

はじめに
本書は、『基礎Ruby on Rails』の改訂4版です。約3年ぶりの改訂となりま

す。前の版が対象としていたのは、Ruby on Railsバージョン4.2でした。今回
は、バージョン5.2です。この間にRuby on Railsで起きた変化のうち、特筆すべき
はActive Storageの導入です。そこで、独立した章（Chapter 13）を設けて
詳しく説明することにしました。

今回の改訂では全体の構成を大きく変更しました。最大の変更点は、テスト
に関する記述をすべて削除したことです。これまで本書ではテスト重視の姿勢を
強調してきましたので、この変化については少し説明しておく必要があると思いま
す。

Ruby on Railsは誕生時からテストのしくみをデフォルトで備えていることを「売
り」のひとつとしてきました。筆者が十数年前にRuby on Railsに関心を持った
理由のひとつでもあります。ウェブアプリケーション開発においてテストが大切であ
ることは、当時も今も変わりはありません。

しかし、筆者自身が本書を用いた講習を実施したり、本書の読者から感想
を聞いたりして気付いたことは、初心者の多くが「テスト」の章で脱落してしまうと
いう事実でした。Ruby on Railsにおけるテストとは、人間が実際にソフトウェアを
触って目視で動作確認することではありません。「ソフトウェアの動作確認をする
ソフトウェア」を作って実行し、成功か失敗かの結果を得ることです。この考え方
自体が、初心者には難しいようでした。

筆者自身の体験を振り返っても、プログラミング学習の最初の段階からテスト
のことを意識していたわけではありません。学習が進み、複雑なソフトウェアを書
くようになり、無数の不具合に悩まされる経験を経て、テストの重要性に目覚め

たというのが実態です。はじめからテストのことばかり教えられていたら、プログラミ
ングが嫌いになっていたかもしれません。

以上のような理由から、今回の改訂ではテストの話をほぼすべて省きました。
また、これまでの3部構成を4部構成に変え、章の数を9から15に増やしました。
と言ってもページ数が大幅に増えたわけではありません。旧版の中身を取捨選
択しつつ、新たな内容も加えて再構成しました。

さて、今回の改訂で変わらなかった点も列挙してみたいと思います。第1は、
Windowsユーザーへの配慮です。Ruby on Railsの業界ではMacユーザーが多
いため、書籍でもネットの記事でもmacOS前提で書かれた記事が目立ちます。
しかし、プログラミング初心者の大半はWindowsユーザーです。本書は、
Windowsで学習を進められるように書かれています。

第2に、Ruby言語の基礎を扱ったChapter 2です。Ruby on Rails解説書
の多くはRubyプログラミングの知識を前提としていますが、本書では60ページ足
らずの中に最低限の情報がコンパクトにまとめられていますので、初めてRubyに
触れる方でも読み始めることができます。

第3に、書籍全体で1つのアプリケーションを作り上げる構成を取っている点も
変化していません。最初にモックアップを作り、データベースを導入し、ログイン・ロ
グアウト機能を加え……と進んでいき、最終的にはメンバーのプロフィール画像の
アップロード機能や管理ページまでできあがります。読者の皆さんにはテキストエデ
ィタを用いて実際にソースコードを打ち込んでみることを強くお勧めします。まず
は、Ruby on Railsによるアプリケーション開発の流れをつかむことが大切です。

なお、本書で作成するサンプルアプリケーションasagaoはオープンソース・ソフト
ウェアとして公開していますので、本書の学習を終えたあと、無償でこのasagao
を利用したり、改造したり、配布したりできます。自分自身で作りたいものを考

えて、あれこれ工夫しながら作っていくのがプログラミング上達の近道ですので、
ぜひ挑戦してみてください。

本書を通じて、読者の皆様にウェブプログラミングの魅力が伝われば幸いで
す。

　
　　2018年7月

黒田努／佐藤和人

本書の読み方

■対象読者
本書は、「RubyとRuby on Railsを初めて学ぶ」人のための本です。Perlや

PHP、Javaなどのプログラミング言語をある程度学んだことがある方を読者対象
としています。Rubyの知識や本格的なウェブアプリケーション構築の経験は必要
ありません。

「プログラミングの経験はあるが、ウェブアプリケーションとはどんなものかさっぱり
わからない」という人から「ほかのフレームワークを使っているが、話題のRuby on
Railsを試してみたい」という人までを想定して執筆しています。

■本書の構成

Chapter 1　イントロダクション
Ruby on Railsとはどのようなものか紹介し、そのしくみと特徴について簡
単に解説します。また、各種のソフトウェアをインストールしてRuby on Rails
に必要な環境を構築します。さらに、最初の一歩として実際にRuby on
Railsを動かしてみましょう。

Chapter 2　Ruby言語の基礎を学ぼう
Rubyは初めてという方のために、変数の使い方や制御構造、クラスなど
Rubyの基本的な文法を解説します。Rubyをすでに学んだことのある方
は、このChapterは飛ばしてもかまいません。

Chapter 3　コントローラとビュー
Railsアプリケーションを構成する3つの基本要素のうち、コントローラとビュー
の使い方を解説します。サンプルソースでは、最初のモックアップ（見本サ
イト）を作成します。

Chapter 4　データベースとモデル
3つの基本要素のうち、データベースを操作するモデルについて解説します。
実際にデータベースがないと学習できませんので、データベースの作り方、テ
ーブルの定義、データの投入についても解説します。

Chapter 5　リソースを扱うコントローラ
リソースベースのルーティングと7つの基本的なアクションについて解説しま
す。モデルをリソースとして扱うコントローラの作り方を紹介し、一覧と詳細
表示を行うページを作成します。

Chapter 6　リソースの作成と更新
Chapter 5に引き続き、モデルをリソースとして扱うコントローラについて紹介
します。フォームを記述し、フォームから送信されたデータを元に、テーブルのレ
コードを新規作成、更新、削除する方法について解説します。

Chapter 7　バリデーションと国際化
ユーザーがフォームから送信したデータがアプリケーションの仕様に合致してい
るかどうかの検証（バリデーション）を行う方法と、エラーメッセージを日本
語化する方法について学びます。

Chapter 8　単数リソース

ログイン・ログアウト機能、マイアカウント機能、パスワード変更機能などを
作りながら「単数リソース」という重要な概念について学習します。

Chapter 9　Active Recordの活用
コールバック、スコープ、ページネーションなどの重要なActive Recordの側面
について学習します。

Chapter 10 モデル間の関連付け
モデルとモデルの間に1対多の関連付けを設定する方法を学びます。また、
データベースにおける外部キーの役割について学びます。

Chapter 11 セキュリティと例外処理
フォームから送信された情報を保存する際に、モデルの属性を保護する方
法を学びます。また、例外が発生したときのエラーページを自作する方法を
解説します。

Chapter 12 アセット・パイプライン
アセット・パイプラインを利用してスタイルシート、JavaScriptプログラム、画
像ファイルなどを管理する方法を紹介します。

Chapter 13 ファイルのアップロード
Rails 5.2の新機能Active Storageについて解説します。画像ファイルをロ
ーカルディスクやクラウドストレージサービスにアップロードする方法を学びま
す。

Chapter 14 多対多の関連付け

Ruby on Railsでモデルとモデルの間に多対多の関連付けを行う方法につ
いて学習します。

Chapter 15 名前空間
複雑なウェブアプリケーションを開発する際に避けて通れない「名前空間」
という概念について解説し、その応用例として本書のサンプルサイトに管理
ページの機能を追加します。

■動作確認環境
本書の記述やサンプルスクリプトは次の動作環境で確認しています。

オペレーティングシステム
macOS Sierra（v10.12）
macOS High Sierra（v10.13）
Windows 10

Rubyのバージョン：2.5.1
Ruby on Railsのバージョン：5.2.0

なお、Microsoft社のノートパソコンSurface Laptopや教育機関向けのパソ
コンに搭載されている「Windows 10 S」では、本書で学習を進めるための各種
ソフトウェアをインストールすることができません。

■「ディレクトリ」と「フォルダ」
macOSやWindowsではファイルを分類するための容れ物を「フォルダ」と呼び

ますが、プログラミングの文脈では一般に「ディレクトリ」という用語が使われま

す。本書では原則として「ディレクトリ」を用います。ただし、macOSのFinderや
Windowsのエクスプローラ等のGUI環境における操作を説明するときには「フォ
ルダ」という言葉を使います。

■ソースコードの表記
本書では、ソースコードの部分に次のような表記を用いています。

と書かれた薄い灰色の囲みは、サンプルソースに記述されたソースコー
ドを表します。囲みの上のファイル名は、サンプルソースのファイル名です。ソースコ
ードによっては、ファイル全体ではなく、ファイル中の一部を掲載しています。行頭
の1〜3桁の数字は行番号を示し、太字部分は変更箇所を示します。

chapter05/config/routes.rb

 1 Rails.application.routes.draw do

 （省略）

 5 1.upto(18) do |n|

 6 get "lesson/step#{n}(/:name)" => "lesson#step#{n}"

 7 end

 8

 9 resources :members

 10 end

と書かれた部分は、 のソースコードを実行して、コマンドプロンプ
トやブラウザで表示したときの結果を表しています。

こんにちは、Satoさん

枠線の囲み内では、文法の基本的な解説や補足のためのソースコード例を
紹介したり、サンプルソースの説明のためにコードの一部を引用します。

<%= link_to "Home", root_path, class: "menu" %>

■コマンド入力の表記
本書では、ターミナルで実行するコマンドに次のような表記を用いています。

$ cd asagao

$ bin/rails s

「$」は入力待ち状態を示すためにターミナルに表示される記号（プロンプト）
を表します。太字部分だけをコマンドとして入力してください。実際に表示される
記号は、環境によって異なります。

次のようにコマンド入力行の下に、結果出力を載せることもあります。

$ rails -v

Rails 5.2.0

ターミナルでirb（Chaper 2）やRailsコンソール（Chapter 4）を使用する
場合は、式の入力と結果を次のように表示します。

irb(main):004:0> member.errors.messages

=> {:number=>["can't be blank"]}

「irb(main):004:0>」がプロンプトで、太字部分が入力すべき式です。「=>」
の右に表示されているのは、式を評価した結果です。

■Macユーザーの方へ
MacのJISキーボードで\を入力するには、 option - ¥ キーを押してください。

■サンプルソース
本書で紹介するサンプルのソースコードは、オイアクス社のサイトからZIPファイ

ルとしてダウンロードできます。次のURLを参照してください。

https://www.oiax.jp/rails5book

本書の中で、 に示した「chapter04/app/models/member.rb」のよ
うなファイル名は、ZIPファイルの中身でのファイルの位置を表しています。「ZIPフ
ァイル内のchapter04ディレクトリ→appディレクトリ→modelsディレクトリ
→member.rbファイル」という意味です。

chapter01からchapter15までのディレクトリに、Chapter 1からChapter 15
までの各章終了時のサンプルソースが含まれています。ただし、Chapter 13のサ
ンプルソースは、chapter13のほかにchapter13-aws、chapter13-gcp、
chapter13-azureがあります。chapter13には13.6節終了時のサンプルソース
が含まれています。それ以外のディレクトリはChapter 13終了時のものですが、

https://www.oiax.jp/rails5book

13.7節で選択したクラウドストレージサービスによりサンプルソースが分岐していま
す。

■練習の仕方
本書では、「Morning Glory」という架空の草野球チームのサイトを作成する

ためのソースコードを掲載しています。Chapter 1でMorning Gloryサイトのため
のディレクトリをパソコン上に作成し、Chapter 3からChapter 15までそのディレ
クトリのファイルを修正していきます（Chapter 2はRailsではなくRubyの練習で
す）。

本書を読みながら実際に自分のパソコンのファイルを編集し、アプリケーション
を動かせば、Railsの学習を効果的に進められます。ソースコードはかなり長いた
め、掲載を省略している部分もあります。省略した部分や入力が面倒な部分
は、ダウンロードしたサンプルソースからファイルを探し、自分の練習用ディレクトリ
にコピーしながら進めるとよいでしょう。

■サンプルソースをそのまま動かすには
Chapter 1、およびChapater 3からChapter 15までは、サンプルソースのディ

レクトリをまるごとローカルディスクにコピーして動かすこともできます。まるごとコピー
したときは、「bundle install」コマンドを実行し、必要なGemパッケージをインス
トールします。「bin/rails s」コマンドでアプリケーションを起動してください。

$ bundle install

$ bin/rails s

また、Chapter 4以降では、「bin/rails s」コマンドを実行する前に「bin/rake
db:rebuild」コマンドを実行してください。このコマンドの役割については、「4.3　
データの保存」のHINT「db:rebuildタスク」を参照してください。

$ bundle install

$ bin/rake db:rebuild

$ bin/rails s

目次
1. 　はじめに
2. 　本書の読み方
3. Part1　Ruby on Railsの準備とRubyの基礎
4. 　Chapter 1　イントロダクション
5. 　　　これから学ぶこと
6. 　　1.1　Ruby on Railsの概要
7. 　　　Ruby on Railsとは
8. 　　　MVCと設計哲学
9. 　　　Railsの構成と機能

10. 　　　本書のサンプルアプリケーション
11. 　　1.2　Rails開発環境の構築
12. 　　　環境構築に必要なもの
13. 　　　macOSでの開発環境構築
14. 　　　Windowsでの開発環境構築
15. 　　1.3　テキストエディタの選択
16. 　　　ソースコード編集用のテキストエディタ
17. 　　　「暗号化された資格情報」設定用のテキストエディタ
18. 　　1.4　アプリケーションの新規作成
19. 　　　rails newコマンド
20. 　　　bundle lockコマンドの実行（macOSおよびWSL/Ubuntu）
21. 　　　Gemfileの編集（MSYS2/MinGWのみ）
22. 　　　bundle installコマンドの実行（全プラットフォーム共通）

23. 　　　rails newコマンドのオプション
24. 　　　Bundler
25. 　　1.5　Railsを動かしてみよう
26. 　　　アプリケーションの起動
27. 　　　Railsアプリケーションのディレクトリ構造
28. 　　　コントローラとアクションの作成
29. 　　　ビューの作成
30. 　　　Chapter 1のまとめ
31. 　　　練習問題
32. 　Chapter 2　Ruby言語の基礎を学ぼう
33. 　　　これから学ぶこと
34. 　　2.1　変数と式
35. 　　　Rubyの基本的な使い方
36. 　　　数値と文字列
37. 　　　式と演算子
38. 　　2.2　条件分岐、メソッド、ブロック
39. 　　　条件分岐
40. 　　　メソッド
41. 　　　繰り返しとブロック
42. 　　　例外処理
43. 　　2.3　いろいろなオブジェクト
44. 　　　シンボル
45. 　　　配列、ハッシュ、範囲
46. 　　2.4　クラス
47. 　　　Rubyのオブジェクト

48. 　　　インスタンスメソッド
49. 　　　属性の書き方
50. 　　　クラスメソッドと定数
51. 　　　継承とミックスイン
52. 　　　Rubyのクラスの特徴
53. 　　　Chapter 2のまとめ
54. 　　　練習問題
55. Part2　Ruby on Railsの基本
56. 　Chapter 3　コントローラとビュー
57. 　　　これから学ぶこと
58. 　　3.1　RailsとHTTPの基本
59. 　　　HTTPの基礎知識
60. 　　　Railsのリクエスト処理の流れ
61. 　　　ルーティング
62. 　　3.2　コントローラとアクション
63. 　　　コントローラの基本
64. 　　　アクションで使える機能
65. 　　　リダイレクション
66. 　　3.3　テンプレート
67. 　　　テンプレートの基本
68. 　　　書式の指定とヘルパーメソッド
69. 　　　リンクと画像
70. 　　　条件分岐と繰り返し
71. 　　3.4　モックアップの作成
72. 　　　レイアウトテンプレート

73. 　　　モックアップのレイアウトテンプレート
74. 　　　部分テンプレート
75. 　　　スタイルシート
76. 　　　Chapter 3のまとめ
77. 　　　練習問題
78. 　Chapter 4　データベースとモデル
79. 　　　これから学ぶこと
80. 　　4.1　データベースとモデルの基本
81. 　　　データベースとは
82. 　　　Railsのモデル
83. 　　　データベースの設定
84. 　　　データベースの作成
85. 　　4.2　テーブルの作成
86. 　　　モデルの作成
87. 　　　マイグレーション
88. 　　　membersテーブルの作成
89. 　　　マイグレーションの詳細
90. 　　4.3　データの保存
91. 　　　レコードの作成と更新
92. 　　　シードデータの投入
93. 　　4.4　レコードの取り出しと検索
94. 　　　findとfind_by
95. 　　　クエリーメソッドとリレーションオブジェクト
96. 　　　Chapter 4のまとめ
97. 　　　練習問題

98. 　Chapter 5　リソースを扱うコントローラ
99. 　　　これから学ぶこと

100. 　　5.1　RESTとルーティング
101. 　　　リソースベースのルーティング
102. 　　　リソースとパスの指定
103. 　　5.2　7つのアクション
104. 　　　MembersControllerの作成
105. 　　　会員の一覧ページ
106. 　　　会員検索機能
107. 　　　会員の詳細ページ
108. 　　　Chapter 5のまとめ
109. 　　　練習問題
110. 　Chapter 6　リソースの作成と更新
111. 　　　これから学ぶこと
112. 　　6.1　フォームとモデル
113. 　　　モデルとフォームの連携
114. 　　　フォームの記述
115. 　　　フォームの部品の記述
116. 　　　フォームビルダーのメソッド
117. 　　6.2　レコードの作成、更新、削除
118. 　　　作成と更新の流れ
119. 　　　会員の新規登録と更新
120. 　　　会員の削除
121. 　　　Chapter 6のまとめ
122. 　　　練習問題

123. Part3　Ruby on Railsの応用
124. 　Chapter 7　バリデーションと国際化
125. 　　　これから学ぶこと
126. 　　7.1　バリデーション
127. 　　　バリデーション
128. 　　　エラーメッセージの表示
129. 　　7.2　メッセージの日本語化
130. 　　　Railsの国際化機能
131. 　　　エラーメッセージの日本語化
132. 　　　国際化機能の使い方
133. 　　　Chapter 7のまとめ
134. 　　　練習問題
135. 　Chapter 8　単数リソース
136. 　　　これから学ぶこと
137. 　　8.1　単数リソース
138. 　　　単数リソースとは
139. 　　　単数リソースのルーティング
140. 　　8.2　セッションを使ったログイン機能
141. 　　　セッションとは
142. 　　　パスワードの保存
143. 　　　ユーザーの認証
144. 　　8.3　アクション・コールバックを利用したアクセス制御
145. 　　　アクション・コールバックとは
146. 　　　会員限定のコンテンツ
147. 　　8.4　マイアカウントページの作成

148. 　　　ルーティングの設定
149. 　　　AccountsController の作成
150. 　　8.5　パスワード変更機能
151. 　　　独立したパスワード変更フォームを作る理由
152. 　　　ルーティングの設定
153. 　　　Memberモデルの変更
154. 　　　パスワード変更フォームの作成
155. 　　　新しいパスワードの保存
156. 　　　メンバー追加フォームの修正
157. 　　　Chapter 8のまとめ
158. 　　　練習問題
159. 　Chapter 9　Active Recordの活用
160. 　　　これから学ぶこと
161. 　　9.1　ニュース記事の表示と編集
162. 　　　Articleモデルの作成
163. 　　　バリデーションの追加
164. 　　　ルーティングの設定
165. 　　　ArticlesControllerの作成
166. 　　9.2　Active Recordコールバック
167. 　　　Active Recordコールバックとは
168. 　　　no_expiration属性
169. 　　　コールバックを使って掲載終了日時を消す
170. 　　　フォームの書き換え
171. 　　9.3　スコープ
172. 　　　スコープの記述

173. 　　　スコープの定義
174. 　　　サイドバーでの記事表示
175. 　　　ニュース記事一覧ページの変更
176. 　　　ニュース記事詳細ページの変更
177. 　　　TopControllerの修正
178. 　　　validate do ... end
179. 　　9.4　ページネーション
180. 　　　Gemパッケージkaminari
181. 　　　ページネーション機能の実装
182. 　　　Chapter 9のまとめ
183. 　　　練習問題
184. 　Chapter 10　モデル間の関連付け
185. 　　　これから学ぶこと
186. 　　10.1　関連付けの概要
187. 　　　モデル間の関連付けと外部キー
188. 　　　関連付けを作るメソッド
189. 　　10.2　会員ブログ関連モデルの準備
190. 　　　ブログ記事の関連付け
191. 　　　Entryモデルでの準備
192. 　　10.3　会員ブログ機能の実装
193. 　　　ネストされたリソース
194. 　　　ブログ記事の一覧と表示
195. 　　　記事の作成、更新、削除
196. 　　　Chapter 10のまとめ
197. 　　　練習問題

198. Part4　発展的な内容
199. 　Chapter 11　セキュリティと例外処理
200. 　　　これから学ぶこと
201. 　　11.1　ストロング・パラメータ
202. 　　　ストロング・パラメータとは
203. 　　　コントローラの修正
204. 　　11.2　エラーページのカスタマイズ
205. 　　　Railsの例外を処理する
206. 　　　エラー用テンプレート
207. 　　　ルーティングエラーの処理
208. 　　　Chapter 11のまとめ
209. 　　　練習問題
210. 　Chapter 12　アセット・パイプライン
211. 　　　これから学ぶこと
212. 　　12.1　暗号化された資格情報
213. 　　　credentials.yml.encとmaster.key
214. 　　　secret_key_baseの生成
215. 　　　資格情報の設定と参照
216. 　　12.2　アセット・パイプライン
217. 　　　アセット・パイプラインの働き
218. 　　　本番モードの準備
219. 　　　アセット・パイプラインの動作確認
220. 　　12.3　Sass
221. 　　　Sassの書式
222. 　　　Sassを使う

223. 　　12.4　JavaScript
224. 　　　jQueryの導入
225. 　　　ニュース記事編集フォームの拡張
226. 　　　Turbolinks
227. 　　　Chapter 12のまとめ
228. 　　　練習問題
229. 　Chapter 13　ファイルのアップロード
230. 　　　これから学ぶこと
231. 　　13.1　Active Storage
232. 　　　Active Storageとは
233. 　　　セットアップ手順
234. 　　13.2　プロフィール画像のアップロードと表示
235. 　　　Memberモデルの拡張
236. 　　　「プロフィール画像」フィールドの設置
237. 　　　画像アップロード機能の実装
238. 　　　アップロードされた画像の表示
239. 　　　シードデータ
240. 　　　ファイルのデータ形式に関するバリデーション
241. 　　13.3　プロフィール画像の削除
242. 　　　添付ファイルの削除
243. 　　　チェックボックスの設置
244. 　　13.4　ブログ画像のアップロードと表示
245. 　　　EntryImageクラスの作成
246. 　　　画像のアップロードと削除
247. 　　　画像追加と画像編集

248. 　　　画像の表示
249. 　　13.5　表示位置の入れ替え
250. 　　　準備作業
251. 　　　機能の実装
252. 　　13.6　クラウドストレージサービスの利用
253. 　　　CA証明書の設置
254. 　　　Amazon S3
255. 　　　Google Cloud Storage
256. 　　　Microsoft Azure Storage
257. 　　　Chapter 13のまとめ
258. 　　　練習問題
259. 　Chapter 14　多対多の関連付け
260. 　　　これから学ぶこと
261. 　　14.1　多対多の関連付け
262. 　　　多対多の関連付けとは
263. 　　　多対多の関連付けを設定するメソッド
264. 　　　多対多で関連付けられたオブジェクトの集合を操作するメソッド
265. 　　14.2　［いいね］ボタンの作成（前編）
266. 　　　会員、記事、投票の関連付け
267. 　　14.3　［いいね］ボタンの作成（後編）
268. 　　　ルーティングの設定
269. 　　　投票数とボタンの表示
270. 　　　likeアクション
271. 　　14.4　自分が投票した記事一覧
272. 　　　unlikeアクションとvotedアクション

273. 　　　テンプレートの修正
274. 　　　Chapter 14のまとめ
275. 　　　練習問題
276. 　Chapter 15　名前空間
277. 　　　これから学ぶこと
278. 　　15.1　名前空間付きのルーティングとコントローラ
279. 　　　名前空間を導入する理由
280. 　　　管理TOPページへのルーティング設定
281. 　　　Admin::Baseクラス
282. 　　　Admin::TopController
283. 　　15.2　会員管理ページの作成
284. 　　　ルーティング設定
285. 　　　Admin::MembersControllerの作成
286. 　　　会員管理ページ用のテンプレート修正
287. 　　　MembersControllerの修正
288. 　　15.3　ニュース記事管理ページの作成
289. 　　　ルーティングの設定
290. 　　　Admin::ArticlesControllerの作成
291. 　　　記事管理用のテンプレート修正
292. 　　　ArticlesControllerの修正
293. 　　　Chapter 15のまとめ
294. 　　　練習問題
295. 　付録A　参考文献と推薦図書
296. 　付録B　練習問題の解答
297. 　　　Chapter 1

298. 　　　Chapter 2
299. 　　　Chapter 3
300. 　　　Chapter 4
301. 　　　Chapter 5
302. 　　　Chapter 6
303. 　　　Chapter 7
304. 　　　Chapter 8
305. 　　　Chapter 9
306. 　　　Chapter 10
307. 　　　Chapter 11
308. 　　　Chapter 12
309. 　　　Chapter 13
310. 　　　Chapter 14
311. 　　　Chapter 15
312. 　著者紹介
313. 　奥付

Part

1　Ruby on Railsの準備とRubyの基礎

このPartでは、Ruby on Railsの学習を始めるための準備を行い
ます。まず、Ruby on Railsの概要について紹介し、必要なソフト
ウェアをインストールします。次に、Rubyを一度も学んだことのな
い方のために、その基本的な文法を解説します。

Chapter

1　イントロダクション

Chapter 1では、Ruby on Railsを使ってウェブアプリケーションを開発するため
の前提知識と各種ソフトウェアのインストール方法を学びます。

これから学ぶこと

Ruby on Railsの概要や大まかなしくみ、考え方を理解します。
プラットフォーム別にRuby on Railsの開発環境を整える手順を学びます。
Ruby on Railsのアプリケーションを実際に作成し、動かしてみます。

Ruby on Railsは、ウェブアプリケーションを作成するためのフレームワークです。MVCアーキテクチ
ャなどRuby on Railsの基本となるしくみを理解したうえで、アプリケーション作成の準備を行い
ましょう。

1.1 　Ruby on Railsの概要

最初にRuby on Railsとはいったい何なのか、どんな特徴があるのか、といったことを
紹介しましょう。

Ruby on Railsとは
ルビー・オン・レイルズ
Ruby on Railsは、ウェブアプリケーションを開発するためのフレームワークです。本書では

略してRailsとも呼びます。

■ウェブアプリケーションとRails
ウェブアプリケーションとは、ウェブ（WWW）を介して何らかのサービスをユーザーに提供す

るものです。ここで言う「サービス」とは、単にメッセージを表示するだけでなく、ユーザーがメッセ
ージを書き込める掲示板機能や、商品を注文できるショッピング機能などを指します。こうし
たサービスを提供するため、ウェブアプリケーションはサーバー上に「データ」を保持し、読み書き
しています。サーバー上のファイルをブラウザに送り返すだけの単純なウェブサイトと大きく異な
るのはこの点です。

単純なウェブサイトとウェブアプリケーション

ウェブアプリケーションには、3つのものが必要となります。1つ目は、データを保存・操作する
しくみで、通常はデータベース管理システム（DBMS）を利用します。2つ目はユーザーに見せ
るビジュアルなデザインで、HTMLやCSSで記述します。3つ目は、プログラミング言語で書か
れたプログラムです。ウェブアプリケーションではJava、PHP、Perlなどさまざまな言語が使われ
ますが、Ruby on Railsで使われる言語はRubyです。

アプリケーションを効率よく開発するためのツール、ライブラリ、設定ファイルなどのセットをフ
レームワークと呼びます。Railsは、ウェブアプリケーションのためのフレームワークの1つです。ウェ
ブアプリケーションはフレームワークなしでも作れますが、プログラムのコードとSQL文、HTMLが
ごちゃ混ぜになり、書くのも保守するのも複雑で手間がかかりがちです。

Railsでは、ウェブアプリケーションをすっきりと見通しよく構築できるよう、MVCアーキテクチ
ャと呼ばれる設計法が採用されています。MVCとは、「モデル」、「ビュー」、「コントローラ」の頭
文字で、アプリケーションの構成を次の図のように分類することに由来しています。

MVCアーキテクチャ

Railsは、MVCアーキテクチャを備えたウェブアプリケーション開発フレームワークの中で、現
在最も有名なものの1つです。

Ruby on Railsのウェブサイト
Railsのウェブサイトは次のURLです。

Ruby on Rails（英語）
https://rubyonrails.org/

Railsに関する最新情報はブログ「Riding Rails」で、入門者のためのガイドは「Ruby on Rails ガ
イド」で読めます。

Riding Rails（英語）
https://weblog.rubyonrails.org/

Ruby on Rails Guides（英語）
http://guides.rubyonrails.org/

Ruby on Rails ガイド（日本語）
https://railsguides.jp/

クラス別・メソッド別の詳しい情報を調べるには「Ruby on Rails API」が便利です。

Ruby on Rails API（英語）
http://api.rubyonrails.org/

https://rubyonrails.org/
https://weblog.rubyonrails.org/
http://guides.rubyonrails.org/
https://railsguides.jp/
http://api.rubyonrails.org/

Ruby on Railsの開発者
Railsを作り出したのは、アメリカ在住のデンマーク人プログラマDavid Heinemeier Hansson

（デビット・ハイネマイヤ・ハンソン）氏で、よく「DHH」と呼ばれます。彼が37signals社（現
Basecamp社）で携わっていたソフトウェア「Basecamp」のフレームワークを取り出して公開し、オープ
ンソースソフトウェアとしたのがRailsです。

DHH氏のサイト
http://david.heinemeierhansson.com/
日経BP、ITproによるDHH氏へのインタビュー
https://tech.nikkeibp.co.jp/it/article/NEWS/20060620/241346/

■RubyとRails

Railsは、プログラミング言語
ル ビ ー
Rubyで記述され、RubyのGemパッケージ（後述）として提

供されています。また、Railsを使ってウェブアプリケーションを書くときもRubyで記述します。

RubyとRails

Rubyの特徴は、純粋で高機能なオブジェクト指向言語であること、シンプルできれいなコ
ードを書けることです。

http://david.heinemeierhansson.com/
https://tech.nikkeibp.co.jp/it/article/NEWS/20060620/241346/

Rubyでは、プログラマがクラスを設計できるだけでなく、文字列や数値などもオブジェクトと
して実装され、既存のオブジェクトを簡単に拡張できるしくみを備えています。難しいことを考
えなくても、オブジェクト指向のプログラムを自然に書けるようになっています。

Rubyは、やさしく学べる言語です。ほかのプログラミング言語を学んだことがある人なら、
数日から数週間で自在にRubyプログラムが書けるようになるでしょう。また、Rubyを使うと
簡潔で読みやすいコードを書くことができます。Railsの開発者David Heinemeier
Hansson氏は、「美しいコードを書けるからRubyを選んだ」と述べています。

Rubyの開発者
プログラミング言語Rubyを作ったのは、日本人のプログラマまつもとゆきひろ氏（通称Matz）で

す。1995年に初めて公開され、現在では世界中で利用される言語に成長しています。また、世界
中の開発者によってオープンソース方式で強化が続けられています。まつもと氏はRubyで最も重視し
ているのは「プログラミングを楽しむこと」と述べています。

■Rubyのバージョン
本書では、Ruby 2.5とRails 5.2を使ってRailsアプリケーションの作成を解説します。Ruby

とRailsのこれまでのバージョンについて簡単に紹介しましょう。
2018年5月現在、公式にメンテナンスされているRubyのバージョンは次の3つです。毎年

12月25日に新しいバージョンのRubyがリリースされる慣例になっています。

2.3（2015年12月25日リリース）
2.4（2016年12月25日リリース）
2.5（2017年12月25日リリース）

■Railsのバージョン
Railsが最初に公開されたのは、2004年のバージョン0.5です。2005年には、初のメジャー

リリース1.0が公開されました。Railsの最初の大きな飛躍となったのは、「リソース」という概念
が導入されたバージョン1.2です（リソースについてはChapter 5を参照）。次の飛躍となった

のはバージョン3で、Rubyで書かれた別のフレームワークMerbとの統合が行われました。これ
により、コンポーネントの組み合わせが柔軟になり、パフォーマンスが向上しました。

その後もRuby on Railsはウェブ業界のトレンドを取り入れつつ急速に進化を遂げていま
す。本書の記述は、2018年4月に公開されたバージョン5.2に基づいています。

Railsのバージョン
バージョン番号 日付 バージョン番号 日付

1.0 2005/12/13 3.1 2011/04/31
1.1 2006/03/28 3.2 2012/01/20
1.2 2007/01/19 4.0 2013/06/25
2.0 2007/12/07 4.1 2014/04/08
2.1 2008/06/01 4.2 2014/12/19
2.2 2008/11/21 5.0 2016/06/30
2.3 2009/03/16 5.1 2017/05/10
3.0 2010/08/29 5.2 2018/04/09

Rails 5.2では、Amazon S3、Google Cloud Storage、Microsoft Azure Storageな
どのクラウドストレージサービスにファイルをアップロードするための、Active Storageという新し
い機能が導入されました。本書ではChapter 13でこの機能について解説します。

MVCと設計哲学
Railsの基本をなすMVCアーキテクチャと設計哲学について紹介しましょう。

■RailsのMVC
Railsでは、データベースのデータを扱うオブジェクトをモデルと呼びます。コントローラはモデル

からのデータを受け取ってビューに渡します。HTMLにデータを埋め込むためのテンプレートがビュ
ーです。

モデル、ビュー、コントローラの役割

モデルとコントローラの役割分担に注目してください。モデルは倉庫の荷物を出し入れする
「倉庫番」のような存在です。ウェブアプリケーションでは、倉庫はデータベースの「テーブル」に、
荷物は「レコード」に相当します。また、モデルは倉庫番として不正な荷物が倉庫に紛れ込む
のを監視しています。アプリケーションが、不正なレコードをテーブルに挿入しようとしても、モデ
ルはそれを受け付けません。

コントローラは、ウェブアプリケーションからモデルとビューを分離した残りの部分であり、いわ
ば「何でも屋」です。その役割は、ブラウザからの入力を受け取る、データをモデルに要求す
る、データの追加や変更をモデルに指示する、適切なビューを選ぶ、データをビューに渡すなど、
さまざまです。コントローラが実行する具体的な仕事のことを「アクション」と呼びます。

■設計哲学
Railsには2つの重要な設計哲学があります。1つは「DRY」、もう1つは「設定より規約」で

す。Railsの簡潔さと効率のよさを支えているのは、この2つの哲学です。

DRY（Don't Repeat Yourself、繰り返しを避けよ）
DRYは「DRY原則」とも呼ばれます。Railsを使ったウェブアプリケーションでは、同じことを

繰り返し記述するのは避けなければなりません。同じことをソースコードや設定ファイルの中で
繰り返し記述するのは無駄ですし、仕様変更やバグフィックスのときに一部を変更し忘れる

可能性が高くなります。DRYを意識することで、効率よく品質のよいアプリケーションが作成
できます。

設定より規約（Convention over Configuration）
「規約」とは、言い換えれば「デフォルトの設定」です。あらかじめ用意された規約に従って

アプリケーションを開発することで、記述量を大幅に減らせます。たとえば、モデルには命名規
約があり、テーブル名をmembersのように複数形にすると、モデルのクラス名は単数形の
Member、クラスを記述するファイル名はmember.rbとなります。決まりきった手順に従うこ
とで、余計な設定を記述する必要がなくなり、プログラマはコードに集中できるようになりま
す。こうした効果について、David Heinemeier Hansson氏は「制約が自由をもたらす」と
述べています。

Railsの構成と機能
Railsは複数のコンポーネントで構成されています。その機能を少し詳しく見てみましょう。

■Railsのコンポーネント
Railsの実体は、コンポーネント（Rubyで書かれたライブラリ）の集合体です。基本となる

3つのコンポーネントの名前を覚えましょう。

Active Record——モデル
Action View——ビュー
Action Controller——コントローラ

Railsのコンポーネントは、Gemパッケージとして提供されています。Gemパッケージとは、
Rubyのパッケージ・マネージャであるRubyGemsが管理するライブラリです。RailsのGemパッ
ケージは、次のように構成されています。

Action Pack

Action Controller——コントローラ
Action Dispatch——ルーティング

Action View——ビュー
Action Mailer——電子メール送信
Active Model——モデル
Active Record——データベースと結び付いたモデル
Active Job——プログラムの非同期実行
Active Support——共有ライブラリ集
Active Storage——クラウドストレージサービスへのアップロード
Railties——railsコマンドなどのユーティリティ

コントローラは、Action Packというパッケージに含まれています。モデルは、抽象的なモデル
であるActive Modelと、データベースとやり取りするActive Recordの2つのパッケージからな
ります。

Active Supportは、Rubyの文字列、数値、時刻などのクラスを拡張するものです。
Action MailerとActive Jobについては、本書では扱いません。

■便利な特徴
Railsには、ウェブアプリケーション作成の効率を高める便利な機能がたくさん用意されてい

ます。

ルーティング
&や=がたくさん付いた汚いURLではなく、きれいなURLが使えます。たとえ

ば、/members/1のようなわかりやすいパスで、特定の会員の詳細情報ページを呼び出せま
す。データをリソースとして扱うことで、URLのパスとアプリケーションの関係がさらにすっきりしま
す（解説はChapter 3、Chapter 5）。

テンプレート

Railsでは、ビューをHTMLのテンプレートで作成します。HTML の中に<% ... %>を埋め込
んで、Rubyのコードを記述したり、変数の値をそのまま出力したりできます（解説は
Chapter 3）。

マイグレーション
データベースのテーブルを定義するためにマイグレーション機能が用意されており、SQL文を

書かずに済みます。データベースの作成や変更は、railsコマンドで簡単に行えます（解説は
Chapter 4）。

レコードの操作
データベースのテーブルにbirthdayというカラムがあるとすると、@member.birthdayのよう

な書き方でカラムの値を取り出したり、新しい値を入れたりできます。レコードの取り出し、保
存、削除といった操作のためのメソッドも用意されています（解説はChapter 4、5、6）。

バリデーション
テーブルにレコードを保存するときに、空の値を禁止したり、値が決まった書式に従うように

指定したりできます。そうした指定を簡単な記述で書けます（解説はChapter 7）。

国際化
ブラウザに表示するテキストを言語別に用意することで、日本語や英語など複数の言語

に対応したサイトを作成できます（解説はChapter 7）。

テスト
Railsには、自動テストのしくみがはじめからサポートされています。自然な形でテスト駆動

型開発を実践できます（本書では解説しません）。

セッション
セッション機能を使ってサイトにアクセスしたユーザーの状態を保存できます。セッションを利

用すれば、サイトにログイン機能を加えるのも簡単です（解説はChapter 8）。

モデル間の関連付け

2つのテーブルを結び付けたときは、自然な形でそれぞれのモデルにアクセスできます。たと
えば会員とブログ記事を関連付けたときは、ある会員の投稿した記事を
@member.entriesのように表現できます（解説はChapter 10、Chapter 14）。

クラウドストレージサービスとの連携
Amazon S3、Google Cloud Storage、Microsoft Azure Storage等のクラウドストレ

ージサービスへ簡単にファイルをアップロードし、ファイルを配信できます（解説はChapter
13）。

本書のサンプルアプリケーション
本書では、Chapter 3からChapter 15までで実際にウェブアプリケーションを作りながら

Railsの機能を解説していきます。作成するアプリケーションは、草野球チームのサイト
Morning Gloryです。Morning Gloryは「朝顔」の意味で、早朝に練習を行うことから名
付けたチーム名です。Chapter 15で最終的に完成するMorning Gloryのサイトは次のよう
になります。

トップページや「ニュース」ページは、チームの活動を外部に向けて紹介します。

Morning Gloryトップページ

ログイン機能があり、会員はログイン名とパスワードを入力してログインすると、会員情報ペ
ージなど専用のページを表示できます。

会員情報の詳細ページ

管理者に指定した会員は、管理ページを表示でき、会員や記事のデータの作成や更新
ができます。

会員情報の更新ページ

簡単なブログ機能もあり、ログインした会員は自分のブログを作成、編集できます。ブログ
の記事は、ログインしなくても、誰でも読めるようにしています。

ブログページ

このサンプルアプリケーションのソースコードは、本書のサポートサイトからダウンロードできま
す。ZIP形式のファイルを展開するとchapter3、chapter4等のディレクトリが現れます。各
Chapterの学習を終えた段階のMorning Gloryサイトのソースコードが収められています。
chapter15のディレクトリにあるものが、最終的な完成版です。

Morning Gloryサイトのソースコードは、フリーソフトウェアとして無償で公開します。自分の
サークルのための会員制サイトや、企業の情報共有システムなどのベースとして活用してくだ
さい。

1.2 　Rails開発環境の構築

自分のパソコンでRailsを学習していくために、必要なソフトウェアをインストールしましょ
う。手順はmacOSとWindowsとで異なります。また、Windowsの場合には
Windowsの種類により2つの選択肢があります。

環境構築に必要なもの
Railsをパソコン上で動かし、学習していくためには、次のソフトウェアが必要です。必要に

なるソフトウェアは、どれもインターネット上から無料で入手できます。

■macOS/Windows共通

Ruby
Railsを動かすための、プログラミング言語Rubyの実行環境です。本書では、バージョン2.5

を使います。

rbenv/ruby-build
複数のバージョンのRubyをインストールし、必要に応じて切り替えて利用するためのソフト

ウェアです。

RubyGems
RubyGemsはRuby言語のためのパッケージ・マネージャです。Railsを含め、Ruby関連の

ソフトウェアのインストールやアップデートに使います。Rubyをインストールすると、RubyGems
も同時にインストールされます。

Ruby on Rails、およびその他のGemパッケージ

Ruby on RailsはGemパッケージとしてインストールします。Railsは複数のGemパッケージ
から構成されており、それぞれのGemパッケージがまた別のパッケージに依存しています。そうし
た多数のGemパッケージはまとめてインストールできます。

SQLite3
学習用のデータベース管理システムとして、本書ではSQLite3を利用します。

■macOS

Xcodeとコマンドライン・デベロッパ・ツール
Rubyのインストールにはソースのコンパイルが必要なので、macOSの開発環境である

Xcodeとコマンドライン・デベロッパ・ツールを用意します。

Homebrew
HomebrewはmacOS用のパッケージ管理ツールです。

■Windows

Windows Subsytem for Linux（WSL）
Windows Subsytem for Linux（WSL）は、Windows上でLinux向けのソフトウェアを

実行するためのしくみです。ただし、64ビット版のWindows 10でしか利用できません。また、
教育市場向けの低価格PCや「Surface Laptop」のOSとして使われているWindows 10 S
では利用できません。

Ubuntu
Ubuntu（ウブントゥ）は、Linuxをベースとしたオペレーティングシステム（OS）です。本

書ではWSL環境にUbuntu 18.04をインストールしてRails開発環境を構築します。

MSYS2/MinGW

MSYS2/MinGWは、Windows上でbash、tar、gitなどのUnix向けのツール群を使用す
るためのソフトウェアパッケージです。Windows Subsytem for Linux（WSL）が利用でき
ない場合は、こちらを利用します。

■サポートサイト
RubyとRailsのインストールや本書のサンプルプログラムに関する情報は、オイアクス社のサ

ポートサイトで公開していきます。ソフトウェアのバージョンアップにより本章のインストール手順
が古いものになった場合などは、新しい情報を随時掲載します。次のURLを参照してくださ
い。

https://www.oiax.jp/rails5book

macOSにインストールするときの注意
macOSでRubyとRailsのインストール作業を進めるときには、新しいコマンドをインストールするたび

に、ターミナルを新しく開き直すのがお勧めです。macOSには最初からRubyとRubyGemsがインスト
ールされており、ターミナルが元からあるコマンドと新しくインストールしたコマンドを取り違えることがある
からです。インストール作業中にうまくいかないことがあったら、ターミナルを新しく開いてやり直してみま
しょう。

macOSでの開発環境構築

■Xcodeのインストール
本書では、Homebrewを使ってmacOSにRubyをインストールします。Homebrewを利用

するにはXcodeとコマンドライン・デベロッパ・ツールが必要になります。まずXcodeをインストー
ルしましょう。

XcodeはAppleのApp Storeでダウンロードできます。App Storeを開いて、右上の検索
ボックスで「Xcode」と入力してください。検索結果からXcodeのページを開いて、［入手］

https://www.oiax.jp/rails5book

→［Appをインストール］ボタンを押せばダウンロードとインストールが始まります（このとき、
Apple IDとパスワードを聞かれることがあります）。

Xcodeのダウンロード

インストールが済んだら、LaunchpadでXcodeを開いてライセンスの認証を行ってください。

■コマンドライン・デベロッパ・ツールのインストール
RubyとRailsのインストールには、Xcodeだけでなくコマンドライン・デベロッパ・ツールもインス

トールする必要があります。このツールのインストールは、必ずHomebrewのインストールの前に
行ってください。順番を間違えると、Railsに必要なモジュールがコンパイルできなくなります。

macOSのターミナルを開いて、次のコマンドを実行してください。ターミナルは［アプリケーシ
ョン］フォルダの［ユーティリティ］フォルダの下にあります。これから何度も使うので、ターミナ
ルのアイコンをDockに入れておくとよいでしょう。

$ xcode-select --install

表示される画面で［インストール］ボタンを押せば、インストールできます。

コマンドライン・デベロッパ・ツールのインストール

■Homebrewのインストール
HomebrewでRubyをインストールするには、まずHomebrewのサイトにアクセスしてくださ

い。

Homebrew
https://brew.sh/

このページの中で「Install Homebrew」の下に書かれているインストール用のコマンドをコピ
ーしてください。

https://brew.sh/

Homebrewのインストールコマンド

ターミナルを開き、コピーしたコマンドを貼り付けて実行すれば、Homebrewをインストールで
きます。途中でパスワードを求められるので入力してください。

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/

Homebrew/install/master/install)"

■rbenvとruby-buildのインストール
Homebrewを使ってrbenvをインストールします。rbenvは、複数のバージョンのRubyをイ

ンストールして切り替えるためのツールです。また、rbenvに必要なruby-buildもインストールし
ます。

$ brew install rbenv ruby-build

ターミナルを開くたびにrbenvを初期化するコマンドが自動的に実行されるように、次のコマ
ンドで.bash_profileファイルに「eval "$(rbenv init -)"」を書き加えます。

$ echo 'eval "$(rbenv init -)"' >> ~/.bash_profile

次のコマンドで、.bash_profileファイルに加えたこのコマンドを実行します（ターミナルを新
しく開いても同じ効果を得られます）。

$ source ~/.bash_profile

■Rubyのインストール
次のコマンドでRuby 2.5.1をインストールします。

$ rbenv install 2.5.1

「rbenv versions」でインストールされているRubyの一覧を表示できます。

$ rbenv versions

* system (set by /Users/taro/.rbenv/version)

2.5.1

次のコマンドでRuby 2.5.1が使えるようになります。

$ rbenv global 2.5.1

ターミナルを開き直してから、Rubyのバージョンを確認してみましょう。

$ ruby -v

ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-darwin16]

本書の刊行後にRuby 2.5.2が出たとしましょう。そのときは次の3つのコマンドを実行すれ
ばRuby 2.5.2が使えるようになります。

$ brew upgrade ruby-build

$ rbenv install 2.5.2

$ rbenv global 2.5.2

■Railsのインストール
RailsおよびRailsに必要なGemパッケージを、RubyGems（gemコマンド）でインストール

しましょう。本書のサンプルが動作するように、「--version "5.2.0"」というオプションを付けて
バージョン5.2.0がインストールされるようにしてください。

$ gem install rails --version "5.2.0" -N

なお、-Nオプションを付けるのは、ドキュメントの生成を省略してインストールに要する時間
を短縮するためです。

Gemパッケージのインストールが終わると、railsコマンドを使えるようになります。ターミナルを
開き直してから、Railsのバージョンを確認してみましょう。

$ rails -v

Rails 5.2.0

railsディレクトリの作成
ターミナルで次のコマンドを実行し、ホームディレクトリの下にrailsというディレクトリを作成し

ます。チルダ記号（~）はホームディレクトリを示します。

$ mkdir ~/rails

以上で、macOSにおいてRailsの学習を始める準備が整いました。「テキストエディタの選
択」の項に進んでください。

仮想化ソフトウェアの利用という選択肢
macOSに直接RubyをインストールしてRails開発を行うという方法のほかに、VirtualBoxや

Dockerなどの仮想化ソフトウェアを利用してUbuntuやCentOSなどのLinux系OSをインストールし、
そこにRubyをインストールするという選択肢もあります（本書では解説しません）。やや導入手順
が複雑ですが、本番環境とまったく同じOS上で開発を行えるという利点があります。

Windowsでの開発環境構築

■Windowsユーザー名に関する注意点
本題に入る前に、プログラミング初心者が陥りやすい罠について説明します。Windowsの

ユーザー名（正確には「ユーザーアカウント名」）に漢字、ひらがな、カタカナが含まれている
場合、Ruby on Railsの開発環境構築やプログラミングにおいてさまざまな支障が生じます。

もし読者がそのようなユーザー名を使用している場合は、英数字のみを用いたユーザー名に
変更するか、英数字のみの名前を持つユーザーを新たに作ってください。なお、本書では
Windowsユーザー名が「oiax」であるとして説明を行っていきます。

■Windowsのバージョン別の選択肢
Windows上にRailsの開発環境を構築する方法として、本書では2つの選択肢を紹介し

ます。

WSL/Ubuntu
MSYS2/MinGW

WSL/UbuntuとMSYS2/MinGWを比較すると前者のほうがRails開発に適しているので
すが、WSLの動作条件がWindows 10の64ビット版（ただし、Windows 10 Sを除く）で
あるため、Windows 10 S、Windows 10の32ビット版、Windows 8、Windows 7をお使
いの方は必然的にMSYS2/MinGWを選択することになります。

なお、Windows 10 Sとは教育市場向けの低価格PCや「Surface Laptop」のOSとして
使われている特別なバージョンのWindows 10です。

Windows 10が64ビット版か32ビット版か調べる方法
Windowsのスタートメニューの「歯車」アイコンをクリックします。「Windowsの設定」が開いたら、

［システム］の［バージョン情報］を選択します。
「デバイスの仕様」セクションの「システムの種類」の値が「64」で始まっていれば64ビット版です。そ

うでなければ32ビット版です。

本書では扱いませんが、WSL/UbuntuとMSYS2/MinGWのほかにも、VirtualBoxや
Dockerなどの仮想化ソフトウェアを利用してUbuntuやCentOSなどのLinux系OSをインスト
ールするという選択肢もあります。やや導入手順が複雑ですが、本番環境とまったく同じOS
上で開発を行えるという利点があります。

■WSL/Ubuntuでの環境構築

WSL/Ubuntuのインストール
WSLとUbuntuをインストールする手順の概要を箇条書きでまとめます。

コントロールパネルを開き、［プログラム］→［プログラムと機能］→［Windowsの機
能の有効化または無効化］に進みます。
［Windows Subsystem for Linux］のチェックボックスをオンにして［OK］ボタンを
クリックします。
Windowsを再起動します。
［スタート］ボタンを押して、［Microsoft Store］を開きます。

検索ボックスに「ubuntu」と入力して現れる選択肢の中から［Ubuntu 18.04］を選
びます（注）。
［入手］ボタンを押します。
［起動］ボタンを押します。
黒い背景のウィンドウが開き、「Installing, this may take a few minutes...」というメ
ッセージが表示されます。
「Enter new UNIX username:」と表示されたら、Ubuntuで使用するユーザー名を入
力します。ただし、ユーザー名は英小文字で始まり、英小文字と数字だけで構成してく
ださい。長さは3〜8文字の範囲に収めることをお勧めします。本書では、ユーザー名に
「oiax」を選んだものと仮定します。
「Enter new UNIX password:」と表示されたら、Ubuntuで使用するパスワードを入力
します。
「Retype new UNIX password:」と表示されたら、同じパスワードを再入力します。
末尾にドル記号（$）のある行が表示されたら、黒い背景のウィンドウを閉じます。

（注）2018年5月17日現在、Microsoft Storeから入手できるUbuntuには「Ubuntu」と
「Ubuntu 18.04」があります。前者は2016年4月リリースのUbuntu 16.04を指しています。
このバージョンは2021年4月までサポートされます。Microsoft Storeのラインナップは随時更
新されるので、読者の皆さんが実際に訪れたときには別のリストが現れるかもしれません。そ
の際は、アプリの説明をよく読んでバージョン番号に「18.04」と書かれているものを選んでくだ
さい。また、本書のサポートサイトに注意書きが追加されていないかどうかも確認してくださ
い。

Ubuntuターミナル
［スタート］ボタンを押して［Ubuntu 18.04］を選択すると、インストール時に現れたの

と同様の黒い背景のウィンドウが開きます。これをUbuntuターミナル、あるいは単に「ターミナ
ル」と呼びます。

ターミナルの左端には「oiax@DESKTOP-PKOPPJ5:~$」のような文字列が表示されてい
ます。ただし、「DESKTOP-PKOPPJ5」の部分は環境によって異なります。これをプロンプトと
呼びます。

Ubuntuの更新
ターミナルで次の2つのコマンドを順に実行し、Ubuntuを更新します。パスワードの入力を

求められたら、Ubuntuのインストール時に設定したパスワードを入力してください。

$ sudo apt-get update

$ sudo apt-get -y upgrade

初回更新時はかなり長い時間がかかるかもしれません。定期的にUbuntuを更新するこ
とをお勧めします。

Rubyのインストール
ターミナルで次の4つのコマンドを順に実行し、Ruby 2.5をインストールします。

$ sudo add-apt-repository -y ppa:brightbox/ruby-ng

$ sudo apt-get -y install ruby2.5 ruby2.5-dev

$ echo 'export GEM_HOME=~/.gem' >> ~/.bashrc

$ source ~/.bashrc

Rubyのバージョンを確認します。

$ ruby -v

ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-linux]

本書の執筆時点では、2.5系の最新版であるRuby 2.5.1がインストールされます。今後、
2.5系の新しいバージョンがリリースされれば、バージョン2.5.2以上のRubyがインストールされま
す。本書の学習に影響はないはずですが、気になる方は本書のサポートサイトを参照してく
ださい。

Ubuntuでrbenv/ruby-buildを使うには

Ubuntuでrbenvとruby-buildを使ってRuby 2.5.1をインストールすることもできます。ターミナルで
次のコマンド群を順に実行してください。

$ sudo apt-get -y install rbenv ruby-build

$ git clone https://github.com/rbenv/rbenv.git ~/.rbenv

$ echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bashrc

$ echo 'eval "$(rbenv init -)"' >> ~/.bashrc

$ source ~/.bashrc

$ mkdir -p ~/.rbenv/plugins

$ cd ~/.rbenv/plugins

$ git clone https://github.com/rbenv/ruby-build.git

$ cd

$ rbenv install 2.5.1

$ rbenv global 2.5.1

実行するコマンドの数が多く、インストール完了までの時間も大幅に長くなりますが、複数のバージ
ョンのRubyをインストールして切り替えられるようになります。

SQLite3のインストール
データベース管理システムSQLite3をインストールします。ターミナルで次のコマンドを実行し

てください。

$ sudo apt-get install sqlite3 libsqlite3-dev

Railsのインストール
ターミナルで次のコマンドを実行します。これはRailsが依存するGemパッケージnokogiriの

インストールに必要です。

$ sudo apt-get install -y build-essential patch ruby-dev zlib1g-dev
liblzma-dev

Rails 5.2.0をインストールします。

$ gem install rails --version=5.2.0 -N

学習用ディレクトリの作成
まず、Windowsのデスクトップにrailsというディレクトリを作成してください。そして、

Ubuntuターミナルで次のコマンドを実行します。

$ ln -s /mnt/c/Users/oiax/Desktop/rails ~/rails

ただし、oiaxの部分は、自分のユーザー名で置き換えてください。コマンドlnによりシンボリッ
クリンクが作られ、その結果Windows側のデスクトップにあるrailsディレクトリが
WSL/Ubuntu側のホームディレクトリ直下のrailsディレクトリとして見えるようになりました。チ
ルダ記号（~）はホームディレクトリを示します。

以上で、WSL/Ubuntu環境においてRailsの学習を始める準備が整いました。「テキストエ
ディタの選択」の項に進んでください。

WSL/Ubuntu利用上の重要な注意事項
WSL/Ubuntuを利用するうえで十分に気をつけなければならないのは、Windows側のソフトウェ

ア（たとえば、後述するテキストエディタAtomやVS Code）でWSL/Ubuntu側のディレクトリやファ
イルを操作すると壊れる危険性がある、ということです。

しかし、本文中で説明した手順でシンボリックリンクを設定した結果、WSL/Ubuntu側のホーム
ディレクトリ直下のrailsディレクトリはWindows側のソフトウェアで操作できるようになっています。逆
に言えば、このディレクトリ以外の場所にあるファイルをWindows側のソフトウェアで触ってはいけませ
ん。

たとえば、WSL/Ubuntu側のホームディレクトリに.bashrcという設定ファイルがありますが、これを
AtomやVS Codeで開いて編集してはなりません。必ず、WSL/Ubuntu側のソフトウェア（後述する
nanoやVim等のスクリーンエディタ）で編集してください。

■MSYS2/MinGWでの開発環境構築

MSYS2/MinGWとは
MSYS2（Minimal SYStem 2）とMinGW（Minimalist GNU for Windows）は、

Windows上でLinuxの各種ソフトウェア・ライブラリを動作させるためのパッケージです。それぞ
れ独立したパッケージですが、MSYS2にはMinGWが同梱されます。本書では、両者を合わ
せてMSYS2/MinGWと呼びます。後述するRubyInstallerでRubyをインストールすると、自
動的にMSYS2/MinGWのインストールが始まります。

Rubyのインストール
MSYS2/MinGW環境で動くRubyプログラムは、RubyInstallerでインストールします。ブラ

ウザで次のURLを開いてください。

RubyInstaller for Windows
https://rubyinstaller.org/downloads/

RubyInstallerのダウンロード

https://rubyinstaller.org/downloads/

「WITH DEVKIT」セクションから適切なバージョンを選んでダウンロードします。本書執筆
時点（2018年7月）では、次の4つの選択肢があります。

Ruby+Devkit 2.5.1-2 (x64)
Ruby+Devkit 2.5.1-2 (x86)
Ruby+Devkit 2.4.4-2 (x64)
Ruby+Devkit 2.4.4-2 (x86)

バージョン2.5系列とバージョン2.4系列の最新版が並んでいます。本書執筆時点ではバー
ジョン2.4系列の利用が推奨されていますが、本書の学習においてはバージョン2.5系列を選
んでください。

また、かっこの中に「x64」と書いてあるほうが64ビット版、「x86」と書いてあるほうが32ビッ
ト版です。お使いのWindowsの種類に応じて選んでください。

ダウンロードした実行ファイルを起動し、［I accept the License］をチェックして
［Next］ボタンを押します。次の画面が表示されたら、そのまま［Install］ボタンを押して
ください。

RubyInstallerの設定画面

管理者権限が必要
Windowsでインストール作業を行うには、ユーザーに管理者権限が必要です。現在のアカウント

が管理者ではない場合は、管理者アカウントに切り替えるか、管理者である人にインストールしても
らう必要があります。

MSYS2/MinGWのインストール
Rubyのインストールが完了したら、そのまま［Finish］ボタンを押してください。すると、コ

マンドプロンプトが起動して、次のような画面が現れます。

MSYS2/MinGWのインストール画面

キーボードで「1」を入力して Enter キーを押すと、MSYS2のセットアップが始まります。

MSYS2/MinGWのセットアップ開始画面

［次へ］ボタンを2回押してから、［インストール］ボタンを押してください。

MSYS2/MinGWのインストールが進行中

セットアップウィザードが完了したら［完了］ボタンを押してください。MSYS2/MinGWの
ターミナルが起動して、コマンドプロンプトに似た黒い画面が現れます。ウィンドウ右上の

［X］ボタンを押してMSYS2/MinGWのターミナルを閉じてください。そして、
MSYS2/MinGWのインストールのために起動されたコマンドプロンプトも同様に閉じてくださ
い。

環境変数の設定
続いて、MSYS2/MinGWを便利に使うため、Windowsの環境変数を設定します。「環

境変数」とは、プログラム全般の挙動を制御するための変数名と値（文字列）のペアで
す。

コントロールパネルを開いて［システム］→［システムの詳細設定］→［環境変数］と
進むと環境変数の設定画面が現れます。［ユーザー環境変数］のセクションで環境変数
PATHを選んで［編集］ボタンをクリックします。64ビット版のMSYS2/MinGWをお使いの
方は、値の先頭にC:¥Ruby25-x64¥msys64を加えてください。32ビット版の
MSYS2/MinGWをお使いの方は、値の先頭にC:¥Ruby25¥msys32を加えてください。

さらに、［新規］ボタンをクリックして、環境変数MSYS2_PATH_TYPEにinheritという値
を設定してください（64ビット版と32ビット版ともに）。

MSYS2/MinGWターミナルの起動
Windowsの［スタート］ボタンを右クリックして［ファイル名を指定して実行］を選択し

ます。64ビット版のMSYS2/MinGWをお使いの方は名前に「mingw64」と入力して
［OK］ボタンをクリックします。32ビット版のMSYS2/MinGWをお使いの方は、名前に
「mingw32」と入力して［OK］ボタンをクリックします。

MSYS2/MinGWターミナル

以後、このソフトウェアのことを単に「ターミナル」と呼びます。画面左端に表示されているド
ル記号（$）の右にコマンドを入力することで、さまざまな操作ができます。

たとえば、Rubyのバージョンを確認するには次のコマンドを入力します。

$ ruby -v

ruby 2.5.1p57 (2018-03-29 revision 63029) [x64-mingw32]

SQLite3のインストール
データベース管理システムSQLite3をインストールします。64ビット版のRuby 2.5をインストー

ルした方は、ターミナルで次のコマンドを実行してください。

$ pacman -S mingw-w64-x86_64-sqlite3

32ビット版のRuby 2.5をインストールした方は、ターミナルで次のコマンドを実行してくださ
い。

$ pacman -S mingw-w64-i686-sqlite3

winptyのインストール
Rails開発でirb（Chapter 2）とRailsコンソール（Chapter 4）を頻繁に利用すること

になりますが、MSYS2/MinGWターミナルではうまく動きません。この問題を解決するために
winptyというソフトウェアをインストールします。

$ pacman -S winpty

Railsのインストール
Railsのインストールもターミナル上で行います。次のコマンドを実行してください。

$ gem install rails --version "5.2.0" -N

なお、-Nオプションを付けるのは、ドキュメントの生成を省略してインストールに要する時間
を短縮するためです。

セキュリティの警告
gemコマンドや後述の「bin/rails s」コマンドを実行すると、Windowsやセキュリティ対策ソフトの

警告が表示されることがあります。Rubyがインターネットに接続しようとするためです。警告が出た
ら、［アクセスを許可する］などのボタンをクリックしてください。

インストールが済んだら、Railsのバージョンを確認しましょう。

$ rails -v

Rails 5.2.0

railsディレクトリの作成

まず、Windowsのデスクトップにrailsというフォルダを作成してください。そして、
MSYS2/MinGWのターミナルで以下の作業を行います。

まず、次のコマンドを実行し、Windowsの「コマンドプロンプト」のメッセージが英語で表示
されるようにします。

$ cmd.exe /c "chcp 65001"

Acitve code page: 65001

続いて、次のコマンドを実行します。ただし、oiaxの部分は、自分のユーザー名で置き換え
てください。

$ cmd.exe /c "mklink /j rails C:\Users\oiax\Desktop\rails"

Junction created for rails <<===>> C:\Users\oiax\Desktop\rails

このコマンドはデスクトップのrailsフォルダへの「ジャンクション」をMSYS2/MinGW側のホー
ムディレクトリに作成します。これによりWindowsの世界とMSYS2/MinGWの世界が連結さ
れます。cd railsコマンドを実行して、railsディレクトリに移動できればOKです。しかし、次のよ
うなエラーメッセージが表示された場合は失敗です。

-bash: cd rails: No such file or directory

このときは、次のコマンドでジャンクションを削除してから、ジャンクションを作成するコマンド
を注意深く入力し直してください。

$ unlink rails

以上で、MSYS2/MinGW環境においてRailsの学習を始める準備が整いました。

1.3 　テキストエディタの選択

Rubyプログラミングを行うには、テキストエディタと呼ばれるソフトウェアが必要です。テ
キストエディタには多くの種類があり、基本的にはどれを選んでもかまいません。しか
し、初心者が迷わないように、筆者の独断と偏見でいくつかのテキストエディタを推薦
します。

ソースコード編集用のテキストエディタ
ソースコードを編集するためのテキストエディタとして筆者が推薦するのは、Visual Studio

Code（VS Code）とAtomの2つです。いずれも無償で入手可能であり、macOS、
Windows、およびLinux上で動作します。

■Visual Source Code（VS Code）
Visual Source Code（VS Code）はMicrosoft社により開発されたテキストエディタで

す。次のURLからダウンロードできます。

https://code.visualstudio.com/

macOSでは、ダウンロードしたZIPファイルを展開し、中に含まれている「Visual Source
Code」という名前のファイルを「アプリケーション」フォルダに移動してください。

Windowsでは、ダウンロードしたインストーラーを起動し、説明に従ってインストールしてくだ
さい。

VS Codeをターミナルから起動するには

https://code.visualstudio.com/

macOS、WSL/Ubuntu、MSYS2/MinGWのターミナルからVS Codeを起動するには、開きたい
ディレクトリに移動してから「code .」というコマンドを実行してください。ただし、事前に作業が必要で
す。

macOSでは、以下の手順で準備してください。

「アプリケーション」フォルダからVS Codeを起動する。
キーボード・ショートカットcommand-shift -Pを押す。
「shell install」と入力してEnterキーを押す。

WSL/Ubuntuでは、ターミナルで次のコマンドを実行してください。

$ sudo apt-get realpath

MSYS2/MinGWでは何もする必要はありません。

■Atom
AtomはGitHub社により開発されたテキストエディタです。次のURLからダウンロードできま

す。

https://atom.io/

macOSでは、ダウンロードしたZIPファイルを展開し、中に含まれている「Atom」という名前
のファイルを「アプリケーション」フォルダに移動してください。

Windowsでは、ダウンロードしたインストーラー（AtomSetup.exe）を起動し、説明に従
ってインストールしてください。

Atomをターミナルから起動するには
macOS、WSL/Ubuntu、MSYS2/MinGWのターミナルからAtomを起動するには、開きたいディ

レクトリに移動してから「atom .」というコマンドを実行してください。ただし、macOSでは事前に次の
作業が必要です。

「アプリケーション」フォルダからAtomを起動する。

https://atom.io/

メニューバーの［Atom］メニューから［Install Shell Commands］を選択する。

WSL/UbuntuおよびMSYS2/MinGWでは何もする必要はありません。

「暗号化された資格情報」設定用のテキストエディタ
テキストエディタはソースコードを編集するためだけに使われるわけではありません。Chapter

12と13で「暗号化された資格情報」を設定する際にも必要となります。この目的で利用す
るには、ターミナル内で動くテキストエディタ（スクリーンエディタ）が適しています。候補は
nanoとVimの2つです。

■nano
次に紹介するVimと比較すると、テキストエディタnanoは機能的にかなり貧弱です。しか

し、「暗号化された資格情報」を設定するのには十分に使えます。操作方法も直感的なの
で、初心者にはこちらをお勧めします。

とりあえず次の3点だけ覚えておけば、最低限の編集作業を行えます。

文字列のコピーと貼り付けは、マウス操作で行うのが簡単。
編集内容を保存して終了するには、 Ctrl - X キーを押してから、キーボードで「y」を入力
する。
編集内容を保存せずに終了するには、 Ctrl - X キーを押してから、キーボードで「n」を入
力する。

さて、「暗号化された資格情報」の設定にnanoを利用するためには、プラットフォーム別に
準備作業が必要となります。

macOSではターミナルで次のコマンドを実行してください。

$ echo 'export EDITOR=nano' >> ~/.bash_profile

WSL/Ubuntuではターミナルで次のコマンドを実行してください。

$ echo 'export EDITOR=nano' >> ~/.bashrc

MSYS2/MinGWではターミナルで次の2つのコマンドを順に実行してください。

$ pacman -S nano

$ echo 'export EDITOR=nano' >> ~/.bashrc

■Vim
Vimは高機能なスクリーンエディタです。ソースコード編集用のテキストエディタとしてもよく

使われます。しかし、操作方法に癖がありますので、初心者にはややハードルが高いです。こ
こでは、操作方法の解説はしません。すでにVimを使っている方のために、「暗号化された資
格情報」設定で使うための準備作業手順だけを記載します。

macOSではターミナルで次のコマンドを実行してください。

$ echo 'export EDITOR=vim' >> ~/.bash_profile

WSL/Ubuntuではターミナルで次のコマンドを実行してください。

$ echo 'export EDITOR=vim' >> ~/.bashrc

MSYS2/MinGWではターミナルで次の2つのコマンドを順に実行してください。

$ pacman -S vim

$ echo 'export EDITOR=vim' >> ~/.bashrc

1.4 　アプリケーションの新規作成

Rails開発環境の構築が済んだら、アプリケーションの骨格を作成してみましょう。

rails newコマンド
Rails開発環境の構築が済んだら、続いてアプリケーションを1つ作成し、必要なGemパッ

ケージをBundler（後述）で追加します。
まず、ターミナルで次のコマンドを実行し、ホームディレクトリ直下のrailsディレクトリに移動し

ます。チルダ記号（~）はホームディレクトリを示します。

$ cd ~/rails

現在のディレクトリを確認するには
ターミナルで現在のディレクトリ（カレントディレクトリ）を確認するには、pwdコマンドを使います。

いま、自分のホームディレクトリの下のrailsディレクトリにいる場合、macOS環境であれば次のような
結果が表示されます。ただし、oiaxの部分はログインしているユーザー名で置き換わります。

$ pwd

/Users/oiax/rails

WSL/Ubuntu環境あるいはMSYS2/MinGW環境であれば、次のような結果が表示されます。

$ pwd

/home/oiax/rails

Railsでは、アプリケーションの作成、モデルやコントローラの作成、サーバーの起動などに
railsコマンドを使います。「rails new アプリケーション名」でアプリケーションの骨格を作成しま
す。本書では、野球クラブMorning Gloryのサイトを作成し、そのアプリケーション名を
「asagao」とします。

それでは、Railsアプリケーションを作成しましょう。

$ rails new asagao -BCMT --skip-coffee -d sqlite3

 create

 create README.md

 create Rakefile

 create .ruby-version

 create config.ru

 create .gitignore

 create Gemfile
（中略）

 remove app/assets/javascripts/cable.js

 remove app/channels

 remove config/initializers/cors.rb

 remove config/initializers/new_framework_defaults_5_2.rb

「rails new」コマンドはasagaoディレクトリを作成し、Railsアプリケーションに必要なディレ
クトリやファイル一式を自動的にコピーします。コマンドの末尾に付けたオプション-BCMT --
skip-coffee -d sqlite3については後述します。

続いて、asagaoディレクトリに移動します。

$ cd asagao

bundle lockコマンドの実行（macOSおよび
WSL/Ubuntu）

macOSまたはWSL/Ubuntuを利用している方はターミナルで次のコマンドを実行します。
MSYS2/MinGWを利用している方は次の項「Gemfileの編集（MSYS2/MinGWのみ）」
に進んでください。

$ bundle lock --add-platform x64-mingw32 x86-mingw32

Fetching gem metadata from https://rubygems.org/.........

Fetching gem metadata from https://rubygems.org/.

Resolving dependencies.......

Writing lockfile to /Users/taro/rails/asagao/Gemfile.lock

bundle lockコマンドは、後述するGemfile.lockファイルを作成または更新するコマンドで
す。オプション--add-platformを指定することにより、MSYS2/MinGW用のGemパッケージ
がGemfile.lockファイルに含まれるようになります。

bundle lockコマンドの実行を省略すると、bundle installコマンドの実行時に次のような
警告メッセージが出力されます。

The dependency tzinfo-data (>= 0) will be unused by any of the platforms
Bundler is installing for. Bundler is installing for ruby but the dependency is
only for x86-mingw32, x86-mswin32, x64-mingw32, java. To add those
platforms to the bundle, run `bundle lock --add-platform x86-mingw32
x86-mswin32 x64-mingw32 java`.

この警告メッセージが出ないようにする方法はもうひとつあります。テキストエディタで
Gemfileの末尾にある次のような記述を削除することです。

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

RailsアプリケーションをMSYS2/MinGWの環境で動かす計画がないのであれば、この部
分は不要です。

Gemfileの編集（MSYS2/MinGWのみ）
MSYS2/MinGWを利用している場合は、テキストエディタでGemfileの末尾に次の行を

追加してください。

gem 'wdm', platforms: [:mingw, :x64_mingw]

macOSやWSL/Ubuntuを利用しているのならこの記述は不要ですが、存在してもかまい
ません。本書のサポートサイトで配布されているサンプルコードでは上記の変更が施されていま
す。

bundle installコマンドの実行（全プラットフォーム共通）
最後に、ターミナルで次のコマンドを実行し、Railsアプリケーションの開発に必要なGemパ

ッケージ群をインストールします。

$ bundle install

Fetching gem metadata from https://rubygems.org/.........

Fetching gem metadata from https://rubygems.org/.

Resolving dependencies...

Fetching rake 12.3.1

Installing rake 12.3.1

Fetching concurrent-ruby 1.0.5

Installing concurrent-ruby 1.0.5

Fetching i18n 1.0.1

Installing i18n 1.0.1

（中略）

Bundle complete! 15 Gemfile dependencies, 65 gems now installed.

Use `bundle info [gemname]` to see where a bundled gem is installed.

下から2行目の「Bundle complete!」というメッセージが、インストールの成功を示していま
す。なお、bundle installの代わりにbundleとだけ入力しても同じ結果が得られます。

以上で、Railsアプリケーションを動かす準備が整いました。

rails newコマンドのオプション
先ほどrails newコマンドでアプリケーションの骨格を作成したとき、本書では末尾に-

BCMT --skip-coffee -d sqlite3というオプションを追加しました。各オプションの意味は次
のとおりです。

rails newコマンドのオプション
オプション 意味
-B, --skip-bundle bundleコマンドを実行しない
-C, --skip-action-cable Action Cableのファイル群を生成しない
-M, --skip-action-mailer Action Mailerのファイル群を生成しない
-T, --skip-test テスト関連のファイル群を生成しない
--skip-coffee CoffeeScriptを使用しない
-d, --database データベース管理システムの種類を指定する

bundleコマンドについてはあとで説明しますが、通常はアプリケーションの骨格が作られた
あとで自動的にこのコマンドが実行されます。しかし、本書ではbundleコマンドを実行する前
にやっておきたいことがあるので、オプション-Bを付けました。

それから、本書では扱わない機能（Action Cable、Action Mailer、テスト）に関連す
るファイル群を生成しないようにするオプション-CMTを付けました。これらの機能を使いたい
場合は、適宜オプションを減らしてください。また、本書ではCoffeeScript（コーヒースクリプ
ト）を使わないのでオプション--skip-coffeeを加えました。

オプション-dはデータベース管理システムの種類を指定するためのものです。本書では
SQLite3を用いるのでsqlite3を指定しています。ただし、オプション-dのデフォルト値は
sqlite3ですので、SQLite3を利用するのならこのオプションは省略できます。

rails newコマンドに指定できるすべてのオプションを知りたければ、オプション-hを付けて
rails newコマンドを実行してください。

rails newでのバージョン指定
Railsの複数のバージョンをインストールしているときは、「rails new」コマンドは一番新しいRailsを

使ってアプリケーションを作成します。特定のバージョンのRailsでアプリケーションを作成したいときは、
railsのすぐ次に「_バージョン番号_」を加えます。

$ rails _5.1.6_ new asagao -BCMT --skip-coffee -d sqlite3

Bundler
ここで、Bundlerについて簡単に解説しておきましょう。Bundlerは、Gemパッケージの管理

とインストールのためのツールです。RailsアプリケーションなどRubyで書いたアプリケーションの
ために使われます。

RailsアプリケーションはたくさんのGemパッケージを必要としますが、複数の開発者が共同
で開発を進めるときには、開発者の間で同じバージョンのGemパッケージを用意しなければな
りません。開発用のパソコンと本番サーバーの間でも同様です。

Bundlerは、特定のRailsアプリケーションに必要なGemパッケージをリストアップし、複数
のコンピュータの間で簡単に同期が取れるようにするものです。図のように開発者Bさんが開

発者AさんからRailsアプリケーションのソースコードを受け取ったとします。Bさんは「bundle
install」を実行するだけで、必要なGemパッケージをインストールして、環境を揃えることがで
きます。

Bundlerの働き

「rails new」でアプリケーションを作成すると、アプリケーションのルートディレクトリに自動的
にGemfileができます。このファイルには、Bundlerを使ってインストールするGemパッケージの
一覧が記述されています。先ほど作った自分のasagaoアプリケーションのGemfileを開いて
みましょう。この中の「gem 'パッケージ名'」が必要なGemパッケージの指定です。

chapter01/Gemfile

 1 source 'https://rubygems.org'

 2 git_source(:github) { |repo| "https://github.com/#{repo}.git" }

 3

 4 ruby '2.5.1'

 5

 6 # Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

 7 gem 'rails', '~> 5.2.0'

 8 # Use sqlite3 as the database for Active Record

 9 gem 'sqlite3'

 10 # Use Puma as the app server

 11 gem 'puma', '~> 3.11'

 12 # Use SCSS for stylesheets

 13 gem 'sass-rails', '~> 5.0'

 （以下省略）

4行目にruby '2.5.1'という記述があります。これは、ここに指定されたバージョンのRubyで
しかこのRailsアプリケーションを起動できないことを意味します。もし別のバージョンのRubyで
もこのRailsアプリケーションを動かしたいのであれば、制限を緩める必要があります。Gemfile
の4行目を次のように変更すれば、バージョン2.4.4以上のRubyでの実行が許されるようにな
ります。

ruby '>= 2.4.4'

Gemfileにおけるバージョン指定
Gemfileを編集するときは、次のようにGemパッケージのバージョンを指定できます。

gem 'rails', '5.2.0' # バージョン5.2.0が必要

gem 'sqlite3' # どのバージョンでもOK

gem 'sass-rails', '~> 5.0' # バージョン5.0以上、6未満

gem 'uglifier', '>= 1.3.0' # バージョン1.3.0以上

gem 'listen', '>= 3.0.5', '< 3.2' # バージョン3.0.5以上、3.2未満

「bundle install」を実行すると、Bundlerは各パッケージが依存しているほかのパッケージ
をすべて調べてインストールします。同時に、Gemfileと同じディレクトリにGemfile.lockという
ファイルを作成し、そこに必要なパッケージのバージョン番号を記録します。Gemfile.lockは自
動的に生成されるものなので、内容を編集する必要はありません。

asagaoアプリケーションのGemfile.lockを見てみましょう。

chapter01/Gemfile.lock

 1 GEM

 2 remote: https://rubygems.org/

 3 specs:

 4 actioncable (5.2.0)

 5 actionpack (= 5.2.0)
 6 nio4r (~> 2.0)

 7 websocket-driver (>= 0.6.1)

 8 actionmailer (5.2.0)

 9 actionpack (= 5.2.0)

 10 actionview (= 5.2.0)

 11 activejob (= 5.2.0)

 12 mail (~> 2.5, >= 2.5.4)

 13 rails-dom-testing (~> 2.0)

 （以下省略）

Gemfile.lockファイルと一緒にRailsアプリケーションを受け取った別の開発者が「bundle
install」を実行すると、BundlerはGemfile.lockのほうを読み込んで、そこに記述されている
バージョンのGemパッケージをインストールします。

bundleコマンドのサブコマンド
bundleコマンドでは、lock、installのほかに次のサブコマンドが使えます。

bundle list
必要なGemパッケージをすべて一覧表示します。

bundle check
必要なGemパッケージがインストールされているか調べます。インストールされていれば、「The
Gemfile's dependencies are satisfied」と表示されます。

bundle update

Gemfile.lockを無視して、GemfileをもとにGemパッケージをインストールし直し、Gemfile.lockを作
り直します。Gemパッケージを最新版にしたいときに使います。

1.5 　Railsを動かしてみよう

前節で作成したRailsアプリケーションを起動してみましょう。また、ちょっとしたプログラ
ミングをしてアプリケーションを改造してみましょう。インストールがうまくいったかどうかを
確認するためと、作業をしながらRailsのしくみを何となく実感してみるためです。

アプリケーションの起動
1.3節で作ったasagaoディレクトリに移動してから「bin/rails s」コマンドを実行すると、

Pumaというウェブサーバーがパソコン内で起動します。「bin/rails server」と入力しても同じで
す。

$ bin/rails s

=> Booting Puma

=> Rails 5.2.0 application starting in development

=> Run `rails server -h` for more startup options

Puma starting in single mode...

* Version 3.12.0 (ruby 2.5.1-p57), codename: Llamas in Pajamas

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

なお、MSYS2/MinGWでは、「Puma starting in single mode...」のメッセージの前に次
のような警告が出力されますが、支障はありませんので無視してください。

*** SIGUSR2 not implemented, signal based restart unavailable!

*** SIGUSR1 not implemented, signal based restart unavailable!

*** SIGHUP not implemented, signal based logs reopening unavailable!

MSYS2/MinGW環境でLoadErrorが出た場合
本書の執筆時点では、Gemパッケージsqlite3がWindows版のRuby 2.5に対応していないた

め、次の節でRailsサーバーを起動すると次のようなエラーが出てしまいます。

cannot load such file -- sqlite3/sqlite3_native (LoadError)

近い将来（おそらくは本書が刊行されるまでに）この問題は解消されるはずですが、もし上記の
エラーに遭遇したら次の2つのコマンドを順に実行してください。

$ gem uninstall -a sqlite3

$ gem install sqlite3 --platform ruby -N

ウェブブラウザを開いて、URL欄に「http://localhost:3000/」と入力し、このサーバーにアク
セスしてください。Railsアプリケーションの初期画面が表示されます。表示されないときは、
URLを「http://127.0.0.1:3000/」に変えてみてください。

Railsアプリケーションの初期画面

この画面が表示されれば、Railsのインストールは成功です。ターミナルで Ctrl - C キーを押し
て、サーバーを終了してください。

PostgreSQLまたはMySQLを利用する場合
データベースにSQLite3ではなくPostgreSQLまたはMySQLを利用している方は、「bin/rails s」コ

マンドを実行する前に、データベースを設定してターミナルで「bin/rails db:create」を実行してください
（Chapter 4を参照）。Railsアプリケーションがデータベースに接続しようとするからです。SQLite3で
は自動的にデータベースが作られます。

Railsアプリケーションのディレクトリ構造
いったんサーバーを終了したら、作成したディレクトリの中身を見てみましょう。macOSユー

ザーの方はFinderで、Windowsユーザーの方はエクスプローラーでデスクトップのrailsフォルダ
を開いてください。そこにasagaoフォルダができているはずです。このフォルダの中のファイルを
修正したり追加したりするのが、Railsアプリケーションを開発する方法です。

asagaoフォルダの下には、app、binなどのフォルダ（ディレクトリ）があります。それぞれ
のディレクトリの役割は次のとおりです。頻繁に使うことになるのは、app、config、dbの各デ
ィレクトリです。次の項ではappディレクトリとconfigディレクトリの中のファイルを修正して簡
単なテストページを作ります。

ディレクトリの役割
ディレクトリ 役割
app モデル、ビュー、コントローラのコード。各Chapterで利用。
bin 各種スクリプトファイル。HINTを参照。
config ルーティングやデータベースなどの設定ファイル。各Chapterで利用。
db マイグレーションスクリプトやシードデータ。Chapter 4で解説。
doc 開発者向けのドキュメントを置く。本書では利用しない。
lib 自作のライブラリやrakeファイル。
log ログが出力される。
public アプリケーションを介さずに送信する静的なファイルを配置。
storage Active Storageが利用する。Chapter 13で解説。
test テストスクリプト。本書では利用しない。
tmp キャッシュなどのテンポラリディレクトリ。
vendor プラグインを配置。本書では利用しない。

binディレクトリのスクリプト
bin/を付けずにrailsコマンドを使うと、RubyGemsでインストールしたrailsコマンドが動きます。

bin/railsとすると、binディレクトリの下のスクリプトが使われます。Railsアプリケーション（本書では
asagao）は特定のバージョンのRails（本書では5.2.0）で動かす必要があります。パソコンにいくつ

ものバージョンのRailsをインストールしている場合は、bin/railsによって確実に特定のバージョンの
Railsを動かすことができます。

コントローラとアクションの作成
Railsの初期画面ではなく、自分が作ったページをサイトのトップページにしてみましょう。そ

のためにはコントローラとビューを作成する必要があります。

■コントローラを作成する前に
コントローラを作成する前に、次の内容のファイルをconfig/initializersディレクトリの下に

作成してください。ファイル名はgenerators.rbとします。

chapter01/config/initializers/generators.rb

 1 Rails.application.config.generators do |g|

 2 g.helper false # ヘルパーを生成しない

 3 g.assets false # CSS, JavaScript ファイルを生成しない

 4 g.skip_routes true # config/routes.rb を変更しない

 5 g.test_framework false # テストスクリプトを生成しない

 6 end

これは、後述の「bin/rails g」コマンドが生成するファイルを減らして、Railsの学習を進め
やすくするためのものです。

■コントローラの作成
それではコントローラを作成しましょう。ターミナルに戻り、「bin/rails g」コマンドを実行しま

す。「rails g controller コントローラ名 アクション名」でコントローラとアクションを作成できま

す。ここではTopControllerとindexアクションを作成することにします。「bin/rails g」は
「bin/rails generate」としても同じです。

$ bin/rails g controller top index

 create app/controllers/top_controller.rb

 invoke erb

 create app/views/top

 create app/views/top/index.html.erb

ディレクトリapp/controllersを開いてみましょう。中にtop_controller.rbというRubyファイ
ルができています。このファイルをテキストエディタで開くと、次のように書かれています。

class TopController < ApplicationController

 def index

 end

end

これは、TopControllerというクラスを記述したものです。TopControllerクラスは
ApplicationControllerクラスを継承しています。このように、Railsではコントローラを1つの
Rubyのクラスで表します。

TopControllerクラスの中には、indexメソッドができています。このindexメソッドがトップペ
ージを表示するときに呼ばれる「アクション」になります。

RubyのクラスについてはChapter 2を、コントローラとアクションの詳細についてはChapter
3を参照してください。

■ルーティングの設定
コントローラとアクションを作っただけでは、Railsアプリケーションのページにはなりません。

URLのパスとコントローラを結び付けるルーティングを設定する必要があります。configディレク

トリの下のroutes.rbを開き、「Rails.application.routes.draw do」と「end」の間の記述を
すべて削除して、次のように書き直してください。

chapter01/config/routes.rb

 1 Rails.application.routes.draw do

 2 root "top#index"

 3 end

これにより、トップページ（「https://www.oiax.jp/」のように/で表されるページ）に対応す
るコントローラとアクションがTopControllerのindexアクションになります。ルーティングに関して
は、Chapter 3とChapter 5を参照してください。

「bin/rails s」コマンドでもう一度サーバーを起動し、ブラウザで「http://localhost:3000/」
を開いてください。TopControllerのindexアクションのページが表示されます。

TopControllerのindexアクション

ビューの作成

■ビューの作成
indexアクションに対応するビューのテンプレートを編集してみましょう。ディレクトリ

app/views/topを開き、ファイルindex.html.erbを開いてください。拡張子が.erbのファイル
は、Railsのビューのためのテンプレートファイルです。ファイル名は、「アクション名（ここでは
index）.html.erb」となります。

このファイルを次のように編集して保存してみましょう。

<h1>こんにちは</h1>

<p>これからRailsの勉強を始めます。</p>

ブラウザで「http://localhost:3000/」を再読み込みすると、テンプレートファイルに記述し
た内容が表示されます。

ビューのテンプレートの内容が表示される

文字コードはUTF-8で保存する
Railsでは、文字コードはUTF-8を使います。Railsで使用するRubyのソースファイル（.rb）やテン

プレートファイル（.erb）をテキストエディタで保存するときは、必ず文字コードをUTF-8にしてくださ
い。

WindowsでTeraPadを使っている方は、「UTF-8」ではなく「UTF-8N」を選択ください。秀丸エデ
ィタでは、［エンコードの種類］から「Unicode（UTF-8）」を選択し、［BOMを付ける］オプショ
ンのチェックを外してください。

アクションはあとからでも作れる
「bin/rails g」でコントローラを作成するときは、「bin/rails g controller top」のようにアクション

名を指定せずにコントローラ名だけを指定できます。TopControllerクラスにindexメソッドを自分で
記述すれば、それがアクションになり、ビューのディレクトリにindex.html.erbファイルを作成すれば、そ
れがテンプレートとして使われます。

■変数の表示
これだけではつまらないので、もう少しRailsの機能を使ってみましょう。app/controllersの

下のtop_controller.rbを開き、indexアクションに@messageという変数を記述します。
@messageのあとの"と"の間には、好きな言葉を入れてください。文字コードはUTF-8にし

て保存します。

chapter01/app/controllers/top_controller.rb

 1 class TopController < ApplicationController

 2 def index

 3 @message = "おはようございます！"

 4 end

 5 end

続いてapp/views/topの下のテンプレートindex.html.erbに<%= %>という部分を作
り、間に変数@messageを置きます。

chapter01/app/views/top/index.html.erb

 1 <h1><%= @message %></h1>

 2 <p>これからRailsの勉強を始めます。</p>

ブラウザで「http://localhost:3000/」を再読み込みすると、コントローラのアクションに記
述した変数がビューに反映され、ブラウザ上に変数@messageの値が表示されます。

コントローラの変数がビューに反映される

再読み込みだけで開発が進む
Railsアプリケーションの開発中は、サーバーを起動したままにしておきます。ソースコードを修正した

ら、ブラウザで再読み込みするだけで修正点が確認できます。サーバーを再起動する必要はありませ
ん。「bin/rails g」などのコマンドを実行したいときは、ターミナルをもう1つ開いて作業をするとよいで
しょう。

Railsは頻繁にバージョンアップされる
Ruby on Railsは数週間から数か月おきに細かいバージョンアップが行われ、数年おきに大きなバ

ージョンアップが行われます。もし本書の刊行後にRails 6.0がリリースされたとしても、そのバージョン
では本書のサンプルプログラムがそのまま動くとは限りません。本書を読み進める際には、Railsバー
ジョン5.2を使用してください。また、オイアクス社のサポートサイトを必ず参照してください。

Chapter 1のまとめ

Ruby on Railsは、プログラミング言語Rubyによるウェブアプリケーション開
発のためのフレームワークです。
Ruby on Railsをインストールするには、Rubyをインストールしてから、
RubyGemsでRails関連のGemパッケージをインストールします。
ターミナルでrails newコマンドを実行すると、アプリケーションの骨格を作成
できます。
アプリケーションに必要なGemパッケージを管理・インストールするには
Bundlerを使います。
Railsアプリケーションは、ウェブサーバーPumaを動かしながら開発します。

コントローラにアクションを追加し、アクションに対応するテンプレートを記述
すると、ウェブページができます。

練習問題

［A］　次の文の内容が正しい場合は○、間違っている場合は×を記入してください。
（　）Rubyは21世紀の初めに登場した比較的新しいプログラミング言語です。
（　）Ruby on Railsは、オープンソース方式で開発されているフレームワークです。
（　）Ruby on Railsは、macOS、Windows、LinuxなどさまざまなOSで動作しま
す。
（　）Railsをインストールするには、パッケージ・マネージャのRubyGemsを使います。
（　）新しいGemパッケージを導入するときは、テキストエディタでGemfile.lockを編
集します。

［B］　次の空欄を埋めてください。
Railsの原則DRYは、「Don't Repeat Yourself」の略で　　　　　　　　　　　　
という意味です。
Railsは　　　　　　　　　　という設計哲学で作られており、規約に従ってアプリ
ケーションを開発することで、記述量を大幅に減らすことができます。

［C］　次の空欄を埋めて、変数@descriptionの値を表示させてください。

コントローラ

def index

 @message = "こんにちは"

 @description = "これからRailsアプリケーションを作ります。"

end

テンプレート

<h1><%= @message %></h1>

<p>　　　　　　　　　　　　　　　　　　　　</p>

Chapter

2　Ruby言語の基礎を学ぼう

Rubyを使ったことがない人は、Ruby on Railsに取りかかる前に、言語の学
習をしておきましょう。Rubyは学びやすく書きやすいオブジェクト指向言語です。
本書では、Ruby 2.5を使って文法や特徴を説明します。

これから学ぶこと

変数や演算子、条件分岐といったRuby言語でのプログラミングの基本を
学びます。
メソッドの書き方とブロックを扱うメソッドの使い方を学びます。
数値や文字列、配列、ハッシュ、日時、日付といったよく使うオブジェクトに
ついて学びます。
Rubyでのクラスの書き方を学びます。

Rubyはプログラミング言語の一種です。Rubyにはプログラミングを楽しくするためのおもしろい
特徴がたくさんあります。Rubyを使ってどんなプログラムが書けるでしょうか？

2.1 　変数と式

まずは、変数や式、演算子といったプログラムの基本的な書き方から見てみましょう。
Rubyの文法は簡単に覚えられます。数値や文字列の使い方を覚えながら文法の基
礎を学び、Rubyのおもしろさを体感してみましょう。

■準備作業（MSYS2/MinGW環境のみ）
MSYS2/MinGW環境で学習している方は、ターミナルで次のコマンドを実行してから本文

を読み進めてください。

$ alias ruby='winpty ruby'

このコマンドを実行しないと、対話式の（途中でキーボードからの入力が必要となる）
Rubyプログラムが正常に動きません。ターミナルを開くたびにこのコマンドを実行する必要が
あります。

Rubyの基本的な使い方
簡単なRubyプログラムを書いてみましょう。テキストエディタで次のソースコードを記述して、

2-1-1.rbというファイル名を付けて保存してください。ファイルを保存するときは、必ず文字コ
ードをUTF-8にしてください。

chapter02/2-1-1.rb

 1 puts "こんにちは"

Rubyプログラムを実行するには、ターミナルを使います。ターミナルを開いて、ファイルを保
存したディレクトリ（ここでは自分のホームディレクトリの下のrails/chapter2とします）に移
動してください。「ruby ファイル名」を入力すると、Rubyが起動してプログラムを実行します。

$ cd rails/chapter2

$ ruby 2-1-1.rb

こんにちは

「puts "こんにちは"」は文字列を表示するコードです。putsの部分をメソッドと言い、"こん

にちは"の部分を
ひきすう
引数と言います。

メソッドは「機能の呼び出し」、引数は「メソッドに指定する数値や文字列」と覚えてくださ
い。この例では省略していますが、「puts("こんにちは")」のように引数を()で囲むこともできま
す。

putsメソッドは、引数をターミナルに改行を付けて表示するメソッドです。改行なしで表示
したいときは、putsの代わりにprintメソッドを使います。

コンパイラとインタプリタ
Rubyは、インタプリタ型のプログラミング言語です。つまり、コンパイルして実行ファイルを作成する

のではなく、Rubyプログラムがテキストファイルに記述されたソースコードを読み込みながら、コードを
解釈して実行します。

ただし、Ruby 1.9以降の言語実装（YARV）では、処理を高速化するために、テキストのコード
をいったん独自のバイナリーコードに変換してから実行します。現在のRubyはコンパイラとインタプリタ
の中間型とも言えます。

■変数

変数は、数値や文字列などさまざまなオブジェクトを指し示すのに使います。オブジェクト
とは、とりあえずは「操作の対象になるもので、数値や文字列のようないろんな種類がある
もの」と考えてください。

等号（=）で変数とオブジェクトを結べば、その場で変数ができます。次の例では、「こん
にちは」という文字列を示す変数messageと、123という数値を示す変数numを作っていま
す。

chapter02/2-1-2a.rb

 1 message = "こんにちは"

 2 puts message

 3 num = 123

 4 puts num

こんにちは

123

代入演算子
=を代入演算子と言います。また、上の例の「message = "こんにちは"」のことを「変数

messageに"こんにちは"を代入する」と言います。Chapter 2では、「代入する」「入れる」「指し示
す」は同じことだと考えてください。代入の意味について詳しくは、「2.4　クラス」の「参照とコピー」を
参照してください。

変数名には、半角のアルファベットと数字、アンダースコア（_）を使い、変数名の1文字
目は半角アルファベットまたはアンダースコアにしてください。文法上は漢字やひらがなも使え
ますが、普通は使いません。

Rubyの変数には種類があります。messageのような変数をローカル変数と言います。変
数名をアルファベットの大文字で始めると定数になります。また、変数名を$や@などの記

号で始めると、変数の種類が変わります。本書では、ローカル変数のほかにインスタンス変
数と定数も使います（グローバル変数とクラス変数は扱いません）。

Rubyの変数の種類
変数名 種類
message ローカル変数
$message グローバル変数
@message インスタンス変数（「2.4　クラス」を参照）
@@message クラス変数
MESSAGE 定数（「2.4　クラス」を参照）

数値や文字列が持っている機能を使うには、「変数.メソッド」という形でメソッドを呼び出
します。次の例は、文字列の文字数を調べるものです。

chapter02/2-1-2b.rb

 1 message = "こんにちは"

 2 puts message.length

5

改行が文の終わりになる
Rubyでは、文の終わりを示すためのセミコロン（;）は必要ありません。1行に複数の文を書きた

いときには、次のようにセミコロンを使います。

a = 2; b = 3

Chapter 2では、紙面の都合上セミコロンを使っている例がありますが、自分で入力するときは、
セミコロンの代わりに改行を入れるほうがRubyらしいプログラムになります。

Rubyのコメント
Rubyのソースコードでは、#から改行までがコメントと解釈されます。コメントはプログラムの動作に

影響を与えません。

ごあいさつ

puts "こんにちは"

puts "さようなら" # ここにもコメントを書けます

数値と文字列
プログラミングの基本となる数値と文字列の扱い方を学びましょう。

■数値
足し算や掛け算のような計算をするには数値を使います。Rubyには、オブジェクトの種類

を表すクラスがあります。数値を表すクラスには、IntegerとFloatの2つがあります。

FixnumクラスとBignumクラス
かつてRubyには整数を表すFixnumクラスと非常に大きな整数を表すBignumクラスが存在しま

したが、Ruby 2.4で両者はIntegerクラスに統合されました。もしこれらのクラス名をプログラムの中
で使用すると、「constant ::Fixnum is deprecated」のような警告メッセージが出力されます。

変数に整数を代入するとIntegerクラス、小数点付きの数（浮動小数点数）を代入す
るとFloatクラスのオブジェクトができます。クラスについて詳しくは「2.4　クラス」を参照してく
ださい。

num = 1234 # Integer

pi = 3.14159 # Float

整数値と小数点付きの値を計算したときは、自動的にFloatに変換されます。このため、
数値の種類はあまり気にする必要はありません。

ただし、整数同士の割り算の結果は常に整数になります。次の例では、5を2で割った結
果は2に、5を2.0で割った結果は2.5となります。

chapter02/2-1-3a.rb

 1 a = 5

 2 b = 2

 3 c = 2.0
 4 puts a / b # 整数同士

 5 puts a / c # 整数と浮動小数点数

2

2.5

1234や"こんにちは"のようにソースコードに直接書かれた数値や文字列のことをリテラルと
呼びます。リテラルもオブジェクトなので、123.to_sや"こんにちは".lengthのようにメソッドを呼
び出せます。

変数に型はない
Rubyには「変数の型」はありません。ある変数に数値を入れたあとで、同じ変数に文字列を入

れ直すこともできます。変数に型はありませんが、変数が指し示すオブジェクトには種類があります。

a = 123 # aはIntegerオブジェクトを指す

a = "hello" # aはStringオブジェクトを指す

■文字列
文字の並びを一重引用符または二重引用符で囲むと、文字列ができます。Rubyの文

字列は、Stringクラスのオブジェクトです。一重引用符と二重引用符はどちらを使ってもか
まいませんが、本書ではおもに二重引用符を使います。

hello = 'こんにちは'

goodbye = "さようなら"

文字列は演算子+で連結できます。次の例は、2つの変数xとyにセットされた文字列同
士を連結して表示します。

chapter02/2-1-3b.rb

 1 x = "ABC"

 2 y = "DEF"

 3 puts x + y

ABCDEF

二重引用符で囲まれた文字列の中に#{○○}という形の部分があると、「○○」を文字
列に変換した結果が埋め込まれます。これを式展開と呼びます。一重引用符内では式展
開は行われません。

chapter02/2-1-3c.rb

 1 puts "2かける3は#{2 * 3}です。"

 2 name = "佐藤"

 3 puts "#{name}さん、こんにちは。"

2かける3は6です。

佐藤さん、こんにちは。

バックスラッシュ記法
二重引用符の中に二重引用符を書きたい場合など、文字列に特別な文字を埋め込むとき

は、"\""のように「バックスラッシュ＋文字」の形で記述します。Macの日本語キーボードで\を入力
するには、optionキーを押しながら¥キーを押します。Windowsの日本語キーボードでは円記号
（¥）のキーを押してください。なお、一重引用符の中で使えるバックスラッシュ記法は\'と\\だけ
です。

よく使われるバックスラッシュ記法
記法 特別な文字
\n 改行
\r 復帰
\t タブ
\" 二重引用符
\' 一重引用符
\\ バックスラッシュ
\xNN 番号で文字を表す。NNは16進数
\uNNNN ユニコード番号で文字を表す。NNNNは16進数

文字列を囲む記号
%q、%Q、%を使うと、一重引用符と二重引用符以外の好きな記号で文字列を囲むことがで

きます。HTMLのタグなど、文字列に引用符が含まれるときに使うと便利です。%Qと%は二重引
用符と同じく式やバックスラッシュ記法を埋め込むことができ、%qは一重引用符と同じく埋め込め
ません。

msg = %q/こんにちは/ # / /で囲う

msg = %Q(こんにちは) # ()で囲う

url = %!Google! # ! !で囲う

■数値と文字列の変換
Rubyは、数値と文字列を自動的に相互変換しないことに注意してください。数値と文

字列を+で連結したり、>で比較したりするとエラーになります。

a = "4"; b = 9

c = a + b # エラー

数値と文字列を互いに変換するには、メソッドを使う必要があります。次の例は、数値と
文字列を連結、足し算、掛け算する例です。数値を文字列に変換するにはto_sメソッドを
使います。文字列を整数に変換するにはto_iメソッドを、浮動小数点数に変換するには
to_fメソッドを使います。

chapter02/2-1-3d.rb

 1 a = 4; b = "9"

 2 puts a.to_s + b

 3 puts a + b.to_i

 4 puts a * b.to_i

49

13

36

ある変数が文字列以外のオブジェクトであるときや、何のオブジェクトを指しているかわか
らないときは、文字列の連結の代わりに式展開を使えばエラーになりません。

x = 123

s = "xの値は#{x}です"

■配列
配列とは、いくつものオブジェクトを並べてまとめるためのオブジェクトです。Rubyの配列は

Arrayクラスのオブジェクトです。配列中の個々のオブジェクトを配列の要素と呼びます。
配列を作るには、[と]の間にカンマで要素を区切って並べます。配列の要素を取り出した

り、要素の値を変えたりするには、「配列名[番号]」と記述します。要素の番号は0から始ま
ります。0が1番目、1が2番目です。

chapter02/2-1-4a.rb

 1 animals = ["dog", "cat", "elephant"]

 2 puts animals[0] # 1番目を表示

 3 animals[1] = "bat" # 2番目を変更

 4 puts animals[1] # 2番目を表示

dog

bat

現在の要素数より大きな番号を指定して要素を取り出そうとすると、何もないことを表す
nilが返されます。また、大きな番号を指定して要素を加えると、配列は自動的に大きくなり
ます。

次の例の1つ目の「puts animals[5]」は、nilなので何も表示されません。

chapter02/2-1-4b.rb

 1 animals = ["dog", "cat", "elephant"]

 2 puts animals[5] # 6番目はnil

 3 animals[5] = "whale" # 6番目を作成

 4 puts animals[5] # 6番目を表示

（ここにnilが出力されている）

whale

配列には、要素として雑多なオブジェクトを入れることができます。たとえば、文字列、数
値、その他のオブジェクトをごちゃ混ぜにして加えてもかまいません。配列自体もオブジェクト
ですので、ある配列を別の配列の要素にすることもできます。

cabinet = [123, "hello", false, ["apple", "orange"]]

nil、true、false
Rubyには特殊なオブジェクトとして、nil、true、falseが用意されています。nilは「何もない」ことを

表すオブジェクトです。trueは「真」、falseは「偽」を表すオブジェクトです。次の例に出てくる
empty?メソッドの戻り値は、trueかfalseになります。

配列を操作するには、Arrayクラスのメソッドを使います。たとえば、lengthメソッドは配列
の要素数を返します。配列が空かどうかを調べるには、empty?メソッドを使います。また、
配列に要素を追加するには、<<演算子（メソッド）を使います。

chapter02/2-1-4c.rb

 1 colors = ["red", "blue", "yellow", "pink"]

 2 puts colors.empty?

 3 colors << "green"

 4 puts colors.length

false

5

配列の要素を順番に取り出すループの書き方は「2.2　条件分岐、メソッド、ブロック」の
「繰り返しとブロック」、配列で使える便利なメソッドは「2.3　いろいろなオブジェクト」の「配
列、ハッシュ、範囲」で紹介します。

%w(～)という記法
%w()の中にスペースで区切って文字列を並べると、配列を簡潔に記述できます。次の2行は同

じ結果になります。文字列の中で式展開やバックスラッシュ記法を使いたいときは、大文字の%W(
)を使います。()は、< >のように好きな記号を使えます。

animals = ["dog", "cat", "elephant"]

animals = %w(dog cat elephant)

inspectとp
Rubyのすべてのオブジェクトでは、inspectメソッドが使えます。inspectメソッドは、オブジェクトの

内容を読みやすい形にした文字列を返します。また、pメソッドはinspectメソッドの結果を表示する
メソッドで、「p 変数」は「puts 変数.inspect」と同じ結果になります。この2つのメソッドは、デバッグ
やRubyの学習のために使えます。

arr = [1, 2, 3]

puts arr.inspect # [1, 2, 3] と表示

obj = Object.new

p obj # #<Object:0x007fcd81842820> と表示

式と演算子
プログラムを組み立てるのに必要となる、式と演算子について見てみましょう。

■式
式とは、リテラルや変数、演算子、メソッドなどを組み合わせたものです。式を組み合わ

せたり並べたりすれば、Rubyのプログラムができます。次のものは式です。

"hello" # リテラル（"hello"を返す）

name # 変数（nameの値を返す）

2 * 3 # 演算子式（掛け算の結果6を返す）

a > 0 # 条件式（trueかfalseを返す）

str.length # メソッド呼び出し（メソッドの戻り値を返す）

if a > 0 then "OK" end # if式（最後の式の値を返す）

式は何らかの値を返します。「式が値を返す」ことは、後述のHINT「irbを使おう」を実行
してみれば実感できるでしょう。式は代入演算子=の右辺にできるほか、if式で条件式に使
ったり、メソッドの引数に指定したりできます。

Rubyでは、式と文の区別はあまりありません。たいていの構文は何らかの値を返します。
次のようにif式の結果を変数に入れることもできます。変数resultには、aが0以上な
ら"OK"、そうでなければnilがセットされます（if式については「2.2　条件分岐、メソッド、ブ
ロック」を参照）。

result = (if a > 0 then "OK" end)

irbを使おう
Rubyファイルを書かずにRubyの機能を試すには、irbを使います。irbはRubyと一緒にインストー

ルされるプログラムです。ターミナルからirbと入力してください。

$ irb

irb(main):001:0>

ただし、MSYS2/MinGW環境ではirbが正常に動作しませんので、次のコマンドを実行してから
irbと入力してください。

$ alias irb='winpty ruby -e "require %{irb}; IRB.start(__FILE__)"'

ターミナルを開くたびに上記を実行する必要がありますので、エディタで~/.bashrcの末尾にこのコ
マンドを追加しておくとよいでしょう。なお、MSYS2/MinGW環境でirbを使う場合、日本語を入力
できないという制限があります。

irbの上でRubyの式を入力すると、=>の次に式の値が表示されます。

irb(main):001:0> s = "hello"

=> "hello"

irb(main):002:0> s.length

=> 5

irbを終了するにはexitと入力します。

■演算子
式同士で計算や比較を行うには、演算子を使います。四則演算と余りの計算のための

演算子には、+（足し算）、-（引き算）、*（掛け算）、/（割り算）、%（余り）があ
ります。

文字列の連結には足し算と同じ+を使うことと、整数同士の割り算の結果は整数にな
ることについては、すでに紹介しました。次は、四則演算と余りの計算の例です。

chapter02/2-1-5a.rb

 1 a = 7; b = 3

 2 puts a + b # 足し算

 3 puts a - b # 引き算

 4 puts a * b # 掛け算

 5 puts a / b # 割り算（整数同士の結果は整数）

 6 puts a % b # 余り

10

4

21

2

1

+=（足して代入）のように「計算して代入する」演算子もあります。「n += 2」は「nの
値に2を足したものを代入」ですので、nの値を2増やします。「n -= 1」は「nの値から1を引い
たものを代入」ですので、nの値を1つ減らします。

chapter02/2-1-5b.rb

 1 n = 2

 2 n += 2 # 2を足して代入

 3 puts n

 4 n -= 1 # 1を引いて代入

 5 puts n

4

3

演算子には、優先順位があります。たとえば「2 + 3 * 4」では*は+よりも優先されるた
め、「3 * 4」が先に計算されて結果は14になります。優先順位の低い演算子を先に優先さ

せるには、「(2 + 3) * 4」のようにかっこでくくります。

chapter02/2-1-5c.rb

 1 a = 2; b = 3; c = 4

 2 puts a + b * c # 掛け算が優先される

 3 puts (a + b) * c # 足し算が優先される

14

20

Rubyでの演算子の種類と優先順位は、次のようになります。

演算子の優先順位
優先順位 演算子 機能

高い + ! ~ 単項のプラス、否定、補数
　 ** べき乗
　 - 単項のマイナス
　 * / % 乗算、除算、剰余
　 + - 加算、減算
　 << >> ビットシフト
　 & 論理積（ビット演算）
　 | ^ 論理和、排他的論理和（ビット演算）
　 > >= < <= 比較演算子（大きい、小さい）
　 <=> == === != =~ !~ 比較演算子（等号）、パターンマッチ
　 && 論理積（かつ）
　 || 論理和（または）
　 範囲
　 ?: 条件演算子
　 = += -= *= /= %= 代入、計算して代入
　 not 否定

低い and or 論理積（かつ）、論理和（または）

演算子の直後で改行できる
Rubyでは、カンマや演算子の直後で改行すれば、文が続いていると見なされます（次の例の変

数c）。変数dのように演算子の前で改行すると、「d = a」で文が終わっていると見なされ、dの値
は2になります。変数eのように行の終わりに\（Windowsでは¥）を置けば、文が続いていることを
指定できます。

a = 2; b = 3

c = a +

b # cは5

d = a

+ b # dは2

e = a \

+ b # eは5

ただし、メソッド呼び出しのピリオドの前では改行できます。次の例では、変数s2には"HELLO"が
入ります。

s = "hello"

s2 = s

 .upcase

2.2 　条件分岐、メソッド、ブロック

ここでは、Rubyでの条件分岐、ループ、メソッドの書き方を紹介します。if式を使って
条件分岐のコードを書いたり、自分で作ったメソッドを呼び出したりしてみましょう。ま
た、eachメソッドとブロックによる繰り返しについても紹介します。

条件分岐
「もし○○ならば□□をする」のように、条件によって処理を変えるには、条件分岐の構

文を使います。Rubyでは、条件分岐のためにif式とunless式が用意されています。そのほ
かにcase式もありますが、本書では扱いません。

■条件式
「a == b」（aとbが等しいかどうか）のように、ある条件が成立しているかどうかを調べる

式を条件式と言います。if式やunless式で条件分岐を行うときに使います。

if a == b

 puts "aとbは同じ！"

end

次にRubyのおもな比較演算子をまとめます。

比較演算子
演算
子

意味 例

== 等しい a ==

b

=== 等しい（case式で内部的に使われる）
a
===
b

!= 等しくない
a !=
b

> より大きい
a >
b

>= 等しいか、より大きい
a >=
b

< より小さい
a <
b

<= 等しいか、より小さい
a <=
b

<=>
右辺が左辺より小さいとき−1、等しいとき0、大きいとき1を返す（Arrayオブ
ジェクトのsortメソッドなどで使われる）

a
<=>
b

「または」「かつ」「ではない」のように、比較演算子と組み合わせて使う論理演算子に
は、次のものがあります。&&のような記号の演算子と、andのような英単語の演算子の2
種類が用意されています。本書のサンプルでは、andとorではなく、&&と||を使うことにしま
す。

論理演算子
演算子 意味 例
&& かつ a > 1 && b > 2
and かつ a > 1 and b > 2
|| または a > 1 || b > 2
or または a > 1 or b > 2
! ではない !(a == b)
not ではない not a == b

条件式の結果は、「c = (a == b)」のように取り出すことができます。正しい場合の結果
はtrue（真）、正しくない場合はfalse（偽）になります。

次の例では、条件式の結果を変数bに入れています。入力された数値が0以上10未満
だったらtrue、それ以外の場合はfalseが表示されます。

chapter02/2-2-1a.rb

 1 print "数を入力してください："

 2 num = gets.to_i

 3 b = (0 <= num && num < 10)

 4 puts b

5と入力した場合

数を入力してください：5

true

0と空文字列は真になる
「if num」のように、変数を条件式にした書き方を考えてみましょう。Rubyではnumが0のときは

真になります。また、空文字列""も真になります。条件式が偽となるのは、falseかnilのときだけで
す。変数が0かどうか、空文字列かどうかで条件分岐を作るときは注意してください。

&&、||、and、orの優先順位
&&と||では、優先順位は&&のほうが高いのですが、andとorの優先順位は同じ、という点に

注意してください。次の例の「a || b && c」では、「b && c」が優先されるので結果はtrueになりま
す。「a or b and c」では、andとorの優先順位が同じなので左側の「a or b」が先に評価されて、
結果はfalseになります。

a = true; b = true; c = false

a || b && c # trueになる

a or b and c # falseになる

■if式
「もし○○ならば□□をする」といった条件分岐を作るときは、if式を使います。if式では、

条件式が正しい場合に実行されるプログラムを「if 条件式」と「end」で囲みます。if式だけ
でなく、unless式やメソッド定義、クラス定義、ブロックなど、Rubyの制御構造はすべてend
で閉じます。

if 条件式

 条件式が正しい場合に実行するプログラム

end

次の例は、入力した数字が偶数なら「偶数です。」と表示するものです。

chapter02/2-2-1b.rb

 1 print "整数を入力してください："

 2 num = gets.to_i

 3 if num % 2 == 0

 4 puts "偶数です。"

 5 end

100と入力した場合

整数を入力してください：100

偶数です。

このコードでputsの前に空白があることに注意してください。条件分岐やループ、メソッド、
クラスの中では、プログラムを読みやすくするためにインデント（字下げ）を行います。Ruby
プログラマは、タブ文字を使わずにスペース2個でインデントするのが一般的です。

if式を1行で書くときは、条件式の後ろにthenを書く必要があります。

if num % 2 == 0 then puts "偶数です。" end

次の例のように「if 条件式」を後ろに置くこともできます。Rubyプログラマは、この「後置の
if」を頻繁に使います。

puts "偶数です。" if num % 2 == 0

「もし○○ならば□□を、もし◎◎ならば△△を、そうでなければ◇◇する」のように、条
件を組み合わせるときは、elsifやelseを記述します。elsifのつづりに注意してください。「else
if」や「elseif」は間違いです。

if 条件式1

 条件式1が正しい場合に実行するプログラム

elsif 条件式2

 条件式2が正しい場合に実行するプログラム

else

 条件式1も条件式2も正しくないときに実行するプログラム

end

次の例は、入力した数字が1500以上なら「送料無料です。」、0より大きく1500未満な
ら「送料300円です。」、それ以外なら「入力が間違っています。」と表示するものです。

chapter02/2-2-1c.rb

 1 print "価格を入力してください："

 2 num = gets.to_i

 3 if num >= 1500

 4 puts "送料無料です。"

 5 elsif 0 < num && num < 1500

 6 puts "送料300円です。"

 7 else

 8 puts "入力が間違っています。"

 9 end

1000と入力した場合

整数を入力してください：1000

送料300円です。

if式のほかに、条件式が正しくないときにプログラムを実行するunless式もあります。
unless式ではif式と同様にelseを記述できますが、elsifにあたるものは記述できません。

unless num % 2 == 0

 puts "偶数ではありません。"

end

後置のifと同様に後置のunlessも使えます。

puts "偶数ではありません。" unless num % 2 == 0

ifの中のローカル変数
Rubyはif式やunless式のコードを読み込むと、そのコードを実行しない場合でも、その中にローカ

ル変数があれば、ローカル変数を作成します。変数の値はnilになります。
次の例は、変数numが奇数であっても、変数messageが作成されます。messageの値はnilな

ので何も表示されませんが、エラーにはなりません。

if num % 2 == 0

 message = "偶数です。"

end

puts message

メソッド
メソッドとは、コードのかたまりに名前を付けたものです。Rubyが用意しているメソッドだけ

でなく、自分で作ったメソッドを利用することもできます。

■メソッドの定義と呼び出し
Rubyでメソッドを作るには、次のように「def メソッド名」で始めて「end」で閉じます。メソ

ッドに引数があるときは、メソッド名の後ろにかっこで囲んで並べます。

def メソッド名(引数, 引数, ……)

 メソッドの内容となるプログラム

end

次は、引数のないメソッドhelloの例です。メソッドの内容は、putsメソッドで2回文字列
を出力するだけのものです。引数のないメソッドを呼び出すときは、helloのようにメソッド名を
記述するだけで済ませることができます。

chapter02/2-2-2a.rb

 1 def hello

 2 puts "こんにちは。"

 3 puts "それではまた。"

 4 end

 5

 6 hello

こんにちは。

それではまた。

メソッド名には半角のアルファベット、数字、アンダースコア（_）を使い、1文字目は半角
アルファベットまたはアンダースコアにしてください。メソッド名の最後には?か!を付けることもで
きます。

ローカル変数のスコープ
「スコープ」とは、変数が通用する範囲のことです。ローカル変数をメソッド内で作成すると、そのメ

ソッド内でしか通用しません。つまり、メソッド外に同名の変数があると、別々の変数と見なされま
す。また、ブロックの中でもローカル変数はスコープを持ちます。なお、if式やunless式の中のローカル
変数はスコープを持ちません。

num = 123

def method
 num = 456

 puts num

end

method # 456と表示（メソッド内のnum）

puts num # 123と表示（メソッド外のnum）

■引数と戻り値
メソッドに引数を持たせるには、メソッド定義で(と)の間に引数名をカンマで区切って並べ

ます。戻り値を返したいときは、最後に変数名を1行書けば済みます。Rubyでは、メソッド
内で最後に実行された式の値が戻り値になります。

次に示すのは、引数を2つ持ち、戻り値を返すメソッドの例です。引数baseとheightを元
に、三角形の面積を計算します。resultの1行で変数resultの値が戻り値になります。

引数を持つメソッドを呼び出すときは、triangle(11, 9)のようにメソッド名の後ろに引数を
並べます。

chapter02/2-2-2b.rb

 1 def triangle(base, height)

 2 result = base * height / 2.0

 3 result

 4 end

 5

 6 area = triangle(11, 9)

 7 puts "面積は、#{area}です。"

面積は、49.5です。

最後の式の値が戻り値になるわけですから、次のように簡単に書いても同じです。

def triangle(base, height)

 base * height / 2.0

end

メソッドを呼び出すときは、「triangle 11, 9」のようにかっこを省略することもできます。これ
までに使ってきたputsメソッドでは、かっこを省略していますが、puts("こんにちは")のようにか
っこを付けてもかまいません。

return

メソッドの途中で戻り値を指定してメソッドから抜ける場合は、returnを使用します。次の例で
は、引数のどちらかが負の値であったら戻り値がnilになります。

def triangle(base, height)

 return nil if base < 0 || height < 0

 base * height / 2.0

end

?と!が付くメソッド
Rubyのメソッドの中には、メソッド名に?や!が付いているものがあります。?が付いたメソッドは、

trueまたはfalseを返すことを表します。たとえば、StringクラスやArrayクラスのempty?メソッドは、
文字列や配列が空かどうかを調べます。

if message.empty? then puts "空です。" end

!が付いたメソッドは、そのオブジェクトの中身を変更することを表します。たとえば、Stringクラスの
chomp!メソッド（末尾の改行を取り除く）などです。!が付かない同名のメソッドは、オブジェクトを
変更せずに新しいオブジェクトを返します。

line.chomp! # lineの末尾の改行を取り除く

line2 = line.chomp # 末尾の改行を取り除いた新しい文字列を返す

メソッド名に?や!を付けるのは、Rubyの文法というより慣習です。自分でメソッドを作るときも、メ
ソッドの機能に合わせて?や!を付けるとよいでしょう。

繰り返しとブロック
ブロックは、Rubyのおもしろい特徴の1つです。ブロックを使いこなせば、繰り返しの処理を

とても簡潔に記述できるようになります。

■ブロックの利用
Rubyでは、メソッドを呼び出すときに、ブロックと呼ばれるコードのかたまりを渡すことがで

きます。ブロックは繰り返しの処理によく使われます。次のソースを書いて実行してみましょ
う。0から9までの数字が表示されます。

chapter02/2-2-3a.rb

 1 10.times do |i|

 2 print i, ", "

 3 end

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10.timesの10は、10という値を持つ数値オブジェクトで、timesは数値オブジェクトの
timesメソッドの呼び出しです。timesメソッドには、ブロックを渡すことができます。

ブロックとは、doからendまでのプログラムのひとかたまりの部分です。ブロックを渡された
timesメソッドは、数値の回数（10）だけブロックを繰り返し実行します。

また、ブロックには|と|で囲んでブロックパラメータを指定できます。上記の例ではiがブロック
パラメータです。timesメソッドは、iの値を0から9まで1つずつ増やしながら、繰り返しブロック
を実行します。その結果「print i, ", "」でiの値が10回表示されます。

ブロックの呼び出し

ブロックは、doとendの代わりに{と}で囲むこともできます。上記の例は、次のように記述
できます。

10.times { |i| print i, ", " }

数値オブジェクトには、指定された数まで値を増やしながら繰り返すuptoメソッドもありま
す。次の例は2から6までの数値を表示するものです。メソッドに引数とブロックを両方渡すと
きは、「メソッド名(引数) do ～ end」と記述します。

chapter02/2-2-3b.rb

 1 2.upto(6) do |i|

 2 print i, ", "

 3 end

2, 3, 4, 5, 6,

数値オブジェクトの繰り返しメソッド
uptoメソッドの代わりにdowntoメソッドで6.downto(2)とすると、6から2まで数を減らしながら表

示できます。stepメソッドで0.step(10, 2)とすると、0から10まで数を2つずつ増やしながら繰り返しま
す。

■eachメソッド
配列（Array）には、ブロックを使った便利なメソッドがあります。代表的なものがeachメ

ソッドです。eachメソッドは、ブロックパラメータ（次の例ではitem）に配列の要素を入れな
がら、配列の要素数だけブロックを繰り返し実行します。配列の要素を順番に処理するに
は、eachメソッドを使うのが普通です。

chapter02/2-2-3c.rb

 1 arr = ["apple", "orange", "grape"]

 2 arr.each do |item|

 3 print item + ", "

 4 end

apple, orange, grape,

配列の要素とともに要素の番号も扱いたいときは、each_with_indexメソッドを使いま
す。ブロックパラメータには、「|item, i|」のように要素とその番号が入ります。

chapter02/2-2-3d.rb

 1 arr = ["apple", "orange", "grape"]

 2 arr.each_with_index do |item, i|

 3 print "#{i}.#{item}"

 4 print ", " if i < arr.length - 1

 5 end

0.apple, 1.orange, 2.grape

■繰り返し以外のブロック
ブロックを受け取るメソッドは、繰り返しのために使われるとは限りません。たとえば、Fileク

ラスのクラスメソッドopenは、ブロックを使って呼び出せます。openメソッドは、「ファイルを開
く→ブロックパラメータにFileオブジェクトを渡してブロックのコードを実行→ファイルを閉じる」と
いう処理をします。ファイルを閉じるコードを書かなくてもよいので便利です。

次の例は、output.txtというファイルを作ってその中に「こんにちは」という文字列を書き込
みます。

chapter02/2-2-3e.rb

 1 File.open("output.txt", "w", encoding: "utf-8") do |file|

 2 file.puts "こんにちは"

 3 end

output.txtの内容

こんにちは

openメソッドの第2引数"w"は書き込み用にファイルを開くことを示します。読み込み用
なら"r"とするか、第2引数を省略します。第3引数「encoding: "utf-8"」はハッシュでファイ
ルの文字コードを指定しています（ハッシュについては2.3節を参照）。

Railsにも、繰り返し以外の目的でブロックを受け取るメソッドがあります。代表的なもの
は、フォームを作成するform_forメソッド（Chapter 6）です。

例外処理
例外処理とは、プログラムの実行中に何らかのエラー（例外）が発生したときに、そのエ

ラーを捕まえて後始末を行うしくみです。Rubyでは例外処理を「begin ～ end」で記述しま
す。この中で例外が発生すると、プログラムの実行が中断されて、すぐにrescue以下の節が
実行されます。rescue節では、エラーメッセージの表示などを記述します。

rescue節の下にはelse節（省略可能）を置いて、例外が発生しなかった場合の処理
を記述することもできます。

begin

 例外が発生する可能性のあるプログラム

rescue

 例外の発生後に処理するプログラム

else

 例外が発生しなかった場合のプログラム

end

メソッドの中では、beginなしでrescue節やelse節を置いて例外処理を行うこともできま
す。

def メソッド名(引数)

 例外が発生する可能性のあるプログラム

rescue

 例外の発生後に実行するプログラム

else

 例外が発生しなかった場合のプログラム

end

次の例は、ファイルからデータを1行読み込んで表示するものですが、ファイル操作の部分
をbeginブロックで囲んでいます。存在しないファイルを開いたときは、例外が発生して
rescue節に処理が移ります。「print f.gets」は実行されません。この例のrescue節では、
warnメソッドで「エラー発生！」という文字列を表示しています。warnメソッドはターミナルに
警告メッセージを出力しますが、プログラムの実行を止めることはありません。

chapter02/2-2-4a.rb

 1 begin

 2 File.open("some.txt", encoding: "utf-8") do |f|

 3 print f.gets

 4 end

 5 rescue

 6 warn "エラー発生！"

 7 end

エラー発生！

例外が発生したときは、例外を表すオブジェクトを調べ、例外の種類やメッセージを取り
出すことができます。例外オブジェクトを調べるには、rescue節を「rescue => 変数」のよう
に記述します。

次の例では、変数eに例外オブジェクトを取り出しています。例外オブジェクトのクラス名は
Errno::ENOENT、例外のメッセージは「No such file or directory……」であることがわかり
ます。

chapter02/2-2-4b.rb

 1 begin

 2 File.open("some.txt", encoding: "utf-8") do |f|

 3 print f.gets

 4 end

 5 rescue => e

 6 warn "#{e.class} / #{e.message}"

 7 end

Errno::ENOENT / No such file or directory @ rb_sysopen - some.txt

例外を発生させるには
プログラムの中でエラー処理のために自分で例外を発生させるには、raiseメソッドを使います。

raiseメソッドに文字列を指定すると、RuntimeErrorクラスによる例外が発生します。

begin

 raise "ファイルがない！" unless File.exist?("some.txt")

rescue => e

 warn e.message

end

2.3 　いろいろなオブジェクト

Rubyには、数値や文字列のほかに便利なオブジェクトがいろいろ用意されています。
そうしたオブジェクトのうち、Railsの開発でよく使うことになるシンボル、配列とハッシ
ュ、日時と日付の扱い方について紹介します。

シンボル
Rubyのシンボルは、「名前」を表すオブジェクトです。シンボルを作るには:catのように名前

の前にコロンを付けます。「シンボルとは何か」を説明をする前に、シンボルのおもな使い方を
紹介しましょう。

シンボルは、メソッドや変数の名前を示すのに使われます。これはシンボルのもともとの使
い方です。たとえば、respond_to?メソッドにシンボルを渡すと、そのオブジェクトがメソッドを
持っているかどうかを調べられます。

obj.find(1) if obj.respond_to?(:find)

メソッドや変数の名前だけでなく、アプリケーションで特別な意味を持つ名前を表すのにも
シンボルがよく使われます。次の例は、Chapter 5で紹介するリンクの作り方で、シンボルで
URLのパスを表しています。

link_to "会員一覧", :members

Railsの開発でよく使うことになるのは、ハッシュのキーをシンボルにすることです。次の例は
Chapter 3のもので、link_toメソッドの第3引数にハッシュでオプションを渡しています。
「class: "menu"」は、「:class => "menu"」と書いても同じです。

link_to "Home", root_path, class: "menu"

シンボルとは何か、簡単に説明しておきましょう。シンボルは文字列とよく似ていますが、そ
の正体は「文字列を整数で表したもの」です。

シンボルを作ると、Rubyの内部では「文字列→一意の整数」の変換が行われ、整数
値として管理される。
シンボルは、1つの文字列が1つのオブジェクトに1対1で対応する。
シンボルの内容は変更できない。upcase!のような!付きのメソッドを持たない。

文字列の代わりにシンボルを使うと、プログラムの実行を少々効率化できます。しかし、
多くのRubyプログラマは、むしろソースコードを読みやすくするためにシンボルを使います。シン
ボルを使えば、ある文字列が特別な意味を持つ「名前」を表していることを明示できます。ま
た、"name"よりも:nameのほうが書きやすい、という理由もあります。

シンボルのリテラル
シンボルの名前にはどんな文字でも使えますが、「:名前」の名前の部分は、変数名やメソッド名

に使えるものしか使えません。:1234のように数字で始めることはできません。:1234のような名前の
シンボルを作りたいときは、:"1234"と記述します。

変数名やメソッド名で使う@や?は、:@memberや:empty?のようにそのまま記述できます。

配列、ハッシュ、範囲
ここでは、配列、ハッシュ、範囲の使い方を紹介します。この3つは、「オブジェクトの集まり

を扱うオブジェクト」です。

■配列の便利なメソッド

これまで何度か紹介してきた配列（Arrayオブジェクト）には、検索用のメソッドがいくつ
も用意されています。include?メソッドは、引数が配列に含まれているときにtrueを返しま
す。

fruits = ["apple", "orange", "banana"]
puts "OK" if fruits.include?("banana")

if式で「XがA、B、C、……のどれかの場合」という条件を記述するときは、配列と
include?を使うと簡単に書けます。

print "合い言葉："

word = gets.chomp

if ["apple", "orange", "banana"].include?(word)

 puts "OK"

end

in?メソッド
include?とは逆に、あるオブジェクトが配列に含まれているかどうかを調べるin?メソッドもありま

す。fruits.include?("banana")は"banana".in?(fruits)とも書けます。ただし、in?メソッドはRuby
のものではなく、RailsのActive Supportが用意しているメソッドです。

配列には、ブロックを使って条件を調べるためのメソッドがたくさんあります。all?メソッドで
配列の「すべての要素が条件を満たす」かどうかを、any?メソッドで「どれか1つが条件を満た
す」かどうかを調べられます。

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

puts "OK" if numbers.all? { |item| item > 0 } # すべて0より大きいか

puts "OK" if numbers.any? { |item| item % 2 == 0 } # 偶数が含まれるか

ある条件を満たす要素を1つ取り出すには、detectメソッド（別名findメソッド）を使い
ます。条件を満たす要素をすべて取り出して配列にするには、find_all（別名selectメソッ
ド）を使います。

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

number = numbers.detect { |item| item > 5 } # 5より大きい数1つ

numbers2 = numbers.find_all { |item| item > 5 } # 5より大きい数すべて

mapメソッド（別名collectメソッド）は、ブロックの戻り値を集めた新しい配列を作りま
す。頻繁に使われるメソッドですので、覚えておきましょう。次の例では、文字列を大文字に
変えた配列を作ります。

chapter02/2-3-2a.rb

 1 fruits = ["apple", "orange", "banana"]

 2 big_fruits = fruits.map { |item| item.upcase }

 3 p big_fruits

["APPLE", "ORANGE", "BANANA"]

「&:メソッド名」という書き方
上記の例は、次のように書き換えられます。メソッドの引数に&:methodを渡すと、「{ |item|

item.method }」というブロックを渡すのと同じ結果になります。

big_fruits = fruits.map(&:upcase)

■ハッシュ

ハッシュ（連想配列）も「オブジェクトの集まりを扱うオブジェクト」で、Hashクラスのオブ
ジェクトです。ハッシュと配列の違いは、値を入れたり取り出したりするときに、番号の代わり
にキー（名前）を使うことです。

ハッシュの要素はキーと値のペアからなります。ハッシュを作成するには、{ }の間に「キー =>
値」をカンマで区切って並べます。

次の例では、キーを国名の文字列、値を人口としたハッシュを作っています。「キー =>
値」の間には改行を入れていますが、改行しなくてもかまいません。

chapter02/2-3-2b.rb

 1 population = {

 2 "France" => 65027000,

 3 "Germany" => 81768000,

 4 "Italy" => 60705991

 5 }

 6 puts population["Italy"] # キーが"Italy"の値

 7 population["Japan"] = 127760000 # 新しい要素を追加

 8 puts population["Japan"] # キーが"Japan"の値

60705991

127760000

ハッシュのキーがシンボルのときには、「:キー => 値」の代わりに「キー: 値」という形で並べら
れます。本書ではこの書き方を使います。キーとコロンの間にはスペースを入れないようにご注
意ください。

population = { fr: 65027000, de: 81768000, it: 60705991 }

puts population[:it]

ハッシュの要素（キーと値）を順に取り出すには、eachメソッドを使います。キーと値の2
つがeachメソッドのブロックパラメータに入ります。

次の例は、カンマ区切りのファイルを読み込んでデータをハッシュに取り込むものです。

chapter02/2-3-2c.rb

 1 books = {}

 2 File.open("books.txt", encoding: "utf-8") do |f|

 3 f.each_line do |line|

 4 cols = line.chomp.split(",")

 5 books[cols[0]] = cols[1]

 6 end

 7 end

 8

 9 books.each do |key, val|

 10 puts "#{key}、#{val}円"

 11 end

chapter02/books.txt

 1 坊ちゃん,300

 2 こころ,380

 3 明暗,700

坊ちゃん、300円

こころ、380円

明暗、700円

ここで使っているeach_lineはFileクラスのメソッドで、ファイルの内容を1行ずつ読み込ん
で、文字列を返します。splitメソッドはStringクラスのメソッドで、文字列を区切り文字で分

割して配列を返します。

ハッシュの要素の順番
Ruby 1.8までのハッシュには要素の順番がありませんでした。eachメソッドでキーと値を取り出す

ときに、どのような順番になるかは不定でした。Ruby 1.9以降のハッシュには順番があります。要素
は{ }の間に指定した順で並べられ、あとから追加した要素は最後に加えられます。

■ハッシュとメソッドの引数
ここで、ハッシュがメソッドの引数になるときの注意点について述べます。次の例で、

triangleメソッドはハッシュを引数にしています。こうしたメソッドでは、「base: 2.3, height:
3.4」のように順番を逆にしても、同じ結果になるので便利です。

chapter02/2-3-2d.rb

 1 def triangle(params)

 2 params[:base] * params[:height] / 2.0

 3 end

 4 area = triangle(height: 3.4, base: 2.3)

 5 puts "三角形の面積：#{area}"

三角形の面積：3.9099999999999997

ハッシュを引数にしたメソッドの呼び出しを見てみましょう。

triangle({ height: 3.4, base: 2.3 })

ハッシュを引数の最後に指定するときは、{と}を省略できます。

triangle(height: 3.4, base: 2.3)

さらに、Rubyではメソッド呼び出しの()を省略できるので、次のようにも書けます。

triangle height: 3.4, base: 2.3

Railsでは、ハッシュの引数を持つメソッドがたくさん用意されています。Chapter 3の
link_toメソッドやChapter 4のwhereメソッドなどです。そうしたメソッドを呼び出すときは、か
っこを省略することがよくあります。省略によって直感的でシンプルなコードが書けますが、わ
かりにくいときはかっこを記述してください。

■範囲
範囲は、配列やハッシュと同じく集まりを表すオブジェクト（Rangeクラスのインスタンス）

です。範囲を作るには、最初の要素と最後の要素をピリオド2つでつなげます。次の範囲
は、1から10までの整数を表します。

range = 1..10

最後の要素を含めないときは、ピリオド3つを使います。次の範囲は、1から9までの整数
を表します。

range = 1...10

文字列を範囲に使うこともできます。次の例は、aからhまでのアルファベット1文字を表し
ます。

range = "a".."h"

eachメソッドを使えば、範囲の中の要素を順に取り出せます。次の例は、7の段の掛け
算を4つだけ表示します。

chapter02/2-3-2e.rb

 1 (1..4).each { |num| puts "7 x #{num} = #{7 * num}" }

7 x 1 = 7

7 x 2 = 14

7 x 3 = 21

7 x 4 = 28

■日時と日付
Railsアプリケーションにおいて、日時と日付はやや異なった扱いになります。日時とは

Railsを構成するパッケージのひとつActive Supportが提供する
ActiveSupport::TimeWithZoneクラスのインスタンスです。本書ではこれを「日時オブジェ
クト」と呼びます。

このオブジェクトはクラス名が示すとおりタイムゾーン（時間帯）の情報を持ちます。日時
オブジェクトは、過去から未来に向かって流れる時間軸におけるある一点を指します。つま
り、1日のうちの特定の時刻（たとえば、正午）ではなく、あるタイムゾーンにおけるある日付
と時刻の組み合わせを指します。たとえば「日本時間における2018年1月1日午前9時30
分15秒」のような時点を表します。デフォルトのタイムゾーンはシステム（Railsアプリケーション
が動作しているコンピュータ）で設定されているものになります。タイムゾーンを切り替える方
法については、本書では扱いません。

Ruby本体にも日時を表すTimeクラスが存在しますが、通常Railsアプリケーションの開発
でTimeクラスのインスタンスを直接扱うことはありません。ただし、Active Supportによって
付け加えられたTimeクラスのメソッドを使うことはあります。たとえば、クラスメソッド
Time.currentは「今」を表す日時オブジェクトを返します。

他方、日付を表すオブジェクトは、Rubyの標準ライブラリに含まれているDateクラスのイン
スタンスです。これはタイムゾーンとは無関係に「2018年1月1日」のような日付を表します。
日時オブジェクトを日付オブジェクトに変換するにはto_dateメソッドを用います。次の例は、
「今日」を表す日付オブジェクトを返します。

Time.current.to_date

Rails開発ではDate.todayメソッドを使わない
Dateクラスにも「今日」を返すtodayメソッドがありますが、Railsアプリケーションでは使わないほう

がよいでしょう。このメソッドはRailsアプリケーションで設定されているタイムゾーンを考慮しないので、
アプリケーションを国際化する際の妨げとなります。

日付オブジェクトや日時オブジェクトから年月日単位の値を取り出すには、それぞれ
year、month、dayメソッドを用います。曜日はwdayメソッドで取り出せます（日曜が0、
月曜が1、……、土曜が6）。

t = Time.current

puts t.month # 月を表示

puts t.wday # 曜日を表示

また日時オブジェクトには時分秒単位の値を取り出すためのメソッドhour、min、secが
用意されています。

t = Time.current

puts t.hour # 時を表示

puts t.min # 分を表示

次の例は、読者のパソコンで設定されているタイムゾーンにおける「2018年4月21日20時
12分25秒」を表す日時オブジェクトを作る式です。

Time.zone.local(2018, 4, 21, 20, 12, 25)

日時オブジェクトには、いくつかの便利なメソッドが備わっています。たとえば、yesterdayメ
ソッドとtomorrowメソッドは、日時オブジェクトの指す時点を基準にして「24時間前」と「24
時間後」を返します。また、last_weekメソッドとnext_weekメソッドは、「1週間前の同時
刻」と「1週間後の同時刻」を返します。weekの部分をweek、month、yearで置き換えれ
ば、それぞれ「前（次）の週の同時刻」、「前（次）の月の同時刻」、「前（次）の年の
同時刻」を返します。次の例は「今から1か月後の時点の24時間後」を示す日時オブジェク
トを返します。

Time.current.next_month.tomorrow

月の大小、うるう年
日時オブジェクトに対して月が関係する計算を行うときには、月の大小やうるう年のことを考慮に

入れる必要があります。今日の日付が「2018年5月31日」あるいは「2018年5月31日」であれば、
式Time.current.next_monthは「2018年6月30日の同時刻」を返します。また、今日の日付が
「2020年1月29日」から「2020年1月31日」の間であれば、この式は「2020年2月29日の同時
刻」を返します。

beginning_of_dayメソッドは、「その日の初め」を返します。weekの部分をweek、
month、yearで置き換えれば、それぞれ「その週の初め」、「その月の初め」、「その年の初
め」を返します。次の例は「明日の午前0時」を示す日時オブジェクトを返します。

Time.current.tomorrow.beginning_of_day

advanceメソッドに「days: 日数」を指定すると、その日数だけ日時を進めます。次の例
は3日後の午前0時です。「hours: 3」（3時間後）、「days: -2」（2日前）、「month:
6」（6か月後）のような指定もできます。

Time.current.advance(days: 3).beginning_of_day

日付および日時を好きな形式の文字列に変換するには、strftimeメソッドを使います。
引数の文字列に「%文字」を埋め込むと、そこが日付と時刻のパーツに置き換わります。次
の例では、「年/月/日 時:分」という形式で現在の日時を表示します。

chapter02/2-3-4.rb

 1 require "active_support/all"

 2

 3 time = Time.current

 4 puts time.strftime("%Y/%m/%d %H:%M")

2018/04/23 11:58

上記のコードの1行目ではrequireメソッドによりActive Supportの機能をすべて取り込ん
でいます。単なるRubyスクリプトの中でTime.currentメソッドを利用するには、この準備作
業が必要です。

strftimeメソッドで使えるおもな書式は次のとおりです。

strftimeメソッドのおもな書式
書式 機能
%a 英語の曜日の略名（Sun、Mon、……）
%A 英語の曜日名（Sunday、Monday、……）
%b 英語の月の略名（Jan、Feb、……）
%B 英語の月名（January、February、……）
%d 日
%H 時（24時間制）
%I 時（12時間制）
%m 月（1月は01、2月は02、……）

%M 分
%p 午前、午後（AMまたはPM）
%S 秒
%y 2桁の年
%Y 4桁の年
%Z タイムゾーン名
%% %の文字

2.4 　クラス

Rubyは、あらゆるものをオブジェクトとして扱います。文字列や配列のようにあらかじ
め組み込まれているクラスのオブジェクトだけでなく、自分でクラスを作ることもできま
す。自分用のクラスを書いたり使ったりする方法を見てみましょう。

Rubyのオブジェクト
Rubyのオブジェクトはクラス（ロボットの設計図）とインスタンス（ロボット）からできてい

ます。自分でロボットクラスを定義したら、それをもとにロボットを作成して使うことができま
す。

■クラスとインスタンス
Rubyのようなオブジェクト指向言語でのオブジェクトとは、「データと手続きをまとめたモノ」

です。たとえば、ゲームソフトの中で「ロボット」というものをオブジェクトとして扱えば、名前やヒ
ットポイントなどのデータや、移動や攻撃といった手続きを1つの単位にまとめることができ、
効率よくプログラムが書けます。

オブジェクトについて考えるときは、クラスとインスタンスの2つに分けます。クラスは、オブジ
ェクトの設計図です。設計図に基づいて実際にコンピュータのメモリ上に作られたオブジェクト
を、インスタンスと呼びます。

クラスとインスタンス

クラスを自分で記述するには、「class クラス名 ～ end」という構文を使います。たとえ
ば、ロボットを表すRobotというクラスは、次のように記述します（中身はまだ空です）。
Rubyでは、クラス名は必ず大文字で始めることに注意してください。

クラスを記述すると、newメソッドでインスタンスを作成できます。

chapter02/2-4-1a.rb

 1 class Robot

 2 end

 3

 4 robo1 = Robot.new

 5 p robo1

#<Robot:0x007fe1bd845b38>

newメソッドによって、Robotクラスの設計図に基づいたインスタンスが1つできて、変数
robo1はそのインスタンスを指し示します。

本書では、「○○オブジェクト」という言葉を「○○クラスのインスタンス」の意味で使いま
す。「robo1はRobotオブジェクト」と言ったら、「変数robo1はRobotクラスのインスタンスを

指す」ということです。

■参照とコピー
前節までは=を何気なく使っていましたが、厳密に言うと代入演算子=は左辺の変数に

「右辺の値への参照（オブジェクトリファレンス）」を代入します。つまり、左辺に右辺の値を
参照させるのです。

次の例を試してみましょう。「s2 = s1」とすると、s2がs1と同じインスタンスを参照すること
になります。object_idメソッドでオブジェクト番号を表示させると、同じインスタンスを指して
いることがわかります。

s1.upcase!でs1の文字列を大文字に変更したあと、s2を表示すると、大文字になりま
す。s1とs2が同じものを指しているためです。

chapter02/2-4-1b.rb

 1 s1 = "hello"

 2 s2 = s1

 3 puts s1.object_id

 4 puts s2.object_id

 5

 6 s1.upcase!
 7 puts s2

70296032054580

70296032054580

HELLO

インスタンスの参照

複数の変数で別のオブジェクトを扱っているつもりなのに、実は同じものを指していたた
め、片方を変更するともう一方も変更されてしまった、ということがあります。そうした間違い
を避けるには、dupメソッドでオブジェクトの複製を作ります。次の例では、s1とs2は別のイン
スタンスを参照し、持っている文字列はどちらも"hello"になります。dupメソッドは、すべての
オブジェクトに用意されています。

s1 = "hello"

s2 = s1.dup

なお、整数（Integer）、シンボル、true、false、nilは例外で、同じ値なら同じオブジェ
クトになります。

オブジェクトの種類を調べるには
ある変数が指しているオブジェクトがどのクラスのインスタンスであるかを調べるには、次のメソッド

が使えます。

classメソッド：クラスを返します。
kind_of?メソッドまたはis_a?メソッド：オブジェクトが引数に指定したクラスのインスタンスな
ら、trueを返します。親クラスを指定してもtrueになります。
instance_of?メソッド：引数に指定したクラスのインスタンスなら、trueを返します。親クラスを
指定するとfalseになります。

s1 = "hello"

puts s1.class # String

puts s1.kind_of?(String) # true

puts s1.kind_of?(Object) # true

puts s1.instance_of?(String) # true

puts s1.instance_of?(Object) # false

インスタンスメソッド
インスタンスごとにデータを持たせるには、インスタンス変数を使います。同じクラスのインス

タンス間で共通の手続きは、インスタンスメソッドで実装します。

■初期化とメソッド
クラスの中に「def メソッド名 ～ end」を記述すると、インスタンスメソッドができます。イン

スタンスメソッドは、「変数.メソッド名」のように呼び出して、オブジェクトから情報を得たり、オ
ブジェクトを操作したりできます。

次の例は、現在位置を移動するmoveメソッドと、ロボットの情報を文字列で返すto_sメ
ソッドをRobotクラスに加えるものです。ロボット名は変数@nameに、現在位置の座標は
@xと@yに入っていることにします。

class Robot

 def move(x, y)

 @x += x; @y += y

 end

 def to_s

 "#{@name}: #{@x},#{@y}"

 end

end

@を付けた変数は、クラスのインスタンスごとに作られるインスタンス変数です。インスタン
ス変数@nameと@x、@yにあらかじめ名前と位置を入れておくために、初期化用のメソッ
ドを作りましょう。

クラスの中には、initializeという初期化用のメソッドを置くことができます。initializeは、
newでインスタンスを作るときに自動的に実行されます。

initializeメソッドの引数の数はいくつでもよいですし、なくてもかまいません。次の例では、
引数nameの値をインスタンス変数@nameに保存します。また、@xと@yの値を0にしてい
ます。

class Robot

 def initialize(name)

 @name = name

 @x = @y = 0

 end

end

Robot.new("ロボ1号")のように引数付きでnewメソッドを呼び出すと、initializeの引数
nameが「ロボ1号」になります。

initialize、move、to_sの各メソッドをまとめると、次のプログラムができます。2つのRobot
オブジェクトを作成し、それぞれの情報を表示するものです。

chapter02/2-4-2a.rb

 1 class Robot

 2 def initialize(name)

 3 @name = name

 4 @x = @y = 0

 5 end

 6

 7 def move(x, y)

 8 @x += x; @y += y

 9 end

 10

 11 def to_s

 12 "#{@name}: #{@x},#{@y}"

 13 end

 14 end

 15

 16 robo1 = Robot.new("ロボ1号") # ロボットのインスタンス1

 17 robo2 = Robot.new("ロボ2号") # ロボットのインスタンス2

 18 puts robo1

 19 robo2.move(10, 20)

 20 puts robo2

ロボ1号: 0,0

ロボ2号: 10,20

ロボ1号の現在位置は「0,0」のままですが、2号ではmoveメソッドで位置を変えているの
で「10,20」となります。このように、インスタンス変数を使えば同じクラスのオブジェクトに別々
のデータを持たせることができます。

インスタンス変数の初期値はnil
ローカル変数aをまだ作成していないときは、「b = a」というコードを実行するとエラーになります。イ

ンスタンス変数@aでは、いきなり「b = @a」としてもエラーにはならず、bにはnilが入ります。作成し
ていないインスタンス変数はnilになります。

■メソッドの呼び出し制限
Rubyでは、メソッド定義の前にpublic、protected、privateを付けることで、メソッドの

呼び出しを制限できます。本書では、public付きのメソッドをパブリックメソッド、private付
きのメソッドをプライベートメソッドと呼びます。

呼び出し制限
レベル 機能
public メソッドはどこからでも呼び出せる。

protected
同じクラスやサブクラス内のメソッドの中だけで呼び出せる。レシーバ（後述）を付
けても呼び出せる（本書では使わない）。

private
同じクラスやサブクラス内のメソッドの中だけで呼び出せる。レシーバを付けると呼
び出せない。

次の例では、ロボットの現在位置が負の数になると、crashメソッドを呼び出します。
crashメソッドはプライベートメソッドなので、Robotクラスおよびサブクラスの中でしか呼び出
せません。インスタンスメソッドmoveの中では呼べますが、robo1.crashのようにクラスの外
では呼べません。

chapter02/2-4-2b.rb

 1 class Robot

 2 def initialize(name)

 3 @name = name

 4 @x = @y = 0

 5 end

 6

 7 def move(x, y) # パブリックメソッド

 8 @x += x; @y += y

 9 crash if @x < 0 || @y < 0

 10 end

 11

 12 private def crash # プライベートメソッド

 13 puts "ドカン！"

 14 end

 15 end

 16

 17 robo1 = Robot.new("ロボ1号")

 18 robo1.move(200, -100) # エラーは発生しない

 19 robo1.crash # エラーが発生する

ドカン！

2-4-2b.rb:20:in `<main>': private method `crash' called for

#<Robot:0x007f8d299a8a90 @name="ロボ1号", @y=-100, @x=200>
(NoMethodError)

ところで、プライベートメソッドの定義では次のようにprivateを前の行に置く書き方もありま
す。

 private

 def crash

 puts "ドカン！"

 end

実は、この書き方のほうが一般的です。defの左にprivateを置く書き方はRuby 2.1
（2014年末リリース）で導入された比較的新しい言語仕様で、いまだにあまり普及してい
ないのです。しかし、独立した行にprivateとだけ書くと、次に独立したpublicまたは
protectedが出現するまでの間に定義されたメソッドはすべてプライベートメソッドになります。

defの左にprivateを置くようにすると、複数個のプライベートメソッドを連続して定義する
場合にソースコードの記述量が少し多くなりますが、あるメソッドがプライベートなのかどうかを
見分けやすくなりますし、プライベートメソッドの定義をそのままパブリックメソッドの前に移動
できるというメリットも生まれます。本書では新しい書き方を採用します。

レシーバとself
robo1.moveのrobo1のように、メソッドを呼び出す対象をレシーバ（受け取るもの）と呼びま

す。Rubyでは、メソッドの呼び出しを「オブジェクトに対してメッセージを送信する」と考えるからです。
レシーバを省略すると、現在のオブジェクトを表すselfがレシーバと見なされます。

属性の書き方
インスタンス変数@nameを作っても、オブジェクトの外からはrobo1.nameのようにインス

タンス変数にアクセスできません。robo1.nameのような書き方をしたいときは、変数と同名
のメソッドを用意する必要があります。

次のソースのnameメソッド（読み出しメソッド）は、戻り値として変数@nameを返すの
で、「name = robo1.name」で@nameを取り出せます。name=のようにメソッド名に=を
付けると、代入演算子の代わりとなるメソッド（書き込みメソッド）になります。
「robo1.name = "ロボ1号"」とするとname=メソッドが呼ばれ、代入演算子の右辺が引
数になり、@nameが"ロボ1号"を指すようになります。

chapter02/2-4-3a.rb

 1 class Robot

 2 def name # 名前の読み出し

 3 @name

 4 end

 5

 6 def name=(name) # 名前の書き込み

 7 @name = name

 8 end

 9 end

 10

 11 robo1 = Robot.new

 12 robo1.name = "ロボ1号"

 13 puts robo1.name

ロボ1号

オブジェクト内のデータにアクセスするには、メソッドを書かなければなりません。このような
読み出しや書き込み用のメソッドをアクセサメソッドと呼び、アクセサメソッドでやり取りでき
るデータを属性と呼びます。属性の実体は変数ではなく、インスタンス変数とメソッドの組み
合わせであることに注意しましょう。

アクセサメソッドをいちいち書くのは面倒なので、もっと簡単な書き方が用意されていま
す。「attr_reader :name」と記述すると読み出し用メソッドが、「attr_writer :name」と記
述すると書き込み用メソッドが、自動的に追加されます。

class Robot

 attr_reader :name

 attr_writer :name

end

読み書き両方のメソッドを作りたいときは、attr_accessorを使います。メソッドをいくつも
作りたいときは、「attr_accessor :x, :y」のように複数並べます。

次の例は、Robotクラスに読み出し専用の属性nameと読み書きできる属性scoreを設
定したものです。

chapter02/2-4-3b.rb

 1 class Robot

 2 attr_reader :name

 3 attr_accessor :score

 4

 5 def initialize(name)

 6 @name = name

 7 @x = @y = 0

 8 @score = 10

 9 end

 10 end

 11

 12 robo1 = Robot.new("ロボ1号")

 13 robo2 = Robot.new("ロボ2号")

 14 robo2.score = 90 # スコアを変更

 15 puts robo1.name, robo1.score

 16 puts robo2.name, robo2.score

ロボ1号

10

ロボ2号

90

クラス内での=付きメソッドに注意
アクセサメソッドはrobo.nameのようにクラスの外から呼べますが、クラス内のほかのメソッドの中

で呼ぶこともできます。クラス内ではレシーバを省略してnameだけで呼べます。

ただし、=付きのメソッドでレシーバを省略すると、ローカル変数と見なされてしまいます。=付きのメ
ソッドを呼ぶときは、「self.name =」のようにレシーバselfを必ず付けてください。

def change_name(new_name)

 old_name = name # nameメソッドの呼び出し

 name = new_name # 注意！ nameはローカル変数になる

 self.name = new_name # 正しいname=メソッドの呼び出し
end

クラスメソッドと定数
Rubyのクラスでは、インスタンス変数やインスタンスメソッドだけでなく、クラス自体に機能

を持たせることができます。

■クラスメソッド
クラスのインスタンスではなく、クラス自体に特定の機能を持たせるには、クラスメソッドを

作ります。クラスメソッドは「クラス名.メソッド名」のように呼び出せます。クラスメソッドを定義
するには、クラスの中で「def self.メソッド名 ～ end」と記述します。

Railsのモデルでは、レコードの取り出し（Chapter 4）のように、データベースのテーブル全
体を対象にするメソッドをクラスメソッドとして用意しています。次の例は、そうしたRailsのクラ
スメソッドをまねて、Robotクラスにクラスメソッドloadを持たせたものです。

loadメソッドは、カンマ区切りテキストを読み込んで、Robotオブジェクトの配列を返しま
す。クラスメソッドの中では、selfはRobotクラスを指すので、16行目のnewはRobot.newと
同じことになります。

chapter02/2-4-4a.rb

 1 class Robot

 2 def initialize(name, x, y)

 3 @name = name

 4 @x = x; @y = y

 5 end

 6

 7 def to_s

 8 "#{@name}: (#{@x}, #{@y})"

 9 end

 10

 11 def self.load(fname)

 12 robots = []

 13 File.open(fname, encoding: "utf-8") do |f|

 14 f.each_line do |line|

 15 cols = line.chomp.split(",")

 16 robots << new(cols[0], cols[1].to_i, cols[2].to_i)

 17 end

 18 end

 19 robots

 20 end

 21 end

 22

 23 robots = Robot.load("robots.txt")

 24 robots.each { |r| puts r }

chapter02/robots.txt

 1 ロボ1号,83,14

 2 ロボ2号,5,51

 3 ロボ3号,78,66

ロボ1号: (83, 14)

ロボ2号: (5, 51)

ロボ3号: (78, 66)

クラスメソッドの書き方
クラスメソッドは次のようにも記述できます。こちらの書き方が好きなプログラマも多いです。「class

<< self ～ end」の間には、クラスメソッドを複数置くことができます。メソッド名にself.を付ける必
要はありません。

class Robot

 class << self

 def load(fname)

 クラスメソッドの内容……

 end

 end

end

■クラス定数
定数は、参照先を変更できない変数です。Rubyでは、変数名をアルファベットの大文

字で始め、=でオブジェクトを指せば定数になります。クラス定義の外側で定数を作ると、そ
の定数はプログラムのどこからでも使えます。次のPIは、円周率を表す定数です。

PI = 3.14159

クラス定義の中で定数を作ると、そのクラス専用のデータであるクラス定数になります。次
の例では、Shapeクラスの中で定数PIを作っています。

次の例のクラスメソッドcircleは、引数rを半径として円の面積を返すものです。

chapter02/2-4-4b.rb

 1 class Shape

 2 PI = 3.14159

 3

 4 def self.circle(r)

 5 r * r * PI

 6 end

 7 end

 8

 9 puts Shape::PI

 10 puts Shape.circle(5)

3.14159

78.53975

クラス定数は、クラスの中ではインスタンスメソッドの中からも、クラスメソッドの中からもPI
で参照できます。クラスの外部からはShape::PIのようにクラス名に::を付けて参照します。

継承とミックスイン
Rubyには、既存のクラスを拡張する方法がいろいろあります。オブジェクト指向プログラミ

ングでは標準的なクラスの継承と、Rubyの特徴であるミックスインについて見てみましょう。

■継承
継承とは、既存のクラス（親クラス）を元に新しいクラス（サブクラス）を作成し、親ク

ラスの機能をそっくり取り込む方法です。サブクラスに機能を追加すれば、親クラスとサブクラ
スの機能の両方が使えるようになります。

サブクラスを作成するには、クラスを記述するときに「class サブクラス名 < 親クラス名」と
します。たとえば、Robot（通常のロボット）のサブクラスとしてFlyingRobot（飛行するロ
ボット）を作るには、次のようにします。

class FlyingRobot < Robot

end

FlyingRobotクラスにzという属性を新しく加えてみましょう。moveメソッドでは、親クラス
の属性x、yを使えるようにしつつ、z属性で高さを表せるようにします。

ここで使っているsuperは、親クラスの同名のメソッドを呼び出すものです。super(x, y)で
Robotクラスのmoveメソッドを呼び出せば、「@x += x; @y += y」を繰り返し書かなくて
も、xとyの位置を変更できます。さらに「@z += z」を加えれば、moveメソッドの機能を拡
張できます。

class FlyingRobot < Robot

 def move(x, y, z)

 super(x, y)

 @z += z

 end

end

実際のサンプルを見てみましょう。FlyingRobotクラスでは、moveのほかにinitializeと
to_sの各メソッドも上書きして、親クラスの機能に新しい機能を追加しています。

サブクラスのメソッドの引数が親クラスと同じときは、superの引数を省略できます。
FlyingRobotクラスのinitializeでsuperとしていますが、これはsuper(name)と同じことにな
ります。

chapter02/2-4-5a.rb

 1 class Robot

 2 def initialize(name)

 3 @name = name

 4 @x = @y = 0

 5 end

 6

 7 def move(x, y)

 8 @x += x; @y += y

 9 end

 10

 11 def to_s

 12 "#{@name}: #{@x},#{@y}"

 13 end

 14 end

 15

 16 class FlyingRobot < Robot

 17 def initialize(name)

 18 super

 19 @z = 0

 20 end

 21

 22 def move(x, y, z)

 23 super(x, y)

 24 @z += z

 25 end

 26

 27 def to_s

 28 super + ",#{@z}"

 29 end

 30 end

 31

 32 robo1 = FlyingRobot.new("飛行ロボ1号")

 33 robo1.move(20, 10, 30)

 34 puts robo1

飛行ロボ1号: 20,10,30

■モジュールとミックスイン
Rubyには、クラスに似たものとしてモジュールがあります。「module モジュール名 ～ end」

でモジュールを定義し、その中にメソッドを記述できます。モジュールにメソッドをまとめておけ
ば、その機能をクラスに取り入れてクラスの機能を拡張できます。クラスにモジュールを取り込
むことをミックスインと言います。

モジュールは、クラスとほとんど同じものです。モジュールがクラスと違うのは、継承ができな
いことと、newでインスタンスを作れないことです。モジュールは親クラスにはなれず、親クラス
を持つこともできませんが、クラスにミックスインできます。

Rubyではクラスの継承は単一継承です。つまり、複数の親クラスを持つサブクラスを作れ
ません。しかし、複数のモジュールをクラスに取り込むことができます。

継承とミックスイン

次のRadarモジュールは、ロボット間の距離を計算して返すメソッドdistance_toを備えて
います。この機能をRobotクラスに取り込む（ミックスインする）には、クラスの中で
「include Radar」のようにincludeにモジュールを指定します。すると
robo1.distance_to(robo2)のように、Radarのインスタンスメソッドを利用できます。

distance_toメソッドを利用するには、Radarモジュールを取り込むクラスのオブジェクトが
属性xとyを持っている必要があります。

chapter02/2-4-5b.rb

 1 module Radar

 2 def distance_to(other)

 3 Math.sqrt((self.x - other.x) ** 2 + (self.y - other.y) ** 2)

 4 end

 5 end

 6

 7 class Robot

 8 include Radar

 9 attr_accessor :name, :x, :y

 10

 11 def initialize(name)

 12 @name = name

 13 @x = @y = 0

 14 end

 15

 16 def move(x, y)

 17 @x += x; @y += y

 18 end

 19 end

 20

 21 robo1 = Robot.new("ロボ1号")

 22 robo2 = Robot.new("ロボ2号")

 23 robo2.move(12, 35)

 24 puts "距離は #{robo1.distance_to(robo2)} です。"

距離は 37.0 です。

Kernelモジュール
Kernelモジュールは、putsのようによく使われるメソッドを集めたモジュールです。Objectクラスは

Kernelモジュールをミックスインしており、すべてのクラスはObjectクラスのサブクラスです。これにより、
Rubyプログラムのどこからでもputsメソッドを呼び出せます。

ここまでの例で登場したKernelモジュールのメソッドには、gets、p、print、puts、raise、rand、
require、warnがあります。

名前空間としてのモジュールとクラス
ミックスインのほかに、モジュールは名前空間として使うこともできます。モジュールの中でクラスを定

義すれば、「モジュール名::クラス名」でクラスを参照できます。たとえば、RailsではActiveRecordモ

ジュールの中でBaseクラスを定義しています。このBaseクラスはActiveRecord::Baseで参照できる
ので、ActionController::BaseのようなほかのBaseクラスと区別できます。

module ActiveRecord

 class Base

 end

end

モジュールだけでなく、クラスの中でクラスを定義することもできます。「11.2　エラーページのカスタ
マイズ」では、ApplicationControllerクラスの中で独自の例外クラスを作成しています。

class ApplicationController < ActionController::Base

 class Forbidden < StandardError; end

end

Rubyのクラスの特徴
最後に、Rubyのクラスの実体について、種明かしをしておきましょう。Rubyでは、「class

クラス名 ～ end」で記述したクラス自体もオブジェクトです。Robotはクラスの名前であると
同時に、Robotクラスを表すオブジェクトを指す定数にもなります。

次のように、object_idメソッドでオブジェクト番号を表示してみると実感できるでしょう。
Rubyでは、すべてのオブジェクトに1つずつ固有の番号が振られます。

chapter02/2-4-6.rb

 1 class Robot

 2 end

 3

 4 robo1 = Robot.new

 5 robo2 = Robot.new

 6 puts "Robot: #{Robot.object_id}"

 7 puts "robo1: #{robo1.object_id}"

 8 puts "robo2: #{robo2.object_id}"

Robot: 70317616245600

robo1: 70317616245540

robo2: 70317616245520

3つのオブジェクトができる

定数Robotは、Robotクラスを表すオブジェクトを指しています。Robotクラスを表すオブ
ジェクトもやはり、何かのクラスのインスタンスです。そのクラスとは、Classクラスです。Classク
ラスは「クラスに関する機能を備えたクラス」です。

RobotはClassクラスのインスタンスを参照する定数なので、普通の変数のように別の変
数で参照したり、メソッドの引数にしたりできます。

klass = Robot # 変数klassはClassオブジェクトを指す
r = klass.new # Robot.newと同じ

r.kind_of?(Robot) # クラスはメソッド引数にもなれる

次のようにクラス定義の直下にコードを書くと、クラスが読み込まれるときに「ここも実行さ
れます」が表示されます。Rubyでは、「class ～ end」はクラスの定義というだけでなく、実行
されるコードでもあります。

class Robot

 puts "ここも実行されます"
end

Chapter 2のまとめ

Rubyでは、数値や文字列も含めてすべてをオブジェクトとして扱います。
条件分岐には、if式やunless式を使います。
メソッドを作ると、コードをひとかたまりの部分に分けて呼び出せるようになり
ます。メソッドには引数や戻り値を指定できます。
繰り返しの処理には、eachのようなブロックを受け取るメソッドを使います。
オブジェクトの集まりを扱うために、配列やハッシュを利用できます。
シンボルを使うとハッシュやメソッドの引数を読みやすくできます。
クラスは、「class クラス名 ～ end」の間に記述します。
クラスの属性を読み書きするにはアクセサメソッドを使います。
クラスを拡張するには、継承やミックスインを使います。

練習問題

［A］　次の空欄を埋め、入力した数値に消費税を加えた値を表示してください。小数
点以下を切り落とすには、数値オブジェクトのto_iメソッドを使います。なお、消費税率は
8％とします。

print "価格を入力してください："

price = gets.chomp

price = 　　　　　　　　　　　　　　　　　　　

puts "税込み#{price}円です。"

［B］　配列flowersの要素を1つずつ表示するプログラムを書いてください。

flowers = ["carnation", "tulip", "cosmos"]

　　　　　　　　

［C］　空欄を埋めて、属性を取り出すアクセサメソッドをBookクラスに加えてください。

class Book

 　　　　　　　　　　　　　　　　　　　　　　　　

 def initialize(title, author, price)

 @title = title

 @author = author

 @price = price

 end

end

book1 = Book.new("彼岸過迄", "夏目漱石", 540)

puts "#{book1.title}、#{book1.author}著、#{book1.price}円"

Part

2　Ruby on Railsの基本

このPartでは、Ruby on Railsでウェブアプリケーションを作るため
に知っておかなければならないことを解説します。モデル、ビュー、
コントローラの使い方をしっかり学べば、誰でも自分のウェブアプリ
ケーションをすばやく構築できるようになります。

Chapter

3　コントローラとビュー

このChapterからは、いよいよRailsでウェブアプリケーションを作り始めます。RailsのMVCア
ーキテクチャのうち、まずはコントローラとビューの使い方を学びましょう。理解の鍵になるのは、
「アクション」という概念です。この言葉に注目して読み進めてください。

これから学ぶこと

HTTPプロトコルとRailsの動作のしくみについて、 基本的な点を押さえておきます。
URLとアクションを結び付けるルーティングについて学びます。
コントローラが複数のアクションで構成されていること、 アクションはそれぞれテンプレートと
結び付いていることを学びます。
コントローラとアクションの細かい機能をいくつか紹介します。
テンプレートファイルの書き方を学びます。
レイアウトテンプレートと部分テンプレートの使い方を学びます。
Morning Gloryサイトの最初のバージョンを作成します。

コントローラとビューを使えば、Railsで簡単なウェブサイトを作成できます。この2つとウェブサイトにはどんな関係があ
るでしょうか？ この2つを使うには、まず何をすればよいでしょうか？

3.1 　RailsとHTTPの基本

ここでは、Ruby on Railsの基本的な処理の流れについて解説します。Railsでは、URLの形式（パ
ターン）とコントローラ、アクション、ビューが密接に関係していることを知っておいてください。

HTTPの基礎知識
HTTP（HyperText Transfer Protocol）は、ブラウザとサーバーがHTMLや画像などの情報をやり取りす

るときに使われるプロトコル（通信手段）です。Railsなどでウェブアプリケーションを構築する際には、HTTP
のしくみをある程度押さえておく必要があります。

■リクエストとレスポンス
HTTPはとても単純なプロトコルです。ブラウザがサーバーにリクエスト（要求）を送り、サーバーはそれに応

えてレスポンス（応答）を返します。次の例は、ブラウザが「http://localhost:3000/members/123」という
URLをリクエストするときに送信する内容です。1行目は、「GET リソース HTTPのバージョン」です。ここで言う
「リソース」とは、URLのパスとクエリーの部分です（次の「URL」の項を参照）。2行目以降はHTTPヘッダー
と呼ばれ、ブラウザとサーバーに関する情報が書かれています。

実際のHTTPヘッダーの内容はもっと複雑ですが、ここではわかりやすいように単純化しています。

GET /members/123 HTTP/1.1

Host: localhost:3000

UserAgent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/53

7.36 (KHTML, like Gecko) Chrome/64.0.3282.167 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,

image/apng,*/*;q=0.8

Accept-Language: ja,en-US;q=0.9,en;q=0.8

するとサーバーはそれに応えて次のような内容のレスポンスを送り返します。1行目は「HTTPのバージョン ス
テータスコード メッセージ」です。2行目以降はHTTPヘッダーです。ヘッダーの直後に1行空けて、実際の
HTMLや画像の内容が送信されます。ブラウザはここからHTML文書や画像を読み取って表示します。

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Cache-Control: max-age=0, private, must-revalidate

<!DOCTYPE html>

<html>

<head>

 <title>Asagao</title>

</head>

<body>

……

</body>

</html>

HTTPとセッション
HTTPは基本的に1つのリクエストと1つのレスポンスだけで完結します。何度リクエストを送っても、「前回と同じ人の

リクエストだな」とは認識されません。「同じユーザーに対して、リクエストのたびにそのユーザー用のレスポンスを返す」とい
ったしくみ（セッション）を作るには、サーバー側で工夫が必要になります。Railsは洗練されたセッション管理機能を備
えています（Chapter 8を参照）。

■URL
ブラウザは、アドレス欄のURLを解釈してサーバーにリクエストを送ります。URLはいくつかのパーツに分かれ

ています。ブラウザはサーバー名とポート番号を元にサーバーに接続し、パスとクエリーの部分を「GET
/members/show?id=123」のようにリクエストします。

URLの各パーツの意味

普通のウェブサーバーは/index.htmlが要求されると、そのままサーバーのディスクにあるファイルindex.html
を返します。Railsでは、パスとファイルが対応しているわけではありません。RailsはURLのパスとクエリーを解

釈してコントローラのアクションを呼び出し、レンダリングの結果をブラウザに返します。

パラメータをパスに含める
サーバー上のプログラムにパラメータを渡すには、「?名前=値」のようにURLのクエリー部分に情報を入れるだけでな

く、次のようにパラメータをパス部分に入れてしまうこともできます。

http://localhost:3000/members/123

簡潔でわかりやすいURLは、Railsアプリケーションの特徴のひとつです。Railsでは、こうした形式のパラメータも簡単
に取り出せるようになっています。

■GETとPOST
ブラウザからのリクエストの1行目「GET /members/123 HTTP/1.1」の「GET」のことを、HTTPでは「メソッ

ド」と呼びます。一番よく使われるメソッドはGETですが、ウェブアプリケーションではPOSTもよく使われます。
ブラウザのアドレス欄にURLを入力したり、リンクをクリックしたりすると、GETメソッドでリクエストが送られま
す。HTMLのフォームで送信ボタンを押したときは、GETまたはPOSTメソッドでリクエストが送られます。

POSTメソッドでは、次のようにリクエストを送ります。HTTPヘッダーのあとに1行空けて、「名前=値&名前
=値」の形でデータを加えます。

POST /bbs HTTP/1.1

Host: localhost:3000

Content-Type: application/x-www-form-urlencoded

UserAgent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/53

7.36 (KHTML, like Gecko) Chrome/64.0.3282.167 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,

image/apng,*/*;q=0.8

Accept-Language: ja,en-US;q=0.9,en;q=0.8

name=%E5%A4%AA%E9%83%8E&mail=taro%40example.com&comment=%E3%81%93
%E3%82%9
3%E3%81%AB%E3%81%A1%E3%81%AF

GETメソッドとPOSTメソッドの間には、形式上の違いだけでなく、役割上の違いもあります。一般に、GET
メソッドはウェブサーバーからデータを取得するときに用い、POSTメソッドはウェブサーバーの状態を変更するとき
に用います。「掲示板にコメントを投稿する」、「商品をカートに入れる」などのリクエストは、POSTメソッドで
行うのが標準的です。

その他のメソッド
HTTPには、GETとPOSTのほかに次のメソッドもあります。ただし、HTMLのフォームが対応しているのはGETとPOST

だけです。Railsでは、PATCHとDELETEにも役割を与えています（Chapter 5を参照）。

HTTPのメソッド
メソッド 機能
GET リソースの要求
POST リソースの送信
HEAD ヘッダー部分だけを要求
PUT リソースの置換
PATCH リソースの一部更新
DELETE リソースの削除

■リダイレクション
HTTPの機能のうち、ウェブアプリケーションでよく使われるリダイレクションについて紹介しておきましょう。リ

ダイレクションとは、ブラウザが要求したURLとは別のURLを示して、ブラウザに再要求させるしくみです。これ
を利用すると、ブラウザに表示されるページを強制的に移動することができます。

リダイレクションを行うには、サーバーのレスポンスのステータスコードを「200」ではなく、「301」、「302」、
「303」または「307」とします。新しいURLはヘッダーの「Location」に指定します。

HTTP/1.1 302 Found

Content-Type: text/html; charset=utf-8

Location: http://localhost:3000/members/123

このレスポンスを受け取ったブラウザは、新しいURLでリクエストし直します。

リダイレクション

Railsでは、アクションの中でredirect_toメソッドを呼び出すことで、自動的にリダイレクションの処理がで
きます。「3.2　コントローラとアクション」の「リダイレクション」を参照してください。

ステータスコード
HTTPでは、成功したときも、リダイレクションを行うときも、何かエラーが発生したときも、まったく同じ形式でレスポン

スを返します。1行目のステータスコードが変わるだけです。たとえば、要求されたリソースがサーバーになければ、おなじみ
の「404」を返します。

HTTP/1.1 404 Not Found

Content-Type: text/html; charset=utf-8

<html><head><title>見つかりません</title><head>……

このほかに、アクセス禁止の場合は「403 Forbidden」、サーバーエラーの場合は「500 Internal Server Error」を返
します。

Railsのリクエスト処理の流れ
Railsで作成したウェブアプリケーションに対して、ブラウザがHTTPでリクエストを送ったときに、どのような動

作が行われるのかをざっと見てみましょう。ブラウザからのリクエストを受けると、Railsはパスを調べ、routes.rb
に従ってどのコントローラのどのアクションを選べばよいかを決めます。コントローラは複数あり、さらにコントローラ

の中にアクションが複数あります。routes.rbはconfigディレクトリの下に置かれているファイルで、編集すると
パスとアクションの対応関係を変更できます。

パスからアクションが選ばれる（ルーティング）

Railsは選ばれたアクション（メソッド）を実行します。アクションには、モデルとの間で情報のやり取りをす
るプログラムを書きます。モデルはデータベースのテーブルと対応しています。アクションはモデルから取得した情
報のうち、表示に必要なものをインスタンス変数に保存します。

モデルを通じてデータベースにアクセスし、インスタンス変数に情報を保存

アクションは、ブラウザへのレスポンスを作成するためにビュー（テンプレート）を選びます。特に指定しない
限り、アクションと同名のテンプレートが選ばれます。

アクションがテンプレートを選択する

選ばれたテンプレートは、コントローラのインスタンス変数を参照して、その値をHTMLソースの中に埋め込み
ます。この処理をレンダリングと呼びます。できあがったHTML文書は、コントローラによってブラウザに送り返さ
れ、画面に表示されます。

ビューはインスタンス変数を取り出してHTML文書を生成する

ルーティング
Railsでは、リクエストされたURLのパスから特定のコントローラとアクションを選ぶことをルーティングと呼びま

す。ルート（route）は「経路」という意味です（「根」の意味のrootではありません）。

■アクションの追加
ルーティングの設定は、configディレクトリの下のファイルroutes.rbで行います。routes.rb自体もRubyプ

ログラムです。「Rails.application.routes.draw do ～ end」の間に加えたコードがルーティングの設定になり
ます。

一例として、asagaoアプリケーションに新しいアクションを追加してみましょう。routes.rbに次の設定を追
加します。これにより、「/about」というパスがTopControllerのaboutアクションと結び付きます。また、
about_pathメソッドが「/about」を返すようになります。

chapter03/config/routes.rb

 1 Rails.application.routes.draw do

 2 root "top#index"

 3 get "about" => "top#about", as: "about"

 （以下省略）

TopControllerにaboutアクションを追加します。これは何もしない空のメソッドです。

chapter03/app/controllers/top_controller.rb

 1 class TopController < ApplicationController

 2 def index

 3 @message = "おはようございます！"

 4 end

 5

 6 def about

 7 end

 8 end

app/views/topディレクトリの下でabout.html.erbを作成し、内容を次のようにします。インスタンス変数
@page_titleは、あとでtitleタグを記述するためにも利用します（「3.4　モックアップの作成」の「モックアッ
プのレイアウトテンプレート」を参照）。

chapter03/app/views/top/about.html.erb

 1 <% @page_title = "このサイトについて" %>

 2

 3 <h1><%= @page_title %></h1>

 4

 5 <p>Morning Gloryは、1999年に結成された草野球チームです。毎週土曜日の早朝に練習を
することから、Morning Glory（朝顔）というチーム名になりました。おもな活動拠点は、○○河川敷
グラウンドです。</p>

ターミナルで次の2つのコマンドを順に実行し、Railsサーバーを起動してください。

$ cd ~/rails/asagao

$ bin/rails s

そして、ブラウザで「http://localhost:3000/about」というURLを開くと、自己紹介ページが表示されま
す。

 /aboutで表示されるページ

■ルーティングエラー
ルーティングの設定にはないパスをブラウザで開こうとすると、ルーティングエラーが発生します。ブラウザに

「http://localhost:3000/foo/bar」のように存在しないページを指定してみましょう。

ルーティングエラー

このエラーは、次の場合にも発生します。

ルーティングの設定を忘れたり、書き間違えたりした。
HTTPメソッドが合わない。POSTしか受け付けないアクションにGETでアクセスしようとしたときなど。
app/assetsやpublicの下に存在しないファイルにアクセスしようとした。

このエラー画面を「Not Found」のような自分のエラーページに変える方法は、「11.2　エラーページのカスタ
マイズ」を参照してください。

■ルーティングの詳細
ここで、ルーティングの書き方を細かく紹介しましょう。まず、Chapter 1で記述したように、トップページを指

定するための特殊な書き方があります。rootメソッドに「"コントローラ名#アクション名"」を指定すると、パスが
「/」の場合のルーティングを指定できます。TopControllerではなくHomeControllerなら次のように指定しま
す。

root "home#index"

特定のパスに対応するアクションをGETメソッドで呼び出すには、「get "パス" => "コントローラ名#アクショ
ン名"」と記述します。たとえば、「/about」というパスでTopControllerのaboutアクションをGETメソッドで呼
び出したいときは、次のようにします。

get "about" => "top#about"

同様に、「/login」というパスでSessionsControllerのloginアクションをPOSTメソッドで呼び出すなら、次
のように記述します。

post "login" => "sessions#login"

「"info/company" => "info#company"」のように「"コントローラ名/アクション名" => "コントローラ名#
アクション名"」というパターンの場合は、次のように簡略化して書けます。

get "info/company"

ルーティングにはasオプションで名前を付けることができます。次の例では、helpという名前のルーティングを
作っています。コントローラやビューでhelp_pathというメソッドを呼び出すと、"/help"という文字列が返りま
す。

get "help" => "documents#help", as: "help"

パラメータをパスの中に埋め込みたいときは、:yearのように「コロン＋パラメータ名」を使います。次の例で
は、「/articles/2018/04」というパスによってArticlesControllerのshowアクションが呼び出され、
params[:year]で「2018」、params[:month]で「04」が取り出せるようになります。

get "articles/:year/:month" => "articles#show"

実際のRailsのアプリケーション開発では、Chapter 5で紹介するリソースベースのルーティングを使うことが
ほとんどで、ここで紹介したリソースベースではないルーティングは補助的に使うのが普通です。

パスを返すメソッドとシンボル
ルーティングのasオプションを指定すると、about_pathのようなパスを返すメソッドが利用できるようになります。ま

た、「root "top#index"」の指定によって、root_pathメソッドは"/"を返すようになります。このとき、link_toメソッドや
redirect_toメソッドには、:aboutや:rootのように、シンボルでパスを指定できます。シンボルは、:aboutのように、パス
を返すメソッド名から_pathを除いたものにします。

link_to "Home", :root

link_to "このサイトについて", :about

link_toメソッドについては、「3.3　テンプレート」の「リンク」を参照してください。

3.2 　コントローラとアクション

RailsアプリケーションはMVCアーキテクチャに基づいて3つの部分で構成されていますが、本書では
「C→V→M」の順に学習します。まずはC、つまりコントローラの基本的なしくみを見てみましょう。

コントローラの基本
コントローラについてまず知っておくことは、「コントローラの中には複数のアクションが含まれる」ことと、「コン

トローラの名前の付け方には決まりがある」ことです。

■コントローラクラスの書き方
コントローラは、モデルからデータを受け取り、ビューにレンダリングを行わせます。ブラウザからのリクエストを

受け取り、レスポンスを返すのもコントローラです。コントローラは、ApplicationControllerクラスのサブクラス
として実装します。

コントローラクラスの例

コントローラクラスのパブリックメソッドをアクションと呼びます。アクションは、ウェブサイトの1ページまたは1つ
の機能に相当します。

アクションで行うことは、テンプレート（ビュー）で表示するデータを用意して、インスタンス変数に値をセット
することです。アクションは、原則として同名のテンプレートを使います。indexアクションを呼び出すと、
index.html.erbでレンダリングされます。

また、アクションの目的によっては、HTMLページを表示する代わりに「別のページに移動せよ」という指示
（リダイレクション）をブラウザに返すこともできます。

アクションではないメソッド
コントローラクラスにアクションではないメソッドを記述する場合は、プライベートメソッドにする必要があります。そうし

ないと、意図しないコードが直接実行される可能性が生まれてしまいます。Chapter 8で学習するアクション・コールバ
ックに指定するメソッドはプライベートにしてください。

■命名規約
Chapter 1で紹介したとおり、Railsの原則の1つは「設定より規約」です。モデル、コントローラ、ビューに関

連するクラス名やファイル名には、命名規約、つまり名前の付け方に決まりごとがあります。コントローラ名を
「members」とした場合のコントローラやビューに関する名前は次のようになります。

コントローラの命名規約
名前 例 ルール
コントローラクラス名 MembersController ○○Controller、先頭は大文字
コントローラファイル名 members_controler.rb ○○_controller.rb
テンプレートのディレクトリ名 app/views/members app/views/○○

Chapter 4から解説するモデルにも命名規約があります。モデル名を「member」とした場合の名前は、
次のようになります。

モデルの命名規約
名前 例 ルール
データベーステーブル名 members 先頭は小文字、複数形にする
モデルクラス名 Member 先頭は大文字
モデルクラスのファイル名 member.rb ○○.rb

データベーステーブル名に2つの単語からなる名前を付けたいときは、shopping_cartsのようにアンダースコ
アで単語と単語を結びます。すると、コントローラクラス名はShoppingCartsController、モデルクラス名は
ShoppingCartとなります。各単語の頭文字を大文字にする表記法は「キャメルケース」と呼ばれます。

application_controller.rbの使い方
コントローラクラスの親クラスであるApplicationControllerは、app/controllersディレクトリの下の

application_controller.rbに記述されています。ApplicationControllerクラスにメソッドを加えれば、すべてのコント
ローラで共通して使える機能を作れます。Chapter 11では、ユーザーの認証や例外処理のために
application_controller.rbに共通のメソッドを記述しています。

ApplicationControllerの親クラスは、Railsが用意しているActionController::Baseクラスです。

コントローラクラスの階層

アクションで使える機能
ここではアクションの中で使える基本的な機能を練習していきましょう。

■練習の準備
ここから練習用のコントローラを使ってアクションとテンプレートについて説明します。Chapter 1で作成した

asagaoアプリケーションにLessonControllerを追加しましょう。

$ bin/rails g controller lesson

次に、config/routes.rbを開いて、最後のendの前に次の行を追加してください。「/lesson/step番号」
というパスでLessonControllerのstep1からstep18までのアクションを呼び出せるようにしています。ま
た、:nameという名前のパラメータが使えます。uptoメソッドについては、「ブロックの利用」を参照してくださ
い。

chapter03/config/routes.rb

 1 Rails.application.routes.draw do

 2 root "top#index"

 3 get "about" => "top#about", as: "about"

 4

 5 1.upto(18) do |n|

 6 get "lesson/step#{n}(/:name)" => "lesson#step#{n}"

 7 end

 8 end

app/controllersの下のlesson_controller.rbに「step○○」というアクションを記述して、練習用のコード
を書いていきます。

■パラメータの取得
アクションに渡されるパラメータには、2種類あります。1つは、ルーティングの設定によって

「http://localhost:3000/lesson/step1/Sato」の「Sato」のようにパスの中に埋め込まれたパラメータです。
もう1つは、URLのクエリー部分に「?名前=値」の形を使って「http://localhost:3000/lesson/step1?
name=Sato」のように渡されるパラメータです。どちらのパラメータも、「params[:パラメータ名]」で取り出せま
す。

LessonControllerにアクションstep1を追加して、実験してみましょう。ここで使っている「render plain:
"文字列"」は、テンプレートファイルを使わずに、直接文字列を送信する方法です。

ファイルを保存するときは、文字コードをUTF-8にするのを忘れないようにしてください。

chapter03/app/controllers/lesson_controller.rb

 1 class LessonController < ApplicationController

 2 def step1

 3 render plain: "こんにちは、#{params[:name]}さん"

 4 end

 （以下省略）

「bin/rails s」でサーバーを起動し、ブラウザに「http://localhost:3000/lesson/step1/Sato」と入力する
と、次のように表示されます。「http://localhost:3000/lesson/step1?name=Sato」でも同じです。

こんにちは、Satoさん

「?name=%E4%BD%90%E8%97%A4」（?name=佐藤）のようにURLに使えない文字がエンコードさ
れているときでも、Railsが自動的にデコードしてくれるので、漢字やひらがなも取得できます。ただし、文字コ
ードはUTF-8に統一する必要があります。

paramsの機能
params[:パラメータ名]のparamsは、パラメータを含んだハッシュを返すメソッドです。単なるハッシュではなく、Hash

を継承したActionController::Parametersというクラスのオブジェクトです。このクラスのハッシュは、文字列でもシンボ
ルでも値を取り出せます。つまり、params[:name]とparam["name"]は同じ値を返します。

paramsが返すパラメータには、コントローラ名とアクション名も含まれています。params[:controller]でコン
トローラ名、params[:action]でアクション名を取り出せます。step2アクションで試してみましょう。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 8 def step2

 9 render plain: params[:controller] + "#" + params[:action]

 10 end

 （以下省略）

ブラウザで「http://localhost:3000/lesson/step2」を開くと、次のように表示されます。

lesson#step2

requestオブジェクト
リクエストを送ってきたユーザーの情報を取得するには、requestメソッドが返すオブジェクトを使います。たとえば、ユ

ーザーのIPアドレスはrequest.remote_ipで取り出せます。環境変数を得るにはrequest.envを、リクエストヘッダーを
得るにはrequest.headersを使います。たとえば、ブラウザの種類を得るにはrequest.env["HTTP_USER_AGENT"]ま
たはrequest.headers["User-Agent"]とします。

リダイレクション
「3.1　RailsとHTTPの基本」で紹介したHTTPのリダイレクションは、Railsではredirect_toメソッドで簡単

に行えます。redirect_toメソッドを呼び出すと、レンダリングは行われずにブラウザにステータスコード302と新
しいURLが送られます。

アクションstep3とstep4を作って試してみましょう。redirect_toメソッドの引数は「action: リダイレクト先の
アクション名」とします。ブラウザで「http://localhost:3000/lesson/step3」を開くと、新しいURL
「http://localhost:3000/lesson/step4」が送られ、ブラウザはstep4に移動します。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 12 def step3

 13 redirect_to action: "step4"

 14 end

 15

 16 def step4

 17 render plain: "step4に移動しました。"
 18 end

 （以下省略）

step4に移動しました。

redirect_toメソッドの引数には、「redirect_to "/lesson/step4"」のようにパスやURLを文字列で渡すこ
ともできます。

Chapter 6で作成するように、リソースを扱うコントローラでは、create、update、destroyの各アクションで
リダイレクションを行うのが定番の方法です。

リダイレクションのステータスコード
HTTP のリダイレクション用のステータスコードには、301（恒久的な移動）、302（発見）、303（他を参照）、

307（一時的な移動）があります。HTTP 1.1の仕様では、フォームの送信後のリダイレクションには303を使うことに
なっていますが、世の中のウェブアプリケーションの多くは伝統的に302を使い続けています。Railsも302を採用していま
す。

リダイレクションのステータスコードを使い分けたいときは、redirect_toメソッドにstatusオプションを付けます。

redirect_to action: "step4", status: 301

■フラッシュ

Railsでリダイレクションを行うときは、同時にフラッシュという機能がよく使われます。フラッシュは、アクショ
ンとアクションの間で情報を受け渡す機能です。リダイレクションの前でflashオブジェクトに情報を入れておく
と、リダイレクション後のアクションでその文字列を取り出すことができます。

アクションstep5とstep6を作って試してみましょう。「http://localhost:3000/lesson/step5」を開くと、
flash[:notice]に「step6に移動します。」という文字列が記録されてから、
「http://localhost:3000/lesson/step6」に移動し、記録した文字列が表示されます。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 20 def step5

 21 flash[:notice] = "step6に移動します。"

 22 redirect_to action: "step6"

 23 end

 24

 25 def step6

 26 render plain: flash[:notice]

 27 end

 （以下省略）

step6に移動します。

フラッシュのデータは、「アクション→リダイレクション→アクション」の処理が済むと消去されます。上記の
step6アクションのページでリダイレクション後にブラウザをリロードすると、flash[:notice]はnilになります。

フラッシュの名前が:noticeまたは:alertの場合は、redirect_toメソッドの第2引数にハッシュを加えて、リダ
イレクションとフラッシュの設定を同時に行うこともできます（実例は「6.2　レコードの作成、更新、削除」の
「createアクション」を参照）。

redirect_to @member, notice: "会員を登録しました。"

また、:noticeと:alertの場合は、flash[:notice]やflash[:alert]をflash.notice、flash.alertと書くこともで
きます。

フラッシュのしくみは、セッション機能を利用して実現されています。そのため、ブラウザのクッキーを無効にし
ていると利用できません。

flash.now
リダイレクションではなく、1つのアクション内でフラッシュを使うことができます。flash.now[:名前]に文字列を入れる

と、テンプレートではflash[:名前]でメッセージを取り出せます。

def create

 unless @member.save

 flash.now[:error] = "保存に失敗しました。"
 render "new"

 end

end

3.3 　テンプレート

ここでは、RailsのMVCのうちで「V」（ビュー）にあたるもの、つまりテンプレート（erbファイル）の機能
を紹介します。テンプレートの使い方を覚えれば、効率よく短時間でページ作成ができるようになりま
す。

テンプレートの基本
Railsのページデザインでは、コントローラのアクションでインスタンス変数を用意し、テンプレートにその変数を

埋め込むのが基本的な流れとなります。

■テンプレートの書式
Railsのテンプレート（erbファイル）は、HTML文書の中にRubyコードを埋め込んだものです。<% %>ま

たは<%= %>で囲んだ部分は、Rubyのコードとして解釈されます。このRubyコードによってHTML文書が動
的に書き換えられてブラウザに送られます。

<%= %>の間にRubyの式（リテラル、変数、メソッド呼び出しなど）を記述すると、式の結果が文字
列に変換されてその場所に挿入されます。一方、<% %>の間に記述されたRubyのコードは評価されます
が、文字列の挿入は行われません。

次の例では、1行目の<% ～ %>は計算を行って変数priceに値を代入するだけです。2行目の<%= ～
%>では、変数priceの値がHTML文書の中に埋め込まれます。

テンプレート

<p><% price = (2000 * 1.08).floor %></p>

<p><%= price %>円</p>

ブラウザへのレスポンス

<p></p>

<p>2160円</p>

テンプレートの中にはどのようなRubyコードを書いてもかまわないのですが、あまり複雑な処理を記述する
のは避けるべきです。「コントローラのアクションで用意したデータをインスタンス変数に記録し、そのインスタンス
変数をテンプレートに埋め込む」という基本線から大きく外れないように心がけてください。

to_sメソッドで出力される
<%= 式 %>が出力されるときは、その中の式に対してto_sメソッドが呼ばれ、その結果の文字列が出力されま

す。「<%= 式.to_s %>が表示される」と考えてください。Rubyのオブジェクトはすべてto_sメソッドを備えています。
下記のstep8の例で@priceが存在しないときは、<p>円</p>という結果になります。存在しないインスタンス変

数はnilを返し、nil.to_sは空文字列""を返すからです。

前節3.2で作ったLessonControllerにstep7アクションを作成し、作成した変数をテンプレートに表示させ
てみましょう。step6までの練習と違い、普通にテンプレートを使うときはrenderメソッドは不要です。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 27 def step7

 28 @price = (2000 * 1.08).floor

 29 end

 （以下省略）

テンプレートのファイル名は、「アクション名.html.erb」です。ディレクトリapp/views/lessonの下に
step7.html.erbという名前のファイルを作り、次のように記述してください。

chapter03/app/views/lesson/step7.html.erb

 1 <p><%= @price %>円</p>

ブラウザで「http://localhost:3000/lesson/step7」を開くと、結果が表示されます。

2160円

テンプレートファイルがなかったり、ファイル名を間違えたりしたときは、「Template is missing」というエラー
が表示されます。ただし、アクションの中でrenderメソッドを使用せず、デフォルトのテンプレートファイルが存在
しない場合は、例外UnknownFormatが発生します。

コントローラとテンプレートのオブジェクトは別
テンプレートをレンダリングする際には、「ActionView::Baseクラスを継承し、ヘルパーのモジュールをミックスインしたク

ラス」が自動的に作成されて、そのインスタンスのもとでコードが実行されます。そのため、テンプレート内ではAction
Viewとヘルパーのメソッドが使えます。後述のnumber_with_delimiterやlink_toといったメソッドは、Action Viewの
メソッドです。

paramsやflashのようにどちらでも使えるメソッドがあるのでややこしいのですが、コントローラとテンプレートは、別のオ
ブジェクトであることに注意してください。Rubyにはオブジェクト間でインスタンス変数を共有する機能があり、Railsはこ
の機能を利用してアクションのインスタンス変数をテンプレートに渡しています。

メソッドがなくてテンプレートがある場合
コントローラクラスの中にアクションのメソッドがなくても、app/viewsディレクトリに「アクション名.html.erb」というファ

イルがあれば、コントローラはそのファイルをレンダリングします。アクションの中ですることが何もなければ、そのメソッドは
省略できます。ただし、筆者は空のメソッドでもコントローラの中に書いておくほうがわかりやすいと思います。

アクションもテンプレートファイルもない場合は、「Unknown action」というエラーが表示されます。

■renderメソッド
アクションの実行が終わると、Railsは自動的にアクションと同名のテンプレートを使ってHTMLを生成（レ

ンダリング）します。アクションの中でrenderメソッドを呼び出すと、別のテンプレートを使ってレンダリングを行
うこともできます。

別のアクション用のテンプレートを共有するには、引数にアクション名を指定します。次の例では、アクショ
ンstep8はテンプレートstep7.html.erbでレンダリングします。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 31 def step8

 32 @price = 1000

 33 render "step7"

 34 end

 （以下省略）

1000円

なお、コントローラにstep7というアクションがなくても、app/views/lessonディレクトリにstep7.html.erbが
あればレンダリングできます。

app/views/lessonディレクトリ以外にあるテンプレートを使いたいときは、「another/show」のように
app/viewsディレクトリを基点としたパス名を指定します。.html.erbは省略できます。

def show

 render "another/show"

end

二度レンダリング・リダイレクトはできない
レンダリングは1つのアクションにつき一度だけと決められています。また、1つのアクションの中では、renderメソッドと

redirect_toメソッドはどちらかを一度だけしか使えません。renderメソッドを二度呼び出したり、renderメソッドと
redirect_toメソッドを両方呼び出したりすると、例外DoubleRenderErrorが発生します。

■HTML特殊文字の変換
HTMLでは、<、>、&はタグなどを表す特別な記号です。Railsのテンプレートでこれらの文字をそのまま埋

め込むと、HTML文書の構造が変わってしまうかもしれません。悪意のあるユーザーは、ウェブアプリケーション
を攻撃するために、わざとこうした文字を送信してページの表示を作り変えることがあります。

これを防ぐために、HTMLの特殊文字を表示するときは<、>、&に変換する必要があります。
<%= %>は自動的にこの変換を行います。

次のインスタンス変数@commentは、危険なJavaScriptのコードを含んでいるとします。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 36 def step9

 37 @comment = "<script>alert('危険！')</script>こんにちは。"

 38 end

 （以下省略）

chapter03/app/views/lesson/step9.html.erb

 1 <p><%= @comment %></p>

「http://localhost:3000/lesson/step9」を開いてHTMLのソースを表示すると、<と>は、<と>に
変換されています。

（HTMLのソース）

<p><script>alert('危険！')</script>こんにちは。</p>

逆に、HTMLのタグをそのまま出力したい場合でも、特殊文字がいちいち変換されてしまいます。タグをタ
グとして出力するには、<%= %>の代わりに<%== %>を使います。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 40 def step10

 41 @comment = "安全なHTML"

 42 end

 （以下省略）

chapter03/app/views/lesson/step10.html.erb

 1 <p><%== @comment %></p>

（HTMLのソース）

<p>安全なHTML</p>

HTML特例文字の変換を抑えるには次のようにhtml_safeメソッドを用いることもできます。

<p><%= @comment.html_safe %>

このメソッドは文字列に「HTML文書に埋め込んでも安全である」という印を付けます。Action Viewが用
意しているlink_toメソッドやimage_tagメソッドのようにタグを生成するメソッドは、「.html_safe付きの文字
列を返す」と考えてください。

link_toの引数での特殊文字
link_toメソッドのようにタグを生成するメソッドの引数でも、特殊文字の変換が行われます。Railsでは、細かいこと

を考えずに<%= %>を書き、Action Viewのメソッドを使っていれば、安全なHTMLを生成できるようになっています。
引数にタグをわざと埋め込みたいときは、html_safeメソッドを使います。

link_to "Top", "/"

結果：Top

link_to "Top".html_safe, "/"

結果：Top

書式の指定とヘルパーメソッド
Railsのビューの機能をいろいろと試してみましょう。

■数値、日付、文字列
小数点以下の桁数など文字列や数字の書式を揃えたいときは、Rubyのsprintfメソッドが使えます。

sprintfは、第1引数に書式を指定し、第2引数以降に書式に埋め込む変数を並べます。次の例は、人
口、面積（小数点以下切り捨て）、人口密度（小数点以下2桁まで）を表示するものです。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 44 def step11

 45 @population = 704414

 46 @surface = 141.31

 47 end

 （以下省略）

chapter03/app/views/lesson/step11.html.erb

 1 <p>

 2 <%= sprintf("人口%d人、面積%.0f平方キロ、人口密度%.2f人/平方キロ",

 3 @population, @surface, @population/@surface) %></p>

人口704414人、面積141平方キロ、人口密度4984.88人/平方キロ

sprintfの書式の中では、「%文字」の部分に第2引数以降に指定した引数が埋め込まれます。よく使わ
れるのは、%d（整数）、%f（浮動小数点数）、%s（文字列）です。%と文字の間には、幅と精度

（どちらも省略可）を指定できます。

幅と精度

日時や日付の書式は、日時オブジェクトや日付オブジェクトのメソッドstrftimeで揃えられます。次の例
は、strftimeで年月日時分秒を表示するものです。Timeクラスについては、「2.3　いろいろなオブジェクト」
の「日時と日付」を参照してください。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 49 def step12

 50 @time = Time.current

 51 end

 （以下省略）

chapter03/app/views/lesson/step12.html.erb

 1 <p><%= @time.strftime("%Y/%m/%d(%a) %H:%M:%S") %></p>

2018/01/01(Mon) 17:37:31

Rubyのメソッドだけでなく、RailsのAction Viewが備えているメソッドも利用できます。たとえば、3桁ごと
にカンマを入れて数値を表示させたいときは、number_with_delimiterメソッドを使います。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 53 def step13

 54 @population = 127767944

 55 end

 （以下省略）

chapter03/app/views/lesson/step13.html.erb

 1 <p>人口<%= number_with_delimiter(@population) %>人</p>

人口127,767,944人

また、Action Viewにはsimple_formatやtruncateなどの文字列を整えるヘルパーメソッドもあります。こ
れらについては、Morning Gloryサイトの開発で実際に使う際に説明します。

■ヘルパーメソッドの作成
テンプレート内で使われるヘルパーメソッドを自分で書くこともできます。例として、改行をHTMLのbrタグに

変換するtiny_formatメソッドを定義してみましょう。
app/helpersディレクトリの下にlesson_helper.rbというファイルを新規作成して、次のような内容を書き

入れてください。

chapter03/app/helpers/lesson_helper.rb

 1 module LessonHelper

 2 def tiny_format(text)

 3 h(text).gsub("\n", "
").html_safe

 4 end

 5 end

hメソッドは「<」→「<」のようにHTML特殊文字を変換します。そして、gsubメソッドで改行文字
（"\n"）を
に一括置換します。最後にhtml_safeメソッドで
をそのまま出力します。

app/helpersディレクトリの下で定義されたモジュールをヘルパーモジュールと言います。ヘルパーモジュール
はすべてのテンプレートにミックスインされます。

tiny_formatメソッドを使ってみましょう。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 57 def step14

 58 @message = "ごきげんいかが？\nRailsの勉強をがんばりましょう。"

 59 end

 （以下省略）

テンプレート内では、Action Viewのメソッドと同じようにヘルパーメソッドを呼び出せます。

chapter03/app/views/lesson/step14.html.erb

 1 <p><%= tiny_format(@message) %></p>

ごきげんいかが？

Railsの勉強をがんばりましょう。

ヘルパーモジュールとコントローラの関係
ヘルパーメソッドの数が増えてきたら、ヘルパーモジュールをいくつも作ってメソッドを分けるとよいでしょう。ヘルパーモジ

ュールには「○○Helper」という形式の名前を付け、ファイルには「○○_helper.rb」のような対応する名前を付けてく
ださい。

たとえば、LessonController用のテンプレートだけで使用するヘルパーメソッドをヘルパーモジュールLessonHelperで
定義するのは、よい考えです。ただし、ヘルパーモジュールはすべて、どのテンプレートにもミックスインされます。つまり、
tiny_formatメソッドはテンプレートapp/views/top/index.html.erbの中でも使用できます。ヘルパーモジュールとコント
ローラの間には特別な関係はありません。このため、ヘルパーモジュールの間でメソッド名が重複しないようにしてくださ
い。

リンクと画像
RailsのAction Viewには、リンクや画像のためのタグを簡単に生成するヘルパーメソッドも用意されていま

す。

■リンク
テンプレート内でリンク用のタグ（HTMLのaタグ）を作るには、link_toメソッドを使います。link_toメソッド

の第1引数にはリンクのテキスト、第2引数にはパスを指定します。
次の例は、トップページへのリンクを作成するものです。root_pathは「/」を返すメソッドで、:rootと指定す

ることもできます（「3.1　RailsとHTTPの基本」のHINT「パスを返すメソッドとシンボル」を参照）。

chapter03/app/views/lesson/step15.html.erb

 1 <p><%= link_to "Home", root_path %></p>

link_toメソッドの第2引数には、次のようにパスを指定できます。こうしたパスの指定方法は、コントローラ
のredirect_toメソッドの引数にも使えます。「5.1　RESTとルーティング」の「オブジェクトでパスを表す」も参照
してください。

"http://www.oiax.jp/"や"/help"のようなURLやパスを表す文字列。
root_pathのようにルーティングの設定で使えるようになるパス。および、members_pathのようにリソー
スを表すパス。
@memberのようにリソースを表すモデルオブジェクトや配列。
:rootや:membersのようにパスを表すシンボル。
コントローラ、アクション、パラメータを表すハッシュ。たとえば、LessonControllerのstep1アクションのパ
スを作るには、「link_to "Step1", controller: "lesson", action: "step1", name: "Sato"」のようにし
ます。Railsに昔からある書き方ですが、本書では使いません。

link_toメソッドの第3引数には、ハッシュでmethodオプションやdataオプションを追加できます。method
オプションはHTTPメソッドの種類を指定します。dataオプションはリンク先に進むかどうかを示す確認メッセー
ジを表示する際に利用します。「6.2　レコードの作成、更新、削除」の「会員の削除」を参照してください。

<%= link_to "削除", member, method: :delete,

 data: { confirm: "本当に削除しますか?" } %>

また、「属性名: 値」を追加すれば、aタグの属性になります。次の例は、
のようなタグになります。

<%= link_to "Home", root_path, class: "menu" %>

現在のページだったらリンクにしない
link_toメソッドの代わりにlink_to_unless_currentメソッドも使えます。このメソッドを使うと、「指定のパスが現在の

ページのものだったらリンクの代わりにテキストだけ表示する」ということができます。メニュー用のリンクを作るときに使うと
便利です。

<p><%= link_to_unless_current "Home", root_path %></p>

表示するテキストにタグを加えたいときは、link_to_unless_currentメソッドにブロックを渡します。

<%= link_to_unless_current("Home", root_path) do %>

 Home

<% end %>

■画像
リンクと同様に、画像用のタグ（HTMLのimgタグ）を作成するメソッドも用意されています。

image_tagメソッドに画像のファイル名とオプションを指定すると、自動的にタグができます。
Ruby on Railsのロゴ画像を表示してみましょう。まず、ブラウザで

「http://rubyonrails.org/images/rails-logo.svg」を開いて、rails-logo.svgをダウンロードし、
app/assets/imagesディレクトリに保存します。そして、次のような HTMLテンプレートを作成してください。

chapter03/app/views/lesson/step16.html.erb

 1 <p>Powered By

 2 <%= image_tag("rails-logo.svg", size: "64x20",

 3 alt: "Ruby on Rails", align: "top") %></p>

image_tagメソッドの第1引数には画像ファイル名、第2引数にはハッシュでオプションを指定します。オプ
ションはHTMLのimgタグに指定する属性と同じものが指定できます。縦と横の幅は「size: "64x20"」のよう
に指定できます。

画像ファイルの標準的な置き場所は、app/assets/imagesディレクトリです。ただし、
image_tag("/images/rails.png")のようにパスを/で始めれば、publicディレクトリにある画像が使われま
す。詳しくは「12.2　アセット・パイプライン」のHINT「publicディレクトリの下に置く場合」を参照してくださ
い。

画像にリンクを張りたいときは、link_toメソッドとimage_tagメソッドを組み合わせます。

<p>Powered By

<%= link_to(image_tag("rails.png", size: "64x20",

 alt: "Ruby on Rails", align: "top"),

 "http://rubyonrails.org/") %></p>

■一般的なタグの出力
HTMLのタグは、通常はRubyのコードとは別にして<%= %>の外に置きます。Rubyのコードを使ってタグ

を記述する必要があるときは、tagメソッドやcontent_tagメソッドを使います。次の例は、
と<p
class="p1">こんにちは</p>に変換されます。content_tagメソッドは、ブロックの中に内容を記述できま
す。

<%= tag(:br) %>

<%= content_tag(:p, class: "p1") do %>

こんにちは

<% end %>

条件分岐と繰り返し
条件分岐や繰り返しの構文を利用すると、テンプレートを効率よく簡潔に記述できます。

■条件分岐
テンプレートでは、「<% if 条件式 %> ～ <% else %> ～ <% end %>」でテキストやHTMLのタグを囲

むと、条件式の結果によって表示を切り替えることができます。間には「<% elsif 条件式 %>」をはさむこと
もできます。

次の例では、変数@zaikoが0以上なら在庫数を表示し、そうでなければ「品切れです。」と表示します。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 61 def step17

 62 @zaiko = 10

 63 end

 （以下省略）

chapter03/app/views/lesson/step17.html.erb

 1 <% if @zaiko > 0 %>

 2 残り<%= @zaiko %>個です。

 3 <% else %>

 4 品切れです。

 5 <% end %>

残り10個です。

if式だけでなく、unless式も使えます。

<% unless @zaiko == 0 %>

残り<%= @zaiko %>個です。

<% else %>

品切れです。

<% end %>

余分な改行やスペースの除去
<% -%>や<%= -%>のように-付きで閉じると、-%>の後ろの改行は取り除かれます。また、<%- %>のように-を

付けて始めると、行頭から<%-までの空白が取り除かれます。

テンプレート

<p>価格は、<%= @price -%>

円です。</p>

ブラウザへのレスポンス

<p>価格は、2100円です。</p>

■繰り返し

整数のtimesメソッドや、配列やハッシュのeachメソッドなどのブロックを<% %>で記述すると、表示を繰
り返すことができます。繰り返し表示したいテキストやタグは、ブロック内に記述します。たとえば次のようにす
ると「ランランラン」が表示されます。

<% 3.times do %>

ラン

<% end %>

ブロックを使うと、リスト（ulタグ）やテーブル（tableタグ）に配列やハッシュのデータを表示するときに効
率のよい記述ができます。次の例は、ハッシュのeachメソッドを使ってテーブルの行を繰り返し表示するもので
す。

chapter03/app/controllers/lesson_controller.rb

 （省略）

 65 def step18

 66 @items = { "フライパン" => 2680, "ワイングラス" => 2550,

 67 "ペッパーミル" => 4515, "ピーラー" => 945 }

 68 end

 69 end

chapter03/app/views/lesson/step18.html.erb

 1 <table border="1" cellpadding="4">

 2 <% @items.each do |key, val| %>

 3 <tr>

 4 <th><%= key %></th>

 5 <td style="text-align: right"><%= number_with_delimiter(val) %>円</td>

 6 </tr>

 7 <% end %>

 8 </table>

3.4 　モックアップの作成

ここからは、今まで学んだことを応用して、本書のサンプルサイトMorning Glory（asagaoアプリケー
ション）のモックアップ（実装前の見本サイト）を作成します。Chapter 4からは、このモックアップに
モデル（データベース）の機能を加えていきます。

レイアウトテンプレート
ウェブサイトでは、ページごとのデザインを統一する必要があります。一般的には、ページ全体を囲む「枠」の

中に、ページごとのコンテンツを入れるという形を取ります。Railsではこの「枠」をレイアウトテンプレートで簡単
に作成できます。

■レイアウトテンプレートとは
全体の枠となるレイアウトテンプレートは、app/views/layoutsディレクトリの下に置いたテンプレートファイ

ルに記述します。Railsはレンダリングを行う際に、各アクション用のテンプレートをレンダリングし、それをレイア
ウトテンプレートの中に埋め込んで、HTML全体を出力します。

レイアウトテンプレート

「bin/rails new」コマンドでアプリケーションを作成すると、app/views/layoutsディレクトリの下に
application.html.erbというデフォルトのレイアウトテンプレートができます。<%= yield %>の部分がアクショ
ン用のテンプレート（つまりページごとのコンテンツ）が埋め込まれる場所です。

デフォルトのテンプレート

<!DOCTYPE html>

<html>

 <head>

 <title>Asagao</title>

 <%= csrf_meta_tags %>

 <%= csp_meta_tag %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-track': 'reload'
%>

 <%= javascript_include_tag 'application', 'data-turbolinks-track': 'reload' %>

 </head>

 <body>

 <%= yield %>

 </body>

</html>

Chapter 1で作ったトップページ（TopControllerのindexアクション）をブラウザで開き、HTMLソースを
確認してみましょう。

トップページのHTML

<!DOCTYPE html>

<html>

 <head>

 <title>Asagao</title>

 <meta name="csrf-param" content="authenticity_token" />

<meta name="csrf-token"
content="dN4ovClBx9BiTgsqVQkLLont1tf4VYv4F0IboO3JwbP8XR38t7QDDWsE+Btg9x7
W4cpmaSa8Ec83ON3y//1H7g==" />

 <link rel="stylesheet" media="all" href="/assets/application.self-
f0d704deea029cf000697e2c0181ec173a1b474645466ed843eb5ee7bb215794.css?
body=1" data-turbolinks-track="reload" />

 <script src="/assets/rails-ujs.self-
551fbd47b981dacbb84a270f9123074caf39eb72aaf6f478ab597c6f81435e4b.js?body=1"
data-turbolinks-track="reload"></script>

<script src="/assets/activestorage.self-
6f0d773d8a366fac20308619a437ca72decef5467e2d9f7a3019afd7bb2ee72e.js?body=1"
data-turbolinks-track="reload"></script>

<script src="/assets/turbolinks.self-
2db6ec539b9190f75e1d477b305df53d12904d5cafdd47c7ffd91ba25cbec128.js?body=1"
data-turbolinks-track="reload"></script>

<script src="/assets/application.self-
66347cf0a4cb1f26f76868b4697a9eee457c8c3a6da80c6fdd76ff77e911715e.js?body=1"
data-turbolinks-track="reload"></script>

 </head>

 <body>

 <h1>おはようございます！</h1>

<p>これからRailsの勉強を始めます。</p>

 </body>

</html>

<%= yield %>の部分にindex.html.erbの内容が埋め込まれるほかに、<head> ～ </head>の間に
csrf_meta_tags、csp_meta_tag、stylesheet_link_tagとjavascript_include_tagの各メソッドが作ったタ
グが埋め込まれます。

こうしたメソッドとタグについては、「6.2　レコードの作成、更新、削除」のHINT「csrf_meta_tagsメソッ
ド」、および「12.2　アセット・パイプライン」を参照してください。

csp_meta_tagメソッド

csp_meta_tagメソッドは、Rails 5.2で導入された新しいメソッドで、Content Security Policy（CSP）に関するタ
グを埋め込むために使用します。初期状態のRailsアプリケーションはCSPを利用しないため、このメソッドは何の効果も
持ちません。本書ではCSPに関する説明を省略します。

モックアップのレイアウトテンプレート
始めにapplication.html.erbの頭の部分を次のように書き換えましょう。

chapter03/app/views/layouts/application.html.erb

 1 <!DOCTYPE html>

 2 <html>

 3 <head>

 4 <title><%= page_title %></title>

 5 <%= csrf_meta_tags %>

 6 <%= csp_meta_tag %>

 7

 8 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-track': 'reload'
%>

 9 <%= javascript_include_tag 'application', 'data-turbolinks-track': 'reload' %>

 10 </head>

 （以下省略）

HTMLのtitleタグの中身は、ヘルパーメソッドのpage_titleで作ることにします。
app/helpers/application_helper.rbのApplicationHelperモジュールに次のようにpage_titleメソッドを追
加します。インスタンス変数@page_titleがあればページのタイトルは「○○ - Morning Glory」に、なけれ
ば「Morning Glory」だけとなります。

chapter03/app/helpers/application_helper.rb

 1 module ApplicationHelper

 2 def page_title

 3 title = "Morning Glory"

 4 title = @page_title + " - " + title if @page_title

 5 title

 6 end

 7 end

TopControllerのaboutアクションのテンプレートを作ったときに、変数@page_titleに文字列「このサイト
について」を入れました（「3.1　RailsとHTTPの基本」の「ルーティング」を参照）。
「http://localhost:3000/about」をブラウザで開くとタイトルが次のように変わります。

Railsはアクション用のテンプレートや部分テンプレートをレンダリングしたあとで、レイアウトテンプレートをレン
ダリングします。about.html.erb内で設定した変数@page_titleが、application.html.erb内の
page_titleメソッドで使えるのはそのためです。

■レイアウトテンプレートの切り替え
コントローラやアクションごとにレイアウトテンプレートを切り替えて、1つのサイトで複数のデザインを使い分け

ることもできます。レイアウトテンプレートを指定する方法は、3つあります。1つ目は、app/views/layoutsディ
レクトリにtop.html.erbのようにファイル名が「コントローラ名.html.erb」のテンプレートを置くことです。それが
TopControllerのレイアウトテンプレートになります。

2つ目は、コントローラでlayoutメソッドを使うことです。引数は、layoutsディレクトリに置いたテンプレートフ
ァイル名から拡張子を除いたものにします（引数はシンボルではなく文字列にしてください）。

class TopController < ApplicationController

 layout "simple"

3つ目は、アクション内でrenderメソッドにlayoutオプションを付けてテンプレートファイル名を指定すること
です。layoutオプションを使えば、ある条件の場合にだけレイアウトを切り替えることができます。

 def show

 if 何かエラーが発生...

 render layout: "error"

 end

 end

なお、レイアウトテンプレートを使わずに、アクション用のテンプレートの中身をそのままHTML全体とするに
は、「render layout: false」とします。

レイアウトの継承
ApplicationControllerにlayoutメソッドを記述すると、すべてのコントローラにレイアウトが継承されます。たとえば、

次のようにApplicationControllerでレイアウトを指定したとします。

class ApplicationController < ActionController::Base

 layout "application"

end

そして、次のようにTopControllerとHelpControllerを定義したとします。

class TopController < ApplicationController

end

class HelpController < ApplicationController

 layout "simple"

end

この場合、TopControllerではapp/views/layouts/application.html.erbが、HelpControllerでは
app/views/layouts/simple.html.erbがレイアウトとして使われます。

部分テンプレート
サイトの中ではページ全体の枠だけでなく、各ページに入れる「パーツ」も共通にする必要が出てきます。た

とえば、ページの上部に置くメニューバーや、ページの左右に置くサイドバーなどです。こうした共通パーツは部分
テンプレートで作ります。

■部分テンプレートの使い方

部分テンプレート用のファイルは_menu_bar.html.erbのようにファイル名の前に_（アンダースコア）を付け
ます。ファイルを置くディレクトリはアクション用テンプレートと同じです。たとえば次のような部分テンプレートを
書いたとします。

部分テンプレートの例

<nav>

 <%= link_to 'TOP', :root %>

 <%= link_to 'ニュース', :articles %>

</nav>

この部分テンプレートを別のテンプレートに埋め込むには、renderメソッドを使います。引数には、ファイル名
から先頭の_と拡張子を除いたものになります。

部分テンプレートの埋め込み

<%= render "menu_bar" %>

部分テンプレートは、レイアウトテンプレートに埋め込んだり、複数のコントローラのテンプレートで共通に使っ
たりすることもあります。本書では、共通の部分テンプレートは、app/viewsディレクトリの下にsharedというデ
ィレクトリを作成して、そこに置くことにします。別のディレクトリにある部分テンプレートを埋め込むには、
renderメソッドの引数を「ディレクトリ名/テンプレート名」とします。

別のディレクトリにある部分テンプレートの埋め込み

<%= render "shared/menu_bar" %>

引数の中では_は付けませんが、ファイル名は「_menu_bar.html.erb」のように_で始めている点に注意し
てください。

■モックアップの部分テンプレート
サイトMorning Gloryでは、次のようなデザインでページを構成することにします。部分テンプレートを使って

ヘッダー、サイドバー、フッターを作ります。

まず、レイアウトテンプレートの<body> ～ </body>の部分を次のように変更します。

chapter03/app/views/layouts/application.html.erb

 （省略）

 13 <body>

 14 <div id="container">

 15 <header>

 16 <%= render "shared/header" %>

 17 </header>

 18 <main>

 19 <%= yield %>

 20 </main>

 21 <aside id="sidebar">

 22 <%= render "shared/sidebar" %>

 23 </aside>

 24 <footer>

 25 <%= render "shared/footer" %>

 26 </footer>

 27 </div>

 28 </body>

 29 </html>

ヘッダー（header要素）、コンテンツ部分（main要素）、サイドバー（aside要素）、フッター
（footer要素）の4つの要素で構成し、その内容を部分テンプレートにします。さらに、全体を
id="container"のdivタグで囲みます。

次に、app/viewsディレクトリの下にsharedディレクトリを作成し、その中に部分テンプレート
_header.html.erbを作成します。

chapter03/app/views/shared/_header.html.erb

 1 <%= image_tag "logo.gif", size: "272x48", alt: "Morning Glory" %>

 2

 3 <nav class="menubar">

 4

 5 <%= menu_link_to "TOP", :root %>

 6 <%= menu_link_to "ニュース", "#" %>

 7 <%= menu_link_to "ブログ", "#" %>

 8 <%= menu_link_to "会員名簿", "#" %>

 9 <%= menu_link_to "管理ページ", "#" %>

 10

 11 </nav>

テンプレートの内容は、ロゴ画像とメニューとなるリンクです。まだ作っていないページは「#」をリンク先にしま
す。

ロゴ画像logo.gifは、ダウンロードしたサンプルソースのapp/assets/imagesからコピーして、自分の
app/assets/imagesの下に置いてください。

続いて、メニューの中で使うヘルパーメソッドmenu_link_toをapp/helpersの下のapplication_helper.rb
に記述します。

chapter03/app/helpers/application_helper.rb

 1 module ApplicationHelper

 （省略）

 8 def menu_link_to(text, path, options = {})

 9 content_tag :li do

 10 link_to_unless_current(text, path, options) do

 11 content_tag(:span, text)

 12 end

 13 end

 14 end

 15 end

メソッドmenu_link_toの第3引数でoptions = {}という書き方をしている点に注意してください。これは、
第3引数が省略可能であり、もし省略された場合は等号（=）の右側の値がデフォルト値として使われる
ことを意味しています。つまり、menu_link_to("HOME", :root)のように呼び出した場合、仮引数options
には空のハッシュがセットされます。

link_to_unless_currentメソッドを使って、現在のページの場合はリンクにせずに、spanタグでテキストを
囲むようにします。liタグやspanタグを生成するのに、content_tagメソッドを利用しています。

さらに、サイドバーの部分テンプレート_sidebar.html.erbを次のように記述します。サイドバーには、ニュース
と会員のブログ記事へのリンクを並べることにします。

chapter03/app/views/shared/_sidebar.html.erb

 1 <%= render "shared/login_form" %>

 2

 3 <h2>最新ニュース</h2>

 4

 5 <% 5.times do |i| %>

 6 <%= link_to "ニュースの見出し", "#" %>

 7 <% end %>

 8

 9

 10 <h2>会員のブログ</h2>

 11

 12 <% 5.times do |i| %>

 13 <%= link_to "ブログの見出し", "#" %>

 14 <% end %>

 15

また、サイドバーの上部にはログインフォームを置きます。ログインフォームは部分テンプレート
_login_form.html.erbに分けて、部分テンプレートの中に部分テンプレートを埋め込みます。実際に会員が
ログインする機能はChapter 8で作成します。

chapter03/app/views/shared/_login_form.html.erb

 1 <h2>ログイン</h2>

 2 <form id="login_form">

 3 <div>

 4 <label>ユーザー名：</label>

 5 <input type="text">

 6 </div>

 7 <div>

 8 <label>パスワード：</label>

 9 <input type="password">

 10 </div>

 11 <div>

 12 <input type="submit" value="ログイン">

 13 </div>

 14 </form>

フッターとなる部分テンプレート_footer.html.erbを以下のように記述し、「このサイトについて」のページへの
リンクを張ります。:aboutの代わりにabout_pathと書いてもかまいません。

chapter03/app/views/shared/_footer.html.erb

 1 <%= link_to "このサイトについて", :about %> |

 2 Copyright (C) <%= link_to "Oiax Inc.", "http://www.oiax.co.jp/" %>

 3 2007-2018

■トップページの修正
トップページ（TopControllerのindexアクション）の内容もモックアップにふさわしい内容にしておきましょ

う。ニュースの内容に変わるダミーのテキストを入れておきます。Chapter 1で作ったテンプレート全体を次の内
容で置き換えます。

chapter03/app/views/top/index.html.erb

 1 <% 5.times do |x| %>

 2 <h2>見出し</h2>

 3 <p>

 4 ここに本文が入ります。ここに本文が入ります。ここに本文が入ります。ここに本文が入ります。

 5 <%= link_to "もっと読む", "#" %>

 6 </p>

 7 <% end %>

TopControllerのindexアクションに書いた内容は消しておきます。

chapter03/app/controllers/top_controller.rb

 1 class TopController < ApplicationController

 2 def index

 3 end

 （以下省略）

修正後のトップページをブラウザで表示すると、次のようになります。まだスタイルシートを作っていないので、
地味な表示です。

スタイルシート
各ページで共通して使う「枠」や「パーツ」などのHTMLは、レイアウトテンプレートや部分テンプレートに記述

します。一方、背景色や文字色、フォントサイズ、余白、枠線などのデザインは、スタイルシート（CSS）に
記述します。

CSSファイルは、app/assets/stylesheetsの下に置きます。このディレクトリには初期状態で
application.cssというファイルがあり、次のような内容です。

chapter03/app/assets/stylesheets/application.css

 1 /*

 2 * This is a manifest file that'll be compiled into application.css, ...

 （省略）

 12 *

 13 *= require_self

 14 *= require_tree .

 15 */

コメントの中の*=で始まる行は必要ですので、消したり書き換えたりしないでください。この行の役割につ
いては、「12.2　アセット・パイプライン」を参照してください。

このファイルの16行目以降にスタイルを記述すれば、ページに反映されます。以下に示すCSSファイルの内
容は一部省略しています。サンプルソースのapp/assets/stylesheetsからapplication.cssをコピーして、自
分のapp/assets/stylesheetsの下に置いてください。

まず、全体に共通する要素のデザインを記述します。

chapter03/app/assets/stylesheets/application.css

 （省略）

 17 /* ページ全体 */

 18 body {

 19 background-color: white;

 20 color: black;

 21 margin: 0; padding: 0;

 22 font-family: Meiryo, sans-serif;

 23 }

 24

 25 /* リンク */

 26 a:link { color: #00c; }

 27 a:visited { color: #00c; }

 28 a:hover { color: #f00; }

 29 a img { border: none; }

 （以下省略）

続いて、コンテンツ部分とサイドバーの大きさを指定します。id属性が「content」と「sidebar」のdivタグに
floatプロパティを指定して、段組みにしています。

chapter03/app/assets/stylesheets/application.css

 （省略）

 52 /* 全体の枠 */

 53 div#container {

 54 margin: 0 auto;

 55 padding-top: 5px;

 56 width: 780px;

 57 }

 58

 59 /* 左の枠（コンテンツを入れる）*/

 60 main {

 61 float: left;

 62 width: 530px;

 63 padding: 10px 10px 10px 0;

 64 }

 65

 66 /* 右の枠（サイドバーを入れる）*/

 67 aside#sidebar {

 68 float: left;

 69 width: 230px;

 70 background-color: #e8ffff;

 71 padding: 5px;

 72 font-size: 86%;

 73 }

 （以下省略）

特定の部分の中でリンクの色を変えたいときは、「nav.menubar a」のように子孫セレクタを活用します。

chapter03/app/assets/stylesheets/application.css

 （省略）

 /* メニューバーのリンク */

 nav.menubar a { text-decoration: none; }

 /* メニューバーのリンク（未訪問）*/

 nav.menubar a:link { color: #ccc; }

 /* メニューバーのリンク（訪問済）*/
 nav.menubar a:visited { color: #ccc; }

 （以下省略）

以上でモックアップの完成です。ブラウザで「http://localhost:3000/」を表示すると、スタイルシートで色
が付いたページが表示されます。

実際には、テンプレートとスタイルシートを交互に修正しながら作成することになるでしょうが、大まかな手
順は以上のとおりです。

Chapter 3のまとめ

Railsは、HTTPプロトコルでリクエストを受けると、ルーティングの設定に従ってコントローラ
のアクションを呼び出します。

コントローラの中には、複数のアクションが含まれます。コントローラはRubyのクラス、アク
ションはメソッドとして記述します。
アクションが実行されると、そのアクションに対応したテンプレート（erbファイル）でレンダ
リングが行われます。
アクションの中では、renderメソッドでテンプレートを選んだり、redirect _toメソッドで別
のページに移動したりできます。
テンプレートの中では、<% %>や<%= %>の中にRubyのコードを記述します。
サイト中のページで共通して使う全体の枠を作るには、レイアウトテンプレートを利用しま
す。ページ中のパーツは部分テンプレートで作成できます。
サイトの色やフォントはスタイルシートでデザインします。

練習問題

［A］　空欄の中に適切な語句を記入してください。
記事の投稿など、サーバーの状態を変更するときには、HTTPの　　メソッドで送信します。
redirect_toメソッドを使うと、ブラウザに新しいURLを示して別のページへの　　　　　　　　　　　
を行うことができます。
routes.rbを編集すると、URLのパスから特定のアクションを選ぶ　　　　　　　　の設定を変更で
きます。

［B］　routes.rbに「get "about" => "top#about", as: "about"」という設定をしたとします。テンプレー
トの中で、TopControllerのaboutアクションへのリンクを作成してください。リンクのテキストは「このサイトに
ついて」としてください。

<p>　　　　　　　　　　　　　　　　　　　　　　　　</p>

［C］　テンプレートの中で、配列@countriesの中身をHTML のリストに並べて表示させてください。

アクション

@countries = ["イタリア", "フランス", "ドイツ"]

テンプレート

　　　　　　　　

Chapter

4　データベースとモデル

このChapterでは、MVCアーキテクチャのうちで、データベースとのやり取りを行
うコンポーネント、つまりモデルを扱います。モデルについて学習する前に、データベ
ースの作成やテーブルの定義、データの用意が必要なので、そうした準備について
も詳しく解説します。

これから学ぶこと

データベースのしくみとモデルの関係について学びます。
アプリケーション用のデータベースを作成します。
モデルを作成する方法を学びます。
マイグレーションスクリプトを記述してテーブルを定義します。
シードデータを使って開発用のデータベースに初期データを入れます。
さまざまなメソッドを使ってテーブルからレコードを取り出したり、 検索したりす
る方法を学びます。

Railsのモデルは、データベースのテーブルに対応したオブジェクトです。モデルの学習のためにデー
タベースを準備するには何が必要でしょうか？ モデルを使ってデータベースから情報を取り出す
には、どうすればよいでしょうか？

4.1 　データベースとモデルの基本

このChapterからは、いよいよデータベースを使い始めます。まずは、データベースと
Railsのモデルとの関係を紹介します。この節の最後では、実際にデータベースを作成
してみます。

データベースとは
何らかのデータ（人物の情報や商品の情報など）を集め、データの操作や検索を行える

ようにしたものをデータベースと呼びます。データベースにはいろいろな種類がありますが、現在
よく使われているのはリレーショナルデータベース（関係データベース）です。本書で「データベ
ース」と言えばリレーショナルデータベースのことです。

データベースは、テーブルの集合でできています。テーブルとは、Excelの表のように情報を縦
横に並べたものです。ただし、Excelとは違って並べ方に決まりがあります。各行（レコード）
が1つのデータを表し、列（カラムまたはフィールド）がそのデータの内容を表します。

各列ではデータの型が決まっています。たとえば、価格の列の型を整数とすると、その列に
は「1890」のような数値を入れます。商品名の列の型は文字列にして「掛け時計」のような
文字列を入れます。

テーブル

こうしたいくつものテーブルからなるデータベースは、データベース管理システム（DBMS）を
通して利用します。ウェブアプリケーションでよく使われるDBMSには、オープンソースのMySQL
やPostgreSQLなどがあります。本書ではSQLite3を使います。SQLite3は、デスクトップアプ
リケーション向けのDBMSで、サーバー向けではありませんが、Railsとデータベースの学習には
十分な機能を備えています。

MySQLやPostgreSQLを利用したい場合
MySQLやPostgreSQLを利用して本書の学習を進めたい方は、ブラウザでサポートサイト

（https://www.oiax.jp/rails5book）を開き、「MySQLを利用したい場合」もしくは
「PostgreSQLを利用したい場合」という節を探し、その解説を参照してください。

DBMSの利用

Railsのモデル
Railsでは、データベースとのやり取りを行うクラスをモデルと呼びます。

■データベースとモデル
モデルは、データベースのテーブルに対応するRubyのクラスです。モデルクラスのインスタンス

は、1つの行（レコード）を表すオブジェクトになり、テーブルの列（カラム）に相当する属性
を持ちます。たとえば、商品情報のモデルクラスがあるとすると、そのインスタンスは「商品
名」、「価格」などの属性を持ちます。

https://www.oiax.jp/rails5book

データベースとRailsのモデル

Railsのモデルを使うと、直感的で記述しやすいコードでデータベースを扱うことができます。
たとえば123番の商品を表すレコードを取り出すには、モデルクラスのメソッドに番号を渡しま
す。レコードから値を取り出したり値を入れたりするときには、「変数名.カラム名」のように記
述します（findメソッドについては「4.4　レコードの取り出しと検索」の「findメソッド」を参
照）。

product = Product.find(123) # 123番の商品

name = product.name # nameカラムから値を取り出す

product.price = 1980 # priceカラムに値を設定

Railsのモデルは、メソッド呼び出しを自動的にSQL文に変換してDBMSに送信します。こ
れによって、RailsではSQLの文法を知らなくてもデータベースに対する基本的な操作ができま
す。本書ではSQLについて詳しく解説しませんが、クエリーメソッドを細かく使いこなすときには
SQLの知識が必要になります。本書とは別にSQLの入門書を読んでおくとよいでしょう（ク
エリーメソッドについては「4.4　レコードの取り出しと検索」の「クエリーメソッドとリレーションオ
ブジェクト」を参照）。

SQLとは
SQLとは、リレーショナルデータベースで使われる問い合わせ用の言語です。たとえばテーブル

productsからすべてのレコードを取り出すには、次のように記述してDBMSに送ります。

SELECT * FROM products

SELECT文ではWHERE句で検索条件を指定したり、ORDER句でソートの順番を指定したりで
きます。次の例は、priceカラムが1000未満のレコードを取り出し、priceカラムの値順（降順）に
並べるものです。

SELECT * FROM products WHERE price < 1000 ORDER BY price DESC

■主キー
先のfindメソッドに渡している番号は、主キーの値です。主キーとは、レコードを識別するた

めのカラムです。1つのテーブルでは、複数のレコード間で主キーの値は重複できません。
Railsの規約では、テーブルに決まった形式の主キーを1個だけ設定することになっていま

す。主キーとなるカラムの名前はidです。値は整数の連番になります。「impress2018-
123」のような会社のルールに従った番号でレコードを識別したいときは、主キーのidとは別に
product_numberのようなカラムを作成するとよいでしょう。

Railsの規約に合わない形式の主キーが設定されているテーブルを取り扱う方法について
は、「4.2　テーブルの作成」のHINT「主キーとして使用するカラム名の指定」を参照してくだ
さい。

テーブルから特定のレコードを取り出すときは、モデルクラスのfindメソッドにidの値、つまり
主キーの番号を渡します。また、Chapter 10で紹介するように、テーブルを関連付けるとき
は、主キーを使って1つのテーブルのレコードから別のテーブルのレコードを参照します。

主キー

データベースの設定
一からデータベースを作成するときは、次の順で作業をします。この節では、1.と2.の作業

を行い、「4.2　テーブルの作成」で3.を、「4.3　データの保存」で4.を行います。

1. DBMSへの接続の設定
2. データベースの作成
3. テーブルの定義と作成
4. テーブルに入れるデータの作成

■接続の設定
DBMSへの接続の設定は、configディレクトリにあるdatabase.ymlで行います。このファ

イルは、Railsアプリケーションを作成したときに自動的に作られます。内容はYAML形式で
書かれています（YAMLについては、「7.2　メッセージの日本語化」の「YAML」を参照）。

database.ymlをテキストエディタで開いて、内容を確認しましょう。「rails new」コマンド
は、DBMSを指定しないときはデフォルトでSQLite3用の設定を作ります。

chapter04/config/database.yml

 （省略）

 7 default: &default

 8 ␣␣adapter: sqlite3

 9 ␣␣pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>

 10 ␣␣timeout: 5000

 11

 12 development:

 13 ␣␣<<: *default

 14 ␣␣database: db/development.sqlite3

 15

 （省略）

 19 test:

 20 ␣␣<<: *default

 21 ␣␣database: db/test.sqlite3

 22

 23 production:

 24 ␣␣<<: *default

 25 ␣␣database: db/production.sqlite3

YAML形式では、行頭の字下げ（インデント）幅が重要な意味を持ちます。そこで本書
ではYAML形式のソースコードに含まれる行頭のスペースを␣という記号で表現します。

本書に沿ってRailsの学習を進めるうえでは、database.ymlを修正する必要はありませ
ん。MySQLやPostgreSQLを利用したい方は、サポートサイトを参照してください。

■3つのモード
Railsには、アプリケーションのモード（環境とも呼ばれます）が3種類あり、それぞれ別の

データベースを使います。database.ymlでは、development:、test:、production:の下にそ
れぞれ開発用、テスト用、本番用のデータベースの設定を記述します。

3つのモード
モード名 説明
開発 development コードを書きながらブラウザで確認するための環境。
テスト test 自動テストのための環境。
本番 production ウェブサイトを一般に公開するときの環境。

config/environmentsディレクトリの下には、3つのモードごとの設定ファイル
development.rb、test.rb、production.rbがあり、「本番ではキャッシュを使い、開発では
使わない」というような設定が書かれています。

3つのモードは環境変数で区別されます。コマンド「export RAILS_ENV=production」を
実行してからrailsコマンドを実行すると、アプリケーションは本番モードのもとで動きます。

モードを調べるには
Railsアプリケーションの中では、「Rails.env == "production"」のようにしてモードを表す文字列

を調べられます。また、Rails.envは「モード名?」メソッドを持っていて、Rails.env.development?は
開発モードならtrue、そうでなければfalseを返します。

if Rails.env.production?

 # 本番だけ実行されるコード...

end

データベースの作成
database.ymlの設定に従って、開発用にデータベースを作成しましょう。

■データベースの作成
ターミナルで次のコマンドを実行してください。SQLite3ではこのコマンドを実行しなくても自

動的にデータベースができますが、MySQLやPostgreSQLを使っているときは必須です。

$ bin/rails db:create

SQLite3は、1つのデータベースを1つのファイルとして扱います。db:createによってdbディレ
クトリの下には2つのファイルdevelopment.sqlite3（開発用のデータベース）と
test.sqlite3（テスト用のデータベース）ができます。

本番用のデータベースを作成するときは、RAILS_ENV=productionを付けます。すると、
dbディレクトリの下にproduction.sqlite3ができます。RAILS_ENVはRailsの実行モードを表
す環境変数です。

$ bin/rails db:create RAILS_ENV=production

また、データベースを削除したいときは、次のコマンドを使います。本番用のデータベースを
削除したいときは、やはりRAILS_ENV=productionを付けます。

$ bin/rails db:drop

データベースの中にテーブルを作成するには、次の4.2節で紹介するマイグレーションの機能
を使います。また、データベースがちゃんとできたかどうかを確認する方法は、「4.3　データの
保存」の「データベースの確認」を参照してください。

■タイムゾーンの設定
モデルを作成したり、マイグレーションを行ったりする前に、Railsアプリケーションのタイムゾー

ン（標準時の地域）を設定しておきましょう。configディレクトリのapplication.rbを開き、
次のように書き換えます。

chapter04/config/application.rb

 （省略）

 20 module Asagao

 21 class Application < Rails::Application

 （省略）

 30 # Don't generate system test files.

 31 config.generators.system_tests = nil

 32

 33 config.time_zone = "Tokyo"

 34 end

 35 end

Railsは、データベースのテーブルに時刻情報を保存する際に、時刻をUTC（協定世界
時）に変えて保存します。日本標準時は協定世界時から9時間の時差があります。データ
ベースから時刻を取り出して表示するときは、上記の設定によってUTCに9時間が足された
ものになります。

タイムゾーンの切り替え
Railsのタイムゾーン機能を使えば、日本にいるユーザーには＋9時間の時刻を見せ、ニューヨークに

いるユーザーには−4時間の時刻を見せる、といったことができます。本書では使いませんが、コントロ
ーラの中で次のように記述すれば、ユーザーに見せる地方標準時を切り替えられます。

Time.zone = "Eastern Time (US & Canada)"

4.2 　テーブルの作成

ここでは、データベースの中にテーブルを作成し、テーブルにカラム（＝モデルの属性）
を加えます。テーブルとカラムの作成は、Railsのマイグレーション機能を使うと簡単に
行えます。

モデルの作成
データベースのテーブルに対応するモデルを作成しましょう。本書では、草野球チーム

Morning Gloryの会員情報をmembersテーブルで管理することにし、そのテーブルに対応
するMemberモデルを作ります。

モデルを作成するには、コントローラを作成したときのように、ターミナルから「bin/rails g」コ
マンドを実行します。「bin/rails g model モデル名」でモデルを作成できます。

Chapter 1で作成したasagaoディレクトリの下で次のように実行してください。

$ bin/rails g model member

Chapter 3で紹介したとおり、Railsの命名規約ではモデルに対応するデータベースのテー
ブル名はmembersのように複数形になります。モデルのクラス名は、Memberのように頭が
大文字の単数形になります（「3.2　コントローラとアクション」の「命名規約」を参照）。

app/modelsディレクトリの下には、「モデル名.rb」のファイルができます。Memberモデル
ではmember.rbです。モデルに関するコードはこのファイルに記述します。作成したばかりのモ
デルクラスは中身が空になっていますが、ApplicationRecordクラスを継承しているのでこれ
だけでも機能します。

class Member < ApplicationRecord

end

application_record.rbの使い方
モデルクラスの親クラスであるApplicationRecordは、app/modelsディレクトリの下の

application_record.rbに記述されています。このクラスにメソッドや定数を加えれば、すべてのモデ
ルで共通して使えます。Chapter 13では、複数のモデルで共用する定数をApplicationRecordで
定義しています。

ApplicationRecordの親クラスは、Railsが用意しているActiveRecord::Baseクラスです。

モデルクラスの階層

モデル名の指定
モデル名を作成するときは、「bin/rails g model Member」のようにMemberを大文字で始め

てもかまいません。また、entry_imageと指定してもEntryImageとしても、EntryImageモデル（テ
ーブル名はentry_images）ができます。

ただし、membersのように複数形にしてはいけません。Membersモデルができてしまいます。モデ
ル名は単数形にするのが決まりです。

マイグレーション
データベースの中にMemberモデルに対応するmembersテーブルを作りましょう。

■マイグレーションスクリプト

Railsでは、データベースのテーブルの作成や変更にマイグレーションという機能を使います。
マイグレーションを使うと、自動的にテーブルのカラムを定義できるだけでなく、開発の途中で
カラムを追加したり変更したりする作業も楽に行えます。

「bin/rails g model member」でモデルを作成すると、db/migrateディレクトリの下に
20180401034353_create_members.rbのような「年月日時分秒_create_テーブル
名.rb」というファイルができます。このファイルをマイグレーションスクリプトと呼びます。

マイグレーションスクリプトを開いてみましょう。CreateMembersクラス（マイグレーションク
ラス）にchangeメソッドがあります。changeメソッドの中のcreate_tableメソッドはテーブル
の作成を行うもので、このメソッドに渡すブロックの中にカラムを記述します。

class CreateMembers < ActiveRecord::Migration[5.2]

 def change

 create_table :members do |t|

 t.timestamps

 end

 end

end

CreateMembersクラスの親クラスにActiveRecord::Migration[5.2]が指定されている
点に注目してください。角かっこの中の「5.2」は、このマイグレーションスクリプトがRailsバージョ
ン5.2のbin/rails g modelコマンドによって生成されたことを示しています。

カラムは「t.カラムの型:カラム名」という形で記述します。たとえば、nameという文字列型
のカラムを追加するには、次のようにします。

 create_table :members do |t|

 t.string :name

 t.timestamps

 end

主キーとして使用するカラム名の指定
create_tableメソッドでテーブルを作るとき、主キーであるidカラムは自動的に追加されるので、ブ

ロックの中で記述する必要はありません。もし主キーのカラム名をid以外のもの（たとえば
member_id）にしたい場合は、次のようにprimary_keyオプションで指定します。

 create_table :members, primary_key: "member_id" do |t|

そして、モデルクラスの定義の中で主キーのカラム名を指定します。

class Member < ApplicationRecord

 self.primary_key = "member_id"

end

カラムの型とRubyのクラス
create_tableメソッドの「t.カラムの型」や後述するadd_columnメソッドには、次の表の1列目の

ように型を指定できます。カラムはモデルクラスの属性になり、カラムの型は属性のクラスの種類にな
ります。カラムの型とRubyのクラスの関係は、完全に1対1にはなっていません。

また、DBMSの種類によっても違いがあります。たとえば、SQLite3には厳密なカラム型はありませ
んが、MySQLやPostgreSQLはいろいろな種類の型を用意しています。次の表には参考として
MySQLおよびPostgreSQLでのカラム型も掲載しています。

カラムの型とRubyのクラス
マイグレーションの型 Rubyのクラス MySQL PostgreSQL
integer FixedNum int(11) integer
decimal BigDecimal decimal(10,0) decimal
float Float float float
boolean TrueClass/FalseClass tinyint(1) boolean
string String varchar(255) character varying

text String text text
date Date date date
datetime ActiveSupport::TimeWithZone datetime timestamp
time Time time time
timestamp ActiveSupport::TimeWithZone timestamp timestamp
binary String blob bytea

membersテーブルの作成
では、asagaoで実際に使用するデータベースの構造を作っていきましょう。membersテー

ブルのためのマイグレーションスクリプトを次のように書き換えてください。

chapter04/db/migrate/20180523132805_create_members.rb

 1 class CreateMembers < ActiveRecord::Migration[5.2]

 2 def change

 3 create_table :members do |t|

 4 t.integer :number, null: false # 背番号

 5 t.string :name, null: false # ユーザー名

 6 t.string :full_name # 本名

 7 t.string :email # メールアドレス

 8 t.date :birthday # 生年月日

 9 t.integer :sex, null: false, default: 1 # 性別 (1:男, 2:女)

 10 t.boolean :administrator, null: false, default: false # 管理者フラグ

 11

 12 t.timestamps

 13 end

 14 end

 15 end

ユーザー名（ログイン名）、本名、メールアドレスを文字列型、背番号と性別を整数型
のカラムとして作ります。生年月日は日付型（date型＝Dateクラス）にします。論理値型
の管理者フラグは、trueの場合は管理者、falseでは一般ユーザーとします。

主キーのカラムは、指定しなくてもidという名前で自動的に作られます（主キーについては
「4.1　データベースとモデルの基本」の「主キー」を参照）。

「t.integer :number」や「t.string :name」に付いている「null: false」というオプションに
注目してください。これは、空の値（Rubyではnil、SQLではNULL）が保存されないよう
に、カラムにNOT NULL制約を付ける指定です。これにより、空の値を保存しようとすると、
DBMSがエラーを出します。

また、「t.integer :sex」に付いている「null: false, default: 1」のオプションは、「カラムに
NOT NULL制約を付け、デフォルト値を1とする」という指定です。これにより、sex属性に値
を入れないで保存すると自動的に値が1になります。同様に、administrator属性のデフォ
ルト値をfalseにしています。

created_atカラムとupdated_atカラム
上記のマイグレーションスクリプトでは、t.timestampsによってcreated_atとupdated_atという時

刻型のカラムが2つできます。Railsは、レコードを作成したときにcreated_atカラムに自動的にその時
刻を入れます。また、レコードを更新したときにはupdated_atカラムに時刻を入れます。この2つのカ
ラムを作っておけば、レコードの作成と更新の時刻を調べられるようになります。

続いて、マイグレーションを実行しましょう。ターミナルで次のコマンドを実行します。開発用
のデータベースにテーブルmembersが作成され、カラムが加えられます。

$ bin/rails db:migrate

本番用のデータベースでマイグレーションを行いたいときは、次のように
RAILS_ENV=productionを付けてマイグレーションを実行します。

$ bin/rails db:migrate RAILS_ENV=production

マイグレーションを行うとdbディレクトリの下にschema.rbというファイルができます。Railsは
マイグレーション完了時にその時点におけるデータベースの構造を再現するスクリプトをこのファ
イルに書き込みます。プログラマが直接このファイルを編集してはなりません。

「type」というカラム名に注意
原則として、カラム名にはtypeという名前は付けられません。本書では解説しませんが、typeカラ

ムはRailsの「単一テーブル継承（single table inheritance; STI）」という機能のために使われま
す。「種類」を表すカラムを作りたいときは、kindのように別の名前にするか、member_typeのよう
な名前を使ってください。

どうしてもtypeというカラム名を使いたい場合は、モデルクラス定義の中で次のように記述してくだ
さい。

class Member < ApplicationRecord

 self.inheritance_column = nil

こうすれば、typeカラムから特別な意味が取り除かれ、普通のカラムとして使えるようになります。

マイグレーションの詳細
ここでは、マイグレーションの細かい機能と使い方を紹介します（あくまで「例」ですので、

自分のasagaoアプリケーションでは実行しないでください）。

■カラムの追加
開発中には、新しいテーブルを作るだけでなく、既存のテーブルにカラムを追加したくなるこ

とがあります。この作業もマイグレーションで簡単に行えます。
「bin/rails g migration クラス名」を実行すれば、db/migrateディレクトリの下に

20180401040230_alter_members.rbのようなファイル名のマイグレーションスクリプトが作
成されます。

$ bin/rails g migration AlterMembers

新しいマイグレーションスクリプトのAlterMembersクラスには、changeメソッドができま
す。たとえば、membersテーブルに電話番号を表すphoneカラムを追加したいときは、
changeメソッドの中にadd_columnメソッドを記述します。

class AlterMembers < ActiveRecord::Migration[5.2]

 def change

 add_column :members, :phone, :string

 end

end

add_columnメソッドの引数には、テーブル名、追加するカラム名、カラムの型を順に指定
します。

「bin/rails db:migrate」を実行すると、新しいバージョンである
20180401040230_alter_members.rbが読み込まれ、changeメソッドによってphoneカラ
ムが追加されます。

■マイグレーションのバージョン
マイグレーションスクリプトのファイル名の「年月日時分秒」は、マイグレーションのバージョン

を表しています。上記の20180523140500_alter_members.rbのマイグレーションを行った
あとで、もう一度「bin/rails db:migrate」を実行しても何も起こりません。すでにバージョン
が20180523140500になっているためです。

古いバージョンに戻したいときは、次のようにバージョンを指定します（ここでは
20180523132805_create_members.rbのバージョン）。すると、AlterMembersの
changeメソッドを打ち消す操作が行われ、phoneカラムが削除されます。

$ bin/rails db:migrate VERSION=20180523132805

マイグレーションのバージョンは、データベース内のschema_migrationsテーブルで管理され
ています。schema_migrationsテーブルは、bin/rails db:migrateコマンドを実行すると自
動的に作成されます。

bin/rails db:migrate:statusコマンドを実行すると、現在のマイグレーションのバージョンを
確認できます。up印が付いているのが実行済みのマイグレーションです。

$ bin/rails db:migrate:status

database: /Users/taro/rails/asagao/db/development.sqlite3

 Status Migration ID Migration Name

--

 up 20180523132805 Create members

 down 20180523140500 Modify members

データベース定義を古いバージョンに戻すには、bin/rails db:rollbackコマンドも使えます。
次のコマンドは、直前に行われたマイグレーションを1つだけ取り消します。

$ bin/rails db:rollback

これをマイグレーションの「ロールバック」と呼びます。一度に複数個のマイグレーションをロー
ルバックしたい場合は、次のようにSTEPオプションを付加します。

$ bin/rails db:rollback STEP=3

なお、changeメソッド内にcreate_tableメソッドがあれば、データベース定義のバージョンを
下げるときにテーブルが削除されます。

■カラムの変更と削除

マイグレーションでカラムを変更するメソッドには、次のものがあります。

マイグレーション用メソッド
メソッド 機能
add_column(テーブル名, カラム名, 型, オプション) カラムの追加
rename_column(テーブル名, カラム名, 新しい名前) カラム名の変更
change_column(テーブル名, カラム名, 型, オプション) カラムの型の変更
remove_column(テーブル名, カラム名) カラムの削除

次のマイグレーションスクリプトは、rename_columnメソッドを使ってnameカラムの名前を
nicknameに変更します。

class AlterMembers < ActiveRecord::Migration

 def change

 rename_column :members, :name, :nickname

 end

end

change_columnメソッドとremove_columnメソッドには、changeメソッドの中で使用す
るとマイグレーションのロールバックができないという制限があります。この2つのメソッドを
changeメソッドに入れてロールバックするとエラーになります。

changeメソッドではできないロールバックを行いたいときは、代わりにupメソッドとdownメ
ソッドの2つを記述してください。upメソッドにマイグレーションを進める処理を書き、downメソ
ッドに取り消す処理を書けば、ロールバックができます。

class AlterMembers < ActiveRecord::Migration

 def up

 rename_column :members, :name, :nickname

 change_column :members, :sex, :integer, null: false, default: 2

 end

 def down

 change_column :members, :sex, :integer, null: false, default: 1

 rename_column :members, :nickname, :name

 end

end

■インデックス
カラムにはインデックスを加えることができます。インデックスとは索引のための情報です。カ

ラムにインデックスを加えると、特定のカラムを使った検索を高速化できます。ただし、テーブル
と別に索引情報を持つことになるので、メモリがその分消費されます。

Railsのマイグレーションスクリプトでインデックスを設定するには、add_indexメソッドを使い
ます。省略可能なオプションとしてunique（重複禁止）とname（インデックス名）を指
定できます。インデックス名を省略すると、「テーブル名_カラム名_index」がインデックス名に
なります。

add_index :members, :name, unique: true, name: 'name_index'

インデックスを削除するには、remove_indexメソッドを使います。columnオプションでカラ
ム名を指定するか、nameオプションでインデックス名を指定します。

remove_index :members, column: 'name'

remove_index :members, name: 'name_index'

add_indexやremove_indexは、change、up、downの各メソッド内に記述できます。

インデックスは必須

Railsの基本を学習したり、自分用のちょっとしたアプリケーションを書いたりするときにはインデック
スは必要ありませんが、実用に耐えるアプリケーションを開発するにはインデックスは必須です。イン
デックスなしでレコードの数が数百万件になると、反応に何十秒もかかるウェブサイトになることがあ
ります。

たとえば、membersテーブルのnameカラムが頻繁に検索対象になるなら、インデックスを加えま
す。また、Chapter 10で紹介する外部キーには必ずインデックスを加えましょう。

なお、主キーのidには自動的にインデックスができるので、add_indexで指定する必要はありませ
ん。

■開発中と本番でのマイグレーション
開発中にテーブルのカラム定義を変更する方法としては、次の2通りがあります。

1. 新しいマイグレーションスクリプトを追加し、マイグレーションを行う。
2. 既存のマイグレーションスクリプトを書き換え、マイグレーションを最初からやり直す。

アプリケーションのリリース前なら、1.と2.どちらの方法を採ってもかまいません。2.のようにマ
イグレーションを最初からやり直すには、bin/rails db:migrate:resetコマンドを使います。

$ bin/rails db:migrate:reset

リリース後の本番サーバーでカラムを変更する場合は、データベースの破棄はできないので、
1.の方法を採ることになります。ただし、前回のリリースから次のリリースまでの開発中には、
前回のリリース後に追加したマイグレーションスクリプトを書き換えてもかまいません。

なお、MSYS2/MinGW環境でSQLite3を利用している場合、（少なくともRails 5.2.0で
は）このコマンドは正常に動きません。代わりに次の2つのコマンドを使用してください。

$ rm db/development.sqlite3

$ bin/rails db:migrate

リリース後のマイグレーションは慎重に
アプリケーションをリリースしたあとのマイグレーションは簡単ではありません。カラムの型を変えるな

どテーブル定義に重要な変更を行ったときは、新しい定義に合わせてデータを変換するプログラムを
別に書く必要があります。リリース後のマイグレーションは失敗する可能性も少なくありません。本番
用のデータベースを試験環境にコピーして、必ず予行練習をするようにしてください。また、データベー
スのバックアップを取るようにしてください。失敗した場合の対処の手順（バックアップからデータベー
スを復旧し、アプリケーションのバージョンを戻す）をマニュアル化して、失敗の予行練習もするとよい
でしょう。

4.3 　データの保存

データベースができ、データベースにテーブルが作成できました。しかし、テーブルの中に
実際にデータ（レコード）がないと、モデルの学習もアプリケーションの開発もできませ
ん。テーブルに開発用のデータを入れてみましょう。

レコードの作成と更新
モデルを使ってテーブルにレコードを保存する方法を見てみましょう。

■Railsコンソール
モデルの機能を簡単にチェックするには、サーバーを起動せずにRailsコンソールを使うのが

便利です。Chapter 2で紹介したirbと同様にRailsが提供するさまざまなクラスを使ってみる
ことができます。

ターミナルでbin/rails consoleコマンドを実行するとRailsコンソールが起動します。省略形
のbin/rails cコマンドも使えます。

$ bin/rails c

MSYS2/MinGW環境でRailsコンソールを使う
MSYS2/MinGW環境でRailsコンソールを起動するには、次のように通常のコマンドの前に

winpty rubyを加える必要があります。

$ winpty ruby bin/rails c

なお、MSYS2/MinGW環境におけるRailsコンソールには日本語を入力できないという制限があ
ります。日本語の表示は可能です。

Railsコンソールが起動すると次のような表示になります。

Loading development environment (Rails 5.2.0)

irb(main):001:0>

irb(main):001:0>の部分はプロンプト（コマンド入力待ちであることを示す記号）です。
Rubyのコードを入力すると、その結果（「式.inspect」の戻り値）が=>の右に表示されま
す。また、SQLが実行されたときはそのSQL文が表示されます。

irb(main):001:0> Member.count

 (0.2ms) SELECT COUNT(*) FROM "members"

=> 0

■レコードの作成
テーブルに新しいレコードを追加する手順は、「モデルクラスのインスタンスの作成→saveメ

ソッドの呼び出し」となります。membersテーブルに新しい会員を追加するには、newでイン
スタンスを作り、属性を設定して、saveメソッドでレコードを保存します。saveメソッドの呼び
出しを忘れると、データベースには何も反映されません。

Railsコンソールで試してみましょう。

irb(main):002:0> member = Member.new

=> #<Member id: nil, number: nil, name: nil, full_name: nil, （略） >

irb(main):003:0> member.number = 1

=> 1

irb(main):004:0> member.name = "Taro"

=> "Taro"

irb(main):005:0> member.save

 (0.2ms) begin transaction

 SQL (0.9ms) INSERT INTO "members" ("number", "name", （略）

 (0.8ms) commit transaction

=> true

モデルクラスのnewには、「カラム名: 値」を並べたハッシュを渡すこともできます。

irb(main):006:0> member = Member.new(number: 1, name: "Taro")

=> #<Member id: nil, number: 1, name: "Taro", full_name: nil, （略） >

irb(main):007:0> member.save

 (0.2ms) begin transaction

 SQL (1.3ms) INSERT INTO "members" ("number", "name", （略）

 (1.1ms) commit transaction

=> true

モデルオブジェクトを作成したあとで、「member.assign_attributes(ハッシュ)」で値を入
れることもできます。

irb(main):008:0> member = Member.new

=> #<Member id: nil, number: nil, name: nil, full_name: nil, （略） >

irb(main):009:0> member.assign_attributes(number: 1, name: "Taro")

=> nil

irb(main):010:0> member.save

 (0.5ms) begin transaction

 SQL (2.0ms) INSERT INTO "members" ("number", "name", （略）

 (4.5ms) commit transaction

=> true

クラスメソッドcreateを使うと、モデルオブジェクトの作成と保存が同時に行われます。

irb(main):011:0> member = Member.create(number: 1, name: "Taro")

 (0.1ms) begin transaction

 SQL (0.6ms) INSERT INTO "members" ("number", "name", （略）

 (1.0ms) commit transaction

=> #<Member id: 4, number: 1, name: "Taro", full_name: nil, （略） >

saveとsave!の違い
saveメソッドはレコードの保存に成功すると、trueを返します。Chapter 7で紹介するバリデーショ

ンをモデルに加えると、保存の前に値の検証が行われます。検証に成功してレコードを保存すれば
trueを返し、検証が失敗すれば保存を行わずにfalseを返します。

レコードを保存するメソッドには、saveメソッドのほかに!付きのsave!メソッドもあります。save!で
は、検証が失敗したときにfalseが返るのではなく、例外が発生します。

保存するときにデータベースにエラーが発生したときは、saveでもsave!でも例外が発生します。

メソッド 検証に成功 検証に失敗 データベースにエラー
save true false 例外発生
save! true 例外発生 例外発生

■レコードの更新
すでにテーブルに入っているレコードの情報を変更するときも、saveメソッドを使います。次

の例では、モデルクラスのfirstメソッドで最初のレコードを取り出してから、numberカラムを変
更して保存しています。

irb(main):012:0> member = Member.first

 Member Load (0.3ms) SELECT "members".* FROM "members" （略）

=> #<Member id: 1, number: 1, name: "Taro", full_name: nil, （略） >

irb(main):013:0> member.number = 41

=> 2

irb(main):014:0> member.save

 (1.3ms) begin transaction

 SQL (1.9ms) UPDATE "members" SET "number" = ?, "updated_at" = ?
（略）

 (0.6ms) commit transaction

=> true

assign_attributesメソッドでも属性を変更できます。

irb(main):015:0> member.assign_attributes(number: 51, name: "Ichiro")

=> nil

irb(main):016:0> member.save

 (0.2ms) begin transaction

 SQL (0.7ms) UPDATE "members" SET "number" = ?, "name" = ?, （略）

 (0.8ms) commit transaction

=> true

update_attributesメソッドは、assign_attributesメソッドとsaveメソッドを合わせたもの
です。オブジェクトの属性を変更し、直ちにデータベースに保存します。

irb(main):017:0> member.update_attributes(number: 55, name: "Hideki")

 (0.2ms) begin transaction

 SQL (0.4ms) UPDATE "members" SET "number" = ?, "name" = ?, （略）

 (0.6ms) commit transaction

=> true

Railsコンソールはexitで終了できます。

irb(main):018:0> exit

シードデータの投入
レコードを保存する方法を覚えたら、次にシードデータを使って開発用のデータベースにデー

タを入れましょう。

■シードデータの使い方
アプリケーションを本番用のサイトでリリースする際には、サイトを公開する前にあらかじめ

データベースに初期化用のデータを入れておく必要が出てきます。たとえば、管理者のアカウ
ント情報や都道府県の名前などです。そうしたデータをシードデータと呼びます。

「rails new」コマンドでアプリケーションを作成すると、dbディレクトリの下にseeds.rbという
ファイルができます。このファイルの中にシードデータを保存するスクリプトを書きます。たとえ
ば、seeds.rbの中でMemberモデルを使って会員情報を保存するスクリプトを書くとします。

Member.create(number: 1, name: "Taro", administrator: true)

bin/rails db:seedコマンドを実行すれば、このスクリプトが実行されて、開発用データベー
スに会員「Taro」のレコードが保存されます。bin/rails db:createコマンドやbin/rails
db:migrateコマンドと同様にRAILS_ENV=productionを加えれば、本番用のデータベース
に保存されます。

$ bin/rails db:seed

■モード別のシードデータ
ウェブアプリケーションの開発中には、ブラウザ上に実際にデータを表示してみる必要があり

ます。ある程度「もっともらしい」データを入れておいたほうが、楽しく作業ができるでしょう。

本書では、本番用のデータではなく、開発用のデータとしてシードデータを用いることにしま
す。これは、Railsの標準的な方法とは言えませんが、筆者たちが実際のアプリケーション開
発で行っている方法です。便利ですので読者の方も使ってみてください。

まず、db/seeds.rbの中身をすべて削除してから、次のコードを書き入れます。

chaper4/db/seeds.rb

 1 table_names = %w(members)

 2 table_names.each do |table_name|

 3 path = Rails.root.join("db/seeds", Rails.env, table_name + ".rb")

 4 if File.exist?(path)

 5 puts "Creating #{table_name}..."

 6 require path

 7 end

 8 end

このコードは、db/seeds/developmentディレクトリの下に「テーブル名.rb」があれば、それ
をrequireメソッドで実行するものです。本番モードではdb/seeds/productionディレクトリ
の下のファイルを実行します。

Railsアプリケーションのパスの取得
上記のseeds.rbで使っているRails.rootは、アプリケーションのルートパス（たとえ

ば/Users/taro/rails/asagao）を表すオブジェクトを返します。これはPathnameクラスのオブジェク
トです。このオブジェクトのjoinメソッドにディレクトリ名をいくつも渡せば、
「/Users/taro/rails/asagao/db/seeds/development/members.rb」のようにパスを組み立てら
れます。

データ投入のためのディレクトリ構成

dbディレクトリの下にseedsディレクトリを作成し、さらにその中にdevelopmentディレクト
リを作成してください。developmentディレクトリの中にファイルmembers.rbを作成して、
10人の会員を作成するコードを記述します。

chaper4/db/seeds/development/members.rb

 1 names = %w(Taro Jiro Hana John Mike Sophy Bill Alex Mary Tom)

 2 fnames = ["佐藤", "鈴木", "高橋", "田中"]

 3 gnames = ["太郎", "次郎", "花子"]

 4 0.upto(9) do |idx|

 5 Member.create(

 6 number: idx + 10,

 7 name: names[idx],

 8 full_name: "#{fnames[idx % 4]} #{gnames[idx % 3]}",

 9 email: "#{names[idx]}@example.com",

 10 birthday: "1981-12-01",

 11 sex: [1, 1, 2][idx % 3],

 12 administrator: (idx == 0)

 13)

 14 end

■シードデータの再投入
bin/rails db:seedコマンドは単にdb/seeds.rbに書かれたスクリプトを実行するだけです

ので、すでにシードデータが投入されている状態では使えません。データベースをクリアしてシー
ドデータを投入するコマンドは2つあります。

bin/rails db:reset
bin/rails db:migrate:reset db:seed

最初にデータベースを破棄する点は両者共通です。前者では、db/schema.rbを実行し
てデータベース構造を復元してから、シードデータを投入します。後者では、最初からマイグレ
ーションをやり直してから、シードデータを投入します。前者のほうが実行にかかる時間が短縮
できますが、マイグレーションスクリプトを書き換えた場合は後者を使用する必要があります。

さて、Railsの学習中はマイグレーションスクリプトとシードデータを頻繁に書き換えることに
なりますので、2番目のコマンドのほうが使用頻度が高くなります。そこで、もっと簡単に呼び
出せるコマンドを用意しましょう。lib/tasksディレクトリの下に、新規ファイルdatabase.rake
を次のような内容で作成してください（コードの解説は省略）。

chaper4/lib/tasks/database.rake

 1 namespace :db do

 2 desc "Rebuild the development database from scratch"

 3 task :rebuild => :environment do

 4 sh "rm -f db/development.sqlite3"

 5 Rake::Task["db:migrate"].invoke

 6 Rake::Task["db:seed"].invoke

 7 end

 8 end

このファイルを設置した結果、次のコマンドが使えるようになります。

bin/rails db:rebuild

本書では、シードデータを再投入する際にこのコマンドを使用します。なお、このコマンドは
データベース管理にSQLite3を使っていることが前提となっています。PostgreSQLやMySQL
を利用している場合は使えません。

db:rebuildタスク
ファイルdatabase.rakeでは、タスク実行ツールRakeで使用するカスタムタスクdb:rebuildが定

義されています。この中では、開発モード用のSQLite3データベースを記録しているファイル
db/development.sqlite3を削除し、マイグレーションを実行し、シードデータを投入するまでの一連
の流れが記述されています。

本文では簡単にシードデータの再投入を行う目的でタスクdb:rebuildを定義したように書きまし
たが、実を言えば、別の問題を回避しようとしたことが発端でした。

本書の執筆中に筆者たちはMSYS2/MinGWでbin/rails db:resetコマンドやbin/rails
db:migrate:resetコマンドがうまく動かないという問題に遭遇しました。次のようなエラーメッセージが
出て止まってしまうのです。

Permission denied @ unlink_internal - C:/Ruby25-
x64/msys64/home/oiax/rails/asagao/db/development.sqlite3

Couldn't drop database 'db/development.sqlite3'

rails aborted!

(以下省略)

これはMSYS2/MinGWでSQLite3を利用する場合にだけ発生します。本書執筆時点では直接
的な解決法が見つからなかったので、代替策としてタスクdb:rebuildを用意することにしました。
Railsの将来のバージョンではこの問題が解消されるかもしれません。

データベースの確認

データベースの作成、テーブルの作成、データの投入がうまくいっているかどうかを確認するために、
SQLite3のコマンドを入力してみるのもよいでしょう。SQLite3のコンソールを開くには、ターミナルで次
のコマンドを実行します。ただし、MSYS2/MinGW環境では先頭にwinptyを付けてください。

$ sqlite3 db/development.sqlite3

「.tables」と入力すると、データベース内のテーブル一覧を表示します。

sqlite> .tables

「.schema テーブル名」でテーブル定義を表示できます。

sqlite> .schema members

SQLのSELECT文を入力すれば、membersテーブルのレコードの一覧を表示できます。

sqlite> SELECT * from members;

「.quit」とするとSQLite3からログアウトします。

sqlite> .quit

4.4 　レコードの取り出しと検索

Railsのモデル（Active Record）は、データベースからデータを取り出したり、検索し
たりするための強力な機能を備えています。4.3節で投入したデータを使ってモデルの
検索機能を確かめましょう。

findとfind_by
テーブルのレコード1つをモデルオブジェクトとして取り出すには、findメソッドかfind_byメソッ

ドを使います。

■findメソッド
モデルのクラスメソッドfindメソッドにidカラム（主キー）の値を指定すると、その値を持つ

レコード（モデルオブジェクト）を取り出せます。
このメソッドを試す前に、実際のレコードのidカラムを調べておきましょう。クラスメソッドidsメ

ソッドを使えば、テーブルに存在するすべてのレコードの主キーを配列として取得できます。

irb(main):001:0> Member.ids

 (0.2ms) SELECT "members"."id" FROM "members"

=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

この中から好きなidを選んで、findメソッドでレコードを取り出し、変数memberに入れて
みましょう。

irb(main):002:0> member = Member.find(3)

 Member Load (2.9ms) SELECT "members".* FROM "members" （略）

=> #<Member id: 3, number: 12, name: "Hana", full_name: "高橋 花子"
（略） >

変数memberに対して、カラムと同名のメソッド（属性）を呼ぶと、そのカラムの値が返
ります。

irb(main):003:0> member.email

=> "Hana@example.com"

レコードに存在しないidをfindメソッドに指定すると、例外
ActiveRecord::RecordNotFoundが発生します。Member.find(123)のように適当な数
字を入れて試してください。

irb(main):004:0> Member.find(123)

 Member Load (0.3ms) SELECT "members".* FROM "members" （略）

ActiveRecord::RecordNotFound: Couldn't find Member with 'id'=123

（省略）

■find_byメソッド
モデルクラスのクラスメソッドfind_byは、あるカラムを使ってレコードを検索し、最初に一致

したものを返します。次の例は、nameカラムが「Taro」であるレコードを1つ取り出します。引
数には「name: "Taro"」のようにハッシュで「カラム名: 値」を指定します。

irb(main):005:0> member = Member.find_by(name: "Taro")

 Member Load (0.6ms) SELECT "members".* FROM "members" （略）

=> #<Member id: 1, number: 10, name: "Taro", full_name: "佐藤 太郎",
（略） >

検索対象のカラムはいくつも指定できます。次の例は、性別（sex）が1（男性）で、
管理者（administrator）ではないレコードを取り出します。

irb(main):006:0> member = Member.find_by(sex: 1, administrator: false)

 Member Load (8.8ms) SELECT "members".* FROM "members" （略）

=> #<Member id: 2, number: 11, name: "Jiro", full_name: "鈴木 次郎",
（略） >

指定された条件に一致するレコードがない場合は、nilが返ります。

irb(main):007:0> member = Member.find_by(sex: 2, administrator: true)

 Member Load (0.7ms) SELECT "members".* FROM "members" （略）

=> nil

findメソッドとfind_byメソッドの使い分け
findメソッドを使うときは、例外が発生することを前提にしたプログラムを作ります。「11.2　エラー

ページのカスタマイズ」では例外ActiveRecord::RecordNotFoundを捕捉して「見つかりません」ペ
ージを表示する方法を紹介しています。

場合によっては例外を発生させたくないこともあります。そうしたときはfind_byメソッドにidを指定
してください。レコードが見つからない場合は、例外は発生せずにnilが返ります。

member = Member.find_by(id: 123)

クエリーメソッドとリレーションオブジェクト

クエリーメソッドを使うと、検索条件を読みやすいコードで記述できます。クエリーメソッドで
検索条件を細かく指定する方法を見てみましょう。

■クエリーメソッドとリレーションオブジェクト
クエリーメソッドの中で一番よく使われるのは、SQL文のWHERE句にあたるwhereメソッド

です。whereメソッドを使うと、検索条件に一致する複数のレコードを取り出せます。
次の例では、引数にハッシュで「nameカラムの値がTaro」という検索条件を指定していま

す。Railsコンソールの結果には、一見モデルオブジェクトの配列のようなものが表示されま
す。

irb(main):008:0> members = Member.where(name: "Taro")

 Member Load (0.4ms) SELECT "members".* FROM "members" WHERE
（略）

=> #<ActiveRecord::Relation [#<Member id: 1, number: 10, name: "Taro",
（略）

クエリーメソッドが実際に返すのは、配列ではなくActiveRecord::Relationクラスのオブジ
ェクトです。本書では、これをリレーションオブジェクトと呼びます。このオブジェクトの役割は、
データベースからデータを取り出すための検索条件を保持することと、検索を実行してその結
果をモデルの配列として使えるようにすることです。

リレーションオブジェクトが保持している検索条件から作られるSQL文を調べるには、
to_sqlメソッドを使います。ここでは見やすいように、whereメソッドの呼び出しのあとに「;
nil」を付けて結果の表示を消しています。

irb(main):009:0> members = Member.where(name: "Taro") ; nil

=> nil

irb(main):010:0> puts members.to_sql

SELECT "members".* FROM "members" WHERE "members"."name" =

'Taro'

=> nil

引数には、WHERE句に指定する検索条件を文字列で指定することもできます。

irb(main):011:0> members = Member.where("number < 20")

 Member Load (0.5ms) SELECT "members".* FROM "members" WHERE
(number < 20)

=> #<ActiveRecord::Relation [#<Member id: 1, number: 10, name: "Taro",
（略）

■検索が実行されるタイミング
whereメソッドなどでリレーションオブジェクトを作成すると、そのままでは検索は実行され

ません。検索条件を保持しているだけです。
リレーションオブジェクトはRubyの配列と同じ名前のメソッドを持っています。each、

map、lengthなどです。そうしたメソッドを呼び出すと、そのときに初めてSQLによる検索を実
行し、モデルオブジェクトの配列を利用できるようになります。

これまでの例では「#<Member id: 1, number: 10,……」のように検索結果が表示され
ていますが、これはRailsコンソールがinspectメソッドを呼び出したために、検索が実行されて
しまったからです。

たとえば、コントローラの中でインスタンス変数@membersにリレーションオブジェクトをセッ
トしたとします。この段階では検索は実行されません。

@members = Member.where(sex: 1)

次のようにビューの中でeachメソッドを呼び出すと、そのときに検索が実行されます。もし
「if 条件」が成立しないときは、検索は実行されません。

<% if 条件 %>

 <% @members.each do |member| %>

 <%= member.name %>

 <% end %>

<% end %>

Lazy Loading

このように、リレーションオブジェクトは見かけ上は配列と同じように振る舞いますが、「実際
に検索を実行してデータを取り出すのは、データが必要になったとき」という特徴を持っていま
す（Lazy Loadingと呼ばれます）。これにより、すっきりしたコードで余計な検索の実行を
省くことができます。

なお、即座に検索を実行してモデルオブジェクトの配列を作りたい場合は、loadメソッドを
使います。

@members = Member.where(sex: 2).load

インスタンス変数@membersはリレーションオブジェクトですが、内部にモデルオブジェクト
の配列を持つ状態になります。

lengthメソッドとsizeメソッド
lengthメソッドやsizeメソッドを使うと、リレーションオブジェクトが何件の検索結果を返すのかを

調べられます。この2つのメソッドは動作が違います。lengthメソッドは、検索を実行してモデルオブ
ジェクトの配列を作り、その配列の長さを返します。sizeメソッドは、後述するcountメソッドを呼び
出して、SQLの機能で件数を直接取得します。普通はsizeメソッドを使いますが、検索条件が確
定していて、あとで必ずモデルオブジェクトの配列を作ることになるなら、lengthメソッドのほうがデー
タベースへの問い合わせが減ります。

■クエリーメソッドの重ね合わせ
リレーションオブジェクトに対してさらにクエリーメソッドを呼び出すと、検索条件を追加でき

ます。次の例では、「nameカラムの値がTaro」かつ「numberカラムの値が20未満」という検
索条件ができます。

members = Member.where(name: "Taro")

members = members.where("number < 20")

この例は、次のように1行にまとめられます。

members = Member.where(name: "Taro").where("number < 20")

検索結果のソート順を指定するにはクエリーメソッドorderを用います。次の例は、性別
（sexカラム）の値が2（女性）の会員を背番号（numberカラム）の昇順で取り出しま
す。

irb(main):012:0> members = Member.where(sex: 2).order("number")

 Member Load (0.9ms) SELECT "members".* FROM "members" WHERE
（略）

=> #<ActiveRecord::Relation [#<Member id: 3, number: 12, name: "Hana"
（略）

orderメソッドを使って降順で並べたいときは、引数をハッシュにして「カラム名: :desc」を
指定します。

members = Member.where(sex: 2).order(number: :desc)

このほかのおもなクエリーメソッドには次のものがあります。selectメソッドやgroupメソッド
などでSQLのSELECT文を構成できます。ただし、SQLとは違って、クエリーメソッドをつなげる
順番は自由です。

クエリーメソッド一覧

メソッド
SELECT文の
構成部分

補足

select(文字列) SELECT 　
from(文字列) FROM 　
joins(シンボル／文字
列)

JOIN テーブル結合。

left_outer_joins(シン
ボル／文字列)

LEFT OUTER
JOIN

テーブル結合。

includes(シンボル) DBMSによる
関連付けの名前を指定すると、関連するモデルオ
ブジェクトを同時にロードする。

where(ハッシュ／文字
列／配列)

WHERE 検索条件の指定。

group(文字列) GROUP BY 　
having(文字列) HAVING 　
limit(整数) LIMIT 取得するレコード数の上限。
offset(整数) DBMSによる 何行目からレコードを取得するか。
order(文字列) ORDER BY ソート対象のカラム名。
reorder(文字列) ORDER BY ORDER BY句の上書き。

reverse_order ORDER BY ORDER BY句の昇順・降順を逆にする。
lock(文字列) DBMSによる MySQLのロック機能を使う。
readonly ― レコードを読み込み専用にする。
distinct ― 検索結果の重複をなくす。
none ― 何も検索しないリレーションオブジェクトを返す。

■ファインダーメソッドとの組み合わせ
リレーションオブジェクトにはファインダーメソッドと呼ばれるメソッドが備わっています。たとえ

ば、firstメソッドは、検索条件に一致するレコードを先頭から1個だけ取り出し、モデルオブジ
ェクトを1個（存在しなければnilを）返します。

irb(main):013:0> member = Member.where(sex: 2).order(:number).first

 Member Load (0.4ms) SELECT "members".* FROM "members" WHERE
（略）

=> #<Member id: 3, number: 12, name: "Hana", full_name: "高橋 花子"
（略）

末尾からレコードを1個だけ取り出すlastメソッドもあります。なお、firstメソッドやlastメソッ
ドを使うときは、orderメソッドでソート順を指定してください。ソート順がないと結果が不定に
なり、見つけにくいバグを埋め込むことになりかねません。

ファインダーメソッドにはほかに、findとfind_byがあります。この2つのメソッドの機能は、紹
介済みのモデルのクラスメソッドfind、find_byと同じです。次の例は、女性会員の中から主
キーが1のレコードを取り出します。

Member.where(sex: 2).find(1)

ただし、ファインダーメソッドはクエリーメソッドの検索条件に縛られる点に注意してくださ
い。主キーが1である会員が存在したとしても、その会員の性別が1でなければ例外

ActiveRecord::RecordNotFoundが発生します。find_by(id: 1)とすれば例外が発生せず
にnilが返ります。

■whereメソッドの便利な使い方
whereメソッドに「カラム名: 配列」というハッシュを渡すと、カラムの値が「複数の候補のど

れかと同じ」という検索条件を指定できます。次の例では、背番号が15か17か19の会員を
取り出します。

irb(main):014:0> members = Member.where(number: [15,17,19])

 Member Load (0.6ms) SELECT "members".* FROM "members" WHERE
"members"."nu

mber" IN (15, 17, 19)

=> #<ActiveRecord::Relation [#<Member id: 6, number: 15, name:
"Sophy" （略）

irb(main):015:0> members.map(&:name)

=> ["Sophy", "Alex", "Tom"]

ハッシュの値を範囲オブジェクトにすると、あるカラムの値がその範囲にあるという検索条
件を指定できます。次の例では、背番号が12以上14以下の会員を取り出します。

irb(main):016:0> members = Member.where(number: 12..14)

 Member Load (0.4ms) SELECT "members".* FROM "members" WHERE
("members"."nu

mber" BETWEEN 12 AND 14)

irb(main):017:0> members.map(&:name)

=> ["Hana", "John", "Mike"]

whereメソッドの直後にnotメソッドを指定すると、「○○でない」という検索条件が使え
ます。whereメソッドは引数なしにして、notメソッドの引数に条件を指定してください。次の
例は、「ユーザー名がTaroでない」会員を検索します。

Member.where.not(name: "Taro")

■プレースホルダー
whereメソッドには文字列を指定することができます。この文字列に疑問符（?）を含め

ると、プレースホルダーになります。プレースホルダーとは、指定した値をSQL文の中に埋め込
むための印です。

次の例をご覧ください。見やすいように、whereメソッドの呼び出しのあとに「; nil」を付けて
結果の表示を消しています。

irb(main):018:0> name = "Taro"

=> "Taro"

irb(main):019:0> members = Member.where("name = ?", name) ; nil

=> nil

irb(main):020:0> puts members.to_sql

SELECT "members".* FROM "members" WHERE (name = 'Taro')

=> nil

whereメソッドには引数を2つ指定しています。第1引数はプレースホルダーを入れたSQL
文のWHERE句で、第2引数は文字列です。リレーションオブジェクトは、プレースホルダーの
位置に'Taro'のように一重引用符付きで第2引数の文字列を埋め込みます。

第1引数にプレースホルダーがいくつもある場合には、その個数に応じて引数の数を増やし
てください。

プレースホルダーを使うと、単純なwhereメソッドでは作れない検索条件を指定できます
（ただしSQLの知識が必要です）。たとえば、「または」という条件はこれまで紹介した機能

では作れません。次のようにSQLのORとプレースホルダーを使えば、「ユーザー名がJiroである
か、または管理者である」会員を検索できます。

members = Member.where("name = ? OR administrator = ?", "Jiro", true)

SQLインジェクションを防ぐ
whereメソッドで検索を行うときは、次のように変数を直接埋め込んではなりません。

@members = Member.where("name = '#{name}'")

変数の中にSQL文にとって意味のある文字（一重引用符など）が含まれていると、データベー
スが不正に利用されることがあるからです。このようなSQLを悪用したサーバーへの攻撃は「SQLイン
ジェクション」と呼ばれます。whereメソッドで変数を使うときは、ハッシュで指定するか、プレースホル
ダーで変数を展開すれば、SQL文にとって意味のある文字は適切に処理されます。

たとえば、変数nameが"Ta'ro"という値なら、Member.where("name = ?", name)が返すリレ
ーションオブジェクトは次のSQL文を作ります。

SELECT "members".* FROM "members" WHERE (name = 'Ta''ro')

■集計用のメソッド
モデルクラスでは、次のような便利な集計用のメソッドが用意されています。

集計用のメソッド
メソッド 機能
average(カラム名) 平均
count レコードの数
maximum(カラム名) 最大値
minimum(カラム名) 最小値
sum(カラム名) 合計

たとえば、numberカラムのうち数字が一番大きいものを取り出すには、次のようにしま
す。

irb(main):021:0> Member.maximum("number")

 (0.7ms) SELECT MAX("members"."number") FROM "members"

=> 19

集計用のメソッドは、リレーションオブジェクトでも使えます。次の例は、男性会員の数を
数えます。

irb(main):022:0> Member.where(sex: 1).count
 (0.2ms) SELECT COUNT(*) FROM "members" WHERE "members"."sex" =
? （略）

=> 7

SQL文を直接指定するには
モデルクラスでは、findメソッドだけでなくfind_by_sqlメソッドを使ってSQL文を直接指定すること

もできます。

members = Member.find_by_sql(

 "SELECT * FROM members WHERE number = 11")

whereメソッドと同じくプレースホルダー（?）も使えます。ただし、whereとは異なり、引数全体
を配列で指定する必要があります。

members = Member.find_by_sql(

 ["SELECT * FROM members WHERE name = ?", "Taro"])

Railsコンソールの出力を変えるには
Railsコンソール上で、式の値が長々と表示されてわずらわしいときは、次の指定で値の出力を止

められます。

irb(main):001:0> conf.echo = false

irb(main):002:0> member = Member.first

 Member Load (0.4ms) SELECT `members`.* FROM `members` （略）

irb(main):003:0>

値の表示を元に戻すには、「conf.echo = true」と入力します。
さらに、SQLの出力も止めたい場合は次のように入力します。SQLの出力を再開したいときは、コ

ンソールを開き直してください。

irb(main):003:0> ApplicationRecord.logger = nil

irb(main):004:0> member = Member.first

irb(main):005:0>

Chapter 4のまとめ

データベースはテーブルの集合でできています。モデルは、データベースのテー
ブルに対応するオブジェクトです。モデルクラスのインスタンスは、テーブルの1
つのレコードにあたります。
データベースの設定は、database.ymlファイルで行います。3つの環境に合
わせて、3つのデータベースを用意します。
データベースの中にテーブルを作成するには、マイグレーションスクリプトを記
述します。

データベースの作成やマイグレーションには、bin/railsコマンドを使います。
本書では、開発用のデータベースに初期データを投入するために、シードデー
タを使います。
モデルを使ってレコードを保存するには、saveメソッドを使います。
モデルを使ってレコードを取り出すには、findメソッドやfind_byメソッドを使
います。
モデルクラスに対してwhereやorderなどのクエリーメソッドを呼び出すと、
検索条件群を保持するリレーションオブジェクトを返します。

練習問題

［A］　データベースに書籍を管理するbooksテーブルを作成することにします。マイグレーシ
ョンスクリプトにカラムの定義を記述してください。title（書籍名）、author（著者名）、
price（価格）の3つのカラムを用意し、カラムの型はそれぞれ文字列、文字列、整数とし
ます。また、すべてのカラムにNOT NULL制約を付けてください。

class CreateBooks < ActiveRecord::Migration[5.2]

 def change

 create_table :books do |t|

 　　　　　　　

 t.timestamps

 end

 end

end

［B］　Bookモデルを使って、問題［A］のbooksテーブルに書籍のデータを保存するため
のコードを書きます。2つの空欄に書籍名を設定するコードと、データを保存するコードを書い
てください。書籍名は好きなものでかまいません。

book = Book.new

　　　　　　　　　　　　　　　　　　　　　　

book.author = "夏目漱石"

book.price = 1200

　　　　　　　　　　　　　　　　　　　　　　

［C］　Bookモデルを使って、booksテーブルからidが123の書籍をモデルオブジェクトに取
り出すコードを書いてください。

　　　　　　　　　　　　　　　　　　　　　　

［D］　booksテーブルから著者が「夏目漱石」の書籍を取り出します。Bookモデルとクエ
リーメソッドを使ってリレーションオブジェクトを作ってください。

　　　　　　　　　　　　　　　　　　　　　　

［E］　booksテーブルから価格が3000円未満の書籍を取り出します。Bookモデルとクエ
リーメソッドを使ってリレーションオブジェクトを作ってください。

　　　　　　　　　　　　　　　　　　　　　　

Chapter

5　リソースを扱うコントローラ

コントローラとモデルの基本について学習が終われば、その2つを組み合わせて
本格的なアプリケーションの開発を始められます。このChapterでは、Railsの
RESTの原則に従って、サイトの会員情報をリソースとして扱うコントローラの作成
を始めます。

これから学ぶこと

リソースベースのルーティングの設定について学びます。
リソースを表すURLのパスの書き方について学びます。
会員情報を扱うMembersControllerを作成し、会員の一覧ページと詳
細情報のページを実装します。
7つのアクションの名前と機能を覚えます。

Railsアプリケーションでは、RESTの原則に従ってデータを「リソース」として扱います。リソースの表
示、作成、更新、削除の機能を用意すれば、アプリケーションの組み立てが簡単になります。
RESTフルなアプリケーションを作るには、何をすればよいでしょうか？

5.1 　RESTとルーティング

RESTは、Railsアプリケーションを開発するうえで重要な概念です。RESTに基づくこと
によって、モデルを扱うコントローラを効率のよいパターンで記述しながら、セキュリティに
配慮したアプリケーションを開発できます。

リソースベースのルーティング
REST（REpresentational State Transfer）とは、ネットワーク上に置かれたリソースを

操作するアプリケーション作成のスタイルです。RailsのREST機能の中心は、リソースベースの
ルーティングです。

■RESTとリソース
Railsには、RESTに基づいた（「RESTフル」と呼ばれます）作法でウェブアプリケーションを

作成する機能があります。RESTの機能を利用すれば、Railsの原則「Don't Repeat
Yourself」や「設定より規約」を推し進めることができ、アプリケーションの開発や保守がより
簡単になります。

Railsにおけるリソースとは、コントローラが扱う対象に名前を付けたものです。リソース名を
設定するには、config/routes.rbにresourcesメソッドを1行記述するだけです。引数にはリ
ソース名の複数形を指定します。たとえば、会員情報をリソースとして扱うには、次の行を記
述します。

resources :members

これだけで、MembersControllerに対して後述の7つのアクションのルーティングが設定で
きます。これをRESTフルなルーティング、またはリソースベースのルーティングと呼びます。リソース
を扱うコントローラは、MembersControllerのように「リソース名の複数形＋Controller」と
いう名前にするのが基本です。

Railsだけでなく、ウェブアプリケーション一般におけるRESTの意味については、コラム「REST
の原則」を参照してください。

モデルと対応しないリソース
resourcesメソッドに指定するリソース名はたいていはモデル名と同じですが、リソースとモデルは1

対1に対応していなくてもかまいません。resourcesメソッドは、リソース名に対応したコントローラに対
して、7つのアクションのルーティングを自動的に設定するだけです。Chapter 8では、ログイン機能の
ためにSessionsControllerを作りますが、Sessionモデルは必要ありません。

■リソースを扱うコントローラ
リソースを扱うコントローラでは、リソースベースのルーティングのパターンに従い、決まった名

前のアクションを7つ用意します。これによって、モデルを操作するコントローラは一貫したスタ
イルで作ればよいことになり、開発効率を向上できます。

7つのアクションには、原則として次の機能を持たせます。この7つは、データベースの基本
操作であるCRUD（Create、Read、Update、Delete）を実装したものでもあります。

index
リソースの一覧を表示する（テーブルのレコード一覧を表示する）。

new
リソースを追加する（テーブルに新しいレコードを作成する）ためのフォームを表示する。

create
リソースを作成する（テーブルに新しいレコードを作成する）。

show
リソースの属性を表示する（レコードの内容を表示する）。

edit
リソースを更新する（既存のレコードのカラムを更新する）ためのフォームを表示する。

update
リソースを更新する（既存のレコードのカラムを更新する）。

destroy
リソースを削除する（テーブルからレコードを削除する）。

■パスとHTTPメソッド
7つのアクションを呼び出すには、次ページの表のパスとHTTPメソッドの組み合わせを使い

ます。リソースの集合を扱うindexアクションとcreateアクションは同じURLになり、HTTPメソ
ッドで区別されます。個別のリソースを扱うshow、update、destroyも同じURLになり、
HTTPメソッドで区別されます。

show、edit、update、destroyの各アクションを呼ぶときは、/members/123の「123」
のように、モデルの主キーを示すidパラメータが必須です。このidパラメータは、コントローラの中
でparams[:id]で取り出せます。

リソースベースのルーティングでのパスとHTTPメソッド
アクション パス HTTPメソッド
index /members GET
show /members/123 GET
new /members/new GET
edit /members/123/edit GET
create /members POST
update /members/123 PATCH
destroy /members/123 DELETE

PATCHメソッドとDELETEメソッド
HTMLの仕様では、フォームのmethod属性にはGETとPOSTしか指定できません。このため、リソ

ースベースのルーティングを使ったときでも、PATCHメソッドとDELETEメソッドは実際のリクエストでは
POSTメソッドで送信されます。

Railsは隠しパラメータ_methodを使い、PATCHメソッドでは_method=patch、DELETEメソッド
では_method=deleteをリクエストに加えることでメソッドの種類を擬似的に表します。

PUTメソッドとPATCHメソッド
Rails 3まではリソースの更新（updateアクション）にはPUTメソッドが使われていましたが、

Rails 4からはPATCHメソッドに変わりました。「リソースの置き換え」を意味するPUTメソッドよりも、
「リソースの一部変更」という意味のPATCHメソッドのほうがふさわしい、という考えからです。

Rails 4以降でもPUTメソッドを使えますので、Rails 3で作ったアプリケーションをRails 4やRails 5
にアップグレードするときは、PUTをPATCHに修正しなくても動きます。

■アクションの追加
7つのアクション以外にも、リソースベースのルーティングでは任意のアクションを追加できま

す。アクションを追加するには、resourcesメソッドにブロックを渡し、ブロックの中で「HTTPメ
ソッドを表すメソッド アクション名」を記述します。

その際、会員一覧のようにリソースの集合を表すアクションは、onオプションに:collection
を指定します。会員の状態変更のように個別のリソースを扱うアクションは、onオプション
に:memberを指定します。

次の例は、MembersControllerにsearch、suspend、restoreの3つのアクションを加え
る設定です。getやpatchのようにHTTPメソッドを表すメソッドには、複数のアクションを指定
できます。

resources :members do

 get "search", on: :collection # メンバーの検索

 patch "suspend", "restore", on: :member # メンバーの停止・再開

end

追加されたアクションを呼び出すパスとHTTPメソッドは次のとおりです。searchアクション
はリソースの集合を扱うので、idパラメータはありません。suspendアクションとrestoreアクシ
ョンは個別のリソースを扱うので、idパラメータが必須になります。

追加のアクション
アクション パス HTTPメソッド
search /members/search GET
suspend /members/123/suspend PATCH
restore /members/123/restore PATCH

アクションを追加するには、もう1つ書き方があります。onオプションで指定する代わりに
collectionブロックまたはmemberブロックで囲む方法です。上記の例と同じ結果になりま
す。

resources :members do

 collection { get "search" } # メンバーの検索

 member { patch "suspend", "restore" } # メンバーの停止・再開

end

逆に、7つのアクションのうち、特定のアクションを使わないときは、resourcesメソッドに
onlyオプションやexceptオプションを渡します。次の例では、MembersControllerのindex
アクションとshowアクションのルーティングだけを設定します。

resources :members, only: [:index, :show]

次の例では、destroyを除く6つのアクションのルーティングを設定します。

resources :members, except: [:destroy]

リソースとパスの指定
リソースベースのルーティングを設定すると、link_toやredirect_toなどのメソッドでシンプル

なパスの指定ができます。

■パスを返すメソッド
resourcesメソッドでリソースを指定すると、コントローラのアクションを表すパスを「リソース

名_path」の形のメソッドで取得できるようになります。「resources :members」では、次の
メソッドが使えるようになります。

アクション パスを返すメソッド 戻り値の例
index members_path /members
show member_path(member) /members/123
new new_member_path /members/new
edit edit_member_path(member) /members/123/edit
create members_path /members
update member_path(member) /members/123
destroy member_path(member) /members/123

リソースの集合を扱うindexとcreateでは、members_pathのようにmemberが複数形
になることに注意してください。個別のリソースを扱うshowなどでは単数形です。newは集
合でも個別でもありませんが、単数形です。

パスを返すメソッドは、コントローラでもビューでも使えます。ビューの中で、会員一覧のペー
ジ（indexアクション）へのリンクは次のように作れます。

link_to "会員一覧", members_path

member_pathとedit_member_pathのように、個別のリソースを扱うアクションへのパス
を得るには、引数にモデルオブジェクトを渡します。すると、モデルのidがidパラメータになりま
す。たとえば、会員の詳細情報ページ（showアクション）へのリンクは次のようになります。

link_to @member.name, member_path(@member)

members_pathとmember_pathが返すパスは複数のアクションを表しますが、アクショ
ンの区別はHTTPメソッドで行います。たとえば、削除のためのリンクでmethodオプションに
DELETEメソッドを指定すれば、destroyアクションへのリンクになります。

link_to "削除", member_path(@member), method: :delete

前述のようにsearch、suspend、restoreの各アクションを追加したときは、次のメソッド
がパスを返すようになります。リソースの集合を扱うsearchアクションでは、
search_members_pathのようにmemberが複数形になります。

アクション パスを返すメソッド 戻り値の例
search search_members_path /members/search
suspend suspend_member_path(member) /members/123/suspend
restore restore_member_path(member) /members/123/restore

「リソース名_url」メソッド
上記の「リソース名_path」メソッドの_pathの部分を_urlに変えると、http://で始まるURLを返す

メソッドになります。次のリンクは、aタグのhref属性が
「href="http://localhost:3000/members"」になります（PC上で動かしている場合）。

link_to "会員一覧", members_url

■オブジェクトでパスを表す
さらに簡略化したパスの表現を見てみましょう。link_toメソッドの第2引数にモデルオブジェ

クトを渡すと、「/members/123」のようにmember_pathメソッドと同じパスに変換されま
す。

link_to member.name, @member

link_to "削除", @member, method: :delete

editアクションやsuspendアクションのように、個別のリソースを扱うアクションは、配列を
使って[:アクション名, オブジェクト]で表せます。次の例は「/members/123/edit」や
「/members/123/suspend」のようなパスになります。

link_to "編集", [:edit, @member]

link_to "停止", [:suspend, @member], method: :patch

indexアクションやnewアクションのようにidパラメータを取らないアクションでは、前述の
「○○_path」の「_path」を取った文字列をシンボルにしたものが使えます。

link_to "会員一覧", :members

link_to "新規追加", :new_member

以上のモデルオブジェクト、配列、シンボルで表したパスは、コントローラのredirect_toメソ
ッドの引数としても使えます。

RESTの原則

REST（REpresentational State Transfer）を提唱したのは、HTTPの規格の執筆者の1人で
あり、Apacheプロジェクトの創設者であるロイ・フィールディングです。RESTとは、大まかに言えば、

機能ではなくリソースを中心にして物事を考えることです。RESTに従ったウェブアプリケーションは、次
のような原則を持つとされています。

1. すべてのリソースはURLで表される一意なアドレスを持つ。
2. リソースに対する基本操作は、取得（表示）、追加（新規登録）、更新、削除の4つで

ある。対応するHTTPのメソッドGET、POST、PATCH（Rails 3以前ではPUT）、DELETE
でリクエストする。

3. クライアントもサーバーもセッションの状態を記憶する必要がない。

1.はウェブの原則とも言えるものですが、RESTではさらにこの原則を進めています。たとえば、1人
の会員情報は1つのリソースなので、情報の表示、更新、削除は同じURLで表します。

2.は、現在のHTTPのメソッドの使われ方があいまいなので、メソッドの役割を明確化しようという
ものです。たとえば、リソースの状態を変更するのにGETを使うことは禁じられます。

3.は、リソースの表示や操作のための情報は、すべてHTTPのリクエストとレスポンスに含ませると
いうことです。リクエストとレスポンスは毎回独立しており、前回のリクエストとレスポンスから影響を
受けるべきではありません。したがって、複数のページにわたってフォームに情報を入力させるときは、
前のページの入力項目をセッションに保存するのは原則に反します（フォームの隠し入力欄に入れ
ておくのが正しいやり方です）。

5.2 　7つのアクション

RailsのRESTの原則について学んだら、リソースを扱うコントローラを実際に作成してみ
ましょう。会員のデータをリソースとして扱うコントローラを作成し、7つのアクションを書
いていきます。

MembersControllerの作成
Morning Gloryのサイトであるasagaoアプリケーションに、「bin/rails g」コマンドで

MembersControllerを追加します。コントローラ名は「members」と必ず複数形にしてくだ
さい。

$ bin/rails g controller members

config/routes.rbにresourcesメソッドでリソースベースのルーティングを設定します。

chapter05/config/routes.rb

 1 Rails.application.routes.draw do

 2 root "top#index"

 3 get "about" => "top#about", as: "about"

 4

 5 1.upto(18) do |n|

 6 get "lesson/step#{n}(/:name)" => "lesson#step#{n}"

 7 end

 8

 9 resources :members

 10 end

app/controllers/members_controller.rbを開き、MembersControllerに7つのアクシ
ョンを記述しましょう。筆者は、実際にアプリケーションを開発するときは、たいていアクション
をこの順番で並べます。

この7つのアクションの名前は丸暗記してください。何も見ないでコントローラに7つのアクシ
ョンを書けるのがRailsプログラマです。

chapter05/app/controllers/members_controller.rb

 1 class MembersController < ApplicationController

 2 def index

 3 end

 4

 5 def show

 6 end

 7

 8 def new

 9 end

 10

 11 def edit

 12 end

 13

 14 def create

 15 end

 16

 17 def update

 18 end

 19

 20 def destroy

 21 end

 22 end

各アクションの中身はあとで実装することにして、とりあえず空にしておきます。
このChapterでは、indexアクションとshowアクションを実装し、それ以外の5つのアクショ

ンは、Chapter 6で実装します。ただし、indexアクションを作る際に、少し寄り道をして会員
を検索するsearchアクションも作ります。

会員の一覧ページ
7つのアクションのうち、会員の一覧を表示するindexアクションとそのテンプレートを実装し

ましょう。同時に、会員を検索するsearchアクションも作ります。

■indexアクション
まず、ヘッダー用の部分テンプレート_header.html.erbを開き、「会員名簿」の行

の"#"を:membersに変えてメニューのリンク先をindexアクションにします。

chapter05/app/views/shared/_header.html.erb

 （省略）

 8 <%= menu_link_to "会員名簿", :members %>

 （以下省略）

続いて、MembersControllerのindexアクションを実装します。2行目の記号#で始まる
行にはコメントを加えています。メソッドの内部ではクエリーメソッドのorderを使ってリレーショ
ンオブジェクトをインスタンス変数@membersに取り出しています。orderメソッドによって並
びは背番号（numberカラムの値）順になります。

chapter05/app/controllers/members_controller.rb

 1 class MembersController < ApplicationController

 2 # 会員一覧

 3 def index

 4 @members = Member.order("number")

 5 end

 （以下省略）

app/viewsディレクトリの下にmembersディレクトリを作成し、その中にindexアクション
用のテンプレートindex.html.erbを次のように作成します。

chapter05/app/views/members/index.html.erb

 1 <% @page_title = "会員名簿" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <% if @members.present? %>

 5 <table class="list">

 6 <thead>

 7 <tr>

 8 <th>背番号</th>

 9 <th>ユーザー名</th>

 10 <th>氏名</th>

 11 </tr>

 12 </thead>

 13 <tbody>

 14 <% @members.each do |member| %>

 15 <tr>

 16 <td style="text-align: right"><%= member.number %></td>

 17 <td><%= member.name %></td>

 18 <td><%= member.full_name %></td>

 19 </tr>

 20 <% end %>

 21 </tbody>

 22 </table>

 23 <% else %>

 24 <p>会員情報がありません。</p>

 25 <% end %>

1行目では、HTMLタイトルの生成に使われるインスタンス変数@page_titleをセットして
います（「3.4　モックアップの作成」の「モックアップのレイアウトテンプレート」を参照）。

@members.eachのブロック（14〜20行）でMemberモデルのオブジェクトmemberを
取り出し、背番号、ユーザー名、氏名を表示します。

4行目の「if @members.present?」は会員一覧が空かどうか調べるもので、空の場合
は「会員情報がありません。」と表示します。

まだindexアクションは完成していませんが、この段階で表示を確認してみましょう。
「bin/rails s」コマンドでサーバーを起動し、ブラウザでトップページを開き、メニューの「会員名
簿」をクリックすれば、会員の一覧が表示されます。

作成途中の会員一覧ページ（indexアクション）

ブラウザのURL入力欄が「http://localhost:3000/members」になっていることも確認し
てください。

■スタイルの適用
前項で表示した会員一覧表にスタイルを適用するため、app/assets/stylesheetsディレ

クトリに新規ファイルtable.cssを追加します。

chapter05/app/assets/stylesheets/table.css

 1 /* 表：一覧表示、詳細表示 */

 2 table.list, table.attr {

 3 font-size: 90%;

 4 width: 100%;

 5 }

 6

 7 table.list th, table.attr th {

 8 background-color: #499;

 9 color: white;

 10 font-weight: normal;

 11 }

 12

 13 table.list td, table.list th,

 14 table.attr td, table.attr th {

 15 padding: 4px;

 16 }

 17

 18 table.list th {

 19 text-align: left;

 20 }

 21

 22 table.attr th {

 23 text-align: right;

 24 }

 25

 26 table.list td, table.attr td {

 27 background-color: #cee;

 28 }

ブラウザをリロードすると、次のような画面表示となります。

作成途中の会員一覧ページ（indexアクション）

■各種リンクの設置
次に、indexアクション用のテンプレートに他のアクションへのリンクを設置していきます。ま

ず、表の上に新規追加（newアクション）へのリンクを加えます。

chapter05/app/views/members/index.html.erb

 1 <% @page_title = "会員名簿" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <div class="toolbar"><%= link_to "会員の新規登録", :new_member
%></div>

 5

 6 <% if @members.present? %>

 （以下省略）

divタグで囲んでclass="toolbar"属性を加えているのは、スタイルシートapplication.css
で次のように書かれている効果をこの部分に適用するためです。すなわち、リンクの上下に
15pxの隙間が追加され、フォントサイズが90%に縮小され、行全体が右寄せで表示されま
す。

ul.toolbar,

div.toolbar {

 padding: 15px 0;

 font-size: 90%;

 text-align: right;

}

編集（editアクション）と削除（destroyアクション）へのリンクを設置するため、表に
「操作」列を追加します。

chapter05/app/views/members/index.html.erb

 （省略）

 8 <thead>
 9 <tr>

 10 <th>背番号</th>

 11 <th>ユーザー名</th>

 12 <th>氏名</th>

 13 <th>操作</th>

 14 </tr>

 15 </thead>

 （省略）

 22 <td>

 23 <%= link_to "編集", [:edit, member] %> |
 24 <%= link_to "削除", member, method: :delete,

 25 data: { confirm: "本当に削除しますか?" } %>

 26 </td>

 （以下省略）

ユーザー名を表示している部分を修正して、詳細ページ（showアクション）へのリンクを
設定します。

chapter05/app/views/members/index.html.erb

 （省略）

 20 <td><%= link_to member.name, member %></td>

 （以下省略）

ブラウザをリロードすると、次のような画面表示となります。

完成した会員一覧ページ（indexアクション）

会員検索機能
会員の検索用にsearchアクションを追加します。まず、先ほどconfig/routes.rbに加えた

resources :membersという行を次のように書き換えてください。

chapter05/config/routes.rb

 （省略）

 6 resources :members do

 7 get "search", on: :collection

 8 end

 9 end

コントローラの中に会員の検索を行うsearchアクションを加えます。

chapter05/app/controllers/members_controller.rb

 （省略）

 7 # 検索

 8 def search

 9 @members = Member.search(params[:q])

 10 render "index"

 11 end

 （以下省略）

ここでは、検索機能の実体をMemberクラスのsearchメソッドで実装することにしました。
後述のように、パラメータの「q」には検索ワードが入ってきます。

「render "index"」によって、テンプレートはindexアクションと同じindex.html.erbでレンダ
リングします。

アクションはできるかぎり簡潔に

アクションの記述で肝心なのは、「長々とコードを書かない」ことです。ちょっとでもややこしくなりそ
うなら、モデルクラスに機能を移しましょう。

Memberクラスにクラスメソッドsearchを作成します。引数の検索ワードが空でなければ、
SQLのLIKEを使ってユーザー名または氏名から検索するリレーションオブジェクトを作成しま
す。

「class << self」という書き方については、「2.4　クラス」の「クラスメソッドの書き方」を参
照してください。

chapter05/app/models/member.rb

 1 class Member < ApplicationRecord

 2 class << self

 3 def search(query)

 4 rel = order("number")

 5 if query.present?

 6 rel = rel.where("name LIKE ? OR full_name LIKE ?",

 7 "%#{query}%", "%#{query%")}

 8 end

 9 rel

 10 end

 11 end
 12 end

クラスメソッドsearchの中で、ローカル変数relがおもしろい働きをしています。まず、4行目
で「numberカラムでソートする」という設定を持つリレーションオブジェクトが変数relにセットさ
れます。次に、6行目でそのリレーションオブジェクトに「nameカラムまたはfull_nameカラムを
対象にレコードを絞り込む」という設定が追加されます。そして、9行目でそのリレーションオブ
ジェクトをメソッドの戻り値として返しています。

present?メソッドとblank?メソッド
Railsアプリケーションの中では、すべてのオブジェクトに対してpresent?メソッドとblank?メソッドを

呼ぶことができます。この2つのメソッドは、ユーザーが入力したデータやレコードのカラムが空かどうかを
調べるのに使います。

オブジェクトがnil、false、空文字列、空白文字（改行とタブを含む）だけを含む文字列、空の
配列、空のハッシュの場合は、blank?メソッドはtrueを返し、そうでなければfalseを返します。
present?メソッドはその逆です。

なお、日本語で使われる全角空白も空白文字として扱われます。

テンプレートindex.html.erbのh1タグの下に検索用のフォームを設置します。

chapter05/app/views/members/index.html.erb

 1 <% @page_title = "会員名簿" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <%= form_tag :search_members, method: :get, class: "search" do %>

 5 <%= text_field_tag "q", params[:q] %>

 6 <%= submit_tag "検索" %>

 7 <% end %>

 8

 9 <div class="toolbar"><%= link_to "会員の新規登録", :new_member %>
</div>
 （以下省略）

form_tagは一般的なフォームを生成するメソッドで、引数には送信先のパス（action属
性）を指定します。form_tagはデフォルトでHTTPメソッドをPOSTにするので、methodオプ
ションで:getを指定してGETメソッドに変えます。

form_tagメソッドのブロックにはフォームの内容を記述します。text_field_tagはテキスト
入力欄（type属性がtextのinputタグ）を作るメソッドで、第1引数にname属性の値、

第2引数にvalue属性の値を指定します。submit_tagメソッドは、送信ボタン（type属性
がsubmitのinputタグ）を作ります。

ブラウザをリロードすると、会員一覧表の上に検索フォームが現れます。検索ボックスに
「佐藤」と入力して「検索」ボタンを押してみましょう。氏名に「佐藤」のある会員だけが表示
されます。ブラウザのURL入力欄は「http://localhost:3000/members/search?...」のよう
になります。

会員の検索（searchアクション）

会員の詳細ページ
会員情報の詳細、つまり1つのレコードの各カラムの値を表示するページを作りましょう。

showアクションでは、findメソッドにidパラメータを渡します。findメソッドが返すモデルオブジ
ェクトを変数@memberに入れます。

chapter05/app/controllers/members_controller.rb

 （省略）

 13 # 会員情報の詳細

 14 def show

 15 @member = Member.find(params[:id])

 16 end

 （以下省略）

インスタンス変数とNoMethodError
コントローラやテンプレートの中で、インスタンス変数@memberのつづりを間違えると、

NoMethodError（メソッドがない）というエラーが示されます。初期化されていないインスタンス変
数の値はnilになり、nilにはnumberなどのメソッドがないためです。

エラーの表示が「メソッドがない」でも、その原因はインスタンス変数のスペルミス、ということがよく
あるので注意してください。

app/views/membersディレクトリの下にテンプレートshow.html.erbを作成します。
HTMLのテーブル内にレコードのカラム、つまりモデルオブジェクト@memberの属性を並べま
す。

chapter05/app/views/members/show.html.erb

 1 <% @page_title = "会員の詳細" %>

 2

 3 <h1><%= @page_title %></h1>

 4

 5 <div class="toolbar"><%= link_to "編集", [:edit, @member] %></div>

 6

 7 <table class="attr">

 8 <tr>

 9 <th width="150">背番号</th>

 10 <td><%= @member.number %></td>

 11 </tr>

 12 <tr>

 13 <th>ユーザー名</th>

 14 <td><%= @member.name %></td>

 15 </tr>

 16 <tr>

 17 <th>氏名</th>

 18 <td><%= @member.full_name %></td>

 19 </tr>

 20 <tr>

 21 <th>性別</th>

 22 <td><%= @member.sex == 1 ? "男" : "女" %></td>

 23 </tr>

 24 <tr>

 25 <th>誕生日</th>

 26 <td><%= @member.birthday&.strftime("%Y年%m月%d日") %>
</td>

 27 </tr>

 28 <tr>

 29 <th>メールアドレス</th>

 30 <td><%= @member.email %></td>

 31 </tr>

 32 <tr>

 33 <th>管理者</th>

 34 <td><%= @member.administrator? ? "○" : "－" %></td>

 35 </tr>

 36 </table>

先ほど作った会員一覧のページで、ユーザー名の「Taro」や「Hana」をクリックすると、その
会員の情報が表示されます。ブラウザのURL欄が「http://localhost:3000/members/1」
や「http://localhost:3000/members/3」のようになっていることも確認してください。

会員の詳細ページ（showアクション）

&.演算子
show.html.erbで誕生日を表示するところでは、birthday.strftime("%Y年%m月%d日")とせ

ずに、birthday&.strftime("%Y年%m月%d日")のように&.演算子（通称「ぼっち演算子」）を
使っています。これは、birthdayがnilの場合に備えた書き方です。そのままstrftimeメソッドを呼び
出すと、誕生日がない場合には例外NoMethodErrorが発生します。&.演算子を使えば、簡潔
な書き方で例外の発生を防げます。

&.演算子は左辺のオブジェクトがnilのときnilを返し、nilでないときは右辺に書かれたメソッドを
呼び出してその戻り値を返します。

属性?メソッド

show.html.erbの一番下で使っている@member.administrator?という?付きのメソッドは、
administrator属性がtrueかfalseかを調べるものです。@member.administratorとしても同じで
すが、?を付けることでtrueかfalseかを調べていることを明示できます。

カラム名に?を加えた名前を持つメソッドは、テーブルにそのカラムがあれば使えるようになるメソッド
です。Memberモデルの場合は、number?メソッドやname?メソッドも使えます。値がnil、false、
空文字列、空白文字だけからなる文字列の場合はfalseを返し、そうでなければtrueを返します。
present?メソッドとは違い、値が数値0の場合はfalseを返します。

Chapter 5のまとめ

RESTとは、リソースという概念を中心にしてウェブアプリケーションを組み立
てる考え方です。Railsのリソースは、コントローラが扱う対象に名前を付け
たものです。
リソース名は、routes.rbでresourcesメソッドを使って設定します。リソース
名を設定すると、リソースを扱うコントローラに対して、リソースベースのルーテ
ィングが作られます。
リソースベースのルーティングでは、index、show、new、edit、create、
update、destroyの7つのアクションが基本となります。
リソース名を設定すると、「○○_path」という形のメソッドでURLのパスを生
成できるようになります。
リソースの一覧ページはindexアクション、詳細情報のページはshowアクシ
ョンで実装します。

練習問題

［A］　Chapter 4の練習問題で作ったBookモデルを扱うBooksControllerを作ることに
します。routes.rbで「resources :books」と指定すると、BooksControllerの各アクション
とURLのパス、HTTPメソッドはどのような関係になるでしょうか。空欄を埋めてください。idパ
ラメータには1が入ることにします。

アクション、URLのパスとHTTPメソッドの対応

index /books GET

show 　　　　　 GET

new /books/new GET

edit /books/1/edit GET

　　　　　 /books POST
update /books/1 　　　　　

destroy /books/1 DELETE

［B］　問題［A］のBooksControllerを記述します。indexアクションにはレコードの一
覧を書籍名（title）順に取り出すコードを記述してください。showアクションにはidパラメー
タを元にレコードを1つ取り出すコードを記述してください。

class BooksController < ApplicationController

 def index

 @books = 　　　　　　　　　　　　　　　　　　　　　　　

 end

 def show

 @book = 　　　　　　　　　　　　　　　　　　　　　　　

 end

end

［C］　問題［B］のindexアクションとshowアクション用のテンプレートを記述します。空
欄を埋めて、index.html.erbではループの中にshowアクションへのリンクを作成してくださ
い。show.html.erbでは変数@bookが持っている書籍名（title）、著者名
（author）、価格（price）を表示してください。

index.html.erb

 <% books.each do |book| %>

 <%= 　　　　　　　　　　　 %>

 <% end %>

show.html.erb

<p>書籍名：<%= 　　　　　　　　　　　 %>、

著者名：<%= 　　　　　　　　　　　 %>、

価格：<%= 　　　　　　　　　　　 %>円</p>

Chapter

6　リソースの作成と更新

Chapter 5に引き続き、リソースを扱うコントローラを実装していきましょう。 会
員情報を表示するだけでなく、新規作成、更新、削除の機能をアプリケーション
に追加します。

これから学ぶこと

レコードの新規作成や更新を行うフォームをテンプレートに記述する方法を学
びます。
フォームから送信されたデータを元にして、レコードの新規作成や更新を行う
方法を学びます。また、レコードを削除する方法も学びます。

ブラウザからデータベースを操作するには、項目を入力できるフォームを用意する必要がありま
す。モデルと結び付いたフォームはどのように書けばよいでしょうか？ フォームから送信された値を
保存するには何をすればよいでしょうか？

6.1 　フォームとモデル

ウェブアプリケーションでは、HTMLのフォームを通じてデータベースのデータを作成したり
変更したりする処理がよく行われます。Railsには、そうした処理のためにモデルと
HTMLのフォームを簡単に連携させる機能が備わっています。

モデルとフォームの連携
データベースからデータを取り出し、フォームに表示して、ユーザーの操作によって情報を更

新する、といった一連の流れは、Railsでは次の図のようになります。コントローラではモデルの
オブジェクトをテンプレートに渡し、テンプレートではそのオブジェクトを使ってHTMLのフォームを
作成します。フォームからデータが送信されたときは、送信されたデータをモデルに渡せばデータ
ベースに保存できます。

新しいレコードを作成するときも、レコードを取り出す手順がないだけで、基本的な手順は
変わりません。作成の場合は、コントローラで新しいオブジェクトを作ってテンプレートに渡すこ
とになります。

モデルとフォームの連携

フォームから送信されたデータは、コントローラでparamsメソッドを使って取り出します。
Memberモデルのフォームからデータを送信すると、paramsが返すハッシュの中身は次のよう
になります（updateアクションの場合）。

{ "utf8" => "✓", "_method" => "patch",

 "authenticity_token" =>

"WZA1imwTexQ4hH24JhU06m9qsrBhQq7pkE5PZjReUo2h/SeHGGR3lv4m...
VfbJMwFP4tqNwg==",

 "member" => { "number" => "10", "name" => "Taro",

 "full_name" => "佐藤 太郎", "sex" => "1",

 "birthday(1i)" => "1981", "birthday(2i)" => "12",

 "birthday(3i)" => "1",

 "email" => "Taro@example.com", "administrator" => "1" },

 "commit" => "更新", "action" => "update", "controller" => "members",
"id" => "1" }

ハッシュが入れ子になっている点に注目してください。:memberをキーにして
params[:member]を取り出すと、それもハッシュになっています。このparams[:member]を
モデルオブジェクトのassign_attributesメソッドに渡せば、ハッシュの内容がモデルの属性に
セットされます。

@member.assign_attributes(params[:member]) # 属性をセット

@member.save # レコードを保存

フォームの記述

Chapter 5のようにリソースベースのルーティングを設定したときは、テンプレートでフォームを
記述するのにform_forメソッドを使います。

■newアクションとeditアクション
まず、MembersControllerのnewアクションとeditアクションを記述しましょう。newアク

ションでは、Member.newで新しいモデルオブジェクトを作成します。newメソッドの引数に
は、誕生日の初期値を指定して1980年1月1日としています（これは好きな日付でかまい
ません）。

editアクションでは、findメソッドにidパラメータを渡してモデルオブジェクトを取り出します。

chapter06/app/controllers/members_controller.rb

 （省略）

 18 # 新規作成フォーム

 19 def new
 20 @member = Member.new(birthday: Date.new(1980, 1, 1))

 21 end

 22

 23 # 更新フォーム

 24 def edit

 25 @member = Member.find(params[:id])

 26 end

 （以下省略）

■新規作成フォーム
app/views/membersディレクトリの下に、テンプレートnew.html.erbを作成しましょう。

最初は次のように記述してください。

chapter06/app/views/members/new.html.erb

 1 <%= form_for @member do |form| %>

 2 <% end %>

form_forメソッドにはnewアクションで作ったモデルオブジェクトを渡します。form_forのブ
ロックの中にフォームの内容を記述しますが、とりあえず空にします。ブロックパラメータのform
には、ActionView::Helpers::FormBuilderクラスのオブジェクト（以下、フォームビルダーと
呼びます）が渡されます。

ターミナルで「bin/rails s」コマンドを実行してサーバーを起動し、トップページから［会員名
簿］→［会員の新規登録］をクリックしてください。ブラウザでHTMLのソースを表示する
と、次のフォームができています。action属性は"/members"、method属性は"post"なの
で、createアクションを呼び出すフォームになります。

<form class="new_member" id="new_member" action="/members"
accept-charset

="UTF-8" method="post">

<input name="utf8" type="hidden" value="✓" />

<input name="authenticity_token" type="hidden"
value="Ec0h6jYlRunWTmI6/YY

Ou+Kc1dInbP1GFIXDy0d+2svpoDPnQlJKaxDsCAF0+whsuyHBloxQBllN+I3i
kfoFhA==" />

</form>

type属性がhiddenのinputタグ（表示されない入力欄）が2つ作られます。
name="utf8"は古いInternet ExplorerにパラメータをUTF-8で送信させるためのダミーパラ
メータです。name="authenticity_token"については、HINT「RailsのCSRF対策」を参照し
てください。

RailsのCSRF対策

CSRFは、クロス・サイト・リクエスト・フォージェリ（Cross-site request forgery）の略で、ウェブ
サイトへの攻撃手法の1つです。攻撃対象のウェブサイトに送信を行うフォームやリンクなどを別のサ
イトに用意し、ログイン中のユーザーにうっかりクリックさせる仕掛けです。勝手にブログへの投稿を行
わせたり、ユーザーを退会させたりすることができてしまいます。

RailsはCSRF対策として、上記のform_forの例のようにHTTPメソッドがGET以外のフォームやリ
ンクでは、authenticity_tokenの文字列（value="Ec0h6jYl..."）を埋め込みます。この文字列
はRailsがユーザーのセッションごとにユーザー別に用意するもので、アクションの実行の前にチェックさ
れ、文字列が不正の場合は例外が発生します。

■更新フォーム
app/views/membersディレクトリの下に、テンプレートedit.html.erbを作成し、

new.html.erbと同じコードを記述してみましょう。

chapter06/app/views/members/edit.html.erb

 1 <%= form_for @member do |form| %>

 2 <% end %>

会員の一覧ページで［編集］をクリックし、ブラウザでHTMLのソースを表示すると、次の
フォームができています。

<form class="edit_member" id="edit_member_1" action="/members/1"
accept-c

harset="UTF-8" method="post">

<input name="utf8" type="hidden" value="✓" />

<input name="_method" type="hidden" value="patch" />

<input name="authenticity_token" type="hidden"
value="h/+4XGGC1iycQNs09Ib

Jh9pn+ZDtckDtpgcwCsmyFvR/kqpRFfXarlrisQ99+89Qg9rt1EZOu/L/en4jHz

bJuw==" />

</form>

action属性は"/members/1"、method属性は"post"です。表示されない入力欄に
name属性が"_method"、value属性が"patch"のものがあります。フォームが送信される
と、「"_method" => "patch"」というパラメータが送られるので、RailsはHTTPメソッドが
PATCHであると判断し、updateアクションを呼び出します。

form_forメソッドは、引数のモデルオブジェクトを調べ、保存されていなければcreate用の
フォームを作成し、保存済みならupdate用のフォームを作成します。

form_forのオプション
フォームの送信先のパスとHTTPメソッドを自分で指定したいときは、urlオプションとmethodオプ

ションを指定します。

form_for @member, url: member_path(@member), method: :patch

パラメータ名を変えたいときは、asオプションを使います。次の例ではフォームの入力欄のname属
性はname="user[number]"のようになり、コントローラではparams[:user]でデータが取り出せるよ
うになります。

form_for @member, as: "user"

formタグにclass属性やid属性を指定したいときは、htmlオプションにハッシュを指定します。

form_for @member, html: { class: "member", id: "main_form" }

フォームの部品の記述

form_forメソッドのブロックパラメータ（|form|）に渡されるフォームビルダーは、さまざまな
フォームの部品を作るメソッドを備えています。たとえば、1行テキスト入力欄（<input
type="text"/>）を作成するには、text_fieldメソッドを使います。引数にモデルの属性名
（テーブルのカラム名）を指定すれば、その属性を編集する入力欄になります。

<%= form_for @member do |form| %>

背番号：<%= form.text_field :number %>

<% end %>

すると、次のようなinputタグができます。

背番号：<input id="member_name" name="member[number]" size="30"

 type="text" value="10" />

@memberにデータが入っているときは、value="10"のように属性の値がセットされます。
name属性はname="member[number]"のように「モデル名[属性名]」の形になります。

フォームが送信されると、この入力欄のデータは「"member" => { "number" => "10"
}」のような入れ子のハッシュになります。

フォームビルダーのメソッドの詳細を見る前に、newアクションとeditアクションのテンプレート
を作成して感じをつかんでみましょう。

たいていの場合、newアクションとeditアクションは同じ入力欄を使いますので、部分テン
プレートで共有します。app/views/membersの下に_form.html.erbを作成し、次のように
記述してください。HTMLのテーブルを使って属性名とフォームの部品を並べます。

chapter06/app/views/members/_form.html.erb

 1 <table class="attr">

 2 <tr>

 3 <th><%= form.label :number, "背番号" %></th>
 4 <td><%= form.text_field :number, size: 8 %></td>

 5 </tr>

 6 <tr>

 7 <th><%= form.label :name, "ユーザー名" %></th>

 8 <td><%= form.text_field :name %></td>

 9 </tr>

 10 <tr>

 11 <th><%= form.label :full_name, "氏名" %></th>

 12 <td><%= form.text_field :full_name %></td>

 13 </tr>

 14 <tr>

 15 <th>性別</th>

 16 <td>

 17 <%= form.radio_button :sex, 1 %>

 18 <%= form.label :sex_1, "男" %>

 19 <%= form.radio_button :sex, 2 %>

 20 <%= form.label :sex_2, "女" %>

 21 </td>

 22 </tr>

 23 <tr>

 24 <th><%= form.label :birthday, "誕生日",

 25 for: "member_birthday_1i" %></th>

 26 <td><%= form.date_select :birthday,

 27 start_year: 1940, end_year: Time.current.year,

 28 use_month_numbers: true %></td>

 29 </tr>

 30 <tr>

 31 <th><%= form.label :email, "メールアドレス" %></th>

 32 <td><%= form.text_field :email %></td>

 33 </tr>

 34 <tr>

 35 <th>管理者</th>

 36 <td>

 37 <%= form.check_box :administrator %>

 38 <%= form.label :administrator, "管理者" %>

 39 </td>

 40 </tr>

 41 </table>

一般メンバーがメンバー全員の管理者フラグを書き換えられるという不自然な仕様につい
ては、とりあえず気にしないでください。Chapter 15で本格的な管理ページを作る際に仕様
を考え直しましょう。

続いて、new.html.erbを次のように書き換えてください。

chapter06/app/views/members/new.html.erb

 1 <% @page_title = "会員の新規登録" %>

 2

 3 <h1><%= @page_title %></h1>

 4

 5 <%= form_for @member do |form| %>

 6 <%= render "form", form: form %>

 7 <div><%= form.submit %></div>

 8 <% end %>

form_forメソッドのブロック内にrenderメソッドで部分テンプレート_form.html.erbを埋め
込みます。また、フォームビルダーのsubmitメソッドで送信ボタンを作成します。

部分テンプレートにローカル変数を渡す

上記のrenderメソッドには「form: form」というオプションを渡しています。これは、部分テンプレー
トに変数formを渡す指定です。テンプレートの間では、インスタンス変数を共有できますが、ローカル
変数は共有できません。部分テンプレートの中で親テンプレートのローカル変数を使いたいときは、
「X: Y」という形のオプションをrenderメソッドに加えます。親テンプレートのローカル変数をYに指定す
ると、部分テンプレートの中でXという名前のローカル変数が使えるようになります。

同様にedit.html.erbにも_form.html.erbを埋め込みます。

chapter06/app/views/members/edit.html.erb

 1 <% @page_title = "会員情報の編集" %>

 2

 3 <h1><%= @page_title %></h1>

 4

 5 <div class="toolbar"><%= link_to "会員の詳細に戻る", @member %>
</div>

 6

 7 <%= form_for @member do |form| %>

 8 <%= render "form", form: form %>

 9 <div><%= form.submit %></div>

 10 <% end %>

会員一覧ページから「会員の新規登録」をクリックして、newアクション用のフォームを表
示してみましょう。入力欄は空の状態です。

newアクションのページ

会員一覧ページから会員の名前の右にある［編集］をクリックして、editアクション用の
フォームを表示してみましょう。editアクションではモデルオブジェクトにMemberモデルの属性
が入っているので、入力欄は値が最初から入っている状態になります。

editアクションのページ

フォームビルダーのメソッド
フォームビルダーが用意しているメソッドを紹介しましょう。さまざまなフォームの部品を作るこ

とができます。どのメソッドでも、第1引数にはモデルの属性名を指定します。また、たいてい
のメソッドでは引数の最後にハッシュのオプションでタグの属性を並べることができます。

■1行テキスト、パスワード、隠し項目
1行のテキスト入力欄（<input type="text" />）は、text_fieldメソッドで記述しま

す。オプションにはsizeなどの属性を指定できます。password_fieldメソッドを使うとパスワー
ド入力欄（<input type="password" />）になり、hidden_fieldメソッドを使うと表示さ
れない欄（<input type="hidden" />）になります。

名前：<%= form.text_field :name, size: 16 %>

パスワード：<%= form.password_field :password, size: 12 %>

<%= form.hidden_field :some_value %>

1行テキスト入力欄

■複数行テキスト
複数行のテキスト入力欄（textareaタグ）は、text_areaメソッドで記述します。幅

（cols属性）と高さ（rows属性）は、オプションで指定します。

備考：

<%= form.text_area :remarks, cols: 40, rows: 3 %>

複数行テキスト入力欄

■チェックボックス
チェックボックス（<input type="checkbox" />）は、check_boxメソッドで記述しま

す。第2引数にはHTMLの属性をハッシュで指定できます。チェックボックスの値（value属
性）を設定したいときは、第3引数と第4引数にオンの場合とオフの場合の値を並べます。

<%= form.check_box :administrator, {}, "on", "off" %> 管理者

チェックボックス

value属性の値を設定しないと、自動的にオンの値は「1」、オフの値は「0」となります。フ
ォームデータをモデルオブジェクトに入れると、「1」がtrue、「0」がfalseになります。

<%= form.check_box :administrator %> 管理者

最初からチェックが付いた状態にしたいときは、「@member.administrator = true」の
ようにコントローラでモデルオブジェクトに値を入れておきます。

■ラジオボタン
ラジオボタン（<input type="radio" />）は、radio_buttonメソッドで記述します。第

2引数には、ラジオボタンの値（value属性）を指定します。最初からチェックが付いた状
態にしたいときは、「@member.sex = 2」のようにコントローラで値を入れておきます。

<%= form.radio_button :sex, 1 %> 男

<%= form.radio_button :sex, 2 %> 女

ラジオボタン

■選択リスト
プルダウンメニューによる選択リスト（selectタグとoptionタグの組み合わせ）は、select

メソッドで記述します。第2引数には、選択肢を配列で指定します。

<% options = ["本町", "東町", "南町", "北町", "その他"] %>

地域：<%= form.select :area, options %>

選択リスト

上記の例では、<option value="本町">本町</option>のようなタグを生成します。
<option value="1">本町</option>のようにvalue属性の値を指定したいときは、次の
ように配列の配列で文字列と値を並べます。

<%

options = [

 ["本町", 1],

 ["東町", 2],

 ["南町", 3],

 ["北町", 4],

 ["その他", 5]

]

%>

地域：<%= form.select :area, options %>

最初から選択肢のどれかが選択された状態にしたいときは、「@member.area = "東
町"」や「@member.area = 3」のようにコントローラで値を入れておきます。

■日付と時刻の選択
日付や時刻を選択できるように、自動的に複数のリストを並べる機能もあります。日付

の選択にはdate_selectメソッド、日付と時刻の選択にはdatetime_selectメソッドを使いま
す。この2つのメソッドを用いると、送信されたデータをモデルオブジェクトにそのまま格納するだ
けで、自動的に日付型や日時型の値として保存できます。

オプションとして最初の年（start_year）、最後の年（end_year）、月の表示を数字
にするかどうか（use_month_numbers）を指定できます。

誕生日：<%= form.date_select :birthday,

 start_year: 1940, end_year: Time.current.year,

 use_month_numbers: true %>

日付の選択

■ファイルのアップロード
ファイルのアップロード用の部品（<input type="file" />）は、file_fieldメソッドで記述

します。ファイルのアップロードの実際の例は、Chapter 13を参照してください。

画像：<%= form.file_field :uploaded_file %>

ファイルのアップロード

この部品はブラウザによって表示が違います。左はMacのChromeのもの、右は
WindowsのMicrosoft Edgeのものです。

■送信ボタン
フォームの送信ボタン（<input type="submit" />）は、submitメソッドで作ります。ボ

タンの上の文字を変えたいときは、引数に指定します。

<%= form.submit "更新" %>

送信ボタン

一般的なボタン（buttonタグ）を作るにはbuttonメソッドを利用します。引数でボタン
の上の文字を指定し、typeオプションでtype属性の値を指定します。type属性の値
は"submit"、"reset"、"button"のいずれかで、デフォルトの値は"submit"です。

<%= form.button "Click Me!", type: "button" %>

■ラベル
入力欄に対応するラベル（labelタグ）を作成するには、labelメソッドを使います。引数

には、対応する入力欄の属性名を指定します。第2引数にはラベルのテキストを指定できま
す。

<%= form.label :name, "名前" %> <%= form.text_field :name, size: 16 %>

ラベル

第2引数を省略するとロケールテキストに記述した属性名が使われます（「7.2　メッセー
ジの日本語化」を参照）。7.2節では、モデルの属性名に日本語の名前を付けて、会員情
報フォームのlabelメソッドを修正します。

日付とラジオボタンのラベル
text_fieldメソッドの引数を:nameとすると、inputタグのid属性がid="member_name"となり

ます。labelメソッドの引数を:nameとすると、labelタグのfor属性がfor="member_name"となる

ので、ラベルと入力欄を関連付けられます。先に記述したテンプレート_form.html.erbでは、こうし
たケースから外れる入力欄があるので、工夫を加えています。

誕生日用のdate_selectメソッドは、3つのselectタグになります。labelメソッドにはオプション
「for: "member_birthday_1i"」を付けてfor属性の値を変え、1番目のselectタグを指すようにして
います。

性別用のラジオボタンは、id属性がid="member_sex_1"とid="member_sex_2"の2つの
inputタグになります。labelメソッドの引数を:sex_1、:sex_2とすることで、for属性が
for="member_sex_1"、for="member_sex_2"となるようにしています。

scaffoldの利用

Railsには、scaffold（「足場」の意）というモデルとコントローラを簡単に作成するためのしくみが
用意されています。

次のコマンドを実行すると、Memberモデルとマイグレーションスクリプト、MembersControllerと
ビューが一気にできあがります。「number:integer name:string」によって、マイグレーションスクリプ
トには整数型のnumberと文字列型のnameカラムが自動的に追加されます。

$ bin/rails g scaffold Member number:integer name:string

MembersControllerには7つのアクションが自動的に記述され、アクション用のテンプレートも用
意されます。あとは、「bin/rails db:migrate」と「bin/rails s」で実際にアプリケーションが動きます。

scaffoldが作成したコードを編集しながら開発を行うこともできます。ただし、結局は自分の手で
モデルやコントローラ、ビューを大幅に書き直すことになるので、実用的なサイトを作成するにはそれな
りの手間がかかります。本書ではscaffoldを利用しません。

6.2 　レコードの作成、更新、削除

ここでは、create、update、destroyの各アクションを実装し、レコードの作成、更
新、削除を行います。「4.3　データの保存」で紹介したモデルのメソッドを見返しなが
ら機能を確認してください。

作成と更新の流れ
データベースの基本操作を行うには、Chapter 5で紹介した7つのアクションを使います。こ

のうち、indexアクションとshowアクションはすでに実装しました。
データベースのレコードの作成と更新には、フォームを表示するアクションとレコードの保存を

行うアクションを組み合わせます。作成では、newアクションのフォームからcreateアクション
を呼び出します。更新では、editアクションのフォームからupdateアクションを呼び出します。

作成と更新のためのアクション

Chapter 7で解説するバリデーション（値の検証）によってエラーが発生すると、レコードの
保存が失敗します。失敗したときは、createアクションはnewアクションのテンプレート、
updateアクションはeditアクションのテンプレートを使ってエラーメッセージを表示します。エラー
メッセージを表示したフォームからは、再びcreateアクションやupdateアクションを呼び出せま
す。

エラーが発生した場合

会員の新規登録と更新
createアクションとupdateアクションを実装して、会員の新規登録と更新の機能を追加

しましょう。

■ストロング・パラメータの無効化
アクションの実装を始める前に、config/application.rbを次のように変更します（35行

目を挿入）。

chapter06/config/application.rb

 （省略）

 33 config.time_zone = "Tokyo"

 34

 35 config.action_controller.permit_all_parameters = true

 36 end

 37 end

この設定により、「ストロング・パラメータ」と呼ばれるセキュリティ機能が無効になります。こ
の設定をしないと、本章のサンプルコードは正常に動作しません。config/application.rbの
設定変更後は、アプリケーションの再起動が必要です。 Ctrl - C でasagaoを停止し、
「bin/rails s」でサーバーを起動してください。

ストロング・パラメータはあとで必ず有効化する
ストロング・パラメータは、ブラウザから送信されるパラメータに制限をかけて、セキュリティを向上さ

せる機能です。ウェブサイトを一般に公開するときには必ず有効化してください。しかし、Rails初学
者の多くはストロング・パラメータの機能を少し難しいと感じるようです。そこで、本書ではPart 4に入
るまで無効化した状態で開発を進めることにしました。

■createアクション
MembersControllerのcreateアクションの内容を次のように記述します。

chapter06/app/controllers/members_controller.rb

 （省略）

 28 # 会員の新規登録

 29 def create

 30 @member = Member.new(params[:member])

 31 if @member.save

 32 redirect_to @member, notice: "会員を登録しました。"

 33 else

 34 render "new"

 35 end

 36 end

 （以下省略）

30行目のnewメソッドで、フォームから送られたパラメータを使ってモデルオブジェクト
@memberを作成します。31行目のsaveメソッドでデータベースにレコードを保存します。

保存に成功したときは、saveメソッドがtrueを返します。成功したときは、redirect_toメソ
ッドでオブジェクト@memberが表すパスにリダイレクトします。@memberのidが123であれ
ば、「/members/123」にリダイレクトします。

「notice: "会員を登録しました。"」は、フラッシュに値を設定するオプションです。「3.2　コ
ントローラとアクション」の「フラッシュ」を参照してください。

エラーによってsaveメソッドがfalseを返したときは、renderメソッドでnewアクションのテンプ
レートを表示します。

フラッシュの文字列を表示する部分をまだ作っていませんでした。レイアウトテンプレート
application.html.erbを次のように修正します。

chapter06/app/views/layouts/application.html.erb

 （省略）

 17 <main>

 18 <% if flash.notice %>

 19 <p class="notice"><%= flash.notice %></p>

 20 <% end %>

 21

 22 <%= yield %>

 23 </main>

 （以下省略）

さらに、フラッシュ表示部分に枠線と背景色を付けるため、app/assets/stylesheetsディ
レクトリにCSSファイルflash.cssを次の内容で作成します。

chapter06/app/assets/stylesheets/flash.css

 1 /* フラッシュ */

 2 p.notice {

 3 border: 1px solid blue;

 4 padding: 3px;

 5 background-color: #ccf;

 6 }

ブラウザで会員一覧ページを開き、［会員の新規登録］をクリックしてください。フォーム
の項目をすべて埋めて［Create Member］ボタンを押すと、createアクションが呼び出さ
れ、レコードが保存されて、showアクションにリダイレクトします。

createアクションの結果

■updateアクション
MembersControllerのupdateアクションの内容は次のように記述します。

chapter06/app/controllers/members_controller.rb

 （省略）

 38 # 会員情報の更新

 39 def update

 40 @member = Member.find(params[:id])

 41 @member.assign_attributes(params[:member])

 42 if @member.save

 43 redirect_to @member, notice: "会員情報を更新しました。"

 44 else

 45 render "edit"

 46 end

 47 end

 （以下省略）

findメソッドでレコードを取り出し、assign_attributesメソッドでフォームからのデータをセッ
トします。

createアクションと同様に、saveメソッドでレコードを保存します。保存に成功したらshow
アクションにリダイレクトし、失敗したらeditアクションのテンプレートを表示します。

会員一覧ページで、名前の横の［編集］をクリックしてください。たとえば背番号を「30」
に変えて［Update Member］ボタンを押してみましょう。updateアクションが呼び出さ
れ、レコードが変更されて、showアクションにリダイレクトします。

updateアクションの結果

createアクションとupdateアクションの内容は、どんなモデルでも上記の書き方が基本で
す。これを「型」として暗記して、すらすら書けるようになってください。

会員の削除
会員を削除するdestroyアクションを実装しましょう。findメソッドでレコードを取り出し、

destroyメソッドで削除します。フラッシュにメッセージを入れて、indexアクションにリダイレクト
します。

chapter06/app/controllers/members_controller.rb

 （省略）

 49 # 会員の削除

 50 def destroy

 51 @member = Member.find(params[:id])

 52 @member.destroy

 53 redirect_to :members, notice: "会員を削除しました。"

 54 end

 （以下省略）

Chapter 5で作ったindexアクションのテンプレートの中で、destroyアクションへのリンクを
作っている部分を確認しましょう。

chapter06/app/views/members/index.html.erb

 （省略）

 26 <%= link_to "削除", member, method: :delete,

 27 data: { confirm: "本当に削除しますか?" } %>

 （以下省略）

これにより、次のようなHTMLが生成されます。

<a href="/members/10" data-confirm="本当に削除しますか?"

 data-method="delete" rel="nofollow">削除

ここでは、rails-ujsと呼ばれるJavaScriptライブラリが重要な働きをします。ユーザーが
data-method属性が付いているリンクをクリックすると、rails-ujsは見えないフォームをペー
ジの中に埋め込み、そのデータをDELETEメソッドで送信します（実際はPOSTメソッドです
が、_methodパラメータによる擬似的なHTTPメソッドです）。また、data-confirm属性の
付いているリンクは、JavaScriptによってメッセージが表示されます。

csrf_meta_tagsメソッド
app/views/layoutsディレクトリにあるレイアウトテンプレートapplication.html.erbには、headタ

グ内に次の記述があります。link_toメソッドのmethodオプションが正しく機能するためには、この2
行が不可欠です。

 <%= csrf_meta_tags %>

(省略)

 <%= javascript_include_tag 'application', 'data-turbolinks-track' => true %>

csrf_meta_tagsメソッドは、CSRF対策のauthenticity_tokenをHTMLに埋め込むものです。
methodオプション付きでlink_toメソッドが呼び出されると、rails-ujsはこのauthenticity_tokenを
使って見えないフォームを作成します。

javascript_include_tagメソッドは、app/assets/javascriptsディレクトリにあるJavaScriptプロ
グラムを読み込むタグを生成します。このディレクトリにあるapplication.jsの13行目に次のような記
述があり、この結果JavaScriptライブラリrails-ujsが取り込まれます。行頭の記号//=については
Chapter 12で解説します。

//= require rails-ujs

会員一覧ページで、名前の横の［削除］をクリックしてみましょう。レコードが削除され
て、indexアクションにリダイレクトします。

destroyアクションの結果

ブラウザ上で開発用のデータベースを変更したときは、bin/rails db:rebuildコマンドを実
行すれば、いつでもデータを元に戻せます（「4.3　データの保存」の「シードデータの投入」を
参照）。

Chapter 6のまとめ

レコードの新規作成のためには、newアクションでフォームを表示し、create
アクションにフォームの値を送信します。更新のためにはeditアクションでフォ
ームを表示し、updateアクションにフォームの値を送信します。
テーブルのデータと結び付いたフォームを作るには、テンプレートにform_forメ
ソッドを記述します。
form_forメソッドのブロックには、text_fieldやcheck_boxといったフォーム
ビルダーオブジェクトのメソッドを使って入力欄を記述します。
レコードを削除するときは、destroyアクションでモデルオブジェクトの
destroyメソッドを呼び出します。

練習問題

［A］　Chapter 4の練習問題で作成したbooksテーブルを更新するためのフォームを作成
します。入力欄を表示させるメソッドの呼び出しを空欄に記入してください。

<%= form_for @book do |form| %>

 <div>書名：<%= 　　　　　　　　　　　　　 %></div>

 <div>著者：<%= 　　　　　　　　　　　　　 %></div>

 <div>価格：<%= 　　　　　　　　　　　　　 %></div>

 <div><%= form.submit %></div>

<% end %>

［B］　フォームから送られた値を元にbooksテーブルのレコードを新規作成するcreateメソ
ッドと、レコードを更新するupdateメソッドを作成します。空欄を埋めてメソッドを完成させて
ください。

class BooksController < ApplicationController

 def create

 @book = 　　　　　　　　　　　　　

 @book.save

 redirect_to @book, notice: "作成しました。"

 end

 def update

 @book = Book.find(params[:id])

 　　　　　　　　　　　　　　　　　　　　

 @book.save

 redirect_to @book, notice: "更新しました。"

 end

end

Part

3　Ruby on Railsの応用

このPartでは、実用的なウェブアプリケーションに不可欠なさまざ
まな機能をRuby on Railsで実装する方法について学んでいき
ます。例えば、バリデーション、ログイン・ログアウト、モデルクラスの
コールバック、モデル間の1対多の関連付けなどです。

Chapter

7　バリデーションと国際化

Rails用語のバリデーションとは、モデルオブジェクトの各属性の値が妥当・有
効（valid）であることを確かめることです。データベースに不正な形式の文字列
や範囲外の数値が保存されないようにするための、非常に重要なプロセスです。

これから学ぶこと

フォームから送信されたデータをチェックするために、 バリデーション（値の検
証）のしくみを学びます。
バリデーションによって発生したエラーを表示する方法を学びます。
Railsの国際化機能について学び、 エラーメッセージを日本語化します。

Railsではどのようにしてバリデーション（値の検証）を行うのでしょうか？ どのようなタイプのバ
リデーションがあるのでしょうか？ どのように日本語でエラーメッセージをウェブページ上に出力す
るのでしょうか？

7.1 　バリデーション

ここではモデルの機能のうち、バリデーションを取り上げます。ユーザーから渡されたデー
タをデータベースに保存するときに必ず行う、重要なステップです。また、バリデーション
によって発生したエラーをユーザーに見せる方法を紹介します。

バリデーション

■バリデーションとエラー情報
テーブルのレコードを作成・更新するときには、「フォームから送られた値を調べ、値の形式

や範囲が間違っていたら適切なエラーメッセージを出す」という処理を必ず行います。この定
型的な処理を簡単にこなすのが、Railsのモデルに用意されたバリデーション（値の検証）
です。

バリデーション

モデルオブジェクトのsaveメソッドを呼び出すと、saveメソッドはバリデーションを実行しま
す。バリデーションに引っかかると、エラーオブジェクトにエラー情報が格納され、saveメソッドは
falseを返します。

バリデーションを設定するには、モデルクラス内でvalidatesメソッドを使います。次のように
validatesメソッドをMemberモデルに加えて試してみましょう。これは、背番号
（number）が空かどうかをチェックします。

class Member < ApplicationRecord

 validates :number, presence: true

Railsコンソールで動作確認をしましょう。ターミナルでbin/rails cコマンドを実行してくださ
い。MSYS2/MinGW環境の方はwinpty ruby bin/rails cコマンドを使います。

irb(main):001:0> member = Member.first

 Member Load (0.6ms) SELECT "members".* FROM "members" （略）

=> #<Member id: 1, number: 10, name: "Taro", full_name: "佐藤 太郎",
（略） >

irb(main):002:0> member.number = nil

=> nil

irb(main):003:0> member.save

 (0.2ms) begin transaction

 (0.1ms) rollback transaction

=> false

ここでは背番号をnilにしてデータの保存を試みています。saveメソッドがfalseを返している
ことが、バリデーション失敗を示しています。

モデルのエラーオブジェクト（ActiveModel::Errorsクラスのオブジェクト）は、errorsメソッ
ドで取り出せます。エラー情報の内容を見るには、エラーオブジェクトのmessagesメソッドを
使います。エラー情報は、「{ :属性名 => ["メッセージ1", "メッセージ2"] }」という形式のハッ
シュで格納されています。

irb(main):004:0> member.errors.messages

=> {:number=>["can't be blank"]}

エラーの有無は、エラーオブジェクトのempty?で確認できます。エラーオブジェクトをハッシュ
のように扱って、属性ごとのエラー情報を取り出すこともできます。

irb(main):005:0> member.errors.empty?

=> false

irb(main):006:0> member.errors[:number]

=> ["can't be blank"]

valid? メソッドとinvalid? メソッド
saveメソッドを使わずにバリデーションを行うには、valid?メソッドかinvalid?メソッドを使います。チ

ェックに引っかかればvalid?メソッドはfalseを返し、invalid?メソッドはtrueを返します。

member.number = nil

member.valid? # false

member.invalid? # true

■validatesメソッドの書き方
validatesメソッドの引数には、シンボルでモデルの属性名を指定し、そのあとにハッシュで

「バリデーションの種類: true」を並べれば、その種類のバリデーションが行われます。属性名
もバリデーションの種類も複数並べられます。

validates :number, :name, presence: true

「バリデーションの種類: { オプション: オプションの値 }」とすると、バリデーションごとにオプシ
ョンを指定できます。

validates :name, length: { maximum: 20 }

■会員情報の検証
Memberモデルにバリデーションの機能を加えていきましょう。会員の背番号、ユーザー

名、氏名でバリデーションを行います。
まず、背番号には「空を禁止、1以上100未満の整数、会員の間で重複を禁止」という

制限を付けることにして、次のようにvalidatesメソッドを記述します。

chapter07/app/models/member.rb

 1 class Member < ApplicationRecord

 2 validates :number, presence: true,

 3 numericality: {

 4 only_integer: true,

 5 greater_than: 0,

 6 less_than: 100,

 7 allow_blank: true

 8 },

 9 uniqueness: true

 （以下省略）

numericalityオプションにはハッシュでサブオプションを付けて、細かい調整をしています。
only_integer: trueで「整数のみ」、greater_than: 0とless_than: 0で「1以上100未満」と
いう意味になります。

ところで、空の背番号が禁止されているのに4行目でallow_blank: trueが指定されてい
るのは奇妙な感じがするかもしれません。これは、2行目で設定しているバリデーション

presence: trueとの重複を避けるためです。4行目を削除すると、空の会員番号を入力し
たときに「背番号が空」というエラーのほかに、「背番号が数値ではない」というエラーが発生
します。これは、ユーザーにとって少々わずらわしい状況です。

ユーザー名は、「空を禁止、半角英数字のみ、文字列の先頭はアルファベット、2文字以
上20文字以下、会員の間で重複を禁止（大文字小文字を区別しない）」とします。

chapter07/app/models/member.rb

 （省略）

 10 validates :name, presence: true,

 11 format: { with: /\A[A-Za-z][A-Za-z0-9]*\z/, allow_blank: true },

 12 length: { minimum: 2, maximum: 20, allow_blank: true },

 13 uniqueness: { case_sensitive: false }

 （以下省略）

11行目にある/\A[A-Za-z][A-Za-z0-9]*\z/は正規表現と呼ばれるオブジェクトです。

正規表現
正規表現とはある文字列のパターンを表します。11行目で使われている正規表現は4つの部分

に分かれます。最初の\Aは文字列の先頭、次の[A-Za-z]はアルファベット1文字、その次の[A-
Za-z0-9]*は任意の長さの（0個以上の）半角英数字、最後の\zは文字列の末尾を示します。
本書では正規表現の詳しい解説はしません。興味のある方は、次のページを参照してください。

Rubyリファレンスマニュアル（正規表現）
https://docs.ruby-lang.org/ja/latest/doc/spec=2fregexp.html

氏名は、「空を禁止、20文字以下」とします。

chapter07/app/models/member.rb

 （省略）

 14 validates :full_name, presence: true, length: { maximum: 20 }

https://docs.ruby-lang.org/ja/latest/doc/spec=2fregexp.html

 15

 16 class << self

 17 def search(query)

 （以下省略）

presenceバリデーションの働き
presenceで「値が空」と見なされるのは、nil、false、空文字列です。空白文字（半角空白、

改行、タブ）だけを並べた値もエラーにします。これは、blank? メソッドがtrueを返す場合と同じで
す。なお、全角空白も空白文字として扱われます。

■メールアドレスのチェック
続いて、メールアドレスのバリデーションをMemberモデルに追加します。会員のメールアド

レスは空であってもかまいませんが、「Taro@example@com」のような不正な形式の文字
列はエラーとします。

メールアドレスの形式に関する規則は非常に複雑なので、それをチェックするしくみを自分
で作るのは困難です。このような場合には、既存のGemパッケージを利用することを考えまし
ょう。

ブラウザでhttps://rubygems.orgを開き、キーワード「email validate」で検索すると多く
のパッケージがヒットします。この中からダウンロード数や最終リリース日などを参考にしてよさ
そうなものを選択します。本書では、email_validatorを採用します。

Gemfileを次のように書き換えてください。

(1-32行省略)

gem 'bootsnap', '>= 1.1.0', require: false

gem 'email_validator', '~> 1.6'

https://rubygems.org/

group :development, :test do

(以下省略)

ここで、もしRailsサーバーが起動していたら Ctrl - C で止めてください。そして、ターミナルで
bundle installコマンドを実行してから、Railsサーバーを起動し直します。

$ bundle install

$ bin/rails s

MSYS2/MinGW環境でLoadErrorが出た場合
Chapter 1でも書きましたが、MSYS2/MinGW環境では次のようなエラーが出るかもしれませ

ん。

cannot load such file -- sqlite3/sqlite3_native (LoadError)

次の2つのコマンドを順に実行してからRailsサーバーを起動してください。

$ gem uninstall -a sqlite3

$ gem install sqlite3 --platform ruby -N

なお、このエラーはbundle installコマンドを実行するたびに発生する可能性があります。以降の
Chapterでは説明を繰り返しませんが、そのようなときには上記の2つのコマンドを実行してください。

Memberモデルのソースコードを次のように書き換えます。

chapter07/app/models/member.rb

 （省略）

 14 validates :full_name, length: { maximum: 20 }

 15 validates :email, email: { allow_blank: true }

 16

 17 class << self

 18 def search(query)

 （以下省略）

Rails標準のvalidatesメソッドにはemailというオプションはありませんが、Gemパッケージ
email_validatorにより拡張されています。単にemail: trueとだけ指定すると、空文字が不
正なメールアドレスと判定されてしまうので、サブオプションallow_blankにtrueを指定してい
ます。

エラーメッセージの表示
バリデーションを設定しただけでは、保存に失敗したときのメッセージは表示されません。テ

ンプレートにエラーメッセージの表示を加えましょう。
エラーメッセージ専用のテンプレートを用意することにします。app/views/sharedディレクト

リの下に部分テンプレート_errors.html.erbを作成し、次のように記述してください。エラーオ
ブジェクトのfull_messagesメソッドは、「エラーを出した属性名＋メッセージ」の配列を返しま
すので、それをHTMLのリストにします。

chapter07/app/views/shared/_errors.html.erb

 1 <% if obj.errors.present? %>

 2 <div id="errors">

 3 <h3>エラーがあります。</h3>

 4

 5 <% obj.errors.full_messages.each do |msg| %>

 6 <%= msg %>

 7 <% end %>

 8

 9 </div>

 10 <% end %>

会員情報のフォームを表示するテンプレート_form.html.erbの先頭に、この
_errors.html.erbを埋め込みます。「obj: @member」で_errors.html.erbのローカル変数
objがモデルオブジェクトを参照するようにします。

chapter07/app/views/members/_form.html.erb

 1 <%= render "shared/errors", obj: @member %>

 （以下省略）

さらに、app/assets/stylesheetsディレクトリにエラー表示用のスタイルを記述した
errors.cssを作成します。ソースコードの掲載は省略しますので、サンプルソースの
chapter07/app/assets/stylesheetsディレクトリからコピーしてください。

会員一覧のページを開き、適当な会員の［編集］リンクをクリックして動作確認をしま
しょう。背番号の欄に「aaa」と入力し、ユーザー名の欄を「aaa!」のような不正なものにしま
す。また、氏名欄を空にし、メールアドレスとして「Taro@example@com」のような不正な
値を入力します。そして、［Update Member］ボタンを押して保存しようとすると、次の画
面になります。

エラーメッセージの表示

フォームの上部にエラーメッセージが表示され、エラーを起こした入力欄と対応するラベルは
赤い四角で囲まれます。エラーメッセージが英語になっていますが、これは次節の7.2節で日
本語にします。

入力欄を囲むタグ
モデルオブジェクトにエラーがあるときは、エラーを起こした入力欄は、class属性

が"field_with_errors"のdivタグで囲まれます。

<div class="field_with_errors"><input id="member_name"

 name="member[name]" size="30" type="text" value="" /></div>

CSSでdiv.field_with_errorsにスタイルを記述すれば、エラーを起こした入力欄に色を付けられま
す。

div.field_with_errors {

 background-color: #fcc;

 padding: 2px;

}

エラーメッセージの順番
「Number is not a number」や「Name can't be blank」などのエラーメッセージの順番は、バリ

デーションを実行した順番になります。これは、モデルクラスの中でvalidatesメソッドを並べた順番で
す。フォームの入力欄の並びと同じ順でエラーを表示したいときは、validatesメソッドの並べ方を調
整してください。

7.2 　メッセージの日本語化

Railsの国際化機能を使うと、日本語や英語などさまざまな言語のテキストをブラウザ
上に表示できます。この機能を使って、前節で作成したエラーメッセージを日本語に変
えてみましょう。

Railsの国際化機能
国際化とは英語でinternationalization、略してi18nと呼ばれるものです。複数の言語

に合わせてテキストを切り替えたり、地域ごとに日付や数値の書式を切り替えたりする機能
のことです。

Railsの国際化機能は、単純なものです。I18nというクラスにロケール（言語＋地域の種
類）を設定し、ロケールに合わせてYAML形式のロケールテキストから文字列を読み込んで
表示します。YAMLの書式については後述します。

Railsの国際化機能

ロケールを設定するには、コントローラでI18n.localeにロケールを表す文字列またはシンボ
ルを指定します。日本語は「ja」、英語は「en」です。「en-US」（アメリカ英語）や「zh-

TW」（台湾の中国語）のように「言語-地域」の形でも指定できます。

I18n.locale = "ja"

この指定がなければ、デフォルトのロケール「en」（英語）が使われます。asagaoアプリケ
ーションのデフォルトのロケールを日本語に設定しましょう。configディレクトリの
application.rbを次のように書き換えてください。

chapter07/config/application.rb

 （省略）

 33 config.time_zone = "Tokyo"

 34 config.i18n.default_locale = :ja

 （以下省略）

application.rbは自動的に再読み込みされないので、サーバーを起動中のときは、終了
して再起動してください。

i18nとL10n
国際化と似た概念に地域化があります。英語でLocalization、略してL10nです。大ざっぱに言

えば、i18nは多言語対応のことで、L10nはアプリケーションを特定の言語に対応させる（たとえ
ば、英語のソフトを日本語化する）ことです。

この7.2節で行うことは、Railsの国際化機能を使ってアプリケーションを日本語化すること、つまり
i18nを使ってL10nを行うことと言えます。

エラーメッセージの日本語化
Railsの国際化機能を使って、会員情報のエラーメッセージとモデルの属性名を日本語化

しましょう。

■Gemパッケージrails-i18n
レコードの保存に失敗したときに表示される「can't be blank」の部分を日本語化しましょ

う。これは、Gemパッケージrails-i18nを使うと楽にできます。rails-i18nは、さまざまな言語
のためのエラーメッセージや日付の書式などを集めたものです。

Railsアプリケーションのディレクトリの直下にあるGemfileを開いて、bootsnapの次の行
にrails-i18nの設定を加えてください。GemfileとBundlerの説明は、「1.4　アプリケーション
の新規作成」の「Bundler」にあります。

chapter07/Gemfile

 （省略）

 33 gem 'bootsnap', '>= 1.1.0', require: false

 34

 35 gem 'email_validator', '~> 1.6'

 36 gem 'rails-i18n', '~> 5.1'

 （以下省略）

ターミナルでrails-i18nをインストールします。

$ bundle install

これにより、モデルは日本語用のロケールテキストからエラーメッセージを読み込むようになり
ます。ロケールテキストの内容を確認してみましょう。次のサイトでrails-i18nのソースをのぞい
てみましょう。

https://github.com/svenfuchs/rails-i18n

このページから「rails」→「locale」→「ja.yml」をクリックします。ページの途中に次のような
記述があります。

https://github.com/svenfuchs/rails-i18n

 errors:

 format: "%{attribute}%{message}"

 messages:

 accepted: を受諾してください

 blank: を入力してください

 present: は入力しないでください

 confirmation: と%{attribute}の入力が一致しません

 empty: を入力してください

 equal_to: は%{count}にしてください

 even: は偶数にしてください

 （後略）

これが日本語用のエラーメッセージになります。エラーオブジェクトのaddメソッドの第2引数
には、:acceptedや:blankなどのエラーを表すシンボルを指定できます。

GitHub
GitHubは、オープンソースのソフトウェアをインターネットを通じて共同開発するためのウェブサイト

です。GitHubのrails-i18nは、Rails向けのさまざまな言語のロケールテキストを集めるためのプロジェ
クトです。ちなみに、rails-i18nの管理者グループには本書の著者たちが参加しています。

Railsの開発チームもGitHubを使っており、次のページで開発中のRailsのソースコードを閲覧でき
ます。

https://github.com/rails/rails

■モデルの属性名の日本語化
rails-i18nによって、エラーメッセージ「Name can't be blank」の「can't be blank」の部

分は「を入力してください。」のように日本語化できましたが、「Name」の部分はまだです。
自分でロケールテキストを記述して、日本語のテキストを用意する必要があります。

https://github.com/rails/rails

Railsアプリケーションのconfigディレクトリの下にlocalesディレクトリがあります。ここがロケ
ールテキストを置く場所です。ここにja.ymlという名前のファイルを新しく作成してください。次
のように記述して、Memberモデルの属性に日本語の名前を付けましょう。

chapter07/config/locales/ja.yml

 1 ja:

 2 ␣␣activerecord:

 3 ␣␣␣␣models:

 4 ␣␣␣␣␣␣member: 会員情報

 5 ␣␣␣␣attributes:

 6 ␣␣␣␣␣␣member:

 7 ␣␣␣␣␣␣␣␣number: 背番号

 8 ␣␣␣␣␣␣␣␣name: ユーザー名

 9 ␣␣␣␣␣␣␣␣full_name: 氏名

 10 ␣␣␣␣␣␣␣␣sex: 性別

 11 ␣␣␣␣␣␣␣␣sex_1: 男

 12 ␣␣␣␣␣␣␣␣sex_2: 女

 13 ␣␣␣␣␣␣␣␣birthday: 誕生日

 14 ␣␣␣␣␣␣␣␣email: メールアドレス

 15 ␣␣␣␣␣␣␣␣administrator: 管理者

YAML形式で入力するときの注意
インデントはタブではなく半角空白で入力し、「number: 背番号」のような行はコロンのあとに必

ず半角空白を入れてください。ファイルを保存するときは、文字コードはUTF-8にしてください。
「number: 背番号」のように文字列を指定するときは、「number: "背番号"」と二重引用符で

囲むこともできます。文字列中に空白が含まれるときは、二重引用符が必須です。

前節までに作った会員情報のフォームを次のように変更しましょう。

chapter07/app/views/members/_form.html.erb

 1 <%= render "shared/errors", obj: @member %>

 2

 3 <table class="attr">

 4 <tr>

 5 <th><%= form.label :number %></th>

 6 <td><%= form.text_field :number, size: 8 %></td>

 7 </tr>

 8 <tr>

 9 <th><%= form.label :name %></th>

 10 <td><%= form.text_field :name %></td>

 11 </tr>

 12 <tr>

 13 <th><%= form.label :full_name %></th>

 14 <td><%= form.text_field :full_name %></td>

 15 </tr>

 16 <tr>

 17 <th><%= Member.human_attribute_name(:sex) %></th>

 18 <td>

 19 <%= form.radio_button :sex, 1 %>

 20 <%= form.label :sex_1 %>

 21 <%= form.radio_button :sex, 2 %>

 22 <%= form.label :sex_2 %>

 23 </td>

 24 </tr>

 25 <tr>

 26 <th><%= form.label :birthday, for: "member_birthday_1i" %>
</th>

 27 <td><%= form.date_select :birthday,

 28 start_year: 1940, end_year: Time.current.year,

 29 use_month_numbers: true %></td>

 30 </tr>

 31 <tr>

 32 <th><%= form.label :email %></th>

 33 <td><%= form.text_field :email %></td>

 34 </tr>

 35 <tr>

 36 <th><%= Member.human_attribute_name(:administrator) %>
</th>

 37 <td>

 38 <%= form.check_box :administrator %>

 39 <%= form.label :administrator %>

 40 </td>

 41 </tr>

 42 </table>

labelメソッドの第2引数を削除して、ja.ymlのテキストを使うようにしています。17行目と
36行目で使っているクラスメソッドhuman_attribute_nameは、モデルの属性名をロケール
テキストから取り出すものです。

サーバーを起動して、会員名簿のページから適当な会員の［編集］リンクをクリックし、フ
ォームの表示を確認してください。各フィールドのラベルが以前と同様に表示されていて、フォ
ームの送信ボタンのラベルテキストが「Update Member」から「更新する」に変化していれば
OKです。送信ボタンのラベルテキストはGemパッケージrails-i18nに含まれています。

さらに、入力欄に不正なデータを入力してフォームを送信し、エラーメッセージが日本語で
表示されることも確認してください。

エラーメッセージの日本語化

ロケールテキストの再読み込み
開発モードでは、config/localesディレクトリの下のロケールテキストをサーバーの起動中に変更し

てもかまいません。自動的に再読み込みが行われます。ただし、新しいファイルを追加した場合は読
み込まれないので、サーバーを再起動する必要があります。

■エラーメッセージのカスタマイズ
モデルのエラーメッセージはrails-i18nのものを使うだけでなく、カスタマイズできます。自分

のロケールテキストでja:→activerecord:→errors:→messages:の下に「エラー名: 文字列」
を記述すれば、それが優先されます。

たとえば、「は不正な値です。」のテキストを変えたければ、次のように記述します。

ja:
 activerecord:

 （中略）

 errors:

 messages:

 invalid: "の書式が正しくありません。"

新しいエラーメッセージを追加することもできます。会員のユーザー名が不正なときは、「は
半角英数字で入力してください。」と表示したいときは、次のようにロケールテキストにエラーメ
ッセージを追加します。

chapter07/config/locales/ja.yml

 1 ja:

 2 ␣␣activerecord:

 （省略）

 14 ␣␣␣␣␣␣␣␣email: メールアドレス

 15 ␣␣␣␣␣␣␣␣administrator: 管理者

 16 ␣␣␣␣errors:

 17 ␣␣␣␣␣␣messages:

 18 ␣␣␣␣␣␣␣␣invalid_member_name: は半角英数字で入力してくださ
い。

Memberモデルで、name属性のバリデーションを変更します。formatにmessageオプシ
ョンを追加し、ロケールテキストで設定したエラー名を指定します。

chapter07/app/models/member.rb

 （省略）

 10 validates :name, presence: true,

 11 format: {

 12 with: /\A[A-Za-z][A-Za-z0-9]*\z/,

 13 allow_blank: true,

 14 message: :invalid_member_name

 15 },

 16 length: { minimum: 2, maximum: 20, allow_blank: true },

 17 uniqueness: { case_sensitive: false }

 （以下省略）

会員情報入力フォームで、ユーザー名の欄に「Taro!」と入力して更新ボタンを押すと、次
のようなエラーメッセージが示されます。

カスタマイズしたエラーメッセージ

■YAML

Railsでは、ロケールテキストの記述にYAMLを使っています。YAMLとは、データ形式または
ファイル形式の1つで、配列やハッシュのようなデータを人間に読みやすい形で記述できるよう
にしたものです。YAMLは「YAML Ain't Markup Language」（YAMLはマークアップ言語
ではない）の略とされています。冗談のような名前が付いているのは、複雑になりすぎた
XMLに対する批判の気持ちが込められているのかもしれません。

ここでは、YAMLの書き方とRubyでの簡単な利用法を紹介します。次は、YAMLで配列
を表したものです。各行の先頭に-を付ければ、配列になります。

- cat

- tiger

- lion

このYAMLをanimals.ymlというファイル名で保存すると、Rubyプログラムでは次のように
配列を取り出せます。

require "yaml"

animals = YAML.load(File.new("animals.yml"))

animals.each { |animal| puts animal }

YAMLでは、ハッシュを表すこともできます。「キー: 値」を各行に並べれば、それがハッシュ
のキーと値になります。

次ページのYAMLは、2つの要素からなるハッシュを表し、ハッシュの中にハッシュを入れて
会員のデータを表しています。配列やハッシュの中にさらに配列やハッシュを入れるときは、半
角空白でインデントします（タブ文字は使えません）。

member1:

 number: 11

 name: Taro

member2:

 number: 12

 name: Hanako

members.ymlというファイル名で保存すると、次のようにハッシュを取り出せます。

require "yaml"

members = YAML.load(File.new("members.yml"))

members.each do |key, val|

 puts "#{val['number']}\t#{val['name']}"

end

Railsでは、ロケールテキストのほかに、データベースの設定（database.yml）にYAMLを
使っています。database.ymlについては「4.1　データベースとモデルの基本」で見ました。

YAMLについてさらに知りたい方は、次のサイトを参照してください（2018年4月現在の
情報です）。

プログラマーのためのYAML入門
https://magazine.rubyist.net/articles/0009/0009-YAML.html
YAML仕様書（英語）
http://yaml.org/spec/1.2/spec.html

国際化機能の使い方
ここでは、Railsの国際化機能の一般的な使い方を紹介します。

■テキスト

https://magazine.rubyist.net/articles/0009/0009-YAML.html
http://yaml.org/spec/1.2/spec.html

日本語用のテキストを用意するには、ロケールテキストの中でja:の下にネストしたハッシュを
記述します。

ja:
 messages:

 hello: "こんにちは"

Railsアプリケーションの中でロケールテキストを読み出すには、I18nクラスのtranslateメソッ
ド（別名t）を使います。tメソッドには、ハッシュのキーをピリオドでつないだ文字列を指定し
ます。ロケールの設定が「ja」の場合はja:の下のテキストが使われ、「en」の場合はen:の下の
テキストが使われます。

s = I18n.t("messages.hello")

コントローラやテンプレートの中では、I18nを付けずにtメソッドが利用できます。

<%= t("messages.hello") %>

ロケールテキストで%{ ～ }を使うと、テキストの中に値を埋め込めるようになります。次は、
あいさつの中に名前を埋め込む例です。

ja:
 messages:

 hello: "%{name}さん、こんにちは"

tメソッドの引数に次のようにハッシュを追加すれば、「Taroさん、こんにちは」というテキスト
になります。

<%= t("messages.hello", name: "Taro") %>

ハッシュの上書きに注意
1つのロケールテキストには、ja:は1つしか書けません。次のように2つ書くと、下のハッシュ"ja"が上

のハッシュ"ja"を消して上書きしてしまいます。

ja:

 activerecord:

 （中略）

ja:

 messages:

ロケールテキストを記述するときは、ハッシュが上書きされないようにしてください。ただし、複数のロ
ケールテキストを使うときは、ファイルごとにja:が必要です。

■日付と時刻
日付や時刻の表記は、言語や地域ごとに違いがあります。日本語では年月日を

「2018/05/05」のように並べますが、アメリカ英語では「May 5, 2018」と月日年の順になり
ます。こうした違いも、Railsの国際化機能で扱えます。

日付や時刻を現在のロケールに従った文字列にするには、I18nクラスのlocalizeメソッド
（別名l）を使います。lメソッドの引数には、DateクラスやTimeクラス、または
ActiveSupport::TimeWithZoneクラスのオブジェクトを渡します。

次の例は、「2018/05/05 14:25:06」のような文字列を返します。

s = I18n.l(Time.current)

tメソッドと同様に、コントローラやテンプレートの中では、I18nを付けずにlメソッドが利用で
きます。

<%= l(Time.current) %>

lメソッドの第2引数には、ハッシュでformatオプションを指定できます。短めの書式を使う
ときは:shortを、長めなら:longを指定します。次の例は、「2018年05月05日(土) 17時06
分56秒 +0900」のような文字列になります。

<%= l(Time.current, format: :long) %>

lメソッドで使われる日付と時刻の書式は、rails-i18nのja.ymlの中で設定されています。
date:の下が日付の書式、time:の下が日付と時刻の書式です。「%○○」の書式は、
strftimeメソッドと同じです（「2.3　いろいろなオブジェクト」の「日時と日付」を参照）。
formatオプションを省略したときは、defaultの書式が使われます。

ja:
 date:

 （中略）

 formats:

 default: "%Y/%m/%d"

 long: "%Y年%m月%d日(%a)"

 short: "%m/%d"

 （中略）

 time:

 am: 午前

 formats:

 default: "%Y/%m/%d %H:%M:%S"

 long: "%Y年%m月%d日(%a) %H時%M分%S秒 %z"

 short: "%y/%m/%d %H:%M"

 pm: 午後

自分で新しい書式を追加したり、rails-i18nの書式を上書きしたりしたいときは、アプリケ
ーションのロケールテキストに書式を記述してください。次の例は、mediumという名前の書

式を追加します。

ja:
 （中略）

 time:

 formats:

 medium: "%Y年%m月%d日(%a) %H:%M"

formatオプションで:mediumを指定すると、「2018年05月05日 (土) 17:15」のような文
字列になります。

<%= l(Time.current, format: :medium) %>

Chapter 7のまとめ

フォームの値が正しいかどうかをチェックするには、バリデーションを使います。
バリデーションは、モデルクラスにvalidatesメソッドを記述して設定します。
エラーメッセージを日本語化するには、Railsの国際化機能を使います。
Gemパッケージrails-i18nをインストールすると簡単です。
モデルの属性に日本語名を付けるには、YAML形式でロケールテキストを
記述します。

練習問題

［A］　Chapter 4の練習問題で作成したBookモデルに属性title、author、priceのため
にバリデーションを記述してください。どの属性も値を空にしてはいけないものとします。price
は、0以上の整数とします。

class Book < ApplicationRecord

 　　　　　　　　

end

［B］　Bookモデルのためのロケールテキストを作成します。属性title、author、priceの日
本語ラベルをYAML形式で記述してください。

ja:
 activerecord:

 models:

 book: 書籍

 attributes:

 book:

 　　　　　　　　

Chapter

8　単数リソース

このChapterでは、Morning Gloryのサイトに①ログイン・ログアウト機能、②
メンバーが自分自身の情報を閲覧・変更する機能（マイアカウント機能）、③
メンバーが自分自身のパスワードを変更する機能を作りながら、単数リソース、セ
ッション、アクション・コールバックなどの重要な概念について学んでいきます。

これから学ぶこと

「単数リソース」という概念とそれを設定する方法について学びます。
セッションを利用してログイン・ログアウト機能をMorning Gloryのサイトに
追加します。
アクション・コールバックという概念とそれを設定する方法について学びます。
ログイン中のメンバーだけに特定のページへのアクセスを許可する方法を学
習します。
メンバーが自分の情報を閲覧・編集できるマイアカウントページを作成しま
す。
メンバーが自分のパスワードを変更する機能を実装します。

Ruby on Railsの学習では「リソース」という概念の理解がとても重要です。Chapter 5と
Chapter 6で学んだ普通のリソースと本章で登場する「単数リソース」はどう違うのでしょうか？

8.1 　単数リソース

この節では「単数リソース」という重要な概念について説明します。Chapter 5と
Chapter 6で学んだ「普通のリソース」との違いに注意しながら読み進めてください。

単数リソースとは
Chapter 5とChapter 6でリソースというRails用語とその具体的な実装方法を学びまし

た。草野球チームMorning Gloryのメンバー全体をmembersという名前のリソースとして取
り扱いました。このmembersリソースの重要な特徴は、それが集合的な概念であるというこ
とです。0人以上のメンバーからなる「集まり」を表現しています。

しかし、ウェブアプリケーションを構成する要素の中には、多くとも1個しか存在しないもの
があります。この種のリソースを単数リソース（singular resource）と呼びます。この章で
は、単数リソースの例として「セッション」、「自分のアカウント情報」、「自分のパスワード」を
取り上げます。

Rails用語の「セッション」については次節で詳しく説明しますが、一言で表現すれば「メン
バーのログイン状態を管理するための情報」を指します。ウェブアプリケーションMorning
Gloryには同時に複数のメンバーがログインできるので、セッションを「単数リソース」と呼ぶの
は不自然に思えるかもしれません。しかし、視点を変えれば非常に自然な呼び方であること
がわかります。

2人のメンバーAとBがそれぞれ別のパソコンからMorning Gloryにログインしているとしま
す。AさんはBさんのセッションの中身を見ることができません。ということは、Aさんにとってセッ
ションは実質的に1個しか存在しないことになります。そして、AさんがMorning Gloryからロ
グアウトすれば、セッションの数は0になります。

同様に「自分のアカウント情報」も単数リソースと見なせます。アカウント情報とは
membersテーブルに格納されている自分自身のレコードのことです。それは0個または1個し

か存在しません。「自分のアカウント情報」が0個であるとは、その人がMorning Gloryのメ
ンバーではない（未登録もしくは退会済み）ということを示します。

単数リソースのルーティング
単数リソースのルーティングを設定するには、config/routes.rbの中でresourcesメソッド

ではなく、単数形のresourceメソッドを使います。「自分のアカウント情報」を扱うコントロー
ラがAccountsControllerなら、次のように記述します。

resource :account

メソッドの引数は単数の:accountとする点に注意してください。このように書いてもこのリソ
ースを扱うコントローラの名前はAccountsController（複数形のsに注意）となります。

この設定により、次のパスとHTTPメソッドでアクションを呼び出せるようになります。

単数リソースのルーティング
アクション パス HTTP メソッド パスを示すシンボル パスを返すメソッド
show /account GET :account account_path
new /account/new GET :new_account new_account_path
edit /account/edit GET :edit_account edit_account_path
create /account POST :account account_path
update /account PATCH :account account_path
destroy /account DELETE :account account_path

単数リソースなので、集合を扱うindexアクションはありません。また、show、edit、
update、destroyの各アクションには、idパラメータは必要ありません。なぜなら、ログインし
ていれば「自分のid」はセッションに格納されているからです。

ここでひとつ注意していただきたい点があります。Rails初心者の方は、あるリソースを定義
したらそれと同じ名前のデータベーステーブルも作らなければならないと考えがちですが、それ
は誤りです。単数リソースaccountが扱うのはmembersテーブルです。ただし、membersリ

ソースがmembersテーブルに格納されたレコードの集合を操作するのに対し、accountリソー
スはmembersテーブルに格納された特定のレコードだけを操作します。

また、次の節で見るように、リソースとデータベーステーブルが結び付かない場合もありま
す。Railsではセッションのデータをブラウザのクッキー（詳しくは後述）に格納します。

8.2 　セッションを使ったログイン機能

会員制サイトのようなウェブアプリケーションでは、ユーザーを識別し、有効な会員であ
るかどうかを判定するしくみが必要です。Railsのセッション機能を利用して、ユーザー
が会員としてログインする機能を実装してみましょう。

セッションとは
ログイン機能を実装する前に、Railsのセッション機能について紹介しましょう。

■Railsのセッション
ウェブアプリケーションでは、複数のページにわたってブラウザとサーバーの接続を保つ仕掛け

を作ります。そうした接続状態をセッションと呼びます。あるユーザーがログインしてからログア
ウトするまで、そのユーザーをほかのユーザーと区別するには、セッションが必要になります。

HTTPでは、ブラウザがページを1つリクエストしてサーバーがレスポンスを1つ返すと、ブラウザ
とサーバーの関係はそこで終わりになります。セッションを使わないと、同じユーザーが何度リク
エストを送っても、サーバーは同じユーザーとは見なしません。

通常のHTTPプロトコル

複数のリクエストにわたって何らかの状態を保っておきたいときは、クッキーを使います。クッ
キーは、ブラウザがパソコンのハードディスクに保存する小さなデータです。ウェブアプリケーション
でセッションを実現するには、クッキーを使うのが一般的です。

Railsは、セッション用のデータをブラウザのクッキーに保存して、ユーザーを識別します。この
セッションデータにユーザーごとの情報を出し入れできます。

Railsのセッション

Railsはセッションデータを符号化してクッキーに保存しますが、暗号化はしませんので、ユー
ザーがデータを解読できることに注意してください。ただし、セッションデータが改ざんされた場
合はエラーになるしくみになっています。

クッキーの中身を見る
次の手順でブラウザに保存されたクッキーの中身を見ることができます。Google Chromeの場合

は、ページ上を右クリックして［検証］を選んでDevToolsを開き、［Application］タブの
［Storage］→［Cookies］を開いてください。Firefoxの場合は、ページ上を右クリックして［ペ
ージの情報を表示］を選び、［セキュリティ］タブを開いて［Cookieを表示］ボタンをクリックしま
す。次の図ではGoogle Chromeでasagaoの_asagao_sessionという名前のクッキーデータを表示
しています。

Google Chromeでクッキーを表示

■セッションデータへのアクセス
Railsでセッションを利用するのはとても簡単です。セッションデータに何か値を入れるに

は、コントローラで「session[:データ名] = 値」とするだけです。データ名を変えれば、複数のデ
ータをセッションデータに入れることもできます。

たとえば、ログインの処理を行うアクションの中で、セッションデータに会員のidを保存する
には、次のようにします。

session[:member_id] = member.id

別のアクションで「session[:データ名]」から値を取り出せば、ログインしている会員のidが
わかります。

id = session[:member_id]

member = Member.find(id)

ログアウト処理のためにセッションデータを消すには、deleteメソッドを使います。

session.delete(:member_id)

この例では会員のidカラムの値、つまり数値を保存しています。セッションデータにはたいて
いのオブジェクトを保存できますが、セッションデータはクッキーに保存されるので、サイズに上
限があります。セッションデータには会員のidのような小さな値だけを保存するようにしてくださ
い。なお、フラッシュの文字列もセッションデータに保存されるしくみになっています。

普通のクッキーを使うには
セッションデータではなく、一般的なクッキーを使うには、コントローラで「cookies[:クッキー名]」に値

を指定します。

cookies[:name] = "sato"

name = cookies[:name]

クッキーにオプションを指定したいときは、ハッシュを使います。次の例でvalueはクッキーの値、
expiresは有効期限となる日時です。このほかのオプションとして、path（有効なパス）、domain
（有効なドメイン）、secure（HTTPSのみ）、httponly（JavaScriptに使わせない）が指定可
能です。

cookies[:name] = { value: "sato", expires: 30.days.from_now }

セッションデータの保存期間
セッションデータを保存したクッキーは、ブラウザを閉じると消去されます。ログイン状態のユーザーが

ブラウザを閉じると、ログアウト状態になります。ブラウザを閉じたり開いたりしてもログイン状態を保
つ（いわゆる「自動ログイン」）には、セッションデータではなく通常のクッキーに情報を保存する必
要があります。会員のidをクッキーに保存したいときは、cookiesの代わりにcookies.signedを使っ
て、符号化されたデータを保存するとよいでしょう。

cookies.signed[:member_id] = member.id

パスワードの保存
Ruby on Railsにはパスワードを安全に取り扱うためのしくみが標準で用意されています。

■ハッシュ値とbcrypt
ウェブアプリケーションの開発において、データベースに生の（平文の）パスワードを保存す

るのは情報セキュリティの観点から望ましくありません。その代わりに、パスワードのハッシュ値
（あるいはダイジェスト）と呼ばれる値をデータベースに保存するのが定石です。

ハッシュ値とは、あるデータを暗号学的ハッシュ関数と呼ばれる方式で変換したものです。
ハッシュ値から元のデータを復元することはできません。また、異なる2つのデータから作ったハ
ッシュ値同士が同じ値になる（衝突する）可能性は極めて低いです。

暗号学的ハッシュ関数にはmd5、sha、bcryptなどさまざまな種類がありますが、通常
Ruby on Railsではbcryptを利用します。ただし、そのためにはGemパッケージbcrypt-ruby
を組み込む必要があります。初期状態のGemfileにおいてコメントアウトされているbcrypt-
ruby設定の行から、行頭のコメント記号（#）を削除してください。

chapter08/Gemfile

 （省略）

 23 # Use ActiveModel has_secure_password

 24 gem 'bcrypt', '~> 3.1.7'

 （以下省略）

Bundlerでbcryptをインストールしましょう。

$ bundle install

■ハッシュ値を保存するカラムの追加
次に、パスワードのハッシュ値（ダイジェスト）を保存するためのカラムpassword_digest

をmembersテーブルに加えましょう。Rails標準の方法でパスワードを取り扱う場合、このカラ
ム名を使用する必要があります。

「bin/rails g」コマンドでマイグレーションスクリプトを作成しましょう。マイグレーションのクラ
ス名はAlterMembers1とします。

$ bin/rails g migration AlterMembers1

作成されたマイグレーションスクリプトを次のように書き直します。

chapter08/db/migrate/20180526135718_alter_members1.rb

 1 class AlterMembers1 < ActiveRecord::Migration[5.2]

 2 def change

 3 add_column :members, :password_digest, :string

 4 end

 5 end

マイグレーションを実行します。

$ bin/rails db:migrate

■クラスメソッドhas_secure_password
クラスメソッドhas_secure_passwordを用いると、パスワードの保存と認証のためのしくみ

をモデルクラスに追加することができます。

chapter08/app/models/member.rb

 1 class Member < ApplicationRecord

 2 has_secure_password

 3

 4 validates :number, presence: true,

 （以下省略）

この変更の結果として、Memberクラスにpasswordおよびpassword_confirmationと
いう名前の2つの属性が定義されます。前者はパスワードそのもの、後者は確認用のパスワ
ードです。また、password属性に対する次のようなバリデーションが設定されます。

レコードの挿入時には、パスワードは空であってはならない。
パスワードの長さは72文字以下である。
パスワードと確認用のパスワードは一致しなければならない。

これらのバリデーションを無効にしたい場合は、次のようにvalidationオプションにfalseを
指定してください。

has_secure_password validation: false

さて、レコード挿入時にパスワードが必須となりましたので、開発用のシードデータを修正し
なければなりません。メンバー全員に仮のパスワードとして「asagao!」を設定します。

chapter08/db/seeds/development/members.rb

 （省略）

 12 administrator: (idx == 0),

 13 password: "asagao!",

 14 password_confirmation: "asagao!"

 15)

 16 end

データベースをリセットしてエラーが出なければOKです。

$ bin/rails db:rebuild

ユーザーの認証
ユーザーが送信した名前とパスワードを調べ、ログイン状態に変える機能を作成しましょう。

■authenticateメソッド
モデルクラス定義の中でクラスメソッドhas_secure_passwordを呼び出すと、password

属性とpassword_confirmation属性が定義されるほかに、authenticateメソッドも追加さ
れます。Railsコンソールを起動して、このメソッドを使ってみましょう。MSYS2/MinGW環境の
方はコマンドの前にwinpty rubyを付けてください。

$ bin/rails c

irb(main):001:0> member = Member.first

 Member Load (0.6ms) SELECT "members".* FROM "members" （略）

=> #<Member id: 1, number: 10, name: "Taro", full_name: "佐藤 太郎",
（略） >

irb(main):002:0> member.authenticate("detarame")

=> false

irb(main):003:0> member.authenticate("asagao!")

=> #<Member id: 1, number: 10, name: "Taro", full_name: "佐藤 太郎",
（略） >

authenticateメソッドは引数として生の（平文の）パスワードを取り、それが正しいパスワ
ードであるかどうかを調べ、正しければモデルオブジェクト自体を返し、誤っていればfalseを返
します。

■SessionsControllerの作成
では、authenticateメソッドを使って、ユーザーをログイン状態にするコントローラ

SessionsControllerを作成しましょう。config/routes.rbにリソースの設定を記述します。

chapter08/config/routes.rb

 （省略）

 9 resources :members do

 10 get "search", on: :collection

 11 end

 12

 13 resource :session, only: [:create, :destroy]

 14 end

ここではresourcesメソッドではなく、単数形のresourceメソッドを使い、「単数リソース」を
設定しています。引数の:sessionも単数形にする点に注意してください。

SessionsControllerのアクションはcreateとdestroyの2つしかないので、onlyオプション
でアクションの種類を限定します。

「bin/rails g」コマンドでコントローラを作成します。単数リソースを扱うコントローラでもコン
トローラ名は複数形にします。名前はsessionsとします。

$ bin/rails g controller sessions

SessionsControllerは次のように実装します。

chapter08/app/controllers/sessions_controller.rb

 1 class SessionsController < ApplicationController

 2 def create

 3 member = Member.find_by(name: params[:name])

 4 if member&.authenticate(params[:password])

 5 session[:member_id] = member.id

 6 else

 7 flash.alert = "名前とパスワードが一致しません"

 8 end

 9 redirect_to :root

 10 end

 11

 12 def destroy

 13 session.delete(:member_id)

 14 redirect_to :root

 15 end

 16 end

createアクションはログインフォームの送信先となるものです。まず、モデルのクラスメソッド
find_byを使って送信された名前に合致するメンバーを取り出し変数memberにセットしま
す。そして、authenticateメソッドで送信されたパスワードが正しいかどうかをチェックします。ロ
グインフォームから存在しない名前が送信されてきた場合は、変数memberにnilがセットさ
れるので、ぼっち演算子（&.）を用いてエラーの発生を防いでいます。

パスワードが正しい場合は、Memberオブジェクトのidをセッションデータmember_idに保
存します。正しくない場合は、フラッシュ（「3.2　コントローラとアクション」の「フラッシュ」を参
照）に警告メッセージをセットします。いずれの場合も、トップページにリダイレクトします。

destroyアクションはログアウトのリンク先となるもので、セッションデータmember_idをクリ
アして、トップページにリダイレクトします。

■current_memberメソッドの定義
続いて、ApplicationControllerにcurrent_memberメソッドを追加します。このメソッド

は、セッションデータ:member_idに値がセットされていれば該当するMemberオブジェクトを
返し、そうでなければnilを返す、というものです。

chapter08/app/controllers/application_controller.rb

 1 class ApplicationController < ActionController::Base

 2 private def current_member

 3 Member.find_by(id: session[:member_id]) if session[:member_id]

 4 end

 5 helper_method :current_member

 6 end

5行目のhelper_methodは、引数に指定された名前のメソッドをテンプレートの中でも使
えるメソッド（ヘルパーメソッド）として登録します。

■ログインフォームの実装
Chapter 3で作ったモックアップのログインフォームを実際に使えるものに変えましょう。

chapter08/app/views/shared/_login_form.html.erb

 1 <h2>ログイン</h2>

 2 <% if flash.alert %><p class="alert"><%= flash.alert %></p><% end
%>

 3 <%= form_tag :session, id: "login_form" do %>

 4 <div>

 5 <label>ユーザー名：</label>

 6 <input type="text" name="name">

 7 </div>

 8 <div>

 9 <label>パスワード：</label>

 10 <input type="password" name="password">

 11 </div>

 12 <div>

 13 <input type="submit" value="ログイン">

 14 </div>

 15 <% end %>

2行目では、ログインに失敗したときのフラッシュのメッセージを表示しています。
3行目のform_tagメソッドでフォームを作ります。フォームデータの送信先は:sessionという

シンボルが示しています。SessionsControllerのcreateアクションです。また、formタグのid
属性を保持するため、form_tagメソッドの第2引数にオプションを加えています。さらに、6行
目と10行目ではユーザー名とパスワードを入力するためのinput要素にname属性を加えま
した。

サイドバーの部分テンプレートでは、current_memberメソッドを使ってログイン中にはフォー
ムが表示されないようにします。

chapter08/app/views/shared/_sidebar.html.erb

 1 <%= render "shared/login_form" unless current_member %>

 2

 3 <h2>最新ニュース</h2>

 （以下省略）

ページ上部のヘッダー内には、ログイン中の場合にメンバーの氏名とログアウトのリンクを表
示します。

chapter08/app/views/shared/_header.html.erb

 1 <%= image_tag "logo.gif", size: "272x48", alt: "Morning Glory" %>

 2

 3 <% if current_member %>

 4 <ul class="account-menu">

 5 <%= current_member.name + "さん" %>

 6 <%= menu_link_to "ログアウト", :session,

 7 method: :delete, data: { confirm: "ログアウトしますか？" } %>

 8

 9 <% end %>
 10

 11 <nav class="menubar">

 （以下省略）

ユーザー名とログアウトリンクの表示位置とスタイルを整えるため、
app/assets/stylesheetsディレクトリに新たなスタイルシートheader.cssを追加します。ソー
スコードの掲載は省略しますので、サンプルソースのchapter08/app/assets/stylesheetsデ
ィレクトリからコピーしてください。

サーバーを起動して、ブラウザでログインフォームにユーザー名「Taro」、パスワード「asagao!」
を入力してログインしてみましょう。ログイン後には、ログアウトのリンクを試してみましょう。ま
た、間違ったユーザー名とパスワードを入力して、エラーメッセージの確認もしてください。

ログイン・ログアウト機能

8.3 　アクション・コールバックを利用したアクセス制御

ログイン機能ができれば、会員には会員限定のコンテンツを見せ、一般ユーザーにはそ
れ以外のコンテンツを見せる、といったアクセス制御を行えるようになります。

アクション・コールバックとは
あるコントローラではどのアクションが呼ばれたとしても常に一定の前処理をしておきたいと

いう状況があります。そのようなときには、Railsのアクション・コールバック機能を使うと便利
です。

アクション・コールバックを設定するための書き方は2つあります。第1の方法では、次のよう
にブロックを使用します。

class ExampleController < ApplicationController

 before_action do

 アクション実行前に行う処理

 end

end

このように書くとExampleControllerのすべてのアクションの実行前にブロックの内側に書
かれたコードが実行されます。before_actionは、アクション実行前に行う処理を登録するた
めのクラスメソッドです。ほかにも、after_actionおよびaround_actionという2つのクラスメソ
ッドが使えますが、本書では扱いません。

特定のアクションだけをコールバックの対象としたい場合は、次のようにonlyオプションにア
クション名を表すシンボルの配列を指定します。

class ExampleController < ApplicationController

 before_action only: [:index, :show] do

 アクション実行前に行う処理

 end

end

逆に、指定されたアクションをコールバックの対象から除外したい場合は、onlyオプション
の代わりにexceptオプションを指定してください。

第2の方法では、専用のプライベートメソッドを定義して、そのシンボルをコールバック設定
メソッドの引数として指定します。

class ExampleController < ApplicationController

 before_action :do_something

 private def :do_something

 アクション実行前に行う処理

 end

end

この書き方でも第1の方法と同様にonlyオプションとexceptオプションが使えます。

before_action :do_something, only: [:index, :show]

before_action :do_another, except: [:index, :search]

会員限定のコンテンツ
では、アクション・コールバックを利用してasagaoにアクセス制限機能を加えます。まず、

ApplicationControllerを次のように書き換えてください。

chapter08/app/controllers/application_controller.rb

 （省略）

 5 helper_method :current_member

 6

 7 class LoginRequired < StandardError; end

 8 class Forbidden < StandardError; end

 9

 10 private def login_required

 11 raise LoginRequired unless current_member

 12 end

 13 end

7行目と8行目で一般的な例外を表すStandardErrorクラスを継承してLoginRequired
クラスとForbiddenクラスを定義し、11行目で例外LoginRequiredを発生させています。プ
ライベートメソッドlogin_requiredはbefore_actionコールバックとして使うために作りました。
この例外を捕捉してエラーページを表示する方法についてはChapter 11で解説します。

MembersControllerでは、このlogin_requiredをアクション・コールバックに指定します。
こうすれば、ログイン前のユーザーが会員名簿を開こうとしてもエラーになります。

chapter08/app/controllers/members_controller.rb

 1 class MembersController < ApplicationController

 2 before_action :login_required

 3

 4 # 会員一覧

 5 def index

 （以下省略）

最後に、ヘッダーのメニューを修正し、「会員名簿」と「管理ページ」のリンクはログインして
いないと見えないようにしましょう。

chapter08/app/views/shared/_header.html.erb

 （省略）

 15 <%= menu_link_to "ブログ", "#" %>

 16 <% if current_member %>

 17 <%= menu_link_to "会員名簿", :members %>

 18 <%= menu_link_to "管理ページ", "#" %>

 19 <% end %>

 20

 21 </nav>

8.4 　マイアカウントページの作成

この節では、メンバーが自分自身の情報を編集できる「マイアカウント」ページを作成し
ます。

ルーティングの設定
セッションと同様に「自分のアカウント情報」も単数リソースとして扱うことができます。アプ

リケーションの中で自分のアカウント情報は多くても1つしかありません。routes.rbを次のよう
に書き換えてください。

chapter08/config/routes.rb

 （省略）

 13 resource :session, only: [:create, :destroy]

 14 resource :account, only: [:show, :edit, :update]

 15 end

これでAccountsControllerへのルーティングが設定されます。show、edit、udpateの3つ
のアクションしか使わないのでonlyオプションで限定します。

この設定により次のパスとHTTPメソッドでアクションを呼び出せるようになります。

accountリソースのルーティング
アクション パス HTTP メソッド パスを示すシンボル パスを返すメソッド
show /account GET :account account_path
edit /account/edit GET :edit_account edit_account_path
update /account PATCH :account account_path

ルーティングの一覧を見るには
ターミナルで「bin/rails routes」を実行すると、routes.rbで設定されたパスとHTTPメソッドの一

覧を表示できます。ただし、そのまま実行すると出力内容が多すぎて把握しにくいかもしれません。
オプション-cにコントローラ名を付けると、そのコントローラへのルーティングのみが表示されます。

$ bin/rails routes -c accounts

 Prefix Verb URI Pattern Controller#Action

edit_account GET /account/edit(.:format) accounts#edit

 account GET /account(.:format) accounts#show

 PATCH /account(.:format) accounts#update

 PUT /account(.:format) accounts#update

AccountsController の作成
単数リソースを扱うAccountsControllerを作成しましょう。

■アカウント情報の表示
「bin/rails g accounts」コマンドでAccountsControllerを作成しましょう。コマンドには

「show edit」を加えてテンプレートファイルも同時に作成します。

$ bin/rails g controller accounts show edit

生成されたaccounts_controller.rbを次のように書き換えます。

chapter08/app/controllers/accounts_controller.rb

 1 class AccountsController < ApplicationController

 2 before_action :login_required

 3

 4 def show

 5 @member = current_member

 6 end

 （以下省略）

login_requiredでログインメンバーだけがアクセスできるようにしたうえで、showアクション
でインスタンス変数@memberに自分のMemberオブジェクトをセットしています。

showアクションのテンプレートは、MembersControllerのshowアクションのものと内容が
だいたい同じなので、部分テンプレートを共用することにします。

まず、app/views/membersディレクトリに新たな部分テンプレート_body.html.erbを作
成してください。そして、app/views/members/show.html.erbのtable要素全体を切り取
って、_body.html.erbに貼り付けます。

chapter08/app/views/members/_body.html.erb

 1 <table class="attr">

 2 <tr>

 3 <th width="150">背番号</th>

 4 <td><%= @member.number %></td>

 5 </tr>

 （省略）

 26 <tr>

 27 <th>管理者</th>

 28 <td><%= @member.administrator? ? "○" : "－" %></td>

 29 </tr>

 30 </table>

show.html.erbの切り取ったところに、部分テンプレートを埋め込みます。

chapter08/app/views/members/show.html.erb

 （省略）

 5 <div class="toolbar"><%= link_to "編集", [:edit, @member] %></div>

 6

 7 <%= render "body" %>

bin/rails gコマンドにより生成されたshowアクションのテンプレート全体を、次の内容で
置き換えます。

chapter08/app/views/accounts/show.html.erb

 1 <% @page_title = "マイアカウント" %>

 2

 3 <h1><%= @page_title %></h1>

 4

 5 <ul class="toolbar">

 6 <%= menu_link_to "アカウント情報の編集", :edit_account %>

 7

 8

 9 <%= render "members/body" %>

6行目でmenu_link_toメソッドの第2引数に指定されているシンボル:edit_accountは、
AccountsControllerのeditアクションのパスを示します。9行目では、部分テンプレートを埋
め込んでいます。

さらに、サイトのヘッダーを修正して「○○さん」の部分をshowアクションへのリンクにしま
す。

chapter08/app/views/shared/_header.html.erb

 1 <%= image_tag "logo.gif", size: "272x48", alt: "Morning Glory" %>

 2

 3 <% if current_member %>

 4 <ul class="account-menu">

 5 <%= menu_link_to current_member.name + "さん", :account %>

 6 <%= menu_link_to "ログアウト", :session,

 7 method: :delete, data: { confirm: "ログアウトしますか？" } %>

 8

 9 <% end %>

 （以下省略）

■アカウント情報の編集
準備作業として、app/views/membersディレクトリにある部分テンプレート

_form.html.erbを_member_form.html.erbという名前に変えてapp/views/sharedディ
レクトリに移動します。

$ mv app/views/members/_form.html.erb
app/views/shared/_member_form.html.erb

そして、app/views/membersディレクトリにあるnew.html.erbを次のように書き換えま
す。

chapter08/app/views/members/new.html.erb

 （省略）

 5 <%= form_for @member do |form| %>

 6 <%= render "shared/member_form", form: form %>

 7 <div><%= form.submit %></div>

 8 <% end %>

同様に、同じディレクトリにあるedit.html.erbを次のように書き換えます。

chapter08/app/views/members/edit.html.erb

 （省略）

 7 <%= form_for @member do |form| %>

 8 <%= render "shared/member_form", form: form %>

 9 <div><%= form.submit %></div>

 10 <% end %>

AccountsControllerのeditアクションのテンプレート全体を、次の内容で置き換えます。

chapter08/app/views/accounts/edit.html.erb

 1 <% @page_title = "アカウント情報の編集" %>

 2

 3 <h1><%= @page_title %></h1>

 4

 5 <div class="toolbar"><%= link_to "マイアカウントに戻る", :account %>
</div>
 6

 7 <%= form_for @member, as: "account", url: :account do |form| %>

 8 <%= render "shared/member_form", form: form %>

 9 <div><%= form.submit %></div>

 10 <% end %>

form_forメソッドで使われているasオプションとurlオプションについてはChapter 6のコラム
「form_forのオプション」で説明しました。パラメータ名をaccountに、送信先のURL
を/accountに変更しています。これらのオプションを付けないと、パラメータ名はmemberとな
り、送信先のURLは/members/123のようになります。

フォームの中では「render "shared/member_form"」として、MembersController用に
作った部分テンプレートを使い回しています。ただし、次の修正を加える必要があります。

chapter08/app/views/shared/_member_form.html.erb

 （省略）

 34 </tr>

 35 <% if controller.kind_of?(MembersController) %>

 36 <tr>

 37 <th><%= Member.human_attribute_name(:administrator) %>
</th>

 38 <td>

 39 <%= form.check_box :administrator,

 40 disabled: !current_member.administrator? %>

 41 <%= form.label :administrator %>

 42 </td>

 43 </tr>

 44 <% end %>

 45 </table>

35行目のcontrollerはコントローラオブジェクトを返すメソッドです。kind_of?でクラスの種
類を調べ、MembersControllerの場合だけ管理者フラグのチェックボックスが使えるように
しています。AccountsControllerでは表示されません。

AccountsControllerにeditアクションとupdateアクションを追加します。

chapter08/app/controllers/accounts_controller.rb

 （省略）

 8 def edit

 9 @member = current_member

 10 end

 11

 12 def update

 13 @member = current_member

 14 @member.assign_attributes(params[:account])

 15 if @member.save

 16 redirect_to :account, notice: "アカウント情報を更新しました。"
 17 else

 18 render "edit"

 19 end

 20 end

 21 end

処理の流れはMembersControllerのupdateアクションとほぼ同じです。
サーバーを起動して、ユーザー名「Jiro」、パスワード「asagao!」でログインしてみましょう。ヘッ

ダーの［Jiroさん］をクリックし、［アカウント情報の編集］をクリックすると、自分自身の
情報を編集するフォームが表示されます。

アカウント情報の編集

8.5 　パスワード変更機能

この節では、メンバーが自分自身のパスワードを変更する機能を作ります。また、メンバ
ー追加フォームに初期パスワードを設定するフィールドを追加します。

独立したパスワード変更フォームを作る理由
「自分のパスワード」は「自分のアカウント情報」の一部と言えます。しかし、前節で作成し

たAccountsControllerの一部としては作りにくいところがあります。アカウント情報の変更フ
ォームの中に単にパスワードの入力欄を置くだけでは、ユーザーを戸惑わせる可能性がありま
す。パスワード入力欄を空にしたまま「更新」ボタンをクリックするとどういう結果を招くのか、
必ずしもはっきりしないからです。パスワードが変更されないのか、パスワードが消えるのか、あ
るいはエラーになるのか、よくわかりません。

説明文をパスワード入力欄の横に加える手もありますが、それよりもパスワード変更フォー
ムを独立させたほうが好ましいです。ユーザーは自分のパスワードを変えたいと思っているので
すから、パスワード入力欄を空にしたままではダメであることは明らかです。

また、パスワードを変更する際には、現在の（変更前の）パスワードを入力させたり、新し
いパスワードを2回入力させたりしたいものです。このちょっと複雑なユーザーインターフェースを
わかりやすい形で提供するためにも、独立したパスワード変更フォームを用意すべきです。

ルーティングの設定
「自分のパスワード」は「自分のアカウント情報」と同様に単数リソースとして扱えます。

routes.rbを次のように書き換えてください。

chapter08/config/routes.rb

 （省略）

 13 resource :session, only: [:create, :destroy]

 14 resource :account, only: [:show, :edit, :update]

 15 resource :password, only: [:show, :edit, :update]

 16 end

この変更の結果、次のパスとHTTPメソッドでアクションを呼び出せるようになります。

passwordリソースのルーティング
アクション パス HTTP メソッド パスを示すシンボル パスを返すメソッド
show /password GET :password password_path
edit /password/edit GET :edit_password edit_password_path
update /password PATCH :password password_path

定義された3つのアクションのうち、実質的な意味を持つのはeditとupdateです。前者が
パスワードの変更フォームを表示し、後者でパスワードのバリデーションと保存を行います。
showアクションでは単にマイアカウントページへのリダイレクションを行います。なぜこのアクシ
ョンが必要であるかについては、後述します。

Memberモデルの変更
次に、Memberモデルのソースコードを次のように書き換えます。

chapter08/app/models/member.rb

 （省略）

 21 validates :email, email: { allow_blank: true }

 22

 23 attr_accessor :current_password

 24 validates :password, presence: { if: :current_password }

 25

 26 class << self

 （以下省略）

Chapter 2で学んだクラスメソッドattr_accessorを用いて読み書き可能な属性
current_passwordをMemberクラスに追加しています。パスワード変更フォームに「現在の
パスワード」を入力する欄を設け、現在のパスワードに関するバリデーションを行うためにこの属
性を利用します。

24行目では、password属性に対するバリデーションを設定しています。もともと
password属性には空文字を禁止するバリデーションが設定されていますが、このバリデーシ
ョンはオブジェクトが新規作成されるときにしか働きません。ここでは、属性
current_passwordに値がセットされている場合には常に「空文字でもnilでもない」ことを確
認するようにしています。

パスワード変更フォームの作成
単数リソースを扱うPasswordsControllerを作成しましょう。テンプレートが必要となるの

はeditアクションだけです。

$ bin/rails g controller passwords edit

生成されたpasswords_controller.rbを次のように書き換えます。

chapter08/app/controllers/passwords_controller.rb

 1 class PasswordsController < ApplicationController

 2 before_action :login_required

 3

 4 def show

 5 redirect_to :account

 6 end

 7

 8 def edit

 9 @member = current_member

 10 end

 （以下省略）

パスワード変更フォームのテンプレートは次のようになります。

chapter08/app/views/passwords/edit.html.erb

 1 <% @page_title = "パスワードの変更" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <div class="toolbar"><%= link_to "マイアカウントに戻る", :account %>
</div>
 5

 6 <%= form_for @member, as: "account", url: :password do |form| %>

 7 <%= render "shared/errors", obj: @member %>

 8

 9 <table class="attr">

 10 <tr>

 11 <th><%= form.label :current_password %></th>

 12 <td><%= form.password_field :current_password %></td>

 13 </tr>

 14 <tr>

 15 <th><%= form.label :password %></th>

 16 <td><%= form.password_field :password %></td>

 17 </tr>

 18 <tr>

 19 <th><%= form.label :password_confirmation %></th>

 20 <td><%= form.password_field :password_confirmation %></td>

 21 </tr>

 22 </table>

 23

 24 <div><%= form.submit "変更" %></div>

 25 <% end %>

form_forメソッドに付けているasオプションとurlオプションの説明は前節で行ったので、こ
こでは繰り返しません。

パスワード変更フォームで使用するラベルテキストをロケールファイルに加えます。

chapter08/config/locales/ja.yml

 1 ja:

 2 ␣␣activerecord:

 （省略）

 14 ␣␣␣␣␣␣␣␣email: メールアドレス

 15 ␣␣␣␣␣␣␣␣administrator: 管理者

 16 ␣␣␣␣␣␣␣␣current_password: 現在のパスワード

 17 ␣␣␣␣␣␣␣␣password: 新しいパスワード

 18 ␣␣␣␣␣␣␣␣password_confirmation: 新しいパスワードの確認

 19 ␣␣␣␣errors:

 20 ␣␣␣␣␣␣messages:

 21 ␣␣␣␣␣␣␣␣invalid_member_name: は半角英数字で入力してくださ
い。

そして、マイアカウントページにパスワード変更フォームへのリンクを設置します。

chapter08/app/views/accounts/show.html.erb

 （省略）

 5 <ul class="toolbar">

 6 <%= menu_link_to "アカウント情報の編集", :edit_account %>

 7 <%= menu_link_to "パスワードの変更", :edit_password %>

 8

 9

 10 <%= render "members/body" %>

ブラウザでパスワード変更フォームの表示を確認してください。

自分のパスワードの編集

新しいパスワードの保存
続いて、PasswordsControllerのupdateアクションを次のように実装します。

chapter08/app/controllers/passwords_controller.rb

 （省略）

 12 def update

 13 @member = current_member

 14 current_password = params[:account][:current_password]

 15

 16 if current_password.present?

 17 if @member.authenticate(current_password)

 18 @member.assign_attributes(params[:account])

 19 if @member.save

 20 redirect_to :account, notice: "パスワードを変更しました。"

 21 else

 22 render "edit"

 23 end
 24 else

 25 @member.errors.add(:current_password, :wrong)

 26 render "edit"

 27 end

 28 else

 29 @member.errors.add(:current_password, :empty)

 30 render "edit"

 31 end

 32 end

 33 end

17行目でブラウザから送られてきた「現在のパスワード」が正しいかどうかを確認していま
す。正しければパスワードの変更を試み、誤っていればエラーメッセージを出してパスワード入
力フォームを再表示します。

パスワードの変更を試みる場合、新しいパスワードが空であったり、新しいパスワードとその
パスワードを確認するための文字列が異なっていたりしたときはバリデーションエラーとなりま
す。新しいパスワードの保存に成功したら、マイアカウントページにリダイレクションします。

エラーメッセージ用のテキストをロケールファイルに加えます。

chapter08/config/locales/ja.yml

 1 ja:

 2 ␣␣activerecord:

 （省略）

 19 ␣␣␣␣errors:

 20 ␣␣␣␣␣␣messages:

 21 ␣␣␣␣␣␣␣␣invalid_member_name: は半角英数字で入力してくださ
い。

 22 ␣␣␣␣␣␣␣␣wrong: が正しくありません。

ブラウザでパスワード変更フォームを開き、3つのパスワード入力欄にさまざまな組み合わせ
の文字列を入力して、正しく変更されるか、正しくバリデーションが行われるか、フラッシュメッ
セージやエラーメッセージが正しく表示されるか、確認してください。

showアクションが必要な理由
updateアクションでバリデーションエラーが発生したとき、ユーザーのブラウザにはパスワード変更フォ

ームが再表示されます。このときブラウザのアドレスバーにはhttp://localhost:3000/passwordとい
うURLが表示されています。ユーザーがこのURLをコピーして別のブラウザのアドレスバーに貼り付けると
どうなるでしょうか。あるいは、このURLをお気に入り登録して、別の機会に訪問したらどうなるでしょ
うか。

これはGETメソッドでURLパス/passwordにアクセスするということなので、PasswordsController
のshowアクションが呼び出されます。そして、ユーザーはマイアカウントページへと誘導されます。

このような使い方は稀かもしれませんが、起こりうることです。このように考えると、なぜ
PasswordsControllerにshowアクションが必要であるかがわかります。もしそれがなかったら、ユー
ザーがURLをコピペしただけでルーティングエラーが発生し、ユーザーを戸惑わせることになります。

なお、ログインしていない状態でURLパス/passwordにアクセスした場合、例外
ApplicationController::LoginRequiredが発生します。これは想定どおりの動きです。

メンバー追加フォームの修正
では、メンバー追加フォームに初期パスワードを入力するフィールドを追加して本章を締めく

くることにしましょう。app/views/sharedディレクトリの部分テンプレート
_member_form.html.erbを次のように書き換えてください。

chapter08/app/views/shared/_member_form.html.erb

 （省略）

 31 <tr>

 32 <th><%= form.label :email, "メールアドレス" %></th>

 33 <td><%= form.text_field :email %></td>

 34 </tr>

 35 <% if @member.new_record? %>

 36 <tr>

 37 <th><%= form.label :password, "パスワード" %></th>

 38 <td><%= form.text_field :password %></td>

 39 </tr>

 40 <% end %>

 41 <% if controller.kind_of?(MembersController) %>

 （以下省略）

35行目で使われているnew_record?メソッドはモデルオブジェクトがデータベースに保存さ
れていないときにtrueを返します。メンバーを新規登録するときだけパスワードの入力欄が表
示されるようにしています。使い勝手を考慮して、ここでは入力内容が隠されない普通のテ
キスト入力欄としています。

ブラウザでメンバー追加フォームの表示を確認してください。また、実際に新規メンバーを登
録し、そのメンバーとしてログインできることを確認してください。

メンバー追加フォームにパスワード入力フィールドを追加

Chapter 8のまとめ

ウェブサイトへのログイン・ログアウト機能、マイアカウントページ、パスワード
変更機能などを作るには、単数リソースのルーティングを設定します。
単数リソースを設定するにはconfig/routes.rbでresourceメソッドを呼び
出します。
複数のページにわたってブラウザとサーバーの間で維持される接続状態をセ
ッションと呼びます。
ユーザーをログイン状態にするには、セッションデータにユーザーのidを保存し
ます。保存したセッションデータからユーザーのidを取り出せばユーザーを識
別できます。

クラスメソッドhas_secure_passwordを用いると、パスワードの保存と認証
のためのしくみをモデルクラスに追加できます。
現在ログインしているメンバーを取得するcurrent_memberのようなメソッ
ドをApplicationControllerで定義しておくと会員制サイトを開発しやすく
なります。
ログイン中のメンバーだけに特定のページへのアクセスを許可するには、
before_actionコールバックでセッションデータを調べます。

練習問題

［A］　あるRailsアプリケーションで会員のためのモデルクラスUserが次のように定義されて
いるとします。

class User < ApplicationRecord

 has_secure_password

end

会員がログインする機能をSessionsControllerのcreateアクションで実装するとして、次
の空欄を埋めてください。ただし、このアクションには2つのパラメータemailとpasswordが送ら
れてきて、前者が会員のメールアドレス、後者が会員のパスワードを表します。

class SessionsController < ApplicationController

 def create

 user = User.find_by(email: params[:email])

 if user&.　　　　　　　　　　(params[:password])

 session[:user_id] = 　　　　　　　　　　

 else

 flash.alert = "メールアドレスとパスワードが一致しません"

 end

 redirect_to :root

 end

end

［B］　ApplicationControllerにcurrent_userメソッドを記述して、セッションデータから
ユーザーのidを取り出し、モデルオブジェクトを取得することにします。current_userメソッドの
空欄を埋めてください。

class ApplicationController < ActionController::Base

 private def current_user

 User.　　　　　　　　　　 if session[:user_id]

 end

 helper_method :current_user

end

［C］　次のように単数リソースを設定したとします。AccountsControllerのshowアクショ
ンにリンクするように、link_toメソッドの第2引数を埋めてください。

config/routes.rb

resource :account

テンプレート

<%= link_to "マイアカウント", 　　　　　　　　　　 %>

Chapter

9　Active Recordの活用

このChapterではMorning Gloryのサイトに野球チームの活動情報を掲載す
るために、記事情報を扱う機能をアプリケーションに加えます。この作業を通じ
て、コールバック、スコープ、ページネーションなどの重要なActive Recordの側面
について学習します。

これから学ぶこと

ニュース記事の表示と編集機能をMorning Gloryサイトに追加します。
モデルクラスにおいてバリデーションやレコード保存の前後に特定の処理を実
行するコールバック機能について学びます。
モデルにスコープ（レコードの検索の仕方に名前を付けたもの）を定義する
方法を学習します。
Rubyコードによる自由な形式でカスタムバリデーションを設定する方法を学
習します。
ページネーションを実現するGemパッケージkaminariを紹介します。

Railsのモデルにはコールバックとスコープという機能があります。これらを利用すると何が便利に
なるでしょうか？ また、ページネーションとは何でしょうか？

9.1 　ニュース記事の表示と編集

Chapter 8までに学んだ知識を活かしてニュース記事の表示と編集機能の基本的な
部分を作りましょう。

Articleモデルの作成
このChapterではMorning Gloryのサイトにニュース記事を配信する機能を加えます。基

本的な考え方はChapter 5および6で作った会員情報の管理機能と同じです。記事を収
めるテーブル名はarticles、対応するモデル名はArticleとします。そしてリソースarticlesを設
定し、ArticlesControllerの7つのアクションで記事の一覧、個別表示、登録、編集、削除
を行います。

まずは、「bin/rails g」コマンドでArticleモデルを作りましょう。

$ bin/rails g model article

db/migrateディレクトリにマイグレーションスクリプトができるので、テーブルのカラムを定義
します。

chapter09/db/migrate/20180527021452_create_articles.rb

 1 class CreateArticles < ActiveRecord::Migration[5.2]

 2 def change

 3 create_table :articles do |t|

 4 t.string :title, null: false # タイトル

 5 t.text :body, null: false # 本文

 6 t.datetime :released_at, null: false # 掲載開始日時

 7 t.datetime :expired_at # 掲載終了日時

 8 t.boolean :member_only, null: false, default: false

 9 # 会員のみフラグ

 10 t.timestamps null: false

 11 end

 12 end

 13 end

掲載開始日時（released_at）は、その日時になるまで記事をサイトに表示しない、と
いうものです。掲載終了日時（expired_at）は、その日時が過ぎたら記事をサイトに表示
しない、というものです。のちほどArticleモデルのクラスには、日付を調べて必要な記事を取
り出す機能を加えます。

また、掲載開始日時は必須ですが、掲載終了日時は空（NULL）でも許容していま
す。member_onlyカラムがtrueである記事は、ログイン中のメンバーだけが閲覧できます。

マイグレーションを実行して、データベースにarticlesテーブルを追加しましょう。

$ bin/rails db:migrate

ブラウザで確認する開発モードのシードデータを用意しておきましょう。dbディレクトリの
seeds.rbで1行目にarticlesを追加します（「4.3　データの保存」の「シードデータの投入」を
参照）。

chapter09/db/seeds.rb

 1 table_names = %w(members articles)

 （以下省略）

db/seeds/developmentディレクトリの下にarticles.rbを作成し、次のように記述しま
す。

chapter09/db/seeds/development/articles.rb

 1 body =

 2 "Morning Gloryが4対2でSunflowerに勝利。\n\n" +

 3 "2回表、6番渡辺の二塁打から7番山田、8番高橋の連続タイムリーで2点先
制。" +

 4 "9回表、ランナー一二塁で2番田中の二塁打で2点を挙げ、ダメを押しました。
\n\n" +

 5 "投げては初先発の山本が7回を2失点に抑え、伊藤、中村とつないで逃げ切り
ました。"

 6

 7 0.upto(9) do |idx|

 8 Article.create(

 9 title: "練習試合の結果#{idx}",

 10 body: body,

 11 released_at: 8.days.ago.advance(days: idx),

 12 expired_at: 2.days.ago.advance(days: idx),

 13 member_only: (idx % 3 == 0)

 14)

 15 end

2行目と4行目で文字列の末尾に改行文字（\n）を2つ重ねているのは、そこで段落の
境界とするためです。

11行目と12行目では日時を進めるためにadvanceメソッドを使用しています。たとえば
8.days.ago.advance(days: 3)は現在日時の8日前の3日後、すなわち5日前の日時を返
します。また、2.days.ago.advance(days: 5)は現在日時から3日後の日時を返します。

開発用のデータを投入するため、ターミナルで次のコマンドを実行してください。

$ bin/rails db:rebuild

バリデーションの追加
Articleモデルに次のようなバリデーションを加えることにしましょう。

タイトル、本文、掲載開始日時は空ではならない。
タイトルは80文字を超えてはならない。
本文は2000文字を超えてはならない。

ほかにも、掲載開始日時が掲載終了日時よりも前でなくてはならないというバリデーショ
ンを加えるべきですが、これについては次節で扱います。

Articleモデルのソースコードを次のように書き換えてください。

chapter09/app/models/article.rb

 1 class Article < ApplicationRecord

 2 validates :title, :body, :released_at, presence: true

 3 validates :title, length: { maximum: 80 }

 4 validates :body, length: { maximum: 2000 }

 5 end

また、バリデーションのエラーメッセージが日本語で表示されるように、config/localesディレ
クトリの下のja.ymlにArticleモデルの属性名を追加しましょう。

chapter09/config/locales/ja.yml

 1 ja:

 2 ␣␣activerecord:

 3 ␣␣␣␣models:

 4 ␣␣␣␣␣␣member: 会員情報

 5 ␣␣␣␣␣␣article: ニュース記事

 6 ␣␣␣␣attributes:

 7 ␣␣␣␣␣␣member:

 8 ␣␣␣␣␣␣␣␣number: 背番号

 （省略）

 19 ␣␣␣␣␣␣␣␣password_confirmation: 新しいパスワードの確認

 20 ␣␣␣␣␣␣article:

 21 ␣␣␣␣␣␣␣␣title: タイトル

 22 ␣␣␣␣␣␣␣␣body: 本文

 23 ␣␣␣␣␣␣␣␣released_at: 掲載開始日時

 24 ␣␣␣␣␣␣␣␣expired_at: 掲載終了日時

 25 ␣␣␣␣␣␣␣␣member_only: 会員限定

 26 ␣␣␣␣errors:

 （以下省略）

では、Railsコンソールを起動し、バリデーションが正しく機能することを確かめましょう。
MSYS2/MinGW環境の方は最初のコマンドの前にwinpty rubyを付けてください。

$ bin/rails c

irb(main):001:0> article = Article.first

 Member Load (0.6ms) SELECT "members".* FROM "members" （略）

=> #<Article id: 1, title: "練習試合の結果0", body: （略） >

irb(main):002:0> article.title = "A" * 80

=> "AA
（略）"

irb(main):003:0> article.valid?

=> true
irb(main):004:0> article.title = "A" * 81

=> "AA
（略）"

irb(main):005:0> article.valid?

=> false

irb(main):006:0> article.errors.full_messages_for(:title)

=> ["タイトルは80文字以内で入力してください"]

式"A" * 80は、「A」を80回繰り返す文字列を返します。制限いっぱいの80文字のタイト
ルの場合はバリデーションが通り、81文字に変えるとバリデーションが失敗しています。

full_messages_forは指定された属性で発生したバリデーションエラーのエラーメッセージを
返すメソッドです。バリデーションエラーは複数個発生する可能性があるので、戻り値は配列
となります。

ルーティングの設定
config/routes.rbで、記事をリソースとして扱うルーティングを追加しましょう。複数形のs

を忘れないように注意してください。

chapter09/config/routes.rb

 （省略）

 13 resource :session, only: [:create, :destroy]

 14 resource :account, only: [:show, :edit, :update]

 15 resource :password, only: [:show, :edit, :update]

 16

 17 resources :articles

 18 end

念のため、ターミナルでArticleControllerへのルーティングを確認しましょう。

$ bin/rails routes -c articles

 Prefix Verb URI Pattern Controller#Action

 articles GET /articles(.:format) articles#index

 POST /articles(.:format) articles#create

 new_article GET /articles/new(.:format) articles#new

edit_article GET /articles/:id/edit(.:format) articles#edit

 article GET /articles/:id(.:format) articles#show

 PATCH /articles/:id(.:format) articles#update

 PUT /articles/:id(.:format) articles#update

 DELETE /articles/:id(.:format) articles#destroy

ArticlesControllerの作成
では、具体的な開発作業に移ります。まず、ターミナルでArticlesControllerのソースコー

ドを生成します。

$ bin/rails g controller articles

app/controllersディレクトリにarticles_controller.rbというファイルが作られていますの
で、それを次のように書き換えてください。

chapter09/app/controllers/articles_controller.rb

 1 class ArticlesController < ApplicationController

 2 before_action :login_required, except: [:index, :show]

 （以下省略）

ArtclesControllerには、MembersControllerと同じく7つの基本的なアクションを実装
します。そのうち、indexアクションとshowアクション以外は、メンバーとしてログインしているこ
とがアクセスの条件となります。

■indexアクション

では、ニュース一覧を表示するindexアクションから作り始めましょう。いったん記事の掲載
期間のことは考慮せずに作ります。単に掲載開始日時の新しいものから古いものへ並べ替
えるだけです。

chapter09/app/controllers/articles_controller.rb

 1 class ArticlesController < ApplicationController

 2 before_action :login_required, except: [:index, :show]

 3

 4 # 記事一覧

 5 def index

 6 @articles = Article.order(released_at: :desc)

 7 end

 （以下省略）

app/views/articlesディレクトリに新規ファイルindex.html.erbを作成し、次の内容を書
き込みます。

chapter09/app/views/articles/index.html.erb

 1 <% @page_title = "ニュース記事一覧" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <div class="toolbar"><%= link_to "新規作成", :new_article %></div>

 5

 6 <% if @articles.present? %>

 7 <table class="list">

 8 <thead>
 9 <tr>

 10 <th>タイトル</th>

 11 <th>日時</th>

 12 <th>操作</th>

 13 </tr>

 14 </thead>

 15 <tbody>

 16 <% @articles.each do |article| %>

 17 <tr>

 18 <td><%= link_to article.title, article %></td>

 19 <td><%= article.released_at.strftime("%Y/%m/%d %H:%M") %>
</td>

 20 <td>

 21 <%= link_to "編集", [:edit, article] %> |

 22 <%= link_to "削除", article, method: :delete,

 23 data: { confirm: "本当に削除しますか?" } %>

 24 </td>

 25 </tr>

 26 <% end %>

 27 </tbody>

 28 </table>

 29 <% else %>

 30 <p>ニュースがありません。</p>

 31 <% end %>

また、ヘッダーのメニューにある［ニュース］のリンクを修正します。

chapter09/app/views/shared/_header.html.erb

 （省略）

 13 <%= menu_link_to "TOP", :root %>

 14 <%= menu_link_to "ニュース", :articles %>

 15 <%= menu_link_to "ブログ", "#" %>

 （以下省略）

サーバーを起動し、ブラウザで「http://localhost:3000/」を開いてください。［ニュース］を
クリックすると記事一覧が表示されます。

ニュース記事の一覧

■showアクション
次に、記事の詳細ページを表示するshowアクションをArticlesControllerに追加します。

chapter09/app/controllers/articles_controller.rb

 （省略）

 9 # 記事詳細

 10 def show

 11 @article = Article.find(params[:id])

 12 end

 （以下省略）

app/views/articlesディレクトリに新規ファイルshow.html.erbを作成し、次の内容を書
き込みます。

chapter09/app/views/articles/show.html.erb

 1 <% @page_title = @article.title %>

 2 <h1><%= @article.title %></h1>

 3

 4 <% if current_member %>

 5 <div class="toolbar"><%= link_to "編集", [:edit, @article] %></div>

 6 <% end %>

 7

 8 <table class="attr">

 9 <tr>

 10 <th width="100">タイトル</th>

 11 <td><%= @article.title %></td>

 12 </tr>

 13 <tr>

 14 <th>本文</th>

 15 <td><%= simple_format(@article.body) %></td>

 16 </tr>

 17 <tr>

 18 <th>掲載開始日時</th>

 19 <td><%= @article.released_at.strftime("%Y/%m/%d %H:%M") %>
</td>

 20 </tr>

 21 <tr>

 22 <th>掲載終了日時</th>

 23 <td><%= @article.expired_at.try(:strftime, "%Y/%m/%d %H:%M")
%></td>

 24 </tr>

 25 <tr>

 26 <th>会員限定</th>

 27 <td><%= @article.member_only? ? "○" : "－" %></td>

 28 </tr>

 29 </table>

15行目で使われているヘルパーメソッドsimple_formatは、引数に与えられた文字列を
次のルールに沿って変換します。

2個以上の連続する改行を段落の区切りと見なし、各段落を<p>タグで囲む。
単独の改行に
タグを追加する。
許されていないHTMLタグ（<script>タグや<blink>タグなど）を取り除く。
HTMLで特殊な意味を持つ記号（&、<、>）をエスケープする。

ブラウザに戻りメンバーとしてログインした状態で、記事一覧のページから記事のタイトルを
クリックすると次のように表示されます。

ニュース記事の詳細ページ

■newアクションとeditアクション
続いて、newアクション（新規作成ページ）とeditアクション（編集ページ）を作成しま

す。

chapter09/app/controllers/articles_controller.rb

 （省略）

 14 # 新規登録フォーム

 15 def new

 16 @article = Article.new

 17 end

 18

 19 # 編集フォーム

 20 def edit

 21 @article = Article.find(params[:id])

 22 end

 （以下省略）

app/views/articlesディレクトリに新規ファイルnew.html.erbを作成し、次の内容を書き
込みます。

chapter09/app/views/articles/new.html.erb

 1 <% @page_title = "ニュース記事の新規登録" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <%= form_for @article do |form| %>

 5 <%= render "form", form: form %>

 6 <div><%= form.submit %></div>

 7 <% end %>

app/views/articlesディレクトリに新規ファイルedit.html.erbを作成し、次の内容を書き
込みます。

chapter09/app/views/articles/edit.html.erb

 1 <% @page_title = "ニュース記事の編集" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <p><%= link_to "記事の詳細に戻る", @article %></p>

 5

 6 <%= form_for @article do |form| %>

 7 <%= render "form", form: form %>

 8 <div><%= form.submit %></div>

 9 <% end %>

app/views/articlesディレクトリに新規ファイル_form.html.erbを作成し、次の内容を書
き込みます。

chapter09/app/views/articles/_form.html.erb

 1 <%= render "shared/errors", obj: @article %>

 2

 3 <table class="attr">

 4 <tr>

 5 <th><%= form.label :title %></th>

 6 <td><%= form.text_field :title, size: 20 %></td>

 7 </tr>

 8 <tr>

 9 <th><%= form.label :body %></th>

 10 <td><%= form.text_area :body, rows: 10, cols: 45 %></td>

 11 </tr>

 12 <tr>

 13 <th><%= form.label :released_at, for: "article_released_at_1i" %>
</th>

 14 <td><%= form.datetime_select :released_at,

 15 start_year: 2000, end_year: Time.current.year + 1,

 16 use_month_numbers: true %></td>

 17 </tr>

 18 <tr>

 19 <th><%= form.label :expired_at, for: "article_expired_at_1i" %>
</th>

 20 <td>

 21 <%= form.datetime_select :expired_at,

 22 start_year: 2000, end_year: Time.current.year + 1,

 23 use_month_numbers: true %>

 24 </td>

 25 </tr>

 26 <tr>

 27 <th><%= Article.human_attribute_name(:member_only) %></th>

 28 <td>

 29 <%= form.check_box :member_only %>

 30 <%= form.label :member_only %>

 31 </td>

 32 </tr>

 33 </table>

ブラウザで記事一覧のページから［新規作成］や［編集］をクリックして、表示を確認
しましょう。

ニュース記事の編集フォーム

■createアクションとupdateアクション

フォームの送信先となるcreateアクションとupdateアクションを実装します。
MembersControllerとほぼ同じパターンで作れます。

chapter09/app/controllers/articles_controller.rb

 （省略）

 24 # 新規作成

 25 def create

 26 @article = Article.new(params[:article])

 27 if @article.save

 28 redirect_to @article, notice: "ニュース記事を登録しました。"

 29 else

 30 render "new"

 31 end

 32 end

 33

 34 # 更新

 35 def update

 36 @article = Article.find(params[:id])

 37 @article.assign_attributes(params[:article])

 38 if @article.save

 39 redirect_to @article, notice: "ニュース記事を更新しました。"

 40 else

 41 render "edit"

 42 end

 43 end

 44 end

ブラウザで実際にフォームを送信して、正しく記事を保存できることを確認してください。ま
た、記事のタイトルや本文を空にしたまま送信して、バリデーションエラーが発生することも確

かめてください。

■destroyアクション
最後に、レコードを削除するdestroyアクションを実装します。

chapter09/app/controllers/articles_controller.rb

 （省略）

 45 # 削除

 46 def destroy

 47 @article = Article.find(params[:id])

 48 @article.destroy

 49 redirect_to :articles

 50 end

 51 end

ブラウザで記事を削除できることを確認してください。以上で、ArticlesControllerの仮実
装が完了しました。

9.2 　Active Recordコールバック

Active Recordのモデルにはコールバックという便利な機能が備わっています。

Active Recordコールバックとは
私たちはChapter 8でアクション・コールバックという概念について学びました。アクション実

行の前やあとに決まりきった処理を行いたい場合に利用します。具体的には、ログインして
いないユーザーによるアクション実行を禁止するためにbefore_actionコールバックを設定しま
した。

Railsのモデルにも、バリデーションやレコード保存の前後に指定の処理を実行するコールバ
ック機能があります。コントローラで使用するコールバックと区別したいときは、Active
Recordコールバックと呼びます。

モデルにコールバックを設定するための書き方は2つあります。第1の方法では、次のように
ブロックを使用します。before_saveはオブジェクトをデータベースに保存する前に実行すべき
処理を登録するためのクラスメソッドです。

class Article < ApplicationRecord

 before_save do

 記事を保存する前に行う処理

 end

end

第2の方法では、専用のプライベートメソッドを定義して、そのシンボルをコールバック設定
メソッドの引数として指定します。

class Article < ApplicationRecord

 before_save :do_something

 private def do_something

 記事を保存する前に行う処理

 end

end

Active Recordコールバックを設定するためのおもなクラスメソッドは次のとおりです。

メソッド 実行されるタイミング
before_validation バリデーション前
after_validation バリデーション後
before_save 保存前（新規作成、更新の両方）
before_create 新規作成前
before_update 更新前
after_update 更新後
after_create 新規作成後
after_save 保存後（新規作成、更新の両方）

before_validationとafter_validationについては、次のようにonオプションに:createまた
は:updateを指定すると、新規作成または更新の場合だけコールバックが呼ばれます。

before_validation on: :create do

 バリデーションの前に行う処理

end

saveメソッドを実行すると、新規作成の場合は
before_save→before_create→after_create→after_saveのメソッドが順に呼ばれます。

更新の場合には、before_save→before_update→after_update→after_saveの順に
なります。

また、レコードの削除（destroyメソッド）の前後に実行するメソッドを指定する、
before_destroyとafter_destroyもあります（本書では解説しません）。

no_expiration属性
前節で作成した記事の投稿・編集フォームでは、掲載終了日時を空にすることができず

不便です。そこで、記事を投稿するフォームにチェックボックス［掲載終了日時を設定しな
い］を設置し、ユーザーがこれにチェックを付けたら掲載終了日時を保存しないことにしま
す。

このチェックボックスに対応する属性no_expirationは、articlesテーブルのカラムではなく、
クラスの普通の属性として実装します。Articleクラスにno_expirationのアクセサメソッドを
追加します。

chapter09/app/models/article.rb

 （省略）

 6 def no_expiration

 7 expired_at.nil?

 8 end

 9

 10 def no_expiration=(val)

 11 @no_expiration = val.in?([true, "1"])

 12 end

 （以下省略）

no_expirationメソッドは、expired_atの有無によってfalseかtrueを返します。等号付き
のno_expiration=メソッドは、引数がtrueか文字列の「1」であれば変数@no_expiration

をtrueにし、そうでなければfalseにします。
ブラウザはHTMLフォームのチェックボックスにチェックが付いていなければ文字列の「0」を、

チェックが付いていれば文字列の「1」を送ってきます。したがって、11行目では引数が文字
列の「1」であるかどうかを調べれば十分です。しかし、Railsコンソールで
article.no_expiration = trueと入力するような用途を考慮し、val.in?([true, "1"])と記述
しています。

テーブルのカラムにないフィールドを作る
上記のno_expirationのように、テーブルのカラムにないフィールドをフォームに加える必要が出てく

ることがあります。そうしたときは、フィールド名と同名のアクセサメソッドをモデルクラスに加えて属性
を作ります。

Chapter 13では、クラスメソッドattributeを用いて属性を作る別の方法を紹介します。

コールバックを使って掲載終了日時を消す
チェックボックス［掲載終了日時を設定しない］がオンの場合（no_expiration属性が

trueの場合）は、expired_at属性をnilにするコードを加えましょう。このとき、モデルのコール
バックを用いると実装しやすいです。

chapter09-2/app/models/article.rb

 （省略）

 14 before_validation do

 15 self.expired_at = nil if @no_expiration

 16 end

 （以下省略）

15行目のコードはバリデーションが行われる前に実行されます。変数@no_expirationが
真であれば（nilでもfalseでもなければ）属性expired_atの値をnilにしています。

フォームの書き換え
記事の投稿・編集フォームに［掲載終了日時を設定しない］というチェックボックスを加

えましょう。

chapter09/app/views/articles/_form.html.erb

 （省略）

 20 <td>

 21 <div>

 22 <%= form.check_box :no_expiration %>

 23 <%= form.label :no_expiration %>

 24 </div>

 25 <div>

 26 <%= form.datetime_select :expired_at,

 27 start_year: 2000, end_year: Time.current.year + 1,

 28 use_month_numbers: true %>

 29 </div>

 30 </td>

 （以下省略）

また、ラベルを日本語化するためにロケールデータに項目を加えます。

chapter09/config/locales/ja.yml

 （省略）

 20 ␣␣␣␣␣␣article:

 21 ␣␣␣␣␣␣␣␣title: タイトル

 22 ␣␣␣␣␣␣␣␣body: 本文

 23 ␣␣␣␣␣␣␣␣released_at: 掲載開始日時

 24 ␣␣␣␣␣␣␣␣expired_at: 掲載終了日時

 25 ␣␣␣␣␣␣␣␣no_expiration: 掲載終了日時を設定しない

 26 ␣␣␣␣␣␣␣␣member_only: 会員限定

 27 ␣␣␣␣errors:

 （以下省略）

ブラウザで記事一覧のページから［新規作成］や［編集］をクリックして、チェックボッ
クスが表示されることを確認してください。また、チェックボックスをオンにしたときに、掲載終
了日時が設定されないことを確かめてください。

チェックボックスが追加された

「12.4　JavaScript」では、チェックボックスのオン・オフ切り替えに応じて掲載終了日時
の入力欄の表示・非表示を切り替える機能を作成します。

9.3 　スコープ

Railsのモデルには、レコードの検索をシンプルに書き表すためにスコープの機能が用意
されています。この節ではArticleモデルにスコープを追加して、ある条件に合致する記
事を取り出します。

スコープの記述
スコープは、レコードの検索の仕方に名前を付けたものです。モデルクラスの中で「scope :

スコープ名, -> { クエリーメソッド }」のように記述します。たとえば、open_to_the_publicとい
うスコープを作って、一般公開の（会員限定ではない）記事を取り出す機能を加えたけれ
ば、次のように記述します。

class Article

 scope :open_to_the_public, -> { where(member_only: false }

-> { }という記法については次のHINT「Procオブジェクト」で説明しますが、スコープのこの
記述法は「一種の公式」として丸暗記してもよいでしょう。

なお、記号->の右側に付く中かっこのペアはdoとendで置き換えることができます。つま
り、上記のコードは次のようにも書けます。

class Article

 scope :open_to_the_public, -> do

 where(member_only: false)

 end

Procオブジェクト
Rubyの-> { }は、Procオブジェクトを作成する記法です。Procは「コードのかたまり」を表すオブジ

ェクトです。プログラミング用語では「無名関数」と呼ばれます。次の例をご覧ください。

p = -> { Math.sqrt rand(100) }

puts p.call

Math.sqrtは引数の平方根を返すメソッドで、rand(100)は0から99までの整数をランダムに返し
ます。{ }で囲まれたコード全体がProcオブジェクトになり、変数pにセットされます。Procオブジェクト
のコードを呼び出すには、callメソッドを用います。結果としてp.callという式は0以上10未満の浮動
小数点数を返します。

引数を取るProcオブジェクトを作ることもできます。次の例では、Procオブジェクトは引数nを取り
ます。

p = -> (n) { Math.sqrt rand(n) }

puts p.call(100)

-> { }の代わりにlambdaメソッドにブロックを渡すこともできます。次の例は、上の例と同じ結果
になります。

p = lambda { |n| Math.sqrt rand(n) }

puts p.call(100)

open_to_the_publicスコープを使うには、次のように記述します。open_to_the_public
はArticleモデルのクラスメソッドになり、リレーションオブジェクトを返すようになります。
Article.where(member_only: false).order(released_at: :desc)と同じ結果になります。

articles = Article.open_to_the_public.order(released_at: :desc)

次のように、リレーションオブジェクトからスコープのメソッドを呼び出しても同じ結果になりま
す。

articles = Article.order(released_at: :desc).open_to_the_public

スコープの定義
では、実際にスコープを定義してみましょう。Articleモデルにopen_to_the_publicおよび

visibleという2つのスコープを加えます。前者についてはすでに説明しました。後者は、現在
日時が掲載開始日時と掲載終了日時の間にある記事だけを取り出すためのスコープで
す。Articleモデルのソースコードを次のように変更してください。

chapter09/app/models/article.rb

 （省略）

 20 errors.add(:expired_at, :expired_at_too_old)

 21 end

 22 end

 23

 24 scope :open_to_the_public, -> { where(member_only: false) }

 25

 26 scope :visible, -> do

 27 now = Time.current

 28

 29 where("released_at <= ?", now)

 30 .where("expired_at > ? OR expired_at IS NULL", now)

 31 end

 32 end

visibleスコープの中身は複数行にわたるので、読みやすさを考慮してdoとendで囲みまし
た。まず、変数nowに現在日時をセットしてから、whereメソッドを重ね合わせて検索条件
を作っています。2番目のwhereメソッドでは、掲載終了日時が現在日時よりもあとである
か掲載終了日時がセットされていないという条件を表現しています。

サイドバーでの記事表示
定義された2つのスコープをサイトの中で使ってみましょう。サイドバーに最新のニュース記事

のタイトルを表示することにします。サイドバー用の部分テンプレート_sidebar.html.erbを次
のように書き換えてください。

chapter09/app/views/shared/_sidebar.html.erb

 1 <%= render "shared/login_form" %>

 2

 3 <h2>最新ニュース</h2>

 4 <%

 5 articles = Article.visible.order(released_at: :desc).limit(5)

 6 articles = articles.open_to_the_public unless current_member

 7 %>

 8

 9 <% articles.each do |article| %>

 10 <%= link_to article.title, article %>

 11 <% end %>

 12

 （以下省略）

5行目と6行目でローカル変数articlesにサイドバーで表示すべき記事のリストをセットして
います。Article.visibleで記事の範囲を狭めたあとで、orderメソッドでソートし、limitメソッド

で取得するレコード数の上限を定めています。そして、ユーザーがログインしていない状態で
は、スコープopen_to_the_publicでさらに限定しています。

この変更により、サイドバーは次のような表示になります。

サイドバーの記事リスト

ニュース記事一覧ページの変更
次に、ニュース一覧ページに表示する記事についても、ログインしていないユーザーには

member_onlyフラグの立っている記事を見せないことにします。また、管理者以外のメンバ
ーや訪問者には、現在日時が掲載開始日時と掲載終了日時の間にある記事だけを見せ
ることにしましょう。ArticlesControllerのindexアクションを次のように書き換えてください。

chapter09/app/controllers/articles_controller.rb

 （省略）

 4 # 記事一覧

 5 def index

 6 @articles = Article.order(released_at: :desc)

 7

 8 @articles = @articles.open_to_the_public unless current_member

 9

 10 unless current_member&.administrator?

 11 @articles = @articles.visible

 12 end

 13 end

 （以下省略）

条件式current_member&.administrator?は、ユーザーがログインしていてかつ管理者
であるときにtrueを返します。ぼっち演算子（&.）については、「5.1　RESTとルーティング」
のHINT「&.演算子」を参照してください。

ログインしない状態、一般メンバーとしてログインした状態、および管理者としてログインし
た状態でニュース一覧がどのように変化するか観察してください。

ニュース記事詳細ページの変更
続いて、ニュース記事詳細ページにアクセス制限を加えます。考え方は、ニュース一覧ペー

ジと同じです。ArticlesControllerのshowアクションを次のように書き換えてください。

chapter09/app/controllers/articles_controller.rb

 （省略）

 15 # 記事詳細

 16 def show

 17 articles = Article.all

 18

 19 articles = articles.open_to_the_public unless current_member

 20

 21 unless current_member&.administrator?

 22 articles = articles.visible

 23 end

 24

 25 @article = articles.find(params[:id])

 26 end

 （以下省略）

訪問者や一般メンバーが閲覧権限のないページにアクセスすると、例外
ActiveRecord::RecordNotFoundが発生します。

TopControllerの修正
ニュース記事は、Morning Gloryのトップページにも掲載します。TopControllerを修正し

て、記事を表示する機能を加えましょう。トップページでもopen_to_the_publiicスコープと
visibleスコープを使って、記事を限定します。

chapter09/app/controllers/top_controller.rb

 1 class TopController < ApplicationController

 2 def index

 3 @articles = Article.visible.order(released_at: :desc).limit(5)

 4 @articles = @articles.open_to_the_public unless current_member

 5 end

 （以下省略）

トップページ用のテンプレートも書き換えます。

chapter09/app/views/top/index.html.erb

 1 <% @articles.each do |article| %>

 2 <h2><%= article.title %></h2>

 3 <p>

 4 <%= truncate article.body, length: 80 %>

 5 <%= link_to "もっと読む", article %>

 6 </p>

 7 <% end %>

4行目で使われているヘルパーメソッドtruncateは引数に指定された文字列がある長さを
超えていれば切って、省略記号（...）を加えて返します。デフォルトの長さは30文字です。
lengthオプションで長さを指定できます。

validate do ... end
最後に掲載終了日時（expired_at属性）に関するバリデーションを設定します。

chapter09/app/models/article.rb

 （省略）

 14 before_validation do

 15 self.expired_at = nil if @no_expiration

 16 end

 17

 18 validate do

 19 if expired_at && expired_at < released_at

 20 errors.add(:expired_at, :expired_at_too_old)

 21 end

 22 end

 23

 24 scope :open_to_the_public, -> { where(member_only: false) }

 （以下省略）

これまでバリデーションの設定に利用してきたのはクラスメソッドvalidatesです。このクラスメ
ソッドは、属性名をシンボルで指定してオプションでバリデーションの種類や方式を指定しま
す。

ここでは名前の末尾に「s」のないクラスメソッドvalidateを使用しています。このメソッドは
ブロックを取り、ブロックの中で自由なRubyコードによりバリデーションのやり方を記述すること
ができます。ブロックの中身をご覧ください。

 if expired_at && expired_at < released_at

 errors.add(:expired_at, :expired_at_too_old)

 end

掲載終了日時が設定されていて、それが掲載開始日時よりも前の時点であればエラー
としています。メソッドerrorsはモデルのエラーオブジェクトを返します（Chapter 7を参照）。
エラーオブジェクトのaddメソッドを呼び出すとモデルオブジェクトにバリデーションエラーが登録
されます。

addメソッドの第1引数には属性名のシンボル、第2引数にはエラーの種類を示すシンボ
ルを指定します。第2引数には、:emptyや:invalidなどの既定のものだけでなく、開発者自
身が決めた任意のシンボルを指定できます。その場合は自分でエラーメッセージをロケールテ
キストに加える必要があります。

chapter09/config/locales/ja.yml

 （省略）

 27 ␣␣␣␣errors:

 28 ␣␣␣␣␣␣messages:

 29 ␣␣␣␣␣␣␣␣invalid_member_name: "は半角英数字で入力してくださ
い。"

 30 ␣␣␣␣␣␣␣␣wrong: が正しくありません。

 31 ␣␣␣␣␣␣␣␣expired_at_too_old: は掲載開始日より新しい日時にして
ください。

9.4 　ページネーション

データベースに収めたデータの数が多くなってくると、その一覧を表示するときに工夫が
必要になってきます。ここでは、ページネーションの機能を導入して、一覧表示を複数
のページに分ける方法を紹介します。

Gemパッケージkaminari
ウェブページで大量の項目を一覧表示するときは、項目を複数のページに分けて見せるの

が一般的です。Googleのような検索サイトの検索結果がよい例です。1ページに決まった数
の検索結果が並び、ページ下部の「1 2 3 4 5……」のようなリンクをクリックすると、20番目
以降、30番目以降、……の結果を見ることができます。こうしたしくみをページネーションと呼
びます。

ページネーション

Rails自体にはページネーションの機能が含まれていないので、Gemパッケージを使う必要
があります。ページネーション機能のGemパッケージはいくつかありますが、本書ではkaminari
を使います。Gemfileにkaminariとkaminari-i18nの指定を加えてください。

chapter09/Gemfile

 （省略）

 35 gem 'email_validator', '~> 1.6'

 36 gem 'rails-i18n'

 37 gem 'kaminari'

 38 gem 'kaminari-i18n'

 39

 40 group :development, :test do

 （以下省略）

Bundlerを使ってkaminariとkaminari-i18nをインストールします。

$ bundle install

kaminariを導入すると、モデルのクエリーメソッドにpageメソッドが追加されます。pageメ
ソッドには、現在のページ数を指定します。

@members = Member.page(2)

デフォルトで1ページあたり25件のレコードが取り出されます。この値を変更したければ、per
メソッドで指定します。

@members = Member.page(2).per(10)

テンプレートでpaginateメソッドを使えば、ページネーションのリンクを埋め込めます。
paginateメソッドには、pageメソッドで取り出したリレーションオブジェクトを渡します。

<%= paginate @members %>

ヘルパーメソッドpaginateは、次のようなHTMLを生成します。

<nav class="pagination" role="navigation" aria-label="pager">

 1

 2

 3

 次 ›

 最後 »

</nav>

リンクにはpageパラメータが付くので、コントローラの中でpaginateメソッドに「page:
params[:page]」とページ数を指定すれば、ユーザーがクリックしたページ番号に合わせてペー
ジネーションが動作するようになります。

ページネーション機能の実装
kaminariを使って会員情報とニュース記事の一覧にページネーションの機能を加えましょ

う。

■会員一覧
MembersControllerのindexアクションとsearchアクションを修正して、paginateメソッ

ドを加えましょう。1ページあたりの件数は15とします。

chapter09/app/controllers/members_controller.rb

 （省略）

 4 # 会員一覧

 5 def index

 6 @members = Member.order("number")

 7 .page(params[:page]).per(15)

 8 end

 9

 10 # 検索

 11 def search

 12 @members = Member.search(params[:q])

 13 .page(params[:page]).per(15)

 14

 15 render "index"

 16 end

 （以下省略）

indexアクションのテンプレートでは、テーブルの下にpaginateメソッドを挿入して、ページネ
ーションのリンクを作ります。

chapter09/app/views/members/index.html.erb

 （省略）

 35 </table>

 36 <%= paginate @members %>

 37 <% else %>

 38 <p>会員情報がありません。</p>

 39 <% end %>

現在のシードデータでは、会員が10人しかいないので、ページネーションを確認できるように
30人分のデータを追加します。ページネーションの確認に使うだけのものなので、ユーザー名や
氏名は適当なものにします。

chapter09/db/seeds/development/members.rb

 （省略）

 14 password_confirmation: "password"

 15)

 16 end

 17

 18 0.upto(29) do |idx|

 19 Member.create(

 20 number: idx + 20,

 21 name: "John#{idx + 1}",

 22 full_name: "John Doe#{idx + 1}",

 23 email: "John#{idx+1}@example.com",

 24 birthday: "1981-12-01",

 25 sex: 1,

 26 administrator: false,

 27 password: "password",

 28 password_confirmation: "password"

 29)

 30 end

bin/rails db:rebuildコマンドでデータベースを作り直したら、会員の一覧を確認しましょ
う。ページネーションのリンクは次のような表示になります。

CSS指定前のページネーション

CSSでページネーションのリンクをデザインしましょう。app/assets/stylesheetsディレクトリ
にファイルpagination.cssを次の内容で作成してください。

chapter09/app/assets/stylesheets/pagination.css

 1 nav.pagination {

 2 font-size: 75%;

 3 padding: 4px 8px;

 4 border: 1px solid #499;

 5 word-spacing: 4px;

 6 }

 7

 8 nav.pagination span.current {

 9 font-weight: bold;

 10 }

class属性がpaginationのnavタグがリンクを囲むタグです。class属性がcurrentのspan
タグは、現在のページ番号を囲むものです。このスタイル追加によりページネーションのリンク
は次の表示に変わります。

CSS指定後のページネーション

■ニュース記事一覧
ArticlesControllerのindexアクションにもページネーションを適用しましょう。1ページあたり

の件数は5とします。

chapter09/app/controllers/articles_controller.rb

 （省略）

 5 def index

 6 @articles = Article.order(released_at: :desc)

 7

 8 @articles = @articles.open_to_the_public unless current_member

 9

 10 unless current_member&.administrator?

 11 @articles = @articles.visible

 12 end

 13

 14 @articles = @articles.page(params[:page]).per(5)

 15 end

 （以下省略）

indexアクションのテンプレートでは、table要素の下にpaginateメソッドを加えます。

chapter09/app/views/articles/index.html.erb

 （省略）

 27 <% end %>

 28 </table>

 29 <%= paginate @articles %>

 30 <% else %>

 31 <p>ニュースがありません。</p>

 32 <% end %>

会員情報と同様に、シードデータに記事を30件追加します。

chapter09/db/seeds/development/articles.rb

 （省略）

 13 member_only: (idx % 3 == 0)

 14)

 15 end

 16

 17 0.upto(29) do |idx|

 18 Article.create(

 19 title: "Article#{idx+10}",

 20 body: "blah, blah, blah...",

 21 released_at: 100.days.ago.advance(days: idx),

 22 expired_at: nil,

 23 member_only: false

 24)

 25 end

bin/rails db:rebuildコマンドでデータベースを作り直すと、ニュース記事の一覧では次のよ
うにページネーションのリンクが表示されます。

ニュース記事のページネーション

Chapter 9のまとめ

モデルでバリデーションやレコード保存の前後に実施したい処理のことを
ActiveRecordコールバックと呼びます。
バリデーションの前に特定の処理を実行したい場合は、クラスメソッド
before_validationに続くブロックの中にその処理を記述します。
モデルのスコープとは、レコードの検索の仕方に名前を付けたものです。クラ
スメソッドscopeを用いて定義します。

クラスメソッドvalidateに続くブロックの中でエラーオブジェクトを操作するこ
とにより、自由な書き方でカスタムバリデーションを設定できます。
一覧ページにページネーション機能を導入するには、Gemパッケージ
kaminariを使うと便利です。

練習問題

［A］　次に示すのはlogディレクトリのログファイルbooks.logに「Hello.」というメッセージを
書き込むためのコードです。

Logger.new(Rails.root.join("log/books.log")).info("Hello.")

Bookモデルがレコード保存後に書名を同じログファイルに書き込むようにするにはどのよう
に書けばよいですか。空欄を埋めてください。

class Book < ApplicationRecord

 　　　　　　　　　　 do

 Logger.new(Rails.root.join("log/books.log")).info(　　　　　　)

 end

end

［B］　Bookモデルに「価格が0円である」という検索条件を示すスコープfreeを設定しま
す。空欄を埋めてください。

class Book < ApplicationRecord

 　　　　　 :free, -> { 　　　　　　　　　　 }

end

Chapter

10　モデル間の関連付け

実用的なウェブアプリケーションでは、データベースに複数のテーブルを用意し
て、テーブル間でデータを結び付けます。Railsはモデル間の関連付けを自然な形
で表現できるため、複数のテーブルを同時に扱うプログラムを効率よく作成できま
す。

これから学ぶこと

モデル間の関連付けと外部キーの役割について学びます。
クラスメソッドhas_many、belongs_toを使って1対多の関連付けを作る方
法を学びます。
1対多の関連付けを使って会員のブログ機能を作ります。

モデルとモデルが1対多で関連付けられたとき、それらの関係は自動車と車輪の関係にたとえ
ることができます。関連付けはどのように設定すればよいでしょうか？ 関連付けによってどんなこ
とができるようになるでしょうか？

10.1 　関連付けの概要

実用的なウェブアプリケーションであれば、モデル間の関連付けを扱うことになります。
ここでは、関連付けに対するRailsの基本的アプローチを紹介します。

モデル間の関連付けと外部キー
自動車を例に、モデル間の関連付け（association）について考えてみましょう。データ

ベースの中で、複数の自動車を1つのテーブルに収め、複数の車輪を別のテーブルに収めると
します。ある車輪がどの自動車に対するものなのかを表すには、自動車テーブルと車輪テーブ
ルを外部キーを使って結び付けます。

自動車テーブルには、個々のレコードを識別するidカラム（主キー）があります。車輪テー
ブル内のレコードのほうにはcar_idカラムを持たせ、自動車テーブルのidカラムと同じ数値を格
納すれば、自動車と車輪の結び付きを表すことができます。このように別のテーブルの主キー
を参照するカラムのことを外部キー（foreign key）と呼びます。

外部キーによる参照

変数@carにモデルクラスCarのインスタンスがセットされているとき、次の式はその車輪の
集合を表すリレーションオブジェクトを返します。

Wheel.where(car_id: @car.id)

しかし、Railsにはもっと直感的な書き方が用意されています。

@car.wheels

wheelsはCarクラスのインスタンスメソッドで、リレーションオブジェクトを返します。where、
order、firstなどのメソッドを連結して呼び出すことができます。

@car.wheels.where(color: "red").order(:created_at).first

ただし、単にCarとWheelという2つのモデルがあって、wheelsテーブルにcar_idカラムがあ
るだけでは、このwheelsメソッドは使えません。Carクラスの中で次のように書く必要がありま
す。

has_many :wheels

has_manyはモデル間の関連付けを指定するメソッドです。これによりCarモデルとWheel
モデルの間に1対多の関連付けが設定され、Carモデルにインスタンスメソッドwheelsが追加
されます。

relation、association、relationship
データベース用語の「リレーション」（relation）は、日常語の「リレーション」とは違う意味です。デ

ータベース用語では行と列という構造を持つデータを「リレーション」と言います。Excelシートの一部
分とだいたい同じようなものだと思ってください。ただし、同じ列の値はすべて同じ型を持つという制
約があります。Railsのリレーションオブジェクトは、この「リレーション」を保持するオブジェクトです。

一方で「関連付け」（association）は、ソフトウェア設計の分野で使われる用語です。2つのク
ラス（モデル）がお互いにどのように結び付いているのかを示します。ポイントになるのは、相手が単
数か複数かということです。本文で例として挙げたCarモデルとWheelモデルは、「1対多」の関連付
けを持ちます。「1個の自動車に複数の車輪が付く」ということを「1対多」と表現するわけです。

しかし、ややこしいことに「関連付け」とほぼ同義語として「リレーションシップ」（relationship）と
いう用語が使われることもあり、普通は「関連」と訳しますが、「関係」と訳す場合もあります。本書
では「行と列という構造を持つデータ」を「リレーション」と呼び、モデル同士の結び付きは「関連付
け」で統一することにします。

関連付けを作るメソッド
Railsでは、モデル間の関連付けをモデルクラスのメソッドhas_manyおよびbelongs_toで

作ります。自動車を表すモデルを例にして、この2つのメソッドの使い方を紹介しましょう。

■1対多の関連付け
has_manyは、1対多の関連付け、つまりテーブルの複数のレコードが別のテーブルのレコー

ド1つを参照する結び付きを作ります。自動車と車輪を例にすると、自動車には複数の車
輪があるので、図のようにwheelsテーブルの複数のレコードがcarsテーブルを参照しています。

has_many

参照先のモデルクラスでhas_many（～をたくさん持つ）を使えば、1対多の関連付けを
指定できます。has_manyに渡す名前は複数形にします。

class Car < ApplicationRecord

 has_many :wheels

end

参照元では、belongs_to（～に属する）を使います。

class Wheel < ApplicationRecord

 belongs_to :car

end

これにより、@car.wheelsで参照元のモデルオブジェクトの集合を取り出したり、
@wheel.carで参照先のモデルオブジェクトを取り出したりできます。

車輪を作成し、自動車に関連付けて保存するには、次のように記述します。

@wheel = Wheel.new

@wheel.car = @car

@wheel.save

逆に、自動車のほうから車輪を関連付けるには、<<で追加します。<<を使うと、関連
付けと車輪のレコードの保存が同時に行われます。

@car.wheels << @wheel

車輪を自動車に結び付け、保存は行わないようにするには、wheels.buildのようにbuild
メソッドを使います。引数にはハッシュでモデルの属性を指定できます。

@car.wheels.build(name: "車輪1")

ハッシュを複数指定することもできます。

@car.wheels.build({ name: "車輪1" }, { name: "車輪2" })

has_manyによって使えるようになったwheelsメソッドが返すのはリレーションオブジェクトで
す。したがって、集計用のメソッドやクエリーメソッドを呼び出せます。

@car.wheels.count # 車輪の数

@car.wheels.order("created_at DESC") # クエリーメソッド

このChapterのサンプルでは、会員情報（Memberモデル）とブログ記事（Entryモデ
ル）の間で1対多の関連付けを作ります。

■命名規約とオプション
has_manyとbelongs_toでモデル間の関連付けを表すときには、名前について次のルー

ルがあります。

外部キーのカラム名は、car_idのように「参照先のテーブル名（モデル名）を単数形に
したもの」＋「_id」とする。
belongs_toに指定する名前は、テーブル名（モデル名）の単数形を使う。
has_manyに指定する名前は、テーブル名（モデル名）の複数形を使う。

外部キーのカラム名がルールと異なるときは、foreign_keyオプションでカラム名を指定でき
ます。次の例では外部キーにcar_idではなくvehicle_idを使うようにしています。

class Car < ApplicationRecord

 has_many :engines, foreign_key: "vehicle_id"

end

class Engine < ApplicationRecord

 belongs_to :car, foreign_key: "vehicle_id"

end

関連付けで使われるメソッド名を変えたい場合は、class_nameオプションを使います。次
の例は、MotorモデルがCarモデルを参照しています。メソッド名をmotorsではなくengines
にしたい場合は、class_nameオプションに本当のモデル名を指定します。

class Car < ApplicationRecord

 has_many :engines, class_name: "Motor"

end

has_manyでよく使われるオプションにdependentがあります。dependentオプション
を:destroyとすると、参照先のレコードを削除したときに参照元のレコードも自動的に削除さ
れます。dependentオプションを:nullifyとすると、参照先のレコードを削除したときに参照元
の外部キーがNULLになります。

次の例では、自動車レコードを削除すると、結び付いているエンジンレコードをすべて自動
的に削除します。

class Car < ApplicationRecord

 has_many :engines, dependent: :destroy

end

10.2 　会員ブログ関連モデルの準備

モデル間の関連付けで一番よく使われるのが1対多です。ここでは、Morning Glory
のサイトに会員のブログ機能を加え、ネストされたリソースを使って会員ごとのブログを
表示できるようにします。

ブログ記事の関連付け
ここではブログ記事用のEntryモデルを作成し、Memberモデルとの間に1対多の関連付

けを作ります。

■Entryモデルの作成
MemberモデルとEntryとの間の1対多の関連付けは、「会員はブログ記事をたくさん持

つ」（会員はたくさんの記事の筆者になれる）、「ブログ記事は会員に属する」（記事は特
定の会員を筆者とする）という結び付きです。

まず、「bin/rails g」コマンドでEntryモデル（entriesテーブル）を作成します。

$ bin/rails g model entry

次のようにマイグレーションスクリプトを記述します。

chapter10/db/migrate/20180528133133_create_entries.rb

 1 class CreateEntries < ActiveRecord::Migration[5.2]

 2 def change

 3 create_table :entries do |t|

 4 t.references :member, null: false # 外部キー

 5 t.string :title, null: false # タイトル

 6 t.text :body # 本文

 7 t.datetime :posted_at, null: false # 投稿日

 8 t.string :status, null: false, default: "draft" # 状態

 9

 10 t.timestamps null: false

 11 end

 12 end

 13 end

4行目の「t.references :member」によってentriesテーブルに整数型のmember_idカラ
ムが追加されます。referencesメソッドは指定されたシンボルに「_id」を加えた名前で整数
型のカラムを追加します。「t.integer :member_id」と書いても同じですが、referencesメソ
ッドを使えばこのカラムが外部キーであることを明示できます。

また、referencesメソッドを使った場合、暗黙のうちに外部キーにインデックスが設定され
ます。インデックスについては、「4.2　テーブルの作成」の「インデックス」を参照してください。
もしインデックスを設定したくない場合は、次のようにindex: falseオプションを付ける必要が
あります。

t.references :member, null: false, index: false

8行目ではstatusカラムにデフォルト値として"draft"を設定しています。このカラムに
は、"draft"（下書き）、"member_only"（会員限定）、"public"（公開）のどれかの
文字列を入れることにします。

マイグレーションを実行します。

$ bin/rails db:migrate

マイグレーションスクリプトに誤りがあって途中で止まった場合は、間違いを修正してからデ
ータベースを再構築してください。

$ bin/rails db:rebuild

外部キー制約

データベースでテーブル同士を関連付けるときには、外部キーを作成すると同時に外部キー制約を
付けることがあります。外部キー制約を付けると、テーブル間の関連付けに整合性が取れないとき
に、データベースが自動的にエラーを出すようになります。たとえば、ある外部キーに参照先のない値
がセットされた場合などです。

MySQLやPostgreSQLで外部キー制約を設定するには、次のようにマイグレーションスクリプトで
foreign_key: trueオプションを使います。これで、entriesテーブルのmember_idカラムにmembers
テーブルのidカラムへの外部キー制約が設定されます。

class CreateEntries < ActiveRecord::Migration

 def change

 create_table :entries do |t|

 t.references :member, null: false, foreign_key: true

 （省略）

あるいは、次のようにadd_foreign_keyメソッドで外部キーを設定することもできます。

class CreateEntries < ActiveRecord::Migration

 def change

 create_table :entries do |t|

 t.references :member, null: false

 （省略）

 end

 add_foreign_key :entries, :members

 end

end

このメソッドの引数には、参照元のテーブル名と参照先のテーブル名をシンボルで指定します。参
照元のカラム名は、参照先のテーブル名を単数形にして_idを付けたものになります（この例では
member_id）。このルールに合わない場合は、columnオプションでカラム名を指定します。

add_foreign_key :entries, :members, column: "author_id"

■モデル間の関連付け
Memberモデルにhas_manyメソッドを記述して、「会員はブログ記事をたくさん持つ」とい

う結び付きを作ります。

chapter10/app/models/member.rb

 1 class Member < ApplicationRecord

 2 has_secure_password

 3

 4 has_many :entries, dependent: :destroy

 5

 6 validates :number, presence: true,

 （以下省略）

ある会員が削除されると、その会員が書いたブログ記事はすべて削除されるようにするた
め、dependentオプションにシンボル:destroyを指定しています。

次に、Entryモデルにbelongs_toメソッドを記述して、「ブログ記事は会員に属する」とい
う結び付きを作ります。ただし、記事を書いた会員を参照するメソッド名はauthorにします。

chapter10/app/models/entry.rb

 1 class Entry < ApplicationRecord

 2 belongs_to :author, class_name: "Member", foreign_key:
"member_id"

 3 end

class_nameオプションとforeign_keyオプションの指定は必須です。この2つがないと、
Railsはentriesテーブルにauthor_idというカラムがあり、Authorという名前のモデルを参照
しているのだと誤解してしまいます。

以上の変更により、MemberモデルとEntryモデルが1対多で関連付けられました。変数
@memberにMemberオブジェクトがセットされているとすると、テンプレートでその会員の書
いたブログ記事のタイトルを並べるには次のようにします。並べ方は投稿日で昇順となりま
す。

 <% @member.entries.order(:posted_at).each do |e| %>

 <%= e.title %>

 <% end %>

また、変数@entriesにEntryオブジェクトの配列がセットされているとすれば、テンプレート
でブログ記事の著者名を並べるには次のようにします。

 <% @entries.each do |e| %>

 <%= e.author.name %>

 <% end %>

Entryモデルでの準備
次節で使うコントローラやビューで使う機能を先回りしてEntryモデルに用意しておきましょ

う。

■モデルの属性名の日本語化
まず、モデルの属性名をロケールテキストに追加しておきます。

chapter10/config/locales/ja.yml

 1 ja:

 2 ␣␣activerecord:

 3 ␣␣␣␣models:

 4 ␣␣␣␣␣␣member: 会員情報

 5 ␣␣␣␣␣␣article: ニュース記事

 6 ␣␣␣␣␣␣entry: ブログ記事

 7 ␣␣␣␣attributes:

 （省略）

 27 ␣␣␣␣␣␣␣␣member_only: 会員限定

 28 ␣␣␣␣␣␣entry:

 29 ␣␣␣␣␣␣␣␣title: タイトル

 30 ␣␣␣␣␣␣␣␣body: 本文

 31 ␣␣␣␣␣␣␣␣posted_at: 日時

 32 ␣␣␣␣␣␣␣␣status: 状態

 33 ␣␣␣␣␣␣␣␣status_draft: 下書き

 34 ␣␣␣␣␣␣␣␣status_member_only: 会員限定

 35 ␣␣␣␣␣␣␣␣status_public: 公開

 36 ␣␣␣␣errors:

 （以下省略）

■バリデーション
Entryモデルにバリデーションを設定します。「記事タイトルは空を禁止、200文字以内」、

「本文と投稿日は空を禁止」、「状態の文字列は"draft"、"member_only"、"public"の
いずれか」という設定です。

chapter10/app/models/entry.rb

 1 class Entry < ApplicationRecord

 2 belongs_to :author, class_name: "Member", foreign_key: "member_id"

 3

 4 STATUS_VALUES = %w(draft member_only public)

 5

 6 validates :title, presence: true, length: { maximum: 200 }

 7 validates :body, :posted_at, presence: true

 8 validates :status, inclusion: { in: STATUS_VALUES }

 （以下省略）

4行目ではstatusカラムにセットできる値の配列を定数STATUS_VALUESとして定義し、
8行目でバリデーションの設定に利用しています。

■ブログ記事を絞り込むスコープ
Entryモデルにスコープを設定し、見る人に応じて閲覧できるブログ記事を絞り込めるよう

にします。

chapter10/app/models/entry.rb

 1 class Entry < ApplicationRecord

 （省略）

 8 validates :status, inclusion: { in: STATUS_VALUES }

 9

 10 scope :common, -> { where(status: "public") }

 11 scope :published, -> { where("status <> ?", "draft") }

 12 scope :full, ->(member) {

 13 where("status <> ? OR member_id = ?", "draft", member.id) }

 14 scope :readable_for, ->(member) { member ? full(member) :
common }

 15 end

commonスコープは公開記事を選び出します。publishedスコープは下書き状態ではな
い記事、つまり公開記事と会員限定記事を選び出します。fullスコープでは引数に
Memberオブジェクトを渡し、その会員が書いたか下書き状態ではない記事を選び出しま
す。

readable_forスコープでは、commonスコープとfullスコープを組み合わせます。これによ
り、ログイン前のユーザーには公開記事だけを見せ、ログイン後には公開記事と会員限定記
事、および自分の下書き記事を一覧表示できるようになります。

■ビュー用のメソッド
ビューで使う2つのクラスメソッドstatus_text、status_optionsを作っておきます。

chapter10/app/models/entry.rb

 1 class Entry < ApplicationRecord

 2 belongs_to :author, class_name: "Member", foreign_key: "member_id"

 3

 4 STATUS_VALUES = %w(draft member_only public)

 （省略）

 16 class << self

 17 def status_text(status)

 18 I18n.t("activerecord.attributes.entry.status_#{status}")

 19 end

 20

 21 def status_options

 22 STATUS_VALUES.map { |status| [status_text(status), status] }

 23 end

 24 end

 25 end

status_textメソッドは、tメソッドを使ってstatusカラムの値を日本語にするものです（「7.2　
メッセージの日本語化」の「国際化機能の使い方」を参照）。status_optionsメソッドは、
定数STATUS_VALUESを使って、[["下書き", "draft"], ["会員限定", "member_only"],
["公開", "public"]]のような配列を作ります。このメソッドは、編集フォームで記事の状態を
選択するリストを作るのに使います。

■シードデータ
開発用のシードデータを用意しましょう。db/seeds.rbの配列table_namesにentriesを

追加します。

chapter10/db/seeds.rb

 1 table_names = %w(members articles entries)

 2 table_names.each do |table_name|

 （以下省略）

次のようにEntryモデル用のシードデータを記述します。

chapter10/db/seeds/development/entries.rb

 1 body =

 2 "今晩は久しぶりに神宮で野球観戦。内野B席の上段に着席。\n\n" +

 3 "先発はヤクルトがブキャナン、広島はジョンソン。" +

 4 "2回裏に中村選手のセーフティスクイズなどでヤクルトが3点を先取。" +

 5 "そして、8回裏には代打・荒木選手がレフトスタンドへ2号満塁ホームラン。\n\n"
+

 6 "ブキャナン投手の今季初完封を見届けて、気分良く家路に着きました。"

 7

 8 %w(Taro Jiro Hana).each do |name|

 9 member = Member.find_by(name: name)

 10 0.upto(9) do |idx|

 11 Entry.create(

 12 author: member,

 13 title: "野球観戦#{idx}",

 14 body: body,

 15 posted_at: 10.days.ago.advance(days: idx),

 16 status: %w(draft member_only public)[idx % 3]
 17)

 18 end

 19 end

「Taro」、「Jiro」、「Hana」の3人に対してそれぞれ記事を10件作ります。記事の状態は3
件ごとに、下書き、会員限定、公開の繰り返しにします。

データベースの再構築を行ってください。

$ bin/rails db:rebuild

10.3 　会員ブログ機能の実装

ネストされたリソース
Morning Gloryのブログでは、全会員の記事一覧ページのほかに会員ごとの記事一覧

ページも表示できるようにします。そのために、ネストされたリソースというテクニックを使いま
す。

■ネストされたリソースのルーティング
「Taroさんのブログ記事」や「Hanakoさんのブログ記事」のようなページを作成するには、

ネストされたリソースを設定します。MemberとEntryのように1対多で関連付けられているモ
デルをコントローラで扱うときは、特に便利です。

ネストされたリソースは、routes.rbで次のように設定します。リソースentriesは、リソース
membersの下に入れ子（ネスト）になっています。

resources :members do

 resources :entries

end

このルーティングによって、EntriesControllerのアクションには次のパスでアクセスできるよう
になります。

ネストされたリソースのルーティング
アクション パス HTTPメソッド
index /members/123/entries GET
show /members/123/entries/456 GET

new /members/123/entries/new GET
edit /members/123/entries/456/edit GET
create /members/123/entries POST
update /members/123/entries/456 PATCH
destroy /members/123/entries/456 DELETE

idが123の会員の記事一覧ページなら、「/members/123/entries」のパスでアクセスで
きます。会員のidが123で、その会員の記事のidが456なら
「/members/123/entries/456」で記事詳細ページにアクセスできます。

このとき、123はparams[:member_id]のように「リソース名の単数形＋_id」という名前を
持つパラメータで取得できます。456はparams[:id]で取得できます。EntriesControllerの
indexアクションとshowアクションは、たとえば次のようになるでしょう。

def index

 @member = Member.find(params[:member_id])

 @entries = @member.entries.order(posted_at: :desc)

end

def show

 @member = Member.find(params[:member_id])

 @entry = @member.entries.find(params[:id])

end

ネストされたリソースへのリンクを作成するときには、次のようにパスを返すメソッドを使える
ようになります。Memberオブジェクトが@memberに、Entryオブジェクトが@entryに入って
いるものとします。

ネストされたリソースのパスを返すメソッド
アクション パスを返すメソッド
index member_entries_path(@member)

show member_entry_path(@member, @entry)
new new_member_entry_path(@member)
edit edit_member_entry_path(@member, @entry)
create member_entries_path(@member)
update member_entry_path(@member, @entry)
destroy member_entry_path(@member, @entry)

また、link_to、redirect_to、form_forの各メソッドには、パスを返すメソッドの代わりにパ
スを表す配列を指定することもできます。

ネストされたリソースのパスを表す配列
アクション パスを表す配列
index [@member, :entries]
show [@member, @entry]
new [:new, @member, :entry]
edit [:edit, @member, @entry]
create [@member, :entries]
update [@member, @entry]
destroy [@member, @entry]

たとえば、会員@memberの記事一覧へのリンクは次のように作れます。

<%= link_to "記事一覧", [@member, :entries] %>

本書のサンプルでは使いませんが、会員@memberの記事@entryを編集するリンクは
次のように作れます。

<%= link_to "記事の編集", [:edit, @member, @entry] %>

■ルーティングの設定

実際にルーティングを設定しましょう。asagaoアプリケーションでは、会員ごとの記事一覧
ページだけネストされたリソースを使うことにします。routes.rbを次のように書き換えます。

chapter10/config/routes.rb

 （省略）

 9 resources :members do

 10 get "search", on: :collection

 11 resources :entries, only: [:index]
 12 end

 13

 14 resource :session, only: [:create, :destroy]
 15 resource :account, only: [:show, :edit, :update]

 16 resource :password, only: [:show, :edit, :update]
 17

 18 resources :articles

 19 resources :entries

 20 end

11行目でネストされたリソースを設定しています。indexアクションだけ使うので、onlyオプ
ションで限定します。19行目では、「resources :entries」でブログ記事に対して通常のルー
ティングを設定します。

これにより、EntriesControllerのindexアクションには「/members/123/entries」と
「/entries」という2つのパスにGETメソッドでアクセスできることになります。この2つのパスは、
「会員ごとの記事一覧ページ」と「全会員の記事一覧ページ」のパスです。

ブログ記事の一覧と表示
ブログ記事の表示のための機能を作りましょう。

■EntriesControllerの作成
「bin/rails g」コマンドでEntriesControllerを作成します。4つのアクションindex、show、

new、editのためのテンプレートも自動生成します。

$ bin/rails g controller entries index show new edit

EntriesControllerのindexアクションとshowアクションを次のように書き換えます。index
アクションではネストされたリソース（会員ごとの記事一覧）と通常のリソース（全会員の
記事一覧）を扱います。

chapter10/app/controllers/entries_controller.rb

 1 class EntriesController < ApplicationController

 2 before_action :login_required, except: [:index, :show]

 3

 4 # 記事一覧

 5 def index

 6 if params[:member_id]

 7 @member = Member.find(params[:member_id])

 8 @entries = @member.entries

 9 else

 10 @entries = Entry.all

 11 end

 12

 13 @entries = @entries.readable_for(current_member)

 14 .order(posted_at: :desc).page(params[:page]).per(3)

 15 end

 16

 17 # 記事詳細

 18 def show

 19 @entry = Entry.readable_for(current_member).find(params[:id])

 20 end

 （以下省略）

indexアクションでは、まずネストされたリソースを扱うかどうかをparams[:member_id]の
有無で調べます。もしあれば、会員を@memberに取り出して、その会員の記事（1対多
の結び付きにある記事）を@entriesに取り出します。params[:member_id]がなければ、
すべての記事を取り出します。

さらに、@entriesに対してreadable_forスコープを呼び出して、閲覧できるブログ記事を
絞り込んでいます。また、「9.4　ページネーション」で紹介したkaminariのページネーション機
能を使っています。

showアクションでは、readable_forスコープとfindメソッドを組み合わせます。
params[:id]に閲覧できない記事が指定されたときは、例外
ActiveRecord::RecordNotFoundが発生します。

■記事の一覧表示
indexアクションのテンプレートの内容をすべて削除して、次の内容を書き込みます。

chapter10/app/views/entries/index.html.erb

 1 <% @page_title = @member ? @member.name + "さんのブログ" : "会員の
ブログ" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <% if current_member %>

 5 <div class="toolbar"><%= link_to "ブログ記事の作成", :new_entry %>
</div>
 6 <% end %>

 7

 8 <% if @entries.present? %>

 9 <% @entries.each do |entry| %>

 10 <h2><%= entry.title %></h2>

 11 <p><%= truncate(entry.body, length: 80) %>

 12 <%= link_to "もっと読む", entry %></p>

 13 <%= render "footer", entry: entry %>

 14 <% end %>

 15 <%= paginate @entries %>

 16 <% else %>

 17 <p>記事がありません。</p>

 18 <% end %>

1行目では、変数@memberの有無で特定の会員のブログか全会員のブログかを判別
し、見出しを切り替えます。

4〜6行目では、ユーザーがログイン中であれば、ブログ記事を作成するnewアクションへの
リンクを表示します。

9〜14行目のループで記事の一部を表示し、「もっと読む」にshowアクションへのリンクを
張ります。また、部分テンプレート_footer.html.erbを埋め込んで、記事のフッターとします。

app/views/entriesディレクトリの下に、フッター用の部分テンプレート_footer.html.erbを
次の内容で作成します。

chapter10/app/views/entries/_footer.html.erb

 1 <ul class="entry-footer">

 2 <% if current_member %>

 3 <%= Entry.status_text(entry.status) %>

 4 <% if current_member == entry.author %>

 5 <%= menu_link_to "編集", [:edit, entry] %>

 6 <%= menu_link_to "削除", entry, method: :delete,

 7 data: { confirm: "本当に削除しますか？" } %>

 8 <% end %>

 9 <% end %>

 10

 11 by <%= link_to entry.author.name, [entry.author, :entries] %>

 12

 13

 14 <%= entry.posted_at.strftime("%Y/%m/%d %H:%M") %>

 15

 16

3行目では、Entryモデルのクラスメソッドstatus_textで記事の状態を表示します。4〜8
行目では、ログインしている会員がその記事の著者である場合に「編集」と「削除」のリンク
を表示します。11行目では、著者のユーザー名を会員ごとの記事一覧ページへのリンクにし
ています。

ここで、ヘルパーメソッドmenu_link_toのコードを次のように修正します。

chapter10/app/helpers/application_helper.rb

 （省略）

 8 def menu_link_to(text, path, options = {})

 9 content_tag :li do

 10 condition = options[:method] || !current_page?(path)

 11

 12 link_to_if(condition, text, path, options) do

 13 content_tag(:span, text)

 14 end

 15 end

 16 end

 17 end

「削除」リンクのリンク先URLが現在のページのURLと同じであるため、元の実装ではリン
クになりません。methodオプションが設定されている場合は、常にリンク化するようにコード
を変更しました。10行目のヘルパーメソッドcurrent_page?は引数に指定されたURLパスと
現在のページのURLパスが一致するかどうかを調べてtrueまたはfalseを返します。

続いて、ブログ記事一覧にアクセスできるように、サイトのヘッダー用の部分テンプレートを
修正して、メニュー項目「ブログ」をEntriesControllerのindexアクションへのリンクに変えまし
ょう。

chapter10/app/views/shared/_header.html.erb

 （省略）

 15 <%= menu_link_to "ブログ", :entries %>

 （以下省略）

さらに、app/assets/stylesheetsディレクトリにブログ記事用のスタイルを記述した
entries.cssを追加します。ソースコードの掲載は省略しますので、サンプルソースの
chapter10/app/assets/stylesheetsディレクトリからコピーしてください。

ブラウザを開き、ログインしない状態でメニューの［ブログ］をクリックしてブログ記事一覧
を表示してみましょう。

全会員の記事一覧

記事のフッターの「Hana」をクリックすれば、Hanaさんの記事一覧が表示できます。

Hanaさんの記事一覧

ユーザー名「Hana」、パスワード「asagao!」でログインしてから記事一覧を表示すると、下
書き記事も表示できます。

Hanaさんの記事一覧（ログイン後）

■記事の詳細表示
showアクションのテンプレートを作成します。ログインしている会員が記事の筆者と同じな

ら、編集リンクを表示します。記事のフッターには、一覧表示で作った部分テンプレート
_footer.html.erbを使います。

chapter10/app/views/entries/show.html.erb

 1 <% @page_title = @entry.title + " - " + @entry.author.name + "さんのブ
ログ" %>

 2 <h1><%= @entry.author.name %>さんのブログ</h1>

 3 <h2><%= @entry.title %></h2>

 4

 5 <%= simple_format(@entry.body) %>

 6

 7 <%= render "footer", entry: @entry %>

記事一覧のページから［もっと読む］をクリックすると、個別の記事が表示されます。

ブログ記事の表示

■サイドバーの修正
サイドバーにも最新のブログ記事の一覧を表示することにしましょう。サイドバーの部分テン

プレートを次のように書き換えてください。

chapter10/app/views/shared/_sidebar.html.erb

 （省略）

 14 <h2>会員のブログ</h2>

 15 <%

 16 entries = Entry.readable_for(current_member)

 17 .order(posted_at: :desc).limit(5)
 18 %>

 19

 20 <% entries.each do |entry| %>

 21

 22 <%= link_to entry.title, entry %>

 23 by <%= link_to entry.author.name, [entry.author, :entries] %>

 24

 25 <% end %>

 26

サイドバーの表示が次のように変わります。

サイドバーのブログ記事一覧

記事の作成、更新、削除
記事を編集したり削除したりする機能を加えてブログ記事の機能を完成させましょう。

■newアクションとeditアクション
EntriesControllerで編集フォームを表示させるためのアクション、newとeditを次のように

修正します。

chapter10/app/controllers/entries_controller.rb

 1 class EntriesController < ApplicationController

 （省略）

 22 # 新規登録フォーム

 23 def new
 24 @entry = Entry.new(posted_at: Time.current)

 25 end

 26

 27 # 編集フォーム

 28 def edit

 29 @entry = current_member.entries.find(params[:id])

 30 end

 （以下省略）

newアクションでは、「posted_at: Time.current」として、デフォルトの投稿日時を現在
の日時にしています。

editアクションでは、1対多の関連付けの機能を使ってcurrent_member.entriesから記
事を取り出しています。ほかの会員のブログ記事を取り出そうとするとエラーになります。

■記事の編集フォーム
newアクションとeditアクションのテンプレートは型どおりに作ります。

chapter10/app/views/entries/new.html.erb

 1 <% @page_title = "ブログ記事の新規作成" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <%= form_for @entry do |form| %>

 5 <%= render "form", form: form %>

 6 <div><%= form.submit %></div>

 7 <% end %>

chapter10/app/views/entries/edit.html.erb

 1 <% @page_title = "ブログ記事の編集" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <div class="toolbar"><%= link_to "記事の表示に戻る", @entry %>
</div>
 5

 6 <%= form_for @entry do |form| %>

 7 <%= render "form", form: form %>

 8 <div><%= form.submit %></div>

 9 <% end %>

部分テンプレート_form.html.erbを次のように作成します。

chapter10/app/views/entries/_form.html.erb

 1 <%= render "shared/errors", obj: @entry %>

 2

 3 <table class="attr">

 4 <tr>

 5 <th width="80"><%= form.label :title %></th>

 6 <td><%= form.text_field :title, size: 50 %></td>

 7 </tr>

 8 <tr>

 9 <th><%= form.label :body %></th>

 10 <td><%= form.text_area :body, rows: 10, cols: 45 %></td>

 11 </tr>

 12 <tr>

 13 <th><%= form.label :posted_at, for: "entry_posted_at_1i" %></th>

 14 <td><%= form.datetime_select :posted_at,

 15 start_year: 2000, end_year: Time.current.year + 1,

 16 use_month_numbers: true %></td>

 17 </tr>

 18 <tr>

 19 <th><%= form.label :status %></th>

 20 <td><%= form.select :status, Entry.status_options %></td>

 21 </tr>

 22 </table>

記事の状態（statusカラム）を選択するために、selectメソッドで選択リスト（selectタ
グとoptionタグの組み合わせ）を作成します。selectメソッドの第2引数には、Entryモデル
のクラスメソッドstatus_optionsが返す配列を渡します。

■記事の追加と更新
EntriesControllerにcreateアクションとupdateアクションを追加します。

chapter10/app/controllers/entries_controller.rb

 （省略）

 32 # 新規作成

 33 def create

 34 @entry = Entry.new(params[:entry])

 35 @entry.author = current_member

 36 if @entry.save

 37 redirect_to @entry, notice: "記事を作成しました。"

 38 else

 39 render "new"

 40 end

 41 end

 42

 43 # 更新

 44 def update

 45 @entry = current_member.entries.find(params[:id])

 46 @entry.assign_attributes(params[:entry])

 47 if @entry.save

 48 redirect_to @entry, notice: "記事を更新しました。"

 49 else

 50 render "edit"

 51 end

 52 end

 （以下省略）

createアクションでは、記事を保存する前に「@entry.author = current_member」で
現在ログインしている会員を記事の筆者にします。

ログインして記事の追加機能と編集機能を試してみましょう。

ブログ記事の編集フォーム

■記事の削除
最後に、EntriesControllerにdestroyアクションを追加して、ブログ管理機能の完成で

す。

chapter10/app/controllers/entries_controller.rb

 （省略）

 54 # 削除

 55 def destroy

 56 @entry = current_member.entries.find(params[:id])

 57 @entry.destroy

 58 redirect_to :entries, notice: "記事を削除しました。"

 59 end

 60 end

自分の書いた記事を削除できるかどうか試してください。

1対1の関連付け
モデル間の関連付けには、このChapterで学んだ「1対多の関連付け」のほかに、「1対1の関連

付け」と「多対多の関連付け」があります。後者はChapter 14で学ぶことになりますが、前者につい
ては本書では説明を省略します。

2つのモデルXとYが1対1で関連付けられているのであれば、原理的にはモデルは1つで十分で
す。Yのすべての属性をXに移動させてしまっても、すべての情報を取り扱えます。属性名が衝突した
ら適宜変更するだけです。

しかし、現実のRails開発ではしばしば「1対1の関連付け」が使われます。たとえば、顧客を表す
Customerモデルと顧客の住所を表すCustomerAddressモデルを考えてください。後者には郵便
番号、都道府県、市区町村などが別々の属性として記録されます。この2つのモデルは1対1で関
連付けることができます。

CustomerAddressモデルの各属性をCustomerモデルに移動させることも可能ですが、2つのモ
デルに分離しておいたほうが扱いやすくなります。たとえば、住所のわからない顧客を記録したいと
き、データベーステーブルに多くのNULL値を記録しなくて済みます。バリデーションやコールバックもそ
れぞれのモデルで行ったほうがすっきり書けます。

読者の皆さんが本格的なアプリケーション開発を行う際には、ぜひインターネット上の情報などで
「1対1の関連付け」について調べて活用してください。

Chapter 10のまとめ

複数のモデルを関連付けるには、外部キーを利用してテーブルのレコードが
別のテーブルのレコードを参照するようにします。
1対多の関連付けを作るには、参照元のモデルクラスにbelongs_to、参照
先のモデルクラスにhas_manyを記述して、モデル名を指定します。
ネストしたフォームを使うと、1対多で関連付けられている複数のモデルのデ
ータを一度に扱えます。

練習問題

［A］　書籍をまとめて管理できるように、データベースにshelves（単数形はshelf）テー
ブルを追加したとします。booksテーブルがshelvesテーブルのレコードを参照できるように、外
部キーを加えることとします。マイグレーションスクリプトの空欄を埋めて、外部キーとなるカラム
名を指定してください。

class CreateBooks < ActiveRecord::Migration[5.2]

 def change

 create_table :books do |t|

 　　　　　　　　　　　　　　　　　　

 t.string :title, null: false

 t.string :author, null: false

 t.integer :price, null: false

 t.timestamps

 end

 end

end

［B］　Shelfモデル（shelvesテーブル）とBookモデル（booksテーブル）を1対多で関
連付けます。1つの本棚が複数の書籍を持っているという結び付きです。モデルクラスにそれ
ぞれ必要な記述を加えてください。

　なお、本棚が削除されても書籍は削除されないこととします。

app/models/shelf.rb

class Shelf < ApplicationRecord

 　　　　　　　　　　　　　　　　　　

end

app/models/book.rb

class Book < ApplicationRecord

 　　　　　　　　　　　　　　　　　　

end

［C］　問題［A］、［B］のようにモデルを関連付けたあと、次のようにルーティングを設
定します。

config/routes.rb

Rails.application.routes.draw do

 resources :shelves

 resources :books

 end

 resources :books

end

BooksControllerのindexアクションを作ります。パラメータにShelfモデルのidがある場合
は、その本棚に属する書籍だけを一覧表示するようにしてください。書名（title）順に取り
出すこととし、ページネーションの機能は使わないこととします。

app/controllers/books_controller.rb

class BooksController < ApplicationController

 def index

 if params[:shelf_id]

 @shelf = 　　　　　　　　　　　　　　　　　　

 @books = @shelf.　　　　　　　　　

 else

 @books = Book.order("title")

 end

 end

end

Part

4　発展的な内容

このPartでは、ストロング・パラメータ、例外処理、アセット・パイプ
ライン、Active Storage、多対多の関連付け、名前空間などを
学んでいきます。初心者には少し難しい内容も含まれています
が、繰り返し読んで乗り越えましょう。

Chapter

11　セキュリティと例外処理

ウェブアプリケーションを本番環境（実運用環境）で公開するときには、悪
意のあるユーザーによる攻撃が行われる可能性を常に考慮する必要があります。
また、ソフトウェアの不具合（バグ）やユーザーによる想定外の操作で例外（エ
ラー）が発生する可能性にも備えておくべきです。

これから学ぶこと

フォームから送信された情報を保存する際に、モデルの属性を保護する方
法を学びます。
例外が発生したときのエラーページを自作する方法を解説します。

Railsアプリケーションの開発ではさまざまな手法による外部からの攻撃に備える必要がありま
す。どのように防御すればよいのでしょうか？ また、例外（エラー）が発生したときにはブラウザ
にどのように伝えればよいでしょうか？

11.1 　ストロング・パラメータ

ストロング・パラメータは、モデルの属性を攻撃から保護するしくみです。この節では、
Chapter 5からChapter 10で作成した会員管理、マイアカウントページ、パスワード変
更の機能、ニュース記事管理機能をストロング・パラメータに準拠した形に書き換えま
す。

ストロング・パラメータとは

■マスアサインメント脆弱性
「8.4　マイアカウントページの作成」では、自分のアカウント情報を更新する

AccountsControllerのupdateアクションを次のように実装しました。

chapter11/app/controllers/accounts_controller.rb

 （省略）

 12 def update

 13 @member = current_member

 14 @member.assign_attributes(params[:account])

 15 if @member.save

 16 redirect_to @member, notice: "アカウント情報を更新しました。"

 17 else

 18 render "edit"

 19 end

 20 end

 （以下省略）

14行目のparams[:account]には、たとえば次のような内容のハッシュがセットされます。

{

 number: 11, name: "TK", full_name: "黒田 努",

 "birthday(1i)" => "1968", "birthday(2i)" => "6", "birthday(3i)" => "12",

 email: "tsutomu@example.com", sex: "1"

}

自分自身で管理者フラグ（administrator属性）を変更できないように、マイアカウント
の編集フォームには「管理者」の項目を省略してあります。しかし、ユーザーは次のような方法
で私たち開発者の裏をかくことができます。

最近のブラウザには表示しているページのHTMLソースを書き換える機能が備わっていま
す。そこで、「マイアカウント情報の編集」ページを開いて、HTMLソースの中から「背番号」フィ
ールドのinputタグを探します。そして、そのname属性の値をaccount[number]から
account[administrator]に書き換えます。最後に、「背番号」フィールドに「1」と書き込んで
「更新する」ボタンを押せば、管理者でないメンバーが管理者になることができてしまいます。
この問題はマスアサインメント脆弱性と呼ばれ、重大なセキュリティホールになります。

■ストロング・パラメータの有効化
ストロング・パラメータはこのマスアサインメント脆弱性への対策としてRails 4.0で導入され

たしくみです。「6.2　レコードの作成、更新、削除」でストロング・パラメータを無効化している
ので、ここで再び有効化しましょう。config/application.rbの36行目のtrueをfalseに書き
換えます。あるいは、36行目の記述を削除してもかまいません。

chapter11/config/application.rb

 （省略）

 33 config.time_zone = "Tokyo"

 34 config.i18n.default_locale = :ja

 35

 36 config.action_controller.permit_all_parameters = false

 37 end

 38 end

Railsサーバーが起動中なら、いったん止めて起動し直します。ブラウザで「マイアカウント情
報の編集」ページを表示して、「更新する」ボタンをクリックしてください。
ActiveModel::ForbiddenAttributesErrorというエラーが表示されれば、ストロング・パラメ
ータが有効化されていることがわかります。

■ストロング・パラメータの使い方
ストロング・パラメータの使い方について解説しましょう。AccountsControllerのupdateア

クションを次のように書き換えたとします。params[:member]の後ろに.permit(:number,
:name)を加えています。

 def update

 @member = current_member

 @member.assign_attributes(params[:account].permit(:number, :name))

 if @member.save

 redirect_to :account, notice: "アカウント情報を更新しました。"

 else

 render "edit"

 end

 end

permitメソッドがない場合は、params[:member]は次のようなハッシュを返します。実
際には、これはHashクラスのオブジェクトではなく、Hashの機能を拡張した
ActionController::Parametersクラスのオブジェクトです。

{ "number" => "10", "name" => "Taro",

 "full_name" => "佐藤 太郎", "sex" => "1",

 "birthday(1i)" => "1981", "birthday(2i)" => "12",

 "birthday(3i)" => "1",

 "email" => "Taro@example.com" }

permitメソッドにモデルの属性名を配列で指定すると、params[:member]が返すハッシ
ュは次のように変わります。

{ "number" => "10", "name" => "Taro" }

このように、permitメソッドを使うと、モデルオブジェクトに渡す属性に制限を加えて、余計
な属性を保存させないようにできます。

例外ActiveModel::ForbiddenAttributesError
permitメソッドが返すActionController::Parametersオブジェクトには「permitメソッドを通っ

た」という印が付いています。ストロング・パラメータが有効であるとき、この印が付いていない
ActionController::Parametersオブジェクトをモデルクラスのassign_attributesメソッドなどに渡す
と、例外ActiveModel::ForbiddenAttributesErrorが発生します。

permitメソッドを使ってストロング・パラメータに対応したコントローラでは、この例外は発生しませ
ん。許可されていない属性がパラメータに含まれていたら、その属性は単純に無視されます。

■プライベートメソッドを活用する
「マイアカウント情報の編集」ページのフォームには、全部で6個の入力欄があります。これ

らに対応する属性の名前をpermitメソッドの引数に加えると、updateアクションの中身は
次のようになります。誕生日入力欄は3個のセレクトボックスから構成されていますが、
permitメソッドには:birthdayだけを指定すれば十分です。

 @member = current_member

 @member.assign_attributes(

 params[:account].permit(

 :number,

 :name,

 :full_name,

 :sex,

 :birthday,

 :email

)

)

(以下省略)

さて、機能的にはこれで問題はありませんが、入力欄の数が多いのでアクションの中身が
ごちゃごちゃしています。そこで、assign_attributesメソッドの引数の中身をプライベートメソッ
ドとして抜き出します。具体的には、次のようにaccount_paramsメソッドを定義します。

 private def account_params

 params[:account].permit(

 :number,

 :name,

 :full_name,

 :sex,

 :birthday,

 :email

)

 end

すると、updateアクションを次のように簡潔に記述できるようになります。

 @member = current_member

 @member.assign_attributes(account_params)

(以下省略)

■requireメソッド
実は、先ほど作成したプライベートメソッドaccount_paramsにひとつ欠陥があります。フォ

ームから送信されてきたパラメータに:accountキーが含まれていなかった場合に例外
NoMethodErrorが発生してしまうという点です。:memberがないとparams[:account]が
nilを返し、nilにはpermitメソッドがないからです。

もちろん通常の利用でこんなことは起きませんが、ユーザーが「マイアカウント情報の編集」
ページのHTMLソースからすべての入力欄を削除してフォームを送信すれば発生します。

このような懸念に対応するにはrequireメソッドを利用します。

 private def account_params

 params.require(:account).permit(

 :number,

 :name,

 :full_name,

 :sex,

 :birthday,

 :email

)

 end

params.require(:account)はparams[:account]と同じ働きをしますが、:accountがな
いときは例外ActionController::ParameterMissingを発生させます。

requireメソッドを利用する意味
account_paramsメソッドでrequireメソッドを使用することで、発生する例外の種類が変わりま

した。そのことに何か意味があるのでしょうか。
通常、例外NoMethodErrorはプログラムの中に不具合（バグ）が存在することを意味しま

す。アプリケーションログの中にこの例外が発生した記録があれば、調査して修正する必要がありま
す。

しかし、例外ActionController::ParameterMissingの発生は、ストロング・パラメータのしくみが
働いて、いたずらや攻撃をはねのけたことを意味します。requireメソッドの利用によって何が起きて
いるのかが明確になるのです。

次節では、本番環境で例外が発生したときにユーザーに見せるエラーページを作りますが、その
際、発生した例外の種類によってエラーメッセージを切り替えます。

コントローラの修正

■マイアカウントページのストロング・パラメータ対応
それでは、マイアカウントページをストロング・パラメータに対応させましょう。まず、プライベー

トメソッドaccount_paramsをAccountsControllerに加えます。

chapter11/app/controllers/accounts_controller.rb

 （省略）

 22 # ストロング・パラメータ

 23 private def account_params

 24 params.require(:account).permit(

 25 :number,

 26 :name,

 27 :full_name,

 28 :sex,

 29 :birthday,

 30 :email

 31)

 32 end

 33 end

udpateアクションを変更して、このaccount_paramsメソッドをモデルに渡すようにしましょ
う。

chapter11/app/controllers/accounts_controller.rb

 （省略）

 12 def update

 13 @member = current_member

 14 @member.assign_attributes(account_params)

 （以下省略）

実際にブラウザで自分のアカウント情報の編集を行って、正常に動作することを確認して
ください。

■会員情報のストロング・パラメータ対応
次に、会員管理機能をストロング・パラメータに対応させます。まず、プライベートメソッド

member_paramsをMembersControllerに加えます。会員を新規登録するときだけパス
ワードの入力が許される点に留意すると、次のような実装になります。

chapter11/app/controllers/members_controller.rb

 （省略）

 61 # ストロング・パラメータ

 62 private def member_params

 63 attrs = [

 64 :number,

 65 :name,

 66 :full_name,

 67 :sex,

 68 :birthday,

 69 :email,

 70 :administrator

 71]

 72

 73 attrs << :password if params[:action] == "create"

 74

 75 params.require(:member).permit(attrs)

 76 end

 77 end

createアクションとupdateアクション共通の属性のリストを配列attrsにセットし、create
アクションが実行されているときだけ:passwordをこの配列に加え、permitメソッドに渡して
います。params[:action]で現在実行中のアクション名が取得できます。

そして、createアクションとudpateアクションを変更します。

chapter11/app/controllers/members_controller.rb

 （省略）

 33 # 会員の新規登録

 34 def create

 35 @member = Member.new(member_params)

 36 if @member.save

 37 redirect_to @member, notice: "会員を登録しました。"

 38 else
 39 render "new"

 40 end

 41 end

 42

 43 # 会員情報の更新

 44 def update

 45 @member = Member.find(params[:id])

 46 @member.assign_attributes(member_params)

 47 if @member.save

 48 redirect_to @member, notice: "会員情報を更新しました。"

 49 else

 50 render "edit"

 51 end

 52 end

 （以下省略）

ブラウザで新規会員の追加と既存会員の編集を行って、正常に動作することを確認して
ください。

■パスワード変更機能のストロング・パラメータ対応
マイアカウントページとほぼ同様の手順で、パスワード変更機能をストロング・パラメータに

対応させることができます。プライベートメソッドaccount_paramsをPasswordsController
に加えます。

chapter11/app/controllers/passwords_controller.rb

 （省略）

 34 # ストロング・パラメータ

 35 private def account_params

 36 params.require(:account).permit(

 37 :current_password,

 38 :password,

 39 :password_confirmation

 40)

 41 end

 42 end

そして、udpateアクションを変更します。

chapter11/app/controllers/passwords_controller.rb

 （省略）

 12 def update

 13 @member = current_member

 14 current_password = account_params[:current_password]

 15

 16 if current_password.present?

 17 if @member.authenticate(current_password)

 18 @member.assign_attributes(account_params)

 （以下省略）

ブラウザで自分のパスワードを変更して、正常に動作することを確認してください。

■ニュース記事管理機能のストロング・パラメータ対応
ニュース記事管理機能をストロング・パラメータに対応させます。プライベートメソッド

article_paramsをEntriesControllerに加えます。articlesテーブルのカラムとして存在しない
no_expiration属性を加えるのを忘れないようにしてください。

chapter11/app/controllers/articles_controller.rb

 （省略）

 68 # ストロング・パラメータ

 69 private def article_params

 70 params.require(:article).permit(

 71 :title,

 72 :body,

 73 :released_at,

 74 :no_expiration,

 75 :expired_at,

 76 :member_only

 77)

 78 end

 79 end

そして、createアクションとudpateアクションを変更します。

chapter11/app/controllers/articles_controller.rb

 （省略）

 40 # 新規作成

 41 def create

 42 @article = Article.new(article_params)

 43 if @article.save

 44 redirect_to @article, notice: "ニュース記事を登録しました。"

 45 else

 46 render "new"

 47 end

 48 end

 49

 50 # 更新

 51 def update

 52 @article = Article.find(params[:id])

 53 @article.assign_attributes(article_params)

 54 if @article.save

 （以下省略）

ブラウザでニュース記事の登録と編集を行って、正常に動作することを確認してください。

■ブログ記事管理機能のストロング・パラメータ対応
ブログ記事管理機能をストロング・パラメータに対応させます。プライベートメソッド

entry_paramsをEntriesControllerに加えます。

chapter11/app/controllers/entries_controller.rb

 （省略）

 61 # ストロング・パラメータ

 62 private def entry_params

 63 params.require(:entry).permit(

 64 :member_id,

 65 :title,

 66 :body,

 67 :posted_at,

 68 :status

 69)

 70 end

 71 end

そして、createアクションとudpateアクションを変更します。

chapter11/app/controllers/entries_controller.rb

 （省略）

 32 # 新規作成

 33 def create

 34 @entry = Entry.new(entry_params)

 35 @entry.author = current_member

 36 if @entry.save

 37 redirect_to @entry, notice: "記事を作成しました。"

 38 else
 39 render "new"

 40 end

 41 end

 42

 43 # 更新

 44 def update

 45 @entry = current_member.entries.find(params[:id])

 46 @entry.assign_attributes(entry_params)

 47 if @entry.save

 （以下省略）

ブラウザでブログ記事の登録と編集を行って、正常に動作することを確認してください。

11.2 　エラーページのカスタマイズ

この節では、例外の発生を捕まえて「ファイルが見つかりません」のようなエラーページを
カスタマイズする方法を紹介します。

Railsの例外を処理する
Railsアプリケーションの起動中に例外が発生したときは、Railsが自動的に例外を捕捉し

てエラー表示を行います。エラー表示をカスタマイズしたいときは、コントローラの中でクラスメソ
ッドrescue_fromメソッドを使用して、自分で例外を処理します。

ApplicationControllerにrescue_fromメソッドを並べていきます。コントローラはすべて
ApplicationControllerクラスを継承しているので、コントローラで発生した例外はここに記
述したrescue_fromメソッドで処理できます。

chapter11/app/controllers/application_controller.rb

 （省略）

 7 class LoginRequired < StandardError; end

 8 class Forbidden < StandardError; end

 9

 10 if Rails.env.production? || ENV["RESCUE_EXCEPTIONS"]

 11 rescue_from StandardError, with: :rescue_internal_server_error

 12 rescue_from ActiveRecord::RecordNotFound, with:
:rescue_not_found

 13 rescue_from ActionController::ParameterMissing, with:
:rescue_bad_request

 14 end

 15

 16 rescue_from LoginRequired, with: :rescue_login_required

 17 rescue_from Forbidden, with: :rescue_forbidden

 18

 19 private def login_required

 （以下省略）

rescue_fromで5つの例外を処理しています。rescue_fromの第1引数には例外のクラス
を指定します。withオプションには例外が発生したときに実行するメソッドの名前を指定しま
す。たとえば、11行目ではfindメソッドが例外ActiveRecord::RecordNotFoundを発生さ
せたときに、rescue_404メソッドを実行することを指定しています。

開発中はブラウザにエラーに関する情報が表示されたほうが便利なので、3つの例外は本
番モードのときだけ処理しています。例外LoginRequiredとForbiddenは開発モードでも捕
捉してカスタムエラーメッセージを表示します。ただし、エラー処理自体の開発をするため環境
変数RESCUE_EXCEPTIONSがセットされているときには、すべての例外を捕捉します。環
境変数をセットする方法については後述します。

rescue_fromの順番
rescue_fromメソッドを記述する順番に注意してください。親子関係にある例外クラスを

rescue_fromに指定する場合は、親のほうを先に指定します。StandardErrorは、Rubyプログラム
の実行中に発生するエラーを表すクラス（ArgumentError、NameError、RuntimeErrorなど）
の親あるいは親の親です。10行目の記述を11〜13行目の記述と入れ替えるとうまく動きません。

ApplicationControllerに例外発生に対応する4つのプライベートメソッドを加えましょう。

chapter11/app/controllers/application_controller.rb

 （省略）

 17 private def login_required

 18 raise LoginRequired unless current_member

 19 end

 20

 21 private def rescue_bad_request(exception)

 22 render "errors/bad_request", status: 400, layout: "error",

 23 formats: [:html]

 24 end

 25

 26 private def rescue_login_required(exception)

 27 render "errors/login_required", status: 403, layout: "error",

 28 formats: [:html]

 29 end

 30

 31 private def rescue_forbidden(exception)

 32 render "errors/forbidden", status: 403, layout: "error",

 33 formats: [:html]

 34 end

 35

 36 private def rescue_not_found(exception)

 37 render "errors/not_found", status: 404, layout: "error",

 38 formats: [:html]

 39 end

 40

 41 private def rescue_internal_server_error(exception)

 42 render "errors/internal_server_error", status: 500, layout: "error",

 43 formats: [:html]

 44 end

 45 end

これらのプライベートメソッドでは、renderメソッドでエラー用のテンプレートをレンダリングして
います。statusオプションには、サーバーがブラウザに返すHTTPステータスコードを指定します。
ここで使っているステータスコードは次のとおりです（ステータスコードについては「3.1　Railsと
HTTPの基本」を参照）。

ステータスコード
ステータスコード ステータス名 意味
400 Bad Request リクエストの構文、形式、内容が正しくない。
403 Forbidden リソースへのアクセス権限がない。
404 Not Found リソースが存在しない。
500 Internal Server Error アプリケーションでエラーが発生した。

renderメソッドにはlayoutオプションとformatsオプションも指定しています。エラー画面で
は、後述のerror.html.erbをレイアウトテンプレートにします。formatsオプションは、テンプレー
トの拡張子がhtmlであることを指定します。この指定がないと、URLのパスの拡張子がjpg
やjsonのような場合にうまく処理できません。

エラー用テンプレート

■テンプレートの作成
エラー表示のためには、専用のレイアウトテンプレートを使うことにします。

app/views/layoutsの下に新規ファイルerror.html.erbを作成し、次のように記述してくだ
さい。

chapter11/app/views/layouts/error.html.erb

 1 <!DOCTYPE html>

 2 <html>

 3 <head>

 4 <meta charset="utf-8">

 5 <title><%= page_title %></title>

 6 <%= stylesheet_link_tag "application", media: "all" %>

 7 </head>

 8 <body>

 9 <div id="container">

 10 <header>

 11 <%= image_tag "logo.gif", size: "272x48", alt: "Morning Glory" %>

 12 <nav class="menubar">

 13 TOP

 14 </nav>

 15 </header>

 16 <main>

 17 <%= yield %>

 18 </main>

 19 <footer>

 20 <%= render "shared/footer" %>

 21 </footer>

 22 </div>

 23 </body>

 24 </html>

app/viewsディレクトリの下にerrorsディレクトリを作成し、5つのテンプレートファイルを作
成します。400エラー用のbad_request.html.erb、403エラー用の
login_required.html.erbとforbidden.html.erb、404エラー用のnot_found.html.erb、
500 エラー用のinternal_server_error.html.erbです。内容はそれぞれ次のようにします。

chapter11/app/views/errors/bad_request.html.erb

 1 <% @page_title = "Bad Request" %>

 2 <h1>400 Bad Request</h1>

 3 <p>リクエストの形式が正しくありません。</p>

chapter11/app/views/errors/login_required.html.erb

 1 <% @page_title = "ログインが必要です" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <%= render "shared/login_form" %>

chapter11/app/views/errors/forbidden.html.erb

 1 <% @page_title = "Forbidden" %>

 2 <h1>403 Forbidden</h1>

 3 <p>このページにはアクセスできません。</p>

chapter11/app/views/errors/not_found.html.erb

 1 <% @page_title = "Not Found" %>

 2 <h1>404 Not Found</h1>

 3 <p>ページが見つかりません。</p>

chapter11/app/views/errors/internal_server_error.html.erb

 1 <% @page_title = "Internal Server Error" %>

 2 <h1>500 Internal Server Error</h1>

 3 <p>システムエラーのためページが表示できません。</p>

■エラーページの確認
では、エラーページが正しく表示されることを確認しましょう。まず、テキストエディタで

config/environmentsディレクトリのdevelopment.rbを開き、
config.consider_all_requests_localと書かれた行を探して、次のように変更します。

 config.consider_all_requests_local = false

そして、ターミナルで次のコマンドを実行してサーバーを起動します。

$ RESCUE_EXCEPTIONS=1 bin/rails s

このようにコマンド本体の前にRESCUE_EXCEPTIONS=1を付けると、環境変数
RESCUE_EXCEPTIONSに"1"という文字列がセットされます。この結果、本番モードと同様
にすべての例外が捕捉されるようになります。

ログアウト状態で「http://localhost:3000/members」を開くと、次のようにログインフォー
ムが表示されます。

ログインフォームの表示

404エラーを確認するには、「http://localhost:3000/articles/100」のように存在しない
ページを開きます。

404エラーの表示

Chapter 15で初めて例外Forbiddenが実際に使われるので、まだ403エラーの確認はで
きません。また、400エラーや500エラーは普通の使い方では発生しないものです。そこで、こ
れらのページを確認するには少し工夫が必要です。まず、config/routes.rbに次のルーティン
グを加えます。

chapter11/config/routes.rb

 1 Rails.application.routes.draw do

 2 root to: "top#index"

 3 get "about" => "top#about", as: "about"

 4 get "bad_request" => "top#bad_request"

 5 get "forbidden" => "top#forbidden"

 6 get "internal_server_error" => "top#internal_server_error"

 7

 8 1.upto(18) do |n|

 （以下省略）

TopControllerに2つのアクションを追加します。

chapter11/app/controllers/top_controller.rb

 （省略）

 10 def bad_request

 11 raise ActionController::ParameterMissing, ""

 12 end

 13

 14 def forbidden

 15 raise Forbidden, ""

 16 end

 17

 18 def internal_server_error

 19 raise

 20 end

 21 end

bad_requestアクションでは、raiseメソッドで400エラーを引き起こす例外
ActionController::ParameterMissingを発生させています。第2引数には例外のメッセー
ジとなる文字列を指定します（ここでは空文字を指定）。internal_server_errorアクショ
ンでは、引数なしでraiseメソッドを呼んで例外RuntimeErrorを発生させます。この例外は
StandardErrorの子クラスです。

ブラウザで「http://localhost:3000/bad_request」を開くと、次のように400エラーが表
示されます。

400エラーの表示

同様に、ブラウザで「http://localhost:3000/forbidden」を開くと、次のように403エラー
が表示されます。

403エラーの表示

さらに、ブラウザで「http://localhost:3000/internal_server_error」を開くと、次のように
500エラーが表示されます。

500エラーの表示

サンプルのエラーページは簡素なものですが、自分のサイトに合わせてデザインに凝ったエラ
ーページやもっと親切なエラーページを作成してもよいでしょう。ただし、エラーページがさらにエラ
ーを起こすことがないよう、十分注意してください。

ルーティングエラーの処理
実は、以上のようにApplicationControllerを書き換えただけでは、ルーティングエラーを

処理できません。Railsのコンポーネントの中でルーティングを処理するのは、Action
ControllerではなくAction Dispatchです。ルーティングエラーはAction Controllerに伝わり
ません。

まず、config/application.rbを次のように変更します。

chapter11/config/application.rb

 （省略）

 36 config.action_controller.permit_all_parameters = false

 37

 38 config.exceptions_app = ->(env) do

 39 ErrorsController.action(:show).call(env)

 40 end

 41 end

 42 end

ここでは、Action Controllerに伝わらない例外を処理する方法として、
ErrorsControllerのshowアクションを呼ぶように指定しています。この書き方は、定石として
覚えてください。

そして、app/controllersディレクトリに新規ファイルerrors_controller.rbを作成し、次の
ような内容を書き入れます。

chapter11/app/controllers/errors_controller.rb

 1 class ErrorsController < ActionController::Base

 2 layout "error"

 3

 4 def show

 5 ex = request.env["action_dispatch.exception"]

 6

 7 if ex.kind_of?(ActionController::RoutingError)

 8 render "not_found", status: 404, formats: [:html]

 9 else

 10 render "internal_server_error", status: 500, formats: [:html]

 11 end

 12 end

 13 end

式request.env["action_dispatch.exception"]で発生した例外を取得できます。それ
がActionController::RoutingErrorのインスタンスであれば、「ページが見つかりません。」と
いうエラーページを表示します。

なお、ルーティングエラーを発生させたURLパスが.pngや.jsonで終わっていると、formatsオ
プションなしのrenderメソッドはそれらの形式でレスポンスを返そうとします。しかし、asagao
にはPNG形式やJSON形式のエラーページテンプレートが用意されていないので、「Missing
template」エラーが発生してしまいます。この問題を回避するため、formats: [:html]という
オプションを加え、常にHTML形式でエラーページを表示するようにしています。

さて、この章の学習を終えたら、テキストエディタでconfig/environmentsディレクトリの
development.rbを開き、config.consider_all_requests_localと書かれた行を探して、値
をtrueに戻してから次のChapterに進みましょう。

 config.consider_all_requests_local = true

Chapter 11のまとめ

マスアサインメント脆弱性への対策を取るには、ストロング・パラメータを有
効にする必要があります。
独自のエラーページを作るには、rescue_fromに例外クラスとメソッド名を
指定します。
ルーティングエラーを独自の方法で処理するには、アプリケーション設定項目
のconfig.exceptions_appに処理方法を記述します。

練習問題

［A］　次に示すのは書籍を管理するBooksControllerのcreateアクションを抜き出した
ものです。ただし、ストロング・パラメータが無効であるという前提で実装されています。

 def create

 @book = Book.new(params[:book])

 if @book.save

 redirect_to @book, notice: "書籍を登録しました。"

 else

 render "new"

 end

 end

そして、ストロング・パラメータを有効にした場合のBooksControllerのコードを次に示しま
す。空欄を埋めてください。

class BooksController < ApplicationController

（省略）

 def create

 @book = Book.new(　　　　　　　　　　)

 if @book.save

 redirect_to @book, notice: "書籍を登録しました。"

 else

 render "new"

 end

 end

（省略）

 private def book_params

 params.　　　　　　　　(:book).　　　　　　　　(

 :title,

 :author,

 :price

)

 end

end

［B］　例外ActiveRecord::RecordNotFoundが発生したときに、ステータスコード404の
カスタムエラーページを表示するようにしたApplicationControllerのコードを次に示します。
空欄を埋めてください。

class ApplicationController < ActionController::Base

 　　　　　　　　 ActiveRecord::RecordNotFound, 　　　　:
:rescue_404

 private def rescue_404(exception)

 render "errors/not_found", status: 　　　　, layout: "error",

 formats: [:html]

 end

end

Chapter

12　アセット・パイプライン

このChapterでは、外部サービスの秘密鍵などの資格情報を暗号化して保存
する方法、本番モードでRailsサーバーを起動する方法、アセット・パイプラインを
利用してスタイルシート、JavaScriptプログラム、画像ファイルなどを管理する方
法などを紹介します。

これから学ぶこと

資格情報を暗号化して安全に管理する方法について学びます。
本番モードでRailsサーバーを起動する方法を習得します。
アセット・パイプラインによるスタイルシート、JavaScriptプログラム、画像ファ
イルの処理について紹介します。
JavaScriptでフォームの一部を動的に変化させる方法について学びます。

Railsのアセット・パイプラインにはどのような役割があるのでしょうか？ アセットとは何でしょう
か？

12.1 　暗号化された資格情報

Railsには外部サービスの秘密鍵など第三者の目から隠すべき情報を暗号化して管
理する手段が標準で用意されています。

credentials.yml.encとmaster.key
本題に入る前に、Rails 5.2で導入された「暗号化された資格情報（Encrypted

Credentials）」というしくみについて解説します。一般に「資格情報」とは、あるシステムや
サービスを利用する権限を持つことを証明するための情報を指します。たとえば、ユーザー名、
メールアドレス、パスワード、秘密鍵、公開鍵等の組み合わせが資格情報となります。当然
ながら、資格情報は他人の目から隠しておく必要があります。

Railsの「暗号化された資格情報」では、configディレクトリの下に置かれる次の2つのファ
イルを用いて資格情報を保存します。

credentials.yml.enc
master.key

credentials.yml.encには資格情報が暗号化されて記録されています。master.keyは暗
号を解くための「鍵」です。この2つのファイルを別々に保管すれば安全に資格情報を扱うこ
とができます。

たとえば、私たちが作ったこのasagaoというRailsアプリケーションのソースコードを別の開発
者に渡すことを考えましょう。その際、ソースコード全体をそのまま圧縮してメールに添付して送
るのは危険です。第三者にメールの中身を盗み見られると、資格情報が漏れてしまいます。
そこで、ソースコードを他人に渡すときはmaster.keyを除外しておき、別の安全な方法で
master.keyを渡すようにするわけです。

さて、資格情報を編集するにはターミナルで次のコマンドを実行します。

$ bin/rails credentials:edit

するとテキストエディタnanoまたはVimが起動します。どちらになるかは、「1.3　テキストエ
ディタの選択」で設定した環境変数EDITORの値によります。テキストエディタの編集画面に
は次のようなYAML形式のデータが現れます。

aws:

access_key_id: 123

secret_access_key: 345

(以下省略)

これを編集してからテキストエディタを終了すると資格情報が暗号化されて、
credentials.yml.encに書き込まれます。

secret_key_baseの生成
Railsアプリケーションを本番モードで起動するためには、credentials.yml.encにおいて

secret_key_baseというキーに値がセットされていなければなりません。この値は、セッション
情報の署名やクッキーの暗号化に使われます。

rails newコマンドでRailsアプリケーションの骨格を生成した際にsecret_key_baseが設
定されますが、master.keyを紛失してしまった場合には作り直す必要があります。また、本
書のサポートサイトからダウンロードしたasagaoのソースコードにはcredentials.yml.encも
master.keyも含まれません。

新たなmaster.keyとcredentials.yml.encのセットを生成するには、まず
credentials.yml.encを削除します。そして、ターミナルで前項で説明したコマンドを実行しま
す。

$ bin/rails credentials:edit

テキストエディタが開いたら、そのまま閉じてください。configディレクトリに2つのファイルが
作られているはずです。

資格情報の設定と参照
credentials.yml.encにはsecret_key_base以外の任意の資格情報を保存することがで

きます。bin/rails credentials:editコマンドによりテキストエディタを開き、たとえば次のような
設定を加えたとします。

foo:

 bar: example

すると、Railsアプリケーションのソースコードの中で次のように書けば、文字列exampleを
取り出すことができます。

Rails.application.credentials.dig(:foo, :bar)

Chapter 13では各種ストレージサービスの資格情報を暗号化して保存するために、この
方法を使います。

12.2 　アセット・パイプライン

アセット・パイプラインは、CSSやJavaScriptの読み込みを高速化するための機能で
す。ここでは、アセット・パイプラインのしくみと役割について解説します。

アセット・パイプラインの働き
アセット・パイプラインの「アセット」は「資産」の意味で、画像ファイル、スタイルシート、

JavaScriptプログラムなどを指します。アセット・パイプラインは、次の機能からなります。

変換：Sassで書かれたスタイルシートをCSS形式に変換したり、CoffeeScriptのスクリ
プトをJavaScriptに変換したりする。
圧縮と結合：CSSやJavaScriptの改行や空白を除去してサイズを縮小する。また、複
数のCSSやJavaScriptを1つのファイルにまとめる。
キャッシュ：public/assetsディレクトリの下にキャッシュファイルを生成する。ブラウザに
はキャッシュファイルを送信する。

本番モード用のアセットファイル

アセット・パイプラインは、app/assetsディレクトリの下にあるCSS、JavaScript、画像に対
して働きます。こうしたファイルをいわば「加工前の材料」と見なし、加工した結果をブラウザ
に送信することで高速化を図ります。また、変換機能によってブラウザが対応していないSass
やCoffeeScriptのような新しい形式のファイルが使えるようになります。

一方、本番サーバー上でアプリケーションの起動中にCSSやJavaScriptを変更しても、変
更結果は反映されません。後述のRakeタスクassets:precompileを実行してキャッシュファ
イルを生成する必要があります。

本番モードの準備
アセット・パイプラインの動作の全体は、開発モードではなく本番モードで確認できます。パ

ソコン上のアプリケーションを本番モードで動かしてみましょう。
Railsアプリケーションを本番モードで動かすためには、次の2つの環境変数をセットする必

要があります。

RAILS_ENV
RAILS_SERVE_STATIC_FILES

まず、環境変数RAILS_ENVについては「4.1　データベースとモデルの基本」で説明しまし
た。productionという値をセットすれば本番モードとなります。環境変数
RAILS_SERVE_STATIC_FILESは、publicディレクトリの静的ファイル（CSS、JavaScript、
画像などのファイル）をRailsアプリケーションがブラウザに返すかどうかを決めます。本番モー
ドでは「返さない」という設定がデフォルトですが、この環境変数に何らかの値をセットすれば
「返す」設定になります。

ターミナルで次のコマンドを実行してください。

$ export RAILS_ENV=production

$ export RAILS_SERVE_STATIC_FILES=1

公開サーバーでの静的ファイルの取り扱い
公開サーバーにおいては、ApacheやNginxなどのウェブサーバーが静的ファイルを直接ブラウザに

返すように設定するのが一般的です。そのため、Railsの本番モードではpublicディレクトリのファイル

を返さない設定になっています。この節ではApacheやNginxを使わずに解説しますので、環境変
数RAILS_SERVE_STATIC_FILESの設定を変更しています。

アセット・パイプラインの動作確認
本番モードでアプリケーションを起動するには、次のコマンドを実行して、キャッシュファイル

を生成する必要があります。これを実行しないとエラーになります。

$ bin/rails assets:precompile

本番用のデータベースを作成します。環境変数
DISABLE_DATABASE_ENVIRONMENT_CHECKに"1"をセットすることにより、本番用デー
タベースに対する保護を解除しています。

$ DISABLE_DATABASE_ENVIRONMENT_CHECK=1 bin/rails db:setup

そして、Railsサーバーを起動します。

$ bin/rails s

db:setupタスク
Railsのdb:setupタスクは、データベースの作成、スキーマ（テーブルとカラム定義）の読み込み、

シードデータの投入という一連の作業を行います。db:resetタスクと似ていますが、最初にデータベー
スを削除しない点が異なります。

ブラウザで「http://localhost:3000/」を開いてトップページを表示し、HTMLのソースを見
てみましょう。CSSファイルとJavaScriptファイルにリンクするタグがそれぞれ1つにまとめられ、
「application-83f6547...css」のような長いファイル名になっています。

<link rel="stylesheet" media="all" href="/assets/application-
83f65472a67d

3f4c9b3ef5d1c8d797b9.css" data-turbolinks-track="true" />

<script src="/assets/application-51933ed227720080de5ca24f7bf17bf6.js"
dat

a-turbolinks-track="true"></script>

public/assetsディレクトリの下を見てみましょう。「rake assets:precompile」によって生
成されたファイルが置かれています。「application-83f6547...css」や「application-
51933ed...js」の中身をテキストエディタで見ると、ファイルを小さくするために空白や改行が
取り除かれていることがわかります。

本番モード用のアセットファイル

なお、アセット・パイプラインがCSSファイルやJavaScriptファイルにリンクするタグをまとめる
のは、本番モードだけです。「3.4　モックアップの作成」で見たとおり、開発モードでは、ファイ
ルごとにタグが作成されます。

動作を確認したらサーバーを終了して、ターミナルを閉じ、新たにターミナルを開き直してくだ
さい。これで環境変数の値がリセットされます。

publicディレクトリの下に置く場合
画像、CSSファイル、JavaScriptをpublicディレクトリの下に置くこともできます。その場合は、

stylesheet_link_tag、javascript_include_tag、image_tagに指定するファイル名を「/」で始まる
パスに変えます。こうして指定したファイルは、アセット・パイプラインで処理されません。

<%= stylesheet_link_tag "/stylesheets/layout" %>

キャッシュとフィンガープリント
Railsのassets:precompileタスクで生成したCSS、JavaScript、画像のファイル名には、

「application-83f6547...css」の「83f6547...」のようなフィンガープリント（指紋）が付きます。フィ
ンガープリントは、ファイルの内容から生成されたもので、ファイルの内容が更新されれば値が変化し
ます。これによって、ブラウザや各種のサーバーがキャッシュに保存した古い内容を利用しないようにし
ています。つまり、CSS、JavaScript、画像ファイルを更新すれば、確実に新しいものがブラウザに反
映されます。

12.3 　Sass

アセット・パイプラインとともに使われるSassの機能を試してみましょう。

Sassの書式
Sass（Syntactically Awesome Stylesheets）は、CSSの文法を改良したスタイルシー

ト言語です。ブラウザに読み込ませるときは、Sassのテキストを通常のCSSに変換して使いま
す。

本書では、Sassの文法について細かい解説はしません。文法の詳細については、Sassの
ウェブサイトを参照してください。

Sass: Syntactically Awesome Stylesheets
http://sass-lang.com/

次のCSSをSassに変えてみましょう。id属性がerrorsのdivタグと、そのdivタグの中にある
h2タグのスタイルです。

div#errors { background-color: #fee; }

div#errors h2 { color: red; }

Sassでは、タグの入れ子関係を{ }の組み合わせでわかりやすく表すことができます。

div#errors {

 background-color: #fee;

 h2 {

 color: red;

http://sass-lang.com/

 }

}

RailsでSassのこの書式を使うときは、スタイルシートファイルの拡張子を.scssにします。

SassとSCSS
Sassには2種類の書式があります。古い書式では、タグの入れ子関係をインデントで表します。

現在では、上記の例のように{ }を組み合わせた新しい書式がもっぱら使われています。新しいほう
の書式をSCSS（Sassy CSS）と呼びます。

本書を読むうえでは、「SassとSCSSは同じもの」と考えれば十分です。

Sassを使う
asagaoアプリケーションの一部のCSSをSass（SCSS形式）に変えてみましょう。

app/assets/stylesheetsディレクトリの下にpagination.cssというファイルがあります。これの
ファイル名をpagination.scssに変更し、内容を次のように書き換えてください。

chapter12/app/assets/stylesheets/pagination.scss

 1 $border-color: #499;

 2

 3 nav.pagination {

 4 font-size: 75%;

 5 padding: 4px 8px;

 6 border: 1px solid $border-color;

 7 word-spacing: 4px;

 8

 9 span.current {

 10 font-weight: bold;

 11 }

 12 }

SCSSの特徴のひとつは、変数が使えることです。1行目で$border-colorという変数に
#499という値をセットし、6行目で利用しています。

また、SCSSではセレクタをネストすることができます。9〜11行目は、CSSでは次のように
書かなければなりませんでした。

nav.pagination span.current {

 font-weight: bold;

}

変換後の結果を確認するには、開発モードでサーバーを起動し、ブラウザで
「http://localhost:3000/assets/pagination.css」を開いてください。

CSSやJavaScriptでの画像指定
CSSやJavaScriptの中では、HTMLテンプレートと同様に<%=と%>で囲んでRubyのコードを埋

め込めます。ただし、この記法を利用する場合は、header.css.erbのように、ファイル名の最後に拡
張子.erbを付加します。次の例をご覧ください。background-imageプロパティに画像ファイルを指
定しています。

div#header {

 background-image: url(<%= asset_path "rails.png" %>);

}

asset_pathメソッドは、フィンガープリントを含む/assets/rails-
15ff13e9c3486ddd78bc91be8063523d.pngのようなファイル名を返します。

12.4 　JavaScript

この節では、JavaScriptライブラリjQueryをasagaoに導入し、ユーザーがブラウザ上で
行った操作に応じて入力フォームの一部を表示したり、隠したりする効果を実現しま
す。

jQueryの導入
jQuery（ジェイクエリー）は、ブラウザ上でのDOM操作やAjax呼び出しを行うための

JavaScriptライブラリです。Rails 5.0まではrails newコマンドで生成されるGemfileにGem
パッケージjquery-railsが記載されていたためはじめからjQueryが使えましたが、Rails 5.1以
降は除外されることになりました。そこで、まずはGemfileを次のように書き換えてください。

chapter12/Gemfile

 （省略）

 38 gem 'kaminari-i18n'

 39 gem 'jquery-rails'

 40

 41 group :development, :test do

 （以下省略）

そして、追加したGemパッケージをインストールします。

$ bundle install

さらに、app/assets/javascriptsディレクトリのapplication.jsを次のように書き換えてくだ
さい。

chapter12/app/assets/javascripts/application.js

 （省略）

 13 //= require rails-ujs

 14 //= require activestorage

 15 //= require turbolinks

 16 //= require jquery

 17 //= require_tree .

アセット・パイプラインで処理されるとき、行頭の記号//=が特別な意味を持ちます。この
記号に続くrequireやrequire_treeはディレクティブと呼ばれ、アセット・パイプラインに対して
特定の処理を指示します。ここでは「JavaScriptライブラリjQueryのソースコードをここに読み
込め」という意味になります。

ニュース記事編集フォームの拡張
では、簡単なJavaScriptプログラミングに挑戦してみましょう。app/assets/javascriptsデ

ィレクトリに新しくファイルarticles.jsを作り、次のコードを入力してください。

chapter12/app/assets/javascripts/articles.js

 1 $(document).on("turbolinks:load", function() {

 2 var cb = $("#article_no_expiration");

 3 var field = $("#article_expired_at");

 4

 5 var changeExpiredAt = function() {

 6 if (cb.prop("checked"))

 7 field.hide()

 8 else

 9 field.show()

 10 }

 11

 12 cb.bind("click", changeExpiredAt);

 13

 14 changeExpiredAt();

 15 })

このJavaScriptプログラムはChapter 9で作ったニュース記事編集のフォームに機能を加え
ます。［掲載終了日時を設定しない］をチェックすると日時の入力欄を隠し、チェックを外
すと入力欄を表示します。

1行目はjQueryを用いるときの決まり文句です。ブラウザで新しいページが表示されると
turbolinks:loadイベントが発生します。そのときに2行目以下のコードが実行され、日時入
力欄の表示・非表示を切り替える機能がasagaoに組み込まれます。

6行目の条件式cb.prop("checked")は、チェックボックス［掲載終了日時を設定しな
い］にチェックが入っていればtrueを、チェックが外れていてればfalseを返します。

12行目ではjQueryのbindメソッドを用いて、チェックボックスがクリックされたときに関数
changeExpiredAtが呼び出されるようにしています。14行目では、ページが読み込まれた直
後に関数changeExpiredAtを呼び出しています。

JavaScriptに変換されたソースコードを確認するには、ブラウザで
「http://localhost:3000/assets/articles.js」を開いてください。

このJavaScriptプログラムを動かすため、フォームのテンプレートを次のように修正してくださ
い。

chapter12/app/views/articles/_form.html.erb

 （省略）

 20 <td>

 21 <div>

 22 <%= form.check_box :no_expiration %>

 23 <%= form.label :no_expiration %>

 24 </div>

 25 <div id="article_expired_at">

 26 <%= form.datetime_select :expired_at,

 27 start_year: 2000, end_year: Time.current.year + 1,

 28 use_month_numbers: true %>

 29 </div>

 30 </td>

 （以下省略）

掲載終了日時の入力欄を囲むdivタグにid属性を設定しています。その値
article_expired_atがarticles.jsの3行目にある$("#article_expired_at")と対応します。こ
の部分がhide()メソッドによって隠されたり、show()メソッドによって表示されたりします。

JavaScriptで作ったフォームの機能

Turbolinks
ここでは、JavaScriptに関連した機能として、Turbolinksについて簡単に説明しておきまし

ょう。

Turbolinksは、ブラウザによるページの遷移を高速化する機能です。ブラウザ上で何かリ
ンクをクリックして別のページに移ると、ブラウザはHTMLを読み込み、リンクされているCSSと
JavaScriptをすべて解釈し直します。アセット・パイプラインを使うとCSSとJavaScriptの読み
込みは高速になりますが、この「解釈」にかかる時間は減りません。

Turbolinksは、ページの遷移機能をブラウザから横取りし、JavaScriptを使ってサーバーか
らHTMLを取得してページを書き換えます。linkタグやscriptタグはページを遷移しても書き
換えずにそのままにしておくので、解釈にかかる時間をなくすことができます。

Turbolinks

「3.4　モックアップの作成」で見たように、レイアウトテンプレートのheadタグには、次のよう
なstylesheet_link_tagとjavascript_include_tagがありました。

 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-
track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track': 'reload'
%>

この「'data-turbolinks-track': 'reload'」は、linkタグやscriptタグにdata-turbolinks-
track="reload"という属性を加えます。Turbolinksはページ遷移のときに、この属性が付い
ているタグを書き換えないようにします。

なお、ブラウザでページを再読み込みしたときやURL欄に直接URLを入れたときは、
Turbolinksは働かず、通常のページ読み込みとなります。

Turbolinksを使うときの注意
Turbolinksを使ったサイトでは、JavaScriptプログラムの記述に注意してください。jQueryを使っ

てページの読み込み時にある関数を実行する場合は、通常はreadyイベントに対して関数を紐付
けますが、Turbolinksを利用する場合は対象がturbolinks:loadイベントとなります。

$(document).on("turbolinks:load", function () {

 // 読み込み時のスクリプト

});

また、ページを移動するときはlocation.hrefに値を設定しないでください。次のように、
Turbolinks.visitにパスを指定するのが正しいやり方です。

Turbolinks.visit("/");

Webpacker

近年、JavaScriptの開発ではwebpackというビルドツールがよく使われています。特に、React、
Angular、Vueなどのフレームワークを利用したい場合はほぼ必須となります。筆者自身も好んで使
っています。

GemパッケージWebpacker（末尾の「er」に注意）を導入すると、Railsアプリケーションと
webpackを連携できます。実際、Rails 5.1では--webpackオプション付きでrails newコマンドを
実行すると、Webpackerのセットアップまでを自動的に行ってくれます。

さて、本書ではWebpackerに関する解説を割愛することにしました。webpack、Node.js、Yarn
などの各種ツール類のセットアップから実際のプログラミング例までを説明しようとすれば、それだけで
一冊の本になってしまいます。プログラミング言語JavaScriptそれ自体が腰を据えて学習すべき大き
なテーマなのです。

今後、Rails開発者の間でWebpackerが普及するにつれ、アセット・パイプラインの重要性は下
がっていくことになるでしょう。しかし、近い将来にアセット・パイプラインが廃れることもなさそうです。
すでにアセット・パイプラインを利用したRailsアプリケーションは無数に存在し、これらをWebpacker
のために書き換えるのは骨の折れる作業です。また、アセット・パイプラインのほうが導入のハードル
がかなり低いので、JavaScriptプログラミングの比重が小さい開発プロジェクトでは使われ続けるは
ずです。そもそもアセット・パイプラインとWebpackerは共存できるので、webpackを使いたいという
理由でアセット・パイプラインを捨てる必要はありません。

Chapter 12のまとめ

暗号化された資格情報を編集するには、ターミナルでbin/rails
credentials:editコマンドを実行します。
アセット・パイプラインの「資産（アセット）」とは、画像ファイル、スタイルシ
ート、JavaScriptプログラムなどを指します。
アセット・パイプラインの機能は、①変換、②圧縮と結合、③キャッシュから
なります。
キャッシュファイルを生成するには、ターミナルでbin/rails
assets:precompileコマンドを実行します。
スタイルシートの記述にはSass/SCSSの記法が使えます。
JavaScriptライブラリjQueryはRails 5.1からデフォルトではインストールされ
ません。Gemパッケージjquery-railsを導入する必要があります。

練習問題

［A］　次の文の内容が正しい場合は○、間違っている場合は×を記入してください。
（　）アセット・パイプラインにより、configディレクトリの下にあるファイルmaster.key
の中身が暗号化されます。
（　）アセット・パイプラインにより、app/assets/stylesheetsディレクトリの下にある
Sass形式のスタイルシートはCSS形式に変換されます。
（　）バージョン5.1以降のRuby on RailsにはJavaScriptライブラリjQueryが同梱さ
れています。
（　）Turbolinksは、JavaScriptのコンパイル時間を短縮するための機能です。

［B］　ターミナルでbin/rails credentials:editコマンドを実行し、「暗号化された資格情
報」の内容を次のように編集しました。

remote:

 email: "taro@example.jp"

 password: "p@ssw0rd"

次に示すのは、Railsアプリケーションの中で "p@ssw0rd" という文字列を取り出すため
の式です。空欄を埋めてください。

Rails.application.　　　　　　　　　　　　　　　

Chapter

13　ファイルのアップロード

このChapterでは会員のプロフィール画像やブログ記事の添付画像をアップロ
ードする機能をMorning Gloryのサイトに追加します。

これから学ぶこと

Active Storageを使ってファイルをローカルディスクやクラウドストレージサービ
スにアップロードする方法を学びます。
アップロードされたファイルとモデルオブジェクトの結び付け方を学習します。
Morning Gloryの会員が自分のプロフィール写真やブログ記事の添付画
像をアップロードする機能を作ります。
モデルにカスタム属性を追加する方法を学びます。
アップロードされた画像を指定されたサイズに拡大・縮小してページ上に表
示します。
モデルオブジェクトのリストの表示順を入れ替える方法を学習します。
主要なクラウドストレージサービスの資格情報を設定する手順を解説しま
す。

モデルとモデルを多対多で関連付けるためには、データベース設計上でどんな工夫が必要とな
るでしょうか？

13.1 　Active Storage

ウェブアプリケーションでは、HTMLフォームを通じて画像ファイルやPDFファイルなどを
ユーザーにアップロードさせることがあります。Rails 5.2で導入されたActive Storageを
利用すると、そうした処理を簡単に実現できます。

Active Storageとは

■Active Storageのしくみ
Active StorageはRails 5.2で導入された新しい機能です。これを利用すれば、Amazon

S3、Google Cloud Storage、Microsoft Azure Storage等のクラウドストレージサービスへ
簡単にファイルをアップロードできるようになります。アップロードするファイルの中身は、画像、
動画、音声、WordやPDF形式の文書等、形式は問いません。

Active Storageはまた、クラウドストレージサービスに保存されたファイルを配信する手段も
提供します。それぞれのファイルに対して個別のURLが割り当てられます。ブラウザからこの
URLに対して要求が届くと、Railsはクラウドサービス上のURLにリダイレクションします。

たとえば、あるRailsアプリケーションのトップページのURLがhttps://example.jpであるとし
ます。このサイトからActive Storage経由でtest.pngというファイルがクラウドストレージサービ
スAmazon S3にアップロードされたとします。このとき、このファイルには、次のような形式の
URLが割り当てられます。ただし、...の部分には、200を超える長さのランダムな文字列が入
ります。

https://example.jp/rails/active_storage/representations/.../test.png

ブラウザがこのURLに対してアクセスすると、Railsは次のような形式のURLに対してリダイ
レクションします。ただし、...の部分は（さまざまなパラメータを含む）500を超える長さの文
字列が入ります。

https://s3.ap-northeast-1.amazonaws.com/...

これは、Amazon S3の用語で事前署名付きURL（pre-signed URL）と呼ばれるもの
です。このURLには5分間の有効期限が設定されています。Google Cloud Storageや
Microsoft Azure Storageなどのほかのクラウドストレージサービスを利用する場合でも、だ
いたい同じようなしくみでファイルが配信されます。最終的なURLに有効期限が設定されて
いるため、ファイルが一般に公開された状態にはなりません。

Active Storageのアクセス制御
Active Storageでは、ランダムな部分を含む複雑なURLから有効期限の設定された署名付き

URLへのリダイレクションにより、第三者がアクセスできないようにしています。しかし、厳密に言えば
ファイルにアクセス制限がかかっていることにはなりません。

なぜなら、リダイレクション前のURLを知る人間がそれをコピーして広く配布すれば、誰でもファイル
をダウンロードできる状態になるからです。5分間の有効期限にも縛られることもありません。ファイル
に厳格なアクセス制限をかけるためには、署名付きURLへのリダイレクションを行うアクションを自分
で実装する必要があります。

しかし、法律的な議論を無視すれば、リダイレクション前のURLを配布する行為とファイル自体を
配布する行為の間に本質的な違いはありません。実用上はActive Storageが提供するレベルの
アクセス制御で十分だと筆者は考えています。

■ディスクサービス
Active Storageは、アプリケーションサーバーのローカルディスクにファイルをアップロードする

こともできます。この場合、アップロード先をディスクサービスと呼びます。ディスクサービスはおも
に開発環境とテスト環境で利用されます。

ディスクサービスにアップロードされたファイルは、Railsルートディレクトリ直下のstorageディ
レクトリに置かれます。ディスクサービスを利用している場合でも、それぞれのファイルに対して
個別のURLが割り当てられて、そのURLから別のURLにリダイレクションが行われる点は同じ
です。ただし、クラウドストレージサービスの場合と異なり、リダイレクション先のURLに有効期
限は設定されません。

本番環境ではクラウドストレージサービスの利用がお勧め
本番環境でもディスクサービスを利用することは可能ですが、長期の安定的なシステム運用を目

指すならクラウドストレージサービスを使ったほうがよいでしょう。
本番環境ではロードバランサの背後に複数台のアプリケーションサーバーを配置するシステム構成

をしばしば採用します。ディスクサービスを利用した場合、Active Storageによってアップロードされた
ファイルは特定のアプリケーションサーバーのディスクにだけ書き込まれることになります。このファイルを
すべてのアプリケーションサーバーから配信できるようにするには、それらの間でstorageディレクトリの
中身を同期するしくみを用意しなければなりません。これはなかなか簡単なことではありません。アプ
リケーションサーバーの増設やアップロードされたファイル群のバックアップといった保守作業のことも考
慮すると、さらにハードルが高くなります。

セットアップ手順

■ImageMagickのインストール
Active Storageには画像のサイズを変換する機能がありますが、この機能を利用するに

はImageMagickというソフトウェアが必要です。プラットフォーム別の手順に従ってインストー
ルしてください。

macOSの場合

$ brew install imagemagick

WSL/Ubuntuの場合

$ sudo apt-get install -y imagemagick

MSYS2/MinGW（64ビット版）の場合

$ pacman -S mingw-w64-x86_64-imagemagick

MSYS2/MinGW（32ビット版）の場合

$ pacman -S mingw-w64-i686-imagemagick

■Gemパッケージmini_magickの導入
RailsでImageMagickを利用するためGemfileを次のように書き換えます（行頭のコメン

ト記号を除去）。

chapter13/Gemfile

 （省略）

 26 # Use ActiveStorage variant

 27 gem 'mini_magick', '~> 4.8'

 （以下省略）

そして、ターミナルで次のコマンドを実行します。

$ bundle install

■マイグレーションスクリプトの生成と実行
続いて、ターミナルで次のコマンドを実行します。

$ bin/rails active_storage:install

Copied migration
20180530032324_create_active_storage_tables.active_storage.rb from
active_storage

結果として、db/migrateディレクトリに2つのマイグレーションスクリプトが作られます。マイ
グレーションを実行してください。

$ bin/rails db:migrate

== 20180530032324 CreateActiveStorageTables: migrating
========================

-- create_table(:active_storage_blobs)

 -> 0.0025s

-- create_table(:active_storage_attachments)

 -> 0.0027s

== 20180530032324 CreateActiveStorageTables: migrated (0.0054s)
===============

以上で、Active Storageを利用する準備が整いました。

13.2 　プロフィール画像のアップロードと表示

この節では、Morning Gloryの会員一人ひとりに対してプロフィール画像を登録する
機能を作ります。クラスメソッドhas_one_attachedを用いて会員と画像を結び付け
る方法について学びましょう。

Memberモデルの拡張

■クラスメソッドhas_one_attached
Active Storageが提供するクラスメソッドhas_one_attachedを使うと、モデルオブジェク

トに対して1個のファイルを添付できるようになります。Memberモデルのソースコードを次のよ
うに書き換えてください。

chapter13/app/models/member.rb

 1 class Member < ApplicationRecord

 2 has_secure_password

 3

 4 has_many :entries, dependent: :destroy

 5 has_one_attached :profile_picture

 6

 7 validates :number, presence: true,

 （以下省略）

クラスメソッドhas_one_attachedは、1個のファイルを添付するための属性をモデルクラス
に追加します。上記の変更の結果、Memberモデルに属性profile_pictureが追加されま

す。

■クラスメソッドattribute
続いて、Memberモデルのソースコードを次のように書き換えてください。

chapter13/app/models/member.rb

 （省略）

 5 has_one_attached :profile_picture

 6 attribute :new_profile_picture

 7

 8 validates :number, presence: true,

 （以下省略）

クラスメソッドattributeは、モデルに読み書き可能な属性を追加します。ここでは、
Memberモデルに属性new_profile_pictureを加えています。データベーステーブル
membersにnew_profile_pictureというカラムはありませんが、あたかもそのようなカラムが
存在するかのようにプログラミングできます。私たちは、この属性を新しいプロフィール画像を
一時的に保存するために利用します。

Chapter 2で紹介したクラスメソッドattr_accessorも同様の働きをしますが、attributeで
追加された属性には、その値が変化するとモデルオブジェクトが「データベースへの保存が必
要である」状態に変わるという特徴があります。あとでこの特徴を利用します。

「プロフィール画像」フィールドの設置
では、会員情報の編集ページとマイアカウントページに「プロフィール画像」をアップロードす

るためのフィールドを追加しましょう。これらのページで共用している部分テンプレートを次のよう
に書き換えてください。

chapter13/app/views/shared/_member_form.html.erb

 1 <%= render "shared/errors", obj: @member %>

 2

 3 <table class="attr">

 4 <tr>

 5 <th><%= form.label :new_profile_picture %></th>

 6 <td><%= form.file_field :new_profile_picture %></td>

 7 </tr>

 8 <tr>

 9 <th><%= form.label :number %></th>

 10 <td><%= form.text_field :number, size: 8 %></td>

 11 </tr>

 （以下省略）

フォームビルダーのfile_fieldメソッド（6.2節）でファイルアップロード用の部品をフォーム内
に設置しています。フィールドの属性にprofile_pictureではなくnew_profile_pictureを指
定する点に注意してください。

次に、new_profile_pictureフィールドのラベルが日本語で表示されるように、日本語用
のロケールテキストを追加します。

chapter13/config/locales/ja.yml

 （省略）

 7 ␣␣␣␣attributes:

 8 ␣␣␣␣␣␣member:

 9 ␣␣␣␣␣␣␣␣new_profile_picture: プロフィール画像

 10 ␣␣␣␣␣␣␣␣number: 背番号

 11 ␣␣␣␣␣␣␣␣name: ユーザー名

 （以下省略）

続いて、ストロング・パラメータ（11.1節）の設定を変更します。まず、会員情報の変更
を受け付けるコントローラのmember_paramsメソッドを次のように書き換えます。これにより
profile_pictureが「許可された属性」となります。

chapter13/app/controllers/members_controller.rb

 （省略）

 61 # ストロング・パラメータ

 62 private def member_params
 63 attrs = [

 64 :new_profile_picture,

 65 :number,

 66 :name,

 （以下省略）

同様に、マイアカウントの変更を受け付けるコントローラのaccount_paramsメソッドを次
のように書き換えます。

chapter13/app/controllers/accounts_controller.rb

 （省略）

 22 # ストロング・パラメータ

 23 private def account_params

 24 params.require(:account).permit(

 25 :new_profile_picture,

 26 :number,

 27 :name,

 （以下省略）

まだ、画像アップロード機能は完成していませんが、この段階で動作確認をしましょう。ブ
ラウザで会員TaroとしてMorning Gloryのサイトにログインし、マイアカウントページから［ア

カウント情報の編集］へ進むと次のような画面が表示されます。

フォームにプロフィール画像フィールドが追加されている

そして、適当な画像ファイルを「プロフィール画像」として選択し、［更新する］ボタンをク
リックしてください。その結果、何もエラーが出なければOKです。

画像アップロード機能の実装
ここまでの変更により、Memberオブジェクトの属性new_profile_pictureに画像データが

セットされるようになりました。しかし、この属性はクラスメソッドattributeで作られた仮想的
な属性に過ぎません。この属性のデータを属性profile_pictureにもセットする必要がありま
す。Memberモデルのソースコードを次のように書き換えてください。

chapter13/app/models/member.rb

 （省略）

 28 validates :password, presence: { if: :current_password }

 29

 30 before_save do

 31 if new_profile_picture

 32 self.profile_picture = new_profile_picture

 33 end

 34 end

 （以下省略）

このコード追加により、画像アップロード機能が実際に動くようになります。ブラウザで動作
確認をしてください。

なお、32行目は次のように書くこともできます。効果はまったく同じです。この書き方もよく
使われるので、覚えておきましょう。

 self.profile_picture.attach(new_profile_picture)

ところで、読者の皆さんは、なぜこんな面倒なことをするのだろうかと疑問に思われたので
はないでしょうか。そもそも属性new_profile_pictureは何のために存在するのでしょうか。
確かに、フォームから画像データをパラメータprofile_pictureとして送り、Memberオブジェク
トの属性profile_pictureに直接セットしてもよさそうですね。

しかし、それではダメなのです。なぜなら、Memberオブジェクトの属性profile_pictureに
画像データをセットすると、その瞬間に画像データが保存されてしまうからです。つまり、
Memberオブジェクトでバリデーションエラーが発生しても会員のプロフィール画像が書き換わ
ってしまうのです。これは、直感に反した動きです。また、次節で行う画像データ自体のバリデ
ーションも不可能となります。

アップロードされた画像の表示
では、会員の詳細ページやマイアカウントページにプロフィール画像が表示されるようにしま

しょう。これらのページで共用している部分テンプレート_body.html.erbを次のように書き換え

てください。

chapter13/app/views/members/_body.html.erb

 1 <table class="attr">

 2 <tr>

 3 <th>プロフィール画像</th>

 4 <td>

 5 <% if @member.profile_picture.attached? %>

 6 <%= image_tag @member.profile_picture.variant(resize:
"128x128") %>

 7 <% end %>

 8 </td>

 9 </tr>

 10 <tr>

 11 <th width="150">背番号</th>

 12 <td><%= @member.number %></td>

 13 </tr>

 （以下省略）

変更点の解説はあと回しにして、まずは動作確認をしましょう。会員TaroとしてMorning
Gloryのサイトにログインし、マイアカウントページを開き、適当な画像ファイルをプロフィール画
像として登録してみましょう。

アップロードされたプロフィール画像

では、_body.html.erbの変更点を見ていきましょう。
5行目の@member.profile_picture.attached?は、プロフィール画像が添付されている

かどうかをtrueまたはfalseで返します。この部分を単に@member.profile_pictureとだけ
書くのは犯しがちな誤りです。クラスメソッドhas_one_attachedで追加された属性は常に
ActiveStorage::Attached::Oneクラスのインスタンスを返すので、ファイルが添付されていな
くても5行目の条件が成立しています。

次に、6行目の<%= %>で囲まれたRubyコードをご覧ください。

image_tag @member.profile_picture.variant(resize: "128x128")

variantは画像データを変換するメソッドです。このメソッドは添付ファイルのデータが画像
である場合にしか使えません。上の例ではオプションresizeにより画像の大きさを調整してい

ます。画像の縦横比を維持しつつ、幅128ピクセル、高さ128ピクセルの範囲で最も大きく
なるように画像を拡大・縮小します。

オリジナルの画像サイズで表示したければ、次のようにvariantメソッドを外してください。

image_tag @member.profile_picture

画像をモノクロ（グレースケール）に変換したければ、typeオプションに"Grayscale"と指
定します。

image_tag @member.profile_picture

 .variant(resize: "128x128", type: "Grayscale")

variantメソッドに指定できるオプションを調べるには
Active Storageはvariantメソッドに指定されたオプションをImageMagickに渡して、変換され

た結果を受け取っているだけなので、Active Storageのドキュメントを見てもvariantメソッドにどんな
オプションを指定できるのかはわかりません。次のURLに指定可能なオプションのリストが掲載されて
います。

https://www.imagemagick.org/script/convert.php

ただし、上記のページは情報が多すぎるので、目的のオプションをすぐに見つけられないかもしれま
せん。インターネット検索で調べるなら、キーワードとして「imagemagick」と「convert」の2つに「回
転」や「切り抜き」などの単語を加えるとよいでしょう。

シードデータ
シードデータを投入するスクリプトを書き換えて、会員「Taro」にはじめからプロフィール写真

が登録されるようにしましょう。

https://www.imagemagick.org/script/convert.php

まず、PNG形式の適当な画像を用意して、db/seeds/developmentディレクトリに
profile.pngというファイル名で置いてください。サポートサイトで配布されているサンプルソース
にも含まれています。

そして、同ディレクトリにあるmembers.rbを次のように書き換えてください。

chapter13/db/seeds/development/members.rb

 （省略）

 28 password_confirmation: "password"

 29)

 30 end

 31

 32 filename = "profile.png"

 33 path = Rails.root.join(__dir__, filename)

 34 m = Member.find_by!(number: 10)

 35

 36 File.open(path) do |f|

 37 m.profile_picture.attach(io: f, filename: filename)

 38 end

そして、データベースを再構築し、ブラウザで会員「Taro」のプロフィール写真が表示されるこ
とを確認してください。

$ bin/rails db:rebuild

では、シードデータ投入スクリプトの中身を見ていきましょう。まず、32〜33行目をご覧くだ
さい。

filename = "profile.png"

path = Rails.root.join(__dir__, filename)

メソッド__dir__は、このスクリプトが置かれているディレクトリの絶対パスを返します。これ
に"profile.png"を加えて画像ファイルの絶対パスを作り、変数pathにセットしています。

34行目以降で、実際に会員とプロフィール画像とを結び付けています。

m = Member.find_by!(number: 10)

File.open(path) do |f|

 m.profile_picture.attach(io: f, filename: filename)
end

これは、外部のファイルからデータを読み込んでモデルオブジェクトに添付する際の定石で
す。フォームから送信されたデータを添付する場合と異なり、attachメソッドにioオプションと
filenameオプションを用いる必要があります。

ファイルのデータ形式に関するバリデーション
会員情報の編集ページやマイアカウントページから「プロフィール画像」として画像ファイルで

はないファイル、たとえばExcelファイルやPDFファイルをアップロードするとどのような結果にな
るでしょうか。実際に試してみると、ファイルのアップロードまでは成功しますが、プロフィール画
像を表示するところで例外ActiveStorage::InvariableErrorが発生してしまいます。

そこで、Memberモデルのprofile_picture属性にデータ形式に関するバリデーションを加
えましょう。まず、準備作業としてMemberクラスの親クラスであるApplicationRecordクラ
スでALLOWED_CONTENT_TYPESという定数を定義します。この定数の中身は配列で、
その各要素はデータ形式を表す文字列（コンテントタイプ）です。この定数はMemberクラ
スの中で定義してもよいのですが、次節でブログ画像のバリデーションをする際にも使うため
親クラスで定義しておきます。

chapter13/app/models/application_record.rb

 1 class ApplicationRecord < ActiveRecord::Base

 2 self.abstract_class = true

 3

 4 ALLOWED_CONTENT_TYPES = %q{

 5 image/jpeg

 6 image/png

 7 image/gif

 8 image/bmp

 9 }

 10 end

次に、Memberモデルのソースコードを次のように書き換えます。

chapter13/app/models/member.rb

 （省略）

 28 validates :password, presence: { if: :current_password }

 29

 30 validate if: :new_profile_picture do

 31 if new_profile_picture.respond_to?(:content_type)

 32 unless new_profile_picture.content_type.in?
(ALLOWED_CONTENT_TYPES)

 33 errors.add(:new_profile_picture, :invalid_image_type)

 34 end

 35 else

 36 errors.add(:new_profile_picture, :invalid)

 37 end

 38 end

 39

 40 before_save do

 （以下省略）

エラーメッセージを日本語で表示するためロケールテキストを追加します。

chapter13/config/locales/ja.yml

 （省略）

 37 ␣␣␣␣errors:

 38 ␣␣␣␣␣␣messages:

 39 ␣␣␣␣␣␣␣␣invalid_member_name: "は半角英数字で入力してくださ
い。"

 40 ␣␣␣␣␣␣␣␣wrong: が正しくありません。

 41 ␣␣␣␣␣␣␣␣expired_at_too_old: は掲載開始日より新しい日時にしてく
ださい。

 42 ␣␣␣␣␣␣␣␣invalid_image_type: にはJPEG、PNG、GIF、PNG形式
の画像を指定してください。

動作確認をしましょう。いったんサーバーを停止し、bin/rails db:rebuildコマンドでデータベ
ースを作り直してください。改めてサーバーを起動し、適当な会員としてログインしてマイアカウ
ントページから画像でないファイルをプロフィール画像としてアップロードしてみてください。エラー
メッセージとして「プロフィール画像にはJPEG、PNG、GIF、PNG形式の画像を指定してくださ
い。」と表示されればバリデーションが正常に機能しています。

クラスメソッドvalidate（語末の「s」がないほう）については、Chapter 9で学習しまし
た。このメソッドはブロックを取り、ブロックの中でバリデーションのやり方を定義します。ただ
し、今回はif: :new_profile_pictureというオプションが付けられています。

 validate if: :new_profile_picture do

これは属性new_profile_pictureがnilでもfalseでもない場合だけ、ブロック内のコードを
実行してバリデーションを行う、という意味になります。

次に、ブロックの中身をご覧ください。

 if new_profile_picture

 if new_profile_picture.respond_to?(:content_type)

 unless new_profile_picture.content_type.in?
(ALLOWED_CONTENT_TYPES)

 errors.add(:new_profile_picture, :invalid_image_type)

 end

 else

 errors.add(:new_profile_picture, :invalid)

 end

 end

respond_to?メソッドは、あるオブジェクトが特定のメソッドを持っているかどうかを調べて
trueまたはfalseを返します。ここでは、属性new_profile_pictureの値がcontent_typeメソ
ッドを持っているかどうかで条件分岐をしています。

このメソッドを持っていない場合は、それがフォームからアップロードされたファイルデータでは
ないことを示しているので、エラーシンボル:invalidをセットします。content_typeメソッドを持
っている場合は、メソッドの戻り値が定数ALLOWED_CONTENT_TYPESに含まれていなけ
れば、エラーシンボル:invalid_image_typeをセットします。このシンボルはRails標準のもので
はなく、開発者自身が決めたasagaoアプリケーション独自のものです。そのため、エラーメッ
セージをロケールテキストに加えました。

13.3 　プロフィール画像の削除

この節では、会員のプロフィール画像を削除する機能を作ります。

添付ファイルの削除
現状の会員情報の編集ページやマイアカウントページには、アップロードされたプロフィール

画像を削除する機能がありません。これを作るにはどうすればよいでしょうか。
モデルオブジェクトに添付されたファイルを削除するには、purgeメソッドを使います。実際

に操作しながら、その利用法を把握することにしましょう。bin/rails cコマンドでRailsコンソー
ルを起動してください。MSYS2/MinGW環境の方はコマンドの前にwinpty rubyを付けま
す。そして、次の3つの式を入力してみましょう（式を評価した結果の表示は省略していま
す）。

$ bin/rails c

irb(main):001:0> m = Member.find_by(name: "Taro")

irb(main):002:0> m.profile_picture.attached?

irb(main):003:0> m.profile_picture.purge

前節で会員Taroのプロフィール画像を登録したので2番目の式ではtrueという結果が返
ります。ブラウザに戻って会員Taroのマイアカウントページを開き、プロフィール画像が削除さ
れていることを確認してください。

モデルオブジェクトにファイルが添付されていない場合、purgeメソッドは何の効果もありま
せん。つまり、エラーにはなりません。Railsコンソールに3番目の式を再度入力して確かめてみ
ましょう。

以上の知識を踏まえ、モデルMemberのソースコードを次のように変更してください。

chapter13/app/models/member.rb

 （省略）

 5 has_one_attached :profile_picture

 6 attribute :new_profile_picture

 7 attribute :remove_profile_picture, :boolean

 8

 9 validates :number, presence: true,

 （省略）

 41 before_save do

 42 if new_profile_picture

 43 self.profile_picture = new_profile_picture

 44 elsif remove_profile_picture

 45 self.profile_picture.purge

 46 end

 47 end

 （以下省略）

前節で紹介したクラスメソッドattributeを用いて、「プロフィール画像を削除するかどうか」
を表す属性remove_profile_pictureをMemberモデルに加えています。ただし、属性
new_profile_pictureの場合とは異なり、第2引数にシンボル:booleanを指定しています。
これにより、属性remove_profile_pictureの値は適切に型変換（casting）が行われる
ようになります。フォームから送られてくるパラメータの値はすべて文字列です。チェックボックス
の場合、チェックされていれば"1"、チェックされていなければ"0"が送られてきます。これらを
trueとfalseに変換したいのです。

before_saveコールバックの中では、属性remove_profile_pictureが真であればプロフィ
ール画像を削除しています。ただし、属性new_profile_pictureに画像データがセットされて
いる場合は、プロフィール画像の削除は行いません。

チェックボックスの設置
データベーステーブルmembersにremove_profile_pictureというカラムはありませんが、フ

ォームビルダーを用いて属性remove_profile_pictureのための部品を作ることができます。
会員情報の編集ページとマイアカウントページで共用している部分テンプレート
_member_form.html.erbを次のように書き換えてください。

chapter13/app/views/shared/_member_form.html.erb

 （省略）

 5 <th><%= form.label :new_profile_picture %></th>

 6 <td>

 7 <div><%= form.file_field :new_profile_picture %></div>

 8 <% if @member.profile_picture.attached? %>

 9 <div>

 10 <%= image_tag @member.profile_picture.variant(resize:
"128x128") %>

 11 <%= form.check_box :remove_profile_picture %>

 12 <%= form.label :remove_profile_picture %>
 13 </div>

 14 <% end %>

 15 </td>
 16 </tr>

 （以下省略）

チェックボックスの右に表示するラベルをロケールテキストに追加します。

chapter13/config/locales/ja.yml

 （省略）

 7 ␣␣␣␣attributes:

 8 ␣␣␣␣␣␣member:

 9 ␣␣␣␣␣␣␣␣new_profile_picture: プロフィール画像

 10 ␣␣␣␣␣␣␣␣remove_profile_picture: 画像を削除

 11 ␣␣␣␣␣␣␣␣number: 背番号

 （以下省略）

ストロング・パラメータで属性remove_profile_pictureが許可されるように
AccountsControllerを変更します。

chapter13/app/controllers/accounts_controller.rb

 （省略）

 22 # ストロング・パラメータ

 23 private def account_params

 24 params.require(:account).permit(

 25 :new_profile_picture,

 26 :remove_profile_picture,

 27 :number,

 （以下省略）

同様に、MembersControllerを変更します。

chapter13/app/controllers/members_controller.rb

 （省略）

 61 # ストロング・パラメータ

 62 private def member_params

 63 attrs = [

 64 :new_profile_picture,

 65 :remove_profile_picture,

 66 :number,

 （以下省略）

では、動作確認をしましょう。会員Taroとしてログインし、マイアカウントページからプロフィー
ル画像をアップロードし、再びマイアカウントページを開くと次のような画面になります。

プロフィール画像の削除

チェックボックス［画像を削除］をオンにして［更新する］ボタンをクリックすると、Taro
のプロフィール画像が削除されます。同様に会員名簿のほうでも会員のプロフィール画像の
登録・削除を試してください。

13.4 　ブログ画像のアップロードと表示

この節では、Morning Gloryのブログ記事に対して複数の画像をアップロードする機
能を作ります。

EntryImageクラスの作成
ここまでは会員に対して1個のプロフィール画像を添付する機能を作ってきました。この節で

は、ブログ記事（Entryオブジェクト）に対して複数の画像を結び付けたいと思います。
Active Storageにはモデルと複数個のファイルを結び付けるためのクラスメソッド

has_many_attachedが用意されていますが、このクラスメソッドで定義された属性には大き
な制約があります。それは、ファイル群の一部を差し替えたり、順番を入れ替えたりできな
い、ということです。クラスメソッドhas_many_attachedの用途は非常に限られるので、本
書では説明を省略します。

クラスメソッドhas_many_attachedが使えないとなるとどうすればよいでしょうか。単純な
答えがあります。個々のブログ画像を添付するためのモデルクラスEntryImageを作ればよい
のです。

ターミナルで次のコマンドを実行してください。

$ bin/rails g model entry_image

そして、生成されたマイグレーションスクリプトを次のように書き換えます。

chapter13/db/migrate/20180601123044_create_entry_images.rb

 1 class CreateEntryImages < ActiveRecord::Migration[5.2]

 2 def change

 3 create_table :entry_images do |t|

 4 t.references :entry # 外部キー

 5 t.string :alt_text, null: false, default: "" # 代替テキスト

 6 t.integer :position # 表示位置

 7

 8 t.timestamps

 9 end

 10 end

 11 end

文字列型のカラムalt_textには画像の代替テキストを格納します。整数型のカラム
positionはNOT NULL制約なしで定義します。このカラムの役割については、次節で説明
します。

マイグレーションを実行します。

$ bin/rails db:migrate

続いて、EntryImageモデルのソースコードを次のように書き換えます。

chapter13/app/models/entry_image.rb

 1 class EntryImage < ApplicationRecord

 2 belongs_to :entry

 3 has_one_attached :data

 4

 5 attribute :new_data

 6

 7 validates :new_data, presence: { on: :create }

 8

 9 validate if: :new_data do

 10 if new_data.respond_to?(:content_type)

 11 unless new_data.content_type.in?(ALLOWED_CONTENT_TYPES)

 12 errors.add(:new_data, :invalid_image_type)

 13 end

 14 else

 15 errors.add(:new_data, :invalid)

 16 end

 17 end

 18

 19 before_save do

 20 self.data = new_data if new_data

 21 end

 22 end

基本的な考えはMemberモデルの場合と同じです。仮想的な属性new_dataに対して
バリデーションを行い、before_saveコールバックで実際に画像データを保存しています。

しかし、違いがいくつかあります。7行目をご覧ください。

 validates :new_data, presence: { on: :create }

新しい画像データが存在しない場合にはエラーとしています。EntryImageモデルはブログ
画像を表すので、ファイルが添付されていなければ意味がありません。ただし、保存済みのモ
デルオブジェクトを更新する場合、新しい画像データはなくてもかまいません。代替テキストの
みを変更する場合もあるからです。そのため、presenceオプションのonサブオプション
に:createを付けています。これは、モデルオブジェクトを新しく作るときだけバリデーションを行
うという意味です。

では、EntryモデルのとEntryImageモデルを1対多で関連付けて、モデル側の実装を終え
ましょう。

chapter13/app/models/entry.rb

 1 class Entry < ApplicationRecord

 2 belongs_to :author, class_name: "Member", foreign_key: "member_id"

 3 has_many :images, class_name: "EntryImage"

 4

 5 STATUS_VALUES = %w(draft member_only public)

 （以下省略）

画像のアップロードと削除

■ルーティングの設定
モデル側の準備が整ったので、コントローラ側の実装に移りましょう。まず、ルーティングの設

定をします。

chapter13/config/routes.rb

 （省略）

 20 resources :articles

 21 resources :entries do

 22 resources :images, controller: "entry_images"

 23 end

 24 end

ブログ画像は必ず特定のブログ記事と結び付けられているので、このようにブロックを用い
てentriesリソースの下の階層としてリソースを定義します。そして、EntryImagesController
でブログ画像のCRUD操作を行うことにします。ただし、URLパスが冗長にならないようにリソ
ース名はimagesとします。このようにcontrollerオプションを用いると、リソース名とコントロー
ラ名の間を自由に関連付けることができます。

今回のルーティングの変更により、次のパスとHTTPメソッドでアクションを呼び出せるように
なります。

ブログ画像操作のルーティング
アクショ
ン

パス
HTTPメソ
ッド

パスを返すメソッド

index /entries/123/images GET entry_images_path(entry)

show /entries/123/images/99 GET
entry_image_path(entry,
image)

new /entries/123/images/99/new GET new_entry_image_path(entry)

edit /entries/123/images/99/edit GET
edit_entry_image_path(entry,
image)

create /entries/123/images POST entry_images_path(entry)

update /entries/123/images/99 PATCH
entry_image_path(entry,
image)

destroy /entries/123/images/99 DELETE
entry_image_path(entry,
image)

■コントローラの実装
続いて、コントローラとビュー（HTMLテンプレート）のソースコードを生成します。

$ bin/rails g controller entry_images index new edit

EntryImagesControllerのソースコードを次のように書き換えます。

chapter13/app/controllers/entry_images_controller.rb

 1 class EntryImagesController < ApplicationController

 2 before_action :login_required

 3

 4 before_action do

 5 @entry = current_member.entries.find(params[:entry_id])

 6 end

 7

 8 # 画像一覧

 9 def index

 10 @images = @entry.images.order(:id)

 11 end

 12

 13 # 編集フォームにリダイレクト

 14 def show

 15 redirect_to action: "edit"

 16 end

 17

 18 # 新規登録フォーム

 19 def new
 20 @image = @entry.images.build

 21 end

 22

 23 # 編集フォーム

 24 def edit

 25 @image = @entry.images.find(params[:id])

 26 end

 27

 28 # 新規作成

 29 def create

 30 @image = @entry.images.build(image_params)

 31 if @image.save

 32 redirect_to [@entry, :images], notice: "画像を作成しました。"

 33 else

 34 render "new"

 35 end

 36 end

 37

 38 # 更新

 39 def update

 40 @image = @entry.images.find(params[:id])

 41 @image.assign_attributes(image_params)

 42 if @image.save

 43 redirect_to [@entry, :images], notice: "画像を更新しました。"

 44 else

 45 render "edit"

 46 end

 47 end

 48

 49 # 削除

 50 def destroy

 51 @image = @entry.images.find(params[:id])

 52 @image.destroy

 53 redirect_to [@entry, :images], notice: "画像を削除しました。"

 54 end

 55

 56 # ストロング・パラメータ

 57 private def image_params

 58 params.require(:image).permit(

 59 :new_data,

 60 :alt_text

 61)

 62 end

 63 end

コントローラ全体の構造と各アクションの基本的な作り方は、MembersControllerや
EntriesControllerと同じです。ただし、3つの重要な相違点があります。

1. ブロックを伴うbefore_actionの中でインスタンス変数@entryに値がセットされてい
る。

2. 各アクションの中でインスタンス変数@entryを使って操作の対象となるブログ画像
を取得している。

3. showアクションではeditアクションへのリダイレクションが行われている。

4〜6行目ではアクション・コールバックを設定しています。アクション・コールバックの設定方
法には、ブロックを使う方法とメソッド名をシンボルで指定する方法があります。Chapter 8
では後者の方法でアクセス制御を行いましたが、ここでは前者の方法を採用しています。特
定のコントローラだけでbefore_actionコールバックを定義するときには、この書き方を使うと
便利です。

EntryImagesControllerではすべてのアクションでインスタンス変数@entryが必要にな
るので、アクション実行前の準備作業としてインスタンス変数@entryに値をセットしていま
す。

@entry = current_member.entries.find(params[:entry_id])

ブラウザから/entries/123/images/99のようなURLパスに対してアクセスがあると、Rails
はentry_idパラメータに"123"という文字列を、idパラメータに"99"という文字列をセットしま
す。before_actionブロックの内部では、entry_idパラメータの値を利用してブログ記事を取
得し、インスタンス変数@entryにセットします。

showアクションでeditアクションへリダイレクションを行っているのは、やや瑣末とも言える
話です。Morning GloryではActive Storageのしくみを通じてブログ画像を表示するので、
ユーザーが普通に利用している限りshowアクションが呼び出されることはありません。しかし、

showアクションとupdateアクションのURLパスが共通しているため、ユーザーがupdateアクシ
ョンのURLをコピーしたりお気に入り登録したりすると、showアクションにアクセスが来る可能
性があります。その場合は「404 Not Found」のエラーページを表示するよりも、画像の編集
ページに遷移させたほうが親切です。

■ブログ記事に添付された画像の一覧
ビュー（HTMLテンプレート）の実装に進みましょう。まずブログ記事のフッターに「画像」リ

ンクを設置します。

chapter13/app/views/entries/_footer.html.erb

 （省略）

 5 <%= menu_link_to "編集", [:edit, entry] %>

 6 <%= menu_link_to "画像", [entry, :images] %>

 7 <%= menu_link_to "削除", entry, method: :delete,

 8 data: { confirm: "本当に削除しますか？" } %>

 （以下省略）

そして、EntryImagesControllerのindexアクションのテンプレート全体を次の内容で置き
換えてください。

chapter13/app/views/entry_images/index.html.erb

 1 <% @page_title = "ブログ記事の画像" %>

 2 <h1><%= @page_title %></h1>

 3 <h2><%= @entry.title %></h2>

 4

 5 <ul class="toolbar">

 6 <%= menu_link_to "ブログ記事に戻る", @entry %>

 7 <%= menu_link_to "画像の追加", [:new, @entry, :image] %>

 8

 9

 10 <% if @images.present? %>

 11 <table class="list">

 12 <thead>

 13 <tr>

 14 <th>番号</th>

 15 <th>画像</th>

 16 <th>代替テキスト</th>

 17 <th>操作</th>

 18 </tr>

 19 </thead>

 20 <tbody>

 21 <% @images.each_with_index do |image, index| %>

 22 <tr>

 23 <td><%= index + 1 %></td>

 24 <td>

 25 <%= image_tag image.data.variant(resize: "100x>"),

 26 alt: image.alt_text %>

 27 </td>

 28 <td>

 29 <%= image.alt_text %>

 30 </td>

 31 <td>

 32 <div>

 33 <%= link_to "編集", edit_entry_image_path(@entry, image)
%> |

 34 <%= link_to "削除", entry_image_path(@entry, image),

 35 method: :delete, data: { confirm: "本当に削除しますか？" } %>

 36 </div>

 37 </td>

 38 </tr>

 39 <% end %>

 40 </tbody>

 41 </table>

 42 <% else %>

 43 <p>画像がありません。</p>

 44 <% end %>

ソースコードの7行目をご覧ください。

 <%= menu_link_to "画像の追加", [:new, @entry, :image] %>

ヘルパーメソッドmenu_link_toの第2引数には、シンボルとモデルオブジェクトを要素とす
る配列が指定されています。この行は次のようにも書くことができます。

 <%= menu_link_to "画像の追加", new_entry_image_path(@entry) %>

この書き方は33行目で使われています。

 <%= link_to "編集", edit_entry_image_path(@entry, image) %>

しかし、この行を次のように書き直すと例外NoMethodErrorが発生します。

 <%= link_to "編集", [:edit, @entry, image] %>

変数imageがEntryImageクラスのインスタンスを参照しているため、Railsはこの配列を
次のようなメソッド呼び出しに変換するのですが、そんなメソッドは定義されていません。

edit_entry_entry_image_path(@entry, image)

画像追加と画像編集
次に、画像追加フォームと画像編集フォームのためのテンプレート群を作成していきます。こ

こまで学習を進めてきた読者には、特に目新しい内容はありません。単に変更手順を説明
するだけとします。

newアクションのテンプレート全体を次の内容で置き換えてください。

chapter13/app/views/entry_images/new.html.erb

 1 <% @page_title = "ブログ記事への画像追加" %>

 2 <h1><%= @page_title %></h1>

 3 <h2><%= @entry.title %></h2>

 4

 5 <% url = entry_images_path(@entry, @image) %>

 6 <%= form_for @image, as: "image", url: url do |form| %>

 7 <%= render "form", form: form %>

 8 <div><%= form.submit %></div>

 9 <% end %>

editアクションのテンプレート全体を次の内容で置き換えてください。

chapter13/app/views/entry_images/edit.html.erb

 1 <% @page_title = "ブログ記事の画像編集" %>

 2 <h1><%= @page_title %></h1>

 3 <h2><%= @entry.title %></h2>

 4

 5 <% url = entry_image_path(@entry, @image) %>

 6 <%= form_for @image, as: "image", url: url do |form| %>

 7 <%= render "form", form: form %>

 8 <div><%= form.submit %></div>

 9 <% end %>

フォームの中身を表示するための部分テンプレートを次の内容で作成します。

chapter13/app/views/entry_images/_form.html.erb

 1 <%= render "shared/errors", obj: @image %>
 2

 3 <table class="attr">

 4 <tr>

 5 <th><%= form.label :new_data %></th>

 6 <td><%= form.file_field :new_data %></td>

 7 </tr>

 8 <tr>

 9 <th><%= form.label :alt_text %></th>

 10 <td><%= form.text_field :alt_text, size: 40 %></td>
 11 </tr>

 12 </table>

この部分テンプレートで使用する日本語のラベルをロケールテキストに追加します。

chapter13/config/locales/ja.yml

 （省略）

 36 ␣␣␣␣␣␣␣␣status_member_only: 会員限定

 37 ␣␣␣␣␣␣␣␣status_public: 公開

 38 ␣␣␣␣␣␣entry_image:

 39 ␣␣␣␣␣␣␣␣data: 画像ファイル

 40 ␣␣␣␣␣␣␣␣alt_text: 代替テキスト

 41 ␣␣␣␣errors:

 42 ␣␣␣␣␣␣messages:

 （以下省略）

以上で、ブログ画像の追加、編集、削除を行えるようになりました。ブラウザで実際に動
作確認をしてください。

ブログ記事の画像追加フォーム

ブログ記事に添付された画像一覧

画像の表示
では、一般の訪問者が見るブログ記事のページに画像を表示しましょう。記事の下にただ

単に並べるだけではつまらないので、最初の画像だけ本文の上に、残りの画像は本文の下
に載せるという仕様を採用します。

まず、ブログ記事を表示するためのHTMLテンプレートを次のように書き換えてください。

chapter13/app/views/entries/show.html.erb

 1 <% @page_title = @entry.title + " - " + @entry.author.name + "さんのブ
ログ" %>

 2 <h1><%= @entry.author.name %>さんのブログ</h1>

 3 <h2><%= @entry.title %></h2>

 4

 5 <%= the_first_image(@entry) %>

 6 <%= simple_format(@entry.body) %>

 7 <%= other_images(@entry) %>

 8 <%= render "footer", entry: @entry %>

そして、app/helpersディレクトリに新規ファイルentries_helper.rbを作成して、次のコード
を書き入れてください。

chapter13/app/helpers/entries_helper.rb

 1 module EntriesHelper

 2 def the_first_image(entry)

 3 image = entry.images.order(:id)[0]

 4

 5 render_entry_image(image) if image

 6 end

 7

 8 def other_images(entry)

 9 buffer = "".html_safe

 10

 11 entry.images.order(:id)[1..-1]&.each do |image|

 12 buffer << render_entry_image(image)

 13 end

 14

 15 buffer

 16 end

 17

 18 private def render_entry_image(image)

 19 content_tag(:div) do

 20 image_tag image.data.variant(resize: "530x>"),

 21 alt: image.alt_text,

 22 style: "display: block; margin: 0 auto 15px"

 23 end

 24 end

 25 end

ブラウザで動作確認をします。

画像付きでブログ記事を表示

ヘルパーメソッドthe_first_imageはブログ記事に添付された最初の画像を表示する
HTMLコードを生成します。もうひとつのヘルパーメソッドother_imagesは残りの画像を表示
するHTMLコードを生成します。

3行目と11行目をご覧ください。

 image = entry.images.order(:id)[0]

 entry.images.order(:id)[1..-1]&.each do |image|

3行目で式entry.images.order(:id)はリレーションオブジェクトを返します。この時点では
データベースへの問い合わせは行われていません。しかし、続く[0]によってデータベースへの問
い合わせが発生し、リレーションオブジェクトの内部にEntryImageオブジェクトの配列が記録
されます。そして、変数imageにその配列の1番目の要素がセットされます。

11行目でも同じ式entry.images.order(:id)が呼ばれてリレーションオブジェクトが返って
きます。このリレーションオブジェクトは3行目で返ってきたものを同じであるため、すでに画像
オブジェクトの配列を持っています。そこで、データベースへの問い合わせを省略します。配列
に対して[1..-1]を呼ぶと、2番目以降の配列の要素全部を返します。ちなみに..は範囲すな
わちRangeオブジェクト（「2.3　いろいろなオブジェクト」）を作る記号です。なお、空の配
列に対して[1..-1]を呼ぶとnilを返すため、eachメソッド呼び出しの前にぼっち演算子
（&.）が必要です。

3行目はimage = entry.images.order(:id).firstと書いても結果は変わりません。しか
し、この式はデータベースから1個だけレコードを取得します。そのため、11行目でもう一度デー
タベースへの問い合わせが発生します。つまり、firstの代わりに[0]と書くことで問い合わせを
1回減らせるのです。

次に、プライベートメソッドrender_entry_imageの中身をご覧ください。

 content_tag(:div) do

 image_tag image.data.variant(resize: "530x>"),

 alt: image.alt_text,

 style: "display: block; margin: 0 auto 15px"

 end

content_tagメソッドとimage_tagメソッドを用いて、divタグで囲まれたimageタグを生
成しています。variantメソッドのresizeオプションに指定された"530x>"という値は「幅が530
ピクセルを超えていたら幅が530ピクセルになるように縮小せよ」という意味になります。つま
り、幅の狭い画像は拡大されずにそのまま表示されます。

13.5 　表示位置の入れ替え

この節では、ブログ記事に貼り付けられた画像の表示位置を入れ替える機能を作り
ます。

準備作業

■Gemパッケージacts_as_listの導入
モデルオブジェクトのリストの並び順を維持したり、順番を入れ替えたりするにはGemパッ

ケージacts_as_listを利用すると便利です。Gemfileを次のように書き換えてください。

chapter13/Gemfile

 （省略）

 39 gem 'jquery-rails'

 40 gem 'acts_as_list'

 41

 42 group :development, :test do

 （以下省略）

そして、ターミナルで次のコマンドを実行します。

$ bundle install

■モデルクラスにacts_as_listを導入

モデルクラスにacts_as_listを導入するには、クラス定義の中でクラスメソッドacts_as_list
を呼び出します。EntryImageモデルのソースコードを次のように書き換えてください。

chapter13/app/models/entry_image.rb

 1 class EntryImage < ApplicationRecord

 2 belongs_to :entry

 3 has_one_attached :data

 4 acts_as_list scope: :entry

 5

 6 attribute :new_data

 （以下省略）

このモデルが別のモデルの子にあたっていて、親オブジェクトに属する子オブジェクト集団の
中で並び順を維持したい場合には、クラスメソッドbelongs_toに指定されている関連付け
のシンボルを、クラスメソッドacts_as_listのscopeオプションに指定します。

ここで、ブログ記事の添付画像をすべて消去するためにデータベースの再構築を行います。

$ bin/rails db:rebuild

■ルーティングの設定
次に、画像の表示位置を入れ替えるアクションmove_higherとmove_lowerのためにル

ーティングを設定します。

chapter13/config/routes.rb

 （省略）

 21 resources :entries do

 22 resources :images, controller: "entry_images" do

 23 patch :move_higher, :move_lower, on: :member

 24 end

 25 end

 （以下省略）

この2つのアクションはいずれもPATCHメソッドで呼び出します。この設定変更によって、次
の2つのURLパターンがRailsによって認識されるようになります。

/entries/123/images/99/move_higher
/entries/123/images/99/move_lower

そして、これらのパターンに沿ったURLパスを生成するメソッド呼び出しは、次のようなもの
になります。

move_higher_entry_image(entry, image)
move_lower_entry_image(entry, image)

機能の実装

■表示位置を入れ替えるアクションの実装
コントローラ側の実装に進みます。まず、EntryImagesControllerのindexアクションを次

のように変更してください。Gemパッケージacts_as_listは、オブジェクトリストの並び順を制御
するのにpositionカラムを使用します。

chapter13/app/controllers/entry_images_controller.rb

 （省略）

 9 def index

 10 @images = @entry.images.order(:position)

 11 end

 （以下省略）

そして、アクションmove_higherとmove_lowerを追加します。

chapter13/app/controllers/entry_images_controller.rb

 （省略）

 56 # 表示位置を上げる

 57 def move_higher

 58 @image = @entry.images.find(params[:id])

 59 @image.move_higher

 60 redirect_back fallback_location: [@entry, :images]

 61 end

 62

 63 # 表示位置を下げる

 64 def move_lower

 65 @image = @entry.images.find(params[:id])

 66 @image.move_lower

 67 redirect_back fallback_location: [@entry, :images]

 68 end

 （以下省略）

Gemパッケージacts_as_listはモデルオブジェクトにmove_higherメソッドとmove_lower
メソッドを加えます。前者が上げるための、後者が下げるためのメソッドです。

60行目と67行目では初登場のredirect_backメソッドが使われています。このメソッド
は、アクションの呼び出し元のURLパスにリダイレクションを行います。呼び出し元はHTTPヘ
ッダーに書かれている「リファラ」によって判定します。fallback_locationオプションには、リファ
ラが書かれていない場合のリダイレクション先を指定します。このオプションは省略できませ
ん。

■ヘルパーメソッドの変更

続いて、前節で作成した2つのヘルパーメソッドthe_first_imageおよびother_imageを変
更します。

chapter13/app/helpers/entries.rb

 （省略）

 3 image = entry.images.order(:position)[0]

 （省略）

 11 entry.images.order(:position)[1..-1]&.each do |image|

 （以下省略）

■HTMLテンプレートの変更
最後に、ブログ画像のリストページに画像の表示位置を変更するアクションへのリンクを

設置します。

chapter13/app/views/entry_images/index.html.erb

 （省略）

 31 <td>

 32 <div>

 33 <%= link_to "編集", edit_entry_image_path(@entry, image)
%> |

 34 <%= link_to "削除", entry_image_path(@entry, image),

 35 method: :delete, data: { confirm: "本当に削除しますか？" } %>

 36 </div>

 37 <div>

 38 <%= link_to_unless image.first?, "上へ",

 39 move_higher_entry_image_path(@entry, image),

 40 method: :patch %> |

 41 <%= link_to_unless image.last?, "下へ",

 42 move_lower_entry_image_path(@entry, image),

 43 method: :patch %>

 44 </div>

 45 </td>

 （以下省略）

ヘルパーメソッドlink_to_unlessは、第1引数の値が真であれば残りの引数をlink_toメソ
ッドに渡してaタグを生成します。もし第1引数の値が偽であれば第2引数の文字列をそのま
ま返します。

モデルオブジェクトのfirst?メソッドはそのオブジェクトがリストの先頭（最も上）にあれば
trueを返し、そうでなければfalseを返します。逆に、last?メソッドはそのオブジェクトがリストの
末尾（最も下）にあるかどうかを調べて返します。この2つのメソッドはGemパッケージ
acts_as_listによって追加されます。

以上で、ブログ記事に貼り付けられた画像の表示位置を入れ替える機能が完成しまし
た。ブラウザで動作確認をしてください。

ブログ画像の表示順を変えるリンクを設置

13.6 　クラウドストレージサービスの利用

この節では、インターネット上のクラウドストレージサービス（Amazon S3、Google
Cloud Storage、Microsoft Azure Storage等）と連携してActive Storageを利
用する方法について概要を説明します。これらのサービスを利用しない方は、読み飛
ばしてもかまいません。

CA証明書の設置
全サービスに共通する準備作業として、SSL接続で使用するCA証明書を設置します。こ

の手順を省略するとブラウザからファイルをアップロードしたときに、例外Faraday::SSLErrorが
発生することがあります。ターミナルで次の2つのコマンドを実行してください。ただし、
MSYS2/MinGWでは2番目のコマンドの先頭にsudoを付けないでください。

$ CERT_PATH=$(ruby -ropenssl -e "puts
OpenSSL::X509::DEFAULT_CERT_FILE")

$ sudo curl "https://curl.haxx.se/ca/cacert.pem" -o $CERT_PATH

Amazon S3

■Amazon S3の概要
Amazon Simple Storage Service（Amazon S3）は、クラウドコンピューティングサービ

スAmazon Web Services（AWS）が提供するストレージサービスです。RailsのActive
Storageは、Amazon S3に対してファイルをアップロードすることができます。

AWSやAmazon S3の詳しい利用法を解説することは本書の範囲を超えますが、以下に
要点をまとめます。

■AWSアカウントの習得
まず（まだ取得していない方は）AWSのアカウントを取得してください。原則として、クレ

ジットカードの登録が必要となります。アカウント作成から12か月間はAmazon S3の無料
利用枠が使えます（最大5GB）。

■IAMユーザーの作成
アカウントを取得したら、AWSコンソールでIAMユーザーを作成してください。IAMとは

Identity and Access Managementの略語です。用途別に専用のIAMユーザーを作りま
す。たとえば、本書の学習のためにasagaoという名前のIAMユーザーを作成します。

このIAMユーザーに対して、アクセスキーを作成します。アクセスキーとはアクセスキーIDとシー
クレットアクセスキーを組み合わせたものです。この2つの情報を用いてAmazon S3にアクセ
スします。

また、このIAMユーザーに対してAmazonS3FullAccessという名前のポリシーを付与（ア
タッチ）します。AWS用語の「ポリシー」とはアクセス権限の組み合わせに名前を付けたもの
です。

■バケットの作成
続いて、Amazon S3のバケットを作成します。AWS用語の「バケット」とは、ファイルなどの

オブジェクトを格納するための入れ物です。バケットには名前を付けます。ドメイン名と同様
の命名規則に従った名前を付ける必要があります（例: asagao.foo.bar）。また、S3全
体で一意でなければなりません。

また、バケットには「リージョン」という属性があります。S3のサービスが提供されている場所
を意味します。AWSコンソールのバケットリストには「アジア・パシフィック（東京）」のようなリ
ージョン名が表示されていますが、Active Storageの資格情報に使用するのは「ap-

northeast-1」のような文字列です。以下、この文字列を「リージョン」と呼びます。リージョン
名からリージョンを調べるには、次のページを参照してください。

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

なお、バケット自体のアクセス制限に関する設定はデフォルトのままで支障ありません。

■準備作業
Gemfileを次のように変更してから、bundleコマンドを実行してください。

chapter13-aws/Gemfile

 （省略）

 40 gem 'acts_as_list'

 41 gem 'aws-sdk-s3', require: false

 42

 43 group :development, :test do

 （以下省略）

Chapter 12で説明したbin/rails credentials:editコマンドによりテキストエディタを開き、
資格情報を次のように編集します。

aws:

 access_key_id: XXXX...

 secret_access_key: YYYY...

(以下省略)

ただし、XXXX...の部分にはアクセスキーIDを、YYYY...の部分にはシークレットアクセスキーを
指定してください。テキストエディタを終了すると、暗号化された資格情報が
credentials.yml.encに書き込まれます。

続いて、テキストエディタでconfig/storage.ymlを開き、次のように編集します。

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

chapter13-aws/config/storage.yml

 （省略）

 10 amazon:

 11 ␣␣service: S3

 12 ␣␣access_key_id: <%= Rails.application.credentials.dig(:aws,
:access_key_id) %>

 13 ␣␣secret_access_key: <%= Rails.application.credentials.dig(:aws,
:secret_access_key) %>

 14 ␣␣region: XXXX...

 15 ␣␣bucket: YYYY...

 （以下省略）

ただし、XXXX...の部分にはAmazon S3のリージョンを、YYYY...の部分にはバケット名を
指定してください。

さらに、テキストエディタでconfig/environments/development.rbを開き、次のように
編集します。

chapter13-aws/config/environments/development.rb

 （省略）

 31 config.active_storage.service = :amazon

 （以下省略）

■動作確認
データベースをリセットしてから、サーバーを起動します。

$ bin/rails db:rebuild

$ bin/rails s

Taroユーザーでasagaoにログインし、適当な会員のプロフィール画像をアップロードします。
正常にアップロードできたら、念のためAWSのコンソールでAmazon S3バケットの中身を開
き、画像ファイルが登録されていることを確認してください。

Amazon S3へのアップロードに失敗した場合は、ブラウザに表示される例外とエラーメッセ
ージを読んで原因を探ってください。次におもな例外と考えられる原因を列挙します。

Aws::S3::Errors::InvalidAccessKeyId：アクセスキーIDが正しくない。
Aws::S3::Errors::SignatureDoesNotMatch：シークレットアクセスキーが正しくない。
Aws::S3::Errors::PermanentRedirect：リージョンが正しくない。
Aws::S3::Errors::NoSuchBucket：バケット名が正しくない。
Aws::S3::Errors::AccessDenied：IAMユーザーにAmazonS3FullAccessポリシーが
付与されていない。

Google Cloud Storage

■Google Cloud Storageの概要
Google Cloud Storage（GCS）とは、クラウドコンピューティングサービスGoogle

Cloud Platform（GCP）が提供するストレージサービスです。RailsのActive Storageは、
GCSに対してファイルをアップロードすることができます。

GCP/GCSの詳しい利用法を解説することは本書の範囲を超えますが、以下に要点をま
とめます。

■GCPアカウントの作成
まず（まだ取得していない方は）GCPのアカウントを取得してください。GCSには期間無

制限の無料枠（最大5GB）があり、本書の学習のために使用する程度であれば費用は
かかりません。ただし、無料枠を利用するだけでもクレジットカードの登録が必要となります。

■プロジェクトの作成
GCPのアカウントができたら、まず専用のプロジェクトを作成します。プロジェクト名には

asagao-railsのような名前を指定してください。使用できる文字は、小文字の英字、数
字、ハイフン、スペース、感嘆符です。

■IAMサービスアカウントの作成
次に「IAMと管理」からIAMサービスアカウントを作成します。IAMとはIdentity and

Access Managementの略語です。サービスアカウント名は「基礎Ruby on Rails学習」の
ように自由に付けてかまいません。サービスアカウントの役割には「ストレージ管理者」を選択
します。サービスアカウントIDはデフォルト値のままで問題ありません。

チェックボックス［新しい秘密鍵の提供］にチェックを入れてください。キーのタイプはデフ
ォルトの「JSON」を選びます。

［作成］ボタンをクリックするとJSON形式のファイルのダウンロードが始まりますので、
asagaoのconfigディレクトリの下にgcs.jsonという名前で保存してください。GCSではこの
JSONファイルが資格情報となります。

■バケットの作成
続いて、バケットを作成します。GCP用語の「バケット」とは、ファイルなどのオブジェクトを

格納するための入れ物です。バケットの名前にはasagao-foo-barのような文字列を指定し
ます。使用できる文字は、小文字の英字、数字、ハイフン、アンダースコア（_）です。ただ
し、先頭と末尾には文字または数字を使用してください。ドメインの管理者であれば、
storage.example.jpのようなドメイン名をバケット名として使用できます。

ストレージクラスと場所（リージョン）は目的に合わせて選択します。リージョンのリストは
次のページで調べることができます。

https://cloud.google.com/compute/docs/regions-zones/regions-zones

ただし、GCSを無料枠内で利用したい場合は、ストレージクラスは「Regional」を選び、場
所（リージョン）は「us-」で始まる選択肢から選んでください。その他の組み合わせでは費

https://cloud.google.com/compute/docs/regions-zones/regions-zones

用が発生する可能性があります。

■セットアップ
Gemfileを次のように変更してから、bundleコマンドを実行してください。

chapter13-gcp/Gemfile

 （省略）

 40 gem 'acts_as_list'

 41 gem 'google-cloud-storage', '~> 1.8', require: false

 42

 43 group :development, :test do

 （以下省略）

続いて、テキストエディタでconfig/storage.ymlを開き、次のように編集します。

chapter13-gcp/config/storage.yml

 （省略）

 17 # Remember not to checkin your GCS keyfile to a repository

 18 google:

 19 ␣␣service: GCS

 20 ␣␣project: XXXX...

 21 ␣␣credentials: <%= Rails.root.join("config/gcs.json") %>

 22 ␣␣bucket: YYYY...

 （以下省略）

ただし、XXXX...の部分にはプロジェクト名を、YYYY...の部分にはGCSのバケット名を指定
してください。

さらに、テキストエディタでconfig/environments/development.rbを開き、次のように
編集します。

chapter13-gcp/config/environments/development.rb

 （省略）

 31 config.active_storage.service = :google

 （以下省略）

資格情報を含むJSONファイルの扱いに注意
configディレクトリに保存したファイルgcs.jsonは暗号化されていない資格情報を含んでいます。

そのため、第三者の手に渡らないように注意しなければなりません。
もしあなたがGitを用いてソースコードのバージョン管理をしているのなら、.gitignore

に/config/gcs.jsonという行を加え、このファイルをGitの管理から除外してください。

■動作確認
データベースをリセットしてから、サーバーを起動します。

$ bin/rails db:rebuild

$ bin/rails s

Taroユーザーでasagaoにログインし、適当な会員のプロフィール画像をアップロードします。
正常にアップロードできたら、念のためGCPのコンソールでGCSバケットの中身を開き、画像フ
ァイルが登録されていることを確認してください。

GCSへのアップロードに失敗した場合は、ブラウザに表示される例外とエラーメッセージを読
んで原因を探ってください。次におもな例外と考えられる原因を列挙します。

Google::Cloud::PermissionDeniedError：IAMサービスアカウントの役割に「ストレ
ージ管理者」が選択されていない。
OpenSSL::PKey::RSAError：gcs.jsonに含まれるプライベートキーが正しくない。

なお、 configディレクトリにgcs.jsonが設置されていない場合は、例外RuntimeErrorが
発生して、「The keyfile '/home/oiax/rails/asagao/config/gcs.json' is not a valid
file.」のようなエラーメッセージが表示されます。また、config/storage.ymlに記載されたバケ
ット名が正しくない場合には、例外NoMethodErrorが発生して「undefined method
`create_file' for nil:NilClass」という（わかりにくい）エラーメッセージが表示されます。

Microsoft Azure Storage

■Microsoft Azure Storageの概要
Microsoft Azure Storage（以下、Azure Storageと呼びます）とは、クラウドコンピュ

ーティングサービスMicrosoft Azureが提供するストレージサービスです。RailsのActive
Storageは、Azure Storageに対してファイルをアップロードすることができます。

Microsoft AzureやAzure Storageの詳しい利用法を解説することは本書の範囲を超
えますが、以下に要点をまとめます。

■Microsoft Azureアカウントの作成
まず（まだ取得していない方は）Microsoft Azureのアカウントを取得してください。

Microsoft Azureには無料試用版があり、アカウント取得してから最初の30日間に最大
22,500円分のサービスを無償で利用できます。ただし、無料試用版を利用する場合でもク
レジットカードの登録が必要となります。

■リソースグループの作成
Microsoft Azureのアカウントができたら、Azureポータル（Azureの管理画面）にログ

インして専用のリソースグループを作成します。リソースグループ名にはasagao-railsのような
名前を指定してください。使用できる文字は、小文字の英字、数字、ハイフンです。

■ストレージアカウントの作成
次に、ストレージアカウントを作成します。ストレージアカウント名は数字または英小文字か

らなる長さ3〜24の文字列です。たとえば、asagao2018のような名前にします。ドット、ハイ
フン、アンダースコアなどの記号は使えないので注意してください。また、ストレージアカウント
名はMicrosoft Azure全体で一意である必要があります。

以下、本書の学習用の推奨設定です。

デプロイメントモデル：Resource Manager
アカウントの種類：BLOBストレージ
場所：「東日本」または「西日本」
レプリケーション：ローカル冗長ストレージ（LRS）
パフォーマンス：Standard
アクセス層：ホット
安全な転送が必須：無効
サブスクリプション：無料試用版
リソースグループ：既存のものを使用
ダッシュボードにピン留めする：チェックを入れる

［作成］ボタンをクリックすると、ストレージアカウントが作成されます。ストレージアカウン
トの設定画面で「アクセスキー」という項目を選ぶと、キーが2つ表示されます。どちらか一方
をコピーして資格情報として使用します。

■コンテナーの作成
続いて、コンテナーを作成します。Azure用語の「コンテナー」とは、ファイルなどのオブジェク

トを格納するための入れ物です。コンテナーには名前を付けます。名前に使用できる文字
は、英小文字、数字、ハイフンのみです。名前の長さは3文字以降63文字以下でなければ
なりません。

パブリック・アクセスレベルには「プライベート」を選択してください。［OK］ボタンをクリック
するとコンテナーが作成されます。

■セットアップ
Gemfileを次のように変更してから、bundleコマンドを実行してください。

chapter13-azure/Gemfile

 （省略）

 40 gem 'acts_as_list'

 41 gem 'azure-storage', require: false

 42

 43 group :development, :test do

 （以下省略）

Chapter 12で説明したbin/rails credentials:editコマンドによりテキストエディタを開き、
次のように資格情報を追加します。

azure_storage:

 storage_access_key: XXXX...

(以下省略)

ただし、XXXX...の部分にはアクセスキーを指定してください。テキストエディタを終了する
と、暗号化された資格情報がcredentials.yml.encに書き込まれます。

続いて、テキストエディタでconfig/storage.ymlを開き、次のように編集します。

chapter13-azure/config/storage.yml

 （省略）

 25 microsoft:

 26 ␣␣service: AzureStorage

 27 ␣␣storage_account_name: XXXX...

 28 ␣␣storage_access_key: <%=
Rails.application.credentials.dig(:azure_storage, :storage_access_key) %>

 29 ␣␣container: YYYY...

 （以下省略）

ただし、XXXX...の部分にはストレージアカウント名を、YYYY...の部分にはコンテナー名を指
定してください。

さらに、テキストエディタでconfig/environments/development.rbを開き、次のように
編集します。

chapter13-azure/config/environments/development.rb

 （省略）

 31 config.active_storage.service = :microsoft

 （以下省略）

■動作確認
データベースをリセットしてから、サーバーを起動します。

$ bin/rails db:rebuild

$ bin/rails s

Taroユーザーでasagaoにログインし、適当な会員のプロフィール画像をアップロードします。
正常にアップロードできたら、念のためAzureポータルでコンテナーの中身を開き、画像ファイ
ルが登録されていることを確認してください。

Azure Storageへのアップロードに失敗した場合は、ブラウザに表示される例外とエラーメ
ッセージを読んで原因を探ってください。次におもな例外と考えられる原因を列挙します。

ActiveStorage::IntegrityError：config/credentials.yml.encに保存されているア
クセスキーが正しくない。または、config/storage.ymlのコンテナー名が正しくない。
Faraday::ConnectionFailed：config/storage.ymlのストレージアカウント名が正しく
ない。

Chapter 13のまとめ

Active Storageを利用すれば、Amazon S3、Google Cloud
Storage、Microsoft Azure Storageなどのクラウドストレージサービスへ
簡単にファイルをアップロードして、配信できます。
Active Storageはアプリケーションサーバーのローカルディスクにファイルをア
ップロードするためにも利用できますが、おもに開発・テスト用の機能です。
画像処理ソフトウェアImageMagickとGemパッケージmini_magickを導
入すれば、Railsアプリケーション上で画像ファイルのリサイズ、回転、グレー
スケール化などの処理を行えます。
モデルに添付ファイルの属性を追加するにはクラスメソッド
has_one_attachedを使用します。
モデルに複数個のファイルを添付するためのクラスメソッド
has_many_attachedもありますが、ファイル群の一部を差し替えたり、順
番を入れ替えたりできないという制約があります。
Gemパッケージacts_as_listを利用すると、簡単にモデルオブジェクトのリス
トの並び順を維持したり、順番を入れ替えたりできます。

練習問題

［A］　BookモデルにActive Storageで表紙画像を添付するための属性cover_image
を追加します。空欄を埋めてください。

class Book < ApplicationRecord

 　　　　　　　　　　 :cover_image

end

［B］　書籍の表紙画像を表示するHTMLテンプレートを記述します。インスタンス変数
@bookに}Bookモデルのインスタンスがセットされているとして、空欄を埋めてください。ただ
し、画像を幅90ピクセル、高さ114ピクセルにリサイズして表示するものとします。

<%= image_tag @book.cover_image.　　　　　　　　　　　　　　　
%>

Chapter

14　多対多の関連付け

Chaper 10では2つのモデル間を1対多で関連付ける方法を学びましたが、そ
れだけでは十分ではありません。モデル同士がもっと自由に結び付くとき、多対
多の関連付けを導入する必要があります。内容が少し難しくなってきますが、が
んばって乗り切りましょう。

これから学ぶこと

リレーショナルデータベースで多対多の関連付けを行うときの基本的な考え
方を習得します。
throughオプション付きでクラスメソッドhas_manyを呼び出して2つのモデ
ル間に多対多の関連付けを設定する方法を学びます。
多対多の関連付けを使って会員がブログ記事に投票できる機能を作りま
す。

モデルとモデルを多対多で関連付けるためには、データベース設計上でどんな工夫が必要とな
るでしょうか？

14.1 　多対多の関連付け

2つのモデル間を多対多で関連付けるとはどういう意味でしょうか。1対多の関連付け
とどう違うのでしょうか。この節では基本的な考え方を整理しましょう。

多対多の関連付けとは
Chapter 10で1対多の関連付けについて説明するときに、自動車を例に出しました。1つ

の自動車には複数個の車輪が付きます。どの車輪がどの自動車に装着されているのかを
管理したいのであれば、車輪に自動車のIDを記録することになります。

では、自動車とドライバーについて考えてみましょう。あるレース場に複数の自動車があり、
複数のドライバーがいるとします。個々のドライバーはすべての自動車のうちの一部だけを運
転できます。誰がどの自動車を運転できるのかをデータベースで管理するには、どのように設
計したらいいでしょうか。

素直に考えるとcarsテーブルとdriversテーブルを作り、driversテーブルに自動車のIDの配
列を記録すればよさそうです。しかし、リレーショナル・データベースで配列を直接的に扱うのは
不可能でないにせよ、あまり効率のよい方法ではありません。このようなケースでは、中間テ
ーブルを別途作り、そのテーブルに自動車とドライバーの結び付きを記録するのが定石です。

中間テーブルの名前は何でもよいのですが、とりあえずassignmentsとしましょう。このテー
ブルに整数型のcar_idカラムとdriver_idカラムを定義します。前者はcarsテーブルのidカラム
を参照し、後者はdriversテーブルのidカラムを参照します。このテーブルにレコードが1つ挿入
されれば、それはある特定の自動車と特定のドライバーが結び付けられたことを意味します。

中間テーブルによる多対多の関連付け

多対多の関連付けを設定するメソッド
では、CarモデルとDriverモデルを多対多で関連付けるコードを書いてみましょう。まず、中

間テーブルassignmentsに対応するモデルクラスAssignmentを次のように定義します。

class Assignment < ApplicationRecord

 belongs_to :car

 belongs_to :driver

end

Carモデルの定義は次のようになります。

class Car < ApplicationRecord

 has_many :assignments

 has_many :drivers, through: :assignments

end

2行目でCarモデルとAssignmentモデルを1対多で関連付けています。注目すべきは3行
目のクラスメソッドhas_manyにthroughオプションが付いている点です。すでに設定されてい
る関連付けの名前をこのオプションに指定すると、その関連付けを通じて（through）多
対多の関連付けが設定されます。

反対側のDriverモデルの定義もCarモデルとそっくりになります。

class Driver < ApplicationRecord

 has_many :assignments

 has_many :cars, through: :assignments

end

このようにクラスメソッドhas_manyはthroughオプションの有無で意味が大きく変わりま
す。このため、Railsプログラマはthroughオプション付きのhas_manyメソッドを1つの独立し
た機能と見なして「ハズメニースルー」と呼んだりします。

多対多で関連付けられたオブジェクトの集合を操作するメソッ
ド

中間モデルAssignmentを通じてCarモデルとDriverモデルが多対多で関連付けられたこ
とにより、Carクラスのインスタンスメソッドdriversが定義されます。変数carにCarオブジェクト
がセットされているとすれば、car.driversで「その自動車を運転できるドライバー」の集合を取
り出せます。

ドライバーを作成し、自動車に関連付けるには、次のように記述します。ドライバーのレコー
ドは<<によって自動的に保存されます。saveメソッドを呼ぶ必要はありません。

driver = Driver.new

car.drivers << driver

逆に、自動車を作成し、ドライバーに関連付けて保存することもできます。

car = Car.new

driver.cars << car

自動車とトライバーの間の関連付けを外すには、destroyメソッドを使用します。このメソッ
ドはassignmentsテーブルから該当するレコードを削除します。carsテーブルとdriversテーブル
には影響を与えません。

driver.cars.destroy(car)

このChapterでは、多対多の関連付けを設定する演習として会員がブログ記事に投票
する機能を作ります。その際、ブログ記事（Entryモデル）と会員情報（Memberモデ
ル）が投票テーブル（Voteモデル）を中間テーブルとして結び付けられることになります。

14.2 　［いいね］ボタンの作成（前編）

この節と次節では、Morning GloryのサイトにFacebookの［いいね］ボタンに似た
投票機能を加えます。この節ではその準備作業として、throughオプション付きで
has_manyメソッドを使い会員と記事の間を投票モデルで結び付けます。

会員、記事、投票の関連付け
ここでは投票用のVoteモデルを作成し、MemberモデルとEntryモデルの間に多対多の

関連付けを作ります。

■Voteモデルの作成
投票を記録するためにVoteモデル（votesテーブル）を作成し、EntryモデルとMember

モデルの両方に関連付けることにします。「bin/rails g」コマンドを実行しましょう。

$ bin/rails g model vote

マイグレーションスクリプトを編集し、EntryモデルとMemberモデルを参照する外部キー
entry_idとmember_idを作成します。

chapter14/db/migrate/20180602032827_create_votes.rb

 1 class CreateVotes < ActiveRecord::Migration[5.2]

 2 def change

 3 create_table :votes do |t|

 4 t.references :entry, null: false # 外部キー

 5 t.references :member, null: false # 外部キー

 6

 7 t.timestamps null: false

 8 end

 9 end

 10 end

マイグレーションを実行してください。

$ bin/rails db:migrate

■モデル間の関連付け
では、投票機能を実現するためにモデルクラスのコードを変更していきましょう。まず、Vote

モデルには、EntryモデルとMemberモデルに対してbelongs_toによる関連付けを設定しま
す。

chapter14/app/models/vote.rb

 1 class Vote < ApplicationRecord

 2 belongs_to :entry

 3 belongs_to :member

 （以下省略）

次に、EntryモデルからMemberモデルの集合を参照できるような関連付けを作ります。

chapter14/app/models/entry.rb

 1 class Entry < ApplicationRecord

 2 belongs_to :author, class_name: "Member", foreign_key: "member_id"

 3 has_many :images, class_name: "EntryImage"

 4 has_many :votes, dependent: :destroy

 5 has_many :voters, through: :votes, source: :member

 6

 7 STATUS_VALUES = %w(draft member_only public)

 （以下省略）

5行目で初登場のオプションsourceが使われています。関連付けの名前に対象となるモ
デルの名前以外のものを使いたい場合にこのオプションを用います。単にhas_many
:members, through: :votesとしてしまうと、EntryモデルとMemberモデルの関連性がわか
りにくくなります。

続いて、逆方向の関連付けを設定します。

chapter14/app/models/member.rb

 1 class Member < ApplicationRecord

 2 has_secure_password

 3

 4 has_many :entries, dependent: :destroy

 5 has_many :votes, dependent: :destroy

 6 has_many :voted_entries, through: :votes, source: :entry

 7 has_one_attached :profile_picture

 （以下省略）

6行目でオプションsourceを使って関連付けの名前を指定しています。そのまま
has_many :entries, through: :votesとしてしまうと、自分のブログ記事を表すentriesと重
複してしまうからです。

■投票のルール
投票に関しては、「自分の記事には投票できない」「1つの記事に1回しか投票できない」

というルールを作ります。会員が特定の記事に投票できるかどうかを調べられるように、
Memberモデルにvotable_for?メソッドを用意しておきます。

ここで使っているexists?は、モデルクラスやリレーションオブジェクトで使えるメソッドで、引
数の条件に合うレコードがあるかどうかを調べるものです。

chapter14/app/models/member.rb

 1 class Member < ApplicationRecord

 （省略）

 51 def votable_for?(entry)

 52 entry && entry.author != self && !votes.exists?(entry_id: entry.id)

 53 end

 54

 55 class << self

 （以下省略）

Voteモデルにvalidateメソッドを記述して、上記のルールに合わない投票は保存できない
ようにします。

chapter14/app/models/vote.rb

 1 class Vote < ApplicationRecord

 2 belongs_to :entry

 3 belongs_to :member

 4

 5 validate do

 6 unless member && member.votable_for?(entry)

 7 errors.add(:base, :invalid)

 8 end

 9 end

 10 end

errors.addの引数には、属性名の代わりに:baseを渡しています。特定の属性をエラーと
するのではなく、モデルオブジェクト全体にエラーを加えたいときは、:baseを指定します。

■シードデータ
シードデータを修正し、開発用のデータには最初から投票が付いている状態にします。

「0.upto(9) do |idx| ～ end」のループの中で、それぞれ2件の記事に3人の会員が投票し
たことにします。

chapter14/db/seeds/development/entries.rb

 （省略）

 8 %w(Taro Jiro Hana).each do |name|

 9 member = Member.find_by(name: name)

 10 0.upto(9) do |idx|

 11 entry = Entry.create(

 12 author: member,

 13 title: "野球観戦#{idx}",

 14 body: body,

 15 posted_at: 10.days.ago.advance(days: idx),

 16 status: %w(draft member_only public)[idx % 3]
 17)

 18

 19 if idx == 7 || idx == 8

 20 %w(John Mike Sophy).each do |name2|

 21 voter = Member.find_by(name: name2)

 22 voter.voted_entries << entry

 23 end

 24 end

 25 end

 26 end

シードデータを再投入してください。

$ bin/rails db:rebuild

14.3 　［いいね］ボタンの作成（後編）

前節で準備したモデル間の関連付け、バリデーション、シードデータを利用して、
Morning Glory会員ブログに記事に投票する機能と結果の表示を加えましょう。

ルーティングの設定
投票関連の機能は、EntriesControlerに実装することとし、次のアクションを追加しま

す。

like：［いいね］ボタンを押したときにvotesテーブルにレコードを作成する。
unlike：自分の投票を削除する。
voted：自分が投票した記事の一覧を表示する。

routes.rbを次のように修正します。

chapter14/config/routes.rb

 （省略）

 21 resources :entries do

 22 patch "like", "unlike", on: :member

 23 get "voted", on: :collection

 24 resources :images, controller: "entry_images" do

 （以下省略）

likeアクションとunlikeアクションは「記事の状態を変更する」ものと見なし、HTTPメソッド
をPATCHにします。votedアクションは集合を扱うものなので、onオプションに:collectionを
指定します。

投票数とボタンの表示
ブログ記事のフッターには投票数を表示します。フッターの部分テンプレートを修正し、投

稿日の右に星と投票数を加えます。

chapter14/app/views/entries/_footer.html.erb

 （省略）

 14

 15 <%= entry.posted_at.strftime("%Y/%m/%d %H:%M") %>

 16

 17 <% if (count = entry.votes.count) > 0 %>

 18 ★<%= count %>

 19 <% end %>

 20

ブラウザでブログ記事一覧のページを開くと、次のように表示されます。

投票数の表示

記事の詳細ページの下には投票した名前のリストと［いいね］ボタンを設置することにし
ます。ブログ記事のshowアクションのテンプレートを次のように修正して、部分テンプレート
_votes.html.erbを指定します。

chapter14/app/views/entries/show.html.erb

 （省略）

 8 <%= render "footer", entry: @entry %>

 9 <%= render "votes" %>

app/views/entriesディレクトリの下に_votes.html.erbを作成し、次のように記述しま
す。

chapter14/app/views/entries/_votes.html.erb

 1 <div class="vote">

 2 <% @entry.voters.order("votes.created_at").each do |voter| %>

 3 ★<%= voter.name %>

 4 <% end %>

 5

 6 <% if current_member && current_member.votable_for?(@entry) %>

 7 <%= link_to "★いいね!", [:like, @entry],

 8 method: :patch, class: "button" %>

 9 <% end %>

 10 </div>

2〜4行目では@entry.votersにより多対多で関連付けられた会員（投票者）の配列
を取得し、ループの中で会員の名前を表示しています。

6〜9行目では［いいね］ボタンをリンクで作成しています。リンク先は
EntriesControllerのlikeアクションで、HTTPメソッドはPATCHとします。votable_for?メソッ
ドでログイン会員が記事に投票できるかチェックし、投票できる場合だけボタンを表示するよ
うにします。

ユーザー名「Taro」、パスワード「asagao!」でログインし、Hanaさんの記事「野球観戦8」を
開いてみましょう。次のように表示されます。

投票者の表示と［いいね］ボタン

なお、投票ボタン用のCSSは、entries.cssに書かれています。10.3節でコピーし忘れた方
は、サンプルソースのsection14-2/app/assets/stylesheetsディレクトリから自分の
app/assets/stylesheetsディレクトリにコピーしてください。

投票した会員の並び順
上記の_votes.html.erbの中では、@entry.votesにクエリーメソッドorder("votes.created_at")

を加えています。これは、「votesテーブルのcreated_atの順でソートする」という意味です。votesメソ
ッドを呼ぶと、SQL文の中にentries、votes、membersの各テーブル名が同居することになります。
単にorder("created_at")とすると、どのテーブルのcreated_atなのか不明になり、データベースがエ
ラーを出します。そこで、"votes.created_at"としてvotesテーブルのcreated_atでソートすることを指
定しています。

likeアクション
EntriesControllerにlikeアクションを加え、投票機能を作りましょう。

chapter14/app/controllers/entries_controller.rb

 1 class EntriesController < ApplicationController

 （省略）

 61 # 投票

 62 def like

 63 @entry = Entry.published.find(params[:id])

 64 current_member.voted_entries << @entry

 65 redirect_to @entry, notice: "投票しました。"

 66 end

 （以下省略）

publishedスコープで下書き以外の記事を取り出し、Memberモデルのvoted_entriesに
対して<<で関連付けます。

Hanaさんの記事「野球観戦8」で［いいね］ボタンを押すと、Taroさんの名前が加わり、
［いいね］ボタンが消えます。

投票結果

14.4 　自分が投票した記事一覧

自分の投票の記録の一覧と、投票をあとから削除できる機能も用意しておきましょう。

unlikeアクションとvotedアクション
EntriesControllerにunlikeアクションとvotedアクションを次のように実装します。

chapter14/app/controllers/entries_controller.rb

 1 class EntriesController < ApplicationController

 （省略）

 68 # 投票削除

 69 def unlike

 70 current_member.voted_entries.destroy(Entry.find(params[:id]))

 71 redirect_to :voted_entries, notice: "削除しました。"

 72 end

 73

 74 # 投票した記事

 75 def voted

 76 @entries = current_member.voted_entries.published

 77 .order("votes.created_at DESC")

 78 .page(params[:page]).per(15)

 79 end

 （以下省略）

unlikeアクションでは、voted_entriesにdestroyメソッドを付け、Entryオブジェクトを渡し
ています。一見するとこのEntryオブジェクトが削除されるようですが、このオブジェクトと
current_memberを結び付けているvotesテーブルのレコードが削除されるだけです。

votedアクションではログイン会員が投票した記事の一覧を取り出します。throughオプ
ション付きのhas_manyメソッドで作ったvoted_entriesに、下書き以外の記事を取り出す
publishedスコープ、クエリーメソッドのorder、それにページネーションのメソッドを加えます。

テンプレートの修正
votedアクションのテンプレートを作成します。

chapter14/app/views/entries/voted.html.erb

 1 <% @page_title = "投票した記事" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <% if @entries.present? %>

 5

 6 <% @entries.each do |entry| %>

 7

 8 <%= link_to entry.title, entry %>

 9 by <%= link_to entry.author.name, [entry.author, :entries] %>

 10 - <%= link_to "削除", [:unlike, entry], method: :patch,

 11 data: { confirm: "削除しますか?" } %>

 12

 13 <% end %>

 14

 15 <%= paginate @entries %>

 16 <% else %>

 17 <p>記事がありません。</p>

 18 <% end %>

HTMLのリストで記事の一覧を並べ、ページネーションリンクを加えた簡単なものです。記
事と筆者へのリンクの横には、unlikeアクションを呼び出す削除リンクを並べます。

このvotedアクションのページにアクセスできるように、indexアクションのページにリンクを加
えます。

chapter14/app/views/entries/index.html.erb

 （省略）

 4 <% if current_member %>

 5 <ul class="toolbar">

 6 <%= menu_link_to "ブログ記事の作成", :new_entry %>

 7 <%= menu_link_to "投票した記事", :voted_entries %>

 8

 9 <% end %>

 （以下省略）

ユーザー名「Sophy」、パスワード「asagao!」でログインし、ページ右上の［ブログ］→［投
票した記事］をクリックすると、投票の記録が表示されます。

投票した記事一覧

Chapter 14のまとめ

リレーショナルデータベースで多対多の関連付けを行うときには、2つのテーブ
ルを結び付きを記録するための中間テーブルを別途用意します。
中間テーブルのためのモデルでは、クラスメソッドbelongs_toを用いて2つの
モデルそれぞれと関連付けを行います。
モデルAとモデルBを多対多で関連付けるときには、まずモデルAと中間テー
ブルのモデルCを1対多で関連付け、has_manyクラスメソッドをthroughオ
プション付きで呼び出します。

練習問題

［A］　書籍（Bookモデル）と利用者（Userモデル）の間を多対多で関連付けます。
中間テーブルはlending_recordsとし、モデルクラスLendingRecordで扱います。このとき、
これら3つのモデルクラスのソースコードをどのように記述すべきですか。空欄を埋めてください。

class Book < ApplicationRecord

 has_many :lending_records

 has_many :users, 　　　　　　　　　　　　　　　

end

class User < ApplicationRecord

 has_many :lending_records

 has_many :books, 　　　　　　　　　　　　　　　

end

class LendingRecord < ApplicationRecord

 　　　　　　　　 :book

 　　　　　　　　 :user

end

［B］　前問で行った関連付けを前提として、idカラムの値が5である利用者の持つ書籍
のリストにidカラムの値が34である書籍を追加するにはどのように記述すべきですか。空欄を
埋めてください。

user = User.find(5)

book = Book.find(34)

user.　　　　　　　　　　　　

Chapter

15　名前空間

本書を締めくくるこのChapterでは、複雑なウェブアプリケーションを開発する際
に避けて通れない「名前空間」という概念について解説します。そして、Morning
Gloryサイトに管理ページの機能を作りながらこの概念の具体的な活用法を学ん
でいきます。

これから学ぶこと

名前空間付きのルーティングとコントローラについて学習します。
管理ページを作成し、asagaoアプリケーションを完成させます。

最終章ではMorning Gloryサイトに管理ページの機能を追加します。そこで登場する「名前空
間」という概念の意味は何でしょうか？ 何のために「名前空間」を導入するのでしょうか？

15.1 　名前空間付きのルーティングとコントローラ

ここまでで作ったアプリケーションは、会員情報やニュース記事を誰でも編集できるもの
でした。管理者用のコントローラを作成して、編集権限を管理者だけに限定する機能を
加えましょう。

名前空間を導入する理由
Morning Gloryサイトの利用者は、操作権限の観点から次の3種類に分類できます。

訪問者（サイトにログインしていないユーザー）
一般会員（サイトにログインしているadministrator属性がfalseのユーザー）
管理者（サイトにログインしているadministrator属性がtrueのユーザー）

訪問者は公開されたニュース記事やブログ記事を閲覧できますが、それらの記事を投稿し
たり、会員名簿を閲覧したりすることはできません。現段階の仕様では、一般会員と管理者
の間に大きな違いはありません。ニュース記事に掲載開始日時と掲載終了日時が設定され
ている場合、一般会員はその範囲の時点でしか記事を読めませんが、管理者はすべての記
事を読めます。

なお、管理者には一般会員の持つ操作権限がすべて与えられています。そこで、以下の説
明では「一般会員向け」という言葉を「一般会員と管理者向け」という意味で用います。

さて、このChapterでは操作権限に関してMorning Gloryサイトの仕様を大きく変えていき
たいと思います。具体的には次の2つの仕様変更を行います。

管理者のみが会員を追加、編集、削除できる。
管理者のみがニュース記事を追加、編集、削除できる。

この種の仕様を導入する際の戦術は2通りです。ひとつは、個々の操作ごとにユーザーがそ
の権限を持つかどうかを判定して、リンクの表示・非表示を切り替えたり、リレーションオブジェ
クトに検索条件を加えたり、例外Forbiddenを発生させたりするというものです。もうひとつの
戦術では、ユーザーの種類ごとに別々のコントローラを用意します。後者の戦略を採用するとき
に登場するのが名前空間（namespace）という概念です。

現時点では、会員の表示、追加、編集、削除を行う機能はMembersControllerクラス
で実装されています。私たちは次節で別のコントローラクラスAdmin::MembersControllerを
作成します。このクラスの名前は記号::で2つの部分に分かれます。Adminの部分はモジュール
名です。このモジュールが付いているため、MembersControllerクラスと
Admin::MembersControllerクラスは別物として区別されます。この状況を「両者は別の名
前空間にある」と表現します。

コントローラに名前空間を導入する場合、app/controllersディレクトリの下に名前空間ご
とのサブディレクトリを作るのが定石です。Morning Gloryのサイトでは、コントローラのソースフ
ァイルを次のように配置することにします。controllersディレクトリ直下のファイルが訪問者を
含む全ユーザー向けで、controllers/adminディレクトリの下が管理者向けです。

コントローラの配置

管理TOPページへのルーティング設定
では、手始めに管理者向けのTOPページを作っていきましょう。まずは、ルーティングの設定

をします。

chapter15/config/routes.rb

 （省略）

 30 namespace :admin do

 31 root "top#index"

 32 end

 33 end

namespaceメソッドは文字どおりルーティングに名前空間（namespace）を導入します。
引数に名前空間の名前をシンボルで指定し、ブロックの内部でその名前空間に属するルーテ
ィングを記述していきます。上記の変更の結果として、URLパス/adminから
Admin::TopControllerのindexアクションにルーティングが設定されます。URLパスを生成する
メソッドはadmin_root_pathです。ヘルパーメソッドlink_toの第2引数に指定する場合は、次
のようにシンボル:admin_rootも使えます。

<%= link_to "管理ページ", :admin_root %>

あるいは、次のようにシンボルの配列を指定しても同じ意味になります。

<%= link_to "管理ページ", [:admin, :root] %>

Admin::Baseクラス
すべてのコントローラの親クラスがApplicationControllerであるように、すべての管理者用

コントローラの親クラスとなるクラスがあると便利です。app/controllersディレクトリの下に
adminディレクトリを作成し、その中にbase.rbというファイルを次の内容で作ってください。

chapter15/app/controllers/admin/base.rb

 1 class Admin::Base < ApplicationController

 2 before_action :admin_login_required

 3

 4 private def admin_login_required

 5 raise Forbidden unless current_member&.administrator?

 6 end

 7 end

Adminモジュールの下にあるBaseクラスを定義しています。2行目で
admin_login_requiredメソッドをbefore_actionコールバックとして指定しています。この結
果、Admin::Baseクラスを継承するすべてコントローラにおいて管理者以外のユーザーによるア
クセスが禁止されます。

5行目では、ログインした会員が管理者でないときに例外Forbiddenを発生させています。
ログイン前の会員がアクセスした場合はcurrent_memberメソッドがnilを返すので、ぼっち演
算子&.を用いてエラーが発生しないようにしています（「5.1　RESTとルーティング」のHINT
「&.演算子」を参照）。

Admin::TopController
Admin::Baseクラスを継承するコントローラを作成しましょう。まずは、管理ページのトップペ

ージのためのAdmin::TopControllerです。「bin/rails g」コマンドで名前空間付きのコントロー
ラを作成するには、admin/topのように/区切りで名前空間とコントローラ名を指定します。

$ bin/rails g controller admin/top index

Admin::TopControllerのソースコードを次のように書き換えてください。

chapter15/app/controllers/admin/top_controller.rb

 1 class Admin::TopController < Admin::Base

 2 def index

 3 end

 4 end

名前空間がAdminであるコントローラ用のテンプレートは、app/views/adminディレクトリの
下に配置します。Admin::TopControllerのindexアクションのテンプレートなら、
app/views/admin/topディレクトリの下です。内容は、次のような簡単なものにします。

chapter15/app/views/admin/top/index.html.erb

 1 <% @page_title = "管理ページトップ" %>

 2

 3 <%= link_to "会員管理", "#" %>

 4 <%= link_to "ニュース記事管理", "#" %>

 5

現在のページが一般向けなのか管理用なのかが一目でわかるように、メニューバーを切り替
えることにします。まず、app/views/sharedディレクトリに新規ファイル_menubar.html.erbを
作成します。そして、同じディレクトリの_header.html.erbの11行目以降を切り取って、
_menubar.html.erbに貼り付け、次のように書き換えます。

chapter15/app/views/shared/_menubar.html.erb

 1 <nav class="menubar">

 2

 3 <%= menu_link_to "TOP", :root %>

 4 <%= menu_link_to "ニュース", :articles %>

 5 <%= menu_link_to "ブログ", :entries %>

 6 <% if current_member %>

 7 <%= menu_link_to "会員名簿", :members %>

 8 <% if current_member.administrator? %>

 9 <%= menu_link_to "管理ページ", :admin_root %>

 10 <% end %>

 11 <% end %>

 12

 13 </nav>

続いて、app/views/sharedディレクトリに次のような内容の新規ファイル
_admin_menubar.html.erbを作成します。

chapter15/app/views/shared/_admin_menubar.html.erb

 1 <nav class="menubar" id="admin-menubar">

 2

 3 <%= menu_link_to "管理TOP", :admin_root %>

 4 <%= menu_link_to "会員管理", "#" %>

 5 <%= menu_link_to "ニュース記事管理", "#" %>

 6 <%= menu_link_to "TOP", :root %>

 7

 8 </nav>

さらに、_header.html.erbを次のように書き換えてください。

chapter15/app/views/shared/_header.html.erb

 （省略）

 6 <%= menu_link_to "ログアウト", :session,

 7 method: :delete, data: { confirm: "ログアウトしますか？" } %>

 8

 9 <% end %>

 10

 11 <%=

 12 if controller.kind_of?(Admin::Base)

 13 render "shared/admin_menubar"

 14 else

 15 render "shared/menubar"

 16 end

 17 %>

12行目で使っているcontrollerは、コントローラオブジェクトを返すメソッドです。
controller.kind_of?(Admin::Base)で、現在のコントローラがAdmin::Baseのインスタンスであ
るかどうかを調べています。

最後に管理ページ用のスタイルシートを追加します。

chapter15/app/assets/stylesheets/admin.css

 1 nav#admin-menubar {

 2 background-color: #800;

 3 }

開発用のシードデータでは、ユーザー名が「Taro」の会員を管理者にしています。ユーザー名
「Taro」、パスワード「asagao!」でログインして管理ページのトップを見てみましょう。

管理ページトップ

また、ユーザー名「Jiro」とパスワード「asagao!」でログインして、ブラウザのアドレスバーに直接
http://localhost:3000/adminと書き込んでみて、403エラーのページが表示される点も確認
してください。

Adminモジュールは自動的にできる
Admin::Baseクラスの「Admin」は、Adminモジュールです。次のようにAdminモジュールの中に

Baseクラスを定義しても同じです。

module Admin

 class Base < ApplicationController

 end

end

サンプルソースではAdminモジュールをどこにも定義していませんが、Railsがうまくやってくれます。
Admin::Baseという名前空間付きのクラスが必要になると、Railsはadminディレクトリの下で
base.rbを探して読み込みます。その際にAdminモジュールがなければ、自動的に作成します。

15.2 　会員管理ページの作成

会員情報を扱うMembersControllerの機能をAdmin::MembersControllerに移
しましょう。

ルーティング設定
まずルーティングの設定を変更します。一般会員向けのMembersControllerではindexと

show以外のアクションを廃止します。

chapter15/config/routes.rb

 （省略）

 12 resources :members, only: [:index, :show] do

 13 get "search", on: :collection

 14 resources :entries, only: [:index]

 15 end

 （以下省略）

そして、管理者向けのAdmin::MembersControllerへのルーティングを設定します。7つの
基本アクションのほかにsearchアクションが必要となります。

chapter15/config/routes.rb

 （省略）

 30 namespace :admin do

 31 root to: "top#index"

 32 resources :members do

 33 get "search", on: :collection

 34 end

 35 end

 36 end

以上の設定変更により新たなルーティングが次のように設定されます。

名前空間付きのルーティング
アクショ
ン

パス
HTTPメ
ソッド

パスを返すメソッド

index /admin/members GET admin_members_path
show /admin/members/123 GET admin_members_path(member)
new /admin/members/new GET new_admin_member_path
edit /admin/members/123/edit GET edit_admin_members_path(member)
create /admin/members POST admin_members_path
update /admin/members/123 PATCH admin_members_path(member)
destroy /admin/members/123 DELETE admin_members_path(member)
search /admin/members/search GET search_admin_members_path

新たなルーティングを利用して、管理者向けメニューバーのHTMLテンプレートを次のように変
更し、会員管理ページへのリンクを設定してください。

chapter15/app/views/shared/_admin_menubar.html.erb

 1 <nav class="menubar" id="admin-menubar">

 2

 3 <%= menu_link_to "管理TOP", :admin_root %>

 4 <%= menu_link_to "会員管理", :admin_members %>

 （以下省略）

また、管理トップページでも会員管理ページへのリンクを設定してください。

chapter15/app/views/admin/top/index.html.erb

 1 <% @page_title = "管理ページトップ" %>

 2

 3 <%= link_to "会員管理", :admin_members %>

 4 <%= link_to "ニュース記事管理", "#" %>

 5

Admin::MembersControllerの作成
Admin::MembersControllerは、すでに作ってあるMembersControllerをコピー＆ペース

トして作るのが簡単です。次の作業を行ってください。

app/controllersディレクトリの下のmembers_controller.rbをコピーして、
app/controllers/adminディレクトリの下に貼り付ける。
app/views/membersディレクトリをまるごとコピーして、app/views/adminディレクトリ
の下に貼り付ける。

これらの作業はGUIを持つツール（macOSのFinderやWindowsのエクスプローラー）で行
ってもかまいませんが、ターミナルで操作することもできます。慣れれば、そのほうが早いかもしれ
ません。実行するのコマンド群は次のとおりです。

$ cd app/controllers

$ cp members_controller.rb admin/

$ cd ../views

$ cp -r members admin/

$ cd ../..

adminディレクトリの下にコピーしたmembers_controller.rbを開いて、クラスの定義を次の
ように変えてください。2行目にあった「before_action :login_required」は必要ないので削
除してください。

chapter15/app/controllers/admin/members_controller.rb

 1 class Admin::MembersController < Admin::Base

 2 # 会員一覧

 3 def index

 （以下省略）

createアクション、updateアクション、およびdestroyアクションの中にあるリダイレクト先を
名前空間付きのものに変えます。

chapter15/app/controllers/admin/members_controller.rb

 （省略）

 35 redirect_to [:admin, @member], notice: "会員を登録しました。"

 （省略）

 46 redirect_to [:admin, @member], notice: "会員情報を更新しました。"

 （省略）

 56 redirect_to :admin_members, notice: "会員を削除しました。"

 （以下省略）

会員管理ページ用のテンプレート修正
app/views/adminディレクトリの下にコピーしたテンプレートを修正していきましょう。まず

indexアクションです。

chapter15/app/views/admin/members/index.html.erb

 1 <% @page_title = "会員管理" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <%= form_tag :search_admin_members, method: :get, class: "search" do
%>

 5 <%= text_field_tag "q", params[:q] %>

 6 <%= submit_tag "検索" %>

 7 <% end %>

 8

 9 <div class="toolbar"><%= link_to "会員の新規登録",
:new_admin_member %></div>

 （省略）

 22 <% @members.each do |member| %>

 23 <tr>

 24 <td style="text-align: right"><%= member.number %></td>

 25 <td><%= link_to member.name, [:admin, member] %></td>

 26 <td><%= member.full_name %></td>

 27 <td>

 28 <%= link_to "編集", [:edit, :admin, member] %> |

 29 <%= link_to "削除", [:admin, member], method: :delete,

 30 data: { confirm: "本当に削除しますか?" } %>

 （以下省略）

パスの指定を名前空間付きのものに変更しています。変更内容を箇条書きでまとめます。

:search_members → :search_admin_members
:new_member → :new_admin_member
member → [:admin, member] （2箇所）
[:edit, member] → [:edit, :admin, member]

アクションを表すシンボルが名前空間を表すシンボルよりも前に来る点に気をつけてくださ
い。初心者が間違えやすいところです。

showアクションのテンプレートではlink_toの引数を[:edit, @member]から[:edit, :admin,
@member]に変えます。

chapter15/app/views/admin/members/show.html.erb

 （省略）

 5 <div class="toolbar"><%= link_to "編集", [:edit, :admin, @member] %>
</div>
 （以下省略）

一般会員向けMembersControllerのshowアクションのテンプレートでは「編集」リンク自
体を削除してください。

chapter15/app/views/members/show.html.erb

 1 <% page_title = "会員の詳細" %>

 2

 3 <h1><%= page_title %></h1>

 4

 5 <%= render "body" %>

newアクションとeditアクションのテンプレートでは、form_forの引数を@memberから
[:admin, @member]に変えます。

chapter15/app/views/admin/members/new.html.erb

 （省略）

 5 <%= form_for [:admin, @member] do |form| %>

 （以下省略）

chapter15/app/views/admin/members/edit.html.erb

 （省略）

 5 <div class="toolbar"><%= link_to "会員の詳細に戻る", [:admin,
@member] %></div>

 6

 7 <%= form_for [:admin, @member] do |form| %>

 （以下省略）

chapter15/app/views/shared/_member_form.html.erb

 （省略）

 54 <% if controller.kind_of?(Admin::MembersController) %>

 （以下省略）

これで、MembersControllerの機能をAdmin::MembersControllerに移せました。ブラ
ウザで管理ページトップから［会員管理］をクリックして動作確認を行ってください。

管理ページの会員一覧

MembersControllerの修正
新しい仕様では会員の編集は管理ページでしかできませんので、一般会員向けの

MembersControllerにはindex、show、searchの3つのアクションだけを残します。
MembersControllerとそのテンプレートに対して、次の作業を行ってください。

app/controllers/members_controller.rbを開き、newアクション以下のアクションを
すべて削除する。プライベートメソッドmember_paramsも削除する。
app/views/membersディレクトリの下から、new.html.erb、edit.html.erbの2つのファ
イルを削除する。

indexアクションのテンプレートapp/views/members/index.html.erbを開いて、次の行
（9行目）を削除してください。

<div class="toolbar"><%= link_to "会員の新規登録", :new_member %>
</div>

また、会員の一覧表から「操作」の列を削除します。次の箇所を削除してください。修正前
のテンプレートの17行目と24〜28行目にあたります。

 <th>操作</th>

 （中略）

 <td>

 <%= link_to "編集", [:edit, member] %> |

 <%= link_to "削除", member, method: :delete,

 data: { confirm: "本当に削除しますか?" } %>

 </td>

ブラウザで一般会員向けの会員一覧を見て、会員管理関連のリンクが表示されなくなっ
ていることを確認してください。

一般会員向けの会員一覧

15.3 　ニュース記事管理ページの作成

ニュース記事を扱うArticlesControllerの機能をAdmin::ArticlesControllerに移しま
す。考え方は会員管理ページと同じですので、自信のある方は以下の説明を読む前に
独力で移してみることをお勧めします。

ルーティングの設定
全ユーザー向けArticlesControllerへのルーティングでは、indexアクションとactionアクショ

ンだけを残します。

chapter15/config/routes.rb

 （省略）

 21 resources :articles, only: [:index, :show]

 （以下省略）

Admin::ArticlesControllerへのルーティングを追加します。

chapter15/config/routes.rb

 （省略）

 30 namespace :admin do

 31 root to: "top#index"

 32 resources :members do

 33 get "search", on: :collection

 34 end

 35 resources :articles

 36 end

 37 end

管理者向けメニューバーのHTMLテンプレートを次のように変更します。

chapter15/app/views/shared/_admin_menubar.html.erb

 1 <nav class="menubar" id="admin-menubar">

 2

 3 <%= menu_link_to "管理TOP", :admin_root %>

 4 <%= menu_link_to "会員管理", :admin_members %>

 5 <%= menu_link_to "ニュース記事管理", :admin_articles %>

 6 <%= menu_link_to "TOP", :root %>

 7

 8 </nav>

また、管理トップページにも「ニュース記事管理」へのリンクを設置します。

chapter15/app/views/admin/top/index.html.erb

 1 <% @page_title = "管理ページトップ" %>

 2

 3 <%= link_to "会員管理", :admin_members %>

 4 <%= link_to "ニュース記事管理", :admin_articles %>

 5

Admin::ArticlesControllerの作成
ArticlesControllerをコピー＆ペーストしてAdmin::ArticlesControllerを作成しましょう。

app/controllersディレクトリの下のarticles_controller.rbをコピーして、
app/controllers/adminディレクトリの下に貼り付ける。
app/views/articlesディレクトリをまるごとコピーして、app/views/adminディレクトリの
下に貼り付ける。

ターミナルで操作する場合、以下のコマンド群を順に実行してください。

$ cd app/controllers

$ cp articles_controller.rb admin/

$ cd ../views

$ cp -r articles admin/

$ cd ../..

adminディレクトリの下のarticles_controller.rbを開いて、クラスの定義を変えてください。
2行目にあるbefore_actionコールバックの設定も削除します。

chapter15/app/controllers/admin/articles_controller.rb

 1 class Admin::ArticlesController < Admin::Base

 2 # 記事一覧

 3 def index

 （以下省略）

同ファイルのindexアクションを次のように書き換えます。

chapter15/app/controllers/admin/articles_controller.rb

 1 class ArticlesController < Admin::Base

 2 # 記事一覧

 3 def index

 4 @articles = Article.order(released_at: :desc)

 5 .page(params[:page]).per(5)

 6 end

 （以下省略）

同ファイルのshowアクションを次のように書き換えます。

chapter15/app/controllers/admin/articles_controller.rb

 （省略）

 8 # 記事詳細

 9 def show

 10 @article = Article.find(params[:id])

 11 end

 （以下省略）

createアクション、updateアクション、およびdestroyアクションの中にあるリダイレクト先を
変更します。

chapter15/app/controllers/admin/articles_controller.rb

 （省略）

 27 redirect_to [:admin, @article], notice: "ニュース記事を登録しました。"

 （省略）

 38 redirect_to [:admin, @article], notice: "ニュース記事を更新しました。"

 （省略）

 48 redirect_to :admin_articles

 （以下省略）

記事管理用のテンプレート修正
app/views/adminディレクトリの下にコピーしたテンプレートを修正します。まずindexアクシ

ョンです。

chapter15/app/views/admin/articles/index.html.erb

 1 <% @page_title = "ニュース一覧" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <div class="toolbar"><%= link_to "新規作成", :new_admin_article %>
</div>
 （省略）

 16 <% @articles.each do |article| %>

 17 <tr>

 18 <td><%= link_to article.title, [:admin, article] %></td>

 19 <td><%= article.released_at.strftime("%Y/%m/%d %H:%M") %>
</td>

 20 <td>

 21 <%= link_to "編集", [:edit, :admin, article] %> }

 22 <%= link_to "削除", [:admin, article], method: :delete,

 23 data: { confirm: "本当に削除しますか?" } %>

 24 </td>

 25 </tr>

 26 <% end %>

 （以下省略）

次にshowアクションのテンプレートを修正します。

chapter15/app/views/admin/articles/show.html.erb

 1 <% @page_title = @article.title %>

 2 <h1><%= @article.title %></h1>

 3

 4 <div class="toolbar"><%= link_to "編集", [:edit, :admin, @article] %>

</div>

 （以下省略）

newアクションとeditアクションのテンプレートでは、form_forの引数を@articleから
[:admin, @article]に変えます。

chapter15/app/views/admin/articles/new.html.erb

 （省略）

 4 <%= form_for [:admin @article] do |form| %>

 （以下省略）

chapter15/app/views/admin/articles/edit.html.erb

 （省略）

 4 <div class="toolbar"><%= link_to "記事の詳細に戻る", [:admin, @article]
%></div>

 5

 6 <%= form_for [:admin, @article] do |form| %>

 （以下省略）

これで、ArticlesControllerの機能をAdmin::ArticlesControllerに移せました。ブラウザで
確認してみましょう。

管理ページの記事一覧

ArticlesControllerの修正
全ユーザー向けのArticlesControllerにはindexアクションとshowアクションだけを残しま

す。次の作業を行ってください。

app/controllers/articles_controller.rbを開き、newアクション以下のアクションをすべ
て削除する。プライベートメソッドarticle_paramsも削除する。
app/views/articlesディレクトリの下から、new.html.erb、edit.html.erb、
_form.html.erbの3つのファイルを削除する。

ArticlesControllerでは公開前の記事や期限切れの記事は表示しません。また、会員限
定の記事は訪問者の目から隠します。indexアクションとshowアクションを修正して、visible
スコープとopen_to_the_publicスコープで制限します。また、before_actionコールバックの指
定を削除します。

chapter15/app/controllers/articles_controller.rb

 1 class ArticlesController < ApplicationController

 2 # 記事一覧

 3 def index

 4 @articles = Article.visible.order(released_at: :desc)

 5 @articles = @articles.open_to_the_public unless current_member

 6 @articles = @articles.page(params[:page]).per(5)

 7 end

 8

 9 # 記事詳細

 10 def show

 11 articles = Article.visible

 12 articles = articles.open_to_the_public unless current_member

 13 @article = articles.find(params[:id])

 14 end

 15 end

また、全ユーザー向けの記事表示ページでは、ビジュアルデザインを変更して見やすくすること
にします。indexアクションのテンプレートを次のものに差し替えます。

chapter15/app/views/articles/index.html.erb

 1 <% @page_title = "ニュース一覧" %>

 2 <h1><%= @page_title %></h1>

 3

 4 <% if @articles.present? %>

 5 <% @articles.each do |article| %>

 6 <h2><%= article.title %></h2>

 7 <p>

 8 <%= truncate(article.body, length: 80) %>

 9 <%= link_to "もっと読む", article %>

 10 </p>

 11 <div class="article-footer">

 12 <%= article.released_at.strftime("%Y/%m/%d %H:%M") %>

 13 </div>

 14 <% end %>

 15 <% else %>

 16 <p>ニュースがありません。</p>

 17 <% end %>

showアクションのテンプレートは次のものに差し替えます。

chapter15/app/views/articles/show.html.erb

 1 <% @page_title = @article.title %>

 2 <h1><%= @article.title %></h1>

 3

 4 <%= simple_format(@article.body) %>

 5

 6 <div class="article-footer">

 7 <%= @article.released_at.strftime("%Y/%m/%d %H:%M") %>

 8 </div>

app/assets/stylesheetsディレクトリに新規ファイルarticles.cssを作成します。

chapter15/app/assets/stylesheets/articles.css

 1 div.article-footer {

 2 border-top: 1px #ccf dashed;

 3 padding-top: 4px;

 4 margin-bottom: 8px;

 5 text-align: right;

 6 font-size: 75%;

 7 }

ブラウザで全ユーザー向けのニュース記事を見て、表示を確認してください。

全ユーザー向けのニュース記事一覧

全ユーザー向けのニュース記事詳細

これでMorning Gloryのサイト、asagaoアプリケーションは完成です。お疲れさまでした！
オイアクス社のサポートサイトもご覧になってください。

https://www.oiax.jp/rails5book

Chapter 15のまとめ

管理ページを作るには、コントローラをディレクトリ分けして名前空間付きのコ
ントローラを作成します。
名前空間付きのリソースを設定するにはnamespaceメソッドを使用します。

練習問題

https://www.oiax.jp/rails5book

［A］　次に示すのは、名前空間adminの下にリソースusersを設定するための
config/routes.rbです。空欄を埋めてください。

Rails.application.routes.draw do

 　　　　　　　　　　 :admin do

 resources :users

 end

end

［B］　前問のように名前空間付きのリソースを設定したとします。
Admin::UsersControllerのshowアクション、showアクション、およびdestroyアクションにリ
ンクするように、link_toメソッドの第2引数を埋めてください。ただし、変数@userにUserクラス
のインスタンスがセットされているものとします。

<%= link_to "会員の詳細", 　　　　　　　　　　　　　　　　　　 %>

<%= link_to "会員の編集", 　　　　　　　　　　　　　　　　　　 %>

<%= link_to "会員の削除", 　　　　　　　　　　　　　　　　　　,

 method: :delete, data: { confirm: "本当に削除しますか？" }%>

Appendix

付録A　参考文献と推薦図書

■Ruby

『たのしいRuby 第5版』 高橋征義、後藤裕蔵著、ソフトバンククリエイテ
ィブ刊、2016年

Ruby初心者向けの入門書。本書のChapter 2ではもの足りなかった方に
お勧め。
『改訂2版 パーフェクトRuby』 Rubyサポーターズ著、技術評論社刊、
2017年

Rubyの入門書。Gemパッケージの作り方など応用的な内容を含む。
『プロを目指す人のためのRuby入門 言語仕様からテスト駆動開発・デバ
ッグ技法まで (Software Design plusシリーズ)』 伊藤淳一著、技術評
論社刊、2017年

Rubyの基礎知識よりもテスト駆動開発やデバッグのやり方など開発現場
で必要になる知識に重点が置かれている。
『プログラミング言語Ruby』 David Flanagan、まつもとゆきひろ著、オライ
リー・ジャパン刊、2009年

Rubyの細かい機能まで網羅的に解説した本。Rubyについて深く知りたい
方向け。
『まつもとゆきひろ コードの世界』 まつもとゆきひろ著、日経BP刊、2009
年

Rubyの開発者であるまつもと氏自身の考えが読める。Rubyに限らずプロ
グラミング全般の話題を扱う。
『JavaからRubyへ――マネージャのための実践移行ガイド』 Bruce A.
Tate著、オライリー・ジャパン刊、2007年

現代的なプログラミングにおけるRubyの利点を解説した本。企業でRuby
やRailsを導入したい方向け。
『Effective Ruby』 Peter J. Jones著、翔泳社刊、2015年

効率的なRubyプログラミングを行うためのノウハウが集まっている。中級者
から上級者向け。

■Ruby on Rails

『実践Ruby on Rails 4 現場のプロから学ぶ本格Webプログラミング』
黒田努著、インプレスジャパン刊、2014年

本書の著者による中級者向けのRails学習書。ある企業向けに顧客管理
システムを作るという設定で、一連の開発手順を解説したもの。
『Ruby on Rails 5 アプリケーションプログラミング』 山田祥寛著、技術評
論社刊、2017年

Ruby on Railsの入門書。コンポーネント（ビュー、モデル、コントローラ）別
の章立てになっており、リファレンスとして使いやすい。
『パーフェクトRuby on Rails』 すがわらまさのり、前島真一、近藤宇智
朗、橋立友宏著、技術評論社刊、2014年

Ruby on Railsの入門書。OAuthによるユーザー認証やChefによるプロビ
ジョニングなど中・上級者向けの内容に特徴がある。

『Ruby on Rails環境構築ガイド』 黒田努著、インプレスジャパン刊、
2013年

Railsアプリケーションの開発環境構築から本番環境への配備（デプロイメ
ント）までを解説した本。
『Agile Web Development with Rails 5.1』 Sam Ruby、Dave
Thomas、David Heinemeier Hansson、Pragmatic Bookshelf刊、
2018年

内容は英語で書かれているが、Railsプログラマなら手元に置いておきたい
一冊。内容は中級者から上級者向け。

■SQL

『初めてのSQL』 Alan Beaulieu著、オライリー・ジャパン刊、2006年

SQLの入門書。初心者から中級者向け。言語仕様はMySQLに基づく。

■ウェブアプリケーション

『Webを支える技術』 山本陽平著、技術評論社刊、2010年

HTTPやURL、RESTについての解説書。ウェブアプリケーション設計の基本
思想について学べる。

Appendix

付録B　練習問題の解答

Chapter 1

［A］の解答

（×）——Rubyは21世紀の初めに登場した比較的新しいプログラミング
言語です。
（○）——Ruby on Railsは、オープンソース方式で開発されているフレー
ムワークです。
（○）——Ruby on Railsは、Windows、macOS、Linuxなどさまざま
なOSで動作します。
（○）——Railsをインストールするには、パッケージ・マネージャの
RubyGemsを使います。
（×）——新しいGemパッケージを導入するときは、テキストエディタで
Gemfile.lockを編集します。

Rubyは1995年に初めて公開されました。
Ruby on Railsは、David Heinemeier Hansson氏が中心となって開発
しているオープンソース・ソフトウェアです。
Ruby on Railsは、Rubyが動作する環境ならどこでも動作します。
RailsはたくさんのGemパッケージで構成されています。
Gemfile.lockではなくGemfileを編集します。

［B］の解答

Railsの原則DRYは、「Don't Repeat Yourself」の略で繰り返しを避けよ
という意味です。
Railsは設定より規約という設計哲学で作られており、規約に従ってアプリ
ケーションを開発することで、記述量を大幅に減らすことができます。

［C］の解答

<h1><%= @message %></h1>

<p><%= @description %></p>

テンプレートに変数を埋め込むには、<%= %>の間に変数を入れます。

Chapter 2

［A］の解答

print "価格を入力してください："

price = gets.chomp

price = (price.to_i * 1.08).to_i

puts "税込み#{price}円です。"

priceには文字列が入るので、to_iメソッドで数値に変換してから1.08をか
けます。さらに、to_iメソッドを使って整数に変換します。

［B］の解答

flowers = ["carnation", "tulip", "cosmos"]

flowers.each do |flower|

 puts flower

end

配列の要素を列挙するにはeachメソッドにブロックを渡します。

［C］の解答

class Book

 attr_reader :title, :author, :price

 def initialize(title, author, price)

 @title = title

 @author = author

 @price = price

 end

end

book1 = Book.new("彼岸過迄", "夏目漱石", 540)

puts "#{book1.title}、#{book1.author}著、

#{book1.price}円"

インスタンス変数を属性として取り出すには、attr_readerに変数名を指定
します。「attr_accessor :title, :author, :price」としてもOKです。

Chapter 3

［A］の解答

記事の投稿など、サーバーの状態を変更するときには、HTTPのPOSTメソッ
ドで送信します。
redirect_toメソッドを使うと、ブラウザに新しいURLを示して別のページへの
リダイレクションを行うことができます。
routes.rbを編集すると、URLのパスから特定のアクションを選ぶルーティン
グの設定を変更できます。

［B］の解答

<p><%= link_to "このサイトについて", about_path %></p>

リンクを作成するには、link_toメソッドにリンクのテキストとパスを指定しま
す。ルーティングの「as: "about"」の設定で、about_pathが使えるようにな
ります。about_pathの代わりに:aboutと指定してもOKです。

［C］の解答

 <% @countries.each do |country| %>

 <%= country %>

 <% end %>

テンプレートにeachメソッドによるループを埋め込み、配列の要素を表示し
ます。

Chapter 4

［A］の解答

class CreateBooks < ActiveRecord::Migration[5.2]

 def change

 create_table :books do |t|

 t.string :title, null: false # 書名

 t.string :author, null: false # 著者名

 t.integer :price, null: false # 価格

 t.timestamps

 end

 end

end

文字列型のコラムを作成するにはt.stringを、整数型のコラムを作成するに
はt.integerを使い、カラム名をシンボルで指定します。

［B］の解答

book = Book.new

book.title = "明暗"

book.author = "夏目漱石"

book.price = 1200

book.save

レコードのカラム（モデルの属性）に値を入れるには、「オブジェクト.カラム
名 = 値」とします。保存するにはsaveメソッドを使います。

［C］の解答

book = Book.find(123)

idを指定してモデルオブジェクトを取り出すには、findメソッドを使います。

［D］の解答

books = Book.where(author: "夏目漱石")

条件を指定してモデルオブジェクトを取り出すには、クエリーメソッドの
whereを使います。

［E］の解答

books = Book.where("price < ?", 3000)

比較を使った条件を指定するには、whereメソッドにSQLのWHERE句を
指定します。生の値は?を使って埋め込みます。

Chapter 5

［A］の解答

index /books GET

show /books/1 GET

new /books/new GET

edit /books/1/edit GET

create /books POST

update /books/1 PATCH

destroy /books/1 DELETE

showアクションのパスは「/リソース名の複数形/id」です。「/books」パスに
POSTメソッドで送信すると、createアクションの呼び出しになります。
updateアクションで使われるHTTPメソッドはPATCHです。

［B］の解答

class BooksController < ApplicationController

 def index

 @books = Book.order("title")

 end

 def show

 @book = Book.find(params[:id])

 end

end

レコードをソートして取り出すには、クエリーメソッドのorderを使います。idパ
ラメータを元にレコードを1つ取り出すには、findメソッドを使います。

［C］の解答

index.html.erb

 <% @books.each do |book| %>

 <%= link_to book.title, book %>

 <% end %>

show.html.erb

<p>書籍名：<%= @book.title %>、

著者名：<%= @book.author %>、

価格：<%= @book.price %>円</p>

indexアクションのテンプレートでは、link_toメソッドの第2引数にモデルオブ
ジェクトを渡せば、showアクションへのリンクができます。showアクションの
テンプレートでは、モデルの属性の値をそれぞれ表示します。

Chapter 6

［A］の解答

<%= form_for @book do |form| %>

 <div>書名：<%= form.text_field :title %></div>

 <div>著者：<%= form.text_field :author %></div>

 <div>価格：<%= form.text_field :price %></div>

 <div><%= form.submit %></div>

<% end %>

テキスト入力欄を作るには、フォームビルダーオブジェクトのtext_fieldメソッド
を使い、属性名を引数にします。

［B］の解答

class BooksController < ApplicationController

 def create

 @book = Book.new(params[:book])

 @book.save

 redirect_to @book, notice: "作成しました。"

 end

 def update

 @book = Member.find(params[:id])

 @book.assign_attributes(params[:book])

 @book.save

 redirect_to @book, notice: "更新しました。"

 end

end

送信されたフォームのデータはbookパラメータに入っています。createアクシ
ョンではnewメソッドにbookパラメータを渡します。updateアクションでは
assign_attributesメソッドに渡します。

Chapter 7

［A］の解答

class Book < ApplicationRecord

 validates :title, :author

 validates :price, presence: true,

 numericality: { only_integer: true, greater_than: 0 }

end

validatesメソッドに属性名とバリデーションの種類、オプションを指定しま
す。「1以上の整数」は、numericalityで指定します。

［B］の解答

ja:
 activerecord:

 models:

 book: 書籍

 attributes:

 book:
 title: 書名

 author: 著者

 price: 価格

book:の下でインデントして、「属性名: テキスト」を並べてください。

Chapter 8

［A］の解答

class SessionsController < ApplicationController

 def create

 user = User.find_by(email: params[:email])

 if user&.authenticate(params[:password])

 session[:user_id] = user.id

 else

 flash.alert = "メールアドレスとパスワードが一致しません"

 end

 redirect_to :root

 end

end

セッションデータにユーザーのidカラムの値を保存します。

［B］の解答

class ApplicationController < ActionController::Base

 private def current_user

 User.find_by(id: session[:user_id] if session[:user_id]

 end

 helper_method :current_user

end

セッションデータに保存したユーザーのidを元に、find_byメソッドでモデルオブ
ジェクトを取り出します。

［C］の解答

テンプレート

<%= link_to "マイアカウント", :account %>

単数リソースでは、showアクションのパスは「単数形_path」メソッドまたは
「単数形のシンボル」で指定します。account_pathとしてもOKです。

Chapter 9

［A］の解答

class Book < ApplicationRecord

 after_save do

 Logger.new(Rails.root.join("log/books.log")).info(title)

 end

end

after_saveコールバックはモデルの保存後（新規作成、更新の両方）に
呼ばれます。

［B］の解答

class Book < ApplicationRecord

 scope :free, -> { where(price: 0) }

end

クラスメソッドscopeを使ってスコープを定義します。記号->に続くブロックの
内側に検索条件を指定する式を記述します。

Chapter 10

［A］の解答

class CreateBooks < ActiveRecord::Migration[5.2]

 def change

 create_table :books do |t|

 t.references :shelf, null: false

 t.string :title, null: false

 t.string :author, null: false

 t.integer :price, null: false

 t.timestamps

 end

 end

end

t.references :shelfによってbooksテーブルに整数型のshelf_idカラムが追
加されます。

［B］の解答

app/models/shelf.rb

class Shelf < ApplicationRecord

 has_many :books

end

app/models/book.rb

class Book < ApplicationRecord

 belongs_to :shelf

end

Shelfモデルにhas_manyメソッドを記述して、「本棚は書籍をたくさん持
つ」という結び付きを作ります。
Bookモデルにbelongs_toメソッドを記述して、「書籍はある本棚に属す
る」という結び付きを作ります。

［C］の解答

class BooksController < ApplicationController

 def index

 if params[:shelf_id]

 @shelf = Shelf.find(params[:shelf_id])

 @books = @shelf.books.order("title")

 else

 @books = Book.order("title")

 end

 end

end

4行目ではパラメータshelf_idの値（1以上の整数）をidカラムの値として
持つレコードをshelvesテーブルから取得してオブジェクト化し、変数@shelf
にセットしています。
5行目ではその@shelfに属する書籍のリストをorderメソッドにより「書籍
名（title）」で並べ替えてから変数@booksにセットしています。

Chapter 11

［A］の解答

class BooksController < ApplicationController

（省略）

 def create

 @book = Book.new(book_params)

 if @book.save

 redirect_to @book, notice: "書籍を登録しました。"

 else

 render "new"

 end

 end

（省略）

 private def book_params

 params.require(:book).permit(

 :title,

 :author,

 :price

)

 end

end

フォームから送信されてきたパラメータをストロング・パラメータで処理するため
プライベートメソッドbook_paramsからの戻り値をBook.newメソッドの引
数に指定します。
フォームから送信されてきたパラメータに:bookキーが含まれるかどうかをチェッ
クするには、requireメソッドを呼び出します。

［B］の解答

class ApplicationController < ActionController::Base

 rescue_from ActiveRecord::RecordNotFound, with: :rescue_404

 private def rescue_404(exception)

 render "errors/not_found", status: 404, layout: "error",

 formats: [:html]

 end

end

例外処理の方法を設定するには、クラスメソッドrescue_fromをwithオプ
ション付きで呼び出します。引数には例外クラスを指定します。
サーバーがブラウザに返すHTTPステータスコードを指定するには、statusオプ
ションにそのコードを指定してrenderメソッドを呼び出します。

Chapter 12

［A］の解答

（×）——アセット・パイプラインにより、configディレクトリの下にある資
格情報が暗号化されます。
（○）——アセット・パイプラインにより、app/assets/stylesheetsディレク
トリの下にあるSass形式のスタイルシートはCSS形式に変換されます。
（×）——バージョン5.1以降のRuby on RailsにはJavaScriptライブラリ
jQueryが同梱されています。
（×）——Turbolinksは、JavaScriptのコンパイル時間を短縮するための
機能です。

アセット・パイプラインは資格情報の暗号化とは無関係です。
SassはCSSの文法を改良したスタイルシート言語で、アセット・パイプライン
により普通のCSSに変換されます。

RailsアプリケーションでjQueryを使うにはGemパッケージjquery-railsを導
入する必要があります。
Turbolinksは、ブラウザによるページの遷移を高速化する機能です。

［B］の解答

Rails.application.credentials.dig(:remote, :password)

config/credentials.yml.encに保存された資格情報を復号するための定
石です。そのままの形で暗記しましょう。

Chapter 13

［A］の解答

class Book < ApplicationRecord

 has_one_attached :cover_image

end

クラスメソッドhas_one_attachedを使うと、モデルオブジェクトに対して1個
のファイルを添付できるようになります。

［B］の解答

<%= image_tag @book.cover_image.variant(resize: "90x114")
%>

variantは画像データを変換するメソッドです。resizeオプションに文字
列"90x114"を指定すると、画像の縦横比を維持したまま幅90ピクセル、
高さ114ピクセルの範囲で最も大きくなるように画像を拡大・縮小します。

Chapter 14

［A］の解答

class Book < ApplicationRecord

 has_many :lending_records

 has_many :users, through: :lending_records

end

class User < ApplicationRecord

 has_many :lending_records

 has_many :books, through: :lending_records

end

class LendingRecord < ApplicationRecord

 belongs_to :book

 belongs_to :user

end

モデルAとモデルBを多対多で関連付けるときには、モデルAと中間テーブル
のモデルCを1対多で関連付け、クラスメソッドhas_manyをthroughオプシ
ョン付きで呼び出します。同様にモデルAとモデルCも1対多で関連付け、ク
ラスメソッドhas_manyを呼び出します。

［B］の解答

user = User.find(5)

book = Book.find(34)

user.books << book

<<は演算子のように見えますが、「books <<」全体でひとつのメソッドで
す。

Chapter 15

［A］の解答

Rails.application.routes.draw do

 namespace :admin do

 resources :users

 end

end

ルーティングに名前空間を導入するにはnamespaceメソッドを使用します。

［B］の解答

<%= link_to "会員の詳細", [:admin, @user] %>

<%= link_to "会員の編集", [:edit, :admin, @user] %>

<%= link_to "会員の削除", [:admin, @user],

 method: :delete, data: { confirm: "本当に削除しますか？" }%>

「会員の編集」へのリンクでは、[:admin, :edit, @user]ではなく[:edit,
:admin, @user]と指定します。

■著者紹介

黒田 努（くろだ つとむ）
東京大学教養学部卒。同大学院総合文化研究科博士課程満期退学。ギ
リシャ近現代史専攻。専門調査員として、在ギリシャ日本国大使館に3年間
勤務。中学生の頃に出会ったコンピュータの誘惑に負け、IT業界に転身。
株式会社ザッパラス技術部長、株式会社イオレ取締役を経て、技術コンサル
ティングとIT教育を事業の主軸とする株式会社オイアクスを設立。現在、同社
代表取締役社長。また、2011年末にRuby on Railsによるウェブサービス開発
専業の株式会社ルビキタスを知人と共同で設立し同社代表に就任（オイアク
ス社長と兼任）。
株式会社オイアクス：https://www.oiax.co.jp/
株式会社ルビキタス：https://rubyquitous.co.jp/
Twitter：tkrd_oiax

佐藤和人（さとう かずと）
東京大学文学部卒。「インターネットマガジン」でウェブ制作関連の記事を手が
け、現在フリーライター。プログラミングとウェブ関連技術がおもなテーマ。大学時
代に黒田努にAWKを教わったのがプログラミングを始めたきっかけ。
『できるホームページHTML入門』『できる大事典HTML&CSS』『基礎
Ajax+JavaScript』（いずれもインプレスジャパン）など著書多数。
2012年1月より株式会社ルビキタス勤務。2015年2月より株式会社ルビキタス
取締役。

https://www.oiax.co.jp/
https://rubyquitous.co.jp/

kazuto.book@gmail.com

■執筆協力
藤山啓子、町田耕

■監修者

株式会社オイアクス
Ruby on Rails専門のIT教育・コンサルティング会社。Railsを活用した生産性
向上ノウハウの提供と人材育成をテーマに事業展開中。開発者やウェブデザイ
ナーを対象とする各種のセミナー、ワークショップを実施。
会社ホームページ：https://www.oiax.co.jp/
ブログサイト：https://www.oiax.jp/

■STAFF
カバーデザイン ハヤカワデザイン・早川いくを
本文デザイン（紙刊行版） 嶋健夫、轟木亜紀子（トップスタジオ）
DTP制作・EPUB制作 武藤 健志（株式会社トップスタジオ）
イラスト チカツ タケオ
　 　
編集協力 TSUC

https://www.oiax.co.jp/
https://www.oiax.jp/

■商品に関する問い合わせ先
インプレスブックスのお問い合わせフォームより入力してください。
https://book.impress.co.jp/info/
上記フォームがご利用頂けない場合のメールでの問い合わせ先
info@impress.co.jp

本書の内容に関するご質問は、お問い合わせフォーム、メールまたは封書にて書名・
ISBN・お名前・電話番号と該当するページや具体的な質問内容、お使いの動作環
境などを明記のうえ、お問い合わせください。
電話やFAX等でのご質問には対応しておりません。なお、本書の範囲を超える質問に
関しましてはお答えできませんのでご了承ください。
インプレスブックス（https://book.impress.co.jp/）では、本書を含めインプレスの出
版物に関するサポート情報などを提供しておりますのでそちらもご覧ください。
該当書籍の奥付に記載されている初版発行日から1年が経過した場合、もしくは該
当書籍で紹介している製品やサービスについて提供会社によるサポートが終了した場
合は、ご質問にお答えしかねる場合があります。

改訂4版基礎Ruby on Rails

　
2018年09月11日　初版第1刷発行

　
著者　　黒田 努・佐藤 和人
発行人　小川 享
編集人　高橋隆志
発行所　株式会社インプレス

https://book.impress.co.jp/info/
https://book.impress.co.jp/

〒101-0051 東京都千代田区神田神保町一丁目 105番地

ホームページ　https://book.impress.co.jp/

本書は著作権法上の保護を受けています。本書の一部あるいは全部について
（ソフトウェア及びプログラムを含む）、株式会社インプレスジャパンから文書に
よる許諾を得ずに、いかなる方法においても無断で複写、複製することは禁じら
れています。

Copyright © 2018 Tsutomu Kuroda, Kazuto Sato. All rights reserved.

ISBN978-4-2950-0460-8

https://book.impress.co.jp/

	はじめに
	本書の読み方
	Part1 Ruby on Railsの準備とRubyの基礎
	Chapter 1 イントロダクション
	これから学ぶこと
	1.1 Ruby on Railsの概要
	Ruby on Railsとは
	MVCと設計哲学
	Railsの構成と機能
	本書のサンプルアプリケーション
	1.2 Rails開発環境の構築
	環境構築に必要なもの
	macOSでの開発環境構築
	Windowsでの開発環境構築
	1.3 テキストエディタの選択
	ソースコード編集用のテキストエディタ
	「暗号化された資格情報」設定用のテキストエディタ
	1.4 アプリケーションの新規作成
	rails newコマンド
	bundle lockコマンドの実行（macOSおよびWSL/Ubuntu）
	Gemfileの編集（MSYS2/MinGWのみ）
	bundle installコマンドの実行（全プラットフォーム共通）
	rails newコマンドのオプション
	Bundler
	1.5 Railsを動かしてみよう
	アプリケーションの起動
	Railsアプリケーションのディレクトリ構造
	コントローラとアクションの作成
	ビューの作成
	Chapter 1のまとめ
	練習問題
	Chapter 2 Ruby言語の基礎を学ぼう
	これから学ぶこと
	2.1 変数と式
	Rubyの基本的な使い方
	数値と文字列
	式と演算子
	2.2 条件分岐、メソッド、ブロック
	条件分岐
	メソッド
	繰り返しとブロック
	例外処理
	2.3 いろいろなオブジェクト
	シンボル
	配列、ハッシュ、範囲
	2.4 クラス
	Rubyのオブジェクト
	インスタンスメソッド
	属性の書き方
	クラスメソッドと定数
	継承とミックスイン
	Rubyのクラスの特徴
	Chapter 2のまとめ
	練習問題
	Part2 Ruby on Railsの基本
	Chapter 3 コントローラとビュー
	これから学ぶこと
	3.1 RailsとHTTPの基本
	HTTPの基礎知識
	Railsのリクエスト処理の流れ
	ルーティング
	3.2 コントローラとアクション
	コントローラの基本
	アクションで使える機能
	リダイレクション
	3.3 テンプレート
	テンプレートの基本
	書式の指定とヘルパーメソッド
	リンクと画像
	条件分岐と繰り返し
	3.4 モックアップの作成
	レイアウトテンプレート
	モックアップのレイアウトテンプレート
	部分テンプレート
	スタイルシート
	Chapter 3のまとめ
	練習問題
	Chapter 4 データベースとモデル
	これから学ぶこと
	4.1 データベースとモデルの基本
	データベースとは
	Railsのモデル
	データベースの設定
	データベースの作成
	4.2 テーブルの作成
	モデルの作成
	マイグレーション
	membersテーブルの作成
	マイグレーションの詳細
	4.3 データの保存
	レコードの作成と更新
	シードデータの投入
	4.4 レコードの取り出しと検索
	findとfind_by
	クエリーメソッドとリレーションオブジェクト
	Chapter 4のまとめ
	練習問題
	Chapter 5 リソースを扱うコントローラ
	これから学ぶこと
	5.1 RESTとルーティング
	リソースベースのルーティング
	リソースとパスの指定
	5.2 7つのアクション
	MembersControllerの作成
	会員の一覧ページ
	会員検索機能
	会員の詳細ページ
	Chapter 5のまとめ
	練習問題
	Chapter 6 リソースの作成と更新
	これから学ぶこと
	6.1 フォームとモデル
	モデルとフォームの連携
	フォームの記述
	フォームの部品の記述
	フォームビルダーのメソッド
	6.2 レコードの作成、更新、削除
	作成と更新の流れ
	会員の新規登録と更新
	会員の削除
	Chapter 6のまとめ
	練習問題
	Part3 Ruby on Railsの応用
	Chapter 7 バリデーションと国際化
	これから学ぶこと
	7.1 バリデーション
	バリデーション
	エラーメッセージの表示
	7.2 メッセージの日本語化
	Railsの国際化機能
	エラーメッセージの日本語化
	国際化機能の使い方
	Chapter 7のまとめ
	練習問題
	Chapter 8 単数リソース
	これから学ぶこと
	8.1 単数リソース
	単数リソースとは
	単数リソースのルーティング
	8.2 セッションを使ったログイン機能
	セッションとは
	パスワードの保存
	ユーザーの認証
	8.3 アクション・コールバックを利用したアクセス制御
	アクション・コールバックとは
	会員限定のコンテンツ
	8.4 マイアカウントページの作成
	ルーティングの設定
	AccountsController の作成
	8.5 パスワード変更機能
	独立したパスワード変更フォームを作る理由
	ルーティングの設定
	Memberモデルの変更
	パスワード変更フォームの作成
	新しいパスワードの保存
	メンバー追加フォームの修正
	Chapter 8のまとめ
	練習問題
	Chapter 9 Active Recordの活用
	これから学ぶこと
	9.1 ニュース記事の表示と編集
	Articleモデルの作成
	バリデーションの追加
	ルーティングの設定
	ArticlesControllerの作成
	9.2 Active Recordコールバック
	Active Recordコールバックとは
	no_expiration属性
	コールバックを使って掲載終了日時を消す
	フォームの書き換え
	9.3 スコープ
	スコープの記述
	スコープの定義
	サイドバーでの記事表示
	ニュース記事一覧ページの変更
	ニュース記事詳細ページの変更
	TopControllerの修正
	validate do ... end
	9.4 ページネーション
	Gemパッケージkaminari
	ページネーション機能の実装
	Chapter 9のまとめ
	練習問題
	Chapter 10 モデル間の関連付け
	これから学ぶこと
	10.1 関連付けの概要
	モデル間の関連付けと外部キー
	関連付けを作るメソッド
	10.2 会員ブログ関連モデルの準備
	ブログ記事の関連付け
	Entryモデルでの準備
	10.3 会員ブログ機能の実装
	ネストされたリソース
	ブログ記事の一覧と表示
	記事の作成、更新、削除
	Chapter 10のまとめ
	練習問題
	Part4 発展的な内容
	Chapter 11 セキュリティと例外処理
	これから学ぶこと
	11.1 ストロング・パラメータ
	ストロング・パラメータとは
	コントローラの修正
	11.2 エラーページのカスタマイズ
	Railsの例外を処理する
	エラー用テンプレート
	ルーティングエラーの処理
	Chapter 11のまとめ
	練習問題
	Chapter 12 アセット・パイプライン
	これから学ぶこと
	12.1 暗号化された資格情報
	credentials.yml.encとmaster.key
	secret_key_baseの生成
	資格情報の設定と参照
	12.2 アセット・パイプライン
	アセット・パイプラインの働き
	本番モードの準備
	アセット・パイプラインの動作確認
	12.3 Sass
	Sassの書式
	Sassを使う
	12.4 JavaScript
	jQueryの導入
	ニュース記事編集フォームの拡張
	Turbolinks
	Chapter 12のまとめ
	練習問題
	Chapter 13 ファイルのアップロード
	これから学ぶこと
	13.1 Active Storage
	Active Storageとは
	セットアップ手順
	13.2 プロフィール画像のアップロードと表示
	Memberモデルの拡張
	「プロフィール画像」フィールドの設置
	画像アップロード機能の実装
	アップロードされた画像の表示
	シードデータ
	ファイルのデータ形式に関するバリデーション
	13.3 プロフィール画像の削除
	添付ファイルの削除
	チェックボックスの設置
	13.4 ブログ画像のアップロードと表示
	EntryImageクラスの作成
	画像のアップロードと削除
	画像追加と画像編集
	画像の表示
	13.5 表示位置の入れ替え
	準備作業
	機能の実装
	13.6 クラウドストレージサービスの利用
	CA証明書の設置
	Amazon S3
	Google Cloud Storage
	Microsoft Azure Storage
	Chapter 13のまとめ
	練習問題
	Chapter 14 多対多の関連付け
	これから学ぶこと
	14.1 多対多の関連付け
	多対多の関連付けとは
	多対多の関連付けを設定するメソッド
	多対多で関連付けられたオブジェクトの集合を操作するメソッド
	14.2 ［いいね］ボタンの作成（前編）
	会員、記事、投票の関連付け
	14.3 ［いいね］ボタンの作成（後編）
	ルーティングの設定
	投票数とボタンの表示
	likeアクション
	14.4 自分が投票した記事一覧
	unlikeアクションとvotedアクション
	テンプレートの修正
	Chapter 14のまとめ
	練習問題
	Chapter 15 名前空間
	これから学ぶこと
	15.1 名前空間付きのルーティングとコントローラ
	名前空間を導入する理由
	管理TOPページへのルーティング設定
	Admin::Baseクラス
	Admin::TopController
	15.2 会員管理ページの作成
	ルーティング設定
	Admin::MembersControllerの作成
	会員管理ページ用のテンプレート修正
	MembersControllerの修正
	15.3 ニュース記事管理ページの作成
	ルーティングの設定
	Admin::ArticlesControllerの作成
	記事管理用のテンプレート修正
	ArticlesControllerの修正
	Chapter 15のまとめ
	練習問題
	付録A 参考文献と推薦図書
	付録B 練習問題の解答
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	著者紹介
	奥付

