

ご利用の前に必ずお読みください

本書は紙書籍『WEB+DB PRESS plusシリーズ Googleを支える技術 ──
巨大システムの内側の世界』（ISBN978-4-7741-3432-1）を元に製作した
電子書籍です。紙書籍とはデザインやレイアウトが異なり、ご覧になる端末によ
り表示が異なる場合があります。表示設定は端末の標準設定を推奨します。
配信後に補足訂正等でデータの再配布を行う場合があります。更新方法は購
入先の電子書店のヘルプ等をご確認ください。

本書は情報提供のみを目的としており、掲載内容の運用結果について技
術評論社および著者は一切の責任を負いません。掲載内容は特に断りのない
限り執筆時点より以前の情報のため、変更される場合があります。特に、ソフト
ウェアはバージョンアップされる場合があり、本書での説明とは機能内容や画面
図などが異なってしまうこともありえます。

以上をあらかじめご承諾の上、ご利用をお願いします。
本文中に記載されている製品の名称は、すべて関係各組織、各社の商標または登録商標です。

本書記載の内容に基づく運用結果について、著者、株式会社技術評論社は
一切の責任を負いかねますので、あらかじめご了承ください。

本書に登場する会社名、製品名は一般に各社の登録商標または商標、商品
名です。会社名、製品名については、本文中では™、©、®マークなどは表示し
ておりません。

本書に寄せて

昔話になってしまいますが、私がコンピュータというものをはじめて手に入れた
頃、コンピュータのメモリは32KB（Kilobyte）しかなく、また、5.25インチのフロッ
ピーディスク（この単語も最近聞かなくなりましたね）両面単密度320KBは無
限に広いかのように感じていました。こんな大きな容量のデータを作り出すことな
んて不可能じゃないだろうか。当時、中学生だった私はそのように思ったもので
す。

しかし、それからずいぶん時間が経ち、今この原稿を書いているノートパソコン
は2GB（Gigabyte）のメモリと160GBハードディスクを積んでいます。この20年
強の間にメモリ容量で6万5千倍、ディスク容量では実に50万倍増加しているこ
とになります。テクノロジーの進歩は驚異的ですね。

とはいえ、これまでの変化ではコンピューティングの質的な変化はさほど大きな
ものではありませんでした。コンピュータの性能がどんなに良くなっても、プログラミ
ングレベルではさほど大きな違いは発生していません。LinuxをはじめとするUNIX
系OSの基本的設計は20年以上前のものが踏襲されていますし、Windowsに
おいてもプログラミングの基礎的な部分はそれほど大きく変化したとはいえないよ
うに思います。テクノロジーの進歩によって生じた変化はあくまでも量的なもので、
質的な変化までは起きていないといってもよいでしょう。

しかし、量的な変化がある一定の「しきい値」を超えると一気に質的な変化
が生じることがしばしばあります。私の個人的な印象ですが、今まさにそのような
量的な変化から質的な変化に転じる動きが始まりつつあるのではないかと感じ
ています。コンピューティングの未来は、今まで考えられなかったようなデータ量を、

今まで考えられなかったような数のコンピュータが、相互に協力しながら処理して
いくスケーラブルコンピューティングにあるような気がしてなりません。

そのような変化がまさに生じつつある場所（の一つ）が、本書が取り扱って
いるGoogleではないかと思います。

先日、TechTalkを行うためGoogle本社を訪問しました。発表後、大変活
発な質疑応答も受け、エキサイティングな経験でした。Python開発者であり、
現在はGoogleの社員であるGuido van Rossum氏とも親しく話すことができ
ました。TechTalkの内容は後日ビデオ公開される予定と聞き、Googleのオープ
ンな側面を感じましたが、その一方、写真撮影は警備スタッフから厳しく制限さ
れ、あまりオープンでない側面も目の当たりにしました。

Googleはオープンソースソフトウェアを大量に利用し、オープンソースソフトウェア
開発を支援し、また自らも数多くのオープンソースソフトウェアを公開しているのに
もかかわらず、その業務の中心的テクノロジーはいくつかの論文で断片的に概要
が示されるだけで、全容を把握するのは困難です。もっとも、断片的にでも概要
がわかるのはGoogleのオープンな側面だと思いますが。

本書は、そのような断片的な情報を丁寧にまとめて解説しています。本書を
読むことで、Googleがスケーラブルコンピューティングを実現するためにどのような
苦労と工夫を重ねてきたかが感じられます。

Googleの内側を知ったからといってなにがうれしいのか、と感じる人もいるか
もしれません。Googleはすでにそこにあるのだから、それをただ利用すればよい、
というのも一つの考え方でしょう。しかし、Googleのしてきたことは、コンピューティ
ングの未来の先取りです。さほど遠くない将来、Googleの中にいない私たちに
もその未来は届くでしょう。

未来に備える。本書の本当の目的はそこにあるような気がしてなりません。

2008年2月　Google訪問から帰国の機中にて
まつもと ゆきひろ

※ここで紹介したTechTalkの内容は、以下で公開されています。

URL http://www.youtube.com/watch?v=oEkJvvGEtB4

http://www.youtube.com/watch?v=oEkJvvGEtB4

はじめに

日頃のWeb検索のために、あるいはメールや地図を見るために、Googleは
毎日の生活の中でなくてはならないものとなってきました。Googleの便利な
Webサービスについてはすでにあちこちで紹介されていますが、それらが「どのよう
にして作られているか」という話に興味を持たれる人も多いのではないでしょう
か。

Googleの内側の世界はその多くが秘密に包まれており、私たち外の人間か
らはうかがい知ることのできないものです。それでもなお、何万ものコンピュータをど
う動かすかといった普遍的な技術については、Googleのエンジニアが発表してい
る論文などを通じて、その一部を知ることが可能です。

本書では、Googleから発表されている各種の技術をわかりやすく解説するこ
とで、Googleという巨大システムについての理解を広げることを目指していま
す。本書で紹介する技術はどれも私たちには直接触れることのできないものば
かりですが、「世界最大のコンピュータ」ともいわれるGoogleのしくみを学ぶこと
は、ただそれだけで興味深いものです。

本書は大きく分けて4つのパートから構成されます。第1章では、Web検索エ
ンジンの基本的なしくみについて、1998年頃の「初代Google」を参考にしなが
ら説明しています。第1章は、なるべく多くの人に理解してもらえるよう努めてお
り、以降の各章の基礎となる部分ですので、ひととおり目を通していただけたらと
思います。

第2章から第4章までは、現在のGoogleを支える大規模な分散システムにつ
いて解説します。これらの章では、Googleが「多数のコンピュータをどのように扱

うか」というシステム面について、そのソフトウェアのしくみや障害対策、性能といっ
た点から解説を試みています。

第5章ではうって変わって、「大規模システムのコスト」という側面からGoogle
の取り組みについて見ていきます。Googleほどのシステムでは何にどのようなコス
トが必要であり、それを削減するためにどういった工夫が行われているかを、おも
にハードウェアと電力の点から解説します。

最後に第6章では、Googleにおけるシステムの開発体制について取り上げま
す。有名な20％ルールをはじめとして、開発者の仕事の進め方や物事の考え
方を紹介し、「世界規模のWebシステムが作り出される原動力」について考え
ます。また、開発者が使っている開発ツールやテスト方法についても紹介します。

本書は、情報系の大学3年生程度の予備知識で読み進められることを目
指しており、あまりに専門的な内容については踏み込んでいません。それでもコン
ピュータについての数多くの専門用語が出てきますが、それこそ「ググって」みれば
何でもわかる時代です。本書は誰よりも、これから情報処理の世界に入ろうと
する若い学生に読んでもらえたらと思っています。

いま、情報処理の分野は一つの変革を迎えようとしています。Googleをはじ
めとして、MicrosoftやYahoo!といった大手IT企業が次々と巨大なデータセンタ
ーを建設しており、膨大な量のデータ処理がそこに集まりつつあります。そこで用
いられるであろうと考えられるのが、本書で紹介するような大規模な分散情報
処理のための技術です。

私たちが日常的に利用するコンピュータとはまったく異なるスケールで動作する
Googleの巨大システム。そのしくみを一つ一つ見ていったとき、筆者ははじめて
OSやデータベースについて学んだときのようなわくわくする気持ちを覚えました。本
書を通して、皆さんもそうした気持ちを感じていただけたなら幸いです。

2008年2月
西田　圭介

Googleを支える技術 巨大システムの内側の世界……目次

本書に寄せて

はじめに

第1章 Googleの誕生
1.1
よりよい検索結果を得るために

使う人にとっての便利を第一に考える
Note　Web Search Engine論文

Tip　検索エンジンの種類

十分なハードウェアを用意する

Webページの順位付けに力を注ぐ
PageRank

アンカーテキスト

Tip　アンカーテキストの効果

単語（単語情報）による検索

ランキング関数
Columun　PageRankの現在

1.2
検索エンジンのしくみ

下準備があればこその高性能

検索サーバは速度が命

検索バックエンドは事前の努力

インデックスは検索の柱

検索に適したインデックス構造

データ構造をインデックスする

1.3
クローリング ── 世界中のWebページを収集する

最も壊れやすいシステム
Columun　気に入ってもらえました？

Webページを集めるには時間が掛かる

多数のダウンロードを同時に進める

終わることのないクローリング

1.4
インデックス生成 ── 検索用データベースを作り上げる

Webページの構造解析

単語情報のインデックス
単語をwordIDに変換する ──Lexicon

単語インデックスの生成 ──Barrels

転置インデックスの生成

リンク情報のインデックス

ランキング情報のインデックス

検索順位は検索するまでわからない

1.5
検索サーバ ── 求める情報を即座に見つける

検索結果に順位を付ける

複雑な検索も高速実行

ランキングの高速化は難しい ─ 3段階のランキング

1.6
まとめ

第2章 Googleの大規模化
2.1
ネットを調べつくす巨大システム

安価な大量のPCを利用する

一つのシステムとして結び付ける

数を増やせばいいというものでもない
ハードウェアは故障する

分散処理は難しい

CPUとHDDを無駄なく活用する

検索エンジンを改良しよう
検索サーバの大規模化

検索バックエンドの大規模化

インデックスの大規模化

2.2
世界に広がる検索クラスタ

Web検索を全世界に提供する
Note　Google Cluster論文

近くのデータセンターに接続する
Tip　データセンターが燃える

多数のサーバで負荷分散する

一定数のページごとにインデックスを分割
インデックス分割方法の変更のメリット

多数のインデックスを一度に検索

新しいWeb検索の手順
Tip　その他の高速化手法

2.3
まとめ

第3章 Googleの分散ストレージ
3.1
Google File System──分散ファイルシステム

巨大なディスク空間を実現する
Note　GFS論文

膨大なデータの通り道となる

データ転送に特化された基本設計

ソフトウェアによる障害対策

大容量のファイルの読み書き

Tip　用途を絞り込むことで単純化する

ファイルをキューとして用いる

ファイル操作のためのインタフェース

ファイルは自動的に複製される

読み込みは最寄りのサーバから

書き込みは複数のサーバへ
さまざまなエラーへの対応

Columun　最寄りのサーバとは

同時書き込みで不整合が起こる

レコード追加によるアトミックな書き込み
書き込みに失敗した場合

Tip　レコード追加の問題を回避する

スナップショットはコピーオンライトで高速化

負荷が偏らないようにバランスが保たれる ─マスタの役割

あらゆる障害への対策を行う
チャンクの障害対策

チャンクサーバの障害対策

マスタの障害対策

読み書きともにスケールする

リカバリ時間

データ管理の基盤として働く

3.2
Bigtable ──分散ストレージシステム

巨大なデータベースを構築する
Note　Bigtable論文

構造化されたデータを格納する
テーブルの構造

Tip　Bigtableにおけるデータ型

多次元マップ

テーブルの例

読み書きはアトミックに実行される
特定行に対する操作

Tip　行単位のロック

特定行の読み込み

テーブルを分割して管理する
Tip　検索キーのデータ量を削減する

多数のサーバでテーブルを分散処理

GFSとメモリを使ってデータ管理 ── タブレットサーバ
タブレットの割り当て

タブレットの構造

タブレットの読み書き

タブレットのコンパクション

テーブルの大きさに応じた負荷分散
タブレットの分割と結合

タブレットへのアクセス

Tip　Bigtableの最大容量

さまざまな工夫によって性能を向上
ローカリティグループ

データの圧縮

読み込みのキャッシュ

コミットログの一括処理

使い方次第で性能は大きく変わる
読み込み性能

書き込み性能

大規模なデータ管理に利用されるBigtable

3.3
Chubby ── 分散ロックサービス

分散ストレージはここから始まる

5つのコピーが作られる
Note　Chubby論文、Paxos Made Live論文

ファイルシステムとして利用する

ファイルへのアクセス

Tip　Chubbyのデータベース

localセルとglobalセル

ファイルの読み書き

Tip　ご利用は計画的に

ロックサービスとして利用する
ファイルのロック

外部リソースのロック

シーケンサ

フェイルオーバー

イベント通知を活用する
イベント

キャッシュ

Columun　DNSを置き換える

マスタは投票で決められる
さまざまな障害

コンセンサスアルゴリズム

マスタリース ──マスタの交代

3.4
まとめ

第4章 Googleの分散データ処理

4.1
MapReduce ── 分散処理のための基盤技術

大量のデータを分散して加工する
Note　MapReduce論文

キーと値でデータ処理を表現する
Columun　MapReduceの由来

転置インデックスを作ってみる
入力データ

Mapによる処理

シャッフル

Reduceによる処理

プログラミング言語風に

MapReduceでできること
カウンタ

分散grep

分散ソート

逆リンクリスト

もっと複雑な処理

多数のワーカーによる共同作業 ─ MapReduceの全体像
Tip　標準の分割関数

3つのステップで処理が進む

Map処理

シャッフル

Reduce処理

Tip　Reduceとイテレータ

高速化には工夫が必要
システム構成

分散パラメータ

ローカリティ

Work Queue

Tip　Work Queueの設計

バックアップタスク

実行過程には波がある ── MapReduceの過程

壊れたときにはやり直せばいい ─ MapReduceにおける故障対策
マスタの障害対策

ワーカーの障害対策

MapやReduceの障害対策

驚きの読み込み性能 ── MapReduceの性能面
分散grepの性能

分散ソートの性能

Columun　BigtableとMapReduce

4.2
Sawzall ── 手軽に分散処理するための専用言語

分散処理をもっと手軽に
Note　Sawzall論文

スクリプト言語のようなプログラム
プログラム例

Tip　Sawzallの言語仕様

実行例 ──sawコマンド、dumpコマンド

副作用をもたらすことのない言語仕様 ── Sawzallの文法
データ型

プロトコルバッファ

式と文

フィルタの中に閉じた世界

Tip　プロトコルバッファによるデータ構造の統一

標準で用意されるアグリゲータ
その他のアグリゲータ

より実際的なプログラム例
例1　平均値と分散を求める

例2　PageRankの高いWebページを見つける

Tip　最もPageRankの高いページ

例3　地域ごとのアクセス数を計測する

例4　実行結果の連結

エラーは無視することも可能

内部的にキーが生成されている ─ Sawzallはどのように実現されているのか

スムーズにスケールする実行性能
Columun　BigtableとSawzall

4.3
まとめ

Columun　大規模分散システムを試してみる

第5章 Googleの運用コスト
5.1
何にいくら必要なのか

少なからぬハードウェア費用
Tip　通信コストはいかに

安価なハードウェアによるコスト削減

電気代はハードウェアほどには高くない

間接的に上乗せされる電力の設備コスト
Tip　消費電力が多過ぎて

増加傾向にある電力コスト

5.2
CPUは何に電気を使うのか

電力と性能の関係とは

CMOS回路の消費電力

消費電力を抑えるためにできること

スイッチの頻度を低くする

静電容量を小さくする

電圧とクロックを下げる

クロック単位の処理効率を上げる
パイプライン

IPCとクロック周波数の関係

スーパースカラー

最大性能から電力性能比の時代へ

マルチコアによる性能向上

5.3
PCの消費電力を削減する

高クロックのCPUでは電力効率が悪い
Tip　メモリの利用効率

マルチスレッドを生かして電力効率を上げる

電源の効率を向上させる
Tip　すべてのPCに効率的な電源を

5.4
データセンターの電力配備

ピーク電力はコストに直結する
Note　Power Provisioning論文

決まった電力で多くのマシンを動かしたい

電力配分を階層的に設計する

電力枠を使い切るのは難しい

マシンが増えれば電力も平準化される
電力消費の傾向

パワーキャッピング

平均消費電力

省電力技術によりコスト効率が高まる
Columun　消費電力の計測方法

工夫次第で設備効率は二倍にもなる

5.5
ハードディスクはいつ壊れるか

10万台のハードディスクを調査する
Note　Disk Failure論文

故障の前兆となる要因は何か
Tip　不適切なデータの除去

長く使うと壊れやすくなるわけではない

よく使うと壊れやすくなるとも限らない

温度が高いほど壊れやすいということもない

いくつかのSMART値は故障率に大きく影響する
スキャンエラー

リアロケーション数

オフラインリアロケーション

リアロケーション前のセクタ数

故障率に影響しないSMART値も多い
パワーサイクル

振動

SMART値だけではいつ故障するかはわからない
Columun　統計データの処理方法

ハードディスクと正しく向き合う

5.6
全米に広がる巨大データセンター

オレゴン州ダレス

ノースカロライナ州レノア

サウスカロライナ州バークレー郡

オクラホマ州プライア

アイオワ州カウンシルブラフス

次世代Googleのスケール感

データセンターに処理を集約させる ── Bigdaddy
クロールキャッシングプロキシ

URLの正規化

二種類のデータセンター

5.7
まとめ

Columun　クリーンエネルギーへの取り組み

第6章 Googleの開発体制
6.1
自主性が重視されたソフトウェア開発

選ばれたプロジェクトだけが生き残る
Note　❶Software Engineer in Google、❷Googleにおける開発組織マネジメント、

❸［スペシャルインタビュー］Googleの開発現場

少人数からなるプロジェクトチーム
Tip　インターンも仕事の戦力

コードレビューにより品質を高める

早い段階から性能について考えられる

新しいWebサービスが始まるまで
アイデアを出す

基本設計を文書にする

デモを作って意見を集める

Google Labs、そしてBetaへ

情報は徹底して共有する
メーリングリストやブログ

ドキュメントやデータベース

TechTalk

TGIF

レジュメとスニペット

Columun　さまざまなTechTalk

四半期報

6.2
既存ソフトウェアも独自にカスタマイズ

オペレーティングシステム

プログラミング言語

データベース

SCM ── ソースコード構成管理

レビューシステム

6.3
テストは可能な限り自動化する

プロジェクト横断的なチーム

自動テストを想定した設計を行う

基盤システムをテストする ── Bigtableの例
Columun　Testing on the Toilet

6.4
まとめ

索引

1998年、米国Stanford Universityの若き二人の学生により、新しいWeb
検索エンジン「Google」が作られました。当時の一般的な検索エンジンでは、
「いかに多くのWebページを検索できるか」「いかに高速に検索結果を返すか」と
いったことに力が注がれていたのに対して、Googleでは「いかに役立つ情報を見
つけられるか」を重視したことにより、たちまち人気を集めるようになります。

Googleはどのようにして「役立つ情報」を見つけられるようになったのでしょう
か？ どのページがほかのページよりも役立つということをどうやって判断すればよい
ものでしょう？ そもそも検索エンジンとは、どのような技術とシステムによって作ら
れているものなのでしょうか？

本章では、Web検索エンジンがいかにして実現されているのかを、初期の
Googleの設計と実装を通して説明します。

http://web.archive.org/web/19981202230410/http://www.google.com
/
http://www.research.ibm.com/haifa/Workshops/searchandcollaboratio
n2004/papers/haifa.pdf

http://web.archive.org/web/19981202230410/http://www.google.com/
http://www.research.ibm.com/haifa/Workshops/searchandcollaboration2004/papers/haifa.pdf

1.1
よりよい検索結果を得るために

Googleが当初から力を入れたのは「役に立つ検索結果を上位に表示する」とい
う、その一点でした。それを実現するため、Googleはそれまでにはなかった新しい
技術の開発に取り組み始めます。

使う人にとっての便利を第一に考える
Googleがはじめて公に姿を現したのは1998年のことです。Google創業者で

あるSergey Brin氏とLawrence Page氏による論文「The Anatomy of a
Large-Scale Hypertextual Web Search Engine」（下記Noteを参照）によ
り、新しいWeb検索エンジンの設計とその成果が世に伝えられました。

Note
本章は次の論文について説明しています（以下、Web Search Engine論文）。

・「The Anatomy of a Large-Scale Hypertextual Web Search Engine」（Sergey

Brin／Lawrence Page著、Computer Networks、Vol.30（1998）、p.107-117）
URL http://infolab.stanford.edu/~backrub/google.html

Googleが開発された第一の目的は、それまでのWeb検索エンジンよりももっ
と「役に立つ検索結果を得る」ことでした。当時の検索エンジンは、どれだけ早く
多くのWebページを見つけるかということには力を注いでいましたが、検索結果を
表示する順番については満足から程遠いものでした。たとえば「Google」と検索
したとき、Googleのホームページが最初に表示されるのは今でこそ当たり前のこと
ですが、当時の検索エンジンではほとんど役に立たないページばかりが上位を占
めることも珍しくありませんでした。

これを改善するため、Googleは検索結果のランキング（Ranking）に力を
注ぎます。つまり、どのWebページが役に立つかを機械的に点数で表し、高い点
数のページを検索結果の上位に持ってくるようさまざまな方法を開発したわけで
す。

優れたランキングを実現するには多くの計算が必要であり、そして多くのコンピ
ュータが必要とされます。Googleは徹底して利用者にとって役に立つ検索結果
を得られるよう改善を重ね、それに伴いシステムの規模も拡大を続けてきました。
検索結果とともに表示される広告の売り上げを収益源に2004年には株式上
場を果たし、その勢いは現在もとどまるところを知りません。

http://infolab.stanford.edu/~backrub/google.html

http://www.google.com/corporate/history.html
Googleの公開論文を読み解いていくと、Googleがいかにして今のような世

界規模の検索エンジンを作り上げてきたかという様子を垣間見ることができま
す。本章ではまず前述の論文を参考に、1998年当時の「初代Google」につい
て見ていくことにします。それは現在のGoogleから比べるとごく小さなシステムに
過ぎませんが、そこには検索エンジンの基本となる考え方が凝縮されています。

http://www.google.com/corporate/history.html

Tip
検索エンジンの種類

検索エンジンには大きく分けて二つの種類があります。一つは「ディレクトリ型」と呼ばれ、

利用者はあらかじめ用意された分類の中から目的のページを探します。もう一つは「ロボット

型」と呼ばれ、コンピュータが自動的に集めたWebページの中から、利用者は好きな言葉を

入れて検索します。

かつてはディレクトリ型の検索エンジンも広く使われていましたが、最近は自由に言葉を選

べるロボット型の検索エンジンを使うことが一般的になりました。本書でも「検索エンジン」と

いえば、ロボット型の検索エンジンのことを意味しています。

十分なハードウェアを用意する
まず最初に、当時のGoogleがどのような問題に立ち向かったのか明らかにして

おきましょう。
初代Googleがターゲットとしたのは、世界中の2400万のWebページから検索

を行うことです。これはどれくらいのデータかというと、画像などを除いたテキストデー
タだけで147GB（Gigabyte）。当時の一般的なPCのハードディスク容量が4～
8GB程度だったことを考えると、これはかなりの大きさです。

Googleの目的は、この大量のテキストデータの中から目的の情報を瞬時に見
つけ出し、なおかつそれを利用者にとって役に立つであろう順番に並べ替えるため
の、よりよい方法を実現することです。

このためにGoogleは、数台のPCと何十ものハードディスクを用意しています
（注1）。最も初期のものでさえ、Web検索エンジンというものは1台のコンピュー
タではまかないきれない大量のデータを扱う必要のあるシステムなのです。

初代Googleが目指したのは、単に早く検索できればいいというものではありま
せん。利用者にとって、より「役に立つ」Webページを見つけなければなりません。
ここで重要となるのが、検索結果をどのようにランキングするかというしくみです。

Webページの順位付けに力を注ぐ
多種多様なWebページのどれが役に立つのかを判定し、Webページに順位を

付けることを「ランキング」といいます。新しいランキングの方法を実現することこそ
初代Googleが掲げた最大のテーマであり、Googleが広く人気を集めるようにな
った大きな要因の一つです。

初代Googleでは、ランキングのために「PageRank」「アンカーテキスト」「単語」
という3つの情報を用います（注2）。

PageRank

まずは有名なPageRank（ページランク）です。PageRankとは、「役に立つ
ページはあちこちからリンクされているはずだ」という考え方に基づいて計算された
Webページの点数で、評価の高いページほど高い点数になるよう工夫されていま
す。

PageRankの概念をごく簡単に説明すると次のようになります（図1.2）。

・各Webページは自分の点数を持つ
・他のページにリンクすると、自分の点数を分配する
・自分の点数は、他のページからもらった点数の合計で決まる

これが何を意味するかというと、基本的にはリンクされればされるほど点数は
高くなります。ただし、点数を上げる目的でやみくもにリンクを増やしても駄目で、
ちゃんとそれ相応に評価されたページからのリンクでなければ重視しませんよ、とい
うことです。

世の中には、自分で自分のページに大量のリンクを張るなどして、不当に評価
を上げようとするWebページがあり、そうした行為やそうしたWebページを「検索エ
ンジンスパム」（Search Engine Spam）と呼びます。PageRankの導入によ
り、人気のあるページには自然と高い点数が付く一方で、検索エンジンスパムの
効果はずっと小さくなり、これによって高い信頼性でWebページを評価できるよう
になりました。

PageRankは、利用者が検索をする前に決定される、Webページ固有の点
数です。そのためPageRankの高いWebページは、どのような検索が行われた場

合にでも高いランキングを得やすくなります。Googleではこうして、Webページ自
体の価値を検索結果の順位に反映させているわけです。

アンカーテキスト

Webページにリンクするとき、そのリンクに付けられた文字列のことをアンカーテ
キスト（Anchor Text）といいます。たとえば「グーグルは便利だね」といったリン
クがあるとき、"グーグル"という文字列がアンカーテキストになります。Googleで
は、このアンカーテキストもランキングに利用しています。なぜなら、"グーグル"という
名前であちこちからリンクされているならば、それは"グーグル"に関するWebページ
と考えて間違いないであろうからです。

数多くのページから"グーグル"という名前でリンクされているという事実は、自分
で「ここはグーグルのページです！」と名乗っていることよりも信頼性の高い情報で
あると考えられます。そのため、Googleではアンカーテキストを重視したランキング
を行います。

PageRankと違って、アンカーテキストはWebページを文字列と関連付けます。
PageRankは何を検索しようとも変わりませんが、アンカーテキストは利用者がそ
れを検索しようとしたときにだけ意味を持ちます。

＊　＊　＊
ランキングとはこのように、Webページの普遍的な価値と、検索された言葉との

関連性といった、複合的な評価を組み合わせて決定されるものなのです。

https://www.google.co.jp/

Tip
アンカーテキストの効果

興味深い事実として、Googleで"いいえ"と検索するとYahoo! JAPANのホームページが上

位に現れます（2008年2月時点）。これこそまさにアンカーテキストの影響ではないかと考え

られます。

単語（単語情報）による検索

最後に、GoogleはWebページに含まれるすべての単語を記録し、それをランキ
ングに反映させています。これはとくに複数の単語で検索を行うときに大きな意
味を持ちます。

たとえばGoogleで"東京　大学"と検索したときと"大学　東京"と検索した
ときとでは結果が異なります。GoogleはWebページ内での単語の並びをすべて
記録しており、前者では"東京大学"と書かれたページが、後者では"大学東
京"と書かれたページが優先されます。単純に"東京"と"大学"の両方を含むだけ
のページは相対的に優先度が下がります。

また、それぞれの単語自体の大きさや属性もランキングに影響します。たとえ
ば"グーグル"という言葉がタイトルに含まれるならば、それがページの片隅に小さく
書いてあるよりも重要であると判断されます。

こうした情報は、アンカーテキストなどと比べると検索結果への影響は限られま
すが、それでもほかの情報からではランキングが定まらないような場合には、こうし
た単語レベルの情報が順位に影響してきます。

ランキング関数

初代Googleも、このようにさまざまな情報を組み合わせてランキングを行ってい
たことがわかります。

こうした数々の情報を組み合わせて、最終的に検索結果に順位を付けるもの
をランキング関数（Ranking Function）といいます。たとえば、検索語がアンカ
ーテキストと一致すれば10点、タイトルとの一致ならば5点、PageRankが高けれ
ば点数を3倍、といった具合に計算式を作り、最終的に点数の高い順に結果が
表示されるというわけです。

Googleはランキング関数の詳細については公表していません。ランキング関数
こそが「利用者にとって役立つページ」を判定する基準であり、それには最終的な
答えはないため、終わることのない改良が続けられていくものだと考えられます。

そのため、本書ではランキング関数の詳細については触れません。いずれにせ
よ、Googleはこうしたランキング関数を持っているという前提で、それがシステム
全体の中でどのように用いられるかについて説明します。

＊　＊　＊
それでは、こうしたランキングを実現する検索エンジンのしくみを見ていくことにし

ましょう。

Columun
PageRankの現在

1998年当時は斬新なアイデアだったPageRankですが、時とともにその位置づけも変化

しています。さまざまなWebページが複雑に結び付いた現在のWebの世界では、単純にど

のページがどこにリンクしている、ということだけをもってWebページの価値を定めることは困

難です。

PageRankは、Webページの大まかな人気を計る指標として現在でも使われています

が、その計算方法は初期の頃とは変わってきていると考えられます。Googleは何度か

PageRankのアルゴリズムを変更しており、より実態に即した値となるよう今でも改良が続

けられています。

また、検索結果のランキングに与える影響という意味では、PageRankはすでに数ある

指標のほんの一つでしかなく、その重要性は初期の頃と比べてずっと小さくなっているとい

われています。そのため、本書ではPageRankについての詳しい説明は行いません。

優れたランキング技術の開発は、変化との戦いでもあります。Webの世界は技術の発

展とともに次々と変わっていきますし、不当にランキングを上げようとする検索エンジンスパム

も一向になくなりません。こうした変化が続く限り、検索エンジンの開発が終わることもあり

ません。

注1

URL http://en.wikipedia.org/wiki/Google_platform#Original_hardware

（本文に戻る）

注2

http://en.wikipedia.org/wiki/Google_platform#Original_hardware

これらはあくまで1998年当時のGoogleにおけるランキング方法です。現在のGoogleは

100以上の方法によってランキングを行っているといわれており、現在も絶え間なく改良が

続けられています。

（本文に戻る）

1.2
検索エンジンのしくみ

Googleはランキングを重視した検索エンジンですが、それでも1回の検索に何十
秒も掛かるようでは使いものになりません。検索エンジンでは、利用者からの検
索リクエストになるべく早く答えられるように数々の工夫が行われます。

下準備があればこその高性能
検索エンジン（Search Engine）は大きく分けて3つの要素からなります（図

1.3）。まず、利用者からのリクエストに応えて検索を行うコンピュータがあり、本
書ではこれを「検索サーバ」と呼びます。次に、インターネットから情報を集めて整
理するコンピュータがあり、本書ではこれを「検索バックエンド」と呼ぶことにします。
最後に、それら二つの間で利用されるデータベースとなる「インデックス」
（Index）があります。

検索サーバの役割は、利用者の求める情報を「なるべく早く見つけ出す」こと
です。仮に、数秒でも掛かってしまうと利用者は「遅い」と感じます。検索サーバ
は、できるかぎり高速に動作するよう設計されるのが基本です。

一方、検索バックエンドの役割は、こちらはある程度の時間が掛かってもかま
わないので、とにかく「優れたインデックスを作り上げる」ことにあります。検索バッ
クエンドは検索やランキングのために必要な情報を分析し、検索サーバにとって利
用しやすいよう加工してインデックスとして保存します。

ここで作られるインデックスのイメージとしては、利用者からこれからリクエストさ
れるであろうあらゆる検索の結果が、できるだけ事前に計算されて入っているもの
だと考えられます。利用者が、たとえば「学校」という言葉を検索するとき、
Googleのデータベースにはすでに「学校」と検索されたときの結果が入っていると
いうわけです（図1.4）。

後から検索するときのことを考えて、「前もって必要な準備を整えておく」という
のがここでのポイントです。検索実行時の性能を最大化するためのデータ構造を
第一に考え、検索バックエンドはそれを作り出すために最大限の努力をする。そ
うすることで、検索サーバは一瞬で結果を返すことができるのです。

検索サーバは速度が命
「検索サーバ」について、もう少し具体的に見てみましょう。検索サーバの基本

的な仕事は、通常のWebサーバと大きく変わりません。おもな役割は次のとおり
です（図1.5）。

・利用者との通信を管理する
・利用者からのリクエストを解析し、行うべき処理を判断する

・インデックスから必要な情報を探し出す
・結果を見やすくレイアウトし、利用者に送り出す

インデックスの扱いが少し複雑になりますが、それほど入り組んだ構造をしてい
るわけでもありません。なぜなら、検索エンジンの難しい部分はインデックスを作り
上げるところにあり、検索サーバの仕事はそれを取り出して利用者に渡すことだか
らです。

むしろ検索サーバに求められるのは、そのスピードです。初代Googleではまだ1
台の検索サーバしか立ち上げてなかったようですが、これは必要に応じて複数のマ
シンに分散させ、その応答性を高めます。

検索バックエンドは事前の努力

「検索バックエンド」の役割は、検索サーバと比べるとずっと複雑です（図
1.6）。まず、検索バックエンドは大きく分けて「クローリング」と「インデックス生成」
の2つに分けられます。

クローリング（Crawling）とは、インターネット上のあらゆるWebページを集め
てくる処理です。これには多くの時間が必要となるため、「クローラ」（Crawler）
と呼ばれる複数のマシンが分担して作業を進めます。クローラが集めたWebペー
ジは一時的に「リポジトリ」（Repository）と呼ばれる領域に保管されます。
インデックス生成（Index Creation）は、リポジトリからWebページを取り出

して、検索用のインデックスを作り上げる処理です。これはさらに、Webページの
「構造解析」「単語処理」「リンク処理」「ランキング」といったさまざまな過程に分
けられます。

それぞれの過程については後ほど詳しく説明しますが、検索エンジンとはこうし
てインデックスを作り上げるまでの流れが大きな部分を占めており、そうした事前
の努力によって高速な検索が実現されているということをイメージしていただけるの
ではないかと思います。

インデックスは検索の柱
最後に、検索サーバと検索バックエンドとを結び付ける存在が「インデックス」で

す（図1.7）。

インデックスの役割は、与えられたデータを安全に格納し、そして求められたデー
タを高速に見つけ出すことです。インデックスはちょうど検索エンジンにおけるデータ
ベースのような存在です。インデックスには目的に応じてさまざまな情報が書き込
まれており、それを効率的に取り出せるようになっています。とりわけWebページに

含まれる単語の情報は検索のときに頻繁に利用されるので、細かく分割されて
アクセスが集中し過ぎないようになっています。

インデックスは検索エンジンの中核ともいえる重要な部分なので、少し詳しく
見ておきましょう。

一般的に、ソフトウェアの設計においてデータ構造をどうするかというのは、同時
にデータの処理方法（アルゴリズム）を決めることでもあり、ひいてはシステム全
体の性能を左右する重要な要素の一つです。インデックスは検索エンジンにおけ
る「データ構造」であり、これを理解することは検索エンジンを理解する上で避けて
は通れません。

インデックスとは、データベースの基本となる機能の一つで、その本質的な役割
は「与えられた検索キーに対応する値を返すこと」です。たとえば、図1.8のような
表（テーブル）を考えましょう。

ここでキーを1つ与えられたとき、同じ行にある値をどれだけ早く取り出せるか。
それがインデックスの性能を決めることになり、そのために最大限の工夫を行うこ
とになります。一見簡単そうに思えることですが、Googleのインデックスには億単
位のキーが格納されることを考えると、それほど単純なことではありません。

データベースというと、SQLを使って検索をするリレーショナルデータベース
（Relational Database、以下RDB）（注3）をイメージする人も多いと思いま
すが、検索エンジンのように高い性能が求められる環境では、もっと原始的で、し
かし限界まで効率化されたシステムが必要となります。

検索に適したインデックス構造
インデックスの構造を具体的に見ていきましょう。ここでは例として、図1.9❶の

情報について考えてみます。単純に考えるならば、図1.9❷のようなインデックスが
あればいいかもしれません。

しかし、ここには問題があります。このようにデータをずらずらと並べてしまうと、イ
ンデックスがあまりにも大きくなってしまうのです。

インデックスは、できるかぎり小さくしなければいけません。より正確にいうと、
「検索のために必要なディスクアクセスは最小限」に抑えなければなりません。

すべてのデータがメモリに収まらないような大規模なシステムでは、頻繁にハード
ディスクへのアクセスが発生します。メモリ内でのデータ処理と比べると、ディスクの

読み書きは遙かに長い時間がかかってしまうため、それはできるかぎり少なくしな
ければなりません。

ではどうすれば効率がよくなるのでしょう。図1.10のインデックスを考えてみてくだ
さい。

先ほどは文字列であったところが、すべて数値に置き換えられています。検索
するときには次のようなステップを踏みます。

・「学校」をキーにして「101」という値を得る
・「101」をキーにして「11」と「21」という値を得る
・「11」をキーにして「さくら学校」を得る
・「21」をキーにして「http://sakura/」を得る

ずいぶんと複雑になりました。これで本当に効率がよくなるのでしょうか？ ここ
で注目したいのは、最後にある❸のインデックスです。

コンピュータ上では、数値は文字列よりもずっと小さなメモリで表現できます。
図1.10のようなデータが数億個あることを考えると、この変換によるデータ量の削
減は多大なものになります。

意味的には同じ内容を表すとしても、前者のように文字列をそのまま使ったも
のに比べて、後者のように数値だけで表現したインデックスのほうが、検索のとき
に必要となるデータ量を小さくできます。これによって検索時のディスクアクセスは
最小限に抑えられ、数値に変換する手間を差し引いても、結果としてより高速
な検索が可能となるのです。

加えて、コンピュータは長い文字列を扱うよりも「単純な数値」を扱うほうがさま
ざまな処理を効率的に行えます。そのため、最初にすべての文字列を数値に変
換してしまい、複雑なことはすべて数値として処理するほうが結果的に高速にな
るというわけです。

このように元の情報を加工してコンピュータが検索しやすいデータを作ることを
「インデックスを生成する」といいます。また、結果として作られたデータ構造を本
書ではひとまとめに「インデックス」と呼んでいます（注4）。

インデックスに関する研究の歴史は長く、すでに効率的な処理方法が確立し
ています。既存のRDBでも、内部で自動的にインデックスを作ることで処理を効
率化しています。Googleでは、インデックスの生成をデータベースに任せるのでは
なく、最初から最後まで直接インデックスを操作することで最大限に処理を効率
化しているというわけです。

データ構造をインデックスする
インデックスについて、もう少し見ておきましょう。ここでは図1.11の情報を考えま

す。

先ほどの図1.9❶よりも複雑になりましたが、ありがちなデータです。本書ではこ
れを図1.12のようなインデックスにより表現します。

「1」という1つのキーに対応して、いくつもの値が連なるようになりました。「1」を
キーとして、値1を縦に見ると「11」と「12」が得られます。「1」をキーとして、さらに
「12」を探して横に見ると「22」が得られます。

さらに一般化して、図1.13のような多段階構造を表現することも可能です。

実際、図1.13のようなデータ構造が初代Googleのインデックスの内部表現に
なります。最初に何かをキーとして、そこからさらに複雑なデータ構造を値として結
び付けます。これにより、特定のWebページに関連したさまざまな情報や、あるい
は特定の単語を含むWebページのリスト、といった複雑な情報を表現していくわ
けです。

同じ情報をRDBで表現すると、キーを重複させて何度もデータを繰り返すことに
なり、無駄が多くなってしまいます。Googleでは特定のキーに結びつける情報に
も構造を持たせることにより、インデックスによる効率的な検索とコンパクトなデー
タ表現とを両立しているのです。

簡単ながら、インデックスとはどのようなものなのかイメージできたでしょうか？ そ
れでは、初代Googleが具体的にどのようなインデックスを用いてWeb検索を実

現していたのか、順を追って見ていくことにしましょう。まずはクローラのしくみからス
タートし、実際に検索が行えるようになるまでの過程をたどっていきます。

注3

商用製品であればOracleやIBM DB2、オープンソースであればMySQLやPostgreSQLな

どが有名です。

（本文に戻る）

注4

一言にインデックスといっても、実際にはハッシュテーブルや二分探索木などさまざまなデータ

構造があります。本書ではこららの区別は重要ではありませんので、検索のために工夫さ

れたデータ構造をまとめて「インデックス」と呼びます。

（本文に戻る）

1.3
クローリング ── 世界中のWebページを収集する

検索エンジンの仕事はクローリングから始まります。クローリングとは、世界中の
WebサーバからあらゆるWebページを集めてくる作業です。言葉にすると簡単で
すが、実現するには数々の問題について考える必要があります。

最も壊れやすいシステム
クローラは検索エンジンの中でも、最もトラブルに遭いやすいシステムです。なん

といっても、大小様々な無数のWebサーバと通信し、多種多様なWebページが
相手です。そこでは何が起こっても不思議ではありません。

目的のWebサーバにつながらないことは日常茶飯事です。サーバが一時的に
ダウンしているのか、あるいはそもそも存在しないサーバなのか。もしも一時的につ
ながらないだけなら、後からもう一度やり直すよう手配しなければなりません。

クローラは大量のWebページを集めますが、特定のWebサイトにアクセスを集
中させてもいけません。短時間に大量のWebページを要求し過ぎると、そのWeb
サイトからアクセス禁止にされてしまうかもしれません。特定のサイトに負荷を集中
させることなく幅広くWebページを集められるよう、どのサイトをどういう順に回るか
スケジュールを立てて、計画的に動かなければなりません。

すべてのWebサーバが「お行儀の良い」サーバとも限りません。もしも悪意のある
サーバが大量の無意味なデータを返してきたり、あるいはいつまで経ってもデータを
送ってこないような場合には、通信を打ち切って次に進まなければいけません。

Web Search Engine論文（1.1のNoteを参照）の4.3「Crawling the
Web」では次のような例も紹介されています。クローラがとあるゲームサイトにアクセ
スしたところ、クローラ自身がそのゲームを始めてしまい、次から次へと新しいページ
を受け取り続けたそうです。この問題はすぐに修正されましたが、気づいたときには
すでに数千万ページを受信してしまった後だったとか。

このように、クローラは想像もしなかった原因で誤動作したり、望まない振る舞
いをすることがしばしばあり、その都度修正を続けなければなりません。

Columun
気に入ってもらえました？

同じWeb Search Engine論文の4.3「Crawling the Web」には、ほかにもおもしろいエ

ピソードが紹介されています。今でこそクローラの存在は広く知られるようになりましたが、

Googleがクローラを動かし始めた頃にはまだクロールされる側も準備ができていなかったよう

です。

あるときは、Googleからの大量のアクセスに気づいたWebサイトの管理者から「やあ、う

ちのサイトをよく見に来てくれてるね。気に入ってもらえたかな？」というメールが届いたり、あ

るいは逆にGoogleには来てほしくないと思っている人が、Webページに「このページを検索

エンジンに登録しないでください」と書いてあったり。

さすがのクローラも、それを読んで「ああ、このページを登録するのはやめよう」とわかるほど

に賢くはなかったようです。

Webページを集めるには時間が掛かる
クローラの性能面についても考えておきましょう。先にも触れたとおり、初代

Googleでは全部で2400万のWebページを登録していました。それだけのページ
をクロールするには、どのようなシステムが必要になるでしょうか。

仮に毎秒平均1ページをダウンロードし続けたとすると、1日あたり86,400ペー
ジ。2400万ページをダウンロードするには278日掛かるという計算になります。これ
はちょっと長過ぎるので、実用レベルとするにはこの数十倍のペースが必要となり
そうです。

ここで注意すべき点として、クローラの仕事は一度Webページをダウンロードすれ
ば終わるというものではありません。Webページは更新されることがあるからです。
一度ダウンロードしたページでも定期的に見直す必要があり、クローラの仕事は永
遠に終わることがありません。したがって高速なダウンロードは必須です。

仮に毎秒平均40ページをダウンロードしたとすると、すべてのWebページを見て
回るのに7日となり、Webページが更新されても1週間以内には反映できそうで
す。毎秒平均40ページというと多くはなさそうに思えますが、平均して40ページと
いうことは、瞬間的にはもっと多くのページをダウンロードし続けねばなりません。
Webサイトによってはつながらなくてタイムアウトしたり、回線が低速で多くの時間
が掛かることもしばしばあるからです。

そうした点を考えると、同時並行で常に数百のダウンロードを実行していなけれ
ば、毎秒平均40ページというペースを達成できないことは容易に想像できます。

多数のダウンロードを同時に進める
以上の前提を踏まえて、初代Googleのクローラのしくみを見ていきましょう

（図1.14）。高速なダウンロードを実現するため、クローラは複数のマシンに分散
され、それぞれがさらに多数のダウンロードを一斉に行います。各クローラがダウン
ロードすべきWebページのアドレスは、クローラ全体を指揮するURLサーバ（URL
Server）から指令が出ます。

各クローラは指示に従って次々とWebページをダウンロードし、リポジトリと呼ば
れる領域にそれを一時的に保管します。このときすべてのWebページには
「docID」という固有の数値が付けられて区別されます。リポジトリには表1.2のよ
うな情報が格納されます。

個々のクローラの仕事は完全に独立しているので、クローラは増やせば増やす
ほど処理能力を上げられます。初代Googleでは、ピーク時には4台のクローラが
それぞれ300程度のダウンロードを並行して行い、結果として毎秒平均100程度
のWebページを取得できたようです。2400万ページであれば3日で集められる計
算です。

もっとも、クローラをどんなに早くしたところで、これに続くインデックス生成が追
い付かなければ検索できるようにはなりません。インデックス生成は時間の掛かる
処理なので、通常はそれに合わせて、クローラも毎秒平均50程度のペースで運
用していたようです。

終わることのないクローリング
個々のクローラの動作は図1.15のようになります。クローラはURLサーバからの要

求に従って多数の通信を一斉に開始し、その状態を監視し始めます。それぞれ
の通信は「アドレス解決中」「接続要求中」「データ受信中」「リポジトリに保存
中」といった状態を持ち、処理が進むにつれて次々と状態を変えていきます。

ここで意外と時間の掛かるのがDNS（Domain Name System）によるアド
レス解決です（注5）。クローラは次々と多数のWebサーバにアクセスするため、
DNSへの問い合わせも大量に発生します。これを少しでも高速化するため、クロ
ーラは内部で自前のDNSキャッシュを管理しており、外部への問い合わせを最小
限にとどめるよう工夫されています。

ダウンロードの完了したWebページから順にリポジトリに格納され、クローラは次
のアドレスをURLサーバからもらって処理を続けます。あとはひたすらこれを繰り返
すのみです。

リポジトリにデータが書き込まれると、これ以降は別のマシンによってインデック
ス生成が始まります。

注5

たとえば、"www.google.com"といったWebサーバの名前から、そのIPアドレスを調べる処

理です。

（本文に戻る）

1.4
インデックス生成 ── 検索用データベースを作り上げる

リポジトリにWebページが集められると、そこからインデックス生成が始まります。イ
ンデックス生成の仕事は多岐にわたり、複数のマシンに分散して処理が進められ
ますが、ここでは生成されるインデックスに焦点を当てて話を進めます。

Webページの構造解析
インデックス生成は、リポジトリからWebページを取り出すところから始まりま

す。最初の仕事は「構造解析」です（図1.16）。まず、Webページに含まれる
HTMLタグを解析してタイトルなどの情報を抜き出し、同時に不要な情報は捨て
て検索のためのテキストだけを取り出します。

ここでもクローラの場合と同じように、好ましいWebページばかりが得られるとは
限りません。なかには嫌がらせとしか思えないでたらめなページもありますが、どん
なページを与えられても仕事をこなす屈強な解析エンジンがあるものとして話を進
めましょう。

構造解析の段階では、「DocIndex」と「URLlist」という2つのインデックスが生
成されます（図1.17）。

DocIndexはWebページの基本情報が書き込まれるインデックスで、「docID」
をキーとして、そのWebページの情報が書き込まれます。たとえばWebページのタイ
トルは構造解析の段階でわかるので、ここで書き込まれます。

URLlistはそれとは逆に、WebページのURLをキーとしてdocIDを得るためのイン
デックスです。これにより、URLがわかればそのdocIDを後から調べられるようにな
ります。

単語情報のインデックス
Webページのテキストが得られたら、次は単語情報のインデックスです。これが

あるからこそ検索が可能になるという重要なポイントですので、少し詳しく説明し
ます。

単語をwordIDに変換する ─ Lexicon

まず最初の仕事は、テキストを単語に分解し、それを「wordID」という数値に
変換することです（図1.18）。

初代Googleでは、このとき用いられるインデックスを「
レ キ シ コ ン

Lexicon」（用語集、と
いった意味）と呼んでいます。Lexiconは、あらかじめよく使われる数千万の単
語を登録したものが用意されていますが、それでも見つからない単語は新しく登
録されていきます。

単語インデックスの生成 ─ Barrels

続いて行われるのは、Webページ内の各単語の情報をインデックスに登録する
作業です。

初代Googleでは、Webページ内のすべての単語について、表1.3の情報をイン
デックスに登録します。

図1.18の例で表すと、登録されるデータは図1.19のような感じになります。

全世界のWebページの、そのすべての単語の位置まで記録するわけですから、
これは膨大なデータ量になることは容易に想像できます。実際、この情報は1つの

ハードディスクに収まりきらないほど大きいので、wordIDに応じて分割した複数の
インデックスが作られます（図1.20）。

初代Googleは、ここで作られるインデックスのことを「Barrels」（樽のように大
きな容器、という意味）と呼んでいます。Barrelsには膨大な数の単語情報が
登録されるので、少しでもコンパクトになるよう工夫されます。具体的には、
docIDをキーとして、さらにwordIDごとにデータをまとめた図1.21❶のような形式で
格納されます。　先ほどの図1.18の例であれば図1.21❷のようになります。

わかりやすく表形式にしていますが、実際にはメモリ上では次のように一連の
数値の並びとして表されます。

1 101 1 3 .. 4 2 .. 102 2 2 .. 201 3 2 .. 202 5 2 .. 301 0 3 ..

ここからさらにデータ量を減らすために一部の情報を符号化し、そして全体を圧
縮したものがようやくディスクに書き込まれます。少しでもデータの読み込みを減ら
すために限界までコンパクトに情報を詰め込んでいるということがわかります。

このようにBarrelsを作ることで、特定のdocIDをキーとすれば、そのWebページ
に含まれるすべての単語情報が得られるようになりました。

転置インデックスの生成

しかし、待ってください。何かを検索するときに必要なのは、Webページに含ま
れる単語情報ではなくて、「単語が含まれるWebページの情報」です。先ほどの
Barrelsは、そのままでは検索の役には立ちません。ここでBarrelsをちょっと加工し
て、図1.22のようなインデックスを考えます。

先ほど図1.21のBarrelsと比較すると、wordIDとdocIDの位置が逆転してい
ることに気付かれるかと思います。このようなインデックスは、最初に作ったBarrels
を後から分析してデータを並べ替えれば機械的に生成できます。このように
wordIDをキーにしてdocIDを得られるようにしたものを転置インデックス
（Inverted Index）といいます。

ここにきて、ついにwordIDをキーとすることで、その単語を含むWebページのリス
トが得られるようになりました。検索エンジンの実現が近付いてきました。

しかし、転置インデックスを作るだけではまだ十分ではありません。転置インデッ
クスからはWebページのリストは得られますが、それをどう並べ換えるか、つまりラ
ンキングの情報を得るには不十分だからです。次はランキングの準備を始めましょ
う。

リンク情報のインデックス

初代Googleでは、PageRankやアンカーテキストによってランキングを行うことは
すでに説明しました。ここで必要となるのが「リンク情報のインデックス」です。

ここで登場するのは、構造解析のときに作ったインデックスであるURLlistと、そ
して新しく登場するインデックス「Links」です（図1.23）。

たとえば、図1.24のようなリンクについて考えます。図1.24のページをインデック
スしたとき、URLlistは図1.25❶のようになっています。

今、docID＝3のWebページに含まれるリンク情報がインデックスされようとして
います。そこには"http://sakura/"へのリンクが含まれていますが、URLlistを見る
とそのdocIDは1であることがわかります。

そこで、Linksに図1.25❷の情報が書き加えられます。これはdocID＝3から
docID＝1へのリンクが存在することを示しています。

リンク先のdocIDがわからないこともあります。たとえば"http://kaede/"の情
報はまだURLlistにありませんので、それは未解決のまま保留にされます。同時
に、未解決のリンク情報はURLサーバに送られ、新しくクローリングが始まります。
いずれクローリングが完了し、リンク先のdocIDが決まれば、保留にしていたLinks
も更新されます。

アンカーテキストも特別にインデックスされます。図1.25の例では、"さくら学
校"というアンカーテキストはdocID＝3のWebページに含まれますが、リンク先であ
るdocID＝1の単語情報としても登録されます。それによって、アンカーテキストで
ある"さくら学校"が検索されたときには、リンク先であるdocID＝1もまた検索結
果として得られるようにするのです。

ランキング情報のインデックス

単語情報とリンク情報とをインデックスしたことにより、いよいよランキングを行
えるようになります。検索を少しでも高速にするため、ランキングのための情報もで
きるかぎりあらかじめ計算されてインデックスされます。

初代Googleでは、ランキングは3つの情報により決定されることを説明しまし
た。つまり「PageRank」「アンカーテキスト」「単語」の3つです。

このうち単語情報は、Barrelsに書き込まれた内容そのものです。すなわち、単
語の位置や大きさがランキングのために用いられます。また、アンカーテキストも同
じく特別な単語情報として書き込まれることを先ほど説明しました。まだ得られて
いない情報はPageRankだけとなります。

PageRankの具体的な計算方法については省略しますが、これはリンク情報
だけから計算できます。つまり、どのページがどのページにリンクしているという情報
を網羅的に調べることで点数が決まるしくみです。

Webページのリンク情報は常に変化し続けています。したがって、PageRankも
「いつ計算される」というものではなくて、その時点で最新のリンク情報を元に何
度も何度も繰り返し計算し続けられるものです。詳しい計算方法について興味
のある方は、参考文献を参照してみてください（注6）。

検索順位は検索するまでわからない
これで初代Googleのインデックス生成は終了です。逆にいうと、これ以降は

検索サーバの仕事ということになります。
まだ説明していない最後のしくみは、「ランキング関数」です。最終的にWebペ

ージが表示される順序はランキング関数によって決まるので、実際のところWebペ
ージのランキングは検索が行われるまでわからないということになります。

考え方によっては、あらかじめすべての検索語についてランキング関数を適用し
た結果をインデックスしておき、検索サーバの負担を減らすことも可能です。実
際、Google以前の検索エンジンでは、最初からある程度ランキングされた結果
をインデックスに登録することで、検索速度を向上させていました。

しかし、複数の単語による検索などを考えると、前もってすべての検索パターン
についてランキングを行っておくことは事実上不可能です。ランキングを事前に行う
ことで検索サーバの負担を減らそうとする方針では、実現可能なランキング方法
はごく限られたものとなり、つまりランキングの品質を下げることになります。

Googleが取り組んだのは、何よりもランキングの品質を上げるために、事前に
ランキングするという路線は捨てて、「検索サーバにその都度ランキングを行わせ
る」という方法です。これは検索サーバに大きな負担を強いる行為ですが、
Googleはその負荷を受け入れることで「高度なランキングを実現する」道を選び
ました。この点が、それまでの効率重視の検索エンジンとは一線を画すところで
す。

＊　＊　＊
検索の準備は整いました。それではこれまでに作成したインデックスを使って、

実際に検索が行われる過程を見ていきましょう。

注6

PageRankについては、以下のWebページの解説も参考になります。

「Googleの秘密 - PageRank徹底解説」（馬場 肇）

URL http://www.kusastro.kyoto-u.ac.jp/~baba/wais/pagerank.html

（本文に戻る）

http://www.kusastro.kyoto-u.ac.jp/~baba/wais/pagerank.html

1.5
検索サーバ ── 求める情報を即座に見つける

インデックスが完成すれば、いよいよ検索サービスを提供できるようになります。検
索サーバは可能なかぎり早く結果を返すことが求められます。ここでの一番の問
題は、いかに効率的にランキングを行うかという点になります。

検索結果に順位を付ける
まずは基本的な検索の流れを見ておきましょう（図1.26）。手始めに単語1

つで検索した場合に何が起こるかを追っていきます。

利用者が検索を行うと、最初に検索サーバに検索リクエストが渡されます
（❶）。検索サーバは送られてきた文字列から単語を取り出し、Lexiconを用い
てwordIDに変換します（❷）。このLexiconはインデックス生成のときに使われ
たものと同じものです。

続いて、wordIDをキーとしてBarrelsの転置インデックスを調べることで、その単
語を含むdocIDのリストを得ることができます（❸）。この時点ではdocIDは登
録順に並んでおり、ランキングされていません。

ここで検索サーバは得られたdocIDのそれぞれについてランキングを計算し、点
数の高い順にdocIDを並べ替えます（❹）。そのうち上位いくつかが利用者に
返すべき検索結果となります。最後に検索結果となるdocIDのそれぞれについ
て、WebページのタイトルやURLなどをDocIndexから取り出し（❺）、見やすい
形に整えて送り出せば検索サーバの仕事は終わりです（❻）。

勘のいい方は気付かれるかもしれませんが、ここで最も時間の掛かるのはラン
キングの計算です。得られたdocIDのすべてについて計算しなければ並べ替えを
行うこともできず、したがって大量のWebページが見つかった場合には負荷が大き
くなり過ぎると考えられます。

ランキングを効率化するための方法については後ほど考えるとして、もう少し複
雑な検索についても見ておきましょう。

複雑な検索も高速実行
Webを検索するとき、しばしば複数の単語を入力します。文字どおり「東京　

学校」のように複数の単語で検索することもあれば、「東京都千代田区」と一続
きで入力しても、実際には検索エンジンによって「東京　都　千代田　区」のよ
うに分割して検索されることもあります。

複数の単語がある場合には、検索サーバは図1.27のような動作をします。ま
ず、それぞれの単語がwordIDに変換され、その一つ一つに対して検索が行われ
ます。それによってdocIDのリストが複数得られるので、すべてのリストに含まれる
共通のdocIDを見つけ出すことになります。

共通のdocIDを見つけるのは比較的簡単です。docIDのリストはあらかじめ小
さい順に並んでいるので、リストの先頭から順に比較して、すべてのリストに含ま
れるdocIDだけを抜き出していきます。これをリストの最後まで繰り返せば、すべて
のwordIDを含んだdocIDのリストが得られます。後は単語1つの場合と同じよう
に、この新しいリストに対してランキングを行えばよいわけです。

同じようなやり方で、もっと複雑な検索も実現できます。たとえば、Googleで
検索語を「"東京　学校"」のように「"」（二重引用符）で囲むと、単語の並び
を指定した検索を行えます（フレーズ検索）。これはdocIDを絞り込む過程で、
wordIDの位置情報も見て、それらが隣り合うかどうかを確認することで実現でき
ます。

あるいは「東京 -学校」のように「-」（マイナス記号）で検索結果を絞り込む
場合も、同じようにそれぞれのwordIDについて検索してから、一致するdocIDを

取り除くという方法によって実現できます。
このように転置インデックスを組み合わせるだけで、日常的に用いられるさまざ

まな検索方法が可能となります。

ランキングの高速化は難しい ─ 3段階のランキング
最後に、ランキングの具体的な手順を明確にしておきます。
初代Googleでは、ランキングは実際には3段階の方法によって行われていま

す。いずれも最初にwordIDを検索してdocIDを得るという点では同じですが、得
られたリストの長さによって動作が変わります。

まず1つめは、通常のBarrelsから重要な情報（Webページのタイトルやアンカ
ーテキスト）だけを抜き出して、あらかじめ小さな転置インデックスを作っておくとい
う方法です。最初にこの小さな転置インデックスから検索し、それでも十分な数
の検索結果が得られるなら、それだけでランキングを終えてしまおうという戦略で
す。小さな転置インデックスからは少数のdocIDしか得られませんから、これによっ
てランキングの負荷が増大するのを抑えられます。

小さな転置インデックスでは十分な検索結果が得られない場合、通常の転
置インデックスからすべてのdocIDを探します。ここで検索結果があまりにも多いと
きには、「ランキングしない」というのが初代Googleの選択です。この場合、完全
なランキングはあきらめて、適度に点数の高いWebページが選ばれます。

最後に、見つかったdocIDが一定数（初代Googleでは4万）以下の場合
に限って、得られたdocIDのすべてについてランキングが行われます。初代Google
が目指した優れたランキングが行われるのはこの場合に限られます。

つまり、せっかくのランキング関数も、それが適用されるのは一定の場合に限ら
れてしまっていました。実際のところ、初代Googleはまだまだ発展途上で、ランキ

ングの方法には改善の余地が残されていたようです。
ランキングのしくみを根本的に改善するもっと優れた手順については、第2章で

説明します。

1.6
まとめ

ずいぶん駆け足で見てきましたが、クローリングから始まった検索エンジンの探
訪もこれで終わりです。最後に、ここまでに紹介した初代Googleの全体像をもう
一度、振り返っておきましょう（図1.28）。

最初に、URLサーバがクローラに対してWebページをダウンロードするよう要求し
ます（❶）。複数のクローラが並行稼動して次々とダウンロードを行い、docIDを
割り当ててリポジトリに格納します（❷）。リポジトリからWebページを取り出す
と、インデックス生成が始まります。まずは構造解析によってWebページ内のテキ

ストが抜き出されるのと同時に、タイトルなどがDocIndexに、URLがURLlistにそ
れぞれ書き込まれます（❸）。

続いて単語処理により、すべての単語がLexiconに従ってwordIDに変換さ
れ、単語の位置や大きさと一緒にBarrelsに書き込まれます（❹）。Barrelsに
は大量の情報が書き込まれるため、負荷分散のためにwordIDによって分割され
ます。Barrelsは最初、docIDごとに作成されますが、後ほどwordIDごとに並べ
替えた転置インデックスに変換されます。

Webページ内にリンクがあると、URLlistを元にdocIDを調べ、リンク関係を
Linksに記録します（❺）。docIDが見つからなければ、URLサーバによって新し
くクローリングが始まります（❻）。また、リンクのアンカーテキストはリンク先の単
語情報としてBarrelsに記録されます。

最後にランキングのための事前処理が行われます。ここではLinksを元にして
PageRankが計算されます（❼）。事前計算できる内容には限りがあるので、
最終的なランキング処理は検索サーバによって行われます。

検索サーバは利用者からのリクエストを受け取ると、Lexiconに従って検索語
をwordIDに変換し（❽）、続いてBarrelsの転置インデックスからdocIDのリス
トを取り出し、それぞれについてランキング関数を適用して順位を決定します
（❾）。ランキングで上位になったdocIDについてDocIndexからWebページの情
報を取り出し（❿）、見やすく整えて利用者に返します。

＊　＊　＊
いかがでしょうか。比較的単純な初代Googleでも、このようにさまざまなプロセ

スを経て検索が行われるのだということを、大まかにでもつかんでいただけたらと思
います。

本章は検索エンジンの大まかなしくみについて説明することが目的であったた
め、技術的な詳細についてはずいぶん省略してしまいました。たとえば、次のよう
な問題についてはほとんど触れていません。

・ハードディスクに収まらないほどの大容量データをどのように保管するのか
・インデックスの読み書きは具体的にどのようにして行うのか
・インデックス生成を高速化するための分散処理はどのようにするのか
・検索実行時のランキング処理を高速化するにはどうすればいいのか

これらは一つ一つが大きな問題であるのと同時に、初代Googleと現在の
Googleとを隔てる決定的な違いでもあります。Googleは誕生してからの数年
で、こうした基本となるシステムの部分で大きな進化を遂げました。この進化があ
ったからこそ、現在のような世界最大の検索エンジンを構築するまでになったので
す。それでは次章からいよいよ、検索エンジンを大規模に展開する現在の
Googleの技術について見ていくことにしましょう。

現在のGoogleが初期と比べて圧倒的に異なるのは、そのスケールです。初代
Googleは数台のPCで動いていましたが、増え続けるWebページと利用者からの
検索リクエストに応えるため、現在のGoogleでは数十万台のコンピュータが稼動
しているともいわれています。

コンピュータシステムは、ただ台数を増やせば速くなるというものでもありません。
増やしたコンピュータをうまく活用するようにソフトウェアを設計しなければ、その性
能を生かすこともできません。また、台数が増えれば増えるほど故障などのトラブ
ルも多くなってしまうため、その対策も考えなければなりません。

世界中からの検索リクエストに答えるため、今のGoogleはどのようなシステム
を構築しているのでしょうか？ 本章では、Googleがどのように大規模システムを
構築しており、そして新しくなった検索システムがいかにして高速な検索を実現し
ているかを見ていくことにします。

http://www.computerhistory.org/
http://en.wikipedia.org/wiki/Google_platform

http://www.computerhistory.org/
http://en.wikipedia.org/wiki/Google_platform

2.1
ネットを調べつくす巨大システム

Webページの数が年々増加するのに合わせて、検索エンジンに求められる性能
も拡大を続けています。全世界のWebページを検索できるようにし、それを世界
中の利用者に提供するには、どのようなシステムが必要になるか考えてみましょ
う。

安価な大量のPCを利用する
図2.2のグラフは、Googleが扱うWebページの数と、1日に要求される検索件

数の推移を表したものです。現在のGoogleから比べると、初代Googleのシステ
ムはもはや見る影もありません。

http://www.google.com/corporate/history.html
これだけ規模が大きくなると、当然ながら初代Googleと同じシステムのままで

対応することは不可能です。もっと大規模にシステムを展開できるよう、設計を
根本的に考え直す必要があります。

一般的に、コンピュータシステムの性能を向上させるには二つの方法があります
（図2.3）。一つはスケールアップ（Scale-up）で、より優れたハードウェアを導
入するという方法です。もう一つはスケールアウト（Scale-out）で、こちらはハー
ドウェアの数を増やす方法です。

http://www.google.com/corporate/history.html

スケールアップの利点は、システムを単純にできるということと、ソフトウェアの変
更が必要ないという点です。何も新しいことをしなくても、ハードウェアを入れ替え
るだけで性能が上がるならば、これほどうれしいことはありません。欠点は、高性
能なハードウェアは高価であるということです。少しでも性能を上げようとすると価
格は飛躍的に増大します。

スケールアウトの利点は、必要に応じて数を増やせることと、比較的コストを抑
えられるという点です。逆に欠点として、最初から複数のハードウェアを想定してソ
フトウェアを作らねばならず、設計が悪いと数だけ増やしても性能は上がりませ
ん。

スケールアップをとるかスケールアウトをとるかは時と場合によって異なりますが、
検索エンジンというものはその性質上、いくらでもコピーすることが可能なシステム

です。このようなシステムでは複数のハードウェアを用いることも比較的簡単なの
で、スケールアウトのほうがコスト面で有利であると考えられます。

Googleはこの考え方をさらに推し進めて、ハードウェアはなるべく安価に普及し
ているものを使いつつ、その性能を十分に引き出すソフトウェアを自分たちで作る
という道を選びました。つまり、私たちが普段使ってるのと同じようなPCを大量に
使って、世界規模の分散コンピュータシステムを作り上げる。それがGoogleの選
んだ戦略です。

一つのシステムとして結び付ける
大量のPCを使うとはいっても、具体的にはどのようにするのでしょうか？

Googleでは完成されたシステムを外から購入してくるのではなく、CPUやメモリと
いったPCの部品を買い集めて、それを一つのシステムとして自分たちで組み立て
ているようです。とはいえ、もちろんそのスケールはそこらの自作PCとはわけが違い
ます（図2.4）。

まず最初にシステムの基本となるのが「ラック」（Rack）です。1つのラックには
40～80台のPCに相当する部品が組み込まれます。使われる部品は私たちが普
段使っているPCのものとほぼ同じものです。ただし高い性能を発揮させるため、ラ
ック内には2～4個のCPU、2～4GBのメモリ、2～4個のハードディスクドライブを
組み合わせたマシンがいくつも形作られます。ラック内の各マシンは1Gbps
（Gigabit per second）のLANで結ばれ、ネットワークを通して互いに通信で
きます。

さらに、ラックを1つの単位として、それが多数結び付くことで「クラスタ」
（Cluster）が作られます。クラスタとは、互いに協調して動作することで一つの
機能を提供するコンピュータの集まりです。Googleには目的に応じてさまざまなク
ラスタがあります。たとえば、利用者からの検索リクエストに答える「検索クラス

タ」、Webページを集めてインデックスを作る「データ収集クラスタ」などです。開発
者が用いる実験用のクラスタもあるでしょう。

多数のラックが地理的に集められたものが「データセンター」（Data Center）
です。1つのデータセンターには、1つまたは複数のクラスタがあると考えられます。
個々のクラスタは完全に独立している必要はなく、同じラックが複数のクラスタで
使われていてもかまいません。たとえば、Webページのデータを保管するクラスタ
と、インデックスを生成するクラスタが同じラックで動いていても問題ありません。

Googleはこのようなデータセンターを世界各地に分散配置しています。それぞ
れのデータセンターでは数千またはそれ以上のマシンが動いており、それらすべてを
合わせると、今のGoogleには数十万ものマシンがあるのではないかといわれてい
ます（注1）。

数を増やせばいいというものでもない
安価なマシンを大量に用いることはコスト面では有利ですが、このようなシステ

ムではいくつかの問題について考えなければなりません。

ハードウェアは故障する

安価なハードウェアは、（比較的に）故障する確率も高くなります。数を増や
せば増やすほど、どれか1つが壊れる確率も高まります。たとえ何が壊れてもシス
テムが停止することのないよう、常に気を配らなければなりません。

高価なハードウェアではあらかじめ故障について考えられていますが、普通のPC
にそのような機能はありません。少なくとも次のような障害を想定しておく必要が
あるでしょう。

・いきなり電源が切れて再起動する
・いきなり電源が切れたまま二度と起動しない
・ハードディスクの一部に読み書きできなくなる
・ハードディスクがまったく動かなくなる
・しばらくネットワークにつながらなくなる
・ずっとネットワークにつながらなくなる

ハードウェアレベルでこうした障害への対策がないならば、その上で動くソフトウェ
アで工夫して、システムの一部にどのような問題が生じたとしても「全体としては
動作を続けられるようにする」ことは必須事項です。

分散処理は難しい

多数のマシンを用意するなら、それらを同時に使わなければ意味がありませ
ん。ところが、複数のことを同時に実行するのはそれほど簡単なことではありませ
ん。

まず、同時に実行するのが簡単なことと、簡単ではないこととがあります。たと
えば、Webページのダウンロードであれば、一度に大量に実行することも簡単で
す。しかし、たとえばWeb検索用の転置インデックスを作るといった処理は、同時
実行できるものなのかどうか自明ではありません。

また、仮に複数のマシンに処理を分散させたとしても、期待どおりの性能が出
るかどうかはわかりません。たとえば、1万のWebページを処理するのに、100台の
コンピュータに100ページずつ分けたとしましょう。しかし、Webページの大きさにはば
らつきがあるので、いくつかのマシンは忙しくしているのに、いくつかは遊んでいると
いったことが必ず起こります。すべてのマシンの状態を把握し、うまく仕事の割り振
りを行わなければなりません。

一般的に、マシンの数を増やせば増やしただけ性能が向上する性質を「スケー
ルする」といいます。一方、システムのどこか一部に性能向上を妨げる要因がある
とき、それを「ボトルネックがある」といいます。大規模な分散システムを構築する
のであれば、まずはいくらでもスケールするしくみを考えた上で、システムのどこにも
ボトルネックがない状態にしなければなりません。

こうした難しい問題を開発者が一つ一つ考えていたのでは、いくら時間があっ
ても足りません。できることはなるべくシステムが面倒を見ることで、開発者の負
担を減らす方向に考えることが必要です。

CPUとHDDを無駄なく活用する
多数のマシンを活用したソフトウェア開発を容易にするため、Googleでは数々

の基盤システムを構築しています。それぞれのシステムには名前が付けられてお
り、それらがクラスタ単位で動いているようです。そのなかでも基本となるのが
「GFSクラスタ」と「Work Queueクラスタ」の二つです（図2.5）。

GFSとは「Google File System」の略で、多数のマシンを用いて巨大なファイ
ルシステムを作り上げるGoogleの独自技術です（注2）。データセンターの各マ
シンは、それぞれが複数のハードディスクドライブを備えていると書きましたが、それ
らがばらばらに存在したのでは必要なデータがどこにあるのかもわかりません。そこ
で、これらのマシンをネットワークで結び付けることで一貫してデータを読み書きでき
るようにする技術がGFSであり、GFSによって結び付けられたマシン群が「GFSクラ
スタ」です。

GFSがおもにハードディスクドライブを扱うものだとすれば、おもにCPUを扱うのが
Work Queueだといえるでしょう。こちらもGoogleの独自技術で、OSのタスク管

理を複数のマシンで分散して行うようなしくみです（注3）。Work Queueは各マ
シンの負荷を監視しており、比較的余裕のあるマシンで与えられたタスクを実行
するという機能を持ちます。何か実行したいタスクが大量にあるときには、一群の
マシンからなる「Work Queueクラスタ」にそれを依頼することで、手の空いている
マシンが自動的に見つけられて次々と実行されます。

GFSとWork Queueは互いに独立したシステムですが、これらは一緒に動かさ
れることが多いようです。GFSのおもな仕事はディスクの読み書きとデータ転送で
あり、CPUの負担は比較的小さくて済みます。そこでWork QueueによってCPU
負荷の高いタスクを同時に実行すれば、各マシンの能力を最大限に活用できる
というわけです。

GFSもWork Queueも障害対策について考えられており、個々のマシンが壊
れたとしても、これらのクラスタの機能は失われません。ひとたびGFSクラスタにファ
イルを預ければ、そのファイルはもう壊れることがありません。ひとたびWork
Queueクラスタにタスクを依頼すれば、どこかしら空いているマシンでそれが実行さ
れます（注4）。

Googleではこのように「クラスタ単位で機能を実現する」ことで、開発者は
個々の障害について考えることから解放され、クラスタに任せられる部分は任せ
た上で、新しい技術開発を行うことができるようになるのです。

検索エンジンを改良しよう
基本となる方針は決まりました。ここで改めて、大規模な検索エンジンを作る

上での課題を整理しておきましょう。
第1章では、検索エンジンを構成する3つの要素について説明しました。すなわ

ち、「検索サーバ」「検索バックエンド」「インデックス」の3つです。これらを大規模

化するためには何が必要でしょうか？

検索サーバの大規模化

初代Googleでは検索サーバは1台しかありませんでしたが、これを増やせない
という理由はありません。単純に数を増やせば増やしただけ利用者からの検索リ
クエストが分散され、性能は向上しそうです（図2.6）。つまり、スケールします。

しかし、検索サーバから利用されるインデックスのほうを見るとそうともいえませ
ん。初代Googleでは、単語情報がwordIDに応じて分散されることを説明しま
した（注5）。これは一見よさそうですが、一つの単語に関する情報が1カ所に集
まってしまうという問題があります。このままでは検索される単語によっては負荷に
偏りが生じ、ボトルネックとなる可能性があります。

また、初代Googleでは、検索結果が多過ぎるとランキングを行わないという
問題が残されていました（注6）。大量の検索結果があるときに、そのすべてにつ
いてランキングを行うのは大変そうです。この問題はどうやって解決すればよいでし
ょうか？

検索サーバを大規模化するには、これらの問題について考え直す必要がありそ
うです。

検索バックエンドの大規模化

検索バックエンドについても考えてみましょう（図2.7）。こちらは検索サーバほ
ど応答速度が求められるわけではありませんが、検索すべきWebページが増え続
けることを考えると、必要に応じていくらでもスケールさせられるシステムでなければ
すぐに処理が追いつかなくなるでしょう。

まず、クローリングはすでに分散されていることを説明しました（注7）。個々の
クローラは完全に独立していますので、これは数を増やせば増やしただけ性能が
上がりそうです。ただし、クローラの性能が上がるほど、リポジトリに書き込むデータ
量も増えていきます。ここは高速化しておかないと、もしかしたらボトルネックになる
かもしれません。

また、クローラに命令を出すURLサーバもボトルネックになる可能性があります。
URLサーバは、これからどのWebページをどういう順にダウンロードすべきかを判断
するため、これまでにダウンロードしたすべてのWebページや、これからダウンロードす
べきもの、あるいはこれまでにエラーになったページなど、多数の情報を管理する必
要があります。Webページの数が増えれば増えるほど、これは大きな処理となりま
す。

インデックス生成については、負荷分散のことを何も考えませんでした。Webペ
ージの構造解析を分散することはできそうですが、最終的なインデックスは一つに
まとめないといけないので、うまい方法を考える必要がありそうです。

こうしてみると、クローラがダウンロードした大量のWebページをどうやって管理
し、そしてどのようにして効率的にインデックス生成を行うかというのがここでの課
題となりそうです（注8）。

インデックスの大規模化

インデックス自体を大規模にする必要はあるでしょうか。二つの考え方がありま
す。

一つは、初代GoogleにおけるBarrelsのようにインデックスを分割することで、
そもそも大規模なインデックスを用いないという方向です。個々のインデックスが

一定の大きさに保たれるならば、一定以上に性能が悪化することもないので、安
心してシステムを構築できます。

もう一つは、やはり大規模なインデックスを作るという方向です。インデックスの
分割について毎回考えるのは面倒ですから、システムが自動的に分散処理の面
倒を見てくれるような汎用のインデックスシステムがほしいところです。

GoogleにはGFSという分散ファイルシステムがあると書きましたが、ファイルシス
テムは検索のためのインデックスとしては使えません。ここでも新しい技術が求めら
れます（注9）。

注1

データセンターについては、第5章で取り上げます。

（本文に戻る）

注2

GFSについては、第3章で取り上げます。

（本文に戻る）

注3

Work Queueについては、第4章で取り上げます。

（本文に戻る）

注4

条件次第ではエラーが起こることもありえます。開発者はそれぞれのクラスタが保証している

範囲で、それに頼ることができます。

（本文に戻る）

注5

1.4節内の「単語情報のインデックス」を参照してください。

（本文に戻る）

注6

1.5節内の「ランキングの高速化は難しい -- 3段階のランキング」を参照してください。

（本文に戻る）

注7

1.3節「クローリング -- 世界中のWebページを収集する」を参照してください。

（本文に戻る）

注8

この点については、続く第3章、第4章で取り上げます。

（本文に戻る）

注9

この点については、第3章で取り上げます。

（本文に戻る）

2.2
世界に広がる検索クラスタ

世界中からの大量の検索リクエストに答えるため、Googleのデータセンターもまた
世界各地に分散配置されています。現在のGoogleは、いかにして高速な検索
と高度なランキングを実現しているのか見ていきましょう。

Web検索を全世界に提供する
誕生からわずか数年で、Googleは世界中で利用される大規模な検索エンジ

ンへと進化を遂げました。Googleの検索システムも刷新され、より多くの利用者
により高速な検索結果を返せるように改良されています。

初代Googleについて書かれた論文から5年、2003年に発表された論文
「Web Search for a Planet: The Google Cluster Architecture」（下記
Noteを参照）には、Googleの新しい検索エンジンについての解説が載せられて
います。やや古い論文ですが、すでにこの頃には世界規模で検索サービスを提供
できるだけの十分に効率的な検索システムが実現されていたようです。

Note
本節は次の論文について説明しています（以下、Google Cluster論文）。

・「Web Search for a Planet：The Google Cluster Architecture」（Luiz Andre

Barroso／Jeffrey Dean／Urs Hölzle著、IEEE Micro、Vol.23（2003）、p.22-

28）
URL http://labs.google.com/papers/googlecluster.html

新しい検索エンジンでは、「1回の検索自体が多数のコンピュータによって分散
処理」されます。初代Googleでは検索結果が多い場合に完全なランキングを
行うことは困難でしたが、ランキングにも多くのコンピュータを用いることでそれが可
能となります。こうしたWeb検索の基本的な考え方は今でも大きく変わらないと
思われます。ここでは前述の論文を参照しながら、Googleの生まれ変わった検
索システムについて見ていくことにします。

近くのデータセンターに接続する
私たちがブラウザに"http://www.google.com/"と入力したとき、あるいは検

索ボックスで何かを打ち込んだとき、最初に行われるのはDNSによる名前解決、
つまりGoogleのIPアドレスを調べることです。Googleの負荷分散はここから始ま
っています（図2.8）。

http://labs.google.com/papers/googlecluster.html

GoogleのIPアドレスは、利用者の地理的な場所によって変わります。たとえ
ば、Googleに日本からつなぐときと米国からつなぐときでは、DNSから返されるIP
アドレスが異なります。同じ日本国内であっても、いつ検索するか、どこで検索す
るかによってIPアドレスが変わる可能性があります。

世界中のどこにいようとも、"http://www.google.com/"と打ち込めば
Googleにつながります。しかし実際につながる先は、自分にとってなるべく近くの
Googleのデータセンターであり、利用者によってつながる先は異なります。そのた
め特定のデータセンターにアクセスが集中することが格段に減り、これが負荷分散
の第一歩となります。

個々のデータセンターは、それぞれが独立してWeb検索を行えるよう、検索サ
ーバと検索用のインデックスからなる完全な検索クラスタを備えています。現在の

Googleでは、検索を行うシステムとインデックスを生成するシステムとは分離され
ており、検索クラスタは生成済みのインデックスのコピーを持っています。検索クラ
スタ自身はインデックスを更新する必要がないため、インデックスは必要なだけコ
ピーすることが可能で、これによって検索性能を高めることが可能となります。

もしも大災害などのために一つのデータセンターが壊滅的な打撃を受けると、
DNSはそのデータセンターのIPアドレスを返さなくなります。GoogleのDNSは各デ
ータセンターの状態を監視しており、利用可能なデータセンターのアドレスだけを返
すようになっています。したがって、利用者はいつでもどこかしらのデータセンターにつ
ないで、検索を行うことができるようになっているのです。

Tip
データセンターが燃える

実際の話として、Googleのデータセンターが火事で消失したこともあるそうです※。しかし、

このときも障害対策がうまく機能し、利用者は障害に気付きもしなかったそうです。

※ 『Google誕生 --ガレージで生まれたサーチ・モンスター』（David A. Vise／Mark

Malseed著、田村 理香訳、イースト・プレス、2006）、p.128より。

多数のサーバで負荷分散する

初代Googleの検索サーバとは異なり、新しい検索クラスタでは「複数のサーバ
を組み合わせて検索」を行います。なかでも大きな役割を果たすのが、「GWS」
「インデックスサーバ」「ドキュメントサーバ」の3つです（図2.9）。

GWS（Google Web Server）の役割は、個々の検索リクエストの取りまと
めを行うことです。GWS自身は検索を行わず、インデックスサーバやドキュメントサ
ーバなどに実際の検索処理を依頼して、結果を利用者に返します。つまり、
GWSとはその名のとおりWebサーバのような位置づけです。

利用者からの検索リクエストは、まず最初にロードバランサ（Load Balancer、
LB）によって振り分けられ、複数あるGWSのいずれか一つにつながります。ロード
バランサはGWSの動作状況を常に監視しており、なるべく負荷の軽いGWSに処
理が任されます。いずれかのGWSに障害が起きたときには、ロードバランサがそれ
を検知し、生き残ったGWSによってサービスが提供されます。

GWSは、はじめに検索リクエストを分析し、インデックスサーバに処理を依頼し
ます。インデックスサーバは、あらかじめ用意されたインデックスから検索を行い、見

つかったWebページのリストを返します。続いて、GWSはドキュメントサーバに見つ
かったリストを渡します。ドキュメントサーバはそれぞれのWebページについて、その
タイトルや要約などの情報を作り出します。GWSは、最後にそれらを見やすい
HTMLに整えて、最終的な検索結果として利用者に返します。

数を増やせばいくらでも負荷分散できるGWSと違って、インデックスサーバとド
キュメントサーバには負荷が集中することが予想されます。これらのサーバもうまく
分散することを考えなければなりません。

一定数のページごとにインデックスを分割
検索エンジンが扱うWebページの数は年々急速に増え続けています。高速な

検索を行うためには、たとえどんなにWebページが増えたとしてもスケールする検
索システムを考えなければなりません。

初代Googleでは、検索結果が多過ぎる場合にはランキングが行われないと
いう問題点を取り上げました（注10）。検索により見つかったすべてのWebペー
ジにランキング関数を当てはめなければより良い比較は行えないため、検索実行
時の計算量を根本的に減らすことはできません。完全なランキングを行いながら
検索速度を上げるためには、考えられる方法は「1回の検索自体を分散処理す
る」ことです。

以前の検索サーバでは、1回の検索が始まってから終わるまで1つのサーバがす
べての処理を行っていました。そうではなくて、多数のサーバで分担して作業を進
めることができれば、それだけ早く検索を終えることができるでしょう。そのために必
要なのは、1回の検索を分散できるよう、同じ単語を含む多数のインデックスを
用意することです。

初代Googleでは、wordIDによって分割されたBarrelsというインデックスが作
られていました（注11）。この場合、同じwordIDによる検索は1つのインデックス
に集中してしまい、分散処理されないという問題がありました。新しい検索クラス
タではこれを改め、wordIDではなくdocIDによってインデックスを分割するようにな
っています（図2.10）。つまり、インデックスあたりのWebページの数を制限し、し
かしその一つ一つについてはすべての単語を含んだ完全なインデックスを作るとい
うことです。

インデックス分割方法の変更のメリット

これは小さな変更ですが、その効果は多大なものがあります。以前の方法で
は、1つの単語は1つのインデックスにしか収められておらず、そしてそこからすべての
Webページが得られました。新しい方法では、1つの単語がすべてのインデックスに

含まれており、そして個々のインデックスに含まれるWebページの数を一定以下に
抑えることができます。

どういうことかというと、新しい方法では1回の検索をすべてのインデックスに分
散することが可能となり、そして個々の検索により見つかるWebページの数には
上限が与えられるということです。上限が与えられるということは、検索にかかる
負荷も予測可能になります。あらかじめ十分な速度で検索を終えられるようにイ
ンデックスを分割しておくことで、どんなにWebページの数が増えたとしても一定の
時間内に検索を終えられるという根拠が得られることになります。これは以前の
方法にはなかった利点です。

また、インデックスを作る側にとっても利点があります。インデックス生成はWeb
ページごとに処理を行うので、Webページの数を絞り込めるなら、生成されるイン
デックスも小さくまとめることができます。単語ごとに分割するという以前のやり方
では、すべてのWebページを含む巨大なインデックスを作り上げてから、それを分
割しなければなりません。

こうした点を考えると、新しいやり方のメリットは明白です。さっそく、新しいイン
デックスを検索に取り入れてみましょう。

多数のインデックスを一度に検索
docIDによって分割された個々のインデックスをGoogleでは「shard」（破

片）と呼んでいます。検索を行うときには、すべてのshardで同じ検索を行い、そ
の結果を統合する必要があります。ただし、各shardでの検索は一斉に行うこと
ができるため、shardを複数のマシンに分散することにより短時間で検索を終える
ことが可能となります。

個々のshardに負荷が集中しないよう、各shardはさらに小さなクラスタとして
構成されます（図2.11）。同じshardが複数のマシンにコピーされ、どのマシンで
検索を行っても同じ検索結果が返るようになります。このクラスタでも小さなロード
バランサが働いており、すべてのマシンに均等に負荷分散が行われるのと同時
に、ここでも障害に対する備えとなっています。

shardは読み取り専用で、定期的なアップデートのとき以外に更新されること
はありません。したがって、単純にコピーを増やせば増やすほど負荷分散すること
が可能で、検索リクエストがどんなに増えたとしても、クラスタに割り当てるマシン
を増やすことによって対応することができます。

一方、Webページの数がどんなに増えたとしても、新しくshardを増やすことで
システムを拡大できます。1つのshardに含まれるWebページの数は限定されるこ
とから、個々のshardによる検索時間は増加することがありません。shardに含め

るWebページの数はマシンの性能に応じて決めることもできるので、新しいマシン
と古いマシンとがあってもshardの性能は一定に保つことが可能です。

こうしてshardによるインデックスの分割により、利用者の増加にもWebページ
の増加にも、単純にマシンを増やすだけで対応できることがわかります。つまり、
初代Googleとは違って、新しい検索クラスタは必要に応じていくらでもスケールす
るしくみとなっているのです。

新しいWeb検索の手順
インデックスのしくみがわかったところで、実際の検索の流れを確認しておきまし

ょう（図2.12）。

❶インデックスサーバ

GWSは検索リクエストを受け取ると、インデックスサーバを構成するすべて
のshardクラスタに対して検索を要求します。一つ一つのshardクラスタには
一部のWebページの情報しか含まれないため、すべてのshardクラスタで同
じ検索を行わなければ完全な検索結果が得られません。

各shardクラスタでは、それぞれが担当する範囲で検索を行い、見つかっ
たWebページに対してランキングを行います。新しいシステムでも、検索結果
があまりにも多い場合には完全なランキングを行っていない可能性がありま
すが、それでも多数のshardクラスタで分散して処理を行えるようになったこ
とから、以前のやり方と比べるとずっと多くのWebページについてランキングを
計算することができます。

ランキングの結果、上位に選ばれたWebページのdocIDとそれぞれの点
数がGWSに返されます。GWSはすべてのshardクラスタからの検索結果を
待って、得られたすべてのリスト中から上位のWebページを最終的な検索
結果として採用します。

❷ドキュメントサーバ
検索結果を絞り込んだら、次はドキュメントサーバに処理が渡ります。
ドキュメントサーバも基本的なしくみはインデックスサーバと同じです。Web

ページの内容は複数のshardに分割され、それぞれのshardが複数のマシン
によりクラスタとして提供されます。

インデックスサーバのshardには、検索とランキングのために必要な情報だ
けが含まれますが、ドキュメントサーバのshardには、WebページのURLやタイ
トル、本文などのテキスト情報がすべて含まれます。ドキュメントサーバは
GWSから送られたdocIDを元に、検索結果として表示すべき各Webページ
のタイトルや要約などを作り上げます。

インデックスサーバの場合と同様に、ドキュメントサーバにも一斉に要求が
送られ、要約の作成も複数のマシンで分散処理されます。したがって、こち
らの処理も一瞬で終えることが可能です。

❶′その他の処理
インデックスサーバやドキュメントサーバによる処理と並行して、GWSはほか

にもいくつかのサーバとも同時に通信を行います。
たとえばスペルチェックを行うサーバと通信することで、利用者の入力した

言葉が打ち間違いでないかを確認し、ほかの検索候補があればそれを提
示します（日本語では「もしかして」と出るあの機能です）。

また、検索結果と一緒に表示される広告もまた専用のサーバによって処
理されます。インデックスサーバは検索語にマッチするWebページを探す一方
で、広告サーバはそれにマッチする広告を同時に探すというわけです。

すべての処理が完了すると、GWSはそれらの結果を1つのHTMLページに
レイアウトし、それを利用者に返して検索が完了します。

このように、現在のGoogleではさまざまな処理をできるだけ多くのサーバ
で分散処理することによって、高速な検索を実現しているのです。普段、な
にげなく行っているWeb検索ですが、その背後では想像以上に多数のコン
ピュータの働きがあるのだということがわかります。

Tip
その他の高速化手法

Google Cluster論文では触れられていないものの、新しい検索クラスタでは高速化のた

めにほかにもさまざまな手法を取り入れていると考えられます。たとえば検索結果はサーバ側

でキャッシュすることが可能です。最近検索された内容はしばらく残しておくことによって、次に

同じ検索リクエストが来たときには改めて検索する必要がなくなります。実際、Googleで同

じ検索を続けて行うと、1回めよりも2回めのほうが検索時間が若干短くなる傾向にあるよう

です。

注10

1.5節内の「ランキングの高速化は難しい -- 3段階のランキング」を参照してください。

（本文に戻る）

注11

1.4節内の「単語情報のインデックス」を参照してください。

（本文に戻る）

2.3
まとめ

本章では、Googleがどのように世界規模の分散システムを構築し、そして高
速な検索システムを実現しているかを見てきました。Google全体を通して貫か
れている基本的な考え方は次の三つです。

・ソフトウェアによって信頼性を高める
個々のマシンにUPS（Uninterruptible Power Supply、無停電電源

装置）を付けたり、RAID（Redundant Arrays of Inexpensive
Disks）によってハードディスクを冗長化するといった、ハードウェアレベルでの
信頼性を高めることはしていません。それよりも、ハードウェアが故障してもシ
ステム全体としては動作を続けられるよう、ソフトウェアによって信頼性を高
める工夫がされています。

・ハードウェアを増やして負荷分散する
コピーできるデータはコピーし、分割できるデータは分割することによって、ハ

ードウェアを増やすだけでいくらでもスケールするシステムが考えられていま
す。特定の一部がボトルネックにならないようにし、必要に応じて規模を拡
大できる設計が行われています。

・コストパフォーマンスの高いハードウェアを選ぶ
ソフトウェアによって信頼性を高め、多数のハードウェアによって負荷分散

を行うことから、必然的にハードウェアを選ぶ基準は、価格あたりの性能が
最も高くなるものとなります。これによって、同じ性能のシステムを作るのに

も、Googleでは既存システムの数分の一のハードウェアコストで実現してい
るとのことです。この点については第5章で取り上げます。

＊　＊　＊
本章ではGoogleの表側である検索クラスタについて見てきました。検索処

理はどちらかというと分散処理を考えるのも容易でしたが、それよりも難しいの
は、Googleの裏方となるインデックス生成です。次章からは、Googleの裏で活
躍する数々の基盤技術を見ていくことにしましょう。

世界規模の検索エンジンを構築する上で最初の課題となるのは、大量の情
報をどのように保存するかということです。世界中のWebページをすべてダウンロー
ドするともなると、それだけでも何千、何万という数のハードディスクが必要です。
それらを管理し、効率的に読み書きを行うにはそれ相応の技術が求められます。

単にデータを保存するだけでは十分ではありません。そこからほしい情報をほし
いときに取り出すには、情報をデータベース化することが必要です。しかし、1台の
コンピュータでは扱えないほどの大量の情報をデータベースにするのは単純なことで
はありません。ここでも新しい技術が必要となります。

Googleは、大量のコンピュータを使ったデータ処理のためにいくつもの独自技
術を開発しています。本章では、Googleがどのようにして膨大なデータを読み書
きしているかについて見ていきます。

http://www.research.ibm.com/haifa/Workshops/searchandcollaboratio
n2004/papers/haifa.pdf

http://www.research.ibm.com/haifa/Workshops/searchandcollaboration2004/papers/haifa.pdf

3.1
Google File System──分散ファイルシステム

世界中のWebページを集めて処理しようとすると、1つや2つのハードディスクでは
到底扱えない大きなディスク容量が必要です。Googleでは多数のマシンに複数
のハードディスクを接続することで、事実上いくらでもディスク容量を拡大できるよ
うにしています。

巨大なディスク空間を実現する
Web検索エンジンのように大量のデータを扱うシステムでは、それをいかに保存

するかということが最初の課題になります。ハードディスクの容量は年々拡大を続
けているとはいえ、インターネット上には常にそれ以上のデータがあります。それらの
データを安全に保存し、そして効率的に処理するためには、多数のハードディスク
を組み合わせてデータを格納する新しい技術が必要です。

GFS（Google File System）は、そうした要求を満たすめに作られた
Google独自の分散ファイルシステムです。分散ファイルシステムとは、多数のマシ
ンを組み合わせて巨大なストレージ（外部記憶装置）を作り上げる技術です。
たとえば、普通のPCに組み込まれている数十～数百GBのハードディスクを大量

に組み合わせて、全部で数百TB（
テ ラ バ イ ト

Terabyte＝1,000GB）、あるいは1PB

（
ペ タ バ イ ト

Petabyt＝1,000TB）以上の容量を持つストレージを実現することができま
す。

分散ファイルシステムの利点は容量の大きさだけではありません。分散ファイル
システムでは多数のマシンが同時に動くことによって、1台ですべてを行うよりも効

率的なデータ転送が可能となります。多数のマシンで大量のデータ処理を行う
Googleにとっては、最も基本となる技術の一つであるといえるでしょう。

分散ファイルシステムという技術自体は以前からあるもので、Google固有の
ものではありません。では、なぜGoogleは独自に分散ファイルシステムを作る必
要があったのでしょうか？ Googleが2003年に発表した論文「The Google File
System」（下記Noteを参照）で、GFSの基本的な設計とその特徴が説明さ
れています。ここではおもにこの論文を参照しながら、Googleがどのように大量の
データを扱うのかについてを見ていくことにしましょう。

Note
本節は次の論文について説明しています（以下、GFS論文）。

・「The Google File System」（Sanjay Ghemawat／Howard Gobioff／Shun-Tak

Leung著、Proceedings of the 19th ACM Symposium on Operating Systems

Principles、2003、p.20-43）
URL http://labs.google.com/papers/gfs.html

膨大なデータの通り道となる
GFSは、ネットワークを通してファイルを読み書きするためのシステムです。単に

ネットワーク経由でファイルを扱うだけならほかにいくらでも方法がありますが、扱
われるファイルが巨大であるという点で通常のファイルシステムとは大きく異なりま
す。

GFSにおける1つのファイルは、ハードディスクに収まらないほど大きくすることがで
きます。したがって、それを手元のPCにコピーするなどということはできません。基本
的にGFS上のファイルには新しいデータをどんどん書き加えるか、あるいは書き込ま
れた内容を最初から最後まで読み出し続けるかのいずれかです。イメージとして
は、GFSは「巨大なデータの通り道」のような存在です。

Googleの多くのソフトウェアは、GFSからデータを読み込んで加工し、それをま
たGFSへと保存します。扱うデータが大き過ぎて1台のマシンには収まらないので、
Googleでは図3.2のようにファイルからファイルへと変換するプロセスを多数行い
ます。

http://labs.google.com/papers/gfs.html

GFSが必要になる例として、たとえばクローリングによるWebページの収集と、そ
の後のインデックス生成までの流れが考えられます。第1章では、複数のクローラ
がダウンロードしたWebページを次々とリポジトリに格納することを説明しました
（注1）。ここではファイルへの書き込みが絶えることなく延々と続けられることが
予想されます。インデックス生成も分散処理すると考えると、リポジトリからは同
時に大量のデータが読み出されることでしょう。読み込まれたデータは加工され、
それがまた次の処理へと進むために中間ファイルに書き出されます。

検索エンジンでは図3.3のように、多くのマシンが大量のデータを書き込み、そし
て大量のデータを読み出します。まさにこうした目的のために開発されたのがGFS
という技術です。

データ転送に特化された基本設計
GFSはGoogle特有の事情に合わせて開発されています。「ソフトウェアによる

障害対策」「大容量のファイルの読み書き」「ファイルをキューとして用いる」と順に
見ながら、GFSのデータ転送に特化された基本設計について考えていきます。

ソフトウェアによる障害対策

Googleでは比較的安価なハードウェアを大量に用いるという方針により、あら
かじめ故障の発生を前提としたシステムを設計しなければなりません。その第一
歩となるのがGFSであり、GFSはハードウェアの故障からファイルを守ります。

GFSでは、「ファイルは常にバックアップされた状態」にあります。バックアップとい
う作業を特別に行わずとも、システムが常にファイルの複数のコピーを保持し続け
ます。GFSを構成するマシンのうち1台が壊れると、そこに書き込まれていたデータ

の新しいコピーがほかのマシンに作られます。そのぶん全体のディスク容量は減少
してしまいますが、新しいマシンを追加すればいくらでも容量を拡大することができ
ます。

こうした自立的なバックアップ機能により、GFS上のファイルはディスクに空きが
なくならない限りは、いくらハードウェアが故障しても失われることはありません（注

2）。

大容量のファイルの読み書き

GFSで扱われるのは、最低でも数百MB（Megabyte）もあるような大きなフ
ァイルです。私たちが普段用いるような小さなファイルはGFSで扱うには向いていま
せん。どちらかというと、「大量の小さなデータを1つのファイルに詰め込んで、それ
を一気に流し込む」というのがGFSの一般的な使われ方です。

また、GFSでは一度書き込んだデータを書き換えるということはほとんど想定さ
れていません。「書き込んだものは、後はもう読み出すだけ」です。そのため、GFS
はデータベースのように用いるには向いていません。あくまでもデータを大量に書き
込んで、そして読み出すという「データの送受信に特化」した設計になっています。

Tip
用途を絞り込むことで単純化する

GFSには、一度アクセスしたファイルの内容をキャッシュして、以降の読み書きを高速化す

るような工夫もまったくありません。GFSは頻繁に読み書きを行うような用途には向いておら

ず、大量のデータを連続して転送する場合に限って高い性能を発揮するように設計されてい

ます。

ファイルをキューとして用いる

GFSには、ファイルをロック（Lock、排他制御）する機能もありません。そのた
め複数のプロセスが同じファイルに同時に書き込みを行うと、データが壊れる可能
性があります。それでは都合が悪いので、そうした場合にでも安全に書き込みを
行う方法として、ファイルの末尾にデータを追加する専用の方法が用意されてい
ます。

GFSの一般的な使い方は、「ファイルをデータのキュー（待ち行列）として用い
る」ことです。先にも触れたように、GFS上のファイルというのはデータの通り道であ
り、そこにはデータがとどまることなく追加され、そして追加されたデータは後から読
み込んで処理されます。

ファイル操作のためのインタフェース
GFSは「ファイルシステム」という名前を持ちますが、いわゆるOSにおけるファイル

システム（注3）ではなくて、一種のサーバ・クライアントシステムとして動作する通

常の「ネットワークソフトウェア」です。GFS上のファイルを直接、普通のファイルと同
じように開いたり閉じたりすることはできません。

GFS上のファイルを扱うには、「GFS専用のコマンド」を用いるか、あるいは「GFS
のクライアント用ライブラリ」を利用します。GFSのファイルを読み書きするアプリケー
ションを作る場合には、このライブラリを通してファイルを操作します。

アプリケーションから見ると、GFSの利用方法は通常のファイル操作と大体同
じです。GFSは表3.1の機能を提供します。

表3.1のうち、「スナップショット」と「レコード追加」の2つは、少し特殊なので説
明しておきます。

「スナップショット」は、ファイルの複製を一瞬で作成する機能です。巨大なファ
イルをコピーするとなると大変ですが、GFSでは元々ファイルの複数のコピーを持っ
ているという性質をうまく利用して、効率的にファイルを複製することが可能です。

「レコード追加」は、ひとまとまりのデータをファイルの最後に追加します。先にも
述べたとおり、GFSではファイルをロックして安全に書き込みを行うための一般的

な方法が用意されていないため、多数のクライアントから同じファイルに同時に書
き込みを行う場合にはレコード追加を利用しなければなりません。通常の書き込
みの場合、複数のクライアントが同時に書き込みを行うとデータが破壊される可
能性があります。

GFSは単体で用いるだけでなく、ローカルファイルシステムと組み合わせて利用
することも自由です。GFS上のファイルとのやり取りは基本的にネットワークを通し
て行われるので、当然ながらローカルのファイルを読み書きするよりも遅くなりま
す。したがって、データ処理中は一時的にローカルファイルシステムを利用し、処理
が完了したらGFSに保存するといった使い方も考えられます。

ファイルは自動的に複製される
GFSは、大きく分けて3つの要素から構成されます（図3.4）。まず、「マスタ」

（Master）はGFS全体の状態を管理しコントロールする中央サーバです。マスタ
の管理下には多数の「チャンクサーバ」（Chunk Server）があり、これらが実際
にハードディスクへの入出力を担当します。最後に、「クライアント」（Client）は
GFSを利用してファイルを読み書きするアプリケーションです。

GFS上のファイルは、64MBを1つのブロックとする複数の「チャンク」（Chunk、
大塊）に分割されます（図3.5）。個々のチャンクは、通常3つのチャンクサーバ
にコピーされて保管されます。どのファイルがいくつのチャンクで構成されるか、どの
チャンクサーバがどのチャンクのコピーを持っているか、といった情報は、マスタがすべ
て管理しています。

チャンクのコピーはすべて同じ内容であるので、クライアントはどのチャンクサーバ
からでもチャンクの内容を読み込むことができます。特定のチャンクサーバが故障し
た場合にでも、他のチャンクサーバによってチャンクの内容は保たれます。

クライアントはファイルの読み書きを行うとき、まず最初にマスタにチャンクの情
報を問い合わせます。書き込むべきチャンクがまだないときには、マスタは新しいチ
ャンクを作成して、複数のチャンクサーバにそれを割り当てます。クライアントは、読
み書きを行うべきチャンクサーバの情報をマスタから受け取り、以後の読み書きは
クライアントとチャンクサーバとの間で行われます。

読み込みは最寄りのサーバから
GFS上のファイルからデータを読み込むのは比較的簡単です（図3.6）。クラ

イアントはまず、マスタにチャンクの情報とチャンクサーバのアドレスを問い合わせま

す。マスタは、そのチャンクを管理するすべてのチャンクサーバのアドレスを返すの
で、クライアントはそのなかから最も近くにあるチャンクサーバを選んで、データを要
求します。

個々のチャンクのコピーは独立して読み込みが可能であり、多数のクライアント
が同じチャンクを読み込もうとしていても、それぞれのチャンクサーバによって負荷が
分散されます。もしも負荷分散が追いつかなければ、コピーの数を増やすようマス
タに要求することで、いくらでも読み込み性能を高めることが可能です。

1つのファイルは大量のチャンクに分割され、それぞれのチャンクが複数のチャン
クサーバにコピーされるため、ファイルは全体として大量のマシンに分散して保存さ
れることになります。したがって、一つのファイルからのデータの読み出しは広く分散
処理することが可能で、一度に読み出せるデータの量は、マシンの数に応じて増
加します。

もしもチャンクサーバにつながらなかったり、チャンクサーバがエラーを返した場合
（注4）には、クライアントは他のチャンクサーバからチャンクを読み込みます。もし
もすべてのチャンクサーバにつながらなかったとしても、クライアントはチャンクサーバ
が復活するまでしばらく問い合わせを続けます。したがって、ネットワークが完全に
遮断されてまったく通信ができなくなるか、あるいはすべてのチャンクのコピーが一
度に壊れるようなことがない限りは、チャンクを読み込めなくなることはありませ
ん。

書き込みは複数のサーバへ
読み込みとは異なり、チャンクへのデータの書き込みはずいぶん複雑です（図

3.7）。　まずはじめに、クライアントはマスタに対してチャンクへの書き込みを要
求します。マスタはそのチャンクを管理するチャンクサーバの中からまとめ役を1つ決
定し、それを「プライマリ」（Primary）と呼びます。これに対して他のチャンクサー
バは「セカンダリ」（Secondary）と呼ばれます。クライアントにはどのチャンクサー
バがプライマリであるかが伝えられ、以降、書き込みが完了するまでこのプライマリ
が書き込みをコントロールします。

プライマリが決まると、クライアントは最寄りのチャンクサーバに書き込みたいデー
タの内容を送ります。送り先はプライマリのチャンクサーバでなくてもかまいません。
チャンクサーバに送られたデータは、まだ受け取っていないチャンクサーバへと次々と
コピーされます。チャンクサーバは、バケツリレーのようにデータを受け取ると同時に
送り出すことで、効率的にコピーが進められます。

データを送り終わったところで、クライアントはプライマリに対して、今送ったデータ
を書き込むよう要求します。プライマリは、まず手元のチャンクにデータを書き込ん
だ上で、セカンダリにもそれを書き込むよう要求します。すべてのチャンクサーバで
書き込みが完了すると、書き込みに成功したことをクライアントに伝えて処理が
完了します。

さまざまなエラーへの対応

書き込みが順調に進んだときはこれで問題ありません。しかし、途中でエラーが
発生する可能性についても考えなければなりません。チャンクサーバが途中で故
障するかもしれませんし、ハードディスクの問題で書き込みに失敗するかもしれま
せん。

プライマリが書き込みに失敗したときには単純にエラーが返されて、クライアント
ははじめから処理をやり直します。プライマリで問題が起こるということは、書き込
みがまったく進まないということです。マスタは遅かれ早かれこの問題を検出し、問
題の起こったチャンクサーバを切り離して、新しいプライマリを決定します。

セカンダリで問題が起こった場合はもう少し複雑です。セカンダリに書き込みを
要求する前に、プライマリはすでにチャンクの内容を更新しています。このときセカ
ンダリでの書き込みに失敗すると、プライマリとセカンダリとでチャンクの内容が異
なるという結果が生まれます。これはあってはならない状態です。

この問題を避けるため、プライマリはチャンクを更新する前に「チャンクのシリア
ルナンバー」を決定し、それをマスタに通知します。書き込みに失敗したセカンダリ
では、チャンクのシリアルナンバーが更新されず古いままになります。マスタは遅か
れ早かれ古くなったチャンクのコピーを発見し、このセカンダリを切り離すことによっ
てクライアントが古いデータを読まないようにします。

それでもなお、書き込みの途中でそれと同じチャンクを読み込もうとするクライ
アントがいたとすると、そのクライアントは古いデータを読み込んでしまう可能性が
あります。GFSでこのような読み書きのタイミングに依存するようなアプリケーション
を書く場合には注意が必要です。読み書きを同時に行うときの問題については、
「レコード追加」の説明のときにもう一度取り上げます。

いずれにしても、書き込みで何かしらのエラーが発生した場合には、クライアント
は同じ書き込みを何度か繰り返します。チャンクサーバやネットワークの一時的な

障害のためにエラーになっただけであれば、いずれ書き込みは成功します。そうで
なくとも、しばらくすればマスタがチャンクサーバの異常を検出してそれを切り離しま
す。クライアントは、何度かエラーが続いたときには再びマスタに書き込みを要求
し、今度こそ問題なく動いているはずのチャンクサーバに対して書き込みを行いま
す。

最終的に書き込みに成功するまでこの一連の処理が続けられるので、よほど
のことがない限りは、遅かれ早かれいずれ書き込みは成功するようになっていま
す。

Columun
最寄りのサーバとは

Google内部では、コンピュータのIPアドレスはネットワーク的な距離に応じて規則的に付

けられているそうです。具体的には、アドレスの前の部分が多く一致すればするほど近くのコ

ンピュータになっていて、たとえば"10.0.1.1"と"10.0.1.2"はすぐ近くですが、"10.1.1.1"は遠く

にあるということがアドレスを見るだけで一目でわかります（図3.A）。

GFSでは、必要な通信はなるべく近くのサーバと行うことでネットワークの負荷を下げる一

方で、チャンクのコピーは離れた場所に分散させるなどして、障害が1カ所に片寄らないよう

工夫されています。

同時書き込みで不整合が起こる

GFSでは、多数のクライアントが同時に読み込みを行っても効率的に分散処
理が行われることを説明しました。一方、同時に書き込みが行われる場合につい
ては、もっと慎重に考える必要があります。

書き込まれるデータがチャンク1つに収まる場合は比較的簡単です。複数のク
ライアントがマスタに書き込みを要求すると、マスタはすべてのクライアントに対して
プライマリのアドレスを伝えます。各クライアントは個別にプライマリに書き込みを
要求しますが、プライマリはこれを要求された順に処理します。どの要求が先に届
くかは実行してみるまでわかりませんが、少なくとも個々のデータが順に書き込ま
れることだけは確かです。

しかし、書き込まれるデータがいくつものチャンクに分かれる場合には注意が必
要です。データが複数のチャンクにまたがる場合、書き込みはチャンクごとに分割
して行われます。個々のチャンクが異なるチャンクサーバによって管理されていると
すると、クライアントは複数のプライマリと同時に通信することになります。この場
合、これらのチャンクは前から順に書き込まれるとも限らず、書き込みが完了する
順序は事前には決まりません。

書き込みを行うクライアントが1つであれば、これでも問題ありません。しかし、
複数のクライアントが同じファイルに同時に書き込みを行うとどうなるでしょうか
（図3.8）。

書き込みはチャンクごとに行われますが、どのクライアントのデータが先に書き込
まれるかというのは実行してみるまでわかりません。クライアントによって、一部のデ
ータは先に書き込まれたのに、残りのデータは後から書き込まれるということも起こ
りえます。その結果、複数のデータが混在してしまったとしてもおかしくありません。

このような競合状態を避けるためには、書き込みの順番を保証するロック機構
が必要ですが、GFSはそれを提供していません。したがって、GFSで複数のクライア
ントが同じファイルに書き込みを行うと、書き込まれるデータがどのようになるかは
保証されないということになります。

レコード追加によるアトミックな書き込み
書き込みの行われる順番を保証する代わりにGFSが提供するのが、「レコード

追加」の機能です。これはファイルの末尾にひとまとまりのデータを効率的に追加

するよう設計されています。
GFSでは、一度に読み書きされるまとまったデータのことを「レコード」

（Record）と呼びます。たとえばクローラはダウンロードしたWebページとURLとを
一緒に書き込みますが、こうした関連のあるデータをまとめたものがレコードです。

レコードの内容は途中で書き換えられたくありませんから、そのまま確実に書き
込まれることが期待されます。一つの処理が最後まで中断されることなく一度に
行われることを一般にアトミック（Atomic）な操作といいますが、レコード追加
はまさにアトミックな書き込みを行うための機能です。レコード追加では通常の書
き込みとは違い、複数のクライアントが同時に書き込みを行っても確実にレコード
の内容がファイルに追加されます。一つ一つのレコードはファイルの末尾に追加さ
れるので、データが上書きされてしまうようなことはありません。

ただし、注意点もあります。レコード追加では、レコードの内容が必ず「1回以
上」書き込まれることを保証しています。1回以上というのは、同じデータが何度も
書き込まれる可能性があるということです。これは少々混乱しますが、わかりやす
さよりも効率を優先した結果だと考えられます。レコード追加は、図3.9のようなし
くみで行われます。

レコード追加では、まずはじめにプライマリのチャンクサーバによってファイルの末
尾に必要な領域が確保され、それから書き込みが始まります。書き込みに成功
した場合には、そのまま次のレコード追加が行われます。

書き込みに失敗した場合

問題は書き込みに失敗した場合です。1つめのレコード追加がエラーになったと
しても、ひとたび追加された領域はそのままに、次のレコードの処理が始まります。
エラーの原因が瞬間的なトラブルの場合、1つめがエラーになっても2つめは成功す
るようなことも起こりえます。

失敗したレコード追加は、もう一度ファイルの末尾に新しい領域を確保するとこ
ろからやり直されます。同じファイルを別のクライアントが読み込んでいるかもしれ
ないので、エラーになったところだけを書き換えるというわけにもいきません。

レコード追加の一般的な使われ方は、一つ、または複数のクライアントがファイ
ルにデータを追加し、別のクライアントがそれを読み込むことです。レコード追加で
エラーが発生したとすると、同じチャンクでもどのチャンクサーバと通信するかによっ
て、正しく書き込まれたデータを読み出すこともあれば、書き込みに失敗した領域
を読み出してしまうこともありえます。クライアントはエラーの発生した領域を単に
読み飛ばします。したがって、レコードを確実に読み込んでもらうには、もう一度フ
ァイルの最後にレコードを追加するしかありません。

結果として、同じレコードの内容が複数回追加されることが起こりえます。レコー
ド追加では、これを仕様として受け入れています。レコード追加は、必ず一度はレ
コードの内容が書き込まれることを保証していますが、読み出し側では、同じレコ
ードが何度も読み込まれる可能性を考慮した開発が必要となります。

こうした制約はあるにしても、レコード追加を用いることで複数のクライアントが
確実にレコードを書き込むことが可能となり、効率的なデータ転送が実現できると
いうわけです。

Tip
レコード追加の問題を回避する

レコード追加では、書き込みに失敗して壊れたデータがファイルの途中に現れることがある

ので、読み出し側でこれを取り除く作業が必要です。そのためレコード追加を行う側では、レ

コードの内容だけでなくそのチェックサムも同時に書き込みます。読み込みを行う側ではチェッ

クサムを確認し、それが一致しなければ書き込みに失敗したのだということがわかります。

こうした処理はGFSのライブラリ側で行われるため、開発者はその詳細について気にする必

要はないようです。ただし、重複したレコードを取り除くことは行われないので、この点について

は注意が必要です。重複したレコードを検出するには、レコードの中にシリアル番号を入れて

おいて、同じ番号が続いたらレコードを読み飛ばすといった方法がとられるようです。

レコードの重複は問題にならない場合もあります。たとえばWebページを格納したレコードで

あれば、レコードが重複しても同じWebページのインデックスが何度も行われるだけで、実質

的な問題はありません。

スナップショットはコピーオンライトで高速化
「スナップショット」のしくみについても簡単に見ておきましょう。これはファイルのコ

ピーを一瞬で作成する機能です。
「GFSにおけるファイルはチャンクの集まり」であることは繰り返し説明しました。

GFSのマスタは、どのファイルがどのチャンクによって構成されるかという情報をすべ
て管理しています。

スナップショットとは、同じチャンクを指し示す、新しい名前のファイル情報を作
る機能です（図3.10）。コピーされるのはファイル情報だけで、チャンクそのものは

コピーされません。コピー処理はマスタの中だけで完結するので、一瞬で処理が完
了するのです。ディスク容量が減少することもありません。

同じチャンクを共有するのであれば、ファイルを書き換えたときにはどうなるん
だ、ということになります。スナップショットを作ると、チャンクの内容を書き換えよう
としたときにはじめてチャンクがコピーされます。この手法は一般的に「コピーオンライ
ト」（Copy On Write）と呼ばれます。コピーオンライトによって、非常に少ないコ
ストでファイルのコピーが作れるため、毎日のファイルの状態をとっておくようなことも
手軽に行えます。

GFSのスナップショットでは、書き換えられるチャンクだけがコピーオンライトされる
ことにも注目です。書き換えられないチャンクはそのままコピー元と同じチャンクを
指し続けるので、書き換えも最小限の手間で済ますことが可能です。

負荷が偏らないようにバランスが保たれる ─マスタの役割

最後になりましたが、「マスタの役割」についてもう少し詳しく見ておきましょう。
マスタの役割は、GFS全体の状態を監視することです。たとえば、次のような情
報があります。

・ファイル名とそれを構成するチャンクのリスト
・チャンクサーバがどこにあり、今どのような状態か
・どのチャンクサーバがどのチャンクを持っているか

マスタはまた、すべてのチャンクサーバと定期的に通信することで、それらの状態
を確認します。もしも通信できないチャンクサーバがあれば、障害が発生したもの
として対策を行います。

チャンクサーバは起動時に、自身が管理するすべてのチャンクの情報をマスタに
伝えます。これによって、マスタはどのチャンクサーバにどのチャンクがあるかという最
新情報を得ることができます。マスタは、個々のチャンクのコピーの数が常に一定
に保たれるよう、チャンクサーバに新しくチャンクを割り当てたり、逆に切り離したり
します。

マスタはほかにもGFS全体を最適化するための調整を行います。特定のチャン
クサーバに負荷が集中していたり、ディスク容量が不足してきた場合には、チャン
クの割り当てを変更することで負荷が均等になるよう務めます。古くて使われなく
なったチャンクのコピーが見つかれば、それを破棄してリサイクルするようチャンクサー
バに伝えます。

こうした裏方の面倒をマスタがすべて見てくれるおかげで、GFSの状態は最適
な状態に保たれます。

あらゆる障害への対策を行う

ここまではおもに正常時の動作について見てきましたが、現実にはさまざまな障
害が発生します。次は、GFSでは考えられる障害に対してどのような対策を行っ
ているかについて見ていきましょう。

チャンクの障害対策

チャンクサーバに保管されたチャンクの個々のコピーは、さまざまな理由によって
利用不可能になることがあります。ディスクの障害によって物理的に読み込めなく
なることもありますし、たとえ読み込めたとしても内容が書き換わっていることさえ
あります。

システムの信頼性を高めるため、チャンクサーバはチャンクを保存するときに「チ
ェックサム」を計算し、チャンクの内容と一緒に書き込みます。「チェックサム」
（Checksum）というのはデータの正しさを検証するために作られる数値のこと
で、同じデータからは必ず同じ数値が作られます。したがって、もしも書き込み時と
読み込み時とでデータが異なっていた場合、チェックサムの照合に失敗してエラー
が発生したとみなされます（注5）。

チャンクの読み込みでエラーが発生すると、チャンクサーバはクライアントにエラー
を返すのと同時に、マスタにも障害の発生が伝えられます。するとマスタは問題を
起こしたチャンクサーバをチャンクの割り当てから外し、新しいコピーを作るように別
のチャンクサーバを割り当てます。

チャンクのエラーは読み込もうとしたときにはじめてわかるものなので、長い間読
まれていないチャンクのコピーは、気が付いたときには「全部壊れていた！」というこ
とにもなりかねません。これを避けるため、チャンクサーバは手の空いているときにす
べてのチャンクのチェックサムを再確認するようになっており、トラブルを事前に防止
します。

チャンク自体にエラーがなくとも、その内容が更新されずに古くなっていることも
あります。たとえば書き込み時にたまたまチャンクサーバが再起動したり、あるいは
ネットワークが不通になったような場合です。チャンクには更新のたびにシリアルナ
ンバーが振られ、マスタは最新のチャンクがどれかを知ることができます。マスタとチ
ャンクサーバは定期的な通信によってチャンクの状態を確認し、古くなっていたチャ
ンクのコピーについては、やはりマスタがチャンクの割り当てを変更します。

いずれにしても、古くなったり壊れたチャンクの割り当てはマスタによって取り除
かれ、新しい割り当てが行われることでチャンクのコピーの数は一定に保たれま
す。これによって、マスタが生きている限りはチャンクが失われることはまずありませ
ん。

チャンクサーバの障害対策

さまざまな理由によって、チャンクサーバとの通信が途絶えることもあります。不
具合やメンテナンスのためにチャンクサーバを再起動することもありますし、マシンの
電源が落ちたりネットワークがつながらなくなることもありえます。

クライアントがチャンクサーバとやり取りしている途中で通信が途絶えた場合、
それは単純にエラーとみなされて、クライアントは他のチャンクサーバに接続します。
すべてのチャンクサーバにつながらなかった場合、クライアントは再びマスタに問い
合わせをし、それまでに再割り当てされているであろう新しいチャンクサーバの情報
を得てやり直します。

チャンクサーバとの通信が完全に途絶えた場合、マスタはそれを管理対象から
外します。チャンクサーバが管理していたチャンクは新しいサーバに再割り当てさ
れ、チャンクのコピーの数が維持されます。以降、クライアントには停止したチャンク

サーバの情報は送られなくなるので、システム全体はそれまでどおりの動作を続け
ます。

停止していたチャンクサーバが復活すると、チャンクサーバは自身の存在をマス
タに伝えます。このとき同時に、チャンクサーバが保持しているチャンクの情報も伝
えられるので、マスタは管理データを更新します。もしもチャンクのコピーが多くなり
過ぎるなら、マスタは割り当てを調整して、一部のコピーを削除します。

まったく新しいチャンクサーバを導入したときにも行われることは同じです。チャン
クサーバは自身の存在をマスタに伝え、それ以降、新しいチャンクの割り当てが新
しいサーバにもやってくるようになります。

こうした手順は完全に自動化されており、設定変更などは必要ないことに注
目してください。チャンクサーバが故障したまま放置されても、マスタはチャンクのコ
ピーを維持するので、すぐにマシンを入れ替える必要はありません。GFS全体のデ
ィスク容量が減ってきたときは、新しいチャンクサーバをネットワークにつなぐだけで、
マスタはそれを認識してGFSの容量が増加します。管理者はGFSの容量にだけ
気を配っていれば、あとはマスタがよきに計らってくれるはずです。

マスタの障害対策

最後は、マスタ自身の障害対策です。マスタが停止してしまったのでは、GFS
全体が機能しなくなってしまいます。

後述するように、マスタはGFSの外部のシステムによって常に監視されており、
何か問題が起こったときには別のマシンで新しいマスタが起動するようになってい
ます。するとマスタのアドレスが変更になりますので、そのときはDNSを書き換える
ことによって、各クライアントやチャンクサーバにマスタの交代が伝えられます。

問題はマスタの管理情報をどのように維持するかということです。GFSでは、1
台のマスタがすべてのファイルの情報を管理しており、新しいマスタにそれを引き継
がなければなりません。

故障してからでは手遅れですから、マスタは普段から管理情報を更新するとき
には、変更内容を「オペレーションログ」（Operation Log）と呼ばれるファイル
に記録するようになっています。もしマスタが突然停止したとしても、オペレーション
ログを読み返してその内容を再現すれば、故障する前のマスタの状態を取り戻せ
るはずです。

オペレーションログそのものが壊れてはいけないので、このファイルは別のマシンに
もコピーされます。マスタが切り替わるときには、このコピーを使ってマスタの管理情
報が復元されます。

オペレーションログに書き込まれるのはファイルの情報だけで、チャンクサーバの
情報については記録されません。各チャンクサーバがどのチャンクを管理しているか
ということはチャンクサーバ自身が知っていることなので、マスタが再起動したときに
はすべてのチャンクサーバからチャンクの情報が集められ、管理情報が再構築され
ます。

オペレーションログが大きくなり過ぎると管理情報を復元するのに時間が掛かっ
てしまうため、定期的に管理情報全体のメモリイメージがファイルに書き出され、
古いオペレーションログは削除されます。マスタが再起動するときには、まず最新
のメモリイメージを読み込んでから、それ以降のオペレーションログを反映させること
によって高速な状態の復元が実現されています。

読み書きともにスケールする
最後にGFSがどのような性能を発揮するものなのかを簡単に見ておきましょう。

図3.11は、GFS論文からベンチマークの結果を抜粋したものです。 は「読み
込み」、 は「書き込み」、 は「レコード追加」の結果をそれぞれグラフにしてあり
ます。いずれも16台のチャンクサーバに対して、クライアントを1～16台と変化させ
たときの読み書きの速度を表しています。

チャンクサーバはすべて1.4GHzのPentium IIIプロセッサ×2、2GBのメモリ、
80GBのハードディスク×2で構成されます。チャンクサーバとクライアントはそれぞれ
100MbpsのEthernetでスイッチに接続されており、両者の間が1Gbpsの回線で
結ばれています。

読み込み性能
クライアントとチャンクサーバとの帯域は1Gbps（＝125MB/秒）で、そ

れがネットワークの上限になります（図3.11のグラフの上側の線）。
GFS上の複数のファイルからランダムに大量のデータを読み込んだところ、

16クライアントの時点でおよそ94MB/秒（＝750Mbps）という転送レート

が得られています。クライアントが増えるに従い、ほぼネットワークの上限まで
読み込みが可能であるとわかります。

クライアントが増えるにつれて伸び率が低下していますが、これはチャンク
サーバの数が少ないために、同じチャンクサーバからの読み込みが発生しやす
いことが原因のようです。チャンクサーバが重なると処理が分散されにくくな
り、読み込み効率が低下します。

いずれにしても、十分な数のチャンクサーバとクライアントを用意できれば、
ネットワークの限界に近いスピードでファイルの処理を行えることが予想できま
す。
書き込み性能

書き込みは読み込みに比べるとずいぶん遅くなります。グラフは各クライ
アントが個別のファイルに書き込みを行ったときの結果ですが、読み込みと
比べるとおよそ1/2～1/3程度のレートになっています。

書き込みではチャンクの3つのコピーを作成しなければならないため、どうし
ても速度が低下することは避けられません。複数のチャンクサーバに処理が
またがるため、それだけチャンクサーバの負荷が重なる可能性も大きくなり、
クライアントが増えたときの伸び率の低下は、読み込み時よりもさらに大きく
なります。

それでもなお、読み込みの場合と同じように、チャンクサーバとクライアント
を十分に増やせば、十分に高い性能での書き込み処理を行うことは可能
になるでしょう。
レコード追加性能

最後のグラフは、複数のクライアントが1つのファイルにレコード追加を行っ
たときの結果です。グラフがまったく伸びていませんが、1つのファイルにレコー

ド追加を繰り返す場合には、特定のチャンクサーバに処理が集中してしまう
のでこれは当然の結果です。理想的には、グラフは真横に伸びるのがベスト
です。

クライアントが1つの場合、通常の書き込みとほぼ同じレートでレコード追
加が行えていることがわかります。つまり、レコード追加ではアトミックな書き
込みが行えるにもかかわらず、通常の書き込みと比べても速度の低下がほ
とんどなさそうです。

複数のファイルにレコード追加を行った場合には、通常の書き込みと同じ
ような伸び率で書き込み速度が向上すると考えられます。1つのファイルにだ
け書き込みを行っていたのでは速度が頭打ちになるため、大量のデータを書
き込む必要があるときにはファイルを分けることも考える必要がありそうで
す。

リカバリ時間

図3.11のグラフには表されていませんが、GFSはどれくらいの時間で障害から
回復するかというデータも興味深いものがあります。

チャンクサーバが完全に停止した場合、そこに含まれていたチャンクはコピーの数
が減少するので、新しいコピーを作らなければなりません。コピーの数が減っている
ときに新たなサーバが故障しては大変ですから、できる限り早急にコピーを増やす
ことが求められます。

Googleの試験では、200以上のチャンクサーバから構成されるGFSクラスタに
おいて、1つまたは2つのチャンクサーバを停止したときの振る舞いが計測されてい
ます。それぞれのチャンクサーバには15,000程度のチャンクのコピーがあり、それは
データ量にすると600GBにもなります。

1つのチャンクサーバを停止した場合、すべての新しいコピーが作られるまでに23
分必要だったとのことです。さすがにこれだけのデータが一度に失われると、すぐに
回復するというわけにはいきません。

問題は、2つのチャンクサーバが一度に停止した場合です。チャンクのコピーは3
つしかないので、2つのチャンクサーバが停止すると、コピーの数が一つだけ、という
チャンクがどうしても現れます。これは緊急事態です。

実際には、個々のチャンクは広く分散されているので、2つのチャンクサーバが停
止しても、2つのコピーを同時に失ったのは、15,000のうちの266のチャンクに留まっ
たようです。2つのコピーが失われたチャンクは、他のチャンクよりも優先的にコピー
されて、2分以内にはすべてのチャンクが2つ以上のコピーを持つところにまで回復
しました。

つまり、このGFSクラスタにおいては、もしも2つのチャンクサーバが同時に故障し
たとしても、それから2分以内に3つめのチャンクサーバが故障しない限りは、チャン
クのデータは失われることがないという実験的な裏づけが得られたことになります。

GFSにおいても、3つのコピーがすべて壊れてデータが失われる可能性はゼロで
はありませんが、緊急を要するデータほど優先的に扱うことで、その危険性を限り
なく小さくしているといえそうです。

データ管理の基盤として働く
GFSは大量のデータを読み書きするための基盤技術で、1台のマシンでは扱え

ない巨大なファイルを高速に転送し、そして安全に保管することができます。
GFSでは多数のマシンを接続することで、容量をいくらでも増やせるファイルシ

ステムを実現しています。システムのあらゆる部分で障害対策について考えられて
おり、どこで故障が発生しても全体として動作を続けられるようになっています。

GFSはいかに「大量のデータを効率よく転送するか」ということに特化した設計
になっており、データの書き換えはほとんど想定されていません。複数のクライアン
トが同じファイルに同時に書き込むと、データが混在してしまうことさえあります。レ
コード追加を使えばデータの混在を避けられますが、同じデータが重複して書き込
まれることもあるので注意が必要です。

こうした固有の特徴はあるものの、それによってGFSは高い読み書き性能を実
現しています。GFS単独ではできることできないことがあり、あらゆる用途に使える
わけではありません。しかし、GFSによってデータ容量には事実上の制限がなくな
り、さらにデータが失われる危険も小さくできることから、GFSはほかのさまざまな分
散システムの基盤として用いられています。

注1

1.3節内の「多数のダウンロードを同時に進める」を参照してください。

（本文に戻る）

注2

もしファイルのすべてのコピーが一度に壊れるとデータが失われますが、その確率は極めて低

いものになります。

（本文に戻る）

注3

WindowsであればNTFS、Linuxであればext3などが一般的です。

（本文に戻る）

注4

ハードディスクの物理的な障害などにより、チャンクのデータが壊れて読み込めなくなる場合

があります。

（本文に戻る）

注5

こうした処理は本来、OSによって行われるべきことなのですが、OSの不具合に悩まされた

結果として、Googleでは自前でチェックサムを照合することにしたそうです。

（本文に戻る）

3.2
Bigtable ──分散ストレージシステム

BigtableはGoogleにおけるデータベースのような存在です。Bigtableによって既
存のデータベースでは扱い切れないほどの大量のデータでも読み書きすることが可
能となり、Googleのさまざまなアプリケーションを支えています。

巨大なデータベースを構築する
GFSは大量のデータを一度に扱うのには向いていますが、小さなデータを読み

書きするのにはまったくの不向きです。つまりデータベースとしての用途にはまったく
別のシステムが必要であり、そうして開発されたのがBigtableです。

Bigtableは厳密にはデータベースではなく、「構造データのための分散ストレージ
システム」と呼ばれています。そこには既存のRDB（Relational Database）ほど
に行き届いた利便性や、馴染みのある操作方法はありませんが、Googleのよう
な大規模分散システムにおいて、複雑なデータ構造を効率的に読み書きできる
よう工夫されています。

Bigtableは、Web検索のために開発されたインデックス技術というわけではあ
りません。Web検索では、何よりも検索速度を重視して設計された専用のイン
デックス技術が用いられます。Bigtableはどちらかというと、効率優先のインデッ
クスやRDBではとても扱えないほどの「大量のデータにアクセスするための分散シ
ステム」です。たとえば、クローラが集めた膨大なWebページを格納するような目的
で用いられます。

Bigtableについては2006年の論文「Bigtable: A Distributed Storage
System for Structured Data」（下記Noteを参照）で詳しく説明されていま
す。本節では、Googleの各種アプリケーションがどのように大量のデータを管理し
ているのかを見ていきます。

Note
本節は次の論文について説明しています（以下、Bigtable論文）。

・「Bigtable：A Distributed Storage System for Structured Data」（Fay Chang／

Jeffrey Dean／Sanjay Ghemawat／Wilson C. Hsieh／Deborah A. Wallach／

Mike Burrows／Tushar Chandra／Andrew Fikes／Robert E. Gruber著、7th

USENIX Symposium on Operating Systems Design and Implementation

（OSDI）、2006、p.205-218）
URL http://labs.google.com/papers/bigtable.html

構造化されたデータを格納する
Bigtableが既存のRDBと比べて決定的に異なるのはそのデータモデル（Data

Model）、つまり「データをどのように格納するか」という考え方です。

テーブルの構造

BigtableにもRDBと同様に「テーブル」（Table）、「行」（Row）、「列」
（Column）といった概念はありますが、それが大きく拡張されています。

通常のRDBであれば、1つのテーブルは図3.12のような単純なモデルで表されま
す。すなわち、テーブルには行と列があって、特定の行と列を与えると1つの値が
定まるというシンプルなモデルです。

http://labs.google.com/papers/bigtable.html

一方、Bigtableではこれがずっと複雑になります（図3.13）。1つのテーブルに
複数の行があるところまでは同じですが、列の代わりに「行キー」と「コラムファミリ
ー」の二種類があります。行キーは行を特定するために用いられるキーです。コラム
ファミリーは列に似ていますが、これにはまだ先があります。

Bigtableで行キーとコラムファミリーが定まると、その先にまたテーブルのような構
造があります。そこでは、横方向に任意の数の列があり、それぞれの列がさらにタ
イムスタンプ（Timestamp）によって区別される過去のデータを保持しています。
このなかから、特定の列とタイムスタンプを指定すると、ようやく1つのデータにたど
り着くことができます。

ただし、このデータも単純な1つの値とは限りません。ここにはどんなデータでも自
由に書き込むことが可能です。それは1つの数値かもしれないし、文字列かもしれ
ない。あるいは、複数の値からなる複雑な構造データ（Structured Data）かも
しれません。

Bigtableではこのように、何段階も階層を重ねることで目的のデータを得られ
るようになっています。

Tip
Bigtableにおけるデータ型

Bigtableにおける個々のデータは、RDBでいうところのBLOB型です。つまり、特別な制限

なしに任意のバイト列を格納することが可能です。実際には、各データとしてはGoogle標準

のデータフォーマットである「プロトコルバッファ」（次章で説明します）を用いて、必要に応じて

外部定義された構造データが読み書きされます。

多次元マップ

このままではあまりにも複雑なので、少し見方を変えてみましょう。まず、コラムフ
ァミリーの特定の列を表すために「コラムキー」というものを考えます。行キーとコラム
キーを与えると、テーブルの中から1つの項目が定まります。各項目は過去のデータ

を保持しており、タイムスタンプを
さかのぼ

遡ることで古いデータを取り出すことができます
（図3.14）。

コラムファミリーの名前や数はあらかじめ定めなければなりませんが、コラムキーは
必要に応じていくらでも増やすことができます。行によってコラムキーの数が違って
いてもかまいません。つまりBigtableとは、列の数を自由に増減させられるテーブ
ルと見ることもできます。

タイムスタンプを用いるかどうかは、利用者が自由に決めることができます。まっ
たくタイムスタンプを使わないこともできますし、過去1週間のデータは残しておくと
いった指定も可能です。利用者が自分でタイムスタンプを指定して、自由にデー
タを読み書きすることも可能です。

もしもコラムキーもタイムスタンプも増やさなければ、BigtableのテーブルはRDB
のそれとほとんど変わりません。Bigtableでは、テーブルに行や列といった概念に
加えて、コラムキーやタイムスタンプといった新しい概念を加えることで、テーブルを
縦にも横にも伸ばしていけるのだと考えることができます。Bigtableではこれを「多
次元マップ」（Multi Dimensional Sorted Map）と呼んでいます。

多次元マップとは、つまりこういうことです。Bigtableでは「行キー」「コラムキー」
「タイムスタンプ」の3つを指定することで、1つのデータが得られます。行キーもコラム
キーもタイムスタンプも、どれも意味するところは異なるにせよ、それぞれ独立して
増やしたり減らしたりすることが可能です。

そこで、この3つを組み合わせたものを1つの大きなキーと考えて、それに対応す
る値を集めたものがBigtableにおけるテーブルであると見ることができます（図
3.15）。実際、Bigtableが内部で管理しているのは、概念的には、まさにこのよ
うなテーブルです。

図3.15を見ると、1つのものが思い浮かびます。第1章で説明した検索エンジン
のインデックス。あれもまた、1つのキーを与えると複雑な構造データを返すというし
くみでした。Bigtableとはまさに、検索エンジンのインデックスをさまざまな用途に
合わせて拡張した発展形なのです。

テーブルの例

具体的に見てみましょう。Bigtableにおけるテーブルは最初、行キーとコラムファ
ミリーによって定義されます。コラムファミリーには新しいコラムキーをいくらでも増や

すことができます。行キーとコラムキーを用いてデータを書き込むと、タイムスタンプが
自動的にセットされます。設定次第で、古いタイムスタンプのデータがしばらく残さ
れます。

たとえば、あるテーブルが1つの行キーと、2つのコラムファミリー「contents」と
「anchor」によって表3.2のように定義されるとします。

これはWebページの情報を集めたテーブルで、アドレスを行キーとして利用してい
ます。

「contents」は、Webページの内容です。Webページの内容は1つしかないの
で、コラムキーも1つあれば十分です。ただし、Webページは更新されるので、タイム
スタンプによって過去の内容を残しておくと役立つかもしれません。

「anchor」は、そのWebページが外部からどのようなアンカーテキストでリンクさ
れているかという情報です。リンク元は複数あるでしょうから、リンクされた数だけコ
ラムキーも増やしていきます。

完成したテーブルは、図3.16のような感じになります。

ここで行キーは"google.com"で、横方向はコラムキー、縦方向はタイムスタン
プを表しています。

コラムキー"contents:"は、コラムファミリー「contents」に含まれる唯一のコラム
キーです。"contents:"は3つのタイムスタンプによって、過去のデータを保持してい
ることがわかります。

一方、コラムファミリー「anchor」には、2つのコラムキ
ー"anchor:example.com"と"anchor:example.jp"が登録されています。それぞ
れ、"example.com"からは「Google」という名前で、"example.jp"からは「グー
グル」という名前で、このWebページがリンクされていることを示しています。

別の表現をするならば、Bigtableには実際には図3.17のような情報が格納さ
れていると考えることができます。

Bigtableのデータモデルが見えてきたでしょうか。

読み書きはアトミックに実行される
Bigtableを実際にどのように用いるのか見ていきましょう。
BigtableにはSQLのような手軽なデータベース言語は用意されておらず、基本

的には通常のプログラミング言語によってテーブルを操作しなければなりません。
BigtableはC++で実装されており、クライアント用のライブラリが提供されていま
す。開発者はこうしたライブラリを用いてBigtableを扱うプログラムを書くことになり
ます。

Bigtableの使い方については、ほとんど公開されている情報がありません。ここ
ではBigtable論文にあるサンプルコードを2つ引用します。

特定行に対する操作

まずリスト3.1はテーブルから1つの行を見つけて、その内容を書き換えるプログラ
ムです。

リスト3.1	特定行に対する操作（書き込み）※

// テーブルを開く

Table *T = OpenOrDie("/bigtable/web/webtable");

// 行に対する操作を事前に登録する

RowMutation r1(T, "com.cnn.www");

r1.Set("anchor:www.c-span.org", "CNN");

r1.Delete("anchor:www.abc.com");

// 登録した内容をアトミックに実行する

Operation op;

Apply(&op, &r1);

※　Bigtable論文のp.3より。

最初にテーブルを開いた後、RowMutationという抽象化を用いて、特定の行
に対する操作を登録しています。「抽象化」（Abstraction）というのは、実行
の詳細を隠して開発者に見せないようにする手法です。Bigtableがこれから具体
的にどのような手順で処理を行うかを開発者は知る必要がなく、単に「実行した
い内容をBigtableに伝える」ためにRowMutationを用います。

リスト3.1の例では、まず"com.cnn.www"を行キーとして検索を行い、見つかっ
た行に対して2つの操作を要求します。まず、コラムキー"anchor:www.c-

span.org"に対して、新しく"CNN"という値をセット（Set）します。続いて、既
存のコラムキー"anchor:www.abc.com"の値を削除（Delete）します。

これらの操作はすぐには実行されません。あくまでも、こうした操作を行いたいと
いうことを登録しているだけです。実際にそれが実行されるのは、最後のApplyが
呼ばれたときです。Operationによって実行パラメーターを与え、Applyによって登
録内容をまとめて実行します。

なぜこのような手順を踏むのかというと、一つにはトランザクション処理のためで
す。データを書き換えている途中でほかの人に邪魔されたくはありませんから、処
理の最初から最後まで一度に終えることが期待されます。また、途中でエラーが
発生したときには、何事もなかったようにデータを元に戻してほしいものです。

こうした処理を一度にまとめて行う、つまりアトミックに実行できるようにしてくれ
るのがRowMutationです。分散システムでアトミックな操作を行うには、複数の
マシンがどのように協調するか、障害の発生にどのように対処するか、といった難
しい問題について考えなければなりません。Bigtable は、このような実行の詳細
をRowMutationという抽象化によって隠すことで、開発者に分散処理を意識さ
せることなくデータの操作を行えるようにしているのです。

Tip
行単位のロック

RowMutationによって特定行の操作がアトミックに実行されるということは、つまり行単

位のロックが自動的に行われるということです。これはなかなか便利そうな機能ですが、一方

でこれがBigtableにおける唯一のロック機構でもあります。

Bigtableには、明示的にトランザクションを開始する機能はなく、複数行にまたがってロッ

クを行うこともできません。つまり、排他処理が必要なデータはすべて1つの行に収めなければ

ならないことになります。これはRDBであれば厳しい制約となるでしょうが、Bigtableでは1つの

行にかなり複雑なデータを詰め込めるので、ほとんどの場合に問題とならないようです。

例外的に、セカンダリインデックス（1つの行から別の行を参照する）に限っては、その操

作をアトミックに行うための特別な方法が提供されるようです。

特定行の読み込み

リスト3.2はテーブルの特定の行から、複数のデータを取り出すプログラムです。

リスト3.2	特定行の読み込み※

// テーブルを読み込むための抽象化

Scanner scanner(T);

// コラムファミリー "anchor" の全データを読むように指定

ScanStream *stream;

stream = scanner.FetchColumnFamily("anchor");

stream->SetReturnAllVersions();

// 行キー "com.cnn.www" からの読み込みを実行

scanner.Lookup("com.cnn.www");

// ここからイテレータによる繰り返し

for (; !stream->Done(); stream->Next()) {

 // 行キー、コラムキー、タイムスタンプ、値を表示

 printf("%s %s %lld %s\n",

 scanner.RowName(),

 stream->ColumnName(),

 stream->MicroTimestamp(),

 stream->Value());

}

※　Bigtable論文のp.3より。

こちらはScannerという抽象化を用いて読み込みを行っています。ここでもやは
り最初に読み込みたい内容を登録してから、実際の読み込みを実行します。

まず、ScanStreamというイテレータを通して、コラムファミリー「anchor」の全デー
タを読み込むよう登録しています。「イテレータ」（Iterator）というのは、繰り返し
実行することで次々とデータを取り出せるように設計された構造のことをいいま
す。ここでは、streamを通してデータを取り出せるようにしています。

最後に、"com.cnn.www"を行キーとして検索を実行（Lookup）し、イテレー
タを繰り返すことで各種の情報を取り出して表示しています。

ScanStreamに与える条件を変えると、取り出されるデータも変わります。たと
えば、タイムスタンプを見て「過去10日以内のデータ」のような指定を行うことも可
能です。ここでも一つ一つの操作が順番に実行されるわけではなく、Lookupとい
う1回の命令によって条件に合うデータがまとめて見つけ出されるため、大量のデー
タを効率よく取り出すことが可能となります。

以上の例ではごく限定的な操作しか行えませんが、こうした機能を追加してい
けば、データを読み書きする上でのひととおりのことを行えるであろうことは想像で
きます。

これらの例を見てもわかるように、Bigtableを利用する上では、それが分散シ
ステムであるということをとくに意識する必要もありません。少し風変わりではあり
ますが、「キーを用いて値を得る」という基本的な考え方は一般的なデータベース
と変わらないことがわかります。

テーブルを分割して管理する
Bigtableも分散システムなので、やはり複数のマシンにデータが分散されます。

1つの行が1台のマシンに収まらないほど大きくなることは考えにくいですが、テーブ
ルが大きくなり過ぎて分割しなければならないということは十分ありうる話です。

Bigtableでは、テーブルは複数の行を1つの単位として分割され、その一つ一
つが「タブレット」（Tablet）と呼ばれます。タブレットは複数のサーバに分散して
管理されます（図3.18）。これによって、テーブルをいくらでも大きくできるのと同
時に、多数のサーバによって負荷を分散することが可能となります。

テーブルの各行は行キーによって並べ替えられており、タブレットには連続する行
キーが含まれることになります。行キーを選ぶときには、このことを念頭に置いておく
必要があります。たとえば、Webページの情報を集めた図3.19のようなテーブルに
ついて考えてみましょう。

行キーにはドメインがそのまま書き込まれています。テーブルの各行は行キーによ
って並べ替えられるので、同じ"google.com"のWebページであっても、それぞれ
の行は離れた場所に位置していることがわかります。

行キーが離れた場所にあるということは、テーブルが大きくなるにつれて、それぞ
れの行が異なるタブレットに含まれる可能性も高くなるということです。つまり、そ
れぞれの行が異なるサーバによって管理されるかもしれません。

もしも同じドメイン（サブドメインも含む）のWebページをすべてまとめて処理す
ることがあるとすると、タブレットが異なると複数のサーバとの通信が必要となって
しまい、処理効率が低下する可能性があります。これを避けるためには、関連す
る行キーはなるべく連続するように選ぶことです。

たとえば、ドメインを「.」の位置で逆転させた、図3.20のような行キーを考えま
す。

図3.20の方法であれば、同じドメインのWebページは連続して並べられるの
で、すべてが同じタブレットに含まれやすくなるでしょう。

必要なデータをなるべく1カ所にまとめることをローカリティ（Locality、局所
性）を高めるといいますが、Bigtableの場合には、このようにキーの選び方がロー
カリティに影響を与えます。

分散システムの性能を高めるには、開発者はローカリティを意識したデザインを
心掛けねばなりません。Bigtableでは、キーの並びをどのようにするか、データの大
きさをどれくらいにするか、といったデザインを変えることで、開発者がある程度ロー
カリティをコントロールすることができるようになっています。

Tip
検索キーのデータ量を削減する

"www.google.com"を"com.google.www"のように並び替えることにはもう一つ大きな

効果があります。この並び替えによって、より多くの行キーのプレフィックスが一致するようにな

るという点です。キーのプレフィックスを一致させると、インデックス内部でそれらが共通項とし

てまとめられ、キーのデータ量削減と検索の高速化につながります。この点からしても、行キー

はなるべくプレフィックスを一致させられるように選ぶことが重要です。

多数のサーバでテーブルを分散処理
Bigtableも基本的に3つの要素から構成されます（図3.21）。全体を統括

する「マスタ」、タブレットを管理する「タブレットサーバ」、そしてデータを読み書きす
る「クライアント」です。

Bigtableはさらに、Googleのいくつかの基盤技術にも依存しています。
Bigtable全体にかかわる基本的な情報は、Chubby（注6）と呼ばれるロックサ
ーバによって管理されます。Chubbyは小容量ながら、GFSよりも便利で確かなフ
ァイルシステムを備えており、システム全体で共有すべき重要な情報はここに格納
されます。

テーブルの内容はGFSに保存されます。テーブルを書き換えるときには、GFSに
も必ずその情報が書き込まれるようになっており、最新のデータは常にGSF上に保
管されます。これによってデータが失われる心配を避けることができます。

Bigtableのマスタはすべてのテーブルとタブレット、そしてタブレットサーバの状態
を把握しています。マスタのおもな仕事は、タブレットの管理をどのタブレットサーバ
に任せるかを決めることです。タブレットが増減したり、特定のタブレットサーバに負

荷が集中したときには、マスタはタブレットの割り当てを変えることで全体のバラン
スをとるよう務めます。

タブレットサーバは、割り当てられたタブレットの情報をGFSから読み込みます。
データはGFS上にありますので、どのタブレットサーバでも任意のタブレットを扱うこ
とができます。タブレットサーバは定期的に自分の状態をChubbyに書き込み、マ
スタはChubbyを通してタブレットサーバの状態を確認します。マスタはタブレットサ
ーバと定期的に通信し、タブレットの割り当てなどに関する情報を伝えます。

一方、マスタとクライアントが通信することはほとんどありません。クライアントは
Bigtableに関する情報を最初にChubbyから取り出し、それ以降はクライアント
とタブレットサーバが直接データをやり取りします。したがって、マスタに負荷が集中
することはほとんどなく、どんなにクライアントが増えても効率的に処理を行うこと
が可能です。

GFSとメモリを使ってデータ管理 ── タブレットサーバ
タブレットサーバについて詳しく見ていきましょう。

タブレットの割り当て

Bigtable上のすべてのテーブルは100～200MB程度のタブレットに分割され、
それぞれの管理がタブレットサーバに任されます（図3.22）。GFSのチャンクとは
異なり、1つのタブレットは1つのタブレットサーバに割り当てられます。タブレットの
内容はすべてGFS上にあるので、タブレットサーバが故障したとしてもその内容が
失われることはありません。タブレットサーバが故障すると、マスタはタブレットの割
り当てを他のタブレットサーバへと変更し、新しいサーバがGFSからタブレットの内
容を復元します。

1つのタブレットサーバは、おおよそ10～1000個程度のタブレットの管理を任さ
れます。タブレットの内容はGFSに書き込まれますが、実際には効率化のためにタ
ブレットサーバがメモリ上で多くの処理を行います。

タブレットの構造

GFS上には、タブレットの元となる「SSTable」と呼ばれるファイルがいくつも保
存されています（図3.23）。SSTableとは、読み込み専用の単純な検索用テー
ブルです。SSTableはデータ部分とインデックス部分とからなり、インデックスを見る
ことで高速に検索を行えるようになっています。

SSTableのインデックスには、キーに対応するデータがどこにあるかがすべて書き
込まれています。データ部分は必要に応じてGFSから読み込めばよいので、タブレ
ットサーバはSSTableのインデックスだけをメモリに読み込んで検索に利用します。

1つのタブレットは複数のSSTableから構成されます。タブレットから検索を行う
ためには、そのすべてのSSTableのインデックスが必要となります。

SSTableは読み込み専用で、書き換えることができません。そこでタブレットサー
バはタブレットごとに、メモリ上に書き換え可能な「memtable」と呼ばれる小さな
テーブルを用意します（図3.24）。memtableの内容はタブレットサーバが故障
すると失われてしまうので、タブレットサーバは書き込みを行う前に「コミットログ」と
呼ばれるファイルをGFS上に作成します。コミットログには、タブレットを書き換えた
履歴が保存され、後からこれをを読み返せばmemtableを復元することが可能
となっています。

タブレットの構築は次のような手順で行います。まずはじめに、タブレットサーバ
は空のmemtableを作成します。続いて、タブレットを構成するSSTableを古い順
に開いて、そのインデックスをmemtableに取り込みます（❶、❷）。重複するキ
ーがあると新しいインデックスによって上書きされます。これによって、複数の
SSTableのインデックスが一つに合成され、memtableから一度検索するだけで、
どのSSTableのどの場所にデータがあるのか見つけられるようになります。

タブレットサーバは次に、コミットログに書き込まれた変更内容をmemtableに
適用します（❸）。これによって最新のmemtableが完成し、クライアントにサー
ビスを提供する準備が整います。

タブレットの読み書き

memtableが完成すると、そのタブレットを読み書きすることができるようになり
ます（図3.25）。

タブレットサーバが書き込み要求を受け取ると、次のような処理が行われます。
まず、書き込むべき内容がGFSのコミットログに追加され、障害が起こっても処理
を再現できるようにします（❶）。続いてmemtableが書き換えられ、クライアン
トに書き込み結果が伝えられます（❷）。

一方、読み込みは次のようになります。最初にmemtableからキーを検索し、
最近書き込まれたデータがあれば、それをクライアントに返します（ 1 ）。あるい
はSSTableにデータがあることがわかれば、GFSからデータを読み込んでそれを返し
ます（ 2 ）。memtableに何も見つからなければ、検索は失敗に終わります。

このように、読み書きのうち多くの部分がメモリ上で行われ、GFSとのやり取り
は最小限に抑えられています。書き込み時には、GFSへの書き込みが1回発生
するだけです。読み込みはメモリ上ですべて完結するか、あるいは最大でも

SSTableからの読み込みが1回発生するだけです。Bigtableではこのように効率
的なタブレットの読み書きが実現されています。

タブレットのコンパクション

タブレットへの書き込みを続けていると、すぐにmemtableが大きくなってメモリ
に収まらなくなることは容易に想像できます。これを避けるため、memtableが大
きくなると新しいSSTableにその内容が書き出されます。これを「マイナーコンパクシ
ョン」（Minor Compaction）といいます（図3.26）。

マイナーコンパクションでは、memtableに最近書き加えられた内容だけが新し
いSSTableとして書き出されます。したがって、個々のSSTableはタブレットの部分
的な内容しか含みません。タブレットが複数のSSTableから構成されるのはこのた
めです。

特定のキーが削除された場合には、値が失われたということがSSTableに書き
込まれます。データの追加も削除も含めて、SSTableをすべて読み込めばタブレッ
トを再構築できるようになるので、古いコミットログは必要なくなります。したがっ
て、マイナーコンパクションと同時にコミットログの内容もクリアされます。これにより
コミットログが大きくなり続ける心配もありません。

マイナーコンパクションを繰り返していると、今度はSSTableが増え過ぎるという
問題が出てきます。SSTableが増えると、ファイルが分散されて読み込み効率が
低下しますし、古いデータがずっと残されるのでディスクの無駄にもなります。

そこで今度は、SSTableが増え過ぎたときには、それらを統合して1つの
SSTableにまとめる作業が行われます。これを「メジャーコンパクション」（Major
Compaction）といいます（図3.27）。

マイナーコンパクションやメジャーコンパクションを繰り返しているうちに、SSTable
は次第に大きく（あるいは小さく）なっていきます。

タブレット全体のサイズが一定値よりも大きく（または小さく）なると、
Bigtableのマスタによってタブレットの分割（または統合）が指示されます。こう
して、タブレットは常に一定の効率で扱えるように保たれています。

テーブルの大きさに応じた負荷分散
すべてのテーブルは、最初は1つのタブレットから始まりますが、データが書き込ま

れるにつれてタブレットは大きくなり、そして分割されます。
クライアントはデータを読み書きするために、どのタブレットにアクセスすればいい

のか調べなければなりません。

タブレットの分割と結合

1つのテーブルは複数のタブレットに分割されるので、どのテーブルがどのタブレッ
トによって構成されるかを管理する必要があります。これをBigtableの「メタデー
タ」（Metadata）と呼びます。メタデータを見れば、テーブルの名前と行キーから
タブレットの場所がわかるようになっています（図3.28）。

メタデータには、各タブレットの最後の行キーが書き込まれています。これを見つ
けたい行キーと比較すれば、目的のデータがどのタブレットにあるのかがわかりま
す。行キーは順番に並んでいるわけですから、メタデータを順に見ていけば、目的
の行キーがどの位置にあるのか判断できます。

タブレットを分割するには、メタデータを書き換えます。分割して生まれた新しい
タブレットの情報をメタデータに書き加えれば、クライアントはそれ以降、新しいタ
ブレットを見に行くようになります。このとき、それぞれのタブレットのmemtableは
作り直す必要がありますが、SSTableを分割する必要はありません。なぜなら、

SSTableは読み込み専用であることから、個々のタブレットが同じSSTableを共
有して、それぞれに必要な部分だけを参照すればよいからです。いずれメジャーコ
ンパクションの段階で、それぞれのタブレット専用のSSTableが作られます。

タブレットからキーが削除されて小さくなったときには、これとは逆のことが起こり
ます。メタデータを書き換えることでタブレットの情報が一つにまとめられ、SSTable
も合わさって1つのタブレットに結合されます。このように、タブレットの情報はメタデ
ータを通して知ることができます。

タブレットへのアクセス

最後に、クライアントがタブレットにたどり着くまでのすべての過程を見ていきまし
ょう（図3.29）。

基本的には、B+-Treeというアルゴリズムと同様の考え方で目的のデータまで
のパスが考えられます。具体的には次のようなものです。

タブレットの情報は、メタデータによって管理されることは説明しました。メタデー
タもまた内部的には1つのテーブルとして扱われ、それが複数のタブレットに分割さ
れます。そうするとその分割されたメタデータを管理する上位のタブレット（ルート
タブレット）が必要となり、これがBigtableの起点となります。

ルートタブレットの場所（つまり、タブレットサーバのアドレス）は、Chubbyによ
って管理されます。クライアントはまずはじめに、Chubbyからルートタブレットの情
報を取り出します。ルートタブレットから目的のキーを検索すると、そのキーが含ま
れるメタデータタブレットの場所がわかります。メタデータタブレットからもう一度キー
を検索すると、目的のタブレットの場所がわかります。それから読み書きの要求を
行うことで、ようやく目的のデータへとアクセスできます。

Bigtableではこのように、必ず3段階の検索で目的のタブレットへと到達できる
よう設計されています。メタデータもまた普通のタブレットとして扱われるので、大き
さに偏りができないようマスタによって分割・結合され、均等に負荷が分散されま
す。こうして、上はメタデータから下はSSTableまで、Bigtableの各要素は常に一
定のバランスを保ち続けることで、性能が低下しないよう工夫されています。

しかしそれでも、タブレットを見つけるためには、多くの手間が必要であることに
は変わりありません。なるべく一度にアクセスするタブレットは少なくすべき、という
ローカリティの重要性がここからもわかります。

Tip
Bigtableの最大容量

メタデータの大きさは1つのタブレットにつき1KB（Kilobyte）程度になるようです。各タブ

レットのサイズが128MBだとすると、Bigtableで扱える最大のデータ量は次のようになります。

・メタデータタブレットの数
128MB/1KB＝227 / 210＝217

・ユーザタブレットの数
128MB/1KB * 217＝234

・ユーザタブレットの全容量
128MB * 234＝261＝2EB※

※　EB（
エ ク サ バ イ ト

Exabyte）＝1,000,000,000GB。

さまざまな工夫によって性能を向上
Bigtableでは読み書きの性能を上げるために、さらなる工夫が多数行われて

います。ここではその一部を取り上げて説明します。

ローカリティグループ

Bigtableを用いるアプリケーションによっては、同じテーブルでも利用するコラムフ
ァミリーにはばらつきがあります。たとえば、表3.2で取り上げたテーブルの例では、
Webページの本文（「contents」）とアンカーテキスト（「anchor」）の2つのコラ

ムファミリーがありました。アプリケーションによっては、このうち「anchor」だけしか必
要としないかもしれません。

コラムファミリー「contents」には大量のデータが書き込まれると予想されるの
で、それが「anchor」と同じSSTableに格納されたとすると、個々の「anchor」の
データはSSTableの中にまばらに点在することになります。そこから「anchor」だけを
取り出すことは、非常に効率の悪い作業となりかねません。

そこでBigtableでは、同時に利用される可能性の高いコラムファミリーを「ローカ
リティグループ」（Locality Groups）としてグループ分けし、グループごとに
SSTableを分離できるようになっています。ここでの例では、「contents」と
「anchor」とを異なるローカリティグループにすることで、それぞれのデータが異なる
SSTableへと格納されます。したがって、「anchor」だけを用いるときには一方の
SSTableだけを参照すればよいことになり、処理効率が改善されます。

また、頻繁に参照する必要のあるデータについては、特定のローカリティグループ
のSSTableを完全にメモリ上に読み込むことも可能です。これによってGFSから毎
回データを読み込む必要もなくなり、非常に高速なデータの参照が可能となりま
す。たとえば、Bigtableのメタデータは頻繁に参照されますので、これは実際には
すべてメモリ上に読み込まれた状態になっています。また、Google Earthのように
絶え間なく大量のデータを要求されるWebサービスでも、一部のテーブルがすべて
メモリに読み込まれているようです。

データの圧縮

Bigtableで読み書きするデータは、ローカリティグループごとに指定した方法で
自動的に圧縮・展開することが可能です。CPUによるデータの処理速度は、GFS

の入出力と比べて十分に高速なので、いかにデータを小さくまとめるかが性能に
大きく影響してきます。

Bigtableではしばしば2段階のテキスト圧縮が用いられるようです。第一段階
では、比較的大きなデータ領域から共通する文字列のパターンを見つけ出して、
重複するデータを大幅に削減します。第二段階では、データを一定サイズ
（16KB）ごとに圧縮する一般的な方法が用いられます。

同じローカリティグループには似たようなデータが書き込まれることが多いので、
第一段階の圧縮が大きな効果を発揮するようです。たとえば、Webページの本
文をこの方法で圧縮すると、単純な圧縮方法と比べてデータ量が数分の一にも
なるようです。

どのような圧縮方法が有効かは、格納するデータのパターンによって異なりま
す。たとえば画像データなどは元々圧縮されているので、Bigtableによる圧縮は
行わないようにすべきです。

読み込みのキャッシュ

Bigtableでは、いかにGFSとのやり取りを減らすかが性能向上の鍵となりま
す。データの読み込みについては、毎回SSTableにデータを取りにいくのではなく、
できる限りタブレットサーバのメモリ上にデータを残しておく（キャッシュする）ことで
性能が改善します。

タブレットサーバは二種類の読み込みキャッシュを持っています。一つは「スキャ
ンキャッシュ」（Scan Cache）といい、最近アクセスされたキーに対応するデータ
を残しておくものです。これによって、同じキーが何度も利用されるような場合の読
み込み性能が向上します。

もう一つは「ブロックキャッシュ」（Block Cache）と呼ばれます。こちらは、
SSTableからデータを読み込むときに、毎回少しのデータを取り出すのではなくて、
ある程度まとまった量（標準では64KB）を読んでタブレットサーバ上に残してお
きます。これによって、連続するデータが次々と読まれるときにGFSにアクセスする
回数が減少し、効率的にデータを返せるようになります。

コミットログの一括処理

書き込みについても改善が必要です。読み込みと違って、データを書き込むと
きには必ずコミットログのためにGFSへのアクセスが必要です。これは避けられませ
ん。

GFSへの書き込みには時間が掛かるので、大量の書き込みが要求されても処
理が遅くならないよう工夫しなければなりません。それにはコミットログに一度に書
き込む量を増やすことです。

クライアントから一度に大量の書き込み要求を受けた場合や、多数のクライア
ントから同時に書き込み要求された場合などには、それらを一つ一つ順に処理す
るのではなく、すべてまとめてコミットログへと記録されます。これによって、1回の書
き込み速度こそ上げられませんが、大量の書き込み要求があった場合にでも性
能の低下を防ぐことが可能となります。

タブレットサーバはさらに、障害時に備えて2つのコミットログを用意しています。
GFSでの書き込み時に障害が起こると、障害から回復するまでしばらく待たなけ
ればなりません。もしも、一方のコミットログへの書き込みに時間が掛かるような
ら、そちらは中断してもう一方のコミットログへと切り替えます。GFSでは異なるファ
イルは異なるチャンクサーバによって管理されるので、よほどのことがない限りはどち
らか一方のコミットログにはすぐに書き込めるはずです。

Bigtableではこのようにして、書き込みに手間取る可能性もできる限り排除し
ています。

使い方次第で性能は大きく変わる
それではBigtableの性能を見ていきましょう。図3.30のグラフは、タブレットサー

バの数を増やしたときに、Bigtableの性能がどのように変わるかを調べたもので
す。クラスタは全部で1786台のマシンで構成され、そのすべてでGFSが動いていま
す。各マシンには2つのデュアルコア（Dual Core）CPUと2つの400GBハードディ
スクが搭載されており、それらが1Gbpsのネットワークで結ばれています。

タブレットサーバの数に合わせてクライアントの数も増加させながら、1000バイト
のデータをさまざまな方法で読み書きしています。そのとき、Bigtableクラスタが全
体としてどれくらいのデータを処理できるのかが計測されています。

読み込み性能

一番上の実線（スキャン）は、リスト3.2の例のところで紹介したScannerとい
う抽象化を用いてデータを読み込んだときの性能です。Scannerでは、条件に一
致するデータが連続して読み込まれ、それがなるべくまとめてクライアントに送られ
るために、非常に高速な読み込みが可能となります。図3.30のグラフでは、タブレ
ットサーバとクライアントがそれぞれ500台のときに、毎秒4GB（1000バイト×4M
回/秒）のデータを読み込んでいることがわかります。

二番めの破線（ランダムリード（メモリ上））は、SSTableを完全にメモリ上
に読み込むことで、GFSへのアクセスをなくしたときの読み込み性能です。こちらは
Scannerを用いるのではなく、毎回異なるキーを指定してランダムにデータにアクセ
スしていますが、それでもScannerと大きく変わらない高速な読み込みが可能で
あることがわかります。

中央の破線（シーケンシャルリード）と、一番下の破線（ランダムリード）は、
通常の方法でキーを指定して個別にデータを読み込んだときの性能です。こちら
はGFSへのアクセスが必要なので、上方の2本と比べて読み込み性能はずいぶん
劣ります。

中央の破線（シーケンシャルリード）は連続するキーを読み込んだ場合で、こ
れはScannerを用いて読み込みを行うことと似ていますが、見つかったデータが毎
回クライアントに送られるために効率が低下します。連続する読み込における
Scannerの性能の高さがわかります。

下の破線（ランダムリード）はランダムにキーを指定した場合で、他と比べると
極端に遅くなっています。連続するキーの場合には、SSTableのブロックキャッシュ
が効いて性能が向上するのですが、完全にランダムなキーでは毎回GFSからの読
み込みが必要となるため、大量のネットワーク負荷が発生します。そのため、ある
程度マシンが増えるとネットワークがボトルネックになって性能が上がらなくなりま
す。

書き込み性能

中央の2本の実線（ランダムライト、シーケンシャルライト）は、書き込みの速
度です。一方はランダムなキーを、もう一方は連続するキーを指定して書き込みを
行っています。どちらの場合にも、コミットログに書き込んでからmemtableを変更
するという手間は同じなので、大きく性能は変わりません。こちらも毎回クライアン
トへと結果を返しているので、連続するキーで読み込みを行う場合と大きく性能
は変わらないことがわかります。

こうしてみると、「ランダムな読み込みだけが極端に遅い」ことが目立ちます。書
き込みにおけるコミットログではGFSへのアクセスをまとめられますが、ランダムな読
み込みでは毎回GFSからデータを転送しなければなりません。このようなデータアク
セスを必要とするアプリケーションでは、二番めの破線（ランダムリード（メモリ
上））のようにデータをすべてメモリに読み込んでしまうか、それができなければブ
ロックキャッシュのために読まれるデータを小さくすることで、ネットワークの負荷を抑
えて性能を向上させることが可能となるようです。

それ以外の読み書きでは、マシンを増やすにつれておおむね性能が向上してい
ますが、台数が増えるにつれて伸びが低下してきます。これは、台数が増えるほど
にタブレットサーバの負荷に偏りができてしまい、1台あたりの性能が向上しなくな

ることが一つの原因のようです。恒常的な負荷の偏りはマスタによって調整されま
すが、短期的な偏りについてはどうしようもないので、このあたりはアプリケーション
の設計も含めてチューニングが必要となるところでしょう。

大規模なデータ管理に利用されるBigtable
Bigtableは、Googleの大規模な分散システムにおいて、データベースと同等の

役割を果たす技術であることがわかりました。既存のRDBと比べるとSQLのような
手軽なデータベース言語もなく、独特の扱いが求められることになりそうですが、
非常に多くのマシンで分散して処理を行えることから、データが膨大にある場合に
でも効率的に読み書きすることが可能となります。

Bigtableは初代Googleのインデックスと同様に、キーを何段にも重ねてデータ
にアクセスしたり、複雑な構造データを値として格納するよう設計されています。そ
れは、「検索エンジンによって培われたインデックスの考え方」が色濃く反映された
分散ストレージであるといえるでしょう。

BigtableはWeb検索に用いられるインデックスというわけではありません。検
索クラスタではデータの書き込みが必要なく、何よりも応答速度が要求されるた
め、もっとシンプルで高速なインデックスが向いています。

Bigtableはむしろ、インデックスを生成する側で用いられるようです。たとえばク
ローラが集めたWebページや、そこから抜き出したタイトルやアンカーテキストなどの
基本的な情報はBigtableに格納され、日々の研究やデータ処理のために利用
されているようです。

Bigtableは検索エンジンのためだけの技術ではなく、Googleが提供するさま
ざまなアプリケーションで用いられています。たとえばGoogle Analytics、Google
Base、Google Earth、Google Finance、パーソナライズド検索（検索結果を

利用者に合わせてカスタマイズする機能）など、Googleにおける多くの情報が
Bigtableによって管理されているとのことです。

Bigtableの開発は現在も進行中で、地理的に異なるデータセンターの間でテ
ーブルを共有するといったことも検討されているようです。今後も、より便利で大規
模な分散ストレージシステムへと発展を遂げることでしょう。

注6

Chubbyについては、次の3.3節で取り上げます。

（本文に戻る）

3.3
Chubby ── 分散ロックサービス

Chubbyは小容量ながらも、高い信頼性といくつかの便利な機能を提供する分
散ストレージです。Chubbyは単体で使われるだけでなく、GFSやBigtableなどの
他の分散システムを構築するための基盤としても用いられます。

分散ストレージはここから始まる
GFSやBigtableといったGoogleの分散システムは、その最も基本となる部分

でChubbyを利用しています。Chubbyは「小さな分散ファイルシステム」で、ほか
にはない便利な機能を備えています。

Chubbyの提供する機能は「ロックサービス」（Lock Service）と呼ばれてい
ます。これは分散システムにおいて排他制御（ロック）を行うしくみです。複数の
システムが共通のリソース（同一ファイルなど）を利用するときには、データが壊
れることのないように排他制御を行わなければなりません。

Chubbyにはファイルやロックの状態が変わったときに、それをただちににイベン
トとして伝える機能もあります。こうした分散処理の基本となるしくみがあることか
ら、Chubbyはより大きな分散システムを構築するための要素技術として用いら
れます。

Chubbyについては、2006年の論文「The Chubby lock service for
loosely-coupled distributed systems」でその全体設計がまとめられ、2007
年の論文「Paxos Made Live ─ An Engineering Perspective」（Invited

Talk、2006）でより詳細な実装面について取り上げられています。Chubbyは複
雑なシステムですが、ここではその大まかな機能としくみを見ていくことにします。

Note
本節では次の論文について説明しています（以下それぞれ、Chubby論文、Paxos Made Live論

文）。

・「The Chubby lock service for loosely-coupled distributed systems」（Mike

Burrows著、7th USENIX Symposium on Operating Systems Design and

Implementation（OSDI）、2006）
URL http://labs.google.com/papers/chubby.html

・「Paxos Made Live - An Engineering Perspective」（2006 Invited Talk）、

（Tushar Deepak Chandra／Robert Griesemer／Joshua Redstone著、

Proceedings of the 26th Annual ACM Symposium on Principles of

Distributed Computing、2007）
URL http://labs.google.com/papers/paxos_made_live.html

5つのコピーが作られる
Chubbyは大まかにいうと、次の3つの機能を備えたシステムです。

・ファイルシステム
・ロックサービス
・イベント通知

GFSと同様に、Chubbyを使うとネットワーク経由でファイルを読み書きできま
す。GFSとは違ってChubbyのファイルは非常に小さく、その大部分は1KB未満と
いうものです。

http://labs.google.com/papers/chubby.html
http://labs.google.com/papers/paxos_made_live.html

これはファイルシステムというよりは、Windowsのレジストリのようなものと考え
るとわかりやすいかもしれません。Chubbyに書き込まれるのは各種の設定や、あ
るいはサーバのアドレスといった情報です。これらのデータは多数のマシンにコピーさ
れ、いつでも読み出せるようにGFS以上の障害対策が行われます。

すべてのChubbyファイルはロックすることが可能です。そのため、ファイルの読み
書きは誰にも邪魔されることなく安全に行うことができます。ロックはファイルの読
み書きだけでなく、外部リソースの保護や、イベントの通知など、さまざまな応用の
ためにも利用されます。

Chubbyファイルは各種のイベントを伝えるためにも用いられます。ファイルの作
成や削除、内容の書き換え、障害の発生などに合わせて、それに応じたイベント
が発生します。Chubbyファイルを監視しておくことで、Googleのシステム全体で
いま何が起こっているのかを知ることができるようになります。

Chubbyは他の分散システムには依存しない基盤技術であるため、そのしくみ
も特徴的です（図3.31）。Chubbyは通常、5台のマシンから構成されます。こ
の集まりを「Chubbyセル」（Chubby Cell）と呼びます。

セルの各マシンは「レプリカ」（Replica）と呼ばれ、そのすべてが同等のデータ
ベースを保持しています。レプリカの中から全体をまとめる「マスタ」が選ばれます
が、すべてのレプリカは同じデータを持っているのでいつでもマスタになることができ
ます。選ばれたマスタに障害が起きたときには、他のレプリカが新しいマスタになり
ます。

ファイルの読み書きはすべてこのマスタを通して行われます。ファイルに書き込ま
れた内容は、ただちに他のレプリカにもコピーされます。マスタには多くの負荷が集
中しますが、Chubbyファイルは書き込まれるよりも読み込まれることのほうが圧
倒的に多いため、Chubbyは読み込みのために最適化されています。

Googleにおける多くのサーバは何らかの形でChubbyを利用しており、1つの
Chubbyセルには同時に数千～数万のクライアントがアクセスします。こうした
Chubbyセルはいくつでも作ることができ、すべてのデータセンターに1つまたは複数
のChubbyセルがあるようです。

ファイルシステムとして利用する
Chubbyはファイルシステムとしてのインタフェースを持ち、GFSと同様にファイル

名を使ってデータへとアクセスします。

ファイルへのアクセス

Chubbyのファイル名は/ls/<セル名>/wombat/pouchのように表されます。
lsは「Lock Service」の略で、固定文字列です。<セル名>はChubbyセルに付
けられた任意の名前で、/wombat/pouchはセル内での任意のファイル名です。

セル名をDNSに尋ねると、そのすべてのレプリカのアドレスが返されます。
Chubbyクライアントはいずれかのレプリカに現在のマスタのアドレスを問い合わ
せ、続いてマスタにファイルを要求することになります。

一方、GFSのファイルは/gfs/<クラスタ名>/<ファイル名>のように表されます。
ChubbyとGFSの名前空間は統合されており、同じツールを使ってどちらのファイル
にでもアクセスできるようです。ただし、ディレクトリをまたいでファイルを移動させる
ことはできません。シンボリックリンクのような概念もありません。

Chubbyでは一時ファイルを作ることも可能です。一時ファイルは、誰もそのファ
イルを使わなくなると自動的に削除されます。各種のサーバは一時ファイルを作
成することで、自分がいま起動していることを他のプロセスに知らせることができま
す。

Tip

Chubbyのデータベース※

Chubbyが利用するローカルデータベースとしては、以前はBerkeley DBを利用していたとの

ことですが、最終的にはレプリケーションに重点を置いたコンパクトなデータベースを自分たちで

開発しているようです。

※　Chubbyのデータベースについては、Chubby論文のp.9「Database implementation」

で説明されています。

localセルとglobalセル

特別なセル名としてlocalという名前があり、これは今いる場所（同じ部屋や
同じ建物）のChubbyセルを表します。近くのセルにアクセスしたい場合に便利
な名前です。

もう一つ特別な存在としてglobalというセルがあります（図3.32）。これは世
界中からアクセス可能なChubbyセルで、そのレプリカもデータセンターをまたいで
広く分散されています。

globalセルは、それ以外の各セルから簡単にアクセスできるようにミラーリングさ
れます。/ls/global/master以下に書き込まれたファイルは、他のセルから
は/ls/<セル名>/slaveという名前で読み出すことができます。ミラーリングされたフ
ァイルは近くのセルから読み込まれるので高速です。

globalセルのファイルを書き換えると、イベントのしくみによってミラーリング先に
もそれが伝えられ、ただちにすべてのセルが更新されます。ネットワークに問題がな
い限りは、1秒以内に全世界へのミラーリングが完了するとのことです。

globalセルに書き込まれるのはシステム全体にかかわる情報で、たとえば次の
ようなものです。

・各種のアクセスコントロール
・どこで何のサービスが起動しているかという情報
・Bigtableのメタデータがどこにあるか、といった情報
・その他、さまざまなシステムの設定ファイル

ファイルの読み書き

Chubbyではマスタがすべてのデータを保持しており、ファイルの読み書きはすべ
てマスタに対して要求します。1つのファイルサイズは最大でも256KBと小さく、1回
の転送で読み書きが完了します。部分的にデータを読んだり書いたりすることは
できません。ファイルを書き換えるときには、新しいデータをまるまる送る必要があり
ます。

ファイルの内容はローカルのデータベースに記録されます。データベースは他のレプ
リカに対してもレプリケーション（Replication、複製）されるようになっており、書
き込まれたデータはただちに他のレプリカからも読み出せるようになります。

データベースは数時間ごとにGFSのファイルとしてバックアップされます。このとき、
バックアップはそのChubbyセルが動いているのとは別の建物に対して送られま
す。これはバックアップの安全性を高めるためでもありますし、バックアップが自分
とは異なるChubbyセルを用いるようにするためでもあります。

すべてのファイルやディレクトリにはACL（Access Control List）を設定するこ
とができます。ACLでは読み込み、書き込み、変更のそれぞれについて、それを許
可するユーザ名のリストを定義します。ChubbyのACLは、単にChubbyファイルの
保護のためだけでなく、同じようにACLを必要とする他のアプリケーション（たとえ
ばGFS）から利用することもできます。

Tip

ご利用は計画的に※

Chubbyのファイルには少量のデータだけを保存することが想定されており、一般的なアプ

リケーションのデータをここに書き込むべきではありません。将来的に大きくなる可能性のある

データは、GFSなど他のファイルシステムに保存すべきです。

ところが、Googleで利用されているモジュールの一つが、かつてChubbyにデータを格納す

るようになっており、その利用が広がるにつれてChubbyに大量のデータが読み書きされてしま

うことがあったそうです。実に全容量の半分以上がそのモジュールの利用で埋められてしまった

とか。

問題はここからで、一度広く使われるようになったものを置き換えるのは簡単ではなく、そ

れを置き換えるのに約1年という時間が必要になってしまったとか。Chubbyを利用するときに

は、データが大きくなり過ぎないかを設計段階から注意しないといけませんね。

※　このエピソードはChubby論文のp.13「Abusive clients」に書かれていたものです。

ロックサービスとして利用する

すべてのChubbyファイルはロックすることが可能です。これによってほかの分散
システムは、起動時の排他制御の問題を解決することができます。

ファイルのロック

Chubbyのロックには共有ロック（Lock in Shared Mode、リードロック：
Reader Mode）と排他ロック（Lock in Exclusive Mode、ライトロック：
Writer Mode）の二種類があります（図3.33）。ファイルを共有ロックすると排

他ロックを防ぐことができるため、ファイルの内容を書き換えられたくない場合など
に使えます。ファイルを排他ロックするとほかの誰もそれをロックできなくなるので、
ファイルを安全に書き換えるために使えます。

実際には、これらのロックを無視して読み書きするこも可能です。Chubbyのロ
ックはクライアント同士が協調して動くときのみ意味を持つもので、強制力はあり
ません。これは一般にアドバイザリロック（Advisory Lock）といわれるもので
す。

ファイルをロックできるのは、ACLによってそのファイルに書き込み権限を持つユー
ザのみです。したがって、誰でも自由にファイルをロックできるものではなく、誰がど
のようにロックを制御するかということは慎重に設計する必要があります。

外部リソースのロック

Chubbyのロックを使って、外部のリソースを安全に利用することも可能です。
たとえば、GFSのファイルはそのままではロックすることができませんが、Chubbyと

組み合わせることでそれを間接的にロックできるようになります（Chubbyが「ロッ

クサービス」といわれる
ゆ え ん

所以です）。
外部リソースのロックには、いくつかのパターンが考えられます。ここでは図3.34

のようなケースを考えてみましょう。

いま、多数のクライアントが共有リソース（ファイルなど）にアクセスしようとして
います。リソースは複数のサーバに分散されており、クライアント側で最初にロック
を獲得しなければなりません。クライアントはまずChubbyによってリソースの排他
ロックを得ます（❶）。これでしばらくほかのクライアントはそのリソースにアクセス
できなくなるはずです。

クライアントは安心してサーバに要求を送ります（❷）。サーバは要求に従って
処理を行い（❸）、結果をクライアントに返します（❹）。後はこれをリソースの
利用が終わるまで繰り返し、最後にロックを解除します（❺）。

こうした一連の手順により、リソースそのものにロックの機能がなかったとしても、
クライアントは安全にそれを利用できるようになります。ただし、すべてのクライアン

トが同じようにChubbyを利用する必要があるので、その点は注意が必要です。
このしくみはうまく働きそうですが、一つ問題があります。分散システムでは、い

つどこで障害が発生するかもしれません。もしもクライアントがリソースをロックした
直後に停止したとすると、ロックが解除されなくなってしまう恐れがあります。

こうした問題を避けるため、Chubbyは定期的にクライアントと通信を行うよう
になっており、クライアントが意図せず停止したときには、一定時間（注7）で自
動的にロックが解除されるようになっています。

シーケンサ

さらに複雑な問題があります。クライアントが停止したとき、すでにサーバに要求
が送られていたとしたらどうでしょうか？

図3.35のような状況を考えます。まず、クライアントがリソースをロックし
（❶）、サーバに要求を送ります（❷）。しかし、サーバはほかの仕事に忙しく
て、その処理を後に回します。そうしている間にクライアントが異常終了し、ロック
が解除されます。

しばらくしてサーバは❷の要求を処理しようとしますが、すでにロックは解除され
ており、安全ではありません。サーバにはこのような状況を知る手段が必要です。

この問題を解決するため、Chubbyでファイルをロックするときには、同時に「シ
ーケンサ」（Sequencer）と呼ばれるデータを作ることができるようになっていま
す。シーケンサは単なる文字列で、通信相手に簡単に渡せます。

ここでは❷の要求と同時にシーケンサを渡しておき、サーバは実際に処理を行う
前にそれがまだ有効であるかをChubbyに確認します（❸）。シーケンサが無効
であれば、すでにその要求は安全ではないので、処理を中止してエラーを発生さ
せます。

Chubbyで外部リソースを安全にロックするにはシーケンサの利用が推奨されま
すが、これにはサーバ側での対応が必要です。実際にはすべてのサーバがこれに対
応しているわけではないので、トラブルを減らすための次善の策として、ロックが失
なわれたときにはしばらく（1分程度）誰も同じロックを獲得できないことになって

います。この猶予期間のうちにサーバが処理を終えられるなら、リソースの安全性
は保たれることになります。

フェイルオーバー

問題はほかにもあります。Chubby側で障害が起きた場合です。Chubbyセル
のマスタが停止した場合、他のレプリカがマスタに切り替わります。Chubbyはこの
状況でもできる限りエラーを出さずに、クライアント側で障害発生を意識しないで
処理を継続できるようにします。ファイルのロック状態もそのまま新しいマスタに引
き継がれます。

ただし、例外がないわけではありません。マスタの切り替えに時間が掛かって、
クライアント側でタイムアウトすることもありますし、古いマスタから送られるべきで
あったイベントが失なわれることもあるようです。Chubbyとて障害発生の可能性
はあり、開発者には適切な対応が求められそうです。

イベント通知を活用する
Chubbyではファイルを監視してさまざまなイベントを受けとることができます。こ

れによって、多数のプロセスが手軽な情報交換を行えるようになります。

イベント

Chubbyファイルを作成したり、その内容を書き換えると、それを監視している
クライアントにイベントが送られます。これは図3.36のようなことに利用されます。

Chubbyでディレクトリを監視すると、そこにファイルが作られたり消されたときに
イベントが発生します（図3.36 ）。Chubbyでは、プロセスが停止すると自動
的に削除される一時ファイルを作ることができますが、これを活用すると起動中の
サーバリストが得られます。

各サーバは起動時に特定のディレクトリにファイルを作って、自分のアドレスを書
き込むようにしておきます。それらのサーバを束ねるマスタプロセスは、そのディレクト
リを監視することによって、各サーバの起動や終了を知ることができます。「3.2　
多数のサーバでテーブルを分散処理」で説明したとおり、これは実際にBigtableが
タブレットサーバを監視している方法です。

別の応用として、マスタプロセスが自分自身のアドレスをサーバ側に伝えるのに
も使われます（図3.36 ）。Googleの分散システムでは、複数のマスタプロセ
スが1つのファイルを取り合うようになっています。それらはファイルを排他ロックしよ
うとし、ロックに成功したプロセスが実際にマスタとして働きます。ロックが得られな
かったものはバックアップとして待機します。

マスタが停止するとロックが解除されるので、バックアップのプロセスが排他ロッ
クを得られるようになります。これによってマスタが交代します。マスタは自分のアド
レスをファイルに書き込むようになっており、それを読むことで現在のマスタがどこに
いるのかを知ることができます。

各サーバはこのファイルを監視しておくことで、マスタが切り替わったときにはそれ
がイベントとして伝えられ、常に最新のマスタのアドレスを知ることができるようにな
ります。

キャッシュ

Chubbyのファイルを読み込むと、その内容はクライアント側でキャッシュされる
ようになっています（図3.37 ）。そのためアプリケーションは同じファイルから何
度読み込みを行っても、ただちにデータを取り出せます。

ファイルの内容が書き換えられるときには、Chubbyはまずすべてのキャッシュを
破棄するように通知します（図3.37 ）。ファイルの書き換えはその後で行われ
るので、クライアントがキャッシュから古い内容を読んでしまうことはありません。

アプリケーションが次に同じファイルを読み込むときには、再びChubbyセルから
最新の内容を取り寄せます。Chubbyファイルからの読み込みは必要なときだけ
行われるように効率的な設計となっているため、アプリケーションは一度開いたフ
ァイルを繰り返し読み込むようにさえしておけば済むようになっています。

これは前述のように、マスタのアドレスを調べるのに便利な実装です。Chubby
を利用するアプリケーションでは、単に繰り返しファイルからデータを読み出すように
さえ作っておけばよく、キャッシュがあればキャッシュから、ファイルが書き変わってい
ればChubbyセルからデータが読まれ、マスタがどこにいるのか常に最新の情報が
得られます。

Columun
DNSを置き換える

Chubbyを使ってアドレスを調べるのはとても便利で効率的な方法なので、今やGoogle

ではChubbyをDNSの代わりとして広く用いているとのことです。各マシンはChubbyにファイ

ルを1つ作り、そこに自分のアドレスを書き込みます。それを見ればそのマシンのアドレスがわ

かるし、アドレスが変わったときにはすぐにイベントとして伝えられます。

DNSではアドレスの有効期間をTTL（Time-To-Live）として設定します。これが長いと

アドレスの変更がすぐに伝わらず、かといって短くするとDNSへの問い合わせが頻繁に発生

します。Googleのように大量のマシンがある環境では、TTLが短いとDNSに大量の負荷が

掛かります。たとえば3000台のマシンが相互に通信するような環境で、TTLを60秒にする

と、DNSには毎秒15万もの問い合わせがくることになります

（3,000×3,000÷60=150,000）。

一方、Chubbyを用いた場合には、問い合わせが発生するのはアドレスが変わったとき

だけです。しかもアドレスの変更はすぐに伝わります。これはDNSでは得られない利点です。

とはいうものの、すべてのソフトウェアがChubbyでアドレスを調べられるわけでもありませ

ん。既存のソフトウェアはやはりDNSを利用するので、DNSを廃止するわけにもいきません。

そこでGoogleでは、Chubbyによってアドレスを調べるDNSサーバを開発しており、Chubby

あるいはDNSのどちらでも好きなほうを利用できるようにしているとのことです。

マスタは投票で決められる
本節のはじめで紹介したとおり、Chubbyセルは5つのレプリカから構成され、そ

のなかから1つのマスタが選ばれます。ここで問題となるのは、マスタをどのように選

ぶかということです。
Chubby以外の分散システムでは、Chubbyの排他ロックを使ってマスタを決

定します。しかし、Chubby自身が同じ方法を使うことはできません。Chubbyの
マスタは、レプリカ自身の合意によって決定されます。

さまざまな障害

まずは起こりうる問題を整理しておきます。Chubbyでは図3.38のような障害
が考えられます。

正常時
正常時には1つのレプリカがマスタとして動いています。マスタを含めたすべ

てのレプリカは互いに連絡をとり合っており、全員がセルの状態を共有して

います。個々のレプリカはネットワーク的に離れた場所に分散して配置され、
1カ所の障害によってシステム全体が停止することのないようになっています。
マスタが故障

マスタが故障、あるいは回線の切断などによって通信が途絶えると、それ
以外のレプリカから新しいマスタが選ばれて仕事を引き継ぎます。すべてのレ
プリカは同じデータを共有しているので、いつでもマスタになることができます。

定期的なメンテナンスや、一時的なネットワークの遮断などの場合、古い
マスタはすぐに復活するかもしれません。そのときすでに新しいマスタが選ば
れているかもしれないし、そうでないかもしれません。いずれにしても古いマス
タはただのレプリカに戻ってセルのメンバーに加わります。
半数以上が故障

レプリカが半数以上壊れると、Chubbyセルは活動を停止します。この場
合、すべてのChubbyクライアントは処理を続けられなくなり、それに伴って
他の分散システムも停止します。これはあってはならないことです。

システム停止の危険を減らすため、いずれかのレプリカが故障したままし
ばらく復活しないようであれば、自動的に予備のマシンで新しいレプリカが
動き始めます。新しいレプリカは既存のレプリカから最新の情報を受け取
り、その後DNSが書き換えられてセルのメンバーとして加わります。
レプリカとの通信断

ネットワークの障害によって、半数未満のレプリカとの通信が途絶えただ
けであれば、Chubbyセルはそのまま動作を続けます。通信の途切れた側か
ら見るとマスタがいなくなりますが、レプリカの数が半数に満たないのでそこで
新しいマスタが立ち上がることはありません。
マスタとの通信断

逆に通信障害によって、マスタを含むレプリカの数が半数を切ると、マス
タはその活動を停止します。一方、マスタと通信できなくなった側では、レプ
リカの数が半数以上いる限りは、そこから新しいマスタが選ばれます。
セル全体の通信断

ネットワークのどこにも過半数のレプリカがない状況では、Chubbyセルは
その活動を停止します。このような障害はあってはならないことで、ネットワー
クレベルでの障害対策が求められます。

＊　＊　＊
以上のように障害にはさまざまなパターンがありますが、マスタが選ばれる基準

は一つです。マスタは半数以上のレプリカがつながっている場所に現れます。逆に
いうと、Googleの分散システムが正常に機能するには、常に3つ以上のレプリカ
と通信できる状態でなければなりません。

コンセンサスアルゴリズム

マスタはどこかの誰かが選ぶのではなく、ほかでもないレプリカ自身の合意によ
って決定されます。互いに対等な複数のプロセスが、そこで一つの合意に達する
ための方法を「コンセンサスアルゴリズム」（Consensus Algorithms）といいま
す。Chubbyは「Paxos」と呼ばれるコンセンサスアルゴリズムを用いてマスタを決
定します。

Paxosとは、ごく簡単に説明すると、次のようなアルゴリズムです。新しいマスタ
を決めるときには、最初にすべてのレプリカがマスタになろうとします。その一方で、
それぞれのレプリカは誰がマスタになるべきかを投票する権利を持っています。

ここで前提として、すべてのレプリカにはあらかじめ異なるIDを振っておきます。ま
た、レプリカが何か合意に達するたびに、その合意内容には一連の番号が付けら

れます。
以下の説明では、簡単のために4つのうち2つのレプリカがマスタに名乗りを上

げ、残り2つが投票を行うものとします（図3.39）。

提案（Propose）
まず、2つのレプリカが新しい「提案」（Propose）を出します。提案を出

すときには、これまでに得られた合意内容よりも大きい番号を提示します。
各レプリカは自分のIDを使って新しい番号を作ります。

図3.39 では、最後に合意に達したのが10番だとして、ID＝1のレプリカ
が11番、ID＝2のレプリカが12番を提案しています。
約束（Promise）

投票側のレプリカは、（不公平なことに）一番大きい番号の提案を受
け入れると「約束」（Promise）します。これによって、どの提案を受け入れ

るかが一つに定まります。
複数の提案が同時に送られた場合、それらが同時に届くわけではありま

せん。仮に12番の提案が先に届くと、11番はただちに却下されます。一
方、11番が先に届いた場合には、2つの提案の両方が約束されるかもしれ
ません。

どのような約束が行われるかはタイミング次第です。図3.39の例では、11
番の提案がどうなるかは定かではありませんが、12番が約束されることだけ
は確かです。
受諾（Accept）

全体の半数以上の約束を取り付けることに成功すると、実際の提案内
容とともに「受諾」（Accept）の旨を伝えます。

図3.39 では12番だけが受諾していますが、タイミングによっては11番に
も多くの約束が送られ、受諾を返すことがありえます。
承認（Acknowledge）

送られた受諾がその時点で最新の提案に等しければ、その内容が「承
認」（Acknowledge）されます。過半数の承認を集めた時点で、ようやく
システムは一つの合意に達したものとみなされます。

図3.39 では12番の提案に対して合意が形成されています。仮に11番
が受諾していたとしても、12番の提案が早ければ11番は承認されません。
もしも12番の提案が非常に遅くて、先に11番が承認まで進んだならば、シ
ステムは11番、12番の順に合意に達するでしょう。

＊　＊　＊
こうした手続きによってシステムは一連の合意に達することができます。合意を

得るためには過半数のメンバーが投票に参加していればよく、途中で誰が抜けた

としても遅かれ早かれ合意が形成されます。
こうして残ったレプリカの間で合意を得ることにより、次に誰がマスタになるかと

いうことが決められるわけです。

マスタリース ──マスタの交代

コンセンサスアルゴリズムがあれば何であれ合意を形成できるため、理論上は
マスタが存在しなくとも一連の処理を行うことが可能です。とはいえ、毎回Paxos
を実行するのは手間が掛かり過ぎるので、性能上の理由からChubbyはマスタの
概念を導入しています。

Paxosの文脈では、マスタとは効率的な合意形成のために特権を得たメンバ
ーであると考えることができます。マスタには「マスタリース」（Master Lease）と
呼ばれる一定の時間が与えられ、その間はPaxosの「提案」と「約束」を省いて、
いきなり「受諾」から始めることができます（図3.40）。マスタリースの時間内は、
ほかの誰も新しい提案を行うことができないため、マスタの主導で次々と合意が
形成されていきます。

ただし、マスタの独断で物事を決めることはできません。合意を得るには過半
数のレプリカの「承認」が必要であることには変わりなく、したがってレプリカが半数
を切った時点で何の合意も形成できなくなります。これによってChubbyセルはそ
の機能を失います。

マスタリースは、マスタが正常に動いている限りは更新されます。したがって普
段からマスタが入れ変わることはありませんが、マスタが停止してリースが更新され
なくなるとマスタ不在の状態が発生します。

この時点ですべてのレプリカが新しい提案を行えるようになり、そして完全な
Paxosアルゴリズムによって次のマスタが決定されることになります。

注7

通常は10秒前後、高負荷時には最大で60秒程度になるようです。

（本文に戻る）

3.4
まとめ

本章では、Googleがさまざまなデータをどのように扱っているかについて取り上
げました。GFSは大量のデータを効率よく転送し、安全に保管するよう設計され
た分散ファイルシステムです。それは1台のマシンで扱えないほどの巨大なデータ
を管理するのには向いていますが、逆に小さなデータを扱うのは苦手です。

BigtableはGFSを利用しながら、小さなデータでも効率的に読み書きできるよ
うにした分散ストレージです。Bigtableでは既存のデータベースでは扱えないほど
の巨大なテーブルを作ることができます。そこに格納するデータ構造は開発者が
自分で設計することにより、どのようにデータを分散させるかをコントロールできる
ようになっています。

Chubbyはこうした分散システムのさらに基盤となるシステムで、排他制御の
行える小さなファイルシステムを提供します。Chubbyはイベント通知のためにも
利用することができるので、DNSに代わって名前解決の手段としても広く用いら
れています。

こうした各種の分散システムは、学術の世界ではこれまでにも広く研究されて
きたもので、Googleにしかない技術というわけではありません。しかし、Google
はそうした研究成果を自分たちの要求に合うよう最適化し、世界的な検索エン
ジン構築のために大きく発展させることで、一つの巨大な分散システムを作り上
げています。

これらの技術が直接表に出ることはありませんが、大量のコンピュータを活用
するこうした基盤システムの支えがあってこそ、Googleという世界規模の検索エ
ンジンは実現されているのです。

Googleの扱うデータ量はあまりにも多いため、そのデータを加工するのにも多
数のコンピュータを用いた分散処理が必要とされます。しかしデータ処理を分散す
るには、入力データをどのように分割するか、障害発生にどうやって対処するか、
といった多くの問題について考えなければなりません。

多数のコンピュータを使った分散処理は、これまでにもHPC（High
Performance Computing、高性能計算）の分野で広く研究されてきました
が、それはおもに科学技術計算のように大量の計算を行うことが中心です。
Googleのように何千ものハードディスクを用いるようなデータ処理では、また異な
る技術が求められます。

大量のデータ処理を効率的に行うため、GoogleはGFSと組み合わせて利用
される新しい分散処理技術を作り出しました。本章では、Googleがどのようにし
て膨大なデータを加工しているかについて見ていきます。

http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-
0012.html

http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0012.html

4.1
MapReduce ── 分散処理のための基盤技術

MapReduceは、多数のマシンで効率的にデータ処理を行うためのしくみです。
開発者は分散処理の難しい部分をMapReduceに任せることで、少ない労力で
大規模な処理を実行できるようになります。

大量のデータを分散して加工する
Googleでは大量のデータを読み書きするためにGFSを利用しますが、そのデー

タを加工するのにも多くのマシンを使いたいものです。たとえば、Webページのイン
デックス生成では膨大な数のWebページを処理しなければならないため、ここでも
分散処理が求められます。

以前のGoogleでは、こうした一つ一つの分散処理をすべて手作りしていまし
た。たとえば、検索クラスタの分散、クローリングの分散、インデックス生成の分
散、これらはすべて異なる設計と実装が必要です。しかし、このなかでもインデック
ス生成は何段階もの処理が必要な複雑なプロセスであり、それを毎回手作りし
ていたのでは手間が掛かり過ぎます。

こうした背景から生まれたのが、MapReduceというGoogle独自の分散データ
処理技術です。MapReduceをGFSと組み合わせると、開発者は1台のマシンで
は処理しきれない膨大なデータを、何百、何千というマシンを使って効率的に処
理できるようになります。これにより開発者はインデックス生成の分散処理につい
て毎回考える必要がなくなり、効率的に開発を進められるようになるというわけ
です。

MapReduceはGFSと同時期の2003年頃に開発され、2004年の論文
「MapReduce：Simplified Data Processing on Large Clusters」（次の
Noteを参照）で詳しく説明されています。ここではMapReduceがどのようなしく
みで分散処理を行うものなのか見ていくことにしましょう。

Note
本節は次の論文について説明しています（以下、MapReduce論文）。

・「MapReduce：Simplified Data Processing on Large Clusters」（Jeffrey Dean

／Sanjay Ghemawat著、OSDI'04：Sixth Symposium on Operating System

Design and Implementation、2004、p.137-150）
URL http://labs.google.com/papers/mapreduce.html

キーと値でデータ処理を表現する
まずはMapReduceの基本となる考え方を見ておきます。MapReduceとは、

MapとReduceという二つの方法を組み合わせてデータ処理を行う技術です。
「Map」とは、ひとまとまりのデータを受け取って新しいデータを生成していくプロセ
スです。一方の「Reduce」は、Mapによって作られたデータをまとめて、最終的に
手に入れたい結果を作り上げるプロセスです。

MapとReduceは、それぞれが多数のマシンに分散され、並列して実行されま
す（図4.2）。多数のMapが独立してデータを読み込み、それを加工して
Reduceに渡します。一方のReduceも、Mapが作り出したデータを手分けして集
計します。

http://labs.google.com/papers/mapreduce.html

図4.2のこうした流れを見ると、これはちょうどインデックス生成の過程と似てい
ることに気付かれると思います。インデックス生成では、Webページを受け取って
単語情報などを取り出し（Map）、それを1つのインデックスにまとめ上げます
（Reduce）。Webページは一つ一つ独立して処理することができるため、Map
とReduceという枠組みによって簡潔に表すことが可能です。MapReduceとは、
こうした処理を一般的に行えるようにするための基盤となる技術です。

より厳密には、MapとReduceは次のように定義されます。
Map: <キー, 値> ➡ <キー′, 値′>*

➡Mapはキーと値のペアを受け取り、新しいキーと値のペアからなるリストを作
る

Reduce: <キー′, 値′*> ➡ 値″*

➡Reduceは同じキーを持つ複数の値を受け取り、0またはそれ以上の値を作
る

Mapには、「キーとなるデータ」と「それに対応する値」との2つが与えられます。
Mapにどのようなデータを与え、それをどう処理するかは開発者が決めることがで
きます。Mapの中では与えられたキーと値を使って、新しいキーと値を好きなだけ
生成します。インデックス生成の例でいえば、たとえばWebページのdocID（キ
ー）とテキスト（値）を受け取って、wordID（キー′）と単語情報（値′）
を大量に作り出すことができます。

Mapによって作られた新しいキーと値は自動的に整理され、同じキーを持つ値
が1カ所に集められます。そして次の段階として、新しいキーとすべての値が
Reduceに渡されることになります（図4.3）。前述の例では、同じwordID（キ
ー′）を持つすべての単語情報（値′）が一つにまとめられてReduceが呼び
出されるということです。

Reduceで具体的に何をするかも、Mapと同様に開発者が決めることができま
す。たとえば、集められたwordID（キー′）と単語情報（値′）を使って、検
索のための転置インデックスを作ることができるでしょう。

開発者が用意するのは、MapとReduceという2つの処理だけ、というのがポイ
ントです。Mapを多数のマシンで分散して実行することや、同じキーのデータを集
めてReduceを呼び出すといった面倒なことはシステムが面倒を見てくれます。こ
れによって、開発者はどのようなMapとReduceを実行するかという開発の中身
に集中することができ、分散処理のための手間を減らせるというわけです。

Columun
MapReduceの由来

MapやReduceという名前は、Lispなどの関数型言語の流れから付けられたものです。

関数型言語では、mapとはデータの集合に関数を適用して新しい集合を作ることで、

reduceはデータの集合に関数を適用して一つの結果にまとめることを表します。たとえば、

次のような感じです。

map(二倍, [1, 2, 3]) => [2, 4, 6]

reduce(加算, [2, 4, 6]) => 12

たしかにイメージとしてはMapReduceの流れに似ていますね。別の見方としては、Map

の役割はデータを加工して分類することにあるのでこれを「フィルタ」（Filter）、Reduceの

役割は分類されたデータを統合することにあるのでこれを「アグリゲータ」（Aggregator）と

して説明されることもあります。これについては後ほどまた取り上げます。

転置インデックスを作ってみる
MapReduceを理解するには、具体的にその実行の様子を見てみるのがわか

りやすいでしょう。ここでは、MapReduceによって転置インデックス（注1）を作る
ことを考えてみます。

入力データ

与えられるデータは、WebページのdocIDとそのテキストです（図4.4）。最終
的に、検索のための転置インデックスを作ることが目的です。

MapにはdocIDを「キー」、テキストを「値」として渡します。ここでは図4.5の2つ
のWebページを考えます。したがって、Mapは2回実行されることになります。

Mapによる処理

転置インデックスでは、同じwordIDのすべての単語情報を1カ所に集めなけれ
ばなりません。したがって、MapではwordIDを新しいキーとして出力することになり
ます。

具体的には、Mapでは与えられたテキストを分解してwordIDに置き換え、そ
のwordIDを新しいキーとして、また単語情報を新しい値として、それぞれ出力し
ます。最初のMap（docID＝1）の出力は図4.6❶のようになるでしょう。

ここでは、Webページのテキストが4つのwordIDに置き換えられています。それ
ぞれに対応する単語情報としては、docIDと単語の位置を含めた内容にしてあ
ります。ここではdocID＝1のWebページを処理していますので、すべてのdocIDが
1になっています。

同様に、2回めのMap（docID＝2）の出力は図4.6❷のようになります。

シャッフル

システムはMapの出力を整理し、同じキーの値をまとめます。この過程は「シャ
ッフル」（Shuffle）と呼ばれます。

シャッフルによってMapの出力は組み合わされ、図4.7のようなデータが得られ
ます。

この時点で、すでに転置インデックスに必要な内容ができあがっていることに注
目してください。MapReduceでは多くの処理が自動化されているために、開発
者はMapを実装するだけでも多くのことが実現できます。

Reduceによる処理

転置インデックスの内容が得られたので、これを検索に使えるようファイルに書
き出す必要があります。これがReduceの仕事です。

シャッフルされたそれぞれのキーについてReduceが呼ばれます。Reduceはデー
タをファイルに書き込めるように変換して出力を行います。ここでは、図4.8のよう
な書式で出力することにしましょう。

Reduceが出力した値はシステムによってファイルに書き込まれ、これで一連の
MapReduce処理が完了します。

このように、転置インデックスの生成という複雑な処理でも、MapReduceとい
う単純な枠組みで表現できるということがわかりました。

プログラミング言語風に

同じことをプログラミング言語によって表現するとしたら、次のような感じになる
でしょうか。

開発者はまず、MapとReduceという2つの関数を作ります。MapReduceを
実行すると、入力データが読み込まれて次のような処理が行われます。

1つめのMap

Map("1", "さくら学校のページ") => [("301", "1:0"),

 ("101", "1:1"),

 ("201", "1:2"),

 ("203", "1:3")]

2つめのMap

Map("2", "かえで学校のページ") => [("302", "2:0"),

 ("101", "2:1"),

 ("201", "2:2"),

 ("203", "2:3")]

一連のReduce

Reduce("101", ["1:1", "2:1"]) => "101=1:1,2:1"

Reduce("201", ["1:2", "2:2"]) => "201=1:2,2:2"

Reduce("203", ["1:3", "2:3"]) => "203=1:3,2:3"

Reduce("301", ["1:0"]) => "301=1:0"

Reduce("302", ["2:0"]) => "302=2:0"

プログラミング経験のある人であれば、こうした変換を行う関数を作ることは、そ
れほど難しいことではないでしょう。

MapReduceのすごいところは、このように「MapとReduceという2つの関数を
用意するだけ」で、分散処理の知識のない開発者であっても「高度な分散処理
プログラムを作れる」ところにあります。これによって、多くの開発者が分散システム
を活用できるようになるというわけです。

MapReduceでできること

MapReduceで転置インデックスを作れることはわかりましたが、ほかにはどのよ
うなことができるのでしょうか？ MapとReduceという2つの処理だけで表現できる
ことには限りがあります。しかし、それでもデータ処理で一般的に必要となるさまざ
まなことが実現可能です。

カウンタ

入力ファイルの中から、条件に合うデータの数を数えるというのはよくあることで
す。これは次のようにして実現できます。

まず、Mapの出力を<キー, "1">のようにすると、Reduceにはそれぞれのキーに
ついて、大量の"1"が渡されます。Reduceで"1"の数を数えることで、任意のキー
についてその出現回数を数えることができます。

キーを増やせば同時にさまざまなものを数えられます。たとえば、Webページ内
のすべての単語について<単語, "1">を出力すれば、単語ごとの出現頻度を数
えられます。Webページの記述言語について<言語, "1">を出力すれば、どの言
語で書かれているWebページが多いかを数えることもできます。

分散grep

grepというのは、ファイルから特定の文字列を含んだ行を見つけるプログラムで
す。それと同じように、入力ファイルの中から特定の文字列を見つけ出すというの
はごく簡単に実現できます。

Mapでは受け取ったデータの中に目的の文字列がないかを探し、見つかったと
きにだけそれを出力します。Reduceでは何もしなければ、出力ファイルには見つか
った値がそのまま書き込まれます。

GFS上のファイルは普通にgrepするにはあまりにも大き過ぎますが、
MapReduceを使えば同じことを多数のマシンを使って実現できます。

分散ソート

入力データを任意の順番に並び替えることも可能です。
元々MapReduceでは、シャッフルの過程でデータがキーの順番に並び替えら

れるという性質があります。これを利用して、並び替えを行いたい順番でキーを出
力するのです。

たとえば次のようなログファイルがあったとしましょう。

12:01 user1ログイン

12:05 user2ログイン

12:15 user1ログアウト

...

これをユーザIDの順番に並び替えるならば、Mapの出力は<ユーザID, 行全体
>のようにします。するとユーザIDに応じてシャッフルが行われ、さらに並び替えが
行われた順にReduceが呼び出されます。Reduceでは値をそのまま出力すれ
ば、結果として並び替えの終わった状態で出力が得られます。

キー: user1

12:01 user1ログイン

12:15 user1ログアウト

キー: user2

12:05 user2ログイン

...

逆リンクリスト

ほかにも工夫次第でいろいろな応用が可能です。たとえば、Webページからリ
ンク情報を抜き出すことを考えます。MapにはWebページのURLとHTMLが渡さ
れるとしましょう。Mapの出力を<自分のURL, リンク先URL>とすると、Webペー
ジごとのリンク先のリストが得られます。これは簡単なことです。

一方、Mapの出力を逆に<リンク先URL, 自分のURL>とすると、Webページ
ごとのリンク元のリストが得られます。つまり逆リンクの情報です。これは大量のデ
ータ処理をしなければわからない情報ですが、MapReduceを使えばすぐに実現
できるのです。

もっと複雑な処理

1回のMapReduceでは不可能な複雑なデータ処理でも、MapReduceを何
度も実行することで可能になることもあります。たとえばWebページの完全なイン
デックス生成は1回のMapReduceでは表現できませんが、MapReduceをいくつ
も組み合わせることでそれが実現されているとのことです（注2）。

一度実装したMapやReduceはライブラリ化して、使いまわすことも可能です。
そうして何段階ものMapとReduceをつなぎ合わせていくことで、より複雑な処理
を実現できるようにするのです。

多数のワーカーによる共同作業 ─ MapReduceの全体像

それではMapReduceのしくみを具体的に見ていきましょう（図4.9）。

MapReduceでは、「マスタ」と「ワーカー」（Worker）という2つのサーバが登
場します。マスタはMapReduce全体の動作を管理し、ワーカーに仕事を割り振
ります。ワーカーはマスタの要求に従って、MapもしくはReduceのいずれかを実行
します。個々のワーカーはMap、Reduceのどちらか一方ではなく、必要に応じてど
ちらの処理でも行えるようになっています。

MapReduceは大量のデータ処理を行うための技術なので、その典型的な入
出力はGFSのファイルに対して行われます（図4.10）。

マスタはまず入力ファイルを多数の「断片」（Split）に区切り、それぞれについ
てMapを行うようワーカーに要求します。入力ファイルは一般的に16～64MBごと
の断片に区切られます。入力ファイルが仮に1TB（＝1,000,000MB）だとする
と、断片の数（Mで表されます）は数万に及びます。マスタはこれを手の空いて
いるワーカーに対して順に分配します。

Mapの出力はすぐにReduceされるわけではなく、しばらくワーカー上で中間ファ
イルとして蓄えられます。このとき中間ファイルは「分割関数」（Partition

Function）と呼ばれる関数に従って、あらかじめ指定した数（Rで表されます）
のファイルに分割されます。分割関数は標準で用意されており、Mapが出力した
キーをR個のグループに均等に分散します。

同じグループの中間ファイルは1カ所に集められ、さらに同じキーを持つ値がまと
められます。この過程は前述のとおり「シャッフル」と呼ばれます。

同じグループのすべての中間ファイルをシャッフルし終わるとReduceが始まりま
す。当然ながら、Mapが終わらなければシャッフルも終えられないので、Reduce
が始まるのはすべてのMapが終わってからです。

Reduceの出力はそれぞれ別のファイルとして作成され、結果としてR個の出力
ファイルが得られます。これらの出力ファイルは、ひとまとめにして次の
MapReduceなどに渡すことができるため、出力を1つのファイルにする必要はない
ようです。

Tip
標準の分割関数

標準の分割関数は次の式で表されます。

hash(キー) mod R

つまり、キーのハッシュ値をRで割った余りです。これによって任意のキーがR個に均等に分割

されます。必要があれば、開発者は自分で分割関数を定義することも可能です。

3つのステップで処理が進む
「Map処理」「シャッフル」「Reduce処理」について、それぞれの手順を詳しく見

ていきましょう。

Map処理

まずは「Map処理」です（図4.11）。マスタはまず入力ファイルを複数の断片
に分割し、その一つ一つの処理を順次ワーカーに割り当てます。ワーカーは、断片
に書き込まれてあるキーと値を次々と読み込み、開発者が用意したMapを呼び
出します。

Mapは新しいキーと値を出力します。ワーカーはしばらくこれをメモリ上に蓄えま
すが、定期的に中間ファイルとして保存します。中間ファイルは一時的にしか使わ
れないので、効率化のためにGFSではなくローカルのファイルとして保存されます。

中間ファイルは分割関数に従って分けられ、複数（R個）のファイルが作成され
ます。

出力されるキーと値があまりにも多いときには、中間ファイルを書き込む前に一
度Reduceすることが可能です。これは特別に「Combiner」と呼ばれます。たとえ
ば、インデックス生成では大量の単語情報が作られますが、これを中間ファイルの
段階で整理しておくことで、書き込むデータを小さくすることができます。中間ファイ
ルが大きいとネットワークに大きな負担を掛けることになるので、Combinerによっ
て性能向上が期待されます。

シャッフル

次に「シャッフル」についてです（図4.12）。Mapワーカーで中間ファイルが生成
されると、マスタを経由してReduceワーカーにその場所が伝えられます。Reduce
ワーカーはネットワーク経由で中間ファイルを手元に取り寄せ、シャッフルが始まり
ます。

シャッフルの過程では、中間ファイルに書き込まれたキーに従って、すべてのデー
タが並べ替えられます。中間ファイルが小さければ並べ替えはメモリ上で行われま
すが、メモリに収まらない場合には一時ファイルに書き出されます。すべての中間
ファイルが集まるまではシャッフルが完了しないので、Mapが続く限りはシャッフル
も終わりません。

シャッフルはファイル転送やデータの並べ替えのためにいくらかの時間を必要と
します（図4.13）。そのため、シャッフルはMapと並行して進められ、Map側で
中間ファイルが生成されるたびに、次々とそれらがシャッフルされていきます。その
ため、すべてのMap処理が完了すれば、ほどなくしてシャッフルも完了します。

URL http://labs.google.com/papers/mapreduce-osdi04-
slides/index-auto-0009.html

Reduce処理

最後に「Reduce処理」について確認します（図4.14）。Reduce処理はシャ
ッフルの終わったグループから順に始められます。各グループの一時ファイルには複
数のキーが書き込まれているので、同じキーを持つすべての値が集められて
Reduceが呼び出されます。

http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0009.html

Reduceに渡されるキーは辞書順に小さいものから順に選ばれます。したがっ
て、Reduceの出力はキーの順にソートされていることが保証されます。Reduceの
出力はグループごとに一つのファイルとしてGFSに書き出されます。結果として、グ
ループの数（＝中間ファイルが分割された数＝R個）の出力ファイルが生成され
ます。

すべてのグループのReduceが終わると、MapReduceが完了します。

Tip
Reduceとイテレータ

厳密には、Reduceに渡されるのはすべての値そのものではなく、値を返すためのイテレータ

です。Reduceに渡すべき値が大量にある場合には、それをまとめて渡そうとすると、あっとい

う間にメモリ不足になる可能性があります。

とりわけ、中間ファイルが多過ぎて一時ファイルによって並び替えを行う場合などは、必要

に応じてファイルから値が読み込まれます。これによって最小限のメモリでReduceを実行でき

るようになります。

高速化には工夫が必要
MapReduceは考え方としてはそう難しいものではありませんが、これを高い性

能で実行するにはいくつもの工夫が行われます。

システム構成

まずは前提として、一般的なMapReduceクラスタは次のようなものです。
1回のMapReduceの実行には、数百から数千台のマシンが用いられます。

個々のマシンには複数のCPUと2～4GBのメモリがあり、それぞれが100Mbps、
あるいは1GbpsのLANで接続されています。つまり、Googleにおける一般的なク
ラスタ構成です（注3）。

それぞれのマシンは、GFSクラスタ、およびWork Queueクラスタとしても構成さ
れます。MapReduceが読み書きするデータはGFSによって管理され、ワーカーが
実行するタスクはWork Queueによって管理されます。

分散パラメータ

大量のマシンを用いるならば、多くの処理を同時に行わなければ意味がありま
せん。MapReduceでは、処理を分割するパラメータとしてMとRの2つが用いられ
ます。

Mは入力ファイルを分割する数で、これは入力ファイルの大きさに応じて決まり
ます。Mが小さいとMap処理がうまく分散されないので、いくらマシンを増やしても
十分な性能が発揮されなくなります。

Rは中間ファイルを分割する数で、こちらは開発者が指定します。Rを増やすほ
ど一つ一つの中間ファイルは小さくなり、シャッフルやReduce処理も広く分散さ
れることになります。

これらの一般的な割り当てとしては、ワーカーの数が2,000台のとき、M＝
200,000、R＝5,000といった値でMapReduceが実行されることが多いとのこと
です。

ローカリティ

マスタは入力ファイルを複数の「断片」に区切りますが、この断片というのは、
典型的には「GFSのチャンク」です。GFSのファイルは元々多数のチャンクに分割さ
れているので、ワーカーはその一つ一つを順番に処理するというわけです。

マスタはチャンクの処理を、なるべくそれを保持するチャンクサーバと同じマシン
に割り当てます。そうすると、ワーカーが入力データを読み込むためにネットワークに
負荷を掛けることがなくなり、性能が大きく向上します。

入力ファイルは多数のチャンクサーバに広く分散されているので、同時に読み
出せるチャンクはいくらでもあります。MapReduceのワーカーをGFSのチャンクサー

バと一緒に動かすことで、大量のデータ処理に伴うネットワーク負荷は最小限に
抑えられ、これによって高速な入力ファイルの読み込みが可能となるのです。

狭い空間でできるだけのことをやり、データ転送の負荷を避けるというのは「ロー
カリティ」（Locality、局所性）の考え方です。MapReduceでもそれが生かされ
ています。

Work Queue

ローカリティが高まるようにワーカーに仕事を割り振ると、「個々のワーカーの仕事
量には偏りが出る」と考えられます。また、すべての入力ファイルがローカルシステム
から読み込めるとも限りません。ここで活躍するのがWork Queue（注4）です。

Work Queueはクラスタ内のすべてのマシンのCPU負荷やディスク負荷を監視
しており、負荷の小さいマシンで処理を実行するようにタスクを割り当てることがで
きます。これによって、入力データのあるところではMapを実行し、手の空いたとこ
ろではシャッフルを始めるなど、すべてのマシンを効率的に利用することが可能と
なります。

Tip
Work Queueの設計

GoogleはWork Queueの設計については詳しい資料を公開していませんが、同様のシス

テムとしてConder※を取り上げています。ConderはMapReduceと同様に、限られたシステ

ムを利用していかに大量の処理を行うかという、HTC（High Throughput Computing、

高スループットコンピューティング）のためのシステムだということです。

※　 URL http://www.cs.wisc.edu/condor/

バックアップタスク

多数のマシンで分散処理するときに問題となるのは、障害が発生しやすくなる
ということです。後述するように、MapReduceでも障害対策については考えられ
ていますが、困ったことに障害とはいい切れないけれども、なかなか処理が進まな
いということがあります。

たとえばハードディスクに問題があると、まったく読み書きできないわけではない
けど極端に遅いということがあります。あるいは、過去にGoogleでは設定ミスのた
めにCPUの性能が低下していたこともあったそうです。

こうしたマシンが利用されると、特定のワーカーだけいつまでも処理が終わらな
い、という状況が発生します。前述のとおり、MapReduceではすべてのMapが
終わらないとReduceが始まらず、そしてすべてのReduceが終わらなければ
MapReduceが完了しません。1台でも遅いマシンがあると、そのために
MapReduce全体の完了が遅れることになってしまいます。

http://www.cs.wisc.edu/condor/

こうした問題を避けるため、MapやReduceが残り少なくなったときには、まった
く同じ処理が複数のマシンで同時に実行されます。MapReduceではこれを「バッ
クアップタスク」（Backup Task）と呼んでいます。

個々のMapやReduceは、データが同じであれば何度実行しても同じ結果を
返すはずです。そこでMapやReduceの終了間際には、バックアップタスクを走ら
せて最初に終わった結果を採用することで、結果的に処理時間は短縮されると
のことです。

実行過程には波がある ── MapReduceの過程
以上の点を踏まえて、MapReduceの過程をもう一度確認しておきましょう。こ

こでは、時間とともに各ワーカーが動作を進めていく様子を図4.15に沿って見てい
きます（注5）。

❶Map処理が始まる
マスタからの指令により、いくつかのワーカーでMapが始まります。
どのワーカーで、入力ファイルのどの部分を読み込むかはマスタが決定しま

す。それぞれのマシンではGFSのチャンクサーバも動いており、入力ファイルの
大部分はネットワークを介さずにローカルマシンから読み込まれます。したがっ
て、ファイルを読み込む速度は非常に高速です。

❷シャッフルが始まる
Mapによって中間ファイルが生成されると、シャッフルが始まります。
分割関数によって複数のグループに分けられた中間ファイルは、ネットワー

クを通してグループごとに集められます。中間ファイルに書き込まれたデータ
は、キーに従って並べ替えられ、これに続くReduceのために備えられます。

❸シャッフルが続く
入力ファイルが終わりに近づくとMapが減り、手の空いたマシンでもシャッ

フルが始まります。すべてのMapが終わらない限りは中間ファイルが作られる
ので、Reduceが始まることはありません。

シャッフルが行われているときは大量のネットワーク通信が発生し、これが
ボトルネックになることがあります。ネットワークの負担を抑えるには、
Combinerを使うなどして中間ファイルを小さくすることが必要です。

❹Reduce処理が始まる
すべてのMapが終わると、各マシンが担当するシャッフルも順に完了しま

す。早い時期から行われているシャッフルはMapが終わるとすぐに完了しま
すが、後から始まったシャッフルは終わるまでに時間の掛かることもあります。

シャッフルが完了したところから順にReduceが始まります。
❺Reduceによる出力

Reduceが終わったところから順に、結果がGFSに出力されます。
GFSへの書き込みは必ずネットワーク通信を伴うので、読み込みのときほ

ど速く進めることはできません。もっとも、一般的にMapReduceでは大量の
データを読み込んで、少量の情報を取り出すことが多いので、入力ファイル
と比べると出力ファイルは小さくなることが多いようです。

❻MapReduceの完了
すべてのReduceが処理を終えるとMapReduceの完了です。

＊　＊　＊
こうして見ると、MapReduceには2つの山があるようです。最初は一斉にMap

が始まりますが、すべてのMapが終わるまではReduceを実行できません。これが
1つめの山です。Mapが終わるとReduceが順に始まって次のピークを迎え、最後
は緩やかに終了します。このように、MapReduceでは処理の経過に応じてシステ
ムの負荷が大きく変わるようです。

壊れたときにはやり直せばいい ─ MapReduceにおける故
障対策
MapReduceでも故障への対策について考えておく必要があります。

マスタの障害対策

MapReduceにおけるマスタにはとくに障害対策はありません。MapReduceで
は、マスタは常に起動しているわけではなく、処理が行われている間だけワーカーと
通信を行う存在です。これはせいぜい数時間～数十時間のことなので、その間

にマスタが故障することはほとんどなく、実際のところ障害対策は必要とならない
ようです。

もしもマスタが故障したときにはMapReduceが失敗に終わるので、もう一度
はじめから処理をやり直す必要があります。

ワーカーの障害対策

マスタは1つしかないのに対して、ワーカーの数は非常に多いため、それだけ故障
が発生する確率も高くなります。ワーカー1つの故障のためにMapReduceが失敗
したのでは困りますから、こちらについては対策を考える必要があります。

マスタはすべてのワーカーと定期的に通信することで、ワーカーの状態を監視しま
す。ワーカーとの通信が途絶えた場合、マスタはワーカーに障害が起きたものとして
管理対象から外します。

障害の起きたワーカーで行われたMap処理は、別のワーカーによってすべてやり
直されます。なぜなら、ワーカーが出力した中間ファイルはそこにしかないので、それ
らはもう一度作り直すしかないからです。

一方、Reduce処理の出力はGFSに書き込まれるので、こちらはやり直す必要
がありません。ただし、Reduceが完了する前に障害が起きたときには、そこで行
われるはずであったReduce処理を、別のワーカーでもう一度シャッフルからやり直
す必要があります。

障害からの回復を早めるには、なるべくM（入力ファイルの分割数）とR（中
間ファイルの分割数）の値を大きくすることです。Mが大きいと、ワーカー1つあたり
の断片の数が多くなるので、障害時にはそれらを多数のワーカーで手分けしてやり
直せます。Rが大きいと、中間ファイルが小さくなってシャッフルやReduceの時間
が短縮されるので、やり直す時間も短くて済みます。

MapやReduceの障害対策

開発者が作ったMapやReduceに不具合があり、ワーカーが停止してしまうこと
もあります。明らかな不具合であれば、MapReduceを中止して修正すべきです
が、ごく稀なケースでしか発生しない問題というのもあります。

たとえば、100万個の入力データの中に、不具合を引き起こす異常なデータが
数個だけ含まれているような場合はどうでしょうか。それだけのために
MapReduceを中止してやり直していると、時間が掛かって仕方がありません。そ
のような例外的なデータは、単純に無視して処理を続けてほしいものです。

そのため、もしもワーカーが特定の入力データのときにだけ必ず落ちるようであれ
ば、マスタはそれを認識して、その入力データをスキップして処理を続けるように指
令を出すようになっています。

驚きの読み込み性能 ── MapReduceの性能面
最後にMapReduceの性能面を見ておきましょう。ここでは「分散grep」と「分

散ソート」の性能を紹介します。

分散grepの性能

まずは「分散grep」です。grepでは目的の文字列が見つかったときにしか出
力を行わないので、中間ファイルやシャッフルの手間は小さくなります。これはおも
に、MapReduceが入力データを読み込む性能を評価するためのものです。

入力データはGFS上の1000個のファイルで、合計1TB（＝1,000,000MB）
のデータ量があります。MapReduceクラスタのマシン数は1800台で、それらが
1Gbpsのネットワークで結ばれています。

図4.16のグラフは、時間の経過とともに読み込まれたデータの量を表していま
す。読み込み速度は徐々に増加し、ピーク時には30GB/秒（＝240Gbps）と
いう、とてつもないペースでデータを処理していることがわかります。これはどれくらい
のスピードかというと、DVD1枚分のデータ（4.7GB）を0.2秒あれば調べ終わる
速さです。

ピークに達するまでにずいぶん時間が掛かるのは、以下の理由によります。
まず、開発者が用意したMapとReduceのプログラムをすべてのワーカーへと行

き渡らせる必要があります。それらを1800台のマシンにコピーしてワーカーの準備を
整えるだけでも少なからず時間が必要となります。

また、GFSの1000個のファイルを開いてから、ローカリティを高めるためにチャンク
の場所を調べ、ワーカーへのタスクの割り当てを決めるのにも多くの時間が必要で
す。MapReduceでは、いかにネットワークへの負荷を減らすかが最終的な性能

に大きく影響するため、最初の情報収集と実行計画のために時間が費やされる
ようです。

MapReduceが本格的に稼動を始めるまでには、どうしても数十秒程度の初
期化時間が必要となるようです。とはいえ、1回のMapReduceは少なくとも数
十分、長いものでは何日も動き続けるとのことなので、そこから比べると初期化の
時間などはわずかなものなのでしょう。

分散ソートの性能

次は「分散ソート」です。ソートの場合、Mapは入力データをすべて出力するの
で、中間ファイルやシャッフルの手間が非常に大きくなります。

入力ファイルやクラスタの構成は、前述の分散grepのときと同じです。図4.17
のグラフは、 通常の測定結果、 バックアップタスクがないときの結果、 ワー
カーに障害を発生させたときの結果を表しています。

図4.17のグラフの上の段は、入力ファイルからデータが読み込まれた量です。
中央の段は、シャッフルのために転送された中間ファイルの量。下の段は、
Reduceが完了して出力されたデータ量を表しています。

まずは図4.17 の通常の測定結果です。上の段を見ると、入力データの読み
込み（そしてMap処理）は、比較的早い段階ですべて完了しています。ローカリ
ティによる最適化のため、やはり読み込み性能は非常に高いということがわかりま
す。

中央の段を見ると、Mapが始まった直後からシャッフルが行われている様子が
見てとれます。シャッフルは一度中断しますが、これはReduceを優先する最適化
だとのことです。シャッフルが完了しないことにはReduceも始められないので、まず

最初に一部の中間ファイルだけが最後までシャッフルされ、Reduceを開始しま
す。その後、残りの中間ファイルが最後までシャッフルされています。

下の段を見ると、Reduceが緩やかに進行していることがわかります。Reduce
の結果はGFSに書き込まれるので、これは読み込みと比べると何倍も遅くなりま
す。ソートのように、入力データと出力データの量が変わらない場合には、この違い
が顕著に表れます。一方、grepのようにわずかな出力しかない場合には、この遅
さは問題にならないでしょう。

続いて、図4.17 はバックアップタスクを無効にしたときの結果です。全体の
傾向は と同じですが、処理が完了するまでにずっと長い時間を要していること
がわかります。分散処理ではこうした原因のわかりにくい問題が発生することがあ
るため、MapReduceのようなフレームワークで解決することが役に立ちます。

最後に図4.17 のグラフでは、途中で200のワーカーが強制的に一時停止さ
れています。このため、停止したワーカーで行われていた処理はすべてやり直しにな
りますが、やり直すときは皆で手分けして行われるため、全体としての遅れはほと
んどありません。このケースでは、通常時と比べて5％の遅れに留まったとのことで
す。

Columun
BigtableとMapReduce

MapReduceで処理を行えるのはGFSのファイルばかりではありません。「Bigtableのテー

ブルに対して直接MapReduceを実行することも可能」です。

前述のとおり、Bigtableはキーと値をテーブルとして保持しています（※1）。一方、

MapReduceはキーと値を入力として受け取ります。これを組み合わせない手はありません

（図4.A）。

具体的な方法については記述がないのではっきりしたことはわかりませんが、Bigtable論

文によると、テーブルから一部のデータを取り出してMapReduceに流し込んだり、逆に

MapReduceの出力をテーブルに格納するしくみがあるとのことです。

たとえば、WebページのURLを行キーとし、ページの内容をコラムキーとして持つテーブルが

あるとします。これを用いると、テーブルに登録されたすべてのWebページを入力として

MapReduceを実行することが考えられます。

これはまさしくインデックス生成の過程そのものです。クローラによって集められたWebペー

ジをBigtableに格納しておけば、それを使ってインデックス生成を行うMapReduceが記述

できます。MapReduceの出力をBigtableに格納すれば、テーブルからテーブルへの変換プ

ロセスをMapReduce一つで記述できることになります。これはデータ処理の柔軟性を大き

く高めるでしょう。

一方、性能的にはどうでしょうか？ Bigtableの場合、すべての読み込みはタブレットサー

バを経由して行われます。仮にMapワーカーとタブレットサーバとGFSのチャンクサーバがすべ

て同じマシンで動いていればネットワークに負荷を掛けることもありませんが、そうでなければ

読み込み速度の低下が懸念されます。

Bigtableの性能評価によると、マシンが500台のときの読み込み性能は最大で4GB/秒

とのことでした（※2）。一方、GFSとMapReduceを組み合わせた場合には、マシン1800

台で30GB/秒の読み込みを実現しています。条件が異なるので単純な比較はできません

が、しくみの上から考えてもGFSから直接データを読み込むほうが高速に処理を行えること

が予想されます。

同じMapReduceを行うのにも、とにかく大量のデータを処理しなければならないときには

GFS、性能よりも柔軟性が求められるときにはBigtable、といった具合に使い分けができそ

うですね。

※1

3.2節内の「構造化されたデータを格納する」を参照してください。

（本文に戻る）

※2

3.2節内の「使い方次第で性能は大きく変わる」を参照してください。

（本文に戻る）

注1

1.4節内の「単語情報のインデックス」を参照してください。

（本文に戻る）

注2

2004年の時点では、Web検索のインデックスは24のMapReduceによって作られていたよ

うです。

（本文に戻る）

注3

2.1節内の「一つのシステムとして結び付ける」を参照してください。

（本文に戻る）

注4

2.1節内の「CPUとHDDを無駄なく活用する」を参照してください。

（本文に戻る）

注5

本項の説明はいくぶん簡略化してあります。実際には1つのマシンが1つの処理を最後まで

続けるわけではなく、それぞれが役割を変えながら処理が進められます。

（本文に戻る）

4.2
Sawzall ── 手軽に分散処理するための専用言語

Sawzallは、分散データ処理を手軽に行うために開発された新しいプログラミング
言語です。データの統計やログの解析といったよくある処理を、ごく簡単な記述に
よって実行することができます。

分散処理をもっと手軽に
MapReduceを用いることで、開発者は少ない労力で大規模な分散処理を

実行できるようになりました。しかし、それでも新しいMapやReduceを実装するに
は、きちんと腰を据えてプログラミングしなければならないことには変わりありませ
ん。簡単にできることはより簡単にしたいものです。そうした要望から生まれたのが
Sawzallという新しいプログラミング言語です。

Sawzallは、分散処理のためにデザインされたDSL（Domain-Specific
Language、ドメイン固有言語）です。汎用のプログラミング言語のように何でも
できるわけではありませんが、特定の用途に限っては非常に簡単に処理を行うこ
とができるようになっています。

これはちょうど、RDBにSQLがあるのと似ています。SQLを使えば簡単な記述で
データベースからデータを引き出せるのと同じように、Sawzallを使うとGFSのファイ
ルのような大量のデータから情報を得ることができるようになります。

2005年の論文「Interpreting the Data：Parallel Analysis with Sawzall」
（次のNoteを参照）で、Sawzallの大まかな仕様と特徴が紹介されています。

本節では、Sawzallを使うと分散処理をどのように記述できるようになるのかにつ
いて見ていくことにしましょう。

Note
本節は次の論文について説明しています（以下、Sawzall論文）。

・「Interpreting the Data: Parallel Analysis with Sawzall」（Rob Pike／Sean

Dorward／Robert Griesemer／Sean Quinlan著、Scientific Programming

Journal、Vol.13（2005）、p.277-298）
URL http://labs.google.com/papers/sawzall.html

スクリプト言語のようなプログラム
まずは、Sawzallの大まかなしくみを確認しておきましょう。Sawzallは「GFSと

MapReduceを基盤とする言語」で、それが動くしくみはMapReduceと変わりま
せん。Sawzallを使うと、「MapReduceをより簡単に実行できる」ようになります。

Sawzallでは、Mapに相当する処理を「フィルタ」（Filter）、Reduceに相当
するものを「アグリゲータ」（Aggregator）と呼びます。MapReduceとは違っ
て、Sawzallのフィルタやアグリゲータではキーや値といった区別はありません。単に
「フィルタによって選ばれた値がアグリゲータでまとめられる」とだけ考えれば十分で
す（図4.18）。

http://labs.google.com/papers/sawzall.html

開発者はフィルタを自由に記述できる一方で、アグリゲータは既存のものを利
用することしかできません。逆にいうと、単にフィルタを書くだけで分散処理を実行
できるということでもあります。

Sawzallについては、具体的なプログラム例を見ていくのがわかりやすいでしょ
う。

プログラム例

ここでは、リスト4.1の入力ファイルを考えることにします。

リスト4.1	入力ファイルの例

100

200

300

一度に1つの行が読み込まれるものとします。ここでは3つの数値が記録されて
います。

最初のリスト4.2は、これらの数値を読み取って、その合計を出力するSawzall
プログラムです。

リスト4.2	Sawzallプログラムの例

total: table sum of int;	 ❶

x: int = input;	 ❷

emit total <- x;	 ❸

ここには3つの行がありますが、これが全体として1つのフィルタとして働きます。
リスト4.2❶ではtotalという名前のアグリゲータを定義しています。tableという

キーワードによって、これがアグリゲータであることが示されます。sumはアグリゲータ
の種類で、これは数値の合計を計算します。最後の「of int」は整数を表すデー
タ型で、全体として「totalは整数の合計を計算するアグリゲータ」という意味にな
ります。

続く❷では、入力データをxという名前のローカル変数に代入しています。xのデ
ータ型はintで、それが整数であることを表しています。inputには入力データがあら
かじめ格納されており、これをxの初期値として代入しています。

最後の❸では、emit命令によって、アグリゲータtotalにxの内容を送り出して
います。送られたデータはアグリゲータの定義に従って処理されます。今の場合、
読み込まれた整数の合計が計算されて出力されることになります。

リスト4.2のフィルタは、入力データと同じ数だけ実行されます。ここでは3つの入
力データがあるので、リスト4.2のプログラムは3回（あるいは3台のマシンで）実
行され、emitされたすべてのデータがアグリゲータによって一つにまとめられ、
「total=600」という計算結果が出力ファイルに書き出されます。以上がSawzall
における基本的なプログラムの流れです。

Tip
Sawzallの言語仕様

Sawzallは静的な型を持つ手続き型のプログラミング言語です。条件分岐や関数呼び出

しなどの基本的な構文はありますが、オブジェクト指向のような複雑なプログラムを記述する

能力はありません。

Sawzallはインタープリタとして動作するので、事前のコンパイルは必要ありません。ただし

実行時に最初に構文チェックや型チェックが行われるので、プログラムに誤りがある場合には

実行することができません。一度Sawzallを実行すると何千台ものマシンが動き出すことにな

るので、事前のチェックが重要なのです。

実行例 ── sawコマンド、dumpコマンド

先ほどのリスト4.2のプログラムを動かしてみましょう。実行にはsawコマンドを用
います。

$ saw --program code.szl

 --workqueue testing

 --input_files /gfs/cluster1/input.*

 --destination /gfs/cluster2/output@100

引数--programによってプログラムの書かれたファイルを指定します。
引数--workqueueによって、プログラムを実行するWork Queueクラスタの名

前を指定します。これによって、どのマシンによってプログラムが実行されるかが決ま
ります。

引数--input_filesには入力ファイルを指定します。入力ファイルは複数であっ
てもかまいません。MapReduce同様、入力ファイルは多数に分割され、多くのマ
シンで分散処理されます。

引数--destinationには出力ファイルを指定します。ここで生成されるのは
MapReduceの出力ファイルで、Sawzallの最終的な出力ではまだありません。
出力ファイルの最後の「@100」は生成するファイル数を表しており、これを大きく
するほど分散の度合いが高まります。

最終的な出力にはdumpコマンドが用いられます。

$ dump --source /gfs/cluster2/output@100 --format csv

引数--sourceには、先ほどのsawコマンドによる出力ファイルを指定します。
引数--formatには出力形式を指定し、ここではプログラムの実行結果をCSV

ファイルとして出力しています。
少しオプション引数が多いくらいで、普通にスクリプトを書くのと手間はほとん

ど変わりません。こうしたちょっとしたプログラムによって何千台ものマシンを用いた
大規模な分散処理が可能になるというのがSawzallの魅力です。

副作用をもたらすことのない言語仕様 ── Sawzallの文法
Sawzallの文法を少し詳しく見ていきます。

データ型

Sawzallでは、すべてのアグリゲータやローカル変数には明示的な型宣言が必
要です。データ型には、整数を表すint、倍精度実数を表すfloat、Unicode文

字列を表すstringといった単純な型と、それらのデータからなる配列や構造体と
いった複合型とがあります。

ローカル変数は次のように型を付けて宣言します。あらかじめ初期値を与えるこ
ともできます。

i: int;

i: int = 0;

明示的な型変換を行うことで、異なる型のデータを代入することもできます。

f: float;

s: string = "1.23";

f = float(s);	 文字列から実数に変換

アグリゲータにも型宣言が必要です。単純に型を指定するだけでなく、名前を
付けてわかりやすくすることもできます。

整数（int）の合計を求めるアグリゲータ

s: table sum of int;

長さ（length: int）の合計を求めるアグリゲータ

s: table sum of length: int;

アグリゲータは配列のように宣言することもできます。次の例では、アグリゲータ
に整数の引数を付けて、それぞれについて合計を計算できるようにしています。

日付（day: int）ごとに、数（count: int）を数えるアグリゲータ

count_per_day: table sum [day: int] of count: int;

日付を読み込む

day: int = input;

その日付のカウントを増やす

emit count_per_day[day] <- 1;

プロトコルバッファ

Sawzallでは、1回に読み込まれるデータのことを「レコード」（Record）と呼び
ます。これはGFSのレコード追加で書き込まれるレコードと同じものです（注6）。
GFSによって追加された個々のレコードは、その一つ一つがSawzallプログラムへの
入力として渡されることになります。

データの読み書きを正しく行うには、書き込む側と読み込む側とでレコードの書
式を統一しなければなりません。Googleではレコードを定義する独自の方法を
用意しており、これをプロトコルバッファ（Protocol Buffer）と呼んでいます。プ
ロトコルバッファを用いるには、まずはじめに専用のDDL（Data Definition
Language、データ定義言語）によってレコードのデータ構造を定義する必要があ
ります。たとえば、2つの32ビット整数からなるレコードであれば、リスト4.3のように
なります。

リスト4.3	レコードのデータ構造の定義※

Pointレコードを定義する

parsed message Point {

 required int32 x = 1;

 required int32 y = 2;

};

※　Sawzall論文のp.6より。

リスト4.3を専用のツールで処理すると、C++やJava、Pythonといった各言語
からそのレコードを読み書きできるようになります。Sawzallの場合には、protoと
いうキーワードによってDDLを直接読み込むことができます。

"point.proto" というDDLを読み込む

proto "point.proto"

入力データをPointレコードとして読み込む

point: Point = input;

レコードの値を参照する

x: int = point.x;

式と文

Sawzallでは、基本的な計算や関数呼び出しを行うことができます。リスト4.4
の例では、ログが書き込まれた時間を集計するために時間を分単位に変換して
います。

リスト4.4	Sawzallプログラムの例※

ログファイルからレコードを読み込む

log: LogEntry = input;

1日を1440分として、ログの時間を分単位に変換

minute: int = hourof(log.time) * 60 + minuteof(log.time);

※　Sawzall論文のp.10の例を元に簡略化。

条件分岐（if文）や繰り返し文も使えます。少し珍しい構文として、一定の
条件について繰り返しを行うwhen文があります（リスト4.5）。

リスト4.5	when文の例

a[i] == 0を満たす、いずれかのiがあれば一度だけ実行

when (i: some int; a[i] == 0) {

 ...

}

a[i] == 0を満たす、それぞれのiについて繰り返し実行

when (i: each int; a[i] == 0) {

 ...

}

a[i] == 0が、すべてのiについて満たされていれば実行

when (i: all int; a[i] == 0) {

 ...

}

応用：それぞれのiについて、a[i] == b[j] を満たすjがあれば実行

when (i: each int; j: some int; a[i] == b[j]) {

 ...

}

最後に、事実上唯一の命令文として、emit文があります。

emit アグリゲータ <- 値;

フィルタの中に閉じた世界

以上のように、最低限の計算やデータ構造の扱いはSawzallでも記述できま
すが、できないことも多々あります。なかでも重要な点として、Sawzallではemit
文以外にフィルタの外に影響を与える手段がありません。たとえば、Sawzallには
グローバル変数に相当するものがありません。

フィルタは入力データの数だけ何度も実行されますが、すべてのフィルタの実行
は互いに影響を与えることなく完全に独立して動作します。フィルタは多数のマシ
ンで実行されるわけですから、これは当然のことともいえるでしょう。こうした制約を

あえて設けることで、Sawzallでは効率的な分散処理ができるようになっているの
です。

Tip
プロトコルバッファによるデータ構造の統一

GFSやSawzallをはじめとして、Google内部で読み書きされるデータは「プロトコルバッファ」

によって統一されているようです。これは、ほかにもあらゆる場所で活用されています。

MapReduceもSawzallと同様に、プロトコルバッファを通してデータの入出力を行います。

Bigtableに値として書き込まれるデータ構造もプロトコルバッファによって定義されたものです。

プロトコルバッファは、さらにプロセス間のデータ交換にも用いられます。Googleの分散シス

テムではRPC（Remote Procedure Call）によるプロセス間通信が多用されていますが、こ

のときやり取りされるデータ構造もプロトコルバッファにより定義されたものです。

このように、各種のデータがプロトコルバッファで統一されていることにより、プロセス間のデー

タ交換はシステム全体で一貫し、効率的なものとなっているようです。

標準で用意されるアグリゲータ
Sawzallによって得られる出力は、アグリゲータとして何を指定するかで決まりま

す。Sawzallにはさまざまな組み込みのアグリゲータが用意されており、開発者は
このなかから目的に合ったものを選ぶことになります。

以下、標準的なアグリゲータをいくつか取り上げます。

・collection
collectionは、単純にemitされた値をすべてそのまま集めるだけのアグリ

ゲータです。
次の例では、すべての入力データがそのまま出力ファイルに格納されます。

c: table collection of string;

emit c <- input;

・sample
sampleは、一部の値だけをランダムに取り出すアグリゲータです。つまり、

データのサンプリングを行います。
次の例では、入力データのうちランダムに選ばれた100個が出力ファイル

に格納されます。

s: table sample(100) of string;

emit s <- input;

・sum
sumは、値の合計を計算するアグリゲータです。
次の例では、入力データの数だけ1が加算され、その合計が出力ファイル

に格納されます。つまり、これはカウンタとして働きます。

s: table sum of int;

emit s <- 1;

・maximum
maximumは、最大値を見つけるためのアグリゲータです。何をもって最

大とするかは、キーワードweightによって指定します。
次の例では、入力データの長さを基準にして、最も長いもの上位10個が

出力ファイルに格納されます。ここでは標準関数lenによって入力データの長

さを得ています。

m: table maximum(10) of string weight length: int;

s: string = input;

emit m <- s weight len(s);

・top
topは、最も数多く登場する値を見つけるためのアグリゲータです。これは

最大値ではなく出現回数を調べるためのものです。たとえば、今年最もよく
検索された単語上位10個、などを見つけるのに使えます。

次の例では、入力データの中で最も出現回数が多いもの10個が出力フ
ァイルに格納されます。

t: table top(10) of string;

emit t <- input;

出現回数を正確に比べるには、emitされたすべてのデータについてそれを
カウントしなければなりません。これを正確にやると時間が掛かってしまうの
で、topアグリゲータでは確率的な手法によって概算の結果を求めます。も
しも正確な結果が必要であるなら、sumアグリゲータとmaximumアグリゲー
タを用いて、Sawzallを2回実行する必要があります。

その他のアグリゲータ

ここで紹介した以外にも、パーセンタイル（Percentile、百分位数）などを求
めるquantile、重複を省いたデータの数を概算するuniqueなど、統計的な情報

を得るためのさまざまなアグリゲータが用意されているようです。
おもに性能的な理由から、Sawzall言語内でアグリゲータを定義することはで

きません。もっとも、前述のアグリゲータが示すように、Sawzallのおもな用途は大
量のデータを集計することにあるので、新しいアグリゲータが必要になることはあま
りないようです。どうしてもアグリゲータを追加したい場合には、C++によって
Sawzall言語を拡張することができるとのことです。

より実際的なプログラム例
以上の文法を踏まえて、より実際的なSawzallプログラムの例を見ていきます。

例1　平均値と分散を求める

リスト4.6の例は、入力ファイルから多数の数値を読み込んで、その平均と分
散を求めるためのプログラムです。

リスト4.6	平均値と分散を求める例※

レコードの個数を数えるアグリゲータ

count: table sum of int;

値の合計を計算するアグリゲータ

total: table sum of float;

値の2乗の合計を計算するアグリゲータ

sum_of_squares: table sum of float;

入力データを倍精度実数として読み込む

x: float = input;

各アグリゲータへの出力

emit count <- 1;

emit total <- x;

emit sum_of_squares <- x * x;

※　Sawzall論文のp.5より。

1つのフィルタ内では、複数のアグリゲータを用いることが可能です。ここでは3つ
のアグリゲータを用いて、数値の個数（count）、数値の合計（total）、そし
て数値を2乗した値の合計（sum_of_squares）を計算しています。

リスト4.6のプログラムを実行すると単純に3つの値が得られるので、それを用い
て平均と分散を求めることができます。

平均＝total / count

分散＝(sum_of_squares / count) - (total / count)2

例2　PageRankの高いWebページを見つける

リスト4.7の例は、ドメインごとにPageRankが最大のWebページを見つける
Sawzallプログラムです。

リスト4.7	PageRankが最大のWebページを見つける例※

Documentレコードの定義

proto "document.proto"

PageRankが最大のURLを見つけるアグリゲータ

max_pagerank_url:

 table maximum(1) [domain: string] of url: string

 weight pagerank: int;

入力データをDocmentレコードとして読み込む

doc: Document = input;

URLのドメインごとにアグリゲータを呼び出す

emit max_pagerank_url[domain(doc.url)] <- doc.url

 weight doc.pagerank;

※　Sawzall論文のp.19より。

入力ファイルには、Webページの各種情報が記録されたDocumentというレコ
ードが書き込まれているものとします。レコードの定義はproto文によって読み込み
ます。

続いてアグリゲータの定義です。今回はPageRank（pagerank: int）が最
大となるURL（url: string）を求めたいので、PageRankをweight指定した
maximumアグリゲータを用います。ドメインごとに上位1個のURLが得られれば
十分ですが、ドメインは大量にあるものなので、ドメイン（domain: string）をキ
ーとする配列を作成します。

入力データ（Documentレコード）をローカル変数docに代入します。Webペ
ージのURLはdoc.url、PageRankはdoc.pagerankとして得られるものとします。
URLからドメインを得るには、ライブラリ関数domainが使えます。

得られたドメインをキーとして、そしてPageRankをweightとして、
max_pagerank_urlアグリゲータを呼び出します。結果はアグリゲータによって自
動的に見つけられて出力ファイルに書き出されるので、これ以上のことは何もする
必要がありません。

Tip
最もPageRankの高いページ

ほとんどのドメインでは、そのトップページ（つまり/）のPageRankが最も高くなります。し

かしGoogleで実際にこのプログラムを実行したところ、たとえばAdobe Systemsのドメイン

（www.adobe.com）ではAdobe Readerのダウンロードページが最も高いPageRankを示

すなど、興味深い情報が得られたとのことです。

例3　地域ごとのアクセス数を計測する

リスト4.8の例では、世界中の検索リクエストのログを解析して、利用者の場
所（緯度、経度）ごとに検索数を求めています。

リスト4.8	地域ごとのアクセス数を計測する例※

QueryLogProtoレコードの定義

proto "querylog.proto"

緯度、経度ごとの検索数を求めるアグリゲータ

queries_per_degree: table sum[lat: int][lon: int] of int;

入力データをQueryLogProtoレコードとして読み込む

log_record: QueryLogProto = input;

利用者のIPアドレスから位置情報を得る

loc: Location = locationinfo(log_record.ip);

判明した場所のカウンタを増加させる

emit queries_per_degree[int(loc.lat)][int(loc.lon)] <- 1;

※　Sawzall論文のp.19-20より。

リスト4.8でもまずDDLを読み込み、アグリゲータの定義を行います。今回は緯
度と経度に応じたカウンタが必要なので、sumアグリゲータの2次元配列を作って
います。

続いて、入力データをQueryLogProtoレコードとして読み込みます。ここには検
索リクエストの情報が書き込まれており、log_record.ipによって検索元のIPアド
レスを得ることができます。

最後に、ライブラリ関数locationinfoによってIPアドレスから緯度と経度を求
め、アグリゲータに1を送ることでカウンタを増加させます。

リスト4.8のプログラムを実行すると、地球上の緯度と経度を軸として、各座標
において検索の行われた数が求まります。図4.19は、実際にこのプログラムを実
行して得られた結果がプロットされたものです。

例4　実行結果の連結

1つのSawzallプログラムでほしい結果が得られるとは限りません。たとえば、入
力ファイルの中で最も頻繁に現れる単語10個を知りたいとき、アグリゲータtopを
用いたのでは統計的な結果しか得られません。どうしても厳密な結果が必要な
らば、Sawzallを2回実行する必要があります。

まず最初に、すべての単語の出現回数をカウントするためにアグリゲータsumを
用います（リスト4.9）。

リスト4.9	実行結果の連結1

単語（word: string）ごとの出現回数（count: int）を得るアグリゲータ

word_count: table sum[word: string] of count: int;

単語を読み込む

word: string = input;

カウントを増やす

emit word_count[word] <- 1;

続いて、アグリゲータmaximumを用いて、最も出現回数の多い単語を見つけ
ます（リスト4.10）。

リスト4.10	実行結果の連結2

出現回数（count: int）が多い単語（word: string）を選ぶアグリゲータ

frequent_word: table maximum(10) of word: string weight count: int;

先ほどのSawzallの出力（単語とその出現回数）を読み込む

x: { word: string, count: int } = input;※

出現回数が上位の単語を選ぶ

emit frequent_word <- x.word weight x.count;

※　Sawzall論文には実行結果を連結する具体例がなく、この部分の記法は
著者が考えたものです。

こうして1つのSawzallプログラムでは記述しきれない複雑な処理も、それをいく
つも連結することで実行できるようになります。

エラーは無視することも可能
リスト4.8のログ解析プログラムには、実は不具合があります。IPアドレスから検

索元の座標を調べましたが、実際には場所がどこだかわからないということもあり
えます。

Sawzallはこのような場合、「未定義値」（Undefined Value）という特別な
値を返します。未定義値を参照するとSawzallはすべての処理を中止し、エラー
レポートを作成して終了します。

エラーを避けるためには、述語defを次のように用います。

loc: Location = locationinfo(log_record.ip);

locが得られたときにだけ処理を続ける

if (def(loc)) {

 emit queries_per_degree[int(loc.lat)][int(loc.lon)] <- 1;

}

座標の問題についてはこれで修正できましたが、ほかにも不具合はないでしょ
うか？ 一般的に、Sawzallプログラムの実行には長い時間が掛かるものなので、
わずか1つのエラーのために処理が中断していたのでは、やり直しに時間が掛かっ
て仕方ありません。

そこでSawzallには、未定義値があっても処理を続ける特別な実行モードが用
意されています。この場合、未定義値を含む処理は単純に無視され、正しく実
行できる命令だけが実行されます。未定義値の情報は実行ログに保存され、後
からどのような問題が起こっていたかを確認できます。

この機能を活用することで、プログラムの開発中には早期にエラーを発見し、運
用の段階ではエラーを無視して安定動作させることも可能となります。

内部的にキーが生成されている ─ Sawzallはどのように実現
されているのか
ここまでの説明で、Sawzallのさまざまなポイントがわかってきたことと思います。

それでは、Sawzallがどのように実現されているのか簡単に見ておきます。
Sawzallは「MapReduceを基盤としている」ことはすでに説明しました。開発

者の書いたプログラム（フィルタ）はMapとして実行され、一方のReduceとして
は組み込みのアグリゲータが処理を行います。

ところで、MapからReduceへのデータの受け渡しには「キー」が必要です。これ
がなければ中間ファイルが分割されず、Reduceの負荷分散が行われなくなってし
まいます。このキーはどのように生成されているのでしょうか？

どうやらSawzallでは、「アグリゲータごとに異なるキーを自動的に作り出してい
る」ようです。そのため同じアグリゲータに渡された値はすべて同じReduceに集ま
ることになり、そこでアグリゲータとしての処理が行われます。複数のアグリゲータが
あると、それらは個別にReduceされ、Reduce側の負荷分散も可能となります。

アグリゲータを配列として宣言した場合、その個々の要素について1つのキーが
作成されます。これによって大量のキーが生成されるので、それらがMapReduce
によって適度に分割され、Reduceの負荷分散に役立ちます（図4.20❶）。

アグリゲータが1つしかない場合には負荷分散が行われません。これはsumの
ように負荷の小さいアグリゲータでは問題になりませんが、collectionのように大
量のデータを書き出す可能性のあるアグリゲータではボトルネックになるかもしれま
せん。

そこでcollectionだけは特別に、それ1つで多数のキーが生成されるようになって
います（図4.20❷）。collectionは単に値を集めるだけのアグリゲータで、
Reduceで行うべき処理は何もありませんから、処理が分散されても問題になり
ません。

結果として、Sawzallを実行すると多数のReduceが働き、そして多数の出力
ファイルが生成されます。これらはまた新しいSawzallプログラムへの入力としてそ
のまま使うこともできますし、そうでなければdumpコマンドによって最終的なレポー
トにまとめられます。

スムーズにスケールする実行性能

それでは、Sawzallの性能を見てみましょう。SawzallはMapReduceを基盤と
しているので、その性能的な特性もMapReduceに準じます。フィルタもアグリゲー
タも負荷分散されるので、マシンの数を増やすほど性能も向上します。

図4.21のグラフは、450GBのログファイルをSawzallで処理するとき、利用する
マシンを50台から600台まで変化させたときの結果が計測されたものです。

実線は開始から終了までの実行時間を表しています。見てのとおり、マシンの
台数が増えるのに合わせて実行時間は順調に短くなっていきます。理想的に

は、マシンの台数を増やすほど負荷は均等に分散され、実行時間は反比例の
グラフを描きます。

しかし、実際にはマシンが増えるほど余分な手間も増えるので、理想どおりと
はいきません。破線は実行時間にマシンの台数を掛け合わせたもの（実行時間
×マシンの台数）です。もしも実行時間が反比例しているならば、このグラフは横
一直線を描くはずです。

図4.21の結果を見ると、マシンの数は50から600へと12倍に増えていますが、
トータルの処理時間の増加は1.3倍にとどまっています。これはかなり優秀な結果
です。マシンの数を増やすだけでこれだけスムーズに性能が上がるならば、いくらデ
ータ量が増えてもマシンの追加で対応できるようになるでしょう。

Columun
BigtableとSawzall

MapReduceと同様に、SawzallもBigtableと組み合わせて利用することができるようで

す。この場合、Bigtableから取り出したデータをSawzallで読み込んで、それをアグリゲータ

で集計することになります。

Bigtable論文が書かれた2006年の時点では、残念ながらSawzallの出力をBigtable

に書き戻すことはできないようです。処理結果についてはこれまでどおり、Sawzall固有のレ

ポートとして得ることになりそうです。

注6

3.1節内の「レコード追加によるアトミックな書き込み」を参照してください。

（本文に戻る）

4.3
まとめ

本章では、Googleがどのようにして大規模なデータ処理を行っているかについ
て取り上げました。「MapReduce」は大規模な分散処理を行うための基盤技
術で、開発者はMapとReduceという2つの関数だけ用意すれば、あとはシステ
ムがそれを自動的に多数のマシンで実行してくれます。

MapReduceは、とりわけGFSの入力ファイルと組み合わせると高い性能を発
揮します。多数のマシンに分散されたMap処理は、なるべくそのマシンからファイ
ルを読み込むため、全体としての読み込み速度は非常に高速です。一方、書
き込みは複数のマシンにコピーされるため遅くなりますが、MapReduceで加工さ
れたデータは小さくなる傾向があるので、書き込む量は少なくて済みます。

「Sawzall」を使うと、分散処理はもっと手軽になります。Sawzallは実行可
能な処理に制約を設けることで、限られた特定の領域に限っては非常にコンパ
クトなプログラムで大規模なデータ処理が可能となります。これは、ちょうどデータ
ベースにおけるSQLの存在と似ています。データベースからSQLで情報を引き出せ
るように、Sawzallを使うとGFS上の大量のデータから情報を見つけ出すことがで
きるようになります。

MapReduceもSawzallも負荷分散や障害対策について考えられており、マ
シンの台数を増やせば増やすほど性能が向上します。これによって開発者は分
散処理の難しい問題について頭を悩ませることから解放され、データをどのように
処理するかという問題解決に専念することができるのです。

Columun
大規模分散システムを試してみる

これまでに取り上げた分散システムはどれもGoogleの独自技術で、誰もが使えるもの

ではありません。しかし、同様の技術をオープンソースソフトウェアとして実現しようとする

Hadoop（※1）というプロジェクトがあり、ずいぶん活発になってきているようです。

Hadoopは、米国Yahoo!が中心になって開発している分散システムで、すでにGFSに

代わるHDFS、Hadoop版のMapReduce実装、そしてBigtableに代わるHBaseといった

ソフトウェアが作られています。Sawzallに代わるPigというプロジェクトも始まっているようで

す。

米国University of WashingtonはGoogleの協力で、大学生向けに大規模分散シ

ステムの授業を開設していますが、ここではHadoopを使ったMapReduceの実習などが

行われているとのことです（※2）。「Google Code for Educators」（※3）でこの授業

の教材や、Hadoopのセットアップ済み仮想マシン（VMwareイメージ）などが入手でき

ますので、興味のある人は試してみてください。

米国IBMもHadoop実行環境の構築を表明しています（※4）。企業向けにコンピュ

ーティング環境を提供するほか、Googleと共同で米国各地の大学向けに大規模分散シ

ステムを提供する「Academic Cluster Computing Initiative」（※5）を発表していま

す。今後は大学でMapReduceを学ぶというのも一般的になるかもしれません。

すぐに利用できる環境もあります。米国Amazonが提供しているAmazon EC2

（Elastic Compute Cloud、執筆時点ではベータ版）は、Amazonのデータセンターにあ

る多数のコンピュータを安価に間借りできるサービスですが、ここでもHadoopを利用するこ

とができるようになっています。自分で大規模なシステムを用意するのは大変ですが、EC2

を使えば必要なときに必要な数だけマシンを借りて分散処理を行えます。

国内では、楽天技術研究所がRubyを使った分散システムの開発を表明しています

（※6）。こちらもどのような方向に進むのか今後が楽しみです。

※1

URL http://hadoop.apache.org/core/

（本文に戻る）

※2

URL http://www.businessweek.com/magazine/content/07_52/b4064048925836.htm

（本文に戻る）

※3

URL http://code.google.com/edu/

（本文に戻る）

※4

URL http://www-06.ibm.com/jp/press/20071119001.html

（本文に戻る）

※5

URL http://www-06.ibm.com/jp/press/20071010001.html

（本文に戻る）

※6

URL http://www.atmarkit.co.jp/news/200711/26/rakuten.html

（本文に戻る）

http://hadoop.apache.org/core/
http://www.businessweek.com/magazine/content/07_52/b4064048925836.htm
http://code.google.com/edu/
http://www-06.ibm.com/jp/press/20071119001.html
http://www-06.ibm.com/jp/press/20071010001.html
http://www.atmarkit.co.jp/news/200711/26/rakuten.html

Googleは多数の安価なハードウェアを用いて大規模な分散システムを構築し
ていますが、いくら安価とはいっても、それが何万、何十万という数にもなると、そ
のコストは多大なものになることが予想されます。

ハードウェアはGoogleのシステム全体のコストの中でも大きな部分を占めるも
のです。Googleでは多くのソフトウェアを自社開発しており、システムの規模が大
きくなればなるほどソフトウェアの相対的な開発コストは下がりますが、ハードウェア
のコストは拡大する一方です。

単に性能だけを追求してコストを無視するということはできません。本章では、
Googleのような大規模システムでは何にどの程度のコストが必要となり、そして
それを削減するためにどのような工夫が行われているのかを見ていきます。

http://www.nytimes.com/2006/06/14/technology/14search.html
http://harpers.org/media/slideshow/annot/2008-03/

http://www.nytimes.com/2006/06/14/technology/14search.html
http://harpers.org/media/slideshow/annot/2008-03/

5.1
何にいくら必要なのか

一言にコストといってもさまざまです。ハードウェアの購入費用、データセンターの費
用、保守管理の人件費、などなど。まずは何にどのくらいのコストが掛かるものなの
かを整理しておきましょう。

少なからぬハードウェア費用
Googleが2004年に新規上場したときの資料（注1）によると、Googleがそれ

までにハードウェアに投じた費用は総額2億5000万ドル（注2）。いくら安価なコン
ピュータを用いるとはいえ、世界中にデータセンターを構築するともなると、その費用
は膨大です。

当時のGoogleのマシン数は全部で5万台前後といわれていますが（注3）、
2007年時点でさらにその10倍程度（50万台前後）にまで増えているのではない
かと考えられています（注4）。それだけのマシンを導入し、そして維持管理するた
めのコストは推して知るべし、です。

もちろん必要なのはハードウェアだけではありません。Googleのような大規模シス
テムでは、何にどの程度の費用が掛かるものなのでしょうか。正確な数字はともかく
として、まずは全体的なイメージをつかむために大雑把な推量を行ってみることにし
ます。

ここではGoogle上場時のデータを基準として、システムのコストを次の4つに分け
て考えます。

・ハードウェアのコスト

・電力のコスト
・保守運用のコスト
・ソフトウェアのコスト

「ハードウェアのコスト」は説明するまでもなく、コンピュータやネットワーク機器のた
めの費用です。コンピュータの台数を仮に5万台として、1台あたりの単価を30万円
とすると、これで150億円。実際には総額275億円ということなので、コンピュータ以
外の機器を考えると当たらずといえども遠からずといったところでしょうか。275億円
を上場までの約5年で割ると、1年あたりにして55億円。

「電力のコスト」は、さらに定期的な電気代と、電力を確保するための設備費
用とに分けられます。コンピュータ1台あたりの電力を仮に100Wとして、5万台を24
時間フル稼働させるとしたら、年間の電気代はざっと5億円前後という計算になり
ます（10～15円/kWhと想定）。

電力の設備費用を正確に見積もるのは難しいですが、電力1Wあたりの設備
費用は1000～2000円程度といわれており（注5）、そこから算出すると総額にし
て50～100億円。一方、データセンターの寿命はおおむね10～12年といわれてい
るので（注6）、仮に設備費用が10年で償却されるものと考えると、年間コストに
して5～10億円といったところでしょうか。

「保守運用のコスト」はおもに人件費であるとして、再びGoogle公開時の資料
に当たってみると、2004年の時点で運用に携わる社員は350人。1人あたりの年
俸を仮に500万円とすると、年間の人件費は17.5億円です。

最後に「ソフトウェアのコスト」ですが、Googleはほとんどのソフトウェアを自分たち
で作っているわけですから、こちらも必要なのは人件費です。何を運用コストとして
考えるかにもよりますが、検索エンジンやWebサービス以外の基盤システムの開発
に限定するとしましょう。それに携わる社員が上場時の研究開発部門596人のう

ちの1/10～1/2だとして、仮に年俸1000万円（＋ストックオプション）とすると、
システム開発費は年間にして6～30億円。

かなりいい加減な見積もりではありますが、こうしてみるとやはりハード面でのコス
トの大きさが目立ちます。しかもコンピュータのハードウェアというのは陳腐化が早く、
3～4年もすれば新しく入れ替えることも珍しくありませんからなおさらです。まずは、
いかにハードウェアのコストを抑えるかというのが第一の課題でしょう。

人件費を削減するには信頼性や保守性の高いシステムを構築することですが、
これにはより優れたソフトウェアを開発するという方向で努力して、「まずはハードウェ
ア、次いで電力のコストをいかに下げるか」ということが、Googleにおけるコスト削
減の優先順位となりそうです。

Tip
通信コストはいかに

本書では取り上げませんが、もう一つ大きな費用として通信回線のコストが考えられます。

Googleはすでにかなりの光ファイバを手に入れているといわれており※1、さらに太平洋海底ケ

ーブル事業にも出資する※2という話もあるほど通信回線への投資も行っているようです。その

客観的な規模は定かではありませんが、通信回線はサービス提供の生命線であるだけに、そ

のコストも大きなものとなりそうです。

※1	 URL

http://www.pbs.org/cringely/pulpit/2007/pulpit_20070119_001510.html

※2	 URL

http://www.google.com/intl/en/press/pressrel/20080225_newcablesystem.html

安価なハードウェアによるコスト削減

それでは具体的な数字を見ていくことにしましょう。第2章で登場したGoogleの
検索クラスタについて書かれた2003年のGoogle Cluster論文（2.2のNoteを参
照）には、当時のGoogleのコスト面についても簡単ながら説明があります。まずは
ここを足掛かりとして、Googleのハードウェアコストについて見ていきます。

本項ではデータセンターの基本となるラックについて考えます。先にも触れたとお
り、Googleのラックは40～80台分のマシンによって構成されています（注7）。
2003年当時の検索クラスタでは、ラックを構成する個々のマシンは次のようなもの
でした。

まずはCPU。安価なところではCeleron 533MHz、いいものだとPentium III
1.4GHzのデュアルCPUなどが用いられていたようです。すでにPentium 4が出回っ

http://www.pbs.org/cringely/pulpit/2007/pulpit_20070119_001510.html
http://www.google.com/intl/en/press/pressrel/20080225_newcablesystem.html

ていた時代ですから、たしかに安価なCPUが使われていたようです。
ハードディスクは、80GBのIDEドライブが1つか2つ。これは当時としてはごく一般

的なハードディスクで、やはり広く普及して安く出回った製品が選ばれていたようで
す。

こうしたハードウェアは一度購入して終わりではなく、おおむね3年程度で新しく
入れ替えることを想定していたようです。そこで、価格を3×12＝36で割った値をハ
ードウェアの月額コストと考えます。これを基準に、価格あたりの性能がよい（つま
り価格性能比が高い）ハードウェアを選んでラックが組み立てられます。

Googleは自分たちでラックを組み立てていたようですが、Google Cluster論文
（2.2のNoteを参照）のp.25では参考として次のような市販ラックの価格が紹介
されています。

・マシン数：88台
・CPU（Xeon 2GHz）×2
・メモリ：2GB
・ハードディスク：80GB

CPUを除いてほぼGoogleのラックと同じ構成ですが、これの2002年における価
格が27万8000ドル（約2800万円）。マシン1台あたりの価格は3160ドル（約
32万円）で、普通のPCと比べると割高ですが、性能を考えるとそんなところでしょ
うか。

はたしてこれは安いのでしょうか？ 同論文から比較として、同じPCアーキテクチャ
でも、当時の高性能サーバは次のようなものでした（ラックではなく、1つのサーバマ
シンです）。

・CPU（Xeon 2GHz）×8

・メモリ：64GB
・ハードディスク：8TB

これの価格が当時75万8000ドル（約7600万円）。先ほどのラックと比べる
と、値段は3倍近いにもかかわらず、CPUの数は1/22、メモリは1/3、なんとかディス
ク容量で勝っているという程度です。

用途が異なるので単純な比較はできませんが、こうしてみるとGoogleのような
大規模な分散システムにおいては、高性能サーバよりも安価なラックを用いることが
価格性能比でずっと優れていることは明らかです。

電気代はハードウェアほどには高くない
ハードウェアのコストだけなら価格性能比を見るだけで十分ですが、実際にはその

他の費用まで含めたトータルコストを考えなければなりません。次に電力について確
認しておきましょう。

再びGoogle Cluster論文（2.2のNoteを参照）では、例としてPentium III
1.4GHzのデュアルCPUのマシンを取り上げています。その最大消費電力は次のよ
うになります。

・CPU×2： 55W
・ハードディスク：10W
・メモリ、その他：25W
➡合計：90W

一般的なPC用電源の電力変換効率は75％程度なので、このマシンを動かす
には実際には120Wの電力が必要です。したがって、ラックあたりの電力は最大で

120W×80＝9600Wとなり、ラック1つでおおむね10kWの電力を消費します。
CPUの性能が上がれば、これはもっと大きくなるでしょう。

これがどのくらいの電気代となるのかを計算してみましょう。一般的に、データセン
ターではコンピュータが消費する電力の50％程度を冷房に用いる必要があります。
これを踏まえて1カ月の消費電力を計算すると、次のようになります。

1kWhあたりの電気料金を0.15ドルとして計算すると（注8）、1カ月の電気代
はざっと1620ドル（約16万円）ということになります。

一方、ラックのハードウェアコストは月額にすると27万8000ドル÷36＝7700ドル
（約77万円）なので、電気代と比べるとやはり割高です。したがって、消費電力
がよほど大きくならないかぎりは、電気代を気にするよりも安価なハードウェアを選ぶ
ほうがトータルコストを削減できると考えられます。

間接的に上乗せされる電力の設備コスト
しかしながら、問題はほかにあります。ラックの電力密度（体積あたりの消費電

力）という問題です。
ラックの電力は10kWと書きましたが、これは一般的なデータセンターからすると

大き過ぎるのです。10kWというと、100Vの電圧に対して常時100Aの電流が流れ
る状態です（一般家庭では20～60Aでブレーカーが落ちます）。こんなものがずら
ずらと並んでいると、データセンターのほうがパンクしてしまします。

一般的なデータセンターでは、ラックあたり1～4kW（10～40A相当）程度の
電力にしか対応していないようです。したがって、ラックに大量のマシンを詰め込むの
はやめてラックの本数を増やすか、あるいは高い電力密度に対応した高性能なデ
ータセンターを見つけるかしなければなりません。いずれにしても高くつきます。これが
電力の設備面でのコストということになります。

電力の設備コストを下げるのは簡単な問題ではありません。Googleは最終的
に独自のデータセンターを建設する方向へと進みます。これについては後ほど詳しく
説明します。

Tip
消費電力が多過ぎて

実際、Googleがあまりにも電気を使い過ぎるので、電気代が支払えずに倒産してしまった

データセンターがいくつもあるそうです※。当時のデータセンターは使用電力ではなく使用面積に

応じて課金されたことから、Googleはラックに詰め込めるだけのマシンを詰め込んだのでしょう。

※ 『Google誕生 --ガレージで生まれたサーチ・モンスター』（David A. Vise／Mark Malseed

著、田村 理香訳、イースト・プレス、2006）、p.128より。

増加傾向にある電力コスト

電力の問題はまだ終わりません。技術の進歩とともに安価になるコンピュータの
ハードウェアとは裏腹に、電力のコストは増加する一方です。

Googleが2005年に発表した論文「The Price of Performance：An
Economic Case for Chip Multiprocessing」（注9）では、このままでは近いうち
にハードウェアよりも電気代のほうが高くなると警告しています。図5.2 1 のグラフは、
Googleのコンピュータの性能が時とともにどのように変化してきたかを示したもので
す。

図5.2 1 -❶の線はコンピュータの性能を表しており、新しいものほど性能がよくな
ってきたことがわかります。

図5.2 1 -❷の線は価格性能比を表しており、価格あたりの性能も同様に向上
してきた様子がうかがえます。

図5.2 1 -❸の線は電力性能比、すなわち消費電力あたりの性能ですが、こちら
はまったく変化がありません。つまり性能が上がれば上がるほど、それに合わせて消
費電力も増えてきたことを意味しています。これまでずっとコンピュータの性能は電力
を引き替えにして向上してきたのです。

図5.2 2 のグラフは、将来的に電力のコストがどのようになるかを予測したもので
す。価格性能比で選ばれるハードウェアの価格は、マシン1台あたり3000ドルとほ
ぼ一定としています。しかし、消費電力が仮に年間20％のペースで増加するとすれ
ば、5年後には毎年の電気代がハードウェアの購入価格と同じになってしまうという
計算です。もしも年間50％のペースで増加したなら、数年後にはハードウェアの何
倍もの電気代を支払わねばならないことになるでしょう。

＊　＊　＊
この消費電力の増加は放置できない問題です。これには対策を考えねばなりま

せん。
電力増加の最大の原因は、年々性能の向上を続けるCPUです。前述の電力

の内訳を見てもわかるように、CPUはコンピュータの中でも最も電力を消費する機
器の一つです。まずは、CPUの電力をどうすべきかというところから考えていきましょ
う。

注1

URL http://i.i.com.com/cnwk.1d/pdf/ne/2004/google.pdf

（本文に戻る）

http://i.i.com.com/cnwk.1d/pdf/ne/2004/google.pdf

注2

約250億円。1ドル＝100円として計算（以下同）。

（本文に戻る）

注3

URL http://blog.japan.cnet.com/umeda/archives/001204.html

（本文に戻る）

注4

URL http://d.hatena.ne.jp/umedamochio/20070930/p1

（本文に戻る）

注5

URL Power Provisioning for a Warehouse-sized Computer、

http://research.google.com/archive/power_provisioning.pdf

（本文に戻る）

注6

URL http://japan.cnet.com/news/ent/story/0,2000056022,20362605,00.htm

（本文に戻る）

注7

2.1節の「一つのシステムとして結び付ける」を参照してください。

（本文に戻る）

注8

米国の電気料金はもっと安価ですが、データセンター自身が消費する電力もあるため、コンピ

ュータの消費電力は割高になるようです。

（本文に戻る）

注9

http://blog.japan.cnet.com/umeda/archives/001204.html
http://d.hatena.ne.jp/umedamochio/20070930/p1
http://research.google.com/archive/power_provisioning.pdf
http://japan.cnet.com/news/ent/story/0,2000056022,20362605,00.htm

URL http://acmqueue.com/modules.php?

name=Content&pa=showpage&pid=330

（本文に戻る）

http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=330

5.2
CPUは何に電気を使うのか

CPUは多くの電力を消費することで計算を行います。性能を犠牲にすることなく
消費電力を削減するには、まずはCPUがどのように電力を用いるのかというところ
から理解する必要があります（注10）。

電力と性能の関係とは
物理の教科書に出てくるように、電力というのは基本的に次の式によって表さ

れるものです。

電力（W）＝電圧（V）×電流（A）

CPUが消費する電力もこれと同じで、電子回路に電圧を加えて、そこに電流
が流れることで電力を消費します。したがって、消費電力を削減するには電圧や
電流を減らせばいいということですが、そのために性能が犠牲になったのでは意味
がありません。できることなら性能を落とすことなく消費電力を減らしたいものです
が、そもそもCPUの性能と電力とにはどのような関係があるものなのでしょうか？

Googleの技術からは少し離れますが、CPUの消費電力は大規模システムの
電力を考える上でも避けては通れない問題ですから、少し詳しく見ておくことにし
ましょう。ここではおもにIntelのCPUを題材に、電力性能比に優れたCPUについ
て考えてみたいと思います。

CMOS回路の消費電力

まずはごく簡単に電子回路のおさらいをしておきましょう。CPU内部で論理演
算を行う個々の回路には、入力と出力とがあります。たとえば、NOT演算（論
理反転）を行うインバータ（Inverter）と呼ばれる回路には1つの入力と1つの
出力とがあり、入力が「1」のときには出力が「0」に、入力が「0」のときには出力
が「1」になります。

回路には入力と出力以外にも電源からの電力供給があり、高いほうの電位
をVdd、低いほうをVssで表します。インバータでは、入力の電位をVssにすると出
力がVddと等しくなり、逆に入力をVddにすると出力がVssになります。これがす
なわち電子回路における「0」と「1」で、CPUの基礎となる部分です（図5.3）。

今日の一般的なCPUは、こうした回路がCMOS（Complementary Metal
Oxide Semiconductor）と呼ばれる技術によって作られています。詳しい説明
は省略しますが、基本的な考え方としては次のようなものです。

個々の回路の内部はキャパシタ（Capacitor）になっており、わずかながら電
気を蓄えることができます。インバータでは、入力がVssになると電源の上側のゲー
トが開き、キャパシタに電荷が蓄えられて回路の電位がVddに等しくなります。逆
に入力がVddになると下側のゲートが開き、蓄えられた電荷が放電されて回路の
電位がVssに下がります。

この充電と放電とがCMOS回路に流れる主要な電流です。実際には、これ
以外にもリーク電流と呼ばれる無駄な電気もわずかに流れてしまうのですが、ここ
では無視して、CPUの動作に必要となる電力（動作電力）だけを考えることに
します。

いま、VddとVssの電位の差（Vdd-Vss）、つまり回路に加わる電圧をVと
し、キャパシタの静電容量をCとすると、1回の充放電によって流れる電流はC×V
で表されます。これに電圧Vを掛けたものが電力なので、CMOS回路が充電と放
電を繰り返す（スイッチする、といいます）たびにC×V2の電力を消費することに
なります。

また、CPUが1秒間に入出力を行う回数、つまりCPUのクロック周波数をfで
表します。CMOS回路がクロックサイクルのたびにスイッチした場合、1秒間に消
費される電力はC×V2×fになります。実際には毎回スイッチするわけではなく、処
理に応じて必要なときにだけ電流が流れるので、スイッチが行われる割合をαで
表すと、最終的に回路の動作電力は次のように表されます。

動作電力＝α×C×V2×f

これを回路の数だけ合計して、さらにリーク電流として失われる電力（注11）
を加えたものが最終的なCPUの消費電力ということになります。

まとめると、CPUの消費電力はおおむねスイッチの頻度（α）に合わせて大き
くなり、個々の回路の静電容量（C）に応じて大きくなり、そして電圧の二乗
（V2）とクロック周波数（f）に比例して大きくなる、ということです。消費電力
を抑えるには、これらを下げることを考えなければなりません。

消費電力を抑えるためにできること
それでは、どうすればCPUの消費電力を抑えられるのでしょうか？ 先ほどのパ

ラメータを順に見ていきましょう。

スイッチの頻度を低くする

同じ処理を行うならば、なるべくスイッチが行われないようにする、つまりαを小
さくすることで消費電力が削減されます。必要な演算についてはスイッチしないわ
けにはいきませんが、必要のない回路についてはスイッチを完全にやめることで電
流が流れないようにできます。たとえば、整数演算では浮動小数点の回路は使
わないので、使わない回路へのクロックを止めることでαを0とし、電力消費を抑
えることが可能となります。

もっとも、これはCPUの設計に関することなので、利用者としてできることは何
もありません。

静電容量を小さくする

Cを小さくするには回路自体を小さくしなければなりません。あるいは回路を構
成する物質などによってもCは変わります。

このあたりは半導体の設計やプロセス技術に依存する部分であり、少々の工
夫で改善できるものではありません。技術の進歩を期待して待ちましょう。

電圧とクロックを下げる

上の二つと比べると、電圧やクロックを下げることはずっと簡単です。ただし、
性能が犠牲になります。

電圧とクロックは互いに独立した要素ではなく、密接なつながりがあります。
回路の動作速度に関する問題です。CMOS回路では、入力を変えるとただちに
出力が変わるわけではなく、充電や放電によって出力の電位が安定するまでに
わずかながら時間が必要です。必要な時間は電圧と反比例の関係にあり、電
圧を下げれば下げるほど多くの時間が必要となります。

出力が安定しなければ正しい計算が行えませんから、ここで必要となる時間
がクロックを決めることになります。つまりクロックを上げるためには、回路の動作
を速めるのに電圧も上げねばなりません。逆に電圧を下げるためには、クロックも
下げなければなりません。

ここで電力に関する先ほどの式「動作電力＝α×C×V2×f」を思い出してくださ
い。

クロックを上げるために電圧も上げるのだとすると、消費電力はその三乗のオー
ダーで増加します。たとえば、クロックを20％上げるために電圧も20％上げるとす
ると、消費電力は一気に72.8％も増加します（1.23＝1.728）。消費電力と
いう点から考えると、CPUのクロックを上げるという行為はひどく大きな負担を伴
うものなのです。

逆にいうと、「電圧とクロックを下げさえすればCPUの消費電力は一気に下が
る」ということでもあります。ここに電力削減のための希望があります。

クロック単位の処理効率を上げる

半導体の技術革新を別とすれば、CPUの消費電力を抑えるには電圧とクロ
ックを下げるのが最も効果的です。しかし、CPUはクロックごとに処理を行うわけ
ですから、単純にクロックを下げるとそれだけ性能が低下します。性能を損なわず
に消費電力を下げられないものなのでしょうか。

そもそもCPUの性能とは、大まかに次の式によって表されます。

CPU性能＝f×IPC

ここでfはクロック周波数で、IPC（Instruction Per Cycle）とは1回のクロック
サイクルで実行できる命令の数です。たとえクロックを下げたとしても、IPCを大き
くできれば性能は変わりません。ではどうすればIPCを上げられるでしょうか？ それ
にはまずCPUが命令を実行するしくみを見る必要があります。

パイプライン

現在のCPUは、1つの命令をいくつかの段階（ステージ）に分けて、複数の命
令を同時並行で実行しています。これを「パイプライン」（Pipeline）といいます。
図5.4は、「フェッチ」「デコード」「実行」「ライトバック」の4つのステージからなるパ

イプラインの例です。この基本の各ステージは表5.1のような役割を担います。パイ
プラインの深さはCPUの種類によって異なり、初代Pentiumでは5つのステージか
ら構成されましたが、Pentium 4（Prescottコア）ではこれが31ステージにまで
拡張されていました。

http://www.intel.co.jp/jp/intel/museum/mpuworks/index.htm
パイプラインを深くすればするほど、1つのステージで行うべき処理が少なくなって

時間も短くなり、それだけクロックを上げることが可能となります。Pentium 4は
初代Pentiumと比べてステージの数が6倍なので、単純計算で6倍のクロックで
動作させられるということになります。

http://www.intel.co.jp/jp/intel/museum/mpuworks/index.htm

IPCとクロック周波数の関係

パイプラインを深くすることでクロック周波数は上がりますが、IPCが上がるわけ
ではありません。1つの命令を完了するには、いずれにしてもすべてのステージを終
える必要があります。ステージはクロックごとに進むので、1回のクロックサイクルで
完了する命令は平均して1つ、つまりIPC＝1です。これはステージの数が増えても
変わりません。

実際には、IPCはむしろ低下します。パイプラインがうまく機能するのは、すべて
の命令がとどまることなく順番に実行されたときです。しかしプログラムには分岐と
いうものがあり、単純に前から後ろまで命令が実行されるというわけではありませ
ん。

パイプラインの途中で分岐が発生すると、途中まで実行されていた命令は一
度破棄され、分岐先から改めて次の命令が始まることになります。途中で破棄さ
れる命令の数はパイプラインが深くなるほど多くなるので、「一般的にステージを増
やせば増やすほどIPCは低下」します。つまり、パイプラインのステージを増やすとい
うことは、IPCを犠牲にしてクロック周波数を上げるという行為なのです。
図5.5は、IPCとクロック周波数の関係について示したものです。一般にパイプ

ラインが深くなるほど、周波数が向上する代わりにIPCは低下します。CPUの性
能はこれらを掛け合わせたものなので、最大の性能を得るにはIPCと周波数との
バランスが取れるようにパイプラインのステージ数を選ぶことが重要です。逆に、電
力削減を優先して周波数を下げるならば、パイプラインを浅くすることでそれだけ
IPCが高められるということでもあります。

スーパースカラー

パイプラインの深さを変えるだけでは、IPCは1以上には上がりません。しかし、
IPCとは1回のクロックサイクルで実行される命令数のことなので、同時に複数の
命令を並列実行できればさらなる向上が可能です。つまり、パイプラインを複数
並べればいいのです。これを「スーパースカラー」（Superscalar）といいます（図
5.6）。

スーパースカラーによって、初代Pentiumでは同時に2つ、Pentium Pro以降で
は同時に3つの命令まで実行できるようになりました。Pentium 4では、さらに「ハ
イパースレッディング」（Hyper-Threading）という技術によってパイプラインの利
用効率を高め、IPCは理論的には「3」にまで高まりました。

しかし、ソフトウェアの変更なしに複数の命令を並列実行するのにも限度があ
り、現実的にはIPCが3に達することはまずありません。スーパースカラーという方向
だけでは、CPUの性能をさらに上げることは難しいため、性能向上のために残され
た手段はクロック周波数を上げるしかないということになります。

最大性能から電力性能比の時代へ

今も昔も、CPUは少しでも処理速度を上げる方向に進化を続けています。
IPCが変わらないとすれば、周波数を上げれば上げるほど処理速度も向上する
ので、少し前まではクロックアップこそがCPUの性能向上であるとされてきました。

そうして誕生したのがPentium 4のNetBurstアーキテクチャで、これはパイプライ
ンをより深くすることでクロック周波数を最大化させるCPUでした。そして、先の電
力の公式から導かれるとおり、CPUの消費電力は加速度的に増加の一途をた
どり、このままではCPUが発する熱は太陽の表面温度に達するとさえいわれるよ
うになりました（注12）。

こうした困難により、2004年11月に発表されたPentium 4 3.8GHzを最後に
CPUの周波数を上げ続ける路線は終わりを告げ、それに代わって生まれたのが
2006年から現在へと続くIntel Coreシリーズです。これ以降のCPUでは、パイプラ
インのステージ数を再び少なくすることにより、クロック周波数を下げてIPCを高め
るように設計が変更されています。また、CPUの動的な電源管理の進歩により、
電力の効率的な利用が促進されています。

CPUは周波数（そして電圧）を下げると消費電力が劇的に小さくなります。
この特性を生かして、CPUが普段遊んでいるときには低電圧、低周波数で待機
し、忙しいときにだけ高電圧、高周波数で処理を行うようにすれば、目に見える
性能を落とすことなく消費電力を削減できます。

単に最大性能を追い求めるのではなく、電力をどれだけ効率的に使えるかと
いう、電力あたりの性能（電力性能比）が重視される時代になってきました。

マルチコアによる性能向上
現在のCPU開発のトレンドはマルチコア化です。つまり、1つのCPUパッケージの

中に複数のCPUコアを入れることで性能向上を図ろうとするものです。
マルチコアは電力性能比を高めるのに大きく寄与します。なぜなら、これによっ

てさらなるIPCの向上が見込めるからです。IPCを上げると周波数が下がります

が、それだけでは単純に性能の低下を意味しており、受け入れられません。しか
し、周波数の低下とマルチコアとを組み合わせると大きな効果が得られます。

Intelの図5.7の資料によると、CPUのクロック周波数を20％下げると性能は
13％低下しますが、消費電力はその三乗のオーダーで減少し、元のほぼ半分に
なります（0.83＝0.51）。そこでコアの数を2倍にすると、消費電力は元のCPU
とほとんど同じなのにもかかわらず、性能は最大で73％増加します。

http://www.intel.co.jp/jp/business/japan/event/IDF_2006/index.htm
つまり、マルチコア化を進めると消費電力を上げずに性能を大幅に向上させら

れるのです。これは電力性能比の面で大きなメリットです。
ただし、複数のコアを生かすためには、ソフトウェアの側でも複数のCPUを活用

するように工夫する必要があります。一般的なデスクトップアプリケーションはその
ような設計になっていないことも多いですが、サーバ用途のシステムでは元々複数

http://www.intel.co.jp/jp/business/japan/event/IDF_2006/index.htm

CPUを生かせるようになっています。この場合、コアを増やせば増やしただけ電力
性能比は高まります。

たとえば、コアを4つ備えたクアッドコア（Quad Core）のCPUを考えてみまし
ょう。周波数を元の63％にまで減らすと消費電力は1/4になるので、これを4つ合
わせると電力を増加させることなく、性能は単純計算で元の2.5倍程度にまで高
まります。それに合わせてハードウェアの価格も上がるので、単純にコアが多ければ
多いほどいいというものでもありませんが、少なくともこうした技術を組み合わせる
ことで、数年以内に電気代がハードウェア価格を上回ってしまうような事態は避け
られそうです。

注10

本節では、以下のWebページも参考にしています。

・「コンピュータアーキテクチャの話」（Hisa Ando）

URL http://journal.mycom.co.jp/column/architecture/

（本文に戻る）

注11

今日のCPUでは、与えられた電力のうち30～40％がリーク電流として無駄に失われるとの

ことです。

（本文に戻る）

注12

URL http://www.itmedia.co.jp/news/0104/18/idf_keynote3.html

（本文に戻る）

http://journal.mycom.co.jp/column/architecture/
http://www.itmedia.co.jp/news/0104/18/idf_keynote3.html

5.3
PCの消費電力を削減する

電力は工夫次第で削減することが可能です。とくにGoogleのような大規模シス
テムでは、電力削減によって得られる効果は大きく、さまざまな取り組みが行わ
れているようです。ここではまず、PC単位での消費電力を抑えることを考えていき
ます。

高クロックのCPUでは電力効率が悪い
一般的な傾向として、CPUの性能を落とすことなく電力を削減するには、IPC

が高くなるよう設計されたCPUを利用したり、マルチコアを活用してクロック周波
数を落とすことが有効です。とはいえ、これらの技術が実際にGoogleのシステム
で有効であるかどうかは確認が必要です。再び2003年のGoogle Cluster論文
に戻って、性能分析を続けましょう。

検索クラスタの中でも、最もCPUを酷使するのはインデックスサーバです（注

13）。インデックスサーバは、ディスクから圧縮されたインデックス情報を次々と読
み込み、各Webページのランキングを計算しなければなりません。ここでは圧縮さ
れたデータの展開や、ランキング処理のために多くのCPUパワーを必要とします。
表5.2は、Pentium III 1GHzを2つ積んだインデックスサーバが、CPUをどのよう

に利用しているかについて分析されたものです。

IPCは前節で説明したとおり、1回のクロックサイクルで実行される平均の命令
数です（注14）。Pentium IIIは同時に3つの命令を実行できることから、理論
上の最大IPCは「3.0」です。表5.2のインデックスサーバにおける実測値は「0.9」と
いうことなので、あまり大きくありません。つまり、インデックスサーバはCPUの性能
を最大限に生かしていないということになります。

これのおもな原因は、比較的高い「分岐予測ミス」にあります。プログラムで分
岐が発生すると、パイプラインの途中まで実行していた命令は破棄されることにな
るので、どうしてもIPCが低下します。インデックスサーバはディスクから読み出したイ
ンデックスの内容に応じて処理を行うことから、事前に分岐を予測することは極め
て困難です。こうした性質を考えると、インデックスサーバのIPCが低下することはど
うやっても避けられません。

実際、同じ処理をPentium 4で実行すると、IPCは「0.5」程度にまで半減して
しまうようです。Pentium 4では分岐予測の技術が向上しているにもかかわらず、

パイプラインのステージ数が大きく増加したために、それだけ分岐予測ミスの影響
が大きく出てしまうのです。

前節では、CPUが発揮する性能は「f×IPC」という式で表されることを示しまし
た。

IPCが低下するということは、そのぶんクロックを上げなければ性能が向上しま
せん。しかし、クロックを上げてしまうと消費電力が急激に増加します。消費電力
を抑えながら高い性能を発揮するには、たとえ分岐予測に失敗してもIPCが低
下しにくいCPUを選ぶことです。つまり、Pentium 4のような高クロック低IPCの
CPUはインデックスサーバには向いておらず、「インデックスサーバには低クロック高
IPCのCPUを選んだほうが良い」ということになります。

Tip
メモリの利用効率

表5.2を見る限りでは、分岐予測ミスが比較的高い一方で、L1、L2、TLBのミスはほとん

どなく、メモリに関してはかなり効率的に利用されていることがうかがえます。検索クラスタが

参照するインデックスは、一度検索を行うと後は大量のデータを読み出す構造のため※、ハ

ードウェアレベルでのプリフェッチ（Prefetch）が有効に働いて効率的なメモリ参照が可能と

なっているとのことです。

※　1.4節内の「単語情報のインデックス」を参照してください。

マルチスレッドを生かして電力効率を上げる

CPUの処理効率を上げるもう一つの方法が、ソフトウェア側での「マルチプロセ
ス」（Multi-Process）、あるいは「マルチスレッド」（Multi-Thread）による処
理の並列化です。スレッドが1つしかなければ、ディスクの読み書きなどのために
CPUの待ち時間が増えてしまいますが、複数のスレッドが動いていればCPUが有
効に活用されます。

元々インデックスサーバは多数の利用者からアクセスされるシステムであり、複
数のスレッドが同時に走るようになっています。そこで、インデックスサーバをXeonプ
ロセッサのハイパースレッディング技術により並列実行したところ、そうでない場合
と比べて30％程度の性能向上が得られたとのことです（注15）。これはハイパー
スレッドの最大性能を引き出しています。

複数のスレッドによりCPUの有効利用ができるならば、マルチコアのように複数
のCPUコアを用いることが、インデックスサーバにとって性能の面からも消費電力の

面からも優れた方法であると考えられます。Googleはこのことは2003年から繰り
返し論じています。

しかし、いくらマルチコアが理想的であったとしても、価格の面で折り合わなけ
れば採用することはできません。状況が変わり始めるのは2005年から2006年に
掛けてのことで、この頃からようやくデュアルコアCPUが一般のデスクトップ向けに
安価に出回るようになりました。これを受けて、現在ではGoogleもIntelやAMD
のデュアルコアCPUを採用しているようです。

何はともあれ、CPUの消費電力問題についてもこれで一応の歯止めが掛かっ
た形です。今後も電力が問題とならない範囲で、価格性能比の高いCPUが選
ばれることでしょう。

電源の効率を向上させる
電力を消費するのはCPUばかりではありません。ここで再びGoogle Cluster

論文（2.2のNoteを参照）から、消費電力の内訳を見てみます。

・CPU×2：55W
・ハードディスク：10W
・メモリ、その他：25W
・電源によるロス：30W
➡合計：120W

ここでは電源によって失われる電力を含めています。こうして見ると、実はCPU
に次いで多くの電力を消費しているのは「電源装置」なのです。

なぜ電源がこうも多くの電力を消費するのでしょうか？ ここでいう電源とは、デ
スクトップPCに付いている図5.8のようなパーツのことです。これを「PSU」（Power

Supply Unit）と呼びます。

PSUの役割は、外部電源（交流100Vなど）から供給された電力を、マザー
ボードが必要とする電力（直流12Vなど）に変換することです。この変換のとき
に一部のエネルギーが熱として逃げてしまい、そのために電力が失われます。一般
的なPSUの電力変換効率は60～70％と低く、多くの電力が無駄に消費されて
しまっています。

そもそもなぜ一般的なPSUの効率が悪いのかが、Googleにより2006年に発
表された文書「High-efficiency power supplies for home computers and
servers」（注16）で説明されています。

歴史的な理由により、PCの電源は何種類もの電圧（+12V、-12V、5V、
3.3Vなど）を作り出してマザーボードに供給しています。そのために複雑な回路が
必要となり、そのぶん多くの電力が失われています。ところが、こうして作り出され
た電圧のうち、実際に使われているのは実質的に1つだけで、それ以外は役に立
っていないというのです。

現在の電子回路は電力効率を上げるため、3.3Vよりも低い電圧で動作する
のが普通です。たとえばいまどきのCPUは1～2Vの電圧で動作するようになってお
り、その電圧は「VRM」（Voltage Regulator Module）と呼ばれる電子回路
によって生成されています。VRMは5Vや12Vの入力電源から、0.1V刻みで安定
した電圧を作り出すことができます。

電力はVRMを通して供給されるわけですから、そもそもPSUで複数の電圧を
生成する意味はほとんど失われています。それが今でも残されているのは、単に
規格でそう決まっているから、という理由だけです。それならば、PSUで生成する
電圧はもう一つだけにして、ほかは省いてしまっても問題ないはずです。

PSUから無駄を省いて、12Vの電圧だけを残すようにすると図5.9のようになり
ます。これだけで電源の変換効率は85～90％程度にまで向上するそうです。

http://services.google.com/blog_resources/PSU_white_paper.pdf
Googleでは独自に効率的な電源を開発しており、現在はすでに90％以上

の電力変換効率を実現しているとのことです。

http://services.google.com/blog_resources/PSU_white_paper.pdf

Tip
すべてのPCに効率的な電源を

Googleによると、もしも世界中の1億台のPCの電源を改良すれば、3年で400億kWhの

電力削減になり、50億ドル（約5000億円）が節約できるだろうと試算しています（脚注

16を参照）。

このような改善には業界を上げて取り組むべきでしょう。GoogleはIntelやDellなどの企業

に呼びかけて、2007年6月に「Climate Savers Computing Initiative」※という団体を立

ち上げました。これによって、マザーボードへと供給する電圧は12Vに統一するという方向で新

しいPCの規格作りの検討が始まったようです。近いうちに、私たちが購入するPCの電源も高

効率なものに変わっているかもしれません。

※　 URL http://www.climatesaverscomputing.org/

注13

2.2節内の「多数のサーバで負荷分散する」を参照してください。

（本文に戻る）

注14

Google Cluster論文中ではIPC（Instructions Per Cycle）ではなくCPI（Cycles Per

Instruction）が取り上げられているので、ここでは逆数を求めています。

（本文に戻る）

注15

Google Cluster論文（2.2のNoteを参照）より。

（本文に戻る）

http://www.climatesaverscomputing.org/

注16

URL http://services.google.com/blog_resources/PSU_white_paper.pdf

（本文に戻る）

http://services.google.com/blog_resources/PSU_white_paper.pdf

5.4
データセンターの電力配備

電力の問題をより大きな視点で捉えてみると、そこには個々のPCとはまったく異
なる問題が現れます。電力の供給能力という問題です。ここでは、データセンター
のレベルにおける電力の問題について考えてみましょう。

ピーク電力はコストに直結する
電力というのはいくらでも利用できるものではなく、その建物で許容される限

界というものがあります。これには二つの意味があります。一つは電力会社との契
約上のもので、決められた以上の電力を使おうとするとブレーカーが落ちるか、あ
るいは超過した電力に対してペナルティが課せられます。もう一つは設備上の限
界で、そもそも一定以上の電気を流せるようになっていなかったり、あるいは停電
時の自家発電能力がこれにあたります。

ここで1つのグラフを見てみましょう。図5.10は一定時間ごとの消費電力を表し
たものだとします。どちらのグラフも消費電力の合計という点では同じですが、「ピ
ーク時の電力」には大きな違いがあります。図5.10❶のグラフでは50の電力に対
応していなければシステムが停止してしまいますが、❷のグラフでは同じだけの電
気を使いながらも、30の電力で対応できることになります。

ピーク電力がいくらであるというのは、データセンターのコストに直結してきます。
第一に契約上の問題として、大口の電気料金というのは消費電力だけでなく、
ピーク電力によっても価格が変わります。同じ電気を使うのでも、❷のグラフのよう
になるべく平準化することでピーク電力を抑えられれば、それだけコストの削減に
つながります。

設備面でも同じことです。データセンターには停電に備えての蓄電・発電設備
や、冷却のための空調設備などが必要ですが、ピーク電力が少なければそれだけ
設備コストも抑えられます。電力コストを大きな視点で削減するには、システム全
体のピーク電力について考えなければなりません。

Googleは2006年に独自のデータセンターを建設しており、それに合わせて自
分たちのシステムがどのように電力を使っているのか調査してきたようです。2007

年の論文「Power Provisioning for a Warehouse-sized Computer」（次
のNoteを参照）では、Googleの数千台のコンピュータを6カ月にわたって調査し
た結果が報告され、電力をどのように配備するのが効果的であるかが論じられて
います。ここでは、大規模なシステムがどのように電力を利用するのか見ていくこと
にします。

Note
本節は次の論文について説明しています（以下、Power Provisioning論文）。

・「Power Provisioning for a Warehouse-sized Computer」（Xiaobo Fan／Wolf-

Dietrich Weber／Luiz André Barroso著、2007）
URL http://research.google.com/archive/power_provisioning.pdf

決まった電力で多くのマシンを動かしたい
電力のコストは、「電気代」と「設備コスト」の二種類に分けられます。電気代

については、使った分だけ増えるものなのでわかりやすいですが、設備コストのほう
はあまり直感的に意識されるものではありません。

データセンターを建設するには、必要とする電力1Wにつき10～20ドル程度の
建設費用が必要であるといわれます。仮にラックあたりのピーク電力を10kWとし
て、1000のラックに対して電力供給することを考えると、必要な電力は最大で
10MW（Megawatt）。となると、このデータセンターの建設費用は1～2億ドル
（100～200億円）という計算になります。

これは小さい金額ではありませんから、慎重に考える必要があります。データセ
ンターの寿命は10～12年といわれますが、仮に10年間ずっとピーク電力の85％
を使い続けたとしても、その電気代よりも建設費のほうがまだ高いのです。電力
の設備コストはそれだけ高く付くものなので、なるべくピーク電力は低く抑えて、そ
して設備の利用効率は高めたいものです。

ひとたびデータセンターが完成すれば、その電力供給能力の範囲内でどれだけ
のマシンを動かせるかということになります。マシンの数を増やすほど相対的な設

http://research.google.com/archive/power_provisioning.pdf

備コストは下がりますから、なるべく多くのマシンを詰め込むことが理想です。で
は、与えられた電力でどれだけのマシンを動かせるかというのは、どのように判断す
ればよいでしょうか？

一つの考え方としては、マシンのピーク電力の合計がデータセンターの供給能
力を超えないようにすることです。そうすればすべてのマシンがピークに達しても安
全に電力を供給できます。しかし現実的には、すべてのマシンが同時にピークにな
ることはまずありません。いくらか余分にマシンを追加したところで、電力が足らな
くなることはないでしょう。ここに問題の難しさがあります。

データセンターの利用効率を上げることと、電力に余裕を持たせることとは、ト
レードオフの関係にあります。電力が不足しないようにマシンの数を抑えると、デー
タセンターの利用効率は低下して相対的な設備コストが上がります。とはいえ、
効率を高めるために電力不足の危険を冒すわけにもいきません。さて、どの程度
のマシン数が適切といえるのでしょうか。

電力配分を階層的に設計する
そもそもデータセンターは電力をどのように扱うのか、というところから見ていきま

しょう。
図5.11は、一般的な中規模のデータセンターの電力設備を模式的に表したも

のです。ここでは電力の供給能力を1000kWとしています。

まず、電力会社から供給された主電源は変圧器によって480Vにまで降圧さ
れます。一般的に、電力は電圧が高いほどケーブルでの損失が少なくなるため、
電圧は段階的に引き下げられます。

主電源とは別に、停電に備えてUPS（無停電電源装置）と発電機も用意
されます。短時間の停電であればUPSから蓄えられた電力が供給され、停電が
長く続くようなら発電機が稼働します。主電源と発電機はATS（Automatic
Transfer Switch）と呼ばれる装置によって自動的に切り替えられます。

データセンター内部では、二系統の電力線を用いて障害に備えます。運ばれ
た電力はSTS（Static Transfer Switch）と呼ばれる装置で途切れないように
切り替えられ、PDU（Power Distribution Unit）を通してラックに分配されて
いきます。データセンター内には複数のPDUが設置され、各PDUに配分される電
力は75～200kW程度になります。PDUによって電圧は110Vにまで下げられ、こ
こから一般的な機器が利用できます。

各PDUには、20～60程度のラックが接続されるようです。各機器が過剰な電
力を消費するのを避けるため、PDUではブレーカーによる物理的な電力制限が設
けられます。たとえば、各ラックには2.5kW、各PDUには200kWといった制限で
す。これによって部分ごとの最大電力が保証されるので、データセンター全体とし
ての電力配分を設計することが可能となります。

もしもこうした制限が破られると、電力料金にペナルティが課せられたり、最悪
の場合には電力不足でシステムが停止してしまうことにもなりかねません。したが
って、最大電力の制限は厳しく守られなければなりません。

電力枠を使い切るのは難しい
電力設備の利用効率を上げるには、なるべく上限ぎりぎりのところで電力を

使い続けることが理想です。とはいえ、実際にはさまざまな理由から利用効率が
低下します。

・段階的な機器導入
とくに初期の段階では、そもそも十分な数の機器が設置されておらず、

必要に応じてラックを増やすことになるかもしれません。そうした場合は当然
ながら、設備の利用効率は低くなります。

・未使用の電力枠
たとえばラックに割り当てられた最大電力を2.5kWとして、520Wのサーバ

を設置するとします。4つ接続すると2.08kWですが、5つだと2.6kWになって
ラックの限界をオーバーします。そのため4つにとどめることにすると、差分の
0.42kWは決して利用されないことになります。こうした無駄をなくすために
は、PDUには少し多めのラックを接続することです。

・データシートとの違い
各機器のデータシートに記載された公式のピーク電力はしばしば余裕を

持って書かれており、実際のピーク電力はそれよりも少ないことがあります。
記載されているデータを信じて機器を設置すると、多くの無駄が生じてしまう
ことになりかねません。本当のピーク電力は実際に計測してみることが必要
です。

・消費電力の変動
サーバの消費電力は、それがどの程度の処理を行っているかによって大き

く変動します。何の節電対策を行っていないPCでも、何もしていないときに
はピーク時の半分以下の消費電力となるため、これが電力の予測を難しく
します。

・統計的な変動
どんなに高負荷な処理（たとえばMapReduce）を行ったとしても、すべ

てのサーバが一度に100％の負荷になることはありません。個々のサーバの
消費電力の変動とは別に、システム全体の変動についても考慮しなければ
なりません。

＊　＊　＊

消費電力にはこうした不確定要素があることから、その効率を高めるのは簡
単なことではありません。まずは既存のシステムがどのように電力を消費している
のか知るところから始めましょう。

マシンが増えれば電力も平準化される
それでは具体的な消費電力を見ていきましょう。以下のデータは、実際に

Googleのデータセンターで6カ月にわたって、数千台のマシンの消費電力を調べ
た結果が集計されたものです。

電力消費の傾向

図5.12は、Web検索クラスタの各マシンが電力をどのくらい利用しているのか
調べたCDF（Cumulative Distribution Function、累積分布関数）です。

のグラフは全体を表しており、その右上部分を拡大したものが のグラフです。

詳しい説明は省きますが、縦軸はマシンの累積台数を表しており、横軸は1に
近づくほどピークに近い電力を利用していることを意味してます。ここから次のよう
なことがわかります。

❶グラフの下限が0.45付近から始まっていることから、ピーク時と比べて
45％以下の電力で動作しているマシンはない、ということになります。す
べてのマシンは最低でも45％の電力を常に消費しているということで、こ
れはつまり単に電源を入れているだけもそれだけの電力が浪費されていた
のだと考えられます。

❷グラフは右に進むにつれて増加し、0.98のところでラックのグラフが上限に
達します。これはラックが消費しうる最大電力（すべてのマシンのピーク電
力を足し合わせたもの）の98％まで利用したラックが存在した、というこ
とです。また、CDFが0.95のところでは電力は0.91程度であることから、
最大電力の91％以上を利用したラックが5％あったということがわかりま

す。すでに98％の効率で電力を利用しているラックに、それ以上のマシン
を加える余地はほとんどありません。すでにラックの電力は効率的に利用
されていると考えられます。

❸PDUやクラスタ全体を見ると話は変わります。PDUのグラフは0.94、クラ
スタ全体については0.93の付近で上限に達します。つまり、マシンの数が
ラック（40台）からPDU（800台）、クラスタ（5000台）と増えるにつ
れて、すべてのマシンが一度にピークに達することはほとんどなくなり、最終
的にクラスタ全体としては、最大でも93％の電力しか消費しなかったとい
うことです。これはつまり、あと7％程度までならマシンを追加する余地が
残されているということを意味しています。

❹グラフの下限を見てみると、クラスタ全体としてはラック単位で見るよりも
電力効率が高くなっていることがわかります。一般的に、マシンの台数を
増やせば増やすほど、全体として利用される電力は平準化され、ピーク
時の電力は低く、逆に最低限必要とされる電力は高くなります。つまり、
マシンの数を増やせば増やすほど、全体の電力利用はより一定に近づ
き、それだけ電力の利用効率を上げられる可能性が出てきます。

＊　＊　＊
検索クラスタだけではなく、その他のクラスタ（たとえばGMailやMapReduce

など）を加えると、この傾向はもっと顕著に表れます。図5.13のグラフは、すべて
のクラスタを含めたデータセンター全体について調べられたものです。

異なるクラスタでは、電力の使われ方も異なります。たとえば、日中の利用が
多い検索クラスタと、バッチ処理が中心となるMapReduceとでは、電力がピーク
となる時間も異なります。相対的に負荷の低いサーバ群も加えると、データセンタ
ー全体としての電力利用効率は52～72％の間に収まったようです。つまり、電
力設備的には、あと28％ものマシンを追加する余裕があったということになりま
す。

一般的に、多様なマシンを一緒にすればするほど、全体とのしての電力利用
は平準化され、システム全体のピーク電力は個々のマシンのピーク電力を足し合
わせたものより小さくなります。したがって、そのぶんだけ余分にマシンを追加する
余地が生まれます。

パワーキャッピング

統計的に見れば、すべてのマシンが同時にピークに達することがないのは確かで
す。しかし、これから先も絶対にないということはいい切れません。過剰なマシンを
追加した結果、もしも電力が不足するとシステム停止の危険を冒すことになりま
す。このリスクが避けられない限りは、余分なマシンを追加することなどできないで
しょう。

システムの消費電力があらかじめ設定された量を超えそうなとき、システムの負
荷を下げるようにフィードバックすることを「パワーキャッピング」（Power
Capping）といいます。システムの負荷を下げるとは、検索クラスタであれば処
理のペースを落とすとか、MapReduceであれば処理を中断して後から再開す
る、といった方法です。パワーキャッピングを行うことで、予想を超えて消費電力が
上がりそうなときにでも限界を超えてしまうことのないように制御することが可能と
なります。

パワーキャッピングを前提とするならば、マシンの数をさらに増やすこともできま
す。たとえば、先ほどの図5.13 によると、データセンターの消費電力は常にピー
ク電力の72％以下にとどまっています。しかし、CDFが0.99のところを見ると、これ
が68％程度にまで下がります。ということは、負荷の高い1％のマシンでパワーキャ
ッピングを行うことを受け入れられるならば、さらに4％のマシンを追加する余地が
生まれるということになります。

4％程度であれば割に合わないかもしれませんが、同じことをMapReduceクラ
スタに限ってみると、1％のパワーキャッピングで10％のマシン増が見込めるようで
す。MapReduceのような処理では負荷を下げることも簡単に行えますから、こう
したクラスタではパワーキャッピングを見込んで多めにマシンを配備することも有効
であると考えられます。

平均消費電力

ここまではおもにピーク電力について見てきましたが、日々の電気代は実際に
消費した電力に応じて決まります。こちらについても見ておきましょう。

表5.3は、検索クラスタ、およびデータセンター全体の実際の消費電力が、ピー
ク電力と比べてどの程度の利用率だったのか調べられたものです。

検索クラスタはピーク時で93.5％と、限界に近いところまで電力を消費してい
るものの、平均すると68.0％と、2/3程度の能力しか使われていません。検索ク
ラスタは昼間と夜間の利用率に差があるので、これは当然の結果でしょう。

データセンター全体としてみると、平均して59.5％、最大でも71.9％と、ずいぶ
ん差が小さくなっています。つまり、それだけ電力の使われ方にむらがなくなるとい
うことです。

これを数値で表したものが、表5.3の4列めの平均とピークとの比率（「平均/
ピーク」）です。検索クラスタではこの差が大きいので、ピーク電力に合わせてマシ
ン数を決定すると、普段は72.7％の電力しか使われないことになります。一方、
多様なクラスタを組み合わせると、普段から82.8％の効率で電力を利用できる
ことになりそうです。この点から見ても、多様なマシンを組み合わせることが電力の
利用を効率化する可能性を示唆しています。

省電力技術によりコスト効率が高まる

今回の計測では運用中のシステムについて調べられたために、とくに電力削減
については考えられていなかったようですが、前節でも触れたとおり、最近のCPU
は省電力の機能が充実してきています。たとえば、CPUの負荷に応じてクロック
周波数を変えることにより節電することが可能で、論文ではこうした機能によって
もし電力を削減していたならどうなっていたかについても予測を行っています。

Columun
消費電力の計測方法

ところで、Googleはどのようにして何千台ものマシンの消費電力を計測したのでしょう

か？

実際に運用されている大量のマシンの電力を、一台一台リアルタイムに調べるのは簡単

なことではありません。Googleでは実際に消費電力を調べる代わりに、CPU使用率と消

費電力との間に高い相関があることを見つけました。この性質を利用して、あらかじめ同じ

構成のマシンについてこの相関関係を調べておくことで、その後はCPU使用率だけを手掛

かりに1％未満の誤差で消費電力を調べられるようになったとのことです（図5.A）。

CPU使用率と消費電力とに相関があるということは、それを使ってパワーキャッピングを

実現することもできそうです。パワーキャッピングのためには、実際の消費電力をハードウェア

的にモニタリングするのが確かな方法ですが、すべてのマシンのCPU使用率を常に監視する

ことで、一定以上の使用率が続くようなら負荷を下げるようにシステムを作ることも可能で

しょう。

消費電力のことまで考えて動作を変えるソフトウェアというのもおもしろいですね。

図5.14は、CPU使用率が5％、20％、50％以下の場合に省電力機能が働
いたと仮定して、ピーク電力（❶のグラフ）と消費電力（❷のグラフ）とがどの
程度抑えられたであろうかを表したものです。

データセンター全体として見ると、ピーク電力で11～18％、消費電力全体では
14～23％の削減になるという見込みです。Webメール（GMail）や
MapReduceは、ディスクアクセスが多いので効果は薄いですが、全体としてみる
と節電効果は明白です。

現在のPCは、ただ電源を入れているだけでもピーク時の50％近くの電力を消
費しており、多くの電力を無駄にしています。CPU負荷が小さいときに消費電力
を下げるというのは、こうした無駄を減らす有効な方法です。もしもこうした工夫を

積み重ねて、何もしてないときの電力がピーク時の10％にまで抑えられたとすれ
ば、節電効果は図5.15のようになります。

データセンター全体として、なんとピーク電力で30％、消費電力全体では50％
以上の削減になるという結果です。現在のPCはこれだけ無駄に電力を消費して
いるわけで、電力の効率的な利用という観点からすると、まだまだハードウェアに
は改善の余地が残されているということでしょう。

工夫次第で設備効率は二倍にもなる
以上の結果を踏まえて、データセンターにマシンをどのように配備すればいいの

か考えます。

まずはじめに、各種機器のデータシートに書かれている公式のピーク電力は余
裕をもって書かれているものなので、実際にマシンを組み立てた上で本当のピーク
電力を計測してみなければなりません。それを基準としてラックの計算上の最大
電力を求めます。

ラックの実際のピーク電力は、統計的に見ると計算上の最大電力よりも小さ
くなる傾向があるので、ラックには若干ながら余分にマシンを追加する余裕があり
ます。しかしながら、先に見たようにラックの中にはほぼ最大限の電力を消費する
ものがあるので、無理にラックにマシンを詰め込むよりも、ラック単位では余裕をも
った電力設計をしたほうがよさそうです。

PDUという単位で考えると、ここには何十ものラックが接続されることになるの
で、マシンを余分に設置する余地も高まります。とりわけ、利用頻度の異なるさま
ざまなマシンを同じPDUの下に接続すると、全体としての電力は平準化され、実
際のピーク電力が低下する傾向にあります。したがって、計算上の最大値よりも
やや多めにラックを接続することで、電力設備の利用効率を高められると考えら
れます。ただし、その場合にはパワーキャッピングを行うことで、予期せぬ過剰電力
によってシステムが停止する危険を防止することが必要です。

Googleでの実測値に基づく推定によると、こうした方法によって配備できるマ
シンの数は、単純にデータシートに従って安全に設計する場合と比べて、二倍に
も達するようです。逆にいうと、こうした工夫をしないとすれば、同じ数のマシンを
使うのにも二倍の電力設備が必要となってしまうため、多大な出費を伴うことに
なりそうです。

5.5
ハードディスクはいつ壊れるか

ハードディスクは、コンピュータの中でも最も故障しやすい部品の一つであるといわ
れています。もしその故障率を抑えられるなら、あるいはあらかじめ故障を予測す
ることができたなら、これも大きなコスト削減につながります。

10万台のハードディスクを調査する
ハードディスクドライブ（Hard Disk Drive、以下本節ではディスクドライブ）は

よく故障しますが、Googleではそうした故障ではデータが失われることのないよう
システムを構築しています。しかし、もちろんそれにはコストが掛かります。ハードウェ
アの金銭的なコストもありますし、壊れたディスクドライブを交換するための人的な
コスト、失われたデータを復旧するための時間的なコストなどもあります。可能な
限り、予期せぬ故障は避けたいものです。

Googleは元々大量のディスクドライブを利用しており、その利用状況を調べて
データを残しています。2007年の論文「Failure Trends in a Large Disk Drive
Population」（次のNoteを参照）では、10万台以上のディスクドライブについ
て記録された情報を元に、その故障の傾向について調べられた結果が発表され
ました。ここでは、ディスクドライブがどのように故障するかについて見ていきます。

Note
本節は次の論文について説明しています（以下、Disk Failure論文）。

・「Failure Trends in a Large Disk Drive Population」（Eduardo Pinheiro／Wolf-

Dietrich Weber／Luiz André Barroso著、5th USENIX Conference on File and

Storage Technologies（FAST 2007）、p.17-29）
URL http://research.google.com/archive/disk_failures.pdf

故障の前兆となる要因は何か
調査の対象となったのは、シリアルもしくはパラレルATAの一般的なディスクド

ライブ。回転数は5400～7200rpmで、容量は80～400GBです。2001年以降
に発売されたさまざまなモデル（少なくとも九種類）を対象として、2005年の終
わりから9カ月間にわたって詳細なデータが集められました。

すべてのディスクドライブは、実際に使用される前にひととおりのストレステストが
行われており、初期の段階で不良のあるものはこの時点で取り除かれています。
その後はデータセンターという安定した環境で、故障するまで休むことなくずっと動
き続けます。

ディスクドライブの「故障」とは、「それを取り替えなければならなくなった」ことを
表します。実際には、取り外したディスクドライブを別の環境でテストすると何の問
題もないこともあるようですが、それが実際のマシンで利用できなくなった以上は
故障とみなされます。故障の原因についてはさまざまな理由が考えられますが、
一つ一つの原因についてまでは調べられていません。

計測された内容は次のようなものです。

http://research.google.com/archive/disk_failures.pdf

・読み書きの頻度
・ディスクドライブの温度
・その他、SMARTの各種パラメーター

SMART（Self-Monitoring Analysis and Reporting Technology）と
は、「ディスクドライブの自己診断機能」のことで、障害発見を目的として各種の
情報が記録されるものです。Disk Failure論文ではこれらのデータを元にして、デ
ィスクドライブの故障に明らかな影響のある指標を得ることを目指しています。

Tip
不適切なデータの除去

長期間にわたって大量のデータを取り続けると、どういうわけかおかしなデータが混じることも

あるようです。単純にあるべきデータがないという場合から、ディスクドライブの電源を入れた回

数がなぜかマイナスだったり、あるいは温度が太陽よりも熱くなっていたり。実際の統計処理

を行う前には、こうしたありえないデータを除去するところから始める必要があるようです。

長く使うと壊れやすくなるわけではない
それではさっそく、結果を見ていきましょう。最初は、すべてのディスクドライブに

ついての「年間平均故障率」（Annualized Failure Rate、以下AFR）です。
図5.16のグラフは、ディスクドライブが壊れたときの年齢に応じてデータをまとめ

て、3カ月、6カ月、そして1～5年におけるAFRを計算したものです。

注意点として、3カ月、あるいは6カ月以内に故障したというデータは、1年めの
グラフにも含まれます。2年め以降は、その1年における故障率を表しています。た
とえば、3カ月以内に故障したディスクドライブは年率換算で約3％となる一方
で、1年以内に故障したもの（3カ月以内の故障を含む）は2％未満にまで低
下します。新しいドライブは故障しやすいといわれますが、確かにそれがデータとし
て表れています。

1～2年の間で故障したディスクドライブは8％と急激に増えていますが、故障
率が上がったわけではないので注意が必要です。今回のDisk Failure論文で
は、同じ種類のドライブを何年にもわたって調べたのではなく、さまざまな種類のも
のが混在しています。1～2年で故障したドライブは古いモデルなので、単純に年
数を重ねるとAFRが上昇するということではありません。

実際のところ、AFRはそれがいつどこで作られたかによって決まる部分が大きい
ようです。良いときに買ったドライブはどれも故障しにくく、逆にハズレのときには最
初から最後まで故障しやすいということです。AFRがどのようになるかは運次第、
ということになるでしょうか。

図5.16のグラフはそれ自体が意味のあるものではなく、これ以降のグラフと比
較するための基準として用います。以降の説明では、図5.16のグラフと同じように

すべてのディスクドライブを一
く く

括りに扱っていますが、ドライブの種類ごとに集計し
直しても結果はほとんど変わらないとのことです。

よく使うと壊れやすくなるとも限らない
一般的に、ディスクドライブに頻繁にアクセスするほど故障率も高まると信じら

れています。Googleによる計測結果は、図5.17のグラフのとおりです。

図5.17を見る限りでは、たしかに1年未満と5年めのディスクドライブについては
その傾向が見られます。ただ、それ以外のところではそれほど目立った違いはない
ように見受けられます。とくに3年めのドライブについては、利用頻度の低いほうが
よく壊れるという結果ですらあります。

この原因ははっきりしないようですが、Disk Failure論文では次のような説明が
考えられるとしています。

一つは、「適者生存」の原理に従った結果だという考え方です。ディスクドライ
ブは最初のうちは壊れやすいものなので、最初に高い負荷を掛けることにより、
元々壊れやすい運命にあったドライブはその時点で故障し、それを乗り切ったもの
については安定するという説です。

あるいは別の見方としては、これまでいわれてきたことは、製造元による加速度
試験による結果だとも考えられます。試験環境では短期間の傾向しか調べられ

ませんが、実際の環境では長く使われるハードディスクにとって利用頻度は大きな
影響を与えないのかもしれません。

いずれにしても、利用頻度と故障率との間には、これまでいわれてきたほどの
明らかな相関は見られないというのがここでの結論です。

温度が高いほど壊れやすいということもない
ハードディスクの故障率に最も大きな影響を与えるのが温度であるといわれて

います。もしも適切な温度管理によって故障率を下げられるのであれば、コスト
削減につながるかもしれません。

図5.18のグラフは、ディスクドライブの平均温度と故障率との関係を表したもの
です。

図5.18 1 のグラフは、各ディスクドライブの平均温度がどのように分布していた
かを示しています。棒グラフはドライブの数で、黒い点はAFRを表します。明らかな
傾向として、ディスクドライブの温度が低いほど故障率が高まるという驚くべき結

果です。多くのドライブは25～30度前後に保たれていたようですが、実は30～
40度あたりの高い温度のほうが故障しにくくなるようです。45度を超えるような高
温では再び故障率が上がる傾向にありますが、それでも温度が低いときほど顕
著ではありません。

図5.18 2 のグラフは、ディスクドライブを世代ごとに分けて見たときの結果で
す。3年以上前のドライブではたしかに温度が高いほど故障しやすい傾向があり
ますが、最近のドライブでは温度が低いことのほうが故障率を高めています。

温度が故障率に与える影響はかなり詳しく分析したとのことで、平均温度の
影響だけではなく最高温度や、あるいは故障する直前の温度などさまざまな要
素について調べてみても、やはり同様の傾向が見られたとのことです。

いずれにしても、今のディスクドライブは30～40度近辺が最も壊れにくくなるな
るようであり、データセンター側でも比較的余裕のある温度設計ができそうだとし
ています。

いくつかのSMART値は故障率に大きく影響する
本項からは「ディスクドライブの自己診断機能」（SMART）によって得られる

値が、故障率にどのように影響するのか見ていきます。いくつかの値は大きな影
響があり、いくつかはほとんど影響がありません。以下の「スキャンエラー」「リアロケ
ーション数」「オフラインリアロケーション」「リアロケーション前のセクタ数」の4つは、
故障率に大きくかかわる値です。

スキャンエラー

最初は「スキャンエラー」（Scan Error）です。スキャンエラーは、ディスク表面の
障害などによって読み込みができなくなったときに発生します。これはおおむね、デ

ィスクドライブ全体の2％くらいの割合で発生したようです。
図5.19のグラフは、スキャンエラーが一度でも発生したドライブと、そうでないもの

との故障率がどのくらい異なるかを比較したものです。明らかにスキャンエラーが発
生した場合には故障率が大きく上昇しています。

より細かく見ると、スキャンエラーが発生した2カ月後には20％、8カ月後には
30％のドライブが故障したようです。一度でもスキャンエラーの発生したドライブが
60日以内に故障する確率は、そうでないものと比べて39倍にも達するとのことで
す。

リアロケーション数

「リアロケーション数」（Reallocation Count）は、何らかの理由でディスクの
読み書きに失敗したときに、その障害を回避するために別の場所を用いるように

変更した回数を表します。これはおおむね、ディスクドライブ全体の9％に発生した
ようです。

図5.20のグラフは、一度でもリアロケーションが起こったディスクドライブと、そう
でないものとの故障率を比較したものです。ここでもやはり故障率は大幅に上昇
しています。リアロケーションの発生したディスクドライブが60日以内に故障する確
率は、そうでないものと比べて14倍になったとのことです。

オフラインリアロケーション

「オフラインリアロケーション」（Offline Reallocation）は、ディスクの読み書き
中にではなく、ディスクドライブが手の空いているときに自主的に行うリアロケーショ
ンです。これは本来、リアロケーションの総数に含まれるべき値ですが、ドライブに

よって実装が異なるとのことで個別に取り上げられています。図5.21のグラフによ
ると、オフラインリアロケーションはディスクドライブ全体の4％に発生したようです。

オフラインリアロケーションが発生したときの故障率は、それ以外のリアロケーシ
ョンと比べると高くなるようです。一度でもオフラインリアロケーションが発生したド
ライブが60日以内に故障する確率は、そうでないものと比べて21倍に達するとの
ことです。

したがって、オフラインリアロケーションの発生はより確かな故障の予兆となりえ
ますが、その意味するところはドライブによって異なることから、事前の確認が必要
です。

リアロケーション前のセクタ数

「リアロケーション前のセクタ数」（Probational Count）は、障害があるけれ
ども、まだリアロケーションには至っていない数を表します。図5.22のグラフによる
と、ディスクドライブ全体の2％でこれが発生したようです。

これもオフラインリアロケーションと同様の兆候を示し、これが発生した場合にデ
ィスクドライブが60日以内に故障する確率は、そうでない場合と比べて16倍に達
したとのことです。

故障率に影響しないSMART値も多い
前節のSMART値ほどはっきりした影響は見られないけれども、参考になる値

をいくつか取り上げます。

・シークエラー

「シークエラー」（Seek Error）は、ドライブがヘッドを合わせることに失敗し、再
びディスクが回転するのを待たなければならなかったことを意味します。この値がど
のようになるかはディスクドライブの種類によって異なり、故障率との関係も明確
ではないことから、単純にこれを障害の予兆と見なすことはできないようです。

・CRCエラー

「CRCエラー」（Cyclic Redundancy Check Error、巡回冗長検査エラー）
は、データの読み書きには問題がなかったものの、その内容が壊れていたときに発
生します。CRCエラーと故障率には多少の相関があるものの、ほかのエラーほどの
明確な指標にはならないようです。CRCエラーはドライブの故障だけでなく、ケーブ
ルやコネクタの影響によって発生することもあるからです。

パワーサイクル

「パワーサイクル」（Power Cycle）とは、ディスクドライブの電源のオン、オフを
繰り返すことです。これが多いほどディスクドライブの寿命は短くなるといわれてい
ます。Googleではほとんど電源を切ることがないので明確なデータは得られませ
んが、最悪のケースでも2％程度の影響しかなかったようです。

振動

SMARTには含まれませんが、「振動」も故障率に影響するといわれています。
すべてのディスクドライブに振動センサーを取り付けるのは無理があるので、ドライ
ブが1つの場合と2つの場合とで違いがあるのか調べようとしたとのことですが、残
念ながら統計的に意味のある結果は得られなかったようです。

SMART値だけではいつ故障するかはわからない

いくつかのSMART値は故障率に大きく影響するので、それらを合わせればディ
スクドライブの寿命を予測できるのではないかという期待が持てます。寿命が予
測できれば、あらかじめそのドライブの利用を避けることで故障時の影響を最小
限にとどめたり、定期的なメンテナンスで効率的にドライブを入れ替たりするなど、
できることは多くあります。

そこで、与えられたSMART値から故障率を導く式を作ったところ、思ったほど
確かな結果は得られませんでした。そもそもSMART値だけでどこまで故障率を割
り出せるものなのでしょうか？

図5.23のグラフは、すべての故障したディスクドライブについて、SMARTが示し
ていた値をまとめたものです。

一番右の棒グラフは、1つでもエラーが発生したドライブの割合を表しています
が、それが64％。ということは、残り36％のドライブは、何の手掛かりもなしにいき
なり壊れたということです。つまり、SMART値によって故障が予測できるのはどう
頑張っても全体の64％でしかありません。故障率と高い相関のある4つ値が見ら
れたものに限ると、故障したドライブの半分にも満たなかったとのことです。

スキャンエラーなど、故障を予兆する値が現れたときに、そのドライブが壊れる確
率を計算することは可能です。しかし、そうした明確な予兆がないときに故障を
予測することはできず、したがっていま正常なドライブがいつ壊れるかというのは、
SMART値だけを見ていてもわかりません。何の問題もないと思っていたドライブが
いきなり壊れる可能性はいつでもあるのです。

Columun
統計データの処理方法

10万台のディスクドライブを9カ月にわたって観測するともなると、当然ながら大量のデー

タが生成されます。たとえば、1台のドライブにつき200バイトのデータを5分ごとに記録したと

すると、9カ月に記録される情報は1TB以上になります。これは保存するのも解析するのも

大変です。

GoogleはここでもBigtableやMapReduceといった分散システムを活用しています。すべ

ての情報は「System Health Infrastructure」と呼ばれるシステムによって一元的に集めら

れ、Bigtableに格納されるようです。ここではマシン名を行キー、各種計測データの種類をコ

ラムキーとして、過去のすべてのデータがタイムスタンプとともに保存されます。保存されたデー

タはMapReduceやSawzallによって加工、集計され、さらにR言語※による統計処理を経

て、本章で紹介したようなグラフが生成されています。

データセンターの消費電力も、このSystem Health Infrastructureによって集められたデ

ータを解析することによって得られたとのことです。

※　 URL http://www.r-project.org/

http://www.r-project.org/

ハードディスクと正しく向き合う
Googleによる調査結果を信じるならば、ディスクドライブについて正しいと思わ

れてきた次の通説は疑ってかかるほうが良さそうです。

・読み書きが多いと壊れやすくなる
・温度が高いほど壊れやすくなる

ディスクドライブの平均的な故障率は、ドライブのメーカーや種類、購入時期に
よって異なり、長く使うほど壊れやすくなるとも限りません。使い始めて最初の頃
はやや壊れやすく、この時期は利用頻度が増えることで故障しやすくなりますが、

ひととおりのものが壊れてしまえば、生き残ったものは利用頻度に関係なく動き
続けるようです。

温度については意外なことに、低い温度で動かすほど壊れやすいという傾向が
見られます。30～40度くらいに保つことが最も故障率を低下させるようなので、
それを踏まえて温度設計を考えるのがよさそうです。

残念ながら、SMART値だけから故障を予測することは難しそうです。スキャン
エラーなど、特定のSMART値は故障率に高い相関があるので危険信号となりま
すが、何の前触れもなく故障するドライブも多いので、やはりいつ壊れても平気な
ようにシステムを設計することが必要でしょう。

5.6
全米に広がる巨大データセンター

Googleは2006年以降、米国を中心に次々と自社のデータセンターを建設して
います。その一つ一つが数百億円規模というこれら新しいデータセンターでは、こ
れまでの研究開発を生かした効率的な情報システムが構築されていると考えら
れます。

オレゴン州ダレス
2006年6月頃に完成し、すでに稼働を始めているのが米国オレゴン州ダレス

（Dalles、OR）に建設されたデータセンターです（図5.24❶）。この地域は、コ
ロンビア川の水力発電によって安定した安価な電力が手に入るうえ、光ファイバ
によるインターネット環境が整備されており、さらに生活費も安く済むといったメリ
ットがあるようです（注17）。

Googleはデータセンターの詳細については徹底して秘密を貫いており、そこに
設置されたマシン数はおろか、何人の従業員がいるかということさえ明らかにして
いません。建設から1年たって、ようやく地元記者の立ち入りを認めたというくらい
の徹底ぶりで（注18）、依然としてこのデータセンターの能力は限られた情報から
想像することしかできません。

公式な情報は得られないにせよ、その大きさは衛星写真（Google Maps）
を見るだけでも明らかで、そこからさまざまな推測がされています。ZDNetでブログ
を書いているRobin Harris氏によると、ここダレスのデータセンターはサッカーのグラ
ウンドほどの広さ（10万平方フィート＝9290平方メートル）の建物が2つ。ラック
の大きさを考えると、建物1つで8,000程度のラックが入るのではないかとしていま
す（注19）。

個々のラックには40個のCPUが乗るとのことで、そこから考えるとデータセンター
全体のマシン数は最大で64万台にも及びます。面積だけからマシン数を予測す
るのには無理がありますが、それほどの大きさのデータセンターが作られていること
は確かなようです。

ちなみに米国の電気料金は、地域や用途によっても異なりますが、おおむね
1kWhあたり5～20セント程度のようです。大口の電気料金は消費電力だけで
なくピーク電力もかかわるので単純な比較はできませんが、この地域は1kWh換
算にして3～4.5セント程度になるのではないかとのことです（注20）。

ノースカロライナ州レノア
Google第二のデータセンターとして建設の進められている場所がノースカロライ

ナ州レノア（Lenoir、NC）です（図5.24❷）。これは2008年はじめには完成
予定で、すでにエンジニア200人の募集が行われており（注21）、本書が出る頃
には運用が始まっているかもしれません。

レノアのデータセンターは建設費用6億ドル（約600億円）で、ダレスと同じ規
模の建物が2つ作られるとのことです（注22）。この地域も電力料金が1kWhあ
たり4.5～5セントと安価であり（注23）、データセンターとしての能力はダレスと大
きく変わらないと考えられます。

GoogleのPower Provisioning論文によると、一般的なデータセンターの建
設コストは1Wあたり10～20ドルとされています。仮に1Wあたり10ドルとすると、
このデータセンターで供給できる電力は60MW。ここから逆算すると、マシンの数
は最大で40万台程度になるでしょうか（注24）。

設備コストの面から考えてみても、やはり1カ所のデータセンターだけで数十万
規模のマシンを動かせる能力がありそうです。

サウスカロライナ州バークレー郡
図5.24❸のサウスカロライナ州バークレー郡（Berkeley County、SC）でもデ

ータセンターが完成間近で、こちらもすでにエンジニア200人が募集されています。
2008年中には運用が始まるとのことです（注25）。

ここでは、Googleは工業団地に520エーカー（210万平方メートル。東京ドー
ム45個分）の土地を購入しており、レノアと同じく6億ドルのデータセンターが建
設されていいます（注26）。ただ、520エーカーというのはあまりにも広過ぎます。
InfoWorldのコラムニストRobert X. Cringely氏はこれを次のように指摘していま
す。この地区は原子力発電所が近く、そこから安定した電力が期待できます。そ
こでGoogleはこの地区一帯の配電設備を買い占めることで、他社に電力を奪
われまいとしているのではないかと推測しているようです（注27）。

サウスカロライナ州では、Googleはブライスウッド（Blythewood、SC）にも
466エーカーの土地を購入しており、そこでもさらなるデータセンターの建設を検討
しているようです。Googleは一体どれほどのマシンを配備しようとしているのでしょ
うか。

オクラホマ州プライア
図5.24❹のオクラホマ州プライア（Pryor、OK）にはこの地区最大の工業団

地があり、Googleはここでも800エーカー（324万平方メートル。東京ドーム70個
分）の土地を買い取って、既存の建物をデータセンターに作り替えているようで

す。Googleはここでも6億ドルの投資を決めており、2008年の夏頃には1つめの
建物が完成予定、その後2つめの建設に取りかかるとのことです（注28）。

この地域もやはり電力が安価で、さまざまな電力源から3000MWの安定した
電力が得られるのが魅力のようです（注29）。

アイオワ州カウンシルブラフス
図5.24❺のアイオワ州カウンシルブラフス（Council Bluffs、IA）は風力発電

の盛んな地域で、すでに460MWの風力発電設備があるという場所です。
Googleはここでも6億ドルの予算でデータセンターの建設を始めており、2008年
中には完成予定、2009年から運用を始めるとのことです。ここでも200人の雇用
が予定されています（注30）。

興味深い話として、このデータセンターには停電時の予備電源として、2MWの
発電機が38個導入されそうだとのことです（注31）。やはり各データセンターは数
十MWクラスの電力を供給できるということでしょうか。

次世代Googleのスケール感
以上、5カ所のデータセンターについて見てきましたが、一度整理しておきましょ

う。正確な数字はともかくとして、大まかなオーダーの計算をしてみたいと思いま
す。

いずれの場所でもデータセンターの規模や構成は大きく変わらず、1カ所につき
2つの建物が作られているようです。いずれも投資額は6億ドル程度とのことなの
で、1カ所につき電力供給能力は60MW、マシン数は40万台とします。

投資額は5カ所の合計で30億ドル。データセンターの耐用年数を10年とする
と、年間コストにして3億ドル程度でしょうか（約300億円）。

電力は合計300MW。電気料金を1kWhあたり4セントとすると、年間の電気
代は1億ドルになります（約100億円）。これはどれくらいの電力かというと、た
とえばスーパーコンピュータである地球シミュレータの消費電力が約6MW、原子力
発電所1基の発電能力がおよそ1000MWというのと比較すると想像しやすいか
もしれません。

マシン数は合計200万台。1台1000ドルとしても20億ドルで、4年サイクルで
入れ替わるとすると年間コストは5億ドル（約500億円）。電力コストと合わせ
ると、ここまでで毎年9億ドル（約900億円）が出ていく規模の設備だということ
になります。

いくらGoogleが巨大だとはいえ、ここまで大量のマシンを必要とするものなので
しょうか？驚くべきは、Googleはこれでもまだ十分ではないと考えているところで
す。

Googleの大規模システム構築を2004年から2007年まで率いてきたLloyd
Taylor氏は、次のように述べています。

私がGoogleに加わったとき、Googleはもはや会社の成長を支えられるだけのマシンを設置する場所を

確保できないという問題を抱えていた。Googleが利用するコンピュータの規模は、正気とは思えないほど大

きい。そのうちエンドユーザへのサービスに用いられるのは、驚くほど小さな割合でしかない。

── URL

http://www.datacenterknowledge.com/archives/2007/Dec/21/building_googles_insane_i

nfrastructure.htmlより（日本語訳は筆者）。

http://www.datacenterknowledge.com/archives/2007/Dec/21/building_googles_insane_infrastructure.html

世界中で検索サービスを提供するコンピュータはGoogleにとってほんの一部で
しかなく、大部分はその背後で動くシステムなのです。

そうしてGoogleは自前のデータセンター建設の方向へと進み、今や6カ月あれ
ば新しいデータセンターを作って運用を始められるようになったとTaylor氏はいいま
す。

データセンターに処理を集約させる ── Bigdaddy
これだけ大量のマシンを、Googleはどのように利用するのでしょうか。一つヒン

トになるかもしれない事例として、「Bigdaddy」と呼ばれるシステムについて見て
おきます。

クロールキャッシングプロキシ

Bigdaddyは、2005年の終わりから2006年の初頭に掛けて、Googleのすべ
てのデータセンターに導入された新しい検索エンジンの基盤システムです。Google
でスパム対策チームの代表を務めるMatt Cutts氏によると、Bigdaddyの目的は
単に検索アルゴリズムを変えるといった表面的なものではなく、検索エンジンのフ
レームワークを置き換えるという大がかりなものであったようです（注32）。

Bigdaddyでは「クロールキャッシングプロキシ」（Crawl Caching Proxy）と
呼ばれる新しいクローリングのしくみが導入されています（図5.25）。以前の
Googleでは、Web検索のためのクローラ（Googlebot）、AdSenseによる広
告のためのクローラ（Mediabot）、そのほかにもブログ検索やGoogle Newsと
いった各種のサービスが、それぞれ別個にWebページを集めていたようです。しか
し、それではあまりにも無駄が多いので、クローラの処理は1カ所にまとめられまし
た。

http://www.mattcutts.com/blog/crawl-caching-proxy/
これは、ちょうど企業などに置かれるプロキシの動作に似ています。Googleの

各種サービスはプロキシに対してWebページを要求し、プロキシは手元にないペー
ジだけを実際に取りに行きます。一度読み込んだページはキャッシュとして残すの
で、次回からの読み込みは高速に行われます。

WebページのキャッシュについてはBigtable論文（3.2のNoteを参照）でも
取り上げられています。2006年の時点で、クローラは800TBものデータをBigtable
に保管しています。Webページを必要とする各種のサービスは、ここからデータを取
り出して処理を行うのだと考えられます。

http://www.mattcutts.com/blog/crawl-caching-proxy/

クロールキャッシングプロキシでは、ほかにも通信量を削減するための工夫が行
われています。たとえば以前のクローラでは、Webアクセスのときの「User-
Agent」が次のようになっていました。

Googlebot/2.1 (+http://www.google.com/bot.html)

Bigdaddy以降は、これが次のように変わっています。

Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

この変更により、Webページのgzip圧縮が有効になるケースが多くなり、結果
的にネットワークへの負担をさらに減らせるということです。

URLの正規化

もう一つ大きな変更が「URLの正規化」（URL Canonicalization）と呼ば
れる作業です。たとえば、次のURLはどれも同じページを表すかもしれないし、そう
でないかもしれません（注33）。

・www.example.com
・example.com/
・www.example.com/index.html
・example.com/home.asp

これらが同じページかどうかは、実際にアクセスしてみなければわかりません。
Bigdaddyでは、同一と判断されるWebページには同じキーが割り当てられ、それ
によって共通の情報が格納されることになります。

こうしたWebページの同一性まで考慮に入れたクローラを作るのは大変です
が、Webページがデータベース化されるとなればそれも可能となります。Bigtableと
いう巨大な分散ストレージの技術が開発されたことによって、Bigdaddyという新
しいフレームワークが実現可能になったということでしょうか。

二種類のデータセンター

Bigdaddyそのものは、Googleの巨大データセンターが建設される前に導入さ
れた技術ですが、これを新しいデータセンターに取り入れない手はないでしょう。

今やGoogleでは膨大なデータがBigtableのような大規模ストレージに格納さ
れ、MapReduceなどによって加工、集計されています。2007年の時点で、
GoogleがMapReduceで処理するデータの量は1カ月に400PBを超えるといいま
す（注34）。このような大量のデータ処理は、より電力効率に優れるであろう新
しいデータセンターで実行するのが好ましいと考えられます。

つまり、Googleには二種類のデータセンターがあります。一つは世界中に分散
された小規模（数千台程度）なデータセンターで、利用者に対して素早い応答
を返すためのものです。もう一つは厳選された大規模（数十万程度）なデータ
センターで、大量のデータ処理を少ないコストで実行するためのものです。

これらのデータセンターは高速なネットワークで結ばれ、一つの巨大なコンピュー
タとして動作します。大がかりなデータ処理はおもに米国の巨大データセンターに
集約させ、世界各地の小型データセンターは利用者にデータを提供するためのフ
ロントエンド、あるいはキャッシュサーバのような位置付けとなるのが、今のGoogle
の姿なのではないでしょうか。

注17

URL http://opentechpress.jp/enterprise/enterprise/article.pl?

sid=06/06/20/1254257

（本文に戻る）

注18

URL

http://www.datacenterknowledge.com/archives/2007/Aug/27/inside_googles_

oregon_data_center.html

（本文に戻る）

注19

URL

http://japan.zdnet.com/news/internet/story/0,2000056185,20359441,00.htm

（本文に戻る）

注20

URL http://blogs.zdnet.com/storage/?p=165、および脚注19より。

（本文に戻る）

注21

URL http://www.google.com/datacenter/lenoir/

（本文に戻る）

注22

URL http://www.newsobserver.com/business/story/711276.html

（本文に戻る）

注23

URL http://www.computerworld.jp/topics/ne/61569.html

http://opentechpress.jp/enterprise/enterprise/article.pl?sid=06/06/20/1254257
http://www.datacenterknowledge.com/archives/2007/Aug/27/inside_googles_oregon_data_center.html
http://japan.zdnet.com/news/internet/story/0,2000056185,20359441,00.htm
http://blogs.zdnet.com/storage/?p=165
http://www.google.com/datacenter/lenoir/
http://www.newsobserver.com/business/story/711276.html
http://www.computerworld.jp/topics/ne/61569.html

（本文に戻る）

注24

マシンあたりのピーク電力を100W、空調などの電力を50％加算した場合。

（本文に戻る）

注25

URL http://www.google.com/datacenter/berkeleycounty/index.html

（本文に戻る）

注26

URL

http://www.datacenterknowledge.com/archives/2007/Oct/19/google_sets_jan

uary_opening_in_south_carolina.html

（本文に戻る）

注27

URL http://www.pbs.org/cringely/pulpit/2007/pulpit_20070119_001510.html

（本文に戻る）

注28

URL

http://www.datacenterknowledge.com/archives/2007/May/02/google_confirm

s_600m_oklahoma_project.html

（本文に戻る）

注29

URL http://kotv.com/news/local/story/?id=124463

（本文に戻る）

http://www.google.com/datacenter/berkeleycounty/index.html
http://www.datacenterknowledge.com/archives/2007/Oct/19/google_sets_january_opening_in_south_carolina.html
http://www.pbs.org/cringely/pulpit/2007/pulpit_20070119_001510.html
http://www.datacenterknowledge.com/archives/2007/May/02/google_confirms_600m_oklahoma_project.html
http://kotv.com/news/local/story/?id=124463

注30

URL http://www.google.com/datacenter/councilbluffs/

（本文に戻る）

注31

URL

http://www.datacenterknowledge.com/archives/2007/Dec/04/google_38_gene

rators_at_iowa_data_center.html

（本文に戻る）

注32

URL http://www.mattcutts.com/blog/bigdaddy/

（本文に戻る）

注33

URL http://www.mattcutts.com/blog/seo-advice-url-canonicalization/

（本文に戻る）

注34

URL http://www.niallkennedy.com/blog/2008/01/google-mapreduce-

stats.html

（本文に戻る）

http://www.google.com/datacenter/councilbluffs/
http://www.datacenterknowledge.com/archives/2007/Dec/04/google_38_generators_at_iowa_data_center.html
http://www.mattcutts.com/blog/bigdaddy/
http://www.mattcutts.com/blog/seo-advice-url-canonicalization/
http://www.niallkennedy.com/blog/2008/01/google-mapreduce-stats.html

5.7
まとめ

本章では、大規模システムのコストを削減するためにGoogleがどのようなこと
に取り組んできたのか、おもにハードウェアと電力の面から見てきました。また、
Googleが建設中の巨大データセンターについても取り上げました。

Googleほどの巨大システムともなると、コスト全体に占める設備費用の割合
も大きくなり、それをどれだけ削減できるかがコスト競争力につながります。こうし
たハード面でのコスト優位性がGoogleの大きな強みであるともいわれています。

「The World Needs Only Five Computers」（世界にコンピュータは5つあ
れば足りる）（注35）といわれるほど、いま世界では大規模なコンピュータシステ
ムが作られつつあります。単に情報処理のコストという面だけを考えるならば、も
はやGoogleのような巨大システムにデータを預かってもらうほうがいい時代なの
かもしれません。

Columun
クリーンエネルギーへの取り組み

Googleは発電についても積極的な取り組みを行っています。2006年にはGoogle本

社に米国最大規模の太陽光発電システムを導入しており、さらに2007年には、石炭より

も安価なクリーンエネルギーの開発に向けたプロジェクトを立ち上げる※など、より安価で環

境負荷の少ないエネルギーを求めて投資していくとのことです。

※　 URL http://www.google.com/corporate/green/energy/

注35

Sun MicrosystemsのCTO、Greg Papadopoulos氏のブログで取り上げられた一節と

されています。

URL http://blogs.sun.com/Gregp/entry/the_world_needs_only_five

URL http://www.atmarkit.co.jp/news/analysis/200707/30/computers.html

（本文に戻る）

http://www.google.com/corporate/green/energy/
http://blogs.sun.com/Gregp/entry/the_world_needs_only_five
http://www.atmarkit.co.jp/news/analysis/200707/30/computers.html

これまでに取り上げたような世界規模の分散システムを活用し、Googleでは
検索エンジンにとどまらないさまざまなWebサービスを次々と開発しています。アカ
ウント総数が1億を超えたというWebメールサービス「GMail」、衛星写真まで見ら
れる地図サービス「Google Maps」など、すでに多くの便利なサービスが利用され
ており、そして今も新しいシステムの開発は続けられています。

こうした大規模なWebシステムが生み出される背景には、優れたソフトウェアを
作り上げようとするGoogle特有の文化があります。元々Googleは何よりもソフ
トウェアの開発に力を入れてきた企業であり、どうすればよりよいシステムを作り出
せるかということを重視した開発のしくみが作られているようです。

本書の締めくくりとして、Googleの開発者がどのようにしてこうしたサービスを生
み出しているのか、また普段はどんなふうに仕事をしているのかという、Googleの
開発体制について見ていくことにしましょう。

http://googletesting.blogspot.com/

http://googletesting.blogspot.com/

6.1
自主性が重視されたソフトウェア開発

Googleには、エンジニアが主体的に行動することによってシステムをよりよくして
いこうとする文化があるようです。それは社員が1万人を超えた今でも変わりませ
ん。

選ばれたプロジェクトだけが生き残る
Googleでは仕事は与えられるものではなく、自分で見つけ出すものであるよ

うです。マネージャーによって一方的に仕事を割り振られるということは基本的に
なく、開発者は数あるプロジェクトの中から自分に合ったものを受け持つか、ある
いは自分から新しいプロジェクトを提案することになります。誰も見向きもしない
ような魅力のないプロジェクトは忘れ去られてなくなります。こうして開発者自身
によるプロジェクトの自然淘汰が行われ（注1）、それを生き残ったものだけが
Googleのサービスとして私たちの前に提供されることになります。

こうしたGoogleの開発体制については、Googleに対する多くのインタビュー
記事や、Googleがエンジニア向けに定期的に行っているカンファレンスなどを通
じて知ることができます。日本でも2007年5月に開催された「Google
Developer Day 2007」などで、Googleがどのようにソフトウェア開発を行ってい
るかが紹介されています。ここではこうした情報を参考にしながら、Googleの開
発体制を筆者の理解する範囲でまとめてみます（次のNoteを参照）。

Note
本章は次の講演などを参考にしています。

・❶「Software Engineer in Google」（鵜飼 文敏、Google Developer Day

2007）

URL http://www.youtube.com/watch?v=pc-IQkVmOdI

・❷「Googleにおける開発組織マネジメント」（岡田 正大、ネット世代の企業戦略

fromビジネススクール）

URL http://itpro.nikkeibp.co.jp/watcher/okada/index.html

・❸「［スペシャルインタビュー］Googleの開発現場」（白石 俊平著、『システム開発ジ

ャーナル』（Vol.1）、毎日コミュニケーションズ、2007）

少人数からなるプロジェクトチーム
Googleでは社内に大量のプロジェクトがあり、開発者はそのなかから自分の

担当プロジェクトを受け持ちます。1つのプロジェクトは2～6人程度の少人数チー
ムで構成されます。大きなプロジェクトは複数の小さなプロジェクトに分割され、
階層的なチームが構成されます。いずれにしても、1つのチームは少人数に保た
れ、チーム内で密にコミュニケーションをとりながらプロジェクトを進めるようです。

Googleの開発拠点は世界中にあり、チームメンバーも世界に分散していま
す。各メンバーはおもにメールやIM（Instant Messenger）、ビデオ会議やブロ
グなどを通じて連絡を取り合います。一方、オフィスは開発者2～4人ごとの部
屋に分かれており、ちょっとした会話は近くの同僚と気軽にできるようです。

http://www.youtube.com/watch?v=pc-IQkVmOdI
http://itpro.nikkeibp.co.jp/watcher/okada/index.html

各プロジェクトチームは、プロジェクトの立案から設計、コーディング、テスト、性
能評価、デモの運用からドキュメントまですべてを行います。すべてのプロジェクト
の進捗状況はデータベースで管理されており、進捗に合わせて更新されます。開
発者は同時に複数のプロジェクトに参加することもできます。こうして明確なプロ
ジェクトという単位によって、システマチックに仕事を片付けていくのがGoogleに
おける開発の進め方のようです。

すべての開発者は担当プロジェクトとは別に、就業時間の20％を普段とは
違う新しいことに費やすことも求められます。有名な「20％ルール」です。20％ル
ールでは、ほかの人のプロジェクトを手伝ってもいいし、自分で新しいプロジェクト
を始めてもかまいません。とにかく新しいことにも手を出すことで視野を広げようと
いうのがその主眼であるようです。20％ルールの内容はデータベースにも記録さ

れ、それが
ひょうてい

評定にもかかわるほど重視されるとのことです。

Tip
インターンも仕事の戦力

Googleではインターンの学生にもさまざまな仕事が任されるようです。インターンであっても

フルタイムの開発者と同じようにすべてのソースコードへのアクセス権限が与えられ、各自に

与えられた仕事をこなします。たとえば、MapReduceやBigtableなどの新しい技術が開発

された時には、インターンの学生がそれらを取り入れたソフトウェアの開発を行ってきたようで

す。

コードレビューにより品質を高める
Googleでは、コードレビュー（Code Review）が必須とされています。何かプ

ログラムを書いたら、必ずほかの開発者にもそれを読んでもらわなければなりませ
ん。これにはいくつかの好ましい効果が期待されます。まず、複数の開発者の目
を通すことによってソースコードの読みやすさや品質が高まり、同時に潜在的な不
具合を見つけられる可能性も高くなります。また、開発者同士がソースコードを
通してお互いの知識を交換することで、ノウハウの共有や学習の効果も得られ
ると考えられます。

コードレビューには2つの段階があるようです。一つはプロジェクトのオーナーによ
るレビューで、プログラムが論理的に正しいことをしているかどうかが確認されま
す。もう一つはリーダビリティ（Readability、可読性）レビューといわれるもの
で、コーディングスタイル（Coding Style）が正しいかどうか確認されます。
Googleでは言語ごとにコーディングスタイルが統一されており、誰が書いても同
じようなソースコードになるようになっているとのことです。

ソースコードの品質を保つのは重要だとわかっていても、それを持続するのはな
かなか大変です。Googleでは開発者同士のレビューを通してこれを実現してい
るようです。GoogleのソフトウェアエンジニアであるSteve Yegge氏は、自身のブ
ログで次のように述べています。

私がGoogleで働くことが好きな理由に、たとえかすかにでも気付いてほしい。それはコードベースがきれい

だということだ。1週間以上を要することは何であれ設計ドキュメントを要求され、必ず書かなければならな

い項目があり、自分で選んだ第1、および第2レビュアからフィードバックを受ける必要がある。これの結果が

何かというと、Googleでは意味のあるコードはどんなものであれ、その内部構造について書かれたほとんど

本のような資料があり、しかもそれは非常によく書かれている。

私は正直いって、そんなのを今まで見たことがなかった。このようなソフトウェアエンジニアリングの原則を徹

底するのは、はじめから正しくやり、組織が成長するとともにその原則が繰り返し補強されていく文化を作ら

ない限り、不可能だ。

── 「Rhino on Rails」（Steve Yegge著、訳：青木靖氏）

URL http://www.aoky.net/articles/steve_yegge/rhino-on-rails.htmより。

早い段階から性能について考えられる
Googleのソフトウェアでは、とにかく処理性能が重視されるようです。1つのソ

フトウェアが何千台ものコンピュータで動くわけですから、少しの性能改善でも全
体としては大きく影響します。ソフトウェアの性能が向上すれば、それだけハードウ
ェアのコストを抑えられるということでもあります。

Googleではすべてのシステムの動作を常にモニタリングし、その動作状況をグ
ラフ化していつでも見られるようにしているようです。これは性能面に限らず、各シ

http://www.aoky.net/articles/steve_yegge/rhino-on-rails.htm

ステムのデータ処理量や故障率などもすべて記録に残されており、何がどれだけ
使われているかということを常に把握しようとする文化があるようです。

単体としての動作速度だけではなく、スケーラビリティや信頼性、セキュリティも
重視されます。Googleのサービスとして正式に運用が始まると、何万、あるいは
何億という人に利用される可能性もあるわけで、必要に応じていくらでも負荷
分散したり冗長化できるようにすることが設計の段階から考えられます。

新しいWebサービスが始まるまで
Googleで新しいWebサービスを立ち上げるには、一連のプロセスをたどりま

す。

アイデアを出す

Googleでは開発者同士のコミュニケーションが非常に重視されており、さまざ
まな機会を通して新しいアイデアが出されます。たとえば、普段の食事での何気
ない会話であったり、オンラインのメーリングリストといった場で次々とアイデアが
提案され、そこから新しいプロジェクトがスタートします。

提案されたアイデアはまずデータベースに登録され、オンラインの投票システム
によって全社員から意見が集められます。各社員はアイデアに点数（Rating、
レーティング）やコメントを付けることができ、開発者はそれを踏まえてどのアイデ
アを実行すべきか検討します。

アイデアの価値が認められると、そこから20％プロジェクトが始まります。最初
は自分一人で始めてもいいし、協力者を募ってもかまいません。プロジェクトが始
まると、最初に基本的な設計をまとめたデザインドキュメントが作成されます。

基本設計を文書にする

デザインドキュメント（Design Document）はプロジェクトの概要を示した基
本的な文書です。そこには次のような内容が記述されるとのことです（注2）。

・背景、目的（Why？）
・設計（How？）
・メンバー（Who？）
・セキュリティ、プライバシーについての考察など
・テスト、モニタプランなど

まずはプロジェクトの背景から始まって、その基本的な設計が記述されます。
これは細かな仕様まで決めるものではなくて、ソースコードを読んだだけではわから
ないような全体の理解を助ける内容にします。

また、プロジェクトにかかわるメンバーが記述され、連絡先を明確にします。さら
に、Googleのサービスとして広く利用されたときのことを想定して、セキュリティや
プライバシー、性能測定や安定稼働のためのテスト方法、プログラムを外部から
モニタリングする方法などについての考察が加えられます。

これらの内容はプロジェクトの進捗に応じて常に更新されます。Googleには、
こうした小さなプロジェクトが開発者の人数よりもたくさんあるそうです。

デモを作って意見を集める

デザインドキュメントを書いたらすぐにコーディングに入ります。まずはとにかく動く
ものを作って形にし、それが本当にいいアイデアなのかほかの開発者に使ってもら
うことが最初のステップです。

プログラムが動くようになると、社内にデモサイトが立ち上げられ、すべての開
発者から見てもらえるようになります。デモサイトはGoogle社内のポータルサイト
で紹介され、そこで社内での評価が行われます。ここで意見を募集しながら、社
内での評判を勝ち取れるまで改善が続けられます。

新しいプロジェクトの成功はGoogle社内での評定にもかかわることなので、
多くの開発者が競い合って優れたデモを作ろうと奮闘しているようです。ポータル
サイトに載せるだけではなく、社内での発表の場「TechTalk」（後述）などさま
ざまな機会を通してデモが紹介されます。社内ですら評判の得られないものは
外に出しても駄目でしょうから、ここで生き残れないプロジェクトは淘汰されてなく
なります。

Google Labs、そしてBetaへ

社内で高い評価の得られたものは、20％プロジェクトから80％プロジェクトと
して昇格します。ここではじめて正式に予算と人員が割り当てられて、本腰を入
れて開発が行われることになります。プロジェクトのオーナーはほかの開発者にも
参加を呼びかけて、それをGoogleの正式なサービスとすべくソフトウェアの完成
度を高めていきます。

外に出してもいいくらいの完成度になると、Google Labsから新しいサービスと
して一般に公開されます。ここで世界中の利用者からの意見を集め、さらにソフ
トウェアの改善を続けます。Google Labsでの評判や利用動向はモニタリングさ
れており、それが一般に広く受け入れられるものであるかがここで試されます。

利用者からの評判もよいものはさらにBeta版として格上げされ、いよいよ
Googleの新しいサービスの仲間入りとなります。

情報は徹底して共有する

Googleでは開発者同士の情報共有が非常に重視されており、さまざまな
機会や方法によって情報の共有が計られています。

メーリングリストやブログ

Google社内ではメーリングリストによる活発なコミュニケーションが行われてい
るようです。全社員が参加する連絡用のメーリングリストや、プロジェクトごとのメ
ーリングリストなど、目的に応じてさまざまなものに分かれています。開発者によっ
ては、社内ブログで情報公開する人もいるようです。

ドキュメントやデータベース

各プロジェクトの技術的詳細や、新人向けの教育目的の文書が、社内ポー
タルやWiki、Google Docsなどにまとめられているようです。Googleではドキュ
メントを書くことが重視されており、開発者によってはコーディングするのと同じくら
いドキュメントも書いているとのことです。

各種のアイデアやプロジェクトの進捗、バグ情報などはデータベース化されてい
て、誰もがいつでも参照できるようになっています。ソースコードはSCM（Source
Code Management、ソフトウェア構成管理）ツールによって管理されており、
全社で単一のリポジトリに格納されます。開発者は誰でも自由にリポジトリを
見ることが可能で、他の開発者のコードを修正してパッチを送ることも推奨されて
います。

一方、GMailなどの利用者のデータはアクセス管理されており、ごく限られたエ
ンジニアしかアクセスすることができません。たとえば、ChubbyやBigtableにもア

クセス制御（ACL）の機能があり、細かく読み書きの制限が行えるようになっ
ています。

TechTalk

開発者はいつでもTechTalkという社内でのプレゼンを開くことができます。米
国のGoogle本社では毎日3～4つのTechTalkが開かれているとのことです。ここ
ではソフトウェアのデモを見せて自分のプロジェクトをアピールしたり、プログラミング
に関する技術的な情報交換を行うことや、あるいは社外のエンジニアを呼んで
講演してもらったり、開発とは関係のない社会問題について学んだりと、さまざま
な学習の場となっているようです。

TechTalkはすべてビデオに録画されており、社員はいつでもその内容を見るこ
とができます。一部のビデオは一般向けにGoogleのWebページで公開されてお
り（注3）、誰でも見ることができるようになっています。

TGIF

米国本社では、毎週金曜日に「TGIF」（Thank God! It’s Friday!、やった
ー、金曜日だ！）と呼ばれる自由参加の集会が開かれて、社員の息抜きや交
流の場となっているそうです。ここでは会社にとって重要なプロジェクトが発表され
たり、優れた成果を上げたチームが表彰されるといったイベントもあり、顔を合わ
せた情報交換の貴重な場となっているとのことです。

また、社員の多くは無料のカフェテリアで食事をとり、これも重要な情報交換
の場となっているようです。

レジュメとスニペット

すべての開発者は「Googleレジュメ」というレジュメ（Resume、履歴書）を
書くことになっています。そこには、これまでの経歴や各自の得意分野、Google
でかかわったプロジェクトなどが記述され、これによってすべての社員がお互いのこ
とを知ることができます。

また、各開発者は毎週「スニペット」（Snippet）と呼ばれる週報を書くこと
になっているようです。ここには20％プロジェクトや80％プロジェクトとして行ってい
ることや、いま困っていること、うまくいったことなどがまとめられ、これも全社員で
共有されます。開発者は自分の関係するメンバーのスニペットを確認すること
で、お互いの進捗を把握したり、助言したりすることができます。

四半期報

より長期的な進捗の記録として、それぞれの開発者、プロジェクトチーム、そし
て会社全体として、四半期に一度のレポートが作成されるようです。ここにはプロ
ジェクトの目標や現在の達成度などがまとめられ、これによって全社的な進捗
状況が把握できるようになっているとのことです。

こうした各種情報には、Googleの開発者はいつでもアクセスできるようになっ
ており、これによってすべての開発者が自立的にものを考えて行動できるようにな
っています。また、足りないものがあれば改善していこうとする文化が徹底してい
るとのことで、基本的にエンジニアが何をどうしたいといい出すところから社内のし
くみが作られていくようです。

Columun
さまざまなTechTalk

TechTalkを紹介し始めると、それだけで分厚い本になりそうなくらいさまざまな興味深い

ビデオがあります。どんなものかイメージしやすくするため、ここではその一部を紹介します。

・How To Design A Good API and Why it Matters
多くのソフトウェアから使われるプログラムはAPI（Application
Programming Interface）を設計しなければならない。いいAPIはどの
ようにデザインすべきか

・Tech Talk: Linus Torvalds on git
Linux作者のLinux Torvalds氏を招いての、ソースコード管理ツールgitに
ついての講演

・Performance Tuning Best Practices for MySQL
MySQLの性能を引き出すためのチューニング方法について

・7 Habits For Effective Text Editing 2.0
テキストエディタVimを使って効率的な編集を行うためのノウハウ

・Deconstructing The Xbox Security System
初代Xboxにはセキュリティの欠陥があり、どのようにそれが破られたのか

・Glimpse Inside a Metaverse: The Virtual World of Second Life
仮想世界「Second Life」を作ったPhilip Rosedale氏らを招いての講演

・Inbox Zero
ライフハック系ブログとして有名な「43 Folders」のMerlin Mann氏を招
いてのGTDの解説

・Advanced Topics in Programming Languages
これは一連のTeckTalkシリーズで、各種プログラミング言語の新機能や、
分散処理の高度な話題など

注1

URL http://itpro.nikkeibp.co.jp/article/Watcher/20070302/263764/

（本文に戻る）

注2

Note❶「Software Engineer in Google」より。

（本文に戻る）

注3

URL http://research.google.com/video.html

（本文に戻る）

http://itpro.nikkeibp.co.jp/article/Watcher/20070302/263764/
http://research.google.com/video.html

6.2
既存ソフトウェアも独自にカスタマイズ

Googleでは多くのソフトウェアを独自に開発していますが、もちろん既存のソフト
ウェアも大量に利用されています。

オペレーティングシステム
Googleのクラスタを構成する大量のサーバマシンには元々Red Hat Linuxが

用いられていましたが、長らく自分たちで保守してきた結果、もはや独自のOSの
ような状態になっているようです。とはいえ、カーネルを含めた多くの部分はオープ
ンソースソフトウェアなので、Googleで加えた修正はオープンソースの世界にも一
部フィードバックされています。

そして、開発者が日常的に利用するOSとしては、Ubuntuを独自にカスタマイ
ズしたGoobuntuという社内向けディストリビューションがあるそうです（注4）。詳
細は定かではありませんが、GFSやMapReduceといった社内ツールやライブラリを
使えるようにした開発者向けシステムなのではないでしょうか。

プログラミング言語
開発に用いるプログラミング言語は「C++」「Java」「Python」が3つの柱である

ようです。C++は各種の基盤システムや、インデックスサーバのように処理速度が
求められるシステムで用いられます。JavaはさまざまなWebサービスの開発に用い
られています。Pythonはおもに社内向けツールの開発に使われるようです。これら

に加えて、ブラウザ側で動作する必要のある「JavaScript」や、分散処理に用い
られる「Sawzall」など、用途に合わせてさまざまな言語が組み合わされます。

MapReduceやBigtableのような基盤技術はC++で実装されているものの、
JavaやPythonからも利用できるようにライブラリが提供されているようです。その
ため開発者はそれぞれ目的に合わせて、いずれの言語からでもこれらの基盤シス
テムを活用できるようになっています。

一方、無秩序に利用言語が増えることのないように、使うことのできる言語は
限定されているようです。たとえば、GoogleではPythonに代えてRubyを利用す
るようなことはできません。また、選ばれた言語についても明確なコーディング規約
が定められており、たとえばC++の中でも利用してよい機能とそうでないものとが
あるようです。

データベース
Googleは大規模なデータの読み書きにはBigtableを用いますが、それ以外の

ところでは「MySQL」を利用しています。実際のところ、GoogleはMySQLのかな
りのヘビーユーザであるようです。

2007年4月には、Google社内で開発されてきたMySQLに対する拡張がパッ
チという形で公開されています（表6.1）。これがMySQL本体に取り込まれるの
はまだ先になりそうですが、パッチの内容を見る限りではおもに障害対策を強化
しつつ、その性能を向上させる改良を行ってきたのだとわかります。

http://google-code-updates.blogspot.com/2007/04/google-releases-
patches-that-enhance.html

SCM ── ソースコード構成管理
SCM（ソースコード構成管理）システムにはオープンソースソフトウェアではな

く、商用ソフトウェアの「Perforce」が用いられています。リポジトリは全世界で共
有されており、すべての開発者のコードが原則として単一のソースツリーに納められ
ているとのことです。

リポジトリにソースコードを入れるにはレビューなどのプロセスを経なければなら
ず、開発者が自由にブランチを作ることもできないようです。レビューが終わる前の
ソースコードはNFS（Network File System）上の開発者のホームディレクトリに
保管されており、開発者が個人的にバージョン管理を行うような一貫したしくみ
はなさそうです。

http://google-code-updates.blogspot.com/2007/04/google-releases-patches-that-enhance.html

数千人規模の開発者が共通のリポジトリを利用するのは、なかなか大変そう
です。GoogleはPerforceサーバとして次のような高性能マシンを使っているそうで
すが、それでも性能的にはすでに限界に達しているとか（注5）。

・機種：HP DL585
・CPU（デュアルコア、Opteron）×4
・メモリ：128 GB

開発者がこれだけ多くなると、SCMも分散化する方向で考えたほうがいいの
かもしれません。最近はTechTalkでもgit（注6）やMercurial（注7）といった分
散SCMについて何度か取り上げられているようで、分散SCMを取り入れることも
検討しているのかもしれません。

余談ですが、GoogleではSubversionの改良も行っているようで、
Subversion 1.5に向けた新機能としてマージ機能が改良されつつあります（注

8）。Google Code（注9）のホスティングサービスで提供されているSubversion
はすでにBigtableにデータを格納するようになっており（注10）、大規模化への
対応も進められています。

レビューシステム
ソースコードのレビューには、「Mondrian」という独自システムが作られているとの

ことです（注11）。以前はパッチをメールで送るためのコマンドベースのツールが使
われていたようですが、そうするとメールボックスにパッチの山がたまってしまって大
変なので、2006年頃からWebベースのシステムに移行したようです。

Mondrianとは、ちょうどBTS（Bug Tracking System、バグ管理システム）
のTracのような感じで、ブラウザ上でパッチの内容を確認しながら個々のパッチに
コメントを付けたりできるシステムのようです。パッチを作るには、リポジトリの内容
と開発中のコードとを比較する必要があるわけですが、Mondrianではそのために
NFS上の開発者のホームディレクトリを直接見に行く仕掛けになっているらしく、か
なりGoogleの社内環境に依存したシステムのようです。

注4

URL http://japan.cnet.com/interview/ent/story/0,2000055958,20340812-

2,00.htm

（本文に戻る）

注5

URL

http://www.perforce.com/perforce/conferences/us/2007/index.html#installatio

n

（本文に戻る）

注6

URL http://git.or.cz/

（本文に戻る）

注7

URL http://www.selenic.com/mercurial/

（本文に戻る）

注8

URL http://subversion.tigris.org/merge-tracking/design.html

http://japan.cnet.com/interview/ent/story/0,2000055958,20340812-2,00.htm
http://www.perforce.com/perforce/conferences/us/2007/index.html#installation
http://git.or.cz/
http://www.selenic.com/mercurial/
http://subversion.tigris.org/merge-tracking/design.html

（本文に戻る）

注9

URL http://code.google.com/

（本文に戻る）

注10

URL http://opentechpress.jp/opensource/article.pl?sid=06/08/01/024231

（本文に戻る）

注11

URL http://www.niallkennedy.com/blog/2006/11/google-mondrian.html

（本文に戻る）

http://code.google.com/
http://opentechpress.jp/opensource/article.pl?sid=06/08/01/024231
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html

6.3
テストは可能な限り自動化する

GoogleではWebサービスの開発者とは別に、ソフトウェアのテストを手掛ける専
門のテストエンジニアも雇われており、テストの自動化に取り組んでいるようで
す。

プロジェクト横断的なチーム
Googleでは個々のプロジェクトチームとは別に、すべてのプロジェクトに共通す

るシステム（テストの自動化、国際化、セキュリティ、ビルドシステムなど）を開
発するチームがあり、これを「インターグループレット」（Intergrouplet）と呼んで
いるそうです。インターグループレットでは、プロジェクト横断的にエンジニアが集ま
って作業を行います。これには選任のエンジニアが雇われる場合もありますし、
開発者が自主的に集まってチームを作る場合もあるようです。

ソフトウェアのテストには、開発者とは別に専門のテストエンジニアが雇われて
おり、テストを自動化するための手助けをします。個々のプロジェクトにおいてユニ
ットテストを書くのは開発者の役割ですが、ユニットテストの実行に必要なしくみ
作りや、システム全体のテストについてはテストエンジニアの役割です。

Googleにおけるテストのやり方については、Google公式ブログの一つである
「Google Testing Blog」を通じてその様子を知ることができます。少し引用して
みます。

私たちのチームはもちろんQA（Quality Assurance）やQC（Quality Control）の立場から開発者と

作業をするのですが、それと同時に製品がテスト可能であることを確実なものとします。つまり、ソフトウェア

はきちんとユニットテストされ、さらにテストチームによって自動テストが可能であるようにしなければなりませ

ん。私たちはデザインドキュメントを参照し、もっとテストを書くようプロジェクトに要求します。テストチームでは

開発者の手助けとして、ユニットテストが可能となるように仮のサーバなどを実装することで、個々のコンポー

ネントを独立してテストできるようにします。

テストを自動化することは重要です。それによって、人間は人間が得意なことをやり、コンピュータはコンピ

ュータが得意なことをやれるのです。これは手でテストすることがないという意味ではありません。より人間向

きの内容（実験的なテストなど）については「適切な」だけの手動テストを行い、そして同じ手動テストは

二度と繰り返さないようにするのです。

──「The difference between QA，QC，and Test Engineering」（Google Testing Blog、日本

語訳：筆者）

URL http://googletesting.blogspot.com/2007/03/difference-between-qa-qc-and-

test.htmlより。

自動テストを想定した設計を行う
テストの自動化というのは、とにかく手間の掛かる仕事です。とりわけユーザイ

ンタフェース（User Interface、UI）のように人間が触れる部分のテストを自動
化するのは大変で、技術的な難しさに加えて、仕様が変わることも多い部分な
のでなおさらです。

Googleでは、テストの自動化に向けて積極的な取り組みを行っているようで
す。たとえば、開発者とテストエンジニアは、隣に座ってお互いの作業を進めるな
どして、開発の初期の段階からテストを自動化することを意識したソフトウェアを
作るように促されます。

http://googletesting.blogspot.com/2007/03/difference-between-qa-qc-and-test.html

また、問題の複雑さを軽減するため、とりわけAPIの設計に注意が払われるよ
うです。たとえばUIを操作したときにデータベースが書き換わるならば、それを直
接テストする代わりに両者の間のAPIを明確にし、APIのレベルで入念なテストが
行われます。これによって統合テストが必要なくなるわけではありませんが、API
は開発の初期の段階からテストすることが可能ですし、それによってより高速な
テストを大量に実行できるようになります。

Google Testing Blogによると、テストの自動化を成功させるには次のことが
必要であるとしています（注12）。

・システムの内部的な詳細と、外部的なインタフェースの両方を考慮に入れ
る

・個々のインタフェース（UIを含む）に対する大量の高速なテストを用意す
る

・可能な限りの低レベルにおいて機能の検証を行う
・エンドツーエンド（利用者からバックエンドまで）のテスト一式を用意する
・開発と並行して自動化に向けた作業を始める
・開発とテストとの間にある伝統的な垣根を打ち破る（たとえば、空間的、

組織的、プロセス上の壁）
・開発チームと同じツールを使う

基盤システムをテストする ── Bigtableの例
Googleにおけるテスト自動化の例として、Bigtableをどのようにテストしている

かの紹介があるので取り上げておきましょう（注13）。

テストは大きくユニットテストとシステムテストとに分けられます。ユニットテスト
は、テスト用のツールを使って個々の機能を独立して確認するもので、システムテ
ストは実際と同じ環境でテストを行うものです。

ユニットテストの例としては、テスト対象のシステムから呼び出されるモックを作
ることが上げられます。たとえば、BigtableはChubbyと通信しますが、実際に
Chubbyを立ち上げる代わりに、Chubbyと同じような動作をするテスト用のモッ
クを作ります。モックには正常時、異常時のさまざまな動作をさせることで多くの
テストが可能となり、それらを実際の環境で行うよりもずっと高速にテストを終え
ることができます。

あるいは逆に、テスト対象のシステムを外から呼び出すテストドライバを実装す
ることもあります。たとえば、BigtableはMapReduceから呼び出されることがあり
ますが、この場合には本物のMapReduceを用いる代わりに、それと同じように
Bigtableを呼び出すテストドライバを実装することで、やはり多くのテストを高速
に実行できるようになります。

システムテストも自動化されています。たとえば、BigtableはGFSにデータを書
き込みますが、ここでは本物のGFSが用いられます。しかし、GFSの障害に対する
動作をテストするために、本当に障害が起きるまで待つというわけにもいきません
から、ここではGFSの障害を意図的に発生させるためのフォルトインジェクション
（Fault Injection）というしくみが作られているようです。GFS自身にエラーを発
生させる機能を持たせることで、実際の環境における障害発生と同等の状況を
作り出し、システムが本当に意図した動作を行っているかが最終確認されます。

こうしたテストは、Bigtableに手を加えて実環境に導入される前には毎回実
行されます。完全なテストを実施するのは手間の掛かる作業なので、それを少し
でも軽減するためにテストの改善は今も続けられているようです。

Columun
Testing on the Toilet

Googleにおけるテスト推進活動の一環として、「Testing on the Toilet」（TotT）と

いうものがあります。これはソフトウェアのテストをやりやすくするコツがまとめられた文書で、

Googleのトイレに張り出されているそうです。

TotTの内容はGoogleのブログで公開されています※ので、ここでいくつか簡単に取り上

げておきます。各TotTは印刷できるようにPDFファイルとしても用意されていますので、みな

さんもトイレに一ついかがでしょうか？

・TotT：Naming Unit Tests Responsibly
一つ一つのユニットテストには、対象となるオブジェクトの振る舞いを表す
ように名前を付けよう。そうすればテストを見るだけで、そのオブジェクトが
何をするものなのかが一目でわかる

・TotT：Stubs Speed up Your Unit Tests
テストが外部のモジュールに依存する（サーバと通信する、など）場合に
はスタブを書こう。テストの実行が高速になり、障害の発生を模擬するこ
とも簡単にできる

・TotT：Extracting Methods to Simplify Testing
外部依存性のある処理は、依存性のある部分ごとに独立したメソッドと
して分離させよう。そうすると個々のメソッドをテストするのも簡単になる
し、ソースコードも読みやすくなる

・TotT：Refactoring Tests in the Red

ユニットテストが増えると、テストそのものをリファクタリングしたくなる。しか
し、ユニットテストのテストを書くわけにもいかないので、そういうときはプロ
グラムのほうに意図的に不具合を埋め込んでみよう

※　 URL http://googletesting.blogspot.com/、 URL

http://code.google.com/

注12

URL http://googletesting.blogspot.com/2007/10/automating-tests-vs-test-

automation.html

（本文に戻る）

注13

URL http://googletesting.blogspot.com/2007/10/overview-of-

infrastructure-testing.html

（本文に戻る）

http://googletesting.blogspot.com/
http://code.google.com/
http://googletesting.blogspot.com/2007/10/automating-tests-vs-test-automation.html
http://googletesting.blogspot.com/2007/10/overview-of-infrastructure-testing.html

6.4
まとめ

本章では、Googleではどのようにソフトウェア開発が行われているのかを見て
きました。Googleでは開発に必要となる情報の共有が重視されており、それに
よって開発者は自主的にものを考え、よりよいソフトウェアを生み出していけるよ
うになっています。一方で、ドキュメントやテスト、言語の選択などには一定のルー
ルが設けられており、これによって組織として一貫したソフトウェアを構築し、維持
していくことができているようです。

Googleでは多くのソフトウェアを自分たちで開発していますが、同時にLinux
をはじめとするオープンソースソフトウェアも積極的に活用しているようです。ただ単
に利用するだけではなく、自分たちの用途に合うようソースコードにも手を加えて
おり、その一部はパッチという形でオープンソースの世界にも還元されています。

Googleではテストの自動化に力が入れられており、そのために専門のエンジ
ニアのチームが作られています。テストエンジニアは単にテストを実施するというだ
けでなく、効率的なテストを行うためのしくみを作るエンジニアです。実際にテスト
を書くのは開発者の仕事であり、開発者とテストエンジニアはより品質の高いソ
フトウェアを作るために共同で作業を進めます。

Googleではよりよいソフトウェアを作るために、エンジニア自身が積極的にシ
ステム改善のための提案を行うよう推奨されており、マネジメントの役割はエンジ
ニアの取りまとめという形になるようです。高度な分散システムにしろ、電力コス
ト削減のための工夫にしろ、システムをより優れたものへと改善していこうとするこ
うしたエンジニアのたゆまぬ取り組みによって、Googleという巨大システムは作り
続けられているのでしょう。

INDEX

記号・数字

-（マイナス記号）
 "（二重引用符）

5つ（世界にコンピュータは～あれば足りる）
 20％ルール
 43 Folders

A

ACL
 Adobe Systems
 AFR
 Amazon EC2
 AOL
 API
 ATS

ATX電源

B

B+-Tree
 BackRub
 Barrels
 Berkeley DB
 Bigdaddy
 Bigtable

～の最大容量
 BLOB型
 BTS

C

C++
 CDF
 Chubby
 ～のデータベース
 Chubbyセル
 Chubby論文

Climate Savers Computing Initiative
 CMOS
 collection
 Combiner

Conder
 CPI
 CPU性能
 CRCエラー
 CSVファイル

D

DDL
 def
 Dell
 Disk Failure論文
 DNS
 docID
 DocIndex
 DSL

dumpコマンド
 DVD

E

EB
 emit
 Exabyte
 ext3

G

GB
 Gbps
 GFS
 GFSクラスタ
 GFS論文
 Gigabit per second

Gigabyte
 git
 global
 Goobuntu
 Google
 初期の～

Google Cluster論文
 Google Code
 Google Developer Day 2007

Google Labs
 Google Testing Blog
 Googleにおける開発組織マネジメント

Googleの開発現場
 Googlebot
 GWS

H

Hadoop
 Hbase
 HDFS
 HPC
 HTC

I

IBM
 IBM DB2
 Intel
 IPアドレス
 IPC

J

Java
 JavaScript

K

KB
 Kilobyte

L

Lawrence Page
 LB	→ロードバランサ
 Lexicon
 Links
 Linux Torvalds

Lisp
 local

M

map
 Map
 Map処理
 MapReduce
 MapReduce論文
 maximum

MB
 Mediabot
 Megabyte
 Megawatt
 memtable
 Mercurial

Mondrian
 MySQL
 ～に対するパッチの内容
 MW

N

NFS
 NOT演算
 NTFS

O

Oracle
 OS
 ～の不具合

P

PageRank
 Paxos
 Paxos Made Live論文
 PB
 PDU
 Perforce

Petabyte
 Pig
 PostgreSQL
 Power Provisioning論文
 proto
 PSU

Python

Q

QA
 QC
 quantile

R

R言語
 RAID
 RDB
 Red Hat Linux
 reduce
 Reduce

Rhino on Rails
 RowMutation
 RPC
 Ruby

S

sample
 sawコマンド
 Sawzall
 Sawzall論文
 SCM
 Second Life

Sergey Brin
 shard
 SMART
 Software Engineer in Google
 SQL

SSTable
 Stanford University
 STS
 Subversion
 sum

Sun Microsystems
 System Health Infrastructure

T

TB
 TechTalk
 Terabyte
 Testing on the Toilet
 TGIF
 TLB
 top

TotT
 Trac
 TTL

U

Ubuntu
 UI
 unique
 University of Washington
 UPS
 URLサーバ

URLの正規化
 URList
 User-Agent

V

Vim
 VRM

W

Webページの数
 Web Search Engine論文
 weight
 when
 wordID

Work Queue
 Work Queueクラスタ

X

Xbox

Y

Yahoo!
 Yahoo! JAPAN

ア行

アイデア
 アクセス数
 アクセス制御	→ACL
 アグリゲータ
 その他の～

アドバイザリロック
 アトミック
 アルゴリズム
 アンカーテキスト
 いいえ

イテレータ
 イベント
 イベント通知
 インターグループレット
 インタープリタ

インターン
 インデックス
 ～の構造
 セカンダリ～
 単語情報の～
 リンク情報の～

インデックスサーバ
 インデックス生成
 インバータ
 オフラインリアロケーション数

オペレーションログ
 温度

カ行

外部記憶装置	→ストレージ
 カウンシルブラフス
 カウンタ
 価格性能比

関数型言語
 基本設計
 逆リンク
 キャッシュ
 キャパシタ
 キュー
 行

行キー
 共有ロック
 局所性	→ローカリティ
 クアッドコア
 クライアント

クラスタ
 クリーンエネルギー
 クローラ
 クローリング

クロールキャッシングプロキシ
 検索エンジン
 検索エンジンスパム
 検索キー

検索クラスタ
 検索件数
 検索サーバ
 検索バックエンド
 高クロック

高スループットコンピューティング
 高性能計算	→HPC
 構造解析
 構造データ

故障率
 コーディング規約
 コーディングスタイル
 コードレビュー
 コピー

コピーオンライト
 コミットログ
 コラムキー
 コラムファミリー

コンセンサスアルゴリズム
 コンパクション

サ行

シークエラー
 シーケンサ
 自己診断機能
 実行
 実行結果の連結

自動テスト
 四半期報
 シャッフル
 週報	→スニペット
 手動テスト

巡回冗長検査エラー
 消費電力
 ～の計測方法
 シリアルナンバー
 振動

スイッチする
 スキャンエラー
 スキャンキャッシュ
 スケールアウト
 スケールアップ

スケールする
 ストレージ
 スナップショット
 スニペット
 スーパーコンピュータ

スーパースカラー
 世界にコンピュータは5つあれば足りる
 セカンダリ

セカンダリインデックス
 セル名
 ソフトウェア構成管理	→SCM

タ行

大塊	→チャンク
 太平洋海底ケーブル事業
 タイムスタンプ

太陽光発電システム
 多次元マップ
 タブレット
 タブレットサーバ

樽のような容器
 ダレス
 単語
 単語処理
 単純な数値
 断片

チェックサム
 チャンク
 ～のシリアルナンバー
 チャンクサーバ
 抽象化

ディスクドライブ
 ディスクドライブの自己診断機能
 ディレクトリ型
 デコード

デザインドキュメント
 データ
 不適切な～
 ～の通り道
 データ構造

データシート
 データセンター
 二種類の～
 ～が燃える
 データ定義言語	→DDL

データ転送
 データモデル
 手続き型
 テーブル
 デュアルコア
 電源装置

点数
 転置インデックス
 電力
 ～のコスト
 電力性能比
 電力料金

統計データの処理方法
 動作電力
 ドキュメントサーバ
 ドメイン

ドメイン固有言語	→DSL
 トランザクション

ナ行

二分探索木
 ネットワークソフトウェア
 年間平均故障率	→AFR

ハ行

排他制御	→ロック
 排他ロック
 パイプライン
 バグ管理システム	→BTS

バークレー郡
 パーセンタイル
 パーソナライズド検索
 バックアップ

バックアップタスク
 ハッシュテーブル
 破片	→shard
 パワーキャッピング

パワーサイクル
 ピーク
 光ファイバ
 百文位数
 表	→テーブル

ファイルシステム
 フィルタ
 フェイルオーバー
 フェッチ
 フォルトインジェクション

負荷分散
 複製	→レプリケーション
 プライア
 ブライスウッド
 プライマリ

フレーズ検索
 プレフィックス
 ブログ
 プロジェクト
 プロジェクトチーム

ブロックキャッシュ
 プロトコルバッファ
 分割関数
 分岐予測ミス
 分散

分散grep
 分散ストレージシステム
 分散ソート
 分散データ処理

分散ファイルシステム
 平均
 平均温度
 平均消費電力
 平均値

ページテーブル
 ボトルネック

マ行

マイナーコンパクション
 マスタ
 マスタリース
 待ち行列	→キュー
 マルチコア

マルチスレッド
 マルチプロセス
 未定義値
 無停電電源装置	→UPS

メジャーコンパクション
 メタデータ
 メーリングリスト
 モニタリング

ヤ行

やったー、金曜日だ！	→TGIF
 ユーザインタフェース	→UI
 用語集	→Lexicon

ラ行

ライトバック
 ライトロック	→排他ロック
 ライフハック
 楽天技術研究所

ラック
 ランキング
 ランキング関数
 リアロケーション
 リアロケーション数

リアロケーション前のセクタ数
 リーク電流
 リードロック	→共有ロック
 リポジトリ

リレーショナルデータベース	→RDB
 履歴書	→レジュメ
 リンク処理

累積分布関数
 ルートタブレット
 レコード
 レコード追加
 レジュメ
 列

レーティング	→点数
 レノア
 レプリカ
 レプリケーション
 ローカリティ

ローカリティグループ
 ログ
 ロック
 ロックサービス
 ロードバランサ
 ロボット型

論文
 Chubby～
 Disk Failure～
 GFS～
 Google Cluster～
 MapReduce～

Paxos Made Live～
 Power Provisioning～
 Sawzall～
 Web Search Engine～

論理反転	→NOT演算

ワ行

ワーカー

著者プロフィール

西田 圭介

NISHIDA Keisuke
COBOLコンパイラからVPNサーバ、ドライバ開発からWebアプリまで、必要とあら
ば何でも手掛けるフリーエンジニア。IPAの平成14年度未踏ユースにおけるスーパ
ークリエータ。

●カバー・本文デザイン
西岡裕二 （志岐デザイン事務所）

電子版書籍について

本書は紙の書籍『WEB+DB PRESS plusシリーズ Googleを支える技術
──巨大システムの内側の世界』（ISBN978-4-7741-3432-1）を電子書
籍化したものです。紙書籍とは一部レイアウトやデザインが異なります。本書の
更新履歴や補足情報は技術評論社ウェブサイトをご参照ください。

本書の一部または全部を著作権法の定める範囲を超え、無断で複写、複
製、転載、テープ化、ファイルに落とすことを禁じます。造本には細心の注意を
払っておりますが、万一、ページの乱れやページの抜け等がございましたら、小社
クロスメディア事業部までお知らせください。

http://gihyo.jp/book

電子版奥付

書名
WEB+DB PRESS plusシリーズ

Googleを支える技術

──巨大システムの内側の世界

電子版発行日
2015年1月31日 初版 第1刷発行

著者
西田圭介

発行者
片岡 巌

発行所
株式会社技術評論社
東京都新宿区市谷左内町21-13

電話
03-3113-6150 販売促進部
03-3113-6180 クロスメディア事業部

電子版製本
株式会社リ・ポジション

©2015　西田 圭介
ISBN978-4-7741-7094-7

	本書に寄せて
	はじめに
	第1章Googleの誕生
	1.1よりよい検索結果を得るために
	使う人にとっての便利を第一に考える
	Note Web Search Engine論文
	Tip 検索エンジンの種類
	十分なハードウェアを用意する
	Webページの順位付けに力を注ぐ
	PageRank
	アンカーテキスト
	Tip アンカーテキストの効果
	単語（単語情報）による検索
	ランキング関数
	Columun PageRankの現在
	1.2検索エンジンのしくみ
	下準備があればこその高性能
	検索サーバは速度が命
	検索バックエンドは事前の努力
	インデックスは検索の柱
	検索に適したインデックス構造
	データ構造をインデックスする
	1.3クローリング ── 世界中のWebページを収集する
	最も壊れやすいシステム
	Columun 気に入ってもらえました？
	Webページを集めるには時間が掛かる
	多数のダウンロードを同時に進める
	終わることのないクローリング
	1.4インデックス生成 ── 検索用データベースを作り上げる
	Webページの構造解析
	単語情報のインデックス
	単語をwordIDに変換する ──Lexicon
	単語インデックスの生成 ──Barrels
	転置インデックスの生成
	リンク情報のインデックス
	ランキング情報のインデックス
	検索順位は検索するまでわからない
	1.5検索サーバ ── 求める情報を即座に見つける
	検索結果に順位を付ける
	複雑な検索も高速実行
	ランキングの高速化は難しい ─ 3段階のランキング
	1.6まとめ
	第2章Googleの大規模化
	2.1ネットを調べつくす巨大システム
	安価な大量のPCを利用する
	一つのシステムとして結び付ける
	数を増やせばいいというものでもない
	ハードウェアは故障する
	分散処理は難しい
	CPUとHDDを無駄なく活用する
	検索エンジンを改良しよう
	検索サーバの大規模化
	検索バックエンドの大規模化
	インデックスの大規模化
	2.2世界に広がる検索クラスタ
	Web検索を全世界に提供する
	Note Google Cluster論文
	近くのデータセンターに接続する
	Tip データセンターが燃える
	多数のサーバで負荷分散する
	一定数のページごとにインデックスを分割
	インデックス分割方法の変更のメリット
	多数のインデックスを一度に検索
	新しいWeb検索の手順
	Tip その他の高速化手法
	2.3まとめ
	第3章Googleの分散ストレージ
	3.1Google File System──分散ファイルシステム
	巨大なディスク空間を実現する
	Note GFS論文
	膨大なデータの通り道となる
	データ転送に特化された基本設計
	ソフトウェアによる障害対策
	大容量のファイルの読み書き
	Tip 用途を絞り込むことで単純化する
	ファイルをキューとして用いる
	ファイル操作のためのインタフェース
	ファイルは自動的に複製される
	読み込みは最寄りのサーバから
	書き込みは複数のサーバへ
	さまざまなエラーへの対応
	Columun 最寄りのサーバとは
	同時書き込みで不整合が起こる
	レコード追加によるアトミックな書き込み
	書き込みに失敗した場合
	Tip レコード追加の問題を回避する
	スナップショットはコピーオンライトで高速化
	負荷が偏らないようにバランスが保たれる ─マスタの役割
	あらゆる障害への対策を行う
	チャンクの障害対策
	チャンクサーバの障害対策
	マスタの障害対策
	読み書きともにスケールする
	リカバリ時間
	データ管理の基盤として働く
	3.2Bigtable ──分散ストレージシステム
	巨大なデータベースを構築する
	Note Bigtable論文
	構造化されたデータを格納する
	テーブルの構造
	Tip Bigtableにおけるデータ型
	多次元マップ
	テーブルの例
	読み書きはアトミックに実行される
	特定行に対する操作
	Tip 行単位のロック
	特定行の読み込み
	テーブルを分割して管理する
	Tip 検索キーのデータ量を削減する
	多数のサーバでテーブルを分散処理
	GFSとメモリを使ってデータ管理 ── タブレットサーバ
	タブレットの割り当て
	タブレットの構造
	タブレットの読み書き
	タブレットのコンパクション
	テーブルの大きさに応じた負荷分散
	タブレットの分割と結合
	タブレットへのアクセス
	Tip Bigtableの最大容量
	さまざまな工夫によって性能を向上
	ローカリティグループ
	データの圧縮
	読み込みのキャッシュ
	コミットログの一括処理
	使い方次第で性能は大きく変わる
	読み込み性能
	書き込み性能
	大規模なデータ管理に利用されるBigtable
	3.3Chubby ── 分散ロックサービス
	分散ストレージはここから始まる
	5つのコピーが作られる
	Note Chubby論文、Paxos Made Live論文
	ファイルシステムとして利用する
	ファイルへのアクセス
	Tip Chubbyのデータベース
	localセルとglobalセル
	ファイルの読み書き
	Tip ご利用は計画的に
	ロックサービスとして利用する
	ファイルのロック
	外部リソースのロック
	シーケンサ
	フェイルオーバー
	イベント通知を活用する
	イベント
	キャッシュ
	Columun DNSを置き換える
	マスタは投票で決められる
	さまざまな障害
	コンセンサスアルゴリズム
	マスタリース ──マスタの交代
	3.4まとめ
	第4章Googleの分散データ処理
	4.1MapReduce ── 分散処理のための基盤技術
	大量のデータを分散して加工する
	Note MapReduce論文
	キーと値でデータ処理を表現する
	Columun MapReduceの由来
	転置インデックスを作ってみる
	入力データ
	Mapによる処理
	シャッフル
	Reduceによる処理
	プログラミング言語風に
	MapReduceでできること
	カウンタ
	分散grep
	分散ソート
	逆リンクリスト
	もっと複雑な処理
	多数のワーカーによる共同作業 ─ MapReduceの全体像
	Tip 標準の分割関数
	3つのステップで処理が進む
	Map処理
	シャッフル
	Reduce処理
	Tip Reduceとイテレータ
	高速化には工夫が必要
	システム構成
	分散パラメータ
	ローカリティ
	Work Queue
	Tip Work Queueの設計
	バックアップタスク
	実行過程には波がある ── MapReduceの過程
	壊れたときにはやり直せばいい ─ MapReduceにおける故障対策
	マスタの障害対策
	ワーカーの障害対策
	MapやReduceの障害対策
	驚きの読み込み性能 ── MapReduceの性能面
	分散grepの性能
	分散ソートの性能
	Columun BigtableとMapReduce
	4.2Sawzall ── 手軽に分散処理するための専用言語
	分散処理をもっと手軽に
	Note Sawzall論文
	スクリプト言語のようなプログラム
	プログラム例
	Tip Sawzallの言語仕様
	実行例 ──sawコマンド、dumpコマンド
	副作用をもたらすことのない言語仕様 ── Sawzallの文法
	データ型
	プロトコルバッファ
	式と文
	フィルタの中に閉じた世界
	Tip プロトコルバッファによるデータ構造の統一
	標準で用意されるアグリゲータ
	その他のアグリゲータ
	より実際的なプログラム例
	例1 平均値と分散を求める
	例2 PageRankの高いWebページを見つける
	Tip 最もPageRankの高いページ
	例3 地域ごとのアクセス数を計測する
	例4 実行結果の連結
	エラーは無視することも可能
	内部的にキーが生成されている ─ Sawzallはどのように実現されているのか
	スムーズにスケールする実行性能
	Columun BigtableとSawzall
	4.3まとめ
	Columun 大規模分散システムを試してみる
	第5章Googleの運用コスト
	5.1何にいくら必要なのか
	少なからぬハードウェア費用
	Tip 通信コストはいかに
	安価なハードウェアによるコスト削減
	電気代はハードウェアほどには高くない
	間接的に上乗せされる電力の設備コスト
	Tip 消費電力が多過ぎて
	増加傾向にある電力コスト
	5.2CPUは何に電気を使うのか
	電力と性能の関係とは
	CMOS回路の消費電力
	消費電力を抑えるためにできること
	スイッチの頻度を低くする
	静電容量を小さくする
	電圧とクロックを下げる
	クロック単位の処理効率を上げる
	パイプライン
	IPCとクロック周波数の関係
	スーパースカラー
	最大性能から電力性能比の時代へ
	マルチコアによる性能向上
	5.3PCの消費電力を削減する
	高クロックのCPUでは電力効率が悪い
	Tip メモリの利用効率
	マルチスレッドを生かして電力効率を上げる
	電源の効率を向上させる
	Tip すべてのPCに効率的な電源を
	5.4データセンターの電力配備
	ピーク電力はコストに直結する
	Note Power Provisioning論文
	決まった電力で多くのマシンを動かしたい
	電力配分を階層的に設計する
	電力枠を使い切るのは難しい
	マシンが増えれば電力も平準化される
	電力消費の傾向
	パワーキャッピング
	平均消費電力
	省電力技術によりコスト効率が高まる
	Columun 消費電力の計測方法
	工夫次第で設備効率は二倍にもなる
	5.5ハードディスクはいつ壊れるか
	10万台のハードディスクを調査する
	Note Disk Failure論文
	故障の前兆となる要因は何か
	Tip 不適切なデータの除去
	長く使うと壊れやすくなるわけではない
	よく使うと壊れやすくなるとも限らない
	温度が高いほど壊れやすいということもない
	いくつかのSMART値は故障率に大きく影響する
	スキャンエラー
	リアロケーション数
	オフラインリアロケーション
	リアロケーション前のセクタ数
	故障率に影響しないSMART値も多い
	パワーサイクル
	振動
	SMART値だけではいつ故障するかはわからない
	Columun 統計データの処理方法
	ハードディスクと正しく向き合う
	5.6全米に広がる巨大データセンター
	オレゴン州ダレス
	ノースカロライナ州レノア
	サウスカロライナ州バークレー郡
	オクラホマ州プライア
	アイオワ州カウンシルブラフス
	次世代Googleのスケール感
	データセンターに処理を集約させる ── Bigdaddy
	クロールキャッシングプロキシ
	URLの正規化
	二種類のデータセンター
	5.7まとめ
	Columun クリーンエネルギーへの取り組み
	第6章Googleの開発体制
	6.1自主性が重視されたソフトウェア開発
	選ばれたプロジェクトだけが生き残る
	Note ❶Software Engineer in Google、❷Googleにおける開発組織マネジメント、❸［スペシャルインタビュー］Googleの開発現場
	少人数からなるプロジェクトチーム
	Tip インターンも仕事の戦力
	コードレビューにより品質を高める
	早い段階から性能について考えられる
	新しいWebサービスが始まるまで
	アイデアを出す
	基本設計を文書にする
	デモを作って意見を集める
	Google Labs、そしてBetaへ
	情報は徹底して共有する
	メーリングリストやブログ
	ドキュメントやデータベース
	TechTalk
	TGIF
	レジュメとスニペット
	Columun さまざまなTechTalk
	四半期報
	6.2既存ソフトウェアも独自にカスタマイズ
	オペレーティングシステム
	プログラミング言語
	データベース
	SCM ── ソースコード構成管理
	レビューシステム
	6.3テストは可能な限り自動化する
	プロジェクト横断的なチーム
	自動テストを想定した設計を行う
	基盤システムをテストする ── Bigtableの例
	Columun Testing on the Toilet
	6.4まとめ
	索引

