

電子書籍閲覧に関するご注意

　本書では、プログラムリストに専用の等幅フォントを使用しています。
ビューアによって以下の作業が必要になります。
・Kindle Paperwhiteの場合：フォント設定画面で「出版者のフォン
ト」を選択
・kobo Androidアプリの場合：フォント画面で「オリジナル」を選択

目次

電子書籍閲覧に関するご注意

はじめに
環境構築ができるようになろう
環境構築スキルの習得は難しい
対象読者
本書が扱う内容
筆者の動作環境とサンプルコードについての注意事項
謝辞

第1章　Node.jsを使ったビルド環境整備
1.1　Node.jsとは
1.2　Node.jsのインストール
1.3　JavaScriptプロジェクトを管理する
1.4　ライブラリに付随するコマンドを実行する
1.5　まとめ

第2章　Babelを使ったトランスパイル
2.1　Babel とは
2.2　Babelを実行する
2.3　pluginとは
2.4　複数のpluginをpresetで管理する
2.5　ブラウザの差異をpolyfillで管理する
2.6　まとめ

第3章　TypeScriptを使ったコンパイル
3.1　TypeScriptとは
3.2　tscのインストール
3.3　Reactを動かす

3.4　まとめ

第4章　webpackを使ったバンドルとビルド
4.1　webpackの使い方
4.2　webpackの設定ファイル
4.3　まとめ

第5章　ESLintを使った静的解析
5.1　ESLintのしくみ
5.2　ESLintの使い方
5.3　ESLintで設定する項目
5.4　TypeScriptとReact用の設定をする
5.5　まとめ

第6章　Prettierを使ったフォーマット
6.1　prettierの使い方
6.2　ESLintとの協調
6.3　TypeScriptとの協調
6.4　まとめ

第7章　Storybookを使ったコンポーネント管理
7.1　Storybookを設定する
7.2　Storybookをaddonで拡張する
7.3　まとめ

第8章　Jestを使ったテスト
8.1　Jestの使い方
8.2　Reactのテスト
8.3　Jestで設定する項目
8.4　まとめ

第9章　0から環境を作ってみる

9.1　Node.jsの設定
9.2　TypeScriptの設定
9.3　webpackの設定
9.4　Prettierの設定
9.5　ESLintの設定
9.6　ESLintとPrettierを共存させる設定
9.7　Jestの設定
9.8　StoryBookの設定
9.9　まとめ

付録A　バージョンの追従
A.1　環境構築で増えすぎた依存
A.2　package gardening
A.3　CI
A.4　各種レポートのホスティングとプレビュー

さいごに

はじめに

　本書は、コピー&ペーストに頼らない環境構築ができるようになるため
の本です。技術書典応援祭1で出版した、「JavaScript環境構築の
設定をひとつずつ丁寧に-そのプラグインってどうして必要なの！？-2」と
いう同人誌が原案になっています。私自身がフロントエンド環境構築が
とても苦手で、克服するために勉強したことを、その同人誌にまとめまし
た。私はそのときの執筆やレビューを通して、なぜそのツール・プラグイン
が必要なのか を明らかにすると、理解が深まることに気付きました。そ
こで、「プラグインの役割に着目しながら、環境構築をおさらいできるよ
うな教材を作れないか」と思い、本書を執筆しています。本書が、環境
構築が苦手という方にとって、よき教材や手引きとなればうれしいで
す。

環境構築ができるようになろう

　フロントエンドにおける環境構築は、年々複雑化しています。昔は、
スクリプトタグでライブラリを読み込むだけで、開発に必要なものをそろ
えていました。しかし今では、ビルドや静的検証のパイプラインを構築す
る、といったこともするようになっています。それに伴い、Package
Manager 、 Transpiler 、 Bundler 、 Linter 、 Formatter 、 Test
Runner、AltJSなど、たくさんの周辺ツールも生まれました。もちろん、ビ
ルドという観点だけで見ると全部は不要ですが、開発効率を上げると
いう点では、押さえておきたいツールたちです。それらを押さえた上で、ビ
ルドのパイプラインを組み立てることが要求されることもあり、ただHello
Worldするだけの難易度は上がっています。

なぜ環境構築を覚える必要があるのか
　環境構築に要求されるツールが増える一方で、便利なプリセットも
生まれており、簡単に構築を済ませられるツールも生まれています。たと
えばcreate-react-appやNext.jsは、環境構築を代替できる便利なツ
ールです。しかし、手組みで環境構築した経験がなければ、いざ手組み
で整備しなければいけなくなった場合に苦労します。もしかしたら、将来
的にビルドを別のツールと連携しながら行うことや、何らかの最適化を
行うことが必要になってくるかもしれません。そのような事態に備え、環
境構築は手組みでゼロからできるようになっておいた方が良いと、筆者
は考えています。

環境構築スキルの習得は難しい

　そこで、環境構築スキルの習得を目指していきたいのですが、挫折す
るポイントが多く潜んでいます。そのため、独学では困難だと、筆者は
感じています。

経験値を得づらい
　そもそも、仕事で環境構築をする機会は少ないです。環境構築を
行う時期は、プロジェクトが立ち上がるときか、非機能要件の磨き込み
に時間を割けるときです。

デバッグのしづらさと成長のしづらさ
　環境構築をデバッグするためには、ある程度が動くようにしてからでは
ないと難しいです。そのため、どこが原因で動かないかという原因の切り
分けがしづらい分野です。デバッグの末に、仮にビルドに成功しても、ど
の修正によって成功したかの判断がつかないこともあります。たとえば、
「実は間違ったことをしていたけど、ビルドだけは通るようになった」という
こともあります。

対象読者

　そこで本書では、環境構築に挑戦したい人に向けて、少しずつ動か
しながら「こう設定すればこうなる」を理解できるような説明を心がけまし
た。
　そのため本書は、ビルド設定に困っている、自分でもビルド環境を
作れるようになりたいという方向けに書かれており、JavaScript の初
学者に向けては書かれていません。なるべく基本的な用語や概念も
解説するようにはしましたが、それでも説明不足に感じるところがあるか
もしれません。
　また、各章は独立しているため、自分の読みたい章から読めます。た
だし、環境構築の全体感を想像できない方は、最初から読むことをお
勧めします。第9章の「0から環境を作ってみる」は、いわゆる「やってみ
た」という内容で、実践的なハンズオンです。写経をすれば、全体の雰
囲気をつかむことができるでしょう。ソースコードも公開しています。3
　タイトルではReactを扱うと書いていますが、ここで紹介するツールやエ
コシステムは、React以外のフレームワークやライブラリを使った開発にお
いても使われているものです。Reactを使わない開発者にとっても、CLI
やプリセットに頼らない開発をする場面では、本書が役に立つかもしれ
ません。もし気になる場合は、目次を確認してください。

本書が扱う内容

　本書では、フロントエンドアプリケーションのビルドと検証をするための
方法を学びます。各章では次のような内容を扱います。
　・実行基盤となるNode.js（エコシステムの基盤）
　・Babelによるトランスパイル（ビルド）
　・TypeScript Compilerによるトランスパイル（ビルド）
　・webpackによるバンドル（ビルド）
　・ESLintによるリント（検証）
　・Prettierによるフォーマット（検証）
　・Jestによるテスト（検証）
　・Storybookによるコンポーネント管理（検証）
　環境構築に登場するツールの役割は、大きくビルドか検証ツールかに
分けられ、それぞれに代表的なライブラリが存在します。そのライブラリ
の数はさほど多くはありませんが、それらに多くのプラグインを挿していく
ので、結果的には利用するライブラリの数が膨大になります。ビルド複
雑化の原因は、大量に挿すプラグインにあると言っても過言ではあり
ません。本書では、プラグインを挿される側のライブラリの粒度で、章を
分けて整理します。そして、それぞれで利用するプラグインの役割を紹
介していくことで、説明を図っています。そのため、章ごとにツールとプラグ
インの役割を確認しながら読み進めると、役割に関する混乱は緩和で
きます。

筆者の動作環境とサンプルコードについての注意事項

　・筆者のPC環境は、macOS Catalina(Version:10.15.2)です。
Node.jsの環境はv12.16.3で、nvm(v0.35.3)で管理しています。

　・第9章は、完全な形でのサンプルコード4を提供しています。本書で
使ったライブラリのバージョンは、ここに書かれているpackage.json
のものです。

　・各章ではコマンドの出力を表記していますが、誌面の都合で適宜
編集を加えています。

謝辞

　・クレスウェア代表の奥野賢太郎さん(@okunokentaro)、長年
TypeScriptを利用されている経験や、過去の執筆経験からアド
バイスをいただき、ありがとうございました。レビューを通してお互いに
異なる方針を持っていたことがわかり、それを議論できたことも楽し
かったです。

　・TechBowl CEOの小澤政生さん(@zawamasa)、日本最大級の
エンジニアコミュニティTechTrain のメンターやメンティーにレビューを
依頼できる仕組みを作ってくださり、ありがとうございました。上級
者の方から初級者の方まで、幅広い意見を取り入れることがで
き、とても助かりました。

　・TechTrainメンターの、大木優さん(@gurusu_program、株式会
社TechBowl)、今川裕士さん(@ug23_、弁護士ドットコム株式
会 社) 、 徳 田 祥 さ ん (@haze_it_ac) 、 寺 嶋 祐 稀 さ ん
(@y_temp4) 、 吉 野 雅 耶 さ ん (@ayasamind 、 株 式 会 社
Fusic)、ありがとうございます。日ごろの業務の経験談にもとづいた
アドバイスをいただき、ブラッシュアップさせていくことができました。

　 ・ TechTrain メ ン テ ィ ー の 門 田 朋 己 さ ん (@tmk815) 、
tktcorporation さ ん (@tktcorporation) 、 西 田 吉 克 さ ん
(@nsd244)、小越雄太さん(@ykotti1)、ありがとうございます。
説明や手順の不足を指摘していただいたことで、当初の荒削りな
原稿を読みやすくできました。特に小越雄太さんには実際に説明
やコードの検証をしていただいたことで、執筆する上での不安を和
らげることができました。本当にありがとうございます。

1.
https://techbookfest.org/market

2.
その本では、Webフロントエンド開発の環境構築手順をひとつずつ丁寧に見ていき、設定が
足りない状態で動かすとどうなるのか、といった実験をしていました。たとえばbabel-cliを使わず
にトランスパイルしたり、css-loaderを使わずにstyle-loaderだけを使おうとしたりして、どうしてそ
れ ら の ラ イ ブ ラ リ が 必 要 な の か を 説 明 し ま し た 。
https://techbookfest.org/product/6209306726760448
3.
https://github.com/sadnessOjisan/js-build-book-support
4.
https://github.com/sadnessOjisan/js-build-book-support

第1章　Node.jsを使ったビルド環境整備

1.1　Node.jsとは

　 Node.js® は 、 Chrome の V8 JavaScript エ ン ジ ン で 動 作 す る
JavaScript環境です。1Node.jsは、サーバやCLIツールとして使われてい
ます。クライアントサイドJavaScriptの環境構築は、このNode.jsのエコシ
ステム上で行います。本章では、そのNode.jsについて学びます。

1.2　Node.jsのインストール

　Node.jsは、公式HP2からダウンロードできます。各プラットフォームごと
にインストーラが用意されており、インストールできます。また、公式HPで
はHomebrewなどのパッケージマネージャーを使ったインストール方法も
紹介されています。本書はNode.js v12.16.3を利用しますが、release
ページ3からバージョンを細かく指定して、ダウンロードすることもできます。
4ご自身にあった手法でインストールしてください。
　また、公式にのっとった方法ではありませんが、バージョンマネージャーを
使っても良いです。本書はNode.js v12.16.3を利用しますが、バージョン
マネージャーを使うと、該当バージョンをピンポイントで入れることが容易に
なります。既にNode.jsを持っている人にとっては、該当バージョンへの切
り替えが容易になるメリットもあります。5Node.jsのVersion Manager
には、さまざまなものがありますが、筆者はnvm6を利用しています。本
書ではnvmのインストール方法や利用方法は説明しませんが、詳しいこ
とはnvm公式に全て書かれているため、そちらを参照してください。7

1.3　JavaScriptプロジェクトを管理する

　JavaScriptプロジェクトはpackage.jsonと呼ばれるファイルで、その構
成を管理します。このファイルではたとえば、次の項目を管理できます。
　・パッケージ名
　・バージョン
　・依存ライブラリ
　・エントリポイント
　・script
　・ライセンス
　依存ライブラリをpackage.jsonファイルで管理できるため、Gitの管理
下に含めておくと、依存ライブラリの更新や、その更新に失敗した際の
差し戻しが容易になります。またパッケージ名・バージョン・エントリポイン
トは、プロジェクト自体をライブラリとして提供する際に、利用者が参照
する大切な情報です。たとえば、nameはそのままnpm公式サイトでの
パッケージの検索に使われます。開発やエコシステムとの連携という観
点で、このファイルはとても大切なものです。

1.3.1　package.jsonを生成する
　package.jsonは、npm initコマンドで作成できます。もちろん、ただ
のjsonファイルなので、すべて手書きしても問題ありません。

$ npm init

　このコマンドを実行すると、次のようなファイルが作成されます。

リスト1.1: package.json

{

 "name": "npmtst",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC",

}

1.3.2　packageを追加する
　Node.jsには、npmと呼ばれるpackage managerとコマンドが付随
しています。8このnpmを使うことで、ライブラリをダウンロードできます。
　npmを使ってpackageを追加します。npm install reactなどとすれ
ば、packageを入手できます。
　どのようなpackageを保存したか9は、package.jsonに記録され、
packageの実体は node_modulesというフォルダに保存されます。また
そのpackage自体が持つ依存の管理には、package-lock.jsonファイ
ルが使われます。これはlockファイルと呼ばれているものです。そのため
package.jsonとpackage-lock.jsonさえあれば、node_modulesを
削除しても環境を再現できます。

package.json と package-lock.json を 元 に package を DL し て
node_modulesに保存する
$ npm install

　パッケージを追加するとpackage.jsonが次のようになります。たとえ
ば、reactを追加したときはこのようになります。

リスト1.2: dependencies

{

 "dependencies": {

 "react": "^16.13.1"

 }
}

　これはreactを依存として含めることを意味します。
　一方で、このようなpackage.jsonもあります。

リスト1.3: devDependencies
{

 "devDependencies": {

 "typescript": "^3.8.3"

 }
}

　ここでの違いは、dependenciesかdevDependenciesかという違い
です。devDependenciesに指定されているpackageはdependencies
と違って、このプロジェクト自体がライブラリとして使われる際に依存を
含めません。今回の例だと、TypeScriptコンパイラは開発用のツールで
あ り 、 ラ イ ブ ラ リ と し て の 機 能 に は 関 わ っ て き ま せ ん 。 そ の た め 、
dependenciesではなくdevDependenciesに指定します。このように
開 発 時 の み に 使 う ツ ー ル か ど う か で 、 dependencies と
devDependenciesを使い分けます。全部dependenciesに含める
と、ライブラリとして使われるときに利用者に不要なインストールを強いる
ことになるため、気を付けましょう。devDependenciesとしてライブラリを
ダウンロードするためには、-Dオプションを使います。

$ npm install -D typescript

　ここまでに出てきた、ライブラリをダウンロードするために利用するnpm
コマンドを復習していきます。

アプリで使うライブラリとしてreactをDL
$ npm install react

開発用ライブラリとしてTypeScriptをDL
$ npm install -D typescript

package.jsonとpackage-lock.jsonを元に、そのプロジェクトに必要
なライブラリをすべてDL
$ npm install

installと打たなくても短縮形が使える
$ npm i

1.4　ライブラリに付随するコマンドを実行する

　ここまで、ライブラリをダウンロードする方法を学びました。それらは、こ
れからたくさんのビルドツールをダウンロードするための知識です。この節で
は、ダウンロードしたライブラリをどのようにして呼び出すかを学びます。

1.4.1　bin
　node_modulesにダウンロードしたライブラリの中には、直接コマンドと
して使えるものがあります。たとえば、npm install -g @babel/cliとすれ
ば、babelコマンドがどこでも使えます。

$ npm install -g @babel/cli

$ babel
babel:
 stdin compilation requires either -f/--filename [filename] or -
-no-babelrc

　どこでも使える理由は、-gオプションを使うことでglobal installしたか
らです。一方でnpm install -D @babel/cliとした場合は、babelコマン
ドは使えません。

$ npm install -D @babel/cli

$ babel

command not found: babel

　なぜならこちらはglobal installしていないためです。しかし、npx
babelとすれば実行できます。

$ npm install -D @babel/cli

$ npx babel
babel:
 stdin compilation requires either -f/--filename [filename] or -
-no-babelrc

　これが実行できる仕組みについて、ダウンロードしたライブラリとコマンド
の関係について学びましょう。node_modulesの中には.binディレクトリ
があり、これは特別な意味を持ちます。

図1.1: node_modules/.binの中身

　この.binの中にあるファイルは、package.jsonが管理するプロジェク
トの下では、「npx ファイル名」として実行できます。たとえば、この中に

p
含まれるatobというファイルも、コマンドとして実行できます。ちなみに
atobは、Base64形式にエンコードされている文字列をデコードするライブ
ラリです。

$ npx atob "SGVsbG8sIFdvcmxkIQ=="
Hello, World!

　このようにnpx ファイル名とすることで実行できました。10ちなみに、こ
の.binに含まれているatobのコードは、次のようになっていました。

リスト1.4: node_modules/.bin/atob

#!/usr/bin/env node

'use strict';

var atob = require('../node-atob');

var str = process.argv[2];

console.log(atob(str));

　ここから、node-atobというライブラリにあるatob関数に、コマンドライ
ンから渡された引数を渡して、その結果を出力していることが分かりま
す。
　ファイルが.binに含まれるかどうかは、インストールしたライブラリの
package.jsonのbinフィールドにあるコマンド名と実行ファイルに依存しま
す。つまり、ライブラリの提供者はbinフィールドに実行内容を登録する
ことで、コマンドを提供できます。
　たとえば、先ほどのatobのpackage.jsonはこのようになっています。
(※ 誌面の都合上、一部省略しています。)

リスト1.5: package.json

{

 "name": "atob",

 ...

 "main": "node-atob.js",

 "bin": {

 "atob": "bin/atob.js"

 },

 "version": "2.1.2"

}

　これから使うビルドや開発支援ツールは、このようなコマンドをたくさん
使います。そのコマンドの実体がどこにあるかを知っていれば、デバッグも
しやすくなるので、この.binについて覚えておきましょう。

1.4.2　npm scripts
　package.jsonにはscriptsフィールドがあります。

リスト1.6: package.json

{

 ...

 "scripts": {

 "decode": "atob"

 },

 ...

}

　ここには、コマンド名と実行内容を登録できます。そしてここの実行内
容として、.binで登録されている関数を指定できます。その際はnpxをつ
ける必要はありません。上記の場合だと、atobの前にnpxは不要です。

そして、その実行はscriptsのキー名を使います。つまり、npm run key
名として実行できます。

$ npm run decode "SGVsbG8sIFdvcmxkIQ=="
Hello, World!

　複数からなる処理をまとめたり、処理にわかりやすい名前をつけるた
めのテクニックとしても使えるので、覚えておきましょう。

1.5　まとめ

　フロントエンドのビルドや開発エコシステムは、Node.jsを利用していま
す。一般的には、サーバサイドで使う言語の印象が強いですが、ツールチ
ェインを提供する環境としても大きく活躍しています。Node.jsは公式サ
イトからダウンロードできるほか、nvmのようなVersion Managerを活用
してもインストールできます。ただし、Node.jsは早いサイクルでバーション
が上がっていくため、何らかのVersion Managerを利用することを推奨
します。Node.jsにはnpm(Node Package Manager)が付随してお
り、ライブラリを導入することも容易です。

1.
https://nodejs.org/ja/
2.
https://nodejs.org/ja/download/
3.
releaseページからのダウンロード. https://nodejs.org/ja/download/releases/
4.
もしどうしてもv12.16.3が手に入らない場合は別のバージョンを使って動かしてください。動作
確認をしていませんがv10以上の環境に対応しています。
5.
Node.jsのバージョンは半年に1回ずつ上がり、プロジェクトによって使っているNode.jsのバージ
ョンが異なることもあるため、複数のバージョンを切り替えて開発する仕組みが便利です。
6.
https://github.com/nvm-sh/nvm
7.
nvmを使ったインストール方法は、Node.js公式で紹介されているものではありません。あえて
nvmを選択するのは、筆者の好みによるところがあるため、意図的に説明を省いています。ただ
し、バージョンマネージャーの利用自体、はNode.jsを使った開発においては有用なため、何かしら
のツールを使うことは推奨します。
8.
Node.jsのpackage managerにはnpm以外も存在します。たとえばYarnが有名です。
Yarn、npm双方ともpackage.jsonを利用して、バージョン管理を行います。そのため、どちらを
選択しても、本書で扱う内容には影響しません。ただYarnにしかない機能もあるため、package
managerの選択を考える場面もあります。 https://classic.yarnpkg.com/ja/
9.
パッケージ名とバージョンが保存されます。
10.
npxはローカルにコマンドが存在しなければリモートを見ます。そのためnpm installしていない
コマンドを実行でき、とても便利なコマンドです。

第2章　Babelを使ったトランスパイル

2.1　Babel とは

　BabelはJavaScript compilerです。1新しい仕様のJavaScriptで書
かれたソースコードを、ブラウザがサポートするJavaScriptに変換できるた
め、Babelを使うと新しいJavaScriptの文法で開発ができます。
　BabelはソースコードをAST(abstract syntax tree、抽象構文木)と
呼ばれる木構造に変換し2、ASTに対する変換操作を行い3、変換後
のASTからコードを生成する4といった変換形式をとっています。そのた
め、ソースコードの変換はASTに対する変換操作を通して行います。そし
て、この変換操作は関数として定義でき、プラグイン形式で導入できる
ほか、自作した関数を利用することも可能です。ここではBabelそれ自
体の仕組みについては扱いませんが、何らかの関数を導入してソースコ
ードを変換できるということを意識してください。

図2.1: Babelのイメージ

　さっそくBabelの使い方を学びましょう。

2.2　Babelを実行する

　Babelは本体とCLIがライブラリとして分かれているため、インストールす
るときは注意しましょう。

2.2.1　@babel/coreのインストール
　Babelそのものは@babel/core5というライブラリに含まれています。

$ npm install -D @babel/core

　しかしこれは変換コマンドではないため、変換するためには次のような
コードを書く必要があります。

リスト2.1: @babel/coreを利用

const babel = require("@babel/core");

babel.transform(

 `
const a = () => {}

`,

 {},

 function (err, result) {

 // codeが変換されたことを確認

 console.log("generated code:", result.code);

 }
);

　このままだと使い勝手が悪いので、この変換をコマンドラインからも行
えるようにしたいです。

2.2.2　@babel/cliのインストール
　Babelをコマンドとして使えるようにするものが、@babel/cliです。

$ npm install -D @babel/cli

　これによりbabelコマンドを利用できます。

2.2.3　CLIを使う
　では、次のarrow function6を変換してみましょう。

リスト2.2: src/main.js

const hoge = () => {};

　ブラウザ互換のある変換を期待するため、arrow functionはただの
functionへと変換されてほしいです。

src/main.jsに書かれているファイルを変換してdistディレクトリに書き
出す。
$ npx babel src/main.js --out-dir dist

　この変換結果は次の通りです。

リスト2.3: dist/main.js

const hoge = () => {};

　ここではarrowのまま残っています。なぜなら、どのように変換するか、
といった設定をまだ書いていないからです。つまり、変換を行うために
は、どのように変換するかを別途設定する必要があります。

2.2.4　設定ファイルを書く

　Babelの設定ファイルはbabel.config.js7です。昔は.babelrcというフ
ァイル名が使われていましたが、いまはbabel.config.jsの方が使われて
います。JavaScriptとして読み込むと、コメントを書けたり、Prettierや
ESLintのチェック対象にも含められる利点があります。最近では、公式
もJavaScriptとして読み込むように推奨しているため、設定を書く場合
は.js形式で書くと良いでしょう。8
　設定ファイルは次のように書きます。

リスト2.4: babel.config.js

module.exports = {

 plugins: []

};

　ここにarrow functionを変換する処理を書きます。

2.2.5　pluginを利用する
　変換処理を行う関数を作って、それを読み込んでもよいのですが、す
でにサードパーティのプラグインがあるため、それを活用します。arrow
functionを変換するプラグインは@babel/plugin-transform-arrow-
functionsです。9

　これをインストールします。

$ npm install -D @babel/plugin-transform-arrow-functions

　そして、利用するプラグイン名を設定ファイルで指定します。

リスト2.5: arrowを変換できるプラグインを追加

module.exports = {

 plugins: ["@babel/plugin-transform-arrow-functions"]

};

　そしてbabelコマンドを実行します。

$ npx babel src/main.js --out-dir dist

　distの中を確認すると、このようにarrow functionは変換されまし
た。

リスト2.6: dist/main.js

const hoge = function() {};

　ここで利用したpluginという仕組みがどのようなものか、見ていきまし
ょう。

2.3　pluginとは

　Babelそれ自体はconst babel = code => codeとして動作する、
薄い仕組みです。その中で受け取ったコードを自由に変換する機構が、
pluginです。
　Babel Pluginには、Transform PluginsとSyntax Pluginsがありま
す 。 先 ほ ど の @babel/plugin-transform-arrow-functions は
Transform Pluginです。その実体は、ASTに対して何らかの処理をする
関数です。

2.4　複数のpluginをpresetで管理する

　先ほどの例では、@babel/plugin-transform-arrow-functionsプ
ラグインを入れることで変換をしました。最新のJavaScriptに追従すべ
く、機能ごとにプラグインを入れることは骨が折れます。そこで複数の
pluginをセットにした、presetを利用して変換処理を行うことが一般的
です。

2.4.1　presetとは
　preset10は、複数のpluginをセットにしたものです。presetを使うこと
で、複数のpluginを簡単に導入できます。
　たとえば、次のようなpresetが用意されています。
　・@babel/preset-env
　・@babel/preset-flow
　・@babel/preset-react
　・@babel/preset-typescript
　presetもpluginと同じく配列で管理できるため、複数のpresetを組
み合わせられます。これにより、たとえばTypeScriptで書かれたReactア
プリケーションのビルドなどもできます。

図2.2: Presetのイメージ

2.4.2　ES5に変換するpreset
　ここでは、設定を書くことで必要なpluginを判別し、指定したターゲッ
トに向けたJavaScriptを生成してくれる@babel/preset-envを紹介し
ます。11

@babel/preset-envとは
　 @babel/preset-env は 、 browserslist 、 compat-table12 、
electron-to-chromium13を参照し、各環境で動くJavaScriptへと変
換してくれます。

browserslist を活用する
　 browserslist は Share target browsers between different
front-end tools, like Autoprefixer, Stylelint and babel-preset-
envとあるように、さまざまなフロントエンドツールに対して「私たちはこの
ようなブラウザをサポートするので、それに合わせて設定をしてください」

と伝えるためのツールです。14Babel以外だと、Autoprefixer15などで
使われています。通常は、package.jsonや.browserslistrcに書きま
す。

リスト2.7: browserslistをpackage.jsonに書く

"browserslist": [

 "defaults",

 "not IE 11",

 "not IE_Mob 11",

 "maintained node versions",

]

　 も し 、 babel.config.js の 中 で browserslist を 指 定 し た り 、
ignoreBrowserslistConfig と い う フ ラ グ を 立 て な け れ ば 、
package.jsonや.browserslistrcが参照されます。
　browserの指定に関して、browserslistの公式はpackage.jsonに
明示することを推奨し16、Babelの公式は.browserslistrcファイルに書
くことを推奨しています。ここでは.browserslistrcファイルに書きます。

リスト2.8: .browserslistrc

> 0.25%

not dead

　@babel/preset-envはこの.browserslistrcを見て、どの構文にすべ
きかを判断して変換します。そのため、@babel/preset-envでは、こ
の.browserslistrcが鍵となってきます。

@babel/preset-envの設定を試す
　@babel/preset-envにはどのような設定が必要かを、実験してみま
しょう。.browserslistrcに設定を書きます。例として、使用率が0.25%よ
り上のブラウザを指定します。

リスト2.9: .browserslistrcを使って変換

Browsers that we support

> 0.25%

not dead

　ちなみに、この設定がサポートしている対象ブラウザは次の通りです。
17

図2.3: サポートブラウザ

　先ほどの設定で、次のようなES6のコードがどう変形されたかを見ま
す。

リスト2.10: classファイルがどう変換されるか

class A {

 constructor() {}

}

　変換します。

$ npx babel src/main.js --out-dir dist

　実行した結果がこちらです。

リスト2.11: classファイルを変換した結果

"use strict";

function _classCallCheck(instance, Constructor) {

 if (!(instance instanceof Constructor)) {

 throw new TypeError("Cannot call a class as a
function");

 }
}

var A = function A() {

 _classCallCheck(this, A);

};

　classはES5では関数で実現されますが、それをnewを使わずに関数
として呼び出していないかを確認しています。classをサポートしていない
ブラウザに向けたコードなので、このような確認をしています。では、class
構文がサポートされているGoogle Chromeの最新バージョンに向けてト
ランスパイルすると、どうなるでしょうか。

リスト2.12: .browserslistrcをchrome向けに変換

Browsers that we support

chrome 80

$ npx babel src/main.js --out-dir dist

リスト2.13: chrome80用に書き出されたJS

"use strict";

class A {

 constructor() {}

}

　今度は、class構文がそのまま使われています。これは、Chrome80
はclass構文をサポートしているからです。このように、サポートブラウザに
合わせてトランスパイルされることが確認できました。

2.5　ブラウザの差異をpolyfillで管理する

2.5.1　polyfillとpreset-env
　ところで、@babel/preset-envの公式が出している設定ファイルを見
てみましょう。

リスト2.14: babel.config.jsの設定

{

 "presets": [

 [

 "@babel/preset-env",

 {

 "useBuiltIns": "entry"

 }

]

]
}

　公式にある設定では、presetsが二重配列になっています。これは
@babel/preset-envにオプションを指定するために、このような書き方
になっています。そのオプションとは、polyfillの指定です。

polyfillとは
　polyfillとは、最近の機能をサポートしていない古いブラウザーでもその
機能を使えるようにするためのコードです。 18 たとえば、Internet
Explorer 7でHTML Canvas要素の機能を疑似的に実現したり、CSS
のrem 19単位やtext-shadowなどを疑似的に実現できます。
　polyfillを使うためには、必要なpolyfillをダウンロードして差し込むほ
か、Polyfill.ioのようなサービスを使います。20

　このpolyfillは、ソースコードを変換する役割を持つBabelにおいても、
ブラウザの互換性を維持する上で関係してくる仕組みです。Babelには
自動でpolyfillを入れてくれる仕組みが用意されているため、その設定
について見ていきましょう。

BabelとPolyfill
　@babel/preset-envには、useBuiltIns: "usage"というオプションが
あり、これにより必要なpolyfillを自動で入れられます。実際にコードを
変換して確認してみましょう。

リスト2.15: babel.config.js
module.exports = {

 presets: [

 [

 "@babel/preset-env",

 {

 useBuiltIns: "usage"

 }

]

]
};

　この設定で、次のようなasyncが混じったコードをビルドしてみましょう。
async/awaitはES2017の機能です。

リスト2.16: asyncを利用したコード

const hoge = async () => {

 console.log("hallo world");

};

hoge();

　ビルドすると次のような警告が出ます。

$ npx babel src/main.js --out-dir dist

WARNING: We noticed you're using the `useBuiltIns` option wi
thout declaring a core-
js version. Currently, we assume version 2.x when no version
is passed. Since this default version will likely change in future
 versions of Babel, we recommend explicitly setting the core-
js version you ar
e using via the `corejs` option.

You should also be sure that the version you pass to the `corej
s` option matches the version specified in your `package.json`'
s `dependencies` s
ection. If it doesn't, you need to run one of the following com
mands:

 npm install --save core-js@2 npm install --save core-js@3
 npm install core-js@2 npm install core-js@3

Successfully compiled 1 file with Babel.

　これはBabelが自動でpolyfillを挿入するので、そのためのpolyfillライ
ブラリを各自でダウンロードするように言われています。Babelはあくまで
もpolyfillを読み込む関数を差し込むだけで、polyfillは自分で入れる
必要があります。
　試しに、このビルドしたコードを実行してみましょう。

$ node dist/main.js

internal/modules/cjs/loader.js:796

 throw err;
 ^

Error: Cannot find module 'core-js/modules/es6.promise'
Require stack:
- dist/main.js
 at Function.Module.runMain (internal/modules/cjs/loader.js:
1043:10) {
 code: 'MODULE_NOT_FOUND',
 requireStack: [
 'dist/main.js'
]
}

　「core-jsが見つかりませんでした」とエラーが出ました。では、このビルド
されたコードを見てみましょう。

リスト2.17: buildされたファイル

"use strict";

require("core-js/modules/es6.promise");

require("core-js/modules/es6.object.to-string");

require("regenerator-runtime/runtime");

省略

var hoge =

 /*#__PURE__*/

 (function() {

 省略

 })();

console.log(hoge(hey));

　どうやら、core-jsとregenerator-runtimeがあれば動きそうです。追
加しましょう。

$ npm install core-js@3 regenerator-runtime

　このとき、-Dは不要なことに注意してください。polyfillはアプリケーショ
ンコードで動くものですので、開発用ライブラリではありません。
　そして、babel.config.jsで利用するpolyfillのバージョンを指定してく
ださい。指定がない場合は、version2が使われますが、ここでは3を使
うので、指定をします。

リスト2.18: core-jsを指定

module.exports = {

 presets: [

 [

 "@babel/preset-env",

 {

 useBuiltIns: "usage",

 corejs: 3

 }

]

]
};

　ではビルドして実行します。

$ npx babel src/main.js --out-dir dist
Successfully compiled 1 file with Babel.
 Done in 0.59s.

$ node dist/main.js
hello world

　このように、エラーが出ることなく動作しました。21

2.6　まとめ

　本章では、Babelを使ったトランスパイルについて学びました。Babelは
ブラウザでの互換性を保ったソースコードを出力できるため、利用すると
新しい文法のJavaScriptを使えるようになる利点があります。ソースコー
ドの変換方法は、pluginを使って拡張していけます。pluginをセットにし
たpresetと呼ばれる機構で、まとめて拡張することも可能です。

1.
https://babeljs.io/
2.
parse
3.
traverse
4.
generate
5.
https://github.com/babel/babel/tree/master/packages/babel-core
6.
arrow functionはES2015の新構文で、Babelによる変換対象としてよく使われていました。
7.
.babel.config.jsではなくbabel.config.jsであることに注意。昔はよく.babelrcというファイル
が使われていたので、書き間違いをしやすいです。
8.
https://babeljs.io/docs/en/configuration
9.
https://babeljs.io/docs/en/babel-plugin-transform-arrow-functions
10.
https://babeljs.io/docs/en/presets
11.
https://babeljs.io/docs/en/babel-preset-env
12.
 ES5 以 上 の 文 法 と ブ ラ ウ ザ の 対 応 を 一 覧 で き る テ ー ブ ル .
https://kangax.github.io/compat-table
13.
 Electron と chromium の バ ー ジ ョ ン の 組 み 合 わ せ を 調 べ ら れ る ツ ー ル 。
https://www.npmjs.com/package/electron-to-chromium
14.
https://github.com/browserslist/browserslist
15.
ベンダープレフィックスを付与するツール。https://github.com/postcss/autoprefixer
16.
https://github.com/browserslist/browserslist
17.
browserl.istというサイトで調べられる。https://browserl.ist/
18.
https://developer.mozilla.org/ja/docs/Glossary/Polyfill
19.
ルート要素のfont-size.レスポンシブデザインやアクセシビリティを考慮した時に、文字サイズ
の切り替えをしやすいといった利点がある。
20.
https://polyfill.io/v3/
21.
 こ の よ う な 実 験 を 行 い ま し た 。 https://github.com/ojisan-
toybox/is_need_regenerator-runtime

第3章　TypeScriptを使ったコンパイル

3.1　TypeScriptとは

　TypeScript1は、JavaScriptのスーパーセット言語です。JavaScriptに
型を付けることができ、型検査を行うことで、実行時に起きうる不具合
を事前に見つけ出せます。また、TypeScript自体が最新のJavaScript
の機能を取り入れており、変換ターゲットを柔軟に設定できるため、
Transpilerという側面もあります。2利用することによる制限はほとんどな
いため、これからWebアプリケーション開発をする際には、利用を推奨し
ます。

図3.1: TypeScriptのイメージ

　このとき、外部から取り入れたライブラリを含めて型検査を行うために
は、型定義ファイルと呼ばれるファイルが必要になります。3TypeScript
で開発されたライブラリであれば、ライブラリに付随しているはずなので4、
それを使います。もし配布されていない場合は自分で作るほか、
DefinitelyTyped5 か ら イ ン ス ト ー ル す る こ と で 利 用 可 能 で す 。

DefinitelyTypedに登録されている型定義ファイルは、npm install -D
@types/hoge といったふうに、npm経由でインストールできます。

3.2　tscのインストール

　TypeScriptからJavaScriptへの変換は、tscコマンドを使います。この
コマンドによって、TypeScriptからJavaScriptに変換できます。これは
TypeScriptインストール時に、CLIとして付いてきます。

$ npm install -D typescript

$ npx tsc

　ビルド対象や結果の出力先は、設定ファイルで指定できます。
　設定はtsconfig.jsonに書きます。tsc --initを実行すると設定ファイ
ルを生成できるため、初回設定では活用しましょう。（※誌面の都合
で、コメントアウトされている行の一部とコメントを削除しています。）

リスト3.1: tsconfig.json

{

 "compilerOptions": {

 /* Basic Options */

 // "incremental": true,

 "target": "es5",

 "module": "commonjs",

 // "lib": [],

 // "allowJs": true,

 // "checkJs": true,

 // "jsx": "preserve",

 // "outFile": "./",

 // "outDir": "./",

 // "rootDir": "./",

 // "composite": true,

 // "removeComments": true,

 // "noEmit": true,

 // "downlevelIteration": true,
 // "isolatedModules": true,

 /* Strict Type-Checking Options */

 "strict": true,

 // "noImplicitAny": true,

 // "strictNullChecks": true,

 // "strictFunctionTypes": true,

 // "strictBindCallApply": true,

 // "strictPropertyInitialization": true,

 // "noImplicitThis": true,

 // "alwaysStrict": true,

 /* Additional Checks */

 // "noUnusedLocals": true,

 // "noUnusedParameters": true,
 // "noImplicitReturns": true,

 // "noFallthroughCasesInSwitch": true,

 /* Module Resolution Options */

 // "moduleResolution": "node",
 // "baseUrl": "./",

 // "paths": {},

 // "rootDirs": [],

 // "typeRoots": [],

 // "types": [],

 "esModuleInterop": true,

 /* Advanced Options */

 "forceConsistentCasingInFileNames": true

 }
}

　このファイルのうち、よく触ることになるであろう項目について確認しま
す。

3.2.1　target
　どのバージョンにトランスパイルするかを選択できます。候補は次の通
りです。
　・ES3 (default)
　・ES5
　・ES6/ES2015
　・ES2016
　・ES2017
　・ES2018
　・ES2019
　・ES2020
　・ESNext
　Babelを利用していたときは、preset-envと.browserslistrcを使うこ
とでブラウザやシェアを細かく指定できましたが、このオプションではそれが
できません。
　どのバージョンに変換したらよいかは、compat-table6を参考にすると
良いです。これまではES5への変換がデフォルトとして考えられていました
が、（Internet Explorerへの対応が不要な場合に限って）最近はそ
れ以上のバージョンに変換しても、ブラウザで動かせます。

3.2.2　module
　どのモジュールパターンで出力するかを決められます。
　・commonjs: Node.jsで利用される。require('name')形式で読み

込める。
　・amd: ブラウザで利用される。モジュールを非同期でロードする仕組

みが提供される。
　・umd: AMDとCommonJSの両方をサポート
　・ES6: ES Module
　出力したコードに対するimportやrequireに影響し、主にライブラリを
作るときに意識するオプションです。

3.2.3　lib
　コンパイルに含める組込みライブラリを指定できます。どのlibが必要に
なるかは、targetや入れたライブラリや型定義ファイルに依存します。た
とえば、ES6の組込み関数（たとえばSet、Map）を使う際には、libに
ES6を指定する必要があります。7
　libを指定しない場合は、targetに従って自動で設定されます。ES5を
targetにしているときは、DOM/ES5/ScriptHost、ES6をtargetにしてい
るときはDOM/ES6/DOM.Iterable/ScriptHostが入ります。ただし、も
しどれか1つでもlibを手動で設定していると、自動で設定されなくなりま
す。1つでもlibを設定したら、必要なlibは全部設定しましょう。

3.2.4　strict
　型検査の振る舞いを制御できるオプションです。trueにすると検査が
厳 し く な り ま す 。 tsc の オ プ シ ョ ン で は 、 noImplicitAny 、
strictNullChecks、noImplicitThis、alwaysStrict という項目があり、
strictをtrueにすると、これら4つすべてを検査します。このオプションを
trueにしておくと、型推論がより信頼できます。既存プロジェクトに
TypeScriptを導入していくときにこのオプションをつけると、警告がたくさ
ん出てたいへんな目に遭いますが、新規開発の場合はぜひtrueにして
おきましょう。

3.2.5　noEmit
　このオプションは、コンパイラでの型検査だけを行います。自分の書い
たコードの型が合っているか確かめたり、CI上での静的検証として使えま
す。

// 作業中のdirectoryがproject rootとして、-pでそのプロジェクト位置
を指定している

$ npx tsc -p . --noEmit

3.2.6　forceConsistentCasingInFileNames
　ファイルの大文字・小文字の違いをエラー報告するオプションです。た
と え ば 、 実 際 に あ る フ ァ イ ル 名 は Helper.ts な の に 、
import{calc}from'./helper'などと書くとエラーを発生させるオプションで
す。なぜこれが必要であるかというと、macOSにて採用されるファイルシ
ステムでは、大文字・小文字を区別しなくても解決できるからです。その
ため、開発中のMacではテストもビルドも通るのに、CIサーバでは失敗
し、その原因がよく分からないといった事態を防げます。この値は
defaultでtrueです。

3.2.7　jsx
　--jsxオプションはその名の通り、tsx(TypeScriptがサポートするJSX)形
式を変換するためのオプションです。取りうる値はpreserve、react、
react-nativeです。ここでreactを指定するとjsを出力し、preserveを指
定するとjsxを出力します。8reactを指定してjsを出力すると変換が一
度で済みますが、preserveを利用すると、jsxをjsに変換する必要が生
まれます。ただしデメリットではなく、jsxからjsの変換をBabelに任せて多
段構成にするなど、柔軟なビルドが可能になります。

3.2.8　outDir
　ビルドしたファイルを置く場所を指定できます。

3.2.9　outFile
　ビルドしたファイル名を指定できます。

3.3　Reactを動かす

　では、設定のイメージをつかむために、ReactをTypeScriptで動かす設
定をしてみましょう。ただしここでは誌面の都合上、設定ファイルに書いて
いたことをCLIのオプションで渡して設定します。tsconfig.jsonの設定内
容は、tscコマンドの引数でも同様の表現ができます。
　検証用の環境構築を楽に済ませるため、ReactやReactDOMは
CDN経由で読み込みます。9めったにやらない方法ですが、公式にも説
明はあります。Reactをサクッと試したいときなどには使えるので、覚えて
おくと良いでしょう。

リスト3.2: index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>only tsc react app</title>

 </head>

 <body>

 <script

 crossorigin

src="https://unpkg.com/react@16/umd/react.development.js"

 ></script>

 <script

 crossorigin

 src="https://unpkg.com/react-dom@16/umd/react-
dom.development.js"

 ></script>

 <div id="root"></div>

 <script src="./main.js"></script>

 </body>

</html>

　これにより、クライアント側でReact、ReactDOMが見えるようになりま
した。ただしtscの実行に必要になるため、型定義ファイルだけはインスト
ールしておきます。

npm install -D @types/react @types/react-dom

　次に、このようなコンポーネントを表示させてみましょう。

リスト3.3: main.tsx

interface Props {

 name: string;

}

const El: React.FC<Props> = props => <h1>Hello,
{props.name}</h1>;

ReactDOM.render(<El name="taro"></El>,
document.getElementById("root"));

　このとき、ビルドに必要なオプションは次の通りです。

$ npx tsc src/main.tsx --outDir dist --jsx react --
lib es2015,dom

　これらのオプションについて、そのオプションがないと何が起きるのかを
見ていきましょう。たとえば、--jsx reactがないと次のエラーが出ます。

$ npx tsc src/main.tsx --outDir dist --lib es2015,dom
warning package.json: No license field
$ js-build-book-code/node_modules/.bin/tsc src/main.tsx --
outDir dist --lib es2015,dom
src/main.tsx:5:39 - error TS17004: Cannot use JSX unless the '-
-jsx' flag is provided.

5 const El: React.FC<IProps> = props => <h1>Hello, {props.n
ame}</h1>;
                                        ~~~~


src/main.tsx:7:17 - error TS17004: Cannot use JSX unless the '-
-jsx' flag is provided.


7  ReactDOM.render(<El  name="taro">
</El>, document.getElementById("root"));
                  ~~~~~~~~~~~~~~~~


Found 2 errors.

　--jsxオプションはその名の通り、jsxを扱うときに使うオプションで、ここ
ではjsファイルが出力されるreactを選びます。
　また、--lib es2015がないと次のエラーが出ます。

$ npx tsc main.ts --outFile bundle.js --outDir dist --jsx react
$ need-babel__template-when-
ts/node_modules/.bin/tsc main.ts --outFile bundle.js
node_modules/@types/react/index.d.ts:388:23 - error TS2583:
 Cannot find name 'Set'. Do you need to change your target li

brary? Try changing the `lib` compiler option to es2015 or later
.

388 interactions: Set<SchedulerInteraction>,

　これは、@types/reactにSetが含まれており、それを解決できなかっ
たことによるエラーです。そのためSetを使っていなかったとしても、--lib
es2015という指定が必要です。--lib dom の指定も同じような理由で
す。
　これらを設定ファイルに落とし込むと、次の通りになります。

リスト3.4: tsconfig.json

{

 "compilerOptions": {

 "module": "commonjs",

 "jsx": "react",

 "lib": ["es2015", "DOM"]

 }
}

　この設定ファイルでビルドすると、無事Reactアプリケーションが表示さ
れます。

Babelでの設定
　変換の責務はBabelが担うべきという思想であれば、BabelでTypeScriptを変
換したくなるでしょう。Babelで変換する場合は、@babel/plugin-transform-
typescriptを利用します。BabelでTypeScriptを変換するメリットもあり、たとえば
TypeScriptにまだ含まれていない機能を使いたいときは、Babelで変換した方が
良いです。また、Polyfillの追加や、ビルドターゲットの指定も柔軟にできます。ちな
みにTS->ESをtscで、ES->ES5への変換をBabelで行うといった、多段変換も可
能です。

3.4　まとめ

　TypeScriptはJavaScriptのスーパーセット言語です。型が提供され、
フロントエンドプロジェクトにおける静的検証の幅を広げてくれます。
TypeScript Compilerが提供されており、これによりJavaScriptに変換
できます。基本的には、TypeScriptを採用するデメリットが小さくなって
きているので、採用することを推奨します。ただし設定項目はとても多
く、特殊な設定が必要となった場合は、詰まることもあるでしょう。そこ
で、公式のCompiler Optionの説明を理解しておくなど、ある程度の
訓練は必要です。そのぶん恩恵も大きいので、頑張ってキャッチアップす
ることを推奨します。10

1.
https://www.typescriptlang.org/
2.
そのためBabelと同じように、レガシーブラウザに向けて変換する役割を担えます。
3.
型定義ファイルを用意できなくても、tscの設定を緩めることでコンパイルエラーを防ぐことはでき
ます。
4.
ここで「はず」と書いたのは、型定義ファイルを出力せずに配布することも可能だからです。ただ
しそのようなケースに、筆者は出会ったことはありません。
5.
https://github.com/DefinitelyTyped/DefinitelyTyped
6.
http://kangax.github.io/compat-table/es2016plus/
7.
アプリケーションに含まれなくても、利用ライブラリに含まれているなら、この指定は必要です。
8.
react-nativeを指定すると、ビルド結果はpreserveと同じで、拡張子が.jsとなります。つま
り.js形式にjsxが出力されます。
9.
CDNを使わない一般的な方法は、次のwebpackの章で説明します。webpackはモジュール
の依存解決を行えるツールです。
10.
 公 式 の ド キ ュ メ ン ト が と て も 充 実 し て い ま す 。
https://www.typescriptlang.org/docs/home.html

第4章　webpackを使ったバンドルとビルド

　webpack1はmodule bundlerです。Babelがコンパイラとすれば、
webpackはリンカ2です。複数のJavaScriptや静的アセット3の依存解
決を行います。webpackは静的アセットの依存解決もできるため、
JavaScriptの世界にCSSやバイナリをもimportし、それらをJavaScript
から利用可能にします。

図4.1: webpack のイメージ

　このwebpackによってソースコード内にあるexport/importを解決で
き、ライブラリのimportが容易になります。反対にwebpackがなけれ
ば、ライブラリを利用するための手間が増えます。なぜなら依存解決が
できなければ、importしたいライブラリを実行ファイルに含められないから
です。もし依存解決を行うツールがなければ、依存の順番を意識しなが

らscriptタグで順番に読み込むといったことをする必要があります。
webpackはそういった依存解決の難しさを解決してくれるツールです。
　webpackは一見するとモジュールを解決しているだけなので、役割や
使い方は単純そうにも見えますが、その実態は複雑なものです。なぜな
らwebpackは依存解決をする目的以外の役割も担え、多様な使い
方が可能だからです。たとえば、webpackにはloaderやpluginという仕
組みがあり、次のような使い方ができます。
　・Babelを呼び出せる
　・tscを呼び出せる
　・開発用サーバを立てられる
　・HTMLにJavaScriptを埋め込める
　・etc...
　どういうことができるのかは、具体例で見ていきましょう。

4.1　webpackの使い方

4.1.1　webpackのinstall
　webpackをインストールします。

$ npm install -D webpack

　webpackもBabelのようにCLIツール4が本体から切り離されているの
で、別途ダウンロードします。

$ npm install -D webpack-cli

　これでwebpackコマンドが使えるようになりました。5webpackはモジ
ュールバンドラーであるため、依存を持つJavaScriptファイルのentry
pointを受け取り、その依存を解決したファイルを成果物としてoutput
できます。webpackは多くの場合で、そのようにして使われます。それで
は、依存解決がどう行われるのか見てみましょう。これらのファイルを、
webpack経由でbundleしてみましょう。

リスト4.1: src/index.js

import { hello } from "./sub";

hello();

リスト4.2: src/sub.js

export const hello = () => {

 console.log("hello");

};

　バンドルします。

$ npx webpack
 Asset Size Chunks Chunk Names
index.js 972 bytes 0 [emitted] main
Entrypoint main = index.js
[0] ./src/index.js + 1 modules 97 bytes {0} [built]
 | ./src/index.js 41 bytes [built]
 | ./src/sub.js 56 bytes [built]

　 こ こ で index.js を entry point と し て 読 み 込 ん だ 際 、 sub.js の
console.log("hello");が生成物に含まれていると、依存解決が成功し
たことになります。書き出されたファイルは次の通りです(見やすくするため
に整形しています)。

リスト4.3: dist/main.js
!(function(e) {

 var t = {};

 省略,

 function(e, t, r) {

 "use strict";

 r.r(t);

 console.log("hello");

 })

　ちゃんとconsole.log("hello");が組み込まれていることが確認できま
した。つまり、依存解決に成功しています。
　webpackはv4からzero configでの実行も可能で、設定ファイルを
書かなければビルドターゲットがsrc/index.jsで出力先をdist/main.jsと
し、諸々の最適化を加えて出力します。そのため、設定ファイルを指定
せずともビルドできました。もちろん、設定ファイルを活用した方が、差分
管理や便利な機能を導入する上で好ましいため、設定ファイルについて
次の節で見ていきます。

4.2　webpackの設定ファイル

　wepbackは、設定ファイルとしてwebpack.config.jsを見ます。

リスト4.4: webpack.config.js

const HtmlWebpackPlugin = require("html-webpack-plugin");

const Dotenv = require("dotenv-webpack");

const path = require("path");

module.exports = {

 mode: process.env.NODE_ENV,

 entry: "./src/main.tsx",

 output: {

 path: path.resolve(__dirname, "./dist"),

 filename: "build.js",

 },

 module: {

 rules: [

 {

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: "ts-loader",

 },

],

 },

],

 },

 resolve: {

 extensions: [".js", ".ts", ".tsx", ".css"],

 },

 plugins: [

 new HtmlWebpackPlugin(),

 new Dotenv(),

],

};

　その設定ファイル内で指定できる設定は、次の通りです。

4.2.1　mode
　ビルド時の最適化について設定できます。取りうる値は、none、
development、productionです。指定しなかった場合のデフォルト値
は、productionです。productionは最適化をしてくれ、noneは何も
最適化を行いません。developmentを設定すると、Source Map6を
有効にできます。

4.2.2　entry
　entryではentry pointを指定できます。SPAとしてサイトを開発してい
る場合は、基本的に1つしか指定しません。ですが、もしMPA7を開発し
ている際は、複数のエントリポイントを指定し、それぞれにoutputを作る
ことができます。

リスト4.5: entry

entry: {

 home: './home.js',

 about: './about.js',

 contact: './contact.js'

}

4.2.3　output
　outputでは、ビルド後のファイルをどう保存するかを指定できます。

リスト4.6: output

output: {

 path: path.resolve(__dirname, "./dist"),

 filename: "build.js",

},

　この例では、distディレクトリにbuild.jsという名前で保存します。

4.2.4　loader
　loaderはwebpackのpre-process機構です。つまり、bundle前にソ
ースコードへ何らかの前処理を行える機能です。よくある使われ方は、
bundle前にBabelやtscでコンパイルする使い方です。このような使い方
がよくされるので、webpackがビルドの処理を背負っているようにも見
え、Babelとwebpackの違いについて混乱しやすいポイントでもありま
す。
ts-loader
　 tsc で の 変 換 が で き る loader で す 。 TypeScript プ ロ ジ ェ ク ト を
webpackでビルドする際に必要になります。
　loaderをinstall後、*.tsと*.tsxにloaderを利用する設定を付け加え
ることで、利用できます。

$ npm install -D ts-loader

リスト4.7: webpackにts-loaderを設定

module: {

 rules: [

 {

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: "ts-loader"

 }

]

 }

]

 },

　 ち な み に 、 こ の と き 内 部 で は TypeScript が 使 わ れ る の で 、
tsconfig.jsonが必要です。仮にtsconfig.jsonがない場合は、このよう
なエラーが出ます。

$ npx webpack

ERROR in [tsl] ERROR
 TS18002: The 'files' list in config file 'tsconfig.json' is empty
.

　tsconfig.jsonを追加して実行しましょう。

$ npx webpack

Built at: 02/24/2020 6:58:47 PM
 Asset Size Chunks Chunk Names
bundle.js 1.09 KiB 0 [emitted] main
Entrypoint main = bundle.js
[0] ./src/main.ts 305 bytes {0} [built]
 Done in 3.09s.

　ts-loaderにはconfigFileというオプションがあり、これを使うことで
TypeScriptのビルドに使う設定ファイルを切り替えることができます。ビル
ドファイルを複数使い分けたい場合に使います。

babel-loader
　babel-loaderは、webpack実行時にBabelを実行できるようにする
loaderです。つまり、ES6で書いたコードをwebpackでビルドできるように
するloaderです。

リスト4.8: babel-loaderを利用
module: {

 rules: [

 {

 test: /\.js$/,

 exclude: /(node_modules|bower_components)/,

 use: {

 loader: "babel-loader",

 options: {

 presets: ["@babel/preset-env"]

 }

 }

 }

];

}

　この例では、.jsにbabel-loaderを適用させています。また、options
の設定にbabelの設定を書いていますが、もちろん別ファイルに切り出す
こともできます。

file-loader
　file-loader8はファイルのimportを解決し、ビルド時に出力先フォル
ダ へ 該 当 フ ァ イ ル を 出 力 し ま す 。 こ の loader を 利 用 す る こ と で 、
JavaScript内でimportしたファイルを、ビルド後のファイルからの参照が

可能です。画像や動画といったassetを読み込む際に利用します。file-
loaderの設定には、読み込みたいファイルの拡張子を指定してくださ
い。

リスト4.9: file-loaderを利用

module: {

 rules: [

 {

 test: /\.(png|jpg)$/,

 use: [

 {

 loader: "file-loader"

 }

]

 }

]

 },

raw-loader

　raw-loader9は、ファイルの内容をそのままテキストとして読み込む
loaderです。CSSやGLSLを使いたいときに使えます。

style-loader
　style-loaderは、JavaScriptファイルに埋め込まれたCSSの情報を、
htmlのstyleタグに加えることができます。これにより、raw-loaderやcss-
loaderでimportしたCSSを反映させることができます。

リスト4.10: style-loader

module: {

 rules: [

 {

 test: /\.css$/,

 use: ["style-loader", "raw-loader"]

 }

]

 },

　ここでは、CSSファイルを読み込むためにraw-loaderを使っています。

css-loader
　css-loaderはraw-loaderと同じく、ファイルを読み込めるようにするプ
ラグインです。10raw-loadrとの違いはCSSへのサポートの有無であり、
公式のオプションを見ると、さまざまな機能があることを確認できます。
　たとえば、css-loaderのoptionでmodulesをtrueにすると、CSS
Moduleを利用できます。

リスト4.11: css-loader

{

 test: /\.css$/,

 use: [

 "style-loader",

 {

 loader: "css-loader",

 options: {

 modules: true

 }

 }

}

4.2.5　plugin
　webpackは、pluginを使うことで便利に扱えます。公式が便利な
pluginの一覧とその説明を見やすい形で提供していますが、利用度の
高いものは本書でも解説します。11

html-webpack-plugin

　ビルド後のファイルと、それを読み込むhtmlファイルの連携を取りやす
くするためのプラグインです。これまではビルド済みファイルを読み取るた
めに、/distディレクトリにあらかじめindex.htmlを配置する構成でした。
しかしその構成だと、bundleファイル名が変わるとビルドが落ちるように
なる、といった懸念や問題がありました。
　html-webpack-pluginは、そのような問題を解決できるプラグインで
す。これは読み込ませたいhtmlを指定するだけで、ビルド時に一緒に
outputディレクトリにコピーしてくれます。さらには、scriptタグでの読み込
み行まで埋め込みます。
　たとえば、次のようなhtmlを用意します。

リスト4.12: build対象のHTML

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>webpack App</title>

 </head>

 <body></body>

</html>

　そして、次のような設定ファイルを準備します。

リスト4.13: webpack.config.js

plugins: [new HtmlWebpackPlugin()]

　これをビルドすると、次のようになります。

リスト4.14: build後のHTML

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>webpack App</title>

 </head>

 <body>

 　　<script src="bundle.js"></script>

 </body>

</html>

　<script src="bundle.js"></script>が、ビルド後のファイルに含ま
れました。これによりビルド後のhtmlを開くだけで、アプリケーションの実
行を確かめられます。

Dotenv
　環境変数は.envというファイルで管理することが多いです。環境変数
には、APIのキーやパスワードなどの機密性の高いものが含まれており、ソ
ースコードに直接含めることが危険だからです。よくあるのは、.envに環境
変数を書き、Gitの管理下には置かず、.env.sampleのようなファイルに
サンプル値を書いて、Gitで管理するといったやり方です。
　プログラミング言語によっては、.envから環境変数にセットするライブラ
リがあり、JavaScript、Node.jsも例外ではありません。
　たとえば、dotenv-webpackは.envにある環境変数を、ビルド時に
埋め込んでくれます。12

リスト4.15: dotenvをプラグインに追加

 const Dotenv = require("dotenv-webpack");

 module.exports = {

 ...

 plugins: [

 new Dotenv(),

],

 };

　この状態で.envにXXX="hello"などを用意してビルドすれば、アプリケ
ーション内でprocess.env.XXXとして読み込むことができます。
　フロントエンド開発においては、結局クライアントのコンソール実行ファ
イルを見れるので.envで管理しないデメリットは少ないです。ただ環境変
数が一覧で保存しやすいという利点もあるので、筆者はこのプラグインを
使っています。開発環境が複数あるときに、.envに環境変数をコピーす
れば入れ替えが簡単で開発しやすくなります。

4.2.6　resolve
　resolve13オプションはその名の通り、モジュールの解決方法を指定す
るためのオプションです。たとえば、import時のpathを短縮するための
aliasや、拡張子を省略できるextensionといった機能を提供します。こ
こでは、extensionについて解説します。

extension
　extensionを指定することで、import時に拡張子の記述を省略でき
ます。

リスト4.16: extensionの指定

module.exports = {

 //...

 resolve: {

 extensions: ['.wasm', '.mjs', '.js', '.json']

 }
};

　拡張子を省略するため、異なる拡張子で同一名のファイルは識別で
きなくなります。その場合、extensionsで指定したもののうち先頭にある
ものから優先されるため、注意しましょう。

4.3　まとめ

　webpackはモジュールバンドラです。最近のフロントエンド開発は、たく
さんのライブラリを入れて開発するため、ソースコード間の依存は膨らんで
いきます。webpackはそれらの依存関係を解決してくれます。
　あくまで依存解決が役割ですがloaderと呼ばれるpre processor機
構を用意してくれており、ここでソースコードに対して変換処理を入れられ
ます。つまり、Babelやtscを実行できます。そのため、webpackはトラン
スパイルはしないものの、ビルドの一端を担っています。よく役割を混乱し
ますが、そのときはトランスパイル・ビルド・バンドルといった言葉を意識し
てみてください。

1.
https://webpack.js.org/
2.
単体で実行可能なファイルを生成するもの
3.
たとえばCSSや画像ファイル
4.
https://github.com/webpack/webpack-cli/tree/next/packages/webpack-cli
5.
正確には、webpackコマンドはwebpackの持ち物です。ただ、そのwebpackコマンドが内部
でwebpack-cliを呼び出すので、webpack-cliをDLしなければ動きません。
6.
ビルド後のソースとビルド前のソースを関連付けるファイル。これを用いれば、webpackでビルド
したファイルのデバッグが容易になる。
7.
マルチページアプリケーション。複数のエントリポイントを持つアプリケーション。機能ごとに画面
を分けられるメリットがある。
8.
https://webpack.js.org/loaders/file-loader/
9.
https://github.com/webpack-contrib/raw-loader
10.
https://github.com/webpack-contrib/css-loader
11.
https://webpack.js.org/plugins
12.
https://github.com/mrsteele/dotenv-webpack
13.
https://webpack.js.org/configuration/resolve/

第5章　ESLintを使った静的解析

　lintもしくはlinterは、ソースコードの構文や品質を検査できるツールで
す。JavaScriptにもそのようなツールがあり、ESLintは代表的なlinterで
す。ESLintは公式の言葉を借りると、Pluggable JavaScript linterで
あり、pluginによって自由に拡張できます。1

5.1　ESLintのしくみ

　JavaScriptのソースコードは、AST（抽象構文木）という形式で表
現できます。ここではASTについては深く解説しませんが、ソースコードは
何らかの木構造で表現できると考えてください。ESLintはこのASTを巡
回し、その各ノードであらかじめ設定されたルールに合っているかを検証し
ます。

図5.1: ASTとルール

　ルール自体は関数として定義でき、そのルールを許可するかどうかは
設定ファイルに記述しておきます。ルールの実体はただの関数ですので、
自作したり、第三者が作ったルールをインストールして使えます。たとえば
私は以前、ソースコード内から俳句を見つけだし、それを禁止するルール

を作ったこともあります。2このようにESLintでは、ルールの自作やインスト
ールによって、柔軟な拡張ができます。ルールが根幹にあるため、ESLint
を理解するためには、まずルールに着目すると良いです。

5.2　ESLintの使い方

　ESLintは次のコマンドで導入できます。

$ npm install -D eslint

　ESLintには設定ファイルがあり、その設定が必要です。ここで
は.eslintrc.jsに設定を書いていきます。3

5.2.1　チェックしたいルールを設定する
　チェックしたいルールを設定ファイルに書いておけば、ESLintはlintを行
います。ruleは以下のように設定できます。

リスト5.1: .eslintrc.js

module.exports = {

 rules: {

 "no-console": ["warn"],

 }
};

　このように、ESLintではrule名とそれに対するふるまいを書くことで、
ruleを設定できます。ふるまいとしては、"error"、"warn"、"off"がありま
す。
　no-consoleは、console.*4を禁止するルールです。このルールに該当
したら、warn(警告)を出すというのがこの設定ファイルが指し示す意味

です。

5.2.2　ルールをセットにしたpluginを導入する
　ESLintのルールは自分でも定義できますが、そのルールを自作すること
は大変な作業です。そこで、公式やサードパーティが配布しているルール
を活用します。そのようなルールはpluginとも呼ばれており、設定ファイル
を通して導入できます。たとえばReactに関するルールを入れたければ、
eslint-plugin-reactをinstallし、それを設定ファイルで登録すれば使え
ます。

$ npm install -D eslint-plugin-react

リスト5.2: .eslintrc.js

module.exports = {

 "plugins": ["react"],

};

　ただし注意しないといけないのは、この時点ではルールのオン／オフは
指定されていません。あくまでルールを登録しただけであり、実際にルー
ルを使うためにはrules配下に設定を書くか、次に紹介するextendsを
使う必要があります。

5.2.3　どのルールを切り替えるかのextends
　pluginsで入れたルールのオン／オフをセットする手順を、すべて手で
行うと大変です。そこで、それらのオン／オフの設定をしてくれるextends
という仕組みを使います。extendsはpluginが提供するルール一覧に対

して、recommendedやallといったconfigセットを使った設定を可能に
します。

リスト5.3: .eslintrc.js

module.exports = {

 "extends": [

 "plugin:react/recommended",

],

 "plugins": ["react"],

};

　このように設定することで、eslint-plugin-reactで入れたルールにおけ
る推奨設定をしたことになります。

5.2.4　initコマンドを利用して生成する
　ここまで.eslintrc.jsに設定を直書きしましたが、これらの設定を生成
する方法もあります。ESLintにはinitオプションがあり、これを利用しま
す。

$ npx eslint --init
? How would you like to use ESLint? To check syntax and find
problems
? What type of modules does your project use? JavaScript mo
dules (import/export)
? Which framework does your project use? None of these
? Does your project use TypeScript? No
? Where does your code run? Browser
? What format do you want your config file to be in? JavaScrip
t
Successfully created .eslintrc.js file

Done in 13.20s.

　上記の表示になるように回答することで、出力された設定ファイルは
次の通りです。

リスト5.4: .eslintrc.js

module.exports = {

 env: {

 browser: true,

 es6: true

 },

 extends: "eslint:recommended",

 globals: {

 Atomics: "readonly",

 SharedArrayBuffer: "readonly"

 },

 parserOptions: {

 ecmaVersion: 2018,

 sourceType: "module"

 },

 rules: {}

};

　今回はフロントエンドのJavaScriptプロジェクトに対して、推奨設定を
使うような設定を吐き出しました。ここで聞かれた回答の結果次第で
は、TypeScriptやReactやNode.jsに対する設定も出力できます。
　この設定ファイルには、これまでに解説したpluginsやextends以外の
ものも多く登場しています。ここでESLintでは、何を設定できるのかを一
望しましょう。

5.3　ESLintで設定する項目

5.3.1　rules
　rulesは、ESLintで検証したいルールそのものを指定できる箇所です。
ESLintでは、このrulesが根幹にあると考えてください。公式による提
供、第三者によるプラグイン提供、自作することによってruleを入手でき
ます。デフォルトや公式がどのようなルールを提供しているかは、ドキュメン
トを参照してください。5
　このルールの正体はASTを検証する関数です。その関数の中で検査
を行い、その結果に応じてルール違反かどうかをレポートできます。
　そのルールに対して、それを許可または禁止するかの設定を、この項
目で行えます。

リスト5.5: eslintのrule

{

 "rules": {

 "semi": ["error", "always"],

 "quotes": ["error", "double"]

 }

}

　ルールには次の3つのレベルがあります。
　・なし: "off" or 0
　・警告: "warn" or 1
　・エラー: "error" or 2
　これらは、objectのvalueの配列の0番目に指定します。また、ルール
のオプションはvalueの配列の1番目以降に指定します。たとえば、semi
というルールだとオプションとしてalways、neverなどを指定できます。6

5.3.2　extends
　extendsは設定を拡張するセットで、第三者の.eslintrcを読み込め
ます。主にどのruleをオン／オフにするかを一括で設定するために使われ
ています。
　extendsを提供するライブラリには、有効にするルールを設定した
config フ ァ イ ル が 同 梱 さ れ て い る こ と も あ り ま す 。 た と え ば 、
eslint:recommendedというルールセットがよく使われていますが、すべ
てのルールをONにするeslint:allもあり、extends内の宣言で切り替える
ことができます。

リスト5.6: eslint-recommended.js

/**
 * @fileoverview Configuration applied when a user
configuration extends from

 * eslint:recommended.

 * @author Nicholas C. Zakas

 */

"use strict";

/* eslint sort-keys: ["error", "asc"] */

/** @type {import("../lib/shared/types").ConfigData} */

module.exports = {

 rules: {

 "constructor-super": "error",

 "for-direction": "error",

 "getter-return": "error",

 "no-async-promise-executor": "error",

 "no-case-declarations": "error",

 ...

 "no-useless-catch": "error",

 "no-useless-escape": "error",

 "no-with": "error",

 "require-yield": "error",

 "use-isnan": "error",

 "valid-typeof": "error"

 }

};

　ちなみにpluginを入れずとも、ルールを追加できるextendsも存在し
ており、このextendsはpluginと混乱しやすいものでもあります。たとえ
ば 、 eslint-plugin-node7 は "extends":
["plugin:node/recommended"]と設定するだけで、configの設定だ
けでなくルールの追加まで行ってくれます。公式の説明にはadd this
plugin into plugins.とあり、pluginの追加もしています。8extendsは
設定ファイル自体を拡張する機能なので、この挙動は正常ですが、
extendsとpluginの役割を混乱させる挙動になっているため、注意しま
しょう。

5.3.3　plugin
　pluginは、ESLintの設定を追加する役割を担います。主にルールを
追加するために利用します。9pluginをダウンロードし、設定ファイルの
plugins項目で指定することで利用可能です。

リスト5.7: .eslintrc.js

module.exports = {

 "plugins": [

 "react",

 "@typescript-eslint"

],

};

　pluginを入れることで、第三者が作成したルールを手に入れることが
できます。ただしそのルールを許可・禁止するかどうかは、自分でrulesで
設定するか、extendsの指定が必要です。10

5.3.4　env
　envプロパティを使うことで、実行環境に関する前提条件を設定でき
ます。たとえば、「これはブラウザで動くコードである」、「これはES6を使っ
ている」といったことを宣言できます。ブラウザで動くことを指定していれ
ば、windowといった変数が突然現れても、未定義変数である警告11
を発しないなどの利点があります。
　このenvは、eslint --initの回答結果からも影響します。eslint --init
から作られるパターンは少ないですが、実際には多くの設定可能な値が
あります。
　・browser
　・node
　・commonjs
　・es6
　・es2017
　・serviceworker
　・etc...
　自分のソースコードを動かす環境と同じ設定を必ずしておきましょう。
　たとえば、ES6を使ったフロントエンドのコードではこのような設定をして
おきます。

リスト5.8: .eslintrc.js

module.exports = {

 "env": {

 "browser": true,

 "es6": true

 }

};

5.3.5　globals
　globalsでは、特定のグローバル変数を許可・禁止できます。globals
にはwritableとreadonlyを指定でき、上書き可能・読み取り可能を定

義できます。

リスト5.9: globalsの例

"globals": {

 "var1": "writable",

 "var2": "readonly"

}

　ただ、一般的に使うグローバル変数はenvの設定で事足りるでしょう。
そのため、ほかのJavaScriptファイルから読み込んだグローバル変数を使
いたい場合などに出番があるオプションです。12
　また、globalsにはoff設定もあり、global変数の利用を禁止できま
す。この値を使えば、envで許可したグローバル変数の一部だけを禁止
できます。

リスト5.10: offの例

{

 "env": {

 "es6": true

 },

 "globals": {

 "Promise": "off"

 }
}

5.3.6　parser
　parserのバージョンを指定します。ESLintは標準では、ES5を想定し
てparseを行います。そのため、lint対象となるコードにあったparserをイ
ンストール・選択しないと、ESLintは実行できません。たとえば、
TypeScriptを対象にlintを行う場合は、@typescript-eslint/parserが
必要です。

　また、parserOptionsでは、さらに細かくparserの挙動を指定できま
す。これを使うと、JSXを受け入れることもできます。

リスト5.11: .eslintrc.js

module.exports = {

 ...

 "parser": "@typescript-eslint/parser",

 "parserOptions": {

 "ecmaFeatures": {

 "jsx": true

 },

 "ecmaVersion": 2018,

 "sourceType": "module"

 },

};

5.4　TypeScriptとReact用の設定をする

　それでは、TypeScriptとReact用の設定をしてみましょう。

5.4.1　eslint init
　TypeScriptとReactの設定も、ESLintのinit機能で作れます。使用フ
レームワークや使用言語については、init時の質問で聞かれます。

$ npx eslint --init
? How would you like to use ESLint? To check syntax and find
problems
? What type of modules does your project use? JavaScript mo
dules (import/export)
? Which framework does your project use? React
? Does your project use TypeScript? Yes
? Where does your code run? Browser
? What format do you want your config file to be in? JavaScrip
t
Local ESLint installation not found.
The config that you've selected requires the following depend
encies:
eslint-plugin-react@latest @typescript-eslint/eslint-
plugin@latest @typescript-eslint/parser@latest eslint@latest
? Would you like to install them now with npm? Yes

　上記の通りに回答した結果、次のような設定ファイルが作成されま
す。

リスト5.12: .eslintrc.js

module.exports = {

 "env": {

 "browser": true,

 "es6": true

 },

 "extends": [

 "eslint:recommended",

 "plugin:react/recommended",

 "plugin:@typescript-eslint/eslint-recommended"

],

 "globals": {

 "Atomics": "readonly",

 "SharedArrayBuffer": "readonly"

 },

 "parser": "@typescript-eslint/parser",

 "parserOptions": {

 "ecmaFeatures": {

 "jsx": true

 },

 "ecmaVersion": 2018,

 "sourceType": "module"

 },

 "plugins": [

 "react",

 "@typescript-eslint"

],

 "rules": {

 }

};

5.4.2　必要なプラグインをinstall

　initコマンド実行時、Would you like to install them now with
npm?と聞かれて、Yesと回答しました。その結果、次のコマンドが実行
されたのと同じ結果になっています。

$ npm install -D eslint-plugin-react @typescript-eslint/eslint-
plugin @typescript-eslint/parser

　これらは、上記の設定ファイルを動かすにあたって、必要となるライブラ
リです。それぞれ、どういう役割のライブラリなのか見てみましょう。
eslint-plugin-react

　eslint-plugin-react13は、React用のルールセットです。extendsも
含まれており、推奨設定のみONにするplugin:react/recommended
と全ルールをONにするplugin:react/allが含まれています。

@typescript-eslint/eslint-plugin
　 @typeScript-eslint/eslint-plugin を イ ン ス ト ー ル す る と 、
typeScript-eslintプラグインを利用できます。このプラグインは、ESLint
にないTypeScript固有の設定を担います。

リスト5.13: eslint-pluginの設定

module.exports = {

 ...,

 extends: [

 'eslint:recommended',

 'plugin:@typescript-eslint/eslint-recommended', // <=
NEW
 'plugin:@typescript-eslint/recommended', // <= NEW

]
};

　plugin:@typescript-eslint/recommendedは、型を必要としない
基本設定を詰め込んだものです。plugin:@typescript-eslint/eslint-
recommendedは、TypeScriptでチェックされる項目を除外する設定
です。両方ともnpx eslint --init実行時に設定ファイルへと追加されま
す。

@typescript-eslint/parser
　TypeScriptを解析するためには、このparserが必要です。これまでの
JavaScript用のparserだと、次のようなコードをlintしようとしてエラーにな
ります。

リスト5.14: main.js
export class Hoge {

 private _id: string;

 constructor(id: string) {

 this._id = id;

 }

 getId() {

 return this._id;

 }
}

　ES5にはアクセサ修飾子やクラスフィールドがないため、上記のようなコ
ードはparseできません。実行すると、Parsing error: Unexpected
token _id eslintというエラーが出るでしょう。

5.4.3　設定された項目をみてみる
　initで生成された設定がどのようなものか、1つずつ見てみましょう。

env

　envではbrowserとES6が許可されています。そのため、ブラウザや
ES6で登場するメソッドをソースコード内で未定義のまま使っても、エラー
は出ません。

リスト5.15: env

"env": {

 "browser": true,

 "es6": true

}

extends
　ESLint標準の推奨設定とReactプラグインの推奨設定と、TSプラグ
インの推奨設定がされています。

リスト5.16: extends

"extends": [

 "eslint:recommended",

 "plugin:react/recommended",

 "plugin:@typescript-eslint/eslint-recommended"

],

　この項目は、1問目のHow would you like to use ESLint?の回答
に影響しています。
　このとき提示された選択肢は、次の通りです。
　・To check syntax only
　・To check syntax and find problems
　・To check syntax, find problems, and enforce code style
　 こ の う ち To check syntax and find problems を 選 び 、 そ の 結
果"eslint:recommended"が設定ファイルに記述されました。
　ちなみにTo check syntax onlyの場合、"eslint:recommended"は
入りません。またTo check syntax, find problems, and enforce

code styleを選んだ場合はstyle guide14の選択肢が出てきます。

globals
　SharedArrayBufferとそれを扱えるAtomic APIがreadableです。15

リスト5.17: globals
 "globals": {

 "Atomics": "readonly",

 "SharedArrayBuffer": "readonly"

},

parser
　 parser は @typescript-eslint/parser が 指 定 さ れ て い ま す 。
TypeScriptを静的解析するためには、このparserが必要です。

リスト5.18: parser

"parser": "@typescript-eslint/parser",

parserOptions
　ここではES2018の文法とjsxが指定されており、ES Moduleであるこ
とをparserに伝えています。ecmaVersionの指定は新しい構文を使う
上では必要なので、設定忘れに注意しましょう。16

リスト5.19: parserOptions

"parserOptions": {

 "ecmaFeatures": {

 "jsx": true

 },

 "ecmaVersion": 2018,

 "sourceType": "module"

},

plugins
　eslint-plugin-reactと@typescript-eslint/eslint-pluginが指定さ
れています。この2つのプラグインを入れることで、TypeScriptとReactに
関するルールを追加できます。

リスト5.20: plugins

"plugins": [

 "react",

 "@typescript-eslint"

],

rules
　ここでは何もruleが指定されていません。init時では、個別にルールの
オン／オフは指定されません。extendsで設定されたルールはここで上書
きできるため、適宜利用しましょう。

リスト5.21: rules

"rules": {}

5.5　まとめ

　Linterは、ソースコードの品質を担保するしくみです。ESLintでは、利
用したいルールとその可否を指定することで規約を作り、静的解析を行
います。規約をすべて手で書くことは大変ですが、Extendsという仕組み
である程度の設定を自動で行えます。またルールそれ自体はただの関
数で、自分で定義できるほか、第三者が作ったルールをplugin経由で
入れられます。設定ファイルの記述はたいへんですが、initコマンドでひな
型を生成できるので、有効活用しましょう。

1.
https://eslint.org/
2.
https://github.com/sadnessOjisan/eslint-plugin-detect-haiku
3.
こちらもBabel同様このファイル名に限りません。たとえば.eslintrc といったファイル名でも設定
ファイルを書けます。
4.
console.log や console.info などが該当します。ソースコードにこれらのコマンドが残っていれ
ばユーザーにデバッグログが見えたりもするので、入れておきたいルールです。
5.
https://eslint.org/docs/rules/
6.
https://eslint.org/docs/rules/semi
7.
https://github.com/mysticatea/eslint-plugin-node
8.
 https://github.com/mysticatea/eslint-plugin-
node/blob/master/lib/configs/recommended-module.js
9.
厳密には、environmentsなどの設定も行えます。 https://eslint.org/docs/developer-
guide/working-with-plugins
10.
pluginの提供者はextendsも提供していることが多いので、提供者が用意した設定を使う
ことがほとんどです。
11.
no-undefルールが設定されていれば警告が出るため、その警告を抑えることができます。
12.
たとえば、トラッキングに使うSDKを呼び出すときなどに使います。
13.
https://github.com/yannickcr/eslint-plugin-react
14.
コーディング規約。組織ごとに作られることも多い。有名なところだとAirbnbの規約がある。
https://github.com/airbnb/javascript
15.
この設定を付け加える理由は明記されていませんがコミッターの方に問い合わせたところ、歴
史的背景とのことでした。

16.
global変数の有効化はenvで行えますが、構文に対する有効化は、この設定が必要とな
ります。

第6章　Prettierを使ったフォーマット

　Prettier1は、code formatterです。ソースコードを読みやすく整形し
ます。導入すると、読みやすさを担保するというメリットがありますが、運
用を徹底することでチーム開発時に開発者どうしで不要な差分を出さ
ないというメリットもあります。

6.1　prettierの使い方

6.1.1　prettierのインストール
　Prettierをインストールします。

$ npm install prettier --dev

　インストール後、prettierコマンドを利用できます。

$ npx prettier test.js

　実行すると結果が標準出力に出力されますが、format結果はファ
イルに保存されてほしいです。また1ファイルだけではなく、プロジェクト全
体のコードをformatにかけたいです。そのために実行方法を工夫しま
す。

6.1.2　prettierの実行
　prettierの実行オプションで、ファイル保存や複数ファイルを対象とし
た実行ができます。それらのオプション付きのコマンドが少し長いので、
npm scriptsに保存しておきます。

リスト6.1: package.json

"scripts": {

 "format": "prettier --write './src/**/*.{js,ts,tsx}'"

}

　 こ れ で 、 "prettier --write './src/**/*.{js,ts,tsx}'" を npm run
formatとして実行できます。--writeは、フォーマットしたファイルを上書
きするためのオプションです。'./src/**/*.{js,ts,tsx}'はフォーマット対象で
す。glob形式はpathをsingle quote('')で囲まないと使えないので、
注意しましょう。

6.1.3　prettierの設定
　Prettierでどのようなformatをするかも、設定ファイルに書くことがで
きます。たとえばindentの幅を指定できたり、折り返す上限文字数を
指定できます。これもBabelのように、.prettierrcやprettier.config.jsと
いったファイルに書くことができます。拡張子や記法については、公式サ
イトでご確認ください。2ここではJSの記法で作成します。

リスト6.2: prettier.config.js

module.exports = {

 trailingComma: "es5",

 tabWidth: 4,

 semi: false,

 singleQuote: true

};

　このようにして設定できますが、筆者は設定項目にはあまり関心が
なく、チームでフォーマットが決まっていれば何でもよいという立場です。
なので、どういう設定がよいかといった議論には、ここでは立ち入りませ
ん。3最適な設定は、プロジェクト内容やチームによって違ってくるはずで

す。どういう項目を設定できるかは、こちらを確認した上でご自身で決
められると良いでしょう。4

6.2　ESLintとの協調

　ところで、linterとformatterは衝突しないのでしょうか。たとえば、
ESLintには--fixというオプションがあり、これを実行することでソースコー
ドを書き換えられます。この書き換えとPrettierでの書き換えは、衝突
するときがあります。これに対して、公式は「eslintでのformatをやめ
る」「eslintからprettierを実行する」ように推奨しています。5その方法
を実現するためには、次の2つのライブラリを利用します。

6.2.1　eslint-config-prettier
　eslint-config-prettier6はPrettierとESLintの衝突を避けるため
に、eslintでの styleに関するルールを全部offにします。

$ npm install -D eslint-config-prettier

リスト6.3: .eslintrc.js

{

 "extends": [

 "airbnb-base", // 例なのでなんでもいい

 "prettier",

]
}

　これにより、ESLint側でスタイルに関して指摘されなくなります。

6.2.2　eslint-plugin-prettier
　eslint-plugin-prettier7はeslintからprettierの実行を可能にする
プラグインです。このプラグインがなければ、npx eslint src/main.js --
fixしてから、npm formatしなければいけません。コマンドを2つ実行す
ることは億劫なので、eslint実行時にformatもできるようにします。

$ npm install -D eslint-plugin-prettier

　eslint-plugin-prettier 自体は次のように使います。

リスト6.4: .eslintrc.js

{

 "plugins": ["prettier"],

 "rules": {

 "prettier/prettier": "error"

 }
}

　 こ の rules は eslint-plugin-prettier に 定 義 さ れ て い る も の で 、
prettierの実行結果をESLintのエラーとして扱えるようにしています。つ
まり、formatが間違っていれば、ESLintのエラーとして扱えます。
　上記がeslint-plugin-prettierの設定ですが、実際には上記の設
定はしません。eslint-plugin-prettierはextendsも提供しており、そ
れを利用すると上記の設定が足されるため、extendsに任せます。つま
りextendsを利用することで、上記のpluginとrulesの設定が不要に
なります。

リスト6.5: eslint-plugin-prettierにおけるlinterの設定

{

 ...,

 extends: [

 "airbnb-base'", // 例なので何でもいい

 "plugin:prettier/recommended" // <= 追加

],

}

　ここでprettierのextends設定は、extendsの最後で読み込むよう
に注意してください。ESLintのルールは後勝ちするため、もし後ろのルー
ルがstyle設定をonにしていれば、上書きされてしまうからです。この
plugin:prettier/recommended extendsは次の3つを行っています。
　・eslint-plugin-prettierを利用可能にする
　・prettierでのルールに反した場合、ESLintのエラーとして扱う
　・eslint-config-prettierのextendsを読み込む
　つまり、ESLintとPrettierを共存させる設定を、すべてこのextendsが
行 っ て い ま す 。 8 た だ し 、 eslint-config-prettier を eslint-plugin-
prettierが読み込んでいても、その実体は自分でダウンロードする必要
があるので注意しましょう。あくまでも、eslint-plugin-prettierは設定
ファイルをextendsできるだけです。
　そのため、ESLintとPrettierを共存させる設定は次の通りです。

リスト6.6: ESLintとPrettierの共存
{

 ...,

 extends: [

 "airbnb-base'", // 例なので何でもいい

 "plugin:prettier/recommended" // <= 追加

],

}

6.3　TypeScriptとの協調

6.3.1　prettier/@typeScript-eslint
　 Prettier と ESLint の 競 合 を 消 す と き に 導 入 し た eslint-config-
prettierには、prettier/@typeScript-eslintというextendsが含まれ
ています。これは、ESLintのTypeScript対応で導入したプラグイン
@typescript-eslint/eslint-pluginとのルールの競合を抑えるための
設定です。
　抑えるルールは次の通りです。9

リスト6.7: 抑えられるルール

module.exports = {

 rules: {

 "@typescript-eslint/quotes": 0,

 "@typescript-eslint/brace-style": "off",

 "@typescript-eslint/comma-spacing": "off",

 "@typescript-eslint/func-call-spacing": "off",

 "@typescript-eslint/indent": "off",

 "@typescript-eslint/member-delimiter-style": "off",

 "@typescript-eslint/no-extra-parens": "off",

 "@typescript-eslint/no-extra-semi": "off",

 "@typescript-eslint/semi": "off",

 "@typescript-eslint/space-before-function-paren":
"off",

 "@typescript-eslint/type-annotation-spacing": "off"

 }
};

　TypeScriptを併用する場合は、このextendsも利用しましょう。

リスト6.8: TypeScriptとESLintとPrettierの共存

{

 ...,

 extends: [

 "plugin:prettier/recommended",
 "prettier/@typeScript-eslint"

],

}

6.4　まとめ

　Prettierは、ソースコードのフォーマットを整えてくれるツールです。一方
でESLintは、ソースコードの誤りや品質を指摘してくれるツールです。この
2つは同時に登場する機会が多いので、混乱しないように注意しましょ
う。
　PrettierとESLintはときに競合します。それはESLintがスタイルを指
摘するためです。そのため、eslint-config-prettierでESLintにおけるス
タイルのルールをOFFにしましょう。また、PrettierをESLintから実行でき
るように、eslint-plugin-prettierも活用できます。似たようなライブラリ
名ですが、混乱しないように役割を意識しましょう。

1.
https://prettier.io/
2.
https://prettier.io/docs/en/configuration.html
3.
どんなルールであれ、チームで同じルールを使えば差分はでないため。
4.
https://prettier.io/docs/en/options.html
5.
https://prettier.io/docs/en/integrating-with-linters.html
6.
https://github.com/prettier/eslint-config-prettier
7.
https://github.com/prettier/eslint-plugin-prettier
8.
 https://github.com/prettier/eslint-plugin-prettier/blob/master/eslint-plugin-
prettier.js
9.
 https://github.com/prettier/eslint-config-prettier/blob/master/%40typescript-
eslint.js

第7章　Storybookを使ったコンポーネント管理

　Storybookは、UIコンポーネントを管理できるプレイグラウンド環境で
す。1公式はBuild bulletproof UI components fasterと宣伝してお
り、今ではただのプレイグラウンド以上に、様々な機能があります。たとえ
ばテストに利用したり、ドキュメントの出力にも使えます。また、サーバが
完成していない状況でもダミーデータを入れてUIを確認したり、stateを
切り替えるaddonを使うことで、様々な分岐を網羅しながら開発を進
められます。そのため、ただのプレイグラウンドに止まらず、開発を支援す
る様々なツールが入ったライブラリと見なせます。

図7.1: Storybook

　ただし、設定には慣れが必要で、独自の設定方法も覚える必要が
あります。プレイグラウンド環境の構築は、初見だと容易ではありませ
ん。そのため、Storybookを入れるのであれば、開発初期で入れるよう
にしたいです。

7.1　Storybookを設定する

　Storybookのプレイグラウンド環境は、ライブラリをインストールして設
定ファイルを書くことで作れます。便利なことに、その環境を生成してくれ
るCLIツールがあるため、本書ではそのツールを使います。

$ npx -p @storybook/cli sb init

　このコマンドを利用すると、利用フレームワークやライブラリに応じて、
Storybookの環境ができます。2上記のコマンドにより、storybookコマ
ンドがnpm scriptsに登録されました。

リスト7.1: package.json
{

 ...,

 "scripts": {

 "storybook": "start-storybook -p 6006",

 "build-storybook": "build-storybook"

 }
}

　このStorybook環境を立ち上げるコマンドを実行します。

$ npm run storybook
Storybook 5.3.19 started
5.12 s for manager and 4.85 s for preview

Local: http://localhost:6006/
On your network: http://192.168.0.2:6006/

　Storybookの環境が立ち上がりました。

図7.2: CLI環境が生成したStorybook環境

　このように、CLIツールを使うことで簡単にStorybook環境を立ち上げ
られました。次に、その環境を拡張するために設定の手順を確認してい
きます。

7.1.1　story fileを作る
　Storybook環境は、story fileと呼ばれるファイルによって構築されま
す。story fileはたとえばこのようなものです。

リスト7.2: app.stories.jsx

import React from 'react';

import { action } from '@storybook/addon-actions';

import Button from './Button';

export default {

 component: Button,

 title: 'Button',

};

export const text = () => <Button onClick=
{action('clicked')}>Hello Button</Button>;

export const TextButton = () => (

 <Button onClick={action('clicked')}>

 TEXT

 </Button>

);

　story fileではコンポーネントをimportし、そのコンポーネントに説明を
付け加えています。Storybookはこのファイルを読み取り、そこに書かれ
た情報を元に、プレイグラウンド環境を構築します。

Component Story Format (CSF)
　では、story fileの作り方を詳しく見ていきましょう。story fileは、
Component Story Format (CSF)3と呼ばれる形式に沿って書くことが
推奨されています。Component Story Formatは、コンポーネントとそ
のメタデータオブジェクトがES Moduleとして定義されたフォーマットです。

リスト7.3: Component Story Format (CSF)

export default {

 title: 'Path/To/MyComponent',

 component: MyComponent,

 decorators: [...],

 parameters: { ... }

}

　CSFではexport defaultしたオブジェクトは、story fileのメタデータを
表します。この中に、story名やaddonと呼ばれる拡張の設定を書きま
す。
　一方でnamed exportsしている関数は、Storybookで動かす対象
となるコンポーネントです。named exportsされていると、Storybookの
管理対象になります。また、named exportsしたオブジェクト（ここでは
Function Component）のプロパティを通して、コンポーネント単位でメ
タ情報を追加していくこともできます。たとえば、nameの指定をすると、
左サイドバーに表示される名前を変えられます。

リスト7.4: Storyを拡張する
export const TextButton = () => (

 <Button>

 TEXT

 </Button>

);

TextButton.story = {

 name: 'with TEXT',

};

decorator
　decoratorは、componentやstory fileをwrap (修飾)します。

リスト7.5: decoratorの例
export default {

 title: 'Button',

 decorators: [storyFn => <Center>{storyFn()}</Center>],

};

　スタイリングだけでなく、addon(のちに紹介する拡張機能) の設定に
も使います。たとえば、@storybook/addon-knobsなどはこの設定が
必要です。

リスト7.6: @storybook/addon-knobsの設定
import React from "react";

import { withKnobs } from "@storybook/addon-knobs";

export default {

 title: "Storybook Knobs",

 decorators: [withKnobs]

};

　Componentに共通した何か（スタイリングや機能）を埋め込みた
いときに使う機能と考えると良いです。
Parameters
　Parametersは、storyオブジェクトに対するカスタムメタデータです。こ
れを利用する場面の1つには、addonに対する設定の埋め込みが挙げ
られます。
　 た と え ば 、 様 々 な デ バ イ ス で 確 認 で き る よ う に す る
@storybook/addon-viewportにおける、「どのようなデバイスを利用
するか」という設定は次のように埋め込まれます。

リスト7.7: parametersの指定

export default {

 title: "Button",

 component: Button,

 parameters: {

 viewport: {

 viewports: INITIAL_VIEWPORTS,

 },

 },

};

7.1.2　story fileをロードする
　Storybookのconfigファイルでは、story fileとしてロードするファイルを
指定できます。その設定は.storybook/main.jsに書きます。読み込み
対象としては、hoge.stories.tsxや、__stories/hoge.tsxといった形式
がよく使われます。

リスト7.8: .storybook/main.js
module.exports = {

 addons: [

 ...

],

 stories: ["../**/*.stories.tsx"],

 webpackFinal: async (config) => {

 ...

 },

};

7.1.3　ビルドの設定をする
　configファイルである.storybook/main.jsのwebpackFinalには、ビ
ルドの設定を書いていきます。たとえば、TypeScript対応の設定として
ts-loaderの読み込みを行います。

リスト7.9: .storybook/main.js

module.exports = {

 ...

 webpackFinal: async config => {

 config.module.rules.push({

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: require.resolve("ts-loader")

 },

]

 });

 config.resolve.extensions.push(".ts", ".tsx");

 return config;

 }
};

7.1.4　UIの設定をする
　もしコンポーネント本体が何らかのreset.cssなどのグローバルスタイル
が当たっている場合、 Storybook側のUIでも、それを反映させる必要
があります。そのために利用するのは、preview-body.html4です。たと
えばリセットしたいCSSを追加したい場合は、このようなstyleタグを追加
すると実現できます。

リスト7.10: .storybook/preview-body.html

<style>

 *,

 *:after,

 *:before {

 margin: 0;

 padding: 0;

 box-sizing: inherit;

 }

 html {

 font-size: 62.5%;

 }

 body {

 box-sizing: border-box;

 }
</style>

　StorybookそのもののUIに対して調整したい場合は、options API5
を利用できます。たとえば、ナビゲーションの表示の有無やパネルの位置
を指定できます。

7.2　Storybookをaddonで拡張する

　Storybookにはaddon6と呼ばれる、拡張を受け付ける仕組みがあ
ります。addonを使うとデバッグやドキュメンテーションなどが容易になり、
利便性が向上します。
　利用するaddonは、設定ファイルで登録できます。ここで登録した
addonの順序が、Storybook環境でのaddonタブ(画面の下に表示さ
れるタブ)での並び順です。7

リスト7.11: .storybook/main.js

module.exports = {

 addons: [

 '@storybook/addon-actions',

 '@storybook/addon-knobs'

],

 ...

};

　ここでは利用するaddonの登録だけをしており、addon自体の設定
は別途story fileごとに行います。また、ここに登録せずに利用する
addon も あ る の で 、 設 定 は 注 意 が 必 要 で す 。 た と え ば 、
@storybook/addon-infoはここに登録しません。
　Storybookではどのようなaddonが使えるかを見てみましょう。

7.2.1　@storybook/addon-info
　Storybook Info Addon8を使うと、コンポーネントのドキュメントや
propsを表示させられます。propsの説明はPropsTypeやTypeScript
から生成できます。

リスト7.12: app.stories.jsx

import React from "react";

import { withInfo } from "@storybook/addon-info";

import { App } from "./app";

export default {

 title: "App",

 decorators: [withInfo],

 parameters: {

 info: { inline: true },

 },

};

export const SampleCpmponent = () => <App message="hey">
</App>;

図7.3: Storybook

　parametersの設定は、どのようにドキュメントを表示させるかの設定
です。ソースコードの表示を行うか、デフォルト状態でドキュメントを表示さ
せるか、といった設定ができます。
　ここではstory fileのUIを拡張するためにdecoratorが使われており、
story fileごとにこの設定が必要になります。もしそれが手間だという場
合は、preview.jsを利用して一括で設定もできます。

リスト7.13: .storybook/preview.js

import { addDecorator } from "@storybook/react";

import { withInfo } from "@storybook/addon-info";

addDecorator(withInfo);

リスト7.14: app.stories.jsx

import React from "react";

import { App } from "./app";

export default {

 title: "App",

 parameters: {

 info: { inline: true },

 },

};

export const SampleCpmponent = () => <App message="hey">
</App>;

7.2.2　@storybook/addon-actions
　Storybook Addon Actions9を使うと、Storybook上で発火したイ
ベントをログに出力できます。これにより、たとえばbuttonやinputタグの
挙動をStorybook上で確認できます。

　利用するためには、まずaddonを利用することをmain.jsに登録しま
す。

リスト7.15: .storybook/main.js

module.exports = {

 addons: [

 ...

 "@storybook/addon-actions", // <= 追加

],

 ...

};

　そしてstory fileでは、action関数をイベントハンドラの中で実行しま
す。

リスト7.16: app.stories.jsx

import { action } from '@storybook/addon-actions';

import Button from './button';

export default {

 title: 'Button',

 component: Button,

};

export const defaultView = () => (
 <Button onClick={action('button-click')}>Hello World!
</Button>

);

図7.4: addon-actions

　このように、クリック時に発火したイベントをログとして確認できます。

7.2.3　@storybook/addon-knobs
　Storybook Addon Knobs10を使うと、Storybook上でpropsの値
を書き換えることができます。つまり、Componentのstateを切り替え
て、挙動を確認できます。
　decoratorを指定して、knob(text、boolean、numberなど)を呼ぶ
だけで使えます。

リスト7.17: .storybook/main.js

module.exports = {

 addons: [

 ...

 "@storybook/addon-knobs", // <= 追加

],

 ...

};

リスト7.18: Button.stories.tsx

import React from "react";

import { withKnobs, text, boolean, number } from
"@storybook/addon-actions";

export default {

 title: "Storybook Knobs",

 decorators: [withKnobs]

};

// Add the `withKnobs` decorator to add knobs support to
your stories.

// You can also configure `withKnobs` as a global
decorator.

// Knobs for React props

export const withAButton = () => (
 <button disabled={boolean("Disabled", false)}>

 {text("Label", "Hello Storybook")}

 </button>

);

// Knobs as dynamic variables.

export const asDynamicVariables = () => {

 const name = text("Name", "James");

 const age = number("Age", 35);

 const content = `I am ${name} and I'm ${age} years old.`;

 return <div>{content}</div>;

};

図7.5: knobs

7.2.4　@storybook/addon-viewport
　 Storybook Addon Viewport11 を 使 う と 、 Storybook 上 で
Viewportを切り替えられます。つまり、好きなデバイスサイズで表示を確
認できます。

リスト7.19: Storybook Addon Viewport

import * as React from "react";

import Button from "./Button";

import { INITIAL_VIEWPORTS } from "@storybook/addon-
viewport";

export default {

 title: "Button",

 component: Button,

 parameters: {

 viewport: {

 viewports: INITIAL_VIEWPORTS,

 },

 },

};

export const ButtonComponent = () => (

 <Button>

 HeyHeyHey

 </Button>

);

ButtonComponent.story = {

 name: "default",

};

　また、利用するためには、設定ファイルでの指定も必要です。

リスト7.20: .storybook/main.js

module.exports = {

 addons: [

 ...

 "@storybook/addon-viewport", // <= 追加

],

 ...

};

図7.6: addon-viewport

7.3　まとめ

　Storybookはコンポーネントカタログです。addonが充実しており、UI
サンドボックスとしても扱えます。たとえばコンポーネントに好きな値を注
入したり、デバイスサイズを変えたときの挙動を確認できます。また
documentationにもサポートしており、TypeScriptの型から、コンポーネ
ントのI/Fを記述することもできます。

1.
https://storybook.js.org/
2.
もし利用フレームワークの判別がうまくいかなければ、手動でセットできます。また、npxコマンド
を使うのであれば、手元にこのコマンドをinstallする必要はありません。
3.
https://storybook.js.org/docs/formats/component-story-format/
4.
https://storybook.js.org/docs/configurations/add-custom-body/
5.
https://storybook.js.org/docs/configurations/options-parameter
6.
https://storybook.js.org/docs/addons/introduction/
7.
https://storybook.js.org/docs/addons/using-addons/
8.
https://www.npmjs.com/package/@storybook/addon-info
9.
https://www.npmjs.com/package/@storybook/addon-actions
10.
https://github.com/storybookjs/storybook/tree/next/addons/knobs
11.
https://github.com/storybookjs/storybook/tree/next/addons/viewport

第8章　Jestを使ったテスト

　 Jest1 は 、 JavaScript Testing Framework で す 。 Testing
Frameworkの名の通り、テストランナー・モック・カバレッジなど、テストを
行うために必要な機能が一式でそろっています。Jestの登場以前は、
それぞれの役割ごとにライブラリを入れていました。それがJest単体でテ
スト環境を揃えられるようになり、テスト環境の構築がしやすくなりまし
た。2
　個人的な意見ですが、テストは絶対に書いた方が良いので、テスト
環境構築もそれはそれでやるべきだと思っています。Jestの設定は、
BabelやTypeScriptの設定に依存するところもあります。そのため、ソー
スコードが育ってからテスト環境を構築しようとすると、つまるポイントも
出てきます。そこで、ビルド環境を構築するときに一緒にやることを推奨
します。

8.1　Jestの使い方

　それでは、さっそくテスト環境を構築しましょう。Jestをインストールしま
す。

$ npm install -D jest

　これでjestコマンドが使えるようになりました。このときいきなりjestコマ
ンドを実行すると、次のようなエラーが出ます。

$ npx jest
No tests found, exiting with code 1

 3 files checked.
 testMatch: **/__tests__/**/*.[jt]s?(x), **/?(*.)+(spec|test).[tj]s?
(x) - 0 matches
 testPathIgnorePatterns: /node_modules/ - 3 matches
 testRegex: - 0 matches
Pattern: - 0 matches

　当然ですが、テストコードを作っていないので失敗します。デフォルトで
は**/__tests__/**/*.[jt]s?(x), **/?(*.)+(spec|test).[tj]s?(x) に該当す
るファイルがテストされます。つまり、__test__に入っているファイルか、
hoge.test.jsのようなファイルが要求されます。そこで、main.test.jsとい
うファイルを作ってテストしてみましょう。

8.1.1　テストコードを書く
　テスト対象としてmain.jsにこのような1を返す関数を定義します。

リスト8.1: main.js

export const returnOne = () => {

 return 1;

};

　この関数に対するテストを作成します。

リスト8.2: main.test.js

import { returnOne } from "./main";

it("should be 1", () => {

 expect(returnOne()).toBe(1);

});

　returnOneという関数を実行したら、1が返ることをテストしていま
す。このテストを実行すると、次の通りに失敗します。

$ npx jest
 FAIL src/main.test.js
 ● Test suite failed to run
 ({"Object.
<anonymous>":function(module,exports,require,__dirname,__
filename,global,jest){import { returnOne } from "./main";

 SyntaxError: Unexpected token {

Test Suites: 1 failed, 1 total

Time: 2.987s

　ここでのエラーの原因は、依存解決です。今のままでは依存解決の
仕組みが何もないので、importを解決できていません。そこで、
CommonJS形式で書き直してみましょう。Node.jsは、requireを使っ
て依存解決ができます。

リスト8.3: テスト対象

const returnOne = () => {

 return 1;

};

module.exports = returnOne;

リスト8.4: テストコード

const returnOne = require("./main.js");

it("should be 1", () => {

 expect(returnOne()).toBe(1);

});

　テストを実行してみましょう。

$ npx jest
 PASS src/main.test.js
 ✓ should be 1 (3ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total

Time: 1.876s
Ran all test suites.

　このように、テストに成功しました。

8.1.2　initで設定を生成する
　先ほどimportが解決できなかった問題は、Jestの設定を施すことで
解決できます。そこで、Jestの設定について見ていきましょう。設定ファイ
ルは、次のコマンドで生成できます。

$ npx jest --init

　ここでは次のことが聞かれます。
　・test コマンドでテストを実行できるようにしますか？
　・テストの実行環境は、Node.jsかブラウザどちらですか？
　・カバレッジレポートを作りますか？
　・テストの実行ごとにモックをクリアしますか？
　これに回答すれば、次のような設定ファイルが生成されます（※誌
面の都合で大幅に省略しています）。

リスト8.5: jest.config.js

module.exports = {

 clearMocks: true,

 coverageDirectory: "coverage",

 // preset: undefined,

};

　それでは、この設定ファイルを利用して、import文を使えるようにしま
しょう。

8.1.3　ES6への対応
　import文はES6からの構文なので、どんな環境でも使えるわけでは
ありません。そのためBabelを使って、テスト環境であるNode.jsの形式
（CommonJS形式）に変換します。3BabelとJestの連携のために
は、babel-jestを使います。
　しかし、最近のJestはbabel-jestが標準で組み込まれているため、
新しくダウンロードする必要はありません。そのため本当は設定ファイル
を書かずともテストを通すことができました。4では、なぜ先ほどは
importの解決がうまくいかなかったかというと、肝心のBabelが入ってい
なかったためです。そのため、この設定ファイルがなくても、Babelさえイ
ンストールしていれば先ほどのテストは成功していました。

8.1.4　TypeScriptへの対応
　TypeScriptをJestで用いる際も、設定が必要です。Babelを使った
ときでも問題になりましたが、TypeScriptでテストを書く際も、モジュール
の解決が問題になります。babel-jestは標準利用できるため、Babel
でTypeScriptの依存を解決していればエラーが起きません。tscを利用
している場合は、依存解決が問題となります。そこで、babel-jestのよ
うな役割を持つts-jestを利用します。
ts-jest
　ts-jestは、JestのTypeScript preprocessorです。

$ npm install -D ts-jest

　設定ファイルのpresetに指定すれば、Jest上でTypeScriptを利用で
きます。よく似た設定にtransformというものがありますが、それについて
はあとで見ていきます。

リスト8.6: ts-jestをセット

preset: "ts-jest"

jestの型定義ファイルを設定
　テストコードをTypeScriptで書くと、Jestの型定義ファイルを入れない
とエディタ上で警告が出ます（実行はできます）。そこで、型定義ファ
イルをダウンロードします。

$ npm install -D @types/jest

　これで、TypeScriptを利用したJestの環境構築ができました。試しに
実行してみます。テスト対象は、先ほど作ったファイルの拡張子を.tsに
変更してください。

リスト8.7: main.ts

export const returnOne = () => {

 return 1;

};

リスト8.8: main.test.ts

import { returnOne } from './main'

it("should be 1", () => {

 expect(returnOne()).toBe(1);

});

$ npx jest
PASS ./main.test.ts
 ✓ should be 1 (2 ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 0.526 s, estimated 2 s
Ran all test suites.

8.2　Reactのテスト

　次にコンポーネントのテストをする設定を行います。Reactのソースコー
ドをテストするために、testing-library/reactというライブラリを利用しま
す。

8.2.1　testing-library/react
　testing-library/reactは、ページ単位での結合テストを可能にする
ライブラリです。5「このボタンをクリックしたときに、この表示がこうなる」
「このページにアクセスすると、APIからこのような値が返ってきて、このよう
に表示される」といったテストケースを作ることができます。ユースケースそ
のものをテストケースにできるため、ケース数を抑えつつも、実態に沿った
ケースを網羅していけます。6
　そのようなテストを行うために、まずコンポーネントの取得やイベントを
発火させるユーティリティである@testing-library/reactをインストールし
ます。7

リスト8.9: react testing libraryのinstall

npm install -D @testing-library/react

8.2.2　jest-dom
　さらに、そのテストの結果比較のために使うcustom matcherを含ん
だjest-domを導入します。

リスト8.10: jest-domのinstall

npm install -D @testing-library/jest-dom

　このライブラリによって、toHaveTextContentやtoContainHTMLと
いった要素に対する、matcherが利用可能になります。

8.2.3　mountのテスト
　このようなコードをテストしましょう。マウント時に表示が変わるコードで
す。

リスト8.11: マウント時に表示が変わるcode

import * as React from "react";

interface State {

 text: string;

}

class App extends React.Component<{}, State> {

 state = {

 text: "initial text"

 };

 componentDidMount() {

 this.setState({ text: "mounted text" });

 }

 render() {

 return (

 <div>

 <p data-testid="text">{this.state.text}</p>

 </div>

);

 }
}

export default App;

　これがマウント時に"mounted text"と表示されるかをテストします。
まず、テスト対象を取得できるQueryを作成します。

リスト8.12: セレクタを取得
import { render } from "@testing-library/react";

const { getByTestId } = render(<App></App>);

　ここで得られるgetByTestIdQueryに、該当するDOMのidを渡すと
その要素を取得できます。

リスト8.13: 要素を取得
getByTestId("text")

　この戻り値を、カスタムマッチャでテストします。

リスト8.14: テキストをテスト

expect(getByTestId("text")).toHaveTextContent("mounted
text");

　このテストコードを実行します。

リスト8.15: テストに成功

$ npx jest

 PASS src/main.test.tsx

 ✓ mounted text (29ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 3.47s

Ran all test suites.

 Done in 4.89s.

　このように、react-testing-libraryとjest-domを用いて、コンポーネ
ントのふるまいをテストできました。

8.2.4　eventをテスト
　DOMの操作についてもテストしてみましょう。このようなコードがあると
します。

リスト8.16: ボタンで状態を切り替えるコード

import * as React from "react";

interface State {

 text: string;

 isClicked: boolean;

}

class App extends React.Component<{}, State> {

 state = {

 text: "initial text",

 isClicked: false

 };

 componentDidMount() {

 this.setState({ text: "mounted text" });

 }

 handleClick = () => {

 this.setState({ ...this.state, isClicked:
!this.state.isClicked });

 };

 render() {

 return (

 <div>

 <p data-testid="text">{this.state.text}</p>

 <button onClick={this.handleClick} data-
testid="btn">

 CLICK

 </button>

 <p>

 status:

 {this.state.isClicked ? "on" : "off"}

 </p>

 </div>

);

 }
}

export default App;

　この画面は、ボタンのクリックに応じて要素の表記を切り替えられま
す。このコードを用いて、クリックしたときに表記が切り替わるのかをテス
トします。
　まず、テスト対象を取得できるQueryを作成します。

リスト8.17: セレクタを取得

import { render } from "@testing-library/react";

const { getByTestId } = render(<App></App>);

　そして、クリックイベントを発生させます。これは、fireEventという
@testing-library/reactの組込み関数を利用し、その要素でクリック

イベントを発火させます。

リスト8.18: イベントを発行

import { fireEvent } from "@testing-library/react";

fireEvent(

 getByTestId("btn"),

 new MouseEvent("click", {

 bubbles: true,

 cancelable: true

 })

);

　この結果は、マウントのときのテストと同じようにテストできます。ここで
はクリックした結果、表記がoffからonになっていることをテストします。

リスト8.19: テスト

expect(getByTestId("clicked-
status")).toHaveTextContent("on");

　テストコードを実行すると、このようになります。

リスト8.20: テストに成功

$ npx jest

 PASS src/main.test.tsx

 ✓ mounted text (34ms)

 ✓ click once (18ms)

 ✓ click twice (7ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 3.679s

Ran all test suites.

 Done in 5.17s.

　成功しました。全体としては、このようなコードになります。

リスト8.21: テストコード
import React from "react";

import { render, fireEvent } from "@testing-
library/react";

import "@testing-library/jest-dom/extend-expect";

import App from "./App";

it("mounted text", () => {

 const { getByTestId } = render(<App></App>);

 expect(getByTestId("text")).toHaveTextContent("mounted
text");

});

it("click once", () => {

 const { getByTestId } = render(<App></App>);

 fireEvent(

 getByTestId("btn"),

 new MouseEvent("click", {

 bubbles: true,

 cancelable: true

 })

);

 expect(getByTestId("clicked-
status")).toHaveTextContent("on");
});

it("click twice", () => {

 const { getByTestId } = render(<App></App>);

 fireEvent(

 getByTestId("btn"),

 new MouseEvent("click", {

 bubbles: true,

 cancelable: true

 })

);

 fireEvent(

 getByTestId("btn"),

 new MouseEvent("click", {

 bubbles: true,

 cancelable: true

 })

);

 expect(getByTestId("clicked-
status")).toHaveTextContent("off");

});

　@testing-library/reactを利用すると、「ユーザーがこのような操作
をしたときに画面はこうなる」といったことをテストできるため、シナリオベー
スでのテストがしやすいです。UIのテストは難しいとされますが、シナリオ
ベースでのテストは比較的書きやすいです。

8.3　Jestで設定する項目

　Jestの設定項目は多岐に渡ります。そのすべてを説明することは難
しく、その必要もありません。そこで、重要な概念とテストが実行できな
いときの原因になりやすい項目について挙げます。

8.3.1　transform
　transformerとの対応を宣言できます。transformerとは、ソースコー
ドを変換する同期的な関数です。平たくいうと、トランスパイラとそれに
対応するファイルパスを指定できます。
　たとえば、次のように指定できます。

リスト8.22: jest.config.js

...,

"transform": {

 "^.+\\.[t|j]sx?$": "babel-jest"

},

...

　ここで、babel-jestはbabelを使った変換を行うtransformerです。
上記の設定では、.js、.jsx、.ts、.tsxに対して、babel-jestによる変換を
行っています。

8.3.2　preset
　prestはjest configのベースです。ts-jestでは、presetの内部で
transformerが設定されるため、TypeScriptへの変換を行いたいとき

によく使うオプションです。presetを使うとtransformだけでなく、
testMatchとmoduleFileExtensionsも設定されます。8
　そのため、transformの設定で行っていた設定は、こちらのpresetに
書くことでも実現可能です。

8.3.3　testMatch
　テスト対象を指定できます。デフォルトでは**/__tests__/**/*.[jt]s?
(x)、**/?(*.)+(spec|test).[tj]s?(x) が指定されています。

8.3.4　moduleNameMapper
　画像やスタイルといった静的アセットのstubへの対応です。test対象
に画像などが含まれていたとき、テストはそのバイナリをjsとして解釈しよ
うとするため失敗します。それを防ぐために、そのファイルをモックとして置
き換えることができます。そのため、この設定ではファイルパスとモックへ
のパスを書いておきます。

リスト8.23: jest.config.js

moduleNameMapper: {

 "\\.
(jpg|jpeg|png|gif|eot|otf|webp|svg|ttf|woff|woff2|mp4|webm
|wav|mp3|m4a|aac|oga)$":

 "<rootDir>/__mocks__/fileMock.js",

 "\\.(css|less)$": "<rootDir>/__mocks__/styleMock.js",

},

リスト8.24: __mocks__/styleMock.js

module.exports = {};

8.4　まとめ

　Jestはテストランナーです。テストの実行環境だけでなく、テストの構
造 や Macher 、 Mock 機 能 ま で も 提 供 し て く れ ま す 。 あ く ま で も
JavaScriptのテスト環境であるため、TypeScriptプロジェクトの場合は
pre processorとの連携が必要です。testing-libraryシリーズやjest-
domを利用することで、UIに関するテストも行えます。テストの導入は
後回しにするほどつらくなりがちですので、環境構築のタイミングで一緒
に入れてしまうことをお勧めします。

1.
https://jestjs.io
2.
Jestの登場以前、僕の友人はJSのテスト環境を「モカ・チャイ・ジャスミンって、コーヒーチェーン
店 の オ プ シ ョ ン か よ ！ 」 と 叫 ん で い ま し た 。 Mocha: https://mochajs.org/ 、 Chai:
https://www.chaijs.com/ 、Jasmine: https://jasmine.github.io/
3.
BabelはNode.js形式に変換するので、ブラウザで実行ができない。そのため、webpackとい
ったライブラリがビルド設定に必要だったわけです。
4.
https://github.com/facebook/jest/tree/master/packages/babel-jest
5.
https://github.com/testing-library/react-testing-library
6.
一方で、コンポーネント単位でテストを書けるenzymeというライブラリも有名です。
https://github.com/enzymejs/enzyme
7.
DOM Testing Libraryのラッパです。
8.
 https://github.com/kulshekhar/ts-
jest/blob/61d31b48dc633bb415eb2d0d39f97dab771327c4/src/config/create-jest-
preset.ts

第9章　0から環境を作ってみる

　本章ではこれまで学んだことを元に、通しで0から環境構築をしてみま
す。TypeScriptとReactを使ったアプリケーションのビルドを行います。サ
ンプルリポジトリはこちらです。1

9.1　Node.jsの設定

　Node.jsをnvmからinstallします。執筆時点ではv14が使えました
が、出たばかりということもあり、v12を使っています。

$ nvm install v12

$ node -v
v12.16.3

　Node.jsにはnpmコマンドが付属しています。最初に、npmコマンドで
プロジェクトを作ります。

$ npm init

{
 "name": "practice",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

　これを実行すると、package.jsonファイルが作成されます。このファイ
ルでプロジェクトを管理します。

9.2　TypeScriptの設定

　次に、TypeScriptを導入します。開発ツールなので、インストール時に
は-Dオプションを付けます。

$ npm install -D typescript

　これでnpx tsc (TypeScript Compilierコマンド)が使えるようになり、
ビルドができるようになりました。global installしていないため、npxをつ
ける必要があります。次に、TypeScriptの設定を作ります。

$ npx tsc --init

　これで、設定ファイルが生成されました。これからReactを利用するの
で、jsxオプションをreactに変更しておきます。

リスト9.1: tsconfig.json

{

 "compilerOptions": {

 "target": "es5",

 "module": "commonjs",

 "jsx": "react",

 "strict": true,

 "esModuleInterop": true,

 "skipLibCheck": true,

 "forceConsistentCasingInFileNames": true

 }
}

9.3　webpackの設定

　それでは、Reactプロジェクトをビルドできるように、webpackの設定を
進めていきます。webpack本体とそれを実行するためのCLIツールを入
れます。

$ npm install -D wepback webpack-cli

　これで、npx webpackコマンドを使ってビルドできるようになりました。
次に、webpack経由でTypeScriptをビルドできるように、プリプロセッサ
ーであるts-loaderを入れます。

$ npm install -D ts-loader

　では、それらを使うように設定ファイルを書いていきましょう。設定ファイ
ルの名前は、webpack.config.jsです。

リスト9.2: webpack.config.js

const path = require("path");

module.exports = {

 mode: process.env.NODE_ENV,

 entry: "./src/index.tsx",

 output: {

 path: path.resolve(__dirname, "./dist"),

 filename: "build.js",

 },

 module: {

 rules: [

 {

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: "ts-loader",

 },

],

 },

],

 },

};

　Reactプロジェクトをビルドできるようになったため、次にReactの設定
をしましょう。

$ npm install react react-dom

　TypeScriptを利用するため、型定義ファイルも入れます。型定義ファ
イルは実行時には不要なので、-Dオプションを付けます。

$ npm install -D @types/react @types/react-dom

　ビルドのエントリポイントとして指定したsrc/index.tsxにコードを書きま
しょう。

リスト9.3: src/index.tsx

import * as React from "react";

import * as ReactDOM from "react-dom";

ReactDOM.render(<div>hello world</div>,
document.getElementById("root"));

　ビルドします。

$ npx webpack
 Asset Size Chunks Chunk Names
build.js 128 KiB 0 [emitted] main
Entrypoint main = build.js
[2] ./src/index.tsx 1.08 KiB {0} [built]

　無事、ビルドしたものがdistディレクトリに吐き出されました。では、こ
れ を HTML で 確 認 で き る よ う に し ま し ょ う 。 そ の た め に は 、 html-
webpack-pluginを使います。

$ npm install -D html-webpack-plugin

　html-webpack-pluginは、webpackでバンドルしたファイルを読み
込むHTMLファイルを作るライブラリです。元になるHTMLファイルを指定
するだけで、ビルド生成先のフォルダにHTMLファイルも作ってくれます。
　次に、このようなテンプレートとなるHTMLファイルを用意します。

リスト9.4: src/index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>js-build-book-support</title>

 </head>

 <body>

 <div id="root"></div>

 </body>

</html>

　ReactアプリケーションはReactDOMの設定でid=rootを持つ要素に
mountするように設定しているため、その要素を作りました。このファイル
を使ったwebpack.config.jsは次の通りです。

リスト9.5: webpack.config.js

const path = require("path");

const HtmlWebpackPlugin = require("html-webpack-plugin");

module.exports = {

 mode: process.env.NODE_ENV,

 entry: "./src/index.tsx",

 output: {

 path: path.resolve(__dirname, "./dist"),

 filename: "build.js",

 },

 module: {

 rules: [

 {

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: "ts-loader",

 },

],

 },

],

 },

 plugins: [new HtmlWebpackPlugin({ template:

"./src/index.html" })],

};

　これをビルドします。

$ npx webpack
 Asset Size Chunks Chunk Names
 build.js 128 KiB 0 [emitted] main
index.html 166 bytes [emitted]
Entrypoint main = build.js
[2] ./src/index.tsx 1.08 KiB {0} [built]
 + 7 hidden modules

　無事に成功しました。ファイルの成果物を確認してみましょう。

$ open dist/index.html

　ちゃんと表示されました。

図9.1: ビルドされた例

　ビルドの確認のたびに毎回HTMLを開くのも億劫なので、開発サーバ
を立てましょう。weppack-dev-serverはlive reloading機能を備えた
開発用サーバです。コードの変更を即座に反映してくれる利点がありま
す。

$ npm install -D webpack-dev-server

　起動しましょう。

$ npx webpack-dev-server

　これで表示されるようになりました。src/index.tsxに変更を加えたら、
即時に反映されることも確認できます。
　次に、静的ファイルもReactで扱えるような設定をします。プロジェクト
によっては、reset.cssのようなグローバルなCSSを読み込みます。そこで
外部CSSを読み込めるようにしましょう。
　そのためには、css-loaderとstyle-loaderを使います。css-loaderは
JSにCSSファイルそのものを文字列として読み込む機能を提供し、
style-loaderはそれをstyleタグとして挿入してくれる機能を提供しま
す。

$ npm install -D css-loader style-loader

リスト9.6: webpack.config.js
const path = require("path");

const HtmlWebpackPlugin = require("html-webpack-plugin");

module.exports = {

 mode: process.env.NODE_ENV,

 entry: "./src/index.tsx",

 output: {

 path: path.resolve(__dirname, "./dist"),

 filename: "build.js",

 },

 module: {

 rules: [

 {

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: "ts-loader",

 },

],

 },

 {

 test: /\.(css)$/,

 use: ["style-loader", "css-loader"],

 },

],

 },

 plugins: [new HtmlWebpackPlugin({ template:
"./src/index.html" })],

};

　では、このようなreset.cssを読み込んでみましょう。

リスト9.7: src/reset.css

*,

*:after,

*:before {

 margin: 0;

 padding: 0;

 box-sizing: inherit;

}

html {

 font-size: 62.5%;

}

body {

 box-sizing: border-box;

}

リスト9.8: src/index.tsx

import * as React from "react";

import * as ReactDOM from "react-dom";

import "./reset.css";

ReactDOM.render(<div>hello world</div>,
document.getElementById("root"));

　ついでに、画像ファイルも読み込めるようにしましょう。静的assetを読
み込めるfile-loaderを使います。

$ npm install -D file-loader

　loaderにはfile-loaderを指定します。

リスト9.9: webpack.config.js

const path = require("path");

const HtmlWebpackPlugin = require("html-webpack-plugin");

module.exports = {

 mode: process.env.NODE_ENV,

 entry: "./src/index.tsx",

 output: {

 path: path.resolve(__dirname, "./dist"),

 filename: "build.js",

 },

 module: {

 rules: [

 {

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: "ts-loader",

 },

],

 },

 {

 test: /\.(css)$/,

 use: ["style-loader", "css-loader"],

 },

 {

 test: /\.(png)$/,

 use: ["file-loader"],

 },

],

 },

 plugins: [new HtmlWebpackPlugin({ template:
"./src/index.html" })],

};

　JSX内で画像を読み込みます。imgタグでは、ファイルパスではなく
importしたデータを読み込みます。また、このときTypeScriptが警告を
出しますが、説明の都合上いったん目をつむります。

リスト9.10: src/index.tsx

import * as React from "react";

import * as ReactDOM from "react-dom";

import Img from "./example.png";

import "./reset.css";

ReactDOM.render(

 <div>

 hello world.

 </div>,

 document.getElementById("root")

);

　ビルドすると画像が表示されます。

図9.2: ビルドされた例

　 先 ほ ど 出 た で あ ろ う 警 告 は 、 Cannot find module
'./example.png'. といったものですが、この解決のために次のようなアン
ビエント宣言したファイルを追加してください。型定義ファイルを自作しま
す。

リスト9.11: import-file.d.ts

declare module "*.png";

　これはAmbient Modulesの短縮記法であり、.png がついたファイル
からany型でimportできます。このファイルはどの階層においても問題あ
りません。
　これでTypeScript+webpackの設定が終わりました。次は、開発支
援ツールの設定をしていきましょう。

9.4　Prettierの設定

　コードフォーマッターであるPrettierをインストールします。

$ npm install -D prettier

　.prettierrc.jsといったファイルに整形ルールを書くことができますが、い
まはデフォルトルールのまま使う予定なので、ファイルは作りません。
　フォーマットは次のコマンドで行います。

$ npx prettier --write 'src/**/*.{js,ts,jsx,tsx}'

　--writeは、フォーマットした結果をファイルに書き込むオプションです。
設定しなければ、整形結果が標準出力に流れるだけです。設定しない
場合でもフォーマットの不備に気付けるので、CI上でのテスト目的に使え
ます。
　'src/**/*.{js,ts,jsx,tsx}'は、フォーマット対象をglob形式で表していま
す。glob形式を使う場合は、''(シングルクオート)が必要なので注意しま
しょう。

9.5　ESLintの設定

　次は、linterの設定をします。

$ npm install -D eslint

　ESLintは、--initオプションで設定ファイルを作成できます。作成した
いファイルについて質問をされるので、それに答えていきましょう。

$ npx eslint --init
? How would you like to use ESLint? To check syntax and find
problems
? What type of modules does your project use? JavaScript mo
dules (import/export)
? Which framework does your project use? React
? Does your project use TypeScript? Yes
? Where does your code run? Browser
? What format do you want your config file to be in? JavaScrip
t
The config that you've selected requires the following depend
encies:

eslint-plugin-react@latest @typescript-eslint/eslint-
plugin@latest @typescript-eslint/parser@latest
? Would you like to install them now with npm? Yes

　準備ができたので実行します。あらかじめlintに引っかかるコードを追
加して、動作を確かめてみましょう。

リスト9.12: src/index.tsx

while (true) {

 break;

}

　 こ の コ ー ド は 、 eslint に エ ラ ー と し て 識 別 さ れ ま す 。 ESLint の
recommendedルールでは、whileの条件に定数は使えないためです。

$ npx eslint 'src/**/*.{ts,tsx}'
 1:8 error Unexpected constant condition no-constant-
condition

 1 problem (1 error, 0 warnings)

　これにより、きちんとルールが動作することを確認できました。エラーが
出ることを確かめるために、追加したコードは消しておきましょう。

9.6　ESLintとPrettierを共存させる設定

　これでESLintとPrettierの設定が終わりました。しかし、ルールの設定
次第によっては、お互いの設定が衝突してしまいます。そのため、フォーマ
ットはPrettierが行い、それをESLintから実行するという仕組みを作りま
す。
　そのために、eslint-config-prettierとeslint-plugin-prettierを使い
ます。eslint-config-prettierはeslintでのstyleに関するルールを全部
offにします。eslint-plugin-prettierは、eslintからprettierを実行しま
す。

$ npm install -D eslint-config-prettier eslint-plugin-prettier

　そして、それらの設定を.eslintrc.jsへ加えます。

リスト9.13: .eslintrc.js
module.exports = {

 env: {

 browser: true,

 es6: true,

 },

 extends: [

 "eslint:recommended",

 "plugin:react/recommended",

 "plugin:@typescript-eslint/eslint-recommended",

 "plugin:@typescript-eslint/recommended",

 "plugin:prettier/recommended", // <- 追加

 "prettier/@typescript-eslint", // <- 追加

],

 globals: {

 Atomics: "readonly",

 SharedArrayBuffer: "readonly",
 },

 parser: "@typescript-eslint/parser",

 parserOptions: {

 ecmaFeatures: {

 jsx: true,

 },

 ecmaVersion: 11,

 sourceType: "module",

 },

 plugins: ["react", "@typescript-eslint"],

 rules: {},

};

　ここではpluginsにeslint-plugin-prettierが設定されていませんが、
問題なく動きます。なぜならば、plugin:prettier/recommendedとい
うextendsが、中でpluginを入れているためです。ただし、このextends
はeslint-plugin-prettierが提供しているため、eslint-plugin-prettier
は入れる必要があります。
　plugin:prettier/recommendedはeslint-plugin-prettierを入れ
てくれ、prettierのエラーを eslintのエラーとして扱ってくれる役割も持ちま
す。さらにeslint-config-prettierをextendsに追加もしてくれ、ESLint
におけるスタイルチェックのルールをOFFにしてくれます。また、最後に追
加しているprettier/@typescript-eslintは、TypeScript用のルールにお
けるスタイルをOFFにしてくれるものです。@typescript-eslint/eslint-
pluginで追加されるルールのうち、スタイルにおけるルールをOFFにしてく
れます。これが動作するか、試してみましょう。
　tsxファイルのスタイルを適当に崩します。

リスト9.14: src/index.tsx

import * as React from "react";

// スタイルを崩す

 import * as ReactDOM from "react-dom";

import Img from "./example.png";

import "./reset.css";

ReactDOM.render(

 <div>

 hello world.

 </div>,

 document.getElementById("root")

);

　2行目を崩しました。そしてeslintを実行します。

警告を出すために--fixを意図的に外しています。
$ npx eslint 'src/**/*.{ts,tsx}'

 2:1 error Delete `··` prettier/prettier
 1 error and 0 warnings potentially fixable with the `--
fix` option.

　すると、Delete`··`eslintprettier/prettierといった警告が表示される
ようになりました。
　これで、ESLintとPrettierの共存ができました。

9.7　Jestの設定

　次にテストを書きましょう。テストランナーにはjestを使います。

$ npm install -D jest @types/jest

　jestの型定義ファイルを入れることで、テスト自体もTypeScriptで書
いていけます。TypeScriptを実行するために、preprocessorを導入しま
す。それがts-jestです。

$ npm install -D ts-jest

　ではjest上でts-jestを使ってテストを実行できるように、設定ファイル
を書いていきましょう。設定ファイルの生成は、initオプションから行えま
す。ここでも質問が表示されるので、それに答えましょう。

$ npx jest --init

The following questions will help Jest to create a suitable confi
guration for your project

 Would you like to use Jest when running "test" script in "pac
kage.json"? … no

 Choose the test environment that will be used for testing › js
dom (browser-like)
 Do you want Jest to add coverage reports? … yes
 Automatically clear mock calls and instances between every t
est? … yes

 Done in 12.33s.

　実行すると、このような設定ファイルができます（コメントアウトをすべ
て削除しています）。

リスト9.15: jest.config.js

module.exports = {

 clearMocks: true,

 coverageDirectory: "coverage",

};

　ではts-jestの設定を加えます。それはpresetという項目を設定するこ
とで加えられます。

リスト9.16: jest.config.js

module.exports = {

 clearMocks: true,

 coverageDirectory: "coverage",

 preset: "ts-jest",

};

　これで実行の準備が整いました。次にテスト対象を作ります。jestの
機能をテストするために、このようにコードを書き換えました。

リスト9.17: src/index.tsx

import * as React from "react";

import * as ReactDOM from "react-dom";

import { App } from "./app";

ReactDOM.render(<App></App>,
document.getElementById("root"));

リスト9.18: src/app.tsx
import * as React from "react";

import Img from "./example.png";

import "./reset.css";

// テストしやすいようにわざと作った関数

export const generateHelloWorld = () => {

 return "hello world.";

};

export const App = () => {

 return (

 <div>

 <div>

 {generateHelloWorld()}

 </div>

 </div>

);

};

　ついでに、webpackも少し書き換えます。tsxのimport時に拡張子
を毎回書くのも億劫なので、webpackの設定で拡張子を不要にしま
す。

リスト9.19: webpack.config.js

const path = require("path");

const HtmlWebpackPlugin = require("html-webpack-plugin");

module.exports = {

 mode: process.env.NODE_ENV,

 entry: "./src/index.tsx",

 output: {

 path: path.resolve(__dirname, "./dist"),

 filename: "build.js",

 },

 module: {

 rules: [

 {

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: "ts-loader",

 },

],

 },

 {

 test: /\.(css)$/,

 use: ["style-loader", "css-loader"],

 },

 {

 test: /\.(png)$/,

 use: ["file-loader"],

 },

],

 },

 // 追加

 resolve: {

 extensions: [".ts", ".js", ".tsx"],

 },

 plugins: [new HtmlWebpackPlugin({ template:
"./src/index.html" })],

};

　presetでts-jestが指定されたプロジェクトでは、jestが*.test.tsと形式
のファイルをテストしてくれます。そのため、テストファイルをindex.test.tsと

して作ります。

リスト9.20: index.test.ts

import { generateHelloWorld } from "./app";

test("generateHelloWorldがHelloWorldを返す", () => {

 const actual = generateHelloWorld();

 expect(actual).toBe("hello world.");

});

　これで実行の準備が整いましたが、これを実行すると画像のimport
で失敗します。

$ npx jest
 SyntaxError: Invalid or unexpected token

 1 | import * as React from "react";
 2 | import * as ReactDOM from "react-dom";
 > 3 | import Img from "./example.png";
 | ^
 4 | import "./reset.css";
 5 |
 6 | export const generateHelloWorld = () => {

　これは、画像などのバイナリファイルをJSとして解釈しようとしたことによ
るエラーです。そのため、このような静的アセットはMockのjsで置き換え
ましょう。それは、moduleNameMapperという設定で実現できます。
置き換え対象の拡張子と置き換えるファイルの対応を書きます。

リスト9.21: jest.config.js

module.exports = {

 clearMocks: true,

 coverageDirectory: "coverage",

 preset: "ts-jest",

 moduleNameMapper: {

 "\\.(png|css)$": "<rootDir>/__mocks__/fileMock.js",

 }

};

リスト9.22: __mocks__/fileMock.js

module.exports = {};

　これでテストを実行しましょう。

$ npx jest
 PASS src/app.test.ts
 ✓ generateHelloWorldがHelloWorldを返す (1 ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Ran all test suites.
 Done in 2.77s.

　成功しました。
　ついでに、コンポーネント自体のテストも書きましょう。コンポーネントの
テストにはtesting libraryを使います。

$ npm install -D @testing-library/react @testing-library/jest-
dom

　installした@testing-library/reactは、react用のtesting libaryで
す。@testing-library/jest-domは、比較に使うcustom matcherを
含んだライブラリです。
　ここでは、componentがmountされた後にhello world.が表示され
ることをテストします。テストの対象となるDOMにidとして、data-
testid="text"をセットします。

リスト9.23: src/app.tsx

import * as React from "react";

import Img from "./example.png";

import "./reset.css";

export const App = () => {

 const [isMounted, setMount] = React.useState(false);

 React.useEffect(() => {

 setMount(true);

 }, []);

 return (

 <div data-testid="text">

 {isMounted && (

 <div>

 {generateHelloWorld()}

 </div>

)}

 </div>

);

};

　このコンポーネントに対するテストは、次のように書きます。

リスト9.24: src/app.test.tsx
import * as React from "react";

import { render } from "@testing-library/react";

import "@testing-library/jest-dom/extend-expect";

import { generateHelloWorld, App } from "./app";

test("mounted text", () => {

 const { getByTestId } = render(<App></App>);

 expect(getByTestId("text")).toHaveTextContent("hello
world.");

});

　ファイル名が.tsではなく、.tsxになっていることに注意してください。.tsx
を使わないと、JSXの構文であることを認識できません。

$ npx jest
 PASS src/app.test.tsx
 ✓ generateHelloWorldがHelloWorldを返す (2 ms)
 ✓ mounted text (30 ms)

Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Ran all test suites.
 Done in 1.95s.

　テストを実行すると、このように成功しました。

9.8　StoryBookの設定

　先ほどの節では、コンポーネントを分割して、テストができるようになり
ました。では、そのコンポーネントをカタログとして管理しましょう。そのため
には、Storybookを使います。React用の設定とTypeScript用の設定
があるため、設定量は多く、分割しながら環境構築します。
　まず、React用の設定を作ります。StoryBookのCLIツールで、まずは
ひな型を作ります。

$ npx -p @storybook/cli sb init

　これで、必要なパッケージのインストールと設定ファイルの作成が終わ
りました。試しに起動してみます。

$ npx storybook

　このように表示されました。

図9.3: storybook

　では、この上で自作のTypeScript製のコンポーネントが動くようにしま
しょう。そのためにはStoryBook上でTypeScriptが動くように、ts-
loaderを入れてその設定を加えます。

リスト9.25: .storybook/main.js

module.exports = {

 stories: ["../src/**/*.stories.tsx"],

 webpackFinal: async (config) => {

 config.module.rules.push({

 test: /\.(ts|tsx)$/,

 use: [

 {

 loader: require.resolve("ts-loader"),

 },

],

 });

 config.resolve.extensions.push(".ts", ".tsx");

 return config;

 },

};

　story fileは*.stories.tsxという名前で作ります。

リスト9.26: src/app.stories.tsx

import React from "react";

import { App } from "./app";

export default {

 title: "App",

 component: App,

};

export const Component = () => <App></App>;

Component.story = {

 name: "Component",

};

　これを実行すると、次のように読み込むことができました。

$ npx storybook

図9.4: storybook

9.9　まとめ

　TypeScript+React+webpackで環境構築し、無事にHello World
を出力できました。さらに、ESLint、Prettier、Jest、Storybookを活用
し、開発エコシステムとの連携を取ることもできました。実際に手を動か
して構築してみると、意外と簡単だったのではないでしょうか。ただしカス
タマイズするとなると、これらの設定を深く理解しなければ詰まるので、ご
自身でも素振りとして環境構築をすることをお勧めします。

1.
https://github.com/sadnessOjisan/js-build-book-support

付録A　バージョンの追従

A.1　環境構築で増えすぎた依存

　これまでに扱った環境構築の手順をそのまま行うと、package.json
の依存がとても膨らみます。たとえば、私が普段スターターコードして利
用しているpackage.jsonは、このような依存を持っています。

リストA.1: package.json

{

 "devDependencies": {

 "@babel/core": "^7.9.0",

 "@storybook/addon-actions": "^5.3.18",

 "@storybook/addon-info": "^5.3.18",

 "@storybook/addon-knobs": "^5.3.18",

 "@storybook/addon-links": "^5.3.18",

 "@storybook/addon-viewport": "^5.3.18",

 "@storybook/addons": "^5.3.18",

 "@storybook/react": "^5.3.18",
 "@testing-library/jest-dom": "^5.3.0",

 "@testing-library/react": "^10.0.1",

 "@types/jest": "^25.1.4",

 "@types/react": "^16.9.25",

 "@types/react-dom": "^16.9.5",
 "@types/styled-components": "^5.0.1",

 "@typescript-eslint/eslint-plugin": "^2.25.0",

 "@typescript-eslint/parser": "^2.25.0",

 "babel-loader": "^8.1.0",

 "css-loader": "^3.4.2",

 "dotenv-webpack": "^1.7.0",

 "eslint": "^6.8.0",

 "eslint-config-prettier": "^6.10.1",

 "eslint-plugin-prettier": "^3.1.2",

 "eslint-plugin-react": "^7.19.0",

 "file-loader": "^6.0.0",

 "html-webpack-plugin": "^4.0.1",

 "husky": "^4.2.3",

 "jest": "^25.2.0",

 "lint-staged": "^10.0.9",

 "prettier": "^2.0.2",

 "react-docgen-typescript-loader": "^3.7.2",

 "style-loader": "^1.1.3",

 "ts-jest": "^25.2.1",

 "ts-loader": "^6.2.2",

 "typescript": "^3.8.3",

 "webpack": "^4.42.1",

 "webpack-cli": "^3.3.11",

 "webpack-dev-server": "^3.10.3"

 },

 "dependencies": {

 "react": "^16.13.1",

 "react-dom": "^16.13.1",

 "styled-components": "^5.0.1"

 }
}

　これらのバージョン管理にどう立ち向かうか、本章で補足します。

A.2　package gardening

　依存パッケージのアップデートは、「パッケージにアップデートがあること
を検知し、それをアップデートする」といった作業をします。ですが、アップ
デートした結果、アプリケーションが動かなくなることは避けなければいけ
ません。そして、バージョンを上げても問題ないことの保証がないと上げ
づらいです。しかし、そのために全ページで全パターンを動作確認するこ
とは非現実的であり、パッケージのアップデートは一筋縄ではいきませ
ん。「毎週のように依存パッケージを上げ続ける努力」といった記事1に
もあるとおり、努力しなければいけない仕事です。

A.3　CI

　そのため、少しでも工数を減らし、安全にアップデートを行う仕組みと
して、CIを活用します。ここまでStorybookやtestを整備した理由は、こ
こにあります。それらをCIサーバで運用すれば、パッケージアップデート後
の確認コストを下げられます。
　最近では、GitHub Actions(GHA)などのサービスを活用することで、
低コスト（金額面・手間面）でCIサーバを運用できます。

A.3.1　automated dependency updates
　バージョンを上げ続ける努力をするためには、パッケージのアップデート
があることを検知できなければいけません。これは、automated
dependency updatesと呼ばれているツールを使うことで実現できま
す。この手のツールを利用すると、何かバージョンアップデートがあるたび
にBotがバージョンをアップデートするPRを作ってくれます。
　たとえば、Dependabot 2、Snyk 3(Greenkeeper)、Renovate4な
どがあります。

A.3.2　TestとStorybook
　依存をアップデートしたときに、既存コードが動かなくなることは避けな
ければいけません。そのためにjestやStorybookを整備しました。もしテ
ストが失敗したり、ページやコンポーネントがビルドできなければ、そのアッ
プデートは中断すべきです。中断が必要か気付けるためには、日ごろか
らテストやStorybookを整備しておくことが効果的です。

A.4　各種レポートのホスティングとプレビュー

　テストやStorybookを網羅できているかを確かめるために、カバレッジ
レポートやカタログをどこかにデプロイしておくと良いでしょう。最近では、
GitHubと連携してホスティングできるサービスが増えているので、それら
を活用できます。
　たとえば、Netlify5、Vercel6(Now)、Amplify7などはブランチ連携
だけでデプロイできるので、適しています。

1.
 package gardening と い う 命 名 も こ の ブ ロ グ か ら い た だ き ま し た 。
https://techlog.voyagegroup.com/entry/2016/06/27/080000
2.
https://dependabot.com/
3.
https://snyk.io/
4.
https://renovate.whitesourcesoftware.com/
5.
https://www.netlify.com/
6.
https://vercel.com/home
7.
https://aws.amazon.com/jp/amplify/

さいごに

　お疲れさまです。最後までお読みいただき、ありがとうございます。本
書でも扱った通り、フロントエンドの開発環境エコシステムには、
Package Manager 、 Transpiler 、 Bundler 、 Linter 、 Formatter 、
Test Runner、AltJSなどがあります。本書では、それらの代表的なツー
ルや、その周辺プラグインについて紹介しました。しかし、紹介したツール
やプラグインはあくまでも筆者独自の選定1によるものであり、唯一の選
択肢ではありません。そのため、皆さんが環境構築をする場合は、他の
ツールを使うこともあるかもしれません。また、いわゆる流行り廃りやベス
トプラクティスの変遷によって、皆さんが本書を読む頃には、紹介したツ
ールが使われていないかもしれません。しかしどのようなライブラリを選定
するにしても、役割という観点では共通するはずで、本書での学びが無
駄になることはないでしょう。今後新しいライブラリを使っていく上でも、
本書で学んだエコシステムの枠組みの知識が活きるはずです。そのライ
ブラリが何をしているか、そのライブラリがなければなぜ動かないかとい
うことに着目すれば、難しい環境構築も一歩一歩前進できるはずで
す。環境構築はつまずきがちな領域ですが、諦めずに少しずつ取り組
んでいきましょう。

1.
筆者が独自に選んではいるものの、広く利用実績があるものを選んでいます。

著者紹介
井手 優太（いで ゆうた）

約3年間、大手事業会社にて営業や開発を経験し、現在はフリーランスとして独立。2019年
2月から株式会社TechBowlが提供するTechTrainでメンターを始める。2019年7月には株式
会社Kaizen Platformにて社内横断のフロントエンド開発基盤・テスト基盤の設計・開発・保
守を担当する。現在は新アーキテクチャ移行に向けたテストやドキュメントの整備、パッケージガ
ーデニングとその調査に従事している。

◎本書スタッフ
アートディレクター/装丁：岡田章志＋GY
編集協力：深水 央
デジタル編集：栗原 翔

〈表紙イラスト〉
錆缶
イラストレーター。グラフィックデザインを学びながら背景からキャラまで様々なタッチで絵描きま
す。

技術の泉シリーズ・刊行によせて
技術者の知見のアウトプットである技術同人誌は、急速に認知度を高めています。インプレス
R&Dは国内最大級の即売会「技術書典」（https://techbookfest.org/）で頒布された技
術同人誌を底本とした商業書籍を2016年より刊行し、これらを中心とした『技術書典シリー
ズ』を展開してきました。2019年4月、より幅広い技術同人誌を対象とし、最新の知見を発信
するために『技術の泉シリーズ』へリニューアルしました。今後は「技術書典」をはじめとした各種
即売会や、勉強会・LT会などで頒布された技術同人誌を底本とした商業書籍を刊行し、技
術同人誌の普及と発展に貢献することを目指します。エンジニアの“知の結晶”である技術同
人誌の世界に、より多くの方が触れていただくきっかけになれば幸いです。

株式会社インプレスR&D
技術の泉シリーズ　編集長　山城 敬

https://techbookfest.org/

●お断り
掲載したURLは2020年5月1日現在のものです。サイトの都合で変更されることがあります。ま
た、電子版ではURLにハイパーリンクを設定していますが、端末やビューアー、リンク先のファイル
タイプによっては表示されないことがあります。あらかじめご了承ください。

●本書の内容についてのお問い合わせ先
株式会社インプレスR&D　メール窓口
np-info@impress.co.jp
件名に「『本書名』問い合わせ係」と明記してお送りください。
電話やFAX、郵便でのご質問にはお答えできません。返信までには、しばらくお時間をいただく
場合があります。
なお、本書の範囲を超えるご質問にはお答えしかねますので、あらかじめご了承ください。
また、本書の内容についてはNextPublishingオフィシャルWebサイトにて情報を公開しておりま
す。
https://nextpublishing.jp/

mailto:np-info@impress.co.jp
https://nextpublishing.jp/

技術の泉シリーズ

著　者
編集人
企画・編集
発行人
発　行

React環境構築の教科書

2020年8月21日　初版発行Ver.1.0（リフロー版）

井手 優太
山城 敬
合同会社技術の泉出版
井芹 昌信
株式会社インプレスR&D

〒101-0051

東京都千代田区神田神保町一丁目105番地

https://nextpublishing.jp/

◉本書は著作権法上の保護を受けています。本書の一部あるいは全部について株式会社イ
ンプレスR＆Dから文書による許諾を得ずに、いかなる方法においても無断で複写、複製するこ
とは禁じられています。
©2020 Yuta Ide. All rights reserved.
ISBN978-4-8443-7877-8

	電子書籍閲覧に関するご注意
	目次
	はじめに
	環境構築ができるようになろう
	環境構築スキルの習得は難しい
	対象読者
	本書が扱う内容
	筆者の動作環境とサンプルコードについての注意事項
	謝辞

	第1章 Node.jsを使ったビルド環境整備
	1.1 Node.jsとは
	1.2 Node.jsのインストール
	1.3 JavaScriptプロジェクトを管理する
	1.4 ライブラリに付随するコマンドを実行する
	1.5 まとめ

	第2章 Babelを使ったトランスパイル
	2.1 Babel とは
	2.2 Babelを実行する
	2.3 pluginとは
	2.4 複数のpluginをpresetで管理する
	2.5 ブラウザの差異をpolyfillで管理する
	2.6 まとめ

	第3章 TypeScriptを使ったコンパイル
	3.1 TypeScriptとは
	3.2 tscのインストール
	3.3 Reactを動かす
	3.4 まとめ

	第4章 webpackを使ったバンドルとビルド
	4.1 webpackの使い方
	4.2 webpackの設定ファイル
	4.3 まとめ

	第5章 ESLintを使った静的解析
	5.1 ESLintのしくみ
	5.2 ESLintの使い方
	5.3 ESLintで設定する項目
	5.4 TypeScriptとReact用の設定をする
	5.5 まとめ

	第6章 Prettierを使ったフォーマット
	6.1 prettierの使い方
	6.2 ESLintとの協調
	6.3 TypeScriptとの協調
	6.4 まとめ

	第7章 Storybookを使ったコンポーネント管理
	7.1 Storybookを設定する
	7.2 Storybookをaddonで拡張する
	7.3 まとめ

	第8章 Jestを使ったテスト
	8.1 Jestの使い方
	8.2 Reactのテスト
	8.3 Jestで設定する項目
	8.4 まとめ

	第9章 0から環境を作ってみる
	9.1 Node.jsの設定
	9.2 TypeScriptの設定
	9.3 webpackの設定
	9.4 Prettierの設定
	9.5 ESLintの設定
	9.6 ESLintとPrettierを共存させる設定
	9.7 Jestの設定
	9.8 StoryBookの設定
	9.9 まとめ

	付録A バージョンの追従
	A.1 環境構築で増えすぎた依存
	A.2 package gardening
	A.3 CI
	A.4 各種レポートのホスティングとプレビュー

	さいごに

