><th>作成日時</th><td class="date"><%= p.created_at

%></td></tr>

 12 </table>

 13

 14 <div class="body"><%= p.formatted_body %></div>

 15 </div>

　Messageモデルのプレゼンターに、formatted_bodyメソッドを追加します。

LIST app/presenters/message_presenter.rb

 :

 37 def truncated_subject

 38 view_context.truncate(subject, length: 20)

 39 end

 40 +

 41 + def formatted_body

 42 + ERB::Util.html_escape(body).gsub(/\n/, "

").html_safe

 43 + end

 44

 45 def created_at

 :

　スタイルシートを修正します。

LIST app/assets/stylesheets/staff/divs_and_spans.scss

 1 @import "colors";

 2 @import "dimensions";

 3

 4 - div.description {

 4 + div.description, div.body {

 5 margin: $wide;

 6 padding: $wide;

 7 background-color: $very_light_gray;

 8 }

　そして、ブラウザで表示確認をします（図11.6）。

図11.6: メッセージ詳細画面

11.2.2　メッセージツリーの表示

　続いて、メッセージの詳細表示ページにメッセージツリーを表示します。準備作業として、
あるメッセージに対する返信の集合を返す関連付けchildrenを定義します。

LIST app/models/message.rb

 1 class Message < ApplicationRecord

 2 belongs_to :customer

 3 belongs_to :staff_member, optional: true

 4 belongs_to :root, class_name: "Message", foreign_key:

"root_id",

 5 optional: true

 6 belongs_to :parent, class_name: "Message", foreign_key:

"parent_id",

 7 optional: true

 8 + has_many :children, class_name: "Message", foreign_key:

"parent_id",

 9 + dependent: :destroy

 10

 11 validates :subject, :body, presence: true

 :

　そして、MessagePresenterクラスにtreeメソッドとexpandメソッドを追加します。

LIST app/presenters/message_presenter.rb

 :

 51 object.created_at.strftime("%Y/%m/%d %H:%M")

 52 end

 53 end

 54 +

 55 + def tree

 56 + expand(object.root || object)

 57 + end

 58 +

 59 + private def expand(node)

 60 + markup(:ul) do |m|

 61 + m.li do

 62 + if node.id == object.id

 63 + m.strong(node.subject)

 64 + else

 65 + m << link_to(node.subject,

view_context.staff_message_path(node))

 66 + end

 67 + node.children.each do |c|

 68 + m << expand(c)

 69 + end

 70 + end

 71 + end

 72 + end

 73 end

　プライベートメソッドexpandは再帰メソッド（recursive method）として定義されてい
ます。これは、自分自身を呼び出すメソッドです。68行目で、変数cを引数としてexpandメソ
ッドを呼び出しています。

 m << expand(c)

　具体的な例に沿ってこのメソッドの働きを理解することにしましょう。図11.7は、顧客と
職員の間のメッセージのやり取りを示したものです。

図11.7: メッセージのやり取りを示す模式図

　M1が顧客からの最初のメッセージ（問い合わせ）で、M2がそのメッセージへの回答、そ
の回答に対して顧客からM3とM4というメッセージが送られ、最後に職員からM1に対する回答
として新たにメッセージM5が送られています。このメッセージツリーをexpandメソッドで処理する
と、どういうことになるでしょうか。

　まず、treeメソッドからexpandメソッドに渡される引数はM1に相当するMessageオブジェ
クトです。60行目の markup(:ul) でul要素が開始され、さらに61行目のm.liでli要素が
開始されます。

　62-66行をご覧ください。

 if node.id == object.id

 m.strong(node.subject)

 else

 m << link_to(node.subject,

view_context.staff_message_path(node))

 end

　変数nodeは引数（M1に相当するMessageオブジェクト）を指しています。メソッド
objectは、ページに詳細表示される対象のメッセージを返します。この2つのid属性が一致す
る（つまり、同じオブジェクトである）場合は、変数nodeのsubject属性（件名）を
strongタグで囲みます。一致しない場合は、変数nodeのsubject属性（件名）を a タグ
で囲みます。リンク先URLはヘルパーメソッドstaff_message_pathで生成します。

　次に、67-69行をご覧ください。

 node.children.each do |c|

 m << expand(c)

 end

　M1に相当するMessageオブジェクトのchildrenメソッドが返す配列に対してeachブロック
による繰り返し処理を行っています。M1にはM2とM5という2つの子がありますので、1回目のル

ープではブロック変数cにM2に相当するMessageオブジェクトがセットされます。それがexpandメ
ソッドに引数として渡されます。

　expandメソッドの処理が再び始まります。60行目でul要素が開始され、61行目でli

要素が開始されます。そして、62-66行でstrong要素またはa要素が生成されます。

　67-69行ではどうなるでしょうか。先ほどと同じですが、コードを再び引用します。

 node.children.each do |c|

 m << expand(c)

 end

　今、変数nodeはM2相当のMessageオブジェクトを指しています。したがって、その
childrenメソッドはM3とM4に相当する2つのMessageオブジェクトを返します。1回目のループ
では、ブロック変数cにはM3相当のMessageオブジェクトがセットされます。それがexpandメソッ
ドに引数として渡されます。

　expandメソッドの処理が三たび始まります。ul要素とli要素が始まり、strong要素ま
たはa要素が生成されます。そして、問題の67-69行に至ります。ここで、変数nodeはM3相当
のMessageオブジェクトを指していますので、そのchildrenは空の配列を返します。したがっ
て、eachブロックによる繰り返しは行われません。そしてexpandメソッドが終了します。

　すると、処理は2回目のexpandメソッド内のeachループ（M3とM4を処理しているとこ
ろ）に戻ります。M3の処理は終わったので、次はM4です。M4の処理の流れはM3とまったく同じ
です。M4相当のMessageオブジェクトには子がないので、67-69行の処理はスキップして直ち
に戻ってきます。これで、2回目のexpandメソッドが終わりです。

　処理は、1回目のexpandメソッド内のeachループ（M2とM5を処理しているところ）に戻
ります。M2の処理は終わったので、次はM5です。M5には子がないので、67-69行の処理はス
キップして直ちに戻ってきます。こうして、ようやく1回目のexpandメソッドが終了し、出発点の
treeメソッドに処理が戻ります。

　以上の複雑な処理を経て、私たちが得るHTMLコードは次のようなものになります。

 M1の件名

 M2の件名

 M3の件名

 M4の件名

 M5の件名

　ただし、これはM2の詳細を表示している時のHTMLコードの例です。

　では、このメッセージツリーをERBテンプレートに埋め込みましょう。

LIST app/views/staff/messages/show.html.erb

 :

 12 </table>

 13

 14 + <div class="tree"><%= p.tree %></div>

 15 <div class="body"><%= p.formatted_body %></div>

 16 </div>

　この結果、あるメッセージの詳細ページは図11.8のように表示されます。

図11.8: メッセージツリーの表示

11.3　パフォーマンスチューニング

本節では、メッセージツリーの表示にかかる時間を短縮する方法について
検討します。

11.3.1　パフォーマンスの計測

　メッセージツリーの表示には成功しましたが、私にはまだ改善の余地があるように思われ
ます。現在の実装では、ツリーの根元で子の配列を取り、その要素ひとつひとつで子の配列
を取り、さらに その要素ひとつひとつで子の配列を取り…という風に処理が進んでいきます。
「子の配列を取る」ごとにデータベースへのアクセスが必要となります。非常に深い構造を持つ
メッセージツリーの場合、データベースアクセスの回数がかなり多くなります。あるメッセージツリ
ーに属するメッセージは、（ルートを除いて）すべてroot_idカラムにルートの主キーを持ってい
ますので、2回ないし3回のデータベースアクセスで全メッセージのデータを取得できるはずです。

詳細表示の対象であるメッセージがルートメッセージである場合は2回のクエリで済みます。そうでない
場合は、ルートメッセージを取るクエリが加わるので3回となります。

　では、改善策を考える前に現在の実装でデータベースへのアクセスにどのくらいの時間が
かかっているかを計測しておきましょう。

　いくつか準備作業をします。まず、dbディレクトリにscriptsディレクトリを作ってください。

$ mkdir -p db/scripts

　そして、パフォーマンス測定用に深くネストされたメッセージツリーをデータベースに投入する
スクリプトdeep_tree.rbを次の内容でこのディレクトリに作成します。

LIST db/scripts/deep_tree.rb (New)

 1 def create_replies(root, m, n)

 2 return if n == 0

 3

 4 r = StaffMessage.create!(

 5 customer: m.customer,

 6 staff_member: StaffMember.where(suspended:

false).first,

 7 root: root,

 8 parent: m,

 9 subject: "REPLY",

 10 body: "TEST"

 11)

 12

 13 m2 = CustomerMessage.create!(

 14 customer: r.customer,

 15 root: root,

 16 parent: r,

 17 subject: "REPLY",

 18 body: "REPLY"

 19)

 20

 21 create_replies(root, m2, n - 1)

 22 end

 23

 24 Message.destroy_all

 25

 26 root = CustomerMessage.create!(

 27 customer: Customer.first,

 28 subject: "ROOT",

 29 body: "TEST"

 30)

 31

 32 create_replies(root, root, 10)

　このスクリプトについての詳しい説明は省きます。データベースから問い合わせをすべて削
除してから、ある顧客からの問い合わせに対して、職員と顧客のやりとりが10回続いた場合
にできるメッセージツリーを作っています。

　このスクリプトを実行します。

$ bin/rails r db/scripts/deep_tree.rb

　そして、ブラウザで「問い合わせ一覧」を表示して件名が「ROOT」となっているメッセージ
の詳細画面を開くと、図11.9のように表示されます。

図11.9: とても深いメッセージツリー

　Railsのログを見るとmessagesテーブルへのクエリが20回以上発生していることが分かり
ます。筆者の環境で何度かこのメッセージツリーを表示してみると、Active Record関連の処
理に6.5〜8.8ミリ秒程度の時間がかかっています。この時間を短縮する努力をしてみましょ
う。

11.3.2　パフォーマンスの向上策

　まず、ツリー構造のデータを扱うためのクラスSimpleTreeを定義します。

LIST app/lib/simple_tree.rb (New)

 1 class SimpleTree

 2 attr_reader :root, :nodes

 3

 4 def initialize(root, descendants)

 5 @root = root

 6 @descendants = descendants

 7

 8 @nodes = {}

 9 ([@root] + @descendants).each do |d|

 10 d.child_nodes = []

 11 @nodes[d.id] = d

 12 end

 13

 14 @descendants.each do |d|

 15 @nodes[d.parent_id].child_nodes << @nodes[d.id]

 16 end

 17 end

 18 end

　SimpleTreeのコンストラクタの第1引数にはルートオブジェクト、第2引数にはその子孫
オブジェクトの配列を渡します。

　8-12行ではツリーに属するすべてのオブジェクトを値として持つハッシュ @nodesを作って
います。このハッシュのキーはオブジェクトの主キーの値です。ハッシュを作りながら、各オブジェク
トのchild_nodes属性に空の配列をセットしています。まだ、Messageモデルには
child_nodes属性はありませんが、あとで定義します。

　14-16行では、各子孫オブジェクトをその親オブジェクトのchild_nodes属性（配列）
に追加しています。

　次に、Messageモデルを修正します。

LIST app/models/message.rb

 1 class Message < ApplicationRecord

 2 belongs_to :customer

 3 belongs_to :staff_member, optional: true

 4 belongs_to :root, class_name: "Message", foreign_key:

"root_id",

 5 optional: true

 6 belongs_to :parent, class_name: "Message", foreign_key:

"parent_id",

 7 optional: true

 8 - has_many :children, class_name: "Message", foreign_key:

"parent_id",

 9 - dependent: :destroy

 :

 21 scope :sorted, -> { order(created_at: :desc) }

 22 +

 23 + attr_accessor :child_nodes

 24 +

 25 + def tree

 26 + return @tree if @tree

 27 + r = root || self

 28 + messages = Message.where(root_id: r.id).select(:id,

:parent_id, :subject)

 29 + @tree = SimpleTree.new(r, messages)

 30 + end

 31 end

　関連付けchildrenはもはや使わないので8-9行目を削除し、代わりに23行目で
child_nodes属性を定義しています。先ほど見たように、この属性には配列がセットされ、子
のリストを管理するために利用されます。

　25-30行では、SimpleTreeオブジェクトを返すtreeメソッドを定義しています。本編7-
3-2項で説明した遅延初期化のテクニックを用いて、1回目に呼び出されたときにオブジェク
トを初期化し、2回目以降はすでに初期化されたオブジェクトを返すように実装しています。

　28行目で、ツリーに属する（ルートを除く）メッセージの配列を変数messagesにセットし
ています。selectメソッドについてはChapter 6 で説明しました。メッセージツリーを作成・表
示する際に必要となるのはid、parent_id、subjectという3つのカラムだけなので、データベー
スへの負荷を減らすため、取得対象のカラムを絞り込んでいます。

　最後に、MessagePresenterのtreeメソッドを書き換えます。

LIST app/presenters/message_presenter.rb

 :

 55 def tree

 56 - expand(object.root || object)

 56 + expand(object.tree.root)

 57 end

 58

 59 private def expand(node)

 60 markup(:ul) do |m|

 61 m.li do

 62 if node.id == object.id

 63 m.strong(node.subject)

 64 else

 65 m << link_to(node.subject,

view_context.staff_message_path(node))

 66 end

 67 - node.children.each do |c|

 67 + node.child_nodes.each do |c|

 68 m << expand(c)

 69 end

 70 end

 71 end

 72 end

 73 end

　では、結果を見ましょう。改めて、ブラウザで「問い合わせ一覧」を表示して件名が
「ROOT」となっているメッセージの詳細画面を開き、Railsのログを見てください。

　messagesテーブルへのクエリ回数は3回に減っています。最初の問い合わせを取るのに1
回、この問い合わせをrootとして持つメッセージのリストを取るのに1回、そしてヘッダに表示す
る未処理の問い合わせの個数を取るのに1回です。

　何度かこのメッセージツリーを表示してみると、筆者の環境ではActive Record関連の
処理に1.4〜2.1ミリ秒程度の時間がかかっています。改善策を施す前は6.5〜8.8ミリ秒程
度でしたので、まずまずの効果があったと言えるでしょう。

　最後に、データベースをリセットして次章に進みましょう。

$ bin/rails db:reset

第12章　タグ付け

最終章（Chapter 12）では、前章に引き続きメッセージ管理機能を拡
張します。まず、職員が問い合わせに返信する機能を作ります。次に、職員
がメッセージにタグ（短い文字列）を付けて分類する機能を作ります。

12.1　問い合わせへの返信機能

本節では、職員が顧客からの問い合わせに返信する機能を作成します。
Chapter 8で作った顧客からの問い合わせ送信機能とほぼ同じように実装
できますので、作成手順を淡々と説明します。

12.1.1　ルーティング

　職員によるメッセージ返信機能のためのルーティングを設定します。

LIST config/routes.rb

 :

 20 resources :messages, only: [:index, :show,

:destroy] do

 21 get :inbound, :outbound, :deleted, on:

:collection

 22 + resource :reply, only: [:new, :create] do

 23 + post :confirm

 24 + end

 25 end

 :

　コントローラはstaff/repliesです。messagesリソースにネストされています。newアクショ
ンで返信フォームを表示し、confirmアクションで返信内容を確認し、createアクションで返
信をデータベースに保存します。

12.1.2　リンクの設置

　メッセージの詳細表示ページに「返信する」リンクを設置します。

LIST app/views/staff/messages/show.html.erb

 1 <% @title = "メッセージ詳細" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 + <% if @message.kind_of?(CustomerMessage) %>

 6 + <div class="links">

 7 + <%= link_to "返信する",
new_staff_message_reply_path(@message) %>

 8 + </div>

 9 + <% end %>

 10 +

 11 <table class="attributes">

 :

　顧客からのメッセージ（問い合わせまたは返信への返信）を表示している場合にだ
け、リンクは表示されます。ブラウザで該当ページを開くと図12.1のように表示されます。

図12.1: メッセージ詳細画面

12.1.3　返信内容編集フォーム

　staff/repliesコントローラの骨組みを生成します。

$ bin/rails g controller staff/replies

　コントローラのソースコードを次のように書き換えます。

LIST app/controllers/staff/replies_controller.rb

 1 - class Staff::RepliesController < ApplicationController

 1 + class Staff::RepliesController < Staff::Base

 2 + before_action :prepare_message

 3 +

 4 + def new

 5 + @reply = StaffMessage.new

 6 + end

 7 +

 8 + private def prepare_message

 9 + @message = CustomerMessage.find(params[:message_id])

 10 + end

 11 end

　このコントローラはmessagesリソースにネストされているので、必ずmessage_idパラメータ
がアクションに届きます。before_actionに指定されたprepare_messageメソッドで、この値
を用いてインスタンス変数 @messageに、CustomerMessageオブジェクトをセットしておきます。

　返信フォームのERBテンプレートの本体を作ります。

LIST app/views/staff/replies/new.html.erb (New)

 1 <% @title = "問い合わせへの返信" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form" class="table-wrapper">

 5 <%= form_with model: @reply,

 6 url: confirm_staff_message_reply_path(@message) do

|f| %>

 7 <%= render "form", f: f %>

 8 <div class="buttons">

 9 <%= f.submit "確認画面へ進む" %>

 10 <%= link_to "キャンセル", :staff_messages %>

 11 </div>

 12 <% end %>

 13 <%= render "message" %>

 14 </div>

　返信フォームのERBテンプレートの本体は顧客からの問い合わせ用のテンプレートからコピ
ーします。

$ cp app/views/customer/messages/_form.html.erb

app/views/staff/replies/

　返信の対象となる元メッセージを表示する部分テンプレートを作ります。

LIST app/views/staff/replies/_message.html.erb (New)

 1 <% p = MessagePresenter.new(@message, self) %>

 2 <table class="attributes">

 3 <tr><th>送信者</th><td><%= p.sender %></td></tr>

 4 <tr><th>件名</th><td><%= p.subject %></td></tr>

 5 <tr><th>作成日時</th><td class="date"><%= p.created_at

%></td></tr>

 6 </table>

 7 <div class="body"><%= p.formatted_body %></div>

　ブラウザでメッセージ詳細ページの「返信する」リンクをクリックすると図12.2のような画面
となります。

図12.2: 問い合わせへの返信画面

12.1.4　確認画面

　メッセージ返信フォームのための確認画面を作ります。まずは、staff/repliesコントロー
ラにconfirmアクションを追加します。

LIST app/controllers/staff/replies_controller.rb

 1 class Staff::RepliesController < Staff::Base

 2 before_action :prepare_message

 3

 4 def new

 5 @reply = StaffMessage.new

 6 end

 7 +

 8 + # POST

 9 + def confirm

 10 + @reply = StaffMessage.new(staff_message_params)

 11 + @reply.staff_member = current_staff_member

 12 + @reply.parent = @message

 13 + if @reply.valid?

 14 + render action: "confirm"

 15 + else

 16 + flash.now.alert = "入力に誤りがあります。"

 17 + render action: "new"

 18 + end

 19 + end

 20

 21 private def prepare_message

 22 @message = CustomerMessage.find(params[:message_id])

 23 end

 24 +

 25 + private def staff_message_params

 26 + params.require(:staff_message).permit(:subject,

:body)

 27 + end

 28 end

　Strong Parametersによるフィルタリングを行うため、staff_message_paramsメソッド
を作っています。

　続いて、確認画面のERBテンプレート本体を作成します。

LIST app/views/staff/replies/confirm.html.erb (New)

 1 <% @title = "問い合わせへの返信（確認）" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form" class="table-wrapper">

 5 <%= form_with model: @reply, url:

staff_message_reply_path(@message) do |f| %>

 6 <%= render "confirming_form", f: f %>

 7 <div class="buttons">

 8 <%= f.submit "送信" %>

 9 <%= f.submit "訂正", name: "correct" %>

 10 <%= link_to "キャンセル", :staff_messages %>

 11 </div>

 12 <% end %>

 13 <%= render "message" %>

 14 </div>

　最後に、Chapter 9で作ったConfirmingFormPresenterを用いてフォームのための部
分テンプレートを作成します。

LIST app/views/staff/replies/_confirming_form.html.erb (New)

 1 <%= markup(:div) do |m|

 2 p = ConfirmingFormPresenter.new(f, self)

 3 m.div "以下の内容で返信します。よろしいですか？"

 4 m << p.text_field_block(:subject, "件名")

 5 m << p.text_area_block(:body, "本文")

 6 end %>

　ブラウザで返信フォームの件名欄と本文欄に適宜入力して、「確認画面へ進む」ボタン
をクリックすると図12.3のような画面になります。

図12.3: 返信の確認画面

12.1.5　返信の送信

　staff/repliesコントローラにcreateアクションを追加します。

LIST app/controllers/staff/replies_controller.rb

 :

 17 render action: "new"

 18 end

 19 end

 20 +

 21 + def create

 22 + @reply = StaffMessage.new(staff_message_params)

 23 + if params[:commit]

 24 + @reply.staff_member = current_staff_member

 25 + @reply.parent = @message

 26 + if @reply.save

 27 + flash.notice = "問い合わせに返信しました。"

 28 + redirect_to :outbound_staff_messages

 29 + else

 30 + flash.now.alert = "入力に誤りがあります。"

 31 + render action: "new"

 32 + end

 33 + else

 34 + render action: "new"

 35 + end

 36 + end

 37

 38 private def prepare_message

 :

　職員が確認画面で「送信」ボタンをクリックした場合にはcommitパラメータが存在してい
ますので、24〜32行のコードが実行されます。「訂正」ボタンがクリックされた場合には、34行
目のコードが実行されて、返信の編集フォームが表示されます。

12.2　メッセージへのタグ付け

本節では、職員がメッセージにタグ（短い文字列）を付けて分類する機
能を作ります。１個のメッセージに対して、「緊急」、「苦情」、「請求書」、
「法人」など複数のタグを付けられます。タグによってメッセージを検索する機
能は次節で実装します。

12.2.1　データベース設計

tagsテーブル

　タグ機能のためのデータベース設計を考えましょう。まず、タグを記録するテーブルtagsを
定義するところが出発点です。主キーidを除外すれば、このテーブルに必要なのはタグの文字
列を記録するカラムだけです。カラム名はvalueとしましょうか。当然、このカラムには一意制
約を付けた方がいいですね。

　では、tagsテーブルのマイグレーションスクリプトを生成してください。

$ bin/rails g model tag

$ rm spec/models/tag_spec.rb

　生成されたファイルを次のように書き換えます。

LIST db/migrate/20190101000016_create_tags.rb

 1 class CreateTags < ActiveRecord::Migration[6.0]

 2 def change

 3 create_table :tags do |t|

 4 + t.string :value, null: false

 5

 6 t.timestamps

 7 end

 8 +

 9 + add_index :tags, :value, unique: true

 10 end

 11 end

リンクテーブル

　次に、メッセージとタグの関連を検討します。「１対多」、「多対1」、「多対多」のどれに
当たるでしょうか。メッセージの側から見れば、１個のメッセージには複数のタグが付きます。
逆にタグの側から見れば、１個のタグには複数のメッセージが付きます。典型的な多対多の
関連です。

　リレーショナルデータベースにおいて多対多の関連をどう表現するか、というテーマについて
はChapter 6で詳しく説明しました。リンクテーブルというものを用意するのでしたね。Chapter
6ではprogramsテーブルとcustomersテーブルを結び付けるリンクテーブルとしてentriesテーブ
ルを定義しました。今回は、リンクテーブルとしてmessage_tag_linksテーブルを作りましょう。

リンクテーブルの名前には特に決まりはありません。できればentriesのような、短くて分かりやすい名前
が望ましいのですが、なかなかよい名前が見つからないこともあります。そのような場合、筆者は結び付
けるテーブルをABC順に並べた上で、それぞれのテーブル名を単数形に変え、下線（_）で連結し、末
尾に "_links" を加えるという規則で機械的にテーブルを作ることにしています。ただし、この方法にも
難点があります。テーブル名が長くなりがちだということです。長すぎるテーブル名は扱いづらいので、私
は名前の一部を省いたり、省略形を使ったりといった工夫をしています。

　message_tag_linksテーブルのマイグレーションスクリプトを生成します。

$ bin/rails g model message_tag_link

$ rm spec/models/message_tag_link_spec.rb

　マイグレーションスクリプトを書き換えます。

LIST db/migrate/20190101000017_create_message_tag_links.rb

 1 class CreateMessageTagLinks <

ActiveRecord::Migration[6.0]

 2 def change

 3 create_table :message_tag_links do |t|

 4 + t.references :message, null: false

 5 + t.references :tag, null: false

 6

 7 t.timestamps

 8 end

 9 +

 10 + add_index :message_tag_links, [:message_id, :tag_id

], unique: true

 11 end

 12 end

　そして、マイグレーションを実行します。

$ bin/rails db:migrate

12.2.2　モデル間の関連付け

　続いて、3つのモデルMessage、Tag、MessageTagLinkの間の関連付けを定義します。
まず、Messageモデルのソースコードを次のように書き換えます。

LIST app/models/message.rb

 1 class Message < ApplicationRecord

 2 belongs_to :customer

 3 belongs_to :staff_member, optional: true

 4 belongs_to :root, class_name: "Message", foreign_key:

"root_id",

 5 optional: true

 6 belongs_to :parent, class_name: "Message", foreign_key:

"parent_id",

 7 optional: true

 8 + has_many :message_tag_links, dependent: :destroy

 9 + has_many :tags, -> { order(:value) }, through:

:message_tag_links

 10

 11 validates :subject, :body, presence: true

 :

　has_manyメソッドのthroughオプションについては6-1-3項を参照してください。ここでは、
第2引数にProcオブジェクト -> { order(:value) } を指定しています。こうすることで、メッ
セージに付けられたタグの一覧を取得する際に、自動的にvalueカラムの値によってソートされ
ます。

　次に、Tagモデルのソースコードを次のように書き換えます。

LIST app/models/tag.rb

 1 class Tag < ApplicationRecord

 2 + has_many :message_tag_links, dependent: :destroy

 3 + has_many :messages, through: :message_tag_links

 4 end

　最後に、MessageTagLinkをMessageモデルおよびTagモデルと関連付けます。

LIST app/models/message_tag_link.rb

 1 class MessageTagLink < ApplicationRecord

 2 + belongs_to :message

 3 + belongs_to :tag

 4 end

12.2.3　Tag-itのインストール

　次に、メッセージにタグを追加・削除するユーザーインターフェースを作成します。いろいろ
な形が考えられますが、今回は図12.4のようなものを作ってみます。

図12.4: タグを追加・削除するインターフェース

　メッセージの詳細表示のテーブルに「タグ」という行を追加し、そこに現在設定されている
タグが列挙されます。タグを追加したい場合は、最後のタグの右側にあるカーソルに対して文
字列を入力し、Enterキーを押します。タグを削除するには、それぞれタグの右にある×印をク
リックします。あるいは、最後のタグの右側にカーソルがある状態でBackspaceキー（macOS
の場合はDeleteキー）を押すと、最後のタグが削除されます。

　この種のユーザーインターフェースを実現するには、自分で作るよりもオープンソースで配布
されているJavaScriptライブラリを探して導入する方が簡単です。私はいくつかの候補の中か
らjQuery UIウィジェットのTag-itを選びました。

　Tag-itを使用するには、ターミナルで次のコマンドを実行してnpmパッケージjquery-ui-

distとtag-itをインストールします。

$ yarn add jquery-ui-dist tag-it

　そして、config/webpack/environment.jsを次のように書き換えます。

LIST config/webpack/environment.js

 1 const { environment } = require("@rails/webpacker")

 2

 3 const webpack = require("webpack")

 4 environment.plugins.prepend("Provide",

 5 new webpack.ProvidePlugin({

 6 - $: "jquery/src/jquery",

 6 + $: "jquery",

 7 - jQuery: "jquery/src/jquery"

 7 + jQuery: "jquery"

 8 })

 9)

 10 +

 11 + const aliasConfig = {

 12 + "jquery": "jquery-ui-dist/external/jquery/jquery.js",

 13 + "jquery-ui": "jquery-ui-dist/jquery-ui.js"

 14 + };

 15 +

 16 + environment.config.set("resolve.alias", aliasConfig);

 17

 18 module.exports = environment

　次に、新規ファイルtags.jsを職員用のJavaScriptプログラムとして追加します。

LIST app/javascript/staff/tags.js (New)

 1 require("jquery-ui")

 2 require("tag-it")

 3

 4 $(document).on("turbolinks:load", () => {

 5 if ($("#tag-it").length) {

 6 $("#tag-it").tagit()

 7 }

 8 })

　id属性にtag-itという値がセットされたHTML要素をTag-itによる操作の対象としてい
ます。

　app/javascript/packs/staff.jsを書き換えます。

LIST app/javascript/packs/staff.js

 :

 6 import "../staff/customer_form.js";

 7 import "../staff/entries_form.js";

 8 import "../staff/messages.js";

 9 + import "../staff/tags.js";

　最後に、jQuery UIとTag-itが提供するスタイルシートをBaukis2に組み込みます。

LIST app/assets/stylesheets/staff.css

 1 /*

 2 *= require_tree ./shared

 3 *= require_tree ./staff

 4 + *= require jquery-ui-dist/jquery-ui

 5 + *= require tag-it/css/jquery.tagit

 6 */

これらのCSSファイルはnode_modulesディレクトリの下にインストールされています。

12.2.4　タグの追加・削除インターフェース

　では、実際にタグの追加・削除インターフェースをメッセージ詳細表示ページに埋め込ん
でみましょう。staff/messages#showアクションのERBテンプレートを次のように書き換えてくだ
さい。

LIST app/views/staff/messages/show.html.erb

 :

 11 <table class="attributes">

 12 <% p = MessagePresenter.new(@message, self) %>

 13 <tr><th>種類</th><td><%= p.type %></td></tr>

 14 <tr><th>送信者</th><td><%= p.sender %></td></tr>

 15 <tr><th>受信者</th><td><%= p.receiver %></td></tr>

 16 <tr><th>件名</th><td><%= p.subject %></td></tr>

 17 <tr><th>作成日時</th><td class="date"><%= p.created_at

%></td></tr>

 18 + <tr>

 19 + <th>タグ</th>

 20 + <td>

 21 + <%= markup(:ul, id: "tag-it") do |m|

 22 + @message.tags.each do |tag|

 23 + m.li tag.value

 24 + end

 25 + end %>

 26 + </td>

 27 + </tr>

 28 </table>

 :

　そして、ブラウザで適当なメッセージの詳細を表示してみると、図12.5のようにタグの追
加・削除インターフェースが現れます。

図12.5: タグの追加・削除インターフェース(1)

　タグの入力欄に「テスト」と入力しEnterキーを押し、さらに「試験」と入力してEnterキーを
押してください。すると、図12.6のような表示に変わります。

図12.6: タグの追加・削除インターフェース(2)

　「テスト」の右にある×印をクリックすれば「テスト」の文字が消えます。また、「試験」の右
にカーソルが表示されている状態でBackspaceキー（macOSの場合はDeleteキー）を押す
と、「試験」の文字が消えます。

12.2.5　タグの追加・削除

　メッセージにタグを追加・削除する機能をBaukis2に組み込みます。

ルーティング

　config/routes.rbを次のように書き換えてください。

LIST config/routes.rb

 :

 19 get "messages/count" => "ajax#message_count"

 20 + post "messages/:id/tag" => "ajax#add_tag", as:

:tag_message

 21 + delete "messages/:id/tag" => "ajax#remove_tag"

 22 resources :messages, only: [:index, :show,

:destroy] do

 23 get :inbound, :outbound, :deleted, on:

:collection

 :

　POSTメソッドとDELETEメソッドの両方に対応したアクションのためのルーティングを定義し
ています。タグの追加・削除は後ほどAjaxにより実装するので、コントローラには
Staff::AjaxControllerを指定しています。また、問い合わせのデータベースレコードを特定
できるようにURLパターンに:idを含めている点にも注意をしてください。

add_tag、remove_tagアクションの実装

　staff/ajaxコントローラにadd_tagアクションとremove_tagアクションを追加します。

LIST app/controllers/staff/ajax_controller.rb

 1 class Staff::AjaxController < ApplicationController

 2 before_action :check_source_ip_address

 3 before_action :authorize

 4 before_action :check_timeout

 5 before_action :reject_non_xhr

 6

 7 # GET

 8 def message_count

 9 render plain: CustomerMessage.unprocessed.count

 10 end

 11

 12 + # POST

 13 + def add_tag

 14 + message = Message.find(params[:id])

 15 + message.add_tag(params[:label])

 16 + render plain: "ok"

 17 + end

 18 +

 19 + # DELETE

 20 + def remove_tag

 21 + message = Message.find(params[:id])

 22 + message.remove_tag(params[:label])

 23 + render plain: "ok"

 24 + end

 :

　対象のメッセージを変数messageにセットした後、add_tagアクションであればadd_tagメ
ソッドを呼び、remove_tagアクションであればremove_tagメソッドを呼び出しています。

　Messageモデルにadd_tagメソッドとremove_tagメソッドを追加します。

LIST app/models/message.rb

 :

 27 def tree

 28 return @tree if @tree

 29 r = root || self

 30 messages = Message.where(root_id: r.id).select(:id,

:parent_id, :subject)

 31 @tree = SimpleTree.new(r, messages)

 32 end

 33 +

 34 + def add_tag(label)

 35 + self.class.transaction do

 36 + tag = Tag.find_by(value: label)

 37 + tag ||= Tag.create!(value: label)

 38 + unless message_tag_links.where(tag_id:

tag.id).exists?

 39 + message_tag_links.create!(tag_id: tag.id)

 40 + end

 41 + end

 42 + end

 43 +

 44 + def remove_tag(label)

 45 + self.class.transaction do

 46 + if tag = Tag.find_by(value: label)

 47 + message_tag_links.find_by(tag_id:

tag.id).destroy

 48 + if tag.message_tag_links.empty?

 49 + tag.destroy

 50 + end

 51 + end

 52 + end

 53 + end

 54 end

　処理の中身はそれほど複雑ではありません。add_tagメソッドでは、引数labelをvalue

カラムの値として持つTagオブジェクトの有無を調べ、なければ作り、そしてMessageオブジェク
トと結び付けます。remove_tagメソッドでは、引数labelをvalueカラムの値として持つTagオ
ブジェクトの有無を調べ、あればMessageオブジェクトとの結びつきを絶ちます。さらに、その結
果としてそのTagオブジェクトがどのMessageオブジェクトとも結び付けられていない状態になれ
ば、Tagオブジェクトを削除します。

　tagsテーブルへの操作とmessage_tag_linksテーブルへの操作は、どちらかだけが成功
してはまずいので、メソッド全体をトランザクションで囲んでいます。

複数の職員がほぼ同時に同じタグを追加あるいは削除しようとすると、タイミングによってadd_tagメソ
ッドおよびremove_tagメソッドはエラーを引き起こす可能性があります。この点については、第4節で検
討します。

JavaScriptプログラムの作成

　先ほど作成したタグ追加・削除のユーザーインターフェースから、staff/messages#tagア
クションを呼び出すためのJavaScriptプログラムを作成します。

　ただし、その前に準備作業が必要です。タグを追加・削除する対象のMessageオブジェ
クトのid属性が分からないとJavaScriptプログラムでstaff/messages#tagアクションのURL
を作れません。そこで、staff/messages#showアクションのERBテンプレートを次のように書き
換えます。

LIST app/views/staff/messages/show.html.erb

 :

 18 <tr>

 19 <th>タグ</th>

 20 <td>

 21 - <%= markup(:ul, id: "tag-it") do |m|

 21 + <%= markup(:ul, id: "tag-it", "data-message-id"

=> @message.id,

 22 + "data-path" => staff_tag_message_path(id:

@message.id)) do |m|

 23 @message.tags.each do |tag|

 24 m.li tag.value

 25 end

 26 end %>

 27 </td>

 28 </tr>

 :

　この結果、JavaScriptプログラムにおいて

$("#tag-it").data("message-id")

$("#tag-it").data("path")

のように書けば、Messageオブジェクトのid属性およびタグ追加・削除APIのURLパスを取
得できるようになります。

　最後に、tags.jsを次のように書き換えます。

LIST app/javascript/staff/tags.js

 1 require("jquery-ui")

 2 require("tag-it")

 3

 4 $(document).on("turbolinks:load", () => {

 5 if ($("#tag-it").length) {

 6 - $("#tag-it").tagit()

 6 + const messageId = $("#tag-it").data("message-id")

 7 + const path = $("#tag-it").data("path")

 8 +

 9 + $("#tag-it").tagit({

 10 + afterTagAdded: (e, ui) => {

 11 + if (ui.duringInitialization) return

 12 + $.post(path, { label: ui.tagLabel })

 13 + },

 14 + afterTagRemoved: (e, ui) => {

 15 + if (ui.duringInitialization) return

 16 + $.ajax({ type: "DELETE", url: path, data: {

label: ui.tagLabel } })

 17 + }

 18 + })

 19 }

 20 })

　Tag-itはタグが追加されるとafterTagAddedというイベントを発し、11-12行に書かれて
いるコードを実行します。ui.duringInitializationは、Tag-itがユーザーインターフェースを
初期化している段階にあるかどうかを真偽値で返します。ここでは、初期化の間に発せられ
たafterTagAddedイベントを無視しています。すなわち、メッセージにすでに設定されているタ
グをTag-itが表示した場合には、11-12行のコードは実行されません。

　6行目では、タグを追加する対象のメッセージのid属性を取得して変数messageIdにセ
ットしています。7行目では、staff/messages#tagアクションのURLパスを変数pathにセット
しています。そして、12行目でそのURLパスを呼び出します。ui.tagLabelには追加されたタ
グのラベル文字列がセットされています。

　16行目には、タグが削除された場合に実行すべき処理内容が記述されています。

 $.ajax({ type: "DELETE", url: path, data: { label:

ui.tagLabel } })

　DELETEメソッドでAjax呼び出しをする場合は、このように書きます。公式として、このまま
の形で覚えてください。

　では、動作確認をしましょう。ブラウザで適当なメッセージの詳細表示ページを開き、「テ
スト」というタグを追加してください。そして、ブラウザのページを再読込して、そのまま「テスト」と
いうタグが表示されていれば成功です。次に、「テスト」というタグを削除します。ブラウザのペ
ージを再読込して、「テスト」というタグが表示されなければ成功です。

12.3　タグによるメッセージの絞り込み

この節では、あるタグと結び付けられたメッセージだけを検索する機能を
Baukis2に追加します。

12.3.1　シードデータ

　開発用にいくつかのタグを追加し、タグとメッセージを結びつけるシードデータ投入スクリ
プトを作成します。

LIST db/seeds/development/tags.rb (New)

 1 names = %w(緊急 苦情 請求書 法人)

 2

 3 tags =

 4 names.map do |name|

 5 Tag.create!(value: name)

 6 end

 7

 8 tag_for_test = Tag.create!(value: "TEST")

 9

 10 Message.all.each do |m|

 11 tags.sample(rand(3)).each do |tag|

 12 MessageTagLink.create!(message: m, tag: tag)

 13 end

 14

 15 MessageTagLink.create!(message: m, tag: tag_for_test)

 16 end

　db/seeds.rbを書き換えます。

LIST db/seeds.rb

 1 table_names = %w(

 2 staff_members administrators staff_events customers

 3 - programs entries messages

 3 + programs entries messages tags

 4)

 :

　データベースをリセットします。

$ bin/rails db:reset

12.3.2　ルーティング

　config/routes.rbを次のように書き換えます。

LIST config/routes.rb

 :

 22 resources :messages, only: [:index, :show,

:destroy] do

 23 get :inbound, :outbound, :deleted, on:

:collection

 24 resource :reply, only: [:new, :create] do

 25 post :confirm

 26 end

 27 end

 28 + resources :tags, only: [] do

 29 + resources :messages, only: [:index] do

 30 + get :inbound, :outbound, :deleted, on:

:collection

 31 + end

 32 + end

 33 end

 34 end

 :

　staff/tagsリソースにネストされたmessagesリソースを定義しています。コントローラは既
存のstaff/messagesを利用します。

12.3.3　indexアクションの変更

　まず、staff/messages#indexアクションを次のように書き換えます。

LIST app/controllers/staff/messages_controller.rb

 1 class Staff::MessagesController < Staff::Base

 2 def index

 3 @messages =

Message.not_deleted.sorted.page(params[:page])

 4 + if params[:tag_id]

 5 + @messages = @messages.joins(:message_tag_links)

 6 + .where("message_tag_links.tag_id" =>

params[:tag_id])

 7 + end

 8 end

 :

　このアクションは、staff/tagsリソースにネストされて呼び出される場合とそうでない場
合があります。その区別はtag_idパラメータの有無で分かります。staff/tagsリソースにネス
トされている場合は、7〜8行のコードが実行されます。

 @messages = @messages.joins(:message_tag_links)

 .where("message_tag_links.tag_id" =>

params[:tag_id])

　messages_tag_linksテーブルのカラムの値に基づいてmessagesテーブルを絞り込むた
め、messages_tag_linksテーブルを結合（join）しています。

　次に、メッセージの一覧ページに現在使われているタグのリストを表示します。

LIST app/views/staff/messages/_tags.html.erb (New)

 1 <div class="tags">

 2 タグ:

 3 <% Tag.all.each do |tag| %>

 4 <% if tag.id == params[:tag_id].to_i %>

 5 <%= tag.value %>

 6 <% else %>

 7 <%= link_to tag.value, [:staff, tag, :messages]

%>

 8 <% end %>

 9 <% end %>

 10 </div>

　部分テンプレートをERBテンプレート本体に埋め込みます。

LIST app/views/staff/messages/index.html.erb

 :

 42 <%= paginate @messages %>

 43 +

 44 + <%= render "tags" %>

 45 </div>

　スタイルシートを調整します。

LIST app/assets/stylesheets/staff/divs_and_spans.scss

 1 @import "colors";

 2 @import "dimensions";

 3

 4 div.description, div.body {

 5 margin: $wide;

 6 padding: $wide;

 7 background-color: $very_light_gray;

 8 }

 9 +

 10 + div.tags {

 11 + margin: $wide 0;

 12 + padding: $wide;

 13 + background-color: $very_light_gray;

 14 +

 15 + span.current_tag {

 16 + font-weight: bold;

 17 + }

 18 + }

　ブラウザで問い合わせ一覧ページを表示すると、図12.7のような画面になります。

図12.7: 問い合わせ一覧ページ

　ここでタグリストから「TEST」をクリックすると、図12.8のように問い合わせが絞り込まれま
す。

図12.8: タグで絞り込まれた問い合わせ一覧

12.3.4　リンクの設置

　「問い合わせ一覧」、「返信一覧」、「全メッセージ一覧」、「ゴミ箱」の間を簡単に行った
り来たりできるように、すべてのリンクを集めた部分テンプレートを作ります。

LIST app/views/staff/messages/_links.html.erb (New)

 1 <div class="links">

 2 <%= link_to "問い合わせ一覧", :inbound_staff_messages %>

 3 <%= link_to "返信一覧", :outbound_staff_messages %>

 4 <%= link_to "全メッセージ一覧", :staff_messages %>

 5 <%= link_to "ゴミ箱", :deleted_staff_messages %>

 6 <% if @message.kind_of?(CustomerMessage) %>

 7 <%= link_to "返信する",
new_staff_message_reply_path(@message) %>

 8 <% end %>

 9 </div>

　部分テンプレートをメッセージ一覧ページのERBテンプレートに埋め込みます。

LIST app/views/staff/messages/index.html.erb

 :

 11 <h1><%= @title %></h1>

 12

 13 <div class="table-wrapper">

 14 + <%= render "links" %>

 15 +

 16 <%= paginate @messages %>

 :

　部分テンプレートをメッセージ詳細ページのERBテンプレートに埋め込みます。

LIST app/views/staff/messages/show.html.erb

 1 <% @title = "メッセージ詳細" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 - <% if @message.kind_of?(CustomerMessage) %>

 6 - <div class="links">

 7 - <%= link_to "返信する",
new_staff_message_reply_path(@message) %>

 8 - </div>

 9 - <% end %>

 5 + <%= render "links" %>

 6

 7 <table class="attributes">

 :

　メッセージ一覧ページの表示は図12.9のようになります。

図12.9: メッセージ一覧ページにリンクを設置

　メッセージ詳細ページの表示は図12.10のようになります。顧客からの問い合わせの場
合は、「返信する」リンクも表示されることも確認してください。

図12.10: メッセージ詳細ページにリンクを設置

12.3.5　引数を取るスコープ

　最後に、staff/messages#indexアクションで絞り込みを行っているコードを他のアクシ
ョンに移します。移す前にリファクタリングを行います。現在のstaff/messages#indexアクシ
ョンのコードは次のようになっています。

 @messages =

Message.not_deleted.sorted.page(params[:page])

 if params[:tag_id]

 @messages = @messages.joins(:message_tag_links)

 .where("message_tag_links.tag_id" =>

params[:tag_id])

 end

 @messages = @messages.page(params[:page])

ifからendまでの処理をMessageモデルのスコープtagged_asとして抽出します。

LIST app/models/message.rb

 23 scope :sorted, -> { order(created_at: :desc) }

 24 +

 25 + scope :tagged_as, -> (tag_id) do

 26 + if tag_id

 27 +

joins(:message_tag_links).where("message_tag_links.tag_id" =>

tag_id)

 28 + else

 29 + self

 30 + end

 31 + end

 32

 33 attr_accessor :child_nodes

　ここまでに登場した他のスコープとは異なり、このスコープtagged_asは引数を1個取りま
す。引数tag_idがnilでなければ、テーブルmessage_tag_linksを連結してtag_idで絞り込
みます。引数tag_idがnilであれば、selfを返します。この場合、検索条件は追加されませ
ん。

コードが複数行に渡るためdoとendで囲んでいますが、中括弧の組を使用しても構いません。

　tagged_asスコープを利用して、staff/messages#indexアクションを次のように書き換
えてください。

LIST app/controllers/staff/messages_controller.rb

 1 class Staff::MessagesController < Staff::Base

 2 def index

 3 @messages =

Message.not_deleted.sorted.page(params[:page])

 4 - if params[:tag_id]

 5 - @messages = @messages.joins(:message_tag_links)

 6 - .where("message_tag_links.tag_id" =>

params[:tag_id])

 7 - end

 4 + .tagged_as(params[:tag_id])

 5 end

 :

　続いて、tagged_asメソッドを用いてinbound、outbound、deletedアクションを書き換
えます。

LIST app/controllers/staff/messages_controller.rb

 :

 7 # GET

 8 def inbound

 9 @messages =

CustomerMessage.not_deleted.sorted.page(params[:page])

 10 + .tagged_as(params[:tag_id])

 11 render action: "index"

 12 end

 13

 14 # GET

 15 def outbound

 16 @messages =

StaffMessage.not_deleted.sorted.page(params[:page])

 17 + .tagged_as(params[:tag_id])

 18 render action: "index"

 19 end

 20

 21 # GET

 22 def deleted

 23 @messages =

Message.not_deleted.sorted.page(params[:page])

 24 + .tagged_as(params[:tag_id])

 25 render action: "index"

 26 end

 :

　最後に、部分テンプレート _tags.html.erb を書き換えます。

LIST app/views/staff/messages/_tags.html.erb

 1 <div class="tags">

 2 タグ:

 3 <% Tag.all.each do |tag| %>

 4 <% if tag.id == params[:tag_id].to_i %>

 5 <%= tag.value %>

 6 + <% elsif params[:action] == "index" %>

 7 + <%= link_to tag.value, [:staff, tag, :messages]

%>

 8 <% else %>

 9 - <%= link_to tag.value, [:staff, tag, :messages]

%>

 9 + <%= link_to tag.value, [params[:action], :staff,

tag, :messages] %>

 10 <% end %>

 11 <% end %>

 12 </div>

　ブラウザを開き、「返信一覧」、「全メッセージ一覧」、「ゴミ箱」でもタグによる絞り込み
ができることを確認してください。

12.4　一意制約と排他的ロック

この節では、タグの追加・削除に関連してレースコンディションが発生する
可能性があることを説明し、その解決策について考えます。

12.4.1　問題の所在

　Chapter 8でレースコンディション（race condition）という概念について説明しまし
た。「並列で走る複数の処理の結果が、順序やタイミングによって想定外の結果をもたらす」
ことを、そう呼ぶのでしたね。

　実は、この章で作成したタグの追加・削除機能でもレースコンディションが発生する可能
性があります。職員Aと職員Bがほぼ同時にXというタグを追加する場合について考えてみま
しょう。まだどのメッセージに対してもXというタグが設定されていないとします。また話を簡単に
するため、タグを追加する対象のメッセージは異なるとしましょう。同一のメッセージを対象とす
る場合でも、本質的な筋書きは変わりません。

　次に示すのはMessage#add_tagメソッドのコードです。

 def add_tag(label)

 tag = Tag.find_by(value: label)

 tag ||= Tag.create!(value: label)

 unless message_tag_links.where(tag_id: tag.id).exists?

 message_tag_links.create!(tag_id: tag.id)

 end

 end

　以下、最初の２行の処理内容がタイミングによって想定外の結果をもたらすことを説
明します。

　通常は次のように事態が進行するはずです。

職員Aのための処理 職員Bのための処理

① tagsテーブルでXを検索→なし

② tagsテーブルにレコードを挿入→成功

③ tagsテーブルでXを検索→あり

　②でXというタグが登録されるので、職員Bにとっては既存のタグをあるメッセージに対し
て設定するということになります。

　しかし、次のように事態が進む可能性もあります。

職員Aのための処理 職員Bのための処理

① tagsテーブルでXを検索→なし

② tagsテーブルでXを検索→なし

③ tagsテーブルにレコードを挿入→成功

④ tagsテーブルにレコードを挿入→例外発生

　このシナリオでは、④において例外が発生してしまいます。なぜならtagsテーブルのvalue

カラムには一意制約が設定されているからです。同じ文字列を複数のレコードとしてtagsテー
ブルに挿入しようとするとデータベース管理システムがエラーを返します。結果として、職員Bは
うまくタグを設定できないことになります。

　このシナリオを避けるにはどうすればよいか、これが本節の問題です。

12.4.2　排他制御のための専用テーブルを作る

基本方針

　Chapter 8ではレースコンディションの発生する箇所をトランザクションで囲み、トランザク
ションの冒頭でモデルオブジェクトのlock!メソッドを呼び出して排他的ロックを取得することで
レースコンディションを解消しました。今回も基本的な考え方は同じですが、少し事情が異な
ります。

　Chapter 8においてはprogramsテーブルとentriesモデルが１対多で関連付けられてお
り、entriesテーブルに制限数を超えたレコードが追加されないように、programsテーブルの１
つのレコードに対して排他的ロックを取得しました。しかし、今回はtagsテーブルに設定されて
いる一意制約が問題の鍵です。ある職員がXというタグを新規追加したいという状況におい
て、他の職員がXというタグを追加するのを阻止しなければなりません。何に対して排他的ロ
ックを取ればいいのでしょうか。

　このような場合のひとつの解決策は、排他制御のための専用テーブルを作ることです。

hash_locksテーブルの作成

　原理を説明する前に、作業を済ませてしまいましょう。まず、hash_locksというテーブル
を作成します。

$ bin/rails g model hash_lock

$ rm spec/models/hash_lock_spec.rb

　マイグレーションスクリプトを次のように書き換えます。

LIST db/migrate/20190101000018_create_hash_locks.rb

 1 class CreateHashLocks < ActiveRecord::Migration[6.0]

 2 def change

 3 create_table :hash_locks do |t|

 4 + t.string :table, null: false

 5 + t.string :column, null: false

 6 + t.string :key, null: false

 7

 8 t.timestamps

 9 end

 10 +

 11 + add_index :hash_locks, [:table, :column, :key],

unique: true

 12 end

 13 end

　マイグレーションを実行します。

$ bin/rails db:migrate

シード

　続いて、シードデータの投入スクリプトを作成します。hash_locksテーブルのデータは実
運用環境でも必要となりますので、他のテーブルとは分離してdb/seedsディレクトリ直下に
作成します。

LIST db/seeds.rb

 1 + common_table_names = %w(hash_locks)

 2 + common_table_names.each do |table_name|

 3 + path = Rails.root.join("db", "seeds", "#

{table_name}.rb")

 4 + if File.exist?(path)

 5 + puts "Creating #{table_name}...."

 6 + require(path)

 7 + end

 8 + end

 9

 10 table_names = %w(

 11 staff_members administrators staff_events customers

 12 programs entries messages tags

 13)

 :

　hash_locksテーブルには256個のレコードを投入します。

LIST db/seeds/hash_locks.rb (New)

 1 256.times do |i|

 2 HashLock.create!(table: "tags", column: "value", key:

sprintf("%02x", i))

 3 end

　ブロック変数iには0から255までの値がセットされます。式sprintf("%02x", i)は、2
桁の１６進数 "00" 〜 "ff" を文字列として返します。

　シードデータを投入します。

$ bin/rails r db/seeds/hash_locks.rb

すでにBaukis2を実運用環境で使用している場合は、マイグレーションを実行した後でこのコマンドを実
行してください。開発環境であればbin/rails db:resetコマンドでデータベースを作り直しても構いま
せん。

HashLock.aquireメソッド

　次に、HashLockクラスにクラスメソッドacquireを次のように定義します。

LIST app/models/hash_lock.rb

 1 class HashLock < ApplicationRecord

 2 + class << self

 3 + def acquire(table, column, value)

 4 + HashLock.where(table: table, column: column,

 5 + key: Digest::MD5.hexdigest(value)

[0,2]).lock(true).first!

 6 + end

 7 + end

 8 end

　このメソッドはテーブル名、カラム名、値という3つの引数を取ります。5行目にある次の
式に注目してください。

Digest::MD5.hexdigest(value)[0,2]

　Digest::MD5のクラスメソッドhexdigestは、引数に与えられた値からハッシュ値を生成
して32桁の16進数として返します。ハッシュ値は固定の長さを持つ擬似乱数で、同一の値
からは常に同一のハッシュ値が生成されます。例えば、「緊急」という文字列のDigest::MD5

によるハッシュ値は、次の通りです。

b48bd4716505181c7206376a126229c4

　先ほどの式では末尾に [0, 2] とありますので、32桁のハッシュ値の先頭2桁が取られ
ます。つまり、「緊急」という文字列からは "b4" という文字列が得られるわけです。

　以上のことを踏まえて、改めてHashLock.acquireメソッドを見返してください。第1引数
に "tags"、第2引数に "value"、第3引数に "緊急" を与えてこのメソッドを呼び出したとす
ると、次のような式が評価されることになります。

HashLock.where(table: "tags", column: "value", key:

"b4").lock(true).first!

　この式は、whereメソッドに与えた条件を満たすレコードをhash_locksテーブルのレコード
の中から検索して、そのレコードに対して排他的ロックを取得します。これを用いれば、tagsテ
ーブルにおけるレースコンディションを解消できます。

　職員がタグをtagsテーブルに追加する前に必ずhash_locksテーブル上の該当するレコー
ドに対して排他的ロックを取得するというルールを作ればいいのです。そうすれば、職員Aと職

員Bがほぼ同時にXというタグをtagsテーブルに追加しようとしている状況でも、先に排他的ロ
ックを取得した職員だけがタグを追加し、もう一人の職員は追加済みのタグを利用すること
になります。

　ただし、Digest::MD5.hexdigest(value)[0,2]という式が返す値の種類はたかだか
256種類しかありませんので、別々のタグに対して偶然同じ値を返す可能性があります。しか
し、たとえそうなったとしても、一人の職員がほんの一瞬待たされるだけです。

Message#add_tagメソッドの変更

　では、HashLock.aquireメソッドを用いてMessage#add_tagメソッドを書き換えましょ
う。

LIST app/models/message.rb

 :

 43 def add_tag(label)

 44 self.class.transaction do

 45 + HashLock.acquire("tags", "value", label)

 46 tag = Tag.find_by(value: label)

 47 tag ||= Tag.create!(value: label)

 48 unless message_tag_links.where(tag_id:

tag.id).exists?

 49 message_tag_links.create!(tag_id: tag.id)

 50 end

 51 end

 52 end

 :

　トランザクションの冒頭でhash_locksテーブルのレコード1個に対する排他的ロックを取
得しています。

　同様に、Message#remove_tagに関しても排他的ロックの仕組みを導入します。

LIST app/models/message.rb

 :

 54 def remove_tag(label)

 55 self.class.transaction do

 56 + HashLock.acquire("tags", "value", label)

 57 if tag = Tag.find_by(value: label)

 58 message_tag_links.find_by(tag_id: tag.id).destroy

 59 if tag.message_tag_links.empty?

 60 tag.destroy

 61 end

 62 end

 63 end

 64 end

 65 end

　職員AがXというタグを削除しようとしている瞬間に、別の職員BがXというタグを追加し
ようとすると、元の実装ではレースコンディションが発生する可能性があります。

HashLockをいつ利用すべきか

　この節で検討したような種類のレースコンディションは、次の2つの条件が重なると
常に発生します。

1. あるテーブルのカラムに一意制約が設定されている。

2. そのカラムの値をユーザーが自由に選択できる。

　例えば、あなたがソーシャルネットワークサービス（SNS）またはそれに類似した
Webアプリケーションを開発しており、そのユーザーは登録時にユーザーを識別するための
名前（仮にスクリーンネームと呼びます）を自由に設定できるとします。おそらくは
usersテーブルにscreen_nameというカラムを作るでしょう。このカラムはユーザーを識別す
るためのものですので、当然ながら一意制約を課します。この結果、レースコンディション
の発生条件が整うことになります。

12.5　演習問題

問題1

　customer/messagesコントローラにindexアクションを追加し、顧客が自分に届いたメッ
セージを一覧表示する機能を作成してください。詳細仕様は以下の通りです。

顧客のダッシュボード（トップページ）の「プログラム一覧」リンクの下に「受信メッセージ
一覧」というリンクを新たに追加してください。

「種類」、「受信者」、「アクション」の欄は不要です。アクション欄は次問で作成します。

タグで絞り込む機能は不要です。

その他の仕様はstaff/messages#indexアクションに準じます。

問題2

　顧客がメッセージの詳細を表示する機能を作成してください。詳細仕様は以下の通り
です。

受信メッセージ一覧表に「アクション」欄を作り、「詳細」リンクを追加してください。

「種類」、「受信者」、「タグ」」の欄は不要です。

メッセージツリーの表示は不要です。

その他の仕様はstaff/messages#showアクションに準じます。

問題3

　顧客がメッセージをゴミ箱に移動する機能を作成してください。詳細仕様は以下の通り
です。

受信メッセージ一覧表の「アクション」欄に「削除」リンクを追加してください。

顧客がこのリンクをクリックすると「本当に削除しますか？」というポップアップメッセージ
を表示してください。

メッセージの削除が完了したら、「メッセージを削除しました。」というフラッシュメッセージを
表示してください。

問題4

　顧客が職員からの返信に対して回答する機能を作成してください。詳細仕様は以下
の通りです。

受信メッセージの詳細表示画面の右上に「回答する」リンクを設置してください。

返信フォームのビジュアルデザインは職員が問い合わせに返信するフォームに準じます。
ただし、ページのタイトルは「メッセージへの回答」としてください。

返信フォームの確認画面には「以下の内容で回答します。よろしいですか？」というメッ
セージを表示してください。

返信メッセージの登録が完了したら、受信メッセージ一覧ページにリダイレクトしてくださ
い。また「メッセージに回答しました。」というフラッシュメッセージをページのヘッダ部分に表
示してください。

その他の仕様はstaff/repliesコントローラに準じます。

　以上で、『Ruby on Rails 6 実践ガイド』から『Ruby on Rails 6 実践ガイド: 機能拡張編』へと続
いてきたBaukis2の開発は終了です。お疲れさまでした。

付録A　演習問題解答

Chapter 3

問題1

$ bin/rails g migration alter_customers2

LIST db/migrate/20190101000009_alter_customers2.rb

 1 class AlterCustomers2 < ActiveRecord::Migration[6.0]

 2 def change

 3 + add_index :customers, [:gender, :family_name_kana,

:given_name_kana],

 4 + name: "index_customers_on_gender_and_furigana"

 5 end

 6 end

$ bin/rails db:migrate

LIST app/forms/staff/customer_search_form.rb

 :

 5 attr_accessor :family_name_kana, :given_name_kana,

 6 :birth_year, :birth_month, :birth_mday,

 7 - :address_type, :prefecture, :city, :phone_number

 7 + :address_type, :prefecture, :city, :phone_number,

 8 + :gender

 :

LIST app/views/staff/customers/_search_form.html.erb

 :

 11 m << p.drop_down_list_block(:birth_mday, "誕生日:",

1..31)

 12 + m << p.drop_down_list_block(:gender, "性別:",

 13 + [["男性", "male"], ["女性", "female"]])

 14 m.br

 15 m.div do

 16 m << p.drop_down_list_block(:address_type, "住所の
検索範囲:",

 17 [["自宅住所のみ", "home"], ["勤務先のみ", "work"

]])

 18 end

 :

LIST app/forms/staff/customer_search_form.rb

 :

 23 rel = rel.where(birth_year: birth_year) if

birth_year.present?

 24 rel = rel.where(birth_month: birth_month) if

birth_month.present?

 25 rel = rel.where(birth_mday: birth_mday) if

birth_mday.present?

 26 + rel = rel.where(gender: gender) if gender.present?

 27

 28 if prefecture.present? || city.present?

 :

LIST app/controllers/staff/customers_controller.rb

 :

 7 private def search_params

 8 params[:search].try(:permit, [

 9 :family_name_kana, :given_name_kana,

 10 :birth_year, :birth_month, :birth_mday,

 11 - :address_type, :prefecture, :city, :phone_number

 11 + :address_type, :prefecture, :city, :phone_number,

 12 + :gender

 13])

 14 end

 :

問題2

$ bin/rails g migration alter_addresses2

LIST db/migrate/20190101000010_alter_addresses2.rb

 1 class AlterAddresses2 < ActiveRecord::Migration[6.0]

 2 def change

 3 + add_index :addresses, :postal_code

 4 end

 5 end

$ bin/rails db:migrate

LIST app/forms/staff/customer_search_form.rb

 :

 5 attr_accessor :family_name_kana, :given_name_kana,

 6 :birth_year, :birth_month, :birth_mday,

 7 :address_type, :prefecture, :city, :phone_number,

 8 - :gender

 8 + :gender, :postal_code

 :

LIST app/views/staff/customers/_search_form.html.erb

 :

 21 m << p.text_field_block(:city, "市区町村:")

 22 m.br

 23 + m << p.text_field_block(:postal_code, "郵便番号:",

size: 7)

 24 m << p.text_field_block(:phone_number, "電話番号:")

 25 m << f.submit("検索")

 26 end %>

 27 <% end %>

LIST app/forms/staff/customer_search_form.rb

 :

 44 rel = rel.where("addresses.city" => city) if

city.present?

 45 end

 46 +

 47 + if postal_code.present?

 48 + case address_type

 49 + when "home"

 50 + rel = rel.joins(:home_address)

 51 + when "work"

 52 + rel = rel.joins(:work_address)

 53 + when ""

 54 + rel = rel.joins(:addresses)

 55 + else

 56 + raise

 57 + end

 58 +

 59 + rel = rel.where("addresses.postal_code" =>

postal_code)

 60 + end

 61

 62 if phone_number.present?

 63 rel =

rel.joins(:phones).where("phones.number_for_index" =>

phone_number)

 64 end

 :

 71 private def normalize_values

 72 self.family_name_kana =

normalize_as_furigana(family_name_kana)

 73 self.given_name_kana =

normalize_as_furigana(given_name_kana)

 74 self.city = normalize_as_name(city)

 75 self.phone_number =

normalize_as_phone_number(phone_number)

 76 .try(:gsub, /\D/, "")

 77 + self.postal_code =

normalize_as_postal_code(postal_code)

 78 end

 79 end

LIST app/controllers/staff/customers_controller.rb

 :

 7 private def search_params

 8 params[:search].try(:permit, [

 9 :family_name_kana, :given_name_kana,

 10 :birth_year, :birth_month, :birth_mday,

 11 :address_type, :prefecture, :city, :phone_number,

 12 - :gender

 12 + :gender, :postal_code

 13])

 14 end

 :

問題3

$ bin/rails g migration alter_phones1

LIST db/migrate/20190101000011_alter_phones1.rb

 1 class AlterPhones1 < ActiveRecord::Migration[6.0]

 2 def change

 3 + add_index :phones, "RIGHT(number_for_index, 4)"

 4 end

 5 end

$ bin/rails db:migrate

問題4

LIST app/forms/staff/customer_search_form.rb

 :

 5 attr_accessor :family_name_kana, :given_name_kana,

 6 :birth_year, :birth_month, :birth_mday,

 7 :address_type, :prefecture, :city, :phone_number,

 8 - :gender, :postal_code

 8 + :gender, :postal_code,

:last_four_digits_of_phone_number

 :

LIST app/views/staff/customers/_search_form.html.erb

 :

 21 m << p.text_field_block(:city, "市区町村:")

 22 m.br

 23 m << p.text_field_block(:postal_code, "郵便番号:",

size: 7)

 24 m << p.text_field_block(:phone_number, "電話番号:")

 25 + m <<

p.text_field_block(:last_four_digits_of_phone_number,

 26 + "電話番号下4桁:", size: 4)

 27 m << f.submit("検索")

 28 end %>

 29 <% end %>

LIST app/forms/staff/customer_search_form.rb

 :

 62 if phone_number.present?

 63 rel =

rel.joins(:phones).where("phones.number_for_index" =>

phone_number)

 64 end

 65 +

 66 + if last_four_digits_of_phone_number.present?

 67 + rel = rel.joins(:phones)

 68 + .where("RIGHT(phones.number_for_index, 4) = ?",

 69 + last_four_digits_of_phone_number)

 70 + end

 71

 72 rel = rel.distinct

 :

 77 private def normalize_values

 78 self.family_name_kana =

normalize_as_furigana(family_name_kana)

 79 self.given_name_kana =

normalize_as_furigana(given_name_kana)

 80 self.city = normalize_as_name(city)

 81 self.phone_number =

normalize_as_phone_number(phone_number)

 82 .try(:gsub, /\D/, "")

 83 self.postal_code =

normalize_as_postal_code(postal_code)

 84 + self.last_four_digits_of_phone_number =

 85 +

normalize_as_phone_number(last_four_digits_of_phone_number)

 86 end

 87 end

LIST app/controllers/staff/customers_controller.rb

 :

 7 private def search_params

 8 params[:search].try(:permit, [

 9 :family_name_kana, :given_name_kana,

 10 :birth_year, :birth_month, :birth_mday,

 11 :address_type, :prefecture, :city, :phone_number,

 12 - :gender, :postal_code

 12 + :gender, :postal_code,

:last_four_digits_of_phone_number

 13])

 14 end

 :

Chapter 5

問題1

LIST app/controllers/admin/base.rb

 1 class Admin::Base < ApplicationController

 2 + before_action :check_source_ip_address

 3 before_action :authorize

 :

 14 helper_method :current_administrator

 15 +

 16 + private def check_source_ip_address

 17 + raise IpAddressRejected unless

AllowedSource.include?("admin", request.ip)

 18 + end

 19

 20 private def authorize

 :

問題2

bin/rails r 'AllowedSource.create!(namespace: "admin",

ip_address: "172.20.0.1")'

"172.20.0.1" の部分は、エラー画面に表示されたIPアドレスで置き換えてください。

問題3

$ pushd spec/requests

$ cp staff/ip_address_restriction_spec.rb admin

$ popd

LIST spec/requests/admin/ip_address_restriction_spec.rb

 1 require "rails_helper"

 2

 3 describe "IPアドレスによるアクセス制限" do

 4 before do

 5

Rails.application.config.baukis2[:restrict_ip_addresses] =

true

 6 end

 7

 8 example "許可" do

 9 - AllowedSource.create!(namespace: "staff",

ip_address: "127.0.0.1")

 9 + AllowedSource.create!(namespace: "admin",

ip_address: "127.0.0.1")

 10 - get staff_root_url

 10 + get admin_root_url

 11 expect(response.status).to eq(200)

 12 end

 13

 14 example "拒否" do

 15 - AllowedSource.create!(namespace: "staff",

ip_address: "192.168.0.*")

 15 + AllowedSource.create!(namespace: "admin",

ip_address: "192.168.0.*")

 16 - get staff_root_url

 16 + get admin_root_url

 17 expect(response.status).to eq(403)

 18 end

 19 end

$ rspec spec/requests/admin/ip_address_restriction_spec.rb

問題4

LIST config/initializers/baukis2.rb

 1 Rails.application.configure do

 2 config.baukis2 = {

 3 staff: { host: "baukis2.example.com", path: "" },

 4 admin: { host: "baukis2.example.com", path: "admin"

},

 5 customer: { host: "example.com", path: "mypage" },

 6 - restrict_ip_addresses: true

 6 + restrict_ip_addresses: ENV["RESTRICT_IP_ADDRESS"] ==

"1"

 7 }

 8 end

$ RESTRICT_IP_ADDRESS=1 bin/rails s -b 0.0.0.0

Chapter 7

問題1

LIST app/models/program.rb

 :

 63 validates :application_end_time, date: {

 64 after: :application_start_time,

 65 before: -> (obj) {

obj.application_start_time.advance(days: 90) },

 66 allow_blank: true,

 67 if: -> (obj) { obj.application_start_time }

 68 }

 69 + validates :min_number_of_participants,

:max_number_of_participants,

 70 + numericality: {

 71 + only_integer: true, greater_than_or_equal_to: 1,

 72 + less_than_or_equal_to: 1000, allow_nil: true

 73 + }

 74 validate do

 75 if min_number_of_participants &&

max_number_of_participants &&

 76 min_number_of_participants >

max_number_of_participants

 77 errors.add(:max_number_of_participants,

:less_than_min_number)

 78 end

 79 end

 80 end

問題2

LIST app/models/program.rb

 1 class Program < ApplicationRecord

 2 - has_many :entries, dependent: :destroy

 2 + has_many :entries, dependent: :restrict_with_exception

 :

問題3

LIST app/models/program.rb

 :

 77 errors.add(:max_number_of_participants,

:less_than_min_number)

 78 end

 79 end

 80 +

 81 + def deletable?

 82 + entries.empty?

 83 + end

 84 end

問題4

LIST app/controllers/staff/programs_controller.rb

 :

 59 def destroy

 60 program = Program.find(params[:id])

 61 - program.destroy!

 62 - flash.notice = "プログラムを削除しました。"

 61 + if program.deletable?

 62 + program.destroy!

 63 + flash.notice = "プログラムを削除しました。"

 64 + else

 65 + flash.alert = "このプログラムは削除できません。"

 66 + end

 67 redirect_to :staff_programs

 68 end

 69 end

Chapter 9

問題1

LIST config/routes.rb

 :

 4 constraints host: config[:staff][:host] do

 5 namespace :staff, path: config[:staff][:path] do

 6 root "top#index"

 7 get "login" => "sessions#new", as: :login

 8 resource :session, only: [:create, :destroy]

 9 - resource :account, except: [:new, :create,

:destroy]

 9 + resource :account, except: [:new, :create,

:destroy] do

 10 + patch :confirm

 11 + end

 :

LIST app/controllers/staff/accounts_controller.rb

 :

 6 def edit

 7 @staff_member = current_staff_member

 8 end

 9 +

 10 + # PATCH

 11 + def confirm

 12 + @staff_member = current_staff_member

 13 +

@staff_member.assign_attributes(staff_member_params)

 14 + if @staff_member.valid?

 15 + render action: "confirm"

 16 + else

 17 + render action: "edit"

 18 + end

 19 + end

 20

 21 def update

 22 @staff_member = current_staff_member

 23 @staff_member.assign_attributes(staff_member_params)

 24 - if @staff_member.save

 25 - flash.notice = "アカウント情報を更新しました。"

 26 - redirect_to :staff_account

 27 - else

 28 - render action: "edit"

 29 - end

 24 + if params[:commit]

 25 + if @staff_member.save

 26 + flash.notice = "アカウント情報を更新しました。"

 27 + redirect_to :staff_account

 28 + else

 29 + render action: "edit"

 30 + end

 31 + else

 32 + render action: "edit"

 33 + end

 34 end

 :

LIST app/views/staff/accounts/edit.html.erb

 1 <% @title = "アカウント情報編集" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form">

 5 - <%= form_with model: @staff_member, url:

:staff_account do |f| %>

 5 + <%= form_with model: @staff_member, url:

:confirm_staff_account do |f| %>

 6 - <%= render "form", f: f %>

 6 + <%= render "form", f: f, confirming: false %>

 7 <div class="buttons">

 8 - <%= f.submit "更新" %>

 8 + <%= f.submit "確認画面へ進む" %>

 9 <%= link_to "キャンセル", :staff_account %>

 10 </div>

 11 <% end %>

 12 </div>

LIST app/views/staff/accounts/confirm.html.erb (New)

 1 <% @title = "アカウント情報更新（確認）" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form" class="confirming">

 5 <%= form_with model: @staff_member, url:

:staff_account do |f| %>

 6 <p>以下の内容でアカウントを更新します。よろしいですか？</p>

 7 <%= render "form", f: f, confirming: true %>

 8 <div class="buttons">

 9 <%= f.submit "更新" %>

 10 <%= f.submit "訂正", name: "correct" %>

 11 </div>

 12 <% end %>

 13 </div>

LIST app/views/staff/accounts/_form.html.erb

 1 <%= markup do |m|

 2 - p = StaffMemberFormPresenter.new(f, self)

 2 + p = confirming ? ConfirmingUserFormPresenter.new(f,

self) :

 3 + StaffMemberFormPresenter.new(f, self)

 4 m << p.notes

 5 p.with_options(required: true) do |q|

 6 m << q.text_field_block(:email, "メールアドレス", size:
32)

 7 m << q.full_name_block(:family_name, :given_name,

"氏名")

 8 m << q.full_name_block(:family_name_kana,

:given_name_kana, "フリガナ")

 9 end

 10 end %>

問題2

LIST spec/requests/staff/my_account_management_spec.rb

 :

 39 describe "更新" do

 40 let(:params_hash) { attributes_for(:staff_member) }

 41 let(:staff_member) { create(:staff_member) }

 42

 43 example "email属性を変更する" do

 44 params_hash.merge!(email: "test@example.com")

 45 patch staff_account_url,

 46 - params: { id: staff_member.id, staff_member:

params_hash }

 46 + params: { id: staff_member.id, staff_member:

params_hash, commit: "更新" }

 47 staff_member.reload

 48 expect(staff_member.email).to

eq("test@example.com")

 49 end

 50

 51 example "例外ActionController::ParameterMissingが発生"

do

 52 - expect { patch staff_account_url, params: { id:

staff_member.id } }.

 53 - to

raise_error(ActionController::ParameterMissing)

 52 + expect {

 53 + patch staff_account_url, params: { id:

staff_member.id, commit: "更新" }

 54 + }.to

raise_error(ActionController::ParameterMissing)

 55 end

 56

 57 example "end_dateの値は書き換え不可" do

 58 params_hash.merge!(end_date: Date.tomorrow)

 59 expect {

 60 patch staff_account_url,

 61 - params: { id: staff_member.id, staff_member:

params_hash }

 61 + params: { id: staff_member.id, staff_member:

params_hash, commit: "更新" }

 62 }.not_to change { staff_member.end_date }

 63 end

 64 end

 65 end

問題3

LIST spec/features/staff/account_management_spec.rb (New)

 1 require "rails_helper"

 2

 3 feature "職員によるアカウント管理" do

 4 include FeaturesSpecHelper

 5 let(:staff_member) { create(:staff_member) }

 6

 7 before do

 8 switch_namespace(:staff)

 9 login_as_staff_member(staff_member)

 10 click_link "アカウント"

 11 click_link "アカウント情報編集"

 12 end

 13

 14 scenario "職員がメールアドレス、氏名、フリガナを更新する" do

 15 fill_in "メールアドレス", with: "test@oiax.jp"
 16 fill_in "staff_member_family_name", with: "試験"

 17 fill_in "staff_member_given_name", with: "花子"

 18 fill_in "staff_member_family_name_kana", with: "テス
ト"

 19 fill_in "staff_member_given_name_kana", with: "テスト"

 20 click_button "確認画面へ進む"

 21 click_button "訂正"

 22 fill_in "staff_member_family_name_kana", with: "シケ
ン"

 23 fill_in "staff_member_given_name_kana", with: "ハナコ"

 24 click_button "確認画面へ進む"

 25 click_button "更新"

 26

 27 staff_member.reload

 28 expect(staff_member.email).to eq("test@oiax.jp")

 29 expect(staff_member.family_name).to eq("試験")

 30 expect(staff_member.given_name).to eq("花子")

 31 expect(staff_member.family_name_kana).to eq("シケン")

 32 expect(staff_member.given_name_kana).to eq("ハナコ")

 33 end

 34

 35 scenario "職員がメールアドレスに無効な値を入力する" do

 36 fill_in "メールアドレス", with: "test@@oiax.jp"

 37 click_button "確認画面へ進む"

 38

 39 expect(page).to have_css(

 40 "div.field_with_errors input#staff_member_email")

 41 end

 42 end

Chapter 12

問題1

LIST config/routes.rb

 :

 64 - resources :messages, only: [:new, :create] do

 64 + resources :messages, only: [:index, :new, :create

] do

 65 post :confirm, on: :collection

 66 end

 :

LIST app/views/customer/top/dashboard.html.erb

 :

 4 <ul class="menu">

 5 <%= link_to "プログラム一覧", :customer_programs %>

 6 + <%= link_to "受信メッセージ一覧", :customer_messages %>

 7

LIST app/controllers/customer/messages_controller.rb

 1 class Customer::MessagesController < Customer::Base

 2 + def index

 3 + @messages =

current_customer.inbound_messages.sorted.page(params[:page])

 4 + end

 5

 6 def new

 :

LIST app/views/customer/messages/index.html.erb (New)

 1 <% @title = "受信メッセージ一覧" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 <%= paginate @messages %>

 6

 7 <table class="listing">

 8 <tr>

 9 <th>送信者</th>

 10 <th>件名</th>

 11 <th>作成日時</th>

 12 </tr>

 13 <% @messages.each do |m| %>

 14 <% p = MessagePresenter.new(m, self) %>

 15 <tr>

 16 <td><%= p.sender %></td>

 17 <td><%= p.truncated_subject %></td>

 18 <td><%= p.created_at %></td>

 19 </tr>

 20 <% end %>

 21 </table>

 22

 23 <%= paginate @messages %>

 24 </div>

問題2

LIST config/routes.rb

 :

 64 - resources :messages, only: [:index, :new, :create

] do

 64 + resources :messages, only: [:index, :show, :new,

:create] do

 65 post :confirm, on: :collection

 66 end

 :

LIST app/controllers/customer/messages_controller.rb

 1 class Customer::MessagesController < Customer::Base

 2 def index

 3 @messages =

current_customer.inbound_messages.sorted.page(params[:page])

 4 end

 5 +

 6 + def show

 7 + @message =

current_customer.inbound_messages.find(params[:id])

 8 + end

 9

 10 def new

 :

LIST app/views/customer/messages/index.html.erb

 :

 7 <table class="listing">

 8 <tr>

 9 <th>送信者</th>

 10 <th>件名</th>

 11 <th>作成日時</th>

 12 + <th>アクション</th>

 13 </tr>

 14 <% @messages.each do |m| %>

 15 <% p = MessagePresenter.new(m, self) %>

 16 <tr>

 17 <td><%= p.sender %></td>

 18 <td><%= p.truncated_subject %></td>

 19 <td><%= p.created_at %></td>

 20 + <td class="actions">

 21 + <%= link_to "詳細", customer_message_path(m)

%>

 22 + </td>

 23 </tr>

 24 <% end %>

 25 </table>

 :

LIST app/views/customer/messages/show.html.erb (New)

 1 <% @title = "メッセージ詳細" %>

 2 <h1><%= @title %></h1>

 3

 4 <div class="table-wrapper">

 5 <table class="attributes">

 6 <% p = MessagePresenter.new(@message, self) %>

 7 <tr><th>送信者</th><td><%= p.sender %></td></tr>

 8 <tr><th>件名</th><td><%= p.subject %></td></tr>

 9 <tr><th>作成日時</th><td class="date"><%=

p.created_at %></td></tr>

 10 </table>

 11

 12 <div class="body"><%= p.formatted_body %></div>

 13 </div>

LIST app/assets/stylesheets/customer/divs_and_spans.scss

 1 @import "colors";

 2 @import "dimensions";

 3

 4 - div.description {

 4 + div.description, div.body {

 5 margin: $wide;

 6 padding: $wide;

 7 background-color: $very_light_gray;

 8 }

問題3

LIST config/routes.rb

 :

 64 - resources :messages, only: [:index, :show, :new,

:create] do

 64 + resources :messages, except: [:edit, :update] do

 65 post :confirm, on: :collection

 66 end

 :

LIST app/controllers/customer/messages_controller.rb

 1 class Customer::MessagesController < Customer::Base

 2 def index

 3 - @messages =

current_customer.inbound_messages.sorted.page(params[:page])

 3 + @messages =

current_customer.inbound_messages.where(discarded: false)

 4 + .sorted.page(params[:page])

 5 end

 :

 42 private def customer_message_params

 43 params.require(:customer_message).permit(:subject,

:body)

 44 end

 45 +

 46 + def destroy

 47 + message =

current_customer.inbound_messages.find(params[:id])

 48 + message.update_column(:discarded, true)

 49 + flash.notice = "メッセージを削除しました。"

 50 + redirect_back(fallback_location:

:customer_messages)

 51 + end

 52 end

LIST app/views/customer/messages/index.html.erb

 :

 20 <td class="actions">

 21 <%= link_to "詳細", customer_message_path(m) %>

 22 + <%= link_to "削除", customer_message_path(m),

method: :delete,

 23 + data: { confirm: "本当に削除しますか？" } %>

 24 </td>

 :

問題4

LIST config/routes.rb

 :

 64 resources :messages, except: [:edit, :update] do

 65 post :confirm, on: :collection

 66 + resource :reply, only: [:new, :create] do

 67 + post :confirm

 68 + end

 69 end

 :

LIST app/views/customer/messages/show.html.erb

 :

 4 <div class="table-wrapper">

 5 + <div class="links">

 6 + <%= link_to "回答する",
new_customer_message_reply_path(@message) %>

 7 + </div>

 8 +

 9 <table class="attributes">

 :

$ bin/rails g controller customer/replies

$ pushd app/views

$ cp staff/replies/* customer/replies/

$ popd

LIST app/controllers/customer/replies_controller.rb

 1 - class Customer::RepliesController <

ApplicationController

 1 + class Customer::RepliesController < Customer::Base

 2 + before_action :prepare_message

 3 +

 4 + def new

 5 + @reply = CustomerMessage.new

 6 + end

 7 +

 8 + # POST

 9 + def confirm

 10 + @reply =

CustomerMessage.new(customer_message_params)

 11 + @reply.parent = @message

 12 + if @reply.valid?

 13 + render action: "confirm"

 14 + else

 15 + flash.now.alert = "入力に誤りがあります。"

 16 + render action: "new"

 17 + end

 18 + end

 19 +

 20 + def create

 21 + @reply =

CustomerMessage.new(customer_message_params)

 22 + if params[:commit]

 23 + @reply.parent = @message

 24 + if @reply.save

 25 + flash.notice = "メッセージに回答しました。"

 26 + redirect_to :customer_messages

 27 + else

 28 + flash.now.alert = "入力に誤りがあります。"

 29 + render action: "new"

 30 + end

 31 + else

 32 + render action: "new"

 33 + end

 34 + end

 35 +

 36 + private def prepare_message

 37 + @message = StaffMessage.find(params[:message_id])

 38 + end

 39 +

 40 + private def customer_message_params

 41 + params.require(:customer_message).permit(:subject,

:body)

 42 + end

 43 end

LIST app/views/customer/replies/new.html.erb

 1 - <% @title = "問い合わせへの返信" %>

 1 + <% @title = "メッセージへの回答" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form" class="table-wrapper">

 5 <%= form_with model: @reply,

 6 - url: confirm_staff_message_reply_path(@message) do

|f| %>

 6 + url: confirm_customer_message_reply_path(@message)

do |f| %>

 7 <%= render "form", f: f %>

 8 <div class="buttons">

 9 <%= f.submit "確認画面へ進む" %>

 10 - <%= link_to "キャンセル", :staff_messages %>

 10 + <%= link_to "キャンセル", :customer_messages %>

 11 </div>

 12 <% end %>

 13 <%= render "message" %>

 14 </div>

LIST app/views/customer/replies/confirm.html.erb

 1 - <% @title = "問い合わせへの返信（確認）" %>

 1 + <% @title = "メッセージへの回答（確認）" %>

 2 <h1><%= @title %></h1>

 3

 4 <div id="generic-form" class="table-wrapper">

 5 - <%= form_with model: @reply, url:

staff_message_reply_path(@message) do |f| %>

 5 + <%= form_with model: @reply, url:

customer_message_reply_path(@message) do |f| %>

 6 <%= render "confirming_form", f: f %>

 7 <div class="buttons">

 8 <%= f.submit "送信" %>

 9 <%= f.submit "訂正", name: "correct" %>

 10 - <%= link_to "キャンセル", :staff_messages %>

 10 + <%= link_to "キャンセル", :customer_messages %>

 11 </div>

 12 <% end %>

 13 <%= render "message" %>

 14 </div>

LIST app/views/customer/replies/_confirming_form.html.erb

 1 <%= markup(:div) do |m|

 2 p = ConfirmingFormPresenter.new(f, self)

 3 - m.div "以下の内容で返信します。よろしいですか？"

 3 + m.div "以下の内容で回答します。よろしいですか？"

 4 m << p.text_field_block(:subject, "件名")

 5 m << p.text_area_block(:body, "本文")

 6 end %>

_form.html.erb および _message.html.erb は修正不要。

■著者紹介

黒田 努（くろだ つとむ）

東京大学教養学部卒。同大学院総合文化研究科博士課程満期退学。ギリシャ近
現代史専攻。専門調査員として、在ギリシャ日本国大使館に3年間勤務。中学生の頃
に出会ったコンピュータの誘惑に負け、IT業界に転身。

株式会社ザッパラス技術部長、株式会社イオレ取締役を経て、技術コンサルティングと
IT教育を事業の主軸とする株式会社オイアクスを設立。現在、同社代表取締役社長。
また、2011年末にRuby on Railsによるウェブサービス開発専業の株式会社ルビキタスを知
人と共同で設立し同社代表に就任。2019年、株式会社オイアクスの社名を株式会社コ
アジェニックに変更し、関数型言語Elixirを使った新規WebサービスTeamgenik（チームジ
ェニック）の事業を開始。

株式会社コアジェニック：https://coregenik.com/

株式会社ルビキタス：https://rubyquitous.co.jp/

Twitter：tkrd_coregenik

Facebook : https://www.facebook.com/oiax.jp

■執筆協力

藤山啓子、新真理

■STAFF

カバーデザイン 岡田 章志

EPUB制作 株式会社コアジェニック

イラスト 亀谷里美

　 　

編集・本文デザイン・制作 TSUC

https://coregenik.com/
https://rubyquitous.co.jp/
https://www.facebook.com/oiax.jp

■商品に関する問い合わせ先

インプレスブックスのお問い合わせフォームより入力してください。

https://book.impress.co.jp/info/

上記フォームがご利用頂けない場合のメールでの問い合わせ先

info@impress.co.jp

本書の内容に関するご質問は、お問い合わせフォーム、メールまたは封書にて書名・
ISBN・お名前・電話番号と該当するページや具体的な質問内容、お使いの動作環
境などを明記のうえ、お問い合わせください。

電話やFAX等でのご質問には対応しておりません。なお、本書の範囲を超える質問に
関しましてはお答えできませんのでご了承ください。

インプレスブックス（https://book.impress.co.jp/）では、本書を含めインプレスの出
版物に関するサポート情報などを提供しておりますのでそちらもご覧ください。

該当書籍の奥付に記載されている初版発行日から1年が経過した場合、もしくは該
当書籍で紹介している製品やサービスについて提供会社によるサポートが終了した場
合は、ご質問にお答えしかねる場合があります。

Ruby on Rails 6 実践ガイド［機能拡張編］

　

2020年05月21日　初版第1刷発行

　

著者　　 黒田 努

発行人　 小川 享

編集人　 高橋隆志

発行所　 株式会社インプレス

〒101-0051 東京都千代田区神田神保町一丁目 105番地

https://book.impress.co.jp/info/
https://book.impress.co.jp/

ホームページ　https://book.impress.co.jp/

本書は著作権法上の保護を受けています。本書の一部あるいは全部について（ソフト
ウェア及びプログラムを含む）、株式会社インプレスジャパンから文書による許諾を得ずに、
いかなる方法においても無断で複写、複製することは禁じられています。

Copyright © 2020 Tsutomu Kuroda. All rights reserved.

ISBN978-4-295-00887-3

https://book.impress.co.jp/

	大扉
	はじめに
	本書の表記
	本書で使用するコード
	読者サポートページ
	本書で使用した実行環境

	第1章 Baukis2の概要と環境構築手順
	1.1 顧客管理システムBaukis2
	1.2 Baukis2のセットアップ、起動、終了

	第2章 Baukis2ソースコードの要点
	2.1 アプリケーション本体
	2.2 テストコード

	第3章 検索フォーム
	3.1 顧客検索フォーム
	3.2 検索機能の実装
	3.3 演習問題

	第4章 次回から自動でログイン
	4.1 顧客のログイン・ログアウト機能
	4.2 自動ログイン機能の追加
	4.3 RSpecによるテスト

	第5章 IPアドレスによるアクセス制限
	5.1 IPアドレスによるアクセス制限
	5.2 許可IPアドレスの管理
	5.3 演習問題

	第6章 多対多の関連付け
	6.1 多対多の関連付け
	6.2 プログラム管理機能（1）
	6.3 パフォーマンスの改善

	第7章 複雑なフォーム
	7.1 プログラム管理機能（2）
	7.2 プログラム管理機能（3）
	7.3 プログラム申込者管理機能
	7.4 演習問題

	第8章 トランザクションと排他的ロック
	8.1 プログラム一覧表示・詳細表示機能（顧客向け）
	8.2 プログラム申し込み機能
	8.3 排他制御
	8.4 プログラム申し込み機能の仕上げ

	第9章 フォームの確認画面
	9.1 顧客自身によるアカウント管理機能
	9.2 確認画面の仮実装
	9.3 確認画面の本実装
	9.4 演習問題

	第10章 Ajax
	10.1 顧客向け問い合わせフォーム
	10.2 問い合わせ到着の通知

	第11章 ツリー構造
	11.1 問い合わせの一覧表示と削除
	11.2 メッセージツリーの表示
	11.3 パフォーマンスチューニング

	第12章 タグ付け
	12.1 問い合わせへの返信機能
	12.2 メッセージへのタグ付け
	12.3 タグによるメッセージの絞り込み
	12.4 一意制約と排他的ロック
	12.5 演習問題

	付録A 演習問題解答
	著者紹介
	奥付

