

本書執筆にあたり、以下の環境を利用しました。

・OS：Windows 8.1 64ビット
・DBMS：PostgreSQL 9.3.2（Win x86-64）
 Oracle Database Express Edition 11g Release 2（for Windows x64）

上記の環境をメインに解説していますが、必要に応じてそのほかのDBMSの解説も行っています。

環境や時期により、手順・画面・動作結果などが異なる可能性があります。

本書の内容に基づく運用結果について、著者、ソフトウェアの開発元および提供元、株式会社技術評論社は
一切の責任を負いかねますので、あらかじめご了承ください。

本書に記載されている会社名・製品名は、一般に各社の登録商標または商標です。本書中では、TM、©、®
マークなどは表示しておりません。

本書は、小社刊『WEB+DB PRESS』の下記の記事をもとに、
大幅に加筆と修正を行い書籍化したものです。

・Vol.44特集2「SQLアタマ養成講座」
・Vol.57特集2「リレーショナルデータベース＆SQL入門」
・Vol.45～55連載「SQLアタマアカデミー」
・Vol.56～61連載「DBアタマアカデミー」
・Vol.62～67連載「SQL緊急救命室」

i i i

はじめに

　本書の目的は、パフォーマンスの良いSQLの書き方、特に大量データを
処理するSQLの性能向上の方法を理解することです。SQLの第一の目的は、
ユーザが欲しいと思ったデータを選択すること、あるいは望んだ結果にな
るようデータを更新することです。通常のプログラミング言語と同様、一
つの目的を実現するSQLの書き方は複数あり、それらの間には機能的には
差異はなくても、パフォーマンスには大きな差が生じることが頻繁に起こ
ります。したがって、SQLの組み立てを行うにあたっても、効率やパフォ
ーマンスを重視した書き方が求められることが多くあります。
　アプリケーション開発者の方の中には、普段あまりDBMSの内部アーキ
テクチャやストレージといった下位層を意識せず、データベースをブラッ
クボックスとして扱っている人も多いでしょう。実際、データベースの扱
うデータ量が少なければ、そのスタンスでも十分実用に堪えるシステムが
作れるのが、RDB（リレーショナルデータベース）とSQLの良いところであ
り、「ブラックボックスとして扱えるデータベース」は、RDBが目指してき
た目標の一つとすら言ってよいぐらいです。
　しかし近年は、データベースが扱うデータ量は飛躍的な増大を遂げてお
り、「ビッグデータ」という言葉も、IT業界の枠を超え社会全般に広まりま
した。それと歩調を合わせて、データベースのパフォーマンスに対する要
求も高くなる一方です。
　データベースのパフォーマンスについて理解するには、SQLだけでなく、
データベース内部のアーキテクチャやストレージのようなハードウェアの
特性まで含めた総合的な知識が必要となります。あるSQLがなぜ速く、そ
れと同じ結果を得る別のSQLがなぜ遅いのかを理解するには、ブラックボ
ックスの蓋を開けて中を覗

のぞ

いてみることが必要となります。本書は、その
中を実行計画を通して覗いてみることで、ブラックボックスをホワイトボ
ックスにすることが目的です。
　振り返ってみると、RDBとSQLは、ユーザが直観的に利用できるインタ
フェースと、大量データの効率的な処理という、2つの相反する命題の間
で常に揺れ続けてきたミドルウェアでした。RDBとSQLが、この難問をど
のように解決しようと努力してきたか、その成果はどのようなものか──
そして今、どのような壁に突き当たっているか──それらを一つ一つ、本

iv

書の中で明らかにしていきます。
　本書もまた、この難問に対する最終解決を与えるものではありません。
しかし、現場で日々データベースのパフォーマンスと戦うエンジニアに、
RDBとSQLをブラックボックスとして扱っていたときよりも一歩進んだア
プローチを示すことができればと考えています。

　　　　　　　　　　　　　　　　　　　　2015年3月15日　ミック

謝辞

　本書の執筆にあたり、木村明治氏および有限会社アートライの坂井恵氏
にレビューしていただき有益な指摘を多く与えてもらいました。この場を
借りて感謝いたします。

サンプルコードのダウンロード

　本書で利用しているサンプルコードはWebで公開しています。詳細は本
書サポートページを参照してください。補足情報や正誤情報なども掲載し
ています。

http://gihyo.jp/book/2015/978-4-7741-7301-6/support

http://gihyo.jp/book/2015/978-4-7741-7301-6/support

v

本書の構成

　本書は全10章と2つのAppendixにより構成されています。

第1章：DBMSのアーキテクチャ──この世にただ飯はあるか

本書の導入として、RDBの内部的な動作に関するモデルを理解します。
データキャッシュやワーキングメモリといったメモリ機構とストレージ
のしくみ、そして何より、SQLのパフォーマンスを理解するためのキー
概念である実行計画とそれを構築するオプティマイザの概念を理解しま
す。

第2章：SQLの基礎──母国語を話すがごとく

SQLの基本構文を理解します。検索と更新、分岐、集約、行間比較とい
ったSQLでデータ操作を行うための手段を確認します。本章で学ぶSQL

文のさまざまな道具が、第3章以降でパフォーマンスを向上させる際の
強力な武器となります。

第3章：SQLにおける条件分岐──文から式へ

SQLにおいて条件分岐を表現する強力な武器であるCASE式が、パフォ
ーマンス改善においても重要な役割を持っていることを、実行計画を読
み解くことで明らかにします。

第4章：集約とカット──集合の世界

SQLが体現する集合指向というパラダイムがもたらす考え方の変化を、
GROUP BY句や集約関数の使い方を通して体感します。同時に、前章で
学習したCASE式と集合指向との組み合わせが、どのようにパフォーマ
ンスへ貢献するのかを理解します。

第5章：ループ──手続き型の呪縛

RDBのパフォーマンスを劣化させる理由の一つが、SQLの集合指向の世
界に無理に手続き型のパラダイムを持ち込むことにあります。本章では、
その典型的な症状である「ループ依存症」について考察します。

第6章：結合──結合を制する者はSQLを制す

SQLのパフォーマンスが遅いとき、そこにはほぼ必ずと言ってよいほど
結合が関係しています。Nested Loops、Hash、Sort Mergeといった結合
アルゴリズムの実行計画を読み解くことで、RDBがどのように結合を最
適化しようとするかを取り上げます。

vi

第7章：サブクエリ──困難は分割するべきか

問題を小さな規模に分割し、ステップ・バイ・ステップで解決へと至る
サブクエリのアプローチは、手続き型に近いものです。これに頼りすぎ
た場合に引き起こされる性能問題──サブクエリ・パラノイアについて
考察し、いかにしてそれを解消するかを論じます。

第8章：SQLにおける順序── る手続き型

伝統的に手続き型と相容れないパラダイムを持っていると思われていた
SQLですが、近年、再び手続き型の考え方を取り入れる変化が起きてい
ます。その動きを象徴するのがウィンドウ関数です。この強力な表現力
を持つ関数がSQLにもたらした革命的な進歩を中心に、SQLにおける行
の順序を意識したプログラミングを考えます。

第9章：更新とデータモデル──盲目のスーパーソルジャー

パフォーマンスを改善する一番良い手段──それは実は、SQL文を変え
ることではなく、データモデルを変えることです。ときに忘れられがち
な「コロンブスの卵」が持つ利点と欠点を明らかにします。

第10章：インデックスを使いこなす──秀才の弱点

パフォーマンスを語るうえで避けて通ることのできないインデックスの
利用方法について論じます。どのような条件下で有効に作用するかをイ
ンデックスの構造から理解し、そのために必要なデータモデルおよびユ
ーザインタフェースの設計についても取り上げます。

Appendix A：PostgreSQLのインストールと起動

学習用の実行環境として、PostgreSQL 9.3のインストールおよび起動手
順を解説します。

Appendix B：演習問題の解答

各章末の演習問題の解答および解説を行います。

vi i

目次

SQL実践入門──高速でわかりやすいクエリの書き方●目次

はじめに ...iii
謝辞.. iv
サンプルコードのダウンロード ... iv
本書の構成 ... v

第1章
DBMSのアーキテクチャ──この世にただ飯はあるか 1

1.1 DBMSのアーキテクチャ概要 2

クエリ評価エンジン ... 4
バッファマネージャ .. 4
ディスク容量マネージャ ... 4
トランザクションマネージャとロックマネージャ .. 4
リカバリマネージャ ... 5

1.2 DBMSとバッファ 6

この世にただ飯はあるか .. 6
DBMSと記憶装置の関係 .. 7

HDD ..7
メモリ ...8
バッファの活用による速度向上 ...8

メモリ上の2つのバッファ ... 10
データキャッシュ ...11
ログバッファ ..11

メモリの性質がもたらすトレードオフ .. 12
揮発性とは..12
揮発性の問題点 ..13

システムの特性によるトレードオフ.. 14
データキャッシュとログバッファのサイズ ..14
検索と更新、大事なのはどっち ..16

もう一つのメモリ領域「ワーキングメモリ」 ... 16
いつ使われるか ...16
不足すると何が起きるのか ...18

1.3 DBMSと実行計画 19

権限委譲の功罪 ... 19
データへのアクセス方法はどう決まるのか .. 20

パーサ（parser） ...21
オプティマイザ（optimizer）...21
カタログマネージャ（catalog manager） ..21
プラン評価（plan evaluation） ...22

オプティマイザとうまく付き合う .. 22
適切な実行計画が作成されるようにするには ... 23

1.4 実行計画がSQL文のパフォーマンスを決める 24

実行計画の確認方法 ... 25
テーブルフルスキャンの実行計画 ... 26

操作対象のオブジェクト ..27
オブジェクトに対する操作の種類 ...27

vi i i

C o l u m n 実行計画の「実行コスト」と「実行時間」 ... 28
操作の対象となるレコード数 ..29

インデックススキャンの実行計画 ... 30
操作の対象となるレコード数 ..30
操作対象のオブジェクトと操作 ..31

簡単なテーブル結合の実行計画 ... 32
オブジェクトに対する操作の種類 ...34

1.5 実行計画の重要性 34

第1章のまとめ .. 36
演習問題1 ... 36

C o l u m n いろいろなキャッシュ .. 37

第2章
SQLの基礎──母国語を話すがごとく ... 39

2.1 SELECT文 40

SELECT句とFROM句 .. 42
WHERE句 .. 42

WHERE句のさまざまな条件指定 ..43
WHERE句は巨大なベン図 ..44
INでOR条件を簡略化する ..47
NULL──何もないとはどういうことか ..48
C o l u m n SELECT文は手続き型言語の関数 ... 49

GROUP BY句 .. 50
グループ分けするメリット ..51
ホールケーキを全部1人で食べたい人は？...53

HAVING句 .. 54
ORDER BY句 .. 55
ビューとサブクエリ ... 56

ビューの作り方 ...57
無名のビュー ..57
サブクエリを使った便利な条件指定 ..58

2.2 条件分岐、集合演算、ウィンドウ関数、更新 60

SQLと条件分岐 ... 60
CASE式の構文 ...60
CASE式の動作 ...61

SQLで集合演算 ... 62
UNIONで和集合を求める ...62
INTERSECTで積集合を求める ...64
EXCEPTで差集合を求める ..64

ウィンドウ関数 ... 65
トランザクションと更新 ... 68

INSERTでデータを挿入する ...69
DELETEでデータを削除する...71
UPDATEでデータを更新する ..72

第2章のまとめ .. 75
演習問題2 ... 75

ix

目次

第3章
SQLにおける条件分岐──文から式へ 77

3.1 UNIONを使った冗長な表現 78

UNIONによる条件分岐の簡単なサンプル .. 79
UNIONを使うと実行計画が冗長になる ...80
UNIONを安易に使うべからず ...81

WHERE句で条件分岐させるのは素人 .. 82
SELECT句で条件分岐させると実行計画もすっきり ... 82

3.2 集計における条件分岐 84

集計対象に対する条件分岐 ... 85
UNIONによる解 ..85
UNIONの実行計画 ..86
集計における条件分岐もやはりCASE式 ...86
CASE式の実行計画 ..87

集約の結果に対する条件分岐 ... 87
UNIONで条件分岐させるのは簡単だが…… ..88
UNIONの実行計画 ..89
CASE式による条件分岐 ..90
CASE式による条件分岐の実行計画 ...90

3.3 それでもUNIONが必要なのです 91

UNIONを使わなければ解けないケース .. 91
UNIONを使ったほうがパフォーマンスが良いケース ... 92

UNIONによる解 ..93
ORを使った解 ..95
INを使った解 ...96

3.4 手続き型と宣言型 97

文ベースと式ベース ... 98
宣言型の世界へ跳躍しよう ... 98

第3章のまとめ .. 99
演習問題3 ... 99

第4章
集約とカット──集合の世界 ... 101

4.1 集約 102

複数行を1行にまとめる ... 103
CASE式とGROUP BYの応用 ..106
集約・ハッシュ・ソート ..108

合わせ技1本 ... 109

4.2 カット 113

あなたは肥り過ぎ？ 痩せ過ぎ？ ──カットとパーティション .. 114
パーティション ..115
BMIによるカット ..117

PARTITION BY句を使ったカット .. 119

x

第4章のまとめ .. 121
演習問題4 ... 121

第5章
ループ──手続き型の呪縛.. 123

5.1 ループ依存症 124

Q.「先生、なぜSQLにはループがないのですか？」... 124
A.「ループなんてないほうがいいな、と思ったからです」 .. 125
それでもループは回っている ... 125

5.2 ぐるぐる系の恐怖 127

ぐるぐる系の欠点 ... 130
SQL実行のオーバーヘッド ..131
並列分散がやりにくい ..133
データベースの進化による恩恵を受けられない ...133

ぐるぐる系を速くする方法はあるか ... 134
ぐるぐる系をガツン系に書き換える ...134
個々のSQLを速くする ...135
処理を多重化する..135

ぐるぐる系の利点 ... 136
実行計画が安定する ..136
処理時間の見積り精度が（相対的には）高い ..137
トランザクション制御が容易 ..138

5.3 SQLではループをどう表現するか 138

ポイントはCASE式とウィンドウ関数 .. 138
C o l u m n 相関サブクエリによる対象レコードの制限 .. 141

ループ回数の上限が決まっている場合 .. 142
近似する郵便番号を求める ..143
ランキングの問題に読み替え可能 ...144
ウィンドウ関数でスキャン回数を減らす ...147
C o l u m n インデックスオンリースキャン .. 148

ループ回数が不定の場合 ... 149
隣接リストモデルと再帰クエリ ...150
入れ子集合モデル ...155

5.4 バイアスの功罪 158

第5章のまとめ .. 161
演習問題5 ... 161

第6章
結合──結合を制する者はSQLを制す.. 163

6.1 機能から見た結合の種類 165

クロス結合──すべての結合の母体 .. 165
C o l u m n 自然結合の構文 .. 166
クロス結合の動作 ..167

xi

目次

クロス結合が実務で使われない理由 ...168
うっかりクロス結合 ...169

内部結合──何の「内部」なのか .. 170
内部結合の動作 ..170
内部結合と同値の相関サブクエリ ...171

外部結合──何の「外部」なのか .. 172
外部結合の動作 ..173

外部結合と内部結合の違い ... 174
自己結合──自己とは誰のことか .. 174

自己結合の動作 ...175
自己結合の考え方 ..176

6.2 結合のアルゴリズムとパフォーマンス 177

Nested Loops .. 178
Nested Loopsの動作 ...178
駆動表の重要性 ..179
Nested Loopsの落とし穴 ...183

Hash .. 184
Hashの動作 ...184
Hashの特徴 ...186
Hashが有効なケース ..186

Sort Merge .. 187
Sort Mergeの動作 ...187
Sort Mergeの特徴 ...188
Sort Mergeが有効なケース ...188

意図せぬクロス結合 .. 188
Nested Loopsが選択される場合 ...190
クロス結合が選択される場合 ...190
意図せぬクロス結合を回避するには ...191

6.3 結合が遅いなと感じたら 193

ケース別の最適な結合アルゴリズム .. 193
そもそも実行計画の制御は可能なのか？ ... 194

DBMSごとの実行計画制御の状況 ...194
実行計画をユーザが制御することによるリスク ..195

揺れるよ揺れる、実行計画は揺れるよ ... 195

第6章のまとめ .. 197
演習問題6 ... 197

第7章
サブクエリ──困難は分割するべきか ... 199

7.1 サブクエリが引き起こす弊害 201

サブクエリの問題点 .. 201
サブクエリの計算コストが上乗せされる ..201
データのI/Oコストがかかる ..201
最適化を受けられない ...201

サブクエリ・パラノイア .. 202
サブクエリを使った場合 ...203
相関サブクエリは解にならない ...206
ウィンドウ関数で結合をなくせ！ ...207

長期的な視野でのリスクマネジメント... 208

xi i

アルゴリズムの変動リスク ..209
環境起因の遅延リスク ...210

サブクエリ・パラノイア──応用版 .. 211
サブクエリ・パラノイア再び ..211
行間比較でも結合は必要ない ...213

困難は分割するな .. 215

7.2 サブクエリの積極的意味 215

結合と集約の順序 ... 216
2つの解 ..218
結合の対象行数 ..219

第7章のまとめ .. 221
演習問題7 ... 221

第8章
SQLにおける順序── る手続き型 ... 223

8.1 行に対するナンバリング 225

主キーが1列の場合 .. 225
ウィンドウ関数を利用する ..226
相関サブクエリを利用する ...226

主キーが複数列から構成される場合 ... 227
ウィンドウ関数を利用する ..228
相関サブクエリを利用する ...228

グループごとに連番を振る場合 .. 229
ウィンドウ関数を利用する ..229
相関サブクエリを利用する ...230

ナンバリングによる更新 ... 230
ウィンドウ関数を利用する ..231
相関サブクエリを利用する ...232

8.2 行に対するナンバリングの応用 232

中央値を求める .. 232
集合指向的な解 ..233
手続き型の解❶──世界の中心を目指せ ..235
手続き型の解❷──2マイナス1は1 ...237

ナンバリングによりテーブルを分割する ... 239
断絶区間を求める ...239
集合指向的な解──集合の境界線 ...240
手続き型の解──「1行あと」との比較 ...242

テーブルに存在するシーケンスを求める .. 244
集合指向的な解──再び、集合の境界線 ...244
手続き型の解──再び、「1行あと」との比較 ..245

8.3 シーケンスオブジェクト・IDENTITY列・採番テーブル 250

シーケンスオブジェクト ... 250
シーケンスオブジェクトの問題点..251
シーケンスオブジェクトそのものに起因する性能問題 ..251
シーケンスオブジェクトそのものに起因する性能問題への対策253
連番をキーに使うことに起因する性能問題 ...253
連番をキーに使うことに起因する性能問題への対策 ..255

IDENTITY列 ... 255

xi i i

目次

採番テーブル .. 256

第8章のまとめ .. 257
演習問題8 ... 257

第9章
更新とデータモデル──盲目のスーパーソルジャー 259

9.1 更新は効率的に 260

NULLの埋め立てを行う.. 260
逆にNULLを作成する ... 264

9.2 行から列への更新 265

1列ずつ更新する ... 267
行式で複数列更新する ... 268
NOT NULL制約がついている場合 .. 270

UPDATE文を利用する ..271
MERGE文を利用する ...272

9.3 列から行への更新 274

9.4 同じテーブルの異なる行からの更新 276

相関サブクエリを利用する .. 278
ウィンドウ関数を利用する ... 279
INSERTとUPDATEはどちらが良いのか .. 280

9.5 更新のもたらすトレードオフ 281

SQLで解く方法 ... 283
SQLに頼らずに解く方法 ... 285

9.6 モデル変更の注意点 286

更新コストが高まる .. 286
更新までのタイムラグが発生する... 287
モデル変更のコストが発生する .. 288

9.7 スーパーソルジャー病：類題 288

再び、SQLで解くなら .. 289
再び、モデル変更で解くなら .. 291
初級者よりも中級者がご用心 ... 291

9.8 データモデルを制す者はシステムを制す 292

第9章のまとめ .. 294
演習問題9 ... 294

第10章
インデックスを使いこなす──秀才の弱点 297

10.1 インデックスと言えばB-tree 298

xiv

万能型のB-tree ... 298
その他のインデックス ... 300

10.2 インデックスを有効活用するには 300

カーディナリティと選択率 ... 300
C o l u m n クラスタリングファクタ ... 301

インデックスの利用が有効かを判断するには .. 302

10.3 インデックスによる性能向上が難しいケース 302

絞り込み条件が存在しない ... 303
ほとんどレコードを絞り込めない ... 304

入力パラメータによって選択率が変動する❶ ...305
入力パラメータによって選択率が変動する❷ ...305

インデックスが使えない検索条件 .. 306
中間一致、後方一致のLIKE述語 ...306
索引列で演算を行っている ...307
IS NULL述語を使っている ..307
否定形を用いている ...308

10.4 インデックスが使用できない場合どう対処するか 308

外部設計による対処──深くて暗い川を渡れ ... 309
UI設計による対処...309

外部設計による対処の注意点 ... 310
データマートによる対処 .. 311
データマートを採用するときの注意点 .. 312

データ鮮度 ...312
データマートのサイズ ..312
データマートの数 ..313
バッチウィンドウ ...314

インデックスオンリースキャンによる対処 .. 314
C o l u m n インデックスオンリースキャンとカラム指向データベース 317

インデックスオンリースキャンを採用するときの注意点 .. 318
DBMSによっては使えないこともある ...319
1つのインデックスに含められる列数には限度がある ...319
更新のオーバーヘッドを増やす...319
定期的なインデックスのリビルドが必要 ..320
SQL文に新たな列が追加されたら使えない ...320

第10章のまとめ ... 321
演習問題10 ... 321

Appendix A

PostgreSQLのインストールと起動... 323

Appendix B

演習問題の解答 ... 333

索引 ... 347
著者プロフィール .. 353

1

DBMSのアーキテクチャ
この世にただ飯はあるか

第1章

2

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

意思決定に関する最初の原理は，「無料の昼食（フリーランチ）といった
ものはどこにもない」ということわざに言い尽くされている。自分の好
きな何かを得るためには，たいてい別の何かを手放さなければならな
い。意思決定は，一つの目標と別の目標の間のトレードオフを必要と
するのである。

──Nicholas Gregory Mankiw

　本章ではまず、SQLのパフォーマンスを議論するうえで最低限必要にな
るDBMS（Database Management System、データベース管理システム）のアー
キテクチャについての知識を解説します。SQLの書き方については次章以
降で詳しく見ていきますが、そのベースとして、まずはDBMSと記憶装置
の関係、オプティマイザのしくみ、メモリ機構の動き方などを知ってもら
いたいと思います。それを通して、DBMSが多くのトレードオフ（損益）の
バランスを取るために努力を重ねているミドルウェアであり、私たちも
DBMSを利用する際には、何を優先して何を捨てるべきか考える必要があ
ることを理解します。

1.1
DBMSのアーキテクチャ概要

　現在商用で使われているRDB（Relational Database）製品には、数多くの種
類があります。日本では、Oracle、Microsoft SQL Server、DB2、PostgreSQL、
MySQLといったあたりがよく利用されています。これらの製品はそれぞ
れ特徴を持っており、内部のアーキテクチャも完全に同じというわけでは
ありません。
　しかし、RDBとしての機能を提供するという共通の目的を持っているう
え、リレーショナルモデルの数学的理論を基礎としているわけですから、基
本的なしくみはそれほど異なるものではありません。したがって、その共
通部分を頭に入れておけば、個々のDBMSの特色は変奏のようなものです。
　図1.1は、DBMSの一般的なアーキテクチャの概要を示したものです。

3

1.1DBMSのアーキテクチャ概要

図1.1 DBMSのアーキテクチャ

出典： Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems 3rd ed., McGraw-
Hill, 2002. p.20

　上段の層が、ユーザやプログラマなど、データベース使用者とのインタ
フェースを表します。ここから実行されたSQL文が、中段の層であるDBMS

に届き、さまざまな処理が実行され、下段の記憶装置に蓄えられたデータ
に（参照にせよ更新にせよ）アクセスが行われる、という流れです。
　私たちの関心は、中段の層であるDBMS内部で行われる「さまざまな処
理」にあります。以下、DBMS内の各機能を簡単に見ておきましょう。

SQLに慣れていないユーザ
（顧客や旅行代理店など）

SQLに慣れているユーザ、
プログラマ、DB管理者

Webフォーム アプリケーション

SQL文

DBMS

SQLインタフェース

プラン実行機能 パーサ

演算評価機能

トランザクショ
ンマネージャ

インデックスファイル

データファイル
データベース

ロック
マネージャ

同時実行制御

リカバリ
マネージャ

コマンドの流れ
相互連携
参照

アクセスメソッド

バッファマネージャ

ディスク容量マネージャ

オプティマイザ

クエリ評価エンジン

システムカタログ

4

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

クエリ評価エンジン

　クエリ評価エンジンは、ユーザから受け取ったSQLを解釈し、どのよう
な手順で記憶装置のデータへアクセスに行くかを決定します。ここで決定
された計画を「実行計画」（または「実行プラン」）と呼びます。この実行計画
に基づいたデータへのアクセス方法が「アクセスメソッド」です。すなわち
クエリ評価エンジンは、プランを立てそれを実行するというDBMSの脳に
当たる重要な機能を担っているのです。本書の主題であるパフォーマンス
とも非常につながりの深いモジュールです。
　なお、「クエリ」（query）とは「問い合わせ」という意味の英語で、狭義には
SELECT文のことなのですが、広義にはSQL文全体を指して使います。本
書では前者のSELECT文と同じ意味の言葉として使います。

バッファマネージャ

　DBMSはバッファという特別な用途に使うメモリ領域を確保します。そ
のメモリ領域の使い方を管理するのがバッファマネージャです。ディスク
の使い方を管理するディスク容量マネージャと連携しながら動きます。こ
のメカニズムもまた、パフォーマンスにとっては非常に重要な役割を果た
しています。

ディスク容量マネージャ

　データベースはシステムを構成するコンポーネントの中で最大のデータ
を保存する必要があります。これは、Webサーバやアプリケーションサー

バが処理を実行する間だけデータを保持すればよいのに対して、データベ
ースは永続的にデータを保持しなければならないからです。ディスク容量
マネージャは、どこにどのようなデータを保存するかを管理し、それに対
する読み出し／書き込みを制御します。

トランザクションマネージャとロックマネージャ

　商用システムにおいてデータベースを使う人は、普通は一人ではありま

5

1.1DBMSのアーキテクチャ概要

せん。何百人、何千人もの大勢でいっせいにアクセスしています。そうし
た個々の処理は、DBMS内部では「トランザクション」という単位で管理さ
れます。このトランザクション同士をうまくデータの整合性を保ちながら
実行させ、必要とあらばデータにロックをかけて誰かを待機させるといっ
た仕事をするのが、この2つの機能です。

リカバリマネージャ

　DBMSが保存するデータには、絶対に失われてはいけない大切なデータ
が多く含まれています。そうは言っても、システムは使い続けていればい
つか障害に見舞われるタイミングがあるものです。そのような有事に備え
て、定期的にバックアップを取得し、いざというときにデータを復旧（リカ
バリ）できる必要があります。この機能を司るのがリカバリマネージャで
す。

　以上はあくまで大雑把な説明です。これだけで理解しろと言うほうが無
理ですが、今はすべての機能についてイメージが湧かなくてもかまいませ
ん。本書の主題であるSQLのパフォーマンスという観点から見ると、最も
重要なのは「クエリ評価エンジン」およびそれが立てる「実行計画」です。本
書では、この実行計画のサンプルをいくつも見ながら、SQLがなぜ遅い（ま
たは速い）のかを解明していきます。パフォーマンスにとってその次に重要
なのが「バッファマネージャ」ですが、これについては本章「DBMSと記憶
装置の関係」（7ページ）で詳しく取り上げます。
　それ以外の機構は、とりあえず忘れてもらってかまいません。本当はSQL

のパフォーマンスという点では「トランザクションマネージャ」と「ロックマ
ネージャ」も重要なのですが、これらはSQL単体というよりも多くのSQL

を同時実行する際のパフォーマンスに関係するメカニズムです。本書では
1つのSQLを単独で実行した際のパフォーマンスにフォーカスするため、
SQLを同時実行した際の競合という観点は取り上げません。

6

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

1.2
DBMSとバッファ

　まずは、DBMSのバッファマネージャの役割について見ていきます。先
述のように、バッファはパフォーマンスに対して重要な役割を担っていま
す。それは、メモリという希少資源に対してデータベースが保存するデー
タ量は圧倒的に多いため、どのようなデータをバッファに確保するべきか
に対するトレードオフを発生させるからです。そのことを理解するため、
最初に、システムがデータを保存する記憶装置（ストレージ）について、基
本的なことをおさらいしておきましょう。というのも、バッファとストレ
ージは表裏一体、一方を理解するにはもう一方についての知識も必要にな
るからです。「今さら言われなくても知ってるよ」という人もいると思いま
すが、復習も兼ねてお付き合いください。

この世にただ飯はあるか

　図1.2は、記憶装置の分類を階層化したものです。

図1.2 記憶装置の階層

一次記憶装置
レジスタ、
メモリなど

二次記憶装置
HDD、CD、DVD、

フラッシュメモリなど

三次記憶装置
テープなど

速

ア
ク
セ
ス
速
度

遅

高

記
憶
コ
ス
ト

低

7

1.2DBMSとバッファ

　一般的に、記憶装置は記憶コストに応じて一次から三次まで3つの階層
に分類されます。「記憶コスト」というのは、思い切って単純化すると、同
じデータ量を保存するのにかかるオカネのことです。私たちは普段、PCの

HDD（Hard Disk Drive）は平気で何TBでも増設しますが、メモリは数GB買
うだけでもけっこう悩みます。これは、それだけHDDが安価で大容量デ
ータを保存できる（つまり記憶コストが安い）ことを意味します。ピラミッ
ドの下位ほど面積が大きいのは、この「同じコストで保存できるデータ容量
の大きさ」を表しています。
　それなら、下位階層のHDDやテープが上位層のメモリより優れた記憶
装置かと言うと、そういう単純な話ではありません。たしかにこれらの媒
体は大量データを永続的に保持するには向いているのですが、データへの
アクセス速度という点でメモリに遠く及ばないからです。みなさんも、自
分のPCで大きなファイルを操作したときなど、「ガリガリガリ」というあ
のディスクアクセスの特徴的な音とともにマシンがうんともすんとも言わ
なくなり、長時間待たされた（酷いときはそのまま永遠に近い時間待たされ
る）というストレスフルな経験をしたことがあると思います。
　つまりここには、容量と永続性をとれば速度が犠牲になり、速度をとれ
ば容量と永続性が犠牲になる、というトレードオフ（二者択一）の関係が成
立しているわけです。良いとこ取りはできません。システムの世界にフリ
ーランチ（ただ飯）は存在しないのです。これが、ストレージについてまず
知っていただきたい第一のトレードオフです。

DBMSと記憶装置の関係

　DBMSは重要なデータを保存することを主目的としたミドルウェアです
から、記憶装置とは切っても切れない関係にあります。DBMSが使う代表
的な記憶装置は次の2つです。

HDD
　DBMSがデータを保存する媒体（ストレージ）は、現在のところほとんど
がHDDです。ディスク以外の選択肢がまったくない、というわけではな

8

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

いのですが注1、ほとんどの場合は、容量、コスト、パフォーマンスなどの総
合的な観点からHDDが選択されています。
　HDDは、記憶装置の階層で言うと真ん中の二次記憶装置に分類されま
す。これは、とても良いところがない代わりに、大きな欠点もない媒体と
いうことです。データベースはほぼすべてのシステムで利用されている汎
用的なミドルウェアですから、どの観点でも平均点を取れる媒体が選択さ
れるというのは自然なことです。
　しかしそれは、DBMSがデータをディスク以外に保持しない、という意
味ではありません。むしろ、通常のDBMSは、常にディスク以外の場所に
もデータを持つようにしています。それが一次記憶装置であるメモリです。

メモリ

　メモリはディスクに比べると記憶コストが高いため、1台のハードウェ
アに搭載できる量は多くありません。データベースサーバの場合、搭載さ
れるメモリはせいぜい数GB～数十GB、よほどの大規模向けでないと100GB

を超えることはないでしょう。当たり前のようにテラバイトの容量を持つ
HDDに比べれば桁違いに小さいサイズです。このため、ある程度の規模
を持つ商用システムでは、データベース内のデータすべてをメモリに載せ
ることは、原則できません。

バッファの活用による速度向上
　それでも、DBMSが一部でもよいからデータをメモリに載せている理由
は、パフォーマンス向上、つまりSQL文の実行速度を速くするためです。
図1.2からわかるように、メモリは最も高速な一次記憶装置に該当します注2。
そのため、頻繁にアクセスされるデータをうまくメモリ上に保持しておく
ことができれば、同じSQL文を実行するにしても、ディスクからデータを
読み出すことなくメモリへのアクセスだけで処理を返すことが可能になる
わけです（図1.3）。

注1 たとえばインメモリデータベースは、名前のとおりメモリにデータを保持しますし、データのバッ
クアップをテープなどのメディアに取ることは一般的な運用です。また最近では、SSD（Solid State

Drive）というフラッシュメモリを利用した高速かつ永続性のある記憶装置も実用化されています。ま
だ利用しているシステムは限られますが、いずれ低価格化と高信頼性化が進めば、現在のHDDを置
き換える存在になる可能性もあります。

注2 メモリとディスクの性能差は、大雑把な数値で数十万～百万倍程度と考えてください。

9

1.2DBMSとバッファ

図1.3 メモリにデータがあれば高速に処理できる

　ディスクへのアクセスを回避できれば、大きなパフォーマンス改善が可
能です。その理由は、一般的にSQL文の実行時間の大半はストレージに対
するI/Oに費やされるからです注3。
　このようにパフォーマンスを向上を目的としてデータを保持するメモリを、
バッファ（buffer）とかキャッシュ（cache）と呼びます。バッファとは「緩衝材」と
いう意味です。ユーザとストレージとの間に割って入ることでSQL文のディ
スクアクセスを減らす役割を果たすわけですから、緩衝材という言葉はぴっ
たりのイメージです。一方キャッシュとは、やはりユーザとストレージの中
間に位置することでデータの転送遅延を緩和するための機構です。どちらも
物理的な媒体としてはメモリが利用されることが多いため、HDD上のデータ
にアクセスするよりもバッファ（またはキャッシュ）にアクセスするほうが高速
です。本書では、バッファとキャッシュは互換可能な言葉として使います。
　こうした高速アクセス可能なバッファに、どのようなデータをどの程度
の期間載せておくかといったことを管理する機能が、DBMSのバッファマ

ネージャというわけです。このように考えると、バッファマネージャがデ
ータベースのパフォーマンスにおいて非常に重要な役割を担っていること
がわかると思います。

注3 これはもちろん、すべてのSQLがというわけではなく、全体の傾向としてという意味です。実際、
非常に小さなデータにしかアクセスしないSQL文であれば、相対的にストレージのI/OよりもCPU
による演算に時間を要することになります。

1 4

1 4
メモリ ディスク

DBMS
検索SQL

メモリに存在するデータだけで結果が返せると非常に速い

1

41 4
メモリ ディスク

DBMS
検索SQL

メモリにデータがなくて、ディスクまで検索しなければ
ならないと遅い

4

1と4が欲しい

1と4が欲しい

10

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

メモリ上の2つのバッファ

　DBMSがデータを保持するために使うメモリには、大きく次の2種類が
あります。

・データキャッシュ

・ログバッファ

　ほとんどのDBMSが、この2つに該当するメモリ領域を持っています。
また、これらのバッファは、ユーザが用途に応じてサイズを変えることも
できます。これらのメモリサイズを決めるパラメータを、Oracle、
PostgreSQL、MySQLを例に整理したので参考にしてください（表1.1）。

表1.1 DBMSのバッファメモリの制御パラメータ

Oracle 11gR2 PostgreSQL 9.3 MySQL 5.7（InnoDB）

デ
ー
タ
キ
ャ
ッ
シ
ュ

名称 データベースバッファ
キャッシュ

共有バッファ バッファプール

パラメータ DB_CACHE_SIZE shared_buffers innodb_buffer_pool_size

初期値

4Mバイト×CPU数×
グラニュルサイズ
（SGA_TARGETが
設定されていない
場合は48Mバイト）

128Mバイト 128Mバイト

設定値の
確認
コマンド例

SELECT value
FROM v$parameter
WHERE name =
 'db_cache_size';

show
shared_buffers;

SHOW VARIABLES LIKE
'innodb_buffer_pool_size';

備考 SGA内部に確保される ─ ─

ロ
グ
バ
ッ
フ
ァ

名称 REDOログバッファ トランザクショ
ンログバッファ

ログバッファ

パラメータ LOG_BUFFER wal_buffers innodb_log_buffer_size

初期値

512Kバイト，または
128Kバイト×
CPU_COUNTの
いずれか大きいほう

64Kバイト 8Mバイト

設定値の
確認
コマンド

SELECT value
FROM v$parameter
WHERE name =
 'log_buffer';

show
wal_buffers;

SHOW VARIABLES LIKE
'innodb_log_buffer_size';

備考 SGA内部に確保される ─ InnoDBエンジン
使用時のみ有効

11

1.2DBMSとバッファ

データキャッシュ

　データキャッシュは、まさにディスクにあるデータの一部を保持するた
めのメモリ領域です。もし、みなさんの実行するSELECT文で選択したい
データが、運良くすべてこのデータキャッシュの中に存在した場合、ディ
スクのような低速なストレージからデータを読み出すことなく処理が実行
されるので、非常に高速なレスポンスが期待できます。
　反対に、運悪くバッファ上にデータが見つからなかった場合は、はるば
る低速なストレージまでデータを取りにいかなければならないため、SQL

文のレスポンスが遅くなります。データベースの世界には「ディスクに触る
者は不幸になる」という古い格言がありますが、その呪いを受けたSQL文
のパフォーマンスは、もう目もあてられないほど遅くなることも珍しくあ
りません。

ログバッファ

　ログバッファは更新処理（INSERT、DELETE、UPDATE、MERGE）の実
行に関係します。というのも、DBMSはこうした更新SQL文をユーザから
受け取ったとき、即座にストレージ上のデータを変更しているわけではな
いからです。実は、一度このログバッファ上に更新情報を溜めて、ディス
クへの更新はあとでまとめて行っています（図1.4）注4。

図1.4 更新処理はコミットのタイミングで同期処理になる

　このようにデータベースの更新処理は、SQL文の実行タイミングとスト

注4 ログファイルへ出力されるタイミングとしてはコミットが一般的ですが、それ以外のタイミングで
出力されることもあります。詳細は製品マニュアルなどを参照してください。

COMMIT時にメモリからディスクへ情報をコピーする

DBMS1を4に変えたい

更新SQL 1 4

ログバッファ 4
ログファイル
1COMMIT

12

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

レージへの更新タイミングにずれがある非同期処理なのです。
　単純にSQL文の実行時にストレージ上のファイルを更新してしまうほう
が話は単純なのに、DBMSがわざわざタイミングをずらしている理由は、
これも結局パフォーマンスを良くしたいからです。つまり、ストレージは
検索だけでなく更新にも相当時間がかかるため、ストレージの更新が終わ
るまで待っていると、ユーザを長時間待たせることになるからです。その
ため、一度メモリで更新情報を受けた時点で、ユーザにはその更新SQL文
は「終わった」と通知しているのです。
　この2つのバッファの説明を読んでおわかりかもしれませんが、つまる
ところ、DBMSというのは「ストレージの遅さをどうカバーするか」という
ことをずっと考え続けてきたミドルウェアなのです。DBMSは、昔から低
速なストレージによるパフォーマンス問題に悩まされてきました。それを
克服するために、こうした複雑なバッファのメカニズムを搭載するに至っ
たのです。逆に言うと、ストレージが速かったならこんな面倒なしくみを
考えなくたってよかったのです。いまさら言っても始まらないのですけど。

メモリの性質がもたらすトレードオフ

　先ほど、メモリの欠点は高価なので保持できるデータ量が少ないことだ、
と言いました。これはもちろん大きな欠点なのですが、もう少し正確を期
すと、欠点はほかにもいくつかあります。

揮発性とは
　メモリにはデータの永続性がありません。ハードウェアの電源を落とせ
ば、メモリ上に載っていたすべてのデータは消えてなくなります。この性
質を揮発性と呼びます注5。
　DBMSを再起動しただけでも、バッファ上のデータはすべてクリアされ
てしまいます。これはつまり、DBMSに何らかの障害が発生してプロセス
ダウンが起きた（いわゆる「落ちた」）場合には、メモリ上のデータも消えて
しまう、ということです。だから、たとえメモリが非常に安価になったと

注5 中には電源供給がなくてもデータの失われないメモリもありますが、普通のサーバには使われませ
ん。

13

1.2DBMSとバッファ

しても、永続性がない以上、機能的に完全にディスクの代替ができるわけ
ではないのです。

揮発性の問題点

　揮発性の一番困るところは、障害時にメモリ上のデータが消失してしま
うことで、データ不整合の原因となることです。データキャッシュであれ
ば、障害によってメモリ上のデータが失われたとしても、オリジナルのデ
ータはディスク上には残っています。もう一度ディスクから読み出せばよ
いだけなので、データ不整合の問題は起きません。キャッシュ用のメモリ
が空っぽの状態であっても、SELECT文はディスクを直接読みにいくだけ
なので、時間がかかるだけで結果不正は起きません。
　しかし、ログバッファ上に存在するデータが、もしディスク上のログフ
ァイルへ反映される前に障害によって消えてしまった場合、そのデータは
完全になくなり復旧できません。これは、ユーザが行ったはずの更新情報
が消えることを意味します。この障害はビジネス的な観点からは深刻です。
完了したはずの銀行振り込みやカードの引き落としが行われていない、な
んていうことが発生したら、社会は大混乱に陥ってしまいます。
　しかし、ログバッファに溜めた更新情報がDBMSのダウン時に消えてし
まう、という現象は、DBMSが更新を非同期処理として行っている以上、起
きる可能性はゼロではありません。これを回避するため、DBMSはコミッ

トのタイミングで必ず更新情報をログファイル（これは永続的なストレージ
上に存在しています）へ書き込むことによって、障害時のデータ整合性を担
保するようにしています。コミットとは、更新処理の「確定」を行うことで、
DBMSにはこのコミットされたデータを永続化することが求められます。
　逆に言うと、コミットの際は必ずディスクへの同期アクセスが必要にな
るため、ここで遅延が発生する可能性があるのです注6。ここにもまたトレー
ドオフが顔を出しています（表1.2）。ディスクへの同期処理をすればデー
タ整合性と耐障害性は高まるけれど、パフォーマンスは低くなる。パフォ

注6 ログバッファからディスクへの書き出しが行われるタイミングとしては、コミット以外にもありま
すが、コミット時には例外なく書き出しが行われます。唯一このルールに対する例外として、
PostgreSQLの「非同期コミット」という機能があります。名前のとおり、コミットの時点でもログ
バッファからディスクへ書き出さないという危険な機能で、データの信頼性を捨ててパフォーマン
スを取りたい場合に、究極のトレードオフを実現します。もちろんデフォルトではこの設定は無効
です。有効にすることもまずないでしょう。

14

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

ーマンスを追求するとデータ整合性と耐障害性は低くなる。悩ましい二者
択一に挟まれて、今日もデータベースエンジニアは悩むのです。

表1.2 データ整合性とパフォーマンスはトレードオフ

名前 データの整合性 パフォーマンス

同期処理 ○ ×

非同期処理 × ○

システムの特性によるトレードオフ

データキャッシュとログバッファのサイズ

　ところで、前出の表1.1のデータキャッシュとログバッファを比較して
みると、3つのDBMSに共通して、データキャッシュに比べてログバッフ
ァのデフォルト設定値が非常に小さいことに気づきます。Oracleや

PostgreSQLなど、ログバッファは1MBにも達しません。こんなに小さく
て大丈夫なのでしょうか？
　大丈夫かそうでないかは、性能試験をやってみるまでわかりません。た
だ、データベースが2つのバッファに対して、このように極端に非対称な
サイズ割り当てを行っているのには、明確な理由があります。それは、デ
ータベースが基本的に検索をメインの処理と想定しているミドルウェアだ
ということです。
　検索処理においては、検索対象のレコードが数百万件、数千万件という
オーダーになることも珍しくありません。他方、更新処理において変更対
象とされるデータは、せいぜいトランザクションあたり1～数万件です（も
ちろんトランザクションの規模によって差はありますが）。そのため、更新
に貴重なメモリを多く割くよりは、可能な限り多く検索処理でヒットしそ
うなデータをキャッシュに載せておくほうが得策だ、というのがデータベ
ースの基本精神になっているのです（図1.5）。

15

1.2DBMSとバッファ

図1.5 データベースは検索を重視したメモリ配分をしている

　実際多くのDBMSが、物理メモリに余裕があればデータキャッシュにな
るべく多く割り当てることを推奨しています注7。
　もちろんこれは、データベースの作り手側が（言葉は悪いですが）勝手に
そう決めてかかっているだけなので、もしみなさんが作るシステムが、検
索に比べて更新量の多い業務特性を持っているならば（たとえばバッチ処理
がメインの場合）、デフォルト設定のままでは更新処理のパフォーマンスが
出ないということもあり得ます。そのときは、ログバッファにより多くの
メモリを割り当てるといったチューニング（最適化）が必要になることは言
うまでもありません。私自身、バッチ処理による大量のデータ更新を行う
特性を持ったシステムに対するチューニングでは、ログバッファを拡張し
たことがあります。

注7 たとえば、MySQLはマニュアルで「サーバがデータベース専用ならば、物理メモリの80％をバッフ
ァプールに割り当ててもよい」と示唆しています。「データベース専用ならば」という条件つきなのは、
もちろん同じサーバでほかのアプリケーションが動いている場合は、そちらのメモリ使用量も考慮
する必要があるからです。
・「MySQL 5.7 Reference Manual :: 14.12 InnoDB Startup Options and System Variables」　
　 http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html

ログ
バッファ データキャッシュ

ユーザ

更新SQL

書き込み

検索SQL

読み込み
（キャッシュにヒットしな
 かったデータのみ）

メモリ

ディスク

データ

http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html

16

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

検索と更新、大事なのはどっち

　つまり、ここで私たちは、検索と更新のどちらを優先すべきかというト
レードオフに直面しているのです。メモリという高価で希少な資源は、す
べてのデータをカバーするには足りません。したがって、何を優先して守
り、何を捨てるかという判断が必要になるのです。
　もちろん、システムにかかる負荷に対して、相対的にメモリが潤沢に余
っているならばこういう悩みは生じません。データキャッシュとログバッ
ファの両方に十分なメモリを割り当てればよいでしょう。また最近のDBMS

はかなり進歩していて、リソースを自動調整する機能が充実してきていま
す。メモリ割り当ても自動判断してくれるDBMSもあります。ただ、現状
それにもやはり限界はあります。厳しいリソース配分の計算が必要な局面
では、何も考えずに自動設定に頼ることは危険な行為です。
　そうしたとき適切な判断を下すためにも、そのデータベースがどのよう
な思想に基づいてリソース配分が行われたのかを理解することは、大切な
ことです。もしログバッファが大きく取られていれば、それは高負荷の更
新処理を想定した設計を行っているということがわかりますし、反対にデ
ータキャッシュが大きく取られていれば、検索処理のレスポンスを重視し
ていることがわかるわけです注8。

もう一つのメモリ領域「ワーキングメモリ」

いつ使われるか

　DBMSは、上で説明した2つのバッファ以外に、通常はもう一つのメモ
リ領域を持っています。それが、ソートやハッシュなど特定の処理に利用
される作業用の領域、ワーキングメモリです。ソートは、ORDER BY句、
あるいは集合演算やウィンドウ関数などの機能を使用する際に実行されま
す。一方、ハッシュは主にテーブル同士の結合でハッシュ結合が使用され
た場合に実行されます注9。
　このメモリ領域の名称や管理方法はDBMSによって異なります。たとえ
ばOracle、PostgreSQL、MySQLでは、それぞれ表1.3のような名称で呼ば

注8 何も考えずにデフォルト設定、というシステムを見かけることもけっして少なくありませんが。
注9 最近はGROUP BYでもハッシュのアルゴリズムが使われることがあります。またハッシュ結合につ

いては第6章で詳しく見ます。

17

1.2DBMSとバッファ

れています注10。

表1.3 ワーキングメモリの各DBMSでの呼び方と設定

DBMS 名称 パラメータ デフォルト値

Oracle 11g R2 PGA（Program
Global Area）

PGA_AGGREGATE_
TARGET

10MB、またはSGAサイ
ズの20％のいずれか大
きいほう

PostgreSQL 9.3 ワークバッファ work_mem 8MB

MySQL 5.7 ソートバッファ sort_buffer_size 256KB

　この作業用のメモリ領域は、SQLでソートやハッシュが必要になったと
きに使用され、終われば解放される文字どおり一時的な領域で、通常はデ
ータキャッシュやログバッファとは別の領域として管理されていることが
多いです。この領域が性能的に重要な理由は、もしこの領域が扱うデータ
量に対して小さく不足した場合は、多くのDBMSがストレージを使用する
ためです（図1.6）。これは、OSの動作で言うところのスワップ（swap）のよ
うなものです。

図1.6 メモリが不足するとストレージが使われる

注10 詳細はそれぞれ次のマニュアルを参照してください。
・Oracle Database 管理者ガイド 11gリリース1（11.1）
 http://otndnld.oracle.co.jp/document/products/oracle11g/111/doc_dvd/server.111/
E05760-03/memory.htm
・PostgreSQL 9.3.2文書 18.4.1. メモリ
 http://www.postgresql.jp/document/9.3/html/runtime-config-resource.html
・MySQL 5.7 Reference Manual 5.1.4 Server System Variables
 http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sort_
buffer_size

データ量が増えてメモリに収まり
きらないとストレージを使う

データがメモリに収まっている
間はよいが……

ディスク

メモリ

ディスク

d e

a b c
メモリ

a b c

http://otndnld.oracle.co.jp/document/products/oracle11g/111/doc_dvd/server.111/
http://www.postgresql.jp/document/9.3/html/runtime-config-resource.html
http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sort_

18

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

　多くのDBMSが、ワーキングメモリが溢れたときに使用する一時領域を
持っています。これはたとえば次のような名前で呼ばれています。

・Oracle：一時表領域（TEMP表領域）

・Microsoft SQL Server：TEMPDB

・PostgreSQL：一時領域（pgsql_tmp）

　こうした領域が使用されることを、通称「TEMP落ち」と言います。この
一時領域はストレージ上に確保されるため、当然アクセス速度は低速です。

不足すると何が起きるのか

　ストレージが使われると何が起きるのでしょうか？ 前述のとおり、スト
レージはメモリに比べて非常に低速です。そこにアクセスすると……そう、
スローダウンが起きてしまうわけです。もちろん、メモリが不足することで
処理が止まったりエラーが起きたりすることに比べれば、まだスローダウ
ンのほうがマシではあるのですが、この種のスローダウンのやっかいなと
ころは、データがメモリに収まっている間は非常に高速なのに、メモリか
ら溢れた瞬間に一気に遅くなる、という極端な劣化が（突然）起きてしまう
ことです。かつ、この領域は複数のSQL文で共有して使用されるため、一
つのSQL文を実行しているときはメモリ内に収まっていたのが、複数のSQL

文を同時実行した際の競合によって閾
いきち

値を超えてしまって溢れてしまうと
いう、競合状態を再現する試験（負荷試験）を実施しないと判明しないとい
う難しさがあります。単体の性能だけでなく競合時の性能に気を配らなけ
ればならないという点で、コントロールの難しいタイプの性能問題です。
　DBMSのこうした複雑なメカニズムを、みなさんはやっかいなものだと
考えるかもしれません。しかし、これは逆に考えることもできます。つま
り、DBMSはたとえメモリが不足しようとも何とか処理を継続しようと努
力するミドルウェアだ、ということです。実際、DBMSとしては、ワーキ
ングメモリが不足したとき、さくっとそのSQL文をエラーにして処理を中
断してしまうという選択肢もあり得るのです。たとえば、JVMのヒープサ

イズが不足したときに、Javaアプリケーションがメモリ不足（Out of Memory）
エラーによって処理を異常終了させるように。しかしながら、データベー
スはそのような選択をしません。SQL文をエラーにするぐらいなら、たと
え遅くなってもよいから何とかして処理を完了させるよう努力します。こ

19

1.3DBMSと実行計画

れは、DBMSが重要なデータを保管し、それを処理するがゆえに、OSに準
じるレベルで処理継続性を担保しようとしているからです。
　このワーキングメモリの機構は、第4章でGROUP BY句、第6章でハッ
シュ結合を取り上げたとき再び登場することになるので、覚えておいてく
ださい。

1.3
DBMSと実行計画

　Web画面の入力フォームであれコマンドラインツールであれ、ユーザイン
タフェースにかかわらず、RDBに対する操作はSQLという専用の言語で行わ
れます。ユーザや開発者が意識的に記述するのは通常このSQLレベルまで

で、あとはSQL文を受け取ったDBMSが処理を行い、結果が返却されるのを
待つのみです。ユーザはデータのありかを知る必要もなければ、そこへのア
クセス方法も考えません。そういう仕事は、全部DBMSに任せています。
　このプロセスは、通常「プログラミング」と呼ばれるものとはかなり異な
ります。普通、データの検索や更新をプログラミング言語によって行う場
合、どこにあるデータをどのように探すか、という手続きを細部に渡って
記述しなければいけません。しかし、SQLにおいてはそのような手続きは
一切現れません。

権限委譲の功罪

　この態度の違いは良いとか悪いとかいうものではなく、言語の設計思想
の違いです。C言語、JavaからRubyに至るまで、手続き型を基礎とする言
語においては、ユーザがデータアクセスのための手段（How）を責任持って
記述することが前提です。他方、非手続き型であるRDBは、その仕事をユ
ーザからシステム側に移管しました。その結果、ユーザのすることは対象
（What）の記述だけに限定されたのです。
　RDBがこのような大胆な権限委譲を断行したことには、もちろん正当な
理由があります。それは、「そのほうがビジネス全体の生産性は上がるか

20

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

ら」です。現在の状況を眺めてみると、この言葉は半面正しく、半面間違っ
ていました。正しかったことは、RDBがシステムの世界の隅々にまで浸透
したことからわかります。間違っていたことは、それでもやはり私たちは
RDBを扱うのに苦労していることからわかります。SQLは思ったほど簡単
な言語ではなかったし、Howを意識しないことによるSQL文のパフォーマ
ンスに悩まされることもしばしばです。
　私たちが（不本意ながらも）RDBがいったんは隠

いんぺい

蔽したはずの内部の手続
きを再度のぞき見なければならないのは、このような理由によるのです。

データへのアクセス方法はどう決まるのか

　先述のとおり、RDBにおいてデータアクセスの手続きを決めるモジュー
ルは、クエリ評価エンジンと呼ばれます。これは、ユーザから送信された
SQL文（クエリ）を最初に受け取るモジュールでもあります。クエリ評価エ
ンジンは、さらにパーサやオプティマイザといった複数のサブモジュール
から構成されています。
　クエリがどのように処理されて、実際にデータアクセスが実行されるの
かを大まかに図示すると、図1.7のようになります。

図1.7 DBMSのクエリ処理の流れ

出典： Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems 3rd ed., McGraw-Hill, 2002,
p.405.

クエリ

❶パーサ

オプティマイザ

❷プラン
生成

実行計画

❺プラン評価

パース済みのクエリ

❸コスト
評価

❹カタログ
　　マネージャ

21

1.3DBMSと実行計画

パーサ（parser）

　パーサ（❶）の役割は、名前のとおりパース（構文解析）です。つまり受け
取ったSQL文を一度バラバラの要素に分解し、それをDBMSが処理しやす
い形式に変換することです。
　なぜこの処理が最初に必要かと言えば、第一の理由は、受け取ったSQL

文が常に構文的に適正である保証がないため、整合性チェックが必要だか
らです。ユーザがカンマを書き忘れたり、FROM句に存在しないテーブル
名を書いたりしてきたときには、「書類審査」で落第させる必要があります。
第二の理由は、SQL文を定型的な形式に変換することで、DBMS内部での
後続の処理が効率化されるからです。構文解析は、SQLに限らず一般のプ
ログラミング言語のコンパイル時にも同様に実行されるものです。

オプティマイザ（optimizer）

　書類審査をパスしたクエリは、次にオプティマイザに送られます。オプ
ティマイズの和訳に「最適化」という語が当てられているとおり、ここで「最
適」なデータアクセスの方法（実行計画）が決定されます。この処理がDBMS

の頭脳におけるコアです。
　オプティマイザは、インデックスの有無、データの分散や偏りの度合い、
DBMSの内部パラメータなどの条件を考慮して、選択可能な多くの実行計
画を作成し（❷）、それらのコストを計算して（❸）、最も低コストな1つに

絞り込みます。オプティマイザがどのようなSQLに対してどのような実行
計画を立てるのかについては、本書の後半で多くの実例を取り上げます。
　RDBがデータアクセスの手続き決定を自動化している理由は、アクセス
パスの候補の数が多いうえに、それら個々のプランについてしらみつぶし
にコスト計算をして、互いを比較考慮しなければならないためです。この
ような計算は、人間よりコンピュータのほうが高速に処理可能なので、一
般的にはオプティマイザに任せるのが得策です。

カタログマネージャ（catalog manager）
　オプティマイザが実行計画を立てる際、オプティマイザに重要な情報を
提供するのがカタログマネージャ（❹）です。カタログとはDBMSの内部情
報を集めたテーブル群で、テーブルやインデックスの統計情報が格納され
ています。そのため、このカタログの情報を単に「統計情報」とも呼びます。

22

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

本書でもこの呼び名を使います。

プラン評価（plan evaluation）

　オプティマイザがSQL文から複数の実行計画を立てたあと、それを受け
取って最適な実行計画を選択するのがプラン評価（❺）です。あとで実際に
いくつかのサンプルを見ていきますが、実行計画というのはまだそのまま
DBMSが実行できるようなコードにはなっていません。むしろ人間が読む
ことのできる、文字どおり「計画書」です。したがって、パフォーマンスの
悪いSQL文については、この実行計画をエンジニアが読むことによって補
正案を考えることもできるのです。
　こうして一つの実行計画に絞り込まれたあと、DBMSは実行計画を手続
き型のコードに変換してデータアクセスを実行することになります。

オプティマイザとうまく付き合う

　以上が、DBMSがクエリを受け取ってから実際のデータアクセスを行う
までの流れです。オプティマイザ内部の処理については、このエンジンそ
のものを実装するエンジニア以外には関係しないため、本書では扱いませ
ん。むしろデータベースのユーザとしては、このオプティマイザをうまく
使ってやることのほうが大事です。というのも、オプティマイザは放って
おけば万事よろしくやってくれるほど万能ではないからです。特に、カタ
ログマネージャ（❹）が管理する統計情報については、データベースエンジ
ニアは常に神経を使う必要があります。
　というのも、プラン選択をオプティマイザ任せにしている場合、現実に
は最適なプランが選ばれないことが多々あるからです。オプティマイザが
失敗する代表的なパターンはいくつかありますが、中でも最も初歩的かつ
ありがちなのが、統計情報が不適切なケースです。
　実装によって差はありますが、カタログに含まれている統計情報は次の
ようなものです。

・各テーブルのレコード数

・各テーブルの列数と列のサイズ

・列値のカーディナリティ（値の個数）

23

1.3DBMSと実行計画

・列値のヒストグラム（どの値がいくつあるかの分布）

・列内にあるNULLの数

・インデックス情報

　これらの情報を入力として、オプティマイザは実行計画を作ります。問
題が起こるのは、このカタログ情報がテーブルやインデックスの実体と一
致しない場合です。テーブルに対してデータの挿入／更新／削除が行われ
たのにカタログ情報が更新されていないと、オプティマイザは古い情報を
もとに実行計画を作ろうとします。オプティマイザの手元にはそれしか情
報がないのだから、しかたありません注11。
　たとえば極端な例ですが、テーブルを作ったばかりのレコード0件の状
態でカタログ情報が保存され、その後レコードを1億件ロードしたのにカ
タログ情報を更新しなかった場合、オプティマイザはデータ0件を前提し
てプラン生成をしようとします。これでは最適なプランは到底期待できま
せん。「Garbage In, Garbage Out」（ゴミのような入力からはゴミのような
結果しか生まれない）というやつです。それでSQL文が遅かったからとい
って、オプティマイザのせいにするのは酷です。

適切な実行計画が作成されるようにするには

　正しい統計情報を集めることは、SQLのパフォーマンスにとって死活問
題なので、テーブルのデータが大きく更新されたらカタログの統計情報も
セットで更新することは、データベースエンジニアの間では常識です。マ
ニュアルで更新するだけでなく、データを大きく更新するバッチ処理の場
合はジョブネット注12に組み込む場合も多いですし、Oracleのようにデフォ

ルト設定で定期的に統計情報更新のジョブが動いたり、Microsoft SQL Server

注11 統計情報が一度も収集されていなかったり、失効していた場合、クエリ実行時に統計情報をリアル
タイムに収集する機能を持つDBMSもあります。これをJIT（Just In Time）統計と呼びます。JITは、
鮮度の高い情報が得られるのがメリットですが、欠点もあります。一つ目は、統計情報収集はそれ
自身かなり時間のかかる処理なので、JIT自身が遅延するという本末転倒になる危険があること、二
つ目が、だからと言ってJITを高速化するために集める情報を制限すると、精度の低い統計情報しか
集められないことです。お気づきのように、ここにおいても、問題はまたしてもトレードオフなの
です。

注12 個々のジョブの実行シーケンスのことです。業務的な前後関係やパラレル実行可能かどうかなどを
考慮して組み上げます。

24

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

のように更新処理が行われたタイミングで自動的に統計情報を更新する
DBMSもあります。
　統計情報の更新は、対象のテーブルやインデックスのサイズと数によっ
ては数十分～数時間を要することがあり、実行コストの高い作業ではあり
ます。しかし、DBMSが適切なプランを選択するための必要条件ですので、
更新タイミングは手を抜かずに検討する必要があります。
　代表的なDBMSの統計情報更新コマンドの一覧を表1.4に掲載します。
ここに掲載するのは基本構文のみで、オプションのパラメータによってテ
ーブル単位ではなくスキーマ全体で取得したり、サンプリングレートを指
定したり、テーブルに付与されているインデックスの統計情報もあわせて
取得したりなど、さまざまな制御が可能です。詳細は各DBMSのマニュア

ルを参照してください。

表1.4 代表的なDBMSの統計情報更新コマンド

名前 コマンド

Oracle exec DBMS_STATS.GATHER_TABLE_STATS(OWNNAME
=> スキーマ名, TABNAME =>テーブル名);

Microsoft SQL Server UPDATE STATISTICSテーブル名

DB2 RUNSTATS ON TABLE スキーマ名.テーブル名;

PostgreSQL ANALYZE スキーマ名.テーブル名;

MySQL ANALYZE TABLE スキーマ名.テーブル名;

1.4
実行計画がSQL文のパフォーマンスを決める

　実行計画が作られると、DBMSはそれをもとにデータアクセスを行いま
す。しかし、データ量の多いテーブルへアクセスしたり、複雑なSQL文を
実行する場合、レスポンスの遅延に遭遇することがよくあります。この理
由には、先述のように統計情報が不正確であるというケースもありますが、
現状最適なアクセスパスが選択されているのに遅い、ということもありま
す。また、統計情報は最新でも、SQL文が複雑過ぎてオプティマイザが最
適なアクセスパスを生成できないこともあります。

25

1.4実行計画がSQL文のパフォーマンスを決める

実行計画の確認方法

　こうした理由から、SQL文の遅延が発生したとき、最初に調べるべき対
象は実行計画となります。どんなDBMSも、実行計画を調べる手段を提供
しています。実装によって違いますが、多くのDBMSがコマンドラインの

インタフェースから確認する手段を用意しています（表1.5）。

表1.5 実行計画を確認するコマンド

名前 コマンド

Oracle※ set autotrace traceonly

Microsoft SQL Server※ SET SHOWPLAN_TEXT ON

DB2 EXPLAIN ALL WITH SNAPSHOT FOR SQL文

PostgreSQL EXPLAIN SQL文

MySQL EXPLAIN EXTENDED SQL文
※ OracleおよびMicrosoft SQL Serverでは、上記コマンドのあとに対象のSQL文を実行します。いずれ
のDBMSにおいても、確認コマンドとSQL文の間には改行を入れてもかまいません。

　これから、次の3つの基本的なSQL文に対する実行計画を見てみましょ
う。

❶テーブルフルスキャンの実行計画

❷インデックススキャンの実行計画

❸簡単なテーブル結合の実行計画

　具体的に、図1.8のようなサンプルテーブルを使うことにします。ある
業種の店舗についての評価や所在地域のデータを保存するテーブルだと考
えてください。主キーは店舗 IDで、テーブルには60行のデータを入れ、そ
のあとに統計情報を取得済みだと仮定します。

26

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

図1.8 店舗テーブル

Shops（店舗）
shop_id（店舗ID） shop_name（店舗名） rating（評価） area（地域）

00001 ○○商店 3 北海道

00002 △△商店 5 青森県

00003 ××商店 4 岩手県

00004 □□商店 5 宮城県

略

00060 ☆☆商店 1 東京都

※ 以降テーブルのデータを図示する場合には、表の左上にテーブル名を表記しています。また、列名におい
てアンダーラインが引かれている列は、主キー（プライマリキー）であることを示します。主キーは、テー
ブル内のレコードを一意に特定することのできる列の組み合わせです。

テーブルフルスキャンの実行計画

　まずは、レコードを全件取得する単純なSQL文の実行計画を見てみまし
ょう。

SELECT *

　FROM Shops;

　PostgreSQLとOracleで取得した実行計画を掲載します（図1.9、図1.10）。
なお、本書では以降、実行計画の読みやすいPostgreSQLとOracleの実行
計画をサンプルとして使います。

図1.9 テーブルフルスキャンの実行計画（PostgreSQL）
EXPLAIN

 SQL文を実行

Seq Scan on shops (cost=0.00..1.60 rows=60 width=22)

図1.10 テーブルフルスキャンの実行計画（Oracle）
set autotrace traceonly

 SQL文を実行

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 60 | 1260 | 3 (0)| 00:00:01 |

27

1.4実行計画がSQL文のパフォーマンスを決める

| 1 | TABLE ACCESS FULL| SHOPS | 60 | 1260 | 3 (0)| 00:00:01 |

--

※以降で実行計画を掲載するときは、実行計画を確認するコマンドとSQL文は省略します。

　実行計画の出力フォーマットは完全に同じではありませんが、どちらの
DBMSにも共通する項目があります。それは、次の3つです。

❶操作対象のオブジェクト

❷オブジェクトに対する操作の種類

❸操作の対象となるレコード数

　この3つはほとんどのDBMSの実行計画に含まれています。それだけ重
要な項目だということです。

操作対象のオブジェクト

　1つ目の対象オブジェクトについて見ると、PostgreSQLはonのあとに、
Oracleは「Name」列にShopsテーブルが出力されています。サンプルのSQL

文がこの1つのテーブルしか使用していないため今は迷うことはありませ
んが、複数のテーブルを使用するSQL文では、どのオブジェクトに対する
操作なのか混同しないよう注意が必要です。
　また、この項目にはテーブル以外にも、インデックスやパーティション、
シーケンスなど、SQL文でアクセス対象となるオブジェクトなら何でも現
れる可能性があります注13。

オブジェクトに対する操作の種類
　2つ目のオブジェクトに対する操作は、実行計画で最も重要な項目です。
PostgreSQLは文頭の単語、Oracleでは「Operation」列が示します。
PostgreSQLの「Seq Scan」は「シーケンシャルスキャン」の略で、ファイルを
順次（シーケンシャルに）アクセスして当該テーブルのデータを全部読み出
す、という意味です。Oracleの「TABLE ACCESS FULL」は、「テーブルの
データを全部読み込む」という意味です。

注13 もちろん一番多く現れる可能性があるのがテーブル、その次にインデックスであることは言うまで
もありません。

28

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

　オブジェクト名やレコード数といった指標に比べて、OracleやPostgreSQLの
出力に含まれる実行コスト（Cost）という指標は、評価の難しい項目です。一見す
るとこの数値を減らすことが良いことのように思えますし、それは大筋において
間違いではないのですが、値の大小を絶対評価することは困難です注a。あくまで
相対評価で、ある程度の目安にしかなりません。
　また、Oracleが出力している「Time」列も、あくまで推計の実行時間なのであ
まりあてになりません。このように、実行計画に出力されるコストや実行時間、
処理行数は推計値なのであまり鵜呑みにできないのですが、こうした値の実際の
値を取得する方法を用意している実装もあります。
　たとえばOracleでは、SQL文の実際の実行計画を取得する方法（DBMS_
XPLAN.DISPLAY_CURSOR）もあるので、その場合には本当にかかった処理時
間を操作ごとに出力できます。たとえば、インデックスによるアクセスのSQL文
では、図aのような実行計画が得られます注b。

図a DBMS_XPLAN.DISPLAY_CURSORによる実行計画の取得
set serveroutput off

alter session set statistics_level=all;

SELECT *

　FROM Shops;

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format=>'ALL ALLSTATS LAST'));

--

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

--

| 1 | TABLE ACCESS BY INDEX ROWID| SHOPS | 1 | 1 | 1 |00:00:00.01 | 2 |

|* 2 | INDEX UNIQUE SCAN | PK_SHOPS | 1 | 1 | 1 |00:00:00.01 | 1 |

--

　列の説明は次のとおりです。

・E-Rows：推計の操作行数
・A-Rows：実際の操作行数
・A-Time：実際の実行時間

実行計画の「実行コスト」と「実行時間」

C o l u m n

注a たとえば「このSQL文はCostが5,000しかないので1秒以内で終わるでしょう」という推測は
できません。

注b もちろん、SQL文を実際に実行する必要があるため、あまり実行時間の長いSQL文には不向
きです。

29

1.4実行計画がSQL文のパフォーマンスを決める

　この2つは、厳密には同じレベルの出力にはなっていません。テーブル
のデータを全部読み込む方法として、必ずしもシーケンシャルスキャンを
選択しなければならない、というわけではないからです。つまり、PostgreSQL

の出力のほうがより物理レベルに近い出力です。しかし実際のところ、
Oracleにおいても、テーブルへのフルアクセスを行う場合は内部的にシー
ケンシャルスキャンが実施されるので、この2つの操作はほぼ同義と考え
てかまいません。このタイプのテーブルへのフルアクセスを、本書では「テ
ーブルフルスキャン」と呼ぶことにします。

操作の対象となるレコード数

　3つ目の重要な項目は、操作の対象となるレコード数です。これらはい
ずれも「Rows」の項目に出力されます。結合や集約が入ってくると、1つの

SQL文を実行するだけでも複数の操作が行われます。そうすると、各操作
でどれだけのレコードが処理されるかが、SQL文全体の実行コストを把握
するために重要になります。
　なお、この件数に関して1つ誤解してほしくないことがあります。それ
は、この数値が取得されている情報源です。先ほど「データへのアクセス方
法はどう決まるのか」（20ページ）でオプティマイザが実行計画を作る過程
を解説した際にも説明したように、オプティマイザはテーブル情報をカタ
ログマネージャから受け取ります。つまり、ここに出ている件数は、統計
情報として取得された値がもとになっています。そのため、SQL文を実行
した時点のテーブル件数とは乖離がある場合もあります（JITの場合は別で
すが）。
　ためしに、このShopsテーブルから全レコードを削除して（もちろんコミ
ットもして）、それから再度実行計画を取得したらどうなるでしょう。実際
にやっていただければわかりますが、OracleでもPostgreSQLでも、やはり
Rowsの項目には変わらず「60」という値が出力されます。これは、オプテ
ィマイザが、あくまで統計というメタ情報を頼りにしていて、実テーブル

　本書は特定の実装の解説は目的としていないため、これ以上の詳細については
製品のマニュアルを参照してください。

30

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

は見ていない証拠です注14。

インデックススキャンの実行計画

　今度は、先ほど実行した簡単なSQL文にWHERE条件を付けてみましょう。

SELECT *

　FROM Shops

　WHERE shop_id = '00050';

　再度実行計画を取得すると、図1.11、図1.12のようになります。

図1.11 インデックススキャンの実行計画（PostgreSQL）
--

Index Scan using pk_shops on shops (cost=0.00..8.27 rows=1 width=320)

　Filter: (shop_id = '00050'::bpchar)

図1.12 インデックススキャンの実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 21 | 1 (0)| 00:00:01 |

| 1 | TABLE ACCESS BY INDEX ROWID| SHOPS | 1 | 21 | 1 (0)| 00:00:01 |

|* 2 | INDEX UNIQUE SCAN | PK_SHOPS | 1 | | 0 (0)| 00:00:01 |

--

　今度の実行計画には、おもしろい変化が見られます。先ほどと同様、3

つの項目に注目して見てみましょう。

操作の対象となるレコード数

　まず、どちらのDBMSも、Rowsが1になっています。WHERE句で主キ
ーが「00050」の店舗を指定しているわけですから、アクセス対象が必ず1行
になるためです。これは当然の変化です。

注14 「そんな不正確なことしなくても、SQL文実行時にテーブル件数を数えるJIT処理をすればよいのに」
と思うかもしれませんが、もし1億件オーダーのレコードが入っているテーブルにJITを行う場合、
Rowsの値を厳密に取得しようとすれば、それだけでも数十分を要することもあります。注11（23
ページ）も参照してください。

31

1.4実行計画がSQL文のパフォーマンスを決める

操作対象のオブジェクトと操作

　オブジェクトと操作についてはどうでしょう。こちらは興味深い変化が
見られます。PostgreSQLでは「Index Scan」、Oracleでは「INDEX UNIQUE

SCAN」という操作が現れています。これは、インデックスを使ったスキャ
ンが行われるようになったことを示しています。
　Oracleでは「TABLE ACCESS FULL」の代わりに「TABLE ACCESS BY

INDEX ROWID」と表示され、さらにその内訳としてId=2の行に「INDEX

UNIQUE SCAN」、Name（対象オブジェクト）に「PK_SHOPS」が出力され
ています。この「PK_SHOPS」は主キーのインデックスの名前です。
　インデックスについては第10章で詳しく解説しますが、一般的に、スキ
ャンする母集合のレコード数に対して選択されるレコード数が小規模な場
合に、テーブルに対するフルスキャンよりも高速なアクセスを実現します。
これは、フルスキャンが母集合のデータ量に比例して処理コストが増大す
るのに対し、インデックスの中で一般的なB-treeインデックスでは、母集
合のデータ量に対数関数的に増大するからです。これは、インデックスの
ほうが処理コストの増大のしかたが緩やかだということを意味するので、
あるデータ量（N）を損益分岐点として、インデックススキャンのほうがフ
ルスキャンよりも効率的にアクセスできるのです（図1.13）注15。

図1.13 母集合のデータ量が増えるとインデックススキャンが有利

注15 あくまで一般論なので、諸条件によってそうでないこともあるのですが、そうした細かい話は第10
章でします。

シーケンシャルスキャン
O()　

インデックススキャン
O()

データ量 = nN

処
理
時
間

32

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

　今は60行しかデータが存在しないので、テーブルを順次読み込むのもイ
ンデックスでランダムアクセスするのもレスポンスは大差ありませんが注16、
この差はレコード数が増えたときに効いてきます。

簡単なテーブル結合の実行計画

　最後に、結合を行う実行計画を見てみましょう。SQLが遅いケースの十中
八九は結合が関係します。かつ、結合が利用される場合は実行計画が複雑に
なりがちなため、オプティマイザも最適な実行計画を立てるのが難しくなり
ます。したがって、結合時の実行計画の特性を学ぶことには重要な意味があ
ります。結合の実行計画を理解することは、本書の主眼の一つです。
　結合を行うにはテーブルが2つ以上必要ですので、図1.8の店舗テーブル
のほかに図1.14の予約管理テーブルを追加しましょう。データ件数は10

件登録するとします。

図1.14 予約管理テーブル

Reservations（予約管理）
reserve_id（予約ID） shop_id（店舗ID） reserve_name（予約者）

1 00001 Aさん

2 00002 Bさん

3 00003 Cさん

4 00004 Dさん

略

10 00010 Jさん

　実行計画を取得する対象のSQL文は、次のような予約の存在する店舗を
選択するSELECT文です。

SELECT shop_name

　FROM Shops S INNER JOIN Reservations R

 ON S.shop_id = R.shop_id;

　詳細は第6章で解説しますが、一般的に、DBMSが結合を行うアルゴリ
ズムは3種類あります。

注16 実際60行程度のデータ量であれば、たとえWHERE句で主キーを指定しても、インデックスではな
くフルスキャンが選択されることもあります。

33

1.4実行計画がSQL文のパフォーマンスを決める

　最も基本的でシンプルなのがNested Loops注17です。最初に片方のテーブ
ルを読み込み、その1行のレコードに対して、結合条件に合致するレコー
ドをもう一方のテーブルから探します。手続き型言語で書くと二重ループ
で実装するので、「入れ子ループ」という名前がついています注18。
　2つ目はSort Mergeです。結合キー（今のケースでは店舗 ID）でレコード
をソートしてから、順次アクセスを行って2つのテーブルを結合します。結
合の前処理として（原則として）ソートを行うので、そのためのメモリ領域
を必要とします。この作業用の領域が「もう一つのメモリ領域『ワーキング
メモリ』」（16ページ）で触れたワーキングメモリです。
　3つ目はHashです。名前のとおり、結合キーの値をハッシュ値にマッピ
ングします。これもハッシュテーブルを確保するための作業用のメモリ領
域を必要とします。
　では、OracleとPostgreSQLがどのような結合アルゴリズムを採用するか
見てみましょう（図1.15、図1.16）。

図1.15 結合の実行計画（PostgreSQL）
--

Nested Loop (cost=0.14..14.80 rows=10 width=2)

 -> Seq Scan on reservations r (cost=0.00..1.10 rows=10 width=6)

 -> Index Scan using pk_shops on shops s (cost=0.14..1.36 rows=1 width=8)

 Index Cond: (shop_id = r.shop_id)

図1.16 結合の実行計画（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 48 | 3 (0)| 00:00:01 |

| 1 | NESTED LOOPS | | 1 | 48 | 3 (0)| 00:00:01 |

| 2 | TABLE ACCESS FULL | RESERVATIONS | 1 | 7 | 2 (0)| 00:00:01 |

| 3 | TABLE ACCESS BY INDEX ROWID| SHOPS | 1 | 41 | 1 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SHOPS | 1 | | 0 (0)| 00:00:01 |

注17 Oracleは「Nested Loops」で、PostgreSQLは「Nested Loop」と表記していますが、本書では便宜
上「Nested Loops」に統一します。

注18 このネーミングからわかるように、DBMSも内部では手続き型の方法でデータアクセスしているの
です。

34

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

オブジェクトに対する操作の種類

　OracleのOperation列には「NESTED LOOPS」と出ているため、使われて
いるアルゴリズムについて迷うことはありません。また、PostgreSQLでも

やはり「Nested Loop」と出ていることから、Oracleと同じアルゴリズムが
選択されていることがわかります注19。
　ここでちょっと、実行計画の読み方のワンポイントを教えましょう。実
行計画は一般的にツリー構造で出力されるのですが、入れ子の深い操作ほ
ど先に実行されます。PostgreSQLの結果を例にとると、「Nested Loop」よ
りも「Seq Scan」と「Index Scan」の階層が深いため、結合に先んじて2つのテ

ーブルへのアクセスが行われることがわかります（当たり前のことですが）。
また、結合の場合、どちらのテーブルを先にアクセスするかが重要な意味
を持ってくるのですが注20、これは同じインデントの階層において上に位置
するテーブルです。PostgreSQLでもOracleでも、Reservationsテーブルと

Shopsテーブルへのアクセスは同じ階層に位置していますが、どちらも
Reservationsテーブルが上に記述されているため、Reservationsテーブル

に先にアクセスされることがわかります。
　この結合アルゴリズムとテーブルアクセスの順番の重要性については、
第6章で詳しく取り上げます。今は、実行計画のフォーマットに目を慣ら
しておいてもらえれば十分です。

1.5
実行計画の重要性

　最近のオプティマイザはかなり優秀になってきていますが、それでも完
全ではありません。前節でも解説したように、良かれと思って選んだ実行
計画が惨

さんたん

憺たるパフォーマンスを生むこともあります。また、そうした複
雑な問題以前に、絶対に使ったほうが速いはずのインデックスを使ってく

注19 実際に使われる結合のアルゴリズムは、環境によって変化します。そのため、PostgreSQLにおい
てSort Merge結合が現れたり、OracleにおいてHash結合が現れることもあります。あくまで上記
は実行計画のサンプルだと考えてください。

注20 この先にアクセスされるテーブルを駆動表（driving table）と言います。

35

1.5実行計画の重要性

れない、テーブルの結合順序が明らかにおかしい、といったポカもやりま
す。オプティマイザもしょせん人間が作ったプログラムなので、絶対はあ
りません。
　そうした場合、最後のチューニング手段は、実行計画を手動で変えてし
まうことです。たとえば、Oracle、MySQLなどが持っているヒント句を使
うと、SQL文の中に埋め込むことでオプティマイザに強制的に命令を出す
ことができます。ヒント句は結果には中立で、あくまでデータへのアクセ
スパスだけを変更する手段です。ヒント句を用意するということは、DBMS

の作り手からしてみれば自分たちのオプティマイザの力不足を認めること
になるので、あまりおおっぴらに宣伝したい機能ではありません。したが
って、ヒント句を原則として持たないDB2のような強気のDBMSもありま

す（そもそも、ユーザに実行計画を読ませること自体、「中の人」たちにして
みれば気乗りしないことです）。
　とはいえ、現実にオプティマイザが選ぶ実行計画が最適でない場合、ど
うにかして人間が実行計画を修正してやる必要には迫られるわけで、その
場合の手段が限られるというのは、それはそれで困ったものです。SQL文
の構文変更やテーブル設計、アプリケーションの修正といった大規模な対
応に迫られることもしばしばです。
　そうしたケースにおいて、われわれデータベースエンジニアとしてどの
ような選択肢があり得るかは、本書の中で一つずつ検討していきますが、
まずは現状の実行計画を確認し、当該のSQL文がどのようなアクセスパス
でデータを取得しているかを知ることが、チューニングの第一歩です。そ
してそれ以前に何よりも、効率的なテーブル設計を行い、無駄のないSQL

文を記述するためには、データベースエンジニアはSQL文の実行計画を机
上である程度予測できなければいけません。これは、物理層を隠蔽しよう
というRDBが目指した目標には逆行するのですが、いまだ理想の達成され
ない現実に生きる者には、理想的ではない手段も必要とされるのです。

36

第1章 DBMSのアーキテクチャ　この世にただ飯はあるか

第1章のまとめ

・データベースはさまざまなトレードオフのバランスを取ることを
目的としたミドルウェアである

・特にパフォーマンスの観点では、データを低速なストレージ（デ
ィスク）と高速なメモリのどちらに配置するかのトレードオフが
重要

・データベースは更新よりも参照を重視した設計とデフォルト設定
になっているが、それが本当に適切かは判断が必要

・データベースはSQLを実行可能な手続きに変換するために実行計
画を作っている

・本当はユーザが実行計画を読むのは本末転倒だが、人生なかなか
すべてが思いどおりにはいくわけではない

演習問題1

　DBMSのデータキャッシュは、容量の限られたメモリ上になるべく効率
的にデータを保持できるような工夫がなされています。どのようなルール
（アルゴリズム）でデータを保持するのが効率的か、考えてみてください。
そのあとに、自分の使っているDBMSにどのようなアルゴリズムが採用さ
れているか、マニュアルなどを使って調べてください。
 ➡解答は334ページ

37

1.5実行計画の重要性

　キャッシュというしくみは、データベース層だけでなく、いろいろなレイヤで利
用されています。たとえば、Linux OSは「ファイルキャッシュ」と呼ばれるキャッシ
ュを持っています。このキャッシュは、OS上で動作するアプリケーションなどが使
っていない「余った」メモリを利用します。一方、ハードウェアレベルにおいても、ス
トレージは（グレードにもよりますが）やはりキャッシュを持っています（図a）。

図a キャッシュの階層

　また、アプリケーション側でデータベースの結果セットをキャッシュに保持し、
データベースまでSQL文を発行しなくてもユーザに結果を返せるようにするしく
みを採用することもあります。最新のデータが必要ない場合は、こうしたシンプ
ルなパフォーマンス改善方法もあります。
　これらさまざまなレイヤにおけるキャッシュは、データベースにおけるデータ
キャッシュの役割と一部重複します。しかし、OSのファイルキャッシュに割り
当てるよりは、サーバの物理メモリを圧迫しない程度にデータベースのデータキ
ャッシュに割り当てたほうが、データベースのパフォーマンス向上が期待できま
す。これは、OSがキャッシュする対象はデータベースのデータ以外に、OS上の
ほかのプロセスが使用するデータも含まれるので、（データベースから見ると）キ
ャッシュ効率が悪いためです。
　かといって、データベースにメモリをあまり多く割り当てすぎると、物理メモ
リの枯渇を招き、スワップが起きてスローダウンが発生します。これでは本末転
倒な話になるので、データベースにどの程度のメモリを割り当てるかを判断する
ときは、「あくまで物理メモリの範囲内でなるべく多く」というのが原則です。
　なかには、SQL Serverのように、データベースに対する割り当てメモリ量を自
動調整可能なDBMSもあります。これはOS（Windows）とDBMS（SQL Server）
を同一ベンダー（Microsoft）が開発しているため、両者を密接に連携させられる
から可能な芸当なのでしょう。

キャッシュ ミドルウェア層（データベース）

キャッシュ OS層（ファイルシステム）

キャッシュ ハードウェア層（ストレージ）

いろいろなキャッシュ

C o l u m n

39

SQLの基礎
母国語を話すがごとく

第2章

40

第2章 SQLの基礎　母国語を話すがごとく

　本章では、RDBを操作する言語であるSQLについて基礎的な解説を行い
ます。複雑なSQLのパフォーマンスを理解していくための準備運動だと思
ってください。
　RDBは、データを「リレーション」というフォーマットで保持しています。
実装ではこれを「テーブル」（表）と呼んでいるので、みなさんもこちらのほ
うが馴染み深い名前でしょう。リレーションに一番近いイメージとしては、
Excelのようなスプレッドシートにおける2次元表です。本当はリレーショ
ンと2次元表にはいろいろな違いがあるのですが、最初のとっかかりとし
てはほぼ同じものと考えてもらってかまいません。
　SQLは、テーブルを検索してデータを取り出したり、あるいは更新する
ための言語です。プログラマではない人も含め多くの人が利用できるよう
にという配慮から、自然言語である英語に似た構文で作られたので、ある
程度直観的に利用できます。この「簡単なことは簡単にやれる」というイン
タフェースのとっつきやすさは、SQLの美点です。そのおかげで、多くの
人がプログラミングしなくてもデータベースを操作できるようになりまし
た。
　とはいえ、実際はSQLはけっこう複雑な言語で、それなりに複雑なこと
をやろうとすると「母国語を話すがごとくSQLを操る」というわけにはいき
ません（特に最近の標準SQLの改訂は、どんどん高度な機能を追加する傾
向にあります）。また、内部的な動作を理解して記述しないとパフォーマン
スが出ないという問題も抱えており、RDBを作った人たちが最初に期待し
ていたほど話は簡単にはならなかったのですが、まずは基礎的な構文につ
いての理解をここで固めておきましょう。

2.1
SELECT文

　データベースを利用するとき、中心になる処理が「検索」です。検索とは、
データが保存されているテーブルから必要なデータを取り出すことです。
「問い合わせ」（query）とか「抽出」（retrieve）という言い方もします。せっかく
貯めこんだビッグデータも活用しなければ宝の持ち腐れですから、SQLは

41

2.1SELECT文

この検索に関しては非常に多彩な機能を持っています。
　検索のために使うSQL文はSELECT文と言います。文字どおり「選択す
る」です。SQLは英語に近い構文で記述されるので、コードの大雑把な意
味を把握するのは、ほかの言語よりも簡単です。とりあえず何も考えず、
住所録のAddressテーブル（図2.1）を使って、中身をすべて選択することを
考えましょう。これは、リスト2.1のような簡単なSELECT文で実行でき
ます。

図2.1 住所テーブル

Address（住所）
name（名前） phone_nbr（電話番号） address（住所） sex（性別） age（年齢）

小川 080-3333-XXXX 東京都 男 30

前田 090-0000-XXXX 東京都 女 21

森 090-2984-XXXX 東京都 男 45

林 080-3333-XXXX 福島県 男 32

井上 福島県 女 55

佐々木 080-5848-XXXX 千葉県 女 19

松本 千葉県 女 20

佐藤 090-1922-XXXX 三重県 女 25

鈴木 090-0001-XXXX 和歌山県 男 32

リスト2.1 SELECTでテーブルの中身をすべて選択する
SELECT name, phone_nbr, address, sex, age

　FROM Address;

 実行結果

name | phone_nbr | address | sex | age

--------+---------------+----------+-----+-----

小川 | 080-3333-XXXX | 東京都 | 男 | 30

前田 | 090-0000-XXXX | 東京都 | 女 | 21

森 | 090-2984-XXXX | 東京都 | 男 | 45

林 | 080-3333-XXXX | 福島県 | 男 | 32

井上 | | 福島県 | 女 | 55

佐々木 | 080-5848-XXXX | 千葉県 | 女 | 19

松本 | | 千葉県 | 女 | 20

佐藤 | 090-1922-XXXX | 三重県 | 女 | 25

鈴木 | 090-0001-XXXX | 和歌山県 | 男 | 32

42

第2章 SQLの基礎　母国語を話すがごとく

SELECT句とFROM句

　このSQL文は、2つのパートから構成されています。一つが、SELECT

のあとにつらつらと列名を書き並べているパートで、これをSELECT句と
呼びます。データベースからデータを検索する場合には必須のパートです。
SELECT句には、テーブルが持っている列ならカンマで区切っていくつで
も書くことができます。
　もう一つの「FROM テーブル名」はFROM句と呼び、データを選択する
元のテーブルを指定します。このパートは必須ではありませんが、データ
の取得元がテーブルである場合は指定が必要です（そうでないとDBMSは

どこにデータを探しにいってよいかわからないからです）。FROM句を書
かなくてもよいケースというのは、たとえば「SELECT 1;」のように定数を
選択するような場合です。この場合、別にテーブルからデータを取り出す
わけではないので、FROM句は不要なのです（OracleのようにFROM句が
必須のDBMSもありますが、これは実装依存の方言です）。
　この住所録から全員を選択するSQL文は最も単純なSQL文ですが、この
簡単なサンプルの中にもすでにSQLの特性が──暗黙的に──現れていま
す。それは、SELECT文にはデータを「どういう方法で」選択するかが一切
書かれていないことです。その方法（＝手続き）はDBMSに任されています。
「よきにはからえ」がRDBの基本精神です。ユーザが考えるべきはどういう
データが欲しいかであって、それを取るための手段を考えるという面倒事
は召使いにお任せください、というわけです。
　ところで、リスト2.1のSELECT文の結果を見ると、情報が不完全なと
ころがあることに気づきます。そう、空欄になっている井上さんと松本さ
んの電話番号です。これは、元のAddressテーブルに電話番号が登録され
ていないことによります。
　RDBでは、このように不明なデータも「空欄」として取り扱うことができ
ます。この「空欄」をNULLと呼びます。NULLの扱い方は「NULL──何も
ないとはどういうことか」（48ページ）で見ます。

WHERE句

　上のSELECT文では、Addressテーブルにある全部のデータを取り出し

43

2.1SELECT文

たので、合計9行が出力されました。しかし、毎回全レコードが欲しいと
いうわけでもありません。特定の条件に合致する一部のレコードだけを選
択したいことのほうが実際には多いでしょう。
　そういう場合のために、SELECT文にはレコードの絞り込み条件を指定す
る手段があります。それがWHERE句です。たとえば、「address（住所）」列
が「千葉県」のデータだけを選択するなら、リスト2.2のように記述します。

リスト2.2 WHERE句で検索する内容を絞り込む
SELECT name, address

 FROM Address

 WHERE address = '千葉県';

 実行結果

name | address

--------+---------

佐々木 | 千葉県
松本 | 千葉県

　この動作は、たとえるならExcelの「フィルタ条件」指定です。このとき、
WHEREという単語を使うのが奇妙に思うかもしれませんが、このWHERE

は「どこ？」という疑問詞ではなく、「～という場所」という関係副詞の用法です。

WHERE句のさまざまな条件指定

　WHERE句では、サンプルに使った「=」のような等値条件だけでなく、さま
ざまなタイプの条件指定が可能です。代表的な条件指定を表2.1に示します。

表2.1 WHERE句で使用できる代表的な演算子

演算子 意味

= ～と等しい

<> ～と等しくない

>= ～以上

> ～より大きい

<= ～以下

< ～より小さい

　たとえば、「年齢が30歳以上」や「住所が東京以外」という条件ならば、そ
れぞれリスト2.3、リスト2.4のようなWHERE句で書けます。

44

第2章 SQLの基礎　母国語を話すがごとく

リスト2.3 年齢が30歳以上
SELECT name, age

 FROM Address

 WHERE age >= 30;

 実行結果

name | age

------+-----

小川 | 30

森 | 45

林 | 32

井上 | 55

鈴木 | 32

リスト2.4 住所が東京都以外
SELECT name, address

FROM Address

WHERE address <> '東京都';

 実行結果

name | address

--------+----------

林 | 福島県
井上 | 福島県
佐々木 | 千葉県
松本 | 千葉県
佐藤 | 三重県
鈴木 | 和歌山県

　それぞれ、条件に合致する一部のレコードだけを限定的に出力している
ことがわかります。

WHERE句は巨大なベン図
　このように、WHERE句を使えばテーブルに対してフィルタ条件を付け
ることが可能なのですが、実際に使いたい条件は先ほど見たような単純な
ものではなく、複合的な場合が多いでしょう。たとえば、次のような複合
条件を考えます。

・「住所が東京都である」かつ「年齢が30歳以上である」

　それぞれ個別の条件が次のようになることは、もうおわかりでしょう。

45

2.1SELECT文

・住所が東京都である：address = '東京都'

・年齢が30歳以上である：age >= 30

　あとはこの2つの条件をつなげる「かつ」をどう表現するかですが、これ
も英語で「かつ」に相当する「AND」を使えばOKです。したがって、全体の
SELECT文はリスト2.5のようになります。

リスト2.5 ANDは集合の共通部分を選択する
SELECT name, address, age

 FROM Address

 WHERE address = '東京都'

 AND age >= 30;

 実行結果

name | address | age

------+---------+-----

小川 | 東京都 | 30

森 | 東京都 | 45

　これはいわば、2つの条件を共通に満たすレコードだけを選択している
わけです。こういう複合条件を理解するには、図2.2のようなベン図を思
い描いてもらうのがよいでしょう。覚えていますか？ ベン図。学校で集合
について勉強したときに書いたあの円です。

図2.2 ベン図で表したAND演算

林

井上

森

松本

鈴木

小川

前田

佐々木

佐藤

年齢が 30歳以上 住所が東京都

46

第2章 SQLの基礎　母国語を話すがごとく

　今、Addressテーブルは、大きく3つのグループに切り分けることができ
ます。

❶住所が東京都のグループ：森、前田、小川

❷年齢が30歳以上のグループ：林、井上、鈴木、森、小川

❸上記❶、❷のどちらにも該当しないグループ：佐藤、佐々木、松本

　ここで求めたのは、❶と❷のどちらにも該当する、いわば共通部分の土
地にいる人々です。
　さて、「かつ」に相当するANDがあれば、「または」に相当するORも当然
あります。これを使ってSELECT文を作るとリスト2.6のようになります。

リスト2.6 ORは集合の和集合を選択する
SELECT name, address, age

　FROM Address

 WHERE address = '東京都'

 OR age >= 30;

 実行結果

name | address | age

------+----------+-----

小川 | 東京都 | 30

前田 | 東京都 | 21

森 | 東京都 | 45

林 | 福島県 | 32

井上 | 福島県 | 55

鈴木 | 和歌山県 | 32

　今度は、❶と❷のどちらか一方のエリアにいれば該当します。ベン図で
言えば図2.3のように表現できます。数学の言葉でいう「和集合」というや
つですね。

47

2.1SELECT文

図2.3 ベン図で表したOR演算

　以上のことからわかるように、WHERE句というのは、ベン図を描くた
めのツールです。WHERE句に複雑な条件を指定する場合、見通しが悪く
なったらベン図の円を描いてみると、うまく整理できます。

INでOR条件を簡略化する

　このように、SQLではAND／ORの組み合わせで柔軟な条件記述が可能
です。なお、実務ではOR条件を非常にたくさんつなげなければならない
ケースがよくあります。たとえば、リスト2.7のような形です。

リスト2.7 OR条件を複数指定している
SELECT name, address

　FROM Address

 WHERE address = '東京都'

 OR address = '福島県'

 OR address = '千葉県';

 実行結果

name | address

--------+---------

小川 | 東京都
前田 | 東京都
森 | 東京都
林 | 福島県
井上 | 福島県
佐々木 | 千葉県
松本 | 千葉県

林

井上

森

松本

鈴木

小川

前田

佐々木

佐藤

年齢が 30歳以上 住所が東京都

48

第2章 SQLの基礎　母国語を話すがごとく

　ここでは、「住所が東京都または福島県または千葉県」の人を選択してい
ます。まだ3つ程度の条件をつなげるぐらいならORで並べてもよいのです
が、これが何十個ともなると、見た目にもちょっと厳しいものがあります。
　SQLでは、こういう場合に非常に簡単に記述できる「IN」という道具を用
意しています。前置詞のINです（リスト2.8）。

リスト2.8 INを使った記述
SELECT name, address

　FROM Address

 WHERE address IN ('東京都', '福島県', '千葉県');

　実行結果は先ほどと同じです。WHERE句もすっきりシェイプアップし
て見やすくなりました。
　このINはSQLで非常によく使うので、よく覚えておいてください。あ
とでもう一度、このINを使った応用を紹介します。

NULL──何もないとはどういうことか

　さて、WHERE句での条件指定を行う際、初級者がほぼ100％引っかか
るのがNULLの取り扱いです。
　今、Addressテーブルには電話番号がわからない（＝NULLである）人が
2人います。この人たちだけを選択する条件を記述するにはどうすればよ
いでしょうか。こう訊ねると、多くの方がリスト2.9のようなSELECT文
を考えることでしょう。

リスト2.9 このSELECT文はうまくいかない
SELECT name, address

　FROM Address

 WHERE phone_nbr = NULL;

　これは人間の目には、ごく当然と思われるSELECT文です。「phone_nbr

がNULLと等しい」……まさに記述すべき条件です。ところがこのSELECT

文はうまく動きません。エラーにはなりませんが、結果は空っぽ。つまり
1行も選択されません。
　実は、NULLのレコードを選択するためには、特別な「IS NULL」という
キーワードを使う必要があります（リスト2.10）。

49

2.1SELECT文

　こうして見ると、SELECT文の機能というのが、手続き型言語でいうところの「関
数」と同じであることがわかります。関数はご存じのように、入力を受け取るとそれ
に対する出力を返します。SELECT文も、テーブルという入力を（FROM句で）受け取
って、特定の出力を返すという点で同じ働きをします。しかもこのとき、入力となる
テーブルには一切変更を加えません。SELECT文は「読み取り専用」の関数です（図a）。

図a SELECT文は関数

　一般的な手続き型言語の関数は、受け取る入力（引数）と返す出力（戻り値）の型が決
まっています。整数型や文字列型などです。SELECT文の場合も、やはり同じように
型が決まっています。では、SELECT文の入力と出力の型が何かわかるでしょうか？
　答えは、どちらも「テーブル」（リレーション）です。つまり、入力も出力も2次
元表である、ということです。それ以外の型の値はけっして取ることがありませ
ん。この性質を、関係の世界で閉じているという意味で閉包性（closure property）
と呼びます（図b）。単純なSELECT文だけ見ているとこの性質は大した意味を持
ちませんが、ビューとサブクエリを理解するときに、これが重要な概念として再
登場してきますので、頭の隅にとどめておいてください。

図b SELECT文の閉じた世界

入力
（テーブル）

関数
（SELECT文）

出力
（テーブル）

SELECT文は関係の世界の中から逃げ出せない

SELECT文は手続き型言語の関数

C o l u m n

50

第2章 SQLの基礎　母国語を話すがごとく

リスト2.10 意図したデータを選択できるSELECT文
SELECT name, phone_nbr

　FROM Address

 WHERE phone_nbr IS NULL;

 実行結果

name | phone_nbr

------+----------

井上 |

松本 |

　反対に、NULLでないレコードを選択する場合には、「IS NOT NULL」と
いうキーワードを使います。結果は、先ほどのちょうど裏返しになります。
　これは、最初は「そういうルールだから」と丸暗記してもらってかまいま
せん。なぜNULLのデータを選択する場合に、直観的な「= NULL」という
記述が許されないのか、ということにもちゃんと理由があるのですが、い
ささか込み入った話になります注1。NULLの取り扱いはRDBにおいてその

難しさに多くの人がハマる鬼門の一つですが、今は最低限「IS NULL」「IS

NOT NULL」の使い方だけ覚えてもらえれば十分です。

GROUP BY句

　GROUP BY句を使うと、テーブルから単純にデータを選択するだけでな
く、合計や平均などの集計演算をSQL文で行うことが可能になります。
　GROUP BY句が持つ機能をスローガン的に表現すると、「テーブルをホー
ルケーキとして扱う」と言えます。ホールケーキと言えば、誕生日などに食
べるあの円盤状の大きなケーキです。ホールケーキは、一人でそのまま全部
食べるようなことはしません。中にはそういう大食漢もいるかもしれません
が、多数派ではないでしょう。普通はナイフでケーキをカットして、みんな
に切り分けてあげます。GROUP BYの機能はこの「ナイフ」に相当します。
　今、Addressテーブルを一つのホールケーキだと思ってください。無理があ
るかもしれませんが、想像力を働かせてなんとか。……はい、イメージできま

注1 一言で言うと、「NULLがデータの値ではないため、値にしか適用できない等号は使えないから」と
いうのが理由です。より詳細を知りたい方は拙著『達人に学ぶSQL徹底指南書』（翔泳社、2008年）
1-3を参照してください。

51

2.1SELECT文

したか。それでは、今からこれを切り分けます。カットの基準は、テーブルの
適当な列を使います。まずは男女別に、2つに切り分けてみましょう（図2.4）。

図2.4 ケーキを性別でカット

グループ分けするメリット

　きれいに2つのピースにカットできました。ケーキをカットできると何
がうれしいかというと、こういう小分けにしたピース、これを「グループ」
と呼びますが、その単位でいろいろな数値の集計が手軽にできるようにな
ることです。
　こういう集計用の関数としてSQLが持っている代表を5つ挙げましょう
（表2.2）。

表2.2 SQLの代表的な集計用の関数

関数名 意味

COUNT レコード数を数える

SUM 数値を合計する

AVG 数値を平均する

MAX 最大値を求める

MIN 最小値を求める

　たとえば、男性のグループと女性のグループの人数をそれぞれ調べたい
と思えば、リスト2.11のようなSELECT文でできます。

SEX =’男’

SEX = ’女’

小川
森
林
鈴木

前田
井上
佐々木
松本
佐藤

52

第2章 SQLの基礎　母国語を話すがごとく

リスト2.11 男女別に人数を数える
SELECT sex, COUNT(*)

　FROM Address

 GROUP BY sex;

 実行結果

sex | count

-----+-------

男 | 4

女 | 5

　今度はカットの基準を変えて、住所別にケーキを切りましょう。イメー
ジは図2.5のようになります。

図2.5 ケーキを住所でカット

　地域によって住んでいる人の数に偏りがあるため、各グループに含まれる
レコード数にも1～3の間で幅が出ました。しかし、原理的には先ほどのケー
スと同じです。再び、グループごとの人数を数えてみましょう（リスト2.12）。

リスト2.12 住所別に人数を数える
SELECT address, COUNT(*)

　FROM Address

 GROUP BY address;

 実行結果

address | count

----------+-------

東京都 | 3

小川
前田
森

佐藤

鈴木

林
井上

佐々木
松本

東京都

千葉県

和歌山県

三重県

福島県

53

2.1SELECT文

千葉県 | 2

福島県 | 2

三重県 | 1

和歌山県 | 1

ホールケーキを全部1人で食べたい人は？
　先ほど、ホールケーキを1人で食べる人はまずいない、と言いました。で
も、そういうのが好きな人もいるかもしれません。そういう人はSQLでど

うすればよいのでしょう？
　SQLでもケーキをカットせずに食べることができます。カットしたくな
いなら、GROUP BY句をカットのキーなしで使えばテーブル全体（＝ケー
キ全部）をひとかたまりのピースとして集計できます（図2.6）。リスト2.13
のようにして実行します。

図2.6 ケーキをカットせずに丸ごと食べる

リスト2.13 全員の人数を数える
SELECT COUNT(*)

　FROM Address

 GROUP BY ();

 実行結果

count

 9

　GROUP BY句の()は、キーが空っぽであることを示しています。SQL

に慣れている人は、この記述に驚くかもしれません。カットの基準がない

小川
森
井上
松本
鈴木

前田
林
佐々木
佐藤

54

第2章 SQLの基礎　母国語を話すがごとく

場合は、一般的に次のようにGROUP BY句そのものを省略する構文のほう
が一般的だからです。

SELECT COUNT(*)

　FROM Address;

　どちらも動作はまったく同じですが、簡潔に記述できる後者がよく使わ
れます。また、GROUP BY ()という構文は、一部のDBMSがサポートして

いません注2。
　しかし、「カットする基準がない」ということを明示するリスト2.13の書
き方のほうが、むしろ意味的に厳密ではあるのです。最初にSQLを覚える
ときは、こちらの書き方のほうが論理的に筋が通っていて理解しやすいで
しょう注3。

HAVING句

　先ほどの、住所別に人数を求めたSELECT文（リスト2.12）に戻りましょ
う。この結果は、全部で5行が選択されています。SQLでは、この結果に
対してさらに絞り込みを行う機能があります。やり方は、WHERE句での
レコードの絞り込みとほとんど同じですが、今度は「HAVING」というあま
り英語では見慣れない単語を使います。
　たとえば、住んでいる人数（＝レコード数）が1人だけの住所列（address）
のみ選択したい場合はリスト2.14のように書きます。

リスト2.14 1人だけの都道府県を選択
SELECT address, COUNT(*)

　FROM Address

 GROUP BY address

HAVING COUNT(*) = 1;

 実行結果

address | count

----------+-------

注2 Oracle、Microsoft SQL Server、DB2では実行できますが、PostgreSQL、MySQLではエラーに
なります。

注3 私は今でも、GROUP BYが省略されているSQL文を見たときは、頭の中で勝手に「GROUP BY ()」
を補って理解しています。

55

2.1SELECT文

三重県 | 1

和歌山県 | 1

　先ほどのリスト2.12には現れていた東京都や千葉県が結果から姿を消し
ました。このようにHAVING句は、集約した結果に対してさらに絞り込み
条件を指定するために使うことができます。いわば、WHERE句が「レコー
ド」に対する条件指定を行うのに対し、HAVING句はレコードの「集合」に
対して条件指定を行う、一段レベルが高い絞り込み機能なのです。
　このHAVING句は、SQLが持っている強力な機能の一つで、非常に多く
の応用技があります。本書でもHAVING句は主役の一人で、今後多くの場
面で出てくることになりますので、ぜひ覚えてください。

ORDER BY句

　さて、これまでいくつかのSELECT文とその出力の結果のペアを見てき
ましたが、ところでこの出力の結果は、いったいどういう順序でレコード
が並んでいるのでしょう。
　答えは簡単で、デタラメです。デタラメという言葉が悪ければ「特に決ま
ったルールはない」です。DBMSによっては一定のルールを持ってレコー
ドを並べていることもあるかもしれませんが、それは別にSQL一般のルー
ルでそう決められているわけではなく、たまたまそのDBMSがそうしてい

る、というだけのローカルな話で、ほかのDBMSも同じルールを採用して
いる保証はありません。
　SELECT文の結果についてレコードの並び順を保証したいならば、明示
的に順番を指定する必要があります。そのための機能がORDER BY句で
す。たとえば、Addressテーブルからすべてのレコードを選択するときに、
年齢が高い順にレコードを並べるならば、リスト2.15のように書きます。

リスト2.15 年齢が高い順にレコードを並べる
SELECT name, phone_nbr, address, sex, age

　FROM Address

 ORDER BY age DESC;

 実行結果（年齢の降順）

56

第2章 SQLの基礎　母国語を話すがごとく

name | phone_nbr | address | sex | age

--------+---------------+----------+-------+-----

井上 | | 福島県 | 女 | 55

森 | 090-2984-XXXX | 東京都 | 男 | 45

鈴木 | 090-0001-XXXX | 和歌山県 | 男 | 32

林 | 080-3333-XXXX | 福島県 | 男 | 32

小川 | 080-3333-XXXX | 東京都 | 男 | 30

佐藤 | 090-1922-XXXX | 三重県 | 女 | 25

前田 | 090-0000-XXXX | 東京都 | 女 | 21

松本 | | 千葉県 | 女 | 20

佐々木 | 080-5848-XXXX | 千葉県 | 女 | 19

　ここで「DESC」はDescending Order（降順）の略です。反対に、昇順の場
合は「ASC」というキーワードを指定します（Ascending Orderの略）。もっ
とも、SQLはデフォルトが昇順と定められているため、昇順で指定したい
場合は、あえて「ASC」というキーワードを使う必要はありません。これは
すべてのDBMS共通のルールです。
　なお、同じ32歳の人が2名います（鈴木さんと林さん）が、この2人のど
ちらが上に来るかは、これもランダムです。もう一つソートキーを追加し
て、ORDER BY age DESC, phone_nbr ASCとすれば、電話番号の若い林さん
が上に来ることになります。

ビューとサブクエリ

　これまで、いろいろなタイプのSELECT文を実行してきました。実際に
データベースを使っていると、SELECT文の中にも、比較的よく使うもの
とあまり使わないものが出てきます。よく使うSELECT文は、ユーザが自
分でテキストファイルに保存しておいてもよいのですが、なるべく手軽に
実行できたほうが便利です。ユーザが手元で管理していると、ファイルを
なくしたり上書きしたり、最新ではないファイルを間違って使ったりする
危険性もあります。
　こういうときは、SELECT文をデータベースに保存してしまうのが便利
です。それを実現する機能がビュー（View）です。ビューはデータベースの
中に保存されるという点ではテーブルと同じなのですが、テーブルと違っ
て、中にデータを持つことはありません。あくまで、ただの「SELECT文」
を保存したものです。

57

2.1SELECT文

ビューの作り方

　ビューを作るには、保存したいSELECT文を

CREATE VIEW ビュー名 (列名1, 列名2 ...) AS

に続けて記述します。たとえば、住所別の人数を求めるSELECT文をビュ
ーとして保存してみましょう（リスト2.16）。

リスト2.16 ビューの作成
CREATE VIEW CountAddress (v_address, cnt)

AS

SELECT address, COUNT(*)

　FROM Address

 GROUP BY address;

　こうして作られたビューは、通常のテーブルと同じようにSELECT文の
中で使うことができます（リスト2.17）。

リスト2.17 ビューの使用
SELECT v_address, cnt

　FROM CountAddress; --テーブルの代わりにビューをFROM句に指定

 実行結果

v_address | cnt

------------+-----

東京都 | 3

千葉県 | 2

福島県 | 2

三重県 | 1

和歌山県 | 1

　このように、ビューというのは、いわば「テーブルのフリをしたSELECT

文」として扱うことができます。

無名のビュー

　繰り返しになりますが、ビューは使い方こそテーブルと同じですが、中
にデータを持っているわけではない、という点がテーブルとは違います。
つまり、リスト2.18のようなビューからデータを選択するSELECT文は、
実際には中で「もう一つのSELECT文」を実行するという、入れ子構造にな
っているのです。

58

第2章 SQLの基礎　母国語を話すがごとく

リスト2.18 ビューではSELECT文が入れ子になっている
--ビューからデータを選択する
SELECT v_address, cnt

　FROM CountAddress;

--ビューは実行時にはSELECT文に展開される
SELECT v_address, cnt

　FROM (SELECT address AS v_address, COUNT(*) AS cnt

 FROM Address

 GROUP BY address) AS CountAddress;

　これは、ちょうどビューの中身のSELECT文を展開した格好です。このよう
に、ビューの代わりにFROM句に直接SELECT文を指定することも可能です。
　このように、FROM句に直接指定するSELECT文をサブクエリと呼びま
す。第1章で説明したように、クエリ（問い合わせ）とはSELECT文の別名
でした。それに「sub」（下位の）という接頭辞をつけた名前です。

サブクエリを使った便利な条件指定

　さて、サブクエリの使い方として重要なものを一つ紹介します。それは、
WHERE句の条件作成においてサブクエリを利用する方法です。今、Address

テーブルのほかに、もう一つ同じ構造で保持するデータが異なるAddress2

テーブルを作ります（図2.7）。

図2.7 住所2テーブル

Address2（住所 2）
name（名前） phone_nbr（電話番号） address（住所） sex（性別） age（年齢）

小川 080-3333-XXXX 東京都 男 30

林 080-3333-XXXX 福島県 男 32

武田 福島県 男 18

斉藤 080-2367-XXXX 千葉県 女 19

上野 千葉県 女 20

広田 090-0205-XXXX 三重県 男 25

　このAddress2テーブルには、Addressテーブルと同じデータも含まれて
います。小川さんと林さんがそうです。しかし、残りの4人はまったく違
う人物のデータです。
　この2つのテーブルを使って、「AddressテーブルからAddress2テーブル

にいる人を選択する」ということをSQLで実現してみましょう。いわば「マ

59

2.1SELECT文

ッチング」と呼ばれる処理です。期待する結果としては、小川さんと林さん
が選択されるはずです。
　この場合に便利なのが、「INでOR条件を簡略化する」（47ページ）でORの

便利な省略形として紹介したINです。実は、INは通常の定数だけではなく、
サブクエリそのものを引数に取ることが可能な関数なのです。そのため、リ
スト2.19のようにINの中にすぽっとサブクエリを入れることができます。

リスト2.19 INの中でサブクエリを利用する
SELECT name

　FROM Address

 WHERE name IN (SELECT name -- INの中にサブクエリ
 FROM Address2);

 実行結果

name

小川
林

　SQLでは、サブクエリから順に実行されます。そのため、上記のSELECT

文を受けてDBMSは、リスト2.20のようにサブクエリを定数に展開するこ
とから始めます。

リスト2.20 サブクエリから先に実行される
SELECT name

　FROM Address

 WHERE name IN ('小川', '林', '武田', '斉藤', '上野', '広田');

　ここまで来れば、先ほど見た形と同じです。このINとサブクエリの合わ
せ技の便利なところは、テーブルデータの変化をユーザが意識しなくてよ
いことです。INの中のサブクエリはSELECT文が実行されるたびに実行さ
れるため、そのつど最新のAddress2テーブルのデータを検索します。その
ため、定数のリストも動的に生成されるので、定数を直接書いた場合（「ハ
ードコーディング」と呼びます）と違って、コードのメンテナンスが不要に
なるのです注4。

注4 ハードコーディングだと、誰かが引っ越すたびにSELECT文を修正しなければなりません。

60

第2章 SQLの基礎　母国語を話すがごとく

2.2
条件分岐、集合演算、ウィンドウ関数、更新

　本節では、少し高度なSQL文の書き方として、条件分岐、集合演算、ウ
ィンドウ関数、およびSQLにおけるデータ更新機能の使い方を紹介します。
いずれも実務で使う機会が多く、本書の後半でもよく利用する機能なので、
ここで基礎をしっかり理解しておきましょう。

SQLと条件分岐

　一般的な手続き型のプログラミング言語には、条件分岐を記述するため
の手段が備わっています。IF文やCASE文などがそうです。これはとても
重要な機能で、IF文なしでコーディングしろと言われたら、ほとんどのプ
ログラマは匙を投げるでしょう。
　SQLにもこれと同等の条件分岐を記述する機能が備わっていますが、ち
ょっと使い方が変わっています。というのも、SQLはコード中に手続きを
一切記述しないため、必然的に条件分岐も「文」という単位では行わないか
らです。
　では何の単位で分岐を行うのでしょうか？ 答えは「式」です。この分岐を
実現する機能をCASE式と言います。SQLプログラミングで中級へ上るた
めに、真っ先にマスターしなければならないのがこのCASE式です。

CASE式の構文
　CASE式の構文には、「単純CASE式」と「検索CASE式」という2種類があ
ります。ただし、検索CASE式は単純CASE式の機能をすべて含んでいる
ので、まずは検索CASE式だけ覚えれば十分です（リスト2.21）注5。

リスト2.21 検索CASE式の構文
CASE WHEN 評価式 THEN 式
 WHEN 評価式 THEN 式
 WHEN 評価式 THEN 式

注5 実務でも単純CASE式はあまり使いません。

61

2.2条件分岐、集合演算、ウィンドウ関数、更新

 略
 ELSE 式
 END

　WHEN句の評価式というのは、「列 = 値」のように、条件を記述する場
所です。WHERE句で記述した条件の書き方とほぼ同じです。

CASE式の動作

　CASE式の動作は、手続き型言語のCASE文とよく似ています。最初の
WHEN句の評価式が評価されることから始まり、もし条件に該当すれば、
THEN句で指定された式が戻されて、CASE式全体が終わります。もし真
にならなければ、次のWHEN句の評価に移ります。もしこの作業を最後
のWHEN句まで繰り返してなお真にならなかった場合は、「ELSE」で指定
された式が戻されて終了となります。
　手続き型言語の分岐とSQLのCASE式の大きな違いは、その戻り値にあ
ります。前者の戻り値が「文」であるのに対し、後者は特定の「値」、定数を
返します。
　具体的に見てみましょう。住所の結果表示を、都道府県名ではなく「関
東」や「中部」のような地方に分類することを考えます（図2.8）。

図2.8 求める実行結果
name | address | district

--------+----------+----------

小川 | 東京都 | 関東
前田 | 東京都 | 関東
森 | 東京都 | 関東
林 | 福島県 | 東北
井上 | 福島県 | 東北
佐々木 | 千葉県 | 関東
松本 | 千葉県 | 関東
佐藤 | 三重県 | 中部
鈴木 | 和歌山県 | 関西

　この結果のdistrict列は、リスト2.22のようなCASE式によって求める
ことができます。

62

第2章 SQLの基礎　母国語を話すがごとく

リスト2.22 都道府県を地方にまとめるCASE式
SELECT name, address,

 CASE WHEN address = '東京都' THEN '関東'

 WHEN address = '千葉県' THEN '関東'

 WHEN address = '福島県' THEN '東北'

 WHEN address = '三重県' THEN '中部'

 WHEN address = '和歌山県' THEN '関西'

 ELSE NULL END AS district

　FROM Address;

　これはいわば、一種の「読み替え」を行っているとも言えます。「東京⇒関
東」「三重県⇒中部」といった具合です。実際、CASE式を文字列の読み替え
のために使うのは、ポピュラーな用途です注6。
　このCASE式の強力なところは、これが式であるがゆえに、式を書ける
場所ならどこでも書くことができることです。SELECT句、WHERE句、
GROUP BY句、HAVING句、ORDER BY句と、ほとんどどこにでも書け
るため、さまざまな機能との合わせ技が可能になります。CASE式はSQL

のパフォーマンスを考えるうえでも非常に重要な機能なので、本書でもこ
れ以降、登場しない章がないほどよく使います。

SQLで集合演算

　WHERE句の解説をしたとき、WHERE句というのは1つのベン図を使
った集合演算だ、という話をしました。これはたとえ話でしたが、SQLで

は、本当にテーブル同士を使って集合演算を行うことができます。Address

（図2.1）とAddress2（図2.7）の2つのテーブルをサンプルに使って見ていき
ましょう。

UNIONで和集合を求める

　集合演算の基本となるのは、和集合と積集合です。WHERE句でたとえ
るなら和集合がOR、積集合がANDに相当します。Addressテーブルと

Address2テーブルの和集合を取るには、リスト2.23のようにUNION（和）

注6 もっとも、SQL文の中に読み替えルールをハードコーディングする方法は保守性が低くなるため、
読み替えルールがある程度の持続性を持つ場合は、テーブルで読み替え定義を保持する方法が一般
的です。

63

2.2条件分岐、集合演算、ウィンドウ関数、更新

という演算子を使います。

リスト2.23 UNIONで和集合を求める
SELECT *

　FROM Address

UNION

SELECT *

　FROM Address2;

 実行結果

name | phone_nbr | address | sex | age

-------+---------------+----------+-----+-----

井上 | | 福島県 | 女 | 55

広田 | 090-0205-XXXX | 三重県 | 男 | 25

佐々木 | 080-5848-XXXX | 千葉県 | 女 | 19

佐藤 | 090-1922-XXXX | 三重県 | 女 | 25

小川 | 080-3333-XXXX | 東京都 | 男 | 30

松本 | | 千葉県 | 女 | 20

上野 | | 千葉県 | 女 | 20

森 | 090-2984-XXXX | 東京都 | 男 | 45

斉藤 | 080-2367-XXXX | 千葉県 | 女 | 19

前田 | 090-0000-XXXX | 東京都 | 女 | 21

武田 | | 福島県 | 男 | 18

林 | 080-3333-XXXX | 福島県 | 男 | 32

鈴木 | 090-0001-XXXX | 和歌山県 | 男 | 32

　文字どおり、2つのテーブルを1つのテーブルに足し合わせた結果になっ
ています。
　この結果は合計13行あります。Addressテーブルが9行、Address2テー

ブルが6行あったわけですから、本当なら合計は15行あってもよいはずで
す。2行少ない理由は、両方のテーブルに存在している小川、林の両名は、
ダブルカウントされないようになっているからです。Addressテーブルと

Address2テーブルを比較すると、小川、林のレコードは、すべての列につ
いてまったく同じ値を持っているので、完全な重複行となります。このよ
うに、UNIONは和集合を取った結果、重複するレコードは削除する動作
をします。これはUNIONに限らず、このあとで見る INTERSECTや

EXCEPTも同様です。もし重複を排除したくないなら、「UNION ALL」の
ようにALLオプションをつければOKです。

64

第2章 SQLの基礎　母国語を話すがごとく

INTERSECTで積集合を求める

　次に、ANDに相当する積集合を求めてみましょう。これを求める演算子
はINTERSECTと言います。「交差する」という意味です（リスト2.24）。

リスト2.24 INTERSECTで積集合を求める
SELECT *

　FROM Address

INTERSECT

SELECT *

　FROM Address2;

 実行結果

name | phone_nbr | address | sex | age

------+---------------+---------+-----+-----

小川 | 080-3333-XXXX | 東京都 | 男 | 30

林 | 080-3333-XXXX | 福島県 | 男 | 32

　両方のテーブルに共通するレコードしか出力されませんから、小川、林
の両名だけが出力されます。この場合も、やはり重複行は削除されている
ことに注意してください。

EXCEPTで差集合を求める

　最後に紹介する演算子は、引き算（差集合）を行うためのEXCEPTです注7。
「除外する」という意味です（リスト2.25）。

リスト2.25 EXCEPTで差集合を求める
SELECT *

　FROM Address

EXCEPT

SELECT *

　FROM Address2;

 実行結果

name | phone_nbr | address | sex | age

--------+---------------+----------+-----+-----

井上 | | 福島県 | 女 | 55

佐々木 | 080-5848-XXXX | 千葉県 | 女 | 19

注7 OracleだけはMINUSという独自の演算子を使うので、Oracleユーザの方はEXCEPTをすべて
MINUSに置き換えて読んでください。

65

2.2条件分岐、集合演算、ウィンドウ関数、更新

佐藤 | 090-1922-XXXX | 三重県 | 女 | 25

松本 | | 千葉県 | 女 | 20

森 | 090-2984-XXXX | 東京都 | 男 | 45

前田 | 090-0000-XXXX | 東京都 | 女 | 21

鈴木 | 090-0001-XXXX | 和歌山県 | 男 | 32

　これは、数式を模して書き表すと「Address－Address2」ということにな
ります。その結果、Addressテーブルから小川、林の2行が削除された結果
が得られます。
　なお、EXCEPTには、UNIONとINTERSECTにはない注意点がありま
す。それは、UNIONとINTERSECTがどちらのテーブルを先に書いても
結果が変わらないのに対して、EXCEPTの場合は結果が異なることです。
　これは数値の四則演算と共通する性質です。足し算の場合、「1＋5」も「5

＋1」も結果は変わりません。これを「交換法則」と呼びます。一方、引き算
の場合、「1－5」と「5－1」の結果は異なります。引き算では交換法則が成
り立たないのです。それは集合演算の引き算でも同じということです。

ウィンドウ関数

　次に紹介するウィンドウ関数も、非常に重要な機能です。というのも、
この機能は柔軟なデータ加工を可能にするという表現力も強力なのですが、
本書のテーマであるパフォーマンス改善においても主要な役割を果たしま
す。特に第8章でメインテーマとして取り上げます。
　ウィンドウ関数の特徴を一言で言うと、「集約機能を省いたGROUP BY

句」です。「なんだそりゃ？」と思うかもしれませんが、実は先ほどは明示的
には語らなかったのですが、GROUP BY句というのは、カットと集約とい
う2つの機能から成り立っています。ウィンドウ関数は、このうちのカッ
トだけの機能を残したものです。
　具体的に見てみましょう。先ほど使った住所別に人数を調べるために
GROUP BY句を使ったSELECT文を、もう一度見てみます（リスト2.26）。

リスト2.26 GROUP BYで住所別人数を調べるSQL（再掲）
SELECT address, COUNT(*)

　FROM Address

 GROUP BY address;

66

第2章 SQLの基礎　母国語を話すがごとく

 実行結果

address | count

----------+-------

東京都 | 3

千葉県 | 2

福島県 | 2

三重県 | 1

和歌山県 | 1

　このSQLは、まず「address」列によってテーブルを（ケーキのように）カッ
トし、そのあとでカットされたピースごとにレコード数を合計した結果を
出力するものでした。したがって出力結果の行数は、Addressテーブルに

含まれている都道府県の数である5行になっています。
　ウィンドウ関数においても、テーブルをカットするやり方はGROUP BY

とまったく同じです。ウィンドウ関数ではこれを「PARTITION BY」という
句を使って行います。違うのは、その後集約を行わないため、出力結果の
行数が入力となるテーブルの行数から変わらないことです。
　ウィンドウ関数の基本的な構文としては、集約関数の後ろにOVER句を
記述し、その中にカットするキーを指定するPARTITION BY句とソートキ
ーを指定するORDER BY句を記述するという使用方法で、非常にシンプル
です注8。また、記述する場所は基本的にSELECT句のみと考えてもらえば
OKです。サンプルを見てみましょう（リスト2.27）。

リスト2.27 ウィンドウ関数で住所別人数を調べるSQL
SELECT address,

 COUNT(*) OVER(PARTITION BY address)

　FROM Address;

 実行結果

address | count

---------+---------

三重県 | 1

千葉県 | 2

千葉県 | 2

注8 PARTITION BY句とORDER BY句は任意なので、どちらか一方、または両方がなくてもかまいま
せん。

67

2.2条件分岐、集合演算、ウィンドウ関数、更新

東京都 | 3

東京都 | 3

東京都 | 3

福島県 | 2

福島県 | 2

和歌山県 | 1

　パーティションの区切りをわかりやすくするため、出力結果にデリミタ
の横線を引いています。実際の結果にこのデリミタは表示されません。
　GROUP BYの結果と比べてみると、いかがでしょう。三重県が1人、千
葉県が2人……という各都道府県に対する人数は、どちらも同じです。違
うのは、出力された結果の行数です。ウィンドウ関数では、テーブルの行
数と同じ9行です。これは、集約操作を行っていないからです。このよう
に、ウィンドウ関数が、GROUP BYと集約関数を使って行う操作から集約
操作を除いた、というのはこのような意味です。
　ウィンドウ関数として使うことのできる関数は、COUNTやSUMといっ

た通常の集約関数のほか、ウィンドウ関数専用の関数として、RANKや

ROW_NUMBERといった順序関数があります。たとえば、RANK関数は
名前のとおり、指定されたキーによってレコードに順位をつけます。たと
えば、年齢の高い順に順位をつけるならば、リスト2.28のように記述しま
す。

リスト2.28 ウィンドウ関数でランキング
SELECT name,

 age,

 RANK() OVER(ORDER BY age DESC) AS rnk

　FROM Address;

 実行結果

　name | age | rnk

--------+-----+-----

 井上 | 55 | 1

 森 | 45 | 2

 鈴木 | 32 | 3

 林 | 32 | 3

68

第2章 SQLの基礎　母国語を話すがごとく

 小川 | 30 | 5

 佐藤 | 25 | 6

 前田 | 21 | 7

 松本 | 20 | 8

 佐々木 | 19 | 9

　RANK関数は同値があった場合は同位として扱うため、同じ32歳である
鈴木さんと林さんが同じ3位となって、次の4位が飛んで小川さんが5位と
なります。このような抜け番を作らないランキングを生成する関数として
は、DENSE_RANK関数があります（リスト2.29）。

リスト2.29 ウィンドウ関数でランキング（抜け番なし）
SELECT name,

 age,

 DENSE_RANK() OVER(ORDER BY age DESC) AS dense_rnk

　FROM Address;

 実行結果

　name | age | dense_rnk

--------+-----+-----------

 井上 | 55 | 1

 森 | 45 | 2

 鈴木 | 32 | 3

 林 | 32 | 3

 小川 | 30 | 4

 佐藤 | 25 | 5

 前田 | 21 | 6

 松本 | 20 | 7

 佐々木 | 19 | 8

　ウィンドウ関数には、これ以外にもRANGEやROWSなどいくつか細か
いオプションを指定する使い方がありますが、まずはこのPARTITION BY

とORDER BYの使い方を覚えてもらえれば十分です。

トランザクションと更新

　SQLは、「Structured Query Language」の略称です。「Query」とは「問い
合わせ」（クエリ）のことで、狭義にはSELECT文のことを指すのでした。こ
の名前からもわかるとおり、SQLはそもそもデータの検索をメインに行う

69

2.2条件分岐、集合演算、ウィンドウ関数、更新

ために作られた言語で、データを変更することは二の次という扱いになっ
ていました。
　歴史的に見ても、検索機能がどんどん追加されて豊富になってきている
のに対し、更新機能はまだそれほど高度なものを持っていません。このた
め、SQLの更新は非常にシンプルで、理解するのも難しくありません注9。
　基本的に、SQLの更新機能は次の3種類に分類されます。

❶挿入（INSERT）

❷削除（DELETE）

❸更新（UPDATE）

　これ以外にも、❶と❸を組み合わせたマージ（MERGE）という更新機能
もありますが、まずは上の3つの機能を押さえてください。

INSERTでデータを挿入する

　RDBでデータを保管するテーブルは、作った時点では当然のことながら
空っぽです。テーブルというのはデータの箱にすぎないので、中にデータ
を登録しないと使いものになりません。
　RDBでデータを登録する単位は「行」、つまりレコードです。基本的な登
録の単位は1行ずつです。その際に使用するのがINSERT文です。文字ど
おりレコードの「挿入」です。
　INSERT文の基本構文は、図2.9のような形を取ります。

図2.9 INSERT文の基本構文
INSERT INTO テーブル名 (列1, 列2, 列3 ……) VALUES (値1, 値2, 値3 ……);

　たとえば、Addressテーブルに図2.10のような1行を挿入するには、リ
スト2.30のように書きます。このとき、列のリストと値のリストは、並び
順が対応している必要があります。この並び順がずれていると、エラーに
なったり列に入る値がずれてしまうため、よく注意してください。

注9 あまり複雑なことはやりたくてもできない、とも言えます。

70

第2章 SQLの基礎　母国語を話すがごとく

図2.10 追加するレコード

name（名前） phone_nbr（電話番号） address（住所） sex（性別） age（年齢）

小川 080-3333-XXXX 東京都 男 30

リスト2.30 小川さんをAddressテーブルに追加
INSERT INTO Address (name, phone_nbr, address, sex, age)

 VALUES ('小川', '080-3333-XXXX', '東京都', '男', 30);

　また、name列やaddress列の値は'小川'、'東京都'のようにシングル

クォートで囲っていますが、文字列型のデータに対しては必ずこの形式で
ある必要があります。一方age列のように数値型の場合は囲いません注10。
なお、NULLを挿入する場合は、そのままダイレクトに値にNULLを指定し
ます。この場合もシングルクォートでは囲いません。NULLは値ではない
からです。
　前述のとおり、基本的にはテーブルへのデータの挿入はこのINSERT文
を使って1行ずつ行います。したがって、たとえば100行挿入したいと思
えば、100回 INSERT文を実行する必要があります。「基本的には」と言っ
たのは、最近の SQLには、複数行を 1つの INSERT文で挿入する機能
（multirow insert）も追加され、これをサポートしているDBMSもあるからで

す。Addressテーブルに使用したサンプルデータ9行を全部挿入するなら
ば、リスト2.31のようになります。

リスト2.31 9行を一度に追加する
INSERT INTO Address (name, phone_nbr, address, sex, age)

 VALUES('小川', '080-3333-XXXX', '東京都', '男', 30),

 ('前田', '090-0000-XXXX', '東京都', '女', 21),

 ('森', '090-2984-XXXX', '東京都', '男', 45),

 ('林', '080-3333-XXXX', '福島県', '男', 32),

 ('井上', NULL, '福島県', '女', 55),

 ('佐々木', '080-5848-XXXX', '千葉県', '女', 19),

 ('松本', NULL, '千葉県', '女', 20),

 ('佐藤', '090-1922-XXXX', '三重県', '女', 25),

 ('鈴木', '090-0001-XXXX', '和歌山県', '男', 32);

　この方法は、記述が簡潔で実行も一度で済むという点で優れた方法なの

注10 囲った場合は文字列として扱われてしまいます。

71

2.2条件分岐、集合演算、ウィンドウ関数、更新

ですが、まだすべてのDBMSで使用できるようにはなっていません注11。ま
た、エラーが発生したときにどの行が原因なのかを判別しにくいという問
題点もあります。そのため、まず最初は1行ずつ地道にINSERTする方法
を覚えておき、複数行 INSERTは頭の片隅にとどめてもらう程度でかまい
ません。

DELETEでデータを削除する

　データを挿入したら、その反対の削除する機能も必要になります。こち
らの場合は、レコード単位ではなく、一度の処理で複数行を削除すること
も可能です。その際に使用するのがDELETE文です。基本的な構文は図
2.11のようになります。

図2.11 DELETE文の基本構文
DELETE FROM テーブル名;

　たとえば、Addressテーブルのデータを削除するならばリスト2.32のよ
うにします。

リスト2.32 Addressテーブルのデータを削除
DELETE FROM Address;

　リスト2.32のDELETE文は、Addressテーブルに入っているすべてのレ
コードを削除します。
　一部のレコードだけを削除したいなら、SELECT文のときに使ったWHERE

句を使って、削除対象を一部に絞り込みます。たとえば、住所が千葉県の人
のレコードだけ削除するならば、リスト2.33のように記述します。

リスト2.33 一部のレコードだけを削除
DELETE FROM Address

 WHERE address = '千葉県';

　これで、住所が千葉県の佐々木さん、松本さんのレコードだけが削除さ
れて、ほかのレコードは影響を受けません。
　なお、ときどき見かける間違いに、DELETE文に列名を付けようとして

注11 2014年12月時点では、DB2、Microsoft SQL Server、PostgreSQL、MySQLが実装しています。

72

第2章 SQLの基礎　母国語を話すがごとく

DELETE name FROM Address

のように書く例があります。これはエラーとなって正しく動作しません。
なぜエラーになるのかというと、DELETE文における削除対象は列ではな
く行なので、DELETE文で一部の列だけを削除できないからです。
　したがって、DELETE文において列名を指定することはできません。当
然ながら、アスタリスクを使って

DELETE * FROM Address

とするのも間違いでエラーになります。もし一部の列の値だけをクリアし
たいのであれば、それは次に紹介するUPDATE文を使って行います。
　なお、DELETE文でたとえ全レコードを削除したとしても、それでテー
ブル自体がなくなるわけではありません。テーブルという箱は残ったまま
なので、またINSERT文によって新規にデータを登録すれば、データを復
活させることができます注12。

UPDATEでデータを更新する

　INSERT文によってデータを登録したあと、登録済みのデータを変更し
たいと思うこともあるでしょう。たとえば、データの中身が間違っていた
場合などです。そんなときは、UPDATE文によって、テーブルのデータを
変更することが可能です。
　UPDATE文の構文も難しいものではありません。図2.12のように、更
新対象のテーブルと列、そして更新したい値（式）を指定するという、いた
ってシンプルなものです。

図2.12 UPDATE文の基本構文
UPDATE テーブル名
 SET 列名 = 式;

　UPDATE文でも、一部のレコードだけを更新対象としたい場合は、
DELETE文と同様にWHERE句でのフィルタリングが可能です。たとえば、
佐々木さんの電話番号が間違って登録されていたため、それを修正したい

注12 テーブルそのものを削除するには、DROP TABLE文という別のコマンドを使います。

73

2.2条件分岐、集合演算、ウィンドウ関数、更新

場合は、WHERE句で佐々木さんだけを狙い打ちにできます（リスト2.34、
リスト2.35、リスト2.36）。

リスト2.34 更新前のデータ
SELECT *

　FROM Address;

 実行結果

　name | phone_nbr | address | sex | age

--------+---------------+----------+-------+-----

 小川 | 080-3333-XXXX | 東京都 | 男 | 30

 前田 | 090-0000-XXXX | 東京都 | 女 | 21

 森 | 090-2984-XXXX | 東京都 | 男 | 45

 林 | 080-3333-XXXX | 福島県 | 男 | 32

 井上 | | 福島県 | 女 | 55

 佐々木 | 080-5848-XXXX | 千葉県 | 女 | 19

 松本 | | 千葉県 | 女 | 20

 佐藤 | 090-1922-XXXX | 三重県 | 女 | 25

 鈴木 | 090-0001-XXXX | 和歌山県 | 男 | 32

リスト2.35 佐々木さんの電話番号を更新
UPDATE Address

　 SET phone_nbr = '080-5849-XXXX'

 WHERE name = '佐々木';

リスト2.36 更新後のデータ
SELECT *

　FROM Address;

 実行結果

　name | phone_nbr | address | sex | age

--------+---------------+----------+-------+-----

 小川 | 080-3333-XXXX | 東京都 | 男 | 30

 前田 | 090-0000-XXXX | 東京都 | 女 | 21

 森 | 090-2984-XXXX | 東京都 | 男 | 45

 林 | 080-3333-XXXX | 福島県 | 男 | 32

 井上 | | 福島県 | 女 | 55

 松本 | | 千葉県 | 女 | 20

 佐藤 | 090-1922-XXXX | 三重県 | 女 | 25

 鈴木 | 090-0001-XXXX | 和歌山県 | 男 | 32

 佐々木 | 080-5849-XXXX | 千葉県 | 女 | 19

　ちなみに、UPDATE文のSET句には、複数の列を一度に記述できます。

74

第2章 SQLの基礎　母国語を話すがごとく

これを利用することで、複数列の更新をしたい場合にも、何度もUPDATE

文を実行することなく、一度の実行でできるようになります。
　たとえば、先ほど佐々木さんの電話番号を修正しましたが、実は年齢も
間違っていて、20歳に更新したい場合を考えましょう。単純に考えるなら、
リスト2.37のように2回UPDATE文を実行することでもできます。

リスト2.37 UPDATE文を2回実行して更新する
UPDATE Address

 SET phone_nbr = '080-5848-XXXX'

 WHERE name = '佐々木';

UPDATE Address

 SET age = 20

 WHERE name = '佐々木';

　これはこれで正しい方法です。しかし、2度もUPDATE文を実行するの
は無駄ですし、SQL文の記述量も増えます。これと同じ処理を、1つの

UPDATE文にまとめることができます。方法はリスト2.38の2つがありま

す。

リスト2.38 1つのUPDATE文にまとめて更新する
 ❶列をカンマ区切りで並べる

UPDATE Address

 SET phone_nbr = '080-5848-XXXX',

 age = 20

 WHERE name = '佐々木';

 ❷列を括弧で囲むことによるリスト表現

UPDATE Address

 SET (phone_nbr, age) = ('080-5848-XXXX', 20)

 WHERE name = '佐々木';

　もちろん、列は2列だけでなく、3列以上指定することもできます。これ
ならば、一度のUPDATE文ですっきり実行できます。
　なお、❷のリスト表現による更新方法は、DBMSによってはまだサポー

トしていないこともありますので、みなさんの使用するDBMSで使用可能
か確認してみてください。❶の方法はすべてのDBMSで使うことができま
す。

75

2.2条件分岐、集合演算、ウィンドウ関数、更新

第2章のまとめ

・簡単なことが直観的に記述できるのが非手続型であるSQLの良い
ところ

・CASE式は分岐を表現する重要な道具。ポイントは文ではなく式
をベースとしていること

・クエリは入力も出力もテーブルであることで柔軟な表現力を持っ
ている

・SQLにはGROUP BY句やUNION、INTERSECTなど集合論に基
礎を持つ演算も多い

・ウィンドウ関数はGROUP BY句から集約の機能を除外してカッ
トの機能だけを残したもの

演習問題2

　Addressテーブルから男女別の年齢ランキング（飛び番あり）を降順に出
力するSELECT文を考えてください。 ➡解答は334ページ

77

SQLにおける条件分岐
文から式へ

第3章

78

第3章 SQLにおける条件分岐　文から式へ

　第2章でも見たように、SQLにおける条件分岐はCASE式を使って記述
します。しかし実は、CASE式以外にも条件分岐に（頻繁に）使用される構
文があります。それは、集合演算の道具であるUNIONです。CASE式は、
手続き型言語で使用されていたIF-THEN-ELSE文やSWITCH文の機能を
SQLに移植したものと言ってよいのですが、ある種のわかりにくさがある
ため、初心者からは敬遠されがちです（その「わかりにくさ」の正体は、本章
で詳しく見ていきます）。その結果、もう一つの道具であるUNIONに人気
が集まることになります。
　しかし、これはSQLにとっては不幸なことです。というのも、UNION

はもともと条件分岐のための道具ではないため、そのような用途に使うの
に適していないからです。動作のイメージをつかみやすいことからついつ
いUNIONに頼ってしまいがちですが、本章の目的は、極力UNIONを条
件分岐の道具として使わずに、CASE式によるSQL本流の考え方を身につ
けることです。それはとりもなおさず、簡潔でパフォーマンスにもすぐれ
たコーディングを行うことにもなるのです。

3.1
UNIONを使った冗長な表現

　UNIONを使った条件分岐は、SQL初心者が好むテクニックの一つです。
主に使われるシーンとしては、WHERE句だけが微妙に異なる複数の
SELECT文をマージすることで、複数の条件に合致する1つの結果セット
を得る、という場合です。この方法は、問題を小さなサブ問題に分割して
考えることができるため、思考を組み立てやすいという利点があり、人間
が条件分岐の必要な問題を考える際、必ずと言ってよいほど最初に考えつ
く方法です。
　しかし、その考え方の安易さに反して、この方法はパフォーマンス面で
大きな欠点を抱えています。というのも、このタイプのクエリは、SQL文
の実行回数こそ1回ではあるものの、内部的には複数のSELECT文を実行
する実行計画として解釈されることが多いため、テーブルへのアクセス回

79

3.1UNIONを使った冗長な表現

数が増え、I/Oコストが大きく膨らむ傾向があるからです注1。
　したがって、SQLで条件分岐を行う際にUNIONを使用することが本当
に望ましいかどうかは、慎重な検討が必要になります。少なくとも、何も
考えずUNIONを使うという判断をしてはいけません。本節では、UNION

とCASE式の2つの方法による条件分岐のクエリを比較しながら、どのよ
うなケースでどちらを使うのが適切かを見ていきます。

UNIONによる条件分岐の簡単なサンプル

　少し人工的ですが、誰の目にもわかりやすい問題を例に考えましょう。
今、商品を管理するテーブルItemsが存在するとします（図3.1）。このテー
ブルは、各商品について、税抜き価格（外税）／税込み価格（内税）の両方を
保持しているとします。2002年から、法改正によって価格表示に税込み価
格（内税）を表示することが義務付けられました。そこで、2001年までは税
抜き価格を、2002年からは税込み価格を「価格」列として表示するような結
果（図3.1の網かけ部分）を求めたいとします（図3.2）。

図3.1 商品テーブル

Items（商品）
item_id（商品 ID） year（年） item_name（商品名） price_tax_ex（価格［外税］） price_tax_in（価格［内税］）

100 2000 カップ 500 525

100 2001 カップ 520 546

100 2002 カップ 600 630

100 2003 カップ 600 630

101 2000 スプーン 500 525

101 2001 スプーン 500 525

101 2002 スプーン 500 525

101 2003 スプーン 500 525

102 2000 ナイフ 600 630

102 2001 ナイフ 550 577

102 2002 ナイフ 550 577

102 2003 ナイフ 400 420

注1 そうではない例外ケースもあるのですが、それについても本章の後半「UNIONを使ったほうがパフ
ォーマンスが良いケース」（92ページ）で説明します。

80

第3章 SQLにおける条件分岐　文から式へ

図3.2 求めるべき結果
item_name| year | price

---------+------+-------

 カップ | 2000 | 500

 カップ | 2001 | 520

 カップ | 2002 | 630

 カップ | 2003 | 630

 スプーン| 2000 | 500

 スプーン| 2001 | 500

 スプーン| 2002 | 525

 スプーン| 2003 | 525

 ナイフ | 2000 | 600

 ナイフ | 2001 | 550

 ナイフ | 2002 | 577

 ナイフ | 2003 | 420

　条件分岐の条件にyear列を使うことは明らかです。それをキーとして、
2001年以前と2002年以後で取得する列を変えます。UNIONを使った解
は、リスト3.1のようになります。

リスト3.1 UNIONを使った条件分岐
SELECT item_name, year, price_tax_ex AS price

　FROM Items

 WHERE year <= 2001

UNION ALL

SELECT item_name, year, price_tax_in AS price

　FROM Items

 WHERE year >= 2002;

　条件が排他的であるため、重複行が発生することはあり得ません。その
ため、無駄なソートを省くためにUNION ALLを使っています。しかし、こ
の問題のポイントはそこにはありません。このコードの第1の問題は、冗
長であることです。ほとんど同じ2つのクエリを2度実行しているからで
す。これは、SQLを無駄に長くして読みにくくするだけです。そしてこれ
は第2の問題であるパフォーマンスの遅延も引き起こします。

UNIONを使うと実行計画が冗長になる

　UNIONを使ったクエリのパフォーマンス上の問題点を明らかにするた
め、実行計画を見てみましょう。PostgreSQLとOracleの実行計画を図3.3、

81

3.1UNIONを使った冗長な表現

図3.4に示します。

図3.3 UNIONによる実行計画（PostgreSQL）
--

 Append (cost=0.00..2.42 rows=12 width=47)

 -> Seq Scan on items (cost=0.00..1.15 rows=6 width=47)

 Filter: (year <= 2001)

 -> Seq Scan on items (cost=0.00..1.15 rows=6 width=47)

 Filter: (year >= 2002)

図3.4 UNIONによる実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 13 | 611 | 6 (50)| 00:00:01 |

| 1 | UNION-ALL | | | | | |

|* 2 | TABLE ACCESS FULL| ITEMS | 7 | 329 | 3 (0)| 00:00:01 |

|* 3 | TABLE ACCESS FULL| ITEMS | 6 | 282 | 3 (0)| 00:00:01 |

--

　どちらにおいても、UNIONのクエリはItemsテーブルに対して2度のア
クセスを実行していることがわかります。その際はテーブルへのフルスキ
ャンが実施されるため、読み取りコストもデータ量に対し線形に伸びてい
きます。実際にはデータキャッシュにテーブルのデータが保持されること
である程度その傾きは緩和されますが、テーブルサイズが大きくなるほど
キャッシュヒット率は悪くなり、その効果も期待できなくなります注2。

UNIONを安易に使うべからず
　簡単にレコード集合をマージできるという点で、UNIONは非常に便利
な道具です。これを条件分岐のためのツールとして使いたい誘惑に駆られ
るのも無理のないことです。しかし、これは危険思想なのです。安易に
SELECT文全体を連ねて冗長なコードを記述してしまうと、その分だけテ
ーブルへの無駄なアクセスを発生させて、いとも簡単にSQLのパフォーマ

ンスが劣化しますし、物理リソース（ストレージのI/Oコスト）も無駄に消
費します。このように安易にUNIONで条件分岐を使ってしまう心的傾向

注2 データキャッシュについては第1章を参照してください。

82

第3章 SQLにおける条件分岐　文から式へ

を、私は「冗長性症候群」と呼んでいます注3。
　では、SQLにおける正しい条件分岐はどのように行うべきか見てみましょう。

WHERE句で条件分岐させるのは素人

　システム開発の世界には、先人たちの知恵やノウハウが印象的な格言の
形で残っています。「GOTOは使うべからず」とか、「データ構造がコード
を決めるのであってその逆ではない」とか、「バグではありません、仕様で
す」とか、みなさんも聞いたことがあると思います。
　SQLにもそういう格言がいくつかありますが、その中の一つに「条件分
岐をWHERE句で行うのは素人のやること。プロはSELECT句で分岐させ
る」というものがあります。先の「内税・外税」問題も、SELECT句で条件分
岐を行うことで最適解を得ることができます（リスト3.2）。

リスト3.2 SELECT句における条件分岐
SELECT item_name, year,

 CASE WHEN year <= 2001 THEN price_tax_ex

 WHEN year >= 2002 THEN price_tax_in END AS price

　FROM Items;

　このクエリも、リスト3.1で見たUNIONのクエリと同じ結果を得ます。
しかし、パフォーマンスはこちらのほうが数段良いことが期待できます（テ
ーブルサイズが大きいほどその差は顕著です）。

SELECT句で条件分岐させると実行計画もすっきり

　CASE式を使ったクエリの実行計画は図3.5、図3.6のようになります。

図3.5 CASE式による分岐（PostgreSQL）

 Seq Scan on items (cost=0.00..1.18 rows=12 width=51)

注3 「冗長性」という言葉は、耐障害性を高めるための多重化を表すなど、システムの世界では必ずしも
悪い意味では使われません。しかしここでは、「本来繰り返す必要のない処理を繰り返す」という「冗
長」という言葉が本来持つ悪いニュアンスを込めて使っています。ちなみに、私がこれまで見た中で、
冗長性症候群を一番こじらせた症例は、UNIONで22個のSELECT文をつなげたクエリでした（信
じがたいことに商用システムで動いていました）。もちろんパフォーマンスは最悪で、すぐにCASE
式を使って改修しました。

83

3.1UNIONを使った冗長な表現

図3.6 CASE式による分岐（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 12 | 564 | 3 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| ITEMS | 12 | 564 | 3 (0)| 00:00:01 |

　Itemsテーブルへのアクセスが1回に節約できていることがわかります。
これは大雑把に言えば、UNIONの解よりパフォーマンスが2倍向上するこ
とを意味します注4。SQL文の見た目もすっきりして可読性も向上します。
　このように、SQL文のパフォーマンスの良し悪しは、必ず実行計画レベ
ルで判断しなければなりません。理由は第1章でも説明したように、SQL

文にはどのようにデータを取ってくるかというアクセスパスが書かれてい
ないからです。それを知るには、実行計画を見るしかないのです。
　これは、本来は良いことではありません。「ユーザがデータへのアクセス
パスという物理レベルの問題を意識しなくてもよいようにしたい」というの
がRDBとSQLが掲げたコンセプトだったからです。ただ、その志を遂げ
るには、RDBとSQL（そして現在のハードウェア）はまだ非力なので、結果
として、中途半端に隠蔽されたアクセスパスを、エンジニアがチェックす
る必要が残っているのです注5。
　それはさておき、UNIONとCASE式のクエリを構文的な観点から比較
してみると、おもしろいものがあります。UNIONによる分岐は、SELECT

「文」の単位で分岐させています。「文」を基本単位とした思考という点で、
まだ手続き型の発想に囚われた解だと言えるでしょう。それに対して、CASE

式による分岐は、文字どおり「式」をベースにした思考です。この「文」から
「式」へのジャンプを成功させることは、SQLをマスターする一つの なの

ですが、パフォーマンスチューニングにおいてもそれは変わりありません。
　最初からこのジャンプをスムーズに行うことは難しいのですが、一つコ
ツを教えましょう。それは、とりあえず「この問題を手続き型言語で解いた
ら」と考えたとき、IF文を使う個所があれば、それをSQLに翻訳したら

注4 実際は、先述したようにバッファキャッシュの影響も考えなければなりませんし、それほど単純に
I/Oコストと実行時間は線形に相関はしません。あくまで単純化したモデルとして考えてください。

注5 したがって、いつかハードウェアとDBMSが十分に発達した日には、プログラマがこんなことをし
なくて済むようになる、と私は信じています。

84

第3章 SQLにおける条件分岐　文から式へ

CASE式を使う、というルールを頭の中に持っておくことです。これを意
識するだけでも、かなりSQLアタマが身につきます。

3.2
集計における条件分岐

　冗長性症候群が発現しやすいケースとして有名なものに、集計を行うSQL

があります。たとえば、都道府県別、男女別の人口を記録するPopulation

テーブルがあるとします（図3.7）。このテーブルから、図3.8のようにレイ
アウトを変更した結果を出力する方法を考えます。性別「1」は男性、「2」は
女性を意味するものと仮定します。

図3.7 人口テーブル

Population（人口）
prefecture（県名） sex（性別） pop（人口）

徳島 1 60

徳島 2 40

香川 1 90

香川 2 100

愛媛 1 100

愛媛 2 50

高知 1 100

高知 2 100

福岡 1 20

福岡 2 200

図3.8 求める結果
 prefecture | pop_men | pop_wom

------------+---------+---------

 香川 | 90 | 100

 高知 | 100 | 100

 徳島 | 60 | 40

 愛媛 | 100 | 50

 福岡 | 20 | 200

※pop_men：男性の人口、pop_wom：女性の人口

85

3.2集計における条件分岐

集計対象に対する条件分岐

UNIONによる解

　この問題を解くとき、手続き型の考え方をするならば、まずは男性の合
計を都道府県別に求め、次に女性の合計を都道府県別に求め、その結果を
マージするという考えになります（リスト3.3）。

リスト3.3 UNIONによる解
SELECT prefecture, SUM(pop_men) AS pop_men, SUM(pop_wom) AS pop_wom

　FROM (SELECT prefecture, pop AS pop_men, null AS pop_wom

 FROM Population

 WHERE sex = '1' --男性
 UNION

 SELECT prefecture, NULL AS pop_men, pop AS pop_wom

 FROM Population

 WHERE sex = '2') TMP --女性
 GROUP BY prefecture;

　サブクエリTMPは図3.9のように男性と女性の人口が別の行に存在する
ため、外側のGROUP BY句によって1行に集約しています。それ自体は大
した問題ではなく、やはりこのクエリ最大の問題点は、WHERE句でsex

列による分岐を行ったうえで、その結果をUNIONでマージするという手
続き型にどっぷり浸かった構造にあります。

図3.9 男性と女性の人口が分かれて表示
 prefecture | pop_men | pop_wom

------------+---------+---------

 徳島 | 60 |

 徳島 | | 40

 香川 | 90 |

 香川 | | 100

 愛媛 | 100 |

 愛媛 | | 50

 高知 | 100 |

 高知 | | 100

 福岡 | 20 |

 福岡 | | 200

86

第3章 SQLにおける条件分岐　文から式へ

UNIONの実行計画

　リスト3.3の実行計画は図3.10のようになります。PostgreSQLもOracle

も同じような実行計画になるので、代表でPostgreSQLのものだけ示しま
す。

図3.10 UNIONの実行計画（PostgreSQL）

 HashAggregate (cost=2.70..2.80 rows=10 width=90)

　 -> HashAggregate (cost=2.43..2.53 rows=10 width=11)

 -> Append (cost=0.00..2.35 rows=10 width=11)

 -> Seq Scan on population (cost=0.00..1.13 rows=5 width=11)

 Filter: (sex = '1'::bpchar)

 -> Seq Scan on population (cost=0.00..1.13 rows=5 width=11)

 Filter: (sex = '2'::bpchar)

　この実行計画からも、Populationテーブルに対するフルスキャンが2回実
行されていることがわかります注6。これもやはり冗長性症候群の一つです。

集計における条件分岐もやはりCASE式

　この問題は、CASE式の応用方法として非常に有名な、表
ひょうそく

側・表
ひょうとう

頭のレ
イアウト変換の問題です注7。本来、SQLはこういう結果のフォーマッティ
ングを目的とした言語ではないのですが、実務で使う機会の多い技術なの
でご存じの方も多いでしょう。CASE式を集約関数の中に含めることで、求
めていた「男性だけの人口」と「女性だけの人口」の列を作ることができます
（リスト3.4）。

リスト3.4 CASE式による解
SELECT prefecture,

 SUM(CASE WHEN sex = '1' THEN pop ELSE 0 END) AS pop_men,

 SUM(CASE WHEN sex = '2' THEN pop ELSE 0 END) AS pop_wom

　FROM Population

 GROUP BY prefecture;

注6 実はこのケースにおいては、UNIONのほうがCASE式よりもパフォーマンスが良い可能性もありま
す。それは、sex列にインデックスが存在し、レコードの絞り込みが利く場合です。この場合、CASE
式による1回のテーブルフルスキャンよりも、2回のインデックススキャンのほうが高速に動作する
可能性もあるからです。このケースについては「UNIONを使ったほうがパフォーマンスが良いケー
ス」（92ページ）で取り上げます。

注7 表頭は、二次元表の上部の項目を、表側は左側の項目を指します。あまり一般的な用語ではありま
せんが、データ集計の分野ではよく使われます。

87

3.2集計における条件分岐

　これもまた、SELECT句で条件分岐させることで、クエリをシンプルに
しています。

CASE式の実行計画

　そして重要なことは、見た目がシンプルになるだけでなく、パフォーマ
ンスも向上することです。このクエリは、見た目だけではなく実行計画も
シンプルにするからです。実行計画は図3.11のような非常に単純なものに
なります。

図3.11	 CASE式の実行計画（PostgreSQL）

HashAggregate (cost=1.23..1.28 rows=5 width=13)

　-> Seq Scan on population (cost=0.00..1.10 rows=10 width=13)

　Populationテーブルに対するフルスキャンが1回に減っていることがわ
かります。つまり、UNIONを使った場合の2回に比べて（キャッシュなど
を考慮しなければ）1/2のI/Oコストで済むことを意味します。
　このように、CASE式による条件分岐をうまく使うことでUNIONを削
減し、それによってテーブルへのアクセスを削減することが可能になりま
す。CASE式はSQLを使いこなすうえで生命線となる道具ですが、その理
由は、表現力の高さだけでなく、パフォーマンス改善にも大きな力を発揮
するからなのです。

集約の結果に対する条件分岐

　集約における条件分岐には、もう一つのパターンとして、集約した結果
に対して分岐を行うケースがあります。社員とその所属するチームを管理
するテーブルEmployees（図3.12）を使って、ここから次の条件に応じて結
果を取得することを考えましょう。

88

第3章 SQLにおける条件分岐　文から式へ

図3.12 社員テーブル

Employees（社員）
emp_id（社員ID） team_id（チームID） emp_name（社員名） team（チーム）

201 1 Joe 商品企画

201 2 Joe 開発

201 3 Joe 営業

202 2 Jim 開発

203 3 Carl 営業

204 1 Bree 商品企画

204 2 Bree 開発

204 3 Bree 営業

204 4 Bree 管理

205 1 Kim 商品企画

205 2 Kim 開発

❶所属するチームが1つだけの社員は、1列にそのチーム名を表示する

❷所属するチームが2つの社員は、「2つを兼務」という文字列を表示する

❸所属するチームが3つ以上の社員は、「3つ以上を兼務」という文字列を表示する

　結果は図3.13のようになります。

図3.13 条件を満たした結果
　emp_name | team

--------------+---------------

 Jim | 開発
 Bree | 3つ以上を兼務
 Joe | 3つ以上を兼務
 Carl | 営業
 Kim | 2つを兼務

UNIONで条件分岐させるのは簡単だが……

　従業員を❶～❸の条件で分類すると、次のように分けられます。

❶ Jim、Carl

❷Kim

❸Bree、Joe

　この分類を忠実に再現するとリスト3.5のようになります。

89

3.2集計における条件分岐

リスト3.5 UNIONで条件分岐させたコード
SELECT emp_name,

 MAX(team) AS team

　FROM Employees ❶
 GROUP BY emp_name

HAVING COUNT(*) = 1

UNION

SELECT emp_name,

 '2つを兼務' AS team

　FROM Employees ❷
 GROUP BY emp_name

HAVING COUNT(*) = 2

UNION

SELECT emp_name,

 '3つ以上を兼務' AS team

　FROM Employees ❸
 GROUP BY emp_name

HAVING COUNT(*) >= 3;

　この問題のおもしろいところは、条件分岐がレコードの値ではなく、レコード
数という集合の値に一段レベルが上がっているところです。そのため、WHERE

句ではなくHAVING句で条件を指定しています。ただし、UNIONでマージし

ている以上、文レベルの分岐である点はWHERE句による分岐と変わりません。

UNIONの実行計画

　論より証拠、実行計画を見てみましょう。今度はOracleの実行計画です
（図3.14）。

図3.14 UNIONの実行計画（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 33 | 792 | 15 (80)| 00:00:01 |

| 1 | SORT UNIQUE | | 33 | 792 | 15 (80)| 00:00:01 |

| 2 | UNION-ALL | | | | | |

|* 3 | FILTER | | | | | |

| 4 | HASH GROUP BY | | 11 | 396 | 5 (40)| 00:00:01 |

| 5 | TABLE ACCESS FULL| EMPLOYEES | 11 | 396 | 3 (0)| 00:00:01 |

|* 6 | FILTER | | | | | |

| 7 | HASH GROUP BY | | 11 | 198 | 5 (40)| 00:00:01 |

| 8 | TABLE ACCESS FULL| EMPLOYEES | 11 | 198 | 3 (0)| 00:00:01 |

90

第3章 SQLにおける条件分岐　文から式へ

|* 9 | FILTER | | | | | |

| 10 | HASH GROUP BY | | 11 | 198 | 5 (40)| 00:00:01 |

| 11 | TABLE ACCESS FULL| EMPLOYEES | 11 | 198 | 3 (0)| 00:00:01 |

　3つのクエリを単純にマージしているため、予想どおり、Employeesテー

ブルに対するアクセスも3回発生していることが確認できます。

CASE式による条件分岐
　この問題に対する最適解は、やはりSELECT句でCASE式を使ったもの
です（リスト3.6）。

リスト3.6 SELECT句でCASE式を使う
SELECT emp_name,

 CASE WHEN COUNT(*) = 1 THEN MAX(team)

 WHEN COUNT(*) = 2 THEN '2つを兼務'

 WHEN COUNT(*) >= 3 THEN '3つ以上を兼務'

 END AS team

　FROM Employees

 GROUP BY emp_name;

CASE式による条件分岐の実行計画

　このCASE式の解は、SELECT句で分岐させることで、テーブルへのア
クセスコストを3分の1に減らしています。おまけにGROUP BYのHASH

演算も3回から1回に減っています。これを可能にしているのが、集約結
果（COUNT関数の戻り値）をCASE式の入力にするという技術です。
SELECT句においては、COUNTやSUMなど集約関数の結果は1行につき
1つに定まります。別の言い方をすれば、集約関数の結果はスカラ値（それ
以上分割不可能な値）になります。そのため、CASE式の引数に集約関数を
取るという、一見するとトリッキーなコーディングが可能です。実行計画
は図3.15のようになります。

図3.15 CASE式の実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 11 | 396 | 4 (25)| 00:00:01 |

91

3.3それでもUNIONが必要なのです

| 1 | HASH GROUP BY | | 11 | 396 | 4 (25)| 00:00:01 |

| 2 | TABLE ACCESS FULL| EMPLOYEES | 11 | 396 | 3 (0)| 00:00:01 |

--

　先ほど「WHERE句で条件分岐させるのは素人だ」という格言を紹介しま
したが、「HAVING句で条件分岐させるのも素人のやること」だということ
も覚えておいてください。

3.3
それでもUNIONが必要なのです

　これまで、条件分岐をUNIONに頼ってしまう心理的傾向を冗長性症候
群と呼んで、悪いものとして扱ってきました。しかし、場合によっては
UNIONを使わなければそもそも解くことのできない問題や、UNIONを使
ったほうがパフォーマンスが良くなるという逆転現象が生じるケースもあ
ります。本節では、そうした例外ケースを整理しておきましょう。

UNIONを使わなければ解けないケース

　UNIONを使わなければ分岐が表現できないパターンとして最もわかり
やすくかつ多いのが、マージされるSELECT文同士で使用するテーブルが
異なる場合です。つまり、複数のテーブルから取得した結果をマージする
ケースです。これはもう、SELECT句でCASE式を使えばどうにかなると
いうものではありません（リスト3.7）。

リスト3.7 異なるテーブルの結果をマージする
SELECT col_1

　FROM Table_A

 WHERE col_2 = 'A'

UNION ALL

SELECT col_3

　FROM Table_B

 WHERE col_4 = 'B';

92

第3章 SQLにおける条件分岐　文から式へ

　FROM句でテーブルを結合することで、CASE式を使って必要な結果を
求めることが可能な場合もあるかもしれませんが、その場合は本来必要の
ないはずの（UNIONを使えば発生しない）結合が発生することで、パフォ
ーマンスへの悪影響が発生します。そうなると、一概にどちらがパフォー
マンスが良いか判断できなくなります。

UNIONを使ったほうがパフォーマンスが良いケース

　次に、もう少し微妙な判断が必要とされるケースを見てみます。それは、
UNIONでもそれ以外の手段でも解くことができるのだけど、もしかする
とUNIONのほうがパフォーマンスが良い可能性のあるケースです。それ
は、インデックスが関係する場合です。UNIONを使った場合にうまく絞
り込みの利くインデックスが利用できて、かつUNION以外の手段ではそ
うしたインデックスが使用できない場合、テーブルフルスキャンが発生す
るとUNIONのほうがむしろパフォーマンスが良い可能性が出てくるので
す。
　例として、3つの日付列date_1～date_3と、それと対になるフラグ列flg_1

～flg_3を持つテーブルThreeElementsを考えます（図3.16）。このテーブル
の用途についてはあまり深く考えないで、パズルみたいなものだと思って
ください。

図3.16 ThreeElementsテーブル

ThreeElements

key name date_1 flg_1 date_2 flg_2 date_3 flg_3

1 a 2013-11-01 T

2 b 2013-11-01 T

3 c 2013-11-01 F

4 d 2013-12-30 T

5 e 2013-11-01 T

6 f 2013-12-01 F

　ThreeElementsテーブルに格納されるデータは、あるレコードについて
見ると(date_n, flg_n)という3つのペアのどれか1つのペアの列にだけ値
を持ち、残りのペアの列は(NULL, NULL)と決まっています（この条件は演
習問題で重要な意味を持ってくるので、よく覚えておいてください）。

93

3.3それでもUNIONが必要なのです

　今、このテーブルから、date_1～date_3が特定の日付、たとえば「2013
年11月1日」という値を持っていて、かつ対になるフラグ列の値が「T」であ
るレコードを選択するとします。たとえば、図3.16のサンプルデータに対
しては、選択結果は図3.17のようになります。

図3.17	 日付に値があってかつフラグがT
　 key | name | date_1 | flg_1 | date_2 | flg_2 | date_3 | flg_3
-------+------+------------+-------+------------+-------+------------+-------

 1 | a | 2013-11-01 | T | | | |

 2 | b | | | 2013-11-01 | T | |

 5 | e | | | | | 2013-11-01 | T

　このような結果を得るSELECT文は、どのようなものになるでしょうか。

UNIONによる解

　この問題をUNIONで解くのは、まったく簡単な仕事です。お世辞にも
エレガントなコードにはなりませんが、リスト3.8のように3つのSELECT
文をUNIONでマージするだけです。

リスト3.8	 UNIONによる解
SELECT key, name,

 date_1, flg_1,

 date_2, flg_2,

 date_3, flg_3

　FROM ThreeElements
 WHERE date_1 = '2013-11-01'

 AND flg_1 = 'T'

UNION

SELECT key, name,

 date_1, flg_1,

 date_2, flg_2,

 date_3, flg_3

　FROM ThreeElements
 WHERE date_2 = '2013-11-01'

 AND flg_2 = 'T'

UNION

SELECT key, name,

 date_1, flg_1,

 date_2, flg_2,

 date_3, flg_3

　FROM ThreeElements

94

第3章 SQLにおける条件分岐　文から式へ

 WHERE date_3 = '2013-11-01'

　 AND flg_3 = 'T';

　マージされている3つのSELECT文で異なるのは、WHERE句の日付と
フラグのペアだけです。これで機能的には十分なのですが、問題はこのク
エリのパフォーマンスと実行計画です。
　このときポイントになるのがインデックスです。このクエリを最適なパ
フォーマンスで実行するには、次の列セットに対してインデックスが必要
になります。

CREATE INDEX IDX_1 ON ThreeElements (date_1, flg_1) ;

CREATE INDEX IDX_2 ON ThreeElements (date_2, flg_2) ;

CREATE INDEX IDX_3 ON ThreeElements (date_3, flg_3) ;

　インデックスの構造としくみについては第10章で解説します。今はとり
あえず、これらのインデックスがあれば(date_n, flg_n)という列の組み
合わせに対する条件がWHERE句で使用された場合に高速化できると考え
てください。
　このとき、UNIONによる実行計画は図3.18のようになります。Oracle
で見てみましょう注8。

図3.18	 UNIONの実行計画

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 3 | 75 | 9 (78)| 00:00:01 |

| 1 | SORT UNIQUE | | 3 | 75 | 9 (78)| 00:00:01 |

| 2 | UNION-ALL | | | | | |

| 3 | TABLE ACCESS BY INDEX ROWID| THREEELEMENTS | 1 | 25 | 2 (0)| 00:00:01 |

|* 4 | INDEX RANGE SCAN | IDX_1 | 1 | | 1 (0)| 00:00:01 |

| 5 | TABLE ACCESS BY INDEX ROWID| THREEELEMENTS | 1 | 25 | 2 (0)| 00:00:01 |

|* 6 | INDEX RANGE SCAN | IDX_2 | 1 | | 1 (0)| 00:00:01 |

| 7 | TABLE ACCESS BY INDEX ROWID| THREEELEMENTS | 1 | 25 | 2 (0)| 00:00:01 |

注8	 実際には、このサンプルのようにテーブルの行数が少ない場合は、オプティマイザはあえてインデ
ックスを選択せず、テーブルのフルスキャンを選択することも多くあります。これは、テーブルサ
イズが小さい場合、フルスキャンもインデックススキャンも大して性能に差が出ないためです。し
かし、テーブルサイズが大きくなり、かつ、インデックスによる絞り込みが利くようになるほど、イ
ンデックススキャンの優位性が際立つようになります。

95

3.3それでもUNIONが必要なのです

|* 8 | INDEX RANGE SCAN | IDX_3 | 1 | | 1 (0)| 00:00:01 |

　3つのSELECT文それぞれに対して、IDX_1、IDX_2、IDX_3と、すべ
てのインデックスが使用されていることがわかります。これは、
ThreeElementsテーブルの行数が多く、かつそれぞれのWHERE句の検索
条件で行数が絞り込まれるほど、テーブルのフルスキャンよりも高速なア
クセスが期待できます。

ORを使った解

　一方、この問題をUNION以外で解くとすれば、まっ先に考えつくのは
リスト3.9のようなORで条件をつなげた構文でしょう。

リスト3.9 ORによる解
SELECT key, name,

 date_1, flg_1,

 date_2, flg_2,

 date_3, flg_3

　FROM ThreeElements

 WHERE (date_1 = '2013-11-01' AND flg_1 = 'T')

 OR (date_2 = '2013-11-01' AND flg_2 = 'T')

 OR (date_3 = '2013-11-01' AND flg_3 = 'T');

　このクエリの選択結果はUNIONのクエリと同値です。一方、実行計画
には大きな変化が見られます（図3.19）。

図3.19 ORで分岐

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 25 | 3 (0)| 00:00:01 |

|* 1 | TABLE ACCESS FULL| THREEELEMENTS | 1 | 25 | 3 (0)| 00:00:01 |

　SELECT文が1つになったことで、当然のことながらThreeElementsテー

ブルへのアクセスが1回に減りました。しかし反面、アクセス方法として
は、先ほど使われていたインデックスIDX_1～IDX_3が使われず、テーブ
ルのフルスキャンになっています。このように、WHERE句でORを使用

96

第3章 SQLにおける条件分岐　文から式へ

すると、その列に付与されているインデックスを使えなくなることがあり
ます。
　したがって、この場合のUNIONとORのパフォーマンスの比較はつま
るところ、

 3回のインデックススキャン VS. 1回のテーブルフルスキャン

のどちらが速いか、という問題に帰着します。これは、テーブルの行数と
検索条件の選択率（レコードのヒット率）によって答えが変わってくる問題
ですが、テーブルサイズが大きく、かつUNIONを使ったときのWHERE

条件の選択率が十分に小さい場合は、UNIONに軍配が上がることがあり
ます注9。常にUNIONが負けるわけではないのです。

INを使った解

　なお、ORのクエリは、INを使ってリスト3.10のように同値変換するこ
ともできます。

リスト3.10 INによる解
SELECT key, name,

 date_1, flg_1,

 date_2, flg_2,

 date_3, flg_3

　FROM ThreeElements

 WHERE ('2013-11-01', 'T')

 IN ((date_1, flg_1),

 (date_2, flg_2),

 (date_3, flg_3));

　これは、行式（row expression）という機能を使った方法です。INの引数に
は、単純なスカラ値だけではなく、このように(a, b, c)といった値のリ
スト（配列）もとることができます。それをうまく応用したのがこの書き方
です。こちらのほうがORよりもシンプルで理解しやすいかもしれません
が、実行計画はORのクエリと同じなので、パフォーマンス問題の解決に

注9 DBMSのほうでもそれを見越して、ORを使ったクエリに対してUNIONのときと同じ実行計画を作
ることもあります（Oracleなどその実行計画を明示的に指定するUSE_CONCATというヒント句ま
で持っています）。本来は、オプティマイザがどちらの実行計画を使うか適切に判断してくれるなら
ば、そもそもUNIONを使う必要などないのです。

97

3.4手続き型と宣言型

はなりません注10。
　なお、この問題に対して、CASE式を使ったリスト3.11のようなクエリ
を考えた人もいるかもしれません。

リスト3.11 CASE式による解
SELECT key, name,

 date_1, flg_1,

 date_2, flg_2,

 date_3, flg_3

　FROM ThreeElements

 WHERE CASE WHEN date_1 = '2013-11-01' THEN flg_1

 WHEN date_2 = '2013-11-01' THEN flg_2

 WHEN date_3 = '2013-11-01' THEN flg_3

 ELSE NULL END = 'T';

　このクエリの選択結果は、（今のビジネスルールを前提とすれば）UNION

のクエリと同値です。実行計画はORやINと同じなので、やはりパフォー
マンス問題の特効薬というわけではありませんが。ただし、このクエリに
は1つ注意点があります。ビジネスルールを少し変えると、必ずしもUNION

やORのクエリと同値になるとは限らないのです。この点については章末
の演習問題としますので、考えてみてください。

3.4
手続き型と宣言型

　本章では、UNIONによる条件分岐とそれ以外の方法を対比してきまし
た。そして結論は、例外的な状況を除いて、ほぼUNIONを使わないほう
がパフォーマンスも可読性も優れる、というものでした。もともとUNION

は条件分岐を行うためにSQLに導入された機能ではないのだから、これは
当然のことです。条件分岐をCASE式で行うのは、構文的にも自然なこと
です。

注10 行式の応用方法については第9章でも取り上げます。これも便利かつパフォーマンス向上に役立つ
機能なので、ぜひ覚えてください。

98

第3章 SQLにおける条件分岐　文から式へ

文ベースと式ベース

　しかしです。それでもなお、CASE式がSQL初心者に難しさを感じさせ
ることも事実です。その理由を端的に表現するなら、SQLの初心者と中級
者以上とでは、住んでいる世界が違うからです。
　SQL初心者は、手続き型の世界に住んでいます。これは最初に習うプロ
グラミング言語が手続き型だからです。その世界では、思考の基本単位は
「文」（statement）です。一方SQLの中級者以上は、宣言型の世界に住んでい
ます。ここでの基本単位は「式」（expression）です。2つの世界では、基本的
な考え方の枠組み、スキームが違います。
　SQL初心者がUNIONによる分岐に頼ってしまう理由は、UNIONによ

る場合分けが、文ベースの手続き型のスキームに従うものだからです。実
際、UNIONで連結する対象はSELECT「文」です。これは、最初に手続き
型言語でプログラミングを覚える私たちのほとんどにとってたいへん馴染
み深い発想で、誰にでも理解できます。
　一方、SQLの世界のスキームは宣言型です。この世界では、主役は「文」
ではなく「式」です。手続き型言語がCASE「文」で分岐させるところを、SQL

ではCASE「式」によって分岐させます。SQL文の各パート──SELECT、
FROM、WHERE、GROUP BY、HAVING、ORDER BY──に記述する
のは、すべて式です。列名や定数しか記述しない場合でもそうです注11。SQL

文の中には、文は一切記述しません。

宣言型の世界へ跳躍しよう

　手続き型の世界から宣言型の世界への跳躍が、SQL上達の です。跳躍
というと、ひとっとびに崖からジャンプするイメージを持つかもしれませ
んが、実際にはこれは、徐々に起こる心的枠組みの変化です。次章以降を
読み進むことで、みなさんもその跳躍を経験することになるでしょう。

注11 列名だけの場合は「たまたま演算子がない式」、定数だけの場合は「たまたま変数も演算子もない式」
です。

99

3.4手続き型と宣言型

第3章のまとめ

・SQLのパフォーマンスはストレージへのI/Oをどれだけ減らせる
かが

・UNIONで条件分岐を表現したくなったら、冗長性症候群にかか
っていないか、胸に手を当てて落ち着いて診断しよう

・INやCASE式で条件分岐を表現できれば、テーブルへのスキャン
を大幅に減らせる可能性がある

・そのためにも、文から式へのパラダイムシフトを習得しよう

演習問題3

　「UNIONを使ったほうがパフォーマンスが良いケース」（92ページ）で使
ったThreeElementsテーブルは、(date_n, flg_n)のペアには1つしか値を
持たず、残りは(NULL, NULL)であるというビジネスルールを前提していま
した。今、このルールをなくして、複数のペアに値を持つことができると
しましょう。たとえば、このテーブルに次のようなサンプルデータを追加
できるということです。

INSERT INTO ThreeElements VALUES ('7', 'g', '2013-11-01', 'F', NULL, NULL, '2013-11-01', 'T');

　そうすると、UNION、OR、CASE式、INを使ったそれぞれのクエリの
間に成立していた結果の同値性が崩れることになります。すなわち、同じ
結果を返さなくなるケースがあるのです。どのようなケースで同値性が崩
れるか、考えてみてください。 ➡解答は335ページ

101

集約とカット
集合の世界

第4章

102

第4章 集約とカット　集合の世界

　SQLの特徴的な考え方として、処理を行単位ではなく、行の「集合」単位
でひとまとめにして記述するというものがあります。この考え方を「集合指
向」（set-oriented）と呼びます。これが最もよく現れるのが、GROUP BY句
とHAVING句、およびそれに伴って利用されるSUMやCOUNTなどの集
約関数を使ったときです。SQLでは、これら集合操作の機能が充実してい
るため、手続き型言語ならばループや分岐を使って記述せねばならない複
雑な処理を、非常に簡単で見通し良くコーディングすることが可能になっ
ています。
　しかし一方で、プログラミングにおける思考の基本単位を「行」から「行の
集合」に切り替えるためには、多少の発想の転換を要することも事実です。
この切り替えがうまくいかないために、せっかくSQLがその本領を発揮す
るフィールドであるにもかかわらず、機能を十分に利用できないまま、も
どかしい思いを抱えている人も少なくありません。本章では、このSQLの

一番「SQLらしい」機能の活かし方を、ケーススタディを通じて見ていきま
す。また、本章においてももちろん、集約においてどのような実行計画が
選択され、データベース内部でどのようなアルゴリズムによって集約が実
現されているかも見ていくことにします。

4.1
集約

　SQLには、集約関数（aggregate function）という名前で、ほかのいろいろな
関数とは区別されて呼ばれる関数が存在します。具体的には次の5つです。

・COUNT

・SUM

・AVG

・MAX

・MIN

　たぶんみなさんにとっても、お馴染みの関数ばかりでしょう。これ以外

103

4.1集約

にも拡張的な集約関数を用意している実装もありますが注1、標準SQLで用
意されているのはこの5つです。なぜこれらの関数に「集約」という接頭辞
がついているかというと、文字どおり、複数行を1行にまとめる（＝集約す
る）機能を持っているからです。

複数行を1行にまとめる

　この効果を体感するために、1つ例題を解いてみましょう。今、図4.1の
ようなサンプルテーブルがあるとします。

CREATE TABLE NonAggTbl

(id VARCHAR(32) NOT NULL,

 data_type CHAR(1) NOT NULL,

 data_1 INTEGER,

 data_2 INTEGER,

 data_3 INTEGER,

 data_4 INTEGER,

 data_5 INTEGER,

 data_6 INTEGER);

 INSERT文は省略

図4.1 非集約テーブル

NonAggTbl

id
（ID）

data_type
（データ種別）

data_1
（データ1）

data_2
（データ2）

data_3
（データ3）

data_4
（データ4）

data_5
（データ5）

data_6
（データ6）

Jim A 100 10 34 346 54 　

Jim B 45 2 167 77 90 157

Jim C 　 3 687 1355 324 457

Ken A 78 5 724 457 　 1

Ken B 123 12 178 346 85 235

Ken C 45 　 23 46 687 33

Beth A 75 0 190 25 356 　

Beth B 435 0 183 　 4 325

Beth C 96 128 　 0 0 12

　CSVや固定長などのフラットファイルをそのままテーブルに写し取った
形の擬似配列テーブルです。人物を管理する id列にデータの種別を管理す

注1 特に最近は、分散や相関といった統計的指標を求めるための関数が多く実装される傾向にあります。
これは、統計もまた集合の個々の要素ではなく、集合そのものを基本単位とする分野であることを
考えれば当然の話です。RDBと統計は昔から相性は良かったのですが、ハードウェアの性能向上に
より大規模データを扱うことが可能になり、「ビッグデータ」という言葉もずいぶん人口に膾

かいしゃ

炙しま
した。

104

第4章 集約とカット　集合の世界

るdata_typeを加えて、主キーとしています注2。data_1～data_6の列は、人
物一人一人についての何らかの情報を表していると考えてください。これ
はリレーショナルモデルとして望ましいテーブルの形式ではないのですが、
このようなフラットファイルを擬似的にテーブルで表現する（ダメな）設計
は、たびたび目にします。
　さて、テーブルの色分けに注目しましょう。data_type列がAの行につい
ては、data_1とdata_2、Bの行についてはdata_3～data_5、Cの行につい
てはdata_6について背景セルの色を変えています。このdata_typeは、異
なる業務において使用したいデータの分類を示すものです。たとえば、業
務Aではdata_1とdata_2を、業務Bではdata_3、data_4、data_5を使う、
という具合です。
　この非集約テーブルのように1人の人間についての情報が複数行に分散
して格納されている場合、1人の情報にアクセスしようとして「WHERE id

= 'Jim'」という条件でSELECT文を作ると、当然ながら3行の結果が得られ
ます。しかし、このデータを処理するアプリケーションとしては、1人の
人間については1行の結果で得たい場合も多いでしょう。
　あるいは、特定の処理で必要な情報を得たい場合にも、このテーブルだ
と問題が起きます。たとえば、ある業務でA～Cのデータタイプのデータ

が必要だとすると、リスト4.1、リスト4.2、リスト4.3のように3つの異
なるクエリが必要になります。

リスト4.1 データタイプ「A」の行に対するクエリ
SELECT id, data_1, data_2

　FROM NonAggTbl

 WHERE id = 'Jim'

 AND data_type = 'A';

 実行結果

id | data_1 | data_2

-----+--------+-------

Jim | 100 | 10

注2 本当は名前をキーに使うのはエンティティ設計の作法としてよろしくないのですが、今はサンプル
としてのわかりやすさを優先しています。

105

4.1集約

リスト4.2 データタイプ「B」の行に対するクエリ
SELECT id, data_3, data_4, data_5

　FROM NonAggTbl

 WHERE id = 'Jim'

　 AND data_type = 'B';

 実行結果

id | data_3 | data_4 | data_5

----+--------+--------+-------

Jim | 167 | 77 | 90

リスト4.3 データタイプ「C」の行に対するクエリ
SELECT id, data_6

　FROM NonAggTbl

 WHERE id = 'Jim'

　 AND data_type = 'C';

 実行結果

id | data_6

----+-------

Jim | 457

　これらのクエリの結果は、いずれも列数が異なり、UNIONで1つのクエ

リにまとめることが困難です。しかも、安易にUNIONで複数のクエリを
マージすることが性能的にアンチパターンであることは、第3章でも説明
したとおりです。
　したがって本当は、このようなデータは図4.2のようなレイアウトのテ
ーブル（AggTbl）で保持することが望ましいわけです。

図4.2 1人1行に集約したテーブル

AggTbl

id
（ID）

data_1
（データ1）

data_2
（データ2）

data_3
（データ3）

data_4
（データ4）

data_5
（データ5）

data_6
（データ6）

Jim 100 10 167 77 90 457

Ken 78 5 178 346 85 33

Beth 75 0 183 　 4 12

　先ほどのNonAggTblと比べれば、その違いは明らかです。非集約テーブ
ルでは1人についての情報が複数行に分散していたため、1人の情報を参照
するためにも複数の行にアクセスする必要があったのですが、集約後のテ

106

第4章 集約とカット　集合の世界

ーブルを見れば、1人の人間についての情報がすべて同じ行にまとめられ
ているので1つのクエリで済みます。モデリングの観点から見ても、人間
というエンティティを表すテーブルはこのようにあるべきです。

CASE式とGROUP BYの応用
　さて、本題はここからです。NonAggTblからAggTblへ変換を行うSQL

を考えます。考え方としては、まず人物単位に集約するので、GROUP BY

句に指定する集約キーは人物の識別子である id列であることは明らかです。
あとは、選択する列をデータタイプによって分岐させます。ここで、第3

章で登場したCASE式が有効です。すると、まずリスト4.4のような形の
クエリができます。

リスト4.4 惜しいけど間違い
SELECT id,

 CASE WHEN data_type = 'A' THEN data_1 ELSE NULL END AS data_1,

 CASE WHEN data_type = 'A' THEN data_2 ELSE NULL END AS data_2,

 CASE WHEN data_type = 'B' THEN data_3 ELSE NULL END AS data_3,

 CASE WHEN data_type = 'B' THEN data_4 ELSE NULL END AS data_4,

 CASE WHEN data_type = 'B' THEN data_5 ELSE NULL END AS data_5,

 CASE WHEN data_type = 'C' THEN data_6 ELSE NULL END AS data_6

　FROM NonAggTbl

 GROUP BY id;

　このクエリは、残念ながら構文違反のためエラーとなります注3。というの
も、GROUP BYを使って集約操作を行った場合、SELECT句に書くことが
できるのは、

・定数

・GROUP BY句で指定した集約キー

・集約関数

に限定されるからです。今、CASE式の中で使われているdata_1～data_6

は、このどれにも該当しません。

注3 MySQLは、このクエリを通すような独自拡張を施していますが、標準違反でほかの実装との互換性
もないため、その機能に依存することは勧めません。なぜMySQLがこのような独自拡張をしてい
るかというと、このあとの本文にも書いてあるとおり、単元集合と要素を混同しているからです。詳
しくは『達人に学ぶSQL徹底指南書』の「2-10 SQLにおける存在の階層」を参照してください。

107

4.1集約

　たしかに、id列でグループ化したうえ、さらにCASE式でデータタイプ
まで指定したなら、それによって行は一意に定まります。したがって別に
集約関数を使わなくても、data_1～data_6を「裸で」書いたとしても、デー
タベースエンジンが気を利かせてくれれば値は一意に定まります。
　しかしこれは、単元集合と要素を混同した行為であり、SQLの原理（＝
集合論の原理）に反するので、正しくは、面倒でも集約関数を使ってリスト
4.5のように書く必要があります。

リスト4.5 これが正解。どの実装でも通る
SELECT id,

 MAX(CASE WHEN data_type = 'A' THEN data_1 ELSE NULL END) AS data_1,

 MAX(CASE WHEN data_type = 'A' THEN data_2 ELSE NULL END) AS data_2,

 MAX(CASE WHEN data_type = 'B' THEN data_3 ELSE NULL END) AS data_3,

 MAX(CASE WHEN data_type = 'B' THEN data_4 ELSE NULL END) AS data_4,

 MAX(CASE WHEN data_type = 'B' THEN data_5 ELSE NULL END) AS data_5,

 MAX(CASE WHEN data_type = 'C' THEN data_6 ELSE NULL END) AS data_6

　FROM NonAggTbl

 GROUP BY id;

 実行結果

　id | data_1 | data_2 | data_3 | data_4 | data_5 | data_6

------+--------+--------+--------+--------+--------+--------

 Jim | 100 | 10 | 167 | 77 | 90 | 457

 Beth | 75 | 0 | 183 | | 4 | 12

 Ken | 78 | 5 | 178 | 346 | 85 | 33

　MAX関数を使ったのは、GROUP BYで切り分けた時点では各集合は3

つの要素を含んでいますが、集約関数を適用すると、その時点でNULLが

除外されて1つの要素に限定されるからです注4。あとは、この結果を別に用
意したAggTblテーブルにINSERTすれば、求めたかったレイアウトのテー
ブルが作られます。または、NonAggTblテーブルが小さくてパフォーマン
スに不安がないならば、このクエリをそのままビューに保存してもよいで
しょう。
　これは、「複数行を1行に集約する」というGROUP BY句の特徴がよくわ

注4 だから別に、MINやAVG、SUMを使ってもこの場合は同じです。ただし、今回はdata_1～data_6
の型が数値型なのでAVGやSUMでもかまいませんが、文字型や日付型など対応するためにMAXか
MINのどちらかを使う習慣をつけておくのがよいでしょう。

108

第4章 集約とカット　集合の世界

かるサンプルです注5。

集約・ハッシュ・ソート

　さて、この集約クエリの実行計画はどのようなものになるでしょうか。
PostgreSQLとOracleで見てみましょう（図4.3、図4.4）。

図4.3 実行計画（PostgreSQL）
--

 HashAggregate (cost=1.38..1.41 rows=3 width=30)

　 -> Seq Scan on nonaggtbl (cost=0.00..1.09 rows=9 width=30)

図4.4 実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 9 | 891 | 4 (25)| 00:00:01 |

| 1 | HASH GROUP BY | | 9 | 891 | 4 (25)| 00:00:01 |

| 2 | TABLE ACCESS FULL| NONAGGTBL | 9 | 891 | 3 (0)| 00:00:01 |

--

　どちらも非常にシンプルです。NonAggTblをフルスキャンして、GROUP

BYによる集約を行う、というただそれだけの実行計画です。注目すべき
は、GROUP BYの集約操作においてPostgreSQL、Oracleともに「ハッシュ」
というアルゴリズムが使われていることです。「集約ってソートで行うもの
ではないの？」と思った人もいるかもしれません。それも間違いではなく
て、ソートが選択される場合もあります。その場合は「SORT GROUP BY」
（Oracleの場合）のような実行計画が現れます。
　最近では、GROUP BYを使ったときの集約ではソートよりもハッシュが
使われることが増えてきました。この場合の動作は、GROUP BY句に指定
されている列をハッシュ関数にかけてハッシュキーを生成し、同じハッシ
ュキーを持つグループを作ることで集約するという方法です。古典的なソ
ートを使う方法よりも高速に動作することが期待できるため、利用される
ケースが増えています。特に、ハッシュの性質上、GROUP BY句のキーの
一意性が高い場合に効率良く動作します。

注5 そしてもちろん、前章で学んだCASE式の便利さもよくわかります。

109

4.1集約

　GROUP BYについてパフォーマンス上の注意が必要な点は、ソートであ
れハッシュであれ、メモリを多く使用する演算であるため、十分なハッシ
ュ用（あるいはソート用）のワーキングメモリが確保できないと、スワップ
が発生してストレージ上のファイルが使用されることになり、大幅な遅延
が発生することです。このときDBMS内で使われるメモリが、第1章「もう
一つのメモリ領域『ワーキングメモリ』」（16ページ）で説明したワーキング
メモリ領域です。
　本書では基本的に実装固有の話には立ち入りませんが、イメージをつか
んでもらうために例を出すと、たとえばOracleではソートやハッシュを行
うためにPGAというメモリ領域を使います注6。このPGAサイズが集約対象
のデータ量に比べて不足すると、一時領域（すなわちストレージ）を使って
不足分をカバーしようとします。
　これが通称「TEMP落ち」と呼ばれる現象で、処理がメモリ内で完結して
いた場合と比べると極端にパフォーマンスが劣化します。これは、第1章
でも説明したように、メモリとストレージ（主にはディスク）のアクセス速
度に天と地の差があるからです。これは、記憶装置の「速さ VS. 容量」のト
レードオフをもろに食らってしまうケースの一つです。したがって、演算
の対象行数が多いGROUP BY句（または集約関数）を使うSQLについては、
十分な性能試験（特に本番相当の多重度をかけた負荷試験）を実施する必要
があります。TEMP落ちによってパフォーマンスが劣化するだけならばま
だしも、最悪のケースでは、TEMP領域すら使い果たしてSQL文が異常終
了することもありえます注7。

合わせ技1本

　集約操作のイメージをつかむため、もう1つ練習問題をやっておきまし
ょう。問題は、『SQLパズル 第2版』注8の「パズル65　製品の対象年齢の範

注6 PostgreSQLではwork_mem、Microsoft SQL ServerではWorkspace Memoryというメモリ領域
がソートおよびハッシュのために使われます。いずれにせよ、これらの領域が不足すると、不足を
補うために一時領域（物理的にはストレージ上のファイル）が使用されることになるという点は同じ
です。

注7 TEMP領域は自動拡張を設定できるDBMSもありますが、その場合でも物理的容量が拡張限界です。
注8 Joe Celko著、ミック訳『SQLパズル 第2版 プログラミングが変わる書き方/考え方』翔泳社、2007

年

110

第4章 集約とカット　集合の世界

囲」を使います。図4.5のような、複数の製品の対象年齢ごとの値段を管理
するテーブルがあるとします。同じ製品 IDでも値段の異なる製品があるの
は、対象年齢によって設定や難易度を変えたバージョンの違いによるもの、
くらいに考えてください。また1つの製品について、年齢範囲の重複する
レコードはないものと仮定します。

CREATE TABLE PriceByAge

(product_id VARCHAR(32) NOT NULL,

 low_age INTEGER NOT NULL,

 high_age INTEGER NOT NULL,

 price INTEGER NOT NULL,

 PRIMARY KEY (product_id, low_age),

　 CHECK (low_age < high_age));

 INSERT文は省略

図4.5 年齢別価格テーブル

PriceByAge（年齢別価格）
product_id（製品ID） low_age（対象年齢の下限） high_age（対象年齢の上限） price（値段）

製品1 0 50 2000

製品1 51 100 3000

製品2 0 100 4200

製品3 0 20 500

製品3 31 70 800

製品3 71 100 1000

製品4 0 99 8900

　すると、このテーブルにおいては、(product_id,low_age)というキーで、
レコードが一意に定まります（下限［low_age］の代わりに上限［high_age］を
使ってもかまいません）。考えてもらう問題は、これらの製品の中から、0

～100歳までのすべての年齢で遊べる製品を求めるというものです。もち
ろん、バージョンの相違は無視して、製品 ID単位で考えます。
　図4.6のように図示してみると、問題の意図がよりわかりやすくなるで
しょう。
　製品1の場合、2レコードを使って0～100までの整数の全範囲をカバー
できています。したがって、製品1は今回の条件をたしかに満たします。一
方、製品3の数直線を見ると、3レコードも使っているにもかかわらず、21

～30の間が断絶していることが見て取れます。こちらは残念ながらNGで

す。このように、たとえ1レコードで全年齢範囲をカバーできなかったと

111

4.1集約

しても、複数のレコードを組み合わせてカバーできたなら「合わせ技1本」
とみなす、というのがこの問題の主旨です。
　そうとわかれば、あとの話は先ほどの問題と同じです。まず、集約する
単位は製品ですから、集約キーは製品 IDに決まります。あとは、各レコー
ドの範囲の大きさをすべて足しこんだ合計が101に到達している製品を探
し出せば任務完了です注9。
　答えはリスト4.6のようになります。

リスト4.6 複数のレコードで一つの範囲をカバーする
SELECT product_id

　FROM PriceByAge

 GROUP BY product_id

注9 0から100までなので、値の個数は101個であることに注意してください。

図4.6 製品の対象年齢の範囲

0 10 20 30 40 50 60 70 80 90 100

製品1の年齢範囲：OK

0 10 20 30 40 50 60 70 80 90 100

数値の連続性に
断絶が生じている

製品3の年齢範囲：NG

112

第4章 集約とカット　集合の世界

HAVING SUM(high_age - low_age + 1) = 101;

 実行結果

 product_id

 製品1

 製品2

　HAVING句のhigh_age - low_age + 1で、各行の年齢範囲が含む値の
個数が算出されます。あとは、それを同じ製品内で足し合わせればよいわ
けです。
　今はサンプルとして「年齢」という数値型のデータを用いましたが、より
一般的に日付や時刻に拡張することもできます。たとえば、応用問題とし
てこんなのはどうでしょう。ホテルの部屋ごとに、到着日と出発日の履歴
を記録するテーブルを使います（図4.7）注10。

CREATE TABLE HotelRooms

(room_nbr INTEGER,

 start_date DATE,

 end_date DATE,

 PRIMARY KEY(room_nbr, start_date));

 INSERT文は省略

図4.7 ホテルテーブル

HotelRooms

room_nbr（部屋番号） start_date（到着日） end_date（出発日）

101 2008-02-01 2008-02-06

101 2008-02-06 2008-02-08

101 2008-02-10 2008-02-13

202 2008-02-05 2008-02-08

202 2008-02-08 2008-02-11

202 2008-02-11 2008-02-12

303 2008-02-03 2008-02-17

　このテーブルから、稼働日数が10日以上の部屋を選択します。稼働日数
の定義は、宿泊日数で計ることとします。到着日が2月1日、出発日が2月

注10 『SQLパズル 第2版』の「パズル6　ホテルの予約」に登場するテーブル構造を一部変更して掲載して
います。

113

4.2カット

6日の場合は、5泊なので5日です（リスト4.7）。

リスト4.7 複数レコードから稼働日数を算出する
SELECT room_nbr,

 SUM(end_date - start_date) AS working_days

　FROM HotelRooms

 GROUP BY room_nbr

HAVING SUM(end_date - start_date) >= 10;

 実行結果

 room_nbr | working_days

----------+--------------

 101 | 10

 303 | 14

4.2
カット

　これまでは、GROUP BY句の行の「集約」という側面を強調してその機能
を説明してきました。ですが冒頭でも少し触れたように、GROUP BY句に
は集約以外にも、もう1つ重要な機能があります。それが「カット」という
機能です。これは要するに、母集合である元のテーブルを小さな部分集合
に切り分けることです。だからGROUP BY句というのは、この1つの句の
中に、

・カット

・集約

という2つの操作が組み込まれた演算です。この点は第2章でも簡単に触
れました。1つの句の中に2つの演算が組み込まれているというのもGROUP

BY句に対する理解を阻む一因になっているのですが、まあそれは今言って
も始まりません。今度は、この「カット」の機能に焦点を当ててみましょう。

114

第4章 集約とカット　集合の世界

あなたは肥り過ぎ？ 痩せ過ぎ？ ──カットとパーティション

　サンプルに、図4.8のような個人の身長などの情報を保持するテーブル
を考えます。

CREATE TABLE Persons

(name VARCHAR(8) NOT NULL,

 age INTEGER NOT NULL,

 height FLOAT NOT NULL,

 weight FLOAT NOT NULL,

 PRIMARY KEY (name));

 INSERT文は省略

図4.8 人物テーブル

Persons（人物）
name（名前） age（年齢） height（身長cm） weight（体重kg）

Anderson 30 188 90

Adela 21 167 55

Bates 87 158 48

Becky 54 187 70

Bill 39 177 120

Chris 90 175 48

Darwin 12 160 55

Dawson 25 182 90

Donald 30 176 53

　今、上司からこのテーブルを使って簡単な集計作業を依頼されたとしま
す。まずは簡単なところから。名簿のインデックスを作るために、名前の
頭文字のアルファベットごとに何人テーブルに存在するかを集計しましょ
う。これはつまり、Persons集合を図4.9のようなS1～S4の部分集合に切
り分けて、それぞれの要素数を調べる、ということです。

115

4.2カット

図4.9 4つの部分集合に切り分けてそれぞれの要素数を調べる

　集合の要素数を調べる関数はもちろんCOUNTです。name列は主キー
なので、NULLについて考慮する必要はありません（主キーを構成する列を
NULLにすることはできません）。あとは、頭文字をGROUP BY句のキー
に指定すれば、カット完了です。SQL文はリスト4.8です。

リスト4.8 頭文字のアルファベットごとに何人がテーブルに存在するか集計するSQL
SELECT SUBSTRING(name, 1, 1) AS label,

 COUNT(*)

　FROM Persons

 GROUP BY SUBSTRING(name, 1, 1);

 実行結果

label | COUNT(*)

------+---------

 A | 2

 B | 3

 C | 1

 D | 3

パーティション
　こういうGROUP BY句でカットして作られた一つ一つの部分集合は、数
学的には「類」（partition）と呼ばれます。これは、互いに重複する要素を持
たない部分集合のことで、そのまま「パーティション」と呼ぶこともありま
す。同じ母集合からでも、類の作り方は切り分け方によってさまざまあり
ます。たとえば、年齢によって、子供（20歳未満）、成人（20～69歳）、老人
（70歳以上）に分けるなら、図4.10のようにカットされます。

S0:Persons

 S1:A

Anderson
Adela S4:D

Darwin
Dawson
DonaldS3:C

Chris

S2:B
Bates
Becky
Bill

116

第4章 集約とカット　集合の世界

図4.10 年齢によるカット

　当然、GROUP BY句のキーもこの3つの区分に対応する形になります。
これは、CASE式を使ってリスト4.9のように表現します。

リスト4.9 年齢による区分を実施
SELECT CASE WHEN age < 20 THEN '子供'

 WHEN age BETWEEN 20 AND 69 THEN '成人'

 WHEN age >= 70 THEN '老人'

 ELSE NULL END AS age_class,

 COUNT(*)

　FROM Persons

 GROUP BY CASE WHEN age < 20 THEN '子供'

 WHEN age BETWEEN 20 AND 69 THEN '成人'

 WHEN age >= 70 THEN '老人'

 ELSE NULL END;

 実行結果

age_class | COUNT(*)

----------+---------

子供 | 1

成人 | 6

老人 | 2

　カット基準となるキーを、GROUP BY句とSELECT句の両方に書くのが
ポイントです。PostgreSQLとMySQLでは、SELECT句で付けた「age_class」
という別名を使って「GROUP BY age_class」という簡潔な書き方も許して
いるのですが、この書き方は標準違反なので注意してください注11。

注11 とはいえ便利な機能なので、いずれ標準SQLに取り入れられるとよいのですが。

S0:Persons

S2:成人
Anderson
Adela
Becky
Bill
Dawson
Donald

S1:子供
Darwin

S3:老人
Bates
Chris

117

4.2カット

　さて、GROUP BY句でCASE式を使った場合、実行計画はどうなるでし
ょうか。PostgreSQLで見てみましょう（図4.11）注12。

図4.11 実行計画（PostgreSQL）

 HashAggregate (cost=1.23..1.39 rows=8 width=4)

　 -> Seq Scan on persons (cost=0.00..1.18 rows=9 width=4)

　図4.3（108ページ）で見た計画と代わり映えのしない、いたってシンプル
なものです。GROUP BY句でCASE式や関数を使ったところで実行計画に
は影響しない、ということがこれでわかります。もちろん、単純な列では
なく、列に演算を加えた式をGROUP BY句のキーにとれば、その分CPU

演算のオーバーヘッドは発生するのですが、それはデータを取ってきたあ
との話であるため、データへのアクセスパスには影響しないのです。
　実際、集約関数とGROUP BYの実行計画は、ハッシュ（またはソート）の
使用するワーキングメモリの容量に注意すること以外、ほかにパフォーマ
ンスの観点であまり語るべきことはありません。

BMIによるカット

　健康診断などで、BMIという体重の指標を見たことがあると思います。
身長をt（メートル）、体重をw（キログラム）とすると、次の式で求められ
ます。

 BMI = w / t2

　ここで、身長はセンチではなくメートルであることに注意してください。
これによって求められた数値に基づいて、日本では18.5未満を痩せ型、18.5

以上25未満を標準、25以上を肥満としています。この基準に基づいて、
Personsテーブル（図4.8）の人々の体重を分類して、各階級の人数を求めて
みましょう。ちなみに、各人のBMIは、上の式で求めると表4.1のように
なります。

注12 Oracleでも内容的には同じです。

118

第4章 集約とカット　集合の世界

表4.1 BMI

名前 BMI 分類

Anderson 25.5 肥満

Adela 19.7 標準

Bates 19.2 標準

Becky 20.0 標準

Bill 38.3 肥満

Chris 15.7 やせ

Darwin 21.5 標準

Dawson 27.2 肥満

Donald 17.1 やせ

　カットのイメージは図4.12のようになります。

図4.12 BMIによるカットのイメージ

　BMIの計算は「weight / POWER(height / 100, 2)」という式で簡単に求め
られます。こうして求められたBMIをCASE式で3つの階級に振り分けれ
ば、カットする基準が作れます。あとは、これをGROUP BY句とSELECT

句に書けばできあがりです（リスト4.10）。

リスト4.10 BMIによる体重分類を求めるクエリ
SELECT CASE WHEN weight / POWER(height /100, 2) < 18.5 THEN 'やせ'

 WHEN 18.5 <= weight / POWER(height /100, 2)

 AND weight / POWER(height /100, 2) < 25 THEN '標準'

 WHEN 25 <= weight / POWER(height /100, 2) THEN '肥満'

 ELSE NULL END AS bmi,

S0:Persons

S2:標準
Adela
Bates
Becky
Darwin

S1:やせ

Chris
Donald

S3:肥満
Anderson
Bill
Dawson

119

4.2カット

 COUNT(*)

　FROM Persons

 GROUP BY CASE WHEN weight / POWER(height /100, 2) < 18.5 THEN 'やせ'

 WHEN 18.5 <= weight / POWER(height /100, 2)

 AND weight / POWER(height /100, 2) < 25 THEN '標準'

 WHEN 25 <= weight / POWER(height /100, 2) THEN '肥満'

 ELSE NULL END;

 実行結果

BMI | COUNT(*)

------------+----------

やせ　　　 | 2

標準 | 4

肥満 | 3

　GROUP BY句が「SQLの本領」であるという言葉の意味が、少しわかって
いただけたでしょうか。GROUP BY句には列名を書くものだと思い込んで
いる人にとっては、こんな複雑な基準によるパーティションカットが可能
であると知ることは、一種の感動をもたらします。
　なお、この場合の実行計画も図4.11（117ページ）で見た実行計画と同じ
になります。

PARTITION BY句を使ったカット

　それでは最後に、さらに応用的な使い方を紹介して本章を締めくくりま
しょう。第2章でも述べましたが、「GROUP BY句から集約機能を取り去
って、カットの機能だけ残したのがウィンドウ関数のPARTITION BY句」
です。実際、その1点を除けば、GROUP BY句とPARTITION BY句に機
能的な差はありません。
　ということはつまり、PARTITION BY句にもGROUP BY句と同様、単
純な列名だけでなく、CASE式や計算式を利用した複雑な基準を記述でき
てもおかしくないはずです。そして事実、それは可能なのです。たとえば、
さっきの年齢階級別のパーティションカットを使いましょう。これを
PARTITION BY句に記述して、同一年齢階級内で年齢の上下によって順位
をつけるクエリは、リスト4.11のようになります。

120

第4章 集約とカット　集合の世界

リスト4.11 PARTITION BYに式を入れてみる
SELECT name,

 age,

 CASE WHEN age < 20 THEN '子供'

 WHEN age BETWEEN 20 AND 69 THEN '成人'

 WHEN age >= 70 THEN '老人'

 ELSE NULL END AS age_class,

 RANK() OVER(PARTITION BY CASE WHEN age < 20 THEN '子供'

 WHEN age BETWEEN 20 AND 69 THEN '成人'

 WHEN age >= 70 THEN '老人'

 ELSE NULL END

 ORDER BY age) AS age_rank_in_class

　FROM Persons

 ORDER BY age_class, age_rank_in_class;

 実行結果

name | age | age_class| age_rank_in_class

--------+------+----------+------------------

Darwin | 12 | 子供| 1

Adela | 21 | 成人| 1

Dawson | 25 | 成人| 2

Anderson| 30 | 成人| 3

Donald | 30 | 成人| 3

Bill | 39 | 成人| 5

Becky | 54 | 成人| 6

Bates | 87 | 老人| 1

Chris | 90 | 老人| 2

　結果にデリミタの横線を引いたのは、パーティション（類）の区切りを明確にす
るためです。最後尾のage_rank_in_classが各パーティション内部での年齢の
順位を示す列です。PARTITION BY句はGROUP BY句と違って集約機能を
伴わないため、元のPersonsテーブルの行がすべてそのままの形で出てくることに
注目してください。言い換えると、GROUP BY句は入力の集合を集約してまっ
たく異なるレベルの出力に変換しますが、PARTITION BY句は入力に情報を付
け加えるだけなので、オリジナルのテーブルの情報を完全に保存しているのです。
　GROUP BY句が式を引数に取れる以上、PARTITION BY句もまた同様
であるということは、論理的には何ら問題のない結論ではあります。しか
し、実際にクエリを目にしてみると、「こんなことが可能なのか……」とい
う感慨にとらわれるのではないでしょうか。

 PARTITION BY句に式を指定している

121

4.2カット

第4章のまとめ

・GROUP BY句やウィンドウ関数のPARTITION BY句は集合のカ
ットをしている

・GROUP BY句やウィンドウ関数は内部的にハッシュまたはソート
の処理が実行されている

・ハッシュやソートはメモリを多く使用する。もしメモリが不足し
た場合は一時領域としてストレージが使用され、パフォーマンス
問題を引き起こす

・GROUP BY句やウィンドウ関数とCASE式を組み合わせると非常
に強力な表現力を持つ

演習問題4

　リスト4.8（115ページ）のSQLについて、みなさん自身の使用している
DBMSにおける実行計画を取得して、GROUP BY・集約関数の演算にソー
トとハッシュのどちらが使用されているか、調べてみてください。各DBMS

における実行計画の取得方法は第1章「実行計画がSQL文のパフォーマンス
を決める」（24ページ）を参照してください。なお、DB2とOracleは

SUBSTRING関数をサポートしていないため、実装依存ですがSUBSTR(name,

1, 1)で置き換えてください。 ➡解答は336ページ

123

ループ
手続き型の呪縛

第5章

124

第5章 ループ　手続き型の呪縛

　前章では、SQLにおいては通常の手続き型の考え方とは異なる態度──
集合指向──によって問題に取り組まなければ、十分な理解が得られない
ことを説明しました。しかしそうは言っても、言うは易く行うはなんとや
ら、SQLに対して手続き型アプローチでアタックしては失敗を繰り返す事
例は後を絶ちません。本章では、そのようなパラダイム間の不幸なすれ違
いが引き起こした、最悪の事例の一つを紹介するとともに、このようなす
れ違いが起きる原因と対処について説明します。

5.1
ループ依存症

　私たちエンジニアやプログラマは皆、共通の病気にかかっています。こ
の言い方はちょっと誇大であるかもしれませんが、少なくとも一度、病気
を経験しています。「え、私は別にどこも体調悪くないよ」と思う人もいる
でしょうが、世の中には自覚症状のない病気も多いものです。
　その病気というのがループ依存症です。これは、問題を細かく分割し、
究極的には「レコード」という単位にまで問題を落とし込んだあとに、1レ

コードに対する処理を繰り返す（ループ）ことで問題を解こうとする心的態
度のことです。

Q.「先生、なぜSQLにはループがないのですか？」

　この病気に罹
かか

ると、「困難は分割せよ」「ボトムアップでアプローチする」
「モジュールを細かく分割する」といった標語を口走るという兆候を示すよ
うになります。診断は非常に簡単で、ちょっと観察すればすぐにわかりま
す。この病気に罹ったエンジニアがSQLとRDBを見ると、まずSQLにル

ープがないことに驚き、ついでどうしたものかと頭を抱え、最後に顔を上
げてこう言います。

「何て貧弱な言語なんだ！ これじゃ何もできない。お手上げだよ！」

125

5.1ループ依存症

A.「ループなんてないほうがいいな、と思ったからです」

　たしかに、SQLにはループがありません。しかしそれは別にうっかり実
装し忘れたというわけではありません。SQLが誕生してからはや40年、そ
の間ずっと忘れ続けていたということはありえません。むしろ逆で、SQL

は意識的にループを言語設計から排除したのです。「ループなんか邪魔だ」
と思ったからです。RDBを考案したCoddは次のように言っています。

関係操作では、関係全体をまとめて操作の対象とする。目的は繰返し
（ループ）をなくすことである。いやしくも末端利用者の生産性を考え
ようというのであれば、この条件を欠くことはできないし、応用プロ
グラマの生産性向上に有益であることも明らかである。

※強調は引用者
──E.F.Codd著／赤攝也訳「関係データベース：生産性向上のための実用的基盤」

『ACMチューリング賞講演集』共立出版、1989年、p.455

　ちょっと訳語が硬いですが「関係操作」というのはSQLのことだと思って
ください。つまり、SQLは最初に考えられたときから、はっきりと「まず
ループをなくそう」という発想で作られた言語だったのです。Coddはその

理由を「だってそのほうが便利だから」と言い切っています。しかし、ここ
はやや楽観的すぎたようです。実際は多くの「末端利用者」や「応用プログラ
マ」注1が、SQLにループがないことに戸惑いを隠しません。

それでもループは回っている

　そこで困ったユーザたちはどうしたか。答えは、1レコードずつアクセ

スする細かいSQLをループで回し、ビジネスロジックはホスト言語（もち
ろん手続き型）側で実装する、という手段に訴えたのです。これならSQL

の「貧弱」な表現力に煩わされることもなく、処理のほとんどはJavaなりC#

なりのホスト言語側で記述すればOKです。「要するに、テーブルなんて巨
大なファイルだと思えばいいんだよ」という声が聞こえてきそうです。「SQL

ってのは、単純にそのファイルから1行ずつ読み出したり書き込んだりす

注1 アプリケーションプログラマのことです。

126

第5章 ループ　手続き型の呪縛

るためだけに使えばよいのさ」。
　こうして生み出されるのが、ループ依存症のコード、通称ぐるぐる系で
す。これは本当にいたるところで見かけるコーディングスタイルで、みな
さんも、次のようなコードを自分の携わったシステムで見かけたことはな
いでしょうか。

・オンライン処理で画面に明細行を表示するために、1行ずつ明細にアクセスす
るSELECT文をループさせる

・バッチ処理で大量データを処理するため、1行ずつレコードをフェッチしてホ
スト言語側で処理を行い、また1行ずつテーブルを更新する

　どうでしょう。こういう処理、作った経験がありませんか？ 身に覚えが
ある？ そうでしょうそうでしょう、私もやったことがあります。
　「でもさ、ループ使って何か悪いわけ？ 別に何でもSQLでやらなきゃい

けないなどという法律はないのだから、ループを使ったほうがメリットが
大きいなら、そちらを使えばいいのでは」。
　これもお説のとおりです。適材適所という言葉もあるとおり、SQLが向
かない処理で無理にSQLを使う必要はありません。また、ミドルウェアや
O/Rマッパなどのフレームワークを使うと、内部で自動的にぐるぐる系の
SQLが発行されることもあり、エンジニア側に選択の余地がないケースも
あります注2。
　でも実は、ループをなくすことには、プログラムの生産性以外にCodd

が言及しなかった大きなメリットがもう一つあったのです。そして、それ
は裏返して、ぐるぐる系のコードが持つ無視できない欠点として現れてく
るのです。

注2 ミドルウェアが自動的にぐるぐる系のSQLを実行する例としては、DBMSの外部キー制約において
CASCADE DELETEやCASCADE UPDATEを利用した場合などがあります。たとえばOracleでは、
親テーブルが更新されたとき、CASCADEオプションによる子テーブルの更新は、1行を更新する
SQL文が繰り返し発行されるという内部動作をするため、大量データの更新時に性能問題になるこ
とがあります。かつ、これはDBMS内部の動作であるためユーザが制御できず、チューニングが困
難です。

127

5.2ぐるぐる系の恐怖

5.2
ぐるぐる系の恐怖

　まず、具体的なサンプルを使って考えてみましょう。図5.1のような2つ

のテーブルがあるとします。

図5.1 売り上げ計算を行うテーブル

Sales

company
（会社）

year
（年）

sale
（売上：億）

A 2002 50

A 2003 52

A 2004 55

A 2007 55

B 2001 27

B 2005 28

B 2006 28

B 2009 30

C 2001 40

C 2005 39

C 2006 38

C 2010 35

　Salesテーブルは、企業ごとに会計年ごとの売り上げを記録します。ただ
し年は連続しているとは限りません。このデータから、同じ企業について
ある年とその直近の年の売り上げの変化を調べたいとします。その結果を、
var列を追加したSales2テーブルに登録します。var列の値は次のルールに
よって決められます。

・より古い年のデータが存在しない場合：NULL

・直近の年のデータより売り上げが伸びた場合：+

・直近の年のデータより売り上げが減った場合：-

・直近の年のデータより売り上げと同じ場合：=

　登録後のSales2テーブルは図5.2のようになります。

Sales2

company
（会社）

year
（年）

sale
（売上：億）

var
（変化）

128

第5章 ループ　手続き型の呪縛

図5.2 登録後のSales2テーブル

Sales2

company（会社） year（年） sale（売上：億） var（変化）

A 2002 50

A 2003 52 +

A 2004 55 +

A 2007 55 =

B 2001 27

B 2005 28 +

B 2006 28 =

B 2009 30 +

C 2001 40

C 2005 39 -

C 2006 38 -

C 2010 35 -

　リスト5.1に、これを解く「典型的な」方法の一つを示します注3。

リスト5.1 ぐるぐる系のコード
CREATE OR REPLACE PROCEDURE PROC_INSERT_VAR

IS

　/* カーソル宣言 */

　CURSOR c_sales IS

 SELECT company, year, sale

 FROM Sales

 ORDER BY company, year;

　/* レコードタイプ宣言 */

　rec_sales c_sales%ROWTYPE;

　/* カウンタ */

　i_pre_sale INTEGER := 0;

　c_company CHAR(1) := '*';

　c_var CHAR(1) := '*';

BEGIN

OPEN c_sales;

注3 OracleのPL/SQLのコードを提示しましたが、手続き型言語の便宜的なサンプルとして使っている
だけなので、ほかのDBMSのプロシージャおよびJavaなどのホスト言語に適宜読み替えてください。

129

5.2ぐるぐる系の恐怖

　LOOP

 /* レコードをフェッチして変数に代入 */

 fetch c_sales into rec_sales;

 /* レコードがなくなったらループ終了 */

 exit when c_sales%notfound;

 IF (c_company = rec_sales.company) THEN

 /* 直前のレコードが同じ会社のレコードの場合 */

 /* 直前のレコードと売り上げを比較 */

 IF (i_pre_sale < rec_sales.sale) THEN

 c_var := '+';

 ELSIF (i_pre_sale > rec_sales.sale) THEN

 c_var := '-';

 ELSE

 c_var := '=';

 END IF;

 ELSE

 c_var := NULL;

 END IF;

 /* 登録先テーブルにデータを登録 */

 INSERT INTO Sales2 (company, year, sale, var)

 VALUES (rec_sales.company, rec_sales.year, rec_sales.sale, c_var);

 c_company := rec_sales.company;

 i_pre_sale := rec_sales.sale;

　END LOOP;

　CLOSE c_sales;

　commit;

END;

　今年のレコードと直近のレコードの値を比較するロジックを1レコード

ずつ繰り返す、典型的な「record at a time」（1度につき1行）の考え方です。
手続き型言語を学んだばかりの学生や新米プログラマであれば、この問題
を解く方法は十中八九これになるでしょう。
　この解法において注目すべきは、SQL文の単純さです。この解で使われ
ているSQL文は2つありますが、いずれも極めて単純で、SQLをほとんど

知らなくても使うことができるレベルのものです。そう、ぐるぐる系の解
の「良いところ」は、何と言っても「SQLをほとんど知らなくても解ける」と

130

第5章 ループ　手続き型の呪縛

いう明快さにあります。ぐるぐる系にも利点がいくつかあるのですが、そ
の一つが、SQLの処理を単純化できることです。ぐるぐる系の反対である
複数行を一度に処理するSQLをガツン系と呼びますが、ガツン系のSQLは

ビジネスロジックをSQLに入れ込むため複雑になり、保守性の低いSQL文
ができあがることがあります。
　ぐるぐる系のほかの利点については、「ぐるぐる系の利点」（136ページ）
で説明します。その前に、ぐるぐる系が持つ数多くの問題点を明らかにし
ておきましょう。

ぐるぐる系の欠点

　ぐるぐる系の何が悪いか。それは一言で言うならばパフォーマンスです。
同じ機能を実現しようとする限り、ぐるぐる系で実装したコードとガツン系
で実装したコードを比較すると、ぐるぐる系はガツン系に性能で勝てないの
です。それも惜敗とかではなく、もうまったく勝てません。処理する行数が
少ない場合は、ぐるぐる系もガツン系も大きな差は出ませんし、ぐるぐる系
の方が速いというケースもあります。しかし、処理する行数が多くなればな
るほど、その差は開いていきます。処理特性によっても変わってきますが、
ざっくり一般化したイメージは図5.3のような感じです。

図5.3 ぐるぐる系とガツン系の処理時間

　ぐるぐる系の処理時間が処理対象のデータ量に対して線形に伸びる理由
は簡単です。ぐるぐる系の処理時間は、「処理回数×1回あたり処理時間」

処理時間
ぐるぐる系

ガツン系

データ量

131

5.2ぐるぐる系の恐怖

ですから、「1回あたり処理時間」が一定と仮定すれば注4、あとは処理回数（＝
処理対象のデータ量）に比例するのは自明です。
　一方ガツン系のほうは、SQLのパターンが多種多様なので完全にこうい
う対数関数的な曲線になるとは断言できないのですが、だいたいがインデ
ックス経由のアクセスであり、実行計画変動がないと仮定すれば、こうし
た緩いカーブを描くグラフに近似することが多いのです注5。
　ぐるぐる系がなぜガツン系にパフォーマンスで負けるか、その理由につ
いて、主なものを次に挙げます。

SQL実行のオーバーヘッド

　一口にSQL実行と言っても、データを検索したり計算を行ったりといっ
た、本当にSQLの実行が行われている部分以外にいろいろな処理がその前
後で行われています。ざっと挙げてみると次のようになります。

・前処理
❶SQL文のネットワーク伝送
❷データベースへの接続
❸SQL文のパース
❹SQL文の実行計画生成および評価

・後処理
❺結果セットのネットワーク伝送

　❶と❺はSQLを実行しているアプリケーションとデータベースが物理的に
同一筐体ならば発生しませんが、一定規模以上のシステムではアプリケーシ
ョンサーバとデータベースサーバは物理的に分離されていることが普通なの
で、SQL文や結果セットをネットワークを通じて伝送する必要があります。通
常、両者は同じデータセンター内の同一LAN上にあるので、伝送速度自体は
高速（だいたいミリ秒のオーダー）なのですが、オーバーヘッドにはなります。
　❷は、データベースにSQL文を実行するためには、まずデータベースに
接続してセッションを確立する必要があるために生じる処理です。ただし、
最近ではアプリケーション側であらかじめ接続を一定数確保しておくこと
でこのオーバーヘッドを減らすコネクションプールの技術を利用している

注4 実際、リソースネックやロック競合など例外的な状況でなければそう仮定できます。
注5 もちろんリソース不足などの状況ではないと仮定します。

132

第5章 ループ　手続き型の呪縛

ことが多いので、その場合にはあまり問題になりません注6。
　オーバーヘッドの中で最も影響が大きいのは、❸および❹です。特にや
っかいなのが第1章でも解説したSQLのパース（構文解析）です。パースは
DBMSごとにやり方も微妙に異なり、種類もいくつかありますが注7、遅い
場合は0.1秒～1秒程度かかることもあります。これはほかのオーバーヘッ
ドがミリ秒の世界であるのに比べるとかなり大きなウェイトです。そして、
パースは原則として、データベースがSQLを受け取るたびに実行せざるを
えないため、細かいSQLを積み重ねるぐるぐる系においては、オーバーヘ
ッドに占める割合が高くなりがちです（図5.4）。

図5.4 SQL実行時間によらず一定のオーバーヘッドが必要

　みなさんも仕事をするにあたって、顧客や業者と契約を交わすと思いま
すが、オーバーヘッドはこの契約にかかる作業だと考えると近いかもしれ
ません。中には「ほらよ」「あいよ」という馴れ合いのやり方をしている現場
もあるかもしれませんが、原則として仕事の規模の大小によらず契約は結
ばなければなりませんし、1件あたりにかかる処理コストも、規模にはあ
まり左右されません注8。したがって管理職としては、総計としては同じ規模
の仕事であっても、小さい仕事が100件よりは大きな仕事が1件のほうを
好むわけです。

注6 逆にコネクションプールを使用していないシステムでは、接続の確立と切断を頻繁に繰り返すこと
になるため、この処理が集中するとそれだけでデータベースサーバのCPUネックを引き起こしてし
まうほどの大問題にもなります。

注7 たとえば、Oracleではハードパースとソフトパースという2種類が存在します。このうち、前者は
さまざまな管理用のテーブルにSELECT文を実行する必要があるため、後者に比べて非常に時間が
かかります。

注8 よほど大きな契約になれば、法務の審査が入ったり、契約コストも大きくなる傾向はありますが、少
なくとも線形ではありません。

ぐるぐる系

ガツン系

オーバーヘッド SQL実行

133

5.2ぐるぐる系の恐怖

並列分散がやりにくい

　ぐるぐる系は、ループ1回あたりの処理を極めて単純化している関係上、
リソースを分散したうえでの並列処理による最適化が受けられません。こ
れはCPUのマルチコアによる並列処理を利用できないのはもちろん、最も
不利なのが、ストレージの分散効率が悪いことです。データベースサーバ
のストレージは多くの場合RAIDディスクで構成されており、I/O負荷を
分散できるようになっています。しかし、ぐるぐる系で実行されるSQL文
は単純なものが多く、必然的に1回のSQL文がアクセスするデータ量も少
なくなります。すると、I/Oを並列化しにくいというデメリットが生じま
す（図5.5）。

図5.5 ぐるぐる系はリソースの使用効率が悪い

　もっとも、これに対しては「アプリケーション側でループそのものを多重
化すれば解決するのではないか」という反論が出るかもしれません。このア
イデアについては、「ぐるぐる系を速くする方法はあるか」（134ページ）で
検討します。

データベースの進化による恩恵を受けられない
　データベースが処理しなければならないデータ量は、近年加速度的に増
加しています。こうした要請を受けて、DBMSベンダーは、いかにして
SQLを高速に実行するかという点に心血を注いでいます。DBMSのバージ

ョンが上がるほどオプティマイザはより効率的な実行計画を立て、より高
速なアクセスを可能にするアーキテクチャが実装されています。その問題
意識は、ハードウェアベンダーにも共有されています。最近特に注目を集
めているのが、従来のディスクを大きく超えるI/O性能を持つSSDなどの

媒体の実用化です。これはストレージネックに苦しんできたデータベース
の世界に革命を起こす可能性があります。

ガツン系は並列分散できる ぐるぐる系は並列分散できない

134

第5章 ループ　手続き型の呪縛

　ただし、こうした努力は、基本的には「大規模データを扱う複雑なSQL文」
を速くすることが中心になっています。単純なSQL文を細かくループさせる
ような「軽い」処理を速くすることは、あまり眼中にありません。したがって、
ぐるぐる系はミドルウェアやハードウェアの進化による恩恵もあまり受けら
れないのです。実際、ぐるぐる系の処理が遅いことが問題になったとき、対
処としてスケールアップが（深い考えなしに）行われることがありますが、別
に物理リソースがボトルネックになっているわけではないため、まったく速
くならないという残念な結果に終わることもしばしばです。
　以上のような理由によって、ぐるぐる系はガツン系に比べてパフォーマ
ンスの観点では比較になりません。ときどき、「ぐるぐる系は、DBMSが

ガツン系のSQLに対して内部的に実行していることをプログラムで肩代わ
りしているだけなので、性能に差は生じない」と言う人もいますが、これは
上記のデメリットを考慮していない雑な意見です。
　もちろん、この比較が成り立つのは、ガツン系のSQLが十分にチューニ
ングされていれば、という前提つきです。ガツン系のSQLは、ぐるぐる系
に比べれば複雑なSQL文になります。そのためノンチューニングの「素の
状態」では、ぐるぐる系に負けることもあります。しかし、ガツン系のSQL

はチューニングポテンシャルが高いので、きっちりチューニングしきれば、
当初より桁違いの性能が出ます。
　このガツン系の利点は、裏返せばそのままぐるぐる系の欠点でもありま
す。つまり、ぐるぐる系はただ遅いというだけではなく、いざ遅かったと
きにチューニングポテンシャルがほとんどないのです。ぐるぐる系が本当
に怖いのはこの欠点です。

ぐるぐる系を速くする方法はあるか

　さて、みなさんの携わっているシステムにおいて、ぐるぐる系の性能が
出なくて困っているとしましょう。こういう場合、どのようにチューニン
グすればよいでしょうか。選択肢は、大きく次の3つしかありません。

ぐるぐる系をガツン系に書き換える

　これは即、アプリケーション改修を意味します。「馬鹿野郎、いまさら改
修できるか！」という罵声が聞こえてきそうです。カットオーバー直前の性

135

5.2ぐるぐる系の恐怖

能試験で問題が発覚して不眠不休で殺気立っている現場のみなさんを前に、
こういうガサツな「提案」をかまして顰

ひんしゅく

蹙を買うのは「コンサルタント」のお
家芸です。しかし、現実問題としてこれしか選択肢がないケースもままあ
ります。

個々のSQLを速くする

　「塵
ちり

も積もれば」作戦です。これはあり得る選択肢ではあります。しかし、
ぐるぐる系のSQLはもうすでに十分に単純なわけで、だいたい主キーのユ
ニークスキャンか、十分に絞り込みの利くインデックスのレンジスキャン
になっていて、実行計画を見ても2行ぐらいだったりするわけです。どこ
をチューニングしろというのでしょうか。
　あるいは、本章の最初で見たようにINSERT文がぐるぐる回るケースも
よく見ます。INSERT文はSELECT文より高速化が難しく、選択肢が一層
限られます注9。

処理を多重化する

　これは最も望みのある選択肢です。CPUやディスクといったリソースに

余裕があって、処理をうまく分割できるキーがあれば、ループそのものを
多重化することで、パフォーマンスを線形に近い形でスケールさせられる
かもしれません。アプリケーション改修は必要ですが、最初から多重度を
設定できるように設計しておけば、コードを変更せずに実現することも可
能です。逆に、データをうまく分割できるキーがなかったり、順序が求め
られる処理だったり、並列化しようにも物理リソースがすでにいっぱいい
っぱいだったりすると、この方法は採用できません。

　このようにぐるぐる系というのは、エンジニア泣かせなほどチューニング
の選択肢が乏しいのです。ぐるぐる系が遅かったら、その時点で大掛かり

注9 INSERT文は実行計画がとてもシンプルなため、SELECT文とは違って実行計画を操作するという
チューニングはできません。選択肢として考えられるのは、コミット間隔を（たとえば1件単位を
1,000件単位に）広げるよう調整するか、INSERT文をまとめて発行するDBMSの機能（バルク
INSERTなどと呼ばれます）を利用するくらいしかありません。ただし、コミット間隔の調整は、そ
のトランザクション粒度が機能要件を満たす場合に限られますし、バルクINSERTはDBMSがサポ
ートしている必要がありますし、アプリケーション改修が必要になります。

136

第5章 ループ　手続き型の呪縛

なアプリケーションの変更を覚悟してください。オンラインの明細出力の
ように、そもそも数百行程度しかループしないような処理であれば、ぐる
ぐる系であっても十分に性能が担保できることが多く、あまり目くじら立て
てぐるぐる系を敵視する必要はありません。しかし、数百万回や数千万回
のループを平気で行うバッチ処理においては警戒が必要です。また、フレ
ームワークや業務パッケージの内部でぐるぐる系が発行されることも多く、
こういう場合はアプリケーション改修のハードルは一層高くなります。

ぐるぐる系の利点

　さて、これまで否定的に語ってきたぐるぐる系ですが、何か良いところ
はないのでしょうか。実は3つの利点があります。いずれも、ぐるぐる系
のSQL文が単純極まりないことから得られる利点です。たとえば、典型的
な主キーのユニークスキャンを例に考えましょう（リスト5.2）。

リスト5.2 これ以上ないぐらい単純なSQL文
SELECT col_a FROM Foo WHERE p_key = 1;

　この単純なクエリは、実行計画もまた極めてシンプルになります（図5.6）。

図5.6 ぐるぐる系の実行計画（PostgreSQL）
--

 Index Scan using foo_pkey on foo (cost=0.16..8.17 rows=1 width=4)

　 Index Cond: (p_key = 1)

　実行計画が単純だと何がうれしいのか？ ここからそれを説明します。

実行計画が安定する
　実行計画がシンプルということは、この実行計画には変動リスクがほと
んどないということです。せいぜい、オプティマイザには使うインデック
スを変えるぐらいの自由しか許されていません。したがって、本番運用中
に突如実行計画が変わってスローダウンするというコストベースのオプテ
ィマイザが宿命的に抱えるトラブルから（ほぼ）自由になれるのです。特に、
SQL文の中で結合を記述しなくて済むのが大きいです。というのも、実行
計画変動の中で最もやっかいなのが、結合アルゴリズムの変動だからで

137

5.2ぐるぐる系の恐怖

す注10。これは、ある意味でルールベースからコストベースという、DBMS

の進化に背を向けることを意味するのですが、オプティマイザが完璧では
ない現状においては、パフォーマンスの安定性を確保できるのは無視でき
ないメリットです。
　逆に見ると、これはガツン系のデメリットということです。ガツン系は
SQL文が複雑になる分、SQLの実行計画に変動の余地が大きくなります。
これがオプティマイザにとって工夫の余地が大きいとポジティブに評価す
るか、リスクが増えるとネガティブに評価するかは微妙なところですが、
私が現時点で良いと思うのは、基本オプティマイザに任せたうえで実行計
画が揺れやすいSQLについては部分的にヒント句で実行計画を固定するか、
揺れにくい単純化した構文を使う、というものです注11。

処理時間の見積り精度が（相対的には）高い

　実行計画が単純でパフォーマンスが安定的であるということは、もう一
つの副次的な利点を生みます。それは、処理時間の見積り精度がガツン系
に比べて高いことです。ぐるぐる系の処理時間は、次のような簡単な式で
表現できます。

 処理時間＝1回当たり実行時間×実行回数

　実行回数は機能要件からわかります。一方、1回当たり実行時間は、お
よそ0.1ミリ秒～0.5秒ぐらいの間です。「およそって5,000倍も違うじゃな
いか！」と思うかもしれません。絶対値として見ればそのとおりです。高速
なSQLの処理時間は、ちょっとした条件の違いですぐに数倍～数百倍の違
いが出てしまうので、それを積み上げるような見積り方は、本来は精度が
高いとはお世辞にも呼べません。あくまでガツン系に比べればという相対
的な話だと受け取ってください。ガツン系はどんな実行計画が選ばれるか
によってパフォーマンスがまったく違うので、プログラム仕様が固まる前
に机上で処理時間を見積もるのが難しいのですが、それに比べればまだマ
シ、という程度です。本当に精度の高い見積りをするには、ある程度大量
のデータ件数を積んだうえで、実機でプロトタイプ検証を行って、件数が

注10 結合アルゴリズムについては第6章を参照してください。
注11 こういうとき、DB2のようにヒント句を持たないDBMSだと、SQLの構文やERモデルの変更にま

で修正が及んで難儀します。

138

第5章 ループ　手続き型の呪縛

積まれた状態での総体の実行時間を何点か測定し（たとえば10万件、100万
件、1千万件の3点）、実行時間が線形で伸びること、およびその傾きを算
出するしかありません。

トランザクション制御が容易
　ぐるぐる系のもう一つの利点は、機能的なものです。それは、トランザ
クション粒度を細かく調整できることです。たとえば、更新処理をぐるぐ
る系で回して、特定のループ回数ごとにコミット処理を行うとしましょう。
この場合、ある更新処理でエラーが発生したとすると、その処理の前まで
はコミットされているため、その地点からリスタートを行うことができま
す。また、バッチを何らかの理由で中断しなければならない場合も、続き
から再開することが可能になります。このような細かい制御は、ガツン系
のSQL文では行うことはできません。ガツン系のSQL文による更新処理が
エラーとなった場合、処理を再実行する場合は、またすべての処理を最初
から実行しなければなりません。

　このように、性能だけではなく機能的な観点まで視野を広げてみると、
ぐるぐる系にも利点があることがわかります。どちらの処理方式を選択す
るかは、このような利点と欠点のトレードオフについての慎重な考慮が必
要になります。

5.3
SQLではループをどう表現するか

　これまで、ぐるぐる系とガツン系の対比を説明してきましたが、ここからは、
ガツン系で処理を記述するにはどのようにすればよいのかを見ていきます。

ポイントはCASE式とウィンドウ関数

　SQLでループを代用する重要な技術は、CASE式とウィンドウ関数です。

139

5.3SQLではループをどう表現するか

正確に言うと、CASE式は手続き型言語で言うところのIF-THEN-ELSE文
に対応する機能なので、ループに対応する機能はウィンドウ関数だと言っ
てもよいのですが、手続き型言語でループの中でだいたいIF文を使うよう
に、SQLにおいてもCASE式とウィンドウ関数は一緒に使うので、もうこ
の2つはセットメニューだと覚えてください。ぐるぐる系のリスト5.1（128

ページ）をガツン系のSQLで書き換えたのがリスト5.3です。

リスト5.3 ウィンドウ関数を使った解
INSERT INTO Sales2

SELECT company,

 year,

 sale,

 CASE SIGN(sale - MAX(sale)

 OVER (PARTITION BY company

 ORDER BY year

 ROWS BETWEEN 1 PRECEDING

 AND 1 PRECEDING))

 WHEN 0 THEN '='

 WHEN 1 THEN '+'

 WHEN -1 THEN '-'

 ELSE NULL END AS var

　FROM Sales;

　この解のポイントは、SIGN関数です。これは、数値型を引数に取り、符
号がマイナスなら-1を、プラスなら1を、0の場合は0を返す関数で、直近
の年との売り上げの変化を知るために利用しています。CASE式の条件部
分に、何度もウィンドウ関数を記述しないためのちょっとした小技です注12。
　SELECT文の部分について、実行計画を確認してみましょう（図5.7、図
5.8）。

図5.7 ウィンドウ関数による実行計画（PostgreSQL）

 WindowAgg (cost=1.34..1.82 rows=12 width=10)

　 -> Sort (cost=1.34..1.37 rows=12 width=10)

 Sort Key: company, year

 -> Seq Scan on sales (cost=0.00..1.12 rows=12 width=10)

注12 SQLには変数がないため、それを補っているのです。

140

第5章 ループ　手続き型の呪縛

図5.8 ウィンドウ関数による実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 12 | 348 | 3 (34)| 00:00:01 |

| 1 | WINDOW SORT | | 12 | 348 | 3 (34)| 00:00:01 |

| 2 | TABLE ACCESS FULL| SALES | 12 | 348 | 2 (0)| 00:00:01 |

--

　PostgreSQLもOracleも同じ実行計画になりました。まずSalesテーブル

をフルスキャンして（これはWHERE句の条件がないので当然です）、次に
ウィンドウ関数をソートで実行しています。このSELECT文は結合を使用
していないため、テーブルの件数が増えてもこれ以外の実行計画の選択肢
はまず考えられず、実行計画の安定性も非常に高いと言えます。
　この解で重要な技術は、ウィンドウ関数においてROWS BETWEENオ

プションを使っていることです。これは、さかのぼる対象範囲のレコード
を直前の 1行に制限しています。ROWS BETWEEN 1 PRECEDING AND 1

PRECEDINGは、「カレントレコードの1行前から1行前の範囲」という意味な
ので、結局、直前の1行だけを含みます（図5.9）。

図5.9 ROWS BETWEENの動作

company
（会社）

year
（年）

sale
（売上：億）

A 2002 50

A 2003 52

A 2004 55

A 2007 55

B 2001 27

B 2005 28

B 2006 28

B 2009 30

C 2001 40

C 2005 39

C 2006 38

C 2010 35

Sales

ROWS BETWEEN 1 PRECEDING AND 1 PRECEDINGによって
指定される「直前」のレコード

←カレントレコード

141

5.3SQLではループをどう表現するか

　つまり、このウィンドウ関数は「同じ会社の直近の売上」を戻り値としま
す。リスト5.4のように、結果を表示させてみればはっきりします。

　相関サブクエリは、サブクエリ内に外側のクエリとの結合条件を記述すること
で、テーブルをその結合キーでカットした部分集合に対して操作を行うことを可
能にする技術です。その点で、ウィンドウ関数のPARTITION BY句とORDER
BY句と同じ機能を持っています。たとえば、リスト5.4と同じ結果を得る相関サ
ブクエリを使ったSELECT文は、リストaのようになります。

リストa 相関サブクエリで「1行前の会社名」と「1行前の売り上げ」を取得
SELECT company,

 year,

 sale,

 (SELECT company

 FROM Sales S2

 WHERE S1.company = S2.company

 AND year = (SELECT MAX(year)

 FROM Sales S3

 WHERE S1.company = S3.company 相関サブクエリの結合条件

 AND S1.year > S3.year)) AS pre_company,

 (SELECT sale

 FROM Sales S2

 WHERE S1.company = S2.company

 AND year = (SELECT MAX(year)

 FROM Sales S3

 WHERE S1.company = S3.company 相関サブクエリの結合条件

 AND S1.year > S3.year)) AS pre_sale

　FROM Sales S1;

　相関サブクエリの解では、「直近」や「直前」のデータを求めることはMAX/MIN
関数を使えばできるのですが、そこから2番目、3番目のデータを求めるのはか
なり難しくなります。また、実行計画が複雑なものになることから、性能的なリ
スクも負うことになるのです。

相関サブクエリによる対象レコードの制限

C o l u m n

142

第5章 ループ　手続き型の呪縛

リスト5.4 ウィンドウ関数で「1行前の会社名」と「1行前の売り上げ」を取得
SELECT company,

 year,

 sale,

 MAX(company)

 OVER (PARTITION BY company

 ORDER BY year

 ROWS BETWEEN 1 PRECEDING

 AND 1 PRECEDING) AS pre_company,

 MAX(sale)

 OVER (PARTITION BY company

 ORDER BY year

 ROWS BETWEEN 1 PRECEDING

 AND 1 PRECEDING) AS pre_sale

　FROM Sales;

 実行結果

 company | year | sale | pre_company | pre_sale

---------+------+------+-------------+----------

 A | 2002 | 50 | |

 A | 2003 | 52 | A | 50

 A | 2004 | 55 | A | 52

 A | 2007 | 55 | A | 55

 B | 2001 | 27 | |

 B | 2005 | 28 | B | 27

 B | 2006 | 28 | B | 28

 B | 2009 | 30 | B | 28

 C | 2001 | 40 | |

 C | 2005 | 39 | C | 40

 C | 2006 | 38 | C | 39

 C | 2010 | 35 | C | 38

　また、もし比較対象のレコードを「1行前」ではなく「2行前」にしたいなら
ば、ROWS BETWEEN 2 PRECEDING AND 2 PRECEDINGと、さかのぼるレンジを
変えてやることで簡単に対応できます。この柔軟さは、ウィンドウ関数が
普及するまで行間比較の手段だった相関サブクエリにはない利点です。

ループ回数の上限が決まっている場合

　ループに頼らずガツン系で問題を解く例を、もう少し見てみましょう。
ポイントはやはり、CASE式とウィンドウ関数です。

143

5.3SQLではループをどう表現するか

近似する郵便番号を求める

　現在、日本では郵便番号は「413-0033」のようなハイフンつきの7桁の数
字で管理されています。ハイフンの左の3桁が大きな地域を意味し、右の
4桁でさらに細かい区画に割っているので、一意性という観点から見れば、
ハイフンを抜いて「4130033」のような連続した7桁の数値と考えられます。
その場合でも、2つの異なる郵便番号は、下位の桁まで一致するほど近い
地域を意味します。たとえば、「4130033」は静岡県熱海市熱海、「4130002」
は静岡県熱海市伊豆山という近隣の地域を表します。
　この郵便番号の性質を使って、次のような問題を解くことを考えます。
まず、郵便番号を管理するテーブルを作ります。このテーブルで保持する
郵便番号の集合から、入力に与えられた郵便番号に「最寄」の郵便番号を検
索することを考えます。「最寄」の定義は、最も小さな桁（＝右の桁）の数値
が一致することです。7桁ピッタリ一致すればそれが答えになりますが、ピ
タリ賞がなかった場合は、順次左へ桁をさかのぼって、最初にマッチした
郵便番号を答えとします。もし一番左の桁ですら一致しなかった場合は、
「マッチせず」が解になります。
　この問題では、複数の郵便番号が答えになることがあります。具体的に
見てみましょう。
　リスト5.5によって作られるPostalCodeテーブル（図5.10）から郵便番号
「4130033」に最寄の番号を求める場合、答えは図5.11の3つの郵便番号で
す。

リスト5.5 郵便番号テーブルの定義
CREATE TABLE PostalCode

(pcode CHAR(7),

 district_name VARCHAR(256),

 CONSTRAINT pk_pcode PRIMARY KEY(pcode));

INSERT INTO PostalCode VALUES ('4130001', '静岡県熱海市泉');

INSERT INTO PostalCode VALUES ('4130002', '静岡県熱海市伊豆山');

INSERT INTO PostalCode VALUES ('4130103', '静岡県熱海市網代');

INSERT INTO PostalCode VALUES ('4130041', '静岡県熱海市青葉町');

INSERT INTO PostalCode VALUES ('4103213', '静岡県伊豆市青羽根');

INSERT INTO PostalCode VALUES ('4380824', '静岡県磐田市赤池');

144

第5章 ループ　手続き型の呪縛

図5.10 郵便番号テーブル

PostalCode（郵便番号）
pcode（郵便番号） district_name（地域名）

4130001 静岡県熱海市泉

4130002 静岡県熱海市伊豆山

4130103 静岡県熱海市網代

4130041 静岡県熱海市青葉町

4103213 静岡県伊豆市青羽根

4380824 静岡県磐田市赤池

図5.11 求める結果
pcode

4130001

4130002

4130041

　考え方としては、まず郵便番号「4130033」がテーブルに存在しないか探
しにいくのですが、これはテーブルにないため、次に「413003*」（*は任意
の数字1文字）という番号がないか探しにいきます。これもまだ見つからな
いため、今度は「41300**」という番号を探しにいきます。するとここで3つ

の郵便番号がヒットするので、これを答えとして終了です。
　この問題は、手続き型に考えるなら、当然ループで解くことになります。
PostalCodeがファイルだとすれば、単純に考えて、ファイルの全件ループ
を最大7回繰り返せば答えが見つかります注13。しかしこれは、テーブルの
行数が大きくなればなるほど、パフォーマンスはガツン系で解くより悪く
なっていきます。

ランキングの問題に読み替え可能
　この問題のポイントは、テーブルに含まれる郵便番号のデータは、入力
の郵便番号に対して近さの度合い（ランキング）を持っている、ということ
です。一番近い郵便番号の順位を0、一番遠い郵便番号の順位を6として表
現すると、図5.12のようになります。

注13 あるいは7回目でも見つからなければ「マッチせず」であることはわかります。

145

5.3SQLではループをどう表現するか

図5.12 郵便番号のランキング
　pcode | district_name | rank

---------+--------------------+------

 4130001 | 静岡県熱海市泉 | 2

 4130002 | 静岡県熱海市伊豆山 | 2

 4130103 | 静岡県熱海市網代 | 3

 4130041 | 静岡県熱海市青葉町 | 2

 4103213 | 静岡県伊豆市青羽根 | 5

 4380824 | 静岡県磐田市赤池 | 6

　このrank列を作るには、CASE式を使えばよいのです（リスト5.6）。

リスト5.6 郵便番号のランキングを求めるクエリ
SELECT pcode,

 district_name,

 CASE WHEN pcode = '4130033' THEN 0

 WHEN pcode LIKE '413003%' THEN 1

 WHEN pcode LIKE '41300%' THEN 2

 WHEN pcode LIKE '4130%' THEN 3

 WHEN pcode LIKE '413%' THEN 4

 WHEN pcode LIKE '41%' THEN 5

 WHEN pcode LIKE '4%' THEN 6

 ELSE NULL END AS rank

　FROM PostalCode;

　CASE式のWHEN句は短絡評価を行うため、一度条件が真になって
THEN句に入れば、それ以降のWHEN句の評価は行われません。これに
よって、ランキングを正しく計算できます。
　さてそうすると、この問題は次のように読み替えられます。

 ランキングが最上位の郵便番号を選択せよ

　ランキングが最上位とはすなわち、rank列が最小値ということなので、
MIN関数を使えばOKです（リスト5.7）。

リスト5.7 最寄の郵便番号を求めるクエリ
SELECT pcode,

 district_name

　FROM PostalCode

 WHERE CASE WHEN pcode = '4130033' THEN 0

 WHEN pcode LIKE '413003%' THEN 1

146

第5章 ループ　手続き型の呪縛

 WHEN pcode LIKE '41300%' THEN 2

 WHEN pcode LIKE '4130%' THEN 3

 WHEN pcode LIKE '413%' THEN 4

 WHEN pcode LIKE '41%' THEN 5

 WHEN pcode LIKE '4%' THEN 6

 ELSE NULL END =

 (SELECT MIN(CASE WHEN pcode = '4130033' THEN 0

 WHEN pcode LIKE '413003%' THEN 1

 WHEN pcode LIKE '41300%' THEN 2

 WHEN pcode LIKE '4130%' THEN 3

 WHEN pcode LIKE '413%' THEN 4

 WHEN pcode LIKE '41%' THEN 5

 WHEN pcode LIKE '4%' THEN 6

 ELSE NULL END)

 FROM PostalCode);

 実行結果

　pcode | district_name

---------+---------------------

 4130001 | 静岡県熱海市泉
 4130002 | 静岡県熱海市伊豆山
 4130041 | 静岡県熱海市青葉町

　この解法のポイントは、7回のループを7回のCASE式の分岐で表現した
ことです。実際のアプリケーションでは、郵便番号をパラメータとして与
える形で、動的にこのSQLを生成することになるでしょう。
　しかし、これはまだパフォーマンスの観点で最適解とは言えません。実
行計画を見ると、PostgreSQL、OracleともにPostalCodeテーブルに対する
スキャンが2度発生していることがわかります（図5.13、図5.14）。

図5.13 PostgreSQLの実行計画

 Seq Scan on postalcode (cost=1.19..2.37 rows=1 width=8)

　 Filter: (CASE WHEN (pcode = '4130033'::bpchar) THEN 0

 WHEN (pcode ~~ '413003%'::text) THEN 1

 WHEN (pcode ~~ '41300%'::text) THEN 2

 WHEN (pcode ~~ '4130%'::text) THEN 3

 WHEN (pcode ~~ '413%'::text) THEN 4

 WHEN (pcode ~~ '41%'::text) THEN 5

 WHEN (pcode ~~ '4%'::text) THEN 6

 ELSE NULL::integer END = $0)

　InitPlan 1 (returns $0)

147

5.3SQLではループをどう表現するか

 -> Aggregate (cost=1.18..1.19 rows=1 width=8)

 -> Seq Scan on postalcode (cost=0.00..1.06 rows=6 width=8)

図5.14 Oracleの実行計画
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 34 | 6 (0)| 00:00:01 |

|* 1 | TABLE ACCESS FULL | POSTALCODE | 1 | 34 | 3 (0)| 00:00:01 |

| 2 | SORT AGGREGATE | | 1 | 8 | | |

| 3 | TABLE ACCESS FULL| POSTALCODE | 6 | 48 | 3 (0)| 00:00:01 |

--

　このサンプルテーブルはたかが数行なので、テーブルをフルスキャンし
ても1秒とかからず終わりますが、これが数百万、数千万といった規模の
テーブルになったときは、この冗長なスキャン操作は大きな無駄になりま
す。これを削減する方法を考えねばなりません。

ウィンドウ関数でスキャン回数を減らす

　今、なぜテーブルスキャンが2回発生しているかと言えば、ランキング
の最小値をサブクエリで求めているからです。これは古典的方法ですが、
同じことをウィンドウ関数で実現できます（リスト5.8）。

リスト5.8 ウィンドウ関数による解
SELECT pcode,

 district_name

　FROM (SELECT pcode,

 district_name,

 CASE WHEN pcode = '4130033' THEN 0

 WHEN pcode LIKE '413003%' THEN 1

 WHEN pcode LIKE '41300%' THEN 2

 WHEN pcode LIKE '4130%' THEN 3

 WHEN pcode LIKE '413%' THEN 4

 WHEN pcode LIKE '41%' THEN 5

 WHEN pcode LIKE '4%' THEN 6

 ELSE NULL END AS hit_code,

 MIN(CASE WHEN pcode = '4130033' THEN 0

 WHEN pcode LIKE '413003%' THEN 1

 WHEN pcode LIKE '41300%' THEN 2

 WHEN pcode LIKE '4130%' THEN 3

 WHEN pcode LIKE '413%' THEN 4

148

第5章 ループ　手続き型の呪縛

 WHEN pcode LIKE '41%' THEN 5

 WHEN pcode LIKE '4%' THEN 6

 ELSE NULL END)

 OVER(ORDER BY CASE WHEN pcode = '4130033' THEN 0

 WHEN pcode LIKE '413003%' THEN 1

 WHEN pcode LIKE '41300%' THEN 2

 WHEN pcode LIKE '4130%' THEN 3

 WHEN pcode LIKE '413%' THEN 4

 WHEN pcode LIKE '41%' THEN 5

 WHEN pcode LIKE '4%' THEN 6

 ELSE NULL END) AS min_code

 FROM PostalCode) Foo

 WHERE hit_code = min_code;

　インデックスオンリースキャンをサポートしているDBMSでは、リスト5.7の
SQL文のように、SQL文で使用する列がすべてインデックスに含まれていれば、
テーブルスキャンをスキップして、インデックスに対するアクセスのみを実行す
るという最適化を行うことも可能です。たとえば、リスト5.7のSELECT文だと、
サブクエリ内のSELECT文はpcode列しか使っていないため、主キーに対するア
クセスだけで必要なデータを取得できます。たとえばOracleだと、次のように実
行計画に主キーに対する「INDEX FAST FULL SCAN」が現れます。

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 34 | 5 (0)| 00:00:01 |

|* 1 | TABLE ACCESS FULL | POSTALCODE | 1 | 34 | 3 (0)| 00:00:01 |

| 2 | SORT AGGREGATE | | 1 | 8 | | |

| 3 | INDEX FAST FULL SCAN| PK_PCODE | 6 | 48 | 2 (0)| 00:00:01 |

　アクセス対象のオブジェクトを示す「Name」列からテーブル「POSTALCODE」が消
えて、代わりにインデックス「PK_PCODE」だけが現れていることが確認できます。
　ただし、インデックスオンリースキャンによるチューニングは、SQL文で使用
する列が比較的少ない場合にしか利用できないため、常に使える手段ではありま
せん。また、仮に使えたとしても、列数が多くてはせっかくのディスク読み込み
の削減効果も薄くなり、大した効果はなくなります。
　インデックスオンリースキャンについては、第10章で詳しく説明します。

インデックスオンリースキャン

C o l u m n

149

5.3SQLではループをどう表現するか

　実行計画を見ると、テーブルへのフルスキャンが1回に減っていること
が確認できます（図5.15、図5.16）。

図5.15 PostgreSQLの実行計画：改善版
 --

 Subquery Scan on foo (cost=16.39..25.49 rows=1 width=40)

　 Filter: (foo.hit_code = foo.min_code)

　 -> WindowAgg (cost=16.39..23.74 rows=140 width=32)

 -> Sort (cost=16.39..16.74 rows=140 width=32)

 Sort Key: (CASE WHEN (postalcode.pcode = '4130033'::bpchar) THEN 0

 WHEN (postalcode.pcode ~~ '413003%'::text) THEN 1

 WHEN (postalcode.pcode ~~ '41300%'::text) THEN 2

 WHEN (postalcode.pcode ~~ '4130%'::text) THEN 3

 WHEN (postalcode.pcode ~~ '413%'::text) THEN 4

 WHEN (postalcode.pcode ~~ '41%'::text) THEN 5

 WHEN (postalcode.pcode ~~ '4%'::text) THEN 6

 ELSE NULL::integer END)

 -> Seq Scan on postalcode (cost=0.00..11.40 rows=140 width=32)

図5.16 Oracleの実行計画：改善版
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 6 | 870 | 4 (25)| 00:00:01 |

|* 1 | VIEW | | 6 | 870 | 4 (25)| 00:00:01 |

| 2 | WINDOW SORT | | 6 | 204 | 4 (25)| 00:00:01 |

| 3 | TABLE ACCESS FULL| POSTALCODE | 6 | 204 | 3 (0)| 00:00:01 |

--

　ウィンドウ関数がソートを必要とするためそのコストがかかりますが、
テーブルサイズが大きい場合はテーブルスキャンを減らせる効果のほうが
上回るでしょう注14。

ループ回数が不定の場合

　前項の例題では、ループ（または分岐）回数の上限が7回と最初から決ま
っていました。こういう場合であれば、ループをCASE式の分岐としてSQL

注14 また、リスト5.7のコードにおいてもMIN関数のソートは必要なので、ウィンドウ関数の場合とコ
ストはあまり変わらないでしょう。

150

第5章 ループ　手続き型の呪縛

文の中にハードコーディングすることが可能でした。しかし、常にループ
の上限回数が決まっているとは限りません。今度はそのような上限が不定
のケースを見てみましょう。

隣接リストモデルと再帰クエリ
　再び、郵便番号を使ったサンプルを考えます。今度は現住所だけでなく、
昔住んでいた住所の履歴を管理するテーブルを使います。住所を番地まで
使うと冗長なので、郵便番号で代替します。リスト5.9のようなSQLを実
行し、図5.17のようなテーブルを作成します。

リスト5.9 郵便番号の履歴テーブルの定義
CREATE TABLE PostalHistory

(name CHAR(1),

 pcode CHAR(7),

 new_pcode CHAR(7),

 CONSTRAINT pk_name_pcode PRIMARY KEY(name, pcode));

CREATE INDEX idx_new_pcode ON PostalHistory(new_pcode);

INSERT INTO PostalHistory VALUES ('A', '4130001', '4130002');

INSERT INTO PostalHistory VALUES ('A', '4130002', '4130103');

INSERT INTO PostalHistory VALUES ('A', '4130103', NULL);

INSERT INTO PostalHistory VALUES ('B', '4130041', NULL);

INSERT INTO PostalHistory VALUES ('C', '4103213', '4380824');

INSERT INTO PostalHistory VALUES ('C', '4380824', NULL);

図5.17 郵便番号の履歴テーブル

PostalHistory

name（人名） pcode（郵便番号） new_pcode（転居先の郵便番号）

A 4130001 4130002

A 4130002 4130103

A 4130103

B 4130041

C 4103213 4380824

C 4380824

　このテーブルは、現住所を登録するときは

('A', '4130001', NULL)

151

5.3SQLではループをどう表現するか

のように、現住所のみ郵便番号を登録し、転居先の郵便番号はNULLとし

ます。その後、Aさんが引越しを行ったタイミングで

('A', '4130001', NULL)→('A', '4130001', '4130002')

のように転居先の郵便番号を更新し、さらに引越し先の住所を

('A', '4130002', NULL)

のように新しい行として登録します。以下、Aさんが引越しを繰り返すた
びに同様の処理を行います。このように履歴を保存することで、Aさんは

次のように引越しを2回行ったことがわかるわけです。

4130001→4130002→4130103（現住所）

　同様に、Bさんはまだ一度も引越しをしておらず、Cさんは1回引越しを
していることになります。実際の郵便局も、古い住所へ宛てた郵便物を新
住所へ転送するために、こういう履歴管理をしているはずです。これは言
わば、郵便番号をキーにしてデータを数珠つなぎにするポインタチェイン
の構造をしており、階層構造を表現する古典的手段です。これを表現する
PostalHistoryのようなテーブルの形式を「隣接リストモデル」と呼びます（図
5.18）。

図5.18 ポインタチェインによる隣接リストモデル

　今Aさんについて、一番むかしに住んでいた住所を検索したいとします。
つまり答えは「4130001」です。これを見つけるには、現住所から出発して、
順次1つ前の住所へたどっていく必要があります。問題は、何回たどれば
一番古い住所にたどり着けるか、事前にはわからないことです。引越しを
1回しかしない人もいれば、100回近く繰り返す葛飾北斎のような引越しマ
ニアもいるでしょう。引越し回数の上限が決まっていれば、その回数だけ
自己結合を繰り返すという方法もありますが、上限が不定の場合はそうは
いきません。
　手続き型言語とループを使う場合、この問題に悩むところはありません。

4130001 4130002 4130103

152

第5章 ループ　手続き型の呪縛

ファイルをnameでソートしたあとに、現住所の行から出発してレコード
をさかのぼっていき、転居先住所で郵便番号がヒットしなくなるまで処理
を繰り返せば一番古い住所のレコードを見つけられます。
　SQLで階層構造をたどる方法の一つは、再帰共通表式を使う方法です（リ
スト5.10）注15。

リスト5.10 一番古い住所を検索する（PostgreSQL）
WITH RECURSIVE Explosion (name, pcode, new_pcode, depth)

AS

(SELECT name, pcode, new_pcode, 1

　 FROM PostalHistory

　WHERE name = 'A'

 AND new_pcode IS NULL -- 探索の開始点
 UNION

 SELECT Child.name, Child.pcode, Child.new_pcode, depth + 1

　 FROM Explosion AS Parent, PostalHistory AS Child

　WHERE Parent.pcode = Child.new_pcode

 AND Parent.name = Child.name)

-- メインのSELECT文
SELECT name, pcode, new_pcode

　FROM Explosion

 WHERE depth = (SELECT MAX(depth)

 FROM Explosion);

 実行結果

 name | pcode | new_pcode

------+---------+-----------

 A | 4130001 | 4130002

　共通表式Explosionは、Aさんについて現住所（new_pcode列がNULL）
から出発して、ポインタチェインをたどっていき過去の住所すべてを網羅
します。その中で一番古い住所は、再帰レベルが最も深かった行ですから、
これをdepth列で計算しています。depth列は1回の再帰を行うたびに1ず

つインクリメントされるので、これが最大のものが最も再帰レベルが深か
ったことを意味するわけです。
　実行計画を確認しましょう（図5.19）。

注15 再帰共通表式をサポートしているDBMSは、2014年12月時点でOracle、DB2、SQLServer、
PostgreSQLです。

153

5.3SQLではループをどう表現するか

図5.19 再帰共通表式の実行計画（PostgreSQL）
--

 CTE Scan on explosion (cost=839.38..839.63 rows=1 width=72)

　 Filter: (depth = $3)

　 CTE explosion

 -> Recursive Union (cost=0.00..839.12 rows=11 width=22)

 -> Index Scan using idx_new_pcode on postalhistory (cost=0.00..8.27 rows=1 width=18)

 Index Cond: (new_pcode IS NULL)

 Filter: (name = 'A'::bpchar)

 -> Nested Loop (cost=0.00..83.06 rows=1 width=22)

 Join Filter: (parent.name = child.name)

 -> WorkTable Scan on explosion parent (cost=0.00..0.20 rows=10 width=44)

 -> Index Scan using idx_new_pcode on postalhistory child (cost=0.00..8.27 rows=1

width=18)

 Index Cond: (new_pcode = parent.pcode)

　 InitPlan 2 (returns $3)

 -> Aggregate (cost=0.25..0.26 rows=1 width=4)

 -> CTE Scan on explosion (cost=0.00..0.22 rows=11 width=4)

　「Recursive Union」の処理が再帰計算を意味しています。これは、何回引
越しが行われても対応できるという点で柔軟性の高いクエリです注16。途中
に「WorkTable」という単語が見えますが、これはExplosionビューに何度も
アクセスするため、一時テーブルとして実体化していることを示します。
この一時テーブルともとのPostalHistoryテーブルをインデックス「idx_

new_pcode」を使ったNested Loopsを行っているわけで、かなり効率的な
計画です。この実行計画は、Oracleでもほぼ同じになります（リスト5.11、
図5.20）。

リスト5.11 一番古い住所を検索する（Oracle版）
WITH Explosion (name, pcode, new_pcode, depth)

AS

(SELECT name, pcode, new_pcode, 1

　 FROM PostalHistory

　WHERE name = 'A'

 AND new_pcode IS NULL -- 探索の開始点
 UNION ALL

 SELECT Child.name, Child.pcode, Child.new_pcode, depth + 1

　 FROM Explosion Parent, PostalHistory Child

注16 実装で決められている再帰計算の最大数までですが。

154

第5章 ループ　手続き型の呪縛

　WHERE Parent.pcode = Child.new_pcode

 AND Parent.name = Child.name)

-- メインのSELECT文
SELECT name, pcode, new_pcode

　FROM Explosion

 WHERE depth = (SELECT MAX(depth)

 FROM Explosion);

図5.20 再帰共通表式の実行計画（Oracle版）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 3 | 102 | 9 (23)| 00:00:01 |

| 1 | TEMP TABLE TRANSFORMATION | | | | | |

| 2 | LOAD AS SELECT | SYS_TEMP_0FD9D6609_6829E | | | | |

| 3 | UNION ALL (RECURSIVE WITH) BREADTH FIRST| | | | | |

|* 4 | TABLE ACCESS FULL | POSTALHISTORY | 1 | 15 | 2 (0)| 00:00:01 |

| 5 | NESTED LOOPS | | | | | |

| 6 | NESTED LOOPS | | 2 | 80 | 3 (0)| 00:00:01 |

| 7 | RECURSIVE WITH PUMP | | | | | |

|* 8 | INDEX RANGE SCAN | IDX_NEW_PCODE | 3 | | 0 (0)| 00:00:01 |

|* 9 | TABLE ACCESS BY INDEX ROWID | POSTALHISTORY | 2 | 30 | 1 (0)| 00:00:01 |

|* 10 | VIEW | | 3 | 102 | 2 (0)| 00:00:01 |

| 11 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6609_6829E | 3 | 102 | 2 (0)| 00:00:01 |

| 12 | SORT AGGREGATE | | 1 | 13 | | |

| 13 | VIEW | | 3 | 39 | 2 (0)| 00:00:01 |

| 14 | TABLE ACCESS FULL | SYS_TEMP_0FD9D6609_6829E | 3 | 102 | 2 (0)| 00:00:01 |

　「SYS_TEMP_0FD9D6609_6829E」という名前のオブジェクトが
Explosionビューを意味します注17。あとは、インデックスを使ってNested

Loopsを使う点も同じです。
　この解は標準SQLに沿った方法なので、その意味では実装依存ではない
のですが、再帰共通表式は比較的新しい機能のため、まだ実装されていな
かったり実行計画が最適化されないこともあります。そのような場合の代
替手段を次に見てみましょう。

注17 この名前はOracleが機械的に割り振っているため、実行するたびに変わる可能性があります。

155

5.3SQLではループをどう表現するか

入れ子集合モデル

　SQLにおける階層構造の表現方法は、大きく3つあります。

❶隣接リストモデル

❷入れ子集合モデル

❸経路列挙モデル

　❶は上で見た方法で、RDBの誕生以前から階層構造の表現方法として使
用されてきた伝統的なものです。❸は更新がほとんど発生しないケースで
力を発揮する方法なので、今回のサンプルには適さないため説明は省略し
ます。重要なのは、❷の入れ子集合モデルです。この方法のポイントは、
各行のデータを集合（円）と見なして、階層構造を集合の入れ子関係で表現
することです。言葉で説明するより実際に見たほうが理解が早いでしょう。
リスト5.12のSQLを実行し、図5.21のようなテーブルを作成してくださ
い。

リスト5.12 郵便番号の履歴テーブル2の定義
CREATE TABLE PostalHistory2

(name CHAR(1),

 pcode CHAR(7),

 lft REAL NOT NULL,

 rgt REAL NOT NULL,

 CONSTRAINT pk_name_pcode2 PRIMARY KEY(name, pcode),

 CONSTRAINT uq_name_lft UNIQUE (name, lft),

 CONSTRAINT uq_name_rgt UNIQUE (name, rgt),

 CHECK(lft < rgt));

INSERT INTO PostalHistory2 VALUES ('A', '4130001', 0, 27);

INSERT INTO PostalHistory2 VALUES ('A', '4130002', 9, 18);

INSERT INTO PostalHistory2 VALUES ('A', '4130103', 12, 15);

INSERT INTO PostalHistory2 VALUES ('B', '4130041', 0, 27);

INSERT INTO PostalHistory2 VALUES ('C', '4103213', 0, 27);

INSERT INTO PostalHistory2 VALUES ('C', '4380824', 9, 18);

156

第5章 ループ　手続き型の呪縛

図5.21 郵便番号の履歴テーブル2

PostalHistory2（郵便番号履歴）
name（人名） pcode（現住所の郵便番号） lft rgt

A 4130001 0 27

A 4130002 9 18

A 4130103 12 15

B 4130041 0 27

C 4103213 0 27

C 4380824 9 18

　このモデルでは、郵便番号のデータを数直線上に存在する円として考え
ます。lftとrgtは、円の左端と右端の座標です。座標の数値は、大小関係さ
え適切であれば、任意の数値を用いることができます（整数である必要すら
ありません）。そして、引越しを行うたびに、新しい郵便番号が古い郵便番
号の「中に」含まれる形で追加されていきます。するとたとえば、Aさんの

3つの郵便番号の包含関係は図5.22のような入れ子の同心円で表せます。

図5.22 入れ子集合による階層構造の表現

　このとき、新たに挿入する郵便番号の座標は、外側の円の左端と右端の
座標を使って決めることができます。たとえば、外側の郵便番号の左端座
標をplft、右端座標をprgtとすると、次の数式によって自動的に追加ノード
の座標を計算できます。

4130001

0 9 12 15 18 27

4130002

4130103

157

5.3SQLではループをどう表現するか

・追加ノードの左端座標 = (plft * 2 + prgt) / 3　　　……(a)

・追加ノードの右端座標 = (plft + prgt * 2) / 3　　　……(b)

　これはつまり、plftとprgtによって与えられた区間を3つの区間に分割す
る2点の座標を求めているのと同じです。lftと rgtのデータ型に実数型
（REAL）を使うことで、実装の許す精度の範囲内であれば、低コストでい
くらでも入れ子を深くしていくことができます。
　この入れ子集合モデルのテーブルを前提とすれば、Aさんの最も古い住
所を求めるクエリは非常に単純に書けます。というのも、これはつまり、
「一番外側の円を求める」ことと同義になるからです。一番外側の円とは、
すなわちほかのどの円にも含まれない円ということですから、NOT EXISTS

を使えば簡単です（リスト5.13）。「左端の座標が、ほかのすべての円の左
端の座標よりも小さい」という条件に合致する円を選択すればよいのです。

リスト5.13 一番外側の円を求める
SELECT name, pcode

　FROM PostalHistory2 PH1

 WHERE name = 'A'

　 AND NOT EXISTS

 (SELECT *

 FROM PostalHistory2 PH2

 WHERE PH2.name = 'A'

 AND PH1.lft > PH2.lft);

　実行計画を見てみましょう（図5.23、図5.24）。

図5.23 入れ子集合モデルの実行計画（PostgreSQL）
--

 Nested Loop Anti Join (cost=0.00..2.27 rows=2 width=10)

 Join Filter: (ph1.lft > ph2.lft)

 -> Seq Scan on postalhistory2 ph1 (cost=0.00..1.08 rows=3 width=14)

 Filter: (name = 'A'::bpchar)

 -> Materialize (cost=0.00..1.09 rows=3 width=4)

 -> Seq Scan on postalhistory2 ph2 (cost=0.00..1.08 rows=3 width=4)

 Filter: (name = 'A'::bpchar)

158

第5章 ループ　手続き型の呪縛

図5.24 入れ子集合モデルの実行計画（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 2 | 42 | 5 (0)| 00:00:01 |

| 1 | NESTED LOOPS ANTI | | 2 | 42 | 5 (0)| 00:00:01 |

| 2 | TABLE ACCESS BY INDEX ROWID| POSTALHISTORY2 | 2 | 26 | 2 (0)| 00:00:01 |

|* 3 | INDEX RANGE SCAN | PK_NAME_PCODE2 | 2 | | 1 (0)| 00:00:01 |

|* 4 | TABLE ACCESS BY INDEX ROWID| POSTALHISTORY2 | 1 | 8 | 2 (0)| 00:00:01 |

|* 5 | INDEX RANGE SCAN | UQ_NAME_LFT | 1 | | 1 (0)| 00:00:01 |

　Oracle、PostgreSQLともに、外側のテーブル（PH1）と内側のテーブル
（PH2）を一度だけNested Loopsで結合するという実行計画です注18。再帰計
算の必要もありません。PostgreSQLではテーブルのフルスキャンが行われ
ていますが、これはテーブル件数が少ないためで、件数が増えればOracle

のようにインデックスを利用するプランが立てられるでしょう。したがっ
て、テーブル件数が増えても、処理時間の増加は緩やかであることが期待
できます。この入れ子集合のコードが再帰よりも速いかどうかは一概には
判断できませんが、問題をコーディングではなくモデル（エンティティの構
造）のレベルから解決するという高い視点からの解法もあるのだということ
は理解していただけたと思います。この観点からの効率化については、第
9章でも取り上げます。

5.4
バイアスの功罪

　本章の締めくくりとして、なぜシステムの世界にはループ依存症的な「ぐ
るぐる系」のプログラムが溢れているのかについて考えてみます。

注18 PostgreSQLもOracleも、「NESTED LOOPS」の後ろに「ANTI」とついているのは、通常の結合が
条件にマッチする行を見つけるのに対し、今回はNOT EXISTSを使っているので、「1行もマッチし
ない」行を見つける動作になっているためです。マッチしない行を見つけた時点でPH2テーブルの
検索を打ち切れるため、EXISTSよりも高速なことが期待できる処理であり、これもまた、入れ子集
合モデルに有利な条件です。なお、実行計画は環境によって変わる可能性があるため、みなさんの
環境では異なる実行計画が表示されることもあります。

159

5.4バイアスの功罪

　本章の冒頭で、「ループに依存するのは病気だ」と言いました。しかし、
病気とは言っても、これはけっして100％悪い病気ではありません。本章
でも見たように、ぐるぐる系にも利点はあります。手続き型から集合指向
へのパラダイムシフトを促すためにあえて「病気」という扇動的な言葉を使
いましたが、実際のところ、これはバイアス（色眼鏡）と呼んだほうが近い
ものです。そして人間は、何らかのバイアスなしには、そもそも物事を観
察したり分析することはできません。だから、バイアスを持つことそのも
のが悪いわけではありません。ただ、一つのバイアスに凝り固まってしま
うと、違う視点から物事を考えられなくなります。バイアスというのはそ
の点で呪いみたいなもので、私たちの思考を常に規定し、縛ろうとします。
　私たちのほとんど全員がループ依存症に（少なくとも一度は）罹ります。
その理由は、これが手続き型言語とファイルシステムの心理モデルだから
です。プログラミングを覚えるとき、私たちは皆まず何かしら手続き型言
語を使って勉強します。「最初に覚えた言語は関数型です」という人が半数
を超すにはもう数年かかるでしょう。手続き型言語でファイルをオープン
し、レコードを1行ずつ読み込んでビジネスロジックに基づいた処理を行
い、最後にファイルをクローズする。まずはそういう処理モデルでプログ
ラミングを覚えます。問題は、このモデルが強力すぎて、ほとんどすべて
の問題に対する最適解であるかのような錯覚を引き起こすことです。心理
学には「金槌しか持っていない人にはすべての問題が釘に見えてくる」とい
う格言がありますが、ループは強力すぎる金槌です。
　SQLは、本章の最初で紹介したCoddの言葉からもわかるように「脱・手
続き型」を目指した言語です。DBMSも内部的には手続き型言語で作られ
ており、実際の物理データへのアクセスは手続き的に行っているのですが、
その手続きレイヤを隠蔽することがSQLの理念でした注19。そのため、私た
ちはSQLを使うとき、手続き型の強力な磁場から逃れる努力をしなければ
ならず、それが多くのエンジニアにとって負担に感じられます。これが、
SQLが嫌われる理由の一つです。「ぐるぐる系」は、そのようなSQLの世界
を上からさらに隠蔽し、手続き型の世界へ帰還する心地良い解決策です。
言ってみれば、SQLはこのとき、サンドイッチのように手続き型のレイヤ

注19 実行計画で結合アルゴリズムにNested Loopsなどを見ると、「SQLも結局、中では1行ずつ処理し
てるんだよなあ」という感慨を抱くのは私だけでしょうか。

160

第5章 ループ　手続き型の呪縛

に挟まれている状態なのです（図5.25）。

図5.25 手続き型のサンドイッチ構造

　ですが、本当にRDBでハイパフォーマンスを実現しようとするならば、
一度手続き型のバイアスを引き剥がして、重力から自由になる必要があり
ます。そのうえで、ぐるぐる系とガツン系の利点と欠点を考慮し、どちら
の処理方式を採用するかを冷静に判断しなければならないのです。SQLが

持つ強力な道具とチューニング手段を活用するためにも、みなさんにはぜ
ひ集合指向の考え方を身につけていただきたいと思います。

アプリケーション（手続き型）

SQL（集合指向）

実行計画（手続き型）

161

5.4バイアスの功罪

第5章のまとめ

・私たちはみなループ依存症に罹っている

・SQLは意図的にループを追放したので、そこのところで文句をつ
けられても困る

・ぐるぐる系はパフォーマンスに大きな欠点を抱えているが、いく
つかの長所もある

・ただし、ぐるぐる系にほとんどパフォーマンスチューニングのポ
テンシャルがないことには注意が必要

・ここでもやはりトレードオフを考えて、ぐるぐる系とガツン系の
どちらを採用するか判断する必要がある

演習問題5

　リスト5.3（139ページ）と同値なSQL文を相関サブクエリを使って作って
ください。
 ➡解答は338ページ

163

結合
結合を制する者はSQLを制す

第6章

164

第6章 結合　結合を制する者はSQLを制す

　RDBを使っていて、結合（join）という演算を使わないシステムはありま
せん。RDBでは、設計のセオリーとして正規化注1というプロセスを踏むた
め、必然的にテーブルの数が増えます。そうすると、複数のテーブルに散
在するデータを統合──「逆正規化」──したり、あるいは結果に含めたい
データを得るために、私たちはさまざまな種類の結合を利用します。
　結合演算は、SQLの演算の中では比較的イメージをつかみやすいもので
す。少なくとも、相関サブクエリやCASE式に比べれば、テーブルとテー
ブルをつなげて新しいテーブルを作り出す、という基本動作はたいへんシ
ンプルです。その一方で、結合はバリエーションが多く、どういう場合に
どういう結合を使うのが適切なのか、迷うこともしばしばです。
　本章ではまず、SQLで利用される結合について、どのような種類の結合
がどういう動作を行うかの整理を行います。軸となるのは、内部結合と外
部結合の違いです。
　次に、結合を行う際に利用される内部アルゴリズムの観点から説明しま
す。なぜ結合のアルゴリズムが重要かと言えば、これが結合のパフォーマ
ンスを決定し、そして結合はSQLのパフォーマンスを決定するからです。
すなわち、結合アルゴリズムはSQLのパフォーマンスを大きく左右する要
因なのです。ここで基本となるアルゴリズムは、Nested Loops（入れ子ル
ープ、多重ループ）です。
　結合はデータベースエンジニアにとっては非常にポピュラーな演算であ
る一方、DBMS内部でどのような結合アルゴリズムが選択されているかま
で意識しているユーザは、あまり多くありません。本当は、そんなものを
意識せずに済むほうがユーザから見れば便利なのですが、パフォーマンス
を求められるクエリにおいては、結合アルゴリズムの最適化を行う必要が
あることも少なくありません。結合を制する者がSQLを制するのです。

注1 更新時のデータ整合性を保つため、データの冗長性を排除したりキーとなる列とそれ以外の列との
関係を明確にするための操作です。この正規化の過程において、テーブルを分割するという操作が
行われます。

165

6.1機能から見た結合の種類

6.1
機能から見た結合の種類

　SQLには「結合」と名のつく演算が多く出てきます。ざっと挙げてみまし
ょう。

・クロス結合

・内部結合

・外部結合

・自己結合

・等値結合／非等値結合

・自然結合

　これらのうち、機能的な観点から分類されているのは、クロス結合、内
部結合、外部結合だけです。この3つは、生成する結果のタイプから名づ
けられており、それぞれの名前が互いに関連を持っています。この3つは

互いに排他的な分類なので、「内部結合かつ外部結合」のような結合はあり
ません。これらについてはこのあと詳しく取り上げます。
　他方、等値結合／非等値結合は結合条件として等号（＝）を使うか、それ
以外の不等号（＞、＞＝など）を使うかの違いを意味するだけなので、「外部
結合かつ非等値結合」といった組み合わせがありえます。自然結合は最も頻
繁に使う「内部結合かつ等値結合」を簡略的な構文で記述できるようにした
ものです（コラム「自然結合の構文」参照）。
　自己結合は？ これは個人的な意見ですが、私はこれを一つの結合のカテ
ゴリとして立てる意味はないと考えています。理由はあとで述べます。

クロス結合──すべての結合の母体

　結合について話をするにあたり、まずクロス結合（cross join）から始めた
いと思います。最初に断っておくと、このクロス結合は、実務で使う機会
はほとんどありません。これまで1回も使ったことがないとか、存在を知
らなかったという人もいるでしょう。それをあえて最初に解説するのは、
SQLにおける結合という演算を理解するには、クロス結合を理解してもら

166

第6章 結合　結合を制する者はSQLを制す

　本章では演算のタイプという観点から、クロス結合、内部結合、外部結合とい
う3つの結合の関係を取り上げました（自己結合は、本文でも書いたように、私は
あえて独自のカテゴリを作る必要はないと思っています）。
　本文では取り上げませんでしたが、「～結合」という名前のついている演算とし
て、「自然結合」（natural join）があります。これは、次のような構文で記述します。

SELECT *

　FROM Employees NATURAL JOIN Departments;

　自然結合においては結合条件は記述せず、暗黙に結合されるテーブルの同じ名
前の列が等号で結ばれます。したがってこれを普通の内部結合で書き換えるとこ
うなります。

SELECT *

　FROM Employees E INNER JOIN Departments D

 ON E.dept_id = D.dept_id;

　自然結合は、一応標準SQLで定義されている構文ですので、その点で方言性は
なく、どの実装でも使えるのですが、あえて使う必要はないと思います。自然結
合のメリットは、頻繁に使う（＝「自然」な）等値結合を短い記述量で書けるという
ことですが、しかし別に内部結合で書いてもそんなに記述量が増えるわけでもあ
りません。一方で、等値条件しか記述できない、列名が異なったりデータ型が違
うと適用できない、などの制約がつくため、拡張性に乏しいというデメリットが
あります。また、テーブル定義をよく理解していないとクエリの結合条件が読み
取れないため、可読性も良くありません。
　この自然結合と内部結合の中間みたいな道具として、USING句というのもありま
す。上の2つと同等のクエリをUSINGを使って表現すると、次のようになります。

SELECT *

　FROM Employees INNER JOIN Departments

 USING (dept_id);

　このUSING句も標準SQLで定義されてはいますが、やはり等値条件しか記述
できずテーブル間で列名が異なる場合もアウトという、自然結合とほとんど同じ
機能的制限を受けます。結合式で使う列名を明示している点で、可読性は自然結
合よりマシですが。
　結論としては、特殊な事情がない限り内部結合を使っていればよい、というこ
とです。

自然結合の構文

C o l u m n

167

6.1機能から見た結合の種類

うことが一番の近道だからです。急がば回れです。

クロス結合の動作

　サンプルに使うのは図6.1のような簡単なテーブルです。リスト6.1のよ
うにして作成します。

図6.1 クロス結合を行う社員テーブルと部署テーブル

Employees（社員）
emp_id（社員ID） emp_name（社員名） dept_id（部署ID）

001 石田 10

002 小笠原 11

003 夏目 11

004 米田 12

005 本 12

006 岩瀬 12

リスト6.1 クロス結合を行うサンプルテーブルの定義
CREATE TABLE Employees
(emp_id CHAR(8),
 emp_name VARCHAR(32),
 dept_id CHAR(2),
 CONSTRAINT pk_emp PRIMARY KEY(emp_id));

CREATE TABLE Departments
(dept_id CHAR(2),
 dept_name VARCHAR(32),
 CONSTRAINT pk_dep PRIMARY KEY(dept_id));
 INSERT文は省略

　社員およびその所属部署を管理しています。この2つのテーブルに対し
てクロス結合を行う構文は、リスト6.2のようになります。

リスト6.2 クロス結合
SELECT *
　FROM Employees
 CROSS JOIN
 Departments;

　さて、それでは質問です。この結果の行数は何行でしょう？ これはクロ

ス結合の定義を知っているかどうかだけの問題ですので、あまり深く考え

Departments（部署）
dept_id（部署ID） dept_name（部署名）

10 総務

11 人事

12 開発

13 営業

168

第6章 結合　結合を制する者はSQLを制す

ずに回答してください。
　正解は24行。計算方法は、社員テーブルの行数6と、部署テーブルの行
数4の掛け算（6×4）です。結果を全部表示するとちょっと多いのですが、
図6.2のようになります。

図6.2 リスト6.2の実行結果
emp_id| emp_name| dept_id | dept_id | dept_name

------+---------+---------+---------+---------

001 | 石田 |10 | 10 | 総務
001 | 石田 |10 | 11 | 人事
001 | 石田 |10 | 12 | 開発
001 | 石田 |10 | 13 | 営業
002 | 小笠原 |11 | 10 | 総務
002 | 小笠原 |11 | 11 | 人事
002 | 小笠原 |11 | 12 | 開発
002 | 小笠原 |11 | 13 | 営業
003 | 夏目 |11 | 10 | 総務
003 | 夏目 |11 | 11 | 人事
003 | 夏目 |11 | 12 | 開発
003 | 夏目 |11 | 13 | 営業
004 | 米田 |12 | 10 | 総務
004 | 米田 |12 | 11 | 人事
004 | 米田 |12 | 12 | 開発
004 | 米田 |12 | 13 | 営業
005 | 本 |12 | 10 | 総務
005 | 本 |12 | 11 | 人事
005 | 本 |12 | 12 | 開発
005 | 本 |12 | 13 | 営業
006 | 岩瀬 |12 | 10 | 総務
006 | 岩瀬 |12 | 11 | 人事
006 | 岩瀬 |12 | 12 | 開発
006 | 岩瀬 |12 | 13 | 営業

　クロス結合は、数学的には直積とかデカルト積と呼ばれる演算で、結合
対象となる2つのテーブルのレコードから、可能なすべての組み合わせ網
羅する演算です。したがって、社員テーブル1行に対して部署テーブル4行
が結合されるため、結果的には6×4＝24行になるわけです。

クロス結合が実務で使われない理由

　クロス結合を実務では使わない理由は、2つあります。

169

6.1機能から見た結合の種類

・実際にこういう結果を求めたいケースがない

・非常にコストがかかる演算である

　クロス結合は、その結果行数の多さからも想像がつくように、数ある結
合演算の中で最も高コストです。実行時間が長くハードウェアリソースも
多く消費します。パフォーマンス観点からは良いところなしの結合です。

うっかりクロス結合
　クロス結合が実務のクエリに現れることがある一番ありがちなケースは、
リスト6.3のように古い結合構文を使って、うっかり結合条件を書き忘れ
てしまった場合です。

リスト6.3 うっかりクロス結合：WHERE句に結合条件がない！
SELECT *

　FROM Employees, Departments;

　この場合、結合条件がないため、DBMSはしかたなくテーブル同士の全
行を組み合わせようとします（それ以外にやりようがありません）。これを
俗に「うっかりクロス結合」と呼びます。巨大なテーブルに対してこのよう
なポカミスをやると、いつまで待っても結果が返ってこないという悲劇に
見舞われます。これを見ると、「結合条件を書き忘れるなんてそんな間抜け
なことしないよ」という反応をする人もいるかもしれません。たしかに、ク
エリで使うテーブルが2つだけならそうでしょう。しかし、実際には3つ

以上のテーブルを結合することも多く、そうした場合には結合条件も複数
記述する必要があります。そのときに、記述漏れが発生するケースがある
のです。
　これを確実に防ぐには、きちんと標準SQL準拠の結合構文を使うようコ
ーディング規約を定めることです。「INNER JOIN」のような標準SQLの構
文では、結合条件がないとDBMSは構文エラーとして実行を拒否するので、
こうしたミスを未然に防止できます。標準語を守ることには、こういうメ
リットもあります。なお、クロス結合が意図せず発生するケースはもう一
つあるのですが、これについてはあとで詳しく解説します。
　さて、そんなわけでおよそ使い道のないクロス結合ですが、これを最初
に解説したのは、この演算がほかのすべての結合演算の母体だからです。

170

第6章 結合　結合を制する者はSQLを制す

内部結合と外部結合は、このクロス結合を基準にして考えると簡単に理解
できます。

内部結合──何の「内部」なのか

　内部結合（inner join）は、一番よく使う結合の種類です。ほとんどのSQL

の参考書では、結合と言えば最初に内部結合から話を始めます。構文につ
いてはすでにご存じの方も多いでしょうが、一応紹介しておきます。引き
続き、先ほどのサンプルデータを使います。

内部結合の動作

　今、図6.1（167ページ）の社員テーブルだけ見ると、社員の部署名はわか
りません。わかるのは部署 IDだけです。部署名を知るためには、部署テー
ブルの部署名（dept_name）列の情報を持ってこなくてはなりません。この
ときの結合キーはもちろん、どちらのテーブルにも存在している部署 ID

（dept_id）列になります（リスト6.4）。

リスト6.4 内部結合を実行
SELECT E.emp_id, E.emp_name, E.dept_id, D.dept_name

　FROM Employees E INNER JOIN Departments D

 ON E.dept_id = D.dept_id;

 実行結果

emp_id| emp_name| dept_id | dept_name

------+---------+---------+----------

001 | 石田 | 10 | 総務
002 | 小笠原 | 11 | 人事
003 | 夏目 | 11 | 人事
004 | 米田 | 12 | 開発
005 | 本 | 12 | 開発
006 | 岩瀬 | 12 | 開発

　この結果と、先ほどのクロス結合の結果とを見比べたとき、何か気づく
ことはないでしょうか。実は内部結合の結果は、そのすべてがクロス結合
の結果の一部、つまり部分集合になっています（図6.3）。

171

6.1機能から見た結合の種類

図6.3 内部結合の結果は必ずクロス結合の部分集合になる
（クロス結合後の表内の網掛け部分が内部結合の結果）

emp_id
（社員 ID）

emp_name
（社員名）

dept_id
（部署 ID）

dept_id
（部署 ID）

dept_name
（部署名）

001 石田 10 13 営業

001 石田 10 12 開発

001 石田 10 11 人事

001 石田 10 10 総務

002 小笠原 11 13 営業

002 小笠原 11 12 開発

002 小笠原 11 10 総務

002 小笠原 11 11 人事

003 夏目 11 11 人事

003 夏目 11 12 開発

003 夏目 11 13 営業

003 夏目 11 10 総務

004 米田 12 11 人事

004 米田 12 12 開発

004 米田 12 13 営業

004 米田 12 10 総務

005 本 12 12 開発

005 本 12 11 人事

005 本 12 10 総務

005 本 12 13 営業

006 岩瀬 12 11 人事

006 岩瀬 12 10 総務

006 岩瀬 12 13 営業

006 岩瀬 12 12 開発

　内部結合という語の由来はここにあります。内部とは「直積の部分集合」
という意味です。そのため、内部結合の演算を行うアルゴリズムとしても、
一度クロス結合の結果を作ってから結合条件でフィルタリングをかける、
という方法が最も単純です。もっとも、実際にDBMSが内部結合を実行す
るアルゴリズムはこれとは異なります。理由は先ほども触れたとおり、ク
ロス結合の実行コストが並外れて高いからです。実際は、最初から結合対
象をなるべく絞り込むように動作します。詳細は「結合のアルゴリズムとパ
フォーマンス」（177ページ）で解説します。

内部結合と同値の相関サブクエリ
　内部結合は、機能的に相関サブクエリを使って代替可能なことが多くあ

172

第6章 結合　結合を制する者はSQLを制す

ります。たとえば、リスト6.4のコードを相関サブクエリで書き換えると
リスト6.5のようになります。

リスト6.5 リスト6.4を相関サブクエリで書き換えた例
SELECT E.emp_id, E.emp_name, E.dept_id,

 (SELECT D.dept_name

 FROM Departments D

 WHERE E.dept_id = D.dept_id) AS dept_name

　FROM Employees E;

　これを最初に見たときにちょっと驚く人もいますが、ロジックは見た目
ほどトリッキーではありません。emp_id、emp_name、dept_idの3列は普
通に社員テーブルから選択しているだけですので、肝心なのは部署名（dept_

name）を選択している最後の列です。相関サブクエリの内部で結合条件を
記述しているのですが、dept_idは部署テーブルの主キーですから、これで
条件を指定すればレコードが1行に定まることが保証されます（これは主キ
ーの定義そのものです。）。したがって、この相関サブクエリは常にスカラ
サブクエリ注2として利用可能なことが保証される、というしかけです。
　では内部結合と相関サブクエリとどちらを用いるのがよいか、という点
ですが、基本的に結合で記述できる限りは結合を選択するのがよいでしょ
う。と言うのも、相関サブクエリをスカラサブクエリとして使うと、結果
行数の数だけ相関サブクエリを実行することになるため、かなり高コスト
な処理になるからです。

外部結合──何の「外部」なのか

　外部結合（outer join）は、内部結合の次によく使われます。「内部」と「外部」
という名称が示唆するように、これは内部結合と排他的な演算です。「内
部」が「直積の部分集合」という含意を持っていたことからも類推できるとお
り、「外部」とは「直積の部分集合にならない」という意味です。誤解しない
でもらいたいのは、常に部分集合にならないわけではなく、「データの状態
によってそういうこともある」という点です。サンプルデータで確認してみ

注2 戻り値が単一の値（これを「スカラ値」と呼ぶ）になるクエリのことで、その性質からSELECT句に記
述できます。

173

6.1機能から見た結合の種類

ましょう。

外部結合の動作

　外部結合には、次の3種類があります。

・左外部結合

・右外部結合

・完全外部結合

　このうち左外部結合と右外部結合は実質的には同じ機能を持っています。
ただ、マスタとなるテーブルを左に書くなら左外部結合、右に書くなら右
外部結合、というだけの話です。したがって、リスト6.6の2つのコードの

結果はまったく同じです。

リスト6.6 左外部結合と右外部結合
--左外部結合の場合（左のテーブルがマスタ）
SELECT E.emp_id, E.emp_name, E.dept_id, D.dept_name

　FROM Departments D LEFT OUTER JOIN Employees E

 ON D.dept_id = E.dept_id;

--右外部結合の場合（右のテーブルがマスタ）
SELECT E.emp_id, E.emp_name, D.dept_id, D.dept_name

　FROM Employees E RIGHT OUTER JOIN Departments D

 ON E.dept_id = D.dept_id;

 実行結果

emp_id| emp_name | dept_id | dept_name

------+----------+---------+----------

001 | 石田 | 10 | 総務
002 | 小笠原 | 11 | 人事
003 | 夏目 | 11 | 人事
004 | 米田 | 12 | 開発
005 | 本 | 12 | 開発
006 | 岩瀬 | 12 | 開発
NULL | NULL | 13 | 営業 ←この行はクロス結合では生成されない

※ 「NULL」と表示されているところは、PostgreSQLやOracleでは空欄で表示されるが、便宜上「NULL」と
表記しています。MySQLだと「NULL」と表示されます。

　実行結果の最終行を見るとわかるとおり、外部結合の結果には、マスタ
側のテーブルだけに存在するキーがあった場合そのキーを削除せず、結果
に保存するよう動作します。そのため、キーの値をすべて網羅するレイア

174

第6章 結合　結合を制する者はSQLを制す

ウトのレポートを作る場合に多用されます。

外部結合と内部結合の違い

　実行結果のうち、上6行は内部結合の結果と同じで、違うのは最終行で
す。これは内部結合はもちろん、クロス結合の結果のどの行とも一致しま
せん。いわば「外部に」はみ出しているわけです。これが外部結合という名
前の由来です。外部結合の結果がクロス結合の結果の部分集合にならない
のは、外部結合がマスタ側のテーブルの情報を保存するよう動作し、その
結果NULLを生成するからです。一方、クロス結合や内部結合は、NULL

を生成することはありません。
　クロス結合、内部結合、外部結合の3つの関係をベン図で表現すると、図
6.4のようになります。内部結合は完全にクロス結合に包含される形にな
り、外部結合は、クロス結合の枠内に収まらない部分を持ちます。

図6.4 クロス結合、内部結合、外部結合の関係

自己結合──自己とは誰のことか

　自己結合（self join）は、文字どおり自分自身と結合する演算で、要するに
同じテーブル（あるいは同じビュー）を使って結合を行うものです。これは、
先に解説してきた3種類の結合とはちょっと毛色が違います。というのも、
自己結合というのは生成される結果を基準とした分類ではなく、演算の対
象に何を使うかという点が問題になっているからです。その証拠に、自己

クロス結合

内部結合

外部結合

175

6.1機能から見た結合の種類

結合は、「自己結合＋クロス結合」「自己結合＋外部結合」というように、ほ
かの結合との組み合わせも可能です。これは、「内部結合＋外部結合」のよ
うな組み合わせがありえないことと対照的です。

自己結合の動作
　ちょっとパズル的な問題をサンプルに使って考えてみましょう。図6.5
のような1行に1つの数字を持つ10行の「数字」テーブルを作ります。この
テーブルに対して「自己結合＋クロス結合」を行います。コードはリスト6.7
のものを使います。

図6.5 自己結合を解説するための数字テーブル

Digits

digit（数字）

0

1

2

3

4

5

6

7

8

9

リスト6.7 自己結合＋クロス結合
SELECT D1.digit + (D2.digit * 10) AS seq

　FROM Digits D1 CROSS JOIN Digits D2;

　さて、このコードの結果が具体的にどうなるかを考える前に、行数が何
行になるかを考えてください。
　できましたか？ 答えは100行です。クロス結合において結果の行数は、
結合対象となるテーブルの行数の掛け算になるのでしたね。この場合、結
合対象はDigits（D1）およびDigits（D2）ですので、どちらも10行です。し
たがって10×10が答えになります。ちなみにこのクエリの結果は、0から

99までの連番になります（図6.6）。

176

第6章 結合　結合を制する者はSQLを制す

図6.6 リスト6.7の実行結果
seq

　0

　1

　2

 略
 97

 98

 99

　図6.6は見やすいように昇順で結果を表示していますが、もちろんORDER

BY句のない場合、結果の順序は不定です。

自己結合の考え方

　自己結合を行う場合、一般的に同じテーブルに別名（この場合はD1とD2）
をつけて、それらをあたかも別のテーブルであるかのように扱います。と
いうより、クエリの動作を把握するためだけであれば、本当にこれらは別
のテーブルであると考えてかまいません。つまり、D1とD2を、偶然保持
するデータがまったく同一だった2つの異なる名前のテーブルとみなしま
す（図6.7）。そうすると、リスト6.7のクエリは単純に、D1およびD2を対
象としたクロス結合とみなすことができます。

図6.7 D1とD2はデータが同一の異なる名前のテーブルと考える

　以上のような事情から、私は個人的に、結合の種類として自己結合とい
う特別の分類は不要だと考えています。物理レベルで見れば、同一のテー

digit

0

1

2

3

4

5

6

7

8

9

D1

digit

0

1

2

3

4

5

6

7

8

9

D2

177

6.2結合のアルゴリズムとパフォーマンス

ブルと結合しているのですが、論理レベルで見れば、異なる2つのテーブ

ルを結合していると考えてもかまわないからです。

6.2
結合のアルゴリズムとパフォーマンス

　これまでは、結合によって生成される結果を基準にして結合を分類して
きました。ここからは、SQLで結合演算を行う場合、内部で選択されるア
ルゴリズムを基準にして結合について考えていきます。
　オプティマイザが選択可能な結合アルゴリズムは、大きく次の3つがあ

ります。

❶Nested Loops

❷Hash

❸Sort Merge

　オプティマイザがどのアルゴリズムを選択するかは、データサイズや結
合キーの分散といった要因にも依存しますが、最も頻繁に見るアルゴリズ
ムはNested Loopsで、各種の結合アルゴリズムの基本となるアルゴリズム
です。次に重要なのがHashです。Sort Mergeはこの2つに比べると重要性
は一段下がります。
　これら3つのアルゴリズムは多くのDBMSがサポートしていますが、
MySQLのように、Nested Loopsとその派生バージョンしかサポートして
おらず、HashやSort Mergeを使用しないDBMSもあります。また、これ
ら基本アルゴリズムの派生バージョンをサポートするDBMSもあります注3。
このあたりの事情は、今後のDBMSのバージョンアップに伴う機能拡充に
よって変化していくので、自分が主に使っているDBMSの最新動向には目
を配っておきましょう。

注3 Oracle、PostgreSQL、SQL Server、DB2は2014年12月時点において、3つのアルゴリズムをす
べてサポートしています。また、OracleのBatching Nested LoopsやMySQLのBatched Key
Access Joinなど、Nested Loopsの変化バージョンをサポートしている実装もありますが、こうし
た諸バージョンについては本書では取り上げないので、各実装のマニュアルを参照してください。

178

第6章 結合　結合を制する者はSQLを制す

Nested Loops

Nested Loopsの動作

　Nested Loopsは、名前のとおり入れ子のループを使うアルゴリズムです。
SQLでは、結合は常に1度につき2つのテーブルしか結合しないため、こ
れは実質的に二重ループと同じ意味です。動作イメージを図で表現すると、
図6.8のようになります。

図6.8 Nested Loopsのイメージ

❶結合対象となるテーブル（Table_A）を1行ずつループしながらスキャンする。
このテーブルを駆動表（driving table）または外部表（outer table）と呼ぶ注4。もう一
方のテーブル（Table_B）は「内部表（inner table）」と呼ぶ注5。

❷駆動表の1行について、内部表を1行ずつスキャンして、結合条件に合致すれ
ばそれを返却する

❸この動作を駆動表のすべての行に対して繰り返す

　それほど複雑な動作ではないので、イメージはつかみやすいでしょう。
このNested Loopsには、次のような特徴があります。

・Table_A、Table_Bの結合対象の行数をR(A)、R(B)とすると、アクセスされる
行数はR(A)×R(B)となる。Nested Loopsの実行時間はこの行数に比例する注6

注4 「駆動」とは「処理を開始する」という意味、「外部」とは、「二重ループの外側のループでアクセスされる」
という意味です。ときどきこの外部表を「外部結合で使用されるテーブル」という意味で使う人がいま
すが、これは誤用です。「外部表」ではなく「外側表」とか「内側表」という訳語であれば、こういう勘違い
も起きないので、訳語も紛らわしいのですが。なお、内部表にも、英語にはdriven-to tableという
driving tableに対応した呼称があるのですが、日本語で「被駆動表」と呼ぶことはあまりないようです。

注5 「二重ループの内側のループでアクセスされる」という意味です。
注6 Nested Loopsにはいくつかバリエーションがあり、それらにおいてはスキャン行数がR(A)×R(B)よ

りも少なくなることがあります。たとえば、EXISTS述語を使った場合の半結合（Semi-Join）や、NOT
EXISTSを使った場合の反結合（Anti-Join）では、必ずしも内部表のすべての行にアクセスする必要が
ないため、行数が減る傾向にあります。しかし、そうした場合も多重ループという基本ロジックは同じ
です。このEXISTS述語を使った場合の実行計画については、章末の演習問題で取り上げます。

outer loop
inner loopTable_A

・
・
・

Table_B

179

6.2結合のアルゴリズムとパフォーマンス

・1つのステップで処理する行数が少ないため、HashやSort Mergeと比べてあ
まりメモリを消費しない

・どのDBMSでも必ずサポートしている

　Nested Loopsは一見すると単純に見えますが、結合のパフォーマンスの
を握っていると言っても過言ではない重要なアルゴリズムです。特に、

A、Bどちらのテーブルを駆動表にするかが大きな要因となります。素朴
に考えると、どちらが駆動表でもアクセス行数はR(A)×R(B)、R(B)×R(A)

で変わらないように思われます。しかし実際は、駆動表の選択はNested

Loopsの性能において非常に重要な意味を持ちます。具体的に言うと、駆
動表が小さいほどNested Loopsの性能は良いものになります注7。
　 は、二重ループの外側と内側のループの処理が非対称なことにあります。

駆動表の重要性

　Nested Loopsの性能を改善するキーワードとして「駆動表に小さなテー
ブルを選ぶ」ということを聞いたことのある人もいると思います。これは大
方針として間違いではないのですが、実はある前提条件がないと意味がな
いので、なぜ駆動表が小さいほうが性能的に有利なのか、それが意味を持
つ条件は何なのか、その理由をここで理解しておきましょう。
　実際、上で解説したNested Loopsのしくみを前提すると、駆動表がどち
らのテーブルになっても、結局のところアクセスされる行数はR(A)×R(B)

で表現されるのだから、駆動表が小さかろうが大きかろうが、結合コスト
に違いはないように思われます。実は、この「駆動表を小さく」という格言
には、次のような暗黙の前提が隠れています。

 内部表の結合キーの列にインデックスが存在すること

　もし内部表の結合キーの列にインデックスが存在する場合、そのインデ
ックスをたどることによって、DBMSは駆動表の1行に対して内部表を馬
鹿正直にループする必要がなくなります。いわば内部表のループをある程
度スキップできるようになるのです（図6.9）。

注7 正確には、検索条件で行数が絞られたあとの駆動表の行数が小さいほど、ですが。

180

第6章 結合　結合を制する者はSQLを制す

図6.9 Nested Loopsの内部表にインデックスがある場合のイメージ

　理想的なケースでは、駆動表のレコード1行に対して内部表のレコード
が1行に対応していれば、内部表のインデックスをたどることでループす
ることなく1行を特定できるため、完全に内部表のループを省略できます。
この場合のアクセス行数は、R(A)×2になります。
　リスト6.4で取り上げた内部結合のクエリを例に考えましょう（リスト
6.8）。

リスト6.8 内部結合を実行（再掲）
SELECT E.emp_id, E.emp_name, E.dept_id, D.dept_name

　FROM Employees E INNER JOIN Departments D

 ON E.dept_id = D.dept_id;

　このとき、図6.10、図6.11のように内部表の結合キーのインデックス
（departments_pkey、PK_DEP）が使用されていれば、内部表のループをス
キップできるので、Nested Loopsが高速化されます注8。

図6.10 内部表のインデックスが使われるNested Loops（PostgreSQL）

 Nested Loop (cost=0.15..150.90 rows=510 width=212)

　 -> Seq Scan on employees e (cost=0.00..15.10 rows=510 width=130)

　 -> Index Scan using departments_pkey on departments d (cost=0.15..0.26 rows=1 width=94)

 Index Cond: (dept_id = e.dept_id)

図6.11 内部表のインデックスが使われるNested Loops（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

注8 駆動表は同じインデントのレベルにあって、上に位置するテーブルです。この場合は「Employees」
が駆動表です。

one loop
Table_A Table_B

 内部表に結合キーのインデックスでアクセス

181

6.2結合のアルゴリズムとパフォーマンス

--

| 0 | SELECT STATEMENT | | 6 | 150 | 4 (0)| 00:00:01 |

| 1 | NESTED LOOPS | | 6 | 150 | 4 (0)| 00:00:01 |

| 2 | TABLE ACCESS FULL | EMPLOYEES | 6 | 102 | 3 (0)| 00:00:01 |

| 3 | TABLE ACCESS BY INDEX ROWID| DEPARTMENTS | 1 | 8 | 1 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_DEP | 1 | | 0 (0)| 00:00:01 |

--

　しかし、図6.12、図6.13のように内部表の結合キーのインデックスが
使われないと、駆動表を小さくするメリットが少なくなります注9。

図6.12 内部表のインデックスが使われないNested Loops（PostgreSQL）
--

 Nested Loop (cost=0.00..5005.38 rows=510 width=212)

　 Join Filter: (e.dept_id = d.dept_id)

　 -> Seq Scan on departments d (cost=0.00..16.50 rows=650 width=94)

　 -> Materialize (cost=0.00..17.65 rows=510 width=130)

 -> Seq Scan on employees e (cost=0.00..15.10 rows=510 width=130)

図6.13 内部表のインデックスが使われないNested Loops（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 6 | 150 | 10 (0)| 00:00:01 |

| 1 | NESTED LOOPS | | 6 | 150 | 10 (0)| 00:00:01 |

| 2 | TABLE ACCESS FULL| DEPARTMENTS | 4 | 32 | 3 (0)| 00:00:01 |

|* 3 | TABLE ACCESS FULL| EMPLOYEES | 2 | 34 | 2 (0)| 00:00:01 |

--

　もちろん、内部表のループを完全にスキップできるのは、結合キーが内
部表に対して一意な場合だけです。この場合、等値結合であれば、内部表
のアクセス対象行を必ず1行に限定できるので、二重ループの内側のルー
プを完全に省略できます。Oracleの実行計画（図6.11）に「INDEX UNIQUE

注9 厳密に言うと、駆動表のレコードは各行1回しかアクセスされないのに対して、内部表のレコード
は複数回アクセスされるため、内部表が十分に乗るだけの大きさのバッファキャッシュのサイズが
あれば、内部表が大きいほうが有利になる可能性も否定できません。しかし、内部表のインデック
スを使用できる場合の効果に比べれば小さなものです。

 内部表に結合キーのインデックスでアクセス

 内部表にフルスキャンでアクセス

 内部表にフルスキャンでアクセス

182

第6章 結合　結合を制する者はSQLを制す

SCAN」が現れるのはこの場合で、非常に効率的なアクセスが可能です（内
部表の母体が何千万件、何億件であろうとも、必ず1行にしかアクセスし
ません）。一方、結合キーが内部表に対して一意でない場合は、インデック
スで内部表へアクセスする場合であっても複数行がヒットする可能性があ
ります。この場合は、そのヒットした複数行に対してループする必要があ
ります注10（図6.14）。

図6.14 内部表のループをどれだけスキップできるかがポイント

　こうして考えてみると、「駆動表を小さく」という格言は、裏返しにして
「内部表を大きく」というふうに解釈したほうがわかりやすいかもしれませ
ん。内部表が大きいほど、インデックスによるループのスキップ効果が大
きくなるからです注11。
　「駆動表の小さなNested Loops」＋「内部表の結合キーにインデックス」。
この組み合わせは、SQLチューニングにおける基本中の基本です。麻雀の
役で言うところの「ピンフ」＋「タンヤオ」みたいなものです（麻雀を知らない
人ゴメンなさい）。結合が遅い場合の半分はこの組み合わせによって改善で
きるほどです。逆に言うと、物理ERモデルとインデックスの設計を行う
際は、どのテーブルを内部表にして、どの結合キーにインデックスを作成
しておくべきか、設計の段階から考えながら行う必要があるのです。

注10 このケースの実行計画では、Oracleならば「INDEX RANGE SCAN」が現れます。
注11 さらに、インデックスはテーブルに比べて一般にサイズがかなり小さいため、キャッシュに載りや

すく、I/Oコストの削減効果が大きいという追加効果もあります。

内部表が結合キーで一意だと
内部ループを完全にスキップ可能

内部表が結合キーで一意にならないと
内部ループが残る

Table_A

Table_B

Table_A

Table_B

183

6.2結合のアルゴリズムとパフォーマンス

Nested Loopsの落とし穴

　「駆動表の小さなNested Loops」＋「内部表の結合キーにインデックス」
──これでパフォーマンスはバッチリだと思っていたら、期待したような
レスポンスタイムが出ないケースもあります。この場合によくある理由は、
結合キーで内部表にアクセスしたときのヒット件数が多くなってしまうケ
ースです。これは、上で説明した「結合キーが内部表に対して一意でない場
合」に発生する可能性があります。いかにインデックスをたどってある程度
ループをスキップできたとしても、結局絶対量としてのループ回数が多く
て遅くなってしまっては意味がありません。
　たとえば、店舗のテーブルとそこで受け付ける注文のテーブルがあると
します。この場合、1つの店舗に対して複数の注文が対応するので、店舗
テーブルのほうがかなり小さくなることから、店舗テーブルが駆動表にふ
さわしいと仮定します。すると、店舗 IDを結合キーとして注文テーブルに
アクセスしにいくことになります。そこまではよいのですが、たとえばそ
こで、1つの店舗 IDで数百万件とか数千万件のレコードがヒットしてしま
うと、結局は内部表に対するループ回数が多くなり、Nested Loopsの性能
は悪くなります（図6.15）。

図6.15 内部表のヒット件数が多くてNested Loopsの性能が悪いパターン

　この問題のやっかいなところは、店舗というのは当然地域や規模によっ
て扱う注文数にも開きがあるため、小規模の店舗の場合は注文件数が少な
く、内部表のヒット件数も少ないため高速に処理されるのに対して、大規
模な店舗の場合は大量のレコードがヒットしてしまい、まったく結果が返
ってこない、という事態が生じるところです。つまり、SQLの構造は同じ
なのに外から与える検索パラメータによって性能のばらつきが大きくなる

Table_A

Table_B

184

第6章 結合　結合を制する者はSQLを制す

のです。これは期間指定のような範囲検索の場合も同様に当てはまります。
結局のところ、SQLのパフォーマンスは処理対象となるデータの量に依存
するからです。
　この問題に対処するには2つの方法があります。1つは、あえて駆動表に
大きなテーブル、この場合なら注文テーブルを選ぶという逆説的な方法で
す。そうすると、今度は内部表になった店舗テーブルへのアクセスは主キ
ー（店舗 ID）で行われるので、常に1行のアクセスが保証されます。それに
よって、店舗によって性能がばらつくという問題を押さえつつ、極端に性
能が劣化することを防止します。言わばこれは「100点は狙わずに70点を取
りにいく」という作戦です。これは、注文テーブルという巨大テーブルへの
アクセスコストが（検索条件によるインデックスが使えるなどで）現実的な
範囲に収まるならば、有効な方法です。もう1つの方法が、次に紹介する
Hashです。

Hash

Hashの動作

　Hashというアルゴリズムはシステムの世界ではよく使われます。入力に
対してなるべく一意性と一様性を持った値を出力する関数をハッシュ関数
と呼びます。ハッシュ結合は、まず小さいテーブルをスキャンし、結合キ
ーに対してハッシュ関数を適用することでハッシュ値注12に変換します。そ
の次に、もう一方の（大きな）テーブルをスキャンして、結合キーがそのハ
ッシュ値に存在するかどうかを調べる、という方法で結合を行います（図
6.16）。
　小さいほうのテーブルからハッシュテーブルを作る理由は、ハッシュテ
ーブルはDBMSのワーキングメモリに保持されるため、なるべく小さいほ
うが効率が良いからです。この小さいほうのテーブルをNested Loopsに倣

なら

って駆動表と呼んでもよさそうな気もしますが、あまりHashの場合はそう
いう呼び方はしません。また、Hashが使われるケースとして、どちらかの
テーブルが極端に小さいことはあまりないため注13、駆動表という概念があ

注12 このハッシュ値の集合をハッシュテーブルと呼びます。
注13 小さいテーブルがあるならNested Loopsが第一候補になります。

185

6.2結合のアルゴリズムとパフォーマンス

まり意味を持たない、という事情もあるのでしょう。
　図6.17、図6.18の実行計画は、最初に読み込んだテーブルの部署 IDに

対してハッシュテーブルを作り、次にもう一方のテーブルを読み込んでそ
のハッシュ値に合致するかを調べる、という動作を表します。

図6.17 ハッシュ結合の実行計画（PostgreSQL）
--

 Hash Join (cost=24.63..46.74 rows=510 width=212)

　 Hash Cond: (e.dept_id = d.dept_id)

　 -> Seq Scan on employees e (cost=0.00..15.10 rows=510 width=130)

　 -> Hash (cost=16.50..16.50 rows=650 width=94)

 -> Seq Scan on departments d (cost=0.00..16.50 rows=650 width=94)

図6.18 ハッシュ結合の実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 6 | 324 | 7 (15)| 00:00:01 |

|* 1 | HASH JOIN | | 6 | 324 | 7 (15)| 00:00:01 |

| 2 | TABLE ACCESS FULL| DEPARTMENTS | 4 | 88 | 3 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| EMPLOYEES | 6 | 192 | 3 (0)| 00:00:01 |

--

図6.16 ハッシュ結合のイメージ

❶スキャン

❷生成 ❸マッチング

Departments

dept_id

10

20

30

40

dept_id

10

10

20

20

ハッシュテーブル
dept_id hash_dept

1ages35

g56bjss

884sgfg

2lkjjjjdg

10

20

30

40

Employees

186

第6章 結合　結合を制する者はSQLを制す

Hashの特徴

　さて、Hashの主な特徴は次のとおりです。

・結合テーブルからハッシュテーブルを作るために、Nested Loopsに比べると
メモリを多く消費する

・このことから、メモリ内にハッシュテーブルが収まらないとストレージを使用
することになり、遅延が発生する注14

・出力となるハッシュ値は入力値の順序性を保存しないため、等値結合でしか使
用できない

Hashが有効なケース

　Hashが有効なケースとしては、次のような場合が考えられます。

・Nested Loopsで適切な駆動表（すなわち相対的に十分に小さいテーブル）が存
在しない場合

・「Nested Loopsの落とし穴」（183ページ）で見たように駆動表として小さいテ
ーブルは指定できるが内部表のヒット件数が多い場合

・Nested Loopsの内部表にインデックスが存在しない（かつ諸事情によりイン
デックスを追加できない）場合

　一言で言えば、Nested Loopsが効率的に動作しない場合の次善策がHash

です。
　ただし、Hashにも注意すべきトレードオフがあります。第一に、最初に
ハッシュテーブルを作る必要があるため、Nested Loopsに比べて消費する
メモリ量が大きいことです。したがって、同時実行性の高いOLTP処理注15

のSQLでHashが使われると、DBMSの利用できるワーキングメモリが枯
渇してストレージが使用され、遅延が発生するリスクを伴います。先ほど
解説したDBMSのスワップである「TEMP落ち」です。したがって、OLTP

でのHashの使用は極力避け、同時併走する処理の少ない夜間バッチ、また
はBI/DWHのようなスループットの低いシステムに使いどころを限定する
のがHashを使うときの基本戦略です。

注14 いわゆる「TEMP落ち」です。第1章の「もう一つのメモリ領域『ワーキングメモリ』」（16ページ）およ
び第4章の「集約・ハッシュ・ソート」（108ページ）も参照してください。

注15 ここではOLTPを、ユーザの要求にシステムが即座にレスポンスを返すタイプの処理を指して使っ
ています。典型的には多くのWebアプリケーションに対するブラウザ経由のアクセスが相当します。

187

6.2結合のアルゴリズムとパフォーマンス

　そして第二に、Hash結合では必ず両方のテーブルのレコードを全件読み
込む必要があるため、テーブルのフルスキャンが採用されることが多いこ
とです。PostgreSQL、Oracleのどちらの実行計画においても、Departments

テーブルとEmployeesテーブルに対してフルスキャンが行われていること
が確認できます。このため、テーブル規模が大きい場合には（Hashが採用
されるのは、えてしてテーブル規模が大きい場合です）、このフルスキャン
に要する時間も考慮する必要があります。

Sort Merge

Sort Mergeの動作

　Nested Loopsが非効率な場合、Hashと並んでもう一つの選択肢となるの
がSort Mergeというアルゴリズムです注16。単に「Merge」とか「Merge Join」
と呼ばれることもあります。Sort Mergeは、結合対象のテーブルをそれぞ
れ結合キーでソートを行い、一致する結合キーを見つけたらそれを結果セ
ットに含める、というものです（図6.19）。

図6.19 Sort Merge結合のイメージ

注16 これと（字面だけ）よく似た用語に「Merge Sort」というアルゴリズムがあるのですが、こちらはソー
トを行うためのアルゴリズムの一種なので、結合アルゴリズムである「Sort Merge」とはまったく別
物です。

❶ソート

❷マッチング

Departments

dept_id

20

40

30

10

dept_id

20

10

20

10

Employees

Departments

dept_id

10

20

30

40

dept_id

10

10

20

20

Employees

❶ソート

188

第6章 結合　結合を制する者はSQLを制す

Sort Mergeの特徴

　このアルゴリズムは次のような性質を持ちます。

a対象テーブルをどちらもソートする必要があるため、Nested Loopsよりも多く
のメモリを消費する。Hashと比較してどうであるかは、テーブルの規模にも依
存するが、Hashは片方のテーブルに対してしかハッシュテーブルを作らない
ため、Hashよりも多くのメモリを使うこともある。メモリ不足により「TEMP
落ち」によるディスクI/Oが発生して遅延するリスクがあるのもHashと同様

bHashと違い、等値結合だけでなく不等号（<、>、<=、>=）を使った結合にも
利用できる。ただし、否定条件（<>）の結合では利用できない注17

c原理的には、テーブルが結合キーでソート済みになっていれば、ソートをスキ
ップできる。ただしSQLではテーブルの行の物理的配置は意識しないことに
なっているため、この恩恵を受けられるとしてもそれは実装依存となる注18

dテーブルをソートするため、片方のテーブルをすべてスキャンしたところで結
合を終了できる

Sort Mergeが有効なケース

　Sort Merge結合は、結合そのものにかかる時間は結合の対象行数が多い
場合でも悪くないのですが、テーブルのソートに多くの時間とリソースを
要する可能性があります。したがって、テーブルのソートをスキップでき
る（かなり例外的な）ケースでは考慮に値しますが、それ以外の場合はまず
Nested LoopsとHashが優先的な選択肢となります。

意図せぬクロス結合

　さて、結合アルゴリズムについて一通り解説したところで、「第四の」ア

注17 否定条件（<>、!=）で利用できる結合アルゴリズムはNested Loopsだけです。結合で否定条件を使
うことはめったにないでしょうが。

注18 たとえばMicrosoft SQL Serverでは、結合キーにクラスタ化インデックスを作ることができれば、
テーブルがあらかじめソートされた状態で格納されるため、Sort Mergeにおいてソートをスキップ
できます。これはソート抜きの「Sort Merge」なので、ずばり「Merge」結合とでも呼ぶべきものです。
やや古い資料ですが、Microsoftのドキュメントでは次のように書かれています。

「マージ結合自体は非常に高速ですが、並べ替え操作が必要な場合、時間がかかることがあります。
ただし、データ量が多く、必要なデータを既存のB ツリー インデックスからあらかじめ並べ替えら
れた形で取得できる場合、多くの場合、利用可能な結合アルゴリズムの中でマージ結合が最も高速
になります。」
「マージ結合について - MSDN」（http://msdn.microsoft.com/ja-jp/library/ms190967%28v=sql.
90%29.aspx）

http://msdn.microsoft.com/ja-jp/library/ms190967%28v=sql.90%29.aspx
http://msdn.microsoft.com/ja-jp/library/ms190967%28v=sql.90%29.aspx

189

6.2結合のアルゴリズムとパフォーマンス

ルゴリズムについて触れておきます。それがクロス結合です。「クロス結合
──すべての結合の母体」（165ページ）で、クロス結合を実務のクエリで使
うことはまずないと述べたことを覚えているでしょうか。これは、結合条
件を記述しないような結合を使う機会がほとんどないからでした。しかし
一方で、結合のアルゴリズムとして意図せずしてクロス結合が現れること
があります。それは、俗に「三角結合」と呼ばれるパターンです。これは、
たとえばリスト6.9のようなクエリの場合に生じます。

リスト6.9 三角結合の例
SELECT A.col_a, B.col_b, C.col_c

　FROM Table_A A

 INNER JOIN Table_B B

 ON A.col_a = B.col_b

 INNER JOIN Table_C C

 ON A.col_a = C.col_c;

　このクエリは、Table_A、Table_B、Table_Cという3つのテーブルを結合
していますが、結合条件が存在するのは、「Table_A - Table_B」と「Table_A -

Table_C」の間だけです。「Table_B - Table_C」の間には結合条件が存在しな
いことに注目してください。グラフにすると図6.20のようになります。

図6.20 三角結合のイメージ

　こういう場合、人間が素朴に考えるならば、結合条件をたどる形で実行計
画を組み立てます。したがって、考えられる選択肢としては次の4通りです。

・Table_Aを駆動表にTable_Bと結合する。その結果とTable_Cを結合する

・Table_Aを駆動表にTable_Cと結合する。その結果とTable_Bを結合する

・Table_Bを駆動表にTable_Aと結合する。その結果とTable_Cを結合する

・Table_Cを駆動表にTable_Aと結合する。その結果とTable_Bを結合する

Table_A

Table_B Table_C

190

第6章 結合　結合を制する者はSQLを制す

Nested Loopsが選択される場合

　実行計画としては、たとえば図6.21のようになります。

図6.21 Nested Loopsによる三角結合（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 9 | 6 (0)| 00:00:01 |

| 1 | NESTED LOOPS | | 1 | 9 | 6 (0)| 00:00:01 |

| 2 | NESTED LOOPS | | 1 | 6 | 4 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| TABLE_A | 1 | 3 | 2 (0)| 00:00:01 |

|* 4 | TABLE ACCESS FULL| TABLE_B | 1 | 3 | 2 (0)| 00:00:01 |

|* 5 | TABLE ACCESS FULL | TABLE_C | 1 | 3 | 2 (0)| 00:00:01 |

　これは「Table_AとTable_Bを最初に結合し、その結果とTable_Cを結合
する」という順番でNested Loopsによる結合を行っています。この実行計
画に、特に問題はありません。

クロス結合が選択される場合

　しかし、このような3つ以上のテーブルを使っていて、かつ「Table_B - Table_

C」のように結合条件を持たない結合が存在する場合、図6.22のようにこの
結合条件のないテーブル同士をクロス結合で結合するケースがあるのです。

図6.22 クロス結合による三角結合（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 9 | 7 (15)| 00:00:01 |

|* 1 | HASH JOIN | | 1 | 9 | 7 (15)| 00:00:01 |

| 2 | MERGE JOIN CARTESIAN| | 1 | 6 | 4 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL | TABLE_B | 1 | 3 | 2 (0)| 00:00:01 |

| 4 | BUFFER SORT | | 1 | 3 | 2 (0)| 00:00:01 |

| 5 | TABLE ACCESS FULL | TABLE_C | 1 | 3 | 2 (0)| 00:00:01 |

| 6 | TABLE ACCESS FULL | TABLE_A | 1 | 3 | 2 (0)| 00:00:01 |

　これは「Table_BとTable_Cを最初に結合し、その結果をTable_Aと結合
する」という順序で結合していますが、前述のとおりTable_BとTable_Cの

間に結合条件がないため、クロス結合せざるをえません。「MERGE JOIN

191

6.2結合のアルゴリズムとパフォーマンス

CARTESIAN」はOracleでクロス結合を行うときの実行計画です。
　なぜ非効率な（と人間には思われる）クロス結合があえて選択されるので
しょう。オプティマイザがどういうロジックで実行計画を選択しているか
は実装依存の部分もあるので推測になりますが、一つ考えられる有力な理
由は、Table_BとTable_Cのサイズを非常に小さいと評価している可能性
がある、ということです（図6.23）。2つのテーブルのサイズが十分に小さ
ければ、大きなTabl_Aに2回当たりにいくよりも、先にTable_BとTable_

Cの結合を済ませておくことで、Table_Aとの結合を1回に限定するという
のは、合理的な判断です。

図6.23 大きなトランザクションと小さなマスタ

　このような状況はそれほど珍しいことではありません。取引明細などの大
きなトランザクションのテーブルと、顧客やカレンダーなどの小さなマスタ
テーブルを結合することは、むしろ一般的なパターンと言えるでしょう。こ
うした小さなテーブル同士のクロス結合をむやみに恐れる必要はありません
が、問題は、比較的大きなテーブル同士の結合でクロス結合が選択される場
合です。これは、単純にテーブルのサイズが大きい場合だけでなく、検索条
件によってヒットするレコード数が変わる場合にも起きます。いったんレコ
ード数がかなり絞られる入力値によって、オプティマイザが「クロス結合で
いける」と判断したあと、レコード数を絞ることのできない入力値が入って
きたときも、そのまま同じ実行計画が選択されてしまうことがあるからです。

意図せぬクロス結合を回避するには

　こうした意図せず生じるクロス結合を回避する手段としては、結合条件
の存在しないテーブル間にも（結果を変えないように）結合条件を追加する
という方法があります（図6.24）。このサンプルで言えば、Table_BとTable_

Table_A

Table_B Table_C

192

第6章 結合　結合を制する者はSQLを制す

Cの間に結合条件を設定するのです。

図6.24 冗長な結合条件を追加することでクロス結合を回避する

　これは、Table_BとTable_Cの間に結合条件を設定することが可能で、か
つ、追加しても結果に影響を与えない場合にしか有効な方法ではありませ
んが、パフォーマンス面ではオプティマイザに選択肢を増やしてやるとい
う積極的意味があります。たとえばリスト6.10のように結合条件を指定す
ると、クロス結合が回避できます（図6.25）。

リスト6.10 冗長な結合条件を追加
SELECT A.col_a, B.col_b, C.col_c

　FROM Table_A A

 INNER JOIN Table_B B

 ON A.col_a = B.col_b

 INNER JOIN Table_C C

 ON A.col_a = C.col_c

 AND C.col_c = B.col_b; --Table_BとTable_Cの結合条件

図6.25 冗長な結合条件によってクロス結合が回避された（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 9 | 7 (15)| 00:00:01 |

|* 1 | HASH JOIN | | 1 | 9 | 7 (15)| 00:00:01 |

|* 2 | HASH JOIN | | 1 | 6 | 5 (20)| 00:00:01 |

| 3 | TABLE ACCESS FULL| TABLE_A | 1 | 3 | 2 (0)| 00:00:01 |

| 4 | TABLE ACCESS FULL| TABLE_B | 1 | 3 | 2 (0)| 00:00:01 |

| 5 | TABLE ACCESS FULL | TABLE_C | 1 | 3 | 2 (0)| 00:00:01 |

Table_A

Table_B Table_C
冗長な結合条件

193

6.3結合が遅いなと感じたら

6.3
結合が遅いなと感じたら

ケース別の最適な結合アルゴリズム

　Nested Loops、Hash、Sort Mergeの3つのアルゴリズムの利点と欠点を
大まかに表にまとめると、表6.1のようになります。

表6.1 3つのアルゴリズムの利点／欠点

名前 利点 欠点

Nested Loops ・ 「小さな駆動表」+「内部表のイン
デックス」の条件下で高速

・ メモリやディスクの消費が少な
くOLTPに適している
・非等値結合でも使用できる

・ 大規模テーブル同士の結合に不
向き
・ 内部表のインデックスが使えな
かったり、内部表の選択率が高
いと低速

Hash ・ 大規模テーブル同士の結合に適
している

・ メモリ消費量が多くOLTPに不
向き
・ メモリ不足の場合はTEMP落ち
が発生する
・等値結合のみで使用可能

Sort Merge ・ 大規模テーブル同士の結合に適
している
・非等値結合でも使用できる

・ メモリ消費量が多くOLTPに不
向き
・ メモリ不足の場合はTEMP落ち
が発生する
・ データがソート済みでなければ
あまり効率的ではない

　オプティマイザは、表6.1のような利点と欠点を考えながらアルゴリズ
ムの選択を行っています。しかし、オプティマイザも完全ではありません
し、統計情報が古いなどの理由によって、結合アルゴリズムが最適化され
ず遅延が発生することがあります。最適な結合アルゴリズムを結合対象行
数の観点でまとめてみると、大まかな方針は次のようになります注19。

❶小 - 小
そもそも結合対象のテーブルが小さい場合は、どんなアルゴリズムでも性能は大
差ない

❷小 - 大
「小」テーブルを駆動表とするNested Loops。「大」テーブルの結合キーにインデ

注19 テーブルそのものの規模ではなく、あくまで結合対象データの規模であることに注意してください。

194

第6章 結合　結合を制する者はSQLを制す

ックスを作成するのを忘れずに。ただし、内部表の対象行が多い場合は、駆動表
をひっくり返すかHashを検討する

❸大 - 大
まずはHash。結合キーがソート済みという条件下でSort Merge

　使えるメモリ量や結合キーのカーディナリティなど、実際はこれまで説
明してきたような細かい条件によっても最適解は変わるのですが、まずは
大方針として「1にNested Loops、2にHash」という順番で覚えておくとよ
いと思います。

そもそも実行計画の制御は可能なのか？

　しかしです。ここまでの説明を聞いて、そもそもの疑問を持った方もい
るでしょう。「そもそもSQLの実行計画をユーザが制御できるのか？」と。
そう、RDBの原則として、実行計画は統計情報からオプティマイザが自動
的に組み立てることになっています。その実行計画をユーザが操作できる
のでしょうか？ 内部表の結合キーにインデックスを作ればそれをうまく
Nested Loopsで使ってくれるという程度の最適化ならば、最近のオプティ
マイザならばどんなDBMSでもやってくれます。しかしそれ以上の細かい
制御が可能でしょうか。

DBMSごとの実行計画制御の状況
　この質問に対する答えは実装依存です。

・Oracle
ヒント句によって結合アルゴリズムの制御が可能（USE_NL、USE_HASH、USE_
MERGE）。駆動表の指定も可能（LEADING）

・Microsoft SQL Server
ヒント句によって結合アルゴリズムの制御が可能（LOOP、HASH、MERGE）

・DB2
ヒント句を持たず、原則ユーザは実行計画を制御できない

・PostgreSQL
pg_hint_plan機能を使うことでヒント句による結合アルゴリズムの制御が可能。
また、サーバパラメータによってデータベース全体に対する制御も可能（enable_
nestloop、enable_hashjoin、enable_mergejoin）

195

6.3結合が遅いなと感じたら

・MySQL
結合アルゴリズムがNested Loops系しかないので、そもそも選択の余地がない

　このように、ほとんど無制限にユーザが制御できるOracleから、何もで
きないDB2まで千差万別です。したがって、実装によっては「人間が見れ
ばこの結合アルゴリズムが最適とわかっているのに、それをオプティマイ
ザに指示できない」というもどかしい思いをすることもあります。もちろ
ん、データベースの開発者はそうしたもどかしさを軽減するために日夜オ
プティマイザの改良に取り組んでいるわけですが、現状オプティマイザが
完璧ではないのも事実です。

実行計画をユーザが制御することによるリスク

　ヒント句やパラメータを使って実行計画をユーザが制御することにはリ
スクも伴います。データ量やカーディナリティは運用を続けていくなかで
変化していくため、ある時点において最適な実行計画が、別の時点におい
てはそうではなくなる危険があります。もともと、そうした変動に対処す
るために導入されたのがコストベースによる動的な実行計画の制御でした。
人間が実行計画を判断して固定するというのは、あえてDBMSの進化に逆
行するアナクロな行為でもあります。
　したがって、ユーザが実行計画を制御するときは、そうしたリスクを十
分に検討したうえで、予期されるシステムライフサイクルの終了時点にも
なお適切な実行計画を選択し、その時点のデータ特性を疑似的に表現した
データによって性能試験を実施するという実行コストの高いチューニング
が必要とされるのです。

揺れるよ揺れる、実行計画は揺れるよ

　前節で述べたような、ユーザが明示的に実行計画を制御した場合に、実
行計画が最適なものにならないという「ユーザの失敗」は、わかりやすいも
のです。一方で、実行計画をオプティマイザ任せにした場合にもやはり実
行計画が最適なものにならないこともしばしばです。
　この「オプティマイザの失敗」の典型例は、長期的な運用の中で実行計画が
悪い方向に変動するというものです。これは、データ量の増加などによって

196

第6章 結合　結合を制する者はSQLを制す

統計情報が変化し、ある一定の閾
いきち

値を超えたところでオプティマイザが実行
計画を変化させることによって起きるものです（図6.26）。事前に発生予測が
難しく、突発的なスローダウンを引き起こすやっかいな問題です注20。

図6.26 実行計画変動による突発的スローダウン

　そして、この実行計画変動を最も引き起こしやすい演算が、結合なので
す。考えてみればこれは当たり前のことで、結合の際には複数のアルゴリ
ズムが選択できるため、アルゴリズムが変動するタイミングで性能も変動
するのは当然です。それが良い方向に倒れればみなハッピーですが、世の
中そう簡単にはいきません。
　したがって、SQLの性能変動リスクを抑えるためには、「なるべく結合を
避ける」という方針が重要になります。こう書くと「非正規化のことか？」と思
うかもしれませんが（それも選択肢の一つですが）、同じ結果を得るための
SQLであっても、結合を使用せずに代替手段で実施できるのです。すでに前
章でも見たように、ウィンドウ関数で相関サブクエリを置き換えるという方
法はその代表例です。こうした代替手段による結合の回避は、本書後半の大
きなテーマです。その点を意識しながら、次章以降を読み進めてください。

注20 余談ですが、こうしたオプティマイザの失敗に対する解決策としては、アプリケーションチューニ
ング以外に、もう一つの選択肢があります。それはハードウェアリソースの増強です。特にデータ
ベースの場合、スロークエリの大半はストレージのI/Oコストが原因であるため、（メモリも含む）
ストレージをリッチにするという物量作戦は、はっきり言って有効です。これもソリューションと
しては馬鹿にしたものではなく、費用対効果が見合うならば真剣な検討の対象とすべきものです。た
だ、その場合は前提として、きちんとボトルネックになっているリソースがどこかを見極めておく
必要があります。

実行時間

時間の経過

実行計画の変動が
起きたタイミング

197

6.3結合が遅いなと感じたら

第6章のまとめ

・結合はSQLの性能問題の火薬庫

・基本はNested Loops。バッチやBI/DWH限定でHash。Hashを使
うときはTEMP落ちに注意

・Nested Loopsが効率的に動くには「小さな駆動表」と「内部表のイ
ンデックス」が必要

・結合はアルゴリズムが複数あるために実行計画変動も起きやすい。
これを防止するには「結合を回避する」ことが重要な戦略になる

演習問題6

　EXISTS述語またはNOT EXISTS述語を使った場合も、実行計画には結
合が現れます。しかし、そのとき使われるのは通常のNested LoopsやHash

ではなく、その変形版です。リスト6.11、リスト6.12の2つのサンプルの

実行計画を確認し、どのような結合アルゴリズムが使われているか調べて
ください。なお、テーブルは図6.1（167ページ）のものを使用します。

リスト6.11 EXISTS述語のサンプル
SELECT dept_id, dept_name

　FROM Departments D

 WHERE EXISTS (SELECT *

 FROM Employees E

 WHERE E.dept_id = D.dept_id);

リスト6.12 NOT EXISTS述語のサンプル
SELECT dept_id, dept_name

　FROM Departments D

 WHERE NOT EXISTS (SELECT *

 FROM Employees E

 WHERE E.dept_id = D.dept_id);

198

第6章 結合　結合を制する者はSQLを制す

　なお、SQLを実行する前に必ず統計情報は収集しておいてください（リ
スト6.13）。

リスト6.13 統計情報の収集
 PostgreSQL

Aanlyze Departments;

Aanlyze Employees;

 Oracle

exec DBMS_STATS.GATHER_TABLE_STATS(OWNNAME =>'TEST', TABNAME =>'Departments');

exec DBMS_STATS.GATHER_TABLE_STATS(OWNNAME =>'TEST', TABNAME =>'Employees');

※OWNNAMEは環境に応じて変えてください。

 ➡解答は340ページ

199

サブクエリ
困難は分割するべきか

第7章

200

第7章 サブクエリ　困難は分割するべきか

Keep It Simple, Stupid（シンプルにしておけ，この馬鹿）
──KISSの原則

　サブクエリとは、第2章でも説明したとおり、SQLの中で作成される一
時的なテーブルです（これを永続化したのがビュー）。テーブルとサブクエ
リは、機能的な観点からは一切違いがありません。SQLにおいて、両者は
どちらもまったく同じように振る舞います。これは、RDBとSQLがそのよ

うに設計されているからです。したがって、データベースのユーザは、自
分の扱っている対象データがテーブルなのかビューなのか、あるいはサブ
クエリなのかを意識することなく操作可能です。
　それぞれの違いは、次のようにまとめられます。

・テーブル：永続的かつデータを保持する

・ビュー： 永続的だがデータは保持しないため、アクセスのたびにSELECT文が
実行される

・サブクエリ：非永続的なので生存期間（スコープ）がSQL文の実行中に限られる

　機能的な柔軟さから、サブクエリはSQLコーディングにおいても頻繁に
利用されており、なくてはならない道具の一つとなっています。
　しかし、テーブルとサブクエリの間に違いがないのは、あくまで機能的
観点から見た場合に限られます。非機能、特にパフォーマンスの観点から
見ると、テーブルとサブクエリには大きな違いが存在します。一言で言う
と、サブクエリ（またはビュー）は、同じデータを保持する場合であっても、
テーブルに比べるとパフォーマンスが悪い傾向があるのです。本章では、
サブクエリを使う際に引き起こされる性能問題のパターンを確認し、どの
ような点に気をつけてコーディングを行うべきかを見ていきます。

201

7.1サブクエリが引き起こす弊害

7.1
サブクエリが引き起こす弊害

サブクエリの問題点

　サブクエリの性能的な問題は、結局のところ、サブクエリが実体的なデ
ータを保持していないことに起因します。それによって、大きく次の3つ

の問題が生じます。

サブクエリの計算コストが上乗せされる

　実体的なデータを保持していないということは、サブクエリにアクセスする
たびに中身のSELECT文を実行してデータを作る必要があるということです。
これによって、まず純粋にSELECT文実行にかかるコストが上乗せされます。
サブクエリの中身が複雑であればあるほどこの実行コストは増大します。

データのI/Oコストがかかる

　計算した結果は、どこかに保持するために書き込む必要があります。う
まくメモリ上に収まればこのオーバーヘッドは小さいのですが、データ量
が大きい場合などに、DBMSがファイルに書き出すことを選択する場合も
あります注1。「TEMP落ち」現象の一種と言え、こうなるとストレージの性能
に引っ張られてアクセス速度が急激に劣化します。

最適化を受けられない

　サブクエリによって作られるデータは構造的にはテーブルと変わらない
のですが、明示的に制約やインデックスが作成されているテーブルと違っ
て、サブクエリにはそのようなメタ情報が一切存在しません。したがって、
オプティマイザがクエリを解析するために必要な情報が、サブクエリの結
果からは得られないのです注2。

注1 たとえば、Microsoft SQL Serverではサブクエリの結果はtempdbのファイルに、Oracleでは一時
表領域のファイルに書き出されることがあります。

注2 対策の一つとして、最近ではクエリのパースにおいて、素直にサブクエリ単体を実行するよりもサ
ブクエリ内部のロジックと外部のロジックを直接結びつけて（＝マージして）一つのまとまりとした
実行計画を立てることも増えています。このような最適化の手法をビューマージと呼びます。ビュ
ーマージについては章末の演習問題で取り上げます。

202

第7章 サブクエリ　困難は分割するべきか

　こうした問題点から、サブクエリ──特に内部で複雑な計算を行ってい
たり、結果のサイズが大きくなる場合──を使うときは、その性能リスク
を考慮しなければなりません。サブクエリはその柔軟性からコーディング
時には便利ですが、それが本当にサブクエリを使わなければ実現できない
のか常に考える必要があります。
　このあと、まず本当はサブクエリを使わないほうが性能的に望ましいケー
スを見ます。次に、サブクエリが性能的に積極的な意味を持つケースを見る
ことで、どのような場合にサブクエリが危険で、どのような場合であればサ
ブクエリを使うことが許される（あるいは望ましい）のかを明らかにします。

サブクエリ・パラノイア

　顧客の購入明細を記録するテーブル（Receipts）があるとします。連番（seq）
列は、顧客の古い購入ほど小さな値が振られています。ここから、顧客ご
とに最小の連番（seq）の金額を求めることを考えます。これはつまり、ある
顧客の一番古い購入履歴を見つけるということと同義です。リスト7.1の
ようにSQLを実行し、図7.1のように値を挿入してください。

リスト7.1 購入明細テーブルの定義
CREATE TABLE Receipts

(cust_id CHAR(1) NOT NULL,

 seq INTEGER NOT NULL,

 price INTEGER NOT NULL,

 PRIMARY KEY (cust_id, seq));

INSERT INTO Receipts VALUES ('A', 1 ,500);

INSERT INTO Receipts VALUES ('A', 2 ,1000);

INSERT INTO Receipts VALUES ('A', 3 ,700);

INSERT INTO Receipts VALUES ('B', 5 ,100);

INSERT INTO Receipts VALUES ('B', 6 ,5000);

INSERT INTO Receipts VALUES ('B', 7 ,300);

INSERT INTO Receipts VALUES ('B', 9 ,200);

INSERT INTO Receipts VALUES ('B', 12 ,1000);

INSERT INTO Receipts VALUES ('C', 10 ,600);

INSERT INTO Receipts VALUES ('C', 20 ,100);

INSERT INTO Receipts VALUES ('C', 45 ,200);

INSERT INTO Receipts VALUES ('C', 70 ,50);

INSERT INTO Receipts VALUES ('D', 3 ,2000);

203

7.1サブクエリが引き起こす弊害

図7.1 購入明細テーブル

Receipts（購入明細）
cust_id（顧客ID） seq（連番） price（購入額）

A 1 500

A 2 1000

A 3 700

B 5 100

B 6 5000

B 7 300

B 9 200

B 12 1000

C 10 600

C 20 100

C 45 200

C 70 50

D 3 2000

　求める答えは図7.2のようになります。

図7.2 欲しい結果
 cust_id | seq | price

---------+-----+-------

 A | 1 | 500

 B | 5 | 100

 C | 10 | 600

 D | 3 | 2000

　この問題で難しいのは、連番の最小値が不確定で顧客によってバラバラ
なことです。たとえば、必ず最小値が1であるというビジネスルールが存
在すれば、単純にWHERE句で「seq = 1」と指定するだけでよいのですが、
今はそのようなルールがないため、最小値を動的に求めざるを得ません。
これは、連番の代わりに購入日時で管理するケースを考えてみると、より
自然な要件でしょう注3。

サブクエリを使った場合
　素直に考えるならば、リスト7.2のように顧客ごとに最小の連番の値を
保持するサブクエリ（R2）を作り、それと本体のReceiptsテーブルを結合す

注3 このサンプルではモデルを単純化するため、日付ではなく整数の連番を使っています。

204

第7章 サブクエリ　困難は分割するべきか

る方法になるのではないでしょうか。

リスト7.2 サブクエリを使った解
SELECT R1.cust_id, R1.seq, R1.price

　FROM Receipts R1

 INNER JOIN

 (SELECT cust_id, MIN(seq) AS min_seq

 FROM Receipts

 GROUP BY cust_id) R2

 ON R1.cust_id = R2.cust_id

　 AND R1.seq = R2.min_seq;

　このクエリの動作イメージは、図7.3のようにR1とR2の共通部分を選
択するというものです。

図7.3 R1とR2の共通部分を選択する

　この考え方はシンプルですが、2つの欠点を持っています。1つは、コー
ドが複雑で読みにくいことです。特にサブクエリを使うとコードを複数の
階層にまたがって追う必要があるため、可読性が下がります。もう1つは、
パフォーマンスです。パフォーマンスが悪い理由は4つあります。

price
（金額）

seq
（連番）

R1（オリジナルのReceiptsテーブル）

A 1 500

A 2 1000

A 3 700

B 5 100

B 6 5000

B 7 300

B 9 200

B 12 1000

C 10 600

C 20 100

C 45 200

C 70 50

D 3 2000

A 1

B 5

C 10

D 3

cust_id
（顧客ID）

cust_id
（顧客ID）

cust_id
（顧客ID）

price
（金額）

seq
（連番）

A 1 500

B 5 100

C 10 600

D 3 2000

R2
min_seq
（最小連番）

（網掛けのレコードを除外した結果を求めたい）

205

7.1サブクエリが引き起こす弊害

❶サブクエリは多くの場合、（メモリにせよディスクにせよ）一時的な領域に確保
されるため、オーバーヘッドが生じる

❷サブクエリはインデックスや制約の情報を持っていないので、最適化が受けら
れない注4

❸このクエリは結合を必要とするためコストが高く、かつ実行計画変動のリスク
が発生する

❹Receiptsテーブルへのスキャンが2回必要となる

　これらの欠点は、実行計画からも見て取れます（図7.4、図7.5）。

図7.4 サブクエリの実行計画（PostgreSQL）

Hash Join (cost=1.34..2.57 rows=1 width=10)

　Hash Cond: ((r1.cust_id = receipts.cust_id) AND (r1.seq = (min(receipts.seq))))

　-> Seq Scan on receipts r1 (cost=0.00..1.13 rows=13 width=10)

　-> Hash (cost=1.27..1.27 rows=4 width=6)

 -> HashAggregate (cost=1.19..1.23 rows=4 width=6)

 -> Seq Scan on receipts (cost=0.00..1.13 rows=13 width=6)

図7.5 サブクエリの実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 4 | 96 | 8 (25)| 00:00:01 |

|* 1 | HASH JOIN | | 4 | 96 | 8 (25)| 00:00:01 |

| 2 | VIEW | | 4 | 64 | 4 (25)| 00:00:01 |

| 3 | HASH GROUP BY | | 4 | 20 | 4 (25)| 00:00:01 |

| 4 | TABLE ACCESS FULL | RECEIPTS | 13 | 65 | 3 (0)| 00:00:01 |

| 5 | TABLE ACCESS FULL | RECEIPTS | 13 | 104 | 3 (0)| 00:00:01 |

--

　PostgreSQL、Oracleどちらの実行計画からも、R1とR2のそれぞれにス

キャンが行われていることと、結合（Hash Join）が行われていることが確認
できます。環境によっては、結合のアルゴリズムとしてHashの代わりに
Nested Loopsが使われることもあるかもしれませんが、Receiptsに2回ア
クセスが必要になる点は同じです。では、よりパフォーマンスが良く、か

注4 R2が(cust_id, seq)で一意になることは人間の目には明らかですが、そのような一意制約やインデ
ックスが明示的に付与されているわけではないので、R1との結合においてその情報を利用した最適
化が行われる可能性は低いでしょう。

206

第7章 サブクエリ　困難は分割するべきか

つよりシンプルで読みやすいコードは、どのように書くのでしょうか。

相関サブクエリは解にならない

　一足飛びに正答に飛びつく前に、ここで一つ、ありがちな間違いの（とい
うと言い過ぎかもしれませんが、少なくとも解決にはならない）コードに寄
り道します。それは、相関サブクエリを使った同値変換です（リスト7.3）。

リスト7.3 相関サブクエリの解
SELECT cust_id, seq, price

　FROM Receipts R1

 WHERE seq = (SELECT MIN(seq)

 FROM Receipts R2

 WHERE R1.cust_id = R2.cust_id);

　実行計画（図7.6、図7.7）から、たとえ相関サブクエリを使ったとしても、
Receiptsテーブルへのアクセスが2度発生していることがわかります。

図7.6 相関サブクエリの実行計画（PostgreSQL）
 --

 Seq Scan on receipts r1 (cost=0.00..16.50 rows=1 width=10)

　 Filter: (seq = (SubPlan 1))

　 SubPlan 1

 -> Aggregate (cost=1.17..1.18 rows=1 width=4)

 -> Seq Scan on receipts r2 (cost=0.00..1.16 rows=3 width=4)

 Filter: (r1.cust_id = cust_id)

図7.7 相関サブクエリの実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 4 | 96 | 8 (25)| 00:00:01 |

|* 1 | HASH JOIN | | 4 | 96 | 8 (25)| 00:00:01 |

| 2 | VIEW | VW_SQ_1 | 4 | 64 | 4 (25)| 00:00:01 |

| 3 | HASH GROUP BY | | 4 | 20 | 4 (25)| 00:00:01 |

| 4 | TABLE ACCESS FULL | RECEIPTS | 13 | 65 | 3 (0)| 00:00:01 |

| 5 | TABLE ACCESS FULL | RECEIPTS | 13 | 104 | 3 (0)| 00:00:01 |

--

　R2のアクセスに主キーのインデックスオンリースキャンを使うことも可
能ですが、それでもReceiptsテーブルへのアクセス1回と、主キーのイン

207

7.1サブクエリが引き起こす弊害

デックスへのアクセス1回が必要になります注5。これではパフォーマンス上
のメリットはありません。

ウィンドウ関数で結合をなくせ！

　まず大きな改善ポイントは、Receiptsテーブルへのアクセスを1回に減
らすことです。SQLチューニングの要諦は、1にI/O、2にI/O、3、4がな

くて5にI/Oです。いい加減くどいと思うかもしれませんが、大事なこと
なので何度でも繰り返します。
　そのためには、ウィンドウ関数のROW_NUMBERを使います（リスト
7.4）。

リスト7.4 ウィンドウ関数による解
SELECT cust_id, seq, price

　FROM (SELECT cust_id, seq, price,

 ROW_NUMBER()

 OVER (PARTITION BY cust_id

 ORDER BY seq) AS row_seq

 FROM Receipts) WORK

 WHERE WORK.row_seq = 1;

　ROW_NUMBERで行に通番を振り、常に最小値を1にすることで、seq

列の最小値が不確定という問題に対処しました（図7.8）。
　クエリもシンプルになり、可読性が上がります。ROW_NUMBERによ

ってReceiptsテーブルにrow_seqという1から始まる通番を追加したのが
WORKテーブルです。これで顧客ごとの最小の連番を持つ行を限定するこ
とが容易になります。
　実行計画も見てみましょう（図7.9、図7.10）。Receiptsテーブルに対す
るアクセスが1回に減っていることがわかります。ウィンドウ関数はソー
トを行いますが、今までもMIN関数の計算が行われていたので、大きなコ
ストの差はありません。

注5 インデックスオンリースキャンについては、第10章で取り上げます。

208

第7章 サブクエリ　困難は分割するべきか

図7.9 ウィンドウ関数の実行計画（PostgreSQL）
--

Subquery Scan work (cost=1.37..1.79 rows=1 width=16)

　 Filter: (work.row_seq = 1)

　 -> WindowAgg (cost=1.37..1.63 rows=13 width=10)

 -> Sort (cost=1.37..1.40 rows=13 width=10)

 Sort Key: receipts.cust_id, receipts.seq

 -> Seq Scan on receipts (cost=0.00..1.13 rows=13 width=10)

図7.10 ウィンドウ関数の実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)|Time |

--

| 0 | SELECT STATEMENT | | 13 | 546 | 4 (25)| 00:00:01 |

|* 1 | VIEW | | 13 | 546 | 4 (25)| 00:00:01 |

|* 2 | WINDOW SORT PUSHED RANK | | 13 | 104 | 4 (25)| 00:00:01 |

| 3 | TABLE ACCESS FULL | RECEIPTS | 13 | 104 | 3 (0)| 00:00:01 |

--

長期的な視野でのリスクマネジメント

　最初のクエリや相関サブクエリの解に比べて、ウィンドウ関数を使った

図7.8 row_seqを追加

A 1 500 1

A 2 1000 2

A 3 700 3

B 5 100 1

B 6 5000 2

B 7 300 3

B 9 200 4

B 12 1000 5

C 10 600 1

C 20 100 2

C 45 200 3

C 70 50 4

D 3 2000 1

WORK
ROW_NUMBERで
追加した列price

（金額）
cust_id
（顧客ID）

seq
（連番）

row_seq

209

7.1サブクエリが引き起こす弊害

解がどの程度パフォーマンス向上するかは、使用するDBMSやデータベー

スサーバの性能、パラメータやインデックスといった環境要因によって大
きく左右されるため、一概には言えません。しかし、ストレージのI/O量
を減らすことが、SQLチューニングにおける基本原則であることは先述の
とおりです。
　また、結合を消去することには、単純なパフォーマンス向上だけでなく
もう一つの利点が存在します。それは、性能の安定性を確保できることで
す。
　結合を使うクエリには、2つの不安定要因があります。

・結合アルゴリズムの変動リスク

・環境起因の遅延リスク（インデックス、メモリ、パラメータなど）

　相関サブクエリも、実行計画としては結合とほぼ同じものになるため、
上記リスクが同様に該当すると考えてかまいません注6。

アルゴリズムの変動リスク

　第6章でも見たように、結合アルゴリズムには、大きくNested Loops、
Sort Merge、Hashの3種類があります。これら3つのどれが選ばれるかは、
テーブルのサイズなどを考慮してオプティマイザが自動的に決めます。大
雑把に言うと、レコード数の少ないテーブルが含まれる場合にはNested

Loopsが選ばれやすく、大きなテーブル同士の結合になるとSort Mergeや

Hashが選ばれやすくなります。
　すると、当初テーブルの件数が少なかったときはNested Loopsが選択さ
れていたのに、システムの運用中にレコード件数が増えて、ある閾

いきち

値を境
に実行計画が変動することがあります。このとき性能が大きく変化するこ
とになります。良いほうに倒れることもあれば、悪いほうに倒れることも
あります注7。結合を使うということは、この変動リスクを抱え込むことを意
味します。
　また、同じ実行計画が選択され続けていたとしても、データ量の増大に

注6 図7.7のOracleの実行計画を見れば顕著ですが、相関サブクエリにおいてもハッシュ結合が使用さ
れています。

注7 ときどき、こういう実行計画の変動リスクを嫌って、「絶対に悪い方向には倒れないことを保証した
い」と言う人がいるのですが、無理な相談です。実行計画の安定性を確保したいならば、ヒント句を
使う、統計情報を凍結するといった手段をとる必要があります。

210

第7章 サブクエリ　困難は分割するべきか

よってSort MergeやHashに必要な作業メモリが不足するようになると、一
時的にストレージが使用され、やはり大きく性能劣化します。いわゆる
「TEMP落ち」です注8。

環境起因の遅延リスク
　こちらはもう少し簡単な話です。前章でも触れたように、Nested Loopsの

内部表の結合キーにインデックスが存在すると、性能が大きく改善します。
また、Sort MergeやHashが選択されていて「TEMP落ち」が発生している場
合は、その作業メモリを増やすことでも性能改善が可能です。しかし、常に
結合キーにインデックスが存在しているわけではありませんし、メモリチュ
ーニングは限られたリソース内でのトレードオフを発生させます。
　すなわち、結合を使うということは、長期的に見て、考慮すべき性能リ
スクを増やしてしまうことになるのです（図7.11）。

図7.11 結合クエリは性能が非線形で劣化するリスクを負う

　したがって私たちは、オプティマイザが理解しやすいよう、クエリを努
めてシンプルに保つ必要があるのです。「動けばいいや」「正しい結果さえ
返ればいいや」という姿勢を貫けるほど、まだ現在のDBMSは優秀ではあ
りません。

注8 厳密に見れば、この「TEMP落ち」問題は、ウィンドウ関数を使った解でも発生しえます。ウィンド
ウ関数もソートを必要とする点は同じだからです。しかし、ウィンドウ関数は通常、最後のステッ
プ（SELECT句）で実行されるため、かなり操作対象の行数は絞り込まれており、ソートに必要なメ
モリも小さくなっていることが期待できます。

結合クエリ

非結合クエリ

データ量

レ
ス
ポ
ン
ス
タ
イ
ム

211

7.1サブクエリが引き起こす弊害

　次のことを、ぜひ覚えておいてください。

・シンプルな実行計画ほど性能が安定する

・エンジニアには機能だけでなく非機能を担保する責任もある

サブクエリ・パラノイア──応用版

　Receiptsテーブルを使って、応用問題を考えてみましょう。先ほどは顧
客ごとの連番の最小値を持つ行を求めました。今度は、最大値を持つ行も
求めて、両者のprice列の差分を求めたいとします。昔に比べて最近はどの
ぐらいお金を使うようになったか、あるいは節約するようになったかを知
りたいのです。技術的には一種の行間比較だと思ってもらえればよいでし
ょう。求める結果は図7.12のようになります。

図7.12 求める実行結果
cust_id | diff

---------+-------

A | -200

B | -900

C | 550

D | 0

　顧客 IDが「D」の明細については1つしかレコードが存在しないため、最
小値と最大値が一致するので、price列の値によらず差分はゼロになりま
す。

サブクエリ・パラノイア再び

　サブクエリを使って求めるならばどうなるでしょうか。最小値の集合が
求められたのだから、対称的な方法で最大値の集合も求められます。そう
したら、あとは顧客 IDをキーに結合するだけです（リスト7.5）。

リスト7.5 サブクエリ・パラノイア　患者2号
SELECT TMP_MIN.cust_id,

 TMP_MIN.price - TMP_MAX.price AS diff

　FROM (SELECT R1.cust_id, R1.seq, R1.price

 FROM Receipts R1

212

第7章 サブクエリ　困難は分割するべきか

 INNER JOIN

 (SELECT cust_id, MIN(seq) AS min_seq

 FROM Receipts

 GROUP BY cust_id) R2

 ON R1.cust_id = R2.cust_id

 AND R1.seq = R2.min_seq) TMP_MIN

 INNER JOIN

 (SELECT R3.cust_id, R3.seq, R3.price

 FROM Receipts R3

 INNER JOIN

 (SELECT cust_id, MAX(seq) AS min_seq

 FROM Receipts

 GROUP BY cust_id) R4

 ON R3.cust_id = R4.cust_id

 AND R3.seq = R4.min_seq) TMP_MAX

 ON TMP_MIN.cust_id = TMP_MAX.cust_id;

　TMP_MINが最小値の集合、TMP_MAXが最大値の集合です。考え方は
リスト7.2で見たクエリの延長ですが、ご覧のとおり、クエリは長大にな
り、可読性は一層悪化しました。サブクエリの階層が深くて、追うだけで
も一苦労です。さっきのクエリを2倍に膨らませたようなものですから、
Receiptsテーブルへのアクセスも倍増の4回となり、当然ながらパフォー
マンスも悪くなります（図7.13）。

図7.13 サブクエリ・パラノイアの実行計画（PostgreSQL）

 Nested Loop (cost=2.67..5.16 rows=1 width=10)

　 Join Filter: (r1.cust_id = r3.cust_id)

　 -> Hash Join (cost=1.34..2.57 rows=1 width=8)

 Hash Cond: ((r1.cust_id = public.receipts.cust_id)

 AND (r1.seq = (min(public.receipts.seq))))

 -> Seq Scan on receipts r1 (cost=0.00..1.13 rows=13 width=10)

 -> Hash (cost=1.27..1.27 rows=4 width=6)

 -> HashAggregate (cost=1.19..1.23 rows=4 width=6)

 -> Seq Scan on receipts (cost=0.00..1.13 rows=13 width=6)

　 -> Hash Join (cost=1.34..2.57 rows=1 width=8)

 Hash Cond: ((r3.cust_id = public.receipts.cust_id)

 AND (r3.seq = (max(public.receipts.seq))))

 -> Seq Scan on receipts r3 (cost=0.00..1.13 rows=13 width=10)

 -> Hash (cost=1.27..1.27 rows=4 width=6)

 -> HashAggregate (cost=1.19..1.23 rows=4 width=6)

 -> Seq Scan on receipts (cost=0.00..1.13 rows=13 width=6)

213

7.1サブクエリが引き起こす弊害

　環境によっては、主キーのインデックスを利用したアクセスが選択され
る場合もありますが、アクセス回数が増えることに変わりはありません。

行間比較でも結合は必要ない

　このクエリに対する改善ポイントは「ウィンドウ関数で結合をなくせ！」
（207ページ）と同じで、どれだけ無駄なテーブルアクセスと結合を減らせる
か、です。今度はウィンドウ関数に加えてCASE式も使います（リスト7.6）。

リスト7.6 ウィンドウ関数とCASE式
SELECT cust_id,

 SUM(CASE WHEN min_seq = 1 THEN price ELSE 0 END)

 - SUM(CASE WHEN max_seq = 1 THEN price ELSE 0 END) AS diff

　FROM (SELECT cust_id, price,

 ROW_NUMBER() OVER (PARTITION BY cust_id

 ORDER BY seq) AS min_seq,

 ROW_NUMBER() OVER (PARTITION BY cust_id

 ORDER BY seq DESC) AS max_seq

 FROM Receipts) WORK

 WHERE WORK.min_seq = 1

 OR WORK.max_seq = 1

 GROUP BY cust_id;

　これならば、サブクエリはWORKの1つだけで、結合も一切発生しませ
ん。最小値と最大値の行を識別するため、ROW_NUMBER関数を使って
います。一工夫加えているのは、最大値を出すために降順（ORDER BY seq

DESC）でソートしていることです。こうすると、降順連番max_seqが1のレ

コードがseqの最大値を持っていることが保証されます。あとは、min_seq

またはmax_seqが1の行だけ抽出すれば、「真ん中」の行を除外できるわけ
です（図7.14）。
　こうして得られた最小値と最大値を使って両者の差分を求めていますが、
ここでも1つトリックがあります。それがSUM関数の中のCASE式です。
今WORKビューの時点では、最小値と最大値は、（当たり前ですが）異なる
行として存在しています。異なる行同士の引き算はできません。そこで、
これを1行にまとめるためにGROUP BY cust_idによって顧客単位に集約し
ています。その際、最小値と最大値を別々の列に振り分けているのが、CASE

式なのです。
　では、実行計画も見てみましょう（図7.15）。

214

第7章 サブクエリ　困難は分割するべきか

図7.14 「両端」のレコードにしか興味はない

図7.15 ウィンドウ関数とCASE式による実行計画（PostgreSQL）
--

GroupAggregate (cost=1.87..2.38 rows=2 width=22)

　-> Subquery Scan on work (cost=1.87..2.33 rows=2 width=22)

 Filter: ((work.min_seq = 1) OR (work.max_seq = 1))

 -> WindowAgg (cost=1.87..2.13 rows=13 width=10)

 -> Sort (cost=1.87..1.90 rows=13 width=10)

 Sort Key: receipts.cust_id, receipts.seq

 -> WindowAgg (cost=1.37..1.63 rows=13 width=10)

 -> Sort (cost=1.37..1.40 rows=13 width=10)

 Sort Key: receipts.cust_id, receipts.seq

 -> Seq Scan on receipts (cost=0.00..1.13 rows=13 width=10)

　Receiptsテーブルへのスキャンは1回だけに減りました。Receiptsテーブ

ルのサイズが大きくなればなるほど、このスキャン回数の少なさが効いて
きます。ウィンドウ関数のソートは2回発生していますが、これはORDER

BY seqとORDER BY seq DESCというように、昇順と降順のソートを実施し
ているからです。その点では若干コストが高いのですが、結合を繰り返す
よりは安上がりで、実行計画の安定性も確保できて、十分採算が取れる取
引です。

A 1 500 1 3

A 2 1000 2 2

A 3 700 3 1

B 5 100 1 5

B 6 5000 2 4

B 7 300 3 3

B 9 200 4 2

B 12 1000 5 1

C 10 600 1 4

C 20 100 2 3

C 45 200 3 2

C 70 50 4 1

D 3 2000 1 1

WORK
price
（金額）

cust_id
（顧客ID）

seq
（連番）

min_seq
（昇順連番）

max_seq
（降順連番）

どちらかが1になる
レコードが欲しい

215

7.2サブクエリの積極的意味

困難は分割するな

　ここまで、サブクエリの弊害を主に見てきました。一つ誤解のないよう
に明記しておきたいのですが、サブクエリそのものは絶対悪ではありませ
ん。常に使ってはならないという画一的な禁止をみなさんに課すつもりは
ありませんし、サブクエリなしでは解の見つからない局面も多くあります。
　また、最終的にはサブクエリを消去したほうがよいケースにおいても、
最初の突破口としてサブクエリを使った解を組み立ててみる、というのは
コーディング時には有効な方法です。サブクエリを使うことで、問題を分
割して考えることが容易になるため、思考の補助線としては有用です。サ
ブクエリはある意味、集合を細かいパーツに分ける技術ですから、個々の
パーツを組み合わせることで最終的に求めていた集合にたどり着くという
ボトムアップ型の思考と相性が良いという側面を持っています。
　ただ非手続き型であるSQLの本質として、そのようなボトムアップ型と
いうか、モジュール型の思考とは相性が悪い部分があるのも事実です。最
初に頭の中で考えるときは問題を細かくモジュール分割して考えてもよい
のですが、コードレベルでは、最後に包括的に統合しなければ、本当に効
率的なコードにはならないからです。

7.2
サブクエリの積極的意味

　さて次に、サブクエリが持つ性能面での積極的な意味、つまりサブクエ
リを使ったほうがパフォーマンスが良くなるケースを見てみます。サブク
エリの使用を考慮することが性能面で重要になってくるのは、必ずと言っ
てよいほど結合が関係するクエリです。結合においてはなるべく対象の行
数を小さく絞ることが重要ですが、これをオプティマイザがうまく判断で
きない場合に、人間がうまく演算順序を明示するようなコーディングをし
てやることで、良好なパフォーマンスを実現できます。

216

第7章 サブクエリ　困難は分割するべきか

結合と集約の順序

　それでは、典型的なケースを見ていきましょう。サンプルデータとして、
図7.16、図7.17のような会社と事業所を管理するテーブルを考えます。リ
スト7.7、リスト7.8のようにしてテーブルを作成してください。

図7.16 会社テーブル

Companies（会社）
co_cd（会社コード） district（地域）

001 A

002 B

003 C

004 D

図7.17 事業所テーブル

Shops（事業所）
co_cd（会社コード） shop_id（事業所ID） emp_nbr（従業員数） main_flg（主要事業所フラグ）

001 1 300 Y

001 2 400 N

001 3 250 Y

002 1 100 Y

002 2 20 N

003 1 400 Y

003 2 500 Y

003 3 300 N

003 4 200 Y

004 1 999 Y

リスト7.7 会社テーブルの定義
CREATE TABLE Companies

(co_cd CHAR(3) NOT NULL,

 district CHAR(1) NOT NULL,

 CONSTRAINT pk_Companies PRIMARY KEY (co_cd));

INSERT INTO Companies VALUES('001', 'A');

INSERT INTO Companies VALUES('002', 'B');

INSERT INTO Companies VALUES('003', 'C');

INSERT INTO Companies VALUES('004', 'D');

217

7.2サブクエリの積極的意味

リスト7.8 事業所テーブルの定義
CREATE TABLE Shops

(co_cd CHAR(3) NOT NULL,

 shop_id CHAR(3) NOT NULL,

 emp_nbr INTEGER NOT NULL,

 main_flg CHAR(1) NOT NULL,

 CONSTRAINT pk_Shops PRIMARY KEY (co_cd, shop_id));

INSERT INTO Shops VALUES('001', '1', 300, 'Y');

INSERT INTO Shops VALUES('001', '2', 400, 'N');

INSERT INTO Shops VALUES('001', '3', 250, 'Y');

INSERT INTO Shops VALUES('002', '1', 100, 'Y');

INSERT INTO Shops VALUES('002', '2', 20, 'N');

INSERT INTO Shops VALUES('003', '1', 400, 'Y');

INSERT INTO Shops VALUES('003', '2', 500, 'Y');

INSERT INTO Shops VALUES('003', '3', 300, 'N');

INSERT INTO Shops VALUES('003', '4', 200, 'Y');

INSERT INTO Shops VALUES('004', '1', 999, 'Y');

　この2つのテーブルは、1:Nのオーソドックスな親子関係（複数の事業所
が1つの会社に属する）を表しています。今、この2つのテーブルから、会
社ごとの主要事業所の従業員数を含む図7.18のような結果を得たいとしま
す。

図7.18 取得したい結果
co_cd | district | sum_emp

------+----------+--------

001 | A | 550

002 | B | 100

003 | C | 1100

004 | D | 999

　これだけ聞くと、「従業員数を求めるだけなら事業所テーブルだけを使え
ばよいのでは？」と思うかもしれません。そのとおりですが、結果に会社の
地域も含めたいため、この情報を持つ会社テーブルとの結合が必要になり
ます注9。

注9 「だったら事業所テーブルにも『地域』列を持っておくか、会社テーブルに『主要事業所の人数』列を持
っておけば結合が不要になるのでは」と思ったあなたは鋭いです。そうしたモデル変更によって問題
を解決するアプローチについては第9章で取り上げます。とりあえず、ここではテーブル定義は所
与のもので変更不可と考えてください。

218

第7章 サブクエリ　困難は分割するべきか

2つの解

　求める結果を得るコードは2通り考えられます。まず1つが、結合を先
に行ってから集約を行うやり方です（リスト7.9、図7.19）。もう1つが集
約を先に行ってから結合するやり方です（リスト7.10、図7.20）注10。

リスト7.9	 解1：結合を先に行う
SELECT C.co_cd, MAX(C.district),

 SUM(emp_nbr) AS sum_emp

　FROM Companies C
 INNER JOIN

 Shops S

 ON C.co_cd = S.co_cd

 WHERE main_flg = 'Y'

 GROUP BY C.co_cd;

図7.19	 解1の実行計画（PostgreSQL）
--

HashAggregate (cost=53.46..53.52 rows=6 width=28)

　-> Nested Loop (cost=0.00..53.43 rows=6 width=28)
 -> Seq Scan on shops s (cost=0.00..23.75 rows=6 width=20)

 Filter: (main_flg = 'Y'::bpchar)

 -> Index Scan using companies_pkey on companies c (cost=0.00..4.93 rows=1 width=24)

 Index Cond: (co_cd = s.co_cd)

リスト7.10	 解2：集約を先に行う
SELECT C.co_cd, C.district, sum_emp

　FROM Companies C
 INNER JOIN

 (SELECT co_cd,

 SUM(emp_nbr) AS sum_emp

 FROM Shops

 WHERE main_flg = 'Y'

 GROUP BY co_cd) CSUM

 ON C.co_cd = CSUM.co_cd;

注10	 今は単純化のため、事業所テーブルと会社テーブルに存在する会社は1対1対応すると仮定して、外
部結合の必要性はないとします。

219

7.2サブクエリの積極的意味

図7.20 解2の実行計画（PostgreSQL）
--

 Nested Loop (cost=23.78..40.38 rows=2 width=32)

　 -> HashAggregate (cost=23.78..23.80 rows=2 width=20)

 -> Seq Scan on shops (cost=0.00..23.75 rows=6 width=20)

 Filter: (main_flg = 'Y'::bpchar)

　 -> Index Scan using companies_pkey on companies c (cost=0.00..8.27 rows=1 width=24)

 Index Cond: (co_cd = shops.co_cd)

　解1のコードは、会社テーブルと事業所テーブルを結合してから、その
結果に対してGROUP BYによる集約を行っています。それに対して解2は、
先に事業所テーブルを集約して従業員の人数を求めてから、会社テーブル
と結合を行っています注11。実行計画を見ても、結合（Nested Loops）と集約
（HashAggregate）の操作の順序が、解1と解2で入れ替わっていることがわ
かります。
　この2つの解は、結果としては同値なので、機能的な観点からはどちら
を採用してもよいということになります。可読性の点でも、それほど両者
の複雑さに違いはありません。ではこの両者に違いはないのでしょうか？

実は、性能的にはそうとは言い切れないケースがあるのです。

結合の対象行数

　この2つの解は、パフォーマンス的には大きな違いを生む場合がありま
す。その判断ポイントは結合の対象行数です。解1の場合、結合の対象行
数は次のようになります。

・会社テーブル：4行

・事業所テーブル：10行

　これに対して解2の場合、結合の対象行数は次のようになります。

・会社テーブル：4行

・事業所テーブル（CSUM）：4行

　重要な点は、CSUMビューが、会社コードで集約されて4行になってい
ることです。これは、解1の10行よりも小さいため、結合コストを低く抑

注11 必然的に、この結合は1対1になっています。

220

第7章 サブクエリ　困難は分割するべきか

えられる可能性が高いということです。もちろん、数行のサンプルでは実
行速度に目に見える差は出ませんが、これがたとえば次のようなデータ量
だったらどうでしょう。

・会社テーブル：1,000行

・事業所テーブル（main_flg = 'Y'）：500万行

・事業所テーブル（CSUM）：1,000行

　このように、会社テーブルの規模に比して事業所テーブルの行数が極め
て大きい場合、先に集約して結合対象の行数を1,000行に絞ってやること
で、結合で必要となるI/Oコストを削減できます。その代わり解2では集
約コストが解1より高くなる可能性がありますが、これは「TEMP落ち」さ
え発生しなければ、十分に元が取れる取引です。
　解1と解2のどちらが速いかは、かなりの程度環境にも依存します。「環
境」という言葉には、テーブルの行数だけではなく、ハードウェアやミドル
ウェア、選択される結合アルゴリズムといった要素も包含します。実際の
開発においては、こうした諸要因を考慮したうえで、性能試験を実施して
最終的な判断を行う必要があります。しかし、チューニングの選択肢とし
て事前に結合の行数を絞るためにサブクエリを利用する方法もあることは、
覚えておいて損はありません。

221

7.2サブクエリの積極的意味

第7章のまとめ

・サブクエリは困難を分割できる便利な道具だが、結合を増やしパ
フォーマンスを悪化させることもある

・SQLのパフォーマンスを決定する要因は、1にI/O、2にI/O、3、
4がなくて5にI/O

・サブクエリと結合をウィンドウ関数で代替することでパフォーマ
ンスを改善できる可能性がある

・サブクエリを使う場合は、結合対象のレコード数を事前に絞り込
むことでパフォーマンスを改善できる可能性がある

演習問題7

　「結合と集約の順序」（216ページ）の解1と解2は、集約と結合のどちらを
先に行うかが性能的な違いを生むことを示すサンプルでした。しかし、実
はオプティマイザは、解2（集約優先）のコードに対しても解1（結合優先）
の実行計画を適用することがあります。たとえばOracleでは、解2のコー

ドに対して図7.21のように結合が先に行われる実行計画が選択されること
があります。

図7.21 集約優先のコードでも結合優先の実行計画が立てられる
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 5 | 80 | 5 (20)| 00:00:01 |

| 1 | HASH GROUP BY | | 5 | 80 | 5 (20)| 00:00:01 |

| 2 | NESTED LOOPS | | 5 | 80 | 4 (0)| 00:00:01 |

|* 3 | TABLE ACCESS FULL | SHOPS | 5 | 50 | 3 (0)| 00:00:01 |

| 4 | TABLE ACCESS BY INDEX ROWID| COMPANIES | 1 | 6 | 1 (0)| 00:00:01 |

|* 5 | INDEX UNIQUE SCAN | PK_COMPANIES | 1 | | 0 (0)| 00:00:01 |

--

222

第7章 サブクエリ　困難は分割するべきか

　この動作を、ビューを展開して内部と外部を同じレベルで評価すること
から、「ビューマージ」と呼びます。オプティマイザがあえてこちらの実行
計画を効率的と判断する理由として、どのようなものがあるか考えてくだ
さい。 ➡解答は342ページ

223

SQLにおける順序
る手続き型

第8章

224

第8章 SQLにおける順序　 る手続き型

　プログラミングにおいては、何らかの形で順序を持った数を扱うことが
よくあります。典型的なのは連番、つまり1（または0）から始まって2、3、
……と1つずつ値がカウントアップされていく自然数列です。データを識
別するユニークキーとして利用したり、処理の順序性を保証するためにル
ープの中でインクリメントしたり、今月の売り上げランキングを算出した
り、およそ連番を使わないシステムはないでしょう。
　しかしSQLは、伝統的に順序を持った数を扱うための機能を持っていま
せんでした。その理由は、主に関係モデルの理論上の要請によるものでし
た。つまり、業務的に意味を持たない連番はエンティティの属性とはみな
されなかったことと、テーブルの行が順序を持たないと定義されていたこ
とです。これはSQLがループを排除した理由とも関係しています。なぜな
ら、ループはレコードに順序が存在することを前提している操作だからで
す。
　しかし実務においては、適当な行集合に対して連番を振ることが必要に
なるケースが多くあります。最近ではそうした実務的な要求に応えるべく、
SQLにも順序と連番を扱うための機能が（半ばいやいや）追加されていま
す注1。具体的には、シーケンスオブジェクトやID列のようなまさに連番を
払い出す機能のほか、これまでの章でもたびたび利用してきたウィンドウ
関数も含まれます。本章では、こうした比較的新しい機能を利用すること
で、どのようなコーディングテクニックが可能になるかを見ていきます。
そしてそれを通して私たちは、RDBが遠い昔に決別したはずの手続き型の
パラダイムが、SQLの中で大々的に復活を遂げたことを確認することにな
ります。いつの間にかSQLは、伝統的な集合指向に手続き型の考えをミッ
クスしたハイブリッドな言語に変化していたのです。このメリットはまだ
多くの人には十分に理解されていませんが、極めて重要な意味を持ってい
ます。

注1 たとえば、SQL:2003では連番を生成するROW_NUMBER関数やシーケンスオブジェクトが標準化
されました。

225

8.1行に対するナンバリング

8.1
行に対するナンバリング

　まずは順序操作の基礎である、行に連番を割り振る方法を見てみましょ
う。主キーが1列の場合、主キーが複数列から構成される場合、テーブル
を複数のグループに分割してグループ内の行にナンバリングする場合のそ
れぞれの方法を順番に紹介します。

主キーが1列の場合

　例として、図8.1のような学生の体重を保持する簡単なテーブルを使い
ます。テーブル定義はリスト8.1です。

図8.1 体重テーブル

Weights（体重）
student_id（学生ID） weight（体重kg）

A100 50

A101 55

A124 55

B343 60

B346 72

C563 72

C345 72

リスト8.1 体重テーブルの定義
CREATE TABLE Weights

(student_id CHAR(4) PRIMARY KEY,

 weight INTEGER);

INSERT INTO Weights VALUES('A100', 50);

INSERT INTO Weights VALUES('A101', 55);

INSERT INTO Weights VALUES('A124', 55);

INSERT INTO Weights VALUES('B343', 60);

INSERT INTO Weights VALUES('B346', 72);

INSERT INTO Weights VALUES('C563', 72);

INSERT INTO Weights VALUES('C345', 72);

226

第8章 SQLにおける順序　 る手続き型

ウィンドウ関数を利用する

　今、学生 IDの昇順にレコードに連番を振りたいとしましょう。これは、
ROW_NUMBER関数が使える環境ならリスト8.2のように簡単に記述でき
ます。

リスト8.2 主キーが1列の場合（ROW_NUMBER）
SELECT student_id,

 ROW_NUMBER() OVER (ORDER BY student_id) AS seq

 FROM Weights;

 実行結果

student_id | seq

-----------+----

A100 | 1

A101 | 2

A124 | 3

B343 | 4

B346 | 5

C345 | 6

C563 | 7

相関サブクエリを利用する

　MySQLのようなROW_NUMBER関数が使えない実装なら、相関サブク
エリで置き換える必要があります（リスト8.3）。

リスト8.3 主キーが1列の場合（相関サブクエリ）
SELECT student_id,

 (SELECT COUNT(*)

 FROM Weights W2

 WHERE W2.student_id <= W1.student_id) AS seq

　FROM Weights W1;

 実行結果はリスト8.2と同じ

　このサブクエリは再帰集合を作り、その要素数をCOUNT関数で数えて
います。主キーであるstudent_idを比較キーに使用しているため、再帰集
合は要素が1つずつ増えていくことが保証されます。それを連番の生成に
利用したトリックです。
　この2つの方法はいずれも機能的には同じですが、パフォーマンスの観

227

8.1行に対するナンバリング

点では、第7章でも述べたようにウィンドウ関数に軍配が上がります。ウ
ィンドウ関数ではスキャン回数が1回で、しかもインデックスオンリース
キャンによりテーブルへのアクセスが回避されているのに対し（図8.2）、相
関サブクエリでは2回（w1とw2）のスキャンが実行されています（図8.3）。

図8.2 ウィンドウ関数（リスト8.2）の実行計画（PostgreSQL）
--

 WindowAgg (cost=0.15..89.45 rows=1510 width=20)

　 -> Index Only Scan using weights_pkey on weights (cost=0.15..66.80 rows=150 width=20)

図8.3 相関サブクエリ（リスト8.3）の実行計画（PostgreSQL）
--

 Seq Scan on weights w1 (cost=0.00..8.79 rows=7 width=5)

　 SubPlan 1

 -> Aggregate (cost=1.09..1.10 rows=1 width=0)

 -> Seq Scan on weights w2 (cost=0.00..1.09 rows=2 width=0)

 Filter: (student_id <= w1.student_id)

主キーが複数列から構成される場合

　さて、それではちょっとテーブルを改変して、主キーを2列の複合キー
にしてみましょう。リスト8.4のようなSQLを実行して図8.4のような値
の入ったテーブルを作成してください。今度は「クラス、学生 ID」で一意に
なります。こういうケースでも連番を割り振れるよう、コードを一般化し
ましょう。

リスト8.4 体重テーブル2の定義
CREATE TABLE Weights2

(class INTEGER NOT NULL,

 student_id CHAR(4) NOT NULL,

 weight INTEGER NOT NULL,

 PRIMARY KEY(class, student_id));

INSERT INTO Weights2 VALUES(1, '100', 50);

INSERT INTO Weights2 VALUES(1, '101', 55);

INSERT INTO Weights2 VALUES(1, '102', 56);

INSERT INTO Weights2 VALUES(2, '100', 60);

INSERT INTO Weights2 VALUES(2, '101', 72);

228

第8章 SQLにおける順序　 る手続き型

INSERT INTO Weights2 VALUES(2, '102', 73);

INSERT INTO Weights2 VALUES(2, '103', 73);

図8.4 体重テーブル2

Weights2（体重 2）
class（クラス） student_id（学生ID） weight（体重kg）

1 100 50

1 101 55

1 102 56

2 100 60

2 101 72

2 102 73

2 103 73

ウィンドウ関数を利用する

　ROW_NUMBERを使う場合は、特に悩む必要はありません。ORDER

BYのキーに列を追加すればOKです（リスト8.5）。

リスト8.5 主キーが複数列の場合（ROW_NUMBER）
SELECT class, student_id,

 ROW_NUMBER() OVER (ORDER BY class, student_id) AS seq

　FROM Weights2;

 実行結果

class | student_id | seq

------+------------+-----

 1 | 100 | 1

 1 | 101 | 2

 1 | 102 | 3

 2 | 100 | 4

 2 | 101 | 5

 2 | 102 | 6

 2 | 103 | 7

相関サブクエリを利用する

　一方、相関サブクエリの場合はどうでしょう。いくつか方法があるので
すが、最もシンプルな方法は行式の機能を使うことです（リスト8.6）。こ
れは、複合的な列を一つの値に連結して行全体として比較する機能です。

229

8.1行に対するナンバリング

リスト8.6 主キーが複数列の場合（相関サブクエリ：行式）
SELECT class, student_id,

 (SELECT COUNT(*)

 FROM Weights2 W2

 WHERE (W2.class, W2.student_id)

 <= (W1.class, W1.student_id)) AS seq

　FROM Weights2 W1;

 実行結果はリスト8.5と同じ

　この方法の利点は、列のデータ型の組み合わせが任意なことです。数値
型と文字列型でも、文字列型と日付型でもOKです。暗黙の型変換も発生
しないので、主キーのインデックスも利用できます。また、列が3つ以上
になった場合でも簡単に拡張可能です。

グループごとに連番を振る場合

　今度は考え方をちょっと変えて、クラスごとに連番を割り振りたいとし
ます。つまりテーブルをグループに分割して、その中の行にナンバリング
したいのです。

ウィンドウ関数を利用する

　ウィンドウ関数でこれを行うには、リスト8.7のようにclass列でパーテ
ィションカットすればOKです。

リスト8.7 クラスごとに連番を振る（ROW_NUMBER）
SELECT class, student_id,

 ROW_NUMBER() OVER (PARTITION BY class ORDER BY student_id) AS seq
　FROM Weights2;

 実行結果

class | student_id | seq

------+-------------+-------

 1 | 100 | 1

 1 | 101 | 2

 1 | 102 | 3

 クラスが変わると連番の開始が1にリセットされる

 2 | 100 | 1

230

第8章 SQLにおける順序　 る手続き型

 2 | 101 | 2

 2 | 102 | 3

 2 | 103 | 4

相関サブクエリを利用する
　相関サブクエリで行う際も考え方は同様です（リスト8.8）。

リスト8.8 クラスごとに連番を振る（相関サブクエリ）
SELECT class, student_id,

 (SELECT COUNT(*)

 FROM Weights2 W2

 WHERE W2.class = W1.class
 AND W2.student_id <= W1.student_id) AS seq

　FROM Weights2 W1;

 実行結果はリスト8.7と同じ

ナンバリングによる更新

　それでは最後に、検索ではなく更新におけるナンバリングの方法を見ま
しょう。Weights2テーブルを改変して、テーブルに連番列は用意されてい
るが、データはまだ入力されていないケースを考えます（図8.5）。テーブ
ル定義はリスト8.9です。この列に連番を更新するUPDATE文を考えます。

図8.5 体重テーブル3（連番列を埋めたい）

Weights3（体重 3）
class（クラス） student_id（学生ID） weight（体重kg） seq（連番）

1 100 50 　

1 101 55 　

1 102 56 　

2 100 60 　

2 101 72 　

2 102 73 　

2 103 73 　

231

8.1行に対するナンバリング

リスト8.9 体重テーブル3の定義
CREATE TABLE Weights3

(class INTEGER NOT NULL,

 student_id CHAR(4) NOT NULL,

 weight INTEGER NOT NULL,

 seq INTEGER NULL,

 PRIMARY KEY(class, student_id));

INSERT INTO Weights3 VALUES(1, '100', 50, NULL);

INSERT INTO Weights3 VALUES(1, '101', 55, NULL);

INSERT INTO Weights3 VALUES(1, '102', 56, NULL);

INSERT INTO Weights3 VALUES(2, '100', 60, NULL);

INSERT INTO Weights3 VALUES(2, '101', 72, NULL);

INSERT INTO Weights3 VALUES(2, '102', 73, NULL);

INSERT INTO Weights3 VALUES(2, '103', 73, NULL);

ウィンドウ関数を利用する

　基本的には先ほどの連番を割り振るクエリをSET句に埋め込む、という
素直な発想で良いのですが、ROW_NUMBERを使う場合は、サブクエリ
をかませるという迂回をする必要があります（リスト8.10）。

リスト8.10 連番の更新（ROW_NUMBER）
UPDATE Weights3

 SET seq = (SELECT seq

 FROM (SELECT class, student_id,

 ROW_NUMBER()

 OVER (PARTITION BY class

 ORDER BY student_id) AS seq

 FROM Weights3) SeqTbl

 -- SeqTblというサブクエリを作る必要がある
 WHERE Weights3.class = SeqTbl.class

 AND Weights3.student_id = SeqTbl.student_id);

 実行結果

class | student_id | weight | seq

------+------------+--------+-----

 1 | 100 | 50 | 1

 1 | 101 | 55 | 2

 1 | 102 | 56 | 3

 2 | 100 | 60 | 1

 2 | 101 | 72 | 2

 2 | 102 | 73 | 3

 2 | 103 | 73 | 4

232

第8章 SQLにおける順序　 る手続き型

相関サブクエリを利用する

　相関サブクエリの場合は、特にこうしたことを意識せず記述できます（リ
スト8.11）注2。

リスト8.11 連番の更新（相関サブクエリ）
UPDATE Weights3

　 SET seq = (SELECT COUNT(*)

 FROM Weights3 W2

 WHERE W2.class = Weights3.class

 AND W2.student_id <= Weights3.student_id);

 実行結果はリスト8.10と同じ

　これで、SQLにおけるナンバリングのパターンについて一通り網羅でき
ました。次からは、連番を使ってより実務的な問題を解いていきましょう。

8.2
行に対するナンバリングの応用

　テーブルの行をナンバリングできると、SQLで自然数の性質を利用した
さまざまなテクニックが使えるようになります。まずは自然数の性質のう
ち、「連続性」と「一意性」を利用してみましょう。連続性とは「5の次が9」の
ような飛び石にならないということであり、一意性とは「数列の中に一つの
数字は一度しか現れない」ということです。どちらも自然数列（連番）として
はごく当然の性質だと思うかもしれませんが、どちらも非常に便利です。

中央値を求める

　例題として、統計指標の一つである中央値（メジアン）を求めるという問
題を考えます。中央値とは、数値をソートして両端から数えた場合にちょ

注2 MySQLは更新SQL内のサブクエリでテーブルの自己参照ができないため、リスト8.11はエラーに
なります。

233

8.2行に対するナンバリングの応用

うど真ん中に来る値です。単純平均と違って、外れ値注3に影響を受けにく
いという利点があります。
　再び、生徒の体重を表すテーブルをサンプルに使います。メジアンの算
出方法はデータ数が奇数と偶数の場合で分かれるので、サンプルデータも
2パターン用意します（図8.6、図8.7）。奇数の場合は素直に中央の値を使
えばよいのですが、偶数の場合は中央の2数の平均をとります。奇数の場
合は生徒B343の60kg、偶数の場合はB343とB346の中間の66kgが求める
答えです。

図8.6 体重テーブル（奇数：メジアン＝60）

Weights（体重）
student_id（学生ID） Weight（体重kg）

A100 50

A101 55

A124 55

B343 60

B346 72

C563 72

C345 72

図8.7 体重テーブル（偶数：メジアン＝66）

Weights（体重）
student_id（学生ID） Weight（体重kg）

A100 50

A101 55

A124 55

B343 60

B346 72

C563 72

C345 72

C478 90

集合指向的な解
　伝統的な集合指向の解法でメジアンを求めるには、テーブルを上位集合

注3 「外れ値」（outlier）とは、数値の集合の中で、中央から極端に逸脱するために平均値をゆがめる例外的
な値のことです。たとえば(1,0,1,2,1,3,9999)という値の集合では、「9999」が外れ値になります。

234

第8章 SQLにおける順序　 る手続き型

と下位集合に分割してその共通部を取るという方法を利用します（リスト
8.12）。

リスト8.12 メジアンを求める（集合指向型）：母集合を上位と下位に分割する
SELECT AVG(weight)

　FROM (SELECT W1.weight

 FROM Weights W1, Weights W2

 GROUP BY W1.weight

 --S1（下位集合）の条件
 HAVING SUM(CASE WHEN W2.weight >= W1.weight THEN 1 ELSE 0 END)

 >= COUNT(*) / 2

 --S2（上位集合）の条件
 AND SUM(CASE WHEN W2.weight <= W1.weight THEN 1 ELSE 0 END)

 >= COUNT(*) / 2) TMP;

　この解法のポイントはHAVING句です。CASE式で表現された2つの特
性関数注4によって、母集合Weightsを上位集合と下位集合に分割していま
す（図8.8）。外側のAVG関数は、テーブルの行数が偶数の場合に中間の値
を算出するために使われています。これは集合指向の発想に基づく、極め
て「SQLらしい」解答ではあります。

図8.8 集合指向的な解法のイメージ図

注4 ある値が特定の集合の要素となるかどうかを判定する関数です。含まれるなら1、含まれなければ0
を返します。

奇数のケース

メジアン＝60

50 55 55 60

50 55 55 60

72 72 72

72 72 72 90

S1 S2

S1 S2

メジアン＝（60＋72）/2＝66

偶数のケース

235

8.2行に対するナンバリングの応用

　この解法には欠点が2つあります。1つ目は、コードが複雑で何をやって
いるのか一目では理解できないこと。2つ目は、パフォーマンスが悪いこ
とです。実行計画を見ておきましょう（図8.9）。

図8.9 実行計画（PostgreSQL）

 Aggregate (cost=3.76..3.77 rows=1 width=4)

　 -> HashAggregate (cost=3.63..3.71 rows=4 width=8)

 Filter: ((sum(CASE WHEN (w2.weight >= w1.weight)

 THEN 1 ELSE 0 END) >= (count(*) / 2))

 AND (sum(CASE WHEN (w2.weight <= w1.weight)

 THEN 1 ELSE 0 END) >= (count(*) / 2)))

 -> Nested Loop (cost=0.00..2.77 rows=49 width=8)

 -> Seq Scan on weights w1 (cost=0.00..1.07 rows=7 width=4)

 -> Materialize (cost=0.00..1.11 rows=7 width=4)

 -> Seq Scan on weights w2 (cost=0.00..1.07 rows=7 width=4)

　実行計画にNested Loopsが現れていることからもわかるように、W1お

よびW2に対する結合を行っています。この2つのテーブルは同じWeights

なので、要するに自己結合を行っているのです。結合が、コストが高く実
行計画も不安定になるリスクを抱えた演算であることは、第6章で説明し
たとおりです。
　この欠点を解消するにはどうすればよいでしょうか？ ここで登場するの
がウィンドウ関数です。

手続き型の解❶──世界の中心を目指せ
　自然数の特性をSQLで利用すると、まさに「端から数える」という行為を
SQLで行えるようになります（リスト8.13）。

リスト8.13 メジアンを求める（手続き型）：
両端から1行ずつ数えてぶつかった地点が「世界の中心」

SELECT AVG(weight) AS median

　FROM (SELECT weight,

 ROW_NUMBER() OVER (ORDER BY weight ASC, student_id ASC) AS hi,

 ROW_NUMBER() OVER (ORDER BY weight DESC, student_id DESC) AS lo

 FROM Weights) TMP

 WHERE hi IN (lo, lo +1 , lo -1);

236

第8章 SQLにおける順序　 る手続き型

　このクエリがやっていることをイメージするには、世界の両端に立つ2

人の旅人を想像するのがよいでしょう。この2人が向かい合って同じ速さ
（時速1行）で歩いたとき、ちょうどぶつかった地点が「世界の中心」という
わけです（図8.10）。

図8.10 手続き型の解法のイメージ図

　奇数の場合は、「hi＝ lo」となる中心点が必ず1行だけ存在します。一方
偶数の場合は、「hi＝ lo＋1」と「hi＝ lo－1」となる2行が存在します。奇数
と偶数の場合の条件分岐をIN述語でまとめてしまえる点が、この解のエレ
ガントなところです。
　この解にはちょっとした注意点が2つあります。1つは、ナンバリングの
関数には必ずROW_NUMBERを使う必要があることです。同じウィンド
ウ関数であっても、RANKやDENSE_RANKだと「7の次が9に飛ぶ」とか
「11が2つ現れる」という事態が生じてしまい、旅人の歩く速度が一定しま
せん。行集合に自然数の集合を割り当てることで、連続性と一意性が保証
されるのです注5。

注5 イメージ的に言えば、2人の歩く速度を常に同一かつ一定に保つということを意味します。2人の旅
人は、1マスずつしか動けないボードゲームの駒だと想像するとわかりやすいでしょう。

❶データ数が奇数の場合、ちょうど 4番で出会う
　メジアン＝60

❷データ数が偶数の場合、4番と 5番の中間で出会う
　メジアン＝（60＋72）/2＝66

weight
hi
lo

weight
hi
lo

50
1
7

55
2
6

55
3
5

60
4
4

72
5
3

72
6
2

72
7
1

50
1
8

55
2
7

55
3
6

60
4
5

72
5
4

72
6
3

72
7
2

90
8
1

237

8.2行に対するナンバリングの応用

　もう1つは、ORDER BYのソートキーに、weight列だけでなく主キーで
あるstudent_idも含める必要があることです。一見すると体重についての
メジアンを求めているのだから、ORDER BYのキーはweight列だけで十分
なような気がします。しかし、student_idを含めないと結果がNULLにな

ることがあるのです。なぜこのクエリでORDER BYのキーにstudent_idが

なぜ必要かは章末の演習問題としていますので、考えてみてください。
　それでは、実行計画を確認しましょう（図8.11）。

図8.11 実行計画（PostgreSQL）

Aggregate (cost=1.71..1.72 rows=1 width=4)

　-> Subquery Scan on tmp (cost=1.41..1.70 rows=1 width=4)

 Filter: ((tmp.hi = tmp.lo)

 OR (tmp.hi = (tmp.lo + 1))

 OR (tmp.hi = (tmp.lo - 1)))

 -> WindowAgg (cost=1.41..1.55 rows=7 width=9)

 -> Sort (cost=1.41..1.42 rows=7 width=9)

 Sort Key: weights.weight, weights.student_id

 -> WindowAgg (cost=1.17..1.31 rows=7 width=9)

 -> Sort (cost=1.17..1.19 rows=7 width=9)

 Sort Key: weights.weight, weights.student_id

 -> Seq Scan on weights (cost=0.00..1.07 rows=7 width=9)

　Weightsテーブルへのアクセスが1回に減って、結合がなくなっているこ
とが見て取れます。その代わり、ソートが2回に増えています。これは、2

つのROW_NUMBERのソート順が昇順と降順で異なるからです。リスト
8.12の集合指向的なコードと比較すると、結合を消去できた代わりにソー
トが1回増えたわけです。Weightsテーブルが十分に大きければ、これはも
との取れる取引です。

手続き型の解❷──2マイナス1は1
　ROW_NUMBERを使った解法はエレガントですが、パフォーマンス上
はこれが最適解というわけではありません。改良版として、リスト8.14の
ようなコードが考えられるからです。

238

第8章 SQLにおける順序　 る手続き型

リスト8.14 メジアンを求める（手続き型その2）：折り返し地点を見つける
SELECT AVG(weight)

　FROM (SELECT weight,

 2 * ROW_NUMBER() OVER(ORDER BY weight)

 - COUNT(*) OVER() AS diff

 FROM Weights) TMP

 WHERE diff BETWEEN 0 AND 2;

　これは一目見ただけだと何をやっているのかわかりにくいと思いますが、
イメージとしては、テーブルの行数を2倍に増やして、それからもとのテ
ーブルの行数を引くことによって真ん中を見つける、というものです。
ROW_NUMBER関数で得た連番を2倍することで、テーブルの行数を2倍
に増やしているようなイメージです。そこからCOUNT(*)を引き算すること
で、2倍したテーブルからもとのテーブルを差し引いているのです。集合
の要素数が2倍に増えても中央値は変動しないという数学的性質を利用し
た解です。
　この解の優れた点は、ソートを1回で済ませられるパフォーマンスの良
さです。なぜなら、COUNT関数のOVER句にORDER BYによる指定が
ないため、オプティマイザは単純にROW_NUMBERと同じweight列の昇
順でソートすることが可能になるからです。確認のため実行計画を見てみ
ましょう（図8.12）。

図8.12 実行計画（PostgreSQL）
--

Aggregate (cost=1.52..1.53 rows=1 width=4)

　-> Subquery Scan on tmp (cost=1.17..1.52 rows=1 width=4)

 Filter: ((tmp.y >= 0) AND (tmp.y <= 2))

 -> WindowAgg (cost=1.17..1.41 rows=7 width=4)

 -> WindowAgg (cost=1.17..1.29 rows=7 width=4)

 -> Sort (cost=1.17..1.19 rows=7 width=4)

 Sort Key: weights.weight

 -> Seq Scan on weights (cost=0.00..1.07 rows=7 width=4)

　ご覧のとおり、ソートが1回に減っています。ベンダーの独自拡張のメ
ジアンを求める関数を除けば、これがおそらくSQLで中央値を求める最速
のクエリでしょう。

239

8.2行に対するナンバリングの応用

ナンバリングによりテーブルを分割する

　次に、テーブルをいくつかのグループに分割するという問題を考えます。
データをある軸でグループ化するというのは、日々の業務においても頻繁
に見られる要件です。

断絶区間を求める

　まずは単純なサンプルから始めましょう。図8.13は1から始まる連番テ
ーブルですが、諸事情により途中に歯抜けが生じて、いささか汚い状態と
なっています。イメージとしては、レストランや劇場の座席番号を管理す
るテーブルを思い浮かべてください。このような場合、欠番はすでに予約
済みの席を意味します。テーブル定義はリスト8.15です。

図8.13 連番テーブル

Numbers（連番）
num（番号）

1

3

4

7

8

9

12

リスト8.15 連番テーブルの定義
CREATE TABLE Numbers(num INTEGER PRIMARY KEY);

INSERT INTO Numbers VALUES(1);

INSERT INTO Numbers VALUES(3);

INSERT INTO Numbers VALUES(4);

INSERT INTO Numbers VALUES(7);

INSERT INTO Numbers VALUES(8);

INSERT INTO Numbers VALUES(9);

INSERT INTO Numbers VALUES(12);

　考えてほしいのは、一連の欠番のシーケンスを図8.14のように表示する
クエリです。

240

第8章 SQLにおける順序　 る手続き型

図8.14 欠番のシーケンス
gap_start ～ gap_end

--------- ---- -------

 2 ～ 2

 5 ～ 6

 10 ～ 11

　座席番号2番のように、欠番が1つだけの場合も、独立した（長さが1の）
シーケンスとして考えることにします。

集合指向的な解──集合の境界線

　手続き型言語であれば、1行ずつテーブルから読み出し、当該の行と次
の行の数値の差分が1でなければその間には欠番がある、という行レベル
の判定処理を記述することになるでしょう。一方、伝統的なSQLでは当該
の行を起点に考えるのは同じですが、処理の単位が「集合」になります。古
典的な解はリスト8.16のようになります注6。

リスト8.16 欠番のカタマリを表示する
SELECT (N1.num + 1) AS gap_start,

 '～',

 (MIN(N2.num) - 1) AS gap_end

　FROM Numbers N1 INNER JOIN Numbers N2

 ON N2.num > N1.num

 GROUP BY N1.num

HAVING (N1.num + 1) < MIN(N2.num);

　N2.numは「ある行のN1.numの数値より大きな数値の集合」として条件
づけされています（ON N2.num > N1.num）。この集合群を一覧表示すると、
表8.1のようになります。

注6 この解のアイデアは『SQLパズル 第2版』の「パズル9　席空いてますか？」で紹介されているもので
す。

241

8.2行に対するナンバリングの応用

表8.1 ある行を起点としてそれより大きな数値の集合を求める

N1.num N2.num

S1 1 3 ×断絶あり（1＋1≠3）

1 4

1 7

1 8

1 9

1 12

S2 3 4 ○断絶なし（3＋1＝4）

3 7

3 8

3 9

3 12

S3 4 7 ×断絶あり（4＋1≠7）

4 8

4 9

4 12

S4 7 8 ○断絶なし（7＋1＝8）

7 9

7 12

S5 8 9 ○断絶なし（8＋1＝9）

8 12

S6 9 12 ×断絶あり（9＋1≠12）

　このS1～S6のうち、MIN(N2.num)がN1.num+1にならないS1、S3、S6の3

つの集合に注目してください。当該の数値（N1.num）のすぐ後ろの数が
MIN(N.2num)と一致しないという事実はそこに断絶があることを示します。
これがHAVING句の(N1.num + 1) < MIN(N2.num)という条件の意味です。
　あとは、N1.numの1つ後ろの数が欠番の開始値、N2.numの1つ前の数
が終了値になる、というしかけです。コードもすっきりシンプルで、集合
指向的な名答です。惜しむらくは、集合指向の解ではどうしても自己結合
が必要なことです。実行計画は図8.15のとおりです。

図8.15 集合指向の実行計画（PostgreSQL）
--

 HashAggregate (cost=3.01..3.15 rows=7 width=8)

　 Filter: ((n1.num + 1) < min(n2.num))

242

第8章 SQLにおける順序　 る手続き型

　-> Nested Loop (cost=0.00..2.89 rows=16 width=8)

 Join Filter: (n2.num > n1.num)

 -> Seq Scan on numbers n1 (cost=0.00..1.07 rows=7 width=4)

 -> Materialize (cost=0.00..1.11 rows=7 width=4)

 -> Seq Scan on numbers n2 (cost=0.00..1.07 rows=7 width=4)

　N1とN2に対してNested Loopsによる結合が行われていることが確認で
きます。結合を必要とするクエリはコストが高くなるとともに、実行計画
変動のリスクを抱えることになります。

手続き型の解──「1行あと」との比較

　この問題を手続き型の考えで解こうとするなら、みなさんはどのように
考えるでしょうか。おそらくほとんどの人が「カレント行の値と1行後ろの
値を比較して、その差分が1でなければ両者の間には欠番がある」という考
え方をするはずです。これは、まさに行の順序を意識して1行ずつループ
する、手続き型の王道とも言えるアプローチです。これをそっくりそのま
まSQLに翻訳したのがリスト8.17の解です。

リスト8.17 「1行あと」との比較
SELECT num + 1 AS gap_start,

 '～',

 (num + diff - 1) AS gap_end

　FROM (SELECT num,

 MAX(num)

 OVER(ORDER BY num

 ROWS BETWEEN 1 FOLLOWING

 AND 1 FOLLOWING) - num

 FROM Numbers) TMP(num, diff)

 WHERE diff <> 1;

　結果は先ほどの集合指向の解とまったく同じになります。このクエリの
ポイントは、ウィンドウ関数によって「カレント行の1行あと」の値を求め
て、その差分をdiff列で計算していることです。まだイメージが湧かない
人は、ウィンドウ関数単独の実行結果を見てみるとよいでしょう（リスト
8.18）。

243

8.2行に対するナンバリングの応用

リスト8.18 サブクエリの中身
SELECT num,

 MAX(num)

 OVER(ORDER BY num

 ROWS BETWEEN 1 FOLLOWING AND 1 FOLLOWING) AS next_num

　FROM Numbers;

 実行結果

 num | next_num

-----+---------

　 1 | 3

　 3 | 4

　 4 | 7

　 7 | 8

　 8 | 9

　 9 | 12

　12 |

　num列はカレントの座席番号、next_num列はその次の空席番号です。
その差分が1でなければ、間に欠番が存在するということです（外側の
WHERE句のdiff <> 1はこの条件です）。まさに「ザ・手続き型」の考え方
です。
　この解の実行計画は、結合を必要としないため極めて単純になります（図
8.16）。

図8.16 手続き型の実行計画（PostgreSQL）

 WindowAgg (cost=1.17..1.29 rows=7 width=4)

　 -> Sort (cost=1.17..1.19 rows=7 width=4)

 Sort Key: num

 -> Seq Scan on numbers (cost=0.00..1.07 rows=7 width=4)

　Numbersテーブルに1度だけアクセスし、ウィンドウ関数のソートを行
っています。結合が不要になるためパフォーマンスが安定します注7。SQLレ

ベルで見ると、集合指向の解の場合データベース内部ではループが使われ

注7 なお、このサンプルではデータ件数が少ないため「テーブルのフルスキャン＋ソート」という実行計
画が選択されていますが、データサイズが大きくなると、「Index Scan using numbers_pkey on
numbers」または「Index Only Scan using numbers_pkey on numbers」のように、「主キーのイ
ンデックスを利用したスキャン＋ウィンドウ関数のソートをスキップ」という計画が選択されること
もあります。この場合はさらに集合指向の実行計画よりも効率的なアクセスが実現されることにな
るでしょう。後者の「Index Only Scan」については、第10章で詳しく取り上げます。

244

第8章 SQLにおける順序　 る手続き型

ていて、手続き型の解の場合ループが使われないというのも、何だか不思
議なものです。

テーブルに存在するシーケンスを求める

　ここまでは、テーブルに「存在しない」シーケンスを見つけました。今度
は反対に、テーブルに存在している数列をグループ化する方法を考えまし
ょう。つまり、空席のカタマリを求めるのです。友人や家族数人でまとま
った席を予約したい場合は、このようなカタマリを一覧したいと思うでし
ょう。サンプルデータは先ほどと同じ図8.13のNumbersテーブルを使いま
す。

集合指向的な解──再び、集合の境界線

　集合指向的な解法においては、テーブルに存在するシーケンスを求める
のは、存在しないシーケンスを求めるのに比べるとかなり直接的で簡単で
す。というのも、MAX/MIN関数を使うことで、シーケンスの境界線をダ
イレクトに求められるからです。答えはリスト8.19のようになります注8。

リスト8.19 シーケンスを求める（集合指向的）
SELECT MIN(num) AS low,

 '～',

 MAX(num) AS high

　FROM (SELECT N1.num,

 COUNT(N2.num) - N1.num

 FROM Numbers N1 INNER JOIN Numbers N2

 ON N2.num <= N1.num

 GROUP BY N1.num) N(num, gp)

 GROUP BY gp;

 実行結果

low | ～ | high

----+----+------

　1 | ～ | 1

　3 | ～ | 4

　7 | ～ | 9

 12 | ～ | 12

注8 この解は、『プログラマのためのSQL 第4版──すべてを知り尽くしたいあなたに』（Joe Celko著／
ミック監訳、翔泳社、2013年）の第32章で紹介されているものです。

245

8.2行に対するナンバリングの応用

　自己結合でnum列の組み合わせを作り、最大値と最小値で集合の境界を
求めるという考え方は先ほどと同様なので、そろそろ慣れてきたでしょう。
実行計画がどうなるかも、SQLを見ただけで想像がつくようになってきた
のではないでしょうか、一応確認しておくと、図8.17のようになります。

図8.17 集合指向の実行計画（PostgreSQL）
--

HashAggregate (cost=3.18..3.25 rows=7 width=12)

　-> HashAggregate (cost=2.97..3.06 rows=7 width=8)

 -> Nested Loop (cost=0.00..2.89 rows=16 width=8)

 Join Filter: (n2.num <= n1.num)

 -> Seq Scan on numbers n1 (cost=0.00..1.07 rows=7 width=4)

 -> Materialize (cost=0.00..1.11 rows=7 width=4)

 -> Seq Scan on numbers n2 (cost=0.00..1.07 rows=7 width=4)

　N1とN2に対する自己結合のあとに極値関数（MINおよびMAX）を使っ
た集約を行っています（2つのHashAggregate）。この場合、ソートの代わり
にハッシュ（HashAggregate）が使われていることにも注意してください。第
4章でも説明したように、最近のDBMSでは集約関数や極値関数をソート
ではなくハッシュで計算するアルゴリズムが採用されつつあります注9。
　なお環境によっては、リスト8.19についてもNumbersテーブルに対する
アクセス手段として、シーケンシャルスキャンの代わりに主キーのインデ
ックスを使ったインデックススキャン（Index ScanまたはIndex Only Scan）
が現れることがあるかもしれません。

手続き型の解──再び、「1行あと」との比較
　手続き型の解法においても考え方そのものは単純なのですが、少しコー
ドが長くなります（リスト8.20）。

リスト8.20 シーケンスを求める（手続き型）
SELECT low, high

　FROM (SELECT low,

 CASE WHEN high IS NULL

 THEN MIN(high)

 OVER (ORDER BY seq

 ROWS BETWEEN CURRENT ROW

注9 Oracleでも、集約関数の実行計画において「HASH GROUP BY」が現れることはよくあります。

246

第8章 SQLにおける順序　 る手続き型

 AND UNBOUNDED FOLLOWING)

 ELSE high END AS high

 FROM (SELECT CASE WHEN COALESCE(prev_diff, 0) <> 1

 THEN num ELSE NULL END AS low,

 CASE WHEN COALESCE(next_diff, 0) <> 1

 THEN num ELSE NULL END AS high,

 seq

 FROM (SELECT num,

 MAX(num)

 OVER(ORDER BY num

 ROWS BETWEEN 1 FOLLOWING

 AND 1 FOLLOWING) - num AS next_diff,

 num - MAX(num)

 OVER(ORDER BY num

 ROWS BETWEEN 1 PRECEDING

 AND 1 PRECEDING) AS prev_diff,

 ROW_NUMBER() OVER (ORDER BY num) AS seq

 FROM Numbers) TMP1) TMP2) TMP3

 WHERE low IS NOT NULL;

　このコードでやっていることは、テーブルに存在しないシーケンスを求
めたときと同じように、カレント行とその前後の行との比較です。内側の
サブクエリの結果を見ていけば、その結果は簡単に理解できます。
　まず一番内側のTMP1で、カレント行と前後の行のnum列の差分を求め
ます（図8.18）。

図8.18 カレント行と前後の差分（TMP1）
num | next_diff | prev_diff | seq

----+-----------+-----------+-----

　1 | 2 | | 1

　3 | 1 | 2 | 2

　4 | 3 | 1 | 3

　7 | 1 | 3 | 4

　8 | 1 | 1 | 5

　9 | 3 | 1 | 6

 12 | | 3 | 7

247

8.2行に対するナンバリングの応用

　next_diffは1行あとのnumからカレント行のnumを引いた値、prev_diff

はカレント行のnumから1行前のnumを引いた値です。したがって、next_

diffが1より大きければ、カレント行と次の行の間に欠番が存在することが
わかります。同様に、prev_diffが1より大きければ、1行前とカレント行の
間に欠番が存在することがわかります。
　この性質を利用することで、シーケンスの区切りとなる両端のnumを求
めることができます。TMP2のSELECT句におけるCASE式で、next_diff

とprev_diffが1かどうかで境界値であるか否かを判断しています（図8.19）。
low列とhigh列は、各シーケンスの両端となる値を示しています。

図8.19 カレント行と前後の差分（TMP2）
low | high | seq

----+------+-----

　1 | 1 | 1

　3 | | 2

 | 4 | 3

　7 | | 4

 | | 5

 | 9 | 6

 12 | 12 | 7

　この時点で、答え自体はすでに求められています。ただ、「3～4」や「7～
9」の期間のように同一の行に始点と終点が収まっていないシーケンスが存
在するので、これを整形するためにTMP3を作ります（図8.20）。

図8.20 シーケンスの整理（TMP3）
low | high

----+-----

　1 | 1

　3 | 4

 | 4

　7 | 9

 | 9

 | 9

 12 | 12

　最後に、一番外側のWHERE low IS NOT NULLの条件で不要な行を削除す
れば、最終結果が得られます（図8.21）。

248

第8章 SQLにおける順序　 る手続き型

図8.21 low列がNULLの行を削除する
low | high

----+------

　1 | 1

　3 | 4

　7 | 9

 12 | 12

　考え方は同じなのに、テーブルに存在しないシーケンスを求めるクエリ
に比べてコードが長大になったことに違和感を持った人もいるかもしれま
せん。実は、やろうと思えばこのコードはサブクエリを減らすこともでき
ます。CASE式で作った low列とhigh列を、直接外側のSELECT句のウィ
ンドウ関数内に記述してしまえば、TMP2が不要になるからです。ただ、
そうするとかなり読みにくいコードになるため、ここでは1つずつサブク

エリを段階的に作っていくコードを示しました。
　実行計画は図8.22のようになります。

図8.22 手続き型の実行計画（PostgreSQL）

Subquery Scan on tmp3 (cost=1.70..1.97 rows=7 width=8)

　Filter: (tmp3.low IS NOT NULL)

　-> WindowAgg (cost=1.70..1.90 rows=7 width=20)

 -> Sort (cost=1.70..1.72 rows=7 width=20)

 Sort Key: tmp1.seq

 -> Subquery Scan on tmp1 (cost=1.17..1.61 rows=7 width=20)

 -> WindowAgg (cost=1.17..1.54 rows=7 width=4)

 -> WindowAgg (cost=1.17..1.40 rows=7 width=4)

 -> WindowAgg (cost=1.17..1.29 rows=7 width=4)

 -> Sort (cost=1.17..1.19 rows=7 width=4)

 Sort Key: numbers.num

 -> Seq Scan on numbers (cost=0.00..1.07 rows=7 width=4)

　TMP1とTMP3でウィンドウ関数を使っているため、ソートも2回発生
しています注10。PostgreSQLの実行計画は入れ子が冗長で若干見にくいので、
参考にOracleの実行計画も示します（図8.23）。内容的には同じで、やはり
ウィンドウ関数のために2回のソートが発生することがわかります。

注10 TMP1の中には3つのウィンドウ関数が存在しますが、ソートキーはいずれもnum列の昇順なので、
ソートは1回で済んでいます。

249

8.2行に対するナンバリングの応用

図8.23 手続き型の実行計画（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 7 | 182 | 4 (50)| 00:00:01 |

|* 1 | VIEW | | 7 | 182 | 4 (50)| 00:00:01 |

| 2 | WINDOW SORT | | 7 | 364 | 4 (50)| 00:00:01 |

| 3 | VIEW | | 7 | 364 | 3 (34)| 00:00:01 |

| 4 | WINDOW SORT | | 7 | 21 | 3 (34)| 00:00:01 |

| 5 | TABLE ACCESS FULL| NUMBERS | 7 | 21 | 2 (0)| 00:00:01 |

　また、PostgreSQLの実行計画ではSubquery Scan on tmp1のように、サ
ブクエリに対するスキャンがTMP1とTMP3に対して発生しています。こ
れは、サブクエリの結果を一時テーブルとして展開する動作をしているこ
とを意味します。これは一時表のサイズが大きい場合はコストが高くなる
可能性があります注11。OracleでもVIEWという部分がサブクエリを意味しま
す。Oracleは、極力こうした中間結果をメモリ上に保持しようとしますが、
結果が大きい場合はやはり一時テーブルとしてストレージ上に格納されま
す。
　したがって、このクエリが性能面で集合指向のクエリに勝てるかどうか
は、サブクエリのサイズにも依存するため、断言はできません注12。
　なおリスト8.20についても、環境によってはNumbersテーブルに対する
アクセス手段として、シーケンシャルスキャンの代わりに主キーのインデ
ックスを使ったインデックススキャン（Index ScanまたはIndex Only Scan）
が現れることがあるかもしれません。

注11 一時表はストレージに保持されるうえ、このような一時表にはインデックスや制約が存在しないた
め、フルスキャンが採用されることが多いためです。

注12 テーブルサイズが大きくなるほど集合指向の自己結合のコストのほうが大きくなっていくとは思い
ますが。

250

第8章 SQLにおける順序　 る手続き型

8.3
シーケンスオブジェクト・IDENTITY列・採番テーブル

　標準SQLには、連番を扱うための機能としてシーケンスオブジェクトと
IDENTITY列が存在します。比較的新しい機能ですが、現在ではほとんど
の実装で使用できます注13。これら2つの機能に対する本書のスタンスは簡
潔です。

 どちらの機能も極力使わないこと

　これに尽きます。どうしても使わなければならない場合は、本当に必要
な個所だけの利用にとどめてください。そして、IDENTITY列よりはシー
ケンスオブジェクトを使うようにしてください。

シーケンスオブジェクト

　シーケンスオブジェクトは後ろに「オブジェクト」という言葉が付くこと
からもわかるように、テーブルやビューと同様、スキーマ内に存在するオ
ブジェクトの一つです。したがってテーブルやビューと同じくCREATE文
を使って定義します（リスト8.21）。

リスト8.21 シーケンスオブジェクトの定義の例
CREATE SEQUENCE testseq

START WITH 1

INCREMENT BY 1

MAXVALUE 100000

MINVALUE 1

CYCLE;

　主な指定オプションは実装によっても違いますが、「開始値」「増分」「最
大値」「最小値」「最大値に達したときの循環の有無」（循環の場合は最小値に
戻る）といったあたりの設定は多くの実装でサポートされています。こうし

注13 IDENTITY列はOracleがサポートしていません。また、シーケンスオブジェクトはMySQLがサポ
ートしていません。

251

8.3シーケンスオブジェクト・IDENTITY列・採番テーブル

て作成されたシーケンスオブジェクトは、SQL文の中でアクセスすること
によって、指定した増分で増えていく数列を生成できます。
　この機能が最もよく使われる場所はINSERT文の中です（リスト8.22）。

リスト8.22 シーケンスオブジェクトを使った行のINSERT例
INSERT INTO HogeTbl VALUES(NEXT VALUE FOR nextval, 'a', 'b', ...);

　シーケンスオブジェクトによって払い出した連番を主キーに使って、行
をINSERTしていくわけです注14。

シーケンスオブジェクトの問題点

　シーケンスオブジェクトの問題点は、大きく3つ挙げられます。

❶標準化が遅かったため、構文が実装依存で移植性がない。使えない実装もある

❷システムで自動的に払い出す値のため、現実のエンティティの属性ではない

❸パフォーマンス問題を引き起こす

　❶の問題はSQLにおいてはある意味つきもので、また実装間の移植性を
気にしなくてよいケースでは欠点にはなりません。❷の問題は、RDBの理
論家の間では最も重大視されているものですが、現場においてはしばしば
無視されがちです。しかし、❸の問題はたとえ実務家であっても無視でき
ないものです。この点を主に取り上げます。
　シーケンスオブジェクトが引き起こす性能問題は、大きく次の2つに分
類できます。

シーケンスオブジェクトそのものに起因する性能問題
　まずは、シーケンスオブジェクトのロジックに依存する問題です。シー
ケンスオブジェクトが払い出す連番は、デフォルトでは次の3つの特性を
持っています。

注14 シーケンスオブジェクトへアクセスする構文は、実装によって異なります。標準SQLに準じている
のは、DB2とMicrosoft SQL Serverです。Oracleではシーケンス名 .nextval／シーケンス
名.currval、PostgreSQLではnextval('シーケンス名')／currval('シーケンス名')になります。

252

第8章 SQLにおける順序　 る手続き型

・一意性

・連続性

・順序性

　一意性と連続性については「行に対するナンバリングの応用」（232ペー

ジ）でも解説しましたが、ここで簡単に復習しておきます。
　一意性は、重複する値が払い出されることはないということです。たと
えば、「1,2,2,3,4,5,5,5」という数列では、2と5が重複しているため、一意性
を満たしていません。重複値が発生しては主キーとして使うことなど不可
能ですから、これはシーケンスオブジェクトとして最低限満たすべき性質
です。
　連続性は、払い出す値に欠番が発生しないということです。たとえば
「1,2,4,5,6,8」という数列では3と7の値が欠けているため、連続性を満たし
ていません。これは、一意性さえ担保できていればよい場合は、必ずしも
満たす必要のない性質です。
　順序性は、連番の大小関係が逆転することがない、ということです。た
とえば「1,2,5,4,6,8,7」という数列では、4と5、7と8の大小関係が逆転して
おり、順序性を満たしていません。これも、一意性さえ担保できればよい
場合には、必ずしも満たす必要のない性質です。
　シーケンスオブジェクトは、デフォルト設定ではこの3つの性質を満た
した連番を払い出そうとします。そのため、同時実行制御のためにかなり
厳格なロックメカニズムが必要になります。1人のユーザがシーケンスオ
ブジェクトを利用する際には、シーケンスオブジェクトをロックしてほか
のユーザからのアクセスをブロックする排他制御を行うためです。ユーザ
AがシーケンスオブジェクトからNEXT VALUEを取得するときの処理イ
メージは次のようになります。

❶シーケンスオブジェクトを排他ロックする

❷NEXT VALUEを取得する

❸CURRENT VALUEがインクリメントされる

❹シーケンスオブジェクトの排他ロックを解除する

　❶～❹のステップの間、他ユーザはシーケンスオブジェクトにアクセス

253

8.3シーケンスオブジェクト・IDENTITY列・採番テーブル

できません注15。したがって、同時に複数ユーザがシーケンスオブジェクト
へのアクセスを行った場合、ロック競合による性能劣化が発生することに
なりますし、シングルユーザが連続的にシーケンスオブジェクトへアクセ
スする場合にも、この❶～❹のステップを繰り返すわけですから、ある程
度のオーバーヘッドが発生します。もっとも、オーバーヘッドの評価は定
量的な問題なので、発生することが常に悪いというわけではもちろんあり
ません。

シーケンスオブジェクトそのものに起因する性能問題への対策

　こうしたシーケンスオブジェクトのロジックに起因する問題を緩和する
方法としては、CACHEとNOORDERオプションがあります。
　CACHEは、新しい値が必要になるたびに、メモリに読み込む必要があ
る値の数を設定するオプションです。実装によってデフォルト値は異なり
ますが、この値を大きくすることでアクセスコストを減らすことが可能に
なります。ただし、CACHEオプションを有効にする副作用として、シス
テム障害時に連続性の担保が不可能になります。つまり、障害時には欠番
を許すことになります。
　もう一つのNOORDERオプションは、順序性を担保しないことによって
やはりオーバーヘッドを減らす効果があります。この場合、あとからアク
セスしたほうに小さな連番が振られることが起こり得るため、時系列のデ
ータなど順序性を担保したい場合には利用できません。
　このように、機能的な充足性と照らし合わせて判断して、CACHEと

NOORDERを採用できる場合はシーケンスオブジェクトの性能を改善でき
る可能性があります。逆に言うと、シーケンスオブジェクトのチューニン
グ方法はこの程度しかないということです。

連番をキーに使うことに起因する性能問題

　シーケンスオブジェクトが引き起こす性能問題の2つ目のケースが、ホ
ットスポットに関連するものです。これは、連番や時刻のような連続した
データを扱う場合には、シーケンスオブジェクトを利用していなくても起

注15 たとえば、もし❷と❸の間にユーザBがシーケンスオブジェクトにアクセスしてしまうと、複数の
ユーザに同じNEXT VALUEの値を払い出す事態が発生しかねません。

254

第8章 SQLにおける順序　 る手続き型

こる可能性があり、必ずしもシーケンスオブジェクト特有の問題というわ
けではありません。しかし、シーケンスオブジェクトを使った場合に顕著
に見られます。
　この問題は、DBMSの物理層の構造によって発生するものです。連番の
ように値の近いデータを連続してINSERTすると、物理的に同じ領域に格
納されることになります。するとストレージの特定の物理的ブロックだけ
I/O負荷が高くなって、性能劣化が発生するのです。このようなI/O負荷
の集中する場所を「ホットスポット」とか「ホットブロック」と呼びます（図
8.24）注16。

図8.24 ホットスポットのイメージ

　このタイプの性能劣化の典型例が、シーケンスオブジェクトを使った
INSERT文がループで大量発行される場合で、特定のブロックに処理が集
中して性能劣化が起きます。「ぐるぐる系」がここでも再び顔を出してきま
す。この問題に対処するのは、なかなか難しいことです。RDBは物理層を
ユーザから隠

いんぺい

蔽することを意図しているので、物理層のアクセスパターン
をユーザが明示的に変えることは、基本的にできません。

注16 ホットスポットは、テーブルでもインデックスでも発生しえます。またその発生理由は、単純に特
定のストレージ領域のリソース負荷が上がるという物理的な要因と、ロック競合という論理的な要
因があります。ホットスポットの発生ロジックについては、たとえば次のドキュメントを参照して
ください。
・Oracle SQLチューニング講座（9）：索引の使い分けでパフォーマンスを向上できるケース - @IT
　http://www.atmarkit.co.jp/fdb/rensai/orasql09/orasql09_3.html
・ Monotonically increasing clustered index keys can cause LATCH contention - MSDN
Blogs

　 http://blogs.msdn.com/b/sqlserverfaq/archive/2010/05/27/monotonically-increasing-
clustered-index-keys-can-cause-latch-contention.aspx

アクセスが集中する
物理領域

http://www.atmarkit.co.jp/fdb/rensai/orasql09/orasql09_3.html
http://blogs.msdn.com/b/sqlserverfaq/archive/2010/05/27/monotonically-increasing-clustered-index-keys-can-cause-latch-contention.aspx
http://blogs.msdn.com/b/sqlserverfaq/archive/2010/05/27/monotonically-increasing-clustered-index-keys-can-cause-latch-contention.aspx
http://blogs.msdn.com/b/sqlserverfaq/archive/2010/05/27/monotonically-increasing-clustered-index-keys-can-cause-latch-contention.aspx

255

8.3シーケンスオブジェクト・IDENTITY列・採番テーブル

連番をキーに使うことに起因する性能問題への対策

　この問題を緩和する方法は2つ知られています。1つ目は、Oracleの逆キ
ーインデックスのように、連続した値を挿入する場合であってもDBMS内
部で変換をかけてうまく分散できるようなしくみ（一種のハッシュ）を利用
することです。2つ目は、インデックスにあえて冗長な列を追加すること
でデータの分散度を高めることです。つまり、(seq)だけで一意にはなる
としても、そこにあえて(empid, seq)のように本来不要な列を追加してイ
ンデックスを作るということです。
　しかしこれらの方法にもトレードオフがあります。逆キーインデックス
のようなしくみを使えば、たしかにINSERT文は速くなりますが、逆に範
囲検索などでI/O量が増えてしまい、SELECT文の性能が悪くなるリスク
があります。かつ、実装依存の方法なので普遍性がありません。インデッ
クスに冗長な列を追加する方法も、論理レベルで不要な列をキーに追加す
るというのは、お世辞にも真っ当なモデル設計とは言えません。あとから
設計書を見たエンジニアは、しばらく頭上にクエスチョンマークを浮かべ
ることになるでしょう。
　以上のように、シーケンスオブジェクトを使ったときの性能問題は（物理
層まで届くという点で）根深いものです。シーケンスオブジェクトは極力使
うべきではないし、使うならばリスクを知ったうえで控えめに、というの
が本書の結論です。

IDENTITY列

　IDENTITY列は「オートナンバー列」とも呼ばれます。テーブルの列とし
て定義して、データがINSERTされるたびにインクリメントされた数値が
追加されます。
　このIDENTITY列は、機能的にも性能的にもシーケンスオブジェクトの
劣化版というのが本書の評価です。機能的には、シーケンスオブジェクト
がテーブルとは独立に任意のテーブルへ登録するデータに利用できるのに
対し、IDENTITY列は特定のテーブルに結びついています。性能的にはシ
ーケンスオブジェクトで可能なCACHEやNOORDERの指定ができなかっ
たりなど制限されています。そのため、シーケンスオブジェクトが使える
実装において、IDENTITY列を利用するメリットはないと言ってよいでし

256

第8章 SQLにおける順序　 る手続き型

ょう。

採番テーブル

　最近は見かけなくなりましたが、むかしむかしに作られたアプリケーシ
ョンでは、採番テーブルという連番を払い出すため専用のテーブルを使う
ことは珍しくありませんでした。実装がシーケンスオブジェクトも
IDENTITY列もサポートしていなかったころは、アプリケーション側で独
自に採番を行わなければならなかったのです。これはテーブルで擬似的に
シーケンスオブジェクトを実装したものなので、シーケンスオブジェクト
のロックメカニズムをそのままテーブルで表現することになります。
　もちろんパフォーマンスも出ませんし、シーケンスオブジェクトのよう
にCACHEやNOORDERのような改善手段もありません。今から設計する
システムでこのようなテーブルを使うメリットはないでしょう。もし採番
テーブルを使っている古いシステムの保守をすることになったら……そこ
がボトルネックにならないことを祈ってください。ボトルネックになった
としても、使われているSQL文は極めて単純なので、チューニング余地は
まずないからです注17。

注17 こうした連番の払い出しを、データベースではなくアプリケーション側で行うというアイデアはど
うでしょうか。これは連続性と順序性を担保する必要があるかとか、プログラミング言語に何を使
うかとか、サーバスペックがどのくらいかとかの条件に依存するところもあるのですが、データベ
ースで行うよりも速い可能性はあります。ただし、何らかの排他制御が必要になった時点で、その
採番モジュールがボトルネックになるというのは、データベース側の場合と同じです。というのも、
この部分は並列化が困難で、処理がシーケンシャルになる単一ボトルネックポイントだからです。

257

8.3シーケンスオブジェクト・IDENTITY列・採番テーブル

第8章のまとめ

・一度はSQLが追放した手続き型が、ウィンドウ関数という形で
大々的に復活を遂げた

・ウィンドウ関数は、コードを簡潔に記述することで可読性を上げ
る

・ウィンドウ関数は、結合やテーブルへのアクセスを減らすことで
パフォーマンス向上にも貢献する

・シーケンスオブジェクトやIDENTITY列は性能問題を引き起こす
要因となるので利用時には注意が必要

演習問題8

　リスト8.13（235ページ）の手続き的なクエリでは、ソートキーに体重
（weight）列のほかに主キーの学生 ID（student_id）を含んでいます。このキ
ーをリスト8.23のように除外すると、このクエリは正しく動作しません。
いったいなぜでしょう？ その理由を考えてください。

リスト8.23 student_idを除外するとうまく動作しない
SELECT AVG(weight) AS median

　FROM (SELECT weight,

 ROW_NUMBER() OVER (ORDER BY weight ASC) AS hi,

 ROW_NUMBER() OVER (ORDER BY weight DESC) AS lo

 FROM Weights) TMP

 WHERE hi IN (lo, lo +1 , lo -1);

　サンプルデータとしてはリスト8.24を使います。この場合、メジアンは
70kgと60kgの平均である65kgとなります。

258

第8章 SQLにおける順序　 る手続き型

リスト8.24 サンプルデータ
DELETE FROM Weights;

INSERT INTO Weights VALUES('B346', 80);

INSERT INTO Weights VALUES('C563', 70);

INSERT INTO Weights VALUES('A100', 70);

INSERT INTO Weights VALUES('A124', 60);

INSERT INTO Weights VALUES('B343', 60);

INSERT INTO Weights VALUES('C345', 60);

 ➡解答は343ページ

259

更新とデータモデル
盲目のスーパーソルジャー

第9章

260

第9章 更新とデータモデル　盲目のスーパーソルジャー

金槌しか道具を持たない人にはすべての問題が釘に見えてくる。
──Abraham Harold Maslow

9.1
更新は効率的に

　SQLの「Q」が「Query」（問い合わせ）の略であることからもわかるように、
SQLという言語は誕生の時点から、データベースから情報を引き出すこと
を主な用途として考えていました。実際、私たちが業務で使用するSQLの

大半はSELECT文であると言ってよいでしょう。反面、UPDATEやDELETE

といった更新のための機能について、詳細に取り上げられる機会はあまり
ありません。近年は標準SQLにMERGE文が追加されるなど活発な拡張が
行われている分野ですが、意外にユーザからは盲点となっており、その強
力さが十分に理解されていないのが現状です。
　その結果、更新を伴うSQL文は、検索のSQL文以上に非効率でパフォー
マンスも悪いコーディングが氾濫しています。その典型が、第5章で取り
上げた「ぐるぐる系」です。1回につき1行を更新する単純なSQL文をルー
プで回す──これがパフォーマンス観点で褒められたものではないことは
すでに見ましたが、第5章では主に検索のSQLを取り上げました。本章で
は、更新を効率的に行うSQLコーディングをケーススタディを通して学び
ます。そしてそれとともに、データベースにおいて更新にまつわる問題が
発生する根源──モデリングの問題についても考えてみましょう。

NULLの埋め立てを行う

　図9.1のようなサンプルテーブルを考えます。リスト9.1のようなSQL

を実行してください。keycol（キー）＋ seq（連番）で一意な、何の変哲もな
いテーブルです。注目してほしいのは、valがNULLの行です。これは、本
当は値はあるのだけれど、前のレコード（同じkeycolで連番が1つ前）と同
じ値のため省略されているのです。紙媒体のデータを入力して電子データ
を作る場合など、タイプ回数を減らすためにこういう省略措置がよく行わ

261

9.1更新は効率的に

れます。

図9.1 OmitTbl：埋め立て前
keycol| seq| val

------+----+-------

A | 1| 50

A | 2|

A | 3|

A | 4| 70

A | 5|

A | 6| 900

B | 1| 10

B | 2| 20

B | 3| 　
B | 4| 3

B | 5| 　
B | 6|

※keycol：キー、seq：連番、val：値

リスト9.1 OmitTblテーブルの定義
CREATE TABLE OmitTbl

(keycol CHAR(8) NOT NULL,

 seq INTEGER NOT NULL,

 val INTEGER ,

　CONSTRAINT pk_OmitTbl PRIMARY KEY (keycol, seq));

INSERT INTO OmitTbl VALUES ('A', 1, 50);

INSERT INTO OmitTbl VALUES ('A', 2, NULL);

INSERT INTO OmitTbl VALUES ('A', 3, NULL);

INSERT INTO OmitTbl VALUES ('A', 4, 70);

INSERT INTO OmitTbl VALUES ('A', 5, NULL);

INSERT INTO OmitTbl VALUES ('A', 6, 900);

INSERT INTO OmitTbl VALUES ('B', 1, 10);

INSERT INTO OmitTbl VALUES ('B', 2, 20);

INSERT INTO OmitTbl VALUES ('B', 3, NULL);

INSERT INTO OmitTbl VALUES ('B', 4, 3);

INSERT INTO OmitTbl VALUES ('B', 5, NULL);

INSERT INTO OmitTbl VALUES ('B', 6, NULL);

　人間ならそういうルールだと知っていればすぐわかりますが、データベ
ースにこういうデータを投入してvalの値を集計したい場合は、このままの
テーブルでは使い物になりません。律儀に全行について値を埋めてやる必
要があります。そこで、図9.2のようにNULLの行を「埋めた」テーブルを
作ることにしましょう。

262

第9章 更新とデータモデル　盲目のスーパーソルジャー

図9.2 OmitTbl：埋め立て後
keycol| seq| val

------+----+-------

A | 1| 50

A | 2| 50 ←埋めた
A | 3| 50 ←埋めた
A | 4| 70

A | 5| 70 ←埋めた
A | 6| 900

B | 1| 10

B | 2| 20

B | 3| 20 ←埋めた
B | 4| 3

B | 5| 3 ←埋めた
B | 6| 3 ←埋めた

　まず、更新対象はval列がNULLの行に限られることは明らかですから、
UPDATE文のWHERE句の条件がval IS NULLであることはすぐにわかり

ます。問題は、更新対象となる各行について、val列の値をどう計算するか
です。ともすると、カーソルやホスト言語で1行ずつループさせるぐるぐ
る系アプローチをとりたくなるかもしれませんが、私たちはすでにこれが
うまくない方法であることを知っています。
　この計算がカレント行の1行で完結するものではなく、行間比較が必要
なことも確かです。こういうとき、SQLの古典的な考え方では、相関サブ
クエリを使うアプローチを試します。つまり、

❶同じkeycolを持つ

❷自分（カレント行）より小さいseqの値を持つ

❸valがNULLではない

という3つの条件を満たす行集合に絞ったうえで、その中で最大のseqを持
つ行を探し出す、という考え方です。特に❷がポイントで、この条件によ
って、カレント行よりも順番が前の（すなわちseqの小さな）レコードへと
遡りながらスキャンしていく動作を実現します。
　これを相関サブクエリで記述すると、答えはリスト9.2のようになりま
す。先ほどの3つの条件すべてが、この一つのUPDATE文の中に盛り込ま
れていることがわかります。

263

9.1更新は効率的に

リスト9.2 OmitTblのUPDATE文
UPDATE OmitTbl

 SET val = (SELECT val

 FROM OmitTbl OT1

 WHERE OT1.keycol = OmitTbl.keycol ❶同じkeycolを持つ

 AND OT1.seq = (SELECT MAX(seq)

 FROM OmitTbl OT2 ❷自分より小さいseqを持つ

 WHERE OT2.keycol = OmitTbl.keycol

 AND OT2.seq < OmitTbl.seq

 AND OT2.val IS NOT NULL))

 WHERE val IS NULL; ❸valがNULLではない

　実行計画は図9.3のようになります。OT2に対するテーブルスキャンの
結果をMAX関数で集約し、それでOT1テーブルの行を特定しています。

図9.3 相関サブクエリによるUPDATE文の実行計画（PostgreSQL）

Update on omittbl (cost=0.00..3.50 rows=1 width=19)

　-> Seq Scan on omittbl (cost=0.00..3.50 rows=1 width=19)

 Filter: (val IS NULL)

 SubPlan 2

 -> Seq Scan on omittbl ot1 (cost=1.19..2.38 rows=1 width=4)

 Filter: ((keycol = omittbl.keycol) AND (seq = $2))

 InitPlan 1 (returns $2)

 -> Aggregate (cost=1.18..1.19 rows=1 width=4)

 -> Seq Scan on omittbl ot2 (cost=0.00..1.18 rows=2 width=4)

 Filter: ((val IS NOT NULL) AND (seq < omittbl.seq) AND (keycol = omittbl.keycol))

　今はテーブルのデータ量が少ないのでテーブルに対するシーケンシャル
スキャンが行われていますが、仮に件数が増えた場合でも(keycol, seq)

の主キーのインデックスが利用できる可能性が高く、パフォーマンスはぐ
るぐる系に勝る可能性が高いでしょう。実際、Oracleの実行計画では、IS

NULLしかWHERE句に条件がない一番外側のOmitTblに対するアクセスこ
そフルスキャンせざるを得ないものの、内側の2つのサブクエリにおける

アクセスでは主キーのインデックスが利用可能なことを示しています（図
9.4）。PostgreSQLでも、データ量が増えたときにはこのようにインデック
スを使う実行計画になる可能性が高いでしょう。

264

第9章 更新とデータモデル　盲目のスーパーソルジャー

図9.4 相関サブクエリによるUPDATE文の実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | UPDATE STATEMENT | | 1 | 36 | 5 (20)| 00:00:01 |

| 1 | UPDATE | OMITTBL | | | | |

|* 2 | TABLE ACCESS FULL | OMITTBL | 1 | 36 | 2 (0)| 00:00:01 |

| 3 | TABLE ACCESS BY INDEX ROWID | OMITTBL | 1 | 36 | 1 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_OMITTBL | 1 | | 1 (0)| 00:00:01 |

| 5 | SORT AGGREGATE | | 1 | 36 | | |

|* 6 | TABLE ACCESS BY INDEX ROWID| OMITTBL | 1 | 36 | 1 (0)| 00:00:01 |

|* 7 | INDEX RANGE SCAN | PK_OMITTBL | 1 | | 2 (0)| 00:00:01 |

--

逆にNULLを作成する

　ちなみに、埋め立て後のOmitTbl（図9.2）を出発点にして、埋め立て前の
「省略バージョン」のテーブル（図9.1）に変換することも、ほとんど同じ考え
方で可能です。リスト9.3がそのUPDATE文です。

リスト9.3 埋め立ての逆演算SQL（UPDATE文）
UPDATE OmitTbl

　 SET val = CASE WHEN val

 = (SELECT val

 FROM OmitTbl O1 スカラサブクエリ全体をCASE式の引数としている

 WHERE O1.keycol = OmitTbl.keycol

 AND O1.seq

 = (SELECT MAX(seq)

 FROM OmitTbl O2

 WHERE O2.keycol = OmitTbl.keycol

 AND O2.seq < OmitTbl.seq))

 THEN NULL

 ELSE val END;

　先ほどの❶～❸の条件に合致する行に関してはNULLを、そうでない行
に関しては当該行のval値を選択するような分岐をCASE式で表現している
のがこの方法のポイントです。式の中にサブクエリ全体を丸ごと組み込む
ことのできるCASE式の柔軟性が際立ちます。これが可能なのは、このサ
ブクエリが値を1つだけ返すスカラサブクエリだからです。
　実行計画は図9.3、図9.4とほとんど同じなので省略します。

265

9.2行から列への更新

9.2
行から列への更新

　今度は、2つのテーブルを使って、片方の情報をもう一方のテーブルへ
編集を加えつつコピーするUPDATE文を考えます。学生のテストの得点を
行持ちと列持ちで保持するテーブルをサンプルとします（図9.5、図9.6）。
リスト9.4、リスト9.5のようにして作成してください。

図9.5 行持ちの点数テーブル

ScoreRows

student_id（学生ID） subject（教科） score（点数）

A001 英語 100

A001 国語 58

A001 数学 90

B002 英語 77

B002 国語 60

C001 英語 52

C003 国語 49

C003 社会 100

図9.6 列持ちの点数テーブル

ScoreCols

student_id（学生ID） score_en（英語の点数） score_nl（国語の点数） score_mt（数学の点数）

A001 　 　 　

B002 　 　 　

C003 　 　 　

D004

リスト9.4 行持ちの点数テーブルの定義
CREATE TABLE ScoreRows

(student_id CHAR(4) NOT NULL,

 subject VARCHAR(8) NOT NULL,

 score INTEGER ,

　CONSTRAINT pk_ScoreRows PRIMARY KEY(student_id, subject));

INSERT INTO ScoreRows VALUES ('A001', '英語', 100);

INSERT INTO ScoreRows VALUES ('A001', '国語', 58);

INSERT INTO ScoreRows VALUES ('A001', '数学', 90);

266

第9章 更新とデータモデル　盲目のスーパーソルジャー

INSERT INTO ScoreRows VALUES ('B002', '英語', 77);

INSERT INTO ScoreRows VALUES ('B002', '国語', 60);

INSERT INTO ScoreRows VALUES ('C003', '英語', 52);

INSERT INTO ScoreRows VALUES ('C003', '国語', 49);

INSERT INTO ScoreRows VALUES ('C003', '社会', 100);

リスト9.5 列持ちの点数テーブルの定義
CREATE TABLE ScoreCols

(student_id CHAR(4) NOT NULL,

 score_en INTEGER ,

 score_nl INTEGER ,

 score_mt INTEGER ,

　CONSTRAINT pk_ScoreCols PRIMARY KEY (student_id));

INSERT INTO ScoreCols VALUES ('A001', NULL, NULL, NULL);

INSERT INTO ScoreCols VALUES ('B002', NULL, NULL, NULL);

INSERT INTO ScoreCols VALUES ('C003', NULL, NULL, NULL);

INSERT INTO ScoreCols VALUES ('D004', NULL, NULL, NULL);

　ここでの問題は、行持ちのテーブルから列持ちのテーブルへ、科目ごと
の点数を移すことです。更新後の列持ちテーブルは図9.7のようなデータ
内容となります。

図9.7 図9.6のScoreCols更新後

ScoreCols

student_id（学生ID） score_en（英語の点数） score_nl（国語の点数） score_mt（数学の点数）

A001 100 58 90

B002 77 60 　

C003 52 49 　

D004 　 　 　

　生徒B002とC003の数学の点数は、データソースであるScoreRowsテー

ブルからはわからないのでNULLのままです。また、そもそもD004とい

う生徒は存在しないので、この生徒については更新対象外とされます。
　基本的には先ほどと同様、SET句で相関サブクエリを利用します。同じ
生徒同士の情報を更新するわけですから、結合キーはstudent_idになるこ

とは見当がつきます。

267

9.2行から列への更新

1列ずつ更新する

　まず考えつくのは、リスト9.6のように1教科ずつ更新する「素直な」SQL

でしょう。このクエリは、やっていることは単純明快ですが、3つの相関
サブクエリを実行しなければならない点でパフォーマンスに難があります。

リスト9.6 行→列の更新SQL：素直だけど非効率
UPDATE ScoreCols

　 SET score_en = (SELECT score

 FROM ScoreRows SR

 WHERE SR.student_id = ScoreCols.student_id

 AND subject = '英語'),

 score_nl = (SELECT score

 FROM ScoreRows SR

 WHERE SR.student_id = ScoreCols.student_id

 AND subject = '国語'),

 score_mt = (SELECT score

 FROM ScoreRows SR

 WHERE SR.student_id = ScoreCols.student_id

 AND subject = '数学');

　実行計画でも、サブクエリが3つ実行されていることが確認できます（図
9.8、図9.9）。

図9.8 1列ずつ更新の実行計画（PostgreSQL）
--

Update on scorecols (cost=0.00..32524.51 rows=1310 width=26)

　-> Seq Scan on scorecols (cost=0.00..32524.51 rows=1310 width=26)

 SubPlan 1

 -> Index Scan using pk_scorerows on scorerows sr (cost=0.00..8.27 rows=1 width=4)

 Index Cond: ((student_id = scorecols.student_id) AND ((subject)::text = '英語'::text))

 SubPlan 2

 -> Index Scan using pk_scorerows on scorerows sr (cost=0.00..8.27 rows=1 width=4)

 Index Cond: ((student_id = scorecols.student_id) AND ((subject)::text = '国語'::text))

 SubPlan 3

 -> Index Scan using pk_scorerows on scorerows sr (cost=0.00..8.27 rows=1 width=4)

 Index Cond: ((student_id = scorecols.student_id) AND ((subject)::text = '数学'::text))

268

第9章 更新とデータモデル　盲目のスーパーソルジャー

図9.9 1列ずつ更新の実行計画（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 4 | 180 | 3 (0)| 00:00:01 |

| 1 | UPDATE | SCORECOLS | | | | |

| 2 | TABLE ACCESS FULL | SCORECOLS | 4 | 180 | 3 (0)| 00:00:01 |

| 3 | TABLE ACCESS BY INDEX ROWID| SCOREROWS | 1 | 25 | 1 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SCOREROWS | 1 | | 1 (0)| 00:00:01 |

| 5 | TABLE ACCESS BY INDEX ROWID| SCOREROWS | 1 | 25 | 1 (0)| 00:00:01 |

|* 6 | INDEX UNIQUE SCAN | PK_SCOREROWS | 1 | | 1 (0)| 00:00:01 |

| 7 | TABLE ACCESS BY INDEX ROWID| SCOREROWS | 1 | 25 | 1 (0)| 00:00:01 |

|* 8 | INDEX UNIQUE SCAN | PK_SCOREROWS | 1 | | 1 (0)| 00:00:01 |

　更新したい教科がもっと増えたらその分だけサブクエリの数も増え、パ
フォーマンスは悪化の一途をたどります注1。このクエリの性能を改善する方
法はないものでしょうか。

行式で複数列更新する

　ここで強力な武器になるのが行式という機能です。リスト9.7のように
複数列をリスト化して一度に更新するという方法です。

リスト9.7 より効率的なSQL：リスト機能の利用
UPDATE ScoreCols

　 SET (score_en, score_nl, score_mt) --複数列をリスト化して一度で更新
 = (SELECT MAX(CASE WHEN subject = '英語'

 THEN score

 ELSE NULL END) AS score_en,

 MAX(CASE WHEN subject = '国語'

 THEN score

 ELSE NULL END) AS score_nl,

 MAX(CASE WHEN subject = '数学'

 THEN score

 ELSE NULL END) AS score_mt

 FROM ScoreRows SR

 WHERE SR.student_id = ScoreCols.student_id);

※2014年現在、Oracle、DB2でのみ利用可能です。詳しくは後述します。

注1 それでも、検索条件で主キーのインデックスpk_ScoreRowsを使えている点が救いですが。

269

9.2行から列への更新

　こうするとサブクエリをひとまとめにできるためパフォーマンスも向上
し、コードも簡潔になります。しかも、今後更新列が増えることがあって
も、サブクエリの数は増えないので性能劣化の心配がいりません。
　実行計画からも、図9.10のようにScoreRowsテーブルへのアクセスが1

回に減っていることが確認できます。Oracleの実行計画で確認しましょう。

図9.10 1列ずつ更新の実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | UPDATE STATEMENT | | 4 | 180 | 3 (0)| 00:00:01 |

| 1 | UPDATE | SCORECOLS | | | | |

| 2 | TABLE ACCESS FULL | SCORECOLS | 4 | 180 | 3 (0)| 00:00:01 |

| 3 | SORT AGGREGATE | | 1 | 25 | | |

| 4 | TABLE ACCESS BY INDEX ROWID| SCOREROWS | 1 | 25 | 2 (0)| 00:00:01 |

|* 5 | INDEX RANGE SCAN | PK_SCOREROWS | 1 | | 2 (0)| 00:00:01 |

--

　パフォーマンスの観点で見ると、相関サブクエリを一つにまとめられた
代わりに、ScoreRowsテーブルへのアクセスは一意検索（INDEX UNIQUE

SCAN）ではなく範囲検索（INDEX RANGE SCAN）になっていることと、
MAX関数のソートが追加されたこととのトレードオフになります。しか
し、1人の生徒の教科数はそれほど多くないと期待できるので、サブクエ
リを減らす効果が勝るでしょう。
　このUPDATE文には、重要な技術が2つ登場しています。

・行式
SET句の左辺を見るとわかるように、英語・国語・数学の3つの列を(score_en,

score_nl, score_mt)とリスト形式にしている。これによって、リスト全体を一つ
の操作単位にできる。これはSQL-92で導入された行式という機能だが、
SQLServer、PostgreSQL、MySQLでは、SET句でのリストがまだサポートされ
ておらず注2、2014年現在、Oracle、DB2でのみ利用可能。ただ、行式は標準SQL
の機能なので、いずれほかの実装でもサポートされていくと思われる

・スカラサブクエリ
サブクエリ内のCASE式によって教科ごとの点数を取得しているが、重要なのは
それぞれの点数にMAX関数を適用していること。このような措置をとっているの

注2 正確には、PostgreSQLの場合、SET (score_en, score_nl, score_mt) = (1,1,1)のように単純な
スカラ値を右辺に使うことは可能ですが、サブクエリを右辺で使用できません。

270

第9章 更新とデータモデル　盲目のスーパーソルジャー

は、ScoreRowsテーブルにおいて、ある生徒についての行は複数存在しているの
で、集約なしではサブクエリが複数行を返すエラーが発生するため。たとえば生
徒「A001」のScoreColsテーブルにおけるscore_en列の場合、MAX関数なしの状
態では(100, NULL, NULL)という3行が返される注3。このままではSET句の右辺と
して使えないが、MAX関数を適用することでNULLが除外され、「100」という単
一の値に変換できる

NOT NULL制約がついている場合

　図9.6ではScoreColsテーブルの英国数の3列はNULLを許可しています。
そのため、ScoreRowsテーブルに存在しない生徒「D004」の全列や、「B002」
「C003」の数学列はNULLで更新されることになります。では、もしScoreCols

テーブルの全列にNOT NULL制約がついていたらどうでしょう。初期状態
は図9.11のように「0」とします。リスト9.8のようにして作成してください。

図9.11 列持ち（NOT NULL制約つき）の点数テーブル

ScoreColsNN

student_id（学生ID） score_en（英語の点数） score_nl（国語の点数） score_mt（数学の点数）

A001 0 0 0

B002 0 0 0

C003 0 0 0

D004 0 0 0

リスト9.8 ScoreColsNNテーブルの定義
CREATE TABLE ScoreColsNN

(student_id CHAR(4) NOT NULL,

 score_en INTEGER NOT NULL,

 score_nl INTEGER NOT NULL,

 score_mt INTEGER NOT NULL,

　CONSTRAINT pk_ScoreColsNN PRIMARY KEY (student_id));

INSERT INTO ScoreColsNN VALUES ('A001', 0, 0, 0);

INSERT INTO ScoreColsNN VALUES ('B002', 0, 0, 0);

INSERT INTO ScoreColsNN VALUES ('C003', 0, 0, 0);

INSERT INTO ScoreColsNN VALUES ('D004', 0, 0, 0);

注3 2つのNULLは、国語と数学の行についてELSE句でNULLに変換された結果です。

271

9.2行から列への更新

UPDATE文を利用する

　この場合、先ほどの2つのUPDATE文（リスト9.6、リスト9.7）を実行す
ると、どちらもエラーになります。その理由は、結合条件でヒットしなか
った教科について、NULLに更新できないからです。これを防ぐには、リ
スト9.9、リスト9.10のようにSQLを修正する必要があります。

リスト9.9 リスト9.6（1列ずつ更新）のNOT NULL制約対応
UPDATE ScoreColsNN

　 SET score_en = COALESCE((SELECT score 生徒は存在するが教科が存在しなかった場合のNULL対応

 FROM ScoreRows

 WHERE student_id = ScoreColsNN.student_id

 AND subject = '英語'), 0),

 score_nl = COALESCE((SELECT score

 FROM ScoreRows

 WHERE student_id = ScoreColsNN.student_id

 AND subject = '国語'), 0),

 score_mt = COALESCE((SELECT score

 FROM ScoreRows

 WHERE student_id = ScoreColsNN.student_id

 AND subject = '数学'), 0)

WHERE EXISTS (SELECT * そもそも生徒が存在しなかった場合のNULL対応

 FROM ScoreRows

 WHERE student_id = ScoreColsNN.student_id);

リスト9.10 リスト9.7（行式の利用）のNOT NULL制約対応
UPDATE ScoreColsNN 　　　　　　　 生徒は存在するが教科が存在しなかった場合のNULL対応

　 SET (score_en, score_nl, score_mt)

 = (SELECT COALESCE(MAX(CASE WHEN subject = '英語'

 THEN score

 ELSE NULL END), 0) AS score_en,

 COALESCE(MAX(CASE WHEN subject = '国語'

 THEN score

 ELSE NULL END), 0) AS score_nl,

 COALESCE(MAX(CASE WHEN subject = '数学'

 THEN score

 ELSE NULL END), 0) AS score_mt

 FROM ScoreRows SR

 WHERE SR.student_id = ScoreColsNN.student_id)

 WHERE EXISTS (SELECT * そもそも生徒が存在しなかった場合のNULL対応

 FROM ScoreRows

 WHERE student_id = ScoreColsNN.student_id);

※2014年現在、Oracle、DB2でのみ利用可能です。

272

第9章 更新とデータモデル　盲目のスーパーソルジャー

　これらのコードは、2つのレベルでNULLに対応しています。
　まず一つのレベルは、「そもそもテーブル間で一致しない行が存在した場
合」です。生徒「D004」が相当します。こういう行はそもそも更新対象から
除外する必要があるので、外側のWHERE句のEXISTS述語で「2つのテー

ブル間で学生 IDが一致する行に限る」という条件を追加しています。
　もう一つのレベルは、「生徒は存在するけれど教科が欠けている場合」で
す。いわば「行はあるけど列はない」状態です。学生「B002」と「C003」の数
学がこれに相当します。これは、COALESCE関数でNULLを0に変換する
ことで対応できます。
　実行計画は、1列ずつ更新の場合も、行式でまとめて更新の場合も、
ScoreColsNNテーブルとScoreRowsテーブルのEXISTS述語の結合が追加
されるだけなので省略します。

MERGE文を利用する

　このNOT NULLのケースに対応するには、実はもう一つ方法がありま
す。それはリスト9.11のようにMERGE文を利用することです。

リスト9.11 MERGE文を利用して複数列を更新
MERGE INTO ScoreColsNN

　 USING (SELECT student_id,

 COALESCE(MAX(CASE WHEN subject = '英語'

 THEN score

 ELSE NULL END), 0) AS score_en,

 COALESCE(MAX(CASE WHEN subject = '国語'

 THEN score

 ELSE NULL END), 0) AS score_nl,

 COALESCE(MAX(CASE WHEN subject = '数学'

 THEN score

 ELSE NULL END), 0) AS score_mt

 FROM ScoreRows

 GROUP BY student_id) SR

 ON (ScoreColsNN.student_id = SR.student_id) 結合条件を1ヵ所にまとめられる

　 WHEN MATCHED THEN

 UPDATE SET ScoreColsNN.score_en = SR.score_en,

 ScoreColsNN.score_nl = SR.score_nl,

 ScoreColsNN.score_mt = SR.score_mt;

※2014年現在、Oracle、DB2でのみ利用可能です。

　この方法の利点は、UPDATEのときは2ヵ所に分散していた結合条件を

273

9.2行から列への更新

ON句にまとめてしまえることです。こうすることで、コードを簡潔に保
ち将来の変更時に修正ミスをなくせます注4。
　もともとMERGE文は、UPDATEとINSERTを一度に行うために考案さ
れた技術ですが、別にUPDATEだけやINSERTだけ行っても構文上は問題
ないという点を利用したトリックです。
　パフォーマンスに関しては、MERGE文の場合、ScoreRowsテーブルに

対するフルスキャン1回＋ソート1回が必要となります（図9.12）。更新列
が増えてもこれは変わらないので、相関サブクエリを複数並べたときとは
異なりパフォーマンスが悪化する危険はありません。また、ScoreColsNN

テーブルとScoreRowsテーブルの結合も1回で済むので、EXISTS述語を使
って結合回数を増やすよりも有利な可能性があります。

図9.12 MERGE文の実行計画（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | MERGE STATEMENT | | 8 | 384 | 5 (20)| 00:00:01 |

| 1 | MERGE | SCORECOLSNN | | | | |

| 2 | VIEW | | | | | |

| 3 | NESTED LOOPS | | 8 | 456 | 5 (20)| 00:00:01 |

| 4 | VIEW | | 8 | 360 | 4 (25)| 00:00:01 |

| 5 | SORT GROUP BY | | 8 | 200 | 4 (25)| 00:00:01 |

| 6 | TABLE ACCESS FULL | SCOREROWS | 8 | 200 | 3 (0)| 00:00:01 |

| 7 | TABLE ACCESS BY INDEX ROWID| SCORECOLSNN | 1 | 12 | 1 (0)| 00:00:01 |

|* 8 | INDEX UNIQUE SCAN | PK_SCORECOLSNN | 1 | | 0 (0)| 00:00:01 |

　あとは、テーブルサイズやインデックスの利用可否などの環境によって
どちらに軍配が上がるかは変わってきますが、OracleやDB2などMERGE

文をサポートしている実装ならば、一つの選択肢として考慮する価値があ
ります。

注4 2ヵ所に分散していると、片方は直しても、もう一方は忘れるというイージーミスを招きやすくなり
ます。

274

第9章 更新とデータモデル　盲目のスーパーソルジャー

9.3
列から行への更新

　今度は先ほどの逆パターンを考えます。つまり、図9.13のように列持ち
のテーブルの情報を図9.14のような行持ちのテーブルへ更新するのです。
それぞれリスト9.12、リスト9.13のようにして作成してください。

図9.13 列持ちの点数テーブル

ScoreCols

student_id（学生ID） score_en（英語の点数） score_nl（国語の点数） score_mt（数学の点数）

A001 100 58 90

B002 77 60 　

C003 52 49 　

D004 10 70 100

図9.14 行持ちの点数テーブル

ScoreRows

student_id（学生ID） subject（教科） score（点数）

A001 英語 　

A001 国語 　

A001 数学 　

B002 英語 　

B002 国語 　

C003 英語 　

C003 国語 　

C003 社会 　

リスト9.12 ScoreColsテーブルの定義
DELETE FROM ScoreCols;

INSERT INTO ScoreCols VALUES ('A001', 100, 58, 90);

INSERT INTO ScoreCols VALUES ('B002', 77, 60, NULL);

INSERT INTO ScoreCols VALUES ('C003', 52, 49, NULL);

INSERT INTO ScoreCols VALUES ('D004', 10, 70, 100);

リスト9.13 ScoreRowsテーブルの定義
DELETE FROM ScoreRows;

INSERT INTO ScoreRows VALUES ('A001', '英語', NULL);

INSERT INTO ScoreRows VALUES ('A001', '国語', NULL);

275

9.3列から行への更新

INSERT INTO ScoreRows VALUES ('A001', '数学', NULL);

INSERT INTO ScoreRows VALUES ('B002', '英語', NULL);

INSERT INTO ScoreRows VALUES ('B002', '国語', NULL);

INSERT INTO ScoreRows VALUES ('C003', '英語', NULL);

INSERT INTO ScoreRows VALUES ('C003', '国語', NULL);

INSERT INTO ScoreRows VALUES ('C003', '社会', NULL);

　更新後のScoreRowsテーブルは図9.15のようになります。「C003」の社会
の情報はScoreColsテーブルにありませんのでNULLのままです。また「D004」
は更新先のScoreRowsテーブルにいないので、更新しても現れません。

図9.15 図9.14のScoreRows更新後の点数テーブル

ScoreRows

student_id（学生ID） subject（教科） score（点数）

A001 英語 100

A001 国語 58

A001 数学 90

B002 英語 77

B002 国語 60

C003 英語 52

C003 国語 49

C003 社会 　

　今度は、各生徒について更新対象となる行を、subjectの値によって分岐
させることになります。したがって、SET句のサブクエリ内でリスト9.14
のようにCASE式を使った分岐を行えばOKです。score_en、score_nl、
score_mtという3つの列を1つの列にたたみこむようなイメージを持って
もらえばわかりやすいでしょう。

リスト9.14 列→行の更新SQL
UPDATE ScoreRows

　 SET score = (SELECT CASE ScoreRows.subject

 WHEN '英語' THEN score_en

 WHEN '国語' THEN score_nl

 WHEN '数学' THEN score_mt

 ELSE NULL

 END

 FROM ScoreCols

 WHERE student_id = ScoreRows.student_id);

276

第9章 更新とデータモデル　盲目のスーパーソルジャー

　実行計画も単純です。OracleもPostgreSQLも同じ実行計画になります
（図9.16、図9.17）。

図9.16 列→行の更新SQLの実行計画（PostgreSQL）
--

Update on scorerows (cost=0.00..7632.27 rows=920 width=60)

　-> Seq Scan on scorerows (cost=0.00..7632.27 rows=920 width=60)

 SubPlan 1

 -> Index Scan using pk_scorecols on scorecols (cost=0.00..8.28 rows=1 width=12)

 Index Cond: (student_id = scorerows.student_id)

図9.17 列→行の更新SQLの実行計画（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | UPDATE STATEMENT | | 8 | 120 | 18 (45)| 00:00:01 |

| 1 | UPDATE | SCOREROWS | | | | |

| 2 | TABLE ACCESS FULL | SCOREROWS | 8 | 120 | 2 (0)| 00:00:01 |

| 3 | TABLE ACCESS BY INDEX ROWID| SCORECOLS | 1 | 5 | 1 (0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | PK_SCORECOLS | 1 | | 0 (0)| 00:00:01 |

　テーブルへのアクセスは1回だけで、しかも主キーのインデックスが使
えて、ソートもハッシュもなし。パフォーマンス面ではこれ以上改善の余
地がないほど良好な実行計画です。

9.4
同じテーブルの異なる行からの更新

　次は、同じテーブル内の異なる行の情報をもとに計算した結果を更新す
るケースを考えます。サンプルテーブルStocksは株価の取引情報を記録し
ており、銘柄ごとに取引を行った日の株価が記録されています（図9.18）。
ここから各銘柄についてtrend列を計算して、空っぽのテーブルStocks2（図
9.19）にデータをINSERTするという問題です。更新元、更新先の株価テー
ブルをリスト9.15、リスト9.16のように作成してください。

277

9.4同じテーブルの異なる行からの更新

図9.18 更新元の株価テーブル（trend列を計算してINSERT）

Stocks（株価テーブル）
brand（銘柄） sale_date（取引日） price（終値）

A鉄鋼 2008-07-01 1000

A鉄鋼 2008-07-04 1200

A鉄鋼 2008-08-12 800

B商社 2008-06-04 3000

B商社 2008-09-11 3000

C電気 2008-07-01 9000

D産業 2008-06-04 5000

D産業 2008-06-05 5000

D産業 2008-06-06 4800

D産業 2008-12-01 5100

図9.19 更新先の株価テーブル（からっぽ）

Stocks2（株価テーブル 2）
brand（銘柄） sale_date（取引日） price（終値） trend（トレンド）

リスト9.15 更新元の株価テーブルの定義
CREATE TABLE Stocks

(brand VARCHAR(8) NOT NULL,

 sale_date DATE NOT NULL,

 price INTEGER NOT NULL,

 CONSTRAINT pk_Stocks PRIMARY KEY (brand, sale_date));

INSERT INTO Stocks VALUES ('A鉄鋼', '2008-07-01', 1000);

INSERT INTO Stocks VALUES ('A鉄鋼', '2008-07-04', 1200);

INSERT INTO Stocks VALUES ('A鉄鋼', '2008-08-12', 800);

INSERT INTO Stocks VALUES ('B商社', '2008-06-04', 3000);

INSERT INTO Stocks VALUES ('B商社', '2008-09-11', 3000);

INSERT INTO Stocks VALUES ('C電気', '2008-07-01', 9000);

INSERT INTO Stocks VALUES ('D産業', '2008-06-04', 5000);

INSERT INTO Stocks VALUES ('D産業', '2008-06-05', 5000);

INSERT INTO Stocks VALUES ('D産業', '2008-06-06', 4800);

INSERT INTO Stocks VALUES ('D産業', '2008-12-01', 5100);

リスト9.16 更新先の株価テーブルの定義
CREATE TABLE Stocks2

(brand VARCHAR(8) NOT NULL,

 sale_date DATE NOT NULL,

 price INTEGER NOT NULL,

 trend CHAR(3) ,

 CONSTRAINT pk_Stocks2 PRIMARY KEY (brand, sale_date));

278

第9章 更新とデータモデル　盲目のスーパーソルジャー

　trendは前回の終値と今回の終値を比較して、上昇したなら「↑」、下降し
たなら「↓」、横ばいなら「→」という3つの値をとります（図9.20）。当然、
それぞれの銘柄の最初の取引日の行については計算できないので、NULL

のままになります。

図9.20 更新後の株価テーブル

Stocks2（株価テーブル 2）
brand（銘柄） sale_date（取引日） price（終値） trend（トレンド）

A鉄鋼 2008-07-01 1000 　

A鉄鋼 2008-07-04 1200 ↑

A鉄鋼 2008-08-12 800 ↓

B商社 2008-06-04 3000 　

B商社 2008-09-11 3000 →

C電気 2008-07-01 9000 　

D産業 2008-06-04 5000 　

D産業 2008-06-05 5000 →

D産業 2008-06-06 4800 ↓

D産業 2008-12-01 5100 ↑

相関サブクエリを利用する

　今度は既存の行に対する更新ではなく、新規に行を追加するので、INSERT

SELECT構文を使うことはすぐにわかります注5。あとはtrend列の計算方法
です。行間比較とくれば、使う道具は相関サブクエリです（リスト9.17）。

リスト9.17 trend列を計算してINSERTする（相関サブクエリ）
INSERT INTO Stocks2

SELECT brand, sale_date, price,

 CASE SIGN(price -

 (SELECT price

 FROM Stocks S1

 WHERE brand = Stocks.brand

 AND sale_date =

 (SELECT MAX(sale_date)

 FROM Stocks S2

 WHERE brand = Stocks.brand

 AND sale_date < Stocks.sale_date)))

 WHEN -1 THEN '↓'

注5 1行INSERTを回すぐるぐる系は、もちろん我々は使いません。

279

9.4同じテーブルの異なる行からの更新

 WHEN 0 THEN '→'

 WHEN 1 THEN '↑'

 ELSE NULL

 END

　FROM Stocks;

　SIGN関数は引数の値の正、負、ゼロに対して1、-1、0を返すことで符
号を調べる関数で、すべてのデータベースで使用できます。これによって、
「今日の終値－直前の取引日の終値」の符号を調べて、株価が上がったか下
がったかを判断しているわけです。
　実行計画は図9.21のようになります。OracleとPostgreSQLはどちらも

似た計画になるため、Oracleのみ掲載します。

図9.21 相関サブクエリの実行計画（Oracle）

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 10 | 190 | 2 (0)| 00:00:01 |

| 1 | LOAD TABLE CONVENTIONAL | STOCKS2 | | | | |

| 2 | TABLE ACCESS BY INDEX ROWID | STOCKS | 1 | 19 | 1 (0)| 00:00:01 |

|* 3 | INDEX UNIQUE SCAN | PK_STOCKS | 1 | | 0 (0)| 00:00:01 |

| 4 | SORT AGGREGATE | | 1 | 16 | | |

| 5 | FIRST ROW | | 1 | 16 | 1 (0)| 00:00:01 |

|* 6 | INDEX RANGE SCAN (MIN/MAX)| PK_STOCKS | 1 | 16 | 1 (0)| 00:00:01 |

| 7 | TABLE ACCESS FULL | STOCKS | 10 | 190 | 2 (0)| 00:00:01 |

　この実行計画に目新しいポイントはありませんが、相関サブクエリの宿命
として、Stocksテーブルに複数回のアクセスが発生しています。Id=6は主キ
ーのインデックスに対するインデックスオンリースキャンですが、Id=2では

主キーのインデックスを使ったテーブルアクセス、Id=7ではテーブルフルア

クセスが行われています。これらのアクセス回数を削減できればパフォーマ
ンス改善が見込めます。

ウィンドウ関数を利用する

　そこで、ウィンドウ関数で相関サブクエリを置き換えましょう（リスト
9.18）。

280

第9章 更新とデータモデル　盲目のスーパーソルジャー

リスト9.18 trend列を計算してINSERTする（ウィンドウ関数）
INSERT INTO Stocks2

SELECT brand, sale_date, price,

 CASE SIGN(price -

 MAX(price) OVER (PARTITION BY brand

 ORDER BY sale_date

 ROWS BETWEEN 1 PRECEDING

 AND 1 PRECEDING))

 WHEN -1 THEN '↓'

 WHEN 0 THEN '→'

 WHEN 1 THEN '↑'

 ELSE NULL

 END

　FROM Stocks S2;

　図9.21の実行計画と比較してみると、これで実行計画もすっきりシンプ
ルになり、Stocksテーブルへのアクセスはフルスキャン1回だけに減りま
した（図9.22）。めでたしめでたし。

図9.22 相関サブクエリの実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | INSERT STATEMENT | | 10 | 190 | 3 (34)| 00:00:01 |

| 1 | LOAD TABLE CONVENTIONAL | STOCKS2 | | | | |

| 2 | WINDOW SORT | | 10 | 190 | 3 (34)| 00:00:01 |

| 3 | TABLE ACCESS FULL | STOCKS | 10 | 190 | 2 (0)| 00:00:01 |

--

INSERTとUPDATEはどちらが良いのか

　これとまったく同じ要領で、Stocksテーブルそのものに trend列を用意
してUPDATEを行うことも可能です。INSERT SELECTとUPDATEを比
較すると、どのような違いがあるでしょうか。
　まず、INSERT SELECTには2つのメリットがあります。1つ目は、一般
的にUPDATEに比べてINSERT SELECTのほうがパフォーマンスが良く、
高速な処理が期待できること。2つ目は、MySQLのように更新SQLでの自
己参照を許していないデータベースでもINSERT SELECTならば利用可能
なことです（参照元と更新先が別テーブルなのがミソです）。

281

9.5更新のもたらすトレードオフ

　反対に、INSERTを使用する方法のデメリットは、同じサイズのデータ
を保持するほとんど同じ構造のテーブルを2つ用意しなければならない分、
ストレージ容量をほぼ2倍消費することです。ただ、昨今のストレージ価
格の下落を考えれば、これはそれほど大きなデメリットにはならないでし
ょう。
　この問題を見たとき、Stocks2テーブルをビューにするという方法を考え
た方もいるかもしれません。たしかに、そうすることでストレージ容量も
節約できますし、ビューの情報は常にアクセスした時点の最新情報（つまり
同期の取れた情報）を取得できるという鮮度性のメリットがあります。これ
は、INSERTにせよUPDATEにせよ、実テーブルを更新するやり方では得
られないメリットです注6。ただしデメリットとして、Stocks2ビューにアク

セスが発生するたびに複雑な再計算が行われるため、Stocks2へアクセスす

るクエリのパフォーマンスは最も悪くなります。このパフォーマンスと同
期性のトレードオフについて、次節でもう少し深く掘り下げて考えます。

9.5
更新のもたらすトレードオフ

　具体的なサンプルから見ましょう。図9.23のような2つのテーブルOrders

（注文）とOrderReceipts（注文明細）があるとします。
　この2つのテーブルは、お中元やお歳暮といったギフトの受注と配送を
管理するために使います。Ordersテーブルの1行が注文 1件に対応し、
OrderReceiptsテーブルはその注文内の商品単位で1行になります。したが
って、OrdersとOrderReceiptsは一対多の関係にあります。このタイプの
親子関係のテーブルは、多くのシステムで頻繁に見かける構成です。
　今、注文ごとに受付日（order_date）と商品の配送予定日（delivery_date）
の差を求めて、それが3日以上ある場合は注文者に遅くなる旨の連絡を送
りたいとします。このとき、どの注文番号が該当するかを求めるという問

注6 リアルタイム更新という方法もないではありませんが、更新オーバーヘッドがとても高くなるので
あまり現実的ではありません。

282

第9章 更新とデータモデル　盲目のスーパーソルジャー

題です。
　それぞれのテーブルをリスト9.19、リスト9.20のようにして作成して
ください。

リスト9.19 Ordersテーブルの定義
CREATE TABLE Orders

(order_id INTEGER NOT NULL,

　order_shop VARCHAR(32) NOT NULL,

　order_name VARCHAR(32) NOT NULL,

　order_date DATE,

　PRIMARY KEY (order_id));

図9.23 OrdersテーブルとOrderReceiptsテーブル

10000 東京 後藤信二 2011/8/22

10001 埼玉 佐原商店 2011/9/1

10002 千葉 水原陽子 2011/9/20

10003 山形 加地健太郎 2011/8/5

10004 青森 相原酒店 2011/8/22

10005 長野 宮元雄介 2011/8/29

order_shop
（受付店舗）

order_date
（受付日）

order_name
（注文者名義）

order_id
（注文番号）

10000 1 食器 2011/8/24

10000 2 菓子詰め合わせ 2011/8/25

10000 3 牛肉 2011/8/26

10001 1 魚介類 2011/9/4

10002 1 菓子詰め合わせ 2011/9/22

10002 2 調味料セット 2011/9/22

10003 1 米 2011/8/6

10003 2 牛肉 2011/8/10

10003 3 食器 2011/8/10

10004 1 野菜 2011/8/23

10005 1 飲料水 2011/8/30

10005 2 菓子詰め合わせ 2011/8/30

order_id
（注文番号）

OrderReceipts（注文明細）
delivery_date
（配送予定日）

item_group
（品目）

order_receipt_id
（注文明細番号）

1

1...n

Orders（注文）

283

9.5更新のもたらすトレードオフ

INSERT INTO Orders VALUES (10000, '東京', '後藤信二', '2011/8/22');

INSERT INTO Orders VALUES (10001, '埼玉', '佐原商店', '2011/9/1');

INSERT INTO Orders VALUES (10002, '千葉', '水原陽子', '2011/9/20');

INSERT INTO Orders VALUES (10003, '山形', '加地健太郎', '2011/8/5');

INSERT INTO Orders VALUES (10004, '青森', '相原酒店', '2011/8/22');

INSERT INTO Orders VALUES (10005, '長野', '宮元雄介', '2011/8/29');

リスト9.20 OrderReceiptsテーブルの定義
CREATE TABLE OrderReceipts

(order_id INTEGER NOT NULL,

　order_receipt_id INTEGER NOT NULL,

　item_group VARCHAR(32) NOT NULL,

　delivery_date DATE NOT NULL,

　PRIMARY KEY (order_id, order_receipt_id));

INSERT INTO OrderReceipts VALUES (10000, 1, '食器', '2011/8/24');

INSERT INTO OrderReceipts VALUES (10000, 2, '菓子詰め合わせ', '2011/8/25');

INSERT INTO OrderReceipts VALUES (10000, 3, '牛肉', '2011/8/26');

INSERT INTO OrderReceipts VALUES (10001, 1, '魚介類', '2011/9/4');

INSERT INTO OrderReceipts VALUES (10002, 1, '菓子詰め合わせ', '2011/9/22');

INSERT INTO OrderReceipts VALUES (10002, 2, '調味料セット', '2011/9/22');

INSERT INTO OrderReceipts VALUES (10003, 1, '米', '2011/8/6');

INSERT INTO OrderReceipts VALUES (10003, 2, '牛肉', '2011/8/10');

INSERT INTO OrderReceipts VALUES (10003, 3, '食器', '2011/8/10');

INSERT INTO OrderReceipts VALUES (10004, 1, '野菜', '2011/8/23');

INSERT INTO OrderReceipts VALUES (10005, 1, '飲料水', '2011/8/30');

INSERT INTO OrderReceipts VALUES (10005, 2, '菓子詰め合わせ', '2011/8/30');

　この問題を解くアプローチは、大きく2つに分かれます。それぞれ解説
していきますが、その前に、みなさんも自分ならどうやって解くか、少し
時間をとって考えてみてください。

SQLで解く方法

　この問題の要点を一言で要約すると、受付日（order_date）と配送予定日
（delivery_date）の関係を知りたいということです。しかし、それぞれの列
が別テーブルに存在するため、これを知るには結合を使う必要があります。
これ自体は特に難しい話ではなく、リスト9.21のようなクエリによって、
diff_days列で日付の差分を求められます。

284

第9章 更新とデータモデル　盲目のスーパーソルジャー

リスト9.21 受付日と配送予定日の差分
SELECT O.order_id,

 O.order_name,

 ORC.delivery_date - O.order_date AS diff_days

　FROM Orders O

 INNER JOIN OrderReceipts ORC

 ON O.order_id = ORC.order_id

 WHERE ORC.delivery_date - O.order_date >= 3;

 実行結果

order_id | order_name | diff_days

---------+------------+-----------

　 10000 | 後藤信二 | 3

　 10000 | 後藤信二 | 4

　 10001 | 佐原商店 | 3

　 10003 | 加地健太郎 | 5

　 10003 | 加地健太郎 | 5

　もし注文番号ごとの最大の遅延日数を知りたければ、さらに注文番号ご
とに集約すればOKです。もし注文番号と注文者名義が1対1に対応してい
るならば、リスト9.22のように注文者名義にも極値関数を使うことで、結
果に含めることができます。

リスト9.22 注文単位の集約
SELECT O.order_id,

 MAX(O.order_name),

 MAX(ORC.delivery_date - O.order_date) AS max_diff_days

　FROM Orders O

 INNER JOIN OrderReceipts ORC

 ON O.order_id = ORC.order_id

 WHERE ORC.delivery_date - O.order_date >= 3

 GROUP BY O.order_id;

 実行結果

order_id | max | max_diff_days

---------+------------+---------------

　 10000 | 後藤信二 | 4

　 10001 | 佐原商店 | 3

　 10003 | 加地健太郎 | 5

　O.order_nameとORC.delivery_date - O.order_dateにMAX関数を使っ
ていますが、両者の目的は異なります。ORC.delivery_date - O.order_date

に対するMAX関数は、本当に日付の差分の最大値を求めていますが、

285

9.5更新のもたらすトレードオフ

O.order_nameに対するMAX関数は、別に最大値が欲しいわけではなく注7、
SELECT句にorder_name列を裸で記述できないからです。order_name列
は定数ではありませんし、GROUP BY句でも使われていません。そのた
め、そのままこれをSELECT句に書いてしまうとエラーになります。それ
を防ぐために集約関数の形で書いているだけです。したがって、MAXの

代わりにMINを使っても別にかまいません。MAX/MINはあらゆるデータ

型に適用できるため、こういうときに重宝します。
　なお、order_idとorder_nameが1対1に対応するという前提が成り立つな
ら、GROUP BY句にorder_name列を含めてGROUP BY order_id,order_name

とする解決策もあります。こうすれば、order_nameはGROUP BY句のキー
となるため、MAX関数なしで裸でSELECT句に書くことができます。

SQLに頼らずに解く方法

　上で考えたSQL文は、機能的には要件を満たしているので、この問題に
対する解の一つではあります。しかし、これがこの問題に対する最適解か
どうかには、疑問の余地があります。といっても、もっとうまいSQL文の
書き方があるという意味ではありません。この問題は「SQLに頼らない」こ
とが解になる可能性があるということです。
　上の解は言ってみれば、現状のテーブル構成（ERモデル）は変更不可能で
あることを前提として、SQL文で何とか辻

つじつま

褄を合わせる方法でした。しか
し、このやり方を採用すると、結合や集約を含んだSQL文が必要になり、
検索処理にかかるコストが高くなります。また、結合が実行計画の変動リ
スクを負うことで、長期的なパフォーマンスを不安定にさせる要因になり
ます。
　一方、図9.24のように、配送が遅れる可能性のある注文のレコードに対
してフラグ列をOrdersテーブルに追加すれば、検索クエリはこのフラグだ
けを条件にすることが可能になるため、ずっとシンプルになります。フラ
グが1なら配送遅延あり、0なら遅延なしを意味します。

注7 そもそもorder_idとorder_nameが1対1対応するという仮定では、order_idでグルーピングした
らorder_nameの値も1つしか存在しません。

286

第9章 更新とデータモデル　盲目のスーパーソルジャー

図9.24 Ordersテーブルに配送遅延フラグを追加

　ちょっとした「コロンブスの卵」ですが、いかがでしょう。みなさんは、
この問題を見たとき、どちらのやり方を考えついたでしょうか。中には、
ほとんど反射的にSQL文を考え始めた人もいるのではないでしょうか。し
かし、それは性急過ぎる態度と言わねばなりません。問題を解決する手段
はコーディングだけではないのに、私たちはともすると、常に一つの方法
に頼ろうとする傾向があります。これをスーパーソルジャー病と呼びます。
一種の視野狭窄です。
　心理学者Abraham Harold Maslowはこうした人間の心理を「金槌しか道
具を持たない人にはすべての問題が釘に見えてくる」という印象的な比喩で
表現しました。特に、金槌を打つのが上手な人ほどハマりやすい罠です。

9.6
モデル変更の注意点

　複雑なクエリに頭をひねらなくてよいという点で、たしかにモデル変更
は優れた解決策です。ただし、ここにもトレードオフが存在します。3つ

挙げましょう。

更新コストが高まる

　この方法では、当然のことですがOrdersテーブルの配送遅延フラグ列に
値を入れる処理が必要になります。つまり、検索の負荷を更新に押し付け

10000 東京 後藤信二 2011/8/22 1

10001 埼玉 佐原商店 2011/9/1 1

10002 千葉 水原陽子 2011/9/20 0

10003 山形 加地健太郎 2011/8/5 1

10004 青森 相原酒店 2011/8/22 0

10005 長野 宮元雄介 2011/8/29 0

order_shop
（受付店舗）

order_date
（受付日）

order_name
（注文者名義）

order_id
（注文番号）

Orders（配送遅延フラグを追加）
del_late_flg

（配送遅延フラグ） フラグ列を追加

287

9.6モデル変更の注意点

る格好になります。
　もし、Ordersテーブルへのレコード登録時にすでにフラグの値が決まっ
ているのならば、INSERT処理の中に吸収できるため更新コストはほとん
ど上がりません。これは理想的なケースです。しかし、登録時にはまだ個
別の商品の配送予定日が決まっていないこともあるでしょう（現実の業務を
考えると、むしろそのほうが多いかもしれません）。そういう場合は、あと
でフラグ列をUPDATEする必要が生じ、更新コストが高くなります。

更新までのタイムラグが発生する

　この方法には、データのリアルタイム性という問題が発生します。配送
予定日が注文の登録後に更新されるケースでは、Ordersテーブルの配送遅
延フラグ列と、OrderReceiptsテーブルの配送予定日の列との間で同期が取
れていない時間帯が生まれます（図9.25）。

図9.25 配送遅延フラグを更新する処理シーケンス

　特に夜間バッチ更新などでフラグ列を一括更新するような非同期処理で
は、このタイムラグの期間が長くなります。タイムラグをどの程度許容で

❶注文を登録
（受付日＝2011/8/22
　配送遅延フラグ＝NULL）

❷注文明細を登録
（配送予定日＝NULL）

❸注文明細を更新
（配送予定日＝2011/8/26）

❹注文を更新
（配送遅延フラグ＝1）

Orders OrderReceipts

この期間、テーブル間で
データの同期が取れて
いない状態になる

288

第9章 更新とデータモデル　盲目のスーパーソルジャー

きるかは、やはり業務要件と付き合わせて詳細に検討する必要があります。
　リアルタイム性が高い業務ほど、図9.25における❸明細更新と❹注文更
新の間隔が短くなければなりません。完全リアルタイムが求められる場合
は、❸と❹を同一トランザクションで処理する必要が生じます。しかし、
これは性能に対して厳しいトレードオフを発生させます。

モデル変更のコストが発生する

　RDBにおけるデータモデルの変更は、コードベースの修正に比べて手戻
りが大きくなります。変更対象のテーブルを使用するほかの処理に対する
副作用が発生する可能性もあるため、開発工程の終盤にさしかかってから
のモデル変更はシステム品質と開発スケジュールの双方にとって大きなリ
スクとなります。商用運用に入ってからの変更となると、もう現実的では
ありません。
　このようにモデリングというのは、事前にあらゆる要因を想定しておか
ないと、あとになってから問題を引き起こすことが多い「ホットスポット」
なのです。

9.7
スーパーソルジャー病：類題

　スーパーソルジャー病にかかりやすいケースをもう1つ見ておきましょ
う。先ほどの2つのテーブルOrders（注文）とOrderReceipts（注文明細）を
再び利用します（図9.23）。今度は、注文番号ごとに何品注文されているか
を知りたいとします。結果に含める列は次のとおりです。

・注文番号

・注文者名義

・受付日

・商品数

289

9.7スーパーソルジャー病：類題

再び、SQLで解くなら

　商品の数はOrderReceiptsテーブルを注文番号別にカウントすることで
求められます。一方で、注文者名義や受付日はOrdersテーブルを参照しな
ければなりません。ということはつまり、結合と集約が必要になるという
ことです（リスト9.23）。

リスト9.23 集約関数を使う
SELECT O.order_id,

 MAX(O.order_name) AS order_name,

 MAX(O.order_date) AS order_date,

 COUNT(*) AS item_count

　FROM Orders O

 INNER JOIN OrderReceipts ORC

 ON O.order_id = ORC.order_id

 GROUP BY O.order_id;

 実行結果

order_id | order_name | order_date | item_count

---------+------------+------------+------------

　 10000 | 後藤信二 | 2011-08-22 | 3

　 10001 | 佐原商店 | 2011-09-01 | 1

　 10002 | 水原陽子 | 2011-09-20 | 2

　 10003 | 加地健太郎 | 2011-08-05 | 3

　 10004 | 相原酒店 | 2011-08-22 | 1

　 10005 | 宮元雄介 | 2011-08-29 | 2

　もう一つの方法として、ウィンドウ関数を使うことでも求められます（リ
スト9.24）。

リスト9.24 ウィンドウ関数を使う
SELECT O.order_id,

 O.order_name,

 O.order_date,

 COUNT(*) OVER (PARTITION BY O.order_id) AS item_count

　FROM Orders O

 INNER JOIN OrderReceipts ORC

 ON O.order_id = ORC.order_id;

 実行結果

order_id | order_name | order_date | item_count

---------+------------+------------+------------

290

第9章 更新とデータモデル　盲目のスーパーソルジャー

　 10000 | 後藤信二 | 2011-08-22 | 3

　 10000 | 後藤信二 | 2011-08-22 | 3

　 10000 | 後藤信二 | 2011-08-22 | 3

　 10001 | 佐原商店 | 2011-09-01 | 1

　 10002 | 水原陽子 | 2011-09-20 | 2

　 10002 | 水原陽子 | 2011-09-20 | 2

　 10003 | 加地健太郎 | 2011-08-05 | 3

　 10003 | 加地健太郎 | 2011-08-05 | 3

　 10003 | 加地健太郎 | 2011-08-05 | 3

　 10004 | 相原酒店 | 2011-08-22 | 1

　 10005 | 宮元雄介 | 2011-08-29 | 2

　 10005 | 宮元雄介 | 2011-08-29 | 2

　集約関数の解もウィンドウ関数の解も、どちらも結合と集約を行うため、
実行コストはほとんど同じです。実行計画も似ています（図9.26、図9.27）。

図9.26 集約関数の実行計画（PostgreSQL）

 HashAggregate (cost=50.94..57.94 rows=400 width=90) ←図9.27と異なる部分（GROUP BY）

　 -> Hash Join (cost=19.00..44.44 rows=650 width=90)

 Hash Cond: (orc.order_id = o.order_id)

 -> Seq Scan on orderreceipts orc (cost=0.00..16.50 rows=650 width=4)

 -> Hash (cost=14.00..14.00 rows=400 width=90)

 -> Seq Scan on orders o (cost=0.00..14.00 rows=400 width=90)

図9.27 ウィンドウ関数の実行計画（PostgreSQL）

 WindowAgg (cost=74.81..86.18 rows=650 width=90)

　 -> Sort (cost=74.81..76.43 rows=650 width=90)

 Sort Key: o.order_id ←図9.26と異なる部分（ウィンドウ関数の集約操作）

 -> Hash Join (cost=19.00..44.44 rows=650 width=90)

 Hash Cond: (orc.order_id = o.order_id)

 -> Seq Scan on orderreceipts orc (cost=0.00..16.50 rows=650 width=4)

 -> Hash (cost=14.00..14.00 rows=400 width=90)

 -> Seq Scan on orders o (cost=0.00..14.00 rows=400 width=90)

　どちらのほうがより優れたコードかは、別の観点から判断する必要があ
ります。この場合、ウィンドウ関数のほうがやりたいことを素直に表現し
ている（可読性）ことと、注文番号ではなく商品別に結果を出力したい場合
にも対応できる（拡張性）ことの2点から、より好ましいと言えるでしょう。

291

9.7スーパーソルジャー病：類題

再び、モデル変更で解くなら

　SQLによる解はリスト9.23、リスト9.24のどちらかです。では先ほどと
同様、一歩引いて考えてみましょう。ソルジャーではなく指揮官になって
ください。コーディングを離れて考えると、Ordersテーブルに「商品数」の
情報を列として持つよう、モデル変更するのがよいでしょう（図9.28）。商
品数は、普通は注文の登録時に判明しているはずです。したがって、Orders

テーブルへのINSERT文に吸収することが可能です。

図9.28 Ordersテーブルに商品数を追加

　この方法の注意点は、一度登録した注文をあとから変更するような場合
には商品数も修正される可能性があるので、先の問題と同じ同期／非同期
の問題を考える必要があることです。

初級者よりも中級者がご用心

　スーパーソルジャー病は、SQLに限らずプログラミング全般で発症しま
す。この病気を特に発症しやすいステージが、初級者レベルを抜け出して、
ひととおりのプログラミングができるようになったあたり、つまり中級者
の入口ぐらいです。このステージに達すると、自分がプログラミングでで
きることの幅も広がって、ちょっと難しい問題やひねりの効いた問題を解
くのが楽しくなってきます。
　それ自体は成長として素直に喜んでよいのですが、ともすると、難しい
問題を難しいままの状態で解こうとしてしまう傾向につながります。本人
にとってはパズルを解く楽しさがあるかもしれませんが、放っておくと無

10000 東京 後藤信二 2011/8/22 3

10001 埼玉 佐原商店 2011/9/1 1

10002 千葉 水原陽子 2011/9/20 2

10003 山形 加地健太郎 2011/8/5 3

10004 青森 相原酒店 2011/8/22 1

10005 長野 宮元雄介 2011/8/29 2

order_shop
（受付店舗）

order_date
（受付日）

order_name
（注文者名義）

order_id
（注文番号）

Orders（商品数を追加）
item_count
（商品数）

商品数は登録時
にわかる

292

第9章 更新とデータモデル　盲目のスーパーソルジャー

駄に複雑なプログラムができあがることになって、システム全体の観点で
は非効率で全体最適を損なう結果に陥りかねません。
　本当の中級者は、金槌以外の道具も使えるようになる必要があります。
スポーツに例えるなら「プレーの幅を広げる」「広い視野を持つ」ということ
です。

9.8
データモデルを制す者はシステムを制す

　本章で見たように、データベースにおいては、データモデルのレベルで
対応したほうがシンプルかつ全体最適な解を達成できる問題が多くありま
す。こういうとき、テーブル構成に手をつけず、コーディングで何とかし
ようとするのは、エネルギーの浪費です。
　米国のプログラマE.S.Raymondは、「伽藍とバザール」の中で「賢いデー
タ構造と間抜けなコードのほうが、その逆よりずっとまし」という名言を吐
きました注8。Raymondが念頭に置いていたのはC言語ですが、この格言は
すべての言語とデータに一般化できます。また、Frederick P. Brooks, Jr.も

『人月の神話』で「私にフローチャートだけを見せて、テーブルは見せないと
したら、私はずっと煙に巻かれたままになるだろう。逆にテーブルが見せ
てもらえるなら、フローチャートはたいてい必要なくなる。それだけで、
みんな明白にわかってしまうからだ」と言いました注9。
　2人に共通している認識は、データモデルがコードを決めるのであって
その逆ではない、ということです。だから、間違ったデータモデルから出
発すると、その間違いをコーディングによって正すことはできないのです。
コーディングに長けているだけでは、優れた戦術を駆使するソルジャーに
すぎません。コーディングは、あくまでシステムを作り上げる手段であっ
て、目的ではありません。
　戦略的失敗を一人の戦術的活躍でひっくり返すスーパーソルジャーは、

注8 E.S.Raymond著／山形浩生訳、http://cruel.org/freeware/cathedral.html、1999年
注9 Frederick P. Brooks, Jr.著／滝沢徹、牧野祐子、富澤昇訳『人月の神話』ピアソン桐原、2010年、p.95

http://cruel.org/freeware/cathedral.html%E3%80%811999%E5%B9%B4

293

9.8データモデルを制す者はシステムを制す

見た目の活躍が華々しいため映画やドラマでは好んで描かれるキャラクタ
ーです。でも現実には、一人のソルジャーがどれだけ頑張っても、ダメな
データモデル設計を挽回することはできません。仮に奇跡的に一度はそれ
ができたとしても、次のシステムでまた同じ失敗を繰り返して、不毛な戦
いが継続されるだけです。エンジニアの本当の仕事は、戦略の失敗を挽回
する戦術を探すことではなく、正しい戦略を、トレードオフを考慮しなが
ら選択することです注10。したがって、スーパーエンジニアが指揮する開発
プロジェクトは、盛り上がりに欠けたまま淡々と進み、淡々と終わります。
アンチクライマックスな展開をたどるので映画化はされませんが、関わっ
た人間は幸せになります──とまで断言できないのがつらいところですが、
少なくとも、傷つく人間は少なくなります。
　しかし、私たちはともするとついつい悪いデータ構造を放置して、複雑
なコーディングで問題を解決するほうへ傾きがちです。また現実問題とし
て「今さらテーブルの構造を変えられない、あるいは変える権限がない」と
いうやるせない現場の事情もあることでしょう。ですから「鉄は熱いうちに
打て」の格言どおり、テーブル設計は最初が肝心です。そして、美しく機能
的な設計を実現するうえでは、本章で紹介した強力な更新機能を利用する
ことが大きな助けになるでしょう。

注10 『スーパーエンジニアへの道』は20年以上前に書かれた本ですが、スーパーエンジニアは「スーパー
ソルジャー」でも「スーパープログラマ」でもないという、時代を超えて通じる真実を教えてくれる名
著です。
・ Gerald Marvin Weinberg著／木村泉訳『スーパーエンジニアへの道──技術リーダーシップの人
間学』共立出版、1991年

294

第9章 更新とデータモデル　盲目のスーパーソルジャー

第9章のまとめ

・SQLにおける更新の効率化は、行式、サブクエリ、CASE式、
MERGE文を駆使した総力戦になる

・すべての問題を必ずしもコーディングで解く必要はない

・モデル変更のほうがスムーズに解ける問題も多いが、あとからモ
デルを変えるのは大変

・スーパーソルジャーとスーパーエンジニアの視点は一兵卒と将官
ぐらい違う

演習問題9

　今、リスト9.14（275ページ）のUPDATEにおいて、更新対象のテーブル
であるScoreRowsテーブルのscore列はNULLを許可しています。今度は、
この列にNOT NULL制約を付けます。初期値は全行「0」で統一します（リ
スト9.25）。その場合でも列から行へ変換できるUPDATE文を考えてくだ
さい（ヒント：リスト9.14をそのまま実行すると、「C003」の「社会」をNULL

に更新しようとしてエラーになります。この点に対処してください）。

リスト9.25 score列にNOT NULL制約を付けたテーブル定義
CREATE TABLE ScoreRowsNN

(student_id CHAR(4) NOT NULL,

 subject VARCHAR(8) NOT NULL,

 score INTEGER NOT NULL,

　CONSTRAINT pk_ScoreRowsNN PRIMARY KEY(student_id, subject));

INSERT INTO ScoreRowsNN VALUES ('A001', '英語', 0);

INSERT INTO ScoreRowsNN VALUES ('A001', '国語', 0);

INSERT INTO ScoreRowsNN VALUES ('A001', '数学', 0);

INSERT INTO ScoreRowsNN VALUES ('B002', '英語', 0);

INSERT INTO ScoreRowsNN VALUES ('B002', '国語', 0);

295

9.8データモデルを制す者はシステムを制す

INSERT INTO ScoreRowsNN VALUES ('C003', '英語', 0);

INSERT INTO ScoreRowsNN VALUES ('C003', '国語', 0);

INSERT INTO ScoreRowsNN VALUES ('C003', '社会', 0);

 ➡解答は344ページ

297

インデックスを使いこなす
秀才の弱点

第10章

298

第10章 インデックスを使いこなす　秀才の弱点

特に一般的で重要な索引の種類は，B木（B-tree）である。すべてのアプ
リケーションに最適な単一の記憶構造というものが存在しないことは
事実であるが，もし一つの構造が選ばれなければならないとすれば，
B木の類が恐らく選択されていることはまず疑いようがない。

──Christopher J. Date『データベースシステム概論』第6版、p.68注1

　RDBにおけるチューニングにおいて、インデックスは最もポピュラーな
方法です。アプリケーションの変更が不要で純粋にデータベース側のみで
性能改善できるという利便性の高さと、その効果の高さから、ほぼすべて
のシステムがチューニング手段として何らかの形でインデックスを利用し
ています。

10.1
インデックスと言えばB-tree

　RDBで使われるインデックスは、その構造に基づいて分類すると、次の
3つに分けられます。

・B-treeインデックス

・ビットマップインデックス

・ハッシュインデックス

万能型のB-tree

　B-treeインデックスは、名前のとおりデータを木構造で保持するタイプ
のインデックスで、バランスの取れた汎用性の高さから、一番よく使われ
ます。データベースにおいて「インデックス」と言えば、それはB-treeイン

デックスのことを指すぐらいです。実際、何の修飾もなしにCREATE INDEX

文を実行すると、まずすべてのDBMSで、暗黙にB-treeインデックスが作

注1 Christopher J. Date著／藤原譲訳『データベースシステム概論 第6版』丸善、1997年

299

10.1インデックスと言えばB-tree

成されます。
　B-treeは、検索のアルゴリズムとしては飛び抜けて性能が良いわけでは
ありません。考案者の一人であるR. Bayerも、「もし世界が完全に静的で、
データが変化しないなら、ほかのインデックス技術でも同程度のパフォー
マンスは達成できるだろう」と言っています。しかしそれでもB-treeインデ

ックスがRDBにおける主役である理由は、バランスの取れた秀才型である
ことによるのです。
　なお、実際には多くのデータベースでは、ツリーのリーフノードにだけ
キー値を保持するB+treeという、B-treeの修正バージョンを採用していま
す（Oracle、PostgreSQL、MySQLなど）。これは、B-treeに比べて検索をよ
り効率的にしたアルゴリズムで、データベース以外でもファイルシステム
などに利用されています（図10.1）。

図10.1 B+treeの構造

　しかし、本質的な特徴はB-treeもB+treeも変わらないため、以下、この
B+treeを前提に話を進めます。本章で何も断らずに「インデックス」といっ
た場合は、B+treeインデックスのことを指していると考えてください。
　 B+treeの検索性能が優れている点はいくつかあります。たとえば、B+tree

はなるべくルートとリーフの距離を一定に保つバランスの取れた木である
ため、検索性能が安定しています。また、木の深さがだいたい3～4レベル

くらいで一定しているうえ、データもソートして保持しているため、2分
探索によって検索コストをかなり小さく抑えることができます。また、デ
ータがソートされていることから、うまく使えば集約関数などで必要にな
るソートをスキップできることもあります。

キー値を含むノード

キーからデータへのポインタ
データdn

3

n

1

6 9

3 4 6 7 9 10

d1 d3 d4 d6 d7 d9 d10

4 7

300

第10章 インデックスを使いこなす　秀才の弱点

その他のインデックス

　残りの2つのインデックスについても軽く触れておきます。
　ビットマップインデックスは、データをビットフラグに変換して保持す
るタイプのインデックスで、カーディナリティの低い列に対して効果を発
揮しますが、一方で更新時のオーバーヘッドが大きいため、主にあまり頻
繁な更新が行われないBI/DWH用途で使用されます。
　ハッシュインデックスは、キーをハッシュ分散することで、等値検索を
高速化することを目的にしたインデックスですが、選択率の高い等値検索
以外では効果が薄く、範囲検索では利用できないこともあり、使用できる
局面は限定され、サポートしている実装も一部に限られます注2。

10.2
インデックスを有効活用するには

　B+treeの長所は、上でも述べたように汎用性の高さです。キー値の間で
検索速度にばらつきが少なく、データ量の増加に対して検索速度の劣化が
緩やかで、等号（=）だけでなく不等号（<、>、<=、>=）を使った検索条件でも
使用することが可能です。そのオールラウンダーぶりは本当に重宝します。
　しかし、インデックスもとにかく作れば問題が解決するという魔法の
ではありません。インデックスを有効活用するためには、いくつかのポイ
ントを考慮する必要があります。

カーディナリティと選択率

　インデックスはテーブルの特定の列集合に対して作りますが、このとき
どのような列に対してインデックスを作成するべきかの基準となるのが、

注2 ハッシュインデックスを実装しているDBMSとしてはPostgreSQLがあります。また、Oracleの逆
キーインデックスも、ハッシュと同じ効果を狙っています。どちらもまず使う機会はないでしょう。

301

10.2インデックスを有効活用するには

列のカーディナリティと選択率です注3。
　カーディナリティとは、値のばらつき具合を示す概念で、最も高いのは、
すべての行について値が異なる一意キーの列で、最も低いのは値が1種類

注3 インデックスの性能を決める要因としては、クラスタリングファクタ（クラスタ化係数）という概念
もあります。詳しくはコラム「クラスタリングファクタ」を参照してください。

　インデックスの性能を決める要因としては、クラスタリングファクタ（クラスタ
化係数）という概念もあります。これは、ストレージ上で同じ値がどの程度物理的
に固まって存在しているかを表す指標で、高いほど分散して配置されており、低
いほど固まっていることを示します。インデックスでアクセスする場合は、特定
の値だけにアクセスすることが多いため、一般にクラスタリングファクタが低い
ほうがアクセスするデータ量が小さくなり、好ましいとされています（図a）。

図a クラスタリングファクタのイメージ図

　このクラスタリングファクタは、たとえば次のように確認できます。

・DB2の場合
 SYSCAT.INDEXESビューのCLUSTERRATIO列またはCLUSTERFACTOR列
・Oracleの場合
 DBA_INDEXESビューのCLUSTERING_FACTOR列

　ただし、データの物理的配置は実装に依存するため、本書ではこの概念につい
て詳細に踏み込むことはしません。

クラスタリングファクタが低い＝インデックススキャンに有利

クラスタリングファクタが高い＝インデックススキャンに不利

物理的な格納単位
1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2

3
3
3
3

3
3
3
3

3
3
3
3

3
3
3
3

1
1
3
1

2
1
1
2

1
3
2
3

1
2
1
1

2
2
3
2

1
2
3
2

2
1
2
2

2
2
1
1

3
3
1
3

3
1
3
1

3
3
2
3

3
3
2
3

クラスタリングファクタ

C o l u m n

302

第10章 インデックスを使いこなす　秀才の弱点

しか存在しない列です。複数列の場合も考え方は同様です。
　一方選択率とは、特定の列の値を指定したときに行をテーブル全体の母
集合からどの程度絞り込めるかを示す概念です。たとえば、100件のレコ
ードを持つテーブルに対して、一意キーに対して「pkey = 1」のように等号
で指定すれば必ず1件に絞り込めるため、この条件の選択率は1/100＝0.01、
つまり1％です。

インデックスの利用が有効かを判断するには

　インデックスを作成する列集合の条件は、2つの指標から判断します。ま
ず1つは、カーディナリティが高いこと、すなわち値がよくばらついてい
ることが良いインデックス候補列の条件です。そしてもう1つの基準が、選
択率が低いこと、すなわち少ない行に絞り込めることです。具体的な閾値
はDBMSやストレージ性能などの条件によっても異なるのですが、最近の
DBMSでは、だいたい5～10％前後というのが目安です注4。つまり、5％未
満に絞りこめる条件ならば、その列集合に対してはインデックスを作る価
値がある（かもしれない）、ということになります。選択率がそれより高い
と、テーブルのフルスキャンのほうが速い可能性が高くなっていきます。

10.3
インデックスによる性能向上が難しいケース

　扱うデータ量の規模が大きくなればなるほど、データベースのパフォー
マンス確保は難しくなっていきます。したがって、大規模なデータベース
であるほど、インデックス設計もまた重要になっていくのですが、ここで
一つ勘違いしてほしくないことがあります。それは、インデックス設計と
いうのは、テーブル定義とSQLだけを眺めれば完結させられるタスクでは

注4 「もし大規模テーブルの5％の行を選択したいのならば、インデックスを使う方がフルスキャンより
も少ないI/Oですむだろう。」（Richard J. Niemiec, Oracle Database 11g Release 2 Performance Tuning

Tips & Techniques, Mcgraw-Hill Osborne Media, 2012.）。この選択率の閾値は、ストレージの性能
向上に比例して徐々に下がっていく傾向にあります。昔は、20％程度が閾値と言われた時代もあり
ました。そのうち5％が3％になり、3％が1％と、今後も小さくなっていくことでしょう。

303

10.3インデックスによる性能向上が難しいケース

ないということです。
　たしかに、あるSQLに適切なインデックスを作るためには、SQLの検索条
件と結合条件において、データを効率的に絞り込める条件を見極める必要が
ありますし、そのためにはSQL文と検索キー列のカーディナリティを知る必
要があります。その結果、運良くデータをうまく絞り込める条件が見つかっ
たら、それをカバーするインデックスを作成すれば、目的は達成させられま
す。しかし、そうでなかった場合はどうでしょう。つまり、データを絞り込
める条件が当該のSQL文に存在しなかったら、どうすればよいのでしょうか？
　問題の所在をわかりやすくするために、少し極端な例を見ながら考えて
みましょう。リスト10.1のような注文データを保持するテーブルを使って
考えます。この注文テーブルのレコード件数は1億件と仮定します。

リスト10.1 注文テーブルの定義
CREATE TABLE Orders

(order_id CHAR(8) NOT NULL,

 shop_id CHAR(4) NOT NULL,

 shop_name VARCHAR(256) NOT NULL,

 receive_date DATE NOT NULL,

 process_flg CHAR(1) NOT NULL,

 CONSTRAINT pk_Orders PRIMARY KEY(order_id));

※ Orders：注文テーブル、order_id：注文ID、shop_id：受付店舗ID、shop_name：受付店舗名、receive_
date：受付日、process_flg：処理フラグ

絞り込み条件が存在しない

　まず1つ目は、そもそもSQL文にまったくデータの絞り込み条件が存在
しないケースです（リスト10.2）。

リスト10.2 ケース1：絞り込み条件が存在しない
SELECT order_id, receive_date

　FROM Orders;

　注文テーブルからデータを全件取得するという、これ以上ないシンプルな
SELECT文です。このクエリのスキャン動作は、実行計画を見るまでもなくテ
ーブルのフルスキャン以外にありません。レコードを絞り込めるようなWHERE

句がそもそもないため、インデックスを作成すべき列も存在しません。

304

第10章 インデックスを使いこなす　秀才の弱点

　ここまで極端なケースは実務においても少ないですし、こうした処理が
仮に必要だったとしても、それは1秒のレスポンスが求められるオンライ
ン業務ではなく、何らかの形のバッチ処理においてでしょう。

ほとんどレコードを絞り込めない

　2つ目は、もっとよくあり、それだけにやっかいなケースです。絞り込
み条件はありながら、ほとんどレコードを絞り込めないSQL文です（リス
ト10.3）。

リスト10.3 ケース2：絞り込み条件は存在するが、ほとんど絞り込めない
SELECT order_id, receive_date

　FROM Orders

 WHERE process_flg = '5';

　今process_flgの分布は次のようになっているとします。

・1（仮受付） ： 200万件

・2（受付済み） ： 500万件

・3（在庫確認中） ： 500万件

・4（発送準備中） ： 500万件

・5（発送済み） ： 8,300万件

　一応WHERE句に「process_flg = '5'」という検索条件は存在していますが、
この条件ではテーブルの半分以上のデータがヒットしてしまいます。選択
率が83％と極めて高いケースです。この状態でprocess_flg列にインデック
スを作って仮にそれが使われたとしても、フルスキャンよりも遅くなる可
能性が高いでしょう。これではインデックスも逆効果にしかなりません。
インデックスが有効なのは、あくまで「大きくレコードを絞り込める検索条
件」が存在する場合だけなので、こういう検索条件が存在していても意味が
ないのです。このように列名に「_flg」や「_status」とついている列は、種類
の少ない何らかの状態を表していることが多いので、インデックスを作る
には向かない列であることが多くあります注5。

注5 典型例は0/1の2種類しか持たない「err_flg」のようなケースです。

305

10.3インデックスによる性能向上が難しいケース

入力パラメータによって選択率が変動する❶
　このケースに該当するパターンには、さらに話が面倒な亜種があります。そ
れは、構文は同じでありながら、入力パラメータによって選択率が変動するタ
イプの検索条件です。たとえば、期間の範囲検索がそうです（リスト10.4）。

リスト10.4 ケース2'：ユーザの入力パラメータによって選択率が変動する
SELECT order_id

　FROM Orders

 WHERE receive_date BETWEEN :start_date AND :end_date;

　:start_dateと :end_dateは外部から日付をパラメータとして受け付けます。
今、ユーザが :start_dateと :end_dateにともに「2013-12-01」と入力したなら
ば、ある特定の1日に受け付けた注文データを選択する意味になり、（この
テーブルが何年間のデータを保存しているかにもよりますが）かなり小さい
選択率が期待できるでしょう。一方、:start_dateに「2013-01-01」、:end_

dateに「2013-12-31」と入力したならば、検索範囲は1年に広がります。こ
れは、業務集中などのばらつきがないと仮定すれば、単純計算で1日を指
定したときの365倍のレコードがヒットすることになります。このように、
検索条件がパラメータ化されているSQL文においては、そのときどきの入
力値によって選択率が良いほうにも悪いほうにも転びます。

入力パラメータによって選択率が変動する❷
　あるいはこの選択率変動タイプのもう1つのサンプルとして、注文を受
け付けた店舗を検索条件にする場合があります。リスト10.5のような店舗
ごとの注文受付件数をカウントするSELECT文を考えましょう。

リスト10.5 ケース2''：ユーザの入力パラメータによって選択率が変動する
SELECT COUNT(*)

　FROM Orders

 WHERE shop_id = :sid;

　この場合、大規模な店舗ほど受付件数は多くなり、その規模は小規模な店
舗の数百倍～数千倍になることも珍しくありません。shop_idに与えるパラ
メータ:sidが、大規模店舗の場合は1,000万件がヒットし、小規模店舗だと
10万件しかヒットしないとすれば、前者の場合の選択率は10％、後者の場

306

第10章 インデックスを使いこなす　秀才の弱点

合は0.1％となります。すると、前者のケースだけを考えるならばインデック
ススキャンよりもテーブルのフルスキャンが望ましく、後者のケースだけを
考えるならインデックススキャンが有利、ということになります注6。
　このとき怖いのが、shop_id列にインデックスが存在しており、かつ前
者のケースでインデックスが使われることで、かえって性能劣化を招いて
しまうことです。いわば、インデックスが「裏目に出る」わけです。オプテ
ィマイザが前者についてはフルスキャンを、後者についてはインデックス
のレンジスキャンをうまく選択してくれればよいのですが、そうはいかな
い場合も多くあります注7。

インデックスが使えない検索条件

　3つ目は、絞り込みの効く検索条件がありながら、インデックスが使え
ないタイプの検索条件の場合です。

中間一致、後方一致のLIKE述語

　リスト10.6では、受付店舗の名前に「佐世保」という文字を含むレコード
を選択しています。

リスト10.6 ケース3：絞り込みは効くが、インデックスが使えない検索条件
SELECT order_id

　FROM Orders

 WHERE shop_name LIKE '%佐世保%';

　たとえば「佐世保北店」とか「佐世保中央店」などを結果に含むような条件
です。今、この条件でヒットするレコード数は5,000件だと仮定しましょ
う。するとこの条件の選択率は0.005％です。5％の閾値を大きく下回って
おり、絞り込みは十分に効いています。
　ではこのshop_name列にインデックスを作れば効率的な検索が行われる

注6 今は単純化して、検索条件のケースのみを考えていますが、もちろん結合条件においても同様の問
題が発生します。特に、Nested Loopsの内部表の結合列においてヒット件数が多いことは、ループ
の回数を増やすため顕著な性能問題となります。詳細は第6章を参照してください。

注7 そこまでの機能をオプティマイザに期待するならば、少なくとも統計情報として列値のヒストグラ
ムを取得している必要があります。ヒストグラムは、Microsoft SQL Server、OracleなどのDBMS
では統計情報として取得することが可能です。

307

10.3インデックスによる性能向上が難しいケース

でしょうか？ 残念ながらそうはなりません。LIKE述語を使う場合、イン
デックスが使用できるのは前方一致（'佐世保%'）のみで、このサンプルのよ
うな中間一致（'%佐世保%'）、あるいは後方一致（'%佐世保 '）ではインデッ
クスが利用できません。したがって、どれだけ選択率の良い検索条件であ
ろうとも、このケースもやはりフルスキャンにならざるをえません。
　このLIKEの中間一致のように、構文的にインデックスが利用できない
パターンがいくつかあります。実装によっても動作が異なることがあるの
ですが、数が少ないので、次に挙げるものを覚えておきましょう。

索引列で演算を行っている

　索引列で演算を行っているとインデックスは利用できません（リスト
10.7）。

リスト10.7 索引列で演算を行っている
SELECT *

　FROM SomeTable

 WHERE col_1 * 1.1 > 100;

　ただし、検索条件の右側で式を用いれば、インデックスが使用されます。
したがって、代わりに

WHERE col_1 > 100/1.1

という条件を使えばOKです。

IS NULL述語を使っている
　IS NULL述語を使っている場合も、インデックスは使用できません（リ
スト10.8）。NULLに対する検索条件でインデックスが使用されないのは、
通常、索引データの中にNULLは存在しないからです注8。

リスト10.8 IS NULL述語を使っている
SELECT *

　FROM SomeTable

 WHERE col_1 IS NULL;

注8 DB2のように、インデックスにNULLも保持するDBMSもありますが、一般的ではありません。

308

第10章 インデックスを使いこなす　秀才の弱点

　また、索引列に対して関数を使用している場合も、インデックスが使用
されません（リスト10.9）。

リスト10.9 索引列に対して関数を使用している
SELECT *

　FROM SomeTable

 WHERE LENGTH(col_1) = 10;

　索引列に関数を適用するとインデックスが使われない理由は、「索引列で
演算を行っている」場合と同じです。インデックスの中に存在する値はあく
まで「col_1」の値であって、「LENGTH(col_1)」の値ではないからです。関
数索引によって対応する方法もありますが、無駄な計算コストが発生する
ので、基本は使わないようにしてください。

否定形を用いている

　否定形（<>、!=、NOT IN）はインデックスを使用できません（リスト10.10）。

リスト10.10 否定形を用いている
SELECT *

　FROM SomeTable

 WHERE col_1 <> 100;

10.4
インデックスが使用できない場合どう対処するか

　それでは、こうしたインデックスが使用できない、あるいは使用すると
逆に遅くなってしまうSQL文のパフォーマンスは、どのようにチューニン
グすればよいのでしょう。方法は、大きく2通りあります。1つがアプリケ

ーション設計で対処するという王道です。もう1つが、あくまでインデッ
クスにこだわる飛び道具です。それぞれ詳しく見ていきましょう。前者は、
さらに外部設計よる対処とデータマートによる対処に分かれます。

309

10.4インデックスが使用できない場合どう対処するか

外部設計による対処──深くて暗い川を渡れ

UI設計による対処

　最もシンプルな解決策は、そもそもこのようなクエリが実行されないよ
う、アプリケーション側で制御することです。たとえば、もし上のOrders

テーブルに対するクエリが、図10.2のようなWeb画面からの入力をもと
に作られているとしましょう。

図10.2 画面イメージ

　この画面では、ユーザがかなり自由に入力条件を組み合わせられるため、
選択率の高い検索条件を許容することにつながります。これが、たとえば
「店舗 ID」で検索するときは必ず「受付日」も入力しなければ検索ボタンを押
すことができない、という必須入力制御が行われていれば、Orderテーブ

ルに対する絞り込みがかなり利くようになります。あるいは「期間検索は最
大1ヵ月まで」という条件をユーザと合意できれば、期間検索においてもイ
ンデックスを有効に利用できる可能性がぐっと高くなります注9。またそうす
れば、月単位のパーティションをテーブルに設定するという選択肢も考え
られるようになります。
　本章の「インデックスによる性能向上が難しいケース」（302ページ）で「イ
ンデックス設計はデータベースだけを見ていてもできない」と言ったのは、
こういう理由によります。アプリケーションがどのようなクエリを組み立

注9 12ヵ月を検索したければ、1ヵ月ごとの検索を12回繰り返せばよいのです──1回のオペレーショ
ンでできることを複数回に分割しなければならないというのは、ユーザにとっては面倒には違いな
いのですが。

注文ID： 店舗ID： 処理フラグ ▼

検索

店舗名：

受付日（From） ～受付日（To）

310

第10章 インデックスを使いこなす　秀才の弱点

て、どのような検索条件の組み合わせがあり得るかは、アプリケーション
の機能とUIの設計に大きく依存します。したがって、ユーザに対する業務
要件を考慮しながら、どのようなユーザインタフェースを用意し、どのよ
うな入力制限を設けるかを、ユーザや業務側のエンジニアと一緒になって
考えなければならないのです。

外部設計による対処の注意点

　みなさんよくご存じのように、どんなシステムであれユーザというのは
「必須入力条件なし完全フリーダム」という要件を好む生き物です。作る側
からすれば「好き勝手言いやがって。それのどこが要件だ！」という不満の
声が上がるでしょう。しかしみなさんだって、いざ自分が使う側に立てば、
迷わずそういう要望を出すはずです。何も考えなくてよいのですから。そ
こを、本当にシステムを使ううえで重要な条件と、性能のために譲歩して
もよい条件のトレードオフを整理し、妥協点を探すことがデータベースエ
ンジニアに求められる仕事です注10。
　データベースエンジニアとアプリケーションエンジニアの間では、とも
するとコミュニケーションの断絶が起きがちです。アプリケーションエン
ジニアはデータベースやハードウェアを完全にブラックボックスとして扱
い、ストレージの構成もテーブルの物理配置も知らない、一方のデータベ
ースエンジニアは「業務要件何それ食えるの？」という態度で、自分たちが
ユーザのためにシステムを作っているのだという意識が希薄──そんなデ
ィスコミュニケーションに溢れた開発プロジェクトを、私も何度も見てき
ました。
　もちろん、そのような縦割りの分業体制が確立しているのにはそれなり
の理由と合理性もあるのですが、ことパフォーマンスに関しては、システ
ムを俯

ふかん

瞰する人間がいなければ最適化できません。インフラとアプリケー
ションの間に横たわる「深くて暗い川」を渡らなければならないのです。
　しかし現実には、外部設計における調整が不調に終わり、選択率の低い

注10 ここにERP（Enterprise Resource Planning）のような業務パッケージのソフトウェアが絡んでくると、話
はさらにややこしくなってきます。パッケージ製品はスクラッチ開発に比べてUI設計の自由度が低
く、内部ロジックもブラックボックスで、カスタマイズが困難です。ということは、パッケージ製
品を使うと性能的なリスクが非常に高くなる、ということです。

311

10.4インデックスが使用できない場合どう対処するか

必須条件をクエリに組み込むことができないこともたびたびあります。特
に、こうした外部設計レベルでのパフォーマンスを意識した調整は、プロ
ジェクトの比較的早い段階でユーザと合意を持つ必要がありますが、往々
にしてその段階での設計ではパフォーマンスがあまり（または、まったく）
考慮されません。試験フェーズに至って壊滅的なパフォーマンスであるこ
とが明らかになり、そこから画面の入力条件に制限をつける調整を行うの
は、ユーザから見ればあとだしジャンケンにしか見えないため、ほぼ確実
に不興を買います。そのときは、操作性を変えないままシステムをチュー
ニングする手段を考えなければなりません。

データマートによる対処

　外部設計に影響を与えない1つ目の方法が、データマートです。略して
単にマート、あるいはサマリテーブルとも言います。要するに、特定のク
エリ（群）で必要とされるデータだけを保持する、相対的に小さなサイズの
テーブルのことです。オリジナルテーブルのサブセットと考えてもらえば
よいでしょう（図10.3）。

図10.3 データマートのイメージ

　もともと大規模データを扱う必要のある（したがってパフォーマンス要件
がシビアな）BI/DWHの分野で使われていた言葉です。アクセス対象テー
ブルサイズを小さくすることでI/O量を減らすのが、この方法の目的です。

マート群

オリジナルのテーブル

312

第10章 インデックスを使いこなす　秀才の弱点

　たとえば、前掲のリスト10.2（303ページ）のクエリを見ると、必要とさ
れるデータは、order_id、receive_dateの2列だけです。したがって、リス
ト10.11のようなデータマートがあれば、リスト10.12のクエリは非常に
高速化されます。

リスト10.11 データマート
CREATE TABLE OrderMart

(order_id CHAR(4) NOT NULL,

 receive_date DATE NOT NULL);

リスト10.12 ケース1：絞り込み条件が存在しなくても高速化できる
SELECT order_id, receive_date

　FROM OrderMart;

データマートを採用するときの注意点

　このデータマートを採用するときには、注意すべきポイントが4つあり

ます。

データ鮮度

　これはデータ同期のタイミングの問題です。データマートは、オリジナ
ルのテーブルの部分的なコピーです。したがって、あるタイミングでオリ
ジナルからデータを同期しなければならないのですが、問題はそのタイミ
ングです。この同期のサイクルが短ければ短いほどデータ鮮度は新しく、
オリジナルに近いものになります。その代わり頻繁な更新処理が実行され
ることによるパフォーマンス劣化の危険があります。伝統的には、この同
期は夜間バッチにおいて実行されることが多く、その場合のデータ鮮度は
最低1日前ということになります。
　このように、データ鮮度がある程度落ちてもよいという要件が満たせな
いと、そもそもこの手段は採用するのが困難です。

データマートのサイズ

　データマートを作る意義は、テーブルサイズを小さくしてI/O量、特に読

313

10.4インデックスが使用できない場合どう対処するか

み出しデータ量を減らすことにあります注11。したがって、オリジナルのテーブ
ルとサイズがあまり変わらないと、データマートを作っても速くなりません。
　たとえば、SELECT *のように全列を取得する必要があって、選択列を削る
ことができなかったり、検索条件の選択率が高くレコードを削ることができ
ない場合は、データマートを作ってもパフォーマンス対策になりません。
　その意味では、GROUP BY句を適用して集計を事前に終えておくための
データマートは、列数、レコード数ともに大きく削減できるうえに、GROUP

BYに必要なソートやハッシュの計算処理も事前に終わらせておくことがで
きて効果的です注12。

データマートの数

　これはパフォーマンスという観点からは副次的な要素ですが、データマ
ートがパフォーマンス改善に有効であることに気づくと、これは便利とば
かりに雨後の筍

たけのこ

みたいにデータマートを作りはじめる開発プロジェクトが
あります。私がこれまでに見たシステムの中でひどいものだと、データマ
ートだけで100個を超えていました。BI/DWHのシステムだったので、あ
る程度データマートに頼るのはやむを得ないところもあったのですが、さ
すがにこれだけあると、いったいどのテーブルが何の処理に結びついてい
るのかぱっと見ただけでは理解できず、中にはもう参照されなくなったの
に同期処理だけは（無駄に）行われている「ゾンビマート」が残っていたりと、
誰一人管理できる人間はいなくなっていました。
　データマートは、もともとが機能要件から要請されて作られたエンティ
ティではないため、ER図の中にも登場せず、きちんと管理するのが難しい
という問題があります。またあまり数が増えると、それだけストレージ容
量も圧迫するうえ、バックアップをストレージのスナップショット機能な
どで取得していると、無駄にバックアップウィンドウ（バックアップに使え
る期間）を圧迫するという問題も引き起こします。こうした観点から見て
も、あまり安易に頼りすぎるのは考えものです。

注11 検索、すなわちSELECT文の処理をする際には、読み出し（Output）しか行わないと思っている人も
いるかもしれませんが、実際は書き込み（Input）も行われることがあります。それは、ハッシュやソ
ートの計算を行うときなど、一時作業用のメモリ領域が不足したときに、データを一時的にストレ
ージへ書き出す動作（TEMP落ち）をする可能性があるからです。詳しくは第1章「もう一つのメモリ
領域『ワーキングメモリ』」（16ページ）を参照してください。

注12 もともと、BI/DWHにおけるデータマートは、GROUP BYを使って作ることが前提されていた節も
あります。

314

第10章 インデックスを使いこなす　秀才の弱点

バッチウィンドウ

　当たり前ですが、データマートを作るにも時間がかかるため、バッチウ
ィンドウを圧迫します。作ったデータマートは、わずかな差分更新でない
限り統計情報も収集しなければなりません。こうした処理を余裕を持って
収めるためのバッチウィンドウとジョブネットの考慮が必要になります。
　以上のように、データマートは一見するとお手軽な性能改善手段に見えま
すが、意外に考慮すべきポイントが（特に運用まわりで）多いので、軽い気持
ちで頼りすぎるとあとで副作用に泣くことになります。注意してください。

インデックスオンリースキャンによる対処

　外部設計に影響を与えることなくチューニングを行う2つ目の手段が、イ
ンデックスオンリースキャンです。インデックスオンリースキャンは、SQL

文のアクセス対象のI/O量を減らすことを目的としている点で、データマ
ートと考え方は同じです。この方法の利点は、データマートで最大のネッ
クだったデータ同期の問題をクリアしていることです。
　インデックスオンリースキャンは、名前のとおりインデックスを使った
高速化の一手段ではあるのですが、その使い方は従来のインデックスの用
法とは大きく異なります。
　まったく絞り込み条件が存在しなかったリスト10.2をもう一度取り上げま
しょう（リスト10.13）。インデックスの原則として、WHERE句に絞り込み
条件がない以上、フルスキャンが発生することは避けられないはずでした。

リスト10.13 ケース1：絞り込み条件が存在しない（再掲）
SELECT order_id, receive_date

　FROM Orders;

　しかしこのクエリにおいては、フルスキャンはフルスキャンでも実はそ
の対象をテーブルからインデックスに変えることができるのです。そのた
めには、リスト10.14のような列をカバーするインデックスを作成します。

リスト10.14 カバリングインデックス
CREATE INDEX CoveringIndex ON Orders (order_id, receive_date);

　order_idとreceive_dateの2列はSELECT句に含まれているだけなので、

315

10.4インデックスが使用できない場合どう対処するか

通常はインデックスの列候補にはなりません。しかし、この2列をカバー
するインデックスが存在することで、テーブルではなくインデックスだけ
をスキャン対象にするような検索──それがすなわちインデックスオンリ
ースキャン──が可能になるのです（図10.4）。こういうインデックスをカ
バリングインデックス（Covering Index）と呼びます。インデックスオンリー
スキャンとは、いわばSQL文に必要な列をインデックスだけで充足できる
場合に、テーブルへのアクセスをスキップする技術なのです。

図10.4 従来のインデックススキャンと、インデックスオンリースキャンの違い

　この技術の利点は、データマートと同じくI/Oを削減できることです。イ
ンデックスはテーブル列のサブセットしか保持しないため、そのサイズは
テーブルに比べればかなり小さなものになります。しかも、データマート
を作るにはアプリケーションにも改修が必要になりますが、インデックス
の場合はそうした改修が不要であることも大きな利点です。
　この場合の実行計画をOracleで見てみましょう（図10.5）注13。

図10.5 インデックスオンリースキャンの実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 19 | 2 (0)| 00:00:01 |

| 1 | INDEX FAST FULL SCAN| COVERINGINDEX | 1 | 19 | 2 (0)| 00:00:01 |

--

注13 PostgreSQLだと、件数が少ない場合普通のシーケンシャルスキャンが選択されてしまうので、Oracle
の実行計画を掲載しています。

インデックスオンリースキャン

通常のインデックススキャン

SQL

SQL

316

第10章 インデックスを使いこなす　秀才の弱点

　「INDEX FAST FULL SCAN」という操作が、インデックスに対するフル
スキャンを意味します。注目すべきは、この実行計画には「Orders」という
テーブル名が登場しないことです。これは、テーブルにはアクセスしてい
ないからです。この実行計画は、クエリの全列をカバーするインデックス
が存在していれば、オプティマイザが自動的に判断して採用されます注14。
　同様に、リスト10.3、リスト10.6にも適用できます（リスト10.15、リス
ト10.16）。それぞれリスト10.17、リスト10.18のように列をカバーする
インデックスを作ることで、インデックスオンリースキャンを利用するこ
とが可能になります。

リスト10.15 ケース2：絞り込み条件は存在するが、ほとんど絞り込めない（再掲）
SELECT order_id, receive_date

　FROM Orders

 WHERE process_flg = '5';

リスト10.16 ケース3：絞り込みは効くが、インデックスが使えない検索条件（再掲）
SELECT order_id, receive_date

　FROM Orders

 WHERE shop_name LIKE '%佐世保%';

リスト10.17 リスト10.15に対応するカバリングインデックスを作成
CREATE INDEX CoveringIndex_1 ON Orders (process_flg, order_id, receive_date);

リスト10.18 リスト10.16に対応するカバリングインデックスを作成
CREATE INDEX CoveringIndex_2 ON Orders (shop_name, order_id, receive_date);

　これはいわば、ロー（行）ベースストアのDBMSにおいて擬似的にカラム
（列）ベースストアを実現していると考えてもよいでしょう（コラム「インデ
ックスオンリースキャンとカラム指向データベース」参照）。

注14 カバリングインデックスが存在するのに使ってくれないこともあり、そういう場合Oracleでは
INDEX_FFSヒントによって制御する方法もあります。

317

10.4インデックスが使用できない場合どう対処するか

　本章で紹介したインデックスオンリースキャンの技術は、うまくハマれば検索
性能を劇的に向上させられる強力な機能ですが、実はこれは、カラム指向データ
ベースを、ロー指向データベースにおいて擬似的に実現した方法、という見方を
することができます。
　現在主流のRDBの実装は、そのほとんどがロー指向データベース、すなわち、
行単位でデータを格納するタイプです（図a）注a。

図a ロー指向

　このロー指向をパフォーマンスの観点から見た場合には、非効率、すなわちあ
る種の「無駄」が発生します。それは、たとえば次のような簡単なSELECT文を見
てみるとわかります。

SELECT col_1

　FROM SomeTable;

　このSELECT文がアクセスする必要のあるデータはcol_1だけです。したがっ
て、本当はこの1つの列だけにアクセスするのが、読み出しデータ量を少なく抑
えられて効率的です。しかし、ロー指向データベースにおいてはI/Oが行単位で
行われるため、残りの（使わない）列もすべて読み出さなければならないのです。
今、SomeTableがcol_1～col_50までの50列を保持しているとすれば、残りの
49列もすべて読み出さなければならないというわけです。もちろん、実際に必要
なのは1列だけなので、残りはせっかく読み出したものの、特に使わずに捨てる
ことになります。まったくの読み出し損です。
　カラム指向データベースは、このような「実は1つのSQL文で使用される列は
非常に限られているのではないか」という洞察に基づいて作られたデータベースで
す。その名のとおり、データの格納単位を列に変換することで、不要な列を読み
出なくても済むようにするという方法です（図b）。

列1 列2 列3 列4

a b c d

A B C D

V W X Y

…
…

物理的には
行単位でひとまとまり

インデックスオンリースキャンとカラム指向データベース

C o l u m n

318

第10章 インデックスを使いこなす　秀才の弱点

インデックスオンリースキャンを採用するときの注意点

　インデックスオンリースキャンは、データマートを作らなくてもクエリ
を高速化できる点で優れた技術ですが、いくつか注意点もあります。

図b カラム指向

　こうすると、先のSELECT文のような使う列数が少ないSQL文に対しては、デ
ータの読み出し量を大きく削減し、パフォーマンスを向上させることができます。
ただし、利点と欠点は表裏一体なので、カラム指向データベースの場合、今度は
逆に次のようなSELECT文のパフォーマンスが悪くなります。

　SELECT *
 FROM SomeTable
 WHERE col_1 = 'A';

　col_1 = 'A'の条件によってレコード数を大きく絞り込めたとしても、カラム
指向データベースの場合は、結局すべての列にアクセスする必要があるため、こ
のSQL文のパフォーマンスは、ロー指向データベースよりも劣ります。ここまで
極端ではなくても、多くの列を使用するタイプのSQL文には、カラム指向データ
ベースは向かない、ということになります。
　さて、ここまで見ると、インデックスオンリースキャンが、ロー指向データベ
ース上で擬似的にカラム指向データベースを実現したものだ、という意味もおわ
かりいただけたのではないかと思います。SQL文の使用列をカバーするインデッ
クスを作ることでアクセスする列を制限するという発想は、カラム指向データベ
ースのものにほかならないのです。

注a カラム指向データベースを取り入れている製品としては、Sybase IQなどがあります。

列1 列2 列3 列4

a b c d

A B C D

V W X Y

…
…

物理的には
列単位でひとまとまり

319

10.4インデックスが使用できない場合どう対処するか

DBMSによっては使えないこともある

　Oracle、DB2、Microsoft SQL Server、PostgreSQL、MySQLいずれも

2014年12月時点の最新版であればすべてインデックスオンリースキャン
をサポートしています。古いバージョンを使っているときだけ注意が必要
です注15。

1つのインデックスに含められる列数には限度がある

　これも実装依存の注意点です。インデックスのサイズは無制限ではなく、
含められる列数やサイズに上限が決められています注16。こうした制限につ
いては実装ごとに違うため、みなさんの使用する環境についてよくマニュ
アルなどを調べてください。
　また、そもそもインデックスサイズが大きくなると、物理 I/Oを減らす
という当初の目的に対する効果が薄くなり、何のためにインデックスを作
るのかわからなくなります。

更新のオーバーヘッドを増やす

　インデックスオンリースキャン用のカバリングインデックスに限らず、
インデックスというのはそれが存在するテーブルに対する更新負荷を上げ
るものですが、カバリングインデックスはその性質上、列数が多く必然的
にサイズの大きなインデックスになりがちです。したがって、テーブル更
新時のオーバーヘッドも通常のインデックスよりも大きなものになる傾向
があります。検索を高速化できる代わりに、更新にトレードオフが発生す

注15 PostgreSQLは、9.2からインデックスオンリースキャンをサポートしました。
・もう一度始めたい人のPostgreSQL（3） インデックスオンリースキャンを試す - ＠IT
　http://www.atmarkit.co.jp/ait/articles/1307/12/news004.html
またMicrosoft SQL ServerやDB2は、インデックスのキー以外の列値をインデックスに持たせると
いう機能も持っています。Microsoft SQL Serverではこれを「付加列インデックス」と呼んでいます。
・付加列インデックスの作成 - TechNet
　http://technet.microsoft.com/ja-jp/library/ms190806.aspx
これはもう物理的な構造が木であるというだけで、論理的にはほとんどテーブルと同じような存在
です。

注16 Oracleなどは、この制限に対処するために、複数のインデックスをマージしたうえでインデックス
オンリースキャンを行うことがあります。たとえば、(a, b, c, d)という列を使うクエリに対して、
(a, b, c)と(b, c, d)という2つのインデックスがあった場合、それぞれ1つのインデックス単独
ではクエリをカバーできず、インデックスオンリースキャンは使えません。そこで2つのインデッ
クスをマージして(a, b, c, d)という1つのインデックスを作ることで、テーブルへのアクセスを
スキップするという、気の利いた芸当です。もちろん、このマージ操作はオーバーヘッドになるの
で、最初から(a, b, c, d)をカバーするインデックスが存在するのが最も効率的であることは言う
までもありません。

http://www.atmarkit.co.jp/ait/articles/1307/12/news004.html
http://technet.microsoft.com/ja-jp/library/ms190806.aspx

320

第10章 インデックスを使いこなす　秀才の弱点

るのです。

定期的なインデックスのリビルドが必要

　インデックスにしかアクセスしないということは、裏を返すと検索性能
はインデックスのサイズに依存するということです。特に、インデックス
の一部しか読み込まない通常のレンジスキャンと違い、OracleのINDEX

FAST FULL SCANなどはインデックスに対してフルスキャンを行います。
そのため、検索性能はインデックスのサイズにほぼ比例することになり、
通常のインデックスよりもサイズに敏感にパフォーマンスが反応します。
　こうした理由から、カバリングインデックスの定期的なサイズのモニタ
リングとリビルドを運用に組み込んでおく必要があります。

SQL文に新たな列が追加されたら使えない

　アプリケーション改修によってクエリに新たな列が追加されることがあ
るでしょう。原理を理解していれば当然の話ですが、そうすると、もうイ
ンデックスオンリースキャンは使えません。結果、いきなり実行計画が変
動し、クエリの性能が劣化します。WHERE句の変更が性能を大きく変え
る可能性があることはアプリケーションエンジニアにも広く理解されてい
ますが、SELECT句に列を追加するぐらいは軽い気持ちでやってしまうケ
ースも見られます。しかし、カバリングインデックスは、SQL文で使用さ
れる列をすべてカバーできなくなった時点で、もうカバリングインデック
スではありません。その点で、このインデックスオンリースキャンは、通
常のインデックスに比べてピーキーな、アプリケーション改修に弱いタイ
プのチューニングと言えるでしょう。お世辞にも保守性が高いとは言えま
せん。
　このように、インデックスオンリースキャンは通常のレンジスキャンで
は高速化が難しいケースをもカバーできるという利点を持つ一方で、使う
際の注意点も多い変則的な技術です。B+treeインデックス本来の使い方で
はけっしてないのですが、諸条件を満たしてうまく「ハマる」ときは、従来
B+treeインデックスでは高速化が不可能とされてきたケースでも大きな性
能改善が見込める方法であり、覚えておいてもらいたい選択肢です。

321

10.4インデックスが使用できない場合どう対処するか

第10章のまとめ

・B+treeインデックスは便利だが、うまく高速化できるかはカーデ
ィナリティと選択率しだい

・選択率をコントロールするためにはUI設計まで踏み込む必要があ
る

・選択率の高いケースを救う技術がインデックスオンリースキャン

・結局のところ、インデックスによる性能改善もまた、I/Oコスト
を減らすための努力

演習問題10

　みなさんの参加するプロジェクトで、大規模テーブルに対するクエリが
遅いため、データマートを使って性能改善を行う方針が決まりました。こ
のとき、どのような実装方法があり得るか、そしてそれぞれどのようなメ
リット／デメリットがあるか考えてください。 ➡解答は345ページ

323

PostgreSQLの
インストールと起動

Appendix A

324

Appendix A PostgreSQLの インストールと起動　

　本章では、実行環境としてオープンソースのデータベースである
PostgreSQL（バージョン9.3.2）のWindowsへのインストール方法を紹介し
ます。

1. PostgreSQLのダウンロードサイト注1からインストーラをダウンロード

します。本書では、32ビット版のWindowsのインストーラ（Win x86-

32）を使ってWindows 7（32ビット）へインストールする手順を解説し
ますが、環境に応じて適切なものをダウンロードしてください。たと
えば、みなさんの使用しているPCのOSがWindowsの64ビットであ

れば、「Win x86-64」のインストーラをダウンロードしてください（図
A.1）。

図A.1 PostgreSQLインストーラのダウンロード

2. インストーラを実行する際は、ファイルを右クリックして「管理者とし
て実行」をクリックします注2。すると、図A.2のセットアップ画面が起
動するので、「Next >」ボタンをクリックします。

注1 http://www.postgresql.jp/download
注2 PostgreSQLのインストールにはOSの管理者権限が必要になるため、インストーラをダブルクリッ

クするのではなく必ず「管理者として実行」で実施するようにしてください。このとき、管理者のパ
スワードを求められた場合は、設定したパスワードを入力してください。

http://www.postgresql.jp/download

325

図A.2 インストールの開始

3. インストールディレクトリを選択する画面が表示されます（図A.3）。デ
フォルトでは「C:¥Program Files¥PostgreSQL¥9.3」が表示されています
が、「Program Files」フォルダはユーザアカウントによってはアクセス
できない可能性があるため、「C:¥PostgreSQL¥9.3」を選択して「Next >」
ボタンをクリックします。なお、インストール時にディレクトリは自
動的に作成されるため、前もって作成しておく必要はありません。

図A.3 インストールディレクトリの選択

326

Appendix A PostgreSQLの インストールと起動　

4. データを保存するディレクトリを選択する画面が表示されます（図A.4）。
「C:¥PostgreSQL¥9.3¥data」が表示されるので、特に変更する必要がなけ
れば、そのまま「Next >」ボタンをクリックします。

図A.4 データを保存するディレクトリの選択

5. データベース管理者ユーザのパスワードを設定する画面が表示されま
す（図A.5）。パスワードを入力して「Next >」ボタンをクリックします。
このパスワードは手順10でPostgreSQLにログインする際に使用する
ので、忘れないようにしてください。

図A.5 データベース管理者ユーザのパスワードを設定

327

6. PostgreSQLのポート番号を設定する画面が表示されます（図A.6）。特
に変更する必要がなければそのまま「Next >」ボタンをクリックします。
通常はこのままで問題ありません。

図A.6 ポート番号の設定

7. PostgreSQLのロケールを設定する画面が表示されます（図A.7）。
「Japanese, Japan」を選択して「Next >」ボタンをクリックします。

図A.7 ロケールの設定

328

Appendix A PostgreSQLの インストールと起動　

8. インストール開始画面が表示されます（図A.8）。そのまま「Next >」ボ
タンをクリックします。

図A.8 インストールの開始

9. インストールが開始されます（図A.9）。

図A.9 インストールの実行中

329

10. 終了画面が表示されます（図A.10）。「Launch Stack Builder at exit?」の
チェックを外して「Finish」ボタンをクリックします。「Launch Stack

Builder」はさまざまな付属ツールをインストールするための機能です
が、PostgreSQLそのものを利用するだけならば特に必要ありません。
これでインストールは完了しました。

図A.10 インストールの完了

11. セキュリティを高めるために、PostgreSQLの設定ファイルの書き換え
を行います。次のファイルをメモ帳などのテキストエディタで開いて
いください。

 C:¥PostgreSQL¥9.3¥data¥postgresql.conf

 　このファイルを「listen_addresses」というキーワードで検索してくだ
さい。このキーワードは、インストールした直後はlisten_addresses

= '*'と設定されています。これは、すべてのリモートホストからの
接続を受け付けるという意味ですが、学習用環境としてはローカルマ
シンからのみ接続できれば十分のため、この行の先頭に#をつけてコ

メントアウトし、新たに次のような行を追加します。

listen_addresses = 'localhost'

 　これで、ローカルマシンからのみPostgreSQLに接続可能な設定にな

330

Appendix A PostgreSQLの インストールと起動　

りました。この設定を有効にするためには、一度PostgreSQLを再起動
する必要があります。「スタート」ボタンから「コントロールパネル」→
「管理ツール」→「サービス」を選択します。表示されるウィンドウから、
「postgresql-9.3」という行を探し、マウスで右クリックしてください（図
A.11）。表示されるメニューの中から、「開始」または「再起動」を選択
してください注3。これでPostgreSQLに先ほどの「listen_addresses」の変
更が反映されます。

図A.11 「サービス」からPostgreSQLを再起動

 　このとき、間違えて「postgresql-9.3」以外のサービスを停止してしま
うとOSが正しく動作しなくなる危険があるため、絶対にほかのサー
ビスは操作しないでください。

注3 すでにPostgreSQLが開始状態にあるときは、「開始」はグレーアウトされて選択できなくなってい
ます。逆に、PostgreSQLが停止状態のときは、「再起動」がグレーアウトされて選択できなくなっ
ています。

331

12. 「スタート」ボタンの「すべてのプログラム」→「PostgreSQL 9.3」→「SQL

Shell (psql)」を選択します。コマンドプロンプトに「ユーザpostgresの

パスワード：」が表示されるまで©を押して、手順5で設定した
パスワードを入力し、©を押します。すると、コマンドプロンプ
トに「postgres=#」と表示され、PostgreSQLへの接続が完了します

（図A.12）。
 　この状態になれば、SQL文を実行できます。

図A.12 psqlからPostgreSQLへ接続

333

演習問題の解答

Appendix B

334

Appendix B 演習問題の解答　

演習問題1の解答

　不特定多数のユーザから要求されるデータのキャッシュヒット率を上げよう
とする場合、どのようなデータをキャッシュしておくのが最適か。この問題を
機械的に解くための基本的なアルゴリズムは、LRU（Least Recently Used）です。
これは「参照される頻度が最も少ないものをキャッシュから追い出す」というア
ルゴリズムです。こうすると、逆に頻繁に参照されるデータが長くキャッシュ
にとどめられるため、全体としてのキャッシュヒット率が上昇します。
　実装による細かい違いについては、マニュアルなど信頼できるドキュメ
ントを参照してください。OracleとMySQL（InnoDB）はオンラインでも情
報が得られます。

・Oracle Database概要 11gリリース2(11.2)「データベース・バッファ・キャ
ッシュ」
http://docs.oracle.com/cd/E16338_01/server.112/b56306/memory.
htm#i10221

・MySQL 5.7 Reference Manual「8.9.1 The InnoDB Buffer Pool」
http://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html

演習問題2の解答

　リストB.1のようなSQL文で実現できます。

リストB.1 男女別の年齢ランキング（飛び番あり）を降順に出力するSELECT文
SELECT name,

 sex,

 age,

 RANK() OVER(PARTITION BY sex ORDER BY age DESC) rnk_desc

　FROM Address;

 実行結果

 name | sex | age | rnk_desc

-------+-------+-----+----------

井上 | 女 | 55 | 1

佐藤 | 女 | 25 | 2

前田 | 女 | 21 | 3

松本 | 女 | 20 | 4

佐々木 | 女 | 19 | 5

森 | 男 | 45 | 1

鈴木 | 男 | 32 | 2

林 | 男 | 32 | 2

小川 | 男 | 30 | 4

http://docs.oracle.com/cd/E16338_01/server.112/b56306/memory
http://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html

335

演習問題3の解答

　UNIONとINの同値性はそのまま保たれますが、CASE式の結果が両者
と異なります。
　key列が「7」の行が追加されたあとでも、CASE式の結果は図B.1のとお
り、それまでと変化がありません。

図B.1 CASE式の結果
　 key | name | date_1 | flg_1 | date_2 | flg_2 | date_3 | flg_3

----------+------+------------+-------+------------+-------+------------+-------

 1 | a | 2013-11-01 | T | | | |

 2 | b | | | 2013-11-01 | T | |

 5 | e | | | | | 2013-11-01 | T

　一方、UNIONとINのクエリは、次のようにkey列が「7」の行も結果に含
める形に変化します（図B.2）。

図B.2 UNIONとINの結果
　 key | name | date_1 | flg_1 | date_2 | flg_2 | date_3 | flg_3

----------+------+------------+-------+------------+-------+------------+-------

 1 | a | 2013-11-01 | T | | | |

 2 | b | | | 2013-11-01 | T | |

 5 | e | | | | | 2013-11-01 | T

 7 | g | 2013-11-01 | F | | | 2013-11-01 | T

　この違いが生じる理由は、CASE式のWHEN句が左から右への短絡評価
を行うためです。短絡評価では、最初に条件がTRUEになる分岐を見つけ
たらそこで評価を打ち切って、残りの分岐の評価は省略されます。したが
って、key列が「7」の行に対して、CASE式は最初のWHEN句 date_1 =

'2013-11-01'を評価した際にflg_1の値として「F」を返してしまい、その行
は'T' = 'F'がFALSEと評価されて、結果から除外されます。もう当該の
行に対して、次のWHEN句であるdate_2 = '2013-11-01'やdate_3 =

'2013-11-01'が評価されることはないので、date_3の評価時にTRUEにな

る可能性がないのです。
　UNIONとINは、(date_n, flg_n)のペアのどこかでFALSEになったと

しても一応最後まで全部調べるため、こういうことが起きません。実は、
UNIONと無条件に同値なのは、CASE式ではなくINを使ったクエリのほ
うだったのです。

336

Appendix B 演習問題の解答　

演習問題4の解答

　実行環境（ハードウェア、DBMSのバージョンやパラメータ）によって実
行計画も変動する可能性がありますが、たとえば筆者の環境では図B.3、図
B.4のような結果となりました。おそらくみなさんの実行環境でもほぼ似
たような結果になるでしょう。

図B.3 PostgreSQL 9.1での実行計画

 HashAggregate (cost=1.16..1.27 rows=9 width=6)

　 -> Seq Scan on persons (cost=0.00..1.11 rows=9 width=6)

図B.4 Oracle 11gでの実行計画
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 9 | 54 | 3 (34)| 00:00:01 |

| 1 | HASH GROUP BY | | 9 | 54 | 3 (34)| 00:00:01 |

| 2 | TABLE ACCESS FULL| PERSONS | 9 | 54 | 2 (0)| 00:00:01 |

--

　PostgreSQLとOracleについては、本文で見た実行計画から変化はありま
せん。どちらもGROUP BYの演算をハッシュで実行しています。
　SQL Serverでは、実行計画3行目のSort(ORDER BY:([Expr1003] ASC))

から、GROUP BYの処理においてソートが利用されていることが確認でき
ます（図B.5）。

図B.5 SQL Server 2008での実行計画

　|--Compute Scalar(DEFINE:([Expr1004]=CONVERT_IMPLICIT(int,[Expr1007],0)))

 |--Stream Aggregate(GROUP BY:([Expr1003]) DEFINE:([Expr1007]=Count(*)))

 |--Sort(ORDER BY:([Expr1003] ASC))

 |--Compute Scalar(DEFINE:([Expr1003]=substring([master].[dbo].[Persons].[name],(1),(1))))

 |--Clustered Index Scan(OBJECT:([master].[dbo].[Persons].[PK__Persons__72E12F1A4AD81681]))

　MySQLの実行計画は図B.6のようになります。

337

図B.6 MySQL 5.6での実行計画
+----+-------------+---------+------+---------------+------+---------+------+------+---------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+---------+------+---------------+------+---------+------+------+---------------------------------+

| 1 | SIMPLE | Persons | ALL | NULL | NULL | NULL | NULL | 9 | Using temporary; Using filesort |

+----+-------------+---------+------+---------------+------+---------+------+------+---------------------------------+

　ポイントは「Extra」列における「Using temporary; Using filesort」です。こ
れはワーキングメモリ内でソート処理を完結させられないため、一時領域
（ストレージ）にファイルを作ってソートを行う、という意味です。このと
こから、MySQLでは、GROUP BYと集約関数の操作ではハッシュではな
くソートが使われていることがわかります。
　DB2でもやはりソートが実行されていることがわかります（図B.7）。

図B.7 DB2 9.7での実行計画

　以上のことから、OracleとPostgreSQLではGROUP BYの演算にハッシ
ュが使われ、それ以外のDBMSではソートが使われていることがわかりま
した。こうしたアルゴリズムはDBMSのバージョンが上がっていくことで
も変化があるため（Oracleでは9iまではGROUP BYにソートを使っていま
した）、常に自分の使っているDBMSの進化には目を配っておきましょう。

RETURN(1) 0.05

GRPBY(3) 0.05

TBSCAN(5) 0.05

SORT(7) 0.04

IXSCAN(9) 0.03

SQL131123195543010

PERSONS

338

Appendix B 演習問題の解答　

演習問題5の解答

　「直前の1行」をスカラサブクエリで表現すれば、ウィンドウ関数で作っ
ているvar列を同じように作れます（リストB.2）。

リストB.2 相関サブクエリを使った解
INSERT INTO Sales2
SELECT company,
 year,
 sale,
 CASE SIGN(sale - (SELECT sale 直近の年の売り上げを選択

 FROM Sales SL2
 WHERE SL1.company = SL2.company
 AND SL2.year =
 (SELECT MAX(year) 直近の年を選択

 FROM Sales SL3
 WHERE SL1.company = SL3.company
 AND SL1.year > SL3.year)))
 WHEN 0 THEN '='
 WHEN 1 THEN '+'
 WHEN -1 THEN '-'
 ELSE NULL END AS var
　FROM Sales SL1;

　実行計画は図B.8のようになります。

図B.8 相関サブクエリによる解の実行計画（Oracle）
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		12	108	2 (0)	00:00:01
1	SORT AGGREGATE		1	9		
2	TABLE ACCESS BY INDEX ROWID	SALES	1	9	1 (0)	00:00:01
* 3	INDEX UNIQUE SCAN	PK_SALES	1		0 (0)	00:00:01
4	SORT AGGREGATE		1	6		
5	FIRST ROW		1	6	1 (0)	00:00:01
* 6	INDEX RANGE SCAN (MIN/MAX)	PK_SALES	1	6	1 (0)	00:00:01
7	TABLE ACCESS FULL	SALES	12	108	2 (0)	00:00:01
--

　相関サブクエリではSL1.company = SL2.company（およびSL1.company =
SL3.company）という条件によって「同じ会社ならば」という条件を表現しま
す。こちらは、典型的なSQLの集合指向の考え方です。相関サブクエリの

339

中で非等値結合を使うことによってカレントレコードを起点とした集合を
作るのは、ウィンドウ関数が導入される前のSQLでは定石の技術でした。
　今、相関サブクエリの中では、同じ会社で、カレント行の年より前で直
近の年MAX(year)をSL3テーブルから選択しています。この年における売
り上げが、すなわちカレント行に対する「直近の年の売り上げ」になります。
その条件の中心となるのが、SL1.year > SL3.yearという不等式です。カ
レントレコードはSL1.yearのほうですから、「それより小さい（＝昔の）年」
という意味になります。
　SL1.yearと、SL1.year > SL3.yearの条件に合致するレコード集合の対
応をマッピングすると図B.9のようになります（太字の年は、集合の中の最
大値を示します）。

図B.9 レコード集合の対応をマッピング

　このように、「ある値を基準にそれより小さい値の集合」を集合論で「下
界」（lower bound）と呼びます。基準値となる年が進むに従って、S1はS0を

含み、S2はS1を含み……という風に下界の要素数が1つずつ増え、どんど
ん入れ子状に集合が大きくなっていく様子が見てとれます。その見方をす
ると、この相関サブクエリが作る下界は再帰的集合でもあります。S0～S3

には次のような包含関係が成立します。

・S0⊂S1⊂S2⊂S3

　この包含関係を図示すると、図B.10のような同心円的な再帰集合が描け
ます。

2002

2002
2003

2002
2003
2004

　SL1.year

 S0:2002 Φ（空集合）

 S1:2003

 S2:2004

 S3:2007

SL1.year > SL3.yearの条件に
該当するレコード集合

340

Appendix B 演習問題の解答　

図B.10 非等値結合は同心円的な入れ子集合を作る

　パフォーマンスの観点から見ると、相関サブクエリはどうしてもテーブ
ルを複数回スキャンする必要があるうえ、結合が発生することになり、ウ
ィンドウ関数に比べるとパフォーマンスが悪くなります。また、結合を使
うため実行計画の安定性が低くなること、ウィンドウ関数のコードに比べ
てコードが複雑で可読性が悪いことも欠点です。
　総じて言えば、ウィンドウ関数を使える環境において今さら相関サブク
エリを使うメリットはありません。

演習問題6の解答

　EXISTS述語の場合、筆者の実行環境ではPostgreSQLとOracleでは

図B.11、図B.12のような実行計画になりました。

図B.11 EXISTS述語の実行計画（PostgreSQL）

 Hash Semi Join (cost=1.14..2.22 rows=3 width=10)

　 Hash Cond: (d.dept_id = e.dept_id)

　 -> Seq Scan on departments d (cost=0.00..1.04 rows=4 width=10)

　 -> Hash (cost=1.06..1.06 rows=6 width=3)

 -> Seq Scan on employees e (cost=0.00..1.06 rows=6 width=3)

図B.12 EXISTS述語の実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 3 | 36 | 3 (0)| 00:00:01 |

| 1 | NESTED LOOPS SEMI | | 3 | 36 | 3 (0)| 00:00:01 |

S3

S2

S1

S0

341

| 2 | TABLE ACCESS FULL| DEPARTMENTS | 4 | 40 | 3 (0)| 00:00:01 |

|* 3 | INDEX RANGE SCAN | IDX_DEPT_ID | 4 | 8 | 0 (0)| 00:00:01 |

--

　PostgreSQLではHash、OracleではNested Loopsが選ばれていますが、
その違いはここでは特に重要ではありません。注目すべきは両方に現れて
いる「Semi」というキーワードです。「Semi-Join」は日本語では「準結合」ま
たは「半結合」と呼ばれています。これは通常の結合の際には現れない、
EXISTS述語（とIN述語）を使ったときに特有のアルゴリズムです。
　このアルゴリズムの特徴は、次の2つです。

・機能的には、結果には駆動表となるテーブルのデータしか含まれず、しかも1
行につき必ず1行しか結果が生成されない（通常の結合の場合、1対Nの結合
の場合は行数が増えることがある）

・内部表にマッチする行を1行でも発見した時点で残りの行の検索を打ち切れる
ため、通常の結合よりもパフォーマンスが良い

　パフォーマンス上の利点をもう少し詳しく説明すると、たとえば
Employeesテーブルには、開発（dept_id=12）の行は、「米田」「 本」「岩瀬」
の3行がありますが、このうちの最初の行を見つけた時点で検索を打ち切
れるため、残り2行もすべて見つけなければならない通常の結合に比べて、
ループ回数が少なくなるわけです。
　このため、EXISTS述語が利用できる場合においては、通常の結合では
なくEXISTS述語で書き換えるというのは、パフォーマンス改善の常套手
段の一つです。
　一方、NOT EXISTS述語の場合は、図B.13、図B.14のような実行計画
となります。

図B.13 NOT EXISTS述語の実行計画（PostgreSQL）

 Hash Anti Join (cost=1.14..2.20 rows=1 width=10)

　 Hash Cond: (d.dept_id = e.dept_id)

　 -> Seq Scan on departments d (cost=0.00..1.04 rows=4 width=10)

　 -> Hash (cost=1.06..1.06 rows=6 width=3)

 -> Seq Scan on employees e (cost=0.00..1.06 rows=6 width=3)

342

Appendix B 演習問題の解答　

図B.14 NOT EXISTS述語の実行計画（Oracle）
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 12 | 3 (0)| 00:00:01 |

| 1 | NESTED LOOPS ANTI | | 1 | 12 | 3 (0)| 00:00:01 |

| 2 | TABLE ACCESS FULL| DEPARTMENTS | 4 | 40 | 3 (0)| 00:00:01 |

|* 3 | INDEX RANGE SCAN | IDX_DEPT_ID | 4 | 8 | 0 (0)| 00:00:01 |

--

　PostgreSQLではHash、OracleではNested Loopsが使われていますが、
やはりそこは重要なポイントではありません。今回実行計画に現れたのは、
「Anti」というキーワードです。「Anti-Join」は日本語では「反結合」と呼ばれ
ます。これもまた、通常の結合の際には現れない、NOT EXISTS述語（ま
たはNOT IN述語）を使ったときに特有のアルゴリズムです。
　反結合の動作は、半結合とよく似ています。内部表についてマッチする
最初の行を見つけた時点で検索を打ち切れる点は同じなのですが、今度は
反対に、その行については駆動表の行を結果から除外する、という点だけ
が違います。これはEXISTS述語とNOT EXISTS述語が機能的に反対のこ
とをやろうしているので、当然のことです。反結合も通常の結合に比べて
ループ回数を減らすことができるため、性能的には優れています。
　なお、EXISTS述語とIN述語に関しては結果は同値で、実行計画も同じ
ものになる可能性が高いのですが、NOT EXISTS述語とNOT IN述語は、
結果も同値ではないうえ実行計画も必ずしも同じものにはなりません。興
味ある方は、NOT IN述語の実行計画も調べてみてください（おそらく、
NOT EXISTS述語のほうがよりパフォーマンスが良いものになるでしょ
う）。NOT EXISTS述語とNOT IN述語が同値にならない問題について詳
細を知りたい方は、拙著『達人に学ぶSQL徹底指南書』1-3を参照してくだ
さい。

演習問題7の解答
　結合を集約より優先する理由として考えられるものの一つは、たとえば結
合によって結果行数を大きく減らせる可能性がある場合です。それによって、
集約対象となる行数が減り、全体コストが下がることが期待できます。
　もう一つの理由としては、効率的なアクセスができる条件やインデック

343

スが存在する場合です。たとえば、演習の実行計画ではpk_Companiesと

いう主キーのインデックスを使ったNested Loopsを使うのが効率的だとオ
プティマイザは判断しているわけです。同様に、パーティションを利用で
きる場合もビューマージが選択される要因となりえます。
　なお、Oracle限定の話になりますが、この2つのタイプの実行計画を
MERGE／NO_MERGEというヒント句によって制御できます。MERGEが

ビューマージを強制し、NO_MERGEがビューを分離します。Oracleで

NO_MERGEを使うと、図B.15のようにビューの中で集約が優先的に実行
されることになります。

図B.15 NO_MERGEヒント句によるビューを分離した実行計画
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 7 | 182 | 8 (25)| 00:00:01 |

|* 1 | HASH JOIN | | 7 | 182 | 8 (25)| 00:00:01 |

| 2 | TABLE ACCESS FULL | COMPANIES | 4 | 32 | 3 (0)| 00:00:01 |

| 3 | VIEW | | 7 | 126 | 4 (25)| 00:00:01 |

| 4 | HASH GROUP BY | | 7 | 147 | 4 (25)| 00:00:01 |

|* 5 | TABLE ACCESS FULL| SHOPS | 7 | 147 | 3 (0)| 00:00:01 |

--

　もちろん、この実行計画の取り替えができるのは、クエリ同士が同値な
場合に限ることは、言うまでもありません。

演習問題8の解答
　ソートキーを体重（weight）列のみとすると、hiと loを算出する際に、同
じ体重の生徒が常に同じ順序でソートされる保証がないからです。
　これは、リストB.3のような昇順と降順それぞれでソートしたROW_

NUMBERの結果を見るとよくわかります。

リストB.3 昇順と降順それぞれでソートしたROW_NUMBERの結果
SELECT student_id,

 weight,

 ROW_NUMBER() OVER (ORDER BY weight ASC) AS hi,

 ROW_NUMBER() OVER (ORDER BY weight DESC) AS lo

　FROM Weights;

344

Appendix B 演習問題の解答　

　今、私の環境で実行すると図B.16のようになります。

図B.16 リストの実行結果（環境によって異なる）
student_id| weight| hi| lo

----------+----------+----------+-----------

B346 | 80 | 6| 1

A100 | 70 | 5| 2

C563 | 70 | 4| 3

B343 | 60 | 2| 4

A124 | 60 | 1| 5

C345 | 60 | 3| 6

　このとき、「hi IN (lo, lo +1 , lo -1)」の条件に引っかかるのは「C563

（70kg）」だけです。そのため、クエリの結果としても70kgという間違った
計算結果が返ってしまいます。あるいは、ほかの環境では、結果が空にな
って1行も返らない可能性もあります。
　このような不都合な現象が起きる理由は、weight列の値が同じだった場
合、どのような順序でソートされるかは保証されていないので、データの
物理的な格納順序によって変わってしまうからです。つまり、これは再現
性のある計算になっていないのです。

演習問題9の解答

　回答はリストB.4のとおりです。

リストB.4 NOT NULL制約の列も更新可能なUPDATE文
UPDATE ScoreRowsNN

　 SET score = (SELECT COALESCE(CASE ScoreRowsNN.subject

 WHEN '英語' THEN score_en

 WHEN '国語' THEN score_nl

 WHEN '数学' THEN score_mt

 ELSE NULL

 END, 0)

 FROM ScoreCols

 WHERE student_id = ScoreRowsNN.student_id);

　ポイントはサブクエリの中で使用しているCOALESCE関数です。これ
によってNULLを0に変換しています。なお、このCOALESCE関数の位置
は、リストB.5のようにサブクエリの外側に配置しても同じです。実行計
画にも変化は起きません。

345

リストB.5 NOT NULL制約の列も更新可能なUPDATE文：その2
UPDATE ScoreRowsNN

　 SET score = COALESCE((SELECT CASE ScoreRowsNN.subject

 WHEN '英語' THEN score_en

 WHEN '国語' THEN score_nl

 WHEN '数学' THEN score_mt

 ELSE NULL

 END

 FROM ScoreCols

 WHERE student_id = ScoreRowsNN.student_id), 0);

演習問題10の解答

　データマートを作る手段は、大きく次の2つがあります。

❶Table to Tableの更新

❷マテリアライズドビュー（Materialized View：MV）

　❶のTable to Tableの更新は、たとえばオリジナルのテーブルからSELECT

した結果をINSERTしたり、あるいはUPDATEするというシンプルな方法
です。❷のMVは、これをDBMS側の機能である程度自動化した方法です。
　❶と❷を比較する観点としては、MVのサポート有無、差分更新の柔軟
性、更新タイミング、チューニングポテンシャルの4つがあります。
　MVは、Oracle、DB2、PostgreSQLがサポートしています注1。

・CREATE MATERIALIZED VIEW - Oracle Database SQL言語リファレンス
11gリリース2 (11.2)
http://docs.oracle.com/cd/E1633801/server.112/b56299/statements6002.
htm

・DB2 UDBにおけるマテリアライズ照会表の使用による照会の高速化 -
developerWorks
http://www.ibm.com/developerworks/jp/data/library/dataserver/
techdoc/materialquery.html

・38.3. マテリアライズドビュー - PostgreSQL 9.3.2文書
http://www.postgresql.jp/document/9.3/html/rules-materializedviews.
html

　差分更新に関しては、❶はSQLコーディングで制御できるレベルまで行

注1 DB2ではマテリアライズドクエリテーブル（Materialized Query Table：MQT）と呼びます。

http://docs.oracle.com/cd/E1633801/server.112/b56299/statements6002
http://www.ibm.com/developerworks/jp/data/library/dataserver/
http://www.postgresql.jp/document/9.3/html/rules-materializedviews

346

Appendix B 演習問題の解答　

えますが、❷はDBMSによってMVの差分更新のレベルは異なります。
　更新タイミングについては、オンコミットかオンバッチかを選ぶことに
なりますが、基本的に❶も❷もオンコミットは更新負荷が高いためまず使
いません。したがって、この観点では差異は出ません。
　チューニングポテンシャルに関しては、❷はDBMS任せでチューニング
手段はほとんどありません注2。一方、❶はSQLコーディングで制御できる
レベルとなるため、チューニングポテンシャルでは❶のほうが上になるで
しょう。

注2 せいぜいパラレルにするか、MVの削除をDELETEにするかTRUNCATEにするかをオプションで
選択できる程度です。

347

索引

記号

< ..43

<= ...43

<> ...43

= ..43

> ..43

>= ...43

A

Abraham Harold Maslow260

ALLオプション ..63

AND ..45

Anti-Join ..178, 342

A-Rows ...28

ASC ..56

A-Time..28

AVG関数 ...51, 102

B

Batched Key Access Join177

Batching Nested Loops177

BI/DWH ...186

B-tree ...31, 298-299

B+tree ...299

C

CACHEオプション253

CASCADE DELETE126

CASCADE UPDATE126

CASE式60, 138, 213, 264, 335

catalog manager21

Christopher J. Date298

COALESCE関数272, 344

Codd ..125

COUNT関数.............................. 51, 102, 226

Covering Index315

CREATE INDEX文298

cross join ...165

CSV ..103

D

Database Management System2

Date ...298

DB2 ..2

DBMS ..2

　～のアーキテクチャ3

DBMS_XPLAN.DISPLAY_CURSOR28

DELETE文 ...71

DENSE_RANK関数68

DESC ...56

driving table ..178

DROP TABLE文72

E

E.F.Codd ..125

enable_hashjoin194

enable_mergejoin194

enable_nestloop194

E-Rows ...28

ERP ..310

E.S.Raymond ...292

Excel ..40

EXCEPT ..64

EXISTS述語 178, 197, 341

EXPLAIN ALL WITH SNAPSHOT
FOR SQL文 ...25

EXPLAIN EXTENDED SQL文25

EXPLAIN SQL文25

F

Frederick P. Brooks, Jr.292

FROM句 ...42

G

Garbage In, Garbage Out....................23

GROUP BY句 19, 50, 113

H

Hash .. 33, 184, 193

索引

348

HASH（Microsoft SQL Server）194

HASH GROUP BY108, 245

HashAggregate108, 245

HAVING句 ..54, 234

HDD ..7

I

IDENTITY列 ...255

IN ... 47, 96, 335

INDEX FAST FULL SCAN316, 320

INDEX RANGE SCAN182, 269

Index Scan ..31

INDEX UNIQUE SCAN 31, 181, 269

INNER JOIN ...169

inner join ..170

inner table ..178

InnoDB...334

INSERT文 ..69

INTERSECT ..64

IN述語 ...341

IS NOT NULL ..50

IS NULL述語 48, 50, 307

J

Java ..18

JIT ..23

join ..164

Just In Time ...23

JVM ..18

K

KISSの原則 ..200

L

Launch Stack Builder329

LEADING ..194

Least Recently Used334

LIKE述語 ..306

Linux ...37

listen_addresses329

LOOP ..194

lower bound ..339

LRU..334

M

Materialized Query Table345

Materialized View345

MAX関数51, 102, 245, 263,
 269, 284-285

Merge ...187

MERGE（Microsoft SQL Server）194

Merge Join ..187

MERGE JOIN CARTESIAN190

Merge Sort ..187

MERGE文 ..260, 272

Microsoft SQL Server2
MINUS ...64

MIN関数 51, 102, 245

MQT ..345

multirow insert70

MV ...345

MySQL ...2

N

Name ..27

natural join ...166

Nested Loop 33-34

Nested Loops 33, 178, 193

NESTED LOOPS34

　～の落とし穴 ...183

Nicholas Gregory Mankiw2

NOORDERオプション253

NOT EXISTS述語 178, 197, 342

NOT IN述語 ..342

NULL ..42, 48

O

OLTP処理 ..186

Operation ..27

optimizer...21

OR ..46, 95

Oracle ...2

ORDER BY句16, 55

O/Rマッパ ..126

OS ..19

Out of Memory18

349

索引

outer join ..172

outer table ..178

OVER句 ..66, 238

P

parser ..21

PARTITION BY句66

　～を使ったカット...................................119

PGA ...17, 109

pg_hint_plan..194

pgsql_tmp ...18

plan evaluation22

postgres=# ..331

PostgreSQL ..2

postgresql.conf329

PRECEDING ...140

Q

query...4

R

R. Bayer ..299

RANGEオプション68

RANK関数 ...67

Raymond ...292

RDB ...2

Recursive Union153

Relational Database2

row expression ..96

ROW_NUMBER228

ROW_NUMBER関数67, 207, 213, 226

Rows ..29

ROWS BETWEENオプション140

ROWSオプション68

S

SELECT句で条件分岐82

SELECT文 ..4, 40

self join ..174

Semi-Join ..178, 341

Seq Scan ..27

set autotrace traceonly25

SET SHOWPLAN_TEXT ON25

SET句 ..73

SIGN関数 ...139, 279

SORT GROUP BY108

Sort Merge 33, 187, 193

SQL ..2, 68

SQL-92 ...269

SSD ..8

Structured Query Language..............68

SUM関数 51, 102, 213

Sybase IQ ..318

T

TABLE ACCESS BY INDEX ROWID31

TABLE ACCESS FULL27

TEMPDB ..18

tempdb ..201

TEMP落ち 18, 109, 186, 188, 201, 210

TEMP表領域 ...18

Time ..28

U

UNION ...62, 335

　～を使った条件分岐78

　～を使ったほうがパフォーマンスが
　　良いケース ..92

　～を使わなければ解けないケース91

UNION ALL ...63

UPDATE文 ..72

USE_HASH ...194

USE_MERGE ..194

USE_NL ...194

Using temporary; Using filesort337

USING句 ..166

W

WHEN句 ..61

WHERE句30, 42-43

　～のさまざまな条件指定........................43

Windows ..37

work_mem ...109

Workspace Memory109

350

あ行

アーキテクチャ ...2

アンチパターン ...105

一意性 ..252

一次記憶装置 ...6

一時表領域..18

入れ子集合モデル155

入れ子ループ33, 164

インストールディレクトリ325

インタフェース ..3

インデックス21, 298

　～が使えない検索条件306

インデックスオンリースキャン148, 314

インデックススキャン 30-31

インデント ...34

インメモリデータベース8

ウィンドウ関数 16, 65, 138, 207, 213,
 226, 228-229, 231, 279

うっかりクロス結合169

永続性 ..7

演算子 ..43

オートナンバー列255

オプティマイザ2, 21

か行

外部結合 ..172

外部設計 .. 309-310

外部表 ..178

カタログマネージャ 20-21

カット ...113

　PARTITION BY句を使った～119

ガツン系 ..130

カーディナリティ......................................301

カバリングインデックス..........................315

カラム指向データベース317

伽藍とバザール ..292

完全外部結合 ...173

管理者として実行324

記憶装置 ..2

揮発性 ..12

逆キーインデックス255

キャッシュ ..9

行間比較 ..211

行式96, 228, 268, 269

共通表式 ..152

行持ち ..265

極値関数 ..245

空欄 ..42

クエリ ...4

クエリ評価エンジン4, 20

駆動表 ...34, 178-179

クラスタリングファクタ301

ぐるぐる系 ...126

クロス結合 ..165

　意図せぬ～ ...188

　意図せぬ～を回避するには191

　うっかり～ ..169

経路列挙モデル ..155

下界 ..339

結合 ..164

結合条件 ..192

降順 ..56

更新 ..72

構文解析 ..21

後方一致 ..306

コストベース ...137

固定長 ..103

コネクションプール131

コマンドプロンプト331

さ行

再帰共通表式 ...152

再帰クエリ...150

最適化 ..15

採番テーブル ..256

索引列 ..307

削除 ..71

差集合 ..64

サービス ..330

サブクエリ 49, 58, 200-201, 264

　～を使ったほうがパフォーマンスが
　　良くなるケース215

サマリテーブル ...311

三角結合 ..189

三次記憶装置 ...6

351

索引

式 ..60, 98

シーケンシャルスキャン27

シーケンス...27

シーケンスオブジェクト250

自己結合 ..174

自然結合 ..166

自然数列 ..224

実行計画 ..4

　～の確認方法 ...25

　～のフォーマット34

実行プラン ..4

集計用の関数..51

集合演算 ..16, 62

集合指向 ..102

集約 ..102

集約関数 ..66, 102

主キー ..26

準結合 ..341

順序関数 ..67

順序性 ..252

条件分岐 ..60

　SELECT句で～82

　UNIONを使った～78

　集計における～84

　集約の結果に対する～87

昇順 ..56

冗長性症候群 ...82

ジョブネット ..23

シングルクォート70

スカラサブクエリ 172, 264, 269

スカラ値...90, 96

ストレージ ...7

スーパーソルジャー病286

スプレッドシート..40

スワップ ...17

正規化 ..164

積集合 ..64

選択率 ..302

相関サブクエリ141, 172, 206, 226,
 228, 230, 232, 262, 266, 278

挿入 ..69

ソート ...16

ソートバッファ ..17

ソフトパース ..132

た行

多重ループ ..164

断絶区間 ..239

短絡評価 ..145, 335

中央値 ..232

中間一致 ..306

チューニング ...15

直積 ..168

ディスク ...4

ディスク容量マネージャ4

デカルト積 ..168

データキャッシュ11

データベース ...3

データベース管理システム2

データマート ...311

データモデル ..292

データを保存するディレクトリ326

テーブル ... 16, 40, 200

テーブルフルスキャン26, 29

統計情報 ..21, 198

等値結合 ..181

特性関数 ..234

トランザクション ..5

トランザクションマネージャ4

トレードオフ2, 7, 12, 14

な行

内部結合 ..170

内部表 ..178

ナンバリング225, 229

二次記憶装置 ...6

人月の神話 ..292

は行

バイアス ... 158-159

パーサ ..21

パース ...21

外れ値 ..233

パスワード ...326

バックアップ ..5

ハッシュ ...16, 108

352

ハッシュインデックス300

ハッシュ関数 ...184

ハッシュ結合16, 184

ハッシュ値 ...184

ハッシュテーブル184

バッチ処理...15

バッファ ..4, 9

バッファマネージャ4

パーティション27, 67

ハードコーディング59

ハードパース ...132

パフォーマンス ...2

バルクINSERT ..135

半結合 ..178, 341

反結合 ..178, 342

左外部結合..173

ビッグデータ ...103

ビットマップインデックス300

否定形 ..308

非同期コミット ...13

ヒープサイズ ...18

ビュー ... 49, 57, 200

ビューマージ201, 222

表 ..40

表側 ..86

表頭 ..86

ヒント句 ...35, 194

付加列インデックス.................................319

プライマリキー ...26

フラットファイル103

プラン評価 ..22

文 ..60, 98

閉包性 ..49

ベン図 ..44

ポインタチェイン152

ホットスポット ..254

ホットブロック ..254

ポート番号 ..327

ホールケーキ ..50

ま行

マテリアライズドクエリテーブル345

マテリアライズドビュー345

マート ...311

右外部結合..173

ミドルウェア ...2

メジアン ...232

メモリ ...2, 8

モジュール...4

モデル変更 ..286, 291

ら行

ランキング ...144

リカバリマネージャ5

リーフ ...299

リレーショナルモデル2

リレーション ...40

隣接リストモデル151, 155

ルート ...299

ループ ...124

ルールベース...137

列持ち ..265

レンジスキャン ..320

連続性 ..252

連番 ..229

ログバッファ ..11

ロケール ..327

ロー指向データベース317

ロック ...5

ロックマネージャ ...4

わ行

ワーキングメモリ16, 186

ワークバッファ ..17

和集合 ..46, 62

353

著者プロフィール

ミック
SI企業に勤務するデータベースエンジニア。大規模データベース
システムの構築やパフォーマンス設計およびチューニングを専門
としている。著書に『おうちで学べるデータベースのきほん』、『達
人に学ぶ SQL徹底指南書』、訳書にJoe Celko著『プログラマのた
めのSQL 第4版』（いずれも翔泳社）など。

●カバー・本文デザイン

西岡 裕二

●レイアウト

酒徳 葉子（技術評論社制作業務部）

●本文図版

スタジオ・キャロット

●編集アシスタント

大野 耕平（WEB+DB PRESS編集部）

●編集

池田 大樹（WEB+DB PRESS編集部）

W
ウェブディービー

EB+DB P
プレス

RESS p
プラス

lusシリーズ

S
エス

Q
キュー

L
エル

実
じっ

践
せん

入
にゅう

門
もん

̶̶高
こう

速
そく

でわかりやすいクエリの書
か

き方
かた

2015年	 5	月	15	日	 初　版	 第1刷発行
2019年	 9	月	 6	日	 初　版	 第4刷発行

著　者	 ミック

発行者	 片岡 巌

発行所	 株式会社技術評論社
	 東京都新宿区市谷左内町21-13
	 電話　03-3513-6150　販売促進部
	 　　　03-3513-6175　雑誌編集部

印刷／製本	 港北出版印刷株式会社

定価はカバーに表示してあります。

本書の一部または全部を著作権法の定める範囲を超え、無断で複写、
複製、転載、あるいはファイルに落とすことを禁じます。

ⓒ2015	 ミック

造本には細心の注意を払っておりますが、万一、乱丁（ページの乱
れ）や落丁（ページの抜け）がございましたら、小社販売促進部ま
でお送りください。送料小社負担にてお取り替えいたします。

ISBN 978-4-7741-7301-6 C3055
Printed in Japan

本書に関するご質問は記載内容についての
みとさせていただきます。本書の内容以外の
ご質問には一切応じられませんので、あらか
じめご了承ください。
なお、お電話でのご質問は受け付けており
ませんので、書面または弊社Webサイトの
お問い合わせフォームをご利用ください。

〒162-0846
東京都新宿区市谷左内町21-13
株式会社技術評論社
『SQL実践入門』係

 URL https://gihyo.jp/
	 （技術評論社Webサイト）

ご質問の際に記載いただいた個人情報は回
答以外の目的に使用することはありません。
使用後は速やかに個人情報を廃棄します。

http://gihyo.jp/

	表紙
	はじめに
	謝辞
	サンプルコードのダウンロード
	本書の構成
	目次
	第1章 DBMSのアーキテクチャ──この世にただ飯はあるか
	1.1 DBMSのアーキテクチャ概要
	クエリ評価エンジン
	バッファマネージャ
	ディスク容量マネージャ
	トランザクションマネージャとロックマネージャ
	リカバリマネージャ

	1.2 DBMSとバッファ
	この世にただ飯はあるか
	DBMSと記憶装置の関係
	HDD
	メモリ
	バッファの活用による速度向上

	メモリ上の2つのバッファ
	データキャッシュ
	ログバッファ

	メモリの性質がもたらすトレードオフ
	揮発性とは
	揮発性の問題点

	システムの特性によるトレードオフ
	データキャッシュとログバッファのサイズ
	検索と更新、大事なのはどっち

	もう一つのメモリ領域「ワーキングメモリ」
	いつ使われるか
	不足すると何が起きるのか

	1.3 DBMSと実行計画
	権限委譲の功罪
	データへのアクセス方法はどう決まるのか
	パーサ（parser）
	オプティマイザ（optimizer）
	カタログマネージャ（catalog manager）
	プラン評価（plan evaluation）

	オプティマイザとうまく付き合う
	適切な実行計画が作成されるようにするには

	1.4 実行計画がSQL文のパフォーマンスを決める
	実行計画の確認方法
	テーブルフルスキャンの実行計画
	操作対象のオブジェクト
	オブジェクトに対する操作の種類
	Column 実行計画の「実行コスト」と「実行時間」
	操作の対象となるレコード数

	インデックススキャンの実行計画
	操作の対象となるレコード数
	操作対象のオブジェクトと操作

	簡単なテーブル結合の実行計画
	オブジェクトに対する操作の種類

	1.5 実行計画の重要性
	第1章のまとめ
	演習問題1
	Column いろいろなキャッシュ

	第2章 SQLの基礎──母国語を話すがごとく
	2.1 SELECT文
	SELECT句とFROM句
	WHERE句
	WHERE句のさまざまな条件指定
	WHERE句は巨大なベン図
	INでOR条件を簡略化する
	NULL──何もないとはどういうことか
	Column SELECT文は手続き型言語の関数

	GROUP BY句
	グループ分けするメリット
	ホールケーキを全部1人で食べたい人は？

	HAVING句
	ORDER BY句
	ビューとサブクエリ
	ビューの作り方
	無名のビュー
	サブクエリを使った便利な条件指定

	2.2 条件分岐、集合演算、ウィンドウ関数、更新
	SQLと条件分岐
	CASE式の構文
	CASE式の動作

	SQLで集合演算
	UNIONで和集合を求める
	INTERSECTで積集合を求める
	EXCEPTで差集合を求める

	ウィンドウ関数
	トランザクションと更新
	INSERTでデータを挿入する
	DELETEでデータを削除する
	UPDATEでデータを更新する

	第2章のまとめ
	演習問題2

	第3章 SQLにおける条件分岐──文から式へ
	3.1 UNIONを使った冗長な表現
	UNIONによる条件分岐の簡単なサンプル
	UNIONを使うと実行計画が冗長になる
	UNIONを安易に使うべからず

	WHERE句で条件分岐させるのは素人
	SELECT句で条件分岐させると実行計画もすっきり

	3.2 集計における条件分岐
	集計対象に対する条件分岐
	UNIONによる解
	UNIONの実行計画
	集計における条件分岐もやはりCASE式
	CASE式の実行計画

	集約の結果に対する条件分岐
	UNIONで条件分岐させるのは簡単だが……
	UNIONの実行計画
	CASE式による条件分岐
	CASE式による条件分岐の実行計画

	3.3 それでもUNIONが必要なのです
	UNIONを使わなければ解けないケース
	UNIONを使ったほうがパフォーマンスが良いケース
	UNIONによる解
	ORを使った解
	INを使った解

	3.4 手続き型と宣言型
	文ベースと式ベース
	宣言型の世界へ跳躍しよう

	第3章のまとめ
	演習問題3

	第4章 集約とカット──集合の世界
	4.1 集約
	複数行を1行にまとめる
	CASE式とGROUP BYの応用
	集約・ハッシュ・ソート

	合わせ技1本

	4.2 カット
	あなたは肥り過ぎ？ 痩せ過ぎ？──カットとパーティション
	パーティション
	BMIによるカット

	PARTITION BY句を使ったカット

	第4章のまとめ
	演習問題4

	第5章 ループ──手続き型の呪縛
	5.1 ループ依存症
	Q.「先生、なぜSQLにはループがないのですか？」
	A.「ループなんてないほうがいいな、と思ったからです」
	それでもループは回っている

	5.2 ぐるぐる系の恐怖
	ぐるぐる系の欠点
	SQL実行のオーバーヘッド
	並列分散がやりにくい
	データベースの進化による恩恵を受けられない

	ぐるぐる系を速くする方法はあるか
	ぐるぐる系をガツン系に書き換える
	個々のSQLを速くする
	処理を多重化する

	ぐるぐる系の利点
	実行計画が安定する
	処理時間の見積り精度が（相対的には）高い
	トランザクション制御が容易

	5.3 SQLではループをどう表現するか
	ポイントはCASE式とウィンドウ関数
	Column 相関サブクエリによる対象レコードの制限

	ループ回数の上限が決まっている場合
	近似する郵便番号を求める
	ランキングの問題に読み替え可能
	ウィンドウ関数でスキャン回数を減らす
	Column インデックスオンリースキャン

	ループ回数が不定の場合
	隣接リストモデルと再帰クエリ
	入れ子集合モデル

	5.4 バイアスの功罪
	第5章のまとめ
	演習問題5

	第6章 結合──結合を制する者はSQLを制す
	6.1 機能から見た結合の種類
	クロス結合──すべての結合の母体
	Column 自然結合の構文
	クロス結合の動作
	クロス結合が実務で使われない理由
	うっかりクロス結合

	内部結合──何の「内部」なのか
	内部結合の動作
	内部結合と同値の相関サブクエリ

	外部結合──何の「外部」なのか
	外部結合の動作

	外部結合と内部結合の違い
	自己結合──自己とは誰のことか
	自己結合の動作
	自己結合の考え方

	6.2 結合のアルゴリズムとパフォーマンス
	Nested Loops
	Nested Loopsの動作
	駆動表の重要性
	Nested Loopsの落とし穴

	Hash
	Hashの動作
	Hashの特徴
	Hashが有効なケース

	Sort Merge
	Sort Mergeの動作
	Sort Mergeの特徴
	Sort Mergeが有効なケース

	意図せぬクロス結合
	Nested Loopsが選択される場合
	クロス結合が選択される場合
	意図せぬクロス結合を回避するには

	6.3 結合が遅いなと感じたら
	ケース別の最適な結合アルゴリズム
	そもそも実行計画の制御は可能なのか？
	DBMSごとの実行計画制御の状況
	実行計画をユーザが制御することによるリスク

	揺れるよ揺れる、実行計画は揺れるよ

	第6章のまとめ
	演習問題6

	第7章 サブクエリ──困難は分割するべきか
	7.1 サブクエリが引き起こす弊害
	サブクエリの問題点
	サブクエリの計算コストが上乗せされる
	データのI/Oコストがかかる
	最適化を受けられない

	サブクエリ・パラノイア
	サブクエリを使った場合
	相関サブクエリは解にならない
	ウィンドウ関数で結合をなくせ！

	長期的な視野でのリスクマネジメント
	アルゴリズムの変動リスク
	環境起因の遅延リスク

	サブクエリ・パラノイア──応用版
	サブクエリ・パラノイア再び
	行間比較でも結合は必要ない

	困難は分割するな

	7.2 サブクエリの積極的意味
	結合と集約の順序
	2つの解
	結合の対象行数

	第7章のまとめ
	演習問題7

	第8章 SQLにおける順序──甦る手続き型
	8.1 行に対するナンバリング
	主キーが1列の場合
	ウィンドウ関数を利用する
	相関サブクエリを利用する

	主キーが複数列から構成される場合
	ウィンドウ関数を利用する
	相関サブクエリを利用する

	グループごとに連番を振る場合
	ウィンドウ関数を利用する
	相関サブクエリを利用する

	ナンバリングによる更新
	ウィンドウ関数を利用する
	相関サブクエリを利用する

	8.2 行に対するナンバリングの応用
	中央値を求める
	集合指向的な解
	手続き型の解①──世界の中心を目指せ
	手続き型の解②──2マイナス1は1

	ナンバリングによりテーブルを分割する
	断絶区間を求める
	集合指向的な解──集合の境界線
	手続き型の解──「1行あと」との比較

	テーブルに存在するシーケンスを求める
	集合指向的な解──再び、集合の境界線
	手続き型の解──再び、「1行あと」との比較

	8.3 シーケンスオブジェクト・IDENTITY列・採番テーブル
	シーケンスオブジェクト
	シーケンスオブジェクトの問題点
	シーケンスオブジェクトそのものに起因する性能問題
	シーケンスオブジェクトそのものに起因する性能問題への対策
	連番をキーに使うことに起因する性能問題
	連番をキーに使うことに起因する性能問題への対策

	IDENTITY列
	採番テーブル

	第8章のまとめ
	演習問題8

	第9章 更新とデータモデル──盲目のスーパーソルジャー
	9.1 更新は効率的に
	NULLの埋め立てを行う
	逆にNULLを作成する

	9.2 行から列への更新
	1列ずつ更新する
	行式で複数列更新する
	NOT NULL制約がついている場合
	UPDATE文を利用する
	MERGE文を利用する

	9.3 列から行への更新
	9.4 同じテーブルの異なる行からの更新
	相関サブクエリを利用する
	ウィンドウ関数を利用する
	INSERTとUPDATEはどちらが良いのか

	9.5 更新のもたらすトレードオフ
	SQLで解く方法
	SQLに頼らずに解く方法

	9.6 モデル変更の注意点
	更新コストが高まる
	更新までのタイムラグが発生する
	モデル変更のコストが発生する

	9.7 スーパーソルジャー病：類題
	再び、SQLで解くなら
	再び、モデル変更で解くなら
	初級者よりも中級者がご用心

	9.8 データモデルを制す者はシステムを制す
	第9章のまとめ
	演習問題9

	第10章 インデックスを使いこなす──秀才の弱点
	10.1 インデックスと言えばB-tree
	万能型のB-tree
	その他のインデックス

	10.2 インデックスを有効活用するには
	カーディナリティと選択率
	Column クラスタリングファクタ

	インデックスの利用が有効かを判断するには

	10.3 インデックスによる性能向上が難しいケース
	絞り込み条件が存在しない
	ほとんどレコードを絞り込めない
	入力パラメータによって選択率が変動する①
	入力パラメータによって選択率が変動する②

	インデックスが使えない検索条件
	中間一致、後方一致のLIKE述語
	索引列で演算を行っている
	IS NULL述語を使っている
	否定形を用いている

	10.4 インデックスが使用できない場合どう対処するか
	外部設計による対処──深くて暗い川を渡れ
	UI設計による対処

	外部設計による対処の注意点
	データマートによる対処
	データマートを採用するときの注意点
	データ鮮度
	データマートのサイズ
	データマートの数
	バッチウィンドウ

	インデックスオンリースキャンによる対処
	Column インデックスオンリースキャンとカラム指向データベース

	インデックスオンリースキャンを採用するときの注意点
	DBMSによっては使えないこともある
	1つのインデックスに含められる列数には限度がある
	更新のオーバーヘッドを増やす
	定期的なインデックスのリビルドが必要
	SQL文に新たな列が追加されたら使えない

	第10章のまとめ
	演習問題10

	Appendix A PostgreSQLのインストールと起動
	Appendix B 演習問題の解答
	索引
	著者プロフィール
	奥付
	電子版奥付

