

電子書籍閲覧に関するご注意

　本書では、プログラムリストに専用の等幅フォントを使用しています。
ビューアによって以下の作業が必要になります。
・Kindle Paperwhiteの場合：フォント設定画面で「出版者のフォン
ト」を選択
・kobo Androidアプリの場合：フォント画面で「オリジナル」を選択

目次

電子書籍閲覧に関するご注意

はじめに

第1章　Vueの準備
1.1　実行環境
1.2　Viteでプロジェクトを作成する
1.3　Vueアプリを確認する
1.4　Vueアプリを終了する

第2章　VSCodeの設定
2.1　プロジェクトを開く
2.2　拡張機能をインストールする
2.3　Prettierの設定を行う
2.4　Prettierの設定を確認する

第3章　GitHubとVercelの設定
3.1　リポジトリーを作成する
3.2　ソースを連携する
3.3　ページをWebに公開する

第4章　Vueの基本
4.1　SPA（Single Page Application）
4.2　単一ファイルコンポーネント
4.3　Options APIとComposition API
4.4　Vue3.2のsetup
4.5　Vueを起動する

第5章　TODOアプリ

5.1　サンプルアプリ
5.2　レイアウトを決める
5.3　リセットCSSでデザインしやすくする
5.4　コンポーネントを理解する
5.5　ヘッダー、フッターをコンポーネント化する
5.6　コミットとプッシュを行う
5.7　scopedとは

第6章　TODOの登録
6.1　入力欄を作る
6.2　入力欄と値を連動させる
6.3　マスタッシュ構文とは
6.4　@clickを使ってみよう
6.5　アロー関数とは
6.6　ローカルストレージに登録する
6.7　TODOをリスト化する

第7章　TODOの一覧表示
7.1　TODO一覧をイメージする
7.2　繰り返し構文
7.3　TODOを繰り返し表示する

第8章　TODOの編集・削除
8.1　編集の仕様
8.2　入力欄にTODOを表示する
8.3　条件によってボタンを表示する
8.4　v-ifとv-showの使い分け
8.5　非表示ラッパーとは
8.6　ローカルストレージの値を変更する
8.7　TODOを削除する

第9章　ロジックの分離

9.1　ロジックを分離する
9.2　分離ロジックの使い方
9.3　分離ロジックのリファクタリング
9.4　分離ロジックで置き換える

第10章　TODOのチェック
10.1　チェック情報を追加する
10.2　チェックを保存する
10.3　データバインディング（v-bind）

第11章　その他の重要機能
11.1　リアクティブ変数
11.2　算出プロパティー
11.3　コンポーネント間のやりとり（親から子へ）
11.4　コンポーネント間のやりとり（子から親へ）

第12章　ライフサイクル
12.1　ライフサイクルフック
12.2　onMounted
12.3　onUpdated
12.4　onUnmounted

第13章　Vue Router
13.1　インストール
13.2　Vue Routerを使うための準備をする
13.3　ルートを設定する
13.4　ページを追加してみよう
13.5　遅延ローディングルートとは
13.6　404ページに誘導する
13.7　リンクからページ遷移する
13.8　プログラムからページ遷移する
13.9　動的ルート

13.10　パラメータ渡し
13.11　リアクティブの監視

第14章　外部API連携
14.1　JSON Placeholderとは
14.2　Fetch APIでデータを取得する
14.3　ブログの詳細ページを作る

おわりに

はじめに

　私はVue.jsを学習するにあたり、まだまだその技術書が少なく、
Vue.jsに限らず入門書と言いながらもわかりにくかったり、不要な情報
に振り回されている本が多いと感じました。本書はそのようなことがない
よう、極力Vueに関することに重点を置いていきたいと思います。

　本書の目的は「Webアプリの実装を通し、Vue3の基本的な動きを
理解する」ことです。

　JavaScriptを取り巻く環境は、ここ数年で劇的に変わりました。ター
ゲットは自分のようなエンジニアでありながら、モダンなJavaScriptに置
いて行かれた、けれど学びたい人向けです。対象読者は全くのWeb初
心者ではなく、JavaScriptの経験があり、後述の「前提」の条件を満た
すことのできる人を想定しています。

　サンプルとして作成するWebアプリは最終的にWeb上に公開できる
ところまでを記述していますが、Web上に公開する必要がない、または
したくない場合は、その操作を省略するだけで続けることができます。
　本書は全体を通してひとつのアプリを作成するだけのものと捉えられ
るかもしれませんが、基本的なものは詰まっておりますので、次のアプリ
を作成する際の教科書的なものとすることができます。

　プログラミング経験者にとって実際に動くものがあるというのは、土台
を手に入れたようなものです。そこから応用や他の機能を試すことがで
きます。入門書という一冊を通して、自分の土台作りができるものがあ
ればいいなと思い執筆しました。

　構文の説明だけでなくどのような場面で使うのかなど、できる限り実
践に即して書いております。Vueの歴史やreactなどとの比較、最初に
学ばなくてもよい機能やツールについては触れておりません。それによ
り、入門には最適なものになったと思っております。
　自身が初学者だった気持ちを忘れず、なるべくわかりやすい説明を
入れ、最後まで一緒に完走できるように尽くしました。

　それでは早速始めていきましょう！

前提
　・（必須）Node.js、パッケージマネージャー（npm/yarn）がインス

トールされていること。
　・（任意）使用するエディターは何でもいいのですが、本書は

Microsoft社の「Visual Studio Code」（VSCode）を使用して
いきます。

　※同じエディターを使用していただくことで説明がわかりやすくな
る場合があります。

　・（Web公開する場合）git（https://git-scm.com）がインスト
ールされていること。

　・（Web公開する場合）GitHub（https://github.com）がイン
ストールされていること。

　・（Web公開する場合）Vercel（https://vercel.com）のアカウ
ントを持っていること。

　※GitHubアカウントでログインしてもらえると、GitHubとVercel
の連携がスムーズになります。

https://git-scm.com/
https://github.com/
https://vercel.com/

第1章　Vueの準備

　Vueでアプリを作るための準備をします。この章ではVueで新規プロジ
ェクトを作り、実際に動くところまでの準備をします。

　♦ここで学べること
　・Vueプロジェクトの作成
　・Vueプロジェクトの開始と終了

1.1　実行環境

　参考までに本書の実行環境を紹介します。本書のバージョン以上に
なるようにしてください。

ターミナル or コマンドラインで実行
$ node -v
v16.13.0

$ npm -v
8.1.2

$ yarn -v
1.22.10

1.2　Viteでプロジェクトを作成する

　Vue3インストールは公式に提供されているVue CLIを利用するのが一
般的でしたが、本書はVite（ヴィート）を使ってインストールしていきま
す。

　Viteは最近出てきたビルドツールですが、Vueを作ったEvan You氏が
開発しており、Vue公式ページにもViteでのインストール方法が記載され
ています。今後はViteを使っての開発が一般的になることでしょう。今ま
でのビルドツールより、かなり高速に実行することができます。

　ターミナルあるいはコマンドラインでプロジェクトを作成したい任意のフォ
ルダーに移動し、以下のコマンドを実行します。プロジェクト名（Webア
プリ名）は何でもいいですが、本書では「my-vite-todo」とします。

npmの場合
$ npm init vite@latest my-vite-todo -- --template vue

yarnの場合
$ yarn create vite my-vite-todo --template vue

　任意のフォルダーにプロジェクト名の「my-vite-todo」フォルダーが生
成されていれば、成功です。

1.3　Vueアプリを確認する

　それでは、Vueの最初のアプリを動かしてみましょう。以下のコマンドを
実行してください。

npmの場合
$ cd my-vite-todo
$ npm install
$ npm run dev

yarnの場合
$ cd my-vite-todo
$ yarn
$ yarn dev

　これで開発用のサーバーが起動できましたので、ブラウザーを起動し、
以下のアドレスにアクセスしてください。
　http://localhost:3000/
　以下のような画面が表示されれば、Vue3アプリの最初の関門は突
破できました！

図1.1:

http://localhost:3000/

1.4　Vueアプリを終了する

　開発用のサーバーを止めるには、ターミナルあるいはコマンドラインで
「Ctrl+C」を押下します。次の章から開発用サーバーはVSCodeから動か
していくので、今は止めたままで大丈夫です。

第2章　VSCodeの設定

　本書では「Visual Studio Code」（VSCode）で開発を進めていく
ことを前提にしますので、事前にインストールをしていてください。
　この章での設定は任意であり、本書では以下の設定で進めていきま
す。

　♦ここで学べること
　・VSCodeの拡張機能
　・Prettierの設定

2.1　プロジェクトを開く

　ターミナルもしくはコマンドラインでmy-vite-todoフォルダーまで移動
し、以下を入力してください。

code .（ドット）
$ code .

　VSCodeでmy-vite-todoプロジェクトを開くことができたでしょうか。も
しできなかった場合は先にVSCodeを手動で起動し、メニューの「ファイル
(F)」-「フォルダーを開く…」でmy-vite-todoを選択してください。my-
vite-todoフォルダーを直接VSCodeにドラッグ＆ドロップする方法もあり
ます。

2.2　拡張機能をインストールする

　VueをVSCodeを使って開発する上で快適にコーディングするために、
拡張機能をインストールしていきます。以下で紹介する拡張機能は、イ
ンストールしてもしなくても構いません。
　サイドバーにある「拡張機能」アイコンを押します。

図2.1:

　検索欄に拡張機能名を入力して、目的の拡張項目を探していきま
す。結果が表示されたら「インストール」ボタンでインストールを行います。
検索結果を選択することで、右側にその機能の詳細が表示されます。

図2.2:

　それでは、以下の拡張機能をインストールしてください。
　・Volar

図2.3:

　・Vue 3 Snippets

図2.4:

　・Vue Peek

図2.5:

　・Prettier

図2.6:

　・Auto Rename Tag

図2.7:

　・Bracket Pair Colorizer 2

図2.8:

　・JavaScript (ES6) code snippets

図2.9:

　・Material Icon Theme

図2.10:

2.3　Prettierの設定を行う

　Prettierとは、ソースコードを自動で整形してくれるコードフォーマッター
のことです。チーム開発において各自の整形ルールがバラバラだと統一性
がなく、コードレビューしたときに読みづらくなってしまいます。
　文字列を囲むのは「’」（シングルクォート）なのか「”」（ダブルクォーテ
ーション）なのかという些細なことも、Prettierに任せればどちらかに統
一してくれます。
　それでは設定していきましょう。まず、サイドバーの下のほうにある「管
理」アイコンを押し、「設定」を選択します。

図2.11:

　「設定」タブの「設定の検索」欄に「format」と入力してください。その
下に「ユーザー」と「ワークスペース」があります。「ユーザー」を選ぶとワークス
ペース全体、「ワークスペース」を選ぶと今回の場合、my-vite-todoプロ
ジェクトのみの設定となります。今回はどちらでも構いません。

図2.12:

　以下の通りに設定してください。
　・「Editor: Default Formatter」から「Prettier - Code formatter」

を選択
　・「Editor: Format On Paste」をチェック
　・「Editor: Format On Save」をチェック

図2.13:

　ここからは好みの問題もありますが、JavaScriptでの文字列等を囲む
記号をシングルクォートにするかダブルクォーテーションにするかの設定を
行います。本書ではHTMLはダブルクォーテーション、JavaScriptは基本
的にシングルクォートを使う設定にします。

　「設定の検索」欄に「single quote」と入力します。そして「Prettier:
Single Quote」をチェックします。

図2.14:

2.4　Prettierの設定を確認する

　それではApp.vueを開き、以下の通りにコードを変更してください。
　・import HelloWorld from './components/HelloWorld.vue';の

コードの「;」（セミコロン）を削除。「'」（シングルクォート）は「"」
（ダブルクォーテーション）に変更

　・の「"」（ダブ
ルクォーテーション）を「'」（シングルクォート）に変更

　そのまま保存してください。
　どうでしょうか。
　・import HelloWorld from "./components/HelloWorld.vue"の

ダブルクォーテーションはシングルクォートになり、セミコロンが復活す
る

　・のシングルクォ
ートはダブルクォーテーションに変更される

　以上のように保存時にコードが修正されていたら、Prettierの設定は
うまくいっています。

　余分な空白や空行、おかしなインデントにして保存してみてください。
きれいなフォーマットに整形されることを確認してください。

第3章　GitHubとVercelの設定

　この章はWeb公開しない場合、読み飛ばしても問題ありません。また
Gitはインストールされており、GitHubとVercelのアカウントは持っている
前提で話を進めていきます。まずはGitHubにログイン（Sign in）してく
ださい。

　♦ここで学べること
　・GitHubへのソースの連携
　・GitHubとVercelの連携
　・Webアプリの公開

3.1　リポジトリーを作成する

　GitHubの画面にあるRepositoriesにある「New」ボタンを押します。

図3.1:

　「Create a new repository」画面の「Repository name」にプロジェ
クト名（my-vite-todo）を入力してください。その他は特に何もしなく
ても大丈夫です。「Public」は今からコミットするソースを公開したい場
合、「Private」は公開しない場合の設定です。どちらでも構いません。
　そのまま「Create repository」ボタンを押してください。

図3.2:

3.2　ソースを連携する

　先ほど作ったGitHubのリポジトリーに、my-vite-todoのソースをコミッ
トしていきましょう。ターミナルやコマンドラインでもできますが、ここでは
VSCode上でコミットします。

　VSCodeのメニューから「ターミナル」-「新しいターミナル」を押すと、画
面下にターミナル画面が表示されます。

図3.3:

　そのターミナルで以下のコマンドを実行してください。

$ git init
$ git add .
$ git commit -m "first commit"
$ git branch -M main
$ git remote add origin git@github.com:<リポジトリー名>/my-
vite-todo.git
$ git push -u origin main

　実行後のターミナルに「Branch 'main' set up to track remote
branch 'main' from 'origin'.」と表示されていれば成功です。
　GitHubの画面に戻り、画面を更新してください。my-vite-todoのソ
ースがアップロードされているはずです。

3.3　ページをWebに公開する

　続いて、このままの状態でWebに公開してみましょう。Webに公開す
るには、Vercelという会社のホスティングサービスを利用します。Vercelを
利用すると、GitHubにコミットするだけで自動的にビルドとデプロイが実
行されてWebに公開してくれます。個人で利用するには無料枠
（Hobby）で充分です。
　Webに公開する上で、きちんとローカルで動いている状態を確認し、
小さい単位で公開することは大事です。一気に公開してしまうと、Web
上で動かなかった場合の原因究明が困難になります。

　まずはVercelにログインしてください。その後「New Project」ボタンを
押します。すると、次の画面でGitHubのリポジトリー一覧が表示される
と思います。もし「my-vite-todo」リポジトリーが表示されていない場
合、「Import Git Repository」欄の下のプルダウンを開き、「Add
GitHub Org or Account」を選択します。

図3.4:

　「Install Vercel」画面で自分のリポジトリーの「Configure」を選択し
ます。GitHubの確認パスワードを求められればそれに応じます。

図3.5:

　GitHubのリポジトリーの権限設定をする画面に遷移したら、
「Repository access」の「All repositories」（全リポジトリーを許可）
か「Only select repositories」（選択したリポジトリーのみ）のどちら
かをチェックします。
　「Only select repositories」を選択した場合、Select repositories
プルダウンからmy-vite-todoリポジトリーを選択します。その下の一覧に
my-vite-todoリポジトリーが追加されたことを確認します。
　最後に「Save」ボタンを押して完了です。

図3.6:

　再びVercelの画面に戻ってきましたら、「Import Git Repository」欄
にmy-vite-todoが表示されていますので、その右側にある「Import」ボ
タンを押します。
　「Create a Team」はそのまま何もせずに、「Skip」ボタンを押してくだ
さい。

図3.7:

　すると、そのまま下にある「Configure Project」に移動するので、
「Deploy」ボタンを押してください。

図3.8:

　デプロイが始まります。

図3.9:

　Congratulations!の表示とともに紙吹雪が舞うと、デプロイ成功で
す！

図3.10:

　「Go to Dashboard」ボタンを押し、ダッシュボード画面の右側にある
「Visit」ボタンを押してください。
　https://my-vite-todo-xxxx.vercel.app/
　というあなた専用のアドレスでWeb公開されました。URLの「xxxx」は
一意にするために割り与えられる文字列です。「my-vite-todo」という
プロジェクト名で公開する人が他にもいると、被らないようにVercel側で
自動的に付与されるものです。もし「my-vite-todo」というプロジェクト
名が最初の人であれば、「xxxx」というのは付与されません。

　お疲れさまでした！ここまで面倒な設定をしてきましたが、今後の他の
プロジェクトでも応用は利きますので、覚えていて損はありません。

　それでは、次の章からVue3を学習していきましょう！

第4章　Vueの基本

　この章では、Vue3の特徴と簡単な説明をします。Vueはバージョン2
から3に変わり、後述するOptions APIからComposition APIと書き
方、考え方も変わりました。
　Vue3から始める方は問題ありませんが、Vue2からの方は書き方が
少し変わりますので、混乱しないようにしてください。

　♦ここで学べること
　・Vue3の構文
　・Vueの起動

4.1　SPA（Single Page Application）

　Vueで作るアプリケーションはSPA（シングル・ページ・アプリケーショ
ン）と呼ばれ、HTMLファイルはpublic配下のindex.htmlしか使いま
せん。

　index.htmlの中を見ていくと、main.jsが呼び出されています。
main.jsを見ると、createApp(App).mount('#app');という部分があ
り、index.htmlにある<div id="app"></div>にマウントしていること
が読み取れます。

　createApp(App)でApp.vueを取り込み、<div id="app">に差し
込むという簡単な認識で今は問題ありません。

　基本的にApp.vue以下を触っていくため、index.htmlを触ることは
ありませんが、<html lang="en">が英語になっているので<html
lang="ja">と日本語に修正しておきましょう。

4.2　単一ファイルコンポーネント

　基本的なvueファイルには特別な書き方があり、以下の３つのパート
に分かれています。
　・<template>　・・・　テンプレート（HTMLを書くところ）
　・<script>　　・・・　ロジック（JavaScriptを書くところ）
　・<style> 　 　・・・　スタイル（CSSを書くところ）
　このようにテンプレート、ロジック、スタイルをひとつのファイルに書ける
形式を「単一ファイルコンポーネント（SFC）」と呼び、「*.vue」ファイル
で表します。

4.3　Options APIとComposition API

　Vue構文の特徴である<template>、<script>、<style>のうち、
<script>について見ていきます。
　Vue2までの<script>内はOptions APIという、以下のような書き
方でした。

リスト4.1:

 1: <script>

 2: import HelloWorld from '@/components/HelloWorld.vue';

 3:

 4: export default {

 5: components: {

 6: HelloWorld,

 7: },

 8: data () {

 9: return {

10: count: 0,

11: }

12: },

13: methods: {

14: increment() {

15: this.count++;

16: },

17: },

18: ...

19: };

20: </script>

　それが、Vue3以降はComposition APIという書き方にガラッと変わ
り ま し た 。 大 雑 把 に 言 い ま す と 、 export default 内 の data や

mounted、methodsというものがVue3ではsetup関数内に書くように
なりました。

リスト4.2:

 1: <script>

 2: import { ref } from "vue";

 3:

 4: export default {

 5: setup() {

 6: const count = ref(0);

 7: const increment = () => {

 8: count.value++;

 9: };

10: return {

11: count,

12: increment,

13: }

14: },

15: };

16: </script>

　setup内で定義した変数や関数は、returnすることで<template>
で使うことができます。

4.4　Vue3.2のsetup

　Vue3.0から導入されたsetup関数ですが、Vue3.2から更に書き方
が変わっています。しかしご安心ください。これはsetupの糖衣構文とな
っており、若干便利な書き方となっております。
　先ほどの例をsetupの糖衣構文で書き直してみます。

リスト4.3:

 1: <script setup>

 2: import { ref } from "vue";

 3:

 4: const count = ref(0);

 5: const increment = () => {

 6: count.value++;

 7: };

 8: </script>

　ずいぶんとスッキリとしたのではないでしょうか。

　<script> タ グ を <script setup> と す る こ と で export default 、
setup、returnが不要になりました。

　また、今までは<template>、<script>だった順番も<script>、
<template>と入れ替わりました。この順番は入れ替えても問題ありま
せんので、ご自身の使いやすい順番で書いてください。

　本書はこのsetupの糖衣構文、そして<script>、<template>の順
番で書いていきます。

4.5　Vueを起動する

　次の章から実際にサンプルアプリを作っていきますので、Vueを起動
しておいてください。VSCode上でターミナルを開き、以下のコマンドを実
行します。

npmの場合
$ npm run dev

yarnの場合
$ yarn dev

第5章　TODOアプリ

　ここからは実際のアプリ作りを通して、Vueの使い方を学んでいきま
す。サンプルアプリとしてよく例に挙げられる、TODOアプリを作っていきま
す。

　♦ここで学べること
　・Vueのコンポーネント
　・CSSのスコープ（scoped）

5.1　サンプルアプリ

　本書では、このようなTODOアプリを作成していきます。

図5.1:

　ごく一般的なTODOアプリで、入力して「追加」ボタンを押すと一覧に
表示され、そのTODOを編集したり削除したりできます。そして、チェック
を付けると、取り消し線でそのTODOを達成したことがわかるようになって
います。

5.2　レイアウトを決める

　サンプルアプリのようにヘッダー、メイン、フッターと縦に３分割したレイ
アウトを作ります。ヘッダーとフッターは固定で、メインの部分が変わってい
くイメージです。
　App.vueを開き<template>と<style>だけにしてしまいましょう。

リスト5.1: my-vite-todo/src/App.vue

 1: <template>

 2: <div class="wrap">

 3: <div>ヘッダー</div>

 4: <main class="main">メイン</main>

 5: <div>フッター</div>

 6: </div>

 7: </template>

 8:

 9: <style></style>

単一ルート要素
　Vue2までは<template>配下の要素（タグ）は<div class="wrap">
のようにトップレベルのタグで囲んでひとつの要素にする必要がありましたが、Vue3
ではその必要はなくなりました。<div class="wrap">がなく、<div>タグのヘ
ッダー、メイン、フッターがトップレベルに３つあるとVue2ではエラー、Vue3ではOKと
いうことになります。

　画面で確認すると、左上に固まって表示されたのではないでしょうか。
これを画面の中央に、フッターは画面の下になるようにしていきます。
　<style>に以下を書き加えてください。

リスト5.2: my-vite-todo/src/App.vue

 1: <style>

 2: .wrap {

 3: display: flex;

 4: flex-direction: column;

 5: align-items: center;

 6: min-height: 100vh;

 7: width: 370px;

 8: margin: 0 auto;

 9: font-family: sans-serif;

10: }

11:

12: .main {

13: flex: 1;

14: width: 100%;

15: }

16: </style>

5.3　リセットCSSでデザインしやすくする

　リセットCSSとは、各ブラウザーでの表示の違いを打ち消すためのCSS
ファイルのことです。これを使うことで、どのブラウザーで表示させても同じ
ような表示にすることができます。これも必ず使わなければならないもの
ではありませんが、本書では意図したデザインにならなかったため、使うこ
とにしました。

　このリセットCSSもいろいろな種類のものが出ていますが、本書ではま
っさらな状態から始められる「destyle.css」というものを使います。

　使い方は簡単です。assetsフォルダー配下にcssフォルダーを作ってくだ
さい。次に以下のサイトに行き、「Source code(zip)」をダウンロードしま
す。そして、それを解凍した配下にある「destyle.css」をcssフォルダにコピ
ーしてください。
　 https://github.com/nicolas-
cusan/destyle.css/releases/tag/v3.0.2

https://github.com/nicolas-cusan/destyle.css/releases/tag/v3.0.2

destyle.cssのバージョン
　destyle.css のバージョンは必ず v3.0.2 を指定してください。v4.0.0 ではチェック
ボックスがうまく表示されない可能性があります。

　ファイルを作成した後は、そのファイルをVueアプリケーションに適用しま
す。トップレベルのファイルであるApp.vueに取り込むことにより、その下
の階層にも適用されます。
　@import 'assets/css/destyle.css';を<style>の先頭行に追加して
ください。

リスト5.3: my-vite-todo/src/App.vue

 1: <style>

 2: @import 'assets/css/destyle.css'; // 追加

 3:

 4: .wrap {

 5: （略）

 6: }

 7:

 8: .main {

 9: （略）

10: }

11: </style>

　先ほどより画面の余白がなくなっていたら、うまく適用されています。リ
セットCSSを使うことで、今までタグに自動的に付与されていたスタイル
もなくなっていることに注意してください。

　たとえば<h1>タグは書くだけでフォントサイズが大きくなったり、上下
のpaddingもある程度あったと思いますが、リセットCSS適用後はただの
文字列で表示されます。

　ただこれも慣れの問題で、余計なスタイルのために表示が崩れたり、
異なるブラウザーでもスタイルが崩れたりすることがなくなりますので、快
適にデザインすることができると思います。

5.4　コンポーネントを理解する

　Vue開発の特徴のひとつに、コンポーネントというものがあります。いろ
いろなサイトを見てみると、ヘッダー、フッター、メインやボタンなど様々な
部品が集まってひとつの画面を構成していることがわかります。そのひと
つひとつをコンポーネントという単位に分け、再利用できるようにしていま
す。

　Vueのページはこのコンポーネントが集まって構成されていることになり
ます。vueファイルというのは、コンポーネント化された部品そのものです。

　HTMLのタグを作るようなものといえばイメージしやすいでしょうか。たと
えば<input type="text">と書けば、入力欄が表示されます。これを
利用し、「InputDouble.vue」というようなvueファイルを作り、<input
type="text"><input type="text">とふたつinputタグを書きます。そ
して<InputDouble />と呼び出せば、画面に入力欄がふたつ続いたも
のが表示されます。

　この規模でコンポーネント化する必要はないのかもしれませんが、責
務を分ける意味でも、ヘッダーとフッターをコンポーネント化していきましょ
う。

5.5　ヘッダー、フッターをコンポーネント化する

　 components フ ォ ル ダ ー に あ る HelloWorld.vue を 削 除 し 、
TheHeader.vueとTheFooter.vueファイルを作成してください。

コンポーネント名
　コンポーネント化するvueファイルの名前は
・パスカルケース　→　TheHeader.vue
・ケバブケース　　→　the-header.vue
　のように複数単語の名前にしてください。１単語でも動作しますが、２単語以
上にすることが推奨されています。
・Header.vue　　　→　×
・TheHeader.vue　→　〇
　これは将来、新しいHTMLのタグが増えてもタグ名の衝突が起きないようにする
ためです。

　TheHeader.vueの内容は以下の通りです。scopedは一旦無視して
そのまま書いて進めてください。

リスト5.4: my-vite-todo/src/components/TheHeader.vue

 1: <template>

 2: <h1 class="title">TODO</h1>

 3: </template>

 4:

 5: <style scoped>

 6: .title {

 7: width: 100%;

 8: background-color: #e3f2fd;

 9: text-align: center;

10: font-size: 32px;

11: font-weight: bold;

12: padding: 8px 0;

13: }

14: </style>

　TheFooter.vueの内容は以下の通りです。

リスト5.5: my-vite-todo/src/components/TheFooter.vue

 1: <template>

 2: <footer class="footer">

 3: <small>©my-vite-todo</small>

 4: </footer>

 5: </template>

 6:

 7: <style scoped>

 8: .footer {

 9: margin-top: 15px;

10: height: 30px;

11: }

12: </style>

　次にそのヘッダーとフッターのコンポーネントを取り込むため、App.vue
を修正します。

リスト5.6: my-vite-todo/src/App.vue

 1: <script setup>

 2: import TheHeader from './components/TheHeader.vue';

 3: import TheFooter from './components/TheFooter.vue';

 4: </script>

 5:

 6: <template>

 7: <div class="wrap">

 8: <TheHeader />

 9: <main class="main">メイン</main>

10: <TheFooter />

11: </div>

12: </template>

　<script>内で先ほど作ったヘッダーとフッターをimportします。構文は
以下の通りです。

リスト5.7:

import ＜名称＞ from '＜vueファイルのパス＞';

　そして、取り込んだ名称をタグ形式にして<template>配下の任意
の場所に置きます。importしたときの名称と<template>で使うときの
名称は、合わせる必要があります。

　import AaaBbb from ～;とすれば、<template>では<AaaBbb
/>（パスカルケース）もしくは、<aaa-bbb />（ケバブケース）という形
で使えます。

　ここで画面のほうを確認してみましょう。以下のようになっていればOK
です。

図5.2:

5.6　コミットとプッシュを行う

　それでは、ここまでの変更をGitHubにコミットしてプッシュしておきましょ
う。
　サイドバーの「ソースの管理」のアイコンに「6」と表示されているところを
押します。すると、変更されたファイルが表示されていると思います。

図5.3:

　まずはindex.htmlファイルを選択してみましょう。すると隣の欄に変更
箇所が表示されます。前回のコミットした分との比較ですが、左側が変
更前、右側が変更後のソースになります。

　今回のindex.htmlファイルの変更は、langを「en」から「ja」にしまし
た。

図5.4:

　変更箇所を確認して問題がないのなら、ファイル右横にある「＋」を
押してファイルをステージングに持っていきます。これはコミットする対象を
選ぶ作業です。

図5.5:

　その後、コミットメッセージを入力（「lang属性を日本語化」）し、そ
の上にある「レ」チェックを押してください。するとコミットが完了します。他
のファイルとは意味合いが違うので、コミットを分けます。

図5.6:

　同じように残りの5ファイルも変更を確認したら、まとめてコミットしてく
ださい。コミットメッセージは「TODOレイアウト」とでもしましょう。

　コミットが完了すると、VSCodeの左下に図のような上下の矢印で
「0↓ 2↑」となっている部分があります。これを押すことで、GitHubにプ
ッシュ（反映）することができます。

図5.7:

　GitHubにプッシュできたことを確認した後、Vercelのサイトを見てくだ
さい。「View Build Logs」ボタンを押すと、次画面の「Building」欄にデ
プロイしている様子が表示されます。

図5.8:

　しばらく待って「STATUS」が「Ready」になると成功です。

図5.9:

　その後、「Visit」ボタンを押して自分のサイトで確認してください。

5.7　scopedとは

　ここで<style>のscopedについて説明します。<style>にscoped属
性を持つと、そのCSSは自身のコンポーネントの要素にのみ適用されま
す。

　簡単な実験をしてみましょう。フッターコンポーネントの<style>にヘッ
ダーコンポーネントと同じクラス（title）を定義し、フォントの色を赤にし
てください。

リスト5.8: my-vite-todo/src/components/TheFooter.vue

 1: <style scoped>

 2: .footer {

 3: margin-top: 15px;

 4: }

 5:

 6: // 追加

 7: .title {

 8: color: red;

 9: }

10: </style>

　このまま画面を再描画しても、ヘッダーの「TODO」は何も変わりませ
ん。次に<style scoped>からscopedを削除して、<style>としてみてく
ださい。

　どうでしょうか。ヘッダーの「TODO」が赤色に変わったと思います。この
ように、<style>にscoped属性を持っていないとグローバルなCSSになり
ます。

　scoped属性を持つことによって自身のコンポーネント内でのみ適用さ
れるので、違うコンポーネントで同じクラス名を使っても競合することはあ
りません。基本的に、scoped属性は常に持つようにしたほうがいいでし
ょう。

　フッターに追加したtitleのCSSは使わないので、削除しておいてくださ
い。

第6章　TODOの登録

　ここからはTODOアプリのメイン部分に入っていきます。入力された値
の 取 り 方 や 、 onClick な ど の イ ベ ン ト の 発 生 方 法 を 学 び ま す 。
JavaScriptやjQueryとの違いを感じてください。

　♦ここで学べること
　・双方向データバインディング（v-model）
　・マスタッシュ構文
　・イベントハンドリング
　・アロー関数
　・ローカルストレージへの登録

6.1　入力欄を作る

　まずはメイン部分もコンポーネント化します。componentsフォルダーに
「MainTodo.vue」を作成し、TODOを登録するための入力欄と追加ボ
タンを記述します。

リスト6.1: my-vite-todo/src/components/MainTodo.vue

 1: <script setup></script>

 2:

 3: <template>

 4: <div class="box_input">

 5: <input type="text" class="todo_input"
placeholder="＋ TODOを入力" />

 6: <button class="btn">追加</button>

 7: </div>

 8: </template>

 9:

10: <style scoped>

11: .box_input {

12: margin-top: 20px;

13: }

14:

15: .todo_input {

16: width: 300px;

17: margin-right: 8px;

18: padding: 8px;

19: font-size: 18px;

20: border: 1px solid #aaa;

21: border-radius: 6px;

22: }

23:

24: .btn {

25: padding: 8px;

26: background-color: #03a9f4;

27: border-radius: 6px;

28: color: #fff;

29: text-align: center;

30: font-size: 14px;

31: }

32: </style>

　これをApp.vueから呼び出します。

リスト6.2: my-vite-todo/src/App.vue

 1: <script setup>

 2: import TheHeader from './components/TheHeader.vue';

 3: import TheFooter from './components/TheFooter.vue';

 4: import MainTodo from './components/MainTodo.vue'; //
追加

 5: </script>

 6:

 7: <template>

 8: <div class="wrap">

 9: <TheHeader />

10: <main class="main"><MainTodo /></main> // 変更

11: <TheFooter />

12: </div>

13: </template>

　画面に入力欄ができました。追加ボタンを押しても今は何も起こりま
せん。

図6.1:

6.2　入力欄と値を連動させる

　TODOを登録するために、入力欄の値を取らないといけません。素の
JavaScriptなら、document.getElementById等のDOM操作で入力
欄から値を取ってきました。

　Vueの場合は「双方向データバインディング」と呼ばれるもの（v-
model）を利用して、data変数とinputのようなフォームの値とを連動
させることができます。
　実際にやってみましょう。

リスト6.3: my-vite-todo/src/components/MainTodo.vue

 1: <script setup>

 2: // 追加

 3: import { ref } from 'vue';

 4: const todoRef = ref('');

 5: </script>

 6:

 7: <template>

 8: <div class="box_input">

 9: <input

10: type="text"

11: class="todo_input"

12: v-model="todoRef" // 追加

13: placeholder="＋ TODOを入力"

14: />

15: <button class="btn">追加</button>

16: </div>

17: </template>

　１．import { ref } from 'vue';でref関数をvueから取り込みます。

　２．const todoRef = ref('');でtodoRef変数を作成します。
　３．<input>タグにv-model="todoRef"を追加します。

<input>タグにv-model="変数"とすることで<input>欄に入
力した値が変数に反映されます。

6.3　マスタッシュ構文とは

　v-modelがうまく連動されているか、マスタッシュ構文を使って確認し
てみましょう。
　マスタッシュ構文とは、二重中括弧を利用したテキスト展開のことで
す。簡単に言えば、JavaScriptの変数の値をHTML内で見ることができ
ます。先ほどの変数：todoRefを例に試してみましょう。

　<template>内の任意の場所に{{ todoRef }}を入れてみましょう。す
ると、<input>タグに入力した内容がすぐさま画面に表示されたはずで
す。これは変数：todoRefと<input>タグがv-modelを通して連動し
ているため、入力後すぐに反映されるからです。

templateでのリアクティブ変数の見方
　<template>内でリアクティブ変数の値を見るには変数名のみでOKです。
　　→　todoRef

　確認後、マスタッシュ構文は必要ないので、消しておいてください。

6.4　@clickを使ってみよう

　ボタンが押されたときのイベントハンドリングとしてonClickイベントがあ
りますが、Vueの基本構文はv-on:clickと書きます。

　それの省略記法として「v-on」の代わりに「@」と置き換えて使うこと
ができます。
　・v-on:click　→　@click

　本書ではその省略記法である@clickを使っていきます。@clickで指
定した関数を呼び出すことができます。

リスト6.4: my-vite-todo/src/components/MainTodo.vue

 1: <script setup>

 2: // 追加

 3: const addTodo = () => {

 4: console.log(todoRef.value);

 5: };

 6: </script>

 7:

 8: <template>

 9: <div class="box_input">

10: <input

11: type="text"

12: class="todo_input"

13: v-model="todoRef"

14: placeholder="＋ TODOを入力"

15: />

16: <!-- 変更 -->

17: <button class="btn" @click="addTodo">追加</button>

18: </div>

19: </template>

　文字を入力後に追加ボタンを押すと、入力した文字がコンソールに
表示されることを確認してください。

scriptでのリアクティブ変数の見方
　<script>内でリアクティブ変数の値を見るためには、変数名の後ろに.value
を付けます。
　　→　todoRef.value

開発者ツール
　ブラウザーのChromeやFirefoxでは「Ctrl+Shift+i」でコンソールが見られる開発
者ツールが開きます。

イベントハンドリング
　イベントハンドリングにはclickの他に、change、blur、focus、keydown、
keyup、mouseover、mouseout、submitなど、いろいろな種類があります。

6.5　アロー関数とは

　以下のような書き方はアロー関数と呼ばれ、最近のJavaScriptでは
よく書かれる構文です。それまでの書き方でも動作しますが、本書では
このアロー関数で書いていきます。

リスト6.5:

 1: <script setup>

 2: // アロー関数

 3: const addTodo = () => {

 4: console.log('addTodo');

 5: };

 6:

 7: // こちらでもOK

 8: function addTodo() {

 9: console.log('addTodo');

10: }

11:

12: // または、こちらでもOK

13: const addTodo = function () {

14: console.log('addTodo');

15: }

16: </script>

6.6　ローカルストレージに登録する

　TODOの登録はデータベースとのやり取りで行うのが多いのですが、本
書ではVueの説明に重点を置きたいため、より簡単に登録できるローカ
ルストレージを使用します。

　ローカルストレージとは、HTML5から導入されたWeb Storageというブ
ラウザー上にデータを保存できる仕組みのひとつです。

　先ほどのaddTodo関数からローカルストレージにデータを保存してみま
しょう。addTodoを以下のように変更します。

リスト6.6: my-vite-todo/src/components/MainTodo.vue

 1: const addTodo = () => {

 2: localStorage.todoList = todoRef.value;

 3: };

　ローカルストレージに登録するのはとても簡単です。localStorageにド
ットを付けて好きな変数名（ここでは「todoList」）を付けるだけで、値
を登録することができます。このまま入力欄に値を入れて「追加」ボタン
を押し、開発者ツールで確認してみましょう。

　下図はchromeの開発者ツールです。

図6.2:

　ローカルストレージに「todoList」という名前で入力した値が登録され
ていると思います。

6.7　TODOをリスト化する

　ここまででローカルストレージに入力したTODOを登録することができま
した。しかし、このままではひとつのTODOしか登録できませんので、登録
する対象をリスト化することにします。

　まず、TODOを貯めておく配列を作成し、入力したTODOを格納して
いきます。その後にその配列をローカルストレージに登録します。配列は
IDを持たせたいため、オブジェクトの配列にします。IDはユニークとなる値
を設定しますが、ここでは簡単にミリ秒をIDとします。

リスト6.7: my-vite-todo/src/components/MainTodo.vue

 1: <script setup>

 2: import { ref } from 'vue';

 3: const todoRef = ref('');

 4: const todoListRef = ref([]); // 追加

 5:

 6: const addTodo = () => {

 7: // IDを簡易的にミリ秒で登録する

 8: const id = new Date().getTime();

 9:

10: // 配列に入力TODOを格納

11: todoListRef.value.push({ id: id, task: todoRef.value
});
12:

13: // ローカルストレージに登録

14: localStorage.todoList =
JSON.stringify(todoListRef.value);
15:

16: // 登録後は入力欄を空にする

17: todoRef.value = '';

18: };

19: </script>

　ローカルストレージに普通に登録するとただの文字列になるため、配列
や オ ブ ジ ェ ク ト を 登 録 す る 場 合 は JSON コ ー ド に シ リ ア ラ イ ズ 化
（JSON.stringify）する必要があります。
　TODOを何個か登録してみてください。ローカルストレージにカンマ区
切りで登録されていたら成功です。

リロード後のデータ
　現時点ではTODOを何個か登録後にリロードし、その後にまたTODOを登録す
るとリロード前のTODOは上書きされます。

　ここでまた、GitHubに変更をコミットしてプッシュしておきましょう。この
ように、ひとつの区切りや機能が終わったらコミットする習慣をつけておき
ましょう。

　次の章からはご自身のタイミングでGitHubにコミットしてプッシュしてい
ってください。

第7章　TODOの一覧表示

　この章では一覧表示の部分を作っていきますが、Vueの繰り返し構
文：v-forを中心に見ていきます。v-forはVueでも比較的よく使われ
る構文なので、しっかりと覚えてください。

　♦ここで学べること
　・v-for（繰り返し構文）

7.1　TODO一覧をイメージする

　TODOの入力と登録ができたので、次は登録したTODOを表示する
一覧を作っていきます。まずはTODO一覧のイメージをHTMLで書いて
みましょう。

リスト7.1: my-vite-todo/src/components/MainTodo.vue

 1: <script setup>

 2: 　（変更なし）

 3: </script>

 4:

 5: <template>

 6: <div class="box_input">

 7: <input

 8: type="text"

 9: class="todo_input"

10: v-model="todoRef"

11: placeholder="＋ TODOを入力"

12: />

13: <button class="btn" @click="addTodo">追加</button>

14: </div>

15: <!-- 追加 ↓ -->

16: <div class="box_list">

17: <div class="todo_list">

18: <div class="todo">

19: <input type="checkbox" class="check" />
<label>TODO1</label>

20: </div>

21: <div class="btns">

22: <button class="btn green">編</button>

23: <button class="btn pink">削</button>

24: </div>

25: </div>

26: <div class="todo_list">

27: <div class="todo">

28: <input type="checkbox" class="check" />
<label>TODO2</label>

29: </div>

30: <div class="btns">

31: <button class="btn green">編</button>

32: <button class="btn pink">削</button>

33: </div>

34: </div>

35: </div>

36: <!-- 追加 ↑ -->

37: </template>

38:

39: <style scoped>

40: // 追加

41: .box_list {

42: margin-top: 20px;

43: display: flex;

44: flex-direction: column;

45: gap: 4px;

46: }

47:

48: .todo_list {

49: display: flex;

50: align-items: center;

51: gap: 8px;

52: }

53:

54: .todo {

55: border: 1px solid #ccc;

56: border-radius: 6px;

57: padding: 12px;

58: width: 300px;

59: }

60:

61: .check {

62: border: 1px solid red;

63: transform: scale(1.6);

64: margin: 0 16px 2px 6px;

65: }

66:

67: .btns {

68: display: flex;

69: gap: 4px;

70: }

71:

72: .green {

73: background-color: #00c853;

74: }

75:

76: .pink {

77: background-color: #ff4081;

78: }

79: </style>

　下図のようになっていればOKです。

図7.1:

7.2　繰り返し構文

　先ほどのTODO一覧をよく見ると「TODO1」、「TODO2」と内容は
違いますが、ほぼ同じ構成になっています。HTMLのほうも<div
class="todo_list">～</div>の塊が繰り返されています。

　TODOが増えるたびにこの塊を増やしていくのは大変ですし、ソースも
煩雑になっていきます。そこでVueのfor文を使って、この塊を増やしてい
きましょう。

　まずは簡単な例から慣れていきましょう。MainTodo.vueの任意の
場所に以下を書いてください。

リスト7.2: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: const todoExample = ref(['example1', 'example2',
'example3']);

 3:

 4: // template

 5: <div v-for="(example, index) in todoExample"
:key="index">

 6: <p>{{ index }}.{{ example}}</p>

 7: </div>

図7.2:

　Vueで繰り返しをする場合、v-forディレクティブという特別な構文を
使います。HTMLタグの属性としてv-forを使うと、そのタグも含め、その
配下と終了タグまでが繰り返しの対象となります。

　v-forの基本的な構文はv-for="変数 in 配列"となります。v-forに
は仮想DOMのアルゴリズムのためにkey属性を持つことが推奨されて
います。このkeyはユニークである必要があります。v-forのふたつ目の引
数には配列のインデックスがサポートされていますので、例ではこれを利
用してkeyにインデックスを与えています。

key属性の注意点
　配列のインデックスをkey属性にするのはあまりよくありません。配列の増減に
よってインデックスが変わるからです。その他にユニークとなる候補がない場合の最
終手段として覚えておきましょう。

　todoExampleの値を変更したり増やしたり減らしたりして、色々と
試してみてください。

　確認した後は不要なので、先ほどのソースは削除しておいてくださ
い。

7.3　TODOを繰り返し表示する

　それでは、実際に使う<div class="todo_list">の塊を繰り返して
みましょう。繰り返しの対象が<div class="todo_list">のため、このタ
グにv-forを付けてみます。

　先ほどの例はただの配列でしたが、実際に登録したものはオブジェク
トの配列なので、<label>に囲まれた部分を{{ todo.task }}にします。
そして、v-forのkeyもインデックスからIDにします。

リスト7.3: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: // 変更

 3: const todoListRef = ref([

 4: { id: 1, task: 'TODO1' },

 5: { id: 2, task: 'TODO2' },

 6: { id: 3, task: 'TODO3' },

 7:]);

 8:

 9: // template

10: <!-- 置き換え -->

11: <div class="box_list">

12: <div class="todo_list" v-for="todo in todoListRef"
:key="todo.id">

13: <div class="todo">

14: <input type="checkbox" class="check" />

15: <label>{{ todo.task }}</label>

16: </div>

17: <div class="btns">

18: <button class="btn green">編</button>

19: <button class="btn pink">削</button>

20: </div>

21: </div>

22: </div>

　下図のように、todoListRefで指定した値がTODO一覧として表示
されたでしょうか。

図7.3:

　これでtodoListRefに値が入れば、一覧表示される仕組みができま
した。

　最後に、todoListRefの初期値をローカルストレージから取ってくるよ
うにしましょう。ローカルストレージにはJSONコードにシリアライズ化された
データが入っているので、取り出すときに配列に戻すようにします。それ
が以下のJSON.parseです。これを使って取り出します。

リスト7.4: my-vite-todo/src/components/MainTodo.vue

 1: // ローカルストレージにtodoListRefが存在していればparseし、

 2: // なければundifinedになるため空配列をセットする。

 3: const todoListRef = ref([]); // 変更

 4: const ls = localStorage.todoList; // 追加

 5: todoListRef.value = ls ? JSON.parse(ls) : []; // 追加

　いかがでしょうか。これでページをリロードしてもブラウザーを閉じても、
登録したTODOが消えずに表示されたかと思います。新たにTODOを
追加登録しても大丈夫です。

第8章　TODOの編集・削除

　この章ではTODOの編集と削除の部分を作っていきますが、Vueのif
構文：v-ifを中心に見ていきます。v-ifはv-forと同様にVueでも比較
的よく使われる構文なので、しっかりと覚えてください。

　♦ここで学べること
　・条件付きレンダリング（v-if、v-show）
　・非表示ラッパー

8.1　編集の仕様

　次はTODOを編集できるようにしましょう。TODOの横の「編」ボタン
を押したときの処理です。編集においての仕様はいろいろあると思いま
すが、本書では以下の仕様にします。
　・「編」ボタンを押すとそのTODOが入力欄に表示される。・・・ ①
　・「追加」ボタンが「変更」ボタンに変わる。・・・ ②
　・TODOを編集後に「変更」ボタンを押すと、編集後のTODOが一

覧に表示される。・・・ ③
　・「変更」ボタンを「追加」ボタンに戻す。・・・ ④
　・入力欄を空にする。・・・ ⑤

8.2　入力欄にTODOを表示する

　仕様①の「編」ボタンを押したときに処理が実行されるように、編集
ボタンに@clickを付与します。@clickから呼び出される関数は
showTodoとしますが、引数にTODOのIDを渡してどのTODOが編集
対象かわかるようにします。

リスト8.1: my-vite-todo/src/components/MainTodo.vue

 1: <!-- 変更 -->

 2: <button class="btn green" @click="showTodo(todo.id)">編
</button>

　showTodoで受け取ったIDを利用して、入力欄に編集するTODOを
表示させます。入力欄に表示させるには、v-modelで連動している変
数todoRefに値を入れればよさそうです。
　TODOリスト（todoListRef）から該当のIDを持つオブジェクトを探
します。配列から目的のデータを取得するには、ここではfind関数を使
います。

リスト8.2: my-vite-todo/src/components/MainTodo.vue

 1: <script setup>

 2: // 追加

 3: const showTodo = (id) => {

 4: // 配列（todoListRef.value）から引数のidと同じ要素を検索する。

 5: // findの「(todo)」には配列の要素が引数として順番に入る。

 6: // 「todo.id === id」がtrueならその時点の要素：todoが返る。

 7: const todo = todoListRef.value.find((todo) =>
todo.id === id);

 8: todoRef.value = todo.task; // 取得した要素からtaskを取り出す

 9: };

10: </script>

　これで各TODOの編集ボタンを押すたび、入力欄にそのTODOが表
示されます。

find関数
　構文：配列.find(callback関数)配列を順番にループし、callback関数が
trueを返す最初の要素を返します。
　find関数を使うことで、for文を使うよりも配列内を検索するという意図が明
確になります。

8.3　条件によってボタンを表示する

　仕様②のボタンの変更ですが、これは追加と変更のふたつのボタン
を用意し、条件分岐でどちらかだけを表示させる方法にします。条件
分岐にはv-ifディレクティブというものを使います。
　まずは判定する条件の変数と、追加・変更のふたつのボタンを用意
します。変更ボタンを押したときの関数も空で作っておきましょう。

リスト8.3: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: // 追加

 3: const isEditRef = ref(false); // 編集ボタンを押したときにtrueに
する

 4: const editTodo = () => {}; // 変更ボタンを押したとき

 5:

 6: // template

 7: <!-- 変更 -->

 8: <button class="btn green" @click="editTodo"> 変 更
</button>

 9: <button class="btn" @click="addTodo">追加</button>

　そして、isEditRefを条件判定に使って以下のようにボタンにv-ifを付
与します。編集ボタンを押したときにisEditRefをtrueにする処理も
showTodoに入れておきます。

リスト8.4: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: const showTodo = (id) => {

 3: const todo = todoListRef.value.find((todo) =>
todo.id === id);

 4: todoRef.value = todo.task;

 5: isEditRef.value = true; // 追加

 6: };

 7:

 8: // template

 9: <!-- 変更 -->

10: <button class="btn green" @click="editTodo" v-
if="isEditRef">変更</button>

11: <button class="btn" @click="addTodo" v-else> 追 加
</button>

　変更ボタンはv-ifでisEditRefがtrueになったら表示され、falseなった
ら表示されなくなります。追加ボタンのほうはv-elseで、その反対の動
きになります。

8.4　v-ifとv-showの使い分け

　v-ifと同じような動きで、v-showというものがあります。使い方も同
じでtrue/falseによって表示、非表示となります。

　先ほどの例をv-showに置き換えてみます。v-elseは使えないの
で、!isEditRefと条件を反転させます。

リスト8.5: my-vite-todo/src/components/MainTodo.vue

 1: // template

 2: <button class="btn green" @click="editTodo" v-
show="isEditRef">変更</button>

 3: <button class="btn" @click="addTodo" v-
show="!isEditRef">追加</button>

　動かしてみても同じ動きになるはずです。では何が違うのかといいま
すと、HTMLを見ればわかります。v-ifの場合はfalseになったほうは描
画されません。isEditRefがtrueになった段階で描画されます。

　v-showの方はといいますと、true/false関係なく描画はされます。
ですが、falseの方はCSSのdisplay: none;が与えられ、画面から見え
なくしています。ボタンの表示／非表示の切り替えはCSSで行います。

　Vueの公式ページによると、v-ifはtrue/falseの切り替え時に高いコ
ストが掛かり、v-showは初期表示の描画に高いコストが掛かります。
そのため、とても頻繁に何かを切り替える必要があれば v-showを選
び、条件が実行時に変更することがほとんどない場合はv-ifを選びま
す、と書かれています。

　また先ほどのボタンの例のようにv-ifはv-elseやv-else-ifのように複
数の条件で切り替えることができますので、その点も考慮してもいいの
かもしれません。

8.5　非表示ラッパーとは

　今回のv-ifの対象がbuttonタグひとつでしたが、これが複数要素
（タグ）の場合はどうなるのでしょうか。たとえば、以下のような感じで
す。isEditRefがtrueの場合に1、2を表示、それ以外の場合は3、4を
表示したい場合です。

リスト8.6:

 1: <p>1</p> // isEditRef=true

 2: <p>2</p> // isEditRef=true

 3: <p>3</p> // isEditRef=false

 4: <p>4</p> // isEditRef=false

　<p>タグひとつずつにv-ifを設定しても実現できますが、数が多くな
ると現実的ではありません。その場合はtrue組とfalse組を<div>タグ
で囲って、v-ifを付与する方法が考えられるでしょう。

リスト8.7:

 1: <div v-if="isEditRef">

 2: <p>1</p>

 3: <p>2</p>

 4: </div>

 5: <div v-else>

 6: <p>3</p>

 7: <p>4</p>

 8: </div>

　これはこれで正解ですが、もしこの<div>タグがどうしても不要だった
場合はどうしましょう。

　その場合は非表示ラッパーとして提供されている<template>タグを
使います。これは<div>タグを<template>タグに置き換えるだけで済
みます。そして、非表示ラッパーと呼ばれるだけあって、HTMLでは
<template>タグは描画されません。

リスト8.8:

 1: <template v-if="isEditRef">

 2: <p>1</p>

 3: <p>2</p>

 4: </template>

 5: <template v-else>

 6: <p>3</p>

 7: <p>4</p>

 8: </template>

　ちなみにこの<template>はv-ifやv-forでは使えますが、v-showで
は使うことができません。

8.6　ローカルストレージの値を変更する

　途中が長くなりましたが、編集ボタンを押したら入力欄に編集対象
のTODOを表示させるところまでできました。次は変更したTODOをロー
カルストレージのデータに反映させましょう。

　 変 更 ボ タ ン が 押 さ れ た ら 、 入 力 欄 の TODO を 取 得 し 、 配 列
todoListRefに反映させます。しかしここでは編集対象の情報を持って
いないため、どのTODOかわかりません。そのためshowTodoの処理で
TODOのIDを事前に保管し、そのIDを使って対象の情報を編集しま
す。

リスト8.9: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: const isEditRef = ref(false); // 移動

 3: let editId = -1; // 追加

 4:

 5: const showTodo = (id) => {

 6: const todo = todoListRef.value.find((todo) =>
todo.id === id);

 7: todoRef.value = todo.task;

 8: isEditRef.value = true;

 9: editId = id; // 追加

10: };

11:

12: // 変更

13: const editTodo = () => {

14: // 編集対象となるTODOを取得

15: const todo = todoListRef.value.find(

16: (todo) => todo.id === editId

17:);

18:

19: // TODOリストから編集対象のインデックスを取得

20: const idx = todoListRef.value.findIndex(

21: (todo) => todo.id === editId

22:);

23:

24: // taskを編集後のTODOで置き換え

25: todo.task = todoRef.value;

26:

27: // splice関数でインデックスを元に対象オブジェクトを置き換え

28: todoListRef.value.splice(idx, 1, todo);

29:

30: // ローカルストレージに保存

31: localStorage.todoList =
JSON.stringify(todoListRef.value);
32: isEditRef.value = false; // 編集モードを解除

33: editIndex = -1; // IDを初期値に戻す

34: todoRef.value = '';

35: };

8.7　TODOを削除する

　TODOの削除は編集と同じようにTODOのIDを利用して配列から
削除し、ローカルストレージに残った配列を登録します。

　では、同じように削除ボタンに@clickを付与して実装していきましょ
う。念のため、削除する前に確認メッセージを表示させることにします。

リスト8.10: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: const deleteTodo = (id) => {

 3: const todo = todoListRef.value.find((todo) =>
todo.id === id);

 4: const idx = todoListRef.value.findIndex((todo) =>
todo.id === id);

 5:

 6: const delMsg = '「' + todo.task + '」を削除しますか？';

 7: if (!confirm(delMsg)) return;

 8:

 9: todoListRef.value.splice(idx, 1);

10: localStorage.todoList =
JSON.stringify(todoListRef.value);
11: };

12:

13: // template

14: <button class="btn pink" @click="deleteTodo(todo.id)">
削</button>

　これでTODOアプリの登録、編集、削除という一通りの操作ができ
るようになりました。

第9章　ロジックの分離

　Vue3からロジックの共通化や機能の関心ごとに着目して、ファイルを
分離することができるようになりました。この仕組みを使って、今までのロ
ジックを分離してみましょう。

　♦ここで学べること
　・ロジックの分離、再利用

9.1　ロジックを分離する

　これまでのソースで、TODOリストからIDに該当する要素やインデック
スを取得するロジックが複数回出てきました。具体的には以下のソース
です。

リスト9.1: my-vite-todo/src/components/MainTodo.vue

 1: // TODOリスト（todoListRef）からIDに一致するTODOを取得

 2: const todo = todoListRef.value.find((todo) => todo.id
=== id);

 3:

 4: // TODOリスト（todoListRef）からIDに一致するリストのインデックスを取得

 5: const idx = todoListRef.value.findIndex((todo) =>
todo.id === id);

　上記のTODOリストに関するロジックを分離して、再利用できる形に
していきましょう。
　まずは分離したロジックの置き場所を決めましょう。この辺は自由に
決 め て も ら っ て も い い の で す が 、 本 書 で は src フ ォ ル ダ ー 直 下 に
「composables」フォルダーを作成し、そこを置き場所にします。その中
に「useTodoList.js」ファイルも作成してください。

図9.1:

　「useTodoList.js」ファイルも特に決まりはありませんが、分離したロ
ジックとわかるようにファイル名の先頭に「use」を付けるのが慣例となっ
ています。そして、このファイルにはJavaScriptのロジックしか書かないの
で、拡張子は「.js」としてください。

　useTodoList.jsに共通化したいロジックを以下のようにそのままコピー
してください。

リスト9.2: my-vite-todo/src/composables/useTodoList.js
 1: // 外部から使えるようにexportする

 2: export const useTodoList = () => {

 3: const todo = todoListRef.value.find((todo) =>
todo.id === id);

 4: const idx = todoListRef.value.findIndex((todo) =>
todo.id === id);

 5:

 6: // returnすることでtodoとidxを外部から使うことができる

 7: return { todo, idx };

 8: };

　簡単にですが、これでロジックの分離ができました。

　分離したロジックは、元の場所であるMainTodo.vueとは何の繋が
りもありません。そのためtodoListRefは、いきなり出てきた状態になって

しまっているので、このまま使うとエラーになってしまいます。

　そこで、todoListRefを取得する処理を追記してあげます。この処理
もMainTodo.vueにあったものをそのままコピーして持ってきます。

　次にidですが、これは引数でもらうしかありません。

export const useTodoList = () => {を

export const useTodoList = (id) => {としてください。

リスト9.3: my-vite-todo/src/composables/useTodoList.js

 1: import { ref } from 'vue';

 2:

 3: export const useTodoList = (id) => {

 4: // ローカルストレージにtodoListが存在していればparseし、

 5: // なければundifinedになるため空配列をセットする。

 6: const ls = localStorage.todoList;

 7: const todoListRef = ref([]);
 8: todoListRef.value = ls ? JSON.parse(ls) : [];

 9:

10: const todo = todoListRef.value.find((todo) =>
todo.id === id);

11: const idx = todoListRef.value.findIndex((todo) =>
todo.id === id);

12:

13: return { todo, idx };

14: };

9.2　分離ロジックの使い方

　一旦、今のままで共通化したロジックを使ってみましょう。使い方は
簡単で、importして呼び出すだけです。todoとidxが揃っている
deleteTodoから修正して確認してみます。

リスト9.4: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: // 追加

 3: import { useTodoList } from
'/src/composables/useTodoList.js';
 4:

 5: const deleteTodo = (id) => {

 6: // 削除

 7: // const todo = todoListRef.value.find((todo) =>
todo.id === id);

 8: // const idx = todoListRef.value.findIndex((todo) =>
todo.id === id);

 9:

10: const { todo, idx } = useTodoList(id); // 追加

11: const delMsg = '「' + todo.task + '」を削除しますか？';

12: if (!confirm(delMsg)) return;

13:

14: todoListRef.value.splice(idx, 1);

15: localStorage.todoList =
JSON.stringify(todoListRef.value);
16: };

　以前と変わらず削除処理ができていたら成功です。

分割代入
　 const { todo, idx } = useTodoList(id); は 分 割 代 入 と い っ て 、
JavaScriptの機能です。useTodoList.jsでreturnしたtodoとidxを受け取り側
で同じように記述することで、そのまま受け取れます。

9.3　分離ロジックのリファクタリング

　このままdeleteTodoと同じようにshowTodoやeditTodoも置き換え
て も い い で す が 、 も う １ 歩 進 ん で み ま し ょ う 。 useTodoList で
todoListRef（TODOリスト）をローカルストレージから取り出している
ので、それをそのままreturnで返してあげます。するとdeleteTodoのよう
に、useTodoListを呼び出すだけでTODOリストを取得することができま
す。

　このように考えていくと、TODOリストをひとつの責務と考え、それに
関する処理を集めることでロジックの見通しもよくなり、いろいろな所で
も使えそうです。これでTODOリストに関することが各コンポーネントに散
らばることなく、ひとつのファイルにまとめることができました。

　それではuseTodoListにTODOリストに関する処理を追加していきま
しょう。一旦中身を空にして、todoListRefを取得して返すだけにしてみ
ましょう。

リスト9.5: my-vite-todo/src/composables/useTodoList.js

 1: import { ref } from 'vue';

 2:

 3: export const useTodoList = () => {

 4: // ローカルストレージにtodoListが存在していればparseし、

 5: // なければundifinedになるため空配列をセットする。

 6: const ls = localStorage.todoList;

 7: const todoListRef = ref([]);
 8: todoListRef.value = ls ? JSON.parse(ls) : [];

 9:

10: return { todoListRef };

11: };

　次に、TODOリストに追加する処理をコピーして持ってきます。入力し
たTODOは引数としてもらうようにします。混乱しないように、関数名を
addTodoからaddにしています。

リスト9.6: my-vite-todo/src/composables/useTodoList.js

 1: import { ref } from 'vue';

 2:

 3: export const useTodoList = () => {

 4: // ローカルストレージにtodoListが存在していればparseし、

 5: // なければundifinedになるため空配列をセットする。

 6: const ls = localStorage.todoList;

 7: const todoListRef = ref([]);
 8: todoListRef.value = ls ? JSON.parse(ls) : [];

 9:

10: // 追加処理

11: const add = (task) => {

12: const id = new Date().getTime();

13: todoListRef.value.push({ id: id, task: task });

14: localStorage.todoList =
JSON.stringify(todoListRef.value);
15: };

16:

17: return { todoListRef };

18: };

　元々のaddTodoにあったtodoRef.value = '';は画面の入力欄に対
する操作で、ここの責務とは関係がないため、削除します。同じように
編集、削除処理も少し改変して持ってきますが、その前にtodoとidxが
何回か出てくるので、関数化しておきましょう。名前も使いやすいように
変更します。

リスト9.7: my-vite-todo/src/composables/useTodoList.js

 1: // TODOリストからIDを元にTODO情報を取得

 2: const findById = (id) => {

 3: return todoListRef.value.find((todo) => todo.id ===
id);

 4: };

 5:

 6: // TODOリストからIDを元にそのインデックスを取得

 7: const findIndexById = (id) => {

 8: return todoListRef.value.findIndex((todo) => todo.id
=== id);

 9: };

　編集ボタンが押されたときの表示処理です。

リスト9.8: my-vite-todo/src/composables/useTodoList.js

 1: const editId = ref(-1); // リアクティブにします

 2: const show = (id) => {

 3: const todo = findById(id);

 4: editId.value = id;

 5: return todo.task; // 画面処理させるために返します

 6: };

　変更ボタンが押されたときの処理です。

リスト9.9: my-vite-todo/src/composables/useTodoList.js

 1: const edit = (task) => {

 2: const todo = findById(editId.value);

 3: const idx = findIndexById(editId.value);

 4: todo.task = task;

 5: todoListRef.value.splice(idx, 1, todo);

 6: localStorage.todoList =
JSON.stringify(todoListRef.value);

 7: editId.value = -1;

 8: };

　削除ボタンが押されたときの処理です。

リスト9.10: my-vite-todo/src/composables/useTodoList.js
 1: const del = (id) => {

 2: const todo = findById(id);

 3: const delMsg = '「' + todo.task + '」を削除しますか？';

 4: if (!confirm(delMsg)) return;

 5:

 6: const idx = findIndexById(id);

 7: todoListRef.value.splice(idx, 1);

 8: localStorage.todoList =
JSON.stringify(todoListRef.value);
 9: };

　チェックボックスが押されたときの処理です。

リスト9.11: my-vite-todo/src/composables/useTodoList.js

 1: const check = (id) => {

 2: const todo = findById(id);

 3: const idx = findIndexById(id);

 4: todo.checked = !todo.checked;

 5: todoListRef.value.splice(idx, 1, todo);

 6: localStorage.todoList =
JSON.stringify(todoListRef.value);
 7: };

　最後のreturn文です。

リスト9.12: my-vite-todo/src/composables/useTodoList.js

 1: return { todoListRef, add, show, edit, del, check };

9.4　分離ロジックで置き換える

　先ほど作ったロジックを元の場所であるMainTodo.vueで使ってみま
しょう。一気にscript部分を載せます。

リスト9.13: my-vite-todo/src/components/MainTodo.vue

 1: <script setup>

 2: import { ref } from 'vue';

 3: import { useTodoList } from
'/src/composables/useTodoList.js';
 4:

 5: const todoRef = ref('');

 6: const isEditRef = ref(false);

 7: const { todoListRef, add, show, edit, del, check } =
useTodoList();

 8:

 9: const addTodo = () => {

10: add(todoRef.value);

11: todoRef.value = '';

12: };

13:

14: const showTodo = (id) => {

15: todoRef.value = show(id);

16: isEditRef.value = true;

17: };

18:

19: const editTodo = () => {

20: edit(todoRef.value);

21: isEditRef.value = false;

22: todoRef.value = '';

23: };

24:

25: const deleteTodo = (id) => {

26: del(id);

27: };

28:

29: const changeCheck = (id) => {

30: check(id);

31: };

32: </script>

　ずいぶんとスッキリとした感じになったのではないでしょうか。このように
うまくコンポーネントやロジックを分けることにより、ソースの見通しがよく
なります。

　deleteTodoは他の処理がなければ、以下のように直接onClickに書いても
OKです。　→　@click="del(todo.id)"

第10章　TODOのチェック

　TODOアプリについては、ほぼ完成に近づいてきました。残りは
TODOを完了したときにチェックして、完了済にすることです。
　仕様としては、チェックされたらTODOの色を変えつつ取り消し線を
引くことにしましょう。

　♦ここで学べること
　・データバインディング（v-bind）

10.1　チェック情報を追加する

　保存しているTODOの情報にチェックボックスのチェック有無を入れよ
うと思いますので、一旦全てのTODOを削除してください。
　そして、TODOを登録するロジックにチェック情報を追加してください。
登録時なのでチェックは無し（false）です。

リスト10.1: my-vite-todo/src/composables/useTodoList.js

 1: const add = (task) => {

 2: ...

 3: // 「checked: false」を追加

 4: todoListRef.value.push({ id: id, task: task,
checked: false });

 5: ...

 6: };

　これでまた何個かTODOを登録しておいてください。

10.2　チェックを保存する

　チェックボックスのチェックの有無を検知し、その状態を各TODOに保
存する必要があります。そして、保存するには再びTODOのIDが必要
になりそうです。ということで、チェックの有無を検知するのにonChange
を使い、引数にIDを渡します。

リスト10.2: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: // check を追加

 3: const { todoListRef, add, show, edit, del, check } =
useTodoList();

 4:

 5: const chengeCheck = (id) => {

 6: check(id);

 7: };

 8:

 9: // template

10: ...

11: <input

12: type="checkbox"

13: class="check"

14: @change="changeCheck(todo.id)"

15: />

16: <label>{{ todo.task }}</label>
17: ...

　IDが手に入れば、編集時と同じようにするだけです。

リスト10.3: my-vite-todo/src/composables/useTodoList.js

 1: const check = (id) => {

 2: const todo = findById(id);

 3: const idx = findIndexById(id);

 4: todo.checked = !todo.checked; // 「true/false」を反転させ
る

 5: todoListRef.value.splice(idx, 1, todo);

 6: localStorage.todoList =
JSON.stringify(todoListRef.value);
 7: };

 8:

 9: // check を追加

10: return { todoListRef, add, show, edit, del, check };

10.3　データバインディング（v-bind）

　チェックの有無はローカルストレージに登録されましたが、画面を更新
するとチェックが外れている状態になります。これは、チェック情報を画
面のほうに反映していないためです。
　チェックボックスはchecked属性を使って、チェックを制御することが
できます。チェックボックスに:checked="todo.checked"を追加してみ
てください。

リスト10.4: my-vite-todo/src/components/MainTodo.vue

 1: <input

 2: type="checkbox"

 3: class="check"

 4: @change="chengeCheck(todo.id)"

 5: :checked="todo.checked" // 追加

 6: />

　checkedの前には:（コロン）が必要です。このコロンはVueのv-
bind デ ィ レ ク テ ィ ブ の 省 略 形 で す の で 、 :checked="" と v-
bind:checked=""は同じ意味になります。この例ではtodo.checked
の値が設定されます。

v-bind
　v-bindに設定する内容にはscriptの変数や関数、JavaScriptの構文を使う
ことができます。

　TODOの取り消し線ですが、これはCSSのクラスを切り替えることで
実現します。まずは取り消し線のCSSを設定します。ついでに背景色と
文字色も少し変えましょう。

リスト10.5: my-vite-todo/src/components/MainTodo.vue

 1: .fin {

 2: text-decoration: line-through;

 3: background-color: #ddd;

 4: color: #777;

 5: }

　次に、これをチェックボックスを囲っている<div>に設定するのです
が、todo.checkedの値がtrueのときがTODOの完了なので、そのとき
にfinクラスが当たるようにします。

リスト10.6: my-vite-todo/src/components/MainTodo.vue

 1: // template

 2: // :classを追加

 3: <div class="todo" :class="{ fin: todo.checked }">

 4: <input

 5: type="checkbox"

 6: class="check"

 7: @change="chengeCheck(todo.id)"

 8: :checked="todo.checked"

 9: />

10: <label>{{ todo.task }}</label>

11: </div>

　:classのようにclassにバインドし、オブジェクトを渡すことでクラスを動
的 に 切 り 替 え る こ と が で き ま す 。 fin が CSS の ク ラ ス 名 で 右 辺 の
todo.checkedの真偽値によってそのクラスの適用が決まります。

クラスとスタイルのバインディング
　Vueはv-bindがclassとstyleと一緒に使われるとき、特別な拡張機能を提
供します。文字列だけではなく、式はオブジェクトまたは配列を返すことができま
す。
　- Vue公式ページより -

:classとclass
　:classは通常のclassと同時に使うこともできます。また、カンマ区切りで複数
の 動 的 ク ラ ス も 指 定 で き ま す 。 <div class="todo" :class="{ fin:
todo.checked, fin2: true }">

　お疲れさまでした！
　以上で第１章で見たTODOのサンプルアプリが完成しました！

　次の章からはVueのその他の機能について見ていくことにしましょう。

第11章　その他の重要機能

　これまで見てきたVueの機能はほんの一部です。この章ではその他の
機能を見ていきます。本書ではなかなか出番がなかったり、説明を飛
ばしていたりした部分ですが、実際は使用頻度が高く重要な機能とな
ります。

　♦ここで学べること
　・リアクティブ（ref、reactive）
　・算出プロパティー（computed）
　・スロットコンテンツ（slot）
　・コンポーネント間の親から子へのデータ渡し（props）
　・コンポーネント間の子から親への通知（emit）

11.1　リアクティブ変数

　リアクティブとは、ある変数の変更を検知可能な状態になっているこ
とをいいます。第６章のマスタッシュ構文で示したように、todoRef変
数をscript内で書き変えたとき、即座にHTMLに反映されるようなこと
です。

　これまではref関数を使ってリアクティブを作り出していましたが、同様
の機能としてreactive関数というものが存在します。これらの使い分け
ですが、今のところは
　・ref　　　 ・・・　プリミティブな値（オブジェクト以外）
　・reactive　・・・　オブジェクト
　でいいと思います。……歯切れの悪い言い方なのは、まだまだこの両
者の使い分けが定まっていないためです。今後、知見が集まり定まって
くると思いますが、今はこれで問題ありません。
＜使い方＞

リスト11.1:

 1: import { reactive, ref } from 'vue';

 2:

 3: // ref関数

 4: const count = ref(0);

 5: count.value++;

 6:

 7: // reactive関数

 8: const state = reactive({

 9: count: 0,

10: });

11: state.count++;

　ここで、reactiveに関しての注意点があります。reactive変数を分割
代入をすることでリアクティブが失われてしまいます。公式ページの例を
見てみます。

リスト11.2:

 1: import { reactive } from 'vue'
 2:

 3: const book = reactive({

 4: author: 'Vue Team',

 5: year: '2020',

 6: title: 'Vue 3 Guide',

 7: description: 'You are reading this book right now
;)',

 8: price: 'free'

 9: })

10:

11: let { author, title } = book

　この場合、authorとtitleはリアクティブでなくなるので、注意する必
要があります。もし、分割代入で取得したい場合はtoRefs関数を使う
と、リアクティブのまま取得することができます。具体的には以下のよう
にします。

リスト11.3:

 1: let { author, title } = toRefs(book)

　toRefs関数で取得した後の変数はrefとなりますので、script内で
値を参照する場合は変数.valueになることにも注意してください。

11.2　算出プロパティー

　VueではHTML内にマスタッシュ構文を使えば、JavaScriptの式を記
述することができます。たとえば{{ 1 + 1 }}をHTML内に書くと、画面上
は「2」が表示されます。{{ todoRef + 'を入力' }}のように変数も使うこ
とができます。

　このような簡単な式なら問題ありませんが、複雑な処理が必要にな
ってくると使い勝手が悪くなっていきます。また、同じ処理を使いたい場
合やそれをメンテナンスする場合にも、同様に使いづらくなっていきま
す。

　そういう場合にVueには「算出プロパティ」（computed）という機
能が用意されています。算出プロパティーは、関数で処理した結果を変
数のように使うことができます。

　では、TODOアプリを使って算出プロパティーを見てみましょう。
TODOの完了と未完了の数を見られるように、機能を追加します。
　まずは完了と未完了のレイアウトを作ります。templateとstyleの一
番下に以下を記述します。

リスト11.4: my-vite-todo/src/components/MainTodo.vue

 1: // template

 2: <div class="finCount">

 3: 完了：、

 4: 未完了：

 5: </div>

 6:

 7: // style

 8: .finCount {

 9: margin-top: 8px;

10: font-size: 0.8em;

11: }

　完了したTODOというのはcheckedがtrueになっていますので、filter
関数を使って数えていきます。filter関数の使い方は前述のfind関数
と同じです。
　find関数は条件に一致した最初のものが返りますが、filter関数は
条件に一致したものすべてが配列として返ってきます。

　TODO一覧から完了したTODOを数える処理を算出プロパティーを
使って書いてみます。useTodoList.jsに以下の処理を追加してくださ
い。書き方はこれまで書いてきたような関数をcomputed()で丸ごと囲
むような形になります。

リスト11.5: my-vite-todo/src/composables/useTodoList.js

 1: import { computed, ref } from 'vue'; // computedを追加

 2:

 3: // 追加

 4: const countFin = computed(() => {

 5: // todo.checkedは「true/false」が入っているため、trueのtodoが返
る

 6: const finArr = todoListRef.value.filter((todo) =>
todo.checked);

 7: return finArr.length;

 8: });

 9:

10: // countFinを追加

11: return { todoListRef, add, show, edit, del, check,
countFin };

　呼び出す側のMainTodo.vueは以下です。

リスト11.6: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: // countFinを追加

 3: const {

 4: todoListRef,

 5: add,

 6: show,

 7: edit,

 8: del,

 9: check,

10: countFin

11: } = useTodoList();

12:

13: // template

14: <div class="finCount">

15: 完了：{{ countFin }}、 <!-- countFinを追
加 -->

16: 未完了：

17: </div>

　これで画面のチェックボックスを操作してみてください。完了の数字が
チェックに合わせて増減していれば、うまく機能しています。

　次に未完了の方ですが、その前に先ほどの算出プロパティーと関数
の違いを見ていきましょう。MainTodo.vueにTODOを数える関数を書
いてみましょう。内容はcountFinと同じです。

リスト11.7: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: const countFinMethod = () => {
 3: const finArr = todoListRef.value.filter((todo) =>
todo.checked);

 4: return finArr.length;

 5: };

 6:

 7: // template

 8: <div class="finCount">

 9: 完了：{{ countFin }}、

10: 未完了：{{ countFinMethod() }} <!-- 関
数なので()が付きます -->

11: </div>

　先ほどと同じようにチェックボックスを操作してみてください。完了も未
完了も同じように数字が増減するはずです。

　算出プロパティーと関数の結果だけ見ればまったく同じになりますが、
算出プロパティーはリアクティブな依存関係に基づいてキャッシュされると
いう違いがあります。
　算出プロパティーはリアクティブな変数が変更された場合にのみ再評
価され、関数は再レンダリングが起こるたびに処理を実行します。

　これらを確認するため、ログを算出プロパティーと関数に仕込んでくだ
さい。

リスト11.8: my-vite-todo/src/composables/useTodoList.js

 1: const countFin = computed(() => {

 2: console.log('computed'); // 追加

 3: const finArr = todoListRef.value.filter((todo) =>
todo.checked);

 4: return finArr.length;

 5: });

リスト11.9: my-vite-todo/src/components/MainTodo.vue

 1: const countFinMethod = () => {
 2: console.log('method'); // 追加

 3: const finArr = todoListRef.value.filter((todo) =>
todo.checked);

 4: return finArr.length;

 5: };

　 チ ェ ッ ク ボ ッ ク ス に チ ェ ッ ク を 付 け て も 外 し て
も'computed'と'method'の両方がコンソールに表示されると思いま
す。

　入力欄に何か入力したり、編集ボタンを押してみてください。今度
は'computed'は表示されず、'method'のみ何回も表示されたかと思
います。

　これは先ほどの説明した「リアクティブな変数が変更された場合にの
み再評価」が効いているからです。入力欄に何か入力したり、編集ボ
タンを押してもtodoListRefというリアクティブな変数は何も影響されな
いため、computedはキャッシュされた値を返すだけとなっています。

　では、そろそろ未完了のほうも実装していきます。これは完了と同じ
ように関数にしてもいいのですが、ここではマスタッシュ構文の中に式を
書いてみましょう。

リスト11.10: my-vite-todo/src/components/MainTodo.vue
 1: // template

 2: <div class="finCount">

 3: 完了：{{ countFin }}、

 4: 未 完 了 ： {{ todoListRef.length - countFin }}

 5: </div>

11.3　コンポーネント間のやりとり（親から子へ）

　TODOアプリで使っているボタンは追加、編集、削除、変更といろい
ろありますが、<button>タグにCSSで変化を付けただけでほとんど同じ
作りになっています。

　上記以外のボタンが増えても同じページで使う分には問題ありませ
んが、もし他のページで同じようなボタンが必要となった場合はどうなる
のでしょうか。

　ボタンのCSSをコピーしてその他のページに持っていかなければなりませ
ん。そのCSSをグローバルな場所に持っていっても実現できますが、数が
多くなってくると複雑になってくるのは目に見えていますので、ここはボタ
ンをコンポーネント化してみましょう。

　コンポーネント化するにしても、そのプロジェクトの規模や作り手の判
断でいろいろな方法が考えられます。本書ではその中のひとつの方法
だということは覚えておいてください。唯一の方法ではありません。

　追加、編集、削除、変更のボタンの方を並べて見てみましょう。

リスト11.11:

 1: <button class="btn green" @click="editTodo" v-
if="isEditRef">変更</button>

 2: <button class="btn" @click="addTodo" v-else> 追 加
</button>

 3: <button class="btn green" @click="showTodo(todo.id)">編
</button>

 4: <button class="btn pink" @click="deleteTodo(todo.id)">
削</button>

　classや@clickが若干違うだけで、CSSを含めてほとんど同じです。
では、それらのボタンの共通となる部分を抜き出して、基本となるコン
ポーネントを作ってみましょう。
　componentsフォルダーにBaseButton.vueを作り、基本的なボタン
を実装します。@clickは空だとエラーになるので、適当な関数を入れて
います。

リスト11.12: my-vite-todo/src/components/BaseButton.vue

 1: <script setup>

 2: const aaa = () => {};

 3: </script>

 4:

 5: <template>

 6: <button class="btn" @click="aaa">XXX</button>

 7: </template>

 8:

 9: <style scoped>

10: .btn {

11: padding: 8px;

12: background-color: #03a9f4;

13: border-radius: 6px;

14: color: #fff;

15: text-align: center;

16: font-size: 14px;

17: }

18: </style>

　この状態でMainTodoから呼び出してみましょう。

リスト11.13: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: // 追加

 3: import BaseButton from

'/src/components/BaseButton.vue';

 4:

 5: // template

 6: <template>

 7: <BaseButton /> <!-- 追加 -->

　以下のような状態になるかと思います。

図11.1:

　次は「XXX」の部分を追加、編、削、変更にしますが、これは呼び出
し側から指定してもらいます。今回はスロットコンテンツと呼ばれる
<slot>要素を使います。

　呼び出し側の<BaseButton />を以下のようにしてください。

リスト11.14: my-vite-todo/src/components/MainTodo.vue

 1: // template

 2: <BaseButton>追加</BaseButton> // 変更

　続いて、BaseButton.vueの方も<slot>要素を追加します。

リスト11.15: my-vite-todo/src/components/BaseButton.vue

 1: <template>

 2: <!-- 「XXX」を<slot />に変更 -->

 3: <button class="btn" @click="aaa"><slot /></button>

 4: </template>

　画面のボタンが「XXX」から「追加」に変わったのではないでしょうか。
「追加」の部分を変えることにより、いろいろなボタンが作成できます。こ
のように<slot>を使うと、呼び出し側のコンポーネントタグで挟まれたも
のがそのコンポーネントの<slot>に置き換わります。

スロット内
　スロットには、HTMLを含む任意のテンプレートコードを含めることもできます。

　これでボタン名の変更はできましたので、次はボタンの色について見
ていきます。これも、どの色にするかは呼び出し側から指定してもらわな
ければなりません。
　MainTodoコンポーネントを「親」、BaseButtonコンポーネントを「子」
とした場合、親から子へはプロパティーを通して情報を渡すことができま
す。
　「編」ボタンは緑色なので、BaseButton.vue（子）に緑色のCSSを
用意して、それを呼び出し側（親）から指定してもらうようにします。

　 MainTodo.vue に 編 集 ボ タ ン を 追 加 し ま す 。 こ の と き 、 緑 色
（green）のCSSをcolorというプロパティー名で指定します。
　親から子へボタンの色をcolorというプロパティー（props）を通して
子に伝えます。

リスト11.16: my-vite-todo/src/components/MainTodo.vue

 1: // template

 2: <BaseButton>追加</BaseButton>

 3: <BaseButton color="green">編</BaseButton> <!-- 追加 --
>

　BaseButton.vueに緑色のCSSを追加します。そして、親からのプロ
パティーを受け取るには、definePropsというものを使います。propsと
いう名称は何でもよいですが、慣習的にpropsがよく使われます。そし
て、受け取ったpropsからcolorを取り出してCSSに当てます。

リスト11.17: my-vite-todo/src/components/BaseButton.vue

 1: <script setup>

 2: // 親からのプロパティー：colorを取得

 3: const props = defineProps({ color: String });

 4: const aaa = () => {};

 5: </script>

 6:

 7: <template>

 8: <!-- :classを追加 -->

 9: <button class="btn" :class="props.color"
@click="aaa">

10: <slot />

11: </button>

12: </template>

13:

14: <style scoped>

15: // 追加

16: .green {

17: background-color: #00c853;

18: }

19: </style>

　defineProps は 、 () の 中 に プ ロ パ テ ィ ー 名 （ color ） と そ の 型
（String）を書きます。「プロパティー：color」は文字列で受け取りま
すよ、という意味になります。

　プロパティーの型はStringの他にもNumber、Boolean、Array、
Object、Function、Promiseとありますので、適切な型を割り当ててく
ださい。型と値が合っていなければ、コンソールに警告が表示されます。

複数の型
　複数の型を使いたい場合は配列で指定します。
　　例）color: [String, Number]

　 青 色 も btn ク ラ ス か ら 取 り 出 し て 独 立 さ せ 、 ピ ン ク 色 も
BaseButton.vueに追加してください。

リスト11.18: my-vite-todo/src/components/BaseButton.vue

 1: <style scoped>

 2: .btn {

 3: padding: 8px;

 4: background-color: #03a9f4; // 削除

 5: border-radius: 6px;

 6: color: #fff;

 7: text-align: center;

 8: font-size: 14px;

 9: }

10:

11: // 追加

12: .blue {

13: background-color: #03a9f4;

14: }

15:

16: .green {

17: background-color: #00c853;

18: }

19:

20: // 追加

21: .pink {

22: background-color: #ff4081;

23: }

24: </style>

　そして、残りの削除ボタンと変更ボタンも作ります。

リスト11.19: my-vite-todo/src/components/MainTodo.vue

 1: // template

 2: <BaseButton color="blue">追加</BaseButton>

 3: <BaseButton color="green">編</BaseButton>

 4: <BaseButton color="pink">削</BaseButton>

 5: <BaseButton color="green">変更</BaseButton>

図11.2:

11.4　コンポーネント間のやりとり（子から親へ）

　基本ボタンコンポーネントでの残りは、@clickになりました。それぞれ
のボタンが押されたら、それぞれに合った処理を行わないといけません。
propsでそれぞれのボタンを判別する値を受け取り、@clickの処理を
分岐させてもいいのですが、それ以外のボタンが増えるたびに処理も追
加していくのは、現実的ではありません。

　こういう場合は、ボタンが押されたことを親に知らせます。そして、親
側でボタンが押されたときの処理を行うようにします。そうすれば、この
基本ボタンコンポーネントも汎用的に使うことができます。
　子から親に通知する方法にemitというものがあり、defineEmitsで
定義します。

　ボタンが押されたときの処理@clickで親に通知してみます。
　・① defineEmitsを使って親に伝えるための名称を定義します。

→　'on-click'
　・② emit関数を使って親に通知します。そのときにdefineEmitsで

定義した名称を指定します。

リスト11.20: my-vite-todo/src/components/BaseButton.vue

 1: <script setup>

 2: const props = defineProps({ color: String });

 3: const emit = defineEmits(['on-click']); // ①

 4: const onClick = () => {

 5: emit('on-click'); // ②

 6: };

 7: </script>

 8:

 9: <template>

10: <button class="btn" :class="props.color"
@click="onClick">

11: <slot />

12: </button>

13: </template>

　・③ 親側では子コンポーネントにemitで指定した'on-click'に@を付
けて受け取ります。あとは@clickのときと同じように使います。

リスト11.21: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: // 追加

 3: const test= () => {

 4: console.log('test');

 5: };

 6:

 7: // template

 8: <!-- お試し用に追加ボタンのみ -->

 9: <BaseButton color="blue" @on-click="test"> 追 加
</BaseButton>

　emitは引数も渡すことができます。emitに第２引数を与えるだけで
す。

リスト11.22: my-vite-todo/src/componeents/BaseButton.vue
 1: // script

 2: const onClick = (str) => {

 3: emit('on-click', str);

 4: };

 5:

 6: // template

 7: <button class="btn" :class="props.color"
@click="onClick('あああ')">

リスト11.23: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: const test = (str) => {

 3: console.log('test', str);

 4: };

　これでコンソールに「test あああ」と出ていれば、うまく引数が渡ってい
ます。確認後は元の引数なしの状態に戻しておいてください。

　それでは、以上を踏まえてHome.vueのボタンをすべて置き換えてい
き ま し ょ う 。 そ の 前 に MainTodo.vue か ら 確 認 用 の test 関 数 と
<template>直下のBaseButton×4は削除してください。

リスト11.24: my-vite-todo/src/components/MainTodo.vue

 1: // 変更前

 2: <button class="btn green" @click="editTodo" v-
if="isEditRef">

 3: 変更

 4: </button>

 5: <button class="btn" @click="addTodo" v-else> 追 加
</button>

 6: <button class="btn green" @click="showTodo(todo.id)">

 7: 編

 8: </button>

 9: <button class="btn pink" @click="deleteTodo(todo.id)">

10: 削

11: </button>

12:

13: // 変更後

14: <BaseButton color="green" @on-click="editTodo" v-
if="isEditRef">

15: 変更

16: </BaseButton>

17: <BaseButton color="blue" @on-click="addTodo" v-else>

18: 追加

19: </BaseButton>

20: <BaseButton color="green" @on-
click="showTodo(todo.id)">

21: 編

22: </BaseButton>

23: <BaseButton color="pink" @on-
click="deleteTodo(todo.id)">

24: 削

25: </BaseButton>

　変更前の<button>を変更後の<BaseButton>にしてください。
TODOを追加、変更、削除をして、以前と同じ動きになっていれば成
功です。

　ボタンはこれで問題ないように思いますが、もう少し規模が大きくなっ
ていき、ボタンも至るところで使われるようになると、誤差が出てくるかも
しれません。たとえば、追加ボタンの色は青ですが、間違って緑にしてし
まったり、「追加」を「追　加」と間にスペースが入ったりしたら統一感が
なくなります。

　これらを防ぐため、もう一段階コンポーネント化し、追加、編集、削
除、変更専用のボタンを作ることもあります。追加ボタンを例にします。
　componentsフォルダーにButtonAdd.vueを作り、以下のようにして
ください。

リスト11.25: my-vite-todo/src/components/ButtonAdd.vue

 1: <script setup>

 2: import BaseButton from
'/src/components/BaseButton.vue';

 3: const emit = defineEmits(['add-click']);

 4: </script>

 5:

 6: <template>

 7: <BaseButton color="blue" @on-click="emit('add-

click')">

 8: 追加

 9: </BaseButton>

10: </template>

　onClickの処理がBaseButton → ButtonAdd → MainTodoと、
バケツリレーになってしまうのですが、これで誰が追加ボタンを使っても同
じ見た目にすることができます。emitもこれくらいの記述なら、@on-
clickに"emit('add-click')"と直接書いてもいいでしょう。
　MainTodo.vueのほうも書き変えます。

リスト11.26: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: import ButtonAdd from '/src/components/ButtonAdd.vue';

 3:

 4: // template

 5: <ButtonAdd @add-click="addTodo" v-else />

　このように専用のボタンを作ると使い勝手はよくなりますが、ファイル
が増えたりそれ以外の文言のボタンを作るときは若干手数が増えま
す。

　この辺りはプロジェクトの方針に従ってうまく調整しながら作ってみてく
ださい。

第12章　ライフサイクル

　Vueインスタンスの発生から消滅までの状態をライフサイクルといいま
す。その時々の状態をフックで処理を行うことができます。たとえば、画
面が表示される前に何らかの処理をしたり、コンポーネントが更新され
た直後に処理したい場合です。

　♦ここで学べること
　・ライフサイクルフック

12.1　ライフサイクルフック

　ライフサイクルフックについては以下の通りです。
　・onBeforeMount、onMounted
　・onBeforeUpdate、onUpdated
　・onBeforeUnmount、onUnmounted
　・onErrorCaptured
　・onRenderTracked、onRenderTriggered
　・onActivated、onDeactivated
　 こ の よ う に 様 々 な 種 類 が あ り ま す が 、 本 書 で は よ く 使 う
onMounted、onUpdated、onUnmountedについて見ていきます。
before～は、それぞれのフックの前に呼ばれると思ってください。

12.2　onMounted

　Vue3以前にはcreatedというライフサイクルフックがあったのですが、
Vue3からはsetup内に直接書くことにより実現するようになりました。
createdはonMountedより前に呼ばれます。もう少しいいますと、
created は Vue イ ン ス タ ン ス の 発 生 か ら DOM の 生 成 前 ま で 、
onMountedはDOMの生成後に呼ばれます。

　TODOアプリを使って見てみましょう。MainTodo.vueの<script>の
上のほうにonMounted、下のほうにconsole.log('setup');を記述しま
す。これで画面を更新してみてください。

リスト12.1: my-vite-todo/src/components/MainTodo.vue

 1: <script setup>

 2: import { onMounted, ref } from 'vue';

 3:

 4: // 上のほうに記述

 5: onMounted(() => {

 6: console.log('onMounted');

 7: });

 8:

 9: // 下のほうに記述

10: console.log('setup');

11: </script>

　コンソールにsetup、onMountedの順番でログが出力されたのでは
な い で し ょ う か 。 こ れ で ソ ー ス で の 順 番 は 前 後 し て も setup 、
onMountedの順番で呼び出されることが確認できました。

　次にDOMの生成前後を見てみましょう。説明用にTODOの入力欄
に id 属 性 を 持 た せ て く だ さ い 。 そ し て 、 setup 、 onMounted で
getElementByIdを使ってDOMを操作します。

リスト12.2: my-vite-todo/src/components/MainTodo.vue

 1: // script

 2: const todoRef = ref('abc'); // TODO入力欄に初期値「abc」を持
たせる

 3:

 4: // setupでTODO入力欄を取得

 5: const inpSetup = document.getElementById('inp');

 6: console.log(inpSetup);

 7:

 8: // onMountedでTODO入力欄を取得

 9: onMounted(() => {

10: const inpMmount =
document.getElementById('inp').value;

11: console.log(inpMmount);

12: });

13:

14: // template

15: <input

16: id="inp"　// 追加

17: type="text"

18: class="todo_input"

19: v-model="todoRef"

20: placeholder="＋ TODOを入力"

21: />

　setupで値が取れないのは、まだDOMが生成されていないため、
TODO入力欄が存在しないからです。「.value」を付けると、存在しな
いDOMに対してアクセスしようとしてエラーになります。
　onMountedのほうは「abc」という値が取れたと思います。これは
DOMが生成された後にアクセスしたからです。

　setupではデータベース（本書ではローカルストレージ）からデータを
取ってきたり、画面を表示する前の処理を行います。onMountedは
画面が表示された後、たとえばTODO一覧が表示された後に特定の
TODOにチェックを付けたりしたい場合に使います。

12.3　onUpdated

　onUpdatedはコンポーネントが再描画されたときに呼び出されます。
入力欄の値をonUpdatedで見てみることにしましょう。以下のように記
述し、入力欄に値を入力してください。

リスト12.3: my-vite-todo/src/components/MainTodo.vue

 1: onUpdated(() => {

 2: console.log('onUpdated: ', todoRef.value);

 3: });

　半角英数字モードで入力した場合、１文字入力するごとにコンソー
ルに値が表示されると思います。全角の場合でもEnterキーで確定した
瞬間にその値が表示されたと思います。

　また、追加や編集、削除ボタンを押しても入力欄の値が表示されま
す。画面上ではわからなくても、Vueの中ではコンポーネントが再描画さ
れています。そしてそれをonUpdatedが検知し、コンソールに値を表示
しています。

12.4　onUnmounted

　onUnmountedはコンポーネントが破棄されたときに呼び出されま
す。これは破棄対象となるコンポーネントに書く必要があるので、
ButtonAdd.vueにonUnmountedを記述してください。

リスト12.4: my-vite-todo/src/components/ButtonAdd.vue

 1: // script

 2: // 追加

 3: import { onUnmounted } from 'vue';

 4:

 5: onUnmounted(() => {

 6: console.log('onUnmounted');

 7: });

　編集ボタンを押してみてください。コンソールに「Unmounted」と表示
されます。
　編集ボタンを押すことで、v-ifによって追加ボタンが破棄されます。そ
の破棄されるタイミングでUnmountedは呼び出されます。

　このようにVueインスタンスのライフサイクルに沿っていろいろなフックが
存在し、その時々の場面に応じた処理を行うことができます。

第13章　Vue Router

　Vueは基本的にSPA（シングル・ページ・アプリケーション）ですが、リ
ンクで他のページに画面を遷移することもできます（厳密には、遷移し
たように見せると言ったほうがいいかもしれませんが）。
　それを実現するには、Vueの公式ルータである「Vue Router」を使用
します。

　♦ここで学べること
　・Vue Router
　・リアクティブの監視（watch）

13.1　インストール

　まずはVue Routerをインストールします。以下のコマンドでインストー
ルを実施してください。Vue3の場合はバージョン4を使います。

npmの場合
$ npm install vue-router@4

yarnの場合
$ yarn add vue-router@4

13.2　Vue Routerを使うための準備をする

　Vue Routerを使うための設定ファイルを作っていきます。src配下に
「router」フォルダー - 「index.js」ファイルを作ってください。内容は以下
の通りです。これが基本の設定となります。

図13.1:

リスト13.1: my-vite-todo/src/router/index.js
 1: import { createRouter, createWebHistory } from 'vue-
router';

 2:

 3: const routes = [];

 4:

 5: const router = createRouter({

 6: history: createWebHistory(),
 7: routes,

 8: });

 9:

10: export default router;

　次に、main.jsにVue Routerを使うための設定をします。

リスト13.2: my-vite-todo/src/main.js

 1: import { createApp } from 'vue';

 2: import App from './App.vue';

 3: import router from './router'; // 追加

 4:

 5: // 「.use(router)」を追加

 6: createApp(App).use(router).mount('#app');

　最後に、App.vueで<MainTodo />を呼び出している部分を
<router-view />に置き換えます。

リスト13.3: my-vite-todo/src/App.vue

 1: <script setup>

 2: import TheHeader from './components/TheHeader.vue';

 3: import TheFooter from './components/TheFooter.vue';

 4: import MainTodo from './components/MainTodo.vue'; //
削除

 5: </script>

 6:

 7: <template>

 8: <div class="wrap">

 9: <TheHeader />

10: <main class="main"><MainTodo /></main> <!-- 削除 --
>

11: <main class="main"><router-view /></main> <!-- 追加
-->
12: <TheFooter />

13: </div>

14: </template>

　画面がTODOのタイトルのみの表示になっていれば準備は完了で
す。

　Vue Routerを使うことでページという考えができました。ここからは、そ
のページ単位でアプリを作っていくことにします。それに伴い、src配下に
viewsまたはpagesというページの置き場所を作ります。どちらでもいい
のですが、本書ではpagesフォルダーにページを置いていくことにします。

　MainTodo.vueをpagesフォルダー配下に移動してください。

13.3　ルートを設定する

　Vue Routerの準備はできたので、ルートを設定して画面が表示でき
るようにします。ルートを設定することで、<router-view />がそれに紐
づいたページに置き換わります。今の画面が真っ白なのは、ルートの設
定がされていないためです。

　index.jsにルートを設定していきます。ルートはconst routes = [];の
配列に設定します。

リスト13.4: my-vite-todo/src/router/index.js

 1: import { createRouter, createWebHistory } from 'vue-
router';

 2: // 追加

 3: import MainTodo from '/src/pages/MainTodo.vue'; // ①

 4:

 5: const routes = [

 6: // 追加

 7: {

 8: path: '/', // ②

 9: name: 'MainTodo', // ③

10: component: MainTodo, // ④

11: },

12:];

13:

14: const router = createRouter({

15: history: createWebHistory(),
16: routes,

17: });

18:

19: export default router;

　・① 表示したいページのコンポーネントをインポートします。
　・② パスを設定します。ここではトップページとして「/」を設定します。

　→　「http://localhost:3000/」でアクセス
　・③ このルートに名前を付けます。（なくてもOK）
　・④ 表示したいコンポーネントを設定します。（①でインポートした名

称で）
　Vue Routerを導入する前の表示に戻っていれば成功です。
　もしも、「http://localhost:3000/mainTodo」でもアクセスしたい場
合は、以下のようにpathとnameを設定します。

リスト13.5: my-vite-todo/src/router/index.js

 1: const routes = [

 2: {

 3: path: '/',

 4: name: 'Top',

 5: component: MainTodo,

 6: },

 7: {

 8: path: '/mainTodo',

 9: name: 'MainTodo',

10: component: MainTodo,

11: },

12:];

　nameを使う場合は名前が重複しないようにします。
　これで
　・http://localhost:3000/
　・http://localhost:3000/mainTodo
　のどちらにアクセスしても、MainTodoコンポーネントのページが表示さ
れます。

http://localhost:3000/
http://localhost:3000/mainTodo
http://localhost:3000/
http://localhost:3000/mainTodo

13.4　ページを追加してみよう

　ここで新しくAboutページを追加してみましょう。pages配下に
About.vueを追加します。

リスト13.6: my-vite-todo/src/pages/About.vue

 1: <template>

 2: <div>About Page</div>

 3: </template>

　ページを作ったら、次はルートの設定をします。

リスト13.7: my-vite-todo/src/router/index.js

 1: // 追加

 2: import About from '/src/pages/About.vue';

 3:

 4: const routes = [

 5: {

 6: path: '/',

 7: name: 'Top',

 8: component: MainTodo,

 9: },

10: {

11: path: '/mainTodo',

12: name: 'MainTodo',

13: component: MainTodo,

14: },

15: // 追加

16: {

17: path: '/about',

18: name: 'About',

19: component: About,

20: },

21:];

　これで「http://localhost:3000/about」にアクセスしてみてください。
以下のようになっていれば成功です。

図13.2:

http://localhost:3000/about

13.5　遅延ローディングルートとは

　ローカル開発でビルドしている場合はあまり気にすることはありません
が、GitHubにプッシュした後にVercelではビルドが実行されています。
「View Build Logs」-「Deployment Status」の「Building」でビルド
時のログを見ることができます。

　ローカル開発でも以下のコマンドでビルドすることができます。

npmの場合
$ npm run build

yarnの場合
$ yarn build

　コマンド実行後、my-vite-todo配下にdistフォルダーが作られます。
その中のassetsフォルダーに、「index.0db3f86a.js」というようなjsファイ
ルが生成されます。

　これにTODOアプリのJavaScriptが書かれていますが、ページが増え
たりしてアプリが大きくなっていくにつれて、このjsファイルも肥大化してい
きます。そうすると、最初の読み込みに時間が掛かるようになってしまい
ます。

　それを防ぐためページごとにjsファイルを分割し、そのページを訪れたタ
イミングで読み込むようにします。このことを「遅延ローディングルート」とい
います。

　 そ の 方 法 を about ペ ー ジ を 使 っ て 実 現 し て み ま し ょ う 。
router/index.jsのAboutルートを以下のように書き変えてください。

リスト13.8: my-vite-todo/src/router/index.js

 1: import About from '/src/pages/About.vue'; // 削除

 2:

 3: const routes = [

 4: （略）

 5: {

 6: path: '/about',

 7: name: 'About',

 8: component: () => import('/src/pages/About.vue'),
// 変更

 9: },

10:];

　これでもう一度ビルドを実行してみてください。今度はassetsに
「About.cbcc88bc.js」が作られていると思います。これは、index.jsか
らAboutページのJavaScriptが分離された状態です。そして、最初のト
ップページではAboutに関するJavaScriptは読み込まれず、Aboutペー
ジに遷移したタイミングで読み込まれます。

13.6　404ページに誘導する

　現在のTODOアプリのアドレスは以下の３つです。
　・http://localhost:3000/
　・http://localhost:3000/mainTodo
　・http://localhost:3000/about
　もし、これ以外のページのアドレスが指定されたらどうなるでしょうか。
　試しに「http://localhost:3000/other」などとしてみてください。ヘッ
ダーとフッターしかない真っ白なページになったと思います。これは最初に
ルートを設定しなかった場合と同じです。

　このように存在しないページが指定された場合、404ページに遷移す
るようにしたいと思います。
　では、先に404エラーのページを作成します。pagesフォルダー配下に
NotFound.vueを作成し、以下の内容をコピーしてください。

リスト13.9: my-vite-todo/src/pages/NotFound.vue

 1: <template>

 2: <div class="error">

 3: <div class="code">

 4: <p>404</p>

 5: </div>

 6: <div class="msg_en">

 7: <p>Page</p>

 8: <p>Not</p>

 9: <p>Found</p>

10: </div>

11: </div>

12: <div class="msg_ja">お探しのページは見つかりませんでした。</div>

13: </template>

14:

http://localhost:3000/
http://localhost:3000/mainTodo
http://localhost:3000/about
http://localhost:3000/other

15: <style scoped>

16: .error {

17: margin-top: 20px;

18: display: flex;

19: justify-content: center;

20: gap: 20px;

21: }

22:

23: .code {

24: font-size: 64px;

25: font-weight: bold;

26: color: #888;

27: }

28:

29: .msg_en {

30: margin-top: 8px;

31: }

32:

33: .msg_ja {

34: font-size: 18px;

35: text-align: center;

36: }

37: </style>

　404ページの用意ができたら、次はそのルートを設定します。ルート設
定にNotFoundを追加してください。

リスト13.10: my-vite-todo/src/router/index.js

 1: // 追加

 2: import NotFound from '/src/pages/NotFound.vue';

 3:

 4: const routes = [

 5: {

 6: path: '/',

 7: name: 'Top',

 8: component: MainTodo,

 9: },

10:

11: ～（略）～

12:

13: // 追加

14: {

15: // 存在しないアドレスにマッチするような指定

16: path: '/:pathMatch(.*)*',

17: name: 'NotFound',

18: component: NotFound,

19: },

20:];

　http://localhost:8080/otherにアクセスしてみてください。404ペー
ジが表示されるようになります。

図13.3:

http://localhost:8080/other

13.7　リンクからページ遷移する

　Vue Routerのルートの書き方は先ほど学んだところですが、リンクか
らの遷移はどうするのでしょうか。aboutページにリンクから遷移できるよ
うにしてみましょう。

　まずはリンクメニューを作っていきますが、Vue Routerの遷移は内部
リンクの場合は<a>タグでなく</router-link>を使います。to属性に
遷移したいルートのpathを指定します。

リスト13.11: my-vite-todo/src/App.vue

 1: <template>

 2: <div class="wrap">

 3: <TheHeader />

 4: <!-- 追加↓ -->

 5: <nav>

 6: <router-link to="/">Home</router-link>

 7: | <router-link to="/about">About</router-link>

 8: </nav>

 9: <!-- 追加↑ -->

10: <main class="main"><router-view /></main>

11: <TheFooter />

12: </div>

13: </template>

リンクについて
　内部リンク ・・・ プロジェクト内のページ
　外部リンク ・・・ Yahoo!やGoogleのようなプロジェクト外のサイト

　to属性に書いたアドレスとルートで設定したアドレスが一致しないと、
リンクは成功しません。よって、プロジェクト外の外部リンクを設定しても
遷移することはできません。外部リンクへは<a>タグを使って実現しま
す。

　内部リンクは<router-link>タグではなく<a>タグでも遷移はできま
すが、遷移するたびにページ全体を再読み込みします。<router-link>
の場合は<router-view />内が置き変わるだけなので、高速に遷移
することができます。

13.8　プログラムからページ遷移する

　次は、プログラム（script）から呼び出して遷移する方法を見ていき
ましょう。ボタンやリンクを押したとき、すぐに遷移するのではなく何らか
の処理をした後に遷移したい場合などに使います。
　メニューに「Blog」を追加し、@clickでBlogページに遷移するようにし
てみましょう。まずはpagesにBlog.vueファイルを作成します。

図13.4:

リスト13.12: my-vite-todo/src/pages/Blog.vue

 1: <script setup>

 2: console.log('blog');

 3: </script>

 4:

 5: <template>

 6: <p>blog page</p>

 7: </template>

　次にメニューに「Blog」を追加し、@clickイベントも追加してください。

リスト13.13: my-vite-todo/src/App.vue

 1: <template>

 2: <div class="wrap">

 3: <TheHeader />

 4: <nav>

 5: <router-link to="/">Home</router-link>

 6: | <router-link to="/about">About</router-link>

 7: | Blog <!-- 追加 --
>

 8: </nav>

 9: <main class="main"><router-view /></main>

10: <TheFooter />

11: </div>

12: </template>

　scriptの方にはgoBlogの行を追加し、onClickで関数を呼び出せ
るようにします。関数の方も以下のように追加してください。

リスト13.14: my-vite-todo/src/App.vue

 1: <script setup>

 2: import TheHeader from './components/TheHeader.vue';

 3: import TheFooter from './components/TheFooter.vue';

 4: import { useRouter } from 'vue-router'; // 追加

 5:

 6: // 追加

 7: const router = useRouter();

 8: const goBlog = () => {

 9: router.push('/blog');

10: };

11: </script>

　scriptではuseRouterをインポートし、router.push()で遷移すること
ができます。
　うまく遷移できたでしょうか。

図13.5:

13.9　動的ルート

　ブログ形式などでよく使われるURLに「blog/1」、「blog/2」というよ
うな、記事によって数字の部分が動的に変わることがあります。
　このような場合は、routesの設定を特別なものにします。パスの動的
となる部分に「:」コロン付きの名前を当てます。今回はブログのIDを当
ててみます。

リスト13.15: my-vite-todo/src/router/index.js

 1: const routes = [

 2: // 追加

 3: {

 4: path: '/blog/:id', // 「:id」を追加

 5: name: 'Blog',

 6: component: () => import('/src/pages/Blog.vue'),

 7: },

 8:];

　リンクの設定にBlog1とBlog2を追加します。

リスト13.16: my-vite-todo/src/App.vue

 1: <template>

 2: <div class="wrap">

 3: <TheHeader />

 4: <div id="nav">

 5: <router-link to="/">Home</router-link> |

 6: <router-link to="/about">About</router-link>

 7: | Blog

 8: <!-- 追加 -->

 9: | <router-link to="/blog/1">Blog1</router-link>

10: <!-- 追加 -->

11: | <router-link to="/blog/2">Blog2</router-link>

12: </div>

13: <main class="main"><router-view /></main>

14: <TheFooter />

15: </div>

16: </template>

　これで動的ルートの設定は完了しました。
　しかし、ここで以下の問題が出てきました。
　・① 「/blog」のリンクが404エラーとなる
　・② 「/blog」、「/blog/1」、「/blog/2」が再描画されない
　順番に見ていきましょう。

　①は単純にroutesからpath: '/blog'の記述がなくなったため、存在
しないURLとされたためです。routesに「/blog」のパスを追加することに
より解決します。

リスト13.17: my-vite-todo/src/router/index.js

 1: {

 2: path: '/blog/:id',

 3: name: 'BlogId', // 「Blog」から「BlogId」に変更

 4: component: () => import('/src/pages/Blog.vue'),

 5: },

 6: // 追加

 7: {

 8: path: '/blog',

 9: name: 'Blog',

10: component: () => import('/src/pages/Blog.vue'),

11: },

　nameオプションは名前付きルートと呼ばれるときに使います。このと
き、名前が重複しないように設定します。

nameオプション
　nameオプションの使い方は今までURLで指定したところをnameで指定した名
前にします。すると、その名前のpathがルートに設定されます。

リスト13.18:

 1: // template

 2: <router-link :to="{ name: 'BlogId', params: { id: 1
}}">

 3: Blog1

 4: </router-link>

 5:

 6: // script

 7: router.push({ name: 'BlogId', params: { id: 1 } })

　②は見た目ではわからないので、次の「パラメータ渡し」で見ていくこと
にしましょう。

13.10　パラメータ渡し

　今回、ブログのURLとして末尾にIDを設定しました。この動的ルート
の使い方として、URLからIDを取得してそのIDの記事を取得したりしま
す。

　 routes で 設 定 し た '/blog/:id' の よ う に
「http://localhost:3000/blog/1」の「1」を取得するにはuseRoute()
を使います。前述のuseRouter()と間違わないようにしてください。
　遷移先のblog.vueで、以下のように書きます。

リスト13.19: my-vite-todo/src/pages/Blog.vue

 1: <script setup>

 2: import { useRoute } from 'vue-router';

 3:

 4: const route = useRoute();

 5: const id = ref(route.params.id); // routesで設定した「:id」
と同じ名前

 6: </script>

 7:

 8: <template>

 9: <h1>blog page</h1>

10: <p>blog id = {{ id }}</p>

11: </template>

　routeのparamsにroutesで設定した名前でURLから取り出すことが
できます。Blog1、Blog2とリンクを押してみてください。

　ここで気づかれたかと思いますが、アドレスは「/blog/1」と「/blog/2」
と変わっていきますが、画面の「blog id = 」に続く数字は「1」か「2」の

どちらかしか表示されません。

　これが「②」の問題点です。「/blog/1」と「/blog/2」とパラメータは変
わっていきますが、コンポーネントはBlog.vueの同じインスタンスを利用
しているからです。

　これはコンポーネントのライフサイクルフックが呼ばれないことを意味
しています

13.11　リアクティブの監視

　「②」の問題点を解決するには、watch APIを使います。watchは特
定の値を監視することができます。今回の場合、アドレス（ルート）を
監視し、それの変化をキャッチすれば処理を行うことができます。

　以下のように書き変えてください。IDの取得とコンソールへの出力を
watchの内外で比べてみましょう。

リスト13.20: my-vite-todo/src/pages/Blog.vue

 1: <script setup>

 2: import { watch } from 'vue'; // 追加

 3: import { useRoute } from 'vue-router';

 4:

 5: const route = useRoute();

 6: const id = route.params.id;

 7: console.log('watch外：', id); // 追加
 8:

 9: // 追加

10: watch(route, () => {

11: id.value = route.params.id;

12: console.log('watch内：', id.value);

13: });

14: </script>

15:

16: <template>

17: <p>blog page</p>

18: <p>blog id = {{ id }}</p>

19: </template>

　これでメニューの「Blog1」、「Blog2」と押してみてください。アドレスは
「/blog/1」と「/blog/2」と変化しつつ、画面の「blog id = 」に続く数
字とコンソールログもそれに応じた値になっていきます。

　コンソールログの初回は「watch外：1」になり、その後は「watch内」
になっていると思います。初回だけBlogコンポーネントが呼び出され
（watch外）、その後、同じコンポーネントだった場合は初回のコンポ
ーネントを利用するためです。そのためwatchで特定の値を監視する
（watch内）ことでその変化を捉えます。

複数監視
　監視したい対象が複数ある場合、配列にして渡すことで実現できます。

リスト13.21:

 1: const valA = ref('A');

 2: const valB = ref('B');

 3: watch([valA, valB], () => {

 4: console.log(valA, valB);

 5: });

第14章　外部API連携

　これまではローカルストレージでデータのやりとりをしていましたが、サーバ
ー ・ クライアント間でやりとりする方法を見ていきます。
　この章はVueの機能ではありませんが、API連携はよく使う機能なの
で紹介します。

　♦ここで学べること
　・JSON Placeholder
　・fetch API

14.1　JSON Placeholderとは

　JSON Placeholderはダミーデータを返してくれるAPIサービスです。
　サイトはhttps://jsonplaceholder.typicode.com/です。ここにはブ
ログ、コメント、写真やユーザーのようなダミーデータが用意されています。
それをAPI経由でhttps://jsonplaceholder.typicode.com/postsのよ
うにすれば、取得することができます。

　まだ開発の初期でサーバー側を用意できないときに簡単にデータを取
得することができて便利です。名前の通り、取得してくるデータはjson形
式です。
　今回はこのJSON Placeholderを利用して、ブログのデータがサーバー
に登録されているという想定で学習していきます。

https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/posts

14.2　Fetch APIでデータを取得する

　Fetch APIを簡単に説明すると、サーバーからデータを取得するための
インターフェースであり、Webブラウザーの標準APIです。Ajaxに変わる通
信方法の主流になってきています。

　Fetch APIを使って、さきほどのJSON Placeholderからブログのデータ
を取得してみます。
　サイトの中ほどにある「Resources」の「/posts」をクリックしてみてくだ
さい。以下のようなダミーデータが表示されたかと思います。このデータを
取得してみます。

図14.1:

https://jsonplaceholder.typicode.com/posts

　https://jsonplaceholder.typicode.com/posts

図14.2:

　このデータを取得するには、以下のようにfetch APIを使います。

リスト14.1: my-vite-todo/src/pages/Blog.vue

 1: <script setup>

 2: ～（略）～

 3:

 4: const posts = ref([]);

 5: const fetchData = async () => {

 6: const response =

 7: await
fetch('https://jsonplaceholder.typicode.com/posts');

 8: posts.value = await response.json();

 9: };

10: fetchData();

11: </script>

https://jsonplaceholder.typicode.com/posts

　fetch(URL)で取得することができますが、fetchは非同期なので、
awaitを使って取得します。取得した結果をresponseで受け、json()と
することで、先ほどのダミーデータを取得することができます。
　fetchData();とすることで、Blogページが呼ばれたと同時にデータを取
得します。

　次にBlogページにJSON Placeholderから取得したデータの一覧を表
示したいと思います。

リスト14.2: my-vite-todo/src/pages/Blog.vue

 1: <template>

 2:

 3: <li v-for="post in posts" :key="post.id">

 4: {{ post.id }}:

 5: <router-link :to="`/blog/${post.id}`">

 6: {{ post.title }}

 7: </router-link>

 8:

 9:

10: </template>

11:

12: <style scoped>

13: ul {

14: margin-top: 12px;

15: }

16:

17: li {

18: margin-bottom: 8px;

19: border: 1px solid #ccc;

20: padding: 8px;

21: }

22:

23: li:hover {

24: background-color: #eee;

25: }

26: </style>

テンプレートリテラル
　<router-link :to="`/blog/${post.id}`">の:toに書かれた「`」（バックク
ォート）は、囲まれた中に変数を書くことができます。
　変数は「${変数名}」と書くことで値が展開されます。
　バッククォートを使わない書き方なら、以下のようになります。　<router-link
:to="'/blog/' + post.id">

　TODOアプリにブログが表示されることになって違和感はありますが、
そこは目をつぶってこのまま進めていきましょう。

図14.3:

14.3　ブログの詳細ページを作る

　このままブログ一覧を選択しても何も起こらないので、その内容を表
示するページを作成したいと思います。
　まずは、pages配下に詳細ページとなる「BlogDtl.vue」を作成しま
す。

図14.4:

　そして、その詳細ページのルートを通しておきます。「BlogId」のルートを
変更して使います。

リスト14.3: my-vite-todo/src/router/index.js

 1: {

 2: path: '/blog/:id',

 3: name: 'BlogDtl', // 「BlogDtl」に変更

 4: // 「BlogDtl.vue」に変更

 5: component: () => import('/src/pages/BlogDtl.vue'),

 6: },

　ブログの一覧を表示するとき、router-linkのリンクURLに「/blog/id」
というようにブログのIDを付与しました。詳細ページではこのブログIDを
URLから取得し、そのIDから詳細データを表示します。まずはそのブログ
IDを取得して表示させます。

リスト14.4: my-vite-todo/src/pages/BlogDtl.vue

 1: <script setup>

 2: import { useRoute } from 'vue-router';

 3:

 4: const route = useRoute();

 5: const id = route.params.id;

 6: </script>

 7:

 8: <template>

 9: {{ id }}

10: </template>

　一覧から任意の行を選択し、その行のIDが詳細ページに表示されて
いれば成功です。

　ブログ一覧を取得したものと同様に、ブログIDの内容を取得して表
示させましょう。一覧で取得したURLにIDを付与すれば、そのデータを取
得することができます。
　　→　https://jsonplaceholder.typicode.com/posts/ + ID

リスト14.5: my-vite-todo/src/pages/BlogDtl.vue

 1: <script setup>

 2: import { ref } from 'vue';

 3: import { useRoute } from 'vue-router';

 4:

 5: const route = useRoute();

 6: const id = route.params.id;

 7:

 8: const dtl = ref({});

 9: const fetchData = async () => {

10: const response = await fetch(

11: 'https://jsonplaceholder.typicode.com/posts/' + id

12:);

13: dtl.value = await response.json();

14: };

15: fetchData();

16: </script>

17:

18: <template>

19: <div>

20: <h1 class="title">{{ dtl.title }}</h1>

21: <div class="dtl">{{ dtl.body }}</div>

22: </div>

23: </template>

24:

25: <style scoped>

26: .title {

27: margin: 12px;

28: font-size: 20px;

29: font-weight: bold;

30: text-align: center;

31: }

32:

33: .dtl {

34: line-height: 1.5;

35: }

36: </style>

おわりに

本書を最後まで読んでいただきありがとうございました。
　私にとってアウトプットとしての初めての技術書です。何か形になるも
のを残してみたいという思いで始めましたが、思いのほか難しい作業で
した。

　言葉で説明する場合、足りない説明があっても後戻りして補足した
り、図や実例もその場で簡単にすることができますが、文章になるとそ
れができず、また口で説明するようにすると長くて読みづらくなってしまい
ます。
　一気にVueの機能を使ってしまうと説明するのに渋滞してしまうた
め、少しずつサンプルアプリを進めながらその機能を出していくという構
成にも苦労しました。
　そして、限られたスペースにソースを書かなければならないため、極力
シンプルなコードにしたり、CSSの装飾も質素なものにしました。

　まだまだ書きたい機能や触れておきたい機能もありましたが、ボリュー
ムの関係や「超」入門にはそぐわないという理由で断念しました。また、
今ではスタンダードになりつつあるTypeScriptを使うことも諦めました。で
すが、JavaScriptの開発では必須となってきたTypeScriptやESLintも、
本書を理解した後にでも学習することをお勧めします。

　本書サンプルの実装は必ずしもベストプラクティスではありません。ま
だまだVueの歴史は浅く、Vueも「3」にバージョンアップされて書き方も
変わりました。フォルダー構成からコンポーネントの分け方から実際にベ
ストプラクティスがないのも事実です。本書サンプルはそこまで気にする

規模ではありませんが、今後の開発でも使えるような構成を参考にし
ました。

　少しでも多くの人にVueの魅力が伝わり、自身のWebアプリ構築の
経験を本書を通して共有できればと思います。

　Vueを学ぶにあたって最初に手にしてよかったと思っていただければ、
嬉しく思います。

著者紹介
爰河 英憲（ここかわ ひでのり）

現役Javaエンジニア。独学でモダンなプログラミングを学習。JavaScript、TypeScript、Vue、
Nuxt.js、React、Next.jsを中心に学習中。これらを使ってのWebアプリも複数リリース。プログ
ラム言語の学習として最初に読んで良かったと思えるような1冊を目指している。

◎本書スタッフ
アートディレクター/装丁：岡田章志＋GY
編集協力：山部 沙織
ディレクター：栗原 翔
〈表紙イラスト〉
はこしろ
フリーランスのイラストレーター。書籍の表紙からweb用のイラスト、アナログゲームイラストまで、広
く手がける。

技術の泉シリーズ・刊行によせて
技術者の知見のアウトプットである技術同人誌は、急速に認知度を高めています。インプレス
R&Dは国内最大級の即売会「技術書典」（https://techbookfest.org/）で頒布された技
術同人誌を底本とした商業書籍を2016年より刊行し、これらを中心とした『技術書典シリー
ズ』を展開してきました。2019年4月、より幅広い技術同人誌を対象とし、最新の知見を発信
するために『技術の泉シリーズ』へリニューアルしました。今後は「技術書典」をはじめとした各種
即売会や、勉強会・LT会などで頒布された技術同人誌を底本とした商業書籍を刊行し、技
術同人誌の普及と発展に貢献することを目指します。エンジニアの“知の結晶”である技術同
人誌の世界に、より多くの方が触れていただくきっかけになれば幸いです。

株式会社インプレスR&D
技術の泉シリーズ　編集長　山城 敬

https://techbookfest.org/

●お断り
掲載したURLは2022年12月1日現在のものです。サイトの都合で変更されることがあります。
また、電子版ではURLにハイパーリンクを設定していますが、端末やビューアー、リンク先のファイ
ルタイプによっては表示されないことがあります。あらかじめご了承ください。

●本書の内容についてのお問い合わせ先
株式会社インプレスR&D　メール窓口
np-info@impress.co.jp
件名に「『本書名』問い合わせ係」と明記してお送りください。
電話やFAX、郵便でのご質問にはお答えできません。返信までには、しばらくお時間をいただく
場合があります。
なお、本書の範囲を超えるご質問にはお答えしかねますので、あらかじめご了承ください。
また、本書の内容についてはNextPublishingオフィシャルWebサイトにて情報を公開しておりま
す。
https://nextpublishing.jp/

mailto:np-info@impress.co.jp
https://nextpublishing.jp/

技術の泉シリーズ

著　者
編集人
企画・編集
発行人
発　行

Vue.js 超入門
3.2対応

2023年1月13日　初版発行Ver.1.0（リフロー版）

爰河 英憲
山城 敬
合同会社技術の泉出版
井芹 昌信
株式会社インプレスR&D

〒101-0051

東京都千代田区神田神保町一丁目105番地

https://nextpublishing.jp/

◉本書は著作権法上の保護を受けています。本書の一部あるいは全部について株式会社イ
ンプレスR＆Dから文書による許諾を得ずに、いかなる方法においても無断で複写、複製するこ
とは禁じられています。
©2023 Hidenori Kokokawa. All rights reserved.
ISBN978-4-295-60152-4

	電子書籍閲覧に関するご注意
	目次
	はじめに
	第1章 Vueの準備
	1.1 実行環境
	1.2 Viteでプロジェクトを作成する
	1.3 Vueアプリを確認する
	1.4 Vueアプリを終了する

	第2章 VSCodeの設定
	2.1 プロジェクトを開く
	2.2 拡張機能をインストールする
	2.3 Prettierの設定を行う
	2.4 Prettierの設定を確認する

	第3章 GitHubとVercelの設定
	3.1 リポジトリーを作成する
	3.2 ソースを連携する
	3.3 ページをWebに公開する

	第4章 Vueの基本
	4.1 SPA（Single Page Application）
	4.2 単一ファイルコンポーネント
	4.3 Options APIとComposition API
	4.4 Vue3.2のsetup
	4.5 Vueを起動する

	第5章 TODOアプリ
	5.1 サンプルアプリ
	5.2 レイアウトを決める
	5.3 リセットCSSでデザインしやすくする
	5.4 コンポーネントを理解する
	5.5 ヘッダー、フッターをコンポーネント化する
	5.6 コミットとプッシュを行う
	5.7 scopedとは

	第6章 TODOの登録
	6.1 入力欄を作る
	6.2 入力欄と値を連動させる
	6.3 マスタッシュ構文とは
	6.4 @clickを使ってみよう
	6.5 アロー関数とは
	6.6 ローカルストレージに登録する
	6.7 TODOをリスト化する

	第7章 TODOの一覧表示
	7.1 TODO一覧をイメージする
	7.2 繰り返し構文
	7.3 TODOを繰り返し表示する

	第8章 TODOの編集・削除
	8.1 編集の仕様
	8.2 入力欄にTODOを表示する
	8.3 条件によってボタンを表示する
	8.4 v-ifとv-showの使い分け
	8.5 非表示ラッパーとは
	8.6 ローカルストレージの値を変更する
	8.7 TODOを削除する

	第9章 ロジックの分離
	9.1 ロジックを分離する
	9.2 分離ロジックの使い方
	9.3 分離ロジックのリファクタリング
	9.4 分離ロジックで置き換える

	第10章 TODOのチェック
	10.1 チェック情報を追加する
	10.2 チェックを保存する
	10.3 データバインディング（v-bind）

	第11章 その他の重要機能
	11.1 リアクティブ変数
	11.2 算出プロパティー
	11.3 コンポーネント間のやりとり（親から子へ）
	11.4 コンポーネント間のやりとり（子から親へ）

	第12章 ライフサイクル
	12.1 ライフサイクルフック
	12.2 onMounted
	12.3 onUpdated
	12.4 onUnmounted

	第13章 Vue Router
	13.1 インストール
	13.2 Vue Routerを使うための準備をする
	13.3 ルートを設定する
	13.4 ページを追加してみよう
	13.5 遅延ローディングルートとは
	13.6 404ページに誘導する
	13.7 リンクからページ遷移する
	13.8 プログラムからページ遷移する
	13.9 動的ルート
	13.10 パラメータ渡し
	13.11 リアクティブの監視

	第14章 外部API連携
	14.1 JSON Placeholderとは
	14.2 Fetch APIでデータを取得する
	14.3 ブログの詳細ページを作る

	おわりに

