
プロとての
SQL グ／

´

ヽ
　
）

ョロロ‐‐D ー
●ロロロb

日日
lJ

Oracle
現場主義

福田武志著

■■■I SoiBank
■■■■ Creative

Oracle
現場主義

プロとしての
SQLチューニング
′入門

Introduction to
SQL Tuning

for Professional Engineers

福田武志
著

，

，

緩

プロとしての
SQLチューニング
ノ入卜Fl

■■■■ So■Bank
■■■■ Creative

Oracle
現場主義

■ 本書内に記載されている会社名、商品名、製品名などは一般に各社の登録商標または商標です。本書中

では①、
側マークは明記しておりません。

爾 本書の出版にあたっては正確な記述に努めましたが、本書の内容に基づく運用結果について、著者およ

びソフトバンククリエイテイブ株式会社は一切の責任を負いかねますのでご了承ください。

◎2007 本書の内容は著作権法上の保護を受けています。著作権者・出版権者の文書による許諸を得ずに、

本書の一部または全部を無断で複写・複製・転載することは禁じられております。

く,鰊聰,はじめに

データベースのバージョンアップによる機能強化や、ハードウェア製品の

処理能力の向上により、わざわざチューニングを実施しなくても、パフォー

マンスに問題なく使用できるようになってきました。また、仮にパフォーマ

ンスに問題が発生した場合でも、チューニングアドバイザのような有益なツ

ールによリチューニングポイントを探し出せるようにもなっています。

では、パフォーマンス・チューニングに関する知識は不要なのでしょうか。

残念ながら、便利になったとはいえエンジエアであるみなさんにとってチュ

ーニングの知識は必要不可欠なものです。なぜなら、実際にチューニングす

る際にチューニング方法を理解しながらそのツールを利用するのと、理解し

ないでツールを利用するのとでは、大きな違いがあるからです。

たとえば、もしチューニングツールが機能しなかった場合に、なにも理解

せずツールに頼ったチューニングを行っていればどうすることもできなくな

るでしょう。一方で、チューニング方法について理解していれば、チューニ

ングツールを参考にして、新たなチューニング方法を検討することもできる

ようになります。また、アプリケーション開発時にパフォーマンス・チュー

ニングを意識した設計 。構築が行えるため、予防的な位置付けとして知識を

利用することもできるでしょう。

そこで、本書ではパフォーマンス・チューニングの中でも最も効果・コス

トのバランスが良いSQLチ ューニングについて基礎から実践でも使える応用

までしっかりと解説しました。SQLチューニングといっても、SQLの知識だ

けがあれば良いわけではありません。本当に必要なところで適切に対処する

ためにはシステムの特徴やデータ分布を理解する必要もあります。データベ

ース全体を考慮しながら、より最適なシステムとなるようにSQLを使用して

チューニングを行うのがSQLチューニングです。

パフォーマンスに劣化が生じた場合、データベースに問題がなかったとし

ても、はじめに疑われるのはデータベースです。問題が発生したときに、冷

静に対応できる知識を身に付けておくことが大切なのです。

2007年 3月

福田 武志

本書について

対象読者

本書をお読みいただくにあたっての注意事項および前提条件をここに記載

します。読み進める前にご一読ください。

これからoracleデータベースを使用される初心者の方から、実際に問題の

あるシステムをこれからチューニングしなければならない現場のエンジエア

の方まで、SQLチ ューニングの知識が必要な幅広い方々にお読みいただける

内容となっています。ただし、Oracleデ ータベースのごく初歩的な構造や、

SQLについての基本的な知識をお持ちの方を前提としています。

本書では、Orac!e8i、 Orac:e9iお よびOmc!e10gに対応しています。ス

クリプトの保存場所や設定パラメータの違いなどもできる限リバージョンご

とに記載しました。また、新機能やバージョンに依存する機能については文

中に対応バージョンを明記しました。

Oracle 10gが リリースされ、ボトルネックの検出やSQLの チューニングア

ドバイス機能などが充実し、データベース管理者やアプリケーション開発者

がチューニングを行う手間は軽減されましたが、これらの機能を利用する場

合もSQLの チューニング知識は必須です。Oracle 8i以降のデータベースを利

用している場合は特に有効な情報を掲載しています。

構文の表記には以下の記号を使用しています。

任意の値を代入

Aは省略可能

AまたはBのどちらかを選択

く文字列

Ｒ
】

Ａ

Ａ

本書対応のOrac:eのバージョン

構文の表記

補足事項CO鮭鰺聰鵞

実行例の表記

本書の実行例はSQL*Plusでの実行画面をイメージして作成されています。

表不されるSQLや 出力結果の中にある0は本文中において解説するために追

加 しています。実際の実行画面には表示されません。

実行例の注意点

本書に記載されている各実行例は執筆時に作成したサンプルデータベース

での実行結果です。そのため、同じSQLを 実行した場合でも実行結果は環境

により異なるので注意してください。また、DML文やDDL文 を含むプログ

ラムを実行したまま例題を実行するとエラーが発生することがあります。運

用中のシステムで実行する場合は、データベース管理者と十分に相談してか

ら実行してください。

本書で紹介している各マニュアルはOTN(Oracle Technology Network)

のWebサイトから無料で閲覧・ダウンロードすることができます。SQLチ ュ

ーニングに関するより詳しい情報が必要な場合は以下のマニュアルも参考に

なります。

。「パフォーマンス・チューニング・ガイド」
。「SQLリ ファレンス」
。「PVSQLパッケージ・プロシージヤおよびタイプ。リファレンス」

口日コhttp://otn.oracle.co.ip/document/index.html

マニュアルのダウンロ…ド

０

　

一
●

一
　

　

●

一　

　

・　
　
一●

一　
　
　
　
一

一

　

・

　

　

―

一

　

　

　

・

一

　

　

　

‐

　

・

一　

　

●

一

　

　

　

・

―

一

　

　

　

　

・

一

　

　

　

・

・

一
　

　

　

―

一　
　

　
　

―

一
一

　

　

　

　

・

一

」

　

　

　

一

（̈
¨̈ヽ
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　一

郁
　
　
０
　
　
。

Ｌ

　

　

７３
　
　
ノた

中̈̈
　
町　一ｒ　　　園

蛯丁
』
加　
　
庸

一】一　
証　製
　　脚

ン
　
．
¨
　
ｖ．　
　
調

）】
・岬　」　
　
いカ

ノ

・

ｖ
一　

ｕｔ

　

　

シ一

四
一」＞ｅｘｅｃ
¨

園
Ｌ

　

Ｑ

９

　

　

Ｌ

ロ
ロ
ｓ
ｓ
　
・
Ｐ

CC)NTENTS

:NTRODUCT10N １

１

２

３

４

４

４

５

５

６

６

７

７

７

８

９

パフォーマンス・チューニングとは

パフォーマンス・チユーニングの必要性 ・・……・…・………・・…・
八―ドウェア性能とパフォーマンス・チユーニング ・……

システム開発の問題点 ・…・・
短い納期でシステムを構築する・・…

コストをかけられない ・̈ …………・
スキル不足・・…・・………………・・…・

開発環境の問題 ・・

パフォーマンス・チユーングの手順 ・…………

1.チューニングの目標設定 ・………・

2.現状分析 ・………・̈ ¨̈ ・̈・・………
3.チューニング方針の決定 ・……
4 チユーニング処理・……

チューニングの種類とSQLチ ユーニングの位置付け・…………・

テーブル構造のチューニング・……・………・̈ ¨̈・……・

SQLのチューニング …̈……・…・・… …̈…・…・…・・……。11
メモリ、ディスク1/0、 OSのチューニング・……・…・…・12
SQLチユーニングの手順・………・̈ …̈・ 12

i CHAPTER01
｀
SQLチユ…

=ン
グと内部処理・・…………・ 17

SQLチューニングとは・̈ …… ・・・17

内部処理を理解することの重要性・̈ …………………・・・…・17

SQLの内部処理 ・……… 18
１
‐　
つ
‘

（
６

解析 ・̈ ・̈ ・・・・・・・・・・・・・・・・18

実行 ０

１

２

３

４

４

５

６

７

７

８

２

２

２

２

２

２

２

２

２

２

２

フェッチ・……

ディスク1/0・…・・……・…………・…

ディスク1/0とデータベース)\'y)z .*t,,y)t
オブテイマイザ

RBO・

CBO ・・・・・・・…・・・・…・・…
オプティマイザの設定方法

アクセス方法 ・・̈・………・………
フルテーブルスキヤン・・…

基礎編 SQLチューニングの基礎知識 15

ROWIDア クセス

SQLチ ユ…ニング概要 ・……・…………………… …̈・・…・

索引スキャン ・・…・・・̈・
全索引スキヤン ・……・・

テーブルの結合 ・………・……・
ネステッド・ループ結合

ソー ト/マージ結合・・̈・

八ッシュ結合 ・・・……̈・
テーブル結合のまとめ・・

ヒン ト・…・……………・・・… …̈

ヒントの記述方法・……・

CHAPTER 02 チュ…ニングすべきSQLの選定(前編)
E× PしへIN PLANコ マン ド

EXPLAIN PLANコ マン ドの使用方法・・・

29
30
32
32
34
34
35
36
37

43
44
45
45
46
47
48
50
53
53
53
55
57
57
57
58
59
60
61

1.PLAN TABL匿テーブルの作成 (最初のみ)・・……
2.SQL実行計画の保存 ・̈ ………・…………………・

3.PLAN TABLEテーブルからSQL実行計画の抽出
実行計画の読み方 ・…・・………………・……・̈・・……・・……・・
実行計画の記載項目・…………………………・………・…・………

AUTC)丁 RACE・・・・・・・・・・・・・

A∪TOTRACEの使用方法
plustttce□ ―ルの作成

A∪丁OTRAC圧の実イ〒 .
A∪TOTRACEの 終了 .

A∪TOTRACE出 力結果の制御 …̈・

SQLの実行結果を表示しない ・…

実行計画のみ表示する 。…・・……・・

パフォーマンス統計のみ表示する。

A∪丁○丁RACEの使用上の注意点・………・

SQLト レースと丁KPROF ・・…………・・
SQLト レースとは ・・・・・・・・・・・・・・・・・・・・・・・・・・・・61

TKPROFと は ・・
SQLト レースの使用方法 。̈・…・………・…………………………・

初期化パラメータの設定・…………・………・・…・………・̈・・…・

初期化パラメータ丁lMED_SIATIST!CS・ …̈…………・・

初期化パラメータ∪S巨R_DUMP_DES丁 ・・……………・

初期化パラメータMAX_DUMP_FILE_SiZE ・… …̈…・

SQLト レースの実行 ・・・・・…・…・・̈・・・・・・・…・・・・・…・・…・・・…・・・
インスタンス単位でSQLト レースを実行する・…………・

セッシ∃ン内でSQLト レースを実行する・……………・…・

特定のセッションに対して、SQLト レースを実行する。・・

丁KPROF
目的のトレース・フアイルを探す・・・・̈・……………………・

トレース・フアイルの内容を確認する 。・………………・・

２

３

３

３

４

５

５

５

６

７

９

９

０

６

６

６

６

６

６

６

６

６

６

６

６

７

CONTE‖TS

. CHAPTERO4

TKPROFのオプシ∃ン ・・
トレース・フアイルの解析

SQLト レース統計
実行計画 ・………・

チューニングすべきSQLの選定 (後編)
STA〒SPACK
STATSPACKで 取得できる情報・…・̈・・……・・……・

STATSPACKの 使用方法 ・・・̈ ¨̈ …・・…………・…………
STATSPACKの インストール・………・・…・…・………・…・・
PttRFSTA丁 ユーザーのデフォルトの表領域の作成・

spcЮ de.sqlス クリプトの実行 ・……̈ ・̈・………・
スナップショットの取得・…・…………………・̈・・… …̈…・

スナップショット・レベルとは ・…・
スナップシ∃ット・レベルを指定する

スナップシ∃ット・レベルを指定し、なおかつデフォルト値に設定する。・

スナップシ∃ット・レベルのデフォルト値を変更する。・

スナップシ∃ット取得のタイミング・・

スナップショットを自動的に取得する 。……・・・・…・……

スナップショットの取得時に影響のある初期化パラメータ・・

スナップショットの閾値の設定 ・・・
閾値を変更する 。………・・………̈ …・……・…・・…・

レポートの作成 ・・……・………・…………………・…・・…・・
レポートを取得する地点を決定する。…・…・・………・

スナップショットlDを調べる 。…………・…・̈ ……・
レポートを作成する。…¨̈ ……・……………………・

レポートの分析 ・………………………………・…………・…・・
□―ドプロフアイル・・……・…………………………・

インスタンス効率

トツプ5待機イベント・………・

SQL ・・・・・・・……・・・・・・…・・・̈・・・
SQL詳細情報の取得……………・

スナップシ∃ットの削除 ・̈ …̈・・̈・…
スナップショットの一括削除……… …̈

ライブラリ・キャッシュ内のSQL・・・・…・

共有SQL領域を確認する動的パフォーマンス・ビュー
経過時間の長いSQLの抽出 ・・・… ・̈・…・………・…………・
バッファ読み込みブロック数が多いSQLの抽出
ディスク読み込みブロック数が多いSQLの抽出
実行回数が多いSQLの抽出

続計情報の収集

統計情報とは・…

０

１

２

２

　

５

５

６

６

７

７

７

９

０

２

２

２

３

３

５

６

７

７

７

８

０

２

２

３

４

５

７

７

７

７

７

　

７

７

７

７

７

７

７

７

８

８

８

８

８

８

８

８

８

８

８

８

９

９

９

９

９

９

９

CHAPTER 03

101

117
117

統計情報の取得対象オブジェクト 」」8

テーブル統計情報 ・̈ ・̈……・・・…¨̈ …̈…… …̈・…・118

列統計情報・・・・・・・・・…・……・・・・・・・・・・・…・……・・…・・・…・118

索引統計情報・・……… …̈…・・…………̈ ・̈・…・……
。118

システム統計情報 ・̈ ……・ ・・119

ANALYZE文・・・・・・・・・・・・・・・・・…・・・・・・・・・・・・・・・・・・・・…・・・・・・・・・・・・・・120
完全(COMP∪ TE)・・・・・・・・・・・・・・・・・・…・……・・・・・・・・・・…・121

予測 (ES丁lMATE)・ …・・・……・・・̈ …̈…・……・・………・121

ANALYZE文のオプション ・̈ ……・…・……………………・…… 122
ANALYZ圧 IND巨×文・・・・・・ ・・・・・・123

統計情報の削除と更新

統計情報の削除

統計情報の更新 ・・……・・……・……

分析対象オブジエクトの構造の検証 ・……

VALIDA丁巨STR∪ CT∪ R巨句・・・・・・・

・・・・・・・・・・・・・・・・・125
・・・・・・・・・・・・・・・・・125
・・・・・・・・・・・・・・・・・ 125

123

124

133

133

134

135

137

138

138

139

140

141

CASCADE句
オブジェクトの構造の検証で取得できる情報…・・・・・…・125

ANALYZE文による行連鎖と行移行の確認 ・…………・・・……・126
行連鎖 ・・・……¨̈ …̈……・… …̈………・̈・・̈・・…・126
行 移 行 ・

行連鎖や行移行の状況の確認方法 ・………・…・・・……・128

統計情報を取得するパッケージ・プロシージャ・……・……・̈・129

DBMS DDL.ANALYZE OBJttC丁プロシージャ・・…・130
DBMS∪TILI丁Y.ANALYZtt SCHEMAブ ロシージヤ・・・131
DBMS∪丁ILlγ .ANALYZE DATABASEプ ロシージャ・・・131

DBMS STA〒 Sパッケージ ・・・132

・・・・・・・・・・・・・125

・・・・・・・・127

DBMS STATSパッケージのプロシージャ ・…… …̈
DBMS_STATS.GATHER_TABLE_STATSプ ロシージャ・・・

DBMS_STATS.GATHER_INDEX_STATSプ ロシージャ・・・

DBMS_STAIS.GATHER_SCHEMA_STATSプ ロシージヤ・・・

DBMS STAIS.GATHER DATABASE STATSプ ロシージャ・・・

統計情報の転送・

ユーザー定義の統計テーブルを作成する ・・…………・
ユーザー定義の統計テーブルに統計情報をコピーする…

ユーザー定義テーブルをコピーする 。………・・…・・…・

データ・ディクシ∃ナリに統計情報をコピーする・・…・

統計情報の確認方法

テーブル統計情報の確認 ・……… …̈…・・・……・……。142
索引統計情報の確認

列統計情報の確認 ・…・̈・・……………・・̈ ・̈・・…・・・…・143

ヒストグラム統計情報の確認・…………………・…・・…・144

0racle 1 0gで の統計情報の取得 ・……………・̈ ・̈…・・……・144

・・・・・・・・・142

・・・・・・143

動的サンプリング 145

00NTENTS

動的サンプリングの実行タイミング ・・・

DML監視 ・・・・・・…・̈・̈・…・・…・・・・・・・・・

CHAPTER 05 SQLの正しい書き方
SQLの解析処理・・

SOF「 PARSEと HARD PARSE
HARD PARSEされた回数の確認・……・
HARD PARSEの回避方法 ・・……・…・・
SQLの記述ルールを決める 。……・……・
バインド変数・

バインド変数とは ,…

バインド変数の定義 ・……・・……・・・

バインド変数の利用によるセキュリティ対策

バインド変数による文字の置き換え `

現場でバインド変数が利用されない理由 ・…
コーディングが簡単 ・・

デバッグ時のログ出力が簡単・̈・̈ …・・

バインドピーク機能 ・……・・………・……・…・

初期化パラメータCURSOR SHARING・ …・
書き方は違うけれど結果が同じになるSQL。・
IN句とOR句 ・……・・・・・・・…・・̈ ・̈…・…・・・・・・・
∪N10N ALL句 ・

IN句とEXISTS句 ・……

IN句とE×IS〒S句の違い。………………・

結合

反結合とNO丁 IN句 ・NOT巨×ISTS句 ・…

索引の基礎知識・……・…・…

索引とは ・…………………¨
索引が使用されないSQL。・…

・・146
・・147

・・・・・・・・。153
・・・・・・・・・・153

・・・・・・・・・・・・・・・・・154
・・・・・・・・・・・・・・・・・155
・・・・・・・・・・・・・・・・・156
・・・・・・・・・・・・・・・・・156
・・・・・・・・・・・・・・・・・157
・・・・・・・・・・・・・・・・・157
・・・・・・・・・・・・・・・・・158
・・・・・・・・・・・・・・・・・159
・・・・・・・・・・・・・・・・・160
・・・・・・・・・・・・・・・・・ 161

・・・・・・162
・・・・・・・・・・・・・・・・・・163
・・・・・・・・・・・・・・・・・・ 163
・・・・・・・・・・・・・・・・・・164
・・・・・・・・・・・・・・・・・。165

165
・・・・167
・・・・ 169
・・・・169
・・・・172
・・・。174

・・・・・・・・・・・・・・・・・・・179
・・・・・・・・・・・・・・・・・・・・・179

・・・・・・180
索引を使用することを想定したSQLになつていない・・・180
意図した索引が使用されない 。̈ ・̈・・・̈・・・……・………・180

索引の種類……… ・・・・・・・・・・・・・・・・・・・・ 180
B★「 ree男尽弓|

・・・181
BTree索引を使用したデータの検索・…………・……・181

B★Tree索引のメリットとデメリット・・・・・・・・・・・・・・・・…・・・・・・…・・183
B★丁Юe索引のメリツト・……・・…・・・・…・………・……。183
BTree索引のデメリット・……・̈ ・̈ …………・…・…・185

ビットマップ索引・・・・・・・・・・・・…・・…・……・・・・・・・・・・・……・・̈ ・̈・188
ビツトマップ索引のメリットとデメリット ・……………・・…・・189

実践編 現場で使えるSQLチューニング 151

⊂亜亜亜⊃

ビットマップ索引のメリット・…

ビットマップ索引のデメリット・

フアンクシ∃ン索引 ・…・・…・…………・

逆キー索引…………………・……………

・・・・・・・・・・ 189
・・・・・・・・・・190
・・・・・・・・・・190
・・・・・・・・・・192

: CHAPTEROT 索引によるSQLチューニング ・・・・・・・・195
・・・・・・・・・195SQLチューニングの基本

テーブルデータ状況 196

テーブルデータ件数 ・・………・・………・・………・・……・196

SQLがどのように実行されているわ`・・………・・・・……・197
アプリケーシヨンの特性 ・…・…・・…・……Ⅲ…・・……・197

不要なフルテーブルスキャンの排除・………・………………・・198

フルテーブルスキヤンが発生するケース ・・……・…・・・198
高速全索引スキャンの利用 ・……………・…・・…・……………・・・200
高速全索引スキャンと全索引スキヤンの違い………・

高速全索引スキャンと全索引スキャンの処理速度・・・

高速全索引スキャンとフルテーブルスキヤンの処理速度

索引の正しい定義方法

フルテーブルスキャンが有効なケース ・̈
WHERE句の条件としての利用頻度
データの偏り・―・・・・

索引を使用できないケース

N∪LL値の検索 ・・…

暗黙の型変換

LIKE句の中間一致・後方一致 ・・……・・…………・・…・
NOT EQ∪ ALS検索の使用・・̈ ………・………・̈ ………・

インデックス・マージ ・……………̈ …・………………………・
インデックス・マージとは・…………………・・…・……・・

インデックス・マージの実行・・…・̈・・・………………・

複合索引の利用 …………………………………………………・

複合索引の利用方法 ・……………………………………

複合索引の作成のポイント・………… …̈……・…・・…・

複合索引と単一列索引 ・…………・̈・…………・………・

200
201

203
206
207
207
208
208
208
210
211

212
213
213
214
216
217
2¬ 8

218

結合によるSQLチ ューニング ・………・………………・223
ネステッド・ループ結合 ・̈ ………・……………………………・223
駆動表と結合表・・・……………・・・………・…・……̈ ……・223
駆動表に適したテーブル

駆動表の指定・・・・・・・̈ ¨̈ ・̈・・・…・・・・・・・…………・・・・・・・・・225
ネステッド・ループ結合の実行例・…・̈ ……………・̈ ………・225
駆動表によるパフォーマンスの違い ・……・……・・……・225
結合表へのアクセス方法の違いを考慮する 。……・…・227

ネステッド・ループ結合が有効なケース ・・………・………・…・229

・・・・・・・・・・・・224

CHAPTER 08

CONT[NTS

データ抽出量による結合の優位性 ・…・…Ⅲ…・・………・

ソート/マージ結合 ・……・̈ ・̈…・・・……・……・̈・̈ ・̈…… ・̈
ソート/マージ結合の実行例・̈ 。̈・・……… …̈………・………・
ソー ト/マージ結合 (フルテーブルスキヤン)の実行・・・
ソー ト/マージ結合 (索引スキャン)の実行 ・・……・…

八ッシュ結合・・…………… ・̈̈・……………・……・̈・・・・・・・…・

八ッシュ結合の実行例 ・……・̈ 。……………………………・・̈・

八ッシュ結合とソート/マージ結合の比較 ・……・…・
索引のないテーブルに対する八ッシュ結合 ・…・……・

GRO∪P BY句の不|」用 ・・・
索引を使用したグループ関数の利用 ・………・…・……・・

最大値と最小値を同時に求めるSQL・ …………・・………

平均値と合計値を同時に求めるSQL・・………。……・̈・

索引が定義されていない列に対するグループ関数の利用・・・

NOT NULL制約をはずした列に対するグループ関数の利用・・・

HA∨ING句の利用 ・̈

HAVING句 とWHERE句の比較
ソート処理の最適化 ・…・……・・・・……

システムリソースの種類 ・・・…
ソート処理の発生原因 ・………
メモリ領域の設定方法 ・…・・…
ソー ト処理の回避方法 ・・・……

集合関数の利用・… ・̈

複数回のSQLの実行
CASE文 を使用したSQLの実行・・̈ …̈………・・…・

複数回のSQLを強引に1つにまとめて実行…・・・……

CHAPTER 09
｀ DML処理の高速化
TRUNCATE文の使用
DEL日
~E文
と丁R∪NCA丁圧文の違しヽ ・̈

索引がDMLに及ぼす影響・………・・・・………・…

索引の使用状況の監視

索引の使用状況の確認

索引を監視対象からはずす

ダイレクトロー ドインサート…・・……・̈ ・̈……・…・・

ダイレク トロー ドインサー ト使用上の注意点・

ダイレク トロードインサー トの実行方法 ・…
記憶領域パラメータ ・・………………・………………・

PCTFR巨匡とは ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
PC丁∪SEDとは・

空きリス トとデータ・ブロックの管理 ・…………・・

PCTFREEと PC丁∪SEDが INSttRT文へ及ぼす影響
PCTFRE巨 とPCT∪SEDがUPDAT圧文へ及ぼす影響

229
232
233
233
235
237
237
237
239
241

242
242

243
244
244
245
246
247

247

248
248
248
249
250
251

252

257
257
257
258
259
260
261

262
263
263
265
265
265
266
267
268

CHAPTER 10

PC丁FREEと PC丁∪SEDがDEL曰
~E文
へ及ぼす影響・・・269

MERG巨文を利用した更新処理・・…・・………。・―・・・・・… …̈ ・̈269

マテリアライズド・ビューⅡ ・……………・………………・275
集計処理の問題点・……・・・・……・・…………・…・・・…・・・… …̈・275

バッチ処理の問題点 275

トリガーの問題点 ・・…・・・・・…・ 276

マテリアライズド

マテリアライズド

マテリアライズド

ビューとは・・…・・・・・・…・・・・…

ビュー・リフレッシュ ・・・…
ビューを更新するタイミング

・・・・277
・・・・277
・・・・278

・・・・278
279

・・・・279
・・・・280
・・・・281

・・・・・・・・・・・・・・・282

ON DEMAND
ON COMMI丁 ・・・・・・・・・・・

マテリアライズド・ビューの作成 ・・・
マテリアライズド・ビューの効果・…………̈ ………

マテリアライズド・ビユーを使用しない場合・

マテリアライズド・ビユーを使用する場合 ・

・・・・・・・・・・・・・・・・・・・278

クエリー・リライト・

クエリー・リライ トの使用条件

クエリー・リライ トの精度・…・

クエリー・リライトの実行 ・̈ ・………………・・……・・… ・̈
クエリー・リライトが行われない理由を探す方法・………・

REWRITE TABLEテ ーブルの作成 ・……・……・…・

DBMS_MVIEW.EXPLAIN_REWRITEプロシージヤの実行

283
283
284
285

バラレル処理・・・̈・…… …̈………………

パラレル処理を行うために必要な条件 ・………・…・・・……・

複数のCP∪を搭載 している

アクセスされるデータを複数のディスクに分散している

D'WH環境である ・・・・・……・・………・・・・・・・・・・・・・・・…
フルテーブルスキャンかパーティシ∃ンスキャンを行う

データベースサーバーに余力がある

パラレル度数とスレーブ ・・…………
スレーブ・プール ・…………・

クエリー・コーディネータ・…

パラレル・クエリー・…・……・………

PARALLEL句をテーブルに定義する方法・…・・・…・・…・……・

結合処理を含むSQLにおけるパラレル処理 ・̈ ………
パラレル処理の停止 ・………

SQLにヒントを付ける方法 ・̈ ……・
パラレル・クエリーと結合 ・・……・・

'舌

用編: Oradeの機能を利用したパフォーマンス・チュいニング 273

⊂亜亜亜⊃ 289
290
290

291

292
292
293
293
294

296
297
299

00NTENTS

ネステッド・ループ結合とパラレル・クエリー

ソー ト・マージ結合とパラレル・クエリー ・・.
八ッシュ結合とバラレル・クエリー ・……・・…

９

０

１

２

２

２

３

９

０

０

０

０

０

０

２

３

３

３

３

３

３

パラレルDDL…・

CREATEIND匿 ×文
CR巨ATE TABLE AS SELEC丁 文: ・・・・

パラレルDML ・……・・・・…・……………………・

その他の機能

パーティション・テーブル ・…・……………・
パーテイシヨン・テーブルのメリット・̈ …

レスポンスの向上

管理性の向上・・…

可用性の向上・̈ ………・・……・

パーテイシヨン・テーブルの種類・…・

レンジパーティション ・……・
リス トパーテイシヨン ・……・
八ッシュパーティシヨン ・…・
コンポジツトパーテイション・・

パーテイション・テーブルの使用方法

パーティシ∃ン・プルーニング

パーティシ∃ン索31・・・・・・・……………

□―カル索引・̈ ………………

グローバル索引・…・

バルク処理…………………………………

DML文でのバルク処理 ・………
SELEC丁文でのパルク処理 ・…
FETCH INTO文 でのバルク処理

・305
・305
306

・・・・・・・・・306
・・・・・・・・・306
・・・・・・・・・307
・・・・・・・・・307
・・・・・・・・・308
・・・・・・・・・308
・・・・・・・・・309
・・・・・・・・・309
・…・…・310
・・・・・・・・・311
・・・・・・・・・313
313

・̈ ………・315
……・̈ ・̈316
・・・・・・・・・・・・317
……・…… 317
・…………・318
・・・・・・・・・・・・320

320
・・・・・・・・・・・・・・・・・・・・・・・・・・322
・・・・・・・・・・・・・・・・・・・・・・・・・・323
・・・・・・・・・・・・・・・・・・・・・・・・・・324

クラスタ ・………
八ッシュ・クラスタ

八ッシュ・クラスタの作成

索引クラスタ・……………………・

索引クラスタの作成 ・…・・
Bl丁MAP JOIN INDEX・・・・・・・・・・・・ ・・・・・326

BI丁MAP JOIN INDEXと は ・…・・・・・・・・・・・・・・・・・・・・・・・・・・326
B!丁 MAP JOIN INDEXの 使用方法 ・・・・・・・・・・・・……・・・・326
BITMAP JOIN IND巨 ×のデメリット・・・・・・・・・・・・・・・・…・・328

CHAPTER 12

INDEX・ ・・・・・331

本章では、具体的なSQLチ ューニングの方法について解説する前に、現在

のシステムが抱える問題と、パフォーマンス・チューニングの概要とその目

的、そしてチューニングの種類とその利用対象、コストについて解説します。

パフォーマンス・チューニングの全体像を把握し、なぜSQLチ ューニングが

最も効果的なのかを理解することはとても重要なことです。特に実務でチュ

ーニングを行う場合はその効果だけではなく、コス トやシステムヘの影響範

囲についても考慮する必要があります。

実際にみなさんがシステムを利用したときに以下のような経験をしたこと

はないでしょっか。

・データを検索した際に、アプリケーションからの応答がなくなった

。データを登録・更新しようとした際に、アプリケーションからの応答がな

くなつた

。ショッピングサイトを閲覧しようとしたが、つながらなかつた

。ショッピングサイトで買い物をした際に注文処理の最後でそのまま応答が

えられなかったため、買い物ができたのかできていないのか、わからなく

なってしまい、ショップに対して問合せを行った

。不動産の物件を検索しようとしたら、ブラウザが固まつた

上記のような現象が発生するシステムでは、必ずといっていいほどデータ

ベースを利用しています。そして、応答が遅くなったり、応答がなくなるケ

ースの多くはアプリケーションかデータベース、もしくはその間の通信がボ

トルネックとなっています。

具体的には以下のような現象がシステム内に発生しています。

・データを検索する際に、データの取得件数が多すぎてアプリケーションの

CPU使用率が高くなつてしまう

パフォーマンス・チューニングとは

SQLチューニング概要

:NTRODUCT:ON

l‖TRODuCT10N SQLチ ユーニング攘要

・1000万件のデータから必要な数十件のデータを取得する際に、データベ

ースに負荷がかかり、応答を返さなくなっている

。1つ 1つの処理に若干時間を要していたが、アクセスが集中したことにより、

全体的な遅延につながっている

パフォーマンス・チューニングとは、このようなアプリケーションに対し

て、データベースの内部設定を見直したり、アプリケーションの処理を変更

する (プログラム・ロジックを見直し、余計な処理が実施されているところ

を修正する)こ とで、アプリケーションの応答時間をできるだけ速くし、よ

り快適にアプリケーションを使用できるようにすることです。

データベースを使用したアプリケーションでは、パフォーマンスは非常に

重要な課題の1つです。「3秒ルール」や「8秒ルール」などとよくいわれますが、

求められる時間内にレスポンスが返ってくるアプリケーションにしなけれ

ば、「業務の効率化」を目的としている業務システムでは目的を達成するこ

とができなくなってしまいます。

また、ショッピングサイトなどの一般顧客向けBtoC Webア プリケーショ

ンなどでは、誰にも閲覧されないWebサイトになってしまい、売上の低下に
つながります。

誰にも開覧されないWebサイト

儡躇

パフォーマンス・ チューニングの必要性

バフォーマンス・チユ…鳳ングの機聾性

このようなことから、データベースを使用したアプリケーションにとって

パフォーマンスは必要十分条件であり、パフォーマンスの悪いアプリケーシ

ョンは重大な欠陥品となってしまうのです。

そのため、アプリケーションエンジエアは、パフォーマンスの悪いアプリ

ケーションにしないようにさまざまな工夫をする必要があるのです。また、

どうしても時間がかかる処理に対しては、処理を実行する前に「この処理に

は実行時間がかかる」という警告を表示し、ユーザーに時間がかかる処理だ

ということを理解させ、アニメーションなどの視覚的なものを用意するなど、

ユーザーに対しストレスを感じさせない工夫をする必要もあります。

籟輻 ハードウェア性能とパフォーマンス・ チュ…ニング

現在はハードウェアの目覚ましい発展により、ハードウェアの性能だけで

十分なパフォーマンスを実現できる場合もあります。

しかし、伝票入力や受注受付、商品登録など、日々の業務によるデータ量

の増加、アクセス負荷の増加によリシステムの負荷は日々大きくなっていま

す。また、近年は日本版SOX法に対応するために、内部統制に関する機能を

強化する必要もあります。そのため、管理するデータ量が以前とは比べもの

にならないくらい多くなっています。

このような現状から、アプリケーションに求められるパフォーマンスも

日々高まっています。そのパフォーマンスを維持するためには、アプリケー

ションをメンテナンスし、処理能力の向上を図る作業を行う必要があるのです。

増加し続けるデータ量

孝剋餞蟄躊」ヽ

大

データ量

1年目 年
5年目

1図 00■ 21

速い パフォーマンス 遅い

■ ~,I'・

1・ 藩■・

伝票

システム開発の問題点

lNTRODuCT10Nま裏チューニング機要

「効率の良いアプリケーション」とは、ハードウェアに負荷をかけないア

プリケーションです。たとえば、CPU使用率が100%に なるアプリケーショ

ンや、たまに応答しなくなるアプリケーションはたとえレスポンスが気にな

らなかったとしても、効率の良いアプリケーションとはいえません。

データベースを利用したアプリケーションの効率が悪くなるケースの多く

は、アプリケーションから実行したSQLの結果が返ってくるのが遅いことに

原因があります。中には、アプリケーションが余計なループ処理を繰り返し

ているものや、SQL自体の実行速度は遅くないが、必要以上に実行されてい

るものもあります。

なぜ、このようなアプリケーションが作成されてしまうのでしょうか。そ

の原因には以下のことが考えられます。

。短い納期でシステムを構築する

。コストをかけられない

。スキル不足

。開発環境の問題

《鰈§靡薔短い納期でシステムを構築する

どの企業もサービス・インをなるべく早く実施し、売上向上・業務効率の

改善などの目標をできるだけ早く達成したいと考えています。そのため、必

要以上に短い納期でシステム構築を行うことになり、工程間の同時進行を行

わざるを得なくなっています。

その結果、納期に追われ、業務要件・機能要件だけを確定させ (場合によ

っては業務要件・機能要件の確定もあやふやのまま先に進むケースも存在し

ます)、 データベース構造や想定されるデータなどについての十分なレビュ

ーが行われずに次の工程に進んでしまうため、本番稼働時にパフォーマンス

の問題が発生してしまうのです。

躾腱 コストをかけられない

どの業界でも同じことですが、企業にとって低コストで高品質なものを作

システム開発の間題点

ることは永遠の課題です。しかし、コス ト削減を意識するあまり、開発に必

要なコストも省いてしまう傾向があります。

その結果、データベース設計やパフォーマンス要件について、十分なレビ

ューや打合せが行われずに後工程に進んでしまうため、本番稼働時にパフォ

ーマンスの問題が発生してしまうのです。

餞黎 スキル不足

経験の浅いプログラマは、パフォーマンスを意識してプログラムを組むこ

とがなかなかできません。理想論になってしまうのですが、開発メンバーに

ついては十分に考えてチーム編成を行わないと、結果として効率の悪いアプ

リケーションを作成することになってしまいます。チーム内でパフォーマン

スについての意識をどう向上させていくのかが効率の良いアプリケーション

を作成するための鍵となります。

黎鼈 開発環境の問題

多 くのシステムでは、開発時には良いパフォーマンスを示していたのに、

本番稼働時に急にパフォーマンスが悪化 します。このようなケースのほとん

どは、開発時のデータ量が本番稼働時より少ない環境で、開発・テス トを実

施していた場合に発生 します。実際の開発現場では、空のテーブルや本番の

データより極端に少ないデータ量に対 してSQLを発行しているケースが多い

のが実情です。しかし、できるだけ実際のデータ量に近い値で開発すること

で、この問題は防げることもあります。

実際のデータ量で開発するメリットは以下の点が考えられます。

。SQLのパフォーマンスに関する問題を本番前に確認できる
。開発時にパフォーマンスを意識したSQLを書くことができる

開発時に本番データ相当量で開発を行えば、仮にコスト・納期の問題があ

ったとしても効率の良いアプリケーションを作成できる可能性は高くなりま

す。少なくとも、少ないデータ量で開発しているときよりも格段にその効果

は発揮できるでしょう。

ただし、デメリットもあります。本番相当のデータ量でテストをしていた

ために初期導入データでのテストが漏れてしまうケースです。この場合、本

iNTRODUCT10N SQLチューニング攘要

番稼働時に必要なデータがないために、アプリケーションがエラーで終了し

てしまうという障害が発生してしまう可能性があります。メリット・デメリ

ットをよく考え、テスト環境を構築することが大切です。

パフォーマンス・チューニングの目的は、これまで解説したように、本番

稼働後にパフォーマンスが劣化したアプリケーションや、データ蓄積 。アク

セス集中によリパフォーマンスが劣化した場合に、パフォーマンス向上を図

ることです。

ここでは、アプリケーションで行うパフォーマンス・チューニングとはど

のような手順で、どのような作業を行っていくのか、手順とその概要につい

て解説します。

パフォーマンス・チューニングを行う場合は以下の手順で実施します。

鼈隋 1.チューニングの目標設定

実際にチューニングを実施する際は、必ず事前に問題点があがっています。

たとえば、「帳票の出力に時間がかかる」、「バッチ処理が遅く、予定してい

る時間内に終了しない」などの機能レベルの具体的な問題から、「とにかく

遅い」という漠然とした問題までいろいろあります。

チューニングを実施する際は、これらの問題点に対して必ず目標を設定し

てから実施するようにします。たとえば、「帳票の出力を何秒以内で実施す

パフォーマンス・チューニングの手順

慶ヨ回回国|パフオーマンス・チューニングの手順

パフォーマンス・チューニングの手順

る」、「バッチ処理を何分 (時間)以内で実行する」など現状を分析してから具

体的な目標を設定します。目標を設定しないままチューニングを実施すると、

いつまでたっても終わりが見えなくなります。このような状況に陥ると、技

術者のモチベーションの低下やコストの増大が発生してしまい、結果として

効率の良い作業が行えなくなってしまいます。

蝙輻 2.現状分析

目標を設定した後は、なぜ遅くなっているのか現状を分析し、原因を究明

します。遅くなった背景には以下のようにいろいろなパターンがあります。

・データの増大により徐々に遅くなつた

。昨日まで速かったのに、急に遅くなった

。アプリケーションをバージョンアップしたら遅くなった

このような背景から原因を分析し、特定します。この作業には十分な時間

をかけ、確実に原因をつかむことが大切です。

鼈躙 3.チュ…ニング方針の決定

原因が特定できたら、チューニング方針を決定します。SQLが原因であっ

た場合は、後で詳しく解説していきますが、「索引が作成されていない」、

「そもそもテーブル構造が悪い」など、SQLの何が原因で遅くなっているの

か検出し、改善する必要があります。

なお、このフェーズは、ユーザーにも状況を説明し、お互いに合意したう

えで決定したほうが、後のトラブルが少なくなります。

鼈輻 4ロ チューニング処理

チューニングの方針が決まれば、その方針どおりに作業を実施し、結果を

測定します。思うような結果が出なかった場合は、チューニング方針を再検

討し、納得のいく結果が出るまで繰り返し行います。

チューエングの種類とSQLチュ…エングの位置付け

lNTRODUCT10N SQLチューニング概要

アプリケーションで行うパフォーマンス・チューニングには、以下のもの

があります。

。テーブル構造のチューニング

・ SQLのチューニング

・ メモリのチューニング

・ディスク1/0のチューニング

・ OSのチューニング

それぞれの作業を行った場合のパフォーマンスの効果と、作業実施時にか

かるコスト(労力)は下図のようになります。

チューニングの効果とそのコスト

効果・リスク・コス ト 大

効果・ リスク・コス ト 小

上図が示すとおり、チューニングの効果とリスク・コストはトレードオフ

の関係にあります。コスト・リスクを大きくすれば、チューニング効果も大

きく見込むことができますが、コスト・リスクを小さくすれば、チューニン

グ効果も小さくなります。

チューニング|の種類とSQLチューニングの

`立

置付け

鍮輻 テ…ブル構造のチュ…ニング

パフォーマンス・チューニングの中でも、最も効果があるのはテーブル構

造の変更です。テーブル構造を変更することで得られる効果には、主に以下

の3つがあります。

鰊複雑なSQLをシンプルに組み立てる

たとえば、複数のテーブルを結合する複雑なSQLや、副問合せと結合を駆

使して、複雑なSQLを組み立てて必要なデータを検索するような処理は、そ

の複雑さの分だけ、データベースも複雑な解析とデータの取得を行う可能性

が高くなります。

そのため、なるべくシンプルなSQLで必要なデータを取得できるようにテ

ーブル構造を変更すれば、より効率的な処理を行うことができます。

仁璽国田国 複雑なSQLをシンプルに組み立てる

脩テーブルを分割し、効率良くデータを取得する

テーブルのデータ件数が多くなったために、データに対する検索が遅くな

ってしまうケースは容易に想像できます。このような場合には、テーブルを

分割することで、効率良くデータを取得することができるようになります。

ISQLを

INTRODUCT10N SQなチューニング1機1甕

テーブルを分割し、効率良くデータを取得する

瘍データを事前に集計し、集計結果を格納する

テーブルデータ件数が多くなったために、集計処理に時間がかかるように

なるケースも発生します。100件のデータを合計していたときは、それほど

時間はかからなかったものでも、100万件になったらそれなりに時間もかか

りそうなものです。

このようなケースでは、テーブルの分割以外にも、アプリケーションの実

行時とは別のタイミングで、テーブルデータを事前に集計し、その集計結果

を別テーブルに格納する方法もあります。集計結果を格納しておけば、デー

タ検索時は集計テーブルに対してアクセスするだけで、集計結果を得ること

ができるため、パフォーマンスの向上につながります。

なお、データを事前に集計する方法には集計テーブルを作成し、夜間バッ

チで処理する方法や、データの挿入時や更新時、削除時にトリガーを使用す

る方法以外に、Oracleの機能であるマテリアライズド・ビュー (P.275参照)

を使用する方法もあります。

鰈

贈饉饉

1テーブ

■■|

チューニングの種類とSQLチユーニングの位置付け

図00‐07 データを事前に集計し、集計結果を格納する

瘍テーブル構造のチューニングのデメリット

パフォーマンスの問題は、アプリケーションを作成した後の本番稼働時や、

データ蓄積後に発覚することが多いため、テーブル構造の変更を行うとアプ

リケーションレベルでのSQLの作 り直しを行わなければなりません。細かく

分割できるアプリケーションならともかく、通常のアプリケーションでは全

体に手を加えなくてはならなくなります。

そのため、もしテーブル構造をチューニングした場合は、再度、検証作業

を実施しなくてはならなくなり、コス トも時間も必要になります。できるだ

け短時間で物事をすませようとするこの社会では、あまり現実的とはいえま

せん。また、完成するまで全体的な効果を実感できないという点も、大きな

リスクとなってしまいます。

趙脩颯躙巖SQLのチュ…ニング

テーブル構造の次に大きな効果を得ることができるチューニング方法は

SQLチ ューニングです。アプリケーションからイベント(ボタンの押下後や、

画面の起動時など)が発生すると、その処理にもよりますが、アプリケーシ

ョンから、データベースに対して数十回ほどSQLが発行されます。そのため、

SQLチ ューニングでは、どのイベントが発生したときに遅延が起きているか

を調査することによって、遅延が発生しているSQLを発見し、発見した問題

のあるSQLに チューニングを実施します。

１
１
・〓

●
」
■

‐

‐・■■■.●
=‐

INTRODUCT10N SQLチューニング概要

SQLチ ューニングでは、チューニングしたイベント単位で検証作業を実施

することができるので、アプリケーションプログラムを変更することによる

リスクはありますが、比較的短い時間で、パフォーマンスを改善させること

が可能です。

SQLは、その特性上、同じ結果を求めるSQLであっても書き方によって数

百倍もパフォーマンスが違うことがあります。そのため、最適なSQLを記述

することによるパフォーマンス・チューニングは、その効果とコス トの観点

から、実際にはアプリケーションのチューニングとして、最も多く行われて

います。

蝙躙 メモリ、デイスクlノ0、 OSのチユ…ニング
メモリ領域やディスク1/0関連、OSパラメータのチューニングでは、アプ

リケーションに対する修正は行わず、データベースのパラメータや、OSの

パラメータを変更することで、アプリケーション処理を効率的に動作させる

ことを目的とします。そのため、これらの方法は、アプリケーションを変更

しないので、リスクは小さくなりますが、その分、効果が表れにくい部分で

もあります。

ただし、これらのチューニングはハードウェアの性能と関わりを持つので、

事前にこれらのチューニングを行ってからSQLのチューニングを実施したほ

うが、その効果は大きくなります。したがって、実際の現場では、まず、こ

れらのチューニングを検討し、実施します。なお、ごく稀にこれらのチュー

ニングだけで目標を満たす効果を得られるケースもあるため、決して無駄に

なる作業ではありません。

これらのチューニングはシステムの導入時に、パラメータのチューニング

を実施していないケースや、稼働中のシステムに対してデータの増大などで

問題が発生したケースに対して、ユーテイリティを使用してボトルネックを

検出します。その結果から、最適なパラメータに調整したり、デイスク分散

などの対処を行います。

SQLチューニングを行う場合は、以下の手順を実施します。これらの作業

をはじめに決めた目標に達するまで繰り返し実行することで、アプリケーシ

ョンのパフオーマンスを改善します。

SQLチューニングの手順

SQLチューニングの手順

SQLチューニングの手順

SQLをチューニングするには、まず問題のあるSQLを特定する必要があり

ます。どのSQLがボトルネックとなり、パフォーマンスが劣化してしまって

いるのかわからなければ、チューニングによる効果もわかりませんし、特に

問題のないSQLをチューニングしても効果は得られません。

次に、問題となったSQLがアプリケーションのどの機能から発行されてい

るかを探します。問題のあるSQLを探し出すことで、遅延の原因 (引 き金)

となった機能を見つけることができます。実際にSQLを発行しているのは、

アプリケーションなので、その発行元を探し出さなければ、チューニングを

適用することができません。

最後に、SQLを チューニング (処理の見直し)して、アプリケーションに

埋め込みます。実際にSQLを チューニングする場合は主に以下の作業を行い

ます。

。索引の作成

。SQLの書き直し

・ヒント旬の利用

・バインド変数の利用

本書では、Oracleを使用したアプリケーションにおいて、パフォーマンス

劣化による問題が発生した場合に、必要となってくるSQLのチューニング方

法について、問題のあるSQLの検出方法からその具体的なチューニング方法

までを解説します。最適なシステムには効率の良いSQLが書かれていること

が不可欠です。ハードウェア性能に依存したシステム構築をやめて、みなさ

んの技術でより良いシステムを構築してください。

繰り返す

INTRODUCT:ON SQLチユーニング機要

なお、SQLのチューング方法を理解することで、以下の理解を深めること

もできます。

・アプリケーション作成時にSQLの書き方で注意しなければならないこと
。テーブル設計をどのように行えば、パフォーマンスの良いアプリケーショ

ンを作成することができるのか

それでは、CHAPTER01か ら具体的なSQLのチューニング方法について詳
しく解説していきます。

CHAPT[R01

CHAPTER 02

CHAPTER 05

CHAPTER 04

SQLチューニングの
基礎知識

基礎編ではSQLチューニングを行ううえで必要な基礎知識を解説しま

す。SQLのチューニングを行うといっても、SQLの知識だけがあれば

良いわけではありません。Oracleの内部処理方法、解析情報収集機能の

使用方法、収集した情報の分析方法を理解し、問題を抱えるSQLを いか

にして見つけ出すかがSQLチ ューニングの第一歩なのです。

SQLチューニングと内部処理

チューニングすべきSQLの選定(前編)

チューニングすべきSQLの選定(後編)

統計情報の収集

」
『

‥
■L

|||

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

SQLチューニングと
内部処理

CHAPTER

本章では、SQLのチューニングを行ううえで必要なSQLの内部処理や、

Oracleの アーキテクチャについて解説します。SQLを チューニングする場合

は、まず先に現状を分析することが大切です。そして、現状の分析を行うた

めには内部処理を理解する必要があります。

そのため、ここではSQLが発行されてからOracleがどのような処理を行い、

結果を返しているのか、そのデータをどのように取得しているのかを中心に

解説します。

INTRODUCT10Nでも解説しましたが、SQLチ ューニングとは、処理遅延
の原因となっているSQLを発見し、そのSQLを 個別にチューニングすること

で、アプリケーション全体のパフォーマンス効果をあげるチューニング方法

です。SQLチ ューニングは、コスト面・チューニング効果の両面において非

常に効果的なチューニング方法であり、や り方によっては、100倍以上もの

パフォーマンスを提供する可能性があります。

しかし、このようにパフォーマンス向上に多大な影響を及ぼすSQLは、逆

に考えてみると、間違った書き方をしてしまうとアプリケーションのパフオ

ーマンスに問題が発生した場合の最も疑うべき原因となります。

鰈鰈 内部処理を理解することの重要性

SQLをチューニングする際に重要なことは「そのSQLがなぜ遅いのかを考

える」ことです。そして、「問題のSQLが○○の処理を内部的に実施してい

るため、余計な▲▲が発生している」と原因を分析し、「それでは、余計な

▲▲が発生しないように、処理を変更しよう」と考え、必要なチューニング

を行う必要があります。

SQLチューニングとは

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R01 SQLチユーニングと内部処理

したがって、適切なSQLチューニングを行うには、SQLが発行されてから

結果が戻ってくるまでにOracleが内部的にどのような処理を行っているのか

を知る必要があります。その内部処理が、どのような場合にメリットとなり、

どのような場合にデメリットとなってしまうのかを十分に理解しながら、最

適な内部処理が行われるように考えていく必要があります。

OracleがSQLを実行する際に発生する内部処理にはどのようなものがある

のでしょうか。

SQLの内部処理を理解することで、内部的にどのような処理が行われ、ど

の処理で遅延が発生しているかがわかるので、「SQLの遅延原因」について

分析できるようになります。原因を分析することが、SQLチ ューニングの第

一歩です。

Oracleは 、クライアントから受け取ったSQLを以下の順に処理します。

籟腑 1.解析

Oracleはクライアントから受け取ったSQLを、共有プールのライブラリ・

キャッシュに格納し、ライブラリ・キャッシュ内でSQLの構文を解析 (コ ン

パイル)し ます。

SQLを解析する基本的な目的は、構文が正しいかどうかをチェックするこ

とと、対象のデータを参照する権限がユーザーに与えられているかどうかを

チェックすることです。場合によっては効率が上がるようにSQLの書式を再

設定します。また、ライブラリ。キャッシュ内に同一SQLの解析結果がある

かも確認します。

SQLの解析

構文のチェック
(コ ンパイル)

権限のチェック

ライブラリ・キャシュ内
で同一の SQLを検索

アプリケーション

SELECT * FROA′ A
WHERE・ ・ ・ ・ ・ 鶉隋雉

SQLの内部処理

図01■01

SQLの内部処理

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
と
内
部
処
理

データ・ディショナリ・キャッシュ

テーブル、
セキュリテ

列の定義

ィ情報

ライブラリ・キャッシュ

共有SQL領域
・SQLの解析結果
・実行計画

プライベー トSQL領 域

ランタイム領域

SQLを実行時に使用する領域
(ソートなど)

持統領域

・クローズされるまでのカー
ソル情報

共有プール

共有プールの構造

図01‐ 02

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 01 SQLチ ューニングと内部処理

獨隋.2.実行

1つのSQLで問合せの処理を実行する方法は無数にあります。そのため、

Oracleは オプティマイザ※を使用して、解析済みのSQLに対して、はじめに

実行計画を作成します。実行計画とは、「どの順番でテーブルまたは、ビュ

ーにアクセスし、データを取得するか」、「そのテーブルのアクセス方法には、

索引を使用するか」などのSQLを実行するための計画書 (指示書)に あたりま

す。

オプテイマイザは、適当に実行計画を決めるのではなく、最も高速に処理

できる方法を判断し、実行計画を作成します。そのため、実行計画を作成す

る際には、テーブルの構造、権限、索引情報などが格納されているデータ・

デイクシヨナリ。キャッシュの情報を利用します。オプテイマイザが決定し

た実行計画によりSQLが実行されるため、その結果次第で実行速度が大きく

左右されます。

オプテイマイザは実行計画を作成後、バインド変数が使用されているもの

に対しては変数に値を割り当て (バインド処理)、 最後に、実行計画を基に

SQLを 実行し、データ取得処理を実施します。

※オプテイマイザについての詳細はP24を参照してください。

翻1回1雌互菫|ヱ:`二塑豊_______________
オプティマイザが実行計画を考える

建築工事でたとえると、図面に相当

図面を作るとき

資材、要望などの情報を使用します

餞
オプティマイザは以下の情報を基に
実行計画を作成します

。索引の情報
・テープルやビューの情報など

バインド変数

SQ競の内部処理

籟躙 3.フエッチ

フェッチとは、SQLの 結果セットからデータを取得する処理です。
INSERT文、UPDATE文、DELETE文のように結果セットが返ってこない
SQLに関しては、実行することで処理は完了しますが、SELECT文のように

結果セットが返ってくるSQLでは、その結果セットに対してカーソルを置い

て、そのカーソルを移動させて、データをフェッチ (取得)してからクライ

アントにデータを返します。特殊な場合を除いて、通常はカーソルの最初の

行にレコードのポインタを位置付けます。

フエツチ

濃蘊
_議録解

燿 ざ
‐
SELEC丁
WHERE

FROM A

結果セット

フェッチ

Oracle

フェッチ行数の指定
前方スクロールのみ(JDBCなど
のミドルウェアから指示を出す)

フェッチは、Javaな どのクライアント・プログラムから実施されます。た

とえば、「カーソルを先頭行に持ってくる」、「カーソルを最終行に持ってく

る」などの操作や、「前方のみカーソルを移動させ、後方への移動を禁止す

る」、「カーソルヘの更新を許可しない」などの制限を定義することもできま

す。

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
と
内
部
処
理

氣仁
琲魏

|

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 01 SQLチ ューニングと内部購

フェッチでは、このように処理内容を決定することで、パフォーマンス向

上を図ることができます。

注意しなければいけないのは、結果セットを取得し、使用した後は、必ず

カーソルをクローズすることです。クローズすることを忘れると、持続領域

の容量を圧迫します。結果、Oracleで設定する最大オープンカーソル数をオ

ーバーしてしまうため、アプリケーションでエラーとなってしまいます。こ

のエラーは、本番稼働直後やパフォーマンス試験実施時によく発生するので、

プログラム作成時は注意するようにしましょう。

なお、フェッチはJDBCな どのミドルウェアで行う操作なので、本書では

詳しく解説しません。

SQLは実行処理の最後にデータヘのアクセス処理を行い、その処理を終了

します。ただし、SELECT文 のように結果セットを返すようなSQLでは、デ

ータ取得処理が実施されます。

Oracleは、ユーザーから要求されたデータを取 り出す際に、最初にデータ

ベース・バッファ・キャッシュ内を検索し、データがキャッシュ内に存在し

ない場合は必要なデータをディスクから取り出します。

饉
=田
回ロデイスク1/O

ディスク1/0

サーバー

クライアント

必要なデータをメモリから取得する場

合は、アクセスが速いが、ディスクか

ら取得する場合は時間がかかる

||

蝙

|■ |||メモリ||‐
|||

必要なデータがメモリになければ、
ディスクヘデータを取得しに行く

デイスク!/O

玲躙 デイスクiノ0とデータベ…ス・ バッフア0キャッシュ

デイスク1/0は データベースのパフォーマンスに大きな影響を与えます。

そのため、Oracleは できるだけディスク1/0を 発生させないためにデータベ

ース・バッファ。キャッシュを利用します。

データベース・バッファ。キャッシュは内部的にはブロック単位で処理さ

れ、LRUリ スト(最低使用頻度リスト)と ダーティーリス ト(使用済みリス ト)
の2つのバッファリス トによって管理されています。

聰LRUリ スト

LRUリ ス トでは、使用頻度が高いブロックをMRU(最高使用頻度)側 に、
低いプロックをLRU(最低使用頻度)側 に分類して管理しています。データ
ベース・バッファ・キャッシュ内に新 しいブロックが読み込まれた場合は、

LRU側のブロックが追い出され、新しいブロックがMRU側 に登録されるこ
とで常に循環しています。

LR∪ リスト

取得されたデータ

MRU

LRU

MRUに格納される

新しいデータがMRU
側に格納されると、
リストに格納されて
いたデータはLRU側
に移動していく

ディスクヘ

―
―
―
■
・ロ
ロ
ー
●
・
■
―
―
―
サ

ヽヒ
ヽ

一番古いものがLR∪
リス トから追い出さ
れ、ディスクヘ格納
される

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
と
内
部
処
理

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R01 SQLチューニングと内部処理

鯰ダーティーリスト

ダーティーリストは更新されたデータがデータフアイルに書き込みにいく

ための領域であるため、データベース・バッフア・キヤツシユ内で更新され

たブロックが移動します。

ダーテイーリスト

データベース・バッファ・キヤッシユ ダーティーリスト

更新されたデータ|よ
ダーティーリストヘ

DBWRがダーティリ
ス トの情報をディス

クヘ書き込み
餞

_・ || _■ |||_|■ ||.

|‐ ―F`みク

Oracleは、このような仕組みでデータの取得処理を実施しています。した

がって、データベース・バッファ・キャッシュ内からデータを取得できるよ

うにすることが、パフォーマンス・チューニングを行ううえで望ましいとい

えるでしょう。

オプティマイザは、SQLの実行処理時に実行計画を作成します。いわば、

SQL実行時に使用するOracleの頭脳のようなものです。オプテイマイザには、

RBO(Rule― Base―Optimizer:ルールベース・オプテイマイザ)と CBO(COSt―

Base_Optimizer:コ ス トベース 。オプテイマイザ)の 2種類が用意されてお

り、それぞれ実行計画の立て方が異なります。

ここでは、それぞれの特徴とオプテイマイザの設定方法について解説します。

瞼褥饂RBO
RBOXは、検索条件として指定されている列に対して、索引が作成されて

オブティマイザ

オプテイマイザ

いる場合は、その索引を使用 し、複数のテーブルを結合する場合は、左側か

ら順番に結合処理を実施していくなど、あらかじめ決められたルールを使用

してSQLの実行計画を立てます。

※Oracle 1 0gからは、RBOの設定|まできますがサポートはされません。

隋RBOのメリットとデメリット
RBOを使用するメリットは、データの増減に左右されず、安定した実行計

画を提供することができる点です。

一方、デメリットは、データ件数やデータの偏りなどにより、他にもっと

最適な実行計画を作成できる可能性があるにも関わらず、それを利用できな

い点です。

また、Oracle 7以降にパフォーマンスアップなどのために追加された以下

の機能には対応していません。

・ビットマップ索引

・ファンクション・ベース索引

・ハッシュ結合

・索引構成表

・パーティション化

瞼靡絋CBO
CBOは「テープルのデータは、今どのくらいの件数があり、列のデータ分

散具合が・・・くらいなので、おそらくこの索引を使用したほうが効果的だ

ろう」、「データ件数の少ないものを中心に結合していこう」、「取得データ

は・・・になるので、この結合方法を選択しよう」など、テーブルや列、索

引などのデータ情報 (統計情報)を使用し、最適な実行計画を作成します。

やCBOのメリットとデメリット
CBOは以下のような統計情報を基にして、その時点での最適な実行計画を

作成します。

。テーブルの行数、物理データ。プロック数

・索引内部の一意な値の数。値の分布

∽
Ｏ
ｒ
チ
ユ
…
ニ
ン
グ
と
内
部
処
理

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 01 SQLチ ューニングと内部処理

したがって、メリットは、データの件数や偏り具合によって最適な実行計

画を作成することができる点です。また、先述したOracle 7以降に搭載され

た新機能も使用できます。

一方、デメリットは、データ移行を実施し、データが急激に増加した場合

に、最新の統計情報を取得していないと古い統計情報のまま、SQLを実行し

てしまうため、突然パフォーマンスが悪化するという現象が発生する可能性

がある点です。そのため、システムの安定稼働の面で、若千不安があります。

表01‐01 RBOと CBOの特徴

Oracle 10gで はCBOの使用が推奨され、RBOは廃止になりました。RBO
を廃止した理由として、OTN(Oracle Technology Network)か ら提供され

ている、ホワイトペーパー『コストベース・オプテイマイザヘの移行』には、

以下のように記載されています。

。RBOの存在は、問合せ処理エンジンを強化するOracleの 妨げになって

いるため

・Oracleの主要機能強化が活用される妨げになっているため

x Hft : http://otndnld.oracle.co.jplproducts/database/oracle I Oe/bi/pdt/
twp_general_cbo_migration_ I Ogr2_O4O5.pdf

玲鰤 オブティマイザの設定方法

どちらのオプテイマイザを使用するかは、初期化パラメータOPTIMiZER_

MODEで指定します (セ ッションレベルで変更することも可能)。

RBO 。安定 した実行計画を提供するため、

システムの安定化につながる

。必ずしも最適な実行計画ではない
。Oracleの新機能を利用できない

CBO ・Oracleの 新機能を利用できる
。バージョンアップにより常に進化 し

ている

・最適な実行計画を作成できる

・統計情報が最新でない場合、パフォ

ーマンスが突然悪化することがある

ALTER SESS10N SET OPTIMIZER MODE = く設定値>

□E オブティマ

アクセス方法

初期化パラメータOPTIMIZER_MODEに は以下の値を設定できます。

表 01‐02 初期化パラメータOP丁 IMIZER_MODEの 設定値

Oracleは SQLを解析 した後、オプテイマイザが作成した実行計画どおりに

データの取得処理を行います。ここではオプテイマイザが指示するデータ取

得方法について解説します。

蝙躙 フルテ…ブルスキヤン

フルテーブルスキャンではテーブルにあるすべての行をブロック単位で、

テーブルのHWM(High Water Mark:最高水位標)に到達するまで読み込み

ます。そのため、件数が多ければ多いほど実行時間がかかるので、テーブル

の大部分のデータを取得する処理以外では使用を避けるべきです。

フルテーブルスキャン

HWM(High Water Mark:最 高水位標)

以前はデータが入つて
いたが削除された部分

データが入っている
部分

目的のデータが見つかつて
もすべてのデータにアクセ
スする

CHOOSE デフォル ト値。SQLの対象テーブルに1つでも統計情報があればCBO、 1つ

もなければRBOと なる。CBOの動きはALL ROWSと同じ

RULE 統計情報の有無に関係なく強制的にRBO

FIRST ROWS 最初の1行の応答時間を最小に抑える実行計画を選択する。統計情報の有無

に関係なくCBO

FIRST ROWS n 最初のn行の応答時間を最小に抑える実行計画を選択する。統計情報の有無
に関係なくCBO

ALL ROWS 全体の処理時間を最小に抑える実行計画を選択する。統計情報の有無に関

係なくCBO

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

アクセス方法

テーブルA

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

HWM(High Water Mark:最高水位標)

CHAPT[R01ま凛チューニングと内部処理

洟蒻 ROWiDアクセス
テーブルのデータにアクセスする方法の中で最も高速な方法がROWIDア
クセスです。ROWIDに はデータ。ブロック番号と、該当ブロックにおける
オフセット番号が格納されています。データ・ブロックを取得する際に必要

となる情報はすべてROWIDに格納されているため、ROWIDア クセスでは非
常に高速にデータを取り出すことができます。

、■‐DROP
ます。

3ヵ月後1=::0:憂菱警:|

華秀1月‐後

アクセス方法

ロヨ田壼園 ROWIDア クセス

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

Aヽ′HERE ROWID= `XXXXXXX… …'

データが格納されている行を直接指定する

目的のブロックに直接アクセス

ただし、Export/1mportや テーブルの移動 (ALTER TABLE MOVE文)な

どを行うと、ROWIDは変わってしまうので、検索条件として指定することは

あまり現実的ではありません。そのため、ROWIDを使用してアクセスするの

は、アプリケーションで取得した行に再度アクセスする場合などに限定され

ます。

鍮輻 索引スキャン

索引にはROWIDと キーの値が格納されています。Oracleは索引を使用し

て行の取得に必要なROWIDを取得後、データ。ブロックにアクセスしてデ

ータを取得します。索引スキャンにはB*Tree索引やビットマップ索引、フ

ァンクション索引などさまざまな索引が用意されていますが、すべてが目的

のレコードのROWIDを 効率的に取得できる構造になっています。

なお、索引スキャンでは、「索引プロックの読み込み十データ・プロック

の読み込み」となるため、テーブルからある程度以上の割合を抽出する場合

にはフルテーブルスキャンのほうが効率的になる可能性があることに注意し

てください。一般的に、検索したいレコード件数が、レコード全体の5～

15%程度までの場合は、索引スキャンのほうが効率的といわれています。

テーブル・データ ROVVID

ABC AA00XX¨ ¨

CSD A98AAXXX……

CTS RAAAXXX¨

FUK RRAAXXX…

IND CSLDKL・ ¨

で
一

CHAPTER 01 SQLチユーニングと内部処理

索引スキャン

索引

FT¬
L二」

テーブル

索引のみのアクセスで目的のデータを
取得できる。そのため、ここで取得し
たROWiDを基にテーブルにはアクセ
スしない

コ

ヽ

ヽ
Ｅ
Ｉ

仄

コ

ー

Ｅ

♂

索引を使用してROW:Dを取得後、
テーブルデータにアクセスする

鼈鰈 全素引スキヤン

索引スキャンでは、テーブルデータにアクセスする場合、索引から

ROWIDを取得後、そのROWIDを元に実際のテーブルデータにアクセスしま
すが、全索引スキャンでは、索引の値を取得するだけで実際のデータを取得

することができます。

したがって、実際のデータ。ブロックにアクセスする必要がなくなるので、

その分だけ高速にデータを取得することが可能になります。また、全索引ス

キャンとほぼ同様の機能に、高速全索引スキャン※と呼ばれるものもあります。

※全索引スキヤンと高速全索引スキャンの違いについては、P200を参照してください。

全索引スキャン

索引

′ヽ

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

ROWiD タ
イ

ROVVID 1 / AAAA
ROWIDZ / BBBB
ROVげlD3 CCCC
ROVVID4 DDDD

テーブルデータ ROVυ lD

ABC AA00XX
CSD A98AAXXX
CTS RAAAXXX
FUK ROWiD2
IND CSLDKL

ROWID 値

ROWiDl AAAA -/
ROVVID2 BBBBF
ROWiD3 CCCC
ROWiD4 DDDD

′ササヽ

麗罰固閣

アクセス方法

塀全索引スキャンを行うための条件

全索引スキャンは、以下の条件を満たす問合せのときにのみ実施されます。

・必要な列がすべて索引の内部で指定されている (SELECT文 とWHERE旬 に

記述するすべての列が、索引の内部に存在している)

。索引内部の行の10%以上
※
が問合せから戻されること

※「10%」という数字はMULTIBLOCK READの度合いなどで異なります。

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

MUETIBLOCK READ

|〔4Kg・X8)

キ ヤ

のデータ

CHAPTER 01 SQLチューニングと内部処理

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

テープルの結含

データベース設計で正規化を行う場合に必要なのが、テーブルの結合です。

オプテイマイザは実行計画作成時にテーブルの結合処理があると判断した場

合、テーブルの結合方法についても指示します。しかし、オプテイマイザに

より、不適切な結合方法が選択されるとアクセスするデータ・ブロック数が

増加し、パフォーマンスが大きく劣化してしまいます。

そのため、SQLチ ューニングを実施する際の重要なポイントとなる結合方

法の種類とそれぞれの特徴を解説します。

テーブルの結合には、以下の3種類があります。

・ネステッド・ループ結合
。ソート/マージ結合
・ハッシュ結合

鰈蒻 ネステッド・ ループ結合

ネステッド・ループ結合は、WHERE句 で条件が絞り込まれた後、テーブ
ルの一部分を結合する場合に有効な結合方法です。特に内部テーブルと呼ば

れる結合対象側の結合条件列に索引が作成されている場合、データに効率的

にアクセスすることが可能です。

ネステッド・ループ結合は以下の順序で定義します。

1.結合処理の基準となる外部テーブルを決定し、外部テーブルから得られた

結合条件列のデータを基に索引スキャンが行われるテーブルを内部テーブ

ルとする (①)

2.外部テーブルのレコードごとに内部テーブルにアクセスし、結合条件を満

たすか検査する(②)

3.結合条件を満たすレコードを結合して結果を返す(③)

テープルの結合

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

ネステッド・ループ結合

①

②

外部テープル

隋③
内部テーブル

①外部テーブルから結合対象列の値を参照

②内部テーブルで一致する値を検索

③一致するもので結合結果テーブルを作成

結合結果テーブル

ネステッド・ループ結合ではどちらのテーブルを外部テーブルとするかに

よって、アクセスするデータ。プロック数が大きく異なるので、結合順序が

とても重要です。一般的には、効率的に結合するために、結合を試みるレコ

ード数が少ないほうを外部テーブルとします。レコード数に大差がない場合

は、結合条件列の索引スキャンがより効率的なほうを内部テーブルにするこ

とで効果を発揮します。なお、実際にネステッド・ループ結合を利用する場

合は、結合順序が意図したとおりになっているか確認する必要があります。

また、外部テーブルのレコー ドを1件ずつ、内部テーブルにアクセスして

データが結合対象かを判定するため、内部テーブルヘのアクセスは索引スキ

ャンを使用しないと、負荷が大きくなってしまいます。索引が定義されてい

ない場合は、内部テーブルの件数倍のアクセスが発生する可能性があるので

注意してください。

結合列

13

4

2

4

結合列

4

結合列 A

CHAPTER 01 SQLチユーニングと内部処理

隋鰈灯ソー ト/マージ結合
ソート/マージ結合は、双方のテーブルの結合対象列に索引があった場合
に有効に機能します。内部的には、双方のテーブルを結合条件列でソートし、

その結果を一致している値でマージさせることで対象レコードを抽出します。

なお、検索条件列に索引が作成されており、事前にその索引で絞り込まれ

ているような場合には、結合前のソー ト処理が不要になるため (索引はデー

タをソートして保持している)、 結合処理のパフォーマンスを改善すること

ができます。そのため、ネステッド・ループ結合と違い、結果セットの処理

件数が多い場合にも使用されます。

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

図01■ 5 ソート/マージ結合

結合列

テーブルA テーブルB

①ソート処理

②共通の結合キーを持つ行でマージする

結合テーブル

黎塚 ハッシュ結合

ハッシュ結合は、メモリ内部にあるテーブルを結合する特殊な結合方法で

す。大量レコードの結合やテーブルの大部分を結合する場合、ハッシュ・テ

ーブルがメモリ内に収まった場合などに効果を発揮します。

ただし、ハッシュ結合はCBOを使用しないとオプテイマイザに選択されな
いので注意してください。

ハッシュ結合は以下の順序で定義します。

①

②
4

4

2

4

2

① l

▼

漑
餞鶉
驚
　
神

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

テープリンの結合

1.レ コード数の少ないテーブルに対して全件検索を実施し、ハッシュ・テー

ブルをメモリ内部に作成する (①)

2.も う一方のテーブルに対しては、結合列に対してハッシュ関数をかける

(②)

3.2.で作成したハッシュ値でメモリ内のハッシュ・テーブルと一致するかを

確認する (③)

4.ハ ッシュ値が等しいレコードを結合して結果を返す

ハッシユ結合

②
A 結合列

4

2

③

①
ｌ

↓

結合列

2

4

黎

八ッシュ値に変換

①全件検索を実施し、メモリ上に八ッシュ・テーブルを作成する

②結合列に対して八ッシュ関数をかけ、ノヽッシュ・テーブルと結合する

③メモリ内の人ッシュ・テーブルと一致するかを確認する

睫躙 テ…ブル結合のまとめ

データベース設計時に、重複するデータの保持を避けるために正規化を行

います。そのため、アプリケーションは必要なデータを抽出するためにテー

ブルを結合する必要があります。

しかし、テーブル結合はSQLのパフォーマンスに大きく影響する部分です。

そのため、結合方法を見直すことでパフォーマンスを大きく改善できるケー

スもあります。

したがって、それぞれの結合方法が内部的にどのような処理をしているの

|1図01116

八ッシュ・テーブル八ッシュ値へ

変換

4
4

作成された八ッシュ値
で結合

メモリ内部

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R01 SQLチ ューニングと内部処理

か理解することで、「なぜ、アクセス・ブロックが増えているのか」を知る

ことができ、そして、その原因は、「結合処理をこの順番で実施しているの

で、テーブル件数が・・・件あると時間がかかってしまう」と判断できるよ

うになります。また、「どのようにすれば、アクセス・ブロックを減らすこ

とができるのか」といったことまで考えられるようになります。そのため、

パフォーマンス劣化の原因を分析するうえで、テーブル結合についての知識

は非常に重要なものとなります。

テーブル結合に関するSQLチ ューニングの具体的な方法については

「CHAPTER08 結合によるSQLチューニング」(P.223参照)で解説します。

先述したとおり、Oracleで は、発行されたSQLを解析し、実行計画を作成

します。データはこの作成された実行計画どおりに取得されるのですが、オ

プテイマイザが自動で実行計画を作成するため、以下のようなケースが発生

することがあります。

・意図したとおりの実行計画を作成してくれない

。実行計画よりも効率的にデータを取得できることがある

上記のような場合に、ヒントを使用すると実行計画はそのヒントにしたが

って立てられるようになります。そのため、あらかじめ最適な実行計画にな

るようにヒントを与えておくことで、統計情報を完全に取得できていない場

合に実行計画が突然変更されることを防ぐことができます。また、ヒントは

RBOで運用時に意図した実行計画にならないときにも有効です。

難しい問題に直面したときに、ヒントを与えてもらえれば、その問題を解

決できるのと同様です。

ヒント

ヒント

.図 01117 ヒント

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

躾輻 ヒントの記述方法

ヒントを使用する場合はSELECT文、UPDATE文、INSERT文 :、 DELETE
文などの後に「/キ+ キ/」 を記述し、「/*十」と「ホ/」 の間にヒントを記述します。
なお、ヒントは、SQL内のコメントとして記述するため、たとえOracleが用

意していないヒント (間違ったヒント)を指定しても、Oracleは コメントと

して扱うのでSQLの実行エラーは発生しません。

ヒントとして用意されているものをいくつか以下に紹介します。

表01‐ 03 ヒント

CHOOSE オプティマイザモードをCHOOSEに 設定する

RULE 統計情報の有無にかかわらず、RBOで動作する

FIRST ROWS オプティマイザモー ドをFIRST ROWSに 設定する

ALL ROWS オプティマイザモードをALL ROWSに設定する

FULL(くテーブル名>) 指定されたテーブルのフルテーブルスキャンを行う

指定されたテーブルヘのアクセスに指定された索引を使用

する

lNDEX_DESC(く テーブル名>

く索引名>)

指定されたテーブルヘのアクセスに指定された索引を

逆順に使用する

USE_NL(く テーブル名>) 指定されたテーブルが結合されるときにネステッド・ルー

プ結合を使用する

USE_MERGE(く テーブル名>) 指定されたテーブルが結合されるときにソー ト/マージ結
合を使用する

USE_HASH(くテーブル名1>
くテーブル名2>)

指定 したテーブルが結合されるときにハッシュ結合を使用

する

ORDERD FROM句に記述された順番でテーブルを結合する

lNDEX(く テーブル名>く索引名>)

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 01まユチューニングと内部処理

瘍RBOを使用する

RBOを使用する場合は、以下のように記述します。

憮複数のヒントを記述する

ヒントをスペースで分けることで、複数のヒントを記述することができます。

F

SELECT

JOIN

鰊適切な索引をオプティマイザに選択させる

ヒントとして複数の索引を指定し、適切なほうをオプテイマイザに選択さ

せる場合は以下のように記述します。

実行例 01‐ 03 複数の索引の指定

E罰冠1国国|ヒントによるRBOの使用
SoL> SELECT /■ + RULE彙 / 1 FROM emp

2 /

SELECT STATEMENT

Trd3LE 2ヽCCESS (13Y

INDEX (UNIQUE

膿賓口EIコl複数のヒントの使用
SQL> SELECT /■ ■ FULL(e)FULL(d) */

2 WHERE e.deptno = d.deptno

3 /

0

1 0

2 1
菫

Bytes=798)

TABLE ACCESS (FULL) Bytes=80)

TABLE ACCESS (FULL)OF Bytes=5■ 8)

SYSDATE

3 /

ヒント

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

.■ ''

ヒントとしてテーブルに作成されている索引から適切なほうをオプテイマ

イザに選択させる場合は以下のように記述します。

オプティマイザに選択させる

晰インデックス・マージ・ヒントを使用する

1つのテーブルヘのアクセスに対し2つの以上の索引を使用して個別にアク

セスし、その結果をマージして出力する場合は、インデックス・マージ・ヒ

ントを使用します。

・
・
　

■

―

●
・

実行例 0卜 04

インデックス・マージ

■・■.111 li灘
|

ヽ
=
凝

晏

.= す| |・

・ .■

0 ACCESS● (BYェ DヽEX ROWID).OF IEMP'

.INDEX
(RANGE.SCAN)|.OFII

. rd=5)
(CoSt=9 Cal
11 1, |11

emp・e

1' ■

_黎
0

・ .. :

=,. 1

.2

INDEX

・ 111

1 ■NDEX (FULL SCAN‐)OF
翅 ■‐■l t .1

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 01 SQLチ ューニングと内部製

なお、インデックス・マージ・ヒントを使用する場合は2つ以上、5つ以下

の索引を指定する必要があります。

索引をマージする実行例 01-05

‐
0

華

鐵

Bytes=37).

Card=l Byt
. || | :,

‐‐,TみTEMENT OptlimiZer■ cHooS=
(BY INDEX ROWID)

‐‐
2.

3 2

4 2

: .・・ ■‐

.^

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
と
内
部
処
理

本 由早 の ま と

解析 Oracleは クライアントから受け取ったSQLを ライブラリ。キャ

ッシュ領域内で解析 (コ ンパイル)する

Oracleは オプティマイザを使用 して、解析済みのSQLに対 して

実行計画を作成 し、データ取得処理を実施する

実行

結果セットにカーソルを置いて、データをフェッチ (取得)し て

からクライアントにデータを返す

7 ry*

―

■

―
●

.ダ

=
RBO あらかじめ決められたルールを使用 してSQLの実行計画を立てる

CBO 統計情報を使用 して、最適な実行計画を作成する

ス

し才ザが指示するデ二夕取得方法

本車のまとめ

.,|

■ ,■ .●

|ヽ : .`| ■率:
博

= .1111 ■
`ヽ

.:: お.| 綺苺 ● 連i.FI

= 確■
」. .1 , ■ ● ::|

螂 ‐苺

苺・

=´

‐
:ヽ .

|■ ・■ ■■
`|

.たます。 寧
講 聰■ 疇|: |“ ・,.■1苺

t替 ■ヽ, ,_
撥 .'●

,

,ネ ,

■・ ■ ■ ヽi.|・ ●● ■ 蓄 r _誡 ●螢 ■,■・ .奪 |

'■■
.

澪・ 饉 ｀ .1 ● 壌 1撻'

`,
要.|.

苺■

|, |,

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 01 SQLチユーニングと内部処理

ス方法 . ..

なポイント

t .:

.■

.′ |

フルテーブルスキャン テーブルにある行のすべてをブロック単位で、テーブルのHWM
に到達するまで読み込む

ROW:Dア クセス データ・ブロック番号と、該当プロックにおけるオフセット番号
が格納されているROWiDを 使用してデータにアクセスする

索引スキャン 索引を使用して行の取得に必要なROWIDを 取得後、データ
ロックにアクセスしてデータを取得する

全索引スキャン 索引の値を取得するだけで実際のデータを取得することができる

ネステッド・ループ結合 WHERE句 で条件が絞り込まれた後、テーブルの一部分を結
合する場合に有効な結合方法

ソー ト′/マ ージ結合 双方のテーブルの結合対象列に索引があった場合に有効な結

合方法

ハッシュ結合 メモリ内部にあるテーブルを結合する特殊な結合方法

豫

||― |. . .・
・

 |||
‐
| ||‐

 ‐
|

‐.‐ ‐|_ ||| |■ | _‐ | ||‐ ‐・
‐ ‐ ‐.

0テTブルの結合

1薔:

冤

壌

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（前
編
）

SQL処理に遅延問題が発生した場合に、最初にすべきことは、「どうして

処理遅延が発生しているのか」という原因を分析することです。原因の分析

を行わず、ただなんとなくチューニングしてしまうと、再度同じ問題が発生

したり、違った問題が発生したりと、その場しのぎのチューニングとなって

しまいます。

たとえば、火災が発生した場合に、ただ火を消しただけで、現場検証を行

わなかったら、何が原因でそのようなことになったかわかりません。そして、

もしも原因が近くのガス関係であった場合、近隣でも同じような火災が発生

してしまいます。このように、原因の分析を行うことは、SQLチューニング

に限っていえることだけではありません。どの問題を解決するのにも重要な

のです。

SQL処理遅延の原因を分析するには、まずは、実行計画を見直すことです。

実行計画には、「最初にどのテーブルにアクセスするのか」、「そのときのア

クセス方法は何か」、「データを取得後、次にどのテーブルに索引スキャンで

ァクセスしてデータを取得するのか」といった処理の経路が書かれています。

実行計画を確認することで、どこの処理で、何が原因で処理遅延が発生して

いるのか、その原因を分析することができます。

そこで、本章と次章の2章に分けて、OracleがクライアントからSQLを受

け取った際に、どのような実行計画を作成し、どのようにデータを取得して

いるのかを観察するッールについて解説します。ッールを使用することで、

実行計画の具体的な内容を読めるようになり、どの処理がボトルネックとな

っているか分析することができるようになります。

本章では以下のツールについて解説します。

・ EXPLAIN PLANコ マンド

・AUTOTRACE
・ SQLト レースとTKPROF

チューニングすべき
SQLの選定(前編)

CHAPTER

また、CHAPTER03では以下の機能について解説 します。

O STATSPACK

・ライブラリ 。キャッシュ内のSQL

睡聾國壼臨Oracle提供ツールの使用場面

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

L二|ヒ些盤星|二」

EXPLAIN PLANコ マンドは、実行時にオプテイマイザが立てたsQLの実行

計画を観察するツールです。Oracleは、オプティマイザが立てた実行計画ど

おりにSQLを 実行します。したがって、sQL処理遅延の問題が発生 した場合
に、まずこの実行計画から原因の分析を行います。

EXPLAIN PLANコ マンドを使用して、実行計画を確認することにより、
以下のような情報を確認することができます。

・テーブルAに対してフルテーブルスキャンを実施 しながら、テーブルBに

対しては索引を使用して検索を行っている

。最初にテーブルAに対して索引を使用した条件で絞り込み、絞り込んだデ

ータをスキャンし、テーブルBの情報と結び付けている。ただし、テーブ
ルBへのアクセス時には、テーブルBに対してフルテーブルスキャンを行

つている

EXPLAIN PLANコマンド

上記のように、どのような経路でデータを探しにいっているかがわかるの

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（前
編
）

駆 PLAI飩 PiANコマンドの使用方法

で、どの処理が無駄な処理になっているのかを分析することができます。

EXPLAIN PLANコマンドでは、実行するSQLの実行計画をPLAN_TABLE

という物理テーブルに格納します。そのため、実行計画を確認する場合は、

PLAN_TABLEテ ーブルに対してSELECT文 を実行し、閲覧します。

層甕國回壼 EXP臥 IN PMNコ マン ド

EXPLAIN PLAN FOR SQL文

解析終了を返す

SELECT…
FROヽl PLAN TABLE

解析結果を返す

EXPLAIN PLANコ マンドの実行手順は以下になります。

1.PLAN_丁ABLEテーブルの作成 (最初のみ)

2.SQL実 行計画の保存

3.PLAN_丁 ABLEテーブルからSQL実行計画の抽出

颯腱 1.PI」劇 TABLEテーブルの作成(最初のみ)

EXPLAIN PLANコ マンドをはじめて使用する場合は、まず、SQLの実行

計画を保存するPLAN_TABLEテーブルを作成する必要があります。スキー

マ内に作成される物理的なテーブルなので、はじめに一度だけ作成すれば、

再度作成する必要はありません。

PLAN_TABLEテ ーブルは、Oracleに 対してユーザーID、 パスワードで、

ログオンした後、utixpian.sq!ス クリプ トを実行すると、ログオンしたスキ

ーマ内に作成されます。なお、スクリプトフアイルは以下のデイレクトリに

格納されています。

EXPLA:N PLANコ マンドの使用方法

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
‥
ニ
ン
グ
の
基
礎
知
識

CHAPTER 02チ ユーニングすべきSQLの選定 (前編)

表02‐ 01 utiXplan.sqlの 格納場所

PLAN_TABLEを作成する

蝙鰤 2.SQL実行計画の保存
PLAN_TABLEテーブルを作成したら、以下のコマンドを実行し、チュー
ニング対象となりそうなSQLの実行計画を保存します。

表02‐02 EXPLAlN PLANコマンドのパラメータ

OracleBi.9i. 109 %ORACLE HOME%¥rdbms¥admin

実行例 02-01

構 文

EXPLAIN PLAN

IsET STATEMENT_rD=<77- FXy FID>]
IINTO <7-7lt/€>] FOR <SQL>

ステー トメン トID SQLを ユニークに識別するためのID。 テーブルには複数のSQL実行計画を
格納することができるため、このIDを 使用して特定のSQLを識別する

テーブル名 実行計画を格納するためのテーブル名。テーブルの構造が実行計画を保存で
きる構造と一致していれば任意の名前を指定することができる。なお、テー

ブル名を指定 しない場合は、「PLAN_TABLE」 という名前になり、utixplan.
sqlで作成されるテーブル名と同様になる。通常はutlxplain sqlを 使用して
PLAN TABLEテーブルを作成するため、特にこのオプションは必要ない

SQL実行計画を保存する

SQL> Scott/tiger _ ||| 警

表が作成さねましたo l lll
|11'..

‐霧 |

団四囮
畑ＮＡ

　
　
　
　
　
　
ｏ

Ｉ

　
　
　
　
　

た

Ｘ
　

　

●
一　

　

ヨ

Ｅ
　
／
一・　
相

¨

２
　
　
柿

Ｓ

　

　

　

　

解
i`.

FOR SELECT ■ FROM e:mp

わくPLAIN PLA鵜 コマンドの使用方法

隋躙‐3.PLAN_TABLEテーブルからSQL実行計画の抽出
PLAN_TABLEテ ーブルから実行された実行計画を抽出します。ただし、

格納されたデータを抽出するだけでは、SQLが どのように実行されているの

かを理解するのはとても困難です。そのため、以下のように階層的な

SELECT文を実行し、SQLが どのように実行されているかを詳細に抽出する

必要があります。

SQL実行計画を抽出する

構 文

RTRIM(OB〕 ECT_NAME)AS EXECUT10N_PLAN
FROM P■AN TABLE
CONNECT BY PRIOR ID = PARENT ID
START WITH ID = 0

SELECT LPAD(: 1,
RTRIM(OPERAT10N)
RTRIM(OPT10NS) ||

[VEL)||

1=||

=||

＊
　

１
１

１

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（前
編
）

実行例 02‐03

・16

:・
 ■ . ‐

. ._ ■ .:| ■

a.1。し
. ‐ ・ ‐ .

:・
 : ‐ | |.

‐1 ・ ‐ . I

= ・
| | ●

=

1解析さねました。 _ ■ |=

. |12

ID

・黎・

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 02チ ユーニングすべきSQLの選定 (前編)

．
一“
一

■
■

・:i. 41 1.

実行計画の読み方

EXPLAIN PLANコ マンドを実行することで得られる実行計画の結果は、
以下のようなルールにしたがって解析します。

1.レベルの高い (右側にある)アクセスパスが先に実行される

2.同 じレベルの場合、上のアクセスパスが先に実行される

3.アクセスパスは別のアクセスパスを含む場合がある
※

※たとえば、TABLE ACCESS BY ROWIDが INDEX RANGE SCANを含んでいる場合、
「索引を範囲検索して得られたROWIDを使つてテーブルにアクセスする」という意味にな
ります。

したがって、先述の例 (実行例 02-03)では、以下の実行計画でSQLが実行
されることがわかります。ここでは、実行計画の読み方を理解してください。

実行計画を見ながら、分析を行い、その結果どのようにチューニングしてい

くかは、実践編で解説します。

1.DEPTテーブルに対してフルテーブルスキャンを実施する

2.EMPテ ーブルに対してフルテーブルスキャンを実施する

3.HASH結合でTABLEを 結合する

もう1つ 別の例を示します。今度は先述のSQLに対 してヒントを付け、
RBOで実行計画を作成した場合です。
ここでは、最初にTRUNCATE文を実行し、一度PLAN_TABLEテ ーブル
の内容を切捨ててからEXPLLAIN PLANコ マンドで解析を実施します。

tr: |=|

t

喩
FULL DEPT

FULL EMP

. I =

実行計画の読み方

SQL実行計画の抽出例

ここで得られた実行計画から、解析したSQLは、DEPTテ ーブルに対して

フルテーブルスキャンを実施 し、得られたDEPTNOで EMPテ ーブルの
DEPTNOに対して、EMP_IND2を使用したINDEX RANGE SCANで アクセ

スしながらネステッド・ループ結合を実施することがわかります。

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
ｒ
の
選
定
（前
編
）

団回団
評■| :|

e.e=npno′

4順 ERE

WITH

TABLE.

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

実行計画を削除するタイミング

CHAPTER 02チ ユーニングすべきSQしの選定 (前編)

EXPLAIN PLANコ マンドを使用して、SQLの実行計画を解析すると以下
の項目が表示されます。

議102-05 テーブル・アクセス

実行計画の記載項目

TABLE ACCESS FULL テーブルのすべての行を読み込む〈HWMの位置まで)
TABLE ACCESS CLUSTER 索引クラスタ経由でのアクセス

TABLE ACCESS HASH ハッシュ・クラスタ経由でのアクセス

TABLE ACCESS RC)WiD ROWIDを使用したアクセス

実行計画の記載項目

表02‐ 04 索引走査

表02‐ 05 結合走査

表02-06 集合演算

義:02‐ 07 ソート

INDEX UN!QUE SCAN ユニーク・インデックスを等号検索する

INDEX RANGE SCAN 索引を範囲検索する チ
ュ
…
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（前
編
）

CONNECT BY 自己結合で階層型 クエリーが行われる

MERGE JOIN ソート/マージ結合が利用される

NESTED L00P ネステッド・ループ結合が利用される。最初のテーブルが駆動テ

ーブルとなり、もう1つのテーブルが結合テーブルとして実行計

画上に示されるアクセス方法でアクセスされる

HASH JOIN ハッシュ結合が利用 される。メモリ上にロードされたテーブルに

対して、ハッシュ関数を使用した結合処理を行う

最初の結果セッ トから2つ 目の結果セットに含まれている行が取

り除かれる。MIUNS句 を使用したときにこの操作が選択される

UN10N ALL 2つの結果セッ トが縦にマージされる。UN10N ALL句 が使われた

ときにこの操作が選択される

UNION 2つの結果セッ トが縦:に マージされ、重複 した行が取り除かれる。

UN10N句が選択 されたときにこの操作が選択される

SORT JOIN マージ結合をするためにソートされる

SORT UNIQUE 重複する行を耶tり 除 くためにソー トされる

SORT GROUP GROUP BY句 が使われたときにこの操作が選択される

PLAN_TABLEテ ーブルの情報

MINUS

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 02チ ユーニングすべきSQLの選定 (前編)

0躍ェ,「ェIZER‐ .

'll
COST′ ICARDIN:ALITY‐ ′BYTESI

_‐ 6 11 FROM PlANIITA13LE~ .

PR■ OR ID・ =

_4 _ _‐3011

槻要 _‐ __ ‐_ ■ ‐ ‐|| ‐|‐ || ‐・・ ・・ ・‐
‐ .

オプティマイザの現行モード

|り咤
‐~■~‐

|

OPTIMIZER

COST CBOに よって見積もられた操作コス ト。RBOを使用するSQLでは、この

値はNULLになり、テーブル・アクセス操作のためのコス トは判断され
ない。この値には、特定の単位はなく、単に実行計画のコス トを比較す

るために使用される重み値を示す。この値は、CPU_COST数 と10_COST
※数の関数

CARDINALITY アクセスされる行数のCBOの アプローチによる見積り。RBOを使用する
場合、この値はNULL

BYTES アクセスされるパイ ト数のCBOの アプローチによる見積り。RBOを使用
する場合、この値はNULL

実行例 02-05

|■
:

五
`|

‐V褒
擬

“

‐
・ |.

'継V
葺.,a・ .II・

||11
●2:11等麟

躍麗 ■,
璽

燿
||● ,

麟罐:鍼 ■:_0

■|
‐
・■讐

驀1諄.| .ヽ:.:=

.■

_ 114 ■

‐■
462‐114 1511|■

.
′t‐

4‐621■
‐
・ :,

:響ン

11・■

AげКttVttEの使簿方法

ここまでで、EXPLAIN PLANコ マンドを使用した実行計画の閲覧方法につ

いて解説してきました。冒頭でも解説しましたが、SQLの実行計画の読み方

がわかれば、発行されたSQLが「どのような順番でテーブルにアクセスし、デ
ータを取得しているのか」、「そのときどのようなアクセス方法で行っている

のか」、「索引を使っているのか」、「テーブルデータを全件検索しているのか」

などを確認することができます。これらの情報を知ることができてはじめて

「この処理でフルテーブルスキャンを実施しているから、索引スキャンを実施

できるように、索引を作成しよう」などの対策を考えることができます。

実際の対策については、実践編で解説しますが、SQLチ ューニングの基本

は、原因分析を行い、その結果から対策を検討することにあります。上記で

示した例の場合、原因分析結果は、「フルテーブルスキャンを行っているこ

と」になります。そして解決方法は「索引を作成し、索引スキャンが実施さ

れるようにする」と判断することができます。

前項で解説したEXPLAIN PLANコ マンドは、個々のSQLの実行計画を確
認するツールです。一方、AUTOTRACEで は、実行計画だけではなく、CPU

使用時間、物理読み込みや論理読み込みなどの詳細なSQLの実行情報を取得

することができます。

AUTOTRACEは 、EXPLAIN PLANコ マンドの機能も兼ねているうえに、
実行方法が非常に簡単なので、AUTOTRACEを使用することをおすすめし
ます。

AUTOTRACEを 使用するためには、いくつかの動的パフォーマンス・ビ
ューを参照できる権限と、ユーザーごとのPLAN_TABLEテーブルが必要で

す。PLAN_TABLEテーブルの作成方法については、EXPLAIN PLANコ マ
ンドで実行計画を保存するときに解説したので、ここでは、動的パフォーマ

ンス・ビューを参照するための権限をまとめたロールの作成と、その権限付

与について解説します。

AUTOTRACE

AUTOTRACEの使用方法

|リフ

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（前
編
）

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R02チ ユーニングすべきSQLの選定 (前編〉

蟷輻 plustraceロールの作成

AUTOTRACEを イ吏用するのに必要なp:ustraceロ ールは、 plustrce.sqlス
クリプトを実行すると作成されます。なお、スクリプトファイルは以下のデ

ィレクトリに格納されています。

表02‐ 09 plustrce sqlの 格納場所

□―ルの作成

as sysdba

sql ..=

(:)racle 8i、 9i、 109 %ORACLE_HOME%YsqlplusYadmin

実行例 02‐ 06

AIOIluCEの使用方法

これでAUTOTRACEを 使用する準備が整いました。

チ
ユ
！
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（前
編
）

構 文

SET AUTOTRACE ON

晰隋》AUTOTRACEの 実行
AUTOTRACEの 使用方法は簡単です。以下のスクリプトを実行後、SQL
を実行するとSQLの結果表示後にそのSQLの実行計画とパフォーマンス統計

情報が表示されます。

団回団 AUTOTRACEの実行

11 1● _ Ⅲ Ⅲ

. .■

oC‐

‐
統計‐|

|■

.● が

‐
=
■| . .

二
●

・‐ ‐ ‐ 2.|

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 02チューエングすべきSQゆ選定 (前議)

.0 .‐ sorts.(disk)・
 . ‐ . .

4 rows processeO I.| |

表02‐10 パフォーマンス統計情報

※再帰的SQLとは、データ・ディクショナリなどへのアクセスのためにOracleが内部的に
発行するSQLです。

これらの情報から得られる数値で、ポイントになるのが、アクセス・ブロ

ック数を意味する「consistent gets」 とディスクヘのアクセス要求数である

「physical read劃、そして、「sorts(memOry)」 と「sotts(diSk)」 です。

アクセス・ブロック数は、そのデータを取得した際にアクセスしたブロッ

ク数になります。なるべく少ないブロック数で目的のデータにアクセスした

ほうが、早くデータを取得することができます。

また、デイスクヘのアクセス要求は非常に時間のかかる処理です。このこ

とから、ディスクヘのアクセス要求はなるべく減らしたほうが、パフォーマ

ンスアップにつながります。

ソート処理も負担のかかる処理です。データを取得した後にソートする処

理は、アプリケーションによっては必要な場面も多くありますが、負担のか

かる処理であるため、なるべく減らす方向にもっていくことが望まれます。

そして、アクセス・ブロックのところでも解説しましたが、このソート処

recursive calls 再帰的SQL※の実行回数

db block gets DML文やSELECT FOR UPDATE文 を発行したときなど
に発生するCURRENTブ ロックが要求された回数

consistent gets SELECT文 を発行したときなどに発生する、読み取リー
貫性モードでのブロックが要求された数

physical reads ディスク上にアクセスしたブロック数 (物理ディスクヘ

のアクセスブロック数)

redo size 生成したREDOロ グのバイ ト数

bytes sent via SQL*Net 10 client クライアントヘ送信 したバイト数

bytes received via SQL.Net from client クライアントから受信 したバイト数

SQL.Net roundtrips to/from client クライアントヘ送受信 したメッセージ数

sorts (memory) メモリ内でソートした回数

sorts (disk) ディスク上の一時表領域でソートした回数

rows processed 処理された行数

AUTOTRACE出力結果の制御

理の中でも、ディスク上での操作は特に時間がかかります。なるべく、デイ

スク上でのソートを避けるようにすることが重要になってきます。

鰊輻AUTOTRACEの終了
AUTOTRACEを終了する場合は以下のスクリプトを実行します。

AUTOTRACEC)1冬
‐
ア
籠

構 文

SET AUTOTRACE OFF

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（前
編
）

実行例 02-08

AUTOTRACE出力結果の制御

AUTOTRACEの 出力項目は以下のコマンドを実行することで制御するこ

とができます。

鍮靱 SQLの実行結果を表示しない

AUTOTRACEは 、パフォーマンスが悪いSQLに対して実行することが多
いので、実行計画とパフォーマンス統計だけを確認することがほとんどです。

その場合、SQLの実行結果は必要ないのでSQLの実行結果を表示しない設定

にします。

|ヽ
)

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R02チ ューニングすべきSQLの選定 (前編)

SQLの実行結果を表示しない
奎| ‐・ .

2

3.

‐‐ 411

統計 | ~

dep.tn。
|

●●

■

, | . ■

31. ■.

.7.635

・ |‐

 ‐ .114‐
8

'from
.=● :|■

‐1 19_586.. rows

鍮鰤 実行計画のみ表示する

パフォーマンスが悪いSQLに対して、統計情報を表示しようとすると非常

に時間がかかりますが、実行計画のみ表示する場合は、高速にアクセスする

ことができます。したがっで、最初に実行計画のみを表示し、実行内容を確

認したうえで、統計情報を取得したほうが、データベースヘの負担を軽減で

構 文

SET AUTOTRACE TRACEONLY

実行例 02-09

1

2‐・ |・

饉

AUTO・RACE出力結果の制御

きます。この方法を行えば、前項で解説 した、EXPLAIN PLAN FOR文を使

用して問合せを実施した後に、PLAN_TABLEテ ーブルヘ問合せ、実行計画

を表示するという2つの作業を1度で実施できるようになります。

実行計画のみ表示する

蟷蒻パフォーマンス続計のみ表示する

パフォーマンス統計情報のみの表示は、「実行計画はわかっているので、

パフォーマンス統計情報だけを知りたい」という場合に使用します。ただし、

パフォーマンス統計情報のみを表示する用途は他にはなく、メリットという

と出力される情報がシンプルになるくらいです。ここでは、このようなこと

もできるという意味で紹介しておきます。

構 文

SET AUTOTRACE TRACEONLY EXPLAIN

チ
ユ
！
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（前
編
）

構 文

SET AUTOTRACE TRACEONLY STATISTICS

団画回
‐ ■‐ .‐

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 02チ ユーニングすべきSQLの選定 (前編)

パフォーマンス統計のみ表示する

AUTOTRACEを実行する場合は、事前に実行計画が格納されるPLAN_
TABLEテーブルが作成されている必要があります。もし、作成されていな
ければAUTOTRACE開 始時点でエラーとなります。必ず、EXPLAIN
PLANコ マンドのところで解説した方法 (P.45参照)で、事前にPLAN_
TABLEテ ーブルを作成してから実行するようにしてください。

A∪TOTRACEの 実行エラー

.AUTOTRACE ON

AUTOTRACEの 使用上の注意点

匠亜コ
・ ●| ・ :

統計 ―

…
. ■● ■■ |● | |:| ‐

0

FeadSII
,| .=

| ‐|■4858

Ⅲ I== .:、

.. ‐. 119586.

団画ロ

‐ _ ● = ‐. ‐

■. ■|■・

…
1

SQLトレースとTKPROF

SQLト レースと■くPROr

SQLト レースとTKPROFは 、アプリケーションが実行するSQLの効率を正

確に把握するためのツールです。

颯鰤 SQLト レースとは

SQLト レースは、Oracleのセッション単位、またはインスタンス単位で発

行されたSQLの情報と、そのSQLに 関する以下のパフォーマンス情報を提供

します。

・解析、実行、フェッチのカウント

・CPU時間と経過時間

・物理読み込みと論理読み込み

・処理された行数

・ライブラリ。キャッシュでのミス

。それぞれの解析が行われるユーザー名

・各コミットおよびロールバック

したがって、「アプリケーションで、この処理が実行されるのに時間がか

かる」といった場合、そのイベントのトレースを取得すると、そのイベント

の発生から終了までの間に発行されたすべてのSQLそれぞれに対する統計情

報を取得することができます。そのため、SQLト レースを使用するとボトル

ネックとなるSQLを容易に検出することができます。

ただし、以下の理由からインスタンス単位でトレース情報を取得すること

はあまりおすすめできません。

。余計な情報が数多く出力され、生成されるデータ量も多い

。パフォーマンスが若干低下する

。トレースのONノOFFに はOmcleの再起動が必要

そのため、本番稼働前にテス ト的にインスタンス単位でSQLト レースを実

行し、ボトルネックとなる処理がないか確認するくらいなら使用する価値は

ありますが、多くの場合では、セッション単位で取得したほうが良いでしよう。

チ
ユ
‥
ニ
ン
グ
す
べ
き
∽
Ｏ
ｒ
の
選
定
（前
編
）

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R02チ ューニングすべきSQLの選定 (前編)

洟躙 TKPROFとは
TKPROFは、SQLト レースで作成されたトレース情報ファイルを読みやす
い形に整形するツールです。アプリケーション上の特定の機能に対して、

SQLの発行結果と実行計画・実行時間などを観測するにはTKPROFは非常
に便利なツールです。

SQLト レースとTKPROFの関係

)く 閲覧は可能だが、内容が読みにくい

SQLトレース

TKPROFを 使用

ただし、Webア プリケーションではコネクションプールを利用しているこ

とが多いので、Webア プリケーション上の特定の機能から利用されるOracle
のセッション情報の特定は非常に困難です。そのため、Webア プリケーショ
ンでSQLト レースを使用する場合は、アプリケーション上にSQLト レースを

取得するプログラムを書くなど工夫が必要になり、手間がかかってしまいます。

一方、クライアント・サーバー型のアプリケーションや、バッチ・アプリ

ケーションではOracleと のセッション情報の特定が容易であり、プログラム

を変更する必要もないのでとても便利です。

瞼 祓 0

魃鼈

SQLトレースのオ…バーヘッド

圏圃盟

でど
　
　
　
」
■
口
，

一邸「けヽＲ
一

星ｌ掲
爆

警
Ｆ
・占

一
　
　́
―
　
　
●
＾

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（前
編
）

SQLトレースの使用方法

機期化パラメータの設定

SQLト レースを使用するには、 トレースを取得する前に設定しておかなけ
ればならないことや、確認しておくべき事項があります。ここからは、SQL

トレースの実行方法からトレース・ファイルが作られるまでを解説します。

SQLト レースとTKPROFは、以下の手順で実行します。

1.初期化パラメータを設定する

2.SQLト レースを実行する

3.2.で作成されたトレース・ファイルを、TKPROFを使用して参照する

まずは、以下の初期化パラメータを設定します。

。初期化バラメータTIMED_STATISTiCS

・初期化パラメータUSER_DUMP_DEST
。初則]化パラメータMAX_DUMP_F:LE_SiZE

晰蜀 初期化パラメータTIMED_STATISTICS

初期化パラメータT:MED_STATISTICSを 利用するとCPU使用率や経過時

間などのSQL統計情報を計算することができます。設定には以下の3つの方

法があ ります。なお、 Oracle 9i以 降は、初期化パ ラメータTIMED_
STATISTICSは デフォルトでONに設定されています。

颯Oracleが起動する前にインスタンス単位でONにする

oracleが起動する前にインスタンス単位で初期化パラメータTIMED_
STATISTICSをONに設定する場合は、以下のように設定してoracleを 起動

します。

初期化バラメータの設定

構 文

TIMED STATISTICS=TRUE

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R02チユーニングすべきSQLの選定 (前議)

通常は、インスタンス単位でONに しておきます。 トレース情報を取得し
たときに、CPU使用率や経過時間などの項目は、ボトルネックを検出するう
えで非常に重要な情報になります。

瘍Oracieが起動してからインスタンス単位でONにする
Oracleが起動してからインスタンス単位でONにする場合は、ALTER
SYSTEM文を使用して以下のSQLを実行します。

何年も稼働し、特に問題が発生しないような安定したシステムでは、イン

スタンス起動時にはOFFに しておき、何かのタイミングでパフォーマンスに
問題が発生 した場合に、インスタンスの再起動が難しければ、ALTER
SYSTEM文を使用してONに変更します。

隋セッションレベルでONにする
セッションレベルでONにする場合は、ALTER SESS10N文 を使用 して以
下のSQLを実行 します。

セッションレベルでの切 り替えは、インスタンス単位でONにするときと

同様、安定したシステムで突然問題が発生した場合、そのセッションのみで

ONにする必要があるときに使用します。

蜻輻初期fヒパラメ…夕USER_DUMP_DEST
初期化パラメータusER_DUMP_DESTに は、SQLト レースを実行した際
にトレース・ファイルが作成される場所を指定します。Oracle起動前に、 ト
レース・ファイルを作成する場所を指定します。

構 文

ALTER SYSTEM SET TIMED STATISTICS=TRUE

構 文

ALTER SESSION SET TIMED STATISTICS=TRUE

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（前
編
）

SQLト レースの実行

鰈輻 初期化バラメータMAX_DUMP_FILE_SiZE
インスタンス単位でSQLト レースを使用する場合は、サーバーに対するす

べてのコールがOSのファイル形式で生成されるのですが、初期化パラメー

タMAX DUMP_FILE_SiZEで 、その生成されるファイルの最大サイズ (OSの

プロック単位)を制限することができます (デフォル ト値は500)。

なお、初期化パラメータMAX_DUMP_FILE_SIZEは 、動的パラメータな

のでOracleを再起動することなく変更できます。

初期化パラメータが設定できたら、SQLト レースを実行します。SQLト レ

ースの実行方法は非常に簡単です。

鍮蒻 インスタンス単位でSQLトレースを実行する

本項の冒頭でも解説しましたが、インスタンス単位でSQLト レースを取得

するケースはあまりないので、ここではその方法だけを解説します。

インスタンス単位でSQLト レースを実行する場合は、初期化パラメータフ

ァイルに以下の設定を追加してOracleを起動します。ただし、インスタンス

単位でトレースを開始すると大量のデータが トレース 。ファイルに出力され

るので注意してください。

USER DUMP DEST="くフアイルヘのパス>"

構 文

MAX DUMP F工 LE SIZE=く 指定サイズ>

SQLトレースの実行

50L TRACE=TRUE

なお、SQLト レースを終了する場合は以下のように設定します。

EEヨ 初期化

'ゞ

ラメニタ麒韮薇110MP_5ESTの設定|‐■.■ ||||‐ ‐|.‐■‐ ‐| _| _ |

IE==インスタンス単位でIQ=トレニスを実行する|■
―|‐ ‐

|・ ‐|‐ ||‐ ||― |■ |_|||■ | ‐

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 02チ ューニングすべきSQLの選定 (前編)

蝙躙 セッション内でSQLトレースを実行する
セッションを指定してSQLを トレースするケースは、ある特定のイベント

(アプリケーションからボタンを押下したなど)が発生したときに「どのよう

なSQLが発行され、そのSQLは どれくらいの負荷のものなのか」を調べると

きに使用します。

セッション内でSQLト レースを実行する場合は、 トレースを開始する前に
以下のSQL文を実行します。

なお、SQLト レースを終了する場合は、以下のSQLを実行します。また、

Oracleと のセッションを切断することで自動的にトレースを終了させること

もできます。

構 文

SOL TRACE=FALSE

構 文

ALTER SESSION SET SOL TRACE=TRUE

ALTER SESS10N SET SOL TRACE=FALSE

EヨE:ISQL

構 文

DBMS_SESS10NoSET_SQL_TRACE(TRUE)J

PL/SQLか らSQLトレースを実行する

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（前
編
）

SQLト レースの実行

鼈躙購特定のセッションに対して、SQLトレ…スを実行する

実行しているアプリケーションに対 してトレース情報を取得したい場合

は、 DBMS_SYSTEIM.SET_SQL_丁 RACE_lN_SESSiONプ ロシージャを使用

してアプリケーションとデータベースとの間に作成されているセッションに

対して、 トレース処理を実行します。
ただし、このプロシージャを使用するには、SYSユーザーから、このプロ

シージャのEXECUTE権限が付与されている必要があります。EXECUTE権

限がない場合は、SYSユーザーでログインし、以下のSQLを実行し、プロシ

ージャの実行権限を与えてください。

次に、動的パフォーマンス・ビューV$SESSIONか らトレースを実施した

いセッションのセッションlDと シリアルNoを 以下のSQLを実行して取得し

ます。

構 文

DBMS_SESS10NoSET_SQL_TRACE(FALSE)J

構 文

GRANT EXECUTE ON DBMS SYSTEM TO くコ.―ザー名>

構 文

SELECT A.SPIDI,BoSID,BoSERIAL#,BoMACHINE,B.USERNAME,
B.OSUSER,BoPROGRAM
FROM VSSESS10N B,VSPROCESS A
WHERE BoPADDR = A.ADDR
AND TYPE=iUSER:

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R02チ ューニングすべきSQLの選定 (議編)

このSQLを実行すると、実行されているアプリケーション名とコンピュー

タ名、Oracleのユーザー名、OSでログインしているユーザー名がわかりま

す。この情報を利用して、目的のセッションIDを探し出します。

なお、動的パフォーマンス・ビューV$SESS10Nに 対して、SELECT権 限
がない場合は、実行するユーザーに対して以下のSQLを実行し、SELECT権

限を付与してください。

最後に、取得したセッションIDと シリアルIDを使用して、以下のSQLを

実行し、指定したセッション情報の トレースを開始します。

SQLトレースの開始
‐11.

トレースを終了する場合は、以下のSQLを 実行します。なお、Oracleと の

セッションを切断することでもトレースを終了できます。

FALSE), ‐

構 文

GRANT SELECT ON VSSESS10N TOく ユーザー名>

構 文

SYS.DBMS SYSTEMIoSET SOL TRACE IN SESS10N

(くセッションエD>,く シリアルNo>,TRUE),

実行例 02‐ 13

SYS.DBMS SYSTEMoSET SOL TRACE IN SESS10N

(くセッションID>,くシリアルNo>,FALSE);

実行例 02-14 SQLトレース終了

蔵を

_E=ヨ SQLトレ,スの終了||― ||‐|| ・‐ ■|‐|・ ■~ ‐

チ
ュ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（前
編
）

TKPROF

SQLト レースを実行すると、初期パラメータUSER_DUMP_DESTで設定
したフォルダにトレース・ファイルが作成されます。そのトレース・ファイ

ルを、TKPROFを使用して読みやすいように整形し、内容を確認します。

鰈蒻 目的のトレ…ス・フアイルを探す

SQLト レースの出力先には数百ものファイルが作成されるので、目的のセ

ッションの トレース・ファイルを探すのは容易ではありません。そこで、以

下の方法で トレース・ファイルを探 します。

鰊ファイルのタイムスタンプを利用する

目的の トレース・ファイルの判断方法として、ファイルのタイムスタンプ

を見る方法があります。 トレースを実行した時点のタイムスタンプで作成さ
れたファイルがあれば、そのファイルが目的としたトレース・ファイルであ

ると判断することができます。

聰事前にキーワー ドを埋め込む

アプリケーション内にキーワー ドとなるようなSQL(た とえば、SELECT
'KEYI FROM DUAL)を 埋め込み、そのSQLを キーとして初期化パラメータ

USER_DUMP_DESTで 指定したフォルダ内を検索 し、目的とした トレー
ス・ファイルを見つけます。

鰊初期化パラメータTRACEFILE_lDENT:FIERを 設定する

初期イヒパラメータTRACEFiLE_lDENT:F!ERを 設定し、 トレース・ファイ
ル名の一部となるカスタム識別子を指定することで、この識別子を基にファ

イル名を識別することができます。

初期化パラメータTRACEFILE_IDENTIFIERは 、 以下のようにALTER
SESSION文で変更します。

TKPROF

ALTER SESSION SET TRACEFILE IDENTIFIER = :く カスタム識別i子>:

日 ‐初期化バラメータTRACEF,L亡 _わ亡NヤiFIE薇の設定 ‐|‐ ||| .||| | _■

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 02チューニングすべきSQLの選定 (前編)

洟腑 トレース・フアイルの内容を確認する

目的の トレース・ファイルを見つけることができたら、TKPROFを使用
してファイルの内容を確認します。

TKPROFはOSの コマンドプロンプトから以下のように使用します。

TKPROFに は、さまざまなオプションがあります。OSの コマンドプロン

プトからTKPROFと 実行すると、オプションの指定方法について表示されま

す。各オプションの詳細については、OTNが公開している『パフォーマン
ス・チューニング・ガイド』の『SQLト レースとTKPROFについて』を参照
してください。

ここでは、数あるオプションの中でもよく使用するものを一部抜粋して解

説します。

鶉SORTS
SQLの リス トを出カファイルに作成する前に、指定したソート・オプショ

ンに基づいて降順にソートします。複数のオプションが指定されている場合、

出力はソー ト・オプション※に指定されている値の合計によって降順にソー

トされます。このパラメータを指定しない場合、TKPROFはそれぞれの文
のリストを使用順に出カファイルに作成します。

※ソート・オプションについての詳細は、OTNが公開している『パフォーマンス・チューニ
ング・ガイド』を参照してください。

鶉SYS
SYSユーザーが発行したSQL、 つまり再帰的SQLの出カファイルヘのリス

トを使用可能または使用禁止にします。デフォルト値は「YES」 で、TKPROF
がこれらのSQLの リストを作成します。「NO」 が指定されると、TKPROF
はこれらのSQLの リストを作成しません。

TKPROFく 入カフアイル名>く出カファイル名>
EXPLAIN=くユーザーID>/くパスワード>[くオプション>]

TKPROFのオプション

..E=ヨ TkPROFあ 実行
‐・ .. . _‐

 ‐|. ‐‐.■ .| ||| ・ ‐|‐ ‐・ |

チ
ユ
！
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（前
編
）

トレース・ファイルの解析

餞WiDTH
EXPLAIN PLANコ マンドなど、一部のTKPROF出力の出力行幅を制御す

る整数です。このパラメータは、TKPROF出力の後処理に役立ちます。

SQLト レースを実行することによって出力されるトレース・フアイルに

は、以下の情報が表示されます。

。SQLのテキスト(0)
・表形式で示されたSQLト レース統計 (0)
。SQLの解析と実行におけるライブラリ。キャッシュ・ミスの回数 (0)
。SQLを最初に解析したユーザー (0)
。実行計画 (0)

トレース・ファイルの出力情報

トレース・フアイルの解析

実行例 02‐ 15

■.・

|)2

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

~|

CHAPT[R02チ ユ‐―エングすべきSQLの選定 (前編)

躾蒻 SQLトレース続計
上記の実行例の中で0で出力されるSQLト レース統計情報は以下の内容に
なります。

表02‐11 出力されるSQLト レース統計情報

瘍躙 実行計画

上記の実行例の中で0で出力される実行計画は以下の内容になります。実
行計画の各行には、行単位の操作に対して処理される行数と、物理読み込み

および書き込みなどの追加情報が提供されます。

表0212 出力される実行計画情報

Parse 適切なセキュリティ認可のチェック、およびテーブル、列、その他の参照
オブジェク トの存在のチェックなどの解析を行ってSQLを 実行計画に変換
する

Execute Oracleに よって実行されるSQL。 INSERT文 、UPDATE文、DELETE文では、
データの変更が行われる。SELECT文では、選択された行が識別される

Fetch

count SQLが解析、実行またはフェッチされた回数

cpu SQLに 対するすべての解析コール、実行コールまたはフェッチコールにか
かったCPU時間の合計 (単位 :秒)。 TIMED STATiSTICSが ONに なってい
ない場合、値は0

elapsed SQLに 対するすべての解析コール、実行コールまたはフェッチコールにか
かった経過時間の合計 (単位 :秒)。 TIMED_STATiSTiCSが ONに なってい
ない場合、値は0

dlsk ディスク上のデータファイルから物理的に読み込んだデータ。ブロックの

総数

query 一貫モードで取り出されたバッファの総数。通常バッファは問合せに対 し

て一貫モー ドで取り出される

current 現行モー ドで取 り出されたバッファの総数。INSERT文 、UPDATE文
DELETE文 では、バッファは現行モー ドで取り出される

rows SQLに よって処理された行の総数。この値には、SQLの副問合せによって
処理された行は含まれない

cr 行単位での結果に対して、バッファから読み取ったブロック総数

pr 行単位での結果に対して、物理読み込みプロックの総数

pw 行単位での結果に対 して、物理書き込みブロックの総数

time 処理にかかった時間 (単位 :マ イクロ秒)

|1塑三 二■■

問合せを満たす行を取得する。フェッチはSELECT文 についてのみ実行さ
れる

トレース・フアイルの解析

TKPROFの 結果では、解析 。実行 。フェッチそれぞれのフェーズにおい

てどれくらいCPUを利用して、どのくらいの時間がかかったかの情報を確認

することができます。これらの情報は、EXPLAIN PLANコ マンドや
AUTOTRACEで は確認することができない情報です。
また、TKPROFではアプリケーション内で実行される処理単位の詳しい

情報を確認することができるので、ボトルネックの検出や、ボトルネックと

なっている原因の分析を行うには最適なツールです。そのため、TKPROF
で出力されるレポートの内容を理解し、分析できるようになることはSQLの

分析では最も重要なことの1つになります。

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（前
編
）再帰的コ…ル

CHAPTER 02チユーニングすべきSQLの選憲 前編)

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

本 一早 の ま と め

籠

アイ

びよお

は、

ト
―
′
′ロ ー

々 ‐¬
rT=4

1ヽI

「EXPLAIN

士
い

い
ヽ
―

「SQLト

―

一
理
―
物

ト

織

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（後
編
）

本章では、引き続きOracleが クライアントからSQLを受け取った際に、ど

のような実行計画を作成 し、どのようにデータを取得しているのかを観察す

るツールについて解説します。

本章では以下のツールについて解説します。

。STATSPACK
・ライブラリ。キャッシュ内のSQL

Oracleのパフォーマ ンス状況は、アクセスの状態により変化します。

Oracleが現在どのような状態なのかは動的パフォーマンス・ビューを使用し

て確認することもできますが、動的パフォーマンス・ビューの情報は、問合

せを行ったときの状態を表示するため、 ピーク時とオフピーク時とで取得す
る情報の内容が変わってしまいます。

そこで、この問題を解決するためにOracle 8.1.6で 正式サポートされた

STATSPACKを使用します。STATSPACKは、任意の段階でスナップショ
ット(パフォーマンス統計情報)を取得し、その差分をレポー ト表示します。

そのため、STATSPACKを 使用して、任意の2地点間のスナップショット
を取得し、表示されたレポートを分析することで、パフォーマンスが悪く、

ボトルネックとなっているSQLを見つけることができます。

STATSPACK

チューニングすべき
SQLの選定(後編)

CHAPTER

CHAPT[R03チ ューニングすべきま工の選定(後編)

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

STATSPACK

アプリケーションの実行 B時点

時間

B‐A時点のパフォーマンス統計レポート出力

洟隋 STATSPACKで取得できる情報
STATSPACKで取得できるパフォーマンス統計情報は主に以下の5つで
す。SQLチューニングに限らず、データベース全体のチューニングに役立つ

情報を取得することができます。

表 03‐01 STATSPACKで取得できるパフォーマンス統計情報

STATSPACKは 、使用するOracleの バージョンによって設定パラメータ
の値や出カレポート項目に若干の差はあるのですが、それらの多くはどのバ

ージョンでも同じなので、ここでは、特に説明しない限り、Ottc!e9i R2の

場合について解説します。

STATSPACKは、以下の手順で使用します。

データベース情報 データベースの名前やバージョンの他に、データ・ブロックのサ

イズやSGAコ ンポーネントのサイズなどの標準情報

ロードプロファイル スナップショット期間中にデータベースにかかった負荷に関する

情報

インスタンス効率 スナップショット期間中のSGAメ モリ領域の全般的な状態に関す
る情報

スナップショット期間中の待機時間のうち、上位5つの待機イベン

トの情報

リツース使用率の高いSQL 設定した一定の間値を超えたSQLの情報

STATSPACKの 使用方法

A時点

待機イベント(TOP5)

STAttPACKのインストール

1.STATSPACKの インストール

2,スナップショットの取得

3.レポートの作成

4.レポートの分析

5.スナップショットの削除

まずはSTATSPACKを インストールします。インストールは、以下の手

順で作業を行います。

瘍魃 PERFSTATユ…ザーのデフォル トの表領域の作成
PERFSTATユ ーザーのデフォルトの表領域のサイズは必ず180MB以上を

指定してください。必ずしも専用の表領域を作成する必要はありませんが、

2地点間の動的パフォーマンス・ビューの情報を格納していくので、専用の

表領域を作成したほうが管理性に優れます。

デフォルト表領域の作成

瘍鰤 spcreate.sqlスクリフトの実行

spcreate.sqlス クリプ トを実行 し、STATSPACK専用のユーザーである

PERFSTATユ ーザーを作成 します※。このスクリプトを実行することで、イ

ンストールで作成されたすべてのPL/SQLコ ー ド、オブジェク トの所有権と、

STATSPACKの インストール

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

CREATE TABLESPACE T00LS
DATAFILE lく フアイル名>i SIZEくフアイルサイズ>

実行,103-01

日 デラ

',,卜

表嶺職0作成|||||||‐ ||■||‐| ~||| . .■ |‐‐‐‐‐‐||||■ ||

Ⅲ

“

11.

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R05チューニングすべきSQLの選定 (後編)

スナップショット取得の際に必要な動的パフオーマンス・ビューヘの

SELECT権限が付与されます。
※STATSPACKは 、必ずPERFSTATユ ーザーに接続して使用してください。

表05-02 spcreate.sqlの格納場所

なお、spcreate.sqlス クリプトを実行すると、以下のプロンプトが表示さ

れるので、それぞれに値を入力してください。

。PREFSTATユーザーのパスワード

・ PREFSTATユ ーザ ー の デ フ ォル ト表 領 域
。PREFSTATユ ーザ ー の 一 時表領 域

spcreate sqlス クリプトの実行

spcreate.sqlス ク 1リ プ トは、 内部的にはspcusr,sql、 spctab.sq:、 spcpkg.sq!
の3つのスクリプトを実行 します。また、実行されたそれぞれのスクリプ ト

は、spcusr.‖ s、 spctab.‖ s、 spcpkg.‖ sと いうファイル名でカレントディレ

クトリ※にログを出力します。インストール後は、これらのファイルでエラ

ーが発生していないことを確認してください。

これでインストールは終了です。

※SQL*Plusか ら実行した場合は、%ORACLE_HOME%¥bin¥に出力さねます。

Oracle8i.9i. 109 (%,ORACLE HOME° %。¥rdbms¥admin

実行例 05‐ 02

spcusr.sql spcusr.lis

spctab.sql spclab.lis

spcpkg.sql spcpkg.lis

表03‐05 実行スクリフトとログフアイル

一融
¨

TmIP.

OracleSi. 9i. 109 くた,ORACLE HOME%,¥rdbms¥admin

STATSPACKの アンインストール

実行例 03‐ 05

スナップシヨットの難得

STATSPACKは、取得したスナップショットの2地点間の差をレポート表

示することで、Oracleの状態を監視します。スナップショットを取得する場

合は、PERFSTATユ ーザーで、stdspack.snapス クリプトを実行します。
スナップシヨットの取得処理では、その時点で収集されたパフォーマンス

統計データが動的パフオーマンス・ビューであるV$テ ーブル (テーブル名が

V$か ら始まるもの)の情報がSTATSPACKの STATS$テ ーブル (テーブル名
がSTATS$か ら始まるもの)ヘコピーされます。

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（後
編
）

スナップショットの取得

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

実行例 03-04

CHAPTER 03チ ューニングすべきSQLの選定 (後編)

スナップショットの取得

■`:

躾躙 スナップショット・ レベルとは

収集するデータ内容はスナップショット・レベルにより決定されます。ス

ナップシヨットのレベルが高いほど、より多くのデータを収集できます。た

だし、Oracleのバージョンにより設定できるレベルが異なるので注意してく

ださい。

・待機統計

・システム・イベント

・システム統計

・ロールバック・セグメント・データ

。行キャッシュ

。SGA
・パックグラウンド・イベント

・セッション・イベント

・ロック統計

。バッファ・プール統計

・親ラッチ統計

鰊レベル >=5
設定するスナップシヨット・レベルが5よ り大きい場合は、下位 レベルで

収集されるすべてのパフォーマンス統計情報に加え、以下の情報が収集され

ます。

瘍レベル >=0
設定するスナップショット・レベルが0(ゼロ)よ り大きい場合は、以下の

パフォーマンス統計情報が収集されます。

スナップショットの取得

・リソース使用率の高いSQLに関するパフォーマンス・データ

なお、スナップショットの作成に必要な時間は、初期化パラメータ

SHARED_P00L_S:ZEに 指定した値と、スナップシヨット作成時の共有プー

ル内のSQLの数によって変わります。共有プールが大きいほど、スナップ
ショット作成にかかる時間が長くなるので注意してください。

隋レベル >〓 6

設定するスナップショット・レベルが6よ り大きい場合は、下位レベルで

収集されるすべてのパフォーマンス統計情報に加え、以下の情報が収集され

ます。

・ リツース使用量の多い取得済みSQLのそれぞれのSQL実行計画
。SQL計画使用状況データ

レベル6では、SQLで使用する実行計画が変更されたかどうかを判別する

ための貴重な情報を収集します。そのため、実行計画が変更された可能性が

ある場合はレベル6のスナップシヨットを使用することをおすすめします。

鰊レベル >〓 7

設定するスナップショット・レベルが7よ り大きい場合は、下位レベルで

収集されるすべてのパフォーマンス統計情報に加え、以下の情報が収集され

ます。

。使用頻度の高いセグメントに関するパフォーマンス・データ

。RAC固有のセグメント・ レベルの統計

レベル7では、どのセグメントが頻繁にアクセスされ、競合が起きやすい

かを判断する情報を収集します。レベル7までのオーバーヘッドは微々たる

もので、全体のパフォーマンスに影響を及ぼすことはありません。そのため、

インストール時に設定されているデフォルトのスナップシヨットのレベルは

5ですが、OraCle 9i R2以降ではレベル7での取得をおすすめします。

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 03チ ューニングすべきSQLの選定 (後爾)

隋レベル >=10
設定するスナップショット・レベルが10よ り大きい場合は、下位レベルで

収集されるすべてのパフォーマンス統計情報に加え、以下の情報が収集され

ます。

。親ラッチおよび子ラッチの情報

レベル10で収集されるデータは、多くのリソースを消費するため、スナッ

プショット作成の時間が長くなる原因になる可能性があります。そのため、

特に必要がない限り、このレベルの使用はおすすめできません。

鼈躙 スナップショット・ レベルを指定する

スナップショット・レベルを指定したスナップショットを取得する場合

は、以下のスクリプトを実行します。

・レベルを指定したスナップショットの取得

Snap(i_Snap_leve■■■|, 71)|′ |‐‐| ||■ .

洟靡麟スナップショット0レベルを指定し、なおかつデフォルト値に設定する

スナップショット・レベルを指定してスナップショットを取得後、そのス

ナップショット・レベルをデフォルト値として設定する場合は以下のスクリ

プトを実行します。

団画回
SQL>EXECUTE statspack.slnap(i_snap_level=>7′ i_modifyl■ parameter言 >true),

鍮蒻 スナップショット・ レベルのデフォル ト値を変更する

スナップショット・レベルのデフォルト値を変更する場合は以下のスクリ

プトを実行します。ただし、このコマンドではスナップショットの取得は行

われないので注意してください。

巖蓬置EEEロ スナップショット・レベルのデフォルト値を変更する
SQL> EXECUTE statspack.modify_statspack二 |lara“ |lter〈 ユisnapニュevel => 7)′

チ
ュ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

スナップショットの取得

鼈諫レスナップショット取得のタイミング

スナツプシヨツトはやみくもに取得すれば良いわけではありません。通常、

STATSPACKレ ポートを分析するときは、複数のレポートを比較解析する
ので、スナップショットの取得間隔はそろえて取得します。取得間隔をそろ

えておけばレポートの比較を行いやすく、信頼性のある分析が行えます。

黎鰤 スナップシヨットを自動的に取得する

スナップショットを自動的に取得するには、OSの シェルスクリプトを
CRONにて実行させる方法と、DBMS_JOBパ ッケージを使用して自動化す
る方法があります。

ここでは、DBMS_JOBパ ッケージを使用してスナップショットを自動的
に取得する方法について解説します。

り 1.初期化バラメータJOB_QUEUE_PROCESSESの設定
初期化パラメータJOB_QUEUE_PROCESSESに ジョブ実行用に作成でき
るプロセスの最大数を指定します。ジョブキュー内のジョブを実行するため

に、少なくとも1以上を指定する必要があります。

また、ALTER SYSTEM文を使用して、以下のように設定することもで
きます。

団回回
SQL,ALTER

初期化パラメータJOB_Q∪ EUE_PROCESSESを 設定する

構 文

jOb_queue_prOCeSSeS=く プロセスの最大数 >

SYSTEM SET

曝覆回E目肛l初期化パラメータJOB_Q∪ EUE_PROCESSESを 設定する
job_queue prOcesses =10

P3

| ― |||||||||||‐ || . .

job_queue__processes=lo,||‐ ‐||| |||| |‐
■■||||■■■||||

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R03チ ューニングすべきSQLの選定機 編)

蝙2.DBMS_JOB.SUBMITプ ロシージヤの実行

DBMS JOB.SUBMITプロシージヤを実行してジョブをスケジューリング

します。パラメータは全部で4つあり、以下の項目をそれぞれ設定する必要

があります。

。1つ目のパラメータ :ジ ョブ番号を返す出カパラメータ

・2つ目のパラメータ :実行するSQL

・ 3つ目のパラメータ :実行時刻

・4つ目のパラメータ :実行間隔

DBMS_JOB.S∪ BMlTプロシージヤの実行例

`|.i

議
ヽ

なお、登録したジヨブは、DBA」OBSテ ーブルで確認することができます。

DBMS」 OB.SUBMITプ ロシージャの実行例はspautO.sqlスクリプトの中

にサンプルがあるので参考にしてください。

表05-05 spauto sqlの格納場所

(:)racle 81、 9i、 10g でア)ORACLE HOME%,¥rdbms¥admin

実行例 03-11 spauto.sqlスクリプト(一部抜粋)

団回回
variable jobno m:nrber

.ISQL> EXECUTE

PRINT JobNO;

.:■ |ヽ

“

,

hour, on the

チ
ュ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

スナップショットの取得

このサンプルでは、1時間ごとにスナップショットを取得するジョブが送

られます。このスクリプトを利用して、一定間隔でスナップショットを取得

することができます。

鶉ジョブを削除する

作成したジョブを削除する場合は、DBMSゴOB.REMOVEプ ロシージャを
実行します。

ジョブを削除する
.=

(2),

した。

蟷輻 スナップショットの取得時に影響のある初期化バラメータ

スナップショット取得時に影響のある初期化パラメータは以下の2つです。

隋初期化バラメータTIMED_STATiSTiCS
初期化パラメータTIMED_STATISTICSは 、時間に関する統計情報を収集
するか否かを決定するパラメータです。通常は、収集されるデータに対して、

構 文

DBMS_]OBoREMOVE(く ジョブ番号>)

実行例 05‐ 12

」。bnO ntェ iber′

begin
selecL

1′ TRUE′ :instno),

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

スナップショットの間値の設定

CHAPT[R03チ ューニングすべ襲 Lの選定 (後編)

時間情報が含まれるように値を「TRUE」 に設定します。デフォルト値は後

述する初期化パラメータSTATISTICS_LEVELの 値に左右されます。

聰初期化パラメータSTATIST:CS_LEVEL

初期化パラメータSTA■ST:CS_LEVELは 、Ottcle 9i R2か ら導入されたパ

ラメータで、このパラメータを設定することで収集される統計情報量を調節

することができます。設定値には、「BAS:C」、「TYPICAL」 、「ALL」 があり、

デフォルト値は「TYPICAL」 です。

値が「TYPICAL」 または、「ALL」 に設定されている場合は、初期化パラ

メータTIMED_STATISTICSの 値は自動的に「TRUE」 に設定されます。

スナップシヨツトを取得すると、ライブラリ。キャッシュにあるSQL情報

はSTATS$SUMMARYテーブルに格納されます。しかし、スナップシヨツト

を取得するたびに、ライブラリ。キャッシュにあるすべてのSQL情報を取得

すると、STATSSSUMMARYテ ーブルは膨れ上がってしまいます。

そこでoracleでは、STATSSSUMMARYテーブルが急激に大きくなるの

を抑えるために、閾値を設定し、閾値を超えたSQLだ けをSTATSSSUM
MARYテ ーブルに格納するようにします。

設定可能な閾値は以下のようになっています。

表03‐06 スナップシヨットの閾値

i_executions_lh SQLの 実行回数。デフォル ト値は100

SQLに よるディスク・アクセス数。デフォル ト値は1000i disk readl th

SQLが実行する解析コール数。デフォル ト値は1000ijarse_calls_th

i_buffer gets_th SQLがアクセスされたバッファのプロック取得数。デフォル ト値は10000

i shareable_mem_th SQLの 共有可能メモリ量 (単位 :byte)。 デフォル トは1048576バイト

SQLの種類の数。デフォル ト値は20i_version_counl,_th

i_seg_log_reads_th セグメントに対する論理読み込み数。デフォル ト値は10000

i segjhy_reads_th セグメントに対する物理読み込み数。デフォル ト値は1000

セグメントに対するパッファビジー待機数。デフォル ト値は100i_seg_buff_busy th

セグメントに対する行ロック待機数。デフォル ト値は100i_seg_rowlock_w_th

闘値 三二‐|‐

レポートの作成

隋鋏閾値を変更する

閾値を変更する場合は、STATSPACK.MODIRY_STATSPACK_PARA
METERプロシージャを実行します。

たとえば、バッファ取得数を100000、 ディスク読み取り数を100000に 変更

する場合は以下のSQLを実行します。この設定により、設定した値を超えた

SQLだけが取得対象になります。

閾値を変更する
:蹴

スナップシヨットを取得しただけでは、ある地点の情報を収集しただけに

すぎません。これを有益な情報に変えるためには、レポー トとして出力し、

パフォーマンスのボトルネックとなっている箇所を探す必要があります。

STATSPACKは スナップショットを取得した2地点間のデータベースの負

荷状態をレポートとして出力します。したがって、2つ以上のスナップショ

ットを取得することでレポート出力が可能になります。

騒 |

i_seg_itl_waits_lh セグメントに対するITL待機数。デフォル ト値は100

セグメントに対する、指定インスタンスのCRブロック転送数。デフォル

ト値は1000(RAC環 境のみ)

i_Seg_cr_bks_sd」 h

i_seg_cu_bks_sd_th セグメントに対する、指定インスタンスのカレントブロック転送数。デフ

ォル ト値は1000(RAC環境のみ)

構 文

STATSPACK.MODIRY_STATSPACK_PARAMETER(く バッファ取得数>,くァィスク読
み取り数>)

チ
ユ
ー
ニ
ン
グ
す
ぺ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

レポートの作成

団画□

‐■

'

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

C‖APTER 03チ ューニングすべきSQLの選定 (催編)

瘍輻 レポートを取得する地点を決定する

どの地点間のレポートが必要なのかを決定します。これは、負荷が集中し

た時間やパフォーマンスが劣化したときなど状況により決定します。具体的

には、これらの情報はパフォーマンスが極端に劣化したときに使用するもの

なので、単位としては、10分 くらいが妥当なのではないでしょうか。

ただし、システムによっては、一定間隔 (1時間程度)で取得し、パフォー

マンス状況を常に監視しているところもあるでしょう。状況や使用用途に応

じて決定しましょう。

黎漑尚スナップショットlDを調べる

決定した2地点のスナップショットlDを調べます。取得したスナップショ

ットIDを調べるには、レポートを出力するsprepottsq:ス クリプト※を実行

します。spreport.sqlス クリプトを実行すると自動的にスナップショットの

情報が出力されるため、その値を参考に、スナップショットIDを決定します。

※spreport sqlスクリフトについての詳細はP.90を参照してください。ここでは、実行後
に表示される情報のみを掲載します。

spreport.sqlZ, U 7 l-実行例 03‐ 14

||‐ _・ :|■

2/

Current fnstance ..= ■ :‐
|:‐

‐~
‐
・

l:::::::
ld DB

ORCL

1.・

‐螢

Instances in

DB Inst Num

鐵

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

レポートの作成

表03‐07 スクリプトの実行後に表示される情報

上記の実行例を見ると、「SNAP_ID=1」 から「SNAP_ID=11」 の間で時間

が異なることが確認できます。そのため、「SNAP_ID=1」 から「SNAP_ID=

11」 の間に再起動が行われたことが読み取れます。さらに、「SNAPゴ D=1」

から「SNAP」D=11」 の間の値は、消去されていることも確認できます。ま

た、「SANP」 D=14」 の値は、レベル7でスナップシヨットが取得されている

ことを示しています。

レポート作成時には、時間がかかった処理の時間とSTARTUP_TIMEの

時間を比べ、スナップショットID(SNAP_ID)を メモします。そして、該
当時間に相当する、2地点間のSNAP」Dの値から、STATSPACKレ ポート
を作成します。

lnstance インスタンス名

DB Name データベース名

Snap_ld スナップショットlD

Snap_Started スナップショット取得時刻

Snap_Level スナップショットレベル

Comment コメント情報

for database fd
for instance number

Snapshots

Snap

DB Name ld

ORCL l 13 Feb 2007

11 13 Feb 2007

14 13.

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 03チ ューニングすべきSQLの選定 (後編)

鍮躙 レポ…卜を作成する

先の例のように、2地点のスナップショットIDを調べたら、spreportsdス

クリプトを実行し、レポートを作成します。スクリプトを実行すると開始・

終了のスナップショットID、 作成するレポートファイル名の入力を要求され

るので、調べた値を入力すれば、レポートが作成されます。

プ を行

ステップショット ョッ トlD

ID列)情報を探すことも

スナップショッ

SQL>

2

3

4

5

6

SELECT snap_id TO_CHAR
TO CHAR tartup_.t.ime,

snap_1eve1

FROM STATSSSNAPSHOT

ORDER BY startup_ti:me′

SNAP ID SNAP TIME

1 13 01:00:07 12

14 13 21:52:41 13 21:38:55 7

15 13 22:00:04 13 21:38:55 5

6行が選択さ漁ました。

た が て レ ポ でスナップ

が取得 され ときに、

STATS$SNAPSHOTテ ーブJレ

輻

ツ

ツ

::

レポートの作成

表05‐ 08 spreport sqlの格納場所

してくださtヽ

Id spec

the Report

oこ こには、前項で解説した2地点間のデータベースの負荷状態がレポートが表示されます。

レポートは、カレントディレクトリに作成されます。この例では、report.

txtフ ァイルが%ORACLE_HOME%¥bin¥に作成されます。ただし、以下の

場合はレポートの作成に失敗するので注意してください。

表05‐09 レポートの作成に失敗する場合

レポー卜の作成例

Spec

(:)racle 8i、 9i、 10g ,そ)ORACLE HOME%¥rdbms¥admin

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（後
編
）

指定した開始スナップショットID、 終了スナップショッ

HDの いずれか (も しくは両方)が存在していない場合
スナップショットlDが存在 しない

開始 。終了スナップショット間でインスタンスが再起動

されている場合

インスタンスが再起動されている

開始 。終了スナップショッ ト間で初期化パラメータ

TIMED_STATISTICSが 変更されている場合。この場合、

統計データの時間情報が正 しく出力されない

TIMED_STATISTICSが 変更 されている

■ .|

otherwise enter

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

レポートの分析

CHAPT[R05チ ユーニングすべきSoLの選定 (後編)

作成されたレポートには、データベース全体に関するパフオーマンス統計

情報が多く含まれています。このレポートを使用して、パフオーマンス劣化

の原因を分析 し、改善策を検討していきます。

なお、今回作成したレポー トは、本番稼働中のデータベースを対象にした

ものではなく、テスト的にレポートを作成したものなので、本番稼働中のデー

タベースとは違った情報が出力されています。ここでは、レポー トの読み方

の概要を解説する意味で掲載しているので、内容は参考にとどめてください。

ここでは、特にパフオーマンスの観点で注目すべきポイントである以下の

項目について解説します。

。ロードプロファイル

・インスタンス効率

・ トップ5待機イベント

。SQL

晰躙 ロー ドプロフアイル

このセクションには、データベースの負荷状態が記録されます。毎秒単位
の統計情報とトランザクションごとの統計情報が表示されます。そのため、
ロードプロファイルとして表示される情報を把握することは、アプリケーシ

ョンの特性を判断する材料の1つ となります。

たとえば、SQLの実行回数を表す「Executes」 やトランザクション量を示
す「TranSaCtiOnS」 はデータベースにどの程度の負荷がかかっているかの目

安になります。また、「Physical reads」 (物理読み込み)、 「Physica!writes」

(物理書き込み)、 「Hard parses」 (ハードパース)、 「Executes」 などがどれ

くらい実施され、1ト ランザクションあたりどれくらい行われたかという情

報 (Per Transaction)と 1秒間あたりどれくらい実行されたかという情報

(Per Second)を 分析することで、「全体的に物理読み込みの値が多いから、
メモリ容量を大きくしよう」ゃ、「物理読み込みが多いから何かSQLで問題
が発生しているものがあるのではないか」などの、対策を検討できるように

なります。

レポートの分析

また、定期的に取得することによって、極端にどこかの値に変化が出た場合

に、障害が発生する兆候として、調査をはじめるきっかけになったりもします。

隋蒻 インスタンス効率

インスタンスの稼働効率を表すセクションです。基本的にはすべての項目

で100%に近いほど良いといわれています。ただし、SQLの特性が悪いこと

が原因でこのような結果になる可能性もあるので、SGAの領域などを変更す

る前に、他の項目も十分検討したうえでパラメータを調整してください。

なお、初期化パラメータSTAT:STICS_LEVELの値を「TYPICAL」 または

「ALL」 に設定すると、メモリ関連のアドバイス情報も出力されるので、そ

の情報を参考に、パラメータを調整することもできます。

00.00

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定

（後
編
）

実行例 03-18 インスタンス効率

8:|_1 99.52

1001) .

□―ドプロフアイル団回□

Per Second per iranSaC110n

52′ 538.99

Physical 1.71

:i

3,, 77

34‐ 0_:40 ‐_..

In―memory

Nowait t: 100100

100100 ‐|||

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 03チ ユーニングすべきSQLの選定 (後編)

上記の出力結果を見ると、比較的100%に近い値を示していますが、「Patte

CPU to Parse Elapsd」 の値が19.27%と 低くなっています。この処理は、「解

析CPU時間 ■解析の合計時間」を表しているので、解析が実行している間
にCPUが使用されていた割合を意味します。この値が低いので、ここでは、
解析時にCPUが待たされている時間が多かったということを示しています。
したがって、システム内部で待ちの時間が発生している可能性が考えられ

ます。実際にこのサンプルを作成したときは、Oracleに対してなにも処理を

していない時間がかなりありました。このように、純粋にOracleの状態を分

析できるので、1つ 1つの項目について詳細に調べて、有益な情報として使用

するようにしましょう。

「ShaЮd P00:Statistics※ 」には、共有プールの使用状況が表示されている

ので、共有プールが有効に使用されているかどうかの分析に使用します。

※Shared P001 Statisticsに ついてはOracle全 体に関する内容なので、ここでは説明を割
愛します。

蟷躙 トツプ5待機イベント

待機イベントとは、プロセスがcPuを使わずに待っている状態のことです。
ただし、待機イベントには、「SQL・ Net message fЮ m c‖ent」 のようにクラ

イアントからSQLが送信されるのを待っている状態や、「db f‖ e sequential
read」 のようにデイスクからランダムにデータを読み込むのを待っている状

態など、処理が完了するのを待っているアイドル状態ではない待機イベント

と、クライアントからの受付をいつでも処理できるアイドル状態である待機

イベントがあります。そのため、それらを考慮したうえで、どのような待機

イベントがデータベースに対して起こっているのかを調査し、上位にある待

２
　
・
　

，■
　

一
●
７
●

■

　

７

・

一
一
一
町

一
一一
一」

な

Librarv Hitlll
‐ ||.■ _~ ||||■ | |
.|‐‐‐‐‐Execul。 |‐to Pars‐ e

l■■| ||||■ |‐ . . |||
|IParSe.CpU tO Parse Elapsd

.||. |||||

‐.shared‐ ●。。l statistics‐ ‐.|
|■ |‐ _ |||||‐ ||||| ・

8: ‐97.41 soft Parse t:

Latch Hit t:

Non■

'五

rse CPU:

95.54

100..010

83.97

t: 88.97

●
ヽ
●

SQL w/exec>1:

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

レポートの分析

機イベントから問題点を予測する必要があ ります。

トップ5待機イベン ト

鵞

隋蜀顆SQL
このセクションでは、レベル5以上のスナツプシヨツトで閾値

※を超えたリ

ソース使用の高いSQLを以下のセクション別に表示します。

※閾値についての詳細は、P86を参照してください。

。CPU時間

・総処理時間

・論理ブロックアクセス数

。物理ブロックアクセス数

。実行回数

・解析回数

以下にSTATSPACKレポートでSQLの情報を抜粋します。それぞれ閾値

を超えたSQL情報が出力されていることが確認できます。なお、実際には先

実行例 05-19

Event

22.08

‐ 12.97‐

上記の出力結果から、ディスクからランダムに取得した値を待っているイ

ベントである「db■ le sequentu read」 が多く発生していることが確認でき

ます。したがって、ここでは、物理読み込みにかかった時間が大きかったこ

とを示しています。

なお、各イベントの詳細についてはOTNが公開している『パフォーマン

ス・チューニング・ガイド』を参照してください。

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

↓
　
　
・，

Buffer Cets Executions

‐ 107′ 347 20′ 001

Gets per Exec

lNSERT INTO liSAMPLEI!.・ CUST_MST‖
IPREFECTURECODE・ PREFECTUREI

(:COLO′ :COLl′ :COL2′

SQL Ordered by Reads for DB: ORCL
―> End Disk Reads Threshold: 1000

CHAPTER 05チ ューニングすべきSQLの選定(後編)

述した6つの項目単位で出力されます。

SQL

:COL3′

Instance: orcl snaps: 11

10000

for pL/SQL includes the

it. is possible and valid for

11 -15

0

CPU

tTotal Tiime (S)

Elapsd

Time (s)

25.0 4.92

(・ CUSTCODEl'′ 'iCUSTNAME・ ′

"ADDRESS賃 ′ 'DMFLG"′ :'MAIL

11 -15

Hash vialue

実行例 03‐20

20′ 001 20′ 000

Within the PL/SQL code. As

exceed

PhソSical

Readsl

Executions fOr DB: ORCL

Threshold: 100

INSERT IIVTO "SAMPLE"
1

VALUES (:COLO′ :COLl′ :COL2′ :COL7′ :COL10)

レポートの分析

パフォーマンスの悪いSQLは、論理ブロックアクセス数や物理ブロックア

クセス数が多いといえます。論理ブロックアクセス数が多いSQLは CPUを そ

れだけ多く使用し、物理ブロックアクセス数が多い場合はキャッシュヒット

率が低下して1/0の ボトルネックにつながります。

そこで、STATSPACKの レポートを参照し、ボトルネックになるSQLを

探し出し、そのSQLの全テキス ト情報や、統計情報、実行計画を取得し、ア

プリケーションからそのSQLが実行される機能の割り出しを行い、必要に応

じてそのSQLに対してチューニングを実施します。

上記の場合は、「Buffer Cets」 (バ ツフア読教込みブロック数)の大きい

SQLを レポー トより抽出します。レポートの結果から最上部のSQL(0)の
バッファ読み取 リブロック数が多くなっているのがわかります。また、この

SQLは「Executions」 (実行回数)も 多くなっていることが確認できます。一

方、1実行あたりの読み込みブロック数は、5.4ブロックとさほど大きくあり

ません。また、物理読み込みブロック数についても同様に、実行回数が多い

ことから、1実行あたりの物理読み込みブロック数が少ないことがわかります。

今回の例では、実行回数が多いことから、このSQLは上位にレポートされ

ています。したがって、実行回数が多いSQL(0)も 同じような結果になっ

ています。

なお、SQLの詳細情報はスナップシヨツト・レベル6以上で取得したスナ

ップショットに対してのみ取得できます。SQL詳細情報の取得方法について

は、次で説明します。

蟷輻 SQL詳細情報の取得

ボトルネックとなったSQLの詳細情報を取得するには、レポートに表示さ

れるHash Value列 の値を使用して、sprepsqLsqlス クリプトを実行します。

sprepsqlsqlス クリプトを実行する場合は、レポートの取得時と同様に、「開

始スナップシヨツトID」、「終了スナップシヨツトID」 を指定し、さらに

「Hash Value」 の値 (先述の例では、「Hash Value」 の値は「2464198019」)と

出カレポート名を指定します。

SQL詳細情報には、SQLのテキスト全文、指定スナップシヨツト間におけ

る統計情報、SQL実行計画が格納されます。

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 05チ ューニングすべきSQLの 選定 (後編)

表03‐10 sprepsqLsqlの 格納場所

“

Oracle8i.9i. 109 `%)ORACLE HOME%¥rdbms¥admin

Id specified:

くださし

膿蜜回口日口I SQL詳細情報を作成する

SQL>

DB Id DB Name lnst Num

end_snapに 値を入力してくださしヽ: ■5

End snapshot ld specified: 15

the Hash va■ ue

specified is:

.SpeC■ fy the Report Name
臨

議

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

レポートの分析

上記のスクリプトを実行するとSQL詳細情報がカレントディレクトリに
reqsd.txtと いうファイル名で作成されます。

SQL詳細情報

Th● default report To use this hame′

蟻

団画回
|ISTATS.PACK

DB Id

value:

Id

2■ :39:41 ■5

2464198019 ‐|‐ ||||

INSERT iCUSTNAMEi′

基
礎
編

∽
Ｏ
ｒ
チ
ユ
！
ニ
ン
グ
の
基
礎
知
識

CHAPTER 05チューニングすべきSQLの選定(後編)

Y‖ ′|,PREFEC■ RECODE"′
‐・」REFECTURE"′ "DDRESS・ ′■lDWLGl′‐・MAILI) ||

VALUES (:CO■ 0′ :COLl′ :COL2′ :COL31′ :CO141, :cё 二
=|, :COニ

ウ, :COtib)
_ ||_| | .|lill l llllll .‐ ・ || ― |||

‐ ||| ||||■ _■| |■■||■ |. |||||| ‐‐|| . . ‐

■ | ‐||||_ ■||||||. ‐| ‐|| ~ || ― || ‐

|‐ ||||■|■|. |||||. | ■ .| . .. ‐・ ‐‐‐・
‐
・
||

|‐ ||■■‐ |‐ ・ |||| ||||||■ | ||■■| ||||

planS in ShaFed p。。l betwellllegi● and i轟 I Snお ias l‐‐
. .. |‐

|
‐
||■ . ||■ ||||. ・ | .■ ‐

||_ |.||||||| |||■ ‐‐‐ ― | ‐‐■― ~||■ | |||■ |

|IShows lthe ExeCttion Plans found in.the shalrled o00.1 1111・ ||■ ‐ ・ ||| ‐■
■ ‐ |.■ . |||||■ ～ |11「| .■ |

between the begin andl endsnapshotsllも ,ecifi● d. Thё values for ROws′ .

‐lytes.● nd costl shOwn.be10w are those which existed at thel.time lll‐ |||||
lt轟 fi墨ょever tn∞ sbt captured this‐ plan l.‐ thesざ talu畠 |。 ftill‐
chmge over ti"′ aお Oヽm″ 16t bよ五dicil↓o oII:urrent values
■ IRowsliidiあ t`L Caraiialit''PHV iS Plm HaSh Value ll l l ll

=。
rderёd by plan Hash value‐ ||| ‐||| ||| |

‐ ||| ||||| . ■|■ ■| . |・ ‐
||■ | ||||‐ | ■■|■ | |

. ||.||・ | ‐‐・ ■|||| ■ |||||| ・ ‐ _ |‐ ‐ ‐‐

|■■●: ‐ ■ |■ 1 __二 」三 二__三 二__________________=______二 ■■____三 二11■ ___=■ 11=___

I ijyEes I uosE

STATSPACKの 落とし穴

End.of Report
■■主.

スナップショットの削除

STATSPACKでは、スナップショットを取得するたびに、そのデータを
各テーブルに格納します。そのため、スナップショット・レベルやアプリケ

ーションの内容、データベースやインスタンスのサイズによっては、膨大な

データが格納されることになります。

いくらストレージが低価格化 。大容量化したとはいえ、容量は無限にある

わけではありません。スナップショットのデータは必要のなくなった時点で

削除するようにしましょう。

スナップショットのデータを削除する場合は、sppurge.sqlス クリプ トを

実行します。これまでと同様に、まずPERFSTATユーザーに接続してから、
スクリプトを実行します。

表03‐ 11

チ
ュ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）スナップショットの削除

Oracle 8i. 9i. 109 94,ORACLE HOME%¥rdbms¥admin

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R03チ ューニングすべきSQしの選定 (穫編)

sppurge.sqlス クリプ トの実行実行,103‐ 23

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

スナップショットの削除

削除するスナップシヨットのIDを範囲指定します。上記の例ではSNAP ID

が「1」 (0)から「12」 (0)のスナップショットを削除しています。それでは、

削除した「SNAP」D」 が消えているか確認してみます。

ISpec.ifyl the.LO.Snap range to purge‐‐

巖賓題ロコロコ SNAP_IDの表示

.SQL> se■ ect snap_id from StatSSSnapShOt order by sinap_id′ ..

snap ■d ‐

13

14 .. _

15

16
. .17 .. ‐‐‐ ..

18

19
1‐ | ‐|

20 .‐ .

21. ■ _
‐ .

9行が選択されました。

|).)

CHAPT[R05チ ユーニングすべきSQLの選定機 編)

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

スナップショットの一括削除

すべてのスナップショットを一括で削除する場合は、PERFSTATユ ーザ
ーでデータベースに接続後、sptrunc.sqlス クリプトを実行します。

ただし、「SNAP_ID」 列の順序は残るので、たとえば、「SNAP」D」 が「50」

までのスナップショットが取得されている場合、それらをすべて削除した後

に、新たに取得したスナップショットの「SNAP_ID」 は「51」 となります。

表03-12 sptrunc.sqlの 格納場所

Oracle8i.9i. 109 (%,ORACLE HOME%¥rdbms¥admin

ライプラリ 'キヤッシユ内のSQL

これで、すべてのスナップシヨットは完全に削除されました。「SNAP_ID」

を問合せてみると、以下のようになり、削除されたことが確認できます。

震覆回□ロロロ SNAP」 Dの表示

SQL>.SELECT SNARI■ D IFROM

Iレ ,■ |ドが選択されませんでした。
. .|.|||■

||||| ||||||||| .

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

ライブラリ・キャッシュ内のSQL

Oracleは、SQLを 再利用するために、共有プール内のライブラリ。キヤッ

シュ内にある共有SQL領域に、アプリケーションから発行されたSQLをキャ

ッシュしています※。そこで、共有SQL領域にあるSQLの 中から、CPU負荷

の高いものや、実行時間がかかるものを、動的パフォーマンス・ビューを使

用して抽出し、チューニング対象のSQLを検索します。

※キャッシュするSQLが共有SQL領域の容量を超えた場合、実行頻度の低いもの(古いもの)
からLRUアルゴリズムによつて削除されます。

鼈躙 共有SQL領域を確認する動的パフォ…マンス・ ビユ…

共有SQL領域の情報を取得する動的パフォーマンス・ビューには、以下の

ものがあります。高負荷なSQLを 見つけ出すには、実行回数、CPU時間、経

過時間を参考に判断します。

なお、SQLを 実行し結果セットを取得するうえで、最も不快に感じるのは

経過時間が長いものです。そのため、経過時間の長いSQLをチューニングす

ることでパフォーマンスを改善します。

表03‐13 共有SQL領域を確認する動的パフォーマンス・ビュー

1襲警1挙ヨ|を1離|||:壁塑塞整漱■経|
VSSQL

麹 菫 二 重 菫 二 三 菫 菫 上 璽 墨 墜 盤 量 墨

SQL個 々のカーソル情報、SQLの 累積リツースや使用状況、
SQLの先頭1000バイト

VSSQL_TEXT SQLの全文テキスト情報

VsSQL_PLAN SQLの実行計画

CHAPT[R03チ ユーニングすべきSQLの選定 (後編)

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

経過時間の長いSQLの抽出

以下のようなSQLを実行し、共有SQL領域の中から経過時間の長いSQLを

抽出します。なお、上位のSQLか らチューニングの対象として判断するので、
ここでは上位100件のみ出力するように制御しています。

上記のSQLは、共有SQL領域にある以下の情報を経過時間の長い順に出力

します。したがって、出力結果が上位のものほど、処理に時間がかかるSQL
だということがわかります (「 SQL_TEXT」 は複数の行に格納されるため、

その順序で出力させるためにORDER BY句 の最後にPIECE列 を入れていま
す)。

表03‐14 共有SQL領域内の情報

SELECT
AoSQL_TEXT,A.ADDRESS,BoSORTS,
B.CPU_TIMEノ B.EXECUT工 ONS AVG_CPU_TIME,
BoELAPSED_TIMEノ B.EXECUT10NS AVG_ELAPSED_TIME,
BoEXECUT工ONS,

B.LAST LOAD TIME
FROM V$SQLTEXT A, VSSQL B
WHERE EXECUT10NS != 0
AND A.ADDRESS=BoADDRESS
AND ROWNUM く= ■Oo
ORDER BY ELAPSED_TIME DESC ,A.PIECE

A.SQL TEXT SQL全文テキスト情報

A.ADDRESS SQL文の共有プールア ドレス情報
(結合キーとして利用する)

B.SORTS ソー トの回数

B.CPU TIME:/B.EXECUT10NS
AVG CPU TIME

CPU使用時間/実行回数
=平均CPU使用時間

B.ELAPSED TIME:/B.EXECUT10NS
AVG ELAPSED TIME

実行時間/実行回数

=平均実行時間

B.EXECUT10NS 実行回数

B.LAST LOAD TIME 最後に読み込まれた時間

E=ヨ 1責真荷なSO10拍凛||||■ |■■|||||| . |‐||~ | .:111

実行,103‐ 27

経過時間の長いSQLの抽出

‐■. |‐|.
2

select c.

65686948

A

一
．―
　
　
・〓

group._ .‐ .

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

・SQLiTEXT ‐‐
SORTSADDRESS

AVG_CPU T■ ME LAST_LOAD■ TIME I

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 05チ ユーニングすべきSQLの選定(後編)

1"802 59 87849s 1 2097,02114/つ 9:52:17
ode order by
65 597 008

…_ .■
 |||,_

120173 _■
_|■・ |||| |||
ode
‐

.‐6569'2981‐

パッファ読み込みプ爾ツク数が多しヽSQLの抽出

このように結果が出力されます。「ADDR=SS」 の値が同じものは同一の

SQLです。なお、Oracleが内部的に発行 しているSQL(再帰的なSQL)も 出

力されているので注意してください。

また、経過時間が長いもの以外にも、以下の条件に当てはまるものは高負

荷なSQLであると考えることができます。

大量のバッフア読み込みを行っているSQLは、不必要なデータ
。ブロック

を読み込んでいる可能性があり、適切でない索引を使用しているケースが考

えられます。

どれくらいの値が多く、どれくらいの値が少ないという目安はありません

が、アプリケーションが高負荷状態になっているときに、以下のSQLを実行

し、チューニング対象の候補のSQLと して注目しましよう。

バッファ読み込みブロック数が多いSQLを見つけ出す場合も、動的パフォ

ーマンス・ビューV$SQLの情報を利用します。動的パフォーマンス・ビュー

V$SQLに は、「BUFFER_GETS」 の値があり、バッファブロック読み込み数

の値を保持しています。

したがって、先ほどのSQLに「BUFFER_GETS」 の値を追加し、さらに

ORDER BY句の条件とすれば、値が大きいSQLを抽出することができます。

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

バッファ読み込みブロック数が多いSQLの抽出

■‐‐ ||■ | _||| . ‐‐
・
 ‐||■ |

6569ED7C I II■ |||
100‐■44 740192 ‐|||| ‐

‐
|‐|11 1・ 2007-02-14/09:51:43

n"oup,CuStCode ‐

6569ED7C l .|| ■‐ |■_ .

■010144 _ 740192 111 11 .‐ |12007-0.2-14/09:51:43‐‐
|‐・ |.|‐ . ‐ . ‐ ‐||‐ |.‐ ■

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R05チ ューニングすべきSQLの選定 (後編)

団四回 バッフア読み込みブロック数が多いSQLの抽出
SQL> SELECT III■

|' A10L_T量■:A

|`|ヽま |

.ADDRESS′ B.

情 文

SELECT
A.SQL_TEXT,A.ADDRESS,B.BUFFER_GETS,B.DISK_READS,
BoCPU_TIMEノ BoEXECUTIONS AVG_CPU_TIME,
BoELAPSED_TIME/BoEXECUTIONS AVG_ELAPSED_TIME」
BoEXECUT10NS,
BoLAST LOAD TIME
FROM VSSQLTEXT A, V$SQL B
WHERE EXECUTIONS != o
AND A.ADDRESS=B.ADDRESS
AND ROWNUM く= ■oo
ORDER BY B.BUFFER_GETS DESC , A.PIECE

B.

.,‐ _
11 /

ADDRESS

select

|■■1‐||

・SQL_EXT
:妻

3

バッファ読み込みブロック数が多いSQLの抽出

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
ｒ
の
選
定

（後
編
）

65686948 ‐ 6239 . 403914.333

3. ||

2 .

37411

2

448

. 1 1

」3100う 0.6ウ |

ド

蠣

■1 37.4. 608 ・ ‐ |・ 8149.69 ‐||

12102491

s w ll l■

CHAPTER 05チ ユーニングすべきSQLの選定 (後編)

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

1 .‐

デイスク読み込みプロック数が多いSQLの抽出

デイスク1/0はメモリ1/0と 比べて大幅に処理速度が劣るため、SQLチュ
ーニングでは、ディスク1/0を できる限り減らすようにチューニングします。

したがって、デイスク読み込みプロック数が多い高負荷なSQLを抽出し、チ
ューニング対象とします。

ただし、データベースの起動後、はじめてそのデータにアクセスする場合

は、必ずデイスクからの読み込みとなるので、起動後、ある程度時間が経過

してから取得する必要があります。

デイスク読み込みプロック数が多いSQLの取得も同様に、動的パフォーマ
ンス・ビューv$sQLの 情報を利用します。動的パフォーマンス・ビュー
V$SQLの「DISK_READS」 の値を取得し、その値が大きいものからORDER
BY旬の条件に指定することで、共有メモリ内にあるSQLを抽出します。
これらの情報もバッファ読み込み数を取得する際と同様に、どれくらいが

多く、どれくらいが少ないのかという目安はありませんが、アプリケーショ

ンが高負荷状態になっているときチューニング対象分析資料として使用しま

す。なお、実行結果はバッファ取得時と同じような内容なので、ここでは割

愛します。

‐
256
■
,γ
l

120173
‐_.
‐
.‐. 79799311 ・ |

■

6569ED7C

1

1187

6569ED7C

l .

‐_ ・ . .:
‐
・

7401921

‐ 749192 1
・
T` .100144

′苺

6569FE70 _1 1.89 111 .‐ ||
_. ■ _ _■ _| ||■ .|| .
.■

1 _|・
‐‐ ‐‐‐‐2007-02-14/09:5■ :21‐

実行回数が多いSoLの抽出

実行回数の多いSQLは 、1回の実行でアクセスするプロック数が少なくて

も、合計すると非常に多 くのプロック数を読み込みます。そのため、実行回

数が多いSQLの 1回あたりのブロック読込み数を少しでも減らせば、全体と

して大きな効果を得ることができます。

たとえば、1回の実行でlooブ ロックを読込むSQLが、100万回実行された

場合、読込み総ブロック数は以下のようになります。

・loo× 1,ooo,ooo=loo,OoO,000(1億 ブロック)

これを1回あたり、80ブロックに減らすことができれば読み込む総プロッ

ク数は以下のようになります。

・80× 1,000,000=80,000,000(8000万 ブロック)

1回 の実行で読み込むブロック数を20ブ ロック減らすだけで、全体では

2000万 プロックの読み込みを減らすことができるのです。同様に、実行回数

を減らすことで読取リブロック数を減らすこともできるので、アプリケーシ

ョンの処理を見直すことも検討しましょう。

実行回数が多いSQLの取得も同様に、動的パフォーマンス・ビューV$SQL

の情報を利用します。動的パフォーマンス・ビューVSSQLの「EXECUT10NS」

の値を取得し、その値をORDER BY句の条件に指定します。実行回数に関

SELECT
A.SQL_TEXT,A.ADDRESS,B.BUFFER_GETS,B.DISK_READS,
BoCPU_TIME/B.EXECUT10NS AVG_CPU_TIME,
B.ELAPSED_TIME′ BoEXECUT10NS AVG_ELAPSED_TIME,
BoEXECUTIONS,
B.LAST LOAD TIME
FROM VSSQLTEXT A, VSSQL B
WHERE EXECUTIONS != 0
AND A.ADDRESS=BoADDRESS
AND ROWNUM く= ■00
0RDER BY B.DISK_READS DESC , A.PIECE

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
ｒ
の
選
定

（後
編
）

実行回数が多いSQLの抽出

==ヨ
|レ
.ス
ク妻み込″|プロ

''数

が多いSOLの

“

出||■ ‐■| |■ .|
‐・‐ ‐‐|

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R05チ ユーニングすべきSQLの選定(後編)

しても、どれくらいが多く、どれくらいが少ないという目安はありませんが、

アプリケーションが高負荷状態になっているときチューニング対象分析資料

として使用します。なお、実行結果はバッファ取得時と同じような内容なの

で、 ここでは割愛します。

このように動的パフォーマンス・ビューV$SQLの情報を利用して、さまざ
まな問合せ方法を行うことで、問題のあるSQLを抽出できるようになります。
この方法は、STATSPACKや SQLト レース・TKPROFを 使う方法よりも非
常に手軽であるため、実際の現場では、アプリケーションのパフォーマンス

が劣化したときによく利用します。本番環境稼働時には、これらのSQLを実

行するスクリプトを用意しておき、問題があったときにすぐに使用できるよ

うにしておくのも良いでしょう。

SELECT
A.SQL_TEXT,A.ADDRESS,BoEXECUT工 ONS,
B.CPU_TIMEノ BoEXECUT10NS AVG_CPU_TIME,
B.ELAPSED_TIME/B.EXECUT10NS AVG_ELAPSED_TIME,
B.EXECUT10NS,
BoLAST LOAD TIME
FROM VSSQLTEXT A, V5SQL B
WHERE EXECUT10NS != o
AND A.ADDRESS=B.ADDRESS
AND ROWNUM く= ■00
0RDER BY BoEXECUT10NS DESC , A.PIECE

□ 実行口撃0印SOLの 11出
‐ | || | ‐‐ .| .

チ
ユ
ー
ニ
ン
グ
す
べ
き
∽
Ｏ
Ｆ
の
選
定
（後
編
）

SELECT
s.ADDRESS addr,
s.HASH_VALUE hash,
soSQL_TEXT 5ql_teXt,
s.DISK_READS diskrds,
soEXECUT10NS execs,
soPARSE_CALLS parses,
s.BUFFER_GETS buffer_gets,
s.50RTS sorts,
s.ROWS_PROCESSED rows_processed
FROM STATSSSQL_SUMMARY s, STATSSSNAPSHOP sn
WHERE soSNAPSHOT ID = snoSNAPSHOT ID
AND snoSNAPSHOT_lD = (
SELECT MAX(SNAPSHOT_ID) FROM STATSSSNAPSHOT)

STATS$SQL_SUMMARY

実行回数が多いSQLの抽出

田 口 I SttTS“QL00MM.A‐ nVII II I I‐ || ‐

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 03チユーニングすべきSQLの選定罐 編)

本 辱ユ の ま と め

毎秒単位の統計情報とトランザクションごとの統計情報が表示

される

ロードプロファイル

インスタンス効率 インスタンスの稼動効率が表示される。基本的にはすべての項

目で100%に近いほど良いといわれている

トップ5待機イベント プロセスがCPUを使わずに待っている状態である待機イベント
のうち、待機時間の長いトップ5が表示される

SQL レベル5以上のスナップショットで閾値を超えたリツース使用の

高いSQLがセクション別に表示される

SQL詳細情報の取得 SQLのテキス ト全文、指定スナップショット間における統計情

報、SQL実 行計画が表示される

‐ . |. |

.■

.Oraclё

|‐さt
|■ |

…41

鷲

統
計
情
報
の
収
集

CHAPTER01でRBOと CBOについて、RBOは、「ある決められた一定のル

ールに基づき実行計画を作成する」、CBOは、「統計情報を基にして実行計画

を作成する」と解説しました (P.25参照)。 それでは、この「統計情報」とはど

のようなものなのでしょうか。

本章では、統計情報の概要、収集方法、管理方法について解説します。ま

た、Oracle 10gで は、RBOが廃止されているため、いったいどのようにして

統計情報を収集。更新しているのかについても解説していきます。

統計情報には、テーブルや索引などのオブジェクトが持つ、行数や使用ブ

ロック数、データ系統などの情報が含まれます。通常、テーブルや索引には

データが格納されていますが、Oracleは それぞれのテーブルや索引に、どれ

くらいのデータ件数が入っていて、それぞれの列がどのようなデータ系統な

のかということを知 りません。

そこで、Oracleは 、統計情報を取得することで、それぞれのテーブルの情

報を収集し、収集した統計情報を利用 して、CBOが実行計画を立てます。な

お、統計情報はテーブル、索引などそれぞれのオブジェクトに対して取得す

る必要があります。

統計情報とは

データ系統

統計情報の収集

CHAPTER

CHAPT[R04驚憲言十覇霞華限θ91叉纂

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

続計情報の取得対象オブジェク ト

統計情報の取得対象オブジェクトは以下の4つです。統計情報を取得する

と、それぞれの統計情報はデータ。デイクシヨナリ・ビューに格納されます。

・テーブル統計情報

・列統計情報

・索引統計情報

・システム統計情報

餞躙テーブル続計情報

テーブル統計情報は以下の情報を保持します。

・行数 (何行のレコードがあるのか)

。ブロック数 (実際に使用しているデータ。ブロック数)

・行あたりの平均の長さ

蟷鰤列続計情報

列統計情報は以下の情報を保持します。

・列内の個別値 (NDV)数 (どのような列値を格納しているのか)
。列内のNULL数 (NULLの レコードがどれくらい格納されているのか)
。データ配分 (データの偏り具合を管理するヒス トグラム※の統計情報)

※ヒストグラムについての詳細はP l19を参照してください。

鼈蒻索引続計情報

索引統計情報は以下の情報を保持します。なお、索引の構造については、

「CHAPTER06 索引の基礎知識」(P■ 79)で詳しく解説します。

・リーフ・ブロックの数

・レベル (ブランチ 。ブロックの深さ)

・クラスタ化係数

畿計情報の取繹対象オブジェクト

颯躙 システム続計情報

システム統計情報は以下の情報を保持します。

・1/0パフォーマンスと使用率

。CPUパフォーマンスと使用率

ヒストグラム

卜 ■■ .‐

lil響警|

041.

統
計
情
報
の
収
集

1黎:

CHAPTER 04薫海言十灘 電又瘍長

統計情報は、先述したとおり、テーブルであれば「行情報」や「使用ブロッ

ク数」、列であれば「列値の種類」や「偏り具合」、索引であれば「リーフ・ブ

ロック数」や「リーフの深さ」などを保持します。Oracleはこれらの統計情報

ANAEYZE文

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

ANA[潅臓文

をANALYZE文 を使用して取得します。ANALYZE文には以下の2種類の方法
を指定することができます。

ANALYZE文 の実行方法はとても簡単です。SQFPlusを 起動 して、
ANALYZE文を実行すれば、統計情報を収集します。

隋腱 完全(COMPUTE)
「完全 (COMPUTE)」 では、すべての統計情報を取得します。テーブルス

キャンやソートなどの処理が実施されるため、多くの負荷がかかりますが、

正確な統計情報を収集することができます。

「完全 (COMPUTE)」 で統計情報を取得する

:‐

.1,

蝙躙 予測(ESTIMバTE)

「予測 (ESTIMATE)」 では、テーブルの指定した率や件数、ブロック情報

をサンプルとして使用して、全体の統計情報を予測します。ただし、これら

の情報は、ランダムに取得する情報となるので、行数でサンプリングした場

合にすべてのデータを異なる領域のブロックから取得する可能性もあり、場

合によっては負荷がかかることもあります。また、偶然同じような値のデー

タばかりを取得してしまった場合に、正確な統計情報にならないこともあり

ます。そのため、「予測 (ESTIMATE)」 ではサンプルとして指定する値が重

要になります。

「予測(ESTIMATE)」 で統計情報を取得するメリットは、「完全 (COMPUTE)」

で取得する場合と比べて、Oracleに負荷がかからない点です。

構 文

ANALYZE TABLE[く スキーマ名>.]く テーブル名>COMPUTE STATISTICS

[FOR TABLE][FOR ALL INDEXES][FOR COLUMNS]
[FOR ALL COLUMNS][FOR ALL INDEXED COLUMNS]

統
計
情
報
の
収
集

実行例 04‐ 01

●̀ ‐|す
~
・‐‐ 、. 1■ _ | .

表が分析されました
=‐

1)/1

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 04統 計情報の収集

構 文

ANALYZE TABLE[くスキーマ名>.]く テーブル名>ESTIMATE STATISTICS
[SAMPLE n{ROWS I PERCENT}]
[FOR TABLE][FOR ALL INDEXES]

巖賓ロロロ国口「予測 (ESTIMATE)」 で統計情報を取得する (100行で取得)

SQL> ANALYZE T:ABLE sa■ esi tFn ESTIIMATE STATISTICS SttPLE l.00 ROWISI‐ .|‐| ‐‐
||■ ||■ || ― _ |‐ ■ | ‐■|| ■

‐ |■ ■ | ‐ ‐

2 / _ .. ■ ‐|| ‐|■ |||‐ ||| ・ |‐ ||‐ | ‐ ‐

|| | | | ‐ | ‐ ‐ || | |
| . . ‐ |・ ■ |. ■ || .|‐ ||‐

 | | ・ _ . | ■ | |.

表が分析されました。 ..■ ..‐ _|.| ・ | .‐・ ■・ ・| . ..
. .. . ‐‐‐ .|.‐ ‐_ |. ‐||.

‐|| |‐| .|. ‐
 .. _

「予測 (ESTIMATE)」 で統計情報を取得する (50%で取得)

、:
■・ ■‐

●

―

　

一
●

・ 1

ANAEYZE文のオプション

ANALYZE文では、デフォルトで「完全 (COMPUTE)」 と「予測 (ESTIMATE)」
ともにテーブルと索引の両方に対して統計情報を取得しますが、以下のオプ

ションを指定することで、「テーブルのみを取得する」など、統計情報取得

の範囲を設定することもできます。なお、列の統計情報を取得した場合は、

列全体に基づいた情報に加えて、ヒス トグラム※も作成されます。

※ヒストグラムについての詳細はP.119を参照してください。

表04‐01 ANALYZE文 のオプシ∃ン

FOR TABLE テーブルの統計情報のみ取得する。この場合、ヒス トグラム

は作成されない

FOR ALLINDEXES 索引の統計情報のみ取得する。ヒス トグラムも作成される

FOR COLUMNS 列の統計情報のみ取得する。すべての列または属性の列の統

計情報ではなく、指定した列の統計情報のみ収集される。ヒ

ストグラムも作成される

FOR ALL COLUMNS 列の統計情報のみ取得する。すべての列の統計情報が収集さ
れる。すべての列に対してヒストグラムが作成される

FOR ALLiNDEXED COLUMNS 列の統計情報のみ取得する。テーブルにあるすべての索引付き
の列の列統計情報が収集される。ヒストグラムも作成される

団画団

2 ・■・

表が分析さねました。

||: ■ ‐ ・

.="

.● ‐ ‐ ,ヽ

統計情報の削除と更新

たとえば、「完全 (COMPUTE)」 で統計情報を取得すると同時に、PRE

FECTURECODE列 (都道府県コード列)に対して、列統計情報とヒストグ

ラム統計情報 (バ ケット数100)を 取得するような場合は以下のような

ANALYZE文 を実行します。

列統計情報とヒストグラム統計情報を取得する

・
，

実行例 04‐04 統
計
情
報
の
収
集

ANAEYZE INDEX文

索引のみの統計情報を収集する場合は、ANALYZE INDEX文 を使用します。

構文はテーブルの統計情報収集時と同様です。

テーブルの状態などを取得することを目的として、統計情報を収集する場

合は、オプテイマイザが立てる実行計画に影響が出ないように、必要な情報

を取得した後で統計情報を削除する必要があります。

また、オプテイマイザに取得した統計情報を基に実行計画を立てさせたい

場合 (CBOで動作させている場合)は、統計情報を定期的に取得し、データ

を更新する必要があります。

構 文

ANALYZE INDEX[く スキーマ名>.]く索引名>COMPUTE STATISTICS

構 文

ANALYZE INDEX[く スキーマ名>.]く索引名>ESTIMATE STATISTICS

[SAMPLE n{ROWS I PERSENT}]

続計情報の削除と更新

‐ 13. ./

表が分析されましたも
| ■ .|

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R04縄計情報の収集

獨塚 続計情報の削除

ANALYZE文 を実行した際に、オプティマイザ 。モードがデフォルトの
「CH00SE」 に設定されていると、オプテイマイザは、統計情報を基に実行
計画を作成します。そのため、100個のテーブルを持っているスキーマであ
っても、ANALYZE文 を実行して1つのテーブルに関する統計情報を取得す
ると、オプテイマイザはその1つのテーブルの統計情報を利用してすべての

テーブルの実行計画を作成します。結果、正確な実行計画を作成することが

できなくなり、場合によっては、ある日突然システムが遅くなるような現象
が発生します。このような現象を発生させないためにも、必要な情報を取得
した後は、統計情報を削除してください。

正確な実行計画が作成できない理由

褥晰躙鼈鰊躙 ■

実行計画作成

祗
饂
ｖ
実行

・統計情報が古い
・統計情報を一部のみ取得

骰
正確な実行計画を作成できない

統計情報の削除は以下の方法で行います。この例では、SALES_TRNテー
ブルのテーブル統計情報と索引統計情報を削除しています。

構 文

ANALYZE TABLE[くスキーマ名>.]くテーブル名>DELETE STATISTICS

実行例 04-05 統計情報を削除する

面直圃

SQL発行

統
計
情
報
の
収
集

分析対象オブジエクトの構造の検証

籟蜀 続計情報の更新

データベースの状態は、データ量の増加やデータの変更などにより日々変

化します。そのため、すべてのテーブルに対して統計情報を取得した後、そ

のままの状態にしておくと、オプテイマイザは古い統計情報を使用すること

になり、現時点での最適な実行計画を立てることができません。このようなケ

ースでも、ある日突然システムが遅くなる現象が発生する可能性があります。

そのため、取得した統計情報を基に実行計画を立てる場合 (CBOで動作さ

せている場合)は、統計情報を定期的に更新する必要があります。ただし、

統計情報は取得するたびに上書きされるので、再取得する場合は事前に削除

する必要はありません。

ここまでは、ANALYZE文 を使用して、オプテイマイザが最適な実行計画

を作成するために必要な統計情報の取得方法を解説してきました。ここでは、

ォブジェクトを分析するために必要なオブジェクトの構造のみを取得する方

法について解説します。

洟蒻 VALIDバTE STRUCTURE旬
ANALYZE文 にVALiDATE STRUCTURE句 を追加することで、分析対象オ

ブジェクトの構造を検証することができます。なお、VALIDATE STRU

CTURE句 を追加して、検証のみを実施した場合はESTIMATE STATISTICS

句やCOMPUTE STATISTICS旬 の場合とは異なり、 オプティマイザでは使

用されません。

鰈輻 CASCADE旬
ANALYZE文 にCASCADE句 を追加することで、テーブルに関連付けられ

た索引の構造を検証することができます。索引に関して検証を実施した場合

は、同時に統計情報も収集されます。

分析対象オブジェクトの構造の検証

構 文

ANALYZE TABLE [<Z+-<a>.)<7-))vE>
VALIDATE STRUCTURE ICASCADE];

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 04畿 計情報の収集

テーブル構造を検証する

TABLE・ salё s_trn VALIDATE STRUCTURE.CASCADE. ‐ ‐| ‐

蟷輻オブジエクトの構造の検証で取得できる情報

オブジェクトの構造の検証で取得できる情報には以下のものがあります。

表04‐02 オブジェクトの構造の検証で取得できる情報

Oracleは 行をテーブルに挿入する要求が出されると、空きデータ。ブロッ

クに、行を書き込みます。また、更新する要求が出されると行を更新します。

しかし、挿入する行が大きい場合や、更新によるレコード長の増加によって、

1つのデータ。ブロック内にデータが収まらないことがあります。

隋隋行連鎖

レコード長が長くなり、1ブロック内に収まりきらなかった場合は1つの行

が複数のブロックに格納されます。このように、複数のデータ。ブロックに

またがって挿入された行を行連鎖と呼びます。

行連鎖が発生すると、データを検索する際に複数のプロックにアクセスし

なければならなくなるため処理に時間がかかります。

構 文

ANALYZE INDEX[くスキーマ名>.]く索引名>
VALIDATE STRUCTURE[CASCADE]

実行例 04-06

テーフル データ・ ブロック状況と行の整合性。CASCADE句 によりそのテーブルの
索引情報の分析も可能

索引 索引ブロックの整合性の検証。索引統計情報の取得も可能

ANALYZE文による行連鎖と行移行の確認

ANALⅥほ文による織連鑽と行移行の確認

吻罰機目仁行連鎖

統
計
情
報
の
収
集

隆 レコード長が大きいと

蒻
ブロック内に収まらずに複数の
ブロックをまたがってしまう

1
データ検索時にアクセスする
ブロックが増えてしまう

黎輻 行移行

データ更新時にレコード長が大きくなり、データがそのブロック内に収ま

らなかった場合、その行は別の新しいブロックヘ移行します。このように元

のプロックから別のブロックヘ行を移行することを行移行と呼びます。

行移行が発生すると、データ検索時に元のブロックにアクセスし、移行先

を取得後、移行先にアクセスするため処理に時間がかかります。

饉璽回塵轟行移イニ
更新によリレコード長が

大きくなると

鵞趾

データ検索時
元のブロックから
別ブロックヘ移動

元のブロックヘアクセス

隧
移行先ヘアクセス

卜
５
・

|■ |,■●1
■

■ ■

―

:

移動のブロック情報を聞き

‐ ‐■. , .■■ ‐. |●

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 04統 計情報の収集

晰蒻 行連鎖や行移行の状況の確認方法

ANALYZE文 を利用することで、行連鎖や行移行の状況を取得することが
できます。取得した行連鎖や行移行の情報は、CHAINED_ROWSテ ーブルに
格納されるので、はじめて実行する前にCHAINED_ROWSテーブルを作成
しておく必要があります。

鯰GHAINED_ROWSテ ーブルを作成する
utlchain,sqlス クリプ トを実行してCHAINED_ROWSテ ーブルを作成しま
す。スクリプトファイルは以下のディレクトリに格納されています。

表04‐ 05 utlChain sqlの 格納場所

(:)racle 8i、 9i、 109 (%)ORACLE HOME%¥rdbms¥admin

躍覇罰EロロI CHAINED ROWSテーブルを作成する

SQl> 90tORACLE HOMEl¥Fdbms¥adinin¥utlchOin.,ql

表
Pi作呼すれすした―

脩行連鎖や行移行の状況の取得

CHAINED_ROWSテ ーブルを作成後、ANALYZE文 にL:ST CHAINED
ROWS句 を追加して、行連鎖と行移行の状況を取得します。

欄 文

ANALYZE TABLE[く スキーマ名>。]くテーブル名>LIST CHAINED ROWS

曝麗回E四国 行連鎖や行移行の状況を取得する

,9■≧‐NALYZE TABLE●saloこtrilLItiさ
―

遠 圭鳥 ヽ
||■品 o

2 ./ ‐ . _ |_ ||‐ ‐ ‐|‐ ・■
「
「
~T:~I.1｀ V:= .| ||‐ ‐‐| ‐‐ ‐‐‐ ‐・ ‐

・ ||
‐■| .‐ || ~・

 ・‐・ ‐ ・

表が分析きれました: |
‐ ‐

|| _ | . . | .|| . . .・
 ‐ ~ ‐

・
 ・‐・ |.‐

 ‐
|‐

 .. . ・

統計情報を取得するパツケージ・プロシージャ

は行連鎖や行移行の状況の確認

ANALYZE文を実イ子すると、CHAINED_ROWテ ーブルのHEAD_ROWiD

列に行連鎖または、行移行が発生している行のROWIDが格納されます。表

示された情報を基に、該当のテーブルで行移行または行連鎖が発生している

行を検索することができます。

‐
―

　

″
・
　

■

0
二 ●

0行連鎖・行移行の対象行がなかつたことを表しています。

統計情報はCBOが実行計画を作成するために使用するので、スキーマ内で

取得したり、取得しなかったりするとオプテイマイザが作成する実行計画が

最適なものにならない可能性があります。

そのため、統計情報を取得する場合は、必ずすべてのオブジェクトに対し

て統計情報を取得する必要があります。しかし、スキーマ内のオブジェクト

すべてに対してANALYZE文 を実行して統計情報を取得すると、実行されな

いォブジェクトが発生する可能性があり、かつテーブル追加・削除時にメン

テナンスを行う手間もかかります。

そこで、Oracleに用意されている統計情報取得を実行してくれるパッケー

ジ・プロシージャを使用します。Oracleに は以下のパッケージ・プロシージ

ャが用意されています。

. DBMS-DDL.ANALYZE_OBJECT7tr 2-) *

. DBMS_UTILITY.ANALYZE-SCHEMA/ A 2 _) +

. DBMs-UTILITY.ANALYZE_DATABASEJ A I _) +

. DBMS_STATS.cATHER_TABLE_srATS A t) -) +

. DBMS_STATS. GATHER_INDEX_STATSA A 2 _) +

. DBMS_STATS.GATH ER-SCH EMA_STAT SJ N 2 _) +

. DBMS_STATS.GATHER-DATABASE-STATS7tr 2 -) +

統
計
情
報
の
収
集

続計情報を取得するパッケージ・プロシージヤ

●

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 04総計情報の収集

瞼輻 DBMS_DDL.ANALYZE_OBJECTプ ロシ…ジャ
DBMS DDL.ANALYZE OBJEC丁プロシージャは、指定されたテーブルや
索引、クラスタに関する統計情報を提供します。オブジェクトを指定して実

施するため、以下のANALYZE文 と同じことを、プロシージャから実行でき
ます。

表 04‐04 DBMS_DDL ANALYZE_OBJECTプ ロシージャのパラメータ

ANALYZE {TABLE I CLUSTER I INDEX}

[く SChema>.]く name> [く method>]
STATISTICS [SAMPLE くn> [{ROWS I PERCENT}]]

1壼自

DBMS_DDL . ANALYZE_OBl ECT (
<tyPe>,
[<schema>,]
<name>

Ircmethod>]
[, <estimate_rows>]
[, <estimate_percent>]
[, <method_opt>]
Ir<partname>]

);

type 「TABLE」、「CLUSTER」 または「INDEX」 のいずれかを設定する。何も設
定されていない場合には、「ORA‐20001エラー」が発生する

schema オブジェクトのスキーマ名を設定する (大文字・小文字区別)。 NULLの場合
は現行スキーマが使用される

name オブジェクト名を設定する (大文字・小文字区別)

method 「 ESTIMATE」 、「COMPUTE」 または「DELETE」 のいずれかを設定する。
「ESTIMATE」 を設定 した場合は、estimate_rowsま たはestimate_percent
のいずれかを「 0」 (ゼ ロ)以外に設定する必要がある

estimate_rows 推定する行数を設定する。デフォル トはNULL

estimate_percent 推定する行のパーセントを設定する。estimae_rOwsが 指定されている場合、
このパラメータは無視される。デフォルトはNULL

method_opt 以下の書式のメソッド・オプションを設定する。デフォルトはNULL
IFOR TABLE][FOR ALL[INDEXEDI COLUMNS〕
:SIZE n][FOR ALLINDEXESI

partname 特定のパーティションを設定する。デフォル トはNULL

口 日 IDBMこDDL.ANALY2=● 由 Ёё十,|ジァジ|
‐

統計情報を取得するパツケージ・プロシージヤ

蜻輻:DBMS_UTILiTYANALYZE_SCHEMAプ ロシージヤ
DBMS_UTILITY.ANALYZE_SCH=MAプ ロシージャは、スキーマ内にある

すべてのテーブル、索引およびクラスタに対 してANALYZE文 を実行します。
ただし、このプロシージャでは、ANALYZE文のようにすべての統計情報を

取得できるわけではなく、オプテイマイザに影響を及ぼさない部分の統計情

報だけを収集します。

表04‐05 DBMS_∪ TILITYANALYZE_SCHEMAプロシージャのパラメータ

鍮鰤 DBMS_UTILITY.ANAEYZE_DATABASEプロシージャ
DBMS_UT□ TY.ANALYZE_DATABASEプ ロシージャは、 デー タベース内

にあるすべてのテーブル、索引およびクラスタに対してANALYZE文 を実行
します。このプロシージャもDBMS_UTILITY.ANALYZE_SCHEMAプ ロシ
ージヤと同様に、ANALYZE文 のようにすべての統計情報を取得できるわけ

DBMS_UTI L rTY. ANALYZ E_SCHEMA (

[<schema>,]
<method>

[, <estimate_rows>]
[, <estimate_percent>]
[, <method_opt>]

);

統
計
情
報
の
収
集

schema オブジェクトのスキーマ名を設定する (大文字・小文字区別)。 NULLの 場合

は現行スキーマが使用される

method 「ESTIMATE」 、「COMPUTE」 または「DELETE」 のいずれかを設定する。
「ESTIMATE」 を設定 した場合は、estimate_rowsま たはestimate_percent

のいずれかを「0」 (ゼロ)以外に設定する必要がある

eslimate_rows 推定する行数を設定する。デフォル トはNULL

eslimate_!ercent 推定する行のパーセントを設定する。estimate_rowsが 指定されている場合、
このパラメータは無視される。デフォル トはNULL

method_opt 以下の書式のメソッド・オプションを設定する。デフォル トはNULL

IFOR TABLEl
IFOR ALL【 INDEXEDI COLUMNS]ISIZE n〕

[FOR ALLINDEXES]

EE oervrs_uflLrry.ANALyzE_scHEMAT Er-, "

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R04統計情報の収集

ではなく、オプテイマイザに影響を及ぼさない部分の統計情報だけを収集し

ます。

表04‐06 DBMS_∪ TILITY ANALYZE_DATABASEプ ロシージャのパラメータ

DBMS_STATSパッケージを使用して統計情報を収集することもできます。
このプロシージャは、DBMS_UTILITYパ ッケージを使用 した場合とは異なり、

オプテイマイザが使用する統計情報をテーブル単位、索引単位、スキーマ単

位、データベース単位で取得することができます。また、オプションを指定

することでさまざま条件にあった統計情報を取得することもできます。

OTNが公開している『パフォーマンス・チューニング・ガイド』には、統
計情報を収集する場合は以下の2点の理由より、ANALYZE文の使用ではな
く、DBMS_STATSパ ッケージの使用を推奨しています。

DBMS_UTr LrTY. ANALYZ E_DATABAS E (
<method>

[, <estimate_rows>]
| , <estimate_percent>]
[, <method_opt>]

);

method 「ESTIMATE」 、「COMPUTE」 または「DELETE」 のいずれかを設定する。
「ESTIMATE」 を設定 した場合は、 estimate_rowsま たはestimate_percent

のいずれかを「0」 (ゼロ)以外に設定する必要がある

estimate_rows 推定する行数を設定する。デフォル トはNULL

推定する行のパーセントを設定する。estimate_rowsが 指定されている場合、

このパラメータは無視される。デフォルトはNULL

method_opt 以下の書式のメソッド・オプションを設定する。デフォル トはNULL

[FOR TABLEl
[FOR ALL[lNDEXED]COLUMNS]ISIZE nl
[FOR ALL!NDEXESI

DBMS STATSパ ッケージ

‐Eコ日 DBMs=UT:L:TY:ANALY2EibATABASEサロジニジャ .‐ . ‐. _‐ ‐|

estimatelcercent

統
計
情
報
の
収
集

D3諄S SWVSバッケージ

・パラレルでの統計収集、パーティション化オブジェクトに対するグロ

ーバル統計収集、および他の方法での統計収集の詳細なチューニング

を行える

。統計情報に依存するCBOは、DBMS_STATSに よって収集された統計
情報のみを最終的に使用するため

ただし、CBOと は関係のない以下のような場合には、統計情報の収集

に、ANALYZE文を使用する必要があります。

・VALIDATE旬、LiST CHAINED ROWS旬の使用

・空きリストのブロックに関する情報の収集

眩輻 DBMS_STATSパッケ…ジのプロシ…ジャ
DBMS STATSパ ッケージを使用して、CBOが利用する統計情報を収集す
るには、以下のプロシージャを使用します。

表04‐07 CBOが使用する統計情報の収集

蟷辣鞣DBMS_STATS.GATHER_TABLE_STバ TSプロシージャ
DBMS_STATS.GATHER_TABLE_STATSプ ロシージャは、その名のとお

リテーブルに対する統計情報を取得する際に使用 します。また、同時に列や

索引の情報を収集することも可能です。

オブジェクト単位 GATHER TABLE STATS
GATHER INDEX STATS

スキーマ単位 GATHER SCHEMA STATS

データベース単位 GATHER DATABASE STATS

構 文

DBMS_STAT5 . CATHE R_TAB L E_STATS (

[<ownname>,]
<tabname>

[, <estimate_percent>]
[, <method_opt>]
[, <cascade>]

);

{)/1

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R04統 計情報の収集

表:04‐08 DBMS_STATS.GATHER_TABLE_STATSプ ロシージャのパラメータ

以下の例では、SAMPLEスキーマのSALES_TRNテ ーブルに対して、統

計情報を収集しています。ここでは、すべての列に対する統計情報を取得し、

ヒストグラムのバケット数は「75」 となっています。索引の統計情報は取得

していません。

DBMS STATS GATHER TABLE STATSプ ロシージャ

751′

《瑕曇躙》DBMS_STATS.GバTHER_INDEX_STATSプロシージヤ
DBMS_STATS.GATHER_iNDEX_STATSプ ロシージャは索引の統計情報

を取得する際に使用します。

スキーマの名前

tabname 統計情報を取得するテーブル名

estimate_percent 推定する行のパーセント

block_sample ランダム行サンプルの代わりにランダム・ブロック・サンプリングを使用

するかどうかをTRUE/FALSEで 設定する。デフォル ト値はFALSE

method_opt オプションを指定する。上記の例では「FOR ALL COLUMNS SIZE 75」 です
べての列情報を取得し、ヒス トグラムバケット数を「75」 としている

cascade 索引の統計情報を取得するか否かを指定する。デフォル ト値はFALSE

実行例 04■ 0

構 文

DBMS_STATS.GATHER_INDEX_STATS(

[く。Wnname>,]
く■ndname>

[,く eStimate_perCent>]

)j

‐
‐―● :.r● _

DBMS_STAISバ ツクージ

表:04-09 DBMS_STATS.GATHER_INDE× _STATSプ ロシージャのパラメータ

以下の例では、SAMPLEス キーマのIND_SALES索引に対して、統計情報
を収集しています。

DBMS_STATS.GATHER_INDEX_STATSプ ロシージャ

鰺隕膀漑餃DBMS_STATS.GバTHER_SCHEMA_STATSプ ロシージャ
DBMS_STATS.GATHER_SCHEMA_STATSプロシージャはスキーマ単位
で統計情報を取得する際に使用します。通常の業務で使用する場合は、このス

キーマ単位でオプテイマイザ統計情報を収集することが多くなるでしょう。

ovvnname スキーマの名前

indname 統計情報を取得する索引名

estimate_percent 推定する行のパーセン ト

統
計
情
報
の
収
集実行例 0411

構 文

DBMS_STATS . GATH E R_SCHEMA_STAT5 (
<ownname>

[, <estimate_percent>]
[, <block_sample>]
[, <method_opt>]
[, <cascade>]
[, <options>]

);

0-l

基
礎
編

∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R04畿 計情報の収集

議:04‐10 DBMS_STATS GATHER_SCHEMA_STATSプ ロシージャのパラメータ

※その他のオプションや各オプションについての詳細は、『PL/SQLパ ッケージ・プロシー
ジャーおよびタイプ リファレンス」を参照してください。

表04‐ 11「 options」 に設定できるオプション

以下の例ではSAMPLEス キーマ内のすべての統計情報を取得しています。

A_STATSプロシージャ

_パラメータ
ー
・

ovvnnarne スキーマの名前

estimate_-percent 推定する行のパーセン ト

block_sample ランダム行サンプルの代わりにランダム・ブロック・サンプリングを使用

するかどうかをTRUE/FALSEで 設定する。デフォル ト値はFALSE

method_opt オプションを指定する

cascade 索引の統計情報を取得するか否かを指定する。デフォルト値はFALSE

oplions 下表のオプション※を設定する。デフォルト値は「GATHER」

GATHER スキーマ内のすべてのオブジェクトに関する統計情報を収集する

GATHER AUTO 必要な統計情報を自動的に収集する。このオプションが設定されている場
合、Oracleは新しい統計情報を必要とするオブジェクトを暗黙的に判別 し、

その統計情報を収集する。また、処理されたオブジェクトのリス トも戻す

GATHER STALE ☆TAB MODIFICAT10NSビ ューを調べて、判別 した失効オブジェク トにつ
いて、統計情報を収集する。また、失効と判別されたオブジェク トのリス

トも戻す

GATHER EMPTY 統計情報がないオブジェク トの統計情報を収集する。また、統計情報がな
いオブジェクトのリス トも戻す

LiST AUTO 「GATHER AUTO」 を使用 して処理されるオブジェク トのリス トを戻す

LiST STALE ☆TAB MOD□ CAT10NSビ ューを調べて判別 した夫効オブジェクトのリス
トを戻す

L!ST EMPTY 統計情報がないオブジェクトのリストを戻す。

|,.`||

DBMS_STAISパ ツケージ

躊颯鋏DBMS_STATS.GバTHER_DバTABASE_STATSプロシージャ
DBMS_STATS.GATHER_DATABASE_STATSプ ロシージヤは、データベ

ース全体の統計情報を取得する際に使用 します。オプションの指定方法は、

DBMS_STATS.GATHER_SCHEMA_STATSプ ロシージヤとほぼ同じです。

統
計
情
報
の
収
集

DBMS-STATS . DE LETE_SCHEMA-sTATS (
<ownname>

[, <stattab>]
[, <statid>]
lr<statown>]
[, <no_invalidate>]

o、、′nnanle スキーマの名前

統計情報を削除する場所を示すユーザー統計表の識別子。NULLの 場合、

統計情報はディクショナリから直接削除される。省略可

stattab

st■id tatab内の統計情報を関連付ける識別子 (オプション)(sta■ abが NULLで な

い場合のみ動作)。 省略可。

statown stttabを含んだスキーマ (ownnameと 異なる場合)。 省略可

no_invalidate 依存カーソルは無効化を設定 します。省略可

統計情報の削除

実行例 04‐ 13

CHAPT[R04続 計情報の叡集

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

続計情報の転送

パフォーマンスの問題が発生した場合、本番環境でチューニング作業を実

施できるケースはほとんどありません。したがって、本番環境 と同じテスト

環境を作成し、そこでチューニング作業を行うことになります。

そこでテス ト環境を作成するのですが、本番環境にあるデータのみを取得

してもオプテイマイザは本番環境と同じ実行計画を作成することができませ

ん。そのため、ボトルネックとなっている現象を忠実に再現するためには

DBMS_STATSパ ッケージ・プロシージャの統計情報の転送機能を使用し、
統計情報もテスト環境に移行させる必要があります。

統計情報の転送は以下の手順で実施します。

1.ユーザー定義の統計テーブルを作成する

2.ユーザー定義の統計テーブルに統計情報をコピーする

3.ユーザー定義テーブルをコピーする

4.データ・ディクショナリに統計情報をコピーする

図04‐ 06 統計情報の転送機能

隕塚麒棘趙

①統計情報格納用のテーブル
を作成

躾鋏ユーザ…定義の統計テーブルを作成する

統計情報をコピー元のデータベース (本番環境からテスト環境への移行を

②①で作成した統計情報格納用
のテーブルにデータを格納

③スキーマをエクスポート

④エクスポートしたフアイルを
インポート

⑤④で作成したテープルから統
計情報をインポート

統針情報の転送

行う場合は、本番環境)でDBMS_STATS.CREATE_STAT_TABLEプ ロシー

ジャを使用して、ユーザー定義テーブルを作成 します。

霧詢4‐13 DBMS_STATS CREATE_STAT_丁 ABLE(Dノ くラメータ

ユーザー定義の統計テーブルを作成する

黎鼈 ユ…ザー定義の統計テーブルに続計情報をコピーする

データ・デイショナリからユーザー定義の統計テーブルに以下のプロシー

ジャを使用して統計情報をコピーします。

表0414 統計情報をコピーするプロシージャ

構 文

DBMS_STATS.CREATE_STAT_TABLE (

[く OWnname>,]
くstattab>

[,く tblSpaCe>]

)J

統
計
情
報
の
収
集

o、へ′nnanne スキーマの名前

作成するテーブルの名前stattab

tblspace 統計テーブルを作成する表領域の名前。このパラメータを指定しない場合

は、統計テーブルはユーザーのデフォル ト表領域に作成される

実行例 04■4

オブジェクト単位 EXPORT TABLE STATS
EXPORT INDEX STATS
EXPORT COLUMN STATS

スキーマ単位 EXPORT SCHEMA STATS

データベース単位 EXPORT DATABASE STATS

システム統計情報 EXPORT SYSTEM STATS

塑
=三
二 _三 二_三 二■■111二三二三 二■■ 1 1

t. 11 .´

基
礎
編

∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPTER 04統 計情報の収集

アプリケーションのテスト環境を作成する場合はスキーマ単位で出力する

ことが多くなるので、ここではスキーマ単位でエクスポー トする方法を例に

解説します。

表04‐15 DBMS_STATS.EXPORT_SCHEMA_STATSプ ロシージャのパラメータ

ユーザー定義の統計テーブルに統計情報をコピーする

鷺鰈隋樹ユ…ザー定義テーブルをコピ…する

エクスポート・インポート・ユーティリティ×を使用して、ユーザー定義

テーブルを移動先にコピーします。たとえば、本番環境からテスト環境に移

すときは、本番環境のスキーマ情報をエクスポートし、テスト環境のスキー

マにインポートを実施します。

※エクスポート・インポート・ユーティリティの使用方法については、本書の本題とは異な
るのでここでは解説しません。

構 文

DBMS_STATS . EXPORT_SCHEMA_STATS (
<ownname>,
< stattab>
[,<statid>]
Ir<statown>]

);

ownnanle スキーマの名前

stattab 統計情報の格納場所を示すユーザー統計テーブルの識別子

statid statab内の統計情報を関連付ける識別子。省略可

statown statabを含んだスキーマ (ownnameと 異なる場合)。 省略可

実行例 04‐ 15

), . _

'SAMPLE_s‐ TAT‐l .‐‐. |

統計情報の転送

鼈腱 データ・ ディクショナリに続計情報をコピ…する

ユーザー定義の統計テーブルからデータ・ディショナリに以下のプロシー

ジャを使用して統計情報をコピーします。

表:04-16 統計情報をコピーするプロシージャ

ここでは、スキーマ単位でインポー トする方法を例に解説します。

表04‐ 17 DBMS_STATS」 MPORT_SCHEMA_STATS(Эノ(ラメータ

lMPORT TABLE STATS
IMPORT INDEX STATS
IMPORT COLUMN STATS

オブジェクト単位

lMPORT SCHEMA STATSスキーマ単位

データベース単位 IMPORT DATABASE STATS

システム統計情報 IMPORT SYSTEM STATS

統
計
情
報
の
収
集

構 文

DBMS_5TATS . TMPORT_SCHEMA_STATS (
<ownname>,
< stattab>
[, <statid>]
[, <statown>]
[, <no_invalidate>]

);

o、へ′nnarne スキーマの名前

統計情報を取り出す場所を示すユーザー統計テーブルの識別子stattab

statid stattab内 の統計情報を関連付ける識別子。省略可

stato、、′n statabを 含んだスキーマ (ownnameと 異なる場合)。 省略可

no_invalidate このパラメータをTRUEに設定すると、依存カーソルは無効化されません。

省略口寺はFALSE

ノドラ|メ|―夕・ ||‐ |・

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

C‖APTER 04統計情報の収鷺

データ・ディクショナリに統計情報をコピーする

iキ .

‐■ , it‐ ■

実行例 04‐ 16

続計情報の確認方法

ここまで、統計情報の取得方法について解説しました。ここでは、取得し

た統計情報の格納場所と、収集される統計情報の具体的な内容について解説

します。

取得した統計情報は、データ 。ディクショナリに保存されます。ただし、

取得したテーブル、索引、列に対する統計情報はそれぞれ別のデータ。ディ

クショナリに格納されます。

隋輻 テーブル続計情報の確認

テーブルの統計情報は、以下のデータ

確認できます。

・ USER_TABLES

・ ALL TABLES

・ DBA TIABLES

表0418 テーブル統計情報の格納列

デイクショナリ ビユーの各列で

NUM ROヽハ′S 行数

BLOCKS HWM以上のデータ。ブロックの数
EMPTY BLOCKS 未使用のテーブルに対して割り当てられているデー

タ・ブロックの数 (HWMよ り上のブロック数)
AVGI SPACE 各データ・ブロックにおける使用可能な空き領域サイ

ズの平均値 (単位 :バイ ト)

CHAIN CNT 連鎖行の数

AVG ROW LEN 行のオーバーヘッドを含む、バイト単位での行の平均

の長さ

LAST ANALYZED テーブルが分析された最終日付

SAMPLE SIZE テーブルの分析に使用 したサンプルサイズ

統
計
情
報
の
収
集

統議情報の確講方法

躾輻 索引続計情報の確認

索引の統計情報は、以下のデータ。デイクショナリ・ビューの各列で確認

できます。

・ USER INDEXES

・ALL INDEXES

・ DBA INDEX「 S

表04‐19 索引統計情報の格納列

黎輻 列続計情報の確認

列の統計情報は、以下のデータ・デイクショナリ・ビューの各列で確認で

きます。

・USER TAB COLUMNS
・ALL TAB COLUMNS
・ DBA TAB COLUMNS

BLEVEL ルー ト・ブロックからリーフ・ブロックまでの索引の

深さ

リーフ・ ブロックの数LEAF BLOCKS

DISTINCT KEYS 個別索引値の数

AVG LEAF BLOCKS PER KEY 索引の値ごとのリーフ・ブロックの平均数

AVG DATA BLOCKS PER KEY (テーブルに対する)索引の値ごとのデータ・ブロック

の平均数

SAMPLE SIZE 索引の分析に使用したサンプルサイズ

LAST ANALYZED 索引が分析された最終日付

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R04畿 計情報の収集

表04‐20 列統計情報の格納列

瘍欲 ヒス トグラム続計情報の確認

ヒストグラムの統計情報は、以下のデータ。デイクショナリ・ビューの各

列で確認できます※。ヒストグラム内で1行が1つのバケットに対応します。

※ DBA_、 ALL_に も同じ情報が格納されています。ここでは∪SER_の例で説明します。

・ USER TAB H:S丁 OGRAMS
・ USER PART HISTOGRAMS
・ USER SUBPART HiSTOGRAMS

表04‐21 ヒストグラムの統計情報の格納列

Oracle 91ま では、オプテイマイザの設定としてRBOと CBOを選択できた
ので、データベース管理者が統計情報の取得を行わない場合はRBOで動作さ

せることができました。しかし、Oracle 10gか らはRBOが廃止されたため、
オプテイマイザは必ずCBOを使用しなければなりません。

そのため、Oracle 10gでは統計情報の取得という煩雑な作業をデータベー

ス管理者が行うのではなく、Oracleがインストールされると統計情報を取得

NUM DlSTINCT 異なる値の数

LOW VALUE 列の最小値

HIGH VALUE 列の最大値

NUM NULLS 列内のNULL値 の数

NUM BUCKETS ヒストグラムのバケット数

AVG COL LEN 列の平均長さ (バイト数)

SAMPLE SIZE 列の分析に使用したサンプルサイズ

LAST ANALYZED 列が分析された最終の日付

||1壼憑蟹■雄透上菫壁生墨 ||||三二三二||●三■■|||||■ 11

ENDPOINT NUMBER

‐‐‐‐理
'111‐

1‐

「
撃 |11‐ |||||ヽ■IIIlflll:||11‐ ||■ :|■畳壺壼二上 三二 三二

バケット番号

バケット用に正規化された終値

ENDPOINT ACTUAL VAL∪ E 終値の実値

Orac:e10gでの統計情報の取得

ENDPOINT VALUE

⑬鍾 峰109で分統計情報の取得

するバッチ処理が内部的にスケジユーリングされ、自動的に取得する仕組み

になりました。

しかし、スケジュールにより統計情報を取得すると、そのスケジュールが

実行されるまでの間に、大量データの更新が行われると実行計画が変わって

しまう可能性もあります。

そこで、このような場合でも最適な実行計画が立てられるように、以下の

機能により自動的に統計情報が取得できるようになっています。

・動的サンプリング

・DML監視

上記の機能は、Oracle 10gの 新機能ではないのですが、自動的に統計情報

を取得する機能として知っておく必要があります。

隋躙 動的サンプリング

動的サンプリングは、Oracle 91 R2から実装された機能で、テーブルや索

引に統計情報がない場合や、統計情報が古すぎて信頼できない場合に自動的

に統計情報をサンプリングする機能です。動的サンプリングを使用するかど

うかはコンパイル時に判断されます。

なお、動的サンプリングでは、取得した統計情報はデータ。デイクショナ

リには格納されず共有プールに格納され、使用されます。

動的サンプリング

緻鰤躙輻輻粽
SQL発行

実行計画作成
(八―ドバース)

再帰的にSQLが内部で実行
され、サンプリングにより
統計情報を取得

テーブルに統計情報がない場合など初期化
パラメータOPT!MIZER_DYNAMiC_SAMPL:NG
の値により変動

SQLはその統計情報を基に
実行計画を作成

´́イ)卜、、
´́/´
 ヽ

、

｀`
、`ヽ
ン
//

六

趾

図04‐07

統
計
情
報
の
収
集

鰺鹸
議́貯軽

鮨飩

基
礎
編

∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R04畿 計惰舗の収集

鼈漑動的サンプリングの実行タイミング

動的サンプリングを実行するタイミングは、初期化バラメータoPTIMIZER_

DYNAMiC_SAMPLiNGの 値 で制御 します。このパ ラメー タには「 0」 か ら「 10」

までの範囲で値を設定できますが、基本的には「0」 から「2」 までの値を設定

します。

初期化パラメータOPTIMIZER_DYNAMIC_SAMPLINGに ついてはOTN
が公開している『パフォーマンス・チューニング・ガイド』に以下のように

解説されています。

瘍バラメータ値が「1」の場合

(1)分析されていない表が問合せに少なくとも1つある場合

(2)こ の分析されていない表が、別の表と結合、または副問合せかマージ

不可能ビューにある場合

(3)この分析されていない表に索引がない場合

(4)この分析されていない表に、この表の動的サンプリングに使用される

ブロックの数よりも多いプロックがある場合

サンプリングされたブロック数は、動的サンプリングのブロックのデ

フォル ト数です (32)

隋パラメータ値が「2」の場合

2の場合は、動的サンプリングをすべての分析されていない表に適用しま

す。サンプリングされたブロック数は、動的サンプリングのプロックの

デフォルト数の2倍 (64)です。

つまり、パラメータの値が「1」 の場合は、問い合わせが実施されるときに、

統計情報がなければ自動的にサンプリングを実施し、パラメータの値が「2」

の場合は、無条件に動的サンプリングが行われていないテーブルに対して、

サンプリングを実施します。パラメータ値に「0」 を指定した場合は、動的サ

ンプリングは機能しません。

なお、Oracle 10gの デフォルト値は「2」、Oracle 9iの デフォルト値は「1」

です。通常は、Oracle 10gのデフォルト値である「2」 で問題なく統計情報を

取得することができます。また、これ以上大きな値を設定すると、テーブル

統
計
情
報
の
収
集

○願灘 109での統計情報の取得

作成時や更新時に大きな負荷がかかってしまいます。そのため、「3」 以上に

ついては特に必要であるとは感じませんが、統計情報の収集において問題が

発生した場合には『パフォーマンス・チューニング・ガイド』を参照し、十

分な検証を行ったうえで変更するようにしてください。

隋蝙 DML監視
DML監視は、Oracle 8iから実装された機能で、テーブルやパーテイシヨ

ンに対する更新処理 (INSERT文、UPDATE文 、DELETE文、DIRECT

LOAD文)が発生した場合に、その更新内容を記録する機能です。なお、記

録した監視情報は統計情報を取得することで削除されます。

曖亜□回圏DML監視

磋
輻 隋 祠 彗靱 鸞趙 躙

DML文発行
(挿入、更新、削除)

DML文が発行される
たびに状態を監視

そのまま処理を続行 ・罐鼈

自動的に統計情報を収集

DML監視機能を使用する場合は、CREATE TABLE文 にMON:TORING句

を追加 します。また、使用したくない場合は、NOMONITOR:NG句 を追加し

ます。Orade 10gで は初期化パラメータSTATIST:CS_LEWELに「TYPICAL」 (デ

フォル ト値)も しくは「ALL」 が設定 されている場合は、自動的にMONI

TORING属 性はONに なり、「BASIC」 が設定されている場合は、MONITO
RING属性はOFFになります。

隧

仁
憚
´

No

<fて発>
V

最後に統計情報を取得してか虫

データ量に大きな変動があつたか

判断する

Yes

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R04統計情報の収集

ただし、DML監視を有効にすると、少量 (0.5%未満)の オーバーヘッドが
生じることがあります。

DML監視を実施し、前回統計情報を取得したときから変化のあったもの
に対して統計情報を取得しますが、この処理はちょうど、以下のコマンドを

実行したのと同じことを、Oracle内部で行っています。

統計情報の取得実行例 04-17

■・ |―

||・ |
‐

‐

本葦のまとめ

髄 |

い

には、テーブノレや索引などの

卜は以下の4うです。

■
~ ‐
=:

統
計
情
報
の
収
集

本 辱ユ の ま と め

テーフル ・行数

・ブロック数

・行あたりの平均の長さ

タリ ・列内の個別値

・列内のNULL数
・データ配分

索引 リーフ

ブロックの数

レベル

クラスタ化係数

1/○パフォーマンスと使用率

CPUパ フォーマンスと使用率
システム

.します。

基
礎
編

∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ
の
基
礎
知
識

CHAPT[R04統 計構報の収纂

.| :'|

●̈

テーブルに関連付

||●行運鎖||
‐‐| |‐

■ _‐ | ‐

オブテイマ/Fザは必

CHAPTER 07

CHAPT[R08

現場で使える
SQLチューニング

実践編では、基礎編で解説した「問題が発生しているSQL」 に対して、具

体的にどのようにチューニングすべきなのかを解説します。SQLのチュ

ーニングで重要なことは、原因を分析し、対策を考えることです。SQL

チューニングには、その場面や状況によつてさまざまな方法があります。

それぞれの方法を適切に使い分けるスキルも必要です。

■□回回回I SQLの正しい書き方

■□回国回1索引の基礎知識

索引によるSQLチューニング

結合によるSQLチ ューニング

■回□回回I DML処理の高速化

■
日
ヽ

日 |ロ

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

基礎編で発見した問題のあるSQLの中で、はじめに確認すべきポイントは、

SQLが「正しい書き方」で書かれているか否かです。プログラマが100人いれ

ば、100と おりのプログラミングロジックの書き方があるのと同様に、SQL

でも同じ結果を得る複数の書き方があります。

しかし、SQLでは同じ結果を返すSQLで も、ちょっとした書き方の違いで

パフォーマンスが100倍近 く変わってしまうこともあります。そのため、

SQLの実行ロジックを理解すれば、少し書き換えるだけでパフォーマンスを

大幅に改善させることが可能です。

本章では、結果は同じでもパフォーマンスに差が出るSQLについて、正し

いSQLの書き方を解説します。

クライアントから発行されたSQLを 処理し、要求データを返すまでに、内

部的にはSQLの解析、実行、フェッチの3つの処理が行われていることは基

礎編で解説しました (P.18参照)。 ここでは、その中でも解析処理に問題があ

った場合の改善方法について解説します。

SQLの解析処理 (PARSE)は、構文チェックやSQLの最適化などを行うス

テップで、Javaな どのプログラム言語における「コンパイル」に相当します。

一度解析されたSQLは、実行計画とともにSGA内 の一部である共有プールの

ライブラリ。キャッシュに保存されます。

SQLの解析処理

SQLの正しい
書き方

CHAPTER

CHAPT[R05 SQLの正しもヽ書き方

SQLの解析処理

SQLはその統計情報を基に
実行計画を作成
(SOFT PARSE)

・ライブラリ・キャッシュに保存 (更新)する
・処理内容が同じ場合は実行回数をカウントアップする

隋輻鞣SOFT PARSEと HARD PARSE
SQLの解析処理には、SOFT PARSEと HARD PARSEの 2種類があります。

瘍SOFT PARSE
SOFT PARS匡 とは、ライブラリ。キャッシュにキャッシュされている実
行計画を使用してSQLを 実行することです。Oracleは sQLが実行されたとき
にライブラリ・キャッシュをチェックし、同一のSQLの解析結果がキャッシ
ュされていないか確認します。その際に、解析結果がキヤッシュされていれ

ば、解析処理をスキツプし、キヤッシュされている実行計画を使用してSQL
を実行します。

瘍HARD PARSE
HARD PARSEと は、実行されたSQLと 同一の解析結果がライブラリ。キ
ヤッシュに存在しない場合に、データ。ディクショナリに対してリカーシブ

コール (再帰SQL)を発行し、以下の処理を行い、共有プール上に実行計画
を含めた解析結果のキャッシュを行うことです。

Yes

No

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

HARD PARSE

実行

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

H′甲:D PARSEされた回数の確認

。構文のチェック

・テーブル、列の定義チェック

・アクセスするオブジェクトヘの権限チェック

・実行計画の生成

HARD PARSEは SOFT PARSEと 比べ時間のかかる処理であるため、大

量に発生するとデータベース全体の処理パフォーマンスに影響を与えます。

そのため、HARD PARSEを 回避すれば、解析処理によるCPU使用率の低減

や、共有プールのメモリ使用量の削減などの効果を得ることができ、結果的

にパフォーマンスの向上につながります。

実際のアプリケーションでは、どれくらいの数のHARD PARSEが実行さ

れているかが確認できないと、HARD PARSEが 原因でパフォーマンスが劣

化しているという判断ができません。

HARD PARSEが行われた回数を調査するには、動的パフォーマンス・ビ

ューV$SYSSTATを 使用し、ライブラリ・キャッシュにおける解析状況を観

察します。

HARD PARSEされた回数の確認

HARD PARSEさ れた回数の確認

実行例 05‐ 01

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPT[R05 SQLの正ししヽ書き方

表05‐01 動的パフォーマンス・ビュー∨$SYSSTATの出力項目

これらの情報から、実際にインスタンスを起動してから解析処理がどれだ

け実行されているか確認することができます。本番稼働後に「parse cOunt

(hard)」 の値が極端に多い場合は、HARD PSARSEがパフォーマンス劣化の

原因の1つである可能性があります。

HARD PARSEを回避するには、どのようなSQLを書けば良いのでしょう
か。Oracleは 共有SQL領域内に同一SQLの解析結果が残されていれば、その

解析結果を使用して処理を実行します。したがって、ポイントとなるのは、

「発行するSQLを なるべく同一のSQLと してOracleに判断させること」です。

同一のSQLと 判断させる方法には以下の3つがあります。

。SQLの記述ルールを決める
。バインド変数を利用する

。初期化パラメータCURSOR_SHARINGを利用する

ただし、同一のSQLであっても、インスタンスを再起動すればメモリ領域

内の情報はクリアされるので、再起動後に最初に実行するSQLは 、必ず
HARD PARSEが行われます。

Oracleは 同じ結果を返すSQLでも、記述内容にほんのわずかでも違いがあ

れば同一のSQLと は判断しません。そのため、大文字・小文字の違い※や改

行の位置などの記述ルールをあらかじめ決めておき、システム全体で統一す

parse time cpu 解析 (ハー ドおよびソフト)で使用された合計CPU時間 (単位 :10ミ リ秒)

parse time elapsed 解析の合計経過時間 (単位 :10ミ リ秒)

parse count (total) SOFT PARSE、 HARD PARSEを 含む解析 :処理の合計数

parse count (hard) HARD PARSEの 回数

parse count (failures) 解析に失敗 した回数

HARD PARSEの 回避方法

SQLの記述ル…ルを決める

バインド変数

るようにします。

記述ルールとして決めておく項目は主に以下の4つです。

※大文字 .小文字の違いはOracleの パージョンによっては、解釈できるものもあるようで

すが、一般的には同一のSQLと して判断されないと考えておいたほうが良いでしょう。

・大文字と小文字

・改行の位置

・スペースの個数

・WHERE旬の条件

アプリケーションから発行されるSQLは、プログラムで自動生成されるた

め、別々の機能で同じSQLを それぞれ記述している場合を除いて、大文字・

小文字や、改行の位置、スペースの個数が変わることはほとんどありません。

しかし、WHERE句 の条件を組み立てる際に、実行時に渡される引数をそ
のまま埋め込んでいるアプリケーションの場合、そのWHERE句を合むSQL
はすべて違うSQLと して処理されてしまいます。

仮に以下のようなSQLをループ処理で組み立てて実行している場合は、そ

のループの回数だけHARD PARSEが実行されることになります。

洟麒 バインド変数とは

パインド変数とは、SQLに プログラムの変数を埋め込むことです。上記の

ようにWHERE句 の条件に入る値だけが異なる場合に、条件値にバインド変

数を定義することで、Oracleに同一のSQLと して判断させ、HARD PARSE
の実行回数を減らすことができます。

また、HARD PARSEの実行回数が減ることで、ライブラリ。キャッシュ

に余裕ができ、他のSQLがキャッシュされやすくなるので、ヒット率の向上

バインド変数

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

構 文

■)WHERE CUSTCODE = 1■000■
1

2)WHERE CUSTCODE = 120000:

CHAPTER 05 SQこ の正ししヽ書き方

にもつながります。

ヨ 05,02 バインド変数

ライブラリ・キャッシュ内のSQL

SELECT EMPNAME FROM EMP
Ⅵ′HERE EMPNO=1000

SELECT EMPNAME FROM EMP
WHERE EMPNO=:W EMPNO

SELECT EMPNAME FROM EMP
Aヽ′HERE EMPNO=2000

同一のSQLがないため、
解析処理から実行

同一のSQLがあるため、
解析処理をスキップして実行

比較

比較

SELECT EMPNAME FROM EMP
Aヽ′HERE EMPNO=:W EMPN0

W EⅣIPNO:=2000

蝙輻バインド変数の定義

バンド変数を定義するには、変数を宣言した後に、SQLの 中で変数名の前

に「:」 (コ ロン)を付けます。

バインド変数を使用したSQL
■ ‐■ ■

・, || :・

11'
■■

.=

■
`■

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

構 文

く変数名>

実行例 05‐ 02

バインド変数の利用;こよるセキエリテイ対策

EMPNO Em・ I JOB IIIMGRII HIRI:,DATE . SAL ..COMM: DEPTNO ‐

7369 SMITH CLERK 7902 801-12・ 17 111 8010 111 _ 20

oバインド変数を宣言します。
②宣言したバインド変数に値を代入します。

0バインド変数を使用してSQLを実行します。

上記のように、変数のみが変更されるようなSQLでバインド変数を利用す

れば、Oracleに対して同一のSQLと して認識させることが可能になります。

ただし、バインド変数を使用したSQLの発行は、プログラムが使用するミド

ルウェアによって書き方が異なるので注意してください。

Webア プリケーションでバインド変数を利用することは、セキュリテイ対

策 (SQLイ ンジェクション対策)に もなります。

たとえば、ユーザーIDと パスワードを入力し、認証を行うログイン機能が

あるとします。認証は内部的には以下のようなSQLを実行し、SELECT文の

結果が「0」 の場合はログイン不可、「1」 の場合はログイン可とします。

ここで、悪意を持ったユーザーに、入力値2に「
[;DROP TABLE EMP;」

と

入力されたらどうなるでしょうか。もし、なんの対策も行っていなかった場

合、EMPテーブルの内容はすべて削除されてしまいます。また、「
10R l=

1」 と入力されたらユーザーIDに 関係なくログインできてしまいます。

このように、データベースと連携したWebアプリケーションに対して、悪

意を持ったユーザーが命令文の組み立て方法を利用して、不正なSQLを入力

することでデータを改ざんしたり、消去したりすることを、SQLイ ンジェク

ションといいます。

バインド変数の利用によるセキュリティ対策

∽
Ｏ
ｒ
の
正
し
い
書
き
方

構 文

SELECT COUNT(*)FROMく テーブル名>
WHERE EMPNO = :く 入力値■>: AND PASSWORD = iく入力1直2>=

CHAPTER 05 SOLの正しい書き方

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

SQLイ ンジェクション

通常のログイン処理

Webブラウザからユーザーが
ログインID・ パスワードとも
「fukuda」 と入力した場合

Webサーバーで
SQLを作成

ス タ

SQLイ ンジェクション

Webブラウザからユーザーが
ログインIDに「A」 、パスワードに
「A'OR A=`A」 と入力した場合

Webサーバーで
SQLを作成

そのため、多くのWebア プリケーションでは、入力された文字に対してエ

スケープ処理を行ったり、特殊文字の入力を不可にする処理などを行い、こ

のようなSQLが実行されないように制御しています。

躊輻 ′tインド変数による文字の置き換え

バインド変数を使用すると、変数はデータベースエンジン側に用意された

プレースホルダ用のメモリ領域に、組み立てられたSQLの一部としてではな

瘍

■
●

タ

・ _ ,

・
 ■

■|. ・

現場でバインド変数力滞む用されない理曲

く、SQLの要素となる値として渡され、「数値定数」や「文字列定数」に置き

換えられます。

そのため、入力された「
i」

(シ ングルクォーテーション)や「¥」 (バ ックス

ラッシュ)な どの特殊文字に対して、わざわざエスケープ処理を実行する必

要はなくなります。

つまり、バインド変数を使用するだけで、SQLイ ンジェクション対策が行

えてしまうのです。そのため、Webア プリケーションでは、バインド変数の

使用を義務付けている場合もあります。

バインド変数による文字列の置き換え

バインド変数による文字列の置き換え

入カデータを送信

登録完了通知 Webブラウザから
ユーザー情報を入力

INSERT文の発行↓

バインド変数には、これまで解説してきたようにさまざまなメリットがあ

るのですが、そのメリットを知りながらも、多くのプログラマはあまリバイ

ンド変数を使いたがりません。なぜでしょうか。

あまり使われない原因には以下の2つが考えられます。

・バインド変数を使用しないほうが、コーディングが簡単

・バインド変数を使用しないほうが、デバッグ時のログ出力が簡単

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

現場でバインド変数が利用されない理由

―■‐■

・■‐■

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

CHAPTER 05 SQ歓ゆ五し罐 き方

鰈蒻 コーディングが簡単

バインド変数を使用したプログラムは以下のように記述しますONaの場合)。

一方、バインド変数を使用しないプログラムは以下のように記述します

(Javaの場合)。

構 文

Connection lConnection=く コネクション作成〉;

ResultSet lResultSet=null,

PreparedStatement lPreparedStatement=null;

StringBuffer lSqlBufl = neW StringBuffer(

"SELECT * FROM EMP WHERE EMPNO=P AND ENAME = ア::

),

try {

lPreparedStatement=lCOnneCtiOn.prepareStatement(lSqlBufl・ tOString());

lPreparedStatementoSetString(1,:く
'自

―:協淑|〉
1);

lPreparedStatement.setString(2,1く 第二31数>i);

くログ出力〉=lSqlBuf.toString();
くログ出力 =第―引数〉

くログ出力 =第二引数〉

lResultSet=lPreparedStaternent.executeQuery(),

}catch(SQLException e){

}

構 文

Connection lConnection=く コネクション作成>メ
Resu]_‐LSet lResultSet=nullj
statement lStatement=null;
StringBuffer lSqlBuf = neW StringBuffer(
1lSELECT * FROM EMP WHERE EMPNO=く

値■)AND ENAM[= く値2>li

)5

try {
くログ出力>=lSqlBuf.toString()j
lStatement = lCOnneCtiOnoCreateStatement()5
lResultSet 〓 lStatementoexecuteQuery(lSqlBuf.toString())3

}catch(SQLException e){
}

バインドピーク機能

上記2つのプログラムを見ればわかるように、バインド変数を使用しない

ほうがSQL処理を簡単に記述することができます。そのため、バインド変数

を使用せずにプログラミングしてしまうのです。

餞塚 デバッグ時のログ出力が簡単

バインド変数を使用しなければ、直接SQL*Plusな どのッールから問題の

あるSQLを実行することができます。 しかし、バインド変数を使用すれば、

SQL*PIusな どのツールから実行する際に、ログから再度SQLを組み立てる必

要があるため手間がかかります。

上記のように、バインド変数を使用するとパフォーマンスは向上するので

すが、メンテナンス性が低下します。そのため、プログラマは開発の容易さ

からバインド変数を使用しない傾向になっています。このような状況を回避

するためにも、プログラム作成前にコーディング規約を作成し、バインド変

数の使用を義務付けるようにすることをおすすめします。

Oracle 8i以前のOracleに は、バインド変数を使うことのデメリットが1つ

だけあります。

Oracle 8iでは、実行計画を決定するときにバインド変数にセットされた値

を考慮しません。そのため、たとえば同じSQLで も列の値が「a」 のときは全

体の80%を 占め、「b」 の場合は全体の5%を 占めるような場合、バインド変数

の値に「a」 が指定されるとフルテーブルスキャンが有効になり、「b」 が指定

されると索引スキャンが有効になることが最適なことですが、Oracle 8iでは

この変数値の違いを考慮することができません。したがって、変数の値によ

り実行時間が大きく変わる可能性があるのです。

この問題を解決するためにOracle 9iか らは、バインドピーク機能という新

機能を使用し、SQL実行時に変数の値を確認し、変数の選択性を考慮した実

行計画でSQLが実行されるようになりました。

バインドビーク機能

∽
Ｏ
ｒ
の
正
し
い
書
き
方

初期化バラメ…夕CURSOR SHARING

C‖APT[R05 SQこの正じしヽ書き方

バインド変数以外にも、Oracleの 機能を使用することでSQLを 同一のもの

と判断させる方法があります。

Oracle 8i(8.1.6)か ら新たにCURSOR_SHARINGと いう初期化パラメータ

が追加されました。このパラメータを使用することで、バインド変数を使用

しなくても同じSQLを共有できるようになります。同じSQLと判断する方法

として、以下の3つの値が提供されています。

表 05‐02 初期化パラメータC∪RSOR_SHARINGの設定値

バインド変数を使用していないアプリケーションで、初期化パラメータ

CURSOR_SHARINGを「FORCE」 に設定するとリテラルが含まれるSQLを 自

動的にバインド変数に変換してくれます。一方で、SQLを 分析する段階では

バインド変数の値が決まらないため、ヒストグラムに応じた実行計画を立て

ることができなくなります。

そのため、「FORCE」 を設定した場合はデータ分布の偏りをアプリケーシ

ョン開発時に判断し、バインド変数とヒストグラムを使い分けるようにアプ

リケーション内で調整する必要があります。

なお、Oracle aか ら設定できる「S:MLLER」 では、データ分布の偏り具合を

判断し、値に応じた実行計画が自動的に立てられます。そのため、Orade 91

以降を使用している場合は、「SIMLLER」 を設定することをおすすめします。

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

EXACT デフォル ト値。完全に一致するSQLのみカーソルを共有する。Oracie 8は
りも前のバージョンではこの方法でカーツルが共有される

SIMLLER リテラルの違いが実行計画に影響 しなければ、リテラルをバインド変数に

変更してカーソルを共有する。Oracle 9i以降で設定可能

FORCE リテラルの違いが実行計画に影響する場合でも、リテラルをバインド変数

に変更してカーソルを共有する

:N旬とOR旬

FORCEと SIMLLER(2)違い

SiMM:LLER FORCE

EMPNOの値により実行計画が変わらな
ければ、自動的に同一のSQLと判断し、

スキップする。ただし、実行
る場合は解析を行う。

1自動的に同一のSQLと判断し、解析処理
|をスキップする。

SELECT EMPNAME FROM EMP
Aヽ′HERE EMPNO=2000

SELECT EMPNAME FROM EMP
″ヽHERE EMPNO=2000

響:
爾
ヽ
‐ バインド変数

へ自動変換 蟷

本章の冒頭でも解説しましたが、SQLでは同じ結果を得る複数の書き方が

あります。しかし、書き方によって大きくパフォーマンスに差が発生するこ

ともあるので注意が必要です。ただし、「この書き方が正しい」という答え

はなく、データの量や特性によって、いろいろなSQLを 実際に書いてみて、

どの書き方が最も効率が良くなるのかを判断するしかありません。

大切なことは、実行計画とデータの両特性から最適なSQLを 判断すること

です。ここでは、結果が同じではあるけれど、書き方が異なるSQLの代表的

な以下の3つの書き方について解説します。

。iN句 とOR句

・ IN句 とEXiST句

・反結合とNOTIN句 。NOT EXISTS句

WHERE句 の条件を指定する代表的なものに、IN句 とOR句 があります。
IN句 では、指定 したリス ト内に1つでも条件に合う値が含まれていれば

「TRUE」 を返すので、OR句 と同等の使い方をすることができます。条件が

少ない場合はOR句を使用してもSQLを簡単に記述することができるのです

SELECT EMPNAME FROM EMP WHERE EMPNO=くバインド変:数:>

書き方は違うけれど結果が同じになるSQL

lN旬とOR旬

{〕ち

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPTER 05 SQLの正しい書き方

が、条件が多くなるとSQLが煩雑になるため、IN句 を使用する場合が多いと

思います。では、IN句 とOR句で実行計画は変わるのでしょうか。

以下の例では、売上情報を格納しているSALES_TRNテ ーブルに対して、

商品コードが「20」 と「30」 の売上データをIN句 とOR句 を使用した場合でそ

れぞれ実行しています。

| ■‐|

||| ||

I

‐ 3 ・‐2 1‐

:R=,墨
=

_ ‐_ ,■ | = ‐
|:■

■||

‐■|

0 |.: ■: ● ・

統計 .. | ・

■ ●

■| ■

.■ ●. _=

1603

102

0

‐ ‐ 10

■513

c■ient

巖賓圏□国E10R句 を使用したSQL

‐sQll SlLECTII ■|I FiOM Salとも_ in
‐

2 剛 ERE cimdtiycode ■ 1201 0R Cmdtycoこさ = '30・ 1

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

IN旬 とOR旬

上記の結果と実行計画を見ると、書き方が異なる場合でも同じ結果を返す

SQLを作成することができることがわかります (01と 0)。

黎塚晰UNION ALL旬
上記のSQLは、UN10N ALL句 を使用して記述することもできます。

実行例 05‐05 ∪N10N ALL句を使用したSQL

3 /

1513行が選択されました。

1

2

1

SELECT STATEMENr

O CONCATENAT10N

実行計画

|=|

工おこDEX

dib block

consistenL gets
0 physical reads
0 redo size

40947 byt.es sent via

TA.BLE ACCESS (BY

工NDEX

TA.BLE ACCESS

bytes received via
SQL*Net roundtri-ps
sorts (memory)

sorts (disk)
rows processed

-0

1603

102

0

0

1513

一̈
一

11■ .

C‖ APTER 05 SQLの正しもヽ書き方

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

sorts (memory)

O SortS (diSk)

1513 rows processed

IN句 をOR句 に置き換えた場合はまったく同じ実行計画になりましたが、

UNION ALL句 を使用した場合だと結果は同じですが、実行計画が少し変わ

っています (0)。 上記の例ではデータ件数も少ないため、あまり差はありま

せんが、UN10N ALL句 を使用したSQLのほうが他の2つ よりも、アクセス

ブロック数 (consistent gets)が 少ないことが読み取れます (0)。

実際の現場でもこのような場面に直面する機会があるかと思いますが、こ

の ようにIN句やOR句 は、UN10N ALL句 (場合によってはUNION句)に書

き換えることができる場合もあります。今回のようにUN10N ALL句のほう
が有効なケースもあるので、データ量やデータの特性を考慮し、適切なもの

を使用するようにしてください。

SELECT STATEMENT Optiimizer=CH00SE

UN■ ON―俎 L

TABLE ACCESS (BY

INDEX (RANGE

-0

499 consistenE gets
0 physical reads
0 redo size

1603 bytes received

―

■

一́

:N旬とこX19‐S毎

IN句 をEXiSTS旬 に書 き換えるとパフォーマンスが向上するので、できる

だけEXISTS句 を使用するように変更します。ただし基本的には、IN句 は条

件列の値と副問合せ結果のリストが一致する列を抽出する構文であり、一方

のEXISTS句 は副問合せの結果がTRUEか FALSEを判断する構文です。した

がって、書き方を間違えると違う結果を返すSQLに なってしまい、バグの原

因となります。lN句をEXISTS句 に書き換える場合は、十分に注意しましょう。

洟輻 IN旬とEX:STS旬の違い

IN句 とEXISTS句 はSQLの実行計画にどのような違いがあるのでしよう

か。まずは実行計画の違いを確認するためにSQLを実行してみます。以下の

例では、顧客マスタに10万件、都道府県マスタに48件のデータがあるデータ

ベースに対して実行しています。

選賓口EIE口 IN句を使用したSQL

SQL> SELECT /■ ■ RU■,E贅 / ★ FROM

2 1fHERE prefectureCOde IN (

3 SELECT prefecture_COde

4 /

100000行 が選択されました。

経過: 00:00:14.07

FROM

lN旬とEXISTS旬

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

SELECT STATIEMEN■ |

MERCE JO■ N
l SORT (JOIN)

TABLE

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

CHAPTER 05 SQとの正しい書き方

34■ 9

EXISTS句 を使用したSQL

r

実行例 05‐ 07

統計

0 recursive ca1ls
19 db block gets

consistent gets

bytes received via

SQL★ Net roundtr■ ps

sorts (memory)

sorts {disk)
rows processed.

/ナ■ RULE夫 / ★ FROM

EXISTS (

SELECT * FRoM prefecLure_mst p

4 $IHERE p.prefecture_code =

5 /

糸:副:i: 00:00:08.09

実行計画

SELECT STATEMENT

FiLTER

TABLE ACCESS(FULL)OF

INDEX(RANGE SCAN)OF

0 recursive
db block gets

consistent gets
1403 physical reads

熾
「
驚0 redo size

t撻旬と鐘XISTS旬

bytes

上記の2つを比べると、アクセスブロツク数 (consistent gets)は 、IN句 を

使用したSQLのほうが少ないのですが (01と 0)、 デイスクヘのアクセスとソ

ート処理が実行されているため結果的にEXISTS句 を使用したほうが、IN句

を使用したSQLよ り若干早く結果を取得していることがわかります(0と 0)。

また、IN句 とEXISTS句 の実行計画はそれぞれ異なります (0と 0)。

EXISTS句 を使用したSQLは「相関問合せ」、IN句 を使用したSQLは「非相関

問合せ」です。

脩相関問合せ

相関問合せでは、親問合せが処理する行ごとに評価が行われます。そのた

め、親問合せから数行しか戻されないような場合は、副問合せによる再実行

はそれほど多くないのですが、100万行 も戻されるケースでは、副問合せも

100万 回実行されることになります。

上記の例では、CUST_MSTテーブルの行数と同じ回数のPREFECTURE_

MSTテ ーブルヘの問合せが実行されます。ただし、PREFECTURE_MSTテ
ーブルヘのアクセスは索引スキャンが実施されるため、高速にアクセスされ

ると予測できます。

理亜日回□相関問合せ

索引スキャンが実施されれば有効

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

.SQL■ Net

SQL★Net‐

to/frc)m

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPTER 05 S帥正し缶ヽ書き方

隋非相関間合せ

非相関問合せは親問合せの回数にかかわらず1回 しか実行されません。ま

た、結果セットはメモリか一時セグメント内に保存されます。

上記の例では、PREFECTURE_MSTテ ーブルヘの問合せが1回だけ実行
され、その結果をメモリ内に保持し、CUST_MSTテーブルヘの問合せを行
います。そのため、副問合せが戻す行の数が数行しかない場合は、結果セッ

トをメモリに保存する際のオーバーヘッドもそれほど大きくないのですが、

100万行が戻されるような場合は、結果セットを一時セグメントとしてデイ

スクに保存し、セグメントをソートする必要があるので処理が遅くなります。

非相関問合せ

親テーブルに対する問合せを実施
結果セットを取得

子テーブルに対する問合せを実施
結果セットを取得、一時セグメントに格納

▲

Ｔ

Ｉ

Ｉ

Ｉ

Ｉ

Ｉ

Ｉ

Ｉ

ソート

|

颯 結果をマージ

鼈躙 結合

IN句 を使用したSQLは、結合処理に置き換えることもできます。結合処理
では、実行時間はEXSISTS句 を使用したSQLよ りも遅いのですが (●)、 親
問合せであるCUST_MUSTテ ーブルを駆動表としてネステッド・ループ結
合が実施されているので、結合処理の実施分だけアクセス・ブロック数が少

なくなります。

:撻旬とEXlSTS旬

目闘回日回結合を使用した場合
SQL> SELECT /★ + RULE★ / ★ FROMl cust_mst c′ lprefOcture=mst p

2 田 ERE c.:prefecturecode = p.prefecture_oode .‐

3 /

100000行が選択されました。

SELECT STATE!.{EIflI Optimizer=HlNT :

TABLE ACCESS

INDEX (RAN.GE SCAN)

0

0

0

34664

1400

0

12663770

73829

6668

0

0

100000

recursive caIIs
db block gets
consistent gets
physical reads
redo size
bytes sent via sQL*NeL Eo client
bytes received via SOL*NeL from client
SQL*Net roundtrips to/from client
sorts (memory)

sorts (disk)
rows processed

∽
Ｏ
ｒ
の
正
し
い
書
き
方

静蚤過 : 00:00:10.07

実行計画

O TABLE ACCESS (BY

l NESTED L00PS

編

“
鶴

一

聾

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

反結合とNOT:N旬 O NOT EXiSTS旬

CHAPTER 05 SQ謗五しい書き方

反結合 (アンチジョイン)と は、あるテーブルから別テーブルの一致する行

を除いた結果を返す処理です。通常の結合とは反対の処理を行うので反結合

と呼ばれます。

反結合

テーブルBの中でテーブルAと結合できない部分
=反結合 (アンチジョイン)

EE105-03

曝獨回Eロロl反結合を使用した場合

SQL> SELECT ' FROM cust_mst c

2 WHERE c.custcode =

3 AND s.custcode IS NUI,L

4 /

テーブルBの情報

|よ

"|:ヽ

・
`i

SELECT STATEMENT

∽
Ｏ
Ｆ
の
正
し
い
書
き
方

反結合とNOT IN旬・NOT覆》(19幅旬

上記のような反結合を使用するケースでも、同じ結果を返すSQLを NOT
IN句 とNOT EXISTS句を使用して記述することができます。

NOTIN句 を使用した場合

O FILTE:R
|ヽ ||| |

(COSt=19

(OUTER)

received via
SQL★ Net

Eo cLient
from

団回回

TABLE ACCESS

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPTER 05 S卿正しい書き方

gets

実行結果を見ると、NOT EXISTS句 を使用したものが最も有効に機能し

ていることがわかります (0)。 なお、NOT IN句 は、フルテーブルスキャンが

お互いのテーブルで実行されているため、処理不能という結果になりました。

この結果から、反結合を使用したケースでは、データの特性などもありま

すが、NOT EXISTS句への書き換えが有効であることがわかります。ただし、

データの状態によっては反結合を使用したほうが有効になることもあるの

で、実行計画や実行時間などから最適なものを選択するようにしてください。

NOT E× ISTS句を使用した場合

☆ FROM cust_nst c

FRoM sales-trn s

4 /

84386行が選択されました。

実行計画

O SELECT

1 ‐ O FlLTER 濡

tes=624000)
. .31111‐‐11. INDEX (RANGE SCAN)

card=1.Bytes=7) |・

統計

OF

O db block gets

O SOrts (memory)

.0‐ ‐ SOrtS (d■ Sk)
|‐ .■ ||■|

343861111rows processed

5627 SQL★ Net roundtrips

本 由早 の ま と め

反艦含とNOTIN傷・誨OT EXS鷺警

し

つ

する ざん)肖

・
″

∽
Ｏ
ｒ
の
正
し
い
書
き
方

CHAPTER 05 SQ帥正しい警き芳

用することで

なりま

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

索
引
の
基
礎
知
識

索引の基礎知識

CHAPTER

本章では、Oracleの索引について、その種類とそれらの索引をどのような

用途で使用すべきかについて解説します。SQLチ ューニングを行う前に理解

しておかなければならない索引に関する基礎的な内容なので、すでに索引に

ついて十分な知識を持っている人は本章を読み飛ばしてください。索引に関

する具体的なSQLチューニングの方法については次章で解説します。

書籍を使ってある内容を調べる際に、書籍をはじめから読み進めて目的の

内容が書いてあるページを探すと、目的の内容が前半に載っていれば良いの

ですが、場合によっては非常に時間がかかります。それよりも日次や巻末の

索引を使用して目的の内容や用語を見つけ、該当するページを探したほうが

格段に早 く目的の内容を探すことができます。

テーブルから目的のデータを探すときも同じです。テーブルのデータを1

件1件アクセスするよりも、索引を使用 したほうが結果を早く得ることがで

きます。

また、漢和辞書などでは、部首索引や画数などさまざまな方法で目的の漢

字を調べることができます。調べ方は使っている人が最も早い (効率的)と

判断した方法を使用します。Oracleで も同じです。オプテイマイザが、実行

計画作成時に最適な索引を選択し、データを検索します。

索引を正しく使うことは、パフォーマンスの向上には欠かせません。索引

の構造・特徴をきちんと理解し、システムにとって最適な索引を使用するよ

うにしましょう。

索:引とは

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

索引が使用されないSQL

CHAPT[R06索 引の基礎知識

索引は作成すれば良いものではありません。せっかく作成しても使用され

ないケースもあります。索引が使用されないというケースには、以下の2つ

の原因が考えられます。

・索引を使用することを想定したSQLになっていない
。意図した索引が使用されない

蟷鋏索引を使用することを想定したSQLになつていない

WHERE句に条件がないSQLは索引を使用しません。書籍で調べ物をする

際に目的となるキーワードがないのと同じです。また、WHERE句の条件に
索引を作成した列が入っていない場合も同じです。部首で漢字を検索したい

のに、部首索引がない漢和辞典 (こ んな漢和辞典はないでしょうが)を使用

しているのと同じです。

絞り込み対象となる列に索引を定義し、その索引を使用するSQLを記述し

なければ、索引がない場合と同じです。

籟鋏意図した索引が使用されない

索引が使用されると思ってWHERE句 の条件に索引を定義した列を記述し
ても、オプテイマイザが索引を使用しない場合があります。このような現象

の原因についてはP.208で解説します。

索引には目的や用途にあわせていくつかの種類が用意されています。また、

データベースの種類によっても使える索引、使えない索引があ ります。

Oracleでは以下の索引を定義することができます。

・B'TЮe索引

・ビットマップ索引
。ファンクション索引
。逆キー索引

索引の種類

B=Tr∝彙_移 |

それぞれの索引の特徴 とその用途について詳しく解説します。

BネTree(Balanced Tree)索 引はOracleの デフォルト・インデックス構造

を持ち、下図のようなツリー構造になっています。

B・Tree5疼、弓|

一番上のプロックはルー ト・ブロックと呼ばれています。ルート・ブロッ

クには、キー値の範囲と下位ブロックのポインタ情報が格納されています。

ツリーの中間部分はブランチ 。ブロックと呼ばれています。ブランチ 。ブ

ロックの構造はルー ト・ブロックと同じで、キー値の範囲と下位のブラン

チ・ブロック (最下層ならリーフ・ブロック)のポインタ情報が格納されて

います。

最下層のリーフ・ブロックには、キー値 とテーブル行の位置を示す物理的

なアドレスであるROWiDが格納されています。また、リーフ・ブロックに
は、前後のリーフ・ブロックのポインタも含まれているため、範囲検索が実

行されたときにもスムーズにデータを取得できる仕組みになっています。

聰鰈 Bキ¬ree索引を使用したデータの検索

B中 Tree索引を使用したデータの検索が行われた場合に、どのようにして

B★¬ree索引

索
引
の
基
礎
知
識

CHAPTER 06素 31の基難知識

目的の値を探しているのか具体例を使用して解説します。

アルファベットの「A」 から「Z」 までの26種類のデータが格納されたテー

ブルの中から「C」 のデータを検索する場合を考えます。

A～ Lまで

[辟1條:露
レートブロック

畷
テヾ
畑

1/ ＼M～ Zまで
メ ヽ

ブランチ・ブロック

リーフ・ブロック

L_」L_」
リーフ・ブロック間は互いのポインタ情報を保持し、

リーフ・ブロックには実際の列の値とROWIDを格納します

列値 ROWID

AAZZ09UU
BBZ108UZ

BⅢTree索 引ではデータはソートされた状態で格納されるので、上図の

BⅢTreeの 中で、「C」 という文字は「A」 から「L」 の間にあることがわかりま

す。そのため、まずは左側のブランチ・ブロックにシフトします。次に、

「A」 から「D」、「E」 から「H」、「I」 から「L」 の3ブロックの中から「C」 がどの

ブロックに入っているのかを検索します。「C」 は、「A」 から「D」 のブロック

ヘ入っていることがわかるので、一番左のリーフ・プロックにシフトします。

そして最後に「A」、「B」、「C」、「D」 の中から、「C」 の値を取得し、「C」 と共

に格納されているROWID※から該当のレコードを取得します。

上記のように絞り込みながら検索することで、「A」 から「Z」 を先頭から順

に検索するよりも、効率的 (高速)に検索できることがわかります。

※データの物理的なアドレス情報を格納している値で、テーブル内では必ず一意です。

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

回爾趙型⊆型墾型基■ヨ笙三______________

索
引
の
基
礎
知
識

B士¬ree索引のメリットとデメリット

B=r∝ ,索引のメリットとデメリット

パフォーマンスの向上には最も効果を発揮するB・ Tree索引ですが、すべ

ての状況において最適であるわけではありません。B'Tree索 引の特徴やメ

リットとデメリットを理解したうえで効果的に使用するようにしましょう。

蟷腑 B彙¬ree索引のメリット

BⅢTree索引には以下のメリットがあります。

鶉比較的データ量の多いテーブルに対しても高パフォーマンスを発揮する

ツリー構造をしているため比較的データの増加に対してもスムーズな検索

が行えます。ただし、データが増加するとツリーの高さやブランチ・ブロッ

ク数、リーフ・ブロック数が増えるので、ルー ト・プロックからブランチ・

ブロック、そしてリーフ・ブロツクヘのアクセス速度はデータ量が少ない場

合と比べて多少落ちます。

やカーディナリティが高い列に対して高パフォーマンスを発揮する

カーデイナリテイが高い列 (データの種類が多い列)に対してB*Tree索引

を作成すると、ツリー構造が効率的に機能します。

一方、カーデイナリティの低い列 (データの種類が少ない列)に対して、

B*Tree索 引を作成しても、あまり効果を発揮 しません。たとえば、性別を

格納する列には「男性」と「女性」の2種類 しか値がありません。このような

カーデイナリテイの低い列にB・Tree索引を作成すると、選択範囲が大きく

なってしまい、多くのブロック数にアクセスすることになってしまいます。

そして、パフォーマンスも悪くなります。また、重複した値を各ブロックに

持つため、無駄な領域も多 くなります。

CHAPTER 06嚢 馨iの基磯知識

1図 06‐ 06 カーデイナリテイが低い場合のB=Tree索引

カーディナリティが低いと
多くのブロックにアクセスしてしまう

カーディナリティが高ければ、
少ないブロックで済む

鍼範囲検索にも強く、高パフオーマンスを発揮する

B*Tree索引では、索引情報がソートされて保存されていることと、前後

のリーフ・ブロック内の情報を格納していることから、範囲検索を行った場

合、指定された範囲の最初と最後のリーフ・ブロックからROWID情報を抽
出するので効率的に機能します。

BXTree索 引での範囲検索

ソー トして格納していることにより、その
間のブロックを範囲対象とすることが可能

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

Fromの検索 Toの検索

FI奪黎i堪1
1・
‐
=■

■・―■■
=|■L

ワ ー
出

/＼
チ ヤ

`轟

B・Tr∞素引のメリットとデメリツト

籟躙 B十¬ree索引のデメリット

BⅢTree索引には以下のデメリットがあります。

聰データの追加 。更新時にオーバーヘッドが発生する

B・Tree索引のデメリットは、テーブルと索引が別々の領域で管理されて

いるため、データの更新や追加を行うとテーブルと索引の両方のデータが更

新されることです。そのため、索引がない場合と比べて、索引の更新を行う

オーバーヘッドが発生します。

データ挿入・更新時の物理領域に対する処理

データの挿入

/＼
る

1回の挿入・更新操作で2つのフアイルに対して更新

索引にデータを追加する場合、追加するブロック内に空きがあれば、それ

ほどコストはかかりませんが、空き領域がなかった場合はバランスをとるた

めにブロックの分割を行い、新しいプロックに既存プロックの半分のデータ

を割り当てる必要があります。この処理がリーフ・プロックとプランチ。ブ

ロックに対して実施されます。

また、索引データを更新する場合も、プロック内の更新対象データを削除

し、新しいデータを追加するので追加する場合と同じ動作が必要になります。

BⅢTree索引には上記のデメリットがあるので、性別やフラグのようにカ

ーデイナリテイが低い列に対しては、むやみに索引を作成しないほうが良い

でしょう。

,=::ヽ ::｀
テーブル内で索引の数が多ければ、
それだけ更新する数が増加します。

索
引
の
基
礎
知
識|■■■■■■■■|

||■1■■■■日‐ |
||■旧 ■■■日‐ |

厩麗画爾顧藤爾爾|

|りら

CHAPT[R06索31の基礎知識

また、データ移行時など、大量にデータを移行するときは、データ挿入 。

更新ごとに、索引の挿入 。更新処理が実行されるのでオーバーヘッドが大き

くなります。大量にデータを移行する場合は、移行後に索引を作成すること

をおすすめします。

睡璽ロロロ B姜Tree索引のデメリット(挿入 .更新時)

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

4・
＼挿入
ヽ

空きがあれば

間に入る

ゞ
入3

空きがなければ
分割される

鼈

索引内のブロック (リーフ・プランチ)

螂データの削除時にオーバーヘッドが発生する

索引のデータは削除されても、そのブロック内の該当するデータに削除マ

ークがつくだけで、実際には領域を解放しません。そのため、削除されても

新しいデータをそのブロックに追加することができないので、削除が頻繁に

発生するとそのブロック内が虫食い状態になってしまいます。

ブロックが虫食い状態になってしまうと、そのブロックに格納できるデー

タ量が減ってしまい、多くのブロックを使用することになります。結果、検

索時に多くのブロックにアクセスすることになり、パフォーマンスが低下し

ます。

聰

3■Tree索 31のメリットと・デメリット

麗亜舅憑IB¶ree索引のデメリット(削除時)

索
引
の
基
礎
知
識

除ＷＨ

４

ヽ

ヽ

３

勒

索引内のブロック (リーフ・ブランチ)

そのため、削除処理が発生するテーブルの索引はメンテナンスを行う必要

があります。メンテナンス方法には、REBUILD句 を使用する方法と、

DROP CREATE文 を使用する方法があります。

REBUILD句 を使用する方法では、削除されたスペースを埋め、索引を作

り直します。一方、DROP CREATE文 を使用する方法では、索引をすべて

削除して作り直します。

躍目□国■索引のメンテナンス

ALTER INDEX く索引名> REBUILD

REBUILD

彗 ||‐ '.

索引内のブロック (リーフ・ブランチ)

雇麗:ヨ孫:111ンテナンえ| |■ |

PCTFREEの設定

CHAPT[R06索 引の基礎知識

瘍NULL値を指定できない
B*Tree索 引では、その構造上、NULL値を索引のプロック内に含めること
ができません。そのため、WHERE句の条件にlS NULL句 を指定した場合、
せっかく索引を作成していたとしても使用されなので注意してください。

たとえば、PREFECTURECODE列 に索引が作成 してあるCUST_
MSTテ ーブルに対 して、以下のSQLを 実行すると索引が使用されず、フル
テーブルスキャンが実行されます。

Card=l Bytes=■ 0.4)

B*Tree索引が、テーブルのROWIDに 対応した索引値のリストを管理する
のに対して、ビットマップ索引Xは、ある範囲内で列のユニークな値をグル

ープ化し、その単位でROWIDに対応したビットマップを作成します。その
ため、カーデイナリテイが低い列に対しては、B+Tree索引よりも少ない領

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

ビットマップ索引

)

0

ビットマッフ壕尋Iのメリツトとデメリツト

域で索引を作成することができます。

※ビットマップ索引はOracle Enterprise Editionの 機能です。

回轟圏国Eコ 笙≧∠」≧ヱ」∠三整弓!

∫
l

キー値 開始ROWiD 終了ROWID ビットマップ

ある範囲で
同一値をまとめる

ROWIDの範囲をグループ化し、その値をビットマップで管理します。値が少
なければビットマップ索引の行数も少なくなるので、カーデイナリテイが低

い列に対して設定すると容量も小さくて済みます

ビットマップ索引の特徴やメリットとデメリットを理解したうえで効果的

に使用するようにしましょう。

玲輻 ビットマップ索引のメリット

ビットマップ索引には以下のメリットがあります。

鰊特定の条件に一致するデータの取得時に有効

特定の条件に一致するデータを取得する場合、ビットマップ索引ではビッ

トマップ値でデータを取得するため高速に検索することができます。また、

AND条件やOR条件を使用する場合は、結果をビット演算を実施したあとで

ROWIDに変換するため、高速に動作させることが可能です。

聰NULL値を指定できる
ビットマップ索引ではNULL値をビットマップで管理できるため、NULL

値を使用した検索でも、索引を使用することができます。

以下の例では、CUST_MSTテ ーブルのDMFLG列 (ダイレクトメール送信

の有無を管理する列)に ビットマップ索引を作成しています。SQLの実行結

果を見ると、IS NULL句が使用されているにもかかわらず、ビットマップ索

引が使用されていることを確認できます (0)。

索
引
の
基
礎
知
識

ビットマップ索引のメリットとデメリット

実行例 06-02

CHAPT[R06索 引の基礎知識

ビットマップ索引を使用したN∪ LL値の検索

０

一

鼈隋 ビッ トマップ索引のデメリット

ビットマップ索引では索引データをビットマップで管理しているため、範

囲検索が有効に機能しません。また、更新時にビットマップを作成したグル

ープ単位にロックされるため、更新処理の多いテーブルにビットマップ索引

を作成するとロック待ちによるオーバーヘッドが発生し、パフォーマンスが

低下する可能性があります。

そのため、ビットマップ索引は主にOLTP系のシステムよりもDWH系の
システムで使用することをおすすめします。

BホTree索引は列の値を使用してツリー構造を作成しているため、組み込
み関数 (TO_CHAR、 TO_NUMiBER、 SUBSTR、 TO_DATE、 DECODEな
ど)を使用してその値を変換すると、索引が使用できなくなります。

たとえば、WHERE句の条件に「WHERE LOWER(ename)='smithi」 を指
定すると、ENAME列 に索引が作成してあったとしても、LOWER関数で検
索前に値が変更されてしまうため、索引を使用することができません。

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

フアンクシヨン索引

実行例 06-05 組み込み関数の使用によつて無効化された索引

Bytes=104)

．　

　

・

・　

一
一

ファンクシヨン索事I

この問題を解決するために、Oracleに はファンクション索引が用意されて

います。ファンクション索引では、あらかじめ組込み関数を使用して値を変

換させておき、変換後の値でツリー構造を構築します。そのため、問合せ時

に組込み関数を使用した場合でも、ファンクション索引を作成しておけば、

索引を使用した検索処理を実行することができます。

饉藪□轟轟フアンクション索引

B*Tree索引 フアンクション索引

UPPER(く索引列>)と して
フアンクション索引を作成

_. ||||■ |||.

い■lERE IJPPER(く 索引夕u>)= `L'

すでに小文字で索引を作成しているので

大文字に変換して索引を使用することは不可能

WHEREt」 PPER(く索引,u>)= `L'

すでに大文字に変換して索引を作成して
いるので、索引スキャンが可能

以下の例では、ENAME列に対して索引作成時にLOWER関数を指定して

います。実行計画を見ると、索引が使用されていることがわかります。

索
引
の
基
礎
知
識

0

1
lEMP'

a.

一３

４
IF

G

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPTER 06索 引の基礎知識

フアンクション索引を使用する

ただし、ファンクション索引を使用する場合は、プログラム作成時にきち

んとルール決めておかないと、「アプリケーション全体でたった1つのSQLか
らしか利用されない索引」のような、意味のないファンクション索引が増え

る可能性があります。

索引は、データ量と作成 。更新時のオーバーヘッドの問題から、複数の

SQLが共有して利用できるようにするべきです。ファンクション索引を導入
する際は、十分注意してください。

BⅢTree索引では、その構造上、連番のデータを作成 。追加すると同一ブ
ロックヘの書込みが集中してしまいます。また、連番のデータが追加された

テーブルから、ある行が削除されると、その削除ブロックは使用できなくな

ります。

逆キー索引

団回回

ON emp

(LO!iXR('ename"))

索]|が作成されました。. ||

SQL> SELECT 十 IFROM ern0~|||| ‐‐―||.~ |■‐■■ ‐| ‐
21‐ ‖IERE LOWER(enttle)

3 / . |‐ ‐
|■ | ||‐

 .

‐. ||.
‐

灘

a

4

実行計画

0

1

2

s=37)

]. IIIDEX (RANGE SCA}I) OF

逆キー索ヨ:

索
引
の
基
礎
知
識

B・Tree索引の問題点

データに対して削除処理が実施されても、新規

作成データが連番で増加するため、削除された

ブロックを使用することはできない

ルート・ブロック

ブランチ・ブロック

ックに

この問題を解決するために、Oracleに は逆キー索引が用意されています。

逆キー索引は、リーフ・プロックでキー値を反転させてから格納します。そ

のため、索引エントリーを均等に分散させることが可能です。

また、一度削除されたブロックの再利用もできるので、領域を効率的に利

用することができます。

ただし、逆キー索引では、範囲検索の場合は索引を使用することができな

いので注意してください。

眩艶麗圃露逆キー索引

1直

1000
1001
1002
1003
1004

リーフ・ブロツク
に対して
データ挿入

バイ ト
c302
●3020102
o3020103
o3020104
o3020105

バイ トを反転
02o3
020102c3
030102o3
040102c3
050102o3

バイト値によつて分散されて

格納される。
バイトを反転しているため、

ブロック競合が発生しにくく、

削除されて虫食い状態になつ

ているブロックにもデータを

格納できる

蒻 鰊
'

「

TTTT¬
睡雨蒻遮撃羮鋼

鰤 紆 予
L一ヽ キ」

＼ヽ

CHAPTER 06索 引の基礎知識

本 辱ユ の ま と

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

索
引
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

基礎編で洗い出した「チューニングすべきSQL」 に対し、CHAPTER05で
はSQLの基本的な書き方を解説しました。しかし、正しいSQLを書いただけ

では思うようにパフォーマンスが向上しない場合も多々あります。なぜなら、

それらの多くはSELECT文だけの問題ではないからです。

正しい検索結果を返すSQLを書 くことは当たり前のことであり、すべての

前提です。そのうえで、よリパフォーマンスの良いシステムを構築するのが

データベース・エンジニアの仕事です。

本章では、まず実践的なSQLチューニングを行う際に、チューニングの基

本として把握しておかなければならない「データの件数」や「データの状況」

について解説します。そして、その内容を基に以下の項目について解説しま

す。

。CHAPTER07索引によるSQLチ ューニング (本章)
・CHAPTER08結合によるSQLチ ューニング
・ CHAPTER09 DMILI処理の高速化

また、本章では引き続きパフォーマンスの悪いSQLに対して、効率的な索

引を作成す方法を解説します。索引のチューニングはSQLチューニングの中

でも特に効果があるので、しっかりと理解し、実践力を身に付けましょう。

索引のチューニングに限らず、稼働しているシステムに対してSQLチュー

ニングを行う最大の目標は「SQLの実行速度を速くする」ことです。「SQLの

実行速度を速くする」ために行う対処法の中で最も効果があるのは「アクセ

ス・ブロック数を減らす」ことです。

Oracleはデータを取得する際にブロック単位でデータにアクセスします。

SQLチューエングの基本

索引による
SQLチューニング

CHAPTER

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

CHAPT[R07索 31によるSQLチ轟…ニング

したがって、アクセスするまでのブロック数を減らすことができれば、実行

速度を速くできます。

ただし、全体としてアクセスするプロック数を減らすことができても、デ

ィスク・アクセス・プロック数が多ければ、実行速度に時間がかかってしま

います。そのため、アクセス・プロック数を減らし、さらに、なるべくメモ

リ・ブロックからデータを取得するように変更することが、チューニングの

鍵となります。

アクセス・ブロック数を減らすSQLを書くには以下の情報を調べておく必

要があります。

・テーブルデータ状況

・テーブルデータ件数
。SQLが どのように実行されているか
。アプリケーションの特性

上記の情報を知らないで、ただ実行速度を速めるために索引を作成し、そ

の結果パフォーマンスが向上したとしても、それはその場限りのチューニン

グでしかありません。

なぜなら、今後データがどのように増加するのか知らないで索引を作成す

ると、後々データが増加することでその索引が効果的に働かないケースも発

生しないとは断言できないからです。

晰腱 テ…ブルデ…夕状況

列にどのようなデータが入っているかを把握します。たとえば、「0」 か「1」

の2種類のデータしか入っていないのか、それとも100種類以上のデータが入

っているのかを把握します。

テーブルデータの状況を把握することで、どの索引を作成すれば効果的な

のか、または、索引を作成しても無意味なのか、という指針を立てることが

できるようになります。

籟輻 テ…ブルデ…夕件数

実際に何件くらいのデータが入っているのか、または、どのくらいのデー

タが入る見込みなのかを把握します。データ件数が把握できれば、フルテー

SOLチューニングの基本

ブルスキャンが発生しているテーブルは、loo万件のデータを保持するテー

ブルなのか、またそれとも10件 しか保持しないテーブルなのか、という状況

を把握できます。前者なら、索引の作成を考える必要があり、後者であれば

そのままでも良いでしょう。結合処理でも、駆動表となっているテーブルの

データ件数を把握することで、その処理を見直すことができます。

また、テーブル単位でデータの増減状態が把握できれば、PCTFREEと
PCTUSEDの値を調節し、データ。ブロックを効率的に使用することもでき

ます。

瞼輻 SQLがどのように実行されているか

実務で使用するSQLでは、結合や副問合せ、グループ化などを使用します。

これらのSQLがどのような順番で実施されているのかイメージを描けるよう

になることで、どのような順序で実行すればアクセス・ブロックが減るのか

判断することができます。

たとえば、「最初に受注テーブルにアクセスし、受注番号で範囲検索して

データを取得する。その際に、索引の範囲検索が行われて、データが10000

件にまで絞り込めている。その後、顧客マスタと結合し、さらに絞り込まれ

て100件になったので、先に顧客マスタを検索してデータを絞り込み、その

顧客に対する受注を1件1件取得したほうが早いだろう」と判断できます。

SQLの実行順序をイメージすることができれば、具体的な現状分析と対策

を立てることができるようになります。

躾鰤 アプリケ…ションの特性

アプリケーションの特性とは、アプリケーションのどの機能から実行され

るSQLがどのテーブルヘの更新処理や検索処理を行うのか、また、その機能

は、頻繁に使用されるのか、それとも月に一度なのか、夜間バッチなのかを

把握することです。アプリケーションの特性を把握することで、どのSQLを

チューニング対象としなければいけないかが判断できるようになります。

たとえば、日々の伝票入力や伝票検索の機能は、瞬時に結果を返す必要が

ありますが、夜間バッチなどの処理では、それほど速くなくても問題ありま

せん。

また、アプリケーションの特性を把握することで、データ状況の予測も行

索
引
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

()/

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
！
ニ
ン
グ

CHAPTER 07索引によるSQLチ ューニング

えます。たとえば、「カテゴリマスタには30件のデータが登録されているの

で、商品マスタのカテゴリ列には30種類のデータしか入っておらず、今後も

増える予定はない」など、どのようなデータが入り、それが今後どのように

なるのか把握することができるようになります。そのため、アプリケーショ

ンの特性を把握すれば、テーブルデータ状況も把握できるようになります。

Oracleはテーブルに対してさまざまな方法でアクセスします。たとえば、

すべてのデータをテーブルの1行日から最終行まで読み込む「フルテーブル

スキャン」や、索引を使用して目的のデータを検索する「索引スキャン」など

があります。

そのため、索引のチューニングを行う前に、データヘのアクセス方法を調

べ、フルテーブルスキャンを実行しているSQLを洗い出し、索引を使用する

ようにチューニングする必要があります。

ただし、フルテーブルスキャンが必ずしも悪いとはいいきれないので注意

してください。フルテーブルスキャンが有効なケースについてはP.207を 参

照してください。

黎輻 フルテ…ブルスキャンが発生するケース

SQLのチューニングで最も基本となるのが、フルテーブルスキャンが発生

している箇所を特定し、対処することです。SQLを習うときに、遅いSQLの

原因は「フルテーブルスキャンによるものである」と教えられるくらい、遅

いSQLが発生する原因の代名詞にもなっているものです。

CHAPTER01(P.27参 照)で も解説しましたが、フルテーブルスキャンは

テーブルのHWM(高水位標)ま でアクセスするため、データ件数にもよりま
すが、非常に多くのブロックにアクセスすることになります。そのため、実

行速度が遅くなる最も単純で大きな原因になるため、フルテーブルスキャン

をなくすことからSQLのチューニングをはじめます。

フルテーブルスキャンは以下のような場合に発生します。

不要なフルテーブルスキヤンの排除

・ WHERE句 に条件がない

不要なフルテーブルスキャンの排除

。WHERE旬の条件に索引が作成されている列が選択されていない
。WHERE旬の条件に索引はあるが使用できない

瘍WHERE旬に条件がない
WHERE句 に条件がない場合、oracleは テーブルを最初から最後までアク

セスしなければならないため、フルテーブルスキャンを実行することになり

ます。このようなケースでは、次項で説明する高速全索引スキャンの利用を

検討します。

瘍WHERE旬の条件に索引が作成されている列が選択されていない

当然のことながら、WHERE句の条件に索引が作成されている列が選択さ

れていない場合は索引を使用できないのでフルテーブルスキャンを実行する

ことになります。この場合はWHERE句の条件に索引を作成することができ

ないか検討します。

たとえば、EMPテーブルのJOB列に索引が作成されていない状態で、以下

のようなSQLを実行しても、索引は使用されません。

索引が使用されないケース
■11

_■●.

■

=1凛

上記の実行例では索引を使用できないため、フルテーブルスキャンが発生

しています。JOB列に索引を作成することができないか検討してください。

JOB列に索引を作成すると索引を使用することができるようになります。

索
引
に
よ
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

実行例 07‐ 01

晨霧寵口圏固國索引が使用できるケース

ISQL>■ CREATEI■ WEXl idx_emp ON emp(jOb) .‐ |■ | ||| |
.■
~ ||■

| ■||‐ || ||||. |||― . .. ・ .||‐

2 / 1.| || ||| |

榛引力彎 ,11午
。 | || || || | | ||

CHAPTER 07索 31:こよるSや彗チユー鳳ング

S.QL>

2

3

0

1

11■

|■■■

2 1 .

颯WHERE旬の条件に索引はあるが使用できない
索引が使用されないケース (P.208参照)に 当てはまる場合、WHERE句 の
条件に指定した列に索引があっても使用できないことがあります。適切な対

応をとり、索引を使用されるようにSQLを書き換えましょう。

フルテーブルスキャンを高速化する方法として高速全索引スキャンと全索

引スキャンがあります※。これらは共に索引のみのアクセスで目的のデータ

を取得できる点では同じですが、アクセス方法に違いがあります。

※フルテーブルスキヤンを高速化する方法にはパラレルクエリー(P293参照)を使用する
方法もあります。

晰輻 高速全索引スキャンと全索引スキャンの違い

高速全索引スキャンと全索引スキャンは同じ条件で選択されますが、以下

の違いがあります。

表107-01 高速全索引スキャンと全索引スキャンの違い

高速全索引スキヤンの利用

全索引スキャン シングル・ブロック・アクセスでデータ・ブロックにアクセスし、順番が

保証され、パラレルでのスキャンが可能になる。順番が保証されるため、
ソート処理を回避することができる

高速全索引スキャン マルチ・ブロック・アクセスでデータ oブロックにアクセスし、順番が保
証されないため、ORDER BY句 などが指定されている場合にデータ取得
後にソート処理が実施される。また、パラレルスキャンが可能だが、指定
した列のうち少なくとも1つはNOT NULL制約が必要になる

RULE

一̈
・．　　　　　　　．・̈
．ず:|:|IEMPI!

(NON―UNIQUE)

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
！
ニ
ン
グ

二生
=t==三

二三 二三二11■■■

索
引
に
よ
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

高速全索31スキャンの利濯

上記のように、全索引スキャンでは順序が保証されてデータを取得できる

のに対し、高速全索引スキャンでは順序が保証されないことが大きな特徴で

す。そのため、ORDER BY句が指定されているSQLを実行する場合は、オ

プテイマイザが、高速全索引スキャンとソート処理を行うほうが効率的か、

または全索引スキャンを行うほうが効率的かを判断して選択します。

黎輻 高速全索引スキヤンと全索引スキャンの処理速度

高速全索引スキャンと全索引スキャンで、実際にどれくらい処理に差があ

るのか検証してみます。

ここでは、例として、顧客コード「custcode」 にPrimaryKey制 約を定義し

た顧客マスタテーブル「custmst」 を作成し、顧客コード、顧客名に索引を

作成します。なお、顧客名にNOT NULL制約はありません。

データを99999件登録した状態で2つのSQLを実行し、実行結果を比べてみ

ます。

黎高速全索引スキャンの実行

ヒントを付けることで高速全索引スキャンを実行します。なお、以下の例

ではヒントを付けなくても高速全索引スキャンが選択されましたが、ヒント

の付け方の解説のためにヒントを付けています。

高速全索引スキャンの実行実行例 07-03

n~

・: . . .

統計
.

CHAPT[R07索 引によるSQLチユーニング

lt l .●

SQL'Nё t to client

via SQL★ Net.froi l

to/from clieit ・

―
　

・”

瘍全索引スキャンの実行

ヒントを付けて全索引スキャンを実行します。以下の例では、ヒントがな

ければ高速全索引スキャンが実行されてしまうため、ヒントを付けています。

全索引スキャンの実行

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

実行例 07‐ 04

0

‐ 0
. 7017

!■ |

■7. ■, '

肇

.お

薔

0 (Cost=26 Card=99999
. 1 0

.Card=

統計

OF.'P氏_CVST IMST11‐

`|
■ .|:

.‐ . : .
‐

1 256

1. |~ 0

| _162‐ 7076 bytさ s

.‐ ‐‐. 73.829‐ o,tes

それぞれの実行計画をそれぞれ見ると、実行例07-03では高速全索引スキ

ャンで顧客マスタにアクセスしているのに対し (0)、 実行例07-04では、全

索引スキャンで顧客マスタにアクセスしていることが確認できます (0)。

また、統計情報の「cOnsistent gets」 と「physicai reads」 の値に注目する

と、実行例07‐03では「consistent gets」 の値は「7017」、「physical reads」 の

値は「84」 ですが (0)、 実行例07-04では、「consistent gets」 の値は「6924」、

「physical reads」 の値は「256」 であることがわかります (0)。

この結果から実行例07-04のほうが、アクセス・ブロツク数が少ないこと

が確認できるのですが、実行時間は実行例07-03で は約1秒 (0)に対し、実行

例07-04で は約2秒 (0)と なっています。

これは、実行例07-04の ほうがディスクヘのアクセスが多いためこのよう

な結果となっています。したがって、若千ではありますが、実行例07-03の

高速全索引スキャンが効率的だという結果になりました。

議詢7‐02 oonsistent getsと physical readsの イ直

※consistent getsは アクセス・ブロック数の合計です。

※※physical readsは ディスク・アクセス・ブロック数です。

鼈隋 高速全索引スキャンとフルテ…ブルスキャンの処理速度

先述の高速全索引スキャンと全索引スキャンの比較と同様に、高速全索引

スキャンとフルテーブルスキャンで、実際にどれくらい処理に差があるのか

検証してみます。

り高速全索引スキャンの実行

以下の例ではPrimaryKey情 報を列情報として指定しているので高速全索

引スキャンが実行されます。

索
引
に
よ
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

7017 6924consistent getsx

84 256physical readsxx

高速食薫引スキャンの利用

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

実行例 07-05

CHAPTER 07索 引によるSQLチユーニング

高速全索引スキャンの実行
・ 建|

瘍フルテーブルスキャンの実行

次にフルテーブルスキャンを実行します。以下の例では「
キ
」(ア スタリス

ク)を指定することで全列を検索しているのでフルテーブルスキャンが実行

されます。

実行計画

■・ ―|. =ヽ

``″

｀

寄:

. .| , 1 ●

,: '■

黎|`議

●
一
　

●
●
一
　

●■
一
　
●
●

|●

=

01 By.tes=4999195)

(Cost■ 21 -――_―o.1 0
Card=99999

統計

INDEX (FAST.FULL

Bytes=499995)

SCAN)

‐
■

.. : |・ ・

，
，
　
一
“

■
，
‥
一

:. i;:
―

　

一
一

　

一
一

　

．

簑

甲ココロ暉ロロフ|テーブルスキヤンの実行
S"|,lLE甲 ★ FROM.cust mst .・ ‐‐ ‐‐ ・
‐
|― ●■
‐ ′・■| ・ ‐・

‐ ・|‐‐ ||‐
 ‐‐. . ・ ・‐

|| | || || |

,99,p行が選択されました。 |

‐ |
‐‐

索
引
に
よ
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

高速全彙31スキャンの利爾

実行例07-05と 実行例07‐06の実行計画をそれぞれ見ると、実行例07-05では

高速全索引スキャンで顧客マスタにアクセスしているのに対し (0)、 実行例

07-06で は、フルテーブルスキャンで顧客マスタにアクセスしていることが

わかります (0)。

また、統計情報の「consistent gets」 と「physical readS」 の値に注目すると、

実行例07-05では「consistent gets」 の値は「6971」、「physical reads」 の値は

「o」 ですが (0)、 実行例07-06で は「consistent gets」 の値は「8075」 、

「physical reads」 の値は「692」 であることがわかります (⑩)。 この結果から

実行例07-05の高速全索引スキャンのほうが、アクセス・ブロツク数が少な

いことがわかります。

表07‐ 05 oonsistent“ tsと physical reads(Dイ 直

※cOnsistent getsは アクセス ブロック数の合計です。
※※physical readsは ディスク・アクセス・ブロック数です。

6971 8075consistent getsx

physical reads*x 692

.実
行計画 ‐ | .

・0

‐ .・ ■ l.

. 0

||‐
 .||| ‐ |||

サ:

讐 ■‐

“

.

reads.

■―
= :■

|■ ■

11・ :‐ .‐

.11360893
byLes sent via SQL*NeL _to

. ■■ ‐173829 byLes received

99999

|1室奎1型7011:
■

二
．“
二
０
二

．４

〓
０
」
颯

一

一Ｔ
二爾
一一

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

CHAPTER 07索 引によるSQLチユー■ング

以下の実行例07-07では、テーブルの件数を取得するSQLを 実行していま

す。この場合も、高速全索引スキャンでアクセスしていることがわかります

(0)。 そのため、「cOnsistent gets」 の値は「304」、「physical reads」 の値は

「0」 と非常に効率の良い結果を得ることができています (0)。

高速全索引スキャンによるテーブル件数の取得

索引は作成しただけでは意味がありません。正しく使ってこそ、パフォー

マンスの向上につながるのです。それでは、どのようなテーブルに対して索

引を作成すれば、効率良くデータアクセスすることができるのでしょうか。

索引の正しい定義方法

団回ロ
SQL>SEttCT C9呻 T(=)

・ |.0 ‐‐ . SELECT

11 0 SORT

.2 11 1. ■:NDEX

.4

_■

(Cost=21 Card=1)

IPK_CUST_MST: ||(UNIIQUE).
―・・
■―‐・ 0.

■

■ || .. '

索31の正しい定義方法

蟷輻 フルテーブルスキヤンが有効なケース

テーブルからすべてのデータを取り出す場合は索引スキャンよりも、一度

にマルチブロックに対してアクセスできるフルテーブルスキャンのほうが速

く結果を得ることができます。そのため、目安として抽出データが全データ

の10%か ら15%未満の場合 (ソ ートが必要ない場合)に索引スキャンを利用し

ます。ただし、初期化パラメータDB_BLOCK_SIZEや レコード長などにより

状況は変わってきます。

たとえば、初期化パラメータDB_BLOCK_SIZEが大きく、レコード長が

小さければ、たくさんのレコードを同一ブロック内に格納するので、1回の

アクセスで複数のブロックにアクセスできるフルテーブルスキャンのほうが

有効です。一方、初期化パラメータDB_BLOCK_SIZEが小さく、レコード

長が大きければ、1ブロック内にはレコード数を多く格納することができな

いので、多くのブロックにアクセスする必要があるため、フルテーブルスキ

ャンで複数のブロックに対してまとめてアクセスするよりも、索引スキャン

を利用し特定のブロックに対してアクセスするほうが有効です。

このように、全データにおける取得するデータの割合だけでは、フルテー

ブルスキャンを使用したほうが良いか、それとも索引スキャンを使用したほ

うが良いかという判断はできません。

実際は、フルテーブルスキャンを使用するか、索引スキャンを使用するか

の選択は、CBOが判断 。実行するため意図した索引が使用されない場合は、

フルテーブルスキャンが有効だと判断されていることになります。もし、こ

のとき、索引スキャンを選択したほうが、効率が良いことが明らかな場合は

ヒントを使用して索引スキャンを選択させるようにしましょう。

洟鰈 WHERE旬の条件としての利用頻度
索引を使用するポイントは「いかに抽出データ件数を絞り、アクセス・ブ

ロック数を減らせるか」です。したがって、検索条件として利用頻度の高い

列を把握することは、索引を作成するうえで非常に重要です。

たとえば、ある機能がA列 をWHERE句 の条件として利用し、別の機能は

B列をWHERE句の条件として利用している場合は、A列 とB列それぞれに索

引を作成すれば効果的ですが、100回のテーブルアクセスのうち、99回がA

列をWHERE句 の条件として利用し、残りの1回がB列をWHERE句の条件と

索
引
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

実
践
編

現
場
で
使
え
る
∽
０
庁
チ
ュ
ー
ニ
ン
グ

CHAPTER 07索引によるSQLチユーニング

して利用しているような場合は、A列にだけ索引を作成したほうが効果的です。

また、A列に対しては一意検索、B列に対しては範囲検索 (BETWEEN検
索)を利用するような場合は、抽出件数によって索引を作成する列を決定す

る必要があります。

このようにアプリケーションの特性を理解し、多くのWHERE句 の条件と
して使用される列に対して索引を作成すれば、より大きな効果を得ることが

できます。

黎蒻 デ…夕の偏り

データが偏っている場合、カーデイナリテイが高くても検索速度が遅くな

ります。たとえば、都道府県を格納する列はカーデイナリテイが高いといえ

るのですが、ほとんどのデータが東京都と大阪府であれば、東京都と大阪府

を検索すると多くのブロックにアクセスしてしまうため、マルチブロックで

アクセスするフルテーブルスキャンのほうが索引スキャンよりも高速に検索

できます。

データの偏りは、列の値の種類とレコード件数によって決まりますが、仮

に「レコード件数上デ_夕 の種類 =1種類あたりの平均レコード件数」とする

と、1種類のレコードで、平均レコード件数の数倍程度の数のレコードが入

っているものがあれば、それはデータが偏っていると判断できます。

「索引を作成したがパフォーマンスが改善されない」という現象が発生し

た場合、索引が有効ではないケースと、索引が使用できないケースがありま

す。使用できない無駄な索引は、挿入・更新・削除処理を行う際にパフォー

マンス劣化につながりますし、余計な容量を必要とするため良いことは何一

つありません。ここでは、索引を使用できないケースについて解説します。

蝙躙 NULL値の検索
先述しましたが、B*Tree索 引はNULL値のデータを索引に含めることがで

きないので、検索条件列に索引が作成されていてもIS NULL検索を行うとフ

ルテーブルスキャンとなります。一方、ビットマップ索引はNULL値を索引

索引を使用できないケース

索3睦輔 できなしヽケース

内に含めることができるため、IS NULL検索でも索引を使用した検索を行う

ことができます。ただし、ビットマップ索引はロックの関係上、OLTP系の

システムには、あまり向いていません。

それでは、B*Tree索引を使用した場合でNULL値 を検索するにはどのよう

にしたら良いのでしようか。

B+Tree索引を使用したNULL値の検索を行う場合は、「NULL値を特定の値

に置き換える」という方法があります。ただし、この方法はアプリケーショ

ンの更新処理の仕組ふを変える必要があるため、他に影響が出ないか十分注

意し、実施するようにしてください。

理想は、設計時にこの特性を十分考慮しテーブル設計を行うことです。

NULL値は、索引を作成できないばかりか、結合列で使用されていた場合、

NULL値同士は結合列として使用できません。そのため、複雑なSQLを書く

ことになり、パフォーマンスが劣化しているシステムを見かけたこともあり

ます。検索条件として使用する列や結合で使用する列にはNULLの入力を許

可しないことをおすすめします。

以下の例では、NULL値があるために索引が使用できないテーブルに対し

て、値の置換を行っています。CUST_MSTテ ーブルのMAIL列には、NULL
のデータが含まれます。この列に索引を作成し、検索してみます。

索
引
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

(FULLう OF 'CUST‐ MST:(ICOS.t=74

,| ._. `|

0

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPT[R07索 引によるSQLチューエング

o索引が使用されていません。
oN∪LL値を「―」に置き換えます。
0索引が使用されていることが確認できます。

隋蜀暗黙の型変換

WHERE句の条件に「CHAR列 =1」 や「VARCHAR2列 =1」 を指定すると
左辺と右辺の型が違うので暗黙的に型変換が行われます。しかし、このよう

に暗黙の型変換が行われると索引が使用されません。

しかし、暗黙の型変換が行われると、構文上は正しくなるのでSQLエ ラー

が発生しないため、アプリケーションの構築時に行うテストでは、気づきに

くく、運用後にパフォーマンスが悪化して、はじめて気づくことが多いため、

“落とし穴"的な存在でもあります。コードやフラグ、区分を持つ列にCHAR
型やVARCHAR2型 を定義している場合は、型変換が発生しやすいので特に
注意してください。

なお、:ND匡Xヒ ントを使用※すれば、索引は使用されますが、以下のよう

に比較するデータ型を列のデータ型に合わせる必要があります。

※索引列にNOT NULL制約が必要です。

・CHARダIj=:11

・CHARダ」=TO_CHAR(1)

以下の例では、CUST_MSTテ ーブルの都道府県コード(CHAR型)の列を

検索する2つのSQLを 実行しています。

SQL>

2

|■SQL>

21

|■ -0 ‐‐

. 11. |● 0-・ TABLEI・ ACOESt‐

Bytes=105)

2 1

Bytes=105)

OF 'CuST:LMSTll (Cost=2 1Card=11‐

.TTTT丁 0

:摯

INDEX(RANGE SCAN)

(COSt=l Card=1)

OF llND‐ MAILi

纏

索引を使用できないケース

oフルテーブルスキャンが実行されていることが確認できます。

o索引スキャンが実行されていることが確認できます。

蟷輻 LiKE旬の中間一致・ 後方…致

LIKE句 を使用 して中間一致や後方一致を行うと索引が使用されません。

対処法にはINDEXヒ ントを使用する方法もありますが、索引が効率的に機

能しない場合もあるので、別の検索条件を加えたり、0旧cleTextの使用を検

討するなど、他の対処法をおすすめします。

以下の例では、前方一致 (0)では索引が使用されていますが、中間一致

(0)や後方一致 (0)では、索引が使用されていないことがわかります。

索
引
に
よ
る
い
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

鷹賓罰ロロロロ LIKE句の中間一致
・後方一致

SOL>`ELECT l:R01燿 ctst=ms‐ t ttERE custCode LIKE ll帆 1

2 / .. . || .|‐ .. .|・ |||| ‐
|‐
 | _‐‐ ‐ .‐ . . _. ‐‐‐ ‐‐‐ ‐‐ ‐|| .| ‐|‐ ‐‐ ‐ | ―. ‐‐

実行計画 . . ・ | ‐‐ || ・ ‐ .. ‐ ‐_ ‐ .‐‐ . .

暗黙の型変換

1実行計画|| ||| ||.||

■ .| ::

■|三二二〇

子| ・■ .:‐,

_ |_0.

||(CO● t■ 1 9ard=2128) .

|)/

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

CHAPT[R07索 引によるSQLチュ…ニング

瞼輻 NOT EQUALS検索の使用
以下のようにNOT EQUALS検索を行った場合も索引は使用されません。

・列名 !=11:

・ 列 名 く>:1:

この場合は、NOT EQUALS条件をEQUALS条件にすることができるかを

検討します※。

以下の例では、EQUALS検索 (0)で は索引が使用されていますが、NOT
EQUALS検索 (⑩)では索引が使用されていないことがわかります。

※INDEXヒントを使用する方法もあります。

. 0

:■ .. ■ .

t薔,

=-0
驚
.

■|(COST=74 CARD=5000

インデックス・マージ

複数の列に対して検索条件を与え、検索するケースは数多く存在 します。

たとえば、「埼玉県の男性」を検索する場合は、都道府県の列と性別の列に

対してそれぞれ検索を実行します。

このような場合に検索時のアクセス・ブロック数をなるべく少なくする方

法としてそれぞれの列に索引を作成します。

玲鋏 インデックス・ マ…ジとは

それぞれの列に対して索引を作成した場合、インデックス・マージを使用

して、内部的にはそれぞれの列の索引を使ってROWIDの リストを取得し、

各リストに共通に含まれるROWIDを選び出します。ただし、インデック
ス・マージでは、マージ対象のデータが広範囲になる場合、効率が悪くなる

ため、使用しないほうが良いでしょう。

索
引
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
‥
ニ
ン
グ

インデックス 0マージ

NOT EQ∪ALS検索
・ ■ _ 1‐ |. ●

.:‐

.`・

.|. 0.

BYTES=10276455)

()7

CHAPTER 07索引によるSQLチユーニング

たとえば、先述の例で埼玉県の人は、テーブルデータ1000件の内、5件で

あり、男性の数は500件だったとします。この場合に、インデックス・マー

ジを使用すると5件 と500件のデータを検索した後でマージ処理を行うためパ

フォーマンスが低下します。それよりも、5件 (埼玉県)を先に抽出し、その

5件から男性の作数を探したほうがより速く検索できるのは明らかです。

インデックス・マージで非効率な場合

顧客マスタに 1000件のデータがあり、その中から埼玉県で男性の人数を取得する場合

インデックス・マージ

結果をマージ

通常の検索

‐→

男性を検索

鍮輻 インデックス・ マ…ジの実行

以下の例では、売上情報を格納している売上テーブルに対し、「商品コー

ド=20」 で、かつ「顧客コード=000297」 の情報を、インデックス・マージを

使用した場合と、使用しない場合でそれぞれ検索しています。なお、売上テ

ーブルの商品コードと顧客コードそれぞれに索引が作成されています。両方

の索引を使用するようにヒントを与えて実行しています。

インデックス・マージの実行

ヨ
恭ヨ
議
ヨ
希

Ｆ
Ｌ

馴
一卜
≧

・́卜
Ｌ

馴

件

　

　

　

　

‥

ヾ
九

5件

】
・

|‐歯07■ |

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

実行例 07-12

索
引
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

インデックス・マージ

laPn=1 RVTEQ=2110

統計

■4 ‐ 2.― ||. lNl)EX‐ .(RrOこ(3E sCAN}‐ (COST=l CARD=1)

■
‐

=
―‐ ・・ | .. :

|||. 1・

.= ■|

蒻

・
 ||

、 . : . _:

|. .|4 /.

・: 、 .:_―

|‐ ,| .1 .,

.統計 ‐|■

CHAPT[R07素引によるSQLチユーニング

上記の実行結果を見ると、アクセス・ブロック数 (0と 0)、 実行時間 (0
と0)と もインデックス・マージを使用した検索のほうが、時間がかかって
いるのがわかります。

したがって、特別なケースを除いては、インデックス・マージを実行する

よりも、データ件数を絞り込める列に対して索引を作成したほうが、効率は

良くなります。そのため、オプテイマイザはマージデータが広範囲になるよ

うなケースではインデックス・マージを選択しません。

それぞれの列に索引を作成する以外に、複合索引と呼ばれる、列を結合し

たものに索引を作成する方法があります。

複合索引の構造

ルート・ブロック

A～Lまで Zまで

ブランチ・ブロック

リーフ・ブロック

リーフ・ブロックには、1列目の情報と2列目の情報がその順序で格納されます。
ただし、プランチ・ブロックは、1列目の情報しか格納されません。したがって、
2列目のみを使用した検索では、索引は機能しません

鱚
/P～

1列目の値 2列目の値 ROVVID

ARMOND 1111 AAZZ09UU
C00KIE 2222 BBZ108UZ

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

複含索引の利用

複含索引の利用

たとえば、列1と列2に対して、列1、 列2の順番で複合索引を作成した場合、

B+Tree構造のリーフ・プロックには列1と 列2の結合された情報が格納され、

ブランチ 。ブロックには列1の情報が格納されます。そのため、列1のみの条

件で検索した場合も、複合索引は機能します。

蟷躙 複含素引の利用方法

以下の例では、商品コード、顧客コードの順で索引を作成しています。商

品コードのみを条件としていますが、複合索引が選択されているのがわかり

ます (0)。
索
引
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
！
ニ
ン
グ

‐■●
‐■,

|り /

C‖ APT[R07索 引によるSQLチユーニング

一方、列2のみで検索した場合、複合索引は利用できません。以下の例で

は、顧客コードのみで検索しているため、索引は使用されていません (0)。

複合索引が利用できない場合

● || _.
、 |= '

黎鰈 複含素引の作成のポイン ト

複合索引の作成のポイントは、複合索引を作成する最初の列には、「=」

(イ コール)検索など、データ件数が絞 り込まれやすい条件が使用される列

を指定することです。

たとえば、列 1と 列2の順番で複合索引を作成した場合は、列1に ブラン

チ・プロックを作成するので、列1でデータを最小限に絞 り込まれるように

指定します。

赳輻 複含素引と単一列素引

複合索引が1列 目に定義している列には、単一列索引は定義する必要はあ

りません。単一列索引のほうが、リーフ・ブロックに格納されるデータ量が

少なくなるため、少ないブロック数でアクセスすることができますが、実行

速度に大きく影響するものではありません。

以下の例で、複合索引の1列 目を使用した場合のアクセス・ブロック数と

単一列索引を使用した場合のアクセス・プロック数を比べてみましょう。

複合索引と単一列索引

・■
―
■

実行例 07-14

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

実行例 07■ 5

索
引
に
よ
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

複含索引の利用

‐ 11 1‐・ |10 ‐|

・‐
‐‐2 ‐| ・1111‐

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

CHAPTER 07索 引によるSQLチユーニング

「consistent gets」 の値は、単一索引でアクセスした場合 (0)は「248」、複

合索引を使用してアクセスした場合 (0)は「281」 であり、リーフ・プロッ

クに格納されるデータ量が違うため、アクセス・プロック数に差が出ていま

すが、実行時間には差がありません。

更新パフォーマンスを考えると、このレベルであれば許容範囲であると考

えることもできます。もちろん実際のデータで試すともっと違う結果になる

可能性もあるので、十分に検討してください。

Bytes=172150) |.| .| ■ ‐ ‐‐ ・ ..
‐
 . _ . . .

. 1 ■ 0 .TABLE ACCESS (BY iNDEX ROWl.D). OF iSLES_TRNl_(Cost=18‐

Cardl=750 Byltes=17250) ■ ‐

1 2・ | ■. . ■NDEX (RANGE SCAN)OF iIND_SttES2' (NON=UNIQUE)

(Cost=2 Card=750) | ‐ . .

.統
計 .

O recurs■ve_calls ‐ ‐

O db block gets . . ._

281 consおtent gets――――――――一 -01 ‐ ‐ ‐ ‐ ..

.‐ . p .physical reads . .. | .
O redo.s■ ze . ・ ‐ .. ‐| | .

. 21010 bytes sent via・ sQL■Net tO client

_. .. 1.053 ‐bytes received■ via SQL■ Net from client . . ■

. . 52 SQL★Net・ roundtrips to/from client . . . _

O SOrtS(memOryl) . .
. O SortS (diSk)

. 759 rows processed ..

本章のまとめ

索
引
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

班

:壽籠

下の4

，，
・　
■

キャン

|: ●
|,
一
い一

本 辱ユ の ま と め

シングル・プロック・アクセスでデータ 。ブロックにアクセス

し、順番が保障され、パラレルでのスキャンが可能になる。順番

が保障されるため、ソー ト処理を回避することができる

全索引スキャン

高速全索引スキャン マルチ・ブロック・アクセスでデータ・ブロックにアクセスし、

順番が保障されないため、ORDER BY句 などが指定されている
場合にデータ取得後にソー ト処理が実施される。また、パラレル

スキャンが可能だが、指定 した列のうち少なくとも1つ はNOT
NULL制約が必要になる

してく

・
'
″‐ ||

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

C‖APT[R07索引によるSQLチューニング

|| ■ . ‐
・

・

|. ‐ ‐
‐ ‐ ‐‐

|| :・ :・ ■ |●

.. :,. 11 .|

データ件数

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

データベース設計時に、正規化が実施されるため、データを検索する際に

は、ほとんどのケースでテーブルの結合が発生します。なお、テーブル結合

を使用せず、プログラム内のループ処理でテーブル結合を行った場合と同じ

データを取得することも可能ですが、必ずしもパフォーマンスが向上すると

は限りませんし、結合を利用すれば1つのSQLで処理できるものが、結合を

利用しないことによって何十行ものプログラムコードを書かなければならな

くなるので、生産性が低下します。

Oracleの結合方法である「ネステッド・ループ結合」、「ソート/マージ結

合」、「ハッシュ結合」の概要は、CHAPTER01(P.32参 照)で解説しましたが、

本章ではどのような場面でそれぞれの結合方法が有効なのか、どのように使

用すればより効率的に機能し、パフォーマンスの向上につながるのかについ

て解説します。

ネステッド・ループ結合では、テーブルのデータ量を判断し、片方のテー

ブルを駆動表として定義し、駆動表のデータに対して1件ずつループ処理を

行い、そのループ処理内でもう片方のテーブルである結合表に対して検索を

実行し、一致する列があれば結合を行います。

洟躙 駆動表と結合表

ネステッド・ループ結合のチューニングポイントは「駆動表を確定するこ

と」です。駆動表とは、結合の軸となるテーブルです。結合処理が実施され

るのはWHERE句の条件が適用され、絞り込まれた後なので、2つ の結合す
るテーブルのうち、WHERE句の条件が適用された後の件数が少なくなるほ

うのテーブルを駆動表にします。

ネステッド・ ループ結合

結合による
SQLチューニング

CHAPTER

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
！
ニ
ン
グ

CHAPT[R08結合:こよるSQLチユーニング

対する結合表は、結合される側のテーブルです。「どれだけ速く処理結果

を返すことができるか」が結合表のポイントになります。そのため、結合表

では索引を使用した検索が必要です。索引が使用できなければ、毎回フルテ
ーブルスキャンが実施されるため、非効率な処理になってしまいます。

たとえば、駆動表の行数が100件、結合表の行数が1000件である場合、結

合表で索引を使用した検索が行えなければ、10万件 (100件 × 1000件)のデ
ータにアクセスすることになります。

そのため、ネステッド・ループ結合を行う際に結合表に指定するテーブル

には必ず索引が使用できるテーブルを選んでください。また、PrimaryKey

を使用したアクセスを行えば、より高速にアクセスすることもできます。

なお、結合表の結合対象列にNULLがあると索引が使用できないので、フ

ルテーブルスキャンが発生してしまいます。したがって、結合対象列には、

NOT NULL制 約 を付 けるか、 あ らか じめIS NOT NULL条件 で絞込 んでお くよ

うにしましょう。

駆動表と結合表

ネステッド・ループ結合は、 1つのテーブルをループしなが駄
その列値と一致する値を取得し結合します

索引アクセスなど

(結合表)

(駆動表)

駆動表のデータ件数が少なければ、
ループの行数が減ります

隋蒻 駆動表に適したテ…ブル

最も行数の少ないテーブルが駆動表として必ず適しているわけではなく、

WHERE句 の条件が適用された後に戻される行数が少ないものが駆動表とし
て適しています。

たとえば、テーブルAのデータが100万件、テーブルBのデータが10万件の

場合、一見すると、駆動表としてはテーブルBが適しているように見えます

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

ネステッド・ループ結合の実行例

が、WHERE句の条件でテーブルAのデータ件数が1万件まで絞られる場合は、
テーブルAのほうが駆動表として適しています。

瞼輻 駆動表の指定

駆動表の指定方法はRBOと CBOで異なります。RBOの場合は、FROM句
の最後に指定されたテーブルが駆動表として採用され、CBOの場合は、オプ

テイマイザがテーブルサイズ情報から駆動表を決定します。

ネステッド・ループ結合を実際に実行し、どのような実行結果が得られる

かをいろいろなSQLを 実行することで確認してみましょう。

聰躙 駆動表によるパフォーマンスの違い

以下の例では、37500件のデータが格納されている売上テーブル (SALES_

TRN)と、50件のデータが格納されている商品マスタテーブル (CMDTY_
MST)の 2つ のテーブルをネステッド・ループ結合し、検索しています。こ

こでは、駆動表によるパフオーマンスの違いを確認するために、それぞれの

テーブルを駆動表として2つのSQLを実行しています。

駆動表によるパフォーマンスの違い

ネステッド・ ル…プ結合の実行例

実行例 08‐ 01

‐
1 3■ | ‐2 ‐■|

.1 4_ 2

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

CHAPTER 08結 合によるSQLチユーニング

続計

0
.. 1

|1 2

3 ‐‐1

ネステッド・ループ結合の実行例

アクセス・ブロック数を比較すると、「consistent gets」 の値は、商品マ

スタ (50件)が駆動表になっているケースでは「12606」 ですが (0)、 売上デ

ータ (37500件)が駆動表になっているケースでは「42649」 であり(0)、 多く

のプロックにアクセスしていることが確認できます。

鼈輻 結合表へのアクセス方法の違いを考慮する

もう1つ別の例を考えてみましょう。以下の例では、顧客マスタテーブル

(CUST_MST)に データが10000件用意されています。そこに都道府県マス

タテーブル (PREFECTURE_MST)を 結合します。なお、都道府県マスタの

データ件数は48件です。

駆動表の違しヽによるパフォーマンスの違い

| ,
゛
　
　
　
　
　
‐
一　
　
　
　
　
　
　
　
●

L00PS

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

p,cust_mst c

sentl via SQL■ Net to
ll・ |||| ■ |,

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

CHAPT[R00結含によるSQLチユーニング

CBOを利用した検索 (0)では、駆動表は都道府県マスタテーブルなので、

ループ回数はデータ件数と同じ48回です。一方、RBOを利用した検索 (0)
では、駆動表は顧客マスタテーブルなので、ループ回数は10000件です。し

かし、アクセス・プロック数を比較すると、「consistent gets」 の値は、都道

府県マスタテーブル (48件)が駆動表になっているケースでは「79972」 です

が (0)、 顧客マスタテーブル (10000件)が駆動表になっているケースでは

tolfrom client

ネステット,ループ結合が有効なケース

「34982」 であり(0)、 データ件数の多いテーブルを駆動表としたほうが効率

的であることがわかります。

なぜ、このような結果になるのでしょうか。上記の例では「結合表へのア

クセス処理」がポイントになっています。

CBOを利用したものは、索引スキャンが実施され、 しかも、索引がNOT
UNIQUE索 引なのでNULLを 許容しています。一方、RBOを使用したものは、

PrimaryKeyを 使用したアクセスです (NOT NULLを 含む)。
つまり、ループ回数の違いによる処理時間の差よりも、ループ内で処理し

ている結合表へのアクセス処理の時間の差のほうが大きいため、データ件数

の多いテーブルを駆動表としたほうの効率が良くなっているのです。

ネステッド・ループ結合では、このようなケースが発生する可能性もある

ので、処理実行時間がかかっている場合は駆動表を見直すことをおすすめし

ます。

ネステッド・ループ結合は索引スキャンを利用するので、参照テーブルの

一部を抽出する場合や、結合表にPrimaryKeyで アクセスできる場合、結合

する2つのテーブルのデータ件数に差があり、かつ件数が多いテーブルの結

合列のカーデイナリテイが高い場合に有効です。

一方、結合テーブルのほとんどのデータを出力する場合は、フルテーブル

スキャンのほうが効率的にアクセスできるので、ネステッド・ループ結合で

はなく、以下で解説するソート/マージ結合 (P.232参照)やハッシュ結合

(P.237参照)のほうが向いています。

玲鰈 データ抽出量による結合の優位性

以下の例では、37500件 のデータが格納されている売上データテーブル

(SALES_TRN)と 、10000件のデータが格納されている顧客マスタテーブル

(CUST_MST)の情報をあらかじめWHERE句 の条件で絞込み、ネステッ
ド・ループ結合、ソート/マージ結合、ハッシュ結合をそれぞれ実行してい

ます。

ネステッド0ループ結合が有効なケース

結
合
に
よ
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

実行例 08‐ 03

CHAPT[R00繊合によるSQLチユーニング

データ抽出量による結合の優位性
‐t.

‐
| .`

‐,1● ■・

2. 1.

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

ネステッド・ループ緒合が有効なケース

実行計画 | || | =・

 ヽ

|)|)

CHAPTER 08結合によるSQLチユーニング

(BY INDEX ROWID) OT ' SALES 」RN:

アクセス・ブロック数を比較すると、「cOnsistent gets」 の値は、ネステッ

ド・ループ結合を行ったケース (0)では「70142」 (0)、 ソート/マージ結合
を行ったケース (0)では「3274」 (0)、 ハッシュ結合を行ったケース (0)で
は、「3291」 (0)であることが確認できます。
この結果から、ネステッド・ループ結合が最も多くのブロックヘアクセス

していますが、ディスクヘのアクセス・プロックが「1lo」 と少ないため、結

果として実行時間が最も短いのもネステッド・ループ結合となっています。

上記のように、WHERE句の条件である程度データが絞り込める場合は、
ネステッド・ループ結合が最も有効な結合方法となります。

ソート/マージ結合では、結合するお互いのテーブルでフルテーブルスキ
ャンを実行後に、マージ処理で結合するため、データ抽出量が結合結果の大

部分を占める場合はネステッド・ループ結合よりも有効です。

また、フルテーブルスキャンを使用しないケース (結合前に索引スキャン

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

ソート/マ…ジ結合

2

3

'. ・
|■ 111

Card=1

゛

1澪

49

0

71"6 rows processed

ソート/マージ結合の実行例

を使用して結合対象データを絞り込んでから結合するケース)でも、ほとん

どの行数を抽出する場合には有効です。

なお、結合列ではソー ト処理が必ず行われるため、結合列に索引を作成す

るとソート処理が不要※になるので効率的に結合処理を行うことができます。

ただし、多くの行を抽出する場合は、ソー ト/マージ結合よりもハッシュ結

合 (P.237)の ほうが高速です。そのため、ソート/マージ結合はハッシュ結

合が有効に働かないケースでのみ利用されます。

※索引はデータをソートして格納します。

ソート/マージ結合を実際に実行し、どのような実行結果が得られるかを

いろいろなSQLを実行することで確認してみましょう。

颯鰤 ソート/マージ結合 (フルテ…ブルスキャン)の実行

ネステッド・ループ結合の実行例08‐02(P.227参照)で使用した顧客マスタ

テーブルと都道府県マスタテーブルを結合し、全件結果を戻すSQLを実行し

ます。以下の例ではヒント句を利用してソート/マージ結合とネステッド・

ループ結合をそれぞれ強制的に実行させ、比較しています。なお、ソート/
マージ結合ではフルテーブルスキャンを実行しています。

ソート/マージ結合 (フルテーブルスキャン)の実行

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

実行例 08‐ 04

100000行が選択されました。 ■

実行計画 . ‐‐ _ ‐

I I

ソート/マージ結合の実行例

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPIER 08結合によるSQLチユーニング

.■ 4■・ 1‐ ・ SORT‐.(“il)
5 . 4

統計

_:r ・ '
11=

OFI‐
lINp_CuST=MSTI

(NON―UNlm)(C議 =2`‐
.‐. ■ |. |■ | |

―‐ ‐‐

蓼

t,

(Cost=2 Card=47.Bytesi423).

‐
|_ .'1・ ||.

■,|

_ .、 ●_ =

|. |11001000 .

SQL>ISELECT‐1/★ +| USE-Nt(c p)*/ * FR01,I

.3 2 .

|. 41‐ 12.|・ ‐

Card=2123)| ‐|. ‐ ・

=
|= _.■

ソート/マージ結合の実行倒

実行時間を比較すると、ソート/マージ結合を行った場合は11秒 (0)で

結果を返しているのに対して、ネステッド・ループ結合を行った場合は15秒

(0)かかっています。

上記のように結果をすべて返すSQLでは、ソート/マージ結合を用いたほ

うがアクセス・ブロック数、実行時間ともに有効であることがわかります。

鰊輻 ソート/マージ結合 (索引スキャン)の実行

もう1つ別の例を考えてみましょう。先述のソート/マージ結合では、都

道府県マスタテーブルヘのアクセスにフルテーブルスキャンを実行していま

した。しかし、結合列である都道府県コードには、PrimaryKeyが設定され

ているので全索引スキャンでアクセスしたほうがより効率的にアクセスでき

ると予測できます。

そこで、以下の例では、都道府県マスタテーブルのPrimaryKeyを使用し

てアクセスするようにヒントを与えて実行しています。

ソート/マージ結合 (索引スキャン)の実行

結
合
に
よ
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

・
1 6.‐ |■

db‐block gets.|

,| .::

=| ■ |■ ||.

■ || :i ., .|‐
‐
■ ‐残.

団回回

|'

■●

100000行が選択されました。

..経

過:.00100:11.0‐ 7

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

CHAPTER 08結 合によるSQLチューニング

.行計画 ‐ |‐ | ‐|

98186) . ||

(Costi165‐ 4

2 1

.. 4. |.1 .

5 4

1 6‐ 5

(Cost=.826.

sCAN)OFI' (Cost =26

「
(NON― UNIQUE)二 〇

結果、テーブルフルスキャンは解消され、全索引スキャンが選択されてい

ることがわかります (0)。 ただし、都道府県マスタテーブルはコードと名称

のみを格納しているテーブルなので、全索引スキャンでもフルテーブルスキ

ャンでもほとんどアクセス・ブロック数に差が出ないため、実行時間は改善

されませんでした。

ただし、通常のシステムでは、索引内のプロック数よりもテーブル内のブ

ロック数のほうが多くなるので、実際にこのような場面に遭遇 した場合は、

全索引スキャンを使用するのも選択肢の1つ となります。

. ‐1 1 0 1‐ MERGEI.J01N ● :

熟

|し ,

■

●

. . o ‐‐
redursive

.■.●

`■
.

=・=

79550

2

0

consistent gets

0

|| |||1101000.01

ハッシュ結合

ハッシュ結合の実行例

ハッシュ結合は、メモリ内部にあるテーブルを結合する特殊な結合方法で

す。初期化パラメータHASH_AREA_SiZEで 指定したハッシュメモリ領域に

小さいテーブルを格納し、そのハッシュアルゴリズムで結合します。小さい

テーブルとは、正確にはハッシュメモリ領域に収まるサイズのテーブルです。

格納するテーブルがハッシユメモリ領域に収まらない場合は、一時表領域に

ページアウトし領域を確保するため、パフォーマンス劣化の原因になるので

注意してください。

ハッシュ結合には以下の長所があります。

・ソート/マージ結合とは異なリソート処理が必要ない
。索引がない状態でも結合処理に差が出ない

。フルテーブルスキャンを実施することから、データ選択性の高いSQLで効

果を発揮する

なお、ハッシユ結合は、CBOがテーブルのサイズを確認し、ハッシュ結合

が最適だと判断した場合に選択されるので、RBOで ヒント句を使用して強制

的にハッシュ結合を利用する場合は、テーブルサイズが大きくなり初期化パ

ラメータHASH_AREA_SIZEに納りきらなくなってもハッシュ結合を選択

してしまいます。これが原因で思わぬ トラブルが発生する可能性もあるので、

アプリケーションの特性を十分検証し、ヒント句の利用を検討してください。

ハッシュ結合、ソート/マージ結合ともに、テーブルのほとんどのデータ

を取得する場合に有効な結合方法です。ハッシュ結合を実際に実行し、どの

ような実行結果が得られるかをいろいろなSQLを実行することで確認してみ

ましょう。

鰈鼈 ハッシュ結合とソ…卜/マージ結合の比較

以下の例では、売上データテーブルと顧客マスタテーブルの検索を、ハッ

シュ結合とソート/マージ結合で実行し、結果を比較します。

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

ハッシュ結合の実行例

CHAPTER 03結 合によるSQLチユーニング

八ッシュ結合とソート/マージ結合の比較

一̈
ヤ
一

ヽ
ツ
・

実行例 08‐ 06

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

,,

,

|`0

0

0

‐||

0

SQLINetl‐ to client
‐ .

|.| ・ ・

2501

・ 0

ハッシュ結合の実行倒

_' :…
一

　

・

　

・

　

，

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

ヒントを使用しなかった場合、オプティマイザはハッシユ結合を選択して

います (0)が、実行時間はハッシュ結合を行った場合 (0)よ りも、ソー

ト/マージ結合を行った場合 (0)の ほうが速いことが確認できます (0)。

黎輻 索引のないテ…ブルに対するハッシュ結合

もう1つ別の例を考えてみましょう。ハッシュ結合のメリットは、ソート

処理が必要ないことと索引がなくても結合に影響を及ぼさないことなので、

以下の例では、 ソー ト/マ ージ結合で使用 している顧客マスタの

PrimaryKeyを 削除して、上記の例と同じSQLを再度実行しています。索引

を使用しない場合のそれぞれの実行時間はどのように変わるでしょうか。

3 2.

‐・ 4‐ ‐|{L ・ ‐ISORT

54
Bytes=8‐ 625‐00ト

―
o l‐ red、lrs.iv。 .ca‐lls‐‐

‐ ‐ 1 ‐= ‐| ■. |■ ..‐

tO client・ ‐_

| ・ヽ l .|●

.: .‐ .

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

実行例 08‐ 07

CHAPTER 03績禽によるSQLチユーニング

索引のないテーブルに対する八ッシュ結合

‐,

■
・
　
●
・

・ヽ

●
　
ｔ
〓

WHERE s.custcode = c.custcode
/

2

3

37500行が選択されましたも

・ |

・●:.:

‐
‐ =

|,I I'′ ―
|‐経)最 : 1010:0‐ 0:018.06

.‐ ‐ . | .| .ツ
'

実行計画._

0
1警

1

2 1

. TABLE ACCESも (Cost=287

統計

‐ ●●

|‐ ‐‐■ 3.041‐‐

5068213 bytes sent via SOL★Net to client
27992

2501

received via SQL★ INet from‐ client

嘉

●● ●

GROUP BY旬の利用

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

‐‐・ ・0 -||

● 11■
|:.■

.= =.

■ .' ■
|. ■ 1‐

processed

上記の結果から実行時間を比較すると、ハッシュ結合の場合は8秒 (0)で、

索引があった場合とあまり変わらないのに対し、ソー ト/マージ結合では、

以前と比べ約倍近くの実行時間 (0)がかかっていることがわかります。

ハッシュ結合ではソー ト処理が発生しないので、索引のない列を結合する

場合に効果を発揮していることが確認できます。

GROUP BY旬の利用

グループ関数は、パフォーマンスに対してどのような影響を及ぼすのでし

37500行が選択されました。

■1 2‐■ .■‐

.Bytes=86215001)

‐・ = ‐ ・ .

|:| :,‐

. 2071.

=.. 11

:■
｀

苺

|● ●ヽ. 、.

calls ‐‐ .‐ _ .

.. 2799.2

2501

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
！
ニ
ン
グ

CHAPTER 08結 合によるSQLチューニング

ょうか。

GROUP BY句 を利用した検索では、GROUP BY対象列に対して索引が作
成されている場合に効率的に機能します。たとえば、MAX関数やMIN関数を

使用した検索では、索引で順序情報を保持しているため、索引の有無により、

実行速度に大きく影響を及ぼします。

蟷鶉 索引を使用したグループ関数の利用

たとえば、売上データの顧客ごとの過去最大購入金額を計算する場合、顧

客コードでグループ化するので、顧客コー ドと合計金額に対して複合索引を

作成します。なぜなら、グループ関数を利用 して別々の索引を作成すると、

索引領域が別々に管理されることになるので、索引を使用したグループ関数

が使用できなくなるからです。

また、索引にはNULLを含めることができないので、 どちらかにNOT
NULL制約を付けるか、WHERE句の条件にIS NOT NULL条件を指定する
必要があります。

以下の例では、索引が定義されている列に対 してグループ関数を使用して

います。なお、顧客コードにNOT NULL制 約を付けています。

.1.‐ _■・

実行計画

‐
F■■・

. 2 .. 1.

11 ■ ■

0

・■1‐ . 0

GKttP 8Y旬の利用

実行計画を見ると、索引が効率的に使用されていることが確認できます(0)。

蟷躙 最大値と最小値を同時に求めるSQL
以下の例では、MAX関数とMIN関数を使用して、最大値と最小値を同時
に求めています。

最大値と最小値を同時に求めるSQL
11■‐

FROM

BY custcode
華■■

SELECT STATIna]Nl'

Bytes= 712280)

O SORT (GROUP BY NOSORT)

card=37500 Bytes=750000)
:1111.

最大値と最小値を同時に求めた場合も、索引が効率的に使用されているこ

とが確認できます (0)。

瘍躙 平均値と合計値を同時に求めるSQL
以下の例では、AVG関数とSUM関数を使用して、平均値と合計値を同時
に求めています。

平均値と合計値を同時に求めるSQL

INDEX (FULL SCAN)OF

団回回
SELECT

GROUP BY custcode

/

STATEMENr

712280)

(GROUP BY

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

NOSORT)

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

CHAPTER 00結合によるSQLチューニング

平均値と合計値を同時に求めた場合も、これまでと同様に効率的に索引が

使用されていることが確認できます (0)。

玲輻 索引が定義されていない列に対するグループ関数の利用

以下の例では、索引が定義されていない列に対してグループ関数を利用し

ています。

索引が定義されていない列に対するグループ関数の利用

SUMI(amount)

BY cust.code

上記の例では、索引が使用されず、フルテーブルスキャンが発生している

ことが確認できます (0)。

鰈勒 NOT NULL制約をはずした列に対するグル…プ関数の利用
以下の例では、NOT NULL制約をはずした列に対してグループ関数を使
用しています。

NOT NULL制約をはずした列に対するグループ関数の利用

`

実行例 08-11

OF ilND SALES4: (NoN-UNIOUE) (Cost=26

-O

O SELECT STATEMENll()iptilllizer=CH00SE (Cost=208 Card=35614

_‐ ‐Bytes ■81‐9122). ‐

1 . 0 1.ISORTII(GROUP BY) (Cost=208 Card=35614 Bytes=819122) . .

2 - ■‐ ||ITIら ,LE.IACCESS (FULL)OF iSALES_TRN・ (Cost=29 ____二 _=三二=■_lol‐

―■ ■ ‐|ICard■ 37_5.00 13ytes=862500) .■
‐|| || ‐

団回□

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

０

鸞

　

　

　

　

　

　

　

　

・
・
　

・
・
　

　

・
　

　

・・
　

　

・
　

一　

・

輝

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

・

　

・・

・　

・

Ｃ

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

Ｏ‐

胸
　
　
　
　
　
　
　
・・
　
・
・
・　
・・
　
　
・・
　
・・
７５
・
・

嘔
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
４
　
　
　
　
・３
‐

馴
　
　
　
　
　
　
　
　
・・　
　
・
・　
　
・　
　
巡
　
　
・Ｏ
　
ｒｄ‥
・

時　　　　　　　　‐　　．‐　　．　・　禦　　．．・２２８　鳴．

．．．　．
．．　
　
．二
．ｍ　　一釘　暉一

・・　　・・　　　・　
一・鵬　　・・い
い・　　・

．　

　

　

　

‐
　

　

　

．
　

　

一
　

．一一
　

　

　

Ｂ

　

‘

・

・　　　　・
　
　
一・　斌　　　　秘一　
Ｗ

．．　
　
．
．　
　
・一　
　
一・
一は
　
●
５６
　
ＴＲ・・

・Ｌ
　
　
・●
　
　
・二

・
期
　
・・　
ｒｄ〓３　
」Ｅｓ一　
　
・・

一　　
　　
　　
　　
　　
　
一　
α
　
．　
Ｃａ　
出

・嶽・　
・・　　・・　
　
一・湖
・・・
８８
・ｒ　　・

・融　　・　　　　　　一　・ｒ　　　ｔ〓．
・凛

．．ｍ　．　　　・・　　・一　，ｔｉｍ‥・・　＜ｃｏｓ・Ｆｕ」・　
‐

．．．．脚　・　
・・　
一
」・
ｍ・】
Ш

．』・に・　　・・　・一　̈
・・・・・］
ｍ・・̈　‐ｓ〓７５０＜・

一呻・ｍ　　・・　・・一　呻・］
】・螂・・い

．剛・】　・・　
・・一　螂・彙・‐一・　　・

，ＥＣＴ
・贈
　
　
・・　
　
　
・　
一　　・・・　
　
・「
・・
・・

鑑
．図　
・／　
　
　
画
　
一　
ン
　
　
　
・
　
２

レ
．．″
３‐‐‐．．　
徊
　
一　
■
　
・・・　
　
・●

ＳＱ

　

　

　

　

　

実

　

一

上記の実行計画を見ると、NOT NULL制約をはずすと、フルテーブルス

キャンが発生していることがわかります (0)。 そのため、索引を使用した検

索を行うためには、IS NOT NULL条 件を追加する必要があることがわかり

ます。

団画□ IS NOT N∪ LL条件を追加する
|1幣

:‐

上記の実行計画を見ると、IS NOT NULL条 件を加えたことによって、効

率的に索引を使用できていることが確認できます (0)。

これらの結果から、グループ関数で効率的に索引を使用するには、グルー

プ関数内の列とGROUP BY句 で指定する列に同一の索引を定義する必要が

あることがわかります。そして、その索引内の条件だけで検索を行うことに

より、索引のみを使用したアクセスが可能になります。

2 1

CHAPT[R08結合によるSoLチユーエング

HAViNG句 は、GROUP BY句 によって取得した結果行に対して、さらに条
件検索を実施する場合に使用します。集計の後で絞込みを実行するのが

HAVING句 の大きな特徴です。グループ化を行う前に絞込みを実行したほう
が、グループ化の対象行を減らすことができるので、より効率的に機能しま

す。ただし、HAVING句 を使用するよりも、WHERE句 を使用したほうがパ

フォーマンスは向上するので、HAVING句 を使用する前に、WHERE句 に書
き換えることができないかを検討してください。

隋蜀 HバVING旬どWHERE旬の比較
以下の例では、HAVING句 と、HAVING句をWHERE句 に置き換えた場合
をそれぞれ実行し、比較 しています。

HAViNG旬の利用

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ
巨璽囮 HAVING句 とWHERE句の比較

FROM

0 .

1

|1 2.||.

3 Card=37500

‐.= ｀

c■lient l .
‐ ‐

■ |.

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
‥
ニ
ン
グ

ソート処理の範 化

上記の結果を比較すると、HAVING句 を使用した場合 (0)よ りも、WHERE
句に置き換えたほう (0)が、アクセス・ブロック数、実行時間ともに数倍

も効率的であることが確認できます (0と 0)。

503 bytes received via
2

O SOrtS (disk)

2 rows processed

INLIST

INDEX

0 recursive calls
0 db block gets

0 physical reads
0 redo size

501" bytes sent via
503 bytes received

01=

`,驚
TI
Bytes=■5000)

v■ a
.2 SQL=INOt roundtrips‐

0 sorts (memory)

0 sorts (disk)
2 rows processed

|:

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
！
ニ
ン
グ

ソ…卜処理の最適化

CHAPTER 08畿合によるまれチユーニング

ソート処理はシステムリソースを大幅に消費します。特に、デイスクソー

トが実行された場合は、大量のシステムリソースを消費し、パフォーマンス

に大きな影響を及ぼします。

鍮躙システムリソースの種類

システムリソースは以下の2種類あります。

表08-01 システムリソース

獨鶉 ソ… 卜処理の発生原因

なるべく避けなければならないソート処理ですが、中には意識せずにソー

トが発生しているケースも多く存在するので注意してください。

ソート処理は主に、以下の場合に実行されます。

・ORDER BY句 を利用した場合
・D:STINCT句 を利用した場合

・GROUP BY句 を利用した場合

・UN10N旬 、MINUS句 などの集合演算子を使用した場合

・ソート/マージ結合の利用した場合

瘍鰈 メモリ領域の設定方法

ソートに必要なメモリ領域は、初期化パラメータSORT_AREA_SiZEで指

定します。なお、Oracle 9i以 降は、インスタンス内で使用可能なPGAの総量

を指定する初期化パラメータPGA_AGGREGATE_TARGETで 指定されたメモ

リ領域を使用します。また、共有サーバー接続を利用している場合は、初期

化パラメータLARGE_P00L_SiZEで 指定されたメモリ領域を使用します。

CPUリ ソース ソート対象となる結果セットのサイズに比例 してリツースを多く消費する

メモリ Oracleは ソー トを行うときに、作業エリアをメモリ内に確保する。メモリ

内に確保できない場合はディスク領域を使用する

集合関数の利用

鼈鰈 ソー ト処理の回避方法

索引を使用することで、ソートを回避できることがあります。索引は、ソ

ートされた状態で格納されているため、ORDER BY句 に索引列のみ指定す

ることで、ソートを回避することができます。

ただし、NULLが含まれている列は索引に含めることができないので、ソ

ートのために索引を使う場合は、NOT NULL制約を定義する必要があるの

で注意してください。

上記の例では、索引を使用してソート処理を実行していますが、TOTAL

PRICE列 にNOT NULL制約が定義されていないため、フルテーブルスキヤ

ンが発生しています (0)。

そこでWHERE句の条件にIS NOT NULLを 定義し、再度同じSQLを 実行

します。

索引を使用したソー ト処理

[[[]f!f ft: tD"th at/:rt iY- r-'ilG

sQL> SELECT * !,ROU sales-trn oRDER BY totalprice DESC

2/

.fieiE[

0 SELECTSTATEMENToptirnizer=CHoosE (Cost=212Card=37500

Bytes=862500)

1 0 SORT (ORDER BY) (Cost=212 Card=37500 Bvtes=862500)

2 L TAB,]E ACCESS (FULI,) OF ,SALES*TBN, (COST=29
- -- O

Card=37500 Bytes=852500)

実行計画

0
‐
1

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

実行例 08‐16

6

.==

WHERE

OF

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
！
ニ
ン
グ

CHAPTER 08結合によるまユチユーニング

_ ― |‐ ‐ ‐||■ || |‐ ‐|‐ || ||_|_
2111 1 ■||.INDEX■ |(FULL SCAN DESCENDING)OF iIND_SALESi(NON― UNIQUE).■ ■=.0

(Cost=26 Card=1)

上記の実行計画を見ると、索引が効率的に使用されていることが確認でき
ます (0)。

同じテーブルに対して、複数回のSQLを 実行している場合は、そのSQLを
1つ にまとめることができないか検討する必要があります。もし、複数回の

SQLを 1つ にまとめることができれば、そのテーブルヘのアクセスを1回にま
とめることができるので非常に効率的です。

蝙勒複数回のSQLの実行
以下の例では、商品コードを10番刻みでどの番台のものが多くの回数、購
入されたか分析するためのSQLを実行しています。

SELECT COUNT(ホ)FROIⅥi s」 es_trn lⅣHERE clndtycode BETWEEN lll AND l101

SELECT COUNT(°)FR01Ⅵ :s」es_trn l配HERE clndtycode BETヽ VEEN 111'AND 1201

SELECT COUNT(幸)FROIⅥI sales_trn WHERE cmdtycode BETIVEEN'21l AND 130'

SELECT COUNT(・)FROMi sales_trn lぼ HERE clndtycode BETWEEN 131l AND 140'

SELECT COUNT(中)FROMisales trn lⅣ HERE cmdtycOde BETヽ VEEN 141'AND 1501

実行するSQLを見ると、同じテーブルに対して複数回のSQLを発行し、目
的のデータを取得していることがわかります。なお、すべての実行計画、実

行時間、アクセス・ブロック数は同じなので、ここでは代表して一例のみ実

行します。

複数回SQLを発行し目的のデータを取得するケース

集合関数の利用

慶亜□

集合驀数の割麟

calls

gets

このような場合は、1回の単一スキャンですべての集計を計算できるかを

検討します。ここでは、CASE文を使用した例を紹介します。

隋蜀 CASE文を使用したSQLの実行
以下の例では、CASE文 を使用して上記のSQLを 1つのSQLに まとめてい

ます。同じ結果が得られるSQLですが、SQLが実行されるのは1回だけなの

で、テーブルヘのアクセスも1回で済みます。

CASE文 を使用したSQLの実行

WHEN

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

実行例 08-18

THEN l

IIND SALES2i

bytes receiveil

AND :10_11

:31'7壼tD

END)

counL4,

CHAPTER 08議食によるSQLチ ユーニング

503

sent via
received

client

上記の実行計画を見ると、テーブルフルスキャンが発生しています (0)

が、1回のSQLで 目的のデータを取得できていることが確認できます。しかし、

上記の例ではCASE文 を使用したSQLと 比べ、複数回のSQLを実行したほう
が高速全索引スキャンを実施できていたため効率的かもしれません。

晰輻 複数回のSQLを強引に1つにまとめて実行
上記の2例だけではどちらのSQLが効率的なのかを判断することができな
いので、複数回実行していたSQLを強引に1つ にまとめて、以下のSQLを 実

行して、CASE文を使用したSQLと どちらが効率が良いのかを確認します。

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

10

11

COUNT(CASE WHEN

THEN l

12 FROM

13 /

O SELECT

reads

一”̈一

Card=l Bytes=3)

OF tSALESLTRN: (Cost=29

::

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

実行例 08-19

集合関数の利羅

複数回のSQLを強引に1つにまとめて実行
|・・ ||| |||

aS count5‐
‐

UNION ALIT

10 11 UN10N

5

6

8

9

^| ||| .■

.=‐ ‐_ _

83
98

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
！
ニ
ン
グ

CHAPT[R08結 合によるSQLチ ニーニング

上記の結果を見ると、複数回実行してSQLを まとめたSQLの ほうが、
CASE文を使用して1つにまとめたSQLよ りも、実行時間が速くなっている
ことが確認できます (0と 0)。 また、アクセス・ブロック数も、ディスク・

アクセス数が減っているのがわかります (0と 0)。

もう少しデータ量が多い環境で実行すればより詳細な結果がわかるかもし

れませんが、このように複数回実行するSQLを強引にまとめることで、良い

結果を得られる可能性もあるので、いろいろと試してみる価値はあります。

2

‐ .0

1. .‐ :

|■

=|■
む

SOrtS(memory)

sortさ (diも k)

1 rows processed

本 辱ユ の ま と め

本章鍛まとめ

で

れがどのよう

ス に`つ

■

111112111タ

結
合
に
よ
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

CHA「ER 08結合:こよるSQLチユーニング

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

卜処理が必要ない ‐||

∪
ョ
ｒ
処
理
の
高
速
化

アプリケーション (OLTP系 システム)で、更新処理が遅くなった場合、

DML文自体が原因なのではなく、実行されているSELECT文やUPDATE文、
DELETE文 に含まれるWHERE句が原因であることがほとんどです。
DML(INSERT・ UPDATE・ DELETE)文は非常に単純な構造なので、
チューエングすべきこともあまりありません。INSERT文 においては、1回

の発行で1つの行しか処理することができず、WHERE句 もありません。
したがって、DML文 自体をチューニングしても劇的な効果は得られない
のですが、ここではいくつかのDML文のチューニング方法について解説し
ます。

テーブルのデータを全件削除する場合は、DELETE文ではなく、TRUNCATE

文を使用します。データはDELETE文を使用しても削除できますが、デー

タ量によっては、TRUNCATE文のほうが何倍も高速です。

鰈躙 DELETE文とTRUNCバTE文の違い
DELETE文 とTRUNCATE文の違いは以下の3つです。

瘍丁RUNCATE文 は領域を解放する
TRUNCATE文 を実行すると、データの削除と同時にテーブルデータの領
域解放を実施します。したがって、HWM(高水位標)も 下がります。一方、
DELETE文はデータ自体の削除は行いますが、領域解放を実施しないので
HWMは下がりません。なお、領域を解放しなくても、空きブロックとして
管理されるので次に挿入処理が実施された場合は、その領域を使用できるの

で、データファイルが無駄に大きくなることはありません。

TRUNCATE文の使用

DML処理の
高速化

CHAPTER

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

CHAPTER 09 DttLま l理の高速化

蟷TRUNCATE文 は条件を指定できない
TRUNCATE文ではデータを削除する際に条件を指定することができませ
ん。一方、DELETE文 では条件を指定した削除を行えます。

隋TRUNCATE文 は□―ルバックできない
TRUNCATE文はロールバック情報を作成しないので、より高速にデータ
を削除することができますが、その代わリロールバックを行うことはできま

せん。一方、DELETE文 はロールバック情報を作成するので、データ件数
によっては削除に時間がかかります。

上記3点から、データを全行削除する必要があり、かつ元に戻す必要がな

い場合にはTRUNCATE文 を使用することをおすすめします。

索引は、検索時にはパフォーマンス向上に大きな力を発揮するのですが、

テーブルデータとは別の領域で管理されるため、データの挿入・更新・削除

を実行すると、表領域・索引領域ともに挿入 。更新・削除の処理が発生する

ので、索引がない場合と比べ時間がかかります。使用されない索引や検索時

に効果を発揮しない索引の作成は極力避けてください。

また、バッチ処理で大量の挿入 。更新・削除が実施される場合は、バッチ

処理を行う前に一時的に索引を削除し、バッチ終了後に新たに索引を作成す

ればパフォーマンスを改善できます。CHAPTER06で も解説しましたが、デ
ータの挿入 。更新・削除が行われると索引は索引構造を維持しようとする

(P.185参 照)ので、ブロック分割が発生し、余計なオーバーヘッドが発生す

るケースもあります。そのため、大量挿入・更新・削除時には索引を削除す

ることをおすすめします。

索引がDML文に及ぼす影響

難31カ惨轍 に及ぼす影響

∪
ζ
ｒ
処
理
の
高
速
化

バッチ処理前に索引を削除することの有効性

データの挿入・更新・削除

テーブルと索引両方をメンテナンスするため

負荷がかかる。また、索引は構造を維持しよ
うとするため負荷が高くなる

したがつて

魃

データの挿入

更新・削除
索引の作成

新しく索引構造を作り直すため、
データがきれいにそろう

索引をデータ挿入前に削除する

蟷躙 索引の使用状況の監視

索引が使用されているか否かは、索引を監視することで確認できます。監

視を実施してから全機能テストを実施し、その後、監視結果から使用されて

いない索引を探し出します。

ただし、全機能テストは非常に時間と手間がかかります。本番運用中のア

プリケーションであれば、全機能テス トを行うのではなく、監視を有効にし

たまま運用を続け、月に一度チェックすることで使用されていない索引がな

いかを確認する方法もあります。

索引を監視対象にするには以下のALTER文を実行 します。ALTER文を実

行すると動的パフォーマンス・ ビューV$OBJECT_USAGEの START_
MON:TOR:NG列 に監視開始時刻が記録されます。

以下の例では、売上データテーブルの索引の使用状況を監視するため、監

視を開始しています。

魃

CHAPTER 09 DttL処 理の高速化

鵬覇回ロロロl索引の使用状況の監視

SOL> LTER INDEX ind_sales MONITORING USACE I

2 / ‐ .|

索引が変更されました。

SQL> AI,TER INDEX ind-sales2

索引が変更されました。

SQL> SELECT ■ FROM VSOBJECT=USACE

INDEX NAME TABLE_NAME MON USE END_140NITORING

IND_SAI」ES

INp●SALES2

1ND_SALES3

lNDiSALES4

SALES_TRN

SALES_TRN

Sp壼」ES_TRN

SALES_TRN

YES

YES

YES

YES

N0

隋腱 索引の使用状況の確認

索引の使用状況を確認するには動的パフォーマンス・ビューV$OBJECT_

USAGEの USE列 を確認します。また、動的パフォーマンス・ビュー
V$OBJECT_USAGEの INDEX_NAME列 で、監視対象にした索引を確認 しま

す。USE列の値が「NO」 の場合は未使用、「Y匡S」 の場合は使用されているこ

構 文

ALTER INDEX く索引名> MONITORING USAGE

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

口
ζ
ｒ
処
理
の
高
速
化

彙3:力う懸鍍 :こ及ぼす影響

とを意味します。

上記の実行結果では、索引の監視を開始してから、索引を使用していない

ため、すべての索引でUSE列の値が「NO」 になっています。

それでは、索引を使用するSQLを発行し、その後の様子を見てみましょう。

索引の使用状況の監視

0索引「IND_SALES3」 を使用するSQLを実行します。

「IND_SALES3」 だけUSE列の値が「YES」 になっていることが確認できま

す (0)。 上記のように、索引を監視することで使用されているかどうかを確

認することができます。

晰輻 索引を監視対象からはずす

索引を監視対象からはずす場合は以下のALTER文を実行します。ALTER
文を実行すると動的パフォーマンス・ ビューV$OBJEC丁_USAGEの END_
MONITORING列 に監視終了時刻が記録されます。

実行例 09-02

_cndtycode = :101

★ FROM VSOBJECT_USAGE

TABLE_NAtt MON USE

SALES_TRN

SALES_TRN

INp_SALES3 SALES TRN 00:13:34-②
IND SALES4 SALES TRN YES 00:14:24

1)り

CHAPT[R09 DML処理の高速化

0索引「IND_SALES3」 を監視対象からはずします。

監視対象からはずした索引のEND_MON:TORING列に終了時刻が入ってい

ることが確認できます (0)。

ダイレクトロードインサートとは、同一のデータベース内のテーブルから

テーブルにデータを高速にコピーする機能です。ダイレクトロードインサー

トではバッファ・キャッシュを経由せずに直接書き込むので通常のINSERT

文と比べてパフォーマンスを大幅に向上させることができます。

ただし、ダイレクトロードインサートではデータを空きブロックではなく、

HWM以降のブロックに格納するので、デイスクの使用効率は低下します。

構 文

ALTER INDEX く索引名> NOMONITORING USAGE

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

ダイレクトロ…ドインサート

SQL>

2 /

USACE
▼
一　
一

索引が変更されました。

‐SQL> SELECT ■ FROM V事 OBJECT_ SACE

2 /

_INDEX_NAME TABLE_NIAME MON USE END.MONITORING

11■D_SLES

INI)SALES2

1ND_SALES3

110_SALES4

SALES_TRN

SALES_TRN

SALES_TRN

SALES_TRN

Ｎ

Ｎ

ＹＥ

Ｎ

郵
郡
Ю
ＹＥＳ

00:28:40-0
02/28/2007

０
〓
Ｆ
処
理
の
高
速
化

ダイレクトロ…ドインサート

パフォーマンスとディスクの使用効率が トレードオフの関係にあるので注意

してください。

鼈鋏 ダイレクトロードインサ…卜使用上の注意点

ダイレクトロー ドインサートを使用する場合は、以下の2点 に注意 して く

ださい。

颯テーブル単位でロックが獲得される

通常のINSERT文 ではロックはレコー ド単位で獲得されるのですが、ダイ

レクトロードインサー トではテーブル単位で獲得されます。そのため、ダイ

レクトロードインサー トを実行しているテーブルに対して、他のセッション

からDML処理を行うと処理待ち状態になります。

颯トランザクションを完了する

ダイレクトロードインサートを実行した場合は、 トランザクションを完了
(COMMIT・ ROLLBACK)す る必要があります。もし、 トランザクション
を完了せずに検索を行うと、「ORA… 12838:オ ブジェクトは、パラレルで変

更された後は読込み/変更できません」というエラーが発生します。

籟躙 ダイレクトロードインサートの実行方法

ダイレクトロードインサートを実行する場合は、INSERT文に、APPEND
ヒントを追加してSQLを実行します。

以下の例では、同じデータ挿入処理を行うSQLを ダイレクトロードインサ

ートと通常のINSERT文 でそれぞれ実行しています。

ダイレクトロードインサートと通常のlNSERT文の違い

″

実行例 09-04
■■:奎 :

一
Ｒ

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

CHAPT[R09 DML処理の高速化

REDO情報の生成サイズを比較すると、「redo size」 の値は、ダイレクトロ
ードインサートを実行したケースでは「31256」 (0)、 通常のINSERT文 を実

行したケースでは「1510420」 (0)であることが確認できます。

大量のデータをテーブルからテーブルヘコピーする際にはダイレクトロー

ドインサートを利用することをおすすめします。

427
13‐
2‐19.

db

24

31256
●618

physical

記憶領域バラメータ

記憶領域バラメータ

記憶領域パラメータであるPCTFREEと PCTUSEDは Oracleが テーブル作

成時に使用するパラメータです。これらのパラメータを変更することでテー

ブルの特性を管理することができます。

テーブルの特性はDML文 の処理に影響を及ぼすので、PCTFREEと

PCTUSEDを 適切に設定することで、DML文のパフォーマンスを向上させ

ることができます。

嘲鰈颯PCTFREEと :ま
PCTFR匡Eと は、更新によるデータの拡大に備えてデータ。ブロツク内に

確保しておく空き領域の割合を設定するパラメータです。INSERT文によっ

て挿入されるデータは、PCTFREEで指定した割合を除いたところまで格納

され、入りきらなかったデータは次のデータ。ブロツクに格納されます。

たとえば、PCTFREEに「20」 を指定した場合、データ。ブロツク内での

使用率が80%を超えると残りのデータは別のブロックに格納されます。なお、

PCTFREEの デフォルト値は「10」 です。

目腫璽:慶E廻圏PCTFREE

テーブルにデータを挿入

玲
データ。ブロック
の使用量がだんだ

ん増加していく

1ブロック単位の空領域がPCTFREE
の値に達したら、そのブロックは受入
れ不可能になります

~下~

1『
CTFREE

‐ 口 →

瞼颯魏PCTUSEDと :ま
PCTUSEDと は、PCTFREEで指定した割合を超えたデータ。ブロツクが

再度挿入可能になる闘値を設定するパラメータです。PCTFREEで 指定した

値を超えるとデータは次のデータ。ブロックに書き込まれますが、DELETE

文やUPDATE文によってデータが減少し、PCTUSEDで指定した閾値を下

ｏ
ζ
鷹
処
理
の
高
速
化

ヽ

CHAPT[R090懸 L処理の高速化

回ると、データ。ブロックは新しいデータを受け入れられるようになります。

たとえば、PCTUSEDに「60」 を指定した場合、ブロックの使用率が60%を
下回ると、新しいデータが受け入れ可能となります。なお、PCTUSEDの デ
フォルト値は「40」 です。

PCTUSED

テーブルのデータ削除

11■
‐

データ・ブロックの
使用量がだんだん減
少していく

1ブロック単位の空き領域がPCTUSED
の値を下回つたら、そのブロックは新し
いデータを受入れることができます

― ‐ → ~下~

_1_FCTUSED

瘍颯空きリストとデータ・プロックの管理

データを挿入する要求が発生すると、Oracleは 空きリスト※からデータを

格納できる領域を持ったブロックを探し、空きブロックが見つかった場合は、

そのブロックにデータを挿入します。また、データ挿入後にブロックの空き

領域がPCTUSEDで指定した値以上であれば、そのブロックを空きリストか
ら取り除きます。

なお、空きプロックが見つからなかった場合は、未使用領域があるかセグ

メント内を探し、未使用領域があればその領域を空きリス トに登録します。

未使用領域がない場合は新しいエクステントを確保します。

PCTFREEと PCTUSEDの 目的は、空きリス トに出入りするブロックの動
きを制御することです。つまり、空きリストヘのリンクを解除するパラメー

タがPCTFREEで あり、空 きリス トヘのリンクを制御するパラメータが
PCTUSEDです。

※空きリストの情報は「セグメントヘッダー」と呼ばれる、テーブルや索引の最初のブロック
に保持されています。

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

ヽ

記憶領域バラメータ

空きリストとデータ・ブロックの管理

PCTFREE 10%
PCTUSED 40%の場合

データ 。ブロック

データ挿入時は、データ受入れ可能
状態 (空きリスト)のブロックに対し
てデータが挿入されます

データが挿入されブロック使用
領域が90%を上回つた場合
データ受け入れ状態(空きリスト)解除
=データ受入れ不可能状態

← ―‐挿入

データが削除されブロック使用
領域が40%を下回つた場合
データ受け入れ状態(空きリスト)
=データ受入れ可能状態

※色つきブロックはデータ受入れ不可能
状態のブロック

蝙鰤 PCTFREEとPCTUSEDが INSERT文へ及ぼす影響
INSERT文が実行されると、空きリストで管理されているデータ・ブロッ

クにデータを挿入します。ここで、そのデータ。ブロック領域にデータが収

まりきらない場合、Oracleは 5回 まで空きブロックがないか検出を試みます。

そして、5回 目の試行が終わっても空きブロックが見つからない場合はテー

ブルを拡張して空のブロックを確保します。

つまり、PCTUSEDの 値を大きくしすぎると、空きリス トヘリンクされ、
データ受け入れ可能状態になっても、新しい行を受け入れる余裕がないので、

パフォーマンスが低下します。

鰈

Ｕ
ζ
Ｅ
処
理
の
高
速
化

10%

60%

C‖APTER 09 DML処 理の高運 塩ゞ

図09-05 PCTFREEと PCTUSEDがINSERT文 へ及↓ざす影響

INSERT文の実行

靡
空きリス トにあるデータをブロックに

挿入を試みます(5回りトライします)

空きリストにあるデータ・ブロック
内 (1ブロック内)の空き部分に収ま
ることができなかつた場合、新しい
ブロックヘ書き込まれます

空きリストにあるデータ・ブロック
(PCTUSEDを下回ったもの)

颯

_`1■´
‐.'||:・

魃

蝙躙 PCTFREEと PCTUSEDが UPDATE文へ及ぼす影響
UPDATE文が実行されると、データ・ブロック内でデータが大きくなる

場合があります。その際、そのデータ・ブロック内でデータが格納できなく

なると、対象行ごと新しいデータ・ブロックに移動 (行移行)す るため、パ

フォーマンスが低下します。したがって、INSERT文 の後にUPDATE文で

行データが大きくなる可能性が高いテーブルに対 しては、あらかじめ

PCTFREEの値を大きく設定し、行データの拡張に備える必要があります。

PCTFREEと PCTUSEDがUPDATE文へ及ぼす影響

∪PDATE文の実行

絋
褥

ブロック内のデータが

増えたり減つたりします。

(∪PDATEによリレコー
ド長が増減するため)

ブロック内のデータ容量が
増えたために、 1ブロック内に
格納できなくなつた場合

繁 .

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

口409‐ 06

新しいブロックヘ移動

ｕ
ζ
Ｆ
処
理
の
高
速
化

MERG耐えを器嘘用した更奢F処理

鼈隋 PCTFREEとPCTUSEDが DELETE文へ及ぼす影響
DELETE文 を実行することでデータが減少し、PCTUSEDで指定した閾値
を下回ると、そのデータ・ブロックは空きリス トヘリンクするため、オーバ

ーヘッドが発生します。そこで、空きリス トヘリンクすることによるオーバ

ーヘッドを減らすために、PCTUSEDの値を小さく設定します。PCTUSED
の値が小さいとDELETE文が実行されても頻繁に空きリス トヘのリンクが

発生しないため、パフォーマンスが向上します。

ただし、空きリストヘ登録されていないデータ・ブロックは再利用されな

いので、領域を効率的に使用することはできません。また、HWMも 高くな
るので注意してください※。

※HWMが高くなるとフルテーブルスキャン時のパフォーマンスが劣化します。

PCTFREEと PCT∪ SEDが DELETE文へ及ぼす影響

DELETE文の実行

鰈

(鮮●ll

ブロック内のデータが減り、PCTUSEDの
値を下回り、空きリストヘ

Oracle 9iか ら利用できるMERGE文を利用すると、「データが存在している

場合は既存データの更新 (UPDATE)、 データが存在しない場合はデータの

挿入 (INSERT)」 を行う分岐処理を1つのSQLで実行することができます。

そのため、これまではSELECT文を実行し、データの有無を確認してから、

処理を分岐して実行していたデータの更新処理や挿入処理を、MERGE文 を

使用することで簡単に実現できます。

|1図 09・ 07・

MERGE文を利用した更新処理

CHAPTER 09 D懸 導聾理の高速化

図09・08 MERGE文

テーブルに対してデータを挿入 テーブルに対してデータを挿入

・ 11:

―
ユ
▼

NO
SELECT文を発行し問合せる

→ lNSER丁処王里

YES

UPDATEttL王 里

MERGE文 を使用した場合、単純にSQLの実行回数が減るので、それだけ
でパフォーマンスに大きく影響することが予測できます。特に、バッチ処理

では、膨大なデータを処理する必要があるので、MERGE文を使用するメリ
ットはとても大きいのです。また、テーブルに入っているデータを集計テー

ブルに移行する場合など、テーブル間の移動処理を行う場合にも便利です。

MERGE文の構文は以下のようになります。

MERGE文で
INSERTか UPDAIEか半」断

実
践
編

現
場
で
使
え
る
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

目的のテーブルに格納

目的のテーブルに格納

目的のテーブルに格納

構 文

MERGE INTOく テーブル名>く別名>
USINGく テーブル名>く別名>
ON(く 結合条件>)
WHEN MATCHED THEN
UPDATE SETく列名■>=く 値■>[, く列名n>=くイ直n>]
WHEN NOT MATCHED THEN
INSERT[(く列名■>[′ く列名n>])]
VALUES(く値■>[, く値n>])

民獨回|口国 MERGE文の実行

SQL> MERCE INTO scott.emlp e ll‐ ■|‐ ■|||||| || . ‐

データか?

Ｕ
〓
Ｆ
処
理
の
高
速
化

M露難聾文を利用した更新処理

rows processed

FROM cust_msL) c

=||

■.:|:|:.= ‐●
=

100000行 がマージされました。

一
＾

VIEW

HASH JO■ N (OUTER)

TABLE ACCESS (FULL).OF

´
ｔ
〓
一
一

li

777 bytes client
3 SQL■ Net roundtrips
1

0

|■1 100000

CHAPT【 R09 DML処理の高速化

実
践
編

現
場
で
使
え
る
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

本 辱ユ の ま と め

ユーニング方法について解説しました

する場合で、かつ元に戻す必要

によつては何倍も早く処理す

TRUNCA丁巨文を使用したほうが、

ることができます。

引

引

ヽ
ま

は

　

イ

索

索

が

り

引

　

ダ

●

　

す

か

索

　

●

は
　
，

ヽ
除
　
　
イ

に

入

め

削

　

ド

時

挿

た

り

　

一

索

の

の

限
　
　
ロ

理

検

夕

そ

る

　

ト

管
　

　ヽ
一
　

ｏ
き
　
　
ク

の

は

デ

す

で

　

レ

フヾ オ るの で

更

索

し

新
主
寸除

当
●

■刀ユ刀

弓 不要 な

ます

ダイレクトロードインサートとは、同一のデータベース内のテーブ

ルから|テ ピーする機能です。ただし、挿入

HWM以降のブロックに
下します。

よるデータの拡大に備えてデータ・

を設定するパラメータです。

夕はPCTFREEで指定した害サ合を除いたところまで格納されます。

(|'PCTUSED

PCTUSEDと は、 PC〒FRE

|ツ クが再度挿入可能になる データが

減少し、PC〒USEDで指定した ・ブロックは

新しいデータを受け入れられる

DAT巨処 I里

●MERCE文

がで き ます

R丁処理の分岐処理

・ブロ

一
　
一

一
　
一

|||

CHAPTER 10

CHAPTER ll

CHAPTER 12

′

Oracleの機能を利用した
SQLチューニング

活用編では、Oracleがパフォーマンス向上のために提供している機能を

使用したSQLチューニングについて解説します。基礎編・実践編で

SQLチューニングについての現場で使える力はついていると思います。

ここではより簡単に、チューニングが行える便利な機能の概要と使い方

を解説します。

マテリアライズ ド・ビュー

バラレル処理

その他の機能

マ
テ
リ
ア
ラ
イ
ズ
ド

・
ピ
ユ
ー

データベースを使用するアプリケーションでは、集計データを参照する処

理が頻繁に行われます。たとえば、日々の売上データを集計し、月別の売上

データを表示する処理は集計データを利用する代表的な処理の1つです。

しかし、データを集計する処理は時間がかかるため、アプリケーション上

で要求があるごとにデータを集計 し、参照するようなシステムを構築すると

パフォーマンスが低下する可能性が高くなります。

そこで、この問題を解決するためにOracleの 機能であるマテリアライズ

ド・ビューを使用します。

マテリアライズ ド・ビユーが追加されるまでは、集計データを取得する方

法として、日次のバッチ処理を行い、あらかじめ集計データを取得しておく

方法とトリガーを使用する方法が主に利用されており、要求があった際に計

算済みのレコードに対してアクセスすることで、パフォーマンスを維持して

いました。

しかし、これらの方法には以下の問題点がありました。

洟鰤 ′1ッチ処理の問題点

バッチ処理を利用したアプリケーションではあらかじめ集計データを作成

しているため、パフォーマンスの問題を解決することはできますが、一方で

リアルタイム性を失うデメリットがあります。

たとえば、日次で計算するシステムでは、仮にデータの変更や追加があっ

た場合も売上データを入力した次の日になるまで、データは更新されません。

したがって、バッチ処理を行う場合はバッチの間隔を短くするなどの工夫が

必要になります。

集計処理の問題点

マテリアライズド・

CHAPTER

Pマ ー
… ―

活
用
編

０
３
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPT[R10マテリアライズド・ビュー

データの挿入または更新

夜間バッチで集計データを作成

洟躙 トリガーの問題点

集計データを取得するために、 トリガーを使用し、データ挿入を行うたび
に決められた集計テーブルに対して再計算し、格納する方法もあります。こ

の場合は、毎回の挿入時の負荷は多少大きくなりますが、データ検索時は非

常に高速に動作します。

しかし、 トリガーを使用する場合はデータの更新・削除処理についても考
える必要があるので、処理が複雑になり、バグを誘発する可能性が高 くなり

ます。

トリガーによるバッチ処理の問題点

データの挿入また

儘豪

Iま更新1鰺儡.

l :

集計テーブル

l=-:ua
□顧
||■■
||■■
||■■
|■■

テーブルB

集計テープル

一一一一一一

図10102

テーブルA 1=-tual
l l

更新のたびに作成

閣国圏圏豊パッチ処理による集計処理の問題点

マ
テ
リ
ア
ラ
イ
ズ
ド

・
ピ
ユ
ー

マテリアライズド・ビユー・リフレッシュ

oracleは、上記のバッチ処理やトリガーによる集計データの作成を行う際

の問題点を解決する機能としてマテリアライズド・ビューを提供しています。

マテリアライズド・ビユーとは、その名の示すとおり「実体 (実データ)の

あるビュー」です。マテリアライズド・ビユーを使用すると、集計データや

複雑な問合せ処理を行うSQLを事前に実行し、結果を保持することができる

ので、パフォーマンスを向上させることができます。

マテリアライズド・ビユー

鱚データの挿入又は更新

マテリアライズド・ビューの
リフレッシュモードにより更新

集計テーブル

Oracleは、マテリアライズド・ビュー・ リフレッシュと呼ばれる機能を使

用して、元となる実表にデータの挿入・更新・削除が行われた際に、マテリ

アライズド・ビユーを更新します。

マテリアライズ ド・ビユー・リフレッシュでは適用可能なリフレッシュ方

法として以下の4種類を指定することができます。なお、リフレッシュ方法

はマテリアライズ ド・ビユーごとにそれぞれ設定できますが、定義する問合

せによっては、高速リフレッシュが行えない場合
※もあるので注意してくだ

さい。

※高速リフレッシュが行えない場合は完全リフレッシュを使用してリフレッシュすることに

なります。なお、完全リフレッシュはすべてのマテリアライズド・ビユーで実行できます。

マテリアライズド・ビユーとは

図10・06

テーブルA 1=-ttual

マテリアライズド0ビュー・ リフレッシュ

CHAPT[R10マテリアライズド・ビュー

表 10‐ 01 リフレッシュ方法

マテリアライズ ド・ビューを最新のデータに更新するタイミングには以下

の2種類があります。

・ON DEMAND
・ ON COMMIT

鰈蜀ON DEMAND
「ON DEMAND」 を設定した場合、マテリアライズド・ビューのリフレッ
シュを自由に制御することができます。リフレッシュを行う場合は、以下の

プロシージャを使用します。

:喪 10‐ 02 リフレッシュを行うプロシージャ

隋輻 ON COMMIT
「ON COMM:T」 を設定した場合、マテリアライズド・ビューの元となる実

表が更新されるたびに、マテリアライズド・ビューは自動的にリフレッシュ

されます。ただし「ON COMMIT」 を設定すると、アプリケーションの更新
パフオーマンスが低下する可能性もあるので注意してください。

complete 完全リフレッシュ (再作成処理)

fast 高速リフレッシュ (変更データのみを適用)

force デフォル ト値。強制リフレッシュ (高速リフレッシュを試行し、不可能な場

合には完全リフレッシュを実行)

never マテリアライズド・ ビューをリフレッシュしない

マテリアライズ ド・ ビューを更新するタイミング

活
用
編

Ｏ
Ｓ
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
０
一
チ
ュ
ー
ニ
ン
グ

DBMS MVIEVV.REFRESH リフレッシュするマテリアライズド・ビューを1つ

または複数選択する

DBMS MVIEW.REFRESH DEPENDENT テーブルに依存するマテリアライズド・ビューをリ

フレッシュする

DBMS MVIEW.REFRESH ALL MVIEヽ A′S すべてのマテリアライズ ド・ビューをリフレッシュ
する

マテリアライズド・ビユーの作成

マテリアライズ ド・ ビユーは、CREATE MATER:ALiZED VIEW文 を使用

して作成します。

「 BUILD IMMEDlATE」 では、マテ リア ライズ ド・ ビユー を作成時 に、 デー

タを移 入 します。 これ に対 し、「BUILD D=FERRED」 で はマテ リア ライズ

ド・ ビューは作成 しますが、デー タは移入 しません。 また、「ENABLE

QUERY REWRITE」 を指定した場合はクエリー・リライ ト (P.282参照)が有

効になります。

その他にも、STORAGEオ プシヨンなどいくつかのオプションを指定する

ことができます。オプションに関する詳細はOTNが公開しているFデータ。

ゥェアハウス・ガイド』を参照してください。

マテリアライズド・ビユーを作成する

マテリアライズド・ビューの作成

マ
テ
リ
ア
ラ
イ
ズ
ド

・
ビ
ユ
ー

CREATE MATERIALIZED VI[Wく マテリアライズド・ビユー名 >

[{BUILD IMMEDIATE I BUILD DEFERRED}]
REFRESHくリフレッシュ方法〉 くリフレッシュのタイミング>

[ENABLE QUERY REWRITE]
AS
くSELECT文 >

実行例 10-01

日 .マテリアライズド●ビニーの作成 ・ | ‐‐‐‐|.‐‐

CHAPTER 10マテリアライズド・ビュー

実際にマテリアライズ ド・ビューを作成し、通常のSQLを実行した場合と

比較してその効果について検証します。

以下の例では、顧客別売上データを集計し、顧客マスタと結合後、顧客マ

スタから必要な情報を取得しています。

蝙揚 マテリアライズド・ ビューを使用しない場合

まず、マテリアライズド・ビューを使用しない場合の実行例を見てみまし
よつ。

マテリアライズ ド・ ビユーの効果

活
用
編

０
３
ｏ
一Φ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

印口暉ロマテリアライズド・ビューを使用しない場合
‐SQL> SELECT・ A.custcode′

彗

,
Su}{'(price] AS TOTAL PRICE

cust■mst B

8 /

3‐ ,981行が選択.されました。 一| ~|
‐..

:.‐■|

マテリアライズド・ビューの効果

実行計画を見るとマテリアライズド・ビユーを使用していないため、複数

のテーブルにアクセスし、ジヨインしていることがわかります (0)。 そのた

め、処理も複雑となり、ァクセス・ブロック数も「178131」 とかなり多くの

ブロックにアクセスしていることがわかります (0)。

籟塚 マテリアライズド・ ビユーを使用する場合

次に、マテリアライズド・ビユーを使用して上記のSQLと 同じ結果を求め

ます。なお、ここではまずマテリアライズド・ビユーを作成してから、実行

しています。

マテリアライズ ド・ビユーを使用する場合
.1'

: |

・… Ⅲ ・ I、 |

|= ‐|ヽ

B‐‐ | _.A,‐ || ■ ・||

… 1)‐

マ
テ
リ
ア
ラ
イ
ズ
ド

・
ピ
ユ
ー

実行例 10-03

２
‐
．
３
１
４
●
５

ISQL>‐

‐ 6
. .7

・ |18 ‐■|‐ _‐|(SELEcT‐

9

.1.0

・ . .■

11)

活
用
編

０
団
ｏ
一Φ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPT[R10マ テリアライズド・ピュー

実行計画を見ると作成したマテリアライズ ド・ビューにアクセスしている

ことがわかります (0)。 また、アクセス・プロック数は「6047」 とかなり減

っていることが確認できます (0)。

クエリー・リライトとは、sQLを発行した際に、より最適な検索を行うた
めにOracleが 自動的に別のSQLに切り替える機能です。たとえば、通常のテ
ーブルに対してSQLを 発行した場合でも、先にマテリアライズド・ビューが

作成されていれば、Oracleは 自動的にマテリアライズド・ビューヘアクセス

を切り替えます。

クエリー・リライトを利用すると、アプリケーション導入後にパフオーマ

ンスが劣化しても、問題のあるSQLを マテリアライズド・ビューに変更する

クエリー 0リライト

罐
●ヽ ■ ●

~●

・ 0 . retursi゛ё こ五lls
・

_.0 ._dblblock.gets. til

・ :

.:. ・｀

6047 consist.ent gets

‐ .‐ 63555

クエリー・リライト

だけで、パフォーマンスを向上させることができます。

洟躙 クエリー 0リライトの使用条件

マテリアライズド・ビューを定義しても、クエリー・リライトが自動的に

使用されることはありません。クエリー・リライトを使用するには事前に以

下の操作を行う必要があります。

1.初期化パ ラメータQUERY_REWRITE_ENABLEDに 「TRUE」 を設定 す る

2.CREATE MATERIALIZED ViEW文 でENABLE QUERY REWRITE句 を指定

する※

3.SQLを 実 行 す るユ ーザ ー に QUERY REWRIT匡 権 限 を付 与 す る X※

4.初期化 パ ラ メ ー タOPTIMIZER_MODEに 「 a‖_rows」 また は「 first_rows」

を設定 す る か 、 テ ー ブル の OPTIM:ZER_MODEを 「 choose」 に設 定 す る

※マテリアライズド・ビュー作成時に省略またはDISABLE QUERY REWRITE句 を指定し
た場合はALTER MATER:AL:ZED VIEW文 で変更する必要があります。
※※他のユーザーが所有するテーブルを参照する場合はGLOBAL QUERY REWRITE権 限が必要
です。

黎躙クエリー・ リライトの精度

クエリー・リライトは、オプテイマイザが自動的に行うため、適切に行わ

れないケースも発生します。そこで、Oracleで はクエリー・リライ トの精度

を以下の3段階で設定することができます。

精度は初期化パラメータQUERY_REWRITE」 NTEGRITYに設定するか、

ALTER SYSTEM文 またはALTER SESSION文 を使用して設定します。

表10‐05 クエリー¬リライトの精度

マ
テ
リ
ア
ラ
イ
ズ
ド

・
ピ

ユ
ー

enforced デフォル ト値。マテリアライズ ド・ ビューと参照元のテーブルとのデータ

整合性が取れているときにリライ トを行う

trusted

stale_tolerated

実際にマテリアライズド・ビューの定義の問合せで戻される結果と同じで

あると確認できる場合に、マテ リアライズ ド・ ビューを使用する。

enforcedと 特に変わるところはないが、制約の整合性やディメンジョンで

定義されている関係の整合性 (DWHの 場合)を チェックしなくてもリライト
が行われる

実際にマテリアライズド・ビューの定義の問合せで戻される結果と同じであ

ると確認できなくても、事前構築のマテリアライズド・ ビューも使用する

活
用
編

０
昴
ｏ
一Φ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ユ
ー
ニ
ン
グ

CHAPTER 10マテリアライズド・ピユー

アプリケーションで実装する場合は、必ずテストを実施し、リライトが正

確に行われることを確認してから実装してください。もし、意図したリライ

トが行われていない場合は、精度を見直すことをおすすめします。

事前にマテリアライズド・ビューを作成し、その後、通常のテーブルに対

してSQLを発行します。実行結果から自動的にクエリー・リライトが行われ

ているか確認してみましょう。なお、この結果は先述したクエリー・リライ

トの使用条件を満たしている環境での実行結果となります。

クエリー・リライ トの実行

クエリー・ リライトの実行

実行例 10‐ 04

クエリー・リライトが行われなしヽ理由を探す方法

通常のSQLを 実行しているにもかかわらず (0)、 実行計画を確認すると、
自動的にクエリー・リライトが実施され、作成したマテリアライズ ド・ビュ

ーにアクセスしていることが確認できます (0)。

いくつかの問合せを行っていると「この問合せはリライトされるのだろう

か」、「なぜこの問合せはリライトされなかったのだろうか」といった場面に

直面することがあります。

このような場合は、DBMS_MVIEW.EXPLAIN_REWRITEプ ロシージャを

使用 して原因を解明します。DBMS_MVIEW.EXPLAIN_REWRITEプ ロシ
ージャはSQLを 引数として受け取り、リライ ト結果をREWRITE_TABLEテー

ブルに格納します。

したがって、DBMS_MVIEW.EXPLAIN_REWRITEプ ロシージヤを実行

後、REWRITE_TABLEテ ーブルに対して結果を問合せることでリライトさ

れない理由を確認できます。

麒躙 REWRITE_TABLEテ ーブルの作成
DBMS_MVIEW.EXPLAIN_REWRITEプ ロシージャを実行する場合は、

実行前にutlxrw.sqlス クリプトを実行し、結果を格納するREWRITE_TABL
Eテーブルを作成する必要があります。

表10‐ 04 utlxrwsqlス クリプトの格納場所

クエリー・ リライトが行われない理由を探す方法

マ
テ
リ
ア
ラ
イ
ズ
ド

・
ピ
ユ
ー

,ス)ORACLE HOME(殆 ¥rdbms¥adminC)racle 8i、 9i、 10g

■ .■ ,

活
用
編

０
一，
ｏ
一０
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPTER 10マサリアライズド・ビュー

蟷輻 DBMS_MVIEW[XPLAIN_REWRITEプ ロシージャの実行
DBMS_MVIEW.EXPLAIN REWRITEプロシージャを実行します。ここで
はクエリー・リライトが成功するSQLと 失敗するSQLを それぞれ実行します。

クエリー・リライトが成功した場合

正常に処理された場合は、MESSAGEに「QSM¨ 01009:マテリアライズ
ド・ビューCUST_SALES_MVが問合せテキストと一致しました。」と表示さ
れます (0)。 クエリー・リライトに失敗した場合は、ここに失敗理由が表示

されます。

では、クエリー・リライトが失敗するSQLの実行例を見てみましょう。

実行例 10‐ 06

目同■ロロ utlxM sqlスクリプトを実行する
OQI>00おRACL■IⅢⅢ 品轟 :凛i轟 tix嘉 .sqi

表がす成|れずし|。

マ
テ
リ
ア
ラ
イ
ズ
ド

・
ピ
ユ
ー

クエリー・リライトカ髯テわれない理由を探す方法

クエリー 」リライ トが失敗した場合

上記のように、STATEMEN丁_IDを指定するとどのSQLで クエリー・リラ

イ トが失敗したかがわかります (0)。 また、REWRITE_TABLEテ ーブルの

QUERY列 には検証 したSQLが格納されるので、 どのSQLで失敗 したのか確

認することもできます。

団回ロ

1 1. IⅢ

■
. ・r ・_ .

.I ■ .`

CHAPT[R10マテリアライズド・ピユー

活
用
編

０
３
２
ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

本 一早 の
」
=dヽ と め

す|

complete 完全リフレッシュ (再作成処理)

fast 高速リフレッシュ (データ変更のみを適用)

lorce

never マテリアライズド・ビューをリフレッシュしない

|●マテ

マ テ

表1010611

■再章するタイミング|
〓

■
　
　

　
　

一

ON DEMAND リフレッシュを自由に制御することができる

ON COMMIT 元となる実表が更新される度に、自動的にリフレッシュされる

強制リフレッシュ (デフォル ト値)

■
■.

鷲
ギ:| ●″i

. . | .| ||

・ビユーを更新します。

1麟 表10105

ヽ .

霧 13■
.|や

|

■,

",|■

■基 ,■ |
澪

■| ■■菫`■

■ |ヽ■
‐甘 . 躍,‐■
濾 :

|■

t)-.

`:' ■:
・ I.‐薫■.

12,.

パ
ラ
レ
ル
処
理

Oracleの Enterprise Editionで は、複数のCPUがある環境で効果を発揮す

るパラレル処理と呼ばれる機能が提供されています。単一CPUの環境では、

ある作業が終了してから次の作業をはじめるので同時に複数の作業が行われ

ることはありません。一方、パラレル処理では、SQLの実行を複数の作業に

分解し、それぞれの処理を異なるCPUを利用して同時 (パラレル)に実行す

ることができるので、リソースを有効に利用することができます。

パラレル処理が可能な処理には、以下のものがあります。

表11‐ 01 パラレル処理の対象処理

アクセス方法 。テーブルスキャン

・全索引スキャン

・パーティション索引
。レンジ・スキャンなど

結合方法 ・ネステッド・ループ結合

・ ソー ト′/マージ結合
・ハッシュ結合など

DDL文 ・CREATE TABLE AS SELECT
・ CREATEINDEX
・ REBUILD INDEX
o REBUILD INDEX PARTIT10Nな ど

DML文 ・ INSERT AS SELECT
。更新・削除などの各操作

その他のSQL操作 ・ GROUP BY
o NOTIN
o SELECT DiSTINCT

・ UN10N
・ UN!ON ALL
・ CUBE、 ROLLUP
・集計関数

・表関数など

CHAPTER

パラレル処理

活
用
編

０
『”
Ｑ
ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

バラレル処理を行うために必要な条件

CHAPT【 R llパラレル処理

パラレル処理を行うには、SQLだけではなくサーバーやOracleの 設定など

すべてがパラレル処理を行うための条件を満たしている必要があります。こ

れらの条件をほぼ満たすことにより、パラレル処理の並列度に応じたパフォ

ーマンスの改善を期待することができるのです。

パラレル処理を行うには以下の条件を満たしている必要があります。

・複数のCPUを搭載している
。アクセスされるデータを複数のディスクに分散している

。DWH環境である
・フルテーブルスキャンかパーティションスキャンを行う

。データベースサーバーに余力がある

鰊蒻 複数のCPUを搭載している
パラレル処理のほとんどが複数のCPUを 必要とするので、CPU数に応じた

効果を発揮することができます。そのため、パラレル処理を効率的に行うに

は少なくとも2つ以上のCPUが必要です。

玲躙 アクセスされるデ…夕を複数のディスクに分散している

Oracleで は一部のデータをデータベース・バッファ・キャッシュに保持し

ているため、SQLに よってはディスク・アクセスが発生しない場合もありま

す。しかし、パラレル処理が実行される場合など、大量のデータを取得する

ときには、必ずデイスク・アクセスが発生します。

このとき、デイスクが1つ しかない環境ではデイスク・アクセス待ちにな

ってしまうため、テーブルアクセス処理を複数に分割していても、パラレル

処理の利点を生かすことはできません。

データを複数のデイスクに分散する方法

バラレル処理を行うために必要な条件

鰈腱 DWH環境である
CPUリ ソースを多く消費するパラレル処理では、他のトランザクションの

パフォーマンスを低下させる可能性があります。したがって、多くのユーザ

ーがトランザクションを発生させるOLTP環境ではなく、 トランザクション
量が少ないときに処理を行うことができるDWH環境のほうがパラレル処理

に適しています。

黎聰 フルテープルスキャンかパーティションスキヤンを行う

パラレル処理が可能なのは、テーブル全体あるいは、パーテイション全体

に対して処理する場合だけです。なお、非パーティションテーブルに対して

フルテーブルスキャンを行う場合は、ROWIDで処理が分割され、パーテイ

ションテーブルに対してフルテーブルスキャンを行う場合は、パーテイシヨ

ンごとに処理が分割されます。

鰈鋏 データベースサ…バーに余力がある

パラレル処理はCPUリ ソースを多く消費するため、データベースサーバー

がフル稼働している場合にはパラレル処理の利点を十分に活かすことができ

ません。

パラレル処理を行う場合は、以下の点に注意してください。

やCPUリ ソースに十分な余裕があるか

CPUの使用率が100%に近い場合、パフォーマンスの低下はCPUがボトル

ネックになっています。このような場合にパラレル処理を行い、パラレル度

数を上げるとパフォーマンスがさらに低下する可能性すらあります。パフォ

ーマンスを求めるのであれば、CPUの数を増やすか、より高速なCPUを搭載

する必要があります。

颯メモリ。リソースに十分な余裕があるか

ハ ッシュ・エリア とソート・エリアに十分な容量が確保できないと、

Temp 1/0が多発するためパフォーマンスが悪化します。また、これらに十

分な領域を割り当てても、SGAと の合計が実メモリ容量を超えるとページン

グが多発するためパフォーマンスが低下します。

パ
ラ
レ
ル
処
理

活
用
編

Ｏ
Ｓ
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｐ
チ
ュ
ー
ニ
ン
グ

CHAPTER llパ ラレル処理

そのため、十分なメモリ領域が確保できない場合は、パラレル処理を実行

してもパフォーマンスは向上しません。パフォーマンスを向上させたいので

あれば、実メモリを拡張する必要があります。

隋ディスク・リソースに十分な余裕があるか

1/O waitの CPU使用率に占める割合が大きい場合は、ディスク1/0がボト
ルネックになっています。この場合もパラレル処理を実行してもパフォーマ

ンスは向上しません。

メモリ。リソースを増やしてデイスク1/0を減らすか、より高速なディス

クを利用する必要があります。特定のデイスクにアクセスが集中している場

合は、ストライビングなどの手法で複数デイスクに負荷を分散させる方法も

効果的です。

パラレル処理を行うか否かは設定されたパラレル度数によって決まります

が、パラレル度数とは別に、スレーブと呼ばれるパラレル化の基本処理単位

もあります。

Oracleはパラレル化された操作 (テーブルスキャンやテーブルの更新、ま

たは索引の作成など)を スレープに分割するため、SQLに GROUP BY句や
ORDER BY句 を含む場合には、テーブルヘのアクセス処理やグループ処理、
ソート処理などの複数の処理段階が必要になり、パラレル度数よりもスレー

プのほうが多くなることがあります。

玲鰈 スレーブ・ プール

Oracleは スレーブ・プールを使用してスレープ数を自動的にコントロール

します。プールするパラレル・スレーブ・プロセスの数は、最小値を初期化

パラメータPARALLEL_MiN_SERVERS、 最大値を初期化パラメータ
PARALLEL_MAX SERVERSに それぞれ指定します。
スレーブ・プールは、プールが最大値に達していない場合に、スレーブが

不足するとスレープを作成します。また、初期化パラメータPARALLEL_
SERVER_lDLE_T:MEで 指定した一定時間以上アイドル状態であるスレーブ

バラレル度数とスレ…ブ

バラレル・クエリー

はプールの最小値以下でなければ終了します。

また、SQLを実行する際に必要なスレーブ数がない場合は以下のような現

象が発生します。

表11‐02 スレーブ不足が原因で発生する現象

※初期化バラメータPARALLEL_MiN_PERCENTが 設定されている場合のみ。

鼈蒻 クエリー・ コ…ディネ…タ

パラレル処理が実行された場合、クエリー・コーデイネータが、問合せ処

理を複数のスレーブに分配します。そのため、パラレル処理においてはクエ

リー・コーデイネータ・プロセスが必要です。各パラレル・サーバー・プロ

セスは、自動的に分割されたテーブルに対してそれぞれ処理を行い、結果を

クエリー・コーデイネータに返します。クエリー・コーデイネータは、これ

らの結果を調整し、最終的な問い合わせ結果を作成します。

ここまでは、パラレル処理そのものについて解説してきました。ここから

は具体的に「パラレル・クエリー」、「パラレルDML」、「パラレルDDL」 の使

用方法について解説します。

パラレル・クエリーは、フルテーブルスキャンを含むSQLを パラレルで実

行することにより、パフォーマンスを向上させる機能です。ただし、パラレ

ル・クエリーを実行できるのは、フルテーブルスキャンとパーテイションテ

ーブルに対する操作が行われた場合のみです。

パラレル・クエリーを使用する方法には、以下の2種類があります。

・PARALLEL句 をテーブルに定義する方法
。SQLに ヒン トを付ける方法

|||‐ |‐Ⅲ霊‐‐‐■■三二三二1■三二二
要求したパラレル度数を満たすことができない 自動的に並列度を減らして実行される

利用可能なスレープがない SQLは順次処理される

利用可能なスレーブ割合が小さい※ エラーになる。リソースが足りない場合には、パラ

レル処理を順次処理することもできなくなる

パ
ラ
レ
ル
処
理

バラレル・クエリ…

_=t=tr __ _ ■ .■ ‐ヽア む■露 _

||

CHAPTER llバラレル処理

CREATE TABLE文 あるいはALTER TABLE文のPARALLEL句 で、パラ
レル度数の初期値を指定します。なお、デフォルトではパラレル処理されな

いように設定されています。

PARALLEL旬をテーブルに定義する方法

CREATE TABLEくテーブル名>
(

く列名>くデータ型>[く制約>]

[,く列名>くデータ型>[く制約>]]

)

[オプション]
PARALLEL[く パラレル度数>]

活
用
編

０
３
●
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

|■ ‐

′■ ‐I

t=22 Card=10.1000 13yt

′Al

■‐ .

パラレル処理の実行

SQL> AILTER

‐. ‐2 /‐‐ |‐・

0 SELECT

1 0

TABLE SaleS_trn.‐ PARALLEL

. 21 /1.

_■ .| :

.表
が変更されました。|‐ .

ISQL> SELECT = FROM

1lSALES.ITRN■ | (Cost=22 Card=101000
輝

_l PARALLEL_TO_SERIAL

‐‐. ‐.‐ 246 .recursiVe dalls

.|| _ ■ _

.E=ヨ PARALLEL旬の設定
‐・ ‐・ ‐ ‐

~・・
・
‐ ‐ .. ~
_ ‐_ ‐‐ .|.|| ‐ ‐|■ ‐|― || ||

実行例 11‐ 01

‐3 do b■oc、‐ gets_‐

PAR譴上EL旬をテーブルに意義する方法

■1■‐■|

鼈雖 結合処理を含むSQLにおけるパラレル処理

以下の例では、結合処理を入れた場合も、オプテイマイザが優先的にパラ

レル処理を選択するためにフルテーブルスキャンが実行されていることを確

認します。

．
，
・　
　
・
，
・
　
・

パ
ラ
レ
ル
処
理

28' 86nsistont OetS
II1 180 ,hysical‐ reads._

・■●,

■・ ■.

“

|:

9 sorts (mem。 ●)

:` ・・

‐111 .||. ‐|10 .ISorts (disk)
へ__^^ |‐

 _■| ・||| _■. |■|

‐.‐ ‐6′ oυ u rows processed

‐|,

‐||:Q16‐ 001.|‐ .|‐ ‐ ‐||

・(.cos.t=2‐ .Card=4.09 B. |■・ |‐ |‐ ‐|| |||‐ |‐‐

結合処理を含むSQLにおけるパラレル処理

‐‐ ~ es■
817918.20).|‐ ■|.

‐
・ 1‐. 0
2■ 1

262 recursiOe dallC ‐‐

CHAPT[R llバ ラレル処理

client
_■ .■ _

|_ ・

PARALLEL句をテーブルに定義した場合、CBOに よって既存の問合せの
実行計画が変更され、索引スキャンの代わりにパラレル・フルテーブルスキ

ャンが使われる可能性があります。そのため、索引スキャンで効率よく動作

していた問合せが、フルテーブルスキャンに変更され、パフオーマンスが低

下するという、予期せぬトラブルが発生する可能性も十分考えられます。し

たがって、テーブルに対してパラレル度数を設定する場合は十分注意してく

ださい。

鰈躙 バラレル処理の停止

テーブルに対してPARALLE句 を指定しない場合や、指定していた
PARALLEL句 を無効にしたい場合は、以下のSQL文を実行します。

活
用
編

Ｏ
Ｓ
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

構 文

ALTER TABLE くテープリレ名|> NOPARALLEL

最適なパラレル度数

278 consistent gets
physical reads

.1電 ■

鷲

SQLに ヒントをつける方法

SQLに PARALLELヒ ントを定義することで、対象となるテーブルに対して

パラレル・クエリーをイ子うように指示します。なお、PARALLELヒ ントを

用いてテーブルヘのアクセスを並行に行うことはできますが、他の演算はパ

ラレルには行われないので注意してください。

また、フルテーブルスキャン以外のアクセス方法を用いてテーブルにアク

セスする場合には、PARALLELヒ ントが無視されます。どうしてもパラレ

ル処理したい場合には、FULLヒ ントを使用し、フルテーブルスキャンを強

制的に実行させる必要があります。

SQLにヒントを付ける方法

パ
ラ
レ
ル
処
理

構 文

/*+PARALLEL(く テーブル名>[,くパラレル度数>])*/

S..

■ ., ||.

・' ・ :・ t _

CHAPT[R llバラレル処理

90NNECT. γ‐‐RIOR I工 D

START WITH ID = 0

′ ...

SELECT STATEM:E:N'11

I TttLEI記 CES`‐ FULL

FROM sal-es_trn S

‐4 .RTRIM(

5 .FROM PlANLTABLE

■ PARENT==b

SoL> EXPLAIN PLAN FOR

■■‐ `

解析されました。
‐. ..

，
・
‥
　
郎

‐
■
Ｈ
Ч

バラレル・ クエリーの実行計画

実行例 11‐ 04

活
用
編

０
３
ｏ
一Φ
の
機
能
を
利
用
し
た
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

.. ‐‐ 2799‐2 .bytes rё ceived via.sO二
十Net fiom client . ■ .

2501 sQL★ Net‐ rouridtrュ ips■ to/from client .

l SOrtS (FnemO`:y) || | ‐|

| ~. O SOrtS (diSk) ~

37500 rows proё essed ‐

` 1 1

バラレル・クエリーと績禽

アプリケーションやバッチ処理から発行されるSQLの多くは、単一のテー

ブルに対して問合せるのではなく、テーブルの結合処理を行ってから問合せ

ます。したがって、実際にパラレル・クエリーを使用するケースでも複数の

テーブルとの結合の中で使用されることでしょう。

ここでは、「ネステッド・ループ結合」、「ソート/マージ結合」、「ハッシュ

結合」とパラレル・クエリーの処理方法について解説します。

颯躙 ネステッド・ループ結合とパラレル・ クエリー

ネステッド・ループ結合では、駆動表に対して索引を使用してテーブルを

結合します。したがって、パラレル・クエリーを使用する場合は駆動表に対

してパラレル・クエリーを実行します。

ネステッド・ループ結合とパラレル・クエリー

鵞,

パラレル処理を行っていないブランクまたは、SER:AL

PARALLEL TO SERIAL パラレル処理が実行され、結果がコーディネ

ータに渡された

SERIAL TO PARALLEL バラレル処理がシリアルの完了を待っている

状態。問合せの実行後すぐにパラレル処理を

開始するようになっていないため注意が必要

PARALLEL TC)PARALLEL 処理結果を次のパラレル処理に回す。パラレ

ルテーブルスキャンが結果をパラレルソート

に渡すような場合に実行される

パラレル・ フルテーブルスキャンと索引参照

などを組み合わせる場合の値

PARALLEL COMBINED WITH PARENT

パラレル処理と下位レベルの処理を組み合わ

せる場合の値

PARALLEL COMBINED WITH CHILD

パ
ラ
レ
ル
処
理

パラレル・クエリーと結合

実行例 11‐ 05

3..

.‐4 /‐ _.‐

||

CHAPTER llバラレル処理

Al.CO′ A■‐.Cl,Al●C

|:,,‐
‐

蝙鼈 ソー ト/マージ結合とパラレル 0クエリー

ソート/マージ結合では、フルテーブルスキャンを実行して結合キーをソ
ートし、マージ処理を行うため、フルテープルスキャンの段階でパラレル・

クエリーを使用すると効果的に機能します。

ソート・マージ結合とパラレル・クエリー

= PARALLEL(S)PARALLEL

=C・ ‐mdtyC00e

いし

|●‐ ,・ ,`

0

糧

実行例 11‐ 06

=
■ ・' ・

 .

´ |: . ■

(.COSI・ 1.Ca l

Card=826180 ‐

〕t,,‐ 81791829)|

(.Cost=22 Card=101000 .

3 1 ..

.14

1

3 .|.211

(UTご■QUE)

||・ ~・ .′‐

■
=■

.

活
用
編

０
「”
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

バラレル クヽエリーと結合

.Cl′ A21.C ‐||

・■

　
●

「

．
　
一■
．

隋蒻 ハッシュ結合とバラレル・ クエリー

ハッシュ結合も結合対象のテーブルでフルテーブルスキャンが実行される

ため、パラレル処理を効率良く機能させることができます。また、ハッシュ

結合の中でテーブルを読み込むスキャンが最も時間がかかるため、この処理

をパラレル化することのメリットは大きいです。 バ
ラ
レ
ル
処
理

‐
|‐ 4■|

5 4

・クエリー

バラレルDDL

CHAPT[R llバ ラレル処理

DDL文は、一瞬で処理されることが多く、比較的負担も少ないのですが、
中にはCREATE INDEX文 など、テーブルの大きさによっては、時間がかか
ってしまう処理もあります。そのような場合に、パラレル処理を行うことで

パフォーマンスを改善させることができます。

躾輻 CREバTE INDEX文

索引を作成する場合は、フルテーブルスキャンに加え、索引化される列の

ソート処理が必要になります。したがって、これらの処理をパラレル化する

ことにより、パフォーマンスを改善できます。

パラレル化するには、CREATE:NDEX文にPARALLEL句 を追加 します。
ただし、索引の作成をパラレル化 した場合、エクステントサイズがばらばら

になる可能性があり、断片化の原因となってしまいます。したがって、索引

を作成するのに時間がかかる場合で、索引の作成時間が重要となる場合にの

み使用することをおすすめします。ただし、索引の作成は、頻繁に発生する

処理ではないため、パフォーマンスが問題となるケースはほとんどないと思

います。

CREATE INDEX文のパラレル処理

燒憮痺CREバTE TABLE AS SELECT文
CREATE TABLE AS SELECT文 でもSELECT時にフルテーーブルスキャンが
実行される場合は時間がかかります。この処理もパラレル化することで、効

率的に動作させることができます。

活
用
編

０
「●
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

実行例 11-08

3 ./ ..

索引が作成されました。

碍轟回ロコロ CREATE丁 ∧BLE AS SELECT文のパラレル処理

SQL> CREATE TABLE.sa■ es trn.bk21 ‐| ■ ・
. ~ . _ || ・

‐ ‐ ~ ~

‐ ■ _ .|. |.

バラレルOML

UPDATE文やDELETE文などでフルテーブルスキャンが行われる場合に
もパラレル処理を行うことでパフォーマンスを向上させることができます。

パラレルDML

| |

■
| ラ

| |

鰤
| |
| |

.・ ‐
 |

‐ .||| ‐_ = ■ .‐12‐ |IAS ISELECT・ /'十 1_PARAI」LEL(sales_trn) 力/■ FROM sa■ es.‐ trn・ ._ ‐. ||
_317 . .. ‐‐ ・ ‐‐ ||‐ ‐‐ _ _. .‐ _
表が作成されました。 . ‐ | || ■ | ‐| . . ‐ ‐ .. . ‐

実行例 11-10 UPDATE文 のパラレル処理

.SQL>

2

DELETE文のパラレル処理

/■ + PARALLEL(sales_trn) ■/ |,30M.‐ sa■‐es.trnl

‐,卜■|=

・ ● |= ■|

‐|=

37500行が削除されました。

‐
実行計画|‐

‐‐ ‐ . . || |

・ ,｀

. 0

1 0 DELETE OF

a1

.■
.

'SALES_TRN llll(COSt=2.2 Card=1010100 .‐ ‐

実行例 11‐11

CHAPT[R ll パラレ処 理

本 辱ユ の ま と め

■
活
用
編

Ｏ
「”
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

―‐
―‐
――
湧

:■|".

‐IR

■́‐ ■.

.撃
'

・DWH環境である

― スレTブ|プールはt
です。=方||、 クエリー

‐1
ヽ

ブに分配します。

・
 ‐ | ■

‐ ・

‐■.

:“

・
=` "|.‐

擁

_■

4 ■t

そ
の
他
の
機
能

本章では、CHAPTER10で解説 した「マテリアライズ ド・ ビュー」と、
CHAPTERllで 解説した「パラレル処理」以外の、パフォーマンス・チュー

ニングに関するOracleの機能を解説します。

パーティション・テーブル※は、Oracle 8か ら提供された、物理的には

別々のパーテイションにあるテーブルを、アプリケーションからは1つのテ

ーブルとして見えるようにデータを分割して管理する機能です。

※パーティショニング機能は、Enterprise Editionの オプション機能です。

パーテイション・テーブルの構成

通常のテーブル

データ管理の単位

―
●
０

●

―

一
●
０

●
一

一
■

一
●

パーティシヨン・テーブル

データ管理の単位

難‐,,
:r ._■ 一１

〇
一
　
一一
一理
一
一

一・
　
■
―

●
一　
Ｉ
一

一
●
●
●
一●
一
■
一一●
一●

一
・●
“
一
　
一一
　
騨
一

一０
　
．
　

．
一一

一　
．
一
簸
■

一
一一
を
一一
●
■
■
■
●
●

●
■
薇
―

●
、
―
一
　
，●
一■

●
●
●
●
一■
●
一

●
一「

一
・―
一
２

一
　
　
一４

分割した複数の領域で管理

パーティション0テープル

1図 12■1

その他の機能

CHAPTER

||

パーテイシヨン 0テーブルのメリット

CHAPTER 12その他の機能

パーティション・テーブルはアプリケーション内から発行されるSQLを 意

識せずに実装できるので、アプリケーション導入後に、レスポンスが悪化し

た場合でもアプリケーションを変更することなく、対処することができるた

め手間がかかりません。

パーティション・テーブルを導入するメリットには以下のものがあります。

。レスポンスの向上

・管理性の向上

。可用性の向上

鍮輻 レスポンスの向上

データの特性や利用目的に合わせて、論理的にデータを区分けし、必要な

パーティションだけを処理することでレスポンスの向上が図れます。

たとえば、1年分の売上データのレコー ドが100万件あった場合、そこから

データを抽出するには、100万件のデータが入っている領域に対してアクセ

スしなければいけません。しかし、その100万件のレコー ドを四半期単位で

分けた領域で管理した場合、25万件 (100万件 +4)のデータが入っている領

域に対してアクセスし、データを抽出するため、パフォーマンスが向上する

可能性が非常に高くなります。

このように、パーティショニングを行ったテーブルの中から、必要となる

特定の領域だけ参照する機能をパーティション・プルーニング (P.311参照)

と呼びます。

黎躙 管理性の向上

テーブルをパーティションごとに分けることで、メンテナンスをパーティ

ション単位で行うことができるので、データ管理の効率化・高速化を図るこ

とができます。データの管理では主に以下の操作を行うことが可能です。

・ ExporL′ lrnport(SQIL・ Loader)

・統計情報の取得

。バックアップ 。リカバリ

活
用
編

Ｏ
「”
０
一０
の
機
能
を
利
用
し
た
∽
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

そ
の
他
の
機
能

パーティション・テーブルの種類

鶉Expo成/lmpo蔵 (SQL*Loader)

パーティション単位や複数のパーテイションに対して同時にExportДmport

を実行できます。また、SQL・ Loaderも パーティション単位で実行すること

ができます。そのため、他のパーテイションヘの問合せに影響を与えること

なくExport/1mportを 実イ子できます。

瘍統計情報の取得

テーブル全体での統計情報取得は、通常どおり実行可能ですが、パーテイ

ション単位でも統計情報を取得することができます。変更のあったパーテイ

ションだけの統計情報を収集することで、より短い時間で統計情報を取得す

ることができるようになります。

瘍バックアップ・リカバリ

各パーティションを別々の表領域に配置することにより、パーティション

単位でのバックアップ・リカバリが可能になります。したがって、頻繁に更

新のかかるパーティションのみバックアップすることや、障害が発生したパ

ーティションのみのリカバリを行うことができるようになります。

餞輻 可用性の向上

1つのテーブルでデータを管理している場合にデイスク破損などの障害が

発生すると、すべてのデータが消失する可能性があります。

一方、パーティション単位で管理している場合には、パーテイションのデ

ータのみ消失することになるため、影響範囲が小さくなります。

Oracleで は、データの特性に合わせ、以下のようなパーティション化の方

法 (分割方法)を用意しています。

・レンジパーティション

・リストパーティション

・ハッシュパーティション

・コンポジットパーティション

バーティシヨン 0テ…ブルの種類

|`1

CHAPT[R12その他の機能

レンジパーティション

パーティション分割の単位を範囲で定義します

例)2003年から2007年までの売上データを管理するテーブルとし、
データを年単位で管理します

一
●

一
一
一

年

―
，■
●

一　

７

●
―

一
●
・
　
０

１

■

―

１
　
０

１

●
　

．
　

２

一■
一
一
●
一一

年

十
■
●
一●
一一一
一
　
６

■̈
一●
●
一
一一■
，
　
０

●
一●
一一■
一●
一●
　

Ｄ

■
■
一一一
一
一　
２

■

一一●
〓
一
　

年

■
●
・●
●
●

　

５

一■

●
一
一
一
　

〇

■

■
一一一
一
一
一
　
〇

一
■

，
一
一
　

２

●
■

〓
警

，
一嚢

榛

■
　

手

一
〓
●

摯

「

γ

一
一■
■
〓
一　
レ

■
一
●
●
■
一
　
〇

一
●
一●
〓
■
・　
２2003年

晰蜀 リス トパーティシヨン

リストパーティションでは任意のリストを作成し、そのリスト単位でデー

タを分割します。たとえば、都道府県、支店などあらかじめリストが用意さ

れている場合に、そのリスト単位にデータを格納します。

また、リスト外のデータが発生した場合は、デフォルトのパーティション

を用意することで条件に当てはまらないデータをデフォルトパーティション

に格納することができます。

活
用
編

０
３
ｏ
一０
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

リストパーテイション

パーティションを定義したリスト単位で分割します

例)国で分割します

‐ _‐ ■■.1‐
.‐ ―■燕

=||
‐■・ . ‐.,|.χJ:董壽‐

日本 ポルトガル ドイツ イタリア フランス

隋隋 レンジバ…ティシヨン

レンジパーティションではデータを期間・範囲で分割します。たとえば、

売上データなど時系列でデータを管理しているテーブルに対して、年、四半

期、月など期間を指定した条件でアクセスされる場合に有効です。

そ
の
他
の
機
能

パーティシ蒻ン・テーブルの種類

瘍蒻 ハッシユバーテイシヨン

ハッシュパーティションではデータを指定した数のパーティションに均等

に分散させて管理します。データはパーティション化キーのハッシュ値に基

づいてパーティションに格納されます。レンジパーティションやリストパー

ティションと違い、ハッシュパーティションではデータを均等サイズのパー

ティションで管理します。

そもそも、パーティション化を行うことのメリットは、容量の大きいテー

ブルを分散し、パフオーマンスや管理性、可用性を向上させることです。そ

のため、データをなるべく均―に配置することが最も効果的です。

データの均一性を確保するという意味では、ハッシュパーティションには

大きなメリットがあります。

ハッシュパーテイション

数を指定してパーティションに分割します

八ッシュ関数を使用して指定した数のパーティションに分割します

:‐ ‐ | || | | | |
‐ ‐ | |・‐~~‐‐ ・ | . . . | || |

‐‐ ‐||l t■ |‐ || |■ |‐ | | ‐■ |||
1パーティションあたりのデータ量が均―になります

蝙躙)コンポジットパ…テイション

テーブルのデータを2段階にパーティション化することを、コンポジット

パーティションと呼びます。

たとえば、レンジ・ハッシュ・コンポジットパーティションでは、データ

をレンジ方式でパーテイション化し、各パーティション内をハッシュ方式で

サブパーテイション化します。

また、レンジ・リスト・コンポジットパーティションでは、データをレン

ジ方式でパーテイション化し、その各パーテイション内のデータをリスト方

式でサブパーティション化します。

||

CHAPTER 12その他作機能

つまり、コンポジットパーティションとは、メインパーティションの選択

でデータの分割方法を決定し、その中身はサブパーティションの分割方法で

管理するパーティション方式です。

売上データを年 (レ ンジ)と 商品分類 (リ スト)で分割することで、年・商

品分類別で売上を把握するなど、データを2段階で検索して使用する場合に

有効になります。

コンポジットパーティション

パーティションを2段階で管理します

メインパーティションをレンジ、サブパーティションをリストとした
レンジ・リスト・コンポジットパーティション

●
年
・●

一■
∝
諄
．・

―

■
０

項
一

●
●
２

．一●
■

―
年
■

一一爾
蔚一

●
●

２

●
●

二 ■ |■ | :|||||||'■
‐‐‐
11

1:2003年 |■‐ ||12019‐6年 1‐ 1
1111響零|11‐|・l'

‐
||‐ 1響替||■‐

|1 2007年 .■‐
|■
■.1東子‐|.・ ||‐

・■12〔)07年 ||
.=||‐‐肉類:|‐|

●12007年■|
・||,|,,類 |‐

一一
年
■
　
●
〓

●

・一爾一一醸
．　．一麒
．麟一

・●
２
●
●
　^

●
一
２
一
●

リ
ス
ト

（商
品
分
類
）

レンジ (年単位)

パーティション・テーブル化しただけでは、アプリケーションのパフオー

マンス向上にはつながりません。パーティション・テーブルを使用して、パ

フォーマンス性に優れたアプリケーションを作成するには、より効率的にパ

ーティション・テーブルにアクセスし、必要なデータを取得する必要があり

ます。

パーティション・テーブルからデータを取得する際に、より効率的にデー

タを取得するには、アクセスするパーテイションまたはサブパーティション

に対してどれだけ速く、少ないブロック数でアクセスできるかを考えます。

活
用
編

Ｏ
Ｓ
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

パーティション・ テーブルの使用方法

バーティション・テーブルの使用方法

籟輻 パ…ティション・ ブルーニング

パーティション・プルーニングとは、問合せの際に不要な索引やデータを

含むパーテイションやサブパーテイションをスキップすることです。効率的

なアクセスとは裏を返せば不要なパーティションやサブパーティションに対

してアクセスしないようにすることです。

そのため、パフォーマンスの改善を行うには、パーティション・テーブル

に対してアクセスする際に、パーテイション・プルーニングが行われるよう

にする必要があります。

以下の例では、パーティション・テーブルをレンジパーティションで作成

し、問合せを実行し、パーティション・プルーニングが行われている状況を

確認しています。

パーティシヨン・テーブルの作成とパーティション・プルーニング

‐
` _ ■

PART■TION

実行,112-01

そ
の
他
の
機
能

12

|1 21‐ PRIMARY

活
用
編

０
「”
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPTER 12その他の機能

Planl hash

. ‐‐ .| ||

| |
,EL19T ,TATEMENT
(0)1 00:00:01 1

Pstop
I

‐ .. 1

1 1 637,6 1

_燎 ;.

,,■
|

1 11 PART■ T■ON RANGЁ S=NGLEI 1 75911o375o
27 (p)190:Op:ol 1 31 31 '1"
||1 2 1 1TABLE Aё c=Ss

27 (o)100:00:0■ |

1 7591 d3T5G
I

|=|
¨
i
.t,

苺‐

そ
の
他
の
機
能

パーティション素3:

oパーティションテーブルを作成します。
②パーティション化列を指定します。

o作成したテーブルにPrimaryKeyを作成します。
●売上データからデータを移行します。

oSQLを実行します。
oパーティション プルーニングが実施されていることが確認できます。

パーティション・テーブルと同様に、索引もパーティション化することが

できます。パーティション化された索引も管理性、可用性、パフォーマンス

および拡張性を改善することができます。

パーティション索引にはローカル索引とグローバル索引の2種類があります。

隋鋏 口…カル索引

ローカル索引は、パーティション・テーブルと同一の方法でパーテイショ

ン化されます。テーブルのパーティション単位で索引データを管理するため、

パーティション・テーブルを追加、削除、分割すると、ローカル索引も自動

的にメンテナンスされます。

バーテイシヨン索引

Note ‐ .|| .. .‐ ‐ ‐ ‐ . _ ‐‐. ‐ . ‐‐ ‐ ‐ ‐ ‐‐ ‐‐ ‐「

~1~dynamic sampling used for this statemOnt

‐ ‐
・ || | _.

‐ . . .‐ . _ . . ‐ ‐_

12

CHAPTER 12その他の機能

なお、パーティション。キーと同一列に作成された索引をローカル同一キ

ー索引、パーティション。キーとは異なる列に作成された索引をローカル非

同一キー索引と呼びます。

瘍□―カル同一キー索引

ローカル同一キー索引では、索引スキャンを実行する場合、索引スキャン

のデータが格納されているパーティションを特定することができるため、ス

キャンするパーティション数が少なくなり、パフォーマンスが向上します。

ローカル同一キー索引

パーティション分割の単位を年で定義します。また、
索引も年で作成します

活
用
編

Ｏ
Ｓ
●
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

●一サ一一
一・一舛・　千

・一が・一一・・卜・・日

・一一・・一一瑯一・　２Ｃ

―

一

●

●

■

，

一

●
―
一
　
●

2004年

索引デニタ■

2005年

薇ローカル非同一キー索引

ローカル非同一キー索引では、パーティション・キー以外で索引スキャン

を実行することができます。ただし、パーティション・キーを使用しないで

索引スキャンを実行すると、どのパーティションをスキャンして良いかわか

らないため、すべてのパーティションをスキャンしなければならなくなりま

す。そのため、ローカル同一キー索引に比ベパフォーマンス向上が見込めな

いケースが存在します。

一一
・
″
一
一
一一
一
一一
準

―

　

崚

一　

　

・一　

キ

一
一
　

て

一一詢一一一椰一一　２０。

一一
一
ダ
一
一

一
一
●
●
一●

・・・嚇一・一一‐摯・
酢

一・」４・一一〓一蹴一二
４

パーティション簾31

図12-07 ローカル非同一キー索引

テーブル・パーティション分割の単位を年で定義します。また、

索引は商品分類で作成します

そ
の
他
の
機
能

聰
鼈
呻

一ｒ
一
，
一，

一ヽ
一
て
，　
′‘

辮
軋
”

騨
眈
一

辣
蜀
一

聰
鼈
一

鰈躙 グローパル索引

グローバル索引は、テーブルとは別のレベルでパーテイション化されます。

したがって、パーティション構成の自由度は高くなります。一方、通常の索

引と同様にテーブル (全パーティション)の索引データを管理するため、テ

ーブルデータが移動や削除された場合は、すべてのパーテイションに影響を

及ぼすため、管理が煩雑になります。また、メンテナンスにかかる時間は、

パーティションのサイズではなく、テーブル全体のサイズに比例します。

ただし、検索処理のパフォーマンスについては、ローカル同一索引と同等

のパフォーマンスを期待することができます。したがってOLTP系 のシステ

ムでデータの取得結果が少ない場合に効果を発揮します。

CHAPT[R12その他の機ぬ議

グローバル索引

パーティション分割の
単位を年で定義します

●

・
夕
　
・

―
■
一〓

●
一

．●
一
デ
　
一

一
表

2003年

■
一
ダ
●
一

●
一
　

一
―

一

一■
一『″
一一

・■
一
壊
一一
2004年 2005年

索引は商品分類で作成します

`“

・|#‐ ―
それぞれが別々の
パーティションで管理されます

―

●
夕
一

●

一
一

＾
ア
・

・
　

壌

一●

2006年

―
■
タ一

・　
一
ふ
´
―
・

●
一
表

―

2007年

|■ ||||
1商品分類||_

す率,|を 1年

“

轟菫難犠:

111111 _1‐ ..|.|

11鶴品分額‐‐
‐‐

で素引をな成
11轟轟
=育1電 :|1奪 1書韓

i■■,「 ,‐t,摯筆■‐■.

摯嵐纂|活
用
編

Ｏ
Ｓ
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｐ
チ
ユ
ー
ニ
ン
グ

バルク処理

バルク処理は、PL/SQLで提供されている、繰り返し実行される処理を一

括で処理する機能です。大量データをテーブルに書き込む場合、FORループ

文でINSERT文をループ回数実行し、データを挿入する方法が一般的ですが、
バルク処理では、挿入対象データをコレクション (配列)と して提供し、ま

とめてSQLエ ンジンに提供することで、大量データの書き込み処理を1回の

INSERT文で行います。そのため、内部的に何度もSQLを実行する必要がな
くなり、パフォーマンスが向上します。

バルク処理とループ処理の違い

FORi=1_100L00P
INSERT IN丁 0くテーブル名>VAL∪ ES(<値 1>,<値 2>,く値3>);
END L00P;

100回のループ処理

繰り返し処理

バルク処理で実行することにより

1回の処理で実行可能

FORALLi=1..100
1NSERT INTOく テーブル名>VALUES(く コレクション1>,くコレクション2>,くコレクション3>)i

‐|、 |,

|`‐

‐
1‐

¨

バルク処理

鼈輻 DML文でのパルク処理
DML文 (INSERT文、UPDATE文、DELETE文)に対して、バルク処理

を実施する場合はFORALL文 を使用します。FORALL文 をFOR文の代わり

に使用し、VALUE句 にコレクションを指定します。

FORALL文によるパルク処理

FROM

ました。

oカーソルデータをレコード型配列に代入します。

②代入したレコード型配列をバルク処理で挿入します。

蝙躙 SELECT文でのパルク処理
一括してデータを更新する以外に、データをフェッチ (取得)する処理に

対しても、バルク処理を使用することができます。フェッチ時にバルク処理

情 文

FORALLく索引名>INく 初期値>..く 終了値>
{INSERT I UPDATE I DELETE}VALUEく コレクション>

そ
の
他
の
機
能

実行例 12-02

贅 FROM cust_mstl,|

■■:

=弱

15

CHAPT[R12そ の他の機能

を使用する場合はBULK COLLECT句 を使用します。

たとえば、SELECT文では、以下のようにすることで、バルク処理を行う
ことができます。

SELECT INTO文 を使用した場合、取得行数が1行でなければならず、ま
た取得値は変数に代入していました。しかし、バルク処理を行えば複数行を

1回のコレクションに代入できるので、SQLを何度も発行する必要がなくな

ります。

SELECT INTO文 でのパルク処理

0レコード型配列にデータを一括で挿入します。

0レコード型配列からデータを取得してデータを挿入します。

玲腑 FETCH INTO文 でのパルク処理
F匡TCH IN丁 0文でもBULK COLLCECT句 をイ吏用して、SELECT INTO文
と同様にカーソルからの結果セットを一括してフェッチすることができま

す。また、FETCH INTO文ではLIMiTED句 を使用することで、結果セット
から一括フェッチされる行数を指定することもできます。

構 文

SELECTく 列名>BULK COLLECT INTOく コレクション>FROMく テーブル名>

実行例 12‐03
活
用
編

０
３
２
Φ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

2 TYPE

―一二=一-0
| ‐
卜‐――■■一‐ぬ ■

■

.」 ||‐ |■‐ ▼‐‐‐

バルク処理

以下の例では、データを100件ずつフェッチし、その後は、通常のループ

処理を行っています。

FETCH lNTO LIMITED句を使用したバルク処理

o100件ずつ配列に代入します。
o100件の配列からデータを取り出し、更新・挿入処理を実施します。ここはバルク処理ではなく
通常処理です。

FETCHく カーソル名>BULK COLLECT INTOく コレクション>

[LIMITく最大フェッチ行数>]

そ
の
他
の
機
能

実行例 12-04

EEI rercn tNToatr &6/ t,l,2s!B
‐
 :‐

・ = ‐..

TABLE OF

INTO

活
用
編

０
３
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

CHAPT[R12その他の機能

以下の例では、データを100件ずつフェッチし、バルク処理でデータを挿

入しています。

FETCH INTO LIMITED句 を使用したバルク処理

0100件ずつ配列に代入します。
0レコード型配列からデータを取得してデータを挿入します。

Oracleは、パフォーマンス・チューニングの機能として、ハッシュ・クラ

スタと索引クラスタを提供しています。

ハッシユ・クラスタは、比較的大きなテーブルの索引で、索引構造が深い

場合に有効な機能です。一方、索引クラスタは、必ず決まったテーブルの結

合が行われてアクセスされるテーブルに対して有効な機能です。

ただし、クラスタはチューニングにおいてさほど有効ではないので、ここ

実行例 12-05

クラスタ

そ
の
他
の
機
能

ハッシユ クヽラスタ

では、概要だけを解説しますので、こんな機能もあるということを理解してお

き、クラスタが有効になりそうな場面があったら、採用を検討してください。

Oracleではハッシュ・クラスタを使用してデータを格納することができま

す。ハッシュ・クラスタとは、ハッシュ関数によるハッシュキーを使用して

データを格納します。データ取得時には、格納したハッシュアルゴリズムを

使用してデータを取得します。そのため、ハッシュ・クラスタを使用すれば、

索引にアクセスしなくても、データを取得することができます。

ハッシユ・クラスタ

※社員番号をクラスタにした場合

WHERE 社員番号=10

八ッシュ値 社員番号

10

20

30

4 40

50

60
社員番号=10を
八ッシュ値=1へ変換

八ッシュ値1のものに直接アクセス

八ッシュ値 社員番号 社員名 入社日 部門コー ド

10

20

3 30 C

4 40

50

60

検索時にハッシュ値を基にアドレス情報を取得するため索引にアクセスする必要がなくなる。
索引の階層が深い場合は、このほうが少ないアクセスブロックでデータを取得できる

大規模なテーブルでは、索引を使用してアクセスする場合でも階層が深く

なれば、多くのブロックに対してアクセスするため、それだけ多くの1/0が

発生します。そこで、ハッシュ・クラスタを使用して、より少ないブロック

のアクセスでデータを取得することでパフォーマンスを向上させます。

ただし、範囲検索では、複数のクラスタキーを認識する必要があるためハ

ッシュ検索は実施されずに、フルテーブルスキャンが実施されます。また、

ハッシュ・クラスタ

図1210

CHAPTER 12その他の機能

テーブルの行数が増加するとクラスタキーに対する領域も不足してくるので

注意が必要です。ハッシュ・クラスタは、なるべ くデータ増減のない静的な

テーブルに対して作成することをおすすめします。

餞輻ハッシユ・クラスタの作成

CREATE CLUSTER文 でクラスタを定義した後、CREATE TABLE文 に
CLUSTER句 を指定してテーブルをクラスタ内に格納 します。

「SIZE」 には、同一クラスタキー値または同一ハッシュ値を持つすべての

行 を格納するために確保する領域 をバイ ト単位で指定します。 また、

「HASHKEYS」 にはハッシュ・クラスタのハッシュ値の数を指定します。ハ

ッシュ・クラスタには、同一のハッシュキー値を持つ行がまとめて格納され

ます。それぞれの行のハッシュ値は、そのクラスタのハッシュ・ファンクシ

ョンが戻す値です。

八ッシュ・クラスタを作成する

CREATE CLUSTERくクラスタ名>(
くクラスタキーの列名■>く型>[, くクラスタキーの列名n>く型>]
)

SIZEく八ッシュキーのブロック・サイズ>
HASHKEYS くノヽッシュ値>

[HASH ISく八ッシュキーの列名>]
活
用
編

Ｏ
扇
ｏ
一ｏ
の
機
能
を
利
用
し
た
い
Ｏ
ｒ
チ
ュ
ー
ニ
ン
グ

実行例 12‐ 06

ffi cnsnre cLUSTER*

11:

そ
の
他
の
機
能

索ヨIクラスタ

クラスタには、ハッシュ・クラスタの他に索引クラスタもあります。索引

クラスタは、毎回結合 して問合せるテーブルをグループ化します。同じデー

タ 。ブロックに複数のテーブルを格納することができるので結合時のパフオ

ーマンスを向上させることができます。

ただし、索引クラスタではクラスタ化していないテーブルよりも多くのブ

ロックを使用しているため、クラスタ化したテーブルの一部を取り出す場合

(結合 しないでテーブルを検索する場合)や、フルテーブルスキャンを行う

場合は1/0が増加します。また、データ挿入時もその構造を維持するため遅

くなります。

なお、索引クラスタは2つ以上のテーブルを前結合させているため、他の

テーブルの行もクラスタ内に含むことになります。したがって、テーブルが

常に結合されたものとしてアクセスされない限り、テーブルをクラスタ化す

るメリットはなく、現場でもあまり使用されていません。

索引クラスタ

CLuSTER.hash_emp.(empno)
.■ || |||| ||| .|■

/ . |■ ‐ ‐■‐

表が作成されました。

活
用
編

０
「ｐ
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

Bt2.l1

CHAPTER 12そ の他の機離

索引クラスタ

部門コー ド 部門名

総務 。経理部

開発部

営業部

クラスター化キー (部門コー ド)で
クラスタを作成

部門マスタテーブルと社
員マスタテーブルを結合
した形でアクセスした場
合、まとめて格納されて
いるので、結合処理を行
わないため、検索速度が
速くなります 魃

ただし、部門マスタのみ
アクセスした場合は、ま
とめて管理している分、
遅くなります

鼈躙 索引クラスタの作成

索引クラスタは、以下の手順で作成します。

隋クラスタを作成する

まずは、CREATE CLUSTER文 を使用して、クラスタを作成します。

颯索引クラスタを作成する

クラスタを作成したら、作成したクラスタに対して、索引クラスタを作成

します。索引 クラス タはCREATE INDEX文 を使用 して作成 します。

社員番号 社員名 入社日 部門コー ド

10 A

20 2

30

40

50

60

部門コー ド 部門名

総務・経理部

社員番号 社員名 入社日

10 A

30

40 D

部門コー ド 部門名

2 開発部

社員番号 社員名 入社日

20 B

50

60

構 文

CREATE CLUSTERく クラスタ名>(
くクラスタキーの列名■>くデータ型>

[,く クラスタキーの列名n>くデータ型>])

[く記憶領域パラメータ>]

索]|クラスタ

瘍テーブルをクラスタの中に作成する

最後に、テーブルをクラスタの中に作成します。CREATE TABLE文 で

テーブルを作成する際に、CLUSTER旬 を使用してクラスタを指定します。

構 文

CREATE INDEX く索引名>
ON CLUSTERくクラスタ名>

[く記憶領域パラメータ>]

そ
の
他
の
機
能

構 文

CREATE TABLEくテーブル名〉(
く列名■>くデータ型>

[, く列名n>くデータ型>])
CLUSTERくクラスタ名>(
くクラスタキーの列名■>くデータ型>[, くクラスタキーの列名n>く データ型>])

|.1

CHAPT[R12その他の機議

ビットマップ索引は、データをビットマップで管理しているため、カーデ

イナリテイが低いものに対して効果的に機能します。したがって、TRUE/
FALSE条件での検索で、AND条件が複合する問合せでは効果を発揮 します。

蟷鰈絣BITMAP JOIN INDEXと は
Bl丁MAP JOIN!NDEXと は、複数のテーブル結合に対するビットマップ索

引です。Oracle 91か ら導入された機能で、事前にテーブルの結合をビットマ

ップで管理するため、検索時に結合処理を実施する必要がなくなり、パフォ

ーマンスが向上します。

鼈魃 B:TMAP JOIN INDEXの使用方法
BITMAP JOIN INDEXを 使用 す るには、 まず、BITMAP JOIN INDEXを

以下のように作成し、その後、SQLを実行する必要があります。

活
用
編

０
●
ｏ
一Φ
の
機
能
を
利
用
し
た
∽
Ｏ
ｒ
チ
ユ
ー
ニ
ン
グ

BITIMIAP JOIN INDEX

構 文

CREATE BITMAP INDEX く索引名>
ONくテーブル名>(く列名>)
FROMく テーブル名>
WHERE く結合条件>

. 12 C.LUSTER emp=dept(deptno) . ・ ..

13 / ..

.表
が作成されました。

SQL> CREATE TABLE. dept

2 (._

3 deptno NUMBER(2′ 0)NOT NULL′

4 11 dl■ alne VARCHAR2(14)′

5 . 10c VARCHAR2(13)

6 .) ..

7 CLUSTERl eimlp_dept(dep.tno)
. 8 /

表が作成されました。 ‐

実行例 12-08

B「MAP」 01N INDEX

BITMAP JOIN INDEXを作成する

|:
・ .

'‐ ‐1:

SQLを実行する際は、index_combineヒ ント(P.328参照)を 使用します。

実行計画を確認すると、結合処理が行われていないことが確認できます (0)。

BITMAP JOIN INDEXを使用した検索

次に、SELECTリ ストにBITMAP JOIN INDEXを 作成していないテーブ

ルの列が含まれているケースで同じSQLを実行し、実行計画がどのように異

なるのか比べてみます。

BITMAP JOIN INDEXを使用しない検索
|■|

■・ ■ _

`.

ヽ

実行例 12-10

ト
ー
ロ

巡
滲
‐

E轟ロロ回
*,/ sales_trn. *

/

.:｀ .1 .・
 ::■ ■

■ |||・ ||_

1 0 .‐

0

CaFd=101000
1 _2 1

3 2

.1010100行が選択されました。

そ
の
他
の
機
能

実行計画 ・‐
‐‐‐ ・

CHAPT[R12その他の機能

活
用
編

Ｏ
Ｓ
●
一Φ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
！
ニ
ン
グ

重い

実行計画を確認すると、BITMAP JOIN INDEXを作成していないテーブ
ルの列が含まれている場合は結合処理が行われています (0)。 これは、

BITMAP JOIN INDEXが返すROWIDが索引になるためです。BITMAP
JOIN INDEXを使用する場合は、SELECTリ ス トを参照し、結合が完全に排

除できるかを確認してください。

蝙鰤 B:TMAP JOiN INDEXの デメリッ ト
BITMAP JOIN INDEXで は、ビットマップ索引と同様に、更新時にレコ
ード単位でロックされるわけではなくブロック単位でロックされるため、予

想外のロックが発生する可能性があります。

また、更新時にビットマップを作成するので、更新パフォーマンスが低下

する可能性があります。そのため、BITMAP JOIN INDEXは 主にDWH系の
システムで利用されることが多い機能です。

BITMAP JOIN INDEXは 、結合処理がネックとなるSQLで、処理が高速
になることが確認できた場合にのみ、ロック関係の注意事項を考慮 したうえ

で実装することをおすすめします。

index_combineET l'.

0

そ
の
他

の
機
能

本 』手ユ の ま と め

レンジパーティション データを期間・範囲で分割する

リス トパーティション 任意のリスト作成 し、そのリスト単位でデータを分割する

データを指定 した数のパーティションに均等に分割するハ ッシュパーティション

テーブルのデータを2段階にパーティション化するコンポジットパーティション

本章のまとめ

. 1 .

●パ■デイシ1シ|
― l . ■ _ |~|||

パ■テイシヨンー・

:レスポンス
ー
の向上

‐・管理性の向上 ‐

可用性の向上
.'1 ●.I

■
■ .‐

.‐|| .||‐ _ ..

テ=ブルの種類

|:ヽ

=`= |_|| ■

“

Ⅲl

=‐

 ‐‐:

「

『

CHAPT[R12その他の機能

パーティ

あ糧績
には国二 ―バル索

シ

ローカル索引 パーティション・テーブルと同一の方法でパーティション化する

グローバル索引 パーティション・テーブルとは別のレベルでパーティション化する

活
用
編

０
３
ｏ
一ｏ
の
機
能
を
利
用
し
た
∽
Ｏ
Ｆ
チ
ュ
ー
ニ
ン
グ

:"

繰り返し実行される処

■l. ・ 1

●131TMAP」01NIND=X

lNDEX

【A・ BoC】

ALL INDEXES・・̈・̈・̈ ¨̈・・・・・…・・̈・・・・・̈・・・・143

ALL_ROWS¨ ・̈・・̈・…・・……・・・・・・・・・・・・・・・・27,37

ALL TAB COLUMNS・ ・・̈・・・・・・・・・・・・・・・・……144

ALL TABLES ・。・・・・・・・・・・・・・・・・・̈・̈・・・・・・̈・̈・142

ALTER SESS:ON文 ・̈・・・̈・・・・・・・・̈・・・̈・・・・・・・64

ALTER SYSTEM文 ……・・・・̈・・̈・・̈・・・̈・・・・・・・64

ALTER TABLE MOVE文 ……・・・・・・̈・…・・・・…29

ANALYZE文・…・̈・・…・̈・…・・・・̈・・・・・・・・・・・・・・・120

APPENDヒ ン ト ・・…・̈ ……・・・・・・・・・・・・・…・…261

AUTOTRACE・・・・・̈ ・̈・・̈ ・̈・・̈・…・・・・̈ ・̈・̈・・・53

AVG関数 ・

B'Tree索]|

BITMAP JC)lN!NDEX・ ・・・・̈・・・…・・…・・・・̈・̈ …326

BUILD DEFERRED・・・・・̈・・・・・・…・・・・・・・̈ ¨̈・・279

BUILD IMMED!ATE・・………・・…・・…・・・・・……279

BULK COLLECT句 ・…・……・・・・・・・・・・・・・・・・・…318

CARDINALITY ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・52

CASCADE句

CASE5に ・̈̈・・̈ ・̈・̈ ¨̈ ¨̈・̈・・・・・・・・・・・・・・・・・・・251

CBO・・・・・・・・・̈・・・・…………・・・・・・・・・…・……・̈ …24

CHAINED ROWSテーブル ・………………・128

CLUSTER句・・・・・・・・・̈・・・・・・・̈・・…・・̈ ¨̈ ¨̈・・・322

DBMS DUTILITY.ANALYZE SCHEMAフ
°
ロシ

プロシージャ ・・・̈・・・・・…130

………………・…・131

・・̈・・・・̈ ¨̈ 137

―ジャ

・・・・・・・・・・・・・243

・・・・・̈・・̈ …181

DBMS JOBパ ッケージ……………………・……83

DBMS MVIEW.EXPLAIN REWRITE

プロシージャ ………… …̈ …̈…………・…285

DBMS MVIEW.REFRESH・・・・・・・・・・・・・………278

DBMS MVIEW.REFRESH ALL MVIEWS278

DBMS MVIEW.REFRESH DEPENDENT 278

DBIMS_SESS10N.SET_SQL_TRACE()・ ・̈・̈・・66

DBMS SESS10Nパ ッケージ・………………66

DBMS STATS.CREATE STAT TABLEプ ロ

シージヤ ・………………………………………139

DBMS STATS.DELETE SCHEMA STATSプ

ロシージャ

CPU時間 。・・・・・・・・・・̈・……・̈・・・̈・・̈・・・・・・・̈ ・̈̈・95

CREATE CLUSTER,支: ・・・・……・̈・・・・̈・̈・・・・322

CREATE INDEX文 ¨̈ ¨̈ ・̈̈ ・・・・・・・・・・・302,324

CREATE MATERIALIZED VlEW文 ・・・・・̈・・279

CREATE TABLE AS SELECT文 ・・・・̈ ¨̈・・302

【DoE・ F】

DBA !NDEXES ¨̈・̈ ¨̈・・・・・・・・・・・・・・・・・・・・・・143

DBA TAB COLUMNS ・・・・・・・・̈・・・・̈ ・̈・…・144

COMPUTE

DBMS STATS.GATHER DATABASE STAT

Sプロシージャ…¨̈ …̈………………・………137

DBMS STATS.GATHER INDEX STATSプ ロ

シージヤ ・………………………………・……134
DBMS STATS.GATHER SCHEMA STATS

プロシージヤ ・…………………………・……135
DBMS STATS.GATHER TABLE STATSプ

ロシージヤ ・……………………………………133
DBMS STATSパ ッケージ……………………132

DBMS SYSTEM.SET SQL TRACE:N SES

S10Nプロシージヤ…… …̈………………・……67

DBMS SYSTEMパ ッケージ …………………67
DBMS UTILITY.ANALYZE DATABASEプ ロ

シージヤ ・̈ ……………………………………131
DISTlNCT KEYS・・̈・・・・…・・・・̈・̈・̈ 。・・・・・・・・・・143

D:STINCT句・・̈・・・・…・・・・…・・・̈・・・・̈・・・・・・・・・・・・248

DML監視 ・……………̈ …… …̈………………147

DROP CREATE文 ・……・…………………・…187

EMPTY BLOCKS ・・・・・・・̈・・・・・・・・・・・・・・・・・・・・・143

ENABLE QUERY REWRITE・ ・・・・・・・̈・・279,283

・・・̈ ・̈・̈ …125

……・……121

・・・̈・・̈ 1̈42

DBMS DDL.ANALYZE(ЭBJECT

DBA TABLES

END MONITORING列 ・・・・・・・・…・・・・・・………261

ENDPOINT ACTUAL VALUE・・・・・・・・̈ ¨̈・144

ENDPOINT NUMBER ・・・・・…・・・・・・̈・・・・・・・…144

ENDPOINT VALUE ・・・・・̈・…・・・・・・・・・・・̈・̈・144

ESTIMATE ・・・・・・・・・・・・・・・̈ ・̈・・・̈・・・̈ ¨̈・̈ …121

EXECUTE小 窪風艮 ・。・。・・・・・・・・・・…・・・・・・・̈ =・

¨̈・・・̈ 67

EXiSTS句 ・・・・̈ ¨̈・・・・・・・・・・・̈・̈・̈・・・・・・̈ ・̈̈ 169

EXPLAIN PLAN FOR文 ・・・・・・・・・・・・・・・・・・・・・・・・59

EXPLAIN PLANコ マンド・…・・・・̈・・・・・・・・……44

EXPORT COLUMN STATSプ ロシージャ・̈ 140

EXPORT DATABASE STATSプ ロシージャ・…140

EXPORT INDEX STATSプロシージャ ・・・・・・・・・140

EXPORT SCHEMA STATSプ ロシージャ・…140

EXPORT SYSTEM STATSプ ロシージャ…140

EXPORT TABLE STATSプロシージャ ……140

FETCH INTO文 ………318

FIRST_RC)VVS¨ ¨̈ ¨̈・・・・・̈・・・・・・・・・・・・̈・・27,37

FIRST ROWS n ・………。・・・・・・・・・・・・…・…・…27

FOR ALL COLUMNS… ・…・・・・・・・・・・・・・・・・・…122

FOR ALLINDEXED COLUMNS ・…・・・・・・・・122

FOR ALLINDEXES¨ ………・・…・・・・・・・・・・・・・・・・・122

INDEX・・・・…・・̈ …̈…・・̈・・・・・̈・・̈ ・̈・・・・・・・・・・・・・37

1NDEX RANGE SCAN ・・・・・・・・̈・・̈ ・̈̈ 4̈8,50

1NDEX UNIQUE SCAN・ ・・・・・・・・・・・・・・・・・̈・・・̈ 5̈0

index_cOmbineヒ ン ト ……・・・・・・・・・・・…327,328

1NDEX NAME列」・̈・・…・…・…・・・・・・̈ ・̈̈ ・̈・̈・260

1NDEXヒ ント ・・・…・…・・・…・・・・・̈・̈・̈・・……210

IN句

iS NOT NULL条件 ・̈ ………………… …̈……224

1S NULL句 ………… …̈…… …̈……………188

【J・ K・ L】

LAST ANALYZED ・̈・・・・・・・・・・・・・・・・・・・・・・̈・・・143

LIKE句

LIMITED句 ……・・・・・…・・………・…・・・………318

LIST CHAINED RC)VVS句 ・・・…・・・・・・・・・̈ 。・・・・128

LRUリ ス ト・・・・・・・・・・・・・・…・……・・・・̈・・̈・̈・…・・・・23

【MoN・ 01

MAX関数 ・………̈ ¨̈ …̈… …̈………………241

MERGE JOIN・・・・・・・・・・・・・・・・・・・・・・・・・・・・…・・̈・…51

MERGE文 ……・̈・・̈・・・・・・・・・・・・・・・・・・・・・・・・・・・・…269

・・・・・・・・・・・・̈ ・̈・̈ ¨̈・・165

FOR COLUMNS

HWM

・・・̈ 1̈22

・・・・・・・・・・・・・・・・・̈ ・̈・・27

MINUS・・・・̈・・̈・・・・̈ …………51

FOR・「 ABLE・・・・・・・・・・・・・・・・・…
・・・・・…・・̈ ・̈̈ ……122

FORALL文・・・・・・・・・…・・・・・・・・・・・・・・・̈・・・̈ ・̈・・…317

【G・ H・ 1】

GROUP BY句 ・・・・・・…・・・・・・…・・・・・・・・・・・・・・・・・・・241

HASH JOIN・・・・・・・・・・・・・…・・・̈・・…・…・・・・・・̈・・・…51

Hash Value,」・・・・・・・・・・・・・・・・・・・・・・・・・・・・̈・・・・・・・̈ 97

HAVING句・・・・・・・…・・・・・・・・・・・・・・・・・・・・・・̈・・・・・̈ 2̈45

HEAD ROVV:D列 ・̈ ¨̈・̈ ¨̈・……・・・・・・・・・・・・・・129

MIN関数……………………………………・……241

MONITORING句 ・……………………・………148

MRU・…・……・・…・・・・・̈ ・̈・・・・・・…・……・………23

MULTIBLOCK READ・・̈・・・・・・・・・・・・・・・・・・・・…・・・31

NESTED L00P・・̈ ・̈・̈・…・…・・…・̈・̈・・・…・・・・51

NOMONITORING句 ・…………………………148

NOT EQUALS検索・・…・・・・・…・…・・…・̈・・…・・212

NOT NULLttII約 ・・・・・・・・・・・・…・・・…・・̈ ・̈……224

NUMI BUCKETS・・・・・・・・・・・・・・・・・・̈・・・・・・・̈・̈・144

NUM DISTINCT・・・・・・・・・̈・・・・・̈ ・̈̈・̈ ・̈・̈・144

NUM NULLS ・。・・・・・・・・・・・・̈・・……・̈ ・̈̈ ・̈̈・144

NUM ROWS …・・・・・̈・・・・・・・・・・…・・・・・・…・…143

0N COMM!T… ……・・・…・・・…・・̈・…・・…・…・278

0N DEMAND ・……・……………………………278

0PTIM!ZER・・・・・・・・・・…・・・…・・・・・・・・……・……・…52

0RA-12838・ ……・̈ …・……・……・・̈・̈・……263

IMPORT COLUMN STATSプ ロシージャ…141

1MPORT DATABASE STATSプロシージャ・…141

lMPORT INDEX STATSプ ロシージャ …141

1MPORT SCHEMA STATSプロシージャ…141

lMPORT SYSTEM STATSプ ロシージャ …141

1MPORT TABLE STATSプ ロシージャ …141

OracieText・・…・・・・・・・・・・・・……・̈・・・・・・・…・・…・211

0RDERD・・・・・・・・・・̈ ・̈・・・・・̈・̈・・・̈・・・・・…・・・・・̈・37 sorts(disk)

sorts(memory)" """""""56
spcpkg.sql

spdrop.sql

spdtab.sql

"294 sppurge.sql

・・・・・・・・・・・・・・・・・79

・・・・・・・・・・・・・・・・・79

・・・̈ ・̈‐154

・・・・・・・・・・・・・・・56

・・…・̈・̈・・・̈ 78

・・・・・・・・・・・101

・・・・・・・・・・・・・・・・・78

・・・・・・・・・・̈・̈ 5̈9

SOFT PARSE

OR句 ・̈・・̈・・・・̈・・・165

【P・ Q・ RI

PARALLEL COMBINED WITH CHILD。・・299

PARALLEL COMBINED WiTH PARENT299

PARALLEL TO PARALLEL¨・・・・・・・・・…・……299

PARALLEL TO SER:AL ・・・̈ ・̈・・・・・…・̈・・・299

PARALLEL句

spdusr.sql """""""""'79

PARALLELヒ ン ト ・・・-297

Parse CPU to Parse Elapsd・ 。・・・・・・・・・・・・・・・・・・・94

PCTFREE… ・̈ ・̈・・・・・・・・・・・・̈・・・・・・・・・・・・・・・̈・・・265

PCTUSED・・・・・・・・・・・・・・・・・̈・̈・̈ ・̈・・・・・・・̈ ¨̈・265

PERFSTATユーザー・・……………………・……77

Physical reads・・・・・・・・・・̈・̈・̈・・・̈ …̈…・・・・56,92

sqcusr.sql

SQL★ Loader・・・・・・・・・̈ ¨̈・̈・・・・・・・̈ ・̈・・・・̈・̈ 307

SQL★ Net roundtrips from client ・・・̈・・・・・・・̈・94

SQL★ Net roundtrips to/from client ・・・・・・・・・・・・56

SQL TRACE・・・・・・…・・…・・̈ ―̈・・・̈ ・̈̈ ・̈̈ 6̈5

SQLイ ンジェクション ………………………159

SQLト レース・̈ …………………………………61

・・・̈ ・̈・̈ 283

START MONITORING列 ・・・・・・̈ ・̈・・̈・̈ ・̈259

STATEMENT ID 。・・・・̈・・・̈ ・̈・・・・̈・・・・・̈・̈ 4̈9

Physical writes ・・・・・̈・・92

PL′SQL ・・・・・・・・・66

plustrace.sql ・・・・・・・・・53

plustraceEl-/, """""""53 stale_tolerated

QSM‐01009

query ¨̈ ¨

QUERY REヽへ′RITE権 5長 ・̈ ¨̈ ¨̈・̈ ―̈ ¨̈ …283 STATISTICS

・̈̈ ・̈̈ ¨̈ 2̈86

・・̈・・̈・72

¨̈ ・̈…………・290RAID0

RBO・・・・・・・̈

REBUILD句

REVVRITE TABLE ・・・・・̈・・・・・̈・・・・・・・……・・・…285

ROWIDアクセス…………………̈ ……¨̈ …̈…28

rows processed ・・・・・̈・・・・̈・・̈・・・̈・̈・・・・・̈・・・・56

RTRIM¨ ・̈̈・̈ ¨̈・・̈・・̈・・・・̈・・・・・̈ ・̈・・・̈・・̈・47

RULE・ ・̈・̈ ¨̈ ・̈・・・・・・・……・・・・・・・̈ ・̈・・・……27,37

RULEオ プション ¨̈・173

【S・ T・ U】

SERIAL TO PARALLEL ・・。・・・・・・・・・・・・・・・̈・299

STATS$SNAPSHOTテ ーブル・̈ … ・̈………89

STATSSSQL_SUMMARY・・・・・・…・・・・…・・…114

STATSSSUMMARYテ ーブル ・̈ … …̈………86

STATS$テ ーブル ・………………………………79

STATSPACK・・・・・̈・̈ ¨̈ ・̈̈ ・̈・……・・・̈ ・̈・・-75

statspack.snap ・・・・̈・・・・・・・・̈・・・・̈・・・・・・・・・・・̈・79

STORAGEオ プション・・・・・・・・・・・̈ ・̈・・・・・…….279

SUM関数 ・…・……・……・…・̈ …・…・・・……・・243

TABLE ACCESS BY RC)WID ・……・・・・・・̈・̈ 4̈8

TABLE ACCESS CLUSTER ・・・・・・・・・・・・・・・̈・50

TABLE ACCESS FULL¨・・・̈・・・・・・・・・・・・・・・・・・・・50

TABLE ACCESS HASH ・・̈・・・・̈・・・・・・・̈・・・・・50

TABLE ACCESS ROWID・ ・・・・・・・・・・・・・・・・・・・・・・・50

・・・・・・̈・24

…・・・・・187

Shared PoollStatistics ・・・・・・・̈・。・̈ ・̈・・・・・・・̈・94

SGA… … ・・・・・・・・・・・80

・・・・・・・・・・・・・・・・164SiMLLER TKPROF ・・・・̈・・・・・・・・62,69

1303‐

索31

TRACEONLY… …・̈ ・59

Transactions ・・・・̈・・・・・・・̈・・・・・・・̈・・・・・・・・・・・・・・・92

TRUNCATE文 ・̈・・・・・・・…・・・・・̈ ¨̈ ・̈・28,48,257

TYPICAL… ………・̈ ・86

UN10N・・・・…・・・・・̈ ・̈・̈・・・・・・・・̈ ・̈……・̈・・̈・・51

UNi()N ALL ……・・・・・・・・・・・・……・……・・51,167

USE HASH… …̈・・・・・・̈・・・・・・・・・・・・̈・̈・・・・・・・・・・・37

USE MERGE¨・・・・

USE NL ・。・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・̈・・・・・・・・37

USER INDEXES・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・143

USER PART HISTOGRAMS ・・・・・・・・・̈・・・・144

USER SUBPART HISTC)GRAMS¨ ・・……144

USER TAB COLUMNS・・・・・̈ ……・・…・・・・・…144

USER TAB HiSTOGRAMS・ ・・・・・・・・・・・・・・・…144

USER TABLES ・̈・・・・・…・・・・・̈・・・・̈・・・・・・・・…142

USE夕」 ・̈・・̈ ・̈̈・̈・・・・・・・・・・・̈・・・・・・・̈・・・・・・・・260

utlchain.sql ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・128

utlxplan.sql

utlxrw.sql

Iv.w. x.Y. zl
VSSQL

VSSQL_PLAN・ ¨̈・・̈・・・・…・…・・・・・・̈・・・・・̈・・・105

VSSQL_TEXT ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・105

79

VALIDATE STRUCTURE句 ・̈ ¨̈・……………125

開始スナップショットlD・ ¨̈ …………………97

解析 ……¨̈ …… …̈………………………・……18

完全 ……………………………………… …̈…121
キー値 ・̈

逆キー索引

行あたりの平均の長さ 。……… …̈…・……118

行移行 ・…………………………………̈ ・̈……127

181

192

…¨̈ ¨̈ …̈…………37 行キャッシュ

・・・̈・・・・̈ ¨̈・・45

…・・̈ ¨̈・・・・…80

行数 ………………………………………・̈ ¨̈ 118

共有プール・…………………………………・̈ …̈18

共有SQL領域 19

行連鎖 ・… ・・・・・・126

クエリー・コーディネータ ・̈ ……… …̈…293
クエリー・ リライ ト ・………………・… …̈282

曙区ヨ団,ヨ長・・・・̈・・・・・・…・・・・・・̈・・̈・・・・・̈・・・・・・・・・・・・・223

クラスタ ・…・……………………………̈ ……320

クラスタ化係数 ……………………… ・̈……118
グローバル索引 ・… …̈……………… …̈…315

・̈ ………・………105 後方一致

285 糸吉

“

合・¨̈ ¨

71

…………・……266 最高水位標

・……・172

結合表 ・・・・・・223

高速全索引スキャン・̈ …̈………………30,200

・・・̈・211

コストベース・ オプティマイザ・……………24

V$テーブル…………¨

W!DTH¨・̈ ¨̈ ・̈̈ ¨̈・・

コレクション -316

コンパイル・… …̈¨̈ ………………¨̈・…¨̈ 18

コンポジットパーティション ・……………309

【さイテ】

再帰的SQL.¨ …̈…………………………………73【あ行。か行】

空きリス ト

アンチジョイン ・̈ ……………………………174
暗黙の型変換 ・……………¨̈ …………・̈ ……210
インスタンス効率 ・… …̈………・……・-76,93

インデックス・マージ・…………・………39,213

エクステントサイズ ・……………………・……302
オーバーヘッド………… …̈ …̈……・…… 6̈2

オフセット番号・…………̈ ¨̈ …̈… ・̈………28

オプティマイザ ・……………¨̈ …………20,24

.27

最大オープンカーソル数・………………・……22

最低使用頻度リス ト ・・…・・23

索:| ・・・・・・・・・・・・・・……・・・・・・・̈ ・̈・・・・・̈・・・・・・・・・・・179

索引クラスタ ・̈ …… …̈……………・………323

索引構成表 ・・…25

索引スキャン・………………………………………29

索引統計情報 …………………………・………118
システム・イ′ヾン ト ・̈・80

システム統計

システム統計情報 ・……¨̈ …… …̈…・……119
持続領域 ……………………………………………19

実行 ・20

実行計画 ……………………………………・……20

集合関数 ・・……………………………………249

終了スナップショットID ・・97

使用済みリス ト・………¨̈ ……………・………23

初期化パラメータCURSOR_SHARING・ …164

初期化パラメータDB_BLOCK_SiZE・・・……207

初期化バラメータDB F:LE MULTIBLOCK

READ COUNT・・̈ ・̈・・・̈ ・̈・̈・・̈・̈ ・̈̈ ・̈・・・31

初期化バラメータHASH AREA SIZE……237

初]期化パラメータJOB QUEUE PROCESSES

・80 :初期化パラメータUSER_DUMP_DEST 64,69

ステー トメン トID ・・・・・・46

スナップショット・・……………… …̈…・……75

スナップショット・レベル・…………………80

スナップショットID ・・……88

スレーフ ・… …̈・

スレーフ・ プール

・・…・・・・・292

・・・・292

セッション・イベント・…………… …̈……80

セッションID¨………… …̈…………………67

全索引スキャン ………………………̈ ……… 3̈0

相関問合せ 。… …̈ …̈…………………・・…171
総処理時間・̈ …̈…̈ ……… …̈…………………95

ソート/マ ージ結合………………………34,232

ソー ト・エリア 291

初貫月化パラメータLARGE POOL SIZE・ 2̈48

初期化パラメータMAX DUMP FILE SIZE¨ ・65

初期化パラメータOPTIMIZER DYNAMIC SAM

PLING 146

初期化パラメータOPTIMIZER_MODE… 26,283

初期化パラメータPARALLEL MAX SERVERS

・292

初期化バラメータPARALLEL MIN SERVERS

…・・292

初期化パラメータPARALLEL SERVER IDLE

TIME・…¨̈ ¨̈ ¨̈ ………・・・・……………・̈・…292

初期化パラメータPGA AGGREGATE TARGET

…248

初期イしパラメータQUERY_REWRITE_ENABL

ED …283

初期化パラメータQUERY REWRITE INTEG

RITY ・̈ ¨̈ ¨̈ ・̈・・̈・・・・̈・・・・・̈ ¨̈ ・̈̈ ¨̈・・・・283

初期化パラメータSHARED P00L SiZE・ 8̈1

初期化パラメータSORT AREA SIZE…・・・248

初期化パラメータSTAT:CS_LEVEL… ……86

初期化パラメータSTAT:STiCS_LEVEL93,148

初期化バラメータTIMED_STATISTiCS 63,85

初其月化パラメータTRACEFILE IDENTIFIER 69

ソー ト処理 245

【た行】

ダーティーリスト ・̈ …………………・̈……23,24
待機イベント ・̈……………………… …̈76,94
ダイレクトロードインサート ・……………262

単一列索引 218

ディスク1/0………………………………・………22

データ・ディクショナリ ・…………・………142
データ。ディクショナリ・キャッシュ ……19
データ・ブロック番号・………… …̈・… …̈28

データ系統

・̈……・・・̈ ¨̈・̈・・・・83

データの偏り ・̈ ……… …̈……¨̈ ・̈̈ …̈208
データ配分 ・………………………………̈・-118

データベース・バッファ。キャッシュ 22,290

データベース情報・………………………………76

テーブル統計情報 ……………………・……・…118
テーブルの結合・…………………………・・……32

統計情報

…・。・・117

・……・・・117

動的サンプリング ・……………………・̈ 1̈45

動的パフォーマンス・ ビューV$OBJECT_
USAGE・・・・・・・・・・・・・・・・・・̈・・・・・・・・・・・・・・・・・・・・・・・・・259

動的パフォーマンス・ビューVsSESS10N… 67

動的パフォーマンス・ビューVSSQLTEXT l14

索3:

動的パフォーマンス・ビューVSSYSSTAT 155

・・…276

物理ブロックアクセス数 ………………・̈ ……95

プライベートSQL領域 …………………………19

ブランチ・ブロック ・̈ ……………・… …̈181
フルテーブルスキャン…………・……・̈ 27,198

ブロック数

トリガー ………・

トレース・ ファイル・・……………………………69

パーティション索引 …………………………313

【な行・は行l

ネステッド・ループ結合…………・……32,223

パ~テインヨン・テーブル ・…………・… 3̈05
パーティション・プルーニング ・…………306
パーティション化 …・・・・・・25

【ま行・や行・ら行】

マテリアライズド・ビュー………… …̈ ・̈̈ 275

マテリアライズ ド・ビュー・リフレッシュ 277

文字定数 ・… …̈…………… …̈……・………159

予浪」 ・・121

ライブラリ。キャッシュ・̈ ¨̈ ……・……18,105

ランタイム領域・……………………………・……19

‐………118

バインドピーク機能 ・・163

バインド変数 ¨̈ ¨̈ ………………………20,157

バックグラウンド・イベント・……………・… 8̈0

ハッシュ・エリア ・………………………・… 2̈91
ハッシュ・クラスタ ・…………………・̈ ……321
ハッシュ・テーブル・…………………………34

ハッシュアルゴリズム ………………・……237
ハッシュ関数・……………………………………35

リーフ・ ブロック数 ………………・………118

リカーシブコール ・…・………………・………154
リス トパーティション ・… …̈……………308

リツース使用率の高いSQL…………・………76

リーフ・ ブロック

レンジパーティション

・181

308

・118

・118

ハッシュ結合

ハッシュメモリ領域 ・237

バッチ処理 ・̈ ¨̈ …̈…………………・…………275
バッファ・プール統計・…………………̈・……80

パラレル・クエリー ・………………・………293
パラレル・スレーブ・プロセス ・…………292
パラレルDDL ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・302

パラレリレDML ・̈・・・・・・・・・・̈・・・・・…・・・・・・・・・・・・・303

パラレル処理 ・…………………… …̈ …̈…289
パラレル度数 ・……………………………・̈ 2̈92
パルク処理 ………………………………・………316

反結合 ・………………………………… ・̈……174
ヒストグラム ・…………………………・………119

非相関問合せ ・………… …̈…………・……・172
ビットマップ索引・・・̈ ¨̈ …̈……………25,188

ヒント・……………………………………………36

ファンクション索引 ・・……………………・190

フェッチ ………………………………………̈ 21

複合索引 ・………………………………・………216

・181

列統計情報 …

列内のNULL数

列内の個別値 (NDV)数 ……………………118

レベリレ ・・・・・・・・・・・・・・・・・・・…・…・…・・・・・・・・…・…118

.25, 34, 237)t - l- .) E ':) 2
ハッシュパーティション ・…・……・………309 ルールベース 。オプティマイザ・̈ …・………24

ローカル索引 313

ローカル同一キー索引 ………………………314
ローカル非同一キー索引 314

ロードプロファイル ……………………………92

ロールバック・セグメント・データ 。………80

ロック統計・・・・・・・……・…・……・・・……・・・・…・…80

論理ブロックアクセス数・………¨̈・……・̈ 95

著者紹介

福田武志

株式会社セイケン 取締役
2006年 12月 まで、株式会社システムインテグレータに所属し、販売管理システムのメン

テナンス、追加システム構築、そして、システムインテグレータ社のパッケージである、

SIWebshoppingの カスタマイズから導入までを行ってきた。

現在は、父の経営する株式会社セイケンに入社し、建設・不動産業の経営に携わる一方、

新たにシステム部門を設立し、新規事業展開を行う。

趣味は、サッカー。何においても、決定力不足 !!

保有資格は、Oracle Master 9i Databぉ e Gold。 著書として、「Oracle+Javaア プリケーシ

ョン開発」(ソ フトバンククリエイテイブ社)がある。

■本書サポートベージ

httI)://isbnosbcr■ p/36080/

本書をお読みになったご感想、ご意見を上記URLからお寄せください。

■注意事項

〇本書内の内容の実行については、すべて自己責任のもとで行ってください。内容の実行により発生したいか

なる直接、間接的被害について、筆者およびソフトバンク クリエイテイブ株式会社、製品メーカー、購入し
た書店、シヨップはその責を負いません。
また、本書の内容に関する個別の質問、問い合わせに対し、筆者およびソフトバンク クリエイティブ株式会
社はその回答の責を追わないものとさせていただきます。

○本書の内容に関するお問い合わせに関して、編集部への電話によるお問い合わせはご遠慮ください。

○お問い合わせに関しては、封書のみでお受けいたします。なお、質問の回答に関しては原則として著者に転
送いたしますので、多少のお時間を頂戴、もしくは返答できない場合もありますのであらかじめご了解くだ

さい。また、本書を逸脱したご質問に関しては、お答えいたしかねますのでご了承ください。

プロとしてのSQLチューニング入門
2007年3月 27日 初版第1刷発行

著者・ ・福田武志
…………………̈ 新田光敏
…………………・ソフトバンククリエイテイブ株式会社

・ 〒107‐ 0052東京都港区赤坂413‐ 13
TEL 03‐5M9■ 2∞ (販売)
http://、 rw・ w.sbcrjp/

……………………株式会社シナノ

発行者………

発行所………

印刷・製本¨

装丁…………

組版…………

…………………重原 隆
…………………クニメディア株式会社

落丁本、乱丁本は小社販売局にてお取替えいたします。

定価はカバーに記載されております。

Printed in Japan ISBN 978‐ 4-7973-3608‐ 5

IS13N978-4‐ 7973‐3608‐ 5

C0055¥2600E
||‖ |||||||‖ |||‖‖|||||‖ |||
9784797336085

1920055026000
|‖ |‖ |‖|||||||||||||||||||||

プロとヒての
SQLカーニング
ノtF可

現
場
主
義

´
Ｌ
『
”
０
卜
の

定価 [本体2,600円 |+税

