
D

から学ぶ1

DB Magtthe連載
「本気で学ぶSQLチューニング」より

毎

加藤祥平/中島益次郎 著

`.___:|
⌒

aト

SQLパフォーマンス問題の
「解決」から「予防」まで
これ1冊ですべてマスタ.ノ
(:)月刊E旧|マガリツの理人気連載1書籍化 !

買

蝙

一

鑑
¨
一

SQLの情報収集/分析、実行計画の読み方、正しいSQLの書き方、フェ…ズごと
のSQLパフォーマンス問題の予防策など、Oracle SQLチューニングを徹底詳解!

Ｌ
■
口
Ｆ

D

膊録晰囃雄

ヽ |

V

ング

『
~

E=コ

から学ぶ

DB Magazine連載
「本気で学ぶSQLチューニング」より

■■■

ング
加藤祥平/中島益次郎著

駆
¨

囲

翔泳社 eCOPro,edの ご案内
株式会社 翔泳社では地球にやさしい本づくりを目指します。制作工程において

以下の基準を定め、このうち4項 目以上を満たしたものをエコロジー製品と位

置づけ、シンボルマークをつけています。
/鰤島jed

装丁用紙 無塩素漂白パルプ使用紙 あるいは

再生循環資源を利用した紙

有毒な有機塩素化合物発生の軽減 (無塩

素漂白パルプ)

資源の再生循環促進 (再生循環資源紙)

○

本文用紙 材料の一部に無塩素漂白パルプ ある

いは古紙を利用

有毒な有機塩素化合物発生の軽,1カ (無塩

素漂白パルプ)
ごみ減量・資源の有効活用 (再生紙)

○

製版 CTP(フ ィルムを介さずデータから
直接プレートを作製する方法)

枯渇資源 (原油)の保護、産業廃棄物排
出量の減少

○

印刷インキ“ 植物油を合んだインキ 枯渇資源 (原油)の保護、生産可能な農
業資源の有効利用

製本メルト 難細裂化ホッ トメル ト 細裂化しないために再生紙生産時に不純

物としての回収が容易

装丁加工 植物性樹脂フィルムを使用した加工

あるいは フィルム無使用加工
枯渇資源 (原油)の保護、生産可能な農
業資源の有効利用

″:バール、メタリック、蛍光インキを除く

本書内容に関するお問い合わせについて

●免責事項

※本書の出版にあたっては正確な記述に努めましたが、著者および出版社のいずれも、本書の内容に対してなんら

かの保証をするものではなく、内容やサンプルに基づくいかなる運用結果に関してもいっさいの責任を負いません。

※本書に記載されている画像イメージなどは、特定の設定に基づいた環境にて再現される一例です。

※本書に記載されたURL等は予告なく変更される場合があります。

※本書に記載されている会社名、製品名はそれぞれ各社の商標および登録商標です。

※本書では
“
、①、◎は割愛させていただいております。

本書に関するこ質問、正誤表については、下記のWebサイ トをご参照ください。

ご質問 http://wwwseshop.com/book/qa/

正誤表 http://wwwsesho,com/book/errata/

インターネットをこ利用でない場合は、FAXまたは郵便で、下記にお問い合わせください。

〒 160‐ 0006 東京都新宿区舟町 5

(株)翔泳社 編集部読者サポート係

FAX l自号 :03‐ 5362‐3818

電話でのこ質問は、お受けしておりません。

/´
~｀

ヽ

k上ノ

○

はじめに

システム構築プロジェクトに関わる皆さんであれば、多くの方 が々サービスイン直前の

パフオーマンス問題に直面した経験をお持ちではないでしょうか
'

。 来週サービスインなのにパフォーマンスが想定の 1/10し か出ていない……

・ 運用中にパフォーマンスが悪くなってきた。改善を依頼されたが、どうしようか…・

私たちOracleコンサルタントもサービスイン直前やシステム運用後にパフォーマンス

問題が発生し、困っているお客様のご支援を多く経験してきました。最初は画面が遅い、

バッチが遅いという話から始まりますが、突き詰めていくと、結局はSQLのパフオーマ

ンスに問題があり、プロジェクト後半で時間がない中で、SQLチ ューニングを必死で行

なう現場を多く見てきました。

このようなSQLパフオーマンス問題、SQLチューニングの苦労を世の中のプロジェク

トから少しでも減らしたいと思い本書の執筆を始めました。

本書では以下の3つのテーマを掲げています。

薩 SQLパフォーマンス問題の発生理由を捉える (Paは 1)
。 SQLパフォーマンス問題を「解決」する (Pa威2)
肇 SQLパフォーマンス問題を「予防」する (Pa威3)

起こってしまった SQLパフオーマンス問題は何としても「解決」しなくてはなりません。

そのためのSQLチューニングのテクニックやノウハウを説明していきます。

また、ほとんどの現場においてパフォーマンス問題は起こるべくして起きたケースが多

いと感じています。パフオーマンス問題を起こさないためにはどうするべきか?プロジェ

クトの初期の段階で、何か工夫はできないのだろうか ?といった「予防」の観点でも話を

進めていきたいと思います。

今、まさにSQLパフォーマンス問題に直面している、何とかしなくてはならない、手

早くSQLチューニングスキルを身に付けたいという読者の方はPar2の “解決編"をぜひ

読んでみてください。定型的にできる基礎的なSQLチューニングから、Oracleのアーキ

テクチャを踏まえた応用編に至るまでステップアップしながら説明をしています。

とはいえ、読者の方々のさらなるステップアップとして、SQLチ ューニングのテクニッ

クといった表面上の話だけでなく、SQLパフォーマンス問題の本質を考え、システム全

体視点、プロジェクト全体視点にまで、ぜひ視野を広げて頂きたいとも思っています。

そのような思いも加味して構成した本書を読みながら、

SQLパフォーマンス問題の本質を知り、その解決テクニックを身に着けた上で、

その予防のためにプロジェクトレベルでの発信できるようになる。

とステップアップしてもらえればと思っています。

ステップアップされた読者の方々がプロジェクト内で活躍し、少しでもSQLパ フォー

マンス問題が減れば幸いです。

【謝辞】

この本を手に取って頂いたすべての皆様、本書の執筆にあたり図版作成に協力してく

ださった瀬尾美里さん、岩本友香さん、井上真美さん、本書の執筆を陰ながら支えてく

れた家族に感謝します。

2009年 9月

加藤 祥平、中島 益次郎

【免責事項】

本書は Oracle Databaseの 製品サポートとは無関係ですので、本書を元にOradeサポートに問い合

わせることはご遠慮ください。また、本書で紹介するチューニングアドバイザ機能などを使用するため

には、追加ライセンスなどが必要な場合があります。詳しくはOracle社 ホームページ (http://www.

Oracle.cO.jp/)を 確認願います。また、本書図中のEnterprise Managerの 画面などは説明の都合上、

一部加工してあります。

ノ

口次

|まじめに .¨

Chapterl SQLチ ューニングはなぜ必要か?.. ２

２

　

６

６

６

７

８

SQLのパフォーマンス問題とは
'

Chttter2なぜ SQLでパフォーマンス問題は起きやすいのか?
SQLの言語的特徴.

記法に対する柔軟性が高い……… …………
処理ロジックを意識させないコーディングができる … … …
処理方法はデータベースに任されている

Chapter3なぜ SQLパフオーマンス問題で苦しむのか ?
SQL文を記述する際の状況 10

11

11

12

13

14

SQLのパフォーマンス確認フェーズ
プロジェクトスケジュール上の問題 … …… … .¨ ¨…………
修:T飾日の闇頴

SQLの設計/記述の開発フェーズ
設計者/DBA/開発者の分担構造…

Chapter4 SQLパ フォーマンス問題の「解決」と「予防」
SQLパフォーマンス問題が減らない要因や課題 .

1.16

課題を解決するためのテーマ

16

16

17本当の意味でのSQLチューニング………………………………………̈ …………

Chapter5 SQL Iよ どのように処理されるのか 20

20

22

23

24

Oracleデータベースの構成要素

SQL処理の流れ……………………………………………̈ …………̈ ………………………
SQLはどうやって処理されているのか (参照編)
SQLはどうやって処理されているのか (更新編)

SQLパフォーマンス問題の理由と原因を探る ・1

０
０
〓
一一
ヨ
静∽

V

SQLパフォーマンス問題を「解決」する 29

0臓apter6 SQLパフォーマンス問題の解決アプローチ
チューニングとは

SQLチ ューニングが必要となる理由 .…
パフォーマンス問題を改善するためにチューニングする

SQLチューニングでは何をするのか
SQLチューニングの流れ…………
SQLパフォーマンスヘの解決アプローチ………………

Chapler7定型的な SQLチューニング
SQL記述の際に最低限守るべきルール
定型的な SQLチユーニングとは?

定型的なSQLチ ユーニングの定義… … …… … ……………
定型的なSQLチ ユーニングが可能な範囲… … ……………
実行計画 ..
SQLコーディングルールを守る意味は

'…
 … ..… …………

SQLコーディングルールの目的 …
SQLコーディングルールに記載すべきそのほかのルール……
性能問題を避けるための SQLコーディングルール

..30

. 33

30

31

33

33

34

36

37

..36

…̈37

¨̈ 39

_.39

_… 41

……41

_¨ 42

バインド変数の使用

WHERE句の条件指定時は索引列に関数を使用しない …
使用方法やノウ八ウをもとにしたSQLコーディングルール……̈ …………48
レコードの存在チェックは「rownum<=1」 を使用する……………̈…………̈凝:
ビユーに対する結合の回避 … ……………………………………………49
可読性や管理性を高めるためのルール…………………… … …………………51

アーキテクチャに伴うルール _ .

管理用コメントの付与…… … .¨ ̈ …̈ … …………………

…

“.̈45

. 47

SQLコーディングルール活用のポイント………
実際の現場でルールはどう使われているかつ̈

SQLコーディングルールを守るためには ……… ……… ………
定型的なチューニングのポイント

定型的なチユーニングと非定型的チユーニング

Chapter8非定型的なチューニング……………………
定型的なチューニングから “頭を使う"チューニングヘ

非定型的なSQLチューニングの定義………………… …………………̈……
非定形的なチユーニングの進め方……………………………………………………
オプテイマイザヘのインプット情報とその使われ方…………………………̈

WHERE句内の条件の記述順序…… .
現場の運用ポリシーを反映させるためのルール……

オブジエクト構造 …

統計情報

ヒント句の運用ルール……¨̈…̈ ……………………… …̈………………¨

SQLテキスト .… . … …..

初期化パラメータ…………………………̈ ………………………̈………………̈

６〇
一
６０

６１

一

６５

６

６６

６７

瀾

７７実行計画の確認とそのチューニング

.ヽ
Vi l

実行計画の確認が必要になるケースとは?

実行計画の読み方

実行計画の判断ポイント………

データアクセス方法の判断指針

表結合方法、順序の判断指針¨̈

表の結合方法、順序の検討の例

その SQLは本当に必要なのか
SQL発行回数を減らす… ……
SQL発行形態のチューニング.
アプリケーションを意識したチューニングのまとめ

Chapterll論理設計におけるSQLチューニング…
設計と|よ ……………………

論理設計と物理設計の違い

論理設計の進め方……………

正規化の作業

正規化の目的

正規化の手順………… …
正規化の例………¨……

論理設計のチューニング

業務最適化 …… … ……
性能最適化……… ……
分割`化/統合化
冗長化 ……

.¨ .77

...78

_..82

.¨ .83

.¨ ..95

..… 108

非定型的チューニングのまとめ¨ 124

chapter9 0racleアーキテクチャに基づいたSQLチューニング………
Oracleアーキテクチャの理解が必要な理由 …̈………………………̈ ………

SQL単体以外のパフォーマンス問題とは?……………………… ………
多重処理でなぜ問題が表面化するのか

'…
……………… …………… ………

Oracleのロッキングメカニズム …………………………̈ …………………
ロックの競合がパフォーマンスに影響を与える _¨ …̈̈ …… ……………
アーキテクチャを意識した SQLチューニングの例 .

当初の状況.

Oracleアーキテクチャからの分析とチューニング…………… ………137
チューニング効果の確認……………… 141

Oracleアーキテクチャを意識したチューニングのまとめ…………… …̈142

Chapt副 0アプリケーションロジックを意識したSQLチューニング………144
アプリケーションロジックに起因する問題の例 144

アプリケーシ∃ン観点での注意ポイント 145

………………146

¨̈ .¨ ¨̈ …̈…147

……¨¨……151

152

54

要 約 化 … … … … … … … … … … … … …
¨
… … …

０
０
３
一
０
ヨ
一
∽

論理設計を含めたチューニングのまとめ

・
●
，

お

Ｆ

ｉ

●

133

旧
“
蒟
ｍ
”
”

I vtt

SQLパフォーマンス問題を「予防」する 175
Chapter12パ フォーマンス問題を起こさないためには・ .̈176

SQLパフォーマンス問題の「解決」から「予防」ヘ
SQLのパフォーマンスが発生する要因.

フエーズに関する問題.

体制に関する問題～PM/設計者/DBA/開発者の分担構造 …. …
SQLパフォーマンス問題を予防するために… …………… … …………

176

177

177

178

179

179予防のための考慮ポイントと各□―ルの役割

Chapter13計画フェーズ………………………….
計画フエーズでの各□―ルの役割

PMの役割………
DBAの役割 ……… ……………… .
計画フェーズにおけるSQLパフォーマンス問題の予防策……………
パフォーマンス問題を意識したプロジェクト計画

プロジェクト全体を通しての対応例

WBS作成時に改善タスクの考慮 …… ...
品質管理計画

PMOへのテクニカルメンバーの参画.…… …
要所での性能チームの設置…… … ……
計画フェーズに関するまとめ

Chapter14要件定義フェーズ……………………
何ができるかを確認する .

要件定義フエーズでの各□―ルの役割…… ………………………… ………
PM/設計者の役害」 ………
DBAの役割……………… …
要件定義フェーズにおける予防策

パフォーマンス要件の策定は妥当か?

プロトタイプ検証での考慮ポイント.…

既存システムのアセスメント… … .
要件定義フェーズに関するまとめ

Chapter15設計フェーズ……………192

設計フェーズでの考慮ポイント…………………………………………………̈……
方式設計では .
論理設計では

物理設計では

アプリケーシヨン設計では

設計フェーズでの各□―ルの役割

PMの役割……
設計者の役割…… ……… .… ………… … ……………
DBAの役割………………… …………… … ……
設計フェーズにおける SQLパフォーマンス問題の予防策
チユーニングのしやすさを意識したアプリケーシヨン設計

設計フェーズに関するまとめ

８０

８‐

田

●

”

図

”

り

”

vilt ,

Chapter16開発フエーズ

SQLコーディングルールの目的

開発フェーズでの各□―ルの役割……………

PMの役割 ¨

.204

.204

.204

……… . .¨ _̈¨ ¨̈ ¨̈ ..¨ ¨̈ .̈..¨ ¨̈¨̈ 2̈04

DBAの役割………… ……
開発者の役割…… ……… ……………

.¨ ¨̈ ¨̈ ̈ …̈205

.¨ …̈…. ̈.¨ 205

開発フエーズにおけるSQLパフォーマンス問題の予防策…………………206

開発フエーズに関するまとめ………………………… ………… ………………207

ChaplerlT 7717t-A
テストフェーズでよくある問題…………………………………………………………208

テストフェーズの時間的制約 ……………………… .……………………………208

テストフェーズの質…………………… ……………………………̈…… ………209
テストフェーズでの各□―ルの役害」 209

PMの役割

..208

.̈………… .209

DBAの役割 ……………………………… ……… ……………………………209

開発者の役割

テストフェーズにおけるSQLパフォーマンス問題の予防策
テストフェーズで考慮すべき性能インプット

SQL性能テストとテストフエーズのマッピング …………………… ……
テストフェーズに関するまとめ……………………………̈…… …̈ …………

Charter18運用フエーズ226

運用フエーズでの考慮ポイント

定常監視および定期的な性能分析/傾向分析の必要性

統計情報運用の勘所……………………………………………… ……………
オプティマイザの特性と統計情報…

統計情報収集における基本ポリシー.…
統計情報の特性と収集タイミング.……
データ特性ことの統計情報収集方針 .

統計情報収集設計のスムーズな進め方 _

運用フエーズに関するまとめ ………………

Chapter19実際のプロジエクトでどこまでやるべきか……

.226

…227

…228

. _¨ .̈ ¨̈ ¨̈ 228

..¨ .. …….. . . … 230

¨̈ . .…… . .… ….232

…. .. .… ….¨ .¨ . 234

.… . _. ……. … .… .239

 ̈. ……… ………… . . ……241

最低限実施すべきこと

高いパフォーマンス要件が求められる場合… ……………………………
プロジェクトの途中からでもできること ……

.242

…242

_243

…243

どのプロジエクトでもぜひ取り入れてほしいこと 244

Chapter20「 Database Administrator」 力`ら 「Database Architect」 ∧、....246
「解決」から「予防」ヘ

０
０
ヨ
一
０
ヨ
一
∽

「解決」から「予防』ヘ

～パフォーマンス問題を減らすために 245

「DB Adm面 strator」 から「DB Architect」 へ.

246

_247

lX

Appendix… ...¨ …̈………………̈……
SQLチユーニング案の検討

索引

トライ &エラーの実例～テスト環境構築…………
トライ&エラーの実例～現状の確認…………… …
トライ&エラーの実例～チユーニング試行錯誤 .

チユーニング対象SQLの特定と効果測定………………
遅いSQLはどうやって見つけるのか………… … …

.....265

DB

の新機能 SQL「 Plan
チ

EM が使用 る SQL 識別子
４０

５３

５７

６２

７‐

７５

７６

８‐

８２

９９

SQL チ ――ングア ド イヾザに任せ
SQL チ ユ グア ド イヾザ

統計情報と ヾフ オ マ ン ス統計
自動統計収集…
オプティマイザはなぜ統計情報を使うか?…………………….…………………………………
性能統計情報とは………………………………………………….……………………………………………_
実行統計と実行計画の確認の仕方 (EM編)……………………………………………………………
表の結合数と解析処理時間の関係………………………………………….……………………………

120

129
130

３４

４

４６

５６

.249

DB Architectのスキル……………………………………………………………248

プロジエクトフエーズでの関わり方… …………………………………250
プロジェクトメンバーとの関わり方…………………………………………251

本書のまとめ……………… …………… …………………………………………̈ …252

無駄な処理、

10
定型的なSQL

ANS:/ISO SQL規格による
スループッ

SQL文にロジックを組み込むか?

SQLテキスト/実行計画のチェ
INVISiBLE
・統計情報かヒント旬か

'

冦
磯
国轟

口

■

薔

■

田回■■

田回田■

□回田■

田回□■

田回田■

SQLチューニングはなぜ必要か?

なぜ SQLでパフォーマンス問題が起きやすいのか?

なぜ SQLパフォーマンス問題で苦しむのか?

SQLパフォーマンス問題の「解決」と「予防」

SQLIよどのように処理されるのか

SQLチューニングは
なぜ必要か?

システム構築プロジェクトにおいて、パフォーマンス問題はなかなか根絶されません。

その問題の 1つにSOLパフォーマンス問題があり、どの現場でも最終フエーズで大きな
課題になりがちです。それにしても、なぜSQLパフォーマンス問題がこれほど多いので
しようか。 また、なぜSQLチューニングで書しむ状況が多いのでしょうか。ここでは、
これらを考察しながら、本書の全体像や狙いを紹介していきます。

そもそもSQLパフオーマンス問題とは、どういう問題でしようか。まず、SQLのパフオー
マンス問題の全体像を図1を見ながら考えてみましょう。

多いのはなぜか
'

少しでも

減らせないか
'

問題が発生せずに済むのは

残念ながら少数

図 1:SQLパフォーマンス問題が起こると ・

^ ヽ乙ノ

SQLパフオーマンス問題
が発生しない

問題を容易に

解決できる

本書では、SQLパフォーマンス問題をSQLに関連したパフォーマンス問題と定義しま

す注
1。

SQLパフォーマンス問題とは、パフォーマンス要件を満たさない状況であり、以下の2

つの要件に分解できます。

饉 レスポンス要件
警 スループット要件

「レスポンス要件」は、その処理に対してどの程度の時間で結果が返ってくるかを表わ

し、「スループット要件」は、単位時間ごとにの処理をどれだけ行なえるかを表わします。

これらの要件を満たせないのは、主に次の2つの要因が存在する状況にあるからです。

薔 無駄な処理

o無駄な待機

「無駄な処理」とは、本来想定していない処理のことです。例えば、無駄なSQL解析

処理や本来の対象データ以上のデータにアクセスしてしまうことなどが挙げられます。無

駄な処理に要する時間によリレスポンスが劣化するのは当然ですが、加えて無駄にCPU

パヮーを費やしてしまうことで、本来の処理ができず、結果としてスループットを低減さ

せることにもつながります。

「無駄な待機」とは、必要な処理を行なえずに無駄な時間を費やしてしまう状態です。

例えば、いわゆる「ロック待ち」をしていて、ほかの処理が終了するまで待機せざるを得

ない状況が考えられます。これは、レスポンスの劣化を引き起こすだけでなく、複数の処

理が互いに待機しあうなどしてスループットも低下する可能性もあります。

つまり、SQLのパフォーマンス問題を解決するためには、これらの無駄な処理や待機

を改善する必要があります。

では、以降でSQLパフォーマンス問題、すなわちSQLがパフォーマンス要件を満た

せない状況がなぜ発生しやすいのか、また発生した場合その解決が困難なのはなぜなの

か、ということを見てみましょう。

注1 もちろんパフオーマンス要件が明確になっていなければ、パフォーマンス問題なのかどうかも分からなくなってしまうと言え
ます。

/ ^
ヽ 0

必要の

ントが SQL

いわゆる

ます。

|||・ ::11● ‐・
‐ _ | ::11' 1■・ 1.■■■1■ .・・ .

|| |■
‐|`■ ‐

り

´

４
・

OFaCle

5

なぜ SQLでパフォーマンス
問題が起きやすいのか?

SOLは一般に多く使われているリレーショナルデータベースに対するアクセス言語で

す。ここでは、SQLでなぜパフォーマンス問題が起きやすいのか、その理由をJavaや

Cといった手続き型プログラミング言語と比較し、その言語的特徴から考えてみましょう。

SQLは問い合わせ言語の1つであり、どのようなデータを取得したいか、またはどの

ようなデータを更新/挿入/削除するかを定義することで、該当の処理をデータベースに

対して実行させます。つまリデータベースに対して処理内容を定義できますが、通常の

手続き型プログラミング言語のようにどのような処理をしてほしいかまでは基本的には記

述しません注1(図 1)。

まずこのような言語的な特徴が、SQLパフォーマンス問題に紐付く理由について考察

します。

図 1:SQLと プログラミング言語の違い

SQLは処理の内容を記述しますが、その記述ルールは非常に柔軟性に富んでいます。

そのため同一の処理内容に対して、複数の記述方法が考えられます。

例えば、複数の表を結合して結果を取得するにしても、単純な結合として記述する方

記法に対する柔軟性が高い

注1 とント句のように、どのように処理させるかを指定する方法もありますが、ここではsQL単体の話で進めます。

‐
手続き型言語

Java、 C、 Peri
処理の方法を記述

問い合わせ言語

SQL

法もあれば、副問い合わせを使用して記述する方法もあります。SQLの文法としてはい

ずれも問題なく、結果も正当な結果が返ってきます。しかし、文法として問題がなければ

それで良いのでしようか
'

また、印刷すると数ページにも渡るSQL文をよく見かけます。製品の制限にかからな
い限り、SQL文をこのように長大化することも可能です。しかし、そのような見た目が複

雑なSQL文や長大化したSQL文は、パフォーマンス問題につながるケースが多いように

思われます。

結果が導出できればどのような記述方法でも良いのか ?

パフォーマンス問題を低減させるには、SQL文の記述方法に対して一定のルールが必

要になると言えるでしょう。

例えば、SELECT文であれば「どの表とどの表を、どういう条件で結合し、こういう条

件に合うデータを取ってきてはしい」と記述すると、結果を返してくれます。このとき、「ど

ういう条件で結合する」といった定義はできますが、実際に結合する処理のロジックまで

は書きません。極端に言えば、後はデータベースが勝手に処理を行なって結果を返して

くれれば問題ないという記述の仕方です。

開発者が自身でこのような機能を、手続き型言語で実現しようとすると、「このデータ集

合とあのデータ集合を、このアルゴリズムを使用して結合する」としなければなりません。

手続き型言語であれば、自身の記述するロジックの正当性や効率性をある程度は考えや

すいですが、結果さえ返してくれればそれで良いと考えられがちなSQLでは、処理結果

の正当性は気にしても、効率性にまではなかなか気が回りません。つまりSQLは、次の

問題を内在していると考えられます。

開発者が処理の効率性にまで意識を回しにくくなつてはいないか つ

開発者としては「まずは正しいデータを取得しなくてはならない」と考えるのが当然で

すが、「正しいデータを正しいパフォーマンスで取得する」という意識がどうしても低くな

つ
こ

処理ロジックを意識させないコーディングができる

●

81,.ヾ

/ _
 ヽ′

りがちです。そのような状況で記述したSQL文では、パフォーマンス問題を引き起こす

可能性はやはり高くなってしまいます。

処理内容から処理方法を生成し、実際に処理を行なうのはデータベースに任されてい

ます。つまり、データベースが良い処理方法を導出し実行できるかどうかの多くは (もち

ろんその機能、性能にも依存しますが)、 インプットされる情報にかかっています。処理

方法の導出に使用するインプット情報としては、主に次の3つがあります。

。 SQL文 自体

・ データ構造 (表構成、索引構成など)
崚 データ内容 (表の行数、どの値が多いかなど)

SQLの処理方法を導出するオプティマイザは、バージヨンとともに進化していますが、

そのインプットとなるSQL文の構造によってはその真価が発揮しきれない場合もありま

す。データベースからより良い処理方法を導出し、実行できるようなSQL文の記述の仕

方が望まれますが、そのような意識を持ってSQLを設計/記述しているでしょうか ?

データベース内での処理内容を意識した

SQLの設計/記述になっているか ?

アプリケーション開発者にとって、データベースはブラックボックスになりがちです。

しかし、それで本当に良いのでしょうか?データベースを1人のユーザーだけで使用し

ているシステムは、ほとんど存在しません。

データベースに対して、同時に実行されるトランザクションの数やどのような処理 (参

照や更新)を行なうのかなど、自分が作成したSQL文以外の処理も意識して、使用する

データベースの特性に沿ったSQLの設計/記述が必要になると言えるでしょう。

8

なぜSQLパフォーマンス問題
で苦しむのか?

ここでは、なぜSQLパフォーマンス問題で苦しむのかを考えてみましょう。SOLチュー

ニングのスキルが少ないという問題はひとまず置いておき、「SOLを記述する際の状況」

から考察してみます。

プロジェクトの工程の中で、SQL文が関連するフェーズとしては図 1のようなケースが

一般的ではないでしょうか。アーキテクト、DBAに よるSQL設計から始まり、開発者に

よるコーディングを経てDBA、 開発者によるテスト、分析、チューニングが行なわれ、サー

ビスインに向かうことが多いと思われます。

図 1:SQL記 述とテス トフェーズ

テスト要件定義 設 計 開発 運用

|,■■外あ濤
「建築家」とありますが、こ

1〔)リ

ITア■キ

鋤
Ｉ
）

てきてし

ング

SQL文のパフオーマンス確認はほとんどのケースでプロジェクトの後半、つまリテスト

フェーズから行なわれます。さらに、テストフェーズは単体テスト→結合テスト→性能テ

ストヘと進みますが、パフオーマンス問題が顕在化するのは性能テストが始まってからと

いうケースが多いのではないでしょうか。

ここまで来るとプロジェクトもほぼ終盤であり、ここで問題が発生してしまうと、主に

以下の2つの要因から非常に苦しい状況になることが予想されます。

プロジェクト終盤は当然ながら、サービスインの期日が迫っています。サービスインま

での残りわずかな時間でパフォーマンス問題を解決する必要があり、これがチューニング

の難易度を上げていると言えるでしょう。

Oracleに おいてもOracle Enterprise Managerや SQLチューニングアドバイザなど、

SQLパフォーマンス問題の把握、分析、チューニングを容易に行なうための機能を提供

しているので、チューニングに対する負荷は減ってきていると言えます。

プロジエクトスケジユール上の問題

1

成果物として

lTアーキ

また、

そこでは、

ITアーキテクトは、

はならないので、

FlTアーキテクトは、

テクチャ

門職です。

入力して

しかし、そもそもSQLパフォーマンス問題の発覚と、それを解決するためのSQLチュー

ニングがサービスイン直前になってしまうことを避ける方法はないのでしょうか?なんと

かしたいという思いがあったとしても、次のような声が上がってくることが多いのが実情

です。

鶯 後のフェーズになるまで、パフォーマンステストができない
趣 単体レベルではパフォーマンスは問題なかったのに、多重テストになった途端に遅く

なった

後のフェーズでさらに苦しい状況になるのが目に見えているにもかかわらず、初期

フェーズでそのままやり過ごしてしまうのはいかがなものかと思います。

Oracleコ ンサルタントがプロジェクトに早期フェーズから入るケースでは、このような

問題を発生させないための仕組みや、SQLのパフォーマンス確認を早期に行なう工夫を

仕込みます。もちろんそのような仕組みや工夫をプロジェクトに埋め込むために多少の苦

労は必要ですが、サービスイン直前の苦労と比べてもらうと受け入れてもらえることが多

いです。

プロジェクト終盤では、システムの機能はある程度はでき上がっており、いざ修正する

としても、その範囲の確認が困難になります。また、修正するだけなら容易だとしても、

修正に対する機能確認テストのために、多くの時間と工数を要することになってしまいま

す。

SQLチューニングの結果をプログラムに反映させる範囲が不明であり、変更したこ

とに起因して別の影響が発生しないかの確認が困難なことから、結果として適用できる

チューニング手段の幅が狭められてしまうケースが非常に多くあります。これもSQLパ

フォーマンス問題の解決が難しくなる要因と言えるでしょう。

修正範囲の問題

: プロジェクトの早期フェーズから :
: パフォーマンス問題を見つけられないか ? :
2`,十 11.11コ ,」“i,i.1.I..|!1,|.性 |||:‖ |1拙 |‖ 1攣出器:::::"摯 |め :|,,,.l,「 1,.11‖ ||‖Ⅲl:「「|||【 (|||1喘 l常 :I!|`障鵜辮|:11.|,醐 |,11‖ ili‖ lil鵬‖|||.:||,i叩 ,ド |:i:、 ::岬‖|:.‐ ,半 !:、、ざ

チューニング、修正の範囲と

それによる影響を特定しやすくできないかつ

修正の影響が不明で、結局は手を出せないことが分かっているのなら、事前に影響を

特定しやすくする工夫をするべきです。

SQLの設計、記述はどのフェーズから行なうものなのでしようか。SQLパフォーマン

ス問題が発生してしまった多くのプロジェクトでは、開発フェーズが始まってからプログ

ラムコーディングとともに記述するケースが多いようです。

奎 設計者の想定と異なる SQLが記述される可能性がある
螢 設計者がSQLま で想定して設計していない可能性がある

一般にはデータベースの論理設計レベルにて、各エンティティに対するアクセスパター

ンを想定します。通常はそのアクセスパターンがSQLに移行されるべきであり、これが

SQL設計になります。通常のプログラム設計と同様、SQL設計も十分に行なうべきですが、

これがおろそかにされると、設計者の意図とは異なるSQL文が記述されてしまう可能性

があります。

逆に論理設計の段階で、設計者がアクセスパターンを十分に吟味しきっていない状況

も考えられます。このような場合、特にパフォーマンス問題が発生する可能性は大きくな

りますし、チューニングは非常に困難となります。根本的なチューニングを行なうために

は表レベルでの設計の再検討が必要になることがありますが、テストフェーズなどでパ

フォーマンス問題が発生するとその修正範囲は大変大きくなります。実質チューニング不

可となり、どうしようもなくなる可能性すらあります。

プロジェクトの早期フェーズでパフォーマンス問題を

把握するには、どこまで早期にするべきか ?

つまり、上で「早期フェーズ」と書きましたが、「開発フェーズ」ゃ「テストフェーズ」よ

りも早期の「設計フェーズ」、それも設計の初期段階である「論理設計フェーズ」からSQL

パフォーマンス問題の芽を摘むことが重要であると言わざるを得ません。

フェーズのみならず体制面でも考察してみます。ある程度の規模のプロジェクトになる

と複数のチームによる並行開発となります。業務関連の設計、開発を行なう業務チームや、

データベースをはじめとしたインフラ関連を扱う基盤チームと分かれるのが一般的でしょ

つo

このようなチーム構成に起因してSQLパフォーマンス問題の解決が困難になる要因も

あります。例えば、以下のような状況です。

艤 SQLチューニングは業務チームに実施させるべきか?基盤チームに実施させるべき
か?

爾 データベース観点での問題 SQL文と、業務プログラムとの対応付け

SQLは業務処理とデータベースの橋渡し部分であり、SQLパフオーマンス問題を解決

するには、その両者を意識してチューニングする必要があります。しかし、業務チームが

業務処理のみ、基盤チームがデータベースのみしか分からないような状況ではなかなか

チューニングが進みません。双方の知識をある程度は身に付けるか、チューニング時に

は密接に協力しなくてはならないでしょう。

業務観点、データベース観点での知識、

技術の連携がスムーズに行なわれているかつ

また、サービスイン直前でデータベース全体に対してパフオーマンス影響の大きい

SQL文を基盤チーム側が特定し、SQLチューニング案まで検討できたとします。しかし、

SQLチューニングはそれで終わりではありません。SQLチューニング案を業務アプリケー

ションに組み込み、効果を確認しなくてはなりません。この際に、次のような問題になり

やすい点があります。

t′′ル絆,__.:.嗽 .,._|‐

・
し

14

問題の SQL文がどの業務アプリケーションから
発行されたかを容易に特定できるか ?

特にサービスイン直後にSQLパフォーマンス問題が発生した場合、原因をどれだけ容

易に特定できるかは非常にシビアに求められます。SQLチューニングが簡単にできたと

しても、それがアプリケーションに反映されるまでに数時間かかるようでは、影響は多大

になってしまいます。

＾
Ч
ｄ）

(15

SQLパフォーマンス問題の
「解決」と「予防」

Chapter2、 3で SQLパフォーマンス問題が起きやすい理由と、解決が困難である要
因を挙げてきましたが、結局SOLパフォーマンス問題は、それらの課題を解決すること
で解消されます。その方策がすなわち適切なSQLチューニングを行なうことなのです。
ここでは、仮題解決のためのテーマと、そのテーマに基づき、これ以降本書がどのよう

に進んでいくかについて示します。

まず、Chapte2「なぜSQLでパフオーマンス問題が起きやすいのか?」 で挙げた課題

に対して、以下のテーマを挙げて解決を図ることにします。

テーマ :良い SQLの書き方とは?

テーマ :パフォーマンスを意識して SQLを 考えてみよう

テーマ :データベースのアーキテクチャを意識したSQLが書ければ一人前

これらはSQLパフォーマンス問題をいかにして解決するかについての議論とも言える
でしよう。そして、これらは技術的課題でもあります。

次に、Chapter3「なぜ SQLパフオーマンス問題で苦しむのか ?」 で挙げた課題に対す
るテーマです。

ァーマ

ァーマ

SQLパフォーマンス問題を予防するための工夫とは?

SQLパフォーマンス問題に着実に対処するための工夫とは?

課題を解決するためのテーマ

これらは、SQLパフォーマンス問題をいかに予防、対処するかの議論とも言えます。

)16

また、上記の技術的課題を含め、プロジェクト全体の課題としても捉えることができると

思います。この関連を図 1に示します。

図 1:議題とテーマ

本来はSQLチューニングが必要となること自体を避けるべきです。そのため、本書で

は最終的に、SQLパフォーマンス問題を発生させないために、事前にどんな工夫ができ

るかを伝えたいと思います。しかし、SQL問題に直面している現場も多いことを考慮し、

本書では、以下の二部構成で順に進めていきます。

① SQLパフォーマンス問題を解決する

② SQLパフォーマンス問題を予防/対処する

なぜSQLでパフォーマンス問題が
おきやすいのか

'

なぜSQUヾフォーマンス
問題で苦しむのか

'

17

まずは①がしっかりできないと話になりません。SQLパフオーマンス問題に直面した
としても解決できるノウハウを身に付けていきましょう。そして、②の予防や対処がど

こまでできるかが勝負になりますので、ここまで視野を広げ、工夫をしてはしいと思いま

す。その工夫は、「開発」「テスト」のときに仕掛けるのでは遅いとすでに述べたとおりです。

事前のフェーズである「設計」「要件定義」フェーズやプロジェクトの計画段階にどのよう

な工夫を入れておくべきか、そういったノウハウを伝えていきます (図 2)。

図 21本書の進め方

②SQL問 題を「予防」する
ためのノウハウを伝える

①SQL問 題を「解決」する
ためのノウ八ウを伝える

テスト

18

｀`こ、」要件定義 1設計 開発 運用

」L辟
,1'■ _|

‐‐
●辟輻

'

||・||・ |~
‐|■ |||||■‐

SQLはどのように処理される
のか

以降の章でSOLパフォーマンス問題を考えていく前に、SQLが Orac:e内部で処理
される様子を見ておきましょう。チューニング対象のSOLが Oracie内部でどのように

処理されているのかをイメージすることで、効果的に作業を行なえるようになります。

Oracleデータベースは、SGA(System αob」 Area)と呼ばれるメモリ領域と、複数の

バツクグラウンドプロセスから構成される「Oracleイ ンスタンス」と、データなどを格納

するための物理的なファイル群で構成されています (図 1)。

SGAと はOracleデータベースヘアクセスするユーザーが共有して使用するメモリ領域

で、起動/停止時に自動的に領域の割り当てや解放が行なわれます。共有プール、デー

タベースバッフアキヤッシュ、REDOログバッファなどのコンポーネントで構成されてい

ます。

共有プールは、SQLや PL/SQLに関する情報を保持するためのライブラリキャッシュ

と、権限やオブジェクトの構成情報を保持するためのデイクショナリキャッシュで構成さ

れています。

データベースバッファキャッシュは、データファイルから読み込まれたデータプロック

のコピーが格納される領域で、データファイルに対するディスク1/0を軽減するための

キヤッシュエリアです。

REDOロ グバッファはデータブロックの変更履歴を格納するための領域で、COMMIT
が発行されるとLGWR注1によりREDOロ グファイルに書き込まれます。REDOロ グファ

イルに変更履歴が書き出されることで変更内容が保証されます。

まず、Oracleデータベースの構成要素を何も見ずに書き出せるようになりましょう。

バ ックグラウンドプロセスの一部。サーバープロセスはクライアントからの処理を直接実行するが、これらのバックグラウ

ンドプロセスは裏方役として、データベースの管理のためのさまざまな処理を行ないます。LCWRは 、主にコミット時に
REDOロ グファイルに書き込みを行なうプロセスであり、DBWRは データファイルヘの書 き込みを行なうプロセスです。

注 1

20
ヽ

結果

.| |

ル 制御フアイル REDOログファイル アーカイブフアイル

EXECUTE

FETCH

PGA

Oracleインスタンス

SGA

共有プール

\v)z*pv)tt

⑩
⑩

バックグラウンドプロセス

データフアイル

”
魅『
け

図 1:Oracleデータベースの構成要素

REDOログ
バッファ

|=■|●´

匝国

匝団

(21

SQLチューニングを行なう前に、そのSQLが Oracle内部でどのようなリソースをどの

ように使用して実行されるのかをイメージして、さまざまなSQLチューニングに必要な

性能情報を確認すると、SQLが処理されるどの部分が遅延原因であるのかを確認しやす

くなります。イメージするのが難しい場合は、実際に簡単な図を書いてみるのも良いでしょ

う。筆者もSQLチ ューニングを行なうときは、なるべく図を書いてからさまざまな関連情

報を足し、最適なチューニング方法を考察しています。

次に、SQLが実行されていく大きな流れを説明してしましょう。SQLが処理されると、

図2のように大きく分けて3つのフェーズで処理が進みます。

解析フェーズでは次の作業を実行します。

鬱 SQL文の構文および意味上の妥当性も含めた文法チェック

滲 その SQL文を実行する権限があるかを確認
e SQL文の解析済みの情報がライブラリキャッシュに存在するかの確認。存在しなけれ

ば、ライブラリキャッシュに解析済みの情報を格納。このフェーズで SQL文の実行計

画が作成される

SQL文の文法チェック
SQL文の解析
実行計画を決定

SQL文の実行

結果を返す

(SELECT文のときのみ)

図 2iSQL処 理の流れ

実行フェーズでは、解析フェーズで作成されたSQL文の実行計画をもとに処理が行な

われます。フェッチフェーズは参照 SQL(SELECT文)などで必要なフェーズとなります。

参照結果の行が選択されて順序付け (ソート処理が必要な場合)が行なわれます。

つ
“

，
』

”
ｈ「
Ｊ

もう少しoracleアーキテクチャを意識しながらSQLが処理されている様子を見ていき

ましょう。まずは参照編として、SELECT文で結果を取得するまでの流れを見ます。こ

こでの流れについても、ぜひ頭の中で処理の流れがイメージできるようにしておきましょ

う(図 3)。

①SQL文を解析して、共有プール
上に解析済み結果を保持

スバッファキャッシュ②検索対象のデータが、

データベースバッフア

キャッシュ上に存在する
かを確認

②-1キャッシュ上にデー
タが存在していねば、結
果をサーバープロセス
ヘ返す

②-2キャッシュ上にデー
タが存在してない場合
は、データファイルから

検索対象のデータを
キャッシュ上に展開。展

開されたキャッシュ上の

データをサーパープロ

セスヘ返す

SQL

共有プール

REDOロ グファイル

_r ,l,

irr
,1.

ri

結果

■

REDOログ
バッファ

データフアイル

図 3:参照処理の流れ

① アプリケーションからDBサーバーヘ接続すると、DBサーバーでサーバープロセス
注2

が起動します。アプリケーションからSQLが発行されると、その接続に対応したサー

バープロセスが処理を行ないます。まず最初に、SQL文 を解析します (解析フェーズ)。

この時点で、共有プール内のライブラリキャッシュに SQL文の実行計画を含む解析済

み情報が格納されます。すでに、その SQL文の解析済み結果がライブラリキャッシュ

上に存在する場合は、解析作業は行なわれず、ライブラリキャッシュ上の解析済み結

果を再利用します

注2 SQL'Plusや APサーバーなどのクライアントからOracleへ接続した場合に生成されるプロセス。クライアントから実行され
たSQLを 実際に処理するプロセスであると言えます。

だ
２
ヽ
3

② 解析処理が終わると、解析により作成された実行計画浅
3に
沿って処理が実行されます。

検索対象のデータがデータベースバッファキャッシュ上に存在するかを確認します

②-1こ こで、データベースバッファキャッシュ上にデータが存在していれば、検索条
件のデータを取得して結果をサーバープロセスヘ返し、サーバープロセスがアプリケー

ションヘ結果を返します

②-2デ ータベースバッファキャッシュ上にデータが存在しない場合は、データファイ
ルから検索条件のデータをキャッシュ上に展開します。展開されたキャッシュ上のデー

タを取得して、結果をサーバープロセスヘ返し、サーバープロセスがアプリケーショ

ンヘ結果を返します

参照 (SELECT文)SQLが結果を返すまでの流れは理解できましたか?図などを見な

がら流れをイメージできるようになるまで何度も流れを追ってみてください。また、SQL

を実行するときに、SGA内がどのような状態であれば、そのSQLの処理が早く済みそう
であるかも併せて考えてみましょう。

次は、更新処理の流れについて見ていきましょう。ここでは、UPDATE文で更新処理
が行なわれるまでの流れを見ます。この流れも、ぜひ頭の中で処理の流れがイメージで

きるようにしてください (図 4、 5)。

SQLの処理過程を表わしたもの。SQLはこの実行計画に沿って処理されていくため、実行計画の良し悪しがパフォーマンス
の良し悪しにはぼ直結します。「実行プラン」「プラン」とも言います。

注 3

)
24

①SQL文を解析して、共有プール
上に解析済み結果を保持

②更新対象のデータが、
データベースバッファ

キャッシュ上に存在する
かを確認

②-1キャッシュ上にデー
タが存在していれば、結

果をサーバープロセス

ヘ返す

②-2キャッシュ上にデー
タが存在してない場合
は、データファイルから

更新対象のデータを

キャッシュ上に展開。展
開されたキャッシュ上の

データをサーバープロ

セスヘ返す

1 更新(update)|

|■→目 |

共有プール

データベースバッファキャッシュ REDOログ
ノヾッフア

コ
倒
一
０
一

一
０

一

匝

データフアイル REDOログファイル

図4:更新処理の流れ①

注4 0racleで はデータをプロックで管理しています。プロック内には通常は複数の行が格納されています。

:|

匝国

匝国

① SQL文 を解析して、実行計画を作成する

② 更新対象のデータブロック注
4をデータベースバッファキャッシュヘ展開する

25

|□→欲
更1新 (update)

SQL

結果

共有プール

データベースバッファキャッシュ

・ | . | ■

データフアイル

REDOロ グファイル

SQL

③更新履歴をREDOログ
バッフアに記録後、データ
ベースバッファキャッシュ

内の行データを更新する

ログ

バッファ

⑤SQLの処理とは非同期
に、DBWRによリデータ
ベースパッファキャッシュ

内の変更内容がデータ
フアイルに反映される

④ COMMITが 発行 されると、
LGWRが REDOロ グバッファ内
の更新履歴をREDOログファイ
ルに書き出す。REDOログファ
イルに書き出すことで、変更内

容が保証される

図5:更新処理の流れ②

③ 実際の更新処理をデータブロックに対して行なう前に、更新処理の更新履歴をREDO
ログバッファに記録。REDOロ グバッファに更新履歴が記録された後で、データベー

スバッファキャッシュ上のデータブロックの行データに対して更新処理が行なわれる

④ 更新内容を確定するために、アプリケーションからCOMM!丁 が発行されると、REDO
ログバッファ内に記録されている更新履歴をLGWRが R匡DOログファイルヘ書き出
す。Oracleデ ータベースは、更新履歴をREDOロ グファイルに書き出すことで変更

内容が保証される

⑤ 実際に変更されたデータベースバッファキャッシュ上のデータブロックは、更新処理

とは別タイミングでDBWRによリデータファイルヘ書き出しが行なわれる

なぜ、実際に変更されたデータプロックが更新処理とは別のタイミングでデータフア

イルに書き出される必要があるのでしょうか。この点に疑間を持った人は、チューニン

グセンスを持っていると言えます。結論から先に言うと、WRITE 1/0の 質の違いです。

REDOログファイルは、更新履歴のみを書き出せば良いので、履歴データを順々に書き

26

1

|

_●,

出すだけのシーケンシャル 1/0で済みます。データファイルは更新済みのデータブロツク

がデータファイル内の複数の箇所に書き出す可能性があるため、ランダム1/0で書き出

す必要があるのです注
5。

シーケンシャル1/0はディスクのシークを最小限に抑えることができるため、ランダ

ム1/0に比べて書き出しのレスポンスが早いというメリットがあります。シーケンシャル

1/0の恩恵を受けるためにも、REDOロ グフアイルの物理的な配置には注意が必要とな

ります。データファイルと同じデイスクにREDOログフアイルを置くと、シーケンシャル

νOの恩恵を受けづらいのです。

更新 (UPDATE文)SQLによリデータが変更されるまでの流れは理解できましたか
'

更新データを保証する仕組みやバックグラウンドプロセスの役割なども含めて、更新処

理の流れをイメージできるようになるまで何度でも流れを追ってみてください。

注5 シーケンシャル1/0と は、連続して格納されている物理データに対する1/0のこと。デイスク上で読み込みを行なうヘッドの
動きを最小化しながらアクセスできます。ランダム1/0は、文字どおりさまざまな場所に格納されている物理データに対する

νOのこと。ヘッドの動きが大きくなるため、一般にシーケンシャルνOよ リランダム 1/0のほうが遅くなります。

(27

二

」
ム

ロロ憂■

囲口通■

ロロ憂■

囲回憂■

口回■■

口回■■

SQLパフォーマンス問題の解決アプローチ

定型的な SQLチューニング

非定型的なチューニング

Oracleアーキテクチャに基づいた SQLチューニング

アプリケーシ∃ンロジックを意識した SQLチユーニング

論理設計におけるSQLチューニング

SQLパフォーマンス問題の
解決アプローチ

Par曖 は、解決アプローチについて語を進めていきます。本章ではSQLチューニング

の解決方法を述べる前に、SOLチ ューニングの考え方と流れについて解説します。チュー

ニングとは何を行なう作業だと認識していますか?皆さんもこれを少し考えながら誘み

進めてみてください。最終章では、コンサルタントの解決アプローチも紹介します。

一口に「SQLチューニング」と言いますが、「チューニング」という言葉について皆さん

はきちんと説明できるでしょうか。本書では、「チューニング」を次のように定義します。

チューニング……顧客の要件を達成するために行なう分析、改善案検討、実装、テスト

作業のこと。要件を運成できて、はじめてチューニングは終了する。

つまリチューニング作業とは、顧客の要件を達成できていない状況に対して、その要

件を達成するための作業です。要件を達成していない原因を調査し、その原因を取り除

いたり抜本的な見直しを行なったりしながら改善案を検討し、その改善案を実際に適用

して要件を達成したかを確認する流れとなります。要件を達成できなければ、チューニン

グ作業は永遠に続くことになります (図 1)。

要件を満たしている 要件を満たしていない

図 1:チューニングの一般的な流れ

)

パフォーマンス要件の設定

チューニングにもいろいろな種類がありますが、ここでは主にパフォーマンスチューニ

ングを主題とします。パフォーマンスチューニングとは、パフォーマンス要件
注1を達成す

るための作業とも言えます。逆に、パフォーマンス要件に達していない状態ではパフォー

マンス問題注
2が発生しているとして、チューニング作業が必要な状態と言えるでしよう。

したがって、ここで言うSQLチ ューニングとは、分析や検討対象が SQLであるパフォー

マン要件に対するチューニング作業であると言い換えられます。

SQLチ ューニングが必要となる理由を考えてみましょう。SQLチューニングは、どち

らかと言えば面倒な作業であり、できればやりたくないものです。それなのに、なぜ必要

になるのでしょうか。知ってしまえば簡単なことなのですが、それを理解している人が関

わったか、理解していない人が関わったかによって、システムのパフォーマンスに大きな

違いが出てきます。

SQLチューニングが必要となる理由には、SQLの記法の柔軟性が高いこと、処理ロジッ

クを意識させないコーディングが可能であること、処理方法がデータベースに任されてい

ることなどが挙げられます。

で翁b記法に対する柔軟性が高い

SQLでは処理の内容を記述しますが、その記述ルールは非常に柔軟性に富んでいます。

そのため、同一の処理内容に対して複数の記述方法が考えられます。次の 2つのSQL文

を見てください。

★1.1

（
〓綺
＝》

SQLチューニングが必要となる理由

・
注
　
　
注

システムにおけるパフォーマンス要件とは、対象の処理や業務に対する処理時間や処理量で表わされることが多い。性能要

件と言い換えることもあります。

パフォーマンス要件を達していない状況やその問題。

SELECT empno

FRCM emp
‐WIERE salary / 1.1 >= 1000

31

これらの SQL文は、ともに「給料が 10∞ ドルの 1.1倍以上の人の社員番号と社員名を

取得する」という処理を表わしています。返される結果はまったく同一です。ただし、前

者に比べて後者は、データアクセスの際に索引を使用できずにパフォーマンスが悪化する

可能性が高い記述形式であると言えます。

ぎ輌処理ロジックを意識させないコーディングができる
例えばSELECT文であれば、「どの表とどの表を、どういう条件で結合し、こういう条

件に合うデータを取ってきてほしい」と書けば、結果を返してくれます。「どういう条件で

結合し」という定義はできますが、実際に結合する処理のロジックまでは書きません。極

端に言えば、後はデータベースが勝手に処理を行なって結果を返してくれれば問題ない

という記述の仕方です。

開発者自身がこのような機能を手続き型言語で実現しようとすると、「このデータ集合と

あのデータ集合をこのアルゴリズムを使用して結合して」と書かなくてはいけません。手

続き型言語であれば、自身の記述するロジックの正当性や効率性をある程度気にします

が、「結果さえ返してくれればそれで良い」と考えがちなSQLでは処理結果の正当性は気

にしたとしても、効率性にまではなかなか気が回らないのです。

Sb処理方法はデータベースに任されている
処理内容から処理方法を生成し、処理を行なう作業はデータベースに任されます。つ

まり、データベースが良い処理方法を導出して実行できるかどうかの多くは、(も ちろんそ

の機能や性能にも依存しますが)イ ンプット情報にかかっているのです。処理方法の導出

に使用するインプット情報としては主に次のものがあります。

。 SQL文自体
饉 データ構造 (表構成、索引構成など)
。 データ内容 (表の行数、どの値が多いかなど)

このインプット情報からどのように処理方法を決定していくかについては後述します

が、少なくとも良いインプットがないと、良い処理方法が導出されない可能性が高くなる

ということだけは認識しておいてください。

32)

パフォーマンス問題を改善するためにチューニングする

つまり、SQLは処理方法を考慮せずに結果だけを考えれば良く、どのような書き方で

もできてしまうので、パフォーマンスを意識せずに記述してしまうのです。

SQL文をコーディングする当初からパフォーマンスを意識してコーディングしていれ

ば、パフォーマンス問題の発生は抑制できるでしょう。しかし、現実のシステム開発では

SQLの処理結果については十分に考慮するものの、パフォーマンスについては考慮しきっ

ておらず、結果的にパフォーマンス上あまり良くない書き方に陥っている場合が多 見々ら

れます。このようなケースでは、システム開発が進んだ段階でパフォーマンス問題が発生

し、SQLチューニングをせざるを得ない状況となるのです。

藝
綺
制
）

SQLチューニングの流れ

前述のとおり、SQLチ ューニングとはSQLに対するパフォーマンス要件が満たされな

い場合に、それを改善する作業です。

まず、パフォーマンス要件を満たさないSQLがあるかどうかの確認から始まります。

すべての SQLがパフォーマンス要件をクリアできていれば、SQLをチューニングする必

要はありません。

次に、パフォーマンス要件をどの程度クリアしていないのかという現状を把握したうえ

で、その原因や理由を調べます。そして、要件を満たすためにどのような修正や変更を

加えるかを検討し、チューニング案を作成します。

その後、チューニング案を適用してチューニング効果を測定します。そこでパフォーマ

ンス要件をクリアしていれば、それでチューニングは完了となります (図 2)。

(33

要件を満たしている 要件を満たしていない

図 2.:SQLチ ユーニングの一般的な流れ

ub定型的なSQLチユーニング
「良いSQLの書き方とは ?」 に対するノウハウであり、ほぼ機械的にできるSQLチュー
ニングです。最低限守るべきコーディングガイドのレベルでの話が主題となります。単純

にコーディングガイドを紹介するのではなく、そのコーディングガイドが必要となる根拠

をOracleア ーキテクチャの話を取り入れながら解説します。

ぐ瞼1非定型的な SQLチユーニング
「パフオーマンスを意識したSQL」 を記述する第一歩として機械的でなく、自分自身で

SQL文を分析して実行するような、頭で考える必要のあるチューニングを行ないます。
SQLチューニングのポイントである実行計画の良し悪しを判断し、自ら改善できるように

なってもらうことが目標です。

0い アーキテクチャを踏まえたSQLチユーニング
上記 2つの SQLチューニングを行なって、実行計画上は問題がなかったとしても、ま
だ問題が起こる可能性はあります。そのような場合には、SQL文の実行状況や処理状況
をアーキテクチャも含めて考察する必要があります。そこで、Oracleの アーキテクチャは

もちろん、アプリケーションのアーキテクチャも含めて考察しながら、チューニング方法

を伝授します。

34

SQLパフォ,マンス状況の確認

SQLチューニング案の検討

.SQLチユーニング案を実装

本章ではSQLチューニングの第一歩として、定型的なSQLチューニングについて紹

介します。SQヒ 記述の際に最低限守るべきルールや、実施すべきチュ…ニングなど機械

的に適用できる話が主題となります。ただし機械的に適用するにしても、その意味や目的

を理解したうえで実施したいものです。そこでOracieア ーキテクチャや現場ノウハウな

どの根拠を提示しながら解説していきます。

前章ではSQLパフォーマンス問題がなぜ多いのか、そしてSQLパフォーマンス問題

の解決、すなわちSQLチューニングがなぜ難しいのかを考察しました。そして、SQLパ

フォーマンス問題が多い理由の1つとしてSQLの言語的特徴を挙げました。記法に対す

る柔軟性が高いことや、処理ロジックを意識させなくともコーディングが可能であるとい

う言語的特徴が、パフォーマンス面においては逆に負の面となりかねないことを理由の 1

つとして解説しました。つまり、いくらSQLの柔軟性が高くても、パフォーマンス問題を

発生させないようにするにはある程度守るべきルールがあるということです。

そこで、本章ではSQLチ ューニングの第一歩として、SQL文を記述する際に最低限

守るべきルールや、実施すべきチューニングについて紹介します (図 1)。 このようなルー

ルやチューニング方法は、いわば “定型的"なチューニングであり、特に深く考えずにそ

のまま定型的に適用したとしても、パフオーマンス問題に対してそれなりの効果はあるで

しよう。

しかし、そうしたルールやチューニング方法をこの書籍ですべて紹介できるわけではあ

りませんし、それをただ適用するだけの技術者というのもあまり歓迎されないでしょう。

そこで、本書ではいくつかの定型的なルールやチューニング方法に対して、その目的や、

なぜそれが必要なのかといった根拠をOracleアーキテクチャゃ現場ノウハウを含めなが

ら紹介していきたいと思います。

定型的な SQLチューニング

結果が導出できればどのような

記述方法でも良いのか' _

記述に対する柔軟性が高い

処理ロジックを意識させないコーディング

開発者が処理の効率性にまで意識

を回しにくくなつてはいないか
'

処理方法はデータベースに任されている
データベース内での処理内容を .

意識したSQL設計/記述
'

一ニング

「
Ｊ
″

図 l:定型的なチユーニング

「チューニング」というととても複雑な作業であると思われがちですが、実際にはビン

からキリまであると言えます。データベースの構造やアプリケーションロジックレベルで

のチューニングは、多くのことを考慮する必要があり、確かに難解な場合もありますが、

ある程度機械的に判断できるような対応も多くあります。本章ではこういった機械的に対

応できる、定型的なSQLチューニングに焦点を当てていきましょう。

本書では、定型的なSQLチューニングを以下のように定義します。

く定型的な SQLチューニング>
繭 機械的に判断、対応できる SQLチューニング
。 チューニング時に最低限チェックすることがある SQLチューニング
● コーディング時に最低限守らなくてはいけないことがあるSQLチ ューニング

これらは、SQLチューニングをする際の「最低限のルール」であるとも言えるでしょう。

「ルールを守る」ことは予防策にも解決策にもなります。SQLチ ューニングを行なう際

には、このルールに即した記述、実行が行なわれているかをチェックし、そうでない場合

にはルールに即するように変更することで対応できます。またSQLテキストを記述する

際にも、最低限このルールを守れば事前の予防にもつながります (図 2)。

7

定型的な SQLチ ユーニングの定義

アーキテクチャを

性能問題を誘発しやすいSC〕Lの言語的特長

ィ記法に対する柔軟性が高い

`処
理ロジックを意識せずコーディングが可能

予防 チューニング

柔軟な言語だからこそ、守るべきルールが存在する

大きく4つのカテゴリに分かれる
書アーキテクチャに伴う性能問題を避けるためのルール

ミ使用方法やノウハウをもとに性能問題を避けるためのルール

奇可読性や管理性を高めるためのルール

や運用ポリシーを考慮したルール

ルールを活用するにはポイントがある

力開発者にも直観的に分かりやすいものにする

ヽルールが必要となる理由を明確にし、指針、注意点、例なども加える

。プログラムレビューと同様にSQLコーディングもレビュー(チエックシートでチエツク)

図2:最低限のルール

38

¬電靡解

それを実際に

ステップ 1

ステップ 2

ルールの真意を読み取り、

その意味や目的を頭に浮かべたうえで:

本章で説明する内容は、

、
―
ノ

五 ::

ご
′
を定型的な SQLチューエングが可能な範囲

ン,SQLテキスト
SQLテ キストそのものです。前章でも説明したとおり、SQLテ キストの記法は非常に

柔軟性が高いと言えます。結果を取得することだけを考えた場合、何とおりもの記述の

仕方が考えられます。とはいえ、どのような記述方法でも良いのでしょうか ?

パフォーマンスや管理性を考慮すると、やはり良い記述方法や悪い記述方法がありま

す。SQLテ キストの記述方法に独自のルールを追加することにより、ある程度は記述方

法の枠組みを作ることが重要です (このようなルールをコーディングルール/コーディン

グガイドとも呼びます)。

また、パフォーマンス問題が発生したSQLテキストが、パフォーマンス上のルールに

従っているかどうかを判断することも、比較的容易になると言えます。

SQLテキス トのみから定型的にチューニングすることも可能。ただし
このような内容はヨーディング時から実施しておくべき

SQLが Oracle内部でどのように処理されるかは、SQLやデータの統計情報、初期

化パラメータからオプテイマイザが生成した実行計画に基づいて変わります。SQLのパ

フォーマンスは、どのような実行計画で処理されるかに依存していると言っても過言では

ありません。

実行計画は LIS丁1のようなツリー構造で表示できます。

SQLテ キストはルールの下、ある程度は機械的に判断/対応できますが、実行計画の

良し悪しを機械的に判断するのは難しいでしよう。例えば、表全体を読むフルスキャンが

良いか、索引スキャンが良いか、どの表から結合を開始すれば良いかなどは、取得対象

のデータ量や結合の方法に依存します。

ただし、実行計画に表われるキーワードをもとにすれば、懸念するべき実行計画であ

るかを判断できる場合もあります。最終的な判断までは至らなかったとしても、パフォー

マンス問題につながりかねない要素を見つける意味で役立ちます。

実行計画

39

I Id 1 0peration_・ |‐‐.‐ I Name l __

‐ 1_ 0 1 SELECT STATEMENT I I
1 1 1 NESTED L00PS I I
‐
1 2 1 TABLE ACCESS FULL I DEPT I
I‐
 3 1 TABLE ACCESS BY INDEX ROWIDI EMP ‐___|
1 4 1 1NDEX RANGE SCAlヽ こ I EvPll=IP｀ |

※この例では、DEPT表をフルスキャンで取得しながら、EMP_IDX索引を使用した索引スキャンでEMP表をネステッ
ドループ結合してしヽます。フルスキヤンとは表の全データを網羅的に読み込む手法であり、ネステッドループ結合と

|ま外部
言
‐.lF子ではDEPT表)1行ことに、内部表 (EMP表)と結合できないかを探してしヽく19存IF,。

実行計画のみから定型的なチユーニングは困難。ただし、懸念するべき

実行計画を把握することは可能

LIST l:実 行計画の表示

実行計

0●

定型的なチ='夕を行なう方法
TP系のシ であれば,

る可能性がある処理と定義し

ックしま

チエックを行な

Lの実行計画の変動を確認するこ

伴うパフォー

FULLや を性能間

カラムに

きた実行計画について妥

をWOR
(SQLを

して

ｎ
ｖ
４
．

に取得

Nの P

LANの

めの値)

当性や改善策を検討することになりますので、
■‐

ルだけではなく: |,iツ クする方法を紹

る値)
.=

ここまでで、定型的なSQLチューニングとはどのようなもので、どこまで行なうかを

理解していただけたと思います。次は、実際にSQLテキストを記述する際のルールとし

て用いられる「SQLコーディングルール」について解説します。SQLコーティングルール

の重要性とそのルールがどのような理由で作成されたのかを知ることで、SQLコーディ

ングルールの目的と守る意味を理解しましょう。

実際に開発を行なう際に、SQLテキストを記述する要件として大きく次の2つが挙げ

られると思います。

① データを正しく取得/挿入/更新/削除する

② 適切な時間内に処理を行なう

①については、SQLテキスト単位で注意深く確認を行なっているはずです。データを

正確に処理できたとしても、適切な時間内で処理できなければ、最終的に②の要件は満

たせません。

また、データベースは1人で使用するケースはほとんどありません。さまざまな要件を

持つ多数のSQLが実行されます。SQL文を記述するうえで、何のルールもなく、上記の

2つの要件さえ満たしていれば問題がないかというと、そういうわけではありません。そ

こで、SQL文を記述する際のルールとして用いるのが SQLコーディングルールです。一

般的なSQLコ ーディングルールの目的は、次のとおりです。

SQLコーデイングルールの目的

41

ることで、

くSQLコーディングルールの目的>

① 開発者のスキルに依存しない一定の品質の確保

② 開発者のスキルに依存しない性能の確保

③ 開発者間の意思疎通の向上

④ 開発者間に共通認識の理解による生産性の向上

⑤ SQL文に可読性を持たせることによる保守性の向上

⑥ SQL文の再利用性の向上

⑦ 運用ポリシーに沿ったルールの適用

SQLテキストの記述方法と性能問題を考えるうえで、SQLテキストを記述するときに

データベースのアーキテクチャを意識しなかったことによって、性能問題を引き起こす可

能性があります。また、ある条件 (データの質や使用方法)によって性能問題が起こる可

能性もあります。これらの性能問題を引き起こさないためにも、SQLの コーデイングルー

ルを策定し、記載しておきます。

Partlに も書きましたが、SQLは同じ処理内容に対して複数の記述方法が考えられ、

記述法に対する柔軟性が非常に高い言語です。このような言語的観点から、開発者の生

産性や再利用性の向上のために、また、人員交代やDB管理者など、SQL作成者以外の

人も理解しやすいように、可読性を意識したコーディングルールも含めておく必要があり

ます。性能問題が発生してコンサルタントが改善作業を行なうときも、可読性を意識した

SQLコ ーディングルールが存在するシステムなら、論理設計とSQL要件に対するSQL

テキスト記述の理解にかかる時間は非常に短くて済みます。性能問題が発生した際の間

題解決までのリードタイムを短縮するためにも、管理のための SQLコーディングルール

は重要になります。

前述した定型的なルールのほかに、運用ポリシー上、SQLテキストの記述を制限する

ルールもSQLコ ーディングルール内には記載しておきます。例えば、データベース定義

文の使用可否や運用上の例外事項、RDBMS固有のSQL関数の使用可否などです。ま

た、運用体制としての例外申請フローや責任者についても記載しておく必要があります。

業務チームとインフラチームが、別々に開発/テストや運用を行なっているケースは非常

に多いと思います。チーム間の連携や担当範囲の明確化も、SQLの性能問題を事前に対

処するための非常に重要な要素です。ゆえに、SQLコーディングルール内で運用ポリシー

も考慮したルールが記載されていることが重要になります。

SQLコーディングルールに記載すべきそのほかのルール

42

記載すべきSQLコ ーディングルールは次のとおりです。

く記載すべきSQLコーディングルールのカテゴリ>

① アーキテクチャに伴う性能問題を避けるためのSQLコ ーディングルール

② 使用方法やノウハウをもとに性能問題を避けるための SQLコーディングルール

③ 可読性や管理性を高めるためのSQLコ ーディングルール

④ 運用ポリシーを考慮したSQLコ ーディングルール

それでは、実際に一般的なSQLコ ーディングルールに記載されている例をもとに、具

体的に説明していきます。実際の SQLコ ーディングルールは多岐に渡ります。すべての

ルールについて解説できないので、いくつか抜粋します。そこからSQLコーディングルー

ルの目的や守る意味を理解してください。さらに、DB管理者の方やインフラチームの方は、

SQLコーディングルールとして、どのようなルールを記載しておくべきかを併せて考えな

がら読んでください。一般的なSQLコーディングルールの構成内容については、表 1の

「SQLコ ーディングルールチェックリスト」も確認してください。

表 1:SQLコ ーディングルールチェックリス ト

く重要度の定義>
LVl 性能劣化にかかわらず守るべき必須事項
LV2 '性能に影響するため守るべき必須事項
LV3 要件に応じて検討すべき検討事項

<リ レールの定義>
Rl アーキテクチャに伴う性能問題を避けるための SQLコ ーディ
ングルール

R2 使用方法やノウ八ウをもとに性能問題を避けるための SQL
コーディングルール

R3 可読性や管理性を高める SGILコーデイングルール
R4 運用ポリシーを考慮した SQLコ ーディングルール

コーァイ イ

(次ページヘ続く)

(43

l lR31SQL修 正

1 1R31S〔〕L修正 _ ‐.
]IR31SQL修 正

]IR31SQL修正
1 1■ 11SQL修正

2 1RllSQL修正 (明示的に型変換関数を記述|

不要な選択列は除外されているかつ
アスタリスク

不要な関数は除外されているか'
― ‐ 1 1R21不要なものがある場合は SQL修正

不要な DISTINCT句は排除されているか' ・ 11-卜R21不要なものがある場合はSQL修正

WHERE句

索引の錬用を想定している列に対して以下の処理が行なわれていないか
'
Rl

,計算 Rl

関数 1 Rl SQL修正

連絡演算子 _

‐昇]

否定形条件 (1■ ^=.<>.NOT) 1

NULL条件 1 Rl SQL修正

中間―数/後方■致検索 | Rl SQL修正

複合索引を使用する場合は先頭列が指定されているか
'

Rl. SQL修正・

HAVING句による絞り込みをWHER[句で代替することを検討済み力ヽ? 2 R2 検討、SQL修正
DML文

lNSERTI文 には列指定がさねているか
'

R2 SQl_修正 . ‐

DELETE文とTRUNCATE文 を使い分けているかつ ―‐■ 2 R2 検討、SQL修正
分割コミットは検討済みか

'
R2 検討、SQL修正

表の結合

*66*1+0)18{ila#urD ? Rl

heai6.-)),ffit* 6 rL)lTb\ ?
・２ Rl SIL修正

ビューを使用した結合はないかつ R2 ビュー定義を参照し元表を用いて結合

データ取得方法

D1-fAREAtyrl* kownum <= l.l t{*HLCttBbti R2 SQL修正

] R2表(Null値を含1場含|)つ件数をカウントする場合は
|“ uht(1)を 使鷹しているか

'
SQL修正

不要な ORDERBYや、GROUP BY句 は排除されているか'
R2 不要なものがある場合はSQL修正

DlSTINCTを EXiSTSで 代替することを検討済みか? , R2 検討●代替可能であればSQL修正
ORDER BY句での索引の利用は検討済みか? 2 R2 検討、SQL修正

DECODE関数、CASE文の使用は検討済みか
'

R2 検討、SQL修正

UN10Nと UN10N ALLの 適切な使い分けがされているかつ R2 検討、SQL修正

性能問題を避けるための
1孵牲111繋11警 :|=:=曇IQ轟:癬i驚:鰊轟1購!鐵:鷲1機1構多レ‐|‐

※実行計画を固定化させるための運用ポリシーを反映するためのSQLコーテイングルールの例です。

椰ヨ百軍

まず、SQLの コーディング方法によって性能問題が発生する可能性があることを知っ

ておく必要があります。アーキテクチャを理解し、そのアーキテクチャに沿った SQLコー

ディング方法をSQLコ ーディングルール内に記載しておきます。ゆえに、このルールに

関する内容は性能問題に深く関わるため、原則として必ず守る(守らせる)必要があります。

それでは、各ルールを詳細に見ていきましょう。

アーキテクチャに沿ったSQLコーディング方法をルールとして記載しておくことで、

SQLコーディング方法によって性能問題を発生させないことを目的とします。アーキテク

“

)

チャに沿ったルールは、今では当たり前になっていますが、バインド変数の利用などが分

かりやすく良い例だと思います。

隋ド隕隕鰻WHERE旬に条件を指定する場合は、バインド変数を使用すること。

C腰国ヨ)一般にOLTP系ではバインド変数を使用しないと、本来必要でない再解析

が多発し、CPU負荷の上昇や共有プール内のほかの SQL用の解析結果を

追い出すことにつながります。その結果、データベース全体のスループッ

ト低下を招く可能性が高くなります (図 3)。

な願懸麟鶴 アプリケーションでSQLを生成するような場合には特に注意してくだ

さい。SQLの内部に値を直接付け加えるのではなく、(JDBCであれば)

setlnt、 setStgingなどを使用し、必ずバインド変数を使用してください。

なお、このルールは一般にOLTP向けのガイドとなります。DWH系のシステムではバ

インド変数を使わないことで値データの異なるSQLを共有させずに、SQLごとに最適な

実行計画で処理を行なったほうが性能が良くなる場合もあります。

■ 囲■D LIST2を確認してください。

『
′
′

~ T:ヽ
「

こ軒 イヾンド変数を使用する

45

バインド変数化
されたSQL

バインド変数化
されていないSQL

― ―)

――――ト

サーバープロセス

サーバープロセス

匝 亜ヨ ー 瀬
′

SQLことに共有プールの領域が必要となり、領域を圧迫
する可能性がある

SQLの再解析が多発し、CPU負荷が上昇する

共有プール内の解析済みSQLを追い出すことによリデー
タベース全体のスループット低下を招く可能性がある

図3:バインド変数を使用する理由

LIST2:バ イン ド変数の使用

―― Oracle lよ 異なるリテラル値を条件句に持つ

―― SQLでも、同一の SQLと して 1回の解析で処理できます。

――バインド変数numに 135を代入します。

SELECT /★ AAALEMPADMIN01_000M ★/

FROM emp
WHERE empno = :num′
――バインド変数numに 137を代入します。

SELECT /★ AAA EMPADMIN01 000M ★/

FROM emp
WHERE empno = :num′

SQL SQL SQL SQL

空きがない

サーバープロセス

サーバープロセス

サーバープロセス

サーバープロセス

46)

WHERE旬の条件指定時は索引列に関数を使用しない
「
′
●

SQLテキストの記述によっては索引が使用されないことがあります。そのようなことが

ないように、SQLコーディングルール内にSQLコーティング方法を記載しておく必要が

あります。その例を1つ見てみましょう。

(::隧鶉蝠躊難WH匡 RE句の条件を指定する場合に、索引列に対して関数を使用しないこ

と。関数を必要とする場合は、列に対して関数を使用するのではなく、右

辺の値に対して適用可能であるかを検討してください。

C匡奎ヨD索 引列に対して関数を使うと、索引が使用されなくなつてしまいます。また、

列に対して関数を記述すると、すべての行に対して関数の計算を行なうた

め、関数のオーバーヘッドが大きくなります。

曜甕翻鯰腰索引を使用する列に関数を使用する必要がある場合は、あらかじめファン

クション索引を作成しておくこともできます。ただし、ファンクション索引

を使用する場合は、更新処理や格納効率、初期化パラメータ (query rewrit

e_integrity=trusted)な どを別途考慮する必要があります。ファンクション

索引を作成する場合は例外申請書に内容を記載して、DBAチームに打診/

承認を得ましょう。その後、DBAチームにて使用の妥当性を検討します。

■囲■D LiST3を確認してください。

LIST3以外にも、NULL値の検索や暗黙の型変換、LIKE句の中間一致、後方一致、「!」

「=」「,」「<」「>」 の使用など、SQLテキストの記述によって索引を使用できない状態が発

生しないように注意してください。SQLコーディングルール内には、アーキテクチヤを考

慮し、かつ必ず準拠させるルールも記載しておく必要があります。

LIST3:索 引列に関数を使用する

47

――hirl:aite列 に索引が作成されていても索引は使用されません。

SELFIII′■ TARGET_FttC00叱 000M十 /
.‐・ ё●ane

FROM emp _
WHERE TO_CIAR(h■ redate′

「YYYYMMDD;)二 1198111171, ■ ・

――hiredate列に作成されている索引を使用するために、
‐

一 索引列への関数使用を避ける右辺の条件値に対する関数使用へ書き換える。

SELECT /★ TARGET FUNC00N 000M・ ■/1111
・

enamel‐・|||‐ ‐‐‐ ・|~‐

FROM eⅢI■■|

1′
 lYYYY卜 T4DDl)
:′ lYYYYMMDDl)′

使用方法やノウハウをもとにした

アーキテクチャに伴うSQLコ ーディングルールとは異なり、SQLの使用方法や性能に

関するノウハウをもとにSQLコーディングに関するルールを記載します。

SQLの使用方法についてもSQLコ ーディングルールとして記載しておくことは、性能

を考えるうえで非常に重要です。このルールに関する内容は性能問題に深く関わるため、

原則必ず守る (守らせる)必要があります。

それでは、ルールの詳細を見ていきましょう。

躾蜃瑕颯蟷:レコードの存在チェックは「Юwnum<=1」 をWHERE旬 に使用して実行

してください。

m)条 件に一致する行を 1行見つけた時点で SQLを終了するため、高速に実

行することができます (図 4)。

C□囲■D LIST4を確認してください。

ЫST4以外では、表の件数を確認する場合にNULL値の考慮を行なうルールなどにつ

いても、SQLコーディングルール内に記載しておく必要があります。

レコードの存在チェックIま「rownumく〓1」 を使用する
■
■
，

48)

empno salary
19001243

4324 2000
6525 2000
21001536

1346 2200
7543 2300
1465 3500
48006372

salary>2000の従業員が存在するかつ

1件

5イ牛

図4:レコード取得する動作

LiST4:レ コードの存在チェックにrOWnum<=1を 使用する

玲骰鑽躙ξ.ビューとビューの結合や、ビューと表の結合は回避してください。このよ

うな結合によリデータを取得したい場合はビュー定義を参照し、ビューの

元表を使用してSQL文を記述してください。

c区ロョ)ビューを結合に用いると、データを取得するために本来必要な表以外の余

計な表にアクセスする可能性があります。このような状況が生じた場合、

直積結合の発生などで、必要以上のデータアクセスが発生し、性能問題が

「
Ｊ
Ｊ

salaryen¬pno

1243 1900
4324 2000
6525 2000
1536 2100↓

|

1346 2200 ヽ
7543 2300 ヽ
35001465

6372 4800

ビューに対する結合の回避

11'ROM emp

WHERE salary > :lb■ ,

‐
 COUNT(1)
FR側 (SELECT e叩 ¨

/* TARGET_FI,NCOON_OOOM tI

■
●
一一一一

FROM emp.|||

salar・′

r。結il
ＥＲ
　
畑

―ゝ :bl

く=1)′

49

生じる可能性があります。

画轟轟轟》 ビューの結合を必要とする場合は、DBAチームヘ確認してください。DBA
チームが妥当性を検討します。

日 囲■D LiS丁5を確認してください。

ビューには、複雑なSQLを 隠蔽することができたり、表示する列を制限させたりする

用途があります。ビューの定義を理解して使用する場合は、非常に有用なオブジェクトと

なります。しかし、ビューはあくまでも論理的な定義です。ビューを使用した複雑なSQL

をコーディングする場合は、ビューの定義を意識して、性能問題が発生しないように注意

してください (図 5)。 ビュー同士を使用した処理を行なう場合は、新しいビューを作成す

ることも検討してください。

LiST5:ピ ューに対する結合の回避

, d.dname ‐

′]・ jObname

FROM emp e

′ deoし―d
.=・・ .

′]O。 |] ._
WHERE e.deptno = d.dё ptno
AND e.jObnO =].」 ObnO′

CREAT]9,REPLACE
SELECT‐■|lpno

VIEl.7 V EMP SAL AS

′ s.f■ nyear

′ s. salary
FROM emp e
‐́_sal s

咽 ERE e ettno=|:,叩nO(十)′

一 上記のビューを使用して
――以下のSQLを実行することができます。
SELECT /★ NG USING VIEW ★/
‐ _ n.empno _

′ n.dname .
′ s f■ nyear

′ s. salary
―‐TROM v emo name

′vle品二|11
WHERE n.empno : s.empnoi

||||IF直接表からアクセスしたほうが効率的です。

WHERE
‐‐ AND

e.deptno
e.empn。

= d.deptno
= b.empno′

3●

．
．
．
　
　
　
．．一
一　
　
　
・
●
‐
　
　
・
・・

．
．
．
　
　
．．
．
　
　
　
・一
―
　
　
‐
・
一
　
　
●

一
　
　

　

―
　
　
　
●

．　
　
　
●
　
　
　

・
　
　
　
　
‐

表

図 51ビューを使用した結合処理の動作

SQLコーディング時の基本的なスタイルを統一しておきます。コーディングスタイルの

統一には、可読性を高め、保守性の向上や管理性を高めるという目的があります。性能

問題が発生し、改善作業を行なうときに、可読性を意識したSQLコーディングルールを

もとにSQLが記述されていると、SQL要件とSQLテキスト記述の妥当性を判断する時

間が非常に短くて済みます。性能問題が発生した際の問題解決までのリードタイムを短

縮するためにも、コーディングスタイルに対するルールは非常に重要になります。

一般的なルールとして記載されている内容について、見ていきましょう。

V EMP SAL
empno

finyear

salary

V EMP NAME

jobname

empno

ename

dname

51

StLECT■ 1/★ OK ★/
e.empno

′._e.e■ ame_

′ d.dname
, s.=inyeOr
′ s_salary

ヽ
＝
―
ノ

一　
´
二

ｒ
ｌｌ
に

管理用コメントの付与

蟷誦趙鱚鰻 SQLに管理用コメントを追加します。管理コメントの命名規則を定義し、

それに従ってコメントを記載してください。どのモジュールからどのような

目的で発行されたものであるかが分かるような命名規則にしておく必要が

あります。

C麗聖目勁 管理用コメントを記載しておくことで、チューニングやデバックの際に原

因であるSQLを発行しているプログラムの特定が容易になります。また、

SQLの発行状況などのトレンド把握も容易になります。

骰瑾轟翁)管理用コメントをあまり細かく分類すると、解析情報を共有すべき「同一の

SQL」 が同一でなくなつてしまう懸念があります。

プログラムや SQLを特定するのに必要十分な区分で管理用コメントの付加をお願いし

ます。汎用的なSQLがコメントによって、同一のSQLでなくなってしまっては、本末転

倒です。汎用 SQLに対するコメントの命名規則も定義しておく必要があります。

C□四■D LIST6を確認してください。

LIST6:管理用コメントの付与

SELECT r* AAA EMPAIMTNo1 0001 */

'10M
しip ・

‐‐‐

噸ERE,lPn,F:bl

52,

「
′
●

コメントを付

ンがEMであるこ

本章で

WHERE旬内の条件の記述順序

祗燒躙隋驚WHERE旬における条件の記述順序は次の順序に従って記述してくださ

い 。

①結合条件

結合条件をすべて先に記述します。結合のペアごとにグループ化して記述

してください。

②絞り込み条件

絞り込み条件は、次の順序で条件に使用する列が含まれる表ごとにグルー

プ化して記述してください。

(1)リ テラル値のみの条件

(2)計算式を使用した条件

(3)関数を使用した条件

(4)副問い合わせを使用した条件

③副問い合わせを含んだ条件

条件に副問い合わせが含まれている場合は、条件句の最後に表ごとにグ

ループ化して記述してください。

53

与している箇所が多少異なりますが、

Enterprise Manager (EM)

とを把握するために、

C国ロロ)WHERE句内の記述順序を統一することにより、可読性を高めるためです。
チューニング時には、WHERE句の条件から処理の妥当性やチューニング
アプローチを検討します。WHERE旬の可読性を高めておくことで、チュー

ニング時の生産性も向上します。

C轟覇日)綱かすぎるルールを定義することで、開発効率が低下することがないよう

に注意してください。

G□四■D LIS丁7を確認してください。

LIST7:WHERE句 内の記述||1頁序

SELECT /★ AAA EMPADMIN01 0002 ■/

elnp e

= iANALYST:
.:hiredate > ■O DATE(

d.loc = lNEW YORKl

SELECT avg(sal)
FROM emp),

可読性や管理性を高めるためのルールとしてどのようなものを定義しておくべきか理解

できたのではないでしようか。ここで紹介したルールは、Javaや Cな どのプログラミン

グ言語を使用した開発時に、各言語のコーディングルールが存在するのと同じ考え方で

す。SQLも言語です。SQLコーディングルール内でスタイルに対するルールも定義して

ください。これらの紹介したルール以外にも、大文字/小文字の取り扱い方や列名や表

の別名を使用に関するルールなども考慮しておく必要があります。

現場の運用ポリシーを

SQLコーディングルールの中には、現場の運用ポリシーを反映させるためにルールも

設定します。ルールの設定により、プロジェクト内の体制を考慮して管理性を向上させて

います。ここで示す例は、すべてのプロジェクトで適用できるものではありませんが、例

をもとにルール作成の考え方を理解してください。対照的な例を書いておきます。

IVYYY/MM/DDr)

54

ヒント旬の運用ルール
「
′
″

颯♭ヒント旬の使用を制限するルール例

籟鰺絋躙m SQL内でのヒント旬の使用を禁止します。

●圏田日)ヒ ント句を使用していた場合に、SQLチューニングの判断によリヒント旬

の書き換えが必要となる可能性があります。コード変更を極力行なわせな

いために、ヒント旬の使用を禁止します。また、SQLのパフォーマンスは、

DBAチームが最終的には判断を行ないます。開発チームの判断により、ヒ

ント句を追加することを禁止します。DBAチームにより実行計画の固定化

が必要と判断した場合は、「ストアドアウトライン」により対応を行ないま

す。

翻甕蒙圏)ヒント旬による対応が必要と判断された場合は、例外申請書に内容を記載

後、DBAチームに打診/承認を得ましょう。DBAチームにてヒント旬によ

る対応の妥当性を検討します。

祠♭ヒント旬の使用を検討するルール例

蟷枡鰈靡藝 SQL内でのヒント旬の使用を検討します。

C圏ロロ)アプリケーションロジックから外部ファイルに記載しておいたSQLを呼び

出す運用を行なつているので、SQLチューニングの判断によリヒント句を

使用して改善を行なうことを検討します。SQLのパフォーマンス管理は、

業務チームが最終的に判断して行なってください。しかし、業務チームの

判断のみで、ヒント句を追加することは禁止します。改善作業は、業務チー

ムが行ないますが、DBAチームの承認が必要です。

ヒント旬による対応以外が必要と判断された場合は、例外申請書に内容を

記載後、DBAチームに打診し、承認を得ましょう。DBAチームにてヒント

旬による対応以外の妥当性を検討します (例 :ス トアドアウトラインの使用、

統計情報の変更など)。

/

ヽ

SQLコーディングルール活用のポイント

本章で説明したSQLコ ーディングルール以外のルールについても成り立ちの理由や根

拠があるので、現在関わっているプロジェクトにすでに存在しているSQLコ ーディング

ルールを少し読み直してみてください。また、現在開発中の方は、SQLコーディングルー

ルに記載されているルールが守られているかどうかを確認してください。SQLコ ーディン

グルールを守るということが、SQLチューニングの第一歩であるということを理解して活

用してください。

また、定期的にSQLコ ーディングルールのルールを見直してください。守られていな

いルールがあれば、なぜ守られていないのかを開発チームと共有しながら、ルールそのも

のを追加、修正、削除などを行なうものであることも理解しておいてください。

SQLコ ーディングルールの中身については、理解していただけたと思います。次は、

SQLコ ーディングルールの作成時や使用時のポイントをまとめておきます。

開発者にとって、SQLコーディングルールは役立つ反面、煩雑に思われてしまうこと

もあります。プロジェクトでSQLコーディングルールを作成するときは、多くの場合、次

の点に注意します。

開発者がコーディングを行なう際に、直観的に分かりやすいルールとな

るように心がける

そのため、SQLコーディングルールは次のような構成をとるようにしています。

⑬,SQLコーディングルールの構成
SELECT句やWHERE句 などのコーデイング要素ごとに章立てとします。例えば、開

発者が SELECT句 を記述する際には、SELECT旬の章を重点的に見てもらえば良いこ

とになります。

SQLコーディングルールを守るためには

閻)SQLコーディングルールの要素
主に SQLコ ーディングルールの指針や理由、注意点、例を記述します。指針は見ただ

けでそのルールの意味が分かる内容となるように心がけます。そのルールが必要となる理

由を明確にし、例外などの注意事項も明らかにします。

はタコーディングチェックシート
プログラムレビューと同様に、SQLコーディングに対するレビューも実施すると万全で

す。SQLごとにSQLコーディングルールの各項目が守られているかどうかを第三者の視

点で確認すると良いでしょう。

痣ゝ チューニング時の第一ステップとしてルールを使う
Oracleコ ンサルタントがSQLチューニングを行なう場合も、これまで紹介してきた

ようなSQLコーディングルールが満たされているかをまず確認します。さすがに、実際

に表 1のようなチェックシートを見ながら1つ 1つ確認しているわけではありませんが、

チェックシートと同等の内容の確認を行なってから、さらに深い分析に入ります。

SQLチューニング初心者の方はまず、チェックシートと見比べながら、逸脱しているコー

ディングがないかどうかを見るところからスタートするのが良いでしょう。

『
■
１

/「 "わヽ′

チューニングア

SQL |アドバイザにコーディン

例えば、

ドバイザを活用

できます。

前章でSQLパフォーマンス問題が多い理由の 1つとして、SQLの言語的特徴を挙げま

した。記法に対する柔軟性が高いことや、処理ロジックを意識しなくてもコーディングが

可能であることは、それらが開発を行ないやすくする反面、パフォーマンスにおいては負

の面=パフォーマンスの問題になりかねないということでした。そのようなパフォーマン

ス問題を発生させないようにするには、ある程度守るべきルールがあるということも説明

しましたが、そのようなルールやチューニング方法が、本章で解説した “定型的"なチュー

ニングであり、特に深く考えることなくそのまま適用したとしても、パフォーマンス問題

に対してそれなりの効果が表われるはずですし、最低限実施すべきチューニングである

と言えるのです (図 6)。

図 6:定型的なSQLチ ューニング

定型的なSQLチューニングの対象としては、「SQLテキスト」「実行計画」があります。

実行計画の妥当性を定型的に正確に判断することは困難ですが、例えば、OLTP系の

システムであれば、実行計画内のFULLや CARTESIANを性能問題が発生する可能性

がある処理と定義することで、網羅的にチェックを行なうことも可能です。

SQLテキストに対しては、コーディングルールやガイドを作成し、対応していくのが一

般的です。SQLの記述方法に対してパフォーマンスや管理性を考慮した独自のルールを

追加することにより、ある程度の記述方法の枠組みを作ることが重要になります。パフォー

マンス問題が発生した場合、まずは対象のSQLテキストがコーディングルールに従って

いるかどうかをチェックしていきましょう。

また、本章では、SQLコーディングルールヘ記載すべき内容として、次のものを紹介

しました。

oアーキテクチャに伴う性能問題を避けるための SQLコ ーディングルール
薩 使用方法やノウハウをもとに性能問題を避けるための SQLコーディングルール

「定期

ゆ 可読性や管理性を高めるための SQLコ ーディングルール

・ 運用ポリシーを考慮したSQLコーディングルール

コーディングルールに則った開発が行なわれているかのチェックも重要です。コーデイ

ングチェックシートなどの利用も考えられますが、大量の SQL文のチェックを効率化す

るには、Oracle Databaseでは「SQLチューニングアドバイザ」機能などの自動化機能を

利用することも考えられます。

なお、ルールをそのまま適用するだけであれば簡単ですが、そのルールに込められた

意図や目的をきちんと理解し、納得したうえで適用/チェックすることが大切です。

本章で紹介したようなルールは本来、コーディング時に適用するべきものです。チュー

ニング時に、このような定型的なルールが守られていないSQLがないように予防してお

きましょう。

このような定型的なルールは重要ですが、これだけで十分ではないことは皆さんもご存

じだと思います。

例えば、SQLだけでは良し悪しを判断できず、データ構造やデータの中身まで考慮し

たうえでチューニングを行なう必要のあるケースなどがあります。判断の仕組みはある程

度は定型的なルールとして確立できますが、それを適用するには、その状況から考察を

進めなくてはなりません。

次章では、このように単純なルールでは済まずに考慮が必要となる、いわゆる非定型

的なSQLチューニングについて紹介します。

定型的なチューニングと非定型的チューニング

(59

本章から、非定型的なSQ江 チューニングに話を進めていきます。定型的な解はない

ので一筋縄ではいきませんが、効率的にチューニングするためのプロセスはあります。そ

の最初のステップとして実行計画を生成するオプティマイザヘのインプット情報を把握

することが挙げられます。これらの情報は、実行計画の妥当性の判断や、実行計画を自

分で作成する際にも役立つ重要な情報となりますので、十分に理解しておきましょう。

前章では、定型的なSQLチューニングとして、SQLコーディングルールを紹介しまし

た。コーディングルールは、そのまま適用すべきものなので、いわば何も考えずにできる

チューニングとも言えます。つまり、コーディング時からコーディングルールが徹底され

ているプロジェクトでは、定型的な問題がチューニング時に発生することは非常に少なく

なります (図 1)。

璃騨区 得られる効果

$ nomxr;*

図 1:定型的なチユーニングから非定型的チユーニングヘ

本章では、もう少し“頭を使う"チューニングに話を進めていきます。

Oracleで SQLを実行する際には、まずオプティマイザが実行計画を生成します。実行

ヽ

コーディングルールの徹底的な遵守

“頭を使う"非定型的なSQLチューニング

601

定型的なチューニングから

計画とは、SQLをどう処理するかを定義したものであり、SQLのパフォーマンスは実行

計画に大きく依存します。

チューニングにおいても、オプテイマイザが生成した実行計画が適切であるかどうか、

それより良い実行計画がないかどうかを検討する作業が大部分を占めます。SQLチュー

ニングのポイントである実行計画の良し悪しを判断し、自ら改善できるようになることを

目的として説明を進めていきます (図 2)。

SQL文の実行処理は「実行計画」で定義されるため、
CBOが決定する実行計画の良し悪しがSQL文のパフォーマンスに影響する。

豪閑

図 2:非定型的チューニングのポイントと理解すべきこと

これから説明する「非定型的なSQLチューニング」とは、以下のようなSQLチューニ

ングを想定しています。

定型的な解がない、頭で考える必要のある SQLチ ユーニング

頭で考えなくてはならないポイントとしては、例えば次のようなケースがあります。

豫 索引を使うほうが良いのか、使わないほうが良いのか ?
鰺 表の結合順序はどのような順番が良いか

'

このようなポイントは、対象のSQLによって解は異なりますが、ある程度は共通の判

断指針があります。

Oracleに とっての「頭」とは、オプテイマイザであると言えるでしょう。たいていのケー

スでは、オプテイマイザが適切な実行計画を生成してくれますが、どうしても人が判断し

頚^
副
）

非定型的な SQLチューエングの定義

61

なくてはならないケースも出てきます。そのような場合に、人がどのように判断するべき

かを説明していきます。

Oracleのコストベースオプテイマイザを使用している状況での、一般的なチューニン

グの進め方をまず解説します (図 3)。

オプティマイザヘの
インプット情報は妥当か?

YES STEPl
ますはCBOがどのような情報をもとに実行
計画を決定するかを理解する

。CBOのインプット情報を把握する
繊インプット情報の改善方法を整理する

インプット情報を修正できるかワ

N0 YES

YES N0 STEP2
次にCBOが決定した実行計画が妥当である
かどうかを判断するための指針を理解する

●「実行計画」を理解、分析する

。「実行計画」が妥当か判断する

NO

NO

SQLチュ

Oracle Database 109

一ニンプロア で チ一チ

内容を、な 自力

わヽば、本書で説明

ドバイザも、本

でしょう。

非定形的なチューエングの進め方

図 3:非定形的なチューニングの進め方

)

ユ ~_チSQL本来、

チューニングアドバイザに任せられれば、SQL
非常に有効と言えます。意味で、

オプティマイザが生成した
実行計画は適切かつ

自身で実行計画を検討

パフォーマンスを確認し、
妥当であればチューニング完了

62

58レ ステップ1:オブティマイザヘのインプット情報のチューニング

>オブティマイザヘのインプット情報の収集

まず、オプテイマイザにインプット情報が適切に伝わっているかどうかを確認します。

SQLの処理が定義されている実行計画は、オプティマイザによって生成されます。オプ

ティマイザはSQLテキストをはじめ、各種情報をもとに実行計画を生成します。実行計

画を生成する際には、インプット情報をもとにさまざまな計画に対してコスト計算や比較

が行なわれ、最終的に最もコストの低い実行計画が選択されます。すなわち、最適な実

行計画が生成されるかどうかは、インプット情報次第と言っても過言ではありません。

オプティマイザヘのインプット情報には図 4に示すものがあります。各情報の詳細は後

述しますが、これらのインプット情報をまずは収集し、それらがオプティマイザヘの入力

として妥当かどうかを確かめます。また、これらのインプット情報は、後で実行計画の妥

当性を自身で判断したり、自分で実行計画を作成したりする際にも役立つ情報となります。

餅囃瑕

これらのインプツト情報がオプティマイザのコスト計算に与える影響を理解しよう。

図4:オブティマイザヘのインプット情報

>オプティマイザヘのインプット情報の修正

オプテイマイザヘのインプット情報が妥当でない場合は修正します。妥当ではない例と

その修正例を次に挙げます。

鰺 SQLテキストがコーディングルールに従っていない→従うように修正する

驚 統計情報がデータの実態と異なっている→統計情報を再収集する

インプット情報が正確であればあるほど、オプテイマイザは高い精度で効率的な実行

計画を生成します。コストベースオプティマイザを使用したチューニングの第一歩として、

オプティマイザヘのインプット情報を修正することで、より最適な実行計画が生成できる

ように試行してみることは非常に重要です。

:聾醸]
隧

鍋
〕鍋
鋼
響

０
●
′
０

インプット情報を修正したら、SQLのパフオーマンスが向上しているかどうかを確認し
ます。パフォーマンスを直接確認できれば理想ですが、データが用意できないなど難しい

場合は、実行計画を確認することで対応します。

なお、SQLテキストの修正であれば該当SQLに対する影響確認のみで済みますが、ォ
ブジェクト構造や初期化パラメータ、統計情報を変更する場合は、対象のオブジェクトに

アクセスするSQL、 またはすべての SQLのパフォーマンスを改めて確認する必要があり
ます (表 1)。

表 l:インプット情報の詳細、改善方法、注意点の一覧

※事前に統計収集されていなしヽ場合には、動的サンプリングや内部デフォルト値が使用さねる場合がある

E量レステップ 2:オプティマイザが出力した実行計画へのチユーニング
>自身で適切な実行計画を検討する

対象のオブジェクトにアクセスするSQLをすべて確認することが困難な場合や、単純

な初期化パラメータの修正や統計情報の再収集で対応できない場合には、自身で適切な

実行計画を検討せざるを得ません。例えば、データが次のような状態となり、統計情報

の適切な収集が困難な場合が挙げられます。

饉 データの偏りが激しく、頻繁に変わる

奎 データが大きく増減する

このようなときは、自身で実行計画を検討し、検討結果の実行計画になるようにオプティ

マイザヘ指示を伝える必要があります。

0実際に発行されるSQL
テキストそのもの

コーディングルールを遵守し
ているか確認し、ルールに従つ

ていない箇所を修正

●索引やテーブルの属性
などのデータ構造を格
納する情報

WHERE句条件に適した索引
が作成されているかを確認し、

明らかに索引が不足している

場合は索引構成を変更

・ 同じ表を使用するほかの
SQLに影響することを考慮
する

●データベースの初期化
パラメータの一部
●V$SYS_ PTIMiZER_
ENVビューで一覧可

環境に適した値に設定されて
いるか確認し、必要に応じて
パラメータ値を変更

●インスタンスレベルで設定値
を変更する場合、すべての
SQL文に影響を与えるため
注意が必要
●セツシヨンレベルで設定値を
変更可能なパラメータもある
ため状況に応じて使い分ける

●データディクショナリ
に格納された表統計、

列統計、索引統計など (※)

統計情報を再収集または固定

化

●再収集によりSQLパ フォー
マンスが悪化する可能性もあ
るため必ず実行計画や性能の

確認する

インプット情報

64

>自身で実行計画を検討できると……

このように、基本的にはオプテイマイザに与えるインプット情報を修正し、期待する
パ

フォーマンスになるよう試行しながらチューニングすることを、まず検討します。

しかし、統計情報の適切な収集が困難な場合ゃ、データが用意できずに直接パフォー

マンスを確認できない場合などでは、オプティマイザが生成した実行計画が妥当である

かを確認したり、自身で検討したりしなければならないケースが出てきます。自身で実行

計画を検討できるのであれば、SQLを実行する以前の段階から、ある程度はパフォーマ

ンスの予測もできるようになるでしよう。

実際の現場では、オプティマイザを正しく理解し、インプット情報の妥当性を適切に判

断したうえで、必要に応じて自身で実行計画を検討できる人材が求められます。

そこで、本章ではオプテイマイザヘのインプット情報に重点を置いて説明していきます。

オプテイマイザがコスト計算を行なう場合のインプット情報の詳細と、それがどのよう

に影響しているかを説明していきます。これを理解しておくと、SQLのチューニング時の

視点が広くなるでしよう。すべての要素は多岐に渡っており、限られた紙面での解説は難

しいため、ここでは特にオプテイマイザのコスト計算に重要な値について解説します。

まずは、オプティマイザが効率的な実行計画を選択しやすくなるように、コーディング

ルールを守っているかを確認し、必要に応じて修正しましょう (図 5)。 例えば、索引を使

用できない記述のSQLテキストの場合、たとえ索引スキャンが効率的であったとしても、

オプティマイザは索引スキャンを採用できません。詳細についてはChapter6を 参照して

ください。

SQLテキスト

65

SQLテキストとはSQL文そのものを指す。

図 5:SQLテキストのチェックポイントと改善手法

SQLがアクセスするオブジェクトの情報も、オプテイマイザヘの重要なインプット情報
です。どのような表にアクセスしているか、その表にはどのような索引が付与されている

かをまず把握する必要があります。またビューを使用している場合には、そのビューのテ

キストも必要になります。

オプテイマイザはこれらの情報をデイクシヨナリ情報から収集します。自身でチューニ

ングする場合も、デイクショナリ情報や設計書をベースに、表、索引、列定義、ビューテ

キストといった情報を収集しておきましょう。

明らかに索引が不足していると分かる場合などは、索引構成を変更して再度実行計画

を確認します。ただし、索引構成を変更すると、その表にアクセスするすべてのSQLの
実行計画が変化する可能性があります。そのため、ある程度設計や構築が進んだ段階に

おける索引構成の変更は、慎重に行なう必要があります (図 6)。

アクセスするオブジェクトの情報を把握することが重要。

¬F

ヽ

「

QLに影響するので慎重に!

オブジエクト構造

改善手法:索引が不足している場合は
_ 索引構成を変更

注意

図6:オブジェクト情報収集のチェックポイントと改善手法

66

初期化バラメータ

初期化パラメータも、オプティマイザが実行計画を生成するためのインプット情報の 1

つです。そのため、初期化パラメータ値がオプテイマイザにどのような影響を与えるのか

を把握しておかなくてはなりません。初期化パラメータには、オプテイマイザがコストを

判断するうえでの基礎情報となる値が存在するので、オプテイマイザに影響を与える初

期化パラメータ値は、使用する環境に合わせて適切に設定しておく必要があるのです。

すでに運用中のシステムで、オプティマイザに影響のある初期化パラメータ値を変更

した場合は、すべての SQLの実行計画が変動する可能性があるので、注意が必要で

す。オプテイマイザに影響を与える初期化パラメータは、VSSYS_OPTIMIZER_ENVで

確認できます。その中でも、特にシステムに合わせて確認すべきパラメータは db_file_

mmublock_read_count、 。ptimizer」 ndex_caching、 opumizer_mdex_cost_a両 です。

で⑮b dbゴ‖e_multib10Ck_read_COunt
このパラメータは、全表スキャンまたは高速全索引スキャン時に単一 1/0で読み取ら

れるデータブロツク数を指定します。デフォルト値は、効率的に実行できる最大 1/0サイ

ズからOracleが自動的に算出します。この値が大きいほど、全表スキャンまたは高速全

索引スキャンのコストが低く見積もられるため、実行計画として選択されやすくなります。

Oracle Database 10g R2以 後では自動的に算出されるため、基本的にデフォルト値で良

いでしょう。全表スキャンと索引スキャンの特徴を図7に示します。

empno=6525の 条件で検索した場合
全表スキャン

en¬ pno salary
1243 1900
4324
‐6憂E;|
2000
2000・―

1536 2100
1346 2200

索引スキャン

未使用領域

・　

ｕ

回
目
圏
圏
澤
糊

図7:全表スキャンと索引スキャンの特徴

t67

21 optimizer_index_caching

このパラメータは、索引ブロツクがバッファキャッシュ上でヒットすると考える割合を指

定します。デフォルト値は「0」 です。この値に応じて、索引走査やネステッドループ結合

のコストを調整します。この値が大きいほど、索引がキャッシュ上にある、すなわち高速

にアクセスできると考えられるので、実行計画に索引スキャンが選択されやすくなります。

デフォルト値は、データウェアハウス (以下、DWH)系システム寄りの設定とも言えま
す。一般的なOLTP環境では、索引プロックはキャッシュ上にヒットする確率が高いため、

「90」 などと設定すると良いでしょう。

盪♭optimizeLindex_cost_adi

索引アクセスのコストを通常の何%で計算するかを指定します。デフォルト値は「100」

です。この値が小さいほど索引アクセスのコストを低く見積もるように修正され、実行計

画として索引スキャンが選択されやすくなります。

デフォルト値は、DWH系システム寄りの設定です。例えばOLTP環境では、索引スキャ
ンが大前提と考えられるため、「25」 などと設定して、索引走査のコストを意図的に低く見

積もらせる場合もあります。

閻ゝ 初期化パラメータの修正
パフオーマンス問題が、少数の SQLの問題であった場合、SQLチューニングのため

に初期化パラメータを変更することはあまり現実的ではありません。システムの大部分

の SQLが本来は索引スキャンを想定しているのに全表スキャンに偏っている場合などは、

optimizer_index_costa両 などを変更するケースが考えられますが、これは本当にどうし

ようもない場合の奥の手とも言えます。

むしろ、データベース設計時にオプティマイザ関連のパラメータを適切に設計しておく

ほうが重要になります (図 8)。

そのほか、オプティマイザに影響を与える初期化パラメータの代表的なものを表 2にま

とめておきます。こちらも参考にしてください。

68)

オプティマイザがコストを判断する際の基礎情報となるため、

設定値が実行計画を左右する。

咆
「

インスタンスレベルで設定値を変更する場合にはすべて
のSQL文注意に影響を与えるため、十分な注意が必要。

セッシヨンレベルで設定値を変更可能なパラメータもあ
るため、状況に応じて使い分けよう。

図8:パラメータ値の設定ポイントと改善手法

表 2:その他のオプテイマイザに影響を与える代表的な初期化パラメータ

員鰤
員囲
）

Oracleの リリース番号に基づいて一連のオブテイマイザ機能を使用可能にす
るためのパラメータ。デフォルト値はリリース番号と同じです

インスタンス起動時のオブティマイザのモードを設定します

ALL_ROWS:最 高のスループットを得ることを優先するモード
FlRST_ROWS_n:最 初の n行を最短で得ることを優先するモード

サーバープロセスが使用できるメモリ (PCA)サ イズのターゲットを指定し
ます。大量のメモリを割り当てるほど、これらのメモリを必要とする操作のコ

ストは減少します

SQL文のリテラル値をバインド変数に変換する操作に影響します
FORCE:リ テラルがわずかに異なつても、そのほかが同じSQL文であれば、
その異なるリテラルが SQL文の意味に影響しない限り、カーソルが共有され
ます

SIMILAR:リ テラルがわずかに異なつても、そのほかが同じSQL文であれば、
その異なるリテラルが SQL文の意味または計画が最適化される程度のいずれ
かに影響しない限り、カーソルが共有されます

EXACT:同 一のテキストを含む文のみに、前述のカーソルの共有が許可され
ます

Oracle Database 1 0g新機能の動的サンプリング機能の動作を制御します。

動的サンプリングとは、事前に収集された統計情報が存在しない表に対して

SQL文を発行した際に、64ブロック (デフォルト)のブロックサンプリン
グを取得する機能です

このパラメータをtrueに設定すると、オブティマイザはスタークエリのため
のスター型変換のコストを計算できます。スター型変換により、さまざまな
ファクト表の列でビットマップ索引が結合されます (ビットマップスタージヨ

インは 0「acle Enterprise Editionのオプション機能)

バラメータ名

(69

続計情報

統計情報は、オブジェクトやデータの実際の状況に関する詳細情報です。初期化パラ

メータをオプティマイザがコスト判断するうえでの基礎情報というならば、統計情報は、

オプティマイザがコスト判断するうえで直接的に影響を与えるインプット情報です。

統計情報と実際のデータ状況との差が大きい場合は、実際のデータ状況をもとにコス

トを算出するのではなく、統計情報をもとにコストが算出されるため、結果的に実際のデー

タに対して非効率な実行計画が生成される場合があります (図 9)。 要は、非効率な実行

計画が生成される主要な原因として、必要な統計情報の欠落や陳腐化が考えられるとも

言えます (図 10)。

統計情報とデータの状態の差が大きいと実際のデータに対して非効率な実行計画が
生成される場合がある。

図9:統計情報とデータの実態がかけ離れた場合

オブジェクトやデータの状態を表わしオプティマイザのコスト計算に直接的に
影響するのでデフォルト値を使用せず実データをもとに値を収集しましょう。

願ゝ匿

実行計画に大きな影響を与えるため、再収集によりSQLパフォー
マンスが悪化する可能性もある。必ず実行計画や性能の確認をし
よう。

実際の件数:100万行

非効率な
全表スキャン

改善手法 :統計情報を再収集または固定化

注意

図 10:統計情報のチェックポイントと改善手法

は■000行なた
め1全デニタ|を読
んでもパフォ:■|マ

ンスは良いだろう
と判断

④しかし結果として、100万行を全
デ■夕読んでしまうことになり、パ
ラォ■マンス申1事が発年||

＾
細
轟
”り

鱚,表統計

表の主要な統計情報 として表 3に 挙げる情報があ ります。これらの情報は

ALL_TABLES、 ALL_TAB_STATISTICSデ イクショナリビューなどから確認できます。

統計情報にはデフォルト値が定義されています。デフォルト値は固定値のものと、デー

タ状況により変動する値があることに注意してください。

実際の表や索引にはさまざまな定義、データがあります。そのため、デフォルト値はあ

くまで仮の値であると認識しておきましょう。表、索引に限らず、統計情報のデフォルト

値は基本的に使用せず、実際のデータをもとに統計情報を収集するようにしましょう。

表 3:表の主要な統計情報

楔霙索引統計

索引の主要な統計情報 として、表 4に 挙げる情報があ ります。これらの情報は

ALL_INDEXES、 ALL_IND_STATISTICSデ イクショナリビューなどから確認できます。

表 4:索引の主張な統計情報

N∪ M ROヽA′S ブロック数× (ブロックサイズ
ー24)/100行

表の行数です。行数が多ければ、大

きい表ということになり、全表スキャ

ンよりも索引スキャンが採用されやす

くなるでしょう。また結合順序にも影

響します

1行あたりの平均サイズです AVG ROヽへ′LEN 20ノ イヽト

HWMまでのブロック数です BLOCKS 実際のブロック数

索引のブロック数です LEAF BLOCKS 25

BLEVELBツリー索引の高さを表わします。高さが高い
と、リーフブロックまでたどるブロック数が増

えるため、索引スキャンのコストが増加します

索引列データの表での分散度合いを表わします CLUSTERING FACTOR 800

デフォルト値概要

統計情報 概要 ディクショナリ列 デフォルト値

|

|

(71

クラスタリングファクタとは、索引を作成した列のデータが、実際の表ヘアクセスする

ときの分布度合いを表わしています。この値が大きければ大きいほど、索引を作成した列

のデータが表全体へまんべんなく分布していることを意味します。

クラスタリングファクタは、インデックス値の最小値から最大値まで走査しながら、隣

り合うインデックス値の指し示す表ブロックが同一の場合はカウントアップせずに、異な

る場合にカウントアップして走査することで算出します。

例えば、図11でクラスタリングファクタの算出方法を考えて見ましよう。索引Aでは、

インデックス値 4と 5、 8と 9、 cと dの間で表ブロックが異なるため、クラスタリングファ

クタは3と算出されます。一方、索引Bのクラスタリングファクタは索引 A、 表Aと同

様のデータを保持しているにもかかわらず、クラスタリングファクタはかなり大きくなり

ます (図 11の例では13になるはずです)。

図11の例において、インデックス値 1から4に、索引を使用してアクセスする場合の

アクセスブロック数を考えてみましょう。

クラスタリングフアクタが大きい(3)場合、索引を使わずに表を直接スキャンするほうが
アクセスブロック数が少なく、効率的

図 11:ク ラスタリングフアクタ

索引Aの場合、索引Aで 2ブロック、表Aで 1ブロックの計4プロックアクセスで

済みますが、索引Bの場合は、索引アクセスは同じ2ブロックでも表Bに対して4プロッ

クアクセスせねばならず、計6ブロックアクセスとなります (図 11の中の色が付いている

ブロックにアクセスします)。 この場合、索引を使わずに表 Bに直接アクセスしたほうが

アクセスブロック数という意味では効率的です。

つまり、クラスタリングファクタが大きく、実際の表でのデータが分散している状況では、

索引スキャンよりも表スキャンを選択するほうが効率的なケースが多くなりやすいと言え

索引A

「「

7…
/ノ /
単

//
//
¬ 可

b d f

1～4にアクセス
索引A:2ブ ロック
表A :4ブロック

72

索引B

>くク■≫くつく

るでしょう。

自身でチューニングを行なう場合、クラスタリングファクタまで考慮することは少ない

ですが、Oracleの オプテイマイザはこのような物理格納状況まで含めて実行計画を検討

していることを知っておきましょう。

夢♭列統計
列の主要な統計情報として表 5に挙げる情報があります。これらの情報は

ALL_TAB COL_STATISTICSデ イクシヨナリビューなどから確認できます。

表 5:列の主要な統計情報

遭iい ヒストグラム
ヒストグラムは、列データの分布状況の統計情報です。ヒストグラムを使用することに

より、表のセレクティビティのコスト見積もり精度を高めることができます。均一でない

データ配分が存在する場合は、有効な情報になります。ヒストグラムには頻度分布ヒスト

グラムと高さ調整ヒストグラムの2種類が存在します。

明示的にヒストグラムの種類を指定して統計情報を取得するのではなく、列内の個別

値数と取得時に指定するヒストグラムのバケット数により、どちらのヒストグラムで取得

されるかが決定します。

>①頻度分布ヒス トグラム

列内の個別値がバケット数以下の場合に、それぞれの値が何行あるのかを正確に把握

できます (図 12)。

翻
墨
綱
リ

カーディナリティ/
32

列内の値の種類を表わします。NDV(Number
of Distinct Value)と 呼ぶこともあります。

NDVが大きいほど、条件で絞り込める可能性が
高くなります。すなわち索引スキャンが有効に

なりやすくなります

N∪M_DISTINCT

N∪ M NULLS 0列内の N∪ LL値の数です

列データの分布状況の統計情報です。ALL_
TAB_HISTOGRAMSディクショナリビューで
詳細を確認できます

:..・ ■ 概要 ディクショナリ列 デフォルト値

′
"ぅヽ′0

□□日日回□□鱚

バケッ

12件のデータ(個別値 4種類)

□□回回回□□□□回巨]匡コ
国

tル
全体を4つのバケットに分割した場合

列の値それぞれが 1つのパケットに対応します。

個別値の数が指定されたバケット数以下であれば、頻度分布ヒストグラムが生成されます。
それぞれの個別値が正確に何行あるかを把握できます。

図 12:頻度分布ヒストグラム

>②高さ調整ヒストグラム

列内の個別値がバケット数より多い場合に、指定バケット内に列値を均等に配置して、

ポピュラ値をもとに偏りを把握できます (図 13)。

12件のデータ

□□回回回□□□国□ [コ圧コ
つのバケットに分割

バケット内の最大値が同じ値の場合を、ポピュラ値と言います。
この例では、1が2つのパケット内の最大値を示しているので、1がポピュラ値です。
4つのパケットに分割しているので、1バケットは全体の25%を表わしています。
ゆえに、1は全体の50%(2バケット)に分布しているとオプティマイザは判断します。

図 13:高さ調整ヒストグラム

颯)システム統計
システム統計は、オプティマイザに対してシステムのハードウェア特性 (1/0と CPU
のパフォーマンスおよび使用率など)を もとにコスト算出を最適化するためのインプット

情報です。通常のSQLチューニングではここまで意識することは少ないかと思いますが、

簡単に説明しておきます。

システム統計の収集方法にはNOWORKLOAD統計とWORKLOAD統計の 2つのオ
プションがあります。

□ 隕 回回 □ □ □ □

74

>① NOWORKLOAD統計
インスタンス起動時にデータベースに対して、アクティビティがない状況の情報です。

インスタンス起動時にsys.aux_statsS内 に値が存在しない場合に取得されます (表 6)。

表 6:NOWORKLOAD統 計

レ② WORKLOAD統計
コストをより有効に利用するために、明示的にシステム統計を取得すると、オプテイ

マイザのコスト算出精度が向上します。統計情報を収集するときに、負荷特性を考慮し、

オンライン時間帯とバッチ時間帯などの負荷の質が異なる時間帯で別々に取得して、負荷

特性を考慮したコスト算出により最適な実行計画を生成することができます (表 7)。

表 フ :WORKLOAD統 計

システム統計のWORKLOAD統計を正しく取得することで、オプティマイザがコスト

を見積もるときに、処理完了までの所要時間という観点から最適化を行ないます。また、

データベースに対するワークロードを考慮した最適化を行なうことができます。

《
紹
＝》

インスタンス起動時のCPU速度 (MHz)

ディスクシーク時間+ディスク回転遅延時間十OSオーバーヘッド時間 (ミリ秒)

]ブロックの平均転送速度

■■目■■
■

1ブロックのランダムリードの平均レスポンス時間 (ミ リ秒)

複数ブロックのシーケンシャルリードの平均レスポンス時間 (ミ リ秒)

1秒あたりの平均サイクル数 (MHz)

マルチブロックリード時の 1回あたりの平均読み込みブロック数

1/0サブシステムが提供可能な最大 1/0スループット (bytes/sec)

1/0スレーブ単位での平均 1/0スループット (bytes/sec)

(75

調整不足のため

りません。 ・

輻ゝ 統計情報の修正

統計情報の修正はDBMS_STATSパッケージを使用します。統計情報は実行計画に

大きな影響を与えるインプット情報であるため、再収集によりSQLパフォーマンスが大

きく向上される可能性がある反面、逆の状況になるケースがないとも言えません。統計情

報を再収集した場合には、関連するSQLの実行計画やパフォーマンスを確認することを

お勧めします。

■・

ィマイ

ておく

オプテ

ザは実行計画を生成する| にアク

るための実行計画を生成してし てしまつてはセスす

本末転倒ですね。そのため、 を保存しておきて

フヾ

キャン

設定できな

ヽ

76

:`・

・なお、

続計情報をどうしてもがあります。.しかし、

1本来は、統計
′1■,

実行計画の確認が必要になるケースとは?

ここまで非定型的なSQLチューニングの流れと、その最初のステップであるオプテイ

マイザヘのインプット情報の扱いについて以下のことを説明しました。

くステップ 1のまとめ>
鑢 SQLチューニングの肝は「実行計画」である
o「実行計画」はコストベースオプティマイザにより生成されている

o コストベースオプティマイザの入力情報
ゆ 入力情報をどう改善するのか

基本的にチューニングは、オプテイマイザに与えるインプット情報を修正するのが簡単

ですが、適切な統計情報の収集が困難な場合や、データが用意できず、直接パフォーマ

ンスを確認できない場合には、オプテイマイザが生成した実行計画が妥当であるのかを

確認しなければならないケースも出てきます。

そこで、ここではステップ 2と して、以下を目標に説明していきます。

くステップ 2のポイン ト>

藍 自分で実行計画の妥当性を判断できるようになる
。 自分で適切な実行計画を作成できるようになる

チューニングの進め方は図 14のような流れになります。

N0YES

N0 YES

N0YES

図 14:チューニングの進め方

(77

靡)実行計画の妥当性を判断できるようになるために

実行計画の妥当性は、定型的に判断できるものではありません。しかし、以下のような

要素に分解すると、ある程度は定型的な知識に落とし込むことができます。

饉 実行計画の読み方
苺 実行計画のどのポイントに着目して検討を行なうべきか
颯 着目したポイントに対する妥当性判断の指針

つまり、実行計画を正しく読むことができ、重点的に確認すべきポイントを的確に捉え

られること。そして、そのポイントに対して何が良いのかの判断指針を知っていることが

重要になります。

それでは、実際の実行計画の例を見ながら、実行計画を読むためのポイントを見てい

きましょう。

漑)実行計画の表示例

LISTlの SQL文を実行した場合を例に説明します。この例は、部署名が
lRESEARCHi

の社員の名前を、社員番号順にEMP表とDEPT表から取得するSQL文です。

LIST]:実行 した SQL文

Oracle Enterprise Manager(以 下、EM)を使用すると、実行計画を容易にかつグラフイ

カルに確認できます。図 15、 図 16は、Oracle Database llg Rlの EMにて表示した表
形式、グラフ形式の実行計画です。

また、SQL・Plusの AUTOTRACE機能を使用した例をLiS丁2に示します。主な情報
の意味を表 8に挙げておきます。

・
一
●

・
●
・　
　
．
●

実行計画の読み方

7
＼
'8)

´ /ノ

，．．・■
一
，

薇盟
“
ｖ

l昴 くくg翌ノ啄主主|リ
｀ヽ
ヽ
ゝ、、

ライ

K/

耀くQヨ菫正至E)
‐`
・ ■`.´ヽ
ヽ
ヽ

/〆

1凩
客嬌.′ 筆

繊参

_ =鴨… /~…‐`―・‐.‐―`・

0憂⊃

繍
翼》L

'i\E\iO*^A-i2h-lr-a I

図 15:EMで表示した実行計画

図 16:EMで表示した性能統計情報

■
'

鐘 艶 ―タタ:工^_____
Sユ:時間(秒)■62
■お0し時間(秒)0.00.珈
崎固0)●
“
知鰊

茎勲
=辮
敗

i令轍 11F雌
「

最新ロ

擁 計

__.二 ,

②EMP表べの索引レンジスキャン 標現・奎笥

(79

LIST2:SQL*Plusの AUTOTRACE機能で表示した実行計画

表 8:実行計画の主な情報の意味

オペレーション ID

操作 Operation オペレーシヨン内容

オブジェクト Name オペレーシヨン対象のオブジェクト名

順序 オペレーションの実行順序

行/バイト Fows,/Bytes 該当オペレーションでアクセスされる行数/バイト数
コスト Cost 該当オペレーシヨンに対するオブテイマイザのコスト評価値

CPU(96) 該当オペレーシヨンに要する CPU時間割合
時間 Time 該当オペレーシヨンに要する時間

問い合わせブロック名
/オブジエクトの別名

問い合わせ内のブロックことの名称やオブジェクトの別名。
副問い合わせを使用した SQL文で有用になる場合あり

述語/フィルタ Predicate lnformation 該当オペレーションで適用された条件句など

SO■ > Oget=enane _ .

実行計画. _ ・

plぬ haSh ml“ :'125606937

I ro | operatron

SELECT STATEMENT

SORT ORDER BY

NESTED LOOPS

NESTED LOOPS

TABLE ACCESS EULL

INDEX RANGE SCAN

TABLE ACCESS BY INDEX ROI,[I]

I tlame I Rows J Bytes i Cosr {?CpU) | Time
I

融
．師

０

■

２

３

．４

５

６

DEPT_

(20)

(20)

(0)

(0)

|(0)

(0)

00:00101

00:00:01

00:00:01

00:00:01
00_:00101

00:.00:01

PFedicate lnfOrmatュ 。. (ldent.fied by operation ld):

4 - f■ lter(■ D il.|'DNノ MヽE Il=:RESEARCHI)
‐

5 - aCcess(ll E I:.'lDEPTNO'1=liD ll.liDEPTNOll) .

統計

recu、 .撼 c:1ls

db block gets
consistent gets
physical reads
redo size
bytes sent via SQL*Net to client
byLes received via SoLtNet from clienL
SoL*Net roundrrips Lo/from cIien[
sorts (memory)

sorts (disk)
rows processed

匈

Ю

５

ｏ

ｏ

■

力

２

ｌ

ｏ

３

EM SQL*plus 言味

ｎ
ｖ
６
０

機能を使用する場合は、「|

その

で、 ア
~

す。異 な

ど

に れ ますど 実行

「recursive calls」 の値力゙i女:定

確認する際

とは

スセ ツク たブロし ク数や

チューニング結果を評価す

データが正当でないと評価

婢♭実行計画を読むためのルール

実行計画はツリー構造で表わされており、基本的には以下のシンプルなルールで読む

ことができます。

o インデントで整形されたツリー構造になっている
。 ツリー構造の深いオペレーションから実行される
。 同一のレベルであれば、上に表示されているものから
。 結合方法の次のレベルに結合対象の表が表示される (結合操作ありの場合)

つまり、このSQL文は、実際には次のような方法で結果を取得していることが分かり

ます。

① DEP丁 表に対してフルスキャンを行なっており、EMP表に対しては索引 EMP_lX2を

使用した索引スキャンが行なわれている

② DEP丁表とEMP表はネステッドループ結合で結合されている

③ 結合順序はDEP丁 表から先にアクセスし、EMP表を結合している

④最後にソート処理が行なわれている

また、実行計画のオペレーションごとに適用された絞込条件も表示されます。図 15内

の「述語」「フィルタ」カラムから、次の情報が読み取れます。

再帰 SQL文は

ります。

回数が異なると、

(81

⑤ DEPT表に対するフルスキャンの際に、「‖D・ .・ DNAME‖ =lRESERCHl」 が適用されて
いる

⑥ EMP表に対する索引スキャンの際に、「lEΨDEPTNO・ =‖ D・.'DEPTNO‖」が適用され
ている

さて、上記の実行計画のどの部分で妥当性の判断をする必要があるのでしょうか ?

基本的な判断ポイントにはデータアクセス方法、結合方法、結合順序の3つがあります

(図 17)。

漕[♭ データアクセス方法
LISTlの SQLでは、DEPT表には表全体にアクセスするフルスキャンが行なわれてい

たのに対し、EMP表は索引を使用してアクセスしています。このように、表スキャンが
良いか、索引スキャンが良いかなど、表へのアクセスの方法についての妥当性を判断す

る必要があります。

される

な簡単な

実行計画の判断ポイント

つ
‘
６
０

79ページの図15は、Oracle Database llヨ

79ページの図 16は実行統計を表わします。

手順でたどり着けます。

① へと進む

② をクリック

③

EM (Database Console)

Enterprise Manager (EM)
SQLごとの実行統計と実行計画を、

カルに確認できます。

(EM編)

洟ゝ 結合方法

表を結合する際の方法も判断ポイントになります。Oracleではネステッドループ結合、

ハッシュ結合、ソートマージ結合の3種類の結合方法が用意されていますが、いずれの

方法で結合するべきでしようか。その妥当性も検討します。

郎♭結合順序

表を結合する順序も重要です。いずれの表から結合するかによってパフォーマンスが

大きく変わります。結合する表数が多くなればなるほど、結合順序のパターンは増加しま

すが、どのような順序で結合するべきかも検討することになります。

そのほか、不要なソート処理が行なわれていないかなど、確認するべきポイントはいく

つかありますが、基本的には上記の「アクセス方法」「結合方法」「結合順序」3点について

検討する必要があります。

Execution Plan

O SELECT ENT Optimizer=CH00SE(Cost=5 Card=14Bメ es=392)
l HASH JOIN(Cost=5 Card=14 Bytes=392)
2 TABLE ACCESS(FULL)OF:DEPT'(Cost=2 Card=4 Bytes=44)
3 ■ABLE ACCESS(FULL〕 OF:EMP:(Cost=2 Card=14 Bytes=23o

データアクセス方法

表結合方法

表結合順序

EMP表へののアクセスはフルスキャンで良いかつ

2つの表を結合するには八ッシュ結合が最適かつ

DEPT表を先に読むのは適切か
'

〉

餅

〉
図 17:実行計画の判断ポイントは3つ

跛♭データアクセス方法の種類
それでは、実行計画の妥当性を判断する要素の1つであるデータアクセス方法につい

て、データヘのアクセス方法の種類や妥当性を判断するには何を考慮すべきかを解説し

ます。さっそく見ていきましょう。

データアクセス方法の判断指針

表結合方法

(83

データアクセス方法の要素には、基本的に次の 2つがあります。

① 表を直接参照する

② 索引を利用して参照する

①は、データが入っている表のブロックすべてにアクセスして、データを取得する方法

です。②は、索引を使用して索引から該当する表ブロックにアクセスする方法です (索引

列のみを参照する場合は、索引アクセスだけで完結します)。

SQLチューニングを難しく考えて (思って)いる方もいるかもしれませんが、最終的に

はデータを取得する方法は、この 2つ しかないのです。2つ しかないと思えば、少しは気

が楽ですね。この2つのデータアクセス方法から選択する際は、どのような点に考慮して

判断するのかをきちんと理解してください。索引を利用して参照する方法は、索引の使い

方によってさらに細かいパターンがあります (図 18)。 詳細は、後述する索引のスキャン

の箇所で詳細に説明します。

献♭表のスキャン

まず、表を直接参照するパターンです。この場合、表の全データを読むことになるため、

「表フルスキャン」とも呼ばれます。表フルスキャンの特徴については既に説明している

ので、ここでは処理の全体の流れを図示するに留めます (図 19)。 表を直接参照するパター

ンが、どのように実行計画で表示されるかを理解してください (図 20)。

く表フルスキャン (TABLE ACCESS FULL)>
饉 HWM(High Wder Mark)までの全ブロックを読み込む
爾 表がパーティション化されている場合、一部のツールでは「TABLE ACCESS FUL口

江
Ｐ
ア
　

ー
ユ
ニ
■
■
目
Ｆ
Ｆ
Ｉ

図 18:データアクセス方法は 2種類

841

となっていても表全体にアクセスするとは限らず、特定のパーティションのみにアク

セスしている可能性がある

SQL――――)

結果
…
……

＾
ｕ
昴
鋼
〉

瑕 吻隕 隕
表

ロ データブロック(使用中、SELECT対象データあり)
匡lデータブロック(使用中、SELECT対象データなし)
圏 データブロック(HWM以後、未使用)

図 19:表フルスキ ャンの処理イメージ

≦ユヨ戯目.:ヽこ:._1 :ξl警 :|:1
鐵

:‡麟腱l… ._ SQL
図 201表 フルスキ ヤンの実行計画例

85

サーバープロセス

・読み込んだブロックは

パッファキャッシュに残

されない場合が多い

一度に複数のブ
ロジ|ケのディス
ク読|み1込|みが可
能:加えば、実際
には72ブロック
アクセスする場

合でも、1/0回数

は9回で済むこ
ともある―■■‐_■

実際に必要なデータ

が含まれていなくて

も、日WMまですべて
のブロックに対して
アクセスする

⑬♭索引のスキャン
索引を利用してデータヘアクセスするパターンは、索引の使われ方によっていくつか存

在します。図21を見ながら、さまざまな索引を利用したアクセスパターンを想像してく

ださい。また、各アクセスパターンがどのように実行計画で表現されているかを理解して

ください。

次に、索引を利用してデータヘアクセスするパターンの例を5つ挙げます。

SQL――……●

結果← ―…

ックのアドレス

図 21:索 引スキャン

>①索引のレンジスキャン (lNDEX RANGE SCAN)
索引のレンジスキャンは、SQLの条件で範囲選択されるような場合に使用されます。

ルートやブランチブロックから、選択範囲内のリーフブロックを検索します (図 22)。 該

当するリーフブロック内のROWIDを もとに実際の表データを参照します。SQLが索引

列のみを必要としている場合は、表データヘの参照は行なわれず、リーフブロック内に格

納されているデータから値を返します。また、索引には索引列はソートして格納されてい

るため、索引を使用してORDER BY句を満たせる場合は、ソート処理を回避することも

可能です (図 23)。

N:キー値
dataN:デ ータ
dbaN:データブロ
「owidN:ROWlD

索引

表ブロック

表

Bツリー索引はブロック
がツリー構造に連なる

リーフブロック内のキー
_値の前後のキー値を格納
|しているリーフブロック
のアドレスを持つていう●

86リ

:NDEX RANGE SCAN

」キー値の範囲でリーフ・ブロックをスキャンして条件に該当する

複数エントリを返す。

図22:索引のレンジスキヤンの処理イメージ

図23:索引スキヤンの実行計画①

>②索引の一意スキャン (lNDEX UN:QUE SCAN)
索引の一意スキャンは、SQLの条件で単一の値が選択されるような場合 (列が等価条

件で指定されている)に使用されます (図 24)。

単一の値が選択される条件としては、該当する表の列に対してunique制約、または

primどy key制約が存在する必要があります。ルートやブランチブロックから単一値の範

囲内のリーフブロックを検索します。該当するリーフブロック内の1つのROWIDをもと

に実際の表データを参照します。SQLが索引列のみを必要としている場合は、表データ

ヘの参照は行なわれず、リーフブロック内に格納されているデータから値を返します (図

25)。

翻
ＱＬ

繭
醐臨

root

Bl B2

■11 L12 r-re | | r-ar L22

７
′
６
０

root

Bl

Ll l L12 L13 L21 L22

INDEX UNIQUE SCAN

図25:索引スキャンの実行計画②

>③索引のフルスキャン (lNDEX FULL SCAN)

索引のフルスキャンは、SQLの条件で索引列の値が選択されている必要はありません。

索引のフルスキャンが選択される条件としては、SQLで参照される列がすべて索引に含

まれている場合、かつ少なくとも索引列の 1つにNOT MLL制約が付いている場合です。
このアクセス方法が選択されるのは、索引列のみの参照でソート処理が必要な場合です。

表データをフルスキャンしてソートするのではなく、ツート済みの索引をフルスキャンす

ることで、ソート処理が回避できます。ルートやブランチブロックから、リーフブロック

全体を検索します。注意点は、索引の全プロックがシーケンシャルアクセスされる (1/0

に1プロックずつ読み込まれる)点です (図 26)。

亭条件に該当する1エントリを返す。

=UNIQUE索 引の列に対して、等価条件を使用している場合のみに出力さ
れるオペレーションである。

図24:索引の一意スキャンの処理イメージ

88)

root

Bl B2

■11 L12 r-re | | r-ar L22

lNDEX FULL SCAN

`.リーフブロックをフルスキャンして、条件に該当するエントリを返す。
ilリンク順にスキャンするため、キー値でソートされた順にエントリを返す。
■返された値がソートされているため、その後のソート処理を省略できる
場合がある。

図26:索引のフルスキャンの処理イメージ

>④索引の高速フルスキャン (INDEX FAST FULL SCAN)
索引の高速フルスキャンは、SQLの条件で索引列の値が選択されている必要はありま

せん。索引の高速フルスキャンが選択される条件としては、SQLで参照される列がすべ

て索引に含まれており、かつ少なくとも索引列の 1つにNOT NULL制約が付いている

場合です。これは、索引のフルスキャンと同じ条件です。索引のフルスキャンとの違いは、

ソート処理の有無です。索引のフルスキャンは、索引の構造を利用したソート処理の回避

が可能ですが、索引の高速フルスキャンは、ソート処理の回避ができません。SQLの要

件により、索引の高速フルスキャンが可能であるか否かを判断する必要があります。

では、なぜ索引の高速フルスキャンではソート処理が回避できないのでしょうか。そ

れは、索引プロックをマルチブロックで読み込むため、取得されるデータを索引キーで

並べられないからです。マルチブロックアクセスかつパラレル処理も可能なので、索引

のフルスキャンよりも高速です。また、表のブロックよりも索引のブロック数が少ない場

合 (一般的には索引ブロックのほうが少ない)は、表のフルスキャンよりも高速になりま

す (図 27)。

89

セグメントヘッダ

root

Ll l

Bl

L22

B2

INDEX FAST
FULL SCAN

・ ツリー構造を意識せずに、セグメントヘッダから順にブロックをフル
スキャンするため、返ってくる値はソートされない。
マルチブロックリードやバラレル実行を行なうことができる。

図27:索引の高速フルスキャンの処理イメージ

>⑤索引のスキップスキャン (lNDEX SK:P SCAN)

索引のスキップスキャンは、複数列で作成された索引が、SQLの条件で索引列の第 1

列が指定されていない場合でも索引スキャンを行なうことができます。内部的には、第 1

列の値をもとに論理的な副索引を作成して索引スキャンを可能にします。第 1列の値をも

とに副索引が作成されるため、第1列の値の個別値が非常に少ない場合に有効に動作し

ます。また、索引数を減らすことで、表データの更新処理を効率化することも可能です。

表のフルスキャンより索引のスキップスキャンのほうが効率が良いかどうか判断基準とな

ります。または、新たに索引を作成すべきかも判断する必要があります (図 28)。

INDEX SKiP SCAN

・ 複合索引の第1列目に対する条件指定がなく、2列目以降の列に対して条件
指定があつた場合に採用される可能性がある。

=INDEX RANGE SCANと 比較すると、効率が悪いオペレーションである。

図 28:索引のスキ ップスキ ャンの処理イメージ

閻♭そのほかのデータアクセス方法

root

Bl

Lll L13 L21

そのほかのデータアクセス方法として、ROWIDス キャンも挙げておきましょう。

L21

9o)

ROWIDス キャンは、索引からROWID情報を取得して、ROWIDをもとに表データにア

クセスして該当データを取得するなどの第 2ステップとして内部的に使用されます。SQL

の条件として、ROWII)を指定して該当データを取得することも可能です。

ROWIDは、データが格納されている場所を表わす内部表現です。ROWIDはデータ

が格納されている場所をもとにデータアクセスできるため、単一行を取得するのに最も高

速な方法です。実行計画上は「TABLE ACCESS BY USER ROWID」 と表示されます。

50b何をもつて判断するのか?
ここまでの説明で、どのようなデータアクセス方法があり、そのデータアクセス方法は

どのようなものかを理解していただけたと思います。それらのデータアクセス方法のどれ

を選択するかが、SQLチ ューニングを行なううえで非常に重要です。ここからは、デー

タアクセス方法を選択するうえで、どのような点を考慮すべきかについて説明します。

SQLチューニングを行なう過程で、実行計画の妥当性を判断するときに一番重要な要

素は、実行計画を変更することで、SQLによるデータの取得を最小のプロックアクセス

で行なえるようにすることです。

これは、データアクセス方法を判断する指針ではなく、SQLチューニング指針と言え

ますが、非常に重要です。データアクセス方法を判断する指針も、SQLチューニング指

針と同様の前提で判断を行ないます。

チューニング対象のSQLが表全体からどのくらいの割合でヒットするのか、そのSQL

の条件で指定された値は、列の個別値がどのような状態であるのかなどによって、どのよ

うなデータアクセス方法にすべきかどうかを検討します。また、実行計画の妥当性を判断

するうえでさらに重要な要素として、システムリソースの使用状況やOracleのキャッシュ

効率などのインスタンス全体も意識して考慮できるとベストです。

SQLで参照する表のデータ変動が今後どのように推移するのかによっても、データア

クセス方法の妥当性を検討します。極端な例ですが、データベースバッファが枯渇して

いて、索引のレンジスキャンの範囲が非常に広く、かつ今後その選択範囲のデータ量が

増加傾向にあるような場合を考えてみましょう。表のフルスキャンヘ実行計画を変化させ

ると、SQLレスポンスは若干増加します。この場合は、1/0効率 (表のフルスキャンはマ

ルチブロックアクセスのため)の良いデータアクセスを選択することになるので、性能の

安定度を高められます。ただし、通常は逆にデータ量が増えて、選択範囲の量がそれほ

ど変わらないケースのほうが多いでしよう。この場合は索引スキャンを選択するべきです。

既存のオブジェクトの構成だけで判断するのではなく、必要な列へ索引を作成して索

引スキャンさせることも検討すべきです。索引を追加する場合は、索引を作成する対象

/｀

(91

表を参照するSELECT文の実行計画が変動することによるレスポンス低下や、更新処理

のレスポンス低下を確認する必要があります。

>セ レクティビティとカーディナリティ

データアクセス方法をはじめ、実行計画の妥当性を判断するうえで非常に重要な要素

であるセレクティビティについても解説しておきます。

セレクティビティとは、SQLの条件や条件の組み合わせにヒットする行の割合を示す

ものです (図 29)。 オプティマイザも実行計画を生成する際にセレクティビティを考慮し

ます。データアクセス方法や、表の結合方法、結合順をどのように行なえば最適である

かを判断するために使用されます。データアクセス方法を例に示すと、次のように判断さ

れます。

セレクティビティが高い→表のフルスキャンのほうが効率的

セレクティビティが低い→索引スキヤンのほうが効率的

“
セレクティビティ(選択率)=条件を適用した結果の行数/全体の行数
…計算方法は、ヒストグラム(※)の有無により異なる

算出方法の例 (ヒストグラムが存在しない場合)

※データの分布統計情報。ヒストグラムを取得している場合、CBOはヒストグラムをもとにセレクティビティを算出する。
※SQL文にバインド変数が使用されている場合は、バインドピーク機能の有無とヒストグラムの有無でセレクティビティの算
出方法が変わる。

図 29:セ レクティビティとは

簡単な例として、性別の列の個別値数 (NDV)を 2(「女性」と「男性」の2種類)とすると、

「女性」という値の行のセレクテイビテイは 1/2と なり、セレクティビティが高いと判断し

ます (図 30)。 ここで、ヒストグラムと何が違うの?と疑間に思った方は鋭いですね。セ

レクティビティは、SQLの条件で指定された列にヒストグラムが存在すれば、データの

分布状態が分かるため、ヒストグラムからセレクティビティを算出します。ヒストグラム

が存在しない場合は、列のNDVを使用して、一様に分布していると仮定してセレクテイ
ビティを算出します。ヒストグラムが存在していれば、条件で指定された行がデータに対

1/NDV
Number of Distinct Value(列 に含まれる値の種類)

データが一様に分布していると仮定するので等価条件のセレクティビティは

1/NDVとして計算される。

(HIVAL―X+1)/(HiVAL―LOWVAL+1)行

92

して、どの程度までヒットするのか正確に判断できるということです (図 31)。

例)SELECT*FROM customer WHERE性 :別=`男1生 '

性別列は、「男性」「女性」の2種類=NDVは 2。 SQLのセレクティビティは1/2として計算
される。

実際のデータでは男性の比率が10%だつたとしても50%の割合で条件にヒットすると予測
を立てて実行計画を算出する。

図 30:セ レクティビティの計算例

男性田中 隆二 関東

東北 女性井上 みき
関東 女性工藤 朋子

本井 美由紀 九州 女性

000005 日高 千尋 関東 女性

女性000006 齋藤 美佳 関東

関東 女性000007 若木 泉水
東北 女性000008 佐々木 千枝

000009 立花 真由 関西 女性

〕00010 宮原 希美 関東 女性

鍛
ｕ
風細
ｖ

中カーァィナリティ=表の行数×セレクティビティ

例)SELECT*FROM customer WHERE性 別=`男性 '

1万行の表

セレクティビティは1/2

1万×1/2=5000行

関東 男性田中 隆二
東北 女性井上 みき

工藤 朋子 関東 女性

000004 本井 美由紀 九州 女性

000005 日高 千尋 関東 女性

木村 あかね 関東 女性010000

図 31:カ ーディナリテ ィとは

複数の条件が指定された場合は?バインド変数で指定されていた場合は?と疑間に

思った方は、さらに鋭いですね。これら2つの疑間について説明しておきます。

000001
000002・ .・ |・

000003
000004

00000].・・

000002
000003

(93

①複数の条件が指定された場合のセレクティビテイは?

論理演算 (AND、 OR、 NO丁)を使用して、複数の条件が指定されている場合は、次の

表のように個々の条件のセレクティビティを合成し、全体のセレクティビティを決定

します。

表 9:複数の条件が指定された場合のセレクティビティの計算方法

Pl AND P2 Sl*S2

P10R P2 Sl+S2-(Sl*S2)

NOT Pl 1-Sl

② バインド変数で条件指定された場合のセレクティビティは ?

バインド変数で条件指定された場合のセレクティビティは、バインドピーク (バイン

ド変数内の値を先読みする)機能の有無で異なります。

苺 バインドビーク機能が有効な場合

SQLの解析 (ハードパース)時にセットされていた値でセレクティビティが算出され、

リテラル値で条件指定した場合と同じということになります。注意点は、その後にバ

インド変数値が異なるSQLで実行された場合も、ハードバース時に値で算出されたセ

レクティビティにより導き出された実行計画で実行されるという点です。ヒストグラム

が存在する場合は、ヒストグラムの値をもとにセレクティビティを算出します。

篠 バインドピーク機能が無効な場合

条件が等価条件で指定された場合は、1/NDVがセレクティビティとなります。

条件が等価条件以外で指定された場合は、0.05と 固定値がセレクティビティとなりま

す注1。

くセレクテイビテイとバインド変数の関係>
。 バインドピーク機能とは
・バインド変数内の値を先読みする

。 バインドピーク機能が有効な場合
・SQLの解析 (ハードバース)時にセットされた値で算出される
。ヒストグラムが存在する場合はヒストグラムの値をもとに算出される

。その後にバインド変数値が異なるSQLが実行されても、ハードバース時の値で算

出された実行計画が使われる

。 バインドピーク機能が無効な場合

94)

注1 ヒストグラムが存在してもバインドピーク機能が無効の場合は使用されません。

,| `|

Sl=条 件 Plのセレクティビティ S2=条 件 P2のセレクティビティ

・条件が等価条件で指定された場合、1/NDVがセレクティビティになる

・条件が等価以外で指定された場合、0.05の固定値がセレクティビティになる

・ヒストグラムが存在しても使用されない

レデータアクセス方法の判断指針

データアクセス方法の判断指針は以下のとおりです。

① セレクティビティをもとに表のフルスキャンか索引スキャンかを考察する

基本的には、CBOの動作と考察ポイントは同様です。セレクティビティが低ければ索

引スキャン、高ければ表のフルスキャンと判断し、SQLレスポンスを確認します。一

般的な目安として、読み込むブロック数が表全体の 10%未満 (小さい表では 15%)

の場合は索引スキャンが有利となり、それ以上の場合は表のフルスキャンのほうが効

率的であると言われます。

② 表のデータ量の増加傾向やSQLの選択範囲のバランスで考察する

これは、今後のデータ量やデータの質の変化で、選択率がどのように変化するかを事

前に確認し (実際のデータで確認できない場合は、現在の選択率を参考に推測する)、

長期的なSQLレスポンスの安定化を考慮します。

③ lつのSQLを最適化することだけを検討するのではなく、インスタンスや OSリ ソー

スなどのシステム全体の最適化も意識して考察する必要がある

④ 適当な索引がない場合は、索引の付与も検討する。ただし、その場合はほかの SQL

文への影響も調査する必要がある

ここまで、非定型的な SQLチューニング時における実行計画の妥当性を判断するため

に、データアクセス方法の判断指針について説明しました。

一般的なデータモデルで構築した場合は、複数の表を結合して結果を取得します。複

数の表を結合してデータを取得する場合は、データアクセス方法だけで実行計画の妥当

性を判断するのではなく、表の結合方法や結合順序についても妥当性を判断する必要が

あります。ここでは、複数の表を結合する場合に、実行計画の妥当性をどのように判断

すべきかに重点を置いて、次に挙げる目標をもとに説明していきます (図 32)。

鰺 自分で実行計画の妥当性を判断できるようになる
薔 自分で適切な実行計画を作成できるようになる

Ａ
愛
＝
》

表結合方法、順序の判断指針

95

図 32:チ ユーニングの進め方

櫃)実行計画の判断ポイント
これまでの復習も兼ねて、基本的な実行計画の判断ポイントである3つの要素を示し

ておきます。

>アクセス方法

表スキャンが良いか、索引スキャンが良いかなど、表へのアクセスの方法についての

妥当性を判断する必要があります。

>結合方法

表を結合する際の方法も判断ポイントになります。Oracleで はネステッドループ結合、

ハッシュ結合、ソートマージ結合の3種類の結合方法が用意されていますが、いずれの

方法で結合するべきであるか、その妥当性も検討します。

>結合順序

表を結合する順序も重要です。いずれの表から結合するかによって効率は大きく変わ

ります。結合する表数が多くなればなるほど、結合順序のパターンは増加し、どのような

順序で結合するべきかを検討することになります。

そのほかにも不要なソート処理が行なわれていないかなど、確認するべきポイントはあ

りますが、基本的には以上の3点について検討する必要があります。

オブテイマイザが生成した
実行計画は適切か

'

パフォーマンスを確認し、
妥当であればチューニング完了

96)

颯ゝ表の結合方法の種類

表の結合方法の要素には、基本的に次の 4つがあります。

① ネステッドループ結合

②ハッシュ結合

③ ソートマージ結合

④直積結合

一般的に業務で使用しているSQLは、1つの表にアクセスしてデータを取得するので

はなく、論理設計に基づいた各表のリレーションシップに沿って、複数の表を結合してデー

タを取得することがほとんどだと思います。SQLチューニングを考える場合は、単純に

論理設計に基づいてSQLを作成するだけではなく、結合される表がどのような結合方法

や結合順序で実行されるかを意識する必要があります。まず、どのような結合方法が存

在するのかを理解し、それぞれの結合方法の特徴を理解しましょう。それでは、各結合

方法の特徴を解説していきます。

レネステッドループ結合

ネステッドループ結合は、名前から想像されるようにループ処理をネスト(入れ子構造)

にして結合処理が行なわれます (図 33)。 プログラムを書いたことがある方なら、処理の

流れをイメージしやすいと思います。一般的に外部ループで参照される表は外部表、内

部ループで参照される表は内部表と呼ばれています。ネステッドループ結合処理のポイ

ントは、外部表で返された行数だけ内部表に対するループ処理が発生する点です。その

ため、外部表のことを駆動表と呼ぶ場合もあります。単純に処理回数だけを考慮すると、

外部表から返される行数が少なければ内部表に対するループ数が減るので、条件指定で

返される行数が少ない表を外部表に指定します。「カーデイナリテイが小さい表を外部表

に指定する」とも言い換えられます。

ネステッドループ結合は、実行計画上で図 34の ように表現されます。実際に業務で使

用しているSQLな どで確認してみてください。

C)NESTED L00PS
外部表

内部表

ぬ
ｕ
ぬ細
》

(97

wh‖ e{ 外部ループ
｀
l

外部表から絞り込み条件に合致する1行を取得する |
1行もなければループから抜ける

/′

´
高lF「嘔
~i~~‐ ~~~~~~~~~~~~~~~~‐ ~~‐

内部ループ
｀
、

内部表から絞り込み条件、結合条件に合致する1行を取得する
1 取得した行を結果として返す
1行もなければルー ける

図 33:ネステッドループ結合の処理概要

図 34:ネステッドループ結合の実行計画例

また、いくら外部表から戻される行数が少なくても、内部表を表の全件検索しなけれ

ばならないような場合には、パフオーマンスは悪くなります。内部表に対する絞り込み条

件と、外部表との結合条件で索引が効率的に使用されているかなどの内部表に対するデー

タアクセス方法も考慮する必要があります (図 35)。

98

SQL実行

ネステッドル●プ結合

外部表へのアクセス

行数だけ内部ル
ープが実行されるらすぐに結果として返される

ノ

動作概要

最゙初に外部表にアクセスする。

嗜外部表から戻された行数分、内部表にアクセスして条件に合致するデータを戻す。

ポイント

1.カーディナリティが小さい表を外部表とする

・外部表のカーディナリティが内部表の参照回数となる。

・実レコード件数ではなくカーディナリティが小さい表を外部表とする。

2.内部表のアクセス効率を上げる

・内部表の結合列に索引があると効率的。

・内部表の結合列に索引がないと、内部表の全件検索を繰り返すため効率が悪く

なる場合がある。

図35:ネステッドループ結合の動作概要とポイント

(99鳳```｀
ぬ

いケースも出てきます。

‐
が発生しますがt

‐
減らすことができるということです。

も考慮してoくと、

ある表ではデ‐夕の重複

結合表数の階乗分

(‐)。

OPTIMIZER=MAX=

1!

21 2

3!

4 4! 24
51 120
61 720
71 5040
81 40320

>ハッシュ結合
ハッシュ結合は、名前からは処理の動作が想像しにくいのではないでしょうか。しかし、

「ハッシュ値を使用して結合する」ということは想像はできたと思います。実際のハッシュ

結合の動作を図36に示します。

結果

SQL

′

」■|
′

‥

八ッシュ値 1 l, dataia \
八ッシュ値2 2,data2a
八ッシュ値21 2],data21 a

′ヽッシュ値20 20.data20a

1,datal a),<ataaa fpt. oatheta
5,data5a 3.data3a″ 12,dataヽPa

21 data2 1 b 12b 20,data20b
data5b 11.datal l b

11,datal l a

20,data20a

10.data1 0b

1,datal b

data3b

data2b

1

19.data1 9b

100

図36:八 ッシュ結合の処理概要

f 75\6&;$ L f z5\ 5 (t'd t"t.

_奉‐ハ

“

苛学く夕■ン数 ■
‐

′
′

プログラムを書いたことのある方は、連想配列 (ハ ッシュテーブル)を作成して、別の

データと条件に該当するデータを運想配列キーから取得する処理と表現すると想像しや

すいかもしれません。ハッシュ結合処理は、一方の表から結合キーをもとにメモリ内(PCA)

にハッシュテーブルを構築しますが、ハッシュテーブルがメモリ内に収まりきるかが重要

なポイントになります。ハッシュテーブルが PGA内に収まりきらない場合は、一時表領

域のTEMPフ ァイルを使用しながら他方の表との結合処理が行なわれます。他方の結合

キーによっては、TEMPフ ァイルに対するディスク1/0が発生するために、その分がオー

バーヘッドとなります。ハッシユ結合の場合も、先にカーディナリテイが小さい表から結

合されることを考慮します (図 37)。

実行計画上は、次のように表示されます (図 38)。 実際に業務で使用しているSQLな

どで確認してみてください。

O HASH JOIN
ハッシュテーブル対象表

他方の表

＾
鶏
員細
▼

1()1

HASH関数

表 1 表2

■
ス ・ ▲

■

躙
動作概要

■表1から抽出条件に合致する結果セットを返す。

'結果セットの結合キーをもとに八ッシュ表をPGA内に作成する。
彗表2から絞込条件に合致する結果セットを返す。
■結果セットの結合キーを順に八ッシュし、八ッシュ表と照らし合わせて結合条件に

該当する行を特定する。

ポイント

1.カーディナリティが小さいほうを先に処理する

・PGA上に作成される八ッシュ表が小さくなるため、結合処理が効率的になる。
2.一時表領域への1/0が発生する可能性がある
。人ッシュ表がメモリ内に収まらない場合、一時表領域を使用するため、ディスク

1/0の発生により性能が劣化しやすい。

・PCA_AGGREGATE_TARGETも しく|よHASH_AREA_SIZEを 考慮する。
3.等価条件でのみ使われる

・結合条件が等価結合でない(範囲指定)場合、八ッシュ結合1ま使われない。

4.アクセス方法は必すフルスキヤン

・八ッシュ結合の場合は、必ず表のフルスキャンもしくは索引のフルスキャンとな

る合がある。

図37:八 ッシュ結合の動作概要とポイント

図38:八 ッシュ結合の実行計画例

>ソー トマージ結合

ソートマージ結合は、名前からある程度は想像できると思います。実際のソートマージ

結合の動作を図 39、 図 40に示します。ソートマージ結合のポイントは、各表の結合キー

がソートされてPGA内に保持されることです。ソートに必要な領域がPGA内に収まり

きらない場合は、一時表領域のTEMPフ ァイルが使用されるため、ソートされた結合キー

同士をマージするときにデイスクフ0が発生し、その分がオーバーヘッドとなります。

結果

図39:ソートマージ結合の処理概要

(103

ソート ソート

表 1 表2

■
■

動作概要
―表1の結果セットを結合列でPGA内でソートする。
Ⅲ表2の結果セットを結合列でPCA内でソートする。
.'ソート処理はシリアルに実行される。

ルソート結果をPCA内でマージして結果を返す。

ポイント

1.一時表領域への1/0が発生する可能性がある
。ソート処理がメモリ内に収まらない場合、一時表領域を使用するため、ディスク
1/0の発生により性能が劣化しやすい。

・PGA_AGGREGATE_TARGETも しくはSORT_AREA_SiZEを 考慮する
2.表 1は一定条件でソート処理が回避できる(表2のソートは回避できない)
・表1は、結合列に索引が定義されNOT NULL制約が存在する場合、索引フル
スキャンを実行することでソート処理を回避できる。

・表2は、ソートを行いながら結合を進めるため、ソート処理は回避できない。

図 40:ソ ー トマージ結合の処理概要とポイン ト

前章のデータアクセス方法のときも少し触れましたが、取得する列に索引があり、

NOT NULL制 約が存在する場合は、索引のフルスキャンを行なうことでソート処理を回

避できます。ソートマージ結合の場合も、取得する列と結合キーに索引が存在する場合に、

ソート処理を回避することが可能です。実行計画例を図 41に挙げます。実際に業務で使

用しているSQLなどで確認してみてください。

図 41:ソートマージ結合の実行計画例

レ直積結合

直積結合は、名前そのままの処理となるのでイメージしやすいと思います。中学や高

校のときに習った直積集合と同じ考えです。結合条件が存在しない場合に、各表の行デー

タ同士を結び付ける処理になります (図 42)。

図42:直積結合の実行計画例

3表以上の結合が行なわれる際に、結合条件が存在する場合でも直積結合が選択され

ることもあります。直接の結合関係にない小さな表同士の直積結合を行ない、結合条件

のある一方の表と結合するような場合もありえます (図 43)。

DEPT.表をフルスキャンする。
EMP表をフルス|キャンすう●|
3.2の結果セットをソニトするょ
‐142と4の結果をマージ。

結果セット1 結果セット2

アクセス件数 量n件×m件

動作概要
呻結果セット1の全行と結果セット2の全行を直積(掛け算)する。

ポイント

・ 2つの行ソースに対する結合条件がない場合に直積が選択される。

・ 結合条件に漏れがないか確認する。

図43:直積結合の動作概要とポイント

赳♭表結合の判断指針

ここまでの説明で、どのような表の結合方法があり、その表の結合方法はどのような

ものなのかを理解できたと思います。それらの表結合方法のどれを選択するかが、SQL

チューニングを行なう際には非常に重要になります。ここからは、表の結合方法を選択す

るうえで、どのような点を考慮すべきかについて説明します。

>何をもつて判断するのか ?

SQLチューニングを行なう過程で、実行計画の妥当性を判断するときに一番重要な要

素は、実行計画を変更してSQL行なうデータの取得を最小のブロックアクセスでできる

ようにすることです。これは、データアクセス方法のところでも説明した内容です。

複数の表からデータを結合して、最終的に得たいデータを取得する場合も基本的には

同じ考えですが、表の結合方法の動作の違いによって、必要とするリソース (CPUやメ

モリなど)量は異なります。通常の業務処理は、さまざまなSQLが並列で実行されるため、

表の結合方法を判断するポイントとして、リソースの使用状況も考慮すべきです。

最近のシステムは、リソースに余裕があるシステムが多いのであまり考慮しませんが、

簡単な例を示してみます。例えば、ハッシュ結合やソートマージ結合の同時処理が大量

に実行される際に、PGAや物理メモリが圧迫されるような場合は、レスポンス要件内で

あれば、レスポンスは低下してもネステッドループ結合へあえて変更することで、リソー

ス使用面を改善するようなチューニングアプローチを検討することもあります。複数の

表からデータを取得する場合は、レスポンスのみを考慮するのではなく、全体に最適な

SQLチューニングを心がけることが大切です。また、並列して処理される処理も考慮して、

直積演算

106

リソース使用状況も確認すべきです。

露 大量のデータ同士を結合する必要がある場合は、ハッシュ結合かソートマージ結合を

検討する

基本はハッシュ結合を検討し、索引によリソート回避が可能、かつ索引列のみのデータ

取得などでデータアクセス方法としてもメリットがある場合は、ソートマージ結合も検討

します。

。 結合順序は、基本的にカーディナリティが小さい表から結合する

ネステッドループ結合やハッシュ結合を検討する場合は、カーデイナリテイが小さい表

から結合することで、レスポンスやリソース使用量が改善できます。

1つの SQLを最適化 (レスポンス改善)することだけを検討するのではなく、インス

タンスや OSリ ツースなどのシステム全体の最適化も意識して、結合方法を検討する

適当な索引がない場合は索引の付与も検討する。ただし、その場合はほかの SQL文

への影響も調査する必要がある

適切な索引を付与することで、ネステッドループ結合やソートマージ結合の処理が改

善する場合は、索引の付与を検討します。例えば、ネステッドループ結合時の内部表が

表のフルスキャンになっている場合などです。

蔭 データ量の変動やデータの質が変わった場合は、結合方法や結合順序の妥当性を再検
討する

通常、データの変動があったとしても統計情報が正しく取得されていれば、オプテイマ

イザが最適な結合方法、結合順序で実行計画を作成してくれます。しかし、統計情報を

固定化して運用している場合や、あるいはヒント句で結合方法、結合順序を固定化して

いる場合は、データ変動のタイミングで現在の結合方法、結合順序の妥当性を判断します。

107

>表結合方法、順序の判断指針

表の結合方法、順序の検討の例

ここからは、今まで紹介したデータアクセス方法や結合方法をもとに、実際に実行計

画を評価するためのノウハウを紹介していきます。

洟∋題材のSQL文

実際の実行計画の評価イメージをつかみやすいように、SQL文の具体例をもとに説明

していきます。

>SQL文と現状の実行計画
SQL文と仮に現状の実行計画が、LIS丁3、 図44の とおりだとします。

LIST3:チ ューニング対象の SQL文

108

図 44:現 状の実行計画

SELECT count. (*)
FROM tabl 11

, rab2 L2

, tab3 L3

, tab4 t4
, tabS t5

I4HERE t1.id = t2.id
AND t1.id = 13.id
AND L2. class = t5. class
AND t3 . class = t4. cfass
AND t4.fIag = Y'
AND t5.num = TO_NLTIvIBER(:b1)

AND L4.code = TO NLTMBER(:b2)
AND tl.start_dat; <= (TO_DATE(:b3, rlyylrmdd') + 1)
AND tl.end_dat.e > Io_DATE(:b3, 'yyyTmmdd')

>索引の定義、統計情報

実行計画を評価するためには、既存の索引の情報も重要になります (LIST4)。 また、

統計情報も明らかにしておきます (LiST6)。

LIST4:索 引定義

LIST5:表の統計情報

鱚奎現状の分析
>表の結合関係を明らかにする

表同士の結合関係を図示すると、実行計画の分析がやりやすくなります。図示する際

のコツは以下のとおりです。対象のSQLに関連する表の ER図を作成するイメージです

(図 45～ 48)。

TABLE=N訓 E INDEXll油 E‐‐|‐|10LⅧ N二 側ヽE■ ‐

TABl 1lD

■D′ END=DATE■ IЧ ,i甲、
Key

KIND

Prェ mary Key・T鳩l PK
TABl Ul

TAB2 PK ID, CI,ASS, ZONE Primary (eY
TAB2-I1 CLASS, ID

TAB2_I2 ID

TAB3_PK ID, CLASS, DEPTH Primary KeY

TAB3 11 CLASS, ID

TAB4_PK CODE Primary KeY

TAB4_T1 CLASS, CODE

TAB5 PK CLASS Primary KeY

TAB5 Ul DATA, CLASS, NUM Unigue KeY

TAB5_I1 NT,'['l, DATA

|,■r

・SCOTTI‐_ ABl
SCOTT TABl
SCOTT TABl
‐■‐ |

SCOTT TAB2
SCOTT TAB2

SCOTT TAB3
SCOTT TAB3

sCOTT T鳩 4
SC97T T趨 4
SCOTT TAB4

scOTT
SCOTT
TAB5

'il血
5

275

.275
・■275 1■‐|

. 282
‐‐282 ‐

‐

■7442 _.
17442 ‐

'34030■

.

834030
_834030

133

・ 11,

'・ ・■

電
　
　
　
　
　
　
　
　
　
　
　
　
　
　
．　

　

　

―
　

　

　

　

・

Ｍ

Ｅ
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
．

・‐‐‐‐Ｄ

一
ＡＴ

　

　

・

Ｔ

Ｄ

　

　

●
．　

Ｓ

　

・　

　

Ｓ

　

　

　

　

　

Ｓ

　

　

　

　

Ｓ

Ｄ

噸

ＮＤ

．　

　

Ｄ

」ＡＳ

　

　

Ｄ

鵬

　

．

ＯＤＥ

鵬

鶴

．　

　

側

・鵬

Ｉ

ヽ

Ｅ

　

一
ｌ

ｃ

・

ｃ

　

ｃ

Ｆ

ｃ

　

Ｎ

ｃ

273

４

●

　
　
０

●

０
　

一
２

３

もちろん慣れてくれば、毎回このような図を描く必要はありませんが、SQLチューニン

グが苦手な方や、複雑なSQL文のチューニングを行なう場合には図46のような図解が

威力を発揮します。

①表の結合関係をクリアにする

・SQL文、索引定義情報、統計情報
。WHERE句に含まれている列
・結合されている列同士の結合関係

・推移率

・セレクティビティとカーディナリティ

② 結合順序のスタートポイントを見つける

・どれくらい絞れるか

。絞り込める表 (ス タートポイント)は どれか

⑬ 登場するオブジェクトを抽出し、WHERE句の列を書き出す

TAB5

N」M=:bl
CLASS TAB2

ＩＤ

一

CLASS

TABl

ID

START_DATEく =:b3+1
END_DATE:>:b3

TAB4

QQDE=:b2
FLAG=`Y'
CLASS

TAB3
ＩＤ

一
CLASS

列名 索引の使用できる列

図45:ER図の作成手順①

11(〕

●結合列を結ぶ

図46:ER図の作成手順②

⑬ A=BかつB=Cであれば、A=Cである論理条件を見つける

図47:ER図の作成手順③

列名 索引の使用できる列
●――● 結合されている列

列名 索引の使用できる列
●――● 結合されている列

TAB5

TAB2
N∪ M=:bl
C!=墨 S●ヽヽ

⊇0ヽ
DCLASS｀｀ヽ、、L

TABl

D旦
START DATE<=:b3+1
END DATE>:b3

TAPE -,-
TAB4

IDげ
″

DCLASS

CODE=:b2 」″
FLA百 =`Y/
CLASS r

TAB5

TAB2
NUM=:bl
CL△ Ss●に、、_

TABl

DD
START DATE<=:b3+1
END DATE>:b3

TAB4

CODE=:b2
“`″FLAG=`Y'/

CLASS r

tlll

●カーディナリティとセレクティビティを整理する

TABl

START_DATEく=:b3+1
END DAT[>:b3

列名 索引の使用できる列
●―口● 結合されている列

図48:[R図 の作成手④

>結合順序のスタートポイントを明らかにする

実行計画がツリーで表わされていることからも分かるように、同時に複数の表を一度に

結合することはできません。つまり、表の結合は順序立てて実施していく必要があります。

結合順序のパターンは表数に依存します。例えば、2表だったら2とおり、3表だったら

6とおり、4表だったら24とおりと、結合する表数の階乗数分のパターンがあることは前

に述べたとおりです。

CBOのように機械的にいくつものパターンを評価できるのであれば、多くのパターンを

検証することも可能ですが、人手で評価する場合は、検証パターンはおのずと限られます。

そこで、次のようなルールをもとに結合順序を考慮すると良いでしょう。

懃 できるだけ少ない行に絞り込める表から結合を開始する

できる限り評価対象の行数を少なくしながら結合することで、その次の表と結合する際

の負荷が減ることを期待したルールです。例えば、100行が評価対象として残っている状

態で次の表と結合すると、1∞ 行すべてに対して、次の表との結合評価をしなくてはなり

ませんね。評価対象が 10行であれば、負荷が減ることは明らかです。

そこで、絞り込み条件を使用しながら、どの表から結合を開始するべきかをまず考え

rABs //
TAB2

NUM=:b1/
′Q菫墨£ヽ

ＩＤ

一

TAB3 -/
TAB4 り呈墨、、
FLAG='Y'
=ib2

_'l1413■

C:282/273=1

C:275/275=1
S:1/275 _C:133/]33=1_

S:1/133

C1275/5=55

C:カーディナリティ
Siセレクティビティ

ます。

例えば、TAB5では絞り込み条件「NUM=:bl」 により1行にまで絞り込めることが、

カーディナリティから分かります。逆に、TAB3では絞り込み条件が付いていないため、

TAB3か ら結合を開始した場合、TAB3の全件数分である17442行を評価しなくてはな

りません。この例では、結合順序のスタートポイントはTABl、 TAB4、 TAB5のいずれ

かが妥当であると言えるでしょう(図 49、 50)。

● どれくらい行が絞れるか考える

列名 索引の使用できる列

図 49:結合順序のスター トポイントを明らかにする①

＾
ｕ
轟
錮
ｖ

TAB4

C:83万/83万=l
Si1/83万

、TAB3

ID、

′亘l」虚 F｀ 、ヽ、ヽ

TABl

ART DATEく =:b3+1
END DATE>:b3

C:133/132=1
S:1/132

\TABs //
NUM =:bll

,CLASS . TAB2 ,T
l`D

′!型
=△
墨

/

(1 13

C:282/273=1
S:1/273

C:275/1=275
S:1/1

0絞り込める表(スタートポイント)の候補を出す

C:133/132=1
Si1/132

TAB5 /

C°
iウ

NUM=ib l
TAB2

Cl1 33/133=1
S:1/133

C:275/275=1
S:1/275

TAB
C:282/17=16.5
S:1/17

ART_DATE<=:b3+1
END DATE>:b3

T,

TAB4

C。
1つ

FLAC=

偏
=扇
勲

睦 :空空」
列名 索引の使用できる列
●――● 結合されている列

図 50:結合順序のスタートポイントを明らかにする②

>現状の実行計画の理解

図51は、LISTlの実行計画を先ほど作成した図り、50の表現に合わせて図解したも

のです。

C:282/273二 1
S:1/273

Ci275/1=275
S:1/1

TAB5

TAB2
NUM=:bl

TABl

ART DATEく =:b3+1
END DATE>:b3

TAB4

115

②

列名 索引の使用できる列
●→ 結合されている列

図51:現状の実行計画の理解

この実行計画では、TABlから結合が開始されています。TABlに対する絞り込み条

件は範囲検索になっています。TABlの件数は 275行ですので、範囲検索に与えられた

パラメータによっては、0行から275行までヒットすることになります。ここでは、仮に

X件ヒットしたとします。この X件が 275件すべてに近いのであれば、表のFULLスキャ

ンも妥当だと言えますが、表全体の 10%も 満たない場合は、索引のレンジスキャンとな

るように、ID、 END_DATE、 START_DATEカ ラムに対して、新しい索引を付与する

ことも検討します (ほかのアクセスパスについても、妥当性を確認してみてください)。

次に、ネステッドループ結合によりTAB2と 結合します。ネステッドループ結合の動

作を思い浮かべると、TABlの X行それぞれの ID列の値を使用して、TAB2に アクセ

スしていることが分かります。すなわち、TAB2の ID列で絞り込んでのアクセスが X回

行なわれていると言えます。TAB2の ID列 のカーディナリテイは 1であり、1行まで絞

り込めるため、TABlと TAB2を結合 した後に残っている評価対象は X行のままです

(図 52)。

C:133/132=;
S:1/132‐ ‐

C:282/2‐ 73=]
S:1/273

C:275/?75=1
S:1/?75C:133/133=l

S:1/133

C:17442/274=635
S:1/274 ‐

C:2751/1=275.
Si1/1

G:カーディナリティ
S,|セレクテ́ ビテイ

Execution Plan

SELECT STATEMENT GOAL:CH00SE
SORT(AGGREGATE)
NESTED LOOPS
L NESTED L00PS

l-ruesreo loops
;i LNESTEDLooPS :

il i Frnar"rnccEgs@ATANALyzED(FuLLloFrABr' :

ir-:-: -ii - r:figsgirG6aL: ANALVZEI,(Frilf S-CAN'6F*'TAEt3_lf fNo'r',t'-ui'libriE[
-'

r- reeLe nccess GoAL: ANALvzED (By INDEX RowrD) oF'TAB4'
INDEX GOAL: ANALYZED (UNIQUE SCAN) OF'TAB4_PK' (UNIOUE)

―TABLE ACCESS GOAL:ANALYZED(BYINDEX RC)WID)OF ITAB51
1NDEX GOAL:ANALYZED(UNIQUE SCAN)OF'TAB5_PKl(UNIQUE)

ifク牙∬うメi`要要
‐
fi 捧藩1毒:おる

`濃

1離蒸11

図 52:TABlと TAB2を結合

同様に、次の結合であるTAB3を見てみます。これもネステッドループ結合をしてい

ますが、ID列のカーディナリテイは 63.5行となっています。すなわち、TAB3にはID列

を用いて絞り込み検索を行ないますが、1回のアクセスあたり平均 63.5行ヒットすること

になります。以上から、TAB3には X回アクセスし、結果としてX× 63.5行が評価対象

として残ることになります (図 53)。

Execution Plan

SELECT STATEMENT GOAL:CH00SE
SORT(AGGREGATD
LOOPS

lNDEX GOAL:ANALYZED(UNIQUE SCAN)10F'TAB4_PKl(UNIQ∪ D
―TABLE ACCESS GOAL:ANALYZED(BYINDEX RC)WID)10F ITAB51
1NDEX GOAL:ANALYZED(UNIQUE SCAN)10F'TAB5_PKl(UNIQUE)

＝

＝

■

．

図 53:TABlと TAB3を結合

次はTAB4の結合です。TAB4の結合状況は少し複雑です。

TAB4を 結合する際に、使用できる絞り込み条件を見てみましょう。TAB3の結合

まででCLASS列 (わ値が分かっています。 こσ)こ とから、TAB4^、はCODE、 FLAG、

CLASSの 3列を使用して絞り込めることが分かります。TAB3ま でで X× 63.5行が残っ

ているので、TAB4へのアクセス回数はX× 63.5回です。しかし、TAB4の CODE列

はユニークなので一意検索されます。そのため、評価対象としてはTAB4の データは 1

種類しか残らないはずです。ただし、評価対象が 1行になるとは限りません。これは、

TAB3の CLASS列 のカーディナリティが2だからです。つまり、TAB3ではCLASSの

値 1種類に対して、平均して2行存在することが分かります。そのため、CLASS列 は 1

種類しか残っていないので、評価対象行数は最終的に2行残ります (図 54)。

1117

《
ｕ
二
鋼
υ

ifi`ビ∬,メユ

`∬

ffi l■苺表1本|を行ソ■メ|

Execution Plan

SELECT STATEMENT GOAL:CHOOSE
SORT(AGGREGATD

NESTED LOOPS

―TABLE ACCESS GOAL:ANALYZED(BYINDEX RC)WID)OF'TAB51
1NDEX GOAL:ANALYZED(UNIQUE SCAN)OF ITAB5_PK'(UNIQUE)

]∫ 2‐イ∬́ヴibrill 外部表になる行ソ■ス|

②

図54:TAB3と TAB4を結合

最後に、TAB5に ネステッドループ結合します。評価対象行は2行残っているため、

TAB5へのアクセスは2回です。NUM、 CLASS列の2列を使用して絞り込めます。結

果として、1行もしくは2行が残ることになり、この行が結果として返されます (図 55)。

Execution Plan

SELECT STATEMENT GOALi CH00SE
SORT

す .外部表lFなる行ソ■ス :難瓢機1姜1参穫奪:娑饗変:

119

図55:TAB2と TAB5を結合

以上の流れをもとに、各表のアクセス回数、評価対象行をまとめると、図 56のように

なります。最初の TABlで ヒットする行数に大きく依存していると考えられますね。

④

③

②

④

図 56:各表のアクセス回数、評価対象行

②

①

TAB5

TAB2/
NUM=:bl
CL△旦旦ヽ

ＩＤ

一
●cLAsS、

`、

_
TABl

START DATE<=
,TE>:b3TAB3

TAB4

´

4″″ID
tclnss

／
　
ヽ

２
ン
、

わ

Ｙ
』ｒ

〓
‘

И

一̈
　

一
一　
ヽ
Ｄ

一

涯
一Ｇ

３
一

Ｉ
一Ａ

Ａ
一

∝
一ＦＬ
ＣＬ
一

1回 X行

X回 ××1イ予

×回 X×63.5行
X)(〕135 回2行
2回 lor 2行

ネス

TABl

TAB3
TAB4

|| ■ .|

舅0よ り良い実行計画案の検討

>業務チームからの情報
このように、実際にヒットする件数の詳細が予測できない場合には、データ分布を自ら

調べたり、業務を詳しく知っている担当者にヒアリングしたりする手もあります。

本章の例では、各表へのアクセス回数はTABlの範囲検索にヒットする行数に依存じ

ます。例えば、10行程度ヒットする場合では、TAB2、 TAB3に は10回、TAB4には約

635回 ものアクセスが行なわれることになります。

このような不確定な要素があった場合、業務観点でヒアリングすると良いでしょう。

>別の実行計画の検討

先ほどの実行計画はTABlを結合順序のスタートポイントとしていましたが、ここで

は別の表をスタートポイントとしてみましょう。例えば、TAB4を スタートポイントとし

てみます (図 57)。

④

②

列名 索引の使用できる列
●―日● 結合されている列

TAB5

TAB2
NUM=:bl

TABl

ART DATEく =:b3+1
END DATE>

TAB3

TAB4

=:b2
FLAG=

図 57:別 の実行計画案

1121

C:133/‐ 132‐ 1

S:1/132 ‐.

｀D▼ヽ
斃塾塁い、

_C:275/275Fl

IS:1プ 1

《
鰤
薇細
）

各表のアクセス回数、評価対象行を図 58に まとめると、TAB4をスタートポイントに

した場合は元の実行計画に比べて各表へのアクセス回数が少なく、より効率的な実行計

画であると推察できます。

③

①

①

図 58:各表のアクセス回数、評価対象行

また、TAB5か ら結合を開始する順序が残っています。これは読者の方自身でトライし

てみてください (結果としては、図58の実行計画案が最も効率的になるはずです)。

④

③

②

TAB5

TAB2
NUM=:bl
CLASS t

ID■、
●亘L△墨ざ＼

TABl

START DATE<=:b3+1
END DATE>:b3

TAB3

TAB4 /

CODE=:b2 ″
FLAG=`Yツ(ta心
CLASSげ′や。わプ

1回 1行

1回 1行

2回 2行

2回 2イテ
2回 lor 2行

122

TAR4
TAB3
TABl
TARρ

ここまで、例をもとに話を進めてきました。実行計画をどのように検討すべきかを図

59～ 61に まとめましたので、これらの図を使っておさらいしてください。

図 59:実行計画の検討チャー ト

●それぞれの特性と考慮点から「検討」「検証」「判断」する。

中最適な索引が使用されているか'
■適切な索引が作成されているか

'
■WHERE句条件が適切か(コーデイング、条件指定)'
さ表のフルスキヤンのほうが効率的か(索引を使用しても10%以上の表デー

タアクセスなど)?

。ネステッドループ結合で内部表のフルスキャンが発生していないか'
ガーディナリティの小さい表から結合されているか

'

鰊
SQLによるデータの取得を最小のブロックアクセスで行な
うことが原則。しかし、SQL単体を最適化 (レスポンス改善)
するアプローチだけでは不十分。

図60iSQL単体の最適化

舞

餅

麒

鰤

訳

猷

‘
Ｊ
■
■
１
１

く

全パターンを検証
するのは難しい

意識するのは

。SQL単体の
最適化

●システム全体の

最適化

SQL単体の最適化

0実行計画の違いによる必要リソース(CPU、 メモリなど)のパランスで判断
ミサーバ上でOracle以外のアプリケーションが動作し物理メモリが圧迫され
ている

→ハッシユ結合やソートマージ結合が同時に実行されて物理メモリが圧迫さ

れないか

I CPU使用率が高い
→無駄なソート処理がないか、ネステッドループ結合によりCPU負荷が高く
なつていないか

!\

*t{ry.
SQLパフォーマンス問題を解決するには
SQL単体の最適化だけではなく、システム全体の最適化を
踏まえて判断することが重要である。

図 61:シ ステム全体の最適化

本章では、“頭を使う"非定型的なチューニングの定義とその進め方、オプテイマイザヘ

のインプット情報、実行計画の読み方と実行計画の妥当性を判断するポイントで必要とな

るデータアクセス方法の判断指針、表の結合方法、結合順序について説明しました。

とくにSQLチューニングを行なううえで、実行計画を正しく読み解き、問題点を解消

するための選択肢を理解しておくことは非常に重要な知識となります。

実行計画とは、SQLを どう処理するかを定義したものであり、SQLのパフォーマンス

は実行計画に大きく依存します。チューニングにおいても、オプティマイザが生成した実

行計画が適切なものであるか、より良い実行計画がないかどうかを検討する作業が大部

分を占めます。検討ポイントには、例えば次のようなケースがあります。

饉 索引を使うほうが良いのか、使わないほうが良いのか
'

疇 表の結合順序はどのような順番が良いか
'

このようなポイントはSQLに よって解は異なりますが、ある程度の共通した判断指針

はあります。

とはいえ、このような検討は少なからず大変であり、コストがかかります。すべての

SQLについて最初からこのような検討を行なうのではなく、オプティマイザヘのインプッ

ト情報が妥当であるかを最初にチェックするべきだと紹介しました (図 62)。

YES

NO
YES

NOYES

鏡
凝
細
》NO

N0

図62:非定型的なSQLチ ューニングの進め方

インプット情報については「これであれば絶対」という解があるわけではなく、システ

ムに応じてインプットは変わります。これらのインプットに対する検討、決定方針を紹介

しました (図 63)。

図 63:オ プティマイザヘのインプツト情報

次章では、非定型的チューニングでもパフォーマンス問題が解決しない場合、さらなる

チューニングを行なうために知っておくべきoracleア ーキテクチャについて解説します。

OraCleアーキテクチャに
基づいたSQLチューエング

前章まで、SQL文自体に起因するパフォーマンス問題にどのように対処すべきかにつ
いて学んできましたが、SQL単体を最適化してもパフォーマンス問題が解決しないケー

スもありえます。そのような問題を改善するには、SOL単体だけでなく、インスタンス

全体やシステム全体に、どのような問題が発生しているのかを見極めなくてはなりませ

ん。そのためには、Oracleアーキテクチャを理解しておく必要があり簾す。そこで本章

では、そのア…キテクチャの理解とともに、どのようにチューニングを行なつていくのか

を説明します。

ほとんどのパフオーマンス問題は、前章までの非定型的なSQLチューニングで改善で

きますが、さらにハイトランザクションな環境では、Oracleア ーキテクチャを意識した

チューニングが必要な場面もあります。しっかり知識として身に付けておきましょう。

SQLのパフオーマンス問題が発生したときに、統計情報などを最適化して実行計画を

改善しただけでは性能要件を満たせないこともあります。例えば、多重処理に起因する

問題や設計に起因する問題が発生した場合がそれにあたります。

賦b多重処理に起因する問題

単体テスト時にSQL単体のパフォーマンス問題が発生したので、SQLチューニングを

行ない、性能も改善したのに結合テストやシステムテスト時に限って、パフォーマンス間

題が発生するというような経験をされた方もいると思います。では、単体テストと統合/
システムテストにはどのような違いがあるのでしようか。

単体テストは、モジュール単位で正しく動作することがテストされますので、SQL単

SQL単体以外のパフォーマンス問題とは?
蜂
■

体のパフォーマンス問題がクリアされればテストとしては特に問題ありません。しかし、

統合/システムテストヘと進んでいくと、テストされる機能範囲が広くなり、より複雑な

処理がデータベースに対して行なわれます。より複雑な処理とは多重処理を意味します。

SQLの実行計画のチューニングは、SQL単体に対しては非常に有効ですが、多重処理に

対してのチューニングは実行計画のチューニングとは異なる考え方で行なう必要がありま

す。このような問題に対しては、特に OrЖleアーキテクチヤを意識する必要があります。

ン3アプリケーションロジックに起因する問題
SQL単体では問題ないのに、期待するような性能を発揮できない原因の1つ として、

SQLを発行するロジックそのものに問題が内在している場合があります。

モジュールが共通化できていないために、同じような処理を何度も記述し、メモリのロー

ド負荷が増加していたり、ループ処理の非効率的なロジックによるCPU負荷が増加して

たりすると、発生しやすくなります。

SQL単体を改善するよりも、アプリケーションロジックそのものを改善するほうが効率

的なチューニングとなる場合もあります。このような問題に対しては、アプリケーション

の仕組みを意識する必要があります。

瘍ゝ 設計に起因する問題

大量のデータを取得する処理や複雑に表を結合してデータを取得する処理などの際

には、SQL単体の実行計画は問題がなくても期待通りの性能を得られないケースがあ

ります。

これらの原因としては、表の論理/物理設計などの表構成そのものが起因してパフオー

マンス問題が発生している可能性があります。また、大量データを取得する表やアクセ

ス頻度の高い表が属するデータフアイルのディスク配置が分散されていない場合や、デー

タモデルの不備によりSQL文が複雑化しているケースなどもあります。このような問題

に対しては、データ構成やディスクのパフォーマンスを考慮した論理/物理設計を意識

する必要があります。また、その設計のもととなっている業務要件ゃシステム要件も意識

する必要があります。

このように、実際のチューニング現場では、統計情報や実行計画に対するSQLチ ュー

ニングテクニックだけではなく、Oracleや アプリケーションのアーキテクチヤ、論理/物

理設計、そして業務要件までも意識しなくてはならないケースが出てきます。以降では、

このようなケースのチューニングテクニックについて話を進めていきますが、まずはその

ケースの 1つである多重処理を行なった場合に発生しやすい問題について、Oracleア ー

キテクチャを意識しながらSQLチューニングを考えていきましよう(図 1)。

N0

N0

前章までの説明

N0 本章からのターゲット

図 1:チ ユーニングの進め方

前述したように、単体テスト時には特に問題が発生しなかったのに、総合/システムテ

ストに問題が発生する理由には、多重処理が起因しているケースが挙げられます。では、

なぜ多重処理を行なうとパフォーマンス問題が表面化するのでしようか。

ここで、多重処理で問題となりやすい「ロック」の競合について、アーキテクチャの観

点から少し深く考察してみましょう。

夢♭データベースのトランザクションに求められるもの
通常のシステムにおいて、業務に必要な処理は単体で行なわれることがなく、多重で

処理されることがほとんどです。多重処理を行なうことを考慮して、システム要件にデー

タベースを含めていると言っても過言ではありません。データベースもこのような多重処

理を行なうことを想定して作られています。

また、データベースは多重処理を行なうだけではなく、同時にデータの整合性も保つ必

YES

YES

N0YES

多重処理でなぜ問題が表面化するのか ?

128

SQL単体以外のチューニング

多重処理チュ■ニング 設計チユーニング

チi■ニング完了

″^
・
・

要があります。そこで、データベースはトランザクション処理のために必要な4つの特性

を持っています。それが、トランザクションのACID特性 (詳細は下のコラム「ACID特性」

を参照)です。

トランザクションの一貫性や独立性を実現させるのに最も良い方法は、1つのトランザ

クションをシリアルに実行することです。しかし、それでは単位時間あたりに実行できる

トランザクション数が少なくなり、パフォーマンスが低下します。そこで、データベース

はトランザクションの (ANS1/1SOで 定義されている)分離レベルをサポートすることで、

同時実行性を向上させます。ここでは、詳細に分離レベルについて説明しませんが (詳

細は次ベージのコラム「ANSИSO SQL規格によるトランザクションの分離レベル」を参

照)、 Oracleは基本的に「READ COMMITTED」 モードで動作します。

ちょっと、横道に逸れましたが、多重処理を行なううえで、Oracleア ーキテクチャは同

時実行性を考慮したトランザクションの分離レベルを実現するためのロールバックセグメ

ントや、データの整合性を確保するためのロックを実装しています。

ベースが 求められ

icity(原子性)」 rabi‖ ty

ACID

です。

Atomicity

そのす を取り)肖すかの

トラ

継続さ

ョンでは、

えない。

41つの特性は、

トランザクションは、

状態になる。

(独立性)

中で定義さ

a.ダーテ

未コミットな ランザクシ

読み込む現象。

ンザクシヨ

コミット

ァントムリード

ないデ

レベルは次の 4つです。

ションを多重で処理する場合に防

ランザクシ∃ンが

'―
夕を だときに、 ションに

データ

で 2回実行する間に、別の卜

処理が完了したら、

不変に保たれる。

ANSIASO

‐‐_■||■|_. .
‐ _― |■■.‐―.

O READ UNCOM.M"TED
.②■産AD COMMI丁 丁ED

③・REPEATABLE R巨AD

④ SERIALlZABLE _

これらの分離レベルは、

(図 A)。

|・■■|

●||_■
_―
―

|_

斜
「
り
・

同時実行性への影響度
あ りあ り あ り

なし あ り あり

な し な し あり

な し な しな し低

‐図A:トランザクションの分離レベルと同時実効性への影響度 ‐ ―

Orac:eのロッキングメカニズム

データの整合性を確保するためには、ロックが必要です。ご存じのとおり、Oracle

Databaseでもデータの整合性を確保するために、エンキュー、ラッチなど、さまざまなロッ

キングメカニズムを使用していますので、ここでそのメカニズムを紹介していくことにし

ましょっ。

鱚ゝ エンキユー
エンキューとは共有、排他などのロックモードを持つことができ、ロックが獲得できな

い場合はキューイングされ、先に待機を開始したセッションから先にロック獲得の権利を

得るFIFO(First ln First Out)型 のロックです。

エンキュー自体は、Oracle RDBMS内 の汎用的な排他制御のためのサービスとして実

装されており、それがさまざまな局面で利用されています。例えば、DML表ロックや行ロッ

ク、リカバリ時にデータフアイルを保護するロック、制御ファイルの同時更新を防ぐため

のロック、順序オブジェクトでの発番を保護するロックなどはすべてエンキューで実装さ

れています。

エンキューを獲得できず待機する場合、待機イベント「enqueue」 などで待機します。

[31

分難レベル

●

■

込み操作 (SELEC丁)に対して、

(DELETE、
・INSERT、 _UPDATE)

エンキューにもいろいろな種類がありますが、10g以後では待機イベント名「enq:

を見ると、どのエンキューで競合が発生しているかが分かりやすくなりました。

ubラッチ
ラッチとは、SGA内の共有データ構造を保護する低レベルな直列化メカニズムです。

共有プール上でのメモリの割り当てや解放、バッファキャッシュ上でのバッファの探索、

ライブラリキャッシュ上でのオブジェクトの探索、セッションの開始、チェックポイント

の開始、ログバッフアの割り当てなど、多くの処理がラッチによって保護されています。

ほかのプロセスがラッチを確保しているために、ラッチ獲得に失敗した場合、次回で

獲得を試行するまでにスピン (一定回数、空ループ処理を行なうこと)して待機する特徴

があります。スピン後に試行しても獲得できなかった場合は、エンキューと同様にスリー

プして待機します。

ラッチを獲得できずスリープする場合、待機イベント「latch free」 などで待機します。

ラッチにもいろいろな種類がありますが、10g以後ではエンキューと同様に、待機イベン

ト名「latch:・ ……」を見ると、どのラッチで競合が発生しているかが容易に分かるように

なっています。

ピ♭その他
RAC環境などのインスタンス間でデータの整合性を確保するには、グローバルロック

などがあります。また、ラッチよりもさらに高速なMutexロ ックもあります。

Oracle Databaseが、エンキューやラッチなどのロッキングメカニズムをさまざまな局

面で利用することで、データの整合性が確保されていることは理解できたと思います。あ

る処理がラッチを要求して、すぐにラッチを利用して処理を行なうことができれば特にパ

フォーマンス問題は起きませんが、別の処理がすでにラッチを取得している場合はどうで

しようか?そのラッチが利用できるまで待機する必要があります。

すでにお分かりのように、多重処理を行なうとラッチなどで競合が発生する可能性が

高くなります。競合が発生すると、ラッチ獲得のための待ち行列が発生することでSQL

のレスポンスが悪化し、スループットも悪化します。どのような処理でエンキューやラッ

チを必要とするのか (Oracleア ーキテクチャ)を理解しておくことで、開発時に多重処理

を意識した対応をして予防を行ないます。また、ラッチ競合などでパフオーマンス問題が

ロックの競含がパフォーマンスに影響を与える

発生したときには解決に必要な知識となります。

それでは、多重処理でパフォーマンス問題が発生したときに、どのような観点でボトル

ネックを特定し、Oracleアーキテクチャを意識したSQLチューニングを行なっていくの

かを、実際のチューニング例をもとに解説していきましょう。

アーキテクチャを意識した

以前、筆者があるベンチマークプログラムでスケーラビリティの測定をしていた際に発

生した問題を例に、アーキテクチャを意識したSQLチ ューニングの考え方を紹介してい

きましょう。

縣ヽ ベンチマークプログラムの特性と仕組み
この際に使用したベンチマークプログラムは、Oracle Datttaseに対して多重で負荷を

かけるツールでした。多重度や SQLの発行間隔を変更することでスループットを上げ、

DBに対する負荷を大きくさせ、各処理のレスポンスの変化を測定するものです (図 2)。

APサーバー

べ:ンチマークプログラム 多重度、SQL実行間隔を調整し
スループット、レスポンスを測定

コントロール部

DBサーバー

サーバー
,

プロセス

②測定用SQL
を発行

当初の状況

図 2:ベンチマークプログラムのイメージ

実行

ベンチマークプログラムを

終了させる場合、以下のSQLを実行

STATUSが goならば処理継続。

予夕発行する SQL文

このベンチマークプログラムの各スレッドでは、測定対象 SQL文とステータスチェッ

クSQL文の 2種類のSQL文 を発行していました。

>測定対象 SQL文
参照処理と更新処理を行なうために、いくつかのSQL文を発行していました。スケー

ラビリティ検証のため、参照処理と更新処理の比率を変更することもできるようになって

いました。

>ステータスチェック SQL文
各スレッドが、ベンチマークプログラムの開始と終了を確認するために、次のSQL文

を使用していました。

つまり、測定対象のSQL文を発行する前に上記の SQL文を発行し、statが “exec"で

あれば、ベンチマークプログラム実行中であると判断して測定対象であるSQL文を実行

しますが、“sゎp"に更新されていればループ処理を終了して、そのスレッドを終了させる

仕組みになっていました。

明,ベンチマークプログラムを実行してみる

ある程度まで多重度を上げて試験をしたところ、スケーラビリテイが落ちている状況が

見られました。

お `

ほとんどの場合スルニプシヽ

SELECT status FROM.statitab WHERE・ ■d = 1,

>ボ トルネックの特定

Oracle Enterprise Mttager(以 下、EM)を使用してインスタンス状況を確認すると、

CPU時間以外に待機イベント「latch i cache buffers chains」「curSor:pin S」「cur"ri pin

S wait on X」 が発生していることが分かりました (図 3)。

1」 の

職0銀 1:■仏

鰺笙塑盤笙

菫̀鰊心は晰

ッヽプ‐アクティビティ

銀

“

“

”

２

一

図 3:ト ップアクテ ィビティ

また、この待機イベントはベンチマークプログラムのステータスチェックSQL文の実

行中に発生していることも確認できました (図 4)。 つまり、ステータスチェックSQL文

がボトルネックになっていると考えられます。

SQL*tn3i.rsb skd

S重 L`01 statlo

駅の悧 な0鶴す01員は釉 ,ヽックュ輔を避総してく
=■
1_ '14′ ら゙',伸 :′ 9,髯 ,041燃齢

III二遷 鶴‐

3● ____

蜘
　
”
　
螂

図4:SQL文の詳細

sGLXr66f t75\rlb\6

>ボ トルネック SQL文の実行計画
EMの「SQLの詳細」画面中の「統計」―「プラン」タブから、該当 SQL文の実行計画

や実行時統計を確認できます。実行計画と実行時統計を見ると、これ以上のチューニン

グの余地はない状況になっていることが分かるはずです。

実行計画は「INDEX RANGE SCAN」 のみとなっています (図 5)。 これは索引

「STAT_TAB_IXl」 がID列、STATUS列に対する複合索引であることによるものです。

絞り込み条件のID列 とSELECT対象であるSTATUS列 がともに索引に含まれている

ため、わざわざ表までアクセスする必要がないのです (図 6)。

図 5:ステータスチェック SQL文の実行計画

図6:表「STAT_TAB」 と索引「STAT_TAB_lX l」 の詳細

そのため、実行時統計の「1実行あたり」の「バッファ読み取り」が 1と なっています

(図 7)。 すなわち、1実行あたり1プロックしかアクセスしていません。SQLチューニン

グの1つのターゲットとしてアクセスブロック数の低減がありますが、これ以上の低減は

できません。

“・
~P■

図 7:ステータスチェックSQL文の実行時統計

つまり、実行計画からの SQLチューニングは実施し尽くしていると言えます。それに

もかかわらず、このSQL文がボトルネックになっている状況です。

本章ではスケーラビリテイを測定しようとしていますが、測定対象のSQL文ではなく、

ベンチマークプログラム自体のステータス確認 SQLがボトルネックとなってしまってい

ては九も子もありません。なんとかしてチューニングをしなくてはなりません。

そこで、Oracleアーキテクチャの観点から詳細分析を行ないます。CPU時間以外は目

立った待機イベントが発生しているため、この待機イベントがなぜ発生したのかを分析す

ることにします。

不り「latch:cache butters chains」 に対する分析とチューニング案

>アーキテクチヤ観点からの分析

待機イベント「latch i cache buffers ch」 ns」 はバッファキャッシュ内のプロックを管理

するチェーンを保護するラッチに対する競合です。

Oracleのバッファキャッシュ内に保管される各ブロックは、バケットとチェーンで管理

されています。各ブロックのアドレスをもとに、格納されているバケットとチェーンが決

まります。個々のチェーンはラッチによって保護されており、そのチェーン上のプロック

にアクセスしている間、ラッチを保持することになります。これは、そのブロックを参照

する場合でも同様です (図 8)。

そのため、ある特定のプロックに対して複数プロセスからアクセスされると、そのプロッ

クが管理されているチェーンを保護するラッチヘの競合が発生する場合があります。

Oracleアーキテクチャからの分析とチューニング

７
′
う
０

>
o10● ヽ

図 8:ブロックを管理するチェーン

>動作推測

本章のベンチマークプログラムでは、すべてのスレッドがステータスチェックSQL文

により、同一表の同一行にアクセスしています。すなわち全スレッドが同一プロックにア

クセスしていることになるため、「latch:cache buffers ch」ns」 競合が発生しやすくなっ

ていたと考えられます。

>チューニング案
この競合を解消するためには、特定ブロックに対するアクセスを分散させれば良いと言

えます。

各スレッドがアクセスするブロックを分散させることにより、該当ブロックを管理する

チェーンも複数に分散されるため、競合の可能性は減ることになります。

そこで、次のようなチューニング案を考えました (図 9)。

_サーバ■プロセス

サデバ=プロセス

サーバープロセス

APサーバー

DBサーバー

図 9:ベ ンチマークプログラムのイメージ

これにより、各スレッドが異なるブロックにアクセスすることになるため、「latch

cache burers ch」ns」 競合の低減を期待できるわけです。

會 STAT_TABに複数の行を格納する。また 1行 1ブロックとなるように PCTFREEを

調整する

戦 各スレッドはそのスレッドIDを使用して、異なる行に対してアクセスさせるようにす

る

つまり、ステータスチェックのSQL文を次のように変更します。

..
‐

・
‐ ｀ ‐

||

1測定sQL用の表
・■‐ ―‐■■■

SELiCT stttts FROM stat― tab WEERE id・ 1
↓ ‐

~ ‐■ ■‐ _■― ■
SELECT status FROM stat tab ,VHERE id = :Bl

(バイジド変数
~:31に
は実行時にスレッドIDを与える) _. ・|| |‐ |■| _.

宦荀「CurSOr:pin S」 「CurSOr:pin S wait on X」 に対する

分析とチューニング案

>アーキテクチャ観点からの分析

待機イベント「cursOr:pin S」 「cursOr:pin s wtt On x」 は、共有プール上のカーソル

情報(SQL文や実行計画など)を保護するためのロックに対する競合です (以前のバージョ

ンでは「librtty cache」 ラッチ競合として表われていたものです)。

あるSQL文がはじめて実行された場合、その実行計画は解析され、共有プール上に保

管されます (ハードパース)。 2回日以降は、共有プール上にキャッシュされている限り、

実行計画を最初から解析するのではなく、キャッシュされた結果を再利用できます (ソフ

トパース)。 SQL文の解析処理は重い処理であるため、このようにソフトパースを活用す

ることで、一般的には効率的になります。

ただし、別のプロセスが該当のSQL文の実行計画を生成している可能性があるため、

ソフトパースにおいても内部でロックがとられます。この際に競合が起こると、「cursor:

pin S」「cursor:pin S wdton X」 の待機が発生することになります。

つまり、ある特定のSQL文を複数プロセスから多重に実行すると、これらの待機イベ

ントによる競合が発生する場合があるのです。このロックは非常に軽いロック処理なので

すが、あまりに多重で実行される場合には、稀に競合が発生することになります。

>本章のケースからの動作推測
本章のベンチマークプログラムでは、すべてのスレッドがステータスチェックSQL文

を発行しています。まさに、上記の発生条件にヒットしているとも言えます。

>チユーニング案
この競合を解消するためには、各スレッドが発行するステータスチェックSQL文を異

なるSQLテキストにすれば良いと言えます。

そこで、次のようなチューニング案を考えました。

螢 各スレッドはそのスレッドlDを コメントとして付加したSQL文を組み立てて発行する
ことにする

SELECT.statusl.FROM stat tab WHERE ■d = :Bl _ __ ――

SELECT /★ く
'ス

し′ッドID>_オ / st_atus F‐ ROM stat tal)ヽ OHERE id = :Bl

140

これにより、各スレッドが異なるSQL文を発行することになるため、ソフトパースの

際の競合の発生は低減できるでしょう。もちろんコメントが異なるだけなので、返される

結果は同一になります。

ただし、スレッド数があまりに多い場合、異なるSQL文の発行により、共有プールに

キャッシュ済みの実行計画がキャッシュアウトしてしまう可能性があることにも注意して

おきます。実際にはスレッドIDを直接コメントに付与するのではなく、「MOD(ス レッド

ID,100)」 の結果を付与しました (バインド変数を使用せずに、スレッドIDを リテラル値

として直接 SQL文に埋め込む案もあります)。

ここまでのチューニング案を実装したベンチマークプログラムを実行したところ、図 10

のとおりの効果が表われました。

′/´

`1ヽ二
|

ヽ

uanrakr lls

率まアグ,ィ′・●●ン
“
ン

苦鍛瀑

贈器`

遜夏≡壼醒 I》

漏勤 ‐夕の感矛壺亜I"リフ:",三鷺

“
一
コ　
薇
節
　
＝
　
口
撻
“

図 101チューニング効果

41

・
そもそも:

今回実施した SQLの変更は次のとおりです。

このようなSQLの変更は通常のSQLチューニングのテクニックではまず思いつかない

でしよう。しかし、発生している事象をOracleアーキテクチャの観点から分析することで、

このようなチューニング案を考え付くことができるようになるはずです。

もちろん本章のチューニング案は、どのようなケースでも有効になるチューニング案で

はありません。皆さんのプロジェクトでも、本章のチューニング案を発案するに至った考

え方を参考にして、Oracleアーキテクチャに基づいたSQLチューニングを意識して考え

てみてください。

OraCleアーキテクチャを意識した

ほとんどのパフオーマンス問題のケースでは、非定型的なSQLチューニングで改善で

きますが、さらにハイトランザクションな環境では、Oracleアーキテクチャを意識した

チューニングが必要な場面も出てきます。Oracleアーキテクチャの理解は、どのような場

面で問題が起こり得るのか、またどのように対処するべきかを判断する重要な知識となり

ます。

Oracleア ーキテクチャを意識したSQLチューニングの例として、あるベンチマークプ

ログラムの例を説明しました。ボトルネックとなっていた SQL文は、プログラムのステー

タスチェック用に発行されていた「SELECT stttus FROM stat_tab WHERE id=1:」 で

あり、索引スキャンを行なっていて、ブロックアクセス数は 1ブロックという、sQLチ ュー

ニングの観点からはチューニングされ尽くしている状態でした。

しかし、複数プロセスが特定データに集中してアクセスしていたことにより、ラッチ競

合が発生していました。また、同一 SQL文を多くのプロセスがソフトパースするという
競合も発生していました。

これに対して、次のようなチューニング案を適用し、これに基づいてステータスチェッ

クのSQL文を変更しました。

WHERE‐ id‐ 1,― ~

Ｓ

　

．

つ０
１

Ｍ
　
　
え

・ＦＲ。
・み

Ｓ

　

⊃

・

ｔｕ
　
．
間

ａ
　
　
　

ン

ま
　
‐
レ

142

。 STAT_丁ABに同一データを持つ複数の行を格納する。また、1行 1ブロックとなるよ

うに PCTFREEを 調整する

o各プロセスはそのプロセス !Dを使用して、異なる行に対してアクセスさせるようにす

る

。 各プロセスが実行する SQL文にコメントを入れて、異なるSQLテキストとする

これにより、各プロセスが異なるブロックにアクセスすることになるため、ラッチ競合

を低減できました。

このようなチューニング案を考え付くようになるには、発生している事象をOracleア ー

キテクチャの観点から分析することが大切です。

・輛
創
Ｖ

アプリケーションロジックを
意識したSQLチューエング

前章では、アーキテクチャに基づいたSQLチユーニングとして、Oracieアーキテクチャ
の観点から事象を提え、分析を行なつて改善する例を示しながら説明しました。しかし、

SQLの性能問題が発堂したときは、アプリケーションロジックや設計を意識したチュー
ニングが必要な場面も出てきます。本章ではこれらに起因して、どのような場面で問題

が起こり得るのか、またどのように対処するべきかのポイントを説明していきます。

SQL単体を最適化してもパフオーマンス問題が発生し得るケースとしてのアプリケー

ションロジックと設計に起因する問題の説明に入る前に、図 1を見ながら前章のおさらい

をしておきましょう。

N0

前々章までの説明

本章からのターゲット

YES

N0YES

前章のターゲット

図 1:チユーニングの進め方

パフオニマンスぼ妥当めヽ
'

チユーニング完了

前章では、筆者が以前、あるベンチマークプログラムでスケーラビリテイの測定をして

いた際に発生した問題を例に、Oracleアーキテクチヤを意識したSQLチューニングの考

え方を紹介しました。

このベンチマークプログラムでは、負荷を生成する各プロセスがベンチマークプログラ

ムの実行状態を判断するために、ステータスチェツクの SQL文を発行しており、バツフア

キャッシュのハッシユチェーンに対するラッチ競合である「latch i cache burers chains」

や、共有プール上のカーソル情報へのアクセス競合である「cursori pin S」「cursor:pin S

wait On x」 がボトルネックになっていました。このような競合が発生してしまった原因と

対策をOracleア ーキテクチャの観点から分析し、チューニングを行ないました。

このケースでは無事チューニングができましたが、そもそもステータスチェックのため

にSQL文を発行することが妥当であったかというところを考えるべきでしよう。実際の

現場のアプリケーションでも、このようなケースが見受けられます。SQLはデータを容易

に扱えますが、どのような場合でもSQLの使用が適しているのかどうかは考えてみるべ

きです。また、SQLの発行方法についても、ある程度考慮すべきでしよう。

ここからは、アプリケーションが SQLを発行する際に注意すべき事項を説明していき

ます。

アプリケーションロジックとSQLの関連は、主に次の観点から注意して見ていきます。

艤 SQL文を発行する必要があるのか

。 SQL文の発行回数を減らせないか

饉 SQL文の発行方法は効率的か

まず行ないたいのは、そのSQL文を発行する必要があるかどうかを確認することです。

本当にデータベースにアクセスする必要があるのかどうかを検討するべきでしよう。

さらに、SQLの発行回数はできるだけ少なくします。また、SQL文の実行方法が効率

的かどうかについても考慮してみましょう。

145

とはいえ、これに固執することによって SQL
てしまう場合には、DECODE関数や CASE

リケーション側に任せるべきでしょう。

文に目SQL

多くなっ

二_゛ ンを設計すECOD C.関数や

ン .であれば

取得す に データ

□プ ヽグラ通常の グ言語とは悩ビ彗|が異な LSQ はデータ

る めた だ け ジ クツ使用 し、 によ □ プ処理はアる

ません。ただし、

Chapterlで も書きましたが、SQL (取得)言語であり、

その SQLは本当に必要なのか

SQLチ ューニングの方法を解説する書籍の内容としては矛盾しているようですが、
SQLは発行しないで済むのであれば、それに越したことはありません。まずは、アプリ
ケーションが必要とするデータを本当にデータベースに格納する必要があるのかを検討し

ましょう。

例えば、SQL文の必要性自体に疑念が生じる使われ方としては、SQL関数を使用して
いるケースやアプリケーションの一時的な情報の格納場所として、データベースを使用し

ているケースがあります。

γ5SQL関数の使用
データベースで用意されているSQL関数を使用するためにSQLを発行しているケー

スがあります。例えば、次のような例です。

SELECT TRIM(:bl)INTO ;b2 FROM dual, ‐
_|~

DUAL表に対するアクセスであるとはいえ、このSQL文を実行するためには、実行計
画を生成したり、データをデータベースとクライアント間で転送したりする必要がありま

す。プログラム側のTRIM関数相当の機能を使用するべきでしょう。

るのではなく、

めします。

詈こらアプリケーションの一時情報の格納

アプリケーションの一時的な情報の格納場所として、データベースを使用している場合

は注意が必要です。

前章で説明したベンチマークツールの例のような、アプリケーションのステータス情報

やWebユーザーのセッション情報などの一時的な情報は、データベースを使用せずに

APサーバー側で持つようにするべきです (図 2)。

SQL発行

図 2:ア プリケーションの一時情報の格納先

特に、このようなステータス情報、セッション情報は頻繁に変更/参照される可能性が

あり、必然的にSQL実行回数が増加することが予想されます。そのため、前章で説明し

たようなラッチ競合などにより、データベースの性能に大ぎな影響を与えてしまう可能性

があります。

データベースは基本的に永続的な保護が必要なデータの格納先とし、一時的な情報は

格納しないようにしましよう。

Oracleで はSQL文が発行されるたびに内部的に多くの処理 (文の解析、インデックス

評価、変数バインド、物理的ブロックアクセスなど)を実行しています。したがって、デー

タベースヘのアクセス回数を減らすことができれば、これらの内部処理に関わるオーバー

ヘッドを低減することができます。

ヽ
「ヽヽ
一
‐
・　
　
．７
，７
′

卜
■

●
●
・

‐

‐
・
――
レ

Ｆ

」

１

１

二

APサーパー

SQL発行

SQL発行

DBサーノ

g0

APサーバー ステータス表

DBサーバ `

SQL発行回数を減らす

実データ

賦♭DECODE関 数/CASE文 の使用
複数のSQL文はDECODE関数を使用して1つにまとめることが可能な場合がありま
す。DECODE関数は、次のように等価条件を使用する場合に有効です。

DECODE(abC′ COnd■ tiOnl′ reS,ltl,CO11lt■ on2′ rOsult2′ cOndit■on3_′ default)

DECODE関数はabcと conditionに記述された条件が 1つずつ比較されます。abcが
conditionに等しい場合は対応する resultを、abcがどの conditiOnに も一致しない場合

には deねultが返されます。defadtが指定されていない場合はNULLが返されます。

また、CASE文を使用しても複数の SQL文をまとめることが可能な場合があります。
DECODE関数では等価条件のみしか扱えませんが、CASE文では不等号を使用した条
件など、DECODE関数よりも複雑な処理を行なうことが可能になります。
ただし、SQLを まとめたために構文自体が複雑になりすぎると、CPU時間が増えるこ

とになります。したがって、常にSQL自体の実行計画を採取し、検討することをお勧め

します。

祗)同一結果を返す SQL文の扱い
同一の結果を返す SQL文を複数回発行しているアプリケーションも、ロジックをチュー

ニングする余地があります。複数箇所で同一のデータが必要であれば、そのデータをア

プリケーション内で保存しておくことにより、再度そのデータが必要となったとしても、

SQL文を発行することなくアクセス可能となります。

特に、次に挙げる形態のアプリケーションでは、気づかないうちにこのような状況が発

生しがちです。

警 ループ内部で SQL文 を発行するアプリケーション
。 高度にモジュール化、サブプロシージャ化されたアプリケーション

図3では、メインモジュールからモジュール A、 モジュール Bを呼び出していますが、

これらのモジュールはともに「SELECT name FROM masterA WHERE id=:id」 を発

行しています。このケースでは引数として与えられる「id」 も、1回のループの中では同一

です。つまり、この SQL文をモジュール A、 B内部ではなく、メインモジュールの各ルー

プ実行の 1回だけ実行すれば良いとも言えます (図 4)。 これにより、このSQL文の発行
回数は半減します。

148

tabB WHERESELECT … FROM tabA″

SELECT … FROM t WHERE

SELECT … FROM tabD′ tabE WHERE

SELECT ・ FROM tabF WHERE

ｎ
Ｈ
ｕ

図 3:モジュール内部、ループ内部の SQL文

SELECT … FROM tabA′ tabB

SELECT … FROM tabC

SELECT … FROM tabD′ tabE WHERE ¨

SELECT … FROM tabF WHERE ¨

図 4:チ ューニング案その 1

さらに、図 5ではメインモジュール内で「masterA」 から結果をループ外で取得し、配

列にあらかじめ確保しておきます。このようなアプリケーションロジックのチューニングを

行なえば、SQL文の発行回数は激減します。図 5では10回から1回に減少しています。

図5:チユーニング案その 2

ただし、アクセス回数を減らすために、大量にアプリケーション側でメモリを消費しな

いように気を付けてください。例えば、大量のデータを一度に呼び出してメモリにキャッ

シュする仕組みを作ると、ガーベジコレクションなどで逆に性能が劣化する可能性もあり

ますので、メモリ使用量とのトレードオフを考慮してください。

なお、このような観点での分析は、アプリケーションロジックから追うよりもデータベー

スの稼動状況から追ったほうが効率的な場合があります。例えば、アプリケーションの単

体試験の際にSQLト レースを取得し、発行されるSQL文をパラメータも含めて分析す

ることで、無駄にSQL文が繰り返し実行されていないかどうかを簡単に把握できます。

予♭適切なコミット間隔
SQL文の発行回数とは少し趣きが異なりますが、コミットを発行する間隔にも注意し

てください。特に、多量のDML文を一括実行する場合にはすべての更新を1回でコミッ

トするのではなく、適度な行数 (例 11000行 ごとなど)の更新ごとに分割してコミットす

ることをお勧めします。

1つのトランザクションで多量の更新処理を行なうと、次のような弊害があります。

薔 UNDOセ グメントのサイズ拡張、およびそれに伴う領域不足によるトランザクション

の失敗

類 トランザクション失敗時のロールバックにかかる時間の長大化
。 トランザクション失敗時の再実行量の増大

なお、コミット処理はLGWRに よるディスクヘの同期処理を含むため、コミット頻度

をあまり短くしすぎるとスループットが低下することに注意してください。

SQLの発行方法についても考慮するべきです。例えば、配列フェッチや配列バインド

の使用などは、SQLではなく、アプリケーション自体に手を入れる必要がありますが、大

量データを使用するようなアプリケーションでは大きな効果が見込めます。

眩♭ ROWNUM関 数 の有効利用

多量の件数がヒットする問い合わせに対しては、事前のヒット件数チェックを行ない、

しきい値を超える場合には検索をそこで停止し、ユーザーに条件の再指定を求める警告

を返すようにしましょう。しきい値での検索の停止はROWNUM擬似列が有効です。
ユーザーが自由に条件を指定して検索を実行する場合、条件が甘いと非常に大量の行

数がヒットすることがあります。これは単にレスポンスが遅くなるというだけでなく、多

量のCPU時間および1/0が使用されるということです。同様の処理が並列して複数実

行された場合、システムのリソースが枯渇し、システム全体のスローダウンを招く恐れが

あります。

なお、すべてのSQLに対して事前のヒット件数チェックを行なう必要はありません。

予期せず大量の行数が戻される可能性のある自由検索に対してのみ実施することをお勧

めします。

痣ゝ大量データを扱う場合の配列の利用

大量データを読み込み、PL/SQLや JDBCの配列、索引付き表などに代入する場合は、

配列に直接フェッチすることを検討してください。このような処理を、PL/SQLで はバル

クフェッチとも言います。

通常のフェッチでは、1件取得するごとに配列や索引付き表に代入する必要があります

が、配列を使用すると、配列や索引付き表に対して一括で代入が可能となり、効率的です。

SQL発行形態のチューニング

ただし、一度にフェッチするサイズが大きいと、アプリケーション側のメモリを圧迫する

可能性があるので注意してください。

また、異なるバインド値のDML文を繰り返し実行する場合には、配列を使用して一括
でDML文を実行することを検討してください。このような処理を、PL/SQLで はバルク
バインドとも言います。バルクバインドは、バインド値ごとに何度もDML文をSQLエ ン

ジンに送信するのではなく、配列にあらかじめ更新対象のデータを入れておき、一括して

DML文を実行するため、パフオーマンスの向上を図ることが可能です。

櫃悧カーソルキャッシュ/文キヤッシュの使用
カーソルキャッシュ (JDBCでは文キャッシュ)を使用し、クローズしたカーソルの再

実行の負荷を最小限にしてください。コネクションプールを使用する環境においても、文

キャッシュは物理コネクションに関連付けられるため、非常に有効です。

プリコンパイラ系のアプリケーションでは、「HOLD_CURSOR=Y」 によってカーソル

キャッシュを有効化できます。PL/SQLはデフォルトでカーソルキャッシュを使用してい

ます。session_cached_cursorsパ ラメータに指定された値が上限です。

また、コネクションプールを提供するAPサーバーは、APサーバー側の機能として文

キャッシュを提供している場合があります。この場合、ユーザーアプリケーション側で特

に意識することなく、文キャッシュが利用されます。APサーバー側の設定項目(キャッシュ

サイズなど)を確認してください。

アプリケーションを意識した

上述の例では、結果として無事チューニングができましたが、そもそもステータスチェッ

クのためにSQL文を発行することが妥当であったかどうかを考えるべきです。実際の現

場のアプリケーションでも、このようなケースが時 あ々ります。このため、SQLチューニ

ングを行なってもパフォーマンス問題が解決できない場合は、次の観点でアプリケーショ

ンロジックを見直し、妥当性を確認しなくてはならないケースも出てきます。

。 SQL文 を発行する必要があるのかつ

蓼 SQL文の発行回数を減らせないか
'

督 SQL文の発行方法は効率的か
'

SQL文が発行されるたびに、内部的には多くの処理 (文の解析やインデックス評価、

変数バインド、物理的ブロックアクセスなど)を実行しています。したがって、データベー

スヘのアクセス回数を減らすことができれば、これらの内部処理に関わるオーバーヘッド

を低減することが可能となります。

また、SQLの発行方法についても考慮するべきです。例えば、配列フェッチや配列バ

インドの使用などは、SQLではなくアプリケーション自体に手を入れる必要がありますが、

大量データを使用するようなアプリケーションでは大きな効果が見込めます。

論理設計における
SQLチューエング

ここから:ま、設計に起因して、SOL単体の実行計画などは問題ないのに性能が出な
いケースにおいて、設計時:こどのような点に注意するべきかについて説明していきます。

特に本章では、論理設計時にSQLのパフォーマンスを意識して、性能最適化を行なう
方法 (考え方)を中心に説ロン層します。SOLのパフォーマンス問題が発生したときに、ど

のような点:こ着日して論理設計を確認すべきかを理解してください。

最初に、本章の設計に関する説明範囲を図 1に定義しておきます。

本章の前半では設計の詳細な話は基本的な内容に留め、SQLパフォーマンスに関わる

内容を重点的に説明していきます。

本章前半の範日 本章後半の範囲

図 1:設計に関する説明範囲

まずは、基本的なところから押えていきましょう。論理設計と物理設計の違いを簡単に

まとめておきます。論理設計時には、アプリケーションから見たデータベースの構造を設

計する必要があります。ここが不十分に設計されたシステムは、アプリケーションから発

」

行されるSQL文が複雑すぎたり、逆に単純でもデータ量が膨大になったりする可能性が

あります (図 2)。

概念設計、論理設計 物理設計

system l

データブロック

エクステント

セグメント

〕デ_タベース
〉オブジェクトの

1 物理属性

j

data0 1 dbf

表領域

フアイルや
ディスクヘの
マッピング

ヽ

∫
■アプリケーションから見たデータベースの構造を設計 。表領域、データファイルの設計

'表、列、データ型、桁数などの決定
●各ファイルのディスク上への物理配置を決定

゛キー、リレーション、整合性規約などの決定 ●インスタンス設計 (初期化バラメータ)
奎索引候補、パーティション候補の決定 ″容量設計

図 2:論理設計と物理設計の違い

概念設計時は、トップダウンアプローチやボトムアップアプローチを駆使して、業務の

データ分析を行ないます。本章では、ボトムアップアプローチを例に進めていきます。ボ

トムアップアプローチは、業務が必要としている情報を、既存システムの画面や帳票、ファ

イルなどをもとに抽出します。それらの情報を正規化、統合化、最適化することによって

整理しながら論理データモデルを構築していきます (図 3)。 これを論理設計と呼びます。

すでにあるものからシステムにとつての理想系を

導出していくため、正規化の作業が重要となる

「
ヨ
一‐重不́
一一帳
ニ

Ｆ
Ｌ

現行機能モデル

図 8:データ分析のボトムアップアプローチ

睫辣膨

画面 ERD妥当性
確認

すが:

デメリット
・
|

少ないモデルを作成できる反面、

正規化の作業

皆さんは、これまでに一度は「正規化」という言葉を耳にしたことがあると思います。

正規化とは、どのようなことを行なうことを指すのでしょうか。リレーショナルデータベー

スは、データを表形式で扱います。つまり、業務で必要なデータを表形式に変換していく

必要があります。そのために、データを正規化する作業が必要となるのです。ここでは、

正規化の例を示しますが、実際に発行されるSQLがどのように影響を受けるのかを意識

しながら読み進めてください。

データの正規化とは、データ項目が重複しないように効率良くグループ化することです。

正規化の目的は、データ表現の柔軟性の向上や冗長性の排除、整合性の確保、保守性の

向上などになります。

まずは、正規化によるメリットを考えてみましょう。

饉 データの整合性 (重複データが存在しないため、データの一貫性が保ちやすい)
攘 更新処理の高速化 (表当たりの索引数が減るため、更新処理が高速化できる)
峰 同時処理の改善 (表が最適に分割されるため、表に対するロック影響を最小化できる)

非常にシンプルなシステムの場合は、正規化をしなくても大きな表にすべてのデータ項

目を持つことができ、重複データが存在してもSQL文が非常にシンプルになるので、特

に性能問題やデータの整合性などを心配する必要はないでしょう。しかし、近年のデータ

ベースはさまざまな業務システムから高速にアクセスされるうえに、大量のデータを保持

しています。このようなシステムの場合は、データの整合性の管理や保守性、性能面で

正規化のメリットが出てきます。

正規化の目的

正規化の手順

データを正規化する目的とメリットを理解したところで、次は実際にどのような考えに

沿ってデータを正規化していくのかを説明していきます。正規化は、非正規形のデータか

ら第1正規化、第2正規化、第3正規化のステップを経て行なわれます (図 4)。

非正規形
|

▼

匝亜∃
|

↓
第1正規形

|

ウ

匝亜ヨ
|

↓
第2正規形

|

↓

隔憂覇嗣L可二」
第3正規形

繰り返し項目の排除/分離

キー項目の一部に依存した項目の

排除/分離

データ項目に依存した項目の

排除/分離

図4:正規化の手順

リレーショナルデータベースでは、分解されたデータ集合は第 3正規形の条件を満た

していることが理想とされています。実際の設計時は、これらのステップを意識する必要

はなく、熟練者であれば、非正規形から直接第2正規形を作り上げることができます。

それでは、実際に図5のような帳票が存在しているとして、非正規形から第3正規形

までの作業の流れを見ていきます。

正規化の例

漁‐

r.

．訂

受注番号

受注年月日

納期

顧客コード

顧客名

顧客住所

999-99999

2008年 8月 10日

2008年 11月 30日

XXXXXX
xxxxXX苅朱式会社

東京都XX区XX町9-99-99

合計

消費税

頂番 商品コード 商品名 単価 数量 小計

図 5:帳 票

鱚♭第 1正規化、第 2正規化

第1正規化の作業は、繰り返し項目のJ卜除と分離です。もう少し詳しく書くと、繰り返

し項目を排除して新たにエンティテイを設け、1:nの関係で表現できるようにする作業で

す (図 6)。

第 1正規化 :繰り返し項目の排除/分離
第2正規化 :キー項目の一部に依存した項目の排除/分離

非正規形 第 1正規形

圏艤輔辮

繰り返し項目を

別エンティティ

として分離

繰
り
返
し
項
目

図6:第 1正規化、第 2正規化

本章の例では、第1正規化の時点で第2正規化を満たしているため、第 1正規化の作

業が終わった時点で、第2正規形であると言えます。

なお、第 1正規化すら行なわなかった場合は、例えば SQLに対して、繰り返し項目に

対するソートなどの操作をSQLで表わしにくいため、アプリケーションロジックでソート
処理を行なう必要が出てくるといった影響を与えることが考えられます。

これは、商品コードでソートして出力したい場合などに、商品コード1、 商品コード2、

商品コード3な どのカラムをSQL文で取得した後に、アプリケーションでソート処理を
行なうことなどを指します。

予♭第3正規化
第3正規化の作業は、データ項目に依存した項目の排除と分離です。言葉で説明する

とイメージしにくいと思いますので、図7を確認してください。

第3正規化 :データ項目に依存した項目の排除/分離

第2正規形 第3正規形

導出可能

)ヽ

項目に(D)マーク

商品コードに依存

図 7:第 3正規化

導出可能項目の意味を簡単に説明します。

例に示した小計、合計、消費税の項目は、別の項目から算出可能な項目を意味します。

例えば、商品の単価が分かるので、数量分を掛け合わせて小計を導き出すことができます。

正規化の観点からは、導出可能な項目は排除することが前提ですが、集計処理が必要な

ため、性能面の観点から項目を残す場合もあります。性能最適化過程で検討すべき項目

であることが分かるように、注釈を付けて残しておくと良いでしょう。

祗歩統合化

統合化とは、各業務のデータを正規化した後に、同じ識別項目を持つエンティテイを 1

つにまとめる作業のことを言います。正規化の例で使用したデータと異なりますが、簡単

な例を図8に示しておきます。

営業側で正規化した

受注エンテイテイ

統合化した

受注エンティティ

生産側で正規化した

受注エンティテイ

各業務で正規化した後で、同じ識別項目(例では

受注番号)を持つエンティテイを1つにまとめる。

図8:統合化

ン,非正規化
正規化を行なうことにより、表は分割されていきます。そのため、正規化を徹底した場

合、SQLの結合表数が増える可能性が大きくなります。結合表数が多いSQLは SQL文

が複雑になり、SQL解析時間が増加するなどのパフォーマンス劣化をもたらしやすくなり

ます。第3正規化まで行なった後に、データのロード時間やオンラインおよびバッチ処理

の更新処理時間を考慮して非正規化を行なうことで、表の結合数を減らすことを検討し

ます。また、アプリケーションロジックの難易度の考えからも、非正規化を検討する場合

があります注
1。

更新レコードの重複度などを考慮して、原則として第 1正規形は維持するように、非

正規化作業を行ないます。非常に稀なケースですが、参照系のデータで、かつ 1レ コー

ドに絞り込める検索のみが行なわれるような場合は、第 1正規形でも崩すことがあります。

また、設計者がはじめから非正規化を行ない、その情報しか資料に残っていないこと

があります。この場合は、後任者が設計書を読み返したときに、なぜ非正規化を行なっ

たのかが継承されないので、非常に多くの場面で混乱を招くことになります。非正規化は、

あるべき第 3正規形を導き出してから、業務ロジックや性能などの考慮点をドキュメント

などに残したうえで行なうことをお勧めします。

注1 データの整合性の観点から、更新処理の時間軸を意識した処理フローが複雑化する場合があるためです。

設計に起因して、SQL単体の実行計画などは問題ないが性能が出ないケースにおいて、

設計時にどのような点に注意するべきかについて説明しましよう。特に本章の後半では、

論理設計時にSQLのパフォーマンスを意識して性能最適を行なう方法 (考え方)を中心

に説明を行ないます (図 9)。

N0

N0

N0 本章のターゲット

図9:チユーニングの進め方

SQLのパフォーマンス問題が発生したときに、どのような点に着日して論理設計を確

認すべきかを理解してください。開発者の方は、論理設計フェーズに関わることが少な

いことから、SQLと論理設計の関係をイメージするのは難しいかもしれません。しかし、

論理設計次第でSQL文の書き方が変わるという理解で読み進めてください。また、開発
時に設計の不備をSQLの観点から改善できるように、論理設計の知識を少しでも習得し

ておくと良いでしょう。

設計といっても、人によって認識はまちまちだと思いますので、本章の後半における設

計に関する説明範囲を定義しておきます (図 10)。

YES

N0 YES

N0YES

前章のターゲット

YES

「
「
Ｊ

Ｔ
Ｉ

■

Ｆ
■
二

■
一一―
■

Ｉ
一
　

一

〓
一
一
二

Ｔ
一
●
一
一

⊂
卜
Ｌ

今までの説明

設計チユー

「
ング■

本章前半の範日 本章後半の範囲

図 10:設計に関する説明範囲

また本章でも、論理設計の詳細は基本的な内容に留め、SQLパ フォーマンスに関わる

内容を重点的に説明していきます。

前章ではデータを正規化することで、データの整合性の確保や保守性の確保、更新処

理/同時処理のパフォーマンス改善など、正規化のメリットおよびその流れについて説明

しました。本章では、業務観点/性能観点から正規化後に論理設計を最適化する流れを

説明します。

正規化の作業 (概念 DB設計)は、データそのものやデータ構造の視点で分析し、設計

を行ないます。概念 DB設計は、あくまでもデータを主観において作成するものです。最

終的に論理設計を行なうには、業務観点での最適化作業と性能を意識した最適化作業が

必要になります。

それでは、作業の流れを見ていきましょう。

業務最適化の目的は、データに主観を置いて作成された概念 DB設計が、業務要件や

業務プロセスに基づいて業務機能が実装可能であるかを検証し、必要に応じて設計を見

直すことにあります。業務最適化では、主に次のような作業を行ないます。

①業務観点から必要な情報(データ)の抜け漏れの確認 (主キー設定の妥当性なども含む)

②業務処理に必要なリレーションの確認

③時間経過を考慮した最適化

本章では目的の趣旨からはずれるため、詳細な作業内容については割愛しますが、時

間経過を考慮した最適化の作業については簡単に説明しておきましょう。

業務最適化

163

蠣♭時間経過を考慮した最適化作業

概念 DB設計時に作成するERモデルでは、時間経過が表現できません。ゆえに、業
務最適化作業時には業務プロセスや業務処理、データのライフサイクルの観点から確認

を行ない、データの流れを意識しながらERモデルを最適化します。図11に簡単な例を

示しておきます。

ビジネスプロセス 匹}→匹ヨーー極]―犠□―[司
エンティティ

がヽ大丈夫か
'

図 11:時間経過を考慮した最適化作業

また、各エンテイティの発生/修正/参照/削除は、どの業務が行なうのかという観
点からも整合性が確保されているかを確認します。一度は、聞いたことや見たことがある

方もいるのではないでしょうか。エンティティとプロセスのマトリクスを用いて検証を行

なうCRUD分析です。表 1に簡単な例を示しておきます。

C:生成(Create)、 R:参照(Reference)、
U:修正(Update)、 D:削除(Delete)

表]:CRUD分析

エンティティとプロセスのマトリクスを用いて、データの流れの観点から矛盾などが発

生していないかを考慮します。また、ここで重要な点は、データベース負荷が高いと思わ

れるプロセス (業務)やエンティティ (テーブル)をマトリクスなどから認識しておくこと

です。これは、次に述べる性能最適化を検討する対象となります。

R R ∪

R R

R R

CRUD R

CRUD R

性能最適化

性能最適化の目的は、特に負荷が高いと思われる業務やテーブルに着目し、性能要件

と処理トラフイックに対応した高速なアクセスが可能となるように設計を見直すための作

業です。主に、次のような作業を行ないます。

① システム要件や業務要件定義などから性能上は注意すべき事項の確認

② 概念 DBモデルとCRUD分析、業務トランザクション量などからアクセス頻度が高い

エンティティの特定および対応策の検討

③ 業務機能要件や運用管理要件の観点から対応策の検討。この時点でデータベース固有

の機能を意識して対応策を検討する場合もある

それでは、実際にどのような観点で性能を意識した最適化作業を行なっていくのかを

見ていきましょう。論理設計時の性能最適化作業では、負荷が高いと思われるテーブル

に対してどのように処理が行なわれるのかを考慮し、エンティティの分割化や統合化、冗

長化、そして要約化を行ないます。

それではどのような処理の場合に、これらの対応策を検討すべきかを詳細に見ていき

ましょう。

分割化/統合化とはどのような作業であるのかを、まず図増2で説明しておきます。

分割化/統合化

|1量
1つの表に統合して実装するか?

上位

エンティティ

統合
サブセット
エンティティ

3つの表に分割して実装するか'

サブセット表

ベース表

従属表

概念モデル
エンティティ

図 12:分割化/統合化の概念

概念図で説明すると少し難しいですね。どのようにデータにアクセスされるかによって、

テーブルを分割化すべきか、そしてテーブルを統合化すべきかの例を示しながら説明し

ていきましょう。

隕りある顧客管理用データの実装を検討する例

図 13は、ある顧客管理用データを実装するにあたって、3つのパターンを検討した内

容です。

個人/法人区分

パターン①

屁鱚鶉
サブセット表に
分割して実装

パターン②

-,'--l_'-
'l/

ベース表と
サブセット表に
分割して実装

パターン③

巡吻麒
統合した表で実装

性別

図 13:顧客管理用データの実装パターン

パターン①と②が分割化を考慮した実装で、パターン③が統合化を考慮した実装となっ

ています。業務要件やアクセス頻度から顧客管理用データの参照のされ方が異なる場合

に、どのように実装しておくと性能面でメリットがあるのかを見ていきましょう。

個人顧客と法人顧客で業務プロセスが異なる場合と同じ場合について検討してみます。

性別 .
代表者名 ■

詈量ら個人顧客と法人顧客で業務プロセスが異なり、別々にアクセス

する頻度が高い場合

個人顧客と法人顧客で、業務プロセスがまったく異なる要件だった場合を仮定してみ

ましょう。

この場合、個人顧客と法人顧客のデータに別々にアクセスする可能性が高くなります。

同時に読み込まなければならないことは稀でしょう。

さて皆さん、ここで個人顧客データを読み込むSQL文を考えてみてください。顧客管

理用データを3つのパターンで実装した場合に、個人顧客データのみを取得するSQL文

はどのようになるでしようか?併せて性能面からも考えて、どのSQL文が一番効率的で

あるかも考えてみてください。ここで一度考えてから、先へと読み進めてみてください。

トパターン①

パターン①は、個人顧客と法人顧客のテーブルが分かれているため、FROM句で個人

顧客テーブルのみを指定することで絞り込むことが可能です (図 14)。

個人顧客テーブル

SELECT顧 客番号′ 顧客名′ 性別 個人顧客テーブルを
全表走査してデータを

取得する

↓

最初から検索対象が

絞り込まれているため

走査件数が少なくなる

FROM 個人顧客テーブル

T~

FROM句で個人顧客に
絞られている

顧客番号 顧客番号 1生月1」

001 Aさん 男

002 Bさん 女

003 Cさん 男

004 Dさん 男

図 141個人顧客と法人顧客で業務プロセスが異なる場合 (パターン①)

>パターン②
パターン②は、顧客テーブルと個人顧客テーブルを結合することで、個人顧客データ

を絞り込むことになります (図 15)。

FROM

WHERE

SELECT顧 客番号′ 顧客名′ 性別
個人顧客テーブル 顧客テーブル

個人顧客テーブルを全表走査、

取得した顧客番号で顧客テーブルを
インデックススキャンして結合

↓

結合する分]行のデータを読むコストは高くなる

個人顧客テーブル′
顧客デ=ブル
~

個人顧客テープル.顧客番号 =
顧宣i=2生」菫宣重量_,

↑
テーブルを等価結合することが

個人顧客を絞り込むことになる

顧客番号 1生別」 顧客番号 顧客名

001 - 001 Aさん

003- 002 B社

004- 003 Cさん

004 Dさん

005 E社

(11
ヽ

図 151個人顧客と法人顧客で業務プロセスが異なる場合 (パターン②)
67

|

>パターン③
パターン③は、1つのテーブルに個人顧客データと法人顧客データが存在していますの

で、顧客テーブルの区分をWHERE条件に指定することで、個人顧客データを絞り込む
ことになります (図 16)。

個人顧客テーブル

SELECT顧客番号′ 顧客名′ 性別
FROM 顧客テーブル
WHERE :国人_ゴム2ヽ」:二をと

=二
__:1:L生

'′

顧客テーブルを
全表走査して

て

個人顧客を選択

個人/法人区分を検索条件として指定す
る必要がある

顧客番号 顧客名 区分
1性
別 代表者名

001 Aさん 個人―

002 B社 法人 Bさん

003 Cさん 個人 ^

004 Dさん 個人―

005 E社 法人 Eさん

図 16:個人顧客と法人顧客で業務プロセスが異なる場合 (パターン③)

3つのパターンから次のようなことが言えます。

薔 パターン①は、個人顧客を絞り込むときに表として存在しているため、検索対象とな
るデータ件数がほかのパターンに比べて少なくて済む

響 パターン①は、業務プロセスで必要とされる区分とテーブルの構造が同じであるため、
そのほかの絞り込み条件が発生しても生産性が高い。また、データの保守性の観点か

らも望ましい

。 パターン②は、個人顧客データを取得するために、個人顧客テーブルと顧客テーブル

を結合する必要があるため、パターン①より性能的に不利

鰻 パターン②は、個人顧客データを更新処理するときに、個人顧客テーブルと顧客テー
ブルの2つに対して処理が発生する

。 パターン③は、個人/法人区分で条件指定を行ない、個人顧客データの絞り込みを行
なうが、「個人」と「法人」の2種類の値しか存在しないため、カーディナリティの低

い項目となる。ゆえに、索引スキャンによる十分な絞り込みが期待できない可能性が

高い。パターン①の対象データ件数より多くのデータを取得する必要があるため、性

能的に不利

罐 パターン③は、顧客テーブル 1つに個人と法人のデータが存在するために、業務プロ
セスで必要とされる区分とテーブル構造が異なることとなる。業務ロジック (SQL文)

で意識しておく必要があるため、生産性や保守性の観点からも望ましいとは言えない

上記の理由により、「個人顧客と法人顧客で業務プロセスが異なり、個人顧客データと

法人顧客データが別々にアクセスされる場合」は、パターン①の実装が有効であると判断

できます。

168

L …

で鰊 個人顧客と法人顧客の業務プロセスが同じなので、同時にアク

セスする頻度が高い場合

3つの実装可能なパターンは変わりませんが、業務要件の違いでアクセスのされ方が異

なる場合はどうでしょうか。次は、個人顧客データと法人顧客データに同時にアクセスす

るケースについて考えてみましょう。

>パターン①
パターン①は、個人顧客と法人顧客のテーブルが分かれているため、UN10N ALL句

を使用して2つのテーブルからデータを取得する必要がありそうです (図 17)。

SELECT顧 客番号′ 顧客名
性別′ nul■ 代表者名

リレ

FROM

′ 顧客名
null 性別′ 代表者名
法人顧客テーブル′

2つのテーブルの検索結果を
合わせて読み込まなければならない

図 171個人顧客と法人顧客で業務ブロセスが同じ場合 (パターン①)

>パターン②
パターン②は、個人顧客データと法人顧客データを同時に取得する場合に、共通情報

にアクセスする場合と個別の情報まで含めて同時に取得する必要があるかで、SQL文が

変わってきそうです (図 18)。

SELECT顧 客番号′ 顧客名
FROM 顧客テーフル′

「

共通情報にアクセスする場合は
1つのテーブルヘのアクセス

で済むが……

SELECT顧 客番号′ 顧客名′ 性別
FROM

WHERE

ブル

ブル

読み込もうとすると表結合が必要

図 18:個人顧客と法人顧客で業務プロセスが同じ場合 (パターン②)

169

>パターン③
パターン③は、個人顧客データと法人顧客データが1つのテーブルに存在するので、

顧客テーブルのみにアクセスすればデータの取得が可能です (図 19)。

SELECT顧 客番号′ 顧客名′
性別′ 代表者名

FROM 顧客テーフル :~~~五~~~
1

どの項目でも1つのテーブルヘの
アクセスで取得可能

図 19:個人顧客と法人顧客で業務プロセスが同じ場合 (パターン③)

皆さんは、どのパターンを選びましたか ?

本章の例では、さらに細かい業務プロセスによって選択が変わってきそうです。仮に、

個人顧客データと法人顧客データに同時にアクセスするのが共通項目のみで、詳細な個

別項目には顧客番号指定でアクセスするようなケースの場合は、共通項目のみが 1つの

テーブルで実装されているパターン②が性能面で有利となります。

パターン①、③は取得する行数は同じですが、共通項目のみのテーブルのため、列数

が少ないです。そのため、1ブロック内のレコード数が多いと想像できます。つまり、パター

ン①、③より②が有利と言えるでしょう。

仮に個別項目にも同時にアクセスする場合は、結合オーバーヘッドや更新処理、生産

性などを考慮すると、パターン③が有利と言えるでしょう。

なんとなく、分割化/統合化がどのような作業であるのかイメージしていただけたと思

います。業務プロセスや業務処理を意識して、どのようにデータにアクセスされるかによっ

て、論理設計を見直す必要があります。皆さんも、現在業務で使用しているSQL文とデー

タの取得要件から実際の設計を確認してみてください。

冗長化の作業は、データの正規化のところでも触れましたが、非正規化作業となります。

また、繰り返し項目を列に持たせることで1行に収め、1/0特性の向上を図ることを目

的としています。繰り返しの数が非常に少ない場合や複数表に対する結合階層や結合パ

ターンが非常に多くなる場合以外は、原則として冗長化は禁止しておくことをお勧めし

ます (図 20)。

冗長化

170

親表 子表

Ｎ
建
機
建

第 1

目 親表項目の繰り返し

親表項目 子表項目

図 20:冗 長化

次に、メリットとデメリットを示しておきます。

饉 メリット

親表とそれに付随する子表のデータにセットでアクセスする場合、対象となるデータ

ブロックが少なくて済みます (表結合が必要ありません)。

螢 デメリット

子表のデータを項目単位に串刺しでアクセスする場合、対象となるデータブロックが

多くなります。

1行のサイズが大きくなるため、移行行、連鎖行が発生しやすくなります。

汎用性が低くなり再利用しにくくなるので、仕様変更やシステムを新しくする際のコス

トがかかります。

輻レクラスタ表による冗長化の対応

親表と子表が必ずセットでアクセスされる場合は、クラスタ表を使用して冗長化への

対応を行なう場合もあります。クラスタ表のメリットは、論理的な関係を変更することな

く物理的に同じ場所 (同じブロック)に格納できるという点です (図 21)。

データブロック

図 21:ク ラスタ表

171

‐
親表のデータ

要約化

要約化の作業は、データの観点から作成した概念 DBモデルに存在しない、業務で必

要となる要約データを持たせることで、1/0特性や業務ロジック性能の向上を図ることを

目的としています (図 22)。

1.親表への要約項目追加

3.導出項目の追加

導出項目

2.要約表の追加

4.同一項目の二重管理

図 22:要 約化

賦♭マテリアライズドビューによるサマリ表の実装
DWHシステムなどは、大量のデータを取り扱うため、この要約化の作業によリサマリ
表の作成を検討することが多いと思います。そのサマリ表の実装で用いられるのがマテ

リアライズドビューです。データの集計結果を実体として持たせられるので、集計処理の

性能向上を図ることができます (図 23)。

SELECT文による集計結果を格納

SELECT a.顧 客コード′
SInI(b.金額)合計金額

FROM 受注 a′ 受注項目 b
WHERE a.受 注番号=b.受注番号
GROUP BY a.顧客コード′

図 23:マテリアライズドビュー

―

TT¬
||ヨ更6.‐■‐■‐ ‐1
1「 ‐ ‐| .‐ .1
1■■■■11■||‐■●■11
1■ | ||‐

 ・ | ・・ _ 1

1F頂百F¬ 1

口

論理設計時の性能最適化作業とは、負荷が高いと思われるテーブルに対して、どのよ

うに処理が行なわれるのかを考慮しながらエンティティの分割化や統合化、冗長化、要

約化を行なう作業です。

分割化/統合化とは、どのようにデータにアクセスされるかによって、テーブルを複数

テーブルに分割化すべきか、逆に統合化すべきかを検討する作業です。

冗長化の作業は非正規化作業とも言えます。繰り返し項目を列に持たせることで 1行

に収め、1/0特性の向上を図ることを目的としています。繰り返しの数が非常に少ない場

合や複数表に対する結合階層、結合パターンが非常に多くなる場合以外は、原則として

冗長化は禁上しておくべきです。ただし性能要件をもとに、特別に非正規化することも検

討する場合があります。

SQLのパフォーマンス問題が発生したときに、SQL単体では最適化されてもパフォー

マンスが出ない場合は、本章での論理設計時に性能最適化の作業で考慮した点が実際の

実装時に考慮されているかを確認できるようにしましょう。

本章の解説は、論理設計フェーズに関わったことがない開発者の方には、少しイメー

ジしにくい部分もあったかもしれません。しかし、運用フェーズに入ってからの論理設

計の変更は、ほとんど不可能に近いものです。業務や性能面から論理設計の不備を開発

フェーズ中に指摘し、未然に性能問題を予防できるようにするためにも、論理設計の知識

を少しでも身に付けておいてください。そして、実際のプロジェクトやシステムで、業務

で使用しているSQL文とデータの取得要件から実際の設計を確認してみてください。

次章からは、システム開発プロジェクト全体を通して、SQLパフォーマンス問題を予

防したり、分析/解決を効率化したりするために考慮すべき事項を説明していきます。

/´
´

(173

囲回□

口E画|コ|

口Eロロ|コ|

口E画|コ|

口Eロロ|コ|

口回EI口|

口回□田

パフォーマンス問題を起こさないためには

計画フェーズ

要件定義フェーズ

設計フエーズ

開発フエーズ

テストフェーズ

運用フエーズ

実際のプロジエクトでどこまでやるべきか

パフォーマンス問題を起こさ
ないためには

Part3では、各プロジェクトフェーズでパフォーマンス問題に陥りがちな現状と課題に

ついて触れ、SQLパフォーマンス問題をいかにして予防するかをプロジェクトフェーズ
や体制を意識しながら説明します。SQLパフォーマンス問題を起こさないようにするに
は、プロジェクトの上流フェーズにおける「予防」が非常に重要になります。そのノウハ

ウについて詳しく解説していきます。

SQLパフォーマンス問題の

Par2では、SQLパ フォーマンス問題に直面した場合に、どのような点を考慮して改善

すべきかといったSQLパフオーマンス問題を「解決」するためのノウハウについて、主に

次の点を中心に説明を行ないました。

。 定型的なSQLチ ューニング

蛮 非定型的なSQLチューニング
饉 アーキテクチャを意識したSQLチューニング
鬱 SQL単体以外も意識した SQLチューニング

システムやプロジェクトにおいて一番良いのは、SQLパフォーマンス問題を素早く解

決できることではなく、SQLパフォーマンス問題を起こさないことです。しかし、実際に
プロジェクトを進めるうえで、すべてのSQLパフォーマンス問題をなくすことは非常に

困難と言わざるを得ません。

重要な点は、SQLパ フォーマンス問題を運用フェーズに持ち込まないことでしょう。プ

ロジェクトフェーズの上流から適切にSQLパフォーマンス問題を意識して対策を行なえ
ば、運用フェーズにおいてSQLパフォーマンス問題を減らすことは可能なのです。

このPart3では、SQLパフオーマンス問題を起こさないように、プロジェクトの上流
フェーズから「予防」するためのノウハウについて話を進めていきます (図 1)。

開発 テスト 運用計画 要件定義 設計

PM 漑

設計者 選由
DBA は警
開発者 鏃

図 1:SQLパ フォーマンス問題の「解決」と「予防」

SQLパフォーマンス問題の予防に必要なのは、プロジェクトフェーズの上流から対応

策を意識しておくことです。また、各フェーズで担当者間の連携や役割を明確にして対

応に取り組む体制作りも非常に重要です。限られたプロジェクトの時間の中で、いかにし

て後工程のフェーズにSQLパ フォーマンス問題の課題を持ち込まないようにするかがポ

イントだと言えるでしよう。

SQLパフォーマンス問題の対応を先送りしないためにも、各フェーズで何をすべきか、

各フェーズに携わる担当者はどのような役割を担っているのかを理解しておく必要があり

ます。

まず「予防」の説明に入る前に、SQLパフォーマンス問題の発生の原因となる傾向につ

いておさらいしてみましょう。

閻,SQLのパフォーマンス確認はテストフェーズから始まる傾向がある

SQL文のパフォーマンス確認は多くのケースでプロジェクトの後半、テストフェーズか

ら行なわれます。さらに、テストフェーズは単体テスト、結合テスト、性能テストと進み

ますが、パフォーマンス問題が顕在化するのは性能テストが始まってからというケースが

多いのではないでしようか ?

しかし、性能テストの段階まで来るとプロジェクトもほぼ終盤です。そこで問題が発生

してしまうと、主にプロジェクトスケジュール、修正範囲の点から非常に苦しい状況にな

ることが多くなります。

フェーズに関する問題

>プロジエクトスケジュール上の問題
プロジェクト終盤となるとサービスインの期日が追ります。サービスインまでの残りわ

ずかな時間でパフオーマンス問題を解決する必要があり、これがチューニングの難易度を

上げていると言えるでしょう。

>修正範囲の問題
また、プロジェクト終盤では、システムの機能はある程度はでき上がっており、いざ修

正するとしてもその範囲の確認が困難になります。修正だけなら簡単にできても、修正に

対する機能確認テストのために多くの時間と工数を要することになります。

>SQLの設計/記述は主に開発フェーズから始まる傾向にある
SQLの設計、記述はどのフェーズから行なうことが多いでしょうか。SQLパフォーマ

ンス問題が発生する多くのプロジェクトでは、開発フェーズに入ってからプログラムコー

ディングとともに記述するケースが多いようです。

その場合は、次に挙げる可能性をはらむ危険があります。

檬 設計者の想定と異なるSQLが記述される可能性
峰 設計者が SQLま で想定して設計していない可能性

フェーズのみならず体制面でも考察してみます。ある程度の規模のプロジェクトになる

と、複数のチームによる並行開発となるでしょう。業務関連の設計、開発を行なう業務チー

ムと、データベースをはじめとするインフラ関連を扱う基盤チームに分かれるのが一般的

です。このようなチーム構成に起因してSQLパフオーマンス問題の解決が困難になる要

因もあります。例えば、次のような状況です (図 2)。

。 SQLチューニングは業務チームに実施させるべきか、基盤チームに実施させるべきか
を判断しなくてはならない状況

。 データベース観点での問題 SQL文と、業務プログラムとを対応付けなくてはならない
状況

体制に関する問題～PM/設計者/DBA/開発者の分担構造

計画 要件定義 設計 開発 テスト

PM I曖霧:

設計者 濯蝙
DBA 儡

開発者 修

図2:プロジェクトフェーズ、担当と DBAの関わる役割

SQLパフォーマンス問題を

多くの方は、これまで述べたような問題に突き当たったプロジェクトに思い当たるので

はないでしょうか。そして、実際に問題が発生してから次のようなことができていればと

思った方も多いでしよう。

警 プロジェクトの早期フェーズからパフォーマンス問題を見つけられないか
驀 業務観点、データベース観点での知識、技術の連携がスムーズに行なえないか

これらの事項は、フェーズごとや担当ごとに場当たり的に対処しても実現は難しいと言

えます。SQLパフォーマンス問題を発生させないという明確な目的を持ち、プロジェクト

全体で仕掛けを作ることが重要です。

予防のための考慮ポイン トと

限られたプロジェクトの時間の中で、いかにして SQLパフォーマンス問題の課題を後

工程のフェーズに持ち込まないかを意識するには、各フェーズで何をすべきか、そして各

フェーズに携わる担当者はどんな役割を担っているのかを知っておく必要があります。

では、いよいよ以降の章よりSQLパ フォーマンス問題を予防するために各フェーズで

何をすべきか解説していきましょう。

179

運用

計画フェ…ズで実施する作業として、主にシステム全体要件、構成の概要レベルでの

検討や、プロジェクトのスケジュール、体制の立案があります。このフェーズで立てた計画、

体制はその後のプロジェクト運営に大きく影響しますので、この段階でパフォーマンスを

意識した性掛けが投入されると理想的です。

PMの役割

システム全体要件、構成の概要レベルでの検討において、SQLが直接関連することは

まずないでしょう。しかし、プロジェクトのスケジュールや体制を立案するにあたり、ま

ずプロジェクトの特性やリスクを洗い出し、その施策や対応をスケジュールと体制に含め

ていく方法があります。この洗い出し作業の中に、パフオーマンス問題やSQL問題に関

するリスクを可能な限り入れておくことが重要です。

リスクとは顕在化する前の問題であり、プロジェクト計画時点から問題が顕在している

わけではありません。この段階ではSQLパフォーマンス問題はリスクに留まることになり

ますが、SQLパフォーマンス問題はどのプロジェクトでも発生する可能性のあるリスクで

あると言えます。このリスクを的確に認識し、問題をできるだけ顕在化させないための施

策や、顕在化したときの対応を行ないやすいような施策を打つべきでしょう。

PM(プロジェクトマネージャ)や PMを補佐するメンバーが SQLパフォーマンス問題
とそれに対する施策を考えられるかがキーとなります。また、そのような検討ができるテ

クニカルなメンバーがこの段階で参画しているかも重要になります (図 1)。

計画フェーズ

パフォーマンス問題

に対するリスク、施策

の重要性の働きかけ

パフォーマンス問題を

考慮したリスク検討、ス

ケジュール、体制の立案

Ｑ
嘔
Ｊ

DBAの役割

図 1:リスク検討におけるパフォーマンス問題の考慮

計画フェーズの作業にDBAが直接関わることは残念ながらなかなかないでしょう。そ

れだけでなく、計画フェーズにDBAが参画すること自体が稀であると言えます。そのた
め、計画フェーズが開始されてから上記のような事項をPMに意識させる機会を作るの

は非常に困難です。

では、どうすれば良いのでしょうか。最も容易なのは、1つ前のプロジェクト終了時に

PMに伝えておくことです。システムがサービスインし、プロジェクトチームが解散する

際に、DBAが自身の視点でそのプロジェクトにおいて発生してしまったパフォーマンス

上の問題について、どうしておけばその問題が発生しなかったかをぜひPMに伝えてく

ださい (図 2)。

前プロジェクト 新プロジェクト

ＰＭ
　
　
　
ＤＢＡ

餞
鰊

lll

図2:DBAからPMへのプロジェクト終了時の考慮事項の伝達

本章を参考に、「計画フェーズでこのようにしておけば、問題が発生しなかった可能性

が高い」と訴え、PMが次のプロジェクトの際に少なからず SQLパフォーマンス問題に対

するリスクやその施策を考慮してくれるよう働きかけてください。

すなわち、計画フェーズの段階で重要なのは次の3つであると言えるでしょう。

運用開始後、パフォーマンスに

関する問題や、事前に実施す
べきだつた事項をまとめ、次回

に活用すべき旨を報告する

このフェーズでDBAが参画で
きなかつたとしても、PMがパ
フォーマンスに関する考慮を

してくれれば良い

鑽 PMが SQLパフォーマンス問題を意識してプロジェクト計画を立てているか
議 計画段階でテクニカルなメンバーが参画しているか
縦 DBAが PMに SQLパフォーマンス問題のリスクを的確に伝えられるか

計画フェーズにおける

では、前項で挙げた計画フェーズにおいて重要となる3つのポイントをもう少し詳細に

説明していきましょう。

まず、計画フェーズでパフォーマンス問題を意識した計画とはどのようなものなのか、

説明していきます。

賦)プロジェクト計画はどのように進めていくか
PMの役割において計画フェーズで行なう作業は多岐に渡ります。プロジェクトロ

標の選定と明確化、タスクを詳細化しその関連などを表したWBS(Work Breakdown

Structure)の作成とスケジュール策定、組織計画や人員計画など、プロジェクト全体を

見通した計画が行なわれます。

まず、プロジェクト計画をどのように立てるかを共有しましょう。

一般的には次のようなタスクがあるはずです。

饉 プロジェクトの特性を把握
禰 プロジェクトを進めるにあたってのリスクを把握
。 リスクを顕在化させないための対応策を検討し、計画に反映

このようなプロジェクト計画立案の際に、パフォーマンス問題の発生を予防するための

対応策を加えていくことが重要です。

ё

"パ

フォーマンスを重視すべきプロジェクト特性とは
どのようなシステム構築においてもパフォーマンス要件は必ずありますが、特に次のよ

うな特性を持っているプロジェクトでは、パフォーマンス問題に注意して計画を立てるべ

きです。

パフォーマンス問題を意識したプロジェクト計画

182

|

>顧客からのパフォーマンス要件が厳格である場合

例えば、「～秒以内に画面表示する」「～TPS以上のスループットを担保する」などの要

件が明確であり、かつ重視される場合には、その要件を達成するために、詳細にパフォー

マンスリスクを洗い出し、要件の実現性をプロトタイプ検証などの計画に入れるなどの対

応を検討します。

>処理量の変動傾向が見えにくい場合
一般ユーザー向けのWebシ ステムなどは使用ユーザー数の見積もりが難しいこともあ

り、予期せぬ処理量の増大などが発生する可能性があります。このような場合は、同時

アクセス負荷テストやボリュームテストなどの精度を意識したスケジュール設定や体制な

どの対応を検討します。

>ミ ッションクリティカルなシステムである場合

当然のことですが、顧客の業務継続性を左右しかねないようなクリティカルなシステム

では、パフォーマンスについては十分に検討しますが、要件フェーズや設計フェーズでシ

ステム構成のフィジビリティテストなどの対応も検討します。

ほかにも、既存のハードウェアを流用しなくてはならないため、ハードウェアリソース

が乏しい、アプリケーションパッケージではなくカスタムでアプリケーションを作成する

必要がある、開発要員の確保やスキルに不安があるなど、パフォーマンスに影響が出か

ねないプロジェクト特性がある場合には、そのような特性を十分に洗い出しておく必要が

あります。

ざ魃パフォーマンス問題に対するリスクとは?
パフォーマンス問題に関するリスクに対し、発生の可能性やリスクが顕在化した場合の

影響度を明確化したうえで、どのような予防策をとるべきかを十分に検討する必要があり

ます。

なお、発生の可能性や影響度については、前述のとおリプロジェクトの特性から検討

することになります。例えば、スケジュールがタイトなプロジェクトでは、スケジュール

関連のリスクが顕在化する可能性が高くなります (表 1)。

ｎ
Ｃ
Ｊ

表 1:パフォーマンス問題対応策と整理の例

このようなパフォーマンスリスクをPMが理解していれば良いのですが、ほかの業務な

どもあるため、そこまで重視されないこともあるのが現状です。パフォーマンス問題に詳

しいDBAが、なんらかの方法で上記のようなリスクと対応策をPMヘフイードバックで

きるように動いてみてください。前述したように、プロジェクト終了時に伝えるのも1つ

の手です。

パフォーマンスリスクに対するより具体的な対応策は以降で詳しく説明していきます

が、まずはプロジェクト全体を通じて考慮すべき対応策を記しておきます。

失敗プロジェクトに多くあるケースとして、WBSの作成からスケジュール策定を行な

う過程で、改善作業に対するタスクが見積もられていない点が挙げられます。ほとんどの

フェーズで、メインの作業タスクやその成果物に対するレビューなどは見積もられていま

すが、レビュー後に問題が発生した場合の改善作業タスクはほとんど考慮されていませ

ん。その影響で、次フェーズにパフォーマンス問題などの課題を残したままプロジェクト

開発
SQL開 発者のスキルが低く、
SQLのコーディング品質が悪い

中 中 コーディングガイドの徹底

テスト

開発フェーズが遅延し、十分な試

験を行なうスケジュールがとれな
しヽ

大 中

テストフエーズの十分なパッファ

作成

開発フェーズが遅延しないため

の施策

テスト
性能試験時のテストシナリオ、テ

ストデータが用意できない
中 大

要件確認時からのテストシナリオ

検討

テスト
多重性能試験ではじめてパフォー

マンス問題が発生する
4ヽ 大

単体試験時からのパフォーマン

ス確認

テスト
SQLチューニング案はあるが、ア
プリケーシヨンに実装できない

大 大
チューニングを行ないやすいア
プリケーシヨン設計検討

運用

性能試験でパフオーマンス問題が

発生していなかったのに、運用開

始後にパフォーマンス問題が発生

する

中 大
性能試験の試験計画の徹底、試

験分析の徹底

WBS作成時に改善タスクの考慮

が進み、致命的な問題へと発展するケースがよくあります。

企業内の情報システムの大規模化や複雑化に伴って、システム品質の重要性は急速に

高まりつつあります。品質向上のためにテストフェーズの工数や要員をきちんと確保し

たと自負しているプロジェクトに限って、前フェーズの遅延によリテストフェーズが削減

されるケースをよく目にします。そのようなことになるのは、プロジェクト計画時の品質

に対する考え方が根本的に間違っているからなのです。品質の確認と改善作業はテスト

フェーズのみで行なうものではなく、各フェーズ内で行なうものです。各フェーズで品質

の確認と改善作業をどのように行なうべきかを明確にするために、計画フェーズでは品質

管理計画を策定することをお勧めします。また、品質管理計画を作成するだけでなく、プ

ロジェクトに参加する各担当者に品質基準の考え方や方針を明確に伝えておく必要もあり

ます。

現在、情報システムで利用する技術は非常に多様化しています。1つの要件を満たす

ために、いくつもの技術要素を考える必要が出てきています。

プロジェクト計画や推進において、いかに技術的要素を最適化できるかという点がパ

フォーマンス問題を予防する非常に重要な要素となります。

DBAだけに限らず、プロジェクト計画を策定するうえで技術的判断が必要な要素につ

いてスキルを持っているテクニカルメンバーを、計画フェーズからPMや PMを補佐す

るPMOに参加させ、各フェーズの計画作成を行なうことを検討してください (図 3)。

■
５
ｕ

品質管理計画

PMOへのテクニカルメンバーの参画

Pl\/O (Project ltlanagement Off ice)

図 3:PMへ のテクニカルメンバーの補佐

一般的なプロジェクトにおいては、業務ロジックを扱う業務チーム、インフラ部分を扱

う基盤チーム、その間の共通処理を扱う業務共通チームといった複数チームによる体制

がとられるので、パフォーマンス問題が発生した場合、その切り分けや問題解決には多く

のメンバーが関わることになります。

パフォーマンス問題が発生すると、どの部分が問題なのかの切り分けが困難となったり、

ひいては責任の押し付け合いも発生しかねません。

このようなリスクヘの対応として、各フェーズの最終検討時などの要所に性能チーム

を設置することがあります。性能に対してプロジェクトに横断的に責任を持つチームを置

くことで、問題切り分けや解決が迅速になるケースが多々見受けられます。パフォーマ

ンス問題は最終的にデータベースやSQLに帰着することが多いため、この性能チームに

DBAが参画すればより良いでしょう。

なお、性能チームを独立して設置することが困難であれば、基盤チームが肩代わりす

ることも可能です。ただし、PMやチームリーダーとともにパフォーマンス問題の解決に

対して十分な権限が与えられる必要があります (図 4)。

●パフォーマンス問題を考

慮したリスク検討、スケジ

ュール、体制の立案
●プロジェクトの推進

●パフォーマンス問題に対

するリスク、施策の重要性
の働きかけ

要所での性能チームの設置

186

性能チームの設置、権限付与

業務チーム 基盤チーム

リーダー リーダ・|

開発者 言疑

,■ .:|.・ ‐1‐■・
・:■t´ ._ 11■ |■■

′

ヽ .″
 ́ ・ ヅゝ

図 4:性能チームの設置

プロジェクト計画立案の際には、SQLパフォーマンス問題の発生を予防するためのエッ

センスを加えていくことが重要です。SQLパフオーマンス問題に詳しいDBAが、なんら

かの方法で、SQLパフォーマンス問題に関するリスクと対応策をPMヘフイードバック

できるように動くことが重要になります。

●
輌
）

計
画
フ
ェ
ー
プ

このフェーズでは、顧客と要件をすり合わせてシステム方式を検討します。顧客要件

をシステム化した場合、その実現性が妥当かどうかを確認するべきです。DBAが関わる

ケースが増えてくるのはこのフェーズからです。ただし、DBAは基盤部分を任されるこ

とが多いものの、顧客要件の確認や業務処理の観点については設計者が担当することが

多いと言えます。

要件に対する実現性の確認の手段の 1つには、プロトタイプ試験があります。ある程

度の業務要件とパフォーマンス要件が定まってきた段階で簡易なプロトタイプを作成し

て、どの程度のパフォーマンスを実現できるかを測定することにより、後のフェーズでの

リスクを低減できます。この段階では細かな要件や機能が確定しているわけではなく、少

ない時間での試験となります。SQLパフォーマンスの観点で、試験が妥当なのかをDBA
からガイド、レビューできると良いでしょう。

また、既存システムからの移行である場合には、既存システムのパフォーマンスについ

て、この段階でアセスメントを行なっておくとより安心です。パフォーマンスボトルネッ

クが存在する場合には、新規システムにおいてどう対処していくのかをあらかじめ検討す

ることができます。

要件定義の際に、その実現性を十分に考慮して顧客と折衝することを心がけるべきで

す。実現性が曖味な要件については、あらゆる意味でのバッファをとるか、プロトタイプ

PM/設計者の役割

などによる実現性の検証、有識者の参画をスケジュール、体制面で盛り込んでおきましょ

う。特にパフォーマンス要件については、プロトタイプ検証の支援も含めてDBAの参画

を盛り込むべきです。

プロトタイプ検証や既存システムのパフォーマンスアセスメントを通じて、早期フェー

ズから業務ロジックやシステム方式に関する検討に参画するようにしましょう。プロトタ

イプ検証は業務ロジックを概要レベルで把握するには良い機会です。

プロトタイプ検証を行なう場合は、後のテストフェーズの章 (Chapter17)で 解説すると

おり、テストシナリオやテストデータの観点でガイド、レビューを行ない、結果分析、ボ

トルネックの把握、改善案を提示します。

このフェーズにおける重要なポイントは、次の3つであると言えるでしょう(図 1)。

鰺 PM/設 計者が SQLパフォーマンス問題を意識して要件を検討しているか
籐 SQLパフォーマンスが考慮されたプロトタイプ試験が行なわれているか
艤 l既存システムがある場合はそのアセスメントが行なわれているか

~~~三
壺::ヽ |「
~~~~~ ~

.|ごll DBAの役割

実現性確認のため

の体制の策定

実現性を考慮した

要件定義実施

既存システムのパフォーマン

スアセスメントの実施要件に

対する実現性考慮アドバイス

業務ロジック、プロトタイプ

試験時の考慮事項の共有、

プロトタイプ試験の実施

図 1:実現性を考慮した要件定義

パフォーマンス要件の策定は妥当か ?

賦ンパフォーマンス要件の明確化
そもそもパフォーマンス問題とは、パフォーマンスロ標や要件を達成していない状況の

ことを言います。それを避けるために、要件定義フェーズにおいては、顧客とコミュニケー

ションを取りながらパフォーマンスロ標を明確に策定することが重要になります。パフォー

マンスロ標がなくては、どこまでパフォーマンスチューニングを行なえば問題から抜け出

せるかが分からず、泥沼にはまる可能性があります。なお、パフォーマンス要件を策定す

る際には、パフォーマンス確認を行なうシナリオを共有したうえで、そのシナリオのスルー

プットやレスポンスについて明確化するべきです。この時点でシナリオを共有しておくと、

パフォーマンステスト時のシナリオ策定が容易になります。

賦|システム内部でのパフォーマンス要件の明確化

また、顧客要件だけでなく、システム内部でのパフォーマンス要件も明確化しておくべ

きです。例えば、アプリケーションロジックでは何秒、SQL実行には何秒という形で明

確化しておくと、SQLパフォーマンス問題が発生したときの SQLチューニングのゴール

が明確になります。SQLにどの程度の時間を要するかの確認は、プロトタイプ検証を実

施するのが良いでしょう。

プロトタイプ検証の目的は、要件に対するシステム方式を根本的に変更する場合や、

新機能の検討を行なっている場合などに実現性を確認することです。注意点は、要件が

曖味すぎる段階でプロトタイプ検証を行なってしまうと、検証結果と実際の環境でのパ

フォーマンスに大きなギャップが存在する事態が起こり得る点です。少ない時間の中でプ

ロトタイプ検証を行なう必要がありますので、ほぼ要件 (パフォーマンス要件も含む)が

定まった段階で、検証シナリオの作成や検証データの作成を行なうようにしてください。

プロトタイプ検証での考慮ポイント

既存システムのアセスメント

プロトタイプ検証は、システム方式の根本的な変更や新機能を使用して実現性を確認

するための作業です。既存システムから大幅な変更がないシステム構築プロジェクトの場

合は、プロトタイプ検証を行なう必要はありません。このようなプロジェクトで必要なのは、

既存システムのアセスメントを実施しておくことです。既存システムのアセスメントを実

施し、既存システムのボトルネックを特定しておきます。新システムヘ移行を行なうタイ

ミングで設計や方式を改善することで、パフォーマンス問題の予防策とします。

パフォーマンスロ標を顧客と明確に策定することが重要になります。パフォーマンスロ

標がなくては、どこまでパフォーマンスチューニングを行なえば問題から抜け出せるかが

分からず、泥沼にはまる可能性があります。また、その要件に対する実現性も重視してく

ださい。要件に実現性があるかどうかを、プロトタイプ検証や既存システムのアセスメン

トを通じて検討することができるかが、このフェーズでの重要なポイントです。

設針フェーズに入ると、SQLと関連してくる部分が多くなつてきます。設計フェーズ

の時点からパフォーマンスを意識して設針、品質チ上ックを行なうことで、試験フェーズ

での問題を予防していきましょう。また、後の性能試験フ上…ズが効率的に実施できる

ようにするための仕組みを取り入れておくことが重要です。

方式設計では

システム全体の方式やサイジングの検討などを行なう方式設計においては、直接的に

SQLパフォーマンスが関わる部分は少ないと言えます。ただし、次の場合にはパフォー

マンス問題について方式レベルで注意するべきでしょう。この場合は、DBAや DBに詳
しいメンバーが方式設計に深く参画するべきです。

● システム間連携において SQLレベルでの連携 (データベースリンク)が行なわれる方
式がとられる

。 既存システムからの移行であり、既存システムにおいてなんらかのパフォーマンスボ

トルネックが発生している

論理設計の段階で、SQLがある程度見えてきます。想定される表アクセス方法に
ついて確認し、レビューするようにしてください。論理設計における考慮ポイントは、

Chapterllで説明したとおりです。問題が発生する前に、論理設計の段階でこれらの考

慮ポイントを設計に盛り込んでください。

論理設計では

論理設計を行なうアーキテクトが SQLを意識するかどうかがポイントとなります。論

理設計の成果物に対して、SQLに詳しいDBAがレビューを行なうと良いでしよう。

物理設計段階で手腕を発揮するのはDBAです。データベース固有の機能、設定や索

引設計について、DBA主導で設計を進めていきます。

DBAは一般に基盤チームに所属し、設計範囲は表領域までとし、オブジェクト設計、

索引設計については業務チームや業務共通チームが担当するというケースもありますが、

これらの設計はSQLパ フォーマンスに大きく影響します。

オブジェクト設計や索引設計についての勘所をDBAがガイド、スキルトランスフアー

をしたり、設計後のレビューを徹底したりすることが重要です。

アプリケーション設計については、直接 DBAが絡むことは難しいと言えます。しかし、

SQL文の発行形態がシステム全体の性能に大きな影響を与えかねないということは、こ

れまでで説明してきたとおりです。

また、万一パフォーマンス問題が発生した場合にも、原因分析やチューニングの適用

をしやすくするための工夫を入れておくと良いでしよう。

PMはデータベースの使い方、SQLの発行方法がシステム全体のパフォーマンスに大

きく影響することをきちんと認識し、必要に応じてDBAが十分にガイド、レビューを行

なえる体制を整えるべきです。

物理設計では

Ｆ
『
Ｕ

アプリケーション設計では

PMの役割

綺

了
，

厄)①データベース、SQLに関する考慮事項、ガイドの事前周知
各設計において、データベースや SQLレベルで考慮すべき事項をDBAが各設計者に
ガイドできる体制を整えておきます。

輻b②品質チエックの体制作り
各設計におけるレビューミーティングなどにおいて、DBAが提示したガイドに従って
設計が行なわれているかどうかをチェックする体制を整えます。この段階では検討範囲

が広く、複雑に絡み合うため、チェックリストを作ることは困難ですが、設計ガイドがど

のように反映されたかについて情報を共有し、妥当性を確認してください。

設計者はDBAからの考慮事項を各種設計に反映することを検討すべきです。特に論
理設計、アプリケーション設計においても、パフォーマンスに影響する可能性がある事項

についてはDBAのガイドを積極的に取り入れるべきでしょう。また、方式検討や設計レ
ビューの際に、データベースに関連する事項についてはDBAも含めたレビュー会を実施

すると良いでしょう。

ここまでに説明したように、DBAが直接関わる範囲外の設計において、SQLパフォー
マンス問題を起こさせないようなアクションをどれだけとれるかが重要になります。DBA
が積極的にガイド、レビューを行なっていくようにしてください。

すなわち、この設計フェーズでは次の点をDBAがほかのプロジェクトメンバーに浸透
させられるかがポイントになります (図 1)。

會 チューニングのしやすさを意識してアプリケーション設計をしているか
饉 設計者が SQLパ フォーマンスを意識して論理設計をしているか

苺 データベース機能固有の考慮事項は何か
肇 索引設計を十分に行なっているか

設計者の役割

DBAの役割

ス．．̈一一，■

円滑なガイド、レビュー

実施の仕組み作り Ｅ
■
ｕ

ガイド作成指示

ガイド提示、説明
レビューの実施

図 1:設計ガイド/レビューの徹底

設計フェーズにおける

設計フェーズにおいてDBAがほかのプロジェクトメンバーに浸透させるべき4つのポ

イントを示しましたが、その中から「チューニングのしやすさを意識してアプリケーショ

ン設計をしているか」について詳細に説明しましょう。

パフォーマンス問題を 100%防止することはやはり困難です。そのため、万一パフオー

マンス問題が発生した場合は、いかに早急に問題を切り分けたり、分析/対処したりで

きるかが重要になります。

チューニングを行ないやすいアプリケーションと行ないにくいアプリケーションでは、

問題発生時の復旧時間が大きく変わってきます。

ここでは、チューニングのしやすさを意識したアプリケーション設計について説明しま

す。これらの話は主にアプリケーション設計者が考慮すべき内容ですが、アプリケーショ

ン設計者はなかなかここまで思い至らないことが多いのです。設計段階でプロジェクトに

DBAと して参画したら、ぜひこのような内容を現場のPMやアプリケーション開発者に

提案してみてください。

設計ガイドに即した

設計実施

設計ガイドの作成

チュ…エングのしやすさを意識したアプリケーション設計

195

ガイド遵守の徹底

隕♭パフォーマンス問題の切り分けを容易にする
フオーマンス問題が発生した場合、どこでその問題が発生しているのかを切り分けて

いくことが重要です。切り分けを容易にする仕組みをあらかじめ導入しておくと良いで

しよう。

>アプリケーションによるタイムスタンプ取得
OracleではOracle Enterprise Manager(EM)や AWRな どにより、SQL文の実行時
間の記録を確認できますが、ある程度は平均化された情報となってしまうため、直接的に

切り分けるには図2の ようにアプリケーション側でタイムスタンプを取得し、各処理での

パフォーマンスを記録できるようにしておくと良いでしょう。

クライ アプリケーション データベース

AP処理

SQL実行

AP処理

SQL実行

AP処理

図2:アプリケーシヨンによるタイムスタンプの記録

SQL実行時間は Oracleから確認することも可能ですが、アプリケーション側のタイム

スタンプを使用することにより、ボトルネックがアプリケーションなのか、SQLなのか、

はたまた間のネットワークなのかの切り分けが実施しやすくなります。

常時タイムスタンプを記録するとデータ量が膨大になったり、CPUな どの使用リソー

ス量に影響が出たりする可能性があるため、テスト時や問題発生時のみ取得可能なよう

に準備しておくのがベストです。また、このようなデータを取得したとしても、リソース

的に問題がないようなサイジングを行なっておくとさらに良いでしょう。

閻b SQLと アプリケーションの特定を容易にする

>SQL管理用コメント
Oradeで は、Oracle Enterp五 se Managerや AWR、 STATSPACKを 使用し、ボトル

ネックのSQL文をデータベースの観点から特定するための機能が備わっています。

問題があるSQL文を特定し、SQLチューニング案まで検討できたとしても、そのSQL

最低限のアプリケーションヘのクライアン

トからの入出カポイントのタイムスタンプ

を記録しておく。また、SQL発行開始と完
了のポイント(矢印)でもタイムスタンプを

記録できるようにしておくことにより、アプ

リケーションの問題なのか、SQLの問題な
のかを切り分けしやすくなる

文がどのアプリケーションから発行されたものなのかを特定できないと、実際に修正は完

了しません。比較的多くの方がこの問題に該当したことがあるのではないでしようか。

筆者が以前 SQLパフォーマンス問題でチューニングを担当した案件では、SQLチュー

ニングはほんの数分で完了したものの、問題となるのはどこから発行された SQL文かを

アプリケーション担当者が特定するまでに数時間かかってしまっていました。特定できれ

ば、SQL文にヒント句を埋め込むだけなので修正は容易でしたが、この特定に時間がか

かったために、顧客の業務に大きな影響が発生してしまいました。

Chapter7で も書きましたが、このような問題を予防するには、SQLに管理用コメント

による識別子を入れることをお勧めします (LISTl、 2)。

SQL文には、Oracle9iま でであれば Hash Value、 Oracle 10g以後であればSQL ID

としてOracleが独自にSQL文の識別子を設定します。また、発行元の Module名 も特

定できます。しかし、上記の管理用コメントを追加することにより、さらに次のメリット

が得られます。

e Hash Valueや SQL IDを見ただけではSQLのイメージが付かないので、どのアプリ

ケーションから発行されたのかを特定しにくい。しかし、ユーザーが独自に付与した

管理用コメントであれば、コメントを見ただけでどのアプリケーションから発行された

ものかを特定しやすくなる

苺 Module名 を利用してアプリケーションを特定することも可能だが、ここにはアプリ

ケーションプログラム名までしか出力されないので、アプリケーション内のモジュー

ルの特定までには至らないことが多い。管理用コメントであれば、アプリケーション

内のモジュール特定も容易になる

畿 Hash Valueや SQL IDは SQLテキストから算出されるので、SQLチ ューニングを行

なってSQL文内にヒント句を埋め込むと、値が変わってしまう。そのため、チューニ

ング後の SQL文を探し出すことが難しくなる。管理用コメントであれば、ヒント句を

埋め込んでも変わらないため、チューニング後の SQL文を特定することも容易になる

Ｅ
「
Ｕ

197

LISTl I SQL管理用コメントの例

‐SELECT /1 Fiみ A_lMPADMIN01 0oo■ .■ /.

‐FROM emp. ‐ _
WHERE empno‐ = ibl
ん咀 :システム名 ・・_‐

EM"DMmЮ l:機能名
0001:SOLの管理番号

■

●
.

■‐

>SQL管理用コメントの導入
SQL管理用コメントは、アプリケーション設計に大きく関わります。また、アプリケー

ション設計者や開発者の作業にも大きく影響するため、プロジェクト全体を巻き込んでの

導入が必要となります。

そのため、DBAはまずPMに対して問題であるSQLからのアプリケーション特定が

困難な場合の影響を伝え、その対応策としてSQL管理用コメントを採用することをぜひ

提案してください。そのうえで、PMに SQL管理用コメントの導入を判断してもらい、

管理用コメントの規約の作成や、開発者が管理用コメントを遵守するように、アプリケー

ション設計者と開発者に指示を出してもらいます。

SQL管理用コメントの規約を作る際の詳細なガイドは、DBAが直接設計者に説明して

ください。注意事項などはChapter7の コーディングガイドで説明していますが、プログ

ラムやSQLを特定するのに必要十分な区分で管理用コメントを定義してください。管理

用コメントをあまりにも細かく分類すると、解析情報を共有すべき「同一のSQL」 が同一

でなくなってしまう懸念があります。

なお、AP設計者はSQL管理用コメントとモジュール名やプログラムソース名を対応

付けるような表などを作成して管理するとより良いでしよう(図 3)。

198)

LIST2:AWR/STATSPACKレ ポートヘの出力例

‐CPU Elapsd . ・ ― | ‐ | _ . _ . _
Buffer Cets Executions Cets_per Exec・ そTotal Time (s)Time (s)Hash Value

4tg,s't8 3oo 1,399.9 0.1 31.02 95.25 24'18983204
Module: SQL*P.lus

SELECT /* AAA_EMPADMIN01_0o01 */ ename FROM emp WHERE empno = :b1
Elapsed CPU Elap per t Total
Time (si Time (s) Executions Exec ls) DB Time SQL Id

1 1 2 0.6 2.7 slbbkcdgzwsjw
Module: emagent@consdb11. jp.oracle.com (TNS V1-V3)

/* OraeleOEM */ with maxl as (select :1 as selecl tab,:2 as select priv fr
om dual) select t select_any_tabIe,, substr{Sys_COmlieCt_ay_pafH{c, l-r'), 3, 512)
path, c from { se}ect null p, name c from sysEem priv
ilege_map where name - 'SELECT ANY TABLE' union selecr granted_

SQL管理用コメントの重要性
を認識し、SQL管理用コメント
の規約作成とその遵守をAP
設計者、開発者に指示

Ｆ
ｈ
ｕ

問題SQLからアプリケー
ション特定が困難である

リスクを提示⇒SQL管理
SQL管理用コメントの
規約と遵守を指示

用コメントの提案

SQL管理用コメント規約作成
時の考慮事項をガイド

SQL管理用コメントの重要性を提案
する資料を作成し、PMへ提示
管理用コメントの考慮事項ガイドを

AP設計者に提示

図 31SQL管理用コメントの設計

>SQL管理用コメントの利用
テストフェーズなどでSQLパ フォーマンス問題が発生した場合は、DBAが分析して

チューニング案を作成することが多いと言えます。チューニング案をSQL管理用コメント

とともにAP設計者と開発者に伝えることにより、迅速な実装が期待できるでしよう(図 4)。

問題SQL文の特定。SQLチュー
ニング案を検討し、該当SQL文
のSQL管理用コメントをもとに
AP設計者に修正を依頼する

[)BAI

績ltl鶴を.
:`.・

‐‐
摯|:|:|'

蒙‐
―
椰

問題SQL文の管理用コメントと
SQLチューニング案を提示

SQL管理用コメントをもとに、問題SQL文を発
行しているプログラムソースを特定。プログラム

の修正などを行ない、チューニング案を実装する

DBAか らのガイドと
AP設計に即した規
約、管理方式を作成。

開発時には遵守する

ことを徹底する

ノログラムソ,ス :

SYSl MOD1 001 SYSl MODl.lava

SYSl MOD1 002 SYSl MODl.java

SYSl MOD2 001 SYSl MOD2 pc

SYSl MODl.iava
|プ里12ラムソ=塁名_

SYSl MOD1 001
ISQL管理用コメント

SYSl MOD1 002 SYSl MODllava

SYSl MOD夕 001 SYSl MlDD2.pc

図 4:SQL管理用コメントを利用した問題修正

へ

―

―

―

―

Ｂ

　

　

Ｉ
‥
，

Ｄ
・

一
■
一，
‘
●

．
　

．‐‘

〓
●

輻)コーディング時の SQL関連範囲を局所化する
これまで、SQLコーディングガイドや規約の重要性を説明してきましたが、このような

ガイドや規約を遵守することは比較的困難であると言えます。特にシステム規模が大きな

プロジェクトにおいては、コーディングを行なう開発者の人数も増えてしまい、全体にガ

イドや規約を浸透させるのに苦労することが多くあります。その結果として、ガイドや規

約を守りきれず、結果としてSQLの品質が低下する可能性も出てきます。

このようなリスクを低減させるためのアプリケーション設計としてアプリケーションロ

ジックとSQLア クセスプログラムの分離する方法が考えられます。

>アプリケーシヨンロジックと SQLアクセスプログラムの分離
アプリケーション開発者は、どちらかというとアプリケーションロジックの組み立てに

は詳しくても、データベースやSQLの特性、コーディング時の考慮事項にはあまり詳し

くない傾向があります。データベースやsQLにまで詳しいアプリケーション開発者の人

数は少ないという実情がありますが、アプリケーションロジックのコーディングは工数的

にも多く必要になるケースが多く、アプリケーション開発者の人数は多くならざるを得ま

せん (図 5)。

SQL勢イテ

DBA

遷::lt■場
||:`|,|:ll｀
・́ |`.鶴

11:=1‐ `S

E三]アプリロジック

赳哄iSQLアクセス部SQL
コーディングガイド

図5:一般的なアプリケーションロジックとSQL発行形態

このような問題を解決するために用いるのが、アプリケーションロジックとSQLア クセ

スプログラムとの分離です (図 6)。

DBAのガイドをもとに
SQLアクセスプログラムを開発

SQLコーディングガイドの
作成とSQLアクセスプログ
ラム開発者へのガイド

SQLを意識しないでア
プリケーションロジック

をコーディング可能

DBAのガイドをも
とにSQLアクセス
プログラムを開発

SQLコーディングガイドの
作成とSQLア クセスプロ
グラム開発者へのガイド

■
コ
〉

SQL
コーディングガイド

SQL発行

SQL結果

アプリケーション SQLア クセス
ロジック プログラム

図6:アプリケーションロジックとSQLプログラムの分離

これにより、SQLに関連する部分を開発するアプリケーション開発者が少数に局所化

できるため、DBAと の連携も行ないやすくなり、ガイドの徹底が可能となります。また

SQLア クセスプログラムにタイムスタンプ出力機能などを付与することで、前述のような

パフォーマンス問題発生時におけるアプリケーションロジックとSQLの切り分けも容易

になることが期待できます。

⑬♭チューニング時の修正範囲を局所化する

問題 SQL文に対するチューニング案が分かり、その SQL文を発行するアプリケーショ

ン内のモジュールや修正箇所が特定できたとしても、実際に修正できるかとなると、また

別の問題になってきます。一般にアプリケーションに対する手直しが入ると、再テストが

必要になります。アプリケーションのリコンパイルを行なうと、単体レベルのテストだけ

でなく、結合テストまで実施することを規約化しているプロジェクトも多くあり、再テス

トの困難さからアプリケーションの修正、すなわちチューニング案の実装を断念せざるを

得ないケースもたくさんあります。

もちろん、再テストを実施するのはとても重要です。しかし、再テストの範囲を局所化し、

テストの負荷を下げることを事前に考慮しておくと良いでしょう。テストの負荷を下げる

には、プログラムとSQL文とを分離する方法が考えられます。

1曇‐柔議:
'●

・・ヽ■|′

'「
■

辟■■

藉ζ
'多

レプログラムと SQL文の分離
プログラムの修正を行なうと、リコンパイルや再テストが必要となってしまいます。そ

こで、プログラムとSQL文を分離することで、プログラムの修正を行なわずにSQL文の

修正やヒント句の追加を可能にします。

具体的には、SQL文をパラメータファイルやプロパティファイルの中に記述し、プログ

ラムはそれらのファイルからSQL文を取得して実行する形態があります。

SQLの書き換えが必要な場合は、結果の確認を含めて十分なテストが必要となります

が、ヒント句の付与のみのチューニングであれば、結果は変わりません。そのため、テス

トを最小限にするという選択肢が増えます (単体レベルでの性能向上の確認は必要です

が)。

また、SQL文だけがファイル化されていると、次のようなメリットもあります。

。 アプリケーションから独立するので、SQL文だけをSQL★ Plusな どで実行しやすくなる。
つまり、実行計画の確認をDBAがアプリケーションから分離して行なえるようになる
● SQL管理用コメントと併せて管理することで、よリチューニング対象を特定しやすく
なる

設計フェーズにおいての DB論理設計や物理設計は重要ですが、アプリケーション設

計もSQLチ ューニングにおいて特に重要です。

パフオーマンス問題を 100%防止することはやはり困難です。そのため、万一パフォー

マンス問題が発生した場合に、いかにして早急に問題を切り分けるか、分析や対処でき

たりするかが重要になります。チューニングを行ないやすいアプリケーションと行ないに

くいアプリケーションでは、問題発生時の復旧時間が大きく変わってきます。特にアプリ

ケーション設計では、パフォーマンス問題の切り分けを容易にしたり、SQLか らアプリケー

ションの特定を容易にしたりするなどの工夫をいくつか紹介しましたので、参考にしてく

ださい。

開発フェーズに入ると、実際にSQLをコーディングしていくことになります。このフェー

スでは、Part2で 説明したSQLコーディングルールの徹底が重要なポイントとなります。

まず最初に、SQLコーディングルールの目的をおさらいしておきましょう。

以下の4点でした。

惨 開発者のスキルに依存しない一定の品質および性能を確保するため
饉 開発者間の意思疎通の向上および容易な理解による生産性の向上のため
饉 SQLの可読性を持たせ、保守性および再利用性を向上させるため

爾 運用ポリシーに沿ったルールを適用するため

これらを意識しながら読み進めてください。

PMは、SQLの書き方がSQLのパフォーマンス問題に発展する可能性があることを認

識しておく必要があります。そのためには、SQLコーディングが性能問題に発展しない

ためのチェック体制を構築しておく必要があります。

構築時のポイントは、業務チームや開発者 (開発ベンダ)への周知、SQLコーディング

ルールの作成および配布、品質チェックの体制作りの 3つです。

PMの役割

●
　
―

．．
　

‐
．

開発フェ…ズ

>①業務チームや開発者 (開発ベンダ)への周知
SQLの書き方が性能問題を引き起こす可能性があることを認識させておく必要があり

ます。

レ② SQL菫 ―ディングルールの作成および配布

開発フェーズに入る前に、DBAと SQLコーディングルールの作成を行なっておきます。

また、作成したSQLコ ーディングルールを開発者へ配布しておく必要があります。SQL

コーディングルールのすべてを開発者が理解するのが難しい場合、SQLコーディングの

チェックリストなどを作成して配布しても良いでしよう。開発人員の交代などに対する一

定の品質を確保するためにも非常に重要です。

>③品質チェックの体制作り

設計フェーズに引き続き、品質チェックの体制作りが重要です。開発中にSQLを コー

ディングするうえで発生した疑問点などを開発者がDBAチームヘ質問できるような体

制も、事前に整えておくと良いでしょう。また、業務ロジックの処理フローなどの仕様を

検討するミーティングにDBAを参加させるなど、データベースの性能を意識した業務ロ

ジックを事前に検討できる体制を構築しておくことが性能問題を考えるうえでは非常に重

要です。

DBAは、SQLコーディングルールの選定および作成、また作成された SQLのレビュー

が主な役割となります。SQLパフォーマンス問題を予防するためにも、開発フェーズでの

SQLの品質チェックにDBAが積極的に参加することが重要になります。

開発者もSQLの書き方が SQLのパフォーマンス問題に発展する可能性があることを

認識しておく必要があります。このフェーズでは、開発者が重要なキープレイヤーとなり

ます。業務要件を満たせるSQLを書けば終了ではなく、SQLコーディングルールに沿っ

た SQLと なっているかを確認することが非常に重要です。ペアプログラミングによるダ

ブルチェック体制や開発メンバー内で処理フローや SQLの品質チェックを行なうなどの

DBAの役割

開発者の役割

体制を用意しておくことも重要です。

すなわち、このフェーズではプロジェクト体制も含め、次の 2つのポイントに対応でき

るかが重要になります (図 1)

e SQLコ ーディングルールが作成されているか
螢 開発者が SQLコ ーディングをどれだけ意識しているか

SQLコーディングルールの目的
0開発者のスキルに依存しない一定の品質および性能を確保するため
●開発者間の意思疎通の向上および容易な理解による生産性の向上のため
eSQLに可読性を持たせ、保守性の向上および再利用性を向上させるため
0運用ポリシーに沿つたルールを適用するため

ガイド遵守の徹底

PM・ |

夕.ヽ■‐■: .

|.■|■ 1111::|

ガイドおよびルール作成指示

ガイド提示、説明
レビューの実施

‐
E〕 BA

`■

■́ ||

図 1:開発フエーズのプロジェク ト体制

開発フェーズにおける

前述したように、SQLの 品質を高めるには開発者が開発にとりかかる前にSQLコー

ディングガイドやルールの目的を正しく理解し、個々に作成するSQLの品質を意識する

必要があります。

開発フェーズ前には、DBAが SQLコーディングルールの作成を行なった後に開発者
向けの SQLコーディングについての勉強会などを行ない、開発者が品質の高いSQLを
コーディングできるように考慮することも重要です。その後で、SQLコーディングルール

のチェックリストを配布して、開発者自身で SQLの品質をチェックできるようにしておく
ことも効果的です。開発者の負荷とならないように考慮して、SQL品質の向上をどのよう

円滑なガイド、品質チェックの

仕組み作り

SQLコ ーディングルールに即した
コーディング実施

SQLコーディングガイド
およびルールの作成

に行なえば効果的であるかを各プロジェクトでも検討してみてください。

開発フェーズでは、SQLコ ーディングガイドやルールの徹底が重要です。SQLの品質

を高めるには、開発者が開発にとりかかる前にSQLコーディングガイドやルールの目的

を正しく理解し、個々に作成するSQLの品質を意識しておく必要があります。SQLコ ー

ディングルールに関する勉強会を催したり、チェックリストを利用したりして、開発者自

身で SQLの品質を向上できるようにしておくことが効果的です。

テストフエーズは、SQLのバンォーマンス問題を予防するために非常に重要なフェ…
ズとなります。このフエーズで質の高いシステムテストが行なえるか否かで、長期的な安

定稼動が可能かどうか決まると言つても過言ではありません。

よくあるテストフェーズでの問題は、大きく分けて2つ存在しています。それは時間と

質に関する問題です。

閻卜PMの見積もりが甘い
プロジェクト開始時に、PMがプロジェクトスヶジュールを作成する時点でテストフェー
ズの見積もりを軽視しているプロジェクトをよく見かけます。リリース時期から逆算する

と、どうしても開発優先となることは否めませんが、往々にしてテストフェーズが削減さ

れます。

赳)プロジエクトフエーズの遅延影響
プロジェクトの遅れが発生しているにもかかわらず、経営的判断によリリリース時期

が変更できないプロジェクトでよく見られるケースです。プロジェクト途中での要件の追

加や大幅な仕様変更に伴って、開発フェーズで遅れる経験をされた方も多いと思います。

その遅れを取り戻すために、プロジェクトでよく耳にするのがテストフェーズの時間短縮

です。

テストフエーズの時間的制約

テストフェーズの質

⑬♭テスト体制の不備
業務チームや開発チームのみでテストを実施しているプロジェクトがよく見受けられ

ます。担当している業務や処理のみの性能を確認してテストを終了することで、SQLパ

フォーマンスの全体最適化が行なわれず、リリース後にSQLパ フォーマンス問題が発生

するケースがあります。

舅らテストシナリオの不備
大規模なシステムで多く見受けられますが、最繁負荷時の負荷の掛け方に問題があり、

システム性能を正確に把握できないまま性能問題が内在した状態でリリースし、SQLパ

フォーマンス問題へ発展するケースがあります。また、システム性能を正確に把握できな

かったことで、運用時の定常監視でベースライン (しきい値)を適切に設定できず一般的

な値で設定され、パフォーマンス劣化を事前に検知できないケースもよく見受けられます。

PMは、テストフェーズに適切な時間を確保することが大切です。テストフェーズでパ

フォーマンス問題が発見できた際に改善にかかる時間なども考慮してプロジェクト計画を

立てておく必要があります。また、最終的にDBAによるSQLパフォーマンス性能の妥

当性を判断させるための体制作りも必要となります。各テストフェーズ内での役割分担や

ゴールを決めておくことも重要になります。

テスト時の性能改善だけでなく、テストシナリオの妥当性や改善にも関わることが

DBAにとっては非常に重要です。SQLパフォーマンス問題を予防するためにも、テスト

フェーズで長期的な安定稼動を意識した性能の妥当性、およびシステム全体の最適化を

PMの役割

DBAの役割

「
′

・

開発者の役割

意識した妥当性をDBAが判断し、適切な改善案を提示することも大切な要素となります。

開発者や業務チームは、本番相当のテストシナリオの作成やテストデータの用意などの

テストフェーズに必要な情報を早い段階で用意することで、質の高いテストを早い時期か

ら行なうことが可能となります。つまり、なるべく早い段階でそれらのデータを用意する

ように計画しておくことが重要なのです。

すなわち、このフェーズでは次に挙げるポイントにプロジェクト計画時や体制も含めて

対応できるかが重要になります (図 1)。

。 テスト体制は十分に準備されているか
。 テストフェーズの期間は適切に用意されているか
惨 テストフェーズの期間は改善に必要な時間が考慮されているか
鰺 SQL問題を適切に発見するためのテストシナリオは計画されているか
鸞 SQL性能の妥当性を判断するための体制作りが考慮されているか

ガイド遵守の徹底 テスト計画上の

考慮ポイントの提示

テストシナリオ、データに
関するガイド、レビュー

図 1:十分なテスト計画、体制

十分なテスト期間の確保
テスト体制の検討

ガイドに即したシナリオ、デー

タの準備、テストの実施

テストシナリオ、データに関するガイドの準備
テスト実施、分析、チューニング

テストフェーズにおける
|‐

.:11::||‐
||||||||||||||||:||||||||li:||:111■ 01母|11ボ |‐17材1書:ア1滋1豫i閣1轟紗1露:時簿
限られた時間の中でSQLパ フォーマンス問題を予防するために、質の高いテストをど

のように行なうべきなのでしょうか。

そのためには、テストフェーズで考慮すべき性能インプットにどのようなものがあるの

か、それらを踏まえたうえで各テストフェーズでは何をどこまで確認するべきなのかを

知っておく必要があります。

SQLパフォーマンス問題に対し、テストフェーズで効果的かつ効率的にテストを行な

うには、テストフェーズで考慮すべき性能データを理解しておく必要があります。まずは、

テストフェーズで用意すべきインプットとは何かを理解してください。

咆 性能と SQLの依存関係

それでは、SQLに対してどのようなテストを行なえるのかを整理してみましょう。

SQLに対するテストには、大きく分けて機能面のテストと性能面のテストの2種類があり

ます。ここでは性能面のテストを考察します。

まず、SQLの性能に何が依存するかを整理します。図 2は Chapter8で 説明したコス

トベースオプテイマイザのインプット、アウトプットをベースにSQLと性能の依存関係を

表わしたものです。

テストフェーズで考慮すべき性能インブット

「
″
Ｉ

211

SQL性能インプット

実行計画

レスポンス

図2:SQLの性能依存関係と性能インプット

SQLの性能をテストする場合に最も容易かつ確実な方法は、対象のSQL文を実行し、

そのレスポンスを測定する方法です。測定した結果が、性能要件を満たしているかどう

かをチェックするだけで良いことになります。

ただし、レスポンス測定で評価するためにはシステムがサービスインした後と変わらな

い状態でテストされることが重要です。つまり、その前提として実行計画とデータ、ハー

ドウェアをはじめとする環境がサービスイン後と同等であるということが必要になります。

また、実行計画をサービスイン後の本番と同等にするには、オプテイマイザヘのインプッ

ト情報となるSQLや索引を含めたオブジェクト構造、パラメータ、統計情報が本番と同

等であることが必要になります。

すなわち、レスポンスでSQLの性能を確認するには、そのインプットすべてが本番と

同等でなくてはなりません。逆に言えば、インプットのいずれか、およびハードウェアを

はじめとする環境を本番と同等にできない場合は、レスポンスを測定して性能を確認した

としてもサービスインの実際のパフォーマンスがに変化し、パフォーマンス問題を引き起

こしてしまう可能性が残ります。

賦,SQLテキストに対する考慮ポイント
>SQLテキス トはコーディングルールに則つているか
単体レベルの試験前には、何よりもまずSQLテ キストが性能を意識してコーディング

されているかが重要になります。開発フェーズの段階で、コーディングルールに沿ったコー

ディングが行なわれているかどうか品質を確認すると良いでしょう。

レ性能テス ト対象の SQLは妥当か

多重試験においては、性能テストの対象となるSQLが正しく選択されているかどうか

も重要です。言い換えると、性能テストのシナリオが妥当なものかどうかを確認する必要

があると言えます。

性能テストのゴールである性能要件を確認できるような、限りなく本番に近い状態を再

現できるシナリオを選択することが重要です。さらに、シナリオ選択の際には次の点にも

注意しておくと良いでしょう。

§ システム負荷が高いと想定される処理
艤 頻繁に実行される処理

熾 処理要件が定義されている処理

。 複数の処理が同時に走ることが想定される場合には、シナリオも同時に実行する

。バッチ AとバッチBが同時に実行される場合
。オンライン中にバッチ Cも同時に実行される場合

なお、シナリオを作成する場合は、シナリオが利用するパラメータやデータを現実的に

分散させる必要があります。偏りがあると、テストデータの偏りと同様にパフォーマンス

に影響を与える可能性があります。

洟ゝ オブジェクト構造に対する考慮ポイント

>妥当な索引が付与されているか
“オブジェクト構造"と言いますが、テストフェーズで特に注意すべきなのは索引の状

態です。表の論理設計や物理設計などもSQLパフオーマンスには影響しますが、そのよ

うな考慮ポイントは設計段階でつぶしておくべきです。

性能テストが始まる前に、可能な限りある程度の索引付与を完了したいところです。性

能テストが始まってからSQLパフォーマンス問題が発生すると、索引付与のチューニン

グをしようとしてもその表を使用するすべてのSQL文の実行計画に影響が懸念されるた

め、索引付与が難しくなる場合があります。

舅)パラメータに対する考慮ポイント

レオプティマイザ関連パラメータは妥当か

オプテイマイザ関連のパラメータが妥当に設定されているかどうかも確認しておきま

す。性能テストが進んでからの変更は、全SQL文に影響が発生する可能性があるため、(最

後の奥の手として使う以外は)できるだけ避けるべきです。テスト開始前にはChapter8

『
ｒ
ｒ

213

を参考にして、適切なパラメータが設定されているかを確認しておきます。

頸ンデータに対する考慮ポイント
レデータ量

可能な限り本番を想定したデータ量を用意します。テストデータ量が少ないと、見かけ

上のパフォーマンスが良くなってしまい、本来のパフォーマンス問題を顕在化させられな

いという懸念があります。とはいえ、テストフェーズによってはどうしてもデータ量が不

足してしまう可能性もあります。その場合の考慮ポイントは次項で説明します。

>データの質

データの内容の分布についても、可能な限り本番を想定することが理想です。分布が

正しくないとパフォーマンス問題を顕在化させられないという懸念に加えて、本来であれ

ば発生し得ないパフォーマンスとなり、結果として無駄な分析を行なってしまう可能性も

あります。

例えば、本来は複数の種類があるデータを少ない種類のデータでテストしてしまうと、

そのデータがキャッシュされてパフォーマンスが向上したり、逆にデータヘのアクセス競

合によリパフォーマンス劣化につながったりする可能性があります。

これもテストフェーズによっては、十分な質を用意できない可能性もあります。その場

合の考慮ポイントは次項にて説明します。

鱚♭統計情報に対する考慮ポイント

レ適切な統計情報は取得されているか

オプティマイザは、実行計画検討時にいちいちデータにアクセスしていては本末転倒な

ので、統計情報からデータの状態を間接的に把握しています。運用フェーズでの考慮ポ

イントの詳細は次章で触れますが、統計情報を取得しない場合のデフォルト統計情報は、

実際の表データとかけ離れている可能性があるばかりか、表のサイズなどにより変化する

統計情報となっています。

デフォルト統計情報が適するシステムはかなり少ないと言えるので、適切なタイミング

で統計情報を必ず取得しましょう。

統計情報はただ取得すれば良いわけではありません。実際のデータ量や質とかけ離れ

た統計情報であった場合は、実行計画も適切に生成されない可能性があります。

統計情報の質を上げる方法は、本番と同等のデータから統計情報を収集する、テスト

データを使用して統計情報を収集する、手動で設定するの3つです。

レ①本番と同等のデータから統計情報を収集する

最も容易な方法は、データを本番と同等に揃えて統計情報を収集する方法です。

>②テストデータを使用して統計情報を収集する

データを本番と同等に揃えることができなかった場合は、最低限は次のような統計情報

の観点で、本番データに似せたテストデータを作成して統計情報を収集します。

爾 行数、行サイズ
鰺 列ごとの値の種類

養 列ごとの値の分布状況

>③手動で設定する

テストデータの用意も困難であれば、最後に残された手段は手動で統計情報を設定

することになります。上記の観点に加え、ブロック数などを見積もり、DBMS_STATS.

SET_TABLE_STATSな どで設定して対応することになります。

本番データから得られる統計情報の精度や、収集の容易さから考えると、①が最も容

易です。可能な限り①の方法で収集すべきですが、単体テストフェーズなどで十分なデー

タが用意できない場合でも、②もしくは③の方法で統計情報を設定しておくことを検討し

ましょっ。

SQLの性能テストを実施する場合に、どのような性能インプットが必要であるかを理

解できたと思います。ここからは、テストフェーズの一般的な前提条件をもとに、SQLに

対する性能テストをどこまで確認できるのか、そしてどこまで確認すべきかを説明してい

きます。各テストフェーズで SQL性能を判断するのに必要な情報 (SQL文の質、初期化

パラメータ、統計情報、実データなど)や検証環境により、SQLに対して何を判断できる

のかを理解し、テストフェーズの早い段階でそれらの情報および環境を用意することが、

SQL性能の妥当性を判断するうえで重要であるということを理解してください。

テストフェーズと言っても、各プロジェクトで方法や前提条件が異なると思います。筆

者が想定している一般的なテストフェーズの前提を簡単に説明してから、各テストフェー

ズでどのようなSQL性能に対する妥当性判断が可能であるかを説明していきます。

『
′

Ｆ

SQL性能テストとテストフェーズのマッピング

215

不ゝ 一般的なテストフェーズの流れ

まずは、皆さんとテストフェーズの共通認識を持つために、一般的なテストフェーズ

について簡単に説明します。プロジェクトによっては、テストフェーズの前提や考え方が

若干異なる部分もあるかと思います。しかし、ここではテストフェーズの前提条件となる

SQLに対して、どのような性能テストが実施可能であるかという共通認識を持つための

説明なので、差異があってもご了承ください。

ここまで、各フェーズにおけるSQLのパフォーマンス問題に対してどのような予防策

をとれるのかを説明してきましたが、今までフェーズと言っていた工程は、ウォーター

フォール開発モデルをイメージしたものです。ウォーターフォール開発モデルと聞くと、

開発プロセスを定義しているだけだと思う方もいると思いますが、IS012207で示されて

いるように、このモデルは品質を作り込んでいくプロセスと、コードやシステムを統合し

て品質の検証を行なうテストのプロセス(V字モデル)で構成されています。

図3に示すように、V字モデルはシステムを開発する過程 (品質を作るプロセス)を 1

つ1つ確認するための過程 (品質を検証するプロセス)で構成されています。

検証

るプロセス

図 3iV字 モデル

V字モデルのテストフェーズは、単体テスト→結合テスト→システムテスト→運用テス

トと進んでいきます。テストフェーズの目的は2つあります。1つはバグを取り除くこと

です。そしてもう1つは、業務要件を満たした動作を保証することです。

品質を作るプロセス

運用テスト

システム
テスト

結合テスト

単体テスト

V字モデルで開発を行なう場合は、後フェーズに現フェーズの作業を持ち越さないこ

とが成功モデルとされています。SQLの性能に対するテストフェーズでも同様のことが

言えます。SQLの性能に対するテストフェーズで重要なポイントは、各テストフェーズで

のSQLの性能に対するゴールを設定することです。また、そのゴールを満たすために、

どのようなデータや環境を用意しておくべきかを知っておく必要があります。

夢鬱どのタイミングでどこまで確認するか

ここからは、SQLの性能に対するテストフェーズの話を重点的に説明していきます。先

ほど説明したように、SQLの性能に対するテストフェーズでも、後フェーズに現フェーズ

の作業を持ち越さないことがSQLの性能問題を予防する重要なポイントとなります。単

体テストフェーズから本番環境と同等の環境 (H/Wスペック)ゃデータを用意できるプロ

ジェクトでは、単体テストフェーズからSQLレスポンスに対する妥当性を判断できます。

しかし、単体テストフェーズなどの初期段階から本番と同等の環境やデータを用意でき

ないプロジェクトがほとんどだと思います。その場合に、どのような環境であればどのよ

うなSQLの性能に対する妥当性判断が可能であるのか、逆の言い方をすれば、どのよう

な環境を用意できればどのようなSQLの性能に対する妥当性判断が可能になるのかを知

ることが重要です。これにより、テストフエーズの早い段階から効果的な予防策を実施で

きるようになります。

それでは、各テストフェーズで一般的に用意できる環境やデータの前提を意識しながら、

各テストフェーズにおけるSQLの性能に対するテストのゴールを説明していきます。

>単体テスト

単体テストの目的は、モジュール単位で正しく動作するかどうかを検証することです。

このテストフェーズでは、主に開発者自身がテストするのが一般的です。この時点では、

本番と同等の環境 (H/Wな ど)でテストを行なうことは難しいでしょう。CPU数などの

H/Wスペックが劣る開発機でテストを行なっているプロジェクトも多いと思います。ま

た、テスト用のデータもある程度は開発者が本番を意識しているはずですが、ダミーデー

タでテストを行なっているケースが多いのではないでしようか。

このテストフェーズでのSQL性能テストのゴールは次になります。

饉 SQLコ ーディングルールを満たすこと

。 必要な索引の付与

開発フェーズで準拠すべきSQLコーディングルールが保証されているかを単体テスト

で検証する必要があります。

簡単な検証と思えるかもしれませんが、単体テストでSQLテキストが性能を意識して
コーディングされているかを検証することは非常に重要です。後のテストフェーズで SQL

テキストを変更すると、単体テストレベルからテストをやり直す必要があり、時間も含め

たコストが余分にかかります。

単体テストフエーズでは、H/Wスペックの劣る環境やダミーデータでのテストとなる
ので、SQLレスポンスや実行計画の妥当性を判断できません。ただし、明らかにデータ

量から判断してSQLレスポンスが劣るものに対しては、実行計画をチェックして必要な

索引が付与されているかを確認しておく必要があります。索引の付与は、索引を付与し

た表の列にアクセスするそのほかのSQL文の実行計画に影響を与えます。また、索引は

その表の更新処理にも影響を与えます。安易に索引を付与するのではなく、DBAに一度
相談して索引効果と影響範囲を判断してもらってから先に進めてください。

SQLテキスト

レに従つているかどう

DBAな

ェックする方法ですが、SQL
ていたりすると、人の手による

れているSQLチューニングア

チエツク対象のsaL取葉
ングアドバイ

ニングセット」としてひとまと

「SQLチュー

します。こ

、単体テスト時

のチューニン

で、効率的な

通常、単体テス ト時は、一通り

ツクを

たりSQL

効率的に SQLテキストや実行計画をチエックできます。

_|■ ■

に実行されたSQLを SQL
グセットを使用して SQL
SQL

試験を実施する期間を設定す

る。その間、定期的に共有プー

ルを検索させる設定を選ぶ

,ヽ 効 総 ,■ 1■定県 熟 i蒸墨 ■ ・ t,N:o■ は ,

趣⊃ 趣動 儀ユ」が ′
“

+D+aryilA- E

藍蒻

=I圏
‐_

=機

ングセット

アクティ

的に

ングセッ

ると、指定 した時間の間 :

条件に合致した SQL文が SQL

一ニングセツトの収集設定

やテスト実施担当者から

とです (図 B)。 この方法で

SQLが収集されます。

実施すれば良いことにな

『
′
′

9

(||・)。

チェックが付けられている
SQL文 は、コーディング
リレールに貝」っていなかった
り、索引が不足したりして
いる可能性がある

索引が使用できないコー
ディングになつている旨の
メッセージが出力されてしヽ
るケース

=当
‐■ェコ‐=

SQLチユーニングセットの
収集設定の実施

SQL収集などは特に気にせず .

アプリケーシヨンテストを実施

EM

SQL SQL SQL

SQLサーバー

プロセス
SQL

SQL
定期的に共有プールを

スキャンし、条件に合致

したSQLが保存される

SQL

SQL

SQL

SQL

DBサーバー

SQL
チューニングセット

図 B:開発者から透過的にSQL

収集した SQLチュー ングセット ングアドバイザを

実行すると、SQLテキスト に行なえます。

「SQLプロフアイル」「索引」や「SQLの再構築」にチェックが入つているSQL
については、SQLコーディングルールに則つていなかつたり、索引が不足して
いたりす ります。これらのSQLについては開発者に確認を依頼す
ると良いで

図C:SQLチ ユーニングアドバイザの結果

轡 酬 :強懲 巌

るケ■ス

1鍮 SQLチューエングアド′ヽイザの実行

」
に
Ｉ
・

:面取 ■

OraCle l13 1こ :ま、索引の属′性に「VISIBLE」

属性の素引では、初期化パラメータ

「!N∨ iSIBLE」 の属性が追加されま

上記のパラメ=タ

され
=

=方、

スする

この庸性を使用する|と、

:含 ・ ・・ ・
~‐ ‐・‐‐― |■・

n 1>7r>7Vd)Va
l ,+. /
L/({)\

IN∨ ISIBLE INDE× を使甲した運用には、次のようなもの
|‐ ■ ・・ ‐

霊 テス

;ま false と

属性の索引とする

新たに索

ヽ luse-invisible-indexesl

Ⅲにより、発裏iごラ′セ

:‐|ほか?SQL文に対しても

行なうことでヽSQLチューニン

>結合テスト

結合テストの目的は、機能単位で正しく動作するかどうかを検証することです。このテ

ストフェーズでは、主に開発者自身がテストするプロジェクトもあれば、テストチームが

行なうプロジェクトもあると思います。この時点での前提は、単体テストと同じくH/W
スペックの劣る開発機でテストを行なっていると仮定します。結合テスト時におけるSQL

に対する性能テストのゴールは次になります。

実行計画の妥当性判断を行なう

実行計画の妥当性を判断するために必要な性能インプットは、SQLテ キストとオブジェ

クト構造 (索引)、 初期化パラメータ、統計情報です。SQLテキストと索引は、単体テス

トで用意していることが前提となるので、結合テストを行なう前に本番想定の初期化パラ

メータと本番想定のデータから取得または算出した統計情報を用意しておく必要がありま

す。このテストフェーズでもH/Wスペックや実データが用意できないことを前提として
いるため、SQLレスポンスの妥当性判断はできません。

このテストフェーズで重要なポイントは、統計情報の質です。本番データ、または本番

と同等のデータから取得した統計情報を用意できる場合は特に問題ありませんが、本番

想定のデータを見積もって手動で統計情報を作成する場合は、実データが最大になる件

数を想定して統計情報を作成する必要があります。結合テスト時に手動で統計情報を設

定して実行計画の妥当性を判断したにもかかわらず、システムテストやリリース後にSQL
パフオーマンス問題が発生する場合があります。

これは、結合テスト時に手動で作成した統計情報と、システムテストやリリース後の実

際のデータにギャップが生じた場合に発生します。

222)

で、「INViSiBLE」

1能としておく

から「∨iSiBL庄」に変更して、

特に、手動で算出した統計情報より実データが非常に多くなった場合に、SQLのパ

フォーマンス問題が発生する可能性があります。手動で算出した統計情報より実データ

が少ない場合は、最適な実行計画ではない可能性はありますが、データ量が少ないため

SQLのレスポンス影響は小さくなります。逆に、実データが手動で算出した統計情報よ

りも非常に多い場合は、最適な実行計画ではないうえにデータ量が多いため、SQLの レ

スポンス影響が顕在化するケースが多く見られます。どのような統計情報を用意すべきか、

必ずDBAに判断させて実行計画の妥当性を判断できる環境を用意することが重要です。

>システムテスト

システムテストの目的は、システム全体の機能が正しく動作することの検証です。また、

各種負荷テストを実施して性能の妥当性を検証します。このフェーズは主にテストチーム

が作業を担うプロジェクトが多いと思われます。この時点の前提としては、本番機でテス

トを行なうことを想定しています。また、データも本番と同等のものが用意されることを

想定しています。

システムテスト時におけるSQLに対する性能テストのゴールは、次になります。

SQLレスポンスの妥当性判断を行なう

SQLレスポンスの妥当性を判断するのに必要な性能インプットは、本番データまたは

本番と同等のデータです。結合テストまでに用意した性能インプット (SQLテキスト、索

引、初期化パラメータ、1統計情報)も存在するという前提です。システムテストで重要な

ポイントは、テストデータの質になります。本番と同じデータでテストできるプロジェク

トは問題ありませんが、本番と同等のデータを手動で用意する場合は、データの量および

質 (値の中身)が重要です。

SQLレ スポンスを判断するためにデータ量ばかりに気をとられ、単一データや単調な

値を増幅させて作成したようなテストデータや想定以上にランダムなデータでテストを行

なうことで、リリース後に SQLのパフォーマンス問題を引き起こしてしまうケースが見受

けられます。未来のデータ量を想定したボリュームテストを行なう場合などは、特にデー

タの質について注意が必要です。

また、スループットなどの検証用に性能限界テストを実施するときは、本番想定のトラ

ンザクションモデルをもとに負荷を実行できるかが重要になります。このようなテストを

実施する場合は、OrЖle LOad Testingゃ orЖle Test Managerな どの負荷テスト用の

ッールを使用すれば、短時間に質の高いテストを行なえます。

『
ｒ
ｒ

>受け入れテス ト/運用テス ト
受け入れテスト/運用テストの目的は、顧客の要件定義を満たしているか、また実運

用想定で機能や性能、ユーザビリティなどで問題がないかの検証です。このフェーズは、

顧客が実際に作業を担当して要件の最終確認を行なうことになります。

受け入れテスト/運用テスト時におけるSQLに対する性能テストのゴールは、次のと

おりです。

業務要件 (性能要件)の最終判断

SQLに対する性能に関する作業は、すでに完了していることが前提となります。実運

用を想定してテストを行ない、想定していた業務要件 (性能要件)が満たされているかを

確認します (表 1)。

表 1:SQL性 能テストのゴールと必要な性能インプット

※ l 本番と同等のデータから取得または算出された統計情報が用意できていると想定。また、手動で算出する場合は、
実データの最大件数を想定

※ 2 本番と同等のデータの質および量が用意できてしヽると想定

ここまでの説明で、テストフェーズの限られた時間内に質の高いテストを実施するには、

どのような環境やインプットを用意すればSQLの性能に対する判断が行なえるかを理解
することが非常に重要であるということが分かっていただけたのではないでしょうか。こ

のような前提は、プロジェクトの計画フェーズでも考慮しておくと、体制なども含めた環

モジュール単位
で正しく動作す
るかをテス トす

る

機能単位で

正 しく動作
するかをテ

ストする

システム全体の機能およ
び性能に問題がないかを
テストする

顧客の要件定義を満たし

ているか、また実運用想
定で問題がないかをテス

トする

× × × ○

ト ○ ○ ○ ○

× ○ ○ ○

○ ○ ○ ○

|
× ○巌

'
○ ○

× ○※2 ○

OSQLコ ーディ
ングガイ ドを
満たす
●必要な索引の付

与

・ 実行計画の

妥当性判断

OSQLレスポンスの妥当
性判断
●スルーブットの妥当性
判断

●業務要件 (性 能要件)
の最終判断

224

単体ラ 合テスト 受け入れテスト
1運用テスト .

目的

性
能
イ
ン
プ

ツ
ト

要件定義

初期化パラメータ

索引

実データ

境およびテストフェーズのスヶジュールを適切に見積もることが可能となります。

限られた時間の中でSQLパフォーマンス問題を的確に検知するための質の高いテスト

にはどのような準備が必要であるかを説明しました (図 4)。

SQL性能インプット

実行計画

レスポンス

●
一

||| ●
　

●

図4:SQLの性能依存関係

SQLの性能をテストする場合、最も容易な方法は、そのレスポンスを測定することです。

測定した結果が性能要件を満たしているかどうかをチェックするだけで良いことになりま

す。

ただし、レスポンスで評価するためには、その前提としてデータと実行計画がサ
ービス

イン後と同等である必要があります。また、実行計画がサービスイン後と同等であるには、

オプティマイザヘのインプット情報であるSQLや索引を含めたオブジェクト構造、パラ

メータ、統計情報が本番相当である必要があります。

しかし、現実のプロジェクトではこれらのインプットが揃うのはかなり後のフェ
ーズに

なってしまうことが多くなります。各インプットの特性を把握し、本番相当にできな
い場

合の影響、リスクを考慮してテストを進める必要があります。

●

●

運用フェーズでは、SQLパフォーマンス問題を考慮した運用設計が行なわれているか
が重要になります。SQLパフォーマンス問題が発生したときの解決に対するノウハウは
今まで説明してきましたので、ここでは予防的観点について説明しておきます。

システムの長期的な安定稼動を考慮すると、主に次の3つが適切に設計、実施されて

いるかが重要になります。

覇 定常監視
餃 統計情報収集や索引の再構築などのメンテナンス設計
e 定期的な性能分析または傾向分析

大規模システムの場合などは、専任のDBAチームを構成し、業務を横断的に管理す
る体制を構築しておくことで、全社的にシステムの安定化を図ることが可能となります。

また、運用ノウハウのナレッジを一元管理するという意味でも有効と言えるでしょう。

運用フェーズ時にジョブスケジユーラなどを使用して監視を行なっているシステムは多

く見受けられます。しかし、定期的に性能分析や傾向分析も行なっているシステムは非

常に少ないようです。安定しているから性能分析を行なわなくて良いのではなく、デー

タ量の変化や処理数の変化などに応じて性能分析を行なうことで、内在しているSQLパ
フオーマンスに関わる事象を捉えておくことが非常に重要になります。性能情報の傾向を

把握しておくことが、運用フェーズでの予防策の第一歩となります。

すなわち、運用フェーズにおける性能確認では、次のポイントが重要になります。

鸞 定常監視が行なわれているか
。 SQL性能に関わるメンテナンス設計が計画および実施されているか
蟻 定期的な性能分析が計画および実施されているか
簿 SQL性能の妥当性を判断するための体制作りが考慮されているか

また、実際の現場におけるSQLパフォーマンス問題の予防策で、多くのプロジェクト

において話題に上がるのは統計情報の運用でしよう。本章では、これらを踏まえたうえで

統計情報に対してどのような運用管理を行なったら良いかを重点的に説明していきます。

定常監視および定期的な性能分析/

運用フェーズにおけるSQLパフォーマンス問題の予防策の 1つとして、定常監視およ

び定期的な性能分析/傾向分析が挙げられます。

それでは、運用フェーズにおける定常監視の目的には、どのようなことが考えられるで

しょうか。一般的に、定常監視の目的として挙げられるのは次の3つです。

鸞 サービスダウンや致命的エラーが発生したコンポーネントを即座に突き止める
薔 性能問題の発生を迅速に検知して原因を特定する
o業務に対して表面化していない性能問題の兆候を迅速に検知する

適切に定常監視を行なうことで、大きく分けて2つの効果を得ることができます。

颯♭①ダウンタイムの短縮
障害やエラー、または遅延を即座に突き止めることで、業務に影響を与える時間を最

小限に抑えられるようになります。

櫃ゝ②プロアクティブな性能問題の検知による業務影響の回避

性能問題が顕在化する前に、予兆を捉えて事前に予防策を検討および対処することが

可能となります。

定常監視を行なう場合は、そのシステムに合ったベースライン (しきい値)を設定して

監視を行なう必要があります。運用の現場では、ベースラインが決まっていない状況で定

常監視を実施しているシステムを多く見かけます。このままでもある程度の監視効果は期

待できますが、検知の取りこぼしや過剰なアラートの発生により、運用効率や効果を低下

させる原因となります。そこで、運用フェーズにおけるSQLパフォーマンス問題のもう1

つの予防策として、定期的な性能分析/傾向分析が必要となります。

性能分析/傾向分析の目的には、どのようなことが考えられるでしょうか。一般的に、

性能分析/傾向分析の目的としては次のようなことが考えられます。

０
薇Ｕ

。 現状のサービス品質やリツース使用状況などを把握する
饉 性能問題が発生していない状況においても、ボトルネックを把握する

。 業務量の変化によってリツース量不足に陥り、性能問題が顕在化する前に対処計画を
立案する

現状のサービス品質とリソース使用量の変動を時系列情報として把握し、今後の業務

量の変化予測と照らし合わせることで、性能問題やリソース不足問題の発生を事前に予

測し、プロアクテイブなチューニングやリソース増強計画の立案に役立てます。また、性

能分析によって得られた性能情報をもとに、定常監視のベースラインを作成します。

運用フェーズでは、SQLパフォーマンス問題で業務影響が発生する前にいかに検知

し、対応できるかが重要なポイントです。取得した性能データを評価するときに属人的に

ならない、かつ一元的にDBAに情報が即時に伝わるためにも、運用管理ッールである

Oracle Enterp五 se Manarrな どのツールを導入して運用を行なうことは非常に効果的で

す。

これまで統計情報の重要性については何度か触れてきました。皆さんも統計情報が

SQLのパフオーマンスを考慮するうえで、どれくらい重要な要素なのかということはすで

に理解していただいたと思います。

ここからは、オプティマイザ統計情報の管理方法について説明していきます。統計情報

運用の設計を行なううえで、我々コンサルタントがどのような点を考慮して顧客の環境に

合った運用設計を行なっているのかをお見せしますので、その内容をベースに、皆さんの

システムの特性に合わせて、どのように統計情報を管理すべきかを検討してみてください。

統計情報は、オブジェクトやデータの実際の状況に関する詳細情報です。初期化パラ

メータのことをオプテイマイザがコスト判断するうえでの基礎情報というならば、統計情

報はオプテイマイザがコスト判断するうえでの直接的に影響を与える情報です。

統計情報と実際のデータ状況との差が大きい場合は、統計情報をもとにオプテイマイ

ザがコストを算出するため、実際のデータを取得する処理において、結果的に非効率な

実行計画が生成される可能性があります。要は、非効率な実行計画が生成される主要な

オプティマイザの特性と統計情報

②その後、データ量が

増大した

④しかし、結果として100万行を全データ読んで
しまうことになり、パフォーマンス問題が発生

①表の件数が1000行のときに
統計情報を取得した

③オプティマイザは統計情報から

件数が1000行だと分かるので、
全データを読んでもパフォーマ

ンスに影響はないだろうと判断

原因として、必要な統計情報の欠落や陳腐化が考えられるとも言えます (図 1)。

統計情報上の件数
1000行

図 1:統計情報とデータの実態がかけ離れた場合

統計情報と実際のデータでギヤップが発生した場合に、どのような影響が実行計画

に対して発生する可能性があるのかを事前に知っておくと、実行計画の変動に対するパ

フォーマンスヘの影響も予測できるようになります。また、実際にSQLチューニングを

行なう場合には、現在の実行計画を確認して、その実行計画の妥当性を判断する必要が

あります。妥当性を判断するための知識としても、統計情報がオプテイマイザヘ与える影

響を知っておく必要があります。

(229

対象表にアクセスする SC)L
すべて

SQL単体

収集自体は容易 SQLチューニングスキルが必要

オプティマイザ任せ 人為的に設定可能

インプットに依存 (統計情報

など)

SQLチユーニングスキルに依存

再収集時は変化する可能性
がある

すべてヒントで固めれば基本的に変

化しない

続計情報収集における基本ポリシー

オプテイマイザは統計情報を介してデータの情報を把握するため、データの状態に近

い統計情報であればあるほど高い精度での実行計画を算出しやすくなります。そこで、

統計情報の収集ポイントとして次の内容がまず挙げられます。

統計情報は実データに近しヽ状態となるように採取する

では、統計情報は常に再収集を続けるべきなのでしょうか。統計情報はオプテイマイ

ザヘの大きなインプットであり、インプットである統計情報が変更されると、そのアウト

プットである実行計画も変化する可能性があります。通常、この変化は統計情報の精度

が上がれば、パフォーマンスが向上する方向に変化してくれるはずです。ただし、統計

2
ノ

.■|‐

.||||||||||||||||

SQL

‐情報を使用|すると、

情報の収集タイミングとデータ変動によっては、統計情報と実データにギャップが発生し、

逆にパフォーマンスが低下するような実行計画に変化してしまう可能性がないとは言えま

せん。

そのため、統計情報を収集した場合、その結果として生成される実行計画の妥当性や

パフォーマンスヘの影響を確認するべきです。

統計情報を再収集したら、できる限り実行計画やパフォーマンスを確認

する

ここに統計情報収集の難しさがあります。可能な限リデータの状態に近づけるためには

頻繁に統計情報を収集するべきですが、統計情報の収集のたびに実行計画が変動する可

能性があることも否めないため、同時に実行計画やパフォーマンスを確認する必要もあり

ます。

実行計画やパフォーマンスの確認はコストを要することもあるので、確認が省かれたり、

統計情報の再収集を行なわなかったりするようなケースも多々見受けられますが、このよ

うなアプローチは一概に良いとは言えません。

本来は再収集することによる影響を把握し:

|や体制を作るハミきでしょう8‐_ ■■■■‐・‐ _.・・‐

フェーズごとにテ

そのため、

卜におtヽ
‐
ζ
‐
は、

そうでなければ、

一概にそれが良いとは言い切れま

せん。

プロジェク

統計情報の特性と収集タイミング

では、統計情報はどのようなタイミングで収集するべきでしょうか。表 1～ 3は表、索

引、列の統計情報の一部を抜粋したものです。

表 1:表統計情報の一例

表 2:索引統計情報の一例

表 3,列統計情報の一例

これらの表からも分かるとおり、データ量やデータの種類は統計情報に大きく影響しま

す。したがって、統計情報の収集に当たっては、データの量や質に対して注意を払うべき

であり、これらが大きく変動する場合には、その収集タイミングは特に考慮するべきです。

データ量が多いタイミングで統計情報を収集する

統計情報は基本的にデータ量が多い状態で取得するべきです。統計情報にデータ量が

多いと記録されている場合、オプテイマイザは絞り込みの効果を検討し、十分な絞り込

カーディナリティ 表の行数。行数が多ければ、大
きい表ということで全表スキャ
ンよりも索引スキヤンが採用さ

れやすくなると思われる。また

結合順序にも影響する

N∪ M_ROヽ A′S ブロック数× (ブロックサイズー

24)/100行

行の平均長 1行あたりの平均サイズ AVG ROヽ /ヽLEN 20ノ イヾト

ブロック数 HWMまでのブロック数 BLOCKS 実際のブロック数

リーフブロック数 索引のブロック数 LEAF_BLOCKS 25

索引の高さ Bツリー索引の高さを表す。高さがあると、リー
フブロック讀でたどるブロック数が増えるため、

索引スキャンのコストが増加する

DISTINCT_KEYS

クラスタリング
フアクタ

索引列データの表での分散度合いを表わします BLEVEL 800

デフォ 卜1直

列内の個別値数 列内の値の種類を表わす。NDV(Number of
Distlnct Value)と 呼ぶこともある。NDVが大
きいほど、条件で絞り込める可能性が高くなり、

索引スキャンが有効になりやすくなる

NUⅣI DiSTINCT カーディナリティ
/32

列内の NULL数 列内の NULL値の数 N∪M NULLS 0

ヒストグラム 列データの分布状況の統計情報。ALL_TAB_
HISTOGRAMSデ ィクショナリピューで詳細を
確認できる

統計情報 ォル ト値

統計情報 ・ デフォルト値 .

‐‐統1計情報 ‐ 1概要
|■■|‐ .|| ディクショナリ列

概要 ||.| ディクショナリ列

みが期待できる場合は、フルスキャンではなく索引スキャンを選択するように検討します。

一方、データ量が少ないと記録されている場合には、フルスキャンによる1/0効率の

向上などのフアクターも絡み、索引スキャンではなくフルスキャンが選択される場合もあ

ります。実際のデータ量が少ない状態であれば、そのままフルスキャンであったとしても

パフォーマンスにはそれほどの影響は出ないかもしれません。しかし、運用が進んでデー

タ量が増加していった場合でも、統計情報上のデータ量が少ない場合はフルスキャンが

採用され続けるかもしれません。この場合、データ量に応じてパフォーマンスが徐々に劣

化してしまう可能性があります。

このような状況を考慮すると、データ量はできるだけ多い状態で統計情報を収集した

ほうが、パフォーマンスの安定性を期待できると言えるでしょう。実際のデータ量が少な

いケースでは、フルスキャンでも索引スキャンでもパフォーマンスはそれほど変わりませ

ん。しかし、オプテイマイザが統計情報からデータ量が少ないと勘違いをしてフルスキャ

ンを採用したものの、実際はデータ量が多くフルスキャンに時間を要してしまうという

SQLパフォーマンス問題は現場でもよく発生するパターンの1つです。

データの値の種類が多いタイミングで統計情報を収集する

データの質については、特にデータの値の分布状況に注意する必要があります。例えば、

同じ100万件のデータがあったとします。全データが同じ値だった場合、フルスキャンを

採用したほうが効率的です。一方、データがすべて異なる場合は、基本的には索引スキャ

ンにより十分に絞り込んだうえで検索できないかを考慮するべきです。

データ量に対する検討と同様のことが、データの質に対しても言えることになります。

データの値の種類が少なければ、フルスキャンでも構いませんが、実際のデータの値の

種類が増えてきた状態でもフルスキャンが採用され続けると、非効率になりかねません。

データの種類が多い状況で統計情報が採取されていれば、索引スキャンが採用されやす

くなります。

Ｑ
Ｊ
う
０
つ
“

22:00-6:00、 週末 :± 0:00～月 0:00)で、

され

てヽ選択され

ます。例えば、OraCle 108 R2で は、

たオブジェクトの統計情報が再収集されます

ことつ

能ではありますが、このデフォルト

(月～金

な機

デフォルトの時間帯

必要に応じ

Oracle 103以後、オプティマイ

です。システムのデータの変イ

データ特性ことの続計情報収集方針

オプテイマイザと統計情報の特性を考慮すると、統計情報を収集するタイミングは、デー

タの特性に大きく依存することがお分かりかと思います。では、具体的にデータの特性ご

とにどのようなタイミングで統計情報を収集するべきかをまとめます。

炒リデータの量/質が特に変動しない表
このような表に対しては、統計情報をいつ取得しても良いと言えるでしょう。稼動開始

直後に統計情報を収集して固定化しても、定期的に統計情報を収集したとしても特に大

きな違いは出ません (図 2)。

データ量

▲サービスイン
時間

白

データ量や質が運用経過にかかわらずほぼ一定

の場合は、どのタイミングで統計情報を収集して

も問題ない。通常はサービスインの直前に統計

情報を取得し、そのまま固定化することが多い

図 2:データの量/質が特に変動しない表

∩白白

データ量

▲サービスイン

①定期的に収集

②テストデータで
収集

図3:データが継続的に増加する表

例えば、稼動開始直後に統計情報を収集し、そのまま再収集を行なわなかった場合は、

統計情報は少ないデータ量として記録されたままです。すなわち、オプテイマイザはフル

スキャンを選択しやすくなりますが、運用が進んでデータ量が増加してもずっと同じ実行

計画では、パフォーマンスが徐々に劣化してしまう可能性があります。

このような表に対する統計情報の収集方法としては、主に次の案があります。

。 一定期間ごとに統計情報を収集する
。 稼動開始時に想定される最大データ量のテストデータを用いて統計情報を収集し、そ
のまま固定化する

一定期間ごとに統計情報を取得するのも1つの手です。ただし、どこかのタイミングで

実行計画が変動する可能性があることに注意が必要です。統計情報を収集したら、実行

計画の確認やパフォーマンスの確認を行ないたいところです。

テストデータを用意できるのであれば、稼動開始時にテストデータを使用して統計情報

を収集し、そのまま固定化することによって安定したパフォーマンスを期待できます。

鱚♭データの量/質が頻繁に変動する表

自 由 白 曲 爾 曲

ｎ
お
Ｕ

データが継続的に増加する表の場合には①定期的に収集する、または

②テストデータで収集するかが主に想定される。想定最大データを用
意できるのであれば、サービスイン前にテストデータで統計情報を収
集し、固定化するケースが多い。用意できなければ定期的に統計情報
収集することになるが、実行計画変動の可能性はある

データの量や質が頻繁に変動する表についても、統計情報の収集はシビアになるべき

235

瘍ゝ データが継続的に増カロする表
履歴表など稼動開始当初は少量のデータだったとしても、運用が進むにつれてデータ

量が増加する表は、統計情報の収集に注意するべきです (図 3)。

です (図 4)。 例えば、オンライン中にデータが増加し、バッチ処理によってデータが一括

削除されるようなトランザクション系の表や、バッチ処理前後で大きくデータ量が変動す

る表は注意が必要です。またデータ量だけではなく、ステータス列のような列についても

同じです。バッチ処理で、データの値の種類が大きく変動する列もよく見られます。

▲サービスイン

白
由
至

‐ｈ
饉①定期的に収集

②テストデータで
収集

図4:データの量/質が頻繁に変動する表

このような表に対しては、データ量が多いときやデータの種類が多いときに統計情報を

収集できるようにしていれば、基本的に間違いは少ないと言えます。オンライン中にデー

タが増加し、バッチ処理によってデータが一括削除されるようなケースでは、バッチ処理

開始前に統計情報を収集するのが妥当でしよう。

輻いそれ以外の特性の表
データの変動特性が予想できない表など、上記の特性に分類できない表についても可

能な限り、データ量が多い、データの種類が多いときに統計情報を収集するようにします。

データの量、質が頻繁に変動する場合も、①定期的に収集するか、

または②テストデータで収集して固定化するかを検討する。想定

最大件数のテストデータが用意できれば②を採用し、できない場

合はデータの量や種類が最も多いタイミングで統計情報を取得
する

離
０
´

チューニング・ガイド』

・・OraCI年 11尋‐よツ)

■

‐
|・

●

,こ olocIも

SPM.に は、

_selines」
‐‐‐ ‐■|‐ ■

SQL

城

共有プールからDBMS_SPMパッケTジを使用すると作成できます。また、ス
テージング表を通じてSQL計画ベー

不
ラィンをエクスポート/インポートする

ことも可能です。なお、SQL計画ベースラインは「SQL管理ベース」と呼ばれる
SYSA∪×表領域上に保存されます (SMBの制限は、デフォルトで SYSAU× 表
領域のサイズの 10%程度であり、それを超えた場合はアラートがアラートログに

生成されます)。 _. ・

SQL‐計画ベースライン上の実行計画は、デフォルトでは最初に生成された実

行計画のみがACCEPTED=YESと なります。それ以外の実行計画が生成され
たとしても、ACCEPTED■ NOと して保管されます。ォプティマイザはSQL.テ
キストや統計情報をもとに実行計画を作成した後t SQL計画ベースラインに対
して該当の実行計画のACCEPTED属性を参照します。YESであればそれが採
用されますが(NOであれ|ま、そのほかのACCEPTEDが YES―の実行計画が選
択されて返されます。ACCEPTED属性は任意に変更することが可能であるた
り、新規IF生成された実行計画を確認して妥当なものであれば、その実行計画を

ACCEPTED=YESと 変更することで、‐その実行計画がはじめて採用されます。
・つまりSPMを使用すると、これまで使用されていた実行計画と異なる実行計
画が生成された場合にもいぎなりその実行計画が使用されるのではなく、妥当性

を確認するというワンクツシヨンを経で採用の竜否を指示できうことになります。

ゆ景講摯職:ittilふ 考え算が籍‐わ碁 _ ・ ‐ ―
これまでt統計情報の固定化やヒント句などにより実行計画の固定化を行なつ
てきましたが、SPMにより実行計画を直接的に管理したり、テスト環境からの移
行や固定化も行なつたりできるようになります。

つまりSPMを有効に活用すると、統計情報を再収集することで、実行計画の
予期せぬ変動の懸念を低減させられるようになります。統計情報は頻繁にとる、

実行計画の予期せぬ変動は SPMによって押さえ込むという考え方や運陶が、今
後の主流になるかもしれません: . _ . _ ‐ ‐

. ■

EPTEDPLAN NAME FIXEDSQL HANDLE

N0SYS SQL PLAN aaaaa YESSYS_SQL_111

N0 N0SYS SQL lll SYS_SQL_PLAN_bbbbb

I YES*I N0SYS SQL 222 SYS_SQL_PLAN_ccccc

N0SYS_SQ畦 PLAN」 ddd N0SYS_SQL_222

NO一」 N0SYS SQL 222 SYS_SQL_PLAN_eeeee

OPTIMIZER_CAPTURE_SQL_
PLAN BASELINES=TRUE

DBA_SQL_PLANLBASELINE DBMS_SPM LOAD_
PLANS_FROM_
SQLSET

DBMS_SPM.PACK_
STGTAB BASELINE

ステージング表

統計情報収集設計のスムーズな進め方

統計情報収集運用が難しい背景に、この運用設計はDBAだけではできないというこ

とがあります。統計情報の適切な運用を行なうためには、統計情報とオプティマイザの特

性を熟知している必要ももちろんありますが、それ以上にデータの特性が大きな影響を与

えます。このデータの特性を最もよく知っているのは、一般的にDBAではなくアプリケー

ション設計者/開発者でしよう。

そこで統計情報収集設計をする場合には、DBA単独では行なわず、アプリケーション

設計者/開発者も交えて検討することをお勧めします (図 5)。 以下の方針で統計情報収

集を行なっていくと良いでしよう。

239

図A I SQL Plan Managemeotの動作

統計情報運用に関する

方針の承認

詢
鰈
靱

DBAと協業する旨を指示

統計情報の運用がDBAだけ
でなく、設計者、開発者にも
関連することを説明収集方
針をPMに報告

統計情報で注意すべきデータ特性
について説明し、分類を依頼

DBAに報告

オプテイマイザ、統計情報に関する説明、注意すべき
データ特性のガイドを作成
設計者からの分類に従つて統計情報収集方針を策定
し、これをもとに統計情報収集を実施

図51プロジェクト全体での統計情報運用検討

⑬ゝ 注意すべきデータ特性のガイド
DBAは統計情報とオプテイマイザの特性をもとに、注意すべきデータ特性についてま
とめます。具体的には本稿で説明したとおり、「データ量が継続的に増加する表」「データ

の量/質が頻繁に変動する表」となります。

賦5アプリケーション設計者/開発者による選別
上記ガイドをもとに、アプリケーション開発者はシステムの各表に特に注意すべき特性

の表がないかどうかを確認します。特に「データの量/質が頻繁に変動する表」について
は、どのタイミングで変動するかについても整理してDBAに報告します。

予,DBAに よる統計情報収集運用の方針検討と実装
アプリケーション開発者が選別した結果をもとに、統計情報の収集タイミングを設計し、

実装します。すべての表に対して統計情報収集タイミングが同じにできればそれに越し

たことはありませんが、「データ量が継続的に増加する表」「データの量/質が頻繁に変動

する表」が存在する場合には、個別のタイミングにて統計情報収集することも積極的に検

討するべきです。

DBAからのガイドに従つてデータ
特性ことに表を分類し、DBAに報告

運用フェーズでは、SQLパ フォーマンス問題で業務影響が発生する前に、いかに検知

して対応できるかが重要なポイントになります。現状のサービス品質とリソース使用量の

変動を時系列情報として把握し、今後の業務量の変化予測と照らし合わせることで、性

能問題やリソース不足問題の発生を事前に予測し、プロアクティブなチュ
ーニング、そし

てリソース増強計画の立案に役立ててください。

また、オプティマイザ統計情報の運用にも十分に注意を払うべきです。現場からも統

計情報をどのように管理すべきかといった質問を多く受けます。我々コンサルタントが統

計情報運用の設計を行なううえで、どのような点を考慮して顧客の環境に合った運用設

計を行なっているのかを解説しました。

なお、統計情報収集運用が難しい背景には、この運用設計はDBAだけではできない

ということがあります。統計情報収集運用は、データの特性に大きく影響を受けます。こ

のデータの特性を最もよく知っているのはDBAではなく、一般的にアプリケーション設

計者/開発者でしょう。そこで、統計情報収集の設計を行なう場合には、DBA単独では

なくアプリケーション設計者/開発者も交えて検討することをお勧めしました。

実際のプロジェクトで
どこまでやるべきか

これまで、いかにしてSOLのパフォーマンストラブルを解決し、また予防すべきかに
ついて書いてきました。ただ、これらをプロジェクトで取り入れる場合には少なからずコ

ストがかかります。紹介した予防策や解決手法を、すべてのプロジェクトで適用できる

のが理想ですが、実際にはシステムの要件やコストによって適用できる範囲は限られて

しまうのが実情です。ここでは、現実のプロジェクト状況を考慮しながら、システム要件

によってどこまで適用するべきなのか、コストが厳しくても最低限やるべき施策は何かと

いった観点を加味しつつ、sQLパフォ…マンス問題を予防するための各種施策を振り返
りたいと思います。

最低限の予防として、sQLコ ーディングルールはどのプロジェクトにおいてもほぼ必須

であると言えるでしょう。多くの開発者がSQLコ ーディングを行なう場合には特に重要
です。SQLコーディングルールを使用することで、システム全体のSQL品質の底上げが
期待できるうえに、いざパフオーマンス問題が起こった際の最初の定型的なチェックにも

使用できます。

SQLコーディングルールを作成&開発者へ配布して終わりではなく、コーディング後
のチェックが必要になりますが、多くのSQL文をチェックするにはコストがかかります。
SQLチューニングアドバイザなどのツールを使用するのも1つの手です。

また、オプテイマイザ統計情報の管理についても必ず考慮しておくべきです。デフォル

トで Oracleが統計情報を自動で収集してくれますが、自動化の裏で何が行なわれている

かを知らずに自動化に任せるのと、それらを検討した結果として自動化に任せるのとでは

まったく異なります。Chapter18で説明した内容を参考に、ぜひ検討してみてください。

高いパフォーマンス要件が求められるシステムの場合は、プロジェクト全体でパフォー

マンスに対する対応を検討するべきです。Chapter13で説明したとおり、プロジェクト計

画段階においては、パフォーマンスに対するリスクを具体的に挙げたうえで対応を検討す

るように、PMや PMO(プロジエクトマネジメントオフイス)に訴えることが非常に重要

です。

対応策はプロジェクトによって異なりますが、特に効果が大きいと考えられるのは「性

能チーム」を作ることでしよう。業務チームや基盤チームのリーダー、技術有識者を交え

た性能チームにて、機能問題と同レベルで性能問題を検討し、パフォーマンス問題を早

期から解決していくことが非常に重要です (図 1)。

…………………… 性能チーム

/´
一一―業務チーム ーーーー、 ″一――基盤チーム

リーダ■‐

―
ゴ

図 1:性能チームの設置

DBAはプロジェクトの途中や設計フェーズ、構築フェーズ、またはテストフエーズか

ら本格的に参画することも多いと思われます。参画直後は、最初にそれまでに作成され

た設計書や定義書などを確認したり引き継いだりするはずです。この際に、パフォーマン

ス問題が発生しそうな内容がないかどうかをぜひ意識してください。

例えば、パフォーマンス要件は明確に定義されているか、要件の実現性はどのように

検討されているかなどの設計根拠について確認することが重要です。懸念がある場合は

性能チームの設置、権限付与

243

そのままにせず、ぜひリーダーや PMにそのリスタと対応の方向性を報告し、改善に向
けて動いてみてください。そのままにして、後のフェーズでSQLパフォーマンス問題が
発生して、苦労することになるより良いですよね。

どのプロジェクトでも

プロジェクトを実際に動かしているのは人間です。多くの問題は人同士の連携ミスや思

い込み、思い違いから発生しがちです。特にプロジェクトの多くでは、業務チーム (設計

者や開発者)と基盤チームの情報連携について、課題を抱えているのではないでしょうか ?

データベースやSQLは、システムのいわば中間に位置しています。データベースゃ
SQLを上手く使うには、業務側観点で考慮することもあれば、インフラ観点で考慮する

こともあります。業務チームにしてみれば、インフラの観点から考慮することはそれほど

深く行なうことができず、基盤チームにはその逆になってしまいがちです。特に、SQLコ ー

ディングやパフォーマンス問題発生時の切り分けや統計情報運用においては、両者の連

携が非常に重要になります (図 2)。

図 2:システム内でのデータベースの位置付け

Part3で は、各種フェーズにて図 2のような連携のイメージを説明しました。業務チー

ム (設計者や開発者)と基盤チーム (DBA)が積極的に情報を提供し合い、システム全体
の観点で検討を進めることが SQLをはじめとするパフォーマンス問題を予防、そして解
決するために非常に重要になります。もちろん、そのような風通しの良さをPMがプロジェ
クトとして「公式」に認めることで、よリスムーズになるはずです。

H/W

EEEEI lDatabase Administratorj Db lDatabase Architect] ^..

‐ ・ ■ | | . _. . .‐

「Database Administrato」 から
lDatabase ArchitectJ I

I

本気でパフォーマンス問題に対応するためには、考え方自体を変えていくことが有効

だと考えています。システムが大規模化または複雑化する中で、港在化するパフォーマ

ンスリスクは非常に高くなつてきています。その潜在化されたパフォーマンスリスクを限

りなくゼロに近づけることが、本気でパフォーマンス問題に対応するとし`うことになるの

ではないでしょうか。

潜在化するパフオーマンスリスクをゼロに近づけるには、プロジェクトフェーズの早い

段階で技術的観点からパフォーマンスに関する指針を取り込んでおくことが非常に重要

です (詳細についてはPart3の各フェーズの予防策を参照してください)。

ここで重要なのは、PMも含めプロジェクトに関わるメンバー全員が、パフォーマンス

問題に起きてから対応するのではなく、予防のために何をすべきかを考えながら連携する

必要があるということです (図 1)。 このように考え方を変えていくことがパフォーマンス

問題を解決する一番の特効薬になります。

難しいことかもしれませんが、読者の皆さん1人 1人がパフォーマンス問題とは予防す

るものであると意識して作業を行なえば、少しずつ変わってくるはずです。

計画 要件定義 設計 開発 テスト 運 用

PM 顆

設計者 (鬱

DBA ,■■
■‐,

開発者

図 1:「解決」から「予防」ヘ

性能問題が起きる前の「予防」 性能問題が起きてからの「解決」

「DB Adlministrator」 から

近年は企業経営や企業活動のインフラとして、ITは必要不可欠な存在となっています。

経営戦略においても、データおよび情報の重要性は非常に大きくなっており、そのうえ企

業が抱えるデータ量も、年 増々加傾向にあります。ITに求められる要求の重要性が増せ

ば増すほど、データベース管理者に求められる役割やスキルも増加している状況なのです。

変化に強く、より高いビジネスバリューを生むITイ ンフラストラクチヤを構築して管

理し、さらに運用を効率的にこなしていく次世代データベース管理者を、同じDBAでも

「DB Administrabr」 ではなく、「DB Archtect」 と呼ぶようになってきました。

もちろん、構築や管理、運用を効率的にこなすためには、パフォーマンス問題が発生

しない、または発生させない予防的対応策のITイ ンフラの構築や、それらのスキルを持っ

た人材が必要となります。つまり、本書のPart2で解説した「解決」編の内容のみで対応

していただけでは、DB Administratorと は言えてもDB Architectと は言えません。「解

決」と「予防」両方に対応できるデータベース管理者になって、はじめてDB Archttctと

言えるでしょう(図 2)。

DB Administrator

膚
ｇ

オ

“‘
■
ロ
ー
、′

』

ｔ

Ｃ

DB Architect

図2:「DB AdiTlinlstrator」 力`ら 「DB Architect」 ノヽ、

ここからは本書のまとめとして、DB Architectと はどのような役割を担っているのか

について考えてみたいと思います。DB Administratorと DB Architectと いう言葉の違

いだけでは、何に違いがあるのかよく分からない方もいると思います。そこで、プロジェ

クトフェーズでの関わり方やプロジェクト体制での動き方、DB Architectの スキルにつ

いて話を進めていきます。

ｇ

ち，
―
，
，
～
―

―^――
～
～
‘，
―
―
１
／

一‥
‐
‐…
…́陥
‐…
…ヽ
１
‥ヽ

Ｃ

DB Administratorと DB Architectの 違いをもう少し分か りやす くするために、

Enterprise Architecture(以 下、EA)の考え方を例に説明します。DB Architectが どの

ようなスキルを持ったエンジエアであるのかをイメージしてみてください。

EAとは、情報技術の変化に素早く対応できるように「全体最適」の観点から組織の業

務手順や情報システムの標準化、組織の最適化を進め、さらに効率の良い組織運営を図

るために業務プロセスや情報システムの構造、利用する技術などを整理/体系化したも
のです。EAは表 1に挙げる4つの要素に分割され、定義されています。

表 1:EAの 4つの要素

これだけではまだ分かりにくいので、EAの 4つの要素について、業務視点/システム

視点でスキルの範囲を表現してみました (図 3)。

業務視点 システム視点

・ビジネス戦略
・ ューザー

DA

TA

--------.-- DB Administrator.
DB Architect

図 3:EAを 例にした DB Architectの スキル

BA(Business Architecture) 業務分析や業務フローなどについて、共通化/合理化を実現すべき姿を体
系的に示したもの

DA(Data AЮ hitecture) 各業務/システムにおいて利用される情報の内容や、各情報間の関連性を
体系的に示したもの

AA(AppHcation Architecture) 業務処理に最適な情報システムの形態を体系的に示したもの

TA(Technology Architecture) 実際にシステム構築する際に利用する諸々の技術的構成要素、およびセ
キュリティ基盤を体系的に示したもの

鰺
靡
痣

SQLチ ューニング時には必然的にデータベースの論理設計やその SQLが参照する

EAの要素 説明

データ量、またはデータの質を確認する必要があります。そして、アプリケーションがど

のようにSQLを発行するのかなど、ループや条件分岐の使い方などのアプリケーション

に関する部分にも対応する必要があります。

DB Architectは 、データベースを中心とした業務フローやアプリケーションのアーキ

テクチャなどに関する知識を習得することで、自然とアプリケーション開発者や設計者と

も共通用語を使ってコミュニケーションをとることができます。さらに、それによって顧

客が考える業務改善の方向性なども見えてきます。

システム規模がさほど大きくない場合は、以前のDB Administratorの ようにデータ

ベース管理のスペシャリストとしての役割が非常に重要でした。しかし、近年のシステム

ゃプロジェクトでは、複雑化や大規模化により、データベース管理だけでなく、データベー

スを中心としてプロジェクトフエーズの上流における要件定義や設計時のデータのあり方

に関わることや、開発時にアプリケーションのあるべき姿、そしてセキュリテイおよび品

質を管理する必要性も求められてきます。これに対応できるのが、DB Archtectで す。

SQLパ フォーマンス問題を未然に防ぐための流れは、まさにDB Arcmtectと しての視

点や動き方、スキルであると言えるでしょう。

ITシ

ているこ

ノウノ

―

■
一

249

チ■ム

Architect

1つ目は、

2つ目は、各シ

あります

Aシステム Bシ ステム Aシ ステム

1/レビュ

DB Archltectチ ーム

●プロジエクトの解散や、担当者が異動しても、DB Architectチ ームにノウ八ウが蓄積される
0フイードバックを蓄積することで、長期的サイクルの中でも効率化や標準化、品質向上が見込める
O DB Architectチ ームのメンバーが少数でも効果を見込める

メリツ

プロジエクトフエーズでの関わり方

次は、DB Architectの プロジェクトでの関わり方について話を進めます。これまでの

DB AdmidstratOrは 、図4に示すように開発フェーズ以降のデータベース管理業務のス

ペシャリストとしての役割が非常に重要でした。DB Architectも 、データベース管理の

スペシャリストの部分は今でも非常に重要な役割の1つです。

計画 要件定義 設計 開発 テスト 運 用

DB Architect 蜆 「111・ ■‐ 目目■
DB Administrator l& ■■■

図4:プロジェクトフェーズでの関わり方

プロジェクトは全体最適を求められ、また標準化活動も行なわれるようになってきまし

た。さらに、システム全体を意識したセキュリティ要件や品質なども重要視されています。

■■

=・

11

.).

プロジェクトとしてもDB Administratorの 枠組みの中だけで活動するのではなく、デー

タベースを中心としてプロジェクト全体に関わる DB Architectと しての人材が求められ

ています。

つまり、DB Architectは プロジェクトフエーズの上流から関わることで、プロジェクト

全体の最適化や品質向上に貢献する関わり方が求められていることになります。

DB Architectは 、スキルの幅を論理設計やアプリケーションアーキテクチャまで伸ば

すことで、設計者や開発者と深く関わる必要があります。今までの DB Administrabrは

どちらかと言うと受け身の立場で、インフラやデータベースに関する部分に対する質問や

管理を行なう作業者になっていたケースが多かったのではないでしようか。

効率化や品質を考慮すると、PMに対して技術的観点からのプロジェクト計画や効率

化、そして品質の部分で技術的オブザーバーとして報告することも、非常に重要な役割

と考えます。また、設計者や開発者と対等に会話できるスキルをもとに、パフォーマンス

問題などを意識しながら、ガイドを提供するなど、設計者や開発者の作業に関わっていく

ことが求められます。DB Architectが技術的な知識を中心としてプロジェクトメンバー

のハブ (Hub)役 となるように動くことで、プロジェクト全体が効率化できると筆者は考

えています (図 5)。

.PMI

薔|千F:|:|
2::|お

統計情報運用に関する方針の承認

統計情報運用がDBAだけでなく、
設計者や開発者にも関連すること

DBAと協業する旨を指示

統計情報で注意すべきデータ特性

について説明や分類を依頼

DBAに報告

オプティマイザや統計情報に関する説明、注意

すべきデータ特性のガイドを作成

設計者からの分類に従って統計情報の収集方

法を策定方針に従つて、統計情報収集を実施

■
年
一
　
●

■
帥
・
―
凛
苺
壕
囃
，・

一多
ド

プロジェクトメンバ…との関わり方

DBAからのガイドに従つて、データ特
性ことに表を分類してDBAに報告

図5:プロジェクトメンバーとの関わり方 (統計情報収集に関する動き方の例)

ここまで、いかにしてSQLのパフォーマンストラブルを解決するか、また予防できる

かについて話してきました。

本章が最終章ということで、Partlか ら3までの内容を振り返りつつ、本気でSQLパ

フオーマンス問題に取り組むには「解決」から「予防」へと考え方を変える必要があるこ

と、また SQLパフォーマンス問題を未然に防ぐためにも、DBAが DB Administratorか

らDB Architectへ変化することの必要性について解説しました。これらが、皆さんのさ

らなるスキルアップの指針になればと考えています。

ここでは本文では触れられなかつた事項を補足説明します。特にChapter8の 内容の

補足となるSQLチユーニング案の検討方法とチューニング対象となるSQLの特定と効
果測定に関して説明しますので、本文とあわせて読んでください。

SQLチューニングは短期で習得できるものではありません。初心者は、基本的には試
行錯誤によってSQLチューニングに取り組まざるを得ないでしよう。また、あまりに複
雑なSQLのチューニングでは、SQLチ ューニングに慣れたDB管理者でもトライ&エ
ラーを繰り返しながら行なわざるを得ないケースもあります。

そのため、最も初歩的なSQLチューニング案の検討方法として、このようなトライ&
エラーでのチューニングの例を説明します。言い換えると、この方法はSQLチューニン

グの進め方におけるチューニング案の検討/実装/効果確認を、検討は甘くても繰り返
して実施しているものです (図 1)。

要件を満たしている 要件を満たしていない

図 l SQLチユーニングの一般的な流れ

パフオニマンス要件を満たさないSQLを把握

SQLパフォーマンス状況の確認

SQLチユーニング案の検討

SQLチュ‐ニング案を実装

トライ&エラーの実例 ～テスト環境構築 ヽ
「
「
０
ョ
ａ
一ｘイメージしやすくするために、SQL*Plusで SQLを実行しながらチューニング案を検討

していく流れで説明します。

まず、テスト用の環境を作ってみます。ここではユーザー名を「TEST」 としており、

Oracle Daねbaseのサンプルスキーマ「SCOTT」 から、「EMP」 表、「DEPTdept」 表に類

したテーブルを作成しながら説明します (LiSTl)。 ぜひ皆さんも自由に使える環境があれ

ば、同様に試してみてください。

LiST2のようなファイルを作成し、SQLTlusを 実行しているディレクトリに配置してく

ださい。

LiST l:テ スト用環境の作成

(I′ lTESTI′ 〔TESTl),

(ownname=>:TESTl′ tabname=>IEMPI),
lTESTl′ tabname=>:DEPTI)′

LIST2:チューニング対象の SQL文

一 以下の内容をtest.sqlと して保存する。

SELECT /★ GET_ENAME_FROM_DNAIME キ/
empno

, ename

, job

, dept d
e.deptno = d.deptno
d.dname = '|RESEARCH'
BY empno;

= sqlplus /n。
10g

SQL> connect teSt
パスワードを入力してくださしヽ :

接続されました。
――以後、「SQL>」 や結果は省略する。

――テーブルを作成し、データを投入する。

CREATE TABLE emp AS SELECT 十 FROM scott.empl _
‐ .

CREATE TABLE dept(deptnO NUMBER′ dname VARCHAR2(14), loc VARCHAR2(13)),
INSERT INTO dept SELECT ☆ FROM scott.dept′
BECIN

END L00■ ,

ENDi

では、まずは現状のパフォーマンスを確認しましょう (LiST3)。

LiST3:現 状のパフォーマンスを確認

うにしておく。

EMPNO ENAME JOB

よ

配

7369

7566
7788

7876
7902

SMITH

JONES

SCOTT
Al)AMS

FORD

Elapged: 00800:00.00

Execution Plan

Plan hash Value: 3232458624

I Id I operation

SELECT

Predicat.e

2 - access("8"
4 - f■ lter(IDil.‖ DNAl'lE il=;RESEARCHI)

recursive cal-Is
db block gets
consistent gets
physical reads
redo size
bytes sent via SQL*Net to ,

bytes received via SQL*Net
SQL*Net roundtrips to/from
sorts (memory)

sorrs (disk)
rows processed

30

30

29

3

25

(7)

(7)

(4)

(0)

(0) 0:00:01

by operation id) :

Stat i st ics

0

0

95

0

0

656

416

2

1

0

5

トライ&エラーの実例 ～現状の確認

――先ほど作成したsQL文が格納されたSQLスクリプトフアイルを実行する。
otest.sql _ _ __.

CLERK
MANAGER
ANALYST
CLERK
ANIALYST

I tlanre I nows I eytes I Cosr (?CpU) | Time
I

1 01
1 11
1★ 21

1 31
1★ 41

El"

DEPT

I r+l 44Bl
I rql 44sl
I re I 44sl
I ra I 2e4l
| 6001 I 6G011

I

さっそく実行統計を見てみましょう。まず「recursive calls」 が0になっているか、それ

以上減らなくなるまで「@testsd」 を実行します。recursive calと は、OrЖleが SQL実

行時に内部的にSQLを実行している場合などにカウントアップされるものです。チユー

ニング対象のSQLによる実行統計を的確に把握するために最初に確認し、0以上だった

場合は何回か対象 SQLを実行してみてください。

次にレスポンスを見てみます。ここでの例は扱うデータ量が少ないので 0秒となってい

ます。そのためレスポンスで評価できないので、バッフア読み取り量である「consistent

gets」 を見てみましょう。この状態では95プロックにアクセスしていることが分かります。

実行計画を見ると、EMP表もDEPT表もフルスキャンしており、結合走査はハッシュ

結合であることが分かります。本来はこの時点でパフォーマンス要件を達成しているかを

確認し、達成しているのであればこれ以上チューニングする必要はなくなるのですが、こ

こではチューニングを続けることにします。

では、試行錯誤の一歩日としてLiST4のようにDEPT表のdeptno列 に索引を付けて

みましょう。

LIST4:索引 DEPT_IX lの 追力日

CREATE Ilヽ こDEX dept ix1 0N dept(deoし no); ‐・

さ支さ

`dbms_statsiglthe■

■ndel_stats(Ownnane=>lTEsTI′ ■ndnameっ ID"T IXl'),

再度、testsqlを実行してみます (LiST5)。 どうやらせっかく作成した索引を使用せず、

バッファ読み取り量も変わっていないようです。

さらに試行錯誤ということで、今度はDEPT表のDNAME列 にも索引を作成してみま

す。実際にはSQL文のWHERE句の絞り込み条件にDNAME列 を使用した条件がある

ため、先ほどの索引よりこちらのほうが良いはずです (LiST6)。

残念ながら変化がありませんでした。このようなケースも実際に発生することがありま

す。この場合は、ヒントを使用してオプテイマイザに索引を使用するようにガイドします。

「testsql」 を「testLsql」 にコピーし、LlST7の ように書き換えてください。

では、実行してみましよう(LiST8)。

一
「
「
Φ
〓
２
一Ｘ

トライ&エラーの実例～チューニング試行錯誤

257

LIST5:索 引 DEPT_IX lの効果確認

LIST6:索 引 DEPT_IX2の 追加

ix2 0N

LIST7:索 引 DEPT_IX2を 使用させるヒントの付与

LIST8:ヒ ントの効果確認

Time
I

Otestl

I -LO I Operatron I llame
l

I o I srlucr srArEMENr
II r I soRr oRDER By
Il* 2l HAsrrJorN
i

I : t TABLE ACCESS nUll I rrue

l* + | TABLE ACCEss FULLT DEpr

I 141 4481
I r+l 44sl
I r+l 4481
I ra I)oa It-^l
I eoor I oeorr

I

30

30

29

3

25

(7)|

(7)|

(4)|

(.0)|

(0}|‐

00:00:01

00:00:01

00:00:01
00:00:01
-00:00:01

Stat■ stics

95 con8istent g€ts

Otest.sql

I Id 1 0perよ■on I llame i Rows I aytes I Cosr (?CpU)] Time

I olsurucrsrArEMENr | ! t4l 44Bl 30 17)loo,oo,orl
| ,l soRroRDERBy I I t4l a+ej 30 (r)ioo,oo,orj
l- 2l IIASH,rorN I I 14i 44sl 2s te)ioo,oo,orj
| 3l rABLEACCEssrui,lleue I r+l 2s4l 3 i0)100:00:01j
l* + | rABLE Accuss FULLI DEpr I 6001 i eeorr i 25 (o)j oo,oo,or i

IId 10pⅢⅢl I liame I nows i eyres I Cosr (tCpU)
| |

00:00:01

索引 DEPT_IX2が使用されたことが分・かりましたか ? また、バッファ読み取り量が 6

ブロックに削減されています。これは大きなチューニング効果であると言えるでしょう。

さらに高速化を狙ってみましょう。今度はEMP表に対して、結合条件で使用している

DEPT列に対する索引を付けてみます (LiST9)。

LIST9:索引 EMP_IX lの追加とその効果

I nows I uytes I cost

66011

5 consisLent gets

EMP表は、新たに作成したEMP_IXlによる索引スキャンに変わりました。また、結

合方法が、それまでのハッシュ結合からネステッドループ結合に変化していることも分か

ると思います。結果として、バツフア読み取り量がさらに 1ブロック削減されて 5ブロッ

”
「
一
Φ
〓
」
一Ｘ

o I sflrECT STATEMENT

i I soRT oRDER BY
r 2I HASHJOTN

3 | TABLE ACCESS FULL

+ I rABLE AccEss BY INDEX RowII
N 5 I INDEX RANGE SCIN

I t+l 448i
I t+l a+el
i r+l ++el

EMP I 14 I 2s4l
DEPr I 5oo1 | 6G011

|

DEPr_rx2l 6001l
I

。
　
一
ｍ
＞

」Ｗ‘　
一　
ＥＰＴ
岬

ｅｄ

一
Ｄ

ＡＲ

ｔｉ
　
∵
Ｄ

ＲＥ

・
●
師
一
一
●
」
．一
二‐，

ｄ
‐
　

１ヽ
０

●

，

一
躙
一．・岨

一̈
・Ｔ
辮・肌

statistics

0 recursive calls
6 consistent gels

CREATE INDEX emp_ix1 0N emp(deptno);
exec dbms*stats.gather*index-stats(omame=>'TEST', indaame=>'EMP-IX1i);

@tesL1. sq1

Id I operation

SELECT

SORT

NESTED

NESTED L00PS
‐TABL]IACCESS BY lNDEX ROWIE

INDEX RANOE SCAN

11ヽTDEX RANGE SCAN

DEPT

448

448

14

14

34 (6) | 00:c0:01 I

34 (6) | oo:oo;or itl
33 (4) I 0o:oor01
31 {o) j oo,oo;ol

I

74 {0) | 00,00:01 |

o (o) Joo:oo:01]

1 (0) I 00:00:01 l

6001

6001・Ｘ

Ｘｌ

Statistics

クになっています。

これでおそらく限界だと思われるので、ここで完了し、SQLチ ューニング案として

testl.sqlができ上がりました。

なお、この実行計画が完璧だ、これ以外の実行計画にはしなくて良いと判断した場合は、

SQLチューニング案としてLIST10のように完全にヒントを指定し、この実行計画に固め

ることもできます。

LIST1 0:完全にヒントを指定した例

SELECT

INDEX(e

FROM

WHERE
AND
ORDER

USI NL(e)

'/
empno

ename

」。b

e■p e

dept d
e.deptno = d.deptn。

d.dname = 'RESEARCHl
BY empno′

ほかのヒントやヒントの用法については、マニュアル『Oracle Databaseパ フオーマンス・

チューニング・ガイド1lgリ リース 1(11.1)』 に記載されているので、ぜひ参考にしてくだ

さい。

実際にSQLのチューニング作業を行なう場合に、チューニング対象のSQLを どのよ

うに特定するのかという質問を現場でもよく耳にします。また、実際に索引を追加したり、

ヒント句を使用したりしてSQLチューニングを行なったが、どのチューニング案を採用

すべきか、また効果をどのように判断するべきかという質問も多く聞きます。ここでは、

一般的な例を示しながら、どのように判断すべきかを見ていきましょう。

ここで、遅いSQLとはどのようなSQLなのかもう一度考えてみましょう。「結果が返っ

てくるまでに時間がかかっているSQLに決まっている」と思われた人がほとんどだと思い

遅い SQLはどうやって見つけるのか

260

ます。これは、半分正解です。SQLをチューニングするということは、性能を改善する

作業を意味します。

それでは、性能とは何でしょうか。一般的に、性能とはレスポンス
注1とスループット注2

で表現されます。ゆえに、SQLチューニングもSQLの レスポンスとスループットを意識

して作業を行なう必要があります。そこで、遅いSQLを次のように定義しておきましょう。

① レスポンスが悪いSQL(レスポンスを意識)

② レスポンスはさほど悪くないが、処理量が多いSQL(スループットを意識)

レスポンスが悪いSQLを決める判断材料としては、各業務処理のレスポンス要件を考

慮する必要があります。極端な話をすると、レスポンス要件が満たされていれば、遅い

SQLと は言えないということになります。チューニングを行なう必要がないからだ。どこ

までチューニングを行なうのかの判断材料にもなるので、SQLチューニングを行なう場

合は業務チームなどの担当者からそのSQLのレスポンス要件を確認しておく必要があり

ます。

赳♭遅い SQLの確認方法

遅いSQLを確認する方法としては、次のようなものがあります。

螢 dbms monitor.sessiorl trace enable

e SQL★ P!usの AUTOTRACE
鬱 v$SQLな どのパフォーマンスビュー

饉 Oracle Enterprise Managerな どのツール類

。 AVVRレポートや Statspackレポート

ここではAWRレポート注3から確認する方法を説明します。そのほかの確認方法につ

いては、皆さんの環境を使用して実際に確認してください。

表 1に示す AWRレポートの SQL情報から遅いSQLま たは処理量の多い SQLを捉

えるには、特に5つの項目 (Elapsed Time、 CPU Time、 Buffer Gets、 Physical Reads、

Executions)に ついて詳細な確認を行ないます。L:STllが Elapsed Timeで出力された

内容です。

注1

滋

注3

レスポンスタイム (応答時間)の意味。SQLが発行されて結果が返ってくるまでの時間。

単位時間あたりのSQL処理数。例えば、1秒間に1∞SQLしか実行できないシステムと1秒間に1万 SQL実行できるシステ
ムの違い。

Oracleの 稼動状況をまとめたレポート。Oracle内 の処理量や処理状況を確認できます。

ヽ
「
一
０
ョ
ユ
一Ｘ

表 1:AWRレ ポー トの SQL情報

LIST l]:Elapsed Timeで 出力された内容

ここで注目すべき項目は、Elap per Exec(s)で す。Elapsed Time以外の項目でも 1

実行あたり(perExec)の情報が出力されているので、同じ考え方で値を確認していきます。

Elapsed Time(s)は 累積値なので、「Elapsed Time(s)=Executionsネ Elap per Exec

(s)」 という式が成り立ちます。Elapsed Timeが増加している理由が、Execu●ons(SQL

文の実行回数)が増加したのか、Elap per Exec(一 SQL実行あたりの経過時間)が増加

したのかを確認する必要があります。性能が変動している場合は、Elap per Execの 値

が変動します。

チューニングすべきSQL文の決め方は、次のようになります。

① Elap per Exec(s)の 値が大きい、かつExecutionsが 少ないSQL文 に着目する

② Elapsed Time(s)と %Total DB Timeが大きい順にチューニングを実施する

③ 上記に該当するSQL文をチューニングし終わったら、Elap per Exec(s)は 大きく

ないが、Exec山 onsが大きいために匡lapsed Time(s)、 %Total DB Timeが大きな

SQL文の経過時間が長いSQL文情報がレポートさねる。
%Total DB Timeで ソートされて出力される。
%Total DB Tlmeは 、インスタンスの総 SQL経過時間に対するその SQL文の経
過時間の割合。インスタンスに与えるインパクトと考えて良い

SQL文の CPU使用時間が長いSQL文情報がレポートされる。
%Total DB Timeでソートされて出力される。CPU Timeの 項目で出力されている
%Total DB Timeは 、CPU Timeで計算されているのではなく Elapsed Tlmeで
計算されている

アクセスしたデータベースバッファ内のブロック数が多い順にレポートされる

ディスクから読み込んだ回数が多い順にレポートされる

実行回数が多しヽ順にレポートされる。Elapsed Timeや Buffer Getsな どの性能情
報で変動が見られた場合に、EXeCut10nsの Rows per Execで 1実行あたりの処
理件数に変動がなかつたかを併せて確認する

解析コール数が多い順にレポートされる

子カーソルが多い順にレポートされる。子カーソルが多くなつている原因を調査する
には、v$sql_shared_cursorビ ューから確認してほしい

ライブラリキャッシュのメモリを多く占有している順にレポートされる。無名な PL/
SQL文が存在している場合は、パッケージ化などを検討してほししヽ

RAC環境のみ出力される。グローバルキャッシュイベントの待ち時間が SQL文の
経過時間に影響を与えている順にレポートされる

ElapSed_. PUIII― ‐I Elap per tt Toし al
l Time (|) T■ me (s) Executions Exec (s) DB Tim9‐

‐ SQL Id‐

2′ 180 863 _. 382 ‐ 5.7
select co112′ co13_fFOm tabl1001 Where CO11 = 1

61.5_6xa9g2n6urr93

出力さねるSQL情報 |■■説明

SQL文を確認する。このときに、日ap per Exec(s)が小さすぎない(0.1以上などのルー

ルを決める)SQL文を確認対象とする

%Tot」 DB Timeは インスタンスの総SQL経過時間に対するそのSQL文の経過時間

の割合で、インスタンスに与えるインパクトと考えてください。先に①②のSQL文に着

目する理由は、チューニング余地が多いので簡単に効果が見込める可能性が高いためで

す。その後、③のSQL文の改善を検討します。

ここでは、少し踏み込んだ内容を紹介しました。ここではAWRレポートから確認す

る方法を例にしましたが、その他の取得方法でもSQL実行あたりの経過時間の情報を取

得可能です (elapsed timeや 経過時間などと表現されています)。 これらの情報をもとに、

実際に遅い SQL文を特定できます。EMなどのッールでは、よリグラフイカルかつ一元

的に情報を確認できます (画面 1、 2)。

画面 1:EMで 遅い SQLを 確認する例

彰,多
“
ら

"↓露議

`霞

韻L“型

●

画面 2:EMで遅いSQLの詳細情報を確認する例

憑)SQLチューニング効果の確認方法
SQLチューニング効果の最も簡単な確認方法は、遅いSQLを確認する方法をSQL

チューニング後に改めて確認し、チューニング前の情報と見比べることで改善度を確認

●
「
「
Φ
ョ
」
一Ｘ

(26ゴ

SQLの経過時間や1実行あたりのパッフア

する方法です。ここでは、スループットの考え方を簡単に説明します。

レスポンスは実際に実行した経過時間をもとに判断できるので、改善具合を確認する

ことは容易でしょう。あるSQLのチューニングを行ない、チューニング方法が複数考え

られたとします。また、そのチューニング方法の違いはあるが、実測した経過時間もほと

んど差がないという場合もあります。

そのようなときは、ほかのSQL処理に与える影響を考えて、1実行あたりのバッファ読

み取りや1実行あたりのディスク読み取りの少ないチューニングパターンを選択してくだ

さい。1つのSQLの処理量が減れば、現在のシステムリソースでより多くのSQL実行が

可能になります。要は、スループットを上げることが可能ということです。sQLチューニ

ングを行なう場合は、SQLのレスポンスだけを意識するのではなく、処理量を減らせれば、

データベース全体としての性能が向上することを意識してチューニングパターンの選択を

検討してください。

||. _||| ||

一ヨ
ユ
一
Ｘ

趾 A褻

ACCEPTED.……
ACtD特性….……

輻 FM
F:XED.… ………………………̈……¨̈ …̈……237

129 FULL… ……………….… .…

.̈237

.……58

躙 C躙

ALL_!ND_STATiSTiCS… …….… .… .……………71

ALL iNDEXEs……………………………………………71

ALL_TAB_COL_STATisTics.… .……………73

ALL TAB STATISTiCS… …………….¨…………̈71

ALL TABLES 71

ANSI/iSO SQLチ見格…………………………………130

AUTOTRACE考 撻能¨̈ …̈…………..…………78,81

AWR¨ …̈…………………………………………196,261

CARTESiAN.………………………….… ..…….………58

CASE:支:...…….¨ .……………………...… .… 146,148

CRUD`)ホ斤..… .… .……………………….....… ……..164

隕 D隋
DB AdministratOr¨ ……………….… .…….¨ …̈…247

DB Architect… .…………247

db_f‖ e_lTlultib!Ock_read_oount...¨ ¨̈………67

DBA……Ⅲ….… .… …̈……………14,181,194,247

DBMS_STATS…………………….……………76,215

DECODE D尋数…………………………………146,148

DML文
DUAL表 .…….……………………̈.… .…… ……….146

鋏 ER

enqueue¨¨ .̈..........¨ ..¨ .¨¨¨ .131

Enterprise Architecture ([三 A)¨ .̈¨… 248

ER図……………… 109

輻 H輻
Hash value…………….… ..¨……………………….197

燒 :顆

lNV!SIBLE…¨ 221

221INVISIBLE INDEX… …….………………

鯰:J躙
JDBCの配列……… 151

餞 L靡

latch free¨…..… ..……...¨… ..¨ .¨………...¨.132

躙 M爾

Mutexロ ツク…………………………………………….132

魃 N鰈

NOT NULL割 l約…….…………………88,89,104
1501 152 NOWORKLOAD統

計 …. .75

骰 0諫

OLTP系………………………………………………45,58

0ptinlizer_index_caching… ……….… …̈…̀¨ 6̈8

0ptimizer_index_cOst_adi… ………………………68

0PTIMiZER_MAX_PERMUTAT10NS… ……99

0PT!MIZER_USE_lNVISIBLE_INDEXESERモデル…………………………………………………164

221

Oracle Enterprise Manager(EM)

………………………………………53,78,82,196,228
C)racle LOad‐ TeSting… …。.………………̈¨̈……223
C)racle・rest Manager… …………̈ ¨̈ …̈……223
0racleイ ンスタンス…………………………………20
0mCieデータベース…………………………………20
ORDER BY句 …

SQLテキスト̈ ……39,58,64,65,212,218
SQLト レース……………………………̈ ……………150
SQLパフオーマンス問題…… 2

STATSPACK… ………………̈ …̈………………196

PM(プロジェクトマネージャ)…………………180
PMO(プロジェクトマネジメントオフィス)

…̈243

………87

,j:ii U ,,.

unique f;tjf!..,.,.87

use_invisible_indexes.............,. 221

楼 V魃

VIS!BLE.… .……………….…………....…………………221

V字モデル……………̈……………………….… …̈ 216

謬 w m
WBS(WOrk BreakdOWn StruCture)… 182
WHERE′句|…………………̈ 45,47,48,53,110
WORKLOAD統計………………………………………75

躙 ア 勒
アーキテクチヤ………………………….………44,127
アクセス方法………………………………………………96
アプリケーション設計……………………………193

アプリケーションロジック…127,141,144,200

餞 イ 鶉
一貫性……………………………̈……………………….129

インデックス評価………………………………………147

インプット情報…………………………………………63

炒 ウ 絣
ウオーターフォール開発モデル……….………216
ウオーターフォール型プロジェクト…..……231

運用ポリシー………………………………………42,54

MP鼈
PL/SQL… …̈………………….

primary key fiUfr!

蒻 T鱚

TRIM関数……

鰈 工 蝙
エンキュー……

………̈………………………………146

………………………………………131

151

麟 R蜀

READ COMMIT〒 ED…………̈ …………….……130
READ UNCOMM!TTED… ……………………….130
REPEATABLE READ¨ .̈……………….……….130

RC)W!D.… ………………………………………86,87,91
ROWIDスキャン……………………………….………90
rOWnum<=1¨………̈…………̈ ……………………48
ROWNUM関数 …151

は S●
SER:AL!ZABLE…………….…………..……Ⅲ…….130
SET_TABLE_STATS… ……̈ .………..¨ ..……215
SGA(System Globa:Area)… …………………20
REDOロ グバッファ.…………………………20
共有プール .……20
データベースバツフアキヤツシュ.………20

SQL ID… …………… 197

SQL Plan Management(SPM).… ..… .… 237
SQL・PluS……………………….…………78,81,202
SQLアクセスプログラム…………………………200
SQL関数…………………………………….…….42,146
SQL管理用コメント̈ …̈………̈ ………………196
SQL計画ベースライン……………………………237
SQLコーデイングルール…….… 41,204,242
SQLチューニングアドバイザ
¨̈ …̈……….………….……..……….57,62,218,242
SQLチューニング効果 263

266

SQLチューニングセツト…………………….… .218

褥 オ 漑

オブジェクト1義造………………64,66,212,213

オプテイマイザ………………………………………61,99

オプテイマイザ関連バラメータ……̈…………213

オプテイマイt'1流計情報…………………….……242

輻 力 隋

カーソルキャッシュ….… …̈ ………………….….152

カーディナリティ………………………………………110

列培「表……….…….…………….¨ …̈………………….……97

可読性…………………………………………̈ ………………51

関数のオーバーヘッド….………………̈…….……47

管理性 …̈………………̈ …………………………………51

管理用コメント………………………………………………52

黎 キ 凩

既存の索引の情報

機能面のテスト…………………….

キューイング…………………………

業務最適化 .

業務要件 _¨

靱 ク 靱

クラスタ表…………………………………………………171

クラスタリングファクタ……………………….……72

グローバルロック .̈ 132

コミツト間隔………………………

躙 サ

再テスト 201

索引アクセスのコスト…………………………………68

索引スキャン…………………………………………….233

索引付き表…………………………………………………151

索引統計 ……………………………………………….………71

索引の一意スキャン…………………………………87

索引の高速フルスキヤン…………………….………89

索引のスキップスキヤン……………………………90

索引のイ寸与…………………………………….… 218,221

索引のフルスキャン…………………….……88,104

索引のレンジスキヤン…………………………………86

索引ブロック…………………………………………………68

鉤 シ 鰺

シーケンシャルアクセス…………………………….88

しきい値での検索の停止 151

識別子…………………

システム統計………

実行計画 ………………

妥当性……………

実行統計……………

自動統計収集………

シナリオ選択………

絞り込み条件………

…………….。………197

……………………………………74

…………39,58,64,218

……….… ...¨ .………̈…….78

…Ⅲ….… ...¨ …̈…….………82
.…………..¨ ..………..¨…….75

,¨ .……….¨ ¨̈ …̈……….213

….… ...¨ ¨̈¨̈¨̈.¨ .……..53

.¨…178

………53

………56

…….170

躙 ケ 輻

傾向分析……………

修正範囲

条件の記述順序…………………

章立て

冗長化226

……53 処理方法

癬与1針|1原炉多……….………………………..…….¨ …̈83,96

結合順序のスタートポイント………………………112

結合条件……………

冗長性の排除 …̈………………………………………157

初期化バラメータ….……………………….……64,67

…̈̈ ……………̈ 8
結合テスト 177 処理量の変動傾向………………………………….… 183
結合方法 83,96

……129原子性……………………………………̈ ………… 錢| ス 楊
推移律……………………………

推移率………̈ …̈………………

スケーラブル…………………

ステータス情報………………

ストアドアウトライン……

スループット…………̀………

鱚 コ 輻

高速全索引スキャン……………………………….……67

コーディングルール…………………..…….58,212

コストベースオプテイマイザ

ァゥトプット………………………………………211

インプット…………………………………………211

一ヨ
」
一
Ｘ

267

181

３

７

６

２

餞 セ

正規化……
整合性の確保……………………………………………157

性能インプット….………………………………………215

データブロック数……………………̈ ……

データ分析…………………………̈ ……….…

データベース定義文…………………….…

データベースリンク……………

テクニカルメンバー……….…

テストシナリオ………̈ ¨̈……

テスト体制…………………………

テストフェーズ……………………

受け入れテスト……………

運用テスト …̈…………….

結合テスト……

システムテスト

単体テスト……

議熱 卜 醸

畜充言+'鯖ヨ報…………64,70,109,212,214,229

再収集………………………………………………234
自動統計情報収集……………………………234
収集…………………………………………………234
収集タイミング …̈……………………………232
統計情報収集設計……………………………239
蟹‖生………………………………………̈ …̈……232
保留…………………………………………………237

綴缶針化………………………………………………161,165

動的サンプリング……………………………………….76

独立性………………………………………………………129

トップダウンアプローチ …̈………………………156

トランザクション処理………………………………129

トランザクションの分離レベル………………130

内部表 …97

輻 ネ 蒻

ネステッドループ結合…………………………68,97

……………157

性能最適化 .

性能チーム .

性能テスト.

………….165

…………186

…177,215

性能統計情報………………………………………………81

性能分析………………………………………….………226

性能面のテスト…………………………………………211

性能問題

設計 .……………….… 154

設計者……………̈ ……

セツション情報………

セレクティビティ¨̈

選択率……………………

全表スキヤン………̈

多重試験…

多重処理 …

単体テスト

……………213

…………126

…………177

14,194

…̈…147

92,110

…………92

…………67

頷 ソ 巫

ソートマージ結合 …̈…………………………………103

玲 夕 鰈

ダーティーリード………………………………………130

待機イベント ……………」31

……̈ …̈…130耐久性 …̈

タイムスタンプ出力機能…………………………201

高さ調整ヒストグラム………………………………74

ナ

鰈 チ 鰈

チェックシート……………

チエックリスト …̈………

チューニング …̈…………

直積結合……………………̈

鼈 テ 洟
定常監視……………………………………………………226

データアクセス方法…………………………………82

データアクセス方法の判断指針…………………95

データの整合性………̈ …̈…………………………」28

バインドピーク機能……………………………………94
バインド変数………………………………………45,94
ハッシュ結合……………… 100

蝙 八 褥

ハードバース………….…

バインド値…………………

.94

152

パフオーマンスアセスメント 189

156

192

185
9∩Q

99乙

R∩

パフォーマンスチューニング………………………31 輻麟 ホ 薔鰈
パフオーマンス統計 ……71

パフオーマンスボトルネック………………………192

パフオーマンス問題の切り分け…………………196

パフオーマンス要件
ボトムアップアプローチ……………………… 156

鰊 マ 褥

マテリアライズドピュー…………………………̈ 172

マルチブロックアクセス………………………………89

・ メ

方式設計 ¨̈

保守性………

要約化……

M ラ

ラツチ …̈̈

例外申請フロ…………………….

レコードの存在チェック……̈

レスポンス……………………………

レスポンス測定 …̈………………

レスポンス要件 …̈…………….

列統計…………………………………

………………192

………51,157

躙 ヒ 輻

ヒストグラム…………………̈ …̈………………73,92

パフォーマンスリスク

パフォーマンス劣化

バラメータファイル

バルクバインド………

バルクフェッチ………

非正規化………………

ヒット件数チェック

ビュー……………………

表結合…………………

表統計…………………

表同士の結合関係 ¨

表フルスキャン……

品質管理計画………

黎 フ は

ファジーリード……̈……………………….

フアントムリード……………………………
フイジビリテイテスト

副問い合わせ¨̈

物理設計…………

物理的ブロックアクセス………………

フルスキャン…

プロジェクトメンバー…………………

プロトタイプ検証

プロトタイプ試験

プロパティファイル

う)害 l∫化¨̈.¨ ¨̈ .̈

命名規則¨

メンテナンス設計…̈ …………………………………226

………31

¨̈ 183

……̈40
¨̈202

….152

……151

.……161

…̈…151

.49,66

.………95

………71

……109

………84

……185

………130

………130

………183

…………53

127,193

,̈……147

……Ⅲ…233

………251

………189

………188

………202

………165

………152

………147

ヨ

…………………52

…...…….¨ ..172

………………132

ヒント句……………………………………55,202,230

頻度分布ヒストグラム…………………………………73
儡 り 鰈

リコンパイル………………………………̈…….……201

リレーショナルデータベース …̈……̈……….157

躙 レ 鰈

例外申請書…………………………………………47,55
49

48

.,… ..… 134,261

,……………….212

………………………3

.¨ .̈………………73

文キャッシュ…………………̈ ………….

又 口 鍼

ロジック処理 …̈……………….

ロッキングメカニズム……….

ロック………………………………̈

…….…………….146

…………………131

……3,128,131
94

文の解析………

蟷 へ 晰

ペアプログラミング …̈………………

論理演算

論理設計 127,155,192

………205

………147

一ヨ
」
Ｏ
Ｘ

変数バインド

論理データモデル………………………………̈ …̈ 155

加藤祥平 (か とうしょうへい)

日本オラクル株式会社テクノロジーコンサルテイング統括本部テクニカルアーキテクト部所属。Oracle
Databaseを使用した様々なシステムの設計、チューニング、運用に関するコンサルティングに従事。
最近はこれまで支援していたミリ秒単位のレスポンスを要求される案件が無事サービスインし一安心。
さらにコンサルティングサービスの提案活動にも力を入れており、システム基盤全体に対するアーキテ
クトとして日々を過ごしている。自宅に検証用のRAC環境あり。夫婦共に東京生まれ東京育ちなため、
沖縄に住んでいる弟家族の家に、妻、両親と年に何回か行くことをとても楽しみにしている。

中島益次郎 (なかしまますじろう)

日本オラクル株式会社テクノロジーコンサルティング統括本部テクニカルアーキテクト部所属。福岡
生まれの九州男児。DB職人道を極めるべく、日々 努力を怠らない。コンサルタントとして、ミッショ
ンクリティカルシステムの運用//チ ューニング/ト ラブル対応などに従事。最近では、データベース
だけでなくセキュリテイを語れるコンサルタントとして、日 奮々闘中。CISSP。

※Oracleコ ンサルテイングのURLは次のとおり。
http://www.oracle.co.jp/consulting/index.html

記事初出

●月刊 DBマガジン2008年 5月号～ 2009年 5月 号 連載
「本気で学ぶSQLチ ューニング」(全 13回)

●月刊 DBマガジン2009年 6月号 特集 3
「絶対に身に付けたいSQLチューニングの基礎知識」

装丁 :轟木亜紀子

編集&DTP:株式会社 トップスタジォ

き そ まな オ ラ ク リレ エスキューエル

基‖礎から学ぶOracle SQLチュ…ニング

2009年 9月 16日 初版第 1刷発行

加藤祥平 (か とうしょうへい)

中島益次郎 (な かしまますじろう)

佐々木 幹夫

株式会社翔泳社 (http://www.shoeisha.co」 p/)

株式会社ワコープラネット

◎2009 KATO,Shohei、 NAKASHIMA,Masuliro

*本書は書作権法上の保護を受けています。本書の一部または全部について

(ソフトウェアおよびプログラムを含む)、 株式会社翔泳社から文書による許

諾を得ずに、いかなるほうほうにおいても無断で複写、複製することは禁じら

れています。

者

　

人

所

本製

行

行

・
昂

著

　

発

発

印

*本書へのお問い合わせについては、ilベージに記載の内容をお読みください。

*落 T‐・乱丁はお取り替えいたします。03‐5362‐ 3705ま でご連絡ください。

iSBN978‐ 4‐ 7981‐ 2066‐ 9 Printed in Japan
/JheCt

本書の内容

eco

||||||||||||||||‖ |||||‖‖|||
9784798120669

|‖ ||||‖ ||||||||||||‖ |||||||

Part-1● SQLパフォーマンス間目の理由と原因を探る
CHA田:Rl SQLチューニングはなぜ必要か?
CHA「ER 2 なぜSQLでパフォーマンス問題が起きやすいのか?

CHA「ER 3 なぜSQLパフォーマンス問題で苦しむのか?
悧晒ER4 SQLパフォーマンス問題の「解決」と「予防」
CHAttER 5 SQLは どのように

'C理

されるのか

Part-2● SOLパフォーマンス間目を『解決』する

CHA「ER6 SQLパフォーマンス問題の解決アプローチ
CHAPTER 7 定型的なSQLチューニング
CHA‖ER 8 非定型的なチューニング

CHAPTER 9 0raC10アーキテクチヤに基づいたSQLチューニング
CHAPIR 10ア プリケーションロジックを意識したSQLチューニング

CHA「ER ll腑理設計におけるSQLチューニング

1923(〕 55024007

:SBN978-4¨ 7981‐2066‐ 9

C3055¥2400E

株式会社翔泳社
定価 :本体2,400円 +税

Part-3● SQLパフォーマンス問題を『予防」する
CHA‖R12パフォーマンス問題を起こさないためには
CHttER 13計画フェーズ
ChPTER 14要件定義フェーズ
CHA「ER 15設計フェーズ
CH網
・ER 16開発フェーズ
CHAPTER 17テ ストフエーズ

CHP■R18運用フェーズ
硼1旧IR l'実際のプロジェクトでどこまでやるべきか

Part-4●『解決』から『予防」へ～パフォーマンス間目を■らすために

C鵬冊:R20 「Database Administrator」 から「[〕atabase
Architect」 ヘ

