

電子書籍閲覧に関するご注意

　本書では、プログラムリストに専用の等幅フォントを使用しています。ビューアによって以下の作業が必要
になります。
・Kindle Paperwhiteの場合：フォント設定画面で「出版者のフォント」を選択
・kobo Androidアプリの場合：フォント画面で「オリジナル」を選択

目次

電子書籍閲覧に関するご注意

第1章　はじめに

1.1　この本の目的・ターゲット
1.2　本書であまり触れない部分
1.3　本書の構成と対応環境について
1.4　公式ハッシュタグでつぶやいてください！
1.5　リポジトリとサポートについて
1.6　表記関係について
1.7　免責事項
1.8　底本について

第2章　サーバーレスシングルページアプリケーションの基本
2.1　SPAとフレームワーク（Vue.jsの紹介）
2.2　サーバーレスってなに？
2.3　Firebaseは何ができる？
2.4　そのままの構成で本格的なWebサービスで使える？

第3章　開発環境のセットアップとデプロイまでの流れ

3.1　vue-templesのダウンロードとセットアップ
3.2　SFCでのコンポーネントの内容について
3.3　Firebaseのセットアップとデプロイ

第4章　Googleアカウントでのユーザー登録と、ログイン状態の判別

4.1　componentsを作成し表示する
4.2　Firebaseでログインの設定
4.3　Googleログインの実装
4.4　ログイン状態のチェック
4.5　コンポーネント間の情報の受け渡しとログイン情報の表示

第5章　エディターの作成：データベース作成とデータ保存

5.1　メモを編集できるマークダウンエディターを作る
5.2　メモを複数作成可能にする
5.3　メモの削除機能追加
5.4　Firebase Realtime DBの設定
5.5　メモの保存と読み込み機能の作成
5.6　ショートカットキーでメモを保存する

第6章　見た目を整える
6.1　リセットCSSを導入する
6.2　CSSファイルの管理
6.3　プレビュー用CSSの追加
6.4　CSSフレームワークについて
6.5　ロゴの作成

6.6　トップページにサービスの説明文を加えよう

第7章　Webサービスとして公開するまでの必要な準備

7.1　複数ページ対応（Vue Routerの利用）
7.2　利用規約・プライバシーポリシーを記載する
7.3　XSS対策などの最低限のセキュリティ対策
7.4　β版テストを行い、公開する

最後に
フィードバック・ご意見・ご感想
Special Thanks !
強くてニューゲーム
あとがき

第1章　はじめに

　本書を手にとっていただきありがとうございます！
　まずは購入するかどうかを考えている方もいるかと思いますので、本書のターゲットとそうでない方を明記
しておこうと思います。もし次のターゲットに当てはまる場合は是非この本を手にしていただき「SPAがどういっ
たものかつかめてきた！」「自身で作ったWebサービスを使ってもらえる楽しさ」などを体験していただければ
何よりです。

1.1　この本の目的・ターゲット

　本書では主に次のような方をターゲットとしています。
　・HTML,CSS,Javascriptを利用して、簡単なWebサイトを作ったことがある人
　・複数のページや状態管理をJavascript使って自力で行い、ごちゃついてしまい消耗している人
　・普段デザイナーとしてマークアップしており、フロントエンドの新しめな環境でのサイト構築を経験してみた

い人
　・シングルページアプリーケーション、Vue.jsってものを触ってみたい、またはそれらの挫折経験がある人
　・やったことないけどとにかくWebサービスを作ってみたい人
　・FirebaseのWeb版を使ってみたい人、どんなことができるのか知りたい人
　・普段サーバーサイドやネイティブアプリを作っていて、Webフロントエンドをさらっと触ってみたい人
　簡単なWebサイトを作ったことがあるWebフロントエンド初心者の方が、本書を通じてSPAの基本を摑
み、簡単なWebサービスが作れるようになることが目的です。そしてそれらを抑えた上で、さらに次の段階へ
ステップアップするための足がかりになるような要素を各所に入れています。
　また、最終的にどんなWebサービスが作れるか、というサンプルを公開しています。今回のプロジェクト名
は"MyMarkdown"とし、本書で進行していく上でこの名称が出てきた場合は、都度ご自身のオリジナルの
プロジェクト名に置き換えつつ進めてください。
　サンプルサービスは本書の内容に加えて、見た目や使いやすさを向上させるために多少手を加えています
が、機能面ではあまり差はありません。

MyMarkdown
https://mymarkdown.firebaseapp.com

　Googleアカウントでログインし、マークダウン形式でプライベートなメモが書けるWebサービスです。
　本サイトのソースコードについてもこちらに公開しておきますので、途中詰まってしまった時などにご利用くだ
さい。

MyMarkdown github リポジトリ（masterブランチが本書の内容です）
https://github.com/nabettu/mymarkdown

https://mymarkdown.firebaseapp.com/
https://github.com/nabettu/mymarkdown

1.2　本書であまり触れない部分

　本書では主に「Vue.jsとfirebaseを使って簡単なWebサービスを作ってみる」ということを目的としているた
め、各技術の詳細や網羅的な内容は収まりきらないため省略しています。
　・React.jsやAngular.jsなど、他のフレームワーク・ライブラリとの差分については触れません。
　・Vue.jsの場合はVuexなどを用いて状態管理を行うのがSPA開発では一般的ですが、今回は入門とし

てその部分は触れず、コンポーネントをまたいだ状態管理は行いません。
　・Firebaseの中でもFunctionsや2018年6月現在ベータ版であるCloud Firestore、アプリSDKなどの内

容については触れません。本書ではAuthentication、HostingやRealtime Databaseについてのみ
利用します。

　・cssについての詳細なテクニックや、PC/SPでの表示切り替えなどはあまり触れません。ただし、本書の
手順でSCSS自体は利用します。

　・Nuxt.jsなどを用いたサーバーサイドレンダリングについてやPWA化、パフォーマンス・チューニング等につい
ては触れません。

　・Webpackでのコンパイル等についての詳細や、機能追加については触れません。
　・セキュリティやテストについての内容は触れません。
　ある程度省略はしますが「この本を終えた後、何をやればいいかわからない」ということにならないよう、で
きるだけ各項目について名称やざっくりした説明を付け加えておきます。
　また、本書の最後には「強くてニューゲーム」として、追加で実装するとよい機能などを羅列しておきますの
で、その後のステップへ進む手がかりにしていただければと思います。

1.3　本書の構成と対応環境について

　この章では本書の前提について、2章ではサーバーレスシングルページアプリケーションとはなにかについて用
語の説明なども含めて記載しています。
　"前置きはいいのでさっさと開発を始めたい"という人は3章から読み進めてください。
　本書で開発を進める環境はMacOSを前提としていますが、Windowsでもセットアップ以外はほぼ問題
なく同じように進められるはずです。コマンドを利用する場合はMacではターミナル（Terminal.app）です
がWindowsの方は（cmd.exe）コマンドプロンプトを利用していただき、都度コマンドは対応するものに読
み替えてください。
　コマンドを利用する際には次の記述で行います。（$は打たなくても大丈夫です。）

$ ここにコマンドが入ります。

　本書ではそれほど利用する場面は多くありませんが、「黒い画面」が苦手だった方はこれを機に利用して
みていただければと思います。使いこなせてくると非常に便利です。
　今回執筆時に利用したNode.jsのバージョンは8.11.2です。お使いの環境でのNode.jsのバージョンがわ
からない方は次のコマンドを実行してみてください。

$ node -v

　Node.jsが入っていればバージョンが表示されます。
　nodeコマンドが見つからない旨が表示されてしまった方は、次のサイトからダウンロードが可能ですので、
こちらをダウンロードしてインストールをお願いします。

Node.js公式サイト
https://nodejs.org/ja/

　もしバージョンに差異がある場合には8.11.2のインストールを推奨しています。
　MacOSをお使いの方はnodebrewやnodenvなどをインストール・WindowsOSの方はnodistなどを利
用して、できるだけバージョンをあわせていただければと思います。
　また、執筆の際に利用したその他のnpmのバージョンの詳細についてはサンプルコードのリポジトリの中の
package.jsonを見ていただければと思います。

https://nodejs.org/ja/

　本書でコラム的に用語の説明が個別で必要な場合には次のような「コラム」の形で記載していきますの
で、すでにご存知の方は読み飛ばしていただければと思います。

npmって？
　npmとはNode.jsの"パッケージ管理ツール"です。
　ここでいうパッケージとはNode.jsで利用できる便利な機能が入ったライブラリやツールをまとめて管理するためのもので
す。Node.jsをインストールしておくとnpmコマンドですぐ利用できるようになります。
　その際に管理データをpackage.jsonというファイルにまとめておくことができ、その中に「このプロジェクトではVue.jsのバー
ジョン2.5を使います」などの情報が記載されています。

$ npm install

　というコマンドを打つと、そのディレクトリにあるpackage.jsonを参照して node_modules というディレクトリにそのライブ
ラリ郡をダウンロードしてくるといった機能があります。

　ファイルの編集が必要な部分については、編集する行についてのみ次のように記載します。

リスト1.1: /index.html

 1: <!DOCTYPE html>

 2: <html lang="ja">

 3: <head>

　初心者でない、すでに他のフレームワーク等を利用したことがある方や、もう一歩進んだことをやりたい方
などで本書を読み進めている方については、次のようなコラムで書き加えておきますので是非挑戦していた
だければと思います。

ちょい足しポイント
　このような形で、さらなる高みを目指す際のヒントをところどころに記載しておきますので、余裕があれば是非試してみてく
ださい。

1.4　公式ハッシュタグでつぶやいてください！

　本を買ったタイミングや、進めていて困った時・切りのよい所まで進められた時など、ぜひぜひTwitterで
#Webサービスを作る本 というハッシュタグを付けてつぶやいてみて下さい！
　・困っていたら著者が解決しに行きます
　・同じ本に取り組んでいる人同士で問題を共有できます
　・他の方がどんなデザインにしたのか見に行けます、自分のサービスも見てもらえます
　など、さまざまなメリットがあるので是非作っている過程をつぶやいてみて下さい！
　もしプログラムが思ったとおりに動かないということがありましたら、
　・実行時のソースコードをgithubなどにアップロードしたリポジトリのURL
　・公開しているサービスのURL
　の２つを共有していただければ、できるだけ早く解決に向かいます。

1.5　リポジトリとサポートについて

　本書に掲載されたコードと正誤表などの情報は、次のURLで公開しています。
　https://github.com/nabettu/mymarkdown

1.6　表記関係について

　本書に記載されている会社名、製品名などは、一般に各社の登録商標または商標、商品名です。会
社名、製品名については、本文中では©、®、™マークなどは表示していません。

1.7　免責事項

　本書に記載された内容は、情報の提供のみを目的としています。したがって、本書を用いた開発、製
作、運用は、必ずご自身の責任と判断によって行ってください。これらの情報による開発、製作、運用の結
果について、著者はいかなる責任も負いません。

1.8　底本について

　本書籍は、技術系同人誌即売会「技術書典4」で頒布されたものを底本としています

第2章　サーバーレスシングルページアプリケーションの基本

　この章では、まずシングルページアプリケーション（以降SPAと記載します）とはどういったものかということ
から説明します。
　実際の現場で求められているのは、Railsなどで開発された既存のWebサービスに対して、フロントエンド
部分のみをSPAで差し替えることが多いでしょう。本書はそのための入り口として、まずサーバーレスでSPAを
使ってWebサービスをゼロから構築してみます。既存サービスへの置き換えについてはまた1冊の本になります
ので、別途調べていただければと思います。

2.1　SPAとフレームワーク（Vue.jsの紹介）

　SPAとはシングルページアプリケーションのことでありますが、何を持って“シングルページ”なアプリケーション
なのでしょう。歴史的な部分も含めて簡単に説明します。

2.1.1　何がシングルページ？

　以前は、Webサイト上の情報はすべてページを切り替えることでしかできませんでした。ページのURLやセ
ッションの情報に紐付き、サーバーから出力するHTMLを変更することでコンテンツを切り替えていました。
　その後ブラウザの技術が進み、Ajaxという技術を使ってブラウザ上でJavaScriptを使ってサーバーと情報を
やり取りすることで、ページ遷移をせずに情報を更新できることが可能になりました。
　また、pushStateという機能がブラウザに追加されました。それによりブラウザAPIを使ってJavaScriptから
URLを動的に変更できるようになり、今までとは逆にページ内容に紐付けてURLを管理できるようになった
のです。
　これらを組み合わせることによってサーバーから返すHTMLは常に同じでも、URLやセッションの状態に応
じてサイトの内容を切り替えることが可能になりました。これが“シングルページ”と呼ばれる理由です。
　※とはいえ昨今はSPAを採用しているサイトでもパフォーマンス向上のためにサーバーで返すHTMLを切り
替えていることがほとんどです。これをサーバーサイドレンダリングといいます。

2.1.2　SPAフレームワークを使うとなにがいいの？

　SPAを作る上では先ほどの、ページの再読み込みが無くてもサイトの内容を切り替えることが重要です。
その為には、URLやキャッシュにページの内容を記録しておくような機能、それらに応じて適切なデータを返す
といった仕組みが必要になってきます。その周辺の機能を使いやすくまとめたものがSPAフレームワークとなっ
ています。
　しかし、「おなじみのjQueryでそんな機能くらい作れるのでは？」と思った方もいると思います。実際
jQueryだけを使って、頑張ってSPAフレームワークと同じような動作をするコードを書くことは可能です。しか
し、jQueryでは基本的に状態をHTML要素に持たせる必要があります。このためコードが煩雑になり、大
規模で整合性を保ったサイトを作ることは非常に難しいのが実態です。
　そこで、特定のフレームワークを利用することで、複数人で開発する際やサイトが大規模になった場合に
非常に大きなメリットがあります。初心者でもサイトの状態管理を行うことが容易になるのです。
　本書ではそんなSPAフレームワークの中から、比較的初心者でも扱いやすいVue.jsにフォーカスし、学習し
ていこうと思います。

2.1.3　コンポーネント指向

　SPAでの開発を行う上で欠かせないのが、コンポーネント指向と呼ばれる考え方です。
　今まではページごとに管理していたのものを、SPAではURLやキャッシュの状態に応じてコンテンツを切り替
えると説明しました。その際、共通化したパーツなどのコンテンツの管理が煩雑になりやすいという問題がで
てきます。
　サーバー側でHTMLを生成する場合も、共通のパーツを使い回すことはよく行われていました。しかし、
HTMLだけを使いまわすことが基本で、CSSはグローバルに展開されたものを読み込み、JavaScriptは
jQueryで共通化しているクラス名に応じてイベントを発行する、という方法が主流でした。
　この場合、CSSの命名が被らないように注意する必要がある、ひとつのHTML要素に大量のクラスを付
与してしまう、jQueryでもイベントを付与するタイミングによっては要素が描画されていないために失敗する、
といった様々なケースでの共通化にテクニックが必要だったりと、開発に一定以上の経験値が必要とされて
いました。
　これらの問題を整理するために"コンポーネント"という単位にWebサイトのパーツを切り分け、HTML・
CSS・JavaScriptすべてが個別に動作するような物としておくことで、再利用性を高め、重複を防ぎます。
これがコンポーネント指向です。

2.2　サーバーレスってなに？

　SPAについての説明の次はサーバーレスについて紹介します。
　まず“サーバーレス”と一口に言ってもさまざまな解釈がありますが、本書ではサーバーインフラのリソースを気
にしなくても、サーバーサイドの処理ができる環境を利用することで、今までのサーバー構築で考慮していた
一部分を考慮する必要がなくなるという意味で利用します。「サーバーリソースを使わない」わけではありま
せん。そして今回利用するFirebaseは、BaaSと呼ばれる“バックエンドの処理を肩代わりしてくれるサービ
ス”であり、これを利用することで比較的簡単にサーバーレスでサービスを開発することが可能になります。たと
えユーザーが一度に数万人訪れたとしても、Firebaseに課金すれば自身でサーバーのリソースを気にする必
要はありません（お財布は気にする必要がありますが）。
　他にもサーバーレスを実現するためのサービスは多々あり、たとえばAWS lambda等を利用することで今
回と同じような構成をサーバーレスで開発することはもちろん可能ですが、初心者には少しハードルが高いと
思われます。ただし、自分でカスタマイズできる範囲が多かったり同じアクセス・データ量でも安く済むなど、そ
れぞれにメリットとデメリットはありますので、もし業務で構築を求められたら色々と比較してみるとよいでしょ
う。

2.3　Firebaseは何ができる？

　そんなFirebaseですが、今までWebサービスを作る上でサーバーサイドプログラムが必要だった部分の一
部が、コードを書かずに利用できます。
　具体的に今回利用する機能としては次の３つです。
　・Hosting：静的サイトのホスティング及びSSL対応
　・Authentication：Googleアカウントを利用してログイン、アカウント情報の取得
　・Realtime Database：NoSQLなデータベースの読み書き
　それぞれ細かい利用方法は解説を進めながら説明しますが、これらの機能を備えているため、Webサー
ビスを公開まで開発することが非常に簡単に可能になっています。
　今回利用する範囲では、フロントエンドの知識だけでFirebaseによるサービスを開発することに集中する
ことができます。

2.4　そのままの構成で本格的なWebサービスで使える？

　本書で解説する構成ならば、少ない機能でシンプルな、比較的小さいWebサービス運用は十分使える
レベルです。
　Facebookのような大規模サービスを作るのは難しいでしょうが、そういった大規模Webサービスを見据え
たモックとして使うためにはFirebaseには十分で豊富な機能があります。
　ある程度サービスが大規模になるようであれば、今回解説するRealtime DBはリレーショナルでないの
で、知識が少ないとデータ管理が煩雑になりがちです。現在はβ版ですが、そういった欠点を補うCloud
Firestoreという代替DBが開発中です。
　また、Firebaseはスケーラブルではありますが、大量のユーザーやトラフィックを扱うとなると、運用にかかる
費用はそのためのバックエンド開発を自前で行ったほうが運用コストは安い傾向があります。

第3章　開発環境のセットアップとデプロイまでの流れ

　おまたせいたしました！前置きが長くなってしまいましたが、ここからいよいよ開発を始めます。ゼロからすべ
てのファイルを作成するのは大変なので、まずは今回開発するWebサービスの骨組みとなるテンプレートをダ
ウンロードします。
　Vue.jsではプロジェクトを始める際の公式テンプレートが用意されており、これを利用することで比較的簡
単に環境構築を行うことができます。今回はWebpackを利用し、シンプルな構成でサイト構築を目的とす
るテンプレートを利用します。

ちょい足しポイント1
　Webpack-simpleテンプレートではない普通のWebpackテンプレートを使って、unitテスト等を書いてテスト駆動で進め
てみてください。

3.1　vue-templesのダウンロードとセットアップ

　今回利用するテンプレートは、Webpackを使ってVue.jsのプロジェクトを始める上でシンプルな設定にまと
めてあるWebpack-simpleテンプレートを利用します。

Webpack-simpleテンプレート
https://github.com/vuejs-templates/webpack-simple/

　テンプレートを利用するために、まずはPCにvue-cliというコマンドラインからvueのテンプレートをダウンロード
できるツールをインストールします。
　コンソールを開いて次のコマンドを実行して、vue-cliをインストールします。

$ npm install -g vue-cli

　無事にインストールができたら次のコマンドでヘルプが表示できますので試してみてください。

$ vue -h

　その後、作業するフォルダに移動して、テンプレートをダウンロードするために、次のコマンドを実行してくださ
い。実行すると、いくつか質問されますが、最後の「Use sass?」以外はそのままenterで大丈夫です。sass
のみ y を入力してください。
　また、本書内でのプロジェクト名は"MyMarkdown"として進めますので、ご自身のプロジェクト名に適
宜置き換えてください。

$ vue init webpack-simple mymarkdown

　? Project name mymarkdown

　? Project description A Vue.js project

　? Author username <name@example.com>

　? License MIT

　? Use sass? Yes

　※リポジトリのTOPから手動でダウンロードもできますが、その場合はpackage.json等で{{#sass}}〜
{{/sass}}と表記されている部分や{{name}}となっている部分を修正して使ってください。

　　
　今回使うテンプレートではあまり変わりませんが、他のテンプレートを利用する場合にはvue-cliを利用する
ことで初期設定時にどのモジュールを入れるのか等を細かく指定できますので、余裕があれば触ってみてくだ
さい。
　手動ダウンロードの場合でもvue-cliの場合でも、無事にローカルにテンプレートをダウンロードできたら、

$ cd mymarkdown

$ npm install

$ npm run dev

　をそれぞれ実行してください。

図3.1: vue-template実行画面

　このような画面がブラウザ上で表示されましたでしょうか？
　おめでとうございます。これであなたもVue.jsを使ってWebサイトを表示することができました。
　もしエラーが表示されてしまい、セットアップがうまく進まなかった場合はエラー文言でそのままGoogle検索
を行うと、同じ問題にあたっている方の情報が見つかる場合が多いと思いますので、参考にして解決してい
ただければと思います。

npm-scriptsとは
　npmではnpm-scriptsと呼ばれる機能があり、さきほどは
$ npm run dev
　というコマンドで利用しています。このコマンド自体はpackage.jsonの中のscriptsという欄に実行できるタスクを登録して
おいて、npmから呼び出しができます。今回のタスクでは、
$ cross-env NODE_ENV=development webpack-dev-server --open --hot
　という長いコマンドも短い名前で実行できます。
　自分でターミナルを実行する際には、グローバル環境に利用するコマンドをインストールする必要がありますが、npm-
scriptsならそのプロジェクトのnpmを利用するためインストールの必要がありません。（今回の例ではwebpack-dev-
serverがそれにあたります。）
　ただ、２つ以上のことをまとめて実行したい、並列処理直列処理を使い分けたい等やりたいことが増えて来た場合は
gulpなどのタスクランナーを利用すると、package.jsonと別ファイルで各タスクを定義できるため、プロジェクトでやりたいこと
によって使い分けるとよいでしょう。

　では試しにApp.vueの内容を変更してみましょう。

リスト3.1: /src/App.vue

26: return {

27: 　　msg: "Welcome to MyMarkdown"

28: }

　TOPページの文言が変更されましたでしょうか？このときブラウザを開いたままにしておくとよく分かるのです
が、ファイルを変更した部分のみが自動的に変更され、画面がリロードがされないと思います。これは
Webpackの提供するHot Module Replacementという機能で、画面全体のリロードなしに変更すると
いうものです。

Hot Module Replacementについて
https://webpack.js.org/concepts/hot-module-replacement/

　また、App.vueファイルという見慣れない拡張子のファイルを編集しましたが、これはVue.jsで利用するコ
ンポーネント（ページそのものやサイトで利用するパーツのこと）単位毎に"HTML・Javascript・CSS"をファイ
ルひとつにまとめて書ける形式になります。
　この形式は単一ファイルコンポーネントといって、詳細は公式の次のページで説明されています。これを一
読しておくと理解がより深まります。英語ではSFC（Single File Components）と呼ばれますが、慶應
義塾大学湘南藤沢キャンパスではありません。

https://webpack.js.org/concepts/hot-module-replacement/

SFCについて
https://jp.vuejs.org/v2/guide/single-file-components.html

　ファイルひとつにそのコンポーネントの情報が網羅され、サイト編集時にそこだけで簡潔するため見通しは
よいのですが、ひとつのコンポーネントに情報を詰め込みすぎると結局取り回しが悪くなってしまうので注意
が必要です。

https://jp.vuejs.org/v2/guide/single-file-components.html

3.2　SFCでのコンポーネントの内容について

　SFCの中身はtemplateとscriptとstyleの３つの要素でできています。それぞれの要素について詳細を見
ていきましょう。

3.2.1　template

　そのコンポーネントが表示するHTMLを記載します。また、そのhtml要素に紐付いてクリックされたら何を
実行するかなどの情報も、@click="hoge"のような形でtemplate内の要素に付与して定義します。{{
msg }}のような形で、後述するscriptで定義されたコンポーネントのdataを文字列として表示することも可
能です。基本的にVue.jsが行うのは、dataをhtmlに整形して出力することだと思ってもらってかまいません。

3.2.2　script

　文字どおりscriptとして、そのコンポーネント内で処理するプログラムやtemplateで表示するためのデータ
を記載します。
　dataに関しては、文字どおりそのコンポーネント内で利用するデータを格納する関数です。ここでは必ずオ
ブジェクトを返却するようにしてください。その返却するオブジェクトに自由に変数を追加することで、HTMLに
内容を表示することができます。
　細かい各種の機能は利用する際に説明しますが、methodsにそのコンポーネントで実行するメソッドを
定義しておいてtemplateで呼び出す部分を定義したり、他のコンポーネントを読み込んでおいてそれを
templateで呼び出したり、といったこともここに記述します。

3.2.3　style

　各コンポーネントで利用するCSSを記述します。もしモジュール化してすべてのCSSを全コンポーネントで共
通化するのであれば必要ないですが、このコンポーネントでのみ適用されるCSSを記述したい場合に
scopedという機能があります。詳しくは5.1.3で説明します。

Webpackって何？
　Webpackとはモジュールバンドラーと呼ばれ、jsファイルやCSSファイル、設定によっては画像ファイルなども取り込みひとつ
のファイルにまとめることができるツールです。
　設定ファイルは webpack.config.js という名称で、今回利用するテンプレートでもルートに格納されています。そのファイ
ル内でどのファイルをどのような設定で読み込むかが記載されています。
　npmでライブラリ等をダウンロードしてきましたが、そのファイルはこのWebpackを使い読み込みます。たとえ
ば、/src/main.jsのはじめの行では
/src/main.js
import Vue from 'vue'
　と書かれていますが、npmを使ってインストールしたライブラリ等はimport文を使い、このfrom部分に記載することで利
用することができます。
　import文自体は実際にはまだブラウザ標準で動く機能ではなく、この場合はbabelというトランスコンパイラ（トランスパ
イラ）を利用して古いブラウザが対応していない新しい書き方をして書いたjavascriptを、古いブラウザでも動作する形式
に変換しています。
　・importについての参考URL
　　https://developer.mozilla.org/ja/docs/Web/JavaScript/Reference/Statements/import

https://developer.mozilla.org/ja/docs/Web/JavaScript/Reference/Statements/import

3.3　Firebaseのセットアップとデプロイ

　さて、無事にローカル環境でVue.jsを使ってWebサイトを構築することができました。次はいよいよ
Firebaseを使って、Webサイトをデプロイしてみます。（デプロイとはサイトを他の人が利用可能な状態に
置くことです）
　「え？もうデプロイするの？」そう思った方も少なくないかもしれません。安心してください、デプロイはします
が、この段階で公開して不特定多数の人に見てもらおうというわけではありません。
　“完成”するまでデプロイはしないものと思っている方もいるのではないでしょうか。Webサービスに“完成”な
どという段階は存在しません。Webサービスにとって公開は、数あるマイルストーンのひとつにすぎないので
す。
　今回すぐにデプロイする理由は、
　・デプロイして、ローカルと本番で環境が違うことではじめて見えてくる問題なども、ここで先に解決できま

す
　・そもそもデプロイできなければローンチはできません。デプロイまでのステップを踏んでさえおけば、準備が

整えばすぐにでもローンチが可能になります
　・見える形にしておけば、友人などに途中経過を見せてフィードバック等をもらいやすいです。それによって

モチベーションの低下を防げます
　もちろんデプロイはお楽しみにとっておいて頂いて、最後にドカンと行って頂いてもかまいせん。
　ということで、まずはFirebaseのアカウントを作成するところからスタートしましょう。

Firebase
https://firebase.google.com/

　「使ってみる」ボタンの後、「Firebaseへようこそ」という画面で「プロジェクトの追加」を押してご自身のプロ
ジェクトをつくり始めましょう。

図3.2: プロジェクトIDの入力画面

https://firebase.google.com/

　このとき、プロジェクト名は管理画面上の名称ですが、プロジェクトIDは全ユーザーのプロジェクト内で固
有のIDになります。そして今からデプロイするサイトのURLも、https://プロジェクトID.firebaseapp.com とい
う形になります。（後からIDの変更はできませんが、公開前であれば別のプロジェクトとして作り直せます）
　IDを入力し、それぞれのチェックボックスにチェックを入れて「プロジェクト作成」を押下して少し待ちます。
プロジェクトの作成が終わったら「次へ」を押してプロジェクトの管理画面に移動しましょう。
　プロジェクトを作成後、３つあるアイコンの一番右がWebサイト用なのでボタンを押下してください。

図3.3: ウェブサイトに追加するためのボタン

　モーダルが表示されているかと思いますが、そこで表示されるコードをコピーし、mymarkdownディレクトリ
の直下にあるindex.html内にペーストしてください。その際すでにあるscriptタグの一行上にペーストしましょ
う。

図3.4: HTMLに貼り付けるコード

　※ライブラリのバージョンなどは適宜変更されるため、本誌の情報とは異なるコードになる可能性がありま
すがそのままお使い下さい。
　変更後のhtmlは次のようになります。

リスト3.2: /index.html

 1: <!DOCTYPE html>

 2: <html lang="en">

 3: <head>

 4: <meta charset="utf-8">

 5: <title>mymarkdown</title>

 6: </head>

 7: <body>

 8: <div id="app"></div>

 9: <script src="https://www.gstatic.com/firebasejs/4.8.2/firebase.js"></script>

10: <script>

11: // Initialize Firebase

12: var config = {

13: apiKey: "AIzaSyCiaxL8JBwL8deaJaOVLfAwF1yRWiiawJM",

14: authDomain: "mymarkdown.firebaseapp.com",

15: databaseURL: "https://mymarkdown.firebaseio.com",

16: projectId: "mymarkdown",

17: storageBucket: "mymarkdown.appspot.com",

18: messagingSenderId: "619528626812"

19: };

20: firebase.initializeApp(config);

21: </script>

22: <script src="/dist/build.js"></script>

23: </body>

24: </html>

　これらのタグはWebサイト上でFirebaseのデータを扱ったり、SNSログインするための命令を実行するため
の定義と設定です。そしてこの情報はhtmlに埋め込むため、ユーザーに公開されてしまうことになりますが、
権限管理等は別の箇所で行うため、このコードは公開されていても問題ありません。その権限についての詳
細は7.3で解説します。
　もう一度Firebaseの管理画面に戻り、今度は左のタブのHostingというメニューをクリックしてください。こ
の場合のホスティングとはindex.htmlなどをデータを保存しWebサイトの形で公開できるようにしてもらえる
機能のことになります。
　「使ってみる」をクリックし、出てくるモーダルの命令をそのまま実行してみましょう。ここではお使いのPCのど
のプロジェクト上でも使えるようにfirebase-toolsをインストールします（グローバルインストール）。

　※さきほどのプロジェクトが起動したままの場合はControl + c で "npm run dev"で動いていたプロジェ
クトを停止してから実行してください。今後もコンソールで動作しているプログラムを停止するコマンドなので
覚えておいてください。

$ npm install -g firebase-tools

　インストールできたら、そのまま②の内容に進みます。

$ firebase login

　実行するとブラウザが開き、このような画面が表示されます。

図3.5: google アカウントの認証

　OKを押して、

図3.6: Firebaseへの権限追加成功画面

　このような画面が表示されたら完了です。
　こちらは自身のfirebaseプロジェクトの編集を、コンソールで操作しているfirebase-cliのアプリケーションに
許可する手続きになります。
　その後またコンソールに戻り次のコマンドを実行します。

$ firebase init

　init時には初めにどの機能を利用するのか聞かれるため、カーソルを操作してHostingにカーソルを合わせ
て、スペースキーを押して選択状態にしてEnterキー、その後作成したプロジェクトを選択します。

「What do you want to use as your public directory?」

　と、表示され次に公開に利用するディレクトリ名の入力が求められるため dist と入力してください。

「Configure as a single-page app (rewrite all urls to /index.html)?」

　その後、公開するページはindex.htmlだけかどうかを聞かれるので、そのままエンター（No）で進めてくだ
さい。
　すると自動的にプロジェクトのルートに
　・.firebaserc
　・firebase.json

　の2ファイルが作成されていると思います。ここにfirebaseで利用するプロジェクトの設定が記載されていき
ます。
　次にホスティングしてもらうための準備として、テンプレートのままでは各種パスが開発用の状態なので、次
の２つのファイルを変更します。

リスト3.3: /webpack.config.js

 8:　publicPath: '/',

〜〜〜

 78:　devServer: {

 79: contentBase: 'dist', // 追加

 80:　historyApiFallback: true,

〜〜〜

100:　sourceMap: false,

　※Firebaseの無料枠ではアップロード容量制限があるため、SourceMapがtrueの場合mapファイルで
容量オーバーの可能性があるためオフにします。
　/dist/index.html がfirebase-cliによって自動で作成されているため削除します。
　そして /index.html を /dist/index.htmlへ移動しつつ次のように変更します。

リスト3.4: /dist/index.html

21: </script>

22: <script src="./build.js"></script>

23: </body>

　distディレクトリは標準で .gitignore に記載されているため、git管理する際にファイルが追加されませ
ん。本書では変更箇所を少なくするためにdistディレクトリにindex.htmlを格納していますので、
index.htmlをgit管理するために次の行を追加しておきます。

リスト3.5: /.gitignore

 4: !dist/index.html

　各種設定変更後に、デプロイするファイルを作成するために次のコマンドを実行します。

$ npm run build

　buildが成功したら、ついにデプロイです。満を持して次のコマンドを実行しましょう。

$ firebase deploy

　成功した場合は "Deploy complete!" と表示され、公開URLが表示されていると思います。アクセスす
るとローカルで作成していたものと同じ物が表示されているでしょうか。「build → deploy」でデプロイの手順
は以上です。
　今後本書を進める上で、区切りのいいタイミングがあったら是非デプロイしながら進めてみてください！
　※もし今後プログラムが動かなくなってしまって原因を誰かに質問することになった場合には、このデプロイ
したサイトとgithubなどで管理しているソースコードを両方送ると、解決が早いのでお勧めです。

ちょい足しポイント2
　今回デプロイはローカルのコマンドで行いましたが、もちろんCircle CIなどのCIに任せてもOKです。その際CI用にfirebase
用のtokenを発行することができるので、それをCIのコンテナにもたせ、firebase-toolをインストールしdeployコマンドを実行
させてみてください。

デプロイ後のサイト確認時の注意点
　本書を進めるうえで「デプロイしたのに前反映されていた内容と変わってないみたい・・・」という場合があると思います。
　考えられる原因としては
　1. デプロイが正しく完了していない
　2. ブラウザが前回確認時のキャッシュを残している
　という２つの場合がありますので、それぞれについて確認方法を書いておきます。
　まずはデプロイの確認ですが、管理画面で正しくHostingにデプロイが完了しているかを確認出来ます。
　Firebaseの管理画面でプロジェクト選択後にHostingタブを選択します。
図3.7: Hostingの確認画面(右下に履歴が残ります)

　その後「リリース履歴」の部分に最後にデプロイを行った日時が表示されますのでご確認ください。もし完了していなけれ
ばなにかエラー等を見逃してしまっているかもしれません。
　次に、deployが完了している場合はブラウザのキャッシュの可能性があります。
　これはブラウザの機能で、一度開いた同じファイルはブラウザで保存しておくことで同じサイトなどを開いた際に表示を早く
するためのものです。しかし更新したはずのファイルもブラウザのキャッシュを利用されてしまうといつまで経っても更新内容が
確認出来ません。
　そのためブラウザの設定画面からキャッシュの消去を行ってください。
　しかしSNSのログイン情報なども消去されるとまたログインし直しが面倒です。ブラウザによっては今見ているサイトのキャ
ッシュのみを消去する機能がありますので、今後デプロイ後の確認時に毎回利用していただくと確認が楽になります。
　Google Chromeの場合はコマンドですぐに見ているサイトのキャッシュを消しつつリロードするというスーパーリロードと呼
ばれる機能がありますのでご紹介しておきます。
　Windowsの場合は「Shift + F5」で、Mac OSの場合「Command + Shift + r]で、スーパーリロードが出来ますので、ぜ
ひご利用ください。

第4章　Googleアカウントでのユーザー登録と、ログイン状態の判別

　FirebaseのHostingを利用できたので、次はAuthenticationを利用してユーザ登録・ログイン機能を利
用してみましょう。その際に、ログインしている時としていない時で別の内容を表示するようにします。

4.1　componentsを作成し表示する

　SPAではコンポーネント単位でサイトの見た目を管理する、という説明はすでに行っていますが、そのコン
ポーネントを作ることからはじめてみましょう。
　srcディレクトリの中に、さらにcomponentsディレクトリを作成します。本書で今後作るコンポーネントファ
イルは、すべてこのディレクトリに格納することとします。
　ログインしていないときに表示するHome.vueと、ログインしている際にはメモ帳としてEditor.vueを表示す
るのものとして新規作成し、次の内容に編集します。

リスト4.1: /src/components/Home.vue

 1: <template>

 2: <div id="home">

 3: <h1>{{ msg }}</h1>

 4: <button>Googleアカウントでログイン</button>

 5: </div>

 6: </template>

 7: <script>

 8: export default {

 9: name: "home",

10: data() {

11: return {

12: msg: "Welcome to MyMarkdown"

13: };

14: }

15: };

16: </script>

リスト4.2: /src/components/Editor.vue

 1: <template>

 2: <div class="editor">

 3: <h1>エディター画面</h1>

 4: </div>

 5: </template>

 6:

 7: <script>

 8: export default {

 9: name: "editor",

10: data() {

11: return {};

12: }

13: };

14: </script>

　それぞれ中身は特にないコンポーネントとして、定義だけしておきます。次にApp.vueでそれぞれを読み込
み、isLoginの状態に応じて表示を分けます。デフォルトで入っていた内容は削除します。

リスト4.3: /src/App.vue

 1: <template>

 2: <div id="app">

 3: <Home v-if="!isLogin"></Home>

 4: <Editor v-if="isLogin"></Editor>

 5: </div>

 6: </template>

 7:

 8: <script>

 9: import Home from "./components/Home.vue";

10: import Editor from "./components/Editor.vue";

11:

12: export default {

13: name: "app",

14: data() {

15: return {

16: isLogin: false

17: };

18: },

19: components: {

20: Home: Home,

21: Editor: Editor

22: }

23: };

24: </script>

　まずは別のコンポーネントの読み込みですが、importで始まる部分で相対パスでvueファイルを読み込み
ます。その後、template内で利用したいコンポーネントについてはcomponents内で｛tag名: 読み込ん
だvueファイル｝という形式で定義しておきます。これではじめてtemplate内でコンポーネントの読み込みが
行えます。
　その後、template内ではHTMLのタグのような形で定義したコンポーネントを読み出せます。もちろん
templateはHTMLを記載する場所なので、既存のHTMLのタグと同じ名称（たとえばnavやsectionのよ
うな名称）ではコンポーネントを定義できませんのでご注意ください。

図4.1: Home.vueが表示された状態

　次にv-if="!isLogin"という記述について説明します。こちらは条件付きレンダリングと言って、v-ifの場
合はこのコンポーネントを表示するかどうかをイコールで記載した条件に応じて決めます。この場合は、data
で定義したisLoginというログイン状態を判別する変数に応じて表示します。ためしにfalseをtrueに変更し
てみると、エディター画面が表示されるでしょう。
　Vue.jsにはv-elseという条件付きレンダリングも存在していて、それを使うとひとつ上にあるifの条件に合
わなかった場合に、そちらをレンダリングする指定もできます。注意点として、v-elseは要素の順番が変わる
と意味が違ってしまい、条件だけでなく順序も考慮する必要も出てきてしまいます。そのためここでは使って
いません。

　あとは、このisLoginにログイン情報が入るようにすれば、ログイン状態に応じて表示を切り替えることがで
きるようになります。

4.2　Firebaseでログインの設定

　次にFirebaseの管理画面でAuthenticationタブを開きます。FirebaseではTwitterやFacebookでのロ
グインも対応していますが、それらは個別に各サービス側で開発者登録を行う必要があるため、今回は
Googleアカウントでのログインを実装します。

図4.2: 左のAuthenticationタブを開いた状態

　「ログイン方法を設定」をクリックし、ログインプロバイダーの設定を行います。

図4.3: 各種ログイン方法設定画面

　ログイン方法のタブを開き、「Google」をクリック、「有効にする」ボタンをクリックし、プロジェクトのサポー
トメールを設定します。あとは保存し、[Google が有効になりした」というダイアログが出たら完了です。

図4.4: ログイン設定

　認証については下にスクロールすると、認証済みドメインを設定することもできます。たとえば独自ドメイン
を取得した場合はこちらに追記が必要です。

　※ここで設定するメールアドレスですが、今回作ったアプリケーションを公開する際にログイン認証画面で
公開されますので、もし他人に知られたくない場合は公開したサイトを友人などへの共有にとどめておいてく
ださい。

4.3　Googleログインの実装

　いよいよログインです。さきほどのHome.vueを開き、次のように編集します。

リスト4.4: /src/components/Home.vue

 1: <template>

 2: <div id="home">

 3: <h1>{{ msg }}</h1>

 4: <button @click="googleLogin">Googleアカウントでログイン</button>

 5: </div>

 6: </template>

 7:

 8: <script>

 9: export default {

10: name: "home",

11: data() {

12: return {

13: msg: "Welcome to MyMarkdown"

14: };

15: },

16: methods: {

17: googleLogin: function() {

18: firebase

19: .auth()

20: .signInWithRedirect(new firebase.auth.GoogleAuthProvider());

21: }

22: }

23: };

24: </script>

　作成したボタンをクリックすると、Googleアカウントの認証に遷移します。ここでアプリを承認すればログイ
ンしたことになります。

図4.5: ログイン画面

　ここで、はじめて出てきた@clickとmethodsについて説明します。@clickはHTMLのonClickのような形
で、その要素をクリックすると実行する命令を記載できます。onClickではjavascriptをそのまま記載できま
したが、Vue.jsでは呼び出す関数を記載します。
　そこで呼び出されるgoogleLoginという関数は、script内のmethodsに記載されています。コンポーネン
ト内で呼び出す関数は、このようにmethods内に記載しておくことで利用できます。メソッド内で別メソッド
を呼び出す際にはthis.メソッド名で呼び出しができますが、function()の記載を上記の例のようにしておく
必要があります。ES6で追加されたArrow Functionの形（`() => {}`）で記載すると、thisの内容が変わ
ってしまうので注意が必要です。

ちょい足しポイント3
　今回はGoogleログインを利用しましたが、サービスの内容によってはTwitterのほうが相性がいい場合があるでしょう。
　Twitterで開発者登録を行って、Twitterアプリの作成→Firebase管理画面上で登録を行って、Twitterログインを実装
してみてください。
　Facebookでも同じように登録が可能です。現状InstagramやLINEログインは公式にはありませんが、Functionsをうま
く使えば実現可能です。

　　

ES6（ES2015）って？Arrow Functionって？
　Webpackのimport文についての部分でトランスコンパイラについて説明しました。その説明内の新しい書き方と表現し
ていたものがES6であり、古い書き方＝ブラウザ標準で動作する書き方がES5です。
　このESというのはECMAScriptと呼ばれるJavaScriptの標準であり、ES6は2015年に標準化されたためES2015とも呼
ばれます。
　この場合の標準とは、各社がそれぞれで作っているブラウザ上及びサーバー上で動作させるJavascriptにおいて「こういう
書き方をしたらどう動くかあらかじめ決めておく」ことです。これによってプログラマが書きやすい新しい書き方等が、どの環境
でも正しく同じに動くように整えられることに近づきます。
　その中の一例として、ES6で新しく標準化したArrow Function（アロー関数）について説明します。今まで関数の定
義はES5で
var fn = function (a, b) {
return a + b;
};
　と書いていたものが、
var fn = (a, b) => {
return a + b;
};
　と書いたり、
var fn = (a, b) => a + b;
// 単一式の場合はブラケットやreturnを省略もできる
　このように記述したりできるようになりました（関数内でのthisの扱いが変わる点だけ注意）。 他にもスコープド変数や
Class構文など、便利な機能が色々追加されています。
　ES6で追加されたシンタックスについてはひとまずこのあたりの記事を読んでおくとよいと思います。
ES2015 （ES6）についてのまとめ
https://qiita.com/tuno-tky/items/74ca595a9232bcbcd727
　注意点として、Google ChromeなどのブラウザではES6で書いたコードもそのまま動作するため、babelなどを挟んでい
ない環境においてES6で書いてしまった場合、IEなどで動作しなくなることもあるためご注意ください。IEを使わなければ丸く
収まりますが……。

https://qiita.com/tuno-tky/items/74ca595a9232bcbcd727

4.4　ログイン状態のチェック

　次はサイト上でログイン状態をチェックします。App.vue内でチェックした内容をisLoginに格納します。

/src/App.vue

created: function() {

 firebase.auth().onAuthStateChanged(user => {

 console.log(user);

 if (user) {

 this.isLogin = true;

 } else {

 this.isLogin = false;

 };

 });

},

　dataの後にcreatedという関数を定義します。この関数はVue.jsがそのコンポーネントを作成したタイミン
グで実行されます。createdの中で、firebaseのログイン情報の更新がされたらまたその中の関数を実行
し、ログイン状態であればuserという変数にユーザー情報が格納されるようになっています。「userが存在し
たらログインしている」として、isLoginにtrue/falseを格納しましょう。

図4.6: エディター画面

　ログインした状態ではエディター画面が表示されましたでしょうか？ログアウトについてはまた先の章で行い
ます。また、ログインした状態でconsole.logでuserがブラウザコンソールに書き出されましたでしょうか？次の
章ではそのデータを表示してみます。

コンポーネントのライフサイクルについて
　さきほど利用したcreatedはコンポーネントが作成されたタイミングでしたが、他にも色々なタイミングで実行される関数が
あります。
　https://jp.vuejs.org/v2/guide/instance.html
　ここに載っている図がその全てですが、ざっくり説明すると、
beforeCreate・created ：コンポーネントを作成する前後
beforeMount・mounted ：コンポーネントを作成し、描画が終わる前後
beforeUpdate・updated：data等が更新され描画内容を変更する前後
beforeDestroy・destoroyed：コンポーネントが破棄される前後
　の計４つのイベントの前後で計８箇所あります。描画が終わったタイミングで実行したい内容であればmounted、値が
変更されるタイミングに実行したいなら……と、その時々でベストな関数を選んでください。他にもコンポーネント内部におい
てdataで定義した変数が変更されたら実行する関数（watch）なども設定できますので、公式マニュアルをひととおり読
んでおくと、便利な機能を使いこなせるはずです。

https://jp.vuejs.org/v2/guide/instance.html

4.5　コンポーネント間の情報の受け渡しとログイン情報の表示

　次に、ログインユーザーの情報を画面に表示します。その際にログイン情報はApp.vueが所有しています
が、表示しているのはEditor.vueです。App.vue内で表示してもよいのですが、その後他のデータも利用す
るため、Editor.vueで取得したデータを表示できるように値の受け渡しを行います。
　このためにApp.vueで新しいdataを定義し、ユーザー情報を格納してEditorに引き渡すために次のように
編集します。

リスト4.5: /src/App.vue

 1: <template>

 2: <div id="app">

 3: <Home v-if="!isLogin"></Home>

 4: <Editor v-if="isLogin" :user="userData"></Editor>

 5: </div>

 6: </template>

 7:

 8: <script>

 9: import Home from "./components/Home.vue";

10: import Editor from "./components/Editor.vue";

11: export default {

12: name: "app",

13: data() {

14: return {

15: isLogin: false,

16: userData: null

17: };

18: },

19: created: function() {

20: firebase.auth().onAuthStateChanged(user => {

21: console.log(user);

22: if (user) {

23: this.isLogin = true;

24: this.userData = user;

25: } else {

26: this.isLogin = false;

27: this.userData = null;

28: }

29: });

30: },

31: components: {

32: Home: Home,

33: Editor: Editor

34: }

35: };

36: </script>

　Firebaseから取得したデータはuserに格納されているので、それをuserDataに格納します。その後Editor
を読み出す際に:user="userData"として、呼び出すコンポーネントにデータを引き渡すことができます。これ
を今度はEditor側で取得するには次のようにします。また、ついでにログアウトもできるようにします。

リスト4.6: /src/components/Editor.vue

 1: <template>

 2: <div class="editor">

 3: <h1>エディター画面</h1>

 4: {{ user.displayName }}

 5: <button @click="logout">ログアウト</button>

 6: </div>

 7: </template>

 8:

 9: <script>

10: export default {

11: name: "editor",

12: props: ["user"],

13: data() {

14: return {};

15: },

16: methods: {

17: logout: function() {

18: firebase.auth().signOut();

19: }

20: }

21: };

22: </script>

　propsという名前で親コンポーネントから受け継ぐデータを定義します。firebaseのユーザーデータには
displayNameというキーでユーザー名が格納されているので、template内でそれを表示します。
　ログアウトに関してもFirebaseのsignOutのメソッドを実行します。すると、それをまたApp.vueが検知して
表示をHome.vueに切り替えてくれます。

図4.7: ユーザーの名前を表示したエディター画面

ちょい足しポイント4
　今回のログインではApp.vueでデータを管理していましたが、これがたくさんのコンポーネントでやり取りを行うようになると
煩雑になりがちです。また、親から子へのデータの引き渡しはいいですが、たとえばこの場合のEditorからHomeという兄弟
コンポーネントでのデータは受け渡せません。
　そんな時にはVuexという公式ライブラリを利用し、Storeを定義し、そこにデータを格納することで煩雑さを防ぐ手法が一
般的です。
　Storeの定義の説明を行うと長くなってしまうため本書では割愛しましたが、規模が大きくなってくると必須な項目なの
で、是非Vuexの公式ドキュメントを確認していただければと思います。
Vuexとは何か？:
https://vuex.vuejs.org/ja/
　また、今回のアプリケーションはログイン後に、ログインしているかどうかが確認できるまでHome.vueが表示されてしまって
いると思います。これもfirebaseのログインチェックを行うまではローディング画面を出すなどで防ぐことができますので、是非
実装してみてください。

　いかがでしたでしょうか。晴れてGoogleアカウントでログインし、ログインしたデータをアプリケーション内で表
示することができました。ユーザーデータは他にもアカウントに設定している画像なども取得できますので、それ
を画面に表示するなど色々と試しつつカスタマイズしながら進めてもらえればと思います。

https://vuex.vuejs.org/ja/

第5章　エディターの作成：データベース作成とデータ保存

　さていよいよエディターを作って、メモを保存できる機能の実装に移ります。ここではFirebaseでのデータ保
存や削除機能を使います。

5.1　メモを編集できるマークダウンエディターを作る

　まずはブラウザ上でメモを書ける、マークダウンエディターを作ります。textareaというhtmlタグでは文章を書
くことが可能なので、これに加えてなのでマークダウンの書式で書かれたものをプレビューする機能を作りましょ
う。マークダウンをプレビューするには、そのためのライブラリを導入します。ターミナルに移り、プロジェクトのルート
で次のコマンドを実行します。

$ npm install --save-dev marked

　これはmakredというマークダウンの書式をHTMLに変換してくれるnpmモジュールです。次にEditor.vueを
編集します。

リスト5.1: /src/components/Editor.vue

 1: <template>

 2: <div class="editor">

 3: <h1>エディター画面</h1>

 4: {{ user.displayName }}

 5: <button @click="logout">ログアウト</button>

 6: <div class="editorWrapper">

 7: <textarea class="markdown" v-model="markdown"></textarea>

 8: <div class="preview" v-html="preview()"></div>

 9: </div>

10: </div>

11: </template>

12:

13: <script>

14: import marked from "marked";

15: export default {

16: name: "editor",

17: props: ["user"],

18: data() {

19: return {

20: markdown: ""

21: };

22: },

23: methods: {

24: logout: function() {

25: firebase.auth().signOut();

26: },

27: preview: function() {

28: return marked(this.markdown);

29: }

30: }

31: };

32: </script>

33: <style lang="scss" scoped>

34: .editorWrapper {

35: display: flex;

36: }

37: .markdown {

38: width: 50%;

39: height: 500px;

40: }

41: .preview {

42: width: 50%;

43: text-align: left;

44: }

45: </style>

　無事に実行できたら、左側のtextareaに書き込んだマークダウンの文章の内容が、右側にリアルタイムに
プレビューされていると思います。

図5.1: マークダウンプレビューが表示されたエディター画面

5.1.1　scriptについて

　まずscript部分ですが、npmでインストールしたmarkedをimportで読み込んでいます。その後data関数
ではオブジェクトにmarkdownというキーを追加しており、そこにマークダウンで記述されたテキストを入れること
とします。
　そのテキストをプレビューするためにpreviewという関数を追加します。さきほどインストールしたmarkedを利
用して、markdownに格納されたテキストをHTMLで返却します。

5.1.2　templateについて

　次にtemplateでは、textareaを定義しv-modelという属性へdata関数で定義したmarkdownを入れま
す。v-modelはinputやtextareaの状態をコンポーネントのデータへ格納するもので、この記述を加えるだけで
textareaに書き込んだテキストが自動的にv-modelで指定した変数へ格納されます。これをデータバインディ
ングと呼びます。

　その格納された値を利用し、previewではv-htmlという記述を利用します。これはその名前のとおり、v-
htmlで指定された値を直接HTMLとして描画する機能になります。また、その指定するデータについて今回
はmethodsのpreviewに () を付与して記述することでpreview関数の実行結果がデータとして入力されま
す。
　※v-htmlはブラウザでのXSSの原因となるため、テキストを共有するタイプのサイトで利用する際にはその
対策を追加する必要が出てきます。詳細については 6.3で説明します。

5.1.3　Styleについて

　マークダウンのプレビューが下に表示されていては見づらいため、並列になるようなCSSを記述します。
　ここでは表示の確認レベルのため、最低限の記述とします。デザイナーの方はそろそろ見た目の無骨さに耐
えられなくなってきている頃だと思います。ご自身で編集ができる方はCSSをガシガシ書き変えながら進めてく
ださい。
　そして今回記述したstyleタグにscopedの記述が追加されていることに気づいたと思います。実はこの記
述には、そのコンポーネントで記述したCSSはそのコンポーネント内でしか適用されないという便利な機能が
備わっています。
　デベロッパーツールでtemplateで記述したhtmlについて確認すると、data-v-1234567のような属性がつ
いているのが分かると思います。scopedの記述を行うと、自動的にhtmlに個別の属性を割り当て、その属
性にのみCSSが当たるように変換してくれるという機能になっています。
　CSSは、もともとページ全体の指定されたセレクタすべてに適用するという仕様のため、BEM等のテクニック
を用いてその影響範囲を絞って書かれていました。しかしこのscopedという機能によって、そういったテクニッ
クが無くとも自身のコンポーネント以外でのCSSの影響がなくなり、コンポーネント単位での作業に集中する
ことができるようになりました。

5.2　メモを複数作成可能にする

　せっかくなので複数のメモを作れるようにしたいですよね。ここでは次の機能を追加します。
　・メモを保存する変数を配列に変更し、複数保存できるようにする
　・メモの一覧を作る
　・メモの１行目を一覧で表示するタイトルとする
　・配列へメモを追加する
　・メモを一覧から選択して切り替える（選択しているメモは色を変える）
　これらをまとめて次のように編集し、それぞれの実装について説明していきます。（各節で関わる部分の
み、同じコードを抽出したもので説明します。）

リスト5.2: /src/components/Editor.vue

 1: <template>

 2: <div class="editor">

 3: <h1>エディター画面</h1>

 4: {{ user.displayName }}

 5: <button @click="logout">ログアウト</button>

 6: <div class="editorWrapper">

 7: <div class="memoListWrapper">

 8: <div class="memoList" v-for="(memo, index) in memos" :key="index"

@click="selectMemo(index)" :data-selected="index == selectedIndex">

 9: <p class="memoTitle">{{ displayTitle(memo.markdown) }}</p>

10: </div>

11: <button class="addMemoBtn" @click="addMemo">メモの追加</button>

12: </div>

13: <textarea class="markdown" v-model="memos[selectedIndex].markdown"></textarea>

14: <div class="preview" v-html="preview()"></div>

15: </div>

16: </div>

17: </template>

18:

19: <script>

20: import marked from "marked";

21: export default {

22: name: "editor",

23: props: ["user"],

24: data() {

25: return {

26: memos: [

27: {

28: markdown: ""

29: }

30:],

31: selectedIndex: 0

32: };

33: },

34: methods: {

35: logout: function() {

36: firebase.auth().signOut();

37: },

38: addMemo: function() {

39: this.memos.push({

40: markdown: "無題のメモ"

41: });

42: },

43: selectMemo: function(index) {

44: this.selectedIndex = index;

45: },

46: preview: function() {

47: return marked(this.memos[this.selectedIndex].markdown);

48: },

49: displayTitle: function(text) {

50: return text.split(/\n/)[0];

51: }

52: }

53: };

54: </script>

55: <style lang="scss" scoped>

56: .editorWrapper {

57: display: flex;

58: }

59: .memoListWrapper {

60: width: 20%;

61: border-top: 1px solid #000;

62: }

63: .memoList {

64: padding: 10px;

65: box-sizing: border-box;

66: text-align: left;

67: border-bottom: 1px solid #000;

68: &:nth-child(even) {

69: background-color: #ccc;

70: }

71: &[data-selected="true"] {

72: background-color: #ccf;

73: }

74: }

75: .memoTitle {

76: height: 1.5em;

77: margin: 0;

78: white-space: nowrap;

79: overflow: hidden;

80: }

81: .addMemoBtn {

82: margin-top: 20px;

83: }

84: .markdown {

85: width: 40%;

86: height: 500px;

87: }

88: .preview {

89: width: 40%;

90: text-align: left;

91: }

92: </style>

図5.2: 実装を行うとこのようなエディター画面になります

5.2.1　メモを保存する変数を配列に変更し、複数保存できるようにする

　data関数内でもともとメモが入っていたmarkdownという変数をmemosという配列にし、中にオブジェク
トを格納しておきます。このオブジェクト内のテキストデータのキーをmarkdownとしておきます。
　そしてその配列の中から、編集・プレビューしているデータはselectedIndexという変数で配列の番号を指
定し表示することにしましょう。templateのtextareaとpreviewで指定しているデータも、それに合わせて変
更しておきます。

リスト5.3: /src/components/Editor.vue

<textarea class="markdown" v-model="memos[selectedIndex].markdown"></textarea>

〜〜〜

data() {

 return {

 memos: [{

 markdown: ""

 }],

 selectedIndex: 0

 }

},

5.2.2　メモの一覧を作る

　memoListというクラスの要素でメモの一覧を表示します。その際v-forという属性を付与することで、配
列やオブジェクトに応じた表示であるリストレンダリングを行います。v-forに配列またはオブジェクトを指定し

ておくとそのデータの分要素が生成されるという機能になります。
　今回の記述では配列の中身のデータはmemoに格納されており、配列の番号はindexに格納されます。
memo.key名で中のデータへアクセスが可能です。

リスト5.4: /src/components/Editor.vue

<div class="memoList" v-for="(memo, index) in memos" :key="index" @click="selectMemo(index)"

:data-selected="index == selectedIndex">

 <p class="memoTitle">{{ displayTitle(memo.markdown) }}</p>

</div>

v-forとv-ifを同じ要素につけるとうまく表示されない!?
　たとえば配列の中で、データが入っていない要素は表示したくないという場面があると思います。そんなときにはつい、
<p v-for="text in texts" v-if="text">{{ text }}</p>
　このような形で記載しがちです。しかしv-forとv-ifは同じ要素に付与することはできないため、v-ifの中身にかかわらず表
示されてしまいます。そんなときには、次のようにその要素を囲む要素を作るとよいでしょう。
<template v-for="text in texts">
<p v-if="text">{{ text }}</p>
</template>
　これならリストレンダリングを使いつつ、要素の表示非表示を制御できます。template要素とは、こういったリストレンダリ
ングや条件付きレンダリングの際などに利用するための要素で、htmlとして意味を持たせない場合などに利用するとよいで
しょう。
　または「テキストが空のときには非表示」というのが決まっている場合は、
<p class="hoge" v-for="text in texts">{{ text }}</p>
　とし、CSSで、
.hoge:empty{
display:none;
}
　のように書いてもいいかもしれません。v-ifの条件に応じて使い分けてみてください。

5.2.3　メモの１行目を一覧で表示するタイトルとする

　一覧に表示するメモのタイトルは今回はメモの１行目とします。displayTitleというmethodを追加し、そ
こでは入力されたテキストデータの１行目を返却するようにします。
　split(/\n/)ではテキストを改行で分割し配列にします。その配列の初めの値を返却することで１行目だけ
になります。また、文字数が多い場合はCSSで要素からはみ出た文は表示しないようにします。

リスト5.5: /src/components/Editor.vue

displayTitle: function(text) {

 return text.split(/\n/)[0];

},

〜〜〜

.memoTitle {

 height: 1.5em;

 margin: 0;

 white-space: nowrap;

 overflow: hidden;

}

5.2.4　配列へメモを追加する

　「メモを追加」ボタンをメモ一覧の最後に配置し、押されたら配列にデータが追加されるmethodを呼び出
します。

リスト5.6: /src/components/Editor.vue

<button class="addMemoBtn" @click="addMemo">メモの追加</button>


~~~


// Methods内


addMemo: function() {


  this.memos.push({


    markdown: "無題のメモ",


  })


},

5.2.5　メモの一覧を選択して切り替える

　@clickでそのメモを選択して表示を切り替えるためにselectMemoをmethodへ追加します。その際
indexを入力しselectIndexを切り替えることで表示・プレビューともに切り替わるようにします。

リスト5.7: /src/components/Editor.vue

<div class="memoList" v-for="(memo, index) in memos" :key="index" @click="selectMemo(index)" 

:data-selected="index == selectedIndex">


~~~


// Methods内

selectMemo: function(index) {

 this.selectedIndex = index;

},

　また、:key="index" の記述はv-forのようなリストレンダリングなどで繰り返す要素それぞれに、個別の
keyを設定することで要素の再利用と並び替えができるようになり、パフォーマンスが向上するため推奨されて
います。

5.2.6　選択しているメモは色を変える

　どのメモを選択しているかわからなくなるため、選択している要素は data-selected="true"という属性が
つくようにします。色はCSSで指定します。
　属性について、データに応じて内容の変更がある場合には明示的に記述しておく必要があります。
Vue.jsでは":"を属性の頭に付与することで、今回ではメモのindexが現在選択されているものと一致した場
合に属性が付与されるようになります。:はv-bind:の略称記法で、どちらでも書いてもOKです。

リスト5.8: /src/components/Editor.vue

<div class="memoList" v-for="(memo, index) in memos" :key="index" @click="selectMemo(index)"

:data-selected="index == selectedIndex">


~~~


// Style内


.memoList {


  &[data-selected="true"] {


    background-color: #ccf;


  }


}



ちょい足しポイント5
　「メモの順番を変えられる機能」「メモ毎に最後に編集した日付や作成した日付を追加」などをしてみてもいいと思いま
す。今回配列にテキストだけでなくオブジェクトとして追加したのはそういった要素を追加しやすいように考えてのことでした。
　markdownのメモ以外に、タグを追加したり、プレビューのON、OFF設定など、自由に情報を追加してみてください。
　さらに高度な機能としては
　・検索機能
　・ソート機能
　などでしょうか。lodashなどのライブラリを使うと結構あっさり実装できたりもするので、是非挑戦してみてください。
lodash
https://lodash.com/docs/

　どうでしょうか。メモが複数編集でき、リアルタイムプレビューもされることでマークダウンエディターらしさが出て
きたと思います。

https://lodash.com/docs/


5.3　メモの削除機能追加

　メモを追加できたので、次は削除機能を追加します。まずはtemplateに削除ボタンを追加します。

リスト5.9: /src/components/Editor.vue

  <button class="addMemoBtn" @click="addMemo">メモの追加</button>


  <button class="deleteMemoBtn" v-if="memos.length > 1" @click="deleteMemo">選択中のメモの削除

</button>


</div>

　次に対応するdeleteMemo関数をmethods内に追加します。

リスト5.10: /src/components/Editor.vue

// methodsに追加


deleteMemo: function() {


  this.memos.splice(this.selectedIndex, 1);


  if (this.selectedIndex > 0) {


    this.selectedIndex--;


  }


},

　spliceは配列の任意の位置からデータを取り出す関数です。選択中のメモを削除するため、メモの番号を
調整するためにselectedIndexから1を引いておきます。

図5.3: 削除ボタンの実装済画面





ちょい足しポイント6
　取り出したデータをゴミ箱として保存し、振り返れるようにしてみて下さい。spliceは返り値で取り出したデータが取得できま
す。

　今のままではアクセスしてメモを書いてもリロードすると消えてしまいます。次の章からはいよいよメモを
Firebaseへ保存することでより実用的なものにしていこうと思います。



5.4　Firebase Realtime DBの設定

　まずはFirebaseの管理画面でDatabaseタブを開きます。初期状態ではFirestoreの表示になっています
が、スクロールしてRealtime Databaseの設定へ進みます。「データベースを作成」をクリックしてください。

図5.4: Realtime Databaseの設定画面への項目

　初期状態でのデータベースのセキュリティルールをどうするかのモーダルが表示されますが、後ほど編集します
のでロックモードのまま進みます。

図5.5: Realtime Databaseの設定画面への項目



　今回はソース内のmemosの配列がユーザー毎に保存できて読み書きができれば目的の動作になります。
Realtime DBでは、DBのルールをJSON形式で設定できます。
　ルールタブを開いていただくとルールの設定や、編集中のルールのエミュレーションができます。
　今回は自分のメモが保存でき、そのメモが他のユーザーも読み込みができないようにするため、マニュアルで
次の項目のサンプルにある"ユーザー"の項目を参考にします。

ユーザーのデータを保護したルールサンプル
https://firebase.google.com/docs/database/security/quickstart?authuser=0#sample-
rules

図5.6: データベースルールのサンプル

　rules配下にルールを記載します。このサンプルのusersはDB内のパスで、$uidはuser配下にユーザーIDと
同じ名前のパスへデータを配置するという意味になります。
　このユーザーIDはFirebaseでログインしたユーザーに個別に振られるFirebaseログインのユーザーIDであり、
App.vue 内 で 取 得 し て い る user オ ブ ジ ェ ク ト 内 に uid と い う キ ー で 取 得 で き
る"5fJlwVxnnhYKpMx65IFxREXfZal1"のような文字列がIDです。
　他のユーザーが自分のデータを読み書きできないように設定するには、サンプル内の $uid === auth.uid
がポイントで、".read"は読み込み、".write"は書き込みについてそれぞれ、ユーザーIDと同じ名前のパス内の

https://firebase.google.com/docs/database/security/quickstart?authuser=0#sample-rules


データと、ログインしているユーザー（auth）のユーザーID（uid）が一致する場合のみ可能という設定に
なります。
　今回はメモデータなので、memosというパスでデータを保存しようと思いますので、サンプルをコピーし、次の
ように編集して保存しておきましょう。

図5.7: データベースルールの設定

　これでデータベースへデータを保存する準備はOKです。次の章では編集したメモの保存をやってみましょう。
　また、Firebase RealtimeDBのruleに関するドキュメントは次にありますので、ざっと目を通しておくとよいと
思います。

Firebase RealtimeDB rules
https://firebase.google.com/docs/database/security

　※FirebaseにはRealtime DBよりも高機能なFirestoreというDBがありますが、本書の執筆時には
Firestoreがベータ版なため利用していません。しかし今後はFirestoreが主流になっていくと思われますので、
本書とは別で著者から本書のFirestoreのへの移行マニュアルを作成しております。サポートリポジトリへリン
クを記載しておりますので、本書が終わったらご一読していただければと思います。

https://firebase.google.com/docs/database/security


ちょい足しポイント7
　現状のルールでは指定された場所以外に、ユーザーが無理やりデータを保存（ログイン状態で自らプログラムでAPIを叩く
ような形）をしようとすればできてしまいます。そういったデータを追加されても他のユーザーに影響はないですが、指定のパス
以外にデータが保存できないようなルールをFirebaseのドキュメントを見ながら追加してみましょう。



5.5　メモの保存と読み込み機能の作成

　ここではデータベースへ保存する機能と、ページロード時にそれを読み込む機能を追加します。まずは保存
するボタンを追加し、RealtimeDBへ保存する処理を書きます。

リスト5.11: /src/components/Editor.vue

  <button class="deleteMemoBtn" v-if="memos.length > 1" @click="deleteMemo">選択中のメモの削除

</button>


  <button class="saveMemosBtn" @click="saveMemos">メモの保存</button>


</div>


~~~~


// methods内

saveMemos: function() {

 firebase

 .database()

 .ref("memos/" + this.user.uid)

 .set(this.memos);

},


~~~~


// style内


.deleteMemoBtn {


   margin: 10px;


}

図5.8: 保存ボタンの追加後の画面



　以前ログインの際にも利用したFirebaseに対して、.database() を実行しデータベースに接続し、
.ref("memos/" + this.user.uid) ではデータを読み書きするパスを指定します。ルール設定を行ったパスで
す。
　user.uidにはFirebaseでログインした際に発行されるユーザーIDが格納されています。
　そして .set(this.memos) でそのパスへデータを保存することができます。setはそのパス以下のデータを指定
したデータに上書きするため、 update に変えると指定したデータのみ更新するような機能を備えています。
　保存が無事に行えたかどうか、Firebase管理画面で確認してみましょう。データタブを開くと、今DBにどん
なデータが入っているか確認することができます。次のようにデータが格納されていたら成功です。

図5.9: データベースに保存できているかどうかの確認画面



　これで保存ができたので、次にページ読み込み時にデータの読み込みを実行するようにしましょう。

リスト5.12: /src/components/Editor.vue

// data関数の次に追加


created: function() {


  firebase


    .database()


    .ref("memos/" + this.user.uid)


    .once("value")


    .then(result => {


      if (result.val()) {


        this.memos = result.val();


      }


    })


},

　created関数内に読み込みの処理を追加します。



　書き込み時と同じようにdatabaseへの接続、パスの指定を行い読み込みの場合は .once("value") を
指定します。このonceは一回だけの読み込みに利用します。
　realtimeDBでは元データに変更があった際に通知してくれる機能があり、詳細は次のドキュメントに記載
されています。

リアルタイムにデータの変更を検知するには
https://firebase.google.com/docs/database/web/read-and-write?
authuser=0#listen_for_value_events

　その後データを受け取るには、.then( result =>{})というPromise形式でデータを受信できます。この例で
はデータの読み込みが終わり次第then内に定義した関数が結果とともに読み込まれるという流れです。
　このresultで.val()というメソッドを実行することで、指定のパスのデータを取得することができます。はじめて
利用するユーザーの場合は結果がnullなので、if文を追加してデータがあった場合のみmemosを上書きする
という処理とします。

https://firebase.google.com/docs/database/web/read-and-write?authuser=0#listen_for_value_events


ちょい足しポイント8
　いちいち保存ボタンを押すのは面倒なので
　・Ctrl + sを押下で保存
　・一定の時間が経ったら自動的に保存
　・編集の区切り（メモを切り替えたら）保存
　などの機能を追加するともっと使いやすくなりますね。

　この中でみなさんがもっとも手慣れているであろう、ショートカットキーの実装を次の項で行っていきます。



5.6　ショートカットキーでメモを保存する

　前の章でEditer.vueのcreated関数を追加しました。この関数はコンポーネントが作成されたタイミングで
実行されます。
　ショートカットキーの設定にはブラウザの機能である、document.onkeydownという関数を利用します。
　この関数はブラウザがキーボードで何らかのキーが押されたことを検知して、設定してある関数を実行しま
す。それが、今回の場合「Control + sキー」と「Command + s(Mac OS)、Windows + s(Windows)」の
組み合わせの場合saveMemosを実行するようにします。
　また、コンポーネントの描画が完了したタイミングのmountedという関数内でdocument.onkeydownの
設定を追加し、コンポーネントがログアウトなどで削除されるタイミングで実行されるbeforeDestroyで設定を
消すという内容のコードを追加していきます。これらのコードはmethodと同じ階層に記述をしていきます。

リスト5.13: /src/components/Editor.vue

mounted: function() {


  document.onkeydown = e => {


    if (e.key == "s" && (e.metaKey || e.ctrlKey)) {

      this.saveMemos();


      return false;


    }


  }


},


beforeDestroy: function() {


  document.onkeydown = null;


},

　これによってキーを同時押しすると保存が実行されるようになりました。関数内のeはキーボードの押下され
たイベント自体で、そのイベントの.metaKeyでCommand(Mac OS)・Windows(Windows)を、.ctrlKeyで
Controlキーのどちらかが押されているかチェック、e.keyで同時にsキーも押されているかチェックしています。
　これでひととおりの機能の開発は終了です。お疲れ様でした。見た目はどうであれ、これで無事にオリジナ
ルの「マークダウンをオンライン上で保存し編集できるWebサービスの開発」ができました。是非デプロイも試し
てみてください。
　次の章からは見た目を整えることや、作ったサービスを公開するまでに必要な項目を紹介していきます。
Firebaseで開発する項目についてもここで終了になるため、ここまでの習得のみが目的の方は次の章は読み



飛ばして頂いても構いません。



第6章　見た目を整える

　ここまでの章では機能面での開発にフォーカスしていたので、サービスの見た目は気にしていませんでした。
この章ではデザイン面で考慮しておきたい実装ポイントを紹介していきます。
　ただし、あくまで「実装ポイント」ですので、フォントの選定、カラーリング等に関しては触れません。



6.1　リセットCSSを導入する

　ブラウザに標準で入っているCSSをリセットすることが目的のCSSモジュールです。標準で入っているCSSは
margin等が入っているため、意図どおりのデザインにならない原因となることあります。一度それらを消して
からCSSを書いていくためのモジュールです。
　これにはreset.cssや、normalize.css、shitaji.cssなど、微妙に違いますが目的は同じモジュールがいくつ
かあります。これらはすべてnpmで公開されているので、npm installした後に次のように編集すればすぐ利
用することができます。
　今回はshitaji.cssを利用してみたいと思いますので、こちらのコマンドでshitajicssのnpmをインストールし
ます。

$ npm install shitajicss

　その後次のように編集しします。

リスト6.1: /src/main.js

 1: import "shitajicss/docs/css/shitaji.min.css";


 2: import Vue from "vue"


 3: ~~~

　WebpackではCSSもJSと同じく一緒にまとめてくれる機能があるため、このようにJavascriptのライブラリ
のようにCSSファイルもimportすれば利用することができます。
　また、今回のようにnpmによっては読み込みたいファイルの場所にバラツキがあることもあります。そのとき
にはinstall後にnode_modulesの中のパッケージディレクトリの中を見て目的のファイルを探しましょう。
　もちろんリセットCSS自体の量は少ないので、オリジナルで作ってもよいと思います。今回のプロジェクトで
はマークダウンのプレビュー部分も、リセットされたままだとすべて平文になってしまうため、後の章でプレビュー
部分に追加で見やすくなるようなCSSを書いてみましょう。



6.2　CSSファイルの管理

　前章でCSS（SCSS）ファイルをimportできることがわかっていただけたと思います。こちらはライブラリ以
外にも自分で作ったファイルを読み込ませることももちろん可能です。
　5.1.3.ではscoped CSSについて説明しました。好みもありますが、基本的にcomponent内CSSはすべ
てscopedにしてしまい、全体で使うモジュール等は別ファイルとして切り出しておくと、見通しがよいと思いま
す。人によっては、全体で利用するCSSはApp.vueの中でscopedにせずにそのまま書く、という方もいま
す。
　具体的にはsrcディレクトリにscssディレクトリを作成し、サイト全体で利用するCSSを書いていきましょう。
style.scssファイルを作成し、App.vueに記載されていたstyleはstyle.scssファイルに移動します。その後、そ
のstyle.scssファイルはmain.jsで読み込みを行います。

リスト6.2: /src/main.js

 1: import "shitajicss/docs/css/shitaji.min.css";


 2: import "./scss/style.scss";


 3: import Vue from "vue"


 4: ~~~

　これで、全体で利用するCSSはstyle.scssへ、コンポーネント毎のCSSはコンポーネント内に書くという切り
分けができました。



6.3　プレビュー用CSSの追加

　前の項ではブラウザで標準に入っているCSSをリセットし、全体で利用するCSSとコンポーネントで適用す
るCSSの使い分けができました。
　これによって余計な余白等はなくなりましたが、マークダウンをプレビューしている部分のスタイルもリセット
されてしまったため、その部分にCSSを追加します。
　ここではGitHubのサイトで利用されているCSSを利用してみたいと思います。

github-markdown-css:
https://github.com/sindresorhus/github-markdown-css

　このリポジトリのCSSはgithubでのマークダウンのプレビューに利用しているCSSを抜き出して公開している
リポジトリです。
　こちらのcssを"/src/scss/github-makrdown.css"として保存しstyle.scssでimportします。

リスト6.3: /src/scss/style.scss

 1: 


 2: @import 'github-markdown.css';


 3: 

　その後、このCSSでは markdown-body というクラスが付与されている要素に適用されるので、
Editer.vueを次のように編集します。

リスト6.4: /src/components/Editor.vue

15: <textarea class="markdown" v-model="memos[selectedIndex].markdown"></textarea>


16: <div class="preview markdown-body" v-html="preview()"></div>


17: </div>

　これでマークダウンのプレビュー部分にはGitHubのプレビューと同じCSSが適用されました。

図6.1: マークダウン表示にCSSを適用した画面

https://github.com/sindresorhus/github-markdown-css




ちょい足しポイント9
　上記CSSでは実はulやolのリストタグので箇条書きの"・"や数字が表示さません。それらが表示されるように github-
markdown.css を編集してみましょう。



6.4　CSSフレームワークについて

　見た目を整えるためにCSSを一から書くのは、初心者の方にはなかなか高いハードルです。「ある程度決
まったデザインのテンプレを元に作りたい」という要望を叶えるため、プログラミングと同じ様にCSSにもフレーム
ワークが存在します。
　もっとも有名なのはTwitter社が開発し公開したことで一気に普及したBootstrapと呼ばれるフレームワー
クです。しかしこちらのフレームワークはjQueryに依存しているため、Vue.jsと組み合わせるには多少工夫が
必要です。

Bootstrap:
https://getbootstrap.com/

　Vue.jsプロジェクトにおいて、マテリアルデザインをベースにしたVuetifyというフレームワークも有名です。
Vuetify:
https://vuetifyjs.com/ja/

　このフレームワークを利用することで、マテリアルデザインのWebサイトを比較的低コストで開発することが
できます。
　CSSのフレームワークにはただ読み込むだけで通常のhtmlタグにスタイルを適用するものもありますが、紹
介したフレームワークはある程度ルールに則ってクラス名などを追加する必要があります。
　たとえばVuetifyでは次のような形からプロジェクトを開始します。

リスト6.5: VuetifyでのサンプルHTML

 1: <!DOCTYPE html>


 2: <html>


 3: <head>


 4:   <link href='https://fonts.googleapis.com/css?[ ※ 改 行 可 能 位 置

※]family=Roboto:300,400,500,700|Material+Icons' rel="stylesheet">


 5:   <link href="https://unpkg.com/vuetify/dist/vuetify.min.css" rel="stylesheet">


 6:   <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1, 

user-scalable=no, minimal-ui">


 7: </head>


 8: <body>


 9:   <div id="app">


10:     <v-app>


https://getbootstrap.com/
https://vuetifyjs.com/ja/


11:       <v-content>


12:         <v-container>Hello world</v-container>


13:       </v-content>


14:     </v-app>


15:   </div>


16: 


17:   <script src="https://unpkg.com/vue/dist/vue.js"></script>


18:   <script src="https://unpkg.com/vuetify/dist/vuetify.js"></script>


19:   <script>


20:     new Vue({ el: '#app' })


21:   </script>


22: </body>


23: </html>

　このようにVue.jsのルールに加えてVuetifyのルールに従い独自のタグを利用しながら開発を進める必要
があるため、利用する際には各Webサイトのチュートリアルを見ながら進めましょう。



ちょい足しポイント10
　webpack-simpleのスターターテンプレートもVuetifyに用意されています。これらを利用してマテリアルデザインのサイトに
してみましょう。



6.5　ロゴの作成

　サービス名は決まっているとして、せっかくサービスを作るのであればロゴがほしいですよね。
　この項ではロゴの作成の際に参考になるサイトを２つ紹介します。

サービス名が英語の場合：wordmark.it
https://wordmark.it/
サービス名が日本語の場合：ためしがき
https://tameshigaki.jp/

　これらサイトでは、色々なフォントでロゴを作ったらどうなるかを、一度に試せるサイトです。

図6.2: ためしがきで文字を入力

　ここで自分のサイトにあったフォントを選定します。その際利用するフォントのライセンスについてはしっかり
調べてから利用してください。ためしがきでプレビューされるフォントはすべて商用利用可能なので、そのまま
利用しても大丈夫です。
　フォントが決まったら、画像化してサイトに表示してみましょう。画像を作り"/src/assets/logo.png"を差
し替えて、Home.vueに追加します。

リスト6.6: /src/components/Home.vue

https://wordmark.it/
https://tameshigaki.jp/


 3: <div class="home">


 4:   <h1><img alt="MyMarkdown" src="../assets/logo.png"></h1>


 5:   <button @click="googleLogin">Googleアカウントでログイン</button>

　ロゴが入るだけでも雰囲気が出てくると思います。
　また、コンポーネント内で画像を利用したい場合は、このようにコンポーネントからの相対パスでimgタグに
読み込ませます。するとWebpackでbuildする際にそれらのファイルも一緒にdistへコピーされ、デプロイ時に
index.htmlと一緒に適用されます。



6.6　トップページにサービスの説明文を加えよう

　たとえどんなに素晴らしいサービスだったとしても使われなければ意味がありません。そのためにも、トップペ
ージに来たユーザーにはできるだけ登録してもらえるように工夫しましょう。
　これはどんなサービスで、何ができて、どんな素晴らしい体験が得られるのかをしっかりと説明して、スクリー
ンショットやサンドボックスなどを入れてサービスの魅力をできるだけ伝えましょう。今回はGoogleアカウントを
利用しているので、登録手続き自体はすぐに終わるのでその点をアピールしてもいいかもしれません。
　さまざまなWebサービスを見てどんなトップページなら登録したくなるか、というのを研究して是非ご自身が
登録したくなるようなページを作ってみて下さい。



第7章　Webサービスとして公開するまでの必要な準備

　さて開発もいよいよラストスパート！この章にある内容を網羅して、よりよいWebサービスを目指してくださ
い。



7.1　複数ページ対応（Vue Routerの利用）

　Webサービスとして公開するためには、利用規約と、今回の場合はユーザー登録してもらうためにプライバ
シーポリシーの記載などが必要になってきます。場合によっては使い方マニュアルなどの追加も必要になる場
合もあるでしょう。
　そのため、この章では複数ページを切り替えられる機能の追加を行うために、Vue Routerを導入しま
す。
　これまでに制作したトップページとエディターページは、Googleアカウントでのログイン状態を判別してコン
ポーネントを出し分けていました。
　しかしサイト内ではリンクを利用してページ遷移をしたいケースが多いと思われます。今回はSPAで開発し
ているため、複数のhtmlファイルを作るのではなくコンポーネントの出し分けをこのVue Routerを利用して行
います。
　Vue Routerを利用すると、今後ページを追加する際に決まったフォーマットの設定ファイルを追記してい
くだけで、簡単にコンポーネントの切り替えを行えるようになります。2.2の章で説明したSPAの機能の"URL
に応じてページの内容を切り替える"ことと、逆に"ページを切り替える際にURLを変更する"という機能などを
備えたSPAのページ管理ライブラリがVue Routerです。
　実際に導入してページの切り替えをどのように行うかを実装していきましょう。

7.1.1　Vue Routerの導入

　まずはVue Routerのnpmをinstallします。

$ npm install vue-router

　Vue Routerを利用するために、main.jsでVueの初期化の際にrouterを設定します。

リスト7.1: /src/main.js

 1: import "shitajicss/docs/css/shitaji.min.css";


 2: import "./scss/style.scss";


 3: import Vue from "vue";


 4: import App from "./App.vue";


 5: import router from "./router";


 6: 




 7: new Vue({


 8:   el: "#app",


 9:   router: router,


10:   render: h => h(App)


11: });

　Vue.jsの拡張ライブラリの追加はこのようにnew Vue()する際に追加します。
　router.jsが存在していないためエラーになってしまうので、router.jsを作成し、次のように記述しておきま
す。

リスト7.2: /src/router.js

 1: import Vue from "vue";


 2: import VueRouter from "vue-router";


 3: import Top from "./views/Top";


 4: import Terms from "./views/Terms";


 5: 


 6: Vue.use(VueRouter);


 7: const routes = [


 8:   {


 9:     path: "/",


10:     name: "top",


11:     component: Top


12:   },


13:   {


14:     path: "/terms",


15:     name: "terms",


16:     component: Terms


17:   }


18: ];


19: 


20: export default new VueRouter({


21:   routes: routes


22: });

　コンポーネントが無いためエラーになりますが、いったんコードの説明を進めます。



  Vue.use(VueRouter);

　npmとして読み込んだVueRouterは上記のようにVueで利用するための登録をしておきます。
　routesという配列に、順番に表示するページ情報を追加していきます。その際の各プロパティは次のとお
りです。
　・path: 表示する際のURLパス
　・name: そのRouteにつける名前（任意）
　・component: 表示するコンポーネント
　たとえばユーザーIDでユーザーごとのページを表示したいとなったときには、次のようにpathの可変部分
を":"で始まるように記載すると実現できます。

  path: "/user/:user_id",

　Vue Routerは読み込みを行ってからroutesに該当するページを探す際に、配列の先頭からpathに該
当するかどうかをチェックして、該当するpathがあったら表示するという仕様のため、間違って該当するpath
を複数記載してもエラーにはなりません。配列の順番が若いものが表示されてしまうため注意してください。
　次にコンポーネントの表示部分を実装していきます。今までsrc/App.vueだったファイルを、TOPページに
表示するコンポーネントとすることにするためsrc/views/Top.vueに移動します。その上でsrc/App.vueを新
しく作り、Vue Routerの内容を表示するコンポーネントを作成します。

リスト7.3: /src/App.vue

 1: <template>


 2: <div id="app">


 3:   <router-view></router-view>


 4: </div>


 5: </template>


 6: 


 7: <script>


 8: export default {


 9:   name: "app"


10: };


11: </script>



　ここでの<router-view>というコンポーネントはnew Vue()時に設定したrouter（この場合はVue
Router）の内容を表示するコンポーネントとなります。
　URLが変更になると、自動的に<router-view>がrouter.jsで定義したコンポーネントに切り替わります。
　次にもともとApp.vueであったコンポーネントであるTop.vueのappという記載をtopに変更しつつ、利用
規約へのリンクを追加します。
　その際にcomponentsとのファイルの位置関係が変わってしまうためimportの際のパスを "./" から "../"
に変更します。

リスト7.4: /src/views/Top.vue

<template>


<div id="top">


  <Home v-if="!isLogin"></Home>


  <Editor v-if="isLogin" :user="userData"></Editor>

  <router-link :to="{ name: 'terms' }">利用規約</router-link>


</div>


〜〜〜


import Home from "../components/Home.vue";


import Editor from "../components/Editor.vue";





export default {


  name: "top",


  data() {


〜〜〜


<style lang="scss">


#top {


  font-family: "Avenir", Helvetica, Arial, sans-serif;


〜〜〜

　<router-link>はrouterで定義したページ間の遷移を行うためのコンポーネントです。ブラウザでの表示
時には自動的にaタグに変換され、hrefにはroutesで定義したパスが入ります。
　ここではnameを利用して遷移先を定義していますが、pathを指定して遷移することも可能です。
　routesの定義時にはnameの指定は任意でしたが、nameを指定して<router-link>でのリンクも
nameに統一しておくと、開発途中でページのURLが変更になった場合にはrouter.jsを変更するだけになり
ます。



　次に規約ページのコンポーネントを追加したら、Vue Routerの導入は終了です。規約からTOPに戻るリ
ンクも追加しておきましょう。

リスト7.5: /src/views/Terms.vue

 1: <template>


 2: <div id="terms">


 3:   <h1>利用規約</h1>


 4:   <p>ここに利用規約の文章が入ります。</p>


 5:   <router-link :to="{ name: 'top' }">TOPに戻る</router-link>


 6: </div>


 7: </template>


 8: 


 9: <script>


10: export default {


11:   name: "terms"


12: };


13: </script>

　これらの作業が終わったらブラウザで動作確認をしてみてください。TOPと規約のページの切り替えが正し
く行われたでしょうか？
　以上でVue Routerの導入は終了です。利用規約のページとともにプライバシーポリシーも同じようにルー
トを発行して追加してみてください。



ちょい足しポイント11
　routesの設定でページが見つからなかった際に表示するページを追加してみましょう。TOPに戻るボタンなどを追加してお
くとより親切です。



7.2　利用規約・プライバシーポリシーを記載する

　ページを追加したので、問題の規約の内容ですが、１から自分で調べて作るのは大変ですのでまずはテ
ンプレートを参考にすることから初めましょう。
　こちらのサイトにサンプル文言と、どういったことを書く必要があるかが詳細に書かれているため参照してく
ださい。

Webサイトの利用規約:
http://kiyaku.jp/

　このサイトのものを参考にして頂いて、さらに類似サービスのものをひととおり調べて、足りない点があれば
随時追記しながら文章を作りましょう。

図7.1: Webサイトの利用規約

http://kiyaku.jp/


7.3　XSS対策などの最低限のセキュリティ対策

　個人情報を扱うWebサービスを公開する上で怖いもののひとつは情報漏洩ですね。ひとまず本書のとお
りに開発ができていれば現状特に心配することはありませんが、セキュリティ周りについて確認すべきことを
紹介します。
　3.2で記載したように、FirebaseではサイトにアクセスするデータのID等をユーザーから見える場所に配置し
ますが、これ自体は特に問題ありません。
　ログインに関しては指定されたURL上でのみ許可を行うため、他のサイトでは動作しないようになっており
ます。また、DBへのアクセスについては認証しなければアクセスできない＆認証し自分のデータのみしかアク
セスできないというルールにしてあるため、他人に自分のメモが見られてしまうことはありません。
　また、Firebaseではユーザーの認証後にアクセスできる情報（メールアドレスや名前等）についてはDBと
は隔離してあり、たとえ開発者がDBのルールを失敗して設定していたとしても閲覧することはできないように
なっています。
　しかし自分のアカウントでのログイン状態ではそのデータの取得ができるため、そのままDBに保存すること
自体はできてしまいます。
　もしシステム上必要で、そのようなデータを保存したい場合は、ルールをしっかり設定してそのユーザーのみ
がreadできるように最低限のデータのみ保存してください。ルールの設定ミス等でDBの読み取りが他人から
できてしまうと、ユーザーデータの流出につながってしまいます。
　本書ではマークダウンのプレビューにv-htmlでHTML出力という機能を利用しています。この機能は誤っ
た使い方をするとXSS（Cross-site scripting）という脆弱性を引き起こす可能性がある機能です。
　たとえば「自分のメモを他の人も閲覧可能な状態にする」という機能を追加で実装した場合に、script
タグを書いてそれを実行できてしまうと、メモ内に「自分のログイン情報を送信する」という様なコードを書い
て”メモを見た人の情報を盗む”という操作ができてしまう可能性があります。その為、ユーザー間共有のよう
な機能を今後開発するような場合にはXSSが起こらないような対策の導入が必要です。



7.4　β版テストを行い、公開する

　お疲れ様でした。公開までの準備が終わりましたでしょうか？
　公開前にやっておくといいことのひとつに、誰かにベータ版として使ってみてもらうことです。友人何人かに
事前に試してもらいインタビューを行って、機能の説明が必要になる場面にはサイト上に補足を加えるなど
しましょう。
　また、公開前にはGoogle Analyticsを導入しPVなどを計測すると、後々データを分析できます。
　そして、是非作ったサービスを公開するようになったらSNSで発信してみてください！Twitterで＠nabettu
宛にリプライを送っていただければ私が使ってみます。



最後に



フィードバック・ご意見・ご感想

　初心者の方でもつまずかずに進められるように書いていますが、もしわからないことがあったり、まったく同
じように書いても動かない、誤字脱字やご意見ご感想ありましたら、次のどれでも結構ですので、ご連絡い
ただければと思います。
　・Twitter: https://twitter.com/nabettu
　・Mail: t@cremo.tokyo
　・匿名フォーム: http://bit.ly/2EGH3uD



Special Thanks !

　・デザイン相談　たかゆり（@mazenda_mojya）
　・レビュアー　のびーさん（@fnobi）
　・レビュアー　姫ちゃん（@_hyme_)
　・テスター　しの（@shanonim）
　色々な助言本当に助かりました！いつもありがとうございます。



強くてニューゲーム

　本書の内容では物足りない方のために"ちょい足し"の内容を各所に散りばめましたが、ちょい足しの内
容をすべて追加した上で、まだまだ色々やってみたいぞ！というやる気に満ち溢れたフレンズのみんなは次の
内容に取り組んでみてください。
　きっと終わるころには大体のWebサービスや、その原型・プロトタイプが作れるようになっているはずです！
　本書の内容に加えて、私が作ったサンプルに追加した機能には★マークを付けております。GitHubリポ
ジトリの/feature/add-designブランチに追加機能を入れたソースコードを見られるようにしておきますの、で
もし気になった方は参考にしてみてください。

初心者向け機能

　・★ナビゲーションバーの追加
　・★マークダウンでチェックボックスを表示できるようにする
　・★ログイン時に表示までLoadingを入れる
　・★メモ削除時に確認する
　・★セーブ中はセーブボタンがローディングする（ローディング中は押せない）
　・開閉できるメニューを作ってみる
　・スマホとPCで別々なCSSを適用する
　・保存前にタブを消そうとしたら警告を出す
　・メモの文字数を表示する
　・Functionsを使ってAPIを作り、登録ユーザー数をトップページに表示する

中級者向け

　・★textareaをスクロールするとプレビューのスクロールも連動
　・★各種機能にショートカットキーの追加
　・変更したログを残しておき、以前のメモへ戻れるようにする
　・Functionsを使ってサーバーサイドレンダリングをやってみる（XSSに注意）
　・RealtimeDBではリアルタイムでの複数人編集機能があるので、それを取り入れて編集できるようにす

る
　・メモをpublicなデータとして、他の人が見えるが編集できないような場所に置けるようにする。（XSSに

注意）



　・画像を保存できるようにする。（Firebaseには画像などのストレージもあります）
　・JSONでのエクスポート機能
　・外部連携（たとえばEvernoteに保存できるようにする、TwitterログインしてFunctionsを使いAPI経由

でつぶやいてみる等）
　他にもEvernoteなどやDropbox paperを参考にしつつ、痒いところに手が届く用な機能を考えて作って
みてください！



あとがき

　最後まで読んでいただきありがとうございます！
　本書は私自身が2年前にいわゆるWeb系の会社に業務未経験で入社した際に、右も左もわからなっ
た私に先輩社員達から色々と教えてもらい、なんとか業務をこなせる様になっていった経験を踏まえて「その
頃の自分が今未経験入社したら何が知りたいか」というテーマを元に執筆してみました。

「jQueryを使いHTMLとCSSでなんとなくWebサイトを作ってみたことはあるけど、次になに覚えたらい
いんだろう？」
「SPAってやつ使ってみたいけどハードル高いな〜」
「Webサービス作りたいんだけどRuby on Railsは3回挫折してる」

　本書がこのような声を上げる方にとってのとっかかりになる本になっていれば幸いです。
　それではみなさん良きインターネッツライフを。

2018年6月 渡邊 達明



著者紹介

渡邊 達明（わたなべ たつあき）

株式会社クリモ取締役副社長。
1988年宮城県生まれ。仙台高専専攻科を卒業後、富士通株式会社にてWindowsOSのカスタマイズ業務に従事する。その後面白法人
カヤックにて受託開発部門を経験後、ブロガーの妻と二人で株式会社クリモを設立。
WEBフロントエンド中心の受託開発や保育園問題の解決のためのメディアを運営。
「三度の飯よりものづくり」と言っていたらBMIが17になり健康診断で毎回ひっかかるのが悩み。


◎本書スタッフ
アートディレクター/装丁：岡田章志＋GY
編集協力：飯嶋玲子
デジタル編集：栗原 翔


〈表紙イラスト〉
高野 佑里（たかの ゆり）
嵐のごとくやって来た爆裂カンフーガール。本業はGraphicとWebのデザイナー。クライアントと一緒に作っていくイラスト、デザインが得意。
FirebaseやNetlifyなど人様のwebサービスを勝手に擬人化しがち。Twitter：@mazenda_mojya



技術の泉シリーズ・刊行によせて
技術者の知見のアウトプットである技術同人誌は、急速に認知度を高めています。インプレスR&Dは国内最大級の即売会「技術書典」
（https://techbookfest.org/）で頒布された技術同人誌を底本とした商業書籍を2016年より刊行し、これらを中心とした『技術書典シリ
ーズ』を展開してきました。2019年4月、より幅広い技術同人誌を対象とし、最新の知見を発信するために『技術の泉シリーズ』へリニューアル
しました。今後は「技術書典」をはじめとした各種即売会や、勉強会・LT会などで頒布された技術同人誌を底本とした商業書籍を刊行し、
技術同人誌の普及と発展に貢献することを目指します。エンジニアの“知の結晶”である技術同人誌の世界に、より多くの方が触れていただく
きっかけになれば幸いです。


株式会社インプレスR&D
技術の泉シリーズ　編集長　山城 敬











https://techbookfest.org/


●お断り
掲載したURLは2018年6月1日現在のものです。サイトの都合で変更されることがあります。また、電子版ではURLにハイパーリンクを設定して
いますが、端末やビューアー、リンク先のファイルタイプによっては表示されないことがあります。あらかじめご了承ください。



●本書の内容についてのお問い合わせ先
株式会社インプレスR&D　メール窓口
np-info@impress.co.jp
件名に「『本書名』問い合わせ係」と明記してお送りください。
電話やFAX、郵便でのご質問にはお答えできません。返信までには、しばらくお時間をいただく場合があります。なお、本書の範囲を超えるご
質問にはお答えしかねますので、あらかじめご了承ください。
また、本書の内容についてはNextPublishingオフィシャルWebサイトにて情報を公開しております。
https://nextpublishing.jp/

mailto:np-info@impress.co.jp
https://nextpublishing.jp/


技術の泉シリーズ



著　者
編集人
発行人
発　行

改訂新版　Vue.jsとFirebaseで作るミニWebサービス

2018年10月5日　初版発行Ver.1.0（リフロー版）
2019年4月12日　Ver.1.1

渡邊 達明
山城 敬
井芹 昌信
株式会社インプレスR&D

〒101-0051

東京都千代田区神田神保町一丁目105番地

https://nextpublishing.jp/

◉本書は著作権法上の保護を受けています。本書の一部あるいは全部について株式会社インプレスR＆Dから文書による許諾を得ずに、い
かなる方法においても無断で複写、複製することは禁じられています。
©2018 Tatsuaki Watanabe. All rights reserved.
ISBN978-4-8443-9861-5




	電子書籍閲覧に関するご注意
	目次
	第1章 はじめに
	1.1 この本の目的・ターゲット
	1.2 本書であまり触れない部分
	1.3 本書の構成と対応環境について
	1.4 公式ハッシュタグでつぶやいてください！
	1.5 リポジトリとサポートについて
	1.6 表記関係について
	1.7 免責事項
	1.8 底本について

	第2章 サーバーレスシングルページアプリケーションの基本
	2.1 SPAとフレームワーク（Vue.jsの紹介）
	2.2 サーバーレスってなに？
	2.3 Firebaseは何ができる？
	2.4 そのままの構成で本格的なWebサービスで使える？

	第3章 開発環境のセットアップとデプロイまでの流れ
	3.1 vue-templesのダウンロードとセットアップ
	3.2 SFCでのコンポーネントの内容について
	3.3 Firebaseのセットアップとデプロイ

	第4章 Googleアカウントでのユーザー登録と、ログイン状態の判別
	4.1 componentsを作成し表示する
	4.2 Firebaseでログインの設定
	4.3 Googleログインの実装
	4.4 ログイン状態のチェック
	4.5 コンポーネント間の情報の受け渡しとログイン情報の表示

	第5章 エディターの作成：データベース作成とデータ保存
	5.1 メモを編集できるマークダウンエディターを作る
	5.2 メモを複数作成可能にする
	5.3 メモの削除機能追加
	5.4 Firebase Realtime DBの設定
	5.5 メモの保存と読み込み機能の作成
	5.6 ショートカットキーでメモを保存する

	第6章 見た目を整える
	6.1 リセットCSSを導入する
	6.2 CSSファイルの管理
	6.3 プレビュー用CSSの追加
	6.4 CSSフレームワークについて
	6.5 ロゴの作成
	6.6 トップページにサービスの説明文を加えよう

	第7章 Webサービスとして公開するまでの必要な準備
	7.1 複数ページ対応（Vue Routerの利用）
	7.2 利用規約・プライバシーポリシーを記載する
	7.3 XSS対策などの最低限のセキュリティ対策
	7.4 β版テストを行い、公開する

	最後に
	フィードバック・ご意見・ご感想
	Special Thanks !
	強くてニューゲーム
	あとがき


