
ヽ

プログラミングが変わる書き方/考え方
xSQL Puzzles and Answers 2nd Edition*

暗]=ンヨ~ロ セルコ
[訳]=ミック

版

`驚

「

Ｊ

″⊃」
_ ヽヽ
| ‐ ‐‐ lL
‐■1 1機

♂響‐‐
一　
　
鏡
一

Ｆ
朦
購一一．̈

「

』

_I―

●

　

一

|:' |:

`

.■m.=

|_■Ⅲ II

.1翻 ||

ヽ

プログラミングが変わる書き方/考え方
SQL Puzzles and Ansvvers 2nd Edition*

苦]=ンヨ…・セルコ
訳]=ミック

|●■、■|■ |■■

|||・
=1.111‐ ||.

●
●

〓
］
４
■
●

●

●
　
一
ｒ
●
■

●
■

□
□
ロ

ロ

□麗

麗陽1

□
Ｎ
晨
臨

==■

・ .|||.|.|.

ヽ

ノ
[著]=ンヨ~・ セルコ
[訳]=ミック

プ繭グラミングが甕わ鶴書鬱節/奪亀節
'十・
S(き な Pり zノ lo8 8,η

`A tt syFe F 3綾

oび ξ荼tt;On蒸 *｀

|| ll ll l ll ll || | |

翔泳社eCOProjedの ご案内

株式会社翔泳社では地球にやさしい本づくりを目指します。

制作工程において以下の基準を定め、このうち4項目以上を満たしたものをエコロジー製品と位置づけ、
シンボルマークをつけています。 /JheCt

装丁用紙 無塩素漂白パルプ使用紙 あるいは再生

循環資源を利用した紙

有毒な有機塩素化合物発生の軽減 (無塩素漂白パルプ)

資源の再生循環促進 (再生循環資源紙)
○

本文用紙 材料の一部に無塩素漂白パルプあるい

は古紙を利用

有毒な有機塩素化合物発生の軽減 (無塩素漂白パルプ)

ごみ減量・資源の有効活用 (再生紙)
○

製版 CTP(フ ィルムを介さずデータから直
接プレートを作製する方法)

枯渇資源 (原油)の保護、産業廃棄物排出量の減少

印刷インキ
*
大豆インキ (大豆油を20%以上含んだ
インキ)

枯渇資源 (原油)の保護、生産可能な農業資源の有効利用
○

製本メルト 難細裂化ホットメルト 細裂化しないために再生紙生産時に不純物としての回収が容易 ○

装丁加工 植物性樹脂フィルムを使用した加工 あ

るいはフィルム無使用加工

枯渇資源 (原油)の保護、生産可能な農業資源の有効利用

沐:パール、メタリック、蛍光インキを除く

本書内容に関するお問い合わせについて

※本書に記載されたURL等 は予告なく変更される場合があります。
※本書の出版にあたっては正確な記述につとめましたが、著者や出版社などのいずれも、本書の内容に対してなんらかの保証をするものではなく、

内容やサンプルに基づくいかなる運用結果に関してもいっさいの責任を負いません。

※本書に掲載されているサンプルプログラムやスクリプト、および実行結果などは、特定の設定に基づいた環境にて再現される一例です。

※本書に記載されている会社名、製品名はそれぞれ各社の商標および登録商標です。

JOE CELKO'SSQ.L PtJZZLES AND ANSヽ VERS
by JOC CClkO

ISBN-10:0-12-373596-3 1SBN-13:978-0-12‐ 373596-6

Copyright◎ 2007 by ElscⅥ cr lnc.All nghts rcscn cd

This cdit■ on ofIOE CELKO'S SQL PUZZLES AND ANSWERS by Joc Cclko is publishcd by arrangcmcnt、 nth EIscvicr,Inc of200ヽ Vhcclcr Road,

6th Floor,Burlington,MA01803,USA through Thc English Agcncy(Japan)Ltd

本書に関するご質問、正誤表については、下記のWebサ イトをご参照ください。
正誤表 http:〃www.seshOpcOmル 。Ok/c"aw

出版物Q&A hip:〃 www.seshOpcOm/book/q″

インターネットをご利用でない場合は、FAXま たは郵便で、下記にお問い合わせください。
〒160-0006 東京都新宿区舟町 5

(株)翔泳社 編集部読者サポート係
FAX招争号 :03-5362-3818

電話でのご質問は、お受けしておりません。

|

まえがき

1990年代中ごろのことだが、私は『Databasc Programming&Dcsign』 誌と、その後

に『DBMS』 誌でコラムを連載していた。そのとき、読者を惹きつけるテクニックとして

使っていたのが、コラムの最後にSQLのパズルを載せることだった。lo年後、2つの雑

誌は統合されて、『Intcmgcnt Entcrprisc』 誌になった。そして、私のSQLパズルは少し

小さな媒体に移され、やがて姿を消した。最近では紙媒体よりも、むしろインターネッ

ト上 鮎ww.dbazinc.cOmな ど)に少しずつパズルを載せている。

もう何年もの間、大学生の間ではあらゆる種類の手続き型言語
― 昔
はCや Pascal、

今ならアavaや C++― を使うプログラミングのコンテストが行われている。それにひ
きかえ、DBプログラマには、私の小さなパズル本を除いて腕試しの機会はあまりない。

私のパズルが、学生たちの宿題に使われているのもよく見かけた。教師たちにしても、

私の本はSQLの練習問題が得られる唯一の情報源だったのである。宿題のネタ元が私

だと全く知らない怠惰な学生から、「宿題を解いてくれ」という電子メールを受け取った

こともあった。

その懐かしき時代には、SQLの デファクトスタンダードはSQL-86で、SQL-92は DB
ベンダにとってまだ設計目標だった。今日ではほとんどのベンダが、SQL-92の大半の

機能を自社のRDBMS製品に取り入れている。設計目標は今やSQL-99の OLAP機能に

なった。

10年前、大学生がRDBMSの コースを専攻しSQLプ ログラマになるには、いくらか専

門的な知識を要求された。RDBMS製品は高価で、最高のものはメインフレーム上で動
いていたからだ。

今日、学士課程でRDBMSの理論を教えている大学はない。SQLはかつてほど新奇な

言語ではなくなり、安上がりなオープンソースのRDBMSも 普及した。特定の製品につ

いての助言を得られるニュースグループもインターネット上多く存在している。

一方で、悪いニュースもある。SQLプログラマの質が以前より落ちてしまったのだ。

RDBMSの基礎知識を持たずSQLの訓練を受けたこともない彼らに、普段使用している
プログラミング言語の中にSQL文 を書くよう求めていることが原因である。

本書で集めたパズルには、初版に入っていたオリジナルの問題も含まれている。だか

ら、初版を読んでくれた読者も、お気に入りの問題を見つけられるだろう。だが、そう

した既存の問題にも、いくつか新しい解法を追加している。新しい解法には古い構文の

l lll l ll l ll l l |! l ll

まえがき

解もあれば、新機能を使った解もある。初版刊行以後の長い歳月の間に、さまざまな人

がオリジナルの解法の多くを“料理"してくれた。ここで言う“料理"と は、問題を出し

た人間の解よりも優れた解を与えることを指す、パズラー用語である。初版は50問 だ

ったが、この版では75問収録した。

初版を書いたとき、私は作成順や難易度ではなくカテゴリ別でパズルを分類しようと

した。だが、それは無益なことだと悟って、この版ではカテゴリ別の分類をあきらめた。

あるパズルがDDL(テ ータ定義言語)を変更することでも、クエリを変更することでも

解けるとして、それをDDLのパズルとDML(データ操作言語)のパズルのどちらに分

類すればよいというのだろう
'

各パズルに関係する人々はクレジットするように努めたが、もし見落とした人がいた

らここでお詫びする。

謝辞、間違いの修正および将来の版について

間違いの指摘や、新しいトリックやテクニック、および本書の将来の版に活かせる情

報は大歓迎である。出版社のモーガン・カウフマン (Morgan Kaufmann)を 通じて、皆

さんの考えを送ってはしい。

以下の人々に感謝したい。モーガン・カウフマン社のダイアン・セーラ、『DBMS』 誌

のデヴィッド・カルマン、『Databasc Programming&Dcsign』 誌のデヴイッド・ストッ

ダー、ミラー・フリーマン社のフイル・チャプニック、『BOxcs&Arrows』 のフランク・

スウィート、www.dbazinc.cOmのダナ・ファーヴァー。

私のパズルをたくさん“料理"してくれたスミス・バーニー社のリチャード・レムレー、

何年にもわたって電子メールを送ってくれたCompuScⅣcと SQLニ ユースグループのす

べての人々、および今日ニュースグループに投稿している人々には、特に厚 く感謝した

い (ニ ュースグループで皆さんが使っているハンドル名を載せたので、ご自分の投稿が

見つかるかもしれない)。 全員ではないが、何人かを以下に挙げる。レイモンド・アンジ

ュー、ディーター・ネース、アレクサンダー・クズネッォーフ、アンドレイ・オデゴフ、

スティーブ・カシュ、テイボー・カラスチ、デヴイッド・ポータス、フーゴ・コーネリ

アス、アーロン・バートランド、イッィク・ベンーガン、トム・モロー、サージ・リーラ

ウ、エーランド・ソマルスコク、ミキト・ハラキリ、アダム・マカニック、ダニエル・

A・ モルガン。

iッ

訳者まえがき

本書は、米国データベース界の重鎮の1人であるジョー・セルコが著した有名なパズ

ルブックである。恐らく世界で最も広く読まれているSQL問題集の1冊 と言ってよいだ

ろうが、初版の邦訳が出版されたのが1997年だから、日本ではほぼ10年ぶり、久々の

復活ということになる。初版の刊行以来、SQLと データベースの機能も目覚しい拡張を

遂げ、SQL:1999と SQL:2003と いう2度の標準SQLの改訂も行われた。本書にも、

OLAP関 数や共通表式に代表されるこれら新機能を積極的に取り入れた解法が多く追

加されている。

本書の第1の魅力は、何と言っても具体的なケーススタディを通じて、実践的なSQL

のテクニックを知り、その考え方を身に付けられることだろう。行列変換や結果のフォ

ーマッティング、複雑な条件を用いる集約や結合、集合演算の応用など、本書に収めら

れた事例は実に多彩で、そのほとんどが、世界中のDBエ ンジニアたちが日々の業務で

直面した問題をWcbに投稿したり、セルコのところへ持ち込んで助言を求めたものばか

りである。そして、それに対するセルコら熟練したエンジニアたちから寄せられた解決

策も一
よくもまあ、これだけいろいろ考えつくもの、と少し呆れてしまうぐらい一

多彩で創造的だ。そう、本書の第2の魅力は、SQLと いう言語の非常に豊かな可能性を

発見できることである。きっと、皆さんも本書を読み進めるうちに「そんな考え方があ

るのか……」とか「そんなことがSQLでできるのか……」というつぶやきを、何度とな

く口にすることになるはずだ。それはまた、訳者自身が持った感想でもある。「燈くよう

なアイデアの宝庫」とはこのような本を指して呼ぶに違いない、と読み返すたびに思っ

たものだった。

ところで、冒頭でこの本は問題集であると述べたが、これには2つの合意がある。1つ

は「対になる教科書の存在」だ。これに相当するのが、セルコのもう1冊のベストセラー

『プログラマのためのSQL第 2版』(ピアソン・エデュケーション刊,2001)で ある。本書

とも扱っている問題が一部重複しているうえ、本書がとにかくたくさんの問題と解答を

詰め込もうとして、ややもすると解説不足に陥る傾向があるのに対し、非常に詳細かつ

網羅的な解説を得ることができる。併読すると読者の理解を助けてくれるに違いない。

もう1つの意味は、「この本は決して『クックブック』ではない」ということだ。パズル

という親しみやすい形式をとっているので勘違いしやすいのだが、この本をクックブッ

クだと思って読むと頭がクラクラするだけで終わってしまうだろう。確かに、非常に豊

ツ

訳者まえがき

富な実例を含む本だから、自分が今まさに直面していることと類似の問題を見つけられ

ることもあるだろうし、コードをコピーすることで急場をしのげることもあるだろう。

それはそれでこの本の効用の1つ と言える。しかし、そうした目的のためにはもっと適

した書籍が多くあるし、本書をそれだけのために使うのは、いかにももったいない。

本書は、その内容を理解するために一定の努力を読者に強いてくるため、多くの読者

にとって、寝転んでスラスラ読み進められるタイプの本ではないと思う。何度も立ち止

まり、実際に手を動かしてコードを書き、結果を確認し、自分でSQL文をカスタマイズ

して、また実行してようやく1つ納得する一 そう
いう地道なプロセスの繰り返しを抜

きにして、本書を理解することは難しい (こ れは一部には、極めて多くのことを凝縮し

たロジックで実現するSQLの性質にもよるのだが)。 少し格好をつけて言えば、本書は

「読者の代わりに考えるのではなく、読者を自ら考えるように仕向ける」本だということ

だ。名著とは、きっと多かれ少なかれそういう性質を備えているものだろう。

これとよく似た意味において、本書は「パズルのためのパズル」でもない。中には「パ

ズル66:数独パズル」や「パズル75:も う1軒行こう」のように、純然たるパズルから

問題を借りてきているものもあるが、それらはいわば一種の“つかみ"の ようなもので、

読者をそうしたパズルの達人にすることが目的というわけではない。セルコの狙いは、

あくまで読者にSQLと いう言語の本質を理解してもらうことにある。

少し話が長くなったが、ともあれ、本書が大変に面白く、かつ有用であることは疑い

を入れない。本書がより多くのDBエ ンジエアの方に読まれ、セルコの知見が日本のデ
ータベース界にも浸透していくことを訳者も切に願っている。そのことに幾ばくかの貢

献ができたのなら、訳者としてこれに勝る喜びはない。

2007年 9月 9日

訳者

ッ i

巡徳i醗 COnlentS

まえがき

訳者まえがき 。・……………

本書の読み方と注意事項

パズリレイ

パズル2

パズル3

パズル4

パズル5

パズル6

パズル7

パズル8

パズル 9

パズル■0

パ|ズルイ4

パズル■2

パズルイ3

パズル■4

パズル■5

パズル■6

パズルイ7

パズル■8

パズル■9

パズル20

パズル2■

パズル22

会計年度テーブル ー 範囲外
の日付を入力しないための制約 ・………………・1

欠勤 ― 条
件付きの∪PDATE/DELETE ・̈ …………………………………・……4

忙しい麻酔医 ― 重複
する期間の抽出 (その」) 10

入館証 一
∪PDATEで相関サブクエリを使用する……… 18

アルフアベットー
あいまい検索と正規表現検索 ・……………… …̈…・……・21

ホテルの予約 一
重複する期間の抽出 (その2)………………………………23

フアイルのパージョン管理 ―
順序を入れ子集合で表す 。̈ …̈……………26

プリンタの割り当て 一 値
の範囲に応じた結果を返す …・…………………・33

席空いてますかつ一 テ
ーブルサイズを最小限に抑える ・…………・………38

年金おくれよ一
連続と直近を表現する ・……………………… …̈ ・̈……… 41

作業依頼 ―
HAVING句の力 (その1)・………………̈ ¨̈ …̈………………・・45

訴訟の進行状態 ― 最
大値の集合からその最小値を取り出す 。・…・………49

2人かそれ以上か、それが問題だ

一 CASE式の中に集約関数を組み込む (その1)・……………
………・………53

電話とFAX― 外部結合の上手な使いこなし ・̈ …………………………………57

現在の給料と昇給前の給料 ― 極値関数 (MAX/MIN)の
一般化…・…… 6̈1

主任とアシスタントー 参照
整合性制約の正しい設定 ……………………70

人材紹介会社 ― 関係除算
と標準形 ・……̈ ………………… …̈……・……… 76

ダイレクトメール ー 行同士
を比較してDELETEする ・…… …̈………… 81

セールスマンの売上ランキングー
上位3位を取り出す…………………・・83

テス ト結果 ―
HAVING句の力 (その2)・………………………………・……87

飛行機と飛行士 ―
関係除算の使い方/考え方 ・……………………・………89

・・・………93大家の悩み ― 複雑
な外部結合 (その1)・…¨

ッ li

ConIe-nfs

パズル23

パズル24

パズル25

パズル26

パズル27

パズル28

パズル29

パズル30

パズリレ3■

バズル32

パズル33

パズル34

パズル35

パズル36

パズル37

パズル38

パズル39

パズル40

パズル 4■

パズル42

パズル43

パズル44

パズル45

パズル46

パズル47

パズル48

パズル49

パズル50

パズル5■

パズル52

パズル53

パズル54

雑誌と売店 ― 手続
き型から宣言型へ考え方を切り換える (その1)・……・

10個のうち 1つだけ
― 擬似配列

の扱い方 ………………………………・

マイルス トーン
ー 行
と列を入れ替える…………………………………………

DFD― 存在しない組み合わせを見つける ・…………・…………̈ ………………

等しい集合を見つける
一
集合の相等性チェック ・・………………………

正弦関数を作る一 内挿法を行う ・……̈ ……………………………………

最頻値を求める一
HA∨ING句の力 (その3)・・………………………………

買い物の平均サイクル
ー 過去

の直近の日付を求める ・…・……………¨

すべての製品を購入した顧客
― 関
係除算の応用・…¨̈ …………………

税金の計算 ― 木構造/階層構造を扱う………………………………………

機械の平均使用コス トー 複雑な条件での集約計算 (平均値)・
…………

コンサルタントの請求書 ― 複雑
な条件での集約計算 (期間データ)¨ ¨̈

在庫調整 ― 再帰集合で累計を求める
。・………………………………………・

1人 2役
―
CASE式の中に集約関数を組み込む (その2) ・̈ ……………・

移動平均 ― 行同
士を比較するSELECT文 …………………………………¨

記録の更新 ― 行同士を比較して∪PDATEす る 。…………………………

保険損失― 列持ちから行持ち
へ・……・

順列― 自己結合で順列を作る
…………

予算 ― 複雑な外部結合 (その
2)・ …… …̈……………………………………174

魚のサンプリング調査 ― 存在しないデ
ータの集計 ・………………・……・178

卒業 一
CASE式の高度な応用 ・……… …̈……………¨̈ …̈………・̈ ¨̈ 182

商品のペア ー 順列から組み合わせに変換する
。…・……………………・…・185

ペパロニピザ
ー 期間別合計を求める

・………………………………………̈ ・̈189

販売促進 ― 期間内での最大値
…………………………………………・………192

座席のブロックー
CHECK制約の中でサブクエリを使う …………・……196

非グループ化 ― GRO∪ P BYの 逆演算
・… …̈………………………………198

部品の数 ― デ
ータを等分割する 。……………………… …̈………………・・207

3分の2-GRO∪ P BYの 効果とありがたみ …………… …̈………・……210

予算と実支出の比較 ― 集約
と外部結合の合わせ技 ・・……………………215

部署の平均人数 -2段 階の集約… …̈…………………………… …̈・……219

テーブルを列ことに折りたたむ ― 自己結合と
CASE式 (その1)・……223

隠れた重複行 ― 自己結合
とCASE式 (その2)・…… …̈…………・… 2̈26

。95

104

108

113

116

123

125

128

131

135

140

144

148

152

157

160

・・…・・163

・。・̈・168

ッ lli

パズル55

パズル56

パズル57

パズル58

パズル59

パズル6o

パズル6イ

パズル62

パズル63

パズル64

パズル65

パズル66

パズル67

パズル68

パズル69

パズル70
パズル 7■

パズル72

パズル73

パズル74

パズル75

Confents

競走馬の入賞回数 ― 外部結合
で行と列を変換 ・・……228

ホテルの部屋番号 一 連番
を入れていくUPDATE文 ・̈……………………231

欠番探しバージョン1-集 合指向言語で数列を扱う(その1)・………235

欠番探しバージョン2-集 合指向言語で数列を扱う (その2)・ …̈…238

期間を結合する一
重複する期間をまとめる…… …̈………………・………242

バーコー ドー 手続
き型から宣言型へ考え方を切り換える (その2)・…… 245

文字列をソートする一
ループを使わないでソート

レポートの整形― 結果
を列数固定で表示する。・…

…・250

・・・252

・・・・・・・・・…・264

・・・・・・・・・・・・268

・・・・・………・270

274

286

14dex(索引)

連続的なグルーピングー 結合
条件でサブクエリを実行する。……・………261

ボックスー 多次元
の重複範囲を見つける

製品の対象年齢の範囲 ―
範囲の合算と網羅性チェック

数独パズルー
2次元配列を扱う ・……………………………

安定な結婚 ―
手続き型言語と宣言型言語の違いを知る

バスを待ちながら一 時間
データの扱い方 (その1)・ ¨

後入れ先出しと先入れ先出し一 部分和問題
の解き方 ………………・…・289

株価の動向 ― 相
関サブクエリで行同士を比較する 。…・……………………298

計算 一 自
己結合でクエリの見通しをよくする ・……̈ ……………………・…303

サービスマンの予約管理 一 時間
データの扱い方 (その2)・……・……… 306

データのクリーニングー
COALESCE関数で擬似配列を扱う・……・……311

導出テーブルを減らせ ― 複数
の外部結合を効果的に使う ・̈ ・̈……・̈ 313

もう1軒行こう一 座標と距離を扱う
。………… …̈……………… …̈……317

・・・320

:χ

本書の読み方と注意事項

0本書を読むにあたっては、sQLの基本的な文法や機能について一通り理解しているこ
とが望ましい。また、ケーススタディの体裁をとっており、どこから読み始めてかま

わないoただし、クツクブックではないので、解答のロジックを理解できるまでじっ

くり考えながら読むことが重要。別解を考えてみるのも効果的である。

・ 翻訳に際し、各パズルのサブタイトル (解答で使用されているテクニックゃ技術的テ

ーマなどを表示)と 、テーブル名や列名の日本語訳を付け加えた。

・ 本書のSQL文は、基本的に標準SQL(SQL-89/92/99)に のっとって記述されている。
ただし、RDBMS(リ レーショナルデータベース管理システム)に よっては動作 しない

SQL文や、書き換えが必要なSQL文がある点は、あらかじめご了承いただきたい。
●RDBMSに より動作 しない可能性のある構文の例を、以下に挙げておく。例えば、
Oraclcで はテーブルの相関名を定義するのに「AS」 キーワードを使用できない (削除す

る)。 いくつかのRDBMSでは、1文で複数行を挿入するINSERT文 がエラーになる (1
文につきl行挿入に直す)。 また、テーブル列のデータ型も変更が必要な場合がある。

【動作しない可能性のある構文の例】

ロテーブル列のデータ型 □共通表式 □OLAP関数
□EXCEPT/1NTERSECT演 算子 □l文で複数行を挿入するINSERT文
□INTERVAL定数の書式 ロテーブルの相関名を定義する「AS」 キーワード

なお、SQL文中にあるコロンを付けた識別子 (:uscr_ld)は パラメータを意味する。

・ 本書に掲載されているSQL文のテキス トデータは、下記の翔泳社Wcbサ イトからダ
ウンロードできる。また、訳者が運営する下記のWcbサ イトで、各パズルのサンプル

データを作成するCREATE TABLE文およびINSERT文 を提供するとともに、より詳
細なSQL文の解説や別解の紹介を行っている。本書の学習にお役立ていただきたい。

翔泳社「サンプルデータダウンロード」

http://WWW.SCShop.com/book/dOWnload/

訳者「SQLパズル第2版のサポートベージ」

http://WWW.gcochcs.jP/mickndcx/databasc/db_supportsqlpuzzlc.html

X

イ

瘍
さっそくだが、「できる限り完ぺきなCREATE TABLE文 」の作成にチャレンジしてみ

よう。ここで行うちょっとした訓練は、SQLの記述力を高める上で大切なものだ。とい

うのも、SQLは宣言的言語なので、物事をコードではなくデータベース定義によって規

定する技術を学ぶ必要があるからだ。

訓練に使うテーブルは、次のような形をしている。

CREATE TABLE F■ scalYearTablel

(f■ scal_year INTEGER,
st art_date DATE,

end_date DATE),

FiscalYearTablel :会計年度テーブリレ

start date:年度開始日

fiscal_year :会計・年度

end date:年度終了日

このFisc」 YcarTablclテ ーブルは、各会計年度がいつから始まりいつで終わるのか、そ

の日付の範囲を格納する。任意の日付を条件にこのテーブルヘ問い合わせれば、その日

がどの会計年度に属するのかが分かるわけだ。ここでは、米国政府の会計年度 (10月 1

日～9月 30日)を例に使うことにしよう
[訳注1]。 ある日付の会計年度を求めるサブクエリ

は、次のように書ける。

(SELECT fl.f■ scal_year
FROM F■ scalYearTablel AS Fl
WHEREく任意の日付データ>BETWEEN Fl.start_date AND Fl.end_date)

さて、皆さんにはこのテーブルに対し、正しい情報だけを持つように制約をもれなく

設定してもらいたい。

RDBMSに よって使用できる日付/時間関数は異なるが、ここではSQL-92規格で定

義されている時間計算と、EXTRACT([YEARI MONTH I DAY]FROMく データ式>)

関数だけを使えるものとしよう。EXTRACT関数は、第2引数に指定した日付データを

もとに、第1引数で指定したフィールド(年・月・日のいずれか)の値を整数で返してく

れる。

訳注 1:米 国の会計年度は、終了月の年が適用される。ここでは9月 30日 時点の年が使われる

■

バ |ズ |ル |

SOLパズル

あなたは完べきなテーブル定義にどこまで近づけるだろうか。

ヽ11′ ノ

9←
a l.何 はなくとも、まず全列にNOT NULL制約を付けよう。NULLを 許可するしか

るべ き理由はないのだから。

2.た いていのSQLプログラマは、すぐに主キーを設定することを考える。ここでは、
主キーを伍scal_ycar,startdatc,cnd_datc)と 定義しようと思ったかもしれない。

けれども会計年度というのは、実質的に会計年度期間 (start_datc,cnd_datc)に 付

けられた“別名"なので、主キーはnscal_ycarだ けで足 りる。また、どの列につい

ても重複する年月日があっては困るので、uNIQUE(smtdatc)、 UNIQUE(cnd_

datc)の各制約を設定するのもよい。

3.あ まりに当たり前すぎて、ほとんどの人が設定を忘れてしまうのが、CHECK(start

_datcく cnd_datc)、 またはCHECK(startdatcく =cnd_datc)と いう制約である。こ

れも正解だ。

4.しかし、制約はこれでもまだ不十分だ。例えば、次のようなエラーは防げない。

その■

(1995,

(1996,

(1997,

(1998,

11994-10-011,

11995-10-011,

11996-10-011,
11997-10-011,

←・エラー !(年度終了日が8月)

そこで、年度開始日と年度終了日がどの年度も10月 1日 (年次は1年前)と 9月

30日 になるよう、start_datc列 とcnd_datc列 には次のように制約を設定しよう。

11995-09-301)

11996-08-301)
11997-09-301)

'1998-09-301)

CREATE TABLE F■ scalYearTablel

(f■ scal_year INTEGER NOT NULL PRIMARY KEY,
Start_date DATE NOT NULL,
CONSTRAINT val■ d start date

CHECK ((EXTRACT(YEAR FROM start_date)= f■ scal_year
AND (EXTRACT(MONTH FROM start_date)= 10)
AND (EXTRACT(DAY FROM start_date)= 01)),

end_date DATE NOT NULL,
CONSTRAINl‐ val■ d end date
CHECK ((EXTRACT(YEAR FROM end_date)= f■ scal_year)

-1)

2

パズル■ 会計年度テープル

範囲外の日付を入力しないための制約

AND (EXTRACT(MONTH FROM end_date)= 09)
AND (EXTRACT(DAY FROM end_date)= 30))),

あるいは、ANDで結ばれている各述語 [訳注2]を個別の制約に切り分けて、エラー

メッセージを細かく出力させることもできる。年度開始日と年度終了日の「年」

の部分も一意な会計年度から導かれるものだから、やはリー意性が保証される。

5.残念なことに、ここまでに述べてきた方法はあらゆる企業で通用するとは限らな

い。多くの企業は週、週末、平日の数え方に関して、複雑な規則を持っているか

らだ。具体的には、1つの会計年度がぴったり360日 または52週間となるように

定めている。事実、第4四半期を降週・4週・5週」とし、年度の終わりをちよっ

ぴりごまかすことが、会計の一般的な慣習として行われている。その結果、年度

末では3日 から11日 ほど余ってしまうのである。

この問題は、FiscalYcarTablclテ ーブルと同じ要領で「会計月テーブル」を作ることで

解決できる。また、こういうケースでは、

CHECK ((end_date ― start_date)= INTERVAL :3591 DAY)

という制約が驚くほどうまくはまる
[訳注3]。 359と いう数は、各企業の規則に合わせて適

当に変えてほしい (例 えば、52週 ×7日 =364日 というように)。 もし1年度の総日数を

多少動かせるようにしたいなら、等号の代わりにBETWEEN述 語を使おう。

さて、最後に1つだけ自状しておこう。こういうテーブルをデータベースに作らなけ

ればならなくなったとき、私は表計算ソフトとその時間関数を利用することにしてい

る。最近の表計算ソフトは、データベースよりずっと便利な時間関数を持っているから

ね。それに、会計部門がすでに表計算ソフトで会計カレンダーを作っている可能性だっ

て、十分あり得ると思う。

訳注2:真理値 (True、 False、 Unknown)を 返す関数のこと。=、 >、 くや BETWEEN、 LIKE、 IN、 iS N∪ LLな どはみ

な述語の仲間。

訳注3:INTERVAL定 数の記述は、標準SQLに おいては、「INTERVAL+シ ングルクォーテーションで囲んだ数値 十日時フィ

ールド(DAY、 MONTH、 YEARなど)」 と定められている。しかし、実際にはRDBMS製 品ことに若干の表記揺れがあ

るため、マニュアルを確認したほうがよいだろう。

3

バ |ズ |ル |

0
"″
「
ー

欲
この問題は、ジム・チャペラがCompuScⅣc[注 1]の Microso■ Acccssフ ォーラムに投稿

したものだ。彼は、社員の欠勤状況を記録するためのデータベースを作ろうとしていた。

彼が考えたテーブルはこんな構造をしている。

CREATE TABLE Absentee■ sm

(emp_■ d INTEGER N01‐ NULL REFERENCES Personnel (emp_■ d),
abSent_date DATE NOT NULL,
reaSOn_COde CHAR(40)NOT NULL

REFERENCES EXcuseL■st (reason_code),
SeVer■ ty_po■nts INTEGER NOT NULL

CHECK (sever■ ty_po■nts BETWEEN l メヽND 4),
PRIMARY KEY (emp_id, absent_date));

Absenteeism:欠 勤テーブル

reason code:理 由コード

ExcuseLlst:言 い訳テーブル

emp_ld:社 員ID

severity_points :罰点

absent_date:欠 勤日

Personnel:社 員テーブル

社員はcmp_idで 一意に識別できる。rcasOn_cOdcは 欠勤理由の短い説明である (「ビー

ルを積んだトラックにはねられた」とか「気が乗らない」とか)。 こうした理由、つまり言

い訳はどんどん増えるし、実に想像力豊かでもある。scvcnり_pOintsは 、欠勤に対して与

えるペナルティを罰点として表したものだ。

社員は、罰点を年間40ポイントためるともれなくクビになる (PcrsOnnclテーブルから

該当する社員のレコードを削除する)。 これを第 1のルールとする。ただし、2日 以上連

続して休んだ場合は「長期病欠」扱いとなり、2日 日以降の欠勤には罰点が付かないし、

欠勤の総日数にもカウントされない。これを第2の ルールとする。

あなたの任務は、これら2つのビジネスルールを実現するSQL文を書くことだ。もし
必要なら、スキーマを変更してもよい。

訳注1:米国の大手パソコン通信サービス。かつては全米最大だったが、1995年 に加入者数でAOLに抜かれ、1997年 同社に
買収された。

4

皿__」二」上⊥

パズル2 欠勤

条件付きの∪PDATE/DELETE

、11′ /

'(ζ

'′

←その■
0 第2のルールに関する最も犯しがちな間違いは、テーブルから2日 日以降の欠勤日を

削除することだ。このアプローチをとってしまうと、病欠日を数えるクエリが難しくな

り、連続する病欠日を見つけ出すのもかなり大変になる。

ここでの“トリック"は、scvcrけ_Points列 に0点が入るのを許すことである。そうすれ

ば、Abscntccismテ ーブルから社員が長期病欠している期間を見つけ出せる。scvcrity

_points列 の制約を、CHECK(scvcriv_points BETWEEN O AND 4)と 変えればOKだ。

一見すると、ゼロを格納するのは領域の無駄遣いに思えるので、特に新米エンジニア

はこのトリックを見落としがちだ。しかし、ゼロというのも立派な数であり、病欠とい

う出来事は記録する必要のある事実だから、軽々しく削除してはいけない。

Abscntccismテ ーブルに新しい行が挿入されたときは、次のUPDATE文を実行する。

UPDATE Absentee■ sm

SEl‐ sever■ ty_points= 0,
reason_code := ilong term illneSSI

WHERE EXISTS

(SELECT キ

FROM Absentee■ sm AS A2
WHERE Absentee■sm.emp_■ d = A2.emp_■ d
AND Absentee■ sm.absent date =

(A2.absent_date + INTERVAL ll: DAY));

このUPDATE文は前日に欠勤していないかを調べて、もし欠勤していれば第2の ル

ールに従い、挿入された行の罰点を0点 にし、理由を“長期病欠"に変更する。

一方、社員を解雇するという第1のルールを実現するには、まず社員の現在の点数を

知る必要がある。これは次のようなクエリで十分だろう。

SELECT emp_■ d, SUM(sever■ ty_po■nts)

FROM Absentee■ sm

GROUP BY emp_■ d;

このクエリが、最終的に求めるべ き (つ まり、Pcrsonnclテーブルから該当社員のレコ

ー ドを削除する)DELETE文のサブクエリのもととなる。DELETE文の最終形は次のと

お りだ。

一〓

ド
●

一̈一̈一一一̈
一一̈一一̈一一一凛
一鷲

5

SCILパズル

DELETE FROM Personnel
WHERE emp_■ d =

(SELECT Al.emp_■ d

FROM Absentee■ sm AS Al
WHERE Al.emp_■ d = Personnel.emp_■ d
GROUP BY Al.emp_id
HAVING SUM(sever■ty_po■nts)>= 40);

このDELETE文のサブクエリは、scvcriw_pointsの 合計が40点未満の社員については

NULLを 返すので、PcrsOnncl.cmp_id列 との比較に失敗する。したがって、そのレコー

ドは削除されず、社員当人もクビにならない。

｀
その2,

0 オラクル社で上級インストラクターを務めるバート・スカルツォは、答えその1の解

には欠点が2つあり、パフォーマンスの面でも改善の余地があることを指摘した。

欠点はごく単純なものだ。まず、先ほどのDELETE文 のサブクエリはルールに反し

て、社員が1年間という期間内で罰点を40点以上ためたかどうかのチェックを行ってい

ない。罰点の集計期間を過去1年間に限定するための条件を、WHERE句 に加える必要
がある。

ハ
ン
シ７

／
●
＼

DELETE FROM Personnel
WHERE emp_id =

(SELECT Al.emp_■ d
FROM Absentee■ sm AS Al
WHERE Al.emp_■ d = Personnel.emp_id
ANE)absent date
BETWEEN CURRENT TIMESTAMP ― INTERVAL
AND CURRENT TIMESTAMP

GROUP BY Al.emp_■ d
HAVING SuM(SeVer■ ty_pO■ntS)>= 40);

1365' DAY

また、このDELETE文で削除されるのは社員だけで、Abscntecismテ ーブルにある欠

勤の履歴はそのまま残ってしまう。明示的にせよ暗黙的にせよ、これも削除する必要が

ある。先のDELETE文 を再利用してもよいが、Abscntccismテ ーブルの制約にカスケー

ド削除のオプション (ON DELETE CASCADE)を 追加するのがベストだ。

る

パズル2 欠勤

条件付きの∪PDATE/DELETE

CREATE TABLE Absentee■ sm

(emp_■d INTEGER NOT NULL
REFEREN(〕ES, Personnel

ON DELETE CASCADE,

・ ・ ・);

(emp_■ d)

さらに、もし第2のルールを実現するUPDATE文が定期的に実行され、かつ欠勤中の

社員に部署の異動がないことが確実だとしたら、そのサブクエリを次のように書き直す

ことでパフォーマンスを改善できるという。

UPDATE Absentee■ sm AS Al
SET sever■ ty_po■ nts = 0,
reason_oode = 110ng term illnessi

WHERE EXISTS

(SELECT ■

FROM Absentee■ sm AS A2
WHERE Al.emp_■ d = A2.emp_■ d
AND (A2.absent_date + INTERVAL lll DAY)= Al,absent_date);

さて、パフォーマンス面での改良も施したSQL文だが、まだ週をまたぐ長期病欠の処

理に問題が残っている。

「週末の休みを病気療養に充てたい」という社員がいたら、それは会社として大変結構

なことだろう。しかし、先のUPDATE文のままでは、その気持ちが無駄になってしま

う。というのも、ある社員が第1週の金曜日、第2週の全部、および第3週の月曜日を欠

勤日として報告したときに、このUPDATE文では第2週の5日 間しか長期病欠期間と

して認めないからだ。第1週の金曜日と第3週の月曜日は、罰点付きの欠勤日として扱

われる。この見逃された連続期間まで正確に把握するには、UPDATE文のサブクエリ
を変えなければならない。

私なら、週末に関するこの問題を休日のための理由コード(週末、祝日、バカンス休

暇など)を用意することで回避する。そうした日の罰点は、もちろんゼロである。:週末も

出勤するような職種では、こういうコードが必要だろう。あとは、上司に土曜日と日曜

日の理由コードを“週末"か ら“長期病欠"に手で変えてもらうことさえできれば、先の

UPDATE文はそのまま使用できる。

同じトリックを使えば、クルージングに出かける直前に運悪く伝染病にかかった場合

にも、計画していたバカンスをあきらめなくて済むかもしれない。上司が真に温情ある

人物なら、失った週末の埋め合わせに罰点 0の欠勤日をAbscntccismテ ーブルに追加し

7

SCLパズル

〕:サ
0

てくれたり、欠勤日を未来の日付に書き換えたりして、改めてバカンスヘ出かけられる

よう再調整してくれるだろう。

1年以上経ち“時効"に なった欠勤データについては、放っておいてかまわないと思

う。ただ、テーブルのサイズをできるだけ小さく保つために、1年以上前の記録 (行)を

Abscntccismテ ーブルから削除するDELETE文を組み込むのもよいかもしれない。

また、今日の日付から1年前までの期間を取得する、

(BETWEEN CURRENT_TIMESTAMP ― INTERVAL `3651 DAY
AND CURRENT_TIMESTAMP)

という式は、

(BETWEEN CURRENT_TIMESTAMP ― INTERVAL ill YEAR
AND CURRENT_TIMESTAMP)

という式で置 き換えることができる。こうすると、うるう年 も扱える。さらに優れた方

法は、PostgrcSQLな どのRDBMSが持っているAGE関 数を使 うことだ。AGE関数は、

引数の 日付 に起 きた出来事か らの経過年数 を返 して くれる。これを使 えば、先の

BETWEEN述 語を(AGE(abscnt_datc)>=1)と 書 くことができる。

その3
この種の問題に対する便利なもう1つの道具は、カレンダー (Calcndar)テーブルであ

る。これは社員にはありがたくない、出勤日を記録するテーブルだ。本書の初版が世に

出てからの10年間で、この方法はSQLプログラミングにおける定石の1つになった。

SELECT A.emp_■ d,

SUM(A.sever■ ty_po■ nts)AS absent■ sm_score

Absentee■sm AS A, Calendar AS C
C.cal date = A,absent date
A.absent date
BETWEEN CURRENT TIMESTAMP ― INTERVAL 1365:
AND CURRENT TIMESTAMP

c.date_type = lwork:
BY emp_id

SUM(severity_po■nts)>= 40;

FROM

WHERE
AND

AND
GROUP
HAVING

DAY

8

パズル2 欠勤
条件付きの∪PDATE/DELETE

cal_date:カ レンダーテーブルの日付列 cal」 ype:「平日」「週末」「祝日」といった日の種類

中には、平日をユリウス通日
[訳注2]で
記録するための列 (Julian_wOrkday)を カレンダ

ーテーブルに追加する人もいる。その場合、祝日と週末は直前の平日と同じ番号を持つ

ことになる。(cal_datc,Iulian_wOよ day)の 組み合わせは、例えばこんな感じだ。

，

●
●
〓

■
■
●
●
一
ｐ
●

(12006-04-211, 42)… ・・・̈・・ 金曜日

(12006-04-221, 42)・・・・・・・・・ 土口窪‐:ヨ

(12006-04-231, 42)。・・・・・・・・ 日日濯:日

(12006-04-241, 43)・ …・・・・・・ 月曜日

今日からさかのぼって1年前の日を知るには、今日のユリウス通日から計算すれば簡

単である。

訳注 2:紀元前 4713年 1月 1日 を起点として通し番号で日付を表す暦法。数年をまたぐ2つの日付間の日数を計算するのに
便利。

9

バ |ズ |ル |

〆つ口■
―

麒
ずいぶん前のことだが、レオナルド・C・ メダルは、麻酔医を題材にした面白い小問

を思いついた。病院の麻酔医たちは、院内で行われる外科手術中に、患者に麻酔を施し

て回っている。彼らが行った処置の記録は、次のようなテーブルに保管されている。

Procs

proc_■ d anest_name start_time end_time

10

20

30

40

50

60

70

80

'Baker'
'Baken'
'Dow'
'Dow',

'Dow'
'Dow'
'Dow'
' Dow'

108

110

112

113

118

001

001

301

30:

00:

111:001

'13:001
1151301

113:301

111:30:

113:301

114:301

119:001

０

０

０

８

９

９

０

０

０

Procs:処置テーブル

start time:開始時刻

proc_id :処 置 ID

end time:終 了時刻

anest name:麻 酔医の名前

よく見ると、麻酔医の処置時間のうち、いくつかが重複しているが、これは間違いで

はない。外科医と違って、麻酔医は1つの手術に付きっきりになる必要はない。手術中

にほかの手術室へ出向き、「掛け持ち」で複数の患者を順番に診て回ることができる。そ

うして患者の投薬量を調節したら、あとは若手の医者や看護士に、分単位で患者の容態

を監視するよう命じておくわけだ。

麻酔医への報酬は処置ごとに決まるのだが、実はそこにやっかいなルールがある。報

酬の金額は、麻酔医が同時に掛け持ちした処置の最大数 (「最大瞬間掛け持ち数」と呼ぼ

う)に応じて決まる。そして、その数が多くなればなるほど、1つの処置に対して支払わ

れる報酬は低くなっていくのである。

例えば、Bよcr医師が担当した10番 (proc_ld=10)の処置では、最大瞬間掛け持ち数

は2である。その場合、10番の処置に対して同医師が得られる報酬は、本来支払われる

金額の75%になるのだという。

さて、ここで問題とするのは金額ではなく、「各処置における最大瞬間掛け持ち数を

どう求めるか」である。

10

上」 L_____

パズル3 忙しい麻酔医
重複する期間の抽出 (その 1)

手始めにグラフを使って答えを探ってみると、問題をより明確に理解できる。

図1は、BakCF医 師が並行して進めた2つの麻酔処置 (10番 と20番)を表したグラフで

ある。図上部のガントチャー トに似たグラフは、2つの処置が行われた時間帯を示して

いる。

一方、図下部のステップチャー トは、瞬間掛け持ち数を表している。図上部のガント

チャートから30分区切りで重複数、つまり掛け持ち数を求め、それを棒グラフにしたも

のだと考えると分かりやすいだろう。

このグラフからは、Bakcr医 師が行った10番の処置についての最大瞬間掛け持ち数は

2であることが分かる。

Baker#10
3aker#20

Dow/30
Dow/40
Dow#50
Dow#60
Dow#70
Dow#80

掛け持ち数

掛け持ち数 1

800 9(0 000 100 12∞ 1300 400 500 600 18∞ 900 12000

日寺亥」

図 1:Baker医 師の処置記録

図2は、処置どうしの重複がより複雑になっているが、見方は図1と 同じだ。Dow医

師が行った30番の処置についての最大掛け持ち数は3で、それが2回生じている。

に===コ

E==コ

8∞ 900

図2:Dow医師の処置記録

000 1∞ 1200

サ
ス
一守

90(
120∞

■■

SoLパズル

再度確認しておくと、求めたい答えは処置の重複回数ではなく、その最大瞬間掛け持

ち数である。では、PrOcテ ーブルに記録されたデータから、どうしたらSQLで各処置の

最大瞬間掛け持ち数を求められるだろう。以下に、求めたい結果を示す。

proC_id max_inst_count

１

２

３

４

５

６

７

８

proc_ld:処置 ID max inst count:最大瞬間掛け持ち数

、 1
1ヽ:′ /

S'=その■
0 まず最初にすることは、各処置を2つのイベントー すなわち処置の開始と終了―
に変換して、それをビューに入れることだ。

CREATE VIEW Events

(prOC_■ d, 00mpar■ SOn_prOC, aneSt_name, eVent_t■ me, event_type)AS
SELECT Pl.proc_■ d, P2.prOC_■ d, Pl.anest_name, P2.start_t■ me, +1
FROM Procs AS Pl, Procs AS P2
WHERE Pl.anest name = P2.anest name
AND NOT (P2.end_t■me く= Pl.start_t■ me

OR P2.start_time >= Pl.end_time)
UN10N

SELE()T Pl,proc_id, P2.prOC_id, Pl.anest_name, P2.end_time,
-l AS event_type

FROM Procs AS Pl, Procs AS P2
へヽIHERE Pl.anest name = P2.anest name
AND NOT (P2.end_t■ me く= Pl.start_t■ me

OR P2.start_t■ me >= Pl.end_t■ me);

■2

パズル3 忙しい麻酔医
重複する期間の抽出 (その 1)

Events:イ ベントビュー

comparison_proc:重 複している処置の番号

event_time:処置の開始/終了時刻

proc_ld:評価対象の処置番号

anest name:麻 酔医の名前

event_type:イ ベントの種類

UNION演 算子により、開始イベントの集合に終了イベントの集合をマージしてい

る。cvcnt_typcの +1は開始イベント、一lは終了イベントを表す。また、WHERE句は、
比較する処置がともに同じ麻酔医の担当であることを保証している。NOT条件は、主

となる処置と重複していない処置を除外している。

10番 の処置についてのみ結果を表示すると、次のようになる (見やすいように

cvcnttimcで ソートしてある)。 l人の麻酔医が複数の処置を同時に開始できる点に注目

してはしい。

Eve nt s

pt'oc_id comparison_pnoc anest_name event_time event_type

10

10

10

10

10

20

10

20

'Baker'
'Baker'
'Baker'
'Baker'

108:001

109:001

ill100'

113:001

この同じproc_ldを 持つイベントの集合から、各イベントについて、それ以前に始まっ

たイベントのαcnttyPcsの合計を求められる。時間をさかのぼって計算したこの合計値

は、先の図 1、 図2のステップチャートにおける1つ 1つ のステップの値を表している。

SELECT El,proc_■ d, El.event_t■ me,

(SELECT SUM(E2.event_type)
FROM Events AS E2
WHERE E2.proc_■d = El.proc_■ d
AND E2.event_t■me < El.event_t■ me)
AS instantaneous count

FROM Events AS El
ORDER BY El.proc_■ d, El.event_t■ me;

このクエリの結果をlo番の処置についてのみ表示すると、次のようになる。

■3

ScILパズル

proc_id instantaneous_count

10

10

10

10

NULL

1

2

1

proc_ld:処置 ID instantaneous count i瞬間掛け持ち数

この SELECT文 はビューに入れて もよいか もしれない (ビュー名 は ConcurrcntProcs

だとしよう)。 そうすれば、次のSQL文で各処置の最大瞬間掛け持ち数を求められる。

SELECT proc_■ d, MAX(■ nstantaneous_count)AS max_■ nst
FROM ConcurrentProcs
GROUP BY proc_■ d;

あるいは、直接 Evcntsビューか ら望む結果 を引 き出す こともできる。先の 2つ の

SELECT文 を次のようにまとめるのだ。

SELECT El,proc_■ d,

MAX((SELECT SUM(E2.event_type)
FROM Events AS E2
WHERE E2.proc_id = El.proc_id
AND E2.event_t■me く El.event_t■ me))

AS max ■nst count
FROM Events AS El
GROuP BY El.proc_■ d;

ただし、このクエリのように集約関数の中にサブクエリ式を入れるのは、SQL-92で

は違法である。そのため、このクエリを使えるかどうかはRDBMSに依存する。

、ヽ
・
κ
②
ｖィ
｀
その2

0 リチャード・レムレーが考えた答えは、FROM句 でサブクエリを使うというSQL-92

の機能を利用している。そのため、答えその1でビューにしていた部分まで、1つのクエ

リの中に組み込むことができている。

イ4

パズル3 忙しい麻酔医
重複する期間の抽出 (その1)

SELECT P3.proc_■ d, MAX(OoncurrentProcs.tally)
FROM (SELECT Pl.anest_name, Pl.start_t■ me, 00UNT(■)

FROM Procs AS Pl INNER JOIN Procs AS P2
0N Pl.anest name = P2.anest name
AND P2.start t■ me く= Pl.start time
AND P2.end t■ me > Pl.start t■ me

GROUP BY Pl.anest_name, Pl.start_t■ me)

AS ConcurrentProcs(anest_name, Start_t■ me, tally)

INNER JOIN Procs AS P3
0N ConcurrentProcS.aneSt nanle = P3.anest name
AND P3.start time く= COnCurrentProcs.start time
AND P3.end time > (〕 oncurrentProcS.Start time

GROUP Bヽ′ P3.proc_■ di

その3
0 ここで紹介する解法は、2000年 6月 9日 にレックス・ファン・デ・ポール (aavd―

P01@hOtmail.cOm)か ら寄せられた。そのアイデアは、「すべての処置 (Pl)に ついてルー

プする」というものである。

まず、開始時刻が処置Plの処置時間内に含まれている処置P2を探す。そういうP2を

見つけたら、今度はその処置P2の開始時刻を含む処置 (P3)の数をカウントする。これ

により、特定の処置Plについての最大瞬間掛け持ち数が得られるのである。

これを実現するために、レックスは最初にこういうビューを作った。

ノ
／
´
´
ヽ

′
ヽ

り
／

多

′

〕
一儲
ヽ
．脅

、ヽ
・
Ｚ

CREATE
SELECT
FROM
WHERE

AND
AND
AND
AND
AND

GROUP

VIEW Vprocs (■ dl, ■d2, total)AS
Pl.proc_■ d, P2.proc_■ d, COUNT(十)
Procs AS Pl, Procs AS P2, Procs AS P3
P2.anest name = Pl,anest name
P3.anest name = Pl,anest name
Pl.start t■ me く= P2.start t■ me

P2.start time く Pl.end t■me
P3.start time く= P2.start time
P2.start t■ me く P3.end t■me

Bヽ
′ Pl.proc_■d, P2.proc_■ d;

次に、このビューを使って処置Plご とに最大数を求める。

SELECT ■dl AS proc_■ d, MAX(total)AS max_■ nst_count
FROM Vprocs

GROUP BY ■dl;

■5

SOLパズル

面白いことに、この方法だとP2の終了時刻を見なくて済む。

、11′ /

'S←

その4
0 バー ト・ C・ ヒユーズ (bhughcs@twincidcs.nct)は、Microsoi Acccssの SQLに近い独

自言語を使って解法を思いついた。ここに示すのは、彼のコー ドを単一のSQL文に書き

換えたものである。

SELECT
FROM
Pl.prOC_■ d, Pl.anest_name, MAX(El.ecount)AS maxops
Procs AS Pl, 一― Elは各麻酔医の処置の瞬間掛 け持ち数
(SELECT P2.anest_name, P2.start_t■ me, COUNT(キ)
FROM Procs AS Pl, Procs AS P2
WHERE Pl.anest name = P2.anest nanle

ANE)Pl.Start t■me く= P2.start t■ me
ANE)Pl.end time > P2.start time
GROUP BY P2.anest_name, P2.start_t■ me)
AS El(anest_name, et■ me, ecount)
El,anest nanle = Pl.anest name
El.etime >= Pl.start t■ me
El.etime く Pl.end time
BY Pl.proc_■ d, Pl.anest_name;

WHERE
AND

AND

GROUP

、
ヽ
・
κ

‐―′ヽ
β
ン

ヽ

′
１

ヽ

その5
0 もう1つのアプローチは、「時計」テーブルを用意することだ。分より小さい単位につ

いては考えなくてもよいだろうから、1日 分なら24時間×60分 =1440行、1年分を用

意するとしても52万 5600行で済む。または、今日1日分をビューで作ることもできる。

SELECT X.anest_name, MAX(X.proc_tally)
FROM (SELECT Pl.aneSt_name, COUNT(DISTINCT proc_■ d)

FROM Procs AS Pl, Clock AS C
WHERE C.Clock t■me BETWEEN Pl.start time AND Pl.end t■ me
GROUP BY Pl.anest_name)AS X(anest_name, proc_tally)

GROUP BY X.anest_name;

てる

パズル3 忙しい麻酔医
重複する期間の抽出 (その 1)

要するに、これはカレンダー補助テーブルの別バージョンである。この種のテーブル

の行数は、よく知られているように粒度
[訳注1]次第で決まる一 普通

はカレンダーなら

1日 を、時計なら1分を基本単位とする。あるいは次のように、現在時を分単位で格納す

るテーブルと、システム定数CURIRJ]NT_DATEを利用したビューを作ることもできる。

CREATE VIEW TodayClock (clock_t■ me)
AS SELECT CURRENT_DATE + ticks FROM DayT■ cks;

訳注1:こ こで言う粒度 (り ゅうど :granularity)と は、データをある目的に適切と思われるレベルに分解し格納するときの、

そのレベルや度合い。

■7

赳

パ |ズ |ル |

▲

件

愉

′／
´
´
ヽ

′
ヽ
‐
‐′
／
，
多
′

‐ヽ―一げ
ヽ
マ

、ヽ
・
κ

あなたの務める会社が「合 理 化」(こ ういう場合、人員削減や外部委託とは言わない

んだな)を進めた結果、このたびあなたは、セキュリティ責任者とデータベース管理者

を兼任することになった。そこであなたは手始めに、社員と社員が持つ有効な入館証番

号を記載したリストを作ることにした。

仕様はこうである。社員は現在働いている職場に応じて、複数の入館証を持つことが

できる。ただし、同時に有効な入館証はそれらのうち1つだけだ。デフォルトで有効な

のは、直近に発行された入館証、つまり新しい職場で発行された入館証だとする。入館

証の番号は、偽造防止のためにランダムに割り当てられる。

この条件の下、あなたには社員と社員の有効な入館証番号をまとめたリストを作って

ほしい。なお、入館証番号が有効であることは'A'(Activc)で、無効であることは II:

(Inadvc)で表すとしよう。

その■

仕様から、各社員は1つ しか有効な入館証を持てないことが分かる。したがって、こ

のルールはデータベースレベルで実装しておくのがよいだろう。

CREATE TABLE Personnel

(emp_id INTEGER NOT NULL PRIMARY KEY,
emp_name CHAR(30)NOT NULL,

・ ・ ・);

0

Personnel:社 員テーブル emp_id:社 員 lD emp_nam e:社 員名

CREATE TABLE Badges

(badge_nbr INTEGER NOT NULL PRIMARY KEY,
emp_■ d INTEGER N01‐ NULL REFERENCES Personnel(emp_■ d),
■ssued_date DATE NOT NULL,

badge_status CHAR(1)NOT NULL
CHECK (badge_status IN (lAl, lII)),
CHECK (1 く= ALL (SELECT COUNT(badge_status)

FROM Badges
WHERE badge_Status = :A:
GROUP BY emp_id)));

48

パズル4 入館証
∪PDATEで相関サブクエリを使用する

Badges:入 館証テーブル

issued date:発行日

badge_nbr:入館証番号

badge_status:入館証の状態

emp_id:社 員ID

公正を期して言っておくと、多くのRDBMSで は述語内での自己参照ができないた

め、最後のCHECK句のところでエラーが返されるだろう。しかし、これはSQL-92の適

法な構文なのだ。

もちろん、CHECK句 を削除して、社員が1つ も有効な入館証を持たない状態を許す
こともできる。でもそうすると、直近に発行された入館証の状態を'Alに更新する方法を

考えなければならなくなってしまう。その方法とは、例えば次のようなUPDATE文だ。

UPDATE Badges
SET badge_status = IA
WHERE (lII = ALL (SELECT badge_status

FROM Badges AS Bl
WHERE Badges.emp_■ d = Bl.emp_■ d))

AND (■ ssued_date = (SELECT MAX(■ ssued_date)
FROM Badges AS B2
WHERE Badges,emp_■ d = B2.emp_■ d));

残念ながら、やはりこのUPDATE文 にも多くのRDBMSは エラーを返す。今度の問題

は相関名である。SQL-92では、UPDATE文におけるテーブル名の有効範囲を文全体と

しており、カレント行は更新対象となる列の値を参照するために使われることになって

いる。したがって、同じテーブルのほかの行を参照するには相関名を使わなければなら

ないのだ。

まあ、そうした制限はさておき、これでパズルを解 くクエリはとても簡単になった。

SELECT P.emp_ d, emp_ ame, badge_ br
FROM Personnel AS P, Badges AS B
WHERE B.emp_■ d = P.emp_■ d

AND B.badge_status = IAi;

ヽ
四
）
鬱
”

″
↑
＼
｀
その2

、11′

イ́ ン

0 このパズルにはもう1つ、「入館証ごとに連番 (badgc_scq)を 割り当てる」というアプ

ローチがある。有効な入館証は、連番列にMIN関数やMAX関数を使って示す。

■9

SOLパズル

CREATE TABLE Badges

(badge_nbr INTEGER NOT NULL PRIMARY KEY,
emp_■ d INTEGER NOT NULL REFERENCES Personnel(emp_■ d),
■ssued_date DATE NOT NULL,

badge_seq INTEGER N01‐ NULL CHECK (badge_seq > o),
UNIQUE (emp_■ d, badge_seq),

・ ・ ・);

次に、有効な入館証の番号を得るビューを作ろう。

CREATE VIEW Act■ veBadges (emp_■ d, badge_nbr)
AS SELECT emp_■d, badge_nbr
FROM Badges AS Bl

WHERE badge_seq = (SELECT MAX(badge_seq)
FROM Badges AS B2

WHERE Bl.emp_■ d = B2.emp_■ d);

このアプローチの場合にも、入館証の紛失時や失効時に連番を振り直すための更新処

理が必要になる。

UPDATE Badges
SET badge_seq = (SELECT COUNT(■)

FROM Badges AS Bl
WHERE Badges.emp_■ d = Bl.emp_id
AND Badges.badge_seq >= Bl.badge_seq);

また、このテーブル定義には、入館証の連番を目で見ることができ、各社員が持って

いる入館証の個数がより手軽に分かるという、思わぬメリットもある。

20

バ |ズ |ル |

E
ゾ

鮨
「アルファベットだけを含む列」「少なくとも1文字はアルファベットを含む列」「アル

ファベットを1文字も含まない列」を制約で保証するにはどうすればよいだろう ?

古い手続き型言語では、ファイル宣言においてデータフイールドをフォーマット制限

付きで宣言する必要がある。分かりやすい例だと、COBOLや PL/1がそうだ。また、デ
ータを読み込むときにフィルタリングするためのテンプレートを使うという方法もあ

る。こちらの最もよく知られている例は、FORTRANス タイルのFORMAT文だろう。

その■

0 「少なくとも1文字はアルファベットを含む列」「アルファベットを1文字も含まない
列」を保証する制約については、オセロット・ソフトウェア社から文字集合の観点から

考えられた、いかにもSQLら しい解答が寄せられた。一方、「アルファベットだけを含む

列」については、SUBSTRING関数とBEI¬ⅣEEN述語をCHECK句の中で大量に使う、

本当にひどいやり方しか私には考えつかなかった。何しろCHECK句 だけで、スキーマ

定義全体よりも大きくなってしまったんだ。

／
′
´
´
ヽ

／
ヽ
―
り
／
，多

′

‐
１

７

１１１‐‐ヽ
脅

ヽ
／ｒ
ヽ

、ヽ

２

CREATE TABLE Foobar

(no_alpha VARCHAR(6)NOT NULL
CHECK (UPPER(no_alpha)= LOWER(no_alpha)),

sOme_alpha VARCHAR(6)NOT NULL
CHECK (UPPER(some_alpha)く > LOWER(some_alpha)),

all_alpha VARCHAR(6)NOT NULL
CHECK (UPPER(all_alpha)く > LOWER(all_alpha)

AND SUBSTRING(LOWER(all_alpha)FROM l FOR l)
BETWEEN la: AND iz〔

AND SUBSTRING(LOWER(all_alpha)FROM 2 FOR l) |
BETWEEN 〔a: AND iza:

AND SUBSTRING(LOWER(all_alpha)FROM 3 FOR l) |
BETWEEN ial AND :zal

AND SUBSTRING(LOWER(all_alpha)FROM 4 FOR l) |
BETWEEN ial AND 〔zal

AND SUBSTRING(LOWER(all_alpha)FROM 5 FOR l) |
BETWEEN lal AND lzal

AND SUBSTRING(LOWER(all_alpha)FROM 6 FOR l) |
BETWEEN la: AND lzal));

|lal

l ial

l lal

l ial

l lal

2■

SQLバズル

、11′ /

〕:9←

no_alpha

all_alpha

アルファベットを含まない

アルファベットだけを含む

some_alpha 1 1文 字はアルファベットを含む

これら3つのCHECK制約を使うには、あなたの使っているRDBMSが、大文字と小

文字を区別するSQL-92の機能をサポートしていることが前提となる。アルフアベット

は大文字と小文字で異なる値を持っているが、ほかの文字はそうではない。この特性を

利用することで、ある列がアルファベットを含むか含まないかを制御できるのだ。

その2

「アルファベットだけを含む列」を保証するには、やはりLIKE述語に適用する正規表

現パーサのようなRDBMSの独自拡張機能を使わないと難しい。

0

all_alpha VARCHAR(6)NOT NULL
CHECK (TRANSLATE (all_alpha USING one_letter_translat■ on)=
'XXXXXXl)

Onc_lcttcLtranslatiOnは 、「すべての文字を“x"へ写像する」という変換定義に付けた

名前だ。TRANSLATE関 数とその変換定義は標準SQLに含まれているが、まだ一般的

ではない。変換定義を行う構文は次のようなものだが、ここでは詳細は割愛する。

く変換定義>::=
CREATE TRANSLAT10Nく 変換定義名>FORく 変換対象となる文字の集合>
TOく変換後の文字の集合>FROMく 変換対象データ>;

1ヽ1ノ /

'01←

その3
0 標準SQLの正規表現述語はPOSIX構文に基づいており、次のように書ける

[訳注l]。

all_alpha VARCHAR(6)NOT NULL
CHECK (all_alpha SIMILAR TO l[:ALPHA:]+:)

だが念のため、あなたが使っているRDBMSの仕様を調べたほうが確実であろう。

訳注 1:1:ALPHA:]は [a―zA― Z]と も書ける。

22

バ |ズ |ル |

zA
′

0

聰

漱
ツ
ロ

、ヽ
・
／
　

‘ｑ

スコット・ガンマンズは、CompuScwcのWATCOM[訳注1]フ ォ_ラ ムに次のような問

題 (全 く同じではないが)を投稿 してきた。

まず、自分は「ホテルSQL」 の受付係だと想像してはしい。そして、次のようなHotcl

テーブルがあるとする。

CREATE TABLE Hotel

(room_nbr INTEGER NOT NULL,
arr■ val_date DATE NOT NULL,
departure_date DATE NOT NULL,
guest_name CHAR(30)NOT NULL,
PRIMARY KEY (,oom_nbr, arr■ val_date),

CHECK (departure_date >= arrival_date)),

HOtel:ホテルテーブル

departure_date :出発日

room nbr i部 屋番号

guest_name:宿 泊客名

arrival date:至」着日

現時点では、CHECK旬 によって「到着前に出発はできない」という整合性制約が設

定されているけれども、これではまだ足りない。このテーブルにさらに、「前の宿泊客の

出発日が次の客の到着日と衝突する場合、その部屋には予約を追加できない」というル

ールも適用する方法を考えてみよう。つまり、ダブルブッキングを防ぎたいのだ。

その■

次に示す解法は、CHECK句の中でかなり複雑なSQLを使えるRDBMSでなければ動

かない。実際のところ、多 くのRDBMSは次のSQLを サポー トしていないだろう。

CREATE TABLE Hotel

(room_nbr INTEGER NOT NULL,
arrival_date DATE NOT NULL,
departure_date DATE N01‐ NULL,
guest_name CHAR(30),

PRIMARY KEY (room_nbr, arr■ val_date),

訳注 1:サイベースの RDBMS製品「SQL Anywhere Studlo」 の旧称。

23

CHECK

CHECK
(departure_date >= arr■ val_date),

(NOT EXISTS

(SELECT 十

FROM Hotel AS Hl, Hotel AS H2
WHERE Hl.room nbr = H2.room nbr
AND Hl.arr■ val date BETWEEN H2.arr■ val date

AND H2.departure_date)));

‐ヽ‐′（餞
Ｖ
７
目

、ヽ
・
κ
　

‘ｑ

その2

別解はテーブル設計を見直すことである。日付と部屋の組に対して1行を与えると、

HOtclテ ーブルは次のようになる。

CREATE TABLE Hotel

(room_nbr INTEGER NOT NULL,
occupy_date DATE NOT NULL,
guest_name CHAR(30)NOT NULL,
PRIMARY KEY (room_nbr, occupy_date, guest_name));

occupy_date :宿 ,自日

こうすればCHECK句 は不要になるが、ディスク容量を多 く消費する可能性がある

し、いくぶん冗長になる。今日の記憶媒体の安価さを考えれば、デイスク容量は問題に

ならないかもしれないが、冗長性はいかなるときも問題だ。また、ある部屋を予約する

ためのINSERT文を複数発行する場合には、その日付に“歯抜け"がないことを保証す

る方法を考えねばならない。

ここだけの話だが、SQL-92の フルレベルには、2つの期間がオーバーラップするか否

かをテス トするOVERLAPS述語が定義されている。いわば、現行のRDBMSが持つ

BETWEEN述語の時間版だ [訳注2]。 しかし、この述語を使えるRDBMS製品は今のとこ

ろごく少数しかない。

訳注 2:正確には、BETWEEN述 語が時間軸上のある 1点 が指定した期間内に含まれるかどうかをテス トするのに対し、
OVERI」、PS述語 |よ期間同士が重なりあうか否かをテストする。

24

ScLパズル

、
ヽ
・
Ｚ

／
′
´
´
ヽ

／
ヽ
ノ

多
；

‐ヽｌσ
ヽ
マ

)\flv 6 fr7)|,@Affi
重複する期間の抽出 (その 2)

その3
01 スイスのオラクル社でインス トラクターをしているロタール・フラッツは、答えその 1

に対 し、「Hl.arrlvaLdatc BETWEEN H2.arrlval_datc AND H2.dcParturc_datcと いう述

語では、前の宿泊客の出発 日に到着する客の予約が入れられない。そもそも、問題文の

ダブルブッキングを避けるルールは非現実的だ」という批判を寄せてきた。

しかし、OradcではCHECK制約の中にサブクエリを入れられないし、トリガーを使

おうにも、当のトリガーを起動した文が変更中のテーブルには触れられない。そこで彼

は、期 間の制約 を施行するためにWITH CHECK OPT10N付 きのビューを利用 した。

CREATE VIEW HotelStays

(r00nl_nbr, arriVal_date, departure_date, guest_name)
AS SELECT room_ br, arr■ val_ ate, departure_ ate, guest_ ame
FROM Hotel AS Hl
WHERE NOT EXISTS

(SELECT ■

FROM Hotel AS H2
WHERE Hl.room nbr = H2.rooni nbr
AND H2.arrival date く Hl.arrival date
ANE)Hl.arrival_date く H2.departure_date)

WITH CHECK OPT10N;

こうすると、例えば次のようなINSERT文を実行した場合でも、HotclStγsビューの

結果に現れないことから、Roc氏 の予約を追加できなかったことが分かる。

INSERT INTO HotelStays
VALUES (1, 12008-01-011, 12008-01-031, ICoel);
―― HotelStaysビ ューにはOoe氏 だけが表示 される

INSERT INTO HotelStays
VALUES (1, 12008-01-031, 12008-01-051, IDoel);

一 HotelStaysビ ューにはCoe氏のほか、Doe氏も表示 される

INSERT INTO HotelStays
VALUES (1, 12008-01-021, 12008-01-051, [Roel);

― Roe氏の予約 (INSERT)は 失敗 し、

一 HotelStaysビ ューにはCoe氏 しか表示されない

¨ヽ燃
鷺̈
鷺
綴
鷺
餞

一鮨
¨
　

難
“鸞

一̈″”纂

一̈一い一ヽ̈一一̈一̈滋

一̈泰

25

バ |ズ |ル |

"
″

f

1995年 11月 、ステイーブ・ティルソンはこんな問題を送ってきた。

「あなたに、このパズルを解いていただきたいのです。恐らく、今の私は『木を見て森

を見ず』の状態でしょう。しかし、この問題を膨大な自己参照を使う破目に陥ることな

く、エレガントに解答することは、実に至難の業だと思います。このパズルには6つの

問題が含まれていますが、私の目下の疑間は『明らかな循環参照を、テーブル設計の段

階で排除する方法があるか否か』です。

あなたはある組織において、文書ファイルのバージョンを一括管理するポートフォリ

オを、検索または参照のために保存しなければならないとします
[訳注1]。
本来、ファイル

にはいろいろな属性がありますが、このパズルで必要なのは少しだけです。

CREATE TABLE Portfol■ os

(f■ le_■ d INTEGER NOT NULL PRIMARY KEY,
■ssue_date DATE NOT NULL,
superseded_file_id INTEGER NOT NULL
REFEREN()ES Portfolios(file_id),
supersedes_f■ le_■ d INTEGER NOT NULL
REFERENCES Portfol■ os(f■ le_■ d)),

Portfo‖ os:ポートフォリオテーブル file id:フ ァイルID
issue_date:フ ァイルの発行日 superseded flo_id:先 行バージョンのファイルlD
supersedes」‖e_id:後続バージョンのファイルlD

問題は次の6つです。

■ あるバージョンの後続バージョンを追跡できること

■ あるバージョンの先行バージョンを追跡できること

■ 過去のバージョンを復活できること (これを行うには復活したバージョンをその

連鎖に組み込む必要があり、そのために循環参照が避けられなくなっている)

■ issuc_datc列 によってあるファイルバージョンの発行日を突き止められること (た

訳注1:こ こで言うポートフォリオは、一般的にイメージされる金融用語ではなく、紙を何枚も綴つた「バインダー」のような

ものを想像してほしい。ファイルも同様だ。

26

椰qb~

パズル7 ファイルのバージョン管理
順序を入れ子集合で表す

だし、過去のバージョンが復活していた場合、発行日をどちらにするかという厄

介な問題が生じる)

■ SELECT文にどんなバージョンが含まれていようと、最新バージョンは選択でき

ること

■ バージョンの連鎖を調べる監査証跡を再作成できること

以上、よろしくお願いします。」

、11′ /

'S'←

その■
0 スティーブはまだ、ポインタチェイン

[訳注2]と
手続き型言語の考え方にとらわれてい

る。だが、SQLで考えるにはそれではダメだ ! 仕様にある「後続」と「先行」という語

が、この問題が順序番号を扱うものであることを如実に示している。こういうときには、

番号の代わりに入れ子集合の性質をうまく使おう。

まず、各ファイルバージョンの全情報を保持するテーブルを作る。

CREATE TABLE Portfol■ os

(file_id INTEGER NOT NULL PRIMARY KEY,
そのほかの列 ...);

次に、バージョンの連鎖情報を持つテーブルを作る。chain列 とncxt列が重要なポイ

ントである。

CREATE TABLE Success■ on

(cha■ n INTEGER NOT NULL,
next INTEGER DEFAULl‐ O NOT NULL CHECK (next >= 0),
f■ lo_id INTEGER NOT NULL REFERENCES Portfol■ os(f■ le_■ d),

suc_date DATE NOT NULL,
PRIMARY KEY(cha■ n, next)),

Successlon:連 鎖テーブル

f‖e id:フ ァイルlD

chaln:連 鎖系列

suc date :発 行日

next:後続バージョンのファイルID

リスト構造データなどで、各データが次のデータを指し示すポインタを持つことで次々にデータを参照可能にする実

装方法。RDBテーブルでこれを表現すると、RDBMSの 独自拡張に頼らない限り、スティーブの言うように検索クエ

リが自己結合の嵐となる。典型的な例は、階層データを表現する隣接リストモデルのテーブル定義である。詳しくは

FプログラマのためのSQL第 2版』(ピアソン エデュケーション刊)の第28章を参照。

訳注 2

27

■
■
■
●
●
●

Ｉ
●

SQLパズル

ncxt列の値を、0を 中心に数直線上に描かれる「円」の半径だとイメージしてほしい。

円はファイルのバージョンを表している。連鎖 (chain)の始点となるバージョンの円の半

径 (つ まりncxt列の値)は 0である。続くバージョンは、oを取り囲む半径 1の円になる。

連鎖の3番 目に来るバージョンは、さらにその円を取り囲む半径2の円になる (図
[訳注3])。

これは、POrtおliOsテ ーブルに新しいファイルを登録したときに、SucccssiOnテ ーブルに

も後続バージョンを表す行を登録することと同義である。そのときにncxt列 に入る値

は、その連鎖におけるncxt列の最大値より1だけ大きな数字になる。こうしてできあが

るのが、バージョンの連鎖を表す「入れ子集合
[訳注4]」 である !

chain = 1

3(225)

2(224)

1(223)

0(222)

next列の値
(カッコ内はファイルID)

3(322)

2(324)

1(323)

0(322)

バージョンが2つ戻った

chain = 2

next列の値
(カッコ内はファイルID)

図 i next列 の値による入れ子集合

訳注 3

訳注 4

この図は訳者が追加。

この例だと、chaln=1と chain=2と いう2つの連鎖が存在しているので、同心円的な入れ子集合も2系統が存在する

ことになる。自然数を入れ子集合で表現するアイデアは、一見すると突飛に感じるかもしれないが、SQLではランキ
ングや累計算出、また木構造のデータを表現する手段としてよく利用される。パズル 35も参照。

28

パズル7 ファイルのバージョン管理
順序を入れ子集合で表す

例として、220番台の■lc」 dを持つファイルと、330番台のnlc_idを 持つファイルのバ

ージョン連鎖を示そう。どちらも、999番 というバージョンを最後尾に持っている。

CREATE
‐
「ABLE Portfol■ os

(f■ le_■ d INTEGER NOT NULL PRIMARY KEY,
stuff CHAR(15)NOT NULL); ―― ファイルの名前

INSERT INTO Portfol■ os
VALUES (222, Istuffl),

(223, lold stuffl),

(224, lnew stuff〕),

(225, iborroWed Stuffl),
(1322, lblue stuffl),

(1323, :purple stuff:),

(324, lred stuffl),
(325, 19reen stuffl),
(999, lyel10W Stuffl);

CREATE TABLE Success■ on

(cha■ n INTEGER NOT NULL,

next INTEGER NOT NULL,
file_id INl‐EGER N()T NULL REFEREN()ES Portfolios(file_id),
suc_date DATE NOT NULL,
PRIMARY KEY(cha■ n, next));

INSERl‐ INTC)Success■ on

VALUES 1, 0, 222, 12007-11-011
１

１

１

１

２

２

２

２

２

２

223,

224,

225,

999,

322,

323,

324,

322,

323,
999,

12007-11-021

12007-11-041

12007-11-051

`2007-11-251
12007-11-011

12007-11-021

:2007-11-04〕

:2007-11-051
12007-11-12〕

12007-11-251

では、ステイーブの質問に1つずつ答えていこう。

SELECT文 にどんなバージョンが含まれていようと、最新バージョンは選択でき

ること

29

SQLパズル

これは次のクエリでOKだ [訳注5]。

SELECT

FROM

WHERE
AND

DISTINCT Pl.f■ le_■ d, stuff, suc_date
Portfol■ os AS Pl, Success■on AS Sl

Pl.file id = sl,file id
next = (SELECT MAX(next)

FROM Succession AS S2
WHERE Sl.chain = S2.cha■ n),

file id stuff suc_date

999 1ye1low stuffl '2007-11-251

複数の連鎖が同一 ファイルヘ統合 された場合 に対処するため、SELECT DISTINCT

オプションを使う必要がある点に注意しよう。

■ バージョンの連鎖を調べる監査証跡を再作成できること

これも軽くクリアできる
[訳注6]。

SELEC)T chain, next, Pl.file_id, stuff, suc_date
FROM Portfol■ os AS Pl, Success■on AS Sl
WHERE Sl.file id = Pl.f■ le ■d
ORDER BY cha■ n, next;

cha■ n next f■ le ■d stuff suc_date

222
223

224
225

999

322

323
324
322
323
999

'stuff'
'oId stuff'
'new stuff'
'borrowed stuff'
'ye11ow stuff'
'blue stuff'
'purple stuff'
'ned stuff'
'b1ue stuff'
'punpl-e stuff'
'yel1ow stuff'

12007-11

12007-11

12007-11

12007-11
12007-11

12007-11

12007-11

12007-11

:2007-11
:2007-11

12007-11

-011

-021

-041

-051

-251

-011

-02:

-041

-051

-12!

-251

訳注 5

訳注 6

クエリの実行結果は訳者が追加。

クエリの実行結果は訳者が追加。

30

||‖

パズル7 ファイルのパージョン管理
順序を入れ子集合で表す

あるバージョンの先行バージョンを追跡できること
[訳注7]

SELE()T Sl.file_id, l superseded l, S2.file_id,
l on l, Sl.suc_date

FROM Success■ on AS Sl, Success■on AS S2

WHERE ISl.chain = S2.chain

AND Sl.next = S2.next + 1

AND Sl.file_id=:my_file_id; 一 すべてのバージョンについて調べたい
のなら、この条件は削除する

■ 過去のバージョンを復活できること (こ れを行うには復活したバージョンをその

連鎖に組み込む必要があり、そのために循環参照が避けられなくなっている)

BEGIN

一 新規バージョンのための行を作る

INSERT INTO Portfolios VALUES(1000, isticky stuffl);

―‐連鎖の中の任意の old file idを new file idと して追加する

INSERT INTO Success■ on (cha■ n, next, f■ le_■ d, suc_date)
VALUES ((SELECT DISTINCT chain

FROM Success■ on AS Sl
WHERE Sl.f■ le_■ d = :old_f■ le_■ d),

(SELECT MAX(next)+ 1
FROM Success■ on AS Sl
WHERE Sl.cha■ n = (SELECT DISTINCT cha■ n

FROM Success■ on AS S2
WHERE file_id = :old_file_■ d)),

ineW_f■ le_■ d, :neW_SuC_date);
END;

ここでの問題は、1つのバージョンが複数の既存バージョンの後続となることと、逆

に複数のバージョンが1つの既存バージョンの後続となることを許した点である。つま

訳注7:例えば、999番のパージョンに先行するのは、225と 323だ。lmy_f‖ e_ldを 999と してこのクエリを実行すると、次の
ような結果が得られる。

Sl.f■ le_id superseded S2.file_■ d on suc_date

999

999

225

323

.0■ .

.on'
'supenseded'
'supenseded'

12007-11-25)

(2007-11-251

反対に、後続するバージョンを調べる場合 |よ「Sl.ne× t=S2.next+1」 を「Sl.next=S2next-1」 に変えればよい。

3■

S(2:Lパズル

り、連鎖が一直線に並ぶとは限らないわけだ。もし、:old_■ lc_idが 2つ以上の連鎖に含

まれていた場合、このコードではうまくいかない。新しい後続バージョンの■lc_idや

chainの番号に新しい番号を与えることでこの問題を解決することもできるが、SQL文

が汚くなるし、今の私にはそれをするだけの時間もない。ぜひ、各自でトライしてみて

ほしい。

■ issuc_datc列 によってあるファイルバージョンの発行日を突き止められること (た

だし、過去のバージョンが復活していた場合、発行日をどちらにするかという厄

介な問題が生 じる)

この入れ子集合のスキーマを使えば、何 も悩む点はない。任意のmc_idに ついて

SELECT文 を発行して日付を調べればよいし、一連の連鎖を確認したければncxt列 を見

れば済む。スティーブは、suc_datc列の値がncxt列 の値に対応して増加していかなけれ

ばならない、とは言っていなかったが、あるいはそういう要請もあるだろう。その場合

には、CHECK句を追加することで対処できる。

32

バ |ズ |ル |

8

鮨
1996年 9月 12日 、ヨーゲシュ・チャチャはある問題に突き当たり、それをcOmpu

ScⅣcに送ってきた。

彼の職場では、ユーザがいつも間違ったプリンタを使ってしまうことに困っていた。

そこで彼は、各ユーザが使用すべきプリンタを導くテーブルをシステムに追加すること

にした。そのテーブルはこんな感じだ。

CREATE TABLE PrinterControl

(user_id CHAR(10), 一― NULLは 空きプリンタを意味する
printer_name CHAR(4)NOT NULL PRIMARY KEY,
printer_descr■ pt■on CHAR(40)NOT NULL);

PrinterControl:プ リンタ管理テーブル

printeLname:プ リンタ名

useLid:ユ ーザID

printer_description i備 考

運用ルールは次の2つである。

1.テーブルに登録されているユーザは、自分が使うべきPnntcr_namcの プリンタを

使うこと

2.テーブルに登録されていないユーザは、uscr_idが NULLの共有プリンタ(Com

mon Pnntcr)を 使うこと

例えば、PrintcrControlテ ーブルは次の状態だとしよう。

Printe rCont roI

usen_id printer_name pninter_descniption

lchachal
lleel

lthomasl

NULL
NULL

'First floor''s prlnter'
'Second floor's printen'
'Third floor^'s pninter'
'Common pninter for new user'
'Common printer for new usen'

ILPTll

lLPT21

1LPT3!

:LPT41

1LPT51

33

ScLパズル

chachaが帳票を印刷するときには、LPTlだけを使うことが許される。一方、cclkoと

いう名前のユーザは、LPT4か LPT5のどちらかを使うことになる。前者のケースでは、

クエリを1つ発行すれば1行だけが選択されるので問題ない。だが後者のケースでは2

行が選択されてしまい、その結果をそのまま使うことはできない。

さて、この問題を1つのクエリで解くことはできるだろうか ?

'Sフ

←その■
0 私ならば、問題はデータにあると言いたい。uscr_id列 を見てほしい。この名前は一意

であるべきだが、複数行にNULLが格納されている。また、もう1つ現実的な問題があ

る。LPT4と LPT5の片一方だけが使われすぎないよう、うまく負荷分散したいのだ。

変てこなクエリを書く前に、ここはテーブル定義を変更しよう。

CREATE TABLE PrinterControl

(user_■ d_start CHAR(10)NOT NULL,
user_■ d_f■ nish CHAR(10)NOT NULL,
printer_name CHAR(4)NOT NULL,
printer_descr■ pt■on CHAR(40)NOT NULL,
PRIMARY KEY (user_■d_start, user_■ d_fin■ sh));

PrinterControl:プ リンタ管理テーブル

useLid」 inish:ユ ーザID(範囲終了)
printer_description :備 考

useLid_start iユ ーザlD(範囲開始)

printeLname:プ リンタ名

すると、サンプルデータは次のようになる。

Printe nCont roI

user_id_ usen_id_
stant finish

printer_ printen_
name descnlption

' chacha'
'Iee'
'thomas'
'a'
n

クエリはこうだ。

'chacha'
'1ee'
'thomas '

'nzzzzzzz'
'zzzzzzzz'

lLPTll

lLPT2`

lLPT3:

:LPT41

:LPT5!

'First floor's pninter'
'Second floor''s printen'
'Th j-r^d f loor' s printer'
'Common printer #1 '

'Common printer #2'

34

パズル8 プリンタの割り当て

‐‐′ゐ
ゞ
イ
瓢

ヽ

ィ
ヽ
、
　

　

膠
Ｌ

、ヽ
２

　

‘ｑ

値の範囲に応じた結果を返す

SELECT MIN(pr■ nter_name)
FROM Pr■ nterControl
WHERE :my_id BETWEEN user_■ d_start AND user_■ d_f■ n■ sh;

ここでの“トリック"は、名前の開始値と終了値である。これは“a"から“zzzzzzzz''ま

での文字列を、いくつかの範囲に分割する役割を果たす。範囲は自由に決められる。先

の分割の仕方だと、cclkOと いうユーザはLPT4だ けを使うことができる。なぜなら、

“cclko"と いう文字列は“a"と “mzzzzzzz''の 間に収まるからだ。同様に、normanは

LPT5だけを使える。どんなユーザIDが使われるかを知っていれば、分割の境界を注意

深く設定することで、2台のプリンタにかかる負荷をほぼ半々にできるだろう。

この解答では、共有プリンタは常に大きいLPT番号を持っていると仮定している。

chachaがこのテーブルを検索した場合、彼は (LPTl,LPT4)と いう結果集合を得るが、

その中から最小値であるLPTlを 選択する。RDBMSのオプテイマイザが賢ければ、主

キーのインデックスを使って、極値関数の実行速度を向上させるだろう。

その2

リチャード・レムレーは、こんな別解を思いついた。

SELECT COALESCE(MIN(printer_name),

(SELECT MIN(pr■ nter_name)
FROM PrinterControl AS P2
WHERE user_■ d IS NULL))

FROM Pr■ nterControl AS Pl
WHERE user_id = :user_id;

これは見た日以上にトリッキーだ。ユーザ cclkoで検索した場合、外側のWHERE句
はuscr id=icclko'と なる。だが、そんなユーザは登録されていないので、PrintcrControl

テーブルのコピーであるPlか らは1行 も返らない、と思うのではないだろうか。

ところがそうはならない。なぜなら、確かに、

SELECT col
FROM SomeTable W‖ERE l = 2;

というクエリは1行も返さないが、

35

ScLパズル

0

36

SELECT MAX(col)
FROM SomeTable WHERE l = 2;

というクエリは、1行だけ結果を返すのである。結果に含まれているのはNULLだ。こ

れは空集合に集約関数を適用した場合に見られる奇妙な特性である。したがって、次の

クエリはうまく動く。

SELECT COALESCE(MAX(col), someth■ ng_else)

FROM SomeTable
WHERE l = 2;

WHERE句 はMAX(col)の値を決めるためだけに使われ、行を返すか否かを決定する
ことはない。それはSELECT句 の仕事なのだ。集約されたMAX(col)は NULLになり、

それが返される。それゆえ、COttESCE関数も正しく動く。

このクエリの欠点は、共有プリンタから選ぶときに常に同じプリンタ (LPT4)を返す

ため、負荷分散にならないことだ。これを防ぐには、NULLを ゲストユーザで置き換え

るようなUPDATE文を追加すればよい。そうすれば、複数のプリンタに分散される。

その3
答えその2の欠点を安易に修正したのが、次のクエリである。

SELECT COALESCE(MIN(printer_name),

(SELECl‐ DISTINCT CASE
ハヽIHEN :user id く lnl

THEN ILPT41
ELSE lLPT5: END

FROM Pr■ nterControl

WHERE user_■ d IS NULL))

FROM Pr■ nterControl
WHERE user_■ d = :user_■ d;

この解の欠点は、共有プリンタの選択がすべてクエリの中で処理されており、テーブ

ルを全 く参照しないところである。そもそもこのやり方をとるなら、サブクエリ内の

CASE式より後ろにあるFROM句 とWHERIE句 はすべて削除してもかまわない。ただ

し、それは「データベース内にプリンタについての情報を記録しない」ということを意味

■
者
‘

●
●
一

、ヽ
・
／

／
′
´
´
ヽ

／
ヽ
１
「
ノ
‘
多
，

‐ヽｌσ
ヽ
マ

ブ⑦←′́
ツ

パズル 8 プリンタの割り当て

値の範囲に応じた結果を返す

する。プリンタを追加したり削除したりするときはデータベースではなく、このクエリ

を変更することになる。そこが情報を保存している場所だからだ。これはよい設計とは

言えない。

その4
0 テーブル設計を見直す方法は、もう1つある。未登録のグストユーザにも割り当て可

能かどうかを保持するフラグ列を持つのだ。そこに、割り当て可能なプリンタ (共有プ

リ ン タ)に は
IYIを

、 登 録 ユ ー ザ し か 使 え な い プ リ ン タ に は 'NIを セ ッ ト す る 。

CREATE TABLE Pr■nterControl

(uSer_id CHAR(10), ―― NULLは 空きプリンタを意味する
printer_name CHAR(4)NOT NULL PRIMARY KEY,
aSS■ 9nable_flag(〕 HAR(1)DEFAULT IYl NOT NULL
CHECK (ass■ gnable_flag IN (:Y!, lNI)),

pr■ nter_deSCr■ pt■on CHAR(40)NOT NULL),

PrinterControl:プ リンタ管理テーフル

assignable f ag:害 」り当て可能フラグ

useLid:ユ ーザlD

printer_description :備 考

printer_name : At) >re

そして、テーブルを次のようにUPDATEす る。これは、割り当て可能な共有プリンタ

のうちの1つを:gucst_idの ユーザに割り当てている。

UPDATE Pr■ nterControl
SEl‐ user_id = :guest_■ d
WHERE printer_name
= (SELECT MIN(printer_name)
FR()MI PrinterControl

WHERE assignable_flag = lYI
AND uSer_ld IS NULL);

また、運用を続けるうちに、ゲストユーザをすべてNULLク リアしなければならない

場面にも遭遇するだろう。それは次のクエリで行う。

UPDATE PrinterControl
SET user id = NULL
WHERE aSSignable_flag = :Y・

;

37

バ |ズ |ル |

0
■′「

魏
突然だが、あなたは1000席の座席を持つレストランの経営者だ。ウェイターが客を席

に案内すると、あなたはそのことを座席テーブル (一瞬「テーブル・テーブル」と言いそ

うになったが、分かりにくいのでやめた)に記録する。同様に、客が食事を終えると、そ

の席が空いたことを記録する。

そうなると欲しいのは、空席の一覧を「開始席番と終端席番がひとかたまりになった

形」で出力するクエリである。そうそう、1つ注意が必要なのは、このデータベースが載

せられているマシンがメインフレームではなく、PDAであることだ。

そこで問題なのだが、「使用するメモリ容量を可能な限り小さく」という条件付きで、

座席テーブルとクエリを考えてほしい。座席番号は整数だとする。

最初に思いつく方法は、「空き/使用」フラグの列を座席テーブルに追加することだろ

う。空席を調べるクエリでは、このフラグを利用するわけだ。だがこの方法では、レス

トラン全体で「1つの整数列 (座席番号)と 1文字の文字型の列 (フ ラグ)× 1000行」を

要することになる。確かにこれでもうまくいくが、最小のメモリ使用量という要件は満

たせていない。残念 l

その■

G肇ヨ)余 計な列を持たないように、フラグを座席番号の正負で表現するのはどうだろう。も
っとも、2つの属性を1つの列に折り込むことは、関係モデルの観点からは勧められな

い。しかも、1000行を必要とするという点は変わらない。

このアプローチで席を“使用中"にするには、次のSQL文 を実行する。

UPDATE SeatS
SET seat_nbr = -seat_nbr

WHERE seat_nbn = :my_seat;

Seats:座席テーブル seat nbr:座席番号

状態を“空席"に戻すときにも、同じUPDATE文で行える。また、閉店時間に席の状

態をリセットするには、「SET scatnbr=ABS(scat_nbr)」 とすればよい。

ま

側
ソ

ヽ

／
ド
ヽ

、
ヽ
・
κ

38

上l雌」_

t\flvg H4rr<tgD?
テーブルサイズを最小限に抑える

■
｀
(17ヽ

′
多κV その2

‐―′（０
シ

ヽ

／
ｔ
ｌｌｌｌ

ヽ

、ヽ
・
κ

∈肇ヨ)第 2の方法として考えられるのは、使用中の座席を保持する列だけを持つテーブルを
追加し、空席テーブルとの間で席番号を移動させることだ。こうすると、両テーブルを

合わせて1000行になる。ちょっとひねった答えだが、もっとひねったのが次の答えだ。

その3
0 用意するテーブルは1つだけだ。そこに、0か ら1001ま での座席番号を格納する行を

作成する (0と 1001はあらかじめ挿入しておく。0番 と1001番の席は存在しないが、席

の終端を示す“番兵"と して機能し、コードを簡単にしてくれる)。

客が席に着いたら、その番号の行をテーブルに挿入する。逆に席が空いたら、その番

号を削除する。この方法だと、すべて空席の場合にはテーブルにダミーの2行 (0番と

1001番)しか残らず、満席の場合 (最大件数時)で も1002行 (2004バイト)で済む。

次のビューは、このテーブルから座席番号が連続して抜けている部分
[訳注l]、 っまり空

席の“かたまり"を見つけ出し、その一番若い座席番号を返す。

CREATE VIEW F■ rstseat (seat)
AS SELECT (seat + 1)
FROM Restaurant
WHERE (seat + 1)NOT IN (SELECT seat FROM Restaurant)
AND(seat + 1)く 1001;

Restaurant iレ ストランの座席テーブル seat i座 席番号

同様に、次のビューは空席のかたまりの一番最後の座席番号を返す。

CREATE VIEW Lastseat (seat)
AS SELECT (seat - 1)
FR()M Restaurant
WHERE (seat - 1)NOT IN (SELECT seat FROM Restaurant)
AND(seat - 1)> 0;

では、この2つのビューを使って、空席のかたまりを一覧表示しよう。

訳注 1:このような 1つ以上連続する欠番のことを「ギャップ」とも言う。パズル 57および58も参照。

39

SoLパズル

‐ヽ‐′俄
ツ
、ヽ
・
／

SELECl‐ Fl.seat AS start, Ll.seat AS finish,

((Ll.seat ― Fl.seat)+ 1)AS available
FROM F■ rstseat AS Fl, Lastseat AS Ll

WHERE Ll.seat = (SELECT MIN(L2.seat)
FROM Lastseat AS L2
WHERE Fl.seat く= L2.seat);

このクエリでは、各かたまりの空席数も表示している。これが分かると、ウェイター

がグループ客を案内するときに便利だろう。

その4
リチャード・レムレーは、答えその3で示したビューとクエリを1つにまとめた。この

クエリ1つで、空席のかたまりを表示できる。

僣 D

SELECT

FROM

ON

GROUP
HAVING

(Rl.seat + 1)AS start,
(MIN(R2.seat) - 1)AS f■ n■ sh
Restaurant AS Rl
INNER JOIN

Restaurant AS R2
R2.seat > Rl.seat
BY Rl.seat

(Rl,seat + 1)く MIN(R2.seat);

、 11ヽ1//

'ヽ
ア=その5
0 答えその4のバリエーションとして、SQL-99規格の新機能であるOLAP関 数を使う

解も考えられる。この方法だと、座席数など追加の情報も多少得られる。

SELECT X.seat, X.rn,

(seat ― rn)AS ava■ lable_seat_cnt
FROM (SELECT seat, ROW_NUMBER()OVER (ORDER BY seat)

FROM Restaurant)AS X(seat, rn)
WHERE rn く> seat;

avallablc_scatcntは scat未満の空席数である。これは、レストランの座席がいくつか

のグループに分かれている場合などに便利かもしれない。

40

議
一̈一一ミ鮮
¨ヽ̈́
圏̈
ｓ巌
一̈一̈一鱗
欄

一^一機
一^̈一澪一一̈̈驚

饗
一”一

バ |ズ |ル |

■0

薇
1994年 11月 にカナダ在住のプログラマ、ルーク・ティモウスキがcOmpuscⅣcの

MicrosoR Acccssフ オーラムに面白い問題を投稿してきた。当時、彼は年金基金に関す

るデータの処理に取り組んでいて、sQL-92で書けば次のようなテーブルを扱っていた。

CREATE TABLE Pens■ ons

(s■ n CHAR(10)NOT NULL,
pen_year INTEGER N01‐ NULL,
month cnt INTEGER DEFAULT O NOT NULL
CHECK (month_cnt BETWEEN O AND 12),

earn■ ngs DECIMAL(8,2)DEFAULT O.00 NOT NULL);

Pensions:年 金テーブル

month cnt:月 数

sin:社会保険番号

earnings :年収

pen_year:年 全保険料の納付年

SINは カナダで納税者を識別するために使われている社会保険番号 (Social lnsurancc

Numbcr)で、米国のSSN(Social Sccur● Numbcr:社 会保障番号)に相当する。また、

pcn_ycar列 は年金保険料の納付年を、month_cnt列 はその年に社員が働いた月数を、

carnings列 はその年の総収入を保持している。

問題は、各社員の直近60ケ 月の総収入を求めるというものだ。この数値は連続してい

なければならず、社員1人 1人の年金を算出するために使われる。さかのぼる年は、最短

で5年 (各年のmOnth_cntが全部12だった場合)、 最長で60年 (各年のmOnth_cntが全

部lだった場合)だ。ただし、丸4年働いた後、5年 目は働かなかった (つ まり全く働か

なかった年がある)社員は年金の受給資格を一切得られない。

この問題が手強いのは、「直近」と「連続する」をSQLで表現することが難しいからだ。

4■

Sc)Lパズル

、||′ /

〕:,←
0

その■

次に示すビューは、

(1)社員が働いた (=mon■_cntが 0よ り大きい)

(2)mOnth_cntの 総計が60以上である

という2つの条件を満たす、連続する期間の始点と終点を得ている。

CREATE VIEW PenPeriods (Sin, Start_year, end_year, earn■ ngs_tot)

AS SELECl‐ PO.s■ n, PO,pen_year, Pl.pen_year,

(SELECT SUMI(earnings) ―― 期間単位 σ)総収入
FROM Pensions AS P2
AヽIHERE P2.sin = PO.sin

AND P2.pen_year BETWEEN PO.pen_year
AND Pl.pen_year)

FROM Pens■ons AS PO, Pens■ ons AS Pl
WHERE Pl.s■ n=PO.sin― ―支払期間を作るための自己結合
AND Pl,pen_year >= (PO,pen_year - 4)
AND Oく ALL(SELECT month_cnt ‐̈ 連続する月

FROM Pens■ons AS P3
WHERE P3.sin = PO.sin
AND P3.pen_year BETWEEN PO,pen_year

AND Pl.pen_year)
AND 60 く= (SELECT SUM(month_cnt) ―- 60ヶ 月1以上

FROM Pens■ons AS P4
ハヽIHERE P4.sin = PO.sin

AND P4.pen_year BETWEEN PO,pen_year
AND Pl,pen_year);

SELECT句 にサブクエリ式を入れるのは、SQL-92か ら使用可能な“トリック"だが、

今では多くのRDBMS製品が実装している。

注意が必要なのは、このクエリが60ケ月以上の期間すべてを返すことである。私たち

が本当に欲しいのは、直近のcnd_ycarだ ったはずだ。これを求めるには、いま定義した

ビューに対してMAX(cndJcar)で条件を指定すればよい。

42

‐ヽ‐′（ツ
、
ヽ
・
／

パズル40 年金おくれよ

連続と直近を表現する

SELECT ★

FROM PenPer■ ods AS P0
WHERE end_year = (SELECT MAX(end_year)

FROM PenPer■ ods AS Pl
WHERE Pl.s■ n = PO.sin);

コードは少し汚くなるが、SQL-92ではHAVING句 を使って同じことが書ける。やろ

うと思えば、これらのサブクエリをEXISTS述語を使って結合することもできるだろう。

練習問題として、最後のサブクエリに「PO.Pcn_ycarと Pl.pcn_ycarの 間に、P4.PCn_

ycarよ り大きい年が存在しない」という条件を追加して、やはり60ケ 月以上連続する期

間の総収入を求めてみてほしい。

その2,

0 答えその1の最後の問いかけに応じてCompuScⅣc経由で送られてきた改良版の答え

の多くは、私の解法をベースとしていた。ところが、最良の解答はリチャード・レムレ

ーが送ってきた、私の解法とは全く異なるアプローチによるものだった。彼の解は、

PcnsiOnsテ ーブルの3つのコピーPO、 Pl、 P2(こ の順で時間順に並んでいる)を使う。

SELECT P0. sin,
P0.pen_year AS start_year,
P2.pen_year AS end_year,
SUM(P1 .earnings) AS sumofearning
Pensions AS P0, Pensions AS Pl, Pensions AS P2

P0,month_cnt > 0
Pl.month_cnt > 0
P2.month_cnt > @

P0. sin = P1 . sin
P0. sin = P2. sin
P0.pen_year BETWEEN P2.pen_year - 59 AND (P2.pen_year - 4)
P1.pen_year BETWEEN P0.pen_year AND P2.pen_year
BY P0.sin, P0.pen_year', P2.pen_year
SUM(P1 .month_cnt) >= 60
(P2.pen_yean - P0.pen_year) = (COUNT(*) - t);

レムレーいわく「もしmonth_cnt=0と いう行を許さなければ、問題はもっと簡単にな

ります。この行を除外するために、無駄なWHERE条件を3つ も使っています !」 よい

データ設計は人生を簡単にしてくれるという、もう1つの実例と言わねばなるまい !

FROM

WHERE
AND
AND

AND
AND
AND
AND

GROUP
HAVING
AND

43

‐―′ヽ
創
）
一７

ヽ

／
卜
ヽ

、
ヽ
２

SoLパズル

この解答の見事な点は2つある。1つ 目は、5～ 60年の範囲 (それぞれ、mOnth_cntが

60に達するのに必要な最小年数と最大年数)で どれだけ連続しているかを調べるために

BETWEEN述 語を使っていること。2つ 目は、期間に含まれる年が連続していることを

保証するために、集約キーをHAVING句 の条件で使っていることだ。

私がWATCOM SQL 4.0[訳注1]で このクエリの実行計画を見積もってみたところ、レ

ムレーの解は私のオリジナルの解より4倍良好な結果が出た。だが実際に実行してみる

と、差はそれ以上であった。これは多分、レムレーの解が3テーブル間の自己結合 (普通

ならとても高コストだ)を含んでいたせいでプランナ
[訳注2]がだまされたからだろう。

その3
a 1999年 、ジヤヴイド・ダウベゴヴイッチは本書の初版に次のようなメールをくれた。

「どちらの解もそれぞれに見事です (あ なたのSQL-92版 も、リチャードのSQL-89版

も)。 正直なところ、私の解は複雑すぎて全体的にエレガントではありませんが、方向と

してはリチャードの解にとても近いものです。一番大きな問題は、収入の総和を求める

ことでした。ですが、もし直近のcnd_ycarを 求めて1つの解に決めたい場合は、あなた

が書いたクエリ(SELECT文)を次のように変える必要があります。なお、このクエリを

動かすためには、リチャードの解を使ってPcnsionsVicwビューを作る
[訳注3]必
要があり

ます」

SELECT PO.s■ n, PO.end_year,
MAX(PO.start_year)AS laststart_year,
MIN(PO.sumofearn■ngs)AS m■ nearn■ ngs,
MIN(PO.sumofmonth_cnt)AS m■ nmonth_cnt,
MIN(PO.start_year)AS f■ rststart_year,
MAX(PO.sumofearn■ngs)AS maxearn■ngs,
MAX(PO,sumofmonth_cnt)AS maxmonth_cnt
Pens■ onsV■ ew AS P0

end_year = (SELECT MAX(end_year)
FROM Penslons AS Pl
WHERE Pl.sin = PO,sin)

BY PO.s■ n, PO.end_year;

FROM
WHERE

GROUP

訳注 1

訳注2

訳注 3

サイベースのRDBMS製 品「SQL Anywhere Studio」 の旧称。

WATCOM SQLの オプテイマイザ。

SELECT句に「SUM(Pl.month_cnt)AS sumofmonth_cnt」 を加える必要がある。

44

バ |ズ |ル |

てく

讚
錮勝
~

ジェンク・エルソイは、CompuScⅣcの Guptaフ オーラムにこんな質問を送ってきた。

ある工場において、プロジェクトの内容が作業依頼書に記録されているとしよう。そ

こには、通過すべき一連の工程が書かれている。stcp_nbrで 管理される各工程は、“完

了"か “前工程 (複数の場合もある)の完了を待っている"かのいずれかの状態をとる。

使用するテーブルは次のとおりだ。

CREATE TABLE ProjeCtS

(workorder_■d CHAR(5)N01‐ NULL,

step_nbr INTEGER NOT NULL
CHECK (step_nbr BETWEEN O AND 1000),
step_status CHAR(1)NOT NULL
CHECK (step_status IN (ICl, IW:)), 一― Cは 完了、Wは待機

PRIMARY KEY (workorder_■ d, step_nbr));

Prolects:プ ロジェクトテーブル

step_nbr:工程番号

workorder id:作 業依頼 ID

step_status:工 程ステータス

サンプルデータは、例えば次のようになる。

Proj ects

worko rden_id step_nbn step_status

lAA1001

lAA1001

1AA1001

lAA2001

1AA2001

1AA3001

1AA3001

彼の要望は、stcp_nbrが 0(工程 0番)で、かつstcp_statusが ICIで あり、さらにその作

業 (同 じworkordctid)内で0番 を除く全工程のstcp_statusが 'Wiである依頼 ― 要す

るに0番の工程のみ完了している依頼
―
を取 り出すことだった。上のサンプルなら

:AA100「 だけが答えになる。

Ｃ

Ｗ

Ｗ

Ｗ

Ｗ

Ｃ

Ｃ

45

| |||| ||,| I II lll l lll l

／
′
ン
´
ヽ

′
ヽ
「
り
ｒ
多

′

‐ヽ―一仔
ヽ
「

、ヽ
・
Ｚ

SoLパズル

その■

0 したいことは実に明快であるが、答えを見つけるためには、このクエリの仕様の1つ

「その作業では、0番を除く全工程のstcp_statusが lWiである」を、主語と目的語を入れ

替えて考える必要がある。「その作業では、
「Wiが 0番を除く全工程のstcP_Statusであ

る」と考えれば、答えはすぐに出てくる。

SELECT workorder ■d
FROM Pro]ects AS Pl

WHERE step_ br = 0
AND step_statuS = [C]
AND iWi = ALL (SELECT step_status

FROM Pro]ects AS P2
WHERE step_nbr く> 0
AND Pl.WOrkorder_■ d = P2.workorder_■ d);

/′

、11′ /

Q←
その 12:

0 別の考え方をしてみよう。「特定のstcp_nbrについてstcp_statusがある性質を持って

いる作業依頼の集合 (=stcp_nbrの 集合)を探している」と考えるのだ。そうした場合、

SUM関数の中で特性関数 [訳注1]を使うことで、集合の全要素が仕様の条件を満たすか否

かを知ることができる。もし条件を満たすのであれば、特性関数の戻り値を合計した値

が、集合の要素数と一致するはずだ。

SELECT workorder ■d
FROM Pro]ects
GROuP BY workorder ■d
HAVING SUM(CASE WHEN step_nbr く> O AND step_status = iW

WHEN step_nbr = O AND step_status = iC
ELSE O END)= COUNT(step_nbr);

THEN l

THEN l

CASE式が使えない環境でも、ちょっとした計算をすれば同じことができる[訳注2]。

訳注1:特性関数 (characteristlc function)と は、ある集合の要素がその集合の特定の部分集合に含まれるかどうかを決定す
る関数で、含まれるなら1を、含まれないなら0を返す。その部分集合を定めるという意味で定義関数とも呼ばれる。

訳注2:SIGN(step_nbr)は 、step_nbrが 0の場合のみ0を、ほかの場合は1を返す。POSITЮ N(文字列 1,文字列 2)は 、文

字列2の中での文字列1の場所を表す数値を返す。この場合は、step_statusが
lWlか IC'か

の判定に使つている。

46

、ヽ
・
κ

′
／
´
´
ヽ

′
ヽ
「
「
／
，
″
′

‐ヽｌσ
ヽ
マ

パズル■■ 作業依頼
HAVING句の力 (その1)

SELECT Workorder ■d
FROM Pro〕 ects AS Pl

GROUP BY workorder ■d
HAVING SUM(SIGN(step_nbr)■ POSIT10N(lWi IN step_status)

+ (1 - SIGN(step_nbr))' POSIT10N(ICI IN step_status))

= COUNT(step_nbr);

先のクエリはテーブルのコピーを1つ しか持たず、スキャンは1回で済むため、処理速

度も最高になるはずだ。また、CASE式 には処理を最適化するための細工を施してある。

CASE式のWHEN句 は書かれた順番でテストされるので、最もマッチしそうな条件を

最初のほうに並べるのだ。

標準SQLでは要求されていないが、ANDが結んでいる項がすべて結合条件 (2つのテ

ーブルの列を結ぶ)であるか、あるいはすべて検索引数 (1つ のテーブルの列を定数と

比較する一
Scarch ARCumcntsを略してSARGと も呼ぶ)である場合、書かれた順で

実行されることがやはり多い。したがって、SARGの初めに最小サイズのデータ型を扱

う条件を置くことで、パフォーマンスを改善できる。例えば、整数の比較は大きな

CHAR(n)型データの比較よりも速い。

その3
答えその2の方法では、サブクエリを使っていない。コロンビアのフランシスコ 。モ

レノは、その別バージョンを送ってくれた。オリジナルのクエリはOraclcの DECODE

関数を使っていたが、ここではSQL-92での書 き方に直 したものを紹介する。

0

SELECT

FROM
GROUP
HAVING

workorder ■d
PrOieCtS
BY workorder ■d
COUNT(■) ―― あるworkorder_idに ついての全行数
=COUNT(CASE WHEN step_nbr=O AND step_status= iCI

THEN l

ELSE NULL END)-0番 で「完了」の行数
+ 00UNT(CASE WHEN step_nbr く> O AND step_status = IWi

THEN l

ELSE NULL END); ―-0番以外で「待機」の行数

ここでは、比較演算の左辺をCOUNT(・)だけにして、式の中に入れないようにして

いる。こう書くことで、パフォーマンスも少し向上するだろう。

47

S《⊇:Lパズル

私の生徒の1人であるステファン・グナイストは、こんなに簡単で素晴らしい解を見

っ け た
[訳注 3]。

SELECT
FROM

WHERE
GROUP
HAVING

worko rde r_id
Proj ects
step_status = 'C'
BY workonden_id
SUM(step_nbr) = 0;

この解は、テーブル定義のNOT NULL制約とCHECK制約を利用したもので、結合
を一切必要としない。私たちはすぐにDML(データ操作言語)に ばかり目を向けがちだ

が、SQLが実はDDL(データ定義言語)と DMLの組み合わせなのだということを例証
した名答だ。

訳注 3:も し、作業依頼でグルービングした集合の中に、作業状態が 'C'である行が 1つもなければ、S∪ M(step_nbr)は 0では
なくNULLを返す。SUM(step_nbr)が 0を返すのは、step_nbr=0で ある行の作業状態が tC'で、残りの行の作業状態
がすべて 'Wlの場合だけである。

48

バ |ズ |ル |

■2

椰
q勝
~

レオナルド・C・ メダルは、COmpuScⅣcにこんな問題を送ってきた。

いま病院に対して、患者たちが訴訟を起こしているとしよう。それを記録しているの

がclaimsテ ーブルだ。1つの訴訟には、複数の被告人 (普通は医師)が存在し得る。

Cl-alms

claim_id patient_name

:Smithl

iJohnsI

IBrowni

１

２

３

Claims:訴訟テーブル claim ld:訴 訟 lD patientname:患 者名

被告人は、Dcindantsテーブルに記録される。

Defendants

clalm id defendant name

10

10

10

20

20

30

'Johnson '

' Il4aye r '

'Dow'
'Baker'
'Mayer'
'Johnson '

Defendants:被 告テーブル clalm id:訴訟 ID defendant_name : &€€

被告人は、今までに起きた訴訟事件の履歴と結び付けられており、訴訟の進行状態は

次のように記録されている。

49

SQLパズル

LegalEvents

clalm_id defendant_name claim_status change_date

10

10

10

10

10

10

10

10

10

20

20

20

30

'Johnson '

'Johnson '

'Johnson '

'Johnson '

'Mayen'
' Maye r' '

'Mayer'
'Dow'
'Dow'
'Mayer'
'Mayer'
'Baker'
'Johnson '

:API

10RI

ISFI

ICLI

IAPI

10RI

ISFI

lAPI

10RI

:API

10RI

IAPi

IAPl

:1994-01-011

11994‐ 02-011
11994-03-011

11994-04-011

:1994-01-011

11994-02-01:

'1994-03-011
11994-01-01:

11994-02-011

11994-01‐
011

11994-02-011

11994-01-011

11994-01-011

LegalEvents

claim_status

訴訟事件テーブル

訴訟状態

claim id:訴 訟 ID

change_date :更 新 |ヨ

defendantname:被告名

訴訟の状態は、法律で定められた一定の順序で変化する。その順序を示すのが次のテ

ーブルである。

Claimstat usCodes

claim_status clai-m_status_desc claim_seq

Ａ

Ｏ

Ｓ

Ｃ

'Awaiting review panel'
'Panel opinion rendered'
'Suit filed'
'CLosed'

CiaimStatusCodes:訴 訟状態コードテーブル

claim status desc:説 明

'Awaiting review paner:審 理中

'Suit filed':上 訴

claim status:訴 訟状態

claim_seq:連 番

'Panel opinion rendered':評 決

'Closed':結審

50

パズル■2 訴訟の進行状態

最大値の集合からその最小値を取り出す

ある訴訟における各被告の訴訟状態 (daim_status)には一番最近のもの、つまり連番

(chm_scq)の 最大値を持つ訴訟状態を使う。なお、法律上の理由から、日付でソートし

た場合の訴訟の進行と連番でソートした場合の進行は、一致するとは限らない。

また、訴訟自体の進行状態 (claim_status)には、その訴訟に関与している被告全員の

訴訟状態のうち、連番が最小のものを使う。要するに、最大値 (各被告の訴訟状態)を集

めた集合の中から最小値 (各訴訟の進行状態)を選ぶというわけだ。上のサンプルデー

タならば、次のような結果が答えになる。

claim_id patient_name claim_status

10

20

30

iSm■ thi
lJohnsI

IBrowni

Ｏ

Ａ

Ａ

、11′ /

〕
'9←

あなたには各訴訟の進行状態を取得し、それを表示してもらいたい。

その■

メダルの答えは問題文の条件をコードに直訳したクエリで、1文で書かれている。

SELECT Cl.cla■ m_■ d, Cl.pat■ ent_name, Sl.cla■m_status

FROM cla■ ms AS Cl, Cla■ mStatusCodes AS Sl

WHERE Sl.cla■ m_seq IN

(SELECT MIN(S2.cla■ m_seq)

FROM Cla■ mStatusCodes AS S2
WHERE S2,claim_seq IN

(SELECT MAX(S3.cla■ m_seq)

FROM LegalEvents AS El,
Cla■ mStatusCodes AS S3

WHERE El.cla■ m status = S3.cla■m status

AND El,clainl id = C11,claim id

GROUP BY El.defendant_name));

0

54

SCLパズル

／
′
´
´
ヽ

′

ヽ

ノ

多

′

‐ヽｌσ
ヽ
「

、ヽ
・
κ その2

0 以下に示す解答は、フランシスコ。モレノから寄せられた。SQL-92構 文の結合を使

うことによって、サブクエリを使わないようにしたものだ。

求める結果を得るためのクエリは次のとおり。

SELECT

FROM

WHERE
GROUP

Cl.cla■ m_■ d, Cl.pat■ ent_name,
CASE MIN(Sl.claim_seq)WHEN 2 THEN :AP:

WHEN 3 THEN :OR:
WHEN 4 THEN ISF!
ELSE :Cll END

((Cla■ ms AS Cl
INNER JOIN
Defendants AS Dl

ON Cl.claim_id E Dl.cla■ m_id)

CROSS JOIN

Cla■ mStatusCodes AS Sl)
LEFT OUTER JOIN
LegalEvents AS El
ON Cl,cla■m ■d = El.cla■ m ■d
ANE)IDl.defendant nanle = El.defendant name

AND Sl.cla■ 1l status = El.Cla■ m status
El.cla■ m ■d IS NULL
BY 01.claim_■ d, Cl.pat■ ent_name;

52

バ |ズ |ル |

■3

鮨
ブレンダン・キャンベルは1996年の5月 、COmpuScⅣcの Oradcユ ーザのグループフ

オーラムに面白い問題を投稿してきた。彼はこの問題を本に載せる許可をくれるだけで

なく、彼が考えた常識外れなPL/SQLの 解を、悪い見本として載せることにも承諾して

くれた。つまり、科学の発展のために、自らの恥と不名誉を世界に供してくれたのだ。

献体をするのは簡単だ一 もう死
んでいるのだから。本当に難しいのは、自らの尊厳

を差し出すことだ。だが、ここでは解を公開してよいという、彼の勇気をたたえるだけ

にとどめておこう。

このパズルで私たちが考えるのは、レポート作成プログラムヘ結果を渡すために、講

座とそれを受講している生徒、それに教師の名前 (1人 とは限らない)を表示するクエリ

である。それだけなら何ということはないが、難点が1つある。レポート用紙には、教師

の名前を印刷するスペースが2人分しかないのだ。

もし教師が1人 しかいなかった場合には、その教師名を1番 目のtcachcLnamc列 に表

示し、2番 目の列は空白かNULLに する。教師がちょうど2人いた場合には、両方の名

前を昇順で表示する。教師が3人以上いた場合には、1人 目の教師だけを最初の列に表

示して、2番目の列には 1-Morc一 千と表示する。

必要なデータは、次のテーブルに含まれている。

CREATE
‐
「ABLE Reg■ ster

(course_nbr INTEGER NOT NULL,
Student_name CHAR(10)NOT NULL,
teacher_name CHAR(10)NO・ l‐ NULL,
...);

Register:受 講登録テーブル

studentname:生徒名

course nbr:講 座番号

teacher_name:教自雨名

ブレンダンが考えたオリジナルの解は長さが70行 もあったが、純粋なSQLでの答え

は12行程度の1文で済む。

53

SOLパズル

0

‐
―
′
Ｄ

ン

ヽ

／
卜
＼

、ヽ
・
κ その■

1つの方法は、極値関数
[訳注1]と UN10Nを使うことだ。

SELECT
FROM

GROUP
HAVING
UN10N
SELECT

FROM

GROUP
HAVING
UNION
SELECT

FROM
GROUP
HAVING

Rl.course_nbr, Rl.student_name, MIN(Rl.teacher_name), NULL
Register AS Rl
BY Rl.course_nbr, Rl.student_name
COUNT(■)= 1

Rl.course_nbr, Rl,student_name,

MIN(Rl,teacher_name), MAX(Rl,teacher_name)
Register AS Rl

BY Rl.course_nbr, Rl.student_name
COUNT(★)= 2

Rl.course_nbr, Rl,student_name,

MIN(Rl.teacher_name), 1-― More‐ ―|

Reg■ ster メヽS Rl
BY Rl.oourse_nbr, Rl.student_name
COUNT(■)> 2;

それでは、例によって詳しく見ていこう。

最初のSELECT文 は、教師が1人だけという場合のcoursc_nbrと studcnt_namcの 組

み合わせを取り出している。ではなぜ、MIN関数でうまくいくのか分かるだろうか。

それは、1人 しかいないのなら、その教師名がデフォルトで最小値になるからだ。私は

失われた値としてNULLを使うのが好きだが、文字列定数を使ってもかまわない。

2番目のSELECT文 は、教師がちょうど2人 という場合のcoursc_nbrと studcnt_namc

の組み合わせを取り出している。2人 しかいないので、MIN関数とMAX関数で名前を

昇順に並べることができる。

3番 目のSELECT文は、教師が3人以上いる場合のcoursc_nbrと studcntnamcの組み

合わせを取り出している。最初の教師名を取得するためにMIN関数を使い、2番目の列

にはレポートの仕様に従って定数 1-― Morc-1を指定している。

訳注1:MAX関 数とMIN関 数のこと。

54

‐―′ヽ
幻
）
一イ

ヽ

／
ｒ

、

、
Ｌ

パズル■3 2人かそれ以上か、それが問題だ
CASE式 の中に集約関数を組み込む (その 1)

その2

0 リチャード・レムレーは、私が公表した解をうまく料理してくれた。SQL-92に ある

CASE式の中に極値関数を入れる構文を利用して、後半の2つのSELECT文を最初の

SELECT文の中に折 り込んだのだ。

SELECl‐ COurSe_nbr, student_name, MIN(teacher_name),
CASE COUNT(■)WHEN l THEN NULL

WHEN 2 THEN MAX(teacher_name)
ELSE :‐ ―More― ―: END

FROM Re9■ Ster
GROUP BY course_ br, student_ ame;

この単純CASE式 は、次のような検索CASE式で書き換えることもできる。

CASE WHEN COUNT(■)= l THEN NULL
WHEN COUNT(■)= 2 THEN MAX(teacher_name)
ELSE l― ―More― -1

END

さらに次の解を見ると、条件により結果の表示の仕方を変える問題では、SELECT句

のリスト中で使えるCASE式が本当に便利だということが分かるだろう。

、11′ /

〕:り←その3
0 そもそも、作成しようとしているレポートのレイアウト自体に問題がある一 本来、

教師の名前は全員分リストアップされたほうがよい。coursc_nbrと studcnt_namcも 、同

じ値が繰り返し出力されないようにしたい。つまり、それらの列で同じ値がまた出てき

たときには、そこは空白にしておくべきなのだ。COBOLやほかの帳票作成用プログラ
ムでは簡単に書けるが、SQL-92では次ページに示すような形になる。

55

SoLパズル

SELECT CASE WHEN teacher name
= (SELECT MIN(teacher_name)
FROM Register ノヽS Rl
WHERE Rl.course nbr =‐ RO.course nbr
AND Rl.student_name = RO,student_name)

THEN course nbr
ELSE NULL END AS course_nbr_hdr,

CASE WHEN teacher name
= (SELECT MIN(teacher_name)
FROM Reg■ ster AS Rl
WHERE Rl.course nbr = RO.course nbr
AND Rl.student_name = RO.student_name)

THEN student name
ELSE NULL END AS student_name_hdr,

teacher name

FROM Reg■ ster メヽS R0

0RDER BY oourse_ br, Student_ ame, teaCher_ ame;

ただ、やはりこのコードはあまり誉められたものではない。結果が第1正規形を満た

さないからだ。これは、フロントエンドのプログラムですべきことをデータベースでや

ってしまった悪い例である。

56

バ |ズ |ル |

■4

讚
Q籐
~

今、あなたは自分のオフイスで新しいデータベース印刷システムを使い、社員の自宅

の電話番号を一覧表にして打ち出そうとしていると想像してほしい。使用するテーブル

は以下のものである。

CREATE TABLE Personnel

(emp_■d INTEGER PRIMARY KEY,

f■ rst_name CHAR(20)NOT NULL,
last_name CHAR(20)NOT NULL);

Personnel:社 員テーブル emp_ld:社 員ID first_name : € last_name : tt

CREATE TABLE Phones

(emp_id INTEGER NOT NULL,
phone_type CHAR(3)NOT NULL
CHECK (phone_type IN (lhoml, lfaxl)),
phone_nbr CHAR(12)NOT NULL,
PRIMARY KEY (emp_id, phone_type),

FOREIGN KEY (emp_id)REFERENCES Personnel(emp_■ d));

Phones:電 話テーブル

phone_nbr:電言舌番号

emp_ld:社 員 ID phone_type:電 話タイプ

phonc_wpc列 の lhOmlと 鳴xlと いうコードは、番号が電話番号かFAX番号かを表す。

あなたは各社員の姓名と電話番号、FAX番号を1行にまとめて全員分印刷したいと考

えている。番号が分からない場合にはNULLを表示する。電話番号とFAX番号ともに不

明ならば、両方の番号列がNULLに なる。

なお、念のため言っておくと、PhOncsテ ーブルの外部キー制約は、社員以外の番号を

表示しないためのものだ。

57

SQLパズル

、ヽ〉:メ、4

'ヽフ「その■
0 この問題には、考えるべきことがたくさんある。最初に思いつく方法は、自宅の電話

に関する情報を単独で作ることである。情報は全社員を網羅したいので、外部結合が必

要だ。

CREATE VIEW HomePhones

(■ast_name, f■ rst_name, emp_■ d, home_phOne)
AS SELECT El.last_name, El.f■ rst_name, El.emp_■d, Hl.phone_nbr
FROM (Personnel AS El LEFT OUTER JOIN Phones AS Hl

ON El.emp_■ d = Hl.emp_■ d

AND Hl.phone_type = :homl);

これと同様に、FAXの情報についてもビューを作ることができるだろう。

CREATE VIEW FaxPhones (last_name, f■ rst_name, emp_■ d, fax_phone)

AS SELECl‐ El.last_name, El.f■ rst_name, El.emp_■d, Fl,phone_nbr
FROM (Personnel AS El LEFT OUTER JOIN Phones AS Fl

ON El.emp_■ d = Fl.emp_■ d

AND Fl.phone_type = ifaxl);

あとは、これら2つのビューを結合するだけだ。

SELECT Hl,last_name, Hl.f■ rst_name, hOme_phOne, faX_phOne
FROM HomePhones AS Hl, FaxPhones AS Fl
WHERE Hl.emp_■ d = Fl.emp_id;

また、こういう問題にはCO」ISCE関数が役に立つ。この関数は引数の式のリスト

を左から右へ調べていき、最初に見つかったNULLでない値を返してくれる。

SELECT COALESCE(Hl.last_name, Fl.last_name),
COALESCE(Hl.f■ rst_name, Fl.f■ rst_name),

honlo_phone, fax_phone

FROM HomePhones AS Hl FULL OUTER JOIN FaxPhones AS Fl
ON Hl.emp_■ d = Fl.emp_■ d;

58

燐^
一澪
檬̈

惨^
”̈鰺
“̈一́一一畿

´̈̈一．

、ヽ
・
／

パズル■4 電話とFAX
外部結合の上手な使いこなし

その12

0 答えその1の クエリは正しく動くのだが、欠点が 1つある。このクエリを実行する前

におそらく2つのビューを実体化することになるため、処理にとても時間がかかるのだ。

そこで、一歩退いて答えその1の クエリをよく観察してみる。すると、FaxPhoncsと

HomcPhoncsの 2つ のビューは、どちらもPcrsonnclテ ーブルと外部結合されているこ

とが分かる。それならば、これら2つ のビューからPcrsOnnclテ ーブルを抜き出して、

FROM句で2つのテーブルと結合しよう。

SELEC)T El.last_name, El.f■ rst_name, Hl.phone_nbr AS Honle,
Fl.phone_nbr AS FAX

FROM (Personnel AS El LEFT OUTER J01N Phones AS Hl
ON El.emp_■ d = Hl.emp_■ d
AND Hl.phone_type = :homl)
LEFT OUTER JOIN Phones AS Fl
ON El.emp_■ d = Fl.emp_■ d

AND Fl,phone_type = lfaxl:

このクエリでは、3つのテーブルを一度に取り出すので、答えその1の クエリよりも多

少は速くなるはずだ。なお、Sybasc、 Oraclc、 Guptaの独自拡張の構文では外部結合のネ

ストを扱えないため、このクエリは簡単には書けない。

0

その3
リズ・クレイボーン・コスメティクス社のデータベースアナリストであるキショー

レ・ガンジーは、2つのビューを使わない解法を提案してきた。彼の答えはOraclcの構

文を使っていたが、それをSQL-92構文に直したものが次のクエリである。

SELECT El.emp_■ d, El.f■ rst_name, El.last_name,
MAX(CASE WHEN Pl.phone_type = :homi

THEN Pl.phone_nbr
ELSE NULL END)AS home_phone,

MAX(CASE WHEN Pl.phone_type = lfax:
THEN Pl.phone_nbr

ELSE NULL END)AS fax_phone
Personnel AS El LEFT OUTER JOIN Phones AS Pl
Pl.emp_■ d = El.emp_■ d

BY El.emp_id, El.first_name, El.last_name;

哄

倒
ソ

ヽ

／
１
‐―
――
ヽ

′／
´
´
ヽ

′
ヽ
「リ
イ
多
′

‐ヽ―一％
ヽ
「

、ヽ
・
κ

FROM
ON

GROUP

59

SQLパズル

CASE式 では、電話かFAXかに応 じて番号を正 しい列に配置している。その後に、

MAX関数とGROUP BY句 を使って1行にまとめるという流れだ。

|

1ヽ1′ /

'qЭ

←その4
0 最後の解は、コロンビアのフランシスコ・モレノから届けられた。

SELECT Pl.last_name, Pl.f■ rst_name,

(SELECl‐ Tl.phone_nbr
FROM Phones AS Tl

WHERE Tl.emp_■ d = Pl.emp_■ d

AND Tl.phone_type = lhoml)AS home_phone,

(SELECT T2,phone_nbr
FROM Phones AS T2
WHERE T2.emp_■ d = Pl.emp_id
AND T2.phone_type = ifaxi)AS fax_phone

FROM Personnel AS Pl;

これも正解だが、スカラサブクエリ
駅注1]は、あまり速くは動かないだろう。

訳注 1:名 前のとおリスカラ値、すなわち単一の値を返すサブクエリ。条件に一致する行がなかつた場合には N∪ LLを返すた

め、この解答のように外部結合の代用として広く利用されている。

6o

バ |ズ |ル |

■5

蜀
ジャック・ウェルズがこのややこしい問題をCompuScⅣcに送ってきたのは、1996年

の7月 のことである。ジャックが当時置かれていた状況をひとことで言えば、「3GL駅
注1]

を使う人々と一緒に働かなくてはならないSQLプログラマ」だった。彼らは社員情報の

帳票作成に従事しており、その仕事の一環として、各社員の「現在の給料」と「昇給前

(現在の額になる直前)の給料」についての情報を得たいと思っていた。そのレポートに

は、社員の昇給日と給料を記載する必要がある。

もし、給料と昇給日を単純に1行ずつ結果セットヘ出力し、それをホストプログラム

で適宜フォーマットするというのなら、話はとても簡単だ。実際、皆さんが初めて書く

プログラムとは、このような処理を行うものではないだろうか。

だが残念なことに、言い添えておかねばならないことがある。実は、アプリケーショ

ンプログラマたちがどうしようもない怠け者ぞろいで、「社員ごとに、現在と昇給前の給

料および昇給日を1行で返すようにSQL文を書いてくれ」と言ってきたのだ。あとはた

だ1行ずつカーソルで読み出し、印刷するだけでレポートはでき上がる。彼らは実作業

と呼べるような仕事を何もしなくて済むわけだ。

ジャックは、この問題をフェビアン・パスカル (www.dbdcbunk.cOmを 主宰)に も相

談した
[訳注2]。 パスカル氏の返答は「そんなクエリは書けない」というものだった。「真の

リレーショナル言語ならば可能かもしれない。しかし、SQLは そうではないので不可能

だ。たとえSQL-92で もできない」

言ってくれるじゃないか。こんな話を聞くと、ふつふつと闘志が湧いてきてしまう !

そうそう、もう1つ言い忘れていたことがある。この問題を考えるにあたって、1つ制

限があった。それは、ジャックがoraclcを 使っていることだ。Oradcは当時、SQL-92に

対応していなかった (正しい外部結合の構文もなく、一般的なスカラサブクエリ式など

も使えなかった)。 そのため、クエリはSQL-89に準拠したものであることとする。

テストデータには、次のものを使おう。

第3世代言語 (3rd Ceneration Language)。 手続き型言語一般を指す。

フエビアン・パスカル氏は、米国で活躍するルーマニア生まれのシステムコンサルタント。関係モデルの理論的厳密

さにこだわり、ベンダや商業誌の商業主義を告発する辛口批評で知られる。著書に『Practlca1 lssues in Database

Management』 (Addlson― Vヽesley千」)など。

訳注 1

訳注 2

64

SoLパズル

CREATE TABLE Salar■ es

(emp_name CHAR(10)NOT NULL,
sal_date DATE NOT NULL,
sal_amt DECIMAL(8,2)NOT NULL,
PRIMARY KEY (emp_name, sal_date));

Salaries:給 料テーブル emp_nam e:社員名 sal_date:昇給日 sal_amt:給料

INSERT INTO Salar■ es

VALUES (lTOmi, 11996-06-201,

(1‐「 oml, 11996-08-201,

(|‐Tom:, 11996-10-201,

(|‐「 om:, 11996-12-201,

(lD■ Ckl, 11996-06-20!,

(IHarryl, 11996-07-20',
(lHarryl, 11996-09-20:,

500.00),
700.00),

800.00),
900・ 00),

500.00),
500.00),
700.00);

Tomには3回、Har7に は1回の昇給があり、Dickはまだ昇給のない新米である。

、ヽ
・
κ

／
′
´
´
ヽ

′
ヽ

り
ｒ
多
′

‐ヽ―一仔
、
「
その■

0 手始めに、簡単な問題から考えてみよう。この解答では、私が個人的に「一般極値関

数 (gcncralizcd cxtrcma)」 とか「top(n)関 数」と呼んでいるクエリを使う。そのクエリを

ビューにすると、次のようになる。

CREATE VIEW Salar■es2 (emp_name, sal_date, sal_amt)
AS SELECT SO.emp_name, SO.sal_date, MAX(SO.sal_amt)
FROM Salar■ es AS SO, Salar■ es AS Sl
WHERE SO,sal date く= Sl.sal date
AND SO.emp_name = Sl.emp_name
CROUP BY SO.emp_name, SO,sal_date
HAVING COUNT(■)く = 2;

emp_name saI_date sal_amt

11996-06-201

11996-07-201

11996-09-201

11996-10-201

11996-12-201

62

ID■ckl
IHarryl

lHarryl

:Toml

lTomi

500.00

500.00
700.00

800.00
900.00

ヽ
つろ

パズル15 現在の給料と昇給前の給料
極値関数 (MA× /MIN)の 一般化

salaricsテ ーブルのコピーSlは、各社員について昇給が2回以下という部分集合を作

るのに使われている。MAX関数は、そこからsal_amt列の値を取り出すための“トリッ

ク"である。こうして、1回の昇給につき1行の形で直近2回の昇給日と給料を社員ごと

に出力できる。アプリケーションプログラマがそれほど怠け者でないなら、このテーブ

ルを渡せば、レポート作成のためのフォーマットはアプリケーション側でしてくれるだ

その2

実際に解 くべき問題は、もっと難しい。これをsQL-89の 範囲内で記述するための 1

つの方法は、問題を2つのケースに分けることだ。

l.1回 だけ給料の設定があった社員

2.2回以上給料の設定があった社員

すべての社員が、このどちらか一方のケースにのみ該当することは明らかだ。そこで、

これら2つの集合をUNIONでつなげる方法が考えられる。

SELECT S0.emp_name, S0.saI_date, S0.sal_amt, 51.sal-date,
S1 . sal_amt

FRoM Salanies AS S0, Salaries AS Sl
WHERE S@.emp_name = S1.emp_name

AND S0.sa1_date =

(SELECT MAX (S2. sa]_date)
FROM Salanies AS 52

WHERE S0.emp_name = 52.emP_name)
AND 51 , sal_date =

(SELECT MAX(53. sal_date)
FROM Salaries AS 53

WHERE S0.emp_name = 53.emp_name
AND 53.saI date < S0.sal_date)

UNION ALL
SELECT 54.emp_name, MAX(54.sal_date), MAX(54.sal_amt),

NULL, NULL

FROM SaIaries AS 54
GRoUP BY 54. emp_name

HAVING COUNT(*) = 1;

虫

倒
ｖ
一７

ヽ

／
ｒ
ヽ

、
ヽ
・
κ

0

63

SclLパズル

emp_name saI_date sal_amt sal_date sal amt

lToml

:HarryI

ID■ckl

11996-12-201

:1996-09-201

11996-06-201

900,00

700.00

500.00

11996-10-20i

l1996-07-201

NULL

800.00

500.00

NULL

DB2プログラマなら、これがSQL-92標準の外部結合演算子がDB2に実装されていな

かったころに、外部結合を実現するために使われていた方法の1つであることに気がつ

くだろう。最初のSELECT文 が最も難しい。salaricsテーブルに対して自己結合を行っ

ているのだが、コピーsoは現在の給料の情報源であり、コピーSlは直前の給料の情報

源である。2つ 目のSELECT文 は、テーブルに1行 しか存在しない社員を取得する単純

な集約クエリである。2つ の結果集合には共通部分がないので、UN10Nの代わりに
UNION ALLを 使って余計なソー トを省くことができる。

、11′

/′
｀
その3

0 もっと良い解を見つけてほしいという私の挑戦に対して、いくつかの返事があった。

スミス・バーニー社のリチャード・レムレーは、sQL-92に 基づく解法を送ってきた。

この解ではビューを使わずに済むよう、サブクエリテーブル式をうまく利用している。

共通表式
[訳注3]をサポートする製品なら、Aと Bのサブクエリはビューに変換できる。

SELECT B.emp_name, B.maxdate, Y.sal_amt, B.maxdate2, Z.sa1_amt
FRoM (SELECT A.emp_name, A.maxdate, MAX(X.sal_date) AS maxdate2

FRoM (SELECT W.emp_name, MAX(W.sa1_date) AS maxdate
FR0M Salaries AS W

GRoUP BY W.emp_name) AS A
LEFT OUTER JOIN SalaTies AS X

0N A,emp_name = X.emp_name
AND A.maxdate > X.sal_date

GRoUP BY A.emp_name, A.maxdate) AS B

LEFT OUTER JOIN SalaTies AS Y

0N B.emp_name = Y.emp_name AND B.maxdate = y.sal date
LEFT OUTER JOIN SalaTles AS Z

0N B.emp_name = Z.emp_name AND B.maxdate2 = Z.sal date;

訳注3:共通表式 (Common Table Expresslon)は SQL-99で標準化された機能で、FROM句のインラインビューをWITH句
を使って「外出し」にする技術。何度も参照されるインラインビューを表通表式にすることで、コー ドを簡潔にできる。

具体的な書式は、本パズルの答えその 7にあるsalaryRankSビ ユーの定義を参照。

64

＾
綱
）影
“

″
Ｌ
、

パズル■5 現在の給料と昇給前の給料
極値関数 (MAX/MIN)の 一般化

.|
1ヽ1′ /

、
｀
/つヽ´方ヽジ「その4
0 マイク・コンウェイは、Oraclcを使った解答を思いついた。私はそれをSQL-92構文

に直そうとしたのだが、いまひとつ中途半端な結果に終わってしまった。難しかったの

は、当時のOracicが標準の外部結合構文をサポートしていなかったため、正しい結果を

得るには結合を実行する順番に注意が必要だったことである。オラクル社のアソシエイ

トアプリケーションエンジエアであるシェド・カディールは、答えその1で作ったビュ

ーを使って、私の解法を改良してくれた。

SELECT 31.emp_name, S1.sal_date, Sl.sal_amt, 52.sal--date,
52. sal_amt

FROM Sa1aries2 AS 51 , salanies2 AS 52 -- C:. -tl*)
WHERE Sl.emp_name = 52.emp_name

AND S'l.saI_date > 52.sal_date
UNION ALL

SELECT emp_name, MAX(sal_date), MAX(saI_amt), NULL, NULL

FRoM Salaries2
GRoUP BY emp_name

HAVING COUNT(*) = 1'

もしかしたら、RDBMSに よってはUNION ALLを使 うにあたって、SELECT句 の2

つのNULLを CAST(NULL AS DATE)と CAST(NULL AS DECIMAL(8,2))に 変え、列

のデータ型を厳密にそろえる必要があるかもしれないので、注意してはしい。

／
′
´
´
ヽ

′
ヽ
、
フ

イ
多

，

‐ヽ―夕
ヽ
「

イ́ ン

0

その5
ジャックは、wwW.dbdcbunk.comに 紹介のあるクリス・デイトの著書で定義されて

いる関係代数演算子を使った解答を考えついた
[訳注4]。 しかし、ここで紹介するのはやめ

ておく。理由は、①オリジナルの問題には「Oradcで動く解」という制約がある、②その

関係代数を実装したRDBMSがない、という2つである。関係代数に基づいた「Tutorial

D」 という実験的な言語があるのだが、広く利用されているものではない。

訳注 4:この問題は、『プログラマのためのSQL第 2版』(ピアソン エデュケーション刊)でも取り上げられている。

65

S(2:Lバズル

また、この解には紛らわしいデータを作るという問題点があった。直前の給料のレコ

ードを持たないすべての社員に対し、直前の給料として0.Ooを、日付として 1190o― ol―

Ollを割り当てるのだ。だが、実際には「ゼロ」と「値がない」ということは論理的に異な

るし、宇宙が1900年に始まったわけでもない。

フェビアン・パスカルは、この解答について次のようにコメントした。「ずいぶん昔の

ことだし、正確な状況や、私の回答が適切に表現されていたか、あるいは (特にセルコ

によって)理解されていたか、思い出せない。私が推測するに、この手の問題は、クエリ

を適用するテーブルの詳細な定義や、テーブルとクエリに影響を及ぼすビジネスルール

についての情報がないと解くことができないだろう。クリス・デイトに、この解答の感

想を聞いてみるとしよう。」

クリス・デイトは、彼が個人的に作った言語
[訳注5]を
使って、ジャックのよりずっとコ

ンパクトな解を送ってくれた。それについての彼の評価は「冗長で退屈だが、本質的に

は明快」というものだった。続けて彼は、「セルコの解が正しいかどうか、私は知らない

し、知りたいとも思わない」と述べていた。

その解の外部結合を使っていた箇所をCOALESCE関数で代用したのが、次に示す解
法だ。これはアンドレイ・オデゴフが送ってくれた。

SELECT Sl.emp_name, Sl.Sal_date AS curr_date,
Sl.sal_amt AS curr_amt,
CASE WHEN S2.sal date く> Sl.sal date

THEN S2.Sal_date END AS prev_date,
CASE WHEN S2.sal date く> Sl.sal date
THEN S2.sal_amt END AS prev_amt

Salar■es AS Sl lNNER JOIN Salar■ es AS S2
S2.emp_name = Sl.emp_name
S2.sal date =

COALESCE((SELECT MAX(S4.sal_date)
FROM Salar■ es AS S4
WHERE S4.emp_name = Sl.emp_name
AND S4.sal_date.く Sl.sal_date),

S2.sal_date)
NOT EXISTS(SELECT ★

FROM Salar■ es AS S3
WHERE S3.emp_name = Sl.emp_name
AND S3.sal_date > Sl,sal_date);

FROM
ON

AND

WHERE

訳注 5:「個人的な言語」とは、Tutorlal Dの ことと思われる。この言語の具体的な内容 |よ FC.J Dateの データベース実践講
義」(オライリー・ジャバン刊)から知ることができる。

66

パズル■5 現在の給料と昇給前の給料
極値関数 (MAX/MIN)の 一般化

,⑭
彰

√
その6

0 給料設定日の全組み合わせを作り、それにフイルタをかけるという方法もある。

CREATE VIEW SalaryHistor y
(emp_name, curr_date, curr_amt, prev_date, prev_amt)
AS SELECT S0.emp_name,

S0. sa1_date AS cunr_date,
S0.saI_amt AS curr_amt,
S1 . sal_date AS prev_date,
51 . sal_amt AS prev_amt

FROM SalarieS AS SO

LEFT OUTER JO]N Salanies AS 51

0N S0.emp_name = 51.emp_name
AND S0,sal date > 51.sal date;

次に、このビューを自己結合のクエリで使う。

SELECT SO.emp_ ame,So.curr_ ate, SO,curr_ mt,
So,prev_ ate, SO.prev_ mt
SalaryH■ story AS S0
SO.curr date
= (SELECT MAX(curr_date)
FROM SalaryH■ story AS Sl
WHERE SO.emp_name = Sl.emp_name)

(SO.prev_date = (SELECT MAX(prev_date)
FROM SalaryH■ story AS S2
WHERE SO.emp_name = S2.emp_name)
OR SO.prev_date IS NULL);

けっこう複雑な方法だが、SalaryHistOwビ ューはほかの統計を計算する際にも便利だ

ろう。

その7
MarkC600は 、SQL ScⅣ crのニュースグループでビューを使った異なるアプローチを

提案 してきた。外部結合をsQL:2003規格にあるRへNK関数で代用するのである。次の

クエリをよく調べて、考え方のパターンがどう変わるか見てほしい。

FROM
WHERE

AND

‐―′ハ
）
イ

ヽ
／
Ｌ
＼

、
ヽ
２

僣 D

67

‐ヽ‐′②
Ｖ
そ
目

、ヽ
・
／
　

‘ｑ

SQLパズル

WITH salaryRanks(emp_name, sal_date, sal_amt, pOs)
AS (SELECT emp_name, sal_date, sal_amt,

RANK()OVER (PARTITION BY emp_name
ORDER BY sal_date DESC)

FROM Salaries)
SELECT C.emp_name, C.sal_date AS curr_date,
C.sal_ mt AS curr_ mt,

P.sal_date AS prev_date, P.sal_amt AS prev_amt
FROM SalaryRanks AS C LEFl・ OUTER JOIN SalaryRanks AS P
ON P.emp_name = C.emp_name
AND P.pos = 2 WHERE C.pos ‐ 1,

その8

もう1つ、sQL:2003で書いた解を紹介しよう。デイーター・ネースから寄せられた、

OLAP関 数 とCASE式 を使 うものだ。

SELECT Sl.emp_name,
MAX(CASE WHEN rn = l THEN sal_date ELSE NULL END)
AS curr_date,
MAX(CASE WHEN rn = l THEN sal_amt ELSE NULL END)
AS curr_amt,

MAX(CASE WHEN rn = 2 THEN sal_date ELSE NULL END)
AS prev_date,

MAX(CASE WHEN rn = 2 THEN sal_amt ELSE NULL END)
AS prev_amt

(SELECl・ emp_name, sal_date, sal_amt,
RANK()OVER (PARTIT10N BY emp_name

ORDER BY sal_date DESC)

FROM Salar■ es)AS Sl (emp_name, sal_date, sal_amt, rn)
rn く 3
BY Sl.emp_name;

FROM

WHERE
GROUP

1つの考え方として、まず社員ごとに昇給データ (行)を 日付によってランク付けし、

その中から直近の日付を持つ2行を拾い出すという方法がある。別の考え方として、最

初に出力対象となる行をすっかり組み立てておき、あとはそこから実際に欲しい行を見

つけるだけ、という方法もある。このクエリでは出力の元となる行を最初に見つけ、最

後にそれらをまとめ上げる、という方法をとっている。

テーブルが使われるのは1度だけで、自己結合もないが、RANK関数は裏でソートを

必要とすることに注意しよう。もっとも、列データを行単位で記憶領域に格納するSQL

68

‐
―
′
の

シ

ヽ
／ｔ
ヽ

、ヽ
・
κ

パズル15 現在の給料と昇給前の給料
極値関数 (MA× /MIN)の 一般化

エンジンや、社員名をグループ化するようなインデックスを持っているRDBMSな ら、

この程度のソートでパフォーマンスに影響は出ないだろう。

その9
ディーター・ネースは、OLAPと 共通表式を使う解をもう1つ送ってきてくれた (実行

テストはTcradata上で行ったが、SQL ScⅣ cr 2005で も動く)。

WITH CTE (emp_name, sal_date, sal_amt, rn)
AS (SELECT emp_name, sal_date, sal_amt ,

ROW_NUMBER()OVER (PARTIT10N BY emp_name
ORDER BY sal_date DESC)AS rn
――行に連番 を付与する

FROM Salaries)
SELECT O.emp_name,
0.sal_date AS curr_date, 01.sal_amt AS curr_ant,
I.sal_date AS prev_date, I.sal_amt AS prev_amt

FROM CTE AS O LEFT OUTER JOIN CTE AS I
ON O.emp_name = I.emp_name
AND I.rn = 2
WHERE O.rn = 1:

最後に、Tcradataが持つSQL:2003の OLAP関 数を使う方法も紹介しておこう。

SELE()T enlp_name, curr_date, curr_amt, prev_date, prev_amt
FROM (SELECT emp_name, sal_date AS curr_date,

sal_amt AS curr_amt,
MIN(sal_date)OVER (PARTIT10N BY emp_name

ORDER BY sal date DESC
ROWS BETWEEN l FOLLOWING
AND l FOLLOWING)AS prev_date,

MIN(sal_amt) OVER (PARTITION BY emp_name
ORDER BY sal date DESC
ROWS BETWEEN l FOLLOWING
AND l FOLLOWING)AS prev_amt,

ROW_NUMBER()OVER (PARTIT10N BY emp_name
ORDER BY sal_date DESC)AS rn

FROM Salar■ es)AS DT
WHERE rn = 1:

0

69

バ |ズ |ル |

■6

檄
ARIの ジェラル ド・メンコーは、1994年 4月 にこの問題をCompuScⅣ cに投稿 した。

そのとき、AMで は、データベースをParadOxか らWATCOM SQL(現 在はSybascに統

合)に変えたところだった。1日データベースからのデータ移行は、Paradoxの テーブルを

1つ 1つ WATCOM SQLのテーブルに移すというやり方で行われた
一
正規化や整合

性ルールなどは一切考慮されず、単純に列名とデータ型をコピーしたのだ。ああ、私は

SQLの導師として、正規化をしない者には地獄めぐりが待ち受けていることを、彼に教

えてやるべきだった。だがすでに時遅し。そして、彼らがやらかしたのと同じ過ちは、

時と場所を問わず、世界中の至るところで犯されている。

そのシステムは、いくつかの仕事に就いている社員とその所属チームを調べるための

ものだった。lつの仕事には社員から主任技師が1人 と、アシスタント技師が1人割り当

てられる。使うテーブルは次のものである。

CREATE TABLE Jobs

(job_■ d INTEGER NOT NULL PRIMARY KEY,
start_date DATE NOT NULL,

・ ・ ・);

Jobs:仕 事テーブル ,ob_id:仕事lD start date:開始日

CREATE TABLE Personnel

(emp_■d INTEGER NOT NULL PRIMARY KEY,
emp_name CHAR(20)NOT NULL,
...);

Personnel:社 員テーブル emp_id:社 員lD emp_name:社員名

CREATE TABLE Teams

(job_■ d INTEGER NOT NULL,
mech_type INTEGER NOT NULL,
emp_■ d INTEGER NOT NULL,

・ ・ ・);

70

)\xt16 ataevrT?vt-
参照整合性制約の正しい設定

Teams:チームテーブル
emp_id:社 員lD

あなたにまずやってはしいのは、Tcamsテーブルに整合性チェックを追加することだ。

これについては、正規化やほかのテーブルは気にしなくてよい。

次に、job_idで識別されるすべての仕事について、(も しいれば)主任技師 (Prima″)

とアシスタント技師 (Assistant)を リストアップするクエリを作ってもらいたい。ヒント

は、JObsテーブルからはすべての仕事を選択できるが、Tcamsテ ーブルからはチームの

割り当てられた仕事しか選択できないことである。また、1人の人物が、ある仕事の主

任技師とアシスタント技師を兼務することもあり得る。

/′

、||′ /

り←その■
0 まず、参照整合性制約を付与しよう。おそらく、Tcamsテ ーブルは外部キーによって

ほかのテーブルと関係付けておくべきだろう。どんなときにも、次のようにデータベー

ススキーマ内のコー ドで整合性 をチェックするのはよい考えだ。

CREATE TABLE Teams

(job_■d INTEGER NOT NULL REFERENCES Jobs(job_■ d),
mech_type CHAR(10)NOT NULL
CHECK (mech_type IN (lPr■ maryl, lAss■ stant:)),
emp_■d INTEGER NOT NULL REFERENCES Personnel(emp_■ d)

… .),

では、次の問題に移ろう。主任技師だけを取り出したいなら、慣れたSQLプログラマ

はすぐに左外部結合を使おうとするだろう。

SELECT JobS.job_■d, Teams.emp_■ d AS I!pr■ mary‖
FROM Jobs LEFT OUTER JOIN

‐
reams

ON Jobs.job_■ d = Teams.job_■ d
WHERE
‐
「eams,mech_type = lPr■ mary:;

同じような外部結合をPcrsOnnclテーブルとTcamsテ ーブルを結合するために使うこ

ともできるが、その場合、「チームの各技師について、主任技師とアシスタント技師を見

つけるために2つ の独立した外部結合を行い、その結果を1つのテーブルにまとめる必

7■

iob_id:仕事ID mech_type:技 師タイプ

SQLパズル

要がある」という問題が出る。やろうと思えばできなくはないが、恐ろしく深いネスト

になる自己外部結合を1つのSELECT文で書くことになる。多分、理解できるコードに

はならないし、それ以前に読む気も起きないだろう。

ビューを使って同じレポートを作ることもできるが、次のクエリを使えば、そんな手

間は全くかからない。

SELECT Jobs.]Ob_■ d,

(SELECT emp_■ d

FROM Teams
WHERE Jobs.]Ob_■d =

‐
「eams.]Ob_■ d

AND Teams.mech_type = :Pr■ mary:)AS llpr■ mary“
,

(SELECT emp_■ d

FROM Teams

WHERE Jobs.job_■ d = Teams.jOb_■ d
AND Teams.mech_type = :Assistantl)AS ass■ stant

FROM Jobs;

ASに続 くprimawが ダブルクォーテーションで囲まれているのは、これが主キーを意

味するSQL-92の予約語だからだ。ダブルクォーテーションは、囲んだ語が識別子であ

ることを示す。ちなみに、シングルクォーテーションで囲んだ場合には、その語は文字

列として扱われる。

このクエリの“トリック"は、外側のSELECT句で、2つの独立したスカラサブクエリ

を使えることだ。社員の名前を追加したければ、内側のSELECTを ちょっと変更するだ

けでよい。

SELECT Jobs.lob_id,

(SELECT emp_name
FROM Teams, Personnel
WHERE Jobs.]Ob_■d = Teams.]Ob_■ d
AND Personnel.emp_id =

‐
「eams.emp_id

AND
‐
「eams.mech_type = :Primaryl)AS 1lprimary‖ ,

(SELECT emp_name
FROM Teams, Personnel
WHERE Jobs.]Ob_■d = Teams.]Ob_■ d
AND Personnel.emp_id =

‐
「eams.emp_id

AND Teams.mech_type = :Ass■ stanti)AS Ass■stant
FROM Jobs;

1つ の仕事に主任技師とアシスタント技師を兼務している社員がいた場合は、2つの

72

／
′
″
´
ヽ

′
ヽ

‐‐‐‐
り
／
多
′

‐ヽ―（％
ヽ
．１

、ヽ
・
κ

)\/)t,16 tl{-c7r7?>t-
参照整合性制約の正しい設定

列に同じ名前が現れる。もし1つの仕事に2入以上の主任技師またはアシスタント技師

がいた場合は、当然のことながらエラーになる。主任技師やアシスタント技師がいない

仕事では、スカラサブクエリは空の結果を返し、それはNULLに なる。このクエリの結

果は、外部結合で求めようとした結果と一致する。

その2

米国カリフォルニアのチーコ社で働くスキップ。リースは、Tcamsテ ーブルに次のよ

うなルールを適用したいと考えた。

ルール1:1つのjOb_idは 、1人または0人の主任技師を持つ

ルール2:1つのjob_idは 、1人または0人のアシスタント技師を持つ

ルール3:1つのjob_idは 、必ず主任技師またはアシスタント技師を1人以上持つ

ルール3は、「担当のチームメンバーがいない仕事は存在し得ない」という意味だ。言

われてみれば、確かにこれは妥当なルールである。

JObsテーブルに仕事を追加する前には、必ずTcamsテ ーブルにチーム情報が追加され

ていなければならない。これは、参照整合性制約を使うことで可能だ。ルール1と ルー

ル2は、「job_id」 と「mcch_り Pc」 の2列を主キーとすることで実現できる。そうすれば、

同じmcch_りpcについて、job」dは 1つ しか登録できない。

CREATE TABLE Jobs

(job_■d INTEGER NOT NULL PRIMARヽ′ KEY REFERENCES Teams (jOb_■ d),
start_date DATE NOT NULL,

・ ・ ・);

CREATE TABLE Teams

(job_id INTEGER NOT NULL,
mech_type CHAR(10)NOT NULL
CHECK (mech_type IN (IPr■ maryl夕 :Ass■stantl)),
emp_■d INTEGER NOT NULL REFERENCES Personnel(emp_■ d),
PRIMARY KEY (job_■d, mech_type));

言いにくいことだが、この問題にはちょっとした落とし穴がある。SQL-92では、REF

ERIENCES句 は参照されるテーブルのユニークキーまたは主キーを参照しなければなら

ないとされている。つまり、参照は列数もデータ型も並び順も同じ列同士の間で行われ

0

73

| ||| | || | ||| || || | || |

SCLパズル

＼||

なければならない。Tcamsテーブルについて見ると、(jOb_id,mcch_り pc)は主キーなの

でこれを利用することは可能だが、job_idだけを参照することはできない。

これに対処するには、job_id列 に一意制約を付ければよい。

CREATE TABLE Teams

(」 ob_■ d INTEGER NOT NULL UNIQUE,

mech_type CHAR(10)NOT NULL
CHECK (mech_type IN (IPr■ mary:, :Ass■ stantl)),
emp_■d INTEGER NOT NULL REFERENCES Personnel(emp_id),
PRIMARY KEY (jOb_■d, meCh_type));

しかし、このテーブルが表現するエンティティ(=仕事)は ,ob」dで識別されるのだか

ら、むしろjob_idを 主キーにして、次のように書いたほうが自然ではないだろうか。

CREATE TABLE Teams

(job_■ d INTEGER NOT NULL PRIMARY KEY,
mech_type CHAR(10)NOT NULL
CHECK (mech_type IN (IPr■ maryl, :Ass■ stantl)),

emp_■ d INTEGER NOT NULL REFERENCES Personnel(emp_■ d),
UNIQUE (job_■ d, mech_type));

現実的な問題として、RDBMSの主キーはデータの記憶容量やアクセス方法に影響を

及ぼすので、その定義を変えるとパフォーマンスにも違いが出るだろう。

だが、ちょっと待て | この定義は,ob_idが一意であることを要求しているため、1つ

の仕事で「主任」と「アシスタント」を兼務する技師が登録できない。これは問題だ。

その3
主任兼アシスタントの技師を持つというのは、チームの属性だ。したがって、Tcams

テーブルの定義をこう修正しよう。

CREATE TABLE Teams

(job_■ d INTEGER NOT NULL REFERENCES Jobs(jOb_■ d),
pr■mary_mech INTEGER NOT NULL REFERENCES Personnel(emp_■ d),
ass■ st_mech INTEGER N01‐ NULL REFERENCES Personnel(emp_■ d),
CONSTRAINl・ at least one mechan■ c
CHECK(COALESCE (pr■ mary_meCh, ass■ st_mech)IS NOT NULL),

・ ・ ・);

イ́ ′

ヽ
四
）
ラ
イ

″
Ｌ
＼

0

74

t\/)v16 *.Etvr7?:/t-
参照整合性制約の正しい設定

Teams:チームテーブル
assist mech:補 佐技術者

iOb_id:イ士事 lD primary_mech:主任技術者

だが、これではまだ不十分だ。仕事を担当できるのは、肩書きのある技師だけに限定

したい。

CREATE TABLE Personnel

(emp_■d INTEGER NOT NULL PRIMARY KEY,
emp_name CHAR(20)NOT NULL,
mech_type CHAR(10)NOT NULL
CHECK (mech_type IN (lPrimaryl, :Assistanti)),

UNIQUE (emp_id, mech_type),

・ ・ ・);

Personnel:社 員テーブル

mech_type:技 師タイプ

emp_id:ネ土員lD emp_name:社員名

これに合わせて、Tcamsテ ーブルも変えよう。

CREATE TABLE Teams

(job_■ d INTEGER NOT NULL REFERENCES Jobs(job_■ d),
pr■mary_mech INTEGER NOT NULL,
pr■mary_type CHAR(10)DEFAULT IPr■ mary: NO]‐ NULL
CHECK (pr■mary_type = IPr■ maryl),

ass■ st_mech INTEGER NOT NULL ,

ass■ st_type CHAR(10)DEFAULT IAss■ stantl NOT NULL
CHECK (ass■ st_type = :Ass■ stantl) ,

00NSTRAINT fk_primary FOREIGN KEY (pr■ mary_mech, pr■ mary_type)

REFERENCES Personnel(emp_id, mech_type),
00NSTRAINT fk_ass■st FOREIGN KEY (ass■ st_mech, ass■ st_type)

REFERENCES Personnel(emp_■ d, mech_type),

CONSTRAINT at least one mechan■ c
CHECK(00ALESCE (primary_mech, ass■ st_mech)IS NOT NULL)) ;

Teams:チ ームテーブル
primary_type:主 任タイプ

job_id:仕事 ID

assist_mech iア シスタント技師

primary_mech:主任技師

assist_type:補 佐タイプ

これで、ようやくうまくいくはずだ。

75

バ |ズ |ル |

■7

魏
ラリー・ウェイドは、1996年 2月 にMicrosoft Acccssフ オーラムヘこんな問題を投稿

してきた。

彼は人材紹介会社の社長で、紹介依頼や、就業希望者とそのスキルについてのデータ

ベースを持っていた。ラリーがしたかったのは、人材紹介を依頼された仕事に対して、

それをこなせるスキルを持った就業希望者をこのデータベースから見つけ出すことだっ

た。例えば、「製造と在庫管理または会計のスキルを持った登録者をすべて見つけ出す」

という具合だ。なお、紹介依頼は、求める人材のスキルをブール (真偽)式で表した形に

なっている。

最初に、就業希望者のスキルについてのテーブルを作ろう。なお、彼らの個人情報は

別テーブルに保存されていると思ってほしい。この問題では特に気にする必要はない。

CREATE TABLE Cand■ dateSk■ 1ls

(candidate_■ d INTEGER NOT NULL,
sk■ll_code CHAR(15)NOT NULL,
PRIMARY KEY (cand■ date_■d, sk■11_code));

CandidateSki‖s:就業希望者スキルテーブル

sk‖l code:ス キルコード

candidate ld :就 業‐希望者 lD

INSERT
VALUES

INTo CandidateSkills
(100, 'accounting') ,
(100, 'inventory') ,
('lOO, 'manufacturing') ,
(2OO, 'accounting') ,

(200, 'inventory') ,

(3OO, 'manufactunlng') ,

(4O0, 'inventory') ,

(4O@, 'manufacturing') ,

(5O@, 'accounting') ,
(50@, 'manufacturinS') ;

'accounting':会 計 ‖nventory':在庫管理 'manufacturlng':製 造

7る

パズル17 人材紹介会社
関係除算と標準形

解答として分かりやすいのは、フロントエンドのプログラムの中で次のようなSQL文

を、人材の紹介依頼ごとに動的に作ることだろう。

SELECT
FROM

WHERE
AND
AND

DISTINCT Cl.candidate_id, ljob_id#2121 -― 仕事 IDコ ードの定数
CandidateSkills AS Cl, ―― スキル 1つにつき1テーブル
Cand■ dateSk■ lls AS C2,

Cand■ dateSk■ 1ls AS C3

Cl.candidate id =(〕 21.candidate id

Cl.cand■ date ■d = C3.cand■ date id

一 以下で紹介依頼 を表す式を作る

(Cl・ Sk■ll_COde =
〕manufacturingl

AND C2.sk■ 11_code = 1■ nventory:
OR C3.sk■11_code = !accountin91);

腕のよいプログラマなら、このクエリ用の入力画面を作るのに1週間もかからないと

思う。それから、この動的に生成されたSQL文をjob」 dコードと同名のビューとして保

存する。きれいで手早い答えだ ! ただし、この解法には、膨大な数の非常に遅いクエリ

を保持しなければならないという難点がある。ほかによいアイデアはないだろうか ?

そうそう、言い忘れていたが、ラリーの会社が扱うべき職種は25万 を超える。彼の会

社は「DOT(DictiOnaw Of occupatiOnal Titics)」 という、アメリカ政府が統計用に使う

職種のコード体系を利用しているのだ。

その■

0 職種の多さを気にしなくてよいのなら、問題はぐっと簡単になる。それぞれの職種に

必要なスキルをビットで表現することにし、整数値を使ってビットを0ま たは1にセッ

トするのだ。

／
／
′
´
ヽ

′
ヽ

つ
′

多

，

‐ヽ―一″
ヽ
．マ

、ヽ
・
κ

'accountlng' = 1

'inventorY ' = 2

'manufacturing' = 4

(2進数の001)

(2進数の010)

(2進数の 100)

この方法では、例えば、(linvcntowi AND lmanuicturingl)は (2+4)=6で表せる。

惜しむらくは、25万種の職種が相手では、このやり方が通じないことだ。

また、この解法でまず問題になるのは、検索条件の構文解析をどうするかである。

「
Imanuぬcturingl AND linvcntory1 0R laccountingl」 は、「(lmanuhcturingi AND

77

S(2!Lパズル

、ll′ /

〕;9←

invcntory')OR laccoundngi」 と「imanuぬ cturingl AND(linvcntory1 0R laccountngl)」

のどちらを意味するのだろう? ここでは、ANDのほうが優先度が高いと考えることに

しよう。

その2

0 別解は、すべてのクエリを選言標準形に変換することである。選言標準形とは、各条

件をANDでつなげた節を、さらにORでつなげた形である[訳注1]。

では、適任者を見つけたい人材紹介依頼を管理するテーブルを作ってみよう。

CREATE TABLE JobOrders

(job_■d INTEGER NOT NULL,
sk■ 11_group INTEGER NOT NULL,

sk■ll_code CHAR(15)NOT NULL,
PRIMARY KEY (lob_■d, sk■ll_group, sk■ ll_oode));

JobOrders:人材の紹介依頼テーブル

ski‖_grOup:スキルグループ

job_id:紹介依頼のあった仕事lD

ski‖ cOde:ス キルコード

sul_grOupコ ードは、「そのグループに含まれるすべてのスキルが必要とされる」こと

を意味している。標準形では、グループ内のスキルはANDで結ばれる。また、ある紹介

依頼の中にあるs固1_grOupは、同じjOb_idを 持つ別のsに11_grOupと ORで結ばれる。

それでは、次のような一連の依頼を標準形にしてJobOrdcrsテ ーブルに登録しよう。

Job 1 = ('inventory' AND'manufacturing') 0R

Job 2 = ('inventony' AND'manufacturing') 0R

AND 'manufacturing')

Job 3 = 'manufacturing'
Job 4 = ('inventory' AND 'manufactur.ing' AND

' accounting '

('accounting'

'accounting')

これらは、次のように変換される。

訳注 1:標準形には、この問題で使われる選言標準形 (dlsiunctlve canonical form)と 裏返しの関係にある連言標準形や、量
化まで考慮した冠頭標準形などがある。論理式の形式が規則的なため、今回のように機械的に論理式を処理したいと

きに便利だ。

78

パズル■7 人材紹介会社
関係除算と標準形

INSERT
VALUES

SELECT

FROM

ON

GROUP
HAVING

INTo Jobordens
(1,1, 'inventory'),
(1, 1,'manufactuning'),
(1 , 2, 'accountlng') ,
(2,1,'inventory'),
(2, 1,'manufacturing'),
(2, 2, 'accounting') ,

(2, 2, 'manufacturing') ,
(3, 1,'manufactuning'),
(4,1, 'inventory'),
(4, 1,'manufacturing'),
(4,1,'accounting');

100

200

400

500
100

400

500

100

300
400
500
100

DISTINCT Jl.]ob_id, Cl.Cand■ date_■d

JobOrders AS Jl INNER JOIN Cand■ dateSk■ 1ls AS Cl

Jl.sk■ 1l code = Cl.skill code
Bヽ
′ candidate_■ d, skill_group,]Ob_■ d

COUNT(★)>= (SELECT COUNT(キ)

FROM JobOrders AS J2
WHERE Jl.skill_group == J2.skill_group
AND Jl.job_■ d = J2.jOb_■ d);

job_■d cand■date_■d

１

１

１

１

２

２

２

３

３

３

３

４

訳注2:関係除算については、パズル21で主題として取り上げているので、そちらを参照。

79

クエリには、関係除算を利用する
[訳注2]。 sul_codcと skilLgrOuPの 組み合わせが被除

数、就業希望者のスキルが除数である。同一のjOb_idに含まれるsuLgroup同 士はOR
で結ばれているため、sul_groupがどれか1つでも一致した,ob_idが選択される。

SclLパズル

、||′ /

〕;9←
0

紹介依頼や就業希望者が変わっても、クエリは変わらない。このクエリをビューにす

れば、就業希望者のいない仕事や、仕事のない就業希望者を見つけるのにも使える。

その3
別解はスミス・バーニー社のリチャード・レムレーから届いた。彼は、相関サブクエ

リを使わないSQL-92準拠の解を思いついた。次のようなクエリだ。

SELECl‐ Jl.]Ob_■d, Cl.cand■ date_■d
FROM (SELECT jOb_■d, Sk■11_group, COUNT(■)AS grp_cnt

FROM JobOrders
GROUP BY jOb_■ d, Sk■ll_group)AS Jl CROSS JOIN

(SELECT Rl.job_■ d, Rl.sk■ 11_group, Sl.cand■ date_■ d,
COUNT(■)AS cand■ date_cnt

FROM JobOrders AS Rl, Cand■ dateSk■ lls AS Sl
WHERE Rl,sk■ 1l code = Sl.sk■ 1l code

GROUP BY Rl,jOb_■d, Rl,sk■ll_group, Sl.cand■date_■d)AS Cl
WHERE Jl.jOb_■ d = Cl.jOb_■ d
ANE)Jl.sk■ 11_group = C‐ 1.skill_group
AND Jl.grp_cnt = Cl.cand■ date_cnt
GROUP BY Jl.]Ob_■ d, Cl.cand■ date_■di

FROM句のサブクエリテーブル式は共通表式で置き換えてもよいが、それでパフォー

マンスが上がるかどうかは分からない。また、テーブル式Clと 11をほかの場所で使う

ことがなければ、それらをビューにするメリットはあまりないだろう。

このクエリは3つのGROUP BYを持っているので、その点でも相関サブクエリに比
べて速く動くかどうか、断言できない。だが、集約されたテーブルは元テーブルのイン

デックスを一切使うことができないため、このアプローチのほうが遅くなる危険はある

と思う。

80

パ |ズ |ル |

■8

鮨
ダイレクトメールを送りつけるために、顧客の住所を管理しているテーブルがある。

このテーブルには、同じ住所 (addrcss)に住む顧客を1家族としてまとめるための偽m列

がある。ぬm列がなぜ必要かというと、メールはあくまで1家族につきl通だけにしたい

からだ。なお、このぬm列 には、その住所の世帯主の行に振られた主キー (con_id)の値

が格納される。

テーブルのレイアウトは次のとおりである。

Consume ns

conname address con id

'Bob'
'Joe'
'Mank'
'Mary'
'Vickie'
'Wayne'

fam

NULL
NULL

NULL
1

3

NULL

〓

１

３

５

２

４

６

Ａ

Ｂ

Ｃ

Ａ

Ｂ

Ｄ

／
／
´
´
ヽ

′

ヽ

ノ

多

′

‐ヽ―辞
ヽ
「

、ヽ
・
／

さて、あなたには、同世帯 (addrcssが同じ)の顧客のうち、偽m列がNULLである人の

行を削除してはしい。ただし、島m列がNULLであつても、1世帯に1人だけという顧客

は残したい。上のサンプルで言えば、Bobと チocは削除するが、Markと Wayncは残す、

といっことだ。

その■

次に示すDELETE文は処理に高い負荷がかかるが、要求を素直にSQL化できている。

DELETE FROM Consumers
WHERE fam IS NULL ―― 自分の fam列はNULLで
AND EXISTS ―― かつ、ほかに次のような家族がいる
(SELECT大
FROM Consumers AS Cl

WHERE Cl.con idく >ConsumerS,COn id ―― 自分以外で
AND Cl.address=Oonsumers.addreSS ―― 同 じ住所に住み
AND Cl.fam IS NOT NULL), ―― fam列 が NULLで ない人

0

8`

SOLパズル

'く

)←その2
イ

0 だが、もう少し考えれば、削除すべき対象は世帯についてCOUNT(オ)が 1よ り大きく

なる行だということが分かる。

DELETE FROM Consumers
WHERE fam IS NULL ―― fam'1が NULL
AND (SELECT COUNT(キ)
FROM Consumers AS Cl
WHERE C11.address = Consumers,address)> 1;

この解の “トリック"は、COUNT(・)が NULL行 もカウン トして くれることである。

‐ヽ‐′∩
Ｖ
７
日

、ヽ
・
κ
　

‘ｑ

その3
フランシスコ。モレノは、答えその1の別解を送ってくれた。

DELETE FROM Consumers
WHERE fam IS NULL ―― fam'Uが NULL
AND EXISTS (SELECT ★

FROM Consumers AS Cl

WHERE Cl.fam = Consumers.con_■ d),

82

バ |ズ |ル |

■9

騨
この問題には、1995年 5月 に開催されたデータベースワールドで出会った。ある人

が、IBMのパビリオンから私のところへ持ってきたのだ。IBMではホワイトボードを用

意し、DB2のエキスパートにこの問題を解かせようとしていたが、その人は途方に暮れ

てしまっていたのである。

まず、セールスマンの名前と売上を記録する次のテーブルが与えられている。

CREATE
‐
「ABLE SalesData

(d■ str■ ct_nbr INTEGER NOT NULL,
sales_person CHAR(10)NOT NULL,
sales_■ d INTEGER NOT NULL,

sales_amt DECIMAL(5,2)NOT NULL);

SalesData:売 上データテーブル

sales id:セ ールスlD

district nbr:地 区番号

saies amt:売 上高

sales_person i t-)1,7v >

問題とは、「上司の求めに応じて、各地域で上位3位の好成績を上げたセールスマンの

レポートを作成すること」である。サンプルデータには次のものを使おう。

SalesData

distnct_nb r sales_penson safes_id safes_amt

１

１

１

１

１

１

２

２

２

２

３

３

４

４

４

４

４

'Cur1y'
'Harpo'
' Larry'
' Larry'
' Larry'
'Moe'
'Dick'
'Fned'
'Harry'
'Tom'
' I rving '

'MeIvin'
'Jenny'
'Jessie '

'Many'
'0pnah '

'Sa11y'

5

11

1

2

3

4

8

7

6

7

10

9

15

16

12

14

13

3.00
4.00
０

０

０

０

０

０

０

０

０

０

０

０

０

０

０

83

S(2)Lパズル

、11′ /

〕:,← その■
0 困ったことに、私たちに与えられた要求にはいくつかの問題がある。まず、欲しいの

は上位 3位の売上 (誰が達成したかは考慮しない)なのか、それとも上位 3位のトップセ

ールスマンなのかがはっきりしないのだ。もし前者なら、地区 1(distnctnbr=1)につ

いて見ればLar″が上位 3位まで独占している。しかし、上位 3人のセールスマンはhrりヽ

Moc、 Harpoだ 。

また地区2(distnctnbr=2)の ように、3人以上の人物が全く同じ売上を上げていた

場合はどう判断すればよいのだろう? 地区3(distnctnbr=3)の ように活動している

セールスマンが3人に満たない場合には、レポートから除外するのか含めるのか ?―

これは業務用システムではなくただのパズルなので、「この上司は売上を誰が達成した

かを考慮せずに、上位3位の売上を知りたがっている」と決めてしまおう。すると、次の

クエリでOKだ。

SELECT

FROM
WHERE
AND

GROUP

HAVING

SO.district_nbr, S01.sales_person,
SO.sales_ d, SO.sales_ mt
SalesData AS Sl, SalesData AS S0
SO.district nbr = sll.district nbr
SO.sales amt く= Sl.sales amt
BY SO.d■ str■ ct_nbr, SO,sales_person, SO.sales_■ d,
So.sales amt

COUNT(■)く = 3;

ただし、この解法だとHAVING句が、地区2の ように売上 (釧cs_amt)の同じセール

スマンばかりが4人以上いる地区を除外してしまう
[訳注1]。
そのため、結果は次のように

なる。

訳注1:地区2では、各セールスマンから見て、自分以上に売上が高いという同地区のセールスマンが (自分を含め)3人以下
になることがない。つまり、HAVING CO∪ NTc)く=3を満たすことがなく、地区2のセールスマンは全員除外される。

84

パズル■9 セールスマンの売上ランキング
上位3位を取り出す

distnict_nbn sales_person sales_id sales_amt

' Larry'
'Larry'
' Larry'
' I rving '

'Mel-vin'
'Mary'
'0pnah '

'Sa11y'

０

０

０

０

０

０

０

０

０

０

０

５

７

０

０

０

５

５

５

　

　

５

３

４

地区ごとに売上が上位3位に入るセールスマンを得るためにはどうすればよいのだろ

う?そのためには、クエリを次のように直せば大丈夫だ。

SELECT

FROM
WHERE
AND
GROUP

HAVING

ORDER

SO.distr■ct_ br, so,sales_person
SalesData AS Sl, SalesData AS S0
SO.d■ strict nbr = sl.district nbr
SO.sales amt く= Sl.sales amt
BY SO.district_nbr, SO.sales_person
COUNT(DISTINCT Sl.sales_person)く = 3
BY lSO.district_nbr, SO.sales_person

すると、次のような結果が得られる。売上が上位3位に入るセールスマンをすべて取

得している点に注目してはしい。

di.strict_nbn sales_penson

'Hanpo'
'Lanry'
'Moe'
'Irving'
'Melvin'
'Mary'
'0prah '

'Sa11y'

地区1では、売上上位 3位が現れる。一方、競争の緩い地区3に は2人 しか現れない。

85

SQLパズル

、11′ /

〕;り←
僣 D

その2

SQL-99で追加されたO:LAP関数を使うと、人生はもっと単純になる。

SELECl‐ DISTINCT Sl.d■ str■ ct_nbr, Sl.sales_person
FROM (SELECl‐ d■ str■ ct_nbr, sales_person,

DENSE_RANK()OVER (PARTIT10N BY d■ str■ ct_nbr
ORDER BY sales_amt DESC)

FROM SalesData)AS Sl (d■ str■ ct_nbr, sales_person,
rank_nbr)

WHERE Sl.rank_nbr く= 3;

Tcradata、 Oradc、 DB2、 SQL Scrvcr 2005がこうしたOLAP関 数をサポートしてい

る。ランキングの対象とするものによって、使用するOLAP関数も変わってくる。

RANK関数は、パーティション内の行に連番を付与する。重複値があった場合、同じ

値には同じ番号が与えられるが、後に続く番号が“飛び石"になる。

DENSE_RANK関 数も同じくパーティション内の行に連番を与えるが、こちらは重複

値がある場合にも飛び石は生じない。

ROW_NUMBER関 数は、パーティション内の各行に一意な連番を割り振る。重複値

は考慮しない。

パーティション内でORDER BY句が指定されなければ、番号は場当たり的に割り振

られる。例えば、6oについて2つの重複値を持つ次のパーテイションに対しては、次の

ような結果になる。

foo ROW_NUMBER() RANK() DENSE_RANK()

86

Ａ

Ａ

Ａ

Ｂ

Ｂ

バ |ズ |ル |

20

薇

ノ
／
´
´
ヽ

′
ヽ
―
‐‐
ノ
イ
多

′

‐ヽｌσ
、
「

′/1′

1995年 5月 、シャンカー氏がCompuScⅣcの Sybascフ ォーラムにある問題を投稿して

きた。問題は、テストの結果を保存しているTcstRcsultsテ ーブルに関するものだ。

各テストは何段階かのステップ (tcststcp)で 行われ、TcstRcsultsテ ーブルにはテスト

の進捗状況として、tcststcPご とにその完了日が記録される。tcst_stcpは 必ずしも順番

どおりには並んでおらず、しかも1つのテストが複数のtcststcPを持っていることもあ

る。だから、「読解スキル」のテストが5つのtcst_stcpを持っていたり、「数学スキル」が6

つのtcststcpを 持っていたりするかもしれない。なお、tcst_stcpの 番号は1から始まり、

必要な数まで振られているとしよう。

CREATE TABLE TestResults

(teSt_name CHAR(20)NOT NULL,
test_step INTEGER NOT NULL,

comp_date DATE, ―― NULLは 未完了 を意味する
PRIMARY KEY(test_name, test_step));

このテーブルから、「すべてのステップが完了しているテストを高速に見つけ出す」ク

エリを書いてほしい。

その■

まず考えられるのは、次のような“明白な"解答だろう。

SELECT DISTINCT test name
FROM TestResults AS Tl
WHERE NOT EXISTS (SELECl‐ ☆

FROM TestResults AS T2
WHERE Tl.teSt name = ‐「2.test name
AND T2.comp_date IS NULL);

このクエリの意味は、「完了していないtcststcpが 1つ も存在しないテストを探せ
[訳注1]」

である。さて、ほかに解を思いつくだろうか ?

・
明白
..と
は言うものの、EXISTS述 語を使い慣れていない人には、この二重否定は簡単ではないだろう。このクエリ

は、「すべてのtest_stepが 完了している」→「完了していないtest_stepが 1つも存在しない」という同値変換を利用

している。この変換は、述語論理の量化理論の応用である (SQLの EXISTSは述語論理の存在量化子に相当する)。

0

訳注 1

87

SQLパズル

その2

ロイ・ハーヴェイは全く異なるアプローチで、もっと簡単な名答を見つけた。

SELECT test name
FROM TestResults

GROUP BY' test name
HAVINC COUNT(■)= 00UNT(comp_date);

このSQL文がなぜ
.う

まく動 くかというと、COUNT(・)が comp_datc列 のNULLを数

える (要するに全行を数える)のに対して、COUNT(comp_datc)は 集計の前にNULL

を除外するからである。

これは、ある集合を別の集合と比較したいときに使えるうまい“トリック"だ。この ト

リックを活かし、完了していないテストがいくつあるかを調べられるように改良したの

が、次のクエリである。

SELECT test_name,

00UNT(■)AS test_steps_needed ,
(00UNT(■)― COUNT(comp_date))AS test_steps_m■ ss■ ng

FROM TestResults
GROUP BY test name
HAVING COUNT(■)く > COUNT(comp_date);

もし、完了していないテストのリストだけが欲しくて、ステップがいくつ残っている

のかを知る必要がなければ、次のように短く書くこともできる。

SELECT DISTINCl‐ test name
FROM TestResults

WHERE comp_date IS NULL;

SQL文を書くときには、各行をどう処理するかに気を取られたりせず、集合全体がど

のように振る舞うかを考えることが重要なのだ
[訳注2]。

訳注2:も し手続き型言語で書くなら、「テーブル (フ ァイル)か ら1行ずつ読み出して完了日がNULLか どうかを判断する」と

いう、一種のコントロールブレイク処理になるだろう。しかしSQLの場合、処理の基本単位は行ではなく「行の集合」

であり、集合が全体としてどのような特性を持つのかを調べることが重要である。HAVING句はそのための強力な武

器になる。次のパズル21でも、再びHAVING句 が活躍する。

88

‐ヽ‐ノ（靱
を
目

、ヽ
・
／
　

‘ロ

バ |ズ |ル |

薇
飛行機のパイロットを一覧するテーブルと、彼らが操縦できる飛行機の待機状況を表

すテーブルがあるとしよう。ここから、待機中の飛行機すべてを操縦できるパイロット

を全員選択したい。

CREATE TABLE P■ lotSk■ 1ls

(pi10t CHAR(15)NOT NULL,
plane CHAR(15)NOT NULL,
PRIMARY KEY (p■ lot, plane));

P‖ otSki‖ s:パイロットスキルテーブル p‖ ot iパイロット plane:飛 行機

INSERT INTO P■ lotSk■1ls

VALUES (lCelkol, IP■ per Cubl),

(lH■ gg■ nsl, lB‐ 52 Bomberl),

(lH■ 99■ nsl, lF-14 F■ ghteri),

(!Higgins(, IPiper cubl),
(lJOneSl, IB-52 Bomberi),
(IJonesl, IF-14 Bomberi),

(lSm■ thl, lB-l BOmberi),

(:Sm■ thl, !B-52 Bomberl),

(lSm■ thl,
〕F-14 Fighterl),

(〕 WilSOnl, lB-l Bomberl),

(:W■ lSOnl, !B-52 Bomberl),

('W■ lsonl, IF-14 F■ ghterl),

(IWilsont, IF-17 F■ 9hterl);

一鶴
鱗
一̈一̈̈”一純一̈撚
郷̈勁

CREATE TABLE Hangar

(plane CHAR(15)PRIMARY KEY),

Hangar:格 納庫テーブル plane :ftff&

INSERT INT()Hangar
VALUES (lB-l Bomberl),

(lB-52 Bonlberl),

(lF-14 F■ 9hterl),

89

2■

S(2:Lパズル

結果は次のようになるはずだ。

PnotSk■ lls DIVIDED BY Hangar

p■ 10t

ISm■ thi
〕
W■ lsoni

このサンプルデータでは、待機中のすべての飛行機を操縦できるのはSmi山 とWilson

だけだ。注意してほしいのは、Higginsと Cclkoは Pipcr Cubを 操縦できるのだが、その

機体はこのとき格納庫に存在しないということだ。最初にエドガー・F・ コッド
[訳油]が

定義した関係除算の定義によれば、必要とされる以上の行を持っていても問題はない。

関係除算の重要な特性の1つ は、除テーブルと商をクロス結合する (すなわち直積を

得る)と 被除テーブルの妥当な部分集合になることである
[訳注2]。
関係除算という名前

は、クロス結合がちょうど掛け算のように作用することから付けられている。

｀
その■

0 この問題の古典的な解法は、ほとんどの教科書に載っている。よく読まれているクリ

ス・デイトが著した古典的教科書でも、解答のひな型が紹介されている。この問題に当

てはめて言うと、「パイロットの名前集合 (商)を得るために、PlotSklsテーブル (被除

テーブル)を Hangarテ ーブル (除テーブル)で割る」というものだ。

SELECT DISTINCl‐ p■ lot

FROM P■ lotSk■ lls AS PSl

WHERE NOT EXISTS

(SELECT
★

FROM Hangar
WHERE NOT EXISTS

(SELECT ★

FROM PilotSk■ lls AS PS2

ヽ
・
／

ハ
円Ｖ
レイ

／
し
＼

訳注 1

訳注 2

RDBの基礎理論の提唱者。

本書では、関係除算で除数に相当するテーブルを「除テーブル」、被除数に相当するテーブルを「被除テーブル」と呼ぶ

ことにする。なお、関係除算について1よ『フログラマのためのSQL第 2版』(ピアソン・エデュケーション刊)の「19.2

関係除算」も参照。また「Joe Celkols Analytics&Ol」、P」 (Morgan Kaufmann刊)でも、バスケット解析への応用と

して関係除算の多様な方法が解説されている。

90

パズル 2■ 飛行機と飛行士

関係除算の使い方/考え方

WHER

■「″
ヽ
つろだるれらナつ見を解

口
″てつ使をクツた，さでん学こで

まれこてさ

AND(
PSl.p■ lot = PS2.pilot)
PS2.plane = Hangar.plane)));

、‖′/

'(01←

その2
0 パズル20「テスト結果」の答えその2を見返してほしい。実は、そこで紹介したロイ・

ハーヴェイのトリックが、ここでも使えるのだ。覚えたトリックをほかの場所で試して

みるのは大切なことだ。

各パイロットが格納庫内を巡って、自分が操縦できる飛行機にふせんを貼っていくと

しよう。貼り付けたふせんの数と格納庫内の飛行機の数が一致すれば、パイロットは格

納庫内にあるすべての飛行機を操縦できるということである。これをクエリで書くとこ

うなる。

SELECT P■lot

FROM P■ lotSk■ 1ls AS PSl, Hangar AS Hl
WHERE PSl.plane = Hl.plane
GROUP BY PSl.p■ lot

HAVING COUNT(PSl,plane)= (SELECT COUNT(大)FROM Hangar);

WHER:E句では、パイロットでグループ化して集計する前に、PilotSに 1lsテーブルに登

録されている飛行機のリストを、格納庫に存在する機体だけに絞り込んでいる。もし、

このテーブルの機体リストがHangarテーブルの部分集合であることが最初から分かっ

ているなら、WHERE句 をなくして、2つのCOUNT(x)の式をCOUNT(DISTINCT x)

に置き換えることも可能だ。

また、答えその1の ように、入れ子のEXISTS述語を使う方法を広めたのがデイトの教

科書だとすれば、このCOUNT(■)を使うやり方は私が広めたと言っても過言ではある

まい。面白いことに、これら2つのアプローチにははっきりとした違いがある。それは空

集合の扱い、つまり格納庫が空だった場合― 「
ゼロによる関係除算」と言ってもよい

―
の結果である。このとき、答えその1で示したSELECT文 はパイロット全員を返す

が、先ほど示したSELECT文は空集合を返す。

デイトは自著『データベースシステム概論 第6版』(丸善刊)で、先ほどのSELECT文

と同じ動作をする除算演算子を定義している。となれば、デイトもこちらを正しい答え

9■

SQLパズル

その3

関係除算にはもう1種類ある。それが「厳密な関係除算」である。この除算では、被除

テーブルが除テーブルと過不足なく厳密に一致しなければならない。

SELECl‐ PSl.pilot
FROM PilotSkills AS PSl LEFT OUTER JOIN Hangar AS Hl
ON PSl.plane = Hl,plane
GROUP BY PSl.p■ lot

HAVING COUNT(PSl,plane)= (SELECT COUNT(plane)FROM Hangar)
AND COUNT(Hl.plane) = (SELECl‐ 00UNT(plane)FROM Hangar);

このクエリの意味は、「パイロットが格納庫内の機体数と同数の操縦免許を持っており、

かつ、すべての免許が格納庫内の機体と一致する (ほかの機体の免許ではない)必要が

ある」である。「ほかの機体」は左外部結合によってNULLと して現れるが、COUNT(x)

はNULLを数えない点がポイントだ。

ちなみに、このクエ リを簡略化 しようとしてHAVING句 を、

HAVING 00UNT(PSl.plane)= COUNT(Hl.plane)

と書 くのは間違いなので注意してはしい。この条件は、格納庫にある機体数がnで、か

つ、パイロットが持っている免許の数もnであると言っているが、2つの集合が互いに等

しいとは言っていない。

『DB2 Magazinc』 の1996年冬号に、シェリル・ラーセンによる「強力なSQL:基礎を

越えて」という記事[訳
注3]が掲載された。DB2を使った彼女の測定によれば、除テーブル

が被除テーブルの25%未満であれば、“入れ子のEXISTS''バ ージョンのほうが速く、

25%以上であれば“COUNT(十)''バージョンのほうが速いとのことだ。

訳注3:「Powerful SQL:Beyond the Baslcs」 http:〃 www.db2mag.com/db_area/archlves/1996/q4/96011ar.shtml

と認めてくれるだろう。

激
Ｖ
ィロ

、ヽ
２

　

‘ｑ

92

バ |ズ |ル |

22

瘍
輌鱗
~

カレン・ギャラガーは、マンションの住人のうち、家賃を支払った人物についてのレ

ポートを作ろうとしていた。彼女が考えたSQL文 (Microso■ Acccssのものから書き換え

た)は、次のようなものだ
[訳注l]。

SELECT
FROM Units AS Ul LEFT OUTER JOIN

(Tenants AS Tl LEFT OUTER JOIN RentPayments AS RPl
ON Tl,tenant_■ d = RPl.tenant_id)
ON Ul.unit nbr = Tl.unit nbr
Ul.complex_id = 32
Ul.unit nbr = IRPl.unit nbr

Tl.vacated date IS NULL

((RPl.payment_date >= :my_start_date
AND RPl.payment_date く :my_end_date)
OR RPl,payment_date IS NULL)
BY Ul.un■ t_nbr, RPl.payment_date;

WHERE
AND

AND
AND

ORDER

Units:部屋テーブル

Tenants:借 り主テーブル

RentPayments i家賃支払いテーブル

cOmplex_id:マ ンションID unitnbr:部屋番号
tenant_id :イ昔り:主 ID vacated_date :退 去日

payment_date:家 賃が支払われた日

彼女が求めていたのは、RcntPγmcntsテーブルのうち、p7mcntdatcがある期間内に

含まれている行と、部屋と借り主の組み合わせと結合する“空行"(つまり結合しない行)

をまとめたレポー トである。ところがこのクエリだと、WHERE句 に記述 されている

RcntPγmcntsテ ーブルについての条件を削除しなければ、RcntPりmcntsテーブルの “空

行"を得られなかった。さて、どこに間違いがあったのだろう?それを見つけて正しい

クエリに直してほしい。

訳注1:原著には参照しているテーブルの定義が記されていないが、参考までに妥当と思われる∪nltsテーブル、Tenantsテ ー

ブル、RentPaymentsテ ーブルの定義を掲げておく。

CREATE TABLE Tenants

(tenant_id INTEGER,
un■t_nbr INTEGER,

vacated_date DATE,

PRIMARY KEY (tenant_id,

unit_nbr));

CREATE TABLE Units

(complex_id INTEGER,
un■t_nbr INTEGER,

PRIMARY KEY (comp■ ex_id,

unit_nbr));

CREATE
‐
「ABLE RentPayments

(tenant_■ d INTEGER,

unit_nbr INTEGER,

payment_date DATE,

PRIMARY KEY (tenant_■d,

unit_nbr));

93

SQLパズル

／
′
ン
´
ヽ

′
ヽ
ノ

′

‐ヽ―一％
ヽ
．冒
イ́ ン その■

0 ヒントは、変わるものは何か、変わらないものは何かを考えて外部結合を重ねること

である。部屋 (Units)と 借り主 Ccnants)の組み合わせから見ると、借り主は時間の経

過とともに入れ替わるが、部屋は不変だ。したがって、外部結合において全件表示され

るべきは部屋のほうである。部屋と借り主の組み合わせが得られたら、家賃の支払い

供cnt Pγmcnts)に ついても同じように考えてほしい。借り主が部屋に入居していても

家賃が支払われない可能性がある (家賃の支払いは不変ではない)、 という結論に達する

だろう。

SELECT
FROM

WHERE
OR

・ ――実際に使 うときは、必要な列だけ指定すること
(Un■ ts AS Ul LEFT OUTER JOIN Tenants AS Tl
ON Ul.un■t nbr = Tl.un■ t nbr
AND Tl.Vacated date IS NULL
AND Ul.oomplex_■d = 32)
LEFl‐ OUTER JOIN RentPayments AS RPl
ON (Tl,tenant_■ d = RPl.tenant_id
AND Ul.un■ t_nbr = RPl.un■ t_nbr)
RPl.payment_date BETWEEN :my_start_date AND
RPl.payment_date IS NULL;

my_end_date

(Tl.tcnant_id=RPl.tcnant_id AND Ul.unit_nbr=RPl.unit_nbr)と いう述言吾は、

「ある 1人の借 り主がある 1つの部屋に家賃を支払っている」という意味だ。このクエリ

は、1人の借 り主が複数の部屋を借 りている場合にもうまくいく。また、「部屋を借 りて

いない人からは家賃を徴収しない」というルールも参照整合性制約によって適用できる

と考えてよい。なお、BETWEEN述語を使うとコードが簡単になり可読性と保守性が
高まるのだが、代わりに契約の失効日を調節する必要が生じる[訳

注2]。

訳注2:BETWEENは 両端の日付を含むため、問題文にあるSQL文 のような「Imy_end_dateを含まない」という条件にはな
らない。そのため条件に使用する日付を変える必要がある、ということだろう。

94

バ |ズ |ル |

02
-し ′

薇
これは、1994年 11月 にキース・マクレガーがCOmpuScⅣ cの Sybascフ ォーラムに投

稿した問題だ。ある日、エンドユーザの1人が、次のようなクエリを彼のところに持ち込

んできた。マクレガーは3日 近く試行錯誤したが、解法の手がかりすら得られなかった。

COBOLと フラットフアイルを使うのであれば30分で解ける問題なのだが、それをsQL

で行うにはどうすればよいのか、彼は皆目見当がつかなかったという。

実はこの問題は、手続き型の考え方から宣言的な考え方へ頭を切り替えるのに格好の

例題である。次のような、雑誌販売を管理するためのテーブルがあるとしよう
[訳注1]。

CREATE TABLE T■ tles

(product_■ d INTEGER NOT NULL PRIMARY KEY,
magaz■ne_sku INTEGER NOT NULL,
■ssn INTEGER NOT NULL,
■ssn_year INTEGER NOT NULL);

product_id magazine_sku issn issn_year

12345
2667
48632
1107

12345

2667
48632
1107

2006
2006
2006
2006
2006
2006
2006
2006

Titles:雑誌テーブル productid:製 品番号
magazine_sku:雑誌のSKU番号 (SKUは在庫管理の最小単位の意)
issn:ISSN(国 際標準逐次刊行物番号。雑誌や新聞などを識別できる)

issn_year:iSSNの 発行年

CREATE TABLE Newsstands

(stand_nbr INTEGER NOT NULL PRIMARY KEY,
stand_name CHAR(20)NOT NULL);

95

訳注 1:Tltlesテ ーブルとSalesテーブルのサンプルデータは、答えその 7で解法を紹介されているクズネツォーフ氏によるも

の。Newsstandsテ ーブルのデータは、訳者が追加。

SQLパズル

96

stand_nbn stand_name

'Newsstandsl '
,NeWSStandS2,

'Newsstands3'
'Newsstands4'

Newsstands i filE7-))v stand_nbr:売 店番号 stand_name : #I5*

CREATE TABLE Sales

(product_■ d INTEGER NOT NULL REFERENCES T■ tles(product_■ d),
stand_nbr INTEGER NOT NULL REFERENCES Newsstands(stand_nbr),
net_sold_qty INTEGER NOT NULL,
PRIMARY KEY(product_■ d, stand_nbr));

１

２

３

４

―― Newsstandsl

―― Newsstands2
(条件を満たす)

―― NewSStands3
(条件を満たす)

―― NeWsstands4

Sales:売上テーブル

net_sold_qty :売 上部数

productid:製品番号 stand nbr:売 店番号

product_ d stand_ br net_ old_qty

l l l
2 1 4
3 1 1

4 1 1

5 1 1

6 1 2
7 1 1

3 2 1

4 2 5
8 2 6
1 3 1

2 3 3

3 3 3
4 3 1
5 3 1
6 3 3
7 3 3
1 4 1

2 4 1
3 4 4
4 4 1
5 4 1
6 4 1

7 4 2

1ヽ1′ ノ

〕:9←

パズル23 雑誌と売店
手続き型から宣言型へ考え方を切り換える (その 1)

彼が選択 (SELECT)する必要があったのは、次の条件をどちらか一方でも満たして

いるすべての売店である。

l.SKUが 2667番と48632番の2つの雑誌について、nct_sold_qり (売上部数)の平

均がともに2よ り大きい (一方でも2以下であれば、その売店は選択しない)。

2.SKUが 1107番の雑誌について、nct_sold_qり の平均が5よ り大きい (こ の条件を

満たすなら、1.の条件を満たすか否かにかかわらず選択する)。

その■

基本的な情報を得るために、まず3つのテーブルを結合したビューを作ろう。このビ

ューは、後ではかのレポートを作るときにも役立つはずだ。

CREATE VIEW Magazinesales(stand_name, magazine_sku, net_sold_qty)
AS SELECT Newsstands.stand_name, Titles.magazine_sku,

net_soId_qty
FRoM Tit1es, Sa]-es, Newsstands

WHERE Sa1es. stand_nbr = Newsstands. stand_nbr
AND Titles. pnoduct_id = Sa1es. product_id;

最初に試したのは、次のような見るに堪えないクエリだった。

SELECT stand name
FROM Magaz■ neSales AS M0
GROUP BY stand name
HAVING一 条件を満たす 2つ

((SELECT AVG(net_sold_qty)
FROM MagazineSales AS Ml
WHERE M11.stand name = MO.stand name
AND magaz■ ne_sku = 1107)> 5)

OR ((SELECT AVG(net_sold_qty)
FROM Magaz■ neSales AS M2

WHERE M2.stand name = MO.stand name
AND magaz■ ne_sku IN (2667, 48632))> 2)

AND NOT― ―条件 を満たさない2つ

((SELECT AVG(net_sold_qty)
FROM Magaz■ neSales AS M3

WHERE M3.stand name = MO.stand name
AND magaz■ ne_sku = 2667)く 2

0

97

、ヽ
・
κ

ノ
／
ン
´
ヽ

′
ヽ
「
「
／
・
多

′

〕
一仔
、
“．

SQILパズル

OR

(SELECT AVG(net_sold_qty)
FROM Magaz■ neSales メヽS M4
WHERE M4,stand name = MO.stand name
AND magaz■ ne_sku = 48632)く 2),

さて、このクエリを簡略化または改良できるだろうか ?

その12

0 1995年 4月 、米国イリノイ州クラレンドンヒルズで個人コンサルタントとして活躍中

のカール・C・ フェダールから、次のような解答が提案された。この解答では平均販売

数のビューを作り、それに対して「両方の条件のしきい値を超えていること」という条

件のEXISTS述語を使うことで、問題をとても簡単なものにしている。

平均販売数のビューは次のものだ。

CREATE VIEW Magaz■neSales

(Stand_nbr, magaZ■ ne_sku, avg_qty_sold)
AS SELECT Sales.stand_ br, T■ tles.magaz■ ne_ ku,

AVG(Sales.net_sold_qty)
FROM T■tles, Newsstands, Sales
WHERE

‐
「itles.product_id = Sales.product_id
ANE)Newsstands,stand nbr == Sales.stand nbr
AND
‐
「■tles.magaz■ ne_sku IN (1107, 2667, 48632)

GROUP BY Sales.stand_ br, T■ tles.magaz■ ne_ ku;

これを使うと、クエリはぐっと短くなる。

SELECT DISTINCT NO.stand name
FROM MagazineSales AS MO, Newsstands AS N0
WHERE NO,stand nbr = MO.stand nbr
AND ((MO,magaZ■ne_sku = 1107 AND MO.aV9_qty_sOld > 5
0R (MO.magazine_sku = 2667 AND MO,avg_qty_sold
AND EXISTS (SELECT ★

FROM Magaz■ neSales AS Other

98

.:● .‐ III . |‐

・ | | ′

■|

パズル23 雑誌と売店
手続き型から宣言型へ考え方を切り換える (その 1)

WHERE Other.magaz■ ne_sku = 48632
AND()ther.stand nbr = MO.stand nbr
AND Other.aVg_qty_sOld > 2)));

古いバージョンのSybascな どでは、結合後に集約したビューからは正しい結果が得ら

れなかった。今日では、ビューは共通表式にすることもできる。

なお、ここではビューを使ったが、代わりに一時テーブルを使ってもよい。

ブ⑦←/′

シ
その3

0 ここで紹介する解答は、ドンカー・システム社でテクニカルサポートマネージャーを

務めるアダム・トンプソンから寄せられた。彼は本書の初版を読んで、この解答を思い

ついたという。

まず、彼は雑誌タイトルに索引を付与した。

CREATE INDEX T■ tles_magaz■ ne_sku

ON T■ tles (magazine_sku, product_id);

これにより、特にデータ量が多い場合にはパフォーマンスが大きく改善されるだろ

う。ただ、インデックスは標準SQLの一部ではないので、本書で言及しない。

それから、彼はSQL-89に完全準拠する解答を得た。

SELECT
FROM

WHERE

DISTINCl‐ Nl.stand name
Newsstands AS Nl

Nl.stand_nbr IN (SELECT Sl.stand_nbr
FROM Sales AS Sl
WHERE Sl.product_■ d IN

(SELECT Tl,product_■d
FROM T■ tles AS Tl
WHERE magaz■ ne_sku = 1107)

GROUP BY Sl.stand nbr
HAVING AVG(Sl.net_sold_qty)> 5)

(Nl.stand_nbr IN (SELECT Sl.stand_nbr
FROM Sales AS Sl
WHERE Sl.product_id IN

(SELECT Tl,product_■d

FROM Titles AS Tl

WHERE magaz■ ne_sku = 2667)

GROUP BY Sl.stand nbr

OR

99

SQLバズル

′
／
´
´
ヽ

′
ヽ
「
「
／
・
多

′

‐ヽ―″
ヽ
「

、ヽ
・
κ

HAVING AVG(Sl.net_SOld_qty)> 2)
AND Nl.stand_nbr IN (SELECT Sl.stand_nbr

FROM Sales AS Sl
WHERE Sl.product_■ d IN

(SELECT Tl.product_■d
FROM T■ tles AS Tl
WHERE magazine_sku = 48632)
GROUP BY Sl,stand nbr
HAVING AVG(Sl.net_sold_qty)> 2)),

彼はこのSELECT文 をSQL Anywhcrc v.5.5で テストした。その際、先に示したイン

デックスのほかにもう1つインデックスを張っていたため、Nlへの全表検索 (フルスキ

ャン)は 1回で済んでいたという。このクエリに対して1回 の全表検索で済むというの

は、かなり良好な動作だと思う。

また、相関サブクエリのGROUP BY句ではstand_nbr列 だけが必要で、Product_id列
は省略できることに注意してほしい。これは、直前のWHERE句でグループ化の対象を
1107番、2667番、48632番 の雑誌に絞り込んでいるからだ。ただ、よリー般的な解答と

しては、クエリ構文の仕様が今後拡張されたときのために「GROUP BY stand_nbr,

product_id」 という記述を認めたほうがよいだろう。SQL-92では、述語の中で複数の列

を参照する式がすでに使えるのだが、それを実装したRDBMSはまだあまりない。

その4
次に紹介する解答はGROUP BY句 を使わない代わりに、CASE式を必要とする。0

SELECT
FROM
WHERE

AND
AND
GROUP
HAVING

Nl.stand name

Sales AS Sl, T■ tles AS Tl, Newsstands AS Nl
Tl.magazine_sku IN (2667, 48632, 1107)
Sl.product_id = Tl.product_id
Sl.stand nbr == Nl.stand nbr
BY Nl.stand name

(AVG(CASE WHEN Tl.magazine_sku = 2667
THEN Sl.net_sold_qty ELSE NULL END)> 2

AND AVG(CASE WHEN Tl,magaZ■ ne_sku = 48632
THEN Sl,net_sold_qty ELSE NULL END)> 2)

AVG(CASE WHEN Tl.magaz■ ne_sku = 1lo7
THEN Sl.net_sold_qty ELSE NULL END)> 5;

■00

OR

、、|′ /

ラ;|←

パズル23 雑誌と売店
手続き型から宣言型へ考え方を切り換える (その 1)

その5
リチャード・レムレーは、1997年 9月 にSQL-92構文に沿った解答をいくつか提案し

てきた。

SELECT stand name
FROM (SELECT Nl.stand_name

FROM Sales AS Sl

INNER JOIN T■ tles AS Tl

ON Sl.product_■ d = Tl,product_■d
INNER JOIN Newsstands AS Nl
ON Sl.stand nbr = Nl.stand nbr

WHERE Tl.magaz■ne_sku IN (2667, 48632, 1107)

GROUP BY Nl.stand_nbr, Nl.stand_name
HAVING (AVG(CASE WHEN Tl.magaz■ ne_sku = 2667

THEN Sl.net_sold_qty ELSE NULL END)> 2
AND AVG(CASE WHEN Tl.magaz■ ne_sku = 48632

THEN Sl.net_sold_qty ELSE NULL END)> 2)
OR AVG(CASE WHEN Tl,magaz■ ne_sku = 1107

THEN Sl.net_sold_qty ELSE NULL END)> 5);

しかし、彼はこの解答を書いていて、次のような点に気づいたという。

l.売店 (Ncwsstands)テ ーブルはこの問題と何の関係もない。これは、条件を満たす

stand_nbrが 決定した後で売店の名前を調べるためだけに使われている。これを

前面に持ってくるのは紛らわしく、解答を複雑にするだけだ。

2.売店名 (stand_namc)の検索は、条件を満たすstand_nbrに つき、1回 しか実行す
る必要がない。それならば、売店名の検索はstand_nbrが決まった後に、最後に行

うべきである。もし、Salcsテ ーブルに1万行あったら、この解答では売店テーブ

ルに対して1万回の結合をすることになる。最初の解答では1回のINNER JOIN

だけだった。あなたはどちらがより適切だと思うか ?

3.こ の解答では、GROUP BY句 に売店名の列 を含 める必要がある。SELECT句 の

中に売店名を入れるためなのだが、これは以下のような理由から推奨できない。

・ stand_namc列 は集約とは無関係であり、論理的には不要である。

O SELECT句 や HAVING句 、ORDER BY句 に列 を追加 したい と思 った ら、

0

■04

SQLパズル

GROUP BY句 にもその列を追加する必要があるが、これは非論理的だ。とい

うのも、GROUP BY句には問題を解決するために集約が必要な列だけを含め

るべきであって、それ以外の不要な列を入れるべきではないからだ。GROUP
BY句 に不要な列があると、その旬の目的が不明確になり、クエリを読みにく

くしてしまう。

● GROUP BY句に不要な列を追加することは、大きなパフォーマンス低下の危

険を潜在的に抱え込むことになる。stand_nbrだ けなら、1つの整数を見るだ

けで済む。だが、SELECT旬 に1ダースの列を追加すれば、同じ数の列を

GROUP BY句 にも追加せざるを得ない。その結果、1ダースの列を使って1万

行の集約を行うよう、サーバに強制することになるだろう。おそらくは数百

バイトにのぼるであろう複数列の組み合わせによる集約と、1列の整数列のみ

の集約一
パフォーマンスはどの程度違うだろうか ?

● メンテナンスが非常に面倒になる。本来グルービングに必要ないはずの列を、
SELECTに追加 したいという理由でGROUP BY句 にも追加せねばならない

のだから。

、 .|.′
、`共tl/

〕`つ←その6
0 1999年 7月 、フランシスコ。モレノはsQL-92の集合演算子と、ちょっとした代数を

うまく使った解答を提案してくれた
[訳注2]。

SELECT stand name
FROM Newsstands AS Nl

WHERE l =
ANY ((SELECT SIGN(AVG(net_sold_qty)- 2)

FROM Sales AS Sl
WHERE product_id IN (SELECl‐ product_■ d

FROM T■ tles
WHERE magaz■ ne_sku = 2667)

AND Sl.stand nbr = Nl.stand nbr
INTERSECT

SELECT SIGN(AVG(net_sold_qty) - 2)
FROM Sales AS S2

訳注 2:この解答では、まずINTERSECTに よつて、2667番の雑誌の平均売上数が2よ り大きい売店と、48632の雑誌の平均
売り上げ数が 2よ り大きい売店の共通集合を取る。その後に∪NIONで 、1107番 の雑誌の平均売り上げ数が5よ り大

きい売店を加えている。

■02

WHERE

AND
UN10N
SELECT
FROM
WHERE

AND

パズル23 雑誌と売店
手続き型から宣言型へ考え方を切り換える (その 1)

product_■ d IN (SELECl‐ product_id
FROM T■ tles
WHERE magaz■ ne_sku = 48632)

S2.stand_nbr = Nl.stand_nbr)

SIGN(AVG(net_sold_qty) - 5)
Sales AS S3
product_■ d IN (SELECT product_■ d

FROM T■ tles
WHERE magaz■ ne_sku =

S3.stand_nbr = Nl,stand_nbr);
1107)

ヽ11′ ノ

ラ:翁←
0

その7
クズネツォーフ氏は、こんなシンプルな解答を考え出した。

SELECT stand nbr
FROM (SELECl‐ stand_nbr,

AVG(CASE WHEN magaz■ ne_sku = 2667
THEN net_sold_qty END),

AVG(CASE WHEN magazine_sku = 48632
THEN net_sold_qty END),

AVG(CASE WHEN magaz■ ne_sku = 1107
THEN net_sold_qty END)

FROM Sales, T■ tles
ハヽIHERE Sales,product_id =

‐
「itles.product_id

GROUP BY stand nbr

)AS T (stand_nbr, avg_2667, avg_48632, avg_1107)
WHERE avg_1107 > 5(〕 R (avg_2667 > 2 AND avg_48632 > 2);

ひとこと言っておくと、CASE式でELSE NULLを省略することは文法的に間違いで

はないが、私は将来の変更や追加に備えて省略せずに書くほうが好きだ。そうしておけ

ば、後で見たときにここでNULLが生成されることを見落とさずに済む。

■03

バ |ズ |ル |

24

蟄
レガシーシステムをsQLデータベースヘ移行している最中、アラン・フランクマンは

ある問題に突き当たった。次のようなテーブルがあるとする。

CREATE TABLE MyTable

(keycol INTEGER NOT NULL,
fl INTEGER NOT NULL,
f2 1NTEGER N01‐ NULL,

f3 1NTEGER NOT NULL,

f4 1NTEGER NOT NULL,

f5 1NTEGER NOT NULL,

f6 1NTEGER NOT NULL,
f7 1NTEGER NOT NULL,
f8 1NTEGER NOT NULL,
f9 1NTEGER NOT NULL,

f10 1NTEGER NOT NULL);

fl～ f10の列は、1つ の配列をテーブルに展開するために作ったものだ。彼がしたか

ったのは、fl～ f10列のうち1つだけゼロでない列がある行を選択することである。

あなたには、これを実現する方法をできる限り多く考えてほしい。パフォーマンスは

気にしなくてよいから、とにかくたくさん。

'S'←

その■
O Sybascな どのRDBMSでは、SIGN関 数を使うことができる [訳注1]。 この関数は、引数

が負なら-1を 、0な らoを、正なら1を返す。もし、fl列 ～f10列 には0以上の数値が格

納されるのであれば、次のように簡単に書ける。

SELECT '
FROM MyTable

WHERE SIGN(fl)+ SIGN(f2)+ + SIGN(f10)= 1;

もし、負数 も含 まれるなら、SIGN(ABS(fn))と すればよい。

訳注 1:SIGN関 数は標準SQLに は入つていないが、ほとんどの RDBMSで 使える。

■04

止_ユ_

一
■

‐ヽ‐′⌒ｍ
ｙ
孝
目

、ヽ
・
κ
　

ロ́

パズル24 10個のうち1つだけ

擬似配列の扱い方

また、SIGN関数とABS関数の組み合わせと同じ処理を、SQL-92の CASE式 を用いて

次のように書くこともできる。

CASE ヽ1√HEN x く> O THEN l ELSE O END

その2

配列をまさに配列の形で擬似的に表現するというのなら、このテーブルを第1正規形

(lNF)にするべきだ[訳
注2]。

CREATE TABLE Foobar

(keycol INTEGER NOT NULL,
■ INTEGER NOT NULL CHECK (i BETWEEN
f INTEGER NOT NULL,
PRIMARY KEY (keycol, ■));

AND 10),

追加の1と いう列は、配列の添え字に相当する。そうすると問題は、「ゼロでない非キ

ー列を1つだけ持つエンティティを探す」ことから、「ゼロであるf列 をちょうど9個持つ

エンティティを探す」ことに変換される。これで問題がたちどころに簡単になった。

SELECT keycol
FROM Foobar
WHERE f = 0
GROUP BY keycol
HAVING COUNT(☆)= 9,

Foobarテーブルの代わりに、同じ構造のビューを作ってもかまわないが、優秀なオプ

ティマイザでないと処理が非常に遅くなるだろう。

CREATE VIEW Foobar (keycol, f)
AS SELECT keycol, fl
FROM MyTable
WHERE fl く> 0

訳注2:著者はいわゆる「行持ち」の形式を第 1正規形と呼んでいるが、この用語法は正確ではない。問題として提示されたテ
ーブルは繰り返し頂目を持つが、すでに第 1正規形を満たしてはいる。

■05

SCLパズル

UN10N
SELECT keyool, f2 FROM MyTable WHERE f2 く> 0

UNION

UN10N
SELECT keycol, f10 FROM MyTable WHERE f10 く> 0 ;

その3
3つ 目の方法は、まだ一般には利用できないSQL-92の機能に依存している。まずはコ

ードを見てもらおう。

〕:(D←‐
シ
0

0

■o6

SELECT ■

FROM MyTable

WHERE (fl, f2, ... , f10)IN

(VALUES (fl, 0, 0, 0, 0, 0,
(0, f2, 0, 0, 0, 0,

SELECT ■

FROM MyTable
WHERE O IN (VALUES (f2 + f3 +

(fl + f3 +

０

０

０

０

,0),
,0),

／
′
´
´
ヽ

／
ヽ
「
「
／
〓
多
′

‐ヽ―一仔
、
「

、ヽ
・
κ

(0, 0, 0, 0, 0, 0, 0, 0, 0, f10))
AND (fl + f2 + ... f10)く > 0;

SQL-92で は、述語との比較の中で行構築子またはテーブル構築子を使って、処理に

使うだけの一時的な行やテーブルを作成できる。IN述語は、同一性述語 (「 =」 のこと)

をORでつなげた場合と同じ働きをする。行方向の比較は1つずつ行われ、対応するす
べての値が等しいときにだけ真になる。

その4
「ゼロでない列が1つだけある」ということは、「残り9つの列がすべてゼロ」というこ

とと同値だ。

f10),

f10),
一 flを 抜く

一 f2を 抜く

(fl + f2 + .
AND (fl + f2 + ... f10)く > 0;

f9)) ――f10を抜く

パズル24 10個のうち1つだけ

擬似配列の扱い方

、11′ /

'9′

←
その5

0 1999年 1月 にトレヴァー・ドワイヤーは、彼が実際に遭遇した類似の問題をCompu

ScⅣcに投稿してきた。違うのは、彼のテーブルはゼロの代わりにNULLを含んでおり、

少なくとも1つはNULLでない列を含む行を見つけることが課題だったことだ。これは

SQL-92では非常に簡単に書ける。

囀
艤
臨螺
爾
鯉甕
麟
樅繭
醸
綺醸
騨ヽ
撚

SELECT オ

FROM MyTable
WHERE COALESCE(fl, f2, f3, f4, f5, f6, f7, f8, f9, f10)
IS NOT NULL;

COALESCE関 数 はリス トの中か ら最初のNULLで ない値 を返す。もしリス ト全体が

NULLだ け しか含んでいなければ、NULLを 返す。

冒頭の問題が、リストの中の式に変換関数を使うことでこの問題に置き換わることは

明 らかだ。なお、NULLIF関 数 は、列 の値 が 0な らNULLを 返す。

蝙 COALESCE(NULLIF(fl,0),NULLIF(f2,0),… ,NULLIF(f10,0))

■07

パ |ズ |ル |

OE
`ジ

争
もともとは少し違う形だったが、このパズルはブライアン・ヤングから持ち込まれた。

彼は、顧客の注文 (my_ordcr)に 対しどんな各サービス (scmcc_typc)を いつ提供する

のか (マイルストーン)を連綿と記録するためのシステムを担当していた。いわばサービ

ス提供のスケジュール管理システムであり、記録される提供日はサービスのタイプによ

って変わってくる。だから、経営者が各店舗のスケジュールを横断的に見たいと要求し

てきたのはもっともなことだと、私も認、めねばならない。だが、そういうことは本来フ

ロントエンドツールの表示用関数で実現するべきであって、データベース上で処理する

べきではない。それなのに経営者たちは、スケジュールを表示するときに業務コード

(scⅣicc_7pc)を指定できたらいいな、などとも思っていた。

ブライアンは、スティーブ・ロチが書いたSQL Scwcrの 解説本の中に、この問題を解

くためのうまい方法を見つけた。ただし、そのテクニックを使って正しく結果を得るた

めにはSUM関数と整数の乗算を使う必要があり、日付に対してはうまく適用できなか

った (名誉のために言っておくと、ロチのやり方は本当に見事なものだった |)。

このシステムのテーブルは、次のような構造をしている。

CREATE TABLE ServicesSchedule

(shop_■ d CHAR(3)NOT NULL,
order_nbr CHAR(10)NOT NULL,
sch_seq INTEGER NOT NULL CHECK (sch_seq IN (1,2,3)),
serv■ ce_type CHAR(2)NOT NULL,
sch_date DATE,
PRIMARY KEY (shop_■d, order_nbr, sch_seq));

sch_scqは次のようにコード化されている。

(1 = 'processed')

(2 = 'completed')

(3 = 'confirmed')

〈←:サービスを提供中

←・サービスを完了

←・サービスの確認済み

ServicesSchedule lサ ービススケジュールテーブル

order nbr:注文番号

service_type:サ ービスタイプ/業務コード

shop_ld:売 店 ID

sch_seq:サ ービスの状況

sch_date:サ ービス提供日

■08

_上回L

パズル25 マイルストーン

行と列を入れ替える

したがって、データは通常、次のようになる。

Se nvicesSchedule

shop_id order_nbr sch_seq service_type sch_date

10021

10021

10021

10021

10021

〕002[

i41555267101

141555267101

141555267101

141555267111

1415552671li

141555267111

０

０

０

０

０

０

11994-07-161

11994-07-301

11994-10-01〕

11994-07-161

11994-07-30:

NULL

scMcc_tpcが '011の場合には、ブライアンたちは次のようなフォーマットでデータを

表示させたかったはずだ。

／
／
´
´
ヽ‐ヽ‐′刃 その■
もし、使っているRDBMSが SQL-92対応ではなくSQL-89対応であっても、自己結合

を使えば希望の形でデータを取り出せる。

141555267101

141555267111

SELECT

FROM

WHERE
AND

AND
AND
AND
AND
AND

11994-07-161

11994-07-16:

11994-07-301

11994-07-301

11994-10-011

NULL

0

DISTINCT Sl.order_nbr, Sl.sCh_date, S2.sch_date,
S3.sch date

Serv■ cesSchedule Sl, Serv■ cesSchedule S2,

Serv■ cesSchedule S3
sl.serv■ ce_type=:my_tos 一 業務 コー ドをセッ トする
sl.order_nbr=:my_order ――注文番号 をセッ トする
Sl.sch_seq = 1
S2.order nbr = Sl.order nbr
S2.sch_seq = 2
S3.order nbr = Sl.Order nbr
S3.sch_seq = 3;

ただし、RDBMS製品によっては自己結合のコストが非常に高くなることがある。古

い実装ではこれが最速の方法だとは思うが、ほかの方法を思いつくだろうか ?

イ09

onder_nbr processed completed confirmed

SQILパズル

、11′ /

ラ;,←
0

その 12

SQL-92な ら、サブクエリ式を使えばあっという間に解ける。

SELECT DISTINCI SO.order_nbr,

(SELECT sch_date
FROM ServicesSchedule AS Sl

WHERE Sl.sch_seq = 1
AND Sl.Order_nbr = SO.Order_nbr)AS processed,
(SELECT sch_date
FROM Serv■ cesSchedule AS S2
WHERE S2.sch_seq = 2
AND S2.order_nbr = SO.order_nbr)AS completed,

(SELECT sch_date
FROM SerV■CeSSChedule AS S3
WHERE S3.sCh_seq =3
AND S3.Order_nbr = SO.Order_nbr)AS confirmed

FROM SerV■cesSchedule AS S0
WHERE service_type=:my_tos i ――業務コー ドをセッ トする

この“トリック"の難点は、オプテイマイザによってはうまく最適化されないケースが

あることだ。もしかしたら、答えその1の 自己結合よリパフォーマンスが悪いかもしれ

ない。

その3

、11′ /

'9′

←
0 あるいは、UNION ALL演算子を使って、元テーブルのデータを横 (1行)に並べた作

業用テーブルを作ろうと試みた人もいるだろう。通常はあまリパフォーマンスの出ない

やり方だが、元テーブルが非常に巨大な場合には、答えその2の 自己結合より速いこと

もあり得る。

INSERl‐ INTOI Work (order_nbr, processed, conlpleted, confirmed)
SELECl‐ Order_nbr, sch_date, NULL, NULL
FROM ServicesSchedule AS Sl

WHERE Sl.sch_seq = 1
AND Sl.order_nbr = :my_order
AND serv■ce_type= :my_tos ――業務コー ドをセッ ト
UN10N ALL
SELECl‐ order_nbr, NULL, sch_date, NULL

イ■0

パズル25 マイルストーン
行と列を入れ替える

FROM Serv■ cesSchedule AS S2
WHERE S2.sch_seq = 2
AND S2.order_ br = :my_ rder
AND serv■ce_type=:my_tOS 一 業務コー ドをセッ ト
UNION ALL
SELECT order_nbr, NULL, NULL, sch_date
FROM Serv■cesSchedule AS S3
WHERE S3.sch_seq = 3
AND S3.order_ br = :my_ rder
AND serviCe_type=:my_tOS; ――業務コー ドをセッ ト

場合によっては、この単純なUN10N ALLの 文を3つ のINSERT文に分解する必要

があるかもしれない。いずれにせよ、作業用テーブルができあがれば、最終的に欲しい

結果を出力するクエリは簡単だ。

SELECT order_nbr, MAX(processed), MAx(oompleted), MAX(conf■ rmed)

FROM Work
GROUP BY order_nbr;

MAX関数はグループ内のNULLでない最大値を選択する。グループ内の非NULL値

は最初から1つだけ、という場合にはMAX関数は不要になる。

'S'′

←その4
0 UNIONの 繰り返しは、SQL-92な らCASE式 で書き換えられることが多い。その方向

で考えて作ったのが次の解だ。

SELECT order_ br,

(CASE WHEN sch_seq = 1
THEN sch date
ELSE NULL END)AS processed,

(CASE WHEN sch_seq = 2
THEN sch date
ELSE NULL END)AS completed,

(CASE WHEN sch_seq = 3
THEN sch date
ELSE NULL END)AS conf■ rmed

Serv■ cesSchedule

serv■ ce_ ype = :my_ os
order_ br = :my_ rder;

一̈一一^畿

一^【̈̈総
鰻̈
機̈
一̈̈一”̈鶴一熱
一̈絣̈
一̈“

FROM

WHERE
AND

イイイ

SQLパズル

ただし、これだと同じ注文番号のデータが同じ行に並ばない。この点を改善するには、

次のようにGROUP BY句 を加えればよい。

SELECT order_ br,
MAX(CASE WHEN sch_seq =

THEN sch date
ELSE NULL END)

MAX(CASE WHEN sch_seq =
THEN sch date
ELSE NULL END)

MAX(CASE WHEN sch_seq =
THEN sch date
ELSE NULL END)

Serv■ cesSchedule

AS processed,
2

AS completed,
3

AS confirmed
FROM

WHERE
AND
GROUP

service_type = :my_tos
onder_nbr = :my_orden
BY onder'_nbr, ser.vice_type ;

現在のSQLではこれがベストだろう。古いSQLで書かれたコードも、この形に変換す

ることが可能だ。

■■2

バ |ズ |ル |

26

鮨
トム・ブラッグは、CompuScⅣcの CASEフ ォーラムにこういう問題を送ってきた (こ

こでは少し改変したものを示す)。

ここに、データフローダイアグラム (DFD)[訳
注1]に
関する情報を管理するテーブルが

あるとしよう。列構成はダイアグラム名、そのダイアグラムに含まれるバブル (円)の名

前、そしてバブル間を走るフロー (矢印)の名前だ。

CREATE TABLE DataFlowD■ ag rams

(d■agram_name CHAR(10)N01‐ NULL,
bubble_name CHAR(10)NOT NULL,
flow_name CHAR(10)NOT NULL,
PRIMARY KEY (d■ agram_name, bubble_name, flow_name));

DataFlowDiagrams:DFDテ ーブル

bubble_name:バ ブル名

diagram_name I f lV2rl^Z
flow_name i 7E-A

問題を説明するために、次のサンプルを使うとしよう。

DataFlowDlag rams

it11i11=!i1!===!t!11!=r1ir===11=t1t!=
'Pnoc1 '

'Pnocl '

'Proc1 '

'Proc1 '

'Proc1 '

'Proc1 '

'Proc1 '

'Pnoc2'
'Proc2'

'input'
'input'
'crunch'
'crunch'
'crunch'
'output'
'output'
'reckon'
'reckon'

'guesses'
' opinions '

'facts '

' guesses '

'opinions'
'facts'
'guesses '

' guesses '

'opinions'

ここから知りたいことは、「各ダイアグラムにあるバブルがどのフローと結び付いて

いないか」である。これは失われたデータフローの有無など、ダイアグラムの妥当性を

訳注 1:情報システムにおけるデータの流れを表現するための記法。データの処理を表す円の間を、データの流れを表す矢印

でつなぐ。

イ■3

‐ヽ‐′ぬ
Ｖ
２７
目

、ヽ
・
／
　

‘ｑ

SCLパズル

〕:⑦←′́
ツ
0

チェックするルーチン作業の一部である。また、問題を簡単にするために、どのバブル

もダイアグラム内にあるすべてのフローと結び付かなければならないとしよう。つまり、

サンプルでは、(PrOcl,input)と いうバブルには‰ctsiフ ローが欠けており、(Procl,

ou"ut)と いうバブルには'opinions'フ ローが欠けている、という具合だ。

その■

SQL-92な ら、次のようなクエリを書くことができる。

SELECT

FROM

EXCEPT

SELECT

FROM

diagram_name, bubble_nanle, f10vv_n anle

(SELECl‐ Fl.d■ agram_name, Fl.bubble_name, F2.flow_name
FROM DataFlowD■ agrams AS Fl
CROSS J01N
DataFlowD■agrams AS F2)AS TMP

F3.diagram_name, F3.bubble_name, F3.flow name

DataFlowDiagrams AS F3;

要するに、可能なすべてのバブルとフローの組み合わせを作り、そこから実際に存在

する組み合わせをEXCEPT演算子で“引き算"しているわけだ。

その2

SQL-92の 別解 には、次のようなクエ リも考 えられる。差集合演算 を行 うのに、

EXCEPTの代わりにNOT INを使っている。

SELECT DISTINCT d■agram_name, bubble_name, flow_name
FROM (SELECT Fl.diagram_name, Fl.bubb■ e_name, F2.flow_name

FROM DataFlowDiagrams AS Fl

CROSS JOIN
DataFlowD■ agrams AS F2
WHERE F2.flow name NOT IN

(SELECT F3.flow_name
FROM DataFlowD■ agrams AS F3
WHERE F3.d■ agram_name = Fl.diagram_name
AND F3.bubble_name = Fl.bubble_name))AS TMP

ORDER Bヽ′ d■agram_name, bubble_name, flow_name;

■■4

、ヽ
´
／

‐―′
λ
膨
ツ

ヽ

′
Ｌ

、

t\fl1,26 DFD

存在しない組み合わせを見つける

その3
SQL-89で解こうとするなら、ビューを使わなければならないだろう。

一 すべてのフローを保持するビュー

CREATE VIEW AllDFDFlows(flow_name)
AS SELECT DISTINCl‐ flow_name FROM DataFlowD■ agrams;

flow name

'facts'
'guesses'
'opinions '

一 元のテーブルの各行にすべてのフローを割 り当てる

CREATE VIEW NewDFD

(d■agram_name, bubble_name, flow_name, m■ ss■ ngf10w)

AS SELECl‐ DISTINCT Fl.diagram_name, Fl.bubble_name, Fl.flow_name,
F2.flow name

FROM DataFlowD■ agrams AS Fl, AllDFDFlows AS F2
WHERE Fl.flow_name く> F2,flovv_name,

一 flow name列 に失われたフローが存在 しない
―― (diagram_name,bubble_name)の組み合わせを表示する
SELECl‐ DISTINCl‐ d■ agram_name, bubble_name, m■ ss■ ngflow

FROM NewDFD AS NDl

WHERE NOT EXISTS (SELECT キ

FROM NewDFD AS ND2
WHERE NDl,d■ agram_name = ND2.d■ ag ram_name
AND NDl.bubble name = ND2.bubble name
AND ND2.flow_name = NDl.missingflow)

ORDER BY d■ agram_name, bubble_name, m■ ss■ ngflow,

DISTINCTを 付けたのはやりすぎのような気もするが、実行速度を確認してほしい。

ネットワークに負荷をかけてすべての行を持ってくるより、こちらのほうが速いはずだ。

0

■45

バ |ズ |ル |

27

魏
集合論は部分集合を表す2つの記号を持っている。lつが「馬の蹄」を横向きにしたも

の (⊂)で、集合Aが集合Bに含まれることを意味する。真部分集合と呼ばれることもあ

る。もう1つ は、その下に水平線を書き加えたもの (⊆)で、これは「含まれるか、または

等しい」を意味する。こちらは、単に部分集合とか包含演算子と呼ばれる。

標準SQLは、テーブル同士を比較する演算子をまったく持っていない。大学のリレー

ショナルデータベースの教科書には、標準SQLに存在しないCONTAINS述語なるもの

を載せているものもある。例えば、ビピン・ c・ デサイー著『Introduction to Databasc

Systcms』 (Wcst Croup刊 ,1990,ISBNO-314-66771-7)や、エルマスリとナバスの共著

『Fundamcntals of Databasc Systcms』 (Bcniamin cummings刊 ,1989,ISBNO-8053-

0145-3)は 、そういう“チョンボ"をやっている一例だ。この述語は、かつてIBMの実験

的なSQLシステム「systcm R」 に存在していたが、実行コストが高くつくという理由で、

後の実装からは除かれたのだ。

IN述語は要素として含むかどうかのテストをするだけで、部分集合を含むかどうか

を調べることはできない。高校時代に習った集合論を思い出してほしい。要素関係を表

す記号はギリシャ文字のイプシロンをかたどったような「∈」というものだった。要素関

係は1つの要素に対して適用されるが、部分集合はそれ自身が集合であって要素ではな

いので適用されないのだ。

ところで、『Databasc PrOgramming&Dcsign』 の1993年 ll月 号に掲載されたクリ

ス・デイトのパズル (「整合性の問題 Part Ⅱ」)は、部品とその供給業者を管理するテー

ブルを使って、数も種類も全く同じ部品を取り扱う供給業者を見つけるものだった。要

するに、2つの等しい集合を見つけるという問題である。

ここでは、その問題に挑戦してはしい。サンプルデータには、デイトが作った有名な

テーブルを使おう
[訳注1]。

CREATE TABLE SupParts

(sno CHAR(2)NOT NULL,
pno CHAR(2)NOT NULL,
PRIMARY KEY (sno, pno));

訳注1:このテーブルの詳細は、デイトの著書『データベースシステム概論 第6版』(丸善刊)や『データベース実践請義』(オラ
イリー・ジャパン刊)を参照。snoが供給業者の識別子 (suppller no)、 pnoが部品の識別子 (part no)を表す。

●■6

上[」_

パズル27 等しい集合を見つける
集合の相等性チェック

SupParts:供給業者/部品テーブル sno:供給業者番号 pno:部品番号

あなたは、この問題を解く方法をどれだけ思いつくだろうか ?

、‖ ′/

'｀

'′

←その■
0 1つ の方法は、完全外部結合で供給業者の組み合わせを作ることである。この組み合

わせ結果には、両供給業者で共通しない部品を含む行まで現れるが、内部結合では現れ

ない行の供給業者列のどちらかはNULLと なる。このことから、どの組み合わせがマッ

チしなかったのかが分かる。最後に、同じ部品を供給する業者のすべての組み合わせか

ら、これらのマッチしなかった組み合わせを引き算すれば、求めるクエリは完成だ
[訳注2]。

SELECT
FROM

ON

AND
EXCEPT
SELECT
FROM
ON

AND
WHERE

OR

SPl.sno, SP2.sno
SupParts AS SPl INNER J01N SupParts AS SP2
SPl.pno = SP2.pno
SPl.sno く SP2.sno

DISTINCT SPl.sno, SP2.sno
SupParts AS SPl FULL()UTER JOIN SupParts AS SP2
SPl,pno = SP2.pno
SPl.sno く SP2.sno
SPl,sno IS NULL
SP2.sno ISI NULL;

EXCEPT演 算子は、集合論の差集合演算に該当する。ただ、この方法の実行速度は非

常に遅いだろう。

、11′

ωヽ
）し
“

″

卜
ヽ ｀
その2

0 2つ の集合が互いに等しいことを証明する場合、「Aが Bを含み、かつ、BがAを含む」

ことを示すのが普通である。標準SQLで「Aが Bを含むにはBの部分集合である)」 こと

を示す場合には、一般に「Bに存在しない要素がAに も存在しない」ことを示す。そこか

ら、次のような解答の叩き台となるSQL文が書ける。

訳注 2:実際には、このクエリは答えその 2と同様に、1つでも共通の部品を含む業者のペアを選択してしまう。

`■
7

AND

おっと、このSQL文ではまだ望む結果を得られない。1つでも共通する部品がある供

給業者の組み合わせをすべて選択してしまうからだ。

'S′

←その3
0 答えその2で述べた伝統的な踏線で望む結果を得るためには、NOT EXISTS述 語を使

えばよい。

SQLパズル

■■8

SELECT
FROM
WHERE
AND

SELECT
FROM

WHERE
AND

AND

DISTINCT SPl.sno, SP2.sno
SupParts AS SPl, SupParts AS SP2
SPl.sno く SP2.sno
SPl,pno IN (SELECl‐ SP22.pno

FROM SupParts AS SP22
WHERE SP22.sno = SP2,sno)

SP2.pno IN (SELECT SPll.pno
FROM SupParts AS SPll
WHERE SPll,sno i SPl.sno);

DISTINCT SPl.sno, SP2.sno
SupParts AS SPl, SupParts AS SP2
SPl,sno く SP2.sno
NOT EXISTS ―― SPlに はあるがSP2に はない部品
(SELECT SP3.pno
FROM SupParts AS SP3
WHERE SPl.sno = SP3.sno
AND SP3.pno NOT IN

(SELECT pno
FROM SupParts AS SP4
WHERE SP2.sno = SP4.sno))

NOT EXISTS ―― SP2に はあるがSPlに はない部品
(SELECT SP5.pnO
FROM SupParts AS SP5
WHERE SP2.sno = SP5.sno
AND SP5,pno NOT IN

(SELECl‐ pno
FROM SupParts AS SP4
WHERE SPl.sno = SP4,sno));

パズル27 等しい集合を見つける
集合の相等性チェック

、11′ /

〕
'9←

その4
0 私は、部分集合を使わずに集合の相等性を示す別解はないものかと考えた。まず、同

じ業者同士の組み合わせを排除しつつ、共通の部品をキーとして供給業者同士を結合し

た。すると、2つの集合の共通部分が得られる。ここで、共通部分の要素数が2つの集合

の要素数と一致すれば、2つの集合は等しいということになる。

SELECT SPl.Sno, SP2.sno
FROM SupParts AS SPl INNER JOIN SupParts AS SP2
0N SPl.pno = SP2.pno
AND SPl.Sno く SP2.sno
GROUP BY SPl.sno, SP2.sno
HAVING COUNT(★)=
(SELECT COUNT(キ)― -1対 1の対応が存在するか否かのテス ト
FROM SupParts AS SP3
WHERE SP3.sno = SPl.sno)
AND 00UNT(キ)=
(SELECT COUNT(■)

FROM SupParts AS SP4
WHERE SP4.sno = SP2.sno);

SupPartsテーブルのsnO列にインデックスを設定すれば結合演算が速くなるし、カウ

ントもインデックスから直接得られる。

その5
0 このSQL文は答えその4と 同じ考え方で書かれている。COUNT(SPl.sno ll SP2.snO)

が、2つのSupPartsテ ーブルに同じ数だけ存在する供給業者番号を見つけるための “ト

リック"だ。

SELECT SPl,SnO, SP2.sno
FROM SupParts AS SPl INNER JOIN SupParts AS SP2
0N SPl.pnO = SP2.pno
AND SPl.sno く SP2.sno
WHERE (SELECT COUNT(pno)

FROM SupParts AS SP3
WHERE SP3.SnO = SPl.SnO)= (SELECT COUNT(pno)

FROM SupParts AS SP4

‐ヽ
‐
′
９

７

、ヽ
・
κ

■■9

ScLパズル

WHERE SP4.sno = SP2.sno)
GROUP BY SPl.sno, SP2.sno
HAVING COUNT(SPl.sno l l SP2.sno)= (SELECT COUNT(pno)

FROM SupParts AS SP3
WHERE SP3.sno = SPl.SnO);

'(b色

その6
マ

0 次に紹介するのは、フランシスコ。モレノから寄せられた答えその3の変形版である。

NOT EXISTS述語の代わりに差集合演算 (EXCEPT演 算子)を使っている。モレノは

oradcを使用していて、その差集合演算子 (Oradcで はMINUS)はかなり高速に実行さ

れるという。

SELECT
FROM
WHERE
AND

AND

DISTINCT SPl.sno, SP2.sno
SupParts AS SPl, SupParts AS SP2
SPl.sno く SP2.sno
NOT EXISTS ―― SPlに はあるが SP2に はない部品
(SELECT SP3.pno
FROM SupParts AS SP3
WHERE SPl.sno = SP3.sno
EXCEPT
SELECT SP4.pno
FROM SupParts AS SP4
WHERE SP2,sno = SP4.sno)

NOT EXISTS ―― SP2に はあるがSPlに はない部品

(SELECT SP5.pno
FROM SupParts AS SP5
WHERE SP2.sno = SP5,sno
EXCEPT
SELECT SP6.pno
FROM SupParts AS SP6
WHERE SPl.sno = SP6.sno);

‐‐／ゐ
》
７
瓢

ヽ

ィ
ヽ
、
　

　

日
Ｌ

、ヽ
・
κ
　

‘ｑ

その7
アレクサンダー・クズネツォーフは、昔ながらの「結合内の一致を数える」アプローチ

に、再び工夫を凝らした。

SELECT A.sno AS snol, B.sno AS sno2
FROM (SELECT sno, COUNT(■), MIN(pno), MAX(pno)

■20

||ll ll

／
′
ン
´
ヽ

′
ヽ

幻
／

多

′

‐ヽ―酵
ヽ
「

、ヽ
・
κ

パズル27 等しい集合を見つける
集合の相等性チェック

FROM SupParts GROUP BY sno)
AS A(sno, cnt, m■n_pno, max_pnO)
INNER J(〕 IN

(SELECT sno, COUNT(■), MIN(pno), MAX(pno)
FROM SupParts GROuP BY sno)
AS B(sno, cnt, m■ n_pno, max_pno)

一 以下の 4つの条件でほとんどの組み合わせが除外 される

ON A.cnt = B.cnt
AND A.m■ n_pno = B.m■ n_pno
AND A.max_pno = B.max_pno
AND A.snoく B.sno

一 以下の高コス トなSELECT文 は、すべての組み合わせについて
一 実行する必要はない

WHERE A.cnt
= (SELECl‐ COUNT(■)

FROM SupParts AS Al,

SupParts AS Bl
WHERE Al.pno = Bl.pno
AND Al.sno=A.sno
AND Bl.sno = B.sno);

大抵のオプティマイザは、各列のMIN関数やMAX関数の値を統計テーブルに持って
いるので、結果を取得するのに時間はかからない。それを利用している点が、このクエ

リのうまいところだ。

その 8

最後に、集合の相等性をテストする一般的な2つの方法を、集合論の記号を使って確

認しておこう。

((A⊆ B)=(B⊆ A))⇒ (A=B)

((A∪ B)=(A∩ B))⇒ (A=B)

1つ 目の等式は、まさに結合を使った比較の基礎となるものだ。2つ 目の等式は、部分

集合のレベルというより、集合のレベルで考えたものである。これを応用したクエリと

しては、例えば次のようなテーブルAと テーブルBと の比較が考えられる。

0

■2■

SoLパズル

SELECT DISTINCT inot equall ―‐

FROM ((SELECT ' FROM A
UNION

SELECT ★ FROM B)

EXCEPT

(SELECT
★ FROM A

INTERSECT

SELECT ' FROM B));

:等 しくない |

もしテーブルAと テーブルBが等しければ、空集合が返される。ただし、テーブルに重

複行が存在する場合、集合演算子にALL句 を付けるときには注意を払う必要がある。あ

りがたいことに、集合演算子は列レベルではなく行レベルで動作するため、このSQL文

は、UNION互換 [訳注3]なテーブルならどんなテーブルの組み合わせにも適用できる (つ

まリテンプレートとして使える)。 比較したいテーブルが持っている列名は、全く知らな

くてよい。

訳注3:UN10N互 換とは、UN10N演算子で連絡される2つのテーブルの間で「①列数が同じ」「②同じ位置に来る列のデータ

型が同じ (または自動的に変換される)」 であることを言う。②のデータ型の自動変換が行われるかどうかはRDBMS
による。

■22

バ |ズ |ル |

28

蟄
あなたの使っているRDBMSが、正弦 (sinc)関 数を標準ライブラリに持っていないと

仮定しよう。このとき、ラジアンに対する正弦値を計算することは可能だろうか ?

その2

答えその 1の SELECT文 で、:mwalucがテーブルになかった場合、このサブクエリは

空、つまりNULLを返すことに気付いただろうか。これは良 くない。

lrlr
ノイ´

ハ
ン
レ７

／
Ｌ
ヽ
｀
その■

0 単純にやるなら、ラジアンとそれに対応する正弦値を持つテーブルを作ればよい。

CREATE TABLE S■ ne

(x REAL NOT NULL,
s■n REAL NOT NULL);

INSERT INTO S■ ne

VALUES (0.00, 0.0000),

(0.75, 0.6816),
(0.76, 0.6889)

あとは表計算ソフトや充実した数学ライブラリを持つプログラミング言語の助けを借

りて、テーブルにデータを入れるだけだ。このテーブルをスカラサブクエリ内で使うこ

とで、ラジアンを入力とする正弦値が得られる。

(SELECT sin FROM S■ ne WHERE x = :myvalue)

もちろん、場合によってはこのテーブルはかなり巨大になってしまうだろうが、入力

値の範囲が限られた関数であれば、比較的小さなサイズで済むだろう。これはこれで悪

い方法ではない。ただ残念なことに、正弦関数は、すべての実数に対して定義された連

続的な関数であるところが厄介だ。

一一̈̈一鞣
一一一̈一一巌
篤̈̈
一̈爾
”一“一一編一̈購
一̈̈携
・

壌

鬱

ｒ

、ヽ
・
κ

‐―′ゝ
θ
ヤ

ヽ

′
し
、

0

■23

SclLパズル

古い計算や三角法について書かれた本を読むと、計算機がなかった時代の人々がどの

ようにしてテーブルを使っていたかが分かる。彼らは「内挿法」と呼ばれる、なかなか味

わい深い数学のテクニックを使っていた。

最も簡単な方法は線形内挿である。ある関数の2つの値、1(a)と f(b)が与えられた場

合、その間に位置する第3の値を近似的に求めることができる。その公式は、

f(a)+(X― a)× ((f(b)一 f(a))― (b― a))

である。例えば、sin(0.754)を求めたい場合、次の2つの値を使う。

INSERT INT()S■ ne VALUES (0.75, 0,6816);
INSERT INTC)S■ ne VALUES (0.76, 0.6889);

これを公式にあてはめてみよう。

0.6816 + (0,754 - 0,75)' ((0.6889 - 0.6816)/ (0.76 - 0,75))
= 0,68452

実際の値は0.68456であるから、誤差は0.00004。 ほとんどの場合、この推計値でも

用をなすだろう。この“トリック"を クエリに組み込んだのが次の答えだ。

SELECT A.s■ n + (:myvalue ― A.x)
キ
((B.s■ n ― A.s■n)/(B.x ― A.x))

FROM Sine AS A, S■ne AS B
WHERE A.x = (SELECT MAX(x)FROM S■ ne WHERE x く= :myv
AND B.x = (SELECl‐ MIN(x)FROM S■ ne WHERE x >= :myv

厳密には、関数の値域を0から2π までに制限する条件が必要だが、まあ、それは些細

なことだ。内挿法にはほかにも計算方法があるが、考え方は一緒である。

この問題が教える教訓は、SQLはテーブルと結合に対して有効に働くよう設計された

言語であり、計算向きの言語ではないということだ。したがって、計算的な解法を探す

前に、まずテーブルを使った解法を探すべきだ。

なお、内挿法の背後にある数学について知りたいという人には、ァ.F.シユテッフェン

ゼ ンの『Intcrpoladon』 (Dovcr Publicadons刊 ,2006,ISBN978-0-486-45009-4)を 推薦

しておこう。

■24

バ |ズ |ル |

90
`― ./

蜀

ノ
／
´
´
ヽ

′
ヽ

Ｊ
／

多
′

‐ヽｌα
ヽ
コ「

/′

SQLで定義されている統計関数は単純平均、つまりAVGだけだ。これはよく使う統

計ではあるが、統計関数はほかにもある。平均値 (ミ ーン)、 中央値 (メ ジアン)、 最頻値

(モード)な どもすべて、値の集合から「代表値」を求める方法だ。

最頻値とは、テーブルのある列において最も個数の多い値のことである。例えば、「給

与名簿 (Payroll)」 という名前のテーブルに、chcck_nbr(給与小切手の番号)と そこに記

載された給与額 (chcck_amt)と いう2つの数値型の列があるとしよう。

CREATE TABLE Payroll

(check_nbr INTEGER NOT NULL PRIMARY KEY,
Check_amt DECIMAL(8,2)NOT NULL,

・ ・ ・);

Payro‖ :給料名簿テーブル check_nbr:給 与小切手の番号 check amt:給与額

この給与名簿テーブルの中から給与額の最頻値と、そのレコード数を求めたい。では、

そのクエリをSQL-89構 文で書 くにはどうすればよいだろう ? また、SQL-92構 文や

SQL-99構文ではどう書けるだろうか
'

そのイ

SQL-89には、SQL-92の ような直交性 [訳注
1]が
ない。そのため、最善の方法はおそらく

ビューを使うことである。

CREATE VIEW AmtCounts
AS SELECT COUNT(■)AS check_cnt
FROM Payroll

GROUP BY check_amti

そして、このビューを使って給与額の最頻値を検索する。

直交性は非常に意味に幅のある多義的な用語だが、SQLに関連する意味としては、「演算の独立性」と考えてよい。
SQL-92で は、クエリの結果を 1つの式と見なしてほかの演算の入力とするサブクエリ (表式)がサポー トされ、演算
の独立性 (つまり直交性)が改善された。

0

訳注 1

■25

SclLパズル

0

ま
幻
）
一イ

ヽ

／
卜
ヽ

ゞ

ｚ

SELECT check_amt, COUNT(☆)

FROM Payr011
GROUP BY check amt
HAVING COUNT(■)= (SELECT MAX(check_cnt)

FROM AmtCounts);

しかしこの解法だと、クエリの実行後にもビューをデータベースのスキーマに残して

しまう。ほかの目的でこのビューを使う予定があるなら便利だが、そうでなければ邪魔

だろう。ここはひとつ、ビューを使わずに1つのSQL文で実現したい。

その2

SQL-92の直交性によって、ビューをテーブルサブクエリ式に折り込むことができる

ようになった。次のように書く。

SELECT check_amt, COUNT(■)AS check_cnt
FROM Payroll
GROUP BY check amt
HAVING COUNT(大)= (SELECT MAX(check_cnt)

FROM (SELECT COUNT(■)AS check_cnt
FROM Payroll

GROuP BY check_amt));

一番内側のSELECT文 は、1つ外側のSELECT文 に集約されたテーブルを渡す前に、

処理が完全に終わっている必要がある。その後に、真ん中のSELECT文がそこから最大

値を見つけて、一番外側のSELECT文 に渡す。この作業が行われる過程で、集約された

テーブルが解体される可能性も十分にある。

もしオプテイマイザが優秀なら、最初に実行されるクエリを、最終的な解答を得ると

きに再利用するためにとっておくだろう。しかし、保証はできないので、実際の動作を

確認してはしい。

その3
今から示すSQL-92の別解は、前の解法とNULLの扱いが少し異なる。どんな違いが

あるのか、分かるだろうか ?

〕:⑦←・
シ
0

■26

パズル29 最頻値を求める
HAVING句の力 (その 3)

SELECT check_amt, COUNT(■)AS cheCk_Cnt
FROM Payroll

GROUP Bヽ′ cheCk amt

HAVING COUNT(大)>= ALL (SELECT COUNT(■)AS check_Cnt
FROM Payr011
GROUP BY check_amt);

この解法にメリットがあるとすれば、雌 関数を使っていないので、集約されたテー

ブルを複数のSELECT文の間で使い回せる可能性がより高い点だ。事実、サブクエリ内

のSELECT文は、外側のSELECT文の射影である点に注目してほしい。

これらの解が、実際にあなたが使っているRDBMSで どの程度のパフォーマンスを発

揮するのかは、各自で調べてみてほしい。

、11′ /

'S'←

その4
0 ご存知のように、最近では、将来的に実装するOLAP拡張の一部として最頻値を求め

るための関数を用意しているRDBMSも 多い。それを使えば、この問題を解くのは造作

もない。サ ブ クエ リはあ っ さ りとOLAP関 数へ 置 き換 えるこ とが で きる
[訳注2]。

SELECT check_amt,
COUNT(キ)OVER (PARTITION BY check_amt)AS check_cnt

FROM Payroll;

もっとも、この書き方でパフォーマンスが向上するかどうかは、保証の限りでない。

訳注2:こ のクエリでは、cheCk_amtこ との値の数を一覧表示するにとどまる。最終的には、check_cntが最も多いcheck_

amtを選択しなければならない。

■27

バ |ズ |ル |

30
レイモンド・ピーターセンは、次のような質問をしてきた。

顧客の名前と購買日の2つの列だけを持つSalcsテ ーブルがあるとする。ここから、各

顧客の購買間隔が平均で何日かを1つのクエリで求める方法はあるだろうか ? なお、
同じ顧客に対して同じ日に売上を2回以上記録することはないものとする。

CREATE TABLE Sales

(CuStOmer_name CHAR(5)N01‐ NULL,
Sale_date DATE NOT NULL,
PRIMARY KEY (customer_name, sale_date));

Sales:販 売テーブル CuStOmer name:顧 客名 sale date:貝反売日

次のデータは、1994年 6月 第1週の売上記録である。

Sales

custonter name sale date

:Fredi

lMary:

IB■
lli
lFredl

!B■
ll:

IB■
11:
lBilll

i3■111
13■
111

1B■111
lFredl

:Maryl

11994-06-011

'1994‐ 06-011
'1994-06-011
11994-06-02'

11994-06-021

:1994-06-031

11994-06-04!

11994-06-051
11994-06-061

11994-06-071

11994-06-071

'1994-06-081

ここから分かることは、Frcdは最初の買い物から次の買い物まで 1日 、その次に5日

の間隔で買っていることが分かる。したがって、彼の平均購買間隔は3日 だ。Ma7は 7
日おきなので平均も7日 、Billは規則的に毎日買っている。

■28

LLLL

瘍
G麟
~

パズル30 買い物の平均サイクル
過去の直近の日付を求める

、11′ /

ラ:,←
僣 D

CREATE VIEW LAStSA1ES
(customer_name, this_sa1e_date, last_saIe-date)
AS SELECT Sl.customen_name, Sl.sale_date,

(SELECT MAx(sale_date)
FROM SAIES AS S2

WHERE 52.sa1e_date < S1.sa1e_date
AND 52.customer_name = Sl.customer-name)

FROM Sales AS 51;

Lastsales:直 近の販売ビュー

last_sale_date:直近の販売日

customeLname i顧 客名 this_sale_date:今 回の販売日

要するに、これは最大下界
[訳注1]を
求めるクエリである。ある購買日以前の購買日のう

ちで最大のもの (最も日付の新しいもの)が、過去の直近の購入日となるわけだ。

次に、現在の購買日と直近の購買日との間隔日数を持つビューを作る。これら2つの

ビューを1つのSQL文の中にまとめることもできなくはないが、読むに耐えないクエリ

になるし、うまく最適化されないだろう。ここではコードを簡単にするために、DAYS関

数が使えるものとする。これは、2つの引数の日付の間隔を整数で返す
[訳注2]。

CREATE VIEW Salescap (customer_name, gap)

AS SELECT customen_name, DAYS(this_saIe-date, Iast-sale-date)
FROM LaStSales;

ここまで来れば、あとは1つのクエリで解ける。

訳注1:「下界」とは集合論の用語で、ある順序集合のどの要素よりも小さい要素のこと。例えば、{11994-06-02','1994-06-

031,'1994-06-05`}と いう日付の集合に対しては、
11994-06-01'や 11994-05-20'な どが下界になる。一般に、下界

は複数あり得る。「最大下界」は、その名のとおり下界のうちで最大のもので、先の例では
11994-06-01'に なる。「過

去の直近日」は、日付における最大下界と言える。

訳注2:DAYS関 数を持たないRDBMSで も、日付型の列同士を直接引き算すればよい。

その■

真っ先にやろうとしたのは、顧客ごとに購買日の間隔日数を示す、手の込んだビュー

を作ることだった。このアプローチを採る場合には、初めにそれぞれの購買日に対する

過去の直近の購買日を求める。

■29

鱗
一鷲
ヽヽ̈̈
¨̈̈̈
総̈
一灘
圏Ｓ一̈鱗
¨̈一̈鶴
¨̈一鶯

SoLパズル

SELECT customer_name, AVG(gap)
FROM SalesGap
GROUP BY customer_ ame;

2つのビューをAVG関数の引数に入れることもできるが、やったが最後、読解不能な
クエリになってしまうし、処理は粘っこいハチミツのように遅くなるだろう。

ヽ11′ ノ

'9←

その2

0 答えその1を見せたのは、人間は1人で考えていると頭の中が暴走してしまう、とい

う例を示したかったからだ。顧客の購買間隔の平均日数が求めるだけなら、わざわざ複

雑なビューを作る必要などない。単純に、最初の購買日から直近の購買日までの経過日

数を数えて、それを購買間隔の数で割ればよいのだ。

SELECT customen_name,
DAYS(MAX(saIe_date), MIN(sale_date)) / (CoUNT(*) - 1)
AS avg_gap

FROM Sales
GROUP BY customer_name

HAVING CoUNT(*) > 1;

今日の日付と直近の購買日との間隔に時間まで考慮に入れなければ、購買間隔の数は

(購買回数 -1)なので、(COUNT(■)-1)で割っている。

HAVING句は、1回 しか買い物をしなかった客を除外している。ただし、この1回 限
りの客も、SELECT句 のMAX(salc_datc)を CURRENT_DATEに 変えることで結果に含
められる。次のクエリはそのように書き直したものだ。

SELECT customer_ ame,

CASE WHEN COUNT(■)> 1
THEN DAYS(MAX(Sale_date), MIN(sale_date))
ELSE DAYS(CURRENT_DATE, MIN(sale_date))

END AS avg_gap
FROM Sales

GROUP BY customer_name;

(COUNT(オ)-1)

うまいことに、答えその1と その2の どちらの方法も、同日に同一の顧客が2回以上買

い物した場合にも対応できる。

■30

パ |ズ |ル |

の イ
Jレ |

穆
鶴S~

ソフトウェアAG社 [訳注1]は、1990年代の中ごろに「Espcrant」 という優秀なSQL作成

ソフトを発表した。ユーザーは、キーボードと対話式の選択リストを使って英文を作り、

Espcrantがそれを一連のSQLク エリに変換する。

確かに、自然言語によるクエリというのは古いアイデアである。しかし、そうした製

品の多くは、英語のフレーズがクエリとして動作するように、あらかじめいくらかプロ

グラムしておく必要があった。それらと比べると、Espcrantが単独で実行可能な処理の

数には注目すべきものがあった。Espcrantは、事前のプログラミングなしに関係除算や

ビューの作成を行えたし、複雑なトランザクションを組むこともできた。

ソフトウェアAG社のデモには、次に示すような顧客、注文、注文明細 (お よびその他

もろもろ)の典型的なスキーマが含まれていた。

CREATE TABLE Customers

(customer_■d INTEGER NOT NULL PRIMARY KEY,
acct_balance DECIMAL (12, 2)NOT NULL,

・ ・ ・);

Customers:顧客テーブル customer id:顧、客lD acct balance:売 掛金残高

CREATE TABLE OrderS

(customer_■d INTEGER NOT NULL,

order_■ d INTEGER NOT NULL PRIMARY KEY,

・ ・ ・);

一■
■
，
●
■
，

■̈
●
一，
，

Orders:注文テーブル custometid:顧、客ID ordeLid:注文 lD

CREATE TABLE OrderDeta■ ls

(order_■ d INTEGER NOT NULL,
item_■ d INTEGER NOT NULL,
item_qty INTEGER NOT NULL,
PRIMARY KEY (order_■ d, ■tem_■ d),

.・ .);

訳注 1:ド イツの大手ソフトウェア会社。

43イ

SoLパズル

OrderDeta‖ s:注文明細テーブル

item_qty:注文数量

order id :,主 文lD item id:製 品 lD

CREATE TABLE Products

(■tem_id INTEGER NOT NULL PRIMARY KEY,
■tem_qty_on_hand INTEGER NOT NULL,

・ ・ ・);

Products i製品テーブル item id:製 品 lD item_qty_on_hand:現 存数量

このテーブル群を使ったサンプル問題の1つ に、すべての製品を購入した顧客全員の

売掛金残高 (acctb」狙cc)の平均と、すべてではないがいくつかの製品を購入した顧客

全員の売掛金残高 (acct_balancc)の 平均を求める、というものがある。EsPCrantは 、こ

の問題に対しても素晴らしい能力を発揮したが、ほかの環境でもクエリを動かすために

大量のビューを作ってしまっていた。

さて、あなたはSQL-92の機能を使って (あ るいは昔ながらのSQL-89の機能を駆使し

て)、 うまいクエリを作れるだろうか
'

ヽ11′ ノ

'9←G肇ヨ)伝 統的な解答としては、ネスト(入れ子構造)の深いクエリを使うものが挙げられる。
このクエリを日本語に訳すなら、「顧客が注文していない製品が製品テーブルに存在す

るような、顧客集合の売掛金残高の平均を求めよ」である。

SELECT AVG(acct_balance)
FROM Customers AS Cl
WHERE EXISTS

(SELECT ■

FROM PrOducts AS Pl
WHERE Pl.item ■d
NOT IN (SELECT Dl.■ tem_■ d

FROM Orders AS 01, OrderDeta■ ls AS Dl
WHERE 01.customer ■d = Cl.customer ■d
AND 01.Order_■ d = Dl.order_■ d));

132

その■

僣 D

‐ヽ‐′喬Ｖ
、
ヽ
・
Ｚ

‐
―
′
Ｄ

ツ

ヽ

′
↑
＼

、ヽ
・
κ

パズル3■ すべての製品を購入した顧客
関係除算の応用

このクエリで、いくつかの製品を購入 した顧客の平均残高が求められる
[訳注2]。
すべて

の製品を購入 した顧客の平均残高を求めたければ、EXISTSの代わりにNOT EXISTSを

使えばよい。

その2

英国ウスターシャー州に住むギリアン・ロバートソンは、相関サブクエリのネストを

少し省くことのできるきれいな“トリック"を見つけた。

ただし、何も注文していない顧客がCustomersテ ーブルに存在する場合、その顧客も含まれるので注意。これは答え

その 2も同様である。

前の 2つの解とは違い、この解は注文したことのない顧客がCustomersテ ーブルに存在する場合に、その顧客を除外

する。

SELECT AVG(acct_balance)
FROM Customers AS Cl
WHERE(SELECT COUNT(DISTINCT item_id)― ―販売中の全製品

FROM Products) ―― 文寸
く>(SELECT COUNT(DISTINCT item_id)一 顧客が買った製品
FROM()rders, OrderDeta■ ls
WHERE Orders.customer ■d = Cl.customer ■d
AND Orders.order_■ d = OrderDeta■ ls.order_id),

このクエリでは、注文明細に存在する製品をDISTINCT付 きでカウントした数と、製

品リストをDISTINCT付 きでカウントした数が一致しなければ、その発注をした顧客

はすべての製品を購入したのではない、という事実を利用している。また、「く>」 を「=」

に変えることで、反対にすべての製品を購入した顧客が分かる。

その3
0 アレックス・クズネツォーフは、すべての製品を購入した顧客と、一部の製品だけを

購入した顧客の両方に対する答えが必要な点に注目して、2つの答えを1つのクエリで

求められるようにした。これは2つのクエリを別々に実行するよりも簡単な上、パフォ

ーマンスも良ぃ
[訳注3]。

訳注 2

訳注 3

■33

SOLバズル

SELECT AVG(acct_balance), ordered_all_desc
FROM (SELECT Customers.customer_■ d, acct_balance,

CASE WHEN num_ordered_products = all_product_cnt
THEN lordered all'
ELSE inot ordered alli END AS ordered all desc

FROM Customers
INNER J()IN

(SELECT customer_■ d,

COUNT(DISTINCT ■tem_id)num_ordered_products
FROM Orders INNER JOIN OrderDeta■ ls
ON ()rders.order id =.()rderDetails.order id
GROUP BY customer_ュ d)AS ordered_products
ON Customers.customer_■ d = ordered_products,customer_■ d
CROSS JOIN

(SELECT COUNT(DISTINCT ■tem_■ d)
FROM Products)AS AllProducts (all_product_cnt)

)AS T
GROUP BY ordered_ 11_ esc;

■34

バ |ズ |ル |

32

争
リチャード・レムレーはある問題をCompuScⅣc経由で送ってきた。それは、税金の

計算に関する問題を簡略化したものだった。

まず、用語をいくつか定義しよう。複数の税務当局 (ta_author")が 集まって、課税

地域 (ta_arca)を 形成している。例えば、課税地域が市 (cⅢ)である場合、その税務当

局は市や市を含む郡 (counw)や州 (statc)であったりする。市内での買い物には、市税、

郡税、州税の3つから構成される税金がかかる。税率は各当局が独自に変更できる。

さて、次のようなテーブルがあるとしよう。

CREATE TABLE TaxAuthor■ t■ es

(taX_authOrity CHAR(10)NOT NULL,
taX_area CHAR(10)NOT NULL,
PRIMARY KEY (tax_author■ ty, tax_area)),

TaxAuthor‖ es:税務当局テーブル tax_authOrity:税 務当局 tax_area:課税地域

各課税地域での納税先となる複数の税務当局は、次のように階層を成している。

TaxAuthonities

tax_authority tax_area

tc■tyll
ic■ty21
1c■ty31
loountyl l

ioountyl l

lcounty21

1statell

:statell

lstatell

Icityl l

lcity21

1City31

lc■tyl:
!c■ty21
ic■
ty31
1cityll

lc■ty21
1c■ty31

このデータが意味するところは、civlと ciw2は countylに属し、counwlは statclに

属している。またciw3は counり 2に属し、county2は statclに属する、ということであ

る。税金の計算にもう1つ必要なのが、次に示す税率テーブルである。ここでは、税率は

単純に足し算で求められることとしよう。

435

SQLパズル

CREATE TABLE TaxRates

(tax_author■ ty CHAR(10)NOT NULL,
effect_date DATE NOT NULL,
tax_rate DECIMAL (8,2)NOT NULL,
PRIMARY KEY (tax_author■ ty, effeCt_date));

TaxRates:税率テーブル

tax_rate :税 率

tax_authority:税 務当局 effect date:実効日

このテーブルには次のようなデータを入れる。

TaxRates

tax_authority effect_date tax_nate

'c■tyll
lcityll

lcity21

lcity21

icity21

1c■ty31
1c■ ty31
lcountyll

!countyll

:countyl:

:oounty2〕

lcounty21
lcounty21

1statell

istatell

lstatell

:statell

11993-01-011

11994-01-01:

11993-09-01:

11994-01-011

11995-01-011

:1993-01-011

11993-07-011

11993-01-011

11994-10-01:

11995-01-01:

11993-01-011

'1994-01-011
11995-01-011

11993‐ 01-011
11994-01-011

11994-07-011

11994-10-011

０

５

５

０

０

７

９

３

５

７

４

７

８

５

８

９

１

１

１

１

２

２

１

１

２

２

２

２

２

２

０

０

０

１

このテーブルは、徴税官からの「1994年 11月 1日 のciり2における合計税率はいくら

か ?」 といった問いに答えるために使われる。答えは、次のように求める。

city2の税率 =2.0
oountylの税Σ匡=2.5

statelの税率 =1.1

■36

税率合計 =5.6

パズル32 税金の計算
木構造/階層構造を扱う

その■

この問題を解く一番よい方法は、問題を分解することである。まずは、c● に対する税

務当局がどこかを見つけたい。これは次のサブクエリで取得できる。

(SELECl‐ tax_authority
FROM TaxAuthor■ t■ es AS Al
WHERE Al.tax_area = lcity21)

このクエリの結果は 1'ci72',lcoun711,'statcll}と いう集合になる。

次に、1994年 ll月 1日 における各当局の税率が知りたい。これはもう1つのサブクエ

リを書くことで分かる。

(SELECT tax_author■ ty, tax_rate
FROM TaxRates AS Rl
WHERE Rl.effect_date = (SELECT MAX(R2.effect_date)

FROM
‐
「axRates AS R2

WHERE R2.effect_date く= :1994-11-011))

ここまで来たら、2つのサブクエリを結合し、税率を足し、定数をSELECT句のリス

トに入れれば最終的な解答ができあがる。実際には、この定数をパラメータ入れて汎用

的に使えるようにするのが好ましいが、ここは問題の要求に忠実に従おう。

SELECT lc■ty2: AS c■ ty, 11994-11-01: AS effect_date,
SUM(tax_rate)AS total_taxes

FROM
‐
raxRates AS Rl

WHERE Rl.effect date =

(SELECT MAX(R2.effect_date)
FROM TaxRates AS R2
WHERE R2.effeCt date く= 11994-11-011
AND Rl.tax_authority = R2.tax_author■ ty)

AND Rl.tax_author■ ty IN

(SELECl‐ tax_author■ ty

FROM TaxAuthor■ t■ es AS Al
WHERE Al.tax_area = lcity21)

GROUP Bヽ′ tax_author■ ty, effect_date;

この徴税官からの質問に答えるクエリを、1つの文で書くことができるだろうか ?

‐ヽ‐′（船
Ｙ
７
日

、ヽ
・
κ
　

‘ｑ

■37

SOLパズル

、11′ /

'9′

←
0

これで一応完成だが、安心するのはまだ早い ! このクエリはもっと改善できる。2番

目のAND述語は、もう一段深いレベルのネストヘ移せる。

SELECT icity21 AS c■ ty, 11994-11-01' AS effect■ ve_date,

SUM(tax_rate)AS total_taxes
TaxRates AS Rl
Rl.effect date =

(SELECT MAX(R2.effect_date)
FROM TaxRates AS R2
WHERE R2.effect date く= 〕1994-11-01:
AND Rl.tax_author■ty = R2.tax_author■ ty
AND R2,tax_author■ty IN

(SELECl‐ tax_authority
FROM TaxAuthorities AS Al
WHERE Al,tax_area= lc■ ty2:))

BY tax_ uthor■ ty, effect_ ate;

FROM
WHERE

GROUP

このサブクエリは非相関なので、定数のリストになる。そのため、パフォーマンスは

かなり高いはずだ。思ったとおり、私がWATCOM SQLで実行計画を見たところ、Rl

およびR2テーブルはシーケンシャルにスキャンされていたが、Alテーブルは主キーを

使って読み出していた。TaxRatcsテ ーブルにインデックスを作成すれば、もっと速くな

るだろう。

その2

米国ワシントン州のデイオスダージョ。ネブレは、別解を送ってきた。

SUM(T2.tax_rate)
TaxAuthor■ t■ es AS Tl, TaxRates AS

‐
「2

Tl.tax_area = ic■ty21
T2.tax_authority = Tl.tax_author■ ty

T2.effect date =

(SELECT MAX(effect_date)
FROM TaxRates
WHERE tax_author■ty =

‐
「2.tax_author■ ty

AND effect_date く= '1994-11-01:);

彼はGROUP BY句 を取 り除いたが、これはよい修正である。なぜなら、GROUP BY

がなくても結果的には同じだからである[訳注
itさ らに彼は、一番深いレベルのネストを

SELECT
FROM
WHERE
AND

AND

■38

パズル32 税金の計算

、ヽ
・
／

本構造/階層構造を扱う

TaxAuthOriリ テーブルとTaxRatcsテーブルの結合で置き換えた。これによって、最初の

サブクエリの実行時間が大幅に削減される。

その3
0 最近のSQLプログラマなら、税務当局が階層構造を成しており、それゆえ入れ子集合

モデル [訳注
2]が
使えることに気づくだろう。ここでは、入れ子集合とその (■,rgt)の 組

み合わせの使い方についての説明は割愛する (詳細は拙著『IOC CClkO'S TrCCS and

Hicrarchics in SQLお r Smardcs』 Morgan Kaufmann刊 ,ISBN978-1-55860-920-4を 参

照してはしい)。 とにかく、2つのテーブルは次の1つのテーブルで置き換えられる。

startdatcと cnd_datcは 、税率の有効期間を示す。この期間の重複は許されない。税率

の有効期間を格納する理由は、過去の税率の計算を簡単にするためである。

SELECT SUM(DISTINCT T2.tax_rate)
FROM TaxRates AS Tl, TaxRates AS T2
WHERE Tl.tax_authority = :my_location
AND :my_date BETWEEN T2.start_date

AND COALESCE (T2.end_date, CURRENT_DATE)
AND Tl.lft BETWEEN T2.lft AND T2.rgt;

COALESCE関 数は、税率の未来の失効日が不明の場合でも、現行の税率を扱えるよ

うにするために必要である。

訳注1:実際には、GROUP BYを 削除したことで結果が微妙に変わる。答えその1は税務当局ことの税率を3行戻すので、そ
の後に合計する必要があつたのに対し、答えその2では、それらを合計した税率 (5.6)の 1行だけが戻される。

訳注2:通常1次元の点と見なされる木構造のノードを、面積を持つ2次元の「円」(集合)と見なし、その左端と右端の座標を
(1■ ,rgt)で表現するモデル。書籍『プログラマのためのSQL第 2版」の第29章が参考になる。

―′ヽ
御
ン

―ヽ
′
い
＼

■39

CREATE TABLE TaxRates

(tax_author■ ty CHAR(10)NOT NULし ,

lft INTEGER NOT NULL CHECK (lft > 0),
rgt INTEGER NOT NULL,

CHECK (lft く rgt),
start_date DATE NOT NULL,
end_date DATE, ―― NULLな らば現在の税率を意味する
tax_rate DECIMAL(8,2)N01‐ NULL,
PRIMARY KEY (tax_authority, start_date));

バ |ズ |ル |

/■ /■

JJ

榜
燿b~

このパズルは、グルハルト・ジロヴェックがCOmpuScⅣ cに投稿した問題がもとにな

っている。彼は製造会社のデータベースを管理しており、そこから機械の時間あたりの

平均使用コストを計算したいと考えた。そこで、彼は次のような機械を管理するための

テーブルを作成した。

CREATE TABLE Machines

(mach■ ne_name CHAR(20)N01‐ NULL PRIMARY KEYl
purchase_date DATE NOT NULL,

■n■ t■ al_cost DECIMAL(10,2)NOT NULL,
1■fespan INTEGER NOT NULL);

Machines:機械テーブル

in‖al cost:初 期費用

machine_name : l#tdi€
lifespan I mJEH,.nf.:

purchase_date : Fft.l.E

purchasc_datc列 には購入日が、inHal_cost列 には初期費用が格納される。inspan列

の値はその機械の期待される寿命であり、日数で表す。

もう1つ、ある機械をあるバッチ (一連の作業)で使用したときにかかる費用を格納す

るテーブルも作成した。

CREATE TABLE ManufactCosts

(machine_name CHAR(20)NOT NULL
REFERENCES Machines(machine_name),
manu_date DATE NOT NULL,

batch_nbr INTEGER NOT NULL,
manu_cost DECIMAL(6,2)NOT NULL,
PRIMARY KEY (mach■ne_name, manu_date, batch_nbr));

ManufactCosts:製 造費用テーブル

batch nbr :バ ッチ番1号
machine name:機 械名
manu cost:稼働費用

manu date:稼 働日

manu_datc列 には実際に機械をバッチに使用した日付が、manu_cost列 にはそのバッ

チに必要な費用が格納される。これとよく似たテーブルで、各バッチにかかった時間を

格納するテーブルもある。構造は次のとおりだ。

■40

／
／
´
´
ヽ

′
ヽ
「
「
／
・
′″
′

‐ヽｌｇ
ヽ
脅

、ヽ
・
κ

パズル33 機械の平均使用コスト
複雑な条件での集約計算 (平均値)

CREATE TABLE ManufactHrs

(mach■ ne_name CHAR(20)NOT NULL REFERENCES Machines,
manu_date DATE NOT NULL,

batch_nbr INTEGER NOT NULL,
manu_hrs DECIMAL(4,2)NOT NULL,
PRIMARY KEY (mach■ne_name, manu_date, batCh_nbr));

ManufactHrs:稼 働時間テーブル

batch_nbr:バ ッチ番号

machine name:機 械名

manu hrs:稼 働時間

manu_date:稼 働日

今回の問題は、このデータベース設計の改善策を提案することと、その設計をもとに、

任意の日付の各機械の1時間あたりの平均費用を求めるクエリを書くことである。

その■

0 オリジナルの設計では、時間と金額が別々のテーブルに格納されていた。機械の使用

日が、タイムカードと会計部署という異なる情報源から別々に集められていたから、と

いうのが理由だ。

まずは、稼働費用 (manu_cost)と 稼働時間 (manu_hrs)を 、(machinc_namc,manu_

datc,batch_nbr)を 主キーとする1つのテーブルにまとめるべきだ。もし、費用は分から

ないが時間だけは分かっている、あるいは時間は分からないが費用だけは分かっている

というケースがあり得るなら、この2つの列にNULLを許す設計になるかもしれない。

だが、ここはよくよく考えたほうがよい。私なら、2つのテーブルを次の1つのテーブル

で置き換える。

CREATE TABLE ManufactHrSCOStS

(mach■ ne_name CHAR(20)NOT NULL
REFERENCES Machines(mach■ ne_name),

manu_date DATE NOT NULL,

batch_nbr INTEGER NOT NULL,
manu_hrs DECIMAL(4,2)NOT NULL,
manu_cost DECIMAL(6,2)NOT NULL,
PRIMARY KEY (mach■ne_name, manu_date, batCh_nbr));

では、いくつかサンプルデータを入れてみよう。5日 前にFrammisカ ツターを1万 ドル

で買い、今までに7つのバッチに使った。Frammisカ ッターの寿命は1000日 である。

■4イ

SCLパズル

ManufactH rsCost s

machine_name manu_date batch_nbr manu hrs manu cost

'Frammis'
'Fnammis'
' Frammi-s'
' Fnammi-s'

'Frammis'
'Fnammi.s'
'Fnammis'

11995-07-241

11995-07-251

11995-07-251

11995-07-261

11995-07-27:

11995-07-27:

11995-07-281

101

102

103

104

105

106

107

123.00
120.00
100,00

118,00

116.00
113.00
110.00

２

２

２

２

２

２

２

最初に使ったのは7月 24日 。この日の時間あたりの平均費用は (123.00+10.00)ド ル

ー2.5時 間=53.20ド ル/時。しかし、2日 目の7月 25日 では、(123.00+120.00+

100.00+(2× 10.00))ド ルー(2.5+2.5+2.0)時 間=51.86ドル/時 となり、5日 間の

最終日には1時間あたりの費用は50ド ル/時にまで下がる。

いくつかの方法が考えられるが、私は毎日の総費用と総時間のビューを作るのがよい

と思う。このビューは、ほかの通常業務でレポートを作成する際にも使える。

CREATE VIEW TotHTSCoStS
(machine_name, manu_date, day_cost, day_hr s)
AS SELECT machine_name, manu_date, SUM(manu_cost), SUM(manu_hns)

FRoM ManufactHrscosts
GRoUP BY machlne_name, manu_date;

2つのDATE型の変数を引き算することで、間隔日数を計算できると仮定しよう。こ

のビューができれば、クエリはシンプルになる。

SELECT :mydate, Ml.machine_name,

(SELECT ((■ nit■ al_cost / 1■ fespan)
力 (lmydate ― Ml.purchase_date + 1)
+ SUM(THC.day_cost))/ SUM(THC.day_hrs)

FROM TotHrsCosts AS THC
WHERE Ml.mach■ ne name = THC.machine name
AND :mydate >= M11.purchase_date

AND :mydate >= THC.manu_date)AS hourly_cost
FROM Mach■nes AS Ml:

WHERE句 の述語に注目してほしい。これは、1時間あたりの費用計算において、最
初の部分に負数が入るのを避けるうまい“トリック"だ。

■42

パズル33 機械の平均使用コスト
複雑な条件での集約計算 (平均値)

ラ)|←

0
その2

フランシスコ。モレノは、彼がコロンビアで学生だったころにこの別解を見つけた。

この方法では、ビューとスカラサブクエリを使わない。

SELECT :mydate AS my_date, F.machine_name,
(MAx((initial_cost / lifespan)

* (:mydate - purchase_date + 1)) + Sutr,t(manu_cost))

/ SUM(manu_hrs) AS avenage_hour
ManufactHrsoosts AS F, Machines AS M

M.machine_name = F.machine_name
punchase_date <= :mydate
manu_date <= :mydate
BY F.machine_name;

FROM
WHERE
AND
AND

GROUP

■43

パ |ズ |ル |

34

薇
1994年 11月、プライアン・K。 バックリーは次のような類の問題を投稿して、助けを

求めてきた。彼は次のような3つのテーブルを持っていた。

CREATE
‐
「ABLE Consultants

(emp_■ d INTEGER NOT NULL,
emp_name CHAR(10)NOT NULL);

Consultants:コ ンサルタントテーブル emp_id:社 員 ID emp_name:社員名

INSERT INTC)Consultants
VALUES (1, :Larryl),

(2, IMoe:),

(3, ICurly:);

CREATE TABLE B■ 11■ ngs

(emp_■ d INTEGER N01‐ NULL,

b■11_date DATE NOT NULL,
b■11_rate DECIMAL (5,2));

Bttngs:請求書テーブル emp_id i社 員ID b‖_date i請求日 bi‖_rate:日寺糸合

INSERT INTO Billings
VALUES (1, i1990-01-011, 25.00),

(2, 11989-01-011, 15,00),

(3, 11989-01-01[, 20.00),
(1, 11991-01-011, 30.00),

CREATE TABLE HoursWorked

(job_id INTEGER NOT NULL,
emp_■ d INTEGER NOT NULL,
work_date DATE NOT NULL,

b■ll_hrs DECIMAL(5, 2));

HoursWorked:実 働時間テーブル

work_date:実 働日
iob_ld:仕事ID

bi‖ hrs:実働時間

emp_id:ネ土員 ID

イ44

上lLLLLL

パズル34 コンサルタントの請求書
複雑な条件での集約計算 (期間データ)

INSERT INTO HoursWorked
VALUES (4, 1,

(4,1,
(4,2,
(4,1,

11990-07-011, 3)

11990-08-011, 5)
11990-07-011, 2)
11991-07-011, 4)

バックリー氏が欲しかったのは、各仕事に対するコンサルタントの名前と総請求額を

出力する単一のクエリだった。コンサルタントの総請求額は、各労働時間と時給とを掛

け算し、それらを合計することで得られる。それだけなら話は簡単だが、コンサルタン

トの時給が期間によって変動する点にこの問題の難しさがある。時給には実働日以前の

直近の請求日の金額を使う。サンプルデータからは、次のような答えが導かれる。

name totalcharges

lLarryI

IMoel
320.00
30.00

Larwは、((3+5)時間×時給25ドル+4時間×時給30ドル)で 320.00ド ル、Mocは、

(2時間×時給15ドル)=3o.oOド ルという計算だ。

'S'′

←その■
0 私が考える最善の方法は、ビューを作り、それから総計を求めることだ。このビュー

はほかのレポートでも役立つだろう。

CREATE VIEW HourRateRpt

(emp_■ d, emp_name, wOrk_date, b■ ll_hrs, b■ ll_rate)

AS SELECT Hl.emp_■d, emp_name, work_date, b■ ll_hrs,

(SELECT bill_rate
FROM B■ 11■ ngs AS Bl

WHERE b■ 11_date = (SELECT MAX(b■ ll_date)

FROM B■ 11■ ngs AS B2

WHERE 132.bill date く= Hl.work date
AND Bl.emp_■ d = B2.emp_■ d

AND Bl.emp_■ d = Hl.emp_■ d))

FROM HoursWorked AS Hl, Consultants AS Cl
WHERE Cl.emp_id = Hl.emp_■ di

●45

一一議
醸
ゆ鰹
麟
鸞
”鶯
一̈一一鰻̈
鶴

弯”裂̈
一

ScILパズル

〕(a←′́
ツ

レポートの作成は簡単だ。

SELECT emp_■ d, Omp_name, SUM(b■ 11_hrS ■ b■11_rate)AS b■11_tot
FRC)MI HourRateRpt

GROUP BY emp_■ d, emp_name;

しかし、バックリー氏はすべてを1つのクエリで処理したいということだった。彼の

要求に応えるならこうなる。

SELECT Cl.emp_id, Cl.emp_name, SUM(bill_hrs オ

(SELECT b■ 11_rate
FROM B■ 1lings AS Bl
WHERE b■ 11_date = (SELECT MAX(b■ 11_date)

FROM B■ 11■ ngs AS B2
WHERE B2.b■ 1l date く= Hl.work date
AND Bl.emp_■ d = B2.emp_■ d
AND Bl.emp_■ d = Hl.emp_id)))

FROM HoursWorked AS Hl, COnSultants AS Cl
WHERE Hl.emp_■ d = Cl.emp_■ d
GROUP BY Cl.emp_■d, Cl.emp_name;

これは新米のSQLプログラマにとって、自明とは言いがたい答えだろうから、少し説

明しておこう。まず一番内側のSELECT文からだ。ここでは、各社員について、請求日

に直近の実効日を取得する。次のレベルのサブクエリは、その時点で社員に対して有効

な時給を見つける。外側の相関名Blを使っているのはこのためだ。そして、戻された時

給をSUM関数で合計した時間数と掛ける。最後に一番外側のクエリが、社員ごとの請
求額をグループ化して、総額を作成する。

その2

リン・グエンは次のような別解を送ってきた。0

SELECT
FROM
WHERE
AND

AND

emp_name, SUM(Hl.bill_hrs ■ Bl.b■11_rate)
Consultants AS Cl, B■ 1lings AS Bl, HOurSWOrked AS Hl
01.emp_id = Bl.emp_id
Cl.emp_■ d = Hl.emp_■ d

b■ 11_date = (SELECT MAX(b■ 11_date)
FROM Bill■ ngs AS B2
WHERE B2.emp_■ d = Cl.emp_■ d

■46

パズル34 コンサルタントの請求書

複雑な条件での集約計算 (期間データ)

AND B2.b■ ll_date く= Hl,Work_date)
AND Hl,work date >= bill date

GRoUP BY emp_name;

このクエリは、しばしばパフォーマンスを悪化させるサブクエリ式に頼らないという

点で、最初の解より優れている。この話の教訓は、「新機能
[訳注l]に
頼りすぎると、かえ

ってSQL文 をややこしくすることがある」ということだ。

訳注 1:答えその 1の SELECT句で使つているスカラサブクエリを指している。

■47

¨^̈鬱

“鷺

協
翻Ｍ鶉
骸
艤

バ |ズ |ル |

2E
Jν

椰
このパズルは、SQL-92では簡単に解けるが、SQL-89で解くのは非常に難しい。

さて、あなたは会社の在庫管理部門の責任者だと思ってはしい。あなたは、いつ何個

の部品が倉庫に入庫、または出庫されたかを記録した用紙を受け取った。記録されてい

る数は、正数 (入庫)の こともあれば負数 (出庫)の こともある。

hventoryAdiustments:在庫調整テーブル req_date:要求日 req_qty:要求数量

あなたの仕事は、SQLで在庫の部品残数を累計的に求めることである。結果は、例え

ば次のような形になる。

Wanehouse

req_date req_qty req_onhand_qty

i1994-07-01!

11994-07-021

11994-07-031

11994-07-041

11994-07-051

０

２

５

５

３

100

220

70

120

85

Warehouse :1倉 庫 req_onhand_qty:在 庫の部品残数 (累計)

、‖ ′/

'｀

'′

←その■
∈罰目D SQL-92で はSELECT句 でサブクエリが使える。そのサブクエリは相関サブクエリで

もかまわない。ルールは、サブクエリの返す値が単一値であること (それゆえ「スカラサ

ブクエリ」と呼ばれる)。 もし、クエリの結果が空集合の場合、結果はNULLに なる。

■48

L

CREATE TABLE InventoryAdjustments

(req_date DATE NOT NULし ,

req_qty INTEGER NOT NULL
CHECK (req_qty く> 0),
PRIMARY KEY (req_date, req_qty));

パズル35 在庫調整
再帰集合で累計を求める

SQL-92の この面白い機能を使うと、外部結合をSELECT句 で書くことができる。例

えば、次のクエリは顧客が注文を1つ だけしているか、もしくは全く注文していない場

合に限ってうまく動作する (全 く注文していない場合、サブクエリはNULLを返す)。

SELECT cust_nbr, cust_name,
(SELECT order_amt

FRoM ordens
WHERE Customens.cust nbr = orders.cust_nbr)

FRoM Customens;

次のように書いても同じ結果が得られる。

SELECT cust_nbr, cust_name, orden_amt
FR0M Customers

LEFT OUTER JOIN OTdeTS

0N Customers.cust nbr = 0rders.cust_nbn;

このパズルでは、発行された注文用紙のすべてを足し上げて、問題となるデータをす

べて含む必要がある。そのため、クエリでは次のように入れ子の自己結合を使わなけれ

ばならなぃ
[訳注l]。

SELECl・ req_date, req_qty,

(SELECT SUM(req_qty)
FROM InventoryAdjustments AS A2
WHERE A2.req_date く= Al.req_date)AS req_onhand_qty

FROM InventoryAdjustments AS Al
ORDER BY req_date;

訳注 1:このクエリでは、カレント行の日付 (Al.req_date)を 起点として、それよりも前の日付 (A2.req_date)の 集合を作る
ことで累計を得ている。その集合は、次のような入れ子の再帰集合になる。

SO :{11994-07-011}

Sl :{`1994-07-011, 11994-07-021}

S2 :{'1994-07-011, 11994-07-021, 11994-07-031}

このタイプの再帰集合の作り方のアイデアの源泉は、数学者フォン ノイマンによる集合を使つた自然数の定義まで
さかのぼる。なお、このクエリのSUMを CO∪ NTに変えればランキングの算出にも利用できる (ラ ンキングのほうが
よリノイマンの考えに近い)。 実は、パズル31で直近の日付を求めているクエリもSUMを MAXを変えただけである。

一
●
燿

機
一１

１

Ｆ
艤
，
一

■49

SOLパズル

、ヽ
´
κ

‐
―
′
Ｄ

ン

ヽ

′
↑
ヽ

正直に言うと、レコードがソートされて記録されているファイルを使い、現在の在庫

残数を直前の在庫残数から求められる手続き的な方法に比べれば、この解法は非常に遅

いだろう。

その2

トライデントデータシステムに勤務するジム・アームスは、最初の解法より少し簡単

な方法を思いついた。

SELECT Al.req_date, Al.req_qty,
SUM(A2.req_qty)AS req_onhand_qty

FROM InventoryAdjustments AS Al, InventoryAdiustments AS A2
WHERE A2.req_date く= Al.req_date
GROUP BY Al.req_date, Al.req_qty
ORDER BY Al.req_date;

確かにこのクエリでもうまくいくが、反面、処理はとても重たい。例えば、テーブル

にn行あるとしよう。大抵のRDBMSでは、GROUP BY句の処理でソートが発生する。

このクエリのGROUP BY句 は処理日ごとに実行されるため、1日 目のグループについ

ては1行、2日 目のグループについては2行……最終日に属するグループはn行のソート

を行うことになる。パフォーマンスが出ないのは明らかだ。

これに対し、先の「SELECT句の中にSELECT文 を書く」方法では、GROUP BY句が

ないのでソートは発生しない。rcq_datc列 にインデックスが作成されていなければ、サ

ブクエリを使ったクエリは、各処理日についてGROUP BYを使うクエリと同じだけの

テーブルスキャンを行うが、その際に累計も保持できるだろう。したがって、「SELECT

句の中にSELECT文」の方法では、テーブル検索がある程度減ることを期待できる。

0

■50

／
／

´
´
ヽ

′

ヽ
ヽ

‐‐ノ
′
‥
′″
―

‐ヽ―夕
ヽ
マ

、ヽ
・
κ

パズル35 在庫調整
再帰集合で累計を求める

その3
O SQL:2003規 格の標準SQLに は、累計を求めるOLAP関 数が導入されている。SQL―
92ではスカラサブクエリで処理していたことを、関数で書けるようになったわけだ。規

格では移動累計を求めるMOⅥNG_SUMオ プションまで提案されているが、まだ広く
利用できる機能ではない。

SELECT req_date, req_qty,

SUM(req_qty)OVER (ORDER BY req_date ASC
ROWS UNBOUNDED PRECEDING)

AS req_onhand_qty
FROM InventoryAdjustments
ORDER BY req_date,

このSQL文はかなリコンパクトだし、しかも、何をしているのかを明確に表している。

カレント行の処理要求日を1つ取り、それについて日付の降順で並べた以前の処理数量

の合計を求めている。これは、先ほどのスカラサブクエリと同じ働きをする。あなたは

どちらが読みやすいと思うだろうか。また、どちらならメンテナンスしてもよいと思う

だろうか。

一言補足すると、OVERと いうウィンドウ句はそのままにして、SUMの代わりに
AVGな どの集約関数を使うこともできる。本書の執筆時点 (2006年)では、これらはま
だ比較的新しい機能のため、実際のRDBMSでどの程度処理が最適化されるのかはよく
分からない。

■5■

バ |ズ |ル |

36

鷺
レ

″
■

cOmpuScⅣ cの初期、ナイジェル・ブルーメンタールがあるアプリケーションで立ち

往生していると言ってこの問題を投稿してきた。

ここに、社員が会社の中で担当している役職を格納するテーブルがあるとしよう。例

えば、lDiは重役 (Dircctor)、
101は役員 (Omccr)と いった具合だ。とりあえず、コード

はこの2つだけ知っていればよい。

さて、やりたいことは重役と役員、ならびに2役を兼務する人物 (コ ードIBlで表す)

をレポートに出力することである。次に示すのが、必要最小限にまで絞り込んだ役職に

関するデータである。

Roles

ISm■ thi
lsm■
thl

lJonesI

IWh■ tel
IBrown:

Ｂ

Ｏ

Ｄ

Roles i役職テーフル person:社員 rote . 1iqil

そして、そこから求めたい結果はこうだ。

person combined_ro1e

lSmithi

lJones:

IWh■ te!

combined_role:兼 務する役職

ナイジェルは最初、一時テーブルを作る方法を試したのだが、これは処理時間が非常

にかかってしまったといっ。

■52

person nole

Ｏ

Ｄ

Ｏ

Ｄ

Ｘ

)\X1,36 1^2'rg.

CASE式 の中に集約関数を組み込む (その 2)

、11

κ

ヽ
編
ヅ
“

〆
し
、 ｀その■

01 この質問に対して、ロイ・ハーヴェイは反射的に「集約クエリを使えばいいぞ」と
一

あまり深く考えずに
一 提案

してきた。だが、2役をこなす人物以外に、lDlだけや
「
01

だけの人物も出力したいのだ。そこで、ハーヴェイの基本的な考えを発展させたのが次

の解だ。

SELECT
FROM
WHERE
GROUP

HAVING

UNION
SELECT
FROM
WHERE

GROUP

HAVING

Rl.person, Rl.role
Roles AS Rl
Rl.role IN (:Dl, 101)
BY Rl.person

COUNT(DISTINCT Rl.role)= 1

R2.person, IBI
Ro■ es AS R2
R2.role IN (lDl, 101)

BY R2.person

COUNT(DISTINCT R2.role)= 2;

‐
―
′
Ｄ

ン

ヽ

／
↑

ヽ

ヽ
・
／

Rl.■ olcは GROUP BY旬 に含まれていないため、実装によってはMAX(Rl.rolc)と 書

く必要があるかもしれない。また、この解でも欲しい結果を得ることはできるが、2つの

集約クエリを実行するのは無駄なオーバーヘッドを発生させる。ほかによい考えはない

だろうか。

その2

G肇ヨ) レオナルド・c・ メダルはビューを使うことで、集約した際の一時テーブルの問題を
回避できるクエリを送ってきた。

SELECl‐ DISTINCT Rl.person,

CASE WHEN EXISTS (SELECT COUNT(キ
)

FROM Roles AS R2
WHERE R21.person = Rl,person
AND R2.role IN (IDl, !01)
HAVING COUNT(■)= 2)

THEN IBI

■53

SQLパズル

ELSE (SELECT DISTINCT R3.role
FROM Roles AS R3
ハヽIHERE R3,perSOn = Rl.person

AND R3.role IN (lDl, 101))
END AS cOmbined role

FROM Roles AS Rl
WHERE Rl.role IN(lDI, 101);

ほかに、もっと優れた解を思いつくかな
'

'気

ひ
′
←その3
0 私はここまで、皆さんをわざと自己結合を使う方向へ誘導してきた。だが本当は、

UNIONを利用すれば自己結合は必要ない。2役を兼務する人物は2度現れる。つまり、

R01csテーブルに2行登録されている人物の行を探すだけでよいのだ。

SELECT
FROM
WHERE

GROUP

HAVING
UN10N
SELECT
FROM
WHERE
GROUP
HAVING

Rl.person, MAX(Rl.role)
Roles AS Rl
Rl.role IN (lDl,101)

BY Rl.person

COUNT(☆)= 1

R2.person, BI

Roles AS R2
R2.role IN (lDl,101)
BY R2.person

COUNT(キ)= 2;

SQL-92では、UN10Nを ビューの中に入れるのは何の問題 もないが、古いRDBMSで

は通 らないないかもしれない。

'(19′

←その4
0 SQL-92な らCASE式が使える。CASE式は、置換をしたいときに有用なことが多い。

多分、これが一番簡単な解答だろう。

■54

CASE式 の中に集約関数を組み込む (その 2)

SELECT

FROM
WHERE
GROUP

person,
CASE WHEN COUNT(*) =

THEN nole
ELSE 'B' END

Roles
role IN ('D','0')
BY person;

「THEN rolc」 句 は正 しく動 く。なぜな ら、COUNT(・)が 1の ときには、その社員の役

職が 1つであることが分かっているか らだ。しか し、r01cは GROUP BY旬 には含 まれて

いないため、中にはTHEN MAX(rolc)と 書 く必要のあるRDBMS製 品があるか もしれ

ない。そ うした製品では、ただrolcと だけ書いた場合、SELECT句 とGROUP BY句 との

間の不一致 による構文エラー と見なされるだろう。

‐ヽ―一仔
、
マ

、ヽ
・
κ

/

「
´｀
その5

C肇ヨ) CASE式 とGROUP BYを 使った “トリック"は まだある。

SELECT person,
CASE WHEN MIN(role)く > MAX(role)

THEN IBI
ELSE MIN(role)END AS comb■ ned_role

FROM Roles
WHERE role IN (IDl,!01)
GROUP BY person;

/́1′

、11′ /

アヽ
′←その6
0 マーク・ウイータラは、全く異なるアプローチでこの問題を解いた。これは提案され

た時点で最速の解だった。

SELECT person,
SUBSTRING (lDOBI FROM SUM (POSIT10N (role IN ID01))FOR l)

FROM Roles

WHERE role IN (ID:,101)
GROUP BY person;

イ55

)\7)V36 1^2'.19

SoLパズル

このSQL文 はちょっと分かりにくいし、関数呼び出しをネストしているのが紛らわし

い。社員名によって作られる1つ 1つのグループについて、POSIT10N関 数が 'Dlに は 1

を、101には2を返す。その結果をSUM関数で合計して、SUBSTRING関数で再び1を
:DIに、2を 10'に 、そして3を lBlに変換している

[訳注2]。

この方法は共役性 (conjugacy)の 興味深い応用である。共役性とは、問題を簡単にす

るために変換とその逆変換を行うときの用語で、一番有名な例は指数関数と対数関数

である。

訳注2:SUM関 数で合計して3になる人物とは、要するに1(D)+2(O)の 計算が行われた人物、ということである。

■5る

バ |ズ |ル |

37

鋏
あなたは、15分ごとに処理負荷に関する統計情報を収集しているとする。すると顧客

がやってきて、時間ごとの統計情報を知りたいと言ってきた一 「ある時刻の」ではな

く「時間単位の」である。つまり、知りたいのは、1時 00分の負荷量、2時 00分の負荷

量、3時 00分の負荷量……ではない。最初の1時間を例にとるなら、(0時 00分,0時 15

分,0時 30分,0時 45分)の平均負荷量が知りたいのである。そして次には、(0時 15分 ,

0時 30分,0時 45分ぅ1時 00分)の平均負荷量が知りたい。後は同様である。こういう平

均を移動平均 (moving avcragc)と 言う。サンプルテーブルには次のものを使おう。

CREATE TABLE Samples

(sample_t■ me TIMESTAMP NOT NULL PRIMARY KEY,
load REAL NOT NULL);

Samples I t>J)v7-))v sample-time : iftlEB$F"l load i負 荷量

、11′ /
、_｀ /・フヽ
′
´

」●(ι 11´ん、ンそ`の■
0 ともあれ、まずはテーブルに移動平均 (moving_四 g)を示す列を追加する。

CREATE
‐
「ABLE Samples

(sample_t■ me TIMESTAMP NOT NULL PRIMARY KEY,
moving_avg REAL DEFAULT O NOT NULL ,
load REAL DEFAULT O NOT NULL);

そ して、テーブルを次のようなUPDATE文 で更新する。

UPDATE Samples
SET mov■ ng_avg

= (SELECT AVG(Sl.load)
FROM Samples AS Sl
WHERE Sl.sample_t■ me
IN (Samples.sample_t■ me,

(Samples,sample_t■ me ― INTERVAL

(Samples.sample_t■ me ― INTERVAL

(Samples.sample_t■ me ― INTERVAL

1151 MINUTE),

1301 MINUTE),
1451 MINUTE)));

`57

ScILパズル

その2

0 しかし、UPDATEの 方法はこの1通 りだけではない。というのも、おそらく15分ごと

に正確に負荷のサンプリングが行われるという仮定は成立しないからだ。実際にはサン

プリングエラーが起きることもあるだろう。その場合、タイムスタンプは何分かずれる

ことになる。次のUPDATE文 [訳注1]は、正確な一致条件の代わりに、ある程度の時間幅

を許容するよう考慮したものである。

UPDATE Samples
SEl・ mov■ ng_ vg

= (SELECT AVG(Sl.load)
FROM Samples AS Sl
WHERE Sl,sample_time
BETWEEN (Samples.sample_t■ me ― INTERVAL
AND Samples.sample_t■ me);

111 HOUR)

、||′ /

'9′

←

、11′ /

'9←僣 D

その3
答えその2の UPDATE文の条件を利用すれば、移動平均を求めるクエリ[訳注2]を作る
こともできる。

SELECT Sl.sample_t■ me, AVG(S2.load)AS avg_prev_hour_load
FROM Samples AS Sl, Samples AS S2
WHERE S2.sample_t■ me BETWEEN (Sl.sample_t■ me ― INTERVAL lll HOUR)

AND Sl.sample_t■me
GROUP BY. Sl.sample_t■ me;

さて、列を追加する方法とクエリで求める方法の2つ を紹介したが、どちらがより適

切だろうか。純粋に技術的な観点から言えば、列の追加はテーブルを非正規化すること

になるので、クエリのほうが好ましいだろう。もっとも、記録されている過去のデータ

に今後変更が発生せず、かつ移動平均の計算コストが高い場合は、列の追加を考慮して

条件にBETWEEN演 算子を使つているため、4レ コー ドで1よなく5レ コードを対象に移動平均を求めることなってい
る。4レ コー ドにするならBETWEENに 代えて、不等号で条件を記述する必要がある。

このSELECT文も答えその2の UPDATE文 と同様、移動平均を求める対象を4レ コー ドにするなら、BETWEENに 代
えて不等号で条件を記述する必要がある。

訳注 1

訳注 2

■58

パズル37 移動平均
行同士を比較するSELECT文

もよいかもしれない。

'S'′

←その4
0 移動平均は、SQL-99の OLAP関数を使って求めることもできる。計測したい時間帯

のデータをテーブルに入れれば、次のクエリでそれが可能だ。

SELECT '

FROM (SELECT sample_t■ me,

AVG(load)OVER (ORDER BY sample_t■ me ASC ROWS 4 PRECEDING)
FROM Samples)

WHERE EXTRACT(MINUTE FROM sample_t■ me)= 00;

このSELECT文は、先行する時間帯から現在までの累積を計算する。そして、求める

観測点 (分が00の時刻)だけを表示するために、WHERE句 で全体の4分の3の行を除

外している。

さらにもう1つ別の“トリック"と して、15分刻みで24時間の周期を保持するClock

Ticksテ ーブルを作る方法が挙げられる。そのテーブルから、毎日自身を更新するビュー

を作ることで、巨大なテーブルを保持する必要がなくなる。

CREATE VIEW DailyT■ meSlots (S10t_t■ mestamp)

AS SELECT CURRENT_DATE + CAST(t■ ck AS MINUTES)
FROM ClockT■ cksi

■59

‡

バ |ズ |ル |

38

麒
今度は会計に関する簡単なパズルである。ここに取引の明細書と、その処理日、処理

金額を記録する仕訳テーブルがあるとしよう。lつの明細書からは、複数回の処理が発

生する。このテーブルから各処理の間隔日数を割り出し、それを前回の処理が記録され

ている行に書き込みたい。こうすることで、「その明細書に対する次の処理が何日後に

発生するか」を効率的に知ることができる。

テーブルは、次のようなごくシンプルなものだ。

CREATE TABLE Journal

(acct_nbr INTEGER NOT NULL,
trx_date DATE NOT NULL,
trx_amt DECIMAL(10, 2)NOT NULL,
du rat■on INTEGER N01‐ NULL);

Journal:仕訳テーブル

trx amt:処理金額

acct nbr:明細書番号

duration:前 の処理からの日数

trx date:処 王里日

その■

最初の解答は、期間の計算と、カレント行の日付から見て直近の処理日の検索をサブ

クエリ式で行うものだ。少し考えれば、次のようなUPDATE文ができあがるだろう。

UPDATE Journal
SET durat■on

= (SELECT CAST((JOurnal.trX_date ― Jl.trX_date)AS INTEGER)
FROM Journal AS Jl
WHERE Jl.acct nbr = Journal.acct nbr
AND Jl.trx date =

(SELECT MIN(trx_date)
FROM Journal AS J2
WHERE J2.acct nbr = Journal.acct nbr
AND J2.trx_date > Journal.trx_date))

WHERE EXISTS (SELECT キ

FROM Journal AS J3
WHERE J3.acct nbr = Journal.acct nbr
AND J3.t rx_date > Journal.trx_date),

‐
―
′
Ｄ

レ

ヽ

イ
■

＼

、ヽ
・
κ

0

■6o

|‖ | |

ノ
／
´
´
ヽ

′
ヽ

り
／
多
′

‐ヽ―（彰
ヽ
「

パズル38 記録の更新
行同士を比較して ∪PDATEする

各明細書における最も新しい取引を記録している行については、どう扱うかを決めて

いなかったので、WHERE句の条件により更新対象外としている。

その12

0 答えその1の UPDATE文を、もう少し詳しく調べてみよう。すると、Ilテーブルは何

の役にも立っていないことが分かる。ちょっとした“トリック"を使えば、結果に影響を

及ぼすことなくこれを取り除くことができる。

UPDATE Journal
SET durat■ on

= CAST((Journal.trX_date ―

(SELECT MIN(Jl.trx_date)
FROM Journal AS Jl
WHERE Jl.acCt nbr = JOurnal.acct nbr
AND Jl.trx_date > JOurnal.trx_date)

)AS INTEGER)
WHERE EXISTS (SELECT t

FROM Journal AS J2
WHERE J2.acct nbr = Journal.aCCt nbr
AND J2.trx_date > JOurnal.trx_date);

このコードが動くかどうかは、関数の中にスカラサブクエリ式を入れられるかどうか

にかかっている。不要なサブクエリを除去することで、1/0回 数はSybasc Vcr.llで は

50%近 くも減少する | ネストした相関サブクエリは線形ではなく指数関数的に処理量

を増やすのだから、この結果は驚くに当たらない。この解答には1つのサブクエリが存

在するが、どちらもネストしていない。

ただ、プログラマとしての立場からこのコードの欠点を挙げるなら、同じロジックを

2箇所に書かねばならない点だ。これはうまくないし、とりわけ将来コードを変更する

際に間違いの原因となる。最初にコーディングしたときにはテキストエデイタでカッ

ト&ペーストするだろうが、コードを保守するときには往々にしてそれを忘れがちだ。

、11′ /

〕;,←
0

■で,■

その3
この難点を回避する1つの方法は、WHERE句 を全く使わないことである。次のよう

にCO」ISCE関数を使うことで、最も新しい取引を記録している行を更新対象から外

SQLパズル

すことができる。

UPDATE Journal
SET durat■ on

= COALESCE(CAST((Journal.trx_date ―

(SELECT MIN(trx_date)
FROM Journal AS Jl
WHERE Jl.acct nbr = Journal.acct nbr
AND Jl.trx_date > Journal.trx_date)

)AS INTEGER),
JOurnal・ durat■On);

また、このUPDATE文はJournalテ ーブルを 1度 しかスキャンしないはずだ。だから

と言って、このUPDATE文 が答えその 2の UPDATE文 より速いかどうかは定かでな
い。あなたの使用するRDBMSが、更新された領域をどうやって解放するかに左右され
るだろう。

'く

btその4
7
0 だが、この問題に対する最適解は、ここまでに挙げてきたものではない。先行する行

を得るには、新機能であるOLAP関数を使えばよい。その結果をビューに入れれば、次

のような解答が得られる。

SELECT acct_nbr, trX_date,

(trx_date ― MAX(trx_date)
OVER (PARTIT10N BY acct_nbr
ORDER BY trx date DESC
ROWS l PRECEDING))AS durat■ on

FROM Journal;

ただし、RDBMSによって持っている時間関数には多少違いがあり、この解を使うと
きには少しコードを修正する必要があるかもしれないので、注意してはしい。

■62

バ |ズ |ル |

39

榜
鰹聯
~

このパズルはマイク・ゴーラから電子メールで送られてきた。オリジナルの問題から

少し変えているが、基本的な考え方は同じである。

さて、保険外交員による「顧客が将来被るかもしれない損失」の査定結果を保存する

テーブルがあるとしよう。コードを簡単にするために、顧客に降りかかる「危険」はアル

ファベットのaか らoで表すことにする。顧客に降りかかるおそれのない危険について

は、その危険を表すa～ o列 にNULLを 入れる。反対に危険があれば、その危険度を評

価した数値を入れる。例えば、山頂にある花火工場には洪水の危険はないが、爆発事故

の危険性は極めて高くなる。なお、a～ o列のうち、実際に数値が入るのは概ね5～ 6列

程度である。このテーブルの構成はこんな感じだ。

CREATE TABLE Losses

(cust_nbr INTEGER NOT NULL PRIMARY KEY,
a INTEGER, b INTEGER, c INTEGER, d INTEGER, e INTEGER,
f INTEGER, 9 1NTEGER, h INTEGER, ■ INTEGER, j INTEGER,
k INTEGER, l INTEGER, m INTEGER, n INTEGER, o INTEGER);

Losses:(顧客の)損失テーブル cust_nbr:顧 客番号 a～ o:顧客に降りかかる危険

試しに、1人の顧客についてデータを入れてみる。

INSERT
VALUES
INTO Losses

(99,
5, 10, 15, NULL, NULL,
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL);

さて、2つ 目のテーブルを見てみよう。このテーブルは、顧客の潜在的な損失 (降 りか

かる危険)に基づいて販売可能な保険プランを決定するために使われる。

CREATE
‐
「ABLE Pol■ cy_Cr■ ter■ a

(cr■ ter■ a_id INTEGER NOT NULL,

cr■ ter■ a CHAR(1)NOT NULL,
crit_val INTEGER NOT NULL,
PRIMARY KEY (cr■ ter■ a_■ d, Cr■ teria, cr■ t_val));

■63

SOLバズル

Po‖cy_Criteria:プラン基準テーブル

criteria l基準

crlteria_id:基準 ID

critval:基 準値

INSERT INT()P01■ Cy_Cr■ ter■ a VALUES (1,
INSERT INTO P01■ Cy_Cr■ ter■ a VALUES (1,
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT

INSERT
INSERT
INSERT
INSERT
INSERT

INSERT

INSERT

INTO

INTO
INTO
INTO
INTO
INT0

lNTO

INTO
INTO
INTO
INTO
INTO

INTO

INTO

5);

9);

14);

4);

10);

20);

10);

19);

5);

10);

30);
3):

15);

5);

21);

22);

Ａ

Ａ

Ａ

Ｂ

Ｂ

Ｂ

Ｂ

Ｂ

Ａ

Ｂ

Ｂ

Ｃ

Ｃ

Ａ

Ｂ

Ｂ

Policy_Critenia
Policy_Criteria
PoIicy_Cnite ria
PoIicy_Cnite nla
PoIicy_Cniteria
Policy_Crlteria
Policy_Criteria
Policy_Cniteria
Policy_Crite ria
Policy_Cnite nia
Policy_Crlteria
Policy_Crj-teria
Policy_Criteria
Policy_Crite nia

VALUES (

VALUES (
VALUES (
VALUES (
VALUES (
VALUES (

VALUES (

VALUES (
VALUES (
VALUES (
VALUES (
VALUES (

VALUES (

VALUES (

１

１

１

１

２

２

３

３

３

３

3,

4,

4,

4,

このデータの意味を言葉にすると、次のとおりになる。なお、「基準A」 は「aと いう危

険 (損失テーブルのa列)の受容できる危険度」を意味し、基準B以降も同様である。

0プラン1は、基準A=(5,9,14)、 基準B=(4,10,20)を持つ
。｀プラン2は、基準B=(10,19)を持つ

●プラン3は、基準A=5、 基準B=(10,30)、 基準C=(3,15)を 持つ

●プラン4は、基準A=5、 基準B=(21,22)を持つ

99番の顧客に設定された損失データはa=5、 b=10、 c=15であった。したがって、
99番の顧客はプラン1、 2、 3の保険に加入できるが、基準B=10の値を持たないプラン

4の保険には加入できない。最も優先順位の高いのが、すべての要件を満たすプラン3

であり、これが答えになる。次に高いのがプラン1、 最後がプラン2である。だが今は、2

番目以降の選択肢については考えなくてよい。

■64

パズル39 保険損失
列持ちから行持ちヘ

、11′ /

ラ:(て
,←
その■

∈肇ヨ) この問題のトリッキーなところは、損失テーブルでは損失が「列名」として表現されて
いるのに対し、プラン基準テーブルでは「値」として表現されている点である。おかげで

データモデルは台無しだ。問題を解くには、テーブルの形を変換して統一しなければな

らない。私なら、変換の対象には損失テーブルのほうを選ぶ。以下に示すように、「列持

ち」から「行持ち」へ変換するのだ。ビューにすることもできるが、ここでは作業用のテ

ーブルを使う。

CREATE TABLE LossDoneR■ ght

(cust_nbr INTEGER NOT NULL,
cr■ ter■ a CHAR(1)NOT NULL,
cr■ t_val INTEGER NOT NULL);

LossDoneRight i保 険損失テーブル (正解版)

criterla.基準

cust nbr:顧客番号

crit val :基準イ直

属性から値への変換は、次のように行う。

INSERT INTO LossDoneR■ 9ht (cust_nbr, cr■ ter■ a,

SELECT cust_nbr, IAl, a FROM Losses WHERE a IS
UN10N ALL
SELECT cust_nbr, IBI, b FROM Losses WHERE b IS
UN10N ALL
SELECT cust_nbr, IC', c FROM Losses WHERE c IS
UN10N ALL

SELECT cust_nbr, IDl, d FROM Losses WHERE d IS
UNION ALL
SELECT cust_nbr, IEl, e FROM Losses WHERE e IS
UNION ALL
SELECl‐ cust_nbr, iFl, f FROM Losses WHERE f IS
UN10N ALL

SELECT cust_nbr, 'Gl, g FROM Losses WHERE g IS
UN10N ALL
SELECT cust_nbr, lHl, h FROM Losses WHERE h IS
UN10N ALL
SELECT cust_nbr, l11, ■ FROM Losses WHERE ■ IS
UN10N ALL

SELECT cust_nbr, lJ:, j FROM Losses WHERE j IS
UN10N ALL

Cr■ t_val)

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

■65

|| || || | |

SCLパズル

SELECT cust_nbr,
UN10N ALL
SELECT cust_nbr,

UN10N ALL

SELECT cust_nbr,
UN10N ALL
SELECT cust_nbr,
UN10N ALL
SELECT cust_nbr,

FROM
WHERE
AND
GROUP
HAVING

lKl, k FROM

ILl, l FROM

IMI, m FROM

INl, n FROM

101, o FROM

k IS

l IS

m IS

n ls

o IS

NOT

NOT

NOT

NOT

NOT

NULL

NULL

NULL

NULL

NULL;

Losses

Losses

Losses

Losses

Losses

WHERE

WHERE

WHERE

WHERE

WHERE

一度このテーブルヘ入れてしまえば、後は関係除算を行うだけだ
[訳注1]。

SELECT Ll.cust_nbr, I could use policy l, C11.criter■ a_id,
COUNT(キ)AS score
LossDoneR■ght AS Ll, Pollcy_Cr■ ter■ a AS Cl
Ll.cr■teria = Cl,cr■ ter■ a

Ll.cr■ t val = Cl.crit val
BY Ll.cust_nbr, Cl.cr■ teria_■ d
COUNT(★)= (SELECT COUNT(■)

FROM LossDoneR■ 9ht AS L2
ハヽIHERE Ll.cust_nbr = L21.cust_nbr);

このクエリを言葉で表現すれば、「損失と基準を結合し、もし損失がプラン基準テー

ブルのすべての基準と一致したなら (つまり同数だったなら)、 それを保持しておく」と

なる。これは、2つのテーブルを1対 1で対応付けていることを意味する。ただし、片方

のテーブルの行は余ってもよいが、もう片方のテーブルの行は使い切らなければならな

い。

、11′ /

〕;サ その2
0 さて、この解答を見たゴーラ氏は、「非常にいい線を行っているが、まだ完全ではな

い」と言ってきた。このクエリは完全に一致するプランを探すものだが、人生いつもい

つもそんなうまくいくわけではない。そこで、プラン基準が損失にどの程度うまく適合

しているかのランク付けをする代わりに、次のルールを採用したい。

訳注 1:関係除算についてはパズル 21を参照。

■66

パズル39 保険損失
列持ちから行持ちヘ

1.プランは、損失テーブルにおいて与えられる基準の部分集合でなければならない

―
つまり、プランは余計な基準を含んでいてはならない

2.損失と一致した基準の値に応じて、プランに得点を付ける

例えば、このルールのもとでは、プラン3は満点の3点、プラン1は 2点、プラン2は 1

点ということになる。他方、プラン4は不適合と見なされる。プラン4に も基準Bが含ま

れてはいるが、要求された値とは一致しなかったからである。このルールをsQLで表現

するのはお安い御用だ。:HAVING句を次のように拡張するだけでよい。

SELECT Ll.cust_nbr, imatches to l, Cl.cr■ ter■ a_■ d,
: W■ th a sCore of l, COUNT(★)AS score
LossDoneRight AS Ll, Policy_Cr■ ter■ a AS Cl
Ll.criter■a = Cl,cr■ ter■ a
Ll,crit val = 101,cr■ t val
BY Ll.cust_nbr, Cl.cr■ ter■ a_■ d
COUNT(十)く = (SELECT COUNT(■)

FROM LossDoneR■ 9ht AS L2
WHERE Ll.cust_nbr = L2.cust_nbr)

COUNT(★)= (SELECl・ 00UNT(DISTINCT C2.criter■ a)
FROM Pol■ cy_Criter■ a AS C2
WHERE Cl.cr■ ter■ a_■ d = C2.criter■ a_id)

BY Ll.cust_nbr, score;

FROM

WHERE
AND
GROUP
HAVING

AND

ORDER

COUNT(十)と の最初の比較では、この損失において基準と値の両方について、プラン

の基準を満たすかどうかを調べている。2番目のCOUNT(十)と の比較では、マッチした

部分集合がプランの基準と同じだったかどうかを調べている。例えば、プラン4は基準

Aを満たすが、基準Bに 10番の値を持たないために除外される。

このクエリの実行速度がどうなるかは、私には分からない。だが、かなり厳しいもの

になる気がする。あるいは、集約とスカラサブクエリ式で使われているcust_nbrと critc

ria_idにインデックスを付加したくなるかもしれなぃ
[訳注2]。

訳注 2:イ ンデックスよりむしろ、LossDoneRightテーブルの (cust_nbr,crlterla_id)に 主キーを付加したほうがよいだろう。
そうすれば、主キーのインデックスを利用することもでき、パフォーマンス上も有利に働く。

■67

バ |ズ |ル |

40

I口 :|

静
■,~

2つの集合に含まれる要素の全組み合わせ (x,y)を得る演算を「クロス結合」と呼ぶ。

SQLでは、これをとても簡単なクエリで実現できる。例えば次のように書く。

SELECl‐ x, y

FROM B■ 9X CROSS JOIN BigY;

しかし、時には組み合わせを垂直方向にソートするのではなく、水平方向にソートし

たいと思うこともあるだろう。

ところで、並び順を意識した集合要素の組み合わせを剛頁列」と言う。例えば 11,2,31

という集合があるとすれば、その順列は (1,2,3)、 (1,3,2)、 Ql,3)、 (2,3,1)、 (3,1,

2)、 (3,2,1)で ある。n個の要素を組み合わせる順列はその階乗、すなわちn!個存在す

る。ここで求めたいのは、1か ら7ま での整数の集合から、1行につき1つの順列を作る

ようなクエリである (合計5040行作られる)。 できれば、もっと多くの整数に対しても

簡単に適用できるよう、一般化されたクエリにしてほしい。

サンプルテーブルには次のものを使う。

CREATE TABLE Elements

(■ INTEGER NOT NULL PRIMARY KEY);

1ヽ1′ ノ

ラ:,←
0

Elements:集合の要素テーブル 要素

INSERT INTO Elements
VALUES (1), (2), (3), (4), (5), (6), (7);

その■

まず、明快ではあるが見るだに恐ろしい解答から挙げようか。

SELECT El.■ , E2.■ , E3.■ , E4.■ , E5.■ , E6.■ , E7.■
FROM Elements AS El, Elements AS E2, Elements AS E3,
Elements AS E4, Elements AS E5, Elements AS E6,
Elements AS E7

■68

.11_

鰺
鸞̈
驚
醸̈鶴
鶴醸

議
“鸞
饉
鑢
ゆ一麟

パズル40 順列
自己結合で順列を作る

WHERE
AND
AND
AND
AND
AND

AND

El.i
E2.■

E3.■

E4.■

E5.■

E6.■

E7.i

NOT IN
NOT IN
NOT IN
NOT IN
NOT IN
NOT IN

NOT IN

E2

El

El

El

El

El

El

E3.■
,

E3.i,

E2.1,

E2.i,

E2.i,

E2.■
,

E2.1,

■
,

■
,

■
,

■
,

■
,

■
,

■
,

４

４

４

３

３

３

３

Ｅ

Ｅ

Ｅ

Ｅ

Ｅ

Ｅ

Ｅ

６

６

７

７

７

６

６

６

５

５

／
／
´
´
ヽ

′
ヽ
ノ

多

，

‐ヽ―一ｇ
ヽ
．脅

、ヽ
・
κ

この巨大な条件部は、ある行内のすべての列値が一意であることを保証するものだ。

しかし、パフォーマンスはかなり悪い。

その2

実は、WHERIE句に条件を1つ追加するだけでパフォーマンスは改善される。僣 D

SELECT

FROM

WHERE
AND

AND
AND

AND
AND
AND
AND

El.■ , E2.■ , E3.■ , E4.i, E5.■ , E6.■ , E7.■
Elements AS El, Elements AS E2, Elements AS E3,
Elements AS E4, Elements AS E5, Elements AS E6,
Elements AS E7

(El.i + E2.1 + E3.i + E4.i + E5,i E6.1 + E7.i)= 28

, E6.■ , E7.■)El.1
E2.■

E3.■

E4.■

E5.■

E6.1
E7.i

NOT

NOT
NOT

NOT

NOT
NOT

NOT

IN

IN

IN

IN

IN

IN

IN

(E2.1, E3
(El.■ , E3

(El.1, E2
(El.■ , E2

(El.i, E2
(El.i, E2
(El,1, E2

E7.■)

E7.■
)

E7.i)

E7.i)

E7.i)

E6.■
)

なぜこれでパフオーマンスが良くなるのかというと、大抵のオプティマイザはAND
で結ばれたIN述語の条件より先に「式 =定数」という形の条件を見て、それを実行す
るからだ。列値の合計が28になるすべての行が 1～ 7の順列というわけではないが、1

～7の順列はすべて合計が28に なる (つ まり十分条件ではなく、必要条件である)。 階乗

計算を効率化するには、あらゆる手段を使って事前に行を絞っておかねばならない !

、11′ /

'Q′

←その3
0 この合計値を使う“トリック"を、もう一歩進めてみよう。まずは、Elcmcntsテ ーブル

を、各要素に重み付けを持たせるように変更する。

■69

E4.■
,

E4.i,

E4.■
,

E3.■
,

E3.1,

E3.1,

E3.■
,

E5.■
,

E5.■
,

E5.1,

E5.i,

E4.■
,

E4.■
,

E4.■
,

S(2!Lパズル

CREATE TABLE Elements

(■ INTEGER NOT NULL,
wgt INTEGER NOT NULL);

Elements:集合の要素テーブル i:要素 wgt:そ の要素の重み

INSERT INTO Elements
VALUES (1, 1), (2, 2), (3, 4), (4, 8), (5, 16), (6, 32), (7, 64);

この重みは2の累乗である。これを利用することで、ビットのベクトルをSQL文の中

で書 くことができる。すると、WHERE句 は次のようになる。

SELECT El.■ , E2.■ , E3.■ , E4.■ , E5.■ , E6.■ , E7.■
FROM Elements AS El, Elements AS E2, Elements AS E3,
Elements AS E4, Elements AS E5, Elements AS E6,
Elements AS E7

WHERE (El.wgt + E2.wgt + E3.w9t + E4.wgt + E5.wgt +
E6.wgt + E7,wgt)= 127,

この条件だけで完全に行をフィルタリングできるので、あのたくさんのIN述語は不

要になる。この解答にはもう1つ利点がある。それは、要素はもう整数である必要はな

く、任意のデータ型でかまわないことだ。

その4
0 イアン・ヤングは、ここまでに示した解答をSQL ScⅣcr(7.0お よび2000)上 でいじっ

て遊んでいるうちに、SQL ScⅣ crでは期待したように動かないことが分かった。

というのも、まず答えその1の場合、SQL ScⅣcrの オプテイマイザは「各条件を別々

に見て、結合のたびに関連する部分を適用する」という動作をする。その結果、i番 目の

結合に対し、結果は 7!■ (7-1)!個 の項目を持つことになる。

答えその2で追加した全体条件も、そのアプローチを変えることはなかった。それど

ころか、パフォーマンスは少し (10～ 15%程度)悪 くなってしまった。

ビットのベクトルを使う答えその3も 、条件をいっさい局所化できなかった。この条

件は結局最後のクロス結合を制限できただけで、n個の項目に対してnn~1× n項 目が結

合されることになる。その結果、7項目の場合は最初の単純な解答のほうが5倍から10

■70

―′ハ
）
レイ

１ヽ
／
Ｌ
ヽ

、ヽ
・
Ｚ

|||| | ll

パズル40 順列

自己結合で順列を作る

倍速く、ビットのベクトルを使う方法は、9項目の場合ではまず使いものにならない。

だが、この素朴な方法にも、まだ改善の余地はある。

手始めに、現状では同じ述語を2箇所でテストしているが、条件を上向き (ま たは下

向き)の “三角形状"にすることで、冗長なテストを省くことができる
[訳注1]。 だが、これ

もSQL ScⅣ crでは大して意味のある改善にならない。むしろ、7個の項目を生成するた

めにクロス結合を7回行っている点を重視すべきだ。フ回のうち、最後の1回の結合はほ

かの結合によって一意に限定されている。そこで、この最後の結合を削除して、値は答

えその2の全体条件と同じ方法で求めることにする。

SELECT

FROM

i, E3.■ , E4.■ , E5.i, E6.1,
■ ― E2.■ ― E3.i ― E4.■ ― E5.■ ― E6.1)AS ■
AS El, Elements AS E2, Elements AS E3,
AS E4, Elements AS E5, Elements AS E6
1N(El.i)
IN (El.i, E2.1)
IN (El.■ , E2.■ , E3.■)
IN (El.1, E2.■ , E3.■ , E4.■)
IN (El.■ , E2.■ , E3.■ , E4.■ , E5.■);

もう1つの可能性は、n!回のループを試みることである。理論上、結合においては最

小値が必要になる。これは、文字列を文字のリストと見なせば可能だ。再帰関数を展開

したクエリをイメージしてほしい。この解では、文字列cが選択された文字を保持し、そ

れを文字列aの中に詰めている。

SELECT a ll c
FROM (SELECT a l l SU3STRING(c FROM ■ FOR l),

STUFF(c, ■, 1, 11)
FROM Elements,

(SELECT a l l SUBSTRING(c FROM ■ FOR l),

STUFF(c, 1, 1, 11)
FROM Elements,

(SELECl‐ a l l SUBSTRING(c FROM ■ FOR l),

STUFF(c, ■, 1, 11)
FROM Elements,

(SELECT a ll SUBSTRING(c FROM ■ FOR l),
STUFF(c, ■, 1, l l)

ちょうど、順列について学校で習うとき必ず出てくる「袋の中から数字の書いてある玉を取り出す」イメージを持つと

理解しやすい。最初に取り出す El lに はどんな玉を選んでもよいが、次にE21を取り出すときには袋の中に El.|は な

いので、それ以外の玉が候補になる。E3.1以 降も同様である。

WHERE
AND
AND
AND
AND

El.■ , E2

(28 - El
Elements

Elements

E2.■ NOT
E3.■ NOT
E4.■ NOT
E5.■ NOT
E6.■ NOT

訳注 1

イ7■

SQLパズル

FROM Elements,

(SELECT a ll SUBSTRING(c FROM ■ FOR l),
STUFF(c, ■, 1,

〕1)

FROM Elements,

(SELECT SUBSTRING(31234567: FROM ■
FOR l),

STUFF(11234567:, ■, 1, I〕)
FROM Elements
WHERE ■ く= 7)AS Tl (a,c)

WHERE ■ く= 6)AS T2 (a,c)
WHERE ■ く= 5)AS T3 (a,c)

WHERE i く= 4)AS T4 (a,c)
WHERE ■ く= 3)AS T5 (a,c)

WHERE ■ く〓 2)AS T6 (a,c);

STUFF関数は引数の文字列を分解 し、別の文字列を指定された位置に挿入する。こ

れは実装依存の関数だが、多くのRDBMSが持っているし、持っていない環境でもユー

ザ定義関数で簡単に書くことができる。

ただし、この方法にも問題はある。答えその3ま では自己結合のために膨大なループ

が発生したが、この解でも文字列操作のためにそれと同じくらい多量の処理が必要なの

だ。

'9′

←その5
0 クエリの改善はこれで終わりではない。先ほどのSELECT文 の実行計画を見てみる

と、文字列aの中に積み上がった文字列を解きほぐそうとして、次のような演算上は同

値だが巨大なクエリを生成しているようだった。

SELECT
SUBSTRING(112345671,
a, 1) ||

SUBSTRING(STUFF(11234567:,
a,1,11),b,1)||
SUBSTRING(STUFF(STUFF(112345671,
a,1,日),b,1,日),c,1)||
SUBSTRING(STUFF(STUFF(STUFF(112345671,
a,1,日),b,1,日),c,1,日),d,1)||
SUBSTRING(ISTUFF(STUFF(STUFF(STUFF(:12345671,
a,1,::),b,1,日),c,1,11),d,1,日),e, 1)||

■72

パズル40 順列
自己結合で順列を作る

SUBSTRING(STUFF(STUFF(STUFF(STUFF(STUFF(11234567:,
a,1,日),b,1,日),c,1,::),d,1,I l),e,1,日),f,1)||
STUFF(STUFF(STUFF(STUFF(STUFF(STUFF(11234567:,
a,1,日),b,1,日),c,1,日),d,1,日),e,1,日),f,1,
日
)

FROM (SELECT i FROM Elements
WHERE ■ く= 7)AS Tl (a),
(SELECT i FROM Elements
WHERE ■ く= 6)AS T2 (b),
(SELECl‐ ■ FROM Elements
WHERE ■ く= 5)AS T3 (c),
(SELECT i FROM Elements
WHERE ■ く= 4)AS T4 (d),
(SELECT ■ FROM Elements
W‖ERE ■ く= 3)AS T5 (e),
(SELECT ■ FROM Elements

WHERE ■ く= 2)AS T6 (f);

もし、この種の問題に興味があるなら、ロバート・シジウイックによるアルゴリズム

につ い て の調 査 (http:/ハ闘 v.princctOn.cdu/～rblcc/ELE572Papcrs/p137-scdgcv″ lck.

pdf)を参照してはしい。そこで紹介されているアルゴリズムは、ループや再帰を使った

手続き的なものだが、おそらく再帰的な共通表式に翻訳できるだろう。

■73

バ |ズ |ル |

4■

争
米国フロリダ州マイアミにあるランソフト社のマーク・フロンテラは、1995年 9月 に

この問題を送ってきた。

彼は、3つのテーブルを使って予算情報を作っていた。その3つ のテーブルとは、「購

入する商品 (Itcms)」「購入する商品の見積もり(Estimatcs)」「実際の購入費 (Actuals)」 で

ある。テーブル構造は簡単なので、定義文は省略していきなリデータを示そう。

注意してほしいのは、1枚の請求書に複数の商品が記載されることもあれば、1つの商

品の代金請求が複数の請求書に分割されていることもある、という点だ。

Items

item nbn item descr

10

20

30

40

50

'Item
'Item
'Item
'Item
'item

101

201

301

40'

50:

items:商 品テーブル item nbr:商品番号 item descr:商品の説明

Estimates

item_nbn estimated_amt

10

10

20

20

40

300.00
50.00
325.00
110.00

25.00

Estimates:購入予算テーブル item nbr:商 品番号 estimated amt:見 積もり金額

■74

パズル41 予算
複雑な外部結合 (その 2)

Actual-s

item_nbn actual_amt check_nbn

300.00
325.00
100.00

525.00

111111

122221

133331

11111:

Actuals:購入費用テーブル

check_nbr:請 求書番号

item nbr:商品番号 actual amt i購入金額

さて、これら3つのテーブルから次のようなレポートを作成したい。

item_nbr item_descr actual_tot estimate_tot check_nbn

10

20

30

40

1■tem 101
1■tem 20:
:■tem 301
1■tem 401

111111

:M■xedl
111111

NULL

300.00
425.00

525.00

NULL

350.00
435.00

NULL

25.00

50番の商品はActualsテ ーブルにもEstimatcsテ ーブルにもレコードがないので、レポ

ー トには表示されない。actual_tot列 はある商品の購入で実際に支払った代金の合計、

cstimatc_tot列 はその商品の見積もり金額の合計を示している。

/′

、 1
ヽ1[′ /

S'′

←その■
0 そもそも、このスキーマ自体を多少直したほうがよいとは思うが、スカラサブクエリ

を使ってややトリッキーなコードを書いてやれば、1つのクエリで欲しいアウトプット

を得られる。

SELECT ■ FROM

(SELECl・ 11.■tem_nbr, 11.■ tem_deSCr,

(SELECT SuM(Al,actual_amt)
FROM Actuals AS Al

WHERE 11.■ tem_nbr = Al.item_nbr)AS tot_act,

(SELECT SUM(El.est■ mated_amt)
FROM Est■ mates AS El
WHERE 11.item_nbr = El.■ tem_nbr)AS est■mate_tot,

■75

SoLパズル

0

■76

、ヽ
・
κ

‐―′ヽ
θ
ン

ヽ

／
Ｆ
ヽ

(SELECT CASE WHEN COUNT(■)= 1
THEN MAX(check_nbr)
ELSE lMixedl END

FROM Actuals AS A2
WHERE 11.■ tem nbr = A2.item nbr
GROUP BY ■tem_nbr)AS check_nbr

FROM Items 11)AS TMP
WHERE tot act IS N01‐ NULL
OR eSt■ mate_tOt IS N01‐ NULLi

ここでの“トリック"は、3つのスカラサブクエリにある。最初の2つのスカラサブクエ

リは、まるでGROUP BYと 外部結合を使っているかのように、実際に支払った代金の

合計と見積もり金額の合計を計算する。

3番 目のスカラサブクエリはもっとトリッキーだ。これは、結果テーブルに含まれる

商品と結びつくActualsテ ーブルの行をすべて見つけ出し、それらの行から商品ごとの

グループを作る。もしグループが空なら (つ まり、その商品に対する請求書が1枚 も発行

されていなければ)、 サブクエリは1つのNULLを 返すので、そのNULLを 表示すれば
よい。もしグループに請求書が 1枚だけであれば、CASE式はその請求書番号を返す。

MAX関数は、サブクエリが常に単一のスカラ値を返すことを保証するための安全策だ。
SQL-92に準拠するRDBMSな ら、MAX関数は不要かもしれない。最後に、請求書が2

枚以上存在した場合は、COUNT(=)が 1よ り大きくなり、伝票番号を表す文字列の代わ

りに'Mixcd'が 返ることになる。

その2

答えその1の クエリをLEFT OUTER JOIN(左外部結合)を使って書き換えると、次
のようになる。

SELECT 11.■ tem_nbr, 11.■ tem_descr,

SUM(Al.actual_amt)AS tot_act,
SUM(El.est■ mated_amt)AS est■ mate_tot,
(SELECT CASE WHEN COUNT(check_nbr)= 0

THEN NULL
WHEN COUNT(check_nbr)= 1
THEN MAX(check_nbr)
ELSE :M■ xedl END

FROM Actuals A2
WHERE A2.■ tem_nbr = 11.■ tem_nbr)AS check_nbr

パズル41 予算
複雑な外部結合 (その2)

FROM (Items AS 11
LEFT OUTER JOIN

(SELECT ■tem_nbr,

SUM(actual_amt),AS actual_amt
FROM Actuals
GROUP BY item_nbr)AS Al
ON 11.■ tem_nbr = Al.■ tem_nbr)

LEFT OUTER JOIN

(SELECT item_nbr,
SUMI(est■mated_amt)AS est■ mated_amt

FROM Estimates

GROUP BY ■tem_nbr)AS El
ON 11.■ tem nbr = El.■ tem nbr
actual amt IS NOT NULL
estimated amt IS NOT NULL
BY ll.item_nbr, 11.■ tem_deSCr;

WHERE
OR

GROUP

■77

バ |ズ |ル |

42

蟄
魚釣りへ行こう! 私たちが釣り場へ到着すると、そこの管理人が釣り場にいない魚

の平均数を計算しようと苦労していた。これだけ聞くと「何を言ってるんだ ?」 と思う

だろうが、実はそれほど妙な要求ではない。そして、それほど簡単な要求でもない。

管理人は次のようなテーブルを使い、魚に関するサンプルデータを収集していた。

CREATE TABLE Samples

(sample_■ d INTEGER NOT NULL,
fish_name CHAR(20)NOT NULL,
fOund_tally INTEGER N01‐ NULL,
PRIMARY KEY (sample_■ d, f■ sh_name));

Samples:サ ンプルテーブル

found」 a‖y:発見総数

sample_ld:サ ンプルID fish name:魚 名

INSERT INTO Samples
VALUES (1, lm■ nnowi, 18),

1, lpikel, 7)
2, lp■ kel, 4)
2, icarpl, 3)
3, :carpl, 9)

'mlnnowi:小 魚 'plke':カ ワカマス 'carp' : I -f

CREATE TABLE SampleGroups

(group_■ d INTEGER NOT NULL,
group_descr CHAR(20)NOT NULL,

sample_■ d INTEGER NOT NULL,
PRIMARY KEY (group_■ d, sample_■ d)),

SampleGroups:サ ンプルグループテーブル

group_descr:グ ループの説明 (生息域など)

group_id i ,)v-JlD
sample_id i t>a)vD

■73

パズル42 魚のサンプリング調査
存在しないデータの集計

INSERl‐ INTO SampleCroups
VALUES (1, lmuddy water:, 1

(1, Imuddy waterl, 2
(2, lfresh waterl, 1
(2, 'fresh waterl, 2
(2, lfresh water!, 3

'muddy watef : i,E/('fresh water':清水

1つ のサンプルは、複数のグループに分類され得ることに注意してほしい。例えば、サ

ンプル1に は、muddy watcrに すむ (グループ1に分類される)魚 と、tcsh watcrに すむ

(グループ2に分類される)魚が含まれている。

管理人は、同じグループ内における魚の平均数をその種類ごとに求めようとしてい

た。例えば、グループ1(muddy watcr)には、サンプル1と 2の魚が含まれている。グル

ープ1に含まれるminnowの平均数は、:my_nsh_namc=iminnowi、 :my_group=1と い

うパラメータを使って求められそうだ。この場合、クエリは次のように書ける。

SELECT
FROM
WHERE

AND
GROUP

f ish_name, AVG (f ound_tally)
Samples
sample_id IN (SELECT sample_id

FRoM Samplecroups
WHERE group_id = :my_grouP)

fish_name = :my_flsh_name
BY fish_name;

このクエリはminnOwの平均数として18を返すが、これは間違いだ。グループ1内の

サンプル2にはminnowが 1匹 もいない。l回 目のサンプリングでは18匹捕まえたが、2

回目のサンプリングでは1匹 も捕まえられなかったということだから、正しい平均数は

((18+o)-2)=9で ある。

正答を得るためには、別のアプローチをとる必要がある。まずは、いくつかのステッ

プに分割しよう。最初に、SELECT文 を実行して必要なサンプルの数を求める。次に、

別のSELECT文 で合計を計算 し、最後に手で平均を計算するのだ。これらを1つ の

SELECT文で書 く方法はあるだろうか ?

■79

SQLパズル

その■

0 明快な方法は、samplc_idご とに存在しないnsh_namcを見つけ出し、それらに対して

数がゼロの行を新たに作ってやることである。こうすれば、最初のクエリが使えるよう

になる。存在しない行は、次のINSERT文 で作れる。

‐ヽ
‐
′
Ｑ

了

、ヽ

・
Ｚ

'S′

←
0
その2

実は困ったことに、魚の種類は10万以上、サンプルの数もl万以上あることが判明し

た。先の方法では、管理人が持っているディスクの容量をオーバーしてしまう。lつの

SQL文で平均を求めるには、いくつかの“トリック"を使う必要がある。

INSERT

SELECT
FROM
ハヽ′HERE

SELECT

FROM

WHERE

AND

GROUP

INTO Samples

DISTINCT M.1.sample_■ d, M2.f■ sh_name, 0
Samples AS Ml, Samples AS M2
NOT EXISTS

(SELECT キ

FROM Samples AS M3
WHERE M11.Sample_id = M3.sample_■ d
AND M2.fish_name = M3.fish_name);

f■ sh_name, SUM(found_tally)/

(SELECT COUNT(sample_id)
FROM SampleGroups
WHERE grOup_■ d = :my_group)AS X

Samples SA
INNER JOIN
SampleGroups SG
ON SA,Sample_■ d = SG.samp■ e_■ d
f■ sh_ ame = :my_ ■sh_ ame
group_ d = :my_group
BY f■ sh_ ame;

SELECT句のスカラサブクエリには、「平均とは値の総計 (被除数)を値の個数 (除数)

で割った数である」という、平均を求めるルールをそのまま適用している。とはいえ、こ

のSQL文は少々トリッキーだ。

まず、被除数を求めるSUM関数は、空集合を引数にとった場合にNULLを 返す。そ

■80

パズル42 魚のサンプリング調査
存在しないデータの集計

の場合、この分数 (商)は NULLになる。一方、除数を導くサブクエリ式も結果が空集

合の場合にはNULLを 返すのだが、サブクエリの中のCOUNT(く式 >)は、引数が空集

合だった場合にはゼロを返す。

COUNT(く式 >)が NULLを 返すケースはただ1つ、NULLしか含まないテーブルに

適用 した場合である。だがこの問題では、Samplcs、 SamplcsGrouPsテ ーブルともに

NULLを排除するよう宣言してあるので、この危険をすでに回避できている。

'｀

フ
′←その3
0 米国カンサス市のアニルバブ・ジャイスワールは、Oraclc版の少し違った解答を送っ

てきた。それをsQL-92へ変換したコードを示そう。

SELECT

FROM

WHERE

GROUP

COALESCE(f■ sh_name, :my_f■ sh_name),
AVG(00ALESCE(found_tally, 0))
Samples AS SA
RIGHT OuTER JOIN
SampleGroups AS SG
ON SA.sample_ d = SG.sample_ d
AND SA.f■sh_name = :my_f■ sh_name
SG.group_■ d = :my_group
BY 00ALESCE(f■ sh_name, :my_f■ sh_name);

COALESCE関 数は、引数のリス トを走査して、最初のNULLでない値を返す。これ

によって、AVG関数の引数はNULLか らゼロヘ変換される。AVG関数が単一の列では

なく式を引数として取れることに、ちょっと違和感を感じるかもしれない。また、この

解答のもう1つのうまいトリックは、1つではなく2つの列 (samplc_id、 6sh_namc)に対

して右外部結合をしていることだ。主キーが常に1列 とは限らないことを考えれば、こ

れは非常に優れた方法と言える。

実は、答えその1とその2、 その3が異なる結果を返すことがある。SamPlcGrouPSテ ー

ブルにSamplcsテ ーブルにないsamplc_idが登録されていた場合、答えその1はそのsam

plc_idを分母にカウントしないが、答えその2と その3はカウントする。

もっとも、このような「調査対象外」のIDが含まれることは、本来あり得ないことで

ある。したがって、SamplccrOupsテ ーブルに外部キーを付してあらかじめ不当なデータ

を除外しておくのもよい手だろう。

■84

バ |ズ |ル |

43

蟄
このパズルは、リチャード・レムレーがもっと複雑な問題のロジックをもとに作った

ものである。ANS1/1SO SQL-92規 格の範疇でSQL文を書くときには、以前とは全く違

う考え方が必要なことを示す格好の例題になっている。SQL-92の新機能を使うことで、

これまで書けなかったきれいな解法がいくつも生まれた。同じことは、SQL-99規格の

機能についても言える。このパズルでは、導出テーブルとCASE式、および等結合以外

の条件を使った外部結合を利用する一
たった1つのクエリの中でだ。

それではパズルを説明しよう。まず、学生名を表すsmdcnt_namcs列 がある。学生たち

は、単位を取得するための講義を受講しており、講義はいずれかの科目に属している。

Catcgorics(科 目)テーブルには、科目を表すcrcdit_cat列 と、その科目で卒業に必要な

単位数を表すrqd_crcdts列がある。CrcditsE=ncd(取得済み単位)テーブルの各行には、

学生がどの科目の単位をどれだけ取得したかが格納される (よ り論理的に設計するなら、

このテーブルには学生名、講義、取得単位数を持たせ、科目〔crcditcat〕 は別途cOurscs

テーブルを参照するようにするべきだが、ここでは定義を少し簡単にしておく)。

なお、学生が卒業するためには、Catcgoricsテ ーブルにある全科日で必要単位数を取

得しなければならない。

CREATE
‐
「ABLE Categor■ es

(cred■ t_cat CHAR(1)NOT NULL,
rqd_cred■ ts INTEGER NOT NULL);

Categoles:科 ロテーブル

rqd_credlts:卒業に必要なその科目の単位数

credit_cat : i+E

CREATE TABLE Cred■tsEarned ―‐:主キーな し

(student_name CHAR(10)NOT NULL,
cred■ t_cat CHAR(1)NOT NULL,
cred■ ts INTEGER NOT NULL);

CredlsEarned:取得済み単位テーブル

credlt cat:牙 斗目

student name:学生名

credits:取得単位数

■82

L

パズル43 卒業
CASE式 の高度な応用

一藤
一一蕩
籐

一母̈
蕩̈
一̈潮
観̈

劾翻い̈ヽ
郷鷲

¨

INSERT INT()Cate90r■ es
VALUES Al,10),

Bl,3),
Cl,5);

INSERT INTO Cred■ tsEarned
:AI,

:Al,

ICi,

IAl,

ICl,

lAI

:A:

:Al

lAl

:AI

:BI

:B:

!Cl

lCI

:Ci

VALUES ('Joe' ,

('Joe,,
(,Joe,

,

('Bob' ,

('Bob' ,

('John' ,
('Mary' ,
('Mary' ,

('Many' ,

('Mary' ,

('Mary' ,

('Mary' ,
(,Mary'

,
('Mary' ,

('Mary' ,

3),(lJoel,
3),(lJoel,
2),(IJoet,
2), (lBobl,
4),

2)

3)

3)

2)

1),

1),

1),

1),

1),

(lJoel, IA
(IJOel, :c

,3),
,3),

Ａ

Ｂ

Ｃ

Ｃ (lBobl, :A: 12),

'John' ,

'Mary' ,

Mary'
Mary'

Ｂ

Ａ

Ａ

Ａ

Ａ

Ｂ

Ｂ

Ｃ

Ｃ

Ｃ

1),

1),

1),

1),

1),

1),

1) ,

1) ,

1) ,

1) ;

('l\4any' ,
('Mary' ,

('Many' ,

('Mary' ,

('Many' ,

('Mary' ,
('Mary' ,

('Mary' ,

IAl

:Al

:A(

:B:

IBl

lBl

iC(

lCt

Mary
ａ

ａ

ａ

ａ

ａ

Ｍ

Ｍ

Ｍ

Ｍ

Ｍ

さて、まず初めに卒業資格のある学生―
つまり、すべての科目で卒業に必要な数の

単位を取得した学生をリストを作成してほしい。それから、卒業資格のない学生のリス

トもお願いしたい。ただ、リストを見る側としては、これら2つのリストが1つにまとめ

られ、全学生の卒業可/不可を一覧できるのが一番ありがたい。そこで、各行に学生名
と、卒業可もしくは卒業不可の列に iXI印を記した次のようなリストの作成を、ここで

の出題とする。

El■ 9■ bleReport

student_ ame grad nograd

X

X

X

EligibleReport:卒 業資格レポート

grad:卒業可

studentname i学生名
nograd:卒業不可

'Bob'
'Joe '

'John '

'lilary'

,1),

,1),

,1),

,1),

,1),

,1),

■83

ScLパズル

'(0=そ

の■
0 私が思いついた最適解は、次のようなものだ。

SELECT X.student_name,

CASE WHEN COUNT(Cl.cred■ t_Cat)
>= (SELECT COUNT(士)FROM Categor■ es)

THEN IXl
ELSE I : END AS grad,

CASE WHEN COUNT(Cl.cred■ t_cat)
く (SELECT COUNT(■)FROM Categories)

THEN IXI

ELSE I 〕END AS nograd

FROM (SELECl‐ student_name, cred■ t_cat,

SUM(cred■ts)AS cat_creditS
FROM Cred■tsEarned

GROUP BY student_name, Cred■ t_Cat)AS X
LEFT OUTER JOIN
Categor■ es AS Cl

ON X.cred■ t Cat = Cl,Cred■ t Cat

AND X.cat_cred■tS >= Cl.rqd_cred■tS

GROUP BY X,student_name;

導出テーブルXは、学生名と科日、それにその学生が取得した科目ごとの合計単位数

(catcrcdits)を 含んでいる。この解法のカギは次のステップにある一
そう、crcdit_cat

列同士を等結合し、catcrcdits>=rqd_crcditsと いう条件を使う左外部結合である。そ

れから学生名 (studcntnamc)で グループ化すれば、各学生が卒業に必要な単位数を取

得できた科目の数をCOUNT(Cl.crcdit_cat)で求められる。その数と科目の総数を比較

すれば、学生に卒業資格があるか否かが判明するというわけだ。

学生がどちらに振 り分けられるかは、
IXlマークで示している。この方法なら、学生に

講義を1つ も受けなかった科目がある場合も自動的に扱える。なぜなら、COUNT(Cl.

crcditcat)は 、少なくとも1単位を取得した科目しか数えないからだ
[訳注l]。

訳注1:COUNT(')と違って、COUNT(く列名>)は 集計の前にNULLを排除するため。同じトリックを使う類題として、パ

ズル20も参照。

■84

バ |ズ |ル |

44

蜀
アボツト・デ・ラームは、1996年 ll月 にこの問題をAcccssフ ォーラムに投稿してき

た。彼の手元には、売上伝票から集めたデータがあった。各伝票には、売れた商品が売

れた順序でペアになって印字されていた。データを格納しているSalcsSlipsテーブルは、

次のような形をしている。

CREATE ・TABLE SalesSl■ ps

(■ tem_a INTEGER N01‐ NULL,
■tem_b INTEGER NOT NULL,
PRIMARY KEY(■ tem_a, ■tem_b),
pa■ r_tally INTEGER NOT NULL);

SalesS‖ ps:売上伝票テーブル
item_b:商 品b

item a:商 品a

pair_ta‖ y:こ のペアの数

itcm_aは先に売れた商品、itcm_bは itcm_aの次に売れた商品で、pai駐tallyは itcm_aと

itcm_bのペアの合計数である。売れた順序は必ず「itcm_a→ itcm_b」 と決まっているた

め、売れた順序が逆のペアは別に計算 (別の行に記録)さ れている。

SalesSIlps

item_a i-tem_b pair_tatIy

12345
12345

67890

12345
67890
12345

しかしラームは、いくつかのレポートを作成するために、売れた順序に関係なくペア

の数を合計した結果が欲しいと考えていた。要するに「順列」を「組み合わせ」に変換し

たい、ということである。上のサンプルを使うなら、求める結果は次のようになる。

485

SoLパズル

|

ltem_a item_b pair_taIIy

12345
12345

12345

67890

12

14

ラームが試してみたところ、順序だけが違うペア同士を足し上げることは、自己結合

で簡単にできた。しかし、重複行を排除できないのが悩みの種だった。

SELECT So.■ tem_a, SO,■ tem_b,
SUM(so,pa■ r_tally + Sl.pair_ta■ ly)AS pa■ r_tally

SalesSl■ ps As SO, SalesSlips AS Sl

SO.item b = Sl.■tem a

SO,item a = Sl.■ tem b
BY SO.■ tem_a, SO.■ tem_b, Sl.■ tem_a, Sl.■ tem_b;

FROM

WHERE

AND
GROUP

このクエリは、次のような間違った結果を返す。

item_a item_b pair_ta]ly

12345
12345

67890

12345

67890
12345

24

14

14

ラームは、順序だけが違うベアを探してその値を合計し、片方を削除するプログラム

を書くことも考えた。だが、できればSQLで解決したいというのが彼の要望である。

、11′ /
、 、
｀

⌒

′
´

_[1.IZ″・11´‐ハ
ッ
ノヽその■
0 まず、ラームの考えたクエリは簡単な修正でちゃんと動くようになる。

SELECT so.■ tem_a, SO.item_b,

SUM(SO.pa■ r_tally + Sl.pair_tally)AS pa■ r_tally

SalesSlips As So, SalesSl■ ps AS Sl

so.■ tem a く= SO.■tem b

so.■ tem a = Sl.■ tem b

so.■ tem b = Sl.■ tem a

BY SO.■ tem_a, SO.item_b, Sl.item_a, Sl.■ tem_b;

FROM
WHERE
AND
AND
GROUP

■86

パズル44 商品のペア
順列から組み合わせに変換する

しかし、自己結合は高コストだし、本当は使う必要もない。代わりにこう書けばよい。

SELECT CASE WHEN ■tem a
THEN item a
ELSE ■tem b

CASE WHEN ■tem a
THEN item b

ELSE ■tem a
SUM (pa■ r_tally)

FROM SalesSl■ ps

GROUP BY sl, s2;

く= item b

END AS sl,
く= item b

END AS s2,

ず⑦←/′

レ

正直に言うと、このクエリは動かないかもしれない。列 slと s2は GROUP BYが実行

された後に作られるので、GROUP BYの キーに使うことはできないからだ。とはいえこ

の構文は、実際には多 くのRDBMSで通用する。不正ではあるが、SELECT句 のリス ト

を最初に作 り、それを埋めていくという実行順序がとられているためだ。SQL-92準拠

の正しいクエリでは、次のようにテーブルサブクエリを使うことになるだろう。

SELECT sl, s2, SUM(pair_tally)
FROM (SELECT CASE WHEN item_a く= ■tem_b

THEN item a
ELSE item_b END,

CASE WHEN ■tem a く= item b
THEN item b
ELSE ■tem_a END,

pair_tally

FROM SalesSl■ ps)AS Report (sl, s2, pair_tally)
GROUP BY sl, s2;

その2

O SQL-89で は、テーブルサブクエリ式をビューにして、そのビューを別のクエリの中で

使う、という方法を使わなければならなかった。したがって、次に示すクエリも上と基

本的に同じなのだが、ステップを2つ に分けている。次に示すRcportビューは、ほかの

レポートを作成する際にも利用できるだろう。

CREATE VIEW Report (sl, s2, pa■ r_tally)
AS SELECT CASE WHEN ■tem a く= ■tem b

THEN ■tem a

■87

SoLパズル

ELSE ■tem b END,
CASE WHEN ■tem_a く= ■tem_b
THEN item_b
ELSE ■tem_a END,

pair_tally

FROM SalesSlips;

SELECT sl, s2, SUM(pa■ r_tally)
FROM Report

GROUP BY sl, s2;

'0′

←その(3
0 しかし、一番の方法は、クエリを実行する前にデータベース自身を更新し、itcm_aに

2つのコード番号の最小値を持たせることである。これはとても簡単にできる。

UPDATE SalesSl■ ps

SET ■tem_a = ■tem_b,
■tenl b = ■tem a

WHERE ■tem_a > ■tem_b;

同じことを、INSERT時 にトリガーを使って行うこともできるが、そうすると実装依

存の手続き型のコードを書くことになる。やはり真の解答は、モップで床をふき (=上

のUPDATEを実行し)、 その後に次のCHECK制約を付加して“水漏れ箇所を修復する''

ことである
[訳注1]。

CREATE TABLE SalesSl■ ps

(■ tem_a INTEGER NOT NULL,
■tem_b INTEGER N01‐ NULL,

CHECK (■ tem_a く= ュtem_b)
pa■ r_tally INTEGER NOT NULL);

訳注 1:ただし、答えその 3の UPDATE文 |よ次のようにデータを更新するため、もとの SalesS‖ psテーブルから事前に主キー

を外しておく必要がある。

■tem_ ■tem_ pa■ r_ ally

12345

12345

12345

488

甕
簸
鑽
翻
議
爾
爾
鐵
爾
鶴
鑢
熙
審
議
轟
議
燿
鐵
蒻
圏
鐵
爾
鰯
鏑
　

　

爾
”繭
『鐵
摯覇
爾̈
爾ヽ
一爾
【鱒

12345

67890

67890

バ |ズ |ル |

45

欲
古典的な会計問題に、過去の請求書から時系列のレポートを作るという良間がある。

ここでは「フレンズ。オブ・ペパロニ」という、ピザショップで使えるクレジットカード

を発行している会社を題材に取り上げよう。もし、あなたの友人に会員がいたら、その

人のカードでピザを購入できるか確認しておくとよかったのだが。

請求データを記録しているFricndsOfI)cPpcrOniテ ーブルには、会員の識別番号 (cust

id)、 発行日 (b皿_datc)、 金額 (pizza_amt)が 含まれている。だが、これらはどれもキー

にはならない。そのため、1人の会員に日付や金額が重複した行が発生し得る。要する

に、これは昔ながらのジャーナルファイルを、SQLの テーブルを使って実現しているだ

けなのだ。

ここで考えるのは、0～ 30日 前、31日 ～60日前、61日～90日前、そして90日以上前

という4つの期間における各会員の合計請求額を求める方法である。「請求金額の時系

列レポート」と呼ばれるこのレポートからは、フレンズ・オブ・ベパロニのクレジットカ

ードサービスがどう使われているかが見えてくる。

その■

各期間に対するクエリは、UNION ALL演算子を使って書くことができる。次のクエ

リを見てほしい。

SELECT cust_id, 10-30 days = I AS age, SUM(p■ zza_amt)
FR()MI FriendsOfPepperoni

WHERE b■ 11_date BETWEEN (CURRENT_DATE ― INTERVAL 1301 DAY)
AND CURRENT DATE
GROUP BY cust ■d
UN10N ALL
SELECT Cust_■ d, :31-60 days = : AS age, SUM(p■ zza_amt)
FROM Fr■ endsOfPepperon■

WHERE b■ ll_date BETWEEN (CURRENT_DATE ― INTERVAL !601 DAY)
AND (CURRENT_DATE ― INTERVAL i31l DAY)
GROUP BY cust ■d
UN10N ALL
SELECl‐ cust_■ d, 161-90 days = I AS age, SUMI(p■zza_amt)
FRC)MI FriendsOfPepperoni

WHERE b■ 11_date BETWEEN (CURRENT_DATE ‐ INTERVAL :901 DAY)

、11′ /

〕;り←
0

■89

SQLパズル

\,1,

AND (CURRENT_DATE ― INTERVAL 161l DAY)
GROUP Bヽ′ cust ■d

UNION ALL

SELECT cust_■ d, 190+ days = l AS age, SUM(p■ zza_amt)

FR()MI FriendsOfPepperoni

WHERE bill date く CURRENT DATE - lNTERVAL 1901 DAY
GROuP BY cust ■d
ORDER BY cust_■ d, age;

2番 目の列は、期間をテキストで表現している。文字列は時間と同じ順序を持つため、

こうすることで各会員のデータを期間でソートするのが簡単になる。ただ、このクエリ

はうまく動くが、少し時間がかかる。SQL-92な らばもっとよい解法があるに違いない。

DAY

DAY
DAY

DAY
DAY

'911 DAY

FROM
GROUP
ORDER

ヽ
・
／ 郷ヽｙ影
“

″
Ｆ
＼ ｀その2

O CASE式 を使えば、UNIONを使 う必要はない。UN10Nを使 うとテーブルを何度も

検索することになるが、CASE式 ならば検索は 1回で済む。

SELECT cust_■d,

SUM(CASE WHEN b■ 11_date
BETWEEN CURRENT DATE ― INTERVAL 1301
AND CURRENT DATE

THEN p■ zza_amt ELSE O.00 END)AS agel,
SUM(CASE WHEN b■ll_date

BETWEEN CURRENT DATE ― INTERVAL 1601
AND CURRENT DATE ― INTERVAL i311

THEN pizza_amt ELSE O.00 END)AS age2,
SUM(CASE IWHEN b■ 11_date

BETWEEN CURRENT DATE ― INTERVAL 190!
AND CURRENT DATE ‐ INTERVAL :611

THEN p■ zza_amt ELSE O.00 END)AS age3,
SUM(CASE WHEN b■ll_date く CURRENT_DATE ― INTERVAL

THEN p■ zza_amt ELSE O.00 END)AS age4
Fr■ endsOfPepperon■

BY cust id
BY cust_■ d;

UNIONを CASE式で置き換えるのは、便利な“トリック"である。ただし、答えその 1

が期間を行持ちで返すのに対し、答えその2は列持ちで返すという違いはある。

■90

パズル45 ペパロニピザ
期間別合計を求める

′
／
´
´
ヽ

′
ヽ
■
り
ｒ
多

′

‐ヽ―ク
ヽ
マ

、ヽ
・
ん そ の

0
J'

0 レポートに必要な期間を持つ共通表式か導出テーブルを作ると、UNIONも CASE式

も不要になる。

WITH RepontRanges(day_count, start-cnt, end-cnt)
AS (VALUES ('under Thirty days', @O,30),

('Sixty days' , 31 , 60) ,

(Ninty days', 61, 90))
SELECT F1.cust-id, CoALESCE(R1.day-count,'over Ninety days'),

SUM (pizza_amt)

FRoM FniendsofPeppenoni AS F1

LEFT OUTER JOIN
ReportRanges AS R1

0N F1.biII_date
BETWEEN CURRENT_DATE - ENd_CNt

AND CURRENT_DATE - StANt-CNt
GRoUP BY F1.cust_id, R1.day_count
oRDER BY Fl.cust_id, R1.day_count;

このSQL文のほうがCASE式 よりも保守しやすいし、拡張性にも優れている。インデ

ックスを利用すれば、スピードもさらに速くなる。忘れないでもらいたいが、SQLは計

算のためではなく結合のために設計された言語なのだ。

■9■

バ |ズ |ル |

46

鮨
たった今、あなたはデパートの営業部長に着任したとしよう。データベースには2つ

のテーブルがある。1つは、その店舗で過去に開かれた販促イベントのカレンダー。もう

1つは、その販促期間中の売上高のリストである。

あなたはこれら2つのテーブルから、各期間中に最高の売上をあげた販売員を調べる

クエリを書かなければならない。その販売員には臨時ボーナスが支給されるのだ。

CREATE
‐
「ABLE Promot■ ons

(promo_name CHAR(25)NOT NULL PRIMARY KEY,
Start_date DATE NOT NULL,
end_date DATE NOT NULL,

CHECK (start_date く= end_date)),

Promotions:販 売促進テーブル

Start_date:開始日

prOmo_name:販促イベントの名称
end_date:終了日

Promotlons

prOmo_ ame start date end_date

―
●
■
　

．
―
●

・　

一●
●

一
●
●
●
．
　
　

一■
●
一●
●
ヽ

■
●
一●
一●

●
１

IFeast of St. Fred!

:Nat■ onal Pickle Pageantl
iChr■ stmas weeki

11995-02-011

11995-11-011

11995-12-18!

11995-02-071

11995-11-071

'1995-12-251

/′

、11′ /

Q←

CREATE TABLE Sales

(tiCket_nbr INTEGER NOT NULL PRIMARY KEY,
Clerk_name CHAR (15)NOT NULし

,

Sale_date DATE NOT NULL,
Sale_amt DECIMAL (8,2)NOT NULL),

Sales:売 上テーブル

sale_date:売 _上 日

tiCketnbr:チケット番号
sale_amt:売 上額

clerk name:店 員名

その■

今から示すクエリの“トリック"は、1人 1人の販売員が販促期間中にいくら売り上げ0

■92

[雌

パズル46 販売促進
期間内での最大値

たかを調べ、そのグループの中から最も高い合計額を抜き出す、というものだ。

クエリの第1段階は、比較的簡単な結合とGROUP BYの 文で書ける。トリッキーなの

は、各グループの中から最大の売上高を見つけ出す第2段階のHAVING句 である。まず

は答えのSQL文を見てもらいたい。解説はそれからだ。

SELECT

FROM
WHERE
GROUP

HAVING

FROM
WHERE
GROUP
HAVING

sl.clerk_name, Pl.promo_name,
SUM(Sl.sale_amt)AS SaleS_tOt
Sales AS Sl, Promot■ OnS AS Pl

Sl.sale date BETWEEN Pl.start date AND Pl.end date
BY Sl.clerk_name, Pl,prOmO_name
SUM(sale_amt)>= ALL(
SELECT SUM(sale_amt)
FROM Sales AS S2
WHERE S2.clerk name く> Sl.Clerk name

AND S2.sale date
BElWEEN (SELECT start_date

FROM Promot■ ons AS P2
WHERE P2.promo_name = Pl.promo_name)

AND (SELECT end_date
FROM PromOt■ Ons AS P3
WHERE P3.promo_name = Pl.prOmo_name)

GROUP BY S2.clerk_name);

私たちが求めたいのは、同一期間内での売上がほかのどの販売員があげた売上よりも

多いか等しい販売員と、その期間である。「S2.cicrk_namcく >Sl.dcrk_namc」 という述

語は、サブクエリの合計からほかの販売員を除外している。BETWEEN述 語の中の2つ

のサブクエリ式は、販促期間について正しい日付を使っていることを保証するものだ。

このクエリを改善しようとしたときに最初に浮かぶ考えは、次のようにBETWEEN

述語の中にあったサブクエリ式を1つ外側のクエリで直接参照することだ。

SELECT sl.clerk_name, Pl,promo_name,
SUM(Sl.sale_amt)AS sales_tOt
Sales AS Sl, Promot■ Ons AS Pl

Sl.sale date 13ETWEEN Pl.start date ANE)Pl.end date
BY Sl.clerk_name, Pl.promo_name
SUM(sale_amt)>= ALL (
SELECl‐ SUM(sale_amt)
FROM Sales AS S2

ハヽIHERE S2.clerk name く> Sl.Clerk name

AND S2.sale date
BETWEEN Pl.start date

■93

SQLパズル

/′⑭←
彰

AND Pl.end date― エラー !

GROUP BY S2.clerk_name);

ところが、このコー ドは動かない
一
なぜ動かないか、その理由が分かるようなら、

このSQL文を本当に理解できている。先に進む前に、各自で理由を考えてみてほしい。

その12

FROM
WHERE

GROUP

0 「 GROUP BY Sl.dcrk_namc,Pl.prOmO_namc」 句 は、集約 され たテー ブル を作 る。そ
こには、集約関数と2つの集約キーの列しか含まれない。集約された時点で、FROM句
で作られたオリジナルの作業テーブルは消去され、この集約された作業テーブルにとっ

て代わられる。この時点でstartdatcも cnd_datcも すでに存在しないのだ。

サブクエリ式が正しく動作するには、外側のPlテーブルの存続中にこれを参照しな

ければならない。なぜなら、クエリは一番内側のサブクエリから外側へ向かって展開さ

れるのであって、集約テーブルから展開されるのではないからだ。

ただし、売上を探す期間がはっきりしている場合なら、Pl.startdatcと Pl.cnd_datcに

代えてその起点と終点の日付を直接書けば、このクエリは正しく動作する。

さて、私が書いたコラムを読んだ2人の読者が、答えその1の改良版を送ってきてく

れた。リチャード・レムレーとI.D.マ クドナル ドは、もし期間に重複がなければ、

Promotionsテ ーブルはキー列しか持たないことに気づいた。その場合、GROUP BY句

でpromo_namc、 start_datc、 cnd_datcを 使っても、グループは一切変化しない。だがそ

れによって、HAVING句 でstartdatcと cnd_datcが 使えるようになるのだ。

SELECT Sl.clerk_name, Pl.promo_name,
SUM(Sl,Sale_amt)AS sales_tot
Sales AS Sl, PrOmot■ ons AS Pl
Sl.Sale date BETWEEN Pl.Start date AND Pl.end date
BY Pl.promo_name, Pl.start_date, Pl.end_date,
Sl.clerk name
SUM(Sl.Sale_amt)>= ALL (
SELECT SUM(S2.sale_amt)

FROM Sales AS S2
WHERE S2.sale date
BETWEEN Pl.Start date AND Pl.end date
AND S2.clerk name く> Sl.clerk name

BY S2.clerk_name);

HAVING

■94

GROUP

、ヽ
・
κ

パズル46 販売促進
期間内での最大値

あるいは、:HAVING句のサブクエリの中を少し変えることで、述語の数を減らすこと

ができる。次のように書くのだ。

HAVING SUM(Sl.sale_amt)>= ALL (
SELECl‐ SUM(S2.sale_amt)
FROM Sales AS S2

WHERE S2.sale date
BETWEEN Pl,start date
AND Pl.end date

GROUP BY S2,clerk_name);

この2パ ターンのコードの間にパフォーマンス上の大きな差があるかどうかについて

は、はっきりしたことは言えない。ただし、2番目のほうがきれいではある。

斜ゝ
）鬱
”

／
ｔ
＼ ｀その3
O SQL-99の 新機能である共通表式を使うと、データを複数のレベルで簡単に集約する

ことができる。

WITH ClerkSTOtals (Clerk_name, promo_name, sales_tot)
AS

(SELECl‐ Sl.clerk_name, Pl.prOmO_name, SUM(Sl,sale_amt)
FROM Sales AS Sl, Promot■ ons AS Pl

WHERE Sl.sale date BETWEEN Pl.start date AND Pl.end date
GROUP BY Sl.clerk_name, Pl.promo_name)
SELECl‐ Cl.clerk_name, Cl,promo_name, Cl.sales_tot
FROM ClerksTotals AS Cl
WHERE Cl.sales tot
= (SELECT MAX(C2.sales_tot)
FROM ClerksTotals AS C2
WHERE Cl,promo_name = C2.promo_name);

このコードはかなり簡潔だから、メンテナンスも楽になるはずだ。

■95

バ |ズ |ル |

47

滸
このパズルのオリジナルバージョンは、ジョージア大学のボブ・スターンズから送ら

れてきた。もともとは、インターネットサーバ上のページ割り当てを扱う問題だったが、

私が劇場の最前列の席をまとめて予約する問題として書き換えた。

予約は、予約者の名前および予約の開始席番 (start_scat)と 終了席番 (■nish_scat)か

ら構成されている。予約に際しては「予約された座席プロック同士で重複を許さない

(座席のダブルブッキングを防ぐ)」 という規則がある。予約テーブルは次のような形だ。

CREATE TABLE Reservat■ ons

(reserver CHAR(10)NOT NULL PRIMARヽ ′ KEY,
Start_seat INTEGER NOT NULL,
f■ n■sh_seat INTEGER NOT NULL);

Reservations:予 約テーブル

finish seat:終了席番

stan seat:開始席番

Rese rvations

reserven start_seat finish seat

' Eenie '

'Meanie'
'lvlynie'
'Mel-vin'

1

6

10

16

4

7

15

18

、11′ /

Q←

ここでやりたいことは、重複を許さないという予約規則を破るような挿入が行われな

いことを保証する制約を、RcscⅣadOnsテ ーブルに付加することだ。これはいくつかのス

テップに分けて考えないと、見た目よりも難しい問題である。

その■

0 まず思いつく解法は、CHECK制約を付加することだろう。座席ブロックが重複する
ケースにはどういうパターンがあり得るか、絵を描いて調べる人もいるかもしれない。

そうすると、次のような制約が考えられるだろう。

■96

reserver:予 約者

パズル47 座席のプロック
CHECK制 約の中でサブクエリを使う

CREATE TABLE Reservat■ ons

(reserver CHAR(10)NOT NULL PRIMARY KEY,
start_seat INTECER NOT NULL,

f■ n■sh_seat INTEGER NOT NULL,
CHECK (start_seat く= f■ n■sh_seat),
CONSTRAINT No_Overlaps
CHECK (NOT EXISTS

(SELECT Rl.reserver
FROM Reservat■ ons AS Rl
AヽIHERE Reservations.start seat
BETWEEN Rl.start seat AND Rl.finish seat
OR Reservations.fin■ sh seat
BETVVEEN Rl.start_seat ANE)Rl.finish_seat));

このCREATE TABLE文には座席プロックの重複を防ぐだけでなく、別の人が同じ開

始席番と終了席番を持つ座席ブロックを予約できないようにもする、うまい“トリック"

が使われている。

ただ、この解法には問題が2つある。まず、CHECK制約内でのサブクエリはSQL-92

のフルレベルでは許されているが、中間レベルでは許されていない。それゆえ、この

CREATE TABLE文は現在リリースされているRDBMS上ではうまく動かないだろう。

また、この問題を回避できた場合でも、テーブルに最初の 1行をINSERTす るときに

別の問題が起きる可能性がある。主キー制約とNOT NULL制約には問題はない。厄介

なのは、CHECK制 約が実行されるときに、SQLエ ンジンがサブクエリ内で空の

RcscⅣ atiOnsテ ーブルをRlと いう名前でコピーする点だ。Rl.start scatと Rl.Anish_scat

の値は、CREATE TABLE文 の制約によってNULLであってはならない。しかし、Rl

は空だから、BETWEEN述 語においてはNULLに ならざるを得ない。そのため、この自

己参照が制約チェッカーを混乱させて、絶対に1行 日がINSERTで きないという可能性

が大いにあるのだ。

一番安全な方法は、「テーブルを宣言 し、数行分データを入力して、その後にNo_

Ovcriaps制約を付ける」というものだ。あるいは、「遅延制約で宣言しておいて、セッシ

ョンが終わるときに戻す」という方法も選択できる。

■97

パ |ズ |ル |

48

蟄

‐‐′
Э

影

ヽ

／
●

ヽ
/́:′

シシー・カブは、CompuScⅣ cに奇妙な質問を投げてきた。彼女は、こんなテーブルを

持っていた。

CREATE TABLE Inventory

(9oods CHAR(10)NOT NULL PRIMARY KEY,
p■eces INTEGER NOT NULL(〕 HECK (p■ eces >= 0));

hventory:在 庫テーブル goods : ffiE pieces :イ固数

シシーは、このテーブルを分解しようとしていた。つまり、商品1個 につきl行 とする

ビュー、あるいは非テーブルを得ることである。例えば、(lCD― ROMl,3)と いう行があ

るとすると、3行の (lCD― ROMl,1)に分解するのだ。聞かれる前に言っておくが、なぜ

彼女がこんなことをしたいのかは知らない。純粋に練習問題だと考えてほしい。

SQLは「UN―COUNT(■).… DE― GROUP BY… 」演算子を持っていないので、彼女の

希望を実現するにはカーソルか、RDBMSベ ンダが提供する4GL[訳注l]を 使う必要があ

る。正直に言うと、私ならSQLではなくレポート作成プログラム側で処理するだろう。

なぜなら、結果がキーを持たないため、テーブルにならないからだ。だが、とりあえず練

習問題だと思って、奇抜な解答を探してほしい。

その■

0 まさに手続き的だが、あなたが使っているSQLに対応した4GLで、Invcnto,テ ーブ

ルから1行読み出し、その商品の個数に応 じてループを回し、結果テーブルに書き込ん

でいくルーチンを作るという方法がある。

この方法では結果テーブルに対 し、(SELECT SUM(picccs)FROM Invcntow)回 の

単一行挿入が必要になる。そのため、処理にはかなり時間がかかるだろう。

もっとよい解法はないだろうか ?

訳注 1 4th Generation Language(第 4世代言語)の略。高度なプログラミングスキルがなくてもアプリケーションを開発で

きるように、言語自身や環境、ツールなどが実装を大きく支援してくれる点に特徴がある。SQLや手続き型SQL
(Oracleの PL/SQL、 SQL Serverの T― SQLなど)も 4GLの 1つと言われる。

■98

L

／
′
´
ン
ヽ

′
ヽ
「
ノ
イ
′多
，

‐ヽＩＣ
ヽ
マ

、ヽ
・
／

パズル48 非グループ化
GRO∪ P BYの逆演算

その2

0 私は常々、SQLでは集合の観点から考える必要があると強調してきた。もっとよい解

法を作る方法として、「ロシア農民のアルゴリズム」に基づいたテクニックを使い、自己

挿入を繰り返すというものがある。これは、初期のコンピュータで乗除算を実行するた

めに使われていたアルゴリズムで、数学史の教科書やコンピュータサイエンスの本に載

っている。2進数の算術を基礎としており、アセンブラ言語の左右シフト演算で実装で

きる。

これでもまだ4GLを使う必要はあるが、それほど悪くない方法だろう。まずは、2つ

の作業テーブル (wOrkngTablcl、 wOrkingTablc2)と 最終的な結果を入れるテーブル

(Answcr)を 作ろう。

CREATE TABLE Work■ngTablel ―― 王キーを設定できない !

(900ds CHAR(10)NOT NULL,
p■eCes INTEGER NOT NULL);

CREATE TABLE WOrkingTable2

(9oods CHAR(10)NOT NULL,
p■eces INTEGER NOT NULL);

CREATE TABLE Answer

(gOods CHAR(10)NOT NULL,
p■eces INTECER NOT NULL);

INSERT INTO Answer

SELECT ' FROM Inventory WHERE p■ eces = 1,

次に、残りのデータをWorkngTablclに入れる。

INSERT INTO Work■ ngTablel
SELE()T オ FR()M InVentOry WHERE pieces > 1;

次のコードは、wOrkngTablclテーブルの各行から個数を半分 (ま たは半分 +1)に し

たペア (2行)を作 り、それをWorkngTablc2テ ーブルヘ挿入している。

″膠
”櫃
鸞

遜
鶴爾
議
鐵̈
¨ヽ
　

熙
一一躍̈
醸

【鴛
輛̈鷺

一機

一̈一
　

畿̈
一一゙̈驚
傘̈一懸

一一“一ヽ̈撚
鶉̈

´ヽ̈一

手始めに、InvcntOwテ ーブル内に1つ しかない商品をAnswcrテ ーブルに入れてみる。

■99

S(2:Lパズル

INSERT INTO Work■ ngTable2

SELECl・ 9oods, FL00R(p■ eces / 2.0)

FROM Work■ ngTablel

AヽIHERE pieces > 1

UN10N ALL
SELECl・ 9oods, CEILING.(pieces / 2.0)
FROM Work■ ngTablel
WHERE p■ eces > 1:

FL00R(x)は xよ り小さい最大の整数を、CEILING(x)は xよ り大きい最小の整数を

返す。もし、あなたが使っているRDBMSが これらの関数を持っていなければ、丸めと

切り捨てを行う関数でも書ける。2ではなく2.0で割るのも重要なポイントだ。こうする

ことで、計算結果が小数まで出る。

今度は、WOrkngTablc2テ ーブルで個数が1に まで減った商品の行をAnswcrテ ーブル

に挿入し、WorkngTablclテーブルをクリアする。

椰蒻
鱒

鷺
畿
鬱麟

一鱗
一̈̈一一懸
鸞

一
　

懲
圏一鐵
艤

INSERT INTO Answer
SELECT オ

FROM Work■ ngTable2

WHERE p■ eces = 1;

DELETE FROM Work■ ngTablel;

次に、WorkngTablclと WorkingTablc2の 役割を入れ替え、両方のテーブルが空にな

るまでこのプロセスを繰り返す。これは直接的で簡単な手続き的コーディングだ。結果

がテーブルからテーブルヘ移動するプロセスを追ってみると、なかなか興味深い。アニ

メーションのコマ送りのように図示してみよう。

ステップl:wOrhngTablclヘロードする

Work■ ngTablel

900ds p■ eces

Aヽlorking¬
‐
able2

900ds p■ eces

IAlphal

IBetai

:Deltal

:Gammal

200

4

5

16

50

パズル48 非グループ化
GROUP BYの 逆演算

なお、(IEPsilonl,1)は 即座にふ swcrテーブルヘ移動 してよい。

ステップ2:個数を半分にし、WorkingTablc2の行を倍にする。そしてWOrking
Tablclを 空にする

Work■ ngTable」

g00ds pieces

Workingl‐ able2

g00ds p■ eces

:Alphal

:Alphal

lBeta〔

IBetal

lDeltal

lDeltal

:Gammal

iGammal
２

２

ステップ3:両方のテーブルが空になるまで、このプロセスを繰り返す

Work■ ngTablel

900ds pieces

Aヽlorkingl‐ able2

900ds p■ eces

IAlphal

lAlphal

:Alphal

:Alphal

IBetal

lBetal

lBetal

lBetal

lDeltal

:Deltal

lDeltal

lDeltal

lGammal

:Gammal

lGammal

IGammal

１

１

１

１

１

１

１

２

４

４

４

４

２

２

３

３

―― IAlphalと IBeta:は

――Answerテ ーブルヘ入れてよい

20■

SQLパズル

‐ヽ‐′∩
Ｙ
７
目

、ヽ
・
κ
　

‘

1つのテーブルを空にするコストは、大抵の場合、とても安上がりだ。あるテーブル

から別のテーブルヘデータをコピーする場合も同様で、いちいち1行ずつ挿入していく

より、該当データが記録されているデイスク上の物理ブロックを丸ごとメモリ上のバッ

ファヘ移すほうが、コストはずっと低くて済む。

このコードは、片方の作業テーブルに結果を残すようにもできるが、今の方法だと作

業テーブルが徐々に小さくなっていくので、バッファをより効率的に使える。また、こ

の アル ゴリズムで は「SELECT SUM(picccs)FROM Invcntory」 行分 の メモ リと、

「log2((SELECT MAX(Picccs)FROM Invcntow))+l」 回の移動が必要 になるが、そ

の どちらにも無駄がない。

その3
この「合計ほぐし」問題に対して、ピーター・ロレンスはCOmpuScⅣcに別解を送って

きた。まず、少なくとも商品個数 (picccs)の最大値nま での整数をすべて含む連番補助

テーブルを作る。

CREATE TABLE Sequence (seq INTEGER PRIMARY KEY),
INSERT INTO Sequence VALUES (1), (2), ,・ ., (n);

Sequence:連番補助テーブル seq:連番

あるいは、次のコードを使ってもよい。

INSERT INTO Sequence(seq)
WITH D■ 9■ts (digit)
AS (VALUES (0),(1),(2),(3),(4),(5),(6),(7),(8),(9))
SELECl‐ Dl.d■ 9■ t + 10■ D2.d■ 9■ t + 100■ D3.d■ 9■t + ・・・
FROM D■ 9■ ts AS Dl, D■ 9■ ts AS D2, ,..

WHERE Dl.d■ 9■ t + 10★ D2.d■ 9■ t + 100★ D3.d■ 9■ t + ... > 0,

テーブルを作ったら、今度はSELECT文で合計 (picccs)を 1ずつにほぐす。

SELECl‐ 9oods, l AS tally, seq
FROM Inventory AS 11, Sequence AS Sl
ハヽIHERE 11.pieces >= ISl.Seq;

202

輔
圏
鶴
”場
饉
鱗

議
路躍一̈鶉
¨

パズル48 非グループ化
GROUP BYの 逆演算

結果は、例えば次のようになるはずだ。

good s ta11y seq

:CD― ROMI
iCD‐ ROMI
iCD― ROMI
:Printer[

lPrinteri

ロレンス氏は、このような連番テーブルの便利さを熟知している。彼はまた、ある日

付や時間の範囲に含まれるすべての時刻を保持している「時間テーブル」も頻繁に使う

という。時間テーブルを使うと、答えその3と 同じ考え方で、「誰が、何時から何時まで

オフィスにいたか」を記録したデータベースから9時ちょうど、10時ちょうど……に誰

がオフィスにいたかどうかを求められる。

この答えは、私のお気に入りだ。私の作業テーブル間で複雑なシャッフルを行う解法

よりも、単純な結合のほうが高速に違いない。なお、『DBMS』 誌に掲載された私のコラ

ムを読んでこの方法を使った解答を思いついたのは、ロレンス氏だけではなかった。

、11′ /

'気

び←そのこ与
0 メアリ。アッテンボローも同じ解答を思いついたが、彼女はさらに連番テーブルを作

るのに、「ロシア農民のアルゴリズム」の別バージョンと言える新しい方法を考え出し

た。その後、ヴィニシウス。メロが作業テーブルの作り方を改善してくれた。解答とな

るのプロシージャは次のようなものだ。

BEGIN
DECLARE maxnum INTEGER NOT NULL;
DECLARE Increment INTEGER NOT NULL;

INSERT INTO Sequence VALUES (1), (2);

一 Sequenceテ ーブルの行数はループのたびに倍になる
SET maxnum = (SELECT MAX(pieces)FROM Inventory);
SET ■ncrement = 2;

203

SOLパズル

204

SELECT

FROM
WHERE
AND

WHILE ■ncrement く maxnum
DO INSERT INTO Sequence
SELECl‐ seq + ュncrement FROM Sequence;
SET ■ncrement = ■ncrement + ■nc rement,

END WHILE;

もしScqucnccテーブルのデータを、毎度プロシージャでロードするのではなく永続的

に使いたいのなら、scqの最大値を超える個数の商品には手を付けないようにする必要

がある。これは次のクエリで実現できる。

SELECl‐ 9oods, l AS tally, seq
FROM Inventory AS 11, Sequence AS Sl
WHERE 11.pieces >= lSl.seq
AND Sl.seq BETWEEN l

AND (SELECT MAX(p■ eces)FROM Inventory);

もう1つの対処法は、scqの最大値を超える個数の商品が存在した場合に、クエリ全体

を拒否することである。

goods, l AS tally, seq

lnventory AS 11, Sequence AS Sl
ll.p■eces >= Sl.seq

(SELECT MAX(p■ eces)FROM Inventory)
く= (SELECT MAX(seq)FROM Sequence);

クエリ全体が実行される間、WHERE句 のANDに続くサブクエリ式がずっと定数で

あることは明白だから、オプテイマイザはこのサブクエリを一度だけ評価すればよい。

その際、Scqucnccテーブルにはインデックススキャンが行われるが、Invcntowテ ーブル

のPicccs列 にはおそらくインデックスはないから、テーブルスキャンが発生するだろう。

ともあれ、まずはスカラサブクエリで個数の最大値を見つけ、その後にFROM句でそ

の最大値をちょうどカバーできるだけの連番を作るわけだ。

パズル48 非グループ化
GRO∪ P BYの逆演算

‐ヽ‐′∩
Ｖ
レィ
ロ

、ヽ
・
κ
　

‘ｑ

その5
別解として、重複行を持つテーブルと結合するという方法がある。

饉
麟
騰鶴
饗驚
艤
篤爾
購
繭熙
爾艤
麟
躍
　

総襲
饉
麟
畿
一
　

爾爾
議繭
態麟
縮艤
畿
麟
鱗
幣機
繭麟
躍爾
驚購
昭驚
躍鸞
麟
瑯麟
辮鸞
解

CREATE TABLE Repet■ tions ――:主キーな し

(p■ eces INTEGER NOT NULL,
one INTEGER DEFAULT l NOT NULL
CHECK (one = 1));

INSERT INTO Repet■ t■ ons
VALUES (2,1),(2,1), (3,1), (3,1), (3,1)..;

INSERT

SELECT
FROM

INTO Work■ngTable
g00ds, one

Repet■tions AS Rl
CROSS JOIN
Inventory AS 11
11.p■eces = Rl.pieces

11.pieces > 1;

WHERE
AND

もし、商品の個数がRcpcthonsテ ーブルの上限より大きければ、十分な行がそろうま

で行を挿入してはしい。

205

206

■計算の複雑さについての補足

InvcntOwテ ーブルが全体でm行、商品の最大個数がn個だと仮定して、「ロシア農民

のアルゴリズム」を使う方法と「シーケンス (連番)結合」を使う方法とを比較してみよ

う。結果テーブルの行数をrとすると、

r = (SELECT SUM(pieces)FROM Inventory)

で求められる。このことから、rく =(m× n)であることが分かる。

ロシア農民のアルゴリズムによれば、この問題を解くのにO(log2(n))回 のループを必

要とする。この方法は、繰 り返すたびに問題を半分に切 り詰めていく。結合や検索コス

トは一切かからない。ただし、1つのテーブルからもう1つのテーブルヘ何度も何度も書

き込むコストがかかる。1行が書き込まれる回数はlog2(PiCCCS)であり、テーブル全体と

しては°(1°g2(r))回 になる。したがって、この方法の合計コストは0(log2(n)+10g2(r))

である。

他方、シーケンス結合では、Scqucnccテ ーブルを作るための時間に加え、結合にかか

る時間も考えねばならない。反復的なScqucnccテーブルの作成にかかるコストは0(n)、

InvcntOwテ ーブルとscqucnccテ ーブルの結合にかかるコストは、純粋なクロス結合だ

から0(m× n)である。適切なインデックスがあれば、Scqucnccテ ーブル内の不要な値

を参照せずに済むので、コストは0(r)ま で減らせるかもしれない。したがって、合計コ

ストは0(n+r)と なる。これはロシア農民のアルゴリズムのコストよりも高い。

そうは言うものの、おそらく現実には、ロシア農民のアルゴリズムがシーケンス結合

より速いということはないだろう。実際のところ、前者ではテーブル間での行の読み出

しと書き込みに高いコストがかかるからだ。

SQLパズル

バ |ズ |ル |

49

争
あなたは、複数の部品生産拠点から生産報告を受け取ったとしよう。その報告書には

日付、生産拠点コード、およびその日に拠点に送られた原材料から生産された部品数が

記録されている。これを管理するテーブルは次のとおりである。

CREATE TABLE Product■ on

(product■ on_center INTEGER NOT NULL,
wk_date DATE NOT NULL,
batch_nbr INTEGER NOT NULし

,

widget_cnt INTEGER NOT NULL,
PRIMARY KEY (production_center, wk_date, batch_nbr));

Production:生 産テーブル

batch nbr :バ ッチ番号

production_center :生 産:拠点

widget_cnt:部 品数

wk date:イ 乍業日

そこへ上司がやって来て、日付・拠点ごとに、すべてのバッチエ程 (batch)か ら生産

された部品数の平均が知りたいと言った。あなたは、「お安い御用です」と言ってそれを

算出した。次の日、またその上司がやって来て、今度はそのデータを3つの同じサイズ

のバッチグループに分割してはしいと言った。生産関係の業務では、こういう種類の統

計分析が重要な意味を持つのだ。

2つ 目の上司の依頼を例を挙げて説明すると、もし2月 24日 に42番の拠点で21個の

バッチが処理されたら、報告書には最初の7つのバッチから作られた部品の平均数、次

の7つのバッチから作られた平均数、そして最後の7つのバッチから作られた平均数を

それぞれ表示する、ということである。そこで、日付・拠点ごとに、バッチグループと

各グループの平均部品数を表示するようなクエリを書いてほしい。

1ヽ1′ ノ

'(9′

←その■
0 出発点となるクエリは、ごく単純なものだ。

SELECT product■ on_center, wk_date, COUNT(batch_nbr),
AVG(w■ dget_cnt)

FROM Product■ on

GROuP BY production_center, wk_date;

鬱
一一一織
一一鷲
¨̈̈́
″一一難
一押̈
）̈一畿
織
¨̈一̈一一一一鱗
一̈一一一一一一一一

207

SOLパズル

2番 目のクエリには、いくつかの仮定が必要になる。まず、バッチ番号は、毎日振り直

される1か らnま での番号とする。バッチの数が3で割り切れない場合には、3つのグル

ープでなるべく均等になるようにバッチを振り分ける。SQL-92の CASE式 を使うと、あ

るbatch nbrが 3つのグループのどれに含まれるかが分かる。これらをビューとしてまと

めると、次のように書ける
[訳注l]。

CREATE VIEW Prod3 (product■ on_center, wk_date, w■ dget_cnt, third)
AS SELECT production_center, 'wk_date, w■ dget_cnt,

CASE WHEN batch_nbr く= (SELECT MAX(batch_nbr) / 3
FROM Product■ on AS P2
WHERE Pl.product■on_center

= P21.production_ enter
AND Pl.wk_date = P2.wk_date)

THEN l

WHEN batch_nbr > (SELECT MAX(batch_nbr ' 2)/ 3
FROM Product■ on AS P2
AヽIHERE Pl,production_center

= P2.production_ enter
AND Pl.wk_date = P2.wk_date)

THEN 3
ELSE 2

END

FROM Product■ on AS Pl;

もし、使用 しているRDBMSで CASE式が使えないなら、同じことを次のように書 く

必要がある。

CREATE VIEW Prod3

(prOduCt■ On_center, wk_date, th■ rd, batch_nbr, widget_cnt)
AS SELECl‐ product■ on_center, wk_date, 1, batch_nbr, w■ dget_cnt
FROM Product■ on AS Pl
WHERE batch_nbr く= (SELECT MAX(batch_nbr) / 3

FROM Product■ on AS P2
WHERE Pl.production_center =
P2.production_ enter

AND Pl.wk_date = P2,wk_date)
UNION
SELECT prOduct■ on_center, wk_date, 2, batch_nbr, w■ dget_cnt

これ以降でビューを作成しているDDL文 はどちらもMAX(batch_nbr)を 使用しているが、これにはbatch_nbrが 連

番を成していることが前提となる。batch_nbrが 連番を成していない場合には、ROW_NUMBER関 数などを使つてコ
ード内で連番を生成する必要がある。

訳注 1

203

パズル49 部品の数
データを等分割する

FROM

WHERE
Product■ on AS Pl

batch_nbr > (SELECT MAX(batch_nbr) / 3
FROM Production AS P2
WHERE Pl.production_center =
P2.product■ on_ enter

AND Pl.wk_date = P2.wk_date)
batch_nbr く= (SELECT 2 ' MAX(batch_nbr)/ 3

FROM Product■ on AS P2

WHERE Pl.production_center =
P2.production_ enter

AND Pl,wk_date = P2.wk_date)

AND

UN10N
SELECT
FROM

WHERE

production_center, wk_date, 3, batch_nbr, widget_cnt
Production AS Pl
batch_nbr > (SELECT 2 ■ MAX(batch_nbr)/ 3

FR()M Production AS P2

WHERE Pl.production_center =
P2.product■ on_ enter

AND Pl.wk_date = P2.wk_date),

‐ヽ‐′⌒船
Ｙ
７
日

、ヽ
・
κ
　

‘

その 12

どちらの書き方をするにせよ、ビューを問い合わせるクエリは次のようになる。

SELECT product■ on_center, 'wk_date, th■ rd, COUNT(■),
AVG(w■dget_cnt)

FROM Prod3

GROUP BY product■on_center, wk_date, th■ rd;

209

パ |ズ |ル |

50

|

争
これから、たくさんの書籍から論文を抜粋して論文集を編さんするところである (抜

粋元の本は、国際標準図書番号 〔ISBN〕 で一意に識別される)。 編さんにあたり、特定の

3分野のうち2分野で論文を書いている著者を全員リストアップする必要が出てきた。

そこで、3つの分野をパラメータとして取り、該当する著者のリストを出力するクエリ

を考えてほしい。

CREATE
‐
「ABLE AnthologyContr■ butors

(isbn CHAR(10)NOT NULL,
Contr■ butor CHAR(20)NOT NULL,
cate9ory INTEGER NOT NULL,

PRIMARY KEY (■ sbn, contr■ butor));

AnthologyConmbutors:寄 稿者テーブル

contributor ::奇稿者

isbn i国際標準図書番号 (ISBN)

category:言 1簿 5その分野

｀
その■

0 最初に考えつくのは、次のようなGROUP BYを 使った単純なクエリだろう。

SELECl‐ ■Sbn, COntr■ butOr, :cat_1, :cat_2, :cat_3
FROM Anth010gyContr■ butors AS Al
WHERE Al,cate9ory IN (:cat_1, :cat_2, :cat_3)
GROUP BY ■sbn, contr■ butor
HAVING 00UNT(■)= 2;

だが、このクエリは2つの理由からうまく動かない。第1の理由は、テーブルの主キー

にGROUP BYを適用すると、1行 ごとにグループが作られてしまうこと。第2の理由
は、1つの分野に2本の論文を書いている著者がいるかもしれないことだ。その場合、

2つ の論文がともにカウントされてしまう。こういうときには、COUNT(DISTINCT

く式 >)を 使 う必要がある。この第 2の 問題については、COUNT(DISTINCT Al.catc

gow)=2と することで、簡単に解決できる。

、||

/′

λ
剣
）
鬱
可

″

ｔ
ヽ

| |

2■0

GROUP BYの効果とありがたみ

SELECT contr■ butor, :cat_1, icat_2, :cat_3
FROM AnthologyContributors AS Al

WHERE Al.category IN (:cat_1, :cat_2, :cat_3)
GROUP BY contributor
HAVING COUNT(DISTINCT Al.category)= 2;

さて、これで解答はできたが、GROUP BYを使わずに同じ結果を得る方法も考えら

れないだろうか? といっても、私は以下に紹介する解法を、どれ1つ として薦めるつも

りはない。この練習問題のポイントは、GROUP BY句のありがたみを実感してもらう

ことにある。

その2

0 問題の仕様からは、欲しい結果が3つのうち任意の2つ の分野なのか、それとも結果

に何らかの組み合わせの制限 (例えば、分野 1と分野2に書いているが分野3には書いて

いない、など)があるのかが分からない。もし後者であれば、解答は実に簡単に作れる。

‐ヽ‐′（Ｖ
７

、
ヽ
・
κ

‐―′ヽ
０
シ

ヽ

／
い
ヽ

、ヽ
・
κ

SELECT
FROM
Al.■ sbn, Al.contr■ butor, :cat_1, :Cat_2
AnthologyCont r■ butors AS Al,
AnthologyContributors AS A2
Al.contr■ butor=A2.contributor ―― 自己結合
Al,cate9ory = :cat_1 -- 1 :分 里予1

A2.cate9ory = :cat_2 -- 2 :分 野2

NOT EXISTS(SELECT丼 ―-3:し かし、分野 3に は幸丸筆していない
FROM AnthologyContributOrs AS A3
WHERE Al,cont r■ butor = A3.contr■butOr

AND A3.category = :cat_3);

WHERE
AND

AND

AND

0

その3
3つの中から任意の2つ を見つけるクエリは、少しトリッキーなコーディングになら

ざるを得ない。

2イイ

パズル50 3分の2

cat_3)

ちなみに 3分野すべてに寄稿 している著者 を見つけたいなら、NOT EXISTSを

EXISTSに変えるだけでよい。

1分野にだけ寄稿している著者を見つけるなら、次のようになる。

SELECT
FROM
WHERE
AND

SELECT

FROM
WHERE
AND

iSbn, COntr■ butOr, :Cat_1, icat_2, :cat_3
Anth010gyCont r■ butors AS Al
Al.cate9ory IN (:cat_1, lcat_2, :cat_3)
EXISTS

(SELECT ★

FROM AnthologyContr■ butors AS A2
WHERE A2.Category IN (:Cat_1, :cat_2, :cat_3)
AND Al.category く A2.category
ANE)Al,contributor = A2.contr■ butor
AND NOT EXISTS

(SELECT キ

FROM AnthologyContr■ butors AS A3
WHERE A3.category IN (:cat_1, :cat_2,
AND Al.contr■ butor = A3.contr■butor
AND Al.cate9ory く> A3.cate90ry
AND A2.Cate9ory く> A3.category));

isbn, oontributor, :cat_1

Anth010gy()ontributors AS Al
Al.categOry = :cat_1
NOT EXISTS

(SELECT *
FROM AnthologyContributors AS A2
WHERE A2.Cate9ory IN (:cat_2, :cat_3)
AND Al.■ sbn=A2.■ sbn
AND Al,cate9ory く> A2.categOry);

これはいわば、先に示 した「3分の 2」 を求めるクエリの “崩 しバージョン"である。

、11′ /

〕:,← その4
0 ここまでには、何も問題はない。だが、GROUP BYを 使わないという制限を思い出し

て、答えその3を ちょっと見てはしい。この答えは少し間違っている。著者を結合する

条件を忘れているのだ。

2■2

SoLパズル

‐ヽ‐′（）
７

、
ヽ
・
／

パズル50 3分の2
GROUP BYの効果とありがたみ

SELECT DISTINCT contributor, :cat_1, icat_2, :cat_3
FROM AnthologyContr■ butors AS Al
WHERE 2 = (SELECl‐ COUNT(DISTINCl‐ A2.cate90ry)

FROM AnthologyContributors AS A2
WHERE Al.contr■ butor = A2.contr■butor
AND A2.category IN (:cat_1, :cat_2, :cat_3));

その5
次のSQL文は、いろいろと紹介してきた中で最良の解だ。最初の2つの分野にマッチ

して、3つ目にマッチしないという条件をうまく処理している。

SELECl‐ DISTINCl‐ oontr■ butor, :cat_1, :cat_2
FROM AnthologyContr■ butors AS Al
WHERE (SELECT SUM(DISTINCT

CASE WHEN cate90ry = :cat_1
THEN l

WHEN cate9ory = :cat_2
THEN 2

WHEN category = :cat_3
THEN -3 ELSE NULL END)

FROM AnthologyContr■ butors AS A2
WHERE Al.cont r■ butor = A2.contributor
AND A2.cate9ory IN (icat_1, :cat_2, :cat_3))= 3;

もちろん、再び GROUP BYを 使 うことも可能だ。

0

SELECT
FROM

WHERE

GROUP
HAVING

contr■butor, :cat_1, :cat_2, :cat_3
AnthologyCont r■ butors AS Al

Al.cate9ory IN (:cat_1, :cat_2, :cat_3)
BY contr■butor

(SELECT SUM(DISTINCT
CASE WHEN cate90ry = :cat_1
THEN l

WHEN category = :cat_2
THEN 2
WHEN category = :cat_3
THEN -3 ELSE NULL END))= 3;

2■3

'く

)←その6
0 3分 野すべてに書いている著者を見つけてみよう。そのためのSQL文は、答えその 1

やその4で示したクエリの基本的パターンを使えば、直接的に表現できる。

SELECT DISTINCT COntr■ butor, :cat_1, :cat_2, :cat_3
FROM AnthologyContr■ butors AS Al
WHERE (SELECT COUNT(DISTINCT A2.cate90ry)

FROM AnthologyContributors AS A2
WHERE Al,oontr■butor = A2.oontributor
AND A2.category IN (:cat_1, :cat_2, :cat_3))= 3;

もちろん、GROUP BYを 使 うともっと直接 的に書 ける。

また、問題が「3分野のうち任意の1分野に寄稿している著者を探す」というものだっ

たなら、答えは次のようになる。

SELECT DISTINCT contr■ butor, :cat_1, :cat_2, icat_3
FROM AnthologyContr■ butors AS Al
WHERE category IN (:cat_1, icat_2, :cat_3);

2■4

SOLパズル

バ |ズ |ル |

5■

鮨
C.コ ンラッド・キャディは、COmpuScⅣc上のGuptaフ ォーラムに簡単なSQLの問題

を投稿した。彼は、予算と実支出を表す2つのテーブルを持っていた。どちらのテーブ

ルにも、あるプロジェクトでどのように費用が必要とされているかが記録されている。

また、予算テーブルと実支出テーブルとは1対多の関係にある。1つの予算に対する支

払いが複数回に分割されることがあるからだ。テーブル定義は次のとおり。

CREATE TABLE Budgeted

(task INTEGER NOT NULL PRIMARY KEY,
cate9ory INTEGER NO]‐ NULL,

est_cost DECIMAL(8,2)NOT NULL),

Budgeted:予算テーブル

est_cost:予 算客員

task:業務 category '. h7-1.)

Actual:実支出テーブル

act cost:実 支出額

voucher :領 1又書 task:業務

キヤデイは、カテゴリ別に予算と実支出を比較したいと考えた。これは、例で見たは

うが理解しやすいだろう。

Budgeted

task category est cost

9100

9100
9100
9200
9200

100.00
15,00

6.00
8.00
11.00

2■5

CREATE TABLE Actual

(vOucher INTEGER NOT NULL PRIMARY KEY,
task INTEGER NOT NULL REFERENCES Budgeted(task),
aCt_cost DECIMAL(8,2)NOT NULL);

一̈熙
”ヽ̈
一̈̈一一総
一ヽ一一̈^揺驚
一朗̈
豫
船
¨̈一̈“一一̈̈鱗
一̈ヽ一̈一一一熙
一

SQLパズル

Act uaI

voucher task act cost

1

2

3

4

5

6

7

10.00
20.00

15.00

32.00
8.00

3.00
4.00

この2つのテーブルから彼が求めたかった結果は、次のとおりだ。

categony estimated spent

121.00

19,00

77.00

15.00

cstimatcd列 の 121.00ド ルは、カテゴリ9100に含まれる3つの業務に関する予算額

(cstcost)の合計額である。sPcnt列 の77.00ドルは、それら3つの業務に関連する4つの

支出 (act_cost)の 合計額だ (3つの支出が業務 〔task〕 1に、1つが業務2に紐付いている。

業務 3に支出はない)。

彼は、次のようなクエリを試した。

SELECT category, SUM(est_cost)AS est■ mated,
SUM(act_cost)AS spent

FROM (Budgeted LEFT OUTER JOIN Actual
ON 8udgeted.task = Actual,task)

GROUP BY categOry;

だが、思うような結果は得られなかった。

categony estimated spent

9100
9200

321.00
30.00

77.00
15.00

問題は、100.00ド ルが結合の中で3回 カウントされ、121.00ド ルではなく321.00ド ル

となることと、11.00ドルが2回 カウントされ、19.00ドルではなく30.00ドルとなること

2■6

9100

9200

‐ヽ‐′∩
Ｖ
子
目

、ヽ
２

　

．ｑ

パズル51 予算と実支出の比較
集約と外部結合の合わせ技

だ。前出の予算および実支出テーブルを使って、彼が本当に求めたかった結果を1つの

SQL文で簡単に得る方法はあるだろうか ?

その■

ボブ・バドゥアールは「SQL-89で もビューを作ればできるぞ」と報告してきた。まず、

CREA・TE VIEW cat_costs (category, est_cost, act_cost)
AS SELECl‐ categOry, est_cost, 0.00
FROM Budgeted
UNION
SELECT category, o.oo, act_cOst
FROM Budgeted, Actual
WHERE Budgeted.task = Actual.task;

というビューを作り、それから、

SELECT cate9ory, SuM(est_cost), SUM(act_cost)
FROM cat costs
GROUP BY category;

というクエリを実行すればOKだ。

また、sQL-92では、各業務の支出合計額と予算テーブルにあるカテゴリを、次のよう

なクエリで結び付けることができる。

SELECT Bl.CategOry, SUM(est_cost), SUM(spent)
FROM Budgeted AS Bl

LEFl‐ OUTER JOIN

(SELECl‐ taSk, SUM(act_oost)AS spent
FROM Actual
GROUP BY task)AS Al
ON Al.task = Bl.task

GROUP BY Bl.cate90ry,

覇
一ヽ一̈一̈一̈一一鸞

潔
一^一綴̈
一̈籐

餞
一̈̈

左外部結合は、支出がゼロだった場合に対処している。

2■7

SOLパズル

、ヽ
・
κ

／
′
ン
ン
ヽ

′
ヽ

リ

イ
多

′

‐ヽ―一％
ヽ
脅
その12

0 次に紹介するのは、コロンビアのフランシスコ・モレノから届いた解答だ。GROUP

BY句 とスカラサブクエリを併用している。サブクエリ内のMIN関数とMAX関数の値

に注目してはしぃ
[訳注1]。

SELECT cate9ory, SUMI(Bl.est_cost)AS est■ mated,

(SELECT SUM(Tl.act_COSt)
FROM Actual AS Tl
WHERE Tl.task BETWEEN MIN(Bl.task)

AND MAX(Bl.task))AS spent
FROM Budgeted AS Bl
GROuP BY cate90ry;

訳注 1:サ ブクエリ内のWHERE句で MAX/MIN関 数を使用していることに驚くかもしれないが、これは適法な構文である。

なぜなら、外側の Blテーブルを集約しているため、SELECT句で直接参照できる Blテ ーブルの列は集約キーである

categoryだ けであり、残りの列は集約関数の形でしか参照できなくなるからだ。

2■ 8

バ |ズ |ル |

52

鋏
ダレン・レイスはGupta SQLBascを 使って、集約した結果をさらに集約できないもの

かと試していた。しかし、どうしても一時テーブルかビューを使わないことにはできな

かった。例えば、

Pe rson n eI

emp name dept ld

'Daren'
'Joe'
'Lisa'
'HeIen'
'Fonda'

'Acct '

'Acct '
,DP'
.DP'
.DP'

Personnel:社 員テーブル

'Acctl:経理部

emp_name:社員名
'DPI:情 報システム部

dept_id :書 5:署 lD

というサンプルデータがあった場合、まずこれをdcptidで集約する。

SELECl‐ dept_■ d, COUNT(☆)
FROM Personnel
GROUP BY dept_■ d;

すると、次のような結果が得られる。

'Acct '

'DP'
2

3

だが、彼が求めたかったのは部署の規模 (明確に言えば人数)の平均だった。彼がビュ

ーを使って考えたクエリは以下のとおりだ。

まず、ビューを作る。

2■ 9

dept_■d COUNT(■)

SOLパズル

CREATE VIEW DeptV■ew (dept_id, tally)
AS SELECT dept_■d, COUNT(★)
FR()MI Personnel

GROUP BY dept_■ d;

そして次のSQLを実行する。結果は、(2+3)■ 2=2.5人だ。

SELECT AVG(tally)FROM DeptV■ ew;

レイス氏は、COmpuScrvc上 のCcntura(Guptaの 旧名)フ ォーラムで、「これと同じこ

とを一時テーブル (ま たはビュー)を使わずにできないか」と質問したのである。すると、

2つの返答があった。1つは、

SELECT AVG(DISTINCT dept_■ d)
FROM Personnel;

というもの。もう1つは、

SELECT COUNT(十)/ COUNT(DISTINCT dept_■d)
FROM Personnel;

というものだった。

それでは、今回の問題だ。それぞれの返答について、どこがまずいのかを指摘してほ

しい。

'S'←

その■
0 最初の返答は全 くお話にならない。部署コードは数字ではなくアルファベットだ。部

署の人数とは何の関係もない。

2番 目の返答はずっとマシだ。実際、先ほどのサンプルデータに対しては正しい結果

を返してくれる。COUNT(・)=5、 COUNT(DISTINCT dcpt_id)=2な ので、答えは

2.5と なる。まさに欲しかった結果だ。

だが、次のようなケースで問題が起きる。新たに、Larw、 Moc、 Curlyと いう3人を社

員として雇ったとしよう。彼らはまだ、どの部署にも配属されていない。すると、

PcrsOnnclテーブルはこんな風になる。

220

パズル52 部署の平均人数
2段階の集約

Personnel

emp_name dept_id

'Daren'
'Joe'
' Lisa'
'HeIen'
'Fonda'
'Lanry'
'Moe '

'Cur1y'

IAcctl

lAcctl

lDPI

IDPI

IDPI

NULL
NULL

NULL

このテーブルに対 しては、COUNT(■)=8だが、COUNT(DISTINCT dcPtid)=2

となってしまう。これは、dcpt_idを数える前にCOUNT関 数がNULLを 除外するから

だ。そのため、今度は答えが4に なる。つまり、こういう場合には新入 3人 をどう扱 うか

を、私たちの側で決める必要がある。選択肢は次のとお りだ。

1.1人 につき、1つの新しい部署を割り当てる (部署の合計数は5)

2.3人 ともNULLで表示される新部署の配属とする (部署の合計数は3)

3.3人 とも情報システム (lDPl)部の所属とする

4.3人 とも経理 (IAccti)部 の所属とする

5.1人が経理部、2人が情報システム部の所属とする

6.1人が経理部、2人が新部署の所属とする

7.1人が情報システム部、2人が経理部の所属とする

8.1人が情報システム部、2人が新部署の所属とする

9.1人が新部署、2人が経理部の所属とする

10.1人が新部署、2人が情報システム部の所属とする

ll.1人が新部署、2人がさらに別の新部署の所属とする

12.1人が経理部、1人が情報システム部、1人が新部署の所属とする

22■

SQLパズル

13.1人が経理部、1人が新部署、1人がさらに別の新部署の所属とする

14.1人が情報システム部、1人が新部署、1人がさらに別の新部署の所属とする

そうすると、部署の平均規模は、ある場合には8二 2=4人 となり、別の場合には8ニ

5=l.6人 となる。もし、レイス氏が自身の考えた方法にこだわるなら、次のようなビュ

ーが得られるだろう。

dept_■d COUNT(★)

IAcctl

lDPI

NULL

NULLは、ビューの中ではそれ自身が1つのグループを成しているので、最終結果は

(2+3+3)-3=2.7人 となる。

222

バ |ズ |ル |

=2し′ し′

蟄
ロバート・ブラウンは、2004年 にある問題を送ってきた。次のようなテーブルがある

としよう。

CREATE TABLE Foobar

(lvl INTEGER NOT NULL PRIMARY KEY,
color VARCHAR(10),
length INTEGER,
w■dth INTEGER,
hgt INTEGER);

lvl:レ /ヾル color : 6 length:長さ width:幅 hgt:高 さ

INSERT INTO Foobar
VALUES (1, lREDl, 8, 10, 12),

(2, NULL, NULL, NULL, 20),

(3, NULL, 9, 82, 25),
(4, IBLUEl, NULL, 67, NULL),
(5, :GRAYl, NULL, NULL, NULL)i

このテーブルに対し、lvl列 の「底から頂点」(5が底、1が頂点)へ向かう順序に従い、

各列を折りたたんだ結果を返すクエリを書きたい。このサンプルデータでは、次の結果

が返されるクエリが答えとなる。

(lGRAYl, 9, 67, 25)

つまり、各列を底辺から上へ見ていき、最初に見つかった非NULL値をとる、という
ルールである。すると、c010r列 についてはすぐにIGRAYIが見つかる。lcngth列 では、レ

ベル3で 9が見つかる。同様に、width列 は67(レ ベル4)、 hgt列 は25(レ ベル3)と なる。

別の言い方をすれば、「より頂点に近いレベルでセットされた値が、より底に近いレベル

のNULLでない値によって上書きされる」ということだ。

223

SQLパズル

/′④←
そ

0

224

その■

ジョン・ギルソンは、2つの解答を思いついた。

【方法1】 (スカラサブクエリを使う)

SELECT

FROM

(SELECT

(SELECT
(SELECT
(SELECT
(SELECT

oolor FROM Foobar VVHERE lvl = M.lc)AS color,
length FROM Foobar VVHERE lvl = M.11)AS length,
w■dth FROM Foobar WHERE lvl = M.lw)AS w■ dth,
hgt FROM Foobar WHERE lvl = M.lh)AS hgt
MAX(CASE WHEN color IS NOT NULL

THEN lvl END)AS lc,
MAX(CASE WHEN length IS NOT NULL

THEN lvl END)AS ll,
MAX(CASE WHEN w■ dth IS NOT NULL

THEN lvl END)AS lw,
MAX(CASE WHEN hgt IS NOT NULL

THEN lvl END)AS lh
Foobar)AS M;FROM

【方法2】

SELECT MIN(CASE WHEN Foobar.lvl = M.lc
THEN Foobar.color END)AS color,

MIN(CASE WHEN Foobar.lvl = M.11
THEN Foobar.length END)AS length,

MIN(CASE WHEN Foobar.lvl = M.lw
THEN Foobar.w■ dth END)AS w■dth,

MIN(CASE WHEN Foobar.■ vl = M.lh
THEN Foobar.hgt END)AS hgt

FROM (SELECT MAX(CASE WHEN color IS NOT NULL
THEN lvl END)AS lc,

MAX(CASE WHEN length IS NOT NULL
THEN lvl END)AS ll,

MAX(CASE WHEN width IS NOT NULL
THEN lvl END)AS lw,

MAX(CASE WHEN hgt IS NOT NULL
THEN lvl END)AS lh

FROM Foobar)AS M
INNER JOIN
Foobar
ON Foobar.lvl IN (M.lc, M.ll, M.lw, M.lh);

パズル53 テープルを列ことに折りたたむ
自己結合とCASE式 (その 1)

'｀

9′

←その2
7

∈肇ヨ)次 に見せるSQL文は、私が考えたものだ。COALESCE関 数は、引数として与えられ
た列を与えられた順番で見ていくので、底 (lvl=5)か ら頂上 (lvl=1)へ向かってスキ

ャンし、最初のNULLでない値を取り出すロジックを簡単に実装できる。

SELECT 00ALESCE(F5,color, F4.color, F3.color, F2.color, Fl.color)
AS color,

COALESCE(F5.length, F4.length, F3.length, F2.length,
Fl.length)AS length,

COALESCE(F5,w■ dth, F4.w■dth, F3.w■dth, F2.w■dth, Fl.w■dth)

AS w■ dth,

COALESCE(F5.hgt, F4.hgt, F3.hgt, F2.hgt, Fl.hgt)
AS hgt

Foobar AS Fl, Foobar AS F2, Foobar AS F3, Foobar AS F4,
Foobar AS F5

Fl.lvl = 1

F2.lvl = 2
F3.lvl = 3
F4.lvl = 4
F5.lvl = 5;

FROM

WHERE

AND
AND
AND
AND

225

バ |ズ |ル |

54

|

/機,

霰
ロニー・ワイスは、彼がDB2の アプリケーションで抱えていた問題を送ってきた。

ある店が、約2万人の顧客を抱えているとしよう。月日が経つにつれ、従業員たちは

タイプミスや入力間違い、同じ家族の人を異なる顧客として登録する (その店では顧客

を家族単位で登録していた)、 といったデータの不備があることに気づき始めた。そこ

で、彼らは「隠れた重複行」のレポートを作り、顧客テーブルのデータをメンテナンスす

ることにした。

隠れた重複行とは、同じ姓を持ち、住所関連の5列のうち2列 のデータが一致する複

数の行のことだ。住所関連の5列 とは、「名前 (lrstnamc)」「番地 (strcct_addrcss)」「市町

村名 (ciけ_namc)」「州コード(statc_codc)」「電話番号 (Phonc_nbr)」 である。

彼らが最初に考えたSQL文 は、こんな感じである。

CREATE VIEW Dups (custnbr, last_name, f■ rst_name,
St reet_address, city_name, state_code, phone_nbr, m)
AS

SELECl・ CO.custnbr, CO. last_name, CO.f■ rst_name,

Co.street_address, Oo.city_name,
CO.state_ ode, CO.phone_ br,
(CASE WHEN CO.f■ rst_name = Cl.first_name
THEN l ELSE O END)

+ (CASE WHEN CO,street_address = 01.st reet_address

THEN l ELSE O END)
+ (CASE WHEN 00.c■ ty_name = Cl.c■ ty_name

THEN l

ELSE O END)
+ (CASE WHEN CO.state_code = Cl,state_code

THEN l

ELSE O END)
+ (CASE WHEN CO,phone_nbr = Cl.phone_nbr

THEN l

ELSE O END)AS m
FROM Customers AS Cl, Customers AS C0
WHERE CO.custnbr く> Cl.custnbr

AND CO.last_name = Cl.last_name;

SELECT DISTINCT 十

FROM Dups
WHERE m >= 2

226

ORDER BY last_name;

上上訓_上

パズル54 隠れた重複行
自己結合とCASE式 (その 2)

顧客は2度以上現れる可能性があるので、DISTINCTが 必要だ。例えば、Alが A3、

A5、 A6と 一致したら、Dupsビ ユーには3行のAlが現れる。

この解の欠点は、パフォーマンスが良くないことだ。何とかして改善してほしい。

その■

独 CODATA社 のヨハネス・ベッヒャーは、次のような解を考えた。

SELECT C0. custnbr
FRoM Customers AS C0

WHERE EXISTS (

SELECT *

FROM Customers AS C1

WHERE C0.1ast_name = C1.last_name
AND C0. custnbn <> C1 . custnbr
AND (CASE WHEN C0.finst_name = Cl.first_name

THENlELSEOEND)
+ (CASE WHEN C0.stneet_address = Cl.stneet_address

THENlELSEOEND)
+ (CASE WHEN C0.cj-ty_name = Cl.city_name

THENlELSEOEND)
+ (CASE WHEN C0.state_code = Cl.state_code

THENlELSEOEND)
+ (CASE WHEN C@.phone_nbr = Cl.phone_nbn

THEN 1 ELSE 0 END) >= 21 '

「co.custnbrく >cl.custnbr」 という条件は、どの行も自分自身を重複行と見なすこと

を防ぐためのものだ。また、ベッヒヤーはCASE式を、本来計算列を書く場所である

SELECT句 からWHERE句 に移している。こうすることで、オプテイマイザが式を評価

するときに“短絡評価"を利用できるかもしれない。短絡評価では、述語の真偽が判明し

たら即座に計算が止まり、答えが返される。SELECT句 の計算列では“完全評価"を行

う必要があるため、ビューの中で実体化されるだろう。

この解をもう一歩発展させてみよう。もし、オプティマイザがCASE式を評価する順

序 (左から右か/右から左か)と 、最も一致しやすい列が分かれば、CASE式の並び順を

調整することでパフォーマンスを高められる。例えば、ciw_namcと statc_cOdcに ついて

は一般的にほとんどスペルミスはないだろうから、一番最後に持ってきたほうがよい。

それらに比べて、人名と番地は誤記が多い。

だが、この種の問題に対する最適解は、結局名寄せツールを使うことだろう。

227

‐‐′ａ
Ｖ
子
瓢

ヽ

／
し
、
　

　

口
Ｌ

、ヽ
２

　

１

バ |ズ |ル |

馬 呵
ゾ ジ

紆
突然だが、あなたはたった今、競馬のブックメーカ_[訳

注1]に DBマネージャーとして

雇われたと想像してはしい。胴元は、統計を取るためにレースの記録を残している。記

録先であるテーブルの基本的な形は次のとおりだ。

CREATE
‐
「ABLE RacingResults

(track_■ d CHAR(3)NOT NULL,
race_date DATE NOT NULL,
raCe_nbr INTEGER NOT NULL,
win_name CHAR(30)NOT NULL,
place_name CHAR(30)NOT NULL,
show_name CHAR(30)NOT NULL,
PRIMARY KEY (track_■ d, race_date, race_nbr));

RacingResults:レース結果テーブル

race date:レ ース日

win_name:1着 の馬名
show_name:3着の馬名

track id:ト ラックID

race_nbr:レ ース番号
place_name:2着 の馬名

廿ack_id列 はレースが開催されたトラックの名前、racc_dataは レースの開催日、racc_

nbrは各レースに振られる番号である。また、win_namc、 Placc_namc、 shOw_namcは、

それぞれl着、2着、3着になった馬の名前である。

ある日、雇い主の胴元がやってきて、「各馬がこれまで何回入賞したかを知りたい」と

言ってきた。この要求をかなえるためには、どんなSQL文を書けばよいだろうか ?

、||′ /
、、
｀
/'すヽ
′
´パツ
√その■
0 ここで言う「入賞」とは、3着以内に入ることである。具体的に何着だったかは間わな

い。最初のステップは、集約情報を持った次のようなビューを作ることである。

訳注 1:ブ ックメーカーとは、主に欧米での賭けの胴元のこと。禁止されている国も少なくないが、イギリスなどでは合法的に

228

認 め られている。

LLL上 _L_

パズル55 競走馬の入賞回数
外部結合で行と列を変換

CREATE VIEW InMoney (horse, tally, pos■ t■ on)

AS SELECT w■ n_name, COUNT(■), Iw■ n_name:

FROM Rac■ ngResults
GROuP BY w■ n name
UN10N ALL
SELECT place_name, COUNT(■), lplace_namei
FR()M RacingResults

GROuP BY place_name
UNION ALL
SELEC]‐ show_name, 00UNT(■), Ishow_namel
FR()M RacingResults

GROUP BY show_name;

次に、このビューから最終的な合計を取得する。

SELECl‐ horse, SUM(tally)
FROM InMoney
GROUP BY horse;

SELECT旬 のリストに定数を置いているのには、2つ の理由がある。第1の理由は、

UNION ALLを使っても重複行が発生しないようにするためである。第2の理由は、胴

元から各馬が何着に何回入ったのか詳しく知りたいと言われたときにも、次のような簡

単な変更で済むからである。

SELECT horse, pos■ t■on, SUM(tally)
FROM InMoney
GROUP BY′ horse, pos■ t■ on;

その2

もし、すべての馬名 (horsc)を保持するHorscNamcsテ ーブル
[訳注2]が
あるなら、次の

ようにも書ける。

＼11′ /

Q←

ヽ
・
／

0

訳注 2:HorseNames(馬 名)テーブルの定義は、例えば次のようになるだろう。

CREATE TABLE HorseNames (horse VARCHAR(32)NOT NULL PRIMARY KEY);

229

S(2!Lパズル

、11′ /

〕:9←

SELECT Hl.horse, COUNT(■
)

FROM HorseNames AS Hl, RacingResults AS Rl
WHERE Hl.horse IN (Rl.w■ n_name, Rl.place_name, Rl.show_name)
GROUP BY Hl.horse;

外部結合を使えば、IRacingRcsultsテ ーブルに記録のない馬も結果に含めることができ

る [訳
注3]。 ここからは、重要な設計上の原理が見て取れる。すなわち、「あるものが実体な

のか属性なのかを決めることは難しい」ということである。馬は実体だから、そのデー

タはテーブルでは行として保持されるべきだ。しかし、馬の名前は、Racingksultsテー

ブルの3つの列で値としても使われている。

その3
HorscNamcsテーブルを使ったもう1つの解法は、入賞回数のトータルをスカラサブ

クエリで求めるというものだ。

0

SELECT Hl.horse,

(SELECT COUNT(★)
FROM Rac■ ngResults AS Rl
WHERE Rl,win_name = Hl.horse)

+ (SELECT COUNT(★
)

FROM Rac■ ngResults AS Rl

WHERE Rl.place_name = Hl,horse)
+ (SELECT COUNT(■

)

FROM Rac■ ngResults AS Rl

WHERE Rl.show_name = Hl.horse)
FROM HorseNames AS Hl;

これも正解だが、実行コストは高くなるだろう。

訳注3:ただしその場合、COUNT(☆)を使うことはできないことに注意しよう。COUNT(り は行数を数えるため、一度も入賞
経験のない馬の入賞回数を「1」 にしてしまう。正しくはCOUNT(Rl.track_ld)などに変える必要がある。

230

バ |ズ |ル |

― ′

り0

魏

一 room nbrに NULLを 許可するため、現段階では主キーを定義 していない
CREATE TABLE Hotel

(f100r_nbr INTEGER NOT NULL,
room_nbr INTEGER,
FOREIGN KEY floor_nbr REFERENCES Bldg(floor_nbr)),

Hotel:ホテルテーブル floor nbr:フ ロア (階)番号 room nbri部屋番号

これから割 り当てる主キーの一部とは、部屋番号 (room_nbr)である。部屋番号は、

フロア番号をxと すると、x01か ら始まる連番になっている。また、このホテルはそれほ

ど大きくないので、部屋番号は3桁あれば十分であることが分かっている。

目下作業中のHOtclテ ーブルのデータは次のとおりだ。

floon_nbr noom_nbr

NULL

NULL

NULL
NULL
NULL
NULL

WATCOM(お よび当時のRDBMS製品)は、実装依存のNUMBER(・)関数を持って
いた。この古い関数は1か ら始まり、行が呼び出されるたびにカウントアップされた連

番を返してくれる。一方、現在の標準SQLで も、ROW_NUMBER()OVER(く ウィンド
ウ式>)関数によって、やはり連番を簡単に得ることができる。

では、これらの連番関数 (も しくはそれと類似の方法)を利用 して、自動的にr00m_

nbr列 を増加させる簡単な方法はあるだろうか ? 当時ハイナー氏は、フロアが変わるた

23■

ロン・ハイナーは、CompuSc″cに以下のような質問を投稿してきた。

彼はデータ変換のプロジェクトに携わっていて、あるホテルの部屋番号を管理する

HOtclテ ーブルの主キーの一部の値を自動的に割り当てなければならなかった。

HOtclテーブルの定義は次のとおりだ。フロア番号は主キーの一部であり、ビル (Bldg)

テーブルを参照する外部キー制約が定義されている。

SOLパズル

びに連番の下2ケ タを1に戻すため、「GROUP BY■ oor_nbr」 を使おうと考えていた。

、||′ /

'9′

←
そのイ

O WATCOMは 、次のような方法をサポートしている。まず、room_nbr列 を埋めるため

に、データベース全体を通して更新するパスを作る。ただし、この“トリック"は、Hotcl

テーブルがソート順に更新されるという保証がなければ使えない。だが偶然にも、

WATCOMで はUPDATE文中のORDER BY句 でそれを保証できる。

UPDATE Hotel
SEl・ room_nbr = (floor_nbr ■ 100)+ NUMBER(■)

ORDER BY floor_nbr;

このUPDATE文を実行すると、次のような結果になる。

floon_nbr noom_nbr

101

102

103

204
205

306

次に、下の2つのUPDATE文を実行する。

UPDATE Hotel
SET room_nbr = (r00m_nbr - 3)
WHERE floor_nbr = 2,

UPDATE Hotel
SET room_nbr = (room_nbr - 5)
WHERE floor_nbr = 3;

これによって、正しい結果が得られる。

232

floon_nbr room_nbn

パズル56 ホテルの部屋番号
連番を入れていくUPDATE文

100)+ NUMBER(力)WHERE floor_nbr = 1;

100)+ NUMBER(★)WHERE floor_nbr = 2;

100)+ NUMBER(*)WHERE floor_nbr = 3;

\'1,

101

102

103

201

202

301

(1★

(2★

(3★

ンイ′

ゝ
円
）鬱
π

″

し
、

この方法の惜しいところは、このホテルの部屋番号について詳しく知っていなければ

使えないことだ (何階建てなのか、ある階の部屋数はいくつなのか……)。 さて、ORDER
BY句 を使わずにもっとうまくやる方法はないだろうか ?

｀
その2

0 私なら、「SQL文 を書くためにSQLを使う」という方法を使いたい。この見事なトリッ

クは、まだあまり知られていない。次に示すクエリの、シングルクォーテーション(1)で

囲まれた箇所をよく見てはしい。数値を文字列に変換することも忘れないように。

SELECT DISTINCT
IUPDATE Hotel

SET room_nbr = (1

1 1 CAST(floor_nbr AS CHAR(1))
| | | ' 100)+ NUMBER(■)WHERE floor_nbr =
| I CAST(floo,_nbr AS CHAR(1)) | | |;|

FROM Hotel;

このSQL文は、次のようなl列の結果テーブルを書き出す。

UPDATE
SET
UPDATE

SET
UPDATE
SET

Hotel
noom_nbr =

HoteI
room_nbr =

H0te1
roOm_nbr =

あとはこの列をテキストとしてコピーして、あなたが使っている対話式のSQLツール

やバッチファイルの中に貼 り付けて実行すればよい。この方法は、テーブル内の行の順

233

SOLパズル

序に依存しない。

あるいは、これをストアドプロシージャ本体の中に入れて、■00嘔nbrを パラメータと

して渡すようにすることもできる。いったんプロシージャを書いてコンパイルしてしま

えば、後は何もしなくて済む。

、11′ /

'S'′

←その3
0 古いSQLで は難解だったこの問題も、SQL-99な らあっさり解ける。

UPDATE Hotel
SET room nbr
= (f100r_nbr ' 100)
+ ROW_NUMBER()OVER (PARTITION BY floor_nbr);

234

.1

バ |ズ |ル |

57

軋
今回取 り上げるのは、ニュースグループで頻繁に質問される古典的なSQLプログラミ

ングの問題である。できる限り簡単に言うと、「テーブルの1列 に格納された一意な数

が、歯抜けのない完全な連番を成しているか、それともギャップ (1つ以上連続する欠

番)を含むかどうかを調べる」というものだ。サンプルデータには次のものを使おう。

CREATE TABLE Numbers (seq INTEGER NOT NULL PRIMARY KEY);

Numbers:自 然数テーブル seq:連番

INSERT INTO Numbers
VALUES (2), (3), (5), (7), (8), (14), (20);

、||′ /

Q←
∈罰冒D lからnまで抜けのない連番を成しているかどうかを調べるのは、とても簡単だ。次の

クエリによって、どこにギャップがあるかは分からないが、とにかくギャップがあるか

否かは判明する。

SELECT CASE WHEN COUNT(■)= MAX(seq)
THEN ISequencei
ELSE INot Sequencei END

FROM Numbers;

次のクエリも処理は明白だが、集合が1(ま たは0)か ら始まるかどうかはチェックし

ていない。ただ、当該の範囲の中にギャップが存在するか調べるだけである。

SELECT CASE WHEN COUNT(■)+ MIN(seq) ‐ 1 = MAX(seq)
THEN ISequencel
ELSE INot Sequencel END

FROM Numbersi

、
ヽ
・
Ｚ その■

235

SQLバズル

'し
その2

イ

0 次のクエリは、ギャップの開始と終了の値を見つけ出す。ただし、以降のクエリでは

Numbcrsテ ーブルにゼロを「番兵」として追加しておく必要がある。

SELECT Nl.seq + 1 メヽS gap_start, N2.seq - l AS gap_end
FROM Numbers AS Nl, Numbers AS N2
WHERE Nl.seq +1 く N2.seq
AND (SELECl‐ SUM(seq)
FROM Numbers AS Num3
WHERE Num3.seq BETWEEN Nl,seq AND N2.seq)
= (Nl.seq + N2.seq);

この問題では、最初の値がネックになることが多い。例えば、次のクエリは「ギャップ

の開始の値」と「scq列の最大値より1つ大きい値」しか返さない。そして、Numbcrsの 中

に0がない場合、このクエリでは1は出てこない。

一 ギャップの最初の値のみを見つける

SELECT Nl.seq + 1

FROM Numbers AS Nl
LEFT OUTER JOIN
Numbers AS N2

0N Nl,seq = N2,seq _ 1
WHERE N2.seq IS NULL;

うまくいかない

最初のギャップを見つけるには、もっと複雑だが精密な方法を使う必要がある。

一最初のギャップを見つける

SELECT CASE WHEN MAX(seq)=COUNT(■)

THEN MAX(seq)+ 1
WHEN MIN(seq)> 1
THEN l

WHEN MAX(seq)く > COUNT(■)
THEN (SELECl‐ MIN(seq)+ 1

FROM Numbers

WHERE(seq + 1)
NOT IN (SELECT seq FROM Numbers))

ELSE NULL END
FROM Numbers;

236

パズル57 欠番探しバージョン1
集合指向言語で数列を扱う (その 1)

CASE式の最初の分岐は、「もしNumbcrsにギャップがなければ、scq列の最大値 +l

の値を結果とする」という意味だ。2番目の分岐は、1がギャップの場合には1を出力す

る。そして3番 目の分岐は、ギャップの最小値を求める。

、‖′/

'O′

←その3
0 お決まりの連番補助テーブルとSQL-99の集合演算子を使えば、次のように書ける。

麟
饉
鸞
麟
圏
圃
議
饉
爾

SELECT seq FROM Sequence
WHERE seq く= (SELECT MAX(seq)FROM Numbers)
EXCEPT ALL

SELECT seq FROM Numbers;

どちらのテーブルにも重複行はないので、EXCEPT ALLを 使ったことに注目してほ

しい。もっとも、SQLの新機能に必ずしもオプテイマイザが対応してくれるとは限らな

いが。

237

バ |ズ |ル |

58

麒
es―

さて今度は、連番中のギャップ (1つ以上連続する欠番)を見つけるという古典的問題

の第2バージョンを考えてみよう。あなたは解答をいくつ思いつくことができるだろう

か 'ま た、SQL-92や SQL-99の機能を利用すると、どんなうまい方法が見
つかるだろ

っか ?

CREATE
‐
「ABLE Tickets

(buyer_name CHAR(5)NOT・ NULL,

t■cket nbr INTECER DEFAULT l NO]‐ NULL

CHECK (t■cket_nbr > 0),
PRIMARY KEY (buyer_name, t■ cket_nbr));

Tickets:チ ケットテーブル buyer-name i tt'(+-Z tlcket nbr:チ ケット番号

INSERT INTO T■ ckets
VALUES ２

４

１

１

１

(lal,3),

(lcl,2),
(:dl,6),

(lal,4),

(lct,3),(
(ldl,7),(

(icl,5),

、ヽ
・
κ

′／
´
´
ヽ

′
ヽ

り

ｒ
多

，

‐ヽ―一ク
ヽ
．脅
その■

0 カナダ。トロント在住の トム・モロ_[訳
注1]は
、有名なSQLの書き手である。彼は、

UNION ALLを 使わずに解 く方法を考え出した。持っているチケットの番号にギャッ

プがあるバイヤーを調べるものだが、「ギャップを埋める」ことまではしてくれない。例

えば、バイヤーD氏は (1,6,7,9)のチケットを持っているので、(2,3,4,5,8)が ギャ

ップとして返される。

しかし、トムの方法ではバイヤーA氏の持っているチケットにはギャップがないと見

なされて、A氏は該当するバイヤーに含まれない。

訳注 1:SQL Serverを主な専門とするシステムコンサルタント。

238

ШL二」

パズル58 欠番探しバージョン2
集合指向言語で数列を扱う (その 2)

SELECT buyer_name
FROM T■ ckets

GROuP BY buyer_name
HAVING NOT (MAX(t■cket_nbr) ― MIN(t■ cket_nbr)く = 00UNT(■));

もし、チケット番号が比較的小さい数に収まるなら、1からnまでの連番を持つテーブ

ル (Scqucncc)を 使ってもよい。

■
■
ｔ
卜
●
■

●̈
〓
一一一中
ヽ
ヽ
●

、ヽ
・
κ

‐‐プ（欝
ツ

ヽ

／
卜

ヽ

この場合のもう1つの“トリック"は、連番中に1が欠けているケースのために、境界

値としてoを Tickctsテーブルヘ追加しておくことだ。

その2

0 リバプール・ファンも、連番 (Scqucncc)テ ーブルを利用するクエリを提案してきた。

ただ、彼のクエリにはScqucncc.scq列 の上限値についての条件が欠けていた。次に示す

のはそれを付け加えたSQL文である。

SELECT
FROM
WHERE

AND

SELECT
FROM
WHERE

DISTINCT Tl.buyer_name, Sl.seq
Tickets AS Tl,Sequence AS Sl ―― SequenCe:連 番テーブル
seqく =(SELECT MAX(ticket_nbr)― ―集合の範囲を設定する

FROM T■ ckets AS T2
WHERE Tl.buyer_name = T2.buyer_name)

seq NOT IN(SELECT ticket_nbr 一 欠番 を求める
FROM T■ ckets AS T3
WHERE Tl.buyer_name = T3.buyer_name);

DISTINCl‐ Tl.buyer_name, Sl.seq
Tickets AS Tl, Sequence AS Sl
NOT EXISTS

(SELECT 士

FROM T■ ckets AS T2
WHERE T2.buyer_name = Tl.buyer_name
AND
‐
「2.t■ cket_nbr = Sl.Seq)

Sl.seq <= (SELECT MAX(t■ cket_nbr)
FROM T■ ckets AS T3
WHERE T3.buyer_name = Tl.buyer_name);

AND

239

ロロ■

|

ScLパズル

'9′

←
0

、11′

'0
｀
その4

その3
オムニバズは、Scqucnccテーブルの上限値を設定するクエリを考えた。

SELECT DISTINCT T2.buyer_name, T2.t■ cket_nbr
FROM (SELECT Tl.buyer_name, Sl.seq AS ticket_nbr

FROM (SELECT buyer_name, MAX(ticket_nbr)
FROM
‐
「■ckets

GROUP BY buyer_name).AS Tl(buyer_name, max_nbr),
Sequence AS Sl

WHERE Sl.Seq く= max_nbr)AS T2
LEFl・ OUTER JOIN T■ ckets AS T3
0N T2.buyer_ ame = T3.buyer_ ame
AND T2.t■Cket nbr = T3.t■ cket nbr

WHERE T3.ticket_nbr IS NULL;

0 デイーター・ノースが送ってきたのは、「前の行の値」を計算するために、SQL-99の

OLAP関数を利用する解だ。もし「カレント行の値」と前の値の差が1よ りも大きけれ

ば、歯抜けがあるということになる。ただし、連番は1から始まるので、1に対する「前

の値 (prcv_nbr)」 を表すダミー値を、COALESCE関 数を使って追加する必要がある。

SELECT buyer_name, (prev_nbr + 1)AS gap_start,

(ticket_nbr - 1)AS gap_end
FROM (SELECT buyer_name, ticket_nbr,

COALESCE(MIN(t■ cket_nbr)OVER (
PARTIT10N BY buyer_name
ORDER BY t■ cket nbr
ROWS BETWEEN l PRECEDING AND l PRECEDING), 0)

FROM T■ ckets)AS DT(buyer_name, t■ cket_nbr, prev_nbr)
WHERE (t■cket_nbr ― prev_nbr)> 1;

240

、||′ /

〕:9←
0

パズル58 欠番探しパージョン2
集合指向言語で数列を扱う (その 2)

その5
オムニバズは、共通表式を使う別解も考えた。これなら、連番テーブルもDISTINCT

も必要ない。

WITH CTE(buyer_name, ticket_nbr)
AS

(SELECT buyer_name, MAX(t■ cket_nbr)

FROM T■ ckets
GROUP BY buyer_name
UN10N ALL
SELECT buyer_name, ticket_nbr - 1
FROM CTE
WHERE t■cket_nbr - 1 >= 0)
SELECT A.buyer_name, `A.t■ cket_nbr
FROM CTE AS A
LEFT OUTER JOIN

T■ ckets AS B

ON A.buyer_ ame = B.buyer_ ame
ANE)A.ticket nbr = B.tiCket nbr

WHERE B.buyer_name IS NULL;

このクエリで注目してはしいのは、チケット番号の範囲を完全にカバーする連番を生

成するために、再帰的な共通表式を使っている点だ。メインのSELECT文 では、外部結

合で差集合演算を行っている
[訳注2]。

訳注2:外部結合によつて、マスターテーブルに存在しない値がNULLで現れる。これをWHERE句で除外することで、差集
合演算を行うことができる。この方法は、EXCEPT演算子を持つていないRDBMSで 差集合演算を代用するときにも

便利である。

24■

バ |ズ |ル |

59

榜
優勝
~

スケジュール表を扱っていると、連続していたり重なり合ったりしている期間同士を

つなげる必要がしばしば生じる。ただ、これを簡単なクエリで行うのは難間である。以

下に紹介するコードも、日で追って動作を理解するのは容易ではない。注意深く読んで

ほしぃ
駅注l]。

CREATE TABLE T■ mesheets

(task_■ d CHAR(10)NOT NULL PRIMARY KEY,
start_date DATE NOT NULL,
end_date DATE NOT NULL,

CHECK(start_date く= end_date));

Timesheets:タ イムシートテーブル

start date:開始日

task id:業 務 ID

end date:終了日

INSERT

VALUES
INTO Timesheets

(1, 11997-01‐ 011, :1997‐ 01-031),

(2, 11997-01-02!, 11997-01‐ 041),

(3, 11997-01-041, :1997-01-051),
(4, 11997-01-061, 11997-01-091),

(5, 11997-01-091, 11997-01-09:),
(6, 11997-01-091, 11997-01-091),
(7, 11997-01-121, 11997-01-151),
(8, 11997-01-131, 11997-01-141),
(9, 11997‐ 01-141, 11997-01-141),

(10, 11997-01-171, 11997-01-171)

訳注 1 この問題は、『プログラマのための SQL第 2版」(ピアソ
ン エデユケーシヨン刊)の「4.4.2期間の連続」でも取り
上げられている。サンプルデータをガントチャー ト風に表

現すれば、右のようになる。求める答えは最下行の期間で

ある。答えすべてに共通する考え方は、「すべての開始日と

終了日 (ただし開始曰 く=終了日)を組み合わせて・期間・

を表すペアを作り、その後にほかの期間に含まれる開始日

と終了日を除外する」である。

【1月 】
1 5 20

１

２

３

４

５

６

７

８

９

‐０

え答

1 3

2 4
4 5
6 ９

９

９

□■国回

121‐ 15
1314
.14

７
□

242

\,1,

パズル59 期間を結合する
重複する期間をまとめる

Tl.start_date, MAX(T2.end_date)
T■mesheets AS Tl, T■mesheets AS T2
Tl.start date く= ・「2.end date
NOT EXISTS

(SELECT ★

FROM Timesheets AS T3, T■ mesheets AS T4
WHERE

‐
「3.end date く

‐
「4.start date

AND
‐
「3.start date >= Tl,start date
AND
‐
「3.end date く= T2.end date
AND T4.start date >= Tl.start date
AND T4.end date く= T2.end date
AND NOT EXISTS

(SELECT キ

FROM Timesheets AS T5
WHERE

‐
T5.start date

BETWEEN T3.start date AND T3.end date
AND T5.end date
BETWEEN T4.start_date AND T4.end_date))

BY Tl.start date
tl.start_date = MIN(t2.start_date);

start_date end_date

ヽ
・
／

ゐ
ｙ
孝

″

Ｌ
＼
｀
その■

0
SELECT
FROM

WHERE
AND

GROUP
HAVING

11997-01-011

11997-01-061

11997-01-121

11997-01-171

11997-01-051

11997-01-091

11997-01-151

11997-01-171

イ́ ン
四ゝ
〕ツ
“

だ
し

、
｀
その2

0 次に示すのは長いクエリだが、実行時間をチェックしてもらいたい。

SELECT X,start_date, MIN(Y.end_date)AS end_date
FROM (SELECT Tl.start_date

FROM T■ mesheets AS Tl
LEFT OUTER JOIN
T■mesheets AS T2
0N Tl.start date > T2.start date
AND Tl.start date く= T2.end date

243

SQLパズル

0

244

ブ⑦
′
←その3
7

GROUP BY Tl.start date
HAVING COUNT(T2.start_date)= 0)AS X(start_date)
INNER JOIN

(SELECT T3.end_date
FROM T■mesheets AS T3
LEFT OUTER JOIN
T■mesheets AS

‐
「4

0N T3.end date >= T4.start date
AND T3.end date く T4.end date

GROUP BY T3.end date
HAVING COUNT(T4.start_date)= 0)AS Y(end_date)
ON X.start date く= Y.end date

GROUP BY X.start_date;

SELECT X.start_date, MIN(X.end_date)AS end_date
FROM (SELECT Tl.start_date, T2.end_date

FROM Timesheets AS Tl, Timesheets AS
‐
「2,

Timesheets AS T3
WHERE Tl.end date く=

‐
「2.end date

GROUP BY Tl.start_date, T2.end_date
HAVING MAX(CASE WHEN (Tl.start_date > T3.start_date

AND Tl.start_date く= T3.end_date)
OR

(T2.end_date >= T3.start_date
AND
‐
「2.end_date く T3.end_date)

THEN l ELSE O END)= 0)AS X
GROUP BY X.start_date;

この小さなクエリの中にも、多くのロジックが組み込まれている。

バ |ズ |ル |

6o

瘍
最近、wwwswug.。 rg[訳注1]の常連寄稿者が、13桁の標準的なバーコードのチェック

サムを計算するT― SQL(Transact―SQL)関数を投稿してきた。使っていたアルゴリズム

はシンプルな加重和である (加重和を知らない方は、拙著『Data&Databascs』 (Morgan

Kaufmann刊 ,1998)の ScctiOn 15.3.1を 参照してはしい)。 13桁 の数字のうち最初の12

桁を取り、それにある計算を施した結果が13桁 目と一致するかどうかを確認する。計算

の規則は単純で、

l.偶数番目の数字を足した合計をsl

2.奇数番目の数字を足した合計をS2

とすると、Slか らS2を引き、その結果を loで割った余 りを求め、最後にその絶対値を

とる。公式化すれば、劇関(MOD(Sl― S2),10)と なる。

以下に、投稿 された T― sQLの 関数のコードを、標準のSQL/PSM[訳 注2]に変換 したも

のを示す。

CREATE FUNCT10N BarCode_CheckSum(IN my_barcode CHAR(12))
RETURNS INTEGER
BEGIN
DECLARE barcode_checkres INTEGER;
DECLARE ■dx INTEGER;
DECLARE sgn INTEGER;

SET bancode_checknes = 0;

――与 えられたバーコー ドが数値かチェックする

IF IsNumer■ c(my_barcode)= 0
THEN RETURN -1:
END IF;

― バーコー ドの長 さをチェックする

IF CHAR_LENGTH(TRIM(BOTH I 〕FROM my_barcode))く> 12
THEN RETURN -2;
END IF;

SQL SerVerユ ーザのコミュニティ「SQL Server Worldwlde User Group」 。

PSMとは「PerSIStent Stored MOdules」 の略で、いわゆるストアドプロシージャの標準規格の名称。

訳注 1

訳注 2

245

SoLパズル

― バーコー ドのチェックサムを計算する

SET ■dx = 1;
WHILE ■dx く= 12
DO― ―数字の符号を求める

IF MOD(■ dx, 2)= 0
THEN SET sgn = -1;
ELSE SEl‐ sgn = +1;
END IF;

SEl‐ barcode cheCkreS = barCOde Checkres +
CAST(SUBSTRING(my_barcode FROM ■dx FOR l)
AS INTEGER)' sgn;

SEl‐ ■dx = ■dX + 1;

END WHILE;

一 チェックディジッ ト

RETURN ABS(lMOD(barcode_checkreS, 10));
END;

このプロシージヤは、例えば次のように動作する。

barcode_checkSum(12837232811221)

= ABS (MOD(2-8 + 3-7 + 2-3 + 2-3 + 1-1 + 2-2),
= ABS (MOD(-6 -4 -1 -6 + 0 + 0), 10)
= ABS (MOD(-17, 10))

= ABS(-7)= 7

10))

'S'′

←その■
0 0K、 話は分かった。さて、どこから手を付けよう ? まず、不必要なローカル変数を

作っていることや、T―SQL固有の関数であるIsNumcricを使っていることが目に付 く。

また、チェックディジットがバーコードから切 り分けられた整数ではなく、文字として

考えられていることも気になる。さらに、このコードには3つのIF文と1つのWHILEル

ープがあり、考えられる限り最も手続き的な作法で書かれている。

念のために言っておくと、SQL/PSMは負の戻り値をエラー扱いとはしていない。だ

が今は、文法の説明には立ち入らないでおこう。SQL/PSMの文法はT― SQLと はかなり

異なる、とだけ言っておく。

しかし、なぜこんな、どこからどう見ても手続き的なコードを書くのだろうか。この

コードの大半は、宣言的な表現に置き換えることが可能だ。手始めに、ループとネスト

246

■
　
　
　
覇
議
は
艤
艤
　
　
　
　
■

手続き型から宣言型へ考え方を切り換える (その2)

した関数呼び出しをお馴染みの連番補助テーブルで置き換え、IF文 をなくすために

CASE式 を使おう。

置き換えの大まかなガイドラインはこんな感じだ。

■ 手続き的なループは連番集合になる。

FOR seq FROM l TO n DO f(seq);
口1) SELECT f(seq)FROM Sequence WHERE seq く= n;

手続き的な分岐はCASE式 になる。

IF .. THEN .. ELSE

→ CASE WHEN .. THEN .. ELSE .. END;

一連の割 り当てと関数呼び出しは、関数呼び出しのネストになる。

DECLARE x くtype>;
SET x = f(..);

SET y = g(x);

→ f(g(X))

上記のガイドラインに従って置き換えた修正第 1版がこれだ。

CREATE FUNCT10N BarCOde_CheckSum(IN barcode CHAR(12))
RETURNS INTEGER
BECIN

IF barcode SIMILAR TO l%[^0-91%i
THEN RETURN ‐1;
ELSE RETURN

(SELECT ABS(MOD(SUM(CAST(
SUBSTRING(barcode FROM S.seq FOR l)AS INTEGER)
t CASE MOD(S.seq, 2)WHEN O THEN l ELSE -l END),10))

FROM Sequence AS S
WHERE S.seq く= 12);

END IF;

END;

247

‐ヽ‐′（船
Ｙ
７
日

、ヽ
・
κ
　

‘ｑ

2そ の

パズル60 バーコード

ScLパズル

、ll′ /

〕:9←

「SIMILAR TOく正規表現 >」 という述語は、注目すべき“トリック"である。12文字

すべてが数字であることを保証するために、「
A」 を付けて否定条件 (“バーコードの文字

列の中にo～ 9ではない文字が存在する")を使っている。なお、サイズオーバーの文字

列が渡された場合、パラメータに収まり切らないのでオーバーフローエラーになるが、

逆に文字数が少なかった場合には空自で埋められる点には注意が必要だ。

その3
だが、もう少し考えてはしい。答えその2のコードはもっと改善できる。

CREATE FUNCT10N Barcode_CheckSum(IN barcode CHAR(12))
RETURNS INTEGER
RETURN

(SELECT ABS(MOD(SUM(CAST(
SUBSTRING(barcode FROM S.seq FOR l)AS INTEGER)

' CASE MOD(S.seq, 2)WHEN O
‐
「HEN l ELSE -l END),

FROM Sequence AS S
WHERE S.seq く= 12
AND barcode NOT SIMILAR TO l%[^0-91%1);

10))

この関数は、不正なバーコードが渡された場合にNULLを 返す。この関数はこれで 1

つのSQL文であり、大変素晴らしい。さらにちょっとした修正を加えると、次のように

なる。

CREATE FUNCT10N Barcode_CheCkSum(IN barcode CHAR(12))
RETURNS INTEGER
RETURN

(SELECT ABS(MOD(SUM(CAST(
SUBSTRING(barcode FROM We■ ghts.seq FOR l)AS INTEGER)
t Weights.wgt), 10))

FROM (VALUES (CAST(l AS INTEGER), CAST(-l AS INTEGER)),

(2, +1), (3, -1), (4, +1), (5, -1),

(6, +1), (7, -1), (8, +1), (9, -1),
(10, +1),(11, -1),(12, +1)

)AS weights(seq, wgt)
WHERE barcode NOT SIMILAR T0 1%[^0-9]1ち !);

標準SQLを使ったもう1つの賢いトリックは、VALUES式でテーブル定数を作ること

だ。テーブル定数の1行日では、明示的なキャストにより列のデータ型を指定している。

0

248

パズル60 バーコード
手続き型から宣言型へ考え方を切り換える (その 2)

、11′ /

ラ:Ψ
このSQL文では、整数型を2列指定したことになる。

その4
0 さて、最適解はどれだろう'実は、真の答えはここまでに挙げたいずれでもない。こ
の練習問題のポイントは、集合指向的かつ宣言的な答えを考えてもらうことにある。

我々は、条件をチェックする関数を書いてきた。だが本当に求めるべきは、バーコー

ドに制約を適用するCHECK句である。これまでのアプローチに代わり、次の解を試し
てほしい。

CREATE TABLE Products

(..

barcode CHAR(13)NOT NULL
CONSTRAINT all_numeric_checkd■ 9■ t
CHECK (barcode NOT SIMILAR T0 1%[^0-91%l)
CONSTRAINT valid_checkd■ 9■ t
CHECK ((SELECT ABS(MOD(SUM(CAST(

SUBSTRING(barcode FROM We■ ghts.seq FOR l)
AS INTEGER)■ We■ 9hts.wgt), 10))

FROM (VALUES (CAST(l AS INTEGER),

CAST(‐ l AS INTEGER)),

(2, +1),(3, -1), (4, +1), (5, -1),
(6, +1),(7, -1),(8, +1),(9, -1),
(10, +1),(11,-1),(12, +1)

)AS weights(seq, wgt))
= CAST(SUBSTRING(barcode FROM 13 FOR l)AS INTEGER)),

こうすることで、スキーマから不正なデータを締め出せる。それは関数にはできない

ことだ。どうしても関数を使うというなら、INSERT時 にトリガーを起動すれば近いこ

とはできる。なお、上のコードで制約を2つに分けているのは、そのほうがエラーメッセ

ージがより具体的になるからだ。これがSQLの考え方である[訳注3]。

訳注3:ただし、例によつてCHECK制約の中でサブクエリを使うことは、多くの実装ではまだ不可能。

249

バ |ズ |ル |

6■

瘍

‐
―
′
ゝ
側
ゞ
一７

ヽ

／
卜

ヽ

、ヽ
・
／

トニー・ウィルトンは、2003年に面白い問題を送ってきた。今、ある決まった形式、

例えば「CABBDBC」 のような文字列を生成するストアドプロシージヤを書いていると

しよう。問題というのは、この文字列をアルファベット順にソートすることだ。つまり、

「CABBDBC」 という入力なら「ABBBCCD」 を出力する。ただし、ライブラリ関数は使

えないものとする。また、トニーの言う「決まった形式」とは、文字列は常にCHAR(7)

で、1lAl,IBI,iCl,lDl}の 4文字だけを使うことを意味している。

その■

0 多 くの人が最初に提案 してきた解答は、RDBMS製 品が独 自に実装 している4GLで

WHILEル ープを使 うプロシージャだった。要するに、文字列内のSUBSTRING(gcn_str

FROM iFOR l)に バブルソー トを適用するわけだ。そのため、1行に 1度のプロシージ

ャ呼び出しが必要になる。

もし文字列が固定長なら、ボース =ネ ルソンの恐ろしく高速なソー ト法
[訳注1]が
利用

できる。そのソート法では、並べ替えるべき文字列のスワップペアを生成する。ただ、そ

のアルゴリズムの詳細については、ここで検討したい数学的範囲を超えるので割愛す

る。詳しくは、私の著書『SQL br Smardcs Third Eddon』 (Morgan Kauhlann刊 ,2005)

を参照してはしい。答えは、大量のUPDATE文から成るプロシージャになる。

、11′ /

ラ;9←
0

その 2,

もし生成する文字列が比較的小さい集合なら、参照テーブルを使う方法がある。

CREATE TABLE SortMeFast

(unsorted_string CHAR(7)NOT NULL PRIMARY KEY,
sorted_string CHAR(7)NOT NULL);

R.CボースとR.J.ネルソンが 1962年 に提示した、再帰手続きによつて配列の高速なソー トを行うアルゴリズムのこ

と。
・
A SOning PrOblern・ : Journalofthe ACM,Vo19,pp282-96(http://portal.acm.Org/CltatiOn.Cfm'id=321126

&co‖ =portal&dl=ACM)を 参照。また、著者 (セルコ)は このアルゴリズムをSQLで表現する方法を考案している。
・
Scrubbing Data with Non-l NF Tables― Part l・ DBAzlne 2006年 1月 (http:〃www.dbazine.com/ofinterest/oト

artlcles/celko1 9)

訳注 1

250

L_1_旦二_

|

、ヽ
・
κ

‐
―
′
ヽ
御
将
一７

ヽ

／
し
ヽ

t\l)v61 y+ttJav-t-v6
ループを使わないでソー ト

ファイクのアルゴリズム[訳注
2]を
使えば、テーブルに文字の順列をロードできる。こう

することで、行を参照するたびに関数を呼び出すのではなく、ソートされていない文字

列の集合全体を一度に処理することが可能になる。

その■

0 もし、対象の文字集合が小さければ、こういうやり方もある。'Alの数を数え、その数

だけ文字列を生成する。次に、
「
BIも 数えて同様に文字列を作 り、Aの文字列の後ろにつ

なげる。これを、残 りのアルフアベット(iClと
[Dl)に ついても繰り返す。

仮に、く文字列>を n個 コピーするREPLICATE(く 文字列 >,n)関数と、く対象文字列 >

内に現れるすべてのく置換前文字列 >を く置換後文字列 >に置き換えるREPLACE(く 対

象文字列 >,く 置換前文字列 >,く 置換後文字列>)関数、およびく文字列 >の長さを返す

CHARACTER_LENGTH(く 文字列 >)が使えるとしよう。すると、次のような解答が考

えられる。

BECIN

DECLARE ■nst r■ng CHAR(7);

SET ■nstr■ ng = :DCCBABAl;

REPLICATE(:Al, (CHARACTER_LENGTH(■ nstr■ ng) ―

CHARACTER_LENGTH(REPLACE(■ nstring, lAI, l!))))
REPLICATE(lBl, (CHARACTER_LENGTH(■ nst ring) ―

CHARACTER_LENGTH(REPLACE(■ nstr■ ng, :BI, ::))))
REPLICATE(iCl, (CHARACTER_LENGTH(■ nstr■ ng) ‐

CHARACTER_LENGTH(REPLACE(■ nstr■ ng, lCI, !1))))
REPLICATE(lD:, (CHARACTER_LENGTH(■ nstring) ‐

CHARACTER_LENGTH(REPLACE(■ nstr■ ng, :DI, I:))))

||

||

||

END;

この式は、ビューに入れることもできる。そうすれば、スキーマ内に手続き的なコー

ドは一切残らない。SQLプログラマの大部分は手続き的プログラミングで育ってきたの

で、こういう考え方ができないようだ。反対に、この解答をLISPプログラマに見せたと

きの反応は「もちろんそうするさ。ほかにどんな方法があるんだ ?」 というものだった。

訳注2:CTフ アイクが 1975年に提示 した、順列を作成する高速なアルゴリズムのこと。・A permutatlon generatlon
method・ :The Computer Journal Vol.18(1),pp.21-22(http:〃 cominl.oxfordiournals.org/cgl/content/abstract/

18/1/21)を 参照。

254

バ |ズ |ル |

62

瘍
q働
~

SQLは データ検索言語であって、レポートを作成するための道具ではない。残念なこ

とに、人々はこの点に無自覚で、本来SQLのやるべき仕事ではないことまでSQLでや

ろうとするケースが散見される。その中でも最も多く見受けられるのが、表示用の決ま

った数の列数に値のリストを配置することである。

このパズルは、もともとスミス・バーニー社のリチャード・レムレーから送られてき

た。彼はたびたび私のSQLパ ズルの解法をうまく料理してくれる人物だ。彼は、そんな

ことできっこないと言った友人と賭けをして、見事に勝利をおさめたという。

その問題だが、まずはnamcと いう一意な列を1つだけ持つNamcsテーブルを作り、次

のようにデータを入れる。

CREATE TABLE Names

(name VARCHAR(15)NOT NULL PRIMARY KEY);

INSERT INTO Names
VALUES (lAll), (IBenl), (!Charl■ el),

(:Davidl), (lEdl), (!Frankl),
(:Gregl),(lHowardl),(:Idal),
(lJoel), (lKenl), (lLarryl),
(lM■ kel), (`Nea11),

単純に「SELECT namc FROM Namcs ORDER BY namc;」 を実行すれば、アルファ

ベット順になった名前のリストが得られる。では、この結果を次のような3列 1行の形式

で表示するには、どうすればよいだろうか。

name 1 name2 name3

lAll

lDavidl

lGreg〕

IJoel

lM■
kel

'Ben'
'Ed'
'Howand'
'Ken'
'Neal'

iCharl■
el

iFrankl

lldal

lLarryl

NULL

252

あるいは、4列 1行ならこうなる。

Lユ_L

パズル62 レポートの整形
結果を列数固定で表示する

namel name2 name3 name4

IA11

1Edl

lldal

lM■kel

'Ben',
' Frank '

'Joe'
'Neal'

lCharl■
el

:Gregl

lKenl

NULL

:Dav■
di

:Howard!

lLarry!

NULL

最終的には、任意の列数に対応できるところまで拡張したい。あなたはこうした結果

を返すSQLを、たった1文で書けるだろうか ?

'気

り
/←

その■
7
‐ ここは、簡単な2列 1行の解法から考え始めるのが一番よい。

SELECT Nl.name AS namel, MIN(N2.name)AS name2
FROM Names AS Nl

LEFT OUTER JOIN
Names AS N2
0N Nl.name く N2.name

WHERE Nl,name
IN (SELECT A.name

FROM Names AS A
INNER J()IN

Names AS B
ON A.name く= B.name

GROUP BY A.name
HAVING MOD(COUNT(B.name), 2)=

(SELECT MOD(00UNT(I), 2)FROM Names))
GROUP

ORDER

name

name;

Ｙ

Ｙ

Ｂ

Ｂ

自己外部結合 (2～ 5行 日)では、まず2列 のうち、アルファベット順でより早い名前

を第1列 (namcl)に 入れ、その後MIN関数で残っている名前からNl.namc(第 1列 に入

れた名前)以降で最も順序の早い名前 (いわば「第2位」の名前)を取り出している。

だが本当の“トリック"は、WHERE句 にある。結果集合を定義するためには、求める

べき結果の各行のNl.namcの 値を見つけ出し、その名前のリストを使いたい。このケー

スでは、最初の名前 (1赳 |)、 3番 目の名前 (i Charlici)な どである。これを実現している

のがMOD関数である。この関数は公式にはSQL-92の一部ではないので、技術的には

整数の算術で書くのが正しい。しかし、実際にはほとんどのRDBMSが持っている関数

253

SoLパズル

であるし、SQL-99で標準に入ったので、使ってもかまわないだろう。

それでは、(WHERE句中にある)実験的な結果テーブルから見てみよう。

SELECT A.name
FROM Names AS A
INNER JOIN
Names AS B
ON A.name く= B.name

GROUP BY A.name;

4つの名前について見ると、非グループ化した結果は次のようになる。

A. name B. name

IAll

lAl:

IAl:

:All

:All

IBen:

ICharl■
el

lDav■
di

:Beni

:Beni

lBenl

IBeni

iCharl■
el

lDav■
dl

iCharl■
e:

iCharl■
e:

ICharl■
el

lDavid:

IDavidl lDav■
dl

これを、(MOD(COUNT(Anamc),2))=0と いう述語によってふるいにかけると、欲

しい行だけを取り出せる。この方法は、行数が偶数のときにはうまくいくのだが、奇数

のとき (例えば 101ivcrlを INSERTした場合)は、その「はぐれ者」の行も結果のテーブル

に入れる必要が生じる。これは、元テーブルの行数を求めて、最終的な結果テーブルの

第1列の選択を調節すれば可能である。少し詳細は省くが、簡単にできるはずだ。

さて、次は3列や4列の場合を飛ばし、一気に5列の場合を考えて、解法がどういう風

に一般化されるかを見てみよう。

SELECT Nl.name,
MIN(N2.name)AS name2,
MIN(N3.name)AS name3,
MIN(N4.name)AS name4,

254

パズル62 レポートの整形
結果を列数固定で表示する

、ヽ
・
ん

ノ
／
´
´
ヽ

′
ヽ

り
／

多

，

‐ヽｌσ
ヽ
「

MIN(N5.name)AS name5
FROM (Names AS Nl
LEFT OUTER JOIN
Names AS N2
0N Nl,name く N2.name)
LEFT OuTER JOIN

Names AS N3

0N Nl.name く N2.name
AND N2.name く N3.name
LEFl‐ OUTER J01N
Names AS N4

0N Nl.name く N2.name

AND N2.name く N3.name
AND N3.name く N4.name
LEFl‐ OUTER JOIN
Names AS N5

0N Nl.name く N2.name
AND N2.name く N3.name
AND N3.name く N4.name
AND N4.name く N5,name

WHERE Nl.name IN (SELECT A.name
FROM Names AS A
INNER JOIN
Names AS B
ON A.name く= B.name

GROUP BY A.name
HAVINC MOD(COUNT(B.name), 5)=

(SELECT MOD(COUNT(キ), 5)
FROM NameS))

GROUP BY Nl.name;

その2

答えその1の クエリを短くしたバージョンとして、次のような解がある。

SELECT N3.name, MIN(N4.name), MIN(N5.name), MIN(N6.name),
MIN(N7.name)

FROM (SELECT Nl.name
FROM Names AS Nl
INNER J()IN

Names AS N2
0N Nl.name >= N2.name

GROUP BY Nl.name
HAVING MOD(COUNT(丼), 5)= 1)AS N3(name)

0

255

SQLパズル

、11′ /

・ r7、1./ン｀

LEFT OuTER JOIN
Names AS N4
0N N3.name く N4.name
LEFT OUTER JOIN
Names AS N5

0N N4.name く N5,name
LEFT OUTER JOIN
Names AS N6
0N N5.name く N6.name
LEFT OUTER JOIN

Names AS N7
0N N6.name く N7.name

GROUP BY N3.name;

その3
このパズルが『DBMS』 誌 1997年 2月 号に掲載された後、ナヤン・ラヴァルが私に電

子メールを送ってきた。彼は、答えその 1の LEFT OUTER IOIN句 で「Nl.namc
くN2.namc」 が繰り返し使われている点に着目し、この条件が実は最初の1度 しか必要

ないことに気づいた。次のクエリは、私のシステムでは同じ結果になる。

―― これより上は答えその 1と 同 じ

FROM(Names AS Nl
LEFT OUTER JOIN

Names AS N2

0N Nl.name く N2.name)
LEFT OUTER JOIN
Names AS N3

0N N2,name く N3.name
LEFT OUTER JOIN
Names AS N4
0N N3.name く N4.name
LEFT OUTER JOIN

Names AS N5
0N N4.name く N5.name

一 これより下 も答えその 1と 同 じ

その4
同じような方向性で、ボスニア・ヘルッェゴヴィナのジャヴィド・ダウベゴヴイッチ

は答えその1の、

0

256

、ll′ /

〕:,←
0

パズル62 レポートの整形
結果を列数固定で表示する

WHERE Nl.name IN (SELECT A.name
FROM Names AS A
INNER JOIN
Names AS B
ON A.name く= B.name

GROUP BY A.name
HAVING MOD(COUNT(B.name), 5)=

(SELECl‐ MOD(00UNT(■), 5)
FROM Names))

という部分を、

WHERE Nl.name IN (SELECT A.name
FROM Names AS A
INNER JOIN
Names AS B
ON A.name >= B.name

GROUP BY A.name
HAVING MOD(COUNT(B.name), 5)= 1)

と書き換えたほうがよいと意見を述べた。

、||′ /

'9′

←
その5

0 ドミトリー・シツィンツェフは、また異なる解を考え出した。ここでは、N=5の場合

の解法を示す。これは、リチャー ド・レムレーの解法とは大きく異なり、5回の自己結

合を使わずに済んでいる。

SELECT MAX(namel), MAX(name2), MAX(name3), MAX(name4), MAX(name5)
FROM(――巨大な副問い合わせの始まり
SELECT (00UNT(*) - 1) / 5,

(SELECT MAX(Nl.name)
FROM Names AS N3
WHERE Nl.nanle く= N3.n anle

HAVING MOD(COUNT(*), 5)

= (SELECT MOD(COUNT(■), 5)
FROM Names)),

(SELECl‐ MAX(Nl.name)
FROM Names AS N3

257

SclLパズル

WHERE
HAVING

1),5)

(SELECT
FROM
WHERE
HAVING

2),5)

(SELECT
FROM Names AS N3
WHERE Nl.name く= N3.name
HAVING MOD(COUNT(大), 5)
= (SELECT MOD((00UNT(■) - 3), 5)
FROM Names)),

(SELECT MAX(Nl.name)
FROM Names AS N3
WHERE Nl.name く= N3.name
HAVING MOD(COUNT(☆), 5)
= (SELECT MOD((COUNT(■) - 4), 5)
FROM Names))

FROM Names AS Nl

INNER JOIN
Names AS N2
0N Nl.name >= N2.name

GROUP BY Nl.name

)AS XO(cnt, namel, name2, name3, name4, name5)
GROuP BY cnt;

'q》

←その6
0 2000年 3月 12日 に、私は次に示す解法をレムレーに電子メールで教えた。彼はこの

解法をそのとき初めて知ったが、すぐにアレンジしてきた。

Nl.name く= N3.name
MOD(COUNT(■), 5)
= (SELECT MOD((COUNT(■)

FROM Names)),

MAX(Nl.name)
Names ノヽS N3
Nl.nalle く= N3.name
MOD(COUNT(☆), 5)
= (SELECT MOD((COUNT(■)
FROM Names)),

MAX(Nl.name)

-3列の場合
SELECT FirstCol.name
MAX(CASE WHEN

THEN

ELSE

MAX(CASE IWHEN

THEN
ELSE

AS namel,
OtherCols.cnt = 2
0therCols,final name
NULL END)AS name2,
OtherCOIS.Cnt = 3
0therCols.final name
NULL END)AS name3

258

FROM (SELECT Nl.name
FROM Names AS Nl, Names AS N2
WHERE Nl.name >= N2.name
GROUP BY Nl.name
HAVING MOD(COUNT(■), 3)= 1)AS FirstCol(name)
LEFT OUTER JOIN

(SELECT N3.name, N5.name, COUNT(オ)

FROM Names AS N3, Names AS N4, Names AS N5
WHERE N3.name く N5.name
AND N4.name BETWEEN N3.name AND N5.name
GROUP BY N3.name, N5.name)
AS OtherCols(name,final_name, cnt)
ON F■ rstCol.name = OtherCols.name

GROUP BY F■ rstCol.name
ORDER BY F■ rstCol.name;

-5列の場合
SELECT F■ rstCol.name AS namel,
MAX(CASE WHEN OtherCols.cnt = 2

THEN OtherCols.f■nal name

ELSE NULL END)AS name2,
MAX(CASE WHEN OtherCols.cnt = 3

THEN OtherCols.f■nal name
ELSE NULL END)AS name3,

MAX(CASE WHEN OtherCols.cnt = 4
THEN()therCols,final name
ELSE NULL END)AS name4,

MAX(CASE WHEN OtherCols.Cnt = 5
THEN ()therCols.final name
ELSE NULL END)AS name5

FROM (SELECT Nl.name
FROM Names AS Nl, Names AS N2
WHERE Nl.name >= N2.name
GROUP BY Nl.name
HAVING MOD(COUNT(ナ), 5)= 1)AS F■ rstCol(name)
LEFT OUTER JOIN

(SELECT N3.name, N5,name, COUNT(十)

FROM Names AS N3, Names AS N4, Names AS N5
WHERE N3.name く N5.name
AND N4.name BE・「WEEN N3.name AND N5.name
GROUP BY N3.name, N5.name)
AS OtherCols(name,final_name, cnt)
ON F■ rstCol.name = OtherCols.name

GROUP BY FirstCol.name
ORDER BY F■ rstCol.name;

パズル62 レポートの整形
結果を列数固定で表示する

259

SoLバズル

26o

-6列の場合
SELECT F■ rstCol.name AS namel,
MAX(CASE IWHEN OtherCols.cnt = 2

THEN OtherCols.final name
ELSE NULL END)AS name2,

MAX(CASE WHEN OtherCols.cnt = 3
THEN OtherCols.f■nal name
ELSE NULL END)AS name3,

MAX(CASE WHEN OtherCols.cnt = 4
THEN OtherCols.final name
ELSE NULL END)AS name4,

MAX(CASE WHEN OtherCols.cnt = 5
THEN OtherCols.fュnal name
ELSE NULL END)AS name5,

MAX(CASE WHEN OtherCols.cnt = 6
THEN OtherCols.f■nal name
ELSE NULL END)AS name6

FROM (SELECl‐ Nl.name
FROM Names AS Nl, Names AS N2
WHERE Nl.name >= N2.name
GROUP BY Nl.name
HAVING MOD(COUNT(■), 6)= 1)AS FirstCol
LEFT OUTER JOIN

(SELECT N3.name, N5.name AS final_name, 00UNT(オ)AS cnt
FROM Names AS N3, Names AS N4, Names AS N5
WHERE N3.name く N5.name
AND N4.name BEl・WEEN N3.name AND N5.name
GROuP BY N3.name, N5.name)AS OtherCols
ON FirstCol.name =()therCols.name

GROUP BY F■ rstCol.name
ORDER BY FirstCol.name;

この方法だと、列が増えた場合にも、SELECT句 のリス トの列を増やし、MOD関 数
の剰余の数を変えるだけで対応できる。クエリの残 りの部分は、まったく変える必要が

ない。

バ |ズ |ル |

63

瘍
ドナルド・ハロランは、一見すると簡単そうな問題を出してきた。

CREATE TABLE T

(num INTEGER NOT NULL PRIMARY KEY,
data CHAR(1)NOT NULL);

INSERT INTO T

VALUES (1, la[),

■
●
，
，
■
，
■
■
一
●
■
　
　
　
・一■
■
０，
Ｐ
■
ヽ
ヽ
一
●
■
■
ヽ
，
，
●
■
一ヤ
■
お
ヽ

(2, la

(3, lb

(6, ib

(8, la

問題とは、各data値がnumの何番から何番まで連続しているのかを、その出現順で集

約するというものである。上のサンプルを例にとると、求める結果は次のようになる。

lowl h■ 9h data

以下にハロランの解法を示すが、彼自身、どうも冗長なコードを書いているのではな

いかと感じていた。というのも、アルゴリズムは2つのステップから構成されているよ

うに見えるのだが、SQLでは3つのステップを踏んでいるような気がしたからだ。その

アルゴリズムとは、次のとおりである。

l.各行 (r)について、R.num>r.numか つR.dataく>r.dataと なる最初の行 (R)を

求める

2.(R)で (r)を グループ化する

26■

SQLパズル

、
ヽ
・
Ｚ

‐‐ノヽ
β
ン

ヽ

／
１
１
１１１１
ヽ

その■

ハロランが最初に考えたクエリはこうだ。0

SELECT MIN(Tl.num)AS low,
MAX(Tl.num)AS h■ 9h,
Tl.data

FROM T AS Tl
LEFT OUTER JOIN
T AS T2
0N T2.num

= (SELECl‐ MIN(num)

FROM T
WHERE num > Tl.num
AND data く> Tl.data)

GROUP BY Tl.data, T2.num;

／
′
´
´
ヽ

′
ヽ
「「
／
‐
′″
，

‐ヽｌσ
ヽ
脅

、ヽ
・
／ その 2

私が別バージョンの方法として考えたのは、範囲の中身をチェックするためにALL述

語を使うものである。

0

SELECT X.data, MIN(X.low)AS low, X.h■ gh

FROM (SELECT Tl.data, Tl.num, MAX(T2.num)
FROM T AS Tl, T AS T2
WHERE Tl.num く= T2.num
AND Tl.data
= ALL(SELECT T3.data

FROM T AS T3
WHERE

‐
「3.num BETWEEN Tl.num AND T2.num)

GROUP BY Tl.data, Tl.num)AS X(data, low, h■ 9h)
GROUP BY X.data, X.h■ 9h;

率直に言って、自分でもこの方法がオリジナルより優れているとは思わない。

262

パズル63 連続的なグルービング
結合条件でサブクエリを実行する

、||′ /

'9′

←
その3
ステイーブ・カシユは、次のような解法を示してきた。カシュは、オリジナルより速

いかどうかは分からないと言っていたが、この方法なら別のアプローチによる高速化が

可能だ ((num,data)に 対するクラスタ索引が使える)。

0

SELECT MIN(num)AS low, MAX(num)AS high, data
FROM (SELECT A.num,

SUM(CASE WHEN A.data = B.data
THEN l

ELSE O END)
― COUNT(B.num)AS ct,
A.data

FROM T AS A, T AS B
WHERE A.num >= B.num
GROUP BY A.num, A.data)AS A (num, ct, data)

GROUP BY data, ct;

1つ しかデータの値を持たない範囲を調べるために、ちょっとした計算を行っている

のもこの解法のポイントだ。

263

バ |ズ |ル |

64

愉
この面白い問題を教えてくれたのは、ミキト・ハラキリという人物である。あるデカ

ルト空間 (座標空間)を想像してほしい。そして、その中にn次元のボックスが何個か含

まれているとする。各ボックスは、次のようなテーブルで定義される。

CREATE TABLE BoxeS

(box_■ d CHAR(1)NOT NULL,
d■m CHAR(1)NOT NULL,
PRIMARY KEY (box_■ d, d■ m),

low INTEGER NOT NULL,

h■gh INTEGER NOT NULL);

g6xss i 'fi'r ?77-))v
low :'lEli

bOx id:ボ ックスlD

high:高位

dlm 次元

問題は、「互いに交わるボックス (3次元の直方体など)の組み合わせをすべて見つけ

る」というものだ。

={(x,0,2),(y,0,2),(z,0,2)}
={(x,1,3),(y,1,3),(z,1,3)}
= {(x,10,12),(y,0,4),(Z,0,100)}

例えば、上の3つのボックス
[訳注1]について見ると、ボックスAと Bは交わるが、CはA

ともBと も交わらない。さらに、問題が解けたらボーナスポイントも付けよう。この間

題を解くクエリに何か変わった特徴はないだろうか ?それも見つけてほしい。

その■

ボブ・バドゥアールから寄せられた解答はこうだ。

Ａ

Ｂ

Ｃ

艤
醸
艤
鯰
騒
鸞

fゞ7ヽにκ
V｀
0

SELECT Bl.box_■ d AS boxl, B2.box_■d AS box2

FROM Boxes AS Bl, Boxes AS B2

訳注1:A、 B、 Cは box_ldを、(x,0,2)な どの各項目はそれぞれdim、 |。 W、 hlghの値を表しており、(x,0,2)は「x軸の座標0

から座標2まで」を意味する。

264

」

パズル64 ボックス
多次元の重複範囲を見つける

WHERE Bl.bOX id く B2.box ■d
AND NOT EXISTS

(SELECT キ

FROM Boxes AS B3, Boxes AS B4
WHERE B3.box ■d = Bl.box ■d
AND B4.boX ■d = B2.box ■d
AND B4.d■m = B3.d■ m

AND (B4.h■ 9h く B3.low OR B4.10w > B3.h■ gh))
GROUP BY Bl.box_■d, B2.box_id;

出題者のミキト・ハラキリは、この解が関係除算の一般化になっている点に興味を持

った。SQLにおける関係除算は、2段階にネストしたサブクエリや、EXCEPT演算子を

使ったネストのないサブクエリ、あるいはHAVING句の中でCOUNT関数を使うクエ

リとして表現できた
[訳注2]。
だが、ボブのクエリはそのいずれとも違っている。lHAVING

句を使って書けば、さしずめこうなるだろう。

SELECT
FROM
WHERE
AND
AND

GROUP
HAVING

Bl.boX_id AS boxl, B2.box_■ d AS box2
Boxes AS Bl, Boxes AS B2
Bl.low BETWEEN B2.low AND B2.h■ gh
Bl.dim = B2.dim
Bl.box id く> B2.box id

BY Bl.box_■ d, B2.box_■ d

COUNT(★)
= (SELECT COUNT(キ

)

FROM Boxes AS B3
WHERE B3,box_■ d = Bl.box_■ d);

ず⑦←/′

ツ
0

その2

異なるアプローチも試してみよう。まずは1次元の、より強固なDDL文からだ。

CREATE TABLE Boxes

(bOx_■d CHAR(1)NOT NULL,
d■m CHAR(1)NOT NULL,
PRIMARY KEY (box_■ d, d■ m),
low INTEGER NOT NULL,
h■9h INTEGER NOT NULL,
CHECK (low く h■ 9h));

訳注 2:関係除算については、パズル 21を参照。

265

SoLパズル

INSERT INTO Boxes VALUES (lA
INSERT INTO Boxes VALUES (lB
INSERT INTO Boxes VALUES (:C

,0,2);
,1,3):
, 10, 12);

-1次元の場合
SELECT Bl.box_■ d, B2.box_■ d

FROM Boxes AS Bl, Boxes AS B2
AヽIHERE Bl.box id く :32.box id

AND ((Bl.h■ gh BETWEEN B2.low and B2.h■ gh)

OR (B2.high BETWEEN Bl.low and Bl.h■ gh));

このクエリの意味は、「2つの線分をつなげたときの長さが、両方の線分の長さを足し

た値より小さければ、線分は重複している」である。BE■ⅥINの代用のような計算だ

と思ってほしい。線分A=|(x,0,2)|と B={(x,1,3)|は 重複するが、線分C=|(x,10,

12)|は どの線分とも重ならなぃ
[訳注3]。

では次に、問題を2次元へ拡張しよう
[訳注4]。

INSERT INTO Boxes VALUES (lA
INSERT INTO Boxes VALUES (IB
INSERT INTO Boxes VALUES (IC

２

３

４

-2次 元の場合 :第 1案
SELECT Bl.box_■ d, B2.box_id
FROM Boxes AS Bl, Boxes AS B2
へヽIHERE Bl.box id く B2.box id

AND Bl.d■m = B2.d■ m

AND ((Bl.h■ 9h BETWEEN B2.low and B2.high)
OR (B2.h■9h BETWEEN Bl.low and Bl.h■ 9h));

Bl.box ■d B2.box ■d

Ａ

Ａ

Ａ

Ｂ

←ld■ m,日 =

←,d■ m,」 =

←ldim夕」=

← dimフリ =

訳注 3:この様子を図で表現してみると、右図のようになる。
10 12

訳注4:SELECT文 の実行結果は訳者が追加。

26る

0 1 2 3

0-一一一酔¨
百 三 _

)\fl\r 64 fiv 27
多次元の重複範囲を見つける

これだと、y座標だけに重なる範囲のある (A,C)や (B,C)も 選択されてしまう。しか

し、今度はx座標とy座標のどちらにも重なる範囲が形成する共通領域 (x,y)を探さな

ければならなぃ
[訳注5]。 それには次のように、集約結果の行数が2行存在するbOLidの組

み合わせを取得すればよい。

―-2次元の場合 :第 2案
SELECT Bl.box_■ d, B2.box_■ d

FROM Boxes AS Bl, Boxes AS 32
WHERE Bl,box ■d く B2.box ■d
AND Bl.d■m = B2.dim
AND ((Bl.high BETWEEN B2.low and B2.h■ gh)

OR (B2.h■9h BETWEEN Bl.low and Bl.h■ gh));

GROUP BY Bl.box_■d, B2.box_id

HAVING COUNT(Bl.dim)= 2,

最後に、3次元の場合へ進もう。

ヽ
ゞ
，
一一一一一一３
一̈一̈一̈一̈一

lzl,0,2);
lzl,1,3);
IZ:, 0, 100);

-3次元の場合
INSERT INTO Boxes VALUES (lA
INSERT INTO Boxes VALUES (lB
INSERT INTO Boxes VALUES (iC

もうお分か りだろうが、HAVING句 を次のように変える。

COUNT(Bl.d■ m)= 3

もし対象となっている空間の次元数が不明なら、HAVING句 を次のように変えるこ

とで一般化できる。

COUNT(Bl.d■ m)= (SELECT COUNT(DISTINCT d■ m)FROM Boxes)

訳注5:こ の様子を図で表現してみると、右図のようになる。

0 1 2 3 10 12

267

バ |ズ |ル |

65

滸
デヴィッド・プールは、彼にとって“シンプル"だ という問題に取り組んでいた。それ

は自社製品に対し、その対象年齢によって値段を分析するというものだった。

CREATE TABLE Pr■ ceByAge

(prOduct_■ d CHAR(10)NOT NULL,
loW_age INTEGER NOT NULL,
high_age INTEGER NOT NULL,
CHECK (low_age く h■ 9h_age),
product_price DECIMAL(12,4)NOT NULL,
PRIMARY KEY (product_■ d, low_age));

PriceByAge:購 入者の対象年齢テーフル

high_age::最 高年齢

product_id :製 品 ID

product_price :価 格

low_age:最低年齢

INSERT INTO Pr■ ceByAge VALUES
INSERT INTO Pr■ ceByAge VALUES
INSERT INTO Pr■ ceByAge VALUES
INSERT INTO PriceByAge VALUES

(lPrOduCtll, 5, 15, 20.00);
(lPrOductl', 16, 60, 18.00);
(lPrOduCtl', 65, 150, 17.00);
(!Product21, 1, 5, 20.00);

そのために彼がまず求めたかったのは、全年齢に適合する製品のリストである。

、‖ ′/

〕:9← その■

連番補助テーブルの詳細は、パズル48を参照。

この問題の面白いのは、1つのレコードでは年齢範囲がカバーできなくても、複数のレコードを合わせてカバーできた

のなら「合わせ技一本」と見なすことだ。

0 まず、「すべての年齢」を定義しよう。おそらくこれは、1歳から世界の最高年齢まで

一 例
えば、150歳

―
を指す。存命中の最高齢者と信じられているドミニカのエリザ

ベス・イスラエル (マ・パンポの名前でも知られる)が 1875年 1月 27日 生まれだという

から、これくらい範囲をとっておけば十分に違いない。

答えは、連番補助テーブル[訳
注1]を
使えばあっという間に得られる

[訳注2]。

訳注 1

訳注 2

268

L_

パズル 65 製品の対象年齢の範囲

‐ヽ‐′（Ｗ

７ヽ
目

、ヽ
２

　

．１

SELECT P.product_■ d
FROM Pr■ ceByAge AlS P, SequenCe AS S

WHERE S.seq BETWEEN P.low_age AND P.h■ 9h_age
AND S.seq く= 150
GROUP BY P,product_■ d
HAVING COUNT(seq)= 150;

また、次のような連番補助テーブルを使わない簡潔な別解も考えられる。

SELECT product_■ d

FROM PriceByAge
GROUP BY product_■ d

HAVING SUM(h■ 9h_age - low_age + 1)= 150,

2その

●
●
●
●
一
●
一―
■

●
●

■

範囲の合算と網羅性チエック

269

バ |ズ |ル |

66

瘍
G5~

私はかねてから、最近流行のパズル「数独」は、sQLプログラミングには格好の問題だ
と考えていた。数独パズルでは、まず9× 9のマスロを3× 3マ スずつ9個のブロックに

分割する。各マスには1～ 9の数字を1つずつ入れていくのだが、マスのいくつかには最

初から数字が入っている。最終的に、9× 9マ スの縦・横の各列、および3× 3のブロッ

ク内に同じ数字が入らないようにして全マスを埋めることができたら、パズルが解けた

ことになる。

妙なことに、数独パズルは1979年 に米国で生まれ、1986年 に日本で人気が出て、

2005年に国際的な流行を見た。現在では、ほとんどの新聞が毎日のようにこのパズルを

載せている。

さて、どうしたらこのパズルをSQLで解くことができるだろうか ? まずは、パズルの
マスロを配列 (i,j)と して設計することから始めるのがよいだろう。多くの人が最初に

試す方法では、エリアの情報を列として持っていない。また、数独パズルでは3× 3のブ

ロックに名前がないので、これに名前を与える方法を考える必要もある。

CREATE TABLE SudokuGr■ d

(■ INTEGER NOT NULL
CHECK (■ BETWEEN l AND 9),
j INTEGER NOT NULL

CHECK (j BETWEEN l AND 9),
val INTEGER NOT NULL
CHECK (val BETWEEN l AND 9),
re9■ on_nbr INTEGER NOT NULL,
PRIMARY KEY (■ , j, val));

SudokuGrid:数独テーブル

val:1～ 9の数字

i:マスロの列

reglon_nbr:エ リア番号

j:マ スロの行

それではこのテーブルを埋めていこう。各 (1,j)マスでは、1か ら9ま ですべての数字

が必要だ。そこで、1～ 9の数字を持つDigitsテーブルを作り、それをSudokuGridテ ー

ブルとクロス結合してマスごとに1～ 9の数字を1行ずつ挿入する。しかし、ブロックの

番号はどうやって入れよう ?

プロックの命名方法として分かりやすいのは、その位置を (x,y)座標で表すことだろ

う。x={1,2,31、 y=11,2,31と すると、xを 10の位、yを 1の位の数字に使うことで、

270

L⊥」上 _

2次元配列を扱う

lll,12,13,21,22,23,31,32,331と いう9つのブロックの識別番号が得られる。これ

にはちょっとした整数の計算が必要だが、さほど難しくはない。

INSERT INTO SudokuGr■ d (■ , j, val, reg■ on_nbr)
SELECT Dl.d, D2.d, D3.d,

10 ■ ((Dl.d + 2) / 3)+ ((D2.d + 2)/ 3)AS reg■ on_nbr
FROM D■ 9■ts AS Dl
CROSS JOIN D■ gits AS D2

CROSS JOIN Digits AS D3;

次に、既知の値をINSERTす る方法と、縦や横、ブロックの値をクリアする方法が必

要になる。既知の値を少なくすればするほど、このパズルの唯一の解である81マス分の

行を持ったテーブル (つ まり正解)を得られる期待が高くなる。

、 、|,′

'｀

ア争その■
0 第1案 としてありがちなのは、「縦、横、ブロックに対応した3つのDELETE文を書
く」というものだろう。

BEGIN
DELETE FROM SudokuGr■ d ―― 横
WHERE :my_■ = i
AND :my_j く> j

AND :my_val = val;

DELETE FROM SudokuGr■ d ―― 縦
WHERE :my_■ く>■

AND :my_j = j

AND :my_val = val;

DELETE FROM SudokuGr■ d ‐― EEり τ7

WHERE ■ く> :my_■

AND j く> :my_j

AND re9■ on_nbr = lo キ ((:my_■ + 2)/ 3)
+((:my_j + 2)/ 3)

AND :my_val = val);
END;

27■

l\flv 66 uHttTtv

SclLパズル

、||′ /

'9←

その2
0 だが、答えその1は実行時間を無駄にしている。1つのSQL文でできることを、あえて

3つ に分けておく理由はない。ここは強制的にコードを結合しよう。

DELETE FROM SudokuGr■ d

WHERE (((lmy_■ = ■ AND]く > :my_j)

OR (:my_i く> ■ AND j = :my_j))
AND :my_val = val)

OR (■ く> :my_■

AND j く> :my_J

AND re9■ on_nbr = 10 ' ((:my_■ + 2)/ 3)
+ ((:my_j + 2)/ 3)

AND :my_val = val),

しかし、このネストしたORは、はっきり言ってみにくい ! しかも、:my_val=valと

いう式が2度現れている。落ち着いてよく考えてみよう。(1,j)のペアは、入力された引

数に対して相互に排他的な4通 りに分類される。その入力によって、値をマスに残す

(Rccpl)かクリアする (lDclctcl)かが決定される。これは、ANDと ORを ネス トする代

わりに、CASE式 を使って書 くことができる。

DELETE FROM SudOkuGrid
WHERE CASE WHEN :my_1 = i AND :my_j = j -- tLtbA)'.fi

THEN 'Keep'
WHEN :my_1 = i AND :my_j <> j -- ffi
THEN 'Delete'
WHEN :my_i <> i AND :my_j = j -- ffi
THEN ,De1ete,

WHEN i <> :my_i AND j <> iny_j -- f.t)V
AND region_nbr = 10 * (:my_i + 2) I 3)

+ (:my_j + 2) I 3)
THEN 'DeIetC'
ELSE NULL END = 'Delete'

AND :my_val = val) i

272

2次元配列を扱う

、11′ /

〕:0← その3
0 残念ながら、答えその2をテストしてみると、うまくいかないことが分かる。すでに数

字が分かっているマスには特別な注意が必要だ
一
つまリマスには数字が入っている

ものとこれから入るものの2種類あるということだ。それを反映したのが次のクエリで

ある。

DELETE FROM SudokuGr■ d
WHERE CASE WHEN :my_■ = ■ AND :my_j = j AND my_val = val

THEN !Keepl
WHEN :my_i = ■ AND :my_j = j AND my_val く> val
THEN IDeletei

WHEN :my_■ = ■ AND imy_j く> j ―― 横
THEN IDelete:
WHEN :my_■ く> ■ AND :my_j = j ―― 縦
THEN IDeletet
WHEN ■ く> :my_■ AND j く> :my_j ―― .エ リフア

AND re9■ On_nbr = 10 ■ (:my_■ + 2)/ 3)
+ (:my_j + 2)/ 3)

THEN :Deletel

ELSE NULL END = lDelete:
AND :my_val = val);

解法をさらに改良するなら、パズルの履歴を残すために、すでに数字が分かっている

マスを専用のテーブルに入れることが考えられるだろう。だがこれは、皆さんへの課題

として残しておこう。

273

パズル66 数独パズル

バ |ズ |ル |

ノ｀一0√

蟄
手続き型言語の授業で必ず習う古典的な問題を考えてみよう。準備は至って簡単だ。

まず、夫の候補となる男性の集合と、男性と同数の妻の候補となる女性の集合を用意す

る。問題は、彼 。彼女らが安定な結婚生活を送れるように組み合わせてやることだ。

では「安定な結婚」とは何か ?手短かに言えば、男性も女性もこれ以上良い相手を見
つけられないような結婚のことだ。n人の男性の集合と、やはりn人の女性の集合があ

るとすると、すべての男性は、すべての女性に対して好みの優先順位を付けている。こ

のランキングは歯抜けも重複もない1か らnま での数値である。そして女性の側も同様

に、男性に好みの順位付けを行っている。

したがって、このパズルの最終日標は、どのペアの男女も「ほかの人と結婚すれば良

かった」と思うことがないように、n組の結婚を成立させることである。

例えば、夫の候補として (“ジョー・セルコ",“ブラッド・ビット")、 妻の候補として

(“ジャッキー・セルコ",“アンジェリーナ。ジョリー")を考えよう。もしジャッキーが

ブラッド・ピットと結婚したら、彼女としては文句なしだろう。私もまた、アンジェリ

ーナ 。ジョリーを伴侶とできるのは光栄だ。しかし、ブラッド・ピットとアンジェリー

ナ 。ジョリーが結婚したほうが、私たち2人と結婚するよりもナイスカップルになるの

は間違いない。ひとたび彼らが結婚すれば、彼らは安定状態に入り、ジャッキーと私は

離婚のチャンスを逃すことになる。

この安定な結婚の問題を解くための古典的なアルゴリズムは、バックトラック法に基

づいている。つまり、カップルの組み合わせを作っては、不幸な結婚をした組を修正す

るやり方である。もし、誰一人としてこれ以上の状況の改善が望めない状況に到達した

ら、アルゴリズムは停止して、答えを返す。

この問題には、よく知られている重要なポイントが2つある。それは、①必ず解があ

って、②しかも多くの場合、2つ以上の解があるということである。この問題をSQLで

解くのは、本当に難しい。SQLではバックトラックができないからだ。

安定な結婚とは、必ずしも幸福な結婚を意味しない、ということも覚えておいてはし

い。実際、この問題においては、どんな集合にも安定な結婚の組み合わせが最低 1つは

存在するが、大抵の場合、複数の異なる組み合わせ方が見つけられる。それぞれの結婚

の集合は、男性か女性どちらかの幸福を最大化しようとする傾向がある。

それでは、4組のカップルを使った小規模なサンプルから考え始めよう。

274

パズル67 安定な結婚
手続き型言語と宣言型言語の違いを知る

CREATE
‐
「ABLE Husbands

(man VARCHAR(5)NOT NULL,
woman VARCHAR(5)NOT NULし

,

rank■ ng INTEGER NO]‐ NULL CHECK
PRIMARY KEY (man, woman));

(ranking > 0),

Husbands:夫 テーフル

ranking:1煩 イ立

man:夫候補の名前 woman:妻候補の名前

INSERT
INSERT
INSERT
INSERT

INTO Husbands VALUES
INTC)Husbands VALUES
INT()Husbands VALUES
INTO Husbands VALUES

(lAbel,

(lAbel,
(:Abel,

(:Abel,

IJOanl, 1);

lKathyl, 2)i
lLynnl, 3);

IMollyl, 4);

INTO Husbands VALUES
INTO Husbands VALUES
INTO Husbands VALUES
INTO Husbands VALUES

INSERT INTO Husbands VALUES
INSERT INTO Husbands VALUES
INSERT INTO Husbands VALUES
INSERT INTO Husbands VALUES

INSERT INTO Husbands VALUES
INSERT INTO Husbands VALUES
INSERT INTO Husbands VALUES
INSERT INTO Husbands VALUES

INSERT

INSERT
INSERT
INSERT

(lBObl,

(lBObl,

(IBObl,

(lBObl,

IJoanl, 3);

lKathyl, 4);
lLynnl, 2);

!Mollyl, 1);

(lChuCkl,

(lChuCkl,

(lChuCkl,

(lChuCkl,

:Joanl, 3);

:Kathyl, 4);
:Lynnl, 2);

:Mollyl, 1);

('Dave' ,

('Dave' ,

('Dave' ,

('Dave' ,

:Joanl, 2
lKathyl,

:Lynnl, 3
lMollyl,

＞

１

＞

４

CREATE TABLE W■ ves

(woman VARCHAR(5)NOT NULL,
man VARCHAR(5)NOT NULL,
rank■ ng INTEGER N01‐ NULL CHECK
PRIMARY KEY (man, woman));

(ranking > 0),

Wives:妻 テーフル

ranking:順位

妻候補の名前 夫候補の名前

INSERT INTO VV■ ves VALUES

INSERT INTO W■ ves VALUES
INSERT INTO W■ ves VALUES
INSERT INTO W■ ves VALUES

('Joan ' ,

('Joan ' ,

('Joan ' ,

('Joan ' ,

:Abel, 1);

:Bobl, 3);

iChuckt, 2);
IDaVel, 4);

275

SclLパズル

INSERT INTO W■ ves VALUES
INSERT INTO W■ ves VALUES
INSERT INTO W■ ves VALUES
INSERT INTC)W■ ves VALUES

(lKathyl,

(lKathyl,

(lKathy',

(lKathyl,

:Abel, 4),

IBobl, 2),

lChuckl, 3);
:Davel, 1);

INSERT INTO Wives VALUES
INSERT INTO W■ ves VALUES
INSERT INTO W■ ves VALUES
INSERT INTO W■ ves VALUES

('Lynn' ,

('Lynn' ,

('Lynn' ,

('Lynn' ,

:Abel, 1),

:Bob:, 3);

:Chuckl, 4);
:Davel, 2);

INSERT INTO Wives VALUES
INSERT INTO W■ ves VALUES
INSERT INTO W■ ves VALUES
INSERT INTO W■ ves VALUES

(lMollyl,

(lMollyl,

(:Mollyl,

(lMollyl,

IAbel, 3);

lBobl, 4);

lChuckl, 1),

lDavel, 2);

このサンプルデータにおいては、

(IAbel, :Lynnl)

(IBObl, !JOanl)
(lChuckl, lMollyl)
(IDavel, IKathyl)

という組み合わせ方は正しくない。なぜなら、(IAbcl,IJoan!)と いう「ブロッキングペ

ァ[訳注l]」 が存在するからである。

W■ves(lJoan:, IAbel, 1)
Husbands(lAbet, lJoan:, 1)

という行から、Abcは JOanの 夫候補第1位で、Ioanは Abcの妻候補第1位であることが

分かる。だが、彼らはほかの人々と組み合わせられている。これを踏まえて上の組み合

わせを単純に入れ替えるだけで、次のような安定状態が得られる。

”驚
爾
一第”競
議
畿

圏^

＾̈̈̈
¨̈“一鱗

”一一態
一

('Abel, lJoanl)
(lBobl, :Lynnl)

(IChuckl, lMollyl)
(lDavel, lKathyl)

訳注1:こ こでは、夫候補と妻候補が相思相愛、つまり「互いが互いに満足」しているペアのこと。データの組み合わせを決
定付けるペア。

27る

＼||′ /

Q←

ヽ
・
／

パズル67 安定な結婚
手続き型言語と宣言型言語の違いを知る

バックトラッキングを使えば、すべての可能な結婚の集合をわざわざ作る必要はない。

ひとたびブロッキングペアが見つかれば、再度それを作る必要もない。それに対して

SQLは、まず膨大なすべての組み合わせを作り、それに対してフィルタをかけねばなら

ない。速度はバックトラッキングのほうがかなり高速だ。

SQLの唯一の利点は、この問題を解くほかのアルゴリズムは、普通、最初の解を見つ

けた時点でストップするのに対し、SQLはすべての組み合わせを網羅することである。

だがそれも、利点と言うには些細なものだ。

その■

0 ここで挙げる解は、リチャード・レムレーが送ってくれた。簡単に説明すると、この

クエリでは「すべての可能な結婚を作った後に、条件を満たさない組み合わせを除去す

る」という方法がとられている。だが、ちょっとした最適化のための“トリック"も含ま

れている。

私が『DBMS』 誌の1998年 6月 号 (http://www.dbmsmag.cOm/9806d06.html)に 書

いたコラム[訳注
2]を
見てもらえば、レムレーの解でも同様に、補助テーブルを使って順列

を生成するという巧みな方法を使っていることが分かるだろう。

CREATE TABLE W■ fe Perms

(W■fe_name VARCHAR(5)NOT NULL PRIMARY KEY,
perm INTEGER NOT NULL);

Wife_Perms:「 妻の順列」補助テーブル

perm:重み付けビット

wife_name:妻 の名前

INSERl‐ I NTC)W■ fe Perms
VALUES (lJoanl, 1), (IKathyl, 2), (:Lynnl, 4), (lMollyl, 8);

クエリは次のようなものだ。

SELECT Wl.W■ fe_name AS abe_w■ fe, IW2.W■ fe_name AS bob_w■fe,
W3.w■ fe_name AS ChuCk_W■ fe, W4.w■ fe_name AS dave_w■ fe

訳注 2:当該コラムに登場するパズルは、本書のパズル 40と ほぼ同じ内容である。

277

SoLパズル

FROM W■ fe_perms AS Wl, W■fe_perms AS W2,
W■fe_perms AS W3, W■fe_perms AS W4

WHERE (Wl,perm + W2.perm + W3.perm + W4.perm)= 15
AND NOT EXISTS

(SELECT '
FROM Husbands AS Hl, Husbands AS H2,
Wives AS WVl, W■ves AS WV2

WHERE Hl.man = H2.man
AND Hl.ranking > H2.rank■ ng

AND (Hl.man ll Hl.woman)
IN(lAbei
IBobl

iChuck'

:Dave[

AND H2,woman =WV

Wl.wife name,
W2 . wife_name,
W3 . wife_name ,

W4. wife_name)

woman

AND WVl,woman = WV2.woman
ANDI WYVl.ranking > WV2.ranking

AND (WVl.man l l WVl.WOman)
lN (lAbel ll Wl.wife_name,
IBobl ll W2.w■ fe_name,
lChuck: |I W3.w■ fe_name,
:Davei l l W4.w■ fe_name));

最初の述語は、特定の夫候補に対する妻候補のすべての順列を生成している。そして

EXISTS述語で、当該の行におけるブロッキングペアの有無を検査している。このクエ

リは、特に性能の低いマシン上では、少し実行時間がかかる。順列のトリックを使って

いるため、nの値が大きくなりすぎると、とうてい処理しきれなくなるだろう。

このコードを最適化するために考えられるトリックは、結合した文字列のリストを、

作られたばかりの行にブロッキングペアがあるかどうか調べるのに使っていることであ

る。このトリックはもっと短く書くこともできる。

SELECT 十

FROM Foo as Fl, Bar as Bl
WHERE Fl.c■ ty = Bl.city
AND Fl.state = Bl.state;

のようなコードを、

SELECT キ

FROM Foo as Fl, Bar as Bl
WHERE Fl.city l l Fl.state = Bl.city ll Bl.state;

一ｔ

ヽ
一■

■

●

〓

Ｆ
，
■
■

278

パズル67 安定な結婚
手続き型言語と宣言型言語の違いを知る

と書き換えればよい。あるいは、sQL-92の フルレベルに対応しているRDBMSな ら、

SELECT ★

FROM Foo as Fl, Bar as Bl
WHERE (Fl.city, Fl.state)= (Bl.c■ ty, Bl.state);

と書くこともできる。こう書いたほうが、実行速度もアップする。

私は、このような結合した名前は、それ自身を不可分で“原子的"な単位として扱うの

が合理的だと考える。なぜなら、このような名前を分解すると、持ち合わせている独自

の意味が破壊されてしまうからだ。その意味では、(緯度,経度)のような組み合わせも

原子的な単位を成していると言えよう。

このサンプルでは、結婚の集合は全体で41(=24)個 しかなかったので、低性能なマ

シンでもそこそこ速く動くはずだ。そこで今度は、問題をn=8に拡張してみよう。す
ると、可能な結婚の集合は8!(=4万 320)に膨れ上がる。だが、最終的に求める答えの

集合に含まれる行数は、非常に少ないのだ。

、||′ /

〕:9← その2
0 以下に、n=8の場合の安定な結婚の問題を考えるためのコードを示す。この例は、ニ

クラウス・ヴィルトの著書『アルゴリズム十データ構造=プログラム』から取った。この

問題については、ドナルド・クメースの書いた小冊子も参考になる (最後の参考文献を

参照)。

CREATE TABLE Husbands

(man CHAR(2)NOT NULL,
woman CHAR(2)NOT NULL,
PRIMARY KEY (man, woman),
rank■ng INTEGER NOT NULL);

CREATE TABLE W■ ves

(wOman CHAR(2)NOT NULL,
man CHAR(2)NOT NULL,
PRIMARY KEY (woman, man),

rank■ng INTEGER NOT NULL);

CREATE TABLE W■ fe Perms

(perm INTEGER NOT NULL PRIMARY KEY,
W■ fe_name CHAR(2)NOT NULL);

279

麟
鷲
ｙ
爾
醸
璽
艤
醸
鸞
饉

轟

　

饉
饉
鸞
鷺
爾
鷺
艤
艤
饉
鱗
爾

　

滲
鶴憑
錮爾
璽
繭震
鐵璽
機饉

SoLパズル

一 男性の女性に対する好みの順位

INSERT INTO HusbandS ――夫:#1
VALUES (lhl:, Iwll, 5), (lhll, Iw21, 2),

(:hll, lw31, 6), (〕 hll, :w4', 8),

(:hll, iw51, 4), (lhll, lw61, 3),

(lhll, :w7:, 1), (lhll, Iw8:, 7);

INSERT INTO HusbandS ―― 夫 #2
VALUES (lh21, lwll, 6),(lh21, lw2

(!h21, lw31, 2), (lh21, (w4
(:h2:, lw51, 8), (lh21, lw6
(:h21, lw71, 7), (lh21, `w8

３

１

４

５

INSERT INTC)Husbands ―― j夫: #3
VALUES (lh3[, lwll, 4), (lh3:, Iw2

(lh31, lw31, 1), (lh31, lw4
(lh31, 'w5:, 6), (lh3:, Iw6
(lh31, lw71, 7), (lh31,

〕w8

2),

3),

8),

5);

INSERT INTO Husbands ―― j夫: #4
VALUES (lh41,

(lh41,

(lh41,

(lh41,

Iwll,8)
lw3', 1)

:w51, 5)

:w71, 7)

([h4:,

(:h41,

(lh41,

(lh41,

;w21, 4),

Iw41, 3),

lw61, 6),

Iw81, 2);

INSERT INTO HusbandS ―― 夫 #5
VALUES (lh51, IWll, 6),

(:h51, 'w31, 2), (:h51,
(lh51, lw51, 4), (lh51,
(lh51, lw71, 7), (lh51,

(lh51, lw21
1w4!, 3),

lw6:, 5),

'w81, 1);

8),

INSERT INT()Husbands ‐‐ j夫: #6
VALUES (th61, lwll, 7),(lh61,

(:h61, Iw3!, 6), (lh61,
(lh61, lw51, 3), (lh61,
(lh61, lw71, 2), (lh61,

２

４

６

８

　

　

２

４

６

８

Ｗ

Ｗ

Ｗ

Ｗ

　

　

Ｗ

Ｗ

Ｗ

Ｗ

4)

5)

8)

1)

INSERT INTO Husbands ‐― j夫: #7
VALUES (lh71, lwll, 5), (:h71,

(lh71, Iw31, 4),(lh7:,
(lh71, lw51, 7), (lh7:,
(lh71, lw71, 6),(lh71,

1),

2),

3),

8),

INSERT INTO HusbandS ―― j夫: #8
VALUES (lh81, Iw13, 2),(lh81,

(:h81, lw31, 7),(lh81,

280

lw21, 4),

lw41, 3),

パズル67 安定な結婚
手続き型言語と宣言型言語の違いを知る

:W51, 6), (!h81, Iw6
!w71, 5),(lh8:, Iw8

,1),

,8),

――女性の男性に対する好みの順位

INSERT INTO W■ ves ―― 妻 #1
VALUES :Wl l, lhll, 6),

Wll, !h31,

Wl', Ih51,
Wll, lh71,

('Wll,

(lWl',

(lWll,

([Wll,

|,3),
1,1),

1,2),
l,5);

７

４

８

２

４

６

８

　

　

２

４

６

８

INSERT INTO W■ ves ―― 妻 #2
VALUES (〕 w21, lhll, 4), (

(lw21, Ih31, 3),(
(lw21, lh51, 2),(
(:w21, :h7:, 6), (

INSERT INTO W■ ves ―― 妻 #3
VALUES 〔w31, lhl:, 3),

, lh3:, 5),

, Ih51, 8),

, :h71,,7),

:h21, 4)

lh4:, 6)
lh61, 1)

lh8[, 2)

w2!

w21

w21

w21

INSERT INTO W■ ves ―― 妻 #4
VALUES (lw41, Ihll, 8), (:w41,

(:w41, lh31, 1), ('w41,
(lw41, lh51, 7), (lw41,
(lw41, lh71, 4), (lw41,

INSERT INTO W■ ves ―― 妻 #5
VALUES (:w51, lhll, 3), ('w5:,

(lw51, !h31, 2),(lw51,
(lw5', ih51, 5),(lw51,
(lw51, lh71, 6),(lw51,

INSERT INTO W■ ves ―― 妻 #6
VALUES (lw6[, lhll, 2)

(lw61, :h3:, 3)
(lw61, lh51, 3)

(lw61, lh71, 5)

lNSERT INTO W■ ves ―― 妻 #7

:h21, 2)

(h41, 3)

:h61, 5)

!h81, 6)

lh2',

:h41,

lh61,

lh8:,

:h21,

lh41,

lh61,

:h81,

1),

6),

7),

4);

:W31

lw31

lw31

(Iw7:,

(:w71,

(lw71,

(Iw7:,

(lw31,
(:w31,

(lw31,

(:w31,

７

４

１

８

Ｗ

Ｗ

Ｗ

Ｗ

VALUES lhll,6),
lh31, 1),

lh51, 2),

lh71, 3),

w71,

w71,

w71,

w71,

lh21, 4)

lh4:, 5)

〔h61, 8)
lh81, 7)

28イ

ScLパズル

難
量
畿鐵
鸞
轟鷺
菫
爾罐
饉
機嬢
饉
饉

　

難
醸
麟
艤
鸞
饉
爾
爾
繭

INSERT lNTO W■ ves ―― 妻 #8
VALUES (:w81

(lw8:

('w8:

(lw8:

:w81,

lw81,

Iw81,

lw81,

lh21, 2)

!h4:, 4)

!h61, 6)

lh81, 3)

lhl:

:h31

lh51

1h71

8),

7),

5),

1),

正しい結果を求めるクエリは、次のようになる。

一 この補助テーブルによって、妻のすべての順列 を作成できる

INSERT INTO W■ fe PermS

VALUES (1, lWll), (2, Iw21), (4, lw31), (8, lw41),

(16, Iw5:), (32, :w61), (64, lw71), (128, lw81);

SELECT A.wife_name AS hl, B.W■ fe_name AS h2,

C.wife_name AS h3, D.w■ fe_name AS h4,

E.w■ fe_name AS h5, F,wife_name AS h6,
G.wife_name AS h7, H.w■ fe_name AS h8

FROM Wife_Perms AS A, W■ fe_Perms AS B,

W■fe_Perms AS C, W■fe_Perms AS D,

W■fe_Perms AS E, W■fe_PermS AS F,

W■fe_Perms AS G, Wife_Perms AS H
WHERE A.perm + B.perm + C.perm + D.pe rm
+ E.perm + F.perm + G.perm + H.perm = 255

AND NOT EXISTS

(SELECT
キ

FROM Husbands AS W, HuSbandS AS X, Wives AS Y, Wives AS Z
WHERE W.man = X.man
AND W.ranking > x.ranking
AND X.Woman = Y.woman
AND Y.woman = Z,wOman
AND Y.ranking > Z.rank■ ng

AND Z.man=W.man
AND W.man ll W.WOman
IN (lhll
lh3〕

lh5:

lh7:

AND Y.man ll Y
IN (lhll l
{h3〕
 |

[h5: |

!h7: |

I A.wife_name, 'n2
I C,wife_name, 'h4
I E.wife_name, 'h6
I G,wife_name, 'h8

woman

A.wife_name, 'h2'
C.wife_name, 'h4'
E . wife_name, ' h6 '

G.wlfe_name, 'h8'

B . wife_name ,

D . wife_name ,

F. wife_name,
H. wife_name)

| | B.wife_name,
| | D.wife_name,
I I F.wife_name,
I I H.wlfe_name));

結果はこうである。

282

パズル67 安定な結婚
手続き型言語と宣言型言語の違いを知る

hl h2 h3 h4 h5 h6 h7 h8

２

２

３

３

６

６

６

６

７

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

４

４

６

６

３

３

４

４

４

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

lwll

lw81

1wll

〕w81
:wl`

lw81

lwll

lw8:

tw8:

Iw7:

lwl:

:w7:

:wll

lw71

iwll

:w71

1wll

lwl:

lw5!

:w5:

iW5:

:w51

:w51

:w51

iw51

lw51

lw51

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

虫

Ｃ

″７

ヽ

／
●
ヽ

、ヽ
・
κ その3
0 この問題の肝は、NOT EXISTSに よる比較処理のパフォーマンスを最大化すること

にある。以下に示すUnstablcテ ーブルは、不安定な関係 (bad_marriagc)の 一覧である。

続くINSERT文 は、最後に記すクエリのLIKE述語の引数として使うことを意図して書

かれている。挿入データのアンダースコア (_)は、LIKEの ワイルドカードとして使う点

に注目してほしい。

CREATE TABLE Unstable

(bad_marr■ age CHAR(16)NOT NULL);

¨̈一̈一一̈一̈̈議
¨̈鰯
一“灘
一難
一ヽ

INSERT INTO Unstable

SELECT DISTINCT
CASE WHEN W.man
WHEN Y.man

|I CASE WHEN 'W.man
WHEN Y.man

|I CASE WHEN W.man
WHEN Y.man

|I CASE WHEN W.man
WHEN Y,man

| I CASE WHEN W.man
WHEN Y.man

lhll

lhll

`h21
lh21

ih31

lh31

lh41

1h41

lh5〔

lh51

THEN
THEN
ELSE
THEN

THEN

ELSE
THEN
THEN
ELSE
THEN
THEN

ELSE

THEN
THEN
ELSE

W, woman

Y . woman
.-.

END

W. woman

Y. woman
.-,END

W. woman

Y, woman
,-. END

W. woman

Y. woman
,-'

END

W. woman

Y. woman
, ,END

|I CASE WHEN W.man = lh61 THEN W.woman
WHEN Y.man = lh61 THEN Y.woman

283

SQLパズル

284

ELSE l
CASE WHEN IW.man = lh71 THEN W
WHEN Y.man = :h7: THEN Y

ELSE :

CASE WHEN W.man = !h8: THEN W
WHEN Y.man = ih8: THEN Y

ELSE l

Husbands AS W, Husbands AS X,
Wives AS Y, W■ ves AS Z
W.man = X.man
W,rank■ ng > x.rank■ ng

X.woman = Y.woman
Y.woman = Z.woman
Y.ranking > ZI.ranking
Z.man = W.man;

-,
END

'. woman
'. woman

-'
END

', woman

, woman

-'
END

FROM

WHERE
AND
AND
AND
AND

AND

SELECT A.wife_name AS h1, B.wife_name AS h2, C.wife_name AS h3,
D.wife_name AS h4, E.wife_name AS h5, F.wife_name AS h6,
G.wife_name AS h7, H.wife_name AS h8

FROM wife_perms AS a, wife_penms AS b, wife_penms AS c,
wife_perms AS d, wife_perms AS e, wife_perms AS f,
wlfe_perms AS g, wife_perms AS h

WHERE B.wlfe_name NoT IN (A.wlfe_name)
AND C.wlfe_name NoT IN (A.wife_name, B.wife_name)
AND D.wife_name NoT IN (A.wife_name, B.wife_name, C.wife_name)
AND E.wife_name NOT IN (A.wife_name, B.wife_name, C.wife_name,

D. wife_name)

AND F.wife_name NoT IN (A.wife_name, B.wife_name, C.wife_name,
D,wife_name, E.wife_name)

AND G.wlfe_name NoT IN (A.wife_name, B.wife_name, C.wife_name,
D.wlfe_name, E.wife_name, F.wife_name)

AND H.wife_name NOT IN (A.wife_name, B.wife_name, C.wife_name,
D.wife_name, E.wife_name, F.wife_name, G.wife_name)

AND NOT EXISTS
(SELECT * FRoM Unstable

WHEREA.wife_name ll B.wife_name ll c.wife_name ll
D.wife_name ll e.wife_name Il F.wife_name ll
G.wife_name I I H.wife_name
LIKE bad_marrlage);

結果は次のようになる。

パズル67 安定な結婚
手続き型言語と宣言型言語の違いを知る

hl h2 h3 h4 h5 h6 h7 h8

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

６

４

３

６

４

３

４

４

４

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

Ｗ

lwll

〕wl:

'wl:
:w71

:w71

lw71

twll

:wll

lw7:

lw5:

〕w51
1w51

:w5:

:w51

lw5〔

{w51

iw51

1w51

リチャードがこのクエリの実行時間を計ったところ、4万行を4秒で処理したという。

l秒につき、平均 l万行前後を処理した計算だ。私としては、これ以上のパフォーマンス

は望めないと思う。

■参考文献

① Gusncrld,Dan,and lwing,RObcrt Wっ Thc Stablc Marriagc Problcm:Structurc&

ハ、lgorithrns,ISBIN O-262-07118-5.

② Knuth,Donald Eっ CRM Procccdings&Lccturc Notcs,Vol#10,“ Stablc Marrlagc

and lts Rclation to Othcr Conlbinatorial Problcrns,''ISBN O-8218-0603-3.

この小冊子は、著者の ドナル ド・クヌースが 1975年に行った講演を採録 したもので、

「安定な結婚」の美 しい理論を使った分析に対するやさしい解説 となっている。この

テーマの基本的なパラダイムを説明してくれている。

③ Vヽirth,Nildaus,Scction 3.6,Algorithms+Data Structurcs=Programs,ISBN O-13-

022418-9。 (邦訳『アルゴリズム+データ構造=プログラム』科学技術出版社,1979)

この本のセクション3.6ではPascal言語を使った解と、アルゴリズムについての短い

分析が示されている。今回は、この本のデータをサンプルに使わせてもらった。著者

のニクラウス・ヴィルトは、さまざまに異なる夫と妻の「幸福の程度」を与える複数の

解答を与えている。

285

lw81

1w81

1w81

'wll
lwll

lwll

lw8'

:w8:

lwll

Iw7:

lw71

1w7:

lw81

1w8:

Iw8:

:w21

1w71

lw81

バ |ズ |ル |

68

争
人がバス停へやってきて、最初に来たバスに乗っていくとしよう。このバス停に止ま

るバスには、「A」 と「B」 の2つの運行ルートしかないとする。また、どちらのルートのバ

スも、ちょうど1時間おきにバス停に到着する。ここまで聞くと、バス停にやってくる

人は、どちらのルートのバスを待つ時間も大体同じぐらいだと思うだろう。ところが実

際には、バスBよ りもAのほうが圧倒的に待ち時間が長いのだ。なぜか ?

実は、そのバス停では、バスAは毎時00分に出発し、バスBは毎時05分に出発する。

したがって、バスBに乗るためには、00分と05分の5分間の間にバス停に到着しなけれ

ばならない。残りの時間に到着した人は、バスAが来るまで座って待つほかない。

さて、このように次に出発するバスを見つけるという問題は、SQLを使えば割と簡単

に解くことができる。以下に、架空のバスの運行スケジュールを保持する簡単なテーブ

ルを示す。なお、出発地と目的地の情報は問題と関係ないので省略する。

CREATE TABLE Schedule

(route_nbr INTEGER NOT NULL,
depart_time TIMESTAMP NOT NULL,
arr■ ve_t■ me TIMESTAMP NOT NULL,

CHECK (depart_t■ me く arr■ ve_t■ me),

PRIMARY KEY (route_nbr, depart_t■ me));

Schedule:運行スケジュールテーブル

depart the:出発ヨ寺刻

route_nbr:運行便番号

arrive tirne l到 ,着
:時亥」

INSERT INTO Schedule
VALUES (3, i2006-02-09

(4, i2006-02-09
(5, 12006-02-09

(6, 12006-02-09

(7, 12006-02-09

(8, 12006-02-09
(9, 12006-02-09

10:001,
16:001,

18:001,

20:001,

11:001,

15:00!,

18:001,

14:001)
17:001)

19:001)

21:001)

13:001)

16:001)

20:001)

12006-02-09
:2006-02-09
12006-02‐ 09
12006-02-09

12006-02-09

12006-02-09
12006-02-09

例えば、12006-02-0915:301に バス停に到着した人に対しては、routc_nbr=4(ル ー

ト4番)が返すべき結果となる。バス停に到着した時刻が 12006-02-0916:301の 場合は、

同時刻に出発するルート5番 とルート9番が答えになる。

286

L

ヽ
¨
／

、11′ /

Q←

、||′ /

Q←

t\flt 68 tl7'at+5trh\5
時間データの扱い方 (その 1)

その■

さて、どうすればこの問題を解けるだろうか ?計算を使う方法なら、到着時刻以降
のバスの出発時刻を求めることになる。すると、次のようなクエリが考えられる。

SELECT route_nbr, depart_time, anrive_time
FROM Schedule

WHERE depart_time
= (SELECT MIN(depart_time)

FRoM Schedule
WHERE :my_time <= depant_time);

出発時刻 (dcparttimc)は主キーの一部なのでインデックスが使用され、MIN関数は

高速に計算される
[注 1]。 したがって、このクエリはパフォーマンスも良好なはずだ。

その2

0

ヽ
¨
／

0 これで一応は解けたわけだが、「最小値を求めずに解く」方法はないだろうか ?

あるバスが出発するまでに、待たねばならない時刻を示す列をテーブルに追加してみ

よう。ルート3番 は始発なので、深夜0時 00分から朝の10時 00分までにいつ到着して

もかまわない。10時 00分からll時 00分の間に到着した場合には、ルート7番に乗るこ

とになる。そのほかのバスについても同様だ。すると、テーブル定義は次のようになる。

CREATE
‐
「ABLE Schedule

(route_nbr INTEGER NOT NULL,
wa■t_t■ me TIMESTAMP NOT NULL,

depart_t■me TIMESTAMP NOT NULL,
arr■ ve_t■ me TIMESTAMP NOT NULL,

CHECK (depart_t■ me く arrive_t■me),
PRIMARY KEY (route_nbr, depart_t■ me));

Schedule:運行スケジュールテーブル

depart_time:出 発時刻

route nbr:サ 1贋路番号

arrive time:至 11着日寺刻

wait time:待 ち時間

注 1:ツ リーインデックスを基本とする古いRDBMS製品では、(route_nbr,depart_time)と (depart_tlme,route_nbr)
のインデックスは別物だつたが、八ッシュやビットベクトルなどのインデックスも備えた製品では、このような

.`キ
ー

の並び
・
による制限はない。また、各キー列の統計情報を保持する製品もあり、その最小値や最大値、COUNT(☆)、

COUNT(DISTINCTく 列名>)な どの情報を簡単に取得できる。

287

S(2:Lパズル

サンプルデータはこうなる。

INSERT INTO Schedule
VALUES (3, :2006-02-09 00:001,

12006-02-09 14:001),

(7, 12006-02-09 10:001,
12006-02-09 13:001),

(8, 12006-02-09 11:001,
t2006-02-09 16:001),

(4, :2006-02-09 15:001,
12006-02-09 171001),

(5, 12006-02-09 16:001,
12006-02-09 19:001),

(9,
〕2006-02-09 161001,
12006-02-09 20:001),

(6, :2006-02-09 18:001,
12006-02-09 21:001);

00:,

001,

001,

001,

001,

00',

00:,

:2006-02-09

〕2006-02-09

12006-02-09

〕2006-02‐ 09

12006-02-09

12006-02-09

〕2006-02-09

10

11

15

16

18

18

20

テーブル設計を変えたことで、サブクエリなしでクエリを書くことが可能になった。

SELECT route_nbr, depart_tlme, arrive_time
FRoM Schedule

WHERE :my_time > wait_time AND :my_time <= depart_time;

実行効率という面から見て、このクエリはどうだろう?まず、このスケジュール表の

各行について、TIMSTAMPttl列 分が追加で必要になる。するとシステム全体では、

(365日 ×ルート本数×TIMSTAMP型 のサイズ)の記憶領域を追加で必要とする。これ

は悪い話ではない。バスの運行表の場合、少なくとも数ヶ月の間は一定だと考えられる。

本当の疑間は、「waittimcの 計算にどれぐらいの時間がかかるか」だ。恐らくそれには、

最初のクエリを1度実行するのと同じだけの時間、およびテーブルデータをUPDATE

文ないしINSERT文 の一部で処理する時間がかかるだろう。

データベースの問題を考える際に、テーブル駆動型 (tablc― drivcn)の 解法
[訳注1]を
見つ

けるためには、あなた自身の考え方を少し変えてみるだけでよいのだ。

訳注 1:テーブル駆動型の解法とは、計算の代わりに参照テーブルを使用するものである。

288

バ |ズ |ル |

蟄q5~
l種類の商品― 何

かの部品だとしておこう一
だけしか保管しない、とても単純

な倉庫を想像してはしい。この倉庫には1日 1回、在庫が追加 (入庫)さ れる。同様に、

この倉庫は1日 1回やってくる要求に応じて部品を出庫する。この、ちよっとした問題

で使用するテーブルを以下に示す。

CREATE
‐
「ABLE VVidgetlnventory

(rece■ pt_nbr INTEGER NOT NULL PRIMARY KEY,
purchase_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
qty_on_hand INTEGER NOT NULL
CHECK (qty_on_hand >= 0),
un■ t_pr■ ce DECIMAL (12,4)NOT NULL);

Widgelnventory:在 庫テーブル

purchase_date:仕 入日

unltprice:仕入単価

receiptnbr:受 入番号

qty_on_hand:入 庫数 (その日の仕入数)

データは次のようなものを使おう。

Widgetl nventory

receipt_nbn punchase_date qty_on_hand unit_price

12005-08-011

12005-08-021

12005-08-03:

12005-08-041

12005-08-05'

１

２

４

３

４

10.00

12.00

13.00
12.00
10.00

仮に、2005年 8月 5日 に部品が100個売れたとする。このとき、売れた部品の仕入原

価をどうすれば計算できるだろうか。なお、正解は1つではなく、原価の計算方法には

複数の選択肢がある。

1.2005年 8月 5日 現在の取替原価 [訳注l]を用いる。この方法だと、現在は仕入単価

訳注 1:現 時点で同じ資産を調達するのにかかるコスト。

289

69

SclLパズル

が落ち込んでいるので、部品の仕入原価は1000.00ドルで済む。

2.現時点での平均原価を用いる。現在は160個の在庫があり、その仕入れにトータ
ルで1840.00ドル支払ってきた。すると、部品の平均仕入単価は11.50ド ルにな

り、100個分でl150.00ド ルになる。

3.LIFO、 つまり「後入れ先出し(Last ln,First Out)」 方式を用いる。直近の仕入れ

から順に、時系列をさかのぼって計算する。

2005年 8月 5日仕入れ分
… ・̈ 45個×10.00ドル==450.00ドル
2005年 8月 4日仕入れ分
・・…・ 35個×12.00ド ル==420.00ドル

2005年 8月 3日 仕入れ分
・・・・・・ 20イ固〕×(13.00ド ル===260.00ド ル

(出荷数45個)

(出荷数80個)

(出荷数 100個、余り20個)

したがって、売れた部品の仕入原価はl130.00ドルとなる。

4.FIFO、 つまり「先入れ先出しいrst ln,First Out)」 方式を用いる。一番古い仕入

れから順に、時系列に沿って計算する。

2005年 8月 1日仕入れ分
…・・・ 15イ固×10.00ド ル=150
2005年 8月 2日仕入れ分
・・…・ 25イ固×12.00ド ル=300
2005年 8月 3日仕入れ分
・・…・ 40個×13.00ド ル=520
2005年 8月 4日仕入れ分
……・ 20個×12.00ドル=240

(出荷数 15個)

(出荷数40個)

(出荷数80個)

(出荷数 100個、余り15個)

00ドル

00ドル

00ドル

00ドル

したがって、売れた部品の仕入原価は1210.00ドルとなる。

これら4つのシナリオのうち、最初の2つ をプログラミングするのは簡単だ。

CREATE VIEW ReplacementCost(current_replacement_COst)
AS

SELECl‐ un■ t_pr■ ce

FROM W■ dgetlnventory
WHERE purchase_date
= (SELECT MAX(purchase_date) FROM W■ dgetlnventory);

290

パズル69 後入れ先出しと先入れ先出し
部分和問題の解き方

currentreplacement_cost:2005年 8月 5日現在の取替原価

CREATE VIEW AverageCost(average_replacement_cost)
AS

SELECT SUM(un■ t_pr■ ce ■ qty_on_hand) / SUM(qty_on_hand)
FRC)M Widgetlnventory;

average_replacement_cost:現時点での平均原価

LIFOと FIFOの ケースはもっと歯ごたえがある。なぜなら、毎日の入庫を先入れもし

くは後入れの順番で検索し、要求された出庫数を満たす日付を探す必要があるからだ。

ゐ
ν
７

′
↑
ヽ ｀その■

、||

/′

0 まずはLIFOの ケースから考えてみよう。最初に、次のようなビューを作成する。

CREATE VIEW LIFO

(StOCk_date, unit_pr■Ce, tOt_qty_On_hand, tOt_COSt)
AS
SELECT Wl.purchase_date, Wl.unit_pr■ ce,

SUM(W2.qty_on_hand), SUM(W2.qty_on_hand ★ W2.unit_pr■ ce)
FROM W■ dgetlnventory AS Wl, Widgetlnventory AS W2
WHERE W2.purchase_date >= Wl,purChaSe_date
GROUP BY Wl.purchase_date, lWl.unit_price;

LIFO:後入れ先出しビュー

unitprice:そ の日の仕入単価

tot_cost:その日までに支払った仕入金額合計

stock date:仕入日

10t_qty_On_hand:そ の日の在庫累計

このビューの各行は、仕入日とその日の仕入単価、在庫の累計とその日までに支払っ

た仕入金額の合計を表している。このビューを使うと、LIFO方式のコストは次のクエ

リで求められる。使っている計算は直接的だし、ロジックも簡単だ。

SELECT (tot_cost ̈((tot_qty_on_hand ― :order_qty)

' unit_pr■ce))AS cost
FROM LIFO AS Ll

29■

SQLバズル

WHERE stock date
= (SELECT MAX(stock_date)

FROM LIFO AS L2

WHERE tot_qty_on_hand >= :order_qty);

ここでは、要求数 (:ordcLqり)を満たす (ま たはそれ以上の)在庫がある直近の日付

を見つけ出さなければならない。偶然にも、ちようど要求された数と同じ在庫を持つ日

を見つけたら、その日までに支払った金額を売れた部品の仕入原価として返す。もし、

在庫数が要求された数に届かなければ、何も返さない。要求数以上の在庫数がある場合

には、要求数を満たすだけの在庫に達する日を現在から数えて調べ、その日における在

庫残数 (totqり _on_hand― :ordcLqり)と仕入単価 (unit_pricc)を 掛けて、最後にその

日までの仕入金額合計 (totcost)か ら引き算する。

一方、FIFOについても類似の方法で計算することができる。まずは、次のSQL文で
ビューを作成する。

CREATE VIEW FIF0

(StOCk_date, un■ t_pr■ ce, tot_qty_On_hand, tOt_cOst)
AS
SELECT Wl.purchase_date, Wl.un■ t_price,
SUM(W2.qty_on_hand), SUM(W2.qty_On_hand ★ W2.unit_pr■ ce)

FROM W■ dgetlnventory AS Wl, WidgetlnVentory AS W2
WHERE W2.purchase_date く= Wl.purchase_date
GROuP BY Wl.purchase_date, Wl.un■ t_price;

そして、次のクエリを実行する。

SELECT (tot_cost ― ((tot_qty_on_hand ― :order_qty)
十 un■t_price))AS cost

FROM FIFO AS Fl
WHERE stock_date = (SELECT MIN(stock_date)

FROM FIFO AS F2
WHERE tot_qty_on_hand >= :order_qty);

その2

ビューの代わりに、導出テーブルとCASE式 を使うこともできる。次に示すLIFOの

SQL文では、CASE式により、在庫の累計が :ordcLqり を下回る日はその日の入庫数で

ブ⑦←′́
ツ
0

292

‐―′為
句
ツ

ヽ

／
卜
ヽ

、
ヽ
２

t\/)t 69 &.^nftfrvcftxnftfrv
部分和問題の解き方

仕入原価を計算し、最後に :ordcr_qり を上回る日だけ必要な数を求めてから仕入原価を

計算している。外側のクエリは、SUM(W3.v)で これらの計算結果を合計している。

SELECT SUM(W3.v)AS cost
FROM (

SELECT Wl.un■ t_price
t CASE WHEN SUM(W2.qty_on_hand)く = lorder_qty
THEN Wl.qty_On_hand
ELSE :order_qty
― (SUM(W2.qty_on_hand) ― Wl.qty_on_hand)

END

FROM W■ dgetlnventory AS Wl, W■ dgetlnventory AS W2
ハヽIHERE Wl.purchase_date く= W2.purchase_date
GROUP BY Wl,purchase_date, Wl.qty_on_hand, Wl,un■ t_pr■ ce
HAVING (SUM(W2.qty_on_hand) ― Wl.qty_on_hand)く = :order_qty

)AS W3(v);

なお、答えその 1、 その2で示したクエリとビューからは、部品の在庫数しか分からな

い。実際に出庫を行うわけではない点に注意しよう。ここでは、購入日の古い部品を優

先的に出庫するやり方で考える。

その3
では、在庫を更新するUPDATE文はどう書くのだろう? これまでの答えでは、部品

が出庫されたときにも在庫の変更までは行わなかった。別のビューを作って、変更処理

を容易にしよう。

0

CREATE
AS
SELECT

FROM
WHERE
GROUP

VIEW StockLevels (purchase_date, previous_qty,current_qty)

Wl,purchase_date,
SUM(CASE WHEN W2.purchase_date く Wl.purchase_date

THEN W2.qty_on_hand ELSE O END),

SUM(CASE WHEN W2.purchase_date く= Wl,purchase_date
THEN W2.qty_on_hand ELSE O END)

W■dgetlnventory AS Wl, W■ dgetlnventory AS W2
W2.purchase_date く= Wl.purchase_date
BY Wl.purchase_date, Wl.un■ t_pr■ ce;

StockLevels:在庫水準ビュー

previous_qty:仕 入れ前の在庫累計

purchase_date:仕 入日

current_qty:仕 入れ後の在庫累計

293

SQLパズル

StockLevels

pu nc hase_dat e previous_qty current_qty

12005-08-011

12005-08-021

12005-08-031

:2005‐ 08-041
12005-08-051

0

15

40

80

115

15

40

80

115

160

CASE式 を使えば、自己結合を行わなくて済む。

CREATE PROCEDURE RemoveOty (IN my_order_qty INTEGER)
LANGUAGE SQL

BEGIN

IF my_orden_qty > 0

THEN

UPDATE Widgetl nventory
SET qty_on hand

= CASE WHEN my_order_qty
>= (SELECT current_qty

FROM StocKLeVelS AS L

WHERE L-purchase_date
= Widgetlnventory. purchase_date)

THEN O

WHEN my_order_qty
< (SELECT previous_qty

FROM Stocklevels AS L

WHERE L.punchase_date
= Widgetlnventory. purchase_date)

THEN Widgetl nventory. qty_on_hand
ELSE (SELECT curnent_qty

FROM StocKLeVeIs AS L

WHERE L.punchase_date
= Widgetlnventory. purchase_date)

- my_orden_qty
END;

END IF;

一 部品の仕入数が0に なった日の行を削除する

DELETE FROM Widgetlnventory
WHERE qty_On_hand = 0,

END

294

パズル69 後入れ先出しと先入れ先出し
部分和問題の解き方

、 |
1ヽ1′ /

'気

9←その4
0 在庫に関するもう1つの問題は、「ビッタアップするビン

[訳注2]の
数を最小、あるいは

最大にして、要求された数の出庫を行うにはどうするか」である。ここでは毎日の入庫

ごとに1つのビンを作るが、特に順序は設定せず、どのビンからでも出庫できるものと

しよう。先のサンプルデータでは、「部品80個」という出庫要求に対し、受入番号 (1,2,

3)と 受入番号 (4,5)と いうビンの組み合わせが考えられる。たまたま組み合わせが受

入番号順に並んだが、そうである必要はない。

この問題は、数学者の間で (論理的には紛れもなく)「ビン詰め問題
[訳注3]」 と呼ばれる

もので、NP完全問題の一種である。ただ、この種の問題を一般化して解くことはできな
い。解を出すにはすべての組み合わせを調べることになるのだが、コンピュータが処理

しきれないほど、計算量が膨大になってしまうのだ。

しかし、心配には及ばない。ほぼ最適と言える解を大方得ることのできる「欲張り法」

という解法が存在するのだ。そのアルゴリズムは、「目標の数値に達するか超えるかする

まで、その時点で取り得る“一番大きな値"を選んでいく」というものだ。

手続き型言語で欲張り法を実行する場合、日標値を超過したときにバックトラックが

行える。そのため、要求数と出庫数がぴたリー致する組み合わせをあくまで探すのか、

あるいは完全に一致しない組み合わせであっても出庫数が要求数を超えた時点で解と

するか、を選ぶことができる。

一方、SQLは宣言的で集合指向的な言語であるため、これを実現するのは容易ではな
い。手続き型言語であれば、「要求数は満たした」という解を見つけた時点で処理をスト

ップできる。だが、sQLの クエリは、どんなに時間がかかろうとも、すべての正答を見
つけようとする。もし、ビックアップするビンの数に上限を設けられるなら、配列をテー

ブルで擬似的に表現するという方法がある。

CREATE
‐
「ABLE P■ ckl■ sts

(Order_nbr INTEGER NOT NULL PRIMARY KEY,
90al_qty INTEGER NOT NULL
CHECK (90al_qty > o),

b■n_l INTEGER NOT NULL UNIQUE,

訳注 2:ビンは、在庫を管理上の都合などで分けたときのひとまとまり。ピックアップは、出庫するために在庫を集める作業の
こと。この問題ではWldge」nventOryテーブルの 1行 =1ビンと考えてよい。

訳注 3:部分和問題という計算複雑性理論の分野における問題の一種。よリー般化した形の「ナップサック問題」という名前の
ほうが有名かもしれない。

295

SQILパズル

29る

qty_on_hand_l INTEGER DEFAULT O NOT NULL
CHECK (qty_on_hand_1 >= 0),

bin_2 1NTEGER NOT NULL UNIQUE,
qty_on_hand_2 1NTEGER DEFAULT O NOT NULL
CHECK (qty_on_hand_2 >= 0),

b■ n_3 1NTEGER NOT NULL UNIQUE,
qty_on_hand_3 1NTEGER DEFAULT O NOT NULL
CHECK (qty_on_hand_3 >= 0),

CONSTRAINT not_oVer_90al
CHECK (qty_On_hand_1 + qty_on_hand_2 + qty_on_hand_3

く= 90al_qty),
CONSTRAINl・ b■ nS SOrted
CHECK (qty_On_hand_1 >= qty_on_hand_2
AND qty_on_hand_2 >= qty_on_hand_3));

Pick‖ sts:ピ ックアップリストテーブル order_nbr:注 文番号

bin_1～ bin_3:ビ ン番号 qty_On_hand_1～ qty_on_hand_3
goal_qty:出庫要求個数

各ビンに含まれる部品の個数

では、widgctlnvcntOryテ ーブルにデータを詰めていこう。最初の“トリック"は、

widgctlnvcntOwテ ーブルにビンのダミーデータを追加することだ。もし、ビンのビック

アップ回数が最大nな らば、n-1個のダミーデータを追加する。Picklistsテ ーブルでは

ピックアップ回数を3回 までとしているので、ダミーデータを2つ追加しておく。

INSERT INTo w■ dgetlnventory VALUES (-1,

INSERT INTo w■ dgetlnventory VALUES (-2,

11990-01-011, 0, 0,00);

11990-01-021, 0, 0.00);

続いて次のコードで、ビン3個 までの全組み合わせパターンとそのときの部品個数を

リストアップする共通表式、あるいはビューを作る。

CREATE VIEW Pickcombos (total-pick, bin-1, qty-on-hand-1, bj-n-2,
qty_on_hand _2, bin_s, qty_on-hand-3)

AS

SELECT DISTINCT
(W1.qty_on_hand + W2.qty-on-hand + W3.qty-on-hand)
AS total_pick,
CASE WHEN Wl . receiPt_nbr < 0

THEN O

ELSE W1 . receipt_nbr
END AS biN-1,

W1.qty_on_hand,
CASE WHEN W2.receipt_nbn < 0

THEN O

FROM

パズル69 後入れ先出しと先入れ先出し
部分和問題の解き方

ELSE W2.rece■ pt_nbr

END AS bin_2,
W2.qty_on_hand,

CASE WHEN W3.rece■pt_nbr く 0
THEN 0

ELSE W3.receipt_nbr
END AS b■ n_3,

W3.qty_on_hand
W■dgetlnventory AS Wl, W■ dgetlnventory AS W2,
ハヽlidgetlnventory AS W3
Wl.rece■pt_nbr NOT IN (W2.rece■ pt_nbr, W3.receipt_nbr)

W2.rece■pt_nbr NOT IN (Wl.receipt_nbr, W3.rece■ pt_nbr)

Wl.qty_on_hand >= W2.qty_on_hand
W2.qty_on_hand >= W3.qty_on_hand;

WHERE

AND

AND
AND

ここまで来たら、あとは出庫要求数に一致する、あるいは最も近いビンの組み合わせ

を見つけ出すプロシージャを書くだけだ。

CREATE PROCEDURE OverP■ ck (IN 9oal_qty INTEGER)
LANGUAGE SQL
BEGIN

IF goal_qty > 0

THEN

SELECl‐ 90al_qty, total_pick,
bin_1, qty_on_hand_1,
bin_2, qty_on_hand_2,
bin_3, qty_on_hand_3

FROM P■ ckCombos
AヽIHERE total_pick

= (SELECT MIN (total_p■ ck)
FROM P■ ckCombos
WHERE total_p■ ck >= 90al_qty)

END IF;

END;

SQL-99の構文を使えば、ビューを共通表式の中に入れられるので、ビューを使わな

いクエリが作成できる。このクエリを使い、サンプルデータに対して73個 という要求を

満たす組み合わせを探してみると、13,4}と {4,2,11と いう、ともに75個になる組み合

わせが見つかる。

反対に、要求された個数以下で最も近い部品数を得るための組み合わせを見つけるク

エリもあるが、それは演習問題として残しておこう。

297

バ |ズ |ル |

70

蟄
ピユアSQL[訳

注1]の RDBMSでは、計算した列をテーブルで持たないことになってい

る。私もピュアSQLの守護者の立場から、そのような所業には反対しなければならな

い。とはいえ、基本的に反対ではあるものの、それが便利な局面があるのも分かるし、

ビューを通して実現する分には技術的にも問題はない。

計算列の第1の タイプは、同じ行にあるほかの列から算出されるものだ。かつてパン

チカードが使われていた時代には、掛け算や足し算をするためのマシンに一組のカード

をかけて、計算結果はカードの右端に打ち出されていた。例えば、ある順序で並んだ各

行のトータルコストを(closing_pricc× quandw)で計算する、といった具合だ。

こういう計算の仕方を採っていた理由は、カードを処理するマシンが2次記憶を持っ

ていなかった、というごく単純なものである。そのため、データはカード自身に保持す

るしかなかった。また、1枚のカードが持つ80桁全部を一度に主記憶に読み込むほう

が、ハードウェア内で計算するより速かった。

だが今日では、この方式を採る理由はない。結果を2次記憶から読み込むより、デー

タを再計算するほうがずっと高速だからだ。ハードディスクはマイクロ秒の世界で動作

するが、CPUは ナノ秒の世界で動く。

計算列の第2の タイプは、同じテーブルのデータを使うが、必ずしも同じ行のデータ

とは限らないもの、第3の タイプは、同じデータベース内の複数テーブルを使うものだ。

これら2種類のタイプの計算列が使われるのは、計算のコストが単純な読み出しのコス

トより高い場合である。特にデータウェアハウスでは、処理時間を節約するためにこの

種の計算列を持つことを好む。

SQLでは何をするにつけ、いつどのように行うかが重要である。これから示す例題は、

あるSQL ScⅣ crのディスカッショングループのスレッドで交わされていた議論がもとに

なっている。テーブルは少し変えてあるし、議論に加わっていた当事者たちの名前も伏

せるが、アイデアは同じままだ。

まず、次のようなテーブルが与えられており、同じテーブルにあるほかの行に基づい

て列を計算する必要があるとする。

訳注 1:ANSIに よる標準 SQL規 格のこと。したがつて、ベンダの独自拡張機能や、ストアドプロシージャなどを含まない。

298

‖上 |」__L

パズル70 株価の動向
相関サブクエリで行同士を比較する

CREATE TABLE StockH■ story

(t■cker_sym CHAR(5)NOT NULL,
sale_date DATE DEFAULT CURRENT_DATE NOT NULL,
closing_pr■ ce DECIMAL (10,4)NOT NULL,
trend INTEGER DEFAULT O NOT NULL
CHECK(trend IN(-1, 0, 1)),
PRIMARY KEY (t■ cker_sym, sale_date));

StockHistory:株 価履歴テーブル

closlng_price i終値

ticker_sym:銘 柄コード

trend:ト レンド

sale_date : tsElE

このテーブルは、いろいろな種類の株の終値を記録している。trcnd列には、ある行の

終値が前回の取引日における終値より値を上げていれば +l、 下げていれば -1、 横ばい

なら0が入る。このtrcnd列 が問題なのだが、その理由は計算が難しいからではなく、複

数の計算方法が存在するからだ。以下、この列を計算する方法を見ていくとしよう

、11′ /

'S'←

その■
0 第1に、新しい行が挿入されたタイミングで起動するトリガーを書く方法が考えられ

る。ただし、一応、トリガーを書くためのISO標準のSQL/PSM言語はあるものの、各

ベンダのトリガー言語は独自仕様で、互換性がないのが実情だ。そのため、使える機能

も製品によってさまざまに異なるし、基礎としているデータモデルも全く異なる。もし

トリガーを使うなら、実装依存で非関係的なコードを使うことになり、いくつかの問題

に直面せざるを得ない。

一例を挙げるなら、トリガーがバルク (一括)イ ンサートに対してどう動くか、という

問題がある。例として、同時に2行を挿入するSQL文を見てみよう。

INSERT INTO StockHistory (t■ cker_sym, sale_date, clos■ ng_pr■ ce)

VALUES (lXXXl, 12000-04-011, 10,75),

(:XXXl, 12000-04-031, 200.00),

まず、テーブル定義のDEFAULT句 によって2行 ともtrcnd列 にはゼロがセットされ

る。さて、このときトリガーは、'2000-04-031の 行のicndが +1にするか否かを正 しく

判断できるだろうか ' これは五分五分と
いったところだろう。なぜなら、挿入された2

行が、必ずトリガーの起動前にコミットされるとは限らないからだ。また、
12000-04-011

の行のtcnd列 はどうなるのだろう?こ ちらは、既存の行に応じて変わる。

299

‐ヽ‐′（ツ
、ヽ
・
κ

SQLパズル

だが、とにかくトリガーは正しく動作すると仮定しよう。すると、次のような中間日の

データを挿入するINSERT文 に対してはどう制御するだろう。

INSERl‐ IN¬
‐
O StockHistory (ticker_sym, sale_date, closing_price)

VALUES (lXXXl, 12000-04-02:, 313.25);

果たして、12000-04-031の 行のtrcnd列は変更されるだろうか ? また、行を削除した

ときに、それによって影響を受ける行が変更されるだろうか?多分、そうはなるまい。
練習問題として、この問題に対処するトリガーを書いてみてはしい。

その12

0 ところで、この問題はトリガーを使わなくても、INSERT文だけで解ける。自分の腕

を見せびらかしている気がしなくもないが、次に示すのは1度に1行だけINSERTす る

方法の1つである。

INSERT INTO StockH■story

(t■ Cker_sym, sale_date, clos■ ng_price, trend)
VALUES (:new_ticker_sym, :new_sale_date, :new_clos■ ng_pr■ ce,

COALESCE(SIGN(:new_closing_pr■ ce
― (SELECT Hl.clos■ ng_price

FROM StockH■ story AS Hl
WHERE Hl.ticker_sym = StockHistory.t■ cker_sym
AND Hl.sale date
= (SELECl‐ MAX(sale_date)
FROM StockH■ story AS H2
WHERE H2.t■ cker_sym = inew_t■cker_sym
AND H2.sale_date く :new_sale_date))),0));

これは見た目ほど悪いコードではない。一番内側のサブクエリはカレント行の取引日

の直前の取引を探 し、そのときの終値を返す。SIGN関数は、その終値から追加行の終

値を引いた値が正か負かゼロかによって、trcnd列 に入る値 (正なら1、 負なら-1、 ゼロ

なら0)を返してくれる。このクエリはちょっと自慢の一品だ。

しかし、この解法にはトリガーを使用する場合と同じ問題が残っている。既存の2行

に挟まれた行を削除したり、あるいは中間に挿入した場合にどうなるのか。この文はた

だのINSERT文 なので、当然のことながら既存の行に変更を加えたりしない。

しかも、問題はそれだけではない。このINSERT文は1度の実行で 1行だけを挿入す

300

法
Ｗ
、ヽ
・
κ

パズル70 株価の動向
相関サブクエリで行同士を比較する

る場合しかうまく動作しない。だから、もしこれを使うなら、営業日の終わりに1行ず

つstOckHistOwテ ーブルヘ挿入するためのループをプロシージャで書かねばならない。

これをどう改善するかは、第2の練習問題にしておこう。

その3
テーブルをUPDATEする解法 も考えられる。DEFAULT句 によって、trcnd列にはす

でに0がセットされているので、先ほどのINSERT文 と同じロジックのUPDATE文 を

書 くことができる。

0

UPDATE StockH■ story

SET trend

= 00ALESCE(SIGN(closlng_pr■ ce
― (SELECT Hl.c10Sing_pr■ ce

FROM StockH■ story AS Hl

ハヽIHERE Hl.tiCker_Sym = StockHistory.ticker_sym
AND Hl.sale date =

(SELECT MAX(sale_date)
FROM StockH■ story AS H2
WHERE H2.ticker_Sym
= StockHistory,ticker_sym

AND H2.sale date
く StOCkHiStOry.Sale_date))),0);

この文は正しいが、テーブル全体のtrcnd列 を再計算してしまうのが玉に瑕だ。そこ

で、値がゼロの行だけを参照するようにしてはどうだろう。あるいは、trcnd列にNULL

を許可し、更新対象とすべき行を把握するためにNULLを使うのはどうか。

UPDATE StockH■ story

SET trend = ...

WHERE trend IS NULL;

ただし、この場合もやはり既存の2行の間に挿入される行に問題が残る。この点を修

正するのが3つ 目の練習問題だ。

最後に、ビューを使う方法を紹介しよう。これによって、StockHistoryテ ーブルが

廿cnd列 を持つ必要がなくなる。ビューはそれ以外の列を使って作成する
[訳注2]。

304

訳注2:こ のビュー定義では自己外部結合を使って、各銘柄の初日の行t,保存している (trend列 は 0)。 初日の行が不要な場合

には、外部結合を内部結合に変えればよい。

SQLパズル

CREATE TABLE StockH■ story

(t■ Cker_sym CHAR(5)NOT NULL,
Sale_date DATE DEFAULT CURRENT_DATE NOT NULL,
Closing_pr■ ce DECIMAL (10,4)NOT NULL,
PRIMARY KEY (t■ cker_sym, sale_date));

CREATE VIEW StockTrends

(t■ Cker_Sym, Sale_date, Clos■ ng_pr■ ce, trend)
AS SELECT Hl.t■cker_sym, Hl.sale_date, Hl.clos■ ng_pr■ ce,

COALESCE(SIGN(MAX(H2.clos■ ng_pr■ ce)
― Hl.C10Sing_pr■ce), 0)AS trend

FROM StockH■ story AS Hl
LEFT OUTER JOIN StockH■ story AS H2
0N Hl.tiCker_sym = H2.t■ cker_sym
AND H2.sale date く Hl.sale date

GROUP Bヽ′ Hl.t■ cker_sym, Hl.sale_date, Hl.closing_pr■ ce,

この方法ならば、挿入と削除が何行でも、どんな順番で起きようとも問題ない。trcnd

列は、各時点で存在するデータから計算されるからだ。このクエリでは、主キー (tickcr

_Sim,SalC_datc,closing_pricc)がWHERE句 の条件をカバーしているため、インデック
スが使える。そのためパフオーマンスも向上する。

この方法に対する主な反論は、StockHistOwテ ーブルの規模が大きかった場合、その

都度ビューを計算するのは時間がかかるかもしれない、というものだろう。

饉
醸饉
甕
鸞薔
爾
議鰹
簗饉
蔵量
麟

一露
一藩

　

轟
一ｍ
鷺̈
一機
率轟
鷺゙
一警
一璽
一鯰
艤̈
一鷺
一艤
一羅
一饉
一醸
饉̈
率饉
摯鑢
一爾
一鸞
一鱗

、 |

＼||′ /
、
｀
/つヽ´

2ヽノ√その4
O SQL-99の OLAP関数を使えば、答えその3の ビューはずっと簡単になる。

CREATE VIEW StockTrends

(tiCker_sym, sale_date, c10sing_price, trend)
AS SELECT t■ cker_sym, sale_date, clos■ ng_pr■ ce,

COALESCE(SIGN(C10S■ ng_price ― MAX(clos■ ng_pr■ ce)
OVER(PARTIT10N BY t■ cker_sym
ORDER BY sale date ASC
ROWS BETWEEN l PRECEDING AND l PRECEDING)),)

FROM StockH■ story;

302

パ |ズ |ル |

7■

瘍
●5~

この問題は、2006年 にあるニュースグループに持ち込まれたものだが、こんなひどい

コードは今後誰にも書いてはしくない。目的は「3つの条件に基づいて、同一行内の3つ

の異なる値を選択する」ことなのだが、問題のクエリの計算が間違っていた上に、DDL

文も存在しないという有様だったのだ。

まずは、オリジナルのクエリからお見せしよう。

SELECT DISTINCT SUM(A.calc_rslt_val + A.calc_adj_val),
SUM(A.un■ t_rslt_val + A.un■t_adj_val),
SUM(OTl.calc_rslt_Val + OTl.calc_adj_val),
SUM(OTl.un■ t_rslt_val + OTl.unit_adj_val),
SUM(OT2.calc_rslt_val + OT2.calc_adj_val),
SUM(OT2.un■ t_rslt_val + OT2.un■ t_adj_val)
Tablel AS A, Tablel AS OTl, Tablel AS OT2, Table2 AS B
OTl.emp_■d = A.emp_■ d

OT2.emp_id = A.emp_■ d
OTl,p■n_num = B.pin_num
OT2.pin_ um = B.p■n_ um
A.empl_rcd = 0
A,p■n_num = B.p■ n_num
A.emp_ d = :xxxxxxi

B.p■ n_num IN (1526361,'527511,1527681)
A.p■ n_num = 1526361
0Tl.p■ n_num = 1527511
0T2.p■ n_num = i52768:

その■

USASQLと いう人物は次のような解答を送ってきた。これは、複数のUN10Nを使う
ことを前提としている。

SELECT SUM(A_va11), SUM(A_va12), SUM(OTl_va11),
SUM(OTl_va12), SUM(OT2_va11), SUM(OT2_va12)

((SELECT DISTINCT
SUM(A.calc_rslt_val + A.calc_adj_val)
SUM(A.un■ t_rslt_val + A.un■t_adj_Val)
O AS OTl_va11, O AS OTl_va12,

O AS OT2_va11, O AS OT2_va12
FROM Tablel AS A,Tablel AS OTl,

FROM

WHERE

AND
AND
AND
AND
AND
AND

AND
AND
AND
AND

、11′ /

'翁

′←
僣 D

Ａ
【
ｒ
Ａ

一

Ｓ

Ｓ

Ａ

Ａ

303

SoLパズル

Tablel AS OT2, Table2 AS B
WHERE一 Aテーブルの選択条件のみが入る

UNION
SELECT DISTINCT O, 0,

SUM(OTl.calc_rslt_val + OTl.calc_adi_val),
SUM(OTl.un■ t_rslt_val + OTl.un■ t_adi_val),
0, 0

Tablel AS A, Tablel AS OTl, Tablel AS OT2, Table2 AS B

一 oTlテ ーブルの選択条件のみが入る

FROM
WHERE
UN10N
SELECT DISTINCT O, 0,

0, 0,

SUM(OT2.calc_rslt_val + OT2.calc_adj_val),
SUM(OT2.un■ t_rslt_val + OT2.un■ t_adj_val)

FROM Tablel AS A, Tablel AS OTl, Tablel AS OT2, Table2 AS B
WHERE一 〇T2テ ーブルの選択条件のみが入る

、 1
1ヽ1

倒ゝ
ν影
“

′
Ｆ
＼ ｀
その2

0 この悪夢のような問題にはDDL文がないので、キーや制約、参照整合性制約、データ

型などについては推測するしかなぃ
[訳注l]。 このコードを読めるようきれいにするのは一

苦労だった。次に、このコードで使われているロジックを観察して、どの部分が (SQL

の計算では最も高コストである)直積の原因となっているかを調べた。ところで、

a=b,b=c,c=2

といっ3つの式は、

a=2,b=2,c=2

という形に還元できる。代数の基本だが、ここではこれを応用して、クロス結合を引き

起こすだけで全く使われていないテーブルを削除しよう。次に示すのが、オリジナルの

コードをきれいに掃除したバージョンである。

訳注 1:参考までに、妥当と思われるテーブル定義を挙げておく。

CREATE TABLE Foobar

(empl_■d CHAR(6)NOT NULL, pin_nbr CHAR(5)NOT NULL,

empl_rcd INTEGER NOT NULL, calc_rslt_val INTEGER NOT NULL,

calc_adj_val INTEGER NOT NULL, un■ t_rs■ t_val INTEGER NOT NULL,

unュ t_adj_val INTEGER NOT NULL, PRIMARY KEY (empl_id, p■ n_nbr)),

304

藤

鰺

パズル71 計算
自己結合でクエリの見通しをよくする

SELECT DISTINCT
SUM(Fl.calc_rslt_val + Fl.calc_adj
SUM(Fl.un■ t_rslt_val + Fl.unit_adi
SUM(F2.calc_rslt_val + F2.calc_adi
SUM(F2.un■ t_rslt_val + F2.un■ t_adj
SUM(F3.calc_rslt_val + F3.calc_adj

val

val

val

SUM(F3.un■ t_rslt_val + F3.un■ t_adi_Val).
Foobar ノヽS Fl, Foobar メヽS F2, Foobar AS F3
Fl.empl_■ d = :xxxxxxl
F2.empl_■ d = lxxxxxxl
F3.empl_ d = lxxxxxxl

Fl.empl_rcd = 0
Fl,pin_nbr = 152636:
F2.pin_nbr = 152751:

F3.pin_nbr = :527681;

_va1)

_va1)

AS calc_1,

AS un■t_1,

AS calc_2,
AS un■ t_2,

AS calc_3,

AS un■ t 3

FROM
ハヽIHERE

AND
AND

AND
AND
AND

AND

／
／
´
´
ヽ

′
ヽ
「
ノ
イ
多

，

‐ヽ―一仔
、
“．

、ヽ
・
κ

どれだけ読みやすくなったか、お分かりいただけるだろうか。SELECT句 の計算列に

も名前を付ける必要があることを忘れないように。

その3
しかし、同じことをするなら、おそらく以下に示す方法が一番正しい。このクエリは、

計算列の列展開を行わないようにしたものだ。もちろん、DDL文がないのだから、

NULLや キー、および各列の意味については想像するしかない。

SELECT Fl.p■ n_nbr,
SUM(Fl.calc_rslt_val + Fl.calc_adj_val)AS calc_val,
SUM(Fl.un■ t_rslt_val + Fl.un■ t_adj_val)AS un■t_val
Foobar AS Fl

Fl.enlpl_id = 〕xxxxxx:

Fl.empl_rcd = 0
Fl.pin_nbr IN (1526361, 1527511, 1527681)
BY Fl.pin_nbr;

0

FROM

WHERE
AND
AND
GROUP

多層アーキテクチャでシステムを開発するときの原則を覚えているだろうか。データ

表示のレイアウトは、バックエンドではなくフロントエンドでやること。複数の画面に

またがってデータを表示するための処理も、フロントエンドでやること。

このクエリは答えその2に比べ、少なくとも3倍の速度で動く。

305

バ |ズ |ル |

72

争
これは、サミーがSQL ScⅣcrのニュースグループに投稿した問題である。彼はテーブ

ル設計について助言を求めていた。顧客のもとへ訪問する社員 (サービスマン)の予約

を登録するテーブルがあるのだが、彼らが休日に予約されることのないように修正した

い、といっことだった。

業務の流れは非常に明快だ。顧客からサービスマンに来てほしいと連絡が入ると、手

配係が希望日時を聞いてシステムに入力するとともに、最初に都合のつくサービスマン

を探して予約を入れる。顧客のもとを訪れたサービスマンは、そのまま30分単位でサー

ビス時間を延長できる。

サミーが最初に出してきた設計案には、かなり問題があった。まず、彼はIDENTITY

をキーとして使っていた (IDENTHYは 自動採番を行うT―SQL独 自の“機能"で、関係
モデルとは無縁である)。 さらに、彼はISO■ l179の命名規則にも違反していた一 サ

ミーはテーブル名の後に「～tabic」 と付けていたのだ (蛇足としか言いようがない !)。

彼の設計したテーブルはこうである。

CREATE TABLE CallsTable

(call_■ d INTEGER IDENTITY(1,1)NOT NULL PRIMARY KEY, ――実弩暴:日寺σ)
cl■ ent_■d INTEGER NOT NULL, テ'― 夕型
employee_id INTEGER NOT NULL, ―‐ 夕ll名が

｀
長 くて覚えにくい

call_date SMALLDATETIME NOT NULL, ―― RDBMS依存のデータ型
duration INTEGER NOT NULL,
start_t■ me SMALLDATETIME NOT NULL, ―― RDBMS依 存のテ=― 夕型
end_t■ me INTEGER NOT NULL);

Ca‖ sTable:顧客コールテーブル

chent id:顧 客 ID

ca‖_date:顧客から連絡のあった日付

start time:サービス開始時刻

end」ime:サ ービス終了時刻

ca‖ id:コ ールID

employee_id:社 員ID

duration:サ ービス時間

start_time:サービス開始時刻

306

_上二 _

パズル72 サービスマンの予約管理
時間データの扱い方 (その 2)

ブ⑦←´́
ツ
その■

0 問題点はまだある。このテーブルには計算列が含まれているし、サミーはT―SQLの

DATETIME型 がどういう働きをするのかも理解していなかった。なぜ日付ないし時刻

の列がINTEGER型で定義されているのだろう?ま た、サービス時間 (duradon)列 は全

く不要だ。サービス時間は、開始時刻と終了時刻から計算できる。

また、終了した仕事についても保存する必要があったため、オリジナルのテーブルで

はダブルブッキングを許していた。その場合、終了時刻をNULLに しておき、後から

COALESCE関数を使って現在の日時に変換するのが正しい処理の方法である。

スキーマの残りの部分もいただけない。列が無意味に長いので、不正なデータが入り

込むおそれがあるし、社員番号とは別にIDENTITY列 を使って顧客からのコールに番

号を振っている。テーブル名が奇妙なのは、彼がテーブルをファイルだと考えているか

らだろう。普通、何かの集合を考えるときには「社員 (Pcrsonncl)」 とか「従業員 (Employ

ccs)」 と言うのではないか ?これがテーブル名に集合名詞を使う理由だ [訳
注1]。

このテーブルを再設計 してみ よう。標準 SQL(T―SQLの DATETIME型 はTIMEST

AMP型 になる。これは T―SQLの TIMESTAMP型 とは異 なる)と ISO― ll179の命名規則

を使うと、次のようになる。

CREATE TABLE ScheduledCalls

(cl■ ent_id INTEGER NOT NULL
REFERENCES Cl■ ents (cl■ ent_■ d),
scheduled_start_t■me TIMESTAMP NOT NULL,
scheduled_end_t■ me TIMESTAMP NOT NULL,

CHECK (scheduled_start_t■ me く scheduled_end_t■me),

emp_■ d CHAR(9)DEFAULT I{xxxxxxx}: NOT NULL
REFERENCES Personnel (emp_id),
PRIMARY KEY (client_id, emp_■ d, scheduled_st art_t■ me));

ScheduledCa‖s:手配済み顧客コールテーブル

scheduled start tlme:手 配したサービス開始時刻

scheduled end tlme:手 配したサービス終了時刻

chent id:顧 客 ID

emp_id:社 員 ID

訳注1:単数と複数の区別が曖昧な日本語ではニュアンスが伝わりにくいが、要するにテーブル名は常にそれが複数の物の集
まりであることを示すような名前 (Employeesの ような普通名詞の複数形や、Personnelの ような集合名詞)にすべ

きだ、ということである。

307

S(2)Lパズル

|{xxxxxx}「 をダミーの社員番号として使っているが、これは手配係がサービスマンを

検索したときに、どの社員かが必ず見つかるようにするためのものである。それゆえ、

整合性制約が正しく動作するように、PcrsOnnclテーブルにダミー社員を表す値を入れ

ておき、そのダミー社員は1日 24時間×週7日 間いつでも“対応可能"と しておく必要

がある。「 {」 と「 }」 の括弧は、画面上やレポートでダミー社員が常に一番最後に表示

されるようにするための“トリック"だ。列にNULLを許可することでも同じことができ

るが、ここではこのプログラミングトリックを紹介しておきたい。

CREATE TABLE Cl■ents

(cl■ent_■d INTEGER NOT NULL PRIMARY KEY,
f■ rst_name VARCHAR(15)NOT NULL,
last_name VARCHAR(20)NOT NULL,
phone_nbr CHAR(15)NOT NULL,
phone_nbr_2 CHAR(15),

cl■ ent_street VARCHAR(35)NOT NULL,
cl■ ent_c■ ty_name VARCHAR(20)NOT NULL);

CREATE TABLE Personnel

(emp_■ d CHAR(9)NOT NULL PRIMARY KEY,
f■ rst_name VARCHAR(15)NOT NULL,
last_name VARCHAR(20)NOT NULL,
home_phome_nbr CHAR(15)NOT NULL,
cell_phone_nbr CHAR(15)NOT NULL,
st reet_addr VARCHAR(35)NOT NULL,
c■ty_name VARCHAR(20)NOT NULL,
z■p_code CHAR(5)NOT NULL);

C‖ents:顧客テーブル

firstname:名

phone_nbr:電話番号 1

c‖ ent_street:住所 (町名/番地)

chent id:顧 客lD

last name i姓

phone_nbL2:電 話番号2

client_city_name:住 所 (市町村名)

Personnel:社 員テーブル

first_name:名

home_phome_nbr:自 宅の電話番号

streetaddr:住 所 (町名/番地)
zip_code:i郵 便番号

emp_id:ネ土員ID

last name:姓

ce‖_phone_nbr :携帯i電話番号

city_name:住 所 (市町村名)

308

パズル72 サービスマンの予約管理
時間データの扱い方 (その 2)

CREATE TABLE Serv■ ces

(cl■ ent_■ d INTEGER NOT NULL REFERENCES Cl■ ents,

emp_■ d CHAR(9)NOT NULL REFERENCES Personnel,
start_t■ me TIMESTAMP NOT NULL,
end_time TIMESTAMP, ―― まだ仕事中の場合はNULL
CHECK (st art_time く end_time),
sku INTEGER NOT NULL,
PRIMARY KEY (cl■ ent_■ d, emp_■ d, start_t■ me, sku));

Services:サービステーブル

start_time:サービス開始時刻

c‖ent id:顧客 ID

end time:サ ービス終了時刻

emp_id:社 員 ID

sku:サ ービス番号

SCMCCSテ ~ブルの長い自然キ_[訳注2]に注目してほしい。主キーをこのように宣言し

ないと、かえってデータの整合性が失われてしまう。だが、新米エンジエアは長い自然

キーを使うのを怖がり、データの整合性の心配をしなくて済むと思って、IDENTITYの

ような機能をキーに使う傾向にある。

ここで本当に重要なトリックは、1人 1人のサービスマンが対応可能なすべての日付

を保持する「社員スケジュール」テーブルを作ることにある。

CREATE TABLE PersonnelSchedule

(emp_■ d CHAR(9)NOT NULL
REFERENCES Personnel(emp_■ d),

ava■ l_start_t■me TIMESTAMP NOT NULL,

ava■ 1_end_t■ me TIMESTAMP NOT NULL,
CHECK (ava■ l_start_t■me く ava■ l_end_t■ me),

PRIMARY KEY (emp_■d, ava■ l_start_time));

PersonnelSchedule:社 員スケジュールテーブル

ava‖_start_time:空 き時間の時刻開始

emp_ld:社 員lD

ava‖ end time:空 き時間の終了時刻

システムで扱うデータ項目から構成されるキー。逆に、データの識別だけを目的に作成されるキーを「代理キー

(surrogate key)」 と言う。自然キーと代理キーの設計理論上の優劣については賛否両論あるが、著者は代理キーや物

理記憶のロケーターを主キーとして使うことに、極めて批判的なようだ。その理由は、これらがデータの属性ではない

ため、関係モデルの原理に反するということによる (この見解を支持する理論家は少なくない)。

訳注 2

309

ScLパズル

\,lr
/′

ヽ
例
ｙ鬱
“

″
ｔ
ｌ
＼ ｀
その2

0 私たちは、顧客が来てはしいと言う時間に訪問可能なサービスマンを見つけなければ

ならない。次のクエリでは、「訪問可能な時間がサービスコールの期間と重複している、

あるいは完全に含んでいること」という条件を指定している。先ほど作成したダミー社

員 (Ixxxxxxx})は 、手配係が主キーと外部キーのリレーションシップで訪問可能なサー

ビスマンを見つけるための便利なトリックとして、ここで活きてくる。

SELECT P.emp_■ d,
S.cl■ ent_ d,

S.scheduled_ tart_ ■me,
S.scheduled end tinle
ScheduledCalls AS S,
PersonnelSchedule AIS P

S.emp_■ d = P.emp_id

P.enlp_id く> [{XXXXXXX}:

S.scheduled start t■ me
BETWEEN P.ava■ l start t■me AND P.ava■ l end t■ me

S.scheduled end time
BETWEEN P.ava■ l_start_t■me AND P.ava■ 1_end_t■ me;

FROM

このクエリで注意すべき点は、このクエリが訪間可能な全サービスマンを選択するこ

とだ。ただ、これは手配係が誰かを選んで仕事を割り当てれば済む話である。

WHERE

AND
AND

AND

3■ 0

バ |ズ |ル |

73

琲
この問題は最初、SQLScⅣcrCcntr」 。cOmで「スタンジ」という人物がデータクリーニン

グの問題として提供したものだ。彼は、「全列の値がNULLである行」を含むデータソー
スからデータをインポートしていた。残念なことに、データソース側で「オールNU LL」

の行を取り除くことはできない。そこで彼は、このデータをデータベースヘインポート

したあとでオールNULLの行を判別し、除外しようと考えた。ただ、彼が恐れていたの

は、次のように条件式をハードコーディングする必要があるのではないか、ということ

だった。

SELECT '

FROM Staging
AヽIHERE C01l ISI NULL

AND co■ 2 1S NULL
AND co13 1S NULL

AND C01100 1S NULL;

、||′ /・:9← その■
0 スタンジはくテーブル名 >を 引数として渡して、スキーマ情報テーブルからそのテ

ーブルの列名リス トを取得する方法を考えていた。そのリス トを使って、全列の値が

NULLで ある行を検索するクエリを作ろうというわけである。
スキーマ情報を得るためのクエリは、SQL ScⅣcrでは次のようなものになる。このク

エリはRDBMSによって微妙に異なってくる。

SELECT 十

FROM syscolumns
WHERE ■d
= (SELECT ■d
FROM sysobjects
WHERE name=く テーブル名>);

3イイ

SQLパズル

、11′ /

〕:,←

‐‐′為
）
で
瓢

ヽ

／
卜
、

　

　

膠
臨

、ヽ
・
／
　

‘ｑ

0

その2

クリス・テイーターとジェスパーの2人は、カーソルでスキーマ情報テーブルを走査

し、動的SQLを組み立てて実行するという解答を提案した。だが、これはRDBMSに ど

っぷり依存するし、処理もRDBら しくない。おまけに、実行速度がとても遅い。

そんなわけで、ここには彼らのコードは載せないが、このことは、プログラマがいか

に手続き型の考え方に傾きがちかを物語っている。

その3
あるテーブルの列名をすべて取得 したいなら、システムユーティリテイ関数を使えば

よい。どのRDBMSで も、そういう関数を持っている (例 えば、SQL ScⅣcrな らEXEC

sP_c01umns)。 あとは、それを次に示す SQL文 のCOALESCE関 数に入れるだけだ。

DELETE FROM Stag■ ng
WHERE COALESCE(coll, co12, co13, , co1100)IS NULL;

このSQL文は可能な限り高速に動く。この問題のもう1つの教訓は、マニュアルを読

み、現在使用しているRDBMSが提供する機能を理解しておくことは大切だ、というこ

とである。こうしたユーテイリテイの大半は、行についての列定義およびオプション

(NULLを 許可するか、DEFAULT値 は何か、キーやインデックス等々)を与えてくれ

る。だから、ユーザはただ列名を切 り出し、後ろにカンマを付けるだけでよい。

このクエリを書くのに、大きなテーブルでも5秒 とかからない。だが、使っているデー

タベースの新しいバージョンがリリースされて、スキーマ情報テーブルが微妙に変化し

たりすると、古いコー ドが失敗するかもしれない。その場合は、コードを書き直すため

にもう少し時間がかかるだろう。

しかし、テーブルに変更が生じたり、このシステムの新しいバージョンがリリースさ

れたりしてSQL文が動かなくなるたびにそれを書き直さねばならない、という点は忘れ

ないように。そうしたことは、スキーマ情報テーブルに変更が生じるよりも頻繁に起こ

るだろう。

3■ 2

鶴
驚
一̈鮮

一陽
総
終

パ |ズ |ル |

74

薇
アレン・デイヴィドソンは、3つのテーブルを結合し、そのいくつかの列の合計値

(SUM)を取得するために、2つの左外部結合を使おうとしていた。彼のクエリを、なる

べく導出テーブルを使わないように書き換えることはできるだろうか。

CREATE TABLE Accounts

(acct_nbr INTEGER NOT NULL PRIMARY KEY);

一̈̈̈̈
¨̈一̈一̈̈一̈“一̈一̈一一一一̈一̈総一熊
一一一̈^̈
観

Accounts:計 算書テーブル acct nbr:計算書番号

INSERT INTO Accounts VALUES(1), (2), (3), (4);

次のFooお よびBarテ ーブルには主キーがないので、どちらも厳密にはテーブルでな

いことに注意してはしい。

CREATE TABLE Foo

(acct_nbr INTEGER NOT NULL
REFERENCES Accounts(acct_nbr),
foo_qty INTEGER NOT NULL);

Foo:Fooテ ーブル acct nbr:計算書番号 foo_qty:Fooで の数量

擬
業̈
一̈̈一̈一鐵
一一一一

INSERT INTO Foo VALUES

INSERT INTO Foo VALUES
INSERT INTO Foo VALUES
INSERT INTO Foo VALUES

(1,10);
(2, 20);

(2, 40);

(3, 80);

CREATE TABLE Bar

(acct_nbr INTEGER NOT NULL
REFERENCES Accounts(acct_nbr),

bar_qty INTEGER NOT NULL);

Bar:Barテ ーブル acctnbr:計 算書番号 bar_qty:Barで の数量

3■ 3

SoLパズル

INSERT INTO Bar VALUES
INSERT INTO Bar VALUES
INSERT INTO Bar VALUES
INSERT INTO Bar VALUES

(2, 160);

(3, 320);

(3, 640);

(3,1),

‐ヽ‐′（Ｖ/′

彼が送ってきたクエリは次のとおりだ。FROM句 で、導出テーブル2つ を左外部結合

している。

SELECT A.acct_nbr,
00ALESCE(F.foo_qty, 0)AS foo_qty_tot,
00ALESCE(B.bar_qty, 0)AS bar_qty_tot

FROM Accounts AS A
LEFT OUTER JOIN

(SELECT acct_nbr, SUM(foo_qty)AS foo_qty
FROM Foo
GROUP BY acct_nbr)AS F
ON F.acct nbr = A.acct nbr
LEFT OuTER JOIN

(SELECT acct_nbr, SUM(bar_qty)AS bar_qty
FROM Bar
GROUP BY acct_nbr)AS B
ON F.acct_ br = B.acCt_ bri

acct_nbr foo_qty_tot bar_qty_tOt

l 10 0

2 60 160
3 80 961
4 0 0

これはこれでうまくいくのだが、ほかのやり方を考えてはしい。

その■

R.シ ャーマは、導出テーブルを1つ減らす方法を見つけたが、2つ ともなくすことはで

きなかった。

SELECT A.acct_nbr,
COALESCE(SUM(F.foo_qty), 0)AS foo_qty_tot,
00ALESCE(MAX(B.bar_qty), 0)AS bar_qty_tot

FROM (SELECT ' FROM Accounts)AS A

0

3■ 4

パズル74 導出テーブルを減らせ
複数の外部結合を効果的に使う

LEFT OUTER JOIN

(SELECT オ FROM Foo)AS F
ON A.acct nbr = F.acct nbr
LEFT OUTER JOIN

(SELECT acct_nbr, SuM(bar_qty)AS bar_qty
FROM Bar

GROUP BY acct_nbr)AS B
ON A.acct nbr = B.acct nbr

GROUP BY A.acct_nbri

このクエリは、導出テーブルBの結果が1つのacctnbrに つき必ず 1行 になり、さらに

3行 日のMAX関数が正しい値を保証しているので、求める結果をきちんと返してくれ

る。また、AccountsテーブルとFooテ ーブルが 1対多の関係にあり、Accounts.acctnbr

でグループ化 (GROUP BY A.acctnbr)し ているので、アレンのSELECT文 にある1つ

目の導出テーブルを不要にできた。

、11′ /

〕;9′←その2
0 次に、私の答えをお見せしよう。まずは、テーブルではなかったFooと Barを Accounts

テーブルと外部結合することにより、れっきとしたテーブルが得られる。その後に計算

用の情報を付け加える。OUTER UNIONオ プションが使えるともっと簡単に書けるの

だが、残念なことに、このオプションはまだほとんどのRDBMSでサポートされていな

い。そのため、UN10Nと 外部結合を別々に使う必要がある。

SELECT acct_nbr,
COALESCE (SUM(foo_qty), 0)AS foo_qty_tot,
COALESCE (SUM(bar_qty), 0)AS bar_qty_tot

FROM ((SELECT Al.acct_nbr, foo_qty, bar_qty
FROM Accounts AS Al
LEFT OUTER JOIN

(SELECT acct_nbr, foo_qty, O AS bar_qty
FROM Foo)AS F
ON Al.acct_nbr=F.acct_nbr)― ― Fooのデータ

UN10N ALL

(SELECT A2.acct_nbr, foo_qty, bar_qty
FROM Accounts AS A2
LEFT OUTER JOIN

(SELECT acct_nbr, O AS foo_qty, bar_qty
FROM Bar)AS B
ON A2.acct_nbr=B.acct_nbr)― ― Barの データ

3■5

SQILパズル

)AS X (aCCt_nbr, f00_qty, bar_qty)― ― Fooと Barが
｀
1て)に

GROUP BY acct_nbr;

Fooと BarをマージするUNION ALLは ソー トが不要なので高速に動 くだろうし、
Fooと B額のクエリは並行処理が可能だ。そのため、全体 として、かなり良好なパフォー

マンスを期待できる。

3■ 6

バ |ズ |ル |

75

蟄
地図を使ったよくある問題を出そう。もともとのバージョンは町中の居酒屋の場所を

使っていて、1軒の居酒屋から追い出されたときに、近 くにある次の店へたどり着 く方

法を見つけるというものだった。

地図には、デカルト座標系 (x,y)を使う。これは次のようなテーブルで表される。

CREATE TABLE PubMap

(pub_■ d CHAR(5)NOT NULL PRIMARY KEY,
x INTEGER NOT NULL,
y INTEGER NOT NULL);

PubMap:居酒屋マップテーブル
x:x座標

pub_id:居 酒屋 ID

y:y座標

求めたいのは、近くにある別の居酒屋を見つけるための効率的な方法である。

その■

、11′ /

〕:9←
0 直接的な解答としては、デカルトの距離の公式 d= (xl― x2)2+(yl_y2)2を 使うも

のがある。これによって近傍
[訳注1]の座標を、追い出された居酒屋から特定の半径を持

った範囲として定義できる。

SELECl・ B.pub_■ d, B.x, 3.y

FROM PubMap AS A,
PubMap AS B

WHERE A.pub_■ d = :my_pub
AND :my_pub く> B.pub_■ d
AND SQRT (POWER((A.x ― B.x), 2)+ POWER((A.y ― B.y), 2))
く= :crawl_ istance,

だが、計算部分をよく調べると、処理のコストを多少節約できることが分かる。両辺

とも2乗すればよいのだ。

訳注1:「近傍 (ne19hborhood)」 は、任意の半径を持つ円内に含まれる点全体の集合を意味する幾何学の用語。

3■ 7

SQLパズル

、11′ /

〕;ツ
0

その2

直線距離 (円近傍モデル)を使わなくてかまわないなら、代わりに平方近傍を使うこ

とで、演算が簡単になる。

SELECT A,pub_■ d, B.pub_■ d
FROM PubMap AS A, PubMap AS B
WHERE :my_pub く> B.pub_id
AND :my_pub = A.pub_id
AND ABS(A.x ― B.x)く = :d■ stance
AND ABS(A.y ― B.y)く = :d■ stance;

、 1
lヽ[′ /

、｀/「アヽ
′
´

メツ
√その3
0 平方近傍の方法からヒントを得た別解をお見せしよう。これは、平面を巨大な正方形

の格子に分割する方法だ。各格子のマスは、いくつかのノード(居酒屋)を含む。要する

に、ごく普通の地図帳のマスロをイメージしてほしい。

1 2 3

υ
υ̂

O 0

▲

禽 OOO
′ヽ
ノヽ
O

SELECT B.pub_id, B.x, B.y
FROM PubMap AS A,
PubMap AS B

WHERE :my_pub = A.pub_■ d
AND imy_pub く> B.pub_id

AND (POWER((A.x ― B.x), 2)+ POWER((A.y ― B.y), 2))
く= POWER(:Crawl_d■stance, 2);

数の2乗は整数の掛け算として実行できるため、大抵の場合は非常に高速だ。

★は現在地のパブ、○は周辺のパブを示す。
1つのパブは、必ず1つのマスに含まれる

1

２

　

　

３

3■ 8

パズル75 もう1軒行こう
座標と距離を扱う

CREATE TABLE PubMap

(pub_■ d CHAR(5)NOT NULL PRIMARY KEY,
x INTEGER NOT NULL,
y INTEGER NOT NULL,

cell_x INTEGER NOT NULL,
cell_y INTEGER NOT NULL),

PubMap:居酒屋マップテーブル

x:x座標
ce‖_x:マスロの行

pub_id:居 酒屋 ID

y:y座標
ce‖_y:マ スロの列

この方法では、マスの位置を示す余計な座標を保持することになるが、すべてのノー

ドを検索する必要はない。マップ全体に15万 ノード存在していたとしても、実際に検索

対象となるのは近隣9マスのノードだけで済む
[訳注21。

SELECT N2.pub_■ d, N2.x, N2.y
FROM PubMap AS Nl, PubMap AS N2
WHERE :my_pub く> N2.pub_■ d
AND imy_pub = Nl.pub_■ d

AND N2.cell_x IN (Nl.cell_x-1, Nl.cell_x, Nl.cell_x+1)
AND N2.cell_y IN (Nl,cell_y-1, Nl.cell_y, Nl.cell_y+1);

最初のクエリでBテーブルの代わりに、このSELECT文 を制限された近隣のノードを

持つ導出テーブルとして使えば、地図が大きくなったときにも高いパフォーマンスが期

待できる。

訳注 2:ク エリの条件にあるように、検索範囲の x座標 |よ ce‖ _x-1、 ce‖ _x、 ce‖_x+1の 3つ、y座標も同様にce‖_y-1、
ce‖_y、 ce‖_y+1の 3つなので、検索範囲は必ず9マスに限定される。

3■ 9

鷺
Ｐ

辣
輝

lredex

記号 。数字 NULLを除外する
COUNT(DISTINCT x)……………̈ …̈… 91,210,287
CREATE TABLE文 ……… ……… …………………1,197

17,130

つ

210 fiData & Databasesj

[:ALPIIA:] 22

248

2次元配列 270

I98, 250 [Database Programming & Designj

DAYS関数|

[DB2 Magazinei
8 『DBMS』
262 DDL(データ定義言語)

3分の2……………… …̈……… 245

1164GL

^ABS関」枚: …………………………… … …104,105,245
AGE関数
ALL述語

I)2ヽTE2墜 !¨ .̈¨ ¨̈ ¨̈ ¨……………………………̈ ¨̈ . .… ……….142

129

.92

203,256,277

48,265,303
AND演算子
AVG関数 …

3,47,78,138,169
125,130,151,181

DEFAULT句 299,301
DELETE文
DENSE_10NK関 数

5,6,8,81,271

86

1133
BEIヽVEEN述語 ……… 3,8,21,24,44,94,158,193,
266

C
『CJ.Datcのデータベース実践講義』… ………66,l16
CASE式 …… 46,47,53,60,68,100,103,105,lll,
152,176,190,208,223,226,247,272,292
SELECT句 のリス ト中で使える 55

高度な応用

集約関数を組み込む 53,152

CAST関数 .65

200CEILING関 数
CHAR型

DFD(データフローダイアグラム)
DISTINCT 30,115,133,227
DML(データ操作言語) 48

C
EXCEPT演算子 ……… ………114,117,120,241,265
EXCEPT ALL演 算子 …………………… ……… … … 237
EXISTS述語
入れ子 .

182 EXTRACT関数

F
FL00R関数 ………_… ………………… ……………… 200

CHARACTER_LENGTH関 数 251

CHECK制 約 (句)… ………2,5,19,21,23-25,32,48,
188,196,249
サブクエリを使う ……… …̈……………………196
COALESCE関 数 …… 36,58,66,107,139,161,181,
225,240,307,311

CompuSerue 4

COUNT関 数 ………47,82,84,88,91,92,119,130,
149,155,167,176,181,184,220,230,265

NULL行をカウント 82

NULLを 数える

._ … … .… ……… .47 FROM句 14,36,59,64,80,204,314
サブクエリを使う 14

fiFundamentals of Database SystemsJ I l6

a
GRC)UP BY句 …… …̈… 60,80,100-102,l12)138,
150,153,155,176,187,193,198,210,218

H
HAVING句 …43-45,84,87,88,92,101,125,130,
167,193,195,265,267

320

88 力 45,87,125

88

92

l

IF文

IN述語 106)l16

ANDで結ばれた 169

TNNERIOTNa r0r
INSERTT 24,25, trr, r80, t97,27L, 300
『Intcrpolation』 .

INTERVAL定数
flntroduction to Database Systems j

J
『JOc CclkOls Andytics&OLAP』 ………………………90
『Joc Ccko's Trccs and Hicrarchics in SQL ibr

Smarties j 139

L

LIKE述語 22、 283

′νl

A4′tX関菱え¨̈ ¨̈ 19,36,42,54,60,61,63,lll,121,

127,130,153,155,176,218,315
MIN関数 ……………… 19,54,61,121,218,253,287
MOD関 数 …………………245,253,260

MOVINC SUMオ プション

N
NOT EXISTS述 語
NOT IN述語
NOT NULL制 約
NULL…
全列の値

NULLIF関 数

OLAP関数
240,302

0
¨̈ 4̈0,68,69,86,127,151,159,162,

ORDER BY句 86)101,232,233

OVERウ ィンドウ句
OVEIこAPS述語

p

POSIT10N関 数
POSIX構文

flPractical Issues in Database ManagementJ 61

R
MNK関 数 67,68,86
REFERENCES句

lndex

NPLICATE関 数 _
246 ROW_NUMBER関 数 86,231

SELECT句
S
55,72,101,148,149,227

GROUP BY句 と の
不

一
致 155

サブクエリ式を入れる 42

中にSELECT文 ……………………… …̈…………… 150
SELECT文
2つ をまとめる …… …………………… …̈…………14

SELECT文の中に折 り込む 55

行同士を比較 157

SIGN関 数 104,105,300

 ̈_ …̈…251

124

.3
116

SIMILAR TO述 語
SQL(文)
SQL文 を書く

248

233

.77動的に生成された

SQL:2003 67,68,69,151

SQ■′-89.¨ 63,99,109,115,125,132,148,187,217
SQ:L-92 . 1,14,19,21,24,41,42,43,47,52,55,

59,641,74,80,84,100,101,106,107,111,l14,
126)148,154,176,182,187,190,208,217,279

SQL-99.¨ 40,86,159,182,195,234,237,240,302

151 『SQL br Smartics Third Edidon』 250

S(2L/PSル1

STUFF関数
…̈245,299
172

SUBSTRING関 数 . 21,156,250
SUM関数 ……… …̈46,146,151,156,180,293,313

τ

TIMESTAMP型 288,307

TRぶ SLATE関数 22

И

UN10N演算子 …… .… 13,54,63,154,303,315
CASE式で置き換える ………… _…………… 190

繰り返し ……………………………… …̈……………lll

¨̈ ¨̈ _ .156

151,231 UNION互換 122

24 UN10N ALL演 算子 …̈ …64,65,110,189,229,316
UNIQUEffUfS 2

UPDATE文 … 5,7,18,37,157,158,160-162,188,
232,288,293,301

行同士を比較 ………… …̈………………………160… .22

テーブル名の有効範囲 19

連番を入れていく…………… …̈… …̈………231

ツ

VALUES式 ……… …̈… …̈ …̈……_¨ ……… …… 248
REPLACE関 数

.73

251

324

311

107

lndex

W
WiATCOM_¨ ………………………… …̈ …̈…¨̈ ……………23
WHEN句 ……………………………………… …̈……………47
,VIIEIに E句 …………6)13,35,36,84,91,93,100,142)
159,161,169,170)204,227,253,302

WHERE条件 .

WHILEループ
43

66

67

108

106

171

129

192

.49

203

189

312

289

194

194

列と入れ替える

行構築子

共通表式

再帰的

64)69,80,191,195,241,296

241

105、 190

163,165

行持ち

列持ちヘ

1″ITH CHECK OPT10N付 きビユー … … … .… 25
35,54

一般化 61

近傍 317

空集合 36,91,122,148,180
組み合わせ 168,185

存在しない ……………………………………………l13

グループ化 ……………61,91,100,146,184,261,315
クロス結合 90,168,170,206,270,304

計算列 …
欠番探し

298,305,307

235,238

合計ほぐし 202

さ行

246,250 極値関数

あ行
あいまい検索 …̈……………………………………………̈ 21

後入れ先出し (LIFO) 289
『アルゴリズム+データ構造=プログラム』…279,285
アルファベット

1文字も含まない列

少なくとも1文字は含む列
だけを含む列

「安定な結婚」
移動平均

入れ子集合 26,139
インテッゞクス ……35,69,80,100,119,138,150,167

191,204,206,287

重み付け

.21

.21

.21

274

157

合言十 _¨ . ¨ .̈¨ .¨………151,175,185,189,193,313

再帰関数

再帰集合 148,149

………….¨ ¨̈¨169 1最′Jヽ値 .¨¨ ̈¨¨̈ .̈49,188

か行

最大下界

最大値

期間内での

135 最小値を取り出す

57,231 最頻値 (モード)
57,7r,93,r49, 182,24r,3t3 ft^tL,tfrL (FIFO)

会計月テーブル ……… …̈…
階層構造 ……

外部キー制約

外部結合

COttESCE関 数で代用
RANK関 数で代用 ………
行と列を変換

集約との合わせ技

複雑な

¨̈ ¨̈ ……125

228

215

作業テーブル

集約された

差集合演算

座標と距離

l14,117,120,241

317

サブクエリ (式)……14,110,137,147,148,160,193,

196,217

結合条件で実行 ……………………………………… 261

非相関 138

64,80

70,73,90,304
206

93,174
カレンダー補助テーブル 17

76,79,89,90,166,265関係除算

応用

厳密な …
完全外部結合

サブクエリテーブル式

参照整合性制約

期間 ……………… 10,23,42,93,145,160,242,310 シーケンス (連番)結合
結合 242 時間データ

131

.92

117

…̈……………….286,306
期間別合計 ……… …̈………………………………………189

木構造 ……… …̈……………………………………… …̈…135

擬1人酉己タリ ¨̈ .¨ ¨̈ "..¨ ¨̈ ¨̈ ¨̈ …̈…̈ ¨̈ ¨̈ ¨̈…104,311

ギャップ

共役性 .

行

外部結合で列を変換

比較

自己外部結合 72,253,301

39,235,238 自己結合 _¨ 44,67,109,168,186,223,226,303
156 自己参照 26,197

時間テーブル .

時系列レポート

228 システムユーティリティ関数
述語内での …………………………………………………19

81,157,160,298 自然キー ……………… …̈……………………………… 309

322

3

実行計画

集合

44,138)172 相関名

lndex

19,146

64:,68,150,250,316

た行

…………23,196
125

264

197

122,186,205,226,229,237

41)128,145,146,160,290,292
125

ソート ……………

相等性

集合指向 ¨

l16,119,121 ループを使わない ………………………………250

249

集合指向言語

数列を扱う

集約

制約

2段階

101,102)167

235,238 ダブルブッキング

中央値 (メ ジアン)

重複219

外部結合との合わせ技

集約関数

空集合に適用

サブクエリ式に入れる

集約キー

集約クエリ

集約計算

287,309
-部を自動的に割 り当て

順序

入れ子集合で表す

組み合わせに変換

215

53,151,152,194
期間 ……… …̈………………………………10,23,242

多次元

36 防 ぐ

……… 14

.44,194

.64,153

140,144

重複行

直近 ¨

直交性

定数 47,137,169,204,229

主キー ………2)73,74,81,138,141,167,181)210, 『データベースシステム概論第6版』……………91,116

231

26

185

83

270

248

.21

123

テーブル

Abscntccism(欠勤)

Accounts(計 算書)

4

順夕1 .¨ ¨̈ ¨̈ ¨̈ ¨̈……… ……… .¨ ¨̈ ¨̈ .̈168,277,278

Actual(実 支出)

313

215

Actuals(購入費用)¨………………………………¨̈ 175

Antllolo野Contributors(寄 稿者)………………210
18,20商 .¨ ¨̈ .¨ ¨̈ ¨̈ ¨̈ ̈.¨ ¨.¨ ………….¨ ¨̈ ¨̈ .¨…90,181 Badgcs(´た館証)

上位3位 ……… Bar . …………… . ._¨ …… .… …… 313

除テーブル

真部分集合

数独パズル

正規表現

検索

スカラサブクエリ (式)…… 60,61,72,123,143,148,

151,161,167,175,176,180,204,218,230

calcnd征 (カ レンダー).

CallsTablc(顧客コール)

234)250 candidatcSkilis(就 業希望者)

Billings(請求書)

BOxcs(ボ ックス)

Budgctcd(予 算:)

Categories (tl El)

Claims(訴訟)

claimStatusCodcs(訴訟状態)

Clicnts(顧 客)

cOnsultants(コ ンサフレタント)

CrcditsEarncd(取 得済み単位)

Customcrs(顧 客)

DataFlowDiagrams (oFD)

Dcindants(被告人)¨

Elcmcnts(集合の要素)

Esdmatcs(購 入予算)

ExcuscList(膚言ヽ 訳`)

FiscalYcarTablcl(会計年度)

Foobar

Hangar(格納庫)

HOtcl(ホ テル)

HOursWorkcd(実 働時間)

144

…l16

ス トアドプロシージャ

正弦 (sinc)関数

整合性制約 …̈… …̈… 23

2,21

ON DELETE CASCADE… …… … ……………… 6
カスケード削除のオプション ……………………… 6

範囲外の日付

絶対値

宣言型

245

_ 95,245

宣言型言語

手続き型言語との違い

宣言的 95,246,249

言語 1,295

選言標準形 78

相関サブクエリ 18,80,100,133,148

…̈274

Foo _ _.¨ ¨̈ .̈ _ _ . ……̈ _
21,105,223,304

UPDATEで 使用する …………… … … … … … 18 23,24,231

行同士を比較する …. .… 298
275,279ネストした 161 Husbands (*)

323

¨̈ .̈¨ …̈…….¨ ¨̈ .¨……264,265
,1■

89

り

ｍ
０

４

８

３

１

lndex

Invcntow(在庫) 198

InvcntowAdiustmcnts(在 庫調整)… …̈ …̈… 148
Itcms(商品)

Schcdulc(運行スケジュール)… ………286,287
SchcdulcdCalls(手 配済み顧客コール)……… 307
Scats(座席)…………………………………………… 38
Scqucncc(連 番補助)
ScⅣiccs(サービス).

202)239

ScwКcsSchcdulc(サ ービススケジュール)¨¨108

IobOrdcrs(人材の紹介依頼)

Jobs(仕事)… ………¨………………………… 70,73
ゎurnal(仕訳)._¨ ¨̈…………….¨ .̈ ¨̈ ¨̈ ¨̈ .̈160
Lc『 lEvcnts(訴訟F拝イ牛)

LossDOncRght(保険損失) 165

Losscs(〔 顧客の〕損失) 163

Machincs(機 械)……………… …………………140

ManuLctCOsts(製造費用)
ManufactHrs(稼 働時間). SupParts(供 給業者/部品)

TaxAuthOritics(税 務当局)…………………… 135
TaxRatcs(税率)

Tcams(チ ーム)

136,139

70,71,73-75

50 Sinc

174

.78

140

141

123

250

270

116

27,29

309

207

SonMeFast

StockHistow(株 価履歴)

Succcssion(ま皇鎖)

SudokuGrid(数独)

299,302

MyTable
Names

Ncwsstands(売 店)

Numbcrs(自 然数)
OrdcrDctails(注 文明細)

Ordcrs(注文)

Payroll(給 与名簿)

Pcnsions(`竿ζ金I)

Pcrsonncl(社 』ミ)¨ ¨̈ 4,18,57,70,75,219,308
PcrsonnclSchcdulc(社 員スケジュール)……309
Phoncs('電1話)

Picklists(ピ ックアップ)

PilotSkills(パ イロットスキル) 89

Po■ cy_Critcria(プ ラン基準)… …̈… …… … 163
Portfolios(ポ ートフォリオ)¨………… 26,27,29
PriccByAgc(購入者の対象年齢)………………268
P五 ntcrControl(プ リンタ管理)
Procs(処 置)

Pro,ccts(プ ロジェクト)

Promouons(販 売促進).
PubMap(居 酒屋マップ)

104

252

.95

235

131

131

125

Tcnanも (借 り主)………………̈ ……………………93
TcstRcsults(テスト結果)

Tickcts(チ ケット)

Timcshccts(タ イムシート)

41

Titlcs(雑誌)

Units(部 屋)

flnstable
Widgctlnvcntor、 (在庫)

57 W■_Pcrms(「妻の順列」補助)_¨ ………277
295 275

′

８

２

５

，３

‐３

，

り

，

旧

愴

８

”

２４

”

”

刻

刻

″

″

，

，
＾

W市cs(妻)
テーブル駆動型

テーブルサイズ

テーブル定数 248

デカルト(座標)空間 264)317
手続き型から宣言型へ … …

手続き型言語

95,245

宣言型言語との違い ……… …̈… ……………274

同一性述語 …………………………………………………106

導出テーブル 182,191,292,313,319
317,319 等分割 ……… …̈…

RacingRcsults(レ ース結果) 228 特性関数
RcntPaymcnts(家 賃支払い)……… …̈………… 93 時計テーブル
Repetations

46

205 卜1夕
'ゲ

ー .¨ …̈…….¨ ¨̈ ¨̈ ¨¨̈ ¨̈ ……25,188,249,299
Reseruations (7#!) 196,197
Rcsistcr(受 講登録)…………… ……………………53

Resrauranr (V 7l, >)
な行

39 内挿法 123
Rolcs(役 職).

Salarics(給料)

Salcs(売 上)¨

152

62

96,128,192

83

185,188 配列
SamPlcGroups(サ ンプルグループ)¨ … ……178 歯抜け
Samples (t>7)v)

ネス ト (入れ子構造)…
246,265

59,72,132,138,156,161,

SalcsData(売 上データ)

SalcsSlips(売上伝票) 104,270,295

324

157,178

は行

24,235,240,274

10

Produc」。n(`主 ,整|)¨ .¨ .¨ ¨̈ .̈¨ ¨̈ ¨̈ ……….… 207
Products(製 品)¨…………… …… …̈… 132,249

Manufactlf rsCosts 141

16

パフォー・マ
.ン
ス …………7,47,69,74,80,99,102,110,

127,133,138,147,150,169,170,227,283,287,
302,316,319
バブルソート¨̈ ¨

バルク (一括)イ ンサート

範囲

合算と網羅性チェック

番兵

lndex

Vprocs 15

標準形 76,78

250 ビン詰め問題 295

299 負荷分散 34,36

部分集‐合 ¨̈ … 63,90,91,116,117,119,121,167
268 部分和問題 289

37,38

198

90

『プログラマのためのSQL第 2版』……27,65,90,242
aEi-, r

OverPick 297

39,236 フラグ
非グループ化

被除テーブル

Erl$tsfi5A 7r,e2,176,r84,2r7,313,314
ビット

ベクトル

ビュー

ActiveBadges
AllDFDFlows

AmtCounts
AverageCost

Cat_Costs

DailyTimeSlots
DeptView

276,278

平均 .¨…97,128,132,140,157,178,207,219,290

平均値 (ミ ーン).
ポインタチェイン

包含演算子 …… …̈…
ボース=ネルソンのソート法 250

ま行

220 右外部結合 181

…̈226 文字列 171)250,278

12

.77

170

.20

115

125

291

217

プロッキングペア …

125

.27

¨̈ 159

.l16

や行

……… …̈………………………………………9

Dups

Events

FIF()…

Firstscat

Foobar

LIFO

Prod3

292

39

105

58

ユリウス通日

欲張り法 _

HomePhones ら行

ランキング .. ………… … ……… 83,274

295

20

HourRateRpt … 145 累計 148,291,292

229 ,レープ …….¨ . 15,171,198,206,246,247,250,301

夕」

外部結合で行を変換 ……
行と入れ替える

InMoney
Lastsales

Lastseat .

_. 129

39

MagazineSales
…̈291

97,98

NewDFD .

PenPeriods

.̈_. . ……l15

列持ち ………

レポー トの整形

行持ちから……

PensionsView
PickCombos

連続

連続的なグルーピング

…208 連番 19,86,204:,231,235,238

ReplacementCost

Report
振り直す

Salaries2

連番補助テーブル

ロシア農民のアルゴリズム

202,237,247,268

199

SalaryHistory

SalesGap

StockLevels

StockTrends

TodayClock

わ行

ワイルドカード __… … _..283

325

FaxPhones

190

163,165

. _ _ . . _ . . _ _ ._ . _252

302

TotHrsCosts 142

| || | | || |.| | l | |

著者プロフィール

■ジョー・ セルコ

著名なコンサルタント兼講師であり、SQL関係の書籍では世界で最も読まれている著者の1人。ANSI
SQL標準化委員会での10年に及ぶ貢献や、『Intclligcnt Entcrprisc』 誌上のコラム (読者投票による賞を
いくたびも受賞)、 現実世界に対する洞察をSQLプ ログラミングに反映する取 り組みでも有名である。

著作に『JOc Cclk。 's SQL br Smardcs:Advanccd SQL Programming,Third Eddon』 『Ioc Cclko's Trccs

and Hicrttchics m SQLおrSmancs』 (と もにMorgan Kauham刊)な ど。

訳者プロフィール

■ミック

金融系sI企業に勤務するDBエ ンジニア。主にOraclcを使ったデータウェアハウス業務に従事している。

(株)翔泳社が主宰するWcbマガジン「COdcZinc(http://cOdczincjP/)」 にて、SQLに関する記事を連載

中 。 自 身 の ホ ー ム ペ ー ジ「 リ レー シ ョナ ル・デ ー タベ ー ス の 世 界 (http://WWW.gCOCitiCSjP/miCkindCX/

databasc/idx_databasc.html)」 では、SQLと データベース技術についての情報を公開している。最近は、

集合指向というSQLの特性を活かした技術の応用や、木構造データをsQLで扱う技術に関心がある。

DTP
装丁

有限会社風工舎

轟木亜紀子 (株式会社 トップスタジォ)

者

者

人

所

行

行

著

訳

発

発

s。こ
レ
パズル第2版 ～プログラミングが変わる書き方/考え方

2007年 11月 1日 初版第 1刷発行

Joe Celko(ジョー・セルコ)

ミック

佐々木 幹夫

株式会社翔泳社 (http:〃www.shoeisha.co」p)

大日本印刷株式会社

本書は著作権法上の保護を受けています。本書の一部または全部について (ソ フトウェアおよびプ

ログラムを含む)、 株式会社翔泳社から文書による許諾を得ずに、いかなる方法においても無断で

複写、複製することは禁じられています。

本書へのお問い合わせについては、iiページに記載の内容をお読みください。

落丁・乱丁はお取り替えいたします。03-5362-3705ま でご連絡ください。

製本印刷

lSBN 978-4-7981-1413-2 Printed in lapan

ISBN978‐ 4¨7981‐ 1413‐2
C3055¥2800E

株式会社翔泳社

定価 :本体2,800円+税

||‖ ||||‖ ||||||‖‖||‖ |||‖ |

/JheCt
地球にやさしい本づくりを目指します

9784798114132

|||‖ |‖ ||||‖ ||‖ ||||||‖ |‖ |

1923〔〕55028005

プログラミングが変わる書き方/考え方
t++SQL Puzzles and Answers 2nd Editionr**

ノ

11

