

※本書に登場する会社名、製品名、サービス名は、各社の登録商標または商標です。
※本文中では®、TM、©マークは明記しておりません。
※本書の内容に基づく実施・運用において発生したいかなる損害も、株式会社インプレス
と著者は一切の責任を負いません。

※本書の内容は、2016年10月の執筆時点のものです。本書で紹介した製品／サービスなど
の名前や内容は変更される可能性があります。あらかじめご注意ください。

目次

はじめに

レッスン 0 RDBMSの基礎
0.1　本書の目的
0.2　MySQL環境の準備

Column　仮想化ソフトウェアでLinux環境を構築できる

0.3　RDBMSとは
0.3.1　RDBMSで求められる機能

格納するデータに対する制約

データの操作

ACIDトランザクション

0.4　データベースサーバーの構築および運用時に考慮すべき事項
0.5　MySQLについて

0.5.1　MySQLサーバーのエディションとライセンス

0.5.2　MySQLサーバーのバージョンと主な機能

Column　MySQLの活用事例　Web&オンラインゲーム&クラウド

レッスン 1 MySQL 5.7で新しくなったインストール方
法

1.1　MySQLのダウンロードサイト
1.1.1　対応プラットフォーム

1.1.2　インストールパッケージ

1.1.3　サポート期間

1.2　MySQLのドキュメント
1.3　Windows環境へのインストール方法

1.3.1　GUIインストーラでWindows環境にインストールする

1.3.2　Windows上でZipファイルでのインストール

1.4　Linux環境へのインストール
1.4.1　Linux上でRPMファイルでのインストール

1.4.2　Linux上でYumリポジトリを利用したインストール

1.4.3　Linux上でtarファイルでのインストール

1.5　MySQL 5.7のインストール時の留意事項
Column　MySQLの活用事例　“堅い”システム

1.6　演習

レッスン 2 MySQL サーバーアーキテクチャ概要
2.1　MySQLサーバーのアーキテクチャ

2.1.1　ネットワーク接続管理

2.1.2　ユーザー認証&権限管理

2.1.3　SQL構文解析 & 実行計画最適化

2.1.4　キャッシュ

2.1.5　ストレージエンジン

2.2　ストレージエンジンの使い方
2.3　InnoDBストレージエンジン

2.3.1　InnoDBのデータファイル

2.3.2　InnoDBのトランザクション管理

2.4　MEMORYストレージエンジン
2.5　設定ファイル

2.5.1　設定の確認

Column　MyISAMストレージエンジン

2.6　演習

レッスン 3 MySQL サーバーの主な機能と設定オプショ
ン

3.1　mysqld MySQLサーバープログラム
3.1.1　ディレクトリ設定

3.1.2　接続設定

3.1.3　メモリー

3.1.4　文字コード

3.1.5　文字の照合順序（COLLATION）

3.1.6　ログ

エラーログ

バイナリログ

スロークエリーログ

一般クエリーログ（または一般ログ）

スロークエリーログと一般クエリーログの出力先

ログ出力設定の動的な変更

ログのローテーション

Column　各種のストレージエンジン

3.2　演習

レッスン 4 MySQL のクライアントプログラム
4.1　クライアントプログラム
4.2　MySQLコマンドラインクライアントmysql

4.2.1　mysqlのインタラクティブモードとバッチモード

4.2.2　mysqlコマンドの実行時ヘルプとSQL構文の確認

4.3　MySQLサーバーの運用管理に必要となるクライアントプログ
ラムmysqladmin

4.4　簡易ベンチマークツールmysqlslap
Column　歴史に消えたストレージエンジン

4.5　演習

レッスン 5 GUIツールMySQL Workbench
5.1　MySQL Workbenchのインストール

5.1.1　Windows版のインストール

5.1.2　Mac OS X版のインストール

5.1.3　Linux版のインストール

5.2　MySQL Workbenchの主な機能
5.2.1　新規接続定義の作成

5.2.2　MySQLサーバーの管理系機能

5.2.3　MySQLサーバーのパフォーマンスチューニング系機能

5.2.4　MySQLデータベースを使った開発支援機能

5.2.5　E/R図を用いたスキーマ設計

5.2.6　他DBからMySQLへのテーブル／データ移行支援

5.3　MySQL Workbenchの商用版限定機能
5.3.1　データモデルのドキュメント出力機能

5.3.2　データモデルの検証機能

5.3.3　MySQL Enterprise Edition限定機能に対するGUI

MySQL Enterprise Backup

MySQL Enterprise Audit

MySQL Enterprise Firewall

Column　MySQL Utilitiesとは

5.4　演習

レッスン 6 JSONデータ型とJSON関数
6.1　JSON対応のメリットとは
6.2　JSONデータ型

6.2.1　JSONとは

6.2.2　データ型としてのJSONの用途

6.2.3　MySQLのJSONデータ型の特徴

6.3　MySQLのJSON関数とJSON演算子
6.3.1　JSONデータのパス式

6.3.2　JSONデータを作成する関数

6.3.3　JSONデータを検索する関数および演算子

6.3.4　JSONデータを変更する関数

Column　NoSQL APIとmemcachedプラグイン

6.4　演習

レッスン 7 バックアップとリカバリ　基礎編
7.1　バックアップの重要性

7.1.1　バックアップ取得時の考慮点

7.1.2　バックアップ対象の検討

「いつ」バックアップするか

「なにを」バックアップするか

「どこに」保管するか

「どのように」バックアップするか

「どれだけ」残すのか

7.2　バックアップ用語の整理
7.2.1　オンラインバックアップとオフラインバックアップ

7.2.2　物理バックアップと論理バックアップ

7.2.3　フルバックアップと増分バックアップと差分バックアップ

7.2.4　ローカルバックアップとリモートバックアップ

7.3　データの復旧
7.3.1　リストアとリカバリ

7.3.2　RTOとRPO

Column　日本のMySQLコミュニティ

レッスン 8 バックアップとリカバリ　応用編
8.1　データのフルバックアップに関する方法とツール
8.2　物理バックアップかつオフラインバックアップ
8.3　物理バックアップかつオンラインバックアップ
8.4　論理バックアップかつオンラインバックアップ

8.4.1　MySQLの論理バックアップツールmysqldump

mysqldumpからのリストア例

8.4.2　MySQLの新しい論理バックアップツールmysqlpump

8.4.3　MySQLサーバーにデータをロードするCUI mysqlimport

8.5　増分バックアップの方法とツール
8.5.1　バイナリログによる増分バックアップ

8.5.2　MySQL Enterprise Backupによる増分バックアップ

Column　アジアのMySQLコミュニティ

8.6　演習

レッスン 9 レプリケーション　基礎編
9.1　MySQL高可用性構成パターン

9.1.1　データミラー型＆アクティブ／アクティブ型

9.1.2　データミラー型＆アクティブ／スタンバイ型

9.1.3　ディスク共有型＆アクティブ／アクティブ型

9.1.4　ディスク共有型＆アクティブ／スタンバイ型

9.2　MySQLレプリケーション
9.2.1　レプリケーションにおけるMySQLサーバーの各スレッドとファイ

ルの役割

9.3　レプリケーションの基本的なセットアップ方法
Column　バグデータベース

9.4　演習

レッスン 10 レプリケーション　応用編

10.1　タイミング　非同期型＆準同期型
10.1.1　準同期レプリケーションの設定項目

10.2　バイナリログの形式　SQL文転送型＆行イメージ転送型
10.3　GTIDモード

10.3.1　GTIDを設定しているバイナリログ内の出力例

10.4　MySQLのレプリケーション構成パターン
10.4.1　1:1型と1:n型

10.4.2　n:1型（マルチソースレプリケーション）

10.4.3　n:n型（グループレプリケーション）

10.4.4　MySQL InnoDB Cluster

Column　MySQL Cluster

10.5　演習

レッスン 11 セキュリティ　Part1
11.1　データベース・セキュリティ概論
11.2　MySQLサーバーのセキュリティ対策
11.3　インストール関連のセキュリティ対策

11.3.1　MySQLのバイナリは常に最新版を利用する

11.3.2　ファイルシステム上の権限を適切に設定する

11.3.3　secure_file_privを明示的に設定する

11.3.4　初期データベースはmysqld --initializeで作成する

初期データベース作成に関する補足

11.4　ユーザー関連のセキュリティ対策
11.4.1　アクセス可能なホストと権限を制限する

ログインユーザーと現在のユーザーの違い

プロキシユーザー（≒ロール）の活用

Column　ロール

11.4.2　ユーザーが利用するリソースを制限する

11.4.3　パスワード検証プラグインを有効にしてパスワードポリシーを

設定する

11.4.4　mysql_config_editorを使って認証情報を管理する

11.4.5　外部認証を使用しユーザー管理を一元化する

Column　全文検索（Full Text Search）

11.5　演習

レッスン 12 セキュリティ　part2
12.1　ネットワーク関連のセキュリティ対策

12.1.1　必要最低限のネットワークインターフェースを使用する

12.1.2　ネットワーク通信をSSLで暗号化する

12.2　暗号化によるセキュリティ対策
12.2.1　バックアップファイルを暗号化する

12.2.2　透過的データ暗号化でデータファイルを保護する

2層鍵管理アーキテクチャ

鍵管理製品との連携

透過的データ暗号化の使用方法

12.2.3　機密データは暗号化してデータベースに格納する

12.3　その他のセキュリティ対策（監査、ファイアウォール）
12.3.1　監査ログで不正操作や内部犯行を防ぐ

12.3.2　ファイアウォールで想定しないアクセスをブロックする

12.4　MySQL Enterprise Editionの機能を試す方法
Column　GIS（地理情報システム）

12.5　演習

レッスン 13 パフォーマンスチューニングの基礎
13.1　MySQLパフォーマンスチューニング概論

13.1.1　チューニングの指標

スループット

レスポンスタイム

13.1.2　ボトルネックの特定とチューニング

13.1.3　ベンチマークテスト

13.2　稼働状況と設定の確認
13.2.1　ステータス変数

SHOW STATUSコマンドによるステータス変数の確認

mysqladminのextended-statusコマンドによるステータス変数の確

認

13.2.2　システム変数

SHOW VARIABLESコマンドによるシステム変数の確認

SELECT @@コマンドによるシステム変数の確認

パフォーマンス・スキーマによるシステム変数の確認

13.3　システム変数のチューニング例
13.3.1　接続スレッドごとの設定値

sort_buffer_sizeのチューニング

tmp_table_sizeとmax_heap_table_sizeのチューニング

13.3.2　MySQLサーバー全体の設定値 thread_cache_sizeのチューニング

13.3.3　InnoDBストレージエンジンの設定値

innodb_buffer_pool_sizeのチューニング

innodb_log_file_sizeのチューニング

innodb_flush_methodのチューニング

Column　MySQLのリリースサイクル

13.4　演習

レッスン 14 パフォーマンスチューニングに役立つ機能
やコマンド

14.1　パフォーマンス・スキーマとsysスキーマ
14.2　SQLチューニングに役立つ機能

14.2.1　スロークエリーログ

14.2.2　mysqldumpslow

14.2.3　SHOW FULL PROCESSLIST

14.2.4　EXPLAIN

14.2.5　オプティマイザ・トレース

14.2.6　ヒント

インデックスヒント

STRAIGHT_JOINヒント

オプティマイザヒント

14.2.7　MySQL Workbenchでのチューニング

クライアントコネクションの一覧を確認

システム変数、ステータス変数の確認

Visual EXPLAIN

Query Statistics

パフォーマンス・ダッシュボード、パフォーマンス・レポート

14.2.8　MySQL Enterprise MonitorのQuery Analyzer

Column　不可視索引（INVISIBLE INDEX）

14.3　演習

レッスン 15 Oracle MySQL Cloud Service
15.1　Oracle MySQL Cloud Serviceとは
15.2　Oracle MySQL Cloud Serviceの概要
15.3　Oracle MySQL Cloud Serviceの独自性

Column　アプリケーションからの接続部品

●サンプルプログラムについて
本書で説明したサンプルプログラムは、以下のURLからすべてダ
ウンロードできます。
http://book.impress.co.jp/books/1116101014

http://book.impress.co.jp/books/1116101014

はじめに

　本書はMySQLの運用・管理の現場で役立つポイントを基礎から学
習できるように執筆しました。
　開発から20年以上が経ち、MySQLは着実に進化を続け、さまざま
な環境で利用されています。そして「使いやすさ／ease of use」
は、引き続きMySQLの重要な開発コンセプトの1つとなっていま
す。本書では、この「使いやすさ」と「体系的な知識」を融合する
ことで、皆様がより確実にMySQLを運用・管理できることを狙いと
しています。
　MySQLの技術を順番に解説する書籍ではなく、各章をセミナーの
1レッスンとして学習できるスタイルにしました。また各レッスン
の末尾には演習問題を用意し、レッスン内容を復習できるようにな
っています。MySQL 5.7では、150を超える新機能の追加や機能改善
が行われており、本書はMySQL 5.7をベースとした運用・管理方法
について解説しています。
　本書がこれからMySQLの運用・管理業務に携わる方や、すでに運
用・管理を行っていて改めて体系的に学習したい方などのお役に立
てることを願っております。

梶山隆輔

　ある時「MySQLは初心者向けの情報が不足しているから、もっと
初心者向けの情報も発信した方がいい」と、日本MySQLユーザ会の
方から言われたことがあります。
　そこで、初心者向けにMySQLの入門者セミナーを東京で企画した
ところ、予想を上回る申込みがあり、定員オーバーのために途中で
申込みを締め切る事態が発生しました。
　その後も「MySQLを使用する人がもっと増えて欲しい」との思い
もあり、東京で同様のセミナーを再開催したり、大阪、名古屋、福
岡、徳島など東京以外の地域でも同様のセミナーを開催したりして
いますが、セミナーを開催できる機会には限りがあります。そのた
め、このような書籍で初心者向けに情報発信できる機会を頂けたこ
とを大変嬉しく思っています。
　本書によってMySQLを使用する方が増えたり、本書が皆様の
MySQL学習のお役に立てれば幸いです。MySQLを使用する際のお供
に、是非本書をご活用ください！！

山﨑由章

0.1 　本書の目的
　多くのシステムではデータを蓄積し、そのデータを分析していま
す。データベースはこの「データの蓄積」を担う機能で、コンピュ
ーター上でデータベースを構築・運用するシステムをデータベース
管理システム（DBMS。後述）と呼びます。リレーショナルモデルを
採用したリレーショナルデータベース管理システム（RDBMS）は、
DBMSの中でも幅広いシステムで利用されています。MySQLサーバー
は、ソーシャルゲームやWebシステム、クラウドインフラなど大規
模なシステムのバックエンドとなるデータベースから、小規模な社
内システムのデータベースまで、さまざまな環境で採用されていま
す。
　本書は、MySQLサーバーのアーキテクチャの理解、MySQLサーバ
ーを用いたインフラ設計、運用時に求められる知識など、MySQLの
基礎知識を体系的に学べるセミナー形式となっています。アプリケ
ーション開発だけではなく、バックアップ、セキュリティ、高可用
性構成など、システムのインフラ設計やデータベースの運用管理に
役立つ知識も学習していきます。各レッスンを読んでコマンドを試
してみるまでがおおむね45分で終わるように構成されています。ま
た各レッスンの終わりには各自で理解度を確認するための演習も用
意しました。なお、各コマンドは、MySQLサーバーの最新版
「MySQL 5.7」をベースにしています。MySQLサーバーで利用できる
SQL文の構文については『できるProシリーズ MySQL』（インプレ
ス）を参考にしてください。

0.2 　MySQL環境の準備
　本書では、MySQLサーバーをPCにインストールし、実際にコマン
ドを実行することを想定しています。MySQLサーバーのインストー
ルや実行に必要なマシンスペックは公式には規定されていません
が、とりあえず動作させるためには、メモリーが500MB強、ディス
クは1.5GB程度の空きがあれば十分です。
　本番環境でのMySQLサーバーはLinux上で利用されることが多いた
め、本書でのコマンド例も特に断りがない場合はLinuxのものとしま
す。なお、本書に掲載するコマンドは、実行環境によってリスト1の
ように、行頭の表示を変えてあります。

リスト1　本書でのコマンドの行頭表示

Windowsでのコマンド実行例
>
Linuxでのコマンド実行例
$
mysqlクライアントプログラムでのコマンド実行例
mysql>
各プロンプト内でのコメント
#

　Column　　 仮想化ソフトウェアでLinux環境を構築で
きる

　学習や動作検証、アプリケーション開発の段階では、Windows
上でMySQLサーバーを利用している方も多くいます。コマンドの

動作確認をLinuxで行いたい方は、お手持ちのPCのOSを入れ替える
ことなく、VirtualBoxなどの仮想化ソフトウェアを用いて、
WindowsやMacのOS上にLinux環境を構築できます。またLive CDや
Live USBを利用すると、一時的にLinuxでブートできます。特に
Live USBでは、インストールしたプログラムや作成したデータを
USBメモリー内に保管することが可能です。
　VirtualBox上に仮想マシンを構築した例として、以下が参考にな
ります。

●Think IT 連載：読んで試す！ゼロからはじめるWordPress入
門
VirtualBox上に仮想マシンを準備する
https://thinkit.co.jp/story/2015/03/17/5678

https://thinkit.co.jp/story/2015/03/17/5678

0.3 　RDBMSとは
　リレーショナルデータベースでは、関係モデルの概念をベース
に、表でデータを格納していきます。言い方を変えると、リレーシ
ョナルデータベースは、データを格納した表の集まりを管理するシ
ステムとなります。各表では、関係モデルの「組」に該当するレコ
ードを「行」で、「属性」を「列」と「データ型」で表現していま
す。これらの複数の表で共通な列の値を用いてレコードを結合し、
新たな集合演算の結果を得ることが可能です。リレーショナルモデ
ルの詳細は、『理論から学ぶデータベース実践入門』（奥野幹也
著、技術評論社）で学ぶことができます。
　リレーショナルデータベースは、データそのものを格納する表以
外にも、各種のデータベースオブジェクトを管理しています。デー
タベースオブジェクトの論理的なグループを「スキーマ」または
「データベース」と呼びます。スキーマにはデータの重複を防ぐこ
とやデータの抽出の効率化を目的とした「インデックス」、データ
ベースに対する複数の操作をまとめたプログラムである「ストアド
プロシージャ」、ユーザーが作成した「SQL関数」などが格納されて
います。データベース製品によって格納されるオブジェクトの種類
は変わります。

0.3.1 　RDBMSで求められる機能
　RDBMSには表でのデータ管理に加えて、複数の役割が求められま
す。

格納するデータに対する制約
　役割の1つは、不正なデータが格納されることを防いで、データの
完全性を各種の制約によって担保することです。インデックスによ
る制約に加えて、表や列の定義を利用することができます。主な制
約に関する機能は表1の通りです。

データの操作
　RDBMSのデータに対する操作は、通常、SQL文を利用します。SQL
文は以下のカテゴリに分類されます。

●Data Definition Language（DDL）:データベースオブジェクトの定義
例）CREATE文、ALTER文、DROP文

●Data Manipulation Language（DML）:データの操作
例）INSERT文、UPDATE文、DELETE文

●Data Control Language（DCL）:データアクセス権限の定義
例）GRANT文

●Transaction Control Language（TCL）:トランザクションの管理
例）BEGIN、COMMIT、SAVE POINT、ROLLBACK

　MySQLでは、分散キャッシュのmemcachedを組み込むことで、
SQL文を使わずにキーバリュー型でのアクセスも可能にしています。
SQL文だけではないデータの操作が可能な製品も複数あります。

ACIDトランザクション
　データベースにおけるトランザクションは、分割できないアプリ
ケーション処理の単位で、データを操作する一連のDMLを1つのグル
ープとした論理的操作のことです。処理を確実に完了させるかどう
かを制御してデータの変更が中途半端な状態にならないようにする
ため、また、ほかのクライアントの処理に邪魔されずに処理を完了
させるために、トランザクションが必要となります。
　トランザクションに求められる特性を「ACID特性」といいます。
ACIDの各要素は表2の通りです。

　RDBMSでは、これらの特性が満たされているのが一般的です。し
かし、旧バージョンのMySQLサーバーでは、明示的に指定しないと
トランザクションをサポートしない表が作られ、これによって
MySQLはトランザクションをサポートしていないと誤解されていた
こともありました。

0.4 　データベースサーバーの構築および運用時
に考慮すべき事項

　データベースサーバーは、システムで必要となるデータを保管す
るため、問題が起こった場合でもデータを失わない工夫が必要とな
ります。また、不正なアクセスによってデータが改ざんまたは流出
しないこと、多くのアクセスがあった場合でも滞りなく処理を継続
することなども求められます。これらの考慮すべき事項を整理する
と表3のようになります。

　これらの項目は互いに独立したものではなく、例えば高可用性と
パフォーマンスの向上を両立できる構成もあれば、逆に高可用性を
確保するためにパフォーマンス面を犠牲にしなければならないケー
スなどがあり得ます。レッスン1以降では、MySQL 5.7のアーキテク
チャや新機能に加え、MySQLを利用したデータベースサーバーを構
築するために必要となる情報を解説していきます。

0.5 　MySQLについて
　MySQLサーバーは、1994年にスウェーデンとフィンランドのエン
ジニアによって開発が始まり、1995年に最初のバージョンが公開さ
れました。コミュニティベースで開発されるオープンソースソフト
ウェアとは異なり、MySQLは企業が製品ロードマップの策定、製品
開発および知財の管理を行い、ソフトウェアをGPLで公開するモデル
を取っています。開発の初期からオープンソースソフトウェアとし
て公開しながら、同時に開発元として有償のサポートサービスを提
供しています。開発当初はスウェーデンのMySQL ABの製品として、
2008年のサン・マイクロシステムズによる買収、さらに2010年のオ
ラクルによる買収を経て、現在はオラクルのデータベース製品ポー
トフォリオの1つとなっています。
　MySQLは、Webアプリケーションやクラウドのバックエンドデー
タベースとして活用されることが多いオープンソースのリレーショ
ナルデータベースです。MySQLは、シンプルで手軽に利用できるデ
ータベースとして利用者から認識され、LAMP（Linux、Apache、
MySQL、PHP/Perl/Python）スタックの一部として、Webアプリケー
ションのバックエンドで利用されています。またMySQLは、セキュ
リティパッケージや携帯電話網の通信機器などに組み込まれて利用
される事例も多数あります。クラウド環境においては、クラウド基
盤を構築するためのソフトウェアOpenStackのバックエンドストレー
ジとして採用されており、各社のDataBase as a Service（DBaaS）で
もMySQLが利用できるようになっています。

0.5.1 　MySQLサーバーのエディションとライセンス
　MySQLサーバーには、GPLの基で提供される「コミュニティ版」
と、サポートサービスや拡張機能を含んだ商用ライセンスの基で提
供される「商用版」があります。一般的にMySQLサーバーという
と、コミュニティ版を指すことが多いのですが、本書で特に断りの
ない場合は、コミュニティ版および商用版に共通の情報です。
　MySQLのコミュニティ版を自分で開発したソフトウェアに組み込
んで配布（有償／無償を問わず）する場合は、GPLの規定に従うこと
が求められます。ただし、自分で開発するソフトウェアをオープン
ソースライセンスの基で配布する場合は、データベースに接続する
ためのライブラリやドライバーに関しては、FLOSS Exception※１とい
う例外規定が用意されており、GPLの継承が必須ではなくなります。
　商用版のMySQLサーバーでは、コンサルティングサポートという
SQLチューニングやパラメータチューニングの支援を含んだサポート
サービスのほか、GUIの稼働監視ツール、データベースファイアウォ
ール機能、より強力な暗号管理機能などセキュリティ関連の拡張機
能が提供されています。

0.5.2 　MySQLサーバーのバージョンと主な機能
　MySQLサーバーのバージョン番号は、5.7.12のように小数点2つで
区切った表記となります。基本的に最初の2つの数字（MySQL 5.7.12
の場合は5.7）がメジャーバージョンを表し、最後の1つがマイナー
バージョンを表しています。リリースの間隔は固定されていません
が、メジャーバージョンがおおむね2、3年に1回、マイナーバージョ
ンは1～3ヶ月に1回リリースされてきています。
　2016年までにリリースされた主なメジャーバージョンと主な機能
は図1の通りです。

　製品リリース直前にMySQL 5.5にメジャーバージョン番号が変更さ
れたMySQL 5.4や、アルファ版が公開されたものの開発が中止されて
しまったMySQL 6.0など製品出荷にいたらかなった幻のバージョンも
存在しています。

　2016年9月には、次期MySQLサーバーのメジャーバージョンとし
て、 MySQL 8.0の最初の開発途上版（ Development Milestone
Release）がリリースされました。MySQL 8.0はMySQL 5.7の次のメジ
ャーバージョンです。
　最大の変更点は、テーブル定義などのメタデータを新たにデータ
ディクショナリによって管理することです。またユーザーアカウン
トやアクセス権限を管理するテーブル群のストレージエンジンも、
従来のMyISAMからInnoDBに変更されています。システム系の情報の
管理方法が大きく変わるということで、バージョン番号も明確に変
更することが議論され、サン・マイクロシステムズ時代に開発中止
となった6.0やMySQL Clusterのバージョン番号と重複する7.0を飛ば
して8.0となりました。

　MySQL 5.7向けとしても開発中である、MySQLサーバーをドキュメ
ントデータベースとして利用するためのドキュメントストア機能も
MySQL 8.0に組み込まれています。
　このほかオプティマイザヒントの追加やGIS機能の拡張などが行わ
れています。

　2016年9月にリリースされたMySQL 8.0.0 DMR1には含まれず、
Labsリリースとして公開されたのがCommon Table Expressions（共
通テーブル式）およびオプティマイザからインデックスを隠す機能
Invisible Indexです。Invisible Indexは、インデックスの削除／再作成
の処理を行わずに、インデックス削除の影響を確認することが可能
になります。どちらもMySQL 8.0のメインの開発ツリーに統合される
ことが想定されます。

　Column　　 MySQLの活用事例　Web&オンラインゲー
ム&クラウド

　MySQLの有名な利用事例として挙げられるのが、Webやオンラ
インゲームです。イベントなどでMySQLの利用方法や運用ツール
などを紹介している企業には、「Facebook」や「Twitter」といっ
た超大規模ソーシャルネットワーク、4億人以上のユーザーを持つ
オンラインストレージ「Dropbox」、1,000万ダウンロードを超え
るゲーム「キャンディークラッシュ」などがあります。新しいビ
ジネスのインフラとして採用されることも多く、タクシー配車サ
ービスの「Uber」や民泊仲介サイトの「Airbnb」などもMySQLを
活用してビジネスを成長させています。
　日本でも国内のソーシャルネットワークの草分けともいえる
「mixi」や「GREE」、ゲームを中心としたDeNAの「Mobage」、
料理レシピのコミュニティ「クックパッド」、さらにはコミュニ
ケーションアプリの「LINE」なども、各社のエンジニアによる情

報発信などでMySQLの利用形態を確認できます。数多くのヒット
作品を持つスクウェア・エニックスでは、同社の認証や課金のた
めの共通インフラにMySQLを採用し、サポートサービスを活用し
ている MySQLの顧客事例の 1つとなっています。また、
Yahoo!Japanや楽天などは、他のデータベース製品との組み合わせ
ではあるものの、大量のMySQLサーバーを運用している企業とし
て知られています。
　MySQLがWebの領域で広く採用されてきた理由の1つが、MySQL
サーバーのレプリケーション機能にあります（レプリケーション
についてはレッスン9およびレッスン10で解説しています）。レプ
リケーション機能を利用すると、1台のサーバーに書き込んだデー
タを複数のサーバーにコピーできます。Webシステムでは、アク
セスの大半が参照処理となることが多く、MySQLのレプリケーシ
ョンを利用してデータのコピー先を参照させることで、システム
全体の性能向上を図れる点がWebの要件にうまく適合しました。
MySQLは2000年にレプリケーション機能を実装し、Webの急速な
拡大にあわせて普及が進んでいきました。
　MySQLは、クラウドの中でもさまざまな使われ方をしていま
す。Webアプリケーションから発展したSoftware as a Service
（SaaS）では、ビジネス向けファイル共有クラウドサービスの
「Box」や人事システムの「Workday」、マーケティングオートメ
ーションの「Marketo」など業種やサービスの種類を問わず幅広い
アプリケーションのタイプで利用されています。クラウドプラッ
トフォームを構築するために利用される「OpenStack」のメタデー

タリポジトリにもMySQLが使われています。また、プラットフォ
ームレベルのクラウドサービスを提供する企業の多くは、MySQL
をベースにしたDatabase as a Service（DBaaS）を用意していま
す。
　MySQLの導入事例は、これらの領域に限らず、業務向けのシス
テムやミッションクリティカルなシステムでもバラエティに富む
事例が見られます。これについてはレッスン1以降のコラムで紹介
します。

※１　URL: FOSS License Exception
　　　http://www-jp.mysql.com/about/legal/licensing/foss-exception/

http://www-jp.mysql.com/about/legal/licensing/foss-exception/

1.1 　MySQLのダウンロードサイト
　MySQLサーバーなどは、以下の複数のサイトからダウンロード可
能となっています。サイトによって利用できるエディションが異な
るので、用途や契約状況に応じたサイトを選択します。
　なお、Linuxディストリビューションによっては、インストールメ
ディアにMySQLが含まれているケースもありますが、多くの場合は
バージョンが古いため、本書で紹介する手順でダウンロードし、イ
ンストールすることをおすすめします。　本書では基本的にコミュ
ニティ版のMySQLサーバーを利用しています。

1.1.1 　対応プラットフォーム
　MySQLサーバーは、Linuxの各ディストリビューション、Solaris、
WindowsおよびMac OS Xなど、主要なOS上での動作がサポートされ
ています。MySQLサーバーの各バージョンとサポート対象OSのリス
トは次のサイトを参照してください。このページのOSのバージョン
は、メジャーバージョンに相当するもののみが記載されています。
例えば、Red Hat Enterprise Linuxの7.1や7.2は、リストの「Red Hat
Enterprise Linux 7 / CentOS 7」に該当するので、MySQL 5.5から5.7
までのバージョンの動作がサポートされています。

●URL：Supported Platforms: MySQL Database
http://www-jp.mysql.com/support/supportedplatforms/

　MySQLサーバーには特別なハードウェア要件はありません。簡単
な動作検証であれば、最近のノートPC程度のスペックでも十分にイ
ンストール可能です。また、MySQLサーバーの動作環境はOSのみを
サポート対象としており、仮想化環境やハードウェア、クラウドサ
ービスに対しては特に動作保証の有無はありません。

http://www-jp.mysql.com/support/supportedplatforms/

1.1.2 　インストールパッケージ
　コミュニティ版MySQLサーバーのインストールパッケージは以下
のページからダウンロード可能です。「Select Platform:」のプルダ
ウンから対象のOSを選択し、必要なファイルをダウンロードしま
す。このページでは、通常、現在の最新版が最初に表示されていま
す。開発中のバージョンが公開されている時期には、ページ中段に
「Generally Available (GA) Release」タブとは別に、「Development
Releases」タブが表示されます。また、MySQL 5.7よりも古いバージ
ョンのダウンロードが必要な場合には、ページ内の「Looking for
previous GA versions?」にあるリンクから移動します。

●URL：Download MySQL Community Server
http://dev.mysql.com/downloads/mysql/

　ダウンロードの際は、「 Login >>」ボタンをクリックして
oracle.comのアカウントでログインすることも可能です。アカウント
を持っていない場合は、「Sign Up >>」ボタンからアカウントを新
規登録できます。oracle.comにお客様情報を登録すると、MySQLのニ
ュースレターをはじめ、各オラクル製品の最新情報の案内などを受
け取れます。また、ログインや新規登録をせずにダウンロードする
こともできます。その場合は「No thanks, just start my download.」
のリンクを押して進んでください。
　なお、このページではソースコードのダウンロードも可能となっ
ています。MySQLの開発チームは、最適なコンパイルオプションを
利用したバイナリを作成し配布しています。MySQLサーバー機能の

http://dev.mysql.com/downloads/mysql/

修正を行うなど特別な場合を除いて、ソースコードからビルドして
インストールを行わなくても問題ありません。

1.1.3 　サポート期間
　MySQLサーバーのバグ修正やメンテナンス・リリースが行われる
期間は、基本的にはオラクルのライフタイム・サポートのポリシー
に準じます。MySQLに関するオラクルのライフタイム・サポートで
は、新規のパッチはPremier Supportとして一般提供開始(GA)日から5
年間、さらにExtended SupportとしてPremier Support期間終了後3年
間提供されます。その後のSustaining Support期間に入ると、原則的
には新規のパッチは提供されません。各バージョンのサポート期間
については、以下のページの下部にある「Oracle Lifetime Support
Policy: Technology Products」を参照してください。

●URL：MySQL　テクニカル・サポート
http://www-jp.mysql.com/support/

http://www-jp.mysql.com/support/

1.2 　MySQLのドキュメント
　MySQLの各製品のリファレンスマニュアルや各バージョンのリリ
ースノートは、次のページに掲載されています。

●URL：MySQL Documentation
http://dev.mysql.com/doc/

　MySQL 5.7のリファレンスマニュアルには、日本語版がありませ
ん。日本語の情報が必要な場合は、MySQL 5.6のリファレンスマニュ
アルを参照することになります。リファレンスマニュアルの各ペー
ジの右上にはプルダウンメニューがあり、ほかのバージョンや別の
言語のページを選択できるようになっています。MySQL 5.7の英語の
ページとMySQL 5.6の日本語のページを併用することも検討してくだ
さい。

http://dev.mysql.com/doc/

1.3 　Windows環境へのインストール方法
　Windows環境向けには、GUIインストーラ（MSI Installer）と、必
要なファイルをまとめたZipファイルの2種類が用意されています。
インストールされたファイルの管理やサービスとして起動する場合
は、GUIインストーラが便利です。一方、Zipファイルは展開するだ
けで利用でき、レジストリも汚さないため、検証などの用途に使い
やすいほか、手動でOSサービスに登録するなど起動停止方法を用意
すれば本番環境での利用にも問題ありません。

1.3.1 　GUIインストーラでWindows環境にインスト
ールする

　MySQL 5.6からWindows版インストーラの名称が「MySQL Installer
for Windows」となり、GUIのデザインを含めて一新されました。ウ
ィザード形式のこのインストーラでは、以下の機能をまとめてイン
ストール可能になっています。また、インストール後には、MySQL
サーバーのrootユーザーのパスワード設定や、Windowsサービスとし
ての登録、ログファイル名の指定などが可能です。インストールで
きるコンポーネントは表2の通りです。

　インストーラのパッケージには、表3のようにFull版とWeb版があ
ります。

　ファイル名のVERSIONは5.7.12などMySQLサーバーのバージョン、
Nはインストーラパッケージのバージョンです。MySQL Installer for

Windowsは、コミュニティ版だけではなく、商用版にも用意されて
います。また、インストーラそのものは32bitバイナリですが、実際
にインストールするMySQLサーバーなどは、OSの環境に応じて32bit
バイナリか64bitバイナリかを選択可能です。

　MySQL Installer for Windowsでのインストール手順は以下の通りで
す。
　ダウンロードしたインストーラをダブルクリックして起動しま
す。
　「I accept the license terms」にチェックを入れて、「Next」ボタ
ンをクリックします（図1）。

　次にインストールタイプを選択します（図2）。デフォルトで選択
されている「Developer Default」はアプリケーション開発者向けに
構成されており、MySQLサーバーに加えてMySQL Workbenchをはじ

め、ExcelやVisual Studioのプラグインなどが含まれています。通常
はデフォルトの「Developer Default」を選択すれば問題ありませ
ん。MySQLサーバーのみをインストールする場合は「Server only」
を選択します。個別にコンポーネントをインストールするには、図2
で「Custom」を選択して次に進み、コンポーネントを指定します
（図3）。以下では「Custom」でコンポーネントを選択してインスト
ールしています。

　各コンポーネントのインストールにあたって、事前に必要なソフ
トウェアが見つからない場合に、ソフトウェア要件を確認する画面
が表示されます（図4）。コンポーネント名の前にある○をクリック
すると、必要なソフトウェアが表示されます。「Status」欄が
「Manual」のものは手動で先に必要なソフトウェアをインストール
する必要があります。空欄の場合はインストーラが自動で問題の解
決を試みます。

　準備ができると「 Ready to Install」と表示されるので、
「Execute」ボタンをクリックします（図5）。

　インストールの進捗状況は、「Progress」を見るとわかります（図
6）。さらに「Show Details」ボタンを押すと、詳細な進捗状況を確

認できます（図7）。

　インストールが完了したら、MySQLサーバーの設定を行います。
「Next」をクリックします（図8）。

　まず、ネットワーク接続を設定し、「Next」をクリックします
（図9）。

　ルートアカウントのパスワードを設定して、「Next」をクリック
します（図10）。

　MySQLユーザーアカウントを追加します（図11）。

　Windowsのサービス登録を設定し、「Next」をクリックします
（図12）。

　MySQLドキュメントストア機能を設定します（図13）。MySQLド
キュメントストアは、MySQL 5.7.15時点では開発中の、MySQLサー
バーをドキュメントデータベースとして利用するための機能です。

　ログファイルを設定します（図14）。それぞれのログに関しては
レッスン3の「3.1.6　ログ」で解説します。

　設定した内容を適用します。「Execute」ボタンをクリックします
（図15）。設定中の進捗状況も見られます（図16）。

　これでインストールと設定は完了です。「Copy Log to Clipboard」
ボタンをクリックすると、インストールと設定のログをクリップボ
ードにコピーできますので、作業履歴として保管しておくことが可
能です（図17）。

1.3.2 　Windows上でZipファイルでのインストール
　MySQL 5.6までは、Zipファイルを展開してMySQLサーバーの実行
ファイルを起動するだけでインストールできましたが、MySQL 5.7で
は、新たにデータベースの初期化作業が必要となりました。インス
トールは以下のように進めます。

1. Zipアーカイブを任意のインストールディレクトリに展開する
任意のディレクトリでZipファイルを展開する。
例）C:￥mysql￥mysql-5.7.12-winx64

2. 設定ファイル（my.ini）を作成する
Zipファイルを展開したディレクトリにmy.iniを配置する。設定
ファイルについてはレッスン2で説明する。設定ファイルの作
成は必須ではないが、設定値を毎回サーバーの起動時に指定す
るのは効率的ではなく、ミスを誘発することにもなるので、設
定ファイルを作成しておくことが望ましい。

3. データベースの初期化作業
MySQL 5.7で加わったMySQLサーバーのコマンドラインオプシ
ョン（--initialize）を付けてMySQLサーバーを実行する。

リスト1　データベースの初期化コマンド例（MySQLサーバーのrootユーザーにラ
ンダムなパスワードを設定）

C:￥ > C:￥mysql￥mysql-5.7.12-winx64￥ bin￥mysqld --
initialize

rootユーザーの初期パスワードはコンソールに表示されるので
確認する。
MySQLサーバー起動後、rootユーザーでの初回接続時にパスワ
ードの変更を求められる。

リスト2　データベースの初期化コマンド例（MySQLサーバーのrootユーザーにパ
スワードを設定しない）

C:￥ > C:￥mysql￥mysql-5.7.12-winx64￥ bin￥mysqld --
initialize-insecure

4. MySQLサーバーを起動する（MySQLをサービス登録する）
毎回コマンドラインで起動／停止もできるが、Windowsのサー
ビスとして登録することも可能。

リスト3　コマンドラインでの起動例

defaults-fileオプションで設定ファイルを明示的に指定している例
C:￥> START C:￥mysql￥mysql-5.7.12-winx64￥bin￥mysqld
--defaults-file=C: ￥ mysql ￥ mysql-5.7.12-
winx64￥data￥my.ini

リスト4　コマンドラインでの停止例

MySQLサーバーのrootユーザーとして実行するために-uオプショ
ンでユーザー指定、-pオプションでパスワード入力プロンプト表示

C:￥> C:￥mysql￥mysql-5.7.12-winx64￥bin￥mysqladmin -u
root -p shutdown

リスト5　サービス登録コマンド例

オプションファイルを明示的に指定し、mysql57というサービス名
で登録
C:￥> C:￥mysql￥mysql-5.7.12-winx64￥bin￥mysqld --install
mysql57 --defaults-file=C: ￥ mysqlmysql-5.7.12-
winx64￥data￥my.ini

1.4 　Linux環境へのインストール
　Linux環境には、各ディストリビューション向けのパッケージ
（rpmやdeb）と、ディストリビューション共通のtar.gzファイルが用
意されています。ソフトウェアの管理をパッケージで行っている環
境では、rpmなどのファイルを利用することになります。またYumや
APTのリポジトリを利用する方法も用意されています。一方で、tar
ファイルを利用したインストールは、同一環境上で複数のバージョ
ンをインストールでき、シンボリックリンクを利用することでバー
ジョンの切り替えや切り戻しなども簡単に行えます。

1.4.1 　Linux上でRPMファイルでのインストール
　Red Hat Package Manager（RPM）を利用できるLinux上では、
MySQLデベロッパーゾーンからダウンロードしたRPMファイルで
MySQLサーバーのインストールが可能です。RPMファイルでインス
トールした時の各ファイルの配置は以下の通りとなります。

　通常の利用環境では、mysql-serverとmysql-clientのパッケージを
インストールしておけば十分です。ただし、RedHat Enterprise Linux
ならびにOracle LinuxやCentOSなど互換のディストリビューションで
は、mysql-libsが競合してインストールできない場合があります。そ
こで、事前にmysql-community-libs-compatパッケージでアップグレ
ードすることで競合を解消できます。

リスト6　任意のパッケージをダウンロード後、rpm／yumコマンドでインストールする例

rpmコマンドで互換性問題解消パッケージやライブラリをアップグレード
$ rpm -Uvh mysql-community-libs-compat-5.7.12.el6.x86_64.rpm
mysql-community-libs-5.7.12.el6.x86_64.rpm mysql-community-
common-5.7.12.el6.x86_64.rpm

rpmコマンドでMySQLサーバーならびにクライアントコマンドをインス
トール
$ rpm -ivh mysql-community-server-5.7.12.el6.x86_64.rpm mysql-
community-client-5.7.12.el6.x86_64.rpm

自動的に登録されたサービスを起動
$ service mysqld start

サービスを停止
$ service mysqld stop

　インストール中にMySQLサーバーのrootユーザーにランダムなパス
ワードが自動生成され、MySQLサーバーのエラーログに記録されま
す。

1.4.2 　Linux上でYumリポジトリを利用したインスト
ール

　MySQLの公式Yumリポジトリから最新のMySQLサーバーをインス
トールすることが可能です。MySQLサーバー本体やクライアントプ
ログラムに加え、MySQL WorkbenchやMySQL Utilitiesもあわせてイン
ストールできます。インストールの準備作業として、以下のページ
から利用中のディストリビューションおよびバージョン用のMySQL
公式Yumリポジトリの情報をインストールします。

●URL：Download MySQL Yum Repository
http://dev.mysql.com/downloads/repo/yum/

リスト7　CentOS 7にMySQL 5.7のYumリポジトリをインストール

$ sudo rpm -Uvh mysql57-community-release-el7-8.noarch.rpm

http://dev.mysql.com/downloads/repo/yum/

　MySQL公式Yumリポジトリの情報のインストール後は、以下の手
順でインストール、および起動／停止を行います。

リスト8　MySQLサーバーのインストール

$ yum repolist enabled | grep "mysql.*-community.*"
$ sudo yum install mysql-community-server

リスト9　 MySQLサーバー起動／停止（初回起動時にデータベースも作成される）

サービスを起動
$ service mysqld star

t# サービスを停止
$ service mysqld stop

　RPMファイルでのインストール時と同様に、MySQLサーバーのroot
ユ ー ザ ー に 自 動 生 成 さ れ た パ ス ワ ー ド は エ ラ ー ロ
グ/var/log/mysqld.logに記録されます。

1.4.3 　Linux上でtarファイルでのインストール
　tarファイルをダウンロードするには、ダウンロードページの
「Select Platform:」のプルダウンから「Linux - Generic」を選択しま
す。なお、MySQL 5.7.15の時点では、ファイルの説明としてTARとな
っているファイルと、Compressed TAR Archiveとなっているファイ
ルがありますが、TARとなっているファイルはMySQLサーバー本体と
テストプログラムが含まれています。通常はCompressed TAR
Archiveを選択すれば問題ありません。
　Windows上でZipファイルでのインストールと同様の手順で、Linux
上にもインストールが可能です。tarファイルを展開したディレクト
リにあるINSTALL-BINARYにも手順が掲載されています。
　データベースの初期化作業では、Windows版Zipファイルと同様
に、MySQLサーバーの--initializeまたは--initialize-insecureオプション
を利用します。MySQL 5.6まではこのオプションがなかったため、
mysql_install_dbコマンドを利用していました。また、OSのサービス
への登録が手動になるのもWindows版Zipファイルと同様です。
　この方法でのインストール時、MySQLサーバーは/usr/local/mysql
にファイルが展開されたと想定して動作しようとします。ほかのデ
ィレクトリにtarファイルを展開した場合は、/usr/local/mysqlでシン
ボリックリンクを設定します。

リスト10　tarファイルでのインストール

tarファイルの展開先が/home/mysql/mysql57の場合
/usr/localにファイル作成権限のあるユーザーで下記コマンドを実行
$ cd /usr/loca

l# シンボリックリンクの設定
$ ln -s /home/mysql/mysql57 mysql

mysqldなど実行コマンドの格納されたディレクトリの確認
$ cd mysql/bin
$ ls

　シンボリックリンクを設定しない場合は、mysqld実行時にbasedir
オプションで展開先のディレクトリを指定します。

リスト11　データベースの初期化コマンド例（MySQLサーバーのrootユーザーにパスワー
ドを設定しない）

tarファイルの展開先が/home/mysql/mysql57の場合
$ cd /home/mysql/mysql57/bin
$./mysqld --basedir=/home/mysql/mysql57 --initialize-insecure

もしくは
ディレクトリを絶対パスでの指定も可能
$ /home/mysql/mysql57/bin/mysqld --
basedir=/home/mysql/mysql57 --initialize-insecure

リスト12　コマンドラインでの起動例

--defaults-fileオプションで設定ファイルを明示的に指定している例
下記コマンドは改行を入れずに1行で
コマンドの最後に半角の&(アンパサンド)を付けてバックグラウンドで実
行

$./mysqld --defaults-file=/home/mysql/mysql57/my.cnf --
basedir=/home/mysql/mysql57 &

クライアントプログラムから接続確認 出力省略
$./mysql -uroot

Windowsでは￥q (半角の￥と小文字Q)、Linuxでは＼q(半角バックスラ
ッシュと小文字Q)でコネクションを切断
mysql> ＼q

　MySQLサーバーを停止する方法は、MySQL 5.6まではmysqladmin
コマンドのサブコマンドであるshutdownが利用されていました。し
かし、MySQL 5.7では、mysqlクライアントで接続した状態で、
shutdown命令を出すことができるようになりました。以下のいずれ
かの方法で、MySQLサーバーを停止することができます。
リスト13　コマンドラインでの停止例（MySQLサーバーのrootユーザーとして実行するた

めに-uオプションでユーザー指定、-pオプションでパスワード入力プロンプト表
示）

mysqladminコマンドのサブコマンドshutdownでMySQLサーバーを停
止する場合
$./mysqladmin -uroot shutdown

mysqlクライアントでMySQLサーバーに接続して停止する
$./mysql -uroot
mysql> SHUTDOWN;

mysqlクライアントの-eで指定したSQL文やコマンドを実行
上記のMySQLサーバーに接続の上でSHUTDOWNを実行しているのと同
じ
$./mysql -uroot -e"SHUTDOWN"

1.5 　MySQL 5.7のインストール時の留意事項
　これまで見てきたように、OSやインストールパッケージによっ
て、手順やインストール後の状態が異なるため注意が必要です。特
にLinuxでYumやRPMでインストールした場合、MySQLサーバーの
rootユーザーのパスワードが自動生成され、MySQLサーバー起動後の
初回ログイン時にパスワードの変更が求められます。この際、パス
ワード検証がデフォルトで有効になっているため、「8文字以上、大
文字／小文字／数字／記号を1文字以上含む」パスワードの設定が必
要です。なお、ほかの方法でインストールした場合にはパスワード
検証は有効になっていません。

　Column　　 MySQLの活用事例　“堅い”システム

　MySQLはWeb領域での利用事例が有名ですが、実際には業務向
けのシステムやミッションクリティカルなシステムでもさまざま
な活用事例があります。
　例えば、オープンソースの利用促進を政策として掲げているイ
ンドでは、日本のマイナンバーに類似する「Aadhaar」と呼ばれる
国民ID制度の基幹データベースとしてMySQLサーバーを採用して
います。各国の軍事防衛系のシステムでは、ごく一部の例外を除
いて詳細は公表されませんが、例えば米国海軍の航空母艦上で管
制を行うミッションクリティカルなシステムはMySQL Clusterを採

用し運用していることが過去のMySQLのイベントなどで発表され
ています。
　金融システムにおいても、従来型のシステムではなく
「Fintech」と呼ばれる新しいタイプの金融サービスの領域で
MySQLが活用されます。この領域もWebシステムの技術をベース
としていることが多く、インターネット経由での決済サービスを
提供する「PayPal」では、特にマネーロンダリングのリアルタイ
ム検出のためにMySQL Clusterを採用しています。ほかにもスマー
トフォンやタブレットでクレジットカード決済を行う仕組みを提
供する「Square」、中国版のPayPalともいえる「Alipay」（アリペ
イ／支付宝）や「Tenpa」（テンペイ／財付通）でも大規模な
MySQLプラットフォームを構築しています。
　また、MySQLの別の利用方法として、ソフトウェアやアプライ
アンスに組み込んでいる例が多数あります。大規模向けのグルー
プウェアである「サイボウズガルーン」やメディカル・データ・
ビジョンの医療向けパッケージ、ソニーの映像データを管理する
オプティカルディスク・アーカイブシステムなど、それぞれの製
品の利用者がMySQLの存在に気付かない使われ方です。MySQL
は、サーバー機でなくても十分なほどインストール時に必要とな
るスペック要件が高くないこと、各種のOS上で動作すること、さ
らには商用ライセンスの中で知財補償が含まれている点が、ほか
のRDBMSと総合的に比較した場合のメリットとなり選択されてい
ます。

　MySQLもソースコードを公開するプラットフォームとして利用
しているリポジトリのホスティングサービス「GitHub」もデータ
管理にMySQLサーバーを採用しています。GitHubは数多くのオー
プンソースプロジェクトがリポジトリとして利用しており、業務
系とは異なった観点でMySQLが支えるきわめて重要なシステムと
いえます。

1.6 　演習
　このレッスンでは、WindowsとLinux環境でのMySQLサーバーのイ
ンストール方法を、インストールパッケージ別に学習しました。学
習した内容を演習問題で確認しましょう。本編のOS別のインストー
ル手順を確認しながら以下の作業を行ってください。なお、コマン
ドの実行時にはカレントディレクトリ内に実行ファイルがあること
を確認してください。

1. dev.mysql.comから最新のコミュニティ版MySQLサーバーを
ダウンロードする
Windows上ならZipファイル、Linux上ならtarファイルを利用す
る
ヒント：レッスン1の「1.1　MySQLのダウンロードサイト」か

らダウンロード先ならびに利用するプラットフォーム
別の情報を確認

2. 手元の環境にMySQLサーバーをインストールする
ヒント：レッスン1の「1.3.2　Windows上でZipファイルでのイ

ンストール」のリスト2および「1.4.3　Linux上でtarフ
ァイルでのインストール」のリスト11

3. コマンドラインからmysqldを実行して、MySQLサーバーを起
動する

Windowsでの例

> START C:￥mysql￥mysql-5.7.12-winx64￥bin￥mysqld

Linuxでの例

tarファイルの展開先ディレクトリに注意$./mysqld &

4. クライアントプログラムから接続する。接続確認後、コネクシ
ョンを切断する
ヒント：レッスン1の「1.4.3　Linux上でtarファイルでのインス

トール」のリスト12の後半部分

5. コマンドラインからmysqladminコマンドを使用してMySQLサ
ーバーを停止する
ヒント：レッスン1の「1.3.2　Windows上でZipファイルでのイ

ンストール」のリスト4および「1.4.3　Linux上でtarフ
ァイルでのインストール」のリスト13

　　　解説
1. MySQLサーバーのファイルダウンロード時には、OSが32ビッ
ト版か64ビット版かにあわせて、MySQLサーバーのバイナリ
ファイルをダウンロードします。ビット数を確認するには、
Windowsの場合には下記URLを参考にしてください。

参照URL

http://faq.ricoh.jp/app/answers/detail/a_id/58/
https://121ware.com/qasearch/1007/app/servlet/relatedqa?
QID=018022

Linuxの場合は、uname -aの出力にx86_64またはamd64の
文字列が含まれていれば64ビット版となります。

ダウンロードするファイル名は以下の通りです。マイナーバー
ジョンは演習時点での最新のものに置き換えてください。

●32ビット版Windowsの場合：mysql-5.7.15-win32.zip
●64ビット版Windowsの場合：mysql-5.7.15-winx64.zip
● 32 ビ ッ ト 版 Linux の 場 合 ： mysql-5.7.15-linux-glibc2.5-

i686.tar.gz
● 64 ビ ッ ト 版 Linux の 場 合 ： mysql-5.7.15-linux-glibc2.5-

x86_64.tar.gz

http://faq.ricoh.jp/app/answers/detail/a_id/58/
https://121ware.com/qasearch/1007/app/servlet/relatedqa?QID=018022

2. 「1.3.2　Windows上でZipファイルでのインストール」のリ
スト2と「1.4.3　Linux上でtarファイルでのインストール」の
リスト11を参考に、Windows上ならZipファイル、Linux上な
らtarファイルを利用してインストールします。なお、以降の
作業でrootユーザーのパスワードなしで作業を行うため、--
initialize-insecureオプションを利用します。

3. WindowsでのSTARTコマンド、Linuxでの&を付け忘れて起動
した場合は、別のコンソールウィンドウを開いて以降の作業を
継続してください。なお、Linux環境では、Ctrl+Zでサスペン
ドし、bgコマンドを使用してバックグラウンドで実行させるこ
ともできます。

2.1 　MySQLサーバーのアーキテクチャ
　MySQLサーバーは、OS上では1つのプロセスとして動作し、クライ
アントから実行されたSQL文の処理やディスク上のデータの読み書き
は内部の複数のスレッドが担当する「シングルプロセスマルチスレッ
ド型」です。内部の実装は、接続の管理やSQL文の構文解析などを行
う部分と、データやトランザクションの管理を行う部分の2層構造に
なっています。後者は「プラガブル・ストレージエンジン機能」と呼
ばれ、用途に応じてどのストレージエンジンを利用するか、表ごとに
選択が可能です。また、標準で含まれている以外に、プラグインとし
てストレージエンジンも追加できる構造になっています。MySQLサー
バーの運用管理やパフォーマンスチューニングのためにも、各ストレ
ージエンジンが持つ機能や特徴の理解が重要です。

2.1.1 　ネットワーク接続管理
　クライアントアプリケーションとMySQLサーバーの間は、通常
TCP/IPで接続します。MySQL 5.7では基本的にSSLで通信の暗号化を行
うようになっています※１。

2.1.2 　ユーザー認証&権限管理
　MySQLサーバーでは、許可に関する情報であるアクセスコントロー
ルリスト（ACL）をベースに、ユーザーアカウントとデータベースオ
ブジェクトへのアクセスの認証や権限の管理を行っています。商用版
の MySQL Enterprise Edition で は 、 Lightweight Directory Access
Protocol（LDAP）やKerberos Authentication（ケルベロス認証）、
Windows Active DirectoryなどMySQLサーバーの外部で管理されるユー
ザー情報によって認証を行うことも可能です。ユーザーアカウントや
認証、権限に関してはレッスン11、12のセキュリティの章で紹介しま
す。
　MySQLサーバーでは、新規の接続が行われると処理を担当するスレ
ッドが生成され、ユーザー認証後にSQL文が発行されるとすぐに実行
します。接続が切断されると処理スレッドは破棄されます。ただし、
スレッドのプール（スレッドキャッシュ機能）を利用している場合に
は、スレッドは破棄されずにプールに格納され、次の接続時に再利用
されることでスレッド生成や破棄のオーバーヘッドを削減できます。

2.1.3 　SQL構文解析 & 実行計画最適化
　実行されたSQL文を処理するために、データベースサーバーではパ
ーサーによって構文解析を行って内部のAPIに変換し、オプティマイ
ザによって最も効率的なデータへのアクセス経路（アクセスパス）を
導き出す最適化を行います。
　MySQL 5.7では、古い実装のパーサーのリファクタリングを行いま
した。オプティマイザは、処理の重みを見積もる際、個別の要素での
処理負荷を数値化したコストを、従来のハードコーディングから設定
パラメータとして可変にするなどの改良を行っています。

2.1.4 　キャッシュ
　データベースサーバーが稼働するハードウェア上で、処理のボトル
ネックとなりがちなのが、ディスクやストレージです。このため
MySQLサーバーに限らずデータベースサーバーでは、ディスクやスト
レージへのアクセスを削減するために、データをメモリー上に蓄える
キャッシュ（またはバッファとも呼ばれる）の仕組みを持っていま
す。MySQLサーバーでは、ストレージエンジン固有のキャッシュや、
サーバー全体で利用するキャッシュなど複数の仕組みが用意されてい
ます。主なキャッシュについてはレッスン13、14のパフォーマンスチ
ューニングの章で紹介します。

2.1.5 　ストレージエンジン
　ストレージエンジンの役割には、大きく分けて、データフォーマッ
トの定義、データ永続化、インデックス管理、トランザクション管
理、ロックと排他制御があります。さらに、InnoDBストレージエンジ
ンの全文検索機能や自動クラッシュリカバリ機能などストレージエン
ジン固有の機能があります。MySQLサーバーでは、複数のストレージ
エンジンからアプリケーションに最適なものを選択できることがメリ
ットですが、MySQL 5.7ではInnoDBに対する改善や機能追加が数多く
行われています。また、InnoDBは多くのアプリケーションで必要とな
るACID特性を持ったトランザクションを、MySQL 5.7で唯一サポート
しているストレージエンジンです。特別な理由がない限り、標準の
InnoDBを利用しておけば十分なケースがほとんどです。以前は、参照
性能が高いなどの理由でMyISAMストレージエンジンが利用されるこ
ともありましたが、実装が古いため、CPUコアが複数ある環境では性
能が出ないこともあり、最近では利用者がほとんどいない状態です。
　主なストレージエンジンと特徴は表1の通りです。※２

　現在稼働中のMySQLサーバーで利用可能なストレージエンジンのリ
ストは次のコマンドで確認できます（リスト1）。

リスト1　利用可能なストレージエンジンを確認

mysql> SHOW ENGINES;

2.2 　ストレージエンジンの使い方
　ストレージエンジンの指定は、テーブル作成時のCREATE TABLE文
のテーブルオプションで行います（リスト2）。

リスト2　InnoDBストレージエンジンを利用するテーブルを作成

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;

　指定がない場合は、システムのデフォルトを利用します。何も設定
していない場合、MySQL 5.5以降ではInnoDBが利用されます。明示的
にデフォルトのストレージエンジンを指定する場合には、MySQLサー
バーのシステム変数default_storage_engineにストレージエンジンを設
定します。
　既存の表のストレージエンジンを変更するには、ALTER TABLE文を
利用します（リスト3）。

リスト3　MEMORYストレージエンジンを利用するテーブルに変更

mysql> ALTER TABLE t ENGINE = MEMORY;

　このように非常にシンプルなコマンドでストレージエンジンの変更
ができてしまいますが、内部的には変更したい定義の空のテーブルを
作成し、既存の表からデータをロードするため、データサイズが大き
い場合には処理時間がかかる点に注意が必要です。
　表に設定されているストレージエンジンの確認は、SHOW CREATE
TABLE 文またはSHOW TABLE STATUS 文 を利用します（リスト4）。

リスト4　InnoDBを利用している表の各コマンドの出力例

mysql> SHOW CREATE TABLE City ＼G
*************************** 1. row

　　　 Table: City
Create Table: CREATE TABLE `City` (
　`ID` int(11) NOT NULL AUTO_INCREMENT,
　`Name` char(35) NOT NULL DEFAULT '',
　`CountryCode` char(3) NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

　また、メタデータ管理スキーマであるINFORMATION_SCHEMA の
Tables表でも確認は可能です（リスト5）。

リスト5　INFORMATION_SCHEMAのTables表での確認方法の例

mysql> SELECT TABLE_NAME, ENGINE FROM TABLES
　　-> WHERE TABLE_NAME LIKE 'City';
+------------+--------+
| TABLE_NAME | ENGINE |
+------------+--------+
| City　　　 | InnoDB |
+------------+--------+
1 row in set (0.00 sec)

2.3 　InnoDBストレージエンジン
　MySQL 5.5以降での標準のストレージエンジンが、InnoDBストレー
ジエンジンです。InnoDBは、当初フィンランドのInnobase社によって
開発され、MySQL社に供給されていましたが、2005年にはInnobase社
がオラクル社によって買収されました。その後、サン・マイクロシス
テムズ社の買収を通じてMySQLの開発部隊もオラクル社の一部となっ
たため、先に買収されていたInnoDBの開発部隊と合併され、1つの組
織として開発が進められることになりました。
　InnoDBは、ACID特性に沿ったトランザクションをサポートしてお
り、ANSI/ISOで定義されている4つのトランザクション分離レベルを
すべてサポートしています（デフォルトはREPEATABLE READ）。ロッ
クの粒度は、行レベルロックで、デッドロック検知も持っています。
また、MySQL 5.7のストレージエンジンとして、外部キーをサポート
しているのはInnoDBだけです。

2.3.1 　InnoDBのデータファイル
　InnoDBを利用している表には、表ごとに1つの表領域ファイル（拡
張子.ibd）が作成され、そこにデータとインデックスの情報が格納さ
れます。InnoDBや各表のメタデータは、共有表領域ファイルに格納さ
れます。システム変数innodb_file_per_tableの値をOFFに設定すると、
MySQL 5.5以前と同様に、すべての表のデータとインデックスを共有
表領域ファイルに格納する方式に変更されます。
　MySQL 5.7では、General Tablespaceという仕組みが追加され、表ご
とに格納先の表領域ファイルを指定できるようになっています。いず
れの形式の場合にも、InnoDBのメタデータを格納するシステム表領域
やトランザクションによる変更前のデータのコピーを保持するUNDO
ログには、独立した表領域ファイルが作成されます。

2.3.2 　InnoDBのトランザクション管理
　トランザクションの内容は、実行されるたびにInnoDBのログバッフ
ァというメモリー上の領域に格納されます。コミット時にログバッフ
ァ内のトランザクション内容を記録するファイルがInnoDBログです。
コミット時には、InnoDBログのみが変更され、メモリー上のバッファ
プールという領域にキャッシュされたデータのみが変更されます。変
更されたキャッシュ上のデータは、チェックポイントという一定間隔
でファイルに反映されます。これによりコミット時のディスクIOを削
減して応答性能を高めつつ、行われた変更処理は確実にディスクに記
録しておくことができます。このようにデータファイルの変更に先行
して書き込まれるログは一般的にWrite Ahead Log（WAL）と呼ばれて
います。

2.4 　MEMORYストレージエンジン
　特定のテーブルをインメモリーデータベースのように利用できるの
は、MEMORYストレージエンジンです。データおよびインデックスは
メインメモリー上に配置し、ディスク上にはテーブル定義ファイル
（拡張子.frm）のみ存在します※３。
　データがメモリーに格納されるため、処理性能は高速です。ただ
し、トランザクションはサポートせず、BLOB型およびTEXT型は格納
できません。インデックスのアルゴリズムは、一意検索に適した
HASHインデックス、または汎用性のあるBTREEが選択可能です。

コード1　MEMORYストレージエンジンの2種類のインデックスを作成

ハッシュインデックスの作成例
CREATE TABLE lookup
　　(id INT, INDEX USING HASH (id))
　　ENGINE = MEMORY;

Bツリーインデックスの作成例
CREATE TABLE lookup
　　(id INT, INDEX USING BTREE (id))
　　ENGINE = MEMORY;

　MEMORYストレージエンジンは、MySQLサーバーが停止するとデー
タが消える仕様になっているため、データの永続化先の表には利用で
きません。一方で、高速なデータ参照先やSQL文も使えるキャッシュ
のような使い方に向いています。またディスク上にデータを蓄積する

ストレージエンジンを使った表にトリガーを追加することにより、デ
ータの永続性とMEMORYストレージエンジンによる高速な参照を両立
させる工夫も可能です。なお、MySQLサーバーの起動時には、システ
ム変数のinit-fileで指定するファイル内にデータをロードするコマンド
を記載しておくことが可能です（リスト6）。

リスト6　トリガーによるInnoDBストレージエンジンの表とMEMORYストレージエンジン
の表の連携

InnoDBストレージエンジンを利用したTbl_I表を作成
mysql> CREATE TABLE Tbl_I (id INT(8), val_A INT(8), val_B INT(8))
ENGINE = InnoDB;

MEMORYストレージエンジンを利用したTbl_I表を作成
mysql> CREATE TABLE Tbl_M (id INT(8), val_Sum INT(8)) ENGINE =
MEMORY;

Tbl_I表に値を挿入するとTbl_Mにval_Aとval_Bの合計値を格納するトリ
ガーを作成
mysql> CREATE TRIGGER I_to_M AFTER INSERT ON Tbl_I FOR EACH
ROW
　 　 -> INSERT INTO Tbl_M VALUES (NEW.id, NEW.val_A +
NEW.val_B);

Tbl_I表に値を挿入
mysql> INSERT INTO Tbl_I VALUES (1, 10, 20);

Tbl_I表の値を確認
mysql> SELECT * FROM Tbl_I;

+------+-------+-------+
| id　 | val_A | val_B |
+------+-------+-------+
|　　1 |　　10 |　　20 |
+------+-------+-------+

Tbl_M表の値を確認
mysql> SELECT * FROM Tbl_M;
+------+---------+
| id　 | val_Sum |
+------+---------+
|　　1 |　　　30 |
+------+---------+

2.5 　設定ファイル
　MySQLサーバーやクライアントプログラムの設定オプションは、起
動時のコマンドラインオプションか設定ファイルで指定できます。リ
ファレンスマニュアル等では、MySQLサーバーの設定値をシステム変
数と呼んでいます。設定ファイルを使うことで、サーバーやクライア
ントプログラムを起動するたびにコマンドライン上でオプションを指
定する必要がなくなり、作業の手間とミスを削減することが期待でき
ます。また、MySQLサーバーをOSのサービスとして登録して起動する
場合には、コマンドラインオプションでシステム変数の指定ができな
いため、設定ファイルの利用が必須です。
　標準の設定ファイル名は、Windowsではmy.ini、LinuxやSolarisでは
my.cnfとなっていますが、任意のファイル名にすることが可能です。
設定ファイルには、MySQLサーバーのデータファイルやログの格納
先、各種メモリーサイズ、MySQLサーバーやクライアントプログラム
で利用するTCP/IPポート、SSLのネットワーク設定などの情報を格納
します。設定ファイルに記述するオプションは、大括弧でプログラム
名などを囲んだグループと呼ばれる行から始まるカテゴリで構成され
ます。通常、グループ名はオプションのグループが反映するプログラ
ムの名前です。MySQLサーバーの設定は[mysqld]の行以降に記述しま
す。[client]はクライアントプログラム共通の設定を記述するグループ
です。

コード2　設定ファイルの例

MySQLサーバーの設定
[mysqld]

InnoDBストレージエンジンのデータバッファ領域のサイズ 1GB
innodb_buffer_pool_size = 1024M

ソート用のメモリー領域 1MB
sort_buffer_size = 1M

データファイルの格納先ディレクトリ
datadir = /u01/data

Windowsのディレクトリの区切りの＼は/(スラッシュ)で表現
ディレクトリ名などに空白を含む場合は引用符で囲む
#basedir="C:/Program Files/MySQL/MySQL Server 5.7/Data"

TCP/IPポート番号
port = 3306

#同時最大接続数
max_connections = 4096

MySQLサーバーの文字コードをUTF8(最大長4バイト)
character_set_server = utf8mb4

クライアントプログラム共通の設定は[client]の項目で指定
[client]
文字コードをUTF8(最大長4バイト)
default_character_set = utf8mb4

　MySQLサーバーは、--defaults-fileオプションで明示的に利用する設
定ファイルが指定されていない場合は、起動時に自動的にいくつかの
場所に設定ファイルが置かれていないか検索します。どの設定ファイ
ルの項目を、どの順番で検索するかは、mysqldのヘルプの冒頭箇所に
表示されます（リスト7）。

リスト7　MySQLサーバーが検索する設定ファイルの確認（ヘルプ内の該当部分のみ抜粋）

Windowsの場合の出力例
C:＼>mysqld --verbose --help

Default options are read from the following files in the given order:
C:￥windows￥my.ini C:￥windows￥my.cnf C:￥my.ini C:￥my.cnf C:
￥mysql￥mysql-5.7.12-winx64＼my.ini C:￥mysql￥mysql-5.7.12-
winx64￥my.cnf

Linuxの場合の出力例
$ mysqld --verbose --help
Default options are read from the following files in the given order:
/etc/my.cnf /etc/mysql/my.cnf
/usr/local/mysql/etc/my.cnf~/.my.cnf

　実際の運用時には、読み込ませる設定ファイルを明示的にすること
をおすすめします。自動的に設定ファイルを検索させると、想定外の
設定ファイルを読み込んで起動してしまい、誤った設定値で動作して
しまう可能性があるからです。

　MySQLサーバーが読み込む設定ファイルは、起動時のコマンドライ
ンオプション--defaults-fileで指定します。設定ファイルに記述されて
いない項目は、プリコンパイルされた設定値を使用します。もし、同
じ設定項目が複数回記述されていて、異なる値が設定されていた場合
は、後に書かれた値が使用されます。設定ファイルとコマンドライン
オプションで同じ設定項目に異なる値が設定されていた場合は、コマ
ンドラインオプションの値が使われます。

2.5.1 　設定の確認
　設定ファイルで指定した設定値がMySQLサーバーに反映されている
かを含め、MySQLサーバーがどのような設定で動作しているかを確認
するには、SHOW VARIABLESコマンドを利用します（リスト8）。

リスト8　MySQLサーバーに設定されている値を確認

mysql> SHOW GLOBAL VARIABLES;
LIKE句で絞り込んで特定の設定項目の値を確認 %をワイルドカードとし
て利用可能
mysql> SHOW GLOBAL VARIABLES LIKE 'character_set_%';

　Column　　 MyISAMストレージエンジン

　MyISAMストレージエンジンは、MySQL 5.1以前のデフォルトのス
トレージエンジンでした。MyISAMは非常にシンプルで軽量なスト
レージエンジンです。MySQL 5.7でも、ユーザーや権限管理のシス
テム系のテーブルにMyISAMが利用されています。
　MyISAMはシンプルで軽量な実装でしたが、トランザクションに
対応していないため、データの変更中にMySQLサーバーに障害が発
生するとデータが破損するリスクがあります。更新処理の際は、テ
ーブルレベルロックのため同時実行性に大きな制約があります
(InnoDBは行レベルロックです)。また、MyISAMは「軽い」ので性
能が良いといわれることもありましたが、アーキテクチャが古いた
め、CPUのコア数を増やしても処理スループットが伸びないか、場
合によっては低下してしまうこともありました。

　MyISAMにはInnoDBにはない機能が複数ありましたが、現在の
InnoDBには、同様またはより進化した機能が実装されています。以
下は、 InnoDBにはなくMyISAMにはあった主な機能の一覧と、
InnoDBに実装されたMySQLサーバーのバージョンおよびその機能名
や特徴です。

　このような背景から、特別な理由がない限りはMyISAMを積極的
に採用する機会は少なくなっています。
　また、MyISAMを使った複数のテーブルを擬似的にパーティショ
ンのように扱うMRG_MYISAMストレージエンジンも、MySQLサーバ
ー本体にパーティショニング機能が実装されたことで利用機会はほ
ぼなくなっています。
　MySQLサーバーの開発チームの方向性も、InnoDBを中心とした機
能強化となっており、MySQL 5.7の次のメジャーバージョンである
MySQL 8.0 ではシステム系のテーブルにも InnoDB を採用すること
となっています。

2.6 　演習
　このレッスンでは、MySQLサーバーのアーキテクチャ、ストレージ
エンジンの役割、設定ファイルについて学習しました。ここでは設定
ファイルについて演習問題で確認しましょう。

1. tarを展開したディレクトリにmy.cnfという名称で上記設定ファ
イルを作成する
ヒント：設定ファイルや内容についてはレッスン2の「2.5　設

定ファイル」を参照
「データファイルの格納先ディレクトリ」を表す
datadirは、Zipファイルまたはtarファイルを展開したデ
ィレクトリにあわせる
例）ファイルの展開先がC:￥mysql￥mysql-5.7.12-

winx64 の 場 合 は 、 C: ￥ mysql ￥ mysql-5.7.12-
winx64￥data

　　ファイルの展開先が/home/mysql/mysql57の場合
は、/home/mysql/mysql57/data

2. 作成した設定ファイルを指定してMySQLサーバーをコマンドラ
インから起動する
ヒント：レッスン1の「1.3.2　Windows上でZipファイルでのイ

ンストール」のリスト3または「1.4.3　Linux上でtarフ
ァイルでのインストール」のリスト12を参考に、--
defaults-fileオプションで設定ファイルを指定

3. 指定した設定値が反映されていることを確認する
ヒント：レッスン2の「2.5.1 設定の確認」のリスト8を参照

4. 現在稼働中のMySQLサーバーで利用可能なストレージエンジン
を確認する
ヒント：レッスン2の「2.1.5 ストレージエンジン」のリスト1を

参照

　　　解説
3. 指定した設定値の確認にはSHOW GLOBAL VARIABLES;コマン
ドを使います。LIKE句を使わない時は全設定値を表示します。
LIKE句に設定値を指定すると、特定の設定値だけを絞り込むこ
とができます。出力が横長になって見づらい場合は、;（セミコ
ロン）の代わりに￥G（半角円サインと半角大文字のG）または
＼G（半角バックスラッシュと半角大文字のG）を使用します。

全設定値を出力
mysql> SHOW GLOBAL VARIABLES＼G
*************************** 1. row

Variable_name: auto_increment_increment
　　　　Value: 1
*************************** 2. row

Variable_name: auto_increment_offset
　　　　Value: 1

<中略>

*************************** 505. row

Variable_name: wait_timeout
　　　　Value: 28800
505 rows in set (0.01 sec)

同時最大接続数の確認
mysql> SHOW GLOBAL VARIABLES LIKE 'max_connections';
+-----------------+-------+
| Variable_name　 | Value |
+-----------------+-------+
| max_connections | 4096　|
+-----------------+-------+
1 row in set (0.01 sec)

文字コード関連の設定をワイルドカード % を使って確認
SHOW GLOBAL VARIABLES LIKE 'character_set_%'￥G

<出力省略>

4. 利用可能なストレージエンジンの確認にはSHOW ENGINESコマ
ンドを使います。

mysql> SHOW ENGINES＼G
*************************** 1. row

　　　Engine: InnoDB
　　 Support: DEFAULT
　　 Comment: Supports transactions, row-level locking, and
foreign keys
Transactions: YES
　　　　　XA: YES

　Savepoints: YES
*************************** 2. row

　　　Engine: MRG_MYISAM
　　 Support: YES
　　 Comment: Collection of identical MyISAM tables
Transactions: NO
　　　　　XA: NO　Savepoints: NO

<中略>

*************************** 9. row

　　　Engine: FEDERATED
　　 Support: NO
　　 Comment: Federated MySQL storage engine
Transactions: NULL
　　　　　XA: NULL
　Savepoints: NULL
9 rows in set (0.01 sec)

※１　Windows上では、OpenSSLのセットアップと手動での鍵や証明書の作成が必要。Linux
上ではインストール形態によっては手動での作業が必要。詳細はセキュリティのレッ
スン（レッスン12）で解説します。

※２　MySQL ClusterはMySQLサーバーを1コンポーネントとして含む分散型高速データベー
スクラスタ。アーキテクチャや運用方法、またリリースサイクルなどは通常のMySQL
サーバーとは異なる独立した製品として開発されています。

※３　テーブル定義ファイルはどのストレージエンジンを利用している表にも必ず存在しま
す。

3.1 　mysqld MySQLサーバープログラム
　MySQLサーバー本体にあたるプログラムが「mysqld」です。
mysqldは、データベースを管理し、各種クライアントからの接続を
受けてデータベースにアクセスします。

3.1.1 　ディレクトリ設定
　MySQLサーバーのディレクトリに関する主なシステム変数は表1の
通りです

　basedirを指定しない場合、以下がデフォルト値となります。これ
ら以外の場所にインストールした場合は明示的に指定が必要です。

●Windows上　C:￥Program Files￥MySQL￥MySQL Server 5.7
●Linux上　/usr/local/mysql

　MySQL 5.7のデフォルト設定であるinnodb_file_per_table有効時に
は、innodb_data_home_dirの設定は各テーブルのデータファイルに
は 影 響 し ま せ ん 。 innodb_file_per_table 無 効 時 に は 、
innodb_data_file_pathで指定した表領域ファイルに各テーブルのデー
タも格納されます。

3.1.2 　接続設定
　MySQLサーバーに別のマシンなどのクライアントプログラムから
リモートでアクセスする場合には、TCP/IP接続を使用します。
　同一OS上でローカル接続する場合は、OSによって接続方法が異な
ります。Linuxを含むUnix系OSでは、ソケットファイル経由（システ
ム変数名：socket）で高速に通信が可能です。Windowsでは、ローカ
ル接続の場合にも基本的にはTCP/IP接続となります。MySQLサーバ
ーの設定を変更すれば共有メモリー（システム変数名：
shared_memory）や名前付きパイプ（システム変数名：enable-
named-pipe）も使用できますが、現在はあまり一般的ではありませ
ん。
　システムとしてMySQLサーバーに対するリモートアクセスを必要
としていない場合は、ソケットファイルなどのローカル接続のみを
有効とし、skip-networkingオプションを有効にしてTCP/IP接続を利
用しない設定にできます。特にユーザー認証を行わずにデータベー
スへのアクセスを可能にするskip-grant-tablesを有効にして特殊なメ
ンテナンスを行う場合などには、skip-networkingオプションの利用
が強く推奨されます。

3.1.3 　メモリー
　MySQLサーバーが利用するメモリーサイズの設定は、次の2つに分
類できます。

●データのソート用の領域など各クライアント接続の処理を行うスレッドご
とに割り当てられるメモリーサイズの設定

●ディスク上のデータをキャッシュしておくなどサーバー全体で利用するメ
モリーサイズの設定

　メモリーサイズに関する設定の多くは、必要に応じてMySQLサー
バーの稼働中に動的に変更可能です。各パラメータの役割や設定値
の見積もり方などはパフォーマンスチューニングに関するレッスン
13とレッスン14で紹介します。

3.1.4 　文字コード
　MySQLでは、文字コードの設定は「Character Set」と呼ばれてい
ます。MySQLでは、MySQLサーバー全体、各データベース、各テー
ブル、テーブルの各行、クライアントなど各所で文字コードを設定
可能です。MySQLサーバーやクライアントの文字コードを設定ファ
イルで指定する例は、レッスン2で紹介したサンプルの設定ファイル
の後半に記載されています（コード1）。

コード1　サンプル設定ファイル内の文字コード関連設定

MySQLサーバーの設定
[mysqld]
MySQLサーバーの文字コードをUTF8（最大長4バイト）
character_set_server = utf8mb4

クライアントプログラム共通の設定は[client]の項目で指定
[client]
文字コードをUTF8（最大長4バイト）
default_character_set = utf8mb4

　MySQLは、デフォルトでは半角英数字と記号のみを扱う「latin1」
という文字コードを使う設定になっています。日本語を含むデータ
を取り扱う場合は、サーバーおよびクライアントの文字コードをデ
フォルトのlatin1から変更する必要があります。日本語を利用する際
に多く使われてきた文字コードは「cp932」や「eucjpms」ですが、
最近ではUNICODE（UTF-8）の利用が一般的になっており、今後は

「utf8mb4」の利用が多くなると考えられます。MySQL 5.7の次のメ
ジャーバージョンであるMySQL 8.0ではデフォルトの文字コードを
utf8mb4にすることが予定されています。

●URL：MySQL Server Team Blog: Planning the defaults for MySQL
5.8
http://mysqlserverteam.com/planning-the-defaults-for-mysql-5-8/

　MySQLの日本語関連文字コードは表2の通りです。

http://mysqlserverteam.com/planning-the-defaults-for-mysql-5-8/

3.1.5 　文字の照合順序（COLLATION）
　文字コードと同時に考慮しなければいけないのが、文字の照合順
序（COLLATION）です。utf8mb4で利用できるCOLLATIONは、各言
語用に26種類あります。このうち名称の末尾がciのものは大文字小文
字を区別しない（Case Insensitive）照合順序になっています。大文
字小文字を区別するには、末尾がcs（Case Sensitive）のCOLLATION
か、文字バイナリコード値に従ってすべての文字の比較を行う末尾
がbinのものを利用します。（リスト1）。

リスト1　utf8mb4で利用できるCOLLATIONの確認

mysql> SHOW COLLATION LIKE 'utf8mb4%';
+------------------------+---------+-----+---------+----------+---------+
| Collation　　　　　　　| Charset | Id　| Default | Compiled |
Sortlen |
+------------------------+---------+-----+---------+----------+---------+
| utf8mb4_general_ci　　 | utf8mb4 |　45 | Yes　　 | Yes　　　|　
1 |
| utf8mb4_bin　　　　　　| utf8mb4 |　46 |　　　　 | Yes　　　|　
1 |
| utf8mb4_unicode_ci　　 | utf8mb4 | 224 |　　　　 | Yes　　　|　
8 |
| utf8mb4_icelandic_ci　 | utf8mb4 | 225 |　　　　 | Yes　　　|　
8 |
<中略>
| utf8mb4_unicode_520_ci | utf8mb4 | 246 |　　　　 | Yes　　　|　
8 |

| utf8mb4_vietnamese_ci　| utf8mb4 | 247 |　　　　 | Yes　　　|　
8 |
+------------------------+---------+-----+---------+----------+---------+
26 rows in set (0.00 sec)

　MySQL 5.7.11の時点では、utf8mb4のデフォルトのCOLLATIONで
あるutf8mb4_general_ciおよびutf8mb4_unicode_ciではUnicode 6.0で
利用可能となった絵文字を正しく比較照合できないため、Unicodeの
絵 文 字 を 含 む デ ー タ の 比 較 照 合 が 必 要 な 場 合 は 、
utf8mb4_unicode_520_ciまたはutf8mb4_binを利用します。次の例で
は、DISTINCT句の中でCOLLATEを指定して、同一文字と見なされる
ものの有無について確認しています（リスト2）。なお、Unicodeの
絵文字に対応したフォントがない場合、Unicode絵文字が□で表示さ
れてしまいます。Segoe UI SymbolやNoto Sans CJKなどのフォント
を利用してください。

リスト2　COLLATIONによる文字比較の違い　Unicode絵文字

明示的に文字コードを指定してクライアントプログラムを起動
$./mysql -uroot --default-character-set=utf8mb4 world

mysql> DROP TABLE IF EXISTS Unicode_Test;
Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE Unicode_Test (id SERIAL, chars CHAR(1),
memo VARCHAR(32));
Query OK, 0 rows affected (0.11 sec)

大文字、小文字、絵文字、ひらがな、カタカナ、半濁音付き、半角カタカ
ナを挿入
mysql> INSERT INTO Unicode_Test(chars, memo) VALUES
　　-> ('a', 'Lower case A'),
　　-> ('A', 'Upper case A'),
　　-> (' ', 'Emoji Sushi'),
　　-> (' ', 'Emoji Beer'),
　　-> ('ハ', '30CF, Katakana HA'),
　　-> ('パ', '30D1, Katakana PA'),
　　-> ('は', '306F, Hiragana HA'),
　　-> ('ﾊ', 'FF8A, Halfwidth Katakana HA');
Query OK, 8 rows affected (0.06 sec)
Records: 8　Duplicates: 0　Warnings: 0

utf8mb4_bin: 文字バイナリコード値で比較 -> すべて別の文字として評
価
mysql> SELECT DISTINCT chars COLLATE utf8mb4_bin AS bin
FROM Unicode_Test;
+------+
| bin　|
+------+
| a　　|
| A　　|
| 　　　 |
| 　　　 |
| ハ　 |
| パ　 |

| は　 |
| ﾊ　　|
+------+
8 rows in set (0.00 sec)

UCA(Unicode Collation Algorithm) v5.2.0の照合ルールで比較かつ大
文字小文字を区別しない
mysql> SELECT DISTINCT chars COLLATE utf8mb4_unicode_520_ci
AS unicode_520_ci FROM Unicode_Test;
+----------------+
| unicode_520_ci |
+----------------+
| a　　　　　　　|
| 　　　　　　　　 |
| 　　　　　　　　 |
| ハ　　　　　　 |
+----------------+
4 rows in set (0.00 sec)

Unicodeの絵文字など非サポートかつ大文字小文字を区別する
mysql> SELECT DISTINCT chars COLLATE utf8mb4_general_ci AS
general_ci FROM Unicode_Test;
+------------+
| general_ci |
+------------+
| a　　　　　|
| 　　　　　　 |
| ハ　　　　 |

| パ　　　　 |
| は　　　　 |
| ﾊ　　　　　|
+------------+
6 rows in set (0.00 sec)

Unicodeの絵文字など非サポートのUCA v4.0.0の照合ルールで比較かつ
大文字小文字を区別しない
mysql> SELECT DISTINCT chars COLLATE utf8mb4_unicode_ci AS
unicode_ci FROM Unicode_Test;
+------------+
| unicode_ci |
+------------+
| a　　　　　|
| 　　　　　　 |
| ハ　　　　 |
+------------+
3 rows in set (0.00 sec)

3.1.6 　ログ
　MySQLサーバーの運用やトラブルシューティングで利用するログ
には、4種類あります。これらのログは、システム変数で明示的にフ
ァイル名の一部を指定できます。ファイル名を指定しない場合は、
ファイル名の一部にホスト名が利用されます（表3）。

　なお、MySQL Enterprise EditionのEnterprise Auditプラグインを利
用すると、これらのログに加えて監査用ログを出力することができ
ます。

エラーログ
　MySQLサーバーの起動／停止や、サーバーサイドでのエラーに関
連するログです。サーバーの問題解析に必要な情報がデフォルトで
出力されています。
　デフォルトの出力先はOSによって異なります。Windowsでは、デ
ータディレクトリのhost_name.errファイルおよびWindowsイベント
ログに出力されます。Linuxを含むUnix系OSの場合には、MySQLサー
バーを起動したコンソールに出力され、ログファイルには記録され
ないため、エラーログが出力されているコンソールを閉じてしまっ
た場合や、シェルスクリプトまたはサービスとして起動した場合に
エラーログが確認できなくなります。そこで、システム変数

log_errorを設定し、ファイルに記録することを推奨します。MySQL
5.7では、log_syslogを有効に設定すると、syslogにエラーログを出力
できます。

バイナリログ
　実行されたトランザクションのうち、更新系の処理の内容と実行
時刻などのメタデータを記録しているログです。バイナリログは、
レッスン9、10で紹介するレプリケーションで必須となるほか、レッ
スン8で紹介するポイントインタイムリカバリのためにも必須となる
ため、多くの環境で出力する設定となっています。バイナリログは
デフォルトでは出力されていないので、システム変数log_binで出力
の有効化とファイル名の指定を行います。なお、MySQL 5.7からはバ
イナリログを出力する場合はserver_idでサーバーを識別する番号の
設定が必須となっています。
　MySQL 5.7では、バイナリログにはトランザクションによって変更
された行イメージが記録されるROW（行ベース）形式がデフォルト
になっています。行ベース形式ではバイナリログに記録されるデー
タ量が大きくなりがちですが、MySQL 5.6までのデフォルト設定だっ
たSTATEMENT（文ベース）形式では、レプリケーション時にデータ
不整合の可能性があった「非決定的な処理」の問題は回避できま
す。

●URL：MySQL5.6リファレンスマニュアル：17.1.2.1 ステートメントベー
スおよび行ベースレプリケーションのメリットとデメリット
https://dev.mysql.com/doc/refman/5.6/ja/replication-sbr-rbr.html

https://dev.mysql.com/doc/refman/5.6/ja/replication-sbr-rbr.html

　バイナリログは名前の通りバイナリ形式でログが書かれています
が、mysqlbinlogコマンドでバイナリログを指定するとテキスト化が
可能です。行ベース形式のバイナリログをテキスト化しても、行イ
メージが出力されるだけでそのままではどのようなSQL文で変更され
たかわかりません（コード2）。しかし、-vオプションを付けて
mysqlbinlogコマンドを実行すると、同じ更新結果を得るためのSQL
文があわせて出力されます。行ベース形式のバイナリログをテキス
ト化した例は次の通りとなります（コード3）。

コード2　mysqlbinlogコマンドを-vオプションなしで実行した場合

at 384
#160401 16:37:46 server id 1 　 end_log_pos 444 CRC32
0xb4cc9047　Write_rows: table id 116 flags: STMT_END_F

BINLOG '
SpjWVhMBAAAANAAAAIABAAAAAHQAAAAAAAEABXdvcmxkAAJ0dQA
DCA8PBIAAAAEGqPBsHg==
SpjWVh4BAAAAPAAAALwBAAAAAHQAAAAAAAEAAgAD//gJAAAAAAA
AAAFBDABVcHBlciBjYXNlIEFH
kMy0'
/*!*/;

コード3　mysqlbinlogコマンドを-vオプション付きで実行した場合

at 384
#160401 16:37:46 server id 1 　 end_log_pos 444 CRC32
0xb4cc9047　Write_rows: table id 116 flags: STMT_END_F

BINLOG '
SpjWVhMBAAAANAAAAIABAAAAAHQAAAAAAAEABXdvcmxkAAJ0dQA
DCA8PBIAAAAEGqPBsHg==
SpjWVh4BAAAAPAAAALwBAAAAAHQAAAAAAAEAAgAD//gJAAAAAAA
AAAFBDABVcHBlciBjYXNlIEFH
kMy0
'/*!*/;
INSERT INTO `world`.`tu`
SET
###　 @1=9
###　 @2='A'
###　 @3='Upper case A'

スロークエリーログ
　実行時間が指定した時間以上のクエリーを出力するログです。デ
フォルトでは出力されていませんが、処理時間が長い、問題となり
得るSQL文を見つけることができるため、log_slow_queriesを設定し
て出力することを推奨します。スロークエリーログに関するシステ
ム変数は以下の通りです（表4）。

一般クエリーログ（または一般ログ）
　クライアントからの接続および実行されたすべてのSQL文、各処理
の実行時に内部的に発行されたコマンドを出力するログです。ログ
に記録する情報が多いため、デフォルトでは出力されていません
が、問題の解析などのために一時的に general_logを設定して出力す
ることができます。以下は3つの一連の操作を行った際の一般ログの
例です（コード4～6）。

コード4　ローカルホスト上のmysqlクライアントプログラムにてユーザー名scottでログイ
ン

Time　　　　　　　　 Id Command　　Argument
160112 01:02:34　　　1 Connect　　 scott@localhost on
　　　　　　 　　　　1 Query　　　 select @@version_comment
limit 1

コード5　`USE world`コマンドを実行してカレントデータベースを切り替え

160112 01:02:45　　　1 Query　　　 SELECT DATABASE()
　　　　　　　　　　 1 Init DB　　 world
　　　　　　　　　　 1 Query　　　 show databases

　　　　　　　　　　 1 Query　　　 show tables
　　　　　　　　　　 1 Field List　city
　　　　　　　 　　 1 Field List　country
　　　　　　　　　　1 Field List　countrylanguage

コード6　SELECT文を実行

160112 01:03:12　　　1 Query　SELECT * FROM City LIMIT 1

　注目すべきは、コード5のカレントデータベースの切り替えで、実
行したコマンドよりも多くの内部コマンドが実行されているのがわ
かります。一般ログはこのように大量の情報を記録しますので、本
番環境ではトラブルシューティングなどの際のみに利用するのが一
般的です。

スロークエリーログと一般クエリーログの出力先
　スロークエリーログと一般クエリーログの出力を有効にすると、
デフォルトの設定ではそれぞれログファイルに出力されます。
log_outputでログの出力先を次の3パターンから設定することができ
ます。

1. ログファイルのみ
2. ログテーブルのみ
3. ログファイルとログテーブルの両方

　ログテーブルは、MySQLのシステム系データベースmysqlにあり、
スロークエリーログはslow_logテーブル、一般クエリーログは
general_logテーブルとなっています。sedやawkなどでログを分析す
るスクリプトを書く場合はログファイルを、SQL文でログの分析を行
いたい場合はログテーブルを使うなどの使い分けが可能です。な
お、ログテーブルはCSVストレージエンジンを利用しており、データ
ファイルがCSV形式になっているため、データファイルをコピーして
Excelなどで集計や分析を行うことも可能になっています。
　以下は、意図的にlong_query_timeの設定値を超えるようにスリー
プしたSELECT文を実行した際の、ログファイルに出力したスローク
エリーログの例（コード7）と、テーブルに出力したスロークエリー
ログの例（コード8）です。

コード7　スロークエリーログをログファイルに出力した例

Time: 2016-09-02T01:23:45.995674Z
User@Host: root[root] @ localhost []　Id:　　 3
Query_time: 11.012354 　 Lock_time: 0.000000 Rows_sent: 1　
Rows_examined: 0
SET timestamp=1474373406;
SELECT SLEEP(11);

コード8　スロークエリーログをログテーブルに出力した例

mysql> SELECT * FROM mysql.slow_log＼G

*************************** 1. row

　　start_time: 2016-10-02 10:23:45.995674
　　 user_host: root[root] @ localhost []
　　query_time: 00:00:11.012354
　　 lock_time: 00:00:00.000000
　　 rows_sent: 1 rows_examined: 0
　　　　　　db: last_insert_id: 0
　　 insert_id: 0
　　 server_id: 1
　　　sql_text: SELECT SLEEP(11)
　　 thread_id: 3
1 row in set (0.00 sec)

ログ出力設定の動的な変更
　本番運用環境では、エラーログ、バイナリログ、スロークエリー
ログは常に出力しておき、一般クエリーログは開発環境やテスト環
境ですべての処理内容の確認などの際に出力するのが一般的です。
エラーログとバイナリログは、MySQLサーバーの起動時のみに出力
の有無や設定を指定できますが、スロークエリーログと一般クエリ
ーログはSETコマンドで動的に出力の有無や出力先を変更できます。

リスト3　SETコマンドで一般ログを一時的に有効にする

mysql> SET GLOBAL general_log = 'ON';

ログのローテーション
　ログファイルのサイズが大きくなった場合などにログファイルの
切り替えを行います。バイナリログは、FLUSH BINARY LOGSコマン
ドや、管理クライアントプログラムのmysqladminのflush-logsまたは
refreshサブコマンド、データのダンプを取得するクライアントプロ
グラムmysqldumpを--flush-logsオプション付きで実行した際にログ
が切り替わり、ファイル末尾の数字がカウントアップします。
　一方、エラーログ、スロークエリーログ、一般クエリーログは、
ログのフラッシュを行ってもファイルを閉じて開くだけの動作にな
ります。このため、まずログファイルの名前を変更し、FLUSH LOGS
コマンドまたはmysqladminのflush-logsまたはrefreshサブコマンドで
ログをフラッシュします。なお、SQLコマンドの場合、すべてのログ
をフラッシュするFLUSH LOGSコマンドのほかに、ログを個別にフラ
ッシュするlog_typeオプションが利用できます。

リスト4　Linuxのコマンドラインでスロークエリーログと一般クエリーログを切り替え

$ mv Svr01.log Svr01.old
$ mv Svr01-slow.log Svr01-slow.old
$ mysqladmin flush-logs

　Column　　 各種のストレージエンジン

　MySQLサーバーではこれまで解説してきたInnoDB、MEMORY、
MyISAM以外のストレージエンジンも利用可能です。レッスン2の
「ストレージエンジン」のリストに掲載してあります。ただし
InnoDBとMySQL Clusterで利用されるndbcluster以外はトランザク
ションをサポートしていません。
　この中でもCSVストレージエンジンは、一般クエリーログやスロ
ークエリーログの出力先としてテーブルを選択した場合に、それ
ぞれのログテーブルが利用しています。
　CSVストレージエンジンを使ったテーブルは、データファイルに
CSV（カンマ区切りのテキストファイル）を利用します。このファ
イルをコピーして利用することができます。行数などのメタデー
タを格納するファイルもテーブルごとに作成されます。作成した
テーブルの列の定義と同じCSVファイルをデータファイルと入れ替
え、データファイルを開き直すFLUSH TABLESコマンドを実行する
と、CSVファイル内のデータをMySQLサーバー内で利用できます。
　なおCSVストレージエンジンはインデックスとパーティショニン
グが利用できず、すべての列がNOT NULLである必要があるという
制約があります。
　ARCHIVEストレージエンジンは、データの追加と参照のみ可能
で、変更や削除ができないテーブルを作ることができます。
SELECT文、INSERT文、REPLACE文は実行可能ですがUPDATE文と
DELETE文はエラーとなります。データは追加時に自動的にzlib圧
縮して格納されます。アプリケーションからデータの変更がされ
ない特性を生かしてログ蓄積や監査用のテーブルなどに利用され

ることがあります。DELETE文でのデータの削除はできませんが、
パーティショニングが利用できるのでパーティション単位でデー
タを削除する運用が可能です。
　Blackholeストレージエンジンは/dev/null（NULLデバイス）のよ
うに書き込んだデータをすべて捨てます。用途は「データを変更
したトランザクション履歴は記録したいがデータは不要」という
場合です。データを変更するとバイナリログにトランザクション
が記録されます。これをレプリケーションに利用するケースやバ
ックアップなどに利用することが想定されます。
　FEDERATED ストレージエンジンは他のMySQLサーバーのテーブ
ルに接続できるストレージエンジンです。ただし機能制約が多く
デフォルトでは有効になっていません。
　このほかバイナリ版には含まれていませんが、MySQLサーバー
のソースコードパッケージにはストレージエンジンを開発するに
あたってのサンプルとしてExampleストレージエンジンが用意され
ています。

3.2 　演習
　このレッスンではMySQLサーバーの主な機能と設定オプションに
ついて学習しました。ここではサンプルの設定ファイルを利用し
て、文字コードについて確認しましょう。

1. レッスン2の「2.5　設定ファイル」にある設定ファイルの例
（コード2）を使ってMySQLサーバーを起動し、クライアント
プログラムから接続する
ヒント：MySQLコマンドラインクライアントの起動時には、レ

ッスン3の「3.1.5　文字の照合順序（COLLATION）」
のリスト2のように、コマンドラインクライアントが
利用する文字コードの指定が必要

2. 現在利用可能な文字コードの一覧を次のコマンドで取得する

mysql> SHOW CHARACTER SET;

ヒント：レッスン3の「3.1.4　文字コード」および表2を参照

3. 現在稼働中のMySQLサーバーおよび接続するクライアントプロ
グラムが利用している文字コードを次のコマンドで取得する

mysql> SHOW VARIABLES LIKE '%char%';

ヒント：レッスン2の「2.5.1　設定の確認」のリスト8を参照

　　　解説
　文字コードに関する演習の際は、OSやコマンドプロンプト、ター
ミナルコンソールの文字コードの設定、利用しているフォントが
Unicode（UTF-8）に対応しているかを確認してください。

1. クライアントプログラムが利用する文字コードの指定には、コ
マンドラインの引数で--default-character-setオプションを
使用するか、「client」の項目で文字コードが指定してある設
定ファイルを--defaults-fileで指定する方法があります。

2. SHOW CHARACTER SET;コマンドの出力には、各文字コード
がデフォルトで使用する文字の照合順序（COLLATION）およ
び、1文字あたりの最大バイト数が含まれているので確認して
おいてください。ほかのSHOWコマンドと同様、LIKE句での
絞り込みも可能です。

mysql> SHOW CHARACTER SET LIKE 'utf8%';
+---------+---------------+--------------------+--------+
| Charset | Description　 | Default collation　| Maxlen |
+---------+---------------+--------------------+--------+
| utf8　　| UTF-8 Unicode | utf8_general_ci　　|　　　3 |
| utf8mb4 | UTF-8 Unicode | utf8mb4_general_ci |　　　4 |
+---------+---------------+--------------------+--------+
2 rows in set (0.01 sec)

3. 文字化けを起こすことになるので、実際の利用時には推奨でき
ませんが、例えば以下のコマンドのように、MySQLコマンド
ラインクライアントの文字コードを一切指定しない状態で
MySQL サ ー バ ー に 接 続 し 、 SHOW VARIABLES LIKE
'%char%';を実行するとどうなるでしょうか。日本語のデー
タを追加した上で検索するとどうなるか試してみてください。

$./mysql -uroot world

4.1 　クライアントプログラム
　MySQLのクライアントプログラムは、基本的にMySQLサーバーに
接続してコマンドを実行しています。例えば、レッスン3の「バイナ
リログ」の項で出てきたmysqlbinlogコマンドは、ログファイルに直
接アクセスするユーティリティのため、クライアントプログラムと
は呼びません。クライアントプログラムに共通する代表的なコマン
ドラインオプションは以下の通りです（表1）。

　オプション名と短縮形の比較は以下の通りです（リスト1）。ここ
ではローカルホストの3306ポートに対して、rootユーザーで通信プ
ロトコルの圧縮あり、文字コードはutf8mb4で接続している例です。

リスト1　MySQLコマンドラインクライアントのオプション名

すべて長いオプション名で明示的に指定した場合
$./mysql --user=root --host=localhost --port=3306 --compress --
default-character-set=utf8mb4

可能な部分は短いオプション名で明示的に指定した場合
$./mysql -u root -h localhost -P 3306 -c --default-character-
set=utf8mb4

短いオプション名と値の間はスペースがなくても良い
$./mysql -uroot -hlocalhost -P3306 -c --default-character-
set=utf8mb4

可能な部分はデフォルト値を利用した場合
$./mysql -uroot -c --default-character-set=utf8mb4

　Windows上では、クライアントサーバー間は通常TCP/IPで接続し
ます。Linuxの場合は、ローカルホスト上での接続にはデフォルトで
Unixソケットが利用され、リモートのクライアントサーバー間は
TCP/IPで接続します。また各クライアントプログラムからMySQLサ
ーバーにはSSLを利用してセキュアな接続で通信を行うことができま
す。
　以降で紹介するクライアントプログラムは、MySQLサーバーのイ
ンストール時にbinディレクトリに格納されます。Linux上にrpmでイ
ンストールした場合には、/usr/binに格納されています。

4.2 　MySQLコマンドラインクライアントmysql
　mysqlは、MySQLサーバーに接続して、SQL文やコマンドを実行す
るコマンドラインクライアントです。mysqlコマンドで利用可能なコ
マンドラインオプションは次のURLを参照してください。

●URL：MySQL 5.6 Reference Manual ：4.5.1.1　mysqlのオプション
http://dev.mysql.com/doc/refman/5.6/ja/mysql-command-options.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html

　mysqlコマンドの利用を終了する際は、＼q（半角のバックスラッ
シュと小文字のQ）またはEXITまたはQUITと入力します。Windows
上ではバックスラッシュを￥（半角円サイン）に置き換えてくださ
い。

http://dev.mysql.com/doc/refman/5.6/ja/mysql-command-options.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html

4.2.1 　mysqlのインタラクティブモードとバッチモー
ド

　mysqlコマンドでのSQL実行結果の表示は、利用方法によって異な
ります。毎回SQL文を入力する方法などを「インタラクティブモー
ド」と呼び、罫線で区切られた表による出力形式になります。
　一方で、SQL文が格納されたファイルを読み込む方法を「バッチモ
ード」と呼び、列をタブ区切りで表現した出力形式となります。バ
ッチモードでも--tableまたは-tオプションを付けることで、罫線で区
切られた出力形式を利用できます。ほかにもHTML形式で出力する--
htmlまたは-hオプション、XML形式で出力する--xmlまたは-xオプショ
ンも利用できます。モードによる標準の出力形式の違いは次の通り
です（リスト2～5）。

リスト2　インタラクティブモード（表形式）

$./mysql -uroot world
...
mysql> SELECT * FROM City WHERE District = 'Okinawa';
+------+---------+-------------+----------+------------+
| ID　 | Name　　| CountryCode | District | Population |
+------+---------+-------------+----------+------------+
1597	Naha	JPN	Okinawa	299851
1723	Okinawa	JPN	Okinawa	117748
1764	Urasoe	JPN	Okinawa	96002
+------+---------+-------------+----------+------------+

リスト3　バッチモード（タブ区切り）

$./mysql -uroot world -e "SELECT * FROM City WHERE District =
'Okinawa'"
ID　　Name　 　CountryCode　District　Population
1597　Naha　　 JPN　Okinawa　299851
1723　Okinawa　JPN　Okinawa　117748
1764　Urasoe　 JPN　Okinawa　96002

リスト4　バッチモード(HTML形式)

$./mysql -uroot world -H -e "SELECT * FROM City WHERE District =
'Okinawa'"
<TABLE BORDER=1><TR><TH>ID</TH><TH>Name</TH>
<TH>CountryCode</TH><TH>District</TH>
<TH>Population</TH></TR><TR><TD>1597</TD>
<TD>Naha</TD><TD>JPN</TD><TD>Okinawa</TD>
<TD>299851</TD></TR><TR><TD>1723</TD>
<TD>Okinawa</TD><TD>JPN</TD><TD>Okinawa</TD>
<TD>117748</TD></TR><TR><TD>1764</TD>
<TD>Urasoe</TD><TD>JPN</TD><TD>Okinawa</TD>
<TD>96002</TD></TR></TABLE>

リスト5　バッチモード(XML形式)

$./mysql -uroot world -X -e "SELECT * FROM City WHERE District =
'Okinawa'"
<?xml version="1.0"?>

<resultset statement="SELECT * FROM City WHERE District =
'Okinawa'

" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
　<row>
　　<field name="ID">1597</field>
　　<field name="Name">Naha</field>
　　<field name="CountryCode">JPN</field>
　　<field name="District">Okinawa</field>
　　<field name="Population">299851</field>
　</row>

　<row>
　　<field name="ID">1723</field>
　　<field name="Name">Okinawa</field>
　　<field name="CountryCode">JPN</field>
　　<field name="District">Okinawa</field>
　　<field name="Population">117748</field>
　</row>

　<row>
　　<field name="ID">1764</field>
　　<field name="Name">Urasoe</field>
　　<field name="CountryCode">JPN</field>
　　<field name="District">Okinawa</field>
　　<field name="Population">96002</field>
　</row>
</resultset>

　--executeまたは-eオプションでは、オプションの後に指定したSQL
文だけを実行して終了します。この場合は標準の出力形式は表形式
となります。また、実行結果は>を使ってファイルに格納すること
や、｜（パイプ）経由で他のコマンドに渡すことができます。

4.2.2 　mysqlコマンドの実行時ヘルプとSQL構文の確
認

　mysqlコマンドを実行中に、＼qまたはHELPと入力すると、表示形
式や文字コードの変更などコマンドについてのヘルプが利用可能で
す（リスト6）。

リスト6　mysqlコマンドの実行時ヘルプ

mysql> HELP
<略>

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
?　　　　 (＼?) Synonym for `help'.
clear　　 (＼c) Clear the current input statement.
<略>

ego　　　 (＼G) Send command to mysql server, display result
vertically.
<略>

charset　 (＼ C) Switch to another charset. Might be needed for
processing binlog with multi-byte charsets.
warnings　(＼W) Show warnings after every statement.
nowarning (＼w) Don't show warnings after every statement.

For server side help, type 'help contents'

　リスト6に表示されている中でも利用頻度の高いものは、表示形式
を変更する「＼G」と、警告が発生するたびに自動的に表示される
「＼W」です。特に＼Gは、表形式にすると表示が横長になりすぎる
時や、改行が挟まって読みにくくなってしまった場合に便利です
（リスト7）。

リスト7　標準の表形式の出力と＼G利用時の比較

mysql> SELECT VERSION();
+---------------------------------------+
| VERSION()　　　　　　　　　　　　　　 |
+---------------------------------------+
| 5.7.4-community |
+---------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT VERSION()＼G
*************************** 1. row

VERSION(): 5.7.4-community
1 row in set (0.00 sec)

　また、SQL文の構文や利用可能な句、関数、データ型などの確認が
できます。これらのヘルプは、HELPに続けてSQL文のキーワードを
入力するか、HELP CONTENTSと入力するとカテゴリのリストが表示
されます（リスト8）。

リスト8　UPDATE文の構文を確認

mysql> HELP UPDATE
Name: 'UPDATE'
Description:
Syntax:
Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_reference
　 　 SET col_name1={expr1|DEFAULT} [, col_name2=
{expr2|DEFAULT}] ...
　　[WHERE where_condition]
　　[ORDER BY ...]
　　[LIMIT row_count]
<略>

4.3 　MySQLサーバーの運用管理に必要となるク
ライアントプログラムmysqladmin

　MySQLサーバーの稼働状況の確認などに必要なのが、mysqladmin
コマンドです。このコマンドもMySQLサーバーに接続して処理を行
います。mysqladminコマンド内で利用できる主なサブコマンドは以
下の通りです（表2）。

　mysqladminコマンドの全サブコマンドおよびオプションは--helpオ
プションで確認できるほか、次のリファレンスマニュアルを参照し
てください。

●URL：MySQL 5.6 Reference Manual：4.5.2 MySQLサーバーの管理を
行うクライアント
http://dev.mysql.com/doc/refman/5.6/ja/mysqladmin.html
http://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html

　MySQL 5.6までは、OSのサービスで運用していないMySQLサーバ
ーを停止するにはmysqladminコマンドの利用が必要でしたが、
MySQL 5.7ではSQLコマンドとしてSHUTDOWNが加わりました。

http://dev.mysql.com/doc/refman/5.6/ja/mysqladmin.html
http://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html

4.4 　簡易ベンチマークツールmysqlslap
　mysqlslapは、MySQLサーバーに対してクライアントアプリケーシ
ョンの負荷をかけ、各処理フェーズでの処理時間を確認できる簡易
的なベンチマークツールです。
　mysqlslapでは、ベンチマークに使うSQL文をあらかじめ用意して
負荷をかける方法と、自動的にSQL文を生成する方法が選択できま
す。mysqlslapの処理は、テーブル生成とテストに利用するデータを
ロードする準備フェーズ、負荷テストを行うフェーズ、そしてテー
ブルの削除などを行う3つのフェーズに分かれています。負荷テスト
では、マルチスレッドで複数のクライアントからの同時アクセスを
シミュレートできます。
　mysqlslapでは、MySQLクライアントプログラム共通のオプション
に加えて、多重度（-cオプションまたは--concurrencyオプション）
や実行回数（-iオプションまたは--iterationsオプション）、利用する
SQL文を指定してベンチマークテストを行います（リスト9）。

リスト9　SQL文を指定してmysqlslapを実行

$./mysqlslap -uroot --delimiter=";" --create="CREATE TABLE tbl_1
(id INT, name VARCHAR(32)); INSERT INTO tbl_1 VALUES (1,
'aaa')" --query="SELECT * FROM tbl_1" --concurrency=5 --
iterations=10
Benchmark
　　Average number of seconds to run all queries: 0.001 seconds
　　Minimum number of seconds to run all queries: 0.001 seconds
　　Maximum number of seconds to run all queries: 0.002 seconds

　　Number of clients running queries: 5
　　Average number of queries per client: 1

　リスト9の例では、--createオプションでテーブルを作成し、1行だ
け登録した後、全件取得するSELECT文を5多重で各スレッドから10
回ずつ、計50回実行するベンチマークを行っています。
　ユーザーがSQL文を用意する場合は、--createおよび--queryオプシ
ョンを利用します。この2つのオプションの引数には、SQL文を直接
指定することも、SQL文が含まれたテキストファイルを指定すること
もできます。ファイルの場合、実行する複数のSQL文を改行または--
delimiterオプションで指定された区切り文字で分けておきます。
　自動生成したSQL文を利用してベンチマークテストを行うには、-a
オプション（または --auto-generate-sqlオプション）を利用しま
す。--auto-generate-sql-load-typeオプションで指定できるSQL文の種
類は、デフォルトではmixedモードとして、参照と更新を混在させた
ものになります。SQL文の種類は以下のものが選択可能になっていま
す。

●mixed：半分はINSERT文、半分はSELECT文によるテーブルスキャン
●read：テーブルスキャンするSELECT文のみ
●write：INSERT文のみ
●key：主キーによるSELECT文
●update：主キーによるUPDATE文

　テーブル定義や自動生成するSQL文は、以下のオプションで制御で
きます（表3～4）。

　表5のオプションで指定するベンチマークテスト前後に行う処理
は、ベンチマークテストの処理時間には含まれません。

　MySQLサーバー向けに作られたベンチマークテストとして特徴的
なのが、SQL文を自動生成して、ベンチマークの際に使うテーブルの

ストレージエンジンを-e（または--engineオプション）で複数指定し
て比較できる点です（リスト10）。

リスト10　SQL文を自動生成してmysqlslapを実行

$./mysqlslap -uroot -a --auto-generate-sql-add-autoincrement --
number-int-cols=3 --number-char-cols=2 --
engine=InnoDB,MEMORY,MyISAM -c 5 -i 10
Benchmark
　　Running for engine InnoDB
　　Average number of seconds to run all queries: 0.978 seconds
　　Minimum number of seconds to run all queries: 0.829 seconds
　　Maximum number of seconds to run all queries: 1.279 seconds
　　Number of clients running queries: 5
　　Average number of queries per client: 0

Benchmark　　Running for engine MEMORY
　　Average number of seconds to run all queries: 1.653 seconds
　　Minimum number of seconds to run all queries: 1.570 seconds
　　Maximum number of seconds to run all queries: 1.740 seconds
　　Number of clients running queries: 5
　　Average number of queries per client: 0

Benchmark
　　Running for engine MyISAM
　　Average number of seconds to run all queries: 1.732 seconds
　　Minimum number of seconds to run all queries: 1.541 seconds
　　Maximum number of seconds to run all queries: 2.299 seconds

　　Number of clients running queries: 5
　　Average number of queries per client: 0

　この例では、 INTデータ型が 3列、 CHARデータ型が 2列、
AUTO_INCREMENT属性の列を持つテーブルに対して、mixedの処理
を5多重で各スレッドから10回ずつ、計50回実行するベンチマークを
行っています。この際に作成されるテーブルは、InnoDBストレージ
エンジン、MEMORYストレージエンジンとMyISAMストレージエンジ
ンとして、ストレージエンジン間での性能比較を行っています。

　Column　　 歴史に消えたストレージエンジン

　MySQL 5.5でInnoDBがデフォルトのストレージエンジンになっ
た以降は、MySQLサーバー本体に含まれるストレージエンジンに
変更はありません。一方でMySQLの歴史の中では現在使われなく
なったストレージエンジンもあります。
　MySQL 3.23でMyISAMがデフォルトとなるまでは、ISAMという
MyISAMの祖先となるストレージエンジンが使われていました。そ
の後、MySQL 4.1からはソースコードパッケージのみに含まれるよ
うになり、MySQL 5.0で廃止となりました。
　BDB（BerkeleyDB）ストレージエンジンは、MySQL 5.0まで利用
可能だったトランザクション対応ストレージエンジンでした。
BerkeleyDBはSleepy Cat社によって開発され、その後、同社の買収

を経て、現在はOracle Corporationのモバイル機器などをターゲッ
トとした組み込みデータベースとなっています。
　FalconストレージエンジンはInnoDBに代わるトランザクション
対応ストレージエンジンとして開発されましたが、完成されるこ
とはありませんでした。
　MySQL 5.1では、プラガブル・ストレージエンジン・アーキテク
チャが導入され、新たなストレージエンジンを開発しやすくする
APIが整備されました。それにともない、Amazon S3にデータを格
納するものやIBM DB2 for iと連携するもの、データウェアハウス
用途に特化したもの、MyISAMをトランザクションさせようと試み
たものなど、多彩なストレージエンジンがコミュニティや企業で
開発されました。 2007年春に米国で開催された MySQL
Conference&Expo Reportでは、これらのストレージエンジンをテ
ーマに多数の講演が行われていました。

●URL：Think IT （2007/5/16） 次期バージョンの姿が見え、より飛躍
するMySQLを追う
https://thinkit.co.jp/cert/article/0705/4/2.htm

　残念ながら、このころ開発されたストレージエンジンは、デー
タウェアハウス向けのInfobrightなど一部の製品を除いて、開発が
止まってしまったか、当初の設計目標を実現できなかったものが
ほとんどとなっています。その後もプラガブル・ストレージエン
ジンAPIを利用して、コミュニティを中心に各種のストレージエン
ジンが新たに生まれています。

https://thinkit.co.jp/cert/article/0705/4/2.htm

　ちなみに、MySQL 5.7でデフォルトとなっているInnoDBも、現
在のアーキテクチャの InnoDBはMySQL 5.1の途中から InnoDB
Pluginという名称で登場したものです。旧来のInnoDBに加えて、
新しいファイルフォーマットや圧縮機能の追加、性能やCPUスケ
ーラビリティの改善が行われたものでした。

4.5 　演習
　このレッスンではMySQLの主なクライアントプログラムの機能と
設定オプションについて学習しました。ここではmysqladminコマン
ドとmysqlコマンドを利用してサンプルデータを登録してみましょ
う。

1. mysqladminを利用してMySQLサーバー上に新しいデータベー
スworldを作成する

./mysqladmin -uroot create world

2. 以下のURLからサンプルデータベースのデータ「world
database」をダウンロードし、展開する

●URL：Setting Up the world Database　/　Installation
https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html

3. 展開したファイル内のデータをMySQLサーバーにロードする
サンプルデータのファイルの展開先が/home/mysql/mysql57の
場合

./mysql -uroot world < /home/mysql/mysql57/world.sql

4. MySQLコマンドラインクライアントからworldデータベース内
のCityテーブル内のレコードを10件だけ取得する

worldデータベースに接続

https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html

$./mysql -uroot world
mysql> SELECT * FROM City LIMIT 10

　　　解説
1. データベースの作成は、mysqladminコマンドのcreateサブコ
マンドだけではなく、mysqlコマンドラインクライアントで
MySQLサーバーに接続した上でCREATE DATABASE文を発行
することも可能です。

2. ここで利用しているサンプルデータのworldデータベースは、
Oracle Universityによる公式研修のテキストでも利用されて
いるものです。フィンランド政府の統計局の実際のデータを元
にしていますが、最初に作成されたのが2005年よりも前にな
るため、Countryテーブルに東ティモールや南スーダンなどの
新しい独立国は含まれていません。以前は各テーブルが
MyISAMストレージエンジンを利用していましたが、MySQL
サーバーのデフォルトがInnoDBストレージエンジンになって
から、worldデータベースの各テーブルもInnoDBストレージ
エンジンに変更されています。

3. worldデータベースのファイル内容をテキストエディタで開い
てみましょう。サンプルデータを格納するテーブルを作成する
CREATE TABLE文や、データを追加するためのINSERT文が並
んでいるのを確認できます。「<」を使うと、SQL文が含まれ
るファイルをでmysqlコマンドラインクライアントに読み込ま
せて実行することが可能です。

5.1 　MySQL Workbenchのインストール
　MySQL Workbench は、もともとは、スキーマ設計のためのE/R図作
成ツールとして開発され、個別のツールだったSQL開発機能や運用管
理機能、マイグレーション機能が統合されました。
　MySQL Workbenchは、MySQLサーバーとは独立した製品のため、個
別にインストールする必要があります。MySQLサーバーと同じ筐体に
インストールすることも可能ですが、リモート接続もできるため、通
常はクライアントPCにインストールして使用します。サポートされて
いるOSの詳細は以下のページで確認できますが、Windows、Mac OS
X、Red Hat Linux/Cent OS/Oracle Linux、Fedora、Ubuntuにインスト
ール可能です。

●URL：Supported Platforms: MySQL Workbench
http://www.mysql.com/support/supportedplatforms/workbench.html

　MySQL Workbenchは以下のページからダウンロードできます。

●URL：Download MySQL Workbench
http://dev.mysql.com/downloads/workbench/

http://www.mysql.com/support/supportedplatforms/workbench.html
http://dev.mysql.com/downloads/workbench/

5.1.1 　Windows版のインストール
　Windows版のMySQL Workbenchのインストール方法には、インスト
ーラを使用する方法と、Zipファイルを展開する方法があります。
　インストーラを使用する場合は、ダウンロードページからMySQL
Workbench用のインストーラをダウンロードしてインストールしま
す。インストーラを使用してMySQL Serverをインストールする際に、
MySQL Workbenchもあわせてインストールすることもできます。
　Zipファイルを使用する場合は、ダウンロードページからダウンロー
ドしたZipファイルを任意のディレクトリに展開するだけでインストー
ルが完了します。
　なお、Windows上にMySQL Workbenchをインストールする場合は、
ダウンロードページに掲載されている以下のツールのインストールも
必要であることに注意してください。

●Microsoft .NET Framework 4 Client Profile
●Visual C++ Redistributable for Visual Studio 2013

5.1.2 　Mac OS X版のインストール
　Mac OS X版は、ダウンロードページからダウンロードしたファイル
をダブルクリックし、MySQL WorkbenchのアイコンをApplicationsア
イコンにドラッグ＆ドロップすることでインストール可能です。

5.1.3 　Linux版のインストール
　Linux版のインストールは、ダウンロードページから.rpmファイル
や.debファイルをダウンロードして、rpmやdpkgコマンドでインスト
ールできます。また、以下のページでは、YumとAPTの公式リポジト
リが公開されていますので、公式リポジトリをセットアップ後、yum
やapt-getでインストールすることも可能です。

●URL：Download MySQL Yum Repository
http://dev.mysql.com/downloads/repo/yum/

●URL：Download MySQL APT Repository
http://dev.mysql.com/downloads/repo/apt/

http://dev.mysql.com/downloads/repo/yum/
http://dev.mysql.com/downloads/repo/apt/

5.2 　MySQL Workbenchの主な機能
　MySQL Workbenchの主な機能には、「MySQLサーバーの管理」
「MySQLデータベースを使った開発支援」「E/R図を用いたスキーマ
設計」「他DBからMySQLへのテーブル／データ移行支援」がありま
す。それぞれについて、どのようなことができるか概要を解説しま
す。なお、パフォーマンスチューニングに関連する機能についてはレ
ッスン13、14で紹介するため、ここでは解説を割愛しています。

5.2.1 　新規接続定義の作成
　MySQL Workbench起動後、はじめにMySQLデータベースとの接続を
定義する必要があります。そこでまず、MySQLデータベースとの接続
定義を作成する方法について解説します。図1はMySQL Workbench起
動後の画面です。

　新しい接続定義を作成するために、左上の「MySQL Connections」
の右側にある「+」ボタンをクリックします。「+」ボタンをクリッ
クすると、図2の「Setup New Connection」が開くので、任意のコネ
クション名とMySQLデータベースへの接続情報を入力して「OK」をク
リックすると接続定義が作成できます。図2はTCP/IPでの接続定義を
作成する画面ですが、「Connection Method」を変更することで、SSH
での接続やソケットファイルを使ったローカル接続も選択可能です。

　接続定義を作成すると、図3のようにアイコンが追加されるので、
そのアイコンをダブルクリックします。すると図4のようにパスワー
ド入力が促されるので、パスワードを入力して接続します。接続定義
作成時にパスワードを保存しておいて、接続時にパスワード入力を省
略することも可能です。

　接続後の画面は図5です。ここから、MySQLサーバーの管理系機能
とMySQLデータベースを使った開発支援機能が使用できます。

　図5の左側にナビゲーターがあり、MANAGEMENT、INSTANCE、
PERFORMANCE、SCHEMASにカテゴリ分けされています。図6のよう
にナビゲーターをManagementタブ、Schemasタブに分けて表示する
こともできます。

5.2.2 　MySQLサーバーの管理系機能
　MySQLサーバーの管理系機能として、ここではMANAGEMENTと
INSTANCEについて解説します。なお、 PERFORMANCEおよび
MANAGEMENTのパフォーマンスチューニング系機能については、レ
ッスン14で解説します。
　MANAGEMENTの「Server Status」をクリックすると、図7の右のよ
うにサーバーの稼働状況をグラフで確認したり、使用可能な機能、デ
ィレクトリ配置などを確認したりできます。

　「Users and Privileges」からはユーザー管理ができます（図8）。新
しいユーザーを追加したり、権限を付与したり剥奪したりすることが
できます。

　「Data Export」では、MySQLデータベースからデータを抜き出すこ
とができます。図9のように、どのスキーマからどのテーブルのデー
タを抜き出すか選択します。内部的には、mysqldumpが実行されてデ
ータを抜き出します。右上の「Advanced Options…」をクリックする
ことで、mysqldump実行時のオプションを詳細に制御することも可能
です。また、抜き出したデータは「Data Import/Restore」でインポー
トすることもできます。

　INSTANCEの「Startup/Shutdown」では、MySQLサーバーの起動、
停止が行えます（図10）。この機能を利用するためには、OSのサービ
スとしてMySQLサーバーが登録されている必要があります。

　「Server Logs」では、エラーログを確認できます（図11）。
「Options File」では、設定ファイルの確認や編集が可能です（図
12）。

5.2.3 　MySQLサーバーのパフォーマンスチューニング
系機能

　パフォーマンスチューニング系機能については、レッスン14 で解説
します。

5.2.4 　MySQLデータベースを使った開発支援機能
　左側のナビゲーターのSCHEMASでは、図13のようにエクスプローラ
ーライクなツリー構造のObject Browserから、MySQLサーバー内のオ
ブジェクトを確認できます。

　スキーマ内に存在するオブジェクトを一覧で確認することもできま
す。一覧で確認したい場合は、スキーマ名を右クリックし、
「Schema Inspector」を選択します。例えば、図14はworldデータベ
ース（スキーマ）内に存在するオブジェクトを一覧で確認している例
です。図14ではColumnsタブを選択していますが、ほかにもTables、
Indexes、Triggersなどのタブがあるため、スキーマ内のオブジェクト
一覧を素早く確認できます。

　テーブル内に格納されているデータを確認したい場合は、図15のよ
うにテーブル名を右クリックして「Select Rows」を選択することで
SELECT文を自動的に作成し、実行できます。SQLの実行結果は、図16
のように画面下部のスプレッドシートに表示されます。データを
SELECTする時に、デフォルトでは1000行のデータが取得されるよう
にLIMITが設定されていますが、LIMITの設定をはずしたり、取得する
行数を変更したりすることも可能です。

　SQLエディタに直接SQL文を記入して、任意のSQLを実行することも
できます。SQLエディタには、SQL文、関数、テーブル名、列名など
オブジェクト名の入力中に候補が表示される補完機能があります。ま
た、記述したSQL文のキーワードがハイライトされるだけでなく、

SQLの整形機能も使えるため、SQLの視認性が向上します。ほかに
も、SQLの構文を確認するためのContext Helpや、よく使うSQL文を簡
単に呼び出せる（コピー＆ペーストできる）Snippetsが利用できるな
ど、SQL作成を効率化する機能が多数あります。
　SQLの整形機能は、図17中央上部の枠で囲んだホウキのようなアイ
コンをクリックすることで利用できます。また、右上にある枠で囲ん
だアイコンをクリックするとContext HelpやSnippetsを表示できま
す。下部にあるタブで、Context HelpとSnippetsを切り替えられま
す。

　このほか、スプレッドシートに表示された実行結果を外部のファイ
ルにエクスポートしたり、集計関数やJOINを利用していない場合は結
果を直接編集してデータベースに反映したりすることも可能です。

5.2.5 　E/R図を用いたスキーマ設計
　MySQL Workbenchには、E/R図を用いたスキーマ設計機能もありま
す。この機能を使用する時は、MySQL Workbench起動後の画面から
Modelsのメニューを使用します。新規にE/R図を作成する時は、図18
の「+」ボタンをクリック後、図19の「Add Diagram」をダブルクリ
ックしてEER Diagramの画面（図20）を開くことでE/R図を作成できま
す。

　E/R図作成後は「フォワード・エンジニアリング・ウィザード」を
使用して、作成したテーブルなどをMySQLサーバーへ反映できます。
フォワード・エンジニアリング・ウィザードは、図20の「Database」
メニューにある「Forward Engineer…」メニューを選択することで利用

できます。フォワード・エンジニアリング・ウィザードでは、直接
MySQLデータベース上にオブジェクトを作成するだけでなく、オブジ
ェクトを作成するためのSQLスクリプトを生成することも可能です。
　また、既にMySQLデータベース上にテーブル等が作成されている場
合、図20の「Database」メニューにある「Reverse Engineer…」から
リバース・エンジニアリングすることで、既存のオブジェクト定義を
E/R図化することもできます。

5.2.6 　他DBからMySQLへのテーブル／データ移行支援
　MySQL Workbenchの「マイグレーション・ウィザード」は、
Microsoft SQL ServerやPostgreSQLなどのデータベース製品からMySQL
サーバーへの移行を支援するツールです。また別環境のMySQLサーバ
ーからの移行や、ODBCに対応した各種データベース製品からの移行
も可能となっています。マイグレーション・ウィザードで移行できる
のは、テーブル定義とデータ、ビューです。ストアドプロシージャな
どのサーバーサイドプログラムはMySQLサーバー間での移行の場合の
み対応しています。
　マイグレーション・ウィザードは、図18の右側にある「Database
Migration」から実行できます。

5.3 　MySQL Workbenchの商用版限定機能
　ここまで紹介してきた機能は、すべてMySQL Workbenchのコミュニ
ティ版でも利用できますが、MySQL Workbenchの商用版では、商用版
限定の機能も使えます。

5.3.1 　データモデルのドキュメント出力機能
　テーブル定義書のようなドキュメントを自動作成できる機能です。
E/R図を作成してDB設計した内容を、HTMLもしくはテキストのフォー
マットで、ドキュメントに出力できます。テンプレートやフォーマッ
トをカスタマイズすることも可能です。リバース・エンジニアリング
機能と組み合わせれば、最新のテーブル定義書を短時間で自動作成で
きます。
　ドキュメント出力機能を使用する時は、図21のようにE/R図作成画
面から「Model」の「DBDoc － Model Reporting…」を選択します。す
ると図22の画面が表示されるので、フォーマットや出力先（Output
Path）などを選択して、「Generate」をクリックするとドキュメント
を出力できます。

　ドキュメントのテンプレートは、HTMLが3種類（Basic Frames、
Basic Single Page、Detailed Frames）とテキストフォーマットが用意
されています。図23は、HTMLのBasic Framesでの出力例です。左側の
フレームでオブジェクトを選択すると、右側のフレームでオブジェク
トの定義を確認できます。

　図24は、HTMLのDetailed Framesでの出力例です。Detailed Frames
では、オブジェクトを作成するためのDDL文も出力結果に含まれま
す。

　リスト1は、テキストフォーマットの出力例です。サンプルデータ
ベースのworldデータベースをドキュメント出力すると、このようにな
ります。

リスト1　ドキュメント出力結果（テキストフォーマット）

+--+
|　Model Report　　　　　　　　　　　　　　　|
+--+

Total number of Schemata: 1
==
===

. Schema: world
--
Tables (3)
. Table: city
Columns
　　 Key　　 Column Name　　 Datatype　　Not Null　　 Default　
Comment
　　PK　　 ID　　　　　　 INT(11)　　 Yes
　　　　　 Name　　　　　 CHAR(35)　　Yes　　　　 ''
　　　　　 CountryCode　　CHAR(3)　　 Yes　　　　 ''
　　　　　 District　　　 CHAR(20)　　Yes　　　　 ''
　　　　　 Population　　 INT(11)　　 Yes　　　　 '0'

Indices
　 　 Index Name 　 　 Columns 　 　 Primary 　 　 Unique 　 　 Type　
Kind　　Comment
　　PRIMARY　　　　　　　　　Yes　　　　No　　　　 PRIMARY
　　CountryCode　　　　　　　No　　　　 No　　　　 INDEX

Relationships
　 　 Relationship Name 　 　 Relationship Type 　 　 Parent Table　
Child Table　　Cardinality
　　city_ibfk_1　　　　　Non-Identifying　　　country　　　　 city　
1:n

. Table: country
Columns
　　 Key　　 Column Name　　 Datatype　　Not Null　　 Default　
Comment
　　PK　　 Code　　　　　 CHAR(3)　　 Yes　　　　 ''
　　　　　 Name　　　　　 CHAR(52)　　Yes　　　　 ''
　　　　　 Continent　　　ENUM('Asia', 'Europe', 'North America',
'Africa', 'Oceania', 'Antarctica', 'South America')　　Yes　　'Asia'
　　　　　 Region　　　　 CHAR(26)　　Yes　　　　 ''
　　　　　 SurfaceArea　　FLOAT(10,2) Yes　　　　 '0.00'
　　　　　 IndepYear　　　SMALLINT(6) No　　　　　NULL
　　　　　 Population　　 INT(11)　　 Yes　　　　 '0'
　　　　　 LifeExpectancy FLOAT(3,1)　No　　　　　NULL
　　　　　 GNP　　　　　　FLOAT(10,2) No　　　　　NULL
　　　　　 GNPOld　　　　 FLOAT(10,2) No　　　　　NULL
　　　　　 LocalName　　　CHAR(45)　　Yes　　　　 ''
　　　　　 GovernmentForm CHAR(45)　　Yes　　　　 ''
　　　　　 HeadOfState　　CHAR(60)　　No　　　　　NULL
　　　　　 Capital　　　　INT(11)　　 No　　　　　NULL

　　　　　 Code2　　　　　CHAR(2)　　 Yes　　　　 ''

Indices
　　Index Name　　Columns　　Primary　　Unique　　Type　　Kind　
Comment
　　PRIMARY　　　　　　　　　Yes　　　　No　　　　PRIMARY

Relationships
　　Relationship Name　　　 Relationship Type　Parent Table　Child
Table　　　Cardinality
　　city_ibfk_1　　　　　　 Non-Identifying　　country　　　 city　
1:n
　 　 countryLanguage_ibfk_1 　 Non-Identifying 　 　 country　
countrylanguage　1:n

. Table: countrylanguage
Columns
　　Key　　Column Name　　Datatype　　　　Not Null　　Default　
Comment
　　FK　　 CountryCode　　CHAR(3)　　　　 Yes　　　　 ''
　　PK　　 Language　　　 CHAR(30)　　　　Yes　　　　 ''
　　　　　 IsOfficial　　 ENUM('T', 'F')　Yes　　　　 'F'
　　　　　 Percentage　　 FLOAT(4,1)　　　Yes　　　　 '0.0'

Indices

　 　 Index Name 　 　 Columns 　 　 Primary 　 　 Unique 　 　 Type　
Kind　　Comment
　　PRIMARY　　　　　　　　　Yes　　　　No　　　　PRIMARY
　　CountryCode　　　　　　　No　　　　 No　　　　INDEX　　　　

Relationships
　　Relationship Name　　　 Relationship Type　　 Parent Table　
Child Table　　　　Cardinality
　 　 countryLanguage_ibfk_1 　 Identifying 　 　 　 　 　 country　
countrylanguage　　1:n

==
===
End of MySQL Workbench Report

5.3.2 　データモデルの検証機能
　E/R図を作成してDB設計した内容を検証し、DB設計上の懸念事項が
あればアドバイスを提示できる機能です。データモデルの検証を行う
場 合 は 、 図 25 の よ う に E/R 図 作 成 画 面 か ら 「 Model 」 の
「Validation」、または「Validation（MySQL）」から「Validate All」を
選択します。一般的なRDBMSとしての検証を行う時は「Validation」
を選択し、MySQL固有の観点で検証を行う場合は「 Validation
（MySQL）」を選択します。

図26は、サンプルデータベースのworldデータベースを「Validation」
で検証した結果です。例えば、カーソルで選択している行では、
「Nameという名前の列がcountryテーブルとcityテーブルに存在する
が、データ型の定義が異なる」ことを知らせてくれています。同じ名

前の列は同じ情報を保持する可能性があるため、念のためデータ型の
定義が異なることを検知して知らせてくれているのです。

5.3.3 　MySQL Enterprise Edition限定機能に対する
GUI

　MySQL Enterprise Editionで使用できる以下の機能に対するGUIが付
属しています。

●MySQL Enterprise Backup
●MySQL Enterprise Audit
●MySQL Enterprise Firewall

MySQL Enterprise Backup
　MySQL Enterprise Backupを使ったバックアップジョブの作成や、ス
ケジューリング、バックアップジョブの実行状況確認、バックアップ
データのリストアなどが行えます。
　図27の画面で、MySQL Enterprise Backupの実行ファイルのパス、バ
ックアップ出力先、バックアップの実行ユーザーを事前に設定してお
きます。そして、図28の画面で「New Job」ボタンをクリックすると
バックアップジョブの作成を開始します。　Scheduleなど詳細を設定
したい時は、図28の右上にある「Settings…」ボタンをクリックしま
す。次に表示される図29の画面で詳細を設定することができます。

MySQL Enterprise Audit
　MySQL Enterprise Auditで取得した監査ログを確認できる簡易のGUI
です。イベントの種類や監査ログに出力されている内容で絞り込んで
表示することも可能です。図30は監査ログを「SELECT」というキー
ワードで絞り込んで表示している例です。

　なお、監査ログをより詳細に分析したい場合は、Oracle Audit Vault
and Database Firewall（AVDF）との連携も可能です。AVDFを使え
ば、監査ログを分析するだけでなく、監査ログを監視して怪しいアク
セスがあれば警告を通知したり、DBAによる不正を防ぐために監査ロ
グをDBサーバーとは異なる別のサーバーで保管したりすることも可能
です。

MySQL Enterprise Firewall
　MySQL Enterprise Firewallの設定を管理できます。ユーザーごとに
設定されているホワイトリスト（警戒する必要のない安全なSQL文）
の内容の確認や編集も可能です。図31は、MySQL Enterprise Firewall
の設定と、関連するステータス変数を一覧で確認できる画面です。
　図32は、ホワイトリストの内容確認と編集画面です。このようにユ
ーザー管理の画面に「Firewall Rules」タブが追加され、そこからホワ

イトリストの内容確認＆編集が可能です。ホワイトリストはユーザー
ごとに保持されています。

　Column　　 MySQL Utilitiesとは

　MySQL Utilitiesは、MySQLの運用管理を支援するPythonで書かれ
たスクリプト集です。複雑な操作を1コマンドで実行できることを
目的としています。これらのスクリプトで使われるPythonのライブ
ラリも同梱されており、独自の運用管理ツールの作成をより簡単に
します。
　MySQL Utilitiesには大きく以下のカテゴリのツールが含まれてい
ます。

●データ管理　● サーバー運用支援
●レプリケーション管理　● サーバー設定管理

　データ管理ツールには、以下のものがあります。

　レプリケーション管理では、GTID（レッスン9、10で解説）をフ
ル活用しており、GITDが有効になっている環境に新規にレプリケー
ションを構築するmysqlreplicate、レプリケーション構成を図示する
mysqlrplshow、サーバー間のGTIDを比較して遅延の有無を確認する
mysqlrplsyncなどが利用できます。さらに、mysqlfailoverを使うと

レプリケーション環境でのフェイルオーバー設定が可能となりま
す。
　MySQL Utilitiesは、スクリプトごとにオプションが異なります
が、1つポイントになるのが、接続する対象サーバーやユーザーの
指定方法です。通常のMySQLクライアントプログラム（mysqlや
mysqldumpなど）とは書式が異なっています。

接続先サーバーやユーザー、パスワードの指定方法の違い
MySQLクライアントプログラムのオプション表記
mysqldump -uユーザー -pパスワード -hホスト名 -Pポート番号...
mysqldump --user=ユーザー --password=パスワード --host=ホスト
名 -port=ポート番号 ...

MySQL Utilitiesのツールでのオプション表記
mysqldbexport --server=ユーザー:パスワード@ホスト名:ポート番号 ...

5.4 　演習
　このレッスンではMySQL Workbenchについて学習しました。ここで
はMySQL Workbenchの使用方法について確認しましょう。

1. MySQL Workbenchをダウンロードしインストールする
ヒント：レッスン5の「5.1　MySQL Workbenchのインストー

ル」を参照

2. MySQL WorkbenchからMySQLサーバーに接続し、Server
Statusを確認する
ヒント：レッスン5の「5.2.1　新規接続定義の作成」、「5.2.2　

MySQLサーバーの管理系機能」を参照

3. MySQL WorkbenchからMySQLサーバーに接続し、SQLエディ
タから次のコマンドを実行する

SELECT * FROM world.City;

ヒント：レッスン5の「5.2.4 MySQLデータベースを使った開発
支援機能」を参照

4. MySQL WorkbenchからMySQLサーバーに接続し、リバース・
エンジニアリング機能でworldデータベースをE/R図化する
ヒント：レッスン5の「5.2.5 E/R図を用いたスキーマ設計」を参

照

　　　解説
各演習問題のヒントで紹介している解説を参照してください。

6.1 　JSON対応のメリットとは
　MySQL 5.7でのJSON対応は、間違いなく目玉機能の1つとなってい
ます。JSONドキュメントによるデータの管理や交換は急速な広がりを
見せており、MySQLの機能やツールでもJSONドキュメントを利用して
いるものが複数出てきています。
　JSONドキュメントをデータ保管の形式としているドキュメントデー
タベースが利用される場面も出てきましたが、既存のRDBMSと新たな
ドキュメントデータベースを併用すると、管理すべき対象が増えま
す。また、異なるデータベース間でのデータとして整合性を持たせる
ことや関連を利用するには、すべてアプリケーション開発者が実装し
なくてはならないため、処理が煩雑になります。
　そこでMySQLでは、MySQLサーバーをRDBMSとドキュメントデータ
ベースの「ハイブリッド型」データベースとして扱えるような改良を
進めています。JSONデータ型とJSON関数が利用できるようになった
こともその一環です。JSONドキュメント内の値とテーブル内の値を
JOINすることや、JSONドキュメントとテーブルを1つのトランザクシ
ョンで更新することなど、複数のデータベースでは実現しにくい点を
MySQL内で処理できることは大きなメリットになります。

6.2 　JSONデータ型
　MySQL 5.7で実装したJSONデータ型によって、行と列の組み合わせ
である表で管理されるデータと、JSONドキュメントによる構造が不定
なデータを同時に管理することが可能になりました。

6.2.1 　JSONとは
　JSONは、「JavaScript Object Notation」の略で、JavaScriptのオブ
ジェクトの表記をベースとしたデータ表記形式です。キーと値の組み
合わせや配列をテキストで記述します。JSONの記述方式には以下の特
徴があります。

●JSONの配列は、値をカンマで区切り、大括弧（[]）で囲む
●JSONオブジェクトはコロンで区切られたキーと値のペアをカンマで区切
り、全体を中括弧（{}）で囲む

●キーの名前と文字列は、ダブルクォーテーションで囲む
●JSON内の値としては、文字列型や数値型、ブール型、nullが利用可能
●オブジェクトを配列の要素とすることや、配列をオブジェクトの値とするよ
うなネストが可能

　JSONは、その形式からJavaScriptとの親和性が高いとされていまし
たが、現在はJavaScriptに限らず多くの開発言語で利用するためのライ
ブラリが整備されたため、データ交換のフォーマットとして幅広く利
用されています。

6.2.2 　データ型としてのJSONの用途
　RDBMSの表では表現しにくいデータを格納するためにJSONが利用
されることがあります。例えば、属性情報の数が一定ではない場合、
1つのカラムにカンマ区切りなどでデータを入れるか、属性情報の数
を多めに見積もった予備カラムを用意するか、もしくは各属性情報を
行として格納する別の表を用意することになります。ところが、JSON
は配列を利用できネストすることもできるため、このようなデータが
表現しやすい形式といえます（リスト1）。

リスト1　属性テーブルを使用した表現とJSONを使用した表現の例

・属性テーブルを使用した場合

mysql> SELECT * FROM pizza;
+------+------------------+-------+
| code | name　　　　　　 | price |
+------+------------------+-------+
| CLA　| Classic Pizza　　|　 400 |
| MAR　| Margherita Pizza |　 500 |
+------+------------------+-------+

mysql> SELECT * FROM toppings;
+--------+---------------+
| p_code | name　　　　　|
+--------+---------------+
CLA	Pepperoni
CLA	Gouda Cheese
MAR	Basil

| MAR　　| Mozzarella　　|
+--------+---------------+

mysql> SELECT * FROM additionals;
+--------+-------+-------+
| p_code | name　| price |
+--------+-------+-------+
| MAR　　| Olive |　 100 |
+--------+-------+-------+

・JSONを使用した場合

{
　　"name":"Classic Pizza","price":400,
　　"toppings":[
　　　　"Pepperoni","Gouda Cheese"
　　]
}
{
　　"name":"Margherita Pizza","price":500,
　　"toppings":[
　　　　"Basil","Mozzarella"
　　],
　　"additional":[
　　　　{
　　　　　　"name":"Olive","price":100
　　　　}
　　]
}

　RDBMSの表を利用するためには、あらかじめデータ構造を定義して
おく必要があります。ところが、JSONのようなデータ形式では、あら
かじめ構造を定義せずに利用できるため、アプリケーション開発者が
すぐに開発に取りかかれるというメリットがあります。
　しかし、データ構造の定義が不要で、自由な形式が取れるというこ
とは、どのようなデータが格納されるかはアプリケーション開発者に
依存することになります。さらに、正規化や外部キーなどの概念もな
いため、データの重複の可能性や冗長なデータ構造に対する制限、関
連するデータ間での制約などを設けることができない点に注意が必要
です。

6.2.3 　MySQLのJSONデータ型の特徴
　MySQL 5.7から利用可能となったJSON型は、格納されるデータ形式
が正しいかを自動的にチェックするDocument Validation機能を持ちま
す。MySQLでは、JSONデータ型内のデータを、文字コードはutf8mb4
で、照合順序はutf8mb4_binとして扱います。ほかの文字コードで生
成された値をJSONデータ型に格納する時は、自動的にutf8mb4に変換
されます。ただし、文字コードasciiおよびutf8は、utf8mb4のサブセッ
トとなるため、変換は行われません（リスト2）。

リスト2　JSONデータ型の列を持つテーブルの作成とデータの格納

同名のテーブルがあれば削除
mysql> DROP TABLE IF EXISTS pz;

JSON型の列menuを持つテーブルを作成
mysql> CREATE TABLE pz (menu JSON);

データを追加
複数行にわたるJSONの場合、改行を入れても特に問題はない
JSON全体をシングルクォーテーションで囲む
JSON内の文字列はダブルクォーテーションで囲む
mysql> INSERT INTO pz(menu) VALUES ('{
　　'> "Name":"Plain Pizza",
　　'> "price":300
　　'> }');

配列を含むJSONを追加
mysql> INSERT INTO pz(menu) VALUES ('{

　　'> "Name":"Cheesy Pizza",
　　'> "price":400,
　　'> "toppings":"More Cheese",
　　'> "additionals":[{"Name":"B Cheese","price":100}]
　　'> }');

JSONではない文字列を追加しようとするとエラーになる
mysql> INSERT INTO pz(menu) VALUES ('some text');
ERROR 3140 (22032): Invalid JSON text: "Invalid value." at position
0 in value for column 'pz.menu'.

　JSONドキュメントをそのままテキストとして格納するのではなく、
バイナリ化して格納します。ネストされたオブジェクトやデータを探
す際に、データ全体を走査することなく、直接キーや配列のインデッ
クスを参照させることで、検索性能の向上を図っています。MySQLの
JSONデータ型内データとして、JSONの文字列型や数値型などに加え
て、独自に日時型もサポートしています。
　MySQL 5.7で追加されたJSON関数およびJSON演算子によって、
JSONデータ型の列の値の取得や変更が可能です（リスト3）。

リスト3　JSON関数およびJSON演算子の利用例

JSONの内容を展開するJSON_EXTRACT関数の利用例
mysql> SELECT JSON_EXTRACT(menu, "$.Name") FROM pz;
+------------------------------+
| JSON_EXTRACT(menu, "$.Name") |
+------------------------------+
| "Plain Pizza"　　　　　　　　|

| "Cheesy Pizza"　　　　　　　 |
| "Classic Pizza"　　　　　　　|
+------------------------------+

JSON_EXTRACT関数と同様の動作をするJSON演算子 -> の利用例
mysql> SELECT menu->"$.Name" FROM pz;
+-----------------+
| menu->"$.Name"　|
+-----------------+
| "Plain Pizza"　 |
| "Cheesy Pizza"　|
| "Classic Pizza" |
+-----------------+

　もう1つの大きな特徴が、ほかのデータ型と同様に、インデックス
に利用できることです。MySQL 5.7で加わった生成列（Generated
Column）にJSONから抽出した値を格納して、その生成列にインデッ
クスを作成することで実現できます（リスト4）。

リスト4　生成列の作成とインデックスの追加

生成列の作成
JSON内のName要素を展開し、その値をVIRTUAL生成列とする
VIRTUAL生成列の場合、毎回演算が行われ、値そのものは格納されない
STORED生成列の場合、データの追加更新時に演算後の値が格納される
mysql> ALTER TABLE pz ADD COLUMN pz_name VARCHAR(32)
　 -> GENERATED ALWAYS AS
　 -> (JSON_UNQUOTE(JSON_EXTRACT(menu, '$.Name')))
　 -> VIRTUAL;

作成した生成列に対してインデックスを作成
mysql> ALTER TABLE pz ADD INDEX(pz_name);

レッスン14で説明するEXPLAINで実行計画を確認
keyの項目でインデックスpz_nameが利用できていることが確認できる
mysql> EXPLAIN SELECT * FROM pz WHERE pz_name = "Cheesy
Pizza"￥G
*************************** 1. row

　　　　　 id: 1
　select_type: SIMPLE
　　　　table: pz
　 partitions: NULL
　　　　 type: ref
possible_keys: pz_name
　　　　　key: pz_name
　　　key_len: 35
　　　　　ref: const
　　　　 rows: 1
　　 filtered: 100.00
　　　　Extra: NULL
1 row in set, 1 warning (0.00 sec)

Note (Code 1003): /* select#1 */ select `world`.`pz`.`menu` AS
`menu`,`world`.`pz`.`pz_name` AS `pz_name` from `world`.`pz`
where (`world`.`pz`.`pz_name` = 'Cheesy Pizza')

6.3 　MySQLのJSON関数とJSON演算子
　MySQL 5.7では、JSON文字列およびJSONデータ型を処理するための
関数や演算子が複数用意されています。また多くのJSON関数では、
JSONドキュメント内の要素を指定しますが、このためのJSONドキュ
メント内の階層（パス／Path）を表現する方法が用意されています。

6.3.1 　JSONデータのパス式
　MySQLのJSON関数で利用するパス式では、まず利用するJSONドキ
ュメントをドル記号（$）で表します。その後にピリオドで区切って
階層を表現していきます。配列内の要素は[n]で表現します。大括弧内
のnは、0以上の整数または全要素を表すアスタリスク（*）を使えま
す。キーの名前はutf8mb4（またはasciiかutf8）でエンコードされた文
字列をダブルクォーテーションで囲みます。
　以下のようなJSON配列とJSON_EXTRACT関数を例にパス式の挙動を
確認してみます（リスト5）。

[10,{"a":[20,30],"b":40},[50,60]]

リスト5　JSON配列に対するパス式の挙動

セッション変数@j_ex1にJSON配列を格納する
mysql> SET @j_ex1='[10, {"a": [20, 30], "b": 40}, [50, 60]]';

JSONドキュメント全体を取得
mysql> SELECT JSON_EXTRACT(@j_ex1, "$");
+--+
| JSON_EXTRACT(@j_ex1, "$")　　　　　　　　|
+--+
| [10, {"a": [20, 30], "b": 40}, [50, 60]] |
+--+

配列のすべてを取得
mysql> SELECT JSON_EXTRACT(@j_ex1, "$[*]");
+--+

| JSON_EXTRACT(@j_ex1, "$[*]")　　　　　　 |
+--+
| [10, {"a": [20, 30], "b": 40}, [50, 60]] |
+--+

配列の先頭の要素を取得
mysql> SELECT JSON_EXTRACT(@j_ex1, "$[0]");
+------------------------------+
| JSON_EXTRACT(@j_ex1, "$[0]") |
+------------------------------+
| 10　　　　　　　　　　　　　 |
+------------------------------+

配列の2番目の要素を取得
→JSONオブジェクトが返る
mysql> SELECT JSON_EXTRACT(@j_ex1, "$[1]");
+------------------------------+
| JSON_EXTRACT(@j_ex1, "$[1]") |
+------------------------------+
| {"a": [20, 30], "b": 40}　　 |
+------------------------------+

配列の2番目の要素（JSONオブジェクト）のうち、
キーの名前がaの値を取得
→JSON配列が返る
mysql> SELECT JSON_EXTRACT(@j_ex1, "$[1].a");
+--------------------------------+
| JSON_EXTRACT(@j_ex1, "$[1].a") |

+--------------------------------+
| [20, 30]　　　　　　　　　　　 |
+--------------------------------+

配列の2番目の要素（JSONオブジェクト）のうち、
キーの名前がaの値（JSON配列）の先頭の要素を取得
mysql> SELECT JSON_EXTRACT(@j_ex1, "$[1].a[0]");
+-----------------------------------+
| JSON_EXTRACT(@j_ex1, "$[1].a[0]") |
+-----------------------------------+
| 20　　　　　　　　　　　　　　　　|
+-----------------------------------+

　別のJSONオブジェクトとJSON_EXTRACT関数を例に、パス式の挙動
を確認してみます（リスト6）。

{"a": {"b": 1}, "c": {"b": [2,3]}, "d": [5, 6]}

リスト6　JSONオブジェクトに対するパス式の挙動

セッション変数@j_ex2にJSONオブジェクトを格納する
mysql> SET @j_ex2='{"a": {"b": 1}, "c": {"b": [2,3]}, "d": [5, 6]}';

キーの名前がaの値を取得→JSONオブジェクトが返る
mysql> SELECT JSON_EXTRACT(@j_ex2, '$.a');
+-----------------------------+
| JSON_EXTRACT(@j_ex2, '$.a') |
+-----------------------------+

| {"b": 1}　　　　　　　　　　|
+-----------------------------+

キーの名前がbの値を取得
→bの値は2階層目のキーなのでnullが返る
mysql> SELECT JSON_EXTRACT(@j_ex2, '$.b');
+-----------------------------+
| JSON_EXTRACT(@j_ex2, '$.b') |
+-----------------------------+
| NULL　　　　　　　　　　　　|
+-----------------------------+

キーの名前がaの値（JSONオブジェクト）のうち
キーの名前がbの値を取得
mysql> SELECT JSON_EXTRACT(@j_ex2, '$.a.b');
+-------------------------------+
| JSON_EXTRACT(@j_ex2, '$.a.b') |
+-------------------------------+
| 1　　　　　　　　　　　　　　 |
+-------------------------------+

キーの名前がaの値（JSONオブジェクト）のうち
キーの名前がcの値を取得
mysql> SELECT JSON_EXTRACT(@j_ex2, '$.c.b');
+-------------------------------+
| JSON_EXTRACT(@j_ex2, '$.c.b') |
+-------------------------------+
| [2, 3]　　　　　　　　　　　　|

+-------------------------------+

アスタリスク2つ（**）を指定するとa.bおよびc.bのように複数のパスを
評価
mysql> SELECT JSON_EXTRACT(@j_ex2, '$**.b');
+-------------------------------+
| JSON_EXTRACT(@j_ex2, '$**.b') |
+-------------------------------+
| [1, [2, 3]]　　　　　　　　　 |
+-------------------------------+

さらにアスタリスク（*）を組み合わせてすべての値を展開
mysql> SELECT JSON_EXTRACT(@j_ex2, '$**.*');
+--+
| JSON_EXTRACT(@j_ex2, '$**.*')　　　　　　　　|
+--+
| [{"b": 1}, {"b": [2, 3]}, [5, 6], 1, [2, 3]] |
+--+

6.3.2 　JSONデータを作成する関数
　JSONデータを作成するための関数は以下の通りです。

　JSONオブジェクトを作成する例は、次の通りです（リスト7）。

リスト7　JSON_OBJECT関数によるJSONオブジェクトの作成

JSON_OBJECT関数の引数として各種のSQL関数も利用可能
mysql> SELECT JSON_OBJECT("Title", "Foobar", "Timestamp",
CURTIME());
+--+
| JSON_OBJECT("Title", "Foobar", "Timestamp", CURTIME()) |
+--+
| {"Title": "Foobar", "Timestamp": "14:54:23.000000"}　　|
+--+

　JSON_OBJECT関数は、SELECT文による検索結果をJSONオブジェク
トとして返すためにも利用できます（リスト8）。

リスト8　SELECT文の結果をJSONオブジェクトとする例

mysql> SELECT
　　->　JSON_OBJECT("CityName", Name, "Country", CountryCode)
AS J
　　-> FROM City WHERE district = 'Okinawa' LIMIT 3;

+---+
| J　　　　　　　　　　　　　　　　　　　　 |
+---+
| {"Country": "JPN", "CityName": "Naha"}　　|
| {"Country": "JPN", "CityName": "Okinawa"} |
| {"Country": "JPN", "CityName": "Urasoe"}　|
+---+

6.3.3 　JSONデータを検索する関数および演算子
　JSONデータを検索するための関数および演算子は以下の通りです
（表2）。JSONドキュメントの内容を展開するJSON_EXTRACT関数以
外にも値が存在するか、またそのパスの情報などを確認するための関
数が用意されています。リスト9に利用例を示します。

リスト9　JSON_CONTAINS関数およびJSON_CONTAINS_PATH関数の利用例

該当する値が指定したパスに存在するか
mysql> SELECT JSON_CONTAINS(menu, '400', '$.price') FROM pz;
+---------------------------------------+
| JSON_CONTAINS(menu, '400', '$.price') |
+---------------------------------------+
|　　　　　　　　　　　　　　　　　　 0 |
|　　　　　　　　　　　　　　　　　　 1 |
+---------------------------------------+

指定した複数のパスが1つでも存在するか
mysql> SELECT JSON_CONTAINS_PATH(menu, 'one', '$.price',
'$.toppings') FROM pz;
+--+
| JSON_CONTAINS_PATH(menu, 'one', '$.price', '$.toppings') |
+--+
|　　　　　　　　　　　　　　　　　　　　　　　　　　　　1 |

|　　　　　　　　　　　　　　　　　　　　　　　　　　　　1 |
+--+

指定した複数のパスがすべて存在するか
mysql> SELECT JSON_CONTAINS_PATH(menu, 'all', '$.price',
'$.toppings') FROM pz;
+--+
| JSON_CONTAINS_PATH(menu, 'all', '$.price', '$.toppings') |
+--+
|　　　　　　　　　　　　　　　　　　　　　　　　　　　　0 |
|　　　　　　　　　　　　　　　　　　　　　　　　　　　　1 |
+--+

　JSON_EXTRACT関数で値を取得する代わりに、->演算子を使うこと
ができます。JSON_EXTRACT関数および->演算子ともに、取得した値
が文字列の場合はダブルクォーテーションで囲まれた値が返ります。
クォーテーションをはずすためには、JSON_UNQUOTE関数を使いま
す。MySQL 5.7.13で加わった->>演算子（大なり記号2個）は、クォー
テーションをはずした値が返ります。以下の結果はいずれも同じで
す。

●SELECT JSON_UNQUOTE(JSON_EXTRACT(menu, "$.Name")) FROM pz;
●SELECT JSON_UNQUOTE(menu->"$.Name") FROM pz;
●SELECT menu->>"$.Name" FROM pz;

6.3.4 　JSONデータを変更する関数
　JSONドキュメントの変更した値を取得するための関数は、表3の通
りです。JSONデータを検索する関数と同様にJSONドキュメント内の
パスを指定して、変更や追加を行う位置を指定できます（リスト
10）。

リスト10　JSON_ARRAY_APPEND関数とJSON_ARRAY_INSERTの比較

変数@j_ex1にJSON配列を設定
配列の要素の番号は0から始まることに注意
mysql> SET @j_ex1='[10, {"a": [20, 30], "b": 40}, [50, 60]]';

JSON配列の2番目の要素の後に値を追加
配列の要素として追加される
mysql> SELECT JSON_ARRAY_APPEND(@j_ex1, '$[1]', 'x');
+---+
| JSON_ARRAY_APPEND(@j_ex1, '$[1]', 'x')　　　　　|
+---+
| [10, [{"a": [20, 30], "b": 40}, "x"], [50, 60]] |
+---+

JSON配列の2番目の要素の前に値を追加

mysql> SELECT JSON_ARRAY_INSERT(@j_ex1, '$[1]', 'x');
+---+
| JSON_ARRAY_INSERT(@j_ex1, '$[1]', 'x')　　　　|
+---+
| [10, "x", {"a": [20, 30], "b": 40}, [50, 60]] |
+---+

存在しない配列の位置を指定した場合はエラーとはならず、一番後に追加
される
mysql> SELECT JSON_ARRAY_INSERT(@j_ex1, '$[10]', 'x');
+---+
| JSON_ARRAY_INSERT(@j_ex1, '$[10]', 'x')　　　 |
+---+
| [10, {"a": [20, 30], "b": 40}, [50, 60], "x"] |
+---+

JSON配列の2番目の要素のキーaが持つ配列の2番目の要素(30)の後に値を
追加
mysql> SELECT JSON_ARRAY_APPEND(@j_ex1, '$[1].a[1]', 'y');
+---+
| JSON_ARRAY_APPEND(@j_ex1, '$[1].a[1]', 'y')　　 |
+---+
| [10, {"a": [20, [30, "y"]], "b": 40}, [50, 60]] |
+---+

JSON配列の2番目の要素のキーaが持つ配列の2番目の要素(30)の前に値を
追加
mysql> SELECT JSON_ARRAY_INSERT(@j_ex1, '$[1].a[1]', 'y');

+---+
| JSON_ARRAY_INSERT(@j_ex1, '$[1].a[1]', 'y')　 |
+---+
| [10, {"a": [20, "y", 30], "b": 40}, [50, 60]] |
+---+

　JSON_INSERT関数、JSON_REPLACE関数、JSON_SET関数は類似し
た関数ですが、それぞれJSONドキュメントに対する INSERT文、
UPDATE文、REPLACE文に該当すると考えると違いを理解できるかと
思います（リスト11）。

リスト11　JSON_REPLACE関数による値の変更

リスト2で作成したデータの"Plain Pizza"の"price"を確認
mysql> SELECT JSON_EXTRACT(menu, '$.price') FROM pz WHERE
menu->>"$.Name" = "Plain Pizza";
+-------------------------------+
| JSON_EXTRACT(menu, '$.price') |
+-------------------------------+
| 300　　　　　　　　　　　　　 |
+-------------------------------+
1 row in set (0.00 sec)

"Plain Pizza"の"price"を300から400に変更した値を取得
mysql> SELECT JSON_REPLACE(menu, '$.price', 400) FROM pz
WHERE menu->>"$.Name" = "Plain Pizza";
+--
+

| JSON_REPLACE(menu, '$.price', 400)　
|
+--
+
| {"Name": "Plain Pizza", "price": 400, "toppings": null,
"additionals": null} |
+--
+
1 row in set (0.00 sec)

テーブルに格納されている値の再確認
あくまでもJSON_REPLACE関数の実行結果として表示されている値のみ
が変わっており、
テーブルのデータの変更はUPDATE文などを利用する
mysql> SELECT JSON_EXTRACT(menu, '$.price') FROM pz WHERE
menu->>"$.Name" = "Plain Pizza";
+-------------------------------+
| JSON_EXTRACT(menu, '$.price') |
+-------------------------------+
| 300　　　　　　　　　　　　　 |
+-------------------------------+
1 row in set (0.00 sec)

　Column　　 NoSQL APIとmemcachedプラグイン

　MySQLには、キーバリュー型のNoSQLインターフェースが存在し
ます。MySQLのデータは通常SQL文を使って読み書きをしますが、

このインターフェースではSQL文を使わないデータアクセスが可能
です。MySQLのNoSQLインターフェースはオープンソースの分散キ
ャッシュmemcachedを活用しています。
　memcachedは、ブログサイトの「LiveJournal」で利用が始まった
分散キャッシュの仕組みで、現在では多くのWebサイトでMySQLと
組み合わせて利用されています。単純にMySQLとmemcachedを組み
合わせた場合では、データの取得時にアプリケーションから
memcachedにアクセスして、対象のデータがキャッシュされている
か確認し、データがない場合は改めてMySQLにアクセスする必要が
あります。また、データの更新時には、永続化のためにMySQLにア
クセスしつつ、さらにキャッシュを更新する処理をなんらかの形で
実装する必要があります。
　memcachedはMySQLサーバーのプラグインとしてMySQLサーバ
ーと同一プロセス内部で稼働しています。データはInnoDBのテーブ
ルに永続化されます。この場合、memcachedのプロトコルを使った
クライアントプログラムは、memcachedに対してデータを読み書き
するように動作しますが、実際にはInnoDBのテーブルのデータを読
み書きする仕組みとなります。
　設定の中で、キーのプレフィックスによってどのテーブルを利用
するか、テーブル内のどの列をキーおよびバリューとするかを定義
できます。テーブルの複数の列をまとめてバリューとして
memcachedプロトコルから扱うこともできます。
　memcachedのプロトコルでデータを追加更新する場合、
「memcachedへのキャッシュのみ」「InnoDBへの永続化のみ」
「キャッシュと永続化」を選択できます。これによってキャッシュ

のデータとMySQLのデータの同期を心配せず、自動的に同期が取れ
る構成にすることが可能です。また、MySQLサーバーのバイナリロ
グにはデータの変更が記録されるため、レプリケーションも可能で
す。

　同じデータに対してキーバリュー型のアクセスが適しているシン
プルなデータアクセスをするアプリケーションからはmemcachedの
プロトコルで、JOINなど複雑なデータ操作の場合にはMySQLサーバ
ーのプロトコルでSQL文を利用します。特にデータをまとめてロー
ドする場合などのオーバーヘッドを最小限に抑えることができま
す。

6.4 　演習
　このレッスンではMySQL 5.7で加わったJSONデータ型とJSON関数に
ついて学習しました。学習した内容を演習で確認しましょう。

1. world_xデータベースを作成し、JSONデータを含むサンプルデ
ータ world_x databaseをダウンロードする。 world_x
databaseは以下のページの「Example Databases」の一覧
で、TGZまたはZipファイルが選択可能

●URL：Other MySQL Documentation
http://dev.mysql.com/doc/index-other.html

ヒント：レッスン4の演習を参照

2. world_xデータベース内でサンプルデータの一部を確認する

mysql> use world_x;

mysql> SELECT * FROM CountryInfo LIMIT 2;

3. JSON_EXTRACT関数、->演算子および、->>演算子の挙動を
確認する

mysql> SELECT JSON_EXTRACT(doc, "$.Name") FROM
CountryInfo LIMIT 2;

mysql> SELECT doc->"$.Name" FROM CountryInfo LIMIT 2;

http://dev.mysql.com/doc/index-other.html

mysql> SELECT doc->>"$.Name" FROM CountryInfo LIMIT 2;

4. サンプルデータ内のCountryInfoテーブルから以下の条件で値を
抽出しJSONオブジェクトを作成する
●GNPの値が1,000,000より大きい国
●国名と人口をJSONオブジェクトとして取得

mysql> SELECT JSON_OBJECT
　　->　　 ("Country Name", doc->"$.Name",
　　->　　　"Population", doc->"$.demographics.Population"
　　->　　)
　　-> FROM CountryInfo WHERE doc->"$.GNP" > 1000000;

5. CountryInfoテーブルとCityテーブルの値をJOINして値を取得
する
●都市の人口が1,000万を超える都市名とその国名を取得する

mysql> SELECT
　　->　　 CountryInfo.doc->>"$.Name" AS CountryName,
　　->　　 City.Name AS CityName
　　-> FROM CountryInfo, City
　　-> WHERE
　　->　　 CountryInfo.doc->>"$._id" = City.CountryCode
　　->　　 AND
　　->　　 City.Info->>"$.Population" > 10000000;

　　　解説
　この演習では、JSONドキュメントデータを実際にMySQLサーバーに
格納して、JSON関数や演算子を利用しています。このサンプルデータ
は、すべての項目数が同じドキュメントばかりが含まれており、JSON
ドキュメントを利用したデータベースの特性の1つである不定型な構
造のデータにはなっていません。
　例えば、中国の特別行政区である香港のデータが含まれています
が、独立国家ではないため独立年を表すIndepYearがnullになっていま
す。RDBMSのテーブルの列としてIndepYearが定義されていた場合は
nullを格納することになりますが、JSONドキュメントでは項目をそろ
える必要性がないため、次のように変更した上で格納することも可能
です。

サンプルデータの内容
{"GNP": 166448, "_id": "HKG", "Name": "Hong Kong", "IndepYear": null,
"geography": {"Region": "Eastern Asia", "Continent": "Asia", "SurfaceArea":
1075}, "government": {"HeadOfState": "Jiang Zemin", "GovernmentForm":
"Special Administrative Region of China"}, "demographics": {"Population":
6782000, "LifeExpectancy": 79.5}}

変更後の内容
{"GNP": 166448, "_id": "HKG", "Name": "Hong Kong", "geography":
{"Region": "Eastern Asia", "Continent": "Asia", "SurfaceArea": 1075},
"government": {"HeadOfState": "Jiang Zemin", "GovernmentForm": "Special
Administrative Region of China"}, "demographics": {"Population": 6782000,
"LifeExpectancy": 79.5}}

1. 実行するコマンドの例は以下の通りとなります。world_x.sqlフ
ァイルの指定は展開したディレクトリにあわせてください。

world_xデータベースの作成
$./mysqladmin -uroot create world_x

world_xデータベースにサンプルデータをロード
$./mysql -uroot world_x ￥

2. 演算子の違いで文字列のクォーテーションの有無が異なります。
クォーテーションが付くのは文字列型のみです。

3. この演習では、JSONドキュメントの内容を抽出した上で、
JSON_OBJECT関数を使って改めてJSONオブジェクトを生成し
ています。以下のSQL文にすると、JSONドキュメントの内容を
通常のSELECT文の結果セットして受け取ることができます。演
習3にもあるように国名の取得には->>演算子を用いてクォーテ
ーションをはずしている点も確認してください。

mysql> SELECT
　　->　doc->>"$.Name" AS "Country Name",
　　->　doc->"$.demographics.Population" AS "Population"
　　-> FROM CountryInfo WHERE doc->"$.GNP" > 1000000;
+----------------+------------+
| Country Name　 | Population |
+----------------+------------+
| Germany　　　　| 82164700　 |

France	59225700
United Kingdom	59623400
Italy	57680000
Japan	126714000
United States	278357000
+----------------+------------+

4. この例では、国のコードが格納されているCountryInfoテーブル
の JSON ド キ ュ メ ン ト 内 の _id の 値 と City テ ー ブ ル の
CountryCode列の値でJOINを行っています。このように、
MySQLではJSONドキュメント内の値とテーブル内の値でJOIN
が可能となっています。

7.1 　バックアップの重要性
　パソコンやスマートフォン、アプリケーション開発リポジトリな
ど、データベースに限らずさまざまな領域でバックアップの重要性
がうたわれています。特に、データベースにはシステム全体で必要
となるデータが格納されており、データを失ってしまうと事業が継
続できなくなる恐れが出てきます。
　そこで、ディスクのRAID構成やデータ格納先を複数にすること
で、機器の故障やクラウドサービスの停止に対応する方法も考えら
れます。しかし、アプリケーションの更新時に埋め込まれたバグに
よって、誤ったSQL文が実行されて不正なデータができてしまうケー
スや、故意か過失かを問わずデータベース管理者の操作によってデ
ータを失ってしまうケースもあり得ます。このような時に過去の一
定時点までデータを復元するためにも、データのバックアップが必
要となります。

7.1.1 　バックアップ取得時の考慮点
　運用中のシステムのバックアップを行うにあたって考慮すべき事
項は以下の通りです。

●いつ：1日の中で何時頃？　どのぐらいの間隔で？
●なにを：OSからデータベース全体まですべて？　変更されたデータだけ？
●どこに：同じサーバー上？　テープデバイス？　別のデータセンター？　
クラウドストレージ？

●どのように：システムは停止必要？　どのツールや手段を使う？
●どれだけ：何世代のバックアップデータを残しておく？　どれだけのスト
レージが必要か？

7.1.2 　バックアップ対象の検討
　バックアップ対象のデータと設定は、以下のように検討します。

「いつ」バックアップするか
　バックアップ処理は、データベースの内容をなんらかの方法で複
製することになります。複製を行うためにデータを読み取る必要が
あり、そのぶんのディスクアクセスが発生する可能性があります。
また、単にデータのコピーを行うのではないケースではCPUにも負荷
がかかり、バックアップデータを別のサーバーやクラウドストレー
ジなどに転送する場合はネットワークにも負荷がかかります。アプ
リケーションからのアクセスへの影響を最小限に抑えるためにも、
バックアップを実行するタイミングの検討が重要です。
　一般的には、アプリケーションからデータベースへのアクセスが
少なくなることが想定される時間帯にバックアップを行います。業
務系のシステムでは業務時間外にはアプリケーション利用者が減り
ますが、分析やデータの洗い替えといった夜間バッチなどが実行さ
れる可能性がある点も考慮する必要があります。オンラインゲーム
のようなコンシューマー向けのサービスでは、夜間も負荷が高いま
まのシステムもあり得ます。バックアップが別の処理で負荷が高ま
る前に設計することも重要です。

「なにを」バックアップするか
　バックアップ対象は、データベースに格納されたアプリケーショ
ンのデータだけではありません。バックアップや復旧にかかる時
間、データ変更の頻度や有無によって、データベース全体をバック

アップするのか、変更点のみをバックアップするのか、またはデー
タベースの特定のテーブルだけをバックアップするのかなどの設計
を行います。
　また、設定を変更する前には、設定ファイルのバックアップを取
っておくべきです。MySQL製品のバイナリは、多くの場合でMySQL
の公式サイトからダウンロード可能となっていますが、例えばバー
ジョンアップ後になんらかの事情で元のバージョンに戻すことも考
えられますので、環境をバックアップすることも検討に含めます。
　過去のMySQL製品は以下のサイトからダウンロードできます。た
だし、MySQLサーバーについてはMySQL 5.0.15が最も古いものにな
ります。

●URL：MySQL Product Archives
http://downloads.mysql.com/archives/

「どこに」保管するか
　バックアップしたデータを稼働中のホスト上に置いていた場合、
障害に巻き込まれると復旧のためにバックアップデータを利用する
ことができません。また、アプリケーションデータの格納先に使え
たはずのストレージの容量を使ってしまうことにもなりかねませ
ん。そこで、通常、バックアップデータは、外部ストレージやテー
プデバイス、クラウドストレージに待避しておきます。
　同時に考えておかなければいけないのは、復旧が必要となった際
に、早急にバックアップデータを利用できるかです。バックアップ
データを置いたストレージの性能や、クラウドストレージとの間の

http://downloads.mysql.com/archives/

ネットワークの転送性能などによって、取得に時間がかかってしま
うと、そのぶんシステムの復旧が遅れてしまう懸念もあります。

「どのように」バックアップするか
　このレッスンとレッスン8では、特にこの項目について解説しま
す。単にツールの機能だけではなく、ここで挙げられているほかの
項目についても検討した上で最適な方法を選択してください。

「どれだけ」残すのか
　バックアップを行うと、なんらかのストレージの容量を必要とし
ます。しかし、容量を節約するため、最新のバックアップデータだ
けを持っていると、例えばそのバックアップデータに誤ったデータ
が含まれている場合や、必要なデータが削除された状態でバックア
ップが行われた場合の復旧には使えません。そのため、一般的に
は、過去の世代のバックアップデータも保管されています。現在
は、物理ストレージデバイスやクラウドストレージの容量が大き
く、かつ単価がきわめて低くなっているので、以前ほどシビアな設
計は不要かもしません。しかし、それでも物理ストレージデバイス
には上限がありますし、また運用コストの観点からも、際限なく過
去のバックアップを残すべきではありません。

7.2 　バックアップ用語の整理
　バックアップの種類や運用方法は、運用の要件によって変わって
きます。ここでバックアップ手法の用語を整理しておきましょう。
なお、用語に関しては製品によって異なる場合もありますが、本レ
ッスンにおける用語の用法を紹介します。

7.2.1 　オンラインバックアップとオフラインバックア
ップ

　「オンラインバックアップ」は、対象となるシステムを停止せず
に行うバックアップのことです。バックアップ中もアプリケーショ
ンの処理は通常通り継続できるタイプを「ホットバックアップ」と
呼ぶこともあります。
　「オフラインバックアップ」は、バックアップ作業中に一時的に
システムを停止する方法を指し、「コールドバックアップ」と呼ぶ
こともあります（図1）。

　システムは稼働中ではあるものの、データを読み取り専用として
運用するなど、アプリケーションの機能に制限を加えた状態で行う
バックアップを、MySQLの資料ではホットとコールドの間というこ
とで「ウォーム（Warm）バックアップ」と表現しています（図
2）。

7.2.2 　物理バックアップと論理バックアップ
　データファイルやデータイメージをそのままバックアップする方
式を「物理バックアップ」、データをテキストファイルなどにエク
スポートしてバックアップする方式を「論理バックアップ」といい
ます（図3）。
　一般的に、物理バックアップの方が高速にバックアップを行えま
すが、異なるデータベースに復元することはできず、異なったバー
ジョン間でデータフォーマットが変更されていると、復元が難しい
こともあります。
　論理バックアップでエクスポートしたデータは、基本的にテキス
トデータとなるため、エディタなどで編集することもでき、柔軟性
は高くなります。

　7.2.3　フルバックアップと増分バックアップと差分
バックアップ

　「フルバックアップ」は、データベース全体をまとめてバックア
ップします。データを復元するリストアの作業は、基本的にフルバ
ックアップのデータを戻すだけで完了します。フルバックアップ
は、シンプルな操作でバックアップとリストアができますが、バッ
クアップすべきデータサイズが大きく、バックアップにかかる時間
も長くなります（図4）。
　前回バックアップした時点から変更されたデータのみをバックア
ップするのが、「増分バックアップ」です。増分バックアップを行
った場合のリストア作業では、フルバックアップしたデータがあれ
ば、まずそのデータを戻し、その後で増分バックアップを行った順
に1つずつデータを元に戻していきます。

　「差分バックアップ」では、前回のフルバックアップ以降に変更
されたデータをまとめてバックアップします（図5）。

　フルバックアップと増分バックアップ、差分バックアップのメリ
ットやデメリットは次の通りです（表1）。

7.2.4 　ローカルバックアップとリモートバックアップ
　「ローカルバックアップ」は、同一ホスト上でバックアップ作業
を行います（図6）。mysqldumpなど各種ツールでは、リモートの
MySQLサーバーからのバックアップが行えます。MySQL Enterprise
Backupでは、ローカルバックアップとして作業を行うものの、バッ
クアップファイルの格納先をファイルサーバーやクラウドストレー
ジといったリモートホストにする「リモートバックアップ」も選択
できます。
　バックアップしたデータは、MySQLサーバーと同一ホスト上に保
管しておくべきではありません。バックアップ処理直後に、一時的
に置いておくのであれば大きな問題にはならないかもしれません
が、障害が発生した際に、バックアップデータも巻き込まれてしま
うと、復旧に利用できないため意味がありません。ローカルバック
アップの場合でも、バックアップデータは外部ストレージやテープ
デバイスなど、物理的に別の装置や、クラウドストレージなどに保
管することをおすすめします。

7.3 　データの復旧
　バックアップしたデータを使ってシステムの復旧を行う作業は、
バックアップしたデータを元のデータファイルに戻す「リストア」
と、障害直前の状態まで戻す「リカバリ」に分類されます。データ
復旧の際には、復旧にかけることができる時間およびどの時点まで
復旧する必要があるのかを、システムの運用要件から定義しておく
ことが必要です。

7.3.1 　リストアとリカバリ
　ディスク障害などによってデータファイルが破損した時や、
MySQLサーバーのデータファイルを喪失した場合などに、バックア
ップしたデータを元に戻す作業がリストアです。物理バックアップ
を行った場合には、基本的にバックアップファイルを元のデータフ
ァイルのあったディレクトリにコピーします。論理バックアップ
は、データをロードし直すため、復旧時間は物理バックアップより
かなり長くなる傾向にあります。
　リカバリでは、データがバックアップされた以降に行われた変更
をバイナリログから抽出して再現し、障害発生直前の状態にしま
す。MySQLでは、リカバリのためにバイナリログが有効になってい
ることが必須です。また、データファイルとバイナリログが同時に
壊れてしまうとリカバリができないため、物理的なディスクが複数
利用できる場合には、別々のディスクに配置します（図7）。

　MySQLのInnoDBストレージエンジンには、MySQLサーバーの起動
時に、自動的にInnoDBのデータファイルとログファイルの同期を取
るクラッシュリカバリ処理があります（図8）。プロセス障害などで
MySQLサーバーが正しく停止されていない状態では、InnoDBログが

COMMIT時にトランザクションを記録したものの、チェックポイント
でデータファイルが変更される前にMySQLサーバーが停止している
可能性があります。その差分がないかをチェックし、差分があれば
クラッシュリカバリ処理を行います。クラッシュリカバリが行われ
ている様子は、MySQLサーバーの起動時に出力されるログに
「Starting crash recovery...」および「Crash recovery finished.」など
と表示されることで確認できます。

7.3.2 　RTOとRPO
　リカバリの要件として、「復旧作業として許容できる時間」
Recovery Time Objective（RTO、目標復旧時間）と、「データを復旧
する必要がある障害発生前の時点」Recovery Point Objective（RPO、
目標復旧時点）の2つを定義します（図9）。例えば、RTOの要件が1
時間以内の場合、リストアとリカバリをあわせて1時間以内に終わる
方法を利用する必要があります。RPOが前回のバックアップ時点まで
のデータに戻れば十分な場合は、リストアのみを行えば要件は満た
せるため、リカバリのためのバイナリログがなくても問題ありませ
ん。一方で障害発生直前の状態までデータを復旧することが必要な
要件では、バイナリログは必須となります。
　MySQLでの具体的なバックアップリカバリコマンド等はレッスン8
の応用編で紹介します。

　Column　　 日本のMySQLコミュニティ

　1997年から1998年にかけて、MySQLのリファレンスマニュアル
の翻訳や日本語対応パッチが公開され、メーリングリストが開始
されたのが日本でのMySQLコミュニティの黎明期となります。
　2000年3月には、「日本MySQLユーザ会」（MySQL Nippon
Association、略称MyNA）が設立されました。メーリングリストで
の意見交換や、不定期に開催される勉強会、全国各地で開催され
るオープンソースカンファレンスでのブース出展や講演が活動の
中心となっています。日本語に関する機能要望をまとめてMySQL
開発チームに渡すことも行われてきました。ユーザ会メンバーが
共同で執筆した書籍も複数あります。MySQLに興味がある方なら
誰でも参加でき、メーリングリストに参加することで入会したこ
とになります。

●URL：日本MySQLユーザ会
http://mysql.gr.jp

　2010年には、MySQLについてカジュアルな雰囲気の中でつなが
りを作るという方向性のコミュニティ「MySQL Casual」としての
動きが始まりました。最先端の現場でのとがった利用事例から特
定の機能について深く掘り下げて調査した内容、さまざまなパッ
チやツールの情報などを共有するイベントMySQL Casual Talksが開
催されてきました。主な活動は、コミュニケーションツールの
Slack上で行われています。なにげないMySQLの話題からバグと思

http://mysql.gr.jp/

われる挙動の詳細な調査まで、ゆるい雰囲気の中でディープなや
りとりが行われています。

●URL：MySQL Casual
http://mysql-casual.org

　これらは独立したコミュニティではなく、どちらにも参加して
いる方々が多く、どちらもゆるい雰囲気で運営しているので、参
加しやすいと思います。

http://mysql-casual.org/

8.1 　データのフルバックアップに関する方法と
ツール

　MySQLサーバーのデータのフルバックアップには、複数の方法が
選択できます。

1. 物理バックアップかつオフラインバックアップ
⇒OSのコピーコマンド等

2. 物理バックアップかつオンラインバックアップ
⇒MySQLEnterpriseBackup

3. 論理バックアップかつオンラインバックアップ
⇒mysqldumpまたはmysqlpump

　なお、MySQLの論理バックアップにはMySQLサーバーが稼働して
いる必要があるため、MySQLでは「論理バックアップかつオフライ
ンバックアップ」は不可能です。

8.2 　物理バックアップかつオフラインバックア
ップ

　MySQLのバックアップで最もシンプルな方法は、MySQLサーバー
を停止して、データディレクトリ全体をOSのコピーコマンド等でコ
ピーすることです。バックアップ作業中にMySQLサーバーを停止で
きる運用要件であれば、この方法が一番楽です。リストアもバック
アップしたファイルをMySQLサーバーのデータディレクトリに戻す
だけなので、かかる時間は基本的にファイルのコピー時間だけで済
みます。

8.3 　物理バックアップかつオンラインバックア
ップ

　MySQL Enterprise Editionで提供されるMySQL Enterprise Backup
は、MySQLサーバーの稼働中でもアプリケーションの処理に影響を
与えずに、InnoDBのデータファイルの物理バックアップが行えま
す。
　内部的には3段階でバックアップを行っています。まず、InnoDBの
データファイルのコピーを行います。データファイルのコピー中も
データの変更が行われている可能性があるため、データファイル内
ではデータの整合性が取れていない可能性があります。そこで次の
段階として、データファイルのコピー開始時点以降のInnoDBのトラ
ンザクション情報をInnoDBログから取得します。最後にInnoDBログ
のトランザクション情報を基に、データファイルコピー中に行われ
た変更点をデータに反映し、バックアップ終了時点のデータの整合
性が取れたデータとなります。
　また、MySQL Enterprise Backupは、後述するデータファイルの差
分バックアップのほか、コマンド1つでポイントインタイムリカバリ
なども行うことが可能です。

リスト1　バックアップ取得とログ適用を1回の操作で実行

$ mysqlbackup --user=root -p --backup-
dir=/home/admin/backups backup-and-apply-log

リスト2　ログ適用済みのバックアップをリストア

$ mysqlbackup --defaults-file=/usr/local/mysql/my.cnf --backup-
dir=/home/admin/backups copy-back

リスト3　バックアップ取得のみ実行

$ mysqlbackup --user=root -p --backup-
dir=/home/admin/backups backup

リスト4　ログの適用のみ実行

$ mysqlbackup --user=root -p --backup-
dir=/home/admin/backups apply-log

リスト5　ログ適用前のバックアップにログを適用し、リストア

$ mysqlbackup --defaults-file=/usr/local/mysql/my.cnf --backup-
dir=/export/backups/full copy-back-and-apply-log

8.4 　論理バックアップかつオンラインバックア
ップ

　MySQLのコミュニティ版では、論理バックアップのクライアント
プログラムとしてmysqldumpとmysqlpumpがあります。どちらのツ
ールでも、データの一貫性を保ったバックアップが可能です。バッ
クアップ対象のテーブルがすべてInnoDBストレージエンジンのみを
利用している場合はオンラインバックアップを行い、MyISAMや
MEMORYなどトランザクションをサポートしないストレージエンジ
ンのテーブルが含まれる場合にはウォームバックアップを行いま
す。
　mysqldumpは、MySQL 3.23から利用できるツールです。一方で、
mysqlpumpはMySQL 5.7から利用できるようになった新しいツール
で、データのエクスポート処理の並列化や進捗を表示できます。こ
れらのツールでエクスポートしたデータなどをMySQLサーバーにロ
ードするためには、mysqlやmysqlimportコマンドを利用します。

8.4.1 　MySQLの論理バックアップツールmysqldump
　mysqldumpは、MySQLの論理バックアップのためのクライアント
プログラムとして使われてきました。デフォルトでは、テーブルと
データを復元するためのCREATE TABLE文とINSERT文の形式で、デ
ータをエクスポートします。--all-databasesオプションによって、
MySQLサーバー全体、またはデータベース単位、個別のテーブル単
位まで指定して部分をバックアップするか選択できます。また、タ
ブ区切りやカンマ区切りなど任意の文字で区切ったテキストファイ
ルをテーブル単位で出力することもできます。

リスト6　データベース単位とテーブル単位での出力方法

データベース単位での指定
$./mysqldump -uroot world

--databasesまたは-Bオプションではスペースで区切りで複数のデータベ
ース指定可能
$./mysqldump -uroot --databases world world_x
<略>

--tableオプションでテーブル単位で指定
スペースで区切りで複数指定可能
$./mysqldump -uroot --databases world --tables City Country
<略>
または
$./mysqldump -uroot world City Country
<略>

　バックアップ対象のテーブルがすべてInnoDBストレージエンジン
のみを利用している場合、mysqldumpの--single-transactionオプショ
ンを指定してバックアップ作業を1つのトランザクションとすること
で、データの一貫性を保った上でオンラインバックアップが可能で
す（リスト7）。MyISAMやMEMORYなどトランザクションをサポー
トしないストレージエンジンのテーブルが含まれる場合には、--lock-
all-tablesオプションを指定してすべてのテーブルを読み取り専用に
して一貫性を保った上でバックアップができます（リスト8）。これ
がMySQLでのウォームバックアップに該当します。
　mysqldumpは、MySQLサーバーに添付されているツールでもあ
り、多くのシステムで利用実績があります。一方でバックアップや
リストアの性能は、物理バックアップと比較すると大きく劣るた
め、処理時間が要件を満たせないことが危惧されます。システム構
成にもよりますが、データサイズがおおむね数十GB程度以上の場合
には、mysqldumpではなく各種の物理バックアップでの運用を検討
してください。

リスト7　基本：InnoDBのトランザクションを使用してデータベース全体のバックアップ
を取得

$./mysqldump --user=root --password=root --master-data=2 ＼
　　 --socket=/usr/local/mysql/data/mysql.sock ＼
　　 --hex-blob --default-character-set=utf8 --all-databases ＼
　　 --single-transaction > mysql_bkup_dump.sql

リスト8　例外：すべてのテーブルをロックしてデータベース全体のバックアップを取得

$./mysqldump --user=root --password=root --master-data=2 ＼
　　 --socket=/usr/local/mysql/data/mysql.sock ＼
　　 --hex-blob --default-character-set=utf8 --all-databases ＼
　　 --lock-all-tables > mysql_bkup_dump.sql

　mysqldumpの代表的なオプションは以下の通りです（表1）。

　-Tまたは--tabオプションを使用すると、データをタブ区切りのフ
ァイルとして出力できます。列がタブで区切られ、行が改行で区切
られたフォーマットとなっています。またインポート時も明示的に
指定しない限りこの形式をデフォルトとしています。さらにフォー
マットを変更するオプションを組み合わせて任意のフォーマットで
出力することもできます（表2）。なお、このオプションでは、出力
先ディレクトリを明示的に指定する必要があります。

表2　-tオプション利用時の出力フォーマットの指定

コマンドラインオプション意味--fields-terminated-by列の区切り文
字--fields-enclosed-by列の囲み文字--lines-terminated-by行の区切り
文字

mysqldumpからのリストア例
　mysqldumpからのリストア例を見ていきましょう。

1. マシンやディスクが壊れている場合は復旧する

2. MySQLサーバーが起動している場合は停止する

3. 既存のデータベース領域を削除後、再作成する（必要に応じて
事前にバックアップを取得）

$　rm -rf /usr/local/mysql/data

$　mkdir /usr/local/mysql/data

4. バイナリログの出力を停止（my.cnfからlog-binをコメントア
ウト）

$./mysqld --defaults-file=/usr/local/mysql/data/my.cnf ＼
--skip-networking --skip-grant-tables &

（この例の場合は、バックアップしておいた my.cnf
を/usr/local/mysql/data配下に配置してから、log-binをコメン
トアウト。権限テーブルとネットワーク接続を無効化した状態
でMySQLサーバーを起動）

5. バックアップファイルに記述されたSQL文を実行する

$./mysql --default-character-set=utf8 ＼
--socket=/usr/local/mysql/data/mysql.sock ￥

6. バイナリログの出力を再開して、正常に再起動する

$./mysqladmin --user=root --password=root ＼
--socket=/usr/local/mysql/data/mysql.sock shutdown

$./mysqld --defaults-file=/usr/local/mysql/data/my.cnf &

7. MySQLサーバー再起動後、mysql_upgradeを実行する

$./mysql_upgrade　--user=root --password=root ＼
　　　　　 --socket=/usr/local/mysql/data/mysql.sock

　この例で、mysql_upgrade実行時に以下のエラーが出力されること
があります（リスト9）。これは、InnoDBストレージエンジンを利用
するテーブルの統計情報を管理するmysql.innodb_table_stats、
mysql.innodb_index_statsの各テーブルがリストアされるよりも前
に、ユーザーが作成したテーブルがリストアされるためです。これ
らの統計情報管理テーブルはリストア処理中に作成されるため特に
問題はなく、無視してかまいません。

リスト9　エラー出力例

2016-11-22T12:34:56.418759+09:00 2 [ERROR] InnoDB: Table
`mysql`.`innodb_table_stats` not found.

2016-11-22T12:34:56.420733+09:00 2 [ERROR] InnoDB: Fetch of
persistent statistics requested for table `<<DB名>>`.`<<テーブル
名 >>` but the required system tables mysql.innodb_table_stats
and mysql.innodb_index_stats are not present or have unexpected
structure. Using transient stats instead.

2016-11-22T12:34:56.061321+09:00 0 [Warning] InnoDB:
Recalculation of persistent statistics requested for table `<<DB名
>>`.`<< テ ー ブ ル 名 >>` but the required persistent statistics
storage is not present or is corrupted. Using transient stats instead.

8.4.2 　MySQLの新しい論理バックアップツール
mysqlpump

　MySQL 5.7から加わったmysqlpumpは、設計を一新し、mysqldump
にはなかったスキーマごとにバックアップ用の並列処理数を指定す
る機能や、エクスポート対象のテーブル数とエクスポート済みのテ
ーブル数を基にした進捗の表示機能などを追加しています。 --
default-parallelismオプションで並列処理数を指定し、かつ--single-
transactionオプションを指定した場合にも、データの一貫性を保った
状態でオンラインバックアップが可能となっています。
　mysqlpumpからMySQLサーバーに5本の接続がある場合に、並列度
4（--default-parallelism=4）で実行する例を以下に示します。

1. 全体を制御する接続で「FLUSH TABLES WITH READ LOCK」
実行
2. 他の 4接続で「 SET SESSION TRANSACTION ISOLATION
LEVEL REPEATABLE READ」、「 START TRANSACTION WITH
CONSISTENT SNAPSHOT」を実行し、一貫性のあるバックアッ
プが取得できる状態を担保
3. 全体を制御する接続で「UNLOCK TABLES」を実行しロック
を解除
4. 他の4接続でバックアップ取得処理を実行

　8.4.3　MySQLサーバーにデータをロードするCUI
mysqlimport

　mysqldumpで-tまたは--tabオプション付きの論理バックアップを
行ったデータや、CSVファイルなどテキストデータをロードするため
のツールがmysqlimportです。mysqldumpと同じく、バックアップさ
れたデータの区切り文字などを「8.4.1　MySQL の論理バックアップ
ツール mysqldump」の表1にあるオプションで指定できます。
　インポートするデータに見出し行などが含まれる場合、--ignore-
linesで指定した行数をスキップすることができます。インポート先
のテーブルに主キーやユニークキーなどが定義されており、インポ
ートするデータに該当する列に重複する値が含まれている場合、--
ignoreオプションが指定されていれば該当のレコードはインポートさ
れず、--replaceオプションが指定されていれば既存のレコードを破
棄して新しいレコードをインポートします。I/O性能が高いストレー
ジを利用している場合は、--use-threadsで指定したスレッド数で並
列にデータをインポートすることもできます。

8.5 　増分バックアップの方法とツール
　MySQLの増分バックアップはバイナリログを利用する方法と
MySQL Enterprise Backupの機能を使う方法が選択できます。

8.5.1 　バイナリログによる増分バックアップ
　バイナリログには、各トランザクションによって行われたデータ
に対する変更が記録されています。リストアしたデータに対して、
該当のバックアップ以降のバイナリログの内容を再実行していくこ
とで、例えば障害発生の直前など任意の時点までデータの状態を復
旧することができます。このように特定の時点の状態にデータを復
旧することを「ポイントインタイムリカバリ」（PITR）と呼びま
す。復旧させる時点は、ディスク障害などシステムの障害発生の直
前とは限らず、誤ってデータを削除してしまった場合はその直前ま
でや、アプリケーションのバグで不正なデータが混入するようにな
る前まで戻すようなこともあります。
　バイナリログの内容を使ってリカバリする際は、まず該当のバッ
クアップがされた時点の時刻またはバイナリログのポジション以降
のmysqlbinlogコマンドでバイナリログの内容をテキスト化し、テキ
スト化されたデータをmysqlクライアントプログラムに読み込ませて
データの変更を行います。バイナリログのポジションは、
mysqldumpであれば--master-dataオプションを有効にすると出力内
容にバックアップ時点のバイナリログ名とポジションが記録されま
す。なお--master-dataオプションは、レプリケーション構成のマス
ターのデータをダンプしてスレーブにロードしてそのままレプリケ
ーションを開始できるようにする出力があるため、この情報をコメ
ントとして出力できる--master-data=2を使う方がバックアップとし
て扱うには便利です。

　ポイントインタイムリカバリの手順は、リカバリの開始と終了時
点をバイナリログのポジションまたは時刻で指定する以外は、
mysqldumpからのリストアと同じです。詳細な手順は以下のリファ
レンスマニュアルを参照してください。

●URL：MySQL 5.6 リファレンスマニュアル：7.5 バイナリログを使用した
ポイントインタイム (増分) リカバリ
http://dev.mysql.com/doc/refman/5.6/ja/point-in-time-recovery.html

http://dev.mysql.com/doc/refman/5.6/ja/point-in-time-recovery.html

8.5.2 　MySQL Enterprise Backupによる増分バック
アップ

　MySQL Enterprise Backupでは、前回のバックアップ以降にInnoDB
のデータファイルに対して行われた変更を自動的に抽出して、以降
の変更点をバックアップすることができます。前回のバックアップ
データが格納されたディレクトリを明示的に指定する方法と、バッ
クアップ対象のMySQL内にあるmysqlデータベースに記録された
MySQL Enterprise Backup実行履歴を基に前回のバックアップデータ
を見つける方法があります。
　以下に、/opt/mysql/backupディレクトリの曜日別ディレクトリに
バックアップデータを置いている場合の例を示します。

リスト10　前回のバックアップデータが格納されたディレクトリを明示的に指定する方法

$ mysqlbackup --incremental ＼ > --incremental-
base=dir:/opt/mysql/backup/monday ＼ > --incremental-backup-
dir=/opt/mysql/backup/tuesday backup

リスト11　バックアップ履歴を基に前回分を見つける方法

$ mysqlbackup --incremental ＼ > --incremental-
base=history:last_backup --with-timestamp ＼ > --incremental-
backup-dir=/opt/mysql/backup backup

　MySQL Enterprise Backupを利用している場合でも、バイナリログ
によるポイントインタイムリカバリが可能です。詳細な手順は以下
のリファレンスマニュアルを参照してください。

●URL：MySQL Enterprise Backup ユーザーズガイド (バージョン 3.11)
：4.3　ホットバックアップからのポイントインタイム・リカバリ
https://dev.mysql.com/doc/mysql-enterprise-
backup/3.11/ja/advanced.point.html

　Column　　 アジアのMySQLコミュニティ

　日本だけでなく、アジア各地でもMySQLの利用は急速に広がっ
ており、普及にあわせてコミュニティも拡大しています。MySQL
のユーザーグループのいくつかはFacebookのグループ機能を利用
しています。
　アジアで最大のMySQLユーザーグループは、インドネシアの
「MySQL Indonesia」で、22,000名以上のメンバーを誇っていま
す。インドネシアは、アジアでも3番目に人口の多い国で、若年人
口も多く、バイクタクシーを使った個人間の貨物輸送サービスな
ど独自のモバイルサービスも次々と生まれています。MySQLユー
ザーグループには、動作に関する質問が多数寄せられ、中には学
生が学校へ提出する課題の解法を質問しているケースもたびたび
見受けられます。また、求人情報が頻繁に投稿されるのもこのグ
ループの特徴です。
　Facebookのグループ機能を利用しているのは、韓国と台湾がそ
れぞれ約2,000名、アゼルバイジャンが1,000名強、カンボジアと
香港がそれぞれ100名以上と急速にメンバーが増加中です。比較的
新しいベトナムは、30名強となっています。いずれも現地語での

https://dev.mysql.com/doc/mysql-enterprise-backup/3.11/ja/advanced.point.html

情報交換やイベントの案内、質問と対応がメインとなっていま
す。
　中国には、「China MySQL User Group」が存在し、中国各地に
支部を持って活動しています。中国の大手SI企業の1つChinasoft
（CSS）がメインスポンサーとなり活動を支援しています。メンバ
ー同士のコミュニケーションは、中国でユーザーが非常に多いイ
ンスタントメッセンジャーのテンセントQQのグループ機能を利用
しています。
　インドには複数のグループがあります。バンガロールを拠点と
する「MySQL User Camp India」は、機能の解説を直接行う勉強会
を年に3、4回開催しています。これはバンガロールオフィスの
MySQL開発チームのエンジニアが担当しています。また、ビジネ
ス向けのソーシャルネットワークLinkedIn上のグループである
「MySQL India」では、イベントの告知やMySQL利用上のTipsなど
が紹介されています。このほか、ハイデラバードやチェンナイ、
ブバネーシュワルなどの各都市にもグループがあります。特定の
形に縛られずさまざまなグループができあがり形を変えていく様
はインドらしいともいえます。
　MySQLのコミュニティチームでは全世界のユーザーグループの
リストを作成しており、随時情報を更新しています。

●URL：List of MySQL User Groups
https://community.oracle.com/docs/DOC-917215

https://community.oracle.com/docs/DOC-917215

8.6 　演習
　このレッスンではMySQLの各種バックアップリカバリ方法につい
てコマンドとあわせて学習しました。ここでは演習として、論理バ
ックアップとリカバリを行いましょう。

1. mysqldumpですべてのテーブルの論理バックアップを取得す
る

$./mysqldump --user=root --master-data=2 --hex-blob --
default-character-set=utf8 --all-databases --single-
transaction > ../mysql_bkup_dump.sql

2. worldデータベースのCityテーブルにデータを追加する

2016年6月現在で人口が日本で最も少ない市である北海道歌志内市
を追加
mysql> INSERT INTO City VALUES(NULL, 'Utashinai', 'JPN',
'Hokkaido', 3590);

追加した北海道歌志内市とサンプルデータに含まれていた岡山県津
山市が表示されることを確認
mysql> SELECT * FROM City WHERE CountryCode = 'JPN'
ORDER BY ID DESC LIMIT 2;

3. 最新のバイナリログをコピーしてバックアップとする

tarファイルの展開先が/home/mysql/mysql57の場合
$ cd /home/mysql/mysql57/data

バイナリログの一覧を確認
$ more *-bin.index

バイナリログファイル名の末尾の数字が最大のファイルをコピー
以下はバイナリログのファイル名が MySQL-bin.* の場合
$ cp MySQL-bin.000002 ../MySQL-bin.000002_bak

4. MySQLサーバーを停止する
ヒント：MySQLサーバーの停止方法はレッスン1のリスト13を

参照

5. ディレクトリを破損した障害を再現するため既存のデータベー
ス領域を削除。その後、データディレクトリを再作成し、
mysqld --initialize-insecureで初期化処理を再度行う

データディレクトリの削除
$ rm -rf /home/mysql/mysql57/data

空のデータディレクトリを作成
$ mkdir /home/mysql/mysql57/data

ヒント：データベースの初期化処理はレッスン1のリスト11を
参照

6. バイナリログの出力を停止する（my.cnfからlog-binをコメン
トアウト）
ヒント：ここでバイナリログの出力を停止しておかないと、以

降の復旧作業の処理内容がバイナリログに記録され、
処理履歴として重複した状態になるため

7. 権限テーブルとネットワーク接続を無効化した状態でMySQLサ
ーバーを起動する

$./mysqld --defaults-file=/home/mysql/mysql57/my.cnf --
skip-networking --skip-grant-tables --
basedir=/home/mysql/mysql57 --
socket=/home/mysql/mysql57/mysql.sock --server-id=1 &

ヒント：ソケットによる通信についてはレッスン3の「3.1.2　
接続設定」を参照

8. バックアップファイルに記述されたSQL文を実行する

権限テーブルとネットワーク接続を無効化しているので、ユーザー
無指定およびソケットを明示的に指定している点に注目
$./mysql --socket=/home/mysql/mysql57/mysql.sock <
../mysql_bkup_dump.sql

mysqldumpによる論理バックアップからリストアしたデータのみ
が存在することを確認

岡山県津山市のデータは表示されるが、バックアップ以降に追加し
た北海道歌志内市はない
$./mysql --socket=/home/mysql/mysql57/mysql.sock world
-e "SELECT * FROM City WHERE CountryCode = 'JPN' ORDER
BY ID DESC LIMIT 2"

メタデータを復旧するためにmysql_upgradeコマンドを実行
$./mysql_upgrade --
socket=/home/mysql/mysql57/mysql.sock --force

9. 出力したバックアップファイルmysql_bkup_dump.sqlから、
バイナリログの情報を確認する

バイナリログ内で“point-in-time”の出力を含む行の後に、バイナ
リログの情報が記録されている。
ファイル名とバックアップされた時点で最後のトランザクションを
示すログ内のポジション。
#
以下の例ではgrepコマンドの-Aコマンドで“point-in-time”から4
行分を表示
Windows上などでgrepコマンドが使えない場合は、バックアップ
ファイルの30行目付近の出力を確認
$ more ../mysql_bkup_dump.sql |grep -A 4 point-in-time

-- Position to start replication or point-in-time recovery from
--

-- CHANGE MASTER TO MASTER_LOG_FILE=MySQL-
bin.000002', MASTER_LOG_POS=690665

10.バックアップしたバイナリログの内容をmysqlbinlogコマンド
でテキスト化する

演習問題2で確認したMASTER_LOG_POS以降の内容が復旧すべき
データを含む処理
-vオプションでデータを変更するSQL文に該当する情報を表示
$./mysqlbinlog -v --disable-log-bin --start-position=690665
../MySQL-bin.000002_bak

復旧に利用すべき処理をmysqlクライアントプログラムに渡してリ
カバリ
$./mysqlbinlog --disable-log-bin --start-position=690665
../MySQL-bin.000002_bak | ./mysql --
socket=/home/mysql/mysql57/mysql.sock

バイナリログからリカバリしたデータである北海道歌志内市のデー
タが存在することを確認
$./mysql --socket=/home/mysql/mysql57/mysql.sock world
-e "SELECT * FROM City WHERE CountryCode = 'JPN' ORDER
BY ID DESC LIMIT 2"

11.コメントアウトしたlog-binを元に戻し、バイナリログの出力
を再開して再起動する

12.演習2で追加したデータを含めてすべてのデータが復旧してい
ることを確認する

mysql> SELECT * FROM City WHERE CountryCode = 'JPN'
ORDER BY ID DESC LIMIT 2;

　　　解説
　この演習では「フルバックアップ後にデータの変更があり、差分
バックアップを行った直後に障害が発生して復旧が必要」というシ
ナリオを再現しています。
　演習1がmysqldumpによるオンラインでのフルバックアップ、演習
2でデータの変更を行い、演習3がバイナリログによる差分バックア
ップに該当します。演習8でフルバックアップからのリストアを行っ
ています。
　さらに、演習9で障害直前まで復旧を行うポイントインタイムリカ
バリの準備として、適用すべきバイナリログの内容を確認していま
す。このMASTER_LOG_FILEとMASTER_LOG_POSの確認はきわめて
重要で、バイナリログファイルの誤ったポジションからリカバリを
開始してしまうと、実行済みのトランザクションが重複してしまっ
たり、必要なトランザクションが反映されなかったりしてしまいま
す。

9.1 　MySQL高可用性構成パターン
　クラスタリング構成のデータベースでのデータ管理は、それぞれ
のサーバーに格納する「データミラー型」と、共有ストレージに格
納する「ディスク共有型」に大別できます。また、すべてのサーバ
ーがアプリケーションから利用可能かどうかで分類することができ
ます。特徴をまとめます（表1）。

9.1.1 　データミラー型＆アクティブ／アクティブ型
　MySQL Clusterに代表されるのが、共有ディスクを使わず、かつす
べてのノードがアクセス可能な構成です。データベースへの同時ア
クセス数やデータ量に応じてサーバーを追加し、柔軟に拡張できる
ことが最大のメリットです。
　また、サーバー台数が2台に限定されますが、双方向にMySQLのレ
プリケーションを行う構成も類型といえます。ただし、トランザク
ションは、それぞれのノードで管理され、非同期でデータが相互に
転送されるため、データの変更順が保証されずデータの矛盾が起き
てしまう可能性があります。MySQLのレプリケーションでは、この
矛盾の検知や解決はできません。ID番号別にデータ変更するサーバ
ーを固定するなど「同一のレコードは同時に別のサーバーで変更し
ない」アプリケーション側での作り込みが必要です。この課題を解
決するのが、MySQL 5.7向けに開発中のグループレプリケーションで
す。

9.1.2 　データミラー型＆アクティブ／スタンバイ型
　Distributed Replicated Block Device（DRBD）やSIOS Lifekeeperな
どのクラスタリングソフトウェアで実現可能な構成です。これらの
ようなデバイスレベルの実装では、スタンバイサーバーは、アクテ
ィブサーバーからデータがコピーされるパーティションをアンマウ
ントしておく必要があります。また、フェイルオーバー時にはファ
イルシステムのマウントが行われるので、時間を要することがある
点に注意が必要です。また、DRBD単体では、ハートビートパケット
による障害検知や障害時のフェイルオーバーが行えないため、ノー
ドの死活監視を行うCorosyncやクラスタリソースの切り替えなどを
行うPacemakerと組み合わせて利用されます。
　MySQLのレプリケーションは、MySQLのデータイメージまたはSQL
文の複製によって複数サーバー間のデータを同期します。データの
コピー先でもMySQLサーバーが起動しており、コピーされたデータ
を参照することが可能となっています。

9.1.3 　ディスク共有型＆アクティブ／アクティブ型
　Oracle Real Application Clustersに代表される構成です。データを
共有ストレージに格納し、すべてのデータベースサーバーがアプリ
ケーションから利用可能になっています。1カ所にデータが集約され
ているため、テーブルを広くスキャンするような処理や、多くのテ
ーブルを結合する処理などは高速です。一方で、複数のアプリケー
ションが同時に同じデータや同じデータブロック内のレコードを変
更する処理の場合、データの一貫性を保つために行われるデータベ
ースサーバーのキャッシュの最新化処理による性能低下が起きない
ように、並列実行を避ける工夫が必要です。また、共有ディスクが
単一障害点にならないようにストレージデバイス、ファイバチャネ
ルおよびスイッチの多重化を行うため、コストが増大する傾向にあ
ります。

9.1.4 　ディスク共有型＆アクティブ／スタンバイ型
　Oracle Clusterwareを始めとする多くのクラスタリングソフトウェ
アで利用でき、小規模から大規模まで幅広いシステムで利用されて
いる実績のある構成です。類型としては、仮想マシンイメージを共
有ディスクに置いて運用する方法もありますが、フェイルオーバー
時には、仮想マシン上のOSの起動からとなるため、フェイルオーバ
ー時間がかかる可能性があります。

9.2 　MySQLレプリケーション
　MySQLのレプリケーションは、バイナリログをほかのサーバーに
転送し、その内容をデータに反映することで、データのコピーを行
います。MySQLのレプリケーションでは、コピー元を「マスタ
ー」、コピー先を「スレーブ」と呼びます。レッスン3の「3.1.6　ロ
グ」で解説した通り、バイナリログには各トランザクションによる
変更点を記録しています。MySQL 5.7では、ROW（行ベース）形式
がデフォルトとなり、バイナリログにはデータ変更後の行イメージ
が記録されています。また、MySQL 5.6からトランザクションを一意
に識別するためのGlobal Transaction Identifier（GTID）が利用できる
ようになり、レプリケーションの設定や運用が簡素化されていま
す。
　MySQLのレプリケーションの主な用途は次の4点です。

●参照の負荷分散
●耐障害性構成
●ディザスタリカバリ構成
●バックアップ

　Webアプリケーションでは、アクセス全体に対して、データを参
照する処理の比率が高いことが多くあります。MySQLのレプリケー
ションでは、複数のサーバーにデータを転送することで、構成全体
の参照処理性能の向上を図ることができます。このようにWebアプ
リケーションのアクセス特性とMySQLのレプリケーションの特徴の
相性がとても良いため、以前からMySQLはWebアプリケーションの

バックエンドとして広く使われてきました。また、分析や帳票作成
などの処理を行うための別サーバーとしての利用もよくあるパター
ンです。
　データの複製が存在することで、耐障害性を持たせた構成として
利用されることがあります。レッスン10で解説をしますが、デフォ
ルトの挙動は非同期型となり耐障害性構成には向きません。耐障害
性を目的としてMySQLのレプリケーションを利用するためには、準
同期型に設定します。
　また、耐障害性構成の1つになりますが、別のデータセンターやク
ラウドサービスによっては、ドメインやゾーン、可用性セットなど
と呼ばれる物理的に隔離された領域、さらには地域を越えてデータ
を転送する、ディザスタリカバリ構成を取ることができます。この
場合には、ネットワークの応答性能を考慮して、非同期でのレプリ
ケーションが設定されることが多くなります。
　スレーブのデータをバックアップとして活用することも考えられ
ます。ただし、レプリケーションではあらゆる変更がコピーされる
ため、操作ミスなどがあった場合には意図しない変更までコピーさ
れてしまいます。そのためスレーブそのものをバックアップデータ
として扱うことは不適切です。スレーブでバックアップを行うこと
で、バックアップ処理中にもマスターへの負荷がかからない運用は
有用と考えられます。考慮すべき点としては、非同期でのレプリケ
ーションの場合にマスターの最新の情報がスレーブのデータに反映
されていないことについて、どう運用するかということが挙げられ
ます。

9.2.1 　レプリケーションにおけるMySQLサーバーの各
スレッドとファイルの役割

　MySQLのレプリケーションでは、マスターおよびスレーブともに
MySQLサーバーの複数のスレッドが役割を分担しています。各スレ
ッドの役割は以下の通りです。

9.3 　レプリケーションの基本的なセットアップ
方法

　ここでは同一のホスト上に新規にレプリケーションを構成する手
順を解説します。まずマスターのデータをスレーブにコピーしま
す。以降では、マスターとスレーブでの作業や設定を[マスター]およ
び[スレーブ]で表示しています。

1. マスターを停止した状態でデータディレクトリをスレーブにコ
ピー

2. [スレーブ]データディレクトリのauto.cnfを削除
auto.cnfはサーバーを一意に識別するためのUUIDを格納するた
めにMySQL 5.6から自動的に作成されるようになった設定ファ
イルです。削除しない場合はSTART SLAVE時にUUIDの重複とし
てエラーになります。

リスト1　auto.cnfを削除

MySQLサーバーのシャットダウン
mysql> SHUTDOWN;

mysqlクライアントプログラム終了
mysql> ＼q

初期化済みデータディレクトリのバックアップ
自動生成設定ファイルauto.confの削除

$ cd ../; cp -R data data_slave; cd data_slave; rm auto.cnf; cd
../bin

3. [マスター]マスターとなるための設定の追加
マスターになるために最低限必要となる設定は、バイナリログ
を有効にすることとバイナリログを有効にするためにサーバー
IDを設定することの2点、およびGTIDを有効にするための設定
です。

リスト2　マスターとなるための設定例

[mysqld]
サーバーIDの設定
server_id = 1

バイナリログ有効（実運用環境ではログファイル名の指定を推奨）
log-bin

GTID有効
gtid_mode = on

GTID利用時に必須となる設定（GTIDの一貫性を担保できないSQL
の実行を禁止）
enforce_gtid_consistency = on

4. [スレーブ]スレーブとなるための設定

スレーブになるためには、コピー元となるマスターに接続する
ための情報をあらかじめ設定しておくこともできますが、ここ
では後ほどコマンドで設定していきます。同一ホスト上で複数
のMySQLサーバーを起動するためには、ほかのMySQLサーバー
とデータディレクトリ、TCP／IPポート、Linuxなどの場合は
Unixソケットファイルを分けておく必要があります。

リスト3　スレーブとなるための設定例

[mysqld]
サーバーIDの設定
マスターとは異なる値を指定
server_id = 2

バイナリログ有効（実運用環境ではログファイル名の指定を推奨）
スレーブとして稼働する場合は必須ではない
log-bin

GTID有効
gtid_mode = on

GTID利用時に必須となる設定（GTIDの一貫性を担保できないSQL
の実行を禁止）
enforce_gtid_consistency = on

以下はマスターとスレーブを同一OS上で稼働させる場合に必要な
構成
データディレクトリ

datadir = /home/mysql/mysql57/data-slave
port=3307
socket = /tmp/mysqlslave.sock

5. [マスター]レプリケーションスレーブ用のユーザーを設定
レプリケーションを開始する際に、まずスレーブからマスター
に接続する必要があります。そのためのユーザーをマスター上
に作成し、レプリケーションのスレーブとしての権限
（Replication Slave権限）を付与します。

リスト4　レプリケーションスレーブ用のユーザーの作成と権限付与

mysql> CREATE USER 'repl'@'localhost' IDENTIFIED BY 'repl';
mysql> GRANT REPLICATION SLAVE ON *.* TO
'repl'@'localhost';

6. [スレーブ]レプリケーションスレーブの設定と開始
スレーブ上で、CHANGE MASTER TOコマンドでスレーブからマ
スターへの接続情報を設定し、START SLAVEコマンドでレプリ
ケーションを開始します。

リスト5　レプリケーションスレーブの設定と開始

マスターがロカールホスト上で動作している場合
マスターに作成したユーザーとパスワードで接続
mysql> CHANGE MASTER TO MASTER_HOST='localhost',
MASTER_USER='repl', MASTER_PASSWORD='repl',

MASTER_AUTO_POSITION=1;

レプリケーションスレーブの開始
mysql> START SLAVE;

7. レプリケーションの動作確認
リスト6　レプリケーションの稼働を確認

それぞれのMySQLサーバー上に存在するデータベースを確認
[マスター]
mysql> SHOW DATABASES;

[スレーブ]
mysql> SHOW DATABASES;

マスター上でデータベースを作成し、スレーブに反映されることを
確認
[マスター]
mysql> CREATE DATABASE rpltest;
[スレーブ]
mysql> SHOW DATABASES;

作成したデータベースにテーブルを作成し、値を格納。スレーブに
反映されることを確認
[マスター]
mysql> use rpltest;
mysql> CREATE TABLE t1 (col1 INT);
mysql> INSERT INTO t1 VALUES (1),(2);

[スレーブ]
mysql> SELECT * FROM rpltest.t1;

　MySQLのレプリケーション方式の詳細や構成パターンはレッスン
10で紹介します。

　Column　　 バグデータベース

　バグや問題となる挙動があった場合は、再現方法とあわせてバ
グデータベース（http://bugs.mysql.com/）から報告します。ま
た、機能追加の要望を登録することもできます。ほかの方が報告
済みのバグの影響を受けている場合には、「Affects Me」ボタンを
押すこともできます。
　バグ報告の手順は、最初に報告済みのバグではないかを検索し
ます。同様のバグであっても細かな部分に差がある場合には、既
存のバグ報告にコメントを追加します。類似するバグが報告され
ていない場合は、バグ再現方法、発生した環境の詳細、バグの緊
急度をあわせて報告します。
　報告されたバグが開発者などの環境で再現すると、ステータス
が「Verified」に変更され、以降、開発チームで対処方法が検討さ
れます。この際にバグデータベースの管理者や開発者から、状況
の詳細などの追加質問が報告者宛に届く場合がありますので回答
してください。

http://bugs.mysql.com/

　ソフトウェアのバグだけではなく、ドキュメントの誤りもバグ
として管理しています。リファレンスマニュアルの記載内容の誤
りや不足事項は、バグデータベースのDocumentationカテゴリとし
て管理しています。なお、日本語版リファレンスマニュアルの翻
訳の誤りは「MySQL Server: Japanese Documentation」カテゴリ
を選択してバグ報告してください。
　バグ修正や機能追加のために作成したパッチをMySQL開発チー
ムに取り込んでもらうためには、まず著作権などの知財の取り扱
いを定めたOracle Contributor Agreement（OCA）に署名し、送付
しておく必要があります。OCAの場合、パッチの開発者自身が著
作権を保持し、それを行使する権利は維持しつつ、MySQL開発チ
ームも同様に著作権所有者としてパッチを活用します。

●URL：The Oracle Contributor Agreement
http://www.oracle.com/technetwork/community/oca-486395.html

　MySQLの利用者や独自機能を開発しているコミュニティとの連
携を円滑にするため、コミュニティ版のMySQLサーバー、アプリ
ケーションからの接続部品であるConnectorや、レッスン5で紹介
したGUI製品のMySQL Workbenchなどでは、ソースコードを
GitHubにリポジトリを設けて公開しています。機能追加要望やバ
グ修正のためのパッチは、GitHubリポジトリからプルリクエスト
の形で提供することも可能になっています。

●URL：GitHub MySQL公式リポジトリ

http://www.oracle.com/technetwork/community/oca-486395.html

https://github.com/mysql/

　バグデータベースなどでパッチを送った際に、OCAの署名送付
済みかがわからない場合には、確認の連絡がなされます。
mysql.comのユーザーアカウントとOCAのステータスはリンクされ
るので、バグデータベースのユーザー名にOCAの表示がされてい
るのを見ることもあります。

https://github.com/mysql/

9.4 　演習
　このレッスンではMySQLにおける各種の高可用性構成の特徴とレ
プリケーションについて学習しました。ここでは本文の内容を確認
しながら実際にレプリケーション環境を構築し、その動作について
確認しましょう。

1. 同一ホスト上で1台のマスターと2台のスレーブの構成を構築す
る
ヒント：レッスン9の「9.3　レプリケーションの基本的なセッ

トアップ方法」を参照

2. マスターで新しいテーブルを作成し、その内容がスレーブに反
映されているかを確認する
ヒント：以降のスレーブにmysqlクライアントシェルプログラ

ムから接続する場合には、TCP/IPポート番号の指定を
忘れずに

3. 1台のスレーブを停止した上で、マスターのテーブルに値を追
加。稼働中のスレーブのテーブル内容を確認する

4. 停止していたスレーブを再起動し、起動後にテーブルの内容を
確認する

　　　解説
1．同一ホストで複数のMySQLサーバーを動かすためには、以下
の設定を分けておく必要があります。なお、サーバーIDは複数
動かす際に必須ではありませんが、設定ファイルごとに別の値
にすることが望ましいほか、レプリケーション構成内では重複
しないようにする必要があります。

●サーバーID：server_id
●データディレクトリ：datadir
●TCP/IPポート：port
●Linuxなどの場合はUnixソケットファイル：socket

2～4．複数のMySQLサーバーに対してmysqlクライアントシェル
プログラムから接続して作業を行うと、どのコンソールがどの
サーバーに接続しているのか、わからなくなることがありま
す。コンソールそのものの背景色や文字色などを変えることも
有用ですが、mysqlクライアントシェルプログラムのプロンプ
トを変えておくのも便利です。プロンプトの変更にはprompt
コマンドを使います。例えば「＼u」はユーザー名の表示、
「＼h」はMySQLサーバーのホスト名、「＼p」はMySQLサー
バーのTCP/IPポート番号（またはソケットファイル名）とな
ります。このほかの利用できる特殊なシーケンスについてはリ
ファレンスマニュアルを参照してください。

●URL：MySQL 5.7 Reference Manual 5.5.1.2 mysql Commands

　 http://dev.mysql.com/doc/refman/5.7/en/mysql-
commands.html#idm140162200992352

●URL：MySQL 5.6 リファレンスマニュアル 4.5.1.2 mysql コマンド
　 http://dev.mysql.com/doc/refman/5.6/ja/mysql-

commands.html#idm140179253656752

次にpromptコマンドでのプロンプトの表示の変更例を示しま
す。

ユーザー名、ホスト名、TCP/IP番号(またはソケットファイル名)
を表示
コロンやアットマークを間に挟んで表示させることもできる
下記の例では最後の大なり記号の後に半角スペースを入れてある
mysql> prompt ＼u@＼h:＼p>
PROMPT set to '＼u@＼h:＼p> '

シーケンスを使わずに文字列を設定することも可能
root@localhost:3307> prompt スレーブ1>
PROMPT set to 'スレーブ1> '

promptのみを入力するとデフォルトの表示に戻る
スレーブ1> prompt
Returning to default PROMPT of mysql>
mysql>

http://dev.mysql.com/doc/refman/5.7/en/mysql-commands.html#idm140162200992352
http://dev.mysql.com/doc/refman/5.6/ja/mysql-commands.html#idm140179253656752

10.1 　タイミング　非同期型＆準同期型
　MySQLのレプリケーションでのデータ転送のタイミングは、デフ
ォルトでは「非同期型」となっています。設定を変更することによ
り、より可用性を高めた「準同期型」を選択できます。

●非同期型：スレーブへのバイナリログの転送とデータへの反映を待たず
に、マスターからアプリケーションに応答を返す

●準同期型：スレーブへのバイナリログの転送は待つが、コピー内容がデー
タに反映されるのを待たずに、マスターのサーバーからアプリケーション
に応答を返す

　性能の観点では、非同期型がデータの変更処理に対する応答時間
が短く、準同期型が長くなっています。一方で、データの耐障害性
の観点では、バイナリログの内容がスレーブに転送されてからアプ
リケーションに応答を返す準同期型の方が優れています。
　非同期型の場合、アプリケーションは応答したものの、バイナリ
ログの転送が完了していないタイミングでマスターが停止してしま
うと、「アプリケーションではコミットが成功したのにデータを失
ってしまう」という事象が発生し得ます。
　準同期型は、このデメリットを克服できます。ただし、コミット
の応答がアプリケーションに返ってきた時点では、コピー先のデー
タがまだ変更されていない可能性があります。
　MySQLのレプリケーションでは、1台のサーバーには準同期型とし
てデータをコピーし、他のサーバーには非同期型として同時に配信
することもできます。

10.1.1 　準同期レプリケーションの設定項目
　準同期レプリケーションを利用するには、準同期レプリケーショ
ンプラグインのインストールと、マスターとスレーブそれぞれに追
加の設定が必要です。

リスト1　プラグインのインストール

マ ス タ ー へ の プ ラ グ イ ン の イ ン ス ト ー ル INSTALL PLUGIN
rpl_semi_sync_master SONAME 'semisync_master.so';

各スレーブへのプラグインのインストール INSTALL PLUGIN
rpl_semi_sync_slave SONAME 'semisync_slave.so';

　準同期レプリケーションプラグインのインストール後、マスター
ではrpl_semi_sync_master_enabledを1に設定します。この段階で
は、準同期レプリケーションの準備ができている状態です。
　準同期レプリケーションプラグインをインストールしていないス
レーブからレプリケーションを開始した場合は、非同期レプリケー
ションとして動作します。準同期レプリケーションとして動作させ
るスレーブでは、rpl_semi_sync_slave_enabledを1に設定し、START
SLAVEコマンドでレプリケーションを開始します。
　1台のマスターに対して、非同期レプリケーションのスレーブと準
同期レプリケーションのスレーブを混在させることも可能です。例
えば、同じデータセンター内では準同期レプリケーションとして耐
障害性を担保し、ディザスタリカバリに利用するスレーブは非同期
レプリケーションとすることもできます。

　rpl_semi_sync_master_timeoutは、マスターがどれだけスレーブの
応答を待つかの設定です。デフォルト値は10秒（指定はミリ秒単
位）です。設定値を超えると、以降は該当のスレーブを非同期レプ
リケーションとして扱います。
　rpl_semi_sync_master_wait_for_slave_countは、MySQL 5.7で加わ
った設定パラメータで、指定した値のスレーブの応答を待ちます。
MySQL 5.7でのデフォルト値も1となり、1台の準同期レプリケーショ
ンのスレーブが応答すると、トランザクションのコミットが成功し
たとしてアプリケーションに応答を返します。この値を2に設定した
場合は、2台のスレーブが応答したところでアプリケーションに応答
を返します。なお、MySQL 5.6ではこのパラメータは存在しません。

　rpl_semi_sync_master_wait_no_slaveはデフォルトでONとなって
い ま す 。 準 同 期 レ プ リ ケ ー シ ョ ン の ス レ ー ブ の 数 が
rpl_semi_sync_master_wait_for_slave_countの設定値より少ない場合
で も 、 タ イ ム ア ウ ト ま で 待 つ 動 き と な り ま す 。
rpl_semi_sync_master_wait_no_slaveをOFFにすると、タイムアウト
を待たずに非同期レプリケーションの挙動に変わります。
　MySQL 5.6の準同期レプリケーションでは、特定のタイミングでマ
スターに障害が発生した場合に、データの不整合が起こり得る課題
が残っていました。準同期レプリケーションの流れの中でストレー
ジエンジンにトランザクションが記録された時点（図1で示した準同
期レプリケーションの2）で、別のクライアントからはコミットの内
容を参照することができます。この後、スレーブに転送される前に
マスターに障害が発生すると、ほかのクライアントから見えていた
コミット済みのトランザクションがスレーブには存在せず、データ
の整合性が取れていないように見えてしまいます。この問題を解決
したのが、MySQL 5.7の「Lossless準同期レプリケーション」です。
Lossless準同期レプリケーションは、MySQL 5.7から新たに加わった
パ ラ メ ー タ rpl_semi_sync_master_wait_point の デ フ ォ ル ト 値
AFTER_SYNC を 利 用 す る こ と で 実 現 で き ま す 。 こ の 値 を
AFTER_COMMITに変更した場合は、MySQL 5.6までの挙動と同じに
なります。

10.2 　バイナリログの形式　SQL文転送型＆行イ
メージ転送型

　MySQL 5.7より、マスターからスレーブに転送される際のバイナリ
ログは、変更後の行イメージを記録した「行ベース」（Row Based）
が デ フ ォ ル ト と な り ま し た 。 設 定 パ ラ メ ー タ は 、
binlog_format=ROWがデフォルトです。MySQL 5.6までのデフォルト
値は、実行されたSQL文を記録する「文ベース」（Statement
Based）となっていました。
　 MySQL 5.6 か ら 導 入 さ れ た サ ー バ ー オ プ シ ョ ン
binlog_rows_query_log_eventsを有効にすると、該当するトランザク
ションでのSQL文もバイナリログに記録されます。mysqlbinlogコマ
ンドに-vv（小文字のvを2個続ける）オプションを付けて実行する
と、記録されたSQL文をテキスト化できます。
　行イメージをバイナリログに記録して転送されるため、「文ベー
ス」と比較してサーバー間で渡されるデータ量が大きくなるケース
がほとんどです。そこで、MySQL 5.6以降で利用可能なサーバーオプ
ションbinlog_row_imageをminimalに設定すると、主キーと変更され
た列のみをバイナリログに記録するため、「行ベース」レプリケー
ションで転送されるデータ量を抑えることができます。このminimal
の利用時は、レプリケーション対象の列の定義が順番を含めてすべ
て同じであることが必須です。「行ベース」のレプリケーションで
はスレーブでSQL文が実行されないのでスレーブ側でのトリガーが実
行されません。binlog_row_imageについては、以下を参考にしてく
ださい。

●URL：MySQL 5.6 リファレンスマニュアル：17.1.4.4バイナリログのオ
プションと変数　binlog_row_image

http://dev.mysql.com/doc/refman/5.6/ja/replication-options-
binary-log.html#sysvar_binlog_row_image

　「文ベース」のレプリケーションで注意すべき点は、SQL文で利用
する関数によってはデータの不整合が起こり得る点です。例えば、
サーバー固有のIDであるUUIDを取得するUUID()関数やシステム日付
を取得するSYSDATE()関数などは、マスターとスレーブで実行される
タイミングによって返る値が異なるため、これらの関数を利用して
値を変更する場合などに問題となります。問題となり得る関数やSQL
文のリストは以下のURLを参考にしてください。これらの関数などを
利用する場合には、MySQL 5.6までのデフォルトの「行ベース（Row
Based Replication）」または両方の方式のうち最適なものを自動的に
選択する「MIXED」に設定します。

●URL：MySQL 5.6 リファレンスマニュアル：17.1.2.3バイナリロギング
での安全および安全でないステートメントの判断
http://dev.mysql.com/doc/refman/5.6/ja/replication-rbr-safe-unsafe.html

http://dev.mysql.com/doc/refman/5.6/ja/replication-options-binary-log.html#sysvar_binlog_row_image
http://dev.mysql.com/doc/refman/5.6/ja/replication-rbr-safe-unsafe.html

10.3 　GTIDモード
　 MySQL 5.6から加わった機能の 1つに「 Global Transaction
IDentifier」（GTID）があります。GTIDは、トランザクションを一意
に識別するためのIDで、レプリケーションでも活用できます。GTID
はバイナリログに記録され、一度マスターでトランザクションに割
り当てられたIDは、スレーブに渡されても値が変わりません。以下
がGTIDを有効にした際の利点です。

●複数台のレプリケーション環境でも容易にGTIDを確認することで、トラン
ザクションの追跡／比較が可能

● レ プ リ ケ ー シ ョ ン 開 始 時 に ポ ジ シ ョ ン を 自 動 認 識
（master_auto_position=1）

●マスター障害時にスレーブを昇格させる際に最新のスレーブを自動認識

10.3.1 　GTIDを設定しているバイナリログ内の出力例
　GTIDを設定しているバイナリログの出力例を以下に示します。コ
ロンより前の文字列がサーバーを一意に識別するUUID、後ろがその
サーバーでのトランザクション番号です。

リスト2　GTIDを設定しているバイナリログの出力例

SET @@SESSION.GTID_NEXT= '8560c2ac-e1dc-11e4-88ff-
0800275399c1:6170'/*!*/;

　GTIDを利用していない環境では、スレーブでのレプリケーション
開始時に、マスターのバイナリログファイル名とバイナリログ内の
どのポジションからレプリケーションを開始するかを明示的に指定
する必要がありましたが、GTIDが有効の場合はスレーブが持ってい
ないGTIDから自動的にレプリケーションを開始すべきトランザクシ
ョンを見つけることができるようになりました。
　また、MySQL 5.7では、GTIDを利用していない環境から新たに
GTIDを有効にするためには、動的に設定値の変更が可能となりまし
た。MySQL 5.6ではこの仕組みがないため、レプリケーション構成全
体を一度停止する必要がありました。

● URL ： MySQL 5.7 Reference Manual ： 18.1.5.2 Enabling GTID
Transactions Online
http://dev.mysql.com/doc/refman/5.7/en/replication-mode-change-online-
enable-gtids.html

http://dev.mysql.com/doc/refman/5.7/en/replication-mode-change-online-enable-gtids.html

10.4 　MySQLのレプリケーション構成パターン
　図4は、レプリケーション構成パターンです。MySQLのレプリケー
ションで広く利用されている構成は、1台のマスターに複数のスレー
ブを組み合わせる「1:n型」となっています。ほかにもMySQL 5.7で
は、複数のマスターから1台のスレーブにデータを集約するためのマ
ルチソース型が追加されています。また原稿執筆時点では開発中で
すが、レプリケーション環境内のすべてのサーバーをマスターとし
て運用するグループレプリケーションもあります。

10.4.1 　1:1型と1:n型
　2000年にリリースされたMySQL 3.23でのレプリケーション実装当
初から広く使われている構成が、マスターとスレーブを1台ずつ利用
する「1:1型」や1台のマスターに複数のスレーブを組み合わせる
「1:n型」です。
　1:1型は、簡易的な高可用性構成として利用できます。レッスン9
の演習で構築した構成もこの1:1型となります。
　1:n型では、参照処理を複数のスレーブに分散させることができる
ため、アクセスのうち参照比率が圧倒的に多いWebサイトのバック
エンドデータベースとして広く活用されてきました。

10.4.2 　n:1型（マルチソースレプリケーション）
　MySQL 5.7から加わった新しい構成が、複数のソース（マスター）
から1台のサーバー（スレーブ）にレプリケーションする「マルチソ
ースレプリケーション」です。この構成では、1台のサーバーにデー
タを集約する構成となり、複数のMySQLサーバーのデータのバック
アップを1台で実行することや、異なるデータを管理するMySQLサー
バー群のデータをまとめて分析するなどの利用が想定できます。
　スレーブからマスターに接続する際にマスターごとにチャネルを
用意し、そのチャネルを通じて通信します。各チャネルに個別のス
レッドやリレーログが用意され、複数のチャネルは個別に稼働／停
止可能です。

リスト3　マルチソースレプリケーションのためのチャネルの利用

マスターを指定するCHANGE MASTER TO実行時にFOR CHANNELでチ
ャネルを指定
mysql> CHANGE MASTER TO
　　MASTER_HOST='master1', MASTER_USER='rpl',
　　MASTER_PORT=3451, MASTER_PASSWORD='',
　　MASTER_AUTO_POSITION = 1 FOR CHANNEL 'master-1';

指定したチャネルの特定のスレッドレプリケーションを開始／停止するこ
とも可能
下記 thread_types には SQL_THREAD, IO_THREAD を指定可能
mysql> START SLAVE thread_types FOR CHANNEL 'master-1';

mysql> STOP SLAVE thread_types FOR CHANNEL 'master-1';

指定したチャネルだけレプリケーション設定をリセットすることも可能
mysql> RESET SLAVE thread_types FOR CHANNEL 'master-1';

10.4.3 　n:n型（グループレプリケーション）
　「グループレプリケーション」は、レプリケーション構成内のす
べてのMySQLサーバーがマスターとなる「n:n型」またはマルチマス
ター型の構成となります。グループレプリケーションでは、グルー
プメンバーの自動管理と障害検知が可能で、1台のサーバーに障害が
起きても、レプリケーション構成から切り離されるだけで、フェイ
ルオーバー処理が不要です。共有ディスクなしで単一障害点のない
クラスタリング構成が可能となります。またInnoDBに対応してお
り、特殊なハードウェアが不要な構成です。
　グループレプリケーションは、MySQLサーバーへのプラグインと
して開発が進められており、MySQLサーバー本体のメジャーバージ
ョンアップのタイミングを待たずにリリースが行われることが検討
されています。2016年10月の時点では開発中となっており、今後の
リリースが期待される構成です。

10.4.4 　MySQL InnoDB Cluster
　マルチマスター型レプリケーションのグループレプリケーション
をベースとして、MySQLサーバーの高可用性構成を実現するソフト
ウェアパッケージをまとめたのが、MySQL InnoDB Clusterです。
MySQL InnoDB Clusterは、グループレプリケーションの構成をアプ
リケーションから利用しやすく、また運用をシンプルにするための
機能を統合したソリューションとして提供することを目標としてい
ます。

●マルチマスター型レプリケーション：MySQLグループレプリケーション
●MySQLプロトコル用のソフトウェアルーター：MySQL Router
●新しいクライアントシェルプログラム：MySQL X Shell

　2016年10月時点では、MySQL Router 2.1およびMySQL X Shellの
MySQL InnoDB Clusterの管理APIは、Labsリリース（実験室版）とな
っています。
　アプリケーションからはMySQL Routerに接続し、MySQL Routerが
グループレプリケーション構成内の各MySQLサーバーへの処理の転
送と負荷分散などを担当します。また、MySQLサーバーに障害があ
った場合やサーバーが追加された場合など、構成に変更があると新
しい構成にあわせた通信を行います。新しいクライアントシェルプ
ログラムであるMySQL X Shellには、グループレプリケーションの新
規構築や構成変更、監視を行うための管理APIが実装されています。
　MySQL InnoDB Cluster Step 2と呼ばれるフェーズでは、これらの
製品の統合とグループレプリケーションのサポートが行われます。

　次のStep 3では、グループレプリケーションにスレーブを追加し
て、参照性能の向上を図った構成のサポートが想定されています。

　さらにStep 4では、グループレプリケーションとスレーブの組み合
わせをレプリカセットとして、複数のレプリカセットによるシャー
ディング構成のサポートを予定しています。

　Column　　 MySQL Cluster

　MySQL Clusterは、共有ディスクを必要としない分散型のRDBMS
クラスタで、すべてのノードがアクティブノードとして稼働しま
す。もともとはスウェーデンの通信機器ベンダ「エリクソン」で
携帯通信網の加入者データベース向けに開発されたEricsson
Network DataBase（NDB）と呼ばれていた技術で、旧MySQL社が
エンジニアや知財を取り込んでMySQLサーバーと組み合わせ、現
在のMySQL Clusterになっています。このような経緯から、MySQL
Clusterは単一障害点がないことによるミッションクリティカルシ
ステムでも利用できる高い可用性を持っています。テーブル定義
やパッチ適用、OSを含めたバージョンアップ等もクラスタ全体と
しては無停止で運用可能です。また、インメモリーデータベース
としても動作できることによるきわめて高い応答性能、オンライ

ンでノードを追加できることによる高い性能拡張性を兼ね備えて
います。
　MySQL Clusterは分散型のアーキテクチャのため、参照性能の拡
張性だけではなく、更新処理性能が求められる大規模システムで
の運用実績が多数あります。大規模なオンラインゲームのバック
エンドデータベース、国内外の主要な通信機器ベンダやPayPalの
不正取引検出機能のほか、軍事防衛の領域でも導入されていま
す。
　MySQL Clusterの中では、MySQLサーバーのプロセスは「SQLノ
ード」と呼ばれ、アプリケーションからの接続を受け付けてユー
ザー認証を行い、SQL文の構文解析や実行計画の最適化を行いま
す。各テーブルはNDBストレージエンジンを利用し、データはデ
ータノードと呼ばれる別のサーバーに格納するのが特徴です。デ
ータを追加や更新する際は複数のデータノードに記録されるた
め、1台のデータノードに障害が発生しても運用を継続可能です。
　MySQL Clusterは、各種のNoSQL APIを備えており、トランザク
ション対応NoSQLとしても活用できます。分散キャッシュの
memcachedにMySQL開発チームが作成したプラグインを追加し
て、MySQL Clusterに対してキーバリュー型のアクセスを可能にし
ています。また、各種NoSQL APIからのアクセスもSQLでのアクセ
スもトランザクショナルに処理され、アプリケーション要件に応
じて同一のデータに複数のアクセス手段を提供しています。さら
に、NoSQL APIから行った変更点を外部のMySQLサーバーにレプ
リケーションが可能で、トランザクション対応キーバリューデー

タストアとしてのMySQL ClusterからRDBMSとしてのMySQLサーバ
ーへのレプリケーションも可能です。

10.5 　演習
　このレッスンではレプリケーションの各種の方式や構成パターン
について学習しました。ここではバイナリログの内容を参照し、バ
イナリログの形式について確認しましょう。

1. 最新のバイナリログをSHOW BINARY LOGSで確認

バイナリログの一覧を表示
mysql> SHOW BINARY LOGS;

バイナリログのローテーション（切り替え）を行い、再度一覧を確
認
mysql> FLUSH BINARY LOGS;
mysql> SHOW BINARY LOGS;

バイナリログ内の情報を表示 末尾の数字が最大のものが最新のバイ
ナリログファイル
mysql> SHOW BINLOG EVENTS IN 'MySQL-bin.000004';

2. バイナリログの現在のフォーマットをSHOW VARIABLESで確
認

mysql> SHOW VARIABLES LIKE 'binlog_format';

ヒント：バイナリログのフォーマットについてはレッスン10
「10.2　バイナリログの形式 SQL文転送型＆行イメー
ジ転送型」を参照

3. Cityテーブルにデータを追加し、SHOW BINARY LOGSで最新
のバイナリログの内容を確認

2016年6月現在で人口が日本で最も少ない村である東京都青ヶ島村
を追加
mysql> INSERT INTO City VALUES(NULL, 'Aogashimamura',
'JPN', 'Tokyo', 201);

追加した東京都青ヶ島村が表示されることを確認
mysql> SELECT * FROM City WHERE CountryCode = 'JPN'
ORDER BY ID DESC LIMIT 3;

バイナリログ内の情報を表示
バイナリログのフォーマットがROWの場合はテーブル名の情報は
表示されるがSQL文そのものは表示されない
mysql> SHOW BINLOG EVENTS IN 'MySQL-bin.000004';

4. バイナリログのフォーマットをセッション単位で変更

バイナリログのフォーマットを文ベースに切り替え
mysql> SET SESSION binlog_format = 'STATEMENT';

5. Cityテーブルにデータを追加し、SHOW BINARY LOGSで最新
のバイナリログの内容を確認

2016年6月現在で人口が日本で最も少ない町である山梨県早川町を
追加

mysql> INSERT INTO City VALUES(NULL, 'Hayakawamachi',
'JPN', 'Yamanashi', 1237);

追加した山梨県早川町が表示されることを確認
mysql> SELECT * FROM City WHERE CountryCode = 'JPN'
ORDER BY ID DESC LIMIT 4;

バイナリログ内の情報を表示
バイナリログのフォーマットがSTATEMENTの場合はSQL文が表示
されることを確認
mysql> SHOW BINLOG EVENTS IN 'MySQL-bin.000004';

　　　解説
　この演習では、MySQLのレプリケーションで重要となるバイナリ
ログのコマンドと内容の確認を行いました。
　MySQL 5.7では、デフォルトのフォーマット（オプション名
binlog_format）が行ベース（ROW）となっています。フォーマット
の違いによるそれぞれのメリットとデメリットについては、「10.2　
バイナリログの形式 SQL 文転送型&行イメージ転送型」を確認して
ください。
　MySQLグループレプリケーションは、行ベース（ROW）のバイナ
リログのみをサポートしているほか、MySQL Cluster構成内でも行ベ
ースのみがサポートされているため、行ベースのバイナリログの特
徴や制限事項を確認しておいてください。

11.1 　データベース・セキュリティ概論
　データベースのセキュリティを強化することは、機密データを保
護したり、システム障害を防いだりするために非常に重要です。
　 Symantec社が 2016年 4月に発表した「 2016 Internet Security
Threat Report」によると、以下の事象が報告されています。

●2015年の調査では、78％のWebサイトに脆弱性があり、さらに
そのうち15％は深刻な脆弱性を抱えていた
●2015年には4億レコード以上の個人情報が流出し、2014年と比
べて23%増加した
●2015年に1,000万レコード以上の被害にあった不正アクセス事
件は9件

　このようにセキュリティ対策が甘いシステムが多いことや、それ
により多くの被害が発生していることがわかります。被害にあわな
いためにも、データベースにおける脆弱性を理解し、それに応じた
対策を取ることが重要です。

●URL：2016 Internet Security Threat Report
https://www.symantec.com/security-center/threat-report

　例えば、表1のようなデータベースの脆弱性とその対策が想定され
ます。

https://www.symantec.com/security-center/threat-report

　また、表2のような悪意のある攻撃への対策も必要です。

　このような攻撃からデータやシステムを保護するために、適切な
セキュリティ設定を実施する必要があります。
　続いて、MySQLサーバーのセキュリティを強化するために留意す
べき点について、具体的に解説します。

11.2 　MySQLサーバーのセキュリティ対策
　MySQLサーバーのセキュリティ対策には以下の対応があります。
ここでは、インストール関連のセキュリティ対策とユーザー関連の
セキュリティ対策について解説します。

インストール関連のセキュリティ対策
●MySQLのバイナリは常に最新版を利用する
●ファイルシステム上の権限を適切に設定する
●secure_file_privを設定して、FILE権限を持つユーザーがファイルの入出
力に使えるディレクトリを制限する

●初期データベースはmysqld --initializeで作成する

ユーザー関連のセキュリティ対策
●MySQLデータベースのユーザーは、最低限のホストからのアクセスを可
能にし、最低限の権限のみを付与する

●ユーザーが利用するリソースを制限する
●パスワード検証プラグインを有効にしてパスワードポリシーを設定する
●mysql_config_editorを使って認証情報を管理する
●外部認証を使用しユーザー管理を一元化する

ネットワーク関連のセキュリティ対策
●必要最低限のネットワークインターフェースを使用する
●ネットワーク通信をSSL/TLSにより暗号化する

暗号化によるセキュリティ対策
●バックアップファイルを暗号化する
●透過的データ暗号化により、データファイルを保護する

●機密データは暗号化してデータベースに格納する

その他のセキュリティ対策（監査、データベース・ファイアウォール）
●監査ログを取得してデータの改ざんなどの不正操作を監視する
●監査ログを取得することで抑止力により内部犯行を防ぐ
●データベース・ファイアウォールにより想定しないアクセスをブロック
する

11.3 　インストール関連のセキュリティ対策
　インストールに関連するセキュリティ対策を解説します。

11.3.1 　MySQLのバイナリは常に最新版を利用する
　MySQLに脆弱性が発見された場合、修正はマイナーバージョンア
ップによって提供されます。そのため、MySQLのバイナリは常に最
新版を利用することが、セキュリティ上の観点からも望ましいで
す。
　レッスン1で解説した通り、MySQLはLinux環境用にYumやaptのリ
ポジトリを用意したり、Windows環境用にインストーラを用意した
りしていますので、これらを用いることで、容易にバイナリを最新
版に更新できます。

11.3.2 　ファイルシステム上の権限を適切に設定する
　ファイルシステムのセキュリティ対策として、以下の通り設定す
ることが望ましいです。

●MySQL実行バイナリの所有者はOSのrootユーザーにする
●データディレクトリ、ログディレクトリ、ファイルの入出力に使用するデ
ィレクトリの所有者はOSの一般ユーザーにする（例：mysqlユーザー）

●一般ユーザーはログイン不可にしておき、MySQLサーバーの起動／停止の
みに使用する

　例えば、リスト1は、Linux環境におけるtarファイルを使用した
MySQLのインストール例です。一般ユーザーとしてログイン不可で
あるmysqlユーザーを作成し、MySQL実行バイナリの所有者はroot、
データディレクトリ兼ログディレクトリ（/usr/local/mysql/data）、
ファイルの入出力に使用するディレクトリ（/usr/local/mysql/mysql-
files）の所有者はmysqlユーザーに設定しています。

リスト1　MySQLのインストール例（Linux環境でtarファイル使用）

$ groupadd mysql
$ useradd -r -g mysql -s /bin/false mysql
$ cd /usr/local
$ tar zxvf /path/to/mysql-VERSION-OS.tar.gz
$ ln -s full-path-to-mysql-VERSION-OS mysql
$ cd mysql
$ mkdir mysql-files
$ chmod 770 mysql-files

$ chown -R mysql .
$ chgrp -R mysql .
$ bin/mysqld --initialize --user=mysql
$ bin/mysql_ssl_rsa_setup
$ chown -R root .
$ chown -R mysql data mysql-files

　mysql-filesというディレクトリは、別途secure_file_privを設定する
ことを想定したディレクトリです。この設定について解説します。

11.3.3 　secure_file_privを明示的に設定する
　MySQLサーバーでは、FILE権限を持つユーザーがLOAD_FILE関数
やLOAD DATA文を使用することで、ファイルシステム上のファイル
を読み込んで処理を実行できます。また、SELECT...INTO OUTFILE文
を使用することで、ファイルシステム上のファイルに書き込みがで
きます。
　この時、システム変数secure_file_privに何も設定がない場合は、
MySQLサーバーを起動している一般ユーザーがアクセス可能なすべ
てのディレクトリについて、ファイルの入出力が可能になります。
これは、セキュリティ上望ましくない状態ですから、
secure_file_privに任意のディレクトリを設定するか、ファイルの入
出力自体が不要である場合は「NULL」を設定して、ファイルの入出
力をすべて禁止することが推奨されます。
　secure_file_privに何も設定がない場合、例えばFILE権限を持つユー
ザーで以下のコマンドを実行すると、/etc/passwdファイルを参照で
き、MySQLサーバーが稼働しているOS上のユーザー一覧を確認でき
てしまいます。

リスト2　LOAD_FILE関数によってOS上のファイルを参照可能

mysql> SELECT LOAD_FILE('/etc/passwd')＼G
*************************** 1. row

LOAD_FILE('/etc/passwd'): root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
<後略>

　このような状態は望ましくないため、secure_file_privを明示的に
設定することが推奨されます。

11.3.4 　初期データベースはmysqld --initializeで作
成する

　MySQL 5.7では、初期データベースの作成方法が変更になり、
mysqld --initializeコマンドで作成することが推奨されています。
　mysqld --initializeコマンドで初期データベースを作成した場合、従
来の方法よりもセキュリティが強化されています。具体的には、以
下の特徴があります。

●testデータベースは作成されない
⇒従来は、初期データベースにtestデータベースが作成されていた

●初期ユーザーは、'root'@’localhost’と’mysql.sys’@’localhost’のみ
⇒従来は、匿名ユーザーやリモートから接続可能なrootユーザーも作成さ
れていた

●rootユーザーの初期パスワードにはランダムなパスワードが設定され、初
回ログイン後パスワードを変更するまでは何も操作ができない
⇒従来は、rootユーザーにパスワードが設定されていなかった

　なお、初期ユーザー'mysql.sys'@'localhost'はMySQL 5.7で追加され
たユーザーで、sysスキーマ用のユーザーです。sysスキーマについて
はレッスン14で解説します。
　rootユーザーに自動的に設定されたランダムなパスワードは、リス
ト3のようにエラーログに出力されるため、初期データベース作成後
は、エラーログからパスワードを確認し、そのパスワードを使用し
てログインします。

リスト3　エラーログに出力される初期パスワードの例

2016-06-24T22:35:33.542937+09:00 1 [Note] A temporary
password is generated for root@localhost: N9oGt?fow-p3

　その後、ALTER USER文を用いてパスワードを変更します。11.4.3
で取り上げるパスワード検証プラグインが有効になっている場合
は、変更後のパスワードがポリシーを満たす必要があることにも注
意してください。

リスト4　rootユーザーのパスワード変更例

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY '変更後のパス
ワード';

　パスワードの変更は、リスト5のようにSET PASSWORDコマンドを
使用することも可能ですが、標準的なSQLであるALTER USER文によ
るパスワード変更が推奨されています。

リスト5　SET PASSWORDによるパスワードの変更

現在接続しているユーザーのパスワード変更
mysql> SET PASSWORD='変更後のパスワード';

任意のユーザーのパスワード変更（'root'@'localhost'の変更例）
SET PASSWORD FOR 'root'@'localhost'='変更後のパスワード';

備考：MySQL 5.7.5以前でのSET PASSWORD使用方法（現在はこのや
り方は非推奨）
SET PASSWORD=PASSWORD('変更後のパスワード');

初期データベース作成に関する補足
　MySQL 5.6までは、初期データベース作成にmysql_install_dbとい
うコマンドを使用していました。この場合、以下の通り脆弱性とな
り得る事象を含む状態でデータベースが作成されていました（--
random-passwordsオプション未使用の場合）。

●testデータベースが作成される
●rootユーザーにパスワードが設定されない
●リモートから接続可能なrootユーザーが作成される
●匿名ユーザーが作成される

　 こ れ ら の 問 題 を ま と め て 解 決 す る た め に 、
mysql_secure_installtaionというコマンドが用意されています。
mysql_secure_installtaionを使用すると以下の操作をまとめて実行
し、セキュリティを強化できます。

●testデータベースを削除
●rootユーザーにパスワードを設定
●リモートから接続可能なrootユーザーを削除
●匿名ユーザーを削除

　このように、MySQL 5.6までは、デフォルトはセキュリティが弱い
状態で後から強化する、というアプローチでした。しかし、MySQL
5.7では、デフォルトでセキュリティが強化された状態に変更されて
います。

11.4 　ユーザー関連のセキュリティ対策
　ここでは、ユーザー関連のセキュリティ対策を解説します。

11.4.1 　アクセス可能なホストと権限を制限する
　MySQLでは、ユーザーアカウントは'username'@'host'のようにユ
ーザー名と接続ホスト名の組み合わせで構成されます。図1のように
同じユーザー名であっても、接続ホストが違えば別のユーザーアカ
ウントとなります。

　そのため、通常はこのようなことはしませんが、接続ホストごと
に異なる権限を付与した同じ名前のユーザーを作成することも可能
です。

ユーザーアカウントの例
●'root'@'localhost'：localhostから接続するrootユーザー
●'root'@'192.168.56.101'：192.168.56.101から接続するrootユーザー

　ユーザーアカウントの定義に接続ホスト名を含むことで、特定の
ホストからのみアクセスできるユーザーを作成できます。例えば、
以下のようにユーザーを定義することで、MySQLサーバーに対して
意図しないアクセスが発生するリスクを低減できます。

●アプリケーションユーザーの接続ホスト名にはアプリケーションサーバー
のホスト名を指定する

●MySQLサーバーのメンテナンス作業を行う管理者ユーザーのホスト名に
は'localhost'を指定し、リモートから作業する場合はsshでOSにログインし
てから作業する

　接続ホスト名をIPアドレスで指定すると、DNSやhostsファイルに
よる名前解決を回避できるため、ユーザー認証にかかる時間を短く
できます。また、接続ホスト名には「%」をワイルドカードとして
指定できるため、'root'@'192.168.56.%'のようにすれば、特定のサブ
ネットからアクセスできるユーザーを定義できます。
　ユーザー名を指定しない匿名ユーザーを作成することもできます
が、セキュリティの観点から好ましくないため匿名ユーザーの使用
は避けましょう。
　ユーザー作成はCREATE USER文を使用し、ユーザー削除はDROP
USER文を使用します。以下はlocalhostから接続するtestユーザーを
作成する例、削除する例です（リスト6）。

リスト6　ユーザー作成、ユーザー削除

ユーザー作成mysql> CREATE USER 'test'@'localhost' IDENTIFIED
BY 'test';

ユーザー削除
mysql> DROP USER 'test'@'localhost';

　ユーザー作成後は、そのユーザーに必要な権限を付与します。権
限の付与はGRANT文を用い、権限の剥奪はREVOKE文を用います。ユ
ーザーに付与できる権限には、以下の5つのレベルがあります。

　権限の詳細については、以下のリファレンスマニュアルを参照し
てください。

● URL ： MySQL 5.7 Reference Manual ： 14.7.1.4 GRANT Syntax
（Privileges Supported by MySQL以降を参照）
http://dev.mysql.com/doc/refman/5.7/en/grant.html

　リスト 7は、 worldデータベースの Cityテーブルに対して
SELECT/INSERT/UPDATE/DELETE 操 作 を 許 可 す る 権 限
を'test'@'localhost'ユーザーに付与する例と、その権限を剥奪する例
です。

リスト7　権限付与、権限剥奪

GRANT文で権限を付与
mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON world.City TO
'test'@'localhost';

REVOKE文で権限を剥奪

http://dev.mysql.com/doc/refman/5.7/en/grant.html

mysql> REVOKE SELECT,INSERT,UPDATE,DELETE ON world.City
FROM 'test'@'localhost';

　余分な権限は脆弱性となり得るため、それぞれのユーザーには必
要最低限の権限のみを付与し、余分な権限を付与しないようにしま
す。
　ユーザーに付与されている権限は、SHOW GRANTS文やインフォメ
ーション・スキーマ、mysql.procs_privテーブルから確認できます。
表4のインフォメーション・スキーマが利用可能です。

リスト8　権限の確認

SHOW GRANTS文による権限確認mysql> SHOW GRANTS FOR
'test'@'localhost';
+---
-+
| Grants for
test@localhost　　　　　　　　　　　　　　　　　　　　　　　　　　|
+---
-+
| GRANT USAGE ON *.* TO 'test'@'localhost'　
|
| GRANT SELECT, INSERT, UPDATE, DELETE ON `world`.`City` TO
'test'@'localhost' |
+---
-+
2 rows in set (0.00 sec)

インフォメーション・スキーマによる権限確認
mysql> SELECT * FROM INFORMATION_SCHEMA.<table名>;

ストアドプロシージャの権限確認
mysql> SELECT * FROM mysql.procs_priv;

ログインユーザーと現在のユーザーの違い
　ユーザーアカウントの接続ホスト名にワイルドカードを指定でき
ることや、匿名ユーザーを使用できることなどから、ログイン時に
指定されたユーザーと実際に認証に使用されたユーザーが異なるこ
とがあります。これらを確認するために、 USER関数と
CURRENT_UESR関数が使用できます。以下の例では、ユーザーは
「apl」というユーザー名で「192.168.56.101」のホストから接続
し、実際に認証に使用されたユーザーは「apl@192.168.56.%」であ
ることがわかります。

リスト9　ログインユーザーと現在のユーザーの違い

mysql> SELECT USER(),CURRENT_USER();
+--------------------+------------------+
| USER()　　　　　　 | CURRENT_USER()　 |

+--------------------+------------------+
| apl@192.168.56.101 | apl@192.168.56.% |
+--------------------+------------------+
1 row in set (0.00 sec)

　そのため、このセッションではユーザー「apl@192.168.56.%」に
権限が付与された操作のみが実行できます。

プロキシユーザー（≒ロール）の活用
　ロール（役割）とは、権限のセットに名前を付けて管理し、その
権限のセットをまとめて特定ユーザーに付与できる機能です。例え
ば、「apl_developer」というロールを作成し、そのロールにアプリ
ケーション開発者に必要な権限を付与します。そうすることで、ア
プリケーション開発者が使用するデータベース・ユーザーに対し
て、apl_developerロールを付与するだけで、必要な権限をまとめて
付与できます。アプリケーション開発者に必要な権限に変更があっ
た場合も、apl_developerロールに対する権限を変更するだけで、
apl_developerロールが付与されているすべてのデータベース・ユー
ザーの権限を変更できるため、同じ権限を複数ユーザーに与える場
合の権限管理が容易になります。
　MySQL 5.7では、このロール自体は実装されていませんが、プロキ
シユーザーが標準実装されました。プロキシユーザーを使うと、あ
るユーザーアカウントでログインした時に、別のユーザーアカウン
トに付与されている権限で処理を実行できます。そして、このプロ

キシユーザーを活用することで、ロールを使った権限管理に近いこ
とができます。具体例を解説します。
　まず、デフォルトの認証方式でプロキシユーザーを使用するため
に、以下のシステム変数を有効にします。

●check_proxy_users
●mysql_native_password_proxy_users

　その後、リスト10の例のようにユーザー作成、権限付与すること
で、複数のユーザーに対して同じ権限をまとめて付与できます。

リスト10　プロキシユーザーの使用例（≒ロールの使用例）

システム変数の確認
mysql> SHOW GLOBAL VARIABLES LIKE '%proxy_users%';
+-----------------------------------+-------+
| Variable_name　　　　　　　　　　 | Value |
+-----------------------------------+-------+
check_proxy_users	ON
mysql_native_password_proxy_users	ON
sha256_password_proxy_users	OFF
+-----------------------------------+-------+
3 rows in set (0.00 sec)

プロキシ対象ユーザーの作成（≒ロールの作成）
mysql> CREATE USER proxy_base@localhost;
Query OK, 0 rows affected (0.00 sec)

プロキシユーザーの作成（＝個別のユーザー作成）
mysql> CREATE USER admin_1@localhost;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE USER admin_2@localhost;
Query OK, 0 rows affected (0.00 sec)

プロキシ対象ユーザーに対するPROXY権限を個別のユーザーに対して付
与（≒個別のユーザーにロールを付与）
mysql> GRANT PROXY ON proxy_base@localhost TO
admin_1@localhost;
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT PROXY ON proxy_base@localhost TO
admin_2@localhost;
Query OK, 0 rows affected (0.00 sec)

プロキシ対象ユーザーに対して必要な権限を付与（≒ロールへの権限付
与）
mysql> GRANT SELECT ON world.* TO proxy_base@localhost;
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT DELETE ON world.* TO proxy_base@localhost;
Query OK, 0 rows affected (0.00 sec)

　この状態で個別のユーザーでログインすると、現在のユーザーは
プロキシ対象ユーザーになり、プロキシ対象ユーザーに付与されて

いる権限が有効になります。

リスト11　プロキシユーザーの権限確認例

admin_1ユーザーで接続して権限確認
$ mysql -u admin_1

mysql> SELECT USER(), CURRENT_USER(), @@session.proxy_user;
+-------------------+----------------------+-----------------------+
| USER() 　 　 　 　 　 　 | CURRENT_USER() 　 　 　 |
@@session.proxy_user　|
+-------------------+----------------------+-----------------------+
| admin_1@localhost | proxy_base@localhost |
'admin_1'@'localhost' |
+-------------------+----------------------+-----------------------+
1 row in set (0.00 sec)

mysql> SHOW GRANTS;
+---+
| Grants for proxy_base@localhost　　　　　　　　　　　　　　　 |
+---+
| GRANT USAGE ON *.* TO
'proxy_base'@'localhost'　　　　　　　　|
| GRANT SELECT, DELETE ON `world`.* TO 'proxy_base'@'localhost'
|
+---+
2 rows in set (0.00 sec)

mysql> exit

admin_2ユーザーで接続して権限確認
$ mysql -u admin_2

mysql> SELECT USER(), CURRENT_USER(), @@session.proxy_user;
+-------------------+----------------------+-----------------------+
| USER() 　 　 　 　 　 　 | CURRENT_USER() 　 　 　 |
@@session.proxy_user　|
+-------------------+----------------------+-----------------------+
| admin_2@localhost | proxy_base@localhost |
'admin_2'@'localhost' |
+-------------------+----------------------+-----------------------+
1 row in set (0.00 sec)

mysql> SHOW GRANTS;
+---+
| Grants for proxy_base@localhost　　　　　　　　　　　　　　　 |
+---+
| GRANT USAGE ON *.* TO
'proxy_base'@'localhost'　　　　　　　　|
| GRANT SELECT, DELETE ON `world`.* TO 'proxy_base'@'localhost'
|
+---+
2 rows in set (0.00 sec)

　Column　　 ロール

　本文中で解説した通り、MySQL 5.7ではロールが実装されていま
せんが、MySQLの次バージョンであるMySQL 8.0ではロールの実装
が計画されています。原稿執筆時点で公開されているMySQL 8.0.0
DMR（開発途上版）でも、既にロールが実装されており、MySQL
8.0ではより柔軟な権限管理が可能になる予定です。
　プロキシユーザーと比較した場合、ロールを使用するとより柔
軟な権限管理ができます。具体的には、プロキシユーザーではで
きない以下のことができます。

●ロールにロールを付与できる（階層構造の権限管理ができ
る）
●ユーザーが任意で権限のセットを切り替えられる（ユーザー
に複数のロールを付与し、ユーザーが有効にするロールを選
択できる。デフォルトロールの設定も可能）

　プロキシユーザーを使用した権限管理をロールで例えると、ロ
ールを階層構造で使用せず、ユーザーには1つのロールだけを付与
し、デフォルトロールでそのロールを有効にしているような状態
となります。

11.4.2 　ユーザーが利用するリソースを制限する
　MySQLサーバーでは、ユーザーごとに以下のリソース制限を設定
できます。DoS攻撃を防ぐ目的などで、これらのリソース制限を活用
します。

●MAX_QUERIES_PER_HOUR：アカウントが1時間ごとに発行できるクエリー
の数

●MAX_UPDATES_PER_HOUR：アカウントが1時間ごとに発行できる更新の数
●MAX_CONNECTIONS_PER_HOUR：アカウントが1時間ごとにサーバーに接
続できる回数

●MAX_USER_CONNECTIONS：アカウントによるサーバーへの同時接続の数

　ユーザーにリソース制限をかける場合は、GRANT USAGE文で制限
を設定します。また、制限を削除する場合は、その値を0に設定しま
す。以下は制限の設定例と制限の削除例です。

リスト12　リソース制限の設定、解除

リソース制限の設定
mysql> ALTER USER 'test'@'localhost' WITH
MAX_QUERIES_PER_HOUR 100;

リソース制限の解除
mysql> ALTER USER 'test'@'localhost' WITH
MAX_QUERIES_PER_HOUR 0;

　リソース制限は、クライアントごとではなくアカウントごとであ
ることに注意してください。例えばクエリー数の制限が100の場合に
2つのクライアントから同時に接続すると、2つのクライアントの合
計クエリー数が100に到達した時点で制限がかかります。

　11.4.3　パスワード検証プラグインを有効にしてパス
ワードポリシーを設定する

　パスワード検証プラグインを使用することで、ユーザーのパスワ
ードに対してパスワードポリシーを設定でき、強固なパスワードを
ユーザーに強制できます。パスワード検証プラグインは、Yumやrpm
でインストールした場合はデフォルトで有効になっていますが、tar
を展開した場合や、Windows環境でインストールした場合は、デフ
ォルトでは無効になっています。
　プラグインが有効化されていない場合は、以下のコマンドで有効
化できます。

リスト13　パスワード検証プラグインの有効化

パスワード検証プラグインの有効化（Linux系OS）
mysql> INSTALL PLUGIN validate_password SONAME
'validate_password.so';

パスワード検証プラグインの有効化（Windows系OS）
mysql> INSTALL PLUGIN validate_password SONAME
'validate_password';

プラグインが有効になっていることを確認
mysql> SHOW PLUGINS;
+----------------------------+----------+--------------------+-------------
---------+---------+
| Name　　　　　　　　　　　 | Status　 | Type　　　　　　　 |
Library　　　　　　　| License |

+----------------------------+----------+--------------------+-------------
---------+---------+
<中略>
| validate_password 　 　 　 　 　 | ACTIVE 　 | VALIDATE
PASSWORD　| validate_password.so | GPL　　 |
+----------------------------+----------+--------------------+-------------
---------+---------+
45 rows in set (0.01 sec)

　パスワード検証プラグイン使用時、デフォルトで有効になるパス
ワードポリシーは以下の通りですが、これらは関連するシステム変
数を変更することでカスタマイズ可能です。

●デフォルトで有効になるパスワードポリシー
⇒8文字以上で英語大文字／小文字／数字／特殊文字を1文字以上含む

　関連するシステム変数は表5の通りです。これらのシステム変数を
変更することで、パスワードポリシーを任意でカスタマイズするこ
とができます。

11.4.4 　mysql_config_editorを使って認証情報を管
理する

　各種のコマンドラインツールを使ってMySQLサーバーにアクセス
する場合、--userまたは-uオプションでユーザー名、--passwordまた
は-pオプションでパスワードを指定して接続しますが、この方法で
は毎回パスワードを入力する必要があります。データベース管理者
が複数人いて共通のMySQLユーザーを使用する場合などは、それぞ
れの人がパスワードを管理するため、パスワードの流出リスクが上
がります。
　mysql_config_editorを使用すると、パスワードを含む接続情報
を.mylogin.cnfファイルに暗号化して格納しておき、コマンドライン
ツールからの接続時は--login-pathオプションで接続情報の名称のみ
を指定することで接続できるため、パスワードの流出リスクを下げ
ることができます。
　mysql_config_editorの詳細は、以下のリファレンスマニュアルを参
照してください。

●URL：MySQL 5.7 Reference Manual：5.6.6 mysql_config_editor
http://dev.mysql.com/doc/refman/5.7/en/mysql-config-editor.html

　なお、詳細については言及しませんが、mysql_config_editorによる
パスワードの暗号化は、強力ではありません。スキルのある攻撃者
であればパスワードを復号できてしまうため、.mylogin.cnfファイル
を流出させないように注意してください。

http://dev.mysql.com/doc/refman/5.7/en/mysql-config-editor.html

11.4.5 　外部認証を使用しユーザー管理を一元化する
　ユーザー管理が煩雑な環境において、外部認証機能を活用するこ
とで、ユーザー管理を一元化できます。
　MySQL Enterprise Editionでは、MySQL Enterprise Authenticationと
いう外部認証機能が用意されています。 MySQL Enterprise
Authenticationを使用すると、MySQLサーバーのユーザー認証をLDAP
やWindows Active DirectoryなどMySQLサーバーの外部で管理される
ユーザー情報によって認証できます。
　例えば、開発環境においてアプリケーション開発者ごとにMySQL
ユーザーを用意していて、一人のアプリケーション開発者が複数シ
ステムに関わっている場合、開発者の異動や退職などが発生した時
には不要になったMySQLユーザーをすべて削除することが望ましい
ですが、削除漏れがあると脆弱性につながる可能性があります。こ
のような場合、ユーザー認証をLDAP等で一元管理しておけば、
MySQLユーザーの削除漏れがあったとしても、認証時にエラーとな
るため（そのユーザーではログインできないため）、不要なアクセ
スを防ぐことができます。

　Column　　 全文検索（Full Text Search）

　全文検索とは、特定のキーワードを含むテキストを、全文検索
用のインデックスを使って検索することです。RDBMSにおいて一
般的に使用される「Bツリーインデックス」は、前方一致による絞
り込みでは使用できますが、中間一致や後方一致による絞り込み

では使用できません。そのため、特定のキーワードを含むテキス
トを検索する用途には使えません。そこで、文字数の多いテキス
トを格納している列から特定のキーワードを含むテキストを高速
に検索するために、全文検索用のインデックスが必要となりま
す。
　全文検索インデックスは、MySQL 4.0のMyISAMストレージエン
ジンで使用可能になり、MySQL 5.6ではInnoDBストレージエンジ
ンで使用可能になりました。しかし、これらの全文検索インデッ
クスは、日本語や中国語、韓国語のようなスペースを区切り文字
としない言語ではキーワードを切り出すことができません。その
ため、日本語で全文検索を利用するには、事前にアプリケーショ
ン側で分かち書きをして、単語の間にスペースを追加したテキス
トをMySQLに格納する、といった工夫が必要でした。
　MySQL 5.7では、InnoDBの全文検索インデックスが日本語や中
国語、韓国語に対応し、スペースを区切り文字としないテキスト
からでもキーワードを切り出してインデックスを作成できるよう
になりました。日本語のテキストをそのままMySQLに格納して全
文検索を利用できるため、手軽に活用できます。
　テキストからキーワードを切り出すためのパーサーとしては、
N-gramとMeCabがサポートされています。
　N-gramは、一定の文字数でキーワードを切り出す手法です。N
には文字数が入り、2文字単位で切り出す場合はbi-gramと呼びま
す。MySQL 5.7ではデフォルトでN-gramパーサーが使用可能にな

っているため、MySQL 5.7をインストールすればすぐにN-gramを
使った全文検索が使用できます。
　MeCabは、オープンソースの形態素解析エンジンで、日本語の
辞書を使ってキーワードを切り出します。MySQL 5.7でMeCabパー
サーを使用する場合は、プラグインを追加でインストールする必
要がありますが、必要なモジュールはMySQL 5.7のバイナリに含ま
れて提供されているため、簡単な設定で使用可能になります。
　MySQL 5.7の全文検索機能の使用方法等については、以下の資料
も参考にしてください。

●URL：MySQL 5.7 InnoDB 日本語全文検索（その1）
http://www.slideshare.net/yoyamasaki/20160209-inno-dbftsjp

●URL：MySQL 5.7 InnoDB 日本語全文検索（その2）
http://www.slideshare.net/yoyamasaki/mysql-57-innodb

●URL: MySQL 5.7 InnoDB 日本語全文検索(その3)
http://www.slideshare.net/yoyamasaki/20160929-inno-dbftsjp

http://www.slideshare.net/yoyamasaki/20160209-inno-dbftsjp
http://www.slideshare.net/yoyamasaki/mysql-57-innodb
http://www.slideshare.net/yoyamasaki/20160929-inno-dbftsjp

11.5 　演習
　このレッスンではMySQLサーバーのセキュリティ対策として、イ
ンストール関連のセキュリティ対策、ユーザー関連のセキュリティ
対策について学習しました。ここではsecure_file_privの設定、ユー
ザー権限の付与、リソース制限の設定、パスワード検証プラグイン
について確認しましょう。

1. secure_file_privを設定せずに以下のSQLを実行し、SQLによ
って/etc/passwdファイルが参照できることを確認する。続
いて、secure_file_privを任意のディレクトリまたはNULLに
設定し、同様の操作を行っても/etc/passwdファイルが参照
できないことを確認する

mysql> SELECT LOAD_FILE('/etc/passwd')＼G

ヒント：レッスン11の「11.3.3　secure_file_privを明示的に設
定する」を参照

2. localhostから接続するtestユーザーを作成し、worldデータベ
ース内の全オブジェクトに対する SELECT、 INSERT、
UPDATE、DELETE権限を付与する。その後、testユーザーで
接続し、worldデータベース内の全オブジェクトに対して
SELECT、INSERT、UPDATE、DELETEが実行できることを
確認する

ヒント：レッスン11の「11.4.1　アクセス可能なホストと権限
を制限する」を参照

3. 2 で 作 成 し た test ユ ー ザ ー に 対 し て 、
「MAX_QUERIES_PER_HOUR 10」のリソース制限を設定す
る。その後testユーザーでクエリーを連続して実行し、クエリ
ー実行回数が10を超えた場合の挙動を確認する
ヒント：レッスン11の「11.4.2　ユーザーが利用するリソース

を制限する」を参照

4. パスワード検証プラグインを有効にして、以下のパスワードポ
リシーを設定する
●10文字以上
●英語大文字／小文字／数字を1文字以上含む
ヒント：レッスン11の「11.4.3　パスワード検証プラグインを

有効にしてパスワードポリシーを設定する」を参照

　　　解説
1．secure_file_privの設定は、以下のようにSHOW GLOBAL

VARIABLESコマンドで確認できます。secure_file_privは動
的には変更できないシステム変数なので、変更するためには
my.cnfファイルに「secure_file_priv=NULL」等を設定し、
MySQLサーバーを再起動します。

mysql> SHOW GLOBAL VARIABLES LIKE 'secure_file_priv';
+------------------+-------+
| Variable_name　　| Value |
+------------------+-------+
| secure_file_priv |　　　 |
+------------------+-------+
1 row in set, 1 warning (0.00 sec)

2．testユーザーの作成方法、testユーザーでの接続後の確認例は
以下の通りです。

rootユーザーで以下を実行してtestユーザーを作成
mysql> CREATE USER 'test'@'localhost' IDENTIFIED BY 'test';
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON world.*
TO 'test'@'localhost';
Query OK, 0 rows affected (0.00 sec)

testユーザーで接続し、以下を実行して権限が付与されていること
を確認

mysql> SELECT * FROM world.City LIMIT 1;
+----+-------+-------------+----------+------------+
| ID | Name　| CountryCode | District | Population |
+----+-------+-------------+----------+------------+
|　1 | Kabul | AFG　　　　 | Kabol　　|　　1780000 |
+----+-------+-------------+----------+------------+
1 row in set (0.01 sec)

mysql> INSERT INTO world.City
VALUES(9999,'TEST','JPN','TEST',9999);
Query OK, 1 row affected (0.00 sec)

mysql> UPDATE world.City SET Population=0 WHERE
ID=9999;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1　Changed: 1　Warnings: 0

mysql> DELETE FROM world.City WHERE ID=9999;
Query OK, 1 row affected (0.00 sec)

3．testユーザーへのリソース制限設定方法、クエリー実行回数が
10回を超える前後の挙動は以下の通りです。

#testユーザーへのリソース制限設定方法（rootユーザーで実行）
mysql> ALTER USER 'test'@'localhost' WITH
MAX_QUERIES_PER_HOUR 10;
Query OK, 0 rows affected (0.00 sec)

#testユーザーでクエリー実行回数が10回を超る前と、超えた後の挙
動
mysql> SELECT * FROM world.City LIMIT 1;
+----+-------+-------------+----------+------------+
| ID | Name　| CountryCode | District | Population |
+----+-------+-------------+----------+------------+
|　1 | Kabul | AFG　　　　 | Kabol　　|　　1780000 |
+----+-------+-------------+----------+------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM world.City LIMIT 1;
ERROR 1226 (42000): User 'test' has exceeded the
'max_questions' resource (current value: 10)

4．パスワード検証プラグインを有効にする方法は以下の通りで
す。

#rootユーザーで実行(Linux系OS)
mysql> INSTALL PLUGIN validate_password SONAME
'validate_password.so';

#rootユーザーで実行(Windows系OS)
mysql> INSTALL PLUGIN validate_password SONAME
'validate_password';

次に、my.cnfに以下の通り設定してMySQLサーバーを再起動
します。

validate_password_policy=MEDIUM
validate_password_length=10
validate_password_mixed_case_count=1
validate_password_number_count=1
validate_password_special_char_count=0

12.1 　ネットワーク関連のセキュリティ対策
　ネットワーク関連のセキュリティ対策を解説します。

12.1.1 　必要最低限のネットワークインターフェースを
使用する

　MySQLサーバーは、デフォルトではすべてのネットワークインター
フェースを使用します。アプリケーションサーバーと通信するインタ
ーフェースが限定されている場合は、システム変数bind-addressを設
定することで、接続可能なインターフェースを使用することができま
す。
　また、レッスン3「3.1.2　接続設定」でも解説した通り、システム
変数skip-networkingを設定するとTCP/IP経由でのアクセスをすべて無
効化できます。リモートアクセス不要な環境や、MySQLサーバーのメ
ンテナンス時などは、skip-networkingを設定することで不必要なリモ
ートからのアクセスを防げます。

12.1.2 　ネットワーク通信をSSLで暗号化する
　ネットワークにおける通信は、盗聴に備えて暗号化することが推奨
されます。MySQLでは、クライアントセッションとの通信だけでな
く、各種のコマンドラインツールとの通信もSSLを使用して暗号化可
能です。MySQL 5.7では、デフォルトでSSL関連の設定が有効化される
ため、簡単にSSLを使用できます。
　SSLを使用するためには、SSL証明書や鍵が必要ですが、MySQL 5.7
ではmysql_ssl_rsa_setupを実行することで、datadir配下にSSL証明書
や 鍵 を 作 成 で き ま す 。 レ ッ ス ン 11 の リ ス ト 1 で も 、
mysql_ssl_rsa_setupを実行しています。Windows環境の場合は、
mysql_ssl_rsa_setup.exeが提供されていますが、事前にOpenSSLをイ
ンストールし、openssl.exeへのパスを通しておく必要があることに注
意してください。
　以下のリスト1は、mysql_ssl_rsa_setupを実行した後に、mysqlコマ
ンドラインクライアントからSSLを使用して接続し、SSL関連の設定を
確認している例です。mysqlコマンドラインクライアント以外からの
接続やクライアントツールでもSSLを使用可能です。

リスト1　SSL接続の使用例

mysqlコマンドラインクライアントからSSLを使って接続
--ssl-mode=REQUIREDを指定することにより、SSLで通信できない場合
は接続自体がエラーになる
$ mysql -u root -p --ssl-mode=REQUIRED

SSL関連のシステム変数を確認
have_sslがYESとなっており、SSLがサポートされていることがわかる

mysql> SHOW GLOBAL VARIABLES LIKE '%ssl%';
+---------------+-----------------+
| Variable_name | Value　　　　　 |
+---------------+-----------------+
have_openssl	YES
have_ssl	YES
ssl_ca	ca.pem
ssl_capath	
ssl_cert	server-cert.pem
ssl_cipher	
ssl_crl	
ssl_crlpath	
ssl_key	server-key.pem
+---------------+-----------------+
9 rows in set (0.01 sec)

statusコマンドにより、暗号化スイートがDHE-RSA-AES256-SHAである
ことを確認
mysql> status

mysql　Ver 14.14 Distrib 5.7.13, for linux-glibc2.5 (x86_64) using　
EditLine wrapper

Connection id:　　　　　3
Current database:
Current user:　　　　　 root@localhost
SSL:　　　　　　　　　　Cipher in use is DHE-RSA-AES256-SHA
Current pager:　　　　　stdout

<後略>

12.2 　暗号化によるセキュリティ対策
　ここでは暗号化によるセキュリティ対策について解説します。

12.2.1 　バックアップファイルを暗号化する
　バックアップファイルの盗難に備える場合、バックアップファイル
を暗号化します。特に、古いバックアップファイルをテープなどの別
媒体にアーカイブする場合などは、盗難のリスクが高くなるため、バ
ックアップファイルを暗号化することが推奨されます。
　mysqldump/mysqlpumpで取得したダンプファイルや物理バックア
ップファイルは、任意の暗号化手法（opensslコマンドなど）で暗号化
することができます。また、MySQL Enterprise Backupを使用している
場合は、--encryptオプションを使用してバックアップファイルを暗号
化することもできます。MySQL Enterprise Backupによるバックアップ
の暗号化についてはリファレンスマニュアルを参照してください。

● URL：MySQL Enterprise Backup ユーザーズガイド（バージョン
3.11）：第8章バックアップの暗号化
https://dev.mysql.com/doc/mysql-enterprise-backup/3.11/ja/meb-
encryption.html

　バックアップファイルを暗号化すると、障害が発生してバックアッ
プからリストアする場合に、事前に復号してからリストアする必要が
あるため、リストアにかかる時間が延びることに注意してください。

https://dev.mysql.com/doc/mysql-enterprise-backup/3.11/ja/meb-encryption.html

12.2.2 　透過的データ暗号化でデータファイルを保護す
る

　MySQL 5.7では、InnoDBデータファイルの「透過的データ暗号化」
（Transparent Data Encryption）が可能になりました。透過的データ
暗号化とは、アプリケーション側で何もしなくても、データが暗号化
／復号される暗号化機能のことです。
　MySQLユーザーがデータを格納する際には、MySQLサーバーが自動
的にデータを暗号化して、データファイルに書き込みます。また、
MySQLユーザーがデータにアクセスした場合は、MySQLサーバーが自
動的に暗号化されているデータを復号してユーザーに渡します。その
ため、この暗号化機能はデータへのアクセス権限を持つMySQLユーザ
ーの不正を防ぐための暗号化機能ではありません。
　透過的データ暗号化で対策できるのは、以下のような脅威です。

●OSに侵入されてデータファイルを盗み見られた
●バックアップファイルを盗まれた

　データへのアクセス権限を持つMySQLユーザーの不正を防ぐための
暗号化機能としては、「MySQL Enterprise Encryption」があります。
これについては「12.2.3　機密データは暗号化してデータベースに格
納する」で解説します。
　MySQLの透過的データ暗号化には、以下の特徴があります。

●AES（Advanced Encryption Standard）※１ブロック暗号化アルゴリズムを使
用

●2層鍵管理アーキテクチャを採用しているため、鍵のローテーション時にデ
ータの復号／再暗号化が発生しない

●鍵管理製品と連携可能（MySQL Enterprise Editionのみ）

　「2層鍵管理アーキテクチャ」と「鍵管理製品との連携」について
補足します。

2層鍵管理アーキテクチャ
　InnoDBの透過的データ暗号化では、以下2つの鍵を使用します。

●表領域鍵
●マスター暗号化鍵

　InnoDB上のデータを暗号化／復号するために、表領域鍵を使用しま
す。この表領域鍵は、表領域のヘッダーに格納されますが、表領域鍵
はマスター暗号化鍵によって暗号化された状態で、表領域のヘッダー
に格納されます。
　鍵のローテーションを実施した場合、マスター暗号化鍵はローテー
ションされますが、表領域鍵はローテーションされません（ローテー
ションの必要がありません）。つまり、データを暗号化／復号するた
めの鍵は変更されないため、鍵のローテーション時であってもデータ
の復号／再暗号化は発生しません。

　鍵のローテーションは、以下の場合に実施する必要があります。

●鍵が盗まれた疑いがある

●鍵の管理者が変更になった（前任者が不正に鍵を所有していて悪用されるリ
スクがあるため）

　IPAによる「安全な暗号鍵のライフサイクルマネージメントに関す
る調査」でも、暗号鍵には有効期間を設定し、同一の鍵を利用し続け
ることを避けるように推奨されています。

●URL：安全な暗号鍵のライフサイクルマネージメントに関する調査
https://www.ipa.go.jp/files/000013895.pdf

鍵管理製品との連携
　暗号化機能を使用する場合、暗号鍵をどうやって管理するかは、重
要な考慮事項になります。
　例えば、クレジットカード業界のセキュリティ基準であり、クレジ
ットカード業界以外でも参考にされることの多いPayment Card
Industry Data Security Standard（PSI-DSS）では、暗号化鍵の管理に
以下の要件を設けています。

●安全な形で保管する
●最小限の場所に保管する
●最小限の管理者のみをアクセス可能にする
●定期的に鍵を変更する

　 MySQL Enterprise Editionで使用可能な MySQL Enterprise TDE
（Transparent Data Encryption）では、鍵管理製品であるOracle Key
Vaultと連携して暗号化鍵（マスター暗号化鍵）を管理できるため、暗

https://www.ipa.go.jp/files/000013895.pdf

号 化 鍵 を 安 全 に 管 理 で き ま す 。 ま た 、 Key Management
Interoperability Protocol（KMIP） v1.2に準拠しているため、KMIP
v1.2に準拠しているほかの鍵管理製品とも連携可能です。
　MySQL Enterprise TDEを使用しない場合、暗号化鍵はファイルシス
テム上に配置されます。

透過的データ暗号化の使用方法
　透過的データ暗号化を使用する場合、事前に以下の設定を行いま
す。

●システム変数early-plugin-loadにkeyring_file.soを指定して、MySQLサーバー
起動（Windows系OSの場合はkeyring_fileを指定）

● 鍵 の 配 置 先 と し て シ ス テ ム 変 数 keyring_file_data も し く は

keyring_okv_conf_dir（Oracle Key Vault使用時）を指定※２

　事前設定ができていれば、CREATE TABLE／ALTER TABLE時に
ENCRYPTION='Y'を指定するだけで、該当テーブルのデータを暗号化
できます。以下は、透過的データ暗号化を有効にしてworld.Cityテーブ
ルを作成する例です。この場合、テーブル作成後にINSERTしたデータ
は、自動的に暗号化されます。

リスト2　透過的データ暗号化の使用例（新規テーブル）

mysql> CREATE TABLE world.City (
　ID int(11) NOT NULL AUTO_INCREMENT,
　Name char(35) NOT NULL DEFAULT '',
　CountryCode char(3) NOT NULL DEFAULT '',

　District char(20) NOT NULL DEFAULT '',
　Population int(11) NOT NULL DEFAULT '0',
　PRIMARY KEY (`ID`),
　KEY CountryCode (CountryCode),
　 CONSTRAINT city_ibfk_1 FOREIGN KEY (CountryCode)
REFERENCES world.Country (Code)
) ENCRYPTION='Y';

　ALTER TABLE文を使って、既存のテーブルに対して暗号化を有効に
することもできます（リスト3）。内部的にはテーブルを再作成する
ため、データ量が多いテーブルに対して実行する時は、時間がかかる
ことに注意してください。

リスト3　透過的データ暗号化の使用例（既存テーブル）

mysql> ALTER TABLE world.City ENCRYPTION='Y';

　また、以下のコマンドを実行することで、暗号化鍵をローテーショ
ンできます（リスト4）。実データを復号／再暗号化する必要はない
ため、暗号化鍵のローテーションは短時間で完了します。

リスト4　マスター暗号化鍵のローテーション

mysql> ALTER INSTANCE ROTATE INNODB MASTER KEY;

12.2.3 　機密データは暗号化してデータベースに格納す
る

　悪意のあるユーザーからデータを守るために、機密データは暗号化
してデータベースに格納することが推奨されます。
　高度な機能や管理ツールが含まれているMySQL Enterprise Editionで
は、機密データを暗号化するための強力な暗号化機能「MySQL
Enterprise Encryption」が用意されています。例えば、クレジットカー
ド番号などの機密情報を保持する場合に、その情報をMySQLデータベ
ースに格納する前にMySQL Enterprise Encryptionの暗号化関数を使用
して、暗号化してから格納できます。これにより、データが盗まれた
場合でも情報が暗号化されていることにより機密性を保持できます。
　データを復号するためには、MySQL Enterprise Encryptionの復号関
数を使用する必要がありますが、MySQL Enterprise Encryptionでは、
暗号化鍵と復号鍵を異なる鍵にできるため、機密性がより向上しま
す。例えば、暗号化鍵にアクセス可能なアプリケーション開発者が、
その暗号化鍵を使用して本番環境の機密データを復号しようとして
も、鍵が異なるため復号できません。機密データは、復号鍵にアクセ
ス可能なユーザーのみが復号できます。

12.3 　その他のセキュリティ対策（監査、ファイ
アウォール）

　ここでは、監査やファイアウォールについて解説します。

12.3.1 　監査ログで不正操作や内部犯行を防ぐ
　データ改ざんなどの不正操作を監視するために、監査ログの取得が
推奨されます。また、監査ログを取得していることを関係者に通達す
ることによって、抑止力により内部犯行を防ぐ効果も期待できます。
2014年に発生した大手通信教育事業者による大規模個人情報漏洩事件
も、正当な権限を持ったユーザーによる内部犯行によって発生してい
ます。このような内部犯行を防ぐために抑止力を働かせることも、セ
キュリティリスクを下げるためには重要なポイントです。
　MySQL Enterprise Editionでは、監査ログを取得できる機能として
「MySQL Enterprise Audit」が用意されています。MySQL Enterprise
Auditを使用することで、ログオン、クエリーの情報を監査可能です。
監査ログはXMLファイルに出力されますが、このXMLファイルのフォ
ーマットは、オラクルの仕様にあわせており、「Oracle Audit Vault
and Database Firewall」と連携可能になっています。Oracle Audit
Vault and Database Firewallと連携することで、監査ログをMySQLサー
バーから分離して集約して管理し、怪しいアクセスがあった時に警告
を通知することなどができます。
　また、MySQL 5.7.13以降では、特定の操作に対してのみ監査ログを
取得するなど、取得する監査ログに対して詳細な絞り込み条件を定義
可能になりました。

12.3.2 　ファイアウォールで想定しないアクセスをブロ
ックする

　SQLインジェクション攻撃やクラッカーによる攻撃、悪意のあるユ
ーザーによる内部犯行などによって、MySQLサーバーに対して想定し
ないパターンのSQLが実行される可能性があります。ファイアウォー
ルを使用することで、このような想定外のアクセスをブロックでき、
セキュリティリスクが低減できます。
　MySQL Enterprise Editionには、「MySQL Enterprise Firewall」とい
うホワイトリスト形式のファイアウォール機能が用意されています。
あらかじめ実行可能なSQLをホワイトリストに定義しておくことで、
ホワイトリストに定義されていないSQLの実行をブロックできます。
このホワイトリストはユーザー単位で定義できるため、定型のSQLを
実行するアプリケーションユーザーに対してのみファイアウォール機
能を有効にし、非定型のSQLを実行するMySQLサーバーの管理者ユー
ザーに対してはファイアウォール機能を有効化しない、といった使い
方も可能です。
　ホワイトリストは、自動的に作成可能です。MySQL Enterprise
Firewall使用時は、事前に学習モードに設定することで、その間に実行
したSQLを自動的に記録し、ホワイトリストに追加します。SQLがホ
ワイトリストに記録される時は、以下のようにパターン化されます
（リスト5）。

リスト5　MySQL Enterprise Firewallのホワイトリスト記録例

実行したSQL文（fwuser@localhostで実行）
mysql> select * from world.City where id=1;

ホワイトリストに記録されたSQL文の確認（インフォメーションスキーマ
から確認可能）
mysql> SELECT RULE FROM
INFORMATION_SCHEMA.MYSQL_FIREWALL_WHITELIST WHERE
USERHOST = 'fwuser@localhost';
+--+
| RULE　　　　　　　　　　　　　　　　　　　　　 |
+--+
| SELECT * FROM `world` . `City` WHERE `id` = ?　|
+--+
1 rows in set (0.00 sec)

　WHERE id=1、WHERE id=2など、WHERE句の条件値の指定が異な
るSQL文は同じSQLと見なされるため実行可能ですが、それ以外のパ
ターンのSQLは実行できません。例えば、不正に情報を抜き出すため
にSQLインジェクションでリスト6のようなSQLが実行されたとして
も、これはホワイトリストに一致しないためブロックされます。

リスト6　MySQL Enterprise FirewallによるSQLブロック例

SQLインジェクションにより、WHERE句に「OR 1=1」を追加したSQLが
実行されたことを想定
mysql> SELECT * FROM world.City WHERE id=1 OR 1=1;
ERROR 1045 (28000): Statement was blocked by Firewall

　システム変数mysql_firewall_traceをONに設定していると、ホワイト
リストと一致しないSQLをブロックした時に、同時にエラーログにも
SQLをブロックしたことを記録します。また、アプリケーションから
実行されるSQLに非定型なものが含まれる場合や、ホワイトリストの
登録漏れを懸念する場合は、SQLをブロックせずに、ホワイトリスト
に一致しないSQLが実行されたことをエラーログに出力するだけの
「検知（DETECTING）モード」も使用可能です。これらの出力を監視
することで、どのようなSQLによる想定外のアクセスがあったかを確
認できます（リスト7）。

リスト7　ホワイトリストに一致しないSQL実行時のエラーログ出力例

PROTECTINGモードの場合のエラーログ出力例
2016-06-25T12:01:37.673266+09:00 5 [Note] Plugin
MYSQL_FIREWALL reported: 'ACCESS DENIED for
'fwuser@localhost'. Reason: No match in whitelist. Statement:
SELECT * FROM `world` . `City` WHERE `id` = ? OR ? = ? '

DETECTINGモードの場合のエラーログ出力例
2016-06-25T12:03:07.676878+09:00 5 [Note] Plugin
MYSQL_FIREWALL reported: 'SUSPICIOUS STATEMENT from
'fwuser@localhost'. Reason: No match in whitelist. Statement:
SELECT * FROM `world` . `City` WHERE `id` = ? OR ? = ? '

　さらに、SQLをブロックしたり検知した時には、関連するステータ
ス変数が増加するため、以下のステータス変数を監視することで、ア
タックを受けているなど、想定外のアクセスが発生していることを早

期に発見できます。監視ツールであるMySQL Enterprise Monitorと組
み合わせれば、想定外のアクセスが発生している場合にメールや
SNMP Trapで警告を通知することもでき、問題を迅速に検知できま
す。

　MySQL Enterprise Firewallは、完全にMySQLサーバーに統合されて
いるため、使用する際に追加のサーバーやネットワーク機器を用意す
る必要もありません。追加のプロセスの起動も不要です。インストー
ルが完了していれば、以下のコマンドでプロシージャをコールするだ
けで使用できるため、非常に手軽に使用できるファイアウォール機能
となっています。

● ホ ワ イ ト リ ス ト の 学 習 ： CALL sp_set_firewall_mode （ ' ユ ー ザ ー
名','RECORDING'）;

● 防 御 モ ー ド 有 効 化 ： CALL sp_set_firewall_mode （ ' ユ ー ザ ー
名','PROTECTING'）;

● 検 知 モ ー ド 有 効 化 ： CALL sp_set_firewall_mode （ ' ユ ー ザ ー
名','DETECTING'）;

●ファイアウォール無効化：CALL sp_set_firewall_mode（'ユーザー名','OFF'）;
● ホ ワ イ ト リ ス ト 初 期 化 ： CALL sp_set_firewall_mode （ ' ユ ー ザ ー
名','RESET'）;

12.4 　MySQL Enterprise Editionの機能を試す
方法

　レッスン11とこのレッスンで紹介した以下の機能は、MySQL
Enterprise Editionのみで使用できる追加機能です。

●MySQL Enterprise Authentication（外部認証）

●MySQL Enterprise TDE（機密データの保護）※３

●MySQL Enterprise Encryption（非対称暗号化）
●MySQL Enterprise Audit（監査ログ取得）
●MySQL Enterprise Firewall（SQLインジェクション対策）

　これらの機能は、MySQL Enterprise Editionを契約することで使用で
きますが、評価目的であれば30日間限定で試すことができます。以下
のサイトにアクセスし、ログイン後、規約に同意することで、評価目
的で製品版と同一のバイナリをダウンロードできます。

●URL：Oracle Software Delivery Cloud
https://edelivery.oracle.com/

　Platformで適切なOSを選択し、「MySQL Enterprise Edition」で検索
して必要な製品をダウンロードします。MySQL Enterprise Backup、
MySQL Enterprise MonitorはMySQL Databaseとバイナリが分かれてい
ますが、それ以外のMySQL Enterprise Editionの機能は、MySQL
Databaseのバイナリに同梱されて提供されています。
　MySQL Enterprise Editionの各機能の使用方法は、以下のリファレン
スマニュアルを参照してください。

https://edelivery.oracle.com/

MySQL Enterprise Authentication
● URL ： MySQL 5.7 Reference Manual ： 7.5.1.5 The PAM

Authentication Plugin
http://dev.mysql.com/doc/refman/5.7/en/pam-authentication-plugin.html

●URL：MySQL 5.7 Reference Manual：7.5.1.6 The Windows Native
Authentication Plugin
http://dev.mysql.com/doc/refman/5.7/en/windows-authentication-
plugin.html

MySQL Enterprise TDE
● URL：MySQL 5.7 Reference Manual：15.7.10 InnoDB Tablespace

Encryption
http://dev.mysql.com/doc/refman/5.7/en/innodb-tablespace-encryption.html

●URL：MySQL 5.7 Reference Manual：7.5.3 The MySQL Keyring
http://dev.mysql.com/doc/refman/5.7/en/keyring.html

MySQL Enterprise Encryption
● URL ： MySQL 5.7 Reference Manual ： 13.18 MySQL Enterprise

Encryption Functions
https://dev.mysql.com/doc/refman/5.7/en/enterprise-encryption.html

MySQL Enterprise Audit
●URL：MySQL 5.7 Reference Manual：7.5.4 MySQL Enterprise Audit

http://dev.mysql.com/doc/refman/5.7/en/audit-log.html

MySQL Enterprise Firewall

http://dev.mysql.com/doc/refman/5.7/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.7/en/windows-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-tablespace-encryption.html
http://dev.mysql.com/doc/refman/5.7/en/keyring.html
https://dev.mysql.com/doc/refman/5.7/en/enterprise-encryption.html
http://dev.mysql.com/doc/refman/5.7/en/audit-log.html

● URL ： MySQL 5.7 Reference Manual ： 7.5.5 MySQL Enterprise
Firewall
http://dev.mysql.com/doc/refman/5.7/en/firewall.html

　Column　　 GIS（地理情報システム）

　Geographic Information System（GIS）とは、地理情報を活用す
るシステムのことを指します。MySQLでは、MySQL 4.1からMyISAM
においてGIS関連機能が実装されましたが、この実装はMySQL開発
チームの独自実装であったため、複雑な使い方をすると正確に地理
情報を処理できない場合がある、MyISAMなのでトランザクション
が使用できない、などの問題を抱えていました。
　そこで、MySQL 5.7ではGIS関連機能を刷新し、Boost.Geometry
というC++のオープンソースライブラリを採用してInnoDBで再実
装しました。これにより、InnoDBで以下の機能が使用可能になりま
した。

●GEOMETRYデータ型（POINT、LINE、POLYGON、GEOMETRY
など）
●空間インデックス（Rツリーインデックス）
●ST_Contains()、ST_Distance()などのSpatial関数
●経緯度の情報を文字列化し、文字列の桁数で精度を変えるこ
とができるGeoHash関数
●JSONでジオメトリデータを扱えるGeoJSON関数

http://dev.mysql.com/doc/refman/5.7/en/firewall.html

　また、各種のSpatial関数について命名規則が整理されました。
Spatial関数にはST_というプレフィックスが付くものと、MBRとい
うプレフィックスが付くもの、どちらのプレフィックスも付かない
ものが存在します。MySQL 5.7では、ジオメトリ同士の関係を比較
する関数について、どちらのプレフィックスも付かない関数は挙動
が不明確で混乱を招くため、廃止予定となりました。
　ST_とMBRの違いは、図形の形に基づいた判定をするのか、MBR
に基づいた判定をするのかです。MBR（Minimum Bounding
Rectangle：最小外接矩形）とは、ある図形に隣接する最小の矩形で
す（図1）。

例えば、あるジオメトリが別のジオメトリに含まれているか否かを
判定するContains()という関数は、それぞれ以下のように動作しま
す。

●MBRContains(g1,g2)：g1の最小外接矩形にg2の最小外接矩形
が含まれているかどうかを示す
●ST_Contains(g1,g2)：g1にg2が含まれているかどうかを示す

　このため、MBRContains()は大まかな判定をすることに向いてい
ますが、正確な判定が必要な場合はST_Contains()を使用する必要が
あります。

12.5 　演習
　このレッスンではMySQLサーバーのネットワーク関連のセキュリテ
ィ対策、暗号化／監査／ファイアウォールによるセキュリティ対策に
ついて学習しました。ここでは透過的データ暗号化、ファイアウォー
ル、監査ログ取得について確認しましょう。

1. 透過的データ暗号化によりworld.Cityテーブルを暗号化し、City
テーブルのデータファイル（City.ibd）が暗号化されていること
を確認する。この時、システム変数keyring_file_dataを使用
し、暗号化鍵はファイルシステム上に配置する
ヒント：暗号化されていることの確認方法例は、City.ibdファイ

ルをviエディタで開き、「Tokyo」という文字列を検索
する。暗号化前は「Tokyo」という文字列が見つかる
が、暗号化後は見つからない

ヒント：レッスン12の「12.2.2　透過的データ暗号化でデータフ
ァイルを保護する」を参照

2. Oracle Software Delivery Cloudから評価目的でMySQL
Enterprise EditionのMySQL Databaseをダウンロードし、イ
ンストールする
ヒント：レッスン12の「12.4　MySQL Enterprise Editionの機能

を試す方法」およびレッスン1「MySQL 5.7で新しくな
ったインストール方法」を参照

3. MySQL Enterprise Firewallを使用して、ホワイトリストに掲
載されていないSQLをブロックできることを確認する
ヒント：レッスン12の「12.3.2　ファイアウォールで想定しない

アクセスをブロックする」を参照

4. MySQL Enterprise Auditを使用して、監査ログが取得できるこ
とを確認する
ヒント：レッスン12の「12.3.1　監査ログで不正操作や内部犯行

を防ぐ」を参照

　　　解説
1．透過的データ暗号化を使用するために、my.cnfに以下を設定し
てMySQLサーバーを再起動します。

early-plugin-load=keyring_file.so　# Windows系OSの場合はkeyring_file
を指定
keyring_file_data=<<任意のパスを指定(ディレクトリではなく、ファ
イル名まで指定)>>

次に、以下のSQLを実行してworld.Cityテーブルを暗号化しま
す。

mysql> ALTER TABLE world.City ENCRYPTION='Y';

暗号化後、City.ibdファイルをviエディタ等で開いて、暗号化さ
れていることを確認してください。

2．ヒント部分の解説を参照してください。

3．MySQL Enterprise EditionのMySQLデータベースをインスト
ールした環境にMySQL Enterprise Firewallをインストールす
るため、linux_install_firewall.sqlを実行します。Windows
系OSの場合は、win_install_firewall.sqlを実行します。それ
ぞれのSQLスクリプトは、MySQLをインストールしたディレク
トリ配下にあるshareディレクトリの中にあります。

mysql -u root -p ￥

次に、testユーザーに対してMySQL Enterprise Firewallの学
習モードを有効にするために、rootユーザーで以下のコマンド
を実行します。

rootユーザーで実行
mysql> CALL
mysql.sp_set_firewall_mode('test@localhost','RECORDING');
+---+
| read_firewall_whitelist(arg_userhost,FW.rule) |
+---+
| Imported users: 0Imported rules: 0
　　　　　|
+---+
1 row in set (0.00 sec)Query OK, 0 rows affected (0.00 sec)

次に、testユーザーで接続し、以下のSQLを実行してホワイトリ
ストに記録します。

testユーザーで実行
mysql> SELECT * FROM world.City WHERE id=1;
+----+-------+-------------+----------+------------+
| ID | Name　| CountryCode | District | Population |
+----+-------+-------------+----------+------------+
|　1 | Kabul | AFG　　　　 | Kabol　　|　　1780000 |
+----+-------+-------------+----------+------------+
1 row in set (0.00 sec)

ホワイトリストが記録できたら、rootユーザーで以下を実行し
て、ファイアウォールを有効にします。

rootユーザーで実行
mysql> CALL
sp_set_firewall_mode('test@localhost','PROTECTING');
Query OK, 2 rows affected (0.00 sec)

ホワイトリストを確認したい場合は、rootユーザーで以下を実
行します。

rootユーザーで実行
mysql> SELECT * FROM mysql.firewall_whitelist;
+----------------+--+
| USERHOST 　 　 　 | RULE　
|
+----------------+--+
| test@localhost | SELECT * FROM `world` . `City` WHERE `id`
= ?　|
| test@localhost | SELECT @@`version_comment` LIMIT ?　
|
+----------------+--+
2 rows in set (0.00 sec)

その後、testユーザーで接続し、以下のSQLを実行して、SQLが
ブロックされることを確認します。

testユーザーで実行
mysql> SELECT * FROM world.City;

ERROR 1045 (28000): Statement was blocked by Firewall

4．MySQL Enterprise EditionのMySQLデータベースをインスト
ールした環境で、MySQL Enterprise Auditを有効にするために
以下のコマンドを実行します。

mysql> INSTALL PLUGIN audit_log SONAME 'audit_log.so';　
Windows系OSの場合はaudit_logを指定

その後、何かSQLを実行し、datadir配下のaudit.logに監査ロ
グが出力されることを確認します。デフォルトで監査ログ取得
が有効になっているため、明示的にシステム変数を設定しなく
ても監査ログが取得できます。
また、Audit関連のシステム変数は、以下の方法で確認できま
す。

mysql> SHOW GLOBAL VARIABLES LIKE 'audit_%';
+-----------------------------+--------------+
| Variable_name　　　　　　　 | Value　　　　|
+-----------------------------+--------------+
audit_log_buffer_size	1048576
audit_log_connection_policy	ALL
audit_log_current_session	OFF
audit_log_exclude_accounts	
audit_log_file	audit.log
audit_log_filter_id	0
audit_log_flush	OFF

audit_log_format	NEW
audit_log_include_accounts	
audit_log_policy	ALL
audit_log_rotate_on_size	0
audit_log_statement_policy	ALL
audit_log_strategy	ASYNCHRONOUS
+-----------------------------+--------------+
13 rows in set (0.00 sec)

※１　米国の国立標準技術研究所によって制定されている、標準的な暗号化アルゴリズム。
※２　keyring_okv_conf_dirは、MySQL Enterprise TDEでのみ使用可能。
※３　鍵管理製品との連携部分のみMySQL Enterprise Editionが必要。

13.1 　MySQLパフォーマンスチューニング概論
　パフォーマンスチューニングを実施する場合、チューニングの指
標やボトルネックを明確にして適切なチューニングをすることが重
要です。また、単一処理（単一SQL）のレスポンスタイムをチューニ
ングすることも大切ですが、アプリケーション全体としてチューニ
ングを実施する場合にはベンチマークテストを実施することも重要
です。

13.1.1 　チューニングの指標
　チューニングの指標として代表的なものに、「スループット」と
「レスポンスタイム」があります。

スループット
　スループットは、単位時間当たりの処理能力を表す指標です。よ
く使われる指標に「Transaction Per Second」（TPS）があります。
TPSは、1秒間で処理したトランザクション数を表します。

レスポンスタイム
　レスポンスタイムは、ある処理を実行してから結果が返ってくる
までの時間です。データベースにおけるレスポンスタイムはSQLの実
行時間ですが、アプリケーションとしてのレスポンスタイムには以
下のような要因も含まれます。

●アプリケーションサーバーでの処理時間
●データベースサーバーとアプリケーションサーバーのネットワーク通信時
間

　ロック待ちやキューイングによる待ちが発生している場合、これ
らの待ち時間もレスポンスタイムに含まれることに注意が必要で
す。キューイングによる待ちとは、複数の同時実行処理がある場合
に処理をさばききれず、実行される前にキューで待たされることで
す。実社会では、サポートセンターに電話した時に電話が集中して
いる旨の音声ガイダンスが流れ、オペレーターにつながるまでに待

たされることがあると思いますが、これがキューイングによる待ち
に該当します。
　チューニングにおいて、レスポンスタイムが向上することで結果
としてスループットが向上する場合もありますが、そうならない場
合もあることに注意してください。代表的な例として、インデック
スによるチューニングがあります。データベースには検索処理のレ
スポンスタイムを向上するためにインデックスを付けることができ
ますが、インデックスは更新処理に対してはオーバーヘッドとなり
得ます。インデックスを追加することで、データを更新する際にテ
ーブルデータだけでなくインデックスも更新する必要があるからで
す。そのため、不要なインデックスはできる限り作成しない方が、
更新処理のスループットの向上につながります。

13.1.2 　ボトルネックの特定とチューニング
　チューニングを行う時はボトルネックを特定し、そのボトルネッ
クを解消します。
　ボトルネックを正確に特定するには、さまざまな情報を確認する
必要があります。実行時間だけではなく、ある処理を実行した時の
OSリソースの使用状況、MySQLサーバーの稼働状況などを確認し、
ボトルネックを特定します。MySQLサーバーでは、ボトルネックの
特定に役立つ稼働情報を確認するための仕組みとして、ステータス
変数やパフォーマンス・スキーマなどの仕組みがあります。これら
については後ほど解説します。
　ボトルネックを解消するためのチューニング方法は、1つとは限り
ません。例えば、先ほどのキューイングによる待ちが発生している
場合には、以下のチューニング方法が考えられます。

●同時実行処理数を増やすことで、キューイングせずに実行できる処理数を
増やす
前述したサポートセンターの例では、対応するオペレーターの人数を増加
することに該当

●1つ1つの処理の処理時間を短縮することで、キューに入りにくくする
前述したサポートセンターの例では、オペレーターの対応手順を改善する
などして、オペレーターが1件の問合せにかかる時間を短縮することに該
当

　考えられるチューニング方法の中から、実現可能な方法でチュー
ニング指標を達成できるようにチューニングします。

13.1.3 　ベンチマークテスト
　チューニングを実施する場合、単一処理（単一SQL）のレスポンス
タイムをチューニングすることも重要ですが、アプリケーション全
体をチューニングすることも重要です。アプリケーション全体のチ
ューニングを実施する場合に、単一処理のテストでは発見できなか
った性能特性を明らかにするために、ベンチマークテストを実施し
ます。
　ベンチマークテストを実施する際は、本番環境と同様の条件でテ
ストを実施しないと、正しくボトルネックを特定できないことに注
意しましょう。例えば、以下のような失敗例があります。

●本番環境より少ないデータ量でテスト
⇒テストでは全データがキャッシュに乗っていたのでパフォーマンスが良
かったが、本番環境ではキャッシュアウトが発生し、想定していたパフ
ォーマンスが出なかった

●データやリクエストのばらつきを考慮しないでテスト
⇒テストでは全データに均一にアクセスしていたが、本番環境ではデータ
のアクセスに偏りがあった。そのため、ベンチマークテストでは特定デ
ータを更新する際のロック待ちが大量に発生することに気付けなかった

　このように条件の異なるベンチマークテストから得た性能特性を
基にチューニングしても、本番環境において有効なチューニング方
法となるとは限りません。ベンチマークテストを実施する際は、で
きる限り本番環境と同様の条件でテストを実施しましょう。

13.2 　稼働状況と設定の確認
　MySQLサーバー全体のチューニングを行う際は、MySQLサーバー
の稼働状況や設定を確認して、必要に応じて設定（システム変数）
を変更します。

13.2.1 　ステータス変数
　MySQLサーバーでは、稼働状況を確認する方法として「ステータ
ス変数」が用意されています。例えば、以下のステータス変数が存
在します。ステータス変数の変化を確認することにより、MySQLサ
ーバーの稼働状況を確認できます。

　表1で紹介した以外にも、多数のステータス変数が存在します。詳
細は以下のリファレンスマニュアルを参照してください。

●URL：MySQL 5.7 Reference Manual：6.1.7 Server Status Variables
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

　大半のステータス変数は累積値を表示するため、ステータス変数
を確認する時は、稼働状況を確認したい処理の前後でステータス変
数を記録し、差分を取ることで該当処理による「ステータス変数の
変化」を読み取ります。上で例に挙げたステータス変数の場合、
Threads_connectedだけは現在の値（瞬間値）を表示するので差分を
取る必要はありませんが、それ以外のステータス変数は累積値を表
示するため、差分を取って変化を確認します。

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

　ステータス変数は、グローバル単位のものとセッション単位のも
のがありますが、セッション単位のステータス変数はFLUSH STATUS
コマンドを実行することで初期化できます。そのため、特定セッシ
ョンでチューニング対象の処理を実行して、ステータス変数の変化
を確認する場合は、FLUSH STATUSコマンド実行後に該当処理を実行
し、その後ステータス変数を確認することで、差分を取らずに該当
処理によるステータス変数の変化を確認できます。
　ステータス変数を確認するには、以下の方法があります。

●mysqlコマンドラインクライアントからSHOW STATUSコマンドを実行する
●mysqladminのextended-statusコマンドを実行する
●MySQL Workbenchから確認する

　MySQL Workbenchからステータス変数を確認する方法は、レッス
ン14で解説します。

SHOW STATUSコマンドによるステータス変数の確認
　mysqlコマンドラインクライアントからSHOW STATUSコマンドを
実行することで、ステータス変数を確認できます。構文は以下の通
りです（リスト1）。

リスト1　SHOW STATUSコマンドの構文

mysql> SHOW [GLOBAL | SESSION] STATUS [LIKE 'pattern' |
WHERE expr]

　'pattern'部分に%をワイルドカードとして指定し、ステータス変数
を絞り込んで表示できます。例えば、リスト2を実行すると、セッシ
ョン単位のステータス変数の中から'Com_'という接頭辞を持つステ
ータス変数のみを表示します。なお、「￥」はエスケープ文字で
す。「_」のみを指定すると文字数が1文字のワイルドカードと見な
されてしまうため、エスケープ文字を使用しています。

リスト2　SHOW STATUSコマンドによるステータス変数の確認例

mysql> SHOW SESSION STATUS LIKE 'Com￥_%';
+-----------------------------+-------+
| Variable_name　　　　　　　 | Value |
+-----------------------------+-------+
Com_admin_commands	0
Com_assign_to_keycache	0
Com_alter_db	0
<中略>	
Com_select	13
<中略>	
Com_stmt_reprepare	0
+-----------------------------+-------+
148 rows in set (0.01 sec)

mysqladminのextended-statusコマンドによるステータス
変数の確認
　mysqladminのextended-statusコマンドを実行することで、ステー
タス変数が確認できます。例えば、リスト3のように実行します。こ

のコマンドを実行すると、60秒ごとにステータス変数の差分を出力
する動作を10回繰り返します。

リスト3　mysqladminによるステータス変数の確認例

$ mysqladmin -u root -p extended-status -i 60 -c 10 -r

　mysqladminのコマンドやオプションの詳細は以下のリファレンス
マニュアルを参照してください。

●URL：MySQL 5.7 Reference Manual：5.5.2 mysqladmin ─ Client for
Administering a MySQL Server
https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html

https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html

13.2.2 　システム変数
　レッスン2の「2.5　設定ファイル」で解説した通り、システム変
数はmy.cnfで設定します。稼働中に現在設定されているシステム変数
を確認する方法としては、以下の方法があります。

●mysqlコマンドラインクライアントからSHOW VARIABLESコマンドを実行す
る

●mysqlコマンドラインクライアントからSELECT @@コマンドを実行する
●パフォーマンス・スキーマから確認する
●MySQL Workbenchから確認する

　MySQL Workbenchからシステム変数を確認する方法は、レッスン
14で解説します。

SHOW VARIABLESコマンドによるシステム変数の確認
　SHOW VARIABLESコマンドによるシステム変数の確認方法は、レ
ッスン2の「2.5.1　設定の確認」で解説していますので参照してくだ
さい。

SELECT @@コマンドによるシステム変数の確認
　SELECT文に以下の形式でシステム変数名を指定することで、シス
テム変数を確認可能です。

●グローバル変数の確認：@@global.システム変数名
●セッション変数の確認：@@session.システム変数名

　例えば、以下のコマンドを実行すると、システム変数
sort_buffer_sizeの設定値をグローバル単位、セッション単位でそれ
ぞれ確認できます（リスト4）。セッション単位で設定を変更してい
る場合は、この例のようにグローバル単位の値とセッション単位の
値が異なります。

リスト4　SELECT @@によるシステム変数の確認例

mysql> SELECT
@@global.sort_buffer_size,@@session.sort_buffer_size;
+---------------------------+----------------------------+
| @@global.sort_buffer_size | @@session.sort_buffer_size |
+---------------------------+----------------------------+
|　　　　　　　　　　262144 |　　　　　　　　 1073741824 |
+---------------------------+----------------------------+
1 row in set (0.00 sec)

パフォーマンス・スキーマによるシステム変数の確認
　パフォーマンス・スキーマの以下のテーブルをSELECTすること
で、グローバル単位、セッション単位のシステム変数を確認できま
す。

●performance_schema.global_variables
●performance_schema.session_variables

　例えば、以下の例では、グローバル単位のシステム変数から接頭
辞が「Innodb_buffer」であるシステム変数のみを確認できます（リ

スト5）。

リスト5　パフォーマンス・スキーマによるシステム変数の確認例

mysql> SELECT * FROM performance_schema.global_variables
WHERE VARIABLE_NAME LIKE 'innodb_buffer%';
+-------------------------------------+----------------+
| VARIABLE_NAME　　　　　　　　　　　 | VARIABLE_VALUE |
+-------------------------------------+----------------+
innodb_buffer_pool_chunk_size	134217728
innodb_buffer_pool_dump_at_shutdown	ON
innodb_buffer_pool_dump_now	OFF
innodb_buffer_pool_dump_pct	25
innodb_buffer_pool_filename	ib_buffer_pool
innodb_buffer_pool_instances	1
innodb_buffer_pool_load_abort	OFF
innodb_buffer_pool_load_at_startup	ON
innodb_buffer_pool_load_now	OFF
innodb_buffer_pool_size	134217728
+-------------------------------------+----------------+
10 rows in set (0.01 sec)

13.3 　システム変数のチューニング例
　システム変数のチューニングについて、いくつか例を説明しま
す。

13.3.1 　接続スレッドごとの設定値
　MySQLサーバーにクライアントが接続して処理を実行すると、サ
ーバー側では接続スレッドが生成され、接続スレッドごとにメモリ
ー上に各種の領域を確保して処理を実行します。接続スレッドごと
にメモリー上に確保する領域には、以下のものがあります。

　これらの設定の大半はデフォルトのままでも問題のないケースが
多いのですが、必要に応じてチューニングを実施します。ここで
は 、 チ ュ ー ニ ン グ す る こ と が 多 い 「 sort_buffer_size 」
「tmp_table_size」について、チューニング方法を説明します。

sort_buffer_sizeのチューニング
　sort_buffer_sizeは、ソート用のメモリー領域です。MySQLサーバ
ーでソート処理を実行した場合、このメモリー領域のサイズを超え
るソート処理は、ディスク上のファイルを利用して実行されます。
つまり、ディスクI/Oが発生します。ディスクI/Oを削減することが
レスポンスタイム向上につながるため、ファイルソートが発生して

いる場合にsort_buffer_sizeを拡張することで、チューニングできる
可能性があります。
　ファイルソートが発生しているか否かは、ステータス変数
Sort_merge_passesから確認できます。Sort_merge_passesが増加し
て い る 環 境 で は 、 sort_buffer_size の 増 加 を 検 討 し ま す 。
sort_buffer_sizeはセッション単位で動的に変更できるため、バッチ
処理など特定の処理でだけSort_merge_passesが増加している環境で
は、その処理を実行するセッションだけsort_buffer_sizeを変更して
チューニングすることも可能です。

tmp_table_sizeとmax_heap_table_sizeのチューニング
　MySQLサーバーでは、UNION、ORDER BY、GROUP BY使用時な
ど、クエリー処理中に内部的に一時テーブルを使用する場合があり
ます。この時、一時テーブルのサイズが大きくなり、メモリー上の
一時テーブルで処理しきれない場合は、ディスク上に一時テーブル
を書き出します。メモリー上の一時テーブルのサイズの上限は、
tmp_table_sizeおよびmax_heap_table_sizeの最小値で設定されてい
るため、これらの設定値を増加することでディスクI/Oを削減し、チ
ューニングできる可能性があります。
　一時テーブルをディスク上に書き出しているか否かは、ステータ
ス 変 数 Created_tmp_disk_tables で 確 認 で き ま す 。
Created_tmp_disk_tablesが増加している環境では、tmp_table_sizeお
よびmax_heap_table_sizeの増加を検討します（両方とも増加させる
必要があります）。tmp_table_sizeおよびmax_heap_table_sizeは、
セッション単位で動的に変更可能です。

13.3.2 　 MySQL サ ー バ ー 全 体 の 設 定 値
thread_cache_sizeのチューニング

　クライアントがサーバーに接続すると、コネクションスレッドが
生成されます。コネクションスレッドは、コネクション切断時に毎
回破棄せずキャッシュして使いまわす仕組みがあります。このキャ
ッシュのサイズを設定しているのがthread_cache_sizeです。
　 thread_cache_sizeが足りているかどうかは、ステータス変数
Threads_createdで確認できます。サーバー起動後にクライアントが
接続するとコネクションスレッドが新規で作成されるため、
Threads_createdに値が入っていること自体は問題ではありません
が、時間と共にThreads_createdの値が増加している場合はスレッド
キャッシュが足りていないと判断できるため、thread_cache_sizeを
増加させてチューニングします。

13.3.3 　InnoDBストレージエンジンの設定値
　InnoDBストレージエンジンの設定値について解説します。

innodb_buffer_pool_sizeのチューニング
　innodb_buffer_pool_sizeには、InnoDBがデータとインデックスを
キャッシュするメモリー領域のサイズを指定します。パフォーマン
スを考慮すると、頻繁にアクセスするデータとインデックスはすべ
てメモリー上にキャッシュされることが望ましいため、可能な範囲
でできる限り大きく設定するのがチューニングの定石となっていま
す。ただし、実データ量以上に大きく設定してもメリットはありま
せん。
　キャッシュの空き状況や、どの程度キャッシュが有効活用できて
いるかは、リスト6のようにSHOW ENGINE INNODB STATUSから確
認できます。

リスト6　InnoDBのキャッシュヒット率の確認

mysql> SHOW ENGINE INNODB STATUS￥G
*************************** 1. row

　Type: InnoDB
　Name:
Status:
=====================================
2016-06-30 09:09:32 0x7fae54db9700 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 7 seconds

<中略>

BUFFER POOL AND MEMORY

Total large memory allocated 137428992
Dictionary memory allocated 350357
Buffer pool size　 8192
Free buffers　　　 7918
Database pages　　 274
Old database pages 0
Modified db pages　0
Pending reads　　　0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 240, created 34, written 36
0.86 reads/s, 0.00 creates/s, 0.00 writes/s
Buffer pool hit rate 956 / 1000, young-making rate 0 / 1000 not 0 /
1000
<中略>

END OF INNODB MONITOR OUTPUT
============================

1 row in set (0.00 sec)

　ページサイズのデフォルトは16KBですから、上の例ではBuffer
pool sizeの8192に16KBを乗じると、バッファプールのサイズが
128MB（131,072KB）であることがわかります。同様に、Database
pages、Free buffersから算出すると4,384KBだけ使用していて、
126,688KBは空いていることがわかります。また、「Buffer pool hit
rate 956 / 1000」という出力から、直近のキャッシュのヒット率が
95.6%であったこともわかります。
　SHOW ENGINE INNODB STATUSの出力は、直近n秒間のサマリー
となっているため、キャッシュヒット率の傾向を確認する場合は、1
回の出力だけで判断せずに複数回出力を確認して傾向を読み取りま
す。冒頭に出力されている「Per second averages calculated from the
last 7 seconds」から、直近何秒間のサマリーの情報が出力されてい
るかを確認できます。
　キャッシュに乗っているオブジェクトを詳細に確認できる
INFORMATION_SCHEMA.INNODB_BUFFER_PAGEというテーブルもあ
りますが、INFORMATION_SCHEMA.INNODB_BUFFER_PAGEの参照は
大幅なパフォーマンス上のオーバーヘッドを発生させる可能性があ
るため、本番環境では基本的に参照しないでください。詳細は以下
のリファレンスマニュアルを参照ください。

● URL ： MySQL 5.7 Reference Manual ： 22.31.1 The
INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-page-table.html

innodb_log_file_sizeのチューニング

https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-page-table.html

　トランザクションをコミットした時に、InnoDBログファイルにト
ランザクション内容が記録されます。 innodb_log_file_sizeには、
InnoDBログファイルのサイズを設定します。InnoDBログファイルの
サイズが大きくなると、そのぶんクラッシュリカバリにかかる時間
は長くなりますが、ダーティページ（バッファプール上で変更され
たが、まだディスク上に書き出されていないページ）をたくさんメ
モリー上に保持できるようになります。ダーティページをたくさん
保持できるとディスクI/Oの削減につながるため、更新処理が多発す
る環境ではinnodb_log_file_sizeを拡張することでパフォーマンスの
向上が見込めます。
　InnoDBログファイルのサイズをinnodb_buffer_pool_size以上に拡
張する必要はないため、一般的にはinnodb_buffer_pool_sizeの25%～
100%の範囲でサイズを調整します。
　なお、別途innodb_log_files_in_groupでログファイルの個数が設定
されています。innodb_log_files_in_groupのデフォルト値は2である
た め 、 デ フ ォ ル ト 設 定 の 場 合 、 innodb_log_file_size は
innodb_buffer_pool_sizeの12.5%～50%の範囲でサイズを調整しま
す。
　InnoDBログファイルのサイズ変更は、以下の手順で行います。

1．MySQLサーバーを停止し、シャットダウン時にエラーが発
生していないことを確認する
2 ． my.cnf を 編 集 し 、 innodb_log_file_size を 変 更 す る
（innodb_log_files_in_groupを増加してログファイルの個数を

増やすことも可能）
3．MySQLサーバーを起動する

　なお、この手順はMySQL 5.6.8以降で実施可能です。MySQL 5.6.7
以前で上の手順を実行すると、最悪の場合、データベースが破損す
ることもあります。MySQL 5.6.7以前でのInnoDBログファイルのサイ
ズ変更手順は、以下のリファレンスマニュアルを参照してくださ
い。

●URL：MySQL 5.6 リファレンスマニュアル：14.5.7 InnoDB ログファイ
ルの数またはサイズの変更、および InnoDB テーブルスペースのサイズ
の変更
https://dev.mysql.com/doc/refman/5.6/ja/innodb-data-log-
reconfiguration.html

innodb_flush_methodのチューニング
　innodb_flush_method=O_DIRECTに設定すると、データファイル
へのアクセス時にファイルキャッシュを使用しなくなります。この
設定は、Linux環境では多くの場合オーバーヘッドが低下してパフォ
ーマンス向上につながります。

　Column　　 MySQLのリリースサイクル

　MySQLの開発中のマイナーバージョンには、他のソフトウェア
で見られるようなアルファ版やベータ版といったものはありませ

https://dev.mysql.com/doc/refman/5.6/ja/innodb-data-log-reconfiguration.html

ん。MySQLではDevelopment Milestone Releaseというモデルで開
発を進めています。省略形でDMRとも呼ばれます。
　DMRのモデルは、MySQL 5.5の開発中に取り入れられました。
MySQL 5.1までの開発モデルでは、いつまで経っても製品がリリー
スされないことがあったほか、リリースされたとしても品質に大
きな問題があることがあり、MySQLの利用者に大きな不満がたま
っていました。この反省を踏まえて、より安定したメジャーバー
ジョン間でも一貫性のある開発を進めるために採用されたのが
DMRです。
　DMRの最大のポイントは、メインの開発ブランチは常に高い品
質を保った安定したものを維持するということです。このブラン
チでは、デグレードが起きていないか確認するリグレッションテ
ストを常に行い、何か問題が見つかればすぐに改修します。新し
い機能を追加する際には、非常に多くの品質保証テスト（QAテス
ト）を行います。新しい機能の開発は独立したツリーで行われ、
メインの開発ブランチでの変更点を取り込みながら進められま
す。開発が進むと品質保証テストとバグ修正を繰り返し、品質保
証テストチームから合格が出た段階でメインの開発ブランチにマ
ージされます。これによって新しい機能は品質保証テストを済ま
せてからマージされ、品質を保つことができるようになっていま
す。
　このようにして開発中のバージョンであるDMRが一部の品質が
良くない機能に邪魔をされてうまく動作しないようなことを回避

し、利用者が早い段階から新しい機能を試すことが可能になりま
した。
　開発中の新機能に対して利用者のフィードバックをいち早く集
めるために、品質保証テストが完了していないものをMySQL Labs
（実験室）でリリースしています。このLabs版のソフトウェア
は、本番環境での利用は非推奨とされています。実験室と名前は
付いているものの、MySQL 5.7に導入されたマルチソースレプリケ
ーションや実装を一新したオプティマイザなども、このLabs版で
開発の早い段階から利用者のフィードバックを集めた上で、製品
としてのリリースにつなげています。

13.4 　演習
　このレッスンではパフォーマンスチューニングの基礎について学
習しました。ここではシステム変数、ステータス変数の参照方法に
ついて確認しましょう。

1. SHOW VARIABLESを利用して、以下の設定値を確認する
●sort_buffer_size
●thread_cache_size
●innodb_buffer_pool_size
ヒント：レッスン13の「13.2.1　ステータス変数」および

「13.2.2　システム変数」の「SHOW VARIABLESコマ
ンドによるシステム変数の確認」を参照

2. パフォーマンス・スキーマを参照して、1と同様の設定値を確認
する
ヒント：レッスン13「13.2.2　システム変数」の「パフォーマ

ンス・スキーマによるシステム変数の確認」を参照

3. SHOW STATUSを利用して、以下のSQLを実行した時のステー
タス変数の変化を確認する

SELECT * FROM world.City;

ヒント：レッスン13「13.2.1　ステータス変数」の「SHOW
STATUSコマンドによるステータス変数の確認」を参
照

4. mysqladminのextended-statusコマンドを使って、5秒ごと
のステータス変数の変化を確認する
ヒント：レッスン 13「 13.2.1　ステータス変数」の

「mysqladminのextended-statusコマンドによるステー
タス変数の確認」を参照

　　　解説
1．SHOW VARIABLESによるシステム変数の確認方法は以下の
通りです。ここでは、グローバル単位で設定されている設定値
を確認しています。

mysql> SHOW GLOBAL VARIABLES LIKE 'sort_buffer_size';
+------------------+--------+
| Variable_name　　| Value　|
+------------------+--------+
| sort_buffer_size | 262144 |
+------------------+--------+
1 row in set, 1 warning (0.01 sec)

mysql> SHOW GLOBAL VARIABLES LIKE 'thread_cache_size';
+-------------------+-------+
| Variable_name　　 | Value |
+-------------------+-------+
| thread_cache_size | 9　　 |
+-------------------+-------+
1 row in set, 1 warning (0.01 sec)

mysql> SHOW GLOBAL VARIABLES LIKE
'innodb_buffer_pool_size';
+-------------------------+-----------+
| Variable_name　　　　　 | Value　　 |
+-------------------------+-----------+
| innodb_buffer_pool_size | 134217728 |
+-------------------------+-----------+

1 row in set, 1 warning (0.01 sec)

2．パフォーマンス・スキーマによるシステム変数の確認方法は以
下の通りです。ここでは、グローバル単位で設定されている設
定値を確認しています。

mysql> SELECT * FROM
performance_schema.global_variables WHERE
VARIABLE_NAME IN
('sort_buffer_size','thread_cache_size','innodb_buffer_pool_s
ize');
+-------------------------+----------------+
| VARIABLE_NAME　　　　　 | VARIABLE_VALUE |
+-------------------------+----------------+
innodb_buffer_pool_size	134217728
sort_buffer_size	262144
thread_cache_size	9
+-------------------------+----------------+
3 rows in set, 1 warning (0.00 sec)

3．クエリー実行時のステータス変数の変化を確認する方法は以下
の通りです。

mysql> FLUSH STATUS;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM world.City;

+------+-----------------------------------+-------------+-----------
-----------+------------+
| ID　 | Name　　　　　　　　　　　　　　　| CountryCode |
District　　　　　　 | Population |
+------+-----------------------------------+-------------+-----------
-----------+------------+
|　　1 | Kabul　　　　　　　　　　　　　　 | AFG　　　　 |
Kabol　　　　　　　　|　　1780000 |
|　　2 | Qandahar　　　　　　　　　　　　　| AFG　　　　 |
Qandahar　　　　　　 |　　 237500 |
<<中略>>
| 4079 | Rafah　　　　　　　　　　　　　　 | PSE　　　　 |
Rafah　　　　　　　　|　　　92020 |
+------+-----------------------------------+-------------+-----------
-----------+------------+
4079 rows in set (0.02 sec)

mysql> SHOW STATUS;
+---+----------------------
----------------------------+
| Variable_name 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 |
Value　　　　　　　　　　　　　　　　　　　　　　|
+---+----------------------
----------------------------+
| Aborted_clients 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 |
0　　　　　　　　　　　　　　　　　　　　　　　　|
| Aborted_connects 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 |
0　　　　　　　　　　　　　　　　　　　　　　　　|

| Binlog_cache_disk_use 　 　 　 　 　 　 　 　 　 　 　 　 |
0　　　　　　　　　　　　　　　　　　　　　　　　|
| Binlog_cache_use 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 |
0　　　　　　　　　　　　　　　　　　　　　　　　|
| Binlog_stmt_cache_disk_use 　 　 　 　 　 　 　 　 　 　 |
0　　　　　　　　　　　　　　　　　　　　　　　　|
<<中略>>
| validate_password_dictionary_file_last_parsed | 2016-10-
05 22:03:19　　　　　　　　　　　　　　　|
| validate_password_dictionary_file_words_count |
0　　　　　　　　　　　　　　　　　　　　　　　　|
+---+----------------------
----------------------------+
358 rows in set (0.00 sec)

4．ヒント部分の解説を参照してください。

14.1 　パフォーマンス・スキーマとsysスキーマ
　「パフォーマンス・スキーマ」は、性能統計情報を分析するため
の仕組みです。MySQLサーバー内部の処理時間等を記録し、
performance_schemaデータベース内のテーブルに蓄積しています。
この機能はデフォルトで有効になっていますが、無効化したり、収
集する情報の粒度をカスタマイズすることも可能です。
　さらにMySQL 5.7では、パフォーマンス・スキーマをより便利に活
用するためのビュー、プロシージャ、ファンクションがセットにな
った「sysスキーマ」が標準搭載されています。MySQL 5.5、5.6でも
DB作成後にsysスキーマを追加でセットアップすることが可能です
が、MySQL 5.7ではDB作成時にsysスキーマが自動的に作成されるよ
うに仕様変更されています。
　パフォーマンス・スキーマを参照すると、詳細に性能統計情報を
確認することが可能です。ただし、情報量が非常に多いため、まず
はsysスキーマのビューを参照して、性能統計情報を確認することを
おすすめします。sysスキーマには、パフォーマンス・スキーマの情
報を目的にあわせて見やすく集計したビューが多数あります。例え
ば、以下のビューがチューニングに役立ちます。

●sys.statement_analysis
SQLごとに実行回数や実行時間（最大、平均、トータル）などを集計した
ビュー。デフォルトではトータル実行時間が長い順にソートされている
が、ORDER BY句で他の列を指定することで、任意の項目でソートも可能

●sys.innodb_lock_waits

ロック待ちしているSQLの調査に役立つビュー。どのオブジェクトに対す
るロックが原因でどのSQLがどれくらいの時間待っているか、ロック待ち
を発生させているコネクション／ロック待ちしているコネクションのコネ
クションID、ロック待ちを発生させているSQL／セッションを強制終了す
るためにはどんなコマンドを打てばいいか、などの情報が確認できる

●sys.schema_unused_indexes
使用していないインデックスの調査に役立つビュー。レッスン13で解説し
たように、インデックスは検索処理のレスポンスタイムを向上できる可能
性があるが、更新処理に対しては追加のオーバーヘッドが発生するため、
使用していないインデックスは削除することが望ましい。このビューを参
照すると使用していないインデックスの一覧が確認できるため、削除候補
のインデックスの選定に役立つ。このビューを参照する時は、以下の点に
注意する
●DBを起動してから1回も使用していないインデックスが出力されるた
め、DB起動後の稼働期間を十分確保してからビューを参照する

●DB起動後にアクセスがあったテーブルに付けられているインデックスが
対象であるため、テーブル自体にアクセスがなければそのテーブルに付
けられているインデックスは検出されない

　パフォーマンス・スキーマ、sysスキーマから確認できる情報の詳
細は、以下リファレンスマニュアルを参照してください。

● MySQL 5.7 Reference Manual： 23.9 Performance Schema Table
Descriptions
http://dev.mysql.com/doc/refman/5.7/en/performance-schema-table-
descriptions.html

●MySQL 5.7 Reference Manual：24.4.3 sys Schema Views
http://dev.mysql.com/doc/refman/5.7/en/sys-schema-views.html

http://dev.mysql.com/doc/refman/5.7/en/performance-schema-table-descriptions.html
http://dev.mysql.com/doc/refman/5.7/en/sys-schema-views.html

14.2 　SQLチューニングに役立つ機能
　SQLチューニングに役立つ機能を解説します。

14.2.1 　スロークエリーログ
　「スロークエリーログ」は、実行時間が指定した時間以上かかっ
たクエリーを出力するログです。デフォルトでは出力されないた
め、システム変数を設定して出力します。スロークエリーログに関
するシステム変数についてはレッスン3の「3.1.6　ログ」で解説して
いるので、そちらを参照してください。
　スロークエリーログにクエリーが出力されるタイミングは、クエ
リーの実行が完了した後です。そのため、現在実行中の時間がかか
っているクエリーについてはスロークエリーログでは調査できない
ことに注意してください。現在実行中の時間がかかっているクエリ
ーを調査する場合は、後述するSHOW FULL PROCESSLISTを使用しま
す。

14.2.2 　mysqldumpslow
　mysqldumpslowは、スロークエリーログの集計ツールです。スロ
ークエリーログは新しいスロークエリーが発見されるたびに追記さ
れます。mysqldumpslowを使えば、たくさんのクエリーが含まれて
いるスロークエリーログを集計し、同じパターンのクエリーをまと
めて実行回数、累積実行時間、合計実行時間を集計できるため、優
先してチューニングすべきクエリーの特定などに役立ちます。
　同じパターンのクエリーとは、WHERE句で指定した条件値のみが
異なるクエリーのことです。例えば、以下のように実行するとスロ
ークエリーログを集計し、累積実行時間が長いクエリーが上位に表
示されます（リスト1）。

リスト1　mysqldumpslow使用方法

$ mysqldumpslow -s at ￥

　mysqldumpslowのオプションの詳細は、以下のリファレンスマニ
ュアルを参照してください。

● URL ： MySQL 5.7 Reference Manual ： 5.6.8 mysqldumpslow ─
Summarize Slow Query Log Files
https://dev.mysql.com/doc/refman/5.7/en/mysqldumpslow.html

https://dev.mysql.com/doc/refman/5.7/en/mysqldumpslow.html

14.2.3 　SHOW FULL PROCESSLIST
　SHOW FULL PROCESSLISTは、mysqlコマンドラインクライアント
で使用できるコマンドで、現在接続しているコネクションの状態を
一覧表示できます。現在実行中のクエリーで時間がかかっているも
のがある場合はSHOW FULL PROCESSLISTを実行し、「Command:
Query」と出力されているものから「Time」の値が大きなものを探す
ことで特定可能です。

14.2.4 　EXPLAIN
　EXPLAINは、SQLの実行計画を確認するためのコマンドです。
MySQLコマンドラインクライアントでSQL文の前にEXPLAINというキ
ーワードを付けることで、SQLの実行計画を確認できます（リスト
2）。

リスト2　EXPLAINによる実行計画の確認例

mysql> EXPLAIN SELECT * FROM world.City WHERE ID=1;
+----+-------------+-------+------------+-------+---------------+--------
-+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type　| possible_keys | key　
| key_len | ref　 | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+--------
-+---------+-------+------+----------+-------+
|　1 | SIMPLE　　　| City　| NULL　　　 | const | PRIMARY　
| PRIMARY | 4　　　 | const |　　1 |　 100.00 | NULL　|
+----+-------------+-------+------------+-------+---------------+--------
-+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

　実行計画とは、SQLを処理する時の内部的な処理手順です。SQLは
「どのテーブルからどの列の情報を取得する」など処理の目的は定
義していますが、RDBMS内部での処理手順については定義していま
せん。MySQLでは、オプティマイザというモジュールが最も少ない
コストで処理できると思われる処理手順を選択して、実行計画を作
成します。ここでいうコストとは、IOリソース、CPUリソースの消

費量です。つまり、IOリソース、CPUリソースの消費量が最も少な
いと思われる処理手順が実行計画として選択されます。
　実行計画の違いでわかりやすい例は、テーブルスキャンとインデ
ックススキャンの違いです。リスト3のSQLを実行した場合、テーブ
ルに対してインデックスを経由して「CountryCode='JPN'」の行にだ
けアクセスするか、インデックスを使わずにテーブルの全行にアク
セスしてから後で「CountryCode='JPN'」のフィルタリングをするか
は、オプティマイザが判断した実行計画に依存します。

リスト3　WHERE句を使ったSQLの例

mysql> SELECT * FROM world.City WHERE CountryCode='JPN';

　以下は、この実行計画を確認するためにEXPLAINを使用した例で
す。

リスト4　EXPLAINによる実行計画の確認例

mysql> EXPLAIN SELECT * FROM world.City WHERE
CountryCode='JPN';
+----+-------------+-------+------------+------+---------------+---------
----+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key　
| key_len | ref　 | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+---------
----+---------+-------+------+----------+-------+
|　1 | SIMPLE　　　| City　| NULL　　　 | ref　| CountryCode　 |
CountryCode | 3　　　 | const |　248 |　 100.00 | NULL　|

+----+-------------+-------+------------+------+---------------+---------
----+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

　実行計画を確認すると、実際に使用するインデックスを表示する
key列にCountryCodeと表示されていることから、このクエリーはイ
ンデックスCountryCodeを使用してテーブルデータにアクセスするこ
とがわかります。
　また、テーブルへのアクセスタイプ（type列）にrefと表示されて
いることから、ユニークではないインデックスを使用した等価検索
であることもわかります。
　EXPLAINによって出力される情報の詳細は、次のリファレンスマニ
ュアルを参照してください。

● URL ： MySQL 5.7 Reference Manual ： 9.8.2 EXPLAIN Output
Format
https://dev.mysql.com/doc/refman/5.7/en/explain-output.html

https://dev.mysql.com/doc/refman/5.7/en/explain-output.html

14.2.5 　オプティマイザ・トレース
　オプティマイザが実行計画を選択する過程で、どのように各処理
手順のコストを見積もったかなど、オプティマイザの動きの詳細を
確認できます。適切な実行計画が選択されなかった場合に、オプテ
ィマイザ・トレースを取得することで、なぜその実行計画が選択さ
れたのかというオプティマイザの判断を詳細に調査できます。以下
の手順でオプティマイザ・トレースが取得できます（リスト5）。

リスト5　オプティマイザ・トレース取得方法

mysql> SET optimizer_trace="enabled=on";
mysql> <<トレースを取得したいSQL文を実行>>
mysql> SELECT * FROM
INFORMATION_SCHEMA.OPTIMIZER_TRACE￥G
mysql> SET optimizer_trace="enabled=off";

14.2.6 　ヒント
　オプティマイザが選択する実行計画が適切ではない場合、ヒント
を使用してオプティマイザに対して指示を出すことで、実行計画を
適切なものに変更できる場合があります。MySQL 5.7では、以下の3
種類のヒントが使用できます。

●インデックスヒント
●STRAIGHT_JOINヒント
●オプティマイザヒント（MySQL 5.7から追加されたヒント）

インデックスヒント
　インデックスを適切に使用することはSQLチューニングにおいて非
常に重要です。オプティマイザが適切なインデックスを選択しない
場合、インデックスヒントを使うことでオプティマイザに対して特
定のインデックスを使用する／使用しない、という指示を出せま
す。表1の通り、3種類のインデックスヒントが存在します。

　リスト6は、インデックスヒントの使用例です。EXPLAINによりイ
ンデックスヒントを使用することで実行計画が変化していることを
確認しています。この例では、USE INDEXを使用してオプティマイ
ザにインデックスContを使用するように指示を出しましたが、オプ

ティマイザはテーブルスキャンの方が効率的と判断したため、USE
INDEXでは実行計画は変化しませんでした。しかし、FORCE INDEX
を使用することでpossible_keysがContに変化し、インデックスCont
を使用する実行計画に変更できたことが確認できます。

リスト6　インデックスヒントの使用例

mysql> EXPLAIN SELECT * FROM world.Country WHERE
Continent='Africa' OR Continent='Asia';
+----+-------------+---------+------------+------+---------------+------
+---------+------+------+----------+-------------+
| id | select_type | table　 | partitions | type | possible_keys |
key　| key_len | ref　| rows | filtered | Extra　　　 |
+----+-------------+---------+------------+------+---------------+------
+---------+------+------+----------+-------------+
| 　 1 | SIMPLE 　 　 　 | Country | NULL 　 　 　 | ALL 　 |
Cont　　　　　| NULL | NULL　　| NULL | 239　| 45.61　　| Using
where |
+----+-------------+---------+------------+------+---------------+------
+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT * FROM world.Country USE INDEX(Cont)
WHERE Continent='Africa' OR Continent='Asia';
+----+-------------+---------+------------+------+---------------+------
+---------+------+------+----------+-------------+
| id | select_type | table　 | partitions | type | possible_keys |
key　| key_len | ref　| rows | filtered | Extra　　　 |

+----+-------------+---------+------------+------+---------------+------
+---------+------+------+----------+-------------+
| 　 1 | SIMPLE 　 　 　 | Country | NULL 　 　 　 | ALL 　 |
Cont　　　　　| NULL | NULL　　| NULL | 239　| 45.61　　| Using
where |
+----+-------------+---------+------------+------+---------------+------
+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT * FROM world.Country FORCE
INDEX(Cont) WHERE Continent='Africa' OR Continent='Asia';
+----+-------------+---------+------------+-------+---------------+------
+---------+------+------+----------+-----------------------+
| id | select_type | table　 | partitions | type　| possible_keys |
key　| key_len | ref　| rows | filtered | Extra　　　　　　　　 |
+----+-------------+---------+------------+-------+---------------+------
+---------+------+------+----------+-----------------------+
| 　 1 | SIMPLE 　 　 　 | Country | NULL 　 　 　 | range |
Cont　　　　　| Cont |　　　 1 | NULL | 109　| 100.00　 | Using
index condition |
+----+-------------+---------+------------+-------+---------------+------
+---------+------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

　また、それぞれのインデックスヒントは、FOR句を使うことで
WHERE句以外のJOIN、ORDER BY、GROUP BYでインデックスを使用

するように指定することもできます。リスト7はインデックスヒント
の構文です。

リスト7　インデックスヒントの構文

USE INDEX [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
FORCE INDEX [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
IGNORE INDEX [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
index_name [, index_name] ...

　インデックスヒントの詳細は、次のマニュアルを参照してくださ
い。

●URL：MySQL 5.7 Reference Manual：9.9.4 Index Hints
https://dev.mysql.com/doc/refman/5.7/en/index-hints.html

STRAIGHT_JOINヒント
　STRAIGHT_JOINヒントは、テーブルをJOINする時にJOINの順番を
指定できるヒントです。MySQLがJOINに使用するアルゴリズムは
Nested Loop JOINとその改良系ですが、Nested Loop JOINでは、基
本的に先に読み取る表（駆動表）が後に読み取る表（内部表）より
も小さい方が効率的に結合できます。また、より絞り込みができる
テーブルからJOINした方が効率が良いため、3テーブル以上JOINする

https://dev.mysql.com/doc/refman/5.7/en/index-hints.html

時は、基本的に結果セットが少量のテーブルからJOINする方が効率
が良くなります。
　オプティマイザが選択したJOINの順番が適切ではない場合、
STRAIGHT_JOINヒントを使用することでJOINの順番を明示的に指定
できます。STRAIGHT_JOINヒントの詳細は、次のマニュアルを参照
してください。

●URL：MySQL 5.7 Reference Manual：14.2.9 SELECT Syntax
https://dev.mysql.com/doc/refman/5.7/en/select.html

　オプティマイザが選択したJOINの順番は、後述のVisual EXPLAINを
使用すると簡単に判断できます。また、MySQL 5.7ではオプティマイ
ザが改良され、JOINの順番を変えることによるコストの違いを見積
もる精度が向上しているため、以前のバージョンよりもJOIN順番を
適切に判断できるようになっています。

オプティマイザヒント
　オプティマイザヒントは、MySQL 5.7で追加された新しいヒント構
文です。オプティマイザの詳細な動作を制御するために、システム
変数optimizer_switchを変更するチューニング手法がありますが、オ
プティマイザヒントを使用すると、optimizer_switchと同様の制御を
optimizer_switchよりも細かい粒度で指定できます。例えば、サブク
エリー部分だけが影響を受けるように変更を反映するなどです。
　オプティマイザヒントを使ったチューニングは、インデックスヒ
ント、STRAIGHT_JOINヒントを使ったチューニングよりも高度なチ

https://dev.mysql.com/doc/refman/5.7/en/select.html

ューニングとなります。ヒントを使ってSQLをチューニングする際
は、まずインデックスヒント、STRAIGHT_JOINヒントを使用したチ
ューニングを行い、それ以上にチューニングする必要がある場合に
オプティマイザヒントの使用を検討することをおすすめします。
　 表 2 は 、 オ プ テ ィ マ イ ザ ヒ ン ト の 一 覧 で す 。
MAX_EXECUTION_TIMEとQB_NAMEを除き、オプティマイザが選択
する最適化アルゴリズムを指定したり、最適化アルゴリズムの有効
／無効を切り替えたりするヒントになっています。QB_NAMEは、ほ
かのヒントの有効範囲にサブクエリーを指定するためのヒントで
す。サブクエリーに任意の名前を付けることで、他のヒントからそ
のサブクエリーを指定できます。また、MAX_EXECUTION_TIMEは、
クエリーの実行時間にタイムアウト時間を設定するためのヒントで
す。

　オプティマイザヒントの詳細は、次のマニュアルを参照してくだ
さい。

●URL：MySQL 5.7 Reference Manual：9.9.3 Optimizer Hints
https://dev.mysql.com/doc/refman/5.7/en/optimizer-hints.html

https://dev.mysql.com/doc/refman/5.7/en/optimizer-hints.html

14.2.7 　MySQL Workbenchでのチューニング
　レッスン5で紹介したMySQL Workbenchには、チューニングに役立
つ機能も搭載されています。

クライアントコネクションの一覧を確認
　MySQL Workbenchの管理メニューには、クライアントコネクショ
ンの一覧を確認できるメニューが含まれています。図1のように
「MANAGEMENT」の「Client Connections」をクリックすることで、
クライアントコネクションの一覧を確認できます。

　確認できる情報はSHOW FULL PROCESSLISTと同等ですが、出力を
任意の項目でソートできる、スリープしているコネクションの情報
を非表示にできる、「Show Details」ボタンをクリックしてコネクシ

ョンの詳細情報を表示できるなど、MySQL Workbenchならではの利
点もあります。

システム変数、ステータス変数の確認
　図2のように「MANAGEMENT」の「Status and System Variables」
をクリックすることで、システム変数、ステータス変数を確認でき
ます。

　ウィンドウに変数名の一部を入力することで、中間一致での絞り
込みが可能です。また、変数名を右クリックして「Add to Custom」
をクリックすると、任意の変数をCustomカテゴリに集約して表示す
ることも可能です。

Visual EXPLAIN

　MySQL WorkbenchのSQLエディタからSQLを実行すると、EXPLAIN
の情報も続けて確認できます。SQLを実行せずに、EXPLAINの情報の
みを確認することも可能です。
　MySQL WorkbenchでEXPLAINを確認すると、デフォルトでは実行
計画を図示化したVisual EXPLAINが参照できますが、MySQLコマンド
ラインクライアントと同様のテキスト形式のEXPLAINも確認可能で
す。また、Visual EXPLAINはJSON形式のEXPLAINを元に作成されてい
ますが、JSON形式のEXPLAINそのものを確認することも可能です。
　SQL実行後にEXPLAINを確認する場合は、SQL実行後（図3）に
「Execution Plan」のアイコン（図4右下）をクリックします。

　Visual EXPLAINでは、通常のEXPLAINに比べて以下の利点がありま
す。

●オブジェクトへのアクセスパターンが色で識別できる※１

●JOINの順番がフローチャートのような図で確認できる
●コストの情報など、JSON形式のEXPLAINに含まれる追加情報も確認できる

　SQLを実行せずにEXPLAINのみを確認する場合は、図5の中央上部
にある虫眼鏡のボタンをクリックします。

Query Statistics
　MySQL WorkbenchのSQLエディタからSQLを実行すると、SQL実行
時の各種統計情報もあわせて確認できます。
　SQL実行時の各種統計情報を確認する場合は、SQL実行後に
「Query Stats」のアイコン（図6右）をクリックします。

　Query Statisticsでは、SQLの実行時間だけでなく、SQLチューニン
グにおいて重要なステータス変数の変化、エラー／警告の有無など
を一覧で確認できます。

パフォーマンス・ダッシュボード、パフォーマンス・レポー
ト
　MySQL Workbenchの管理メニューには、パフォーマンス・スキー
マの情報をベースにしたパフォーマンス・ダッシュボードや、sysス
キーマの情報をベースにしたパフォーマンス・レポート、パフォー
マンス・スキーマの設定を変更するためのGUIが含まれています。
　図7～9のように「PERFORMANCE」の下にある各ボタンをクリック
することで、これらを利用できます。

14.2.8 　 MySQL Enterprise Monitor の Query
Analyzer

　MySQL Enterprise Editionでは、MySQL Enterprise Monitorという監
視機能が使えます。その中のQuery Analyzerは、パフォーマンスが悪
いSQLを簡単に調査できる機能です。Query Analyzerでは、MySQLサ
ーバーの稼働状況の各種グラフを確認しながら、気になった時間帯
をグラフ上で選択することで、その時間帯に実行されたSQLのみを絞
り込んで確認できます。実行計画、実行時間など、特定されたSQLの
詳細情報も確認できるため、チューニングすべきSQLの特定と稼働状
況の把握を短時間で行えます（図10）。
　MySQL Enterprise Editionの契約にはコンサルティング・サポート
というサポートも含まれており、MySQLサーバー全体のチューニン
グや、SQLチューニングに関する問合せも対応可能となっています。
そのため、Query Analyzerで特定したSQLをうまくチューニングでき
ない場合は、サポートに問合せてチューニングに関するアドバイス
を受けることもできます。
　コンサルティング・サポートの詳細は、以下のサイトを参照くだ
さい。

●URL：MySQL コンサルティング・サポート
https://www-jp.mysql.com/support/consultative.html

https://www-jp.mysql.com/support/consultative.html

　Column　　 不可視索引（INVISIBLE INDEX）

　現在開発中の次バージョンMySQL 8.0では、不可視索引
（INVISIBLE INDEX）という機能が実装される予定です。この機能
もロールと同様に、原稿執筆時点で公開されているMySQL 8.0.0
DMR（開発途上版）でも、既に実装されています。
　不可視索引とは、オプティマイザから見えない（インビジブル
な）索引（インデックス）のことです。既存のインデックスをイ
ンビジブルな状態に変更したり、インビジブルな状態から通常の
状態（ビジブル）に戻したりできます。また、最初にインデック

スを作成する時から、インビジブルな状態でインデックスを作成
することもできます。
　このレッスンでは、sysスキーマのsys.schema_unused_indexes
から使用していないインデックスが確認できることを解説しまし
たが、既存のインデックスの削除にはパフォーマンス劣化のリス
クもともないます。また、一旦削除したインデックスを再作成す
る場合、テーブルのデータ量が多ければインデックス作成にも時
間がかかってしまいます。
　そこで、不可視索引が役立ちます。不可視索引を使用すれば、
いきなりインデックスを削除するのではなく、まずはインデック
スをインビジブルにすることで、インデックスを削除した場合の
パフォーマンス影響を確認できます。そして、パフォーマンスに
悪影響を及ぼさないことを確認してからインデックスを削除でき
ます。また、インデックスをインビジブルにしたことで万が一パ
フォーマンスが劣化した場合は、インデックスを通常の状態（ビ
ジブル）に戻せば、素早く元の状態に戻せます。
　このように、不可視索引を使えばより安全にインデックスを削
除できるのです。

14.3 　演習
　このレッスンでは、MySQLのパフォーマンスチューニングに役立
つ機能やコマンドについて学習しました。ここではsysスキーマ、ス
ロークエリーログ、MySQL Workbenchの活用方法について確認しま
しょう。

1. sysスキーマのsys.statement_analysisビューを参照し、現在
の環境でトータル実行時間が一番長いSQLを特定する
ヒント：レッスン14の「14.1　パフォーマンス・スキーマと

sysスキーマ」を参照

2. ス ロ ー ク エ リ ー ロ グ の 出 力 を 有 効 に し た 状 態 で
long_query_time 以上に時間がかかるSQLを実行し、その
SQLがスロークエリーログに出力されることを確認する
ヒント：レッスン14の「14.2.1　スロークエリーログ」および

レッスン3「3.1.6　ログ」の「スロークエリーログ」
を参照

3. MySQL Workbenchを使用して、クライアントコネクションの
一覧を表示する
ヒント：レッスン14「14.2.7　MySQL Workbench でのチュー

ニング」の「クライアントコネクションの一覧を確
認」を参照

4. MySQL Workbenchを使用して、以下SQLのVisual Explainを
確認する

　 SELECT City.name as capital, CountryLanguage.Language
　 FROM City JOIN Country ON City.CountryCode =
Country.Code
　 　 JOIN CountryLanguage ON Country.Code =
CountryLanguage.CountryCode
　 WHERE City.ID = Country.capital;

ヒント：レッスン14「14.2.7　MySQL Workbench でのチュー
ニング」の「Visual EXPLAIN」を参照

5. MySQL Workbenchを使用して、パフォーマンス・レポートか
らトータル実行時間が一番長いSQLを特定する
ヒント：レッスン14「14.2.7　MySQL Workbench でのチュー

ニング」の「パフォーマンス・ダッシュボード、パフ
ォーマンス・レポート」を参照

　　　解説
1．以下のSQLを実行することで、トータル実行時間が一番長い

SQLを特定できます。

mysql> SELECT * FROM sys.statement_analysis ORDER BY
total_latency DESC LIMIT 1￥G

2．ヒント部分の解説を参照してください。

3．ヒント部分の解説を参照してください。

4．ヒント部分の解説を参照してください。

5．図8のパフォーマンス・レポートから「High Cost SQL
Statements」の「Statement Analysis」を選択します。そ
の後、出力の「Total Time」列をクリックしてソートすること
で、トータル実行時間が一番長いSQLを特定できます。

※１　詳細はMySQL Workbench Manual：7.3 Visual Explain Planの「Table 7.1 Visual Explain
Diagram Information」を参照してください。

　　　http://dev.mysql.com/doc/workbench/en/wb-performance-explain.html

http://dev.mysql.com/doc/workbench/en/wb-performance-explain.html

15.1 　Oracle MySQL Cloud Serviceとは
　Oracle MySQL Cloud Serviceは、オラクルが提供するクラウドサービ
スである「Oracle Public Cloud」のDBaaSの1つです。Oracle MySQL
Cloud Serviceは、MySQL Enterprise Editionをベースとしています。数
クリックで迅速にMySQLサーバーを起動でき、管理ツールやOracle
Public Cloudの各種サービスとも連携ができるようになっています。

●URL：Oracle MySQL Cloud Service
http://cloud.oracle.com/ja_JP/mysql

　MySQLをベースとした他のDBaaSとの大きな違いは、MySQL
Enterprise Editionが提供する監視ツール「MySQL Enterprise Monitor」
をはじめ、セキュリティ拡張機能の「MySQL Enterprise Firewall」や
「MySQL Enterprise Audit」などが利用できることに加えて、MySQLの
開発元からサポートサービスを受けることが可能となっていることが

http://cloud.oracle.com/ja_JP/mysql

挙げられます。MySQL Enterprise Editionに含まれるセキュリティ機能
もすべて利用できるので、ビジネスにとって重要なデータの格納先と
しての活用が期待されます。
　また、MySQLサーバーの機能に制限を加えていないため、オンプレ
ミスとクラウドで同じソフトウェアが利用できます。レプリケーショ
ンを含めたすべての機能が利用可能となっており、同時にOracle
Cloud Serviceが提供する拡張可能なノードやストレージを利用できま
す。またMySQL Enterprise Backupによってバックアップしたデータを
クラウドとオンプレミスの間で移動できるため、開発フェーズと本番
フェーズで最適な環境を選択することも可能となっています。Oracle
MySQL Cloud Serviceでは、MySQLサーバーが稼働するサーバーへSSH
でのアクセスが可能となっており、MySQL Enterprise Backupによるバ
ックアップファイルの取得、GUIツールのMySQL Workbenchからの
SSH経由での利用も可能です。Oracle MySQL Cloud ServiceのMySQLイ
ンスタンスとオンプレミス環境のMySQLサーバーとの間でのレプリケ
ーション構成も可能で、物理バックアップファイルへのアクセスとあ
わせて、クラウドとオンプレミスの相互の移行やハイブリッド型の構
成が簡単に利用できる点が大きなメリットとなります。

15.2 　Oracle MySQL Cloud Serviceの概要
　Oracle MySQL Cloud Serviceは、基本30日間の無料トライアルが用
意されています。ここではトライアルで機能の概要を確認していきま
しょう。
　まず、Oracle MySQL Cloud Service紹介ページ（図1）の右上にある
「無料トライアル」からトライアル一覧のページに移動します。
Oracle MySQL Cloud Serviceは、Oracle Cloud PaaSの1つなので、トラ
イアル一覧ページの「Oracle Cloud PaaSおよびIaaS」の表示の下に表
示される「試してみる >」のリンクを選びます（図2）。

　Oracle Cloudトライアルのサインアップページから、連絡先や携帯
電話のSMSを利用した確認コードの入力などを行い、トライアルへの
申込を済ませます（図3）。申込後、サービスの準備が完了するとア
クセス用のアイデンティティ・ドメイン、ユーザ名と初期パスワード
がメールで送付されます。

　メールに記載されたマイサービスURLまたはサインインページか
ら、「マイ・サービス」に進みます（図4）。

　ここでMySQL Cloud Serviceを選択すると（図5）、サービスの作成
や既存のサービスのサマリー（図6）、さらに個別のサービスを管理

できます（図7）。

　Oracle MySQL Cloud ServiceはSSHでのアクセスが可能です。以下の
例ではSSHで接続し（図8）、MySQLクライアントシェルプログラムで
MySQLサーバに接続しています（図9）。

　Oracle MySQL Cloud Serviceでは、MySQL Enterprise Backupで自動
的にMySQLサーバーのオンラインバックアップが可能です（図10）。
管理コンソールからバックアップの即時実行、スケジュール設定や進
捗監視ができるようになっています。バックアップデータの保存期間
もあわせて設定できます。指定した日時へのポイントインタイムリカ
バリも可能です。

　MySQLサーバーへのパッチ適用、また以前のバージョンへのロール
バックも管理コンソールから実行できます（図11）。

　クラウドに求められる“エラスティック”なリソースの拡張も、もち
ろんOracle MySQL Cloud Serviceに用意されています。CPUのスケール
アップやスケールダウン、ストレージの拡張や縮小が可能です（図
12）。MySQL Enterprise Thread Poolも標準で構成されているため、
同時アクセス数が大きい環境への対応も考慮されています。

15.3 　Oracle MySQL Cloud Serviceの独自性
　運用管理については、MySQL EnterpriseによるMySQLサーバーの詳
細な監視から、Oracle Enterprise Managerによる単一ツールによる
Oracle Cloudの各種サービスの一括管理、さらにはOracle Cloud
ConsoleとCommand Line Interface（CLI）による包括的な管理といっ
た、多彩な方法がそろっています。DevOps支援にもつながるREST
APIによるOracle MySQL Cloud Service運用管理も現在準備中となって
います。
　Oracle MySQL Cloud Serviceは、監視機能、バックアップ機能、そし
てセキュリティ拡張機能といったMySQL Enterprise Editionのすべての
機能が簡単に利用でき、さらにMySQLの開発元からのサポートサービ
スを受けることができます。
　SSHでの接続と制限のないソフトウェア構成のため、要件やアクセ
ス状況に応じてクラウドとオンプレミスの間で相互の移行や連動がで
きる仕組みとなっており、クラウドにロックインされる心配が不要な
点は独自の大きなメリットといえます。
　Oracle MySQL Cloud Serviceの活用が想定される場面としては、開発
環境やテスト環境を迅速に用意するケースをはじめ、オンプレミスや
ほかのクラウドサービスから機能やサービスがより充実した環境への
移行、さらにはアクセスのピーク時にクラウドのリソースを利用する
ことや逆に負荷が低いデータベースを集約することなどが考えられま
す。はじめからクラウド環境での運用を想定したアプリケーションを
迅速に開発し、かつ機密性の高いデータの保護を低コストで実現する
環境にもなります。

　Column　　 アプリケーションからの接続部品

　各プログラミング言語で開発したアプリケーションからMySQLサ
ーバーに接続するための部品の中で、MySQL開発チームが開発した
モジュール群については「Connectors」と総称しています。
　Connectorsは現在、以下のものが開発され公開されています。

名称対象言語等Connector/ODBCODBCドライバーConnector/Net.Net
デ ー タ ・ プ ロ バ イ ダ ー Connector/JJDBC ド ラ イ バ ー
Connector/Node.jsNode.js用ドライバーConnector/PythonPython用
ドライバーConnector/C++C++インターフェースConnector/CCクラ
イアントライブラリ

　PHP用のドライバーであるMySQL Native Driver（mysqlnd）が
MySQLのサイトからダウンロードできるようになっています。なお
名称にはConnectorは含まれていません。mysqlndには、レプリケー
ションのマスタースレーブ構成において、更新処理をマスターに、
参照処理をスレーブのいずれかに振り分ける処理が可能な
mysqlnd_msや、クエリーの実行結果をクライアントサイドでキャ

ッシュするmysqlnd-qcなどのプラグインによって機能拡張が可能で
す。
　JDBCドライバーであるConnector/Jは、mysqlnd_msに相当する機
能を持つほか、MBeanインターフェースに対してJMXクライアント
から接続先サーバーの追加や削除、変更などが動的に行えるなど、
Connectorsの中でも機能が豊富な製品となっています。
　上記以外の開発言語向けの接続部品は、MySQLの開発チームでは
開発を行っていません。Rubyについては日本MySQLユーザ会の代表
である、とみたまさひろさんが開発したMySQL/RubyやRuby/MySQL
が使われてきましたが、現在はmysql2を利用することが多いようで
す。

著者プロフィール

梶山 隆輔（かじやま りゅうすけ）
日本オラクル株式会社 MySQL Global Business Unit Asia Pacific & Japan担当
MySQL Sales Consulting Senior Manager
　日本オラクル株式会社において、MySQLのお客様環境への導入支援や製品の技術解説を
担当するセールスコンサルタントチームのアジア太平洋地域リーダー。多国籍なMySQL部
門にてアジア太平洋地域に在籍するチームメンバーを束ね、25以上の国や地域でのMySQL
普及やビジネスの拡大をミッションとする。

山﨑 由章（やまさき よしあき）
MySQLのセールスコンサルタント。元々はOracleデータベースのコンサルティング、サポ
ート等に従事していたが、オープンソースとフリーソフトウェア（自由なソフトウェア）
の世界に興味を持ち、MySQLの仕事を始める。趣味は旅行と美味しいものを食べること。

● STAFF LIST
カバー・本文デザイン　株式会社トップスタジオ デザイン室
DTP制作・編集協力　　 株式会社トップスタジオ
編集　　　　　　　　　伊藤 隆司

	はじめに
	目次
	レッスン 0 RDBMSの基礎
	0.1 本書の目的
	0.2 MySQL環境の準備
	Column 仮想化ソフトウェアでLinux環境を構築できる
	0.3 RDBMSとは
	0.3.1 RDBMSで求められる機能
	格納するデータに対する制約
	データの操作
	ACIDトランザクション

	0.4 データベースサーバーの構築および運用時に考慮すべき事項
	0.5 MySQLについて
	0.5.1 MySQLサーバーのエディションとライセンス
	0.5.2 MySQLサーバーのバージョンと主な機能

	Column MySQLの活用事例 Web&オンラインゲーム&クラウド

	レッスン 1 MySQL 5.7で新しくなったインストール方法
	1.1 MySQLのダウンロードサイト
	1.1.1 対応プラットフォーム
	1.1.2 インストールパッケージ
	1.1.3 サポート期間

	1.2 MySQLのドキュメント
	1.3 Windows環境へのインストール方法
	1.3.1 GUIインストーラでWindows環境にインストールする
	1.3.2 Windows上でZipファイルでのインストール

	1.4 Linux環境へのインストール
	1.4.1 Linux上でRPMファイルでのインストール
	1.4.2 Linux上でYumリポジトリを利用したインストール
	1.4.3 Linux上でtarファイルでのインストール

	1.5 MySQL 5.7のインストール時の留意事項
	Column MySQLの活用事例 “堅い”システム
	1.6 演習

	レッスン 2 MySQL サーバーアーキテクチャ概要
	2.1 MySQLサーバーのアーキテクチャ
	2.1.1 ネットワーク接続管理
	2.1.2 ユーザー認証&権限管理
	2.1.3 SQL構文解析 & 実行計画最適化
	2.1.4 キャッシュ
	2.1.5 ストレージエンジン

	2.2 ストレージエンジンの使い方
	2.3 InnoDBストレージエンジン
	2.3.1 InnoDBのデータファイル
	2.3.2 InnoDBのトランザクション管理

	2.4 MEMORYストレージエンジン
	2.5 設定ファイル
	2.5.1 設定の確認

	Column MyISAMストレージエンジン
	2.6 演習

	レッスン 3 MySQL サーバーの主な機能と設定オプション
	3.1 mysqld MySQLサーバープログラム
	3.1.1 ディレクトリ設定
	3.1.2 接続設定
	3.1.3 メモリー
	3.1.4 文字コード
	3.1.5 文字の照合順序（COLLATION）
	3.1.6 ログ
	エラーログ
	バイナリログ
	スロークエリーログ
	一般クエリーログ（または一般ログ）
	スロークエリーログと一般クエリーログの出力先
	ログ出力設定の動的な変更
	ログのローテーション

	Column 各種のストレージエンジン
	3.2 演習

	レッスン 4 MySQL のクライアントプログラム
	4.1 クライアントプログラム
	4.2 MySQLコマンドラインクライアントmysql
	4.2.1 mysqlのインタラクティブモードとバッチモード
	4.2.2 mysqlコマンドの実行時ヘルプとSQL構文の確認

	4.3 MySQLサーバーの運用管理に必要となるクライアントプログラムmysqladmin
	4.4 簡易ベンチマークツールmysqlslap
	Column 歴史に消えたストレージエンジン
	4.5 演習

	レッスン 5 GUIツールMySQL Workbench
	5.1 MySQL Workbenchのインストール
	5.1.1 Windows版のインストール
	5.1.2 Mac OS X版のインストール
	5.1.3 Linux版のインストール

	5.2 MySQL Workbenchの主な機能
	5.2.1 新規接続定義の作成
	5.2.2 MySQLサーバーの管理系機能
	5.2.3 MySQLサーバーのパフォーマンスチューニング系機能
	5.2.4 MySQLデータベースを使った開発支援機能
	5.2.5 E/R図を用いたスキーマ設計
	5.2.6 他DBからMySQLへのテーブル／データ移行支援

	5.3 MySQL Workbenchの商用版限定機能
	5.3.1 データモデルのドキュメント出力機能
	5.3.2 データモデルの検証機能
	5.3.3 MySQL Enterprise Edition限定機能に対するGUI
	MySQL Enterprise Backup
	MySQL Enterprise Audit
	MySQL Enterprise Firewall

	Column MySQL Utilitiesとは
	5.4 演習

	レッスン 6 JSONデータ型とJSON関数
	6.1 JSON対応のメリットとは
	6.2 JSONデータ型
	6.2.1 JSONとは
	6.2.2 データ型としてのJSONの用途
	6.2.3 MySQLのJSONデータ型の特徴

	6.3 MySQLのJSON関数とJSON演算子
	6.3.1 JSONデータのパス式
	6.3.2 JSONデータを作成する関数
	6.3.3 JSONデータを検索する関数および演算子
	6.3.4 JSONデータを変更する関数

	Column NoSQL APIとmemcachedプラグイン
	6.4 演習

	レッスン 7 バックアップとリカバリ 基礎編
	7.1 バックアップの重要性
	7.1.1 バックアップ取得時の考慮点
	7.1.2 バックアップ対象の検討
	「いつ」バックアップするか
	「なにを」バックアップするか
	「どこに」保管するか
	「どのように」バックアップするか
	「どれだけ」残すのか

	7.2 バックアップ用語の整理
	7.2.1 オンラインバックアップとオフラインバックアップ
	7.2.2 物理バックアップと論理バックアップ
	7.2.3 フルバックアップと増分バックアップと差分バックアップ
	7.2.4 ローカルバックアップとリモートバックアップ

	7.3 データの復旧
	7.3.1 リストアとリカバリ
	7.3.2 RTOとRPO

	Column 日本のMySQLコミュニティ

	レッスン 8 バックアップとリカバリ 応用編
	8.1 データのフルバックアップに関する方法とツール
	8.2 物理バックアップかつオフラインバックアップ
	8.3 物理バックアップかつオンラインバックアップ
	8.4 論理バックアップかつオンラインバックアップ
	8.4.1 MySQLの論理バックアップツールmysqldump
	mysqldumpからのリストア例
	8.4.2 MySQLの新しい論理バックアップツールmysqlpump
	8.4.3 MySQLサーバーにデータをロードするCUI mysqlimport

	8.5 増分バックアップの方法とツール
	8.5.1 バイナリログによる増分バックアップ
	8.5.2 MySQL Enterprise Backupによる増分バックアップ

	Column アジアのMySQLコミュニティ
	8.6 演習

	レッスン 9 レプリケーション 基礎編
	9.1 MySQL高可用性構成パターン
	9.1.1 データミラー型＆アクティブ／アクティブ型
	9.1.2 データミラー型＆アクティブ／スタンバイ型
	9.1.3 ディスク共有型＆アクティブ／アクティブ型
	9.1.4 ディスク共有型＆アクティブ／スタンバイ型

	9.2 MySQLレプリケーション
	9.2.1 レプリケーションにおけるMySQLサーバーの各スレッドとファイルの役割

	9.3 レプリケーションの基本的なセットアップ方法
	Column バグデータベース
	9.4 演習

	レッスン 10 レプリケーション 応用編
	10.1 タイミング 非同期型＆準同期型
	10.1.1 準同期レプリケーションの設定項目

	10.2 バイナリログの形式 SQL文転送型＆行イメージ転送型
	10.3 GTIDモード
	10.3.1 GTIDを設定しているバイナリログ内の出力例

	10.4 MySQLのレプリケーション構成パターン
	10.4.1 1:1型と1:n型
	10.4.2 n:1型（マルチソースレプリケーション）
	10.4.3 n:n型（グループレプリケーション）
	10.4.4 MySQL InnoDB Cluster

	Column MySQL Cluster
	10.5 演習

	レッスン 11 セキュリティ Part1
	11.1 データベース・セキュリティ概論
	11.2 MySQLサーバーのセキュリティ対策
	11.3 インストール関連のセキュリティ対策
	11.3.1 MySQLのバイナリは常に最新版を利用する
	11.3.2 ファイルシステム上の権限を適切に設定する
	11.3.3 secure_file_privを明示的に設定する
	11.3.4 初期データベースはmysqld --initializeで作成する
	初期データベース作成に関する補足

	11.4 ユーザー関連のセキュリティ対策
	11.4.1 アクセス可能なホストと権限を制限する
	ログインユーザーと現在のユーザーの違い
	プロキシユーザー（≒ロール）の活用
	Column ロール
	11.4.2 ユーザーが利用するリソースを制限する
	11.4.3 パスワード検証プラグインを有効にしてパスワードポリシーを設定する
	11.4.4 mysql_config_editorを使って認証情報を管理する
	11.4.5 外部認証を使用しユーザー管理を一元化する

	Column 全文検索（Full Text Search）
	11.5 演習

	レッスン 12 セキュリティ part2
	12.1 ネットワーク関連のセキュリティ対策
	12.1.1 必要最低限のネットワークインターフェースを使用する
	12.1.2 ネットワーク通信をSSLで暗号化する

	12.2 暗号化によるセキュリティ対策
	12.2.1 バックアップファイルを暗号化する
	12.2.2 透過的データ暗号化でデータファイルを保護する
	2層鍵管理アーキテクチャ
	鍵管理製品との連携
	透過的データ暗号化の使用方法
	12.2.3 機密データは暗号化してデータベースに格納する

	12.3 その他のセキュリティ対策（監査、ファイアウォール）
	12.3.1 監査ログで不正操作や内部犯行を防ぐ
	12.3.2 ファイアウォールで想定しないアクセスをブロックする

	12.4 MySQL Enterprise Editionの機能を試す方法
	Column GIS（地理情報システム）
	12.5 演習

	レッスン 13 パフォーマンスチューニングの基礎
	13.1 MySQLパフォーマンスチューニング概論
	13.1.1 チューニングの指標
	スループット
	レスポンスタイム
	13.1.2 ボトルネックの特定とチューニング
	13.1.3 ベンチマークテスト

	13.2 稼働状況と設定の確認
	13.2.1 ステータス変数
	SHOW STATUSコマンドによるステータス変数の確認
	mysqladminのextended-statusコマンドによるステータス変数の確認
	13.2.2 システム変数
	SHOW VARIABLESコマンドによるシステム変数の確認
	SELECT @@コマンドによるシステム変数の確認
	パフォーマンス・スキーマによるシステム変数の確認

	13.3 システム変数のチューニング例
	13.3.1 接続スレッドごとの設定値
	sort_buffer_sizeのチューニング
	tmp_table_sizeとmax_heap_table_sizeのチューニング
	13.3.2 MySQLサーバー全体の設定値 thread_cache_sizeのチューニング
	13.3.3 InnoDBストレージエンジンの設定値
	innodb_buffer_pool_sizeのチューニング
	innodb_log_file_sizeのチューニング
	innodb_flush_methodのチューニング
	Column MySQLのリリースサイクル

	13.4 演習

	レッスン 14 パフォーマンスチューニングに役立つ機能やコマンド
	14.1 パフォーマンス・スキーマとsysスキーマ
	14.2 SQLチューニングに役立つ機能
	14.2.1 スロークエリーログ
	14.2.2 mysqldumpslow
	14.2.3 SHOW FULL PROCESSLIST
	14.2.4 EXPLAIN
	14.2.5 オプティマイザ・トレース
	14.2.6 ヒント
	インデックスヒント
	STRAIGHT_JOINヒント
	オプティマイザヒント
	14.2.7 MySQL Workbenchでのチューニング
	クライアントコネクションの一覧を確認
	システム変数、ステータス変数の確認
	Visual EXPLAIN
	Query Statistics
	パフォーマンス・ダッシュボード、パフォーマンス・レポート
	14.2.8 MySQL Enterprise MonitorのQuery Analyzer

	Column 不可視索引（INVISIBLE INDEX）
	14.3 演習

	レッスン 15 Oracle MySQL Cloud Service
	15.1 Oracle MySQL Cloud Serviceとは
	15.2 Oracle MySQL Cloud Serviceの概要
	15.3 Oracle MySQL Cloud Serviceの独自性
	Column アプリケーションからの接続部品

	奥付

