
―

ル
一

■
鰤
目
Ｆ
Ｌ

」

Kubvによる
クローラー開発技法
巡回・解 析機能の実装と21の運用例

滲

r

写

薗

暉

ハ

′

¬

L¬
」

/

~¬

l

佐々木拓郎 /るびきち鶴

ヽ
＼

」
¬

L

L

k___ 目

B Creative

Rubyによる
クロゴラー開発技法
塁回・解析機能の実装と21の運用例
E々木拓郎/るびきち目

Rubyによる
クロゴラー開発技法
巡回・解析機能の実装と21の運用例
佐々木拓郎//るびきち日

■本書サポートベージ

本書内で紹介しているサンプルスクリプトは、本書サポートサイトからダウンロードすることができます。下

記のURLを ご参照ください。
また、本書をお読みになったご感想、ご意見など、お気づきになった点がございましたらお寄せください。

サポートサイト

http://isbn.sbcr.Jp/80354/

■本文中のシステム・製品名は、一般に各社の商標または登録商標です。

■本書では、TM、 Rマ ークは明記していません。

■インターネットのWebサ イト、URLな どは、予告なく変更されることがあります。

③2014 本書の内容は、著作権法上の保護を受けています。著作権者、出版権者の文書による

許諾を得ずに、本書の内容の一部、あるいは全部を無断で複写・複製・転載することは、

禁じられております。

はじめに

本書はRubyでクローラーを開発・運用できるようにするための本です。クロー

ラーを使えば情報収集のスピードが速くなり、最新情報をいち早く入手できるよう

になります。本書を通じてクローラーを実際に開発・運用して、それを体感してく

ださい。

クローラーというのは、自動的にWebサ イトを巡回して情報収集するプログラ
ムのことです。Google botな どの検索エンジンロボットが代表的ですが、個人・ビ

ジネスに関わらず、さまざまな場面で使われています。そう聞くと難しそうに感じ

るかもしれませんが、まったくそんなことはなく、小規模なクローラーはRuby初

級者でも書けます。実は、ファイルから情報を抜き出す普通のRubyス クリプトに、

たった1行加えるだけでクローラーに変身してしまいます。もしかしたら知らず識

らずのうちにあなたもクローラーを作っていたのかもしれません。クローラーは身

近な存在です。

とはいえクローラーを作るにはいくつか注意点が必要です。関連する法律を守る

必要がありますし、一歩間違えたら相手サイトを攻撃することになってしまいます。

なんといっても岡崎図書館事件でクローラー開発者が逮捕されました。そのことか

ら、よリー層礼儀正しいクローラーを作る技術が世に求められています。

第1章では小さなスクリプトをクローラー化することを通じて、クローラー開発

の全体像を学んでいただきます。標準ライブラリのみで完結するのでお手軽です。

第2章ではさまざな外部ライブラリ(Gem)を 用いて本格的なクローラー開発に

入っていきます。それぞれのライブラリの特徴を知ったうえで用途に応じて使い分

けていきます。

第3章ではデータの解析の話です。手っ取り早く正規表現を使うか保守を考えて

構文解析を使うかの選択について、日本語文字コードの扱い、自然言語処理をとり

あげます。

第4章では高度なクローラーを作るにあたってぶつかる問題に対処します。デー

タの保存方法、データベース活用、効果的な開発・デバッグ方法、Anemoneの 高

度な機能についてです。

第5章ではGoogle、 Amazon、 Twitter、 Facebookな ど実際のサイトを使ってク

ローラーを作成していきます。画像を収集したり、 トレンドや株価などのビジネス
に役立つ情報も扱います。

第6章ではクローラーの運用ノウハウを余すことなく紹介します。サーバ・クラ

ウドの活用、サイト変更に伴うメンテナンス、その他高度な内容を含みます。

2014年 8月 るびきち

10分クローラーの作成

1… 1

1‐ 2

1‐ 3

1‐4

1‐ 5

1‐ 6

イントロダクション……… ・ ・
1‐ 1‐ 1 クローラーとは ・・・ ・ ・

1‐ 1‐2 Rubyと は・ ・………………・ … ・

クローラー「GNU Wget」… … ・ ―
1‐ 2‐ l Wgetと は・… ・… ・ ・ ・ ・ ・… ・…… ・…

1‐ 2‐2 インストール・ ・ … ………… ・

1‐ 2‐3 Wgetの 簡単な使い方 ・ ….…

1‐ 2‐4 クローラーとしてのWget… …… …

ク ロ ー ラ ー を 作 る に あ た つ て の Rubyの 基 礎
1‐ 3‐ l Rubyの特性………… ・ ・ ・ … ・・ …………
1‐ 3‐2 文字列処理
1‐ 3‐3 正規表現 ・… …… …
1‐ 3‐4 ファイルを開く ―

Rubyでテストサーバを立てる
1‐ 4‐1 標準ライブラリ「WEBrick」 でお手軽 httpd

l‐ 4‐2 URLか ら規則的な内容のページを表示する

1‐ 4‐3 Wgetの オプションを検証する ・ .… ………

超簡単 !10分で作るクローラー ・ … …
1‐ 5‐ 1 概略
1‐ 5‐2 HTMLを解析する ・

1‐ 5‐3 Wgetを Rubyか ら呼ぶ … ・

1‐54 最新記事をテキス トで出力する

ク ロ ー ラ ー を 拡 張 す る ・…

1‐ 6‐ l open― uriに対応させる … ・ ・ .

1‐ 6‐2 RSS2.0で の出力に対応させる

1‐6■ リファクタリング ・ ・ ・…・… ・

1‐ 6‐4 RSSサ ーバにする …・・ ‐

12

16

19

34

34

43

47

51

_1

=は
露
~~~~~~頁

||‐襴 lal,1(.・ Z

Contents

クローラー作成の基礎

2… 1

2…2

2‐3

2¨4

2‐5

2¨6

2…7

2‐8

ク ロ ー ラ ー の 目 的 と構 造 …………………
 ……

2‐卜1 クローラーの目的  ・…・  ―……  ・…………

2‐ 1‐2 クローラーの構造 ……… ……………  ・ …… .

2‐卜3 クローラーが利用するライブラリ ・ ・ ………… …
2‐ 1‐4 Ruby製 のクローラー…………………  ………・・

Anemoneを 利 用 す る …… …
 ・ … …

2‐ 2‐ l Anemoneの 機能¨ ・̈ …… …………… …… ・・…

2‐ 2‐2 Anemoneの内部構造・ ………………………… ・……

2‐ 2‐3 Anemoneの実行モデル…  …  ・… ………………

Anemoneの イ ン ス トー ル (Windows編 )

2‐ 3‐ l Nokogiriの インス トール ー ・ ・… …… … ……
2‐ 3‐2 Anemoneの インストール ……  ・― …… … ・―

2‐ 3‐3 コンパイルツールを利用してビル ドする場合 …………

Anemoneの イ ン ス トー ル (Mac編 )一 ・

2‐ 4‐ 1[ibxmtと ubxsは tibiconvの インストール ……・ ・

2‐ 4‐2 Anemoneの インス トール ー…………… … ……・・

基 本 的 な ク ロ ー ラ ー を 作 成 す る  ―
2‐ 5‐ l Amazonからジャンルごとのベストセラーを取得する

2‐ 5‐2 クローリング機能の作成 …… … ……………… ・…

2‐ 5‐3 スクレイピング機能の作成 … ・――・・・・ ……

2‐ 5‐4 RSSを利用する方法 ……  …  … ・ … ……

ク ロ ー リ ン グ が で き な い 場 合 の 対 処 法

2‐ 6‐ 1 クローリングができない原因 ………… … ・ …

2‐ 6‐2 プロキシサーバ    …   … …… ………………
2‐ 6‐3 サイト側にアクセス拒否されるケース……………… ・

行儀のよいクローラーを作るには一 一̈
2‐ 7‐ l  robots.txt ………… ・―・  ・ ・  ・・   ・ ・  ・

2‐ 7…2 サイ トの利用規約 ………………… … …・ … …

2‐ 7‐3 取得したデータの取り扱いと著作権 ……… …………
2‐ 7‐4 Webサイトのリソース圧迫と業務妨害… ……・ …

2‐ 7‐5 クローラーとAP卜 ・ …  …… … …………………

ブ ラ ウ ザ タ イ プ の ク ロ ー ラ ー …………………

2‐ 8‐ 1 画面テス トツール ・ … …… ・ ・ ………………

2‐ 8‐2 ブラウザタイプのクローラー作成の準備…… ………

・56

56

・56

・60

・62

・66

67

・71

・72

・74

・74

・75

76

・78

・78

・80

・81

81

86

91

98

101

102

102

104

109

110

112

113

113

114

114

115

116



Contcnls

2‐ 8‐3 ログインが必要なページの対処
2‐ 8‐4 」avaScriptを 多用しているページの対処
2‐ 8‐5 足りない機能を補完する

収集したデータを分析する

124

134

138

3‐ 1

3¨2

3‐3

3…4

3‐5

3‐6

収集したデータを分析する
3‐ 1‐ 1 正規表現と構文解析   ・…
3‐ 1‐2 日本語の文字コー ドと日本語処理

HTML解析と正規表現 ・
3‐ 2‐ l Rubyにおける正規表現の実装・

3‐ 2‐2 正規表現のオプション
3‐ 2‐3 正規表現のパターン

文 字 コ ー ドの 対 処 法    ―

3‐ 3‐ l Rubyにおける文字コードの取り扱い

3‐ 3‐2 Nokogiriと 文字コード・・ …
3‐ 3‐3 Anemoneと 文字コー ド

RSSの解析
3‐ 4‐ 1 名前空間 (Namespace)

3‐ 4‐2 RSSl.0  ・  ― . .

3‐ 4‐3 RSS2.0

3‐ 4‐4 Atom l.0          ・ .

3‐4‐5 RSS・ Atomの解析

HTMLの解析
3‐ 5‐ l Nokogiriの クラス構造

3‐ 5‐2 Nokog面、XPathの使い方 ・ ・

3‐ 5‐3 中心的な3つのクラス      ・ .

3‐ 5‐4 簡単なXPathの抽出方法

自 然 言 語 を 使 つ た 日本 語 の 処 理

3‐ 6‐ 1 形態素解析と特徴語抽出

3‐ 6‐2 日本語処理・      ‐…

148

148

149

149

150

154

155

156

156

160

161

163

164

164

166

167

168

172

172

172

175

183

187

187

188

掏□И 高度な利用方法

4…1データの保存方法
4‐卜1 データストレージ

4‐ 1‐2 ファイルに保存

．Ⅵ

198

198

198

3



4‐2

4‐3

4‐4

4‐5

4Ⅲ6

4‐ 1‐3 データベースとの連携… ・…… …………… ・

4‐ 1‐4 SQLite3に イ呆存 ……  ・ ・――・・ ・̈……… ・・・・・

4‐ 1‐5 ⅣongoDBに F果存・・ ・―・・ ・…・・ ・ ・………………

4‐ 1‐6 MySQLに 1呆イ宇 ・ ―・ ―̈̈ ・―・―――…………

ク ロ ー ラ ー の 開 発 と デ バ ッ グ 方 法
… …

4‐ 2‐ l Rubyプ ログラムのデバッグ方法……… … ………

4‐ 2‐2 開発プロキシを使ったクローラーの開発・・ ・…

クローリングとスクレイピングの分離
4‐ 3‐ 1 スクレイピング部分の分離 ・………………  …

4‐ 3‐2 分離度を上げる …・ ・・… ・ ……… ・ ・

クローラーを効率的に動かすには……

4‐4‐ 1 多重度を上げる …………… … … ・・・ …… ・

4‐ 4‐2 タイムアウトの調整 ……………… ・ ・ … ……

4‐ 4‐3 HTTP Compressionに よる通信データの圧縮 ・…

4‐ 4‐4 未取得のデータのみ取得する……・・・・ ………

4‐ 4‐5 エラーコードに対する処理…………… ・・ … ・

Anemoneの オ プ シ ョ ン ー 覧
……  …

4‐ 5‐ l Anemoneの オプション  ・……  ……・・……

4‐ 5‐2 ス トレージオプション (storage)・  ……・ …

4‐ 4‐3 クローリング間隔オプション (detay) …… ・

4‐ 5‐4 巡回戦略オプション (skip_query_StringS》  ・…

4‐ 5‐5 探索戦略オプション(depth_umit)

AP:を 利 用 し た 収 集 … …… …   ・ …

4‐ 6… l APiを利用するメリット ・ ・ …

4‐ 6‐2 Anlazon Product Advertising API  ・  … ・ ・

目的別クローラーの作成ご
tl l)lCl・ ι′

Contents

・200

・201

・206

213

219

・219

224

・228

228

229

・232

・232

・236

237

237

238

・240

・240

・240

・241

・241

・241

242

242

…243

248

・248

250

251

256

256

260

・263

・263

5… 1

5¨2

5‐3

Googieの検索結果を取得する
5‐卜l Googleの検索結果のスクレイピング

5‐ 1‐2 Gemを利用する ・ ・ ………

5‐卜3 Googte Custom Search APIを 利用する

ブ ロ グ ヘ の ク ロ ー リ ン グ

5‐ 2‐ 1 個別プログの記事取得 ・ ・…

5‐ 2‐2 本文抽出・  ― ・・・ … ・

Amazonのデータを取得する・
5‐ 3‐ 1 7綺品 lD「ASIN」   ―・―・  ・ … ・・

■



5‐4

5‥5

5‐6

5‐7

5‐8

5‐9

5¨ 10

5‐ 11

5‐ 12

5‐3‐2 商品IDの取得 … ……・・

5‐ 3‐3 商品データの取得 …      ・ …
5‐ 3‐4 新着・ランキング・セール    ー

Twitterの デ ー タ 収 集  …

5‐ 4‐l HTMLか らのクロー リング・

5‐4‐2 Twittera)APl       ..

5‐4‐ 3 Twitter REST API   .…

5‐4‐4 Twitter Streaming API

Facebookへのクローリング・
5‐5‐ l  Facebook Graph APIと FQL

5‐5‐2 認i証が必要ないFacebook Graph API ・

5‐5‐3 認証が必要なFacebook Graph API

画像を収集する … …
5‐6‐ l Flickrか らクローリングで収集する ・ …

5‐6‐2 Flickr API        … …・       ・・

YouTubeか ら動画を収集する ・
5‐ 7‐ 1 動画のURLを 収集する

5‐ 7‐2 動画をダウンロードする・ ・

iTuneS Storeの 順位を取得する
5‐ 3‐ l iTunes Storeのランキング  …
5‐ 3‐2 カテゴリIDと ランキング種別
5‐3‐3 iTunesア プリのランキングを取得する

Googte Playの順位を取得する
5‐ 9‐ l Googte Ptayの ランキング

5‐9‐ 2 Googte Ptayの クローラーライブラリ

5‐ 9‐3 カテゴリlDと ランキング種別

SEOに役立てる・
5‐ 10‐ 1 検索順位を収集する      …
5‐ 10‐2 被 リンク

Wikipediaの デ ー タ を 活 用 す る
5‐ 11‐ l Wikipediaか らのクローリングとデータ

5‐ 1卜 2 Wikipediaの カテゴリの活用   ……

キ ー ワ ー ドを 収 集 す る    ……

5‐ 12‐ l VVikipediaの タイトル    .  ・… ・

5‐ 12‐2 はてなキーワード   ・ ・  …

263

・265

・266

267

267

272

272

277

278

278

.279

・280

285

285

287

290

290

292

293

293

296

297

299

299

・301

302

304

304

305

308

308

309

311

311

311

洒̈

Conlents



Contents

5‐ 13

5… 14

5… 15

5… 16

5‐ 17

5‐ 18

5¨ 19

5‐20

5…21

5‐ 12‐3 Googte Suggest APl    ・  ・…

流行をキャッチする …… …
5‐ 13‐ 1 瞬間的な トレンドをキャッチする・

5‐ 13‐2 長期的な トレンドをキャッチする … ……

企 業 ・ 株 価 情 報 を 収 集 す る
・…

5‐ 14‐ 1 証券コー ドー覧を取得する ・一

5‐ 14‐2 企業情報および当日の株価を収集する・

5‐ 14‐3 株価の時系列データを収集する

為 替 情 報 ・ 金 融 指 標 を 収 集 す る ・

5‐ 15‐ 1 国債金禾|卜  … …  ……  ・ ・

5‐ 15‐2 為替情報・・ ・… ・ …  ・

5‐ 15‐3 その他の経済指標・ ・ ・     …

郵便番号と緯度経度情報を取得する
5‐ 16‐ l Googte Maps APIに よるジオコーディング

5‐ 16‐2 郵便番号から緯度・経度を検索する…… ・

5‐ 16‐3 郵便番号と緯度・経度データによる可視化 …

新刊情報を収集する ……… … ・
5‐ 17‐ l Amazonの 新刊・予約の検索パラメータ

5‐ 17‐2 新刊情報を取得する  … …・ …

5‐ 17‐ 3 APIを利用する     … …

荷物を追跡する    ……
5‐ 18‐ 1 ヤマ ト運輸の荷物を追跡する  …  ……

5‐ 18‐ 2 Googte Catendarに 登録する   ‐‐

不動産情報を取得する… … ・ …
5‐ 19‐ 1 レインズからのデータ取得・

官公庁のオープンデータを活用する
5‐ 20‐ 1 提供されているデーター覧・

5‐ 20‐2 次世代統計利用システムのAPI登録
5‐ 20‐3 次世代統計利用システムのAPIの 利用 …

新 聞 の 見 出 し を 集 め る
・   一

5‐ 2卜 1 取得対象とプログラムの構造  ・ ・ ・

5‐2卜2 親クラスの実装…          ・・

5‐2卜3 各社別の記事・URLの抜き出し    …・

5‐ 2卜4 呼び出し元の実装・  … ………   …

5‐ 2卜5 ページング機能の追加 ・  ・ …… ・…

313

314

314

.320

・321

・321

・322

325

・327

327

331

・332

‐333

333

334

・335

・336

・336

338

340

・342

-342

・343

.346

・346

349

350

351

. 352

…355

355

・355

・356

357

・358

燎



襦国■ クローラーの運用
6‐ 1

6¨2

6…3

6…4

6‐5

6‐6

6‐ 7

サーバサイ ドで動かす  …………  ・ ・
6‐卜1 サーバで動かすメ リット ……… ・ …  ・ …… ・

6‐卜2サーバヘのインス トール       ・ … …

6‐卜3 Linuxのコマン ド ……… ・    ・・ ・ …  …・

定期的にデータを収集する ・ ……… ・ ・
6‐ 2‐ l Crondで スケジューリングを登録する ………  ・・・

6‐ 2‐2 Crondで動かす際の注意点  ・……  ・    ・・
6‐ 2‐3 差分を検知する ……… ・   ・ …… ・  …  …
6‐ 2‐4 時系列で表示する ・    …         …

収 集 結 果 を メ ー ル で 自 動 送 信 す る
・  … …

6‐ 3‐ 1 どういった内容を送るのか一  … …… … … ・・―・
6‐ 3‐2 Gmaitを 使って結果通知する一・ …… …  ・ ・ …
6‐ 3‐ 3 Amazon Simple Emal Service(SES)を 使って結果通知する

ク ラ ウ ドを 活 用 す る     ……

6‐ 4‐ l AWSのサービス …     ・ ……・    ・ … ・・
6‐4‐2 クラウド上のサーバを利用する・ ……     ……・・・
6‐ 4‐3 クラウド上のス トレージを利用する …
6‐ 4‐4 Arlazon SNSで 通知する           ・……

さらなる高速化の手法   ・ …  ・
6‐ 5‐ 1 非同期処理   …        ・・一
6‐ 5‐2 分散処理   ・ ……              … ・

変 化 に 対 応 す る 一 一
 … … … … …

6‐ 6‐ 1 検知方法・   ―… …  ・ ・…… ・ … …
6‐ 6‐2 修正 &再処理    …・         ……・

クローラーとそれに付随する技術   …
6‐ 7‐ 1 データを活用する方法    ・ … ・   ・ ……・
6‐ 7‐2 データの可視化 ・・ …
6‐ 7‐3 データマイニング   ‐・ ― ・ …   ・ … ‐

・362

・362

363

・372

375

375

377

378

…380

384

384

385

390

396

396

398

402

407

410

410

415

419

419

422

424

425

425

426

ｔ
Ｓ

一

ｎ

一

ｔｅ

一

Ｃ
Ｏｎ

一



―
・
||  .    .‐

‐‐||‐  .
|||   

‐|■ |

●
■
―

・

―

―



Chap“ rl 10分クローラーの作成

l
クローラーとは、Webペ ージから自動で情報収集するプログラムです。本章で

はRubyの標準ライブラリのみで小規模なクローラーを作っていきます。

1‐ 1‐ 1 クローラーとは

クローラーとは、システムが自動的にWebページを巡回して情報を収集するプ

ログラムです。クローラーとして最も有名なのは、Googleな どの検索エンジンです。

クローラーはビジネスの場面でも使われています。マーケティング分析では、掲

示板やSNSの書き込みをクローラーで見て回ります。この時、商品名などのキー

ワードに引っかかる書き込みを自動で見つけます。SNSに 自動ログインして情報収

集するクローラーも存在します。

個人的用途であってもクローラーは使われます。特定のベージを定期的にアクセ

スして更新を自動チェックしたり、ページの内容を整形して表示するプログラムも

広い意味でのクローラーになります。それらを駆使すれば、情報収集の時間が短縮

できます。フイードがなかった時代には、筆者も日記サイトの最新記事のみを切り

出して自分にメールするスクリプトをcronで走らせていました。

本書ではクローラー開発の奥深 くまで触れます。本章ではその入口として、

ニユースサイトの記事一覧を取ってくる簡単なクローラーを作成することから始め

ます。本格的なクローラーであってもその根底となる技術は変わらず、「ページを

取得→解析→抽出→加工→出力」という流れは同じです。本章では小さなプログラ

ムを通して一連の流れを見ていくことにします。

I-I-2 Ruby t l*
Rubyは 1993年 から開発されている国産オブジェクト指向スクリプト言語です。

代表的な汎用スクリプト言語Perlに可読性の高い構文とシンプルかつ強力なオブ

ジェクト指向を加え、Lisp風の味つけをしたものがRubyです。1行から使えるスク

リプト言語の世界にオブジェクト指向を導入したため、オブジェクト指向が一気に

身近なものになりました。Rubyは本当にうまく設計されており、プログラミング

を楽しいものにしてくれます。

Rubyは Perl同様テキスト処理が大得意です。そのため、Webの世界でRubyは広

く使われています。クローラーもWebを扱うものなのでRubyに 向いています。

1‐ 1

イントロダクション



1‐2 クローラー「GNU Wget」

Rubyは標準で付属するライブラリに加え、Ruby固有のライブラリパッケージで

あるGemも 充実 しているので、目的を手早 く達成できます。クローラーの作成に

おいても、Nokogiriと いう強力なHTML・ XMLパーサー、Anemoneと いうクロー

ラーフレームヮークがGemに存在しているので、Rubyで クローラーを作ることは

難 しくないです。本章はあくまで導入部なので、Gemを使わずに標準ライブラリ

だけで幅広い処理ができることをお見せ しましょう。

⑬
1・・ 2

クローラー「GNU Wget」

実際にRubyで クローラーを作成する前に、「GNU Wget」 を通じてクローラーと

は何をするソフトウェアなのかを見ていきましょう。

lⅢ 2‐l Wgetと は

本書はRubyで クローラーを作成する方法を学ぶための本です。その前に、既に

優秀なクローラーソフトウェアが存在するので、それを先に紹介しておきたいと思

います。新しく作らなくても、このソフトウェアを使うか、そこから得られる実行

結果を加工するだけで目的を果たせるかもしれません。

そのクローラーとは「GNU Wget」 (以下、Wget)と 言います。HTTP・ FTP経由

で自動ダウンロードを行うソフトウェアです。UNIX系OSは もちろんのこと、Mac

やWindowsで も使えます。Wgetはダウンローダとして有名で、技術系のブログを

読んでいれば、インストールの説明などでしばしば登場してきます。

Wgetはただのダウンローダではなく、再帰ダウンロード(→p.9)や リンク変換

(→p.10)ができる立派な「クローラー」です。サイトの内容を丸ごとローカルにダ

ウンロードすることが簡単にできます。その際、リンク変換機能を使えばオフライ

ンでも問題なくダウンロードしたサイトのリンクを渡り歩けます。拡張子指定を使

えば画像・動画ファイルのみを集められます。再度実行する時に同じファイルをダ

ウンロードしないような設定もできます。クローラー避けのための設定が書かれた

robots.txt(→ p.31)を 遵守し、ダウンロード間隔を空けられるなど、クローラーと

しての礼儀もわきまえています。

そういうわけで、Wgetと はどのようなものなのかを見ていきましょう。その後

でオリジナルクローラーを開発するか、Wgetの実行結果を処理するかを決断して

ください。



1‐ 2‐2 インス トール

Wgetは定番かつ小規模なプログラムなのでインストールは難しくありません。

GNU/Linux(以 下、Linux)では既にインストールされていることが多いです。

インストールされていなければデイストリビューション付属のパッケージシステム

でインストールしてください。インストールされているかどうかはwhichコ マンド

で調べることができます。コマンド実行でパスが出力されていれば使えます。

以後、プロンプト「S」 から始まるコマンドラインはLinux(UNIX)の シェルでの

表記です。パスの設定などは、各自の環境に合わせて変更してください。なお、一

部の出力結果はベージに収まるように整形してあります。

O Wgetの確認

機l坐璽
Macではインストールする必要がありますが、Homebrewな どのパッヶ―ジシス

テムを使えば簡単です。インストール後の確認はLinux同様にwhichで 行えます。

O Wgetのインストール(Mac/Homebrew)

Linux'Macと もにソースコー ドからコンパイルできます。執筆時点 (2014年 7

月)では最新版は1■ 5なので、以下のコマンドを実行します。なお、Macで はダウ

ンローダcURLが最初からインストールされています。

'Wgetのイ
ンストール (ソースコードからコンパイル)

Windowsではかなリバージョンが古く(1.11.4)な りますが (2014年 7月 現在 )、 バ

イナリーインストーラかChocolateyを 使うのが簡単です。Cygwin環境ならば、デ

Chapterl 10分 クローラーの作成

S which wget

/usr/bin,i wget

I 
$ brew install wget

. ._.._1

$ curl -O http://ftp,gnu.org/puhlgnu/wget/wget-1.1 5.tar.gz

S tar uW wget-1.15.tar92

$ ./configure -with-ssl=openssl

S make

S sudo make install



フォルトでインストールされます。

バイナリーインストーラは、以下のダウンロードサイトで「Complete package,

except sources」 を選択して実行します。

■Wgetの ダウンロードサイト(Windows)

回田http:″ignuwin32.sourceforge.netИ packages/wget.htm

¬
'Wgetの
ダウンロード(Windows)

Setupウ イザー ドが出てくるので、そのままインス トールしてください。

▼ Wgetのインストール

Wget for Windows

ここをクリックする

wFa.tu.&*qbl*rtututuxdwah4mdm.tuMBd*qdlfu@e. [d'm-tu@.tu

r&@tu&.rydk,*Jd..r-+9lere

rru.&r&d&qtu&sdr

,@kt&qFqs

lf,dcome to the Wg€t Setup
Urizard

hddwdt.ui|dfututuhww:
{:d.t&.d..t,c)dffl:ds.

Bhbtu,dHbdh.

1‐2 クローラー「GNU Wget」



Chapterl 10分 クローラーの作成

インストール先を「C:¥wget」 にした場合、「wget.exe」 のパスは「C:¥wget¥bin¥

wget.exe」 になります。その時、「C:¥wget¥bin」 を環境変数PATHに加えるとよい

です。コマンドプロンプトからC:¥wget¥bin¥wget.exe― verslonを 実行してバー

ジョンが出力されれば、正常にインストールされています。

'Wgetの確認 (Windows)

置≦≧里型三壁
Chocolateyは 待望のWindOwsパ ッケージシステムです。WindOwsでの環境構築

を劇的に簡単にします。

E Chocolatey

ロコl http:ノ %Chocolatey.Org/

Linuxの APTの ように依存関係も解決してくれるし、登録パッケージ数も1,500を

超えています。Wget以外にもRuby、 MySQL、 Cit、 Cygwinな どが登録されてい

るので、開発者ならばぜひとも導入するべきです。

下記のコマンド(本家サイトから引用)を コマンドプロンプトから実行すれば

Chocolateyを インストールできます。

O Choco!ateyの インストール

一度Chocolateyを インス トールしたら後は簡単です。cinstコ マンドでWgetを イ

ンス トールできます。

O WgetのインストールOMndows/Chocolatey)

C:Ywork> @powershell

VchocoiateyVbin

C:Ywork> C:YwgetYbin*wget.exe -verslon
SYSTEM*WGETRC = c:/progra-1 /wgevetc/wgetrc

, syswgetrc = c:Ywget/etc/wgetrc

GNUWget 1.11.4

C:Ywork> cinstwget



1‐2 クローラー「GNU Wget」

電酵Chocolateyのサイト

1‐ 2‐3 Wgetの簡単な使い方

ダウンローダとしてのWgetは とても簡単に使えます。コマンドライン引数に

URLを指定するだけです。例えば、初期のRubyの ソースコー ドをダウンロー ドす

るには次のように実行します。

O Wgetによるダウンロード

すると、カレントディレクトリに「ruby-0.49.tar.gz」 というファイル名でダウン

ロードされます。

ダウンロードするファイル名はデフォルトではURLか らドメインとディレクト

リを取り除いたものになりますが、-0オ プションで指定すれば任意のファイル名

にできます。-0-と 指定すれば標準出力に書き出します。

パイプでGNU tarの 標準入力に渡してダウンロードしながらアーカイプを展開す

る応用例も定番です。その場合は、中間ファイルは作成されません。

ここを引用する

■′937     3′ 360′ 578     8′ 1_00

chocolatey v0.9-8.23 Released!
s.rc6dM&e'*h6.darp&l@qtu s&!&&.6mt6kilepd*6tk
rstunt*Mo4 qtut @)r.ahb6r6dt,1@-etitldnd

a::) liBailershell -xoPref:le -a(e{rriolPo'lrry !rlreirfjcted -cofrsf,i5 '1€i
({ne*-obj..t r€t. reb(l ienrl.oorn:l..idstrir9( htipt i r/ciloiolrta!. ore

,rins:rlt.r:t )) ig SEr ?rTH;-rATH:i;,rsy!irrnd.i!eii\rho.!t$ey..Ll:i



Chapterl 10分 クローラーの作成

●展開しながらダウンロードする

ダウンロードせずにリンク先が存在するかどうかをチェックするには一spiderオ

プションを指定します。ファイルサイズも確認できます。

● リンク先の確認

▼ 主なオプション

1-2-4 2a-)-&L(o)Wget
先ほどは普通のダウンローダとしてのWgetを 紹介 しましたが、ここからはク

ローラーとしてのWgetの使い方を紹介します。Wgetが クローラーであると言える

のは、再帰ダウンロー ド機能があるからです。

ダウンロードするファイル名を指定

ダウンロードせずに存在をチェック

メッセージをログフアイルに出力

メッセージを抑制する (quiet)

よけいな出力をしない

フアイルからURLを読み込む

再試行の回数を指定

ユーザー名を指定

パスワー ドを指定

refererを 指定

プロキシを使わない

ヘッダ行を指定

オブション 機 能

S wget -spider http://ftp.ruby-lang.o t gl pub I t uby I 1.0 huby-O.49.tangz

Spider mode enabled. Check if remote file exists.
*201 4-06-25 1 9:31 :00- http://ftp.ruby-lan g.org/publ ruby / 1.0/ruby-o.49.tar.gz

Resolving ftp.ruby-lang.org... 22'l. l 86.1 84.75

Connecting to ft p.ruby-lang.orgl221.1 86.1 84.751:80... connected.

HTTP request sent, awaiting response...200 OK

Length: 2 I 4390 (209K) [application/octet-stream]
Remote file exists.

-c f\ifi?r>D-k

--referer URL



再帰ダウンロードとは、ベージ内で指定されたURLの リンクを辿って、リンク

先をもダウンロードすることです。これを使えばページをローカルに保存してオフ

ラインで読めます。画像や音声ファイルを全自動で収集することもできます。もち

ろん、サイトを丸ごとミラーリングすることも可能です。

再帰ダウンロードを行うには、ダウンロードしたHTMLを解析してリンクを抽

出する作業が含まれるので、Wgetは まさしくクローラーなのです。再帰ダウン

ロードにおける最重要オプションは、「_r」 と「1」 です。

再帰ダウンロードの実行震
―rは再帰ダウンロードを行うことを指示し、―lはどの階層 (最初のページからリン

クを辿る回数)ま で潜るかを指定します。…rのみを付けた時は、‐15(再帰レベル5)

が自動的に付けられます。しかし5階層も潜るのはかなり深いので、―rと -1はセット

と覚えてください。―‖nf(無限階層)を指定すれば、そのサイトの最深部まですべ

てダウンロードできます。

―11(再帰レベル1)は指定されたURL内 のリンク先もダウンロードしますが、リン

ク先のページで指定されたリンク先まではダウンロードしません。多くの場合、日

次ベージを‐11で再帰ダウンロードするだけでこと足ります。

以下の例は、「http://www.example.com/」 内のリンク先もダウンロードします。

後ほどテストサーバを使ってオプションを検証していきますので、今は実行する必

要はありません。

● リンク先のダウンロード

機_」::::2_ヒ1_三二::_lill::1!塁 :`:≧:i::::il::

再帰ダウンロードはアクセスを集中させるので、適度にウェイト(待機時間)を

入れることも大事です。サイトに対する攻撃と見なされないように、ゆっくリダウ

ンロードすることが礼儀正しいクローラーの作法です。それを実現するオプション

が、「‐w」 と「…random‐ wait」 です。

―wは次のダウンロードに入る前に秒数だけ待ちます。―wだけを指定した時は等

間隔でウェイトが入りますが、―‐random― waitを組み合わせると待ち時間をランダ

ムにできます。_randOm_waitで の待ち時間は、―wで指定した値の0.5～ 1.5倍です。

1‐2 クローラー「GNU Wget」



1

Chapterl 10分 クローラーの作成

以下の例は、ダウンロードの間隔を1～ 3秒空けます。

01～ 3秒間隔でダウンロ…ドする

11
拡張子を指定してダウンロードする

―Aを指定すると、特定の拡張子のファイルのみをダウンロードできます。画像・

音声・動画ファイルの収集もWgetでできます。

以下の例は、jpg/png/gifフ ァイルを、間隔を1～ 3秒空けてダウンロードします。

0画像フアイルをダウンロードする

コマンドを実行すると、カレントディレクトリにドメイン名のディレクトリが作

成され、そのなかに画像ファイルがダウンロードされます。

Wgetの再帰ダウンロードはデフォルトでは同一 ドメインに限定されています。

つまり、外部サイトまでクロールしないようになっています。しかしそれでは困る

場合があります。例えば画像用に別サーバを用意しているケースがあるからです。

「images.example.com」 に画像を置いている場合、上のコマンドでは画像はダウン

ロードされません。

この場合、―Hオ プションで他のドメインもクロールできるようにする必要があ

ります。

'他
のドメインからもダウンロードする

機上∠∠2変塾
サイトを丸ごとダウンロードして、オフラインで閲覧したい場合にもWgetは有

用です。その場合は「―p」 と「―k」 オプションを使います。これらを使わないとオフ

ライン閲覧に必要な素材が不足するなど、リンクが辿れなくなる問題が生じてしま

います。

―pはそのHTMLを 表示するのに必要な画像・音声やCSSな どもダウンロードしま
す。それらが別 ドメインであってもダウンロードしてくれます。―r(→p.9)を 使わ

11111

10

]



1‐2 クローラー「GNU Wget」

ない場合は、そのURLのみが対象になります。

―kはリンク変換機能です。ハイパーリンクなどでURLを指定する箇所で、絶対パ

スから相対パスに変換します。例えば「http://www.example.cOm/1.html」 にて「/2.

html」 へのリンクがある時、オンライン上であれば問題なく「http://www.

example.com/2.html」 ヘジャンプしてくれます。しかし、オフライン上では閲覧し

ているコンピュータのルートディレクトリの「2.html」 を見てしまうため、リンク

が辿れなくなってしまいます。そこで―kを使うと、「/2html→ 2.html」 と変換して

くれるので、問題なくリンクが辿れるようになります。リンク変換の対象はハイ

パーリンクにかぎらず、インラインイメージ、CSSな どへのリンクも含みます。

リンク変換はすべてのダウンロードが終わった後で行われます。なぜなら、

Wgetがどのリンク先をダウンロードしたのかを知っておく必要があるからです。

以下の例は、「hto://www.example.com/」 をダウンロードし(「 index.html」 がダ

ウンロードされます)、 表示に必要な素材もダウンロードします。

以下の例ではダウンロー ドの間隔を1～ 3秒空け、各 リンク先および表示に必要

な素材もダウンロー ドし、最後にリンク変換処理を施します。「index.html」 直下の

オフラインブラウジングが保証されます。

●ダウンロードとリンク変換

Wrtも れっきとしたクローラーであることが理解できたでしょうか ' クローラー

は短時間に大量のリクエストを送り、通信量も多くなるため、悪用すれば攻撃にも

なるので挙動をしっかり理解して、注意して実行する必要があります。

挙動を理解するためにWgetを試しに実行する必要がありますが、かといって試運

転のために他のサイトに迷惑はかけられません。その解決方法を後はど紹介します。

11

●サイトを丸ことダウンロードする



再帰ダウンロードを有効にする

階層の指定

―np 親ディレク トリに遡 らない

ダウンロードごとにN秒待つ―wN

-random-wait ―wで指定した数の05～ 1.5倍 の時間待つ

―A LIST 拡張子で指定したファイルのみ取得

―R LIST 拡張子で指定したファイルを除外

―H 他のドメインもクロールする

―D LiST ―Hでクロールするドメインを指定

―p URLの 表示に必要な素材 も取得する

相対URLに変換する―k

―nd ディレクトリを作成しない

―rでな くてもディレク トリを作成する

―P PREFIX PREFIXで指定したディレクトリに保存する

タイムスタンプが新しいものを取得する―N

ミラー。「―r― N―‖nf― no―removelisting」 と等価

Chapter 1 1orr, tr-1-ol+fr,

▼ 再帰ダウンロード関係のオプション

1‐〔〕

クローラーを作るにあたっての Rubyの基礎髯
Rubyと はどういう言語なのかをかけ足で見ていきます。そして、クローラー作

成において重要とされる文字列 。ファイル処理に触れます。

1‐ 3‐l  Rubyの1特性

本節ではRubyの基礎について軽 く触れておきます。

クローラーを作るにあたってのRubyの基礎と言っても、本当に基礎の知識があ

るだけで作れてしまいます。確かに複雑なクローラーはHTMLパ ーサーやクロー

ラーフレームワークを使った方がよいのですが、簡単なものならばテキス ト処理と

たいして難度が変わらないです。ファイルを開くOpenメ ソッドの引数にURLが使

えるように拡張するライブラリが存在し、ファイル名のかわりにURLを指定すれ

ばHTTPア クセスができてしまいます。その状態のopenは HTTPク ライアントであ

り、フアイルを開いて内容を読み取って加工して出力するごく普通のRubyス クリ

プトがクローラーに変身します。



1‐3 クローラーを作るにあたってのRubyの基礎

また、取得 したHTMLか ら情報を抽出して加工出力する処理はまさにテキス ト

処理そのものです。そのため、文字列や配列やハッシュなどの基本的なオブジェク

トの扱い方がわかればなんとかなります。

MI堕堕2生∠≧≧∠:卜指向
Rubyは オブジェクト指向スクリプト言語です。ですが、ちょっとしたRubyプロ

グラミングをするのにクラスを定義する必要はありません。豊富な組み込みクラス

が用意されており、組み込みクラスを使うだけでもある程度プログラミングできて

しまいます。

組み込みクラスを使うことでもメソッド呼び出しが起きるので、たとえクラスを

定義しなくてもれっきとしたオブジェクト指向プログラミングです。本書で作成す

る最初のクローラーは関数的メソッドを数個定義するスクリプトですが、後のリ

ファクタリングでクラスを定義します。

Rubyはすべてのデータがオブジェクトです。ユーザー定義クラスのオブジェク

ト以外に、整数や文字列もオブジェクトです。クラスさえもオブジェクトとして扱

えます。

オブジェクト指向プログラミングにおいて重要なのは、自分自身のことをあまり

語らないことです。内部構造をなるべく隠蔽して、外に公開するのは最低限に抑え

ることです。Rubyプログラミングは、正しいオブジェクト指向へ自然と誘導して

くれます。

曇Rubyの メソッド呼び出し

オブジェクトのインスタンス変数は、デフォルトでは外からは (簡単には)見え

ない状態になっています。外にインスタンス変数を公開するには、インスタンス変

数の値を返す 。設定するメソッド(ア クセサ)を 定義します。アクセサによって、

「オブジェクトにアクセスするにはメソッド呼び出しで」と一貫した姿勢になります。

Rubyで のメソッド呼び出しは、括弧を書く必要がありません。そのため、アク

セサなど引数を持たないメソッドを呼び出す時には、単にメソッド名を書くだけに

なります。無引数メソッドの呼び出しは字面上ローカル変数と区別がつきません。

変数への代入があるか、あるいはメソッドの引数である時はローカル変数ですが、

そうではない場合はメソッド呼び出しとなります。

この巧妙に仕掛けられた設計により、メソッド定義の中身を書き換えることなく

ローカル変数をアクセサにすりかえることができます。「変数のように見えたが実



Chapterl 10分 クローラーの作成

はメソッドだった」というオチです。クローラーのサンプルをリファクタリングす

る際でもその現象が起きるので、Rubyの妙味を感じてください。

日引数のメソッド化の例 test.rb

なお、式の後に「#=>」 と書いてあるのはその式の値です。リファレンスマニュ

アルでよく使われている記法です。irb test.rbの ようにirbコ マンドでスクリプトを

実行すれば各式の値が表示されます。irbを使わない場合はKernel#pを 使って式の

値を出力します。例えば、「p area(10,5)」 のように使います。

gem insta‖ rcodetoolsで インストールされる「xmpfilter」 というスクリプトを使

えば、「#=>」 の後ろに式の値が注釈されたスクリプトが出力されます。出力結果

にさらにxmpfilterを 通すことで、注釈結果が更新されます。xmpl!ter test.rbの よ

うに実行します。

'test.rbの
実行 (irb)

#引 数がメソッド化 !

def area()X*y end
end

area(■ 0,5)

Rect.new(■ 0,5).area

def area(x, y) x*y end

class Rect

■ =>50
# =) 50

def initialize(x, y) @x, @y = x, y end

attr_reader : x, : y

14

S irb test.rb

DL is deprecated, please use Fiddle

test.rb(main):001 :0> ?def area(x, y) x*y end

=> nil

test.rb(main):002:0> class Rect

test.rb(main):003:1 > def initialize(x, y) @x, @y = x, y sn6

test.rb(main):004:1 > attr-reader :x, :y

test.rb(main):005:1> # 1l*\hs I ! v FiY I

test.rb(main):006:1 * def area0 x*y end

test.rb(main):007:1 > end

=> nil

#=>50

綸

||

=>50



1‐3 クローラーを作るにあたつてのRubyの基礎

● test.rbの実行(xmpf‖ ter)

2二_∠∠埜並
Ruby版高階関数とも言える「ブロック」はとても強力な機能です。簡潔な表記で

メソッドに処理を渡すことができます。

プロックにはさまざまな用途があります。ブロック付きメソッドはかつてイテレー

タと呼ばれていたように、eachメ ソッドなどの繰り返し用途が代表的です。他にも、

Enumerable#mapの ようにブロックの返り値を使うもの、Enumerable#selectの よ

うに条件を指定するものもあります。特にEnumerableモ ジュールのメソッドは

eachメ ソッドを使って書かれているのでイテレータです。それでも繰り返し処理

であることを考えずに使えるのは、まさにブロックの強みそのものです。

日eachメ ソッドによる繰り返し処理

ary = []; [1,10,1oo].each{
lxl ary << x*3 ); ary *

[1,10,1oo].map{ lxl x*3 } #

[2,7,8].select{ lxl x.odd? } *

∞
　
“

は主三二三ニユ塾
Ruby 20で念願のキーワード引数が導入されました。以前のバージョンでもハッ

シュを渡すことで同じようなことができましたが、キーワード引数を使えば最初か

らローカル変数に代入されているので、もっと使いやすくなりました。

15



Chap"rl 10分 クローラーの作成

def f(ar1, b:"foo", c:nil) [a,b,c] end

f * => [e, "foo", nil]
f a:1o # => [1o, "foo", nLl]
f ct1,.2, ailo * => [1o, "foo", r.z]
f({:a=>ro}) * => [1o, "foo", nLl]
f unknown:1 rescue $l * => *<ArgunentError3

urknorn keyrord: unknorn>

このように、Rubyは魅力いっぱいの楽しい言語です。本書はRubyの基礎知識が

前提ですが、自信がない人は基礎力をきっちり身につけましよう。文法やRubyの

システムを理解したら、String、 Regexp、 Array、 Hash、 Enumerableな どの基本

的なクラスとモジュールを抑えましょう。irbや xmp■ lterを 使って片っ端からメ

ソッドを試してみると新たな発見があることでしょう。

スクリプトの文字コード

本書で紹介するスクリプ トはUTF-8エ ンコーディングが前提となっています。

Windowsに おいては環境変数RUBYOPTに にEutf-8」 と入れるか、コマン ドをruby
―Eutf-8と して実行してください。コマンドプロンプ トのプロパティにてフォントを

「MSゴ シック」にしてから「chcp 65001」 を実行すれば、コマンドプロンプ トが
UTF-8対応になります。

1‐ 3‐2 文字列処理

クローラーを作るならば文字列を処理することが中心になります。ここでは文字

列処理や正規表現について軽 く触れておきます。文字列はStringオ ブジェクトであ

り、メソッドを渡すことで文字列処理を行います。

l茎二型2量全
文字列を結合するには「十」演算子 (メ ソッド)を使います。数値と同じ演算子が

使えるのは直感的ですね。破壊的に結合するには「<<」 演算子を使います。非破壊

的結合の「+」、破壊的結合の「<<」 は配列でも使えます。

Rubyに おける「破壊的」とは元のオブジェクトを変更することを意味します。破

次の例でもキーワー ド引数を使っています。

ロキーワード引数の例



1‐3 クローラ…を作るにあたつてのRubyの基礎

壊的メソッドは思わぬ落とし穴があるので、Rubyに慣れていないうちは使わない

方がよいです。破壊的メソッド名は非破壊的メソッド名に「!」 を付けたものが多い

のですが、「!」 が付いていない破壊的メソッドもいくつかあります。ここで登場す

るString#brce_encodingも その1つです。

目文字列の結合

I壺2茎宝型2堅堡
Stting#日 は部分文字列を取得します。例えば0か ら数えてN番 目の文字を得るに

は、[珊 と指定します。

1文字列を指定して取得する

議二∠三二三二∠ビ
かつてのRubyの 文字列は単なるバイ ト列でしたが、今は文字の列として扱えま

す。バイト列から取 り出す文字は、エ ンコーディング (ASCII、 Shift」 IS、 UTF-8

など)で決定づけられます。Rubyでは文字列オブジェク ト1つ ひとつにエンコー

ディング情報を持たせてあるので、正 しく文字単位で処理してくれます。また、複

■ ―*― coding

#文 字列の結合
r = :'ruby“

r + ::isti'   .

utf-8 -*―

# => "rubyist"
# => "ruby"

I破壊的に結合
r くく ''ist'1  1け  => itrubyistl'

r           # =, 1'rubyist''

* -+- coding: utf-8 -*-
j = "6(}r,'" # => "i6Usr"

#(oか ら数えて)■番目の文字を得る
j[■]     #=>"び "

■ 0番目から2つの文字を得る

」[0,2]    #=>:'るび"

■ ■～2番 目の文字を得る

」[■ ..2]   #=>:'び い"

17



(lhaptcr I 10t1, tr-r-olFfr,

数のエンコーディングの文字列を混在できます。

エンコーディングが異なる文字列を処理しようとするとエラーになります。ただ

し、ASCII文字のみで構成されていればそのかぎりではありません。文字列処理の

際はエンコーディングに気をつけてください。

日文字列とエンコーデイング

# -*- coding: utf-8 -*-
j = "6LIt"' # => "j50rr"

#エ ンコーディングを得る
j. encoding # => *<Encoding:UTF-8>

■ 文字数を得る

j. length # =, 3

#バイト数を得る
j. bytesize #=>9

#エンコーディングを変換する
e = j.encode(“ EUC―〕P'') # =) ''Vx{A4EB}Vx{A4D3)Vx{A4A3)::

e.encoding              # => #く Encoding:EUC‐コP,

#別のエンコーディングで結合などを行うとエラーになる

」+e rescue Si  # => #く Encoding::CompatibilityError:

#      ■ncompatib■ e character encodings:

#      UTF‐ 3 and EUC― コP>

■ ASCII文字のみで構成された文字列ならば

#別エンコーディングでもエラーにならない
・ruby".encode("UTF-8")+ :tist''.encode('lEUC― 〕P'')

# => ='rubyist''

#破壊的にエンコーディング情報をバイナリー
■ (ASCII-8BIT)に 変更する

j.force_encoding(''ascii-8bit'1)

# => .:VxE3Vx82Vx8BVxE3Vx8■ VXB3VxE3VX8■ Vx33::

].encoding  # => #く Encoding:ASCエエ‐38工T>

#ASCII-8BITか らUTF-8に 変換できないので、kconvを 使う
j.encode(''UTF-8")rescue S!

# =, Iく Encoding::undefinedConvers■ ●nError: ''VxE3'i

#      from ASCエ エ‐8B工T t●  UTF‐ 8>



1‐3 クローラーを作るにあたつてのRubyの基礎

require 'kconv

i = j.toutfS
j . encoding

# => "6Utr"
# => #<Encoding:UTF-8>

#toutf8は NKF.nkf("― w", str)と同じだが

I MIME解読をするので、それが嫌ならば―mOを付ける

NKF.nkf(“ ―w― mO",j)  #=>・・るびい"

メソッドの表記方法

Rubyで のメソッドの表記方法には慣習が存在します。Klassク ラスのインスタンス

メソッドmethは「Klass#meth」 、クラスメソッドは「Klass.meth」 あるいは「Klass::meth」

と表記します。メソッドの説明を表示するriコ マンドではこの表記が使えます。

1‐ 3‐ 3 正規表現

文字列処理において特に重要となるのが正規表現です。文字列処理における正規

表現とは、文字列のパターンを記述するためのミニ言語です。文字列が正規表現に

マッチするかどうか検査したり、マッチした部分を取り出したり置換したりするの

が主な使い方です。最近のRubyの正規表現はパワーアップしているので、今一度

リファレンスマニュアルを再読してみるとよいでしょう。

文字列のマッチ

正規表現にマッチするかどうかを検査するには「=～」を使います。String#日は正

規表現を指定でき、その正規表現にマッチする文字列を取り出せます。

正規表現置換はString#subあ るいはString#gsubを 使います。前者はマッチした

最初の1箇所のみ、後者はすべてが置換対象となります。プロックを指定した時は、

その評価結果に置換されます。

正規表現は通常「//」 で囲みますが、そのなかに「/」 を含む場合は「¥/」 とエス

ケープする必要があります。HTMLやXMLの終了タグには「/」 が含まれるので、
エスケープ不要な%r記法がしばしば使われます。

メタ文字「
攣
」と「+」 と「?」 はできるだけ長い文字列にマッチするようになってい

ます。これを「最長マッチ」と言います。それとは反対に「?」 と「+?」 と「??」 はな

るべくマッチしないようにする「最短マッチ」です。タグにマッチさせるには最短

マッチを使いましょう。



Chaptcrl 10分 クローラーの作成

1主な正規表現の使い方

# ―*―  coding: utf-8 -*―

#正規表現にマツチした位置を得る
"abc■ 23'' =～  ′¥d+/
1'abc■ 23.1 =~ /Xy2/

#正 規表現にマツチした文字列を得る
"abC■ 23'1[/¥d+/]

"abc■ 23"[/xyz/]

#最長マツチVS最短マツチ
“abc■ 23“ [/(.ア ).+/,■ ]
1'abc■
23''[ノ (.'7).+/,■ ]

“abC■ 23''[/(.+).+ノ ,■ ]

“abc■23''[/(.?+).+/,■ ]

#=,3
# => nil

# => ''■ 23''

I => ni■

■ 最初に括弧にマツチした文字列を得る
.'abC■
23“ [/^[a― Z]+〈 ¥d+)/, ■] # =, 11■ 231'

# =>

# =>

# =>

# =>

==abC■ 21'

#シンプルな正規表現置換
''abc■ 23''。 sub(/abcノ , idefl)  ■ =, ・・def■23'1

#マ ッチ した部分を評価 して置換
''abc■ 23'`。 sub(/[a― z]+/){lsl s.uPcase} # => =:ABC■ 23.=

#ハツシユで置換パターンを設定できる
'iabc■ 23".gSub(/[a― Z]/, 'al=>'X', 'b'=>'y', 'C'=>'2')

# => ='Xy2■ 23'1

#case式 で場合分け

type = case "abc123"

when /"defl
: def

r,rhen /"abcl
: abc

else
: other

end

type # E> :abc

■#HTMLか ら最初のリンクを取り出す
html ‐ 'くa href="a.html“ >aく /a>く a href='ib.html">bく /a>

■ 【誤例】「+」は最長マツチなので、

十 よけいなものがマツチしてしまう

html[%r!く a href=''(・ +)''>(・ +)く ′a>1, ■]

# => ''a.htm■ Vll,aく ′a)く a href=V:'b.html・
:



1‐3 クローラーを作るにあたつてのRubyの基礎

■ 最短マッチ「+7」や否定文字クラス「 [A]」 を

#使 うのが正しい

html[%rl<a hssf="(.+?)">(.+?)</a>!, 1]
# => :la.htm■ ''

html[%r!<a href="(["Y"]+)">(["<]+)</a>!, rl
# =)'la.htm■ 1:

情報の抜き出し

クローラーを作るにあたっては情報を抜き出す必要があります。HTMLパ ーサー

を使う方法もありますが、シンプルに正規表現で抜き出すこともできます。

正規表現で情報を抜き出すにはString#□以外にもString#scanが 強力です。正規

表現でクローラーを作る時にはほぼ毎回使うことになるほど重要なメソッドです。

String#scanは 文字列に対して正規表現を繰り返し適用して、文字列配列を返し

ます。このメソッドは正規表現に括弧 (グルービング)が含まれるか否かで挙動が

変わります。括弧なしの場合は、正規表現全体にマッチした文字列の配列を返しま

す。括弧付きの場合は、すべての括弧にマッチした部分の配列の配列を返します。

Stnng#scanに括弧付き正規表現を指定すればまとめて情報を抜き出せますが、

必ずしもscan一発ですべての情報が抜き出せるとはかぎりません。その時は2回以

上scanを使って別個に抜き出してからインデックスごとに統合する必要があります。

のようにインデックスでループすれば、dates[i]、 links[i]で 日付とリンクが得られ

るのですが、この場合にうってつけのメソッドがあります。

Array#zipは 、自身と引数に渡した配列の各要素からなる配列の配列を得ます。

これを使えばインデックスごとに各配列をループできます。String#scanで 別々に

情報抽出して、Array#zipで まとめるというパターンはよく使われるので覚えてお

きましょう。このパターンは後はど作成する「10分クローラー」において登場します。

I String#scan E Ar r ay #zip

■ ―*― coding: utf‐ 8 ‐*‐

html = くくXXXX

くP>■ 993年 2月 24日

くa href=''http:ノ /www.ruby― lang.org/ja/“ >

Rubyts birthdayく ノa>くノp>

21



Chapt望■ 10分クローラーの作成

くp>20■ 4年 ■月■日

くa href='lhttp://www.example.comノ ">元 曰く/a>く /p>

XXXX

##情報を抜き出す
十 日付を抜き出す

dates = htnl.scan(ノ 〈¥d+)年 (¥d+)月 (¥d+)日 3/)

# =, [[:'■ 993't, ==211, '=24''1, 1''20■ 4'1, ==■
:=, 11■ 1']]

# u>rtfr.zfrt
links = html.scan(%r!<a href="(.+?)">(.+?)</a></p>l )

# => [["http://xru.ruby-lang.oxglTal"'
* "Ruby's birthday"l,
* ["http://xrr.example.com/"r "iE"]I

##情報をまとめる
#イ ンデックスでループ

(0...dateS.length).map{lil[dateS[i], linkS[i]]}
# => [[['=■ 993“ , ・・2'。 , '。 241'1,

#      [1lhttp:′ ′w口
"t ruby‐

lang.● rg′ ja′ ':, '`Ruby's birthdayl=]],

お     [[1'20■ 41:, '1■ '1, 1'■
::1, [''http:′ ′|口

"".exampleocom′
::,

I    :'元 日‖]]]

* Array#zipTl*ta>4
dates.zip(J.inks)
* => [[["1993", "2", "24"],
# ["http://xw.ruby-lang.orgljal"'
* "Ruby's birthday"]1,
# [["2014", "1", "1"1,
# ["http://ww.exanple.com/"r "iE"]]I

その他の主な文字列処理を列挙 してお きます。

|その他の文字列処理

# ―*―  coding: utf-8 -*―

■書式文字列

fOrmat(・ %5 %d URLs'', '`Download“ , 23)

# => ==Downl● ad 23 0RLs'=

#改行を取り除く
''abc¥n'1.chomp

''abc¥nVn''。 chomp
.'abCYnYn“

.ChOmp('''')

# => "abc"
* => "abcln"
# => "abc"

■ 文字の出現回数を数える



1‐3 クローラーを作るにあたつてのRubyの基礎

#a～ cのうちbを含まない文字(ac)を 数える
・abcd".count(“ a_c", ''Ab") ● =)2

"abcd". count ( "a" )
"abcd".count("ab")
"abcd".count("a-c")

#'n|;iflta
s = "abYncdYn"
s.lines..to_a
s .1ines . map (&: c homp )
s.sptit("Yn")

■ 文字に分割する

・ abct'.chars.to a

[''abVn・ ', ::cdVn'1]

[='abll, 1=Cd::]

【
::abll, 11`d''コ

#=>■
■ =, 2

お =, 3

″ =>

# =>

# =>

十 各行ごとに繰り返す

a‐ []; S・ eaCh_line(11l a くく ■}; a
■ => [mabVnll, t'cdVn=:]

#文字列を空白で分割
s = '' ab cd ef i:

s.split # => ["ab"1 "cd", "ef"]

十 分割数を2に制限する

s.split(niI,z) # => ["ab", "cd ef "]

#先 頭と末尾の空白を取り除く

s , strip # => ''ab cd efil

# => ["a", "b", "c"]

1‐ 3‐4 ファイルを開く

ファイルを読み書きするにはopenメ ソッドを使います。ファイルの内容をその

まま文字列で得るには主に以下の書き方があります。後々■lenameに URLを 渡せ

るようにしたいならば、openを使いかつ短い3番目の記法がおすすめです。3番目

は2番目を縮めた書き方です。4番目の記法はファイルが開きっぱなしになります。

ファイル入出力においてはエンコーディングに気をつけてください。入カファイ

ルがスクリプトのエンコーディングと一致していない場合は、エンコーディング変

23



一Ｆ
Ｉ
Ｉ

Chapter 1 1Ot , a-) -ol\fr,

換をする必要があります。

ロファイルの入出力

■ ―*―  coding: utf-8

TMP="/tmp/test.txt"

I Shift〕 IS文字列をファイルに書き込む

open(TMP, “w")(lflf.puts''あ いうえお".encode(・ Shift_コ IS“ )}

#読み込むがエンコーディングがマッチしていない
File.read(TMP)

# => ''Vx82VxAOVx82VxA2Vx82VxA4Vx82VX■ 6Vx32VxA8Vni`

unmatched = open(TMP, &:read)

■ => ''Vx32VxA●Vx82Vx■ 2VX82VxA4Vx82VxA6Vx82VxA3Vn::

unmatched. encoding
S => S<Encoding:UTF-8>

#エンコーディング変換する必要がある
unmatched. force-encoding( "5hift-lIS" ). encode ! ( "UTF-8" )
#=>::あいうえおVnl'

unmatched

I=>''あいうえおVn''

#入カファイルのエンコーディングを指定する
sjis = open(TMPり  t'r:Shift_コ IS,1, &:read)

# => ''Vx(32AO}Vx{82A2)Vx(32A4)Vx{82A6)Vx(82A3)Vn''

sjis.encoding         # => #く Encoding:Shift_〕 工S,

sjis.encode("UTF-8・ )#=>''あいうえおVn"

#内 部エンコーデイングも指定すれば

# openOEtffitUTF-8t;/J6
utfS = open(TMP, "r:Shift_Jrs:uTF-8", &:read)
* => "iblrf*.8rn"
utf8. encoding
* => *<EncodLng:UTF-8>

#エンコーデイングを推測して変換する
#NKF.nkfは Stringltoutf8と 違いMIME decodeを しない

require ikconv'

File.read(TMP).toutf8        ■ =>=:あ いうえおVn"

NKF.nkf(・ ‐wmO", File.read(TMP))#=>:'あ いうえおV● "

File.unlink TMP



1‐4 Rubyでテストサーバを立てる

谷
よそのサイトに迷惑をかけずにWgetの挙動を検証するため、Rubyで テストサー

バを立ち上げます。

1・ 4‐1 標準ライブラリ「WEBrick」 でお手軽httpd

本書で登場する最初のサンプルはWebサ ーバです。Rubyの基礎に触れたばかり

でいきなリサーバというのは敷居が高く思えるかもしれませんが、まったく難しく

はないので安心してください。今やサーバといえども単なるテキスト処理にすぎま

せん。

本書はクローラー開発のための本であり、代表的なクローラーであるWgetを 取

り上げました。Wgetの オプションは多岐にわたり、細かい設定もできるように

なっています。やりたいことがWgetのみで完結する場合、わざわざRubyで新たに

開発する必要はありません。クローリングをWgetに まかせて、Rubyでその結果を

処理する方法も考えられます。

方針を決定するためにはWgetについて熟知する必要があります。しかし、ク

ローラーは集中アクセスを伴うため、よそのサイトに対してむやみに試運転するの

は迷惑がかかります。とはいえ動作を理解するには何度も手を動かして実行する必

要があります。

このジレンマを解決するのが、ローカルでWebサーバを立ち上げることなのです。

ローカルのサーバならばいかに苛酷なアクセスをしてもまったく問題がありません。

幸いにもRubyに は「WEBrick」 というWebサーバが標準で付いてきます。つま

り、Rubyを インストールした時点でWebサーバが使えることになります。

それではさっそくWEBrickを使ってみましょう。

I三二上∠上型2全里
カレントディレクトリをポート番号7777で ローカルに公開するには、以下のスク

リプトを使用します。WEBrickス レッドを1つ作り、メインスレッドでは標準入力

を待っています。実行後は、[Enter]キ ーを押せば終了します。

1‐ 4

Rubyでテス トサーバを立てる

25



ロカレントデイレクトリを公開する webrickO.rb

O webrickO.rbの 実行例

bashやzshな らばスクリプ トを作成することな くワンライナーでできます。

●スクリフトフアイルなしでカレントディレクトリを公開する

凛

もしカレントディレクトリに「testhtml」 があるのならば、「http://12700.1:7777/

test.html」 でアクセスできます。

Webブ ラウザからも見られますが、Wgetで ダウンロードもできます。ダウン

ロードする時にファイル名を指定すると、test.htmlの内容をコピーするのと同じに

なります。カレントディレクトリに「test― copy.html」 としてコピーされます。

0公開したディレクトリにアクセスする

h"p:〃127.0.0.1:7777′test.heml
籠 電

組み込みWebサーバを簡単に実現できる雰囲気を感じ取っていただけたでしょ

うか。もちろんこれだけではあまり意味がないので、動作検証用のWebサーバを

作ります。

1‐ 4‐2 URLか ら規則的な内容のベージを表示する

#l /usr/bin/env ruby
require 'webrick'
Thread , start{

WEBrick: :HTTPServer.new(DocumentRoot: ". ",
Portt7777, BindAddress : "127.o,o. 1"). start

)
gets

26

WEBrickの素晴しい点は、目的に特化 したWebサーバを手軽に構築できること

Chapterl 10分 クローラーの作成

[2014-06-2521:17:17]INFC)ruby 2.1.2(2014-05‐ 08)[x86_64‐ linux]

[2014-06-2521:17117]INFO VVEBrick::HTTPServer#starti pid=4460 port=7777



1‐4 Rubyでテストサーバを立てる

です。今回の目的はWgetの動作検証なので、規則的な内容のページを表示する

サーバを立ち上げます。難しいことはなく、テンプレートとなるスクリプトを書き

換えるだけで実現できます。

1規則的な内容を表示するWebサーパ

Webサーバが返す内容を定義するには、wEBrick::HTTPServerに Servlet(サ ー

バ上で動くプログラム)をマウントします。

Servletは WEBrick::HTTPServlet:AbstractServletの サブクラスを定義し(0)、

do_GETメ ソッドで内容を記述します。HTTP GETリ クエストがきたらdo_GETメ

ソッドを実行し、res.bodyにページ内容、rescontenttypeに Content―Typeを 設定

します。ここではパスからContent―Typeを 自動判別させています。

早い話、res.bodyにページ内容を代入してしまえば、それだけでWebサーバがで

きてしまうのです。何も難しいことはありません。他はすべておまじないです。

srv.mountは Servletの 割 り当て先を指定 します (0)。 ここでは0で定義した
TestContentServletの み立ち上げるので「/」 に割り当てていますが、任意のディレ

クトリを指定すれば複数のServletを共存できます。

「trap("INT‖ )」 は [Ctri]+[C]キ ーで終了した時に実行されるコードを指定しま

す (0)。 [Ctrl]+[C]でサーバを終了したいのでこのように書いています。

class Testcontentservlet <

hlEBrick : : HTTPServlet ; : AbstractServlet ts---{

def do_GET(req, res)
res.body = "This is #{req.path}<br>"
res.content_type = WEBrick: :HTTPUtils.mime_type(

req . path_info,
WEBrick: :HTTPUIils : :DefaultMimeTypes)

end

srv = WEBrick: :HTTPServer.new(
:BindAddress => 't27.o.o.1,' j :Port => 1777)

srv.mount(' /', TestContentServlet)

#l I usr / Local / bin / ruby
require'webrick'

traP(1lINT")( srv.shutdown }

srv.start

27



Chapterl 10分 クローラーの作成

このテンプレー トはそのまま実行できます。以下のコマンドでサーバを実行 します。

● webrick‐ temp:ate.rbの 実行例

1.3.1

[2014-06‐ 25 1.2 Ix86_64-linux]

[2014-06-2521:23: pid=5492 port:=7777

ブラウザで「http://12700■ 7777/1/2/3.html」 にアクセスすれば、「Ths is/1/2/3.

html」 と表示されます。他のパスを指定しても同様です。このサーバを終了させる

には [Ctrl]+[C]キーを押してください。

▼ ブラウザで表示する

このテンプレー トサーバを実行することで、req.pathに はURLの うちポー ト番号

の後ろの文字列が代入されることがわかりました。それではres.bodyの内容を決定

しましょう。以下の仕様にします。

で
'res bodyの

仕様

例えば、「http://127.0.0.1:7777/1.html」 のパスは「/1.html」 で、Nodeは「/1」 です。

「/1.html」 からは、「/1/1.html」「/1/2html」「/1.txt」「http://1ocalhost:7777/1.org」

htり :〃127.00… 7″ノV2/3魚ml

、■.鵞 1径.0.0.1:7フ フ71/2/3.ht薔 |

This is/1/2/3 html

URLか らドメイン部を取り除いた文字列Path

Node パスから拡張子を取り除いた文字列

#〔Node〕 /1 html・

#【Node1/2.html,

#{Node〕 txt,

http://localhost:7777#[Node).org,

#〔Node)htmlか らのリンク

/1 html

#{Node)txtの 内容 “ThiS iS#〔 PathI'

その他の Path "dummy"



1‐4 Rubyでテストサーバを立てる

「/1.html」 へのリンクがあります。「/1.txt」 の内容は「This is/1.txt」 です。

同様に「/1/1.html」 からは「/1/1/1.html」「/1/1/2html」 ヘリンクできるようにな

ります。まるで地下に無限に続いていく階段のように、どんどん下の階層まで潜れ

るような構造です。それではスクリプトを見てみましょう。

1テストサーバ test-webserverO.rb

# | I usr I local/ bin / ruby
# -+- coding: utf-8 -+-
requj.re ' webrick '

class TestcontentServlet <

WE Brick : : HTTPServlet : : AbstractServlet

def do_GET(req, res)

#拡張子で分岐
res.body = case req.Path

When /¥.htm15/; html_content req.Path

When /¥.txtS/;  txt_content req.path

elseう            
。'dummyl'

end

res.content_type = WEBrick::HTTPUtils.mime_type(

req.path_info, WEBrick::HTTPUtils::DefaultMimeTypes)

end

def html_content(path)
66(9 = path[o..-6]
<<HTML

< html>< head ><t itle>#{ path }< /title> < / head>

< body>< p>

<a href="#{node}/r, html">#{node}/1. html</a><br>
<a href="#{node}/2. html">*{node}/2, html</a><br>
<a href="#{node}.txt">#{node}.txt</a><br>
<a href=" http : I I Localhost | 7777*{node}. org">

#{node}.org</a><br>
<a href="/1. html">/1. html</a>
</p></body></htm1>
HTI",IL

end

def txt_content(path)
"This is #{path}"

end

srv = WEBrick: :HTTPServer.new(;BindAddress =>' t27.o.o.L', :Port => 7777)

29



Cha墾望1_10分生三ニヱー2生成

srv.mount(' /', TestcontentServlet)
trap("INT"){ srv.shutdown }
srv, start

長いですが、パスを分岐して該当するメソッドを呼ぶようにres.bodyを 書き換え

ただけです。

上のスクリプトを以下のコマンドで動かしてください。そして、「http://127.0.0.1:

7777/1.html」 を開いて正しくリンクが表示されれば成功です。

,test¨webseⅣerO.rbの実行例

▼ テストサーバにアクセスする

なおセキュリテイ上、見知らぬ人と同時に使うコンピュータでは動かさないでく

ださい。このテス トサーバでもw9et― r―‖nfを 実行されたら無限にダウンロー ドし

てしまう弱点があります。ここでは簡単にするため個人用PCで動かすことを前提

としています。

テストサーバは、[Ctrl]+[C]キーで終了します。

1‐ 4‐3 Wgetのオプションを検証する

これでやっとWgetの細かい動作検証ができるようになりました。このテス ト

サーバであれば誰にも迷惑はかからないので、じっくり試せます。

目再帰ダウンロー ドの検証

S ruby test-webleryeo.rb

[201 4-06'25 21 :45:43] INFO VVEBrick

12014-06‐ 2521

21 INFO 2.[2014-06‐ 25 :45431 ruby 1.2

:45:43]INFO

j. t C} r27.o.o.1:177ii).t.tr,tl

湘
一湘
一
価一一却一塁
製ｈｔｍ‐一

カ
一ム
カ
万

一カ
一

30

それでは再帰ダウンロー ドの挙動の検証をしてみましょう。「http://127.0.0.1



7777/1.html」 を再帰ダウンロードした結果を示します。‐nvオ プションでよけいな

出力を省いておきます。

0再帰ダウンロードの検証

見てのとおり、4つのリンクと「/rObOts.txt」 をダウンロードし、URLに対応する

ディレクトリに格納されていることがわかります。Windowsでは「:」 がドライプレ

ターで使えないため、「127.0.0.1+7777」 というディレクトリになります。

「http://1oc」 host:7777/1.org」 は辿っていません。「127.0.0■」と「loc」host」 は同

一ホストですが、文字列上異なるのでWgetでは別ドメインと見なされるからです。

検証用Webサーバにおいてはあえてこのように作り、別ドメインでの挙動をシミュ

レーションできるようにしました。

robots.txt

「/rObOts.txt」 はサーバ側がクローラー (ロ ボット)の動きを制御するための設定ファ

イルです。Wgetは礼儀正しいクローラーなので/robotstxtも 読み込みます。なお、こ

のテストサーバは/robots.txtに意味のある内容は書いていません。

リンク変換の検証

保存された「127.0.0■ 7777/Lhtml」 (Windowsで は127.0.0■ +7777/1.html)を プラ

ウザで開いても、絶対パスでリンクが書かれているため、以降のリンクを辿れなく

なっています。そこでリンク変換オプションーkを付けてみます。

●ダウンロード後にリンク変換を行う

31

1‐4 Rubyでテストサーバを立てる



Chapterl 10分 クローラーの作成

出力は同じなので省きます。相対パスに書き換えられたため、実行後再びブラウ

ザで「127.0.0.1:7777/1html」 を開くとリンクが辿れるようになります。

1127.0.0.コ :7777/1.htmi

「1.org」 もダウンロードするには一Hを付けます。

●別ドメインのフアイルもダウンロードする

12三二上2塗塾
ウェイトのオプション (→p.9)も 検証 しましょう。時刻に注目してみると、ダウ

ンロー ドごとにまばらな秒数だけ待っていることがわかります。

●ウェイトを設定してダウンロードする

くhtml>く head>く title>/■ .htnilく /title>く /head>

< body> < p>

<a hre'f="1/1. html">/1/1. html</a><br>
<a href="1/2, html">/1/2. html</a><br>
<a href="1.txt">/1.txt</a><br>
<a href = " http ; / /localhost : 7777 / a. org" > / r. org< / a> <br >

<a href="1.htm1">/1. html</a>
</p></body></html>

0:00:08

32

S、″‐get‐ nv‐r‐11‐H―k http:/ノ 127.0.0.1:7777′ 1.html

2014■ 07‐0109:59:37 URL:http://127.0.0.1:7777/1.html[262/2621‐ >｀
1127.0.0.1:7777/1.himl''[11

2014-07-0109159,37 URL:http://127.0.0.1:777ア /robots.txt〔19/191->!'127.0.0.1:7777/robots.txt''11]

2014-07-0109:59:37 URL:http:/ノ loCal卜ost:7777/robots.txt i19/19]― >1`localhosti7777/robots.txti[1]

2014-07‐ 0109:59:37 URL:http://127.0.0.1:7777/1/1.htmi1280/2801->・ 127.0.0.1:7777/1/1.html'`11]

2014-07-0109:59:37 URL:http://127.0.0.1:7777/1/2.htmi1280/2801->'1127.0.0.1:7777/1/2.html''[1〕

2014-07-0109:59:37 URL:http://127.0.0.1:7777/1.txt l14/141‐ >''127.0,0.1:7777/1.txtt〔 1〕

2014-07-0109:59:37 URL:http://localhost:7777/1.org 15/5]― >'localhost17777/1.or91'[11

FINiSHED― ‐2014‐ 07-0109:59:37-‐



1‐4 Rubyで テストサーバを立てる

Wgetには他にもたくさんのオプションが存在します。それらをすべて検証する

のは本書の狙いからは外れるのでやりませんが、テス トWebサ ーバを書き換えて

検証ページを作成すればできます。テストサーバと二人三脚でWgetのオプション

について学んでみましよう。思いもよらぬ便利なオプションが発見できるかもしれ

ません。

オプションを確認する

Wgetは幅広く使われていますが、あまりに多くのオプションがあり、どう使えば

いいのかわからなくなるかもしれません。幸いコマン ドラインツールの使い方の

データペースを検索する「cmd‖ ne― fu」「bro」「cheat」 などのツールが存在するので、

それらを使えば具体的な使用例がわかるようになります。いずれもGemで提供され

ているので、インス トールも使い方も簡単です。

● rCmd:ineイ u」 rbrO」 rCheat」 のインストール

e rCmd‖ne‐ fu」 rbro」 rcheat」 のインストール (VVindows)

0「cmd‖ ne¨ fu」 の実行例

33



Chapter l 10分 クローラーの作成

lⅢ 5

超簡単 !10分で作るクローラー

VVinterbOttOFn

‖
クローラー開発の手始めとして、記事リンクのURLと タイトルを出力する簡単

な「10分クローラー」を作ってみましょう。

1‐ 5‐1 概略

ここまでは身近なクローラーとしてWgetを取り上げてきました。検証したよう

に、Wgetは クローラーとして立派な仕事をしてくれます。しかし、Wgetはあくま

でダウンロードするためのッールであり、クローラーとしての機能は再帰ダウン

ロードやリンク変換くらいです。もっと特化した処理を行いたいならば、Rubyで

オリジナルのクローラーを作る必要があります。

そのためには、まず簡単なクローラーを作成することから始めましょう。今回こ

こで作るクローラーは、SBCRト ビックスの記事リンクを抜き出すものです。

■SBCRト ビックス

回■ http:〃
‐WWW.SbCr.jp/topiCS/

元のURLは「http://www.sbcr.ip/わ pics/」 ですが、クローラーはサイトのデザイ

ン変更に振り回されてしまうのが宿命です。このスクリプトは執筆時点 (2014年 7

月現在)では元のURLで も動作しますが、将来も動作する保証はありません。よっ

て、本書の解説のために用意した別のURLに、サイトの内容をコピーしたHTML

を使っていきます。

■コピーしたサイト

回口http:%イCrawler.SbCr」 p/Samplepage.htmi

クローラーの処理の流れは、大まかに以下のようになります。

1午 |



1‐5 超簡単 !10分で作るクローラー

。①対象ページをダウンロードする

・②ダウンロードしたページを解析する

・ ③そこから必要なデータを抜き出す

・④データを加工する

O⑤出力する

ここでは単一のHTMLページを処理するクローラーの作成を通じて、その流れ
を追うことにします。ここで作成する「10分クローラー」はHTMLペ ージの記事リ
ンクを取り出し、各記事のタイトルとURLを標準出力に出力するものです。HTTP
アクセスの部分は、最初はWgetを呼び出すことにします。

そして次節では、以下のように10分クローラーを拡張していきます。それらはす

べてRubyの標準ライブラリでできます。標準ライブラリだけでもここまでできる

のかと感じ取ってください。

・ Wgetを呼ばずにRubyで ダウンロー ド処理をする

・ 機能をクラスに分けるリフアクタリングを行う

・ プレインテキス ト以外にもRSSでも出力できるようにする

・ クローラー自体をWEBrickで RSS配信サーバにする

このスクリプトは実用面も考え、カスタマイズしやすいように作っていきます。

少し手を加えるだけで、RSS配信されていないサイトがRSSリ ーダーで読めるよう

になります。

1… 5‐2 HTMLを解析する

それでは、10分 クローラーの心臓部であるHTMLを解析するスクリプトから作
り始めましょう。これができてしまえば、ほとんど完成したようなものです。まず

は解析対象ページを「samplepage.html」 という名前で保存します。

0対象ページを保存する

カレントディレクトリに「samplepage.html」 が保存されます。

35



Chapter 1 10h, a-, -olFfr,

V samplepage.html

SB Creative

OL艶 二_囲
国

-a!r ,cnlar
I t)', -t > r""..;lr

s6r satl rlrr*kfr 1lttar\a^la f!416r?r!

クローラーで最重要となる部分が対象ページの解析です。ここが一番難しく、逆

にここさえできれば完成したようなものです。それではsamplepagchtmlを 解析し

ましょう。

1三量生三三二二:二土
`=ど

二重量二

まずはsamplepage.htmlの エンコーディングを見てください。多 くのWebサ イト

ではUTF-8で すが、ここも例に漏れずUTF-8です。

UTR8な らばそのまま処理できますが、それ以外の場合は、String#encodeや

String#toutf8でスクリプトのエンコーディングを揃える必要があります。

I重墾2整塾
そしてテキストエデイタやブラウザでHTMLの ソースを眺めてください。取り

出したい情報がどこにあるのか、どのように書かれているのかを見るのです。

たいていの場合、情報は規則的に並んでいます。HTMLの癖を観察して、どう

取り出すかの手段を決定します。HTMLパ ーサーを使ってXPath指定で取り出すこ

ともできますし、正規表現で取り出すこともできます。



<div class="topicsCentercolumnTopicsTitle " >

<div class="topicscentercolumnTopicsListDate">
2o14q2,l2LEl<br /> o---1i;

</div>
<div class="topicscenterColumnTopicsListTitle " >

くa href=:'http://WWW.sbcr.jpノ topicsノ■■7■ 9/'1>
最強の布陣で挑む! GA文庫電子版【俺TUEEEEE】 キヤンペーン開催中
く/a>く br/>● ―̈¨̈――

-0

< I div>
< I div>

1‐5 超簡単 !10分で作るクローラー

I rsamplepage.htmlr J Dfr&

幸い、samplepage.htmlに は、すごくわかりやすい癖があります。

・ 日付は「YYYY年 MM月 DD日 <br/>」 と書かれている(0)

・ 記事リンクは行頭のA要素になつていてくbr/>で終わつている (0)

それならばわざわざHTMLパ ーサーを使うまでもなく、正規表現だけで簡単に
取 り出せます。ここでは正規表現で取り出すことにします。

咸日付と記事リンクの取り出し

それではさっそくstring#scanで 日付と記事リンクを取り出してみましょう。

テキスト処理では正規表現の微調整など試行錯誤する必要があります。そのため、

ラフスケッチとして小さいスクリプトから作っていきます。ここでは日付 。記事リ

ンクのそれぞれ最初の4つだけ取り出し、それらが対応していることを確認します。

1日付と記事リンクの取得 sbcrO.rb

page_source = open("samplepage.html", &:read)
dates = page_source.scan(%r!(Vd+)f ?(yd+)E ?(yd+)E<br />!)
dates Io,4 ]
# => [["2014", "2", "21"],
# ["2014", "2", "20"],
# ["2014", "2", "14"],
* ["2014", '2", "12"]I
url_titles = page_source.scan(

%r!"<a href="(.+?)">(.+?)</a><br />! )
url_titles I o,4 ]
f => [["http://ruu.sbcr.Jpltopj.caltltrgt,,,
S "'Tofitr?fiA ! GA*trI+HIftTUEEEEEI

37



chapterl 10分 クローラーの作成

*t7^-7ilfttF"lr
[ "http : //m. sbcr. jpltopics/aaltz l " t

" riilllll 2o14+2er7 a 23E

I arEa :- Jaftt,tltbbaYY *7lAg12H" l,
[ "http r //rffi. sbcr. jpltopics/,t7,;o l " t

" [t+r-rl,la+liE#Amazon KindletEllilB !

+f2^-r6EHilf,! !"1,
[ "http r //m. sbcr. JpltopLcs/La7o3 1 ",
"lfiilillll2o14+zE1oE t6E

7 =, lY:*Ef 2 w) Llttrfl Aea1H" I l

# dates Lurl_titlesolEffil-fi LtttS
dates.length * => 68

url_titles.length * => 58

string#scanを使って日付、記事URL・ 記事タイトルを取得できます。しかし、両

者は別々の配列であり、各インデックスに対応しています。こんな時はArray#zipを

使えばよいです。ページの都合上、2つの配列の最初の2要素のみで確認しています。

日Array#zipで取得する

dates[0,2].Zip(ur■ _titleS[0,2])

# => [[I'120■4'', ''21', ・'2■':1,

[1'http:′ ′ぃn■
"。

sbcr.jp′ tOPiCS′ ■■7■ 9′ '1,

"最強の布障で挑む! CA文暉電子版【俺TUEEEEE】

キャンペ…ン開催中“]1,

[['120■ 4:1, 112'1, '1201'1,

【
1'http:′′‖口

"。

sbcrojp′ toP」 Lcs′ ■■7■ 2′ '',

"【新刊情報】20■4年2月■7日 ～23日

「コンセプト」の作り方がわかるビジネス書など■2点 "111

日付は文字列配列ではなくて1つ のTimeオ ブジエク トにした方が応用範囲が広が

ります。Time.localは 年月日時分秒 を表す数字または文字列を取 り、 日本時間の

Timeォ ブジェクトを作成します。

Time.local "2ox4", "2", "2o" * => 2014-02-2o oo:oo:oo +o9oo

Time.local 2A1-4, z, 20 S => 2o14-o2-2o oo:Oo:OO +o9OO

HTMLを正規表現で解析する時に、よく忘れがちなのがHTMLア ンエスケープ

です。HTMLで は特定の記号には独自の記法が定めてあります。正規表現で抜き

出しただけだとこれらが残ってしまうので、CGlunescapeHTMLで 必ずアンエス

ヶ―プしておきます。



これらを総合したpttseメ ソッドは次のようになります。年月日の配列をそのま

まTime.localの 引数にするので、「中」で渡しています。

l parseメ ソッド sbcrl.rb

lⅢ 5‐3 Wgetを Rubyか ら呼ぶ

parseメ ソッドだけでは、クローラーではなくてただのテキスト処理プログラム

です。クローラーは、プログラムのなかでHTTPアクセスを行うものです。
このスクリプトをクローラーにするのは簡単です。バッククォートを使いWget

をRubyか ら呼び出してしまえばよいです。バッククォートは、囲まれたコマンド

の標準出力を文字列として取り出します。さらに q̈オ プションを付けてよけいな出

力を抑制して、次の置き換えを行います。もちろん、Wgetのパスは各自正しく指

定しておいてください。

# -*- coding: utf-8 -*-
require 'cgi'

def parse(page_source)
dates = page_source.scan(

%r!(Yd+)4 ?(Yd+)E ?(Yd+)E<br />t)
url_titles = page_source.scan(

%r!^<a href="(.+?)">(.+?)</a><br />!)
urI_titles.zip(dates).map{ | (aurl, atitle),

ymd | [CGI. unescapeHTML(aur1),
CGI. unescapeHTl'1l( atitle), Time. Iocal( *ymd 

) l
)

end

x = parse(open("samplepage.html", &:read))
x[o, z ]
# => [["http!//w.sbcr.Jpltoplcsllt7agt",

"最強の布障で挑む ! Gだ贅慮電子版

IttTUEEEEE】 キヤンペーンロ饉中",

20■ 4‐ 02‐ 2■ 00:100:00 +0900],

[==http:′ ′
""疇'oSbCr・

jP′tOPiCS′■■7■ 2′ ",
¨
【新刊情籠120■ 4年2月■7日～23日

「コンセプト」の作り方がわかるビジネス書など■2点・ ,
20■ 4‐ 02‐ 20 00:00:00 +0900]]

卜5 超簡単 !10分で作るクローラー



x = ParSe(Open("Samplepage・ html“ , &:rfal))

上記のparseメ ソッドを、以下のように書き換えます。

x = parse(｀ /usr/.bin/wget ―q -0- http:ノ /crawler.Sbcr.jP/samplepage,html｀ )   .|‐■

Chapter 1 10!12 a-) -o>lG&

実行結果は変わりません。

日parseメ ソッド(Wget版 ) sbcrl.rb

1‐ 5‐4 最新記事をテキス トで出力する

webペ ージはparseメ ソッドで記事リンク配列の配列に変換されました。10分ク

ローラー最後の仕上げは、それをわか りやすく表示することです。ここでは

おrmat_textメ ソッドで出力文字列を作成します。

1最新記事を取得する

# -+- coding; utf-8 -+-
require'cgi'

def parse(page_source)

# -t- coding: utf-8 -*-
require ' cgi'
def parse(page_source)

dates = page_source.scan(
%r!(Yd+)4 ?(Yd+)E ?(Vd+)E<br />l)

ur1_titles = page_source,scan(
%r! "<a href="(.+?)">(.+?)</a><br /> I )

url_titles.zip(dates).map{ | (aurI, atitle),
ymd | [CGI. unescapeHTML(aurI), CGI. unescapeHTI"lL ( atitle ),
Ti.me. local(+ymd) l

)
end

x = parse(' /usr/bin/wget -q -O- httP: //craw1er. sbcr. jplsampJ,epage'html

xIo,2]
* => [ ["http: //rN. sbcr. Jpltoplcs/rt7rg 1 ",

"最強の布障で挑む : Gミ贅庫電子版

【籠TUEEEEE】 キヤンペーンロ饉中",

20■4‐ 02‐ 2■ 00:0● :00 ,09001,

[''http:′ ノロ●nぼ。sbcr.」 P′ tOPiCS′ ■■7■ 2′
:1,

:li新
刊情報120■4年2月■7日～23日

「コンセプト」の作り方がわかるビジネス書など■2点 ",

20■4‐ 02‐ 20 001:00:00 ,090011

40

sbc12.rb

■

■

●

＃

お

■

●



1‐5 超簡単 :10分で作るクローラー

dates = page source.scan(
%rl(vd+)E ?(Yd+)E ?(Yd+)E<br />l)

url_titles = page_source.scan(
%r!"<a href="(.+?)">(.+?)</a><br />! )

url_titles.zip(dates).map{ | (aurl, atitle),
ymd I ICGI. unescapeHTmL(aurl),
CGI.unescapeHTML(atitle), Time.local(*ymd)l

)
end

def format_text(title, url, url_tltle_time_ary)
s = "Tit1e: +{titIe}YnURL: #{urI}YnYn"
url_title_time_ary.each do laurl, atitle, atimel

s << "* (#{atime})#{ati.tle}Yn"
s << " #{aurl}Yn"

end

s

end

puts format_text("t^ll,JW,SBCR. lP lt'rr7",
" http : / / crawler, sbcr. j p/ samplepage . html " ,
parse('/usr/bin/wget -q -o-

http: / /crawler. sbcr,jpl samplepage. html' ) )

実行結果は以下のようになります。実行の際には、Wgetのパスは各自の環境に

合わせて変更してください。

● sbcr2.rbの実行例

これが10分クローラーです。ページ取得にWgetを使っているものの、プログラ

ム自体でWebペ ージを処理しているこのスクリプトは、れっきとしたクローラー



Chaptrl 10分 クローラーの作成

です。筆者も複雑なHTTPア クセスを伴う時にはRubyか らWgetや cURLを 呼び出

すことはよくやります。試行錯誤したコマンドラインをそのまま使えるので、個人

的用途であれば手っ取り早い手段です。

このスクリプトを作るうえで一番苦労したのは、HTMLを 観察して正規表現を

作成するところだと思います。そこさえ乗り切れば、Webページから情報を抜き

出すスクリプトを作成することは難しくありません。テキスト処理に強いRubyの

力です。次節はこのスクリプトをもっと発展させていきます。

I
本章最後は、先ほど作成した10分クローラーを改良して実用レベルにまで持って

いきます。

1‐ 6…l open― uriに対応させる

まずは10分クローラーからWgetへの依存を取り除きましょう。そのためには

RubyでHTTPア クセスを行う必要がありますが、ここで紹介するopen― uriラ イプラ

リは一番簡単な方法です。Rubyで シンプルにHTTPア クセスをするならばこれを

試しましょう。

open― uriの特徴は、普段使っているKernel#openを URLも 扱えるように拡張して

いるところです。よって、ファイル名の部分をそのままURLに 置き換えるだけで、

openが そのままHTTPク ライアントになります。open―uriで簡単なクローラーを書

くことは、ほとんどの場合、通常のファイル処理を書くこととなんら変わりないの

です。

10分クローラーのスクリプト(sbcr2.rb、 →p.40)に 対し、以下の置き換えを行い

ます。

1… (〕

クローラーを拡張する

' /usr/binlwget -q -O- http://crawler.sbcr.jplsamplepage,html'

Wgetの呼び出しを行っている部分を、open― uri対応に書き換えます。

require ' open - uri '

open ( "http : / /crawler. sbcr. jplsamplepage. htm1", & : read)

open― uriは openを 拡張しているだけなので、「Fileread(10.read)」 には手をつけて

いません。ファイルの内容を丸ごと取得するのにFlle.readを使っている人は、

42



に書き換えればOpen― uriでの拡張の恩恵を受けます。

しかし、このままではHTMLの エンコーディングが単なるバイト列を意味する

ASCⅡ-8BITに なるので、切 り出し処理が動作しません。open‐ uriの仕様として、

HTTPレ スポンスでCOntent― Typeの charsetが指定されていない時はASCII-8BITに

なって しまいます。crawlersbcr.Jpは (元のwww.sbcr.Jpも )そ のケースなので、

openの 引数に明示的にUTF-8を 指定する必要があります。よって、次のようにな

ります。呼び出し先を「samplepar.html」 に置き換えても動作します。

また、別解としてString#toutBを使ってエンコーディングを変換する方法もあ

ります。crawler.sbcr.jpは UTF-8で 書かれているので文字列の内容は変更されず、

文字列オブジェクトのエンコーディングがUTF‐ 8に設定されます。この方法ならば

EUC―JPや Shift」ISで書かれたサイトでもUTF-8に 統一して処理が行えます。

1‐ 6‐2 RSS2.0で の出力に対応させる

次は、プレインテキスト(Pttn text)で 出力された記事リンクを、RSSでも出力

するように拡張しましょう。Rubyな らばrs標準ライブラリを使えばとても簡単です。

rss/2.0.rbの 説明には、以下のようなサンプルが書いてあります。このサンプル

は直接実行可能なので、実行結果も載せておきます。

目rss/2.0.rbのサンプル rsstest.rb

require "rss"

rss = RSS::Maker.make('12.0'`)do lmakerl

■フイードの言語 日本語ならja

maker.channel.language = 'len''

# 7|-l:lEll*
maker.channel.author = "matz"

十 フィー ドの更新時刻

maker.channel.updated = Time.now.to_

43

1‐6 クローラーを拡張する



Chapter l 10分 クローラーの作成

■フイードURL

maker.channel.link =
''http:/ノ www.ruby‐ lang.org/en/feedsノ news.rss''

#フィードの名前
maker.channel.title = ・:Example Feed"

■ フイー ドの要旨

maker.channel.description =

“A longer description o‐ F my feed。 ''

■ 項|ヨはmakeL items.new itemの

#プロックで定義する
maker・ itemS・ neW_item dO liteml

#記事のURL
item.link =

'lhttp:/ノ www.ruby― lang.org/en/newsノ

20■0/■ 2/25/ruby― ■-9-2‐ p■ 36‐ is― releasedノ ''

■記事のタイトル

item.title = ''Ruby ■.9.2-p■ 36 is released“

#記事の更新時刻
item.updated = Time.now.to_s

end

puts rss

●rss/2.0.rbの サンプルの実行結果

44

$ ruby rsstest.rb

<rss version="2.0"

xmlns:content="hltpl / pu(l.ot ghssl 1.0/modules/content/"

xmlns:dc="http://purl.orgldc/elements/1.1 /"
xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd'

xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/">

<channel>

<title>Example Feed</title>

<link>http://www.ruby-lang.orglen/feeds/news.rss</link>

<description>A longer description of my feed.</description>

< la ng uage> en </la ng uage>

<pubDate>Sat, 08 Mar 20 I 4 03:35:02 +0900</pubDate>

<item>



1‐6 クローラーを拡張する

サンプルと実行結果を見比べると、プロックの階層とXMLの 階層が一致してい

る宣言的なドメイン特化言語 (DSL)だ とわかります。各記事は「makeritems.new_

item」 でどんどん追加していきます。今回はこのサンプルをほぼそのまま使ってあ

げればよいことになります。なお、一部の要素は省略しています。

ここでは、コマンドライン引数に「text―output」 を指定した時にはプレインテキ

ストで出力し、「rss‐output」 を指定した時にはRSSで出力するようにしましょう。

引数が同じメソッドを分岐させるので、Obiect#_send_で シンボルとして指定し

たメソッドを呼び出しています。ファイル名はrssseⅣer.rbに して、順次書き加え

ていく形になります。

110分クローラー改 (RSS出力対応) rssserver.rb

# -*- coding: utf-8 -*-
require 'cgi'
require'open-uri'
require 'rss'

def parse(page_source)
dates = page_source,scan(

%r!(vd+)f ?(Yd+)E ?(vd+)E<br />l)
url_titles = page_source. scan(

%r! "<a href="(.+?)">(.+?)</a><br /> I )
ur1_titles. zip (dates ) . map{ | (aurl, atitle ),

ymd | [CGI.unescapeHTML(aurI), cGI.unescaPeHTML(atitle),
Time.local(+ymd)l

)
end

def fOrmat_teXt(title, ur■ , url_title_tine_ary)
s ‐ ''Title: #{title}¥nURL: 十{url}¥n¥n''

url_title_time_ary.each d。  laurl, atitle, atimel

45



Chap“ rl 10分 クローラーの作成

S くく ''* (#{atime})#{atitle}¥n"

end

end

#{a url }Yn "

def format_rss(title, url, url_title_time_ary)
RS5: :Maker.make("2.o") do lmakerl

maker.channel. updated = Time. now.to_s
maker.channel.link = u11

maker.channel.title = title
maker.channel.description = title
ur1_title_time_ary.each do laurl, atitle, atimel

maker,items.new_item do litern I

item.link = aurl
item.title = atitle
item.updated = atime
item,description = atitle

end

end

end

end

parsed = parse(open(
"http : //crawler. sbcr. jplsamplepage. htmI",
"r:UTF-8", &:read))

formatter = case ARGV,first
when "rss-output"

: format_rs s

when "text-output"
: format_text

end

puts _send (formatter,
"WWW.SBCR.lP FY.yr7",
"http: //crawler.sbcr. jplsampIepage.html", parsed)

RSS出力されるように実行してみましょう。

O rSSSerVerrbの 実行例

46

$ ruby rssserverrb rs5-output

<?xml version=" 1.0" encoding="UTF-8"?>

<rss version="2.0"

xm I ns:content="hltpl / purl.org hss/ 1.0/modules/content/"
xmlns:dc="http://purl.orgldclelements/1.1 /"



1‐6 クローラーを拡張する

1‐ 6‐3 リフアクタリング

本節の目標は、10分クローラーをRSS配信サーバに変身させることです。それと

同時に、手を加えれば他のサイトでも使えるようにしたいと思います。そのために、

そろそろオブジェクト指向らしいプログラムに書き換えましょう。

まずはSiteク ラスとそのサブクラスSbcrTopicsを 定義します。open― uriでページ

の内容を取得するのはどのサイトでも使えるので、Site#pag∝ sourceに します。

p″ seメ ソッドはsbcrト ビックスにローカルなのでSbcrTopicsで定義します。他の

サイトを解析したければ、そのサイト用のサブクラスを定義すればよいことになり

ます。

出力の方もbrmat_textと おrmat_r%の 2つのメソッドが登場してるので、これらも

クラスに分けておきたいです。Formatterク ラスとそのサブクラスTextFormatter、

RSSFormatterを 定義しましょう。

この状況下でRSSフ イードを出力するには、次のコードになります。SbcrTopics.

newはキーワード引数「url」「dtle」 を取ります。そして、Site#outputで Formatter

のクラスを指定して、対応する出力を得るようにします。Rubyにおいて、クラス

はオブジェクトなのでメソッドの引数に渡せます。

47



Chapterl 10分 クローラーの作成

site.output RSSFormatterll, EStS(".

が呼ばれるようにします。

この改造により、次のようにメソッドが移動します。

. parse --+ SbcrTopics#parse

. format_text + TextFormatter#format

.format_rss -+RSSFormatter#format

メソッドをクラスに配属させることで、引数の数を減らせるメリットもあります。

元 のparseメ ソ ッ ドで はpage_sOurceが 引数 になって い ましたが、 ここで は
Site#page_sourceと メソッド化されたので、page_sOurce引 数はなくなります。

鯉 1■生Z二
Site#page_sourceは 一度読み込んだらキャッシュしておきたいので、インスタン

ス変数に記憶しておきます。SbcrTopics#parseに て2回page_sourceが出てきてい

るので、キャッシュしないと再び読み込んでしまいます。インスタンス変数に

キャッシュするには「‖=」 がよく使われます。「@x‖=v」 は「@x=@x‖ v」 の略記
であり、@xが nilか回 seの時は「v」 を返し、それ以外の時は「@x」 を返します。未

定義のインスタンス変数はnilに初期化されているのでこの手法が使えます。ただ

し、キャッシュする内容がnilかmseの時は使えません。

エンコーディングはスクリプトのエンコーディングであるUTF-8に統一するので、

String#toutBで変換しておきます。

日10分クローラー改2(Siteク ラス) rssserver2.rb

requ■ re

requェ re

requュ re

requ■ re

'cgi'
' open - uri '

'rss '

'kconv'

class Site

site = SbcrTopics.new( ■

RSSFormatter

RSSFormatter. new(slte) . format( site. parse)



1‐6 クローラーを拡張する

def initialize(url: "", title: "")
@url, @title = urlr title

end

attr_reader :ur1, :title

de'f page_source

@page-source I l= open(@url, &:read).toutf8
end

def output (f ormatter-klass )
formatter-ktass, new( self ) . format ( parse)

end

class SbcrTopics < Site
def parse

dates = page_source.scan(
%rl(vd+)f ?(Yd+)E ?(vd+)E<br />!)

utl_titles = page_source.scan(
%rl"<a href="(,+?)">(.+?)</a><br />!)

url-tit1es. zip (dates ) . map{ | ( aurl, atitle ),
ymd | [CcL unescapeHTML(aurl),
CGI. unescapeHTl'lL ( atitle), Time. tocal ( *ymd ) l

)
end

end

跛Formatter 217
今度はFormatterク ラスです。元のおrmattext、 おrmatirssメ ソッドの引数に

ddeと urlがありますが、それぞれFOrmatter#title、 Formater#urlと メソッド(ア

クセサ)化されているので、これらの引数はなくなります。

FOrmatter#title、 Formattr#urlは それぞれSiteオ ブジェクトから取得します。

そのため、Siteク ラスでattrゴ eaderを定義しておいたのです。

ヨ10分クローラー改2(Formaterクラス) rssserver2.rb

class Formatter
def initialize(site)

@url = site.url
@title = site.title

end

attr_reader :url, :title
end

49



Chaptcrl 10分 クローラーの作成

class TextFormatter < Formatter
def format (ur1_title_time_ary )

s = "Title: #{titIe}YnURL: #{url}YnYn"
url_title_time_ary.each do laurl, atitle, atimel

s << "+ (#{atime})#{atitle}Yn"
s << " #{aurl}Yn"

end

s

end

end

class RSSFormatter < Formatter
def format ( url_title_time_ary)

R55: :Maker,make("2.o") do lmakerl
maker.channel.updated = Time.now.to_s
maker.channel.Iink = url
maker.channel.title = title
maker. channel.description = title
url_tit1e_time_ary.each do laur1, atitle, atimel

maker. items. new*item do I item I

i.tem,link = aurl
item.title = atitle
item.updated = atime
item.description = atitle

end

end

end

end

end

スクリプトの呼び出し

呼び出し部は以下のように変化します。

日10分クローラー改2(呼び出し部) rssserver2.rb

site = SbcrTopics.new(
url: "http: / /crawler. sbcr. jplsamplepage. html",
title: "W!.jH. 5BCR.)P lY.y )7" )

case ARGV.first
when "rss-output"

puts site.output RSSFormatter
when "text-output"

puts site.output TextFormatter
end



1‐6 クローラーを拡張する

実行方法と出力結果は変わりません。

元のスクリプト(rssserver.rb、 p.45)は関数的メソッドがたった3つ というシンプ

ルなものだったので、一気にリファクタリングしてしまいました。その過程におい

て、parse、 おrmatte対、おrmat_rssメ ソッドは内容に手を加えることなくそのま

ますっぽりとクラスに収まりました。ローカル変数と無引数メソッド呼び出しでは

字面上の区別がないのでそのような現象が起きるのです。

これでクラス階層ができたので、新しいサイトを扱いたければSiteの サブクラス

でparseメ ソッドを定義すればよいことになります。同様に新しい出カフォーマッ

トを扱いたければFormatterのサブクラスでおrmatメ ソッドを定義することになり

ます。

1‐ 6‐4 RSSサーバにする

最後は10分クローラーをRSS配信サーバにしてしまいます。Wgetの動作検証で

使ったWebサーバ (→p.25)も、RSSFormatterも このための布石だったのです。

Wgetの ところで示したように、WEBHckの テンプレートを使えばWebサーバを

立ち上げるのは難しくありません。WEBrick::HTTPServlet:AbsLactServletの サ

ブクラスRSSServletに て、do_GETメ ソッドを定義しましょう。そこで、res.bodyに

RSSの文字列、res.cOntent_typeに「"applcadon/xml:chttset=utf 8‖ 」を指定します。

ただし1つだけ問題があります。RSSServletは 外から与えられるサイト情報に依

存 しているので、どのように情報を渡せばいいのかということです。実は

AbstractServletに は外からパラメータを渡す仕組みが存在していて、この要求に

応えてくれます。WEBrickの テンプレー ト(→p26)で触れたように、WEBrick::

HTTPserverォ ブジェクトでサーバを立ち上げ、mountメ ソッドでServletを マウ

ントするようになっています。このmOuntメ ソッドの第3引数以降に任意のオブ

ジェクトを渡せます。これらのオブジェクトはAbstractServlet内 では@optionsと

いうインスタンス変数で参照できます。

ただし、AbstractServletに そのままSiteオ ブジェクトを渡してはいけません。こ

れはWebサーバなので何度も実行されます。Siteオ ブジェクトは一度page_source

にアクセスしたらそれを記憶するため、サイトの内容が変化した時にも古い情報を

万にRSSが作られてしまいます。よって、クラス、URL、 タイトルをmOuntメ ソッ

ドで渡し、RSSServlet#do_GETで Siteオ ブジェクトを作 ります。URLと タイトル

はハッシュで、SbcrTopics#initializeに そのまま渡します。

51



あとはテンプレー ト(→p.26)に あるサーバ定義をメソッド化するだけです。なお、

クラス定義部分はp.45で掲載した内容と同じなので省略しています。

日10分クローラー改2 rssserver2.rb

# -*- coding: utf-8 -*-
require 'cgi'
require'open-uri'
require 'rss'
require'kconv'
require 'webrick '

class Site

歴憂ヨ
end

ClaSS縦尋,,||'clく Site
def parse

E髪亜蜃ヨ
end

end

class Formatter

class TextFormatter < Formatter
rEffi-jl

end

class RSSFormatter く Formatter

画彙El
end

cl.ass RSSServIet <

WEBrick: :HTTPServlet: :AbstractServlet

def do_GET(req, res)
klass, opts = @options
res.body =

kIass. new(opts ) . output (RSSFormatter), to_s
res. content_type =

"application/xml; charset=utf -8"
end

end

def start_server

Chapterl 10分 クローラーの作成



1‐6 クローラーを拡張する

srv = WEBrick: :HTTPServer.new(:BindAddress =>

'r27,o,o.r', :Port => 7777)

― ――-0
urI:
title:

#場合によつてはsrv.mount行を追加する
trap(1'INTl'){ srv.shutdown }

srv.start

end

if ARGV.first == 'server'
start_server

eI se

site =

u11: '

title:

case ARCV.first
when "rss-output"

puts site,output RSSFormatter
when "text-output"

puts site.output TextFormatter
end

end

スクリプト内でアミかけで示した部分をターゲットに合わせて書き換えれば、他

のサイトに対しても汎用的に使うことができます。

●rssseiver2.rbの 実行例

「server」 を指定して実行すると、RSSサーバが立ち上がります。そして、ブラウ

ザから「http://12700■ 7777/rss.xml」 にアクセスすれば、RSSが出てきます。 [Ctrl]

+[C]キーで終了します。

53



Chapterl 10分 クローラーの作成

¶ロプラウザからRSSを確認する

「rss‐ output」 か「text―output」 を指定すれば出力後そのまま終了します。

startjerverメ ソッドを見れば予想できるように、srv.mountを 複数個書けば、

他のサイトのRSSを 表示できます (0)。 この「10分クローラー改」を他のサイトで

も使うには、Siteのサブクラスとparseメ ソッドを定義し、srv.mount行を増やすだ

けです。これでRSSが提供されていないサイトの最新情報をRSSリ ーダーで読むこ

とができます。

WEBrickは組み込みWebサーバなので、常駐型クローラーの動作状況をWebイ

ンターフェースやRSSで報告するという応用例もあります。次章ではより本格的な

クローラーを作っていきます。

このフイーⅢ藤崚勝タイートリー‐:艤置爾Ⅲ繭炒悪轟熙
n2<--.fffifin r4i1tr<J rBta

m.SBCR』 Pトビツクス

爾





Chapter 2 クローラー作成の基礎

2‐ 1

クローラーの目的と構造髯
本書では、基本的なクローラーの構造と作り方を学び、その後で目的のサイトご

とに特化したクローラーの作り方を紹介します。最終的には、読者が自分の目的に

沿った実践的なクローラーを作れるようになることをゴールとします。

このセクションでは、まずは一般的なクローラーの構造を学ぶことで、クロー

ラーの機能や動作の基本を理解をします。その次にクローラーが利用するモジュー

ルを知ることで、より詳細な動きを理解します。最後に、本書で利用するクロー

ラーの紹介をします。

2・卜1 クローラーの目的

クローラー (Crawier)は、Web上 の文章や画像を自動的に取得するプログラム

のことを指します。もともとは、検索エンジンによって世界中のWebサ イ トをデー

タベース化、インデックス化する目的で開発されたもので、Googleの グーグルボッ

トなどが有名です。クローラー以外にもさまざまな呼び名があり、「ボット(Bot)」

「スパイダー (spider)」「ロボット(robot)」 などとも呼ばれます。またWeb以外を対

象に、フアイルサーバやデータベース内を巡回し、インデックス化する目的のプロ

グラムもクローラーと呼ばれます。本書では、Webサ イトを巡回して文章や画像

を取得するプログラムを対象とし、呼び名を「クローラー」に統一します。

それではクローラーの目的とは何でしょうか ? 検索エンジンのクローラーは、

広くあまねくWebサ イトを巡回してデータベース化することを目的とします。そ

の成果として、我々は検索エンジンを利用してさまざまな情報を収集できます。一

方で検索エンジンを利用するだけでは、自分が欲しい情報だけ抜き出して、定期的

に取得するといったことはできません。そこで、自分専用のクローラーを作ること

により、取得元の対象サイトを絞り、必要とするデータのみを効率的に取得するこ

とができるのです。

2‐卜2 クローラーの構造

クローラーは対象のWebサ イ トに対 して、コンテンッをダウンロー ドして保存

し、次の取得先を見つけていくといった形で巡回していきます。これらのクロー

ラーの動きを構造として着目すると、大きく分けて次の3つ に分類できます。

56



2‐1 クローラーの目的と構造

・ コンテンツの取得

・ データの解析

・ データの保存

実はこの構造は、Webブラウザと大差はありません。ブラウザの構造は、デー

タの「取得・解析・描写」です。つまリクローラーとブラウザの違いは、コンピュー

タか人間、どちらが利用するかでしかありません。その点を踏まえたうえで、ク

ローラーの構造や動きを見ると理解が早くなります。それでは、クローラーのそれ

ぞれの機能を見ていきましょう。

コンテンツの取得 (ク ローリング)

コンテンツの取得は、サイトにアクセスしてWebページなどをダウンロードす

る機能です。クローラーは、HTMLを ダウンロー ドして解析し、そのなかに含ま

れるリンク先を見つけてそのページをダウンロードするというプロセスを繰り返し

ます。この一連のプロセスを「クローリング」(crawling)と 呼びます。

またクローラーが扱うリンク先には、<A>タ グ (ア ンカータグ)で示されている

ページや、くImg>タ グ (画像タグ)や <FOrm>タ グ (フ ォームタグ)の Action属性で

指定された遷移先などがあります。本書では、クローラーが扱うリンク先としては、

特別な指定がない場合は<A>タ グを指すものとします。それ以外を対象にする場

合は、明示して記載します。

クローラーを最も狭義な意味で定義すると「コンテンッを取得し巡回する機能」

となります。クロール対象となるWebページには、大きく分けると次の3つの種類

があります。

・ ステー トレスなページ (状態を持たないページ)

・ ステー トフルなページ (状態を持つページ)

・」avaSc‖ ptを元にクライアント側でページを組み立てるタイプ

ステートレスなページは、URLを 指定すると単純にHTMLが返ってくるページで

す。JavaScriptを 元にクライアント側でページを組み立てることもしません。ブロ

グやニュースページなど多くのサイトが、このステートレスなベージにあたります。

このパターンはURLに 対応したHTMLを取得するだけで目的のデータを得るこ

とができるので、クローラーで最も対応しやすいです。単純なクローラーはこのよ

うなページを想定 して作られ、lURLで 1要素のみ取得します。つまりURLを 指定

57



Chapter 2 , a-) -#fr,o*ft

すると、そのHTMLの みを取得し付随のCSSや JavaScript、 画像は取得 しません。

ステー トフルなページは、ログインずみの状態でないと参照できないページや、

POSTな どで事前に送られた情報をサーバ側が保持 し、その前提でないと参照でき

ないパターンです。サーバサイドで動的に生成されるページの多 くはこの形式です。

クローリングする際は、認証やPOSTでのパラメータの送信の問題を解決するため

に、クローラー側で一工夫が必要です。対処法として、プラウザをエミュレートす

るライブラリを利用したうえで、ログインやフォームの入力など特定ページに対す

る操作に特化して対応することが多いです。

JavaScriptを元にクライアント側でページを組み立てるタイプは、JavaScriptの 指示

の元にデータの取得や処理をブラウザ内で行い、ページを組み立てて表示するタイ

プです。目的のデータを取得するにはプラウザと同じようにJavaScriptを解釈して

描写する必要があるので、通常のクローラーで対応するのは非常に困難です。

これに対応するには、2つ の方法があります。JavaScriptの動作を人間が解釈 し

て同様の動きをプログラム側に組み込む方法と、クローラーがJavaScriptの解釈を

できるようにする方法です。前者は対象とするページの構造・複雑さにより難易度

は格段に変わります。後者のJavaScriptを 解釈させるためには、クローラーの内部

に簡易ブラウザのエンジンを組み込んだり、クローラーがブラウザそのものを起動

させるなどして、あたかも人間がブラウジングしているようにシミュレー トする必

要があります。

この他にもクローラーがコンテンツを取得する際に、付随的に必要になる機能が

いくつもあります。ケーススタディを元に、順次解説していきます。

・ robots.txtや <Meta>タ グなどを参考に、コンテンツを取得してもよいかの判断

・ プロキシサーバの指定

・ ユーザーエージェント名の指定

・ Cookieの 受け入れ

・処理を並列化して、効率的にデータを取得

なお、本書のなかで「ページ」はWebサイトで表示される個々の文章を指します。

またHTMLについては、サーバサイドで動的に生成されたものか、サーバ上に置

かれたHTMLフ ァイルかを問わずに、最終的にクライアント側にダウンロー ドさ

れたHTML文章を指すものとします。

58



robots.txtと くMeta>タ グ

robots.txtと は、サイ トの所有者がクローラーに対して命令を記述するためのフア

イルです。強制力はないものの、検索エンジンにクローリングの禁止などの指示を

出すことができます。同様のことを、くMeta>タ グで記述することが可能です。

クローラーの開発者は、対象ページのrobots.txtや くMeta>タ グに注意し、そこに書

いてある指示に従うように心がける必要があります。他にも、クローリングをする

うえで従うべきことがいくつかあります。詳細は、それぞれのセクションで説明し

ます。

,`

2‐ 1 クローラーの目的と構造

データの解析 (ス クレイピング)

データの解析は、ダウンロー ドしたベージを解析して特定のデータを引き抜 く機

能です。データを引き抜 く部分は、特に「スクレイプ」(抜き出す)と 呼ばれます。

解析の実装方法としては、以下の2つがあります。

・正規表現を利用して、パターンマッチングする

・ HTMLや XMLの文法を理解して、構文解析する

正規表現を利用する方法は、目的とするデータもしくはその周辺のデータの特徴

を元に、パターンマッチングする方法です。この方法は単一の要素を抜き出す場合

は手軽で非常に簡単に実装できるケースが多いです。構造化されていないHTML
の場合にも威力を発揮します。一方で複数の要素を取得する場合は、ループや条件

分岐を駆使した複雑なプログラムになりがちです。また、取得先のページのデザイ

ン変更のたびに対応する必要がある可能性があります。

もう1つの手法である構文解析は、取得したHTMLや XMLを 構文解析ツール

(パーサー)を利用し、CSSセ レクタやXPathで要素を指定して抜き出します。この

方法は構文を解析したうえで順番に辿っていくために、解析の処理コストが大きく

なります。しかし、取得先が構造化されたHTMLの 場合であれば、簡潔に処理が

記述できるうえに取得結果の正確性が高いです。

昨今のWebサ イトは、ブログやCMSあ るいは動的システムなどから生成される

ものが多く、構造化されたHTMLが主流になっています。またHTML5では文章構

造がより厳密化され、検索エンジンを始めとするコンピュータから解釈しやすい方

向に向かっています。これらの点を考えると、構文解析型のスクレイビングはより

優位になると予想されます。そこで本書では、構文解析型のスクレイビングを中心



に解説していきます。

この他にも、HTML中 の<A>タ グの抽出や指定キーワー ドの出現の検出など、

目的に特化して作り込む場合もあります。

I三二二2堡二
データの保存は、取得したデータをメモリ内、もしくはファイルやデータベース

などに保存しておく機能です。メモリヘの保存は、巡回・解析のための一時的なも

のです。ファイルやデータベースヘの保存は、データを永続化するために利用します。

永続化することにより、定期的なクローリングでは訪問間隔や多重度の調整や取

得ずみのデータをスキップするなど、効率的な巡回が可能になります。また、デー

タを保存することにより、巡回工程と解析工程の分離が可能になり、それぞれの機

能が疎結合で運用保守しやすいプログラムになります。

一度かぎりのクローリングであれば、データ保存機能は必要ありません。一方で、

クローラーを使い定期的に運用していく場合は、データ保存機能が重要になります。

2‐卜3 クローラーが利用するライブラリ

ここまでで、クローラーの構成要素が一通り理解できたと思います。次はRuby

でクローラーを作るために、どのようなモジュールを使うのかを見ていきましょう。

クローラーのそれぞれの機能をどのように作ればよいのでしょうか ? もちろん
Rubyを使って、ダウンロードや構文解析などそれぞれの機能を作ることは可能で

す。しかし、その方法は非常に手間がかかります。プログラマの世界では、その行

為を「車輪の再発明」と呼び、広く受け入れられ確立されている技術や解決法を知

らずに、同様のものを一から作ることを避ける傾向があります。

Rubyの 世界では、世界中のRubyプ ログラマ達が作ったライブラリをGemと いう

形式で広く公開し、誰でも利用できるようになっています。本書で紹介するクロー

ラーが利用しているライブラリや、カスタマイズ時に利用するライブラリを、一部

でありますがここで紹介します。

ダウンロードのライブラリ

Rubyの ダウンロードライブラリの定番としては、「open― uri」 があります。

open― uriは 、Rubyの組み込みライブラリであるKernel#openを 再定義したもので、

ファイルと同様の操作でHTTP/FTPに アクセスすることができます。またopen―

uriは標準添付ライブラリであり、Rubyが利用可能であればすぐに使うことができ

Chapter 2 クローラー作成の基礎



2‐ 1 クローラーの目的と構造

ます。下記のサンプルスクリプトのようにURLを指定するだけで(0)、 ファイル

と同じように扱うことができます。

日open¨uriの利用例 rb

ト

その他にも、プロキシやベーシック認証への対応やリダイレクト機能など、

HTMLを ダウンロードする際に利用する多くの機能を備えています。

似たようなライブラリに「httpclient」 があります。こちらは、さらにCookieの対

応や、HTTPのHEADメ ソッドやPOSTメ ソッドにも対応しています。

HTML構文解析のライブラリ

構文解析とは、対象の文章を定義された文法に従って解釈し分析することを指し

ます。この構文解析を行うプログラムを、構文解析器やパーサー (parser)と 呼び

ます。HTMLの構文解析に特化したプログラムであれば「HTMLパ ーサー」です。

クローラーはHTMLやXMLの分析したうえで目的のデータを取得するので、パー

サーが必須となります。

Rubyの HTML構 文解析 の ライブ ラ リと して は、「Noko」ri」 が定番 です。

NokogiriはHTMLや XMLを解釈できるパーサーで、XPathと CSSセ レクタを使って

の分析が可能です。下記の例では、Nokogiriの公式 トップページを対象にCSSセ レ

クタを利用 して、ベージ中のくA>タ グのhref属 性をすべて取得 しています。なお、

下記のスクリプ トの実行にはNokogiriの インス トールが必要です (→ p.74、 80)。

薔Nokogiriの利用例 iri.rb

|

oPen (

" http : / /docs. ruby-Iang. orgl j a t 2. r.o / doc I index. htm1" ) { .------{
lfl f.each_line {llinel p line}

)

require 'open-uri

doc = Nokogiri. HTML(open ( "http : / /nokoBiri. orgl " ) )

doc.css('a' ).each do lelementl
puts element[:href]

end

require ' nokogiri'
require'open-uri'



Chapter 2 クローラー作成の基礎

Nokogirilま hpricot

NokogMは hpricotと いうHTML構 文解析ライブラリの影響を受けていて、機能面や

構文などに類似点が多くあります。 しか しhpricotの開発は既に終了し、hpricotの 開

発者自身もNokogiriの 利用を推奨している状態です。このため、特別な理由がないか

ぎり、Nokogiriを 使うのがよいでしょう。

一方で、Nokogiriと hpricotで 1つだけ大きな違いがあります。Nokogiriは 文字コー ド

をUTF-8と して扱うことを前提で作られています。hpricotは その前提はなく、文字

コー ドを意識することな く、そのまま返すように作 られています。そのため、

Nokogiriで UTF-8以外の文字コードを利用する場合は、一定の考慮が必要です。この

あたりの事情は、「3-3文字コードの対処法」にて紹介します (→ p.156)。

1補助的なライブラリ

ダウンロー ドや構文解析などクローラーの中核をなすライブラリの他にも、単機

能だけど利用することで開発が楽になるライブラリがたくさんあります。例えば、

「robotex」 です。このライプラリはrobots.txtを 参照しクロールの可否を確認 します。

なお、以下のスクリプ トの実行にはrobotexの インストールが必要です (→ p■ 44)

I robotexo)ftlHfiJ robotex.rb

他にも便利なライブラリはたくさんあります。本書では利用する段階で、随時紹

介することとします。

2‐卜4 Ruby製のクローラー

先ほど「車輪の再発明」を避けるということで、Rubyの ライプラリを紹介してき

ました。それでは、Ruby製のクローラーは存在しないのでしょうか' もちろん
クローラーを作るためのライブラリやフレームワークは既に多数存在しています。

一方で、それらのライブラリやフレームワークは、クローラーを作るための機能が

提供されているだけです。クローラーを作るということは、どのWebサイトから

"My User Agent Name Like hlebcrawler"
p robotex. allowed? ( "http : / /ww.yahoo, co. jp" )
p robotex. allowed? ( "https : / /m,facebook, com/ " )

require ' robotex '

robotex = Robotex,new

62



2‐1 クローラーの目的と構造

何の情報を取得するかを定義し、それに沿って処理を追加していくということです。

言い換えると、目的を注入することです。

本書ではクローラーを一から自作するということをしません。用途に応じて既存

のライブラリを選択し、目的に応じた処理を追加するという形式を取ることとしま

す。それでは、「2-1-2ク ローラーの構造」(→p.56)で分類した3種類のWebページを

元に、それぞれに最適なクローラーのライブラリを紹介します。

l∠豆萱二土」■杢ヱ壁i三ゴ生1生fl]量生童LI仝望
=■
二重生二

ステートレスなページ(→p.57)は、クローラーが最も得意とするものです。多く

のクローラーが、このタイプに対処するように特化しています。例えば、ニュース

サイトを巡回して記事のタイトルを取得したり、ランキングページを定期的にク

ロールして順位の変動を観測したりといった用途で使われることが多いです。代表

的なライブラリとして「Anemone」 があります。

Anemoneは 、対象のサイトに対して自動的に巡回します。巡回に際して必要な、

次の巡回先の取得やページの解析、サイト側がクローラーに対しての許諾を定める

rObOts遂 tの検出と対応など、クローラーに必要な機能を一通り揃えています。下

記のサンプルスクリプトは、Anemoneを 利用してYahoolニ ユースから記事の一覧

を取得する例です。実行にはAnemoneのインストールが必要です (→ p.74、 78)。

日Yahoo:ニ ュースから記事の一覧を取得する anemone.rb

Anemoneを 利用すると、わずか10行足らずのコードでHTMLの ダウンロードか

ら解析まで行えます。クローラーを上手く利用することにより、取得先を指定する

だけで目的の情報を簡単に取得できます。AnemOneの使い方については「2-2

Anemoneを利用する」(→p.66)以降で詳しく説明します。

require'anemone'

Anemone.crawl("http://news.yahoo.co.ipl", :depth-Iimit => o) do lanemonel

anemone.on-every-page do I Page I

page . doc . xpath (

" / / * [@id=Y"editorsPickY" ] /div/ ulIr] /Ii/div I p t a" ) . each do I title I

puts tit■ e.text

end

end

end

63



Chapter 2 クローラー作成の基礎

ステートフルなページを得意とするクローラー

ステートフルなページ (→p.58)に 対処するには、<Form>タ グのActiOn属 性を利
用し、POSTメ ソッドでパラメータを送ることや、C00kieの受け入れが必要になり
ます。Anemoneを 始めとするステー トレスなページに特化したクローラーには、

対応できないものが多いです。

このような場合には、あたかも人間が操作しているような対話型の処理を行う機

能が必要です。Rubyで対話型処理を行うライブラリとしては、代表的なもので

「Mechanize」 があります。Mechanizeは 、webサ ィトとの対話を自動化するための

ライブラリであり、そのために必要なCookieの 保存や<Form>タ グヘの入力や送信
といった機能を備えています。

次のサンプルスクリプトは、Mechanizeを 利用してAmazonの アソシエイト(ア
フイリエイト)ページにログインして、売上を取得する例です。実行にはMechanize

のインストールが必要です (Gemか らインストールできます)。 また、Amazonア ソ

シエイトのユーザー名 (0)と パスヮード(o)も必要になります。

I Amazonアソシェィトの売上を取得する mechanize.rb

Mechanizeを 利用すると、ページに必要な事項を入力 して次のページに遷移 し、

次のページのなかから必要なデータを抜 き出すといったことが可能になります。一

方で対話型ですので、ベージごとの処理を記述する必要があります。そのため、サ

イト内を自動巡回してすべての情報を取得するといった処理には不向きです。しか

し、Webベージにログインして、特定の情報のみ取得するといった処理には最適
です。

uri=URI. parse( 'https: //affiliate. amazon. co. jpl , 
)

agent = Mechanize.new
agent.user_agent_aIias ='Mac Safari,
page = agent.get(uri)
next_page = page.form_with(:name =>'sign_in,) do

form.username ='your_username' H)
form.password ='!your_password' 

--O

end. submit
puts next_page. search (' / /t [@id="mini-report,' ] /div[ 5] /div[2], )

I form I

text

require'mechanize'

64



2‐1 クローラーの目的と構造

JavaScriptに対応できるクローラー

Mechanizeは Webページと対話型の処理が可能です。しかし、取得したHTMLが

JavaScriptで クライアント側で文章を組み立てることを前提として
いる場合、

HTML内から目的のデータを取得するのは非常な困難を伴うことが多いです。な

ぜなら、Mechanizeに はブラウザのようにJavaScriptを解釈・処理する機能がない

からです。

JavaScriptの解釈・処理が必要なページ (→ p.58)に は、クローラー自身にブラウ

ザエンジンを組み込んでいるもの、もしくはブラウザそのものを起動して操作でき

るものが必要になります。Rubyの場合は「Capybara」 というライブラリがそのよ

うな機能を有しています。

もともとcapyb″ aは、webシ ステムのテストを効率化するために開発されてい

ます。テストのために、ブラウザを利用して所定のパラメータを入力し、その結果

が正しいかといった検証を自動化するために利用されています。また「Selenium」

というッールも、Capybaraと 同様のことができます。capybaraと seleniumを それ

ぞれ単体で使うことも可能ですし、組み合わせて使うことも可能です。

このブラウザを操作するという機能を転用することで、JavaScriptに も対処でき

るクローラーが作れます。下記のサンプルスクリプ トでは、Seleniumを 使い

Twitterか らトレンド情報を取得しています。実行にはSeleniumの インストールが

必要です (→p.116)。

selenium.rb

require' selenium-webdriver'

#ブラウザの起動
dr■ ver = selen■um::WebDriver.for :firefox

#Waitの指定
driver.manage.timeouts.Page_load = ■0

driver.navigate.to' httPs; //twitter.com/search-home'

e■ements = driver.find_elementS(

:xPath′  1:/ノ ul[Oclass='trend― items js― trendS']/1i/a'')

elements.each do lelementl

# Tweetの表示

puts element.text

65

l Twiterか らトレンド情報を取得する



Chaoler2 ) a-7 ―作成の基礎

end

driver. qu it

Twitterの Webページでは、Javascriptの遅延ロードを利用して、ツイートの表
示をしています。遅延ロードとは、JavaScriptを 利用して画面表示後に非同期に情

報を取得する処理です。そのため、Javascriptの解釈および実行ができないと、

ページを構成する情報を取得することができません。capybaraゃ seleniumの よう

なプラウザを利用するタイプのクローラーであれば、遅延ロードのベージも処理で

きます。

本書では、Capybaraや Seleniumを 利用するクローラーを「プラウザタイプのク

ローラー」と呼ぶこととします。Capybaraお よびSeleniumについては、「23プラ
ウザタイプのクローラー」(→p.114)で詳しく説明します。

※

ここまでで4つのライブラリを紹介しました。このなかで明確にクローリングを

目的として作 られているものは、Anemoneだ けです。Mechanizeと Capybara、

Seleniumは クローリングを主な用途として設計されていません。 しかし、クロー

ラーの基本機能であるダウンロー ドが可能であれば、解析や巡回機能は後付けで対

処することは容易です。

本書では、これらのライプラリを利用して、目的ごとに使い分け効率的に対処す

る方法を紹介 します。

l
Anemoneは 、2009年 にChris Kiteに よリクローラーのフレームワークとして開発

されたRubyの ライブラリです。クローラーが必要とするデータ取得、解析、保存

のすべての機能を備え、Rubyの クローラーライプラリとしては最も完成度が高い

ものの1つです。2014年 現在では開発が停滞 しているものの、現在 もさまざまな

ユーザーに利用され続けています。

このセクシ ョンでは、AnemOneを 使 つてクロー ラーを作 るために、 まず
Anemoneの 主な機能と処理の流れを学びます。その後に、WindOwsも しくはMac
ヘインス トールし、クローラーの開発準備を行います。

2‐ 2

Anemoneを利用する



2‐2 Anemoneを 利用する

2‐ 2‐l Anemoneの 機能

先述のとおり、Anemoneはクローラーに必要なデータ取得、解析、保存のすべ

ての機能を備えています。クローラーの作成に先立って、まずはAnemoneの 機能

ごとの主要なメソッドと使い方を学びましょう。

Anemoneの巡回機能

Anemoneの メインの機能は、Anemone::Coreに 実装されています。Webサ イト

の巡回と取得したページの処理に関する機能もここで実装されていて、4つのイン

スタンスメソッドが用意されています。巡回先のURLを操作するおcuttcrawlと

skip」 inks like、 取得したページに対する処理であるon_every_pageと on_page亀

likeです。

躊レAnemoneの 巡回に関するメソッド

おcuttcrawlも しくはskip_links_likeは 、巡回するURLを指定します。取得対象か

ら外す場合は、skip_links_五 keを正規表現のパターンで指定します。取得対象の

URLを絞り込む場合は、おcus_crawlを 利用します。おcus_crawlは URLの配列を渡

すことを求められていますが、実際の使い方としてはリンク先の一覧を取得して正

規表現で絞り込むと便利です。

l skip_‖ nks_likeの 指定パターン anemone-skip-links-like.rb

ページごとに、どのリンク先を巡回するか指定する

巡回しないURLを 正規表現で指定する

取得したページのすべてのベージの処理をする

取得したページのうち、正規表現で一致したページのみの

処理をする

Anemone.crawl(''http://w"w.yahoo.co.jp'')do

#adminを含むURLは除外
anemone.skiP_links_■ ike /¥/r¥//

anemone.on_every_page do lpagel

puts page.ur■

end

end

I anemone I

# -*- coding: utf-8 -*-
require 'anemone'

67



Chapter 2 クローラー作成の基礎

l fOcus_crawlの指定パターン (正規表現で指定)

'anemOne―
fOrCuS_crawi.rbの 実行例

取得対象のURLを 絞り込む、もしくは除外 した後で、on_every_pageメ ソッドも

しくはon_pages_likeメ ソッドで取得したページに対 しての処理を記述 します。on_

every_pageは 渡されたページすべてに対 して処理を実行します。on_pages_likeは

正規表現で一致したパターンのみに処理をします。

Anemone. crawl(
"http://www.amazon.co.jptEplbestsellers/", :depth_limit => 1) do lanemonel

anemone・ foCuS_CraWl dO IPagel

page・ linkS・ keep_if { llinkl

#bestsellersを 含むURLのみ取得
link・ t。_S・ matCh〈 /V/beStsellers/)

}

end

anemOne・ On_eVery_Page d。  IPagel
puts page.url

end

end

# -+- coding: utf-8 -+-
require 'anemone'

68

'anemOne―
Skip_‖ nkS_‖ ke.rbの 実行例

|. S ruby anemone_skip… ■inks_1lkeorb
l http://WWtyah。 。・COjノ

http://www.amazon.cojp/gplbestsellers/ref=zg_bs_ta b/377-065669A-0299050

htp:〃WWW・ amaZon・ COjp/9p/beStSe‖ erS/VideOgameS/ref=Z9_bS_VideOgameS_home_a‖ /377-

0656698-0299050?pf_rd_m=ANl VRIQI[NFRJN5&pf_rd_s=center-1&pf=rd_

r=lF4ZZQKl AS7J44Q9EQE7&pf_rd_t=2101&pfird_p=99274349&pf_rd_i=home

it‐否磁=,



focus_crawl L on-pages-like 0)ff tt ji ll
focus_crawlと on_pages_‖ keは、実質的に果たす機能としては似ています。しかし、

on_pages_‖ keの場合はベージを取得してから処理をするかどうかの判断を行います。

focus_crawlは 対象に一致 しない場合は、そもそもページの取得処理も行いません。

そのため、focus_crawlで 取得対象のページを絞り込む方が、効率的なクローリング

が行えます。

on_pages_‖ keの使い方としては、重複しているページの除去などに使います。例

えば、「http://example.com」 と「http://example.com/」 の2つ のURLが あった場合、

Anemoneは 別のベージとして捉えます。この2つはHTTPの 301リ ダイレクトされる前

と後ですので、どちらか一方を処理すればよいです。そのような処理に、on_pages_

likeメ ソッドで、最後にスラッシュで終わるURLの みを対象にするといったことが可

能になります。

2‐2 Anemoneを 利用する

Anemoneのベージ解析機能

Anemoneが 取得したページの情報は、AnemoneIPageを 実体化 したオブジェク

トに格納されます。オブジェク トから参照できる属性は、以下のとおりです。読み

書きの権限の「R」 は読み込み可能、「W」 は書き込み可能を示しています。

¶舞Anemone::Pageの属性一覧

レスポンスで返ってきたHTMLそのもの

HTTPのレスポンスコードRVV

RVV OpenStruct形 式の構造体に保存されたデータ

クローリングを開始したURLを起点にした階層の深さRW

エラー

H‐Π
~Pの
レスポンスヘッダー

リダイレクトされた場合のURL

RW リファラー

レスポンスの応答時間 (ミ リ秒単位)RW

ページのURL

訪 |百1ずみか否か (Bo。 lean)RW

またAnemoneIPageの 主なインスタンスメソッドは、以下のとおりです。

69



Chapter 2 ) a-)-lE*,0>*W

? Anemone::P ageo)l-tt.4 > 7 t > 7 / Y'y F

Anemone::Pageに 関するメソッドで一番多く利用するのは、linksで す。このメ

ソッドは、ページ中に含まれている<A>タ グのリンク先をすべて取得し、配列と

して返します。リンク先の取得や巡回先の選択など、さまざまな用途で使います。

なお、Anemone内 に組み込まれたNokogiriを利用するdocメ ソッドについては、

UTF‐8以外の日本語の文字コードを処理する場合には文字化けが発生する可能性が

あり、別途対処が必要です。詳細は「3-3文字コードの対処法」(→p.156)にて説明

します。

Anemoneの ス トレージ機能

Anemoneは 取得したページを保存したうえで処理します。ストレージは複数利

用可能で、目的に応じて使い分けることになります。ストレージの指定をしない場

合は、取得したデータはメモリ内に保存されます。処理対象が多いほどメモリを利

用し、プログラムを実行しているPCに も影響を与えます。

メモリ以外のストレージに保存したページは、クローラーのプログラムが終了し

た後も再利用可能です。取得対象が多い場合や、定期的・継続的にクローラーを動

かす場合は、ストレージを利用するのがよいでしょう。

口ヽAnemone標準で利用可能なストレージー覧

Anemoneに はス トレージに対するインターフェースが用意されています。あら

かじめ用意されているス トレージ以外でも、インターフェースの仕様に従ってカス

タムライブラリを用意することにより、独自にストレージを追加することも可能で

)ontent,type0 ページのコンテンツタイプ (種類)を返す

doC() HTMLの bodyを 、Nokogiri形式 にして返す

ページ中のくA>タ グのリンク先の一覧をリストで返す

PStore 標準添付 ライブラリの PStoreを 利用 して、ノヽイナ リー形式で保存

Sqlite D3(Sq‖ te)形式で保存

MongoDB NoSQLで あるMongoDBに 保存

Redis

Tokyo Cabinet Memcached互 換のKeyValueStoreであるTokyo Cabinetに 保存

Kyoto Cabinet Memcached E&0) KeyValueStore iC A 5 Kyoto Cabinet l-H??

70

メソッド名 .    .  ・ 機 能

I KeyValueStoreで あるRedisに 保存



2‐2 Anemoneを 利用する

す。ストレージについては、「41データの保存方法」(→p■98)で取り上げます。

なお、ストレージに対する処理については、Anemone=Coreの 」ter_crawlメ ソッ

ドで記述します。

2‐ 2‐ 2 Anemoneの内部構造

Anemoneは 、各種制御および巡回の制御・データ取得を行うAnemone=Coreと 、

データ解析を行うAnemone=Page、 データ保存を行うAnemone=Storageを 中心に

構成されています。

本書では、それぞれのソースコードについては詳しく説明はしません。しかし、

Anemoneの ソースコードは簡潔な記述で動作が記載されています。ぜひ一度、ソー

スコードを読むことをお勧めします。 Anemone-0.7.2で のディレクトリとファイル

構成は、下記のとおりとなっています。

ジヽAnemone-0.7.2でのディレクトリとフアイル構成

anerrlone-0.7.2/lib/

a頂 ,Ю
`■

,

L- cli
count.rb
cron.rb
paEedepth.rb

serialize.rb
url_list.rb

トーーー CI計b

トーーーCOOkie―SЮrerb

「

――∞arb

「
――~~― exceptions.rb

トーーーーhtp・ rb

トー
~~~~page.rb

「

~~~page_store.わ

「
―――― StOrage

トーーbaserb

「

~~~~~exceptions.rb

「
―――――kyOtO_Cabinet・rb

「

~~~~mongOdblb

「

~~~~~pstOre.rb

「
―――~~redls.rb

トーーーーーsqlite3 rb
L―――――tokyo_cabinet.rb

l- storage.rb
L tentacle.rb

anemone.rb

71

Chaptcr 2 クローラー作成の基礎

2‐ 2‐3 Anemoneの実行モデル

Anemoneの 主要機能を理解したうえで、次は実行モデルを学びましょう。

Anemoneに は、クローラーを作るうえで必要となる巡回・解析・保存といった

基本機能を実装するメイン処理と、メインの処理を補完する細かい処理があります。

まずはメイン処理の流れを理解することで、Anemoneの 使い方を覚えましょう。

Anemoneの メイン処理の実行順序

Anemoneの メイン処理は、下記のような流れになります。

・①巡回対象サイトのURLを指定

・ ②除外対象ページのURLパターンを指定

・③巡回対象ページのURLを指定

・ ④取得したページに対して、正規表現で一致したページのみ処理

・ ⑤取得したページすべてに対しての処理

・ ⑥ストレージに対する処理

この流れに対応するスクリプトは、次のような構成になります。

I Anemoneの メイン処理

requ■ re ianemone'

#①巡回対象サイトのURLを指定
Anemone.crawl(''http://example.com/'')do lanemonel

#②除外対象ページのURLパ ターンを指定
anemone.skip_links_1lkeノ 除外対象のURLパ ターンノ

■③巡回対象ページのURLを指定

anemOne・ foCuS_CraWl d。 lpagel
page.links I => Array of links

end

#④ 正規表現で一致したページのみ処理
anemone.on_pages_like(/処理対象のURLパターン/)do IPagel

十 ベージに対する処理の記述

end

#⑤すべてのベージに対しての処理
anemone.on_every_page do

■ページに対する処理の記述

end

#⑥ストレージに対する処理

lpagel

anemone.after_craw1 do lpagel
キストレージに対する処理の記述

end

end

まず「①巡回対象サイトのURLを 指定」で、起点となるURLを指定します。対象

は1つでも複数でも可能です。次に「②除外対象ページのURLパターンを指定」で、

スキップするURLを正規表現で指定します。そして「③巡回対象ページのURLを指

定」で、ページ中のリンク先から次に巡回するページの絞り込みを行います。この

処理が不要な場合は記述しません。

取得したページに対して、「④正規表現で一致したページのみ処理」、もしくは

「⑤すべてのベージに対しての処理」でページに対する処理を記述します。この処

理が、実際のクローラーを作る際にメイン処理となる部分です。通常、記述するの

はどちらか一方ですが、どちらかを必ず記述することになります。

最後に「⑥ストレージに対する処理」で、後処理としてストレージに保存する際

のロジックを記述します。後処理が不要の場合は記述も不要です。

全体の処理としては巡回対象ページの指定からストレージに対する処理の部分を

ループして、対象ページがなくなるまで繰り返します。

その他の処理の記述

メイン処理以外にも、Anemoneは いくつかのメソッドが利用可能です。また、

パラメータとしていくつかの初期値を与えることができます。次のスクリプトは、

オプション項目を指定して、Anemoneを 実行している例です。

日Anemoneの メイン以外の処理

require 'anemone

opts = {
:user_agent => "trlycrawler/O.OO",
rskip_query_strings => true,
:deJ,ay => 1,
:storage => Anemone: :storage.lilongoDB,
:depth_limit => 1,

)
Anemone,crawl("http://example.com/", opts) do

■ 処理

end

I anemone I

73

2‐2 Anemoneを 利用する

Chap“r2 クローラー作成の基礎

メイン処理以外のメソッドおよびパラメータの使い方については、この後の実際

のサイトを対象にクローラーを作成する際に、順次説明していきます。またオプ

ションについては、「牛5 Anemoneの オプションー覧」(→ p.240)ですべて紹介します。

〕
このセクションでは、Windowsへ のAnemoneの インストールを説明します。既に

Windows上にRubyの環境が準備されていることを前提とします。筆者は、Windows7

(64ビ ット版)上 にRuby 200‐p451(32ビ ット版)環境を用意し検証しています。

Rubyは Rubylnstallerが提供しているビルドずみのWindOws版バイナリーを利用し

ています。Rubyのインストールがまだの場合は、下記URLよ リダウンロードし、イン

ストールを行っておいてください。

r Rubylnstaller

Illtrl http:,/rubyinstal ler.orgl

2‐ 3‐ l Nokogiriの インス トール

Anemoneの インス トールに先立って、Nokogiriを インストールします。通常、

Gemか らインストールする場合は、依存関係のあるライプラリが一括でインストー

ルされます。しかし、Nokogiriは インストールの段階でエラーが起こる可能性が高

いです。Noko」 riの ビルドには、native extensionと いう形でlibxm12と libxsltと い

う2つのDLLと それぞれのヘッダーファイルを利用します。この2つのライブラリ

がWindows上 にない場合は、自身でインス トールしたうえでパスの設定などが必

要になります。インストールに慣れていない人には、非常に難易度が高いと思われ

ます。

32ビ ット版Ruby限定ですが、Nokogiriの インストールを比較的簡単に行う方法

があります。Windows用 にビルドずみのNokogiriのバイナリーフアイルをダウン

ロードして、そのままインストールする方法です。Nokogoriのバイナリーファイ

ルはRubyGemsの サイトからダウンロードできます。最新バージョンのNokogiriか

ら、「x86mingw32」 と書かれているものをダウンロードします。

■Nokogiriのダウンロードページ(RubyGems)

ロロヨhttpS:ノ /rubygems.org/gems/nokogiri/versions

2-3
Anemone A.{ 77 F-tv (Windowsffi)

「x86‐min〔押32」 と書かれて

いるものをダウンロードする

▼ RubyGemsサ イト(Nokogiriダウンロードページ)

インストールの際には、ダウンロードしたファイルのパスを指定します。下記の

例は、モジュールのダウンロード完了後に、ダウンロー ドフォルダーに移動し、

gem insta‖ コマンドでターゲットにダウンロードしたモジュールを指定してインス

トールする例です (フ ォルダーならびにバイナリーファイルのバージョンは各自の

設定に合わせてください)。

O Nokogiriの インストール

2‐ 3‐ 2 Anemoneのインス トール

Noko」 riの インストールが完了した後に、Anemoneの インストールを行います。

今回は、gemで指定するだけなので、簡単に終わります。

gemでのインストールは、バージョンを指定しないと自動的に最新のバージョン

がインストールされます。2014年 7月 現在のAnemoneの 最新バーションは、0,7.2で

す。次の例は、バージョン指定で「0,7.2」 をインストールしています。

75

RttbyGettiS・ OrO

2-3 Anemone@,{ zz F -zt, (Windowsffi)

Chapter 2 クローラー作成の基礎

● Anemoneの インストール

エラーもなく最後に「gem instaled」 と表示されれば、無事成功です。環境に

よってインストールされるライブラリは異なります。

2・ 3‐ 3 コンパイルツールを利用 してビル ドする場合

64ビ ット版のRubyを 利用している場合は、ソースからビルドする必要がありま

す。ビル ドのためには、コンパイルするためのッールが必要です。Windowsの場
本は、Rubylnstaller(→ p.74)に ある「DEVELOPMENT KIT」 という開発ツールや

Microsoftの Visu」 Studioな どが利用できます。本書ではビルド手順は割愛します。

比較的手軽という点では、DEVELOPMENT KITが お勧めです。

口DEVELOPMENT KITの ダウンロード

ロロヨhttp:ノ %Cdn.rubyinstallenorg/archives/devkits/

DevKit‐mingw64‐ 32‐ 4.7.2‐ 20130224‐ 1151‐ sfx.exe

レヽRubylnsta‖ er(ダウンロードページ)

DEVELOPMENT KITは 、後の章で使用するライブラリのインストールの際に

必要なるケースがあります。ここでぜひ、インストールをしておいてください。

,pdo1 ilwffi fM roh*rad ydcFi4s.nddm
Ru4* Eo'md s E nlq1,t,3 h*rk rktffi a

sEbts b4u@anda*nMHdEw@) m3rc

R!4?o.0. 5EqEffi t!#..EE@ ifl qrwiltu
ir6am d a$tu N@bMw up(k ro *.4dMdhi
roMhRMy4drquhffih.@aMc.xr#d
*rnol,.lr€lreyEM $rn@il8b.I@dy*B
silb@6lE@s

Mtemilve4M bdMM, *e ar rP @r.dl$ 6

R{bJlnstallels A11hive1r

回 。総枷、,24笏1,1が ,"_"

Other useful Downloads

中
印
乱∝
量
¨
¨
ｕ
潤
崚
敏
価
劉¨躙

罵

¨̈呼魅げ呵
飩
腱
“
”

2-3 Anemonea),f 77 l. -/1,(Windowsfi)

以下は、DEVELOPMENT KITを「C:¥ゎols¥development_kit」 に解凍 した場合
の例です。 フォルダーは各 自の環境に合わせて ください。

●DEVELOPMENT K:Tのインストール

インストール後は、環境変数のPATHに「C:¥tools¥development― kit¥bin;」 を追

加してください (フ ォルダーは各自の環境に合わせてください)。

Windowsの SSLの ルー ト証明書の配置

Rubyか らHTTPSのサイ トにアクセスする際には、相手先の証明書の検証が行われ

ます。その際に、Rubyに対 してルー ト証明書を指定しておかないと、証明書の検証

が行えずにエラーになります。

対処法としては、証明書の検証をスキップする方法と、ルート証明書をダウンロー

ドして指定しておく方法があります。基本的には、後者の方法がよいでしょう。ルー

ト証明書はいろいろな所から取得できますが、今回は次のサイ トから取得 します。

■SSLのルート証明書の入手先

回■http:Zス Cur:.haXX.Se/ca/cacert.pem

取得 した後に、任意のフォルダーに保存しておきます。今回は「C:当ools¥Ruby200¥」

の下に保存 してあるとします (フ ォルダーは各自の環境に合わせてください)。 ファ

イル名は「caceipem」 とします。

バイナリーフアイルの名前

Windowsの バイナリーファイルは、ビルド方法やアーキテクチャによって名前が異

なります。mswin32や mingw32は ビルド方法を表 しています。「mswin」 は、Microso貴

Visual Studioの ViSual C++に よってビル ドされたものです。「mingw」 は、Minimalist

GNU for Windowsの 略であ りGNU GCCに よリビル ドされています。後ろの32は、

Win32 APIの ヘッダーを利用 していることを表 しています。また、x86や x64は 命令

セツトアーキテクチャであり、x86は 32ビ ット環境を示 します。つまりx86-mingw32

は、GNU GCCに よって32ビ ット版でビルドされたWindows向 けバイナリーというこ

とになります。

77

Ch]■igr2 2ローフー作成の基礎

まず、現在のルート証明書へのパスを確認します。

次のように表示されるはずです。

C:Ywork> ruby -ropenssl -e "p OpenSSL::x509:TDEFAULT-CERT-FlLE"

ほぼ100%存在しないパスだと思うので、パスを変更します。パスの変更には、環

境変数で「SSL_CERT_FILE」 を追加し、SSLル ート証明書のパス (こ の例ではC:¥tools¥

Ruby200¥cacetpem)を セットします。

〕
このセクションでは、MacへのAnemOneの インストール手順を説明します。既

にMac上 にRubyの 環境が準備されていることを前提とします。筆者の環境は、

Mac OS X Mounttn Lion上 のRuby 200-p353(64ビ ット版)で検証しています。

RubyはRVMを利用してインストールしています。

2‐ 4‐ l Libxm[と Libxstt、 ubiconvの インス トール

Windows同 様に、Anemoneの インス トールにはNokogiriが 必要 とな ります。

Nokogiriは libxmlと libxsitお よびlibiconvを オ|]用 します。Windows版 と同様 に

RubyGemsの サイトからビルドずみのモジュールはダウンロー ド可能なものの、イ

ンス トール時にnative extensionsの ビル ドが発生 します。そのため、Macで

Nokogiriを 利用する場合は、libxmlな ど必要なモジュールのインス トールが必要と

なります。

Macに該当モジュールをインストールするには、いくつかの方法があります。本

書では「Homebrew」 を利用 します。なお、Homebrew自 体のインス トール方法お

よび利用方法は、割愛 します。

,Noko9iriに必要なモジュールのインストール

S brew insta:llibxm:2:ibxslt

S brew link‖ bxmi2:ibxsit

2‐ 4

Anemoneの インス トール (Mac編)

麗

Homebrew

HOmebrewは、Mac OS X用 のパッケージ管理ソフ トです。一般的にソフトウェア

をインス トールする場合は、それぞれごとの手順に従ってインス トールする必要が

あります。また、ソフトウェアの依存関係のため、他のソフトウェアを先にインス

トールする必要がある場合もあります。Homebrewな どのパッケージ管理ソフトを利

用することにより、インス トールに関わる作業をコマンド1つで実行することができ

ます。

Macの場合、Homebrewに 先行 してMacPortsと いうパッケージ管理ソフトが主流で

した。MacPonsは、システムを依存関係を最小にするために、システムにインストー

ルずみのソフ トウェアがあつても利用せずMacPortsで 管理しているソフトウェアの

みを使うような仕組みになっています。そのため、インス トールするソフトウェア

の数が増え、導入への時間もかかります。これに対 して、Homebrewは既存のソフト

ウェアをできるだけ利用するような設計になっていて、インス トール数も少なく手

軽に導入できるようになっています。その軽量さが好評で、利用者が大幅に増えて

います。

r Homebrew

lE http://brew.sh/i ndexja. htm I

また、いくつかのRubyのGemラ イプラリをインス トールする際には、ビルドツール

が必要になります。Macの ビル ド環境は、Xcodeを インス トール後にコマンドライン

ッールをインス トールすることで可能となります。しかし、Xcodeは 巨大なアプリケー

ションなので、インストールや更新が大変です。OS X Maverickで あれば、Homebrew

を使うことにより、次のコマンド1つでビルド環境を構築することができます。

s brewin:tanappb9議:‐ ||‐

2-4 Anemone@,{ ,Z l. -)v(MacF,)

Macの SSLのルー ト証明書の配置

Macの場合にも、Rubyに 対してルート証明書が必要になります。Windowsの時と同

様に、所定の場所に証明書を配置すれば検証ができるようになります。

||| |

現在の証明書のパスを確認すると、次のように表示されるはずです。

― . |■ ||■ ||||■ | . |■ |■‐ ||||||| ■
|‐

,… _mpen“II10penSS■19::DE響ぃ|サ l:「"

'/etc/Opensζ l/cё rt.pein'' |||||‐
| . ||||■ | | ■ .||

.|

Chaptcr 2 クローラー作成の基礎

この「/etc/openssl」 の下に「certpem」 というファイル名で配置します。

2‐ 4… 2 Anemoneのインス トール

libxmlと libxslt、 libiconvの インス トールが完了した後に、Anemoneの インス トー

ルを行います。Windows版 のインス トール方法と違い、Nokogiriは バイナリー版

を利用 しません。そのため、gemでAnemOneを 指定 して、Nokogiriと 一緒にイン

ス トールします。gemで のインストールは、バージョンを指定しないと自動的に最

新のバージョンがインス トールされます。2014年 7月 現在のAnemOneの 最新バー

ションは、「072」 です。

● AnemOneのインストール

エラーもなく最後に「gem installed」 と表示されれば、無事成功です。環境によ

リインストールされるライブラリが異なるので、上記のメッセージと異なっていて

も問題はありません。上記の例ですと、マニュアルの一部の文字コードがコンバー

convert

3 gems

80

S wget http://rurl.hau.se/G/cacett.pGm

$ sudo mv <acert.pem /etc/openssl/cert.pem

$ gem install anemone

Fetching: nokogiri-1 .6.1 .gem (1 00o/d

Building native extensions. This could take a while.,.

Successfully installed nokogiri-'1.6.1

Fetching: robotex-1.0.0.9em ('l 000/o)

Successfully installed robotex-1.0.0

Fetching: anemone-0,7.2.gem (1 007o)

森
・

2‐5 基本的なクローラーを作成する

卜できないために警告が発生しています。実害はないので、無視しても問題ありま

せん。

※

クローラーを開発する環境が整いました。いよいよ次のセクションからは、実践

的なクローラーの開発を学びます。

橙
2‐ 5

基本的なクローラーを作成する

ここまでクローラーの構造およびAnemOneの 基本的な動作について学んできま

した。このセクションでは実際のWebサイトを対象にして、実用的なクローラー

の作成を行います。

クローリングの対象は「Amazon.co.Jp」 を利用し、「本」ならびに「Kindleス トア」

カテゴリを対象にジャンルごとのベストセラーを取得します。対象は実際に稼働し

ているWebサ イトなので、サイトの構造などが変化する可能性があります。これ

から記載する内容も、無効になる可能性があります。しかし、クローラー作成とは

変化に対応していくことです。素早く変化に対応するためには、取得対象のサイト

の構造を的確に把握することと、サイトに対して効率的にクローラーを巡回させて

構造変化に強い方法でデータを抜き出す手法が必要です。実際にクローラーを作る

過程で、その経験を積みます。

それでは、実際にクローラー作成を通じて、必要な知識やノウハウを習得してい

きましょう。

2‐ 5‐l Amazonからジャンルごとのベス トセラーを取得する

AmazOn.co.jpの ベストセラー (http://www.amaZOn.COjp/gp/beStSellerS/)か ら、

「本」と「Kindleス トア」のカテゴリを対象に、総合ランキングと「ビジネス・経済」

や「コンピュータ・IT」 など各ジャンルごとのランキングを取得します。

2014年 7月 現在、AmazO■ co.jpの ベストセラーは本やKindleス トアのベス トセ

ラーの他に、DVDや家電・カメラ、おもちゃなど31の カテゴリにわたり、それぞ

れ1時間ごとに刻々と更新されています。

81

Chapter 2 クローラー作成の基礎

17 Amazon.cojp (<x F 127-)

ベストセラー

,r-r o <irr=- *,aa
i..6.t@ 2a,*r:.oM

卜
樹ttt■継・

3E“

…
リ

ヽ
● _ ~

量 く が
獅
鳩
な
′シ．
■
，
舗

申

本棚崎動酵枷 臨ツ世ι努:究イ酔絲 ↑櫨製ll‖l識理)r勇
1偏
(臨騎
`ι

聟嗅:ォ笥卜讐

取得の目的と対象データ

今回作成するクローラーは、売れ筋書籍を継続的に取得し、売れ筋の変化および

傾向を分析するための情報を収集することを目的とします。そのためにAmazon.

co.jpの ベストセラーから定期的にジャンルごとの順位を取得します。

取得したデータはデータベースに格納し、分析などで活用しやすい形で保存しま

す。データは、日毎にカテゴリ名と書籍名・ASIN・ 順位をそれぞれ保存します。

なお、ASINと はAmazon内で商品を一意に識別するためのコードです。

収集したデータは、下記の表のような形で集計できるようにデータを収集します。

躊レ取得データの形式

第五の権カーGoogleに は見えている未来 4478017883

マッチ箱の脳 (AI)一使える人工知能のお話 B00DT4DYOM

闘うプログラマー [新装版]ビル・ゲイツの野望を
担った男達

B00CSH104M

嫌われる勇気―自己啓発の源流「アドラー」の教え 4478025819

惣菜弁当の殿堂 味付けは親心、盛り付けは活け花

の心得主婦の店さいち惣菜弁当全集

4889271635

本 / まんがでわかる7つの習慣 4800215315

経済 捨てる生き方 幸運、金運、人運、引き寄せの法則 B001NTIUS4

経ゞ済KindI(「原因」と「結果」の法則 B008BCC9Y0

番済 ダンナ様はFBI B009CTXC8ヽへ/

82

本/コンピュータ・」T I
本/コンピュータ・IT

本/ビジネス‐経済

本/ビジネス 経ヽ済

2‐5 基本的なクローラーを作成する

ベストセラーのサイトの構造

クローリングするには、まず対象とするサイトの構造がどうなっているのかを把

握する必要があります。ここでのサイトの構造とは、階層構造とURLの体系を指

します。

クローリングの対象とするAmazOn.cO.jpの ベストセラーページは、カテゴリごと

に構成されています。カテゴリは、「Kindleス トア」や「本」、「DVD」 など30以上あ

り、ベストセラーページのトップページの下にカテゴリトップという形で存在しま

す。また、カテゴリ内でもさらに階層構造となっていて、例えば「本」カテゴリの

場合は「文学・評論」や「人文・思想」など30以上のサブカテゴリを持ち、それぞれ

がさらにサブカテゴリを持つという構造になっています。サブカテゴリの数や階層

はカテゴリによってもまちまちですが、3層ほどの構造になっていることが多いです。

ベストセラーの階層構造をツリー形式で表すと、次のような形になります。

で
'ベ
ストセラーのサイトの階層構造

ベストセラー

-+ffi-
Amazonイ ンスタント・ビデオ

Kindleス トア

Kindle本

Kindle洋 書

～中略～

一

本

文学・評論

～中略～

日本文学

評論・文学ガイド

歴史 。時代小説

経済 。社会小説

～中略～

L一一――一文学賞受賞作家
人文・思想

社会・政治

ノンフィクション

～中略～

ヒ
アダルト

ライトアダル ト

トーーーー楽器
～省略～

83

ヒ‐I

Chapler2 I a-) -lEfr,o>*W

上記のような階層構造に対して、URL体系はどうなっているのでしょうか。ま

ずトップであるベストセラーページのURLは、

. http://www.a mazon.co jplg p/bestsel lers/

であり、Kindleス トアや本、DVDと いったカテゴリごとのトップページは、次の

ような形になります。

. http://www.amazon.cojp/gplbestsellers/digital-text/

. http://www.a mazon.co j p/g p/bestsel lers/books/

. http://www.a mazon.co j p/g p/bestsel lers/dvd/

つまり、「digital text」「books」「dvd」 などカテゴリを表す単語がベス トセラー

ページのURLの後に付加されます。

これに対して、カテゴリの下層のサブカテゴリの場合は、その後にサブカテゴリ

を表すIDが追加されます。またツリー形式で3層 目のサブカテゴリの場合でも、「カ

テゴリ名/サブカテゴリIDと」いった形になります。「本」カテゴリ配下の「文学・

評論」の「経済・社会小説」の場合は、次のようになります。

. http://www.amazon.cojp/gplbestsellers/b ooks/ 507 21 4/

つまリサブカテゴリIDは 階層にかかわらず内部的にはフラットな形で保持され、

URL構造としてはカテゴリおよび2層のサブカテゴリしか存在 しません。クロー

ラー作成の際には、上記のURL体系を念頭に置いたうえで、URLに対する巡回先

の追加・除外といった形でプログラミングを組んでいきます。

またブラウザで巡回していた場合は、URLのなかに上記のカテゴリ名とサブカ

テゴリIDの他に「ref」 という参照元を指 し示す引数が付 きます。これはAmazonが

分析に利用していると推測され、特に付加しなくても影響はありません。

厳密に言うとURLパラメータは、

・ http://指定の∪RL～パラメータ

といった形で、「～」以降の部分がパラメータになります。

一方で、URLの一部に意味を持たせてパラメータのように利用する方法もあり

ます。このような場合、クローラーの挙動に影響を与える可能性もあります。

84

2‐5 基本的なクローラーを作成する

麟:`:::」::L_:L_:竺ヱ:_1二
`:2:::i二

望:`::〕 11:::::菫 :
ベストセラーのサイトの構造に続き、ページの構造です。カテゴリやサブカテゴ

リ共通で、1ページに1位から20位まで20件表示されます。ページの切り替えを行う

ことで、最大100位 まで表示可能です。また順位やタイトルといった要素は、それ

ぞれCSSのクラスという形で識別可能になっています。

一方でKindeス トアのベストセラーについては、一部構造が異なります。ページ

ごとに20件表示という点では同一ですが、Kindleス トアの場合は有料・無料それぞ

れのランキングが同一カテゴリ内に並列してあります。 ページの構造については、
「2-5-3ス クレイビング機能の作成」(→p.91)に て詳しく説明します。

Pヽ Amazon.cojpベ ストセラーのカテゴリ別ページ

曇塁堡整塞2塗二
ここまででAmazon.co.ipベ ス トセラーのサイトと各ページの構造がある程度わ

かりました。巡回対象の絞り込みのためにクローリングの対象を、「本」と「Kindle

ストア」のカテゴリそれぞれの、「ビジネス 。経済」と「コンピュータ・IT」 の上位

20件ずつと設定します。Kindleス トアについては、有料と無料それぞれを取得する

こととします。次のセクション以降で、目的に沿ったクローラーの作成を開始します。

attZOb

本のパ対 ●う

綺報:澤躍

「

~"…
…

饉

‐"=‐
´
―

層

瑯“̈

魏

¨̈̈
鱗
聯
・一

.,o湾
“1外 ■
^案
,

なお驚辱滋

辟 謳
¨̈̈世̈

肘
¨̈師̈

菖

一̈甕̈・̈̈
・　Ｗ一響一　̈
中一″

餘園

85

0hapter2, a-)-lEfr,o>*l#.

2‐ 5‐2 クローリング機能の作成

今回のAnemoneを利用したクローラーは、まず巡回 (ク ローリング)機能から作

ります。巡回機能を作るうえでは起点となるURLを 決定し、その後にクローラー

が目的とするページをスキなく巡回するように、除外対象のURLや巡回対象の

URLの 絞り込みの調整などを行っていきます。最初から解析機能の実装までを一

度に行うのではなく、まずは想定どおりにクローラーが動いているかをURLの み

表示させるといった方法で、確認しながら作っていくとよいでしょう。

初期 URLの指定と巡回パラメータの決定

Anemoneを 起動するには、Anemone::Coreの クラスメソッドであるcrawlかnew

を利用します。クローラーの一連の機能をモジュール化する場合は、newを利用す

るのが便利です。簡易クローラーを作るのであれば、crawlを使うのが手軽でお勧

めです。今回は、crawlを利用します。

crawiメ ソッドの書式は、下記のようにクローラーの起点となるURLと オプショ

ンを引数とします。またURLについては、urisと いう変数名のとおり複数のURLを

受け付けます。複数の場合は、配列にして渡します。オプションについては後で詳

細に説明します。

crawl(ur1s, opts = {}) {lcore if b}ock-given?l ...}
Convenience method to start a new crawl

厖壼目craw:メ ソッド

それでは、実際に巡回だけをするクローラーを作ってみましょう。クロールの起

点および巡回の対象はAmazon,cojpの「本」カテゴリと「Kindleス トア」カテゴリの

「和書」です。

1巡回クローラー ng.rb

―*― coding: utf-8 -*―
requ■ re ianemone'

キクロールの起点となるURLを指定

ur■S = [

''httP://www.amazon.co.jpノ gP/bestsel■ ers/books/'1,

crawi(起点URLオプション〕

2‐5 基本的なクローラーを作成する

" http: / /www. amazon.co.jp I gpl bestsellers/digital-text/ 227 5256051,/ " f

Anemone. crawl(
urls,:depth_limit => 1r :skip_query_strings => true) e----6
do I anemone I

#巡回先の絞り込み
anemOne・ foCuS_CraWl dO lpagel ・ ―――――――――②

Page・ linkS・ keep_if { llinkl

link・ tO_S・ matCh(

ノ¥/gp¥/bestsellers¥/bOOksl¥/gp¥/bestsellers¥/digital― text/)

}

end

#取得したページに対する処理
anemOne・ On_eVery_page dO lpagel ・

―̈――――――――()
puts Page.url

end

Anemone.crawlでURLと オプションを渡します (0)。 今回は、depth limitパ ラ

メータで巡回する階層の深さを1層に制限しています。またskip_query_stringsパ

ラメータを有効にしてURLパ ラメータによる区別をしないようにしています。

URLパラメータの区別とは、「www.example.com?page=1」 と「wwwexample.cOm'

page=2」 といった引数が違うURLを 同じURLと するかしないかということです。

skip_quew_stnngsを trueにすると、引数の違いを無視して同じuじとして扱います。
巡回先の絞り込みはfocus_crawlメ ソッドで行います (0)。 取得したHTMLの リ
ンク先を一覧化し、所定の条件に一致した場合のみ巡回先としています。今回は、

「/gp/bestsellers/books」 と「/gp/bestsellers/digit」‐text」 のみが対象となります。

その後にon_every_pageメ ソッドを利用し、取得したページすべてに対してURL
を表示させています (0)。 このURLが実際に巡回したURLと なります。

それでは、実行してみましょう。

●」ust‐craw‖ ng.rbの実行例

87

Chapter2 ,a-)-lFfr,o&W

おそらく60以上のURLが表示されると思います。これらのURLは、「本」と

「Kindleス トア」カテゴリ内のサブカテゴリです。今回はサブカテゴリのなかから

「ビジネス・経済」と「コンピュータ・IT」 のみを対象とするため、このままでは対

象外のページまで処理することになります。それを防ぐために、取得したページか

ら処理対象のページを絞ることとします。

】些聖菫塁2塗_2塾塾
取得 したページのなかから処理対象のページを絞 り込むのは、on_pages_likeメ

ソッドを利用します。このメソッドの絞 り込み方は、URLに 対して正規表現で一

致したもののみ処理をするという形です。

歴目日on_pages_‖ keメソット

今回対象のURLの なかで絞り込みに使える情報としては、サブカテゴリを示し

ているであろうIDし かありません。ここでは仮に「サブカテゴリID」 と呼びます。

そこで、プラウザで取得対象のページにアクセスして、URLか らサブカテゴリID

を抜き出します。

「本」と「Kindleス トア」のカテゴリそれぞれの、「ビジネス・経済」と「コンピュー

タ・IT」 サブカテゴリのページにブラウザでアクセスし、URLを取得します。

日本 :ビジネス・経済

ロロl http:ング
IWW｀
″・arnaZOn・ CO・ jp/gp/beStSelierS/b。 。kS/466282/

■本 :1丁

回□l http:ノ 外ⅣWヽA「.amaZOn.C。.'p/gp/beStSe:lerS/boOkS/466298/

■Kindleス トア :ビジネス・経済

ロロl http:ノ /WWヽ″.amaZon.C。.'p/gp/beStSe‖ erS/digital‐teXt/2291905051/

on_pages_‖ ke(正規表現のパターン)

日理壼

http://www.amazon.cojp/gplbestsellers/digital-text/ 22g3o31051 /rcf-zg*bs-nav-

2‐5 基本的なクローラーを作成する

■Kindleス トア :コンピュータ・IT

口回l http:ノ/い′WW.amaZOn・ CO.jp/gp/beStSe:lerS/digital‐ teXt/2291657051/

それぞれ末尾の数字がサブカテゴリIDです。対象のサブカテゴリIDが特定でき

たところで、巡回クロ‐―ラーのon_every_pageメ ソッドを、on pages_likeメ ソッ

ドに切り替えてみましょう。「iust―crawling.rb」 (→p.86)の on_every_pageメ ソッド

を、下記のようにon_pages_likeメ ソッドに置き換えます (CD)。

日絞り込み巡回クローラー just-crawli

このスクリプトを実行すると、次のように目的のページのみ取得できることが確

認できます。

十 ‐*― coding: utf-8 -*‐

requ■ re lanemone'

#クロールの起点となるURLに指定

urlS = [

"http:ノ ノwww.amazon.co.jp/gP/bestsellers/books/'1,
"http:ノ ノwwwoan,azon.co.jpノ gp/bestsellers/digita■ ‐text/227525605■ /'']

Anenone.crawl (
urls,:depth_limit => 1r :skip_query_strings => true)
do I anemone I

#巡 回先の絞り込み
anemOne・ fOCuS_CraWl d。 lpagel

Page・ linkS・ keep_if { llinkl

link・ tO_S・ matCh(

/Yノ gp¥/bestsellers¥/booksl¥ノ gp¥/bestsellers¥/digital‐ textノ)

}

end

#取 得したページに対する処理
PATTERN =

%r 1466298y / + | 466282\1 I + | 229L657os:.v / + | 229L9o5o51yl+l
anemone.on_pages_Iike(PATTERN) do I page I

puts page.url
end

89

Chapter2, E-? -l9fr,ot&fr.

t just-crawlin g2.rbD*llEJ

今回は練習の意味を兼ねて、巡回先を絞ったうえでさらに処理するページを絞る

という形を取りました。しかし、最終的な目的は4ページのみです。この場合は、

巡回させずに目標のページのみ取得する方が効率的です。その方法についても試し

てみましょう。

麟巡旦三竺空竺互塗
巡回させないで目的のページのみ取得する方法は、実は非常に簡単です。crawl

メソッドの初期パラメータに目的のURLを すべて渡します。そのうえでdepth_

limitに「0」 を渡して、巡回しないように設定します。

ロベージ指定クローラー pinpoint-crawling.rb

amazon. co. jplgplbestselJ.ers/digital-text/229a65705L / ")
amazon. co. jp/ gpl bestsellers /digital-text / 2 29r9o5o5rl ")

amazon. co. jplgplbestsellers/books/465298/ ")
ama zon . co. j p/ gpl be stsellers / books / 466282 / ")

Anemone,crawl(urIs, :depth_Iimit => o) do lanemonel
anemone.on_every_page do I page I

puts page. url
end

end

-*- coding: utf-8 -*-
require 'anemone'

urls = []
urls.push("http | / /wwd

urIs. push("http: / /ww
urls. push("http | / / www

urls. push("http | / / www

90

このスクリプトを実行すると、次のような結果となります。

3657435

http:〃 WWW・ amaZOn C。 りp/gp/beStSe‖ erS/b。。k5/466298/ref=29_bS_naV_b_1_b/378-8606758‐

3657435

http:〃 wwtamazon.cojp/gノ bestse‖ ers/digital texυ2291 905051/re← zg_b=naV_

kinc 2 2275256051/376‐ 7801353‐ 1407519

httpノ /www.amazon.cojp/9p/bestse‖ ers/digita卜 text/2291657051/ref=zg_bs_nav_

kinc_2_2275256051/376-7801353-1407519 ■,

2‐5 基本的なクローラーを作成する

O pinpdnt‐ craw‖ ng.rbの 実行例

目的のページが決まっていて少数であれば、ベージ指定のクローラーを作った方

が効率的です。一方で、不特定のベージから条件に当てはまる情報を抜き出すとい

う目的であれば、最初に紹介したとおりに巡回ルールを作る方が適しています。ど

ちらの方法を選択するかは、クローラーの目的やサイトの構造に依存します。

このセクションで思いどおりにクローラーを巡回させることができるようになっ

たと思います。次のセクションでは、取得したページから情報を抜き出すスクレイ

ビング処理の実装をします。

2¨ 5‐ 3 スクレイビング機能の作成

巡回機能が完成したので、次は取得したページから目的とする情報を抜き出して

みましよう。今回は、「カテゴリ名」「書籍名」「ASIN」「順位」を取得します。

朦2!二生±:上
`二

笙至上
=ビ
ニ型二型三L2!壁壁宣

ベージのなかから目的の情報を抜き出すには、主に正規表現を使う方法と構文解

析ツール (パーサー)を使う方法があります。いずれの方法も対象ベージのHTML
の構造を理解しておく必要があります。まずはランキングページのHTMLの構造

を見てみましょう。

ブラウザに標準もしくはアドオンの開発ッールを利用することで、簡単に

HTMLの構造を見ることができます。Internet Explorerで あれば [ツール]→ [F12

開発者ツール]メ ニュー、Fireおxであれば「Firebug」、Chromeで あれば右クリッ

クの [要素を検証]な どで利用できます。ツールの利用については、「3-54簡単な

XPathの抽出方法について」(→p.183)で 詳しく説明します。

Chapter 2 クローラー作成の基礎

▼ Amazonベ ストセラーページのHTML構造

v <dlv class="29_1temRow">
v <div class="zg-ltem-normal">

><dlv class="zg-Image zg-itemLeftDiv-normal">-."/dlv>
v <dlv class="2g-ltemRlghtDlv-norma1">

> <div ctass="zg_rankLlne">-.<,/div>
> <dlv class="zg-tltle">-<./dlv>

<dlv class-"zg-by1lne">

r-t)yr. ?:lyF, y4?Vyf .a-a2, |* *+</dlv>
> <dlv alass="zg-revleHs'r>-</div>

<dlv class="zg-blndlngPlatform'>llfi* (y7 ^.ht<-) </dLv>
> <dlv class="zg-ltemPrlceBlock-normat">-</dlv>
</dlv>
<div class="zg_clea r"><,/dlv>

</dLv>
<ldLv>

ランキング部分については、CSSの Class属 性「zg_itemRow」 の<Div>タ グ内に

まとめられています。そのなかに、順位は「zg_rankLine」 というClass属 性の

くDiv>タ グに、書籍名は「zg_title」 というClass属性のくDiv>タ グに記載されていま

す。そして、ASINですが「zg_reviews」 というClass属性のくDiv>タ グのなかに記

載されています。しかし、「zg_reviews」 は読者からの評価やレビューの情報であ

り、評価が付いていない書籍については該当の<Div>タ グが存在しません。確実に

取得するには、商品名をクリックした時に表示されて、その商品の情報が一通り表

示される商品詳細ページヘのリンクURLか らASINのみを抜き出す必要があります。

このようにスクレイビングを実施する場合は、例外ケースを考慮のうえで汎用的

に使える方法で実装する必要があります。しかしながら、最初からすべてのケース

を考慮して実装するのは難しいです。まず必要最小限の実装をしたうえで、実際に

動かしてみて例外ケースを見つけるというトライ&エラーの方法が有効です。

Anemone L. Nokogirioa?=- Ii
ランキングページのHTMLの構造がわかったので、さっそくスクリプトを作 り

たいところです。しかし、構文解析を行うNoko」riには、文字コードによって上手

く対処できず文字化けするケースがあります。文字化けの対処法としては、

Nokogiriに渡す前に文字コード変換をするか、Nokogiriに対して正しい文字コード

を教えるかの2つの方法があります。

AnemoneにはNoko」 riが組み込まれているものの、文字コードに対する対処を

2‐5 基本的なクローラーを作成する

変更することができません。そのために、無駄が多いものの、Anemone内 蔵の

Nokog」とは別にNoko」 riを 別途定義して利用する必要があります。今回対象とす

るAmazonocojpの ランキングページも、同様の対処が必要です。スクレイビングと

文字コードの問題については、「3-3文字コードの対処法」(→ p.156)にて詳しく説

明します。

文字コード変換とカテゴリ名の取得

「pinpoint―crawung.rb」 (→p.90)を元に、スクレイビングの実装を行います。文

字コードを明示的に「ut“」と指定し、あわせてスクリプトのファイルの文字コー

ドもUTF-8で保存されていることを確認してください。ファイルの文字コードの指

定は利用しているエディタに依存しますが、ファイルの保存時に指定できるものが

多いです。

requireの 部分に下記のように「nokog轟」と「kconv」 を追加 します。kconvは

Rubyの標準添付ライプラリであり、日本語の文字コード変換のライブラリです。

次に文字コードをUTF3に変換したうえ、Nokogiriでパースしたオブジェクトを生

成します。通常の場合は、この処理は不要です。なぜならAnemoneに はAnemone=

Pageに Nokogiriで パースしたオブジェクトを返すdOcメ ソッドが用意されているか

らです。しかし、Version O.7.2の時点のAnemoneに は、下記の実装のとおり文字

コードがUTR8以外の場合の考慮がありません。そのため、対象ページの文字コー

ドがUTF8以外の場合は、自前で変換する必要があります。

E Nokogiriの実装

#

Nokogir■ document for the HTML body

■

def doc

return Odoc ■f Odoc

Odoc = Nokogiri::HT‖ L(Obody) if

Obody && htm17 rescue ni■

end

93

Chapter 2 , a-) -lEfr,o*l#

自前で文字コー ドを変換するには、AnemonelPageの bOdy属 性から生のページ

データを取得し、kcOnvの コンバー トメソッド(toutf8)を 利用してUTF-8に 変換し

ます。それをNokogiri::HTMLの parseメ ソッドを利用して、Nokogiriオ ブジェクト

を作成します。

‐.|・|■‐ ‐..||_‐ ‐ .‐ ..‐ |・ |||lt .,‐ .‐ .|.1● |・ |||||.|‐ |||・ ||・ |||||||■ |11111:・ ||― |||||||||■ |「 .|‐ |―

‐
'||||||, ‐.‐ ||_― ||. ・ ‐.‐ 11'_‐ 1.‐ _

1911111ットOgiri111,,I"|,11"`lglllll■ |°utF,| 11 11111111111111:|||

それでは、準備が整ったところで、目的のデータを抜き出しましょう。目的の

データのうち、カテゴリおよびサブカテゴリ名はページに1つです。書籍名・

ASIN・ 順位は、最大で20個まであります。よって、カテゴリ・サブカテゴリ名の

み一度取得し、後のデータはループ処理のなかで取得します。

まずはサブカテゴリの取得です。「コンピュータ 。IT」 や「ビジネス 。経済」と

いったサブカテゴリ名は、HTMLを 見るとID名「zg_listTitle」 のくDiv>タ グ内の

くSpan>タ グ内に配置されています。また、サブカテゴリ名の情報のみだとKindle

ス トアと本の区別がつかないので、カテゴリの情報 も取得 します。同じくHTML

を見ると、ID名「zg_browseRoot」 の<Div>タ グ以下に格納されているのがわかり

ます。

HTMLか らXPathや CSSの 構造を抜 き出す方法については、「352 Noko」 ri、

XPathの使い方」(→p.172)お よび「3-5-4簡単なXPathの 抽出方法について」(→p.183)

で詳しく解説します。

これまでの一連のスクリプトは以下のとおりです。いったん保存して、実行して

みましょう。

|カテゴリ名とサブカテゴリ名の取得 scraping.rb

-*- coding: utf-8 -*-
require 'anemone'

require 'nokogiri'
require 'kconv'

urts = []
urls, push("http : / /ww. amazon

urls. push("htt? | I I www, anazon

ur1s. push("http : / /www. amazon

urls. push("http : / /www. amazon

jp/gp/bestsellerS/digital― text/229■ 65705■ /'1)

jp/gp/bestsellers/digital― text/229190505■ /'`)

jP/gP/beStSellerS/bOOkS/466298/'')

jP/gpノ beStSellerS/bOOkS/466282/'')

Anemone,crawl(urIs, :depth_Iimit => o) do lanemonel
anemone.on_every_page do I page I

94

2‐5 基本的なクローラーを作成する

■文字コードをUTF8に変換したうえで、Nokogiriでバース

doc = Nokogiri::HTML.parse(page.body.toutf8)

category = doC.XPath(
''ノ /*[Cid='zg_browseRoot']/u1/1i/a").text

#カ テゴリ名の表示
sub_Category = doC・ Xpath(
・ //*[。id=V"Zg_liStTit■ e¥“]/Span'1)・ teXt

puts category+" / "+sub_category
end

文字化けが起こらなければ、下記のような結果が出ます。文字化けが起こった場

合は、スクリプトファイル自体の文字コードの確認をしましょう。

O scraping.rbの 実行例

麟書籍名と順位の抜き出し

次は、書籍名と順位の抜き出しです。前述のとおリランキングに関する情報は、

Class属性「zg_itemRow」 のくD市>タ グにまとめられています (→p.92)。 ここでの

処理は、XPathの指定でランキング情報をまとめて取得して、配列に格納します。

そのうえで、1件ずつ処理してデータを抜き出します。

なお、Kindleス トアについては、有料・無料の2つのランキングが並列で存在し

ます。構造を見ると、Class属性「zg_itemRow」 の<Div>タ グ以下に含まれている

ため、配列に追加するだけで取得できます。

E有料。無料の書籍名と順位の取得

■ ‐一般・Kindleス トア有料

items = dOC.XPath〈

"//div[Oclass=¥'lzg_itemRow¥“]ノ div[■ 1/div[21'')

#Kindleス トア無料

95

itemS ‐卜= dOC・ XPath(

"ノ /div[Oclass=¥''zg_itemRowY'']/div[2]ノ div[2]'。)

items. each{ | item I

*m&
puts item.xpath("di.vIr]/span[1] ").text

#書籍名
puts item.xpath("divIY"zg_titleY"]/a").text
}

:墨二堕 堅堡
ASINの取得方法はいろいろあります。例えば、リンク先の個別ページには

HTML中 に明示的にASINが記載されていて、Noko」 riを利用すると簡単に取得で

きます。しかし、個別ページも取得すると、ランキング分のページアクセスが発生

してしまいます。他にもランキングページの<A>タ グに記載されている個別ベー

ジのURLか ら取得する方法もあります。この場合は、ランキングページを一度取

得するだけで、すべてのASINを 取得できます。

今回は効率的にクロールするために、個別ページのURLか ら正規表現で取得す

ることとします。URLの構造は、下記のとおり「dp/」 と「/」 に囲まれている部分

がASINになっています。

. http://www.amazon.cojp/ffi ffi f, /dp/ASIN/

Noko」 riの XPathと 正規表現を利用 して、ASINの みを抜 き出します。URLは

Clぉs属性「zg_itemRow」 のくDiv>タ グ以下のくA>タ グに含まれています。Noko」ri

でClass属性指定で取得したうえで、そのなかのhref属性をテキストに変換後に正

規表現で取得します。

「dp/」 と「/」 で囲まれた部分がASINな ので、正規表現でその間の部分を抜き取

るように記載します。今回は正規表現の詳しい解説はしませんので、必要であれば

別途調べてください。

96

ASIN抜 き出し機能も組み合わせて、完成させたのが次のスクリプトです。

Chap“r2 クローラー作成の基礎

一
ｉ
一
―

* -*- coding: utf-8 -*-
require ' anemone '
require ' nokogiri '

require'kconv'

urls
urls
urI s

urls
urls

= tl
push("http : //m. amazon

push("http : //m. amazon

push("http : / /m. amazon

push (" http: / /www. ama zon

jp/gP/bestsellers/digital― text/229■ 65705■ ノ:')

jP/gP/bestsellers/digital― text/229■ 90505■ /1')

」pノ gP/bestsellerS/bOOkS/466298/")

jpノ gp/beStsellerS/b。 OkS/466282ノ t')

Anemone.crawl(ur15, :depth_limit => 0)dO lanemOnel

anemone.on_every_page dO IPagel

#文字コードをUTF8に変換したうえで、Nokogiriでバース

doc = Nokogiri::HTML.Parse(page.body.toutf8)

category = doc.xPath(
" I I * l@id=' zg_browseRoot' I / uI/Ii/a") . text

#カテゴリ名の表示

sub_category = dOC.XPath(
''′′*[。id=¥'lzg_■ iStTitley'']/Span'1).teXt

puts category+1'ノ ''+sub_category

items = doc.xpath(
" / /div[@class=Y"zg_itemRowY"] /div [1] /div [2] ")

items += doc.xpath(
" / /div [@ctass=Y" zg_itemRowY"] /divI z] /divI z] ")

items. each{ | item I

tH{t

puts item.xpath("divIr]/spanIr] ").text

#書名
puts item.XPathく ''diV[¥'lZg_title¥''1/a")・ teXt

ASIN

puts item.xPath(''diV[¥“ 2g_title¥'']ノ a。')

.attribute(1'href'1)・ teXt・ matCh(%r{dP/(.+7)′ })[■]

2‐5 基本的なクローラーを作成する

|ベストセラー情報を取得する scraping2.rb

実行すると、次のような形式で出力されます。もちろん書名および順位は、実行

する時々で変わります。

97

Chapter2 2 a-) -{F&,otEW

t scraping2.rbo*?19!

想定どおりの結果が出てきたでしょうか。ここまでで、クローリングとスクレイ

ビングの基礎について習得できました。次は、別の方法で同様のデータを取得して

みましょう。

2‐ 5‐ 4 RSSを利用する方法

前のセクションで、クローリングおよびスクレイビングを駆使したクローラーを

作成しました。 しかし、Amazonの ベス トセラーの場合は、ほぼ同様のデータを

もっと簡単に取得する方法があります。それはRSSを利用する方法です。

RSSと は、Webサ イトの更新情報をまとめるための文章フオーマットで、ニュー

スやプログなどによく利用されています。RSSは人間よリコンピュータフレンド

リーな構造であ り、XML形式で記述され文章の1つ 1つが意味づけられています。
そのため、プログラムから取得や解釈が容易であり、クローラーを作成する際もで

きるだけRSSを 利用する方が簡単で効率よく開発と巡回ができます。

RSS l.0と RSS 2.0が あ り、それぞれ別の規格 として展開されています。また、

98

5 ruly s`“ping2● b

Kindleス トア/ビジネス・経済

1. ‐

世界のエリートが学んできた「自分で考える力」の授業

800E9QGOTG

2.

幸せな小金持ちという生き方 ?本田健初期作【完全版】

300G48XK86 .

3. .

最強の投資家パフエット(日経ビジネス人文庫)牧野洋

3009SXCヽ VAG

4. . ‐ ‐

B00HQ60730

30019JS2VI

６

・

B00CRHZ9JQ

I::::省rl:

2‐5 基本的なクローラーを作成する

RSSに変わるものとしてAbmと 呼ばれる別の規格も策定されています。現在は、

それぞれが別の規格として普及しています。またRSS l.0、 RSS 2.0、 Atomを総称

して「フイード」と呼び、それらを利用してコンテンッ情報を伝えることをフィー

ド配信と呼びます。

Amazon.cojpの ランキングベージのRSSフ ィード

AmazOn,co.jpの ランキングベージには、RSS 2.0の フィー ドが用意されています。

ページの下部にRSSフ イー ドヘのリンクがあります。RSSの主要部分を抜き出すと、

下記のような形になっています。

¶フランキングページのRSSフ ィードを取得する

薔ランキングページのRSSフィード

くrss version=1'2.0''>

くchannel>

くtitle>ペ ージタイトルく/title>

くlink>ページURLく ノlink>

くdescription>ペ ージ説明く/description>

くpubDate>ペ ージ生成曰くノpubDate>

くlastBuildDate>ペ ージ更新曰くノlastBuildDate>

くttl>有効期間く/ttl>

くgenerator>Amazon Community RSS 2.0く /generator>

くlanguage>ja‐ jpく /■ anguage>

くcopyright>Copyright 20■ 4, Ama20n.COmく /COpyright>

く■tem>

くtit■e>書籍1 タイトルく/t itle>

くlink>書籍1 商品ベージURLく ′link>

くdescription>書 ‐籍1 説明く/description>

く/item>

く■tem>

くtitle>書籍2 タイトルく/title>
く■ink>書籍2 商品ページURLく /1ink>
くdesclription>書 1籍‐2 説明く/description>
く/item>

く/channel>

く/rss>

ここからRSSフ ィールドを取得する

ビジネス犠モ済のベストヤラーについて

これらのリストには、ペストセラー商品が表子されます。11寺間出 こ更は す。日本Eコ,1コЫ主まいのお客様の場
合、ご利用いただ]夕b饉凛0ヽと価格が異なります。

Sl$HI..r,66o: ^f,F
t;- > Er+7. E),

腋SSフ ィード警しくはこちら)

99

Chapter 2 クローラー作成の基礎

title要素にランキングページのカテゴリ名が記載され、<Item>タ グの部分でラ

ンキング順に書籍データが格納されています。<Item>タ グ内の<Title>タ グに書名

が、<Link>タ グに個別ページヘのURLが格納されています。この3つのタグを使う

ことにより、HTMLベージのスクレイピング時と同様のデータが取得できます。

なお、格納される書籍数は上位10件のみで、Kindleス トアの無料ランキングの情

報はありません。このデータをNokogiriを使って解析します。

Nokogiriを利用して RSSフ ィードを解析する

RSSの実体はXMLです。Nokogiriは HTMLの 他にXMLの構文解析が可能です。

使い方はHTMLの場合とほぼ同様で、最初にパースを行い要素を指定して目的と

するデータを取得します。要素の指定の仕方はいくつかあ りますが、HTMLの時
と同様にXPathを 利用 します。なお、HTTP経由のXMLの取得方法はいくつかあ

りますが、今回はopen‐ uriを 利用 します。open‐ riは標準添付ライブラリであ り、

インス トール不要で利用できます。

日Amazoneの RSSフ ィードの解析 rss-reader.rb

● rss‐ reader.rbの実行例

:,|'|・

|・ ‐ ||.|

url ='http://www.amazon.co.jplgplrss/bestsellers/digitaL-textl229L657o5Ll
xml = Nokogiri: :Xl,lL(open(urI).read)

puts xml.xpath(' /rss/channel/title').text

puts item. xpath(' link'). text. match(%r{dpl (.+?) / }) [r]
ASIN

end

-*- coding: utf-8 -+-
require 'nokogiri'
require 'open-uri'

item_nodes = xml.xpath(' //item')
item_nodes.each do liteml

puts item.xpath('title'),text

←―――-0
-― ――②

100

・ITのベストセラー

$ ruby rss-readenrb

2‐6 クローリングができない場合の対処法

xpa血の指定で「//item」 はこのRSS内のすべてのitem要素を示します (0)。 この

指定により、RSS内すべてのitem一覧を取得し配列に格納します。取得したitem一

覧の配列を1件ずつ処理し、item内 のideと linkを取得しています (0)。 Inkから個

別ページのURLを 取り出し、前の例と同様に正規表現でASINを抽出しています

(→p.97)。 RSSのパース方法については、「34 RSSの解析」(→p.163)で より詳しく

解説します。

2‐ 6

クロー リングができない場合の対処法

いままではクローラーが何の問題もなくサイトを巡回可能でデータ取得できる前

提で考えていました。実際には、さまざまな要因でクローラーがデータを取得でき

ないケースがあります。このセクションでは、クローラーが巡回できない場合の原

因と対処法について学びます。

RSSフ ィー ドを利用することの利点と注意点

RSSフ ィー ドはその性質上、ベージに対するダイジェス ト版にあたります。そのた

め、HTMLページに比べて情報が少なく、全部の情報が載っていない場合が多いです。

利用の際は、HTMLと RSSを 比較 したうえで、目的とするデータの有無を確認 して

HTMLと RSSの どちらからデータを取得するか決める必要があります。

RSSフ ィー ドを利用すると、クローラーの開発効率および巡回効率が高くなるとい

う利点があります。またRSSは、もともとプログラムから取得されることを前提とし

ているために、利用規約でクローラーからのアクセスが許可されていることが多い

です。サイ ト運営側としても、クローラーがHTMLページを巡回するよりも、負荷の

少ないRSSフ ィードを取得する方が好ましいと考えます。

Chal〕le■2____12_1:Lニ ヱ_三」11:!:」!」
`[:::::111:

2‐ 6‐1 クローリングができない原因

クローリングができない場合の原因としては大きく2つあります。

・ プロキシなどの利用者側のネットワーク環境の問題でインターネットヘアクセスで

きない

・ 認証やユーザーエージェントの問題でWebサイトにアクセス拒否される

ネットワーク環境の問題は、利用者側に起因します。ファイアウォールやプロキ

シサーバなどのネットワーク機器に起因する問題がほとんどですが、プログラム的

に対処できるのはプロキシサーバのみです。本書では、クローラーのプロキシサー

バ対応のみ記載します。

認証やユーザーエージェント起因で拒否される場合は、クローラーがWebサ イ

ト側のルールやポリシーに従っていないために発生します。この場合は、クロー

ラーの挙動をWebサ イト側に合わせることで対処ができます。いくつか代表的な

ケースを例に原因と対応策を学びます。

2‐ 6…2 プロキシサーバ

プロキシ(Proxy)は代理という意味があり、プロキシサーバは外部のネットワー

ク接続を行う際に中継サーバとして働きます。一般的には、企業などで内部ネット

ワークからインターネット接続を行う際に利用され、目的としてはセキュリテイの

向上や有害サイトの遮断、キャッシュを利用することによる高速通信などがありま

す。プロキシのなかでWeb閲覧に関するものについては、特にHTTPプ ロキシと呼

ばれます。

企業内のネットワークからクローラーを稼働する場合は、プロキシサーバの設定が

必要な場合があります。Anemoneを利用する際のプロキシの設定を見てみましょう。

Anemoneで プロキシサーバを利用する

Anemoneに は、起動オプションでプロキシを指定できます。Anemone.crawlの

起動オプションの Rproxy_host」 にプロキシサーバ名を、broxy_port」 にプロキ

シサーバが利用するポー ト番号を記載します。

102

Anemoneocrawi(1:起点URL‖′〔

:proxy_host=>:プロキシサーバ名
:′

:proxy_port‐ >:ポート番号=〕

2‐6 クローリングができない場合の対処法

歴ロコプロキシサーパの指定

オプションの項目が増えたので、オプションを変数に格納したうえで引数に渡し

てみましょう。渡し方は、オプションの項目名と値をハッシュ (連想配列)と して

作成し(0)、 Anemone.crawlの第2引数に渡すだけです (0)。

|オプションを変数で渡す

require 'anemone

opts = { F----{
:proxy_host =>'your_Proxy_server',
:proxy_port =>'8888'

)

Anemone. crawl(
"http://example.com", opts) do lanemonel 4

end

クローラーの調整をしていると、オプションの指定項目がどんどん増えていきます。

可読性を高めるためにも、Anemoneの オプションは変数化するのがよいでしょう。

認証付きプロキシサーバの利用

プロキシサーバのなかには、ユーザー IDとパスワードでの認証が必要なものも

あります。その場合はどうすればよいのでしょうか? プロキシサーバの種類に
よって設定方法が異なる場合があるために一概には言えませんが、一般的なケース

ではプロキシサーバのURLに「ユーザー ID」 と「パスワード」を付加します。

次の例は、プロキシサーバ名が「http://example―proxy.com」 で、ユーザーIDが

「your_userid」、パスワードが「your_password」 の例です。

ロプロキシサーパにユーザーlDとパスワードを渡す

require 'anemone

opts = {
:proxy_host =>

103

Chapter2 ,a->-lFffi,a4,6

'http:ノ ノソdl■ lu.serid:yourip.a,swordOexample― proxy.coml,

:proxy_port => '8888'

}

歴□ロユーザーlDとパスワードの付加

今回のケースは、一般的なプロキシサーバでの利用例を記載しています。プロキ

シサーバの利用方法については、社内のシステム管理者に確認のうえで行ってくだ

さい。

2‐ 6‐3 サイ ト側にアクセス拒否されるケース

クローリング時にデータが取得できないケースとしては、プロキシサーバなどの

利用者側の問題の他に、Webサ イ ト側でアクセスが拒否される場合があ ります。

アクセス拒否のケースとしては、ユーザーエージェントやアクセス回数による制限

などのクライアント側の挙動によって制限するものと、認証などのサイト側で制限

するものがあります。

ユーザーエージェント

ユーザーエージェントとは、受け手に通知するソフトウェアの名前です。HTTP
の場合だと、プラウザの名前とはぼ同意になります。このユーザーエージェントに

よるアクセス制限は、2つのケースが考えられます。

1つ 目は、サイト側が特定のプラウザから利用されるように、ホワイトリス ト方

式で利用可能なプラウザを指定する場合です。ホワイトリス ト方式とは、アクセス

可能なユーザーエージェントをあらかじめリス ト化 しておく方式です。例えば、

「Internet Explorerと Fireおxの み許可する」といった使い方です。

2つ 目は、プラックリス ト方式です。ブラックリス ト方式は、拒否するユーザ

エージェントの一覧をリス ト化する方式です。一般的には、 どちらの方式 も

JavaScriptや CSSの問題で、正常に関覧できないブラウザを除外するために利用さ

れることが多いです。それ以外にも、特定のクローラーを拒否するために設定され

ることもあります。

:proxソ_host=>=http:〃ユーザーlD:バスワード@プロキシサーバ名
:′

104

Anemone.crawl("http://example.com", opts) do lanemonel
end

2‐6 クローリングができない場合の対処法

Anemoneの場合は、「usetagent」 オプションでユーザーエージェントを指定す

ることができます。以下の例では、ユーザーエージェントとして「my irst

crawler」 を指定しています。

ロユーザーエージェントの指定

requ■ re 'anemone'

OptS = {

:uSe■ agent=>'醸
|:::|:難鸞 |:11:覆 1轍鱗醸

:

)

Anemone.crawl(='http:ノ /example.com:', opts)do lanemonel

end

厖電目user_agentオ プション

GoogleによるLWPの拒否

ユーザーエージェントでの拒否の代表的な例としては、Googieに よるLWPの拒否

があります。LWPは、Periの代表的なHTTPク ライアントライブラリであり、デフォ

ルトのユーザーエージェントは「‖bwww― perl/∴ ###」 (#.###は パージョン番号)と いっ

た形です。Googleの 検索結果へのアクセスに対して、Googleは r‖bwww― peri」 を含む

ユーザーエージェントを拒否 しています。Googleが LWPを 拒否する理由としては、

LWPを 利用 してボットが作られるケースが多く、Googleに とって有害になっている

からだと推測されています。LWPの利用者が多いが故の拒否ということです。

優二∠主二旦菫型墨
Webサ イ トは、特定のクライアントからの急激なアクセスがあった場合に、単

位時間あたりのアクセス数を元に制限することがあります。単位時間は秒間や分間

で設定されることが多く、その閾値以下でクローラーのアクセス頻度を設定する必

要があります。制限以前の問題として、サイト側に迷惑をかけることを避けるため

に、また攻撃的なアクセスと見なされないために、アクセス回数の制限は必ず行う

必要があります。

Anemoneの場合は、アクセス間隔を「delay」 オプションで指定することができ

ます。単位は秒で、指定した秒数の間隔でアクセスします。

:user_agent=>:ユ ーザーエージェント名
:

105

Chapter 2 クローラー作成の基礎

|アクセス間隔の指定

require 'anemone'

opts = {
:delaY =1 1

)

Anemone.crawl("http://example.com", opts) do lanemone I

end

厖菫日delayオプション

アクセス間隔の目安

アクセス間隔は、どれくらいを目安にすればよいのでしょうか。前提としては、

取得元のサイトに迷惑をかけないことです。そのうえで、考慮すべき点が2つあり

ます。1つ 目は、クローラーが巡回することによリサイトに過度な負荷がかからな

い程度にすることです。2つ 目は、robots.txtな どでサイト側から通知されているア

クセス頻度の要請に従うことです。

まずクローラーによる巡回の負荷についてです。巡回の負荷については利用者側

からは予測しかできないものの、一般的には動的に生成されるサイトと静的サイト

では大きく違うということを知っておくべきです。動的生成の場合、サーバ側で

キャッシュなどの負荷対策をしていないと、1サーバあたりの秒間リクエストの上

限が20～ 30程度となる可能性もあります。Googleや Yahoo、 Amazonな どの大手

サイトならいざ知らず、小規模のサイトであれば個人の作ったクローラーで簡単に

過負荷の状態に陥ることもあります。攻撃的なアクセスと見なされると、刑事責任

も含めて責任を追求される可能性もあります。

robotstxtと は、サイト側からクローラーに対する要求をまとめたものです。そ

のなかの1つに、crawl―delayと いう項目があります。crawl― delayは 、アクセス頻度

に対する指定です。単位は秒で「crawl―delay:1」 の場合は、サイトに対する最短の

アクセス間隔が1秒となります。一方で、一部のクローラーについては、crawl‐

delayを秒ではなく分として解釈するものもあります。robots.txtについては、「2-7-1

robots.txt」 (→p.110)に て詳しく解説します。

:dclay => PU

106

2‐6 クローリングができない場合の対処法

認証サイ ト

認証が必要なサイトに対してクローリングする際には、2つほどの対処法があり

ます。Cookieに 保存された認証情報を利用してログイン状態にしたうえでクローリ

ングする方法と、ブラウザをエミュレートしてユーザー ID、 パスワードを入力し

たうえでログインしクローリングする方法です。ここでは、Anemoneを 利用して

Cookieを利用する方法について解説します。ブラウザをエミュレートする方法は、

「2‐8ブラウザタイプのクローラー」(→p.114)に て詳しく説明します。

C00kieを利用したログイン方法は、2つの前提が必要になります。1つ 目は、対象

のサイトに対してブラウザを利用してログインし、プラウザのツールなどを利用し

てCookieを 取得できるということです。2つ 目は、対象のサイトがログイン後一定

期間内であれば、Cookie内 の情報のみで認証を行うことです。ベージ遷移のたび

に、前ページの情報が必要な場合には対応できません。

ブラウザのCOokieの 取得方法としては、ブラウザ所定のCookieの保存ディレク

トリに移動しテキストエディタなどで直接開く方法と、ブラウザの拡張ッールなど

を利用してCookie情報を抜き出す方法があります。初期の設定などをすれば、後者

の方が手軽でしよう。例えばFireおxの場合、「Firebug」 という定番のプラグイン

を利用することによリベージ閲覧中にCookieを 確認することができます。Chrome

の場合は、「Edit This Cookie」 が定番です。下記の図は、FirebugでMixiの Cookie

を見た例です。

踏シFirebugで Cookieを確認する

Firebugで確認したかぎり、mixi.jpの 場合はCookie内 に「_auid」「」cp」「session」

「stamp」「emid」「vntgsync」 という6つのパラメータがあります。このなかで、認

証に関係する項目を探し当てる必要があります。

探し方としては、最初にすべての項目をセットするという方法があります。ク

ローラーが認証されることを確認したうえで、1つずつ項目を削除していきましょ

う。認証ができなくなった場合は、その項目が必要だということです。mi対.ipの

13alc`f99010`

44489Llc08薔

)033dbeS04f36cttc8a9

.mlxl.lp

.mixlJp

.mlxlJp
,mlxlJp

Chaptcr 2 クローラー作成の基礎

場合は、「emid」「session」「stamp」 の3つを利用して認証している模様です。

当然のことながら、どの項目を設定する必要があるのかは、Webサ イトごとに

違います。一般的には、ユーザーを特定するIDと 、それに対応するSesslonID、 そ

れらの値の正当性を保証する署名を検証するWebサ イトが多いようです。

次のスクリプトは、「mixi.jp」 に対してブラウザでログインした状態でCookieの

情報を抜き出し、Anemoneの「c00kies」 オプションでセットした例です。Webサ

イトによっては、acceptcookiesオ プションを廿ueにする必要があります。必要に

応じてセットしましょう。

日Cookie情報によるアクセス

* -*- coding: utf-8 -+-
require 'anemone'

require ' nokogiri'
require ' kconv'

urls = []
urls . push (" httpt I /nlxi.jplhome. pI?from=h_logo")

cookies = {
:_auid => "xxxxxxxxxxxxxxxxxxxxx",
:emェd => " vvvvy v y v v vy vyyv vyv y y v v vyvyy yy y y y yy y y y y y y y y y y y y y y y y y "

=> " 99999 _zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz",
:Stamp => ::ql1lqqqqqq9qqqqqqqqqqqql'',

:vntgsync => ''■ '1

}

0ptS = {

:delay => 1,

:accept_cookies => true,

:cookies => cookies,

:depth_limit => o

}

Anemone, crawl(urls, opts) do I anemone I

anemone . on_every_page do I page
I

doc = Nokogiri: :HTML.parse(page.body.toutf8)
communityList. each { | community I

puts community. content
i

end

end

2‐7 行機のよいクローラーを作るには

なお、上記スクリプ トでセットしているcookiesの 値などは、実行の際に適当な

ものに置き換えてください。

● scraping‐with‐ cookie.rbの実行例

ここまでで、Webサ イト側からのクローラー拒否を回避する方法について学び

ました。一方で、Webサ イ トの裏をかくクローラーを作っていたとしても、いず

れは問題に発展します。クローラーを作成するうえで重要なのは、Webサイト側

のルールに従いながら迷惑をかけず共存できることです。次のセクションでは、ブ

ラウザを作るうえでのモラルやルール、クローラーを巡る事件や法的見解などの事

例を紹介します。それを踏まえて、クローラーの巡回作法について学びます。

‖
クローリングの対象となるWebサ イトは著作物です。当然のことながら、クロー

ラーでデータを収集してそのままインターネットで公開することは、著作権違反に

なります。クローラーの作成・運用については、どういった用途でデータを収集し

活用することが可能なのか、ある程度の法的な知識 も必要とします。またWebサ

イト自体も、何らかの意図のもとに公開されているものです。クローラーの巡回が

原因で、他の利用者からWebサイ トの閲覧が不可能もしくは困難な状況になると、

業務を妨害していることになります。最悪の場合は業務妨害に問われることになる

ので、そのような事態を引き起こさないように細心の注意が必要です。

このセクションでは、行儀のよいクローラーを作るために、基礎的な知識の整理

を行います。クローラーの巡回に関する一般的なルールと見なされているrobots.

txtと 、クローリングで取得したデータの取扱、クローリングがWebサ イトに与え

る影響についてです。なお、筆者は法律についての専門家ではないので、法解釈な

どは行いません。

2‐7

行儀のよいクローラーを作るには

109

Chapter 2 クローラー作成の基礎

2‐ 7‐ l robots.txt

Robots Excluslon Standard(RES)も しくは、 Robots Exclusion Protocol(REP)

は、クローラーがWebサ イトを巡回する際に守るべき規約であり、robotstxtは そ

の規約をまとめたものです。Yahooや Microsoftな ど検索サイト大手が参加するこ

とにより、事実上の業界標準になっています。一方、紳士協定にすぎないので、ク

ローラーに対する強制力はありません。しかしながら、クローラーを作る際にはト

ラブルを避けるためにも、最大限robots.txtを 尊重すべきです。そのためには、基

本的なrObOts.txtの 読み方を身につける必要があります。また、robots.txtに記述さ

れた内容に対する対処は、基本的にはクローラー製作者が自分で実装する必要があ

ります。robots■xtに よるアクセス禁上のURLを訪問対象外にするなど、robots意 t

に従うためのGemラ イブラリもあるので、必要に応じて利用してみるのもよいで

しょう。

rObOts.txtの 基本構造は、対象とするユーザーエージェントの指定と拒否対象の

ファイル・ディレクトリの指定の2つだけです。以下、実際の具体例で確認しま

しょう。

構主全二2笙三ニヱーを拒否

すべてを拒否する場合は、「User― agent」 をワイルドカードで指定します。その

うえで、アクセス禁上を示す「Dis」 low」 の対象を「/」 (ルート)で指定します。

User agent: +

Disallow: /

User-agent: *

Di s a llow:

機上全二22口ニヱー生童可

すべてを許可する場合は、Disa1lowに何も指定しません。もしくは、robots.txt

自体も不要です。

すべてのクローラーからjpg形式を拒否

ワイルドカードと拡張子を組み合わせることにより、特定のファイル形式のみ拒

否することも可能です。次のように指定することで、jpg形式の画像のクローリン

グを禁止することができます。

110

2‐7 行儀のよいクローラーを作るには

また、複数のファイル形式を指定する場合は、対象分だけDisa1lowを 指定します。

撥:::::至整::_2_2_三 _::二_2:二 :_:!:::_2壺壁:::12_::::L生 _ヱ_2_上_:Lilil:!三:::]:
ディレクトリを拒否対象にする場合は、最後に「/」 で終わります。そうしないと

部分一致で、他のディレクトリやファイルも対象になる可能性があります。また複

数の拒否対象を指定する場合は、対象分だけDisdlowを 指定します。

次のように記述することで、「cg卜bin」「images」「tmp」「privtte」 ディレクトリに

対するクローリングを禁上します。

書:!:i::ii::望 :生:生二::生二三:」二_::ビ:三__::生!1__生 :1lE:査 :

User― agentに拒否したいユーザーエージェント名を入れると、部分一致で対象を

選別します。次のように記述することで、Googlebotを 拒否します。

複数のクローラーを拒否する場合は、空白行で区切 りを入れます。

鸞量生全上三≦望査
上記の書式を組み合わせて記述することも可能です。User―Agentご とに違った

ルールを作ることも可能です。

111

Chapter 2 クローラー作成の基礎

機クローリング間隔の指定

robots.txtは、User― agentと Disallow以外にもいくつかの拡張があります。その

なかで特に重要な意味を持つ「Craw卜 delay」 は覚えておきましょう。Crawl_delay

はクローリング間隔を指定するものです。クローラーは、delayに 示された間隔で

サイトヘのアクセスを行います。

一方でdelayの単位については、明確な規定がありません。クローラーによって

は、秒と解釈するものや分と解釈するものがあります。傾向としては、秒と解釈す

ることが多いようです。次のように記述することで、クローリング間隔を10秒ごと

(ク ローラーの解釈によっては10分ごと)に制限します。

2‐ 7‐2 サイ トの利用規約

クローリングする際は、まずは対象サイトの利用規約を探すべきです。大手の

Webサイトであれば、フッターなどに「利用規約」や「サービス規約」といった名前

で記載されていることが多いです。

利用規約を見つけたら、明示的な禁止事項と許諾事項を確認します。著作権や利

用許可といったタイトルで言及されることが多いようです。

■Amazon.co」 p利用規約

回口http:〃lwww.amazon.co.jp/gp/heip/cuStomeび displayhtmi/

ref=f00ter_COu?ie=UTF8&nodeid=643006

例えば、Amazonco.Jpの「利用許可およびサイトヘのアクセス」には、次のよう

に記載されています (2014年 7月 現在)。

本規約の道守および該当する価格の支払いを条件とし、アマゾンまたはコンテンツ提
供者は、アマゾンサービスを限定的、非独占的、非商業的および個人的に利用する権

112

2‐7 行儀のよいクローラーを作るには

利をお客様に許諾します (譲渡およびサブライセンス不可)。 この利用許可には、アマ

ゾンサービスまたはそのコンテンツの転売および商業目的での利用、製品リス ト、解

説、価格などの収集と利用、アマゾンサービスまたはそのコンテンツの二次的利用、

他社のために行うアカウン ト情報のダウンロー ドとコピー、データマイニング、口

ボットなどのデータ収集・抽出ツールの使用は、一切含まれません。

個人利用については、限定的ながら許諾されています。一方で、商用利用につい

ては禁止されています。実際のところ、Amazon.cojpの ように許可の範囲を明確に

しているケースは多くありません。その場合は少なくとも明示的に禁止されている

ことに反しないうえで、一般的なクローラーのモラルに従うのが安全でしょう。

2‐ 7‐3 取得したデータの取り扱いと著作権

Webサ イトに公開されている情報は、基本的には著作物です。そのため、著作

権法に従って取り扱う必要があります。まずクローラーで収集して保存する行為で

すが、これは複製にあたります。複製したものを、そのまま公開すると著作権侵害

にあたります。一方で、著作権では「私的使用のための複製」は認められています。

私的使用とは家庭内など限られた範囲内で利用することです。そのため、クロー

ラーが収集したデータを自分で使うことは問題ありません。一方で、個人の活動で

あっても収集した著作物をそのままブログやSNSで公開することは、私的使用の範

囲としては認められず著作権違反になります。また、会社で業務として行う場合も、

私的使用と認められません。

なお、取得したデータを解析・加工して利用する場合については、平成21年改正

で導入された著作権法第47条の7で定義されています。この法律によれば、コン

ピュータなどを用いて情報解析を行うことを目的とする場合には、必要と認められ

る限度において記録媒体に著作物を複製・翻案することができるとされています。

つまり情報解析目的であれば、クローリングも問題ないということです。一方で、

解析を行うものを「業として行う者」として、別途政令として定めるとあるので、

そちらの解釈が必要となります。

目文化庁 平成 21年通常国会 著作権法改正等について

回コロhttp:ノグWWW・ bunka・ gO・jp/ChOSakuken/21_houkaisei.html

2・ 7‐4 Webサイトのリソース圧迫と業務妨害

クローラー運用時の注意点は、著作権を守るだけではありません。クローラーが

Webサイ トのリソースを専有すると、他の人がWebサイトを利用できなくなります。

113

Cha●er 2 クローラー作成の基礎

その場合、業務妨害罪に該当する恐れがあります。そのため、Webサ イトのリソー

スを圧迫 しない範囲内でクローリングする必要があります。どの範囲であればリ

ソースを圧迫しないかは、Webサ イトごとによって異なるので一概には言えません。

一般的には、1秒間に1ア クセス程度であれば問題ないと見なされていました。

しかし、2010年 3月 頃に岡崎市立中央図書館事件 (Librahack事 件)と 呼ばれるク

ローラーに起因する事件が起きて、アクセス間隔についての解釈に変更が必要かも

しれないという状況になっています。これは、個人利用で作成したクローラーが原

因で図書館の蔵書検索システムにアクセス障害が発生し、クローラーの作成者が逮

捕されたという事件です。特記事項として、クローラーは1秒に1ア クセス程度に調

整されていたものの、Webサ イ ト側の不具合によリサイ ト障害が発生したという

ことです。業務妨害の強い意図が認められないということで起訴猶予処分となった

ものの、クローラーを運用するうえで大きな影響を与えています。

同様の事件を起こさないためにも、クローラーを作る際は必ず動作テストを行い、

Webサイト側のリソースに影響を与えていないかの確認をすべきです。またサイ

ト側の応答コードを取得し、エラーが続く場合は停止処理を実装すべきです。この

あたりについては、「445エ ラーコードに対する処理」(→p238)で解説します。

2‐ 7‐ 5 クローラーとAPI

著作権をしっかり守り業務妨害を起こさない形で運用したとしても、クローラー

はトラブルの元になりやすいのも事実です。本書の目的と矛盾しますが、基本的な

方針としてはクローラーはできるかぎり作らないのがよいでしょう。

Amazonや Twitter、 Facebookを はじめ昨今の大手サイトはAPIを利用すること

で、目的のデータを取得できるケースが増えています。APIに は、細かく利用規約

や制限が定められています。これに従うかざりは、法律的な問題を起こすことはあ

りません。データ収集したい場合は、まずはAPIの活用ができないかを検討してく

ださい。クローラーの作成は、APIが提供されていない場合や、APIではどうして

も取得できないデータを集める時に限定するのがよいでしょう。

l

2口 8

ブラウザタイプのクローラー

クローラーに関する基本的な知識が得られたので、次はまったく違うタイプのク

ローラーを作成しましょう。ブラウザタイプのクローラーです。

114

2‐3 ブラウザタイプのクローラー

これまでは、Anemoneを利用してクローラーを作ってきました。Anemoneは フ

レームワークとして、クローラーを作るうえで必要な機能をほぼ備えています。し

かし、フォーム入力による画面遷移・対話処理やJavaScriptの実行などは、サポー

トしていません。自動巡回に特化しているために対話処理ができず、またブラウザ

のレンダリングエンジンを搭載していないためにJavaScriptに 対応していない故です。

一方で昨今のHTML5や JavaScriptの隆盛で、JavaScriptを サポートしないとデー

タが収集できないケースが増えてきています。そういった場合は、Anemone以外

をベースにクローラーを作成する必要があります。しかし、クローラーというカテ

ゴリで探しても、対話型処理やJavaScriptに対応しているライプラリはありません。

目を少し他の分野に向けてみると、プラウザを操作するライプラリ群があります。

テスト自動化の分野です。

テスト自動化とは、テスト支援ツールを利用してソフトウェアテストを自動化す

ることです。従来は、Javaの JUnitを代表とするプログラム内部を直接テストする

ユニットテストと呼ばれる領域が中心でした。最近では対象とする領域をどんどん

と広げており、Webア プリケーションの分野では、Webブ ラウザ経由でのUI層の

テス トも対象となっています。その際に利用するのが「Capybara」 や「Selenium」

といったッールです。画面テス トの際には、Webサ イトの特定の項目に値を入力

し、その結果が想定どおりの値が出ているかを検証します。つまりWebサ イトの

テスト支援ツールを利用することにより、従来型のクローラーが苦手とした領域に

ついても対応できるようになります。

2‐ 8‐1 画面テス トツール

画面テスト系のツールとしては、Seleniumが有名です。Seleniumは画面のテス

トをするために、直接Fireおxや Chromeな どのブラウザを起動して操作します。プ

ラグインを追加することによりInternet Explorerや Safariな ど、さまざまなブラウ

ザを扱えます。ブラウザを利用するので、当然のことながらJavaScriptや対話型処

理も可能です。

しかし実際のところ、画面のテスト自動化の際はSeleniumの みを利用して実装

することは稀です。テスティングフレームワークと呼ばれる「Cucumber」 や

「RSpec」 といったツールと一緒に利用 します。またブラウザシミュレータも

Selenium以外にもWebKitや Poltergeist、 RackTestな どのライブラリを利用します。

WebKitは プラウザのレンダリングエンジンそのものであり、Safariや Chrome、

115

Chapter 2 クローラー作成の基礎

Operaな どさまざまなプラウザに採用されていました。なお、2014年 7月 現在では、

Chromeや Operaは WebKitか ら派生したBlinkを レンダリングエンジンとして利用

しています。Capybaraは 、テスティングフレームワークとプラウザシミュレータ

を抽象的に使うためのツールです。Capybどaを介すことにより、これらのツール

をより直感的に利用することができます。

ブラウザタイプのクローラーのメリットとデメリット

CapybaraやSeleniumの ような画面テストッールをクローラーとして利用するメ

リットは何でしょうか ? 最大のメリットとしては、ブラウザを利用するために、
人間が操作するのと同等のことをプログラミングで実現できることです。原理的に

は、 どのような処理でも記述できます。また、プラウザを利用するので、

JavaScriptへの対応も可能です。

デメリットとしては、対話型の処理のため、特定のページごとに作り込む必要が

あることです。リンクを元に自動巡回して、特定のデータを取得するといった処理

には向いていません。また、プラウザやレンダリングエンジンを利用するために、

CPUや メモリなどのコンピュータリソースを必要とします。

次のセクションで、CapybaraからSeleniumや Poltergeistを 利用するクローラー

を作成します。

2‐ 8‐ 2 ブラウザタイプのクローラー作成の準備
ブラウザタイプのクローラー作成のために、まず環境設定を行います。必要なモ

ジュールは、Rubyの Gemと しては「selenium― webdriver」 と「Poltergeist」 の2つ を

中心に、それに付随するライブラリです。Capybaraも Poltergeistと 一緒に自動的

にインス トールされます。またPoltergeistは「PhantomJS」 というWebKitの エ ミュ

レータに依存するために別途インス トールします。PhantOmJSは Gemラ イブラリ

ではなく、独立したアプリケーションです。

Seleniumのデフォル トの設定では、ブラウザはFireお xを 利用します。Fireおxが

インス トールされていない環境の場合は、インス トールが必要です。それでは、

Windowsと Macご とにイ ンス トール と設定手順の確認 を します。その後 で、

Capybaraの概念と使い方を学びます。

Windowsへのインス トール

116

P01tergeistを インス トールする際に、依存するライブラリは下記の8つです。

2‐8 プラウザタイプのクローラー

. xpath

. rack

. rack-test

. mime-types

. capybara

. websocket-driver

. multijson

. cliver

このなかで、websocket‐driverについてはビル ドツールを必要とします。

「2-3 Anemoneの インストール(WindOws編)」 (→p.74)でDEVELOPMENT KITな

どのビルドツールを導入していれば、ソースコードからのビルドが可能です。

導入していない場合は、ビルドずみのGemを ダウンロードするのが簡単です。

RubyGemsの ページから、ビルドずみである「iava」 と書かれたモジュールをダウ

ンロードしてください。

. Websocket-Driver tr>a- l...\-y
[E https :,/rubygems.orglgems,/websocket-d riverlversions/

▼ WebSocket― Driverの ダウンロード

ダウンロード後に、ダウンロードフォルダーに移動し、gem insta:1で websOcket_

driverを ファイル指定でインストールします。

町ava」 と書かれているモジュールを

ダウンロードする

117

RubyG19rpS.OFg

Chapter 2 クローラー作成の基礎

O WebSocket― Driverのインストール

その後に、gem insta‖でPoltergeistと selenium― webdriverを インス トールしま

しょう。

,Poltergeistのインストール

? selenium-w ebdriver o) I 2 a F - Jt,

インス トール後に、gem‖ stを 入力して、poltergeistと selenium―webdriverが 表

示されていれば成功です。

●インストールの確認

gem install selenlum-webdriver

議 .

亀

1.

■ ..

(0.3.3 java)
(1.0.7)

sman_co!oに d(1.1.1)

test‐ unit(2.0.0.0)

彗

118

C:Vwork> gem install poltergeist

poitergeist(1.5:1)

psych(2.0.0)

li薇菫11

2‐3 プラウザタイプのクローラー

PhantomJSに ついても、Windowsの ビル ドずみモジュールをダウンロー ドして

インス トールします。PhamtomJSの ビル ドずみモジュールはzipフ ァイルで提供さ

れているため、解凍後に任意のフォルダーに移動させます。

日PhantomJSのダウンロード

ロコヨhttpツ%phantomjS.。 rg/

じ`
'PhantomJSの

ダウンロードサイト

その後に、Windowsの環境変数の設定を行います。ユーザー環境変数のPATH
の末尾に、PhantomJSへ のパスを追加します。

設定後にcmd.exe(コ マンドプロンプト)を起動し、phantomjsと 入力します。下

記の図のようにphantomisの プロンプトが始まれば、インストール成功です。

鸞
'コ
マンドプロンプトの確認

なお、PhanbmJSを終了させる場合は、phantom.exitOと 入力します。

Macへのインス トール

Windowsと 同様に、Gemか らselenium―webdriverと Poltergeistをインストールし

ます。インストール後に、gem mstで selenium― webdriverと Poltergeistが表示され

ていることを確認してください。WebSocket― Driverは依存関係で自動でインストー

ルされます。

,G,3)r' '* : l!ts*r1: : a: i(,gv
' Frll web stack

No browser required

**iv.,,) i,' ,
".ri.,

M
Get slar led

icr,r:,+1t f'linclor.'r'; ["i*r:, ion ti.1 .]Ei[1]
Copyriaht (c) 20011 trr1 irrtsof t [r,rp,:rat i,rn. Al I riehts resenieil

C: }.r+o rklphant cmj s
pharrt rm.i s)

119

● Po!tergeistの インストール

? selenium-webdriver 0) I ! Z F -rt,

●インストールの確認

そして、Phanゎ mJSを OSに インストールします。PhantomJSは 、breW inSta‖ で

簡単にインストールできます。

,Phanto:nJS

PhantOmJSの 他のインス トール方法については、Poltergeistの GitHubサ イ トに

「Installing PhantomJS」 として記載されています。

■GlHubの pOltergeistベージ

ロロl httpS:ノ %github.com/ionleighton/p。 :tergeist

PhantOmJSの インストール後に、ターミナルを開きphantomjsと 入力します。下

記の図のように「phantomJs」 のプロンプトが始まれば、インストール成功です。

▼ Mac OS Xタ ーミナルの確認

Last login: Sun Mar 16 21:06:38 on ttys004
Sasaki―■o一MacBook―Pro:～ takuroS phantonjs
phantOm」 S> 目

Ittpybara

準備が整ったところで、Capybπ aの説明です。

Capybttaは、Webシ ステムのUI層 のテス トを補助するためのライブラリです。

Webシ ステムにおけるUI層 のテス トとは、ブラウザを通 しての画面遷移や入力

チェック、クロスブラウザによるデザイン・JavaScriptの挙動などの確認を行いま

す。Capybaraは これらのテス トを補助するために、DSL機能とDriver機 能の2つを

S brew

120

Chapter 2 クローラー作成の基礎

S gem install ielenium-webdriver

5 gem llst

2‐3 ブラウザタイプのクローラー

提供します。

DSL(Domain Specic Language)と はドメイン固有言語のことで、特定の問題

に特化したコンピュータ言語です。Capybaraは テス トフレームワークを操作する

命令を、それぞれのフレームワークに依存しない形で提供します。つまりRubyの

書式を拡張し、テスト用のメソッドを追加することにより、より簡潔な記述をでき

るようにすることです。なおテストフレームワークとは、プログラムのテスト自動

化の際に利用するフレームワークです。代表的なものとしては、Javaの JUnitがあ

ります。Rubyに おけるテス トフレームワークとしてはCucumberや RSpec、

Test::Unitがあり、Capybaraは これらのフレームヮークの命令の差異を吸収し、透

過的に扱えるようなDSLを提供します。

次にD五verの機能です。UI層のテストの際には、プラウザであったリレンダリ

ングエンジンやブラウザシミュレータを利用します。Capybど aは、それらを

Driverと して扱い、テストフレームヮークと同じように透過的に利用できるように

します。ブラウザやレンダリングエンジンを、モジュールとして扱うための仕組み

になります。レンダリングエンジンやブラウザシミュレータには、それぞれ機能的

な差異やメリット・デメリットがあります。Capybaraを 使うことにより、実行す

る内容に応じて柔軟に切り替えて使うことが可能になります。

▼ Capybara概念図

テストフレームワーク

ブラウザシミュレータ

艤Capybara DSL

Capybaraは、それぞれのテストフレームワークの機能を抽象化するという観点

でDSLを提供しています。テストフレームヮークは、フォームに入力してボタンを

DSL

Driver

Capybara

‐‐ |■ |■■■| || ||=● |:|“,II■●1.■|

絋鱚塚靡

1坤Ⅲ Ⅲ :||■ IⅢ Ⅲ ■ ||
|‐‐ ||デ

=::・

、11 ‐||| ‐ 1・ |■ :1■ |=´ :・ =111111

121

Chapter 2 クローラー作成の基礎

クリックして、次の画面の内容を確認するといった機能です。クローラーとして利

用する際にも、ほぼ同様の機能が必要になります。

▼ テストフレームワークの機能

それでは、クローラーを作る際に必要な、Capybara DSLの 主なメソッ ドについ

て確認 してみましょう。

▼ Capybara DSLの主なメソッド

多機能 GETメ ソッドでページを移動する

ボタンのクリック機能 さまざまな方法でリンクやボタンを指定し、クリックする

フォームのテキストの入力やラジオボタン、チェックボックスの選択、

画像の添付を行う

画面中から特定の文字列やHTMLタ グの存在確認を行いTrue or False
で結果を返す

特定の文字列やHTMLタ グの検索、もしくはすべての要素から該当の夕
グの抽出を行う

コー 場能 検索や操作のスコープを、特定のエレメント下にのみ限定して操作する

JavaScriptを 実行する。ただし、使用中のDriverが JavaScriptをサポー

トしていることが前提

幾育ヒ デバ ッグ用に、実行時の状態を表示する

引数の値でページ遷移する

ID指定でリンクを押す

リンクのテキスト名で押す

ボタン名で名前を押す

リンクかボタンどちらかをクリックする

ボタンの値指定で押す

フォームテキストを埋める

パスワードフォームを埋める

TextAreaを 埋める

ラジオボタンを選択する

チェックボタンを選択する

チェックボタンの選択を外す

画像を添付する

セレクトボックスを選択する

フィール ド名指定で検索する

目

フォーム入力機能

クエリニ機能 (確認機能)

スクリプティング機能

122

リンク名指定で検索する

ボタン名指定で検索する

XPath指定で検索する

入れ子で検索する

すべての要素からくA>タグを抽出し、hrefを表示する

2‐3 プラウザタイプのクローラー

¶フCapybara DSLの主なメソッド(続き)

ここで紹介しているメソッドは、全体のなかのごく一部です。詳しくは、公式の

RubyDocを 参照してください。

r Documentation for jnicklas / capybara
[E http://ru bydoc. inf o/g ithub/jn icklas/capybara,/master

Capybara Driver

Capybaraは 、Dr市erと していくつかのブラウザシミュレータやブラウザエンジ

ン、またはブラウザそのものを利用できます。どのDriverを 利用するかにより、実

現できることが異なります。また単純に機能が多いものを選べばよいというわけで

はありません。例えばSelenium経 由でプラウザを起動すると、基本的にはすべて

のことができます。しかし、ブラウザシミュレータを利用するのに比べると、処理

が遅くなります。クローラーの処理を軽くするためには、できるだけブラウザシ

ミュレータを利用するようにしましょう。

下記の表にCapybπ aが利用できる主なDriverの 一覧を記載します。今回は、

Poltergeistと Seleniumの 2つ を使い分けることにします。

レヽCapybaraが利用できる主なDr市er

Capybara― webkitと Poltergeistは、機能的にはほぼ同等です。Poltergeistが利用

するPhantomJS自 体がWebKitの シミュレータとして作 られているためです。

WebKitを 導入するためには、Xv島やQTと いったX Windowを 仮想的に実行するた

プラウザシミュレータ

プラウザエンジン Y

プラウザシミュレータ

ブラウザ利用

123

Chapter 2 クローラー作成の基礎

めのライプラリが必要になります。このインストールが非常に難しいために、手軽

に利用できる「Poltergeist+PhantomJS」 が人気になっています。

次のセクションでは、Capybaraを 利用してログイン画面に対処するケースを考

えてみます。

2‐ 3‐3 ログインが必要なページの対処
それではさっそくログインが必要なページに対応するクローラーを、Capybara

を利用して実装してみましよう。対象としては、「2‐14 Ruby製のクローラー」(→p.62)

でMechanizeの サンプルで使ったAmazonのアソシエイト(ア フイリエイト)ページ

を再び利用します。このページを対象にログインして、前日の売上を取得する例を

紹介します。

Amazonア ソシエイトページの構造は、ページ遷移としては「ログインページ」

→「ポータルページ」→「レポート全体の表示」と遷移します。それでは、順番に実

装していきましよう。

E」三LZli`|[_:∠」些::里LZ2」左」塁L
まずログインページについては、以下のとおりです。メールアドレスとパスワー

ドを入力して、サインインのボタンを押すという構造です。

●Amazonアツシエイトサイトログインページ

ロロl httpS:ノ%affiliate.amazon.co.,p/gp/associates/ioin/!anding/rnain.htiT:!

▼ Amazonア ソシエイトサイトログインページ

緊

菫
雲曖　
」

腑̈

独■壁略____

アカウン ト登録 したメール

ア ドレスとパスワー ドを入

力 して、 [サ インイン]ボ タ

ンを押すとログインできる

/rftffiwr#ffii
I *ffi)7?74J.19-tt=-7ti61t)) a-r. Al*
y'[ffiTffiro%offiffi€b

/ffirs.@hqaB?blw
/ 5,@EStO e.meffiF8tffffi6
I) \t +effi r, a t tt. W.a thtv frt
/ e sMo (^-rm&r, mr:lrzt{oM l

/ ,fu 6ff.1\ttwiE\Dt \ -r.ts
/ K.avtt.|a-t2r)aar6

^ル
フ|フィード′ヽ′1聴鮨t欧 1自菫li_■」::|:

at腱
|り,nァッシェィト

奪

…

rri.,!ffi ? r'iL JnEnaxtarar>7 -ffatEtt,
'2tt22zu:a
>Wffi

124

2‐3 プラウザタイプのクローラー

まずは、Capybaraの使い方を覚えましょう。利用するモジュールとしては、

Capybara本体 とcapybara/dsl、 そ してDriverモ ジュールです。今回は、まず

selenium―webdriverを 利用します。理由としては、ブラウザが立ち上がり、実際の

動作が目に見えるのでデバッグしやすいからです。

ロモジュールの導入

requ■ re

requ■ re

requェ re

'capybara'
'ca?ybatal dsl'
' selenium-webdriver

次にCttybaraの 初期設定を行います。まずrun_serverを「f」se」 にします。

Capybど aはデフォルトで自前のRackア プリケーションを起動しようとします。

Rackア プリケーションとは、自前のアプリケーションとWebサーバを繋ぐインター

フェースです。今回の場合、自前のアプリケーションはクローラーで、Webサー

バはAmazonア フイリエイトサイトになります。CapybaraのいくつかのDriverで

は、このRackア プリケーションが必要になりますが、Seleniumと Poltergeistは必

要ないのでfalseを設定します。

currentdriverに は「:selenium」 を指定します。Capybaraのデフォルトは「:rack_

test」 であり、そのままではJavaScriptの実行や外部とのHTTP通信などができませ

ん。Capybtta.app_hostは、対象サイトのURLを指定します。

I Capybaraの初期設定

capybara.run_server = false
Capybara.current_driver = :selenium
Capybara.app_host = "https; //affiliate.amazon.co.jpl "

初期設定が終わったので、プログラム内にCrawlerモ ジュールとAmazonク ラス、

10」nメ ソッドを作ります。Amazonク ラス内では、Capybara::DSLを有効にしてい

ます。これにより、Amazonク ラス内ではCapybaraの書式や変数が利用可能にな

ります。

ログイン処理の実装としては、まず「visit(:/i)」 で対象サイトに遷移します。そ

のうえで、フォームのメールアドレスとパスワードに、■11_inメ ソッドを利用して

値を入力します。フォーム内の項目の指定方法としては、くInput>タ グのname属

性の値を指定します。その後に、サインインボタンの押下のため、click_buttOnメ

125

Chapter 2 クローラー作成の基礎

ソッドを実装します。ボタンの指定は、<Input>タ グのvalue属性の値を指定します。

タグの指定方法はいくつかあるので、順次説明します。

なおログインには、Amazonア ソシエイトのアカウントが必要です。「username」

と「password」 に自分のユーザーID(C))とパスワード(0)を設定してください。

日Crawlerモジュールの作成

module Crawler
class Amazon

include Capybara::DSL

def login

ViSit(1/1)

fill_in t'usernane'',

:With=>'Vo撃
=A“
Aゃ 1ヽ,S,畦10'一一――●

fill_in i'passwordi',

:with => 'YOURIA“ AZON_PAS.5"ORD. 0-― ―――
―
②

click button "サ インイン“

end

end

end

Capybaraの 初期設定とCrawlerモジュールの作成ができたので、オブジェクトを

作成しloginを 実行 します。上手 くいけば、Firefoxが起動 し、値が入力されて画面

の遷移まで行われるでしょう。

ロオブジェクトの作成とログイン

crawl"er = Crawler: :Amazon.new

crawler. login

スクリプトの全体は、以下のようになります。実行に際しては、ご自分のユー

ザーID(0)とパスワード(0)を 設定してください。

|ログイン処理 login.rb

* -*- coding: utf-8 -*-
require 'capybara'
require'capybara/dsl'
require' selenium-webdriver'

Capybara.current driver = :selenium

2‐3 プラウザタイプのクローラー

Capybara.app_host = "https: //affiliate.amazon.co.jpl "

Capybara.default_wait_time = 5

module Crawler
class Amazon

include Capybara: : DSL

def login

ViSit(1')

fill_ n i:username'',

:with=>`藩輔生榊燿:機願1縦饉覇1麟
:――一-0

fill_in `'passwordl',

:with=>'動ユ燒 輌

^SS■

9藝
1-――一②

click button''サ インイン"

end

end

end

crawler = Crawler: :Amazon'new

crawler. login

● login.rbの実行例

実行するとFireおxが立ち上がり、IDと パスワードを自動で入力してログインし

ます。

顧塾聾二窒些2至LE」 2Lピ1三」L=lttlttL12_Lttli三二_Lfi=L主

`二

:≧

`2」

EElヨ[

ポータル画面では、画面左のプルダウンでアカウントとトラッキングIDを 選択

し、画面右のメニューで対象の期間を選んだうえで、売上もしくは注文の「レポー

ト全体を表示」をクリックします。

マシAmazOnア ソシエイトサイト(ポータルページ)

電事 01′
・
`′

｀́
・ 一

¨
「
―
＝
判

」
一〓

ヨ
　

、

一
』
一一饉
趾
¨
・
一

籐爾繭難甕D

アツシエイト・セントラルヘようこそ

機

期間を選択し、「レポート全

体を表示」をクリックする
アカウントとトラッキング

IDを選択する

127

“
Ⅱ
“
な

Chapter 2 クローラー作成の基礎

上記の動作をするpor皿メソッドを作りましょう。

日portalメソッド

def POrtal

SeleCt('Ю U11神 韓 Ⅲ l亀 1,',一 一 一 -0

:frOm=>'輩 ||メ1晏 0“|■dl)
select('昨 日 ', :from=>'preSelectedPeriOd

firSt('.line― item― links')● ―――――――̈ く̈D
.click_link("レ ポート全体を表示")

end

プルダウンの処理は、Capybara DSL(→ p.121)の selectメ ソッドを利用します

(0)。 selectメ ソッドの利用方法は次のとおりです。

田ヨ叉l Capybara DSLlの selectメ ソッド

それぞれ、ご自分のアカウントとトラッキングIDを設定してください。

次に「レポート全体を表示」リンクの押下です。画面中には、同一の名前のもの

が2つあります。そのため、単純に、

click=link("レ ポート全体を表示“〉 ・

とすると、曖昧な指定方法という意味の「AmbiguOus match,お und 2 elements

matching link」 エラーが出ます。回避策としては、indメ ソッドを使い、XPathで

どのタグかを明示的に指定する方法があります。

歴轟日Capybara DSLの findメ ソッド

次のように使います。

find(,Xpath,'1//table/tr'') . . |||

find("#eVent_title・) .. ‐.

それ以外には、1つ 目に登場するエレメントを指定するといった方法もあります。

今回の例では、リンク先の親タグのクラスがどちらもline―itemlinksで 、対象とす

selectrプルダウンの表記名
:′ :from=>iSeiectポ ックスのname')

find(検索オプション)

2Ⅲ8 プラウザタイプのクローラー

るリンクが最初に登場 します。そこで■rstメ ソッドを利用 して、1つ 目のIne―item‐

linksを探 し出し、そのなかのclick_linkを指定することとします (0)。

厖菫圏Capybara DSLの firstメソッド

メソッドの指定の仕方からわかるように、Capybaraで は検索や実行コマンドを

入れ子で指定することができます。

輌 _三二L_三―型 らヽの二∠上生ピ_∠ Z
レポート画面では選択した条件のもと、集計結果がレポートとして表示されます。

レヽAmazonア ソシエイトサイト(レポートページ)

売上合計レポート

20■ 4年13用 228‐ 2014年3月 22綺

星菫塞

発送済み商品の合計 (Amaだ oい .∞j0 ¥36′ 291 Vl′633

*Eiqaffi&oaft R-rvt?r44 Q V10′444 V470

発送済み商品合計 ■0 V46′ 735 V2,■03

返昌数合計 V0 V0

返金合計 Y0
=0

=0

レポートベージのなかから、売上合計レポートの「発送済み商品」「売上」「紹介

料」を抜き出すrepOrtメ ソッドを作ります。

これらの値は、同一の<Table>タ グ・<Tr>タ グの、横並びの<Td>タ グのなか

にあります。そういった場合は、withinメ ソッドを利用してスコープを定義すると、

後々の記述量が少なくなり便利です。

歴轟日Capybara DSLの withinメ ソッド

次の例では、withinメ ソッドでXPath指 定でスコープを選び(0)、 その下の

<Td>タ グを抜き出しています(0)。

first(検索オプション)

within(検 索オプション)

129

発送巌み商議||■ ||‐
‐
| |||‐ 1発よ

|1箪4毎ツ,彗|||

def report

Within(:xPath, '1ノ /*[Oclass=itotalsi]'')do● ――――――――-0
#発 送ずみ商品
puts t'発 送済み商品合計 :"+a■1('td`)[■].text O――――――― ②

■ 売上

puts ''売上:"+all〈 itd')[2].text

#紹 介料
puts'1紹介料 :"+all(itd')[3].text

end

Chapter2 , a-)-#fr,o*W

lreport;tYvF

以下のスクリプトが、先ほどのログイン処理 (login.rb)に 、ポータルベージとレ

ポートページの処理を組み込んだものです。実行の際には、各自のアカウントなど

を設定してください。

lCapybara2tr-a-

-*- coding: utf-8 -*-
require 'capybara'
require'capybara/ds1'
require' selenium-webdriver'
require' capybara/poltergeist

Capybara. current_driver = : selenium
Capybara.app_host = "https://affiliate.amazon.co.jpt"
Capybara.default_wait_time = 5

module Crawler
class Amazon

include Capybara::DSL

def login
visit('')
fill_in "username",

:with =>'A[IiA@*USER_I0'
fill_in "password",

:with =>'AMAZCBTI_PASSWORD

click_button "+r4>1>"
end

def portal

select(lAMAZON_AFFl111TE」 0',

130

2‐8 ブラウザタイプのクローラー

:from=>'攣 1難|1奎菫
=`')select('昨 日1, :from => 'preselectedPeriod')

firSt(・ .line― item― linkS')

.click_■ ink("レポート全体を表示
‖
)

end

def report

Within〈 :Xpath, ''//*[OClaSS='tOtalS']'1)d。

puts ''発 送済み商品 :"+all(itdi)[■].text
puts''売上 :"+all('tdi)[2].text

puts ''紹 介料 :"+all('td')[3].text

end

end

crawler = Crawler: ;Amazon.new

crawler. Iogin
crawler. portal
crawler. report

,capybara‐amazon.rbの 実行例

SeleniumからPoltergeistに切り替える

SdeniumでFirebxな どのブラウザを利用する場合は、その都度ブラウザが起動

します。そのため、レンダリングエンジンのみやブラウザシミュレーター内部での

処理に比べて、処理時間がかか ります。クローラー処理時間の短縮の手段として、

スクリプトが完成した段階でPoltergeistな どのブラウザシミュレータに切り替える

のも1つの手です。高速性の他にも、クローラーをLinuxベ ースのサーバで稼働さ

せる時などにX Windowな ど画面システムが不要といったメリットがあ ります。

サーバーサイ ドでの稼働については、「6-1サ ーバサイドで動かす」(→p.362)で詳

しく説明します。

P01tergeisへ の切 り替 えは、基本的 にはcurrentdriver蜀 avascriptdriverに

Rpoltergeist」 を指定するだけです(0)。 またAmazonア フイリエイトサイト固有

131

Chapter 2 I a -, -(rffi,o)*W

の問題で、ユーザーエージェントの変更が必要です。今回は、「“Mac Sご ari"」 と設

定します (0)。

Poltergeistを 利用する際は、「jtterrors」 というオプションの設定値をねlseにす

ることを推奨します (0)。 デフォルトはtrueですが、この場合JavaScriptのエラー

が起こると処理中断します。実際のところ、Webサ イト側の問題でJavaScriptの エ

ラーが起きることは多々あるので、ねlseでスキップする方がよいでしょう。また、

Capybaraには自動的にページロードするまで待つ機能 (wait)があります。しかし、

Poltergeistを 利用する場合は、jQueryや ページロードなどの利用時に一部想定どお

りの動きをしない場合があります。下記のP01tergeistに 切り替えた場合のサンプル

では、jQueryの 処理待ちとページロー ド時のために独自のwaitメ ソッドを作成し

ています (0)。

実行の際には、各自のアカウントなどを設定してください。

I Capybaraク ローラー (Poltergeist版) ra-amazon-poltergeist.rb

-*- coding: utf-8 -*-
require 'capybara'
require' capybara/ dsL'
require' capybara/poltergeist'

Capybara
config
config
config
config
config

end

configure do lconfigl
run_server = false
current_driver = :poltergeist -T-O
javascript_driysa = :poltergeist FJ
app_host = "https://affiliate.amazon. co.jpt"
default_wait_time = 5

Capybara.register_driver :poltergeist do lappl
Capybara: :Poltergeist: :Driver.new(

app, {:timeout=>12o, js_errors: false}) .----<
end

module Crawler
class Amazon

include Capybara: rDSL

def login
puts "login start"
page,driver.headers = { "User-Agent" => "Mac Safari" } o------{)
visit(' ')
fill_in "username", :with =>'AltAI0lirUSGR::{!'

132

2‐3 プラウザタイプのクローラー

fill_in "password", :with => '

click_button ".r1>4>"
end

def portal
wait_for_ajax
select ('

: flom)

page. execute_scri.pt ("this. form, submit () ")
wait_for_ajax
select('EEE', :from =>'preselectedPeriod')
page. execute_script ("this. form. submit () ")
wait_for_ajax
page.save_screenshot('screenshot2,png', :fuIl => true)
first (' . Iine-item-links')

. click_link(" Ld- l. tftA*ar")
end

de'f report
Page . save_s creen s hot (

'screenshot3.png', :fuII => true)
within(;xpath, "//+[@class='totals']") do

puts "#iXi*46o"n: "+a11('td') [1].text
puts "*t: "+a1I('td')[2].text
puts "fiBff+: "+a11('td')[3].text

end

end

def wait-for-ajax o----4
sleep 2

Timeout. timeout (Capybara. def ault_wait_time) do

active = page.evaluate_script(' jQuery.active')

until active == o

sleep 1

active = page.evaluate_script(' jQuery.active')
end

end

end

end

end

crawler = Crawler: :Amazon. new

crawler. login
crawler. portal
crawler. rePort

133

Chapter 2 クローラー作成の基礎

O Capybara¨ amaZOn― pOltergeist.rbの 実 行例

2‐ 3‐ 4 」avaScriptを 多用しているページの対処

次にCapybaraを 利用 して、JavaScriptを多用しているページヘの対処を学びま

しょう。実はCapybaraと Seleniumを 利用してブラウザを起動すれば、JavaScript

に対する対処はほとんど必要ありません。目的の処理を入れるタイミングの調整を

するだけです。調整方法については、具体的な実例を元に試してみましょう。

遅延ロー ド

JavaScriptを多用している例として、JavaScriptに よる遅延ロー ドを実装 してい

るサイ トを対象とします。遅延ロー ドとは、画面の初回読み込み時に一度に画像な

どのデータを読み込むのではなく、遅延させて順次読み込む方式のことです。遅延

ロードを利用することにより、部分的であってもサイトの利用者にいち早 く画面を

見せることが可能となり、読み込みを待たされたという体感を緩和することができ

ます。

利用のテクニックとしては、スクロールなしで表示する必要がある画像のみを先

に取得 し、スクロール時に都度画像を取得 しにいく方法などがあ ります。また

Aiaxの通信のように、リクエス トに応 じて非同期で取得する方法も、遅延ロー ド

の一種と言えます。

ブラックリストチェック

今回の対象は、IPア ドレスとドメインのブラックリス トチェックをするサイ ト

(BLACLISTALERT.ORG)です。ブラックリス トチェックサイ トは、さまざまな

セキュリティサイトやスパムデータベースに対して、メールサーバーのIPア ドレス

や ドメインがスパムやウィルスの発信源になっていないかの確認を行います。その

際の確認は、JavaScriptを 利用して順次問い合わせを投げて、応答が返ってくるの

134

麗 彗

2‐3 プラウザタイプのクローラー

を待ちます。

確認の結果NGと なるということは、メールサーバーのレピュテーション(評価)

が下がっているということで、何らかの理由が存在するということになります。原

因を至急突き止め、対処が必要となります。

レピュテーションが下がる理由としては、スパムやウィルスメールを大量に配信

したという理由の他にも、宛先不明のメールを大量に配信したということや、単位

時間あたりに大量のメールを配信しすぎてプロックされたなどがあります。メール

サーバの運用では、レピュテーションが低下していないか定期的に確認し、問題が

あれば早急な対応が必要です。その確認をクローラーが代用することで、運用負荷

の低減をはかることができます。今回はそのケースを想定したクローラーを作成し

ます。実際に運用するとなると、確認後にメールにて結果配信するなどが考えられ

るので、それについては「6-3収集結果をメールで自動配信する」(→p.384)に て説

明します。

麟!:::!:」生:`::!!1:!:二 !:」::|][:全型El!:::]!::」 1:!I::`:::
BLACLISTALERT.ORGの 構造は、単純に調査対象のIPも しくはドメインを入

力し、[check]ボ タンを押下後にさまざまなサイトの評価を順次表示していくとい

う形です。このサイトでは、評価が正常な場合は「OK」 を、問題がある場合 (NGの

場合)は「Listed!」 を表示します。今回の例は、「m証.google.com」 を調査対象とし、

問題が出た場合は「Alert!」 として表示するとします。また、エビデンスとして画面

のスクリーンショットを残します。

薔BLACKLISTALERT.ORG

ロコヨhttp:ノ /IWWW・ blacklistalert.org/

鴇夕BLACKLISTALERTサ イト

△ 目L合ュ唯LLttJttLttFIЛN劉思.△

スクリプトについては、「2-8-3ロ グインが必要なページの対処」(→p.124)で作成

したものとはぼ同じです。検査対象のIPア ドレスもしくはドメインを引数とするよ

うにしています (0)。 また問い合わせ先が多く時間がかかるため、タイムアウト

の時間を長めに20秒取っています (0)。 NG判定は、withinメ ソッドで対象を絞っ

135

Chapter 2 クローラー作成の基礎

たうえで、そのなかの文言で「Listed!」 があるかどうかで判定します (0)。 NGの場

合は、アラート処理用に作成したメソッドであるalert_notice(0)を呼び出し、ア

ラート処理をさせます。今回の場合は、コンソールに「Alert!」 と表示だけさせてい

ます。

また、スクリーンショットの取得は、save_screenshotメ ソッドを利用していま

す。save_screenshotは 引数としてファイル名を受け取ります。

配轟菫i Capybara DSLの save_screenshotメ ソッド

「血ll」 は全画面を取得するかどうか指定します (デフォルトはねIse)。 「:selector」

は#idで指定した位置のみを取得します。

|ブラックリストチェック black:ist.rb

-t- coding; utf-8 -*-
require 'capybara'
require'capybara/ds1'
require'selenium-webdriver'

Capybara.current_driver = :selenium
Capybara.app_host = "http: //www.blacklistalert.orgl"
Ca pybara . def ault_wa it_time = 20 .----------€

module Crawler
class BlackListAlert

include Capybara::D5L

def domain_check(target)
visit('/')
fill_in "q", :with => target
click_button "check"

within(:xpath, "/htm1/body/center/lont/form") do o----- 0

alert_notice if page.has_content?(' Listedl')
end

page.save_screenshot('screenshot.png') o------_{)

save_screenshot(保存ファイル名′(オプション))

オプション

:fu:l=>true

:selector=>:#id:

136

end

2・3 プラウザタイプのクローラー

def alert_notice o----------{
#アラート処理
puts i'Alertili'

end

end

end

crawler = Crawler: : BIackListAlert, new

crawler.domain_check(櫛雄鱗11慧中巻聾装静1)

O black‖ st.rbの実行例 (OK例)

鸞p結果のスクリーンショット(OK例)

△ 目L心EKLl螢
「
劉L属v昌■PN騨9.△

‘
Ж
　

∝
　

　

嬢

¨
一
一
一
一
¨
¨
¨
一
一
一

‘
撻
　
　
¨
　
　
　
　
ｐ

===■
,薔

.嗜馬■ヨ鶯
=ま
羹:==昌
“

● blackiist.rbの 実行例 (NG例)

踊p結果のスクリーンショット(NG例)

z企 目ゝL合E種卜1讐JttLEvF基晨、理,.△

M e hEle8t (fq t dr,9d b P dl4.@-
&qrmldyMlffidP&bi.sh

137

Chapter 2 クローラー作成の基礎

NGの ケースを見るには調査対象のPア ドレスもしくは ドメインを、すでにブ

ラックリス ト判定されているものに変更して試してください。問題のあるIPア ドレ

スの入手は、「DNSBL download list」 などを検索条件に、DNSBL(DNS Blacklist)

のリス トをダウンロー ドして ください。そのなかに含まれているIPア ドレスが、

NG対象のリス トです。次のURLは、SpamCop.netに 報告されたIPア ドレスのリス

トベージです。

r Spamoop.net

EE http:,//www.spamcop.net/w3m?action= inprogress

Capybaraを 使ってJavaScriptによる遅延ロード、Aiaxへの対処例を紹介しました。

同時にクローラーの用途が、あまねくデータを収集するだけでなく、日々定期的に

特定のサイトを利用して、変化がないか確認するのにも使えるということもおわか

りいただけたのではないでしょうか。

次は、Capybaraに 足りない機能とそれに対する対処法を学びましょう。

2・ 3‐ 5 足りない機能を補完する

Capybaraを 利用 して特定のペー ジに特化 した クローラーを作 りま した。

Capybaraは 、Webサイトを訪問してベージを解析するという、クローラーとして

の基本的な機能を備えています。一方で、細かい部分で機能を足したくなることは

多々あります。そんな場合は、自分で補完していきましょう。

麟型二∠_∠立量墨墾墜整
Capybaraは 対話型処理を基本とします。そのために、自動巡回に必要な機能は

備えていません。例えば特定のページまでいって、その下の階層に対して、すべて

何らかの処理をしたいといったケースは時々出てきます。

そこで、Capybaraに ページ取得と自動巡回の機能を足してみましよう。下記の

例は、ページ内のリンクの一覧を取得し(0)、 1階層のみ訪問してスクリーンショッ

トを撮るという処理を実装しています (0)。 なお、サンプルのため、リンク先は

10個以上収集しないようにしています。

ロベージ取得と自動巡回

-*- coding: utf-8 -*-
require 'capybara'
require'capybara/ds1'

|
1 138

ca py ba ra - I i n k.rb

2‐8 ブラウザタイプのクローラー

require'selenium-webdriver'
require 'URI'

Capybara.current_driver = :selenium
Capybara,app_host = "http://wwlr.yahoo.co. jpl"
Capybara.default_wait_time = 20

module Crawler
class LinkChecker

include Capybara::DSL

def initialiZe()

ViSit('')

end

def find_■inks・―――――――――●
。linkS = []

all(la').eaCh d。 lal
u = a[:href]

next if u.nil? or u.empty?

Olinks くく u

#収集するリンクを■0個までに抑える
break if 01inks.size >= ■o

end

@links. uniq !

01inks

end

def screenshot(link) o{
puts link
visit (1ink)
page. save_screenshot (" screenshot. png")

end

end

end

base = URI. parse(Capybara.app-host)
crawler = Crawler: :Linkchecker.new
Links = crawler.find_links
links.each {llinkl

if URI.parse(link).host == base.host then
crawler. screenshot (1in k)

end

)

139

Chapter 2 クローラー作成の基礎

O capybara」 ink.rbの実行例

実行すると、スクリプトを格納したディレクトリにスクリーンショット(screenshOt.

png)が保存されます。スクリーンショットはページの巡回ごとに上書きされて

いって、最後に訪れたページのものが残ります。

このスクリプトでは、ind_linksと いうメソッドを作り<A>タ グからURLの一覧

を取得しています (0)。 そして、そのリンク先がターゲットのホスト名と一致し

た場合のみ、巡回してスクリーンショットを撮るという処理を実行しています (0)。

スクリーンショット取得は、Capybara DSLの save_screenshotメ ソッド(―→p.121)

を利用しています。

鬱盗2至三ヱ全望塾
2つ 目のサンプルもリンク先を取得してページ移動する例です。最近のWebサ イ

トは、1ページの分量を適切に抑えるという目的のもと、検索結果や長大なページ

は複数ベージに分割されることが多いです。対話型のクローラーの場合、ページご

との処理をして次のページに移動するという機能があれば便利です。そこでクロー

ラーにページ送り機能を追加します。

ベージ送り機能は、Rubyの Gemラ イブラリである「autopagerize‐ ruby」 を利用

します。このライブラリがもともと想定している機能としては、すべてのページを

取得のうえで1ページにまとめるという用途のようですが、次ベージの検索機能や

ページごとのループなど必要な機能が揃っています。インストールは、gemか ら

簡単に行えます。依存ライブラリも「addressable」 と「httpclient」 のみです。

r GitHub d) autopagerize-ruby
^-

i
Eil https://github.com/uu59/autopagerize-ruby

140

.S Fuby Capybara‐ link.rb

http:〃 www.yahooて oJp/げmbb;_ylt=A7dPh91 u9rBTsVYAiVi」3tF7

http://www.yahooて ojp/r/mauc;_yit=A7dPh91 u9rBIsVYA‖ iJBtF7

http://ww叫yahooてoJp/″mmy,_yit=A7dPh91 u9rBIsVYA11:J3tF7

http://wwwッahooてoJp/″mtb;=ylt=A7dPh91 u9r3TsVYAmFiJBtF7

http:〃Ⅵハvw.yahoo.cojp/″ mshp;_ylt=A7dPh91 u9rBTsVYAmVi」 BtF7

http:〃 www.yahooて ojp/″ mkid′_ylt=A7dPh91 u9r3TsVYAmli」 BtF7

臓藝醇

2‐3 プラウザタイプのクローラー

インストールは次のように行います。

● autopagerize‐rubyのインストール

インストール後に「Successhlly installed autopagerize」 と表示されれば成功です。

次のスクリプトは、AmazOnの 検索結果を1ページごと取得し、スクリーンショッ

トを撮るという処理を行っています。なお、autopagerize― rubyは、Webサ イトご

とのページ送りの識別方法を定義ファイルから取得するという方法をとっています。

そのために前処理として、定義ファイルの取得が必要です。

定義ファイルは、Wedataと いうサイトから取得可能です。Wedataは、データ

ベース版のWikipediaの ようなもので、データを誰でも登録編集可能で、そのデー

タをAPIを通じて取得することができます。また定義ファイル中にクロール対象の

ページがないのであれば、自分で定義を記述する必要があります。ここでは定義方

法は省略します。

r Wedata

EE http://wedata.netl

まずは、サイト情報の取得処理を行います。

●サイト情報の取得

上記の例では、コマンドラインで取得しています。curlな どのダウンロードプロ

グラムがインストールされていない場合は、プラウザにURLを入力してダウンロー

ドすることも可能です。ダウンロードしたファイルを、適当なファイル名に変更し

て利用してください。

1取得した定義ファイル

"resource_ur1" : " http : / /wedata. net/ items /74934",
" databa se_resoulce_url " :

" http : / /wedata . net / data ba ses /AutoPagerize " ,
"data": {

141

[

{

Chapter 2 クローラー作成の基礎

"pageElement" : " / /center/tab1e",
"nextLink" : "//a IstrongIcontains (text(),' Old')] l',
" url" : "^http : / / upyy. mugityavY, com/ . +thYy. htm"

),
"created_by": "jak3",
"name" : "tX4li tA*<)v" ,
"created_at" : "2014-06-3oT0,4:34:O9+O9:OO",
"updated_at" : "2014-06-3OTO4: 37 :O2+O9 :OO"

"resource_ur1" : "http: //wedata.net/items/74932
"database_resource_urI" :

"http : / /wedata. net/databases/AutoPagerize",
"data": {

"exampleUrl" : "http: / /jav. h- era .orgl " ,
"pageElement" : "id('bodyrow')",
"nextLink": "//a[@class='nextpostslink'

and contains(text(),Y">>Y") 1 ",
"urI" : "^http: I ljav.h-era.orrlpagel "

),
"created_by" : "Freaking Prime",
"name": "Jav H-era",
" created_at " : " 2O!4 - 06 - 29T o'4, 07 i 24+09 i OO",

"updated_at" : "20!4-06-29T1-S:52:o5+o9:oo"

},

Capybara.app_hostに対象ベージとURLを 指定します (0)。 ここでは、Amazon

の本カテゴリで「Ruby」 で検索した結果を設定しています。siteinfoに入手した定

義ファイル (siteintisOn)を指定しています (0)。 定義ファイルは、スクリプトと

同じディレクトリに保存してあります。

1ページ送り機能の追加

-t- coding: utf-8 -t-
require 'capybara'
require' capybara / dsL'
require'selenium-webdriver'
require "muIti_json"
require "autopagerize"

Capybara. current_driver = : selenium
Capybara.app_host = o-----()

"http : / /www. amazon. co. jp / s / ?

142

経:轟El

urI=search - alia s%3Dstripbook s&field - keywords=ruby "

Capybara.default_wait_time = zo

module Crawler
class LinkChecker

include Capybara::DSL

def initializeo
visit(' ')
url = Capybara.app_host
siteinfo = Multilson,Ioad(

File.read("siteinfo, json")) 4
@page = Autopagerize,new(url, siteinfo) O--------4

end

def get_nextlink
page_number = 1

@page.each do I page
I

visit (page . nextlink)
save_screenshot (

" screens hot#{ page_number} . png ")
page_number += 1

end

end

end

end

crawler = Crawler: :LinkChecker.new
crawler. get_nextlink

O capybara‐ autopagerrbの 実行例

実行すると、スクリプトを格納したディレクトリにスクリーンショット(screenshot.

png)が保存されます。スクリーンショットはベージごとに上書きされていって、

最後に訪れたページのものが残 ります。

クローラークラスの初期化時に、Autopagerizeオ ブジェクトを作成 しインスタ

ンス変数に格納しています。AutOpagerize#eachメ ソッドで順次に次ページを取得

するので(0)、 自動で巡回しています。なお、Autopagerizeは、初期値で10ペー

ジまで巡回するように設定されています。必要に応じて任意の順回数に変更してく

143

2‐8 プラウザタイプのクローラー

Chapter 2 クローラー作成の基礎

ださい。変更方法は、オブジェクト生成時に、maxpageの値を指定します。下記

の例は、5ページ巡回するように設定しています。

Autopagerize,new(url, siteinfo, :maxpage => 5)

[聖壼埜空生22対応

Seleniumを 利用する場合、ユーザーエージェントはプラウザ自身になります。

そのため、rObOts.txtが問題になることは少ないです。一方で、PhantomJSな どを

利用の際は、念のため確認しておいた方が問題に巻き込まれる確率は小さくなりま

す。サイ ト閲覧の可否は、Anemoneの 作者のライブラリである「robotex」 を利用

するのがよいでしょう。Anemoneイ ンストール時に同時にインス トールされてい

ます。

robotexに は、2つの機能があります。1つ は、ユーザーエージェントの情報を元

に、対象のサイトがrObOts.txtで拒否されていないかをTrue/Falseで返します。も

う1つ は、ユーザーエージェントの情報を元に、delay時間を返します。robots.txt

に従う場合は、この情報を元にクローラーの処理を記述します。

■GitHubの chriskite/robotexハξ―ジ

ロコl httpS:ノ /igithub.corn/chriskite/robotex

l robots.txtに対応する capybara‐ pc):te"geist‐
"obots.rb

-t- coding: utf-8 -t-
require 'capybara'
require' capybara/ dsl'
reguire' capybara/poltergeist
require'robotex'

Capybara. configure do I config I

config.run_server = false
config,current_driver = :poltergeist
config.javascript_driver = :poltergeist
config.app_host = "http: //ww.yahoo.co. jpl"
config. default_wait_time = 5

config.automatic_reload = false
end

Capybara.register_driver :poltergeist do lappl
Capybara : :Poltergeist: :Driver.new(app, {

:timeout=>12o, js_errors : false))
end

144

2‐3 プラウザタイプのクローラー

module Crawler
class Linkchecker

include Capybara::DSL

def initializeo
visit(' ')
@robots = Robotex. new("Poltergeist")

end

def find_1inks
@links = []
all('a').each do lal

u = a[:href]
next if u.nil? or u.empty?
@1inks << u

end

@1inks. uniq I

@links
end

def allowed?(Iink)
@robots. allowed ? (Iink)

rescue
false

end

def screenshot(link)
puts link
visit (link)
page. save_screenshot("screenshot. png")

end

crawler = Crawler: : LinkChecker. new

links = crawler.find_links
links.each {ll,inkl

if crawler.alLowed?(link) then
crawler. screenshot (link)

end

)

145

Chapter 2 クローラー作成の基礎

O capybara‐ po:tergeist― robots.rbの実行例

このスクリプトでは、クローラーオブジエクト生成時にRobotexオ ブジェクトを

生成しています。そして、ページからリンクー覧を取得し、巡回可能かどうかの判

断をしたうえで、スクリーンショットを取得するといった処理です。Robotex内 部

の処理で、robots.txtを 参照し巡回の可否を判断しています。また、確認ずみのサ

イトについてはキャッシュし、2度 目の確認をしないといった機能もあります。

Pdtergeistの ビル ドインス トール

「capybara― poltergeist― robots.rb」 をWindowsで実行する際に、

というエラーが出る場合があります。これはWindows版 のPoltergeistの 依存性の問題で

す。この問題を回避方法として、DEVELOPMENT KITを使って、Po tergeはをビル ドし

てインストールします。DEVELOPMENT KITの インス トールはp.76を ご参照ください。

146

$ ruby capybara-polte.geist-robots.rb

http I / b azt211 4.ya h oo.co j p/

http://off ice.ya hoo.cojp/?_m=officeMode&_a=modeSwitch&copt4= l &nc=

http//search.yahoo.co jplvideo

http://dic.yahoo.cojp/

覆曇醸

C:/Ruby200/lib/ruby/2.0.0/rubygems/dependency.rb:296:in 'to-specs': Could not find

'websocket-driver' (>= 0.2.0) - did find: [websocket-driver-0.3.3-java] (Gem::LoadError)

|:|:1.:

… |‐ ■

■ ‐_Ⅲ′・| |

集口
〈
ｒ
ｔ タ

=|..葉
=｀

・
.●

`:'● `・

・ . ・
濠■ .‐
lt=I―
‐
1'■― .・

Chapter 3 収集したデータを分析する

3‐ 1

収集したデータを分析する営
前章は、主にデータの収集を中心に解説してきました。この章では、収集した

データの分析についての解説を行います。解析の主な手段としては、正規表現と構

文解析ッールによるデータ抽出があります。どちらも一長一短あるので、それぞれ

の特徴と基本的な使い方、使い分けを考えていきます。

構文解析ッールに関して言えば、最近のRubyではNokogiriが 主流になっています。

そこで本書でもNokogiriを 取り扱います。Nokogiriの データの指定の方法としては、

XPathと CSSセ レクタがあります。両者の基本的な構文と、ブラウザなどを活用し

て素早く目的のデータを抜き出す方法を学びます。

また、日本語のデータを解析する際には、切っても切れない文字コードの話と、

コンピュータに日本語を解析させる自然言語処理の初歩として形態素解析について

も簡単に紹介します。

3‐卜1 正規表現と構文解析

HTMLも しくはXMLか ら目的のデータを抜き出す方法として、正規表現と構文

解析があります。正規表現は、文章中のパターンに着目し、一定のルールに従うも

のを抜き出すという手法です。これに対して構文解析は文章中の文法に注目し、特

定のタグや要素を抜き出すという形です。実際のところ、パーサー (構文解析器)

のタグや要素を探すという実装は、内部的には正規表現を利用していることが多い

です。つまり構文解析は、正規表現を使いやすくするために前処理をしてくれる

ラッパーと考えることも可能です。

正規表現を利用するメリットとしては、ライブラリ非依存で正規表現のみの知識

で抽出が可能なことです。ライブラリ非依存だけでなく、ほぼプログラム言語非依

存なので、Rubyや Rubyラ イブラリにあまり詳しくなくても正規表現がわかれば実

装できるという利点はあります。

特定の項目、1点のみを取得する場合は、正規表現で切 り出すという方法が手っ

取 り早いことが多々あります。一方で、複雑な構造のWebサ イトからデータを取

得する場合は、それに応じて正規表現も複雑になりがちです。複雑な正規表現を組

み立てる時間や後々の保守の時間を考えると、継続的に運用するクローラーを作成

する際には、正規表現は避けた方がよいのではないでしょうか。

148

3‐2 HTML解析と正規表現

では、構文解析の利用はどうでしょうか。まずデメリットとしては、専用のライ

ブラリのインストールやそのライブラリの使い方の習得、XPathも しくはCSSセ レ

クタを理解するなど、初期の学習コストはかなり高いです。一方で、どんな構造の

データに対しても、データを抜き出す難易度はあまり変わりません。つまり初期学

習の壁を超えれば、あとは平坦な道が待っています。特に昨今のWebサ イトは構

造化されたものが多く、パーサーとの親和性が極めて高いです。後ほど説明します

が、ブラウザ付属の開発ツールで、HTML解析が簡単にできるようになっています。
この2点を考えると、多少の学習コストを払っても構文解析の仕方を身につける

べきです。特に、Rubyの場合はパーサーのデファクトスタンダードがNokogiriに

なっています。さまざまなッールの構文解析の実装は、Noko」 ri依存になっていま

す。そのためNokogiriの使い方を覚えるだけで、さまざまな局面で役に立つことに

なるでしょう。正規表現と構文解析については、「3-2 HTML解析と正規表現」(→p.10)

と、「3-4 RSSの解析」(→ p.163)、 「3-5 HTMLの解析」(→p.172)で続けて学びます。

3‐ 1‐ 2 日本語の文字コー ドと日本語処理

Webサイトで利用される日本語の主な文字コードとしては、Shift_JISと ECU_JP、

UTF‐8があ ります。Rubyは 日本発祥のプログラム言語ということで、日本語の文

字コー ドの扱いが他のプログラム言語よりも比較的に容易です。

一方でRubyの Gemラ イブラリのなかには、文字コー ドの考慮がされていないも

のも多々あるのは事実です。自分で文字コー ドを変換するなどの対処が必要です。

その際に必要となる最低限の文字コー ドの知識と、Rubyにおける文字コー ドの操

作方法を、「3-3文字コー ドの対処法」(→ p.156)に て学びます。また日本語処理に

ついては、「MeCab」 というライブラリを利用した形態素解析の紹介を「3‐6自然言

語を使った日本語の処理」(→p.187)で 行います。

営
3‐ 2

HTML解析と正規表現

正規表現は、文字列のパターンを表現する表記法です。独特のルールで取っつき

にくいものの、柔軟性や利便性に富み、短いプログラムでテキストデータをいかよ

うにも扱うことができます。もともとRubyを 含めたスクリプト言語は、テキスト

処理を得意としています。正規表現をマスターすることによって、選択肢が広がり、

149

より効率的になります。クローラーで利用する、しないは別にしても、ぜひ身につ

けておきたい技術の1つです。

Rubyを 使いながら正規表現がわからないというのはもったいないので、最低限

の正規表現の使い方を記載します。また、HTMLの 解析を想定したいくつかのサ

ンプルパターンをあげておきます。

3‐ 2…l Rubyに おける正規表現の実装

Rubyは、言語レベルで正規表現が実装されています。例えば、文字列を扱う

Stringク ラスのメソッドには、正規表現によるパターンマッチが用意されていて、

「=~」 もしくはmathメ ソッドで正規表現を利用することが可能です。

田ロロ正規表現によるパターンマッチ

このように特別に正規表現のクラスを呼び出さなくても、Stringク ラスから正規

表現が利用できます。Rubyは他の言語に比べて、正規表現の利用の敷居が低いの

が特徴です。

Rubyの正規表現クラス

Rubyにおける正規表現の実体は、RegExpク ラスです。Stringク ラスに実装され

ている正規表現のメソッドも、実体はRegExpク ラスを利用しています。また正規

表現の結果は、MatchDataク ラスを実体化したオブジェクトに格納されます。この

結果は、オブジェクトのみならず特殊変数にも格納されます。ちょっと取っつきに

くいですが、覚えておくと冗長な記述をしなくてすむようになります。

Rubyの正規表現は、「/」 で囲むと正規表現リテラルになります。また「=~」 は正

規表現にマッチするかの判定を行い、返り値はマッチ開始位置です。これに対して、

String#matchは MatchDataオ ブジエクトを返します。一方で、どちらの場合も特

殊変数「S&」 にマッチしたテキスト全体を返します。

次の4つ の式は、「$&」 は同一の結果「Regular」 を返します。式自体の結果は、

マッチ開始位置である「17」 とマッチした結果である「Regular」 を返すものに別れ

ます。

‖
文字列"=～ノ正規表現リテラルノ
11文
字列
‖
.match(ノ 正規表現リテラルノ)

150

Chapter 3_収集したデータを分析する

puts "My First RegularExpression. "

=- /Regular/ # =t 17

puts $& # => Regular

puts "My First RegularExpression"
.match(/Regular/) # => Regular

Puts $& # => Regular

puts /Regu1ar/ =-
"ny first Regu1arExpression." # => 17

puts $& * => Regular

puts /Regular/.match(
"ti1y First RegularExpression. ") * => Regular

puts $& S => netular

3‐2 HTML解析と正規表現

|マ ッチ結果を返す式

次にMttchDataク ラスの使い方です。正規表現のマッチ結果が格納される

MatchDataオ ブジェクトには、マッチしたテキストのみならず、その前後の文字列

も格納されます。また後述するキャプチヤ (→p.152)を利用することで、括弧に囲

まれた正規表現に一致する部分を順番指定で取得することも可能です。

ヨMatchDataオブジェクトの値

MatchDataオブジェクトのかわりに、特殊変数を利用することも可能です。正規

表現の特殊変数は、スレッドごとに異なる値を持つスレッドローカルであり、かつ

メソッド内でのローカルな変数です。

str = "My First Regular Expression."
matchdata = str.match(/(.+?)<y/strong>/)

puts matchdata.pre_ atch

#=>my First(マ ッチしたテキストの手前の文字列)

puts matchdata. post_match
=> Expression.(zv?blt7*ZhOf,5O +rl)

puts matchdataIo]
=> Regular (? y, l,tt+f hef*)

putS matChdata[■]
#=>Regular(キ ヤブチヤの■つ目)

151

str = "My First Regular Expression."
str. match(/ (. *?)<Y/strong>/)

puts S｀ #=>my First(マ ッチしたテキストの手前の文字列)
puts S' #=>Expression.(マ ッチしたテキストの後ろの文字列)
puts S& #=>く strong>Regu■ arく′strong,(マ ッチしたテキスト全体)
puts,■ ■=>Regu■ ar(キャブチャの■つ目)

0hapter 3 t&*Vtzi- t Xittfit A

1特殊変数の値

樹主主∠二主
Rubyの正規表現では、キャプチャという機能を使うことができます。キャプ

チャは、丸括弧 ()に 囲まれた条件に一致する値を取得できます。HTMLを解析す

る際には、キャプチャを使いこなすことが特に重要です。なぜならば、キャプチャ

を利用することにより、タグで囲まれた文字列を簡単に抜き出すことが可能になる

からです。

|キ ャプチャで値を取得する

/Y<strongY>(,+)Y<Y/strongy>/ =- "<div>He11ol I </div>"
puts $r * =) Hellol

この例では、「=～」の右辺にある文字列リテラルから、タ グに囲まれた

値 (文字列)を取得しています。

なお、「=～」左右の正規表現リテラルと文字列リテラルは、位置を入れ替えても

同じように動作します。

またRuby l.9以 降は「名前付きキャプチャ」という機能が利用可能です。これは

括弧に名前を設定し、その名前で呼び出すことを可能にする機能です。下の例は、

「tag」 というキャプチャ名を設定しています。丸括弧内で「?<>」 で囲むことで、

キャプチャ名として認識されます。

1名前付きキヤプチャで値を取得する

/y<strongy>(?<tag>.+)V<V/strongy>l =- "<div>Hellol !</div>"
puts tag # => Hellol

名前付きキャプチャを利用することで、複雑な正規表現の可読性を上げることや、

途中で順番がずれても修正不要といったメリットがあります。一方で、名前付き

3‐2 HTML解析と正規表現

キャプチャを利用する場合は、「=～」が必須で左辺は正規表現リテラルである必要

があります。

饉二五茎宝上上ニヱ空

先ほどから何度かリテラルという言葉が出ています。リテラルとは、プログラム

中に直接記述された文字列のことです。文字列であれば「文字列リテラル」、正規

表現であれば「正規表現リテラル」と呼びます。これに対して、「メタ文字」という

言葉があります。メタ文字は、プログラムのなかで特別な意味を持たせた文字のこ

とです。

・ ()[][}.?十
キ
|¥

メタ文字をリテラルとして扱いたい場合は、エスケープ文字「¥」 を前に付けま

す (「 ¥」 は英語環境ではバックスラッシュになります)。「(」 をエスケープする場合

は、「¥(」 です。「¥」 の場合は、「¥¥」 です。またRegexpescapeを利用することに

より、メタ文字に対してエスケープ文字を付加した文字列を返します。

ロメタ文字を利用する

escaped_str = Regexp. escape("123 () [] {}<>abc")
puts escaped_str S => 123Y(Y)Y[Y]v{Y}<>abc

文字と文字クラス

メタ文字以外にも、意味のある文字が存在します。「¥」 と文字列を組み合わせる

ことにより、特定のコードを表現します。

騒P「 ¥」 による文字コードの表現

水平タプ(horizontal tab)(Ox09)

垂直タブ (vettical tab)(Ox03)

:攻|イテ(new‖ ne)(OxOA)

復帰 (return)(OxOD)

l\'y t 7^r-7' (back space) (0x08)

改ページ(form feed)(OxOC)

ベル (be‖)(Ox07)

エスケープ文字(escape)(Oxl B)

符号化バイト値の8進数表現(nnnの 8進数 3文字で表現)

153

▼ 「¥」 による文字コードの表現 (続き)

よく使われる表現については、文字クラスとして省略記法が存在します。例えば、

は大文字・小文字の英字と数字全体を表します。省略記号として「¥w」 を利用する

ことで、同等の表現と見なされます。

▼ 省略記法

3‐ 2‐2 正規表現のオプション

正規表現には、いくつかのオプションがあります。そのなかで、「i」 は大文字と

小文字を区別しないというオプションになります。HTMLを 解析する場合には、
ほぼ必須となるので覚えておきましょう。

<Div>タ グの表記として、くdiv>、 くDIV>、 くDiv>の3つはHTMLの解釈として

はすべて等価にされます。一方で正規表現は、大文字と小文字は別ものとして扱い

ます。組み合わせごとのパターンを記述するのは、非常な手間です。その際は、「i」

オプションを利用します。これは大文字と小文字を区別しないというオプションで

す。HTML解析の際には、必須と言ってよいオプションの1つです。

符号化バイト値の16進数表現 (HHの 16進数2文字で表現)

IHHHHH〕 コードポイント値の16進数表現(7HHHHHHHの 16進数で表現)

3‐x 制御文字 (xは aか らzまでのいずれかの文字)

メタ (x10x80)

メタ制御文字

IH ユニコード文字 (HHHHの 16進数4桁)

ユニコー ド文字列 (¥uHHHHと 同 じ)

単語構成文字 [a― zA―ZO-9」

YW 非単語構成文字 [^a― zA―ZO-9」

¥s 空自文字 [¥t¥「¥n¥]

`S
非空自文字 [^¥t¥r¥n¥n

10進数字 [0-91

:D 非10進曽枚1字 〔∧0-91

ヽ 16進数字 [0-9a― fA― F]

:H 非 16進数字 [^0-9a― fA― F]

154

表 記 菫

¥MⅨ

Chapter'J t&*Ltzf -I*htf i6

¥w

¥d

日ri」 オプションを利用する

ノdiv/i =～ 'lDiv'1

puts S& # => Div

「i」 オプションを使うことで、冗長な記載を避けることができました。また「m」

オプションを使うことで改行を無視することができます。複数行にまたがる

HTMLタ グを抜き出す際は、「m」 オプションが必要になります。

3Ⅲ 2‐3 正規表現のパターン

それでは、HTMLを解析する際に使うであろう正規表現をいくつか例示します。

なお、例文中の「html」 という変数は、htmlソ ースが格納された文字列とします。

1特定のタグを取得し、中身のみを抜き出して表示する

puts html. match(/<title>(. +?)<Y/titte>/i) [1]

|くA>タ グ内のhref属性でリンクされているURL一覧を表示する

reg = /<a.+zhref=["'](.+?)["']/i
html.scan(reg).each do liteml

puts item
end

l id指定でタグ取得し表示する

puts htmI. match (/ <la - zA-Zl. +?id= ["'] id_name ["'] . +? > / i)

l id指定でタグで囲まれた文字列を取得し表示する

puts htm■ .match(ノ く[a― zA― Z].+?id=

[''']rhf_recs_error['1'].+7>(.+7)く ¥/.+?>ノ im)[1]

正規表現の視覚化

ここまで駆け足で正規表現の説明をしてきました。 しかし、正規表現をマスター

するには、まだまだ遠い道のりです。正規表現をマスターするには、使いながら少

しずつテクニックの幅を広げていくしかありません。

一方で、正規表現を習得するのが難 しい理由として、デバッグがしにくいという

3‐2 HTML解析と正規表現

Chapter 3 t&*vfzf - t thlfit a

点があります。つまり正規表現を書いてみて想定の結果が出なかった時に、どこが

悪いのかがわからないということです。この壁のために、挫折したという人もいる

でしょう。

そんななかで、知っておくと便利なのが正規表現の視覚化です。 r正規表現 視覚

化」のキーワー ドで検索するといくつもサイ トが出てきますが、入力した正規表現の

マッチングパターンを視覚化してくれるサイ トがあります。思うとおりに動かない

時は、どういった経路でマッチングされているか見てみるとすぐに解決することも

あります。オンラインで利用できるので、一度試してみてください。

■REGEXPER
回口 http:〃

IWWW.regeXper.Com/

匁
クローラーを作成していると、一度は悩まされるのが文字コードの問題です。日

本語を表すのに利用される文字コードは複数あります。代表的なものだけでも、次

のように5種類ほどあります。またShift」 ISに対するCP932や、それぞれのメー

カー。キャリアごとの文字コードの実装などの亜種を含めると、数えきれないほど

あります。

・ ISC)-2022-」 P(」 iS)

O Shi貴 」lS

O EUC」 P

・ UTF-8

・ UTF-16

このなかで、Webサイトでよく利用されるのは、「Shift_JIS」「EUC_JP」「UTF-8」

の3種類です。この3つに絞って、どのように扱っていくのかをまとめます。

3‐ 3‐l Rubyに おける文字コー ドの取 り扱い

Ruby 20で 文字コードを扱うには、主にKconv、 NKF、 Iconvな どのOSに インス

トールされた文字コード変換ライブラリを利用する方法と、String#encOdeメ ソッド

やEncoding::Converterな どRuby組み込みライプラリを利用する方法とがあります。

3‐ 3

文字コー ドの対処法

156

3‐3 文字コードの対処法

Kconvは NKFの ラッパークラスであり、実装としてはNKFで す。このNKFは、

nkf(Network Kanii cOde cOnverslon Filter)を Rubyから利用するためのライブラ

リで、日本語の文字コードの変換を行います。

それに対して、Ruby l.9■ から M17N(Multilingualzation)と して多言語化した

仕様になりました。その実装としてのEncodingが あります。古いバージョンから

の互換性の問題がなければ、基本的にM17Nの 実装であるString#encodeメ ソッド

を利用するのがよいです。一方で、Kconvや NKFを利用した実装も多いので、簡単に

説明しておきます。なおIconvは、Ruby l.9の時は非推奨だったのですが、Ruby 2.0か

らは標準添付ライブラリから削除されました。

絋Kconvと NKF

Kconvは 日本語文字コードの変換を行うためのライブラリです。Kconvを

requireす ると、Stringク ラスに文字コード変換用のメソッドが追加されます。

▼ 文字コード変換用のメソッド

名前に「is」 が付くメソッドは、文字コードかどうかの判定です。「to」 は指定の

文字コードに変換します。

文字コードがEUCかどうか判定して¬rue/Falseを 返す

文字コードがJiSか どうか判定してTrue/Falseを返す

文字コードがShit JISか どうか判定して■ue/Faiseを返す

変換元の文字コードを変換先の文字コードに変換した文字列を返す

EUCに 変換した文字列を返す

JISに変換した文字列を返す

ローケルエンコーディング (プログラムで使用中の文字コード)に

変換した文字列を返す

Shtt JiSに 変換 した文字列を返す

UTF-16に 変換した文字列を返す

UTF-8に変換した文字列を返す

Stririb#isutf8i,,j: ,rl X+ r - l'r75$ UTF-8 r't - i5'+UE t, z True/False tiE4

ISt111し五01tf121111 UTF-32に 変換した文字列を返す

require 'kconv'

#何 らかの文字コー ドの文字列
str= '日 本語の文字コー ド'

puts str.toeuc
puts str.tosjis
puts str.toutfS

#=,EUCの 文字コードに
=換#=>Shift〕 工Sの文字コードに変換

#=>UTF‐ 3の文字コードに
=換

Chapter 3 tElEL tzi- t Xittfrt 6

1文字コードの変換

元の文字コードの判別は自動で行われます。文字コードの判別は出現する文字列

のバイト配列を読み取って、そのパターンがどの文字コードにあたるかをルールに

従って行っています。しかし、そのパターンが、文字コード間で共通されている場

合もあります。そのために完全な文字コード判定というのは不可能であり、一定の

確率で失敗します。

クローラーの場合は、HTML中 にCharSetや Encodingの 指定が明示されている、
もしくは対象のサイトの文字コードを知っている場合がほとんどなので、プログラ

ムで明示的に指定するのがよいでしょう。明示的に変換する場合は、String#kcOnv

メソッドを利用して、「変換先の文字コード,変換元の文字コード」と指定します。

require 'kconv'

#何 らかの文字コー ドの文字列
str= '日 本語の文字コー ド'

putS Str.kconv(KConv::S〕 IS, Kconv::UTF8)

#=>UTF‐ 3からShift_]工 Sに変換

putS Str.kconv(Kconv::EUC, Kconv::UTF8)

● =>UTF‐ 3からEUCに変換

Kconvを 利用することにより、比較的簡単に日本語を扱うことができます。しか

し、Kconvはあくまで日本語を扱うためのライプラリであり、多言語化対応ではあ

りません。Rubyの国際化に伴い、本格的な多言語化が求められるようになってき

ました。そういった事情があり、Ruby l.9.1に て本格的な多言語化対応がされました。

158

1元の文字コードを指定して変換する

懺l::illby_111:!1■ 1::`」:`i::`2:::`:を三:::iiEl'1:」 :![!:::
Ruby l.9.1以降、多言語化対応となっています。多言語化対応は、M17Nと 呼ば

れ「Multilingualization」 の略です。Mか らNま で17文字あるために、そのように呼

ばれています。

多くのプログラミング言語は、多言語化の際にはUCS Norm』 zationと 呼ばれる

方式で対応しています。これは内部的な文字コードをUTFな どの特定の文字コー

ドに統一し、入出力の際にそれぞれ変換する方式です。これに対してRubyは、CSI

(Code Set lndependent)と いう方式を採用しています。CSI方式は内部の統一した

文字コードは持たず、与えられた文字コードをそのまま扱います。

Rubyの 多言語化対応の実装は、Encodingク ラスで行われています。String

#encOdeの 実体もEncodingク ラスです。Encodingク ラスは組み込みライプラリな

ため、Ruby l.9以 降であれば何も呼び出さなくてもそのまま使えます。

また、どの文字コードで記述しているかを明示することが必要になったので、

Ruby l.9で 非アスキー文字列を扱う場合は、Magic Commentで 文字コードを指定

する必要があります。なおRuby 2.0で は、何も指定しない場合のデフォルトの文字

コードをUTF‐ 8と して扱うようになっています。

l encodeメ ソッドで変換する

上記のとおりKconvと 同等のことが実現できます。互換性の問題がないかぎり、

String#encOdeメ ソッドを使うのがよいでしょう。

■Ruby 2.0.0リ フアレンスマニュアル >多言語化

画□http:″4docs.ruby‐!ang.org/ia/2.0.0/doc/spec=2fm17n.htm:

coding: UTF-8

■ 何らかの文字コー ドの文字列

str= '日 本語の文字コー ド
:

puts str.enCOde(1'Shift_〕 IS'1)

● =>嗜熙的にUFT8から,Shiftコ ISに変換する

puts str.encode(''Shift_コ IS・ ,'lUTF-8")

#=>明示的にuFT3か ら,Shift_31Sに変換する

159

3‐3 文字コードの対処法

Chapter3 t&*t tcf- Iblltfi! 6

3・ 3‐ 2 Nokogiriと 文字コー ド

Rubyで構文解析ツールを利用してHTMLを 解析する際は、もっばらNoko3riを

利用します。Nokogiriは内部的にはUTF-8を 利用して処理しています。下記のコー

ドは、Nokogiri l.6.1に おけるHTML Parseの 実装です。encodingで 文字コードを

受け取るのですが、指定がない場合はUTF-8と して扱います。

I HTML Parseの 実装

このためNokogiriで UTF-8を扱う場合は、明示的に文字コードを指定して利用す

るか、UTF-8に 変換のうえでNokogiriに渡すかのどちらかの対応が必要です。

下記の2つ のサンプルスクリプトは、文字コードがShift」 ISの Webサ イトから

HTMLを取得しています。1つ 目のスクリプトは、Shift」 ISの文字コードでそのま

ま受け取り、Nokogiri側 で文字コードがShift」 ISと 宣言したうえで渡しています。

この場合は、Nokogiri内部でUTF-8に変換されます。

|そのままの文字コードで渡す

def self.parse tags, encoding = nil
doc = HTML: :Document.new

encoding I l= tags.respond_to?(:encoding) ?

tags.encoding.name :'UTF-8'
doc.encoding = encoding

new(doc, tags)
end

html = Open(
'lhttp://WWW・ amaZOnoCO・ jP/gP/beStSellerS/'',':r:Shift_〕 IS'1)

doc = Nokogiri.HTML(html, nil, 1'Shift_〕 IS'1)

puts doc.xpath(' //titl-e').text

require 'nokogiri'
require 'open-uri'

160

●jis.rbの実行例

3‐3 文字コードの対処法

2つ 目のスクリプトは、データ取得後にString#encodeメ ソッドを利用 して、

Shift_JISか らUTF-8に変換しています。その後に、UTF‐8の文字列としてNokogiri

に渡しています。

:文字コードを変換して渡す utf.rb

● ur.rbの実行例

どちらの場合でも同じように動きます。一方で、String#encodeは、渡された

データ中に不正なバイト列や未定義なバイト列がある場合に、例外を投げます。つ

まリインプットのデータ次第では、エラーが発生して止まります。

String#encodeの オプションで、その際に適当な文字列に置換することができま

す。下記のコードのうち、「:invahd」 および「:unde」 が不正なバイト列と未定義な

バイト列を表します。「:replace」 はその場合の対処で、置換します。デフォルトの

動作はnilでErrorを投げます。

上記のような理由から、エラーハンドリングをしたうえで文字列をUTF-8に 変換

して、Nokogiriに文字列を渡すことを推奨します。

3‐ 3¨3 Anemoneと 文字コー ド

「252ク ローリング機能の作成」(→p.86)で解説したとおり、Anemoneは受け取っ

たHTMLを内部的にNok∝Mで解析します。しかし、Version O.7.2時 点では文字コー

ドがUTF3以外の場合は文字化けします。対処としては、Noko」 riで変換した結果

html = open(
"http://www.anazon.co.j?/E?/bestsellers/").read,encode("UTF-8",'Shift_JI5")

doc = Noko8iri.HTI{L(html)
puts doc.xpath(' //titLe').text

require ' nokogiri'
require ' open - uri '

161

Chapter 3 E*t /ci- I tttffi-ta

を取得するdocオ ブジェクトを使わずに、自前でUTF-8に変換してNokogiriに 渡すと

いう方法がありますが、同じ処理を三度するので効率的ではないです。

気になるのであれば、Anemoneの ソース自体を変更することで対処できます。

Anemone内でNokogiriを利用しているのは「page.rb」 内のdocメ ソッドです。ここ

で引き渡される文字列である@docを、明示的にUTF-8に変換することにより対処

できます。

しかし、@docは ASCⅡ-8BITと して扱われているために、元のエンコードを探す

必要があります。Anemoneに は、contenttypeと いうメソッドがあり、HTMLの
ヘッダーからcontent― typeを 取得しています。contenttypeから、charsetを 抜き出

すcharsetメ ソッドを実装し、String#encodeメ ソッドに渡します。

E Anemoneを 修正する

#

Nokogiri document for the HTML body
f
def doc

return @doc if @doc

if @body && html?
if charset == 'utf-8' | | charset.nil?

bodY = 6566,
else

bodY = @666r."n.o6"1
"UTF-8", charset, :invalid => :replace,
:undef => :replace) rescue ni1

end

@doc = Nokogiri::HTML(body) if body

end

end

*
The content-type returned by the
HTTP request for this page

#

def content_type
headers[' content-type'].first

end

def charset
matCher = COntent_type・ matCh(

/CharSet=[V"]?([a-2A― ZV_¥― ¥d]*)[¥'']7/)

matCher[■]・ dOWnCaSe if matCher

end

162

3‐4 RSSの解析

Anemone本 体を書き換えると、利用者側のプログラムで文字コードを意識する

必要がなくなります。

1文字コードを意識せずにクローリングする anemone-encode.rb

片
このセクションでは、RSSの解析方法とHTMLか らのRSSフ イードヘのリンクの

取得方法を学びます。RSSは、「2-54 RSSを 利用する方法」(→p.98)で紹介したと

おり、実体はXMLです。XMLはHTMLに比べてシンプルな構造で、解析しやすい

です。またRSSは標準規格なのでフォーマットが決まっています。フイード名とそ

の役割を理解すれば、すぐに欲しい情報が取れるでしょう。

実行すると、文字化けも発生 しません。

● anemone¨ encode.rbの 実行例

Anemoneと 同様の問題が、Mechanizeの場合でも発生します。スクレイビング

するだけであれば、同様の方法で対処できます。一方で、Mechanizeは フォームに

入力してデータを送るといった処理もあるので、文字コードの問題が発生した場合

は、Capybaraからブラウザを利用するのがよいでしょう。

3‐ 4

RSSの解析

urls = []
urls . push (

" http: / /www. amazon.co,jpl gpl bestsellers / booksl 4662821 ")
urls. push("http: /./news.yahoo. co. Jp")

Anemone.crawl(ur1s, :depth_limit => o) do lanemonel
anemone.on_every_page do lpagel

puts page.doc.xpath(" / /tit1e")
end

end

-*- coding: utf-8 -+-
require'anemone'

163

Chapter 3 tR*t-tci - i Xtltfr-t 6

3‐ 4‐ 1 名前空間 (Namespace)

RSSの説明をする前に、名前空間について簡単に説明をします。

名前空間とは、それぞれの要素名が衝突しないようにするための修飾辞です。名

前空間の宣言と要素の表現は、次のような形で行います。またデフォルトの名前空

間として、1つだけ名前空間接頭辞を使用しない名前空間宣言も可能です。デフォ

ルトの名前空間に属する要素は、名前空間識別子なしで要素を記述できます。

歴■ヨ名前空間の宣言

例えば、デフォルトの名前空間と「dc」 という名前空間があり、それぞれ「item」

という要素がある場合は、次のように表現します。名前空間が違うと同じ要素名で

も、まったく別の要素と認識されます。そのため、XMLを解析する場合は名前空

間の有無は重要になります。

3‐ 4‐2 RSSl.0

RSS■ 0の構造は、次の図のようになります。図中の「+」 はその要素が繰り返す

ことを表し、「?」 はその要素が存在する場合としない場合があります。また「dcr」

は任意の名前で項目を拡張できます。

channel要素内にWebサ イトの基本情報、item要素内に記事情報を載せます。例

えば、記事を扱うitemは 、記事ごとに1つのitemができます。通常、複数の記事が

あるので、任意の回数だけitemを繰り返します。一般的なRSSでは、新しい順番に

5か ら10ほ どのitemを 載せることが多いようです。

く要素名 xmins:“ デフォル トの名前空間識別子
‖

xmins:名 前接頭辞=‖名前空間識別子">

く要素名>

く名前空間識別子:要素名>くノ名前空間識別子:要素名>

くノ要素名>

3‐4 RSSの解析

1瞬 RSS l.0の構造

個々の要素の詳細は、下記の表にまとめます。image部分については、実際のと

ころほとんど設定されていないために割愛します。

▼ RSS l.0のchannel要素

属性のrdf:aboutに RSSの URLを 記載する

Webサイトのタイトル

AヽrebサイトのURL

Webサイトの説明

最終更新日時。任意項目

表示する言語。日本語なら」a。 任意項目

このなかで記事のURLを記載する

このなかで記事のURLを記載する

繰り返し項目。属性のrdf:resourceに 記事の∪RLを記載する

記事情報。1つ以上の任意の数

Webサイトのタイトル

WebサイトのURL

電PRSS1 0の item要素

165

Webサイトの説明

更新日時。任意項目

作成者。任意項目

▼ RSS l.0の item要素 (続き)

RSS l.0は、dc(Dublin Core)と いう名前空間で任意の項目を追加できます。こ

のため、非常に表現力が高く現在でも継続的に利用され続けています。一方で、更

新日時など必須であろう項目についてもdc:dateと して任意項目としている点や、

channel要素中のrdlli要 素は後に出てくるitem要素と重複する内容であるなど、い

くつかの問題点があります。

3… 4… 3 RSS2.0

次にRSS 2.0の構造も見てみましょう。RSS l.0と 比べるとシンプルな形になって

います。一方でそれぞれの要素の名前や意味は同じなので、どちらも違和感なく利

用できるでしょう。

主な変更点としては、channel要素内にサイト情報と記事情報を集約しています。

また、RSS l.0で重複していたchannel要 素内のrdlliと item要素の意味の重複も解消

されています。更新日を表すpubDateと いう要素が追加されています。それ以外に

も、いくつものオプション項目が追加されています。しかし、実際のところ設定さ

れるケースは少ないので、割愛します。また、RSS l.0の ように項目を独自に拡張

できないため、表現力の弱さが問題となることがあります。

▼ RSS 2.0の構造

titlo

link

description

166

Chaptr 3 収集したデータを分析する

3・4 RSSの 1解析

3‐ 4‐4 Atom l.0

Atomは、RSS 2.0に かわるコンテンッ配信技術として規格化されました。A"m
には、Atom配信フォーマット(Atom Syndication Format)と Atom出 版プロトコ

ル (Aねm Publishing PrObc01)の 2つの仕様があります。Webサ イトの更新には、

Abm配信フォーマットが利用されます。単にAtomと 表記した場合は、このAtom

配信フオーマットを指すことが多いです。本書でも、Abm配信フォーマットを指
すものとします。

Atomの ポリシーの1つ として、誰でも拡張可能という点があります。そのため、

Webサイトの更新通知にとどまらず、Gmailにおけるメールの配信などさまざまな

用途で利用されています。

構造としては、おed要素中にサイト情報と個々の記事を表すentryが存在します。

entryについては、規定ではトップレベル要素とすることも可能です。それ以外に

も、コンテンッ要素を追加することも可能です。

▼ Atom 1 0の構造

躙認Atom l.0のfeed要素

Webサイトのタイトル

WebサイトのURL

Webサイトの説明

更新日時

作成者情報。名前やema‖、URLなどを含められる

167

記事情報。1つ以上の任意の数

記事のタイトル

記事のユニークなID

記事の更新日時

記事の原文

Chapter 3 t&*t tci - I Xiltfrt 6

▼ Atom l.0の entry要 素

3… 4‐ 5 RSS・ Atomの解析

RSSも Atomも XMLを 元に規格されたフオーマットです。そのため、XMLパ ー

サーを利用すれば簡単に必要な情報を取得できます。Nokogiriは HTMLパ ーサーだ

けでなくXMLパーサーの機能も兼ね備えてるため、ほぼHTMLと 同じような方法

でXMLも解析することができます。

解析方法としては、基本的には要素名を指定するだけでよいのですが、RSS l.0

とAtom l.0については注意が必要です。NokogiriはXMLを解析する際には、名前

空間を解釈します。そのため名前空間の指定が必要です。RSS■0と Atom l.0に は

名前空間があります。

はてなブックマークのHotentryを 配信するRSS l.0フ イードを例に考えます。下

記は、RSSフ イー ドの宣言部分です。デフォルトの名前空間として、「http://purl.

org/rss/1.0/」が指定されています。それ以外にも「rdf」「content」「taxo」「opensearch」

「dc」「hatena」 などの名前空間が宣言されています。

日はてなプックマークのHotentryを 配信するRSS l.0フィード

<rdf : RDF xmlns : rdf = " http ; / /www. w3 . org I !999 I 02 / 22 - tdf - syntax-ns#"
xmlns="http://pur1.orBlrss/1,o/" xmlns:content="http: II?r]:l.otglrssIL.o/
modules/content/" xmlns:taxo="http:llput!,otgltss/L.olnoduLesltaxonomy/"
xmlns:opensearch="http://a9.con/-ls?eclopensearchrss/1.o/" xmlns:dc="http://
purl.org/dc/elements/1,1/" xmlns:hatena="http://www.hatena.ne.jplinfo/xmlns#"
xmlns :media="http : / /search. yahoo. com/mrss">

機堅】旦型

それではRSS l.0を解析してみましょう。Noko」 riでXMLを解析する際は、Noko」壺:

XMLを利用します (0)。 名前空間については、接頭辞と名前空間識別子をペアにし

要素名

lilk ・ 1記事のURL

summary l記 事の説明

pubDtte l記 事の公開 日時

3‐4 RSSの解析

たハッシュ配列を作成します (0)。 デフォルトの名前空間についても、接頭辞とし

て仮の名前を与える必要があります。なお、名前空間の宣言は、必要な部分のみ宣

言すれば問題ありません。すべての名前空間を宣言する必要はありません。

Nokogiriで は、XPathで検索時に引数として名前空間を渡せます (0)。 名前空間

付きのXMLの場合は必須になります (0)。 名前空間を使わない方法としては、

CSSセ レクタで検索する方法もあります (0)。

日RSS l.0の解析 rsslO.rb

-*- coding: utf-8 -*-
require 'nokogiri'
require ' open - uri '

url ='http: //feeds.feedburner.com/hatena/b/hotentry
xml = open(url).read

doc = Nokogiri: :XML(xml) .---------{

nameSpaCeS={―――-0
#デ フォル ト名前空間
"rss" => "http://purl.otglrsslL,ol",

"rdf " => " http : / /www. w3 . org I !999 I 02 / 2z -rdf -syntax-ns#",

"content" => "http://purL.or9lrssIr.oImodules/content/",

"dc" => "http://purl.orgldclelements /L.rl ",

"feedburner" => "http: //rssnamespace,orglfeedburner/ext/1.o"

channel
channel = doc.xpath(' //rss : channel', namespaces) .----------O

Xpath?titlet&*
puts channel.xpath('rss:tit1e', namespaces)

---@puts channel.xpath('feedburner:info', namespaces)
lis = channel.xpath('//rdf:Ii', namespaces)

lis.each {ltil
puts li.attrlbute("resource")

)

#CSSセ レクタでtitleを 検索
puts doc.css('channel title')・ ¨̈̈ ¨̈̈ ¨̈̈ ―̈(D

items = doc.xpath('//rss:item', namespaces)

items.each {liteml
169

}

Chap“r3 収集したデータを分析する

puts item.xpath('rss:titIe', namespaces),inner_text
puts item.xpath('content:encoded', namespaces)

puts item.xpath('dc:date', namespaces).inner_text
}

名前空間の概念を理解していれば、XMLの解析はHTMLよ りも簡単です。RSS

やAtomが提供されている場合は、まずはそちらの利用から検討しましょう。

:型】旦型
次にRSS 2.0の解析をする方法を見てみましょう。RSS 20の 場合は、名前空間が

定義されていない場合が多いので、HTMLと 同じように解析できることが多いの

が特徴です。Amazon.co.jpの カテゴリごとのランキングが、RSS 2.0で も配信され

ています。このRSSから、書名を抜き出してみましょう。

IRSS 2.0の 解析 rss2O.rb

-*- coding; utf-8 -*-
require 'nokogiri'
require'open-uri'

url =

' http : / /www. amazon. co. jp I gp I rss/bestsellers/ books / ref =zg_bs_books_rsslink'
xml = open(url),read

doc = Nokogiri: :XML(xmI)

itemS = dOC・ Xpath('//rSS/Channe1/iten')

itemS.eaCh{ liteml

#タイ トルの表示

170

● rss1 0.rbの実行例

S ruby r5s10.rb 1ヽ議

I導曇燿

3‐4 RSSの解析

puts item.xpath('titIe').text
}

● rss20「 bの実行例

露生型型⊇

最後にAtom l.0で す。Abm l.0の構造は、RSS 2.0と 同様に名前空間の指定が必

要になります。取得方法も、構造の違いを除けばRSS 2.0と 同じです。はてなブッ

クマークのAtomAPIか ら、それぞれのエントリーのタイトルを取得する例で見て

みましょう。

日Atom l.0の解析

url ='http: //b.hatena.ne. jp I dk+jl atonfeed'
xm1 = open(ur1).read

nameSPaCeS = {

■デフォルト名前空間

“atom'' ‐> t'http://Purl.org/atom/nsln,

''dc'' => ''http:′ ′purl.org/dc/e■ ements/1.■ /t'

}

entries = doc.xpath('//atom:entry', namespaces)

entries.each {lentryl
puts entry.xpath('atom:title', namespaces).text

)

doc = Nokogiri: :XML(xml)

-*- coding: utf-8 -*-
require ' nokogiri'
require ' open - uri '

171

Chapter 3 N*Ltcf -, X|ttfit 6

● atom10.rbの 実行例

‖
このセクションでは、Nokogiriを 利用してHTMLを 解析する方法を学びます。

Nokogiriは 、HTMLと XML、 SAXと XSLTの パーサーです。Nokogiriの 主な機能

としては、XPath l.0に よる探索、CSS3の セレクタによる探索、XML/HTMLの ビ

ルダー機能の3つがあります。

その一方でNokogiriは 、10以上のモジュール、70以上のクラスで構成される比較

的大きなライブラリです。やみくもにマニュアルを読んでも効率が悪いので、ここ

であらためてNoko」riの クラス構造を理解したうえで、使い方を学んでいきます。

3‐ 5‐ l Nokogiriの クラス構造

今回使おうとしているHTMLの 解析機能は、Nokogiri::HTMLク ラスにあります。

このクラスは、クラスメソッドとして「parse」 を持ちます。parseメ ソッドは、

Nokogiri::HTML::Documentク ラスのオブジェクトを返します。このクラスは、

Nokogiri::XML::Docunentを 継承し、Noko」 ri::X:ML::Doculnentは Nokog面 ::XML::Node

を継承しています。つまり、この3つのクラスのドキュメントやソースを読むと、

だいたいの動作については理解できるようになります。

Nokogiri::HTML::Documentと Nokogiri::XML::Documentは 、Nokogiriド キュメン

トの生成と格納の役割を果たします。そして、Noko」ri::XML::Nodeは 、要素の操

作や検索の機能を有しています。XPathや CSSでの検索機能も、ここに実装されて

います。それでは、次のセクションでそれぞれの動作を詳しく調べてみましょう。

3… 5… 2 Nokogiri、 XPathの使い方

RubyでHTMLを解析する場合は、Noko,riを 利用するのが主流です。Nokogiri

はここまでにも使ってきましたが、このセクションではあらためて、徹底的に

Nokogiriの 使い方とXPathの 書き方を紹介します。

3‐ 5

HTMLの解析

つ

172

ルピコン河で溺れる韓国 :日経ビジネスオンライン

運転し続けたい■NHK クローズアップ現代

3‐5 HTMLの解析

Nokogiriで HTMLフ ァイルを開く

Noko」riでHTMLを解析する場合は、Noko」 ri::HTM:Lも しくはNokogiri::HTML#

parseを利用します。

引数としては、最低限、HTMLが文字列型もしくは読み込み可能な形式のオブ

ジェクトとして格納された変数を渡せばよいです。どちらの方法で呼び出しても、

内部的にNokogiri::HTML::Document#parseメ ソッドを実行します。返り値として

は、Noko」ri::HTML::Documentが返ってきます。

下記のサンプルスクリプトは、open― uriを利用し「http://www.yahoo.co.jp」 をダ

ウンロードし、その結果を直接Nokogiriに渡しています。

|ドキュメントを取得する

● nokogiri… parse.rbの実行例

実行すると、「doc」 オブジェクトのなかに、Noko」 riで解析された「http://www.

yahoo.co.jp」 のドキュメントが保存されます。

他の開き方としては、Nokogiri#parseメ ソッドを利用する方法があります。この

メソッドは、受け取った値がHTMLかXMLかを自動判定して、それぞれNoko」 ri::

HTML::Document#parseメ ソッドもしくはNoko」ri::XML::DOcument#parseメ ソッ

ドに渡します。判定方法は最初の512文字だけ見てHTMLか どうかの判定をしてい

ます。誤判定もしうるので、できるだけ使わない方がよいでしょう。

次の2つの書き方は、どちらも同じ結果が返ってきます。

-*- coding: utf-8 -*-
requj-re 'nokogiri'
require'open-uri'

doc = Nokogiri : : HTML(open(' http : / /www. yahoo, co.ip'))
p doc

173

Chapter 3 M*l-tcデータを分析する

Nokogiri::HTML::Document#parseメ ソッドの引数は、以下のとおりです。

厖轟日parseメ ソッド

第1引数にHTMLを 格納するオブジェクトを受け取 り、第2引 数としてはURLを

受け取 ります。このURLに ついては、ほぼ意味をなさないので「nil」 を渡すと覚え

ていて問題ないです。第3引 数には文字コー ドを受け取 ります。解析対象の文字

コードがUTF-8以外の場合、指定しないとかなりの確率で正しく解析できないので

注意しましよう。最後の第4引数には、オプションを受け取 ります。第1引数以外は

オプション項 目なので、必要な場合のみ指定します。

オプションはNokogiri=XML::PどseOptionsに 定義されています。デフォル トは、

XML::ParseOptions::DEFAULT_HTMLで HTMLと して解釈するようになっていま

す。ほとんどの場合は、特に変更する必要もないでしょう。parseメ ソッドの指定

例を以下に示します。

Nokogiriで HTMiLを解析する

生成したNokogiri::HTML::Documentか ら、特定のタグを抽出するにはNokogiri::

XML::Nodeの検索系メソッドを利用 します。Nokogiri=HTML::Documentは 、

Noko」ri::XML::Nodeを継承しているため、そのまま利用できます。

目特定のタグを抽出する

■ ―*― coding: utf-8 -*―

requ■re inokogir■・

requ■re iopen― ur■ '

parse(文字列もしくは:0オブジェクト′URL′文字コー ド′オプション)

番

174

doc = Nokogiri: :HTML(open('http://www.yahoo.co.jp'))

3‐5 HTML`01聾 1断 |

title = dOC,XPath('/htm1/head/titlel)

title = dOC・ CSS('title')

。bjeCtS = doC.Xpath(1//al)

検索には、主にXPathを 使う方法とCSSセ レクタを使う方法があります。XPath

とCSSセ レクタは由来は違うものの、どちらもHTMLやXMLの特定の部分を指し

示すための言語構文です。タグ名やid名やclass名 、もしくはその組み合わせで目的

の部位を指し示します。

3‐ 5‐3 中心的な3つのクラス

Noko」 riを 理解するうえでは、NokogirLXML::Nodeの メソッドと挙動を覚える

のが大事です。また、Nokogiri::HTML::Documentと NokogiriIXML::Documentの 継

承関係のように、HTMLモ ジュールはXMLモ ジュールを継承 しているものが多数

あります。

. Nokogiri::HTML::Document

L Nokogiri::XML::Document

LNokogiri::XML::Node

Noko」 riを素早く身につけるには、Nokogm=XML::Nodeの 挙動を徹底的に理解す

るのが早道です。そして、Nokogiri::XML::Documentと Noko」五::HTML::Document

の使い方も理解しましょう。この3つのクラスを抑えておくと、Nokogiriができる

ことがだいたい把握できます。あとは、Nodeと NodeSetの 関係を理解すれば

Nokojriを一通り使いこなせるはずです。

,nokogiri¨ tag.rbの実行例

175

Chapter 3 tR*Ltzi- I *lrttfit 6

‖里1型■生Nod些些 El型 ent

Nodeと NodeSetは、共通のメソッドが多く挙動が似ているために、違いがわか

りづらいです。両者の違いがわかっていないと、検索結果から値を取り出そうとす

る時にメソッドがないなどのエラーが出て混乱することがあると思います。しかし、

Nodeと NodeSetの 関係がわかれば、何ができて何ができないかたちどころに理解

できます。一言でいうとNodeSetは 、Nodeを格納したリスト型配列です。

XPathや CSSの検索結果の多くは、Nokogiri::XML::NodeSetを 返します。例えば、

NodeSetのメソッドの1つであるNodeSet#inner_textは 、リス ト内のすべてのNode

のinner_textを 返します。textは、inner_textのエイリアスです。HTMLの <Tide>

タグのようにドキュメント中に1つ しかないタグの場合は、下記のようにすべて同

じ結果を返します。

|くTit:e>タ グの取得 nokogiri‐ title.rb

● nokogir卜 titie.rbの実行例

doc = Nokogiri: :HTIrtL(open('httpr//www.yahoo.co.jp'))

nodesets = doc.xpath(' //title')
puts nodesets.text * => Yahool IAPAN

puts nodesets.inner_text # => Vahool IAPAI{

puts nodesets.first.inner text # => Yahool IAPAN

=> Yaho● : コAPAN

=> Yah● ●: コAPAN

=> Vahool コAPAN

-+- coding: utf-8 -*-
require ' nokogiri'
require'open-uri'

nodesets , each{ | nodeset I

puts nodeset.contento
puts nodeset.text
puts nodeset.inner_text

)

176

S ruby nokogir卜 tit:● .rb

Yahoo!JAPAN

Yahoo!」 APAN

Yahoo!」 APAN

Yahoo!JAPAN

3‐5 HTMLの解析

<A>タ グのように複数の要素がヒットする場合は、結果が違ってきます。

日くA>タグの取得

● nokogir卜 atag.rbの実行例

I]112111堅;iri::I]:]|:ill`:II二]:≧堅:型聖‐≦:」lli

Noko」■:HTML::Documentク ラスで、HTMLの解析時に利用するDocument#parse

メソッドを実装しています。それ以外にも、解析したHTMLの文字コードを抽出

するDocument#encodingや 、HTMLか らタイトルを抜き出すDocument#titleな ど

のメソッドがあります。また、DOcumentはNodeを継承しているので、Document

オブジェクトに対してNodeのメソッドが利用可能です。

doc = Nokogiri : : HTI4L(open (' http : / /www. yahoo. co. jp'))

nodesets. each{ | node I

puts node,inner_text * => Yahool IAPAtr{

)

-*- coding: utf-8 -*-
require ' nokogiri '

require'open-uri'

nodesets = doc.xpath('//a')

puts nodesets. inner_text

177

Chapter 3 収集したデータを分析する

日Nokogiri::HTMLIDocumentク ラスの利用 nokogiri-document.rb

O nOkOgir卜 document.rb実行例

Nodeと NodeSetの メソッド

Nodeと NodeSetに は、さまざまな検索方法があります。検索に関しては、ほぼ

同じメソッドが利用可能です。NodeSetはNodeを 継承 していませんが、検索系の

メソッドについては、Nodeと 同様の名前を定義して内部的にNodeを呼び出して処

理していることが多いです。下記の例は、すべて同じ結果を返します。

目さまざまな検索 nokogiri‐tit:es.rb

-*- coding; utf-8 -*-
require ' nokogiri '

require 'open-uri'

doc = Nokogiri: :HTI{L(open('http://www.yahoo.co.jp'))

puts doc%://title.

puts doc/'//title`

putS dOC・ at(1//titlet)

#=>検察にヒットした最初のノード

putS dOC・ at_Xpath('//title')

#=,xPathの検察にヒットした最初のノ…ド

doc = Nokogiri : : HTML(open(' http : / /ww. yahoo. co. jp,))

putS dOC.ClaSS # => NOkogiri::HT‖ L::Document

putS dOC.title # => Yaho● : コAPAN
putS dOC.enCOding # => utf‐ 8

require 'nokogiri'
require'open-uri'

#Nodeのメソッドも利用可能
putS dOC・ XPath(.//t it le')

178

$ ruby nokoglrl-docum.nt,rb

Nokogiri:;HTML::Document

YahoolJAPAN

ut「 8.
・
|| ・

.・

3‐5 HTMLの解析

putS dOC・ at_CSS(`titler)

#=>cssの 検素にヒットした最初のノー ド

puts doc.css('title')
=> css?tllE"Nodeset

putS dOC・ CSS('title')[0]

#=>cssで 検察。■odeSetから最初のノー ド

putS dOC・ SearCh(ltitle')

=, xPathか cssで相1秦。NodeSet

putS dOC・ SearCh(ltitle・)[。]

#=>xPathか cssで検素。田odeSetか ら最初のノ…ド

putS dOC・ Xpath('//titlel)

=> xPath¬ :Fl瞼J膠。NodeSet

putS dOC・ XPath('//titlel)[。]
■ =>xpathで検索調odeSetから最初のノード

puts doc.xPath('ノ ノtitle').first

#=>xPathで 検察。NodeSetから最初のノード

● nokogiri‐ tities.rbの実行例

Nodeと NodeSetは 、参照に関してもほぼ同じメソッドが使えます (一部NodeSet

では使えないメソッドがあります)。 また、同一の結果を返すメソッドの多くはエ

イリアス (別名定義)と して設定されているものです。

179

Chapter 3 W*t fcf- n *tltfita

目さまざまな参照

? nokog iri-ref erence.rbo) -ltgll

-*- coding: utf-8 -t-
require 'nokogiri'
require'open-uri'

doc = Nokogiri : : HTML (open (' http : / /www. yahoo. co. jp'))

#I Nodeの 参照

#HTMLタ グ含む
puts doc.at('ノ ノtitle').to_html

putS dOC・ at(1//titlel)・ tO_Xhtml

putS dOC.at(1//title')・ tO_Xml

puts doc.at(17ノ title').to_s

#HTMLタ グで囲まれた文字列
puts doc.at('ノ ノtitle').text

putS dOC・ at('//title')。 inner_html

putS dOC・ at('//title。).inner_teXt
putS doC・ at(.//titlel)・ t。_Str

#属 性値の取得
puts doc.at('ノ /al).[]く 'href')

puts doc.at('ノ /al).attribute('href')

putS dOC.at('//al).get_attribute(lhref

##NodeSetの参照
#HTMLタ グ含む
putS dOC・ XPath(1//title').tO_html

putS dOC・ XPath(1//title')。 tO_Xhtml

putS doC.XPath(1//title').tO_Xml

putS dOC.XPath(1//title').tO_5

#HTMLタ グで囲まれた文字列
puts doc.xPath(1/ノ title')。 text

putS dOC・ XPath(1//title')。 inner_html

putS dOC.XPath(1//title').inner_teXt

180

S ruby noko9i■ ‐referencerb

く1ltle>Yahoo}」 APANく /title>

‐…
‐ _ ■■ 「

. .:.=_ '||

くtitle>Yahoo!」 APANく /titie>

3‐5 HTMLの解析

複数の検索結果が出るものは、NodeSetを 返します。結果が1つだけのものは、

Elementを返します。動作を理解するために、検索結果として返ってきたオブジェ

クトのクラスを見てみましょう。次の例では、<A>タ グの検索をしています。1つ

目の「xpath」 の検索では、 ドキュメント中のすべての<A>タ グを取得します。そ
のため、返されるオブジェクトはNodeSetに なります。2つ 目の「at」 の検索は、検

索条件にヒットした最初の1件のみを返します。そのため、クラスはNokogiri::

XML::Elementに なります。

1複数の検索結果を返す処理

-+- coding: utf-8
require 'nokogiri'
require 'open-uri'

doc = Nokogiri. : : HTML(open (' http : / /www,yahoo. co. jp'))

node_set = doc.xpath(' //a')
puts node_set. class * => l{okogiri: :Xl'lL: :t{odeSet

element = doc.at(' //a')
puts element.class * => t{okogiri::X}lL3:Elemcnt

鬱Nokogiriの 各メソッドのエイリアス

181

初めてNokogiriを利用する場合に混乱しやすい点として、同じ処理をさまざまな

パターンで記述できるところにあります。いろいろなサンプルを見ても、多種多様

Chapter 3 t&*Ltci-, thtfit A

で初めての人は面食らいます。その一因となっているのが、メソッドのエイリアス

の多さです。基本的には、自分がなじんだ名前で使うのがよいでしょう。

,Nokogiriの検索。参照系メソッド

XPathでの要素の指定方法

XPathは、ロケーションパスを利用 して検索 します。ロケーションパスはroot

ノー ド(HTMLの場合は、html)か らタグ名で指定します。htmlタ グ中の<Head>

タグを指定する場合は、「¥/html¥/head」 といった形で指定します。

その他にも、ワイルドカードとして指定できる「¥/¥/」 やタグ内の属性での指定

なども可能です。

I XPathに よる検索 h.rb

-*- coding: utf-8 -*-
require 'nokogiri'
require 'open-uri'

doc = Nokogiri::HTML(open('http:/ノ www.hatena.ne.jP/1))

#タ グを順番に追つてタイトルタグを抜き出す
putS dOC・ XPath(''/htm1/head/title'1)

■文書内のすべてのtitleタ グを抜き出す

at CSSか XPathで 検索し、ヒットした最初のElementを 返す ○ ○

at css CSSで検索し、ヒットした最初のElementを返す ○ ○

at_xpath XPathで検索し、ヒットした最初のElementを返す ○

ces CSSで検索し、NodeSetを 返す ○ ○

search CSSか XPathで 検索し、NodeSetを 返す ○ ○

xpath XPathで検索し、NodeSetを 返す ○ ○

content コンテンツ (タグで囲まれた部分)を返す 〇

inner_html タグ内のHTMLを 返す ○ ○

innerjext contentの エイリアス ○ ○

text contentの エイリアス ○ ○

to htmi 要素全体を返す ○ ○

要素全体を返す ○ ○

textのエイリアス ○

to_xhtml 要素全体を返す ○

to_xml 要素全体を返す ○ ○

182

○

to s

to*str

○

3‐5 HTMLの解析

puts doc.xpath("/ititle")

■ id指定で特定のulの絞り込み後、

十その配下の3つ目のliタグを抜き出す

puts doc.xpath(''/ノ ul[Cid='servicelist']ノ li[3]'')

I class指 定で検索 classがtitleの h2タグ

putS dOC.XPath("//h2[OclaSS=ititlei]1・)

● nOkOgiri‐ xpath.rbの 実行例

3‐ 5‐4 簡単なXPathの抽出方法

ここまででNokogiriの 使い方は、ある程度身についているはずです。次は、

XPathを抽出する方法の説明です。XPathは、基本的には上からタグを辿っていく

とわかります。

ただし、昨今の複雑なHTMLを辿っていくには、かなりの根気が必要になります。

しかし、Firebxや Chromeを 使うことにより、選択しているノードのXPathを 簡単

に抽出できます。

憑≦::!12聖旦二1:::::1:!::[:Li些 _空 :ill」 :」::三 llil`1:」 :左::l」lil
Chrome付属の「開発/管理」ツールを利用すると、ブラウザで選択している部分

のXPathを 簡単に抽出できます。次の3つ の手順でクリップボードにXPathが コ

ピーされます。

・ ①目的のノー ド(場所)を選択している状態で、右クリックする

・ ②メニユーのなかから [要素を検証]を選択する

・ ③選択されているノー ド (青 くなつている部分)の上で右クリックして、 [Copy

XPath]を選択する

183

Chapter i3 収集したデータを分析する

Pヽ Chromeで XPathを抽出

↓

上の図では、「Amazon.coJp」 の個別商品ページから、価格を抜き出している例

です。コピーされたXPathは 、次のようになっています。

・ //丼 [@id=‖ actua!PriceValue‖]/b

Chromeで抜き出すXPathは 、目的のノードに一番近いID属性からの相対パスです。

実際のHTMLは、下記のようなものです (イ ンデントなどを多少修正しています)。

日抜き出したXPathのHTML

<td id="actualPriceContent" >

_m_TAn Ammnボ インに,幅を確:2 さらに最大50%OFFご,
●|“霊″
ub“ マイストア イフト券 タイムセール 」婦サービス ヘルフ 夏休みセール実施中 ,jぐ""

裂缶 ,|■ 綺
~~~~~~回

男称 留 _9野 .Ψ ヵ―卜 隈
本 諄む瞼鶯

.ジ
ャン,い■ .響 子詢 A■,響7´

キ
´
グ ギ ′ :17イ

' 

蜘蔵 率苺
'1吟
 頷
“
¨ Ⅲ Ⅲ lわ お熱 潮 1●

Rubyに よるクローラー開発技法床型本〕

cr' Y
螢る(3)

携て
'(',

“"み
込み(t)

興里10n゛ 名藤を,けて保存(A)

●駆(R)

日本■に整氣つ

ベージのソースを表示●)

ページ燎薇を表示(I)

ぃ曖■る図mⅢ ,ロ

Q送ス

圏
価格部分を右クリックし、 [要素を検証]を選択する

;r h3. {

tr.dn 't-.r.ot >

青 くなっている部分 を右 クリックし、 [Copy XPath]を 選択する

184

<span id="actuaIPricevalue">

□

酔

∫



3‐5 HTMLの解析

くb class="priceLarge">¥ 3,024  く/b>

く/span>

くSpan id=1'actualPriceExtraMessaging">

くSPan>く /span>

くb>通常配送無料くノb>

くa href=“ ノgp/helP/customer/disPlay.htrnlノ ref=mk_sss_dP_■ 7ie=UTF8&ampinodel
d=642982&amp,pop― up‐■'' target="AmazonHe■ pi! onclick=''return am2_jS_POpWin〈 'ノ

gP/help/customer/disPlay.htmlノ ref=mk_sss_dp_■ 7ie=UTF8&amp;nodeld=642982&amp;p
op― up=■ ', AmazonHelP', w■ dth=550,height=5501,reS■ 2able=■,SCrOllbarS=■ ,t00■ bar=

0,StatuS=01);">詳 細く/a>

く/span>

く/td>

目的の情報である価格は<B>タ グで囲まれ、その1つ上がくSpan>タ グというこ

とがわかります。このくSpan>タ グには「actualPriceValue」 というID属性が付いて

います。HTMLに おけるID属性は、文章内で要素を一意に識別するための識別子
です。取得したXPathは一意の要素であるactualPriceContent属性を持つ<Span>タ

グの下の<B>タ グということを示しています。

FireおxでXPathを抽出する方法

Fireおxの場合も、ほぼ同様の操作で取得できます。ただし前提として、Firebug

をインストールしている必要があります。Firebugは アドオンなので、Fireお xのメ

ニューの [ツ ール]→ [ア ドオン]か ら、[ア ドオンの入手]の検索窓で「Firebug」 を

検索すれば簡単にインストールできます。

インストール後は下記の手順でXPathを 取得できます。

・①目的のノード(場所)を選択している状態で右クリツクする

・②メニューのなかから[Firebu9で要素を調査]を選択する

・③選択されているノード(青くなつている部分)の上で右クリックして、[XPathを コ

ピー]を選択する

Firebugで抜き出すXPathは、ルートノード(html)か らの絶対パスです。

0/html/body/div[2]/form/table[3]/tbody/tr/td/div/table/tbody/tr/td[2]/span/b

Chromeと 挙動が違うので、目的に応じて使い分けるのがよいでしょう。

185



Chapter 3__堅集したデータを分析する

¬ンFirefoxで XPathを 抽出

II::llli呈 1:L堅::_11:IL`::21ュ 121:11:L:|[IL」1壼!:]li」|!lι

Fireおxには、XPathの抽出以外の機能があります。FireBugに は、いくつもの組

み込み関数が用意されています。そのなかの1つ に、Sx関数というものがあります。

これは、任意のXPath要素を取得するというものです。

使い方は、Fiebugの「コンソール」タブから一番下の「>>>」 と表示されていると

ころで、間x(‖ //」」e‖)」 といった感じでXPathを 記述します。指定に間違いがなければ、

該当のノードが取得されます。自分でXPathを 記述する必要がある場合は、想定ど

おりの動きをしているか、この機能を利用することで検証することができます。

■瞬 $x関数でXPathを取得する

■■,,マ 呼́‐輛"‐
‐め力″ ='ン｀嶽 "綸

ム理五四 調 ′■
'ロ

■||□■   こ″こちよFu畑
`"ん
 1 今すぐ奎腋

"   7カ
ウントワー‐ビス・   プライム

66: Y

さらに最大50%OFF
菫体みセール実施中

｀ゞ′ヵ_卜 . 踏11

a{gion-, ..*: :^,:::: .,^::'-

Rubyこよるクローラー開発技法体型本]

からさ,｀す・
,ぺて' 子lby

史:"0.     ||
_|lt●ヽ̈ジをブ,クマーク●1).
. 
名
"t"け
てべ‐シ■■■0)

姜曇を■薫 0)

:31::|:=… ..「
‐ ~“ ‐

a <rr:i rdr\rtrrlhr..Frrrrilrrrtia.")

a ai .{&:rrr i!.r.r^

目的の場所で右クリックし、[Firebugで要素を調査]を選択する

「$x(“ //洲 e")」 などのXPathを 記述する

[tttle]

186

ト

´

く

E <h idr:.r,r t i.ti,rt
.r"..", i;.i&,{l rt,'t,,"rra6 : vtd,



吻
回
■
■

3‐6 自然言語を使つた日本語の処理

3‐ 6

自然言語を使つた日本語の処理

ここまでで、Nokogiriを 使うための方法を一通り解説しました。次は、自然言語

処理を使って、日本語のデータ処理を扱う方法です。

3‐ 6‐1 形態素解析と特徴語抽出

このセクションでは、形態素解析を行うために代表的な形態素解析ッールの使い

方を解説します。形態素解析とは、文法のルールや辞書などを用いて、自然文を最

小の単位 (形態素)に分解する処理です。また分解した単語の品詞の判別などをす

ることもあります。形態素解析では最小単位まで分解されるため、複数の単語が繋

がるキーワードを抽出できません。単語ごとの重要度というのは取り扱う範疇外の

ため、重要な単語 (特徴語)の抽出もできません。そのあたりをどう解決するかを

考えます。

跛形態素解析エンジン

オープンソースの形態素解析エンジンとしては、2014年時点での主流は「MeCab」

です。特徴としては、言語、辞書に依存しない汎用的な設計となっていて、辞書を

変えることにより日本語以外の言語にも対応できるようになっています。

r Meoab

UE https:,/code. goog le.com,/p / mecab /

インス トール型以外の形態素解析エ ンジンとしては、APIと して利用できる

「Yahoo!JAPAN日 本語形態素解析API」 があ ります。リクエストの回数や1リ クエ

ストあたりのサイズ制限などがありますが、インストール不要で手軽に試せます。

■Yahoo!JAPAN日 本言吾形態素解析API

ロコl http:ノ %deve:operyahoo.co.,p/、 ″ebapi/i:p/rna/v1/parse.htmi

キーワード抽出

形態素解析を利用すると最小単位まで分解されてしまうため、利用想定によって

は実用的でない場合があります。例えば、「プロ野球」の出現頻度を調べたい時に、

「プロ」と「野球」で分解されると目的を達成できません。その際は、ある一定の

ルールで単語を組み合わせる「キーワード抽出」が必要になります。

キーワード抽出の方法は、いろいろあります。ルールベースで名詞の連続は一語

187



Chapter 3 W*Ltzf - t *hffit 6

と見なすといった手法や、品詞と品詞の繋がりやすさをコストという概念で考え、

単語ごとのコスト表を元に計算する手法などが一例です。これらの手法については、

自然言語処理の範疇ですので本書では割愛します。本書では、形態素解析ッールと

同様に、キーワード抽出もキーワード抽出APIを利用します。

l重要語抽出 (特徴語抽出)

形態素およびキーワードの抽出ができたとしても、抜き出した語をそのまま扱う

と不都合が生じる場合があります。例えば、一般的な語をそのまま収集し続けると、

データ量が膨大になります。後々の解析フェーズで大量の計算リソースが必要にな

るので、重要なものに絞って保存するというのも1つの方法です。一方で、重要な

語の抽出方法をどうするかという問題が出てきます。

重要な語は、文章中の出現回数の多い少ないで決まるものではありません。何度

も繰り返し登場しているものの重要でない語や、一度しか登場していないものの重

要な位置を占める語もあります。

文章中から重要な語を抜き出す手法の1つ に「TF―IDF法」というものがあります。

TF―IDF法は、語の出現頻度と出現確率を掛け合わせることにより、文章を特徴づ

ける語を検出する手法です。出現頻度については、文章からカウントすればすぐに

計算できます。TF―IDF法については、出現確率のデータをどうするかが肝になり

ます。あらかじめ計算しておいた辞書セットを利用する方法や、簡易的に検索エン

ジンの検索結果数を利用して出現確率とするといった方法などがあります。

では、実際にYahoo!APIと Rubyで出現頻度の計算をしてみましょう。

3‐ 6‐2 日本語処理

Googleト レンドは、検索されたワードによってトレンドの推移を視覚化しています。

対立する2つの商品を比べてみると、どちらが優勢なのか、どのタイミングで何が

分岐点になったのかが見えてきて、なかなか面白いサービスです。しかし、残念な

がらすべて検索ワードが対象ではなく、ニッチなワードについては表示されません。

■Googleト レンド

団■http:〃www.goo91e.Com/trends/

次の図は「ruby」 と「perl」 で比べてみたものです。



3‐6 自然言語を使つた日本話の処理

¶レGoogleト レンドでトレンド推移を比較する

検索ワードは、G∞gleな ど検索エンジンのみが持つデータなので一般の人には真似

ができません。類似の方法として、日毎のニュースやプログなどを処理して、日時の

キーワードの出現数の変化に注目することで、似たようなトレンドの推移を取得する

ことができます。

その際の解析元のデータとしては、Twitter全 般といったカテゴリを絞らない方

法や、Yahoo!の経済ニュースやはてなブックマークのITな ど特定のカテゴリに絞

るという方法もあります。目的とするデータを元に、データツースとなる対象を選

びましょう。今回は、Yahoo!Japanの 経済ニュースのカテゴリを対象データソー

スとします。

lm墜 型の二空立ン上生盛
Yahoolの テキス ト解析APIを 利用するには、Yahoo!Japan IDと アプリケーショ

ンIDが必要になります。アプリケーションIDは、Yahoo!Japan IDを取得のうえで

ログインした状態で、アプリケーション登録をすることで取得できます。

■アプリケーション登録

回回l httpS:ノ%e.deve:oper.yahoo.co.,p/register

印by peF

人定 の動庁 |・・・ | ■ ■

トレント

場
師

0‐

■

189

ト

ー

ー

,t― ,一 |● 迫 1"



Chapter3 t&*t tci-,thtfrta

▼ アプリケーション情報を入力する

v、コ惚鮮然ロツパ
ーネツトワーク鋼 ― さん

二●旦2`ニュェ 2=2Lz〉ア22ュー型 蛍ョ〉新しいアプリケーション概

‐アプ,ケ■ジ:1着薇|^"|■|||.  .‐
                .‐ ‐111'||:il.:警電

"Ⅲ
,ⅢⅢめ`■,,ヽ

…
|″●■離●′,,,―

^,´
“

鮨,■・ ● ■ヽたく1僣 |■ .て事●″
“"峰
=覺
隊
"ま
●

こ
"●
、たく■●|`,′

"・

―ヵl´0,1■

“

拿。日贅o.",,―
^|い
,■■●■●隊‐■

"`10い
.■●‐ .

●サーバーサイド

●クライアントサイド

す詳
ュ 國 :」嘔●4腫L國●こ公開籠銀嗜餃ういb API10どちらを選択しても利用できま

‐  ・ :■ 111,|_||_|:|■「 =■
:111ヽ ,||||  |

アプリケーションの登録時に、アプリケーションの種類 (サーバーサイド/ク ラ

イアントサイド)と 連絡先メールア ドレス、アプリケーション名、サイ トURL、 ア

プリケーションの説明を登録します。

アプリケーションの種類は、プログラムが動 く場所を示します。サーバ上で動か

す場合はサーバサイド、PCな ど手元のパソコンで動かす場合はクライアントサイ

ドになります。テキス ト解析APIについては、どちらを選んでも利用できます。

アプリケーションの基本情報の登録は、連絡先メールアドレスやアプリケーショ

ン名などを登録 します。後々わかるように適切な名前を付けましょう。すべての情

報を入力してガイ ドラインに同意すると、登録完了となリアプリケーションIDが

発行されます。

麟髪壁室墜重
Yahoo!の形態素解析APIは 、リクエストパラメータおよびレスポンスをXML形

式で返します。パラメータについては、それぞれ次の表に記載します。なお、2014

年現在に提供されているサービスであるVersionlを 前提としています。Yahoo!API

側の仕様変更およびサービスの停止の影響を受ける可能性があります。

またAPIの 制限として、れ時間以内で1つのアプリケーションIDにつき50,∝Ю件の

リクエストが上限となっています。また、1リ クエストの最大サイズを1∞KBに制限

されています。実験的に試すには十分なリクエスト数ですが、本格的なシステム構

築を検討する場合は、制限について要件を満たせるかの検討が必要になってきます。
190

.″,,―夕●レ
`,3,1■
11



3‐6 自然言語を使つた日本語の処理

認ヽYahoo!形態素解析API リクエストパラメータ

¶夕Yahool形態素解析APl レスポンスフイールド

string アプリケーション ID(必須 )

解析対象のテキスト(必須)string

string: ma, uniq 解析結果の種類をコンマで区切って指定 (必須)。 ma:形態素
解析の結果をma_resultに 返す。uniq:出 現頻度情報をuniq_

resultに 返す。 無指定の場合は「ma」 になる

string: surface,
reading, pos,

baseform, feature

ma_response,uniq_responseの デフォルト設定。wordに返

される形態素情報をコンマで区切って指定する。 無指定の場合
は「sulface,reading,pos」 になる

string ma」‖ter、 uniq」 ilterのデフォルト設定。解析結果として出力

する品詞番号を「 |」 で区切って指定する。 f‖terに指定可能な

品詞番号:1(形容詞)、 2(形容動詞)、 3(感動詞)、 4(副詞)、

5(連体詞)、 6(接続詞)、 7(接頭辞)、 8(接尾辞)、 9(名詞)、

10(動詞)、 11(助詞)、 12(助動詞)、 13(特殊 (句読点、括

弧、記号など))

ma_result内 のwordに 返される形態素情報をコンマで区切っ

て指定。無指定の場合「response」 の指定が用いられる

string ma_result内 に解析結果として出力する品詞番号を「 |」 で区

切って指定する。無指定の場合「f‖ter」 の指定が用いられる

string uniq_result内 のwordに 返される形態素情報をコンマで区切っ

て指定する。無指定の場合「response」 の指定が用いられる

string uniq_result内 に解析結果として出力する品詞番号を「 |」 で区

切って指定する。無指定の場合「f‖ter」 の指定が用いられる

このパラメータがtrueな らば、基本形の同一性により、uniq_

resultの結果を求める

string

共通解析結果のすべてを含む

maのみ形態素解析の結果を含む

uniqのみ形態素解析の結果から同一形態素の出現数を求めたものを返す

共通

uniqAT,フィルタにマッチした形態素数を返す

共通形態素のリストを返す

形態素を返す 共通

共通形態素の表記を返す

形態索の読みがなを返す 共通・response指 定時のみ

共通形態素の品詞を返す

共通・ response指 定時のみ形態素の基本形表記を返す。活用のない形態素の場合は省略

される

共通形態素の全情報を文字列で返す

uniqのみuniq_Юsult中のword内 に現れる、形態素の出現数を返す

191

メータ      値

|||l strlnq
■―  . |   ~

|

形態素の総数を返す



Chaptcr 3 収集したデータを分析する

形態素解析APIの レスポンスであるXMLの解析には、XMLパーサーが必要です。
Rubyには標準添付ライプラリとして「rexml」 というXMLパーサーがあるので、こ

れを利用します。

実行の際には、「APPLICAT10N」 D」 に先ほど取得 したアプリケーションIDを

設定 してください。

1形態素解析APlの 利用

'baSiC_mOrphO10giCa!_ana:ysis.rbの 実 行 例

サンプルスクリプ トでは、形態素解析をしたうえで形態素ごとにカウントして結

果を返 しています。引数の指定はparams変 数で行い、解析対象のテキス トはURI.

encodeで 文字列をURLで扱える形に変換 しています。

# -+- coding: utf-8 -+-
requj.re ' open - uri '

require'rexml/document'

APPLICAT10N ID = 'YAR00.API‐ KFY'

BASE_URL = :http://jlp.yahooapis.jp/MAService/V■ /parsel

def request(text)
app_id = APPLICATION_ID

Params =

" ? appid=#{app_id }&re sult s=uniq&filter=9&u niq_filter=9,'
url = "*{BASE_URL}#{params}"+"&sentence="+URLencode("#{text}")
IesPonse = open(ur1)
doc = REXML: :Document.new(response).elementsI

' Re sultSet / un iq_result /e,ord_Iist / ' ]
doc.elements.each('word' ) { lelement I

text = element.elements["surface"] [o]
count = element.elenents["count"] [o]
P "#{text}=#{66xn1}"

)
end

teXt=''隣の客はよく柿食う客だ"

requeSt(teXt)

192

S ruby basic_morpho:o9ical ana:ysis.rb

"客 =2・

“柿=1・

・'隣 =1・



3‐6 自然言語を使つた日本語の処理

麟土二二二工塾旦
キーワー ド抽出APIも 、ほぼ形態素解析APIと 同様の形で利用できます。キー

ワード抽出APIは、レスポンス形式としてXML以外にもJSON形式やPHP Serttize

形式が利用できます。

● Yahoolキーワード抽出APi

●Yahoo!キーワード抽出APi レスポンスフィールド

キーワード抽出APIの レスポンスの制約として、Resultは 20件 までです。

次のサンプルスクリプトが、キーワード抽出APIを使用する例です。実行の際に

は、「APPLICAT10N ID」 にp.189で取得したアプリケーションIDを設定してくださ

い。

菫キーワード抽出APiの利用

# -*- coding: utf-8 -*-
require 'open-uri'
require'rexmI/document

APPLICAT■ ON_ID = '聾秦封彙蘇:碁 1薫墓菫護量黎
1

BASE URL =

'http://j■ p.yahooapis.jP/KeyphraseService/V■ /extracti

def requeSt(teXt)

app_id = APPLICAT工 ON_■D

Params = ''Pappid=#{app_id}&Output=Xml'1
url = ''#{BASE_URL}#{Parans}"+"&sentence=1'■ URI.encode(''■ {text}・ )

string アプリケーションlD(必須)

string 解析対象のテキスト(必須)

string レスポンス形式を指定。指定のない場合、XML形式で返す。xml:XML形式で返す。
json:JSON形式で返す。JSONP形式で返すには、合わせてca‖ backパラメータで

関数名を指定する。php:PHP Seria‖ Ze形式で返す

string JSONPと して出力する際のコールバック関数名を指定するパラメータ。UT「8でエ

ンコードした文字列を入力する。関数名として英数字を使用する。output刊 SOn&

ca‖ back=く ca‖back関数名>のように指定

すべてのキーワー ド抽出結果

キーワードの結果セット。最大20件返す

キーワード。重要度の順に並ぶ

キーワードの重要度。100ま での整数で高いほど重要度が高くなる

193



Chapter 3 rB*t-tzf -, Zhtfrt A

response = open(urI)
doc = RExtlL: :oocument.new(response).elements['Resultset/
doc.elements.each('ResuIt' ) { lelement I

text = element.elements["Keyphrase"] [o]
score = element.elements["Score"] [o]
P "#{text}=#{5g6yg}"

)
end

text='1隣の客はよく柿食う客だ"

requeSt(teXt)

● baSiC_keyphraSe_service.rbの実行例

次のスクリプトは、Yahoo!ニ ュースから経済ニュースの一覧を取得し、ニュース

本文のみを抽出し、キーワード分析をしています。データ保存まではやっていませ

んが、このようなプログラムで出現キーワー ドの数を日々記録することで、 トレン
ドの推移を知ることができます。実行の際には、「APPLICAT10N_ID」 にp■ 89で

取得したアプリケーションIDを設定してください。

ロキーワード分析

# -*- coding: utf-8 -+-
require 'open-uri'
require' rexml/document'
require 'nokogiri'

APPLICATION-ID ='YAHOO-API-KEY'
BASE-URL =

' http : / / jlp.yahooapis. jplKeyphraseService/V1/extract

$word list = Hash::new

def request(text)
app_id = APPLICATION_ID
pilrams = "?appid=#{app_id}&output=xml"
urI = "#{BASE_URL}#{params}"+"&sentence="+tJRI.encode("#{text}")
response = open(urI)
doc = REXML: :Document.new(response).elements['Resultset/, ]
doc.elements.each('Result' ) {lelement I

194

S ruby bas:c_keyphrase_service.rb

"柿食う客=100・
(1綺

眸=40"

. :‐
 ‐|    | .

|     || || ■■

|‐  ■ |・■‐.■  ||



3‐6 自然言語を使つた日本語の処理

end

text = element.e■ ements[''Keyphrase''][o]

score = element.elementS[''SCore“ ][0]

5WOrd_liSt[“ #{teXt}'`]=

swOrd_list[“ ■{text}''].nil? 7 ■ : Sword_list['1#{text}t']+■

def get_urIs(page_u11)
urls = Array.newo
uri = URI.parse(page_url)
doc = Nokogiri: :HTfilL(open(page-urI))
doc. xpath( " //*[@id=' main' ] / /uI[@class=' list' ] //a" )

.each do lanchorl

url = anchor[:href]
url = uri.merge(url) if not uri =- l^httpl
urls << url

end

return utls
end

def get_headline_text ( page_url)
text = ""
doc = Nokogiri: :HTML(open(page_url) )

if page_url.to_s. match( /dailynews/ )

text = doc.xpath( " / /* [@id=' detailHeadline' ] " ).text
e1 se

text =

doc. xpath( " //*[@id='main' ] lZp[Oclass='hbody'] " ).text
end

return text.gsub(/vn/, "")
end

def get(page-ur1)
urls = get_urls(page_url)
urls. each { | urI I

text = get_headline_text(url)
# p text
req uest (text )

)
end

page_ur} =' http : / / news. yahoo. co. jpllist/ ?c=economy'

get(page_u11)

$word_list.each{ lkey,value I

P "#{keY}=41Y21u.1"

)

195

}



Chapter 3 収集したデータを分析する

● keyphrase_service.rbの実行例

=力 =1・
"プラスチック部品=1"
〔
'楽器店=1"

"′]ヽ売り希望価格=1"
::朝日新聞=2‖

'Iヤマハ=1・

'1演奏用バイブ=1・
°丸み=1"

特徴語抽出

TF―IDF法は、TF(単語の出現頻度)と IDF法 (逆文書頻度)の2つの指標に基づいて計算

されます。TFと は、文章中のその単語の出現総数をすべての単語の出現総数で割った

ものです。そしてIDFは、lnverse Document Frequencyで あり、DF(Document FЮ quency)

の逆数であり、log_2(N/df)で 計算しています。ここの「N」 は文章総数を指 します。

これにより「明日」や「私」といった一般的な語に対してフィルターがかかり、重要な

単語を浮き上がらせ、個々の単語の重要度を計算できます。つまりTF― IDF法 は、単

語の出現頻度と単語の重要度を掛け合わせたものになります。

今回利用 した、Yahoo!キ ーヮード抽出APIに ついては、キーヮードごとの重要度も

計算ずみで結果が返されます。重要度の計算アルゴリズムは不明ですが、TF一 IDF法

のようなものを利用していると推測されます。自前でTF―!DFを 計算する場合は、TF

は簡単に測定可能ですが、lDFに ついては一工夫必要です。あらかじめWikipediaの

データや検索エンジンの検索結果数などから、キーワー ドごとの出現数を測定 し重

要度を計算 しておく必要があります。

196

$ ruby keyphrase_scryi(e,rb

・側面=1“

li驚壼薔



、,| |



Chapter4 A*.ttlBf.:E

4‐ 1

データの保存方法〕
クローラーを本格的に運用する場合は、データの保存方法に対する検討が必要で

す。小規模なクローラーであれば、特に考えなくても問題は起こりません。例えば

Anemoneの 場合では、デフォルトのデータ保存先はメモリです。そのままで何万

件と巡回させると、メモリ溢れのためにエラーが起きるようになります。大規模で

運用する場合は、ファイルやRDBMS、 NoSQLな どのデータストレージを利用する

ことが必須になります。NoSQLは、一般的にはRDBMSに対して、それ以外のデー

タベースの総称となります。ここでは分散型データベースやキーバリューストア型

のデータベースを指すものとします。

4‐卜1 データストレージ

データストレージの選択肢は、たくさんあります。それぞれ一長一短があり、どん

なケースにでも最適なストレージといったものはありません。自分のクローラーの目

的と、どれくらいのデータを保存するかによって、ストレージを選ぶ必要があります。

一般的には、小中規模であればメモリやファイルを、中大規模であればRDBMS

を選ぶのがよいでしょう。クローラーが収集したデータで何らかのサービスを展開

するくらいになると、NoSQLな どが選択肢に入ってくるかもしれません。

▼ データストレージの比較

4… 1‐2 ファイルに保存

まずはAnemoneで ファイルを使う方法について説明します。

AnemOneで は、ス トレージのオプションとして「PStOre」 が利用可能です。

PStoreは Rubyの 標準添付ライブラリで、データを外部ファイルに保存できます。

手軽で高速 データの永続化ができない (プログラム起動時のみ

利用可能)データ量とメモリ使用量がほぼ比例する

手軽にデータの永続化ができる 検索性などで、データ活用時の利便性に欠ける

一定規模以上になると、拡張性が乏しくなるデータ管理が容易で、他のプログラムか

らも利用しやすい

データ管理が容易で、他のプログラムか

らも利用しやすい。RDBMSよ り大規模
なデータも扱える場合もある

選択した製品次第だが、RDBMSに 比べて何らか
の制約がある

198

保存場所 メリット

メモリ

フアイル

RDBMS

NoSQL



4‐ 1 データの保存方法

データは「Marsh」 .dmp」 という形式のバイナリーで保存されます。

Marshalは シリアライズ (直列化)と はぼ同義で、オブジェクトをバイト列などに

変換することを意味します。ここでのMarshal化 は、メモリ上のデータをファイル

に保存することを指します。

Anomone t PStore OfUffi

Anemoneでは、「:sbrage」 オプションでAnemone=StOrage.PSbreを 指定するこ

とで使用できます。また指定時に、保存するファイル名も合わせて指定する必要が

あります (0)。

|フ アイルで保存する anemone-file.rb

O anemoneイ i:e.rbの実行例

上記の例は、「■le.txt」 という名前で「http://www.yahoo.cO.jp」 から取得した情

報を保存するようになっています。ファイルはコマンドを実行したディレクトリに

保存されます。また、ファイル名をテキスト形式にしているものの、上述のとおり

バイナリー形式なのではぼ読むことはできません。

それ以外にも、現状のAnemoneで は複数のファイルに分散して保存したり、保

opts = {
r storage => Anemone: :Storage. PStore('fi1e,txt'), 

-{)
:obey_robots_txt => true,
:depth_limit => o

)

Anemone.crawl(ur1s, opts) do lanemonel
anemone.on_every_page do lpagel

puts page.url
puts page.doc.xpath("/head/titIe/textO").to_s if page.doc

end

end

# -*- coding: utf-8 -*-
require 'anemone'

urls = []
urls, push( "http : //www.yahoo. co, jp" )

199



Chapter 4 ffifi/aftlEt;*

存ずみのファイルを利用 してクロールずみのURLをスキップするといったことは

できません。プログラム起動時に、同名のフアイルが既存の場合は削除し、新たに

作成します。

Marshal形式で保存されているために、他のプログラムから利用することも可能

です。しかし、検索性なども低 く扱いにくい面は否めません。

4‐ 1‐3 データベースとの連携

Anemoneの 場合、ストレージとしてPStore形式のファイル以外にも、データベー

ス形式やKVS形式が利用できます。

データベース形式は、簡易的なRDBMSである「SQLite3」 と分散データベースで

ある「MongoDB」 が利用可能です。またKVS形式は「Key―Value Store」 のことで、

プログラムから利用するハッシュと同様にKey(キ ー)と Value(値 )のペアでデー

タを管理します。RDBMSほ ど多様な機能はありませんが、手軽に大量のデータが

管理可能です。Anemoneで は、KVS形 式 としては、「Redis」「Tokyo Cabinet」

「Kyoto Cabinet」 が利用可能です。

データベース利用の利点

データベースの利用の利点としては、主に2つあります。

1つ 目は、大量のデータを扱っても性能の低下が比較的少ないことです。もとも

とデータベースは、データを収集して管理することに特化しています。そのため、

検索や抽出が容易でデータの再利用性が高いのです。また、大量のデータを扱うた

めに、データを格納する方法についても最適化されています。実装方法については、

どのようなデータをどれくらいの量で扱うのかという目的によって、RDBMSや分

散データベース、KVSと それぞれ方式は違ってきます。

2つ 目は、他のプログラムからのデータ連携が非常に容易であることです。デー

タベースを利用すると、クローラーが収集したデータを他のプログラムやアプリか

ら簡単に検索・表示することが可能です。またクローラーが稼働中でも、リアルタ

イムに最新のデータを参照することが可能です。

機三二五全二登の種類2選択

クローラーを使ってサービスを展開するのであれば、最低限データベースの利用

が必要になってきます。そのうえで、どれくらいのデータを扱うかによってデータ

ベースの種類を選択する必要があります。

1      200



4‐ 1 データの保存方法

データベースはCAPの 定理と言って、「一貫性 (Consis“ ncy)」 と「可用性

(Av』 ability)」 と「分断耐性 (Ptttition― tolerance)」 の3つの内から2つを選ぶことに

なります。3つは同時に選べません。一般的には、RDBMSは「一貫性と可用性」を、

分散データベースは「一貫性と可用性」もしくは「可用性と分断耐性」のどちらかを

選んでいる製品が多いです。

分断耐性が高いと、複数のサーバに1つのデータベースを構築できるなど、拡張

性が高くなります。クローラーが扱うデータの特徴として、一貫性は特に必要とし

ません。そのため、RDBMSよ り分散データベースやKVSな どが好まれる傾向があ

ります。

4‐ 1‐ 4 SQLite3に 保存

前述のとおり、Anemoneは RDBも 利用できます。公式に対応しているRDBは、

「SQLite3」 です。

インス トール

Rubyか らSQLite3を 利用する場合は、gemに よるインス トールが必要です。

O SQLite3の インストール

インストール後に「Successhlly in前」led sqlite3‐1.3.9」 という文言が出れば成功

です (バージョンは2014年 7月現在です)。

構fl」 |:|」|:::竺 :::L`![:≧::Z∠ 1_121][:Z12_21_:`lL_≧ 生:生上_::二空

OSか らSQLi掟3のデータベースを操作するには、SQLite3の ライブラリが必要で

す。Windowsの場合は、コンパイルずみのバイナリーモジュールが利用可能です。

SQLiteの公式ページから、「sqlite―shell―win32-x86-xxxxxxxxx.zip」 をダウンロード

します (xxxxxxxxは最新のバージョンを選択してください)。 ダウンロード後に解

凍し、「sqlite3.exe」 を任意の場所に配置します。配置した後に、そこの場所にパス

を通すことにより利用できます。

■SQLiteの 公式のダウンロードページ

ロコl http:ノ /Sqlite.org/downioad.htmi



Chapter4 frEtr*tiflfi,*

▼ SQLiteの 公式のダウンロードページ

黎QL池
SQLite Downl@d Page

正
電霊鐵 :躍賂計

姉は・I°… …
嗜
…・ '・ 'Ⅲ…

Ⅲ…・"t…
‐‐

…

賦  商 ,…
`‐ “

口■口●■
`…

●
'`'… …

…

●,01′ 1詢

・
″嗚
:書轟1鶴空
¨岬
“
輛
“
       "融 |"‐0

(●●
'|オ“

lhmpilcd BiEd6 fo. Lin6
sqlih:ihelLlM a Mh$Hl tu ffil@ and mdllrns sQute
6-3oaom.zrb wb aI v€eG dSQUbSroqh 3.8.5 rnd hyod.

(321.22 (lB) (#1: e7&ke7s2d6rb36k1€5M*91&5tub)

dat.b*. ftls progrEh ls comp6tlble

&llbanalq€rllntrr & anElysls p.qEm for d.bhse 1116 @mEtlbl€ f,lS all SQUte veBtons brougi 3,a,5 ad

下記の例は、「C:¥tools¥bin」 の下に配置した例です。設定後にコマンドプロン

プトから、sq‖te3-versionでバージョン名が表示されたら成功です。

▼ Windows7パス登録

O SQLite3の パージョン確認(VVindows)

C:¥work>sq‖ te3‐‐version                                            l,|
|1 3.8.52014-06‐ 0414:06:34 bled4f2a34ba66c29b130f8d13e9092758019212           1             ‐|

Macの場合は、デフォルトでインストールされています。ターミナルからインス

トールずみか確認してください。何らかのバージョンが表示されれば、利用可能な

状態です。

O SQLite3の パージョン確認 (Mac)

202

16793327'Oa2f17bb

変数名(D:

変数値(p: .niC:¥wで ,Ik¥phantonis-197-windowsiOI¥tools¥binl

E亜頭コ 匡亜亜コ



4‐ 1 データの保存方法

蜻SQLite3の利用

Anemoneか らSQLite3を 利用する場合は、「:storage」 オプションで、

を指定します。ファイル名無指定の場合は、「anemone.db」 が作成されます。ファ

イル名を変更する場合は、

といった形で指定します。

菫データベースに保存する

● anemone‐ sqnte3.rbの 実行例

スクリプトの実行後に、スクリプトを保存したディレクトリに「anemone.db」 が

作成されていれば成功です。

ところで、「anemone―sqlite3.rb」 を実行した後に、もう一度実行してみましょう。

三度目は、何も表示されないはずです。

opts = {
:storage => Anemone: :Storage: :sQLite3O,
:obey_robots_txt => true,
:depth_limit => o

)

Anemone. crawl(urJ"s, opts) do I anemone I

anemone.on_every_page do lpagel
puts page.url
p page.doc.xpath("//title/textO").to_s if page.doc

end

end

# -+- coding: utf-8 -*-
require 'anemone'

urls = []
urIs. push( "http : / /www. yahoo. co. jp" )

203



Chapter 4 高度な利用方法

'anemone―
sq‖te3.rbの実行例 (二度目)

これはSQLite3のDBを 検索し、訪問ずみのページはスキップするためです。ス

トレージにSQLite3を 選択した場合、PStoreの ように起動ごとに過去の履歴を消す

ということはしません。そのため、Anemone::Coreの 内部メソッドであるvisit_

link?メ ソッドで「@pageshas_page?(link)」 にTrueが返ってくるために、訪れるべ

きページとしてはFalseが返ってくるようになります。

I Anemone::Core#visit‖ nkの実装

#

# Returns +true+ if tlink*
# has not been visited already,
# and is not excluded by a skip_Iink pattern
# and is not excluded by robots.txt.,.
# and is not deeper than the depth limit
# Returns +false+ otherwise.
#

def visit_link?(link, from_page = nil)
l@pages. has_page?(link) &&

! skip_Iink? (Iink) &&

I skip_query_string? (link) &&

allowed(link) &&

! too_deep ? ( from_page )
end

クローリングの際に、訪問ずみのベージのスキップ機能は重要です。一方で、プ

ログラムから選択ができないので注意が必要です。本来であれば、日付などの条件

で再訪間の調整をしたいところですが、SQLite3が作るスキーマには日付の項目が

ありません。必要であれば、項目を追加してAnemoneを 改良するのも1つの手です。

デフォル トの状態では、Anemone::Sbrage::SQLite3ク ラスが訪間ずみかどうかの

判断は、has_keyメ ソッドでURLのみを判定の条件としています。

def has_key7(url)

!10db.get_firSt_Value(
'SELECT id FROM anemone_storage WHERE key = 71,

url・ tO_S〉

end

204

:has_keyメ ソッドの実装

$ ruby anemone-sqllte3.rb

s



4‐ 1 データの保存方法

翻壁:」 !lll_1:`::::::_::::::二 室_至
=二
登望塑ililiil!l

SQLite3利 用時にAnemoneが作成したデータベースを参照するには、コマンドプ

ロンプトもしくはターミナルからsq‖te3コ マンドで行います。専用のツールを利用

している場合は、そちらをご利用ください。コマンド実行後はプロンプトが「sqlite」

に変化します。

●作成したDBの確認

バージョンは各自の環境に合わせて変化します。また、Anemoneが作成するテー

ブル名は「anemonestorage」 です。

●テープル名の確認

テーブル構造としては、「id」 と「key」、そして実際のデータを格納する「data」

の3つです。idは自動付番で、keyがURLになります。

●テープル構造の確認

データは、PStoreと 同様に「Marshttdmp」 でバイナリー化されて格納されます。

バイナリーデータを表示させても意味がないので、idと keyを確認してみましょう。

●データの確認

205



Chapter 4 高度な利用方法

なお、SQLite3か ら抜けるには.exitで抜けます。コマンドがわからなければ、.help

で調べられます。

O SQLite3を終了する

I

4‐ 1‐ 5 MongoDBに f呆存

次に分散データベースを利用する例を解説します。分散データベースとしては

MongoDBが利用可能です。

‖lll::三 ![11≦ ![堅:L全ュ|`::!_11_:を :`」 ::L_lLI::::空

Windowsへのインス トールについては、公式ページでも細かく説明されています。

■MongoDBの公式ページ

回■http:〃www.mongodb.org/

鴫P MongoDBの公式ページ

基本的な流れとしては、MongoDB用 のフォルダーを作成し、ダウンロードした
バイナリーモジュールを配置するという流れです。

・①「C:¥data」 の作成

・ ② 「C:¥data¥db」 の作成

・③公式ページからダウンロードしてきたMongoDBを 解凍

・
"“
― ●‐ ‐

'●
■
''41    

■
||

■■●

`学
…
ⅢⅢⅢ´ ,●

…・
●●

“
・
…

…

・

｀
・
‐
‐
“

ⅢⅢ‐  ‐

ⅢⅢ
`…
■_

Upcoming Evonb
Jol2 {**dr Us.ns&MrrD

grli,iR tr.lrMrH,!
lbgoDah,Irek6

sa$rd snsD.

jn,$reln, rnqs r{16

and Scalable

機

sqlite> ,exit

rnongoDB

¨瀬
・・　
］晰

■
滅

‐”
“輌仙

“
流
ｍ
ｍ
朝
惣
摯
鰤』̈



4‐ 1 データの保存方法

・④MongoDBを「C:¥data」 に配置

・⑤解凍したMongoDBモジュールのbinフ ォルダー内のmongod.exeを実行

・⑥ mon9odが起動。journalフ ォルダーなど必要なものが自動的に作成される

公式ページに従ってインストールした場合は、下記のようなフォルダー構成にな

ります。

霧夕MongoDB Windowsの フォルダー構成

MongoDBの インストールが完了したら、次はRubyか らMongoDBを 利用するた

めに、Gemの mOngoモ ジュールをインストールします。付随して、bsonも インス

トールされます。bsonを 利用する場合は、bson_extの インストールも勧められます。

bson_extを インストールするには、ビルドツールが必要となるのでご注意ください。

'mongoモ
ジュールのインストール

MongoDBを利用するには、binフ ォルダーの「mongOdexe」 を起動します。コマ

ンドラインでmOngOd.exeの 実行、もしくはエクスプローラーからダブルクリック

で起動します。コマンドプロンプトが開いた間のみ利用可能です。永続的に利用す

るには、デーモンをバックエンドで起動する必要があります。MongoDBの永続的

な起動についての詳細は、本書では割愛します。

鷺聖壁全2ニヱニトール

HomeBrewを利用の場合は、insta‖ コマンドでインス トール可能です。インス

トール終了後に、mongoコ マンドでバージョン表示できれば成功です。

●MongoDBのインストール

207



Chapter 4 Hfrtr*lFfrtt

●パージョンの確認

MongoDBの インストールが完了したら、次はRubyか らMongoDBを 利用するた

めのGemの インス トールです。GemのmOngOモ ジュールをインス トールします。

付随して、bsonも インストールされます。またWindows版 と同様に、bson_extの

インストールを勧められます。インストールせずとも問題ないですが、必要であれ

ばインストールしてください。

O mongoモ ジュールのインストール

MongoDBを 利用するには、MongoDBの デーモ ンを起動する必要があ ります。

mongodで起動することが可能ですが、下記の方法ではターミナルが開いている時

のみ利用可能です。永続的に利用するには、デーモンをバックエンドで起動する必

要があります。MongoDBの永続的な起動についての詳細は、本書では割愛します。

O MongoDBデーモンの起動

MongoDBの禾1用

Anemoneか らMongoDBを利用する場合は、オプションの Rstorage」 で、

5 gem lnstall mongo

を指定します。初期化のオプションは、次の形式です。

DB名 とColection名 を指定します。Collectionは 、RDBの テーブルとはぼ同じ意

味です。無指定の場合は、DBは「anemone」 を利用し、Collection名 は「pages」 を

利用します。

208

$ mongo -version
MongoDB shell version: 2.4.9

:

$ mongod

all output going to: /Users,/username/tools/homebrew/varlloglmongodb/mongo.log

Anemone: :Storage: :MongoDB(mongo*db, collection*name)



4‐ 1 データの保存方法

最MongoDBに保存する anemone-mongo.rb

,anemone‐ mongo.rbの実行例

スクリプ トを実行する際には、MongoDB(MongoDBを 解凍 したフォルダーの

binフ ォルダーのmOngod.exe)を起動しておいてください。bsOn_extを インス トー

ルしていない場合は、警告が出るのでご注意ください。

なおストレージでMongoDBを 利用した場合は、起動ごとにCollectionの初期化が

行われます。そのために、SQLite3利 用時のように、起動をまたいで訪問ずみのス

キップをすることができません。

またDB名 とCollecuon名 を変更する場合は、次のように指定します (0)。 名前の

変更の際は、mOn"を呼び出す必要があります。

# -*- coding: utf-8 -*-
require 'anemone'

require 'mongo'

oPts = {
: storage => Anemone: :Storage: :HongoDBO,
:depth limit => o

)

Anemone.crawl(urIs, opts) do lanemonel
anemone.on_every_page do lpagel

puts page.url
puts pa8e.doc.xpath("//title/textO").to_s if page.doc

end

end

# -*- codi.ng: utf-8 -+-
require'anemone'

urls = []
urls. push( "http : / /ww. yahoo. co. jp" )

urls = []

209

IDB名 とCo‖ection名 を変更する



Clrapter 4 frEtr*tlBfiA

urls. push( "http: //www,yahoo. co. jp" )

opts = {
:storage => Anemone; :Storage: :MongoDB(

Mongo : : Connection. new, db(' crawler' ), "documents " ) .-----O

Anemone.crawl(urls, opts) do lanemone I

anemone.on_every_?age do I page I

puts page. ur1
puts page.doc.xpath("//tttle/textO").to_s if page.doc

end

end

'anemOne‐
mOngO中 OptiOn.rbの実 行 例

機生盛上た∠―夕至―型 21笙塾
Anemoneが作成したデータベースを参照するには、コマンドプロンプ トもしく

はターミナルからmongoコ マンドで行います。専用のツールを利用している場合

は、そちらをご利用ください。

0作成したデータベースの参照
.. 1

[菫薦:3

210

}

S rubyanemone‐mongo,ption.rb

htp′/WWW・yahoo.colノ

Yahoo!JAPAN         I_|| . .

http://WWW・ yah。。・C。りp/r/mht

h■ p://www.yahoo.co」 p/″ (2

http://wwwッ ahoo.cojp/r/c12

:う
こ瞥略ti



4‐ 1 データの保存方法

MongoDB内 部のDBは、show dbsで確認できます。デフォルトの指定の場合

「anemone」 になります。先ほどのcrawlerと いう名前での実行も行っていれば、そ

ちらのデータベースも作成されています。

●データベースの確認

使用中のデータベースの変更は、useコ マンドを利用します。

●テータベースの変更

データベース中のC011ec■ Onの一覧の取得は、show co‖ ectionsで行えます。

●Comection―覧の取得

Collectionか らレコードすべてを取得するのは、db.コ レクション名.findコ マンド

です。

●レコードを取得する

件数を取得するには、db.コ レクション名.countコ マンドです。

211



Chapter 4 frEr*frlBfr,*.

●件数を取得する

検索条件は、lndの第1引数で指定します。引数は配列で渡し、「1項目名 :検索条

件 |」 といった形式です。

●検索条件の指定

Collectionの特定の項目のみ取得する場合は、lndの第2引数で指定します。引数

は配列で渡し、「1項 目名 :表示/非表示 |」 といった形式です。表示の場合は「1」 を、

非表示の場合は「0」 で指定します。

●特定の項目のみを取得する

MongoDBの コマンドー覧は、he!pで表示できます。

●コマンドー覧の取得

MongoDBか ら抜ける場合は、exitコ マ ン ドを利用 します。

,MongoDBを終了する

212

> db.pages.find({url : "http://m.yahoo.cojp/'}};

{“ _id・ :Obiectld(・ 53c71ゆ2e19238815423bc844り ,“ ur!":"http://wWw.yahoo.coJp/“ ′"headers“ :3inData

c・3Ah7ECILc2VydmV,WwYiCm5naW541giⅣ XRIWwY‖RodSw9MTcgSnⅧ DiwMIQ9MIY6MiY6町 ig

R01UlhFjb250ia″50LXR5cGVbBIlddGV4dC9odGl150y   ll       ~.|

help on db methods

help on collection methods

sharding helpers

> exit



4‐ 1 データの保存方法

4‐卜6 MySQLに
`果

存

Anemoneが利用可能なス トレージには、MySQLはありません。しかし、必要で

あればプラグインとして追加することが可能です。ス トレージの構成と、追加の仕

方を見ていきましょう。

Anemoneの ストレージの構造

Anemoneの ストレージは、各ストレージの実装とそれを呼び出す「sbrage.rb」

で構成されています。プラグインとしてストレージを追加する際は、実装クラスを

追加したうえで、storage.rbに追加したストレージを記述します。

買財stora9eの 構成

トーstorage.rb

卜 storar

―
base.rb

―
exceptions.rb

―
kyoto_cabinet.rb

―
mong〈xib.rb

―
pstore.rb

―
redis.rb

―
sqliЮ3.わ

_tokyo_cabinet.rb

実装クラスに最低限必要なメソッドは、「base.rb」 で定義されている下記のメ

ソッドです。

夕ヽ実装クラスに必要なメソッド

初期化

データの抽出

データの登録・更新

データの削除

すべてのデータを抽出

クローズ

登録データ数の表示

キーの存在確認

213

,el(hash) ? >

|,s  l      lキーー覧の取得



Chapter 4 Afrla*lFfri*

IMyll`≧::1_:::::_:z:_121:_`:1__1:`1:::Lil::L!1111

構造がわかれば、プラグインの実装はそれほど難しくありません。プラグインで

はまず、MySQLを 扱うためのAnemoneの ストレージライブラリのロードを行いま

す。任意のライブラリを利用すればよいのですが、ここでは「mysq12」 を利用しま

す。mysq12の使い方については、GitHubの mysq12ペ ージに記載されています。

■GitHubの mysq12ページ

回田https:〃igithub.com/brianmario/mysq12

自作したライブラリをプラグインとして使用するためには、まずAnemoneの ソー

スをダウンロー ドします。GitHubの Anemoneベ ージから、Gitも しくはZip形式で

取得して展開します。

■GitHubの Anemoneページ

回回l httpS:ノ %github.com/chriskite/anemOne

ソースからのGemラ イブラリのインス トールは、9emコ マンドのビル ドとイン

ス トールで行います。ビルドの際は、依存関係の指定の仕方などでいくつか警告が

出ます。バージョン指定の仕方の問題なので、ビルド自体には影響はありません。

ビルドは、Anemoneを 解凍したディレクトリに移動して行います。

●ライプラリのビルド・インストール

||11鷲鷲

5 gem insta:lanemon● 0,7.2● em

installed anemone-0.7.2

documentation for

214

5 cd anemone

$ 9em build anemone.gemspe(

WARNING: licenses is empty, but is recommended. Use a llcense abbreviation from:

httpl/opensource.org/licenses/alphabetical

wARNING: no description specified

WARNING: no email specified

WARNING: open-ended dependency on nokogiri (>= 1.3.0) is not recommended

if nokogiri is semantically versioned, use:

add-runtime-dependency 'nokogiri'. '-> 1 .3', '>= 1 .3.0'



4‐ 1 データの保存方法

それでは、自作のmysqlラ イブラリを作成します。実装クラス用のファイル

「mysql.rb」 を作成し、まずはライブラリがロードできないと、エラーを返すよう

な実装から作ります。

菫ライプラリのロード l.rb

次に初期化メソッドです。書き方としてはいろいろありますが、引数としてオプ

ションをハッシュ値で受け取るようにしています。ハッシュ値のなかにデータベー

ス関係のパラメータがあれば、それを設定します。なければデフォルト値を設定し

ます。そして、データベースヘ接続し、スキーマを作成します。データベースヘの

接続は、クラス内で使い回します。

E初期化メソッド

次にテーブル作成です。Anemoneが利用するテーブルとして、anemone_

storageテ ーブルを作成します。既に存在している場合はスキップします。テーブ

ルの項目としては、管理IDと データのキーとデータのみです。このcreate_schema

メソッドは、外部から直接呼ばれることはないので、プライベートメソッドとして

追加します。

begin
require 'mysqlz'

rescue LoadError
puts "You need the mysql2 gem to

use Anemone : : Storage; :MySQL"

exit
end

def initialize(opts = 11;
host = opts[:host] ll 'J.ocalhost'
username = opts[:username] ll 'crawler'
password = opts[:password] ll 'anemone_pass'
database = opts[:database] ll 'anemone'

@db = Mysqlz::C1ient.new(:host => #{host},
:username => #{username}, :password => #{password},
:database => *{database})

create_sc hema

end

215



Chapter 4 F'Etrfrt)Hfi4

|テープルの作成 mysql.rb

同様にプライベー トメソッドとして、文字列からハッシュ値を生成するメソッド

を追加 します。データのキーとなるURLの 文字列長が長いことと、SQLで扱いに

くい文字を排除するためです。

|八 ッシュ値の生成

データ存在確認メソッドは、データベースヘの問い合わせを実装します。キーは

URLを ハッシュ化したものを使います。

ロデータの存在確認 l.rb

def create schema

Odb.query くくSQL

create table if not exists anemOne_StOrage (

id int(■■)NOT NULL auto_increment,

Page_key varchar(255),

Page_data BLOB,
PRIMARY KEY (id),

key (page_key)

)DEFAULT CHARSET=utf8;
SQL

end

private

def get_hash_vaIue(key)
puts "get_hash_value"
Digest : : 5HA1. hexdigest( key)

end

def has_key?(url)
key = get_hash_value(url)
result = @db.query(

"SELECT count(id) FROtl anemone-storage WHERE page-key = '#{key}"')

if result.first['count(id)'] > o
return true

else
return false

end

end

216



4‐ 1 データの保存方法

主要な実装としては、データの抽出と登録・更新です。データ部分の保存方法は

いろいろありますが、他のAnemoneの ス トレージに従い、Marshalダ ンプしたもの

を格納します。

ロデータの抽出と登録・更新

主要部分のみ紹介しましたが、基本的な考え方は他のプラグインと同様です。メ

ソッドごとの実装を、MySQLの処理に置き換えるだけで作成できます。同じRDB

ということで、SQLi縫3プラグインを元にSQLの処理部分のみ変更すれば最小限の

コーディングで作成できます。作成した実装クラスの全文は、サンプルファイル

(mysql.rb)で ご確認ください。サンプルファイルについては、p.五 をご参照ください。

最後に、storage.rbに MySQLの プラグインを追加すれば完成です。

日MySQLプラグインの追加

def [](urt)
value = @db.query(

"SELECT data FROM anemone_storage IJHERE page_key =

'#{get_hash_va1ue(url) }' " ) .first['data' ]

if value
Marshal.load(value)
end

def []=(u11, value)
data = Marshal.dump(value)
key = get_hash_vaIue(urI)
if has_key?(urI)

@db.query("UPDATE anemone_storage sET page_data =

'#{data}' WHERE page_key = '*{key}"')

else
Odb.query(1'INSERT INTO anemone_storage (

Page_key, Page_data〉 VALUES(1■ {key}', `#{data}1)")
end

def self.MySQLく opts = {})

require 'anemone/storage/mysql

self::MySQL.new(opts)

end

217



Chapter 4 frfr.ttfilBfri*

作成したモジュールをGem形式にビル ドするには、次のようにAnemoneの ソー

スのルー トディレクトリに移動し、bu‖ dコ マンドを実行 します。

0モジュールのビルド

ビル ドすれば、あとはinsta‖ コマンドで改造したAnemoneラ イブラリをインス

トールできます。

●ライプラリのインストール

MySQLを利用する

作成したライブラリを呼び出すスクリプトは次のような形です。MongoDBの ス

クリプト(→p.209)から、ストレージの部分を「MySQL()」 に変更するだけです (C))。

必要に応じて、オプションを追加して呼び出すようにします。

I MySQLに保存する

。pt, ‐ (
I,toェ agc‐ ,A,,emone::Sto,age::‖ ySoL〈 ),●――――――――――く●
:`●Pth_ i●it ■, 0

)

Anemone.crawl(urls, opts) do lanemonel
anemone.on_every_page do lpagel

puts page.url
puts page.doc.xpath("//tit1e/textO").to_s if page.doc

end

end

# -*- coding: utf-8 -+-
require 'anemone'

urls = []
urls. push( "http t / lwww, yahoo.co. jp" )

218

難
:



4‐2 クローラーの開発とデバッグ方法

● anemone‐ mysqI.rbの実行例

今回は、MySQLの例で紹介しました。必要なデータストアがなければ、MySQL
以外にも追加してみましょう。

4‐ 2

クローラーの開発とデバッグ方法

プログラムを開発する際は、試行錯誤が欠かせません。特にクローラーの場合は、

外部からコンテンッをHTTPプロトコルで取得する処理があります。クローラーは

プログラムの一度あたりの実行時間が長い傾向にあるため、効率的に開発する方法

やデバッグする方法が必須です。プログラムのデバッグ方法全般と、コンテンッ取

得部分に特化した方法を紹介します。

4‐ 2¨l Rubyプログラムのデバッグ方法

クローラーの開発にかぎらず、Rubyプログラムのデバッグ方法についてです。

ある程度以上の規模になると、Ruby用 のIDE(統合開発環境)を利用するのが一番

効率がよいのでしょうが、ここではIDEを使わずに、Rubyの みで利用可能なデバッ

グ方法を紹介します。

属変数の中身を表示する

デバッグの重要な情報の1つが、実行時点での変数のなかに何が入っているかで

す。一番簡単なデバッグ方法として、標準出力に変数の中身を表示して値を確認す

るという方法があります。Rubyに は標準出力に表示するメソッドがいくつかあり

ます。代表的なものはputsや print、 またデバッグ時に便利なpや ppがあります。そ

れぞれの使い分けを見てみましょう。

まずputsと pの使い分けについてです。どちらもRuby標準のKernelモ ジュールの

メソッドの1つです。putsメ ソッドは、引数と改行を標準出力に出力します。引数

219



Chapter 4 HEr*ftlEf,;*

のなかに改行コー ドが含まれていた場合は、改行されて出力されます。これに対 し

てpメ ソッドは、標準出力に出力するという点は一緒ですが、主にデバッグでの使

用を目的としています。

日変数の中身を表示する debug_puts_p.rb

pメ ソッドを利用すると、変数が文字列型の場合はダブルクォーテーションで囲

まれて表示されます。数値型の場合は、そのままで出力されます。これに対して、

putsメ ソッドは、すべてそのまま表示されます。

また、文字列中に改行コードが含まれていた場合は、putsメ ソッドの場合は改行

されて表示されます (上記の例では、「改行」の後ろで改行されます)。 pメ ソッドの

場合は、改行コードを文字列としてそのまま表示します。これらの理由から、pメ

ソッドはデバッグ時に利用しやすいメソッドとなっています。一方で、Windowsの

コマンドプロンプトの場合、pで出力したものについては文字コードで表示されます。

t debu g_puts -prb0*tlflJ

ppは pretty printラ イブラリと言って、読みやすいインデントと改行をするライ

ブラリです。標準添付ライプラリなので、インストール不要でRequireす るだけで

利用できます。pと ppの違いは表示形式です。ppの場合は、自動的にインデントと

# ―*―  coding: utf-8 -*―

puts"文字列::     #=>文 字列
p"文字列''       #=>1'文 字列 "

putS 15

P 15

puts'1改行¥nコー ド"

P“ 改行Ynコー ド"

# => ■5
# =, ■5

#=>改 行 コー ド
#=)''改行Vnコ ー ド"

220

15

15

S rubydebu9_puts_p.rb

１

列
響
［

文

リ

n改
行¥nコード''

織



4‐2 クローラーの開発とデパッグ方法

改行を調整して表示されます。配列やオブジェクトの中身を見る場合は、ppを 使

うと便利な場合があります。

日ppで変数の中身を確認する

● debug_p_pp.rbの実行例

露上ヱ三二重登
Gemのライブラリを利用していると、ライブラリの中身がどのような順番で呼

び出されて、どのように動作しているのかがわからないことがあります。そういっ

た場合には、 トレースを行うことにより、ライプラリの動きがわかり、理解に繋が
ります。

Rubyの場合、Kernelモ ジュールにcallerと いう呼び出し元の情報を表示するメ

ソッドが用意されています。ppと組み合わせて使うと、見やすいです。

ロライプラリの情報を取得する

# -*- coding: utf-8 -*-
require 'anemone'
require'pp'

urls = []
urLs, push( "http : //ww.yahoo, co. jp" )

ary = Array,new(6) { {:foo => :bar} }

# -*- coding: utf-8 -+-
require'pp'

p ary

pp ary

opts = {

221



Chapter 4 高度な利用方法

:depth_limit => o

}

Anemone.crawl(urls, opts)do lanemonel

#呼び出し元の情報をスタックトレースで表示

PP Caller()
anemone・ On_eVery_page dO lpagel

puts page.url

puts page.doc.xpath('・ ノ/title/text()'').to_s if page.doc

end

end

実行すると、次のようにAnemoneラ イブラリのなかで、どういった順番で呼び

出されて実行されているのかが表示されます。

'anemone…
ca‖er.rbの 実行例

もしくは起動オプションに―r tracerを付けることで、すべての トレースをするこ

とが可能です。すべてのライブラリの実行ログが出力されるために、膨大な量のス

タックトレースが発行されます。

0すべてトレースする

デバッグする

Rubyに は、コマンドラインから利用可能なデバッグツールがいくつかあります。

標準添付ライブラリのdebugや 、サー ドパーテイのデバ ッガーです。サー ドパー

テイのデバッガーについては、Ruby l.8時代にはruby― debugが 有名でした。その

222

"/Users/takuro/,rvm/gems/ruby-2.0.0-p353/gems/anemone-0.7.2/lib/anemone/core.rb:83:in
'initialize"',

"/Users/takuro/.rvm/gems/ruby-2.0.0-p353/gems/anemone-0.7.2/lib/anemone/core,rb:90:in'new",,

. S Fuby‐ r traCer anenl● ne‐ CalleLrb

°
/Use`/takuro/.rvm/gems/ruby-2.0.0-p353/gems/anemone・ 0,712/‖ b/anemone/core.rb:9o:in｀ crawF:'′



4‐2 クローラーの開発とデバッグ方法

後に1.9や2.0な どのバージョンアップがあるたびに、派生や類似ライブラリが出て

きました。Debuggerや byebug、 pry‐byebugな どです。ここでは標準添付ライブ

ラリのdebugのみを紹介します。

debugの 使い方は、起動時に―rdebugを付けるだけです。

,debugの実行

主なデバッグコマンドは次の表のとおりです。stepも しくはnextでステップイン

実行、もしくはcontでスクリプト終了もしくはブレイクポイントまで移動します。

ポイントごとに、varlocalな どのコマンドで変数の中身を表示します。また‖stコ マ

ンドで周辺のソースを表示します。

鴫夕主なデバッグコマンド

■Ruby 2.0.0リ ファレンスマニュアル(debugライブラリ)

ロロl http:ノ %dOCS・ ruby‐ :ang・Org/1a/2.0.0/:ibrary/debug.hti■ll

ブレイクポイントの設定もしくは表示を行う

スクリフトが終了するまで、もしくは次のブレ

イクポイントに到達するまで処理を実行する

1行ずつ実行する。引数を指定した場合は、その

行数分だけ実行する

stepと 同様だが、メソッド内は実行しない

スクリプトを表示する。引数で範囲指定可能。

また「―」の場合は前の行を表示する

スクリプトを中断し、デパッガを終了する

var g グローバル変数を表示する

var I ローカル変数を表示する

オブジェクトのインスタンス変数を表示する

オブジェクトの定数を表示する

223



Chapter 4 高度な利用方法

ある一定規模以上のプログラムの場合は、IDEの デバッガーを使うと使い勝手が

よいでしょう。また、小さなプログラムの場合は、デバッガーも不要で標準出力の

みで十分な場合もあります。なかなかコマンドラインからのデバッガーを使うタイ

ミングは難しいところがありますが、1つの手段として覚えておくと役に立つこと

もあるでしょう。

4‐ 2…2 開発プロキシを使つたクローラーの開発

クローラーは、外部のサーバと通信してコンテンツを取得します。そのため、開

発の段階で何度もサーバヘのアクセスを繰り返すこともあります。通信処理を含む

プログラムは、ローカルのみで完結するプログラムに比べて、何倍も処理時間がか

かります。

また、そもそもネットワークが通じていない状態では開発もできません。それ以

外にも、何度もコンテンツを取得にいくことで、Webサ イトの提供者に迷惑をか

ける可能性もあります。トラブルの原因にもなりかねません。そこで、開発段階で

は初回のみコンテンッを取得するように工夫することで、諸問題を解決することが

できます。

開発用プロキシ「CocProxy」

クローラーに必要な開発用プロキシとは何でしようか ? 初回アクセス時は、
Webサ イトを訪問しコンテンッを取得します。コンテンツを取得すると、ローカ

ルにファイルを保存し、2回 日以降のアクセス時にはローカルのキャッシュを返す

ようなものが理想的です。このような動作をするRubyのモジュールが「COcProxy」

です。

CocProxyは、Rubyの標準ライプラリで実装された開発用プロキシです。また、

基本的に1つのファイルで完結することを目標として作られています。このため、

Ruby環境があれば簡単に使うことができます。Ruby l.9を ベースに開発されてい

ますが、Ruby 2.0で も問題なく動作します。

CocProxyについては、以下のサイトでご確認ください。

r CocProxyf-( F

llE http://coderepos.orglshare /wiki /CocProxy

224



4‐2 クローラーの開発とデバッグ方法

? CocProxY+i-l F

CocProxyは、プログラムなどの利用者がネットワーク経由でのファイル取得時

に動作します。デフォルトの設定では、リクエストされたファイルに対して、まず

ローカルのファイルがないかを確認します。存在する場合は、それを返します。な

い場合は次にキャッシュを確認します。その両方がない時に始めてWebフ ァイル

を取得しにいきます。Webか らファイルを取得後に、キャッシユとして保存する

ために、2回 日以降は取得しにいかないようになります。

この2つの動作により、クローラー開発に寄与します。ローカルにファイルを置

いておくと、オフラインでも開発可能です。また、キャッシュを利用することで、

Webサ イトヘのアクセス数を減らし、待ち時間を減らすことができ、取得側のWeb

サイトに負荷をかけません。

COcProxyのローカルファイルの参照ルールについては、以下のとおりです。

・①フアイル名で参照

・②「htp¥https」 なしで、FQDNな しのパスでの参照

O③ ドメイン名/フアイル名での参照

・④絶対パスでの参照

Yahoo!の セキュリテイガイドに二度参照しにいった場合の動作 (参照するファイ

ル)は、以下のとおりです。

・①Checkin9 11es/1a.html

・②Checking iles/security.yahoo.co.jp/guide/1a.htmi

′

テ

■
り

轟
Qぽ釉町

z .(@Bo,tq,r.6;b).,
r.,@,eD/.1tuk{q.F6jbDi

#7+?a. E+Ltaiffi:r.

mr..,so?ry:6/evtu/*rr$ [721]+

225



Chapter 4 ls,EbfrlB:btE

・③Checking l!es/security.yahoo(o」 p/1a.html

O(4)Checkin9 11es/./guide/1a.html

・⑤Cached:http:〃 security.yahoo(ojp/guide/1a.html

・⑥Checking lles/1a.html

O ⑦Checkin9 11es/security.yahoo.co.jp/guide/1a.html

・③Checking f‖es/security.yahoo.co.jp/1a.html

・⑨Checking f‖es/./guide/1a.html

・⑩ From Cache:http:〃 security.yahoo.cojp/guide/1a.htm!

「http://security.yahoo.co.ip/guide/1a.html」 ローカルファイルを参照した後で、

ネットワーク経由でファイルを取得にいっています。初回取得時にキャッシュとし

て保存しています。2回 目はキャッシュから返しています。

籠CocProxyの インス トールと起動

CocProxyの インス トールは、ダウンロー ドするだけです。ダウンロー ド後に、

任意の場所に配置しましょう。

■CocProxyの ダウンロード

ロコロhttp:ノ/SVn.coderepos.org/share/1ang/ruby/cocproxy/proxy.rb

起動は、「proxy.rb」 をrubyか らキックするだけです。デフォルトでは、5432ポ ー

トを利用します。

また標準ライブラリ以外のモジュールや、設定ファイルで挙動を変更できるバー

ジョンについても公開されています。

Use

226

'CocProxyの
実行

1. #{File.basename(req.path_info)}

2. #{req.host}#{req.path_info}

3. #{req.host}/#{File.basename(req.path_info)}

4. .fl{req.path_infoj

躍:



4‐2 クローラーの開発とデバッグ方法

●その他の開発プロキシ

回口l http:ノ/SVn・ COderepos.。 rg/share/!ang/ruby/cocproxy/

置二Z:_三二2::_二 2_」:≧
`2≧

_22≦Ξ≧≦:と2gI:L:1:!EI:]:::`::≧ :!:1111:il
COcPrOxyを プログラムから利用するには、「:proxy」 として指定することで可能

です。Nokogm(open― uri)と Anemoneでの利用例は、次のとお りです。なお、ス

クリプトの実行時は、CocProxyを 起動させておいてください。

I Nokogiriで CocProxyを利用する

O nokogiri―proxyrbの実行例

I Anemone?CocProxyEftlE{6 anemone-proxy.rb

:Proxy =>'httP: //localhost:5432' ))

IAPAI{

# -*- coding: utf-8 -*-
require 'nokogiri'
require 'open-uri'

doc = Nokogiri: :HTML(open(

' http: //www.yahoo.co. jp',

puts doc,title # => Yahool

opts = {
: proxy_host => 'localhost' ,
:proxy_port => '5432',
:obey_robots_txt => true,
:depth_limit => o

)

Anemone.crawl(ur1s, opts) do lanemonel
anemone.on_every_page do lpagel

puts page.doc.xpath("//title/textO").to_s if page.doc

end

end

# -*- coding: utf-8 -*-
require'anemone'

urls = []
urls. push ( " http: / /m.rw. yahoo. co. j p/ " )



Chaptell frEtt*rlBfit*

● anemone― proxy.rbの実行例

プロキシのログから、キャッシュが有効になっていることがわかります。ログは、

最初の5行が「nokogiri― proxy.rb」、次の5行が「anemone‐proxyrb」 のものです。

ロプロキシのログ

Checking fiLesl I
Checking f iles/ww. yahoo. co, jp /
Checking files/www. yahoo, co, jp / /
checking files/ , /
From Cache : http: //www.yahoo. co.j? I
checking filesl I
Checking files/www.yahoo. co. jp /
Checking files/ww.yahoo. co. jp I /
Checking files/ . /
From Cache: http: //www.yahoo.co.jpl

営

COcPrOxyは 、[Ctri]十 [C]キ ーで終了します。

14‐ 3

1ク ローリングとスクレイビングの分離

クローラーの構造は、コンテンツの取得 (ク ローリング)と データの解析 (ス クレ

イビング)と データの保存の3つの機能に分類できます。このなかで開発に占める

割合は、クローリングとスクレイピングの比重が大きいです。また、Webサ イ ト

の性質上、HTMLは頻繁に変更される可能性が高いです。

HTMLが変更された場合は、スクレイビング部分を変更する必要があ ります。

そのため、クローリング部分とスクレイビング部分を分離すると、変更がしやすく

保守性が高いプログラムになります。Anemoneや Nokogiriを 利用して、分離 した

例を紹介します。

4… 3‐ 1 スクレイ ピング部分の分離

クローリングとスクレイピングの分離は、両者の境界線で考えるとよいです。ク

ローリングの役割は、取得するURLを決定 してダウンロー ドしたドキュメントを

228

Yahoo!JAPAN



4‐3 クローリングとスクレイビングの分離

渡すまでです。そしてスクレイビングは、取得したドキュメントを解析する部分と

なります。解析結果の利用用途に応じて考えればよいです。例えば、解析部分で表

示する、変数に格納して返す、データベースなどに保存して永続化するなど、いろ

いろな方法があります。

次のサンプルスクリプトは、クローラー部分とスクレイビングを行うパーサー部

分を分離した一番単純な例です。Anemoneは、ダウンロードしたコンテンツを

Anemone::Pageの オブジェクトに格納します。そのオブジェクトごと渡して、スク

レイピングの部分をparserメ ソッドで行っています。

1ク ローリングとスクレイビングの分離 separate-parser.rb

O separate… parser.rbの実行例

4‐ 3… 2 分離度を上げる

先ほどの例では、クローリングとスクレイビングを分離しているものの、分離度

のレベルは低いです。理由としては、クローラーとパーサーのデータの受け渡しが、

Anemoneのオブジェクトでやり取りしているためです。また、クローラーとパー

def crawl(ur1)
Anemone. crawl(

url, :depth_limit => o) do I anemone

anemone.on_every_page do lpagel
parser ( page )

end

end

end

def parser(page)
puts page.doc.xpath("//titIe/text( ) " )

end

urI = "http : //wvlu.yahoo.co. jpl"
crawl ( urI)

# -*- coding: utf-8 -*-
require 'anenone'

229



Chapter 4 高度な利用方法

サーが同一のプログラムで直列に動いています。

分離度を上げると、クローラープログラムとパーサープログラムの2つに分離で

きます。その場合のメリットは、2つのプログラムを並列に動かすことが可能にな

り、かつどちらか一方がボ トルネックになっている場合は、そちら側のリソースを

増やすことで効率的に動かすことが可能になることがあります。

次の2つのスクリプトは、クローラーとパーサーの2つに分離した例です。クロー

ラーは、ファイルを取得して保存するだけです。パーサーは、所定のディレクトリ

以下にファイルがあれば、スクレイピングを行います。サンプルなので、クロー

ラーは1つのファイルしか取 りませんが、実際の運用ではファイルを取得 し続ける

処理に特化すれば効率がよくなります。また、パーサーも一度ファイルの一覧を取

得して、処理が完了すれば終了するようになっています。両者とも定期起動もしく

はデーモンなどで常駐するようにしておけば、24時間動き続けるクローラーとなり

ます。

1分離クローラー structuration-crawler.rb

実行前にスクリプトと同じ場所に「iles」 ディレクトリを作成しておいてください。

そこにファイルを保存します。

def crawler(url)
hash_str = Digest: :SHA1.hexdigest(url)
path= "f iIes / "+hash_str
if lis_exist?(path)

source = open(url).read
open(path,'w+b' ) { lf I f.uite(source)}

end

end

def iS_eXiSt'(path)

File.exist7(Path)

end

# -*- coding; utf-8 -+-
require 'open-uri'
require 'digest/sha1'

ur1 = "http: //www.yahoo.co. jpl"
crawler(urI)

230



4‐3 クローリングとスクレイピングの分離

O StruCturatiOn‐ crawler.rbの 実行例

実行するとmesデ ィレクトリにファイルが作成されます

日分離パーサー

同様に実行前にプログラムと同じ場所に「pttsed」 ディレクトリを作成しておい

てください。そこにファイルを保存します。

'StruCturatiOn¨
parserrbの実行例

# -*- coding: utf-8 -i-
require ' nokogiri'

def parSer(file)

doc = Nokogiri::HTMLく open(file))
puts doc.title  ■ =)Yah●o! コAPA‖

end

def get_f i1e_Iist (tatget, parsed)
puts target
Dir: :foreach(target).each { lfile I

next if file == "." or file
parser(target+" / "+fiIe )
move_file (target+" / "+fi1e, parsed+" / "+fite )

)
end

def move_f i1e(from, to)
puts from
puts to
FiIe. rename (from, to)

end

get_file_list ( " file s " , " pa rsed_files " )

231



4‐ 4

クローラーを効率的に動かすには営
クローラーを効率的に動かすには、2つの方法があります。1つ は、単位時間あた

りにできるだけ多 くのコンテンツをダウンロー ドする方法です。もう1つは、無駄

なダウンロードをできるだけ減らす方法です。

単位時間あたりのダウンロー ド数を増やすには、並列実行や、複数のクローラー

を同時に起動して、プログラムの多重度を上げることで実現できます。一方で、他

人が運営しているWebサ イ トについて短い間隔でダウンロー ドを繰 り返すことは、

サイトの負荷を含め迷惑をかけることに繋がりかねません。方法論として一通 り説

明しますが、実際に運用する際は十分な注意と配慮が必要です。

もう1つの無駄なダウンロードを減らす方法については、取得ずみのコンテンツ

は取得しないといった方法や、最終更新日もしくは最終取得日を見て取得の判断を

するといった方法があります。この方法については、Webサ イトの運営側の負荷

を軽減できます。まずは、こちらの方法を検討すべきでしよう。

4‐ 4‐ 1 多重度を上げる

プログラムの多重度を上げるには、プログラム内で複数同時に実行する方法や、

複数のクローラーを同時に起動する分散処理で実現できます。

プログラム内での複数同時実行には、処理方式について「並行処理」と「並列処

理」があります。言葉としてよく似ているので混同じやすいのですが、並行処理に

ついては、実行の順番を制御しながら同期的に実行される処理のことです。並列処

理は、複数の実行が非同期で実行される処理です。

一般的にクローラーの処理の場合、ボトルネックはクローリングしてデータを取

得する部分になります。例えば、コンピュータ内部のみで完結する処理の場合、数

ミリ秒程度で終了します。これに対して、ネットヮークを通じて外部のシステムと

通信する処理であれば、数十～数百ミリ秒や、場合によっては数秒という単位の時

間がかかります。クローラーを並列処理する場合であれば、一番ボトルネックにな

るダウンロード処理を複数走らせて、ダウンロード完了したものから随時処理する

というのが基本となります。

Rubyについては、「thread」 という並行処理を扱う組み込みライブラリと、並列

処理を行う「Parallel」 という拡張ライブラリがあります。

232

Chapter 4 HEtttlHf';*



4‐4 クローラーを効率的に動かすには

麟1:11[::1:墜 1_11`::_主__i`:L:!!!::lE::」!些::塁

Anemoneは 、threadを利用して並行処理を行っています。デフォルトでは4つの

threadを利用し、「:threads」 パラメータで変更可能です (0)。 下記の例は、10個の

URLを ダウンロードするスクリプトです。オプションの指定で、thread数 を10個

に増やしています。

l threadで 並行してダウンロードを行う anemone-thread,rb

# ―*― coding: utf-8 -*―

require ianemone'

urls = []
urls.push(

" http r / /www. amazon, co.jpl gpl bestsellers/ books/ 4662841 " )
urls. push (

"http: /,/www. anazon .co.jpl E? / bestsellers /booksl STrSAzl" )
urls . push (

"http: / /ww. amazon.co,jp I g?l bestsellers/books/ 492a521 ")
urls . push (

"http: / /ww. amazon.co,i?l gpl bestsellers/ books I 4662a6/ " )
urls.push(

" http: / /M. amazon. co,j?l gp/ bestsellers/ books I 4662A21 " )
urls.push(

" http: / /www, amazon , co.)p/ gpl bestsellers/ books I 4920541 " )
urls. push (

"http: / /www. anazon .co,jp/ Bpl bestsellers/books / 466290/ " )
urls . pu sh (

"http: / /www. amazon,co.jpl E?l bestsellers/booksl 492L66/ " )
urls . push (

" http: / /ww. amazon, co.jpl gpl bestsellers/books I 4662981 ")
urls.push(

" http: / /www. amazon, co.jpl gpl bestsellers/ books I 4662941 " )

°P::bttblsilttu葛

:::::iliimit_,。

}

Anemone.crawl(ur1s, opts) do I anemone I

anemone.on_every_page do lpagel
puts page.url
puts page.doc.xpath("//titl,e/textO").to_s if page.doc

end

end

233



Chapter4 Hfr.r**rlB-h&

● anemone¨ thread.rbの 実行例

上記のスクリプトで、threadsを 1個 と10個に変更したものを、それぞれ10回実行

し、処理時間の平均時間を比較したのが下記の表です。如実に効果が出ているのが

わかります。

¬|レ thread数 による処理時間の違い

Paranelに よる並列処理

同様にParallelで 並列化した例です。in_血readsパ ラメータで、スレッド数を調

整できます (0)。

スクリプトの実行には、Parallelの インストールが必要です。gemか らインス

トールすることができます。

'Para‖
e:のインストール

1個 10個

117459秒 26648秒

日Para‖ eiで並行してダウンロードを行う

# -t- coding; utf-8 -+-
require 'parallel'
require 'nokogiri'
require 'open-uri'

urls = []
urls. push(

"http : / /ww. amazon. co. jp / Ep I bestsellers/books / 4662841 " )
urls . pu sh (

a ne mo ne-pa ra llel. rb

234

螢

&#1 30;&Aring;&#141;&Aring;&#130,&agrave;&#144;l&#1 39;C&#130;&lgrave;&#130;&nbsp;

http://WWW.ama20n.COjp/gp/beStSe‖ erS/bOOるた 66284/

7)'喘 ‐|

read&

理時間

S gom lnstrll parallel
融



"http: //m. amazon

urls . push (
"http: //M. amazon

urls , push (

" http : / /www. ama zon

urls . push (

" http : / /www. ama zon

urls.push(
"http: //www. amazon

urls. push(

" http : / /www. ama zon

urls . push (

"http: //www.amazon

urls. push(

" http ; / /www. ama zon

urls. push(
"http: //www.amazon

co. jpl gpl bestsellers/books/ 57 L582 l " )

co. jplgplbestsellers/books/492152 l " )

€o. j p/ gpl bestsellers/books/466286 I " )

co.jpI gpI bestsellers/books/4662a2l " )

co, jpl gpl bestsellers/ books /492054 / " )

co. jplgpl bestsellers/ books /466290 I " )

co. jplgpl bestsellers/ books /492L66 l " )

co. jplgpl bestsellers/ books/466298 l " )

co. jplgpl bestsellers/books/466294 / " )

Parallel.each(urls, in_threads: 10) {lurll >-=g
doc = Nokogiri: :HTML(open(url) )
puts doc.title

)

● anemone― para‖eLrbの実行例

分散処理の高速化

分散処理については、同じPC端末/サーバから多数のプログラムを実行しても、リ

ソースを取り合うのであまり意味がありません。複数のサーバを利用することで効

果を発揮します。

また分散処理の場合、実行の制御が重要になります。クローラーでは、キュー

(Queue)や DBな どを利用 して取得対象を制御することが可能です。並列・分散処理

の他の方法については、「6-5さ らなる高速化の手法」(→ p.410)で EventMachineを 利

用した例をあげます。

4‐4 クローラーを効率的に動かすには



Chapter 4 高度な利用方法

4・ 4‐2 タイムアウトの調整

何らかの理由によリクロール対象のコンテンッが取得できない場合や、応答が極

端に遅い場合は、データ取得のタイムアウト値を設定することにより全体でのク

ロール時間の短縮を図れます。Anemone、 open―uriと もに「read_timeout」 オプショ

ンで、秒単位でタイムアウト値を設定可能です。

次のサンプルでは、それぞれ5秒に設定しています (C))。

I Anemoneのタイムアウト設定 a nem one-t imeout. rb

● anemone¨ timeout.rbの 実行例

目open¨ uriのタイムアウト設定

# -*- coding: utf-8 -+-
require 'nokogiri'
reguire 'open-uri'

urls = []
urls. push("http: //www.yahoo. co. jp" )

nokogiri_options = {
:read_timeout => 5 #)

opts = {
:obey_robots_txt => true,
:read_timeout => 5, H)
:depth_Iimit => o

)

Anemone.crawl(ur1s, opts) do lanemonel
anemone.on_every_Page do I page I

puts page.url
puts page.doc.xpath("//tit1e/textO"),to_s if page.doc

end

end

* -*- coding: utf-8 -*-
require 'anemone'

urls = []
urls. push( "httpr //www.yahoo.co. jp" )

236

|11

http://www.ya hoo.coj p/



}

urls.each{ lurll
html = open(urI, nokogiri_options)
doc = Nokogiri: :HTML(htm1)

puts doc.title
puts url

)

● anemonetimeout― openuri.rbの 実行例

4‐ 4‐ 3 HTTP CompFeSSiOnに よる通信データの圧縮

HTTP通信の効率化手段の1つ にHTTP Compresslonと いう手法があ ります。

サーバ・クライアント間の通信を圧縮して、使用する帯域を小さくして効率的に通

信する手法です。圧縮の方式としては、gzipやdenateな どいくつかあります。圧縮

の有無および方式は、サーバ側が指定します。クライアント側が受け入れ可能であ

れば、サーバ側が提示した圧縮方式で通信します。

クローラープログラムの場合でも通信データの圧縮は利用できます。Anemone

のHTTP通信の実装は、内部的にopen‐ uriを利用しています。そして、open― uriは

Net:HTTPの ラッパープログラムです。Net::HTTPは 、HTTP Compressionに対応

していて、サーバ側が利用可能な場合は自動的に選択するようになっています。そ

のため、Anemoneや open― uriを 使用する場合で、サーバ側がHTTP Compre

ssionに対応している場合は、自動的に利用することになります。

4‐ 4‐4 未取得のデータのみ取得する

クローラーを効率的に動かすのに大切なのは、データのダウンロードにかかる時

間をできるだけ短くすることです。そのなかで一番効率的なのは、データをダウン

ロードしないことです。つまり、取得ずみや不要なデータについて、ダウンロード

をスキップすることです。

Anemoneの 場合、基本的には取得ずみのデータはスキップします。しかし、デー

タストアがSQLite3以外の場合、プログラムの起動時にデータストアの内容をクリ

アするので、起動をまたいでの取得ずみデータのスキップはできません。

237

4‐4 クローラーを効率的に動かすには



Chapter 4 高度な利用方法

Anemone自 体を修正するか、別の方法を検討する必要があります。

取得ずみのデータのコントロール方法としては、プロキシサーバを利用する方法

があります。プロキシサーバ側で取得ずみのデータをキャッシュさせ、2回 目以降

の取得についてはキャッシュのデータを返すことでダウンロードを抑制します。ま

た、プロキシサーバ側でキャッシュ期間をコントロールすることで、例えば1日以

上経過したデータについては、あらためてダウンロードし直すといったことも可能

です。プロキシサーバを利用すると、プログラム側は何もすることもなくデータ取

得のコントロールを行うことができます。

プロキシサーバを利用する方法については、p.227でサンプルを掲載しています。

4… 4‐ 5 エラーコー ドに対する処理

クローラーを効率的に動かす、またはWebサ イト運営者と揉め事を起こさない

ために大切な点があります。それは、エラーコードを監視し、想定に反してエラー

が起こった場合は、ただちにクローリングを中止するように作り込んでおくことで

す。

クローラーが受け取るべきHTTPの ステータスコードは、200です。それ以外の

場合は、何らかの問題が起こっている可能性が高いです。特に500番台はサーバ内

部でエラーが起こっている状況です。クローラーからのアクセス過多が原因で500

エラーが引き起こされた場合、業務妨害で訴えられる可能性すらあります。

クローラーが遭遇するであろう主なステータスコードが次の表です。400番台が、

クライアント側起因のエラーです。500番台が、サーバ側で発生したエラーです。

400、 500番台のエラーコードが発生した時は、特に注意が必要です。

臀
'主
なH~「Pステータスコードー覧

OK リクエス トは成功 した

1 Moved Permanently 恒久的に移動した

Found リクエストしたリソースが一時的に移動された

Bad Request リクエス トが不正

01 Unauthorized 認証が必要

Not Found 未検出。リソースが見つからない。もしくは、アクセス権がない

)0 lnternal Server Error サーパ内部エラー

)1 Not lmplemented 実装されていないメソッドを使用した

238



I

4‐4 クローラーを効率的に動かすには

エラーコードヘの対処例

エラーコードヘの対処としては、正常系のステータスコードに対しては処理続行、

04な ど今後訪問する必要がないURLに対しては除外リストに追加、それ以外のエ

ラーコードについては、エクセプションを発生させて処理を停止するなどがあります。

実行の際には、クロール先のURLを 指定してください (0)。

|エラーコードヘの対処

● anemone¨ errorcode.rbの 実行例

Anemone.crawl(urts, opts) do lanemonel
anemone.on_every_page do I page I

puts page.url
raise '5oo Error!:' + page.url.path.to_s if page.code = 5oo

end

anemone.after_crawl do lpages I

puts "hoge"
end

)――――-0

end

# -*- coding: ut'f-8 -+-
require ' anemone'

urls = []
urls.push(

opts = {
:depth_Iimit => 1,
:obey_robots_txt => true

)

239



Clrapter 4 Efrtr*lHfit*,

〕
これまで個別に取 り扱ってきたAnemoneの オプションについて、あらためてま

とめ直します。対象としているバージョンは、072です。

4‐ 5‐l Anemoneの オプション

次の表が、Anemoneの オプションをまとめたものです。

▼ Anemoneの オプションー覧

4-5-2 7 l- v-rt/2 e / (storage)

ストレージオプションの一覧です。ストレージごとに挙動が違うので、注意が必

要です。

4‐ 5

Anemoneのオプションー覧

ページ取得の際に同時実行するスレッド数。数が多

いほど多重度が高くなる

false Anemone実行の詳細ログの表示

false NokoglriオブジェクトおよびHTML本 文を破棄する

''Anemone/#〔 Anelmone::

VERS10N〕・
ユーザーエージェン トの設定をする

クローリングの間隔 (秒 )を指定。0秒より大きい値

を設定している場合は、threadsの 値に 1が指定さ

れる

false robotstxtに 従うかどうか

false 探索の深さの設定。falseの場合は、無制限で探索

何回までH¬
~Pの
リダイレクトを許可するか

どのストレージを利用するか。デフォルトはメモリ

クッキー名の指定

false クッキーを受け入れるか

false URLの 引数を無視するか

プロキシサーパのホスト名

false プロキシサーパのポート番号

無制限 H‐Π Pの読み込みタイムアウ ト (秒 )

240

:delay

:depth=:imit

:storage I nil

:cookies lnil

:proxy_host lnil



4-5 Anemoneo*A! =Y-5.

レヽストレージオプションー覧

4‐ 5‐3 クローリング間隔オプション (detay)
delayは クローリング間隔を指定するオプションです。単位は秒です。

注意点としては、値を0秒 より大きい値で設定した場合は、threadsの 値が1(同時

実行しない)が設定されます。オプションでthreadsの 値を設定していた場合でも、

上書きされます。

4-5-4 KE&ffit' /v = v (skip-query-strings)

skp_query_stringsは、URLのパラメータ部分を無視するかどうかを指定するオ

プションです。

デフォルトはF」seで、パラメータ部分を無視しません。Trueの場合はパラメー

タ部分は無視され、下記の2つのURLは同じURLと 見なされます。Falseの 場合は、

別物として扱われます。

・ http://example.com/page?id=10

0 http://examp!e.com/page?id=20

4‐ 5‐5 探索戦略オプション (depth_timit)

depth_limitは ページの巡回の深さを整数値で指定します。巡回の深さは、ルー

トページからの距離で計算されます。ルー トページは「0」 で、ルートベージ内に

あったリンク先は「1」 になります。以下、1ずつ加算されていきます。デフォルト

はFalseで、無限に巡回します。「0」 を指定した場合は、ルートベージのみ巡回し

ます。

な し メモリを利用する (デフォルト)

ファイル名 (nu‖ ) ファイルに保存する

TokyoCabinetに保存する

DB 7 7 4 )bZ (anemone.kch) KyotoCabinet tciRFf 6
MongoDBtr+r)a ) (anemone),11,2 ! =>4
(pages)

MongoDBに 保存する

RedisnT) 
= 

YECII (anemone) Redisに 保存する

DBフ ァイル名 (anemone.db) SQLite3に保存する

241

:細

gl:tloaz z-( lv& (anemone.tch)



Chapter4 H*tttlBfi,*,

▼ ページ階層の数え方

4‐ 6

APIを利用した収集匁
本書では、クローラーでのデータ収集を中心に取り扱っています。しかし、デー

タを収集するという目的に対しては、クローラー以外にもさまざまな選択肢があり

ます。その1つがサイト運営者側が提供しているAPIです。

4・ 6‐ l AP:を利用するメリット

APIは、アプリケーション・プログラミング・インターフェース(Application Program

ming lnterface)の 略であり、ソフトウェア間でやり取りするための仕様です。

HTMLを スクレイビングしてデータを収集する場合は、HTML変更の影響を受

けやすく、その都度メンテナンスが必要なことや、データのみではなく人間が理解

できるような視覚的な表現を含むなど、データとして見ると転送効率が悪いことが

あります。これに対してAPIは、ソフトウェアが利用することを前提としているた

めに、一般的にはインターフェースの一貫性が高く、変更の影響を受けることは少

ないです。

また、データを受け渡しするAPIの場合は、データのみやり取りするために、無

駄な部分が少なく転送効率が高いです。サイト運営者としても、Webサ イトをス

クレイビングされるよりAPIを 利用される方がメリットが大きく、大手のサービス

であればAPIが提供されていることが多いです。例えば、Amazonで あれば商品情

報や関連コンテンツを検索できるProduct Advertising API、 Googleの検索や地図

APIや、Twitter、 Facebookの 各種APIな どさまざまなAPIが提供されています。

0)

レートベ

(深さ :

1層 目

(深 さ :1)
1層目

(深 さ :1)
1層 目

(深さ :1)

2層目
(深 さ :2)

2層目
(深 さ:2)

2層 目
(深さ :2)

2層日
(深さ :2)

2層目
(深さ :2)

2層目
(深 さ :2)



4‐6 APIを利用した収集

クローラーによるスクレイピングについては、運営者側の判断により有害と見な

されることがあり、グレーゾーンの部分があるのも否めません。それに対して、運

営者が提供するAPIであれば、利用規約に従って利用するかぎりは問題になること

はありません。また、一般的にはAPIを 利用する方が、クローラーを作成するより

簡単です。APIが提供されている場合は、まずはAPIの 利用から検討するようにし

ましょう。

4-6-2 Amazon Product Advertising API

APIを利用したプログラムの例として、Amazonの「Product Advertising API」

を使ってみます。このAPIを利用することにより、プログラムを通して商品の検索

や商品情報の取得が可能となります。

‡|ビ:L:I:」 l`[≦:三 ]:_11::::f[」!ll`≧ :二
`:」

:ll11:il11:埜 :::型:[_」 :::!::!1_1::≧ :1:!!:!:::1:::::11::!:

Amazon Product Adver“ing APIを利用するには、米国のAmazOn.comのアカ

ウント作成のうえで、PrOduct Advertising APIラ イセンス契約をする必要があり

ます。アカウントの登録およびライセンス契約は、Product Advertising APIの

トップページのアカウント作成から行います。

. Product Advertisin8 API

UiE https://affiliate.amazon.co.jplgp,/advertising/api/detail/main.html

V Product Advertising API F v 7x-/

よ

produ“ Adverti●oO ApI(リ ンク作成用APl)

,o“ct Adver●3mO Aplll.力 n認mO商品情報や関連コンテンツをプログラムを重してアクセスできる,―
ビス:01供することで、Web昴発をのセ様が、ご自分の Wd,サ イト‐ m2α10商品る昭介することによる紹介

ク情報、関迪商品、カテゴリ情報,新品、中古品0販売情輛

“

よどの取得を5!能とするサービスです。お瑾障蜘よ、

7,91lF,響歩
gfttg壼

潟 灘 鸞 雲「

_L_れて、最大 8%0紹介料勧 す●こは、A,an m艤 翻 餞

なお、
'oO:Ct Aヽ

8■

“"AP1 0利
用申し込みま本べ~ン (D'ア

"ン
トキ咸」ポケンをク′ンクすることで

′
`力
ま、こ拉メ
"レ

ィンドウが鵬きます)にステンプごとのガイドわちりますOζ ご審照0■■しヽ み手続きなラっ

アカウント取得後に、Secu五ty Credendalの ページでAccess Keyと Secret Access

Keyを取得します。Secret Access Keyは、キーの作成時のみしか取得できないため

に、なくさないように大切に保存しておきましょう。

243



Chapter 4 HEr*flHtr;*

I Security Credential 0)^- Y
ItrlE https://console.aws.amazon.com/iam/home?#security-credential

V Security CredentialO^t- )

ポ鍮勇鯉
Sign In or Create an AWS Account
Yfl dry Can h @g Idr .dlry Alldoo.cm.@uil ot
puenrot . lw.rflntbvffig'r.h. lrd

Ms]| sbo,@
^ffi 

M: 
'$ 

hdamrh d r,6

aws b.l. sopFn FdtuG
。・.認出
=出
1踊踏

繭薔函画面函函D

Amazon Product Advertising APlo)1 y ,,s-1 4 ) 7 t)

Amazon Product Advertising APIの 利用は、各種パラメータを埋め込んだURL

でリクエストを送ります。レスポンスは、XML形式で返ってきます。直接APIを

操作することも可能ですが、URLの 生成やレスポンスフィールドのパースなどが

多少煩雑なので、ラッパーライプラリを利用すると簡単に利用できます。いくつか

モジュールはありますが、2014年現在で一番利用されているのは、「Amazon ECS」

というサードパーティのモジュールです。

インストールは、gemで行えます。

● Amazon ECSの インストール

インス トール後に、gem‖ st amazon‐ecsで次のように出力されれば成功です。

244

S gem inSta‖ ama20n― eCS



4‐6 APIを 利用した収集

●インストールの確認

鸞墨L::ll皇
`:[121:L_1::::1堅

1111[12上生」llil:::[::1::」 :ling AI:!1_11:≧ !::::」 :旦 :!:11
Product Advertising APIは、商品検索系のメソッドと商品購入系のメソッドが

あります。クローラーの代替となるのは、商品検索系のメソッドです。下記のスク

リプトは、一覧検索と個別商品の表示の例です。

実行の際には、先ほど取得したAccess Keyと Secret Access Keyを 設定してくだ

さい。また、「:ぉ sociate_tag」 に、登録時に指定したアプリケーション名を設定し

てください。

日一覧検索と個別商品の表示

# -*- coding: utf-8 -*-
require 'amazon/ecs'
require ' pp'

Amazon: :Ecs.options = {
:associate_tag => '

: At,lS_access_key_id
:Aws_secret_key =>

}

#商品検索
OptS =(
:country => 'jP',

:author => '1ヒ プデ謙三三'

}

res=Amazon::Ecs.item_searchく '三国志',opts)
reS,itemS・ eaCh dO liteml

puts item.get('ItemAttributes/Titlet)

end

#個 別商品の詳細表示
res = Amazon::Ecs.item_lookup(
lB003XEFT6Y', :response group => 'Small,

ItemAttributes, Images', :country => :jP')

pp res

245



Chapter 4 高度な利用方法

O item―search.rbの 実行例

APIを利用すると、クローラーを作成しAmazonの ページから一覧と個別商品を

抜き出すよりも、はるかに少ない労力で同じことができます。本書の主要テーマは

クローラーの作成ですが、データを収集するという目的であれば積極的にAPIを 利

用すべきと考えています。

それでは次の章から、個別のサイトやサービスを対象に、より実践的なクロー

ラーを作成していきましょう。

246

S四り hem‐
"a“

h・力            |‐
文庫版三国志完結記念セット(全 14巻 )

三国志 (1の巻)(ハルキ文摩一時代小説文庫)

三国志 10(バンブーコミックス)

三国志(2の巻)参旗の星 (ハルキ文庫一時代小説文庫)

三国志 1(バンブーコミックス)

三国志〈3の巻〉玄tの星 (ハルキ文庫一時代′」ヽ説文庫)



|.■

_置 ||

●
●

・　
．
■

■
，

●
　

　

一一
■

一

‐
      .‐

    .‐ |.

|   ||

‐,■     ‐11.
|     ="_||

―■■・・■●・

・
‐
‐ ‐ .:=::

.1:11



Chapter 5 目的別クローラーの作成

l
さまざまなクローラーを作成するにあたり、まずは検索エンジンから情報を抜き

取る方法をマスターします。検索エンジンから抜き出す情報としては、検索結果と

して返ってくるサイト名・URL・ 概要の他に、検索結果数というものも情報とし

て価値があります。ここで紹介する方法は一番初歩の部分ですが、今後いろいろな

組み合わせで利用できるでしょう。

5-l-l Googleo)tfi#fif;*r)7, v.{ Cz2'
検索エンジンとして欠かすことができないのがGoogleで す。Googleの 検索結果

は少し癖があります。例えば、ユーザーエージェントにより検索結果のHTML自

体が大幅に変わってくるため、ブラウザでIDな どを確認してスクリプトに落とし

込もうとした時に、想定どおりに動かなくてとまどうことがあるかもしれません。

しかし、検索方法自体はシンプルです。

・ https:〃www.9009!e.com/search?q=サ ーチキーワード

サーチキーワードのところに、URIエスケープした文字列を配置します。Rubyの

場合では、URI#escapeメ ソッドで文字列をURIエ スケープできます。例えば、「ク

ローラー」という文字列をURIエ スケープする場合には、次のような形になります。

escaped_ur1 = URI. escape ( " https : / /www. google. com/ search? q=, a-7 ^ " )

URIエスケープを配置すると、次のようになります。

5‐ 1

Googteの検索結果を取得する

:/

11

ASCII文字列 (日 本語の文字列以外)は、エスケープ前と後でも同じなのでキー

ワードのみURIエスケープして繋ぎ合わせても問題ありません。次のスクリプトは、

Nokogiriを利用してGoogleの検索結果をスクレイビングした例です。検索結果数と、

検索結果のサイトとURLを表示しています。

なお、Googleの検索結果をブラウザ上でクリックした場合は、Googleの カウン

トプログラムを経由して実際のページが表示されることになります。そのため、遷

移先のURLに ついては、URLのパラメータの一部として組み込まれています。そ

248

_●  ■
=:



5‐ l Googleの検索結果を取得する

こで、CGI#parseメ ソッドを利用して、パラメータを分解のうえで取得しています。

l Googleの検索結果を取得する

なお、Rubyに対してSSLの ルー ト証明書の設定もしくは配置をしていない場合、

実行時にSSL関係のエラーが発生します。対処方法としては、所定の位置にルー ト

証明書を配置する必要があります。詳しくは、p.77、 79を参照してください。

● nokogiri‐ googie.rbの実行例

なお、Googleの検索結果の数については、それほど正確な値は出さない仕様に

なっています。あくまで参考程度に利用するのがよいでしょう。

escaped_url = URI.escape(
" https : / /ww. google , com/ search?q=rE-)-&6s=s1f-$fftt]=j2 " )

doc = Nokogiri: rHTIttL(open(escaped_url))

#検 索結果の数
putS dOC・ Xpath〈 “//*[Oid='reSultStatS']/teXt()'1)

S -x- coding: utf-8 -+-
require'nokogiri'
require'open-uri'
require ' uri'
require'cgi'

doc.xpath(' I lh3/a' ).each do llinkl
puts CGLparse(link[ :href] )["adurl"]
puts link.content

end

249



Chapter 5 目的別クローラーの作成

また、Googleは短期間のうちに大量のアクセスを繰り返すと、警告とともにブ

ロックされ一定時間、同一のIPからの検索が一切できなくなります。会社や学校な

どでプロキシサーバ経由でアクセスして同一のIPを利用している場合は、その組織

全体に影響を与えます。利用が必要な場合は、細心の注意を払う必要があります。

本来であればAPIを利用すべきですが、制約が厳しいので難しいところです。

5・ 1‐ 2 Gemを利用する

上記と同じ処理をするGemの ライブラリがいくつか公開されています。そのな

かの1つ に、「google― search」 があります。このライプラリは、Web検索の結果以外

にも画像検索やプログ、ニュース検索といろいろな検索に対応しています。インス

トールは、gemか らライプラリ名を指定するだけで可能です。「Successmlly

installed google― search―■0.3」 と表示されれば成功です (バージョンは2014年 7月 現

在です)。

t google-searchDl > 7 l. - lb

lnstall google-search

google― searchラ イブラリを使ったスクリプ トは、次のとお りです。エンコー ド

やパース処理をライブラリが行うために、短い記述量で利用できます。

口googie― searchを 使って情報を取得する rb

● google¨ search‐ api.rbの実行例

coogle: :Search: :Web.new(:query =>' ra-A-' ).each do liteml
puts item. uri
puts item.title

end

# -*- coding: utf-8 -*-
require'google-search'

e-Words

250

http://dic.nicovideojp/a/%E3%82%AF%E3%83%AD%E3%83%BC%E3%83%A9
ヽ

$ ruby googl*search-api.rb

http://,a.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%[3%83%BC%E3%83%A9

クローラーWttpedia

htp://e― words,p/w/E382AFE383ADE383BC[383A9,html



5‐ l Googleの検索結果を取得する

5‐ 1‐ 3 Googte Custom Search APlを 利用する

Goo」eは、いろいろなAPIを用意しています。検索に関するAPIの 1つに、「Google

Cusわm Search API」 があります。無料で利用できるものの、1日 あたりの使用制

限があります。2014年 7月現在では、1日 200回 の検索ができます。

機生塁土三2生盛
Goo」 eのAPIを利用するには、Goo」eのアカウントを作成してログインのうえで、

「Google Developers COnsOle」 でプロジェクトを作成する必要があります。そのう

えで、Custom Search APIの利用設定と、API利用のためのキーの作成、検索エン

ジンIDの取得が必要です。

r GooBle Developers Console

Eil! https://cloud.google.com/console/project

? Google Developers Console

■□■

251



プロジェクト作成後にAPIのセッティング画面で「API」 を選び、「Custom Se=ch

API」 を有効にします。

▼ Google APIセ ッティング画面

次に、「認証情報」を選択し、APIを 利用するためのキーを作成 します。「公開

APIへのアクセス」の [新 しいキーを作成]を クリックして作成します。キーの種類

はい くつかありますが、 [サーバーキー]を選択します。キー作成時に接続元IPの

制限が可能ですが、特に必要はありません。

Ч口'Goo91e API Key選択画

「Custom Search API」

を有効にする
4tues
(4.M!l4@s

■■

■■

口■

【
　

●

|′

|

喘 Pi● 4
目 ■

[新 しいキーを作成]を

クリックする

が |=

Mソ Piolect

■

…

.lr.0brbrt10itri?B{d!i*r lr,u

252

Chapter 5 et!fr\2 a - ? -ofErfr,

一
ヽ

『
・~  1]il::l∫

|)",1,_¬り tした8 _||■
    鎌.。 ||。。. _

攀



5‐ l Googteの 検索結果を取得する

踏孵Google API Key選択画面

キーの作成が完了すると、「認証情報」画面にAPIキーが表示されます。APIキー

はなくさないように保存しておきましょう。

カスタム検索エンジンの作成

最後に、カスタム検索エンジンを作成 します。Googleの「カスタム検索エンジン」

ページから作成します。 [カ スタム検索エンジンの作成]ボタンをクリックします。

口「カスタム検索エンジン」ページ

回■httpS:〃www.goo91e.com/cse/

鸞ン「カスタム検索エンジン」ページ

Go・81eカスタム検索エンジン   | _|||ら '・ヽ'・ .1‐
:■●汁・′1‐  |1目|

国圏目國□お客様のサイトを簡単に検索できるようになります

鶯 |‐
‐1驚給饉露‖=酪

鞣

カスタム検索エンジン作成時に、検索対象ページを最低1つ以上指定する必要が

あります。作成後の設定変更で、それ以外のサイトも検索対象とするために、適当

なURLを入れておけば問題ありません。

“
q"b“。おpers Conso eに 表示されるAP1 0よ 固有のプロツψ卜Dをリ
クエストに含める必要|わ崎ります。これによリリクエストを特定0プロジェクトに関

17777,■ ::Ant“
|キー|: iOSキー |―■―

新しいキーの作成

[サ ーバーキー]を クリックする

253



Chaptcr 5 目的別クローラーの作成

▼ カスタム検索エンジンの作成ページ

作成後に検索エンジンの編集を行い、「検索するサイト」の項目で「追加したサイ

トを重視して、ウェブ全体を検索する」に変更します。そのうえで、[検索エンジ

ンID]ボタンを押下して、IDを取得して保存します。

▼ カスタム検索エンジンの編集ページ

検索対象ベージの

URLを設定する
ilro{-, rxilFc6&rn

,rlo{ in.l,*<d&.lrd

[検索エンジンlD]

をクリックする

「追加したサイトを重視

して、ウェブ全体を検

索する」に変更する

囃ｍ̈

‐

254

E i!!-@.0--



5‐ l Googleの検索結果を取得する

炒APIを利用する

APIキーと検索エンジンIDが取得できたので、この2つを使いAPIを 操作します。

APIはHTTPS通信で行い、リクエストはURLで送り、結果はJSON形式で返ってき

ます。

実行にあたっては、「apLkey」 と「CuStOm_Se″ Ch_engine」 d」 に、取得したAPI

キーと検索エンジンIDを設定してください。

:APIを使ってGoog:eか ら検索結果を取得する

,googie― api.rbの実行例

G00gle Custom Settch APIの パラメータの詳細については、Google開発者ペー

ジを参照してください。

■Google開発者ページ

回口l httpS:ノ%developers.google.com/custOrn‐ search/?h:=ia

aPi_key=`嚇棘鸞:∫:1醸鞭

``|1騨

1

custoLsearchrngine_id=1璽 職0薔1襲億:鞭魏:当撤寒1韓 '

search_word=URI.encode("ク ローラー")

url =

"httPs:/′ ぃルlw.goOgleapis.cOm′ customsearch/v■ 7key=

#{aPi_key}&CX=#{CuStOm_SearCh_engine_id}&q=

#{SearCh_WOrd)''

# -*- coding: utf-8 -*-
require'json'
require 'uri'
require'open-uri'

json = コSON.load(open(url))

json['itemsI].eaCh dO liteml

putS item['title`]

puts item['link']

end

255



Chapter 5 目的別クローラーの作成

〕
文章を解析して統計的なデータを取得する場合、そもそも元の文章をどこから取

得するかというのは重大なテーマです。インターネット出現以前は、新聞のアーカ

イプデータがほぼ唯一のデータでした。現在は、目的に応じてニュースサイトゃ

Twitter、 プログなどからデータを取得するという手法が取られています。プログ

については、適切な文章の長さと、比較的構造化されているために、クローリング

しやすいというメリットがあります。また、タグやカテゴリというメタデータで、

1つ 1つの記事自体にある程度の意味づけがされています。そのため、特定カテゴリ

の文章を収集するという目的を達しやすくなっています。

ブログをクローリングする場合は、プログのURLリ ストをどう収集するのかと

いう点と、収集したプログから本文部分のみを抽出する方法が重要になります。そ

れぞれ、いくつかの方法を紹介します。

5・ 2・1 個別プログの記事取得

個別プログの記事取得にはいくつかの方法があります。それぞれ一長一短あるの

で、目的に応じて使い分けることになります。代表的な方法として、次の3つをあ

げます。

・ Anemoneな どで自動巡回する

・ Sitemapsを 参照する

・ RSSから定期的に新着記事を取得する

1つ 目の自動巡回について、プログは比較的循環しやすい構造になっています。

一方で、1つのプログエントリーが個別記事、カテゴリ別、月別などさまざまな切

り口でまとめられているために、内容が重複する場合があります。例えば、ライブ

ドアプログの「lived00r B10g開 発日誌」というブログでは、次のような構造になっ

ています。

・ トツプページ :http://blog‖vedoo可 p/stafF/

・個別の記事  :http://b109.‖ Ved00r.jp/Sta“/archives/ラ ンダムな数字.html

・カテゴリ別記事:http:〃 b!og.‖ vedoor.jp/star/archives/catヵ テゴリ番号.html

・月別記事   :http://bb9」 ivedoorjp/sta7archives″ YYY― MM.html

5-2
)a2'-.,o>2s-t)?r'



5‐2 プログヘのクローリング

個別の記事以外も収集すると、記事内容が重複してしまいます。また、「http://

ブログドメイン/ブログ名/」 という形式のため、何も指定しないで巡回すると、同

じブログドメインの別ブログも収集してしまう可能性が高いです。そのため、巡回

先を絞るなどの対応が必要となってきます。

麟巡望聖型!菫狂⊆」菫⊇二奎生

下記のスクリプトは、Anemoneで「ht,//blog.livedoorjp/Star/」 の個別記事の

みを処理する例です。巡回対象の絞り込みのみで、具体的なページの処理は記述し

ていません。ブログのページ処理は、後ほど解説します。

E巡回対象の絞り込み

● anemone¨ b:og.rbの 実行例

# -*- coding: utf-8 -+-
require ' anemone '

requlre'open-uri'

urls = ["http: //blog.livedoot.jP/ staftl")
oPts = {

:depth_limit => false,
:delaY =7 1

)

Anemone,crawl(ur1s, opts) do lanemonel
anemone,focus_crawl do lpage I

page.tinks.keep_if { llinkl
Iink. to-s. match ( /blog. J.ivedoor, jpY I staltY t archivesY/ (Yd+)Y' html/ )

)
end

anemone.on_every_page dO lpagel

#処理対象とするURLの表示
puts page.ur■

end



Chapter 5 目的別クローラーの作成

スクリプトを実行すると、「ht●//b10g.lived00r.jp/sta丘 /」 の個別記事の一覧

(URL)を取得します。

:塾堅翌墜_2参墨
次にSitemapsを 参照する方法です。Sitemapsは 、Webサ イト側から検索エンジ
ンなどに、サイト内でクロールすべきURLを通知するための規定です。XMLフ ォー

マットで記述され、サイト直下に「sitemap.xml」 という形で配置されています。ま

たサイト内のページが多い場合は、 トップの「sitemap」 の下に複数のSitemapsを配
置する階層構造になります。

次のスクリプトも、「livedoor Blog開 発日誌」のSitemapsか ら個別ページのURL
を取得しています。URLの リストを作成できれば、別途データ取得と解析のプロ

グラムの作成は容易になります。

ISitemapst SURLtryCf6

O Sitemap‐ parserrbの実行例

base_url="http : / /blog. takuros. net/sitemap. xml"
base_ur1="http ; / /blog, livedoor,iplstaff /sitemap. xml"
sitemaps = get_xml_doc(base_url)
sitemaps.elements.each('sitemapindex/sitemap/loc, )do I element I

sitemap = get_xml_doc(element.text)
sitemap.elements. each( 'urlset/url/Ioc/ ' )do I element I

Lf lY/ sta+fYl archivesV/(Yd+)V.htmI/ =- element.text
# KEiJ*8f6URLo)*fr
puts element.text

end

end

end

# -+- coding: utf-8 -+-
require'open-uri'
require' rexmf /document

def get_xml_doc(url)
return REXML: :Document.new(open(urI))

end

258

..   ||   
‐‐‐

$ ruby site6ap-parser:b



5‐2 プログヘのクローリング

Sitemapsが存在する場合は、巡回先の取得方法としては一番効率がよくなります。

反面、ブログによってはSitemapsを 備えていない場合 もあるので、クローラーに

よる巡回と使い分けるのがよいでしよう。

磯_:::::::::_」
`Zl`::≧

:lililttli:i::|::::::::2_1]!::`!:il

先の2つスクリプトは、ブログ全体を対象として巡回する場合に有効な手段です。

しかし、毎日クローラーを動かす場合は、差分のURLの みで十分です。そういっ

た場合は、RSSを利用して巡回先を取得するといった方法が有効になります。

次のスクリプトは、RSSフ ァイルを取得し、1日 以内に追加されたエントリーが

あれば、そのURLを 表示します。追加エントリーがない場合は、何も表示されま

せん。日数の調整をすることにより、その間の差分データを取得する仕組みを作れ

ます。

選RSSから巡回先を取得する

url="http : / /b1og. livedoor. jplstaff /index, rdf "

doc = REXI*IL: :Document.new(open(urI))
doc.elements.each('rdf:RDF/item' ) do liteml

dc_date = Date. parse(item. elements [' dc : date' ] .text)

#■日以内に追加されたデータ、処理対象とする

if (Date.today ― dc_date).to_i く= ■

#巡回対象とするURLの表示
puts item.elementS[:■ ink'1.teXt

end

* -*- coding: utf-8 -*-
require 'open-uri'
require' rexml/document'
require'date'

259



Chapter 5 eAk)E\2 a-)-@{Ffr,

● rss¨ parser.rbの実行例

なお、プログの更新が前日からされていない場合は、結果出力はありません。

5‐ 2‐ 2 本文抽出

クロール対象のブログのURLが取得できれば、次は解析です。プログの解析の

場合は、本文のみを抽出して解析するといったケースが多いです。

方法は2種類あります。ブログごとに本文部分を指し示す部位を特定して抽出す

る方法と、個別プログの構造にかかわらず汎用的に抽出する本文抽出モジュールを

利用する方法です。抽出精度という点では、個別に作 り込む前者の方が高くなりま

す。一方で、複数のブログを抽出する場合は汎用的な仕組みが必要になります。

鸞HTML構造による抽出

次のスクリプトは、はてなブログの記事から本文を抜き出している例です。対象

となるブログは、スクリプト内で直接指定しています (C))。

本文部分の特定は、Firefoxや Chromeの 開発者ッールを利用し、本文を選択して

いる状態で要素のXPathを 抜き出すと簡単に特定できます (→ p■ 83)。 ブログサービ

スごとにIDやクラス名は異なりますが、「content」 などの名前であることが多いです。

ブログサービスの全体の新着記事の取得

これまでのスクリプ トは、個別ブログを対象に巡回先を取得する方法でした。で

は、不特定多数のブログから、記事を収集 したい場合はどうするのでしょうか ?

1つの方法としては、各ブログサービスの新着ページや新着RSSを 利用する方法が

あります。RSSで配布されている場合は、個別ブログの新着記事の取得とまったく同

じ方法で取得できます。

■はてなダイアリー 日記一覧
ロコl http:ノグld.hatena.ne.ip/diarylist?mode=rss

一方で、プログサービスの提供者側が、新着記事のRSSの 配布サービスを止める傾

向にあります。

260

S rubyrss‐ parserrb

http:〃 blo9.livedoo●p/stafF/archives/51856334.html



5‐2 プログヘのクローリング

|プログの本文を抽出する rb

● nokogir卜extract.rbの 実行例

本文抽出モジュール

次にブログの本文抽出モジュールを利用した例です。今回紹介する「extractcontent」

という本文抽出モジュールは、先ほどのHTMLの構造を見てルールベースで抽出す

るのではなく、自然言語処理を利用して本文らしい文章を計算して抽出しています。

■Webページの本文抽出(nakatani O cybozu labs)

回画http:〃 labs.cybozu.co.jp/b:o9/nakatani/2007/09/web_1.htrnl

残念ながらこのモジュールはRuby l.8.5で実装されてるため、正規表現のエンジ

ンが変更された関係でRuby 2.0で はエラーが発生します。別の人により、Ruby 20

でも動作するように改良されたものが公開されています。そちらをダウンロードし

て、インストールすることが可能です。

■GitHubの extraCtCOntentページ

ロコl httpS:ノ%github.com/monoOx/extractcontent/

盪

html = open(
' http : / / blog . takuros . net / ent ry / 20L40L04l !388788175 ' ) . read o-----1;

doc = Nokogiri: :HTML(html)
puts doc. xpath ( "//div[@c1ass=' entry-content' ] " ). text

* -*- coding: utf-8 -*-
require'open-uri'
require 'nokogi.ri'

261



Chapter 5 目的別クローラーの作成

上記のページからZIPフ ァイルをダウンロードし、任意のディレクトリに展開し

ます。そのうえで、展開したデイレクトリに移動し、gemで ビルド・インス トー

ルします。なおビルドにはDEVELOPMENT KITが 必要です (→ p.76)。

t extractcontent,) I > 7 l- - tb

インス トール時にWARNINGメ ッセージが出力されます。これは、ソース中にラ

イセンスと説明表記がないための警告です。無視して先に進んでも問題ありません。

extractcontentは 、HTMLを渡すとcontentと titleの 文字列を返 します。内部的な

処理としては、HTMLを ブロックという単位で分離し、本文らしくないプロックに

低いスコアを与え、スコアが高いプロックが並んでいる部分を本文として扱います。

スコアが低 くなる要素としては、配置やアフイリエイトのリンク、フッターによ

く出るキーワー ドなどがあります。

I extractcontent?ft€ffi ff 96 extract.rb

O extract.rbの実行例

html = open(
' http : / /blog.takuros. net/entTy / 20L40:.c'4 I 1,388788175

content, title = Extractcontent.ana]-yse(html)
puts title
puts content

) . read

# -*- coding: utf-8 -*-
require' extractcontent'
require 'open-uri'

●
　

〓
＾

S ruby extr.ct.rb

262

$ gem bulld extractcontent.gemspec

$ gem lnstall extractcontcnt-O.O.1.gem

醸._、 .....:菫

_3年ほど前に、Ruby製のクローラー“anemone・ を紹介しました。その当時から.|_‐
完成度が高く、Rubyでクローラーを使う場合はanemoneを利用してきました。最近t他に

新しくて良いのがないか調べましたが、機能面の網羅性という意味でanemoneを超えるも
のは見つけられませんでした。そこで改めてanemoneの ソニスを読んでみたところ、クロ

やはり中々良い出来です。冬休みの宿

題ではないですが、勉強の意味を兼ねてソースを追っていくことにします。

ギ〕ボ



5‐3 Amazonのデータを取得する

5‐ 3

Ama20nのデータを取得する

Amazonの場合は「牛6 APIを利用した収集」(→p.242)で説明したとおり、データ

の取得にはクローリングではなくAPIを利用すべきです。API経由で取得できない

データに関してのみ、クローリングを併用して補完するのがよいでしょう。

APIで取得できないデータとしては、新着情報やランキング、セール情報などが

あります。これらのページから商品IDのみを取得し、その後はAPI経由で商品デー

タを取得しましょう。

5… 3… 1 商品 :D「ASiN」

Amazon内 での商品は、ASIN(Amazon Standど d ldentiication Number)で 識別

されます。ASINは、英数字からなる10桁の番号です。本、CD、 DVDな どカテゴリ

を問わずに、全体で一意の値となります。本の場合は、ASINはISBN(Internauon」

Standard Book Number)と なります。ISBNについては10桁 もしくは13桁ですが、

Amazon内では基本的には10桁のISBNを利用しているようです。

Amazon内 で商品を扱 う場合は、ASINが必要にな ります。HTMLや APIか ら

ASINを収集し、APIを 通じて商品を取得するのがクローリングの流れとなります。

5‐ 3… 2 商品 :Dの取得

Amazonで商品検索を行う場合は、APIを利用しましょう。画面から抜き出すメ

リットは、ほとんどないです。

次のスクリプトは、Amazon.co.ipか ら「本」カテゴリを対象に「クローラー」をキー

ワードにして検索した例です。検索結果のなかから、ASINを抜き出しています。

I Amazonの検索結果から商品:Dを取得する amazon-search.rb

# -t- coding: utf-8 -*-
require 'open-uri'
require'nokogiri'
require 'uri'

search_word = URI.escape(" rtr-r-" )
ur1=

" http: / /www. amazon.co.jpl s/tef=nb_sb_noss ?url=
search - a Iias%3Dstripbooks&fieId - keyword s=

#{search_word}"

263



Chapter 5 目的別クローラーの作成

doc = Nokogiri: :HTML(open(ur1))

doc. xpath ( " / /h3 [@class=' newaps' ] /a" ), each { | item I

# ASIN

puts item[ : href ].match(%r{dpt (.+)}) [r]
)

,amazon― search.rbの 実行例

次は同様の処理をAPIで行った例です。HTMLの変更の影響を受けないので、安

定して使えます。実行の際には、Rassociate_tag」 「:AWS_access_key_id」 「:AWS_

secretkey」 を設定してください (→p243)。

I APlでAmazonの 商品lDを取得する

# 6ff&*
res = Amazon: : Ecs. item_search(

' ra-A-', ;search_index =>'Books',
res.items,each do liteml

puts item.get('ASIN')
end

AWS_secret_key =>

: country 'jP')

# -*- coding: utf-8 -*-
require 'amazon/ecs'

Amazon::Ecs.options = {

:associate」 ag=>'“lh,11`||■22.:,
:AWS_access_key_id => 'A"S‐ IACCESSi κ

=Y'

264

5 rubyama20n‐ SearCh.rb

4873111870

4010550155

4873113024

4492973222

4844335359

4800710138

'^省略 ^:

:●

`



5‐3 Amazonの データを取得する

● amazon‐api‐search.rbの実行例

5¨ 3・3 商品データの取得

商品データを取得する際も、APIを利用することを強く勧めます。下記のスクリ

プトは、商品詳細ページから、商品ID「 4873111870」 の商品の、書籍名・価格 。画

像イメージのURLを 抜き出しています。

I Ama20nの 商品データを取得する amazon-detail.rb

● amazon…detalLrbの実行例

puts doc.xpath(.1//span[Oid=ibtAsinTitle']'').text

puts doc. xpath ( " //span [@id=' actualPricevalue' ] /b" ). text

puts doc. xpath ( " / i img[@id=' prodlmage' ] " ) . attribute( " src" ) .text

十 書籍名

#価 格

#画 像イメージのURL

doc = Nokogiri: :HTML(open(url))

# -+- coding: utf-8 -*-
require'open-uri'
require ' nokogiri'

aSin = ''4873■■■870"

url="http://www.amazonoco.jpノ dP/■{asin}'1

265



Chaptcr 5 目的別クローラーの作成

次は同様の処理をAPIで行った場合のスクリプトです。Amazon::ECSモ ジュール

では、item_lookupメ ソッドでASIN指定でのデータ取得ができます。XMLが返さ

れるので、任意の要素を取得します。実行の際には、Rassociate_tag」「:AWS_

accesttkey_id」「:AWS_secretkey」 を設定してください (→ p.243)。

日APIで商品データを取得する

'amazon‐
ap卜detaiLrbの実行例

5‐ 3‐ 4 新着・ランキング・セール

新着リス トやランキング・セール情報は、残念ながらAPIか ら取得できません。

HTMLを解析して、ASINを取得します。抜き出し方は、「2-5-3ス クレイビング機

能の作成」(→P.91)で説明したとおりです。

# -*- coding: utf-8 -*-
require 'amazon/ecs'

Amazon::Ecs.options ‐ {
:aSSOC■ ate_ ag =〉  'samplea.pp.■ 22',

:AWS_access_key_id => 'AWS_ACCESS_KEY',

:AWS_secret_key => 'AWS_SECRET_ACCESS_KEY'

}

■ 商品検索

res = Amazon::Ecs.item_■ ookup(
14873■

■■8701′  .reSponse_group =>
ISmal■
, ItemAttributes, lmages', :country =〉  'jP')

十 書籍名

puts res.items.first,get("ItemAttributes/Title")

#価 格

puts res. items. first. get ( " / /FormattedPrice" )

#画 像イメージのURL

puts res. ltems.f irst. get ( "Mediumlmage/URL" )

ニック101選エ

¥

266

$ ruby amazon.api-detailJb



5‐4 Twitterのデータ収集

■Amazon.co」 p新着ニューリリース

回画http:〃www.amazOn.c。 lp/gp/new‐ releases

口Amazon.co.ip新着ニューリリース:本

回■http:〃 lwww.amazon.cojp/gp/new… releases/books/

r Amazon.co.jp ^iZ l'.'e7-
!!E http://www.a mazon.co.iplg p/bestsel lers/

■Amazon.oo.,p:タ イムセール

回□http:′グwww.amazon.co.jp/%E5%82%BF%E3%82%A4%E3%83%AO%E3%82%BB%E3

%85%BC%E3%83%AB/

牢
Twitterに 流れるTweetの データとしての強みは、即時性と属性情報です。まず

即時性については、一度の投稿が140文字という制約のために、Webサイトやブロ

グのようにまとめて書くという使われ方ではなく、今起きていることをすぐに書く

というような利用のされ方が多いです。そのため、即時性の高いデータとして活用

できます。

属性情報には、1つ 1つのTweetに はユーザー名とつぶやきだけではなく、さまざ

まな付随情報が付いています。例えば、発言した人の情報に始まり、そのTweetが

どれくらいお気に入り登録やRetweetさ れたかなどです。また、ユーザーの設定に

よっては位置情報も付いてきます。それ以外にも、ハッシュタグといったTweetを

分類するための、ゆるい仕組みもあります。

Twitterの データを上手く収集することで、今までできなかった分析が可能にな

ります。Twitterの データ収集の方法としては、HTMLか らのクローリングと、

APIか らの収集の2つがあります。Twitterの場合もAPIを使うべきです。HTMLの

クローリングでは、収集できるデータも限定され、かつAPIに比べて手間が多いで

す。本書では両方とも紹介しますが、APIを 使うことをお勧めします。

5‐ 4‐l HTMLか らのクローリング

まずはHTMLか らのクローリングです。Twitterの データの収集の仕方としては、

自分もしくは他人のタイムラインを取得する場合と、検索結果を取得する場合の2

つのパターンがあります。

5‐ 4

Twitterのデータ収集



Chap"r5 目的別クローラーの作成

機堅堡型塞2重
=タイムラインの取得の場合、取得対象は、

・ https:〃twiter.com/ユ ーザー :D

という形になります。例えば、日本語版Twitter公 式アカウントの場合は、次の

URLか ら取得できます。

・ https://twitter.com/TwittedP

次に検索ですが、これはいくつかオプションがあります。まず基本的な形ですが、

O search7q=検 索言吾句&src=typed

でトップTweetを取得できます。 トップTweetと は、Twitterに よってフィルタリ
ングされて、重要度が高いもののみ表示される形式です。検索語句については、

URIエ ンコードされている必要があります。「クローラー」で検索した場合は、次の

ような形になります。URIエ ンコードについては、p248を ご参照ください。

・ https://twiter.com/search7q=

%E3%82%AF%E3%83%AD%E3%83%BC%E3%83%A9%E3%83%BC&src=typd

トップTweetで はなく、すべての検索結果を出したい場合は、「f=realtime」 とい

うオプションを付加します。

・ https://twiter.com/search7f=realtime&q=

%E3%82%AF%E3%83%AD%E3%83%BC%E3%83%A9%E3%83%BC&src=typd

ハッシュタグの検索も、基本的には同じです。ハッシュタグ「#」 もURIエ ンコー

ドして「%23」 に変換する必要があります。

・ https://twitter.com/search7f=rea!time&q=%23jawsug&src=typd

また、ユーザー名「mode=users」 、画像「mode=photos」、動画「mode=videos」、

ニュース「mode=news」 などの検索オプションを付けることにより、検索結果を絞

り込むことができます。次のURLは、画像検索の例です。

268



5‐4 Twitterのデータ収集

・ https://twitter.com/search?q=

%E3(る82%AF%E3%83%AD%E3%83%BC%E3%83%A9%E3%83%BC&src=

typd&:Υlode=photos

露二∠_土ヱ∠と二三生の取得

TwitterのHTMLは、タイムラインと検索結果の画面で見た日は同 じですが、

HTMLの構造は違っています。まず、 タイムラインですが、1つ 1つ のTweetは、

「data―component―term=‖ tweet"」 という属性を持つ<Div>タ グのなかに格納されて

います。詳細を取得する場合は、まずはそのくDiv>タ グをまとめて切り出すのがよ

いでしょう。

次のスクリプトは、日本語版Twitter公式アカウントのタイムラインから、Tweet

時間、Tweet本文、Retweet数、お気に入り登録された数を取得しています。

E Twitterのタイムラインからデータを取得する rb

# -*- coding: utf-8 -*-
require'nokogiri'
require 'open-uri'

doc = Nokogiri.HTI{L(open(' https: //twitter.com/TwitterJP' ))
doc. xpath ( " / /div[@data-component-term=' tweet' ] " ). each { | tweet I

# TweetI+FE:

puts Time.at(tweet,xpath(
". //a[@class=' ProfileTweet-timestamp js-permalink js-nav
j s-tooltip' I / span" ) . first [' data -time' ] . to_i) 

-O

# Tweet^t
puts tweet.xpath(

". //p[@class=' ProfileTweet-text js-tweet-text u-dir' ]").text

# Retweet&
retweet = tweet.xpath(

" . / /1i [@c1ass=' Prof ileTweet-action Prof ileTweet -action - -retweet
js-toggle-state js-toggle-rt' l/button[@class=
' Pro'fileTweet - actionCount j s -actioncount
js-tooltip'1")

if !retweet,empty?
puts "Retweet8trttc& z " +

retweet [o] [' data -tweet - stat - cou nt' ] .--------4
end

269

#お 気に入りされた数
like = tWeet.Xpath(



Chap"r5 目的別クローラーの作成

". / /Ii[@class=' ProfileTweet-action ProfileTweet-action--favorite
js-toggle-state' I /button [@class=
'ProfileTweet-actioncount js-actioncount js-tooltip' ]")

if !like.empty?
puts "tjftE^.udl+tcfi. t " +

like I o] [' data -tweet - stat - cou nt' ] >---------O
end

O tWitter― time‖ ne― nokogiri.rbの 実行例

Tweetさ れた時間については、「ProileTweet― timestamp is_permalink is― nav js―

boltip」 というClass名 のくA>タ グ以下のくSpan>タ グのなかに、「data― time」 とい

う属性値で埋め込まれています (0)。

直接くSpan>タ グを取ろうとすると1日 以内の発言かどうかでClass名が変わるた

めに、1つ上のタグから指定する方が簡単です。埋め込まれた値は、「1400201764」

といった形のUnixTime形式です。表示する際は、Timeク ラスなどを利用して変換

が必要です。

また、Retweet数 やお気に入りされた数は、<Li>タ グの下の<Bu■on>タ グのなか

の、「data_tweet_stat_cOunt」 という属性値として埋め込まれています (0)。 Retweet

やお気に入り登録されているかにより、HTMLの タグが変わってきます。また、

270

}

http5://blo9.twitter,com/ja/2014/0717howto7…

Retwedさ れた数 :105

お気に入りされた数 :102

2014-07-1510:51:561+0900

涯1萱整登



5‐4 Twitterの データ収集

Twitterの表示形式の変更に伴い、影響を受ける可能性は極めて高いでしよう。

なお、Rubyに対してSSLのルート証明書の設定もしくは配置をしていない場合、

実行時にSSL関係のエラーが発生します。対処方法としては、所定の位置にルート

証明書を配置する必要があります。詳しくは、p.77、 79を参照してください。

憾壁ヨ壁1堕ヨ整2旦菫量
次に検索結果を取得する例です。検索結果には、Retweetや お気に入りの情報は

付加されていません。それらを取得する場合は、「開く」のリンクから再度HTML
を取得することになります。Tweetご とにHTTPリ クエストが発生するため、非常

に効率が悪いです。後で説明する、REST APIを 利用しましょう。

1検索結果を取得する

● twitte卜 query‐ nokogiri.rbの 実行例

doc = Nokogiri.HTML(open(
lhttps:′ /twitter.com/searchア f=realtime&q=

%E3%82%AF%E3%83%AD%E3%83%BC%E3%83%A9%E3%83%BC&src=typd・ ))

doc.xpath("//1i[@data-item-type='tweet' ]").each { ltweetI
* TweetEtFE

puts Time.at(tweet.xpath(
", //a[@c1ass='tweet-timestamp js-permalink js-nav js-tooltip' ]
/span" ).first[ 'data-time' ] .to_i)

# TweetAA
puts tweet.xpath(". //p[@class=' js-tweet-text tweet-text' ] " ).text

# -*- coding: utf-8 -*-
require ' nokogiri '

require'open-uri'

271

}



Chapter 5 目的別クローラーの作成

Rubyに対してSSLの ルー ト証明書の設定もしくは配置をしていない場合、実行

時にSSL関係のエラーが発生します。対処方法としては、所定の位置にルー ト証明

書を配置する必要があ ります。詳しくは、p.77、 79を参照 してください。

以上が、HTMLを 解析 してTweet情報を取得する方法になります。これ以外の

機能 として、再帰的にデータを取得する方法などがあ りますが、そのためには

Twitterの 遅延ロー ドの仕組みを解析したうえで処理を書 く必要があり、非常に難

解になります。また、一度作成したとしてもTwitterの HTMLの 画面の変更によっ

て、正常に動作しなくなる恐れがあります。上記のことを踏まえて、APIを利用し

ましょう。

5・ 4・ 2 丁witter(Э  APl

Twitterに は、主に2種類のAPIが用意されています。「REST API」 と「Streaming

API」 です。REST APIは、Tweetの取得や投稿、ユーザー操作に関するAPIです。

Twitterの サードパーティ製のアプリのほぼすべてが、このTwitter REST APIを

利用して作られています。画面で操作するのとほぼ同等の機能があります。

これに対してStreaming APIは 、ユーザーもしくはパブリックタイムラインを取

得するだけのAPIです。REST APIに 比べて機能が大幅に少ないように思えますが、

Streaming APIな らではの特徴があります。一度接続するとTwitter側 からデータ

が流し込まれるために、大量のデータを効率よく取得するというメリットがありま

す。用途の使い分けとしては、検索などの場合はREST APIを 使用し、Twitterに

流れるデータを何でも取得して解析したい場合はStreaming APIを 利用するように

します。

5‐ 4‐ 3 Twitter REST APl

REST APIを 利用するには、まずTwitterの開発者ページでアプリケーション登

録して、APIを 利用するためのキーを取得します。開発者画面には、TwitterのID

とパスワードでログインできます。

■Twitter開発者ページ

回■httpS:″
′deV.tWitter.Com/

272



5‐4 Twitterのデータ収集

W Twitter Developerat- /
t Deelope6 AFlHealh alq Dis$rons kureM0d

"面

/

More downloads
for your app

■

with Twiter Cards

wh$ ue6 &.d lin& b yow &mah, && ws lel oh€r
Bs &sho 6@ Tl@b b &nl@d qnt launch y@r app

e'@..umbr ords #ll@.

●騒雛

|:|::|‐ 1111,::曇 :::::

=霞
響轟圏ざ
~

、ま織藤lit

緻A:PIキーの取得

アプリケーションの登録は、右上の自分のアイコンから、 [My Applications]を

選び [CreateNewApp]ボ タンをクリックして行います。

登録には、アプリケーション名と概要、Webサ イトのURLの登録が必須になり

ます。また任意で「Callback URL」 を登録します。WebサイトのURLについては、

必須となっているので適当なURLを選んで登録します。Callback URLに ついては、

webシステムから利用する場合は必須ですが、今回のケースでは必要ないです。

踊舞TwtterCreateNewApp画 面

Create an application

Alpttま ion

アプリケーションの登録の後は、APIキ ーを取得します。「My Applications」 の

一覧画面から作成したアプリのリンクを押下します。アプリケーションの詳細ペー

273

~…
… …

・
‐

 |_

ぎ

●
=:

鸞



Chapter 5 目的別クローラーの作成

ジで、「API Keys」 のタプを押すとAPIが表示されます。ここで、「API key」 と

「API secret」 を取得できます。また「Access level」 などの変更により、参照以外

に更新ができるようになります。今回は、参照権限で十分です。不必要に高いレベ

ルの権限は、与えないようにしましょう。

▼ TwiterアプリケーションのAPI Keyの 確認画面

APIの利用には、さらに「Access tOken」 と「Access bken secret」 が必要になり

ます。API Keysのページを下にスクロールして、「Your access tOken」 の「TOken

actions」 から[Create my access tOken]ボ タンを押下してトークンを生成します。

▼ TwiierアプリケーションのAccess Tokenの 取得

霧ヱニZヱ旦2生∠ス上二空|

これでAPIを利用するためのキーをすべて取得できました。次は、APIを利用す

るためのライブラリのインストールです。Twitterは 、各言語ごとの公式ライブラ

リは提供していません。そのかわり、個人または企業が作ったサードパーテイ製の

ライブラリが多数存在し、公式ベージで紹介されています。このなかから用途に

あったものを利用しましょう。

「APl key」 と「APl secret」 を

記録しておく鳩
…
    

““
41麟議

`」
雷h亀轟娠醸鐵巌艤饉勘c耐

0…rlD    2■ 畷 い

RubyAPl-Sample
Mh ehr MK$: lM

Appllcoton settlngs

[Create my access token]

をクリックする

Your accs to*er
&,fu\l,!ii1|,lt!,d,*@Ji& b.prMe@wtF!.
qc,@peerd&he, fi,N t66NffiVw t@t @ m*6 & dk fuht.Mr tu,l:*r@rlr!@ew,ba.@ru
#6b!@rrFdlshM.

Tokm actions

274



5‐4 Twitterのデータ収集

r Twitter Libraries

UIE https://dev.twitter.com/docs^witter-l ibra ries

今回は、@sferikによリメンテナンスされているライブラリを利用します。その

名も「twitter」 です。

●GitHubの twitterページ

回口httpS:〃 github.com/sferik/twitter

インス トール時にビルドが必要なため、開発者キットが必要になります。Whdows

の場合 は、Ruby lns』lerに ある「DEVELOPMENT KIT」 という開発 ッールや

Microsoftの Visual StudiOな どが利用できます。比較的手軽という点では、

DEVELOPMENT KITが お勧めです。DEVELOPMENT KITの インストールはp.76

をご参照ください。

インス トールを開始すると、数多くのGemが付随的にインストールされます。

完了後、gem‖ st twtterで LOCAL GEMSの なかに表示されたら成功です。

● twitterの インストール

●インストールの確認

】型■2型星
APIの利用は準備までが大変です。しかし、その後はHTMLの解析に比べて簡単
です。次のスクリプトは、REST APIを 使用する例です。実行にあたっては、

「:consumeLkey」「:consumer_secret」「:access」oken」「:accestttoken_secret」 に、

各自が取得したAPIキーなどを設定してください。

E REST APIでTwiterのデータを取得する

* -+- coding: utf-8 -+-
require 'twitter'

275



Chapter 5 目的別クローラーの作成

config = {
: consumer-key =>' TWiTT,ERJPLg(qV',
:consumer-secret =>'TWITTER-API-SECRET',
:access_token =>'TWITTER_ACCESS_ToKEN',
: access_token_secret =>' TWITTER_ACCESS-TO(EN-SECRET

)
client = Twitter: :REST: :Client.new(config)
client.user_timeline('dkfj' ),each { ltweetl

# TweettsFsl

puts tweet.created at

# Tweettl
puts tweet.text

# Retweettl
puts "Retweetdtltcfi. t " + tweet.retweet_count.to_s

#お気に入りされた数
puts いお気に入りされた数 : 1'+tweet.favorite_count.to_s

■ 位置情報

puts ''(立 111青報 : '' + tweet.geo if !tweet.geo.nil?

'twiter‐
time:ine‐api.rbの 実行例

276

}

S rubytwitter‐ timeline‐api.rb                                    ..
2014-07-1812:26:09+0900                                         ..

今日のKindle日 替わリセールは、「マーケテイングの基本 この 1冊ですべてわかる」。コトラーとか読
むのしんどいので、試しに読んでみる h■p://t co/ogc豫 IHLDrd

Retweetされた数 :0

2014-07-1712:Z14:44+0900

展示ブースの隅つこで、JAWSUGの ブースで立つてます。ステッカー配つてます。蝦なので、遊びに来

てください #aws#AWSSummitttawsug http://t.co/WwFdgXndWy

Retweetさ れた数 :8

お気に入りされた数 :3

2014-07-1710:29:54+0900

AWS Summitの会場についた。予想してたけど、凄い人だ。

Retweetさ れた数 :0

お気に入りされた数 :0

―‐省略～|



5‐4 Twitterのデータ収集

APIが返す値の詳細については、Twitter公 式のページで確認できます。Tweet

やRetweetな どの情報の他にも、位置情報やつぶやいたユーザーの属性情報なども

細かく取得できます。

! GET statuses/user_timeline ,\-i
llE https://dev.twitter.com/do cs / api / 1.1 / get /statuses/user_ti mel i ne

5‐ 4‐ 4 Twitter Streaming AP:

twtterラ イブラリを利用すれば、Streaming APIも 簡単に使えます。Streaming

APIは、他のAPIと比べて少し特殊で、起動するとプログラム終了までTweetが流

れ続けてきます。今回利用するAPIは、Streaming APIの なかでも「Sample」 と呼

ばれるものです。これは、全Tweetの うちでフィルタリングされた数%だけが提供

されます。それでも、膨大な量のTweetが流れてきます。スクリプトを実行すると、

いかにTwitterが大量のデータを扱っているか実感できるでしょう。

実行にあたっては、「:consumer_key」「:consumer_secret」「:access_token」「:accesL

bken_secret」 に、各自が取得したAPIキ ーなどを設定してください。

目TwitLer Streaming APiで Tweetを取得する

COnfig = (

:COnSumer_key=>1'W=事 |18LA,1■К
=γ

',

:COnSumeLSeCret=>1,無 ,11機 ,挙 ts囃 ',

Client = TWitter::Streaming::Client・ neW(COnfig)

Client.Sample d。  ltWeetl
if tWeet.iS_a?(TWitter::TWeet)

■ 日本語のつぷやきだけ表示

putS tWeet・ teXt if tWeet・ lang == ::」 a'1

end

end

# -+- coding: utf-8 -*-
require 'twitter'

:access token secret =>

}

:access token => '

277



Chapter 5 目的別クローラーの作成

● twitter¨ streaming― apl.rbの実行例

このTweetオ ブジェクトに含まれている項目については、公式ページを参照 して

ください。idや user名 、つぶやきの他にもさまざまな情報が埋め込まれています。

■Tweetsページ

回口 httpS:〃 deVtWitterCom/doCS/piatform¨ 。bieCtS/tWeetS

l
クローラーという観点から見ると、Facebookは Twitterに比べるとクローズドな

ソーシャルネットワークサービスです。ログイン状態でないと、パブリックに公開

されたタイムラインすら取得できません。収集できるデータも、あくまで自分を中

心とした知人との繋がりが前提になります。一方で、認証APIを使わなくても、

「いいね」やコメント数などは取得できます。これらの情報は、人の関心を示す行

動「アテンション」の重要な指標となります。Facebookを データとして活用する場

合は、アテンションを中心に取り扱うとよいでしょう。

クローラーを作成するうえでの注意点として、Facebookは 純粋なクローラーに

対してはほとんど扉を閉ざしています。ブラウザなどでログインをしたうえで認証

情報を利用するか、Capybaraな どのプラウザを操作するクローラーを利用するこ

とで、データを収集することも可能です。しかし、Facebookは APIが充実してい

るため、わざわざクローラーを作成することにメリットはほとんどありません。こ

のセクションでは、APIの利用を中心に解説します。

5-5-l Facebook Graph API & FQL

5-5
Facebook ^O2 E- t) Y,

278

Facebook Platformと して、いくつかのAPIが提供されています。2014年 7月 現在

S rubytい ,itteF‐Streaming・ api.rb

富山やばすぎ

戦いを挑むペコ可愛い愛しい

カブトムシ似合つてます |

写真がカブトムシでホッとしました。

ツノがなくて、平べつたかつたらと思うとゾゾつとしますΣ(・ Д‖‖)

it各略ti



5.5 FacebookaD, d-t) r,

のバージョンはv2.0で、データ収集系のAPIは「Graph API」 と「FQL」 があります。

FQLについては、このv2.0を もってサービス提供終了となります。v2.0の提供期

間は2016年までとなっています。Facebookと しては、FQLか らGraph APIへ の移

行を勧めている状態なので、新規で作成する場合はGraph APIを選ぶべきでしょう。

5‐ 5Ⅲ 2 認証が必要ない Facebook Graph APl

Graph APlに ついては、認証が必要なものと不要なものがあります。ほとんどの

ものが認証が必要であり、写真やチェックインなど投稿者との関係で取得できるか

どうかの判断が入るものです。認証不要で取得できるものとしては、「いいね」の

数などURLに対する評価です。まず、この値を取得する方法から見てみましょう。

「いいね」の取得は、「http://graphhcebook.com/」 の後に目的とするURLを組み

合わせてHTTPリ クエストします。ブラウザとスクリプト、どちらから取得しても

大丈夫です。

. http://graph.facebook.com/http://www.apple.com/jpl

レスポンスはJSON形式で返ってきます。idは対象のURL、 sharesは「いいね」の

数で、cOmmentsは コメントされた数です。「いいね」などされていない場合は、項

目として出てきません。

日『いいね」の取得結果

"id" : "http: //M.apple.com/jpl",
"shares" t 52!32,
"comments": 1

「5-2ブログヘのクローリング」(←p256)で作成したブログのSitemapsか らURLを

抜き出すスクリプトと組み合わせると、プログ内で注目を集めた記事がわかります。

|プログ内の記事の「いいね」の数を取得する facebookⅢ siternap¨ like.rb

# -*- coding; utf-8 -+-
require'open-uri'
require' rexml/document'
require'json'

def get_xml_doc(url)
return REXML: :Document.new(open(url))

end
279



Chapter 5 eikJBV a -, -@ftfr,

base_ur1=" http : / /blog. takuros. net / sitemap. xml"
sitemaps = get_xml-doc(base_ur})
sitemaps.elements,each(' sitemapindex/si.temap/loc' ) do I element I

sitemap = get_xml_doc(element,text)
sitemap. elements. each (' urlset/url/Ioc/' )

do I element I

resPonse = oPen(

"http: / /graph. facebook. com/#{element.text}" ) . read
json = JSoN.parse(response)
puts json['id'] * => UltOtfi
puts "L\L\la:"+json['shares' ],to_s if json.key?('shares' )

end

,facebook‐ sitemap― :ike.rbの実行例

95514

|  .|■  .|■
‐ .|‐ ‐ ~

|  |‐   
‐  ‐

いいね:1

鍾省重鷲

5‐ 5‐ 3 認証が必要な Facebook Graph APl

前述のとおり、Facebookか ら取得できるデータの多くは、自分との関係のなか

から得られます。そのために、まず自分が何者かということを証明する必要があり、

認証が必要です。認証のためには、開発者登録とアプリケーション登録が必要にな

ります。開発者登録は、初回の1回だけ必要になります。アプリケーション登録は、

新しいアプリケーションの登録の度に必要になります。

I堕壼童菫堡
Facebookの 開発者ページから、開発者登録 していない状態で [Apps]ボ タンを

押し、 [Create a New App]を 押下すると、登録のナビゲーションが始まります。

登録するには、クレジットカー ドの登録もしくは携帯電話でのSMSを使っての認

証が必要になります。ここでは、SMSを 使っての認証の仕方を説明します。

■Facebook Developer画 面

ロコヨhttpS:ノ/developers.facebook.corn/

280

$ ruby facebook-rltemap-like.rb

http://blog.takuros.neV



5-5 FacebookaD, d- t) > /

孵ヽFacebookDeveloper画面

国番号に日本 (+81)がされていることを確認し、携帯の電話番号をハイフンなし

で続けて登録します。そして、[SMSで受け取る]ボ タンを押下します。そうする

と、1分以内にFacebookか らショートメッセージが届きます。そこに6桁の数字が

記載されているので、登録画面に入力します。

踊膠夕FacebookDeveloper 開発者登録画面

↓

[Create a New App] t
クリックする

EF6ek
gtMhodol,moi

@q

□ いOin   確
'“
a"“   Oh田 ●   00籠

“
  ◎ App麺 3  日 恥獅 ent8

携帯電話番号をハイフン

なしで入力する

[SMSで 受け取る]ボタン

をクリックする

新規登録を発了するには、アカウント認証が必要です。あなたの電話番

号がタイムラインに追加 されますが、この情報は友達には表示されませ

You ffi also vodly your eount by addino a cdit d. irr

電鶴薔弩

劇 ;●―ト

■1=●― ■ヽ取●

28798s1
送 られてきた確 認コー ドを

入力する

新規菫様を完了するには、アカウント露肛|が必要です。あなたの電話番
号がタイムラインに追加 されますが、この情報は友達には表示されませ

…

、u can asO ve● ″
"ur“
cOunt"adaing a"“ it caだ■,3

11整回

:::::1艤辣隋晰

電欝薔,

281

AIDS Prodr.rs Swport

F==~~=¬
卜|●ム,・′・o_|■ 1L二三二」

|三:躙



Chapter.5 目的別クローラーの作成

I二∠リケニヒョ∠のキーの取堡
認証用のキーの取得には、Facebookの 開発者ページからアプリケーションの登

録が必要です。開発者ページから[Apps]ボ タンを押し、[Create a New App]を

押下します。アプリ名を入力のうえでカテゴリを選んで、アプリケーションを作成

します。アプリケーションの登録には、Facebookへ のログインが必要です。

▼ 新しいアプリを作成

アプリケーション作成後は、アクセストークンを取得します。アクセストークン

は、「Access Token」 画面から取得できます。FacebookDeveloper画 面上のツール

バーから [Tools]を押して移動します。

アプリケーションを作成しただけでは、ユーザー向けのアクセストークンは発行

されません。「Access Token」 画面で「You need to grant permissions」 のリンクを

押して、権限を付与します。

■Facebook Access‐「oken画面

口回l httpS:ノ71developers.facebook.com/too:s/acceSs_token

雪開'Facebook Access Token画面

アプリ名を入力する

ffivL\7at)zfFfr.
A rEde hBgrdng FacM n& your atp or Iffi

mpbyW

By pe@ing. you 4fe 16 the FfteM Plalom tukE

|カテゴリを重択‐ :

: Fhe nam otyour

: A onlque r@ollerlor yortrapp (@lonar)

鮨ⅢⅢ,■●

カテゴツ

キャ4ャ :1目囲|1目目目ロロロロ

|。,|:

発行されたアクセストークンを

記録しておく

282

.1■招1鰹脇晨

,"中 .|



5-5 FacebookaD? e- t) ,,

なお、発行されたアクセス トークンの有効期限は、1時間程度です。さらに権限

を付与することにより、最大60日 まで延ばすことは可能です。

警ライブラリのインストール

RubyからFacebook Graph APIを 扱うライブラリはいくつかあります。代表的な

のは「FbGraph」 です。それ以外にも「Ko」 a」 という軽量のラッパーライブラリが

あります。今回は、Koalaを使うことにします。

■GitHubの Koalaページ

回コl httpS:ノ%github.conn/arsduo/koa:a

Ko」aのインストールは、gemで行えます。「Successfully installed kOala_xxx」 と

表示されれば成功です(xxx部分はバージョン番号)。

● Koalaのインストール

機生二12型星
データとしてのFacebookは 、扱いが難しい部分があります。Twitterの ように、

全ユーザーからサンプリングしてデータを収集するということはできません。タイ

ムラインの情報は、あくまで自分というバイアスがかかっています。Facebook中

のパブリック情報から検索してデータを抽出するという方法もありますが、単純な

検索だけではFЖebookか らデータを抽出しているという意味は少ないです。

そこで、特定のキーワードに対して検索し、その発言内容と発言主の属性情報を

取得するというケースで考えてみましょう。Ko」aは、Graph APIの 軽量のラッ

パープログラムです。APIのメソッドを知らなくても、Graph APIの URLを 知って

いればそのまま使えます。

Graph APIの URLと は、「https://graph.faceb00k.cOm/」 の後ろにリクエストURI

を付けたものになります。この後ろに付ける部分をスクリプト内で指定することで、

目的の情報が取得できます。

また、Graph APIの URLに よるデータの取得結果は、「Graph API Exp10rer」 で

確認することができます。

283



Chapter 5 目的別クローラーの作成

r Graph API Explorerd-)
@ https ://devel opers.f acebook.com/tools/e xpl or er /

例えば、Facebookの 自分の投稿を5件取得する場合は、次のようなクエリーを発

行します。

・ me?nelds=posts.‖ mit(5)

取得対象に対して、どういった情報を何件取るか指定しています。クエリーの書

き方についてもっと知 りたい場合は、公式ベージのヘルプを参照してください。

■Graph APl公式ページ

回回l httpS:ノ グdeVe:OperS・ faCeb00k・COm/dOCS/graph‐api/uS:ng‐ graph‐ api/V2.0

V Graph API ExplorerA-)

1発言内容と発言主の属性情報を取得する i.rb

神 職 o,||● Ⅲ 鳩 菫墨三
‐.L繭
`●
i理
理L;鰈 綺晰 1'1■■lL」●■●″,●■|●

覆≡]:一場"■|■■ :□回ロ
@ rq.tuory

確認する Graph APIの URLを 入力する。 クエ リーも入力できる

graph = KoaIa: : Facebook: :API.new(' FACEBOOKJCCESS-TOKEN' )

I BRAVIAについて言及している発言を取得

search = graphosearch('BRAVIA')

search.eaCh{lreSultl

puts reSult[:meSSagei]

■ 発言主の情報を取得

who = graph.get_。 bjeCt(reSult['frOm`]['id

puts''性別 :“ +Wh。 ['genderl].to_s
puts'1生年月日:'1+who['birthday:].to_s

}

to_s )

# -*- coding: utf-8 -*-
require 'koala'

284

B oeveroper: Apts P.oducr. Docs roo,. suppoa



5‐6 画像を収集する

● faCebOOk… graph‐ api.rbの実行例

スクリプトを実行する際には、ご自分のアクセストークンを設定してください。

このスクリプトでは、発言内容と属性を抜き出すのみに留まっています。しかし、

自然言語処理と組み合わせて、発言内容が好意的か否定的かの判別をして、属性ご

との統計を取ることにより、例えば商品に対する反応を自動的に集めることも可能

です。データを収集する際は、目的と収集先の特徴を考慮すると、有効な分析とな

るでしょう。

鸞
クローラーを作る目的として、画像を収集させたいという人も多いでしよう。画

像収集の場合も、最終的な目的となるデータを抜き出すという点では同じです。画

像を指し示すURLを抜き出したうえで、ファイルの保存機能を実装すれば目的の

クローラーは作成できます。

5‐ 6‐ l Flickrか らクローリングで収集する

FIckrな どの画像サービスをクローリングする際は、キーワード検索やタグ検索

で画像の一覧を取得します。その次に、個々の画像のURLを取得します。

画像サービスの場合だと、サムネイル画像のようにサイズの小さな画像や、大き

なサイズ、オリジナルのサイズなど複数の画像サイズが用意されている場合が多い

です。目的に沿った画像サイズを集めるにはどうすればよいのか考える必要があり

ます。

5‐ 6

画像を収集する

285



Chapter5 tri^tB\2? f el+@

r Flickr

lE https://www.f I i ckr.com/

一般的には、画像一覧で出てくるのは小さな画像が多いです。ただし、画像の名

前付けルールから、1つの画像がわかればHTML中 にない場合でも推測できること

が多いです。Flickrの画像ファイル名は、「ファイルID+ラ ンダムな英数字 (+サ イ

ズ符号).jpg」 と決まっています。1つのファイル名がわかると、サイズ符号を変え

ることですべてのサイズを取得できます。例えば、

・ https:〃ねrm3.static.lickr.com/2485/3839885270_6fb8b54e06Jpg

というファイルの元画像サイズは、「_z」 を付けた、

・ https://farm3.static.nickr.corn/2485/3839885270_6fb8b54e06_Zり pg

になります。ファイル名部分を「url」 とすると、「urLm」「url_s」「urLt」「url_b」

「urLz」「urLq」「url_n」「urLc」「url_o」 という種類があります。

以下のスクリプトは、Flickrのサイトから「cat」 をキーワードに検索して、サム

ネイル画像と大きな画像を取得します。

日F‖ ckrから画像を取得する flickr-nokogiri.rb

* -*- coding: utf-8 -t-
require'nokogiri'
require'open-uri'
require'uri'
require'cgi'

def save_image(urI)
filename = File.basename(url)
open( "files/ "+f ilename.to_s,' wb

open(ur1) do ldatal
file.write(data, read)

end

end

end

do lfilel

search_word=URL encode ( " cat " )

doc = Nokogiri; ;HTlvlL(open(

"https : / /www.flickr. com/search/ ?q=+{search_word}" ) )
doc.xpath(

"//a[@c1ass='rapidno{oIlow photo-c1ick' ]/img")

286



5‐6 画像を収集する

.eaCh {|■ inkl

ur1 = link["data-defer-src"]

■サムネイル画像

puts url

SaVe_image(url)

#大 きなファイル

url = url.gSub(1・ jpg','_b・ jpg`)

puts url

SaVe_image(url)

● f‖ ckr¨ nokogiri.rbの 実行例

画像収集の場合は、テキストファイルに比べて格段にネットワークの帯域を必要

とします。不用意なクローラーを使って、ネットワーク全体を専有しないように注

意しましよう。

5‐ 6‐ 2 FLickr AP:

Flickrに もAPIが用意されています。まずはAPIキーを取得しましょう。

APIキ ーの取得晰

Flickrの APIの キーは、米Yah00.cOmの アカウ ン トがあれば取得で きます。米

Yahoo.comア カウントでログインのうえで、アプリケーション登録画面に進みます。

287



■F‖ ckrのログインページ

回■httpS:〃lwww.f‖ ckr.com/services/apps/create/apply/?

アプリケーションの登録画面は、ベージ下のメニューから[App Gπden]を選択

します。

▼ アプリケーションの登録画面

アプリケーションの登録画面で、「Your Apps」 の [Get an API Key]を クリック

します。

マタ審査の申し込み画面

0

[Get an API Key] t
クリックする

kre ydfl fi d m 9wo mlffi s creH by FM mM6 {tfi€ pt) cire tu He Nl. tu F&n@dh6b tuffi $p Mh sd hlk moGt bs ryt

App3 wds NoUd a YourApps

fion!ddo @hdrdFu adn6.g
fio pr otu h h. (ffid* n.k.
tNu.h. dtu.re.tuh.ro

wlMhffig|lllm
lrrgorcr€s miank minku
onblack rfarren xwrom
senks testtestcom

動』
ロ
崚
一　
一

市
二¨
一

●

一
嘩
．眈
中
　
飾　
・

■

explore App!
:igts dtrdiffi tirkadicds
k*eil f,kkdd*&d qdo

Thc App Gardcn
Or&.i& sD@mdd .Ee Wrr6.&Mit

Hffi LdeB Cffira

Q

[APPLY FOR A NON‐COMMERCIAL KEY]を クリックする

Thc App carden

FlBl, w t6€d b kw frh€r s not your app B @mmcid.

288

Chapier 5 目的別クローラーの作成

0

. Ydn. tu!@rsoM$rd bnddi{hq
6mm.'dd M hifl h In ilo iM

. Ym tule,aN6{d*oB[{&*n,ou
&6t*rno@d i@te!

-ttT* I

I

cBi* cffidrr r.

' ted@'.@^dq*to.(6md

N s. ds.drMig

r yswlrhokrB&

' YqM..Orbr@s@(a.@i

. Ydd@addddm&BildedM(

@



5‐6 画像を収集する

アプリケーションの登録は、商用と非商用で審査の過程が違います。今回は、非

商用 (Non― Commericial)で登録をします。

[APPLY FOR A NON‐ COMMERCIAL KEY]ボ タンをクリックし、必要な事項

を記入 して申し込みをすれば、アクセスと秘密のキーが表示されるので、なくさな

いように保存しておきましょう。

霧_::Zi_:≦11__:ビ :_1:::_2」::!_1生主|`_::生上_l:■ 1生 |

Flickrの APIを利用するためのGemラ イブラリは、サー ドパーテイ製でいくつか

出ています。今回は「Flickraw」 を利用します。

日GitHubの F‖ckrawページ

ロコl httpS:ノ%github.conn/hank:ords/f:iCkraW

インストールは、gemか ら行えます。インストール後にgem‖ st f‖ ckrawでバー

ジョンが表示されるとインストール成功です。

● F‖ckrawのインストール

●インストールの確露

FEckrawは 、多少癖のあるAPIです。検索結果のオブジェクトを取得した後に、

さらにFlickrawの インスタンスメソッドで変換をしています。次のスクリプトは、

「cat」 というタグで検索している例です。

実行の際は、「FlickRaw.api_key」 と「FhckRaw.shared_secret」 に、先ほど取得

したAPIキーを設定してください。

なお、Rubyに対してSSLのルート証明書の設定もしくは配置をしていない場合、

実行時にSSL関係のエラーが発生します。対処方法としては、所定の位置にルート

証明書を配置する必要があります。詳しくは、p.77、 79を参照してください。

289



Chapter 5 目的別クローラーの作成

ロタグで検索して画像を取得する

'f‖
ckr¨ api.rbの実行例

l
画像と同様に、動画を収集するクローラーも作成できます。しかし、画像と比べ

ても、動画は桁違いに大きなファイルです。画質によりますが、1分につきlMB以

上の容量が必要 となります。10分 のファイルを10本 ダウンロー ドしただけでも、

lGBの容量が必要となります。そのため、動画向けのクローラーを作成する場合は、

動画のダウンロー ドを行わずにメタ情報 (動画のタイトル、説明)と そのURLを 収

集し、動画リス トを作成するのが現実的でしょう。

5‐ 7‐ 1 動画の URLを収集する

それでは動画サイトのクローラーを作成してみましよう。最大規模の動画サイト

であるYouTubeを対象にします。

5‐ 7

YouTubeか ら動画を収集する

FlickRaw.api_key='FtICKに  A'1lKEV'
FlickRaw.shared_secret='F.II`К R・ APl■5.E(RET

images = fJ.ickr. photos. search(
tags: tag, sort: "relevance", per_page:20)

images . each{ | image I

ur1 = FlickRaw.url image;
puts url

i

tag = "631"

# ‐*― coding: utf-8 -*―

requ■re 'f■ickraぃ |:

290

$ ruby flickr-epi,rb

.:||



5‐7 YouTubeから動画を収集する

クローラーの造りとしては、キーワード「新幹線」を元に検索し、一覧から動画

ページのURLを 抽出します。動画ページからは、タイトルと説明文を抽出します。

I You¬ubeの動画の情報を収集する youtube-nokogiri.rb

,youtube¨ nokogiri.rbの 実行例

# -*- coding: utf-8 -+-
require ' nokogiri '

require'open-uri'
require ' uri'

urls = []
search_term = URLencode( "ffi*#")

ur1 = "http: //ww.youtube.com/results?search_query=#{search_term}"

doc = Nokogiri::HTML(open (urI))
elements= doc.xpath( "//h3 [@class=' yt-lockup-title
elements.each do lal

code = a.attributes['href ' ],va1ue
urls << "httpr//ww.youtube.com" + code if code

end

]ノ a")

inClude7('WatChl)

urls.each {lurJ.l
puts url
doc = Nokogi.ri: :HTML(open(ur1), niI,"UTF-8")
title =

doc.xpath( "/ /h1['watch-headline-title' ] / span" ),text.gsub( /vn/, " )
description =

doc. xpath (" I I p[@id=' eow-description' ] " ) . text
puts title
puts description

)

291



5 目的別クローラーの作成

5・ 7‐ 2 動画をダウンロードする

URLと タイトルや説明文のみでなく、動画も抽出したいという場合は、それぞ

れの動画向けのダウンロードアプリケーションと組み合わせるのがよいでしょう。

例えば、YouTubeの 場合は「youtube‐ dl」 というアプリケーションがあります。

youtube‐ dlは、URLを渡すとダウンロードしてmpegで保存します。

■GitHubの yOutube―dlページ

ロ回l httpS:ノ グgithub・ COm/rg3/youtube‐ d!

インストール方法は省略して、スクリプトとの連携方法のみ紹介します。先ほど

のスクリプトのURL一 覧表示の部分で、youtube― dlを 呼び出す機能を追加します。

インストールしたyOutube_dlに対して、事前にパスの設定を行いターミナル/コマ

ンドプロンプトからyoutube― dlで呼び出せることを確認しておいてください。

ここで使うsystemメ ソッドは、OSの コマンドを直接呼び出す強力な機能です。

I You¬ubeの動画をダウンロードする load.rb

'yOutube¨
downioad.rbの 実行例

urls = []
urls. push( "http : / /www.youtube. com/watch?v=HhC1T9cqK8E" )
ur1s. push( "http : / /www.youtube. com/watch?v=-l,lfeittF -qI" )

urls. each { | ur1 |

puts ur1
system("youtube-dI -t #{ur1}")

)

292

$ ruby youtube-download.rb

http:/lwww.youtu be.com/watch ?v=H hClT9cqKSE

lyoutubel Setting language

11

lyoutubel -MfeittF-ql: Extracting video information



5‐8 iTunes Storeの順位を取得する

ダウンロード対象のフアイルが数十～数百MBに なるため、回線の速度によりま

すがダウンロードの時間はそれなりにかかります。ダウンロードしたファイルは、

プログラムの直下に保存され、ファイル名は「動画のタイトル名+ハ ッシュ文字

列.mp4」 という形になります。

l
iTunesの利用者は全世界で5億人以上、日本だけでも数千万人はいると言われて

います。膨大なユーザー数の行動結果であるアプリや音楽のランキングは、データ

として多大な価値があります。iOSア プリ開発者のみならず、マーケティングに携

わる人であるならば、iTunes Storeの 順位の変動を抑えておきたいでしよう。毎日、

iTunesの 総合やカテゴリ別に順位を調べることは可能です。しかし、入力でやる

にはあまりに手間がかかります。そこで、クローラーに自動的に働いてもらいま

しよう。

5‐ 8‐ l iTunes Storeの ランキング

Web上のiTunes Sbreの ランキングページには、「ソング」「アルバム」「映画」

「ブック」「無料アプリ」「有料アプリ」「ミュージックビデオ」の総合ランキングが公

開されています。

¶hTunes Storeのランキングページ

iTunes irJftr]rr+r/r M

|¬unesのランキング

5‐ 8

i丁unes Storeの 順位を取得する

293



Chapter 5 目的別クローラーの作成

一方で、カテゴリごとのランキングは、iTunesア プリからiTunes Storeを 表示し

た場合にしか見ることはできません。しかし、このiTunesア プリが表示される内

容も、実は単なるWebサ イトから配信されるHTMLです。その証拠に、各アプリ

ケーションや、ランキングを選択した状態で右クリックすると「リンクを開く」や

「リンクをコピーする」の選択肢が出てきます。試しに、iPadの ファイナンスのカ

テゴリの有料Appのランキングを開くと、次のようなURLがコピーできます。

. https://itu nes.apple.com^VebObjects/MZStore.woa/wa/

viewTop?genreld=60 1 5&id=25177 &popld=47

▼ 雨unesア プリで見るlTunesStoreラ ンキング

しかし、残念ながらそのURLを ブラウザに貼り付けて表示しても、「iTunesア プ

リを開きます」と表示されるだけです。

こういった場合の可能性の1つは、ユーザーエージェントによって接続元アプリ

の制限をしている場合があります。そこで、ローカルのPCと iTunes Storeと の通

信を解析して、ユーザーエージェントを割り出します。通信解析のソフトはいくつ

かありますが、「Wireshark」 がWindowsで もMacで も利用可能です。

r Wireshark

lE! http://www.wireshark.orgldownload.htm I

インストーラーをダウンロードして、指示に従いインストールします。Macの場

合はX Windows Systemと いうソフトが必要となり、Mavericksの 場合は付属して

いません。そのため、X互換のアプリを別途インストールが必要です。Macの場合、

294

翻鰯鸞
,崚蟻檬|  1藝燃懃

'   
機轟滋・

鱚鯰

|.rat-F. iPhone App



5‐8 iTunes Storeの 順位を取得する

「XQuartz」 などが利用できます。

■XQuartz

回□l http:ノグXquartZ.maCOSfOrge.Org/:anding/

Wiresharkの 使い方は割愛しますが、HTTP通信のみ取得するとiTunes Sbreヘ

の通信はiTunesと いうユーザーエージェントで通信していることがわかります。

O iTunes/11.2.1(Macintosh,OSX 10.9.2)App!eWebKit/537.74.9¥r¥n

このユーザーエージェントを指定すると、ランキング情報が入った結果が返って

きます。

なお、Rubyに対してSSLの ルー ト証明書の設定もしくは配置をしていない場合、

実行時にSSL関係のエラーが発生します。対処方法としては、所定の位置にルート

証明書を配置する必要があります。詳しくは、p.77、 79を参照してください。

1輌unes Storeのランキング情報を取得する

● munesRankList.rbの 実行例

ur1="https : / /itunes. apple, com/Webobjects/
IvlZStore . woa /wa /viewTop ?genreld=5015&id=2 5 L77&po?Id=47"

user_agent=
"iTunes/11.2.1 (Macintosh; OS X 10.9.2)AppleWebKit/537. 74.ggrgn"

puts open(url, "User-Agent" => user_agent).read

# -*- coding: utf-8 -*-
require'open-uri'

295



Chapter 5 目的別クローラーの作成

5‐ 3‐ 2 カテゴリ:Dと ランキング種別

次に、lTunesの アプリのランキングの引数について調べてみましょう。カテゴ

リ別のランキングとそのURLの対応をいくつか見比べていると、「genreld」 がカテ

ゴリを指し示し、「popld」 がランキングの種別を示すことがわかります。例えば、

ファイナンスのカテゴリIDは「6015」 です。そして、lPad有料は「47」 です。組み合

わせると、

・ https:〃 itunes.apple.cOm/WebOblects/MZStore.woa/wa/

viewTop?genreld=6015&popld=47

になります。それ以外のカテゴリとランキング種別を表にまとめると、次のとおり

です。

躙シカテゴリのID

Newsstand 6021

6016Entertainment

Catalog 6022

Education 6017

Games 6014

Productivity 6007

||■ Reference 6006

Photography 6008

6004Sports

Social Networking 6005

6001Weather

Navigation 6010

6009News

Business 6000

Finance 6015

Books 6018

Health&Fitness 6013

6011Music

Medlcal 6020

6002Utl‖ ties

Lifestyle 6012

6003Travel

A‖ 36

296

Newsstand

エンターテイメント

カタログ      .

教育

ゲーム

仕事効率化  .

辞書′辞典/その他

写真/ビデオ .. .

ソーシャルネットワーキング

天気 _  ..

ナビゲーション

_ュ ース        .

ビジネス   ..

ファイナンス       ‐
アック

ミュージック

【ディカル     ..

ユーティリティ

ライフスタイル   |

旅行

全体



5‐8 iTunes Storeの順位を取得する

鴫フランキング種別のlD

これ以外にも、国を表すIDがあります。これは引数ではなく、HTTP Requestの

ヘッダーに「X‐Apple‐ Store― Front」 という名前で指定します。日本を表す国IDは

「143462-9」 になります。

5¨ 8… 3 iTunesアプリのランキングを取得する

これらの情報を組み合わせると、次のようなスクリプトになります。カテゴリご

と、ランキング種別ごとのランキングをすべて表示します。実際に日々のランキン

グの変動を保存する場合は、アプリ名ではなくアプリIDで保存する方が都合がよ

いでしょっ。

なお、このスクリプトも実行の際に、SSLのルート証明書の設定が必要です(→p.77、 79)。

1輛unesアプリからランキングを取得する iTunesRank.rb

■ ―*―  coding: utf-8 -*―

requュ re :open‐ ur■ '

Categories = %w(6o2L 60!6 6022 6017 60!4 6007 6006
6008 5oo4 6005 6001 5o1o 6009 6000 6015 6018 6013
60!7 6020 6002 6012 6003 35)

Popldes = %w(27 30 38 44 47 46)

BASE_URL =

' https : / /itunes. appLe. com/t,lebobjects/t{Zstore. woa /wa /viewTop?'
USER_AGENT =

"iTunes/11.2. 1 (Macintosh; 05 X 10.9. 2)AppleWebKit/537. 74.gyryn"
STORE = '!43462-9'

def geturl(category, popld)
return BASE_URL+" genreld="+category+"&popId= "+popId

end

def getRanks(ur1)

297



Chapter 5 目的別クローラーの作成

i=o
Open(url,

"user― Agent'' => uSER_AGENT,

'lX‐ App■ e― Store― Fronti' => STORE)do lfl

f.eaCh d。  llinel

next if lline.match(ノ Buy.*salableAdamld=(¥d+)′ )

i += ■

line.match(/itemName='1([^':]+)''ノ )

PutS i.tO_5 + '': 
。' + 5■

end

end

end

* main

Categories. each { | category I

Popldes.each {lpopldl
puts "category=#{category}r popID=*{popId}"
url = getUrl(category,popld)
getRanks(urI)

)
)

0 1TunesRank.rbの 実行例

298

1号

2: Seventeen

3:ク ロスワードフレンズ.
14:R25

5: non-no

6: dancyu

7:BE― P′ Lヽ

8:デイズニーフアン

9:ザ・マイカー

10:週プレDi9itall

l■奮頭11    .

,

.  .●



5口 9

Google Playの順位を取得する

Google Playは 、登録者数ではiTunesに は及ばないものの、アプリケーションの

多様度ではiTunesを 凌ぐほどの規模があります。iTunesと 同様に、総合ランキン

グおよびカテゴリごとのランキングが公開されています。Goo」e Playに ついても、

クローラーでデータを収集し、さらにiTunes Storeの データの比較を加味すると、

アプリケーションの開発やマーケティングの重要なデータとなるでしょう。

5-9-l Googte Playの ランキング

Web上のGoogle Playには、「アプリ」「映画&テ レビ」「書籍」のランキングが公開

されています。また、Web版にもそれぞれのカテゴリごとのランキングが公開さ

れているため、iTunesに 比べてクローリングの難易度は低いです。

アプリの場合は、「ニュース&雑誌」「ビジネス」「ゲーム」など20以上のサブカテ

ゴリに分かれています。そのなかで「ゲーム」のみは、「アクション」「アドベン

チャー」などさらに細かいカテゴリに細分化されています。また、有料版 。無料版

という区分でのランキングも提供されています。特にユーザーエージェントなどに

よる制限はされていません。

▼ Google Playの ランキングページ

カテゴリν :ホ ~ム  :″チャート 輌作

燎撻懲 躙

目 鶴 跛,NK

299

5‐9 GoogL Playの 順位を取得する



Chapter 5 目的別クローラーの作成

一方で、Google Playの場合、自動的に国を判別してランキングを表示しています。

その判断の材料は、接続元のIPや接続アカウントの登録情報を元にしている模様で

す。そのため、アプリ側で設定を変えて各国のランキングを取得するのは難しいです。

各国の公開プロキシを利用するなどして接続元IPを変更することも可能ですが、利

用する公開プロキシが安全か確認するのも難しく、避けた方がよいでしよう。

その課題以外は、Google Playを クローリングするのは非常に簡単です。次のス

クリプトは、アプリの「フアイナンス」カテゴリから、有償版のアプリのランキン

グを抽出しています。特筆点としては、Nokog轟の文字コードの自動判別が失敗す

るために、文字コードを明示的に指定していることだけです。

なお、Rubyに対してSSLの ルート証明書の設定もしくは配置をしていない場合、

実行時にSSL関係のエラーが発生します。対処方法としては、所定の位置にルー ト

証明書を配置する必要があります。詳しくは、p.77、 79を参照してください。

日Goo91e Piayのランキングを取得する nokogiri‐ g。。91e‐ play.rb

● nokogir卜 googie¨ playrbの実行例

#フ アイナンス・有償アプリ

url =
lhttps://play.google.com/store/apps/category/

FINANCE/collection/topse■ ling_paid:

doc = Nokogiri::HTMLく open(url), nil, 'UTF-81)

doc.xpath(・ /ノ h2/a[Oclass='title。 ]“ ).each{ liteml
putS item[:title]

}

# -*- coding: utf-8 -*-
require 'open-uri'
require 'nokogiri'

300

S ruby noko9iri-90。 91e‐play.rb

THE RHYTHⅣ 1 0f F!GHTERS.

モダンコンパット4iZero Hour

ギヤングスターベガス



5‐9 Googie Playの順位を取得する

5-9-2 Googte PLayの クローラーライブラリ

Google Playを クローリングするGemラ イブラリも存在します。「market_bOt」 と

いう名前です。これを利用して、Google Playの解析を行います。

●GitHubの marketbotページ

回□httpS:〃igithub.COm/Chadrem/market_bot

● market botの インストール

market_botは 、Nokogiriを 利用してGoogle Playを スクレイビングします。ラン

キングの取得の他に、新着の取得や価格など付随情報の取得を行います。1アプリ

ごとに個別ベージの取得するため、処理時間が少しかかります。しかし、解析部分

と対象ページの選択が抽象化され、使い勝手のよいスクリプトを作ることができる

でしょっ。

なお筆者の手元の環境では、残念ながらWindowsでmttket_botを動かすことはで

きませんでした。market_bOtは、ダウンロードのライプラリとしてtyphoeusを 利用

しています。このライブラリはOSにインストールしたcURLを利用するのですが、

SSLの場合にルート証明書が上手く読み込めません。typhoeusのオプションでSSL

関係の設定はあるので、market_bOtが typhOeusを 利用している部分 (leaderbottd.

rb)を編集するとWindowsで も動くと思われます。

Eライプラリを利用する

#ゲームカテゴリの無料アプリのランキング取得
lb = MarketBot::Android::Leaderboard.new(:toPselling_free, :game)

lb.update

lb.results.each { lresult I

app = MarketBot: :Android; :App,new(result[ :market_id] )
app. update
puts "#{app.title} price: #{app.price}"

)

# -*- coding: utf-8 -*-
require 'market_bot'



Chapttr 5 目的別クローラーの作成

● p:ay_bot.rbの 実行例

5・ 9・ 3 カテゴリlDと ランキング種別

最後に、Google Playの アプリのカテゴリとランキング種別について調べてみま

しょう。カテゴリ別のランキングとそのURLの対応をいくつか見比べていると、

「category/」 以下がカテゴリを指し示し、最後にランキングの種別を示すことがわ

かります。

例えば、ウイジェットのカテゴリは「APP_WIDGETS」 です。そして、アプリ有

料版ランキングは「tOpsemng_paid」 です。組み合わせると、

. https://play.google.com/store/a pps/category/APP-Wl DGEIS/

col lection/topselling-pa id

になります。それ以外のカテゴリとランキング種別を表にまとめると、次のとおり

です。

▼ Google Playの カテゴリ

B00KS AND REFERENCE

BUSINESS

COMiCS

COMMUNICAT10N

EDUCAT10N

ENTERTAINMENT

FINANCE

GAME

GAME ACT10N

GAME ADVENTURE

GAME ARCADE

カテゴリ名 (日本語) カテゴリ|,D

302

モンスターストライク price:0

.Summoners War:Sky Arena price:0

‐～●
“
ふヽ・

ムツム

ｂ

ツ

０
　

ｒ̈

ｂ
　
・〓

た

ヌ

ｌａ
　
イ

ｐ

一
Ｆ

ｙ

」
′

ｒｕｂ

　

ＮＥ‐



▼ Google Playの カテゴリ(続き)

GAME BOARD

GAME CARD

GAME CASINO

GAME CASUAL

GAI∨lE ED∪ CAT10NAL

GAME FAMIビ Y

GAME WALLPAPER

GAME M∪ SIC

GAME PUZZLE

GAME RACING

GAME ROLE PLAYING

GAME SIMULAT10N

GAME SPORTS

HEALTH AND FITNESS

LIBRARIES AND DEMO

LIFESTYLE

APP WALLPAPER

MEDIA AND VIDEO

MEDICAL

MUSIC AND AUD10

NEVヽ′S AND MAGAZINES

PERSONALIZAT10N

PHOTOGRAPHY

PRODUCTIVITY

SHOPPING

OCIAL

SPORTS

TOOLS

TRANSPORTAT10N

TRAVEL AND LOCAL

VVEATHER

APP WIDGETS

テゴリ

303

5‐9 Googte Playの 順位を取得する



Chapter 5 efiEl, a-, -o(Ffr.

▼ Google Playの ランキング種別

営
いくつかの種類のクローラーを作ってきましたが、次はSEO(検索エンジン最適

化)に役立てるクローラーを作成します。

一般的にSEOと クローラーというキーワードであれば、検索エンジンのクロー

ラーに対して、いかに巡回しやすくするかがポイントになります。今回は、逆に自

作のクローラーを使って、SEOの手助けをするということを考えてみます。

5‐ 10‐ 1 検索順位を収集する

クローラーを使い、検索順位を定期的に計測します。通常、検索エンジン経由の

アクセス向上を狙う場合、ターゲットとなるキーワードを設定し、そのキーワード

でアクセスが増えるように施策を行います。この施策の部分がSEOに なります。

これに対して、今回作成しようとするSEO支援クローラーは、その成果確認のため

に動きます。

具体的には、調査対象となるドメインと検索キーワードを設定し、検索キーワー

ド(0)に対して対象のドメイン(0)が何位に位置するか取得します。日々検索順

位測定アプリを動かして結果を保存することによって、施策に対してどれくらいで

どのような効果があったのかを確認できます。

|キーワードことの検索順位を取得する

# -+- coding: utf-8 -*-
require' google-search'

5‐ 10

SEOに役立てる

topselling_paid

アプリ無料版ランキング : topselling_free

アプリ新着有料版ランキング topselling_new_free

アプリ新着無料版ランキング topselling_new paid

おすすめアプリ editors_choice

′プリ有料版ゲームランキング topselling_paid_game

カアプリ movers_shakers

おすすめアプリ

ブレット向けアプリ tablet_featured

気ヽ急上昇アプリ topgrossing

304

rank.rb

ランキング種別         ランキングld

I featured



5‐10 SEOに 役立てる

def find_item uri, query

search = Goog1e::Search::Web.new do lsearchl
search.query = query

search.size =:large
search,each-response { Print ' .'; $stdout.flush }

end

puts uri
search.find { liteml item.uri =- uri }

end

def rank_for domain,query
print"%35s"%query
if item = find_item(/#{domain}/, query)

puts " lt%d" % (item,index + r)
else

puts " Not found"
end

end

regular-expression-domain ='takurosY.net' r---------{)
target-word = 'ruby ,a-)-'+
rank_for ( regular-expres s ion-doma in, target-word )

● googleィ ank.rbの実行例

5… 10‐ 2 被 リンク

SEOの重要な指標の1つに、被リンク数 (back links)やページランクというのが

あります。自分のサイトが、他のサイトからどれくらいリンクを貼られているのか、

またURLのGoogleの ページランクはどれくらいなのかという指標です。単純に言

うと、ページランクが高いサイトからリンクをたくさん集めれるのが、SEOと して

効果的という話です。

最近では検索エンジンの進化で、被リンク数やベージランクの意味は薄れてきて

います。しかし、被リンク数やページランクが増えているのかは、統計的には少し

意味があるでしよう。そこで、定期的に収集するために、スクリプトから取得して

みます。



Chapter li AfiBl, a - 2 -o(Fffi.

被リンクの取得方法

被リンクの取得方法は、検索エンジンごとに差異があります。Googleの場合、

「link:検索」を利用します。例えば、Googleに 対する被リンクの調査は、「link:www.

googにcoJp」 という検索方法になります。しかし、Googleは 被リンク情報を正確に

は開示しなくなっているため、参考程度にしかなりません。

同様に、インデックス数の調査は、「site:検索」を利用します。ページランクにつ

いては、Googleは 少 し特殊で「http://bdbarqueries.g00gle.cOm/tbr」 に対 して、

URLと それに対するチェックサムを付加してリクエストを送ります。このような

検索を各検索エンジンごとに行うことで、それぞれの指標の調査ができます。

ライブラリの利用

上記の機能を1つ 1つ実装すれば、目的の指標は取得できます。しかし、実装対象

が多いことと、それぞれの検索エンジンの挙動が不定期に変わる可能性もあります。

そこで、方法の1つ としてメンテナンスされているGemラ イプラリを利用するとい

う手もあります。「PageRankr」 は、Ruby製の被リンク調査ライプラリです。

Googieの 他に、Bing、 Yahoo、 Alexaの被リンクを取得します。また、被リンクの

みでなくインデックス数やベージランクの取得も行えます。

r GitHub o) PageRankr 
^-yllE https://github.com/blatyo,/page_rankr

PageRankrの インス トールは、gemか ら行えます。ただし、依存ライブラリで

あるJSONな どでネイティブビル ドが必要になります。そのため、インス トールに

はビル ドツールが必要となります。ビル ドツールのインス トールについては、p.76

をご参照ください。インス トール後にgem‖st PageRankrで バージョンが表示され

れば、インス トール成功です。

'PageRankrの
インストール

● インストールの確認

306

S gem:ist PageRankr

‐ ■■=LOCAL GEMS書 キ

$ gem lnstall PageRankr



5‐ 10 SEOに役立てる

PageRankrは 、インスタンスメソッドのみ提供します。取りたい情報に対して、

「クラス名#メ ソッド名」という形で取得します。引数も、取得対象のURLと オプ

ションで対象の検索エンジンを指定するのみです。返り値は、ハッシュで返ります。

I PageRankrで 被リンクを取得する krrb

● page_rankL『bの実行例

Puts " t\'y, t)>r*. f ay r"
puts PageRankr.backlinks(target_url, :googIe, :bing, :yahoo, :a1exa)
puts "427v27& Ta'vr"
puts PageRankr.indexes(target_urL, :google, :bing, :yahoo)
puts "4-l)2) *tv2"
puts PageRankr.ranks(

target_url,:alexa_us,:alexa_globa1,;google,:moz_rank,:page_authority)

# -*- coding: utf-8 -*-
require ' page_rankr'

tarBet_url = "d.hatena.ne.jpldkfj"
+ target_url = "blog.takuros.net"

ツールから被リンクを取得する

被 リンクやインデックス数については、プログラムから取得する以外にも検索エ

ンジン各社が提供 しているツールから取得できます。例えば、Googleの場合はウェ

プマスタツールとして提供されています。機械的に処理するのでなければ、専用ツー

ルを利用 しましょう。

■Google ウェブマスタツール

回■ httpSi〃wWW.g。。gle.Com/WebmaSterS/to。lS/

307



‖
フリーで利用できるテキストデータとして、最大級のものはWikipediaで しよう。

日本語サイトのみでも、2014年 3月 で90万記事を超えました。詳細は統計ページで

確認できますが、1万人以上の編集者、100万人近い利用者、随時編集される記事と、

桁違いの規模です。

■Wikipedia:統計

画□http:/′ ia.Wikipedia.Org/Wiki/%E7%89%B9%E5%88%A5:%E7%85%Bl%E8%A8%88

クローラーの目的がデータの収集であれば、このWikipediaの データを活用しな

い手はありません。データの集合体という観点からWikipediaを 考えて、どのよう

に利用するか検討してみましょう。

5・ 11‐ l Wikipediaか らのクローリングとデータ

Wikipediaに 対するクローリングは明示的に禁止されています。そのかわりに、

Wikipediaの データすべてがダウンロード可能になっています。

■Wikipedia:データベースダウンロード

回口http:/′ ja.wikipedia.org/wiki/Wikipedia:%E3%83%87%E3%83%BC%E3%82%BF%E3%

83%99%E3%83%BC%E3%82%B9%E3%83%80%E5%82%A6%E3%83%B3%E3%83%A
D)%E3%83%IBC:%E3%83%89

ダウンロー ドは、次のURLか ら行えます。

口!ndex of/jawiki/1atest/

回田http:〃ldumpS.Wikimedia.。 rg力 aWiki/1ateSt/

データは、XML形式 もしくはMySQLの ダンプファイルとして提供 されています。

用途ごとに細分化して提供されているので、主要なもののみ簡単にまとめます。

▼ Wikipediaの データ

5‐ 11

Wikipediaの データを活用する

jawiki-latest-abstract"xm I 1 4GB

jawiki-latest-all-titles-in-ns0.gz 8.7MB

jawiki-latest-category.sql.gz 2.5MB

jawiki-latest-categorylinks.sql.gz ]16.4MB

308

Chaptcr 5 目的別クローラーの作成

ベージの要約



5‐ 1l Wikipediaの データを活用する

鱒
'Wikipediaの

データ(続き)

どういった用途で活用するかにより、ダウンロードする対象が変わってきます。

例えば、クローリング先を取得 したいのであれば外部リンクの情報を含んだ

「iawikHatest‐extern』 inks.sqlgz」 が必要となります。キーワードなどの辞書作成

をしたいのであれば、タイトルー覧などが役に立ちます。もっと踏み込んで、自然

言語処理などで類似文章検索の元データとしたいのであれば、全ページの要約もし

くは記事本文、ページ間のリンク情報などが利用できます。用途に応じて、使い分

けましょう。「5‐12キ ーワードを収集する」(→p.311)や「5-13流行をキャッチする」

(→p.314)で、Wikipediaの データを活用した例を紹介します。

5‐ 1卜 2 W:kipediaのカテゴリの活用

Wikipediaは 、全部のデータをダウンロードできます。一方で、数ベージ分だけ

の情報が必要な場合には、手間がかかります。そういった場合は、クローラーを利

用するのも1つの手でしょう。Wikipediaに 対するクローラーの例として、カテゴリ

の活用があります。WШpediaの カテゴリページは、分野ごとに入力で編集されて
います。例えば、人名一覧を作成する際に重宝します。

■Wikipedia lカ テゴリ

回画http:〃lja.wikiped:a.org/w/index.php'title=%E7%89%B9%E5%88%A5:%E3%82%AB%

E5%85%86%E3%82%B4%E3%85%AA

WiHpediaの カテゴリは、「ht,//jawikipedia.org/wikン Category:」 の後にカテゴ

リ名が続きます。またカテゴリに下に、さらにサブカテゴリがある場合があります。

次のスクリプトは、「日本の映画作品_(ジャンル別)」 というカテゴリを起点に(0)

再帰的にサブカテゴリを抽出するプログラムです。WiHpediaに対して再帰的処理を

実装するとはぼ無限に検索してしまうので、検索の深さも指定しています(0)。

jawiki-latest-externallinks.sql.gz 158 7MB

jawiki-latest-image.sql.gz ]1.lMB

jawiki-latest-imagelinks.sql.gz 29.9M

jawiki-latest-page.sql.gz 90.4MB

jawiki-latest-pagelinks.sql.gz 690 8MB

jawiki-latest-pages-a rticles.xml.bz2 1 8GB

jawiki-latest-pages-meta-current.xml.bz2 2 1GB

309



# -+- coding: utf-8 -+-
require "nokogiri"
require "open-uri"

Obase_url = lthttp://ja,wikipedia.org''

#検索対象のカテゴリのURL
十 日本の映画作品_(ジヤンル別)

category_url = 1'/wiki/Category:%E6%97%A5%E6%9C%AC%E3%8● ――――――――――くD
■%AE%E6%98%AO%E7%94%BB%E4%BD%9C%E5%93%8■ _(
%E3%82%38%E3%83%A3%E3%83%B3%E3%83%AB%E5%88%A5)'1

def CategOry_SearCh(url,depth)

return if depth >‐  4-②
doc = Nokogiri::HTML(open(Obase_url+url))

doc.xPath(''/ノ div[Oclass=iCategoryTreeltemi]′ am).each do

puts element.text

putS element[:href]

#再帰的に取得
CategOry_SearCh(element[:href],depth+■ )
end

end

I element I

category_search ( category_urI, r )

Chaptcr 5 etrB\t tr-) -olFfr,

日Wikipediaからカテゴリを取得する

'wikipedia¨
category.rbの 実行例

上記スクリプトに取得した対象のページも追加すると、簡単に一覧からのデータ

取得ができるようになります。

310



5‐12 キーワードを収集する

匁
クローラーで収集した文章を解析する際に、キーワード辞書を用意して、マッチ

ングで出現文字列のカウントをする場合があります。この方式の場合は、辞書のメ

ンテナンスが肝となります。初期キーワードを一括で作成し、日々追加すべきキー

ワードを探すのはなかなか手間です。集合知の力を借りることで、その負荷を軽減

できます。

Wikipediaや はてなキーワードを利用し、日々追加されるキーワードをウォッチ

します。自分の辞書に追加すべきキーワードがあれば、追加するという方式です。

5‐ 12‐ l Wikipediaの タイ トル

キーワード情報の生成の元データとして、Wikipediaの タイトルを使うという方

法があります。タイトルは記事数分だけ存在するので、2014年 7月現在で90万件と

膨大なデータを利用できますが、残念ながら、タイトルのみの差分更新はしていま

せん。タイトルのみの全データが配布されているので、初期データとして取り込む

のもよいでしょう。

データは、1行1タ イトルという形式で格納されています。ただのテキストファイ

ルで、URLも 固定なのでクローラーの作成の必要はありません。

■Wikipedia:最新タイトルー覧

回■ http:〃 ldumpS.Wikimedia.org/iaWiki/1ateSt/,aWikHateSt‐ a‖‐tit:eS‐ in‐ nSO.gZ

5‐ 12‐2 はてなキーワード

はてなキーワードは、株式会社はてなが提供するインターネット百科事典の一種

です。Wikipedia同 様に、編集はユーザーによって行われます。一括のダウンロー

ドの他に、日毎の更新が取得可能です。Wikipediaに 比べて身近な話題のキーワー

ドが多く、多様性に富んでいます。

■はてなキーワードー覧ファイル

ロロ11 http:ノ%deve:operhatena.ne.jp/ja/documents/keyword/rll:sc/catalo9

日毎の差分データの取得は、新着順の並び指定で取得します。ただし、日の指定

で取得する方法は存在しないので、最新の状態から順番に取得し当日分のデータが

なくなるまで処理します。

5‐ 12

キーワー ドを収集する

311



Chapter5 eilfiU, a-) -o(ifr,

日はてなキーワードの新着ワードを取得する

? hatena-keyword-new.rbO*fi0J

# -*- coding: utf-8 -+-
require 'nokogiri'
require 'open-uri'
require 'date'

def get_nokogiri_doc ( urI)
begin

html = open(urI,{"Cookie" =>

" rk= 47 5a3899!7 c359 455 4b53 407 4992be!9bf7 9007 " \ )
rescue OpenURI : :HTTPError

return
end

Nokogiri : : HTML(html. read)
end

def has_next_page?(doc)
doc, x?alh (" I I * [@id=' ma in' I I di,v / div lzf / a" ) . each { | element I

return true if element.text == ")kDzol+>"

)
return false

end

start_ur1=
"http : / /d. hatena. ne. jplkeywordlist?s=created&r=1"

num=O

Ioop {
ur1 = "#{start_ur1}&of=#{num}"
doc = get_nokogiri_doc(url)
doc. xpath ( " / /div[@class=' keyword-1ist' ] /ul/Ii" ).each { | element I

created = element.xpath( "div/span [@cIass=' created' ] /span" ). text
day = P21"'rrtse(created)
exit if (Date.today - day).to_i >= 1

puts element.xpath( "h3/a").text
)
num = num+2o

break if lhas_next_page?(doc)

i

3tz

S ruby hatena-keyword-naw.rb

Montserrat



5‐12 キーワードを収集する

5‐ 12‐ 3 1Googte Suggest APl

特定のキーワードに関係するキーワードを取得したい場合があります。十分な学

習データがあれば、自然言語処理で計算可能です。一方で手早く結果だけを取得し

たい場合は、Google Suggest APIを 利用して結果だけ取得することも可能です。

次のスクリプトは、Goo」 eの検索結果から「猫」に関連するキーワードを取得し

ています。

I Goo91eの検索結果から関連キーワードを取得する

●goo91e_suggest.rbの実行例

base_urI ='http://wura,google.com/complete/search?hl=ja&output=toolbar'
keyword=URl. encode(' Ift ' )
url= "#{ ba se_ur1}&q=*{ lgyvrr6 1 "

doc = REXML : : Document. new(open(ur1).read. encode( "UTF-8" ) )
doc.elements.each('toplevel/CompleteSuggestion/suggestion')do lelementl

puts element.attributes[ "data"]
end

# ―Ⅲ― coding: utf-8 ‐*―

requ■ re 'open‐ ur■ '

requェ re 'ur■ '

require ':rexm1/document'

313



Chapter 5 目的別クローラーの作成

関連キーヮードを取得することで、例えばどのようなキーワードで検索されやす

いかを推測できます。コンテンツに反映させることで、より検索されやすいページ

になるでしよう。

〕
5‐ 13

流行をキャッチする

マーケティングを生業にしている人であるならば、クローラーを使ってトレンド

の推移を知りたいと思うでしよう。Googleや Twitterの データを活用することで、

きっとその手助けをすることができます。 トレンドには、短期的なものと長期的な
ものがあります。それぞれ、どんな方法で取得できるか考えてみます。

5‐ 13‐1 瞬間的な トレン ドをキャッチする

Twitterで つぶやかれているキーワー ドや、Googleで 検索されている語から、今

この瞬間の トレンドがわか ります。Twitterも Googleも それぞれ、旬なキーワー ド

として提供しています。

Googleの 句なキーワー ド

Googleは 、Googleト レンドのサービスの一部として、Atom形式で提供していま

す。使い方は簡単で、次のURLか らデータを取得するだけです。

tGoodeAEJ/t7-l
[tit! http://www.google.co.jpltrends/hottrends/atom/hourly

上位20個の旬なキーワードと、Googleト レンドヘのリンクのURLが提供されて

います。

? Google Hot Trends

頭 にhi"tron C∞gはoday'http′ノ喘wp¨ cc,m/t聰
“

s/hott“ n¨ノaom/“ urけ,∞卜
"20,407-"T∞

|∞∞Z

314



5‐ 13 流行をキャッチする

l Googieか ら旬なキーワードを取得する goog le_trends_word.rb

● 9oogle」rends_word.rbの 実行例

Twitterの トレンド

Twitterの 場合も、タイムラインの横にトレンドが表示されます。しかし、タイ

ムラインはログイン状態でないと、ログインもしくはアカウント登録を促される

ページが表示され、 トレンドも表示されません。そこで、「Twitter/検 索」画面を
利用します。

■Twitter/検 索

回■https:〃twittencom/search‐ home

atom = open (' http : / /www. google. co. jpltrends/ hottrends/atom/ hourly' )
doc = Nokogiri; :HTl'l1(atom)
#puts doc

doc. xpath ( " / htn1-l body l f eed l entry/ content / Ii/ span/ a " ) . each { l element l

puts element.text
puts element[:href]

)

■ ―*― coding: utf‐ 8 *̈‐

requ■ re 'open‐ ur■
1

requ■ re inokogir■ '

315



Chapler 5 tril181) a - I -ofifr,

Pヽ Twlter/検 索画面

リ

いま起きていることを見てみましよう。

世界中の トレン ト

iil.rilB k.Fi:tr,i r,7 & 
'.tt\r.. 

a,et- 6kfr 1->r 1.o lt. ,: 
',]1, 

sr tr-f,rM!*.2
/,r4r' Q*a )tc)r ,v-a

Twitterの トレンド情報は、遅延ロードで呼び出されます。そのため、open‐ uriな

どでHTMLのみを取得しても、 トレンドの情報は出てきません。そこで、Capybara
を利用して、遅延ロー ドにも対処します。Capybaraの遅延ロー ドについては、

p■ 24を ご参照ください。

なお、Windowsで capybara‐webkit(→p.123)を 利用する場合は、qmake 4.8の イ

ンス トールが必要となります。また、qmakeは 、mingw―w64を必要とします。そ

のため、mingw‐ w64を インストール後に、qmakeを インストールしましょう。イ

ンストール後は、qmake.exeに パスを通すことにより、capybara― webkitが インス

トール可能になります。

r qmake 4.8

@t http:,/qt-project.orgldownloads

r MinGW-w64

lltiE http://sourceforge.net/projects/mingw-w64/

O capybara‐ webkitの インストール

I Twitterの トレンドを取得する

* -*- coding: utf-8 -*-
require 'capybara'
require' capybara/dsl'
require' capybara-webkit

316

Capybara.default_selector = :xpath

_ S gentinstal:capybaraⅢ Webkit



5‐ 13 流行をキャッチする

Capybara.default_driver = : selenium
Capybara,app_host = "https: //twitter.com/search-home"

module Spider
class Twitter

include Capybara::DSL

def search
visit( " )
all( " / /ul[@c1ass='trend-items js-trends' ] /Ii/a" ). each do I element I

puts element.text
end

spider = Spider: :Twitter.new
spider. search

●twitter_trends_capybara.rbの 実行例

Capybaraを 使うことで、遅延ロードにも対処できます。しかし、Twitterの トレ

ンドは、ログインしていない状態だとデフォルトの全世界になります。日本のトレ

ンドを取得したい場合は、言語設定を日本にしているアカウントでログインするか、

検索語の画面でトレンドの設定を行う必要があります。処理として効率が悪いので、

APIを利用しましょう。

難APIで Twitterの トレンドを取得する

Trends APIを 利用すると、与えられた地域IDごとのトレンドを取得できます。

地域IDは、Yahoo!の「Where On Earth ID(woeid)」 を使用しています。

317



Chapter 5 目的別クローラーの作成

実行に際しては、「:consumeLkey」「:consumeLsecret」「:accestttoken」「:acces亀

token_secret」 にTwitterの APIキーなどを設定してください。APIキーについては、

p.272をご参照ください。また、RubyからTwitterの APIを 利用するには、Gemの ライ

ブラリを利用すると効率がよいです。今回は、「5-4 Twitterデータの収集」(→p.267)

で利用したtwitterラ イブラリを使います。

■Twitter Developersの GET trends/placeページ

回回l httpS:ノ %deV.twittercolT1/docs/api/1.1/get/trends/p:ace

■Yahoo!IGeoPoint

回回l httpS:ノ %deve:operyahoo.corT1/geo/geoplanet/guide/concepts.htnll

woeidを調べるには、米国のYahool IDを 取得したうえで、開発者登録を行います。

ApplicationIDを取得します。調べたい場所の略称とApplicationIDを URLにセット

することにより、結果のJSONを取得することができます。次の例は、サンフラン

シスコ空港を調べた場合です。

. http://where.yahooapis.com/v1lplaces.q(SFO)?appid=YourApplicationlD

またwoeidだけであれば、Twitterの APIか らでも取得できます。ただし、それが

指し示す場所は、別途調べる必要があります。

日woeidを取得する twitter_woeid_api.rb

COnfig = {

:consumer_key => 'TW工 TTER_API_KEYl,
:consumer_secret => 'IWIT.TI‐ 81ハ PI:St‐ CRET',

:access_token => 'TWITTER_ACCESS_TOKEN',

:access token secret => 'TWITTER ACCtSS TOKEN SECRE■ '

}

client = Twitter; ;REST: :Client.new(config)
client.trends_available.each { | available I

puts available. id
I)

■ ―*― coding: utf-8 -*―

requュ re ttwitter'

318



5‐13 流行をキャッチする

●twitter_woeid_api.rbの 実行例

E APlで Twitterの トレンドを取得する

●twitter」 rends_api.rbの実行例

)
#E*
Place_id = 23424856

client = Twitter: :REST: :Client.new(config)
client.trends(place-id).each { ltrend I

puts trend.name
puts trend.url

)

: access_token_secret =>

:consumer secret => '

:access_token =>

# -*- coding: utf-8 -t-
require ' twitter'

config = {
:consumer_key =; '

319



Chapter 5 目的別クローラーの作成

5‐ 13‐ 2 長期的なトレンドをキャッチする

先ほどのTwitterや Goo」eを使った方法は、短期的なトレンドをキャッチする方

法です。マーケティングで使うのであれば、例えばこれからトレンドがきそうなも

のをキャッチしたいでしょう。残念ながら、そのものずばりの方法はありません。

しかしながら、手がかりになるようなデータは収集できます。1つは、先ほどの

Googleト レンド(→p314)を使って、時系列のデータを抜き出す方法です。

Googleト レンドのグラフは、Google Chart Toolsを 利用してJavaScriptで描画さ

れています。そのため、元となるデータはすべてHTML中 に含まれています。こ
れを利用して、検索数の推移を数値として取得することができます。

次のスクリプトは、「クラウド」というキーワード(0)の検索数の推移を取得し

ています。検索開始日(0)を指定することもできます。

目Googleの検索数の推移を取得する

# ‐*‐  coding: utf‐ 8 ‐*―

require ioPen― ur■ '

requ■ re iur■ '

word="クラウト・ 0-一―――-0

#検索開始日の設定
day=Time.now

#36ヶ月前
day=day ― ■080*24*60*60●¨̈¨̈――――-0
month = day.month

year = day,year

url = URI.encode("http://www.gOOgle.comノ trends/
fetChCOmpOnent?hl=en&q=#{WOrd}&date=#{mOnth}/

1{year}+36m81cmpt=q&content=■ &cid=

TIMESERIES_GRAPH_0&exPort=5&W=500&h=3301')

html = open(url)
raw_data_array = html.read. split("rowsY" : ")[r]

. split( "var htmlChart" ) .ftrst
split_raw = raw_data_array.split("1, ")
split_raw.each do lrawl

source = raw. split("Date(" ) [1]. sp1lt( ", ")
date = sourceIo]+'-'+(sourceIr].gsub(/ys/, "")

,to_i+1).to_s+' -'+sourceIz].gsub( /Ys/, " " )
.gsub(/Y)Y)/, "") #.gsub(/)), /, ' ')

num = source[5]
puts "#{date}, #{num}"

end

320



5‐14 企業・株価情報を収集する

● google trends_data.rbの実行例

得られたデータをどのように活用するかは、工夫次第です。なお、G.∞gle TК nds

APIを 認証なしでスクリプトから直接扱うと、非常に少ない回数で利用制限がされ

ます。ご注意ください。

これ以外にも、「5‐4 Twitterのデータ収集」(→p267)で紹介したTwitter Streaming

APIで毎日データを収集して、日毎の出現数をカウントすることで トレンドの推移

はわかります。出現数の推移を統計的に計算することにより、 トレンドの兆しを見
つけることができるかもしれません。

〕
5‐ 14

企業・株価情報を収集する

企業・株価情報を収集する目的でクローラーを作成しようとする人は多いでしょ

う。定番の方法ですが、Yahoolフ ァイナンスから企業情報と株価情報を取得する方

法を試してみましょう。

5‐ 14‐ 1 証券コードー覧を取得する

企業・株価情報を収集する際は、まずは証券コードの一覧を取得することから始

めます。証券コードはいくつかありますが、一般的には銘柄コードのことを指しま

す。銘柄コードは4桁の数字で、上場株式やその他の上場証券 (ETFな ど)に割り振

られています。

クローリングの際に証券コードが必要になる理由は、金融情報などを扱うWeb

サイトの多くで、管理を証券コードで行うことが多いためです。一覧の取得は、東

証サイトの東証上場銘柄一覧などからダウンロードできます。

321



Chapter 5 目的別クローラーの作成

■東証 :東証上場銘柄一覧

口回l http:ノ グヽ′WV′・tse.oLjp/market/data/1isted_companies/index.htm:

別の方法として、企業情報を証券 コー ドで扱っているWebサ イ トに対 して、

0001か ら9999ま で試行すればすべて取得できます。ただし、対象のWebシ ステム

側の負荷になるので、東証が一覧を公開しているかぎりは、そこからダウンロー ド

するのが一番です。エクセル形式で公開しているため、ダウンロード後にシステム

で扱いやすいテキス トファイルに変換するとよいでしょう。

マレ東証上場銘柄一覧ダウンロード

|、 公彙崚

"   
ロ

,,・編あ証― 壺
I r*trxn-r ramr

la+onma

lul{Y Fu-:@D

llr*t m. , :nn-c(hEn)

Ijffios

鸞

輸

勁
．慟

1■●●●
"α
國ト

1“ゆ■■の鞭へ.|
ナ
〓

慟

5‐ 14‐ 2 企業情報および当日の株価を収集する

証券コー ドを取得できたら、次は企業情報の取得です。収集対象として考えられ

るのが、代表者名や住所、業種などの属性情報と、発行株式数や単元株、年初来高

値 。安値などの株価に関する情報です。これらの情報が揃っているサイ トは、日本

経済新聞の日経会社情報とYahoo!フ ァイナンスです。

■日経会社情報

回■http:〃lwww.nikkei.com/markets/Company/

■Yahoo!フ ァイナンス

回回l http:″″inanCe.yahoo.co.,p/

今回の例では、Yahoo!フ ァイナンスを対象とします。ページの特徴として、項目

を一意に取得するidや classな どはほとんどありません。そのため、相対的な位置な

どの指定で値を取得する必要があります。単純な構造なので解析は難しくないので

すが、メンテナンス性に劣るのが難点です。

322



5‐14 企業・株価情報を収集する

なお、今回のスクリプトは、会社情報の取得部分をクラス化しています。ここま

では単純なバッチ形式で処理を作ってきましたが、クラス化しておいた方が機能分

割やテストが容易で保守性が高いスクリプトを作りやすいです。

このスクリプトは、証券コード「4689」 (ヤ フー (株))の情報を取得しています

(0)。 証券コードを切り替えることで、さまざまな会社に対応できます。

I Yahoo!フ アイナンスから企業情報を取得する nokogiri-stock.rb

■ ―*―  coding: utf‐ 3 ‐*‐

requ■ re inokogir■ '

requ■ re lopen― ur■ '

class Companylnfo
def initialize (ticker_code)

@baseurl = "http : / /stocks. finance. yahoo. co. jplstocks"
@tickerCode = ticker code

sc ra Pe

end

attr_reader :name, :tickercode, :category,
:unit, :recentHighPrice, :recentLowPrice,
:highPrice, ;lowPrice, :price

private
def scrape_stock_info(html, index)

get_content (

html, "dd", "ymuiEditLink maro", index, " /strong" ) . delete( ", " )
end

def get_company_info( )
url = "#{@baseUrl}/profile/?code=#{@tickerCode}"
doc = get_nokogiri_doc(url)
@name = doc. xpath( "//th[@class=' symbol' ] /hr" ) .text
@category =

doc.xpath("//table[@c1ass='boardFinCom marB6' ]/tr[6]/td").text
@unit = doc.xpath(

" / /tabLe [@class=' boardFincom marB6' ] /tr [13 ] /td" ) . text
end

def get_stock_infoo
url = "#{@baseUrl}/detail/?code=*{@tickerCode}"
doc = get_nokogiri_doc(url)
@recentHighPrice =

doc.xpath(
" I I di-v lr1.f I dll dd [@class=' ymuiEditLink maro' ] / strong" ) . text

@recentLowPrice =

doc.xpath(
" I I div lr2f I dL/ dd [@class=' ymuiEditLink maro' ] / strong" ) . text

323



Chapter 5 目的別クローラーの作成

@highPrice =

doc.xpath(" I I div[@c1ass=' innerDate' ]
/ divl3l I dU ddl6t6f35s=' ymuiEditLink maro' l
/strong").text

@lowPrice =

doc. xpath ( "//dlv[@class='innerDate' ]
I div 14) / dll ddl@class=' ymuiEditLink maro' l
/strong").text

@price = doc.xpath("//td[@class='stoksPrice' ]"),text
end

def get_nokogiri_doc ( url)
begin

html = open(url)
rescue OpenURI : :HTTPError

return
end

Nokogiri: ;HTML(htmI.read, ni1,'utf-8' )
end

def scrape
get_company_info
get_stock_info

end

end

COmpany = COmpanylnfO.neW(1'4689'1)● ¨̈¨̈ ―̈―――――(D
puts company.name

puts company.categOry

puts cOmpany.unit

puts ''年初来高値:"‐「company.recentHighPrice

puts ''年初来節 :'1+company.recentLowPrice

puts t'7晰 1自 :''+company.highPrice

puts ''安値:"+company.lowprice

puts '11味イ面:''+company.price

● nokogir卜 stock.rbの実行例

324

●
■

■.ヤ フー(株 )

年初来安値:408

愕等イ直:483

安値:478

年初来高値:668



5‐14 企業・株価情報を収集する

5‐ 14‐ 3 株価の時系列データを収集する

過去の株価の推移を元に、株価の分析をする場合があります。YahoO!フ ァイナン

スでは、時系列データの取得も可能です。日付を遡ってデータを取得するスクリプ

トを作ってみましよう。時系列データ取得ページは、次のようなURLに なってい

ます。

. http://info.fi nance.yahoo.co jp/history /
?code=4689J&sy=1 999gtrn='l ft5d= l Qsy=20 1 4&em=S&sfl =l/Q1rn=d&p=l

引数で証券コード、日付のFrom―To、 ベージ数を指定します。1ページにつき50

件ずつ表示します。

スクリプト作成のポイントは、最終ベージまで回帰的にデータを取得することで

す。ページを1ページずつ処理し、その後に次のページがあるかの判定をします。

判定は、改ページのリストであるページャの部分に「次へ」の文言があるかどうか

で判定しています。また、企業ごとに上場開始日が異なります。そのため、検索期

間のFromを 1900年 1月 1日 に指定することにより、すべてのデータを取得できるよ

うにしています。

E時系列に沿って株価を取得する

# -*- coding: utf-8 -+
require 'nokogiri'
require 'open-uri'

def get_nokogiri_doc (urI)
begin

html = open(urI)
rescue OpenURI: :HTTPError

return
end

Nokogiri: :HTML(htmI.read, nil,'utf-8')
end

def has_next_page? (doc)
doc. xpath ( " / /+ [@id=' main' ] /uI/a" ). each { | element I

return true if element.text == ")t^"

)
return false

end

325



Chaptr 5 目的別クローラーの作成

def get_daily_data (doc )
doc . xpath (

"//tabLe[@class='boardFln yJSt ma186' ]/tr").each {lelementl

* Efjfitr&Uffi*A3i.maEfr
if element.childrenIo].text l=

"E{r}" && element.childrenIr][:c1ass] != "through"

十 日付

day = 6lur"na.chiIdrenIo].text

■ 始値

open_price = element.childrenIr].text

#高 値

hight_price = element.childrenIz].text

■ 安値

low_pri.ce = element.children[3].text

#終値

closing_price = element.children[4],text

# H)KE
volume = element.children[5],text.gsub(1,1," )

puts "#{day},#{open_prlce},#{hight_price},
*{ Iow_price }, #{ c Ios ing_price } , #{ volume } "

end

}

end

#証 券コー ド
COde=“4689"

#検索日
day=Time.now

ey=day.year

e nl=day.month

ed=day.day

Start_url="http://info.finance.yahoo.co.jP/history

/7Sy=■ 900&Sm=■&Sd=■ &ey=#{ey}&em=#{em}&ed=■ (ed)&tm=

d&COde=#{COde}“

num‐■

puts i'日 付,始値,高値 ,安値,終値,出来高 "

l。。p {

url = ''#{Start_url}&p=#{num}“

dOC = get_nOkOgiri_dOC(url)



5‐ 15 為替情報・金融指標を収集する

get_daily_data (doc )
break if lhas_next_page?(doc)
num = num+1

● nOkOgiri‐ StOCk¨ historyrbの 実行例

‖
株価に引き続き、為替などの金融指標も取得してみましよう。株価と金融指標を

組み合わせて分析することにより、何か見えてくるかもしれません。

5… 15 Ⅲl 国債金利

国債金利については、財務省のベージから取得できます。日々更新されており、

CSVで も提供されています。データは日々更新され、月単位で切り替わります。

5‐ 15

為替情報・金融指標を収集する

上記のようにクローリングにより株価情報は取得できます。一方で、東証サイ ト

により、有償にて株価データのダウンロー ドやAPIの利用が可能です。法人のみなら

ず個人でも利用可能なので、用途および頻度によっては検討すべきでしょう。

有償サービスの利用

口東証データダウンロードサービス

ロ回l http:ノ %eC.tse.o■ jp/

藤
蘇
●

327

}



■国債金利情報 :財務省

回■http:〃 WWW.mof.g。 .,pttgbS/referenCe/intereSt_rate/,9bCm.htm

冒フ国債金利情報

駆HTMLか ら取得する

最新のデータは各年ごとの表の最終行になります。HTML自 体も入れ子のテー

ブル構造になっていて、Classや Idな どの手がかりが少ないです。こういった場合

は、配列で指定する方法しかないです。また、必要なのは最終行のみなので、

Noko」 ri::XML::Elementの lastメ ソッドを利用します。

1国債金利の最新データを取得する bond-nokog iri.rb

# -*- coding: utf-8 -*-
require ' nokogiri'
require'open-uri'

url= " http : / / www. mof . go. j p/ j gbs / re'f erence / intere st-rate / j gbcm. htm "

reg_pattern=" / / * [@id=' index' f I tbody I tr / td I uI/table [ : ] /tbody I t.t"
doc = Nokogiri: :HTML(open(url))
elements = doc.xpath(reg-pattern).last
array= [ ]
elements.xpath("td" ).each { | element I

array.push element.text
)

puts "S+E :#{array[o]]"
puts "14:*{array[1]]"

.■
●●四口
"

癖
田
団
曖

億

穏

餞
¨
協

餞
口
露

詰

譜

蒔
嵩

¨

澤
囲
協

』
耀

囲

碑
¨
¨
呻

”
嘔
臓

蓼
嘲
雛

”
嘔
盤

抑
回
”
中

転略(‐ぶ■l g''

位全 [ヽ垂二⊇コ曇壼二]顧]匹崚=

'サ
↑マツフ ー ス[彙

“
|… 亜 EI財務

328

Chapter 5 目的別クローラーの作成



5‐ 15 為替情報・金融指標を収集する

puts
puts
puts
puts
put s

put s

puts
puts
puts
puts

Puts
Puts
puts
put s

"2年 :#{array[2]}"

"3年 :十 {array[3]}“
"4年 :#{array[4]}“

・5年 :#{array[5]}"

"6年 :■ (array[6]}“

"7年 :#(array[7]}"

"8年 :#(array[8]}"

"9年 :#{array[9]}"

"■ 0年 :#{array[■o]}"

“■5年 :■ {array[■■]}"
“20年 :■ {array[■ 2]}"
''25年 :#{array[■3]}"
''30年 :#{array[■4]}・

'140年 :#(array[■5]}"

'bond‐
nokogiri.rbの 実行例

鬱CSVから取得する

スクリプトから使う場合はCSVを利用する方が便利かもしれません。Rubyで

CSVフ アイルを扱う場合、標準ライブラリであるCSVラ イブラリが利用できます。

ダウンロードしたファイルを直接扱うには、IOイ ンスタンスを扱えるCSVラ イブ

ラリのインスタンスメソッドを選択する必要があります。newメ ソッドなど一部の

みしか扱えないので注意してください。また、CSVの行数などは取得できないた

め、ループなどで最終行判定をする必要があります。

329



# -*- coding: utf-8 -*-
require'open-uri'
require 'csv'

url= " htt p : / / www. mof . go. j p / j gbs / ref ere nce / interest-rate / j gbcm. csv "

csv = open(urI)
csv-obi = CSV.new(oPen(ur1), {

;encoding => "Shift_1I5", :headers =1 :first_row))
csv_obj.each do lrowl

* **ftaatt&fr
if csv_obj . eof?

# puts row
puts "trE+E:#{row[o]]"
puts "rS:*{row[r]]"
puts "2+:#{row[2]]"
puts "3+:#{row[3]]"
puts "4+:#{row[4]]"
puts "sE:*{rowIS]]"
puts "6+:*{row[6]]"
puts "7+:#{row[7]]"
puts "88:#{row[8]]"
puts "gS:*{row[s]]"
puts "lo+:*{row[ro]]"
puts "15+:#{row[11]]"
puts "2o+:*{row[rz]]"
puts "zs+:#{row[13J]"
puts "3o+:#{row[1aJ]"
puts "4o+:#{rowIrs]]"

end

end

Chapter 5 目的別クローラーの作成

日CSVから国債金利の最新データを取得する

● bond‐ csv.rbの実行例

bond-csv.rb

330

$ ruby bond-csv.rb

3年 10.086

91年 10.484



5‐15 為替情報 。金融指標を収集する

5‐ 15‐ 2 為替情報

為替 について は、Yahoo!フ ァイナ ンスで取得 で きます。

日米ドル/円 ‐FXレー ト・チャー ト:Yahoo!フ ァイナンス

回回l http:%′ infO.finance.yahoo.co.ip/fx/deta‖/?code=USDJPY=FX

でフ米ドル/円 FXレート

Yahoo!フ ァイナンスでは、個々の主要な要素ごとにID属性が付いています。そ

のため、解析は非常に簡単に行えます。FXの場合は、Bid(売値)と Ask(買値)を

取得します。

次のスクリプ トは、実行時の米 ドル/円‐FXレー トを取得します。

'■
1●●′●●に

'め

と●0た .ヽ● ,●●●t●,,´●■・,シフt,|●
==

団自国国} u,t t,:lt,r

hコ鶴rフアイナンス銹
「

‐あ

|・ ,一 ■   ■ ||―||||||‐ |||‐ |・ ||



Chapter 5 目的別クローラーの作成

日米ドル′円―FXレートを取得する fx-nokogiri.rb

● fx¨ nokogiri.rbの 実行例

5Ⅲ 15‐ 3 その他の経済指標

国債の金利や為替は、経済の現在の状態を表すものです。それでは、市場は何を

もって動いているのでしょうか。そのなかの1つに、各国の政府 。中央銀行が発表

する経済指標などがあります。例えば、雇用統計や貿易収支です。その値も取得し

てみましょう。Yahoo!フ アイナンスでは、株価や為替情報のみならず、経済指標情

報も取り扱っています。

日経済指標情報 :Yahoo!フ アイナンス

回口http:〃 inf。■nanCe.yah。。.C。」p/fX/marketCalendaヴ

次のスクリプトは、Yahoo!フ ァイナンスから直近の経済指標を取得します。それ

ぞれの経済指標には、指標自体の市場への影響の大きさや、市場の予想、実際の結

果などがあります。どの指標を参考にするかは、個々人の判断となります。

日経済指数情報を取得する indicators-nokogiri.rb

# -*- coding: utf-8 -*-
require 'nokogiri'
require'open-uri'

url ='http://info.finance'yahoo.co. jplfxlmarketcalendar/
doc = Nokogiri: :HTML(open(ur}))

url ‐ lhttp:ノ /info.finance.yahoo.CO.jp/fX/detai1/7code=uSDコ PY=FX

doc = Nokogiri::HTML(open(url))

bid = doc.xPath('1/ノ *[Oid='uSD〕 PY_detail_bid']'1).text

ask = doc.xpath(''ノ /*[Oid='USDコ PY_detail_ask:]'1).text

puts ''Bid(売値):#{bid}"

puts':Ask(買 値);■(ask}"

# -+- coding: utf-8 -*-
require 'nokogiri'
require'open-uri'

332



5‐ 16 郵便番号と緯度経度情報を取得する

doc.xPath("ノ /div[Oclass='ecoEventTb102 marB201]/table/trl').each {lelementl

puts l:指標名:#(element.xPath(".//td[Oclass='event']“ ).text}"
puts ''=予想:#{element.xPath(''.//td[Oclass‐ lexPectation'1'`).text}"

puts '1事吉果:#{element.xpath('1.//td10class=iresu■ t'1'1).text)'1

}

O indicators‐ nokogiri.rbの 実行例

政府が発表する雇用統計などを扱う方法については、「5‐20官公庁のオープン

データを活用する」(→p.349)で もう少し詳しく解説します。

5‐ 16

郵便番号と緯度経度情報を取得する

会員制のWebサ イトなどを運営している場合、分析の一環として会員の地域ご

との分布を調べることがあります。その際は、郵便番号や住所を元に集計すると

いったことが多いでしよう。そして、集計結果はエクセルなどにまとめられるで

しょう。ここで、エクセルなどのテキストベースの集計だけでなく、視覚化された

情報があればより直感的に状況を把握できます。

住所情報に紐づく緯度経度の情報があれば、視覚化された情報を付与することが

できます。しかし、住所ごとの緯度経度の情報を持っている人は稀でしよう。そこ

で、Googleが提供している地図サービス「Google Maps」 を利用し、緯度経度の情

報を取得して活用してみましょう。

5… 16‐ l Googte Maps AP:によるジオコーディング

ジオコーディングとは、住所を地図上の地点に変換することを意味します。地点

を指し示すには、緯度経度を利用します。必然的に、ジオコーディングをすると、

緯度経度の情報を取得できます。Google Mapsは 、住所や郵便番号からジオコー

ディングが行えます。

333



Chapter 5 目的別クローラーの作成

Google Mapsは 住所や郵便番号から検索可能で、緯度経度を含む住所情報を返し

ます。利用にあたってAPIキーは必須ではないものの、1つのIPあ たり1日 2500回 の

リクエストなどの制限があります。使用回数が多い「Maps API br Business」 と

いった有償オプションもあります。

. Gootle Maps API Aa-( k>7 - Google Maps API : Google Developers

@ https:,/developers.google.com/maps/licensing?hl=ja

Goo」e Maps APIをRubyか ら利用する場合は、「geocoder」 というGemラ イプラリ

がお勧めです。geocoderは、他にもYahoo!や Bingな どの地図サービスの利用も可能

です。インストールは、gemか ら行います。インストール後に、gem‖ st geocoder

でgeocoderが表示されれば成功です。

r GitHub 0) alexreisner/geocoder ^.-7
llE https://github.comlalexreisner/geocoder

● geocoder(の インストール

S gem install geocoder

● インストールの確認

5‐ 16‐ 2 郵便番号から緯度 。経度を検索する

それでは、geocoderを 使っての緯度・経度を取得します。住所もしくは郵便番

号から検索できますが、住所の場合は表記ゆれが大きいので郵便番号を利用しま

しょう。郵便番号検索の場合、7桁の郵便番号を「3桁-4桁」の形にして検索します。

また、引数として国指定はありますが、場合によっては日本以外の結果を返す場

合があります。そのため、最初にレスポンスが日本であるかの確認が必須になります。

次のスクリプトは、大阪市西区北堀江 (550-0014)の位置情報を取得しています (0)。

指定する郵便番号を入れ替えると、その地点の情報が取得できます。

334

議|

geocoder(1.2.1)
1111



5‐16 郵便番号と緯度経度情報を取得する

1郵便番号から緯度 。経度情報を取得する geocode.rb

● geocode.rbの 実行例

5・ 16‐ 3 郵便番号と緯度 。経度データによる可視化

それでは、緯度 。経度情報が集まれば、どのように視覚化できるのでしようか。

今回は、単純に郵便番号データの視覚化を行います。視覚化のッールについてはい

ろいろありますが、今回はWindows用の「Palek」 を利用しています。緯度経度情

報は、Paiekの書式に従いポイントとして登録することにより次のような図を出力

することができます。Palekの使い方の説明は、省略させていただきます。

■Pajek

口回l http:ノ /V:ado.fmf.uni‐ 1,,si/pub/networks/pajek/

addresses = Geocoder.search("55o-oo14", 

-O

:params => {:countorycodes => "ja"})
addresses.each { laddress I

address.data["address-components"].each { lvalue I

i'f value["short-name"] == "1P"

1at = address.data

[ "geometry" ] [ "Iocation" ] [ "Iat" ]
lng = address.data

[ "geometry" ] [ "location" ] [ "lng" ]
puts "EE:#{Iat}"
puts "8E:#{1ng}"

end

)
i

# -*- coding: utf-8 -+-
require ' geocoder '

ceocoder. configure( :language =>

"ja", :units =v "km")

335



鸞
'緯
度・経度情報を視覚化する

1369'3.51.72,9

ノ

単純に緯度経度情報を出すだけでは、あまり役に立ちません。実用的な例だと、

位置情報 (x,y)軸 と売上情報 (z)軸 として組み合わせることにより、どの地域がど

れくらい売れているのか立体的な地図に表すことができます。

匁
クローラーの身近な利用例としては、書籍の新刊情報を収集することがあげられ

ます。新刊情報のリストが定期的に届けば、面白そうな本を逃さず入手することも

できます。また、お気に入りの作者やシリーズがあれば、アラートを出すことも可

能です。それでは、Amazonか ら新刊情報を取得してみましょう。

5‐ 17‐ l Amazonの新刊 。予約の検索パラメータ

Amazonの 新刊・予約ページでは、カテゴリと期間を指定して検索を行うことが

できます。

■Ama20n.CO.,pの新刊・予約ページ

回口http:〃WWW.ama20n.CO.,p/%E6%9C%AC‐%E6%96%BO%E5%88%8A/b/ref=sv_
b 2?ie=UTF8&node=2405051051

5‐ 17

新刊情報を収集する

336

Chapter 5 目的別クローラーの作成



¬フAmazoncojpの 新刊・予約ページ

それでは、実際の検索URLは どのような形でしょうか。次のURLは、「文学・評

論」の30日以内で検索した例です。

・ http:〃www.amazon.cojp/s/ref=sr_nr_n_07rh=n%3A465392

9る2Cp_n_publication_date%3A22855410519る 2Cn%3A%214656109る2Cn

9く)3A466284&bbn=465610&le=UTF8&qid=1401531073&rnid=465610

比較的難解です。検索パラメータに関する部分はrhパ ラメータのなかに詰め込

まれて格納されています。rhパラメータ中の「%3A」 や「%2C」 など「%」 から始ま

る3文字は、URIエ ンコードされたアスキーコードです。例えば%3Aは「」、%2Cは

「,」 にあたります。その前提のうえで、カテゴリごとのURLを並べてみると、どの

値が何を意味するかわかってきます。publication_dateが期間で、nがカテゴリにな

ります。

鴇ン検索期間のld

auaる。
・ "

轟議,奪1鶴:五

磐 群
量

輩瞥振Zl犠避簾鰐麗`議:撮P“
Δl慶2堕 |コ隆ユlm

目協鶴¨ __|ュ、
幣暉盤:l議饗

千
超塩1年'腸

「
晨:薇■選
=|"r¨

―~~~~

魃 隋 晰

陽:飩 1膵

鯛1翼雷慧

::フr:Lr着 .、F澱 .  「
g:『 )'iと

同 ″綸こ。で
 書:,''ら

な:｀銀
・
お1:`外

:|は
,… C)。幅 ]:illl:lT‐

ti忠露:認"

世 る… … ":……
〕‐●は
昭 ::鏃轟I

:章務,1ち曹ι子解ミケ 綴什
ブ°…゛゙ 蹴 髯

“

I"tア

繊|コ 転螂贈トレ
ーニ″"

堀出D惨 幹トレーニングの決定餃1全て長友皓も

二′、り:踊‐ギ〕″I翌芝盤iレ
ール

2285919051

2285539051

2285541051

82839051

337

5‐17 新刊情報を収集する



2315442051

2315443051

82837051

82838051

Chapter 5 目的別クローラーの作成

¶ワ検索期間のld(続き)

▼ カテゴリ名のld

5‐ 17‐2 新刊情報を取得する
パラメータの解析さえできると、データ取得はそれほど難しくありません。期間

とカテゴリからURLを合成し、解析するだけです。ベージングを再帰的に辿るた

571582

466284

571584

571584

466286

466282

492054

466298

466292

||■・ 1 492228

466304

492090

466302

3148931

466306

466280

92266

746102

10667101

カテゴリ名 ld

338

検索期間         ld

過去 7日

過去30日

文学・評論

社会・政治

ビジネス・経済
.

t*+.rr/r:y* laoozso

医学・薬学・看護学・歯科学  1466298

アート,.建築・デザイン  11466294

趣味 1実用

zilt-'y . 7, t- 1.7 lz+oo+ttost

暮らし,健康・子育て

1教育・学参=受験

絵本・児童書 |

タレント写真集 I soossz

r>t-71t>t' )aaazsa



5‐ 17 新刊情報を収集する

めに、「次のページ」を取得するメソッドを用意します。

次のスクリプトは、過去30日 間の「歴史・地理」カテゴリの新刊情報を取得します。

1新刊情報を取得する

# -+- coding: utf-8 -*-
require ' nokogiri'
require 'open-uri'

■検索期間 =>過去30日
search_term=''8283705■ "

+検索カテゴリ =>歴史・地理
CategOry='1466286"

base_ur1 = "http: //m. anazon.co. jplsl
? rh=n%3A465392%2cp_n_bind ing_browse - bin
%3 AA 6 L 3 7 O 5 r%2cn%3 p&2 ! 46 5 6 L0%2 C "

urI= "#{ ba se_ur1} n%3A#{ category }
%2cp_n_publicat ion_date%3A#{ search_term} "

def get_next_url(doc)
url = nil
element = doc.xpath( "//a [@id=' pagnNextLink' ] " )
if lelement.empty?

urI = "http : //m. amazon, co. jpl#{element. f irst [ : href ] ]"
end

return url
end

loop {
doc = Nokogiri: :HTML(open(url))
doc. xpath("/ /div[@id=' atfResults

puts element[ : href]
puts element.text

)
url = get_next_url(doc)
break if url,nil?

)

]/diV/h3/a'1).each { | element I

339



Chapter 5 目的別クローラーの作成

● new‐books¨ nokogiri.rbの 実行例

5・ 17… 3 AP:を利用する

新刊情報は、Amazon Product Advertising APIを 利用すると、制約付きながら

も取得できます。APIの検索オプションでpOwerを指定すると、「during」 というパ

ラメータで月までの指定ができます。またsortオプションで日付順で指定できます。

つまり当月もしくは翌月を指定すると、新刊情報を取得できます。

次のスクリプトは、Amazon Product Advertisingを 扱 うライブラリである、

「amazon― ecs」 を利用したサンプルです。「4-6 APIを 利用した収集」(→ p.242)で紹

介したitem_searchメ ソッドでは、必ず検索ワードを指定する必要があります。そ

こで、よリローレベルのパラメータを投げられるsend_requestを 利用し、検索を

行っています。

amazon― ecsの インス トールはgemか ら行えます。インス トール後にgem‖ st

a maZOn― eCSでamazon― ecsが表示されれば成功です。

? amazon-ecs0)< > 7l- - lb

340

叢書)

1:I査彊:ヨ

5 gem install amazon



●インストールの確認

スクリプ トを実行する際には、 Rassociate_tag」 「:AWS_accesttkey」 d」「:AWS_

secretkey」 を設定してください (→ p.243)。

日APIで Amazonの新刊情報を取得する

O new‐ books… api.rbの実行例

new‐ books‐ api.rb

power = "pubdate:during #{day.month}-#{day.year}"
res = Amazon: : Ecs. send_request(

{:operation =>'Itemsearch',:search_index =>'Books
'daterank',:country => 'jp', :power => power ))

day = 1ia".no,

, : sort =>

reS.itemS.eaCh d。  liteml

Puts item.get('ASINl)
puts item.get('ItemAttributes/Title')

end

5‐17 新刊情報を収集する

# ―*― coding: utf-8 ‐*‐

require 'amazon/ecs:

Amazon::Ecs.options ={
:associate」 ag=>'`1轟蒸彗:織1黒 `,
:AWS_accesS_key_id=>'轍 織麟蘇織111彗彗轟

`,',
:AWS_secret_key=>:饗 鴛薄奏重1妻苺錐雌轟奪|1鱗鱗搬KI苺導'

}



Chapter 5 目的別クローラーの作成

すべての新刊を取得するには、ページングなどの処理が必要です。ぜひ、実装を

試してみてください。

〕
クローラーの技術を応用すると、荷物の追跡のようなこともスクリプトから実行

できます。最近では、運輸会社各社がWebか ら簡単に追跡できるインターフェー

スを用意しています。そのため、ただスクリプトから追跡するだけでは、それほど

メリットはありません。そこで、追跡後にその予定をGoogle Calendarに 登録して

みましょう。

5‐ 18… 1 ヤマ ト運輸の荷物を追跡する

ヤマト運輸を例にスクリプトを作ってみましょう。クロネコヤマトでは、次の

URLに伝票番号を付加することにより、荷物の配送状況を問い合わせすることが

できます。

・ http:“ iZen.kuronekoyamato.cojp″ zen/seⅣ let/cけ z.b.NQ00107id=伝 票番号

問い合わせ後に、伝票番号とステータスと予定日の一覧が出てきます。まずは、

それを取得してみましよう。問い合わせには、POstメ ソッドでデータを送る必要が

あります。そのため、Net::HTTPを 利用して、パラメータをPostメ ソッドで送って

います。

なお、実行時は「Input slip number」 に伝票番号を設定してください(0)。

|ヤマト運輸の配送状況を取得する rb

# -*- codingr utf-8 -*-
require'nokogiri'
require 'net/http'

#コマンドライン引数から問い合わせ番号の取得
if ARCV.size == ■

number =  ARGV[0]

e■ se

putS''111彙1111lp・ lⅢⅢ,■ "・――――-0
exit ■

end

5‐ 18

荷物を追跡する

342



5‐18 荷物を追跡する

Net : : HTTP. version_1_2

url = ''toi.kuronekoyamato.co.jp“

html = nil

Net::HTTP,start(url, 80){lhttpl

resPonse = http.Post(1ノ cgi― bin/tnekol,''numbero■ =#{number}'。 )
htnl■ = response.body

}

if html.nil?

exit

e■ se

html.encodel(‖ UTF‐ 81', 'iShift_コ IS'')

end

doc = Nokogiri::HTML(htmI) if !html.nil?
doc. xpath( "//table [@class=' ichiran' ] /tr[3] " ), each { | element I

day = g1.r.11. xpath( ". //*[@class=' hiduke' ] /font" ) .text
status = element. xpath ( ". / /* [@class=' ct' ] /font" ).text
puts day
puts status

● yamato¨ nokogiri.rbの 実行例

5‐ 18Ⅲ 2 Googte Calendarに ]艶1嗣:する

それではデータを取得できたので、Google C」 endarにデータを登録しましょう。

Rubyか らGoogle C」 endarの操作は、公式ライブラリである「Google API Client」

を利用して行えます。しかし、かなり重量級のAPIなので、手軽に使うには少々面

倒くさいです。そこで、Google C」endarの軽量ラッパーライブラリである「google_

calendar」 を利用してみましょう。

r GitHub 0) toogle_calendarn(-i
l!!il https://github.com/northworld,/google-calendar

google_calendarの インストールはgemか ら行えます。インストール後にgem list

343

}



Chapter 5 目的別クローラーの作成

9oo91e_ca!endarで、google_calendarが 表示されれば成功です。

●goog:e_calendarのインストール

●インストールの確露

google_calendarラ イブラリは、アクセストークンではなくGoogleの IDと パスワー

ドで操作します。スクリプトの取り扱いは十分注意しましょう。先ほど作成したス

クリプトに下記のメソッドを追加します。そして、日付とステータスを抜き出して

いるところから、呼び出すように変更します。

日配送情報をGoogie Calendarに 登録する yarnato‐ 9oogie¨ calendanrb

+ -*- coding: utf-8 -t-
require ' nokogiri'
require 'net/http'
require ' google_calendar '

#コマンドライン引数から問い合わせ番号の取得

if ARCV.size == ■

number =  ARGV[0]

else

puts ''Input slip number"

ex■ t ■

end

def set_google_calendar( number, status, day)

cal = Google: :Calendar.new(
:username =>'GOOCLf:ID',
:password =>'COOCLE-PASS',
:app_name =>'mycompany.com-googlecalendar-integration' )

today = Time.now
day_of_month = day.split(/Y//) [r]
month = day.split(/Y//)[o]
date = Time.Iocal(today.year, month, day_of_month, t2, oo, oo)

344

S gem insta11 9oo91e_Calendar                                                              ‐



5‐18 荷物を追跡する

event = cal.create_event do lel
e.title = "tv h.mix:*{number}/#{status}"
e.start_time = date
e.end_time = date

end

#イ ベントの登録
puts event

end

Net : : HTTP. version_1_2

ur1 = "toi.kuronekoyamato.co.jp"
html = nil
Net::HTTP.start(url, 80)(lhttpl

reSpOnSe = http・ pOSt('/Cgi― bin′ tnek。 ',''numberO■ =#{number}'!)
html = response.body

)

if html.ni■ ?

exit

else

html.encode!(''UTF‐ 8'1, 1'Shift_コ IS'')

end

doc = Nokogiri::HTML(html)if lhtnl.ni17

doc.xPath(''ノ /table[OClaSS='iChiran']/tr[31'1).each {lelementl

day = s1gm..1.xpath( ". //*[@class=' hiduke' ] /font" ).text
status = element. xpath( ", //* [@c1ass=' ct' ] /font" ).text
puts day
puts status
set_google_calendar( number, status, day )

)

● yamatO‐ goOg:e¨ Ca:endar.rbの実行例

345



5‐ 19

不動産情報を取得する)
過去の不動産の売買履歴を分析できれば、今買おうとしている物件が適正価格か

どうかの判断の材料にできます。しかし、元データはどうすればよいのでしょう

か ? 不動産会社のサイトは、現在の物件しか公開していません。過去のデータが

必要です。

不動産業界には、レインズと呼ばれる不動産会社各社の間で不動産情報をやり取

りするネットヮークシステムがあります。これを参照することで、過去分を含めて

物件情報を見ることができます。

5‐ 19‐ 1 レインズからのデータ取得

レインズからデータを取得するには、基本的には会員不動産会社になる必要があ

ります。一方で、限定的ながら一部の情報は誰でも取得可能になっています。以下

のURLで、マンション・戸建住宅の売買価格・相場 。取引事例の情報が公開され

ています。

■不動産取引情報提供サイト

ロコl http:z/ww、v.contract.reins.or.:p/search/displayAreaConditionBLogic.do

Pヽ不動産取引情報提供サイト

』一・一』・一ｍ一一一一］一`彗

日:卜

`樹

蘊籍]雷1諫奎駿曽諧鶴策摂鶴籠ⅢⅢⅢ._輌

I Ⅲ,●ヽ
``“
●●●●●●

"・“

■●,ヽ               ●●|■●̈ X●

1中 0‐
`‐
●Ⅲ
…
ⅢⅢⅢⅢ
…
●●Ⅲ
'■
“

●
'`       ・

不動産取引情報提供サイトでは、全国の戸建て。マンションの売買履歴を取得で

きます。データの選択は、都道府県と地区を選択します。1ページにつき100件ずつ、

346

Chapter 5 目的別クローラーの作成



5‐19 不動産情報を取得する

複数のページにわたって提供されます。そのなかで取得可能なデータは、次の表の

とおりです。

●不動産取引情報提供サイトの提供データ

動的サイトでかつセッションを元に動くサイトのため、Capybaraな どを利用し

てブラウザを操作してデータを取得します。

スクリプトの流れは、検索する都道府県と地域を選び、後はページがあるかぎり

ページングします。ページングは、プルダウンにより行われます。そのため、最初

に全ページのリストを作成し、ループを元に1ページずつ処理するという実装にし

ています。

次のスクリプトでは、大阪府の北部を対象としています (0)。 都道府県・地区

選択の部分も動的に選択するようにすると、全国のデータをすべて取得することも

可能でしよう。しかし、サイト側の負荷も考慮して、必要なところのみ取得すべき

です。

Capybaraの インス トールについてはp.116、 capybara―webkitに ついてはp■23を

ご参照ください。

日地域ことの不動産取引情報を取得する

# -*- coding: utf-8 -*-
require 'capybara'
require' capybaral dsl'
require' capybara-webkit

Capybara.default_selector = :xpath
Capybara.default_driver = ;selenium

_」

最寄りの沿線名

最寄りの駅名

徒歩○分以内

中央区日本橋本町

○○万円

60～ 80m2

3LDK

1980年から1981年

2013年 8月 ～ 2013年 10月

商業

347

1111111111二 1霧華||‐
～
仰‐|‐ ||||||||‐ |



348

Chapter 5 目的別クローラーの作成

Capybara.app_host =

"http: / /M. contract. reins . or. jpl search /displayAreaconditionBLogic. do"

module Spider
class Reins

include Capybara::DSL
def initialize( )

@Pages = []
@current_page = o

end

def crawle
visit('')

#地域を選択する
select(1大阪府 ', :from=> 'prefCodeA!)― ―――――HD
select(1大阪市北部 ', :frOm=> 'areaCOdeA')

click_on(:検 索する
1)

#OKボタン
page.dr■ ver.browser.swュ tch_ o.alert,accept

#ページ番号の取得
get_pages

#ベージごとに全データを取得する
fOr ■ ■n ■..OPageS.S■ 2e―■

scrape

page_Change(i)

end

end

def scrape

all(''ノ ノ*[10id='data05']ノ div[2]/table/tbody/tr").eaCh {lelementi

if element.text l～  /^△沿線ノ

#物件情報の表示
puts element.text

end

}

end

def get_pages

all(''ノ /*[Oid='data05']/div[■ ]/select/option'1).each

OpageS.puSh(element.teXt)

}

end

def Page_Change〈 page_n。 )

select(CPages[Page_no], :from => 'listPageNum')

end

{ | element I



5‐20 官公庁のオープンデータを活用する

spider = Spider: :Reins.new
spider. crawle

●reins_capybara.rbの 実行例

築年数と坪当たりの単価まで取得できるので、経年での値下がリシミュレーショ

ンまで可能です。またパラメータとして駅からの距離を加えることにより、より詳

細な分析ができることでしょう。

end

end

5‐ 20

官公庁のオープンデータを活用する書
「5-15為替情報。金融指標を収集する」(→ p.327)でも紹介しましたが、総務省統

計局や独立行政法人統計センターには大量のデータが公開されています。これらの

データを活用すれば、わざわざクローリングせずにすむことも多いでしょう。一方

で、公開されているデータの多くがExcel形式など、プログラムから扱いにくい形

が多いのも事実です。しかし、最近ではオープンデータのかけ声とともに、次のよ

うな形で公開されるようになってきています。

・①機械判読に適したデータ形式で、

・②二次利用が可能な利用ルールで公開されたデータ

349



Chapter 5 目的別クローラーの作成

そのプロジェクトの1つ に、次世代統計利用システムがあります。これは、数々

の統計データをAPIを 介して利用できるようにするシステムです。

■次世代統計利用システム

ロ日口http:ノ71statdb.nStaC.gc).,p/

▼ 次世代統計利用システム

5・ 20‐ 1 提供されているデーター覧

次世代統計利用システムでは、さまざまなデータが提供されています。人口推移

から労働力調査・国勢調査など各種の調査、消費者物価指数をはじめとする市況統

計などが提供されています。

日提供データ(次世代統計利用システム)

画□http:〃Statdb.nStaC.g。 」p/SyStem‐ inf。 /api/api‐ data/

お知らせ

~~ 
日

縮満もg―
ム

´

`疹
硼/諄 漏省繊計局

"““
●
“
日ヽヽ

2014年 3月 10日  ||ヽ 1挙‐‐

晰 ●

"‐
―カ ゲー,"暉 炒な 0‐●口 0●輌 ‐ ●0‐■,

350

提供される統計データは、次の表のとおりです。

醸 0

111



国勢調査

住宅・土地統計調査

住民基本台帳人口移動報告

人口推計

労働力調査

就業構造基本調査

社会生活基本調査

個人企業経済調査

科学技術研究調査

サービス産業動向調査

サービス業基本調査

事業所・企業統計調査

経済センサスー基礎調査

経済センサスー活動調査

家計調査

貯蓄動向調査

全国消費実態調査

家計消費状況調査

小売物価統計調査

全国物価統計調査

消費者物価指数

地域メッシュ統計

社会・人口統計体系 (都道府県・市区町村のすがた)

5‐20 官公庁のオープンデータを活用する

鸞
'政
府統計コードー覧

5‐ 20・ 2 次世代統計利用システムのAP:登録

次世代統計利用システムを利用するには、登録が必要です。登録には、メールア

ドレスが必要になります。まず仮登録で、メールアドレスを登録します。

■次世代統計利用システムの利用登録

E口口httpSッタiStatdb.nStaC.gC).,p/apiuSer/php/indeX.php?aCtion=proViSional

仮登録すると、登録したメールアドレスに本登録用のURLが送付されます。そ

のURLを プラウザで開いて、パスワードや利用者情報を入力すると登録完了とな

ります。

また、登録後にアプリケーションIDの取得が必要になります。アプリケーション

351

002005211‐  ‐.‐ |.

00200522

00200524

200544  .

.00200563 _

1200564

002005171

2

00200511



Chap“r5 目的別クローラーの作成

IDは、ログイン後の「利用者情報変更/削除」画面から、[アプリケーションIDの取

得]タ ブを選択することで取得できます。

▼ 次世代統計利用システムのアプリケーションlD取得

アプリケーションIDの取得には、アプリケーション登録が必要です。アプリケー

ション名とURL・ 概要の登録が必要となります。URLについては、外部公開する

ものでなければ、「http://10c」 hOsプ」などで登録しておけばよいようです。

入力完了して [登録]ボタンを押すと、アプリケーションIDが発行されます。今

後利用するので、保存しておきましょう。

5‐ 20‐ 3 次世代統計利用システムのAPiの利用
アプリケーションIDが取得できれば、あとは比較的簡単にAPIを 利用できます。

APIは、基本的に次の形で利用できます。まずはプラウザなどで、URLを貼り付け

て結果を確認してみましょう。

・ http:〃 Statdb.nStaC.90.jp/api/■ Ob/app/getStatsList?appld=ア プリケーションlD

レスポンスは、XML形式で返ってきます。検索IDな どを指定しない場合は、す
べての統計リストが返ってきます。今後、このレスポンス内のくLIST_INF>タ グに

あるIDを利用して、それぞれの統計を取得することになります。まずは、統計名

とIDを一括で取得するスクリプトを作成してみましょう。

■■■

愉職樅⊃ヶ
ム

^`珍ヽ
「
 綸廊書綺
“

局



▼ APIの レスポンス

1次世代続計利用システムから統計情報を取得する

5‐20 官公庁のオープンデータを活用する

statistics-list.rb

eE5</sransncs-M

Xml = 。pen(
1'http:ノ ′statdb.nstac.go.jp/api/■ .Obノ

appノ getStatsList7app工 d=#て '場電饉″態111結黎僣憲篠
:}")

# puts doc

doc.elements.each(
'GET_sTATS_LIST/DATALIST_INF/LIST-INF' ) { lelementl

puts ''IDl■ {element.attributes['tid'1]}'1

puts ''浄充言「名:#{element.elementSI“ STATISTICS_NAME"].text}“

puts '1タイトル:■{element.elements[“ TITLE"].text}"

doc = RExML: :Document.new(xml)

# -*- coding: utf-8 -*-
require'open-uri'
require'rexml/document'

O statistics‐ list.rbの実行例

}



Chapter 5 目的別クローラーの作成

実行すると、おそらく数分から数十分程度かかるでしょう。すべての統計リス ト

を取得するために、膨大なサイズのXMLに なっています。2014年 7月 時点で、3万

件近い統計が登録されています。取得した統計のIDを利用すれば、個々の統計デー

タが取得できます。統計IDは、次のように、statsDataldを 付加 したURLか らも取

得できます。

C http://statdb.nstac.90Jp/api/1.Ob/app/

getStatsData?appldェ アプリケーションlD&statsDatald=統計 lD

先ほど取得した統計IDの リストを元に、「昭和55年国勢調査 第1次基本集計 全国

編」をブラウザで表示してみましょう。統計IDは「0000030001」 なので、URLは 次

のような形になります。アプリケーションIDの部分を自分のIDに置き換えてくだ

さい。

. http://statdb.nstac.gojp/api/ 1 .0b/ app/

getstatsData?appld:7 a U t -2 = 
7 lD&statsDatald:000003000 1

レスポンスのXMLのなかには、データの定義から実際のデータまですべて記載
されています。必要に応じて利用してみましょう。

354



5‐21 新聞の見出しを集める

亦
5‐ 21

新聞の見出しを集める

ニュースサイトからニュースのタイトルとURLを取得するスクリプトを作成し

ましょう。取得自体は、ここまでやってきたことと同じです。そこで各社ごとの差

異を吸収し、メンテナンスしやすい形で作成してみます。

5‐ 21‐ 1 取得対象とプログラムの構造

取得対象のサイトは、読売新聞・朝日新聞 。日本経済新聞の3社 とします。各サ

イ トから、新着情報のみ取得することとします。URLは、次のとおりとなってい

ます。

■読売新聞

回田httpl〃
lwww.yomiuri.cojp/1ateStneWS/

■朝日新聞

回田http:〃WWW.aSahi.Com/neWS/

■日経新聞

回■ http:〃
IWWW.nikkei.Com/neWS/Category/

後から対象とするサイトを追加する前提で、付け加えやすい構造にします。メイ

ン処理を記述したスクリプトと、サイトごとのクローリングやスクレイピングの差

異を記述したサイト定義のスクリプトという形にします。対象サイトが増えるとサ

イト定義スクリプトを追加するという形です。

・ 呼び出し元スクリプト:news―main.rb

・ サイトの親クラス :news― site.rb

・ サイ トごとの実装 :news― asashi.rb/news― yomiuri.rb/news― nikkei.rb

5‐ 21‐ 2 親クラスの実装

まず各サイトの共通部分を抽出した親クラスを作成します。共通化する部分は、

初期化メソッドとクロール先のURLと スクレイビングです。今回は、クロール自体

は呼び出し元のスクリプトで実装するので、サイトに関する情報のみを記述します。

まず初期化メソッドでは、変数の初期化の他に、委譲される各サイトの実装が必

355



Chapter5 etll,|, a-, -otEtr

要なメソッドを備えているかのチェックを行います。ここでチェックをすることで、

将来サイトを追加した際に必要な機能を備えていない場合に、問題を検知すること

ができます。スクレイビング処理については、各サイトごとの実装に依存する部分

が多いので、呼び出すだけにします。

1親クラス news-site.rb

5‐ 2卜3 各社別の記事・URLの抜き出し

読売新聞を例に、各サイトごとの実装を行います。ここでは、取得先のサイトの

定義と、スクレイプ処理の実装を行います。

ロサイトことの実装

class Yomiuri
attr_reader : base_urI
attr reader :ur1

def initializeo
@base_urL = " http : / /www. yomiuri. co. jpllatestnews/ "
@url = @base_ur}

end

class NewsSite

#アクセサメソツド
attr_reader : base_url
attr reader :ur1

def initialize(site)
Osite = site

@base_ur] = site.base_url
@url = site.url

#サ イ トごとの実装クラスが
#必要なメソッドを備えているかチェック
methOdS・ eaCh dO lmethOdl

if 10site.resPond_to7(method.to_sym)

raiSe l'Site adapter muSt Support methOd #{method}"

end

end

def scrape(doc)
@site.scrape(doc)

end

356



5‐21 新聞の見出しを集める

def scrape(doc)
titles={}
reg_Pattern =

" / /div [@class=' pbNested row-contents' ) I div I div / ul| Ii / a"
doc.xpath(reg_pattern).each { lelement I

url = element.text.gsub(/vrynlvtlYs/,"")
title = "#{element[:href]]"
titles. store(ur1.to_s, title)

)
return titles

end

5Ⅲ 21・4 呼び出し元の実装

最後に、呼び出し元のプログラムの実装を行います。呼び出し元では、与えられ

たURLを 元にサイ トのクロールを行います。スクレイビング処理の実装は、先ほ

ど作成したクラスを利用します。news― site.rbお よびnewsヴomiurirbは、同じデイ

レクトリ内に配置してください。

1呼び出し元のスクリフト news-main,rb

# -*- coding: utf-8 -*-
require ' open - uri '

require ' nokogiri '

requixe'./news-site.rb'
require' . /news-yomiuri.rb'

def get_nokogiri_doc(url)
begin

html = open(url)
rescue OpenURI: :HTTPError

return
end

Nokogiri: :HTi4L(html.read, ni1,'utf-8' )
end

site = Newssite.new(Yomiuri.new)
doc = get_nokogiri_doc(site.urJ-)
titles = site.scrape(doc)
titles.each { | key,value I

puts key
puts value

)

357



S ruby neい ,s‐ main.rb

「露からブク」証拠映像あるとウクライ

落雷の東急多摩川線、運転を再開 …池上線も

http://www.yomiuri.cojp/world/20 1

レーシア・ナジブ首相の祖父の妻も

=
騒肇亜

・ヽ

爾 |:繭無

Chapter 5 目的別クローラーの作成

● news― main.rbの 実行例

このような形にしておけば、処理対象の追加や変更は簡単です。それぞれのスク

リプトにどの機能を持たすかが設計のポイントになりますが、機能・目的に依存す

る部分が大きくなります。試行錯誤しながら、最適な配置を目指しましょう。

5‐ 2卜 5 ページング機能の追加

日経新聞については、複数のページに分かれています。今回作成したスクリプ ト

に、ベージングの機能を追加してみましょう。news― site.rbに ページの取得メソッ

ドを追加します。

def get_next_url(doc)
@s ite , get-n ext-url ( doc )

end

1親クラスにページング機能を追加する

class NewsSite

■アクセサメソツド

attr_reader : base_ur]
attr reader :urf

def initialiZe(Site)

Osite = site

@base_url = site.base_url
@urI = site.url

#サ イ トごとの実装クラスが
#必要なメソッドを備えているかチエツク

358

httpノ/www.yomiuri.coJp/po‖ tics/20140720-OYTlT50129.htmi

陸自調達のオスプレイ、佐賀空港配備へ…防衛相(2014年 07月 20日 21時 43分 )

htp://w酬 .yomiuri.cojp/national/20140720‐ 0,YTlT50128.html

関東に猛雨と落雷、交通乱れや停電相次ぐ(2014年 07月 20日 21時32分 )



5‐21 新聞の見出しを集める

methods.each do lmethodl
if !@site.respond_to?(method.to_sym)

raise "Site adapter must support method #{method}"
end

end

def scrape(doc)
@site.scrape(doc)

end

def get_next_url(doc)
@s ite , get_next_urI ( doc )

end

次に、各サイトのスクリプトに実装をします。改ページ処理がある日経新聞とそ

れ以外については、別々の実装をします。

コードの全文はサンプルファイル (→ p.五 )を ご参照ください。

日日経新聞への対応

日その他の新聞への対応

最後に、呼び出し元プスクリプトを修正します。ループ処理を追加し、次の

URLがあるかぎり処理を継続します。

def get_next_urI(doc)
next_url = nil
element = doc. xpath( " / /Ii[@class=' cmnc-next' ] /a" )

if !element.empty?
next_url = "*{base_url}#{element.first[ :href]]"

end

return next_ur1
end

def get_next_urI(doc)
return nil

end

359



site = NewsSite. new(Nikkei. new)

url = site.url
loop {

doc = get_nokogiri_doc(url)
titles = site.scrape(doc)
titles. each { | key, value I

puts key
puts value

)
url = site.get_next_urI(doc)
break if urI.ni17

)

Chapter 5 目的別クローラーの作成

1呼び出し元スクリフトの修正

さらなる拡張としては、スクレイピングの結果を格納するクラスの作成や、サイ

トの文字コードの定義などいろいろあります。必要に応じて、追加してみましょう。

360





曇
ここまで、WindowsやMacな どパーソナルコンピュータ上での実行を前提とし

てきました。クローラーを本格的に運用する場合、サーバサイドで動かすことのメ

リットが多数あります。サーバで動かすことの意味や、サーバを扱う際の考え方、

テクニックを紹介します。

6…卜1 サーバで動かすメリット

サーバの言葉としての意味は3つあります。1つ 目は、コンピュータ機器として、

パーソナルコンピュータに対してのサーバです。2つ 日は、ソフトウェアとしてク

ライアント・サーバモデルのサービスを提供する側のプログラムであるサーバです。

HTTPサーバやFTPサーバなどがあります。

3つ 目がオペレーションシステム (OS)と して、windOws 7や Mac OS Xな どクラ

イアントOSに対しての、サーバOSです。WindOws Server 2012な どのWindOws系

と、RedHat Enterprise Linuxや CentOSと いったLinux系 などがあります。ここで

は、主にOSと してのサーバを対象に考えていきます。特にLinux系 を対象 とし、

CentOSを 前提とします。

柔軟なクローラー運営

それでは、サーバ上でクローラーを動かすメリッ トは何があるので しょう

か ? 例えば、Linuxで あればスケジューリングでの実行や、豊富なアプリケー

ションとの連携などがあります。サーバは基本的に、24時間の稼働を前提としてい

ます。そのため、1日 中クローラーを動かすことや、毎 日決まった時間にクロー

ラーを動かして最新の情報を収集することができます。スケジューリングがしやす

いということです。

また、スケジューリングするために、Crondデーモンのようなスケジュール管理

プログラムが標準で組み込まれています。24時間稼働とスケジュール管理プログラ

ムを組み合わせることで、柔軟なクローラー運営ができます。なお、Windows 7な

どWindows系 クライアントOSで もタスクスケジユーラというスケジュール管理プ

ログラムが標準で組み込まれていて、ほぼ同様のことが行えます。またBSD UNIX

ベースであるMac OS Xも 、同様にCrondデーモンが用意されています。

次に豊富なアプリケーションについてです。GUI系のアプリケーションであれば、

6… 1

サーバサイドで動かす

362

Chapter 6 クローラーの運用



6‐ 1 サーバサイドで動かす

Win“wsや Macの 方が充実しています。一方でサーバサイドで動くアプリケー

ションであれば、Linux系サーバが充実しています。クローラーを運用する場合は、

クライアントアプリではなくサーバサイドのアプリが必要な場合が多いです。そう

いった点でも、クローラーはサーバ上で動かすのがよいでしょう。

蓄身近になったサーバOS

今までであれば、個人でサーバ環境を用意してLinuxな どを利用するのは、多少

の困難を伴いました。しかし、昨今のクラウドの普及や、Vagrantの ような仮想化

環境の進化で、個人でも簡単にサーバが利用できるようになっています。

利用へのハードルが下がっているので、手軽に試してみるのがよいでしょう。次

のセクションで、サーバOSのインストールからログインまでの手順を紹介します。

6Ⅲ l‐ 2 サーバヘのインストール

ここからは、Linuxの ディス トリビューションの1つであるCentOS上 でクロー

ラーを動かします。しかし、実際にCentOSを インストールする環境を手元に用意

できないケースもあるので、ローカルPCの なかに仮想化ソフトウェアである

「VirtuaBox」 と、仮想化環境構築ッールである「Vagrant」 を使って作業を進めます。

Vagrantを 使ってCentOSの インストールまで行えば、あとは実際のサーバであろ

うが仮想環境であろうが、同じ操作で扱えます。

VirtualBox L. Yagrafi o) 4 Y 7 |' )v

まずVirtualBoxを インストールします。VirtualBoxは 、Oracle社 製の仮想化ソフ

トウェアで、既存のOS上で仮想のOS(ゲストOS)を実行できます。ゲストOSと し

てサポートされているものは、Linuxや Windows、 Mac OS Xな ど多岐にわたりま

す。なお、ゲストOSと して起動する場合も、OSの ライセンスは必要となります。

それぞれのライセンスに従って、正しく動かしましょう。

VirtualBoxは 、次のURLか らダウンロー ドで きます。自分のクライアン トPCの

OSに従って、ダウンロードしましょう。

r VirtualBox

lE https://wwwvirtualbox.orglwiki/Downloads

363



Chapter 6 クローラーの運用

qp∨ i耐 ualBoxの ダウンロードページ

Vagrantは 、仮想化ソフトウェアを操作するためのツールです。直接VirtualBox

を操作することも可能ですが、Vagrantを 介することでコマンドラインで簡単に操

作でき、プラグインと組み合わせることによりさまざまな機能を追加することがで

きます。

r Vagrant

MiE http:,/www.vagrantup.com/down loads.html

a Vagranta ? ry > E- l': ^i-,

\fvncnnr'rT@oowNLoADsoocU6fNTAIloNaloGABoijT

DOWNLOAD VAGRANT
MEB {t il.iM ddds for & Hd wdon dv{6d
&er. Pk doMtd k M sb$ b pr qdiry
Stm d.rchikurc Y@ @find SH&Sd*&ms for

Fqka6@.

WINDOWS
universal(32 and 64‐ bit,

蝿 LINUX(DEB)32‐ bit1 64-blt

手元に利用可能なサーバがある場合は、Rubyの インストール (→ p.371)ま で飛ば

してください。

・ヽ こ 111『    . ~■ ■・ ■■■‐ .‐ |・
‐
・ ‐.~■ ■・■■●■■.■●■・ ■・ ・ |~ . . . .   ~―  ― ‐―

｀″   1 0owni● ad Vi“ualBox

t"t       l 
綺
`o γ
oo w』 i“ 1めに to V“ mo旧 ox br,o`た o,′薄,も ,oけo・・ o“

VidurlEor bindE
ry&*d@,prrebtu r.[il.dlhortul.*Mk-

&@&@dd @rot@,
MfuMfufuFE|.fu-

t tu tn q M.,t.12, @ tuM b tu@ & t*b-
fr tu.il @ w.o-r., &E&tu rhffi E''h.

364

隆̀

MAC OS X II.
universal(32 and 64‐ |:t)



6‐1 サーバサイドで動かす

趙壁璽墜萱全2■∠杢_上二生
WindowsへのVirtualBoxの インス トールは、ウィザー ドに従ってほぼ自動で終

了します。インス トール完了後に再起動が必要になります。

インス トール完了後に、パスを通 します。環境変数の設定画面で、Path変数に

Virtu」Boxのパスを追加します。通常であれば、次のようなURLです。インス トー

ル先のフォルダーに合わせて調整してください。

OC:¥Progra:γ l F‖ es¥Oracle¥VittualBox

設定後にコマンドプロンプトを立ち上げて、vttua!boxと 入力して [Enter]キー

を押 します。GUIの画面が表示されるとインス トールは成功です。

踊舞∨耐ualBoxの画面 (Windows)

次にVagrantの インストールをします。Vagrantの インストールも、ウイザード

に従って行えば、すぐに終わります。インストール後はシステムの再起動が求めら

れます。

365



]

Chapter 6 クローラーの運用

qP∨agrantのインストール(Windows)

Macへのインス トール

Macへのインス トールは、ダウンロー ド後にdmgイ メージファイルをダブルク

リックして起動します。そして、VirtualBoxpkgを ダブルクリックしてインス トー

ルウィザードを開始します。ウィザー ドに従ってインス トールすると、アプリケー

ションフォルダーにコピーされます。

インストール後に、ターミナルからvirtua:boxと 入力 して、GUIの画面が立ち上

がってくると成功です。

躊フ∨耐ualBoxの画面(Mac)

続いて、Vagrantの インス トールを行います。Vagrantの 場合も、dmgイ メージ

ファイルをダブルクリックして起動 します。そして、Vagrantpkgを ダブルクリッ

クしてインストールウィザードを開始します。

w● :∞meぉ ne vagnnt setup wiard

hublaclick on lhlr lcffi:

つ Run t"Vin“ :●ox a国にa"m

“

fron the A""ca"ons■ddeR

■

輪
Use.Manual.pdf

ヨ擦ヽ1‐
洋●|.

Appllcailons VldualBox_Unhstall.tool

366

l@@wr+mE

・・  1‐ |…Ⅲ

藤

・一ｌ

卜

ｒ
Ｆ

Ｌ



6‐ 1 サーバサイドで動かす

賢勁Vagrantの インストール(Mac)

インス トール完了後に、ターミナルでvagrant― versionと 入力して、次のように

表示されれば成功です。

0インストールの確認

ゲストOSのインストール

準備ができたところで、Vagrantを使ってVirtuaBOx上に仮想OSをインストール

しましょう。仮想OSを作成するには、元となるマシンイメージが必要となります。

そのうえで、VirtualBoxの 設定を行い、インストールする必要があります。

Vagrantを 使うと、マシンイメージのダウンロードから設定までがコマンドライ

ンから実行できます。それでは、まずはインストールするOSの マシンイメージを

探しましょう。Vagantで利用可能なマシンイメージは、次のサイトで一覧になっ

ています。もちろん、ここ以外にもたくさん利用可能な仮想イメージは存在します。

必要に応じて探すとよいでしよう。

. Vatrantbox.es^i-,
llE http:,/www.va g ra ntbox.esl

3

饂

　̈
晰
徹
¨

写Å6雉ANW

367



Chapler6 2a-?-o>EH

フヽマシンイメージを探す

今回は、CentOS 6.5を 利用 します。イメージ名は「CentOS 6.5x86_64」 でURLは、

次のとおりです。

■CentOS 6.5のイメージファイル

回ロコhttpS://github.conn/2CreatiVeS/Vagrant‐ CentOS/releases/dolwn:oad/v6.5.3/

centos65‐x86_64‐20140116.box

もし存在しない場合は、別の似たイメージを探 して利用してください。

Vagrantの使い方は、マシンイメージの登録と設定、起動の3つのフェーズです。

まず登録は、任意のイメージ名と仮想イメージのURLを 設定します。次にinitでマ

シンイメージに対して設定を行います。完了すると、vagrant upで 仮想マシンを起

動できます。

歴ロコマシンイメージの登録

rantbox.es
hgrst s ff tury @ b lM4iru Wuar ,dM m 6 9@b b e (M lre iddes Wfi , sai$e v.s..,r {, p tr
h Mry h a c& €lfuM tM m a dd6d lepbl€

tuso ffid tryl& EmeHhbor6, adhsM€ E$rdyaBtof t)ffi@b@MnturytbMEbkty

Suggst a Box

b@ Mdffib h?k. DUI r{ld dre'! d nbfr€ lbttfu

Available Boxs
To w h &aila& bEiiu{rude le} d {ud {h k iffi in & & te

,`"
…
,,,“

“

●
"申

Th tg d bx6 ffi H updald m Mry 2S. ml4

1鱗 Itll崎
1・)い )

vagrant box add {title} {url}

Vagrant init{titlel

368

厖轟日マシンイメージの設定



vagrant up

6‐ 1 サーバサイドで動かす

匠轟日マシンイメージの起動

次のコマンドが実際の設定です。イメージ名は「cento“5」 にしています。

0マシンイメージの登録

0マシンイメージの設定

● マシンイメージの起動

無事インストール完了できたら、さっそくログインして動作確認をしましょう。

Macの場合は、vagrant sshで ログインできます。

369



Chapter 6 クローラーの運用

●グストOSへのログイン

エラーなくコマンドプロンプトが表示されれば成功です。

Windowsの場合は、vagrant sshコ マンドが利用できません。TeraTermな どの

SSHク ライアントソフトが必要になります。また、IPア ドレス指定で接続できるよ

うに、Vagrantの設定が必要になります。vagrant initで作成されたVagrantme(カ

レントフォルダーに作成されます)を テキストエデイタなどで開き、「config.vm.

network」 のコメントアウトを外します。これにより、Vagrantで 立ち上げるOSの

IPア ドレスが、設定されます。デフォルトでは「192.168.33.10」 になっているので、

都合に合わせて変更しましょう。

設定後に仮想マシンの再起動を行います。再起動は、vagrant reloadを 利用 します。

●仮想マシンの再起動

あとは、SSHク ライアントから「192.168.33.10」 へ接続するように設定します。な

お、デフォルトでは、接続時のユーザー名とパスワードともに「vagrant」 となって

います。以後は、SSHク ライアント経由で動かします。

仮想マシンの停止は、vagrant ha!tコ マンドを利用します。

'仮想マシンの停止

370

‐‐ C:¥work vagrant rel● ad

il ==>default:Attempting gracefulshutdown ofVM¨

|| =・ン.deね ulti Clearing any preViouSly Set brWarded pOrtS…               ‐|
|1 1・―>default:Clearing any previOusly set network interfaces.。 .    ‐ .

撥 義 ::i

, IVagrant(Ovagrant― centos65～]S vagrant ha:t



6‐ 1 サーバサイドで動かす

赳亜生∠
=生
と墾里二2■_∠∠土―生

無事CentOSに ログインできたら、次は開発ツールとRubyの インストールを行い

ます。開発ッールとは、コンパイルするためのmakeや gccを 中心とした必要なラ

イブラリ群になります。1つずつインストールするのは大変なので、ここではグ

ループインストール機能で一括でインストールします。

0開発ツールのインストール

開発者ツールがインス トールできたら、次はRubyを インス トールします。Ruby

のインス トール方法はいろいろありますが、今回は複数のバージョンを切り替えら

れる「rvm」 を利用 します。また、実行中のユーザーの領域にインス トールされる

ので、root権限がない場合でも利用できます。rvmのインス トールは、公式ページ

に従いインス トールシェルをダウンロードして直接実行します。

I TVM

lE http://rvm.iolrvmlinstall

● rvmのインストール

インス トールが完了したら、指示に従いbashの設定を再読み込みします。これ

でrvmへのパスが設定されます。rvm versionで バージョン番号が表示されれば成

功です。

● bashの設定を再の読み込み

371



Chapter 6 2 "-)-a)EE

● インストールの確認

最後に、Ruby自体のインス トールを行います。インス トールは、Rubyの コンパ

イルが行われるため、非常に時間がかかります。

●Rubyのインストール

インストールが完了したら、rvm useコ マンドで使用するRubyのバージョンを設

定します。―defaultを付けることで、デフォル ト設定ができます。次回以降、わざ

わざ使用するバージョンを選択する必要がなくなります。

O Rubyのパージョン設定

Rubyの バージョンを表示させて、エラーがないことを確認すれば完了です。

●インストールの確認

なお、これ以降のコマンド表記では、「[vagrant@vagrant―centos65司」は省略し

ます。

6‐ 1‐ 3 Linuxの コマンド

Llnuxを扱うには、さまざなコマンドを覚える必要があります。ここで最小限の

コマンドを紹介します。

1三二∠工二重
よく使うコマンドを紹介します。使い方は、マニュアルを参照してください。

372

lvagrant@vagrant-centos65 
*l$ 

rum version

Nm 1.25.27 (master) by Wayne E. Seguin <wayneeseguin@gmail.com>, Michal Papis <mpapis@

gmail.com> lhttps://rvm.io4

[vagrant@vagrant― centos65～ ]S ruby―‐version

ll ruby 2.0.Op481(2014■05-08 revision 45883)Ix86_64-linux]



フアイル・デ ィレク トリの一覧を表示する

ファイルをコピーする

今現在 (カ レント)のディレクトリを表示する

ディレク トリを作成する

フアイルを削除する。ディレクトリの場合は、一rを付ける

実行中のプロセスを表示する

コマン ド履歴 を表示する

ファイルを表示する

フアイルを編集する

文字列や変数を表示する

ログアウトする

正規表現で文字列を検索する

ファイルの先頭部分を表示する

コマン ドのマニュアルを表示する

rootユ ーザー権限で実行する

フアイルの行数をカウン トする

コマンドのパスを表示する

6‐ 1 サーパサイドで動かす

▼ よく使うコマンド

コマンドの使い方を調べる

コマンドの使い方を表示するには、manコ マンドを利用します。manの後に調べ

たいコマンドを入力することで、多くの場合はそのコマンドのマニュアルを表示さ

せることができます。

●マニュアルを表示する

ディレク トリを移動する

フアイルの末尾部分を表示する



Chapter 6 ) a-7-oijEB

これ以外にも、コマンドごとにヘルプオプションが用意されている場合がありま

す。ただし、ヘルプオプションの指定の仕方は、コマンドごとに異なります。多く

の場合は、一helpなので、まずはそのように入力してみましよう。例えオプション

の指定方法が違っても、ヘルプの見方を教えてくれる場合があります。

●ヘルフオプションを表示する

S cp‐‐help

曇[二l`1_ヒ =2_lL」と_望2]隆 ]ヨL
コマンドのなかで多く使うものの1つに、cdコマンドがあります。cdの後に対象

ディレクトリを指定することで、任意の場所に移動できます。Linuxが初めての人

は、まずはこのコマンドを使いこなしましょう。

▼ ディレクトリを移動するコマンド

艦塞重量塁2壺二
echoコ マンドは、文字列や変数を表示するコマンドです。変数のなかには、バッ

シュなどの組み込みの変数も含まれています。これを利用することにより、アプリ

の実行結果などを確認できます。

冒フ実行結果を表示するコマンド

1つ上のディレクトリに移動する

rootデ ィレクトリに移動する

ホームディレクトリに移動する

ホームデ ィレク トリの下の tmpディレク トリに移動する

直前にいたディレクトリに戻る

何らかの処理を実行する (こ の例では「tmp sh」 を実行)

直前の実行コマンドの返り値を表示する。「0」 の場合は正常終了。それ以外は異常終了

コマンド

cd^

.コマンド

./tmp.sh

echo $?



6‐2 定期的にデータを収集する

6‐ 2

定期的にデータを収集する

クローラーをサーバOSで動かすことのメリットの1つ として、スケジューリング

のしやすさがあります。Linuxには、Crondを はじめとするスケジューリングプロ

グラムや、常駐プログラム (デーモン)と して、バックグランドプロセスで稼働さ

せる方法が充実しています。

6… 2…l Crondでスケジューリングを登録する

Crondは 、プログラムを指定した時間に実行するためのデーモンです。デーモン

(Daemon)と は、バックグランドプロセスとして動くプログラムのことで、ユー

ザーが直接対話的に制御するのではなく、決められたルールに従って自動的に動き

ます。UNIXやLinuxは数々のデーモンが稼働可能で、例えば、Webサーバである

Apache Httpdで あったり、SSHの接続要求を受け付けるsshdな どがあります。

Crondも デーモンの一種で、タスクスケジユーラとして常駐し、Crontabと いう設

定ファイルに従いプログラムを実行します。

Crontabは Crondが参照する設定ファイルで、crOntabコ マンドもしくは直接ファ

イルを編集することにより設定できます。スケジューリングは、月・曜日 '日・時

間・分単位で指定可能で、複数のタスクを登録できます。書式は次のとおりです。

スケジューリングの登録・編集の際には、 ëを付けて実行します。

歴Eロ スケジューリングの登録

ワイルドカードで指定することもできます。例えば、毎時20分に実行 (Testと い

う文字列を表示)する場合は、次のような形になります。

|||■                                          .
20~オ キキeci,o test. |||||‐ ‐

‐‐
・・
    ||■2013■ )(｀ c(ho t,千

1

毎日、13:20に 一度だけ実行の場合は、時分の指定をします。

曜日の指定も数字で行います。月曜日が「1」 で、日曜日は「7」 もしくは「0」 で指

定します。毎週火曜日の13時20分に実行の場合は、次のようになります。

crontab‐e

「分」「時」「日」「月」「曜日」I実行コマンド1

375



Chapter 6 クローラーの運用

crontabコ マンドは基本的な設定以外にも、間隔指定 。リスト指定 。範囲指定な

どさまざまな指定方法があります。例えば、10分ごとに実行する場合は、「/」 の後

に間隔を指定します。

範囲指定であれば、「―」で指定します。9時から17時の間まで、毎時10分に実行す

る例です。

リスト指定は、「,」 で区切り複数の値を設定します。毎週水曜日と金曜日の13時

20分に実行する例です。

複数の指定方法を組み合わせて記述することも可能です。6時、9時～ 17時の毎時、

23時で実行する例です。

それでは、実際にスケジューリング登録してみましょう。CentOSに ログインし

たうえで、crOntabコ マンドで登録します。crontabに■の引数を付けると、現在

の一覧が表示されます。―eで登録・編集ができます。編集の際は、vimが起動さ

れます。

下記の例は、毎時40分に/tmpデ ィレクトリに、実行日時を名前にファイルを作

成する例です。コマンド中に「%」 を含む場合は、「¥」 (あるいはバックスラッシュ)

でエスケープが必要になります。

●スケジューリングを確認する

376

●スケジューリングを登録する

2013丼 着2 echo test

S <rontab -l

no crontab for vagrant

|‐

2013丼 姜3,S echo test

.1



鸞

6‐2 定期的にデータを収集する

6‐ 2・2 Crondで動かす際の注意点

Crontabを設定する際には、環境変数に注意する必要があります。有効な環境変

数は、「HOME」「SHELL」「LOGNAME」 のみです。ユーザーアカウントに設定 し

ている環境変数は、Crondで の実行時には引き継がれません。 したがって、パスが

設定されていないためにコマンドが実行されなかったり、環境変数に設定した各種

設定情報が無効になるといったことが起こり得ます。Crondで 実行時に環境変数を

利用するには、Crontab内で宣言する方法や、コマンド実行時にシェルスクリプ ト

を指定して、そのなかで宣言するなどの方法があ ります。

Crontab内 で指定する

Crontab内で指定する場合は、「変数名=設定値」という形で指定します。次の例

では、crontabで実行する際に利用するPATHを 指定しています。他に必要な環境

変数があれば、同じように登録します。

,Crontabか ら環境変数を設定する

一方で、crontabで 実行するすべてのコマンドに、同一の環境変数を与えられな

いという場合もあります。そういった場合は、別の方法で指定する必要があります。

シェルスクリプトから指定する

Crondか らシェルスクリプトを呼び出し、環境変数を宣言したうえでコマンドを

実行する方法もあります。CrondではHOMEの環境変数は有効です。それを利用し
て、ユーザーの環境変数を読み込んだうえで、コマンドをキックするという方法も

考えられます。

|シェルスクリフト

source /etc/profile
source $HOME/. bashrc
exPort > /tmp/environment

show-environment.sh

377



Chapttr 6 クローラーの運用

● シェルスクリフトから環境変数を指定する

なお、サーバの時刻設定が日本時間ではなくUTC(協定世界時)の場合、下記の

方法で日本時間の設定ができます。必要に応じて、設定してください。

定期的に実行することで、クローラーの利便性は上がります。次はCrondと 組み

合わせて、クローラーを運用する方法について紹介していきます。

6‐ 2‐3 差分を検知する

Crondを 使うことにより、簡単に定期実行が可能になりました。それでは、定点

観測を行い結果を格納しましょう。データの格納先はいろいろありますが、後々の

扱いやすさという点でリレーショナルデータベース (RDB)を 利用します。今回は

オープンソースのRDBであるMySQLを 利用します。

書型墜豊212二_∠_登上三生
CentOSで あればyumコ マンドで、リモートから各種のパッケージを取得してイ

ンストールできます。yum mstで コマンド取得可能なプログラムの一覧が表示され

ます。一方でデフォルトで提供されているパッケージが既に古い場合があります。

その場合は、取得先を追加することにより、より新しいバージョンが入手可能とな

ることがあります。

次の例は、MySQLの コミュニテイが提供しているパッケージを、取得対象リス

トとして追加している例です。

O MySQLのyumリポジトリを追加する

,追加したyumリポジトリの確認

378

t,
襲

10■■モ■bash SHOMEお how_environment.sh

$ ls /etc/yum.reposd/

CentOS-Base.repo CentOS-Vault.repo mysql-community-source.repo

mysql-community,repo



6‐2 定期的にデータを収集する

それでは、MySQLを 追加しましょう。今回はMySQLの デーモンと開発用のヘッ

ダーをあわせて指定しています。yumでのインストール後に、自動起動の設定と

mysqldの起動を行っています。

O MySQLの インストール

0自動起動の設定

O MySOLの 起動

mysqldの 起動ができたら、ログインしてみましょう。インストール直後はroot

ユーザーでパスワードなしでログインできます。実際に運用する際は、個別のユー

ザーの作成とパスワードの設定を行いましょう。

O MySQLへ のログイン

買
「
MySQLログイン

IvagrantGvagrant-centos65 -]$ nysgl -uroot -p
Enter passmrd:
Ylelcome to the tlysoL monitor, Connands end ylth i or \9.
Your IySQL connectlon ld ls 2
Server verslon: 5.5,19 l{ysql Community Server (cPL)

Copyrlgbt lcl ?009, 2014, oracle and/or lts afflliates. Alt riqhts reserved.

oracte ls a reglstered tradenark of oracle Corporatlon andlor lts
affltlates. other names may be trademarks of thelr respectlve
ownerS.

Type'helpi'or'\h' for help. Type'\cr to clear the current lnput statenent.

mysgl> I

379



Chapter 6 クローラーの運用

6‐ 2・4 時系列で表示する

それでは、Crondと MySQLを 利用して定期的にデータの収集・保存を行います。

今回は、「5‐14企業・株価情報を収集する」(→p.321)で紹介した株価の収集スクリ

プトと組み合わせます。

ライブラリのインストール

まず、Rubyか らMySQLを 扱うために、ライプラリのインストールをします。

MySQLのライブラリはいくつかありますが、「mysq12」 を利用します。

口GitHubの mysq12ペ ージ

ロ回l httpS:ノ%github.COnn/brianmariO/mysq12

● mysq:2ラ イプラリのインストール

データベースの作成

MySQLに ログインし(→p.379)、 データベースとユーザー、テーブルの作成を行

います。

crawle■ dbデータベースを作成し、crawlerユーザーにパスワードを「crawleL

pass」 で作成しています。データの格納先であるstocksテ ーブルは、idの他に銘柄

コード、日付、高値・安値を項目として持ちます。

O MySOLの 設定

380

,4

,|ヽ |■

Query OK,0 rows affected (0.01 sec)

mysql> use crawler-db

Database changed



6‐2 定期的にデータを収集する

MySQLのコマンドの語剌については、公式ドキュメントを参照してください。

口MySQL公式ドキュメント

ロロ:htt,v″luev:inysqi c。 ″ ldoc/“ manual

lZL乞2_∠:L⊆」を重
準備が整ったところで、「,14企業・株価情報を収彙する」(→,321)で作成した
スクリブト「noko」五‐st∝krb」 を修正します。スクレイビング部分に日仕の取得と、

プログラムの最終部分に、mywlへのインサート機能を追加します。

:追加するコード

require 'mysq12

client = Mysql2: tclient.new(:host => "Iocalhost",
:username => "crawler", :password => "crawler_pass",
:database => "crawler_db")

count = client.query(
"SELECT id FROM stocks l"lHERE day_str = #{company.day}").size

if count == o then
client.query("INSERT INTO stocks (

ticker_code, day_str, h igh_price, low_pri.ce )
VALUES(#{company.tickerCode}, #{company.day},
#{company. highPrice}, #{company. J.owPrice} ) " )

end

次に示すのが、「nOkOgirヽtOck.rb」 にコードを追加した状態です。

目定期的に株価情報を取得する stock.rb

# ‐*‐  coding: utf-3 ‐*‐

require 'nokogiri'

requェ re :open― ur■ '

class Companylnfo
def initialize (ticker_code )

@baseurl = "http;//stocks.finance.yahoo,co
@tickerCode = ticker code
scraPe

end

attr_reader :name, :tickerCode, :category,
:unit, :recentHighPrice, :recentLowPrice,
:highPrice, :IowPrice, :price, :day

jplstocks"

381



382

Private
def scrape_stock_info(html, index)

get_content(html, "dd", "ymuiEditLink maro",

index, "/strong").delete(", ")
end

def get_company_info( )
ur1 = "#{@baseurL}/profile/?code=#{@tickerCode}"
doc = get_nokogiri_doc(urI)
@name = doc. xpath( " //th[@class=' symbol' ] /h1" ) .text
@category = doc.xPath(

"//table[@cIass='boardFincom marB6' ]/tr[6]/td").text
@unit = doc.xpath(

"//table[@class='boardFincom ma186' ]/tr[13] /td")'text
end

def get_stock_infoo
ur1 = "*{@baseUrl}/detail/?code=#{@tickerCode}"
doc = get_nokogiri_doc(ur1)
@recentHighPrice = doc.xpath(

" I / divlrLf t dLldd[@c1ass='ymuiEditLink maro' ] /strong").text
@recentLowPrice = doc.xpath(

" / / divl!2) I dl/dd[@class='ymuiEditLink maro' ]/strong").text
@highPrice = doc,xpath(

" / /div[@class=' innerDate' I I div[3] I dLl
dd[@class='ymuiEditLink maro' ]/strong").text

@IowPrice = doc.xpath(
"//div[@class=' innerDate' ] / divl4l I dl I
dd[@class='ymuiEditLink maro' ]/strong").text

@price = doc.xpath("//td[@cIass='stoksPrice' ]").text
date=Time. now

day_str=doc. xpath( "/ /dd[@cIa55=' yj5b real' ] /span" ) .text
@day = "*{date.year}#{day-str.gsub(/tl/ 1," )J"

end

def get_nokogiri_doc (ur1)
begin

html = open(urI)
rescue openURI : :HTTPError

return
end

Nokogiri: :HTML(html.read, niI,'utf-8' )

end

def scrape
get_compa ny_info
get_stoc k_info

end

Chapler 6 2 a-)-a:lEH



6‐2 定期的にデータを収集する

end

company = ComPanylnfo.new("4689")
require 'mysq12'

client = Mysql2: :client.new(:host => "10caIhost",
:username => "crawler", :password => "crawler_Pass",
:database => "crawler_db")

count = client.query(
"SELECT id FROM stocks WHERE day_str = #{company.day}").size

if count == o then
client. query(

"INSERT INTO stocks (ticker_code,day_str,
high_price, 1ow_price ) VALUES (#{company. tickerCode},
#{company.day}, #{company.highPrice},
#{company. lowPrice}) " )

end

「/hOme/vagrant」 の下に、「crawler/sbck」 というディレクトリを作成します。

そして、先ほどの「sわck.rb」 と、次の「exec_stoctsh」 を配置します。

0ディレクトリの作成

1実行のためのシェルスクリフト exec_stock.sh

磯二生上∠上2塞生
月曜日から金曜日まで、毎日16時05分に実行します。環境変数を読み込むために、

シェルスクリプト経由で起動しています。スクリプトのパスは、環境に合わせて変

更してください。

取得した結果は、先に作成しておいた「crawle■db」 データベースに蓄積されて

いきます。

#!/bin/sh

ruby SHOME/crawler/stock/stock.rb

●スケジューリングの登録

383



Chapter 6 クローラーの運用

これで、クローラーが定期的にデータを収集してくれます。収集したデータは、

以下のように確認することができます。

0取得したデータの確認

)

6‐ 3

収集結果をメールで自動送信する

Crondと データベースを組み合わせれば、クローラーを自由自在に動かすことが

できます。次は、クローラーから結果をメールで受け取る方法について紹介 します。

クローラーの起動を定期的に自動で実行するようになると、次はその実行結果を

取得 したくなります。結果通知の方法として、古典的なが ら有効な手法の1つ とし

て、メールで通知する方法があります。

6‐ 3‐1 どういった内容を送るのか

結果通知をメールで送る場合、どのようなケースで送るかのパターン分けがあり

ます。想定どおりのクローリングができた時を成功、できなかった場合を失敗と定

義すると、次のパターンが考えられます。

・成功/失敗にかかわらず、すべて送る

・成功の時のみ送る

・失敗の時のみ送る

・成功/失敗にかかわらず、すべて送らない

今回は、メール送信を行うことが前提ですから、4番 目の送らないというパター

ンが外れます。また2番 目の成功の時のみ送るでは、失敗した場合の対処が取 りづ

384

「

~

¨
¨
―
〓
■
‐
一
●

1 114689

1 214689

1 314689

1 414689

1201406061

1201406091

1201406111

1201406121

4931

●
　
２

２
　
６

，

“

4861



らいです。現実的には、1番目もしくは3番 目のパターンを取ることが多いです。今

回は、1番目の「成功/失敗にかかわらずすべて送る」を前提とします。

メールを送るには、SMTPサーバが必要になります。しかし、昨今のスパムメー

ルの増加の影響で、キャリアやプロバイダなど通信業者はメール送信についての制

約を強めています。そのため、個人でSMTPサーバを立てて運用することが難しく

なりつつあります。そこで、SMTPサ ーバを構築せずにメールを送信する方法を紹

介します。Gmailを 利用する方法と、AmazonのクラウドサービスのAWSの なかの

メール送信サービスであるAmazon Simple Em』 Service(SES)を 利用する方法で

す。サービスごとに、それぞれ解説します。

6‐ 3… 2 Gmailを 使って結果通知する

Gm翻を利用してメールを送信するには、認証方式や通信プロトコルでいくつか

の選択肢があります。基本的な形としては、認証したうえでGmailの SMTPサーバ

を利用して送信するという形になります。

量Rubyか らGmailを利用する

Rubyか らGmailを利用するには、さまざまな方法があります。Gm』 も一般的な

SMTPサーバとしての機能を提供しているので、それを利用してメール送信モ

ジュールを利用する方法があります。それ以外にも、Gm翻に特化したモジュール

も多数存在します。

Gm』専用ライブラリを利用する方がコードの記述量も少ないので、今回は

Gm』専用のライブラリを利用します。Ruby向 けのGmail専用ライブラリはいくつ

かありますが、一番実績があり開発も活発な「GM」lfor Ruby」 を利用します。

■GitHubの GMa‖ for Rubyページ

ロコl httpS:ノク
`github・

COm/nu7hatch/gmail

インストールは、gemか ら行えます。インストール後に、gem‖ st gma‖でバー

ジョンが表示されれば成功です。

,GMailfor Rubyのインストール

385

●インストールの確認

6‐3 収集結果をメールで自動送信する



Chapter 6 クローラーの運用

I塾董左菫
Gm」のGemラ イプラリの認証方法は、IDと パスワー ドによる認証 と、OAuth

l.0に よる認証の2種類があります。Googleの OAuth l.0は 、2012年 4月 20日 をもって

サポー ト終了 しています。かわ りにOAuth 2.0が 提供 されていますが、Rubyの

Gemの なかでOAuth 2.0に 対応している有力なライプラリがないのが現状です。本

来であればス クリプ トから利用す る場合は、ID・ パスワー ドでの認証 より、

OAuthでの認証をすべきです。今回はID・ パスワー ド認証のサンプルを提示 しま

す。本格的に使うのであれば、OAuth 2.0対応を取 り込みましょう。

以下が、Gmailの認証を行うスクリプトです。実行の際には、「Gmail.connect」 に

ご自分のアカウントのIDと パスワードを設定してください (0)。

日Gmallの認証 grnai:‐ id.rb

なおGoogleの 2要素認証の設定をして、IDとパスワード以外にスマホなどでのパ

スコードが必要な場合は、別途対策が必要になります。

12_二三二二2量塁生理型
メールが送信できることを確認できたら、次はクローラーの結果を通知しましょ

う。「5-14企業・株価情報を収集する」(→p.321)で作成したスクリプト「nokogiri―

stock.rb」 に、結果をメールで送付する処理を追加します。

gmail = Gmai■ .connect('C00CL111,D

gma■ 1.deliver do

to l`exarnpleCexample.com''

subject''日本語"

text_part do

body ''日本言吾"

end

end

G00CLE_PASS')0-―――――――-0

gmaiI. logout

■ ―*― coding: utf‐ 8 ‐*―

requ■re igma■ 11

|l gma‖ (040)

grnail_xoauth(0.4.1)



require'gmail

day=Time.now

day_str=

“十{day.year}/#{sprintf('1%02d'1,day.month)}/■ {Sprintf(“ %02d'・ ,day.day)}“

mail_body = くく''EOSl'

I(COmpany.name}

#(COmpany.CategOry}

■{Company.unit}
年初来高値:#{company.recentHighPrice}

年初来安値:#{company.recent LowPrice}

高値:#{company.highPrice}

安値:■{company.lowPrice}
期日面:#{COmpany.Pr■ Ce)

EOS

gmail=Gmai■ .connect('中策ヽ 藝 り
1,

gma■ l.deliver do

to ''ma■ 10example.com"

subject'(株価情報■(day_str}"

text_part do

body mail_body

end

end

10。CI「二|べ饉

gmail. logout

1追加するコード

1取得した株価情報をメールで送付する

# -t- coding: utf-8 -*-
requi.re ' nokogiri'
require 'open-uri'

class companylnfo
def initialize (ticker_code)

@baseUrl = "http://stocks.finance,yahoo.co
@tickercode = ticker code
scraPe

end

attr_reader :name, :tickerCode, :category,
runit, :recentHighPrice, :recentLowPrice,
:highPrice, :lowPrice, :price

private
def scrape_stock_info(html, index)

6‐3 収集結果をメールで自動送信する

nokog iri-stock- ma il. rb

jplstocks"

387



388

get_content(html, "dd", "ymuiEditLink maro",
index, "/strong"),delete(", ")

end

def get_company_info( )
urI = "#{@ba seurl}/ prof Ile/ ?code=#{@tickerCode} "

/6s = get_nokogiri_doc(url)
@name = doc.xpath( " / /th [@class=' symbol' ] i h1" ). text
@category = doc.xPath(

"//table[@class=' boardFinCom marB6' ]/tr[6]/td").text
@unit = doc,xpath(

"//tab1e[@c1ass=' boardFincom marB6' ]/trItl]/td").text
end

def get_stock_info( )
url = "#{@baseUrl}/detail/?code=#{@tickerCode}"
doc = get_nokogiri_doc(url)
@recentHighPrice = doc.xpath(

" I / div l1].) I dL I dd [@c]ass=' ymuiEditLink maro' I / strong" ) . text
@recentLowPrice = doc.xpath(

" / I dlv lr2) I dl I dd [@class=' ymuiEditLink maro' ] / strong" ) . text
@highPrice = doc,xpath(

" //div[@class=' innerDate' ) I divl}7 I dLl
dd[@class='ymuiEditLink maro' ]/strong").text

@lowPrice = doc.xpath(
" / /div [@c1ass= ' innerDate' ) I dlvl4)/ dll
dd[@class='ymuiEditLink maro' ]/strong").text

@price = doc.xpath("//td[@class='stoksPrice' ]").text
end

def get_nokogiri_doc (urI)
begin

html = open(url)
rescue OpenURI : :HTTPError

return
end

Nokogiri: ;HTML(html.read, niI,
end

utf-8

def scrape
get_compa ny_info
get_stock_info

end

end

company = ComPanylnfo. new( "4689" )
puts company.name

Chapter6 ,tr-r-o)EH



6‐3 収集結果をメールで自動送信する

Put s

puts
puts
puts
puts
put s

put s

company.category

company.unit

'1年初来‐高値:",company.recentHighPrice

'1年初来安値 :“ +company.recentLowPrice

''i51直 :"+company.highPrice

''安値:"+company.10wPrice

''株価:"+company,price

day=Time.now

day_str=

"#{day.year}ノ #(sprintf(''%02d“ ,day.mOnth)}/1{Sprintf(・ %02d'1,day.day)}“

mail_body = くく''EOS"

#(Company・ name}

#{ComPany.Category}

#{COmpany.unit}

年初来高値:#{company.recentHighPrice}

年初来安値:#{company.recentLowPrice}

高値:■(company.highPrice}
安値:#(company.lowPrice)

株価:#{company.price}

EOS

gmail=Gmail.connect('``Ж

"CltJ輩

」鶴ゆ',
gmail.deliver do

to l・ ma■ 10example.com“

subject''株 価情報#{day_str)"

text_Part do

body mail_body

end

end

∞̈ 141ASS')

gmail, logout

スクリプトを定期的に実行する方法は、p.375を ご参照ください。

無事、メールは送られてきたでしょうか。今回の株価情報のようにスマートフォ

ンのアプリがあるようなものであれば、わざわざメールで送る必要はないですが、

クローラーでしか取れない情報であればメールでスマートフォンに通知することで

便利になることが多いです。

389

require'gmail'



Chap些■6 クローフーの運用

q'メール通知

6‐ 3‐ 3 Amazon Simple Emait Service(SES)を 使って結果通知する

Gmailを利用する他に、Amazonの クラウドサービスであるAWS(Amazon Web

Services)を 利用する方法があります。AWSは、仮想サーバ以外にも多数のサービ

スが存在します。そのなかの1つ に、「Amazon Simple Email Service(SES)」 とい

うメール送信のサービスがあります。SESは有料のサービスですが、一般的な利用

の範囲であれば無料で利用できます。2014年 7月 現在では、1日 2,000通 までの送信

は無料で利用できます。料金の詳細については、Amazon SESの 料金ページで確認

してください。

■Amazon SES料 金表

回画http:〃aws.amazon.Comttp/SeS/priCing/

Go,,5ie ■■

・     ●   0   ■  | ■
‐ | ヽ V ‐ そ。他‐

ヽおド眸ン相談8Ⅲ 今すぐ
"ド

トンを僣りたしヽ・リクルートが燿曽のカードローンサイト。お急ぎ.初めて、お悩み、いつでも簡単ネ

株価情報2014′ 07′18 '. 摯薦●
“
・●|                             ● 0

,詢 o分m

―贅僣トレイ (33.221)
スター付
=

菫晏

選置済みメール

下●者

:¬・‐ :=

, 

-esm[.m

- r"a4 -
a 7 -t*tfit .il,
tml*

株価 :446

メールの文字コー ド

メールで送信する場合は、文字コー ドの考慮がないと文字化けが発生するケース

があります。

今回は、メールの文面をUTF-8で作成 し、そのまま送信 しています。昨今のメール

クライアントであれば、UTF-8で送られても文字化けせず表示できるケースが多いで

す。自分が使っているメールクライアントで文字化けする場合は、iSO-2022-JPで エ

ンコー ドするなど対策をしてください。

390

GmaiI



6‐3 収集結果をメールで自動送信する

AWSのアカウントを作成する

AWSを 利用す るには、Amazon.comの アカウ ン トが必要 とな ります。「4‐6-2

Amazon Product Advemsing API」 (→p.243)で アカウントを作成 しているのであ

れば、そのアカウントを活用できます。アカウント作成の流れは、以下のとおりです。

・ ①AWSアカウントでサインインもしくは新規アカウントの作成

・ ②新規アカウント作成の場合は、名前やパスワー ドなどのAWSログイン情報の設定

・ ③氏名・住所などの問い合わせ情報の入力

・ ④クレジットカー ドの登録

・ ⑤電話 (自動音声)による身元確認

・ ⑥AWSサポー トプランの選択

登録方法については、Amazon公式ページに丁寧に説明されています。それを参

照のうえで、登録してください。AWSサポートプランについては、ベーシック(無料)
で問題ありません。

●AWSアカウントの作成ベージ
回口http:〃aws.amazon.comttp/register‐ f:ow/

SESを利用する

AWSア カウントを用意し、プログラムから利用するためのAPIのキーを取得す

ればSESの 利用はできます。APIキ ーは、「46-2 Amazon Produce Advertising

API」 (→p.243)と 同じ方法で取得できますが、権限の範囲が広すぎるので限定した

アカウントを発行します。

AWSには、「Identity and Access Management(IAM)」 という認証と権限管理
の機能があります。IAMを使うことにより、機能単位でのアクセス許可ができます。

セキュリテイを考慮すると、最小限の権限を持ったIAMア カウントで運用するの

がよいでしょう。IAMアカウントの発行手順と権限付与は、次のとおりです。

・①AWS管理コンソールにログインする

・ ②サービスの一覧から「lAM」 を選択する

・ ③[Users]を選択し、 [Create New Users]ボ タンを押下する

・ ④任意のユーザー名を入力し、:AMアカウントを作成する。その際に、「AccessKey」

を保存しておく

・ ⑤作成したユーザーを選択し、「Permissions」 を選び、[Attach User Poncy]を押下



Chapler 6 , a-7-olER

する

・⑥Select Po‖ cy Templateの「Amazon SNS Fu‖ Access」 を選択し、[Apply Poncy]を

押下する

IAMア カウントの作成が完了したら、次はSESでのメールアドレスの登録です。

Amazon SESで は、不正利用を防ぎ信頼性を高めるために、認証された送信元から

のみメールを送信できます。認証の単位は、メールアドレスもしくはドメインです。

今回は、メールアドレスの認証を行います。

・①サービスの一覧から「SES」 を選択する

・②SESのダッシュボードから、「Ema‖ Addresses」 を選択する

・③[Verゥ a New Ema‖ Address]ボタンを押下して、利用したいメールアドレスを入

力する

・④入力したメール宛に確認メールが届くので、指示に従ってURLを 開く

・ ⑤認証完了

Rubyか らAWSの各サービスを利用する場合は、Amazon自 身が出している公式

のGemラ イプラリを利用するのが一番よいです。インストールはgemか ら行えま

す。インストール完了後にgem‖ st aws―sdkでバージョンが表示されれば成功です。

'aws¨
sdkのインストール

● インストールの確認

ここまで用意ができれば、SESの利用は簡単です。アクセスキーとシークレット

アクセスキーを使って認証をした後に、メールを送信します。なお送信元として設

定できるメールアドレスは、認証したメールアドレスのみとなっています。

「5-14企業・株価情報を収集する」(→ p.321)で作成したスクリプト「nokogiri―

stock.rb」 に、以下のコー ドを追加 します。実行の際には、「:accesLkey_id」 と

392

S gem list aws-sdk

aws―sdk(■ 42.0)



6‐3 収集結果をメールで自動送信する

Rsecret_access_key」 にIAMア カウントのAccess Keyと Secret Access Keyを 指定

してください。「±om」 のアドレスには認証したメールアドレスを、「:to」 のアドレ

スには送信先のメールアドレスを設定してください。

1追加するコード

薔AWSで株価情報をメール送信する rb

■ ―*―  coding: utf-8 -*―

requ■ re lnokogir■ '

requ■ re :open― ur■ '

class Companylnfo
def initial,ize(ticker_code)

@baseUrL = "http; //stocks,finance.yahoo.co. jplstocks"
@tickercode = ticker code

scrape
end

attr_reader :name, :tickercode, :category,
:unit, :recentHighPrice, :recentLowPrice,
;highPrice, :lowPrice, :price, :day

require 'aws-sdk'

ses = AWS::SimpleEmailService.new(

:aCCeSS_key_id=>`麟 驚奪聾:|111鮮 ',
:SeCret_aCCeSS_key=>'繊

鱗 ::1瀞 I(11ぞ職

)

mail_body = くく''EOS''

■(COmpany.name}
#(COmpany.CategOry}

#{COmpany・ unit)

年初来高値:#{company.recentHighprice}

年初来安値:■(company.recentLowPrice}
高値:#{company.highPrice}

安値:#{company.lowprice}

株価:#{company.price}

EOS

ses.send_email(
: subject => "ffiJfi11fl#{company.day}",
:from =>

:to => '

:body_text => mail_body

393

|



394

utf-8

Chapter6 2tr-7-alEH

private
def scrape_stock_info(htmI, index)

get_content(html, "dd", "ymuiEditLink maro",
index, "/strong"),delete(", ")

end

def get_company_info( )
urI = "#{@baseUrl}/profile/?code=#{@tickerCode}"
doc = get_nokogiri_doc(url)
@name = doc.xpath ( " / /th[@class=' symbol' ] /hr" ).text
@category = doc.xPath(

"//tab1e[@cIass=' boardFincom marB6' ]/tr[6]/td").text
@unit = doc.xpath(

"/ /table[@class=' boardFincom marB5' ] /tr[13 ] /td" ) . text
end

def get_stock_infoo
url = "#{@baseUrl}/detail/?code=#{@tickerCode}"
doc = get_nokogiri_doc(urI)
@recentHighPrice = doc.xpath(

" I I dLv llr) I dI I dd [@class=' ymuiEditLink maro' ] / strong" ) . text
@recentLowPrice = doc.xpath(

" / I div 1L2l I dL I dd [@cIass=' ymuiEditLink maro' ] / strong" ) . text
@highPrice = doc.xpath(

" / /div[@class=' innerDate' I I divl3] I dLl
dd[@class='ymuiEditLink maro' ]/strong").text

@lowPri.ce = doc.xpath(
" / /div[@class=' innerDate' I I divl4] I dl I
dd[@class='ymuiEditLink marO' ]/strong").text

@price = doc.xpath("//td[@cIass='stoksPrice' ]").text
date=Time . now

day_str=doc. xpath( " / /dd[@cIa5s=' yjSb real' ] /span" ) . text
@day = "61611".year)/#{day_str}"

end

def get_nokogiri_doc ( urI)
begin

html = open(url)
rescue OpenURI: :HTTPError

return
end

Nokogiri: :HTt{L(html.read, ni1,
end

def scrape
get_compa ny_info



6‐3 収集結果をメールで自動送信する

get_stock_info
end

end

COmpany = COmpanylnfO.neW("4689'')

puts company.name

puts company.category

puts company.un■ t

puts ''日イ寸:"+company.day

puts ''年初来高値:“ +company.recentHighPrice

puts il年初来安値:"・卜company.recentLowPrice

puts l'高値:''+company.highPrice

puts l':女イ直:''+company.lowPrice

puts i'株価:'1+company.price

require 'aws-sdk

ses = AWS::SimpleEmailService.new(

:aCCeSS_key_id=>'ハⅢ
'1':|'二

К
=マ

',

:seCret_aCCeSS_key => 11Al'「 :SF,illSECIFT'

)

mail_body = くく''EOS"

#{COmpany.name}

#{COmpany.CategOry}

#{Company.unit}

年初来高値:#{company.recentHighPrice}

年初来安値:#{company.recentLowPrice}

高値:■{company.highPrice}
安値:■(company.lowPrice}
‖r面 :#{company.price}

EOS

ses . send_ema iI (

: subject => "ffiffilllfl#{company.day}",
:from => '

:tO=>1●。110111,P■ ёlll輌
1,

:body_text => mail_body

メールの送信までできれば、クローラーとの連携は「63-2 Gmailを 使って結果通

知する」(→p.385)と 同じです。

395



Chapter 6 クローラーの運用

‖
前節では、メール送信のためにAmazonの クラウドサービス (AWS)を 利用しま

した。メール送信以外にも、クローラーを構築運用するうえで、クラウドの活用

シーンはたくさんあります。このセクションでは、クラウドの活用方法を紹介して

いきます。

6‐ 4‐l AWSのサービス

AWSには、仮想サーバであるAmazon EC2からストレージサービスのS3、 デー

タベースサービスのRDSやDynamoDB、 通知サービスのSNSや キューサービスの

SQSな どさまざまなレイヤーのサービスがあります。それぞれの役割がわかると、

クローラーの構築と運用が非常に楽になります。

I:!!:::1塁 2:三I_ご三:生里
`l:::`2■

_:::1:::::=」

筆者は簡単なクローラーであれば自宅のPCで動かしていますが、継続的に動か

す ものについてはAWS上 のEC2を 利用 してい ます。EC2は「Elastic Compute

Cloud」 の略で、Amazonの クラウド内のコンピュータリソースを利用できるサー

ビスです。

利用は1時間単位.で、CPUやメモリのサイズによりますが、1時間あたり数円か

ら利用できます。また、スポットインスタンスと呼ばれる入札制の仕組みを活用す

ると、さらに数分の1と いう値段で利用できる場合があります。それぞれのサーバ

にグローバルIPを割り振ることが可能なので、複数のPア ドレスが必要な場合など

に重宝します。また複数台を同時に起動して、一気に処理するといった用途でも使

えます。

曇二上上ニヱ上三ビ∠墜聖ヨ:空聖望」
EC2と 並びAWSを 代表するサービスの1つ に、Amazon S3(Simple Storage

Service)が あります。ストレージのサービスですが、容量無制限でWebの どこから

でも利用できるオンラインストレージです。データは3重以上に冗長化されて保存

され、ユーザーはデータのバックアップの心配もほぼ無用です。

lGBあ たり1ケ月3円程度のコストで運用できます。純粋にハードディスクのGB

あたりの単価と比べると割高に見えるかもしれませんが、オンラインで利用できて

6‐ 4

クラウドを活用する

396



6‐4 クラウドを活用する

かつ3重以上にバックアップされているということを考えると、驚異的な値段です。

S3は、データの保存先として非常に優れています。筆者は、クローリングで収

集したHTMLや Twitter Streaming API(→ p.277)で 収集した過去数年分のTweet

の保存などに利用しています。

颯データベースサービス「Amazon RDS」

PaaSは クラウドの提供形態の1つで、実行環境などを直接提供します。Amazon

RDSは PaaSの 形態で提供されているサービスで、ユーザーにOSな どを意識させる

ことなくリレーショナルデータベース(RDB)を 提供します。2014年現在で提供さ

れているデータベースは、MySQL、 Or¨le、 SQLServer、 PostgreSQLと 主要なも

のは一通り揃っています。

データベースを利用する時に、わざわざインストールから始める必要もなく、ま

さにサービスという形で利用できます。筆者も最近では、データベースを利用する

場合は、ほぼRDSを利用しています。インストール不要という以外にも、利用シー

ンに応じて柔軟にリソースの増減が可能です。

クローラーの利用では、メタデータの管理はデータベースを利用すると検索可能

になリデータとしての価値が上がります。クローラーとデータベースは、切っても

切れない関係です。

通知サービス「Amazon SNS」

AWSでは、EC2の ようなIaaSや RDSな どのPaaSのみならず、アプリケーション

サー ビス も多数 出 してい ます。 その なか の1つ が、Amazon SNS(Simple
Not過cation Service)です。名前のとおり通知サービスで、メールやHTTP通知、

iPhoneや Androidな どのスマートフォンなど、さまざまな方法で通知できます。ス

マートフォンヘのプッシュ通知を一から実装するのはなかなか手間ですが、SNSを

使うことで比較的簡単に実装できます。

機童1土
=:二
L三二」ビ三生I:全!里:ユ

`蜃

:里:≦:≦と旦」

AmazOn SQS(Simple Queue Service)は 、AWSの なかでもあまり目立たない

サービスです。いわゆるキューのサービスを提供するのですが、従来のキューのよ

うに大がかりなシステムの用意も不要で、手軽に扱えます。

キューのシステムは、メッセージを登録して、順番に取得するだけのサービスで

す。機能は非常に単純ですが、上手く活用すると、クローラーとこれほど相性がよ

397



Chapttr 6 クローラーの運用

いサービスもないくらいのものです。例えば、複数のサーバを同時に立ち上げてク

ローラーを並列で動かす時に、処理する対象のURLの管理をどうするかという問

題があります。この処理対象の管理をキューを利用することにより、100台 のク

ローラーを同時に動かすということを簡単に実現できます。SQSを使った具体的な

例は、「6-5-2分散処理」(→p415)で紹介します。

6‐ 4‐2 クラウド上のサーバを利用する

Amazon EC2は仮想サーバです。EC2の上で、Windows Serverや Red Hat
Enterprise Linuxや Ubuntuな どのLinux系 OSが利用できます。

AWSで はOSイ メー ジをAMI(Amazon Machine lmage)と 呼びます。AMIは
Amazon社 自身が出している公式の ものや、AWS利用者が作成 したCommunity
AMI、 AWS上に出店するベンダーが作成したMarketplaceの AMIな どがあります。

V Amazon AMI

Stop 1: Ch@ dArnuon Machlm lmago (AMl) ddtr
hs6.!!1@hehtull@ Fu!r!m, dmr*e sd edjBbnqld bMstI@. ye6i*-Mffi b Arc ulg@. qhMk46:

ゆ 四

“
  . |1   奉

畑SM●
“Ⅲ
臨||1盤選出路

_■
“
:にぃ1,■  |‐ |   ●

…

…
0

■冒■

“

"

―

EC2を利用する準備

EC2を 利用するには、いくつかの準備が必要です。まずは、「6-3-3 Amazon

Simple Email Service(SES)を 使って結果通知する」(→ p.390)で作成したIAMア カ

ウントに対して、EC2の利用権限を付与します。

権限の付与は、AWSア カウントでログインしたうえで、AWSコ ンソールのIAM
ダッシュボードから行います。「Users」 で既存のユーザーを選択し、Manager

User Permissionsの「Set PermissiOns」 で権限を追加します。Select PoLcy Template

の「Amazon EC2 Full Access」 を選択し、[Select]を 押下します。今後、EC2を操

作する場合は、今回作成 (設定)したIAMア カウントを利用することを推奨します。

398



6‐4 クラウドを活用する

鸞P EC2利用権限の付与

次にKey P」 rを作成します。Key PairはEC2上に起動したサーバにログインする

のに利用します。Key Pairの 作成は、AWSコ ンソールのEC2ダ ッシュボードの

「Key Pairs」 から行います。[Create Key Pair]ボ タンを押下して、任意の名前を

入力すると作成できます。同時に秘密鍵がダウンロードされます。今後のサーバヘ

のアクセスに必要となりますので、大切に保管しましょう。

てレKey Pairを作成する

3d PedaBXoB

H a pdlry bnpbB g@. pdq, dM a MM pdlq. apdby ts 6 dQffid brt
ffily s@ ffi affi @blm. Yfl 6 dnhpdryotuldldqffi, dda66ilm
6lehm.ry,a&ddpw.

bEB tu[ ffi bM E@YIah Are @ryd hd6.

tuld* tul ffi 10 a[ M E@ @@ via tu Are Ma@3M hsdo

odya@sbM @ vlatuAffi MmWdtud6.

||::|:鑢 :||:|

一鼈
, keonrczhOlyl$

「Users」 を選択する
| |「

Am2on EC2 Fu‖ A…ss」 を選択する

o轟 |□壼

任意の名前を設定する「Key Pairs」 を選択する

|,…
"●
●■― ‐

399



Chapter6 ta-r-oEH

ヽサーバを起動する

ここまで準備ができるとAWSの利用は可能となります。EC2ダ ッシュボードか
ら「Instances」 を選択し、[Launch lnstance]ボ タンを押下します。AMIの選択画

面が出てくるので任意のOSを選択しましょう。OSの なかに、「Amazon Linux

AMI」 という見慣れないものが出てくると思います。これは、Red Had Enterprise

の互換デイス トリビューションです。よくメンテナンスされて使いやすいので、特

別こだわりがないのであれば使ってみることをお勧めします。

OSを選択すると、次はインスタンスサイズの選択画面になります。インスタン

スサイズごとに、CPUや メモリのサイズが違います。当然ながら高性能のインス

タンスは時間あたりの料金が高いのでご注意 ください。まず使ってみるだけであれ

ば、「Micro lnstance」 をお勧めします。新規作成したアカウントであれば、無料枠

もあります。インスタンスを選択して、 [Preview and Launch]を選択すると起動

の一歩手前になります。その後に、先ほど作成したKey P」rを選択すると起動でき

ます。

他にも設定できるところはたくさんあるので、興味があればAmazonの公式の ト

レーニング資料を参考してください。

■AWSク ラウ ドサービス活用資料集
回口http:〃aWS.amaZon.com/,p/aWS‐ ip‐introduCtion/

量サーバにログインする

サーバを起動すると、Instancesの一覧にサーバが表示されます。選択すると、

サーバの詳細情報が表示されます。詳細中にPublic IPが あるので、このIPを 利用

するとサーバにログインできます。デフォルトのOSユーザーは「ec2-user」 という

名前で作成されています。

Windowsか らのログインは、Tera TermやPuTTYな どのSSHク ライアントッー

ルからログインします。IPア ドレスを入力のうえで、ユーザーに「ec2-user」 を入

力し、パスワードではなく秘密鍵で認証します。

■Tera Termホ ームページ

ロロl httpソ /ttssh2.sourceforge.,p/

400



6‐4 クラウドを活用する

q騨

'TeraTermか
らログインする

Macの場合は、ターミナルからsshコ マンドでログインできます。注意点として

は、KeyPair.pemフ アイルのパーミッションを本人のみにしておく必要があります。

sshコマンドで、認証にKeyPair.pemフ アイルを指定するには、
‐iオプションを利用

します。IPア ドレスは、AWS管理コンソールに表示されたIPア ドレスを入力して

ください。

●サーバログイン(Mac)

▼ Macのターミナルからログインする

ログインした後は、「6‐1サーバサイドで動かす」(→p.362)で紹介したLinuxの使

い方と同じです。

llacBookPro:tmp takuro$ ssh -1 ec2-keypalr'pem ec2-use

_|_|_)

_l(  / An● 20n Linux AMl
_|ヽ_|_|

https:/ノaWS.am● 20n,COmノ ana2● n-1lnuX― anl′ 20■4.03-retease… notes/

6 paCkage(5)needed fOr SeCurity, Out Of 27 ●vallable
Run ttsudo yum update'l to apply atl updates.
[ec2-useに 1,-172-31-21-8～ lS I

rc54.86.120.121

401



AMIと して保存する

AWSでは、設定したサーバをAMIと いう形で保存できます。一度保存しておく
と、その情報を元に何台でも起動できます。同じサーバを簡単に複数作成できる利

点を活かして、何十台も同時に起動させるといったようなことができます。

AMIの作成は、EC2ダ ッシュボードの「Instances」 からサーバを選択したうえで、
Actionsの「Create lmage」 から任意の名前を入力して作成できます。

作成したAMIから起動する場合は、起動画面で「My AMIs」 を選択することで利
用できます。

V Create lmage

E(2 Dashboe“

TaOp

Rop07iS

く■国目ロヨロ:|||■ .:

I tncrma
Spc( ReqEts
Beryod lchl16

"lMバ
望s

「lnsね nces」 を選択する
|

「Create lmage」 を選択する

EC2はかなり使い勝手のよい仮想サーバなので、積極的に使ってみましょう。た

だし、従量課金制なので起動しっぱなしであれば、その分課金されます。不要な場

合は、終了させることを忘れないようにしましょう。ィンスタンスを選択したうえ

で、「Terminate」 することで終了にできます。

6・ 4‐3 クラウド上のストレージを利用する

長くクローラーを運用していると、データの保存をどうするかという問題に直面

します。クローラーは運用を続けると基本的にデータがどんどんと溜まっていくも

のです。そんな際に、必要な時に必要なだけ利用できるクラウドストレージは便利

です。

Amazon S3を利用する準備

S3を利用するにも、いくつかの準備が必要です。まずは、「6-3-3 AmazOn Simple

Emall Service(SES)を 使って結果通知する」(→p.390)で作成したIAMア カウント

402

Chapter 6 ) a-7-o>EH

■■悸|。い.●|

・  
…
●麟 ●‐

FIt* Al tBtac v

l,lm. ? "

ロ

ハd″Edit T"S

Change Tmindion Protdion
Mw/ohdgeUse Oda

ChmgeShutdown Bdeior

Gd SFh Log

I runntng

C bminand



6‐4 クラウドを活用する

に対して、S3の利用権限を付与します。

権限の付与は、AWSア カウントでログインしたうえで、AWSコ ンソールのIAM

ダッシュボードから行います。「Users」 で既存のユーザーを選択し、Manage User

Permissionsの「Set Parmiss10ns」 で権限を追加します。Select Policy Templateの

「Amazon S3 Full Access」 を選択し、 [Select]を押下します。EC2やSESと 同様に、

S3を利用する場合はIAMア カウントを利用することを推奨します。

Ч瞬S3利用権限の付与

S3を利用する際は、まずはBucketを作成する必要があります。Bucketは S3内で

一意の名前である必要があります。つまリドメインと同じように、他のユーザーが

既に使っていた場合は利用できません。

¶レS3Buck償の作成

Sot Psrfilsslom

Sdd a pdlcy Mpld6, gM6 a pdlcy, aMacElm p<rlcy. Apdicy is E d@menl thd
,@dly s@ ffi dlre p€rr&slG. Yo@ sditltE pdiry 6 itEtdlwlrEBcen,6* a lat6rtkn6
siig th€ M, gdp, d role d&il paga.

tuidsM mly@B bd{h@Bde 53dattEAWS ManagMCo$de.

k@lds fdl a(&s b all bwk* v,a ilE AwS iita@ffi Cor6oie.

, hEonglBdorilyb
tuH6 @d dy ffis b dl brck& vhtu AWS Mamgffi Ccde-

一一編
毅̈

〓
魅
一̈

一
壼
一
凛
Ｔ

，
場

一̈

, Selrhy Audlt

「Amazon S3 Fu‖ Access」 を選択する

蠅灘
‐
響:幽;懸醐 i憲:櫂縄:i織彙鐵 ,Rttt編臨 黛:鏃7織Rg

飩
“
献N・ma「
~~~~~~~~~~~~~~¬

R"1● n:匡鮨高面
~~臨

:

403

Chapter 6 クローラーの運用

Bucket作成時にバケット名とRegionの選択があります。Re」onはデータを置く

地域の選択です。AmazOnの データセンターは、北米・アジア・ヨーロッパと世界

中に分散しています。ユーザーはそのなかから、任意のRegionを 選択します。基

本的には、自分が住んでいる地域から地理的に近いところを選ぶと、通信遅延が少

なく便利でしょう。一方で、北米に比べて日本はS3の価格設定が高いといったデ

メリットがあります。

1
PCから利用する

S3は、PCからプラウザ経由で利用できます。ファイルのアップロードや一覧表

示、ダウンロードなどができます。しかし、日常的に使うには、少し不便です。そ

こでサードパーテイ製のツールを使うことにより、FTPラ イクに使えます。

サードパーテイ製のッールとして、WindOwsと Macどちらでも使えるFireおxを

拡張する「S3Fox」 や、Windows専用の「CloudBerry」、Windowsや Mac用で利用で

きる「CyberDuck」 などがあります。

■S3Fox

回□l httpS:ノグaddOnS・ :nOZi‖ a・Org/'a/firefOX/addOn/amaZOn‐ S3‐organizers3fox/

■CloudBerry

回田http:〃
lwww.cloudberrylab.com/

■CyberDuck

回ロロhttp:ノ %Cyberduck.softonic.lp/mac

▼ S3Fox

404

6‐4 クラウドを活用する

スクリプトから利用する

スクリプトからS3を使う場合は、SESと 同様に公式の「aws―sdk」 を利用するとよ

いです (→p.392)。

● aws‐sdkのインストール

RubyでS3を操作するには、以下のような形で一通り扱えます。

実行の際には、Laccess_key ld」 とRsecret_access_key」 に取得したIAMア カウ

ントのアクセスキーや秘密キーを設定してください。また、「your―bucket―name」

部分にはバケット名 (→p.403)を 設定してください。その他、ディレクトリ名や

ファイル名などを各自の環境に合わせて設定してださい。

日Rubyス クリフトからS3を利用する use-s3.rb

-t- coding: utf-8 -+-
require 'aws-sdk'

AWS.config({

:access_key_id => :

: secret_access_key =;
))
s3 = AWS::53,new

buCket=53.buckets[:濠摯:越鱗:峰:癖覇|‖満
=]tree = bucket.as tree

u1v,tu-fi,
directories =

tree . children , select (&: branc h ?) . collect (&: prefix)
directories , each{ | directory I

puts directory
i
#フ ァイブレー覧
files = tree.chi■ dren.se■ ect(&:leaf7).c● 1lect(8`:key)

fileS.eaCh{lfilel

puts file

}

#キーー覧(ファイル&ディレクトリー覧)
puts ''keys''

keyS = buCket・ 。bjeCtS,C。 lleCt(&:key)

405

(ihapter6 ,a-)-qiIH

keyS.eaCh{lkeyl

puts key

}

#サブディレクトリ下のファイルの一覧表示
puts 'isub fo■ der''

tree = buCket.aS_tree({:prefiX => '●●bf。lde,name′ '})

fileS = tree・ Children,SeleCt(&:leaf?)・ COlleCt(&:key)

fileS・ eaCh{lfi■ el

puts file

}

#フ ァイル操作

obj =

S3.buckets['yo● r・ buCket■ bme']・ Objects['電
=●

●載ぽ]

#フ ァイルの書き込み

obj.write('He11o World!')

#ファイルの読み込み
obj . read

峨クローラーとの連携

クローラーと連携するのであれば、「5-6画像を収集する」(→p.285)で紹介した

ような画像収集系のクローラーと連携させるのがよいでしょう。

実行の際には、「:accesttkey_id」 と「:secretaccesttkey」 に取得したIAMア カウ

ントのアクセスキーや秘密キーを設定してください。また、「your― bucket―name」

部分にはバケット名 (→p.403)を 設定してください。

日収集した画像をクラウド上に保存する

■ ―ネー coding: utf-8 -*―

require laWS-5dk:

S3の速度

スクリプ トからS3を 扱う際の注意点としては、速度の遅さです。日―カルのス ト

レージにあるファイルに比べ、S3はネットワーク上にあります。ファイル操作は都

度HTTPプロトコルで行われるため、小さなファイルでも取得に数十～数百ミリ秒ほ

どかかります。このため、頻繁に取得や更新するような処理をS3に 対 して行うのは

向いていません。

406

6‐4 クラウドを活用する

require 'open-uri'
require 'cgi'

AWS.config({

:access_key_id =>

secret_access_key =y '

))
s3 = AWS::53.new
@bucket = s3.buckets['

def save_image(ur1)
filename = File.basename(url)
obj = @bucket.objects[filename]
open(ur1,) do ldatal

obj.write(data. read)
end

end

search_word=URI. encode("cat ")
doc = Nokogiri: :HTML(open(

"https : / /m. flickr. com/ search/ ?q=#{59216h_word}"))
doc . xpath (

"//a[@class='rapidnofollow photo-click']/img").each { llinkl

url = link[1ldata― defer― srci']

サムネイル画像
SaVe_image(url)

このスクリプトの場合、ファイルの取得に対してS3へのアップロードが圧倒的

に時間がかかります。高速化の手段しては、S3へのアップロード部分を分離して

別途動かすような形が望ましいでしょう。

6‐ 4‐4 Amazon SNSで通知する

少し前であれば、プログラムから通知するのであればE―mailを使うのが一般的で

した。しかし、昨今ではスマートフォンヘのプッシュ通知やTwibの ようなAPIを

利用して直接電話をかけるようなこともできるようになっています。いろいろなデ

バイスに通知するのに、プロトコルごとに実装するのは手間がかかります。

そこで、AmazonのSimple Not五 cadon Service(SNS)の ようなサービスを利用

することで、プロトコルを透過的に扱うことができます。SNSは プッシュ型の通知

サービスで、2014年 7月 現在では、HTTP/HTTPS、 E―mall、 SMSと SQS、 モバイ

ル通知と5種類があります。

407

}

Chapter 6 , r:-7-ollfl

V Amazon SNS

↓

↓

↓

↓

↓

一‐‐Ｉ

Ｌ
‐―
Ｉ

Ｌ
‐Ｉ

Ｌ
Ｉ
Ｉ

Ｌ

Messate
配信

●

●

トビック

(Topic)

■■■■

中中通知する人

(Publisher)

SVIS
Subscription)

E-mail
Subscription

SQS
Subscription

HTTP/HTTPS
(Subscrlption)

モバイル通知

Amazon SNSを 利用する準備

SNSを 利用するにも、い くつかの準備が必要です。 まずは、「6-3-3 Amazon

Simple Email Service(SES)を 使って結果通知する」で作成したIAMア カウントに

対して、SNSの利用権限を付与します。

権限の付与は、AWSア カウントでログインしたうえでAWSコ ンソールのIAM

ダッシュボー ドから行います。「Users」 で既存のユーザーを選択し、Manage User

Permissionsの「Set Parmissions」 で権限を追加します。Select Policy Templateの

「Amazon SNS Full Access」 を選択 し、 [Select]を 押下します。

▼ SNS利用権限の付与

Pold6 @d mt aGs b Arlm SES via ifE AwS Managmfl CGd6.
|ヽ●4

PBfuJB full ffis toM SN vbhAWS iftnagffi CdBe. l'sq!4]j

, A.ron Sa{A B6d orr, Ae3
Prilid6 @d qly a@ b A|r6a St{S vb tu AWS lr,lem€md Cqtsdo. 1鱒octll

Set PmissloB

Sdd a pdlcy i€fipldo, gffi e pdlcy, d M e uh pdlcy. A pollcy b a d@md thd
fqrElly sffi @ d ll@ pdniskB. Yd 6 dil tu pdlcy 6 h fdldng sclM, q d a ld6. fl m

UsPembab6

「Amazon SNS Fu‖ Access」 を選択する

408

Ｆ
＝
鵬

］賄
＼
ヽ
↓
川

／

Ｍ＼

＼

一

／

／

＼
ヽ
　
　
　
＼
　
　
　
　
一　
　
　
　
／
　
　
　
ノ
／

|`'Setect,4icy Te曝 otaお |.| .: ___■ ___.|_____

6lng tho s€i g@p, d d6 dMl pagB.

, tu&mSESHOnlyM

|,ヵ
"“
●●

““

F■

“

ⅢⅢ

6‐4 クラウドを活用する

権限を付与したら、次はSNSの「Topic」 の作成です。Topicと は、通知の名前で

す。AWS管理コンソールのSNSの ダッシュボードから作成できます。例えば、そ

の通知を使うアプリケーション名やイベント名を付けます。

Topicの 次は、Topicに属する「Subscription」 を作成します。Subscriptionは 通知

の方法です。E―m翻やHTTPな どさまざまなプロトコルが利用できます。また、1つ

のTopicに複数のSubscriptionを 作成できます。一度の通知で、そのSubscriptiOn分

だけ通知ができるということになります。

スマートフォンヘのプッシュ通知は、Subscriptionの アプリケーションからでき

ます。ただし、10SやAndroidな ど受け手側での準備が必要です。例えば、10Sの場

合はプッシュ通知用の証明書の作成などが必要になります。

冒
「
SNS利用権限の付与

スクリプトから利用する

スクリプ トからプッシュ通知するには、作成したTopic ARNを利用 します。ス

クリプト自体は非常にシンプルです。SubscriptiOnと して用意しておけば、これだ

けでDm』やHTTPな ど複数のプロトコルに通知できます。

実行の際には、Raccess_key_id」 と「:secretaccesttkey」 に取得したIAMア カウ

ントのアクセスキーや秘密キーを設定してください。また、SNSのTopic作成時の

設定として、エンドポイントを指定します。エンドポイントは、「arn:aws:sns:us―

east-1:」 に、AWSア カウントIDと トビック名を付与します。なお、エンドポイント

は、AWS管 理画面のSNSダ ッシュボー ドから、対象のTOpicを 選ぶと「Topic

ARN」 という項目で表示されています。

^耐
●

““

409

|。・口,|“島転|

Chapter 6 クローラーの運用

I Amazon SNSで 通知する sns.rb

12口二z―との連堕
クローラーと連携する場合は、「63-2 Gm」 を使って結果通知する」(→ p.385)で

紹介したように、結果を通知するような形で利用するとよいでしょう。また、SQS

のようなキュープログラムと連携できるので、結果を通知して次のプログラムを実

行させるということも可能です。

営
6‐ 5

さらなる高速化の手法

クローラー単体での処理を高速化する方法の1つは、処理時間がかかる部分を並

列化することです。「44ク ローラーを効率的に動かすには」(→p232)で言及 しま

したが、クローラーの処理のなかで大きな割合を占めるのが、ダウンロー ドです。

これを非同期処理で多重化することで、クローラー単体での高速化が実現できます。

6‐ 5‐1 非同期処理

ダウンロード処理を高速化する方法として、まずは非同期処理のやり方を見てい

きましょう。

lE聖型堕璽翌
Rubyで非同期処理をする場合、複数のスレッドを利用するThreadがあ ります。

スレッド方式は、多重度が増えると極端に効率が悪 くなるという問題があ ります。

そこで別の方法として、Reactorパ ターンを利用した「EventMachine」 があります。

Reactorパ ターンは、イベントドリブン方式で、特定のイベント(読み込み可能

な状態になる)が発生すると初めて処理を開始します。内部的にはシングルスレッ

AWS.config({

:access_key_id => 'AWS_ACCESS_KEYl,

:secret_access_key => 'AWS_SECRET_ACCESS_KEY',

})

topic = AIJS: :SNS: :Topic.new(
' arn : aws : s ns : u s - ea st - 1 : iolr:iacdrirtt_id : topic_arn')

topic. publish('Notification from 5N5')

-*- coding: utf-8 -+-
require 'aws-sdk'

410

6Ⅲ5 さらなる高速化の手法

ドで動作する、少 し変わった非同期処理です。Reacbrパ ターンは、特にネット

ワークなどの1/0待 ち時間が多い場合 に効果を発揮 します。EventMachineは

Reactorパ ターンのRubyの実装の1つです。

■EventMachine

ロロロhttp:ノ/rubyeventrnachine.com/

EventMachineのインストールは、gemか ら行えます。インストール後は、gem

list eventmachineで バージョンが表示されれば成功です。

O EventMachineのインストール

0イ ンストールの確認

また、EventMachineを利用した実装の1つに、「EM―HTTP―Request」 というライ

ブラリがあります。これは、その名のとおりEventMachineを使って非同期に

HTTPリ クエストするというライブラリです。

口GitHubの EM‐ HTTP‐ Requestペ ージ

ロ回l httpS:ノグg:thub.com/igrigOrik/em‐ http‐ request

EM― HTTP‐Requestの インス トールは、gemか ら行えます。インス トール後は、

gem‖ st em― http― requestでバージョンが表示されれば成功です。

O EM― HTTP― Requestの インストール

●インストールの確認

411

Chapter 6 クローラーの運用

このライブラリを利用して非同期のダウンロードを実装してみましょう。このス

クリプトは、URLの リストを含んだファイルを引数として渡すことで (0)、 リス

ト内のURLに対してダウンロードを行います。

日非同期のダウンロード !oad.rb

-*- coding; utf-8 -+-
require'eventmachine'
require'em-http'

pending -= 1

Efi'l.stop if pending < r
)
http.errback {

puts pending
puts "#{url}Yn" + http.error

pending -= 1

Etl,stop j.f pending < 1

}

end

}

end

end

end

def main (url_list_file) .--------{
if url_Iist_file == niI | | lFile.exist?(urJ._list_fi1e) then

abort "set first arg as 'ur1 list fi1e"'
end

downloader = Downloader.new
downloader. download (url_1i st_file)

end

412

class Downl"oader

def download (url_list_f ile)
pending = File.readlines(url_list_file).size
EM.run do

File.open(url_list_file) { lf I

f.each do lurll
http = EN: rHttpRequest.new(url),get
http.callback {

puts
"#{url}Yn#{http.response_header.status} -
#{http. response. length} bytesvn"

if _FILE_ == "
main(ARGV[0])

end

このプログラムに、200ほ どのURLの リストを含んだファイルを引数に渡し、実

行時間を計測してみます。「url_listtxt」 はサンプルファイル (→ p.五)に用意してあ

るものをご使用ください。

● em_htp_down:oad.rbの 実行例

Linuxの timeコ マンドで測定してみます。このコマンドは、timeの 後のコマンド

の実行時間を測定できます。いくつか値が出てきますが、re」が実測値になります。

今回の実行時間は、7秒程度です。次に、比較のために、並列ではなく1件ずつ順次

処理する場合と比べてみましょう。

E順次処理によるダウンロード simple_http_download.rb

-+- coding: utf-8 -t-
require 'open-uri'

class Downloader
def download(url_list_file)

File.open(url_list_file) { lf I

f.each do lurll
puts url
puts open(url)

end

)
end

def main(ur■_■ iSt_fi■e)

if ur■ _■ist_file == nil ll !File.exist'(ur■_list_file)then
abort ''set first arg as

｀
url list fi■ e'''

end

downloader = Downloader.new
downloader. download (url _1ist_file)
end

413

6‐5 さらなる高速化の手法

Chapter 6 , e-)-aDII.H

O Simp!e_http_download.rbの 実行

実行時間は1分38秒でした。圧倒的なスピード差があります。

薔f」≧2三里if三]三里」L21

通常の同期処理やスレッドを使った処理に比べると、EventMachineは どうして

もコードの記述量が多 くなります。純粋にクローラーとしてEventMachineを利用

したい場合は、「cosmicrawler」 というRubyの Gemラ イブラリがあります。cosmic

rawlerを利用することによりEventMachineの煩雑な記述を隠蔽し、解析部分に注

力できます。

r GitHub 0) cosmicrawler ^i- i
l[il https:,/github.com/bashOC/cosm icrawler

cosmicrawlerの インストールは、gemか ら行えます。インストール後は、gem

‖st cosmicrawlerで バージョンが表示されれば成功です。

t cosmicrawler@1 Y Z l. -)b

l m38.066s

OrnO.997s

一■

●インストールの確認

次のスクリプ トはcosmicrawlerに よる非同期処理で、はてなプックマークの

HTMLを取得しています。

414

S timerubysimpie_http_downioad.rb uri_‖ st.t離

if _F工 LE_ == "
main(ARGV[0])

end

$ gem list rosmicrawler

姜姜=LOCAL GEMSI薇 =

CoSmiCrawier(0.0.1)

6‐5 さらなる高速化の手法

l cosmicrawierに よる非同期処理 cosmicrawler-sample.rb

O cosmicrawier¨ samp!e.rbの実行

6・ 5・2 分散処理

前のセクションでは、非同期処理での多重実行によるクローラーの高速化を図り

ました。この手法の本質はスクリプト内での効率化であり、スピードアップの上限

があります。そこでもう1つの方法として、複数のサーバで同時に実行する方法も

試してみましょう。いわゆる分散処理です。

キューの活用

分散処理をする場合、処理対象の制御が重要になります。せっかく複数のサーバ

で処理していても、同じ対象に対して処理をしていれば意味がないからです。

その対処方法は2つあります。1つは、ジョブ制御サーバが複数の処理サーバにタ

スクを投げる方法です。Hadoopの ような分散処理フレームワークはこの形です。

もう1つは、処理サーバの方からタスクを取得する方法です。タスクの管理にキュー

(待ち行列)な どが使われます。Hadoopを使ったクローラーの実装もあるようです

が、実際に動かすのはなかなか大変です。

COSmiCraWler.http_CraWl(%W(

http://b.hatena.ne.jP/hotentryノ it

http:ノ /b.hatena.ne.jP/hotentry/1ife)){lrequestl

-t- coding: utf-8 -+-
require' cosmicrawler'

get = request.Set
puts get.response if

get,response_header. status == 2oo

415

}

Chap“r6 クローラーの運用

そこで比較的簡単なキューを使った分散処理を見てみましょう。キューとは待ち

行列です。先入れ先出しで、先に入れられたデータから順に取り出していきます。

キューの実装は、原理的にはファイルやデータベースを使ってもできます。しかし、

キューは登録・削除処理や、処理中のキューの排他制御の実装が必要です。また

データが消失しないように可用性や、キュー自体がボトルネックにならないように

スケーラビリテイが必要になります。ちゃんとしたキューのシステムを構築しよう

とすると、かなり大がかりになります。

機Amazon Simple Queue Service

AWSに は、Amazon Simple Queue Service(SQS)と いうキューのサービスがあ

ります。SQSは AWSのサービスのなかでも最古参のものの1つです。これを使って

みましょう。

他のAWSサービスと同様に、SQSを利用する際には権限付与が必要です。まず

は、「63‐3 Amazon Simple Email Service(SES)を 使って結果通知する」(→ p.390)

で作成したIAMア カウントに対して、SQSの利用権限を付与します。権限の付与

は、AWSア カウントでログインしたうえで、AWSコ ンソールのIAMダ ッシュボー

ドから行います。「Users」 で既存のユーザーを選択し、Manage User Permisslons

の「Set ParmissiOns」 で権限を追加します。Select Policy Templateの「Amazon

SQS Full Access」 を選択し、[Select]を 押下します。

▼ キューの作成

…
LⅥ
`bll、
nm…Ⅲ。■篤 高 :〕柵

mШ
“…
mO…nd3 and'2

■
“"●
R薇綱 mR■

“

:14~.(三 二」
 治児,繭“"詭

輔鶴 1市 n山 」nd 14

詢 dm…‖
“`り
0鑢●[三F~■ ● ■[● O mu“ いいい On1 8nd 2“ Ю

":"ヮ
D●‐iO~:〔

“
ゆⅢ I'111耀 lは

い
“
輌en O“∞n“ and'5

R・‐ ‐ 陽 嗜・
慟配 ■mel■ :I:“∞

“
`
Ⅵ !・
・
繭 」

“

腱¨ 節 。and"“ ∞n“

ry eUry qs!6 .Ub& (s!onrl).

Oasd Ldt.. Qsru€ Setrnla

vd@ruebr. ddq qooe.are.

「Create New Queue」 をクリックする キューの名前を入力する416

6‐5 さらなる高速化の手法

権限を付与したら、次はキューを作成します。キューの作成は、SQSダ ッシュ

ボードから[Create New Queue]ボ タンを押下します。作成時にいくつかパラメー

タ設定がありますが、キュー名を入力するだけで作れます。

無事作成できたら、選択して詳細を見てみましょう。「Details」 タブにURLと いう

項目があります。このURLがキューを操作するためのエンドポイントになります。

¶ンSQSの詳細

キューの登録

それでは、実際にキューに登録してみましょう。今回は、URLの リストを格納

したファイル (url_Isttxt)を 用意し(0)、 そのなかのURLをすべてキューに格納し

ます。

実行の際には、「:Жcess_key_id」 と「:secret_access key」 にIAMア カウントのサク

セスキーと秘密キーを、「url」 にエンドポイントを設定してください。URLの リスト

を格納したファイルは、サンプルファイル (→p.五)にあるものをご使用ください。

また、aws― sdkは既にインストールしてあるものとします (→ p.392)。

|キューを登録する .rb

■ ―*― coding: utf-8 -*―

require 'aWS-5dk'

AWS.config(

:aCCeSS_key_id=>'パ

"'圭

本準奪尋筆苺廷髯震Y',
:secret_access_key=>'攣 饉獲1毒森1藤菫:睡蕪苺:摯義ぶ鸞

1,

:SsS_ ndPOint => 'SqS.ap― nOrtheaSt‐ ■.ama20naWS.COml

)

ur1='

llam: ruby{uouwmplB
URL hthsribq&u*astlrm&nawa.@mwuby{uou@mpl6
ARf, : a6rysqs;gH6*1 :021010748 129:ruby{usu€€mplo

Gffibd: 201&15 02:t1:s ffitrio
t *UP&bd: 2014{&1502:11:46 GlrT+09:00

DofiYery Dalay: 0 $@nds

」 Deta薔 :にPa中
'"吟
ns.|I Rod,ve Fd観

|

●o■凛 VIB:u:町 71m00ut:30∞ ∞nds

m●03aoO● Avallabl● (Vi●釉鮨〕):0

“

0●●a"3 in日
`o“

{Nd V｀ 1回0':0

sqs = AWS::sQS,new

417

Chapter 6 クローラーの運用

#URLリ ストを登録
f=open("url_list.txt")一 ●
f・ eaCh {llinel

SqS.queueS[url].Send_7neSSage(line)

}

l土三二を里2生些型
キュー登録が完了したら、次はキューからURLを 取得 して処理をするスクリプ

トを作成 してみましょう。基本的な流れとしては、次の3つ の手順になります。

・①キューからメッセージ (URL)の取得

・②URLに対して処理

・③(処理が成功したら)キューからメッセージ (URL)の削除

Amazon SQSは 、キューからメッセージを取得した場合、そのメッセージについ

ては一定時間他から見えなくなります。そのため、複数台のサーバから同時に

キューを取得されても、同じメッセージを処理するといった問題は発生しません。

SQSの接続URLは 、AWS管理画面のSQSか ら、キューの詳細画面のURLを 参照 し
セットしてください。

|キューからメッセージを取得して処理を行う sqs‐ pu‖‐url.rb

AWS.config(

:access_key_id => :AWSiACCL,Sl κtY',

:secret_access_key => 'AWSiSECRETIACIEIS'■ IFy',
:sss_endpoint => 'sqs.ap― northeast― ■.amazOnaws,cOm'

)

url = 'AWSl,Q,_[NDPOINT

sqs = AWS::SQS.new

Sq5.queueS[url].pOll dO lmSgl

puts msg.bOdy

#受け取つたURLを元に何らかの処理を実装
end

-*- coding: utf-8 -+-
require 'aws-sdk'

418

6‐6 変化に対応する

O sqs¨ pu‖‐urLrbの実行例

なお、このスクリプトは実行しているかぎり、延々とキューを待ち続けます。必

要に応じて、スクリプトを終了させる処理も追加しましょう。

※

AWS上に作るのであれば、SQSと EC2を 組み合わせてスケーラビリテイのある

クローラーを作成できます。取得先の負荷の問題がないのであれば、数十台のサー

バを並べて並列で処理するといったことも簡単にできます。

命
6‐ 6

変化に対応する

クローラーは、本質的には後追いの技術です。対象 とするサイトの構造や

HTMLが変更された場合、後手に回った対応しかできません。そのため、クロー

ラーを運用をするには、いかに変化を検知し対処できるかをあらかじめ考えておく

必要があります。

検知方法としては、想定の結果が出なかった場合にクローラー自身に気づかせる

ことと、その結果を通知することが必要になります。また、検知後のクローラーの

修正と、修正後の再実行についても考えていきます。

6‐ 6‐1 検知方法

クロール対象の変化のパターンとして、大 きく2つに分けることができます。

・ 対象のページがなくなる

O HTMLの構造が変化する

419

Chapter6 , a-7-oXH

1つ 目の対象のページがなくなることは、対処がしやすいです。スキップしてお

けば、基本的には影響はありません。あとは、ベージがなくなったということに対

しての通知だけをしておけばよいでしょう。

問題となるのが、2つ 目のHTMLの構造が変化する場合です。これについては影

響が大きくなることがあるので、ケースごとに考えていきましょう。

:取得結果の検証

HTMLの構造が変化した場合、次の2つの影響が考えられます。

・値が取れなくなる

・ 間違つた値が取れる

値が取れなくなる問題については、すぐに気がつけるので問題は少ないです。し

かし、後者の間違った値が取れるというのは、あらかじめ想定しておかないと気が

つきにくい問題です。

その対処方法としては、スクレイピングした値の検証をするということが考えら

れます。例えば、数値を取るはずの場合に、それ以外の値が入っていれば異常とい

うことになります。いわゆるバリデーション(varidatiOn)で す。次のスクリプトは、

価格を取得した結果が数字以外の場合はエラーとして扱うという例です。

1数字以外だとエラーにする

* {fi*&

price = element.xpath("td[@class='price']").text
price = price.gsub(/H /,").gsub(l, /,")

■数字以外はエラー

if priCe・ iS_a'(Integer)

detail['priCe']= priCe

else

■ エラー処理

end

値の判定のパターンとしては、文字列や数値の判定だけではありません。必要に

応じて、取 りうる値の範囲検証であったり、電話番号やチェックサムが合っている

かなどのルールベースの検証などがあります。検証方法は、正規表現などを使って

自前で行う方法や、ライブラリを使う方法があ ります。ライブラリの場合、R』s

420

6‐6 変化に対応する

のActive Recordの ValidatiOnsが 有名です。それ以外にも単体でも使えるライブラ

リがいくつかあります。

Gemの リストコマンドにィを付けると、利用可能なGemの一覧が表示されます。

検索条件にva‖dateを 入れるとある程度絞 り込めます。目的の検証用のライブラリ

があるか、まずは探してみるとよいでしょう。

●検証用のライプラリを探す

E室全二上⊇二

取得結果の検証の結果、想定の値が取れなかった場合の対処はどうすればよいの

でしょうか? 選択肢として、スキップしてそのまま続ける方法と、処理自体を止
めてしまう方法があります。どちらが適切なのかは、クローラーの目的によって異

なります。

複数サイトを巡回するようなクローラーであれば、1つのサイトの問題で全体を

止めるのはよくありません。スキップするのが正解でしよう。逆に、特定サイトを

巡回している場合は、スキップしてもまた同じ問題に遭遇する可能性が高いです。

そのため、全体のクローリング処理を止めてしまう方がよいです。

問題が発生した場合の止め方も、いくつかあります。簡単な方法としては、

rescueを使って例外処理にしてしまうというものがあります。Rubyの制御構文の1

つであるrescueは、例外 (excepdon)が発生した時に処理を引き受けます。また、

r」seコマンドを使うことにより強制的に例外を発生させることも可能です。

421

通知

Chapter 6 クローラーの運用

l rescueで 処理を停止する

begin

#クローリング処理本体
■値判定

if priCe・ iS_aP(Integer)

detail['priCe']= priCe
else

十 例外を発生させる

raise #=> RuntimeError:

end

十 例外時は、異常終了させる

exit ■

end

例外処理などを使ってクローラーを止めたとしても、その事実を通知しないと気

がつかずにスルーされてしまいます。それを防ぐために、何らかの事態が起きた場

合には通知するのが望ましいでしょう。

通知についても、2種類の方法があります。プログラム自体に通知させる方法と、

プログラムを起動するジョブ管理のシステムに通知させる方法です。ジョブ管理の

システムとしては、Crondの ようなものや、もっと高度なHinemOsのような運用管

理の仕組みもあります。プログラム自身に通知させる方法としては、「6-3収集結

果をメールで自動送信する」(→ p.384)や「6-4-4 Amazon SNSで 通知する」(→p.407)

で紹介したようなメールや通知サービスを利用する方法があります。

6‐ 6‐2 修正 &再処理

クローラーの失敗を受け取った次は、原因を究明して対処する必要があります。

原因の究明と対処については、新規のクローラー作成と同じなので時間をかければ

対応できるでしょう。

問題は、再実行についてです。あらかじめ再実行のことを想定していないと、成

功しているところを含めて全部再実行しないといけない場合もあります。その場合、

非常に無駄が発生します。クローラーを作成する場合は、あらかじめ失敗したこと

を想定し、再実行方法を考えておく必要があります。

再実行方法としては、いくつかあります。まず、どこまで処理しているのかという情

報があれば、そこから再実行する方法があります。また、単純に再実行してもデータ

的に問題ないような作りにする方法もあります。それぞれのケースで考えていきます。

422

6‐6 変化に対応する

優皇量亘些聖
再実行方法の1つ 目としては、単純に再実行した場合でも、データの不整合が発

生せず補正する必要もない状態にすることです。そのためには、データベースなど

に格納する前にデータのチェックを行い、取得ずみのデータが存在する場合と存在

しない場合に分けて処理を記述します。

下記の例は、物件情報を収集し、取得ずみのデータの場合はデータ保存しないよ

うにしています。このような作りであれば、再実行した際にも同じデータが2件重

複して登録されることもありません。

1取得ずみのデータを確認する

#物件情報の登録
def Set_bukken_SpeC(SpeC)

id = get_bukken_id(SpeC['url'])

if id.ni■ 7

query = ''INSERT INTO housing(name,url,address,

aCCeSS,diStanCe,age,f■ OOr_number)

VALUES(1■ {spec['name']}','■ {spec['url']}',
'■{SpeC['addreSS']}',1#{SpeC['acCess'])',
'■{SpeC['diStanCe']}','#{spec[iagei]}',
1#{SPeC['f100r:]}1)"

puts query

OClient.query(query)

id = get_bukken_id(SpeC['url'])

end

return ュd

end

■物件IDの取得

def get_bukken_id(url)

id = nil

eclient.query〈

"SeleCt id frOm hOuSing Where url = '#(url}'11)・ eaCh dO lrOWI

id = rOW[!'id'']

end

return ■d

end

再実行を考える一番のポイントは、データのキーが何になるかです。それが日付

であったりURLや それ以外の場合 もあります。そこを見極めるのがクローラーを

構築・運用するうえでのコツになります。

423

】処理進行情報の管理

もう1つの方法としては、タスクの進行情報をスクリプト自身以外の何かで管理

させる方法です。例えば、処理予定のURLを 別の仕組みで管理することにより、

初回実行時か再実行時かは何も考えずに、与えられたURLを受け取って処理する

ような作りにします。

▼ キューを使った構成

キューシステム

ガ k
タスクの投入 ノ//

＼
＼ タスクの取得

/ ＼
結果の登録

制御ブログラム 処理プログラム データ
ベース

筆者がよく取る構成として、タスク投入部分 (例 えば取得対象のURLを登録)と

処理部分を完全に分離します。そして、そのタスクの中継をキューのシステムで行

います。AWSを利用する場合は、EC2と SQSを利用します (p.398、 416の例をご参

照 ください)。

この構成にしておけば、たとえサーバ自体が途中でダウンしても、何のエラー処

理 もせずに別のサーバに引き継げます。また、複数台のサーバで処理することも可

能になります。タスク情報を分離することは、システムを分離しそれぞれを疎結合

にすることです。そのことが再実行性を高め、運用を簡単にします。

6‐ 7

クローラーとそれに付随する技術

本書はクローラーに関するものです。そのため、データを収集する方法について

のみ解説してきました。しかし、クローラーを利用する背景には、データを収集し

てそれを活用することがあります。つまり、クローラーでデータを取得した後の工

程の方がより重要なのです。データの活用については、昨今ではビックデータとい

うキーワードで語られています。本書の終わりを迎えるにあたって、少しだけデー

タ解析の手法を紹介しておきましょう。

424

Chapler 6 2 a-z-aliEB

6‐7 クローラーとそれに付随する技術

6・ 7‐1 データを活用する方法

収集したデータを活用する方法として、データの可視化やデータマイニングなど

があります。

データの可視化は、数値などの人間にとって直感的にわかりづらいものを、グラ

フや図などに変換することにより視覚化してわかりやすくする技術です。大量に集

めたデータを1枚の図に表現することにより、「セレンディビティ」別の価値の発見

に繋がりやすくします。

データマイニングは、統計学などを駆使してデータの山のなかから新たな知識を

抽出することです。抽出には数式などを駆使して機械的に行う面もありますが、仮

説を元にデータを検証して発見するといったことも多いでしよう。それぞれの手法

について、概要を紹介します。

6‐ 7‐2 データの可視化
一口に可視化と言っても非常に範囲が広いです。例えば、エクセル上のデータを

グラフ化するのも可視化ですし、表にまとめるのも可視化の1つです。また日常の

業務をフローに落とし込むのも可視化の1つでしょう。ここでは、クローラーと可

視化という観点で考えてみます。

磯地図データとの組み合わせ

クローラーで集めたデータとの組み合わせの1つ に地図があります。地図データ

と、市町村ごとの売上データや地価、賃貸の相場などを組み合わせると、とたんに

数字が見やす くなります。しかし、地図データや地理情報のデータを自分で一から

用意するのは大変です。そこでオープンソースのツールを使うことをお勧めします。

麟型!:![::1lli::|:1:lllil:L」 :!![_」 12_12生二生
地図情報を扱うためのツールに、「PostGIS」 があります。PostgreSQLデータベー

スで地理空間情報を扱うための拡張で、GIS(地理情報システム)をオブジェクトと

して格納することができます。

r PoSIGIS

!E http://www.f inds.jpldocs,/p g isma n/2.O.O,/postg is.htm I

このPostGISを利用したアプリケーションを使うことにより、比較的簡単に地図

との組み合わせができます。現在のところ、Ruby製 の地図を使った可視化アプリ

ケーションでよいものは少ないです。Ruby以外に目を向けると、「GeoFuse」 など

があります。

425

Chapter 6) a-r-oiIIH

r GitHubOGeoFuse/(-)
lEl https:,/github.com/mbasa/geofuse

GeoFuseはTomcatと PostgreSQLを利用するJavaア プリです。ローカル環境にイ

ンストール可能ですが、Javaに馴染みがない人には少々手間がかかるかもしれませ

ん。いくつかデモサイトも提供されているので、まずはそちらを試してみるのがよ

いでしょう。

マp地図データを利用した可視化

6‐ 7‐ 3 データマイニング

クローリングで収集できるデータは、文章などのテキスト情報と株価や気温など

の数字情報があります。データマイエングは、どちらの情報も取り扱うことができ

ます。

】三二二2重
クローラーを使ったデータ分析として、製品や技術に対する盛衰を調査すると

いったことができます。調査対象に関するキーワードについて、Googleや Twitter

での日々の出現数、またそれに関連するメディアに対して記事タイトルや本文に含

まれるかなどを計測します。取得した値に対して、重みづけして点数化した推移を

見てると、意外なほど正確に流行り廃れが浮かび上がってきます。

これ以外にも、クラス分析や回帰分析、クラスタリングなどの統計処理など、

データマイニングにはさまざまな手法が存在します。データマイエングには、どの

ケースにも適用できるという万能の手法は存在しません。いろいろな手法の存在を

426

― …

6‐7 クローラーとそれに付随する技術

知っていれば、選択の幅は広がります。すべての方法を身につけるのは難しいです

が、代表的なアルゴリズムの存在を知っていれば、必要に応じて学習するというこ

ともできるでしょう。

儀旦埜三董些型
データマイニングのなかで、テキストを対象とするものを「テキストマイニング」

と言います。また、コンピュータに人間が日常的に使っている言語を処理させるこ

とを「自然言語処理」と言います。クローラーが収集したブログがTwitterな どの自

然言語を、統計的に処理することにより見えてくるものはたくさんあります。

自然言語処理の単純な使用例としては、「5-13流行をキャッチする」(→ p.314)で

紹介したようなキーワードごとの出現頻度といったものがあります。形態素解析器

などを組み合わせて、文章をキーワードに分割するといった方法を利用します。

もう少し高度な例としては、クラスタリングと組み合わせる手法があります。文

章のクラス分類は、技術や政治 。経済、暮らしなどカテゴリに対して、それぞれ元

となる学習データ(文章)を用意します。文章内の単語の出現頻度で、どの単語が

どのカテゴリに出現しやすいかのデータを作成します。そういったデータを蓄積す

ることにより、新しい文章が出た時にも瞬時に分類することが可能になります。

分類のアルゴリズムとしては、単純ベイズ分類器 (N」ve Bayes class面er)や サ

ポートベクターマシン(SuppOrt vectOr machine)な どがあります。クローラーと

の組み合わせ方としては、収集したデータを機械的に分類することにより人間の手

間を省くなどが考えられます。

427

:starage ― ・

[]…………………

¥……………………

くく・……………・―

10分クローラー ・

10分クローラー改

・14

150

186

374

199

17

153

16

16

150

33

45

OA

‐A・ … ……・ ……・ ・ ……・ …… … ・・ ・ ・・ 10

Access Key ・ ・ ・ ・ 243

Access token ・・ ・・・・ 274

A:Υlazon・ …・…・・・ ・・ ・― ・ 81,263,336

Amazon AMI・ ― ・ … …398

ArTlazon EC2 ・ ・ ・ ・396,398

A:Tlazon ECS ・・ …・……244,396

Amazon Product Advertising AP1 243,340

ArTlazon RDS ・・ ・ ………397

Amazon S3¨ ・・… … … ・……………・402

Amazon Simple Queue Service… ・ 416

ArTlazon SNS . ・…・・・・ ・ ・397,407

ArTlazon SQS・ …………・ ・… … 397,416

amazon―ecs… … ・ … 340

Amazonn Simple Email Service …・ 390

Amazonア ツシエイ ト…・ ・-124

Anerrlone― ・63,66,74,78,161,199,240

API… ・̈ ……… ・・・ ・・ ・― ・…・114,242

APIキー ・̈ ―・ … … 251,273,287

Application:D・ ・ ・ ・…・…………・………318

ASIN― ・・ ―・̈ ・…………………………96,263

Atom… … …… ・ ・ ………167,168

autopagerize― ruby ・ …・… …・……・ ・ 140

aws‐ sdk… …………………………… 392,405

AWSア カウン ト……… …… … … 391

33

403

218

rc
caller"

Capybara

221

Capybara Driver

Capybara― webkit

CAPの定理・

cd ・・

CentOS ・ ・・

cheat

Chocolatey・ ・

cinst ・… ・

C:oudBerry・ ・・

crndline‐ fu・ ・

CocProxy ………

cosmicrawler

craw: ・ ・ ・ ………

428

，
一
■
●
　
■

●

●

‥

●

●記号・数字

404

crawl-deray"

create detabase

Crond" "" """
crontacb""" "'
CUHL"""""'
curl """ " "'
CyberDuck " "'

'D
db.コ レクション名.count……

db.コ レクション名find… ……

debug……………………・ … ・…・

de!ay¨ ……・̈ ―̈̈ ・̈ ・ ・ ・

depth_lirnit・ ……………・ ・ ・

DEVELOPMENT KIT… ……・・

Disa‖ow― ―…………… ……

DocurTlent ―……・・・ ― ・・・

DSL… … … ……・・・ ― ̈・

'E
each"" """'
echo"" """'
Element""" "" '

EM-HTTP-Request

encode "" """ "
ETF....................

EventMachine "..

exit" "" "" """
extractcontent .. .

● F

Facebook― ・ ――・

Facebook Graph APl

find¨・ ―・ ・…………・…

Firebug・ ――― ・―・

15

374

176

411

158

321

410

212

261

first " " "
Flickr".'.."
Flickr API "
Flickraw.....

focus_crawl

format_text'

Formatter ...

FQL. .

FXr- F....

itG

geocoder

GeoFuse " "
Gmail "'
GMail for Ruby .. ".

GNUWget...

Google " '

Google Calender" '

Google Custom Search API

Google Maps API

Google Play '

Google Suggest API '

google_calendet """ ""'
BOOgle-Search

Googlel. r> F "'

● H

‐H ・ ・…

help ・―・・ …

‐―help… ……・……

Homebrew… …

hpricot… …………

HTMLの解析 …

HTMLの構造 …

HTMLパーサー

Index

129

285

287

289

・ 67

・ 40

・ 49

278

331

334

425

385

385

・・3

248

343

251

333

299

313

343

250

188

９

　

６

278

106,241

177

120

128

141

10,32

107,185

Index

HTTP Compression

● l

lAMア カウント

irb・ ……… ・

lTunesStore・

iオ プション ・

● J

JavaScript

.K
-k..
Kconv "
Key Pair

KNF

Koala' "

KVS. ...

OL

‐
|・

‐
11

‐15

:ibconv

!ibxrni

libxslt

links ・

list…

livedor

LVげP ・

OM

Machanize

man

market_bot

…237

391

・14

293

154

57,65,134

376

・ 9

・ 9

・78

78

78

・70

223

256

105

64

373

301

Marshal… …

Mataタ グ ー

match ・ ・

MatchData… .

MeCab …

MinGW‐ w64…

rnongo ・̈ ・

MongoDB

MySQL― ・ ・

mysql ・

rnysq12 ・ ・

MySQしに保存

'N
Namespace'

next " "'
Node "
Nodeset .'
Nokogiri "
-nv,' ' '

00

‐0… ……………

OAuth… ・ ・

on_pages_like

open― . ・

open‐ url

……・ 199

-¨・ 59

- ・ 150

………150

………187

………316

207,210

200,206

213,378

-・ 379

214,380

…… 218

430

164

176

176

157

399

157

289

200

６

５

３

４

０

３

３

７

３

３

２

１

116,120

Index

Poltergeist

portal

PostCis ・

ppメ ソッド

PStore ・

pメ ソッド…

● Q

qmake

OR

‐
r― ・ ・ ・ ― ― ― ・

―randam wait・ …

Reactorパ ターン ー

read_tirneout ―・

RegExp・ ・… ・ ・ ・

report ―…… ……

rescue・ ・ ・ ・ … ・

RESET APl ・ … ・

rexrnl ・ ・ ― ・ ・

robotex・ …… … ……・ ・…

robots.txt・ ・ ………・

RSS… …………・ ・̈………

RSSの解析 ・・ 一

RSSフ ィー ドの解析・

RSS配信サーバ ・ 一

Ruby¨ ・ ・ ・ … ・ ¨

Rubyinsta‖ er… …………

rvnl―・ ・…………… …

rvm vers:on… ……………

OS

S3Fox ・・―― ・

save_screenshot

・ ―・… 9,31

……… … ・… 9

……… … ・410

・ ・…・・・ ・236

・ ・…・ ・ ・150

・・・―̈ ・ ・129

・ ――・・ ・421

・ ――・・…272

・ ……・………192

・……………・62,144

31,59,110,144

43,98,163,259

・ ・・― ・・ 168

……・………………100

-・ ・… ・47,51

・̈……………・2,372

¨̈ ・………・̈ ・ 7̈6

-・ ・…・ ・・ 371

¨̈ ¨― ・……371

sc4n""" "" " '

Secret Access Key'

select"" " " '

Selenium

selenium-webdriver

send_request..

sEo.. ,...... ...

sES............,.....,...

show collections""

show dbs

Site"" " " "
Sitemaps

skip_links_like ''
skip-query-strings "

-spider" """ ""
splite3 "" " '

SQLite3

ssh....

ss1r.4v> 1....

ssL ,

step""'
storage . " '

Streaming API '

Subscription " '

● T

Tera Term… ………

TF―IDF法 .¨ ¨̈ ……

thread

Thread… ・・・

Timeォ ブジェク ト

Topic― ・ ・

Twitter… …… …

twitter… … ……

Twitterの トレンド

39

316

404

136

・̈・21,37

-・ ・・243

-― ・・128

・̈65,115

・116,120

…………340

…̈……304

……・ ・390

・・ ・211

・… ・211

-―・……48

…………258

¨̈ ¨̈ …67

…………241

…………8

…………205

………201

…………401

・370,400

-¨ 77,79

-― ・223

・・ …241

272,277

-………409

431

199

Index

● U

URiエ スケープ

URLの指定 ・

use… …… ……

user_agent…

∪ser‐agent…

UTF‐ 8 ・…・

tv
Vagrant " " "

vagrant halt " '

vagrant init"" '

vagrant reload " '

vagrantssh " "'
Vagrantfile

VirtualBox

OW

―
W

¨
… … … … …

…
 ・

WEBrick… …・ ………

websocket― driver

Wget・ ― ―・…

which ・・・・

Wikipedia ・…

VVikipediaσ)タ イ トフレ

Wireshark… …・ … …

within・ ・……… ・ … ・̈

woeld… ……… ……

OX

xmpf‖ ter

XPath ・

XQuartz

248

・ 86

211

105

110

・ 36

363

370

370

370

369

370

363

:Y
Yahaoo!:r-7 "'
Yahoo!APl

Yahoo!7 v 4 t>Z
YouTube

youtube-d|" " '

yum "" ""'
yum list............. .,

,Z

zip

0あ行

アカウント

アクセス回数制限l ・

アクセス間隔 ・ ・

アクセストークン

朝日新聞… … ……

アプリケーションID・

アプリケーション登録

安全に止める …… ・

いいね ・―・ … ・

一貫性 ・… …… … …

緯度経度 … ・・

インストール ……

ウェイト ・ …

エスケープ文字 …

エラー……………

エラーコード・・

エンコーァィング

オープンデータ・

オブジェクト指向

オプション…・・

オフライン閲覧・

21,38

432

189

103

Index

親クラス

0か行

解析機能………………

開発プロキシ・・ ……

拡張子の指定 …………

可視化 ― ・・ … …

カスタム検索エンジン

321

355

―・69,91

-― -224

-- 10

335,425

-― ・253

285,406

・―…396

296,302

・- 93

387,393

- 115

・- 201

- 327

-・ 349

・ 311

187,193

- 15

・ 321

-… …356

・……・37

………400

・ 152

・ 415

・ 397

417

・ ・…109

………113

… …327

………396

・……2,56

…・57,86

………112

クローリング間隔オプション

経済指標 ・・ ・ …・ ・ ・

形態素解析 ・ ・… ・ ―

ゲストOS・ ・ …… …… …

結果通知………………………

結合 … …… ……………

検索結果………………………

検知方法…………… …… ・

高速化………… … …

構文解析………………… …

構文解析器 …… … ・ ・

国債金利 … ・… ・ … ・

コマンド ……・・ …… …

コンテンツの取得…… ………

コマンドの使い方 ―

コンパイルツール ……… …

0さ行

サーバサイド ・

再帰ダウンロー ド

再起動…… ………

再帰レベル ・ ¨

最新記事の取得…

サイズ符号 … ・

最短マッチ ・ ・

最長マッチ………

サイト情報の取得・

サイトの階層構造

サブカテゴリlD…

参照― ―

差分の検知 ………

シェルスクリプト・

ジオコーディング・

時系列… ・ …

時系列データ ・…

――-241

………332

187,190

………367

-……385

……… 16

271,304

…… 419

…… 410

・……148

……… 61

………327

………372

…………57

………373

¨̈ ¨̈ 76

………362

‐̈ 9̈,30

・―-370

…… …9

・……・40

・……286

……… 19

………19

…… 141

-………83

・・・ 88

・・…180

………378

377,383

………333

・―-380

・・…325

画像・ … … ……

仮想サーバ … ……

カテゴリID…… …

カテゴリ名の取得・

株価情報……… …

画面テストツール・

可用性 … ………

為替情報・ … ・―

官公庁 ― ・――

キーワード収集…・

キーワード抽出・―

キーワード引者好 ―

企業情報・ ・――

記事の抜き出し……

記事リンクの取得・

起動… … … ……

キャプチャ………

キュー ー ・……

キューサービス・…

キューの登録 一・

381

行儀のよいクローラー

業務妨害… ……… …

金融指標… ……… …

クラウド… …… …

クローラー …… …

クローリング …………

クローリング間隔……

433

Index

次世代統計利用システム

自然言語 … …・ ・

自然言語処理 … … …

実行結果の表示

自動起動・

自動巡回

自動送信

重要語抽出

順位の取得 一 ・… …

巡回機能 ・

巡回戦略オプション ・

巡回対象の絞り込み・ ・

巡回パラメータ … …

順次処理 … …… ・ ・

旬なキーワード ー ・

証券コー ド…

常駐プログラム …

商品ID・

商品データ

情報の抜き出し

書籍名の取得 …… ……

処理進行情報 … …

処理対象の絞り込み ・

新刊情報 …… … …… …

新着記事 …

新着リス ト・

新聞の見出し

スキップ・

スクリーンショット

スクリプ トの呼び出し・

スクレイピング ・ ・

スケジューリン分 …

ステー トフル ……… …

ステー トレス … … …

ス トレージ… … … …

ストレージオプション

ストレージ機能 … …

ス トレージサービス・

正規表現…………… …

セール情報 …… ……

241

・35

236

268

9

0た行

対象ページの保存 ¨

タイムアウト ・

タイムライン …………

ダウンロード間隔・

タグの取得 一 ・・

タグの抽出… … …

多言語化 ‐ 一 ―・

多重度・ ・・―

他 ドメインのクロール

探索戦略オプション

単純再処理

遅延ロード

長期的なトレンド

著作権

通信データの圧縮.…

通知

通知サービス ・・

定期的 ̈ ・ ¨

停止

ディレクトリの移動…

ディレクトリの公開…

データストレージ

データの解析・

データの確認

データの更新 ……

データの抽出 ……

データの登録 ………

データの保存・ ・

ゴ

ー

ー

ー

ー

434

19,148

176

158

375,381

198

Index

データ分析 … … …

データベースサービス

データベースの作成・

データベース連携……

データマイニング……

テーブルの作成………

ァーモン………………

テス トサーバ …………

デバッグ………… .

動画………… … …

特殊変数 ・…

特徴語抽出 … ・

トップTweet ・ …

トレースー ーー ー

'な
行

名前空間 ……… ・ …

名前付きキャプチャ・

日経新聞 …………………

日本語処理 … …… …

日本時間 ― ・ ―

荷物の追跡 ・・

認証サイ ト ・・

認証付きプロキシサーバ

認証用のキー ・ … ……

●は行

パーサー………

破壊的結合・ ・

パスワー ド■ …

パターンマッチ

ハッシュタグ ・

ハッシュ値の作成

はてなキーワード .

はてなブックマーク

61

… 16

103

・150

268

216

311

・168

パリデーション……… ………

日付の取得 ……………… …

非同期処理 …………………

非同期ダウンロー ド` ・ …

非破壊的結合 ………… ・…

被リンク……………… … …

ビルド……… ………… … …

ファイルに保存… …… ……

ファイルを開く…………………

フィード………… ……………

不動産情報 ………………・…

不動産情報提供サイ ト…・・

ブラウザタイプのクローラー

ブラックリス ト………………

ブラックリス トチェック ・

プロキシサーバ……… … …

ブログ …̈ ……… … … …

ブロック・ ――……・ … …

分散処理・ ―…… … …・ …

分析……… …………… … …

分断耐性…………… … ………

分離…………… …

分離度…… ……… …

並行処理 ・・・ …

並列処理 ・・・・ … …・

ベージの表示 ・・ … ………

ベージ移動 ・・・・ ・ …

ベージ取得 … ………………

ベージ遷移 ……………… ……

ページの構造 ―…… ・ ・…

ページング機能…………… …

ベストセラー情報の取得 ・・

ベストセラーの取得 ・ ・

別 ドメイン ー… …… ・…

ヘルプ……………………… ……

…・ ・420

……・・37

410,415

…… 412

… … 16

……305

・76,146

………198

23,173

-¨ ・・99

・……346

-… …346

・66,114

-・ -104

-・ ・ 134

………102

・・・ 256

・・・ 15

235,415

-・ 148

-・ 201

・ 228

・ ・ 229

・ ・ 233

……・233

……… 27

………140

・ ・ 138

・… 127

…・…85

・・ 358

・ ・ 97

… …81

…………32

-・ ・374

435

150

164

lndex

保存… ・―

ホワイ トリスト

本文抽出 ・…

0ま行

マシンイメージ…………

マッチ・ …… …

丸ごとダウンロード

未取得データのみ取得…

メールー・・・ ― ・ ―

メソッド呼び出し

メタ文字 … ・…

文字クラス

文字コー ド …

文字コー ドの変換

文字列処理 ・ ・

文字列の取得 ・

0や行

ヤマト運輸

ユーザー ID

198

104

260

342

103

ユーザーエージェント

郵便番号 ………………

呼び出し元 ……………

読売新聞 ・ …

● ら行

ライブラリ・・

ランキング・ ―

ランキング種別…

ランキング情報・

リツース圧迫 ……

リテラル…………

リファクタリング

流行………………

利用規約…………

リンク抽出機能・

リンクの変換・

ルート証明書 ……

レインス・ ・…

ログイン…………

ロケーションパス

104

333

357

355

・・・――̈ …………・60

- ・…293,299

…・……・ ・296,302

・ ・・…・……… 266

…… … … 113

・………… ・・・・ 153

……………・……………・47

…… ……… ・ 314

………………… 112

…・……・ ・… 138

… ・ ・ ・10,31

・…… ・・ 77,79

・ ・ ・・346

124,369,379,400

¨̈ ・̈ ・̈ ……………182

436

おわりに

本書を執筆中に、筆者は東京に転勤することになりました。引越の際には、まず

は住むところを決める必要があります。住居を決めるためには、周辺の環境や、通

勤時間、家賃などいくつかのファクターがあります。

周辺の環境は、定性的な部分があるので実際に見てみないとわからない部分があ

ります。しかし、通勤時間や家賃については、データを収集すればおおよそのこと

がわかります。そこで、筆者は賃貸サイトから候補地の物件情報をすべて抽出し、

平方メートル辺りの家賃単価や築年数ごとの相場を調べました。その結果により、

相場にくらべてコストメリットの高い地域を選定のうえで、効率的に物件を探すこ

とができました。

卑近な例ですが、クローラーを使って実生活に活かす例の1つです。クローラー

を作成する際に、筆者はいつもPerlを生み出したラリー・ウォールによるプログラ

マの3大美徳を思い出します。

1.怠慢 (Laziness)

2.短気 (Impadence)

3.傲慢 (Hubris)

怠惰というのは、全体の労力を減らすために、役立つプログラムを作成する気質

を指します。また短気というのは、手作業で根気よく作業をするのではなく、プロ

グラムで一気に解決するような気質を指します。このあたりを考えると、クロー

ラーはまさにプログラマの美徳を体現するものです。

本書で紹介した手法も、クローラーのさわりの部分でしかありません。ぜひ、自

分なりの利用方法を生み出して、自分が楽になるために、ひいては自分の生活を豊

かにするためにクローラーを活用してください。そしてクローラーにとどまらず、

さらに可視化やデータマイニングなどの技術を習得し、技術者として次のステップ

に進まれることを望みます。

2014年 8月 佐々木拓郎

437

■本書サポー トベージ

本書内で紹介したサンプルスクリプトは、下記のURLよ リダウンロード可能です。

また、本書をお読みいただいたご感想、ご意見をお寄せください。

h“ :〃 isbn.sbcr.jp/80354/

○著者プロフィール

佐々木拓郎

本業は、Web系のシステムアーキテクト。企画から設計開発、運用まで幅広く担当。最近はクラウ
ド×自動化をテーマに、できるだけ楽することを考えている。休日はワインを飲みながら、趣味でア

プリ開発をしている。またAWSや Rubyを はじめとする、いろいろなコミュニティに出没している。

るびきち
Rubyと Emacsと w3mと Screenと ratpoisonと Linuxが ないと生きていけないガチガチCUI系フ

リーライター。テキストブラウザw3mで快適にWebを 駆け回るために多数の個人用クローラーを
開発。主な著書に『Ruby逆引きハンドブック (C&R研究所)』 『Emacsテ クニックバイブル (技術評
論社)』。メルマガ『Emacsの 鬼るびきちのココだけの話』毎週土曜日発行。

http://rubikitchocorn/

Rubyによるクローラー開発技法
巡回・解析機能の実装と21の運用例

2014年8月 28日 初版第1刷発行

著者……

発行者………………

発行所……………

佐 木々拓郎 るびきち
……………小川 淳

…………… SBク リエイテイブ株式会社

〒106-0032東京都港区六本木2-4-5

TEL 03-5549-1201(営 業)

http:〃 WWW.SbCrip/

印 刷

¨ ¨ 株式会社シナノ

クニメデイア株式会社組 版

装丁……………………………………一瀬錠二 (Art of NOISE)

落丁本、乱丁本は小社営業部にてお取替えいたします。

定価はカバーに記載されております。

Printed ln Japan ISBN9784 79738035‐ 4

r
■■
■ロ
■日

移，

つ

1:tubvによる
クローラー開発技法
巡回・解析機能の実装と21の運用例

・ 笙:|:|1薔 |_

メ1111111111ill1111:‐

‐| | ‐| ‐
. | ‐
1‐

:.:‐

‐‐‐‐‐‐‐‐

ヽ

農

980

||‖‖|||||‖ |||‖ ||||‖ |||‖ |
9784797380354

|‖||||‖ |||‖ ||‖ |‖ |||‖ |

Ⅲ
Ⅲ
Ⅲ
Ⅲ
Ⅲ
ご
う

定価

192005502980

iSBN978‐ 4‐ 7973‐8035-4

C0055¥2980E

+税

―
卜
」
Ｌ

「

l∠

コ

∠

「
 1

―L.

L

_“ロロ

１

１

１

Ｅ

ｌ

０

１

１

１

１

１

１

１

１

１

‥

ｉ

ｌ

ｌ

ｌ

ｉ

ｌ

ｌ

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

！

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

‐

