

■ソースコードについて
本書で使用しているソースコードは、以下のURLよりダウン
ロードできます。
https://book.impress.co.jp/books/1117101049

■正誤表について
正誤表を掲載した場合は、上記のURLのページに表示されま
す。

執筆時の環境はPyhon 3.6.3です。Pyhonでは、小数点
以下のマイナーバージョンは頻繁に更新されており、それ
にともない標準ライブラリに含まれるモジュールのバージ
ョンも更新されることがあります。バージョン3系の範囲
では、下位互換性を無視した内容の大幅な変更はないと思
われますが、場合によっては更新によって本書記載の内容
と異なる可能性もあることをご了解ください。

※本書の内容は、2018年1月の情報に基づいています。本
書で紹介した製品／サービスなどの名前や内容は変更される
可能性があります。
※本書の内容に基づく実施・運用において発生したいかなる
損害も、著者ならびに株式会社インプレスは一切の責任を負
いません。
※本文中に登場する会社名、製品名、サービス名は、各社の
登録商標または商標です。
※本文中では®、TM、©マークは明記しておりません。

まえがき

　本書で解説するPythonは、オブジェクト指向のスクリプト
型プログラミング言語です。わかりやすくシンプルなステー
トメントを特徴とし、小規模なユーティリティから、本格的
なオブジェクト指向プログラムまで作成可能です。1991年
の登場以降、瞬く間に世界的に広く普及し、今では
Windows、macOS、Linux、Raspberry Piなどさまざまなプラ
ットフォームに移植されています。最近では機械学習や、
IoTの制御言語としても注目を集めています。
　プログラミング言語の人気度の目安となる PYPL
（http://pypl.github.io/PYPL.html）の順位は、2017年12月の
時点でJavaに続いて2位に位置しています。また、過去5年で
最も人気度が向上したプログラミング言語であり、1位の
Javaとの差も徐々に縮まってきています。
　Pythonには「標準ライブラリ」として、多くのデータ型や
モジュールなどが付属しています。それらをうまく活用する
ことが、Pythonプログラミング上達の近道であることは間違
いないでしょう。
　本書ではPythonの基本的な文法を理解しているユーザーを
対象に、標準ライブラリとして用意されている数多くのデー
タ型、関数、クラスの中から、初中級者が便利に使えるもの
を中心に基本的な使い方を解説していきます。
　Pythonは現在、Python 2.x系からPython 3.x系への移行期
になっています。Python 3.xでは、さまざま機能強化が行わ
れ、さらに標準の文字コードがユニコードベースに変更され
て日本語の取り扱いも容易になったことから、日本において
もさらなる普及が期待されます。そこで本書ではPython 3.6
をベースに解説します。

　まず、Chapter 1では、文字列とデータの基本操作につい
て説明します。Chapter2ではリスト、タプル、辞書といった
コレクションの取り扱いについて説明します。Chapter 3で
は正規表現やファイルの読み書きなどテキスト処理に特化し
たモジュールの操作について説明します。Chapter ４ではOS
関連の関数やファイル操作、および日付・時刻の操作につい
て、Chapter 5では数値演算関連、Chapter 6ではインターネ
ット関連のモジュールを説明します。Chapter 7ではGUIプロ
グラミングに欠かせないtkinterモジュールの使い方を中心に
説明します。最後の Chapter 8ではそのほかの便利なモジュ
ールをいくつか紹介します。
　読者の皆様にとって本書がPythonプログラミングの幅をさ
らに広げる手助けとなることを願っています。

2018年1月　執筆者を代表して　　大津 真

目 次 　contents

Introduction
Python環境の構築

1 Pythonのインストール
2 モジュールのインポートについて
3 Atomエディタについて

Chapter 1
文字列とデータの基本操作

1-1　文字列の基本操作
001　文字列をリテラルによって生成するには
002　文字列の長さを求めるには
003　文字列を連結するには
004　アルファベットの大文字／小文字を変換するには
005　文字列から指定した位置の文字を取り出すには
006　文字列の一部を取り出すには
007　文字列を反転するには
008　文字列の一部を置換するには
009　文字列内の文字を変換表に従って置換するには
010　文字列内を検索するには
011　文字列内の文字列の数をカウントするには
012　文字列内に値を埋め込むには（その１）
013　文字列内に値を埋め込むには（その2）
014　文字列の先頭／最後から指定した文字を取り除くに

は
015　リスト、タプル、辞書の要素を接続した文字列を生

成するには
016　数値を文字列に変換するには

017　文字列を数値に変換するには
018　文字列が数値／アルファベット／空白文字であるこ

とを調べるには
019　文字列を指定した文字位置で分解しリストに変換す

るには
020　文字列をセパレータの位置で３分割したタプルを戻

すには
021　文字列の先頭／最後が指定したものかを調べるには
022　文字列を左寄せ／中央寄せ／右寄せにするには
023　文字列の先頭を「0」で埋めるには
024　文字列を指定したエンコーディングでエンコード／

デコードするには
025　文字とユニコードのコードポイントを相互変換する

には
026　タブを展開するには

1-2　データの基本操作
027　値のデータ型を調べるには
028　オブジェクトのidを調べるには
029　値を画面に表示するには
030　文字列をPythonの式や文として実行するには
031　実行中のプログラムファイルのパスを調べるには
032　実行中のプログラムファイルの絶対パスや名前を調

べるには
033　条件判断を簡潔に行うには
034　サブクラスかどうかを調べるには
035　グローバル、ローカルのシンボルテーブルを表示す

るには
036　コマンドラインから入力を受け取るには
037　2つの値を比較するには
038　オブジェクトが同じかどうかを判断するには

039　ヘルプを表示するには

Chapter 2
コレクションの取り扱い

2-1　リスト、タプルの操作
040　リスト、タプルをリテラルとして生成するには
041　リスト、タプルの要素数を求めるには
042　リスト、タプルを連結するには
043　リスト、タプルの指定した位置の要素を取り出すに

は
044　範囲を指定してリスト、タプルの要素を取り出すに

は
045　リスト、タプルの要素の順番を反転するには
046　タプルとリストを相互変換するには
047　リストの要素の値を変更するには
048　リストの最後に要素を追加するには
049　リストの指定した位置に要素を挿入するには
050　リストから指定した位置の要素を削除するには
051　指定した値の要素がリスト、タプルに存在するかを

調べるには
052　リストから指定した値の要素を削除するには
053　リスト、タプルの指定した値の要素の数を調べるに

は
054　リスト、タプルの要素をソートするには
055　リストやタプルの要素の最小値／最大値を求めるに

は
056　リストをコピーするには
057　リストやタプルの要素を順に取り出して処理するに

は

058　リストやタプルのインデックスと要素を順に取り出
すには

059　2つのリスト、タプルの要素を組み合わせてループで
処理するには

060　整数の並びのリストやタプルを生成するには
061　リスト、タプルの数値の要素の合計を求めるには
062　シンプルな記述が可能な内包表記でリストを生成す

るには
063　関数を使用してリストやタプルの要素を抽出するに

は
064　関数を使用してリストやタプルの要素を順に処理す

るには

2-2　辞書の操作
065　辞書をリテラルとして生成するには
066　指定したキーに対応する要素を取得するには
067　辞書に要素を追加する／値を変更するには
068　辞書の要素数を取得するには
069　辞書の内容を別の辞書で更新／連結するには
070　辞書の要素を削除するには
071　辞書に指定したキーの要素が存在するか調べるには
072　辞書のすべてのキーを取得するには
073　辞書のすべての値を取得するには
074　辞書からすべてのキーと値のペアを取得するには
075　辞書をコピーするには
076　シンプルな記述が可能な内包表記で辞書を生成する

には

2-3　セットの操作
077　セットをリテラルとして生成するには
078　セットをリストやタプルなどから生成するには

079　セットの要素数を求めるには
080　セットに要素を1つ追加するには
081　セットを別のコレクションで更新するには
082　2つのセットを合わせて新たなセットを生成するには
083　セットの要素を削除するには
084　セットをリストに変換するには
085　セットに指定した要素が含まれているかを調べるに

は
086　セットの要素を順に取得するには
087　2つのセットの関係を調べるには
088　セットの要素を辞書のキーとして使用するには
089　セットをコピーするには
090　シンプルな記述が可能な内包表記でセットを生成す

るには

2-4　collectionsモジュールの便利なクラス
091　タプルやリストの要素の出現回数を数えるには
092　辞書にデフォルト値を設定するには
093　タプルの要素に名前を付けるには

Chapter 3
いろいろなテキスト処理

3-1　正規表現
094　正規表現を使用して検索を行うには
095　マッチした部分の文字列や位置を取得するには
096　パターン内のPythonのエスケープシーケンスを無効

にするには
097　最短マッチを行うには
098　パターンをグループ化してマッチした部分を複数取

り出すには

099　マッチしたすべての部分をリストとして取り出すに
は

100　文字列をパターンにマッチする部分で分割するには
101　パターンにマッチする部分を置換するには
102　パターンをコンパイルして実行速度を上げるには

3-2　テキストファイルの読み書き
103　テキストファイルの内容をまとめて読み込むには
104　テキストファイルの各行をリストの要素として取り

出すには
105　テキストファイルの各行を1行ずつ読み込むには
106　文字列をテキストファイルに書き出すには
107　リストの要素をまとめてテキストファイルに書き出

すには

3-3　CSVファイルの取り扱い
108　CSVファイルを読み込むには
109　文字列をCSVファイルに書き出すには
110　CSVファイルを辞書形式で読み込むには
111　CSVファイルに辞書形式で書き込むには

3-4　JSONデータの取り扱い
112　JSONファイルを読み込んでPythonのオブジェクト

に変換するには
113　JSONデータの文字列をPythonのオブジェクトに変

換するには
114　PythonのオブジェクトをJSONデータに変換するに

は
115　JSONデータをファイルに書き出すには

Chapter 4

OSの機能を利用する
ファイル／ディレクトリ／時刻／日付

4-1　ファイルやディレクトリの取り扱い
116　パス名（ディレクトリやファイル）を分割するには
117　ファイル名と拡張子に分割するには
118　パス名（ディレクトリやファイル）を連結するには
119　パスを正規化するには
120　ファイルやディレクトリの有無を調べるには
121　ディレクトリを作成するには
122　ディレクトリを削除するには
123　ファイルを削除するには
124　作業ディレクトリを取得・移動するには
125　ディレクトリのファイル一覧を取得するには
126　条件に合致するファイルをリストアップするには
127　ファイルやディレクトリの名前を変えるには
128　空のファイルを作成するには
129　一時ファイルを作成するには

4-2　多少高度なファイル操作
130　ファイルをコピーするには
131　コマンドのパスを調べるには
132　ファイルを圧縮／展開するには
133　複数ファイルから読み込むには
134　オブジェクトをファイルに保存する／ファイルから

読み込むには

4-3　timeモジュールによる時刻の取り扱い
135　現在時刻を取得するには
136　一定時間実行を停止するには
137　経過時刻を計測するには

4-4　datetimeモジュールによる日付時刻の操作
138　日付に関する情報を求めるには
139　datetimeモジュールで時刻に関する情報を求めるに

は
140　経過日数をカウントするには

Chapter 5
数値演算と乱数

5-1　さまざまな数値演算
141　小数を整数に変換するには
142　絶対値を求めるには
143　べき乗を求めるには
144　平方根を求めるには
145　角度とラジアンを相互変換するには
146　三角関数を使うには
147　座標(x,y)とX軸のなす角度を求めるには
148　１０進数と１６進数を相互に変換するには
149　余りと商を一度に求めるには
150　複数の要素のTrue/Falseを一度に調べるには

5-2　乱数
151　乱数を生成するには
152　ランダムに並べ替え、もしくは1つを選択するには

Chapter 6
ネットワークへのアクセス

6-1　URLの操作とアクセスの基本
153　URLのフォーマットを解析するには

154　URLで絶対パスを取得するには
155　URLで示されるページを取得するには
156　URLをファイルに保存するには
157　URLからJSON形式のデータを取得するには

6-2　Webサーバとのやり取りの基本
158　テスト用Webサーバを用意するには
159　特殊文字をURLで使うには
160　辞書型データをURLエンコードするには
161　POSTでデータを送信するには
162　HTTPヘッダを指定するには
163　HTTPやHTTPSで通信を行うには
164　ブラウザを起動するには

Chapter 7
描画とGUI

7-1　 Turtleグラフィックスを使用する
165　基本的な描画を行うには
166　多角形の描画を行うには
167　幾何学模様を描画するには
168　フラクタルを描画するには

7-2　Tkinterでウィジェットをレイアウトする
169　ウィンドウを表示するには
170　縦方向（横方向）にボタンを配置するには
171　格子状にウィジェットを配置するには
172　位置を指定してウィジェットを配置するには
173　フォントを指定するには
174　複雑な配置をするには

7-3　Tkinterでイベントを処理する
175　クリックイベントに反応するには
176　キー入力に反応するには
177　マウスイベントを取得するには
178　生成後にウィジェットのオプションを設定するには
179　GUIの状態を変数にバインドするには

7-4　TkinterのCanvasに描画する
180　Canvasに描画するには
181　Canvasに描画した内容を操作するには
182　mainloop以外の処理を実行するには

Chapter 8
そのほかの便利なモジュール

8-1　そのほかのモジュール
183　コマンドラインツールの引数処理を簡単に行うには
184　ログを処理するには
185　オブジェクトを手軽に永続化するには
186　ユニットテストを実行するには

【執筆分担】　大津真　Introduction～Chapter 03（2-4を除く）
　　　　　　　田中賢一郎　Chapter 2-4、Chapter 04～Chapter 08

introduction

Python
環境の構築

Pythonのさまざまなプログラミングテクニックをご紹介する前に、
準備段階としてPythonの導入、プログラミング環境の構築などにつ
いて説明しておきましょう。すでにPythonを使われている方も復習
にご利用ください。

１│　Pythonのインストール
現在Pythonは、バージョン2系（Python 2）とバージ
ョン3系（Python 3）の２種類が広く使用されていま
す。本書ではPython 3を対象に解説しています。その
インストール方法を説明しておきます。

Python 3のインストール

　まずは公式のPython 3(本稿執筆時点の最新版はPython
3.6.3）のインストール方法について説明します。

◎Windowsにインストール
　Windowsでのインストール手順は次のようになります。

❶ 　 Python の オ フ ィ シ ャ ル サ イ ト
（ https://www.python.org ） を 開 き 、
「Downloads」メニューから「Python 3.6.x」（執筆
時点では3.6.3）を選択します。

❷　インストーラを起動し、インストールを実行します。
　 最 初 の 画 面 で は 「 Install launcher for all users
(recommended)」と「Add Python 3.6 to PATH」にチェック
をつけ「Install Now」をクリックします。

　インストールが完了するとスタートメニューにPython関連
のコマンドが追加されます。

◎macOSにインストール
　macOS（High Sierra）には標準でPython 2がインストール
されています。本書で解説するPython 3は、別途次のように
してインストールします。

❶ 　 Python の オ フ ィ シ ャ ル サ イ ト
（https://www.python.org）の「Downloads」メニ
ューから「Python 3.6.x」（執筆時点では「3.6.3」）
を選択します。

❷　ダウンロードしたpkg形式のインストールファイルをダ
ブルクリックして起動し、その指示に従ってインストー
ルを実行します。

　Python 2とPython 3は共存が可能です。ターミナルで
Python 2の対話型インタプリタを起動するにはpythonコマン

ドを、 Python 3の対話型インタプリタを起動するには
python3コマンドを実行します。

◎ターミナルでpython3コマンドを実行

$ python3 　　←Python3を起動
Python 3.6.3 (v3.6.3:2c5fed86e0, Oct　3 2017, 00:32:08)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> exit() 　←Python 3を終了

◎Ubuntuにインストール
　Ubuntu 17.10を標準インストールした場合、デフォルトで
Python 3がインストールされています。手動でインストール
するにはaptコマンドを使用して次のようにします。
◎ターミナルでpython3をインストール

$ sudo apt install python3　

　macOSと同様に、Python 3のコマンド名は「python3」に
なります。
ターミナルでpython3コマンドを実行

$ python3 　　←Python3を起動
Python 3.6.3 (default, Oct　3 2017, 21:45:48)
[GCC 7.2.0] on linux
Type "help", "copyrigh
>>> exit() 　　←Python 3を終了

　なお、パッケージ管理ツールpip（コマンド名はpip3）、お
よびグラフィックスライブラリtkinterを使用するのに必要な

python3-tkは標準ではインストールされません。次のように
aptコマンドでインストールする必要があります。
pipとpython3-tkをインストール

$ sudo apt install python3-pip 　　←pipをインストール
$ sudo apt install python3-tk 　　←python3-tkをインストー
ル

Pythonのディストリビューション「Anaconda」

　Pythonの配布形態にはPythonのオフィシャルサイトで配布
されているバイナリディストリビューションのほかに、用途
に応じたパッケージや統合開発環境などそのほかのソフトウ
エアを追加したPythonディストリビューションが存在しま
す。
　その代表といえるのがAnacondaです。Anacondaは、
Python本体を含むほか、技術計算、データ分析、機械学習な
どに適したさまざまなパッケージを加え、さらに、統合開発
環境「 Spyder」や、高機能なパッケージマネージャ
「Conda」を搭載しています。

◎Anacondaのインストール
　Anacondaは、Windows、macOS、Linux版が無償でダウン
ロード可能です。

　「Download」ボタンをクリックし、「Anaconda 5.ｘ.ｘ
For Windows Installer 」 か ら 「 Python 3.6 version 」 の
「Download」を選択してダウンロードします。ダウンロード
したインストーラを起動し指示に従ってインストールを行い
ます。
　通常、設定はデフォルトのままでかまいません。

◎Anaconda Navigator
　Windowsではスタートメニューからから「 Anaconda
Navigator」を選択することで、Anacondaに用意されたツー
ルのランチャーである「Anaconda Navigator」が起動しま
す。

　たとえば「Spyder」を選択すると統合開発環境である
Spyderが起動します。

２│　モジュールのインポートについて
Pythonには標準で多くのモジュールが付属していま
す。ここではモジュールをインポートしてプログラ
ムで利用する方法についてまとめておきましょう。
また外部のモジュールをインストールする方法につ
いても説明します。

標準ライブラリについて

　Pythonには、標準ライブラリとして、文字列（str）や整数
（ int）などの基本的なデータ型、リスト（ list）やタプル
（tuple）、辞書（dict）などのコレクションといった組み込
み型、printやinputなどの組み込み関数、および、さまざまな
機能を提供するモジュールが用意されています。

モジュールのインポート

　標準ライブラリに含まれているものであっても、組み込み
型以外の関数などを使用するには、importコマンドで対応す
るモジュールをインポートする必要があります。

import モジュール名

　たとえば多くの数値演算用の関数や定数が含まれるモジュ
ールにmathモジュールがあります。対話モードでmathモジ
ュールをインポートするには、pythonコマンドなどでPython

インタプリタを起動した上で、importコマンドを使用して次
のようにします。

◎モジュールのインポート

>>> import math　

　これでmathモジュールに含まれる関数に「math.関数名
(～)」としてアクセスできるようになります。次にsqrt関数
を使用して平方根を求める例を示します。

◎sqrt関数で平方根を求める

>>> math.sqrt(4) 　　←4の平方根を求める
2.0

　mathモジュールに含まれる定数には「math.定数名」とし
てアクセスできます。次に円周率が格納された定数piを使用
して半径が4の外周を求める例を示します。

◎定数piを使う

>>> math.pi * 2 * 4　
25.132741228718345

　また、モジュールにはクラスが含まれているものもありま
す。たとえばカレンダーの機能を提供するクラスが用意され
たcalendarモジュールをインポートするには次のようにしま
す。

◎calendarモジュールをインポート

>>> import calendar　

　以上のコマンドを実行することで、calendarモジュールの
クラスに「calendar.クラス名(～)」でアクセスできるように
なります。
　たとえば、 calendarモジュールに用意されている
TextCalendarクラスはシンプルなテキスト形式のカレンダ
ーを管理するクラスです。このクラスを使用してインスタン
スを生成し2018年4月のカレンダーを表示するには次のよう
にします。

◎TextCalendarクラスを利用してカレンダーを表示

>>> tc = calendar.TextCalendar()
>>> tc.prmonth(2018, 4)
　　 April 2018
Mo Tu We Th Fr Sa Su
　　　　　　　　　 1
2　3　4　5　6　7　8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

　なお、次のようにしてインポートすると、モジュールに別
名を設定できます。

import モジュール as 別名

　たとえばcalendarモジュールをcalという別名でアクセスで
きるようにするには次のようにします。

◎モジュールをインポートし、別の名前でアクセスできるようにする

>>> import calendar as cal　
>>> tc = cal.TextCalendar()　

◎関数名やクラス名、定数名だけでアクセスするには
　次のような形式でインポートすることにより、関数や定数
などに名前だけでアクセスできます。

from モジュール import 名前

　名前はカンマ「,」で区切って複数指定してもかまいませ
ん。

from モジュール import 名前1, 名前2

　mathモジュールのsqrt関数、pi定数に名前だけでアクセス
するには次のようにします。

◎sqrt関数、pi定数に名前だけでアクセスできるようにする

>>> from math import sqrt, pi　
>>> sqrt(4) 　←sqrt関数に名前だけでアクセス
2.0
>>> pi * 2 * 4 　←定数piに名前だけでアクセス
25.132741228718345

　同様にクラスにも名前だけでアクセスできます。

◎TextCalendarクラスに名前だけでアクセスできるようにする

>>> from calendar import TextCalendar
>>> tc = TextCalendar() 　←TextCalendarクラスに名前だけ
でアクセス
>>> tc.prmonth(2018, 4)
　　 April 2018
Mo Tu We Th Fr Sa Su

　　　　　　　　　 1
2　3　4　5　6　7　8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

◎すべての関数や定数に名前だけでアクセスするには
　次のような形式でインポートすることにより、モジュール
内のすべての関数や定数に名前だけでアクセスできるように
なります。

from モジュール import *

　たとえばmathモジュールのすべての機能をインポートする
には次のようにします。

◎mathモジュールのすべての機能をインポートする

>>> from math import *

　ただし、この方法はオリジナルの関数や変数などの名前と
衝突する可能性が高くなるため、使用にあたっては注意が必
要です。

複数のモジュールをまとめたパッケージ

　仲間のモジュールを1つのディレクトリ（あるいはそのサ
ブディレクトリ）にまとめて「パッケージ」として管理でき

ます。パッケージのインポートはモジュールと同じくimport
文を使用して次のようにします。

import パッケージ

　あるいは

import パッケージ.(サブディレクトリ.)モジュール

　たとえばHTTPに関連したモジュールを集めたパッケージに
はhttpパッケージがあります。httpパッケージのトップレベ
ルには、HTTPステータスコードなどをまとめたHTTPStatus
クラスがあります。
　これをインポートして定数OKを表示するには次のようにし
ます。

◎httpパッケージをインポートする

>>> import http
>>> http.HTTPStatus.OK
<HTTPStatus.OK: 200>

ＮＯＴＥ 「import http」のようにパッケージ本体をインポートす
る と 、 そ の デ ィ レ ク ト リ の 初 期 化 フ ァ イ ル
「__init__.py」が実行されます。HTTPStatusクラスは
__init__.pyファイルで定義されています。

　httpパッケージには、HTTPクライアントの機能を提供する
clientモジュールが用意されています。これをインポートし
て「www.google.com」にコネクションを張るには次のよう
にします。

◎clientモジュールを利用して「www.google.com」にコネクションを張る

>>> import http.client
>>> c1 = http.client.HTTPConnection("www.google.com")　

　これは次のように記述してかまいません。

◎上記を書き換えたコード

>>> from http import client
>>> c1 = client.HTTPConnection("www.google.com")

外部パッケージを組み込むには

　Pythonには標準のパッケージ管理システムとしてpip（Pip
Installs Packages）が用意されています。pipを使用すると
Pythonパッケージの公式リポジトリ「PyPI（Python Package
Index）」より外部パッケージをダウンロードして組み込む
ことができます。
　Python 3のpipのコマンド名はWindowsではpip、macOSお
よびUbuntuはpip3です。次のような形式で実行します。

・Windows
pip サブコマンド

・macOS、Ubuntu
pip3 サブコマンド

◎インストールされているパッケージの確認　freeze
　現在インストールされているパッケージの一覧を確認する
には、freezeサブコマンドを使用します（以下、Windowsコ

マンドプロンプトでの実行例です。macOS、Ubuntuの方は
pipをpip3に変更して実行してください）。

◎実行例

>pip freeze
attrs==17.2.0
Automat==0.6.0
autopep8==1.3.3
constantly==15.1.0
hyperlink==17.3.1
incremental==17.5.0
～以下略～

◎パッケージをインストールする　install
　新たにパッケージをダウンロードしてインストールするに
は「install パッケージ名」サブコマンドを使用します。たと
えば、JPGやPNGをはじめとするさまざまなフォーマットに
対応したグラフィックスライブラリ「Pillow」をインストー
ルするには次のようにします。

◎実行例

>pip install Pillow

◎パッケージを削除する　uninstall
　パッケージを削除するには「uninstall パッケージ名」サ
ブコマンドを使用します。

◎実行例

>pip uninstall ipython

◎ヘルプを表示する　help
　pipにはここで紹介したもの以外にもさまざまなサブコマン
ドが用意されています。利用可能なサブコマンドの一覧は
helpコマンドで確認できます。

◎実行例

>pip help

Usage:
　pip <command> [options]

Commands:
　install　　　　　　　　　　 Install packages.
　download　　　　　　　　　　Download packages.
　uninstall　　　　　　　　　 Uninstall packages.
　 freeze　　　　　　　　　　　Output installed packages in
requirements format.
　list　　　　　　　　　　　　List installed packages.
　 show　　　　　　　　　　　　 Show information about
installed packages.
　check　　　　　　　　　　　 Verify installed packages have
compatible dependencies.
　search　　　　　　　　　　　Search PyPI for packages.
　 wheel　　　　　　　　　　　 Build wheels from your
requirements.
　hash　　　　　　　　　　　　Compute hashes of package
archives.
　 completion　　　　　　　　　A helper command used for
command completion.
　help　　　　　　　　　　　　Show help for commands.

General Options:
　-h, --help　　　　　　　　　Show help.
　 --isolated　　　　　　　　　Run pip in an isolated mode,
ignoring environment variables and user configuration.
　 -v, --verbose　　　　　　　 Give more output. Option is
additive, and can be used up to 3 times.
　-V, --version　　　　　　　 Show version and exit.
　-q, --quiet　　　　　　　　 Give less output. Option is additive,
and can be used up to 3 times (corresponding to WARNING,
　　　　　　　　　　　　　　　ERROR, and CRITICAL logging
levels).
　--log <path>　　　　　　　　Path to a verbose appending log.
　 --proxy <proxy>　　　　　　 Specify a proxy in the form
[user:passwd@]proxy.server:port.
　 --retries <retries>　　　　 Maximum number of retries each
connection should attempt (default 5 times).
～以下略～

◎標準ライブラリのモジュールのバージョンを確認するに
は
　先に説明したように、pipでインストールした外部パッケー
ジのバージョンは「pip freeze」（前出の「インストールされ
ているパッケージの確認」）で確認できます。標準ライブラ
リのモジュールに関しては、pythonインタプリタを起動し、
目 的 の モ ジ ュ ー ル を イ ン ポ ー ト し て 特 殊 変 数
「__version__」を表示することで確認できます。

◎実行例

>python　←pythonインタプリタを起動（macOSの場合には
python3）
>>> import json　　←jsonモジュールをインポート

>>> json.__version__　　←バージョンを確認
'2.0.9'

　なお、「help("モジュール名")」を実行すると表示されるヘ
ルプ画面の「VERSION」でバージョン番号を確認することも
できます。

◎実行例

>>> help("json")

～中略～

DATA
　　 __all__ = ['dump', 'dumps', 'load', 'loads', 'JSONDecoder',
'JSONDecod...

VERSION
　　2.0.9　←バージョン

AUTHOR
　　Bob Ippolito <bob@redivi.com>

FILE
　　/Library/Frameworks/Python.framework/Versions/3.6/lib/pytho
n3.6/json/__init__.py

ＮＯＴＥ モジュールによってはバージョン番号の定義されていな
いものもあります。

ＮＯＴＥ platformモジュールのpython_version関数を使用すると実
行中のpythonのバージョンが確認できます。

◎実行例

>>> import platform
>>> platform.python_version()
'3.6.3'

３│　Atomエディタについて
Pythonのプログラム作成に必須なのが、扱いやすいエディタで
す。ここでは高機能フリーのエディタとして人気の高いAtomエ
ディタを紹介します。atom-runnerパッケージを追加することに
より、Pythonプログラムをエディタ内で実行できます。

Atomエディタの画面構成

　Atomは、バージョン管理ツールで有名なGitHub社が開発元のオープ
ンソースのテキストエディタです。Atomのインストール方法を説明する
前に、Atomエディタの実行画面の特徴を示します。

Atomエディタのインストール

　Atomエディタの対応OSは、macOS、Windows、Linuxになります。
Atom を イ ン ス ト ー ル す る に は 、 ま ず オ フ ィ シ ャ ル サ イ ト
「https://atom.io」より使用中のOSに応じたインストーラをダウンロー
ドします。このインストーラを実行することで、Atomをインストールし
ます。

メニューの日本語化

　Atomの大きな特徴は、必要に応じてパッケージを追加することにより
さまざまな機能拡張が行えることです。まずはメニューや設定画面用の
日本語化パッケージ「japanese-menu」をインストールしましょう。

❶　「File」メニューから「Settings」を選択します。左のリストから
「Install」を選択します。

❷　「Install Packages」検索ボックスに「japanese」とタイプし
Enterキーを押します。すると日本語関連のパッケージが検索され
るので、「japanese-menu」の「Install」ボタンをクリックして
インストールします。

　以上で、メニューが日本語化されます。

Pythonプログラムの開発に便利なパッケージ

　Pythonプログラムの開発に便利なそのほかのパッケージをいくつか簡
単に紹介しましょう。なお、ここで紹介するパッケージを使用するに
は、日本語化パッケージと同じように、インストールしておく必要があ
ります。

◎atom-runner
　atom-runnerは、編集中のPythonプログラムをエディタ内で実行で
きるようにするパッケージです。実行結果は下部のパネルに表示されま
す。Pythonプログラムを実行してこのパネル上に結果を表示するショー
トカットキーはAlt+R（Windows）、control+R（macOS）キーになりま
す。

結果を消去するにはescキーを押します。

ＮＯＴＥ atom-runnerは標準入力（コマンドラインでのデータの入力）には対
応していないため、input関数を使用することはできません。

◎atom-beauty
　atom-beautyは、PythonやJavaScriptなどさまざまなプログラミング
言語のソースコードを美しく整形してくれるパッケージです。ショート
カットキーはAlt+Ctrl+B（Windows）、option+control+B（macOS）で
す。

ＮＯＴＥ atom-beautyには、Pythonのautopep8パッケージが別途必要になりま
す。次のようにコマンドライン上でpipコマンドを実行しインストー
ルしておきます。
Windowsコマンドライン

>pip install autopep8

◎autocomplete-python
　autocomplete-pythonは、Pythonプログラムの入力を自動で補完し
てくれるパッケージです。最初の数文字をタイプすると候補の一覧を表
示します。

◎wordcount
　wordcountは、ステータスバーに編集中のファイルの単語数と文字数
を表示してくれるパッケージです。範囲を選択した場合には、その範囲
の単語数と文字数が表示されます。

ＮＯＴＥ wordcountの機能は、エディタで開いているファイルの拡張子に応じ
て有効／無効を切り替えられます。Pythonのソースファイル（拡張
子は「.py」）でwordcountを有効にするには、「環境設定」の「パ
ッケージ」→「wordcount」→「設定」で「 Autoactivated file
extensions」に「py」を追加しておきます。

　1章以降のレシピの例を実行する方法

　1章以降では、Pythonコードの対話モードでの実行例
か、Pythonスクリプトファイル（.py）の例を掲載してい
ます。対話モードは、次のように起動します。

◎Windowsコマンドプロンプトでpythonコマンドを実行
> python 　　←Python 3を起動
>>>　　　　　　　　←対話モードでコマンドが入力できる

◎macOSやUbuntuのターミナルでpython3コマンドを実行
$ python3 　　←Python 3を起動
>>>　　　　　　　　←対話モードでコマンドが入力できる

　Pythonスクリプトファイル（.py）は、以下のように実
行します。以下は、kaibun1.py（007　文字列を反転する
には）の実行例です。

◎Windowsコマンドプロンプトでスクリプトを実行
> python kaibun1.py 　　←スクリプトを実行

◎macOSやUbuntuのターミナルでスクリプトを実行
$ python3 kaibun1.py 　　←Python 3を起動

　なお、1章以降では「> python」で統一して記載してい
ます。macOSやUbuntuの場合は「$ python3」と読み替え
てください。

Chapter
１

文字列とデータの
基本操作

Pythonでは文字列はstrクラスのインスタンスです。このChapterで
はまず文字列の基本的な操作について説明します。そのあとで、関
数を使用して値のデータ型やIdを調べる方法や、三項演算子を使用
して条件判断をシンプルに行う方法などについて説明します。

1-1 文字列の基本操作
Pythonではすべてのデータはオブジェクトです。文字列はstr
クラス、数値はintクラスやfloatクラスのインスタンスです。
この節では文字列の基本操作について説明します。

001
文字列をリテラルによって生成するには

 文字列クォーテーションで囲む

　文字列リテラルにより文字列を生成するには、文字列をシ
ングルクォーテーション「'」、もしくはダブルクォーテーシ
ョン「"」で囲みます。

◎実行例

>>> s1 = 'こんにちは'
>>> s2 = "さようなら"

　クォーテーションを含む文字列を生成したい場合には、も
う一方のクォーテーションで囲みます。

◎実行例

>>> s2 = "What's going on?"

●複数行の文字列を生成する
　複数行の文字列を生成するには、3つのシングルクォーテー
ション、もしくは3つのダブルクォーテーションで囲みます。

◎実行例

>>> s3 = """ クォーテーション3つで囲むと
... 複数行の文字列を生成できます。"""

ＮＯＴＥ プログラム内に文字列リテラルだけの行を記述することも
できます。そのためクォーテーション3つで囲んだ、複数
行の文字列リテラルは、コメントとしても利用されま
す。
"""
　これはコメントです
　これもコメントです
"""

002
文字列の長さを求めるには

 len関数を使用する

　文字列の長さを求めるには、len関数を使用します。

◎関数　len(s)
カテゴリ　 組み込み関数
引数　　　 文字列
戻り値　　 文字列の長さ
説明　　　 引数sで指定した文字列の長さを戻す
使用例　　 l = len(str1)

◎実行例

>>> len('hello')
5

>>> len('こんにちは')
5

●指定したエンコーディングのバイト数を求める
　strクラスのencodeメソッド（024で解説）を使用すると、
文字列を指定したエンコーディングのバイト列に変換できま
す。その結果をlen関数に渡せばバイト数がわかります。

◎実行例

>>> str = 'さようなら'
>>> len(str.encode('shift-jis'))
10
>>> len(str.encode('utf-8'))
15
>>> len(str.encode('utf-16'))
12
>>> len(str.encode('utf-32'))
24

003
文字列を連結するには

 「+」演算子、「*」演算子を使用する

　文字列同士を連結するには「+」演算子を使用します。

◎実行例

>>> 'こんにちは' + 'Python'
'こんにちはPython'
>>> '今日は' + '月曜' + '日です'

'今日は月曜日です'

　ただし、数値などほかのデータ型の値と文字列を直接連結
することはできません。TypeError例外が送出されます。

◎実行例

>>> 2018 + '年'
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

　str関数（strコンストラクタ→016で解説）を使用して数値
を文字列に変換してから連結する必要があります。

◎実行例

>>> str(2018) + '年'
'2018年'

●指定した回数を連結する
　「*」演算子を使用すると、指定した回数だけ文字列を繰り
返し連結できます。

文字列 * 整数

　次に'Hello'を3つ連結する例を示します。

◎実行例

>>> 'Hello' * 3
'HelloHelloHello'

004
アルファベットの大文字／小文字を変換するには

 upperメソッド、lowerメソッド、swapcaseメソッドを
使用する

　小文字を大文字に変換するには、strクラスのupperメソッ
ドを使用します。
◎メソッド　upper()
カテゴリ　 strクラス
引数　　　 なし
戻り値　　 大文字に変換した文字列
説明　　　 小文字を大文字にして戻す
使用例　　 str2 = str1.upper()

◎実行例

>>> 'abc'.upper()
'ABC'

　逆に大文字を小文字に変換するにはlowerメソッドを使用し
ます。
◎メソッド　lower()
カテゴリ　 strクラス
引数　　　 なし
戻り値　　 小文字に変換した文字列
説明　　　 大文字を小文字にして戻す
使用例　　 str2 = str1.lower()

◎実行例

>>> 'ABC'.lower()
'abc'

　これらのメソッドは、半角アルファベットだけでなく全角
アルファベットに対しても機能します。

◎実行例

>>> 'ＡＢＣＤ'.lower 　←全角の'ＡＢＣＤ'
'ａｂｃｄ'

●小文字を大文字に、大文字を小文字に
　文字列内のアルファベット小文字を大文字に、大文字を小
文字に変換するにはswapcaseメソッドを使用します。

◎メソッド　swapcase()
カテゴリ　 strクラス
引数　　　 なし
戻り値　　 小文字を大文字に、大文字を小文字にした文字列
説明　　　 アルファベットの小文字を大文字に、大文字を小文字に

して戻す
使用例　　 str2 = str1.swapcase()

◎実行例

>>> 'Hello World'.swapcase()
'hELLO wORLD'

005
文字列から指定した位置の文字を取り出すには

 インデックスを使用する

　文字列はリストなどと同じようにシーケンス型のデータな
ので、次の書式でインデックスを指定することで、対応する

位置の文字を取り出すことができます。

文字列[インデックス]

　インデックスは先頭の文字を0とする整数値です。マイナス
の数値を使用すると、文字列の最後から位置を指定して文字
を取り出せます。最後の文字を「-1」とします。

◎実行例

>>> str1 = 'こんにちは'
>>> str1[0] 　←先頭から1文字目
'こ'
>>> str1[1] 　←先頭から２文字目
'ん'
>>> str1[len(str1) - 1] 　 ←最後の文字
'は'
>>> str1[-1] 　←最後の文字
'は'
>>> str1[-2] 　←最後から２文字目
'ち'

006
文字列の一部を取り出すには

 スライスを使用する

　文字列からスライス（部分文字列）を取り出すには、次の
ように指定します。

文字列[最初の文字のインデックス:最後の文字のインデック
ス+1]

◎実行例

>>> str2 = '0123456789'
>>> str2[0:4] 　←最初の4文字を取り出す
'0123'
>>> str2[1:3] 　←2文字目から3文字目までを取り出す
'12'

　最初のインデックスを省略した場合には「0」が、終わりの
インデックスを省略した場合には文字列の長さ（ len(文字
列)）が指定されているものと見なされます。

◎実行例

>>> str2[:2] 　←str2[0:2]と同じ
'01'
>>> str2[4:] 　←str2[4:len(str2)]と同じ
'456789'

　この場合も、インデックスに負の値を指定して最後の文字
からの位置を指定することもできます。次のようにすると拡
張子「.txt」を取り除けます。

◎実行例

>>> filename = 'sample.txt'
>>> filename[:-4] 　←最後の4文字を取り除く
'sample'

●途中の文字をスキップして取り出す
　次のように、スライスを指定する部分の最後にステップ数
（何番目ごとに取り出すか）を指定できます。

文字列[最初の文字のインデックス:最後の文字のインデック
ス+1:ステップ数]

◎実行例

>>> str2 = '0123456789'
>>> str2[::2] 　←2文字ごとに取り出す
'02468'
>>> str2[::3] 　←3文字ごとに取り出す
'0369'

007
文字列を反転するには

 「文字列[::-1]」を使用する

　スライスのステップ数を設定する個所に「-1」指定し、最初
と最後のインデックスを省略すると文字列を反転できます。

文字列[::-1]

◎実行例

>>> 'Hello'[::-1]
'olleH'
>>> 'パイソン'[::-1]
'ンソイパ'

　次に、コマンドラインから文をひらがなやカタカナで入力
し、それが回文かどうかを判断する例を示します。

◎リスト kaibun1.py

str1 = input('文字列を入力: ')
if str1 == str1[::-1]: １
　print('回文です')
else:
　print('回文ではありません')

　１のif文で、入力した文字列と反転した文字列を比較してい
ます。

■ 実行結果

文字列を入力: このこどもどこのこ
回文です
文字列を入力: パイソンパイソン
回文ではありません
文字列を入力: たけやぶやけた
回文です

008
文字列の一部を置換するには

 replaceメソッドを使う

　replaceメソッドを使用すると、文字列内の指定した文字列
を別の文字列に置き換えることができます。

◎メソッド　replace(old, new[, count])
カテゴリ　 strクラス
引数　　　 old：置換する文字列、new：置換後の文字列、count：

回数
戻り値　　 置換された文字列

説明　　　 oldをnewに置換した文字列を戻す。置換対象の文字列
が複数ある場合、引数countを指定するとその数だけ置
換する

使用例　　 s = s.replace("You", "He")

　引数countを指定しなかった場合は、見つかったすべての文
字列が置換されます。

◎実行例

>>> "good new good new good".replace("good", "bad")
'bad new bad new bad'

　引数countを指定した場合には、最大でその数だけ置換され
ます。

◎実行例

>>> "good new good new good".replace("good", "bad", 2)
'bad new bad new good'

ＮＯＴＥ 正規表現と呼ばれる表記を使用するとより柔軟な置換が行
えます（101「パターンにマッチする部分を置換するに
は」参照）。

009
文字列内の文字を変換表に従って置換するには

 translateメソッド、maketransメソッドを組み合わせて
使う

　translateメソッドでは「a」を「A」に、「b」を「B」に、
といったように、指定した変換表に基づいて文字単位で置換
を行うことができます。

◎メソッド　translate(table)
カテゴリ　 strクラス
引数　　　 変換表
戻り値　　 置換された文字列
説明　　　 文字を変換表に従って変換する
使用例　　 s = "AabcD".translate(str.maketrans("abc", "ABC"))

　変換表を作成するにはmaketransメソッドを使用します。

◎メソッド　maketrans(x, y)
カテゴリ　 strクラス
引数　　　 x:変換元の文字の並び、y：変換後の文字の並び
戻り値　　 変換表
説明　　　 translateメソッドで使用する変換表を作成する
使用例　　 tbl = str.maketrans("abc", "ABC")

　引数xと引数yは同じ文字数である必要があります。次に、
1、2、3をそれぞれ①、②、③に置換する例を示します。

◎実行例

>>> "1apple 2orange 3banana".translate(str.maketrans("123",
"①②③"))
'①apple ②orange ③banana'

ＮＯＴＥ maketransはインスタンスに依存しないクラスメソッド
（スタティックメソッド）です。「str.maketrans(～)」の
形式で使用します。

010
文字列内を検索するには

 in演算子、not in演算子、findメソッド、rfindメソッ
ド、indexメソッドを使用する

　in演算子を使用すると、文字列内に部分文字列が含まれてい
るかを調べられます。

検索する文字列 in 文字列

　含まれている場合にはTrueを、含まれていない場合には
Falseを戻します。

◎実行例

>>> "fine" in "I'm fine"
True
>>> "good" in "I'm fine"
False

　in演算子の代わりに「not in」演算子を使用すると、文字列
が含まれていない場合にTrueを、含まれていた場合にはFalse
を戻します。
◎実行例

>>> "fine" not in "I'm fine"
False
>>> "good" not in "I'm fine"
True

●文字列のインデックスを調べる

　in演算子で調べられるのは部分文字列が含まれているどうか
だけで、その位置まではわかりません。
　findメソッドを使用すると、部分文字列が見つかった場合
にそのインデックスを調べることができます。

◎メソッド　find(sub,[start[, end]])
カテゴリ　 strクラス
引数　　　 sub：部分文字列、start：開始位置のインデックス、

end：終了位置の次のインデックス
戻り値　　 検索された文字列のインデックス
説明　　　 文字列に部分文字列が含まれていた場合にそのインデッ

クスを戻す。見つからなかった場合には「-1」を戻す。
引数startで開始位置、引数endで終了位置を指定するこ
とも可能。

使用例　　 ix = s.find("Python")

　インデックスは先頭を0とする整数値です。見つからなかっ
た場合には「-1」を戻します。

◎実行例

>>> "01234567890123456789".find("34")
3
>>> "01234567890123456789".find("abc")
-1

　引数startで検索を開始する位置のインデックスを指定でき
ます。

◎実行例

>>> "01234567890123456789".find("34", 9)
13

　引数endで検索を終了する位置の次のインデックスを指定で
きます。

◎実行例

>>> "01234567890123456789".find("34", 9, 14)
-1

●文字列の最後から検索する
　findメソッドの仲間にrfindメソッドがあります。findメソッ
ドは文字列の先頭から検索が行われますが、rfindメソッドで
は終わりから検索が行われます。

◎実行例

>>> "01234567890123456789".rfind("34")
13

●文字列が見つからなかった場合には例外を送出するようにす
る
　findメソッドの場合、文字列が見つからなかった場合「-1」
が戻されます。それに対してindexメソッドではValueError例
外が送出されます。

◎メソッド　index(sub,[start[, end]])
カテゴリ　 strクラス
引数　　　 sub：部分文字列、start：開始位置のインデックス、

end：終了位置の次のインデックス
戻り値　　 検索された文字列のインデックス
説明　　　 文字列に部分文字列が含まれていた場合にそのインデッ

クスを戻す。見つからなかった場合にはValueError例外
が送出される。startで開始位置、endで終了位置を指定
することも可能

使用例　　 ix = s.index("Python")

　使用方法はfindメソッドと同じです。

◎実行例

>>> "01234567890123456789".index("34")
3
>>> "01234567890123456789".index("134")
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
ValueError: substring not found

　次の例は、ユーザーに文字列を繰り返し入力させ、それが
変数str1に含まれていればそのインデックスを表示します。含
まれていなければ「ValueError例外です」と表示してループを
抜けます。

◎リスト index1.py
str1 = "春夏秋冬"
while True:
　　search = input("季節名を入力: ")
　　try: １
　　　　index = str1.index(search) ２
　　　　print("インデックス:", index)
　　except ValueError: ３
　　　　print("ValueError例外です")
　　　　break

　１のtry文のブロックで２のindexメソッドの結果を処理し、
ValueErrorが発生すれば３のexcept文で捕まえています。

◎実行結果
>python index1.py

検索文字列を入力: 春
インデックス: 0
検索文字列を入力: 夏
インデックス: 1
検索文字列を入力: 秋
インデックス: 2
検索文字列を入力: 赤
ValueError例外です

011
文字列内の文字列の数をカウントするには

 countメソッドを使用する

　countメソッドを使用すると、文字列内の指定した文字列の
出現回数を調べることができます。

◎メソッド　count(sub[, start[, end]])
カテゴリ　 strクラス
引数　　　 sub：文字列、start：開始位置のインデックス、end：

終了位置の次のインデックス
戻り値　　 文字列の数
説明　　　 startとendの間に文字列subが出現する回数を戻す
使用例　　 c = s.count("Python")

◎実行例

>>> "good bad good".count("good")
2
>>> "010101".count("0", 1)
2

●大文字／小文字を無視してカウントするには
　strクラスに用意されている文字列を戻すメソッドは、ピリ
オド「.」で接続することにより連続実行できます。

文字列.メソッド1(～).メソッド2(～).メソッド3(～)

　たとえば、大文字／小文字の相違を無視して文字列をカウ
ントするには、upperメソッド（004で解説）により大文字に
変換してからcountメソッドを実行します。

◎実行例

>>> "Python basic python PYTHON
swift".upper().count("PYTHON")
3

012
文字列内に値を埋め込むには（その１）

 formatメソッドを使用する

　formatメソッドを使用すると、文字列内の指定した位置
に、別の文字列や数値を埋め込むことができます

◎メソッド　format(*args)
カテゴリ　 strクラス
引数　　　 値の並び
戻り値　　 埋め込まれた文字列
説明　　　 文字列内の「{～}」で指定した箇所に引数を埋め込んで

戻す
使用例　　 s = '{}年{:02d}月 {:.2f}'.format(year, 9, n)

　簡単な例から説明しましょう。formatメソッドは元の文字列
の「{}」で指定した箇所に、引数で指定した値を順に埋め込
みます。値は文字列でも数値でもかまいません。

◎実行例

>>> '{}年{}月{}日'.format(2018, 4, 1)
'2018年4月1日'

●位置引数を指定する
　「{番号}」とすると、指定した位置の引数を埋め込めま
す。これを「位置引数」と言います。番号は最初の引数を
「0」とする整数値です。次の例は、2番目、3番目、最初の引
数を順に埋め込みます。

◎実行例

>>> '{1}, {2}, {0}'.format('one', 'two', 'three')
'two, three, one'

　同じ番号を指定することで、同じ引数を複数回埋め込むこ
ともできます。

◎実行例

>>> '{0}, {0}, {0}'.format('one', 'two', 'three')
'one, one, one'

●桁数と配置位置を指定する
　表示する桁数（文字数）を指定するには「{番号:桁数}」を
指定します（番号は省略可能）。文字列の場合にはデフォル
トで左寄せになります。

◎実行例

>>> '|{:10}|'.format('hello')
'|hello　　 |'

　右寄せにするには「>」を、中央寄せにするには「^」を桁
数の前に指定します。

◎実行例

>>> '|{:>10}|'.format('hello')
'|　　 hello|'
>>> '|{:^10}|'.format('hello')
'|　hello　 |'

●整数のフォーマット指定
　「{番号:フォーマット}」の形式で指定すると、表示形式を
指定できます。整数の場合デフォルトのフォーマットは「d」
（10進数)です。「b」を指定すると2進数、「o」を指定する
と8進数、「x」を指定すると16進数で表示されます。
　次に10進数の255を、10進数、16進数、2進数の形式で埋め
込む例を示します。

◎実行例

>>> '{0} -> {0:x} -> {0:b}'.format(255)
'255 -> ff -> 11111111'

　デフォルトでは負の値のみ数値の前に「-」記号が表示され
ます。フォーマットで「+」を指定すると、正、負のどちらの
値にも符号を付けます。

◎実行例

>>> '{}'.format(-10)
'-10' ←デフォルトでは負の値のみ符号が付く

>>> '{:+}'.format(10)
'+10' ←「+」を指定すると正の値にも符号が付く

　文字列を埋め込む場合と同じく、桁を指定するには「{番
号:桁d}」を指定します。

◎実行例

>>> '{:10d}'.format(4)
'　　　　 4'

　桁の前に「0」を記述すると前方を「0」で埋めます。

◎実行例

>>> '{:02d}時{:02d}分'.format(3, 4)
'03時04分'

　フォーマットに「,」を指定すると、数値の3桁ごとに「,」
をセパレータとして表示します。

◎実行例

>>> '合計{:,}円'.format(1034044)
'合計1,034,044円'

●浮動小数点数のフォーマット指定
　浮動小数点数形式で埋め込みたい場合にはフォーマットに
「f」を指定します。

◎実行例

>>> '{:f}'.format(4)
'4.000000'

　デフォルトでは小数点以下第6位まで表示されますが、
「{番号:.桁数f}」で桁数を指定できます。

◎実行例

>>> '{:f}'.format(1/3)
'0.333333' ←1/3の結果を表示。デフォルトでは（6桁）
>>> '{:.3f}'.format(1/3)
'0.333 ←3桁まで表示

　「f」の代わりに「e」を指定すると指数表記、「%」を指定
するとパーセント表記になります。

◎実行例

>>> '{:.3e}'.format(1/3)
'3.333e-01'
>>> "{:.2%}".format(1/3)
'33.33%'

●位置引数に名前をつける
　formatメソッドの引数に「名前=値」を指定することにより
位置引数に名前をつけることができます。そうすることによ
り番号の代わりに名前でアクセスすることができます。

◎実行例

>>> name = "山田太郎"
>>> '{name}: {age:d} 才 {height:.2f}cm'.format(name=name,
age=43, height=165.454)
'山田太郎: 43才 165.45cm'

●日付時刻をフォーマットする

　 datetimeモジュール（ 138で解説）の dateクラスや
datetimeクラスのインスタンスをformatメソッドの引数にす
ることにより、日付時刻のデータを個別に取り出して表示す
ることができます。その場合、次のように「%文字」で取り
出すフィールドを指定できます。

　次に今日の日付を「XXXX年X月X日」の形式で、時刻を12時
間表記で表示する例を示します。

◎リスト format1.py
from datetime import datetime

now = datetime.now()
datestr = '{0:%Y}年{0:%m}月{0:%d}日'.format(now)　１
print(datestr)
timestr = '{0:%p} {0:%I}時{0:%M}分'.format(now)　２
print(timestr)

　１で日付を、２で時刻を文字列に埋め込んでprint関数で表
示しています。

■実行結果

2017年12月13日
PM 09時59分

013
文字列内に値を埋め込むには（その2）

 f文字列を使用する

　Python 3.6以降では、文字列内に別の値を埋め込むのに「f
文字列（formatted string）」というよりシンプルな書式が用
意されました。

f'文字列'

　文字列内の値を埋め込みたい位置に「{値}」を記述しま
す。変数や計算式を埋め込んだり、formatメソッドと同じく
{値:フォーマット}でフォーマット指定することもできます。

◎実行例

>>> f'今年は{2018}年です'
'今年は2018年です'
>>> doll = 5
>>> rate = 108
>>> f'{doll}ドルは{doll * rate}円です' 　←変数や計算式も埋
め込める
'5ドルは540円です'

◎実行例（{値:フォーマット}でフォーマット指定）

>>> f'{1434555:,}' 　←3桁区切り
'1,434,555'

>>> points = 43
>>> total = 97
>>> f'{points/total:.2%}パーセント' 　←パーセント表記
'44.33%パーセント'

　次に、前出のformat1.pyのformatメソッドをf文字列に変更
した例を示します。

◎リスト format2.py
from datetime import datetime

now = datetime.now()
datestr = f'{now:%Y}年{now:%m}月{now:%d}日'　１
print(datestr)
timestr = f'{now:%p} {now:%I}時{now:%M}分'　２
print(timestr)

　１、２でformatメソッドの代わりにf文字列を使用していま
す。

■実行結果

2017年12月13日
PM 10時37分

014
文字列の先頭／最後から指定した文字を取り除くには

 strip、lstrip、rstripメソッドを使用する

　文字列の先頭および末尾から指定した文字を取り除くに
は、stripメソッドを使用します。

◎メソッド　strip([chars])
カテゴリ　 strクラス
引数　　　 取り除く文字の並び
戻り値　　 削除後の文字列
説明　　　 先頭および末尾から引数で指定した文字を取り除いて新

たな文字列を戻す
使用例　　 s = s.strip(',.')

　stripメソッドを、引数を省略して実行した場合には、文字列
の先頭、および末尾から空白文字（スペース、タブ、改行な
ど）が削除されます。

◎実行例

>>> '　\n　 こんにちは さようなら\t'.strip()
'こんにちは さようなら'

ＮＯＴＥ 空白文字の一覧はstringモジュールのwhitespaceプロパテ
ィで確認できます。
実行例

>>> import string
>>> string.whitespace
' \t\n\r\x0b\x0c'

　引数charsでは削除する文字の並びを指定できます（文字列
ではない点に注意してください）。'<'および'>'を取り除くに
は「'<>'」を指定します。

◎実行例

>>> '<Python>'.strip('<>')

'Python'

　'.'、'|'、'!'を取り除くには'.|!'を指定して次のようにします。

◎実行例

>>> '!..green..red|.|.|'.strip('.|!')
'green..red'

●文字列の先頭あるいは最後から文字を取り除く
　lstrip、rstripメソッドはstripメソッドの簡易版です。lstrip
メソッドは文字列の先頭から引数で指定した文字を取り除き
ます。

◎実行例

>>> '!..green..red|.|.|'.lstrip('.|!')
'green..red|.|.|'

　rstirpメソッドは文字列の最後から引数で指定した文字を取
り除きます。

◎実行例

>>> '!..green..red|.|.|'.rstrip('.|!')
'!..green..red'

　ミュータブルな型とイミュータブルな型

　Pythonのデータ型は、あとから値を変更可能な「ミュー
タブル」（変更可）な型と、変更できない「イミュータブ

ル」（変更不可）な型に大別されます。

015
リスト、タプル、辞書の要素を接続した文字列を生成
するには

 joinメソッドを使用する

　リスト、タプル、セット、辞書などイテレート（繰り返し
処理）可能なオブジェクトの要素を順に接続した文字列を生
成するにはjoinメソッドを使用します。

◎メソッド　join(iterable)
カテゴリ　 strクラス
引数　　　 イテレート（繰り返し処理）可能なオブジェクト
戻り値　　 連結後の文字列
説明　　　 引数で指定したオブジェクトの要素をセパレータで連結

して戻す
使用例　　 s = ','.join(['赤', '青', '黄'])

　joinメソッドは次の形式で実行します。

'セパレータ'.join(イテレート可能なオブジェクト)

　セパレータ（区切り文字）は空文字列''、あるいは複数の文
字でもかまいません。次にリストを接続する例を示します。

◎リスト join1.py
lst = ['春', '夏', '秋', '冬']

要素をそのまま接続
print(''.join(lst))
セパレータを「,」にして接続
print(','.join(lst))
セパレータを「<->」にして接続
print('<->'.join(lst))

■実行結果

春夏秋冬
春,夏,秋,冬
春<->夏<->秋<->冬

●数値の要素を接続する
　joinメソッドで接続するためには、要素がすべて文字列であ
る必要があります。要素が1つでも数値である場合、それらを
接続しようとするとエラーになります。

◎実行例

>>> ''.join([1, 'hello', 'python'])
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
TypeError: sequence item 0: expected str instance, int found

　数値の要素を接続したい場合には、map関数（064で解説）
などを使用してあらかじめ文字列に変換しておきます。

◎リスト join2.py
lst = ['オレンジ', 34, 4, 'いちご']
lststr = map(str, lst)　 １
print(','.join(lststr))　２

　１のmap関数で、リストlstの各要素にstr関数を実行して文
字列に変換し、２のjoinメソッドで接続しています。

■実行結果

オレンジ,34,4,いちご

●辞書のキー、もしくは値を接続する
　辞書をjoinメソッドの引数にして連結することもできます。
この場合、キーだけが連結されます。

◎実行例

>>> dic = {'赤':'red', '青':'blue', '黄色':'yellow'}
>>> ','.join(dic)
'赤,青,黄色'

　値だけを連結したい場合には、valuesメソッド（073で解
説）で値のリストを取得します。

◎実行例

>>> ','.join(dic.values())
'red,blue,yellow'

016
数値を文字列に変換するには

 str関数、bin関数、oct関数、hex関数を使用する

　数値を文字列に変換するには、str関数（strコンストラク
タ）を使用します。
◎関数　str(num)
カテゴリ　 strクラス
引数　　　 数値
戻り値　　 変換後の文字列
説明　　　 引数numを文字列に変換して戻す
使用例　　 s = str(59)

　引数には整数だけでなく、浮動小数点数も指定できます。

◎実行例

>>> str(255)
'255'
>>> str(1 / 3)
'0.3333333333333333'
>>> str(2e5)
'200000.0'

　引数を16進数や2進数のリテラルで記述した場合でも、10進
数の文字列が戻されます。

◎実行例

>>> str(0xff)
'255'

>>> str(0b1111)
'15'

●２進数、8進数、16進数の文字列に変換する
　整数を2進数の文字列にするにはbin関数を使用します。

◎実行例

>>> bin(255)
'0b11111111'

　8進数の文字列にするにはoct関数を使用します。

◎実行例

>>> oct(255)
'0o377'

　16進数の文字列にするにはhex関数を使用します。

◎実行例

>>> hex(255)
'0xff'

　いずれの関数も浮動小数点数を引数にするとエラーになり
ます。

◎実行例

>>> bin(4.0)
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
TypeError: 'float' object cannot be interpreted as an integer
>>> hex(14.54)

Traceback (most recent call last):
File '<stdin>', line 1, in <module>
TypeError: 'float' object cannot be interpreted as an integer

　int関数（017で解説）などを使用して整数化したのちに引
数にする必要があります。

◎実行例

>>> bin(int(4.0))
'0b100
>>> hex(int(14.54))
'0xe

017
文字列を数値に変換するには

 int関数、float関数を使用する

　'495'のような数値を表す文字列を整数値に変換するには、
int関数（intコンストラクタ）を使用します。

◎関数　int(x, [radix])
カテゴリ　 組み込み関数
引数　　　 x：整数を表す文字列、radix：基数
戻り値　　 変換後の整数
説明　　　 引数xを引数radixで指定した基数の整数に変換して戻す
使用例　　 s = int('255', 16)

　デフォルトでは基数は10（10進数）です。

◎実行例

>>> int('123') 　←基数を10に
123
>>> int('ff', 16) 　←基数を16に
255
>>> int('1010', 2) 　←基数を2に
10
>>> int("777", 8) 　　←基数を8に
511

ＮＯＴＥ 整数に変換できない値を指定した場合にはValueError例外
が送出されます。

◎実行例

>>> int('hello')
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'hello'

　int関数を使用すると浮動小数点数を整数に変換することも
できます。

◎実行例

>>> int(14.0)
14

　小数点以下の桁は切り捨てられます。

◎実行例

>>> int(3.14)
3

●浮動小数点数に変換する
　数値を表す文字列を浮動小数点数に変換するにはfloat関数
（floatコンストラクタ）を使用します。

◎関数　float(x)
カテゴリ　 組み込み関数
引数　　　 数値を表す文字列
戻り値　　 変換後の浮動小数点数
説明　　　 引数xを浮動小数点数に変換して戻す。変換できない場合

にはValueError例外が送出される
使用例　　 f = float('3.14')

　引数に整数を表す文字列を指定しても浮動小数点数に変換
されます。

◎実行例

>>> float('33')
33.0
>>> float('10.5')
10.5

018
文字列が数値／アルファベット／空白文字であること
を調べるには

 is～メソッドを使用する

　文字列が数値やアルファベットであるかを調べるメソッド
をまとめておきます。これらのメソッドは、Trueもしくは
Falseを戻します。

◎実行例

>>> 'hello1234'.isalnum()
True
>>> '2017'.isdecimal()
True
>>> '\u00B2'.isdecimal() 　←上付き文字の数字（2）
False
>>> '\u00B2'.isdigit()
True
>>> '四'.isdecimal()
False
>>> '四'.isnumeric()
True
>>> 'ⅠⅩ'.isdigit()
False
>>> 'ⅠⅩ'.isnumeric()
True
>>> ' \n\t'.isspace()
True

019
文字列を指定した文字位置で分解しリストに変換する
には

 splitメソッド、rsplitメソッド、splitlinesメソッドを使用
する

　splitメソッドを使用すると、文字列を、指定した文字で分
割してリストの要素とすることができます。

◎メソッド　split(sep=None, maxsplit=-1)
カテゴリ　 strクラス
引数　　　 sep：セパレータ、maxsplit：最大分割数
戻り値　　 分割された要素のリスト
説明　　　 引数sepの位置で文字列を分割し、それを要素とするリ

ストを生成して戻す
使用例　　 s = s.split("-")

　文字列をカンマ「,」の位置で分割し、それを要素とするリ
ストを戻すには次のようにします１。また、キーワード引数
maxsplitが与えられた場合には、リストの要素数は最大で
「maxsplit + 1」となります２。

◎実行例１

>>> '春,夏,秋,冬'.split(',')
['春', '夏', '秋', '冬']

◎実行例２

>>> '春,夏,秋,冬'.split(',', maxsplit=2)
['春', '夏', '秋,冬']

　引数sepは文字列でもかまいません。

◎実行例

>>> '赤->青->紫'.split('->')
['赤', '青', '紫']

●空白文字で分割する
　splitメソッドに引数sepを与えない場合には、スペースやタ
ブ、改行などの空白文字（もしくはその連続）で分割されま
す。このとき、先頭と終わりの空白文字は無視されます。

◎実行例

>>> '　空\n海　\t山'.split()
['空', '海', '山']

●右から数えて分割する
　splitメソッドの代わりにrsplitメソッドを使用すると、引数
maxsplitが与えられた場合に分割数を右から数えます。

◎メソッド　rsplit(sep=None, maxsplit=-1)
カテゴリ　 strクラス
引数　　　 sep：セパレータ、maxsplit：最大分割数
戻り値　　 リスト
説明　　　 引数maxsplitで分割数を指定した場合に、文字列を右か

ら数えて分割する
使用例　　 l = s.rsplit(',', maxsplit=1)

　次に、引数maxsplitを「2」に設定し、rsplitメソッドを実行
する例を示します。

◎実行例

>>> '春,夏,秋,冬'.rsplit(',', maxsplit=2)
['春,夏', '秋', '冬']

●改行で分割する
　文字列を改行の位置で分解してリストにするにはsplitlines
メソッドを使用します。

◎メソッド　splitlines([keepends])
カテゴリ　 strクラス
引数　　　 改行を残すかどうか
戻り値　　 リスト
説明　　　 文字列を改行で分割したリストを戻す
使用例　　 s = s.splitlines()

　引数を省略した場合には分割後に改行が削除されます １。
引数keependsがTrueの場合には行末の改行を削除しません
２。

◎実行例 １

>>> 'ギター\nピアノ\nベース\n'.splitlines()
['ギター', 'ピアノ', 'ベース']

◎実行例 ２

>>> 'ギター\nピアノ\nベース\n'.splitlines(keepends=True)
['ギター\n', 'ピアノ\n', 'ベース\n']

020
文字列をセパレータの位置で３分割したタプルを戻す
には

 partitionメソッド、rpartitionメソッドを使う

　splitと似たメソッドにpartitionがあります。partitionメソッ
ドは文字列をセパレータの位置を基準に、前方部分、セパレ
ータ、後方部分に3分割します。

◎メソッド　partition(sep)
カテゴリ　 strクラス
引数　　　 セパレータ
戻り値　　 タプル
説明　　　 セパレータの位置で3分割した文字列を要素とするタプル

を戻す
使用例　　 s = s.partition('-')

　次に、'の'の位置で文字列を3分割する例を示します。

◎実行例

>>> '私の家'.partition('の')
('私', 'の', '家')

　セパレータが見つからない場合は、元の文字列と、空文字2
つのタプルが返されます。

◎実行例

>>> '私の家'.partition(',')
('私の家', '', '')

　セパレータが複数ある場合には最初の位置で分割されま
す。

◎実行例

>>> '私の家の庭'.partition('の')
('私', 'の', '家の庭')

●右から分割する
　セパレータが複数ある場合に最後のセパレータの位置で分
割するにはrpartitionメソッドを使用します。

◎実行例

>>> '私の家の庭'.rpartition('の')
('私の家', 'の', '庭')

021
文字列の先頭／最後が指定したものかを調べるには

 startswithメソッド、endswithメソッドを使用する

　文字列の先頭が指定された文字列で始まるかを調べるに
は、startswithメソッドを使用します。

◎メソッド　startswith(prefix[, start[, end]])
カテゴリ　 strクラス
引数　　　 prefix：検索する文字列、start：開始位置、end：終了

位置
戻り値　　 一致すればTrue、しなければFalse
説明　　　 文字列の先頭と引数prefixを比較し一致すればTrueを、

そうでなければfalseを戻す。引数startで比較の開始位
置、引数endで比較の停止位置を指定することもできる

使用例　　 ok = s.startswith('python')

◎実行例

>>> 'hello_python.py'.startswith('hello')
True
>>> 'hello_python.py'.startswith('ello', 1, 4)
False
>>> 'hello_python.py'.startswith('ello', 1, 5)
True

　文字列の最後が指定した文字列で終わるかを調べるには、
endswithメソッドを使用します。

◎メソッド　endswith(suffix[, start[, end]])
カテゴリ　 strクラス
引数　　　 suffix：検索する文字列、start：開始位置、end：終了

位置
戻り値　　 一致すればTrue、しなければFalse
説明　　　 文字列の最後と引数suffixを比較し一致すればTrueを、

そうでなければfalseを戻す。引数startで比較の開始位
置、引数endで比較の停止位置を指定することもできる

使用例　　 end = s.endswith('.html')

　次に、文字列の拡張子が「.py」であるかを調べる例を示し
ます。

◎実行例

>>> 'hello_python.py'.endswith('.py')
True

●先頭／終わりの文字列をタプルで指定する
　startswithメソッド、endswithメソッドの引数は、タプルの
要素として複数指定してもかまいません。その場合、いずれ
かの要素に一致した場合にTrueを戻します。

◎実行例

>>> 'Goodboy'.startswith(('Good', 'Bad'))
True
>>> 'Badboy'.startswith(('Good', 'Bad'))
True
>>> 'Lonelyboy'.startswith(('Good', 'Bad'))
False

　次に、タプルfilenamesに格納した複数のファイル名から、
拡張子が「.txt」と「.html」のどちらかであるファイル名を表
示する例を示します。

◎リスト endswith1.py
filenames = ('test.py', 'sample.txt', 'index.html', 'info.html', "new.js")

for file in filenames:
　　if file.endswith(('.txt', '.html')): １
　　　　print(file)

　１で、endswithメソッドの引数にタプル('.txt', '.html')を指定
しています。

■実行結果

sample.txt
index.html
info.html

022
文字列を左寄せ／中央寄せ／右寄せにするには

 ljustメソッド、centerメソッド、rjustメソッドを使用す
る

　文字列を格納する幅を広げて文字列を左寄せにするには
ljustメソッドを使用します。

◎メソッド　ljust(width[, fillchar])
カテゴリ　 strクラス
引数　　　 width：幅、fillchar：余ったスペースを埋める文字
戻り値　　 文字列が左寄せになった文字列
説明　　　 文字列を引数widthで指定した幅に左寄せにして戻す。

引数widthが元の文字列の長さ以下であれば元の文字列
が返される

使用例　　 s = s.ljust(20)

　引数fillcharを指定しない場合には、右側がスペースで埋めら
れます。引数fillcharを指定した場合にはその文字で埋められま
す。

◎実行例

>>> 'Python'.ljust(10) 　　←引数fillcharを指定しない
'Python　　'　←文字の右側がスペースで埋められる
>>> 'Python'.ljust(10, '-') 　　←引数fillcharにハイフン「-」を
指定
'Python----'　←文字の右側がハイフン「-」で埋められる

　中央寄せにするにはcenterメソッドを使用します。

◎メソッド　center(width[, fillchar])
カテゴリ　 strクラス
引数　　　 width：幅、fillchar：余ったスペースを埋める文字
戻り値　　 文字列が中央寄せになった文字列

説明　　　 文字列を引数widthで指定した幅に中央寄せにして戻す
使用例　　 s = s.center(15)

　次に、10文字分の幅に中央寄せにする例を示します。

◎実行例

>>> 'Python'.center(10, '-')
'--Python--'

　右寄せにするにはrjustメソッドを使用します。

◎メソッド　rjust(width[, fillchar])
カテゴリ　 strクラス
引数　　　 width：幅、fillchar：余ったスペースを埋める文字
戻り値　　 文字列が右寄せになった文字列
説明　　　 文字列を引数widthで指定した幅に右寄せにして戻す
使用例　　 s = s.rjust(15)

◎実行例

>>> 'Python'.rjust(10, '-') 　　←10文字分の幅に右寄せにする
'----Python'

023
文字列の先頭を「0」で埋めるには

 zfillメソッドを使用する

　rjustに似たメソッドにzfillがあります。zfillの場合、文字列
を右寄せにして左側を「0」で埋めます。zfillメソッドは数値
を桁合わせして表示したい場合に便利です。

◎メソッド　zfill(width)
カテゴリ　 strクラス
引数　　　 幅
戻り値　　 先頭を「0」で埋め文字列が右寄せになった文字列
説明　　　 文字列を指定した幅で右寄せし先頭を'０'で埋める
使用例　　 s = "44".zfill(4)

◎実行例

>>> '33'.zfill(6)
'000033'
>>> '1045'.zfill(6)
'001045'

　rjustメソッドと異なり、先頭が「+」「-」などの符号の場
合は「0」の前に表示されます。

◎実行例

>>> '-33'.zfill(6)
'-00033'
>>> '+33'.zfill(6)
'+00033'

024
文字列を指定したエンコーディングでエンコード／デ
コードするには

 encodeメソッド、decodeメソッドを使用する

●エンコードする

　encodeメソッドを使用すると、文字列を指定したエンコー
ディングでエンコードしたバイト列オブジェクトを生成でき
ます。

◎ メ ソ ッ ド 　 encode(encoding="utf-8"[,
errors="strict"])
カテゴリ　 strクラス
引数　　　 encoding：エンコーディング、errors：エラー処理の方

法
戻り値　　 エンコーディング後のバイト列オブジェクト
説明　　　 文字列をencodingで指定したエンコーディングでエンコ

ードする
使用例　　 en = s.encode()

　次にutf-8と、shift-jisでエンコーディングする例を示しま
す。

◎実行例

>>> "こんにちは".encode() 　←デフォルトはutf-8
b'\xe3\x81\x93\xe3\x82\x93\xe3\x81\xab\xe3\x81\xa1\xe3\x81\xaf'
>>> "こんにちは".encode(encoding="shift-jis") ←shift-jisで
エンコード
b'\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd'

●デコードする

　バイト列オブジェクトをデコードするにはdecodeメソッド
を使用します。

◎ メ ソ ッ ド 　 decode(encoding='utf-8'[,
errors='strict'])
カテゴリ　 bytesクラス
引数　　　 encoding：エンコーディング、errors：エラー処理の方

法
戻り値　　 デコード後の文字列
説明　　　 バイト列オブジェクトを引数encodingで指定したエンコ

ーディングでデコードして戻す
使用例　　 s = estr.decode()

　次に、shift-jisでエンコーディングされたバイト列をデコー
ドする例を示します。

◎実行例

>>> s = 'こんにちは'.encode(encoding='shift-jis')
>>> s.decode('shift-jis')
'こんにちは'

ＮＯＴＥ decodeメソッドの代わりにstr関数を、引数encodingによ
りエンコーディングを指定して実行してもデコードでき
ます。

>>> str(s, encoding='shift_jis')
'こんにちは'

●エラー処理の方法を指定する
　encodeメソッドおよびdecodeメソッドの引数errorsでは、
エラーが発生した場合の処理の方法を指定できます。

　たとえば、絵文字' 'をshift_jisでエンコードしようとすると
エラーになります。
◎実行例

>>> 'はい '.encode(encoding='shift_jis')
Traceback (most recent call last):
　File '<stdin>', line 1, in <module>
UnicodeEncodeError: 'shift_jis' codec can't encode character
'\U0001f604' in position 2: illegal multibyte sequence

　エラーの起こった文字を「?」に変更するには引数errors
に'replace'を指定します。

◎実行例

>>> 'はい '.encode(encoding='shift_jis', errors='replace')
b'\x82\xcd\x82\xa2?'

025
文字とユニコードのコードポイントを相互変換するに
は

 ord関数、chr関数を使用する

　指定した文字のユニコードのコードポイントを表示するに
は、ord関数を使用します。

◎関数　ord(c)
カテゴリ　 組み込み関数
引数　　　 文字
戻り値　　 コードポイントを表す整数
説明　　　 引数cのコードポイントを表す値を戻す
使用例　　 cp = ord(' ')

◎実行例

>>> ord("a")
97
>>> ord(' ')
128516

　結果は10進数です。16進数表記にしたければ結果をhex関数
に渡します。

◎実行例

>>> hex(ord(' '))
'0x1f604'

　逆に、コードポイントの値を対応する文字に変換するには
chr関数を使用します。

◎関数　chr(i)
カテゴリ　 組み込み関数
引数　　　 文字
戻り値　　 コードポイントを表す整数
説明　　　 コードポイントが引数iである文字を戻す
使用例　　 c = chr(97)

◎実行例

>>> chr(0x1f604)

' '

026
タブを展開するには

 expandtabsメソッドを使用する

　文字列内のタブ（\t）を指定したタブ幅のスペースに展開す
るには、expandtabsメソッドを使用します。

◎メソッド　epandtab(tabsize=8)
カテゴリ　 strクラス
引数　　　 タブ幅
戻り値　　 展開後の文字列
説明　　　 文字列内のタブを引数tabsizeのタブ幅のスペースで展開

した文字列を戻す
使用例　　 st = s.expandtabs()

　デフォルトのタブ幅は8になります。

◎実行例

>>> "Hi\tLow\tGood\tOK".expandtabs()
'Hi　　　Low　　 Good　　OK'

　引数tabsizeでタブ幅を指定できます。

◎実行例

>>> "Hi\tLow\tGood\tOK".expandtabs(tabsize=6)
'Hi　　Low　 Good　OK'
>>> "Hi\tLow\tGood\tOK".expandtabs(tabsize=12)

'Hi　　　　　Low　　　　 Good　　　　OK'

1-2 データの基本操作
この節では、Pythonにおける基本的なデータを取り扱う上で
便利な関数やメソッドなどについてまとめておきます。

027
値のデータ型を調べるには

 type関数、isinstance関数を使用する

　オブジェクトのデータ型は、type関数でわかります。

◎関数　type(object)
カテゴリ　 組み込み関数
引数　　　 調べるオブジェクト
戻り値　　 オブジェクトの型
説明　　　 引数で指定したオブジェクトの型を返す
使用例　　 t = type(s)

◎実行例

>>> num = 15
>>> type(num)
<class 'int'>
>>> t = (1, 2, 3)
>>> type(t)
<class 'tuple'>

　リテラルを引数にして実行してもかまいません。

◎実行例

>>> type("hello")
<class 'str'>
>>> type([3, 4, 5])
<class 'list'>

ＮＯＴＥ 特殊変数「__class__」を使用してクラスを調べることも
できます。

>>> "Hello".__class__
<class 'str'>
>>> "Hello".__class__.__name__
'str'

●オブジェクトがクラスのインスタンスであることを調べる
　オブジェクトがあるクラスのインスタンスであることを調
べるには、isinstance関数を使用します。

◎関数　isinstance(object, classinfo)
カテゴリ　 組み込み関数
引数　　　 object：調べる値、classinfo：クラス名
戻り値　　 TrueもしくはFalse
説明　　　 オブジェクトが引数で指定したクラス（およびそこから

派生するクラス）のインスタンスであればTrueを返す
使用例　　 r = isinstance(19, int)

　たとえば、文字列"hello"がstrクラスのインスタンスである
ことを調べるには次のようにします。

◎実行例

>>> isinstance("hello", str)
True

　前出のtype関数と異なり、isinstance関数は継承元のクラス
も調べられます。たとえば、 calendarモジュールの
TextCalendarクラスは、Calendarクラスのサブクラスです。
次のようにTextCalendarクラスのインスタンスtcalについて
TextCalendarおよびCalendarを引数にして実行すると、どち
らもTrueとなります。

◎実行例

>>> from calendar import TextCalendar, Calendar
>>> tcal = TextCalendar()
>>> tcal.prmonth(2019, 2)
February 2019
Mo Tu We Th Fr Sa Su
　　　　　1　2　3
4　5　6　7　8　9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28
>>> isinstance(tcal, TextCalendar)
True
>>> isinstance(tcal, Calendar)
True

028
オブジェクトのidを調べるには

 id関数を使用する

　Pythonではすべてのオブジェクトに重複しないid番号が振
られます。id番号はid関数で調べることができます。

◎関数　id(object)
カテゴリ　 組み込み関数
引数　　　 調べるオブジェクト
戻り値　　 id番号（整数値）
説明　　　 オブジェクトのid番号を戻す
使用例　　 print(id(s))

　id番号はオブジェクトの有効期間中は一意になります。

◎実行例

>>> str1 = "hello"
>>> id(str1)
4368043736

　既存の変数を別の変数に代入した場合、オブジェクトの参
照先は同じになるためid番号も同じです。

◎実行例

>>> num1 = 3
>>> num2 = num1
>>> id(num1)
4305280096
>>> id(num2)
4305280096

029
値を画面に表示するには

 print関数を使用する

　引数で指定した値を画面に表示するには、print関数を使用
します。

◎ 関 数 　 print(*objects, sep=' ', end='\n',
file=sys.stdout, flush=False)
カテゴリ　 組み込み関数
引数　　　 object：出力する値、sep：セパレータ（デフォルトは

スペース）、end：最後に出力する文字（デフォルトは
改行）、file：出力先（デフォルトは標準出力）、
flush：出力を強制的にフラッシュするかどうか（デフ
ォルトは出力先に応じて自動で決定される）

戻り値　　 なし
説明　　　 引数で指定した値を、引数sepで区切りながら引数file

に出力する
使用例　　 print("java", "python", sep="&")

　複数の引数を指定した場合、デフォルトでは半角スペース
で区切られて表示されます。

◎実行例

>>> print("hello", "python")
hello python

　区切り文字は引数sepで設定可能です。たとえば、引数
を"&"で区切って表示するには「sep="&"」を追加します。

◎実行例

>>> print("hello", "python", sep="&")
hello&python

●改行を抑制する

　デフォルトでは最後に改行"\n"が出力されますが、引数end
を空文字列""にすることで改行を抑制できます。

◎リスト print1.py
print("こんにちは。", end="")
print("Pythonの世界へ", end="")
print("ようこそ！")

◎実行結果
こんにちは。Pythonの世界へようこそ！

　次に、リストcolorsの要素を1行に3つずつ表示する例を示
します。

◎リスト print2.py
colors = ["赤", "青", "黄", "緑", "黒", "白", "紫", "灰", "ピンク"]

for i, c in enumerate(colors): １
　　if (i + 1) % 3 == 0: ２
　　　　print(c)
　　else:
　　　　print(c, end=" ") ３

　１のfor文でenumerate関数（058で解説）を使用し、リス
トcolorsの要素のインデックスと値を1つずつ取り出し、それ
ぞれ変数iと変数cに代入しています。２のif文で「i + 1」が3
の倍数、つまり要素3つごとに改行付きで出力しています。
そうでなければ３で引数に「end=" "」を指定して改行なし
で出力しています。

■実行結果

赤 青 黄
緑 黒 白
紫 灰 ピンク

●ファイルに出力する
　引数fileに、ファイルオブジェクトを指定すると、ファイ
ルに出力できます。

◎リスト print3.py
f = open("test.txt", "w") １
print("Pythonの世界へようこそ", file=f) ２
f.close()

　１でopen関数を使用してtest.txtを書き込みモードで開き、
２のprint関数で"Pythonの世界へようこそ"を出力していま
す。

■実行結果　test.txt

Pythonの世界へようこそ

030
文字列をPythonの式や文として実行するには

 eval関数、exec関数を使用する

◎関数　eval(expression[, globals[, locals]])
カテゴリ　 組み込み関数
引数　　　 expression：式（文字列）、globals：グローバルスコ

ープの名前を管理する辞書、locals：ローカルスコープ

の名前を管理する辞書
戻り値　　 式の実行結果
説明　　　 引数expressionで与えられた式を評価して実行結果を

戻す
使用例　　 s = eval("str1 + str2")

　たとえば、文字列"3 + 10"を式として実行するには次のよ
うにします。

◎実行例

>>> eval("3 + 10")
13

　変数を使用することもできます。引数globals、引数locals
が省略された場合、現在のスコープで実行されます。

◎実行例

>>> num = 15
>>> eval("num * 4")
60

●変数を辞書として与える
　引数globalsではグローバルスコープ、引数localsではロ
ーカルスコープが管理する名前と値を辞書として与えること
ができます。これを使用すると、たとえば、引数expression
の式に、直接変数を渡すことができます。
　次に変数nameを「"Hello"」に設定し、"name * 4"という式
を実行する例を示します。

◎実行例

>>> eval("name * 4", {"name": "Hello"})

'HelloHelloHelloHello'

●文を実行する
　eval関数に与えられるのは式だけです。たとえば、次のよ
うに文を引数にすると、エラーになります。

◎実行例

>>> eval("x = 3 * 4")
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
　File "<string>", line 1
　　x = 3 * 4
　　　^
SyntaxError: invalid syntax

　文を実行したい場合にはexec関数を使用します。

◎関数　exec(object[, globals[, locals]])
カテゴリ　 組み込み関数
引数　　　 object：Pythonのプログラムコード（文字列）、

globals：グローバルスコープの名前を管理する辞書、
locals：ローカルスコープの名前を管理する辞書

戻り値　　 なし
説明　　　 引数objectで与えられたPythonプログラムを実行する
使用例　　 exec("x = 3 * 4")

◎実行例

>>> exec("x = 3 * 4")
>>> x
12

　複数の文を実行するには途中に改行"\n"を入れます。

◎実行例

>>> exec("x = 3\ny =4\nprint(x +y)")
7

●プログラムファイルを読み込んで実行する
　exec関数を使用すると、Pythonプログラムのソースファイ
ルの内容を読み込んで実行することもできます。次のような
Pythonのソースファイルがあるとします。

◎リスト infile.py
print("こんにちは")
print("これはinfile.pyです")

　これを読み込んで実行するには次のようにします。

◎リスト exec1.py
f = open("infile.py", encoding="utf8")
cmd = f.read()
exec(cmd)

■実行結果

こんにちは
これはinfile.pyです

031
実行中のプログラムファイルのパスを調べるには

 __file__変数を使用する

　組み込み変数「__file__」には、実行中のプログラムファ
イルのパスが格納されています。「__file__」のパスはカレ
ントディレクトリからの相対パスになります。

◎リスト file1.py
print(__file__)

　上記のプログラムがカレントディレクトリにある場合、実
行結果は次のようになります。

■実行結果

file1.py

032
実行中のプログラムファイルの絶対パスや名前を調
べるには
　__file__をabspath関数、basename関数、dirname関
数に渡す

　現在実行中のプログラムファイルの絶対パスを求めるに
は、前述の__file__をos.pathモジュールのabspath関数に渡
します。ファイル名を求めるにはbasename関数（116を参
照）に_ _file_ _を渡します。ディレクトリまでの絶対パスを

求めるにはabspathの結果をdirname関数（116を参照）に渡
します。次に使用例を示します。

◎リスト file2.py
import os.path
絶対パス
print(os.path.abspath(__file__))
ファイル名
print(os.path.basename(__file__))
ディレクトリまでの絶対パス
print(os.path.dirname(os.path.abspath(__file__)))

　次に、ユーザー「o2」のDocumentsディレクトリの下の
「Python Scripts」ディレクトリに「file2.py」が保存されて
いる場合の実行結果を示します。

■実行結果

・macOS
/Users/o2/Documents/Python Scripts/file2.py
file2.py
/Users/o2/Documents/Python Scripts
・Windows
C:\Users\o2\Documents\Python Scripts\file2.py
file2.py
C:\Users\o2\Documents\Python Scripts

ＮＯＴＥ パスの区切り文字は、OSによって異なります。Windows
の場合には「\」、macOS/Linuxの場合には「/」になり
ます。

033

条件判断を簡潔に行うには
 三項演算子を使用する

　三項演算子を使用することで、条件判断を簡潔に記述でき
ます。書式は次の通りです。

変数 = 条件式がTrueの場合の値 if 条件式 else 条件式が
Falseのときの値

　たとえば、次のようなif~else文があったとします。

◎リスト if1.py
age = 10
if age >= 20:
　　adult = True
else:
　　adult = False
print(adult)

　これを三項演算子で記述すると次のようになります。

◎リスト if2.py
age = 10
adult = True if age >= 20 else False
print(adult)

　ステートメントの途中で改行するには

　ステートメントが長くなる場合でも、三項演算子の途中
にそのまま改行を入れることはできません。改行を入れた
い場合には行末に「\」を記述します。

◎NGな例
adult = True
if age >= 20 else False

◎OKな例
adult = True \
if age >= 20 else False

034
サブクラスかどうかを調べるには

 issubclass関数を使用する

　あるクラスが別のクラスのサブクラスかどうかを調べるに
は、issubclass関数を使用します。

◎関数　issubclass(class, classinfo)
カテゴリ　 組み込み関数
引数　　　 class：調べるクラス、classinfo：元になるクラス
戻り値　　 TrueもしくはFalse
説明　　　 引数classが引数classinfoのサブクラスであればTrue

を戻す
使用例　　 r = issubclass(MyNewClass, MyClass)

　たとえば、calendarモジュールのTextCalendarクラスは
Caledarクラスのサブクラスです。次のようにして調べられま

す。

◎実行例

>>> import calendar
>>> issubclass(calendar.TextCalendar, calendar.Calendar)
True

035
グローバル、ローカルのシンボルテーブルを表示す
るには

 globals、locals関数を使用する

　グローバルスコープのシンボルテーブル（変数名や関数
名）を表示するには、globals関数を使用します。

◎関数　globals()
カテゴリ　 組み込み関数
引数　　　 なし
戻り値　　 グローバルのシンボルテーブルの辞書
説明　　　 グローバルスコープのシンボルテーブルを辞書オブジェ

クトとして戻す
使用例　　 g = globals()

　ローカルスコープのシンボルテーブルを表示するには、
locals関数を使用します。

◎関数　locals()
カテゴリ　 組み込み関数
引数　　　 なし
戻り値　　 ローカルのシンボルテーブルの辞書

説明　　　 ローカルスコープのシンボルテーブルを辞書オブジェク
トとして戻す

使用例　　 l = locals()

　どちらも戻り値は辞書データになります。次に関数testを
定義し、関数test内でlocals関数の結果を、関数testの外部で
globals関数の結果を表示する例を示します。

◎リスト global1.py
def test(num):
　　msg = "hello " * num
　　print(msg)
　　print("----locals-----")
　　print(locals())

globalnum1 = 3
test(globalnum1)
print("----globals-----")
print(globals())

■実行結果

hello hello hello
----locals-----
{'msg': 'hello hello hello ', 'num': 3}
----globals-----
{'__name__': '__main__', '__doc__': None, '__package__': None,
'__loader__': <_frozen_importlib_external.SourceFileLoader object
at 0x101dbb2e8>, '__spec__': None, '__annotations__': {},
'__builtins__': <module 'builtins' (built-in)>, '__file__':
'/Users/o2/Documents/Work/PythonLib/Chap1/samples1-
5/global1.py', '__cached__': None, 'test': <function test at
0x101d62e18>, 'globalnum1': 3}

036
コマンドラインから入力を受け取るには

 input関数を使用する

　プログラムの実行中に、ユーザーがコマンドラインから入
力した文字列を取得するにはinput関数を使用します。

◎関数　input([prompt])
カテゴリ　 組み込み関数
引数　　　 プロンプトとして表示する文字列
戻り値　　 入力した文字列
説明　　　 コマンドラインにプロンプトを表示し、ユーザーが入力

した行を文字列として戻す
使用例　　 name = input("名前は?: ")

　ユーザーが入力した行の末尾の改行は取り除かれます。

◎実行例

>>> answer = input("答えは？: ")
答えは？: Hello
>>> answer
'Hello'

037
2つの値を比較するには

 比較演算子を使用する

　比較演算子を使用すると2つの値の大小を比較できます。

　比較演算子は左辺と右辺の値を比較し、TrueもしくはFalse
を返します。

◎実行例

>>> 3 < 4
True
>>> "abc" == "bcd"
False
>>> (3, 2) < (3, 2, 3)
True
>>> l1 = ["東京都", "千葉県", "神奈川県"]
>>> l2 = ["東京都", "千葉県", "神奈川県"]
>>> l1 == l2
True

●異なる型を比較した場合
　整数と浮動小数点数を比較した場合には、整数が浮動小数
点数に変換されて比較されます。

◎実行例

>>> 3 == 3.0

True

　数値以外の異なる型同士を「==」もしくは「!=」で比較
した場合には、必ず異なる値と判断されます。たとえば、
「==」演算子でリストとタプルを比較すると要素が同じ場
合でもFalseとなります。

◎実行例

>>> (3, 2, 1) == (3, 2, 1) 　←タプル同士を比較
True
>>> (3, 2, 1) == [3, 2, 1] ←リストとタプルを比較
False

　なお、「<」「<=」「>」「>=」演算子を使用して異なる
型の値同士を比較した場合にはTypeError例外が送出されま
す。

◎実行例

>>> {"春", "夏"} < ("春", "夏", "秋") 　←セットとタプルを
比較
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'set' and 'tuple'

038
オブジェクトが同じかどうかを判断するには

 is演算子、is not演算子を使用する

　「==」や「!=」といった比較演算子は値が同じであるか
をどうかを調べる演算子で、参照先のオブジェクトが異なっ
ているかは判断しません。次の例は、変数l1と変数l2に同じ
要素のリストを代入し「==」演算子で比較しています。結
果はTrueとなります。

◎実行例

>>> l1 = ["東京都", "千葉県", "神奈川県"]
>>> l2 = ["東京都", "千葉県", "神奈川県"]
>>> l1 == l2
True

　それに対してis演算子、is not演算子はオブジェクトその
ものが同じかどうかを調べ、TrueもしくはFalseを戻す演算子
です。

　前述の変数l1と変数l2にis演算子を使用すると結果はFalse
に、is not演算子を使用するとTrueとなります。

◎実行例

>>> l1 = ["東京都", "千葉県", "神奈川県"]
>>> l2 = ["東京都", "千葉県", "神奈川県"]
>>> l1 is l2
False
>>> l1 is not l2
True

　変数l1と変数l2は、どちらも要素は同じリストですが、実
体は異なるオブジェクトを参照するからです。

　次のように、変数l1を変数l2に代入した場合には同じオブ
ジェクトを参照することになり、is演算子の結果はTrueとな
ります。

◎実行例

>>> l1 = ["東京都", "千葉県", "神奈川県"]
>>> l2 = l1
>>> l1 is l2
True
>>> l2 is not l1
False

039
ヘルプを表示するには

 help関数を使う

◎関数　help(obj)
カテゴリ　 組み込み関数
引数　　　 obj：オブジェクトもしくは文字列
戻り値　　 なし
説明　　　 引数に関するヘルプを表示する
使用例　　 help(list)、help("http")など

　引数がクラスやモジュール、関数などのオブジェクトの場
合、そのヘルプメッセージが表示されます。たとえば、イン
タラクティブシェルで「help(list) 」とするとlistクラスに
関するヘルプが表示されます。

　表示はOSに応じたページャで表示されます。Windowsのコ
マンドプロンプトの場合にはmoreページャで、macOSの場合
にはlessページャで表示され、どちらもスペースキーで次の
ページに、Qキーで終了します。
　引数には文字列も指定できます。たとえば、httpモジュー
ルに関するヘルプを表示したければ「help("http") 」を実行
します。

ＮＯＴＥ 同じhttpモジュールのヘルプを表示するのに「help(http)
」とオブジェクトを引数にすることもできますが、

その場合にはあらかじめhttpモジュールをインポートし
ておく必要があります。

Chapter
２

コレクションの
取り扱い

Pythonの標準ライブラリにはリスト（list）、タプル（tuple）、辞書
（dict）、セット（set）といった一連のデータをまとめて扱う「コ
レクション」と呼ばれるタイプのデータ型が用意されています。こ
のChapterではそれらの基本的な取り扱いを中心に説明します。

2-1 リスト、タプルの操作
この節では、シーケンス型の代表であるリストおよびタプル
の基本操作について説明します。どちらも要素に変数名とイ
ンデックスでアクセスします。

040
リスト、タプルをリテラルとして生成するには

 リストは [値1, 値2, 値3,] 、タプルは (値1, 値2, 値
3,) を使用する

　リスト(list)、タプル（tuple)とも複数の要素をまとめて管
理するデータ型です。リストは要素をあとから変更できます
が、タプルはできません。リストをリテラルで記述するには
次の書式を使用します。

[値1, 値2, 値3,]

◎実行例

>>> l = [3, 4, 5, 6]
>>> l
[3, 4, 5, 6]

　タプルをリテラルで記述するには次の書式を使用します。

(値1, 値2, 値3,)

◎実行例

>>> t = ("春", "夏", "秋", "冬")
>>> t
('春', '夏', '秋', '冬')

ＮＯＴＥ 実際には、タプルのリテラルはカンマ「,」で区切られた
要素の並びです。次のように「()」は省略可能な場合が
ほとんどです。
◎実行例

>>> seasons = "春", "夏", "秋", "冬"

●要素が1つのタプルを生成する
　要素が1つのタプルを生成するには、要素の後ろにカンマ
「,」が必要になります。

◎実行例

>>> one = ("One",)
>>> one
('One',)

●空のリスト、タプルを生成する
　空のリストを生成するには、単に「[]」を記述します。

◎実行例

>>> emptylst = []

　空のタプルを生成するには単に「()」を記述します。

◎実行例

>>> emptytuple = ()

041
リスト、タプルの要素数を求めるには

 len関数を使用する

　リスト、タプルは文字列と同じくシーケンス型のデータな
ので、len関数で要素数が求まります。

◎関数　len(s)
カテゴリ　 組み込み関数
引数　　　 リストまたはタプル
戻り値　　 要素数（整数値）
説明　　　 引数sの要素数を戻す
使用例　　 l = len(["one", "two", "three"])

◎実行例

>>> seasons = ("春", "夏", "秋", "冬")
>>> len(seasons)
4

042
リスト、タプルを連結するには
　「+」演算子、「*」演算子を使用する

　リスト、タプルを連結して新たにリスト、タプルを生成し
て戻すには「+」演算子を使用します。

◎実行例

>>> (1, 2, 3) + (4, 5)
(1, 2, 3, 4, 5)

ＮＯＴＥ 連結できるのはリスト同士、もしくはタプル同士です。
リストとタプルを連結することはできません。

●指定した回数を連結する
　「*」演算子を使用すると、指定した回数で、リスト、タ
プルを繰り返し連結できます。

◎実行例

>>> ["赤", "青", "黄"] * 3
['赤', '青', '黄', '赤', '青', '黄', '赤', '青', '黄']

043
リスト、タプルの指定した位置の要素を取り出すに
は
　インデックスを使用する

　インデックスを使用することで、指定した位置の要素を取
り出すことができます。

リストもしくはタプル[インデックス]

　インデックスは先頭の要素を0とする整数値です。

◎実行例

>>> weekdays = ['月', '火', '水', '木', '金', '土', '日']
>>> weekdays[0]
'月'
>>> weekdays[3]
'木'

　最後の要素のインデックスは「len関数の値 - 1」になりま
す。

◎実行例

>>> weekdays[len(weekdays) - 1]
'日'

　インデックスに、マイナスの数値を指定すると、リスト、
タプルの最後から位置を指定して要素を取り出せます。最後
の要素を「-1」とします。

◎実行例

>>> weekdays[-1] 　 　 ← 最 後 の 要 素
（weekdays[len(weekdays) - 1]と同じ）
'日'
>>> weekdays[-2] 　　←最後から2番目の要素
'土'

044

範囲を指定してリスト、タプルの要素を取り出すに
は
　スライスを使用する

　文字列と同じように、スライス（一部の要素）の範囲を指
定して要素を取り出すことができます。

リストもしくはタプル[最初の要素のインデックス:最後の
要素のインデックス＋1]

　次に、リストweekdaysからインデックスが2から3までの要
素を取り出す例を示します。

◎実行例

>>> weekdays = ['月', '火', '水', '木', '金', '土', '日']
>>> weekdays[2:4]
['水', '木']

　最初のインデックスを省略した場合には「0」が指定され
ているものとし、最後のインデックスを省略した場合には要
素数が、指定されているものと見なされます。

◎実行例

>>> weekdays[:4] 　　←最初のインデックス0から3まで
['月', '火', '水', '木']
>>> weekdays[4:] 　←インデックスが4以降
['金', '土', '日']

●途中の要素をスキップして取り出す

　スライスの最後に、ステップ数（何番目ごとに取り出す
か）を指定できます。

リストもしくはタプル[最初の要素のインデックス:最後の
要素のインデックス＋1:ステップ数]

　「最初の要素のインデックス」、「最後の要素のインデッ
クス＋1」は省略可能です。次に例を示します。

◎実行例

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> nums[::2]
[0, 2, 4, 6, 8, 10]
>>> nums[1::2]
[1, 3, 5, 7, 9]
>>> nums[0::3]
[0, 3, 6, 9]

045
リスト、タプルの要素の順番を反転するには

 スライス、reverseメソッドを使用する

　スライスの最初と最後のインデックスを省略し、ステップ
数に「-1」を指定して[::-1]とすると、リスト、タプルの要
素の順番を反転したものを取得できます。

◎実行例

>>> nums = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> nums[::-1]

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

●リストの要素の順番を直接反転する
　上記のようにスライスのステップ数に「-1」を指定した場
合、元のリスト、タプルはそのままで、要素の順番を反転さ
せた新たなリスト、タプルを生成して戻します。
　それに対して、リストのreverseメソッドを使用すると、
リストの要素の順番を直接反転させます（新たなリストを生
成しません）。

◎メソッド　reverse()
カテゴリ　 listクラス
引数・戻り値　　 なし
説明　　　 リストの要素の順番を反転させる
使用例　　 l.reverse()

◎実行例

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> nums.reverse()
>>> nums
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

046
タプルとリストを相互変換するには

 tupleコンストラクタ、listコンストラクタを使用する

　tupleコンストラクタの引数にリストを指定して実行する
と、リストをタプルに変換できます。

◎実行例

>>> mylist = ["東京都", "神奈川県", "千葉県"]
>>> mytuple = tuple(mylist)
>>> type(mytuple) 　←type関数で確認
<class 'tuple'>

　listコンストラクタの引数にタプルを指定して実行する
と、タプルをリストに変換できます。

◎実行例

>>> mytuple = ("アメリカ", "日本", "中国", "イギリス")
>>> mylist = list(mytuple)
>>> type(mylist)
<class 'list'>

047
リストの要素の値を変更するには

 インデックス、スライスを使用する

　リストはミュータブル（変更可）なデータ型です。インデ
ックスで指定した要素に、別の値を代入することで値を変更
できます。

リスト[インデックス] = 値

◎実行例

>>> colors = ["blue", "green", "red", "yellow"]
>>> colors[1] = "pink"
>>> colors

['blue', 'pink', 'red', 'yellow']

●スライスを使用して複数の要素を変更する
　スライスで範囲を指定して、複数の要素をまとめて入れ替
えることができます。

リスト[最初の要素のインデックス:最後の要素のインデッ
クス＋1:ステップ数] = 値

　値はリストやタプルで指定します。次に最初の2つの要素
を0にする例を示します。

◎実行例

>>> nums = [1, 2, 3, 4, 5, 6, 7]
>>> nums[0:2] = [0,0]
>>> nums
[0, 0, 3, 4, 5, 6, 7]

　代入する要素がスライスより少なくても、多くてもかまい
ません。

◎実行例

>>> nums = [1, 2, 3, 4, 5, 6, 7]
>>> nums[0:4] = [0] 　←代入する要素が少ない場合
>>> nums
[0, 5, 6, 7]
>>> nums = [1, 2, 3, 4, 5, 6, 7]
>>> nums[0:1] = [0, 0, 0, 0] 　←代入する要素が多い場合
>>> nums
[0, 0, 0, 0, 2, 3, 4, 5, 6, 7]

　ステップ数を指定することもできます。次にリストnumsの
奇数番目（インデックスが0、2、4...）の要素の値を「0」に
する例を示します。

◎実行例

>>> nums = [1, 2, 3, 4, 5, 6, 7]
>>> nums[::2] = [0, 0, 0, 0]
>>> nums
[0, 2, 0, 4, 0, 6, 0]

　なお、ステップ数を指定した場合には、スライスの数と代
入する要素の数が同じである必要があります。数が同じでは
ない場合は、次のようにValueError例外が送出されます。

◎実行例

>>> nums[1::2] = [0] 　←代入する要素が少ない
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
ValueError: attempt to assign sequence of size 1 to extended slice
of size 3

048
リストの最後に要素を追加するには

 appendメソッド、extendメソッド、スライスを使用す
る

　リストの最後に要素を1つ追加するにはappendメソッドを
使用します。

◎メソッド　append(x)
カテゴリ　 listクラス
引数　　　 追加する値
戻り値　　 なし
説明　　　 リストの最後に引数xで指定した要素を追加する
使用例　　 l.append(3)

◎実行例

>>> mylist = ["東京都", "神奈川県", "千葉県"]
>>> mylist.append("北海道")
>>> mylist
['東京都', '神奈川県', '千葉県', '北海道']

●extendメソッドでリストを拡張する
　extendメソッドを使用してリストを拡張することもでき
ます。appendメソッドと異なり、extendメソッドの引数には
リストなどイテレート（繰り返し処理）可能なオブジェクト
を指定し、その要素をまとめて追加します。

◎メソッド　extend(t)
カテゴリ　 listクラス
引数　　　 リストやタプルなどイテレート可能なオブジェクト
戻り値　　 なし
説明　　　 リストの最後に別のリストやタプルの要素を追加する
使用例　　 l.extend([3,4])

　次に、リストyearsに別のリストの要素を追加する例を示し
ます。

◎実行例

>>> years = [2001, 2002]
>>> years.extend([2003, 2004, 2005])

>>> years
[2001, 2002, 2003, 2004, 2005]

　辞書を引数に指定してextendメソッドを実行した場合は、
キーのみが追加されます。

◎実行例

>>> prefs = ["東京", "大阪"]
>>> prefs.extend({"北海道":3, "千葉":4})
>>> prefs
['東京', '大阪', '北海道', '千葉']

●スライスを指定してリストを拡張する
　次の形式でスライスを指定することでも、リストの最後に
複数の要素を追加できます。

リスト[len(リスト):] = リストやタプル

◎実行例

>>> ages = [44, 55]
>>> ages[len(ages):] = [31] 　←31を追加
>>> ages[len(ages):] = [44, 45] 　←44と45を追加
>>> ages
[44, 55, 31, 44, 45]

049
リストの指定した位置に要素を挿入するには

 insertメソッド、スライスを使用する

　insertメソッドを使用すると、指定したインデックスの位
置に要素を挿入できます。

◎メソッド　insert(i, x)
カテゴリ　 listクラス、tupleクラス
引数　　　 i：インデックス、x：挿入する値
戻り値　　 なし
説明　　　 引数iで指定したインデックス位置に、引数xに指定した

要素を挿入する
使用例　　 prefs.insert(1, "山梨")

　要素を挿入すると、その位置以降の要素が後ろにずれま
す。次に実行例を示します。

◎実行例

>>> langs = ["c", "basic", "swift", "JavaScript"]
>>> langs.insert(1, "python")
>>> langs
['c', 'python', 'basic', 'swift', 'JavaScript']

●スライスを指定して要素を挿入する
　次のような形式でスライスを使用することで、リストの指
定したインデックス位置に要素を追加することもできます。

リスト[インデックス:インデックス] = リストやタプル

　次にリストagesのインデックスが1の位置に「13」と
「14」を挿入する例を示します。

◎実行例

>>> ages = [44, 55]

>>> ages[1:1] = (13, 14)
>>> ages
[44, 13, 14, 55]

　右辺は、リストやタプルなどイテレート可能なオブジェク
トである必要があります。たとえば、リストagesに1つの要
素を挿入しようとして、整数を指定することはできません。

◎実行例

>>> ages[1:1] = 3　　　←これを実行するとTypeErrorが発生

050
リストから指定した位置の要素を削除するには

 del文、clearメソッド、popメソッドを使用する

　リストの要素を削除するにはdel文を使用します。

del リストの要素

　リストlangsからインデックス1の要素を削除するには、次
のようにします。

◎実行例

>>> langs = ["c", "basic", "swift", "JavaScript"]
>>> del langs[1]
>>> langs
['c', 'swift', 'JavaScript']

　del文ではスライスを指定することもできます。たとえば、
リストnumsからインデックス2から4までの要素を削除する
には、次のようにします。

◎実行例

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> del nums[2: 5]
>>> nums
[0, 1, 5, 6, 7, 8, 9, 10]

　del文に「リスト[:]」を指定すると、すべての要素を削除
できます。

◎実行例

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> del nums[:]
>>> nums
[] ←リストが空になった

　ステップ数を指定することもできます。たとえば、奇数番
目（インデックスが0、2、4...）の要素を削除するには次の
ようにします。

◎実行例

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> del nums[::2]
>>> nums
[1, 3, 5, 7, 9]

●clearメソッドでリストを空にする

　clearメソッドを使用しても、要素をすべて削除できま
す。

◎メソッド　clear()
カテゴリ　 listクラス
引数・戻り値　　 なし
説明　　　 リストの要素を空にする
使用例　　 l.clear()

◎実行例

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> nums.clear()
>>> nums
[]

●リスト自体を削除する
　「del リスト[:]」の場合には、空のリストが残りますが、
del文にリスト名を指定するとリスト自体を削除できます。

◎実行例

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> del nums 　←リストnumsを削除
>>> nums
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
NameError: name 'nums' is not defined ←リストnumsが未定義

●要素を削除してそれを取得する
　popメソッドでは、指定した位置の要素を削除してそれを
戻り値として返せます。

◎メソッド　pop([i])
カテゴリ　 listクラス
引数　　　 インデックス
戻り値　　 削除した要素
説明　　　 引数iで指定したインデックス位置の要素を削除しそれ

を戻り値とする。引数iを指定しなければ最後の要素を
削除して戻す

使用例　　 el = l.pop(3)

　popメソッドを、引数を指定しないで実行した場合、最後
の要素を削除してその値を戻します。

◎実行例

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> last = nums.pop() 　←最後の要素を削除
>>> last
10
>>> first = nums.pop(0) 　←最初の要素を削除
>>> first
0
>>> nums
[1, 2, 3, 4, 5, 6, 7, 8, 9]

051
指定した値の要素がリスト、タプルに存在するかを
調べるには

 in演算子、not in演算子、indexメソッドを使用する

　ある値がリスト、タプルに含まれるかどうかを調べるには
in演算子を使用します。

値 in リストまたはタプル

　in演算子は、リストに値が含まれていればTrueを、そうで
なければFalseを戻します。

◎実行例

>>> colors = ["blue", "green", "red", "yellow"]
>>> "green" in colors
True
>>> "black" in colors
False

　in演算子の代わりにnot in演算子を使用すると、値が含ま
れていない場合にTrueを、含まれていた場合にはFalseを戻し
ます。

◎実行例

>>> "green" not in colors
False

●要素のインデックスを調べる
　in演算子では要素が存在しているかだけを確認します。存
在していた場合に、そのインデックスを取得したい場合には
indexメソッドを使用します。

◎メソッド　index(x[, i[, j]])
カテゴリ　 listクラス
引数　　　 x：調べる値、i：開始位置のインデックス、j：終了位

置のインデックス + 1
戻り値　　 検索された要素のインデックス

説明　　　 引数xで指定した値のインデックスを戻す。一致する値
が見つからない場合にはValueError例外が送出される

使用例　　 idx = l.index("Hello")

　一致する要素が複数ある場合、最初に見つかった要素のイ
ンデックスが戻されます。

◎実行例

>>> years = [1965, 1959, 2001, 1987, 1959, 2011]
>>> years.index(1959)
1

　値が見つからなかった場合には、ValueError例外が送出さ
れます。

◎実行例

>>> years.index(1985)
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
ValueError: 1985 is not in list

　引数iで検索を開始する位置、引数jで終了位置を指定でき
ます。次の例は3番目以降の要素から値が「1959」の要素を
検索し、インデックスを戻します。

◎実行例

>>> years.index(1959, 2)
4

052

リストから指定した値の要素を削除するには
 removeメソッドを使用する

　リストから引数で指定した値の要素を削除するには
removeメソッドを使用します。

◎メソッド　remove(x)
カテゴリ　 listクラス
引数　　　 削除する値
戻り値　　 なし
説明　　　 リストから引数xで指定した値の要素を削除する。一致

する値が見つからない場合にはValueError例外が送出
される

使用例　　 colors.remove("red")

　一致する値が複数ある場合には最初の要素のみが削除され
ます。

◎実行例

>>> prefs = ["東京", "神奈川", "千葉", "東京", "東京", "大阪"]

>>> prefs.remove("東京")
>>> prefs
['神奈川', '千葉', '東京', '東京', '大阪']

　removeメソッドにより一致する要素をすべて削除するには
ループを使用します。次に、リストyearsから値が「1959」
の要素をすべて削除する例を示します。

◎リスト remove1.py
years = [1965, 1959, 2001, 1987, 1959, 2011, 1959]

while True: １
　　try:
　　　　years.remove(1959) ２
　　except ValueError:
　　　　break ３

print(years)

　１のwhileループで２を繰り返し、removeメソッドを使用
して値が「1959」の要素を削除しています。ValueError例外
が発生した場合には３でループを抜けます。

■実行結果

[1965, 2001, 1987, 2011]

ＮＯＴＥ filter関数（063で解説）やリストの内包表記（062で解
説）を使用して、指定した値の要素をすべて削除したリ
ストを生成することもできます。

●リストから重複した要素をすべて削除する
　リストから重複した要素をすべて削除するには、リストを
setコンストラクタの引数にしていったんセット（077で解
説）を生成し、さらにlistコンストラクタの引数に渡します。

◎実行例

>>> l = [1, 9, 9, 1, 3, 5]
>>> l = list(set(l))
>>> l
[1, 3, 5, 9]

053
リスト、タプルの指定した値の要素の数を調べるに
は

 countメソッドを使用する

　countメソッドを使用すると、引数で指定した値の要素が
リスト、タプルにいくつ含まれるかがわかります。

◎メソッド　count(x)
カテゴリ　 listクラス、tupleクラス
引数　　　 調べる値
戻り値　　 要素の個数（整数値）
説明　　　 引数xで指定した値がリストやタプルに含まれている個

数を戻す
使用例　　 c = l.count("pink")

　次に「1959」がリストyearsにいくつ含まれているかを調
べる例を示します。

◎実行例

>>> years = [1965, 1959, 2001, 1987, 1959, 2011]
>>> years.count(1959)
2

054
リスト、タプルの要素をソートするには

 sorted関数、sortメソッドを使用する

　sorted関数を使用するとリスト、タプルの要素をソートし
て新たなリストとして戻すことができます。

◎関数　sorted(s, key=None, reverse=False)
カテゴリ　 組み込み関数
引数　　　 s：イテレート可能なオブジェクト、key：比較するキ

ーとして使用する関数、reverse：True 昇順に並べる　
False 降順に並べる

戻り値　　 ソートされたリスト
説明　　　 引数sで指定したリストやタプルを、引数keyで指定し

た関数をキーにソートして結果をリストとして戻す
使用例　　 sl = sorted(colors)

　引数reverseを指定しなければ昇順にソートされます。

◎実行例

>>> ages = [9, 15, 13, 1, 9, 77, 55, 44, 12]
>>> sorted(ages)
[1, 9, 9, 12, 13, 15, 44, 55, 77]

　引数reverseをTrueにして実行すると降順にソートされま
す。

◎実行例

>>> sorted(ages, reverse=True)
[77, 55, 44, 15, 13, 12, 9, 9, 1]

●ソートの基準となるキーを指定する
　デフォルトでは、数値の場合には数値の順、文字列の場合
には文字コードの順にソートされますが、引数keyでソート
の基準となる値を戻す関数／メソッドを指定できます。たと

えば、引数keyで文字列（strクラス）のlowerメソッドを指
定して、小文字に変換することで、大文字／小文字を区別し
ないソートを行えます。

◎実行例

>>> str1 = ["good", "bye", "Good", "Bye"]
>>> sorted(str1)
['Bye', 'Good', 'bye', 'good']
>>> sorted(str1, key=str.lower) ←大文字/小文字を区別しな
いでソート
['bye', 'Bye', 'good', 'Good']

　ソートの順番は引数keyで指定した関数で設定できます。
関数は処理対象の一つの要素を引数に取り、ソートに利用さ
れるキーを返す必要があります。次の例は、get_age関数を
キーとして使用し"名前 年齢"形式の要素のリストnamesを年
齢順にソートします。

◎リスト sort1.py
names = ["山田太郎 15", "井上毅 5", "大津肇 11", "森勇 55", "林
香 34"]

def get_age(element): １
　　return int(element.split()[1]) ２

sorted_names = sorted(names, key=get_age) ３
print(sorted_names)

　１がget_age関数の定義です。２でsplitメソッド（100で解
説）により要素をスペースで名前と年齢に分割し、年齢を整
数に変換して戻しています。

　３でget_age関数を引数keyに指定し、sorted関数を実行し
ています。

■実行結果

['井上毅 5', '大津肇 11', '山田太郎 15', '林香 34', '森勇 55']

●lambda式でキーを指定する
　sorted関数の引数keyで指定する関数はlambda式（061の
あとのコラム「lambda式」を参照）にすることもできます。
以下はsort1.pyのget_age関数をlambda式に変更した例です。

◎リスト sort2.py
names = ["山田太郎 15", "井上毅 5", "大津肇 11", "森勇 55", "林
香 34"]

sorted_names = sorted(names, key=lambda e1:int(e1.split()[1]))
print(sorted_names)　１

　１で引数keyにlambda式を設定してsorted関数を実行して
います。

■実行結果

['井上毅 5', '大津肇 11', '山田太郎 15', '林香 34', '森勇 55']

●sortメソッドでリストの要素を直接ソートする
　sorted関数ではソートした結果を新たなリストとして戻し
ます。それに対し、listクラスのsortメソッドではリストの要
素を直接並べ替えることができます。

◎メソッド　sort(key=None, reverse=False)

カテゴリ　 listクラス
引数　　　 key：比較するキーとして使用する関数、reverse：

True 昇順に並べる　False 降順に並べる
戻り値　　 なし
説明　　　 引数keyで指定した関数をキーに、リストの要素をソー

トする
使用例　　 sorted(colors)

　引数keyと引数reverseはsorted関数と同じです。引数keyを
設定することで並べ替えの基準となるキーを変更することが
できます。次に、前出のsort2.pyのsorted関数をsortメソッド
に変更した例を示します。

◎リスト sort3.py
names = ["山田太郎 15", "井上毅 5", "大津肇 11", "森勇 55", "林
香 34"]

names.sort(key=lambda e1:int(e1.split()[1])) １
print(names)

　１でsortメソッドを実行しています。新たなリストを生成
することなく、リストnamesの要素が直接並べ替えられた点
に注目してください。

■実行結果

['井上毅 5', '大津肇 11', '山田太郎 15', '林香 34', '森勇 55']

055
リストやタプルの要素の最小値／最大値を求めるに
は

 max関数、min関数を使用する

　リストやタプルの要素の中で最大値を求めるには、max関
数を使用します。

◎関数　max(s[, key, default])
カテゴリ　 組み込み関数
引数　　　 s：イテレート可能なオブジェクト、key：比較するキ

ーとして使用する関数、default：引数sが空の場合に
戻すデータ

戻り値　　 最大値
説明　　　 引数sの要素の最大値を戻す。引数sが空の場合に引数

defaultが設定されていないとValueError例外が送出
される

使用例　　 mv = max(nums)

◎実行例

>>> nums = [9, 5, 11, 3]
>>> max(nums)
11

　リストやタプルの要素の中で最小値を求めるにはmin関数
を使用します。

◎関数　min(s[, key, default])
カテゴリ　 組み込み関数
引数　　　 s：イテレート可能なオブジェクト、key：比較するキ

ーとして使用する関数、default：引数sが空の場合に
戻すデータ

戻り値　　 最小値
説明　　　 引数sの要素の最小値を戻す。引数sが空の場合に引数

defaultが設定されていないとValueError例外が送出

される
使用例　　 mv = min(nums)

◎実行例

>>> nums = [9, 5, 11, 3]
>>> min(nums)
3

ＮＯＴＥ max関数、min関数の引数には数値や文字列など同じ型
の値を複数指定することもできます。
実行例

>>> max(9, 5, 11, 3) 　←数値の並びを引数に
した
11

●比較の基準となる関数を指定する
　max/min関数ではsorted関数／sortメソッド（054で解説）
と同じように、引数keyで比較の基準となる値を戻す関数／
メソッドを指定できます。
　次に、"名前 年齢"の形式の要素のリストnamesから、最も
年齢が高い人の名前と年齢、および最も年齢が低い人の名前
と年齢を表示する例を示します。

◎リスト maxmin.py
names = ["山田太郎 15", "井上毅 5", "大津肇 11", "森勇 55", "林
香 34"]

max_age = max(names, key=lambda e1:int(e1.split()[1])) １
print("max関数: " + max_age + "才")
min_age = min(names, key=lambda e1:int(e1.split()[1])) ２
print("min関数: " + min_age + "才")

　１ ２でそれぞれmax関数、min関数を実行しています。ど
ちらも引数keyに対して、要素から年齢を取り出すlambda式
を設定しています。

■実行結果

max関数: 森勇 55才
min関数: 井上毅 5才

056
リストをコピーするには

 copyメソッドを使用する

　リストはミュータブル（変更可）なデータ型ですが、リス
トを別の変数に代入した場合に注意が必要です。一方の変数
からリストを変更すると、もう一方の変数からアクセスした
場合も変更されてしまいます。

◎実行例

>>> nums1 = [1, 2]
>>> nums2 = nums1 　←nums1をnums2に代入
>>> nums1[0] = 10 　←nums1の要素を変更
>>> nums2
[10, 2] ←nums2の要素も変更される

　このように変更されるのは、変数nums1と変数nums2が同
じリストを参照しているからです。

　そうではなくて、リストをコピーして別の変数に代入する
にはcopyメソッドを使用します。

◎メソッド　copy()
カテゴリ　 listクラス
引数　　　 なし
戻り値　　 リスト
説明　　　 リストをコピーして戻す
使用例　　 nums2 = nums1.copy()

◎実行例

>>> nums1 = [1, 2]
>>> nums2 = nums1.copy() 　←nums1をnums2にコピー
>>> nums1[0] = 10 　←nums1の要素を変更
>>> nums2
[1, 2] ←nums2の要素は変更されない

ＮＯＴＥ 次のようにスライスを使用してもリストをコピーできま
す。

実行例

>>> nums2 = nums1[:]

057
リストやタプルの要素を順に取り出して処理するに
は

 for文を使用する

　リストやタプルなどイテレート可能なオブジェクトの要素
を順に取り出して処理するには、for文を使用する方法が一般
的です。for文の書式は次の通りです。

for 変数 in イテレート可能なオブジェクト:
　　処理1
　　処理2
　　....

　次に、平成年が格納されているリストheiseisから要素を順
に取り出して、西暦の年を表示する例を示します。

◎リスト heisei1.py
heiseis = [20, 15, 4, 29]
for h in heiseis: １
　　print("平成{}年は西暦{}年".format(h, h + 1988)) ２

　１のfor文でリストheiseisから要素を順に取り出し変数hに
格納しています。２のprint関数ではformatメソッドを使用し

て平成年と、それから計算した西暦を埋め込んで表示してい
ます。

■実行結果

平成20年は西暦2008年
平成15年は西暦2003年
平成4年は西暦1992年
平成29年は西暦2017年

ＮＯＴＥ この例ではリストを使用していますが、次のようにタプ
ルにしても同じです。
実行例

heiseis = (20, 15, 4, 29)

058
リストやタプルのインデックスと要素を順に取り出
すには

 enumerate関数を使用する

　for文を使用して、リストやタプルのインデックスと要素の
ペアを順に取り出すには、enumerate関数を使用すると便
利です。

◎関数　enumerate(l)
カテゴリ　 組み込み関数
引数　　　 イテレート可能なオブジェクト
戻り値　　 enumerateオブジェクト
説明　　　 リストやタプルなどのイテレート可能なオブジェクトを

引数に、イテレート可能なenumerateオブジェクトを

戻す
使用例　　 for i, c in enumerate(colors):　　print(i, c)

　リストやタプルを引数にenumerate関数を実行すると、イ
ンデックスと要素のペアをタプルとして順に戻す、イテレー
ト可能なenumerateオブジェクトを生成します。次のように
for文と組み合わせてしばしば使用されます。

◎リスト enumerate1.py
countries = ("アメリカ", "日本", "中国", "イギリス")
for i, c in enumerate(countries): １
　　print(i, c)

　１でfor文に、タプルcountriesを引数にしたenumerate関数
を渡しています。変数iとcにはタプルのインデックスと値が
順に代入されます。

■実行結果

0 アメリカ
1 日本
2 中国
3 イギリス

059
2つのリスト、タプルの要素を組み合わせてループで
処理するには

 zip関数を使用する

　zip関数を使用すると、2つのリスト、タプルの要素をまと
めてループで処理できます。

◎関数　zip(l1, l2)
カテゴリ　 組み込み関数
引数　　　 l1：イテレート可能なオブジェクト、l2：イテレート可

能なオブジェクト
戻り値　　 zipオブジェクト
説明　　　 引数で指定した複数のイテレート可能なオブジェクトの

要素を組み合わせた、zipオブジェクトを生成する
使用例　　 z = zip(l1, l2)

　zip関数は、2つのリスト、タプルから順に取得したタプル
を要素とするイテレート可能なオブジェクトを作成して戻し
ます。次に、リストl1とl2をzip関数で組み合わせてリストに
変換する例を示します。

◎実行例

>>> l1 = [1, 3, 5, 7]
>>> l2 = [10, 11, 22]
>>> z = zip(l1, l2)
>>> list(z)
[(1, 10), (3, 11), (5, 22)]

　上記のように要素数は、少ないほうのリストに合わせられ
ます。したがってループで処理する場合、どちらかのリスト
の要素がすべて取り出されるとループが終了します。

◎リスト zip1.py
l1 = [1, 3, 5, 7] １
l2 = [10, 11, 22] ２

for x, y in zip(l1, l2): ３
　　print(x, y)

　１の l1は要素数が4つ、２の l2は要素数が3つのリストで
す。３のようにfor文とzip関数を組み合わせて使用すると、要
素数が少ないl2の要素に対する処理が完了した時点でループ
が終了します。

■実行結果

1 10
3 11
5 22

●3つ以上のリストを組み合わせる
　zip関数では3つ以上のリスト、タプルの要素を組み合わせ
て処理することもできます。

◎リスト zip2.py
l1 = [1, 3, 5, 7]
l2 = [10, 11, 22]
l3 = [5, 4, 3, 2]
l4 = [100, 101, 202, 103]
for n1, n2, n3, n4 in zip(l1, l2, l3, l4):
　　print(n1, n2, n3, n4)

　この例では、l1、l2、l3、l4の4つのリストの要素をzip関数
で組み合わせています。ループの回数は、最も要素数の少な
いl2に合わせて3回になります。

■実行結果

1 10 5 100

3 11 4 101
5 22 3 202

ＮＯＴＥ zip関数で組み合わせるオブジェクトは、イテレート可能
であれば異なるタイプのオブジェクトであってもかまい
ません。次のようにリストとタプルを引数にしてもかま
いません。
実行例

>>> z = zip((1,2), [24, 23])

060
整数の並びのリストやタプルを生成するには

 rangeオブジェクトをリスト／タプルに変換する

　rangeオブジェクトは、整数の並びで構成されるイテレー
ト可能なオブジェクトです。

◎コンストラクタ　range(stop)
◎コンストラクタ　range(start, stop[, step]))
カテゴリ　 rangeオブジェクト
引数　　　 start：開始する値、stop：終了位置の次の値、step：

ステップ数
戻り値　　 rangeオブジェクト
説明　　　 引数startから引数stopの前の値までの整数の並びの

rangeオブジェクトを生成する。引数stepではステッ
プ数を指定できる

使用例　　 r = range(10)

　引数stopのみを指定した場合には0から始まります。たと
えば、引数に「10」を指定した場合には0から9までの整数の
並びのrangeオブジェクトが生成されます。

◎実行例

>>> for i in range(10):
...　　 print(i)
...
0
1
2
～中略～
8
9

　rangeオブジェクトを、listコンストラクタに渡すと整数の
並びのリストを生成できます。

◎実行例

>>> list(range(1, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

　引数stepではステップ数を指定できます。また、引数には
マイナスの値も指定できます。

◎実行例

>>> list(range(1, 21, 5)) 　←引数stepにステップ数を指定
[1, 6, 11, 16]
>>> list(range(1, -10, -2)) 　←引数にマイナスの値を指定
[1, -1, -3, -5, -7, -9]

061
リスト、タプルの数値の要素の合計を求めるには

 sum関数を使用する

　リスト、タプルの要素が数値である場合、sum関数を使用
するとその合計を取得できます。

◎関数　sum(i[, start]）
カテゴリ　 組み込み関数
引数　　　 i：イテレート可能なオブジェクト、start：合計に加え

る値（デフォルトは0）
戻り値　　 要素の合計
説明　　　 引数iで指定したリストやタプルの要素の合計を求める
使用例　　 s = sum(points)

　次にリストnumsの要素の合計を求める例を示します。

◎実行例

>>> nums = [1, 2, 9, 4, 5]
>>> sum(nums)
21

　引数startでは合計を計算する際の初期値とする数値を指定
できます。次の例では10にリストnumsの合計が加えられま
す。

◎実行例

>>> sum(nums, 10)
31

ＮＯＴＥ sum関数の引数に、rangeオブジェクトをすることで、一
連の整数の合計を求めることができます。

>>> sum(range(10)) 　←1～9の和
45

　lambda式

　Pythonでは、lambda式（ラムダ式）を使用することで
シンプルな関数を作成可能です。lambda式は「無名関数」
と呼ばれる種類の関数で、文字通り名前のない関数です。
sortメソッドやfilter関数など、リスト、タプル、辞書とい
ったイテレート可能なオブジェクトの要素の処理に多用さ
れます。lambda式の基本的な書式は次の通りです。

lambda 引数1, 引数2, 引数3, ...: 処理

　たとえば、引数として与えられた2つの文字列の長いほ
うを戻す関数をdef文で定義する例は次のようになります。

◎実行例
>>> def longer(s1, s2):
...　　 return s1 if len(s1) > len(s2) else s2
...　

　これを、lambda式として定義し、変数longerに代入する
例を示します。

◎実行例

>>> longer = lambda s1, s2: s1 if len(s1) > len(s2) else s2

　以上で、無名関数をlongerという名前の関数のように呼
び出すことができます。

◎実行例
>>> longer("abc", "hello python")
'hello python'
>>> longer("good morning", "おはよう")
'good morning'

062
シンプルな記述が可能な内包表記でリストを生成す
るには

 リストの内包表記を使用する

　内包表記と呼ばれる機能を使用するとリストを効率的に生
成できます。リストの内包表記の書式は次の通りです。

[式 for 変数 in イテレート可能なオブジェクト if 条件式]

　最後の「if 条件式」は必要がなければ省略可能です。
　リストの内包表記はforループでリストの要素を追加してい
く処理の簡略形と考えると理解しやすいでしょう。たとえ
ば、平成の年が要素として格納されているタプルから、対応
する西暦の年を格納するリストを生成するforループの例は次
のようになります。

◎リスト heisei2.py

heiseis = [20, 15, 4, 29, 1, 11, 10]
seirekis = []
for h in heiseis: １
　　seirekis.append(h + 1988) ２

print(seirekis)

　１のforループでリストheiseisから要素を1つずつ取り出
し、２でその値に1988を足し、appendメソッドでリスト
seirekisの要素に追加しています。

■実行結果

[2008, 2003, 1992, 2017, 1989, 1999, 1998]

　これを内包表記で記述すると次のようになります。

◎リスト heisei3.py
heiseis = [20, 15, 4, 29, 1, 11, 10]
seirekis = [h + 1988 for h in heiseis] １

print(seirekis)

　１でheisei2.pyのfor文を内包表記に置き換えています。

■実行結果

[2008, 2003, 1992, 2017, 1989, 1999, 1998]

●条件に一致する要素を取り出す
　リストの内包表記の最後に「if 条件式」を記述すると、条
件に一致する要素のみを取り出すことができます。heisei3.py

を変更して、平成10年以降の年から、西暦の年のリストを生
成するには次のようにします。

◎リスト heisei4.py
heiseis = [20, 15, 4, 29, 1, 11, 10]
seirekis = [h + 1988 for h in heiseis if h >= 10] １
print(seirekis)

　１で内包表記の最後に「if h >= 10」を加え、平成年が10
以上の要素に絞り込んでいます。

■実行結果

[2008, 2003, 2017, 1999, 1998]

　リストの内包表記で要素を取り出すオブジェクトは、イテ
レート可能なオブジェクトならばリスト以外でもかまいませ
ん。次に日本語の曜日をキーにして英語の曜日が格納された
辞書weekdaysからキーを取り出し、「～曜日」の形式の要素
を持つリストを生成する例を示します。

◎実行例

>>> weekdays = {"月 ":"Mo", "火 ":"Tu", "水 ":"We", "木 ":"Th",
"金":"Fr", "土":"Sat", "日":"Su"}
>>> jpweekdays = [w + "曜日" for w in weekdays]
>>> jpweekdays
['月曜日', '火曜日', '水曜日', '木曜日', '金曜日', '土曜日', '日曜日']

063

関数を使用してリストやタプルの要素を抽出するに
は

 filter関数を使用する

　filter関数を使用すると、リストやタプルから条件に一致す
る要素を抽出できます。

◎関数　filter(f, l)
カテゴリ　 組み込み関数
引数　　　 f：関数、l：イテレート可能なオブジェクト
戻り値　　 引数lの要素を抽出したfilterオブジェクト
説明　　　 引数lで指定したリストやタプルの要素に対して、引数f

で指定した関数を実行し結果がTrueとなる要素から構
成されるfilterオブジェクトを戻す

使用例　　 years = list(filter(lambda h: h >= 10, heiseis))

　引数fで指定する関数はlambda式でもかまいません。前出
のheisei4.pyでは、内包表記を使用して、平成10年以降の年
から、西暦の年のリストを生成しましたが、これをfilter関数
で記述すると次のようになります。

◎リスト heisei5.py
heiseis = [20, 15, 4, 29, 1, 11, 10]
seirekis = []

for s in filter(lambda h: h >= 10, heiseis): １
　　seirekis.append(s + 1988)

print(seirekis)

　１でfilter関数を実行してリストheiseisの要素を絞り込んで
います。

■実行結果

[2008, 2003, 2017, 1999, 1998]

ＮＯＴＥ filter関数の戻り値は、イテレート可能なfilterオブジェク
トです。リストに変換するにはlistコンストラクタに渡し
ます。

>>> heiseis = [20, 15, 4, 29, 1, 11, 10]
>>> years = list(filter(lambda h: h >= 10, heiseis))

>>> years
[20, 15, 29, 11, 10]

064
関数を使用してリストやタプルの要素を順に処理す
るには

 map関数を使用する

　map関数を使用すると、リストやタプルの要素を順に処理
して新たなオブジェクトとして取得できます。

◎関数　map(f, l)
カテゴリ　 組み込み関数
引数　　　 f：関数、l：イテレート可能なオブジェクト
戻り値　　 引数lの要素を処理したmapオブジェクト
説明　　　 引数lで指定したリストやタプルの要素に対して、引数f

で指定した関数を実行し結果を要素とするmapオブジ

ェクトを戻す
使用例　　 areas = list(map(lambda x: x*x, sides))

　map関数は前出のfilter関数と同じく、最初の引数に処理を
行う関数を指定します。戻り値はイテレート可能なmapオブ
ジェクトなります。リストに変換するにはlistコンストラクタ
に渡します。
　次に、正方形の辺の長さが格納されているリストsidesか
ら、面積のリストareasを生成する例を示します。

◎実行例

>>> sides = [4, 5, 9, 8]
>>> areas = list(map(lambda x: x*x, sides))
>>> areas
[16, 25, 81, 64]

ＮＯＴＥ これはリストの内包表記を使用すると次のように記述で
きます。

>>> areas = [x * x for x in sides]

　イテレート可能なオブジェクト

　max関数や、strクラスのjoinメソッドのように、Python
の関数やメソッドにはイテレート可能（iterable）なオブジ
ェクトを引数に取るものが数多くあります。また、for文で
の繰り返しにも使用されます。
　イテレート可能なオブジェクトには、文字列（str）、リ
スト（ list）、タプル（ tuple）、辞書（dict）、セット
（set）などがあります。

　「イテレート」（iterate）とは日本語では繰り返し処理
するといった意味です。オブジェクトから順に要素を取り
出せることを表します。
　イテレート可能なオブジェクトは、たとえば、for文の実
行時に「イテレータ」と呼ばれるタイプのオブジェクトに
変換され、ループのたびに要素が順に取り出され、変数に
格納されます。
　イテレータとはiterクラスのインスタンスです。イテレ
ート可能なオブジェクトは、iterコンストラクタを使用して
明示的にイテレータに変換できます。
　イテレータにnext関数を使用することで、次の要素が順
に取り出せます。

◎関数　next(イテレータ)
説明　　　 引数で指定したイテレータの次の要素を取得する

◎実行例
>>> l = ["東京都", "神奈川県", "千葉県"]
>>> itr = iter(l) 　←イテレータに変換
>>> next(itr)
'東京都'
>>> next(itr)
'神奈川県'
>>> next(itr)
'千葉県'

　要素がなくなるとStopIteration例外が送出されます。

◎実行例
>>> next(itr)
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
StopIteration

2-2 辞書の操作
辞書(dict)は、キーと値のペアで要素を管理するイテレート
可能なオブジェクトです。この節では辞書の基本操作につい
て説明します。

065
辞書をリテラルとして生成するには

 {キー1:値1, キー2:値2, キー3:値3,....} を使用する

　辞書オブジェクトをリテラルとして記述するには次の書式
を使用します。

{キー1:値1, キー2:値2, キー3:値3,....}

　「キー:値」をカンマで区切って並べ全体を「{ }」で囲み
ます。
　次に、プログラム言語名をキーに、その得票数を値とする
辞書の生成例を示します。好きなプログラム言語についての
アンケートの結果を格納したものと考えてください。

◎実行例

>>> langs = {"Python":105, "JavaScript":20, "Swift":3, "Basic":5,
"C":33}

●空の辞書を生成する
　空のリストを生成するには単に「{}」を記述します。

◎実行例

>>> mydic = {}

ＮＯＴＥ 辞書のキーはイミュータブルなオブジェクトでなければ
なりません。

s = {("東京", "世田谷"):100, ("千葉", "流山"):45}　
←タプルはOK
s = {["東京", "世田谷"]:100, ["千葉", "流山"]:45}　
←リストはNG

066
指定したキーに対応する要素を取得するには

 「辞書[キー]」、getメソッド、setdefaultメソッドを
使用する

　辞書の要素にアクセスするには「[]」内に、キーを指定し
ます。

辞書[キー]

◎実行例

>>> langs = {"Python":105, "JavaScript":20, "Swift":3, "Basic":5,
"C":33}
>>> langs["Swift"]
3

●キーが存在しない場合にエラーにならないようにする
　「辞書[キー]」の形式でアクセスした場合、存在しないキ
ーの値を取得しようとするとKeyError例外が送出されます。

◎実行例

>>> langs["Objective-C"]
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
KeyError: 'Objective-C'

　エラーを避けるにはgetメソッドを使用します。

◎メソッド　get(key[, default])
カテゴリ　 dictクラス
引数　　　 key：キー

default：キーが存在しない場合のデフォルトの値
（デフォルトはNone）

戻り値　　 キーの値
説明　　　 引数keyで指定したキーの値を取得して戻す
使用例　　 l = langs.get("Objective-C")

　キーが存在しない場合にはエラーにならずデフォルトでは
Noneが戻されます。次に、辞書langsからgetメソッドを使用
して存在しないキー「"Objective-C"」の値を取得する例を示
します。

◎実行例

>>> langs = {"Python":105, "JavaScript":20, "Swift":3, "Basic":5,
"C":33}
>>> l = langs.get("Objective-C")　　 　← 存在しないキーを
指定してもエラーにならない
>>> type(l)

<class 'NoneType'> ←戻り値のタイプはNone

●キーが存在しない場合に新たな値を挿入する
　getメソッドの代わりに、setdefaultメソッドを使用する
とキーが存在していた場合にはその値を返し、存在しなけれ
ばキーにdefaultの値をセットし、その値を返します。

◎メソッド　setdefault(key[, default])
カテゴリ　 dictクラス
引数　　　 key：キー

default：キーが存在しない場合のデフォルトの値
（デフォルトはNone）

戻り値　　 指定したキーに対する値
説明　　　 キーが存在しない場合には値が引数defaultの要素を作

成する
使用例　　 age = customer.setdefault("age")

　次に、辞書customerにsetdefaultメソッドを使用して、存
在しないキー「"age"」の値を取得しようとした例を示しま
す。

◎実行例

>>> customer = {"name":"井上太郎", "pref":"東京都"}
>>> age = customer.setdefault("age")
>>> customer
{'name': '井上太郎', 'pref': '東京都', 'age': None}

　同様に、存在しないキー「"height"」にアクセスして、そ
の値に「180.1」を設定する例を示します。

◎実行例

>>> height = customer.setdefault("height", 180.1)
>>> customer
{'name': '井上太郎', 'pref': '東京都', 'age': None, 'height': 180.1}　
←heightが180.1に設定された

067
辞書に要素を追加する／値を変更するには

 辞書 [キー] に値を代入する

　辞書はミュータブルなデータ型です。指定したキーに対す
る値を代入することで値を変更できます。

◎実行例

>>> langs = {"Python":105, "JavaScript":20, "Swift":3}
>>> langs["Swift"] = 9
>>> langs
{'Python': 105, 'JavaScript': 20, 'Swift': 9}

　存在しないキーを指定して辞書に値を代入すると、新たな
キーと値のペアが作成されます。

◎実行例

>>> mydic = {} 　←空の辞書を作成
>>> mydic["name"] = "田中一郎" 　←キー"name"、値"田
中一郎"を挿入
>>> mydic["age"] = 44 　←キー"age"、値「44」を挿入
>>> mydic

{'name': '田中一郎', 'age': 44}

068
辞書の要素数を取得するには

 len関数を使用する

　リストやタプルと同じく、辞書の要素数を求めるにはlen
関数を使用します。

◎関数　len(s)
カテゴリ　 組み込み関数
引数　　　 辞書
戻り値　　 辞書の要素数
説明　　　 引数sで指定した辞書の要素数を戻す
使用例　　 l = len(mydic)

◎実行例

>>> langs = {"Python":105, "JavaScript":20, "Swift":3, "Basic":5,
"C":33}
>>> len(langs)
5

069
辞書の内容を別の辞書で更新／連結するには

 updateメソッドを使用する

　リストやタプルと異なり、辞書は「+」演算子を使用して
連結できません。辞書に別の辞書を連結するにはupdateメ
ソッドを使用します

◎メソッド　update(other)
カテゴリ　 dictクラス
引数　　　 辞書
戻り値　　 なし
説明　　　 辞書の要素に引数otherで指定した辞書の要素を加える
使用例　　 d1.update(d2)

◎実行例

>>> d1 = {"yellow":"黄", "red":"赤"}
>>> d2 = {"blue":"青", "green":"緑"}
>>> d1.update(d2)
>>> d1
{'yellow': '黄', 'red': '赤', 'blue': '青', 'green': '緑'}

　updateメソッド実行時に既存のキーがある場合には、値が
上書きされます。

◎実行例

>>> n1 = {"name":"山田花子", "age":42}
>>> n2 = {"number":15, "age":44}
>>> n1.update(n2)
>>> n1
{'name': '山田花子', 'age': 44, 'number': 15}

●「キー=値」の形式で要素を追加／更新する
　updateメソッドの引数に「キー=値」の形式で引数を指定
することによっても、要素を追加／更新できます。一度に複

数の要素を追加／更新することも可能です。

◎実行例

>>> d3 = {"man":"男性"}
>>> d3.update(tree="木", sun="太陽") 　←要素を2つ追加
>>> d3
{'man': '男性', 'tree': '木', 'sun': '太陽'}

070
辞書の要素を削除するには

 del文、popメソッド、 popitemメソッド、clearメソッ
ドを使用する

　辞書から、指定したキーの要素を削除するにはdel文を使
用します。

del 辞書[キー]

◎実行例

>>> langs = {"Python":105, "JavaScript":20, "Swift":3, "Basic":5,
"C":33}
>>> del langs["Basic"]
>>> langs
{'Python': 105, 'JavaScript': 20, 'Swift': 3, 'C': 33}

●存在しないキーの要素を削除する場合にエラーにならない
ようにする

　del文による削除では、指定したキーの要素が存在してい
ないとKeyError例外が送出されます。

◎実行例

>>> del langs["C++"]
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
KeyError: 'C++'

　存在しないキーの要素を削除しようとした場合にエラーに
ならないようにするには、popメソッドを使用します。

◎メソッド　pop(key[, default])
カテゴリ　 dictクラス
引数　　　 key：キー、default：キーが存在しない場合に返す値
戻り値　　 削除した要素の値
説明　　　 引数キーで指定した要素を削除しその値を戻す。引数

defaultを設定しない場合、キーが存在しないと
KeyError例外が送出される

使用例　　 val = colors.pop("blue", None)

◎実行例

>>> colors = {"red":"赤", "blue":"青", "green":"緑"}
>>> colors.pop("blue")
'青'
>>> colors
{'red': '赤', 'green': '緑'}
>>> colors.pop("black", None) 　 ←defaultを指定すると存
在しないキーを指定してもエラーにならない
>>> colors.pop("black") 　←defaultを設定しないとエラー
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>

KeyError: 'black

●任意の要素を削除する
　辞書からランダムに抽出した要素を削除するにはpopitem
メソッドを使用します。

◎メソッド　popitem()
カテゴリ　 dictクラス
引数　　　 なし
戻り値　　 キーと値のペアのタプル
説明　　　 辞書から任意の要素を削除してそのキーと値のペアを

タプルとして戻す
使用例　　 v = langs.popitem()

　popitemメソッドは、辞書の要素が空になるまで、ランダ
ムに要素を取得して削除していくのに便利です。
　次に、辞書langsの要素を1つずつ表示しながら削除してい
く例を示します。

◎リスト popitem1.py
langs = {"Python":105, "JavaScript":20, "Swift":3, "Basic":5,
"C":33}

while langs:
　　 print(langs.popitem())

■実行結果

('C', 33)
('Basic', 5)
('Swift', 3)
('JavaScript', 20)

('Python', 105)

●すべての要素を削除する
　辞書からすべての要素を削除するにはclearメソッドを使
用します。

◎メソッド　clear()
カテゴリ　 dictクラス
引数・戻り値　　 なし
説明　　　 辞書からすべての要素を削除する
使用例　　 mydic.clear()

　clearメソッドを実行すると辞書は空の状態「{}」になりま
す。

◎実行例

>>> langs.clear()
>>> langs
{}

071
辞書に指定したキーの要素が存在するか調べるには

 in演算子、not in演算子を使用する

　in演算子を使用すると、指定したキーの要素が辞書に存在
しているかがわかります。キーが存在していればTrueを、そ
うでなければFalseを返します。

キー in 辞書

◎実行例

>>> colors = {"red":"赤", "blue":"青", "green":"緑", "white":"白"}

>>> "red" in colors
True
>>> "gray" in colors
False

　逆に、not in演算子はキーが存在していればFalseを、存在
していなければTrueを戻します。

キー not in 辞書

◎実行例

>>> "gray" not in colors
True

ＮＯＴＥ Python 3では、Python 2に用意されていたin演算子と同
じ動作をするhas_keyメソッドは廃止されました。

072
辞書のすべてのキーを取得するには

 keysメソッドを使用する

　keysメソッドを使用すると、辞書のすべてのキーを取得
できます。

◎メソッド　keys()
カテゴリ　 dictクラス
引数　　　 なし
戻り値　　 すべてのキーをまとめたdict_keysオブジェクト
説明　　　 辞書のすべてのキーを要素とするdict_keysオブジェ

クトを戻す
使用例　　 ks = langs.keys()

　keysメソッドの戻り値はリストの仲間であるdict_keysオ
ブジェクトです。

◎実行例

>>> colors = {"red":"赤", "blue":"青", "green":"緑", "white":"白"}

>>> colors.keys()
dict_keys(['red', 'blue', 'green', 'white'])

　dict_keysオブジェクトはイテレート可能です。keysメソッ
ドの戻り値としてdict_keysオブジェクトをそのままfor文に
渡せば値を1つずつ取り出せます。

◎実行例

>>> for k in colors.keys():
...　　 print(k)
...
red
blue
green
white

　listコンストラクタに渡せばリストに変換できます。

◎実行例

>>> l = list(colors.keys())
>>> l
['red', 'blue', 'green', 'white']

073
辞書のすべての値を取得するには

 valuesメソッドを使用する

　valuesメソッドを使用すると辞書のすべての値を取得で
きます。

◎メソッド　values()
カテゴリ　 dictクラス
引数　　　 なし
戻り値　　 すべての値をまとめたdict_valuesオブジェクト
説明　　　 辞書のすべての値を要素とするdict_valuesオブジェク

トを戻す
使用例　　 vs = langs.values()

　valuesメソッドの戻り値はイテレート可能なdict_values
オブジェクトです。

◎実行例

>>> colors = {"red":"赤", "blue":"青", "green":"緑", "white":"白"}

>>> colors.values()
dict_values(['赤', '青', '緑', '白'])

　valuesメソッドの戻り値としてdict_valuesオブジェクトを
そのままfor文に渡せば値を1つずつ取り出せます。

◎実行例

>>> for v in colors.values():
...　　 print(v)
...
赤
青
緑
白

●辞書に値が存在するかを調べる
　辞書に指定したキーが存在しているかを調べるにはin演算
子（071で解説）を使用しました。それに対して、辞書に指
定した値が存在しているかを調べるには、valuesメソッドの
戻り値に対してin演算子を使用します。

◎実行例

>>> "緑" in colors.values()
True

074
辞書からすべてのキーと値のペアを取得するには

 itemsメソッドを使用する

　itemsメソッドを使用すると辞書からキーと値のペアをす
べて取得できます。

◎メソッド　items()
カテゴリ　 dictクラス
引数　　　 なし
戻り値　　 辞書のすべてのキーと値のペアをまとめたdict_items

オブジェクト
説明　　　 辞書のすべてのキーと値のペアを要素とする

dict_itemsオブジェクトを戻す
使用例　　 its = langs.items()

　itemsメソッドの戻り値はキー、値のペアをタプルとする
dict_itemsオブジェクトです。

◎実行例

>>> colors = {"red":"赤", "blue":"青", "green":"緑", "white":"白"}

>>> colors.items()
dict_items([('red', '赤'), ('blue', '青'), ('green', '緑'), ('white', '白')])

　listコンストラクタに渡すと、キーと値のペアのタプルを
要素とするリストに変換できます。

◎実行例

>>> list(colors.items())
[('red', '赤'), ('blue', '青'), ('green', '緑'), ('white', '白')]

　dict_itemsオブジェクトはイテレート可能なので、次のよ
うにfor文を使用することでキー、値の一覧を表示できま
す。

◎実行例

>>> for k, v in colors.items():
...　　 print(k, v)
...
red 赤
blue 青
green 緑
white 白

●値の最大値を求める
　keys、values、itemsメソッドの戻り値はイテレート可能な
オブジェクトなのでmax関数やmin関数（055で解説）に渡す
ことができます。
　次のリストでは、プログラム言語をキーに、その得票数を
値とする辞書langsがあるとしています。この辞書から、最
も得票数の多い言語を見つけるには、max関数にkey引数を
設定して次のようにします。

◎リスト items1.py（値の最大値を求める）
langs = {"Python":105, "JavaScript":20, "Swift":3, "Basic":5,
"C":33}
maxlang = max(langs.items(), key=lambda l:l[1]) １
print(maxlang)

　１でmax関数を実行しています。itemsメソッドによりキ
ーと値のペアを取り出し、key引数ではlambda式で辞書の値
の最大値を求めるための基準の要素を設定しています。

■実行結果

('Python', 105)

●値の大きい順に表示する
　同様にkeys、values、itemsメソッドの戻り値をsorted関数
に渡してソートすることもできます。次に、辞書langsを値
の大きい順に表示する例を示します。

◎リスト items2.py（値の大きい順に表示する）
langs = {"Python":105, "JavaScript":20, "Swift":3, "Basic":5,
"C":33}
sorted_langs = sorted(langs.items(), key=lambda l:l[1],
reverse=True) １
for l, v in sorted_langs:
　　print(l, v)

　１でsorted関数を実行しています。item1.pyと同様にkey引
数により辞書の値を基準の要素となるように設定していま
す。

■実行結果

Python 105
C 33
JavaScript 20
Basic 5
Swift 3

075

辞書をコピーするには
 copyメソッドを使用する

　辞書をコピーするにはcopyメソッドを使用します。

◎メソッド　copy()
カテゴリ　 dictクラス
引数　　　 なし
戻り値　　 コピーされた辞書
説明　　　 辞書をコピーして戻す
使用例　　 dict2 = dict1.copy()

◎実行例

>>> colors = {"red":"赤", "blue":"青", "green":"緑", "white":"白"}
>>> colors
{'red': '赤', 'blue': '青', 'green': '緑', 'white': '白'}
>>> new_colors = colors.copy() 　←辞書colorsをコピー
>>> colors["gray"] = "灰色" 　←辞書colorsに要素を追加
>>> colors
{'red': '赤', 'blue': '青', 'green': '緑', 'white': '白', 'gray': '灰色'}
>>> new_colors 　↓new_colorsは変わらない
{'red': '赤', 'blue': '青', 'green': '緑', 'white': '白'}

●浅いコピー
　copyメソッドはいわゆる浅いコピーを行います。内部のオ
ブジェクトはコピーされません。次の辞書d1は、colorsキー
に対してリストを値に設定しています。

◎実行例

>>> d1 = {"name":"mac", "colors":["gray", "black"]}

　辞書d1をd2にコピーした場合、d1のcolorsキー要素の変更
はd2にも反映されます。

◎実行例

>>> d2 = d1.copy() 　←d1をd2にコピー
>>> d1["colors"].append("red") 　 ←d1 の colors の 値
に"red"を追加
>>> d1["colors"]
['gray', 'black', 'red']
>>> d2["colors"]
['gray', 'black', 'red'] ←d2のcolorsキーの値も変更される

076
シンプルな記述が可能な内包表記で辞書を生成する
には

 「{キー:値 for 変数 in イテレート可能なオブジェク
ト}」を使用する

　リストの内包表記（062で解説）と同じく、辞書の内包表
記を使用するとシンプルな記述で、多少複雑な辞書が生成で
きます。辞書の内包表記の書式は次のようになります。

{キー:値 for 変数(キー), 変数(値) in イテレート可能なオ
ブジェクト}

　次にリストcolorsの要素をキーに、リストnumbersの要素
を値とする辞書colors_dicを生成する例を示します。

◎リスト dict_comp1.py
colors = ["blue", "green", "red", "yellow"]
numbers = [9, 3, 4, 2]

colors_dic = {c:v for c,v in zip(colors, numbers)} １
print(colors_dic)

　１が内包表記による辞書の生成部分です。zip関数（059で
解説）を使用してリストを組み合わせている点に注目してく
ださい。

■実行結果

{'blue': 9, 'green': 3, 'red': 4, 'yellow': 2}

ＮＯＴＥ 実際には「dict_comp1.py」の例は、内包表記を使用し
ないで、zip関数の結果をdictコンストラクタに渡しても
同じです。

colors_dic= dict(zip(colors, numbers))

　内包表記が活躍するのは何らかの処理が必要なケースで
す。たとえば、 dict_comp1.pyを、辞書の値にリスト
numbersの要素を2倍にして代入するように変更したい場合
には次のようにします。

◎リスト dict_comp2.py（一部）
colors_dic = {c:v*2 for c,v in zip(colors, numbers)}

■実行結果

{'blue': 18, 'green': 6, 'red': 8, 'yellow': 4}

●条件式も使える
　リストの内包表記ではif文による条件式も使用できます。
次に、dic_comp1.pyを変更して、リストnumbersの要素が偶
数の場合にのみ、辞書の要素とする例を示します。

◎リスト dict_comp3.py（一部）
colors_dic = {c:v for c,v in zip(colors, numbers) if v%2==0}

■実行結果

{'red': 4, 'yellow': 2}

●辞書のキーと値を入れ替える
　次に、辞書の内包表記を使用して、辞書のキーと値を入れ
替えた新たな辞書を生成する例を示します。

◎リスト dic_comp4.py
seasons = {" 春 ":"Spring", " 夏 ":"Summer", " 秋 ":"Autumn",
"冬":"Winter"}

new_seasons = {v:k for k, v in seasons.items()} １
print(new_seasons)

　１で変数kに入れたキーを値に、変数vに入れた値をキーに
することでキーと値を入れ替えています。

■実行結果

{'Spring': '春', 'Summer': '夏', 'Autumn': '秋', 'Winter': '冬'}

2-3 セットの操作
セット（set）は要素の重複を許さないイテレート可能なデー
タ型です。また、ミュータブルなデータ型です。あとから要
素を追加/変更可能です。この節ではセットの取り扱いについ
て説明します。

077
セットをリテラルとして生成するには

 「{値1, 値2, 値3,}」を使用する

　セット（set）オブジェクトをリテラルで記述するには次の
書式を使用します。

{値1, 値2, 値3,}

◎実行例

>>> s1 = {"dog", "cat", "pig", "cow"}
>>> s1
{'cat', 'cow', 'pig', 'dog'}

●重複が取り除かれる
　なお、リテラルで記述した要素に重複がある場合、自動的
に重複が取り除かれます。

◎実行例

>>> s2 = {"red", "green", "blue", "red", "green"}
>>> s2

{'green', 'blue', 'red'}

ＮＯＴＥ 空のセットを作成するにはsetコンストラクタを引数なし
で実行します。

>>> es = set() 　 ←空のセット

単に「{}」を記述すると空の辞書が作成されてしまうの
で注意してください。

>>> es = {} 　←空の辞書

078
セットをリストやタプルなどから生成するには

 setコンストラクタを使用する

　リストやタプルなどイテレート可能なオブジェクトをsetコ
ンストラクタの引数にすることで、セットが生成できます。
この場合も要素の重複が削除されます。

◎実行例

>>> t1 = ("アメリカ", "日本", "中国", "イギリス", "日本", "中国")

>>> s1 = set(t1)
>>> s1
{'日本', 'アメリカ', 'イギリス', '中国'}

　辞書を引数にした場合には、キーからセットが生成されま
す。

◎実行例

>>> d1 = {"春":"Spring", "夏":"Summer", "秋":"Autumn", "冬":
"Winter"}
>>> s2 = set(d1)
>>> s2
{'夏', '秋', '冬', '春'}

　辞書の要素の値からセットを生成するには辞書のvaluesメ
ソッドを使用します。

◎実行例

>>> s3 = set(d1.values())
>>> s3
{'Autumn', 'Summer', 'Winter', 'Spring'}

　rangeオブジェクトからセットを生成することもできま
す。

◎実行例

>>> s4 = set(range(0,20,4))
>>> s4
{0, 4, 8, 12, 16}

079
セットの要素数を求めるには

 len関数を使用する

　セットの要素数はlen関数で調べられます。

◎関数　len(s)
カテゴリ　 組み込み関数
引数　　　 セット
戻り値　　 要素数
説明　　　 セットの要素数を戻す
使用例　　 sl = len(s1)

◎実行例

>>> s1 = {"red", "green", "blue", "white", "yellow"}
>>> len(s1)
5

080
セットに要素を1つ追加するには

 addメソッドを使用する

　既存のセットに要素を1つ追加するにはaddメソッドを使用
します。

◎メソッド　add(el)
カテゴリ　 setクラス
引数　　　 追加する値
戻り値　　 なし
説明　　　 セットに引数elで指定した値の要素を追加する
使用例　　 s1.add("東京都")

◎実行例

>>> s1 = {"red", "green", "blue"}

>>> s1.add("black")
>>> s1
{'green', 'black', 'blue', 'red'}

ＮＯＴＥ すでに存在する要素を追加しようとしても何も起こりま
せん（エラーにはなりません）。

>>> s1.add("red")　

081
セットを別のコレクションで更新するには
　updateメソッドとその仲間のメソッドを使う

　updateメソッドを使用すると、セットに、引数で指定し
たリストやタプル、セットの要素をまとめて追加できます。

◎メソッド　update(others)
カテゴリ　 setクラス
引数　　　 イテレート可能なオブジェクト
戻り値　　 なし
説明　　　 セットに引数othersで指定したオブジェクトの要素を

加える
使用例　　 s.update(["アメリカ", "イギリス"])

◎実行例

>>> s1 = {"red", "green", "blue"}
>>> s1.update(["black", "yellow"])
>>> s1
{'blue', 'black', 'red', 'yellow', 'green'}

ＮＯＴＥ 文字列を引数にしてupdateメソッドを実行すると、文字
列が文字に分解されて追加されてしまうので注意してく
ださい。

◎実行例

>>> s1 = {"red", "green", "blue"}
>>> s1.update("brown")
>>> s1
{'green', 'r', 'n', 'w', 'blue', 'red', 'b', 'o'｝

●共通の要素を残すには
　intersection_updateメソッドを使用すると現在のセット
の要素と、引数で指定したリストやタプル、セットの要素と
共通する要素を残して、それ以外は削除します。

◎メソッド　intersection_update(others)
カテゴリ　 setクラス
引数　　　 イテレート可能なオブジェクト
戻り値　　 なし
説明　　　 セットの要素を、引数othersで指定したオブジェクト

の要素と共通の要素にする
使用例　　 s.intersection_update(["アメリカ", "イギリス"])

◎実行例

>>> s2 = {1, 2, 3, 4, 5, 6}
>>> s2.intersection_update({3, 4, 9})
>>> s2
{3, 4}

●引数で指定したオブジェクトの要素を取り除く

　difference_updateメソッドを使用すると、現在のセット
の要素から、引数で指定したリストやタプル、セットなどと
共通な要素を削除します。

◎メソッド　difference_update(others)
カテゴリ　 setクラス
引数　　　 イテレート可能なオブジェクト
戻り値　　 なし
説明　　　 セットの要素から、引数othersで指定したオブジェク

トとの共通の要素を取り除く
使用例　　 s.difference_update({"red", "blue"})

◎実行例

>>> s2 = {1, 2, 3, 4, 5, 6}
>>> s2.difference_update((4, 5, 200))
>>> s2
{1, 2, 3, 6}

　rangeオブジェクトを引数にすることもできます。次の例
は偶数を削除します。

◎実行例

>>> s2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
>>> s2.difference_update(range(0, 11, 2))
{1, 3, 5, 7, 9}

● 現在のセットの要素と別のオブジェクトの要素のうちどち
らかに含まれる要素を残す
　symmetric_difference_updateメソッドを使用すると、
現在のセットと引数で指定したオブジェクトの共通の要素を
削除し、どちらかのみに含まれている要素を残します。

◎メソッド　symmetric_difference_update(others)
カテゴリ　 setクラス
引数　　　 イテレート可能なオブジェクト
戻り値　　 なし
説明　　　 セットの要素と、引数othersで指定したオブジェクト

のどちらかに含まれている要素を残してほかを削除す
る

使用例　　 s.symmetric_difference_update(["ロシア"])

◎実行例

>>> s1 = {"blue", "black", "red", "green"}
>>> s1.symmetric_difference_update({"blue", "white", "green"})

>>> s1
{'white', 'red', 'black'}

ＮＯＴＥ update、intersection_update、difference_updateメソッ
ドは複数の引数を取ることができます。

>>> s1 = {1, 2, 3, 4, 5, 6}
>>> s1.difference_update({3,4}, {5})

●演算子によるセットの更新
　 update メ ソ ッ ド 、 intersection_update メ ソ ッ ド 、
difference_updateメソッド、symmetric_difference_updateメ
ソッドの代わりに次のような演算子を使用してセットを更新
することもできます。

◎実行例

>>> s1 = {1, 4, 5}
>>> s1 |= {4, 3,20}
>>> s1
{1, 3, 4, 5, 20}
>>> s1 &= {4, 5, 20, 33}
>>> s1
{5, 20, 4}
>>> s1 ^= {5, 6, 9, 10}
>>> s1
{4, 6, 9, 10, 20}

ＮＯＴＥ 「|=」「&=」「-=」は、それぞれ「|」「&」「-」を続
けることにより複数の値でセットを更新することができ
ます。

>>> s1 = {1, 2, 3}
>>> s1 |= {4, 8} | {9, 10}

082
2つのセットを合わせて新たなセットを生成するには
　union メソッド、 intersection メソッド、difference
メソッドなどを使用する

　 update 、 intersection_update 、 difference_update 、
symmetric_difference_updateと似たメソッドに、union、
intersection、difference、symmetric_differenceがあり
ます。前者と異なり、これらのメソッドは新たにセットを生
成して戻します。また、引数はセットである必要がありま
す。

　次にこれらのメソッドの使用例を示します。

◎リスト makeset1.py
s1 = {1, 4, 9, 5, 3}

print(s1.union({4, 5, 100}))
print(s1.intersection({4, 5, 100}))
print(s1.difference({4, 5, 100}))
print(s1.symmetric_difference({4, 5, 100}))

■実行結果

{1, 3, 4, 5, 100, 9}
{4, 5}
{1, 3, 9}

{1, 3, 100, 9}

●演算子を使用する
　unionメソッド、 intersectionメソッド、differenceメソッ
ド、symmetric_differenceメソッドの代わりに、次のような演
算子を使用することもできます。

◎実行例

>>> {1, 4, 5} | { 4, 3, 20}
{1, 3, 4, 5, 20}
>>> {1, 4, 5} & { 4, 3, 20}
{4}
>>> {1, 4, 5} - { 4, 3, 20}
{1, 5}
>>> {1, 4, 5} ^ { 4, 3, 20}
{1, 3, 5, 20}

　3つ以上のセットにも使用可能です。

◎実行例

>>> {1, 4, 5} - { 4, 3, 20} - {5}
{1}

083
セットの要素を削除するには

 removeメソッド、discardメソッド、popメソッド、
clearメソッド、del文を使用する

　セットから、指定した要素を削除するには、removeメソ
ッドを使用します。

◎メソッド　remove(elem)
カテゴリ　 setクラス
引数　　　 削除する要素
戻り値　　 なし
説明　　　 セットから引数elemで指定した要素を削除する
使用例　　 s.remove("アメリカ")

◎実行例

>>> s1 = {"blue", "black", "red", "green"}
>>> s1.remove("blue")
>>> s1
{'black', 'green', 'red'}

●削除時に要素がない場合にエラーにならないようにする
　removeメソッドは引数で指定した要素が存在しない場合に
は、KeyError例外が送出されます。

◎実行例

>>> s1.remove("gold")
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
KeyError: 'gold'

　削除時に要素が存在しない場合に、エラーにならないよう
にしたいときは、discardメソッドを使用します。

◎メソッド　discard(elem)
カテゴリ　 setクラス
引数　　　 削除する要素
戻り値　　 なし
説明　　　 セットから引数elemで指定した要素を削除する
使用例　　 s.discard("アメリカ")

◎実行例

>>> s1.discard("gold")

●任意の要素を削除する
　popメソッドで、セットからランダムに選んだ要素を削除
し、その値を戻します。

◎メソッド　pop()
カテゴリ　 setクラス
引数　　　 なし
戻り値　　 削除した要素
説明　　　 セットから任意の要素を削除し、その値を戻す。セット

が空の場合にはKeyError例外が送出される
使用例　　 n = age.pop()

　次に、セットmysetから、要素を順に取り除いて表示する
例を示します。

◎リスト pop1.py
myset = {1965, 1959, 2001, 1987, 1959, 2011}

while True: １
　　try:
　　　　print(myset.pop()) ２
　　except:
　　　　break ３

　１のwhileループで処理を繰り返し、２でpopメソッドによ
り任意の要素を削除しその値を表示しています。セットの要
素が空になると例外が発生し、３のbreak文でループを抜け
ます。

■実行結果

1987
1959
1965
2001
2011

●すべての要素を削除する
　すべての要素を削除するにはclearメソッドを使用しま
す。

◎メソッド　clear()
カテゴリ　 setクラス
引数・戻り値　　 なし
説明　　　 セットを空にする
使用例　　 s.clear()

◎実行例

>>> s1 = {"blue", "black", "red", "green"}
>>> s1.clear()
>>> s1

set()

●セットそのものを削除する
　セット自体を削除するにはdel文を使用します。

del セット

◎実行例

>>> s1 = {"blue", "black", "red", "green"}
>>> del s1

084
セットをリストに変換するには

 listコンストラクタを使用する

　セットをlistコンストラクタに渡すとリストに変換できま
す。

◎実行例

>>> s1 = {"blue", "black", "red", "green"}
>>> l1 = list(s1)
>>> l1
['red', 'blue', 'green', 'black']

　同様にtupleコンストラクタにセットを渡せばタプルに変換
できます。

085
セットに指定した要素が含まれているかを調べるに
は

 in、not in演算子を使用する

　ある値がセットの要素に含まれているかを調べるにはin演
算子を使用します。

値 in セット

　値が、含まれていればTrueを、いなければFalseを戻しま
す。

◎実行例

>>> s1 = {"blue", "black", "red", "green"}
>>> "black" in s1
True
>>> "pink" in s1
False

　逆に含まれていないかを調べるにはnot in演算子を使用し
ます。値が含まれていなければTrueを、含まれていればFalse
を戻します。

値 not in セット

◎実行例

>>> "black" not in s1
False

086
セットの要素を順に取得するには

 forループを使用する

　セットはイテレート可能なオブジェクトなのでforループで
順に値を取得し処理できます。次に、セットyearsから順に要
素を取り出し表示する例を示します。

リスト setfor1.py
years = {1965, 1959, 2001, 1987, 1959, 2011} １
for y in years:
　　print(str(y) + "年") ２

　１のfor文で年が格納されたセットyearsから年を1つずつ取
り出し、２で"年"と連結して表示しています。

■実行結果

1987年
1959年
1965年
2001年
2011年

087
2つのセットの関係を調べるには

 isdisjointメソッド、issubsetメソッド、issupersetメソ
ッドを使用する

　セットと引数で指定したセットの関係を調べ、Trueもしく
はFalseを返すメソッドを示します。

　次に実行例を示します。

◎リスト checkset1.py
s1 = {1, 4, 9, 5, 3}

print(s1.isdisjoint({-1, 2}))
print(s1.isdisjoint({1,2}))

print(s1.issubset({9, 1, 4, 3, 5, 10}))
print(s1.issubset({9, 1, 4, 10}))

print(s1.issuperset({1, 4}))
print(s1.issuperset({3, 101}))

■実行結果

True
False

True
False
True
False

●演算子を使用する
　次のような演算子を使用しても2つのセットの関係を調べ
られます。

◎実行例

>>> {1, 2} <= {1, 2}
True
>>> {1, 2} <= {1, 2, 3}
True
>>> {4, 5, 6} > {4, 5, 6}
False
>>> {4, 5, 6} > {4, 5}
True

088
セットの要素を辞書のキーとして使用するには

　frozensetオブジェクトを使用する

　セット（set）はミュータブルなオブジェクトなのでそのま
までは辞書のキーとして使用できません。次のように、セッ
トをそのまま辞書のキーにしようとするとエラーになりま
す。

◎実行例

>>> s1 = {"green", "blue"}
>>> s2 = {"black", "white"}
>>> d1 = {s1:3 , s2:4} 　←セットをキーにしようとすると
エラー
Traceback (most recent call last):
　File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'set'

　セットを辞書のキーにするには、イミュータブルなセット
であるfrozensetクラスのインスタンスに変換する必要があ
ります。

◎コンストラクタ　frozenset(s)
カテゴリ　 frozensetクラス
引数　　　 イテレート可能なオブジェクト
戻り値　　 frozensetオブジェクト
説明　　　 セットから、イミュータブルなセットであるfrozenset

オブジェクトを生成して戻す

◎実行例

>>> s1 = {"green", "blue"}
>>> s2 = {"black", "white"}
>>> d1 = {frozenset(s1):3 , frozenset(s2):4}
>>> d1

{frozenset({'green', 'blue'}): 3, frozenset({'black', 'white'}): 4}

089
セットをコピーするには
　copyメソッドを使用する

　セットをコピーするにはcopyメソッドを使用します。

◎メソッド　copy()
カテゴリ　 setクラス
引数　　　 なし
戻り値　　 コピーされたセット
説明　　　 セットをコピーして新たなセットを生成して戻す
使用例　　 s2 = s1.copy()

◎実行例

>>> s1 = {"東京都", "神奈川県", "千葉県"}
>>> s2 = s1.copy() 　←s1をs2にコピー
>>> s1.add("大阪府") 　←s1に要素を加える
>>> s2
{'東京都', '神奈川県', '千葉県'} ←s2は変更されない

090
シンプルな記述が可能な内包表記でセットを生成す
るには

 {式 for 変数 in イテレート可能なオブジェクト if 条件
式} を使用する

　リスト内包表記（062で解説）や辞書の内包表記（076で解
説）と同じく、セットの内包表記を使用するとシンプルな記
述で、多少複雑なセットが生成できます。
　以下に、セットの内包表記の書式を示します。

{式 for 変数 in イテレート可能なオブジェクト if 条件式}

　たとえば、次のような("名前", "性別")の形式のタプルを要
素とするリストnamesがあるとします。

リストnames

names =　[("田中一郎", "男"), ("山田太郎", "男"), ("佐藤花子",
"女"),]

　リストnamesから性別が「"男"」の要素を取り出して、名
前を要素とするセットmensetを作成するには次のようにしま
す。

◎リスト setcmp1.py
names = [("田中一郎", "男"), ("山田太郎", "男"), ("佐藤花子",
"女"),
("猫山五朗", "男"), ("小林直子", "女"), ("大木虎夫", "男")]

menset = {n[0] for n in names if n[1] == "男"} １
print(menset)

　１で内包表記を使用しています。「if n[1] == "男"」で男
性のみを取り出し、「n[0]」で名前をセットの要素としてい
ます。

■実行結果

{'田中一郎', '大木虎夫', '山田太郎', '猫山五朗’}

2-4 collectionsモジュールの便利なクラス
Pythonのコレクション型というと、タプル、リスト、辞書、
集合といったところが有名ですが、collectionsモジュールに
も便利なクラスがいくつか用意されています。ここではそれ
らのクラスを紹介します。

091
タプルやリストの要素の出現回数を数えるには

 collectionsモジュールのCounterクラスを使用する

　タプルやリストの要素の出現回数を数えるときには辞書型
のオブジェクトが適しています。たとえば、タプルfruitsに
格納された単語の出現頻度を調べて結果を辞書countに格納
するコード例は以下のようになるでしょう。

◎実行例

>>> fruits = ("apple", "melon", "orange", "apple", "orange",
"apple")
>>> count = {}
>>> for f in fruits:
...　　 if f in count:
...　　　　　　 count[f] += 1
...　　 else:
...　　　　　　 count[f] = 1
...
>>> count
{'apple': 3, 'melon': 1, 'orange': 2}

　これでも問題なく単語の出現回数をカウントできますが、
Counterクラスを使うとよりシンプルに実装することができ
ます。

◎コンストラクタ　Counter()
カテゴリ　 collectionsモジュール
引数　　　 なし（キーワード引数や辞書型オブジェクトで初期化

することも可能）
戻り値　　 Counterオブジェクト
説明　　　 出現頻度を数えるカウンターオブジェクトを作成する
使用例　　 c = collections.Counter(["A","B","A","C","B","A"])

　以下は、Counterオブジェクトを作成し、"hello world"の文
字の出現回数を数える例です。

◎実行例

>>> import collections
>>> c = collections.Counter()
>>> for v in "hello world":
...　　 c[v] += 1
...
>>> c
Counter({'l': 3, 'o': 2, 'h': 1, 'e': 1, ' ': 1, 'w': 1, 'r': 1, 'd': 1})　１

　１の結果を見ると、lが3回、oが2回、h～dが1回ずつとい
うように、出現回数順に並んでいます。
　Counterオブジェクトは、辞書と同様に変数名[キー]でア
クセスすることで値を取得できます。通常の辞書のようにキ
ーの存在を事前に調べる必要はありません。また、コンスト
ラクタの引数として初期値を与えることも可能です。
　以下は、前出の例をCounterクラスで処理した例です。

◎実行例

>>> import collections
>>> collections.Counter(("apple", "melon", "orange", "apple",
"orange", "apple"))
Counter({'apple': 3, 'orange': 2, 'melon': 1})

　先の例に比べて記述が格段にシンプルになり、出力結果も
出現回数順に並んでいます。

●出現回数の多い順にソートする
　出現回数を処理する場合、出現回数が最も多い項目を調べ
るケースも多いでしょう。そのような用途のために
most_commonメソッドが用意されています。

◎メソッド　most_common([n])
カテゴリ　 collectionsモジュール
引数　　　 取得する要素の数
戻り値　　 出現回数の多い順からn個分のキーと値のリスト
説明　　　 引数を省略した場合はすべての要素を多い順に返す
使用例　　 counter_obj.most_common(2)

◎実行例

>>> import collections
>>> count = collections.Counter(("apple", "melon", "orange",
"apple", "orange", "apple"))
>>> print(count.most_common(2))　　 　１
[('apple', 3), ('orange', 2)]
>>> print(count.most_common(1))　　 　２
[('apple', 3)]

　Counterのコンストラクタにタプルを渡しています。１の
most_common(2)では、出現回数が多い順に2個表示してい

ます。２のmost_common(1)は、最も出現回数が多いものを
表示しています。

092
辞書にデフォルト値を設定するには

 collectionsクラスのdefaultdictクラスを使用する

　辞書へのアクセスにはキーの存在が必要です。存在しない
キーにアクセスするとエラーが返されます。

◎実行例

>>> d = {}
>>> d["apple"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'apple'

　キーが存在するか否かチェックするにはin演算子を使用し
ます。

◎実行例

>>> d = {"one":"apple", "two":"melon"}
>>> "one" in d
True
>>> "three" in d
False

　辞書にキーが存在することを確認してなんらかの処理を行
うには、次のようにif文を使用する必要があります。

if キー in 辞書:
　　処理

　存在しないキーにアクセスする可能性がある場合に、その
都度in演算子でチェックするのは面倒です。ここでは、存在
しないキーにアクセスした場合に、引数で指定した関数を実
行してその結果を要素とすることが可能なdefaultdictクラ
スを紹介しましょう。

◎コンストラクタ　defaultdict(default_factory)
カテゴリ　 collectionsモジュール
引数　　　 デフォルト値を生成する関数やコンストラクタなど
戻り値　　 default値をもった辞書（defaultdictオブジェクト）
説明　　　 デフォルト値をもった辞書を作成する
使用例　　 d = collections.defaultdict(lambda: 0)

　defaultdictオブジェクトではキーが存在しなくてもエラー
になりません。コンストラクタの引数で指定された関数やコ
ンストラクタが呼び出され、それらが返す値がデフォルト値
として使用されます。
　実際の使用例を見てみましょう。次に、年齢と名前のタプ
ルを要素するタプルpeopleから、年齢をキーに名前のリスト
を要素とするdefaultdictオブジェクトを生成する例を示しま
す。

people = ((20,"Taro"),(23,"Ken"),(21,"Rin"),(20,"Joe"),(22,"Risa"))

↓　default_dict_sample.py
{20: ['Taro', 'Joe'], 23: ['Ken'], 21: ['Rin'], 22: ['Risa']})

◎リスト default_dict_sample.py

import collections １
people = ((20,"Taro"),(23,"Ken"),(21,"Rin"),(20,"Joe"),(22,"Risa"))
d = collections.defaultdict(list) ２
for age, name in people: ３
　　d[age].append(name)
print(d)

　１でcollectionsモジュールを読み込みます。peopleは年齢
と名前からなるタプルのタプルです。
　２でdefaultdictオブジェクトを作成しています。デフォル
トにlistのコンストラクタを指定しているので、デフォルト
値は空のリストとなります。
　３のfor文でpeopleから順に要素を取り出し、年齢ごとのリ
ストを作成し、そこに名前をappendメソッドで追加してい
ます。

■実行結果

defaultdict(<class 'list'>, {20: ['Taro', 'Joe'], 23: ['Ken'], 21:
['Rin'], 22: ['Risa']})

ＮＯＴＥ 辞書のsetdefaultメソッド（066で解説）やgetメソッド
(066で解説)を使用しても同じようなことが行えます。
例えば２ ３はsetdefaultメソッドを使用すると次のよう
になります。

d = {}
for age, name in people:
　　d.setdefault(age, []).append(name)

両者を比べてみるとわかるように、defaultdicのほう
が、通常の辞書と同じく「辞書[キー]」の形式で要素に
アクセスできるのでスマートです。

093
タプルの要素に名前を付けるには

 collectionsモジュールのnamedtupleクラスを使用する

　namedtupleクラスを使用するとタプルを構成する要素に
名前を付けることができます。既存のコードに影響せず使え
るので、単なるタプルから名前付きタプルに移行することが
できます。

◎ コ ン ス ト ラ ク タ 　 namedtuple(typename,
field_names)
カテゴリ　 collectionsモジュール
引数　　　 typename：型名（tupleのサブクラスの型名）

field_names：フィールド名（['x', 'y']のような文字
列のシーケンス）

戻り値　　 typenameで指定した型のコンストラクタ
説明　　　 各フィールドに名前でアクセス可能となるtupleのサブ

クラスを作成する
使用例　　 Person = collections.namedtuple("Person", "name

age")

◎実行例

>>> from collections import namedtuple
>>> POS = namedtuple("POS", "x y")
>>> p0 = POS(x=12, y=50)
>>> p0.x 　　←名前でアクセス

12
>>> p0[0] 　　←インデックスでアクセス
12
>>> p0
POS(x=12, y=50)

　タプルは便利ですが、番号でアクセスする必要があるた
め、可読性は高くありません。タプルを名前付きタプルで置
き換えていくと、ソースコードの可読性は高くなります。タ
プルとの互換性は担保されているので、ソースコードのメン
テナンスをする際などに、置き換えていくとよいかもしれま
せん。

Chapter
３

いろいろな
テキスト処理

このChapterでは、Pythonの標準ライブラリに含まれるモジュールを
使用したテキスト処理について解説します。まず正規表現の取り扱
いについて説明し、そのあとで、テキストファイル、CSVファイ
ル、JSONファイルの読み書きについて説明します。

3-1 正規表現
この節では、「正規表現」と呼ばれる柔軟な表記法を使用し
たテキストの検索や置換について説明します。Pythonの標準
ライブラリには、正規表現を効率的に扱うモジュールとして
「re」が用意されています。

094
正規表現を使用して検索を行うには

 search関数、match関数を使用する

　正規表現では、特殊文字（メタキャラクタ）を使用したパ
ターンにより、柔軟な検索を行うことが可能です。これを
「パターンマッチ」と言います。たとえば、「^」は文頭、
「$」は文末、「.」は任意の文字を表す特殊文字です（100の
直前のコラム「正規表現の主な特殊文字」参照）。
　「 Good 2018 Word」という文字列には、「Word」
「^Good」や「2..8」などのパターンがマッチします。

　reモジュールには、パターンマッチを行う基本的な関数と
してsearch関数が用意されています。

◎関数　search(pattern, string, flags=0)
カテゴリ　 reモジュール
引数　　　 pattern：パターン、string：検索対象の文字列、

flags：検索条件を設定するフラグ（095の直前のコラム
「search/matchメソッドのフラグ」参照）

戻り値　　 matchオブジェクトもしくはNone
説明　　　 引数stringから引数patternを検索しマッチした場合に

結果をmatchオブジェクトとして戻す。マッチしなかっ
た場合にはNoneを戻す

使用例　　 r = re.search("^OK", s)

　検索パターンを引数にしてsearch関数を実行すると、パター
ンにマッチしなかった場合にはNoneが、マッチした場合には
その情報が格納されたmatchオブジェクトが戻されます。
　したがって、単にマッチしたかどうかの判断はif文で調べら
れます（マッチした部分の文字列や位置などの情報を取り出
す方法については、「095　マッチした部分の文字列や位置を
取得するには」参照）。

◎リスト search1.py
import re
s = "Good 2018 Word"　　　←検索対象の文字列
p = "2..8" ←パターン「2..8」
if re.search(p, s): １ 　←検索を実行
　　print("パターン「" + p + "」が見つかりました")

　１でsearch関数を実行して、if文でパターンが見つかったか
どうかを調べています。

■実行結果

パターン「2..8」が見つかりました

●文字列の先頭でマッチするかを調べる
　search関数と似た関数に、match関数があります。

◎関数　match(pattern, string, flags=0)
カテゴリ　 reモジュール
引数　　　 pattern：パターン、string：検索対象の文字列、

flags：検索条件を設定するフラグ
戻り値　　 matchオブジェクトもしくはNone
説明　　　 引数stringの先頭から引数patternを検索し、マッチし

た場合に結果をmatchオブジェクトとして戻す。マッチ
しなかった場合にはNoneを戻す

使用例　　 m = re.match("<p>", s)

　search関数は文字列の任意の位置にマッチさせることができ
ますが、match関数は文字列の先頭のみにマッチします。

◎実行例

>>> import re

>>> s = "Bad News"
>>> re.search("News", s) 　←マッチする
<_sre.SRE_Match object; span=(4, 8), match='News'>
>>> re.match("News", s) 　←マッチしない
>>> re.match("Bad", s) 　←マッチする
<_sre.SRE_Match object; span=(0, 3), match='Bad'>

　search/matchメソッドのフラグ

　reモジュールに用意されている、match、findall、subメソ
ッドといった検索／置換メソッドの引数flagsでは、検索条
件を設定するフラグを指定できます。

　フラグ（RegexFlagオブジェクト）は「|」で連結して複数
指定することが可能です。次の例は re.MULTILINEと
re.IGNORECASEの2つのフラグを指定しています。

◎実行例
>>> m = re.search("^Start", s, flags=re.MULTILINE |
re.IGNORECASE)

095
マッチした部分の文字列や位置を取得するには

 matchオブジェクトのメソッドを使用する

　search/match関数を実行し引数で指定したパターンにマッ
チした場合には、マッチした文字列や位置を格納するmatch
オブジェクトが戻されます。matchオブジェクトのgroupメソ
ッドを使用するとマッチした文字列が取得できます。

◎メソッド　group([n])
カテゴリ　 reモジュールの_sre.SRE_Matchクラス
引数　　　 グループ番号（デフォルトは0）
戻り値　　 文字列
説明　　　 マッチした文字列を戻す。引数を指定しないか0を指定し

た場合にはマッチした全体を戻す
使用例　　 s = m.group()

　以下に、パターン「P....n」にマッチした文字列を表示する
例を示します。

◎実行例

>>> import re
>>> m = re.search("P....n", "Hello Python")
>>> m.group()
'Python'

●マッチした位置を表示する
　パターンにマッチした位置は、matchオブジェクトの次のメ
ソッドで取得できます。

　位置は最初の文字を0とし、終了位置は最後の文字の次の位
置になります。

◎実行例

>>> m = re.search("P....n", "Hello Python")
>>> m.start() 　←開始位置
6
>>> m.end() 　←終了位置
12
>>> m.span() 　←範囲
(6, 12)

096

パターン内のPythonのエスケープシーケンスを無効に
するには

 raw文字列記法「r"パターン"」を使用する

　正規表現の特殊文字と、Pythonの特殊文字が衝突するケー
スがあります。たとえば、正規表現では「\b」は単語の境界
を表す特殊文字です。

　この場合、search関数のパターンに「\bHello\b」を指定し
ても文字列「Hello World"」とマッチしません。

◎実行例

>>> re.search("\bHello\b", "Hello World") 　←マッチしない

　「\b」はPythonの文字列においてもバックスペースを表す
特殊文字となっているため、バックスペースとしてパターン
に渡されてしまうからです。したがって、「\\b」として「\」
をエスケープしてからパターンに渡す必要があります。

◎実行例

>>> re.search("\\bHello\\b", "Hello World")
<_sre.SRE_Match object; span=(0, 5), match='Hello'>

　別の例として、文字列内の「\」を文字そのものとして検索
するには、「\\\\」のように「\」を4つ繋げる必要がありま
す。

◎実行例

>>> re.search("\\\\", "Good\Bad")
<_sre.SRE_Match object; span=(4, 5), match='\\'>

　「\」はPythonにとっても、正規表現にとっても特殊文字と
なっているため、どちらにも前に「\」を記述してエスケープ
する必要があるからです。

●便利なraw文字列記法
　「\」をそのまま正規表現のパターンに渡すには、次のよう
な「raw文字列記法」を使用します。

r"パターン"

　これで「\」がPythonで解釈されずにパターンに直接引き渡
されます。以下、前述の例に、raw文字列記法を使用した例を
示します。

◎実行例

>>> re.search(r"\bHello\b", "Hello World")
<_sre.SRE_Match object; span=(0, 5), match='Hello'>
>>> re.search(r"\\",　"Good\Bad")
<_sre.SRE_Match object; span=(4, 5), match='\\'>

ＮＯＴＥ Windowsのコマンドプロンプトではフォントの設定がデフ
ォルトの「MSゴシック」の場合、「バックスラッシュ」
が「円記号」で表示されます。

097
最短マッチを行うには

 「*」「+」「?」の代わりに「*?」「+?」「??」を使用
する

　「*」「+」「?」といった繰り返しを表す特殊文字は、範
囲が一番長くなるようにマッチします。これを「欲張りマッ
チ」などと言います。たとえば、「+」は直前の文字の1回以
上の繰り返しにマッチします。したがって、「.+」というパ
ターンは1文字以上の任意の長さの文字列を表します（「.」は
任意の文字）。
　そのため、「"東京,大阪,名古屋,神戸"」という文字列から、
最初の「"東京 ,"」部分を取り出そうとして、パターンに
「^.+,」を指定してもうまくいきません。

◎実行例

>>> m = re.search("^.+,", "東京,大阪,名古屋,神戸")
>>> m.group()
'東京,大阪,名古屋,'

　文字列の先頭からカンマ「,」までの一番長くなる範囲がマ
ッチするため、このように「"東京,大阪,名古屋,"」が取り出さ
れてしまうからです。

　それに対して「+」の後ろに「?」を記述して、「+?」を指
定すると最短マッチになります。

◎実行例

>>> m = re.search("^.+?,", "東京,大阪,名古屋,神戸")
>>> m.group()　←「"東京,」だけが取り出される
'東京,'

　同様に「*」「?」の代わりに、それぞれ「*?」「??」を指
定しても最短マッチになります。

098
パターンをグループ化してマッチした部分を複数取り
出すには

 正規表現をグループ化する

　matchオブジェクトのgroupメソッド、startメソッド、
endメソッド、spanメソッドを引数なしで実行すると、パタ
ーンにマッチした全体が取り出されます。
　文字列から、正規表現のパターンにマッチした部分を1つも
しくは複数取り出したい場合には、パターン内の正規表現を
「()」で囲ってグループ化します。

(正規表現)

　こうすると、groupメソッド、startメソッド、endメソッ
ド、spanメソッドの引数にグループ番号を指定することで、
そのグループの文字列や位置が取り出せます。グループ番号
は最初のグループを1とする整数値です。たとえば、文字
列"東京,大阪,名古屋,神戸"から、最初のカンマ「,」の前まで
の「"東京"」のみを取り出すには次のようにします。

◎実行例

>>> m = re.search("^(.+?),", "東京,大阪,名古屋,神戸")
>>> m.group() 　←引数を指定しないか0を指定すると全体が
取り出される
'東京,'
>>> m.group(1) ←番号を指定するとグループ化した範囲が
取り出される
'東京'
>>> m.span(1) 　←"東京"の範囲を表示
(0, 2)

●複数のグループを指定する
　パターン内に複数のグループを指定してもかまいません。
たとえば、名前、年齢、性別がカンマ「,」で区切られている
以下の文字列があるとします。名前、年齢、性別を個別に取
り出すには3つのグループを作成し、groupメソッドにグルー
プ番号を指定します。

"山田一郎,15,男性"

◎実行例

>>> s = "山田一郎,15,男性"

>>> m = re.search("(.+),(.+),(.+)", s) 　←3つのグループを
作成
>>> m.group(1)
'山田一郎'
>>> m.group(2)
'15'
>>> m.group(3)
'男性'

099
マッチしたすべての部分をリストとして取り出すには

 findall関数、finditer関数を使用する

　search関数では文字列内にパターンにマッチする部分が複数
ある場合に、最初にマッチした範囲の情報のみがmatchオブジ
ェクトとして戻されます。それに対してfindall関数ではマッ
チしたすべての範囲の文字列を要素とするリストとして戻し
ます。

◎関数　findall(pattern, string, flags=0)
カテゴリ　 reモジュール
引数　　　 pattern：パターン、string：検索対象の文字列

flags：検索条件を設定するフラグ(095の直前のコラム
「search/matchメソッドのフラグ」参照)

戻り値　　 マッチした範囲を要素とするリスト
説明　　　 引数stringから引数patternを検索し、マッチした範囲

の文字列を要素とするリストを戻す
使用例　　 l = re.findall("<p>(.+?)</p>", s)

　4桁の西暦がカンマ「,」で区切って格納された文字列から、
1900年代を取り出すには次のようにします。

◎実行例

>>> re.findall(r"\b19\d\d\b", "2003, 1959, 1930, 1943, 2001")

['1959', '1930', '1943']

ＮＯＴＥ 「\b」は単語の区切り、「\d」は任意の数字を表す特殊文
字です。「\b」がPythonによって解釈されないように、
raw文字列記法を使用しています。

　パターンが見つからない場合には空のリストが戻されま
す。

◎実行例

>>> re.findall("white", "blue, green blue blue")
[]

●グループを指定する
　findall関数の、引数のパターン内でグループを指定した場合
には、グループにマッチする部分を要素とするリストが戻さ
れます。
　次に、文字列"月曜日, 火曜日, 木曜日, 金曜日"から、"曜
日"を取り除いたリストを生成する例を示します。この例では
パターン内にグループを1つ指定しています。

◎実行例

>>> re.findall(r"\b(.+?)曜日,?","月曜日,　火曜日, 木曜日, 金曜日")

['月', '火', '木', '金']

　グループが複数ある場合には、個々のグループにマッチす
る部分を要素とするタプルとして、さらにそのタプルを要素
とするリストが生成されます。
　たとえば、生年月日が「年/月/日」の形式でカンマ「,」で
区切られている文字列から、年、月、日を要素とするタプル
のリストを生成するには次のようにします。

◎実行例

>>> s = "2003/12/3, 1959/1/14, 1930/9/4, 1943/11/6"
>>> re.findall(r"\b(\d{4})/(\d\d?)/(\d\d?)\b", s)
[('2003', '12', '3'), ('1959', '1', '14'), ('1930', '9', '4'), ('1943', '11',
'6')]

●マッチした範囲をイテレート可能オブジェクトとして戻すに
は
　findall関数の代わりに、finditer関数を使用すると、マッチ
した部分をリストではなく、イテレート可能なオブジェクト
として戻すことができます。

◎関数　finditer(pattern, string, flags=0)
カテゴリ　 reモジュール
引数　　　 pattern：パターン、string：検索対象の文字列、

flags：検索条件を設定するフラグ
戻り値　　 matchオブジェクトを要素とするイテレート可能オブジ

ェクト
説明　　　 引数stringから引数patternを検索し、マッチした場

合、その範囲をmatchオブジェクトを要素とするイテレ
ート可能オブジェクトとして戻す

使用例　　 itr = re.finditer(r"\b(.+?)曜日,?", s)

　findall関数を使用して一部の文字列（曜日）を取り除いた上
でリストを生成する例を取り上げました（「●グループを指定
する」の最初の実行例）。ここでは、この例をもとにfinditer

関数を実行する例を示します。findall関数と異なり、戻り値は
matchオブジェクトを要素とするイテレート可能オブジェクト
なので、spanメソッドで範囲を取得することが可能です。

◎リスト finditer1.py
import re

itr = re.finditer(r"\b(.+?)曜日,?", "月曜日, 火曜日, 木曜日, 金曜日")
for m in itr:
　　print(m.group(1)) １
　　print("範囲:", m.span(1)) ２

　１で曜日を、２でその範囲を表示しています。

■実行結果

月
範囲: (0, 1)
火
範囲: (5, 6)
木
範囲: (10, 11)
金
範囲: (15, 16)

　正規表現の主な特殊文字

　Pythonの正規表現で利用可能なよく使う特殊文字をまと
めておきます。

100
文字列をパターンにマッチする部分で分割するには

 split関数を使用する

　split関数を使用すると、パターンにマッチする部分で文字
列を分割し、リストの要素とすることができます。

◎関数　split(pattern, string, maxsplit=0, flags=0)
カテゴリ　 reモジュール
引数　　　 pattern：パターン、string：検索対象の文字列、　

maxsplit：最大分割数、flags：検索条件を設定するフ
ラグ(095の直前のコラム「search/matchメソッドのフ
ラグ」参照)

戻り値　　 文字列をパターンで分割したリスト
説明　　　 引数patternにマッチした文字列の位置で、引数string

を分割しそれを要素とするリストを戻す
使用例　　 l = re.split("[\s,]+", s)

　以下に、空白文字「\s」もしくはカンマ「,」の並びで文字
列を分割して、リストの要素とする例を示します。

◎リスト split1.py
import re

s = "田無駅,　花小金井駅\t　,新宿駅　 小平駅　"
l = re.split("[\s,]+", s) １
for st in l:
　　print(st)

　１でパターンに「[\s,]+」を指定し、空白文字「\s」もしく
はカンマ「,」の1つ以上の繰り返し「+」にマッチする部分に
対して、引数sの文字列「s」を分割するようにsplit関数を実行
しています。

■実行結果

田無駅
花小金井駅

新宿駅
小平駅

101
パターンにマッチする部分を置換するには

 sub関数を使用する

　正規表現のパターンとマッチする範囲を、別の文字列で置
換するには、sub関数を使用します。

◎関数　sub(pattern, repl, string, count=0, flags=0)
カテゴリ　 reモジュール
引数　　　 pattern：パターン、repl：置換後の文字列、string：検

索対象の文字列、count：置換が実行される最大回数。
省略もしくは0を指定するとすべて、flags：検索条件を
設定するフラグ(095の直前のコラム「search/matchメ
ソッドのフラグ」参照)

戻り値　　 置換されたあとの文字列
説明　　　 引数stringに対して引数patternで指定したパターンに

マッチする部分を引数replで指定した文字列で置換する
使用例　　 r = re.sub("\d+", "", s)

　たとえば、文字列「"hello hello hello"」の行頭の「hello」を
「Hello」に置換するには次のようにします。

◎実行例

>>> re.sub("^hello", "Hello", "hello hello hello")
'Hello hello hello'

●グループをあとから参照する後方参照

　グループ化した正規表現にマッチした範囲は、「\番号」で
参照できます。これを「後方参照」と呼びます。この場合、
「\」がPythonによってエスケープされないようにraw文字列
記法を使用する必要があります。sub関数の引数replで後方参
照を使用して、「名前:年齢:性別」のリストを「名前:性別,年
齢,」に変更する例を示します。

◎リスト sub1.py
import re

people1 = ["山田太郎:45:男性", "中田功:34:男性", "山本洋子:25:女
性"]
people2 = []
for person in people1:
　 　 people2.append(re.sub(r"(\w+):(\d+):(\w+)", r"\1:\3:\2",
person)) １

print(people2)

　１で後方参照を使用してsub関数を実行しています。

　また、置換後の文字列をリストのappendメソッドを使用し
てリストpeople2に加えています。

■実行結果

['山田太郎:男性:45', '中田功:男性:34', '山本洋子:女性:25']

ＮＯＴＥ 後方参照はsearchメソッドなどほかのメソッドでも使用で
きます。以下にコロン「:」で区切られた、3桁の同じ数
値の並びを検索する例を示します。

◎実行例

>>> re.search(r"^(\d{3}):\1:", "123:123:156")
←マッチする
<_sre.SRE_Match object; span=(0, 8),
match='123:123:'>
>>> re.search(r"^(\d{3}):\1:", "123:456:156")
←マッチしない

102
パターンをコンパイルして実行速度を上げるには

 compile関数を使用する

　正規表現のパターンをなんども使い回す場合、あらかじめ
compile関数でコンパイルしておくとより高速な検索が可能に
なります。

◎関数　compile(pattern, flags=0)
カテゴリ　 reモジュール
引数　　　 pattern：パターン、flags：検索条件を設定するフラグ

(095の直前のコラム「search/matchメソッドのフラ
グ」参照)

戻り値　　 regexオブジェクト

説明　　　 正規表現をコンパイルしてregexオブジェクトとして戻
す

使用例　　 p = re.compile(":男性$")

　コンパイルしないパターンの場合、search、match、split、
sub、findall、finditerなどが使用できました。
　compile関数で生成されるregexオブジェクトによるパターン
マッチでは、同じ名前の関数に対応したregexクラスのメソッ
ドを使用します。たとえば、search関数の代わりにsearchメソ
ッドを使用します。
　例を示しましょう。コンパイルしないパターンで、「名前:
年齢:性別」の文字列を要素とするリストから、男性のみの要
素からなるリストを生成するには、次のようにします。

◎リスト comp1.py
import re
people = ["山田太郎:45:男性", "中田功:34:男性",
　　　　　"山本洋子:25:女性",　"井上花子:23:女性"]
men = []
for person in people:
　　m = re.search(":男性$", person) １
　　if m:
　　　　men.append(person) ２

print(men)

　１でsearch関数を使用してリストから最後が「":男性"」で
終わる要素を取り出し、２でappendメソッドによりリスト
menに加えています。

■実行結果

['山田太郎:45:男性', '中田功:34:男性']

　コンパイルしたパターンを使用するように、上記の
comp1.pyを変更した例を示します。

◎リスト comp2.py
import re
people = ["山田太郎:45:男性", "中田功:34:男性",
　　　　　"山本洋子:25:女性",　"井上花子:23:女性"]
men = []
p = re.compile(":男性$") １
for person in people:
　　m = p.search(person) ２
　　if m:
　　　　men.append(person)

print(men)

　１でcompile関数を使用してパターンからregexオブジェクト
を生成し、２でsearchメソッドにより検索を行っています。

■実行結果

['山田太郎:45:男性', '中田功:34:男性']

ＮＯＴＥ 実際に筆者のマシン（ iMac： 3.1GHz Intel Core i5）で
comp1.pyとcomp2.pyの処理を10万回実行し、実行時間を
測定したところ、次のような結果になりました。
comp1.py　約0.64秒
comp2.py　約0.38秒

　Windowsのコマンドプロンプトの文字コードを
UTF-8にする

　Python 3ではプログラムの文字エンコーディングはUTF-8
が基本です。macOSやLinuxのターミナルはデフォルトの文
字エンコーディングはUTF-8ですが、Windowsのコマンドプ
ロンプトの文字エンコーディングはShift-JISがデフォルトで
す。他のOSと合わせるには、次のようにして、コマンドプ
ロンプトの文字エンコーディングをUTF-8に設定するとよい
でしょう。

◎実行例
>chcp 65001

　元に戻すには次のようにします。

◎実行例
>chcp 932

3-2 テキストファイルの読み書き
この節から、Pythonプログラムを使用したテキストファイル
の読み書きについて説明します。まずは、最も基本的なプレ
ーンテキストファイルの取り扱いについて説明します。

103
テキストファイルの内容をまとめて読み込むには

 readメソッドを使用する

　テキストファイルの内容をまとめて読み込むには、あらか
じめopen関数でファイルを開き、readメソッドで読み込みま
す。ファイルを使い終わったらcloseメソッドで閉じます。

◎ 関 数 　 open(file, mode='r', encoding=None,
newline=None)
カテゴリ　 組み込み関数
引数　　　 file：ファイルのパス、mode：'r' 読み込み用　'w' 書き

込み用　'a' 追記　'x' 排他的書き込み　't' テキストモー
ド（デフォルト）　'b' バイナリーモード　encoding：
文字エンコーディング、newline：None（デフォル
ト：ユニバーサル改行モード）　'\n'　'\r'　'\r\n'

戻り値　　 ファイルオブジェクト
説明　　　 引数fileで指定したファイルを開きファイルオブジェクト

（テキストモードの場合にはTextIOBaseクラス）を返
す

使用例　　 f = open("sample.txt", "r", encoding="utf8")

◎メソッド　read(size)
カテゴリ　 io.TextIOBaseクラス

引数　　　 最大文字数（Noneの場合にはファイルの最後まで）
戻り値　　 文字列
説明　　　 ファイルオブジェクトから最大引数sizeで指定した文字

数を読み込む
使用例　　 s= f.read()

◎メソッド　close()
カテゴリ　 io.IOBaseクラス
引数　　　 なし
戻り値　　 なし
説明　　　 ファイルを閉じる
使用例　　 f.close()

　以下に、カレントディレクトリに保存されている、文字エ
ンコーディングがutf-8のテキストファイル「sample.txt」を読
み込んで、表示する例を示します。

◎リスト read1.py
f = open("sample.txt", "r", encoding="utf8")
contents = f.read() １
print(contents, end="") ２
f.close()

　１でreadメソッドを使用してテキストファイルの中身を変
数contentsに読み込んで、２で表示しています。読み込んだ文
字列の末尾には改行が含まれているので、２のprint文では引
数で「end=""」を指定し、改行を抑制しています。

■実行結果

1.文字列の操作
文字列を連結する+演算子
インデックスで文字列から文字を取り出す
str関数を使用して数値を文字列に変換する

int関数を使用して文字列を数値に変換する

●任意のディレクトリからファイルを読み込めるようにする
　open関数の引数に、プログラムファイルからの相対パスで
ファイルのパスを指定した場合、プログラムファイルのディ
レクトリから実行しないとファイルが見つからないといった
エラーになります。
　たとえば、ホームディレクトリ→Documentsディレクトリ
→PythonProgディレクトリに「read1.py」と「sample.txt」を
保存してある場合、Documentsディレクトリから「read1.py」
を実行すると次のようなエラーになります。

◎実行例：Windowsの場合

C:\Users\o2\Documents>python PythonProg/read1.py
Traceback (most recent call last):
　File "PythonProg/read1.py", line 1, in <module>
　　f = open("sample.txt", "r", encoding="utf8")
FileNotFoundError: [Errno 2] No such file or directory: 'sample.txt'

◎実行例：macOSの場合

$ python3 PythonProg/read1.py
Traceback (most recent call last):
　File "PythonProg/read1.py", line 1, in <module>
　　f = open("sample.txt", "r", encoding="utf8")
FileNotFoundError: [Errno 2] No such file or directory: 'sample.txt'

　OSによるパスの違いを吸収するには、os.pathモジュール
（116で解説）に用意されている、パスからファイル名なしの
ディレクトリのみを取り出すdirname関数（116で解説）、お
よびパスを接続するjoin関数（118で解説）を使用すると便利
です。

　プログラムファイルのパスは特殊変数「__file__」に格納
されているため、次のようにすると任意のディレクトリから
実行できるようになります。

◎リスト read2.py
import os.path

dirname = os.path.dirname(__file__) １
path = os.path.join(dirname, "sample.txt") ２
f = open(path, "r", encoding="utf8")
contents = f.read()
print(contents, end="")
f.close()

　１で「__file__」からdirname関数でディレクトリのパスを
取り出し、２のjoin関数を「sample.txt」でパスと接続してい
ます。

■実行結果

1.文字列の操作
文字列を連結する+演算子
インデックスで文字列から文字を取り出す
str関数を使用して数値を文字列に変換する
int関数を使用して文字列を数値に変換する

　with文を使用するとよりシンプルな記述が可能

　Pythonに用意されているwith文を使用すると、よりシン
プルにファイルの読み書きといった処理が行えます。

with open(～) as 変数:
　　処理

　上記のようにwithのあとにopen関数を、asのあとにファ
イルオブジェクトを格納する変数を記述します。with文のブ
ロックでは開いたファイルの処理を記述します。ブロック
を抜けると自動的にcloseメソッドが実行されファイルが閉
じられます。
　以下に、前出のread2.pyを、with文を使用するように変更
した例を示します。

◎リスト read3.py
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "sample.txt")

with open(path, "r", encoding="utf8") as f:
　　contents = f.read()
　　print(contents, end="")

■実行結果
1.文字列の操作
文字列を連結する+演算子
インデックスで文字列から文字を取り出す
str関数を使用して数値を文字列に変換する
int関数を使用して文字列を数値に変換する

104
テキストファイルの各行をリストの要素として取り出
すには

 readlinesメソッドを使用する

　テキストファイルを読み込んで、ファイルの各行を要素と
するリストを生成するには、readlinesメソッドを使用しま
す。

◎メソッド　readlines(size=-1)
カテゴリ　 io.TextIOBaseクラス
引数　　　 最大文字数（「-1」もしくは指定しない場合にはファイ

ルの最後まで）
戻り値　　 行を要素とするリスト
説明　　　 テキストファイルを読み込んで、行単位の文字列を要素

とするリストを戻す
使用例　　 s = f.readlines()

　以下にreadlinesメソッドにより「sample.txt」をリストとし
て読み込んで表示する例を示します。

◎リスト readlines1.py
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "sample.txt")
f = open(path, "r", encoding="utf8")
contents = f.readlines() １
print(contents, end="") ２
f.close()

　１でreadlinesメソッドを使用してファイルの内容をリスト
として読み込み、変数contentsに代入し、２で表示していま
す。

■実行結果

['1.文字列の操作\n', '文字列を連結する+演算子\n', 'インデックスで
文字列から文字を取り出す\n', 'str関数を使用して数値を文字列に変
換する\n', 'int関数を使用して文字列を数値に変換する\n']

●改行を取り除くには
　readlines1.pyの実行結果を見るとわかるように、リストの各
要素は最後に改行コード"\n"が付加されています。これを削除
するには、たとえば、map関数（064で解説）を使用して次の
ようにします。

◎リスト readlines2.py
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "sample.txt")
f = open(path, "r", encoding="utf8")
contents = f.readlines()

newlines = list(map(lambda s:s.rstrip("\n"), contents)) １
print(newlines)
f.close()

　追加したのは１のステートメントです。map関数の引数で
は、lambda式（「Chapter 2　コレクションの取り扱い」の
「lambda式」参照）でrstripメソッド（014で解説）を"\n"を引
数に実行して、リストcontentsの各要素から行末の改行「\n」
を取り除いています。map関数の結果をlistコンストラクタに
渡してリストに変換し、変数newlinesに代入しています。
　これで、リストnewlinesにはreadlines関数で読み込んだファ
イルの各行が改行なしで要素として格納されます。

■実行結果

['1.文字列の操作', '文字列を連結する+演算子', 'インデックスで文
字列から文字を取り出す', 'str関数を使用して数値を文字列に変換す
る', 'int関数を使用して文字列を数値に変換する']

105
テキストファイルの各行を1行ずつ読み込むには

 readlineメソッドを使用する、ファイルオブジェクトを
イテレートする

　readメソッド、readlinesメソッドではテキストファイルの中
身を一度にまとめて読み込むため、ファイルのサイズが大き
いとその分メモリを消費してしまいます。
　ファイルのサイズが大きい場合や不明な場合には、可能な
らreadlineメソッドで1行ずつ読み込んで処理するほうがよい
でしょう。

◎メソッド　readline(size=-1)
カテゴリ　 io.TextIOBaseクラス
引数　　　 最大文字数（指定しない場合には行の最後まで）
戻り値　　 文字列
説明　　　 ファイルオブジェクトから1行ずつ読み込んで文字列とし

て戻す
使用例　　 line = f.readline()

　readlineメソッドは、ファイルの最後まで読み込まれると
空文字列「""」を戻します。また、読み込まれた文字列の最後
には改行コードが付いているので、必要に応じてrstripメソッ
ドなどで取り除きます。

◎リスト readline1.py
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "sample.txt")
f = open(path, "r", encoding="utf8")
while True: １
　　l = f.readline() ２
　　if l == "":
　　　　break ３
　　l = l.rstrip("\n") ４
　　print(l)
f.close()

　１のwhile文では、２でreadlineメソッドを使用して、ファイ
ルから1行ずつ読み込んでいきます。ファイルの最後まで読み
込まれると、３のbreak文でループを抜けます。４でrstripメソ
ッドを使用して行末の「\n」を取り除いて表示しています。

■実行結果

1.文字列の操作
文字列を連結する+演算子
インデックスで文字列から文字を取り出す
str関数を使用して数値を文字列に変換する
int関数を使用して文字列を数値に変換する

●ファイルオブジェクトをイテレートする
　実際にはreadlineメソッドを使用しなくても、ファイルオブ
ジェクトをfor文などで直接イテレートすることで1行ずつ読み
込むことができます。

◎リスト readline2.py

import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "sample.txt")
f = open(path, "r", encoding="utf8")
for l in f:
　　l = l.rstrip("\n") １
　　print(l)

f.close()

　１のfor文でファイルから1行ずつ取り出して表示していま
す。inのあとにopen関数で開いたファイルオブジェクトfを直
接指定している点に注目してください。

■実行結果

1.文字列の操作
文字列を連結する+演算子
インデックスで文字列から文字を取り出す
str関数を使用して数値を文字列に変換する
int関数を使用して文字列を数値に変換する

106
文字列をテキストファイルに書き出すには

 writeメソッドを使用する

　open関数を使用して書き込みモードで開いたファイルに、
文字列を書き出すには、writeメソッドを使用します。

◎メソッド　write(s)

カテゴリ　 io.TextIOBaseクラス
引数　　　 書き出す文字列
戻り値　　 書き出した文字数
説明　　　 引数sで指定した文字列をファイルオブジェクトに書き出

す
使用例　　 f.write("Python" + "\n")

　writeメソッドは改行コードを自動で書き出しません。改行
を書き出したい場合には"\n"を追加します。デフォルトではユ
ニバーサル改行モード（107のあとのコラム「ユニバーサル改
行モード」）に設定されているため、OSに応じた改行コード
に自動的に変換されます。

◎リスト write1.py
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "output.txt")
f = open(path, "w", encoding="utf8") １
f.write("Hello") ２
f.write("Python" + "\n") ３
f.write("Python入門" + "\n")
f.close()

　１でopen関数を使用して、"w"（書き込みモード）でファ
イル「output.txt」を開いています。２で改行なし、３で改行
付きで文字列をファイルに書き出しています。

■ 実行結果 output.txt
HelloPython
Python入門

●ファイルに追記する
　既存のファイルに追加するには、open関数のモードで"a"を
指定してファイルを開きます。

◎リスト write2.py（一部）
f = open(path, "a", encoding="utf8")

●ファイルが存在する場合にエラーにする
　書き込み対象のファイルが存在する場合にエラー
（FileExistsError例外）になるようにするには、open関数の
モードで"x"を指定します。
　以下に、try～except文で、ファイル「output.txt」が存在し
ていた場合に、FileExistsError例外を捕まえて「ファイルが存
在します」と表示する例を示します。

◎リスト write3.py
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "output.txt")
try:
　　f = open(path, "x", encoding="utf8")　１
　　f.write("Hello")
　　f.write("Python" + "\n")
　　f.write("Python入門" + "\n")
　　f.close()
except FileExistsError:　２
　　print("ファイルが存在します")

　１で、open関数を、モードを"x"にして実行しています。２
のexcept文でFileExistsError例外を捕まえています。

■実行結果

ファイルが存在します

107
リストの要素をまとめてテキストファイルに書き出す
には

 writelinesメソッドを使用する

　ファイルにリストやタプルなどシーケンス型のオブジェク
トの要素をまとめて書き出すには、writelinesメソッドを使
用します。

◎メソッド　writelines(lines)
カテゴリ　 io.TextIOBaseクラス
引数　　　 書き出す文字列（シーケンス型のオブジェクト)
戻り値　　 なし
説明　　　 引数linesの要素をファイルオブジェクトに書き出す
使用例　　 f.writelines(mylist)

　writelinesメソッドでは、要素の区切り文字は書き出されま
せん。そのため、すべての要素が文字列として連結されま
す。

◎リスト writelines1.py
import os.path
names = ("櫻井五郎", "白石孝", "猪熊太郎", "大川花子")

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "output2.txt")
f = open(path, "w", encoding="utf8")

f.writelines(names) １
f.close()

　１でリストnamesをwritelinesメソッドで書き出していま
す。結果は次のように1行になります。

■実行結果 output2.txt

櫻井五郎白石孝猪熊太郎大川花子

　たとえば、改行で区切りたければ、要素にあらかじめ改行
コード「\n」を追加しておきます。

◎リスト writelines2.py
import os.path
names = ("櫻井五郎", "白石孝", "猪熊太郎", "大川花子")

names2 = map(lambda n:n + "\n", names) １
dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "output3.txt")
f = open(path, "w", encoding="utf8")
f.writelines(names2) ２
f.close()

　１でmap関数（064で解説）を実行し、タプルnamesの各要
素に改行コード「\n」を追加して変数names2に代入していま
す。２でwritelinesメソッドを実行し、リストnames2をファイ
ルに書き出しています。

■実行結果 output3.txt

櫻井五郎
白石孝
猪熊太郎

大川花子

　次のようにwith文を使用して書き出してもかまいません。

◎リスト writelines3.py（一部）
with open(path, "w", encoding="utf8") as f:
　　f.writelines(names2)

　ユニバーサル改行モード

　テキストファイルの改行コードは、OSに応じて標準とす
るものが異なります。

　Pythonのopen関数では、デフォルトでOSに応じた改行コ
ードの相違を吸収するためのユニバーサル改行モードが有
効になっています。これは、Pythonプログラム内部ではLF
（"\n"）が標準改行コードとして扱われ、ファイルの読み込
み時には、CRLF（"\r\n"）もしくはCR（"\r"）が、LF("\n")
に自動的に変換されるというものです。
　また、書き出し時には文字列内のLF("\n")がOSに応じた改
行コードに変更されます。たとえばWindowsならばCRLF
（"\r\n"）に変換され、macOSやLinuxならばLF（"\n"）のま
ま出力されます。

　ユニバーサル改行モードをオフにし、指定した改行コー
ドを使用するにはopen関数（103で解説）の引数newlineを
設定します。たとえば改行コードを、CRLF（"\r\n")にする
には次のようにします。

f2 = open("out.txt", "w", encoding="utf8", newline="\r\n")

　なお、テキストファイルの読み書き時に改行コードを変
換しないようにするには、「newline=""」とします。

f = open("out.txt", "w", encoding="utf_8", newline="")

3-3 CSVファイルの取り扱い
複数の項目をカンマで区切る CSV（ Comma Separated
Value）は、古くから使用されるテキストベースのフォーマッ
トです。この節では、csvモジュールを使用したCSVファイル
の読み書きについて解説します。

108
CSVファイルを読み込むには

 reader関数を使用する

　Pythonの標準ライブラリに含まれるcsvモジュールには、
CSVファイルを読み込むreader関数が用意されています。

◎ 関 数 　 reader(csvfile, dialect='excel',
**fmtparams)
カテゴリ　 csvモジュール
引数　　　 csvfile：CSVファイル、dialect：特定の書式のための

設定（デフォルトはExcel形式）、fmtparams：区切
り文字などの書式パラメータ

戻り値　　 readerオブジェクト
説明　　　 CSVファイルから各行を読み込み、イテレート可能な

readerオブジェクトとして戻す。各行は文字列のリス
トとなる

　reader関数で返されるイテレート可能なオブジェクトは、
CSVファイルの1行分のデータを要素とするリストで構成され
ます。したがって、for文と組み合わせることでファイル全体
を読み込めます。以下に、CSVファイル「meibo.csv」を読み

込んで表示する例を示します。このCSVファイルは、
「shift_jis」の文字エンコーディングで保存されています。

◎リスト reader1.py
import csv １
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "meibo.csv")
f = open(path, "r", encoding="shift_jis") ２
reader = csv.reader(f) ３
for l in reader:
　　print(l)　　４
f.close()

　１でcsvモジュールをインポートしています。
　２でencoding引数を「shift_jis」に設定してopen関数を実
行し、CSVファイル「meibo.csv」を開いています。
　３でreader関数を実行してreaderオブジェクトを生成し４
のfor文で1行ずつ取り出して表示しています。

■実行結果

['会員番号', '名前', '出身地', '年齢', '性別']
['1', '井上五郎', '東京都', '44', '男性']
['2', '山田太郎', '千葉県', '33', '男性']
['3', '江藤花子', '東京都', '42', '女性']
['4', '小泉純一', '神奈川県', '19', '男性']
['5', '加藤道夫', '東京都', '59', '男性']
['6', '大木薫', '埼玉県', '23', '女性']

　CSVファイルとは

　CSV（Comma Separated Value）とは、その名が示す通
り、カンマ（Comma）「 ,」で値（ Value）を区切る
（Separated）という、シンプルなテキストファイルのフォ
ーマットです。Excelなどの表計算ソフトとのデータの受け
渡しにしばしば使用されます。

◎リスト meibo.csv
会員番号,名前,出身地,年齢,性別
1,井上五郎,東京都,44,男性
2,山田太郎,千葉県,33,男性
3,江藤花子,東京都,42,女性
4,小泉純一,神奈川県,19,男性
5,加藤道夫,東京都,59,男性
6,大木薫,埼玉県,23,女性

109
文字列をCSVファイルに書き出すには

 writer関数、writerowメソッドを使用する

　文字列をCSVファイルに書き出すには、あらかじめCSVフ
ァイルのファイルオブジェクトを引数にしてwriter関数を実
行して、writerオブジェクトを生成しておきます。

◎ 関 数 　 writer(csvfile, dialect='excel',
**fmtparams)
カテゴリ　 csvモジュール

引数　　　 csvfile：CSVファイル、dialect：特定の書式のための
設定（デフォルトはExcel形式）、fmtparams：区切
り文字などの書式パラメータ

戻り値　　 writerオブジェクト
説明　　　 CSVファイルに書き込みを行うwriterオブジェクトを生

成して戻す
使用例　　 writer = csv.writer(f)

　生成されたwriterオブジェクトを使用してリストとして用
意した1行分のデータを書き込むには、writerowメソッドを
使用します。

◎メソッド　writerow(row)
カテゴリ　 csvモジュール
引数　　　 1行に書き出すリストもしくはタプル
戻り値　　 なし
説明　　　 引数rowで指定したリストをwriterオブジェクトに書き

出す
使用例　　 writer.writerow(first)

　余分な改行が入ることを抑制するため、書き込むCSVファ
イルはopen関数の引数に「newline=''」を指定し、改行コ
ードを変換しないように設定して開きます（「Chapter 3　い
ろいろなテキスト処理」の「ユニバーサル改行モード」）。
　以下に、このレシピの例を示します。この例では、リスト
で指定したデータをCSVファイル「progs1.csv」に書き出し
ます。

◎リスト writer1.py
import csv
import os.path

dirname = os.path.dirname(__file__)

path = os.path.join(dirname, "progs1.csv")
f = open(path, "w", encoding="shift_jis", newline="")
writer = csv.writer(f)　１
writer.writerow(["番号", "名称", "読み"])
writer.writerow([1, "Python", "パイソン"])
writer.writerow([2, "Java", "ジャバ"])　　　　　　 ２
writer.writerow([3, "JavaScript", "ジャバスクリプト"])
writer.writerow([4, "Ruby", "ルビー"])
f.close()

　１でwriter関数によりwriterオブジェクトを生成していま
す。２で5つのwriterowメソッドの引数にリストを指定し、そ
れぞれ1行分のデータを書き出しています。

■実行結果 progs1.csv

番号,名称,読み
1,Python,パイソン
2,Java,ジャバ
3,JavaScript,ジャバスクリプト
4,Ruby,ルビー

●区切り文字を変更するには
　CSVファイルではデータの区切り文字はカンマ「,」です
が、readerメソッド、writerメソッドで引数delimiterを指定
することにより、別の区切り文字で読み書きすることもでき
ます。たとえば、「writer1.py」を変更し、区切り文字をコロ
ン「:」にして書き出すには次のようにします。

◎リスト writer2.py（writer関数部分）
writer = csv.writer(f, delimiter=':')

　writer2.pyを実行すると、区切り文字がカンマ「,」の代わ
りにコロン「:」になります。

■実行結果 progs2.csv

番号:名称:読み
1:Python:パイソン
2:Java:ジャバ
3:JavaScript:ジャバスクリプト
4:Ruby:ルビー

110
CSVファイルを辞書形式で読み込むには

 DictReaderクラスを使用する

　DictReaderクラスを使用すると、CSVファイルを、キーと
値の対応の辞書形式で読み込むことができます。DictReader
クラスのコンストラクタを以下に示します。

◎ コ ン ス ト ラ ク タ 　 DictReader(csvfile,
fieldnames=None,dialect='excel', **fmtparams)
カテゴリ　 csvモジュール
引数　　　 csvfile：CSVファイル、fieldnames：キーとして使用

するリスト（デフォルトは最初の行の値）、dialect：
特定の書式のための設定（デフォルトはExcel形式）、
fmtparams：区切り文字などの書式パラメータ

戻り値　　 DictReaderオブジェクト
説明　　　 CSVファイルから各行を読み込み、イテレート可能な

DictReaderオブジェクトとして戻す。各行は辞書
（OrderedDictクラス）となる

使用例　　 reader = csv.DictReader(f)

　引数fieldnamesを指定しない場合には、最初の行のデー
タが辞書のキーとして使用されます。

　次にカレントディレクトリのmeibo.csvを読み込んで表示す
る例を示します。

◎リスト dictreader1.py
import csv
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "meibo.csv")
f = open(path, "r", encoding="shift_jis")
reader = csv.DictReader(f) １
for line in reader:
　　print(line["会員番号"], line["名前"], line["出身地"], ２
　　　　　line["年齢"], line["性別"])　３

f.close()

　１でDictRreaderオブジェクトを生成し、２のfor文で1行ず
つ読み込んで表示しています。３のprint関数では、「line["会

員番号"]」のように辞書として値にアクセスしている点、お
よびキーには最初の行のデータが使用されている点に注目し
てください。

■実行結果

1 井上五郎 東京都 44 男性
2 山田太郎 千葉県 33 男性
3 江藤花子 東京都 42 女性
4 小泉純一 神奈川県 19 男性
5 加藤道夫 東京都 59 男性
6 大木薫 埼玉県 23 女性

111
CSVファイルに辞書形式で書き込むには

 DictWriterクラスを使用する

　DictWriterクラスを使用すると、辞書形式のデータをCSV
ファイルに書き込むことができます。DictWriterクラスのコン
ストラクタを以下に示します。

◎ コ ン ス ト ラ ク タ 　 DictWriter(csvfile, fieldnames,
dialect='excel',　**fmtparams)
カテゴリ　 csvモジュール
引数　　　 csvfile：CSVファイル、fieldnames：キーとして使用

するリスト　dialect：特定の書式のための設定（デフ
ォルトはExcel形式）　fmtparams：区切り文字など
の書式パラメータ

戻り値　　 DictWriterオブジェクト
説明　　　 CSVファイルに辞書形式のデータを書き出すための

DictWriterオブジェクトを生成する

使用例　　 writer = csv.DictWriter(f, fieldnames=fieldnames)

　writer1.py（109で解説）と同様に、DictWriterオブジェク
トでは、writerowメソッドを使用して辞書形式で要素を書き
込みます。また、writeheaderメソッドを使用して、
DictWriterコンストラクタの引数fieldnamesで指定したヘッダ
ー部分のデータを書き出します。

◎リスト dictwriter1.py
import csv
import os.path

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "progs3.csv")
f = open(path, "w", encoding="shift_jis", newline="")

fieldnames = ["番号", "名称", "読み"] １
writer = csv.DictWriter(f, fieldnames=fieldnames) ２
writer.writeheader() ３
writer.writerow({"番号":1, "名称":"Python", "読み":"パイソン"})
writer.writerow({"番号":2, "名称":"Java", "読み":"ジャバ"})　　　
４
writer.writerow({"番号":3, "名称":"JavaScript", "読み":"ジャバスク
リプト"})
writer.writerow({"番号":4, "名称":"Ruby", "読み":"ルビー"})
f.close()

　１でヘッダーとして使用する文字列をリストにして、変数
fieldnamesに代入しています。２でそのリストを引数にして
DictWriterオブジェクトを生成し、変数writerに代入していま
す。
　３でwriteheaderメソッドを使用してヘッダーを書き出し、
４でwriterowメソッドにより各行を書き出しています。引数

には辞書形式で値を指定している点に注目してください。

■実行結果 progs3.csv

番号,名称,読み
1,Python,パイソン
2,Java,ジャバ
3,JavaScript,ジャバスクリプト
4,Ruby,ルビー

3-4 JSONデータの取り扱い
JSON（JavaScript Object Notation）は、テキストベースの軽
量データ交換フォーマットです。この節ではJSONデータを読
み込んでPythonのオブジェクトに変換する方法、および、逆
にPythonのオブジェクトをJSONデータに変換する方法につい
て説明します。

112
JSONファイルを読み込んでPythonのオブジェクトに
変換するには

 load関数を使用する

　JSON形式のテキストファイルを読み込んで、データを
Pythonのオブジェクトに変換するには、load関数を使用しま
す。

◎関数　load(fp)
カテゴリ　 jsonモジュール
引数　　　 ファイルオブジェクト
戻り値　　 Pythonのオブジェクト
説明　　　 テキストファイルからJSONデータを読み込んでPython

のオブジェクトに変換する
使用例　　 json = json.load(file)

　load関数で読み込んだデータは、データ型に応じてリストや
辞書といったPythonのオブジェクトに変換されます　（114の
直前のコラム「JSONのオブジェクトとPythonのオブジェクト
の対応」参照）。

　ここでは、次のような、顧客情報を管理するJSONファイル
「customer1.json」を例に説明しましょう。

◎リスト customer1.json
{
　"customers":[
　　{
　　　"name": "井上三郎",
　　　"age": 45,
　　　"mail": "save@example.com"
　　},
　　{
　　　"name": "田中花子",
　　　"age": 51,
　　　"mail": "hanar@example.com"
　　},
　　{
　　　"name": "江藤真",
　　　"age": 23,
　　　"mail": "makoto2@example.com"
　　}
　]
}

　トップの階層は要素数が1の連想配列です。"customers"をキ
ーにして、3件の顧客データを配列として保存しています。
個々の顧客のデータは "name" （名前）、 "age" （年
齢）、"mail"（メールアドレス）の3種類です。

●JSONファイルを読み込む
　以下に、 load関数を使用してカレントディレクトリの
「customer1.json」を読み込んで、Pythonのオブジェクトに変
換するプログラム例を示します。

◎リスト load1.py
import os
import json １

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "customer1.json")
in_file = open(path, "r",　encoding="utf-8") ２
json_obj = json.load(in_file) ３
print(json_obj) ４
in_file.close()

　１でjsonモジュールをインポートしています。２で、open
関数によりcustomer1.jsonをオープンしてファイルオブジェク
トを変数in_fileに格納しています。３でload関数を使用して
in_fileからJSONデータを読み込み、Pythonのオブジェクトに
変換して変数json_objに格納しています。４でそれをprint関数
で表示しています。

■実行結果

{'customers': [{'name': ' 井 上 三 郎 ', 'age': 45, 'mail':
'save@example.com'}, {'name': ' 田 中 花 子 ', 'age': 51, 'mail':
'hanar@example.com'}, {'name': ' 江 藤 真 ', 'age': 23, 'mail':
'makoto2@example.com'}]}

●load関数で読み込んだデータを処理する
　load関数で読み込んだデータは、オブジェクトは辞書（dict
型）、配列はリスト（list型）として扱えます（「Chapter 3　
いろいろなテキスト処理」の「JSONのオブジェクトとPython
のオブジェクトの対応」参照）。たとえば、前述の
「customer1.json」を読み込んで、Pythonのオブジェクト

「json_obj」に変換した場合、最初の顧客の名前（name）に
は次のようにしてアクセスできます。
json_obj["customers"][0]["name"]

　以下に、読み込んだデータをfor文で処理して、顧客の「名
前」「年齢」「メールアドレス」を順に表示する例を示しま
す。

◎リスト load2.py
import os
import json

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "customer1.json")
in_file = open(path, "r", encoding="utf-8")
json_obj = json.load(in_file)

customers = json_obj["customers"] １

for customer in customers:
　　print(customer["name"], str(customer["age"]) + "才", ２
　　　　customer["mail"])　３
in_file.close()

　変換後のPythonのオブジェクト「json_obj」のトップレベル
の階層は辞書（dict型）です。１で"customers"をキーに顧客デ
ータを取り出し、変数customersに代入しています。
　２のfor文で、顧客を一人ずつ取り出し、３のprint関数で
「名前 ～才 メールアドレス」の形式で表示しています。

■実行結果

井上三郎 45才 save@example.com

田中花子 51才 hanar@example.com
江藤真 23才 makoto2@example.com

ＮＯＴＥ age（年齢)はint型となるため、文字列「"才"」と連結する
際にstr関数で文字列に変換している点に注目してくださ
い。

　JSONとは

　JSONは、「JavaScript Object Notation」の略称で、その
名前が示す通り、もともとはJavaScriptにおけるオブジェク
トの記述用のテキストフォーマットとして開発されまし
た。現在ではその利便性から多くの言語でサポートされて
います。
　JSONのデータは、全体を「{ }」で囲み、コロン「:」で
接続したキー（プロパティ）となる文字列と値のペアを作
り、各ペアをカンマ「,」で区切って指定する、いわゆる連
想配列形式です。

◎リスト JSONのデータ
{
　"name": "sample.py",
　"year": 2018,
　"version": "1.2.0",
　"homepage": "http://example.com/test"
}

　なお、JavaScriptのオブジェクトの場合にはキーは文字列
でなくてもかまいませんが、JSONの場合には必ずクォーテ
ーション「"」で囲って文字列にします。値には、数値、文

字列、真偽値（trueまたはfalse）、配列、連想配列、nullが
指定可能です。
　配列は、Pythonのリストと同じく要素をカンマ「,」で区
切り、全体を「[]」で囲みます。次の例は「colors」という
キーの値として、4つの要素をもつ配列を記述しています。

◎リスト JSONの配列
{
　"colors": ["白", "黒", "紫", "緑"]
}

113
JSONデータの文字列をPythonのオブジェクトに変換
するには

 loads関数を使用する

　JSONデータが格納された文字列を、Pythonのオブジェクト
に変換するには、loads関数を使用します。

◎関数　loads(str)
カテゴリ　 jsonモジュール
引数　　　 JSON形式の文字列
戻り値　　 Pythonのオブジェクト
説明　　　 JSONのテキストデータをPythonのオブジェクトに変換

する
使用例　　 json_obj = json.loads(json_str)

　以下に、JSON形式の文字列「json_str」をPythonのオブジェ
クトに変換し、for文を使用してキーと値を順に表示する例を
示します。

◎リスト loads1.py
import json

json_str = """
{
　　"名前": "田中一郎",　１
　　"年齢": 33,
　　"出身地": "山梨"
}
"""

json_obj = json.loads(json_str) ２
for key, value in json_obj.items(): ３
　　print(key, value)

　１でJSONデータを複数行の文字列として記述して、変数
json_strに代入しています。ここでは"名前"、"年齢"、"出身
地"をキーにする辞書データを用意しています。
　２でloads関数によりJSONデータをPythonの文字列に変換
し、３のfor文でitemsメソッド（074で解説）によりキーと値
を順に取り出して表示しています。

■実行結果

名前 田中一郎
年齢 33
出身地 山梨

ＮＯＴＥ loads関数でPythonのオブジェクトに変換できない場合
は、JSONDecodeError例外が送出されます。

　JSONのオブジェクトとPythonのオブジェクトの
対応

　次の表に、本節で紹介したjsonモジュールの関数におけ
る、JSONのオブジェクトと、Pythonのオブジェクトのデフ
ォルトの対応表を示します。

　JSONのオブジェクトとPythonのオブジェクトの対応は、
JSONのデコーダであるjson.JSONDecoderクラス、およびエ
ンコーダであるjson.JSONEncoderクラスのサブクラスを作
成することでカスタマイズすることが可能です。

114
PythonのオブジェクトをJSONデータに変換するには

 dumps関数を使用する

　Pythonのオブジェクトを、JSONのテキストデータに変換す
るには、dumps関数を使用します。

◎ 関 数 　 dumps(obj,
sort_keys=False,ensure_ascii=True,
indent=None)
カテゴリ　 jsonモジュール
引数　　　 obj：Pythonのオブジェクト、sort_keys：dictデータ

をソートするかどうか
ensure_ascii：非ASCII文字をエスケープするか
indent：インデントして見やすく表示するかどうか（正
の値を指定した場合にはその数のスペースでインデント
される。負もしくは0、""の場合には改行のみ）

戻り値　　 JSONデータ（文字列）
説明　　　 PythonのオブジェクトをJSON形式の文字列に変換する
使用例　　 json_str = json.dumps(obj)

　以下に、Pythonのオブジェクト「obj」をJSON形式の文字列
に変換して表示する例を示します。

◎リスト dumps1.py
import json

obj = {"students": [{"name": "田中一郎", "age": 14}, １
　　　　　　　　　　{"name": "山田五郎", "age": 15},
　　　　　　　　　　{"name": "相川花子", "age": 13}
　　　　　　　　　　]}

json_str = json.dumps(obj)　２
print(json_str)　３

　１で"students"をキーに、3人の生徒（名前、年齢）を要素
とする配列を定義して変数objに代入しています。２でdumps
関数によりJSON文字列に変換し、３でprint関数により表示し
ています。

■実行結果

{"students": [{"name": "\u7530\u4e2d\u4e00\u90ce", "age": 14},
{"name": "\u5c71\u7530\u4e94\u90ce", "age": 15}, {"name":
"\u76f8\u5ddd\u82b1\u5b50", "age": 13}]}

●JSONデータをわかりやすく表示する
　dumps1.pyの実行結果を見るとわかるように、デフォルトで
は、日本語のような非ASCII文字がUnicodeにエンコードされ
ます。これを日本語のまま表示するには、dumps関数の引数
に「ensure_ascii=False」を指定します。また、引数indent
を指定してインデントすると、結果をより見やすくできま
す。

◎リスト dumps2.py
import json

obj = {"students": [{"name": "田中一郎", "age": 14},
　　　　　　　　　　{"name": "山田五郎", "age": 15},
　　　　　　　　　　{"name": "相川花子", "age": 13}
　　　　　　　　　　]}

json_str = json.dumps(obj, ensure_ascii=False, indent=4) １
print(json_str)

　１で引数ensure_asciiをFalseに、引数indentを「4」に設定し
ています。

■実行結果

{
　　"students": [
　　　　{

　　　　　　"name": "田中一郎",
　　　　　　"age": 14
　　　　},
　　　　{
　　　　　　"name": "山田五郎",
　　　　　　"age": 15
　　　　},
　　　　{
　　　　　　"name": "相川花子",
　　　　　　"age": 13
　　　　}
　　]
}

●辞書データをソートする
　dumps関数で、引数sort_keysにTrueを指定すると辞書デー
タ（dict）のキーを基準にソートしてくれます。

◎リスト dumps3.py
import json

obj = {"ua112":123, "ua395":425, "ua535":512, "ua102":432}

json_str = json.dumps(obj, ensure_ascii=False, indent=4,
sort_keys=True) １
print(json_str)

　１で「sort_keys=True」を指定してdumps関数を実行してい
ます。結果を見るとわかるように、キーに文字列を指定した
場合、文字列として昇順にソートされます。

■実行結果

{

　　"ua102": 432,
　　"ua112": 123,
　　"ua395": 425,
　　"ua535": 512
}

115
JSONデータをファイルに書き出すには

 dump関数を使用する

　dumps関数の代わりに、dump関数を使用すると、Pythonの
オブジェクトから変換したJSONデータをテキストファイルに
書き出すことができます。

◎ 関 数 　 dump(obj, fp, sort_keys=False,
ensure_ascii=True, indent=None)
カテゴリ　 jsonモジュール
引数　　　 obj：Pythonのオブジェクト、fp：ファイルオブジェク

ト、sort_keys：dictデータをソートするかどうか、
ensure_ascii：非ASCII文字をエスケープするか
indent：インデントして見やすく表示するかどうか（正
の値を指定した場合にはその数のスペースでインデント
される。負もしくは0、""の場合には改行のみ）

戻り値　　 なし
説明　　　 PythonのオブジェクトをJSONデータに変換してテキス

トファイルに書き出す
使用例　　 json.dump(obj, out_file, ensure_ascii=False, indent=4)

　dump関数のファイルオブジェクト以外の引数は、前述の
dumps関数と同じです。以下に、「dumps2.py」を変更し、結

果をテキストファイル「students.json」に書き出す例を示しま
す。

◎リスト dump3.py
import os
import json

obj = {"students": [{"name": "田中一郎", "age": 14},
　　　　　　　　　　{"name": "山田五郎", "age": 15},
　　　　　　　　　　{"name": "相川花子", "age": 13}
　　　　　　　　　　]}

dirname = os.path.dirname(__file__)
path = os.path.join(dirname, "students.json")
out_file = open(path, "w", encoding="utf-8")
json.dump(obj, out_file, ensure_ascii=False, indent=4) １
out_file.close()

　１でdump関数を実行し、カレントディレクトリのJSONファ
イル「students.json」にデータを書き出しています。

■実行結果 students.json

{
　　"students": [
　　　　{
　　　　　　"name": "田中一郎",
　　　　　　"age": 14
　　　　},
　　　　{
　　　　　　"name": "山田五郎",
　　　　　　"age": 15
　　　　},
　　　　{
　　　　　　"name": "相川花子",

　　　　　　"age": 13
　　　　}
　　]
}

　コマンドラインでのJSONファイルの処理

　json.toolモジュールを使用すると、コマンドラインで
JSONファイルを整形したり、検証を行うことが可能です。
pythonコマンド（macOSの場合にはpython3コマンド）を次
の形式で実行します。

python -m json.tool ファイル

◎リスト sample.json
{
"langs": [{"name":"Python","likes": 100},
{"name":"Swift","likes": 80},
　{"name": "JavaScript","likes": 50}]
}

　たとえば、上記のような整形されていないJSONファイル
を引数にして実行すると以下のように整形して表示されま
す。

◎実行例
>python -m json.tool sample.json
{
　　"langs": [
　　　　{
　　　　　　"name": "Python",
　　　　　　"likes": 100

　　　　},
～以下略～
　　]
}

　最後の引数に出力ファイルを指定すると、結果をファイ
ル（下記の例ではnew.json）に書き出すことができます。ま
た、JSONファイルにエラーがある場合はその内容と位置が
表示されます。ただし、残念ながら日本語はUnicodeにエン
コードされて表示されてしまいます。

◎実行例（ファイルに書き出す）
>python -m json.tool sample.json new.json 　←ファイルに書き
出す
>python -m json.tool sample.json　
Expecting ',' delimiter: line 2 column 42 (char 43)　←エラーがある場
合

Chapter
４

OSの機能を
利用する

―ファイル／ディレクトリ／時刻／日付

OSはファイル管理、メモリ管理、入出力管理、プロセス管理といっ
たさまざまな機能を提供します。代表的なOSにはmacOS、
Windows、Linuxなどがありますが、本章ではPythonからOSの機能
を利用する方法について説明します。特に、OSの機能によって提供
される、ディレクトリやファイル、日付／時刻情報に対して操作・
アクセスする方法を取り上げます。

4-1 ファイルやディレクトリの取り扱い
Pythonにはパスを記述したり、ディレクトリやファイルを作
成、削除したり、名前を変えたりする関数やメソッドが揃っ
ています。ディレクトリやファイルを扱うにはカレントディ
レクトリ、絶対パス／相対パスなどの知識も必要となりま
す。

各OSのファイルシステムについて

　OSの提供する機能の1つにファイルシステムがあります。
さまざまな「データ」（ファイル）を「ディレクトリ」（フ
ォルダ）といった単位でまとめて管理してくれます。Python
でもファイルの読み書きを行うことができますが、どのファ
イルかを一意に特定するためには「カレントディレクトリ」
や「パス」などの概念を正しく理解しておく必要がありま
す。
　ファイルやディレクトリを特定するために使われるのがパ
スです。最上位のディレクトリを「ルートディレクトリ」と
いいますが、そのディレクトリからすべてのディレクトリを
つないで目的のファイルやディレクトリを指定する方法を
「絶対パス」と呼びます。
　Windowsでは最初に「C:」や「D:」といったドライブレタ
ーに続き、\記号でディレクトリを繋ぎ、ファイルを特定しま
す。macOSやLinuxでは最初の/記号からディレクトリを/で繋
ぎファイルを特定します。

　たとえば、図のようなディレクトリ構成の場合、test.pyへ
の絶対パスは以下のようになります。

◎Windowsの絶対パス表記

C:\Users\Taro\test.py

◎macOSの絶対パス表記

/Users/Taro/test.py

　一方、特定のディレクトリからの相対位置でファイルやデ
ィレクトリを特定する方法もあります。これを「相対パス」
と呼びます。実行中のプログラムに関連付けられているディ
レクトリを「カレントディレクトリ」といいます。つまり、

カレントディレクトリ ＋ 相対パス ＝ 絶対パス

　のような関係となります。
　前図の例で、カレントディレクトリがTaroの状態でtest.py
を実行していたとします。このときsales.csvにアクセスする
には以下のような相対パスを使用します。

◎Windowsの相対パス表記

data\sales.csv

◎macOSの相対パス表記

data/sales.csv

　ちなみにログインした直後のカレントディレクトリを「ホ
ームディレクトリ」と呼ぶこともあります。

◎OS非依存のディレクトリ区切り文字を使用するには
　ディレクトリの区切り文字はWindowsが「￥」、Linuxや
macOSでは「/」となります。このような違いを吸収するた
め、以下のようなプロパティが用意されています。

　os.sepとos.path.sepがパス中のディレクトリ区切り文字を
表します。os.pathsepという似たプロパティがありますが、
これは別ものなので注意してください。次項以降で各プロパ
ティを使用した例を示していきます。

116
パス名（ディレクトリやファイル）を分割するには

 os.pathモジュールのsplit、basename、dirnameを利用
する

　何らかのファイルへのパスが与えられた場合、ディレクト
リ部分とファイル部分に分割したいときがあります。そのよ
うなときにはos.pathモジュールのsplit関数を使用します。

◎関数　split（path）
カテゴリ　 os.pathモジュール
引数　　　 パス名
戻り値　　 パスを最後の要素とそれ以外の部分に分割し、それらか

らなるタプルを返す
説明　　　 パスがスラッシュ「/」で終わっているときは最後の部

分は空文字列になる
使用例　　 p = os.path.split("/hello/world/python.txt")

　split関数はディレクトリとファイルに分割したタプルを返
しますが、ファイル部分だけ必要な場合にはbasename関数
を使用します。

◎関数　basename（path）
カテゴリ　 os.pathモジュール
引数　　　 パス名
戻り値　　 パスの末尾のファイル名部分を返す
説明　　　 split関数の戻り値の2番目の要素に等しい
使用例　　 p = os.path.basename("/hello/world/python.txt")

　basename関数の逆で、ディレクトリ部分だけを取り出す
にはdirname関数を使います。

◎関数　dirname（path）
カテゴリ　 os.pathモジュール
引数　　　 パス名
戻り値　　 パスのディレクトリ部分を返す
説明　　　 split関数の戻り値の1番目の要素に等しい
使用例　　 p = os.path.dirname("/hello/world/python.txt")

◎リスト os_path.py
import os.path １

path = "/home/user1/data/sales.csv"
r = os.path.split(path) ２
print("ディレクトリ:{0} ファイル:{1}".format(r[0], r[1])) ３
print("ディレクトリ:{0}".format(os.path.dirname(path))) ４
print("ファイル　　:{0}".format(os.path.basename(path))) ５

　１でモジュール os.pathを読み込み、２～５で split、
dirname、basename関数を実行した結果を表示しています。

■実行結果

ディレクトリ:/home/user1/data ファイル:sales.csv
ディレクトリ:/home/user1/data
ファイル　　:sales.csv

　各関数が適切な値（ディレクトリ名、ファイル名）を返し
ていることがわかります。

117
ファイル名と拡張子に分割するには

 os.pathモジュールのsplitext関数を利用する

　拡張子だけを取り出してファイルの種類に応じた処理を行
うときはsplitext関数を使用します。

◎関数　splitext（path）
カテゴリ　 os.pathモジュール
引数　　　 パス名
戻り値　　 パスと拡張子からなるタプルを返す
説明　　　 パスを拡張子とそれ以外の部分に分割して返す
使用例　　 p = os.path.splitext("/test/temp.txt")

◎実行例

>>> import os.path
>>> os.path.splitext("/home/taro/data/sales.json")
('/home/taro/data/sales', '.json')

　splitext関数を使って、拡張子以外の部分と拡張子部分から
なるタプルが取得できていることを確認できます。

118
パス名（ディレクトリやファイル）を連結するには

 os.path.join関数もしくはos.sep.join関数を使用する

　ディレクトリ名とファイル名を結合する処理を行うために
os.pathモジュールのjoin関数が用意されています。

◎関数　join(path1, path2, …)
カテゴリ　 os.pathモジュール
引数　　　 path1：パス名、path2：パス名
戻り値　　 複数のパスをディレクトリ区切り記号で連結した文字列
説明　　　 パスを連結した文字列を取得する
使用例　　 p = os.path.join("folder1", "folder2", "test.txt")

　os.path.joinに似た処理は、os.sep（4-1で解説）で区切り文
字を取得し、strクラスのjoinメソッド（015で解説）でパスを
連結することによっても行えます。ただし、使用には注意が
必要です。

◎実行例：Windowsの場合

>>> os.sep.join(["dir1", "dir2", "dir3"])
'dir1\\dir2\\dir3'
>>> os.path.join("dir1", "dir2", "dir3")
'dir1\\dir2\\dir3'

◎実行例：macOS/Linuxの場合

>>> os.sep.join(["dir1", "dir2", "dir3"])
'dir1/dir2/dir3'
>>> os.path.join("dir1", "dir2", "dir3")
'dir1/dir2/dir3'

　いずれもディレクトリ区切り文字で連結した結果を返しま
すが、前者は単なる文字列の連結、後者はよりパスの扱いを
意識した挙動となります。たとえば、後者は途中で絶対パス
が与えられたらそれ以前の内容は破棄します。

◎実行例

>>> os.sep.join(("/home/user1", "/home/user2"))

'/home/user1\/home/user2'
>>> os.path.join("/home/user1", "/home/user2")
'/home/user2'

119
パスを正規化するには

 os.pathモジュールのnormpath関数を使用する

　カレントディレクトリは「.」（ドット）で、親ディレクト
リは「..」（ドット2つ）で表現されます。パスを表現すると
きに、これらの文字が使用されることがありますが、
normpath関数はこれらの文字を正規化（パスの中に「.」や
「..」を含まないように変換）してくれます。

◎関数　normpath(path)
カテゴリ　 os.pathモジュール
引数　　　 パス
戻り値　　 正規化されたパス
説明　　　 「.」や「..」を含んだパスを正規化する
使用例　　 p = os.path.normpath("/A/B/C/../D")

◎実行例：Windowsの場合

>>> os.path.normpath("/A/B/C/../D")
'\\A\\B\\D'
>>> os.path.normpath("/A/./B/./C")
'\\A\\B\\C'

◎実行例：macOS/Linuxの場合

>>> os.path.normpath("/A/B/C/../D")

'/A/B/D'
>>> os.path.normpath("/A/./B/./C")
'/A/B/C'

ＮＯＴＥ normcase関数は大文字小文字を正規化します。

120
ファイルやディレクトリの有無を調べるには

 isfile関数、isdir関数、exists関数を状況に応じて使い分
ける

　ディレクトリやファイルが存在しているか確認するには、
isfile、isdir、existsといった関数を使用します。

◎関数　isfile(path)
カテゴリ　 os.pathモジュール
引数　　　 調べたいファイルのパス
戻り値　　 パスが実在するファイルであればTrue、それ以外は

False
説明　　　 ファイルの有無を調べる
使用例　　 f = os.path.isfile("1.txt")

◎関数　isdir(path)
カテゴリ　 os.pathモジュール
引数　　　 調べたいディレクトリのパス
戻り値　　 パスが実在するディレクトリであればTrue、それ以外

はFalse
説明　　　 ディレクトリの有無を調べる
使用例　　 f = os.path.isdir("test")

◎関数　exists(path)
カテゴリ　 os.pathモジュール
引数　　　 調べたいパス
戻り値　　 パスが実在すればTrueが返る
説明　　　 パスはファイルでもディレクトリでも可
使用例　　 f = os.path.exists("test")

◎リスト os_path_check.py
import os, os.path, pathlib １

pathlib.Path("test.txt").touch() ２
os.mkdir("testdir") ３

print("testdir　isfile =", os.path.isfile("testdir"))
print("testdir　isdir　=", os.path.isdir("testdir"))
print("test.txt isfile =", os.path.isfile("test.txt"))
print("test.txt isdir　=", os.path.isdir("test.txt"))
print("testdir　exists =", os.path.exists("testdir"))
print("test.txt exists =", os.path.exists("test.txt"))
print("test2　　exists =", os.path.exists("test2"))

os.remove("test.txt")
os.rmdir("testdir")

　１でos、os.path、pathlibの3つのモジュールを読み込んで
います。２でpathlib.Pathクラスのtouchメソッド（128で解
説）でtest.txtというファイルを作成し、３でos.mkdir関数
（121で解説）でtestdirというディレクトリを作成していま
す。あとは、それらのファイルやディレクトリに対して
isfile、isdir、exists関数を呼び出しています。最後にremove
メソッド（123）とrmdirメソッド（122）でファイルとディ
レクトリを削除しています。

■実行結果

testdir　isfile = False
testdir　isdir　= True
test.txt isfile = True
test.txt isdir　= False
testdir　exists = True
test.txt exists = True
test2　　exists = False

　ディレクトリ (testdir)に対しては isfileが False、 isdirが
True、ファイル(test.txt)に対してはisfileがTrue、isdirがFalse
になっていることが確認できます。

121
ディレクトリを作成するには

 mkdir関数とmkdirs関数を階層に応じて使い分ける

　ディレクトリを作成するにはosモジュールのmkdir関数を
使用します。

◎関数　mkdir(path)
カテゴリ　 osモジュール
引数　　　 作成するディレクトリのパス
戻り値　　 なし
説明　　　 引数で指定されたパス名のディレクトリを作成する
使用例　　 os.mkdir("test")

　「test/sample/work」のように一度に複数階層のディレク
トリを作成する場合にはmakedirs関数を使用します。

◎関数　makedirs(path)
カテゴリ　 osモジュール
引数　　　 作成するディレクトリのパス
戻り値　　 なし
説明　　　 引数で指定されたパス名のディレクトリを作成する
使用例　　 os.makedirs(os.path.join("dir1", "dir2", "dir3"))

　これらの関数の使用例は、次のレシピで示します。

ＮＯＴＥ os.pathモジュール、osモジュールにはパスを扱う多くの
関数がありますが、オブジェクト指向に慣れた人であれ
ばpathlibモジュールのPathオブジェクトを使ってもよい
かもしれません。パスを作成したり、状態をチェックし
たり、ディレクトリを作成したり、テキストとしてファ
イルを読み込んだりと、いろいろなメソッドが用意され
ています。
参考：https://docs.python.org/ja/3.6/library/pathlib.html

122
ディレクトリを削除するには

 rmdir関数、removedirs関数、rmtree関数を使い分ける

　ディレクトリを削除する場合は、rmdirやremovedirs関数
を使用します。

◎関数　rmdir(path)
カテゴリ　 osモジュール
引数　　　 削除対象となるディレクトリ
戻り値　　 なし

https://docs.python.org/ja/3.6/library/pathlib.html

説明　　　 ディレクトリ path を削除する。ディレクトリが空の場
合だけ正常に動作する

使用例　　 os.rmdir("test")

◎関数　removedirs(path)
カテゴリ　 osモジュール
引数　　　 削除対象となるディレクトリ
戻り値　　 なし
説明　　　 ディレクトリ path を再帰的に削除する
使用例　　 os.removedirs(os.path.join("dir1", "dir2", "dir3"))

◎リスト os_folders.py
import os

os.mkdir("temp") １
os.rmdir("temp") ２

p = os.sep.join(["dir1", "dir2", "dir3"]) ３
os.makedirs(p) ４
os.removedirs(p) ５

　１でディレクトリtempを作成し、２でそれを削除していま
す。３でdir1/dir2/dir3という深い階層を示すパスの文字列を
作成し、４でそのディレクトリを作成し、５のremovedirs関
数でそのディレクトリを削除しています。1階層ずつmkdir、
rmdirでディレクトリを作成・削除する必要はありません。
　ただし、rmdir関数、removedirs関数はディレクトリが空で
ないとエラーになります。ディレクトリが空でない場合でも
強制的にディレクトリを削除する場合には、shutilモジュール
のrmtree関数を使用します。

●ディレクトリごと削除するrmtree関数

◎関数　rmtree(path [,onerror=None])
カテゴリ　 shutilモジュール
引数　　　 削除対象のディレクトリ
戻り値　　 なし
説明　　　 ディレクトリツリー全体を削除する
使用例　　 shutil.rmtree("A")

◎実行例

>>> import shutil
>>> shutil.rmtree("dir1")

◎リスト shutil_move.py
import os, shutil, pathlib

pathlib.Path("tmp.txt").touch()
dst = os.sep.join(["A","B","C"])
os.makedirs(dst)
shutil.move("tmp.txt", dst)
shutil.rmtree("A")

　Pathクラスを使って「tmp.txt」というファイルを作成しま
す。os.sep.joinでパスを作り、makedirsでディレクトリ階層
を作ります。shutil.moveでそのディレクトリの最下層に
tmp.txtを移動し、shutil.rmtreeでディレクトリ階層ごと削除
しています。
　rmtreeのonerror引数に関数を指定するとエラー時に通知を
受け取ることができます。関数は、function、パス、例外の3
つの引数を受け取る必要があります。

◎実行例

>>> shutil.rmtree("dummy", onerror=lambda x, y, z: print(z))

(<class 'FileNotFoundError'>, FileNotFoundError(2, '指定されたパ
ス が 見 つ か り ま せ ん 。 '), <traceback object at
0x0000025769ACD788>)
(<class 'FileNotFoundError'>, FileNotFoundError(2, '指定されたフ
ァ イ ル が 見 つ か り ま せ ん 。 '), <traceback object at
0x0000025769ACD788>)

　存在しない"dummy"というパスを指定してrmtreeを実行し
ています。onerrorでは引数を3つとるlambda式を指定し、3
番目の引数である例外をprintしていますが、指定されたパス
が見つからない旨の例外が投げられていることがわかりま
す。

123
ファイルを削除するには

 osモジュールのremove関数を利用する

　ファイルを削除するにはosモジュールのremove関数を使
用します。

◎関数　remove(path)
カテゴリ　 osモジュール
引数　　　 削除対象となるファイル
戻り値　　 なし
説明　　　 引数で指定されたファイルを削除する
使用例　　 os.remove("test.txt")

◎リスト file_touch_remove.py
import os, pathlib, tempfile １

pathlib.Path("test.txt").touch() ２
os.remove("test.txt") ３
fd, temp_path = tempfile.mkstemp(prefix="hello") ４
os.close(fd) ５
os.remove(temp_path) ６

　１でモジュールを読み込み、２でtest.txtというファイルを
作成し、３でそのファイルを削除しています。４でテンポラ
リのファイルを作成し、５でそのファイルを閉じて、６でフ
ァイルを削除しています。tempfile.mkstemp関数について
は、レシピ129で取り上げています。
　remove関数の引数には*などのワイルドカードを指定する
ことはできません。ワイルドカードを使って複数のファイル
を削除したい場合はglobモジュール（後述）を使って、以下
のようにしてもよいでしょう。

◎実行例

>>> import glob
>>> [os.remove(x) for x in glob.glob("test/*")]
[None, None, None]

　globモジュールを読み込み、リスト内包表記を使って複数
のファイルを処理しています。globモジュールのglob関数で
該当するファイルを列挙し、各ファイルに対してos.remove
を呼び出しています。

124
作業ディレクトリを取得・移動するには

 getcwd関数を使用する

　ファイルにアクセスする場合、ルートからの絶対パス、も
しくは、作業ディレクトリからの相対パスのどちらかを使用
します。相対パスを使う場合は、作業ディレクトリがどこか
把握すること、また、その作業ディレクトリを移動すること
が重要になります。作業ディレクトリは「カレントディレク
トリ」とも言われ、プログラム実行時の拠点となるディレク
トリです。

◎関数　getcwd()
カテゴリ　 osモジュール
引数　　　 なし
戻り値　　 現在の作業ディレクトリを表す文字列
説明　　　 現在の作業ディレクトリを返す
使用例　　 p = os.getcwd()

　現在作業中のディレクトリを移動するにはchdir関数を使
用します。

◎メソッド　chdir(path)
カテゴリ　 osモジュール
引数　　　 移動先のディレクトリへのパス
戻り値　　 なし
説明　　　 作業ディレクトリを引数で指定されたパスへ変更する
使用例　　 os.chdir("test/sample")

◎リスト os_dir.py
import os
p = os.getcwd() １
print("before:"+p)

os.mkdir("test") ２
os.chdir("test") ３

p = os.getcwd() ４
print("after :"+p)

　１で現在の作業ディレクトリを取得してprintで出力してい
ます。２でtestディレクトリを作業ディレクトリの下に作成
し、３で作業ディレクトリをtestに移動しています。４で移
動後の作業ディレクトリを取得して出力しています。

■実行結果：Windowsの場合

before:c:\Users\Taro\Samples
after :c:\Users\Taro\Samples\test

■実行結果：macOS/Linuxの場合

before:/home/kenichiro/Samples
after :/home/kenichiro/Samples/test

125
ディレクトリのファイル一覧を取得するには

 listdir関数を使用する

　ディレクトリにあるファイル一覧を取得するにはlistdir関
数を使用します。

◎関数　listdir(path)
カテゴリ　 osモジュール
引数　　　 ディレクトリへのパス。省略時はカレントディレクトリ
戻り値　　 ディレクトリ内のファイルやディレクトリを含むリスト

説明　　　 ディレクトリ内のファイル一覧を返す。自分自身を意味
する「.」、親ディレクトリを意味する「..」は一覧に
は含まれない

使用例　　 files = os.listdir()

　listdir関数は、指定したディレクトリに含まれる、ファイル
およびディレクトリの名前を要素とするリストを戻します。

◎実行例

>>> import os
>>> os.listdir("data")
['sales1.csv', 'sales2.csv']

　walk関数を使用すると、ディレクトリ、ファイル一覧を再
帰的に取得できます。

◎リスト os_walk.py
import os
for root, dirs, files in os.walk('.'):
　　print("root={0}".format(root))
　　print("　dirs={0}".format(dirs))
　　print(" files={0}".format(files))

　1行目でosモジュールを読み込みos.walk関数で再帰的にフ
ァイルとディレクトリを取得しています。sampleディレクト
リの下にworkディレクトリとtest.txtを、workディレクトリの
下にsales.csvがあったときの出力を以下に示します。

■出力例：Windowsの場合

root=.
　dirs=['sample']
files=['os_walk.py']

root=.\sample　　　　　←macOS/Linuxでは「root=./sample」
　dirs=['work']
files=['test.txt']
root=.\sample\work 　 　 ←macOS/Linux で は
「root=./sample/work」
　dirs=[]
files=['sales.csv']

●ディレクトリのファイル一覧をイテレート可能なオブジェ
クトとして取得する
　listdir関数はファイルやディレクトリのリストを返しまし
た。イテレート可能なオブジェクトを返すscandir関数を使
ってもディレクトリ内のファイルやディレクトリを列挙する
ことができます。scandirはバージョン3.5から標準ライブラ
リに追加されました。

◎関数　scandir(path)
カテゴリ　 osモジュール
引数　　　 ディレクトリへのパス。省略時はカレントディレクトリ
戻り値　　 ディレクトリ内のファイルやディレクトリをイテレート

可能なオブジェクトとして返す
説明　　　 ディレクトリ内のファイル一覧を得るためのイテレート

可能なオブジェクトを返す
使用例　　 files = list(os.scandir())

　filesにはファイルやディレクトリの情報を含むDirEntryのリ
ストが返されます。listdirよりも処理速度が速く、より多くの
情報が取得できます。

126
条件に合致するファイルをリストアップするには

 globモジュールのglob関数を使用する

　前述のlistdir関数やscandir関数では特定のディレクトリに
含まれるファイルやディレクトリを取得できますが、globモ
ジュールのglob関数では条件に合致したファイルのみを取得
できます。任意の文字に合致する「？」、任意の文字列に合
致する「＊」などのパターンを使用することができます。

◎関数　glob(pathname)
カテゴリ　 globモジュール
引数　　　 検索対象となる条件を含むパス
戻り値　　 条件に合致したパス名からなるリスト
説明　　　 特定のパターンにマッチしたパス名のリストを返す
使用例　　 files = glob.glob("test/*")

　仮に「1.txt」「1.png」「py.png」というファイルを含むデ
ィレクトリがあったとします。

◎リスト globe_globe.py
import glob

a = glob.glob('[0-9].*') １
print(a)
b = glob.glob('*.png') ２
print(b)
c = glob.glob("?.png") ３
print(c)

　１の「[0-9].*」はファイル名が0～9で拡張子が任意のファ
イルの指定です。「1.png」と「1.txt」が合致します。

　２の「*.png」はファイル名が任意で拡張子が「png」のフ
ァイルの指定です。「1.png」と「py.png」が合致します。
　３の「?.png」は、ファイル名が1文字で拡張子が「png」
のファイルの指定です。「1.png」だけが合致します。

■実行結果

['1.png', '1.txt']
['1.png', 'py.png']
['1.png']

　globメソッドの引数にrecursive=Trueを指定した場合、パ
ス引数に含まれる「**」はあらゆるディレクトリにマッチし
て、再帰的に探すようになります。たとえば、次のような命
令を実行すると、Windowsの場合はCドライブのUsers以下に
あ る す べ て の png フ ァ イ ル 、 macOS/Linux の 場 合
は/home/kenichiro以下にあるすべてのpngファイルを探しに
いきます。ファイル数が多い場合は時間がかかるので注意し
てください。

◎実行例：Windowsの場合

>>> glob.glob("c:/Users/**/*.png", recursive=True)

◎実行例：Linuxの場合（macOSの場合は"/Users/kenichiro/**/*.png"）

>>> glob.glob("/home/kenichiro/**/*.png", recursive=True)

127
ファイルやディレクトリの名前を変えるには

 osモジュールのrename関数、shutilモジュールのmove
関数を使用する

　ファイルやディレクトリの名前を変える場合には、osモジ
ュールのrename関数もしくはshutilモジュールのmove関数
を使用します。

◎関数　rename(src, dst)
カテゴリ　 osモジュール
引数　　　 src：元のファイルもしくはディレクトリ名、dst：変更

後のファイルもしくはディレクトリ名
戻り値　　 なし
説明　　　 ファイルもしくはディレクトリの名前を変更する
使用例　　 os.rename("test.txt", "temp.txt")

◎実行例

>>> os.listdir("data") 　１
['test1.txt']
>>> os.rename("data/test1.txt", "data/test2.txt") 　２
>>> os.listdir("data") 　３
['test2.txt']

　１の「 os.listdir("data")」でディレクトリ dataの中に
「test1.txt」が1つだけある状態であることを確認していま
す。その後２で rename関数を使って「 test1.txt」を
「test2.txt」に名前を変更し、最後にos.listdir関数で名前が変
わったことを確認しています。

◎関数　move(src, dst)
カテゴリ　 shutilモジュール
引数　　　 src：元ファイルやディレクトリ、dst：移動先のパス
戻り値　　 移動先のパス

説明　　　 移動先がファイル名の場合は、ファイル名が変更され
る。移動先がディレクトリの場合は、そのディレクト
リへ移動する

使用例　　 p = shutil.move("test1.txt", "test2.txt")

　os.renameとshutil.moveはどちらもファイル名の変更や移
動を行うのでよく似ています。実際に、shutil.moveは、その
内部で os.renameを呼び出しています。 shutil.moveは、
os.renameが失敗した場合に、ディレクトリごとコピーを行
い、元のファイルを削除するよう動作します。
　また、os.renameはdstが既存のディレクトリであるときに
エラーが起きますが、shutil.moveはdstが既存のディレクトリ
のときには、そのディレクトリの下にファイルが移動すると
いった違いがあります。

128
空のファイルを作成するには

 pathlibモジュールにあるPathクラスのtouchメソッドを
使用する

　open関数を使うとファイルを作成することができます
が、ここでは別の方法でファイルを作成してみます。

◎メソッド　touch()
カテゴリ　 pathlibモジュールのPathクラス
引数・戻り値　　 なし
説明　　　 macOSやLinuxなどのtouchコマンドは空のファイルを

作成するが、それと同じ働きをする。まずPathオブジ
ェクトを作成し、そのオブジェクトのtouchメソッドを
呼ぶことで空のファイルを作成する

使用例　　 pathlib.Path("test.txt").touch()

◎実行例

>>> import pathlib
>>> pathlib.Path("test.txt").touch()

　上記の例では「test.txt」という空のファイルが作成されま
す。

ＮＯＴＥ Pathクラスはバージョン3.4で追加されました。

129
一時ファイルを作成するには

 tempfileモジュールのmkstemp関数を使う

　一時ファイル（テンポラリファイル）を作る場合は、自分
でファイル名を考えるよりも一時ファイルを作る関数を使っ
たほうがよいでしょう。

◎関数　mkstemp (suffix=None, prefix=None)
カテゴリ　 tempfileモジュール
引数　　　 prefix：接頭辞を指定したい場合に使用、suffix：接尾

辞を指定したい場合に指定
戻り値　　 ファイルハンドルとファイルの絶対パスからなるタプル
説明　　　 一時ファイルを作成する。作成したファイルは自分で削

除する必要がある。一時ディレクトリを作成する場合
にはmkdtemp関数を使用する

使用例　　 f = tempfile.mkstemp()
f = tempfile.mkstemp(prefix="hello")

ＮＯＴＥ 一時ファイルを作るmktempという関数もありました
が、セキュリティホールになる可能性が見つかったため
使用が非推奨となっています。

◎実行例：Windowsの場合

>>> import tempfile
>>> tempfile.mkstemp()
(6, 'C:\\Users\\KENICH~1\\AppData\\Local\\Temp\\tmp_nafp99_')
>>> tempfile.mkstemp(prefix="python", suffix="test")
(7,
'C:\\Users\\KENICH~1\\AppData\\Local\\Temp\\pythond7k9l3g3te
st')

◎実行例：macOS/Linuxの場合

>>> import tempfile
>>> tempfile.mkstemp()
(4, '/tmp/tmp4ppk2gqf')
>>> tempfile.mkstemp(prefix="python", suffix="test")
(5, '/tmp/python_03edx40test')

　tempfileモジュールのTemporaryFileを使用すると、ファイ
ルを閉じると自動で削除されます。

◎リスト temp_TemporaryFile.py
import tempfile
with tempfile.TemporaryFile(mode='w+t') as f: １
　　f.write("Hello Python")
　　f.seek(0)
　　print(f.read())

　１のTemporaryFile関数でファイルを作成し、以下、writeで
文字列を書き込み、seekで位置を先頭に戻し、readで読み出

しています。
■出力例

Hello Python

ＮＯＴＥ TemporaryFileはデフォルトで'w+b'モードで作成される
ので、テキストを書き込む場合は明示的にモードを指定
する必要があります。

4-2 多少高度なファイル操作
osモジュールやos.pathモジュールを使うと基本的なファイル
処理を行うことができますが、コピーや削除などよく行われ
る操作、圧縮/展開などの高度な操作に関しては別のモジュー
ルが用意されています。ここではそのようなモジュールにつ
いて説明します。

130
ファイルをコピーするには

 shutilにあるコピー用の関数を利用する

　shutilにはコピーをするための関数がいくつか用意されてい
ます。主なものを見てみましょう。

◎関数　copy(src, dst)
カテゴリ　 shutilモジュール
引数　　　 src：コピー元ファイル、dst：コピー先ファイル、もし

くは書き込み可能な既存のディレクトリ
戻り値　　 新しく作成されたファイルのパスを返す
説明　　　 ファイルsrcをファイルdstとして、もしくはファイルsrc

をディレクトリdstの下にコピーする
使用例　　 f = shutil.copy("test1.txt", "samples")

　「shutil.copy("test1.txt", "samples")」と実行したとします。
「 samples」というディレクトリがあると、その下に
「test1.txt」という同名のファイルでコピーが作成されます。
ディレクトリがない場合、ファイル名が「samples」となりま
す。

◎関数　copyfile(src, dst)
カテゴリ　 shutilモジュール
引数　　　 src：コピー元ファイル、dst：コピー先ファイル
戻り値　　 新しく作成されたファイルのパスを返す
説明　　　 ファイルsrcをファイルdstという名前でコピーする。dst

がディレクトリだとエラーになる
使用例　　 f = shutil.copyfile("test1.txt", "test2.txt")

　copyはディレクトリの下にコピーできますが、copyfileはデ
ィレクトリの下にコピーができません。

◎リスト shutil_copy.py
import shutil
shutil.copyfile("1.txt", "2.txt") １
shutil.copy("2.txt", "2.copy.txt") ２
shutil.copy("2.txt", "tmp") ３

　１で「1.txt」ファイルを「2.txt」にコピーしています。２
で「2.txt」を「2.copy.txt」にコピーし、３で「2.txt」を
「tmp」ディレクトリの下にコピーしています。

　メタデータ

　ファイルにはテキストや画像などのデータの実体だけで
なく、ファイル作成日時、所有者などさまざまな付属情報
が付与されています。このような付属情報は「メタデー
タ」と呼ばれます。たとえば、Windowsで写真のファイル
を選択してプロパティを見ると、図のような画面が表示さ
れます。

　画像本体だけではなく、撮影時のカメラのパラメータ情
報まで含まれていることがわかります。GPS機能付きのカメ
ラの場合は、撮影場所まで特定できることがあるので、メ
タデータの取り扱いには注意が必要です。shutilモジュール
にはファイルをコピーするためにcopyとcopy2という2つの
関数が用意されています。copyは単なるコピー、copy2はメ
タデータも含めたコピーとなります。しかしながらメタデ
ータの扱いはOSによって異なるため、どのメタデータがコ
ピーされるかは実際に試して確認することをお勧めしま
す。

　ライブラリのソースコードを読む

　 shutil モ ジ ュ ー ル に は copyfileobj 、 copy 、 copy2 、
copyfile、copymode、copystat、copytreeのようにコピー関
連の関数が多数用意されています。copymodeはパーミッシ
ョン情報（実行可否・読み取り可否・書き込み可否）もコ
ピーします。リファレンスを見ても違いがわかりづらいか

もしれません。そのようなときはソースコードを直接見て
みるのも1つの方法です。

◎ https://github.com/python/cpython/blob/3.6/Lib/shutil.
pyより一部抜粋

def copyfileobj(fsrc, fdst, length=16*1024):
　　while 1:
　　　　buf = fsrc.read(length)
　　　　if not buf:
　　　　　　break
　　　　fdst.write(buf)

def copyfile(src, dst, *, follow_symlinks=True):
...
　　　　with open(src, 'rb') as fsrc:
　　　　　　with open(dst, 'wb') as fdst:
　　　　　　　　copyfileobj(fsrc, fdst)

def copy(src, dst, *, follow_symlinks=True):
...
　　copyfile(src, dst, follow_symlinks=follow_symlinks)
　　copymode(src, dst, follow_symlinks=follow_symlinks)
　　return dst

def copy2(src, dst, *, follow_symlinks=True):
...
　　copyfile(src, dst, follow_symlinks=follow_symlinks)
　　copystat(src, dst, follow_symlinks=follow_symlinks)
　　return dst

・copyfileobjはread、writeを使ってコピーしている
・copyfileは単にcopyfileobjを呼び出してコピーを作成
している

・copyはcopyfileでコピーを作成し、copymodeを呼び
出している
・copy2はcopyfileでコピーを作成し、copystatを呼び
出している

　といったことがわかります。ライブラリは良質なコード
の宝庫です。shutilモジュールだけでなく、いろいろなモジ
ュールの中をのぞいてみてください。

131
コマンドのパスを調べるには

 shutilモジュールのwhich関数を使用する

　コマンドプロンプトやターミナルを開いて、コマンドを入
力している人であれば、コマンドがどこにあるか調べたこと
があると思います。macOSやLinuxなどであればwhichコマン
ド、Windowsであればwhereコマンドが使えます。Pythonでも
プログラムから調べることが可能です。

◎関数　which(cmd)
カテゴリ　 shutilモジュール
引数　　　 実行コマンド
戻り値　　 実行コマンドへのパス。実行コマンドが見つからない場

合はNone
説明　　　 実行コマンドへのパスを返す
使用例　　 p = shutil.which("python")

　コマンドは環境変数PATHで指定されるディレクトリを順に
辿ることによって探索を行います（ただしWindowsはカレン
トディレクトリが優先されます）。現在の環境変数PATHの内

容はosモジュールのenvironオブジェクトから調べることがで
きます。

◎実行例：Windowsの場合

>>> import shutil, os
>>> shutil.which("notepad")
'C:\\WINDOWS\\system32\\notepad.EXE'
>>> os.environ.get("PATH", os.defpath)
'c:\\Anaconda3\\Library\\bin;C:\\Perl64\\site\\bin;C:\\Perl64\\bin;C:
\\WINDOWS\\system32;C:\\WINDOWS;C:\\WINDOWS\\System32\\
Wbem ～以下略～ ;C:\\Users\\kenichiro\\AppData\\Roaming\\npm'

　 Windows の メ モ 帳 ア プ リ （ notepad ） が
C:\Windows\system32\notepad.EXEにあることがわかります。

◎実行例：Linuxの場合

>>> import shutil, os
>>> shutil.which("ls")
'/bin/ls'
>>> os.environ.get("PATH", os.defpath)
'/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/gam
es:/usr/local/games'

132
ファイルを圧縮／展開するには

 shutilモジュールのmake_archive関数、unpack_archive
関数を使用する

　複数のファイルをまとめたり、ファイルサイズを小さくす
るために圧縮をしたり、zipファイルを展開してファイルを取

り出したりしたことがあると思います。shutilモジュールの
make_archive関数やunpack_archive関数を使うと、プロ
グラムから圧縮、展開といった操作を行うことができます。

◎関数　make_archive(basename, format, root_dir)
カテゴリ　 shutilモジュール
引数　　　 basename：作成するアーカイブファイルの名前

format：zip、tar、gztar、bztar、xztarのいずれか
root_dir：アーカイブのルートとなるディレクトリ

戻り値　　 アーカイブされたファイル名
説明　　　 root_dirにあるファイルをformat形式でアーカイブして

basenameのファイル名で保存する
使 用 例 　 　 f = shutil.make_archive("archive_test", "zip",

"archive_target")

◎ 関 数 　 unpack_archive(filename, extract_dir,
format)
カテゴリ　 shutilモジュール
引数　　　 filename：展開するアーカイブファイルの名前

extract_dir：アンパックする先のディレクトリ、省略
時は現在の作業ディレクトリ format： zip、 tar、
gztar、bztar、xztarのいずれか。省略時は拡張子から
判断

戻り値　　 なし
説明　　　 filenameを展開してextract_dirに保存する
使 用 例 　 　 shutil.unpack_archive("archive_test.zip",

"unpack_target","zip")

◎リスト shutil_zipdownload.py
import shutil, urllib.request
zipfile = "sample_kisoPython.zip"
url = ("https://book.impress.co.jp/support/aftercare/"
　　+ "download/" + zipfile)
urllib.request.urlretrieve(url, zipfile)

shutil.unpack_archive(zipfile, "unarchive", "zip")

　urllib.request.urlretrieveでネットからzipファイルを取得して
ダ ウ ン ロ ー ド し て い ま す 。 そ の フ ァ イ ル を
shutil.unpack_archive関数で展開しています。

●zip形式でファイルを圧縮／展開するには
　zipfileモジュールには、zip形式の圧縮／展開を扱うための
専用の関数が用意されています。

◎コンストラクタ　ZipFile(path, mode)
カテゴリ　 zipfileモジュール
引数　　　 path：アーカイブファイルのパス

mode：ファイルを開くときのモード。「r」でread
（読み込み）、「w」でwrite（書き込み）。「r」がデ
フォルト

戻り値　　 ZipFileオブジェクト
説明　　　 指定されたファイル名のzipアーカイブを作成する
使用例　　 z = zipfile.ZipFile("test.zip", "w")

◎メソッド　write(path)
カテゴリ　 zipfileモジュールのZipFileクラス
引数　　　 アーカイブに追加するファイル
戻り値　　 なし
説明　　　 zipアーカイブにファイルを追加する
使用例　　 z = zipfile.ZipFile("test.zip", "w")

z.write("1.txt")

◎メソッド　namelist()
カテゴリ　 zipfileモジュールのZipFileクラス
引数　　　 なし
戻り値　　 アーカイブに含まれるファイルのリスト
説明　　　 zipアーカイブに含まれるファイルをリストとして返す
使用例　　 z = zipfile.ZipFile("test.zip", "w")

f = z.namelist()

◎メソッド　read(filename)
カテゴリ　 zipfileモジュールのZipFileクラス
引数　　　 zipアーカイブから取り出すファイルの名前
戻り値　　 取り出すファイルの内容
説明　　　 zipアーカイブから指定されたファイルを取り出す
使用例　　 z = zipfile.ZipFile("test.zip", "r")

b = z.read("1.txt")

◎リスト zipfile_archive.py
import zipfile
with zipfile.ZipFile("hello.zip", "w") as zf:　 １
　　for f in ["readme.txt", "helloworld.txt"]: ２
　　　　zf.write(f)

　１で「hello.zip」というzipファイルを作成し、２でその中に
「readme.txt」と「helloworld.txt」という2つのファイルを追
加しています。

◎リスト zipfile_extract.py
import zipfile
with zipfile.ZipFile("hello.zip") as zf:
　　for f in zf.namelist():
　　　　data = zf.read(f)
　　　　print("{0}:{1}".format(f, data))

　「hello.zip」というzipファイルからファイル一覧をnamelist
メソッドで取り出し、それらのファイルの内容をreadメソッ
ドで呼び出しています。

■実行結果

readme.txt:b'README'
helloworld.txt:b'HELLOWORLD'　← ' ' 内にファイルの内容が表示さ
れる

　ZipFileオブジェクトを作成した場合、オブジェクトを使用し
たあとcloseメソッドを呼ぶようにしてください。withを使っ
て作成した場合はcloseメソッドが自動的に呼ばれるのでその
必要はありません。

133
複数ファイルから読み込むには

 fileinputモジュールのinput関数を使用する

　複数のファイルを読み込んで処理する場合にはfileinputモ
ジュールが便利です。input関数にファイルのリストを与える
と、それらのファイルから1行ずつ読み込みます。

◎関数　input(files)
カテゴリ　 fileinputモジュール
引数　　　 ファイルリスト
戻り値　　 FileInputクラスのオブジェクト
説明　　　 引数で与えられたファイルを順番に読み込む。引数を省

略したときは標準入力から読み込む
使用例　　 f = fileinput.input(["1.txt", "2.txt"])

◎リスト fileinput_input.py
import fileinput
import glob
files = glob.glob("archive_target/*") １
for line in fileinput.input(files): ２

　　print(line)

　１でファイルのリストを取得しています。２でそれらのフ
ァイルから順番に１行ずつ読み込みます。
　なお、ディレクトリにあるファイルの一覧を取得する場
合、os.listdir関数も利用できますが、glob.glob関数と戻り値が
異なることに注意してください。glob.glob関数の場合はディ
レクトリ名も戻り値に含まれますが、listdir関数の場合は単に
ファイル名が列挙されるだけです。

◎実行例

>>> glob.glob("archive_target/*")
['archive_target\\test1.txt', 'archive_target\\test2.txt',
'archive_target\\test3.txt', 'archive_target\\test4.txt']
>>> os.listdir("archive_target")
['test1.txt', 'test2.txt', 'test3.txt', 'test4.txt']

　今回のサンプルでは、fileinput.input関数がファイルを開く
ためのパス名を渡す必要があったので、glob.glob関数を利用
しました。状況に応じて使い分けてください。

134
オブジェクトをファイルに保存する／ファイルから読
み込むには

 pickleモジュールを使ってオブジェクトを保存する

　pickleとは漬物という意味です。このモジュールは「オブ
ジェクトをファイルに保存し、あとで取り出して利用できる
ようにするためのもの」です。オブジェクトを保存すること

を「 Serialize（シリアライズ）」、復元することを
「DeSerialize（デシリアライズ）」と言います。漬物にして
保存して、食べるとき（使うとき）に取り出すイメージで
す。

◎関数　dump(obj, file)
カテゴリ　 pickleモジュール
引数　　　 obj：ファイルに保存するオブジェクト

file：保存する対象となるファイルのファイルオブジェ
クト

戻り値　　 なし
説明　　　 オブジェクトをファイルに保存する。ファイルはバイナ

リの書き込みモードで開いている必要がある
使用例　　 pickle.dump(mydict, fileObject)

◎関数　load(file)
カテゴリ　 pickleモジュール
引数　　　 pickleで保存されたファイルのファイルオブジェクト
戻り値　　 復元されたオブジェクト階層を返す
説明　　　 ファイルからオブジェクトを復元する。ファイルはバイ

ナリの読み込みモードで開いておく必要がある
使用例　　 dataObj = pickle.load(fileObject)

リスト　pickle_test.py
import pickle
mydict = {"apple":3, "orange":2}
with open("pickle.dat", mode="wb") as f:
　　pickle.dump(mydict, f)

　pickleが保存するデータはバイナリ形式なのでテキストエデ
ィタで中身を見ることはできません。単純なデータであれ
ば、コマンドラインから確認することができます。

◎実行例

>python pickle_test.py　
>python -m pickle pickle.dat
{'apple': 3, 'orange': 2}

　データの詳しい情報を取得するには以下のようにpickletools
を使用します。

◎実行例

>python -m pickletools pickle.dat
　　0: \x80 PROTO　　　3
　　2: }　　EMPTY_DICT
　　3: q　　BINPUT　　 0
　　5: (　　MARK
　　6: X　　　　BINUNICODE 'apple'
　 16: q　　　　BINPUT　　 1
　 18: K　　　　BININT1　　3
　 20: X　　　　BINUNICODE 'orange'
　 31: q　　　　BINPUT　　 2
　 33: K　　　　BININT1　　2
　 35: u　　　　SETITEMS　 (MARK at 5)
　 36: .　　STOP
highest protocol among opcodes = 2

　以下、pickleモジュールの関数の使用例を示します。

◎リスト pickle_basic.py
import pickle
import sys

class Person: １
　　def __init__(self, name, age):
　　　　self.name = name
　　　　self.age = age

if len(sys.argv) > 1 and sys.argv[1] == "r": ２
　　with open('pickle.dat', mode='rb') as f:　 ３
　　　　obj = pickle.load(f) ４
　　　　print("name={0} age={1}".format(obj.name, obj.age))
else:
　　with open('pickle.dat', mode='wb') as f:　 ５
　　　　obj = Person("Taro", 12) ６
　　　　pickle.dump(obj, f)　 ７

　１でPersonクラスを定義しています。このクラスにはname
とageという2つのフィールドがあります。
　２でコマンド引数を調べて、rという文字が付与されていた
ら、３でpickle.datファイルをバイナリ読み込みモードで開き
ます。４でファイルオブジェクトfを引数としてpickle.loadを
呼び出してオブジェクトを復元します。復元したオブジェク
トはPerson型なので、print文でその内容を出力します。
　コマンド引数がrでなかった場合、５でファイルをバイナリ
書き込みモードで開きます。６でPersonオブジェクトを作成
し、７でpickle.datファイルに保存します。

　バイナリモードとテキストモード

　pickleで保存されたファイルをWindowsのメモ帳やmacOS
のテキストエディットで開いてみましょう。よくわからな
い暗号のような文字が表示されるはずです。

　コンピュータはすべての情報を0と1の列として扱いま
す。ファイルの中に含まれているデータも例外ではありま
せん。人間が読み書きする文字にはあらかじめコードが割
り当てられています。たとえば、「＠」は「0x40」、「A」
は「0x41」、「P」は「0x50」、「Q」は0x51という具合で
す。「Hello」という文字をテキストエディタで保存する
と、実際には「0x48、0x65、0x6c、0x6c、0x6f」というデ
ータが保存されています。バイナリエディタという特別な
エディタでファイルを開くとその様子がよくわかります。

　しかし、このような数値を直接扱うのは人間にとっては
直感的ではありません。実は、テキストエディタは人間が
わかりやすい文字にデータを変換しているのです。pickleで
保存されているデータはバイナリ形式です。人間が読んだ
り直接編集したりすることは想定していないため、テキス
トエディタで開いたときには、人間が読めない状態になっ
ていたのです。このように、テキストを読み書きする場合
はテキストモード、数値データを直接扱う場合はバイナリ
モードと使い分ける必要があるのです。
　ちなみに以下のコードを実行すると、文字コードと実際
の文字の対応表が出力されます。

リスト ascii_code.py
for c in range(0, 127):
　　if c % 16 == 0:
　　　　print("{0:02x}".format(c), end="")

　　fmt = "{0:3x}" if c < 16 else "{0:3c}"
　　print(fmt.format(c), end="")
　　if c % 16 == 15:
　　　　print("")

■実行結果
00　0　1　2　3　4　5　6　7　8　9　a　b　c　d　e　f
10
20　　 !　"　#　$　%　&　'　(　)　*　+　,　-　.　/
30　0　1　2　3　4　5　6　7　8　9　:　;　<　=　>　?
40　@　A　B　C　D　E　F　G　H　I　J　K　L　M　N　O
50　P　Q　R　S　T　U　V　W　X　Y　Z　[　<ct:>　]　^　_
60　`　a　b　c　d　e　f　g　h　i　j　k　l　m　n　o
70　p　q　r　s　t　u　v　w　x　y　z　{　|　}　~

4-3 timeモジュールによる時刻の取り扱い
時刻はあまりにも身近なので、プログラミングでの扱いも簡
単だと思われるかもしれませんが、名前のよく似たいろいろ
なモジュールやクラスがあるので混乱しがちです。本節では
時刻を扱うモジュールについて説明します。

135
現在時刻を取得するには

 timeモジュールの各種関数を利用する

　 エ ポ ッ ク と い う の は 時 刻 の 起 点 の こ と で す 。
time.gmtime(0)と実行すると、そのプラットフォームでの起
点となる時刻を調べることができます。

◎関数　time()
カテゴリ　 timeモジュール
引数　　　 なし
戻り値　　 エポックからの秒数を浮動小数点数で返す
説明　　　 一般的なプラットフォームでは1970年の1月1日0時0

分0秒が起点となる
使用例　　 t = time.time()

　time.timeを使うと、エポックからの経過秒数を求めること
ができますが、 「1502876167.644508」といった数値が得ら
れるだけなので、この関数の戻り値から日付や曜日を計算す
ることは大変です。日付や時刻などの情報を取得する場合に
は、以下の関数のほうが便利です。

◎関数　ctime([secs])
カテゴリ　 timeモジュール
引数　　　 エポックからの秒数、省略時はエポックから現在の時刻

までの秒数
戻り値　　 ローカルの時刻を表現する文字列
説明　　　 secsを省略した場合は現在時刻となる
使用例　　 t = time.ctime()

◎実行例

>>> time.time()
1513506940.992682
>>> time.ctime()
'Sun Dec 17 19:35:46 2017'

◎関数　localtime([secs])
カテゴリ　 timeモジュール
引数　　　 エポックからの秒数、省略時はエポックから現在の時刻

までの秒数
戻り値　　 ローカルの時刻を表現するオブジェクト（名前付きタプ

ル）
説明　　　 戻り値は名前付きタプルなのでインデックスでも属性で

もアクセス可能
使用例　　 t = time.localtime()

　localtimeを使用すると、年月日時分秒や曜日といった情
報が簡単に入手できます。

◎リスト time_localtime.py
import time
t = time.ctime() １
print(t)

t = time.localtime() ２
print("year={0} month={1} day={2}".format(t.tm_year,
t.tm_mon, t.tm_mday))
print("year={0} month={1} day={2}".format(t[0], t[1], t[2]))

　１で現在時刻のローカル表現を取得してprintで出力してい
ます。２でlocaltimeで現在時刻を取得し、年月日を属性とイ
ンデックスを使ってそれぞれ出力しています。

■実行結果

Wed Aug 16 19:39:52 2017
year=2017 month=8 day=16
year=2017 month=8 day=16

136
一定時間実行を停止するには

 実行を一時的に停止したい場合はsleep関数を使用する

　現在実行中のスレッドを一時停止するにはsleep関数を使
用します。一定の時間間隔をあけて処理を行うときなどに使
用します。

◎関数　sleep(secs)
カテゴリ　 timeモジュール
引数　　　 実行を一時停止する時間、単位は秒
戻り値　　 なし
説明　　　 一定時間動作を停止する。浮動小数点での指定も可能
使用例　　 time.sleep(3)

◎リスト time_sleep.py
import time
for i in range(5):
　　print(i)
　　time.sleep(0.5) １

　for文で文字を5回出力するような処理であれば一瞬で終わ
ります。forループの中にsleep関数を挿入すると、その箇所
でスレッドが一時停止するので、段階的に処理が行われてい
る様子を見ることができます。この例では、１で0.5秒実行を
停止しています。0.5秒おきに0～4までの数値が出力されま
す。

　sleep関数は指定された秒数処理を停止します。一定間隔で
処理を実行したい場合、処理に要する時間をsleepする時間か
ら差し引く必要があります。

◎リスト time_sleep_interval.py
import time, math
for i in range(10):
　　prev = time.time() １
　　for i in range(10000): ２
　　　　math.sqrt(i)
　　time.sleep(prev+1 - time.time()) ３
　　print(time.time()) ４

　１で現在時刻を求め、２で処理を行います。この例では平
方根を10,000回求めています。３で１の時刻に1秒を加え、
現在時刻を差し引いて、その時間分sleepしています（処理を
1秒以内に抑えるよう２の for文の回数を調整してくださ
い）。４で現在時刻を出力していますが、単にtime.sleep(1)
としたときよりも正確なタイミングで実行されていることが
確認できます。

137
経過時刻を計測するには

 timeitモジュールを利用する

　特定の処理を行うのにどの程度の時間がかかるのか計測す
るためにはtimeitモジュールのtimeit関数が使用できます。

◎関数　timeit(stmt, setup, number=1000000)

カテゴリ　 timeitモジュール
引数　　　 stmt：実行する処理、 setup：初期化コード、

number：繰り返し回数
戻り値　　 実行に要した時間を返す
説明　　　 setupで指定された初期化コードを実行したのち、

stmtで指定されたコードを1,000,000回繰り返し実行
し、その処理に要した秒数を返す。繰り返しの回数を
変更する場合にはnumber引数を指定する

使用例　　 t = timeit.timeit("a=math.sqrt(2)", "import math")

◎実行例

>>> timeit.timeit("for i in range(1000): total+=i", "total=0",
number=10000)
0.6660786248936574

　timeitモジュールにはTimerクラスも用意されています。こ
のクラスを使った実行例を以下に示します。

◎実行例

>>> import timeit
>>> t = timeit.Timer("math.sin(10)", "import math")
>>> print(t.timeit())
0.1606930545110572

　mathモジュールのsin関数を1,000,000回実行するのに要し
た時間が表示されます。
　timeit関数を使っても、Timerクラスのtimeitメソッドを使
っても同じように計測ができます。オブジェクト指向に慣れ
た人であればTimerクラス、関数が好きな人であればtimeit関
数を使うとよいでしょう。

　処理時間の計測

　timeitは短いコードの時間計測に適しています。ある程
度の長さがあるコードの実行時間を計測する場合にはtime
関数を使う方法もあります。

◎リスト time_time.py
import time

starttime = time.time() １
total = 0
for i in range(100000):
　　total += i
endtime = time.time() ２
elapsed = endtime - starttime ３
print("total={0} elapsed time={1}".format(total, elapsed))

　１でプログラムの実行開始時の時刻をstarttimeに格納し
ます。その後for文で計算を行い、２で計算終了の時刻を
endtimeに格納します。３でそれらの差分をとり、計算に
要した時間を求めています。実行の前後で時刻を計測し、
その差分を求めるだけなのでシンプルです。ただし、この
計測方法はばらつきが大きいことがあるので、何回か試し
てみるのがよいでしょう。

◎出力例
total=4999950000 elapsed time=0.015625

　パフォーマンスに気を遣うあまり、コードが読みにくく
なってしまうのは望ましくありません。まずは読みやすい
コードを書くことに注力し、ある程度動いたあとで、プロ

ファイリングを行い、ボトルネックとなる箇所を特定し、
そこをチューニングするというスタンスがよいでしょう。

4-4 datetimeモジュールによる日付時刻の操作
timeモジュールを使うと年月日や時刻を扱うことができまし
た。基本的な機能は提供されていますが、日付や時刻の経過
時間を計算するのは大変なことも少なくありません。そんな
状況に応えるため、datetimeモジュールが用意されています。

138
日付に関する情報を求めるには

 dateオブジェクトを作成するとその日に関する情報が得
られる

　日付に関する情報を求めるには、まずdatetimeモジュール
のdateオブジェクトを作成し、そのオブジェクトのメソッド
を適宜呼び出します。

◎コンストラクタ　date(year, month, day)
カテゴリ　 datetimeモジュール
引数　　　 year：年（1から9999）、month：月（1から12）

day：日（1から指定された年と月における日数）
戻り値　　 dateオブジェクト
説明　　　 year、month、dayで指定された日のオブジェクトを作

成する
使用例　　 t = datetime.date(2017, 11, 22)

◎メソッド　isoformat()
カテゴリ　 datetimeモジュールのdateクラス
引数　　　 なし
戻り値　　 “YYYY-MM-DD”のフォーマットで日付を表わす文字列
説明　　　 dateオブジェクトの文字列表現と等しい

使用例　　 a = datetime.date(2017, 11, 22)
t = a.isoformat()

◎メソッド　timetuple()
カテゴリ　 datetimeモジュールのdateクラス
引数　　　 なし
戻り値　　 時刻情報を保持する構造体time.struct_time形式（名前

付きタプル）で日時に関する情報を返す
説明　　　 時分秒は0になる
使用例　　 a = datetime.date(2017, 11, 22)

t = a.timetuple()

◎メソッド　weekday()
カテゴリ　 datetimeモジュールのdateクラス
引数　　　 なし
戻り値　　 月曜日を 0、日曜日を 6 として、曜日を整数で返す
説明　　　 weekdayに似たメソッドにisoweekdayがあるが、こち

らは月曜日を1、日曜日を7とした値を返す
使用例　　 a = datetime.date(2017, 11, 22)

t = a.weekday()

◎リスト datetime_weekday.py
import datetime
d = datetime.date(2002, 12, 4) １

i = d.isoformat() ２
print(i)

t = d.timetuple() ３
print(t)

w = d.weekday() ４
print(w)

　１でdateオブジェクトを作成しています。２でiso形式の文
字列を取得して出力し、３でtime.struct_time型のデータを取
得して出力し、４で曜日を取得して出力しています。0が月曜
日なので、2は水曜日です。つまり、2002年の12月4日は水曜
日ということがわかります。

■実行結果

2002-12-04
time.struct_time(tm_year=2002, tm_mon=12, tm_mday=4,
tm_hour=0, tm_min=0, tm_sec=0, tm_wday=2, tm_yday=338,
tm_isdst=-1)
2

　Calendarモジュールを使って確認してみましょう。この結果
からも2002年の12月4日は水曜日ということが確認できます。

◎実行例

>>> import calendar
>>> c = calendar.TextCalendar()
>>> print(c.formatmonth(2002,12))
　 December 2002
Mo Tu We Th Fr Sa Su
　　　　　　　　　 1
2　3　4　5　6　7　8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

　dateクラスでは以下のようなプロパティ（リードオンリー）
が利用可能です。

・year　年

・month 月
・day　 日

●今日の日付のdateオブジェクトを生成する

◎メソッド　today()
カテゴリ　 datetimeモジュールのdateクラス
引数　　　 なし
戻り値　　 現在のローカルな日付を示すdateオブジェクト
説明　　　 クラスメソッドなのでオブジェクトの作成は不要
使用例　　 datetime.date.today()

◎実行例

>>> import datetime　　１
>>> datetime.date.today()　　２
datetime.date(2017, 12, 22)
>>> type(datetime.date.today())　　３
<class 'datetime.date'>
>>> datetime.date.today().isoformat()　　４
'2017-12-22'

　１で datetimeモジュールを読み込んでいます。２で
datetime.dateクラスのtodayメソッドを呼んでいます。today
はクラスメソッドなのでdateオブジェクトを作成はしていませ
ん。３にあるように、todayメソッドの戻り値はdateオブジェ
クトとなります。４でdateオブジェクトのisoformatメソッド
を呼び出しています。

139
datetimeモジュールで時刻に関する情報を求めるには

 datetimeモジュールのtimeクラスを利用する

　日付を扱うdateと対になるのが時刻を扱うtimeです。ここで
説明するのはtimeモジュールや、その中にあるtime関数ではな
く、datetimeモジュールのtimeクラスです。混乱しやすいの
で注意してください。

◎コンストラクタ　time(hour, minute, second)
カテゴリ　 datetimeモジュール
引数　　　 hour：時　0 <= hour < 24、minute：分　0 <=

minute < 60
second: 秒 0 <= second < 60

戻り値　　 timeオブジェクト
説明　　　 引数を省略するとそのフィールドの値は0となる
使用例　　 d0 = datetime.time()

d1 = datetime.time(12,34,56)

　作成されたtimeオブジェクトには、以下のようなプロパティ
（リードオンリー）が利用できます。

・hour　　　時
・minute　　分
・second　　秒
・microsecond　マイクロ秒

◎実行例

>>> import datetime
>>> d = datetime.time(12, 34, 56)
>>> d.hour
12
>>> d.minute
34
>>> d.second

56
>>> d.microsecond
0

　datetimeモジュールとtimeモジュール

　datetimeモジュールには以下のようなクラスが用意されて
います。

　timeモジュールとdatetimeモジュールには似たような関
数、クラス名が使われているので混乱しがちです。以下の
図をご覧ください。

　timeモジュールに含まれているのは関数です。一方、
datetimeモジュールに含まれているのはクラスが中心です。
dateクラスは日付を、 timeクラスは時間を扱います。
datetimeはそれらを包含した関係にあります。これらの違い
を意識して使い分けることが大切です。

140
経過日数をカウントするには

 dateオブジェクトやdatetimeオブジェクトの差分をとる

　datetimeやdateクラスを使うと日付を処理できます。これら
のクラスを使うと2つの日付の間隔を調べることができそうで
す。しかしながら、うるう年などを考慮に入れる必要がある
ので自力で計算するのはとても大変です。datetimeモジュー
ルには経過日数、時刻を簡単に処理するためのtimedeltaクラ
スが用意されています。
　コンストラクタを使ってtimedeltaオブジェクトを作ること
もできますが、一般的には2つのdateオブジェクトや2つの
datetimeオブジェクトの加減算の結果として、経過時刻を求め
ます。

◎リスト datetime_elapsed.py
import datetime

birthday = datetime.date(1992, 12, 15) １
today = datetime.date.today() ２
newcentury = datetime.date(2100, 1, 1) ３
elapsed0 = newcentury - today ４
elapsed1 = today - birthday ５
days0 = elapsed0.days ６

days1 = elapsed1.days ７
print("{0} days to new century".format(days0))
print("You have lived {0} days so far".format(days1))

　１で誕生日を、２で本日の日付を、３で2100年の元旦を示
すdateオブジェクトを作成しています。４で本日から2100年
の元旦までの日数、５で誕生日から今日までに経過した期間
（timedeltaオブジェクト）を求めています。６と７でそれぞ
れの期間の日数を求め、print()でそれらを出力しています。
　timedeltaオブジェクトには経過日数を表すdaysと経過秒数
を示すsecondsプロパティがあります。時、分、秒は以下の
ように計算できます。

◎実行例

>>> import datetime
>>> newcentury = datetime.datetime(2100, 1, 1)
>>> today = datetime.datetime.today()
>>> elapsed = newcentury - today
>>> elapsed
datetime.timedelta(29950, 11176, 879676)
>>> "{0} days {1:02d}:{2:02d}:{3:02d}".format(elapsed.days,
elapsed.seconds//3600, elapsed.seconds//60%60,
elapsed.seconds%60)
'29950 days 03:06:16'

　date/time/datetimeクラスの基本メソッドとプ
ロパティ

　この節ではdatetimeモジュール内のクラスの使い方につい
て説明しました。同じ名前のメソッドやプロパティがある

ので混乱しがちです。それぞれのクラスについて、メソッ
ドを実行したとき、プロパティにアクセスしたとき、どの
ような値が得られるか以下の表に具体例を整理しました。

※１　datetime.date.today().timetuple()を実行したときの出力例
time.struct_time(tm_year=2017, tm_mon=9, tm_mday=20,
tm_hour=0, tm_min=0, tm_sec=0, tm_wday=2,
tm_yday=263, tm_isdst=-1)

※２　ISO年で週は月曜から始まります。2017年の元旦は日曜日
で、その週の月曜日は2016年12月26日なのでiso.calendarの
値は(2016, 52, 7)となります。

※３　datetime.datetime.today().timetuple()を実行したときの出力
例

time.struct_time(tm_year=2017, tm_mon=9, tm_mday=20,
tm_hour=18, tm_min=50, tm_sec=16, tm_wday=2,
tm_yday=263, tm_isdst=-1)

　オブジェクトのプロパティを調べるときは

　メソッドや関数によっては、単なる値ではなくオブジェ
ク ト を 返 す も の が あ り ま す 。 た と え ば 、
datetime.datetime.today()の戻り値をprint命令で出力すると
「datetime.datetime(2017, 8, 16, 20, 13, 51, 143712)」のよ
うな文字列が出力されます。この結果だけを見ると、today
メソッドは文字列を返しているように見えますが、実際に
返されるのはdatetime型のオブジェクトです。printで出力す
る際に文字列に変換されているのです。type関数を使うと、
戻り値の型を確認できます。

◎実行例
>>> type(datetime.datetime.today())
<class 'datetime.datetime'>

　このようにtodayメソッドはdatetime型を返していること
がわかります。では、datetime型にはどのようなプロパティ
があるのでしょうか？　リファレンスやマニュアルを見れ
ばわかりますが、dir関数を使うと簡単に調べることができ
ます。

◎実行例
>>> dir(datetime.datetime)
['__add__', '__class__', '__delattr__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
'__init__', '__le__', '__lt__', '__ne__', '__new__', '__radd__',
'__reduce__', '__reduce_ex__', '__repr__', '__rsub__', '__setattr__',
'__sizeof__', '__str__', '__sub__', '__subclasshook__', 'astimezone',
'combine', 'ctime', 'date', 'day', 'dst', 'fromordinal', 'fromtimestamp',
'hour', 'isocalendar', 'isoformat', 'isoweekday', 'max', 'microsecond',

'min', 'minute', 'month', 'now', 'replace', 'resolution', 'second',
'strftime', 'strptime', 'time', 'timestamp', 'timetuple', 'timetz', 'today',
'toordinal', 'tzinfo', 'tzname', 'utcfromtimestamp', 'utcnow', 'utcoffset',
'utctimetuple', 'weekday', 'year']

　アンダースコア2つを前後に持つ属性は内部的に利用する
ことを意図したものです。それ以外の属性に注目してくだ
さい。date、minute、month、secondなど、どのような値が
格納されているか予想がつきそうな属性が見つかると思い
ます。

　コンストラクタ、クラスメソッド、インスタン
スメソッド

　コンストラクタ、クラスメソッド、インスタンスメソッ
ドを区別することはとても大切です。コンストラクタとい
うのはオブジェクトを作るための関数で、コンストラクタ
の戻り値としてオブジェクトが返されます。オブジェクト
とインスタンスは同じ意味で使われます。以下は、コンス
トラクタを使って、dateクラス、datetimeクラス、timeクラ
スの3つのオブジェクトを作成している例です。

◎実行例
>>> d0 = datetime.date(2018,1,1)
>>> type(d0)
<class 'datetime.date'>
>>> d1 = datetime.datetime(2018,1,1)
>>> type(d1)
<class 'datetime.datetime'>
>>> d2 = datetime.time()
>>> type(d2)
<class 'datetime.time'>

　クラスメソッドは、クラスに共通の性質を返すものなの
で、インスタンスを作成する必要はありません。クラス名
の直後に直接メソッドを記述することで呼び出すことがで
きます。

◎実行例
>>> datetime.date.today()
datetime.date(2017, 8, 19)
>>> datetime.date.min
datetime.date(1, 1, 1)
>>> datetime.datetime.today()
datetime.datetime(2017, 8, 19, 11, 5, 6, 645345)
>>> datetime.datetime.now()
datetime.datetime(2017, 8, 19, 11, 5, 19, 613322)
>>> datetime.time.min
datetime.time(0, 0)

　todayメソッドやnowメソッドを実行するにあたり、オブ
ジェクトを作成していないことに注意してください。
　最後にインスタンスメソッドです。インスタンスメソッ
ドの場合、オブジェクトを最初に作成し、その戻り値とし
て得られたオブジェクトのメソッド（インスタンスメソッ
ド）を呼び出します。以下の例ではd0、d1、d2がオブジェ
クトであり、それらのインスタンスメソッドを呼び出して
います。

◎実行例
>>> d0 = datetime.date(2018,1,1)
>>> d1 = datetime.datetime(2018,1,1)
>>> d2 = datetime.time()
>>> d0.isoformat()
'2018-01-01'
>>> d1.isoformat()
'2018-01-01T00:00:00'
>>> d2.isoformat()

'00:00:00'

Chapter
５

数値演算と
乱数

数値演算はプログラミングの基本です。四則演算はもちろんです
が、浮動小数点数を整数に変換したり、平方根を求めたりする必要
性に迫られることもあるでしょう。ゲームなど偶発的な要素を実装
するためには乱数が欠かせませんし、角度を扱うなら三角関数も必
要になります。本章ではいろいろな数値演算処理と乱数の使い方に
ついて説明します。

5-1 さまざまな数値演算
Pythonの組み込み関数、mathモジュール、randomモジュー
ルには、多くの数値演算用の関数が用意されています。本節
ではこれらの中から使用頻度が高いと思われる関数を取り上
げて説明します。

141
小数を整数に変換するには

 ceil／floor／int／roundを状況に応じて使い分ける

　小数を整数に変換する必要性に迫られるケースは少なくあ
りません。小数を整数に変換するときには、切り捨て、切り
上げ、丸めのどれを使うのか意識することが大切です。

◎関数　ceil(x)
カテゴリ　 mathモジュール
引数　　　 数値
戻り値　　 x以上の最小の整数を返す。切り上げに相当する
説明　　　 0.9、0.1、0.01、いずれの場合も1が返される
使用例　　 v = math.ceil(2.6)

◎関数　floor(x)
カテゴリ　 mathモジュール
引数　　　 数値
戻り値　　 x以下の最大の整数を返す。切り捨てに相当する
説明　　　 1.9、1.0、1.0001、いずれの場合も1が返される
使用例　　 v = math.floor(2.6)

　floorは床、ceilは天井です。天井と床の間に浮動小数点数が
あると考えてください。天井は大きい値なので切り上げ、床
は小さい値なので切り捨てと考えると覚えやすいでしょう。
　int関数も引数を切り捨てて整数値にするので、floor関数と
似た働きをします。

◎関数　int(x[, radix])
カテゴリ　 組み込み関数
引数　　　 数値
戻り値　　 x:数値や数値を表す文字列、radix:基数
説明　　　 引数を整数に変換する。浮動小数点数については小数点

以下を切り捨て、文字列は数値に変換する（017で解
説）

使用例　　 v = int(3.2)

　基数とは何進数かを表す数値で、デフォルトは10です。

◎実行例

>>> int(2.6) 　　←小数が切り捨てられて整数に
2
>>> int("-345") 　　　←文字列-345が数値の-345に
-345
>>> int("FF", 16) 　　←基数16で整数に
255
>>> int("1111", 2) 　←基数2で整数に
15

　floorも切り捨てを行いますが、負の数を扱う場合、intと
floorは結果が変わってくるので注意してください。

◎実行例

>>> math.floor(-1.7)
-2

>>> int(-1.7)
-1

　指定した桁で丸めるには、round関数を使います。

◎関数　round(number [, ndigits])
カテゴリ　 組み込み関数
引数　　　 number: 数値、ndigits:小数点以下の桁数
戻り値　　 丸めた値
説明　　　 指定した桁で丸める（多くの場合で四捨五入と同じ結果

となる）
使用例　　 v = round(3.1415, 2)

◎実行例

>>> round(3.14159)
3
>>> round(3.14159, 2)
3.14
>>> round(1.73205)
2

　指定した桁数で丸められた数値が返ってきています。桁数
を省略した場合は一番近い整数となります。

◎実行例

>>> round(1.5)
2
>>> round(0.5)
0

　1.5が2に変換されるのは自然ですが、0.5が0になることに
は違和感を覚えるかもしれません。これはPython 3から

roundの仕様が変わり、ちょうど真ん中の値は偶数のほうに
丸められるようになったためです。0.5は0と1のちょうど真
ん中なので、偶数の0に丸められています。このように、よ
り誤差の少ないとされる数値に丸めることをround-half-
even方式と呼びます。次に、これらの3つの関数を使ったス
クリプトの例を示します。

◎リスト math_float2int.py
import math
print("input floating point number:", end="")
val = float(input())
v0 = math.ceil(val)
v1 = math.floor(val)
v2 = round(val)
print("ceil:{0} floor:{1} round:{2}".format(v0, v1, v2))

　input関数で数値を受け取り、float関数で浮動小数点数に変
換しています。その数をceil、floor、roundで整数に変換して
出力しています。2行目のprint関数の最後にあるend=""は改
行をしないための引数です。

■実行結果

input floating point number:3.14
ceil:4 floor:3 round:3

142
絶対値を求めるには

 abs関数を使用する

　絶対値とは数値のもつ値のことで正負といった符号は考慮
しません。

◎関数　abs(x)
カテゴリ　 組み込み関数
引数　　　 数値
戻り値　　 数の絶対値を返す
説明　　　 引数は整数または浮動小数点数を指定
使用例　　 v = abs(-3)

◎実行例

>>> abs(-19)
19

143
べき乗を求めるには

 pow関数もしくは**演算子を使用する

　べき乗とは、同じ数を何回掛けるかという計算です。

◎関数　pow(x, y)
カテゴリ　 組み込み関数
引数　　　 x：底、y：指数
戻り値　　 x の y 乗を返す
説明　　　 pow関数はx**yと等価となる
使用例　　 v = math.pow(2, 3)

◎実行例

>>> pow(2, 4) 　←2の4乗
16

>>> 2 ** 4 　←同じ計算を**演算子で記述
16

ＮＯＴＥ mathモジュールにもpow関数があります。この関数は常
にfloatで計算します。
実行例

>>> math.pow(2, 4)
16.0

144
平方根を求めるには

 sqrtを使用する。原点からの距離を求める場合には
hypotが便利

　二乗したらxになる数のことを「xの平方根」といい、「√
ｘ」と表します。三平方の定理でも平方根が使われますが、
ゲームにおいては2つの座標の距離を求めるときに平方根が
よく使用されます。

◎関数　sqrt(x)
カテゴリ　 mathモジュール
引数　　　 数値

戻り値　　 xの平方根を返す
説明　　　 √xと同じ
使用例　　 v = math.sqrt(25)

　原点(0, 0)から座標(x,y)までの距離を求める場合は、hypot
関数が便利です。

◎関数　hypot(x, y)
カテゴリ　 mathモジュール
引数　　　 x：x座標の値、y：y座標の値
戻り値　　 原点から座標(x,y)までの距離
説明　　　 (sqrt(x*x + y*y))と同じ値が返される
使用例　　 v = math.hypot(1,2)

◎実行例

>>> math.sqrt(2)
1.4142135623730951
>>> math.hypot(1, 2)
2.23606797749979

　sqrtで平方根を求めています。√2は1.1414...です。また、
hypotで原点から(1,2)への距離を求めていますが、この値は
√(1x1+2x2) = √5となります。

145
角度とラジアンを相互変換するには

 角度をラジアンに変換するにはradians、逆はdegrees
を使う

　Pythonでは、一周は360度ではなく、2×πの「ラジアン」
という単位を使用します。

◎関数　radians(x)
カテゴリ　 mathモジュール
引数　　　 角度（度数法）
戻り値　　 角度（ラジアン）
説明　　　 度数法による角xをラジアンの値に変換する
使用例　　 v = math.radians(90)

◎関数　degrees(x)
カテゴリ　 mathモジュール
引数　　　 角度（ラジアン）
戻り値　　 角度（度数法）
説明　　　 ラジアンによる角xを度数法の値に変換する
使用例　　 v = math.degrees(3.141592)

　これら2つの式の関係は次のようになります。円周率πは
math.piと表せます。

◎実行例

>>> math.radians(180)
3.141592653589793
>>> math.degrees(math.pi)
180.0

　math.radiansを使って、180度をラジアンの値3.14...に変換
しています。math.piは円周率πで、その度数法の値をdegrees
で求めると180という値が得られます。

146
三角関数を使うには

 正弦はsin、余弦はcos、正接はtanを使う

　なめらかなカーブを描くとき、回転行列の計算をすると
き、いろいろな場面で三角関数が活躍します。mathモジュ
ールを使うとさまざまな三角関数が計算できます。
　グラフィックス計算を行うときにはベクトル（角度と大き
さをもつ値）を多用しますが、ベクトルをx座標、y座標に変
換するときにもsin関数、cos関数を使用します。この考え方
の基本は、下記の図のとおりです。直角三角形の最も長い辺
を1とすると、他方の2辺の長さはsinθとcosθになります。

◎関数　sin(x)
カテゴリ　 mathモジュール
引数　　　 角度（ラジアン）
戻り値　　 正弦の値を返す
説明　　　 サインの値を返す。xの単位はラジアンである

使用例　　 v = math.sin(math.radians(90))

◎関数　cos(x)
カテゴリ　 mathモジュール
引数　　　 角度（ラジアン）
戻り値　　 余弦の値を返す
説明　　　 コサインの値を返す。xの単位はラジアンである
使用例　　 v = math.cos(math.radians(0))

◎関数　tan(x)
カテゴリ　 mathモジュール
引数　　　 角度（ラジアン）
戻り値　　 正接の値を返す
説明　　　 タンジェントの値を返す。xの単位はラジアンである
使用例　　 v = math.tan(math.radians(45))

◎リスト math_sincos.py
import math, tkinter as tk １
root = tk.Tk()
canvas = tk.Canvas(root, width=360, height=360)
canvas.pack()
for i in range(36): ２
　　y = math.sin(math.radians(i*10)) * 180 + 180 ３
　　canvas.create_oval(i*10, y, i*10+5, y+5,
　　　　fill="#00FF00", outline="")
root.mainloop()

　サインカーブを描画するためにtkinterモジュールを使用し
ています１。ここではmathモジュールのみに注目してくださ
い（tkinterモジュールはChapter 7で解説します）。
　２のfor文のiは0から35まで変化します。３が座標を求める
部分です。角度に10を掛けた値を、math.radians関数に渡し
ています。つまり、1周期分の角度を求めています。その値

をmath.sin関数に引数として与えています。math.sin関数
は-1から+1の値域をとりますが、そのままCanvasに描画して
も変化が見えないため180倍して座標を求めています。

147
座標(x,y)とX軸のなす角度を求めるには

 atan2を使うと座標から角度を求められる

　sin関数、cos関数を使えば、角度からx座標とy座標を求め
ることができます。逆の処理を行うのがatan2関数です。

◎関数　atan2(y, x)
カテゴリ　 mathモジュール
引数　　　 y：y座標の値、x：x座標の値
戻り値　　 逆正接の値を返す。atan(y / x)をラジアンで返す。戻

り値は-piからpiの間になる
説明　　　 座標(x, y)がx軸となす角度を返す。xとyの順番に注意
使用例　　 v = math.degrees(math.atan2(-1, 1))

◎リスト math_atan2.py
import math, tkinter as tk １
def mousemove(e): ２
　　canvas.coords(line, (100,100, e.x, e.y)) ３
　　theta = math.atan2((e.y-100)*-1, e.x-100) ４
　　print("degree={}".format(math.degrees(theta))) ５
root = tk.Tk()
canvas = tk.Canvas(root, width=200, height=200)
canvas.pack()
canvas.create_line(0, 100, 200, 100)
canvas.create_line(100, 0, 100, 200)
line = canvas.create_line(100, 100, 100, 100)
canvas.bind('<Motion>', mousemove) ６
root.mainloop()

　このサンプルもtkinterを使っています。まず１でmathと
tkinterモジュールを読み込んでいます。
　２がマウス移動時に呼び出されるコールバック関数です。
６のbindメソッドにより、canvas上でマウスが移動したとき
に呼び出されるようになります。
　マウスの座標が「e.x, e.y」で与えられます。３では、
Canvasのlineメソッドを使い、画面の中心座標(100,100)から
マウスの座標まで線を描画しています。
　４が角度を求めている部分です。Canvasの中心座標が
100、100なので、中心からの差分はx座標が「e.x-100」、y
座標が「(e.y-100)*-1」となります。y座標に-1を掛けている
のは、Y軸を反転するためです。
　その座標をmath.atan2関数に渡して角度を求めています。
　５でラジアンの角度を度数法の単位に変換し、print関数で
出力しています。

　マウスを移動すると、画面の中心から右方向を0とした場
合の、角度が出力されます。

　コールバック関数とイベントハンドラ

　コールバック（callback）とは「折り返し電話をする」
という意味です。「今忙しいからあとで電話するね」とい
った状況で使用します。プログラミングにおけるコールバ
ック関数もこれに似ています。何らかの処理を行うとき、
完了までに時間がかかるだけでなく、いつ終わるのか予測
できないことがあります。たとえば、ネットワークからフ
ァイルを取得したり、巨大なデータベースから検索するよ
うな状況が相当します。このようなときは処理の完了を待
つのではなく、「終わったらこの関数を呼び出してね」と
依頼することができます。このような関数をコールバック
関数と呼びます。

　イベントハンドラもコールバック関数の一種です。マウ
スがクリックされる、キーが押される、マウスが移動する
といった処理はいつ起きるかわかりません。このようなイ
ベントが起きたときに実行する関数を「イベントハンド
ラ」と呼びます。イベントハンドラといっても通常の関数
と変わりません。ただし、自分で呼び出すのではなく、シ
ステムがイベントハンドラを呼び出してくれます。どのよ
うな引数が渡されるかはイベントによって異なるので、リ
ファレンスやデバッガで調べるとよいでしょう。

148
１０進数と１６進数を相互に変換するには

 10進数を16進数にするにはhexやformat、16進数を10
進数にするにはintを使う

　人間は10進数に慣れ親しんでいますが、コンピュータはそ
うとは限りません。16進数に変換したり、その逆を行ったり
することもあります。hex関数は10進数を16進数の文字列に
変換する関数です。

◎関数　hex(x)
カテゴリ　 組み込み関数
引数　　　 整数
戻り値　　 16進数を表す文字列
説明　　　 先頭に0xが付与された形式の16進数文字列を返す
使用例　　 v = hex(255)

◎実行例

>>> hex(255)

'0xff'

　文字列のformatメソッドを使っても同様の値が取得できま
す。

◎実行例

>>> "0x{:04x}".format(255)
'0x00ff'

　「{:04x}」の0は、0でパディング（ほかと桁数を合わせる
ために0で埋めること）、4は桁数、xは16進数を意味しま
す。xの代わりに大文字のXと指定すると、戻り値の16進数の
A～Fが大文字になります。また、16進数の数値のリテラルは
0xを前につけて16進数であることを示します。たとえば、16
進数で6Fは、10進数で111になります。通常の数値と同じよ
うに扱うことができます。

◎実行例

>>> 0x6f + 10
121

　16進数を10進数に変換するには、int関数（017　文字列を
数値に変換するには）を使います。

◎実行例

>>> int("0x6F", 16)
111

149

余りと商を一度に求めるには
 divmodもしくは//や%演算子を使う

　どの言語でも商を求めたり、余りを求めたりする演算子が
用意されていますが、それらを一度に求められる関数は珍し
いかもしれません。

◎関数　divmod(a, b)
カテゴリ　 組み込み関数
引数　　　 a：割られる数、b：割る数
戻り値　　 aをbで割ったときの商と剰余からなるタプルを返す
説明　　　 引数が整数の場合、結果は(a // b, a % b)と同じにな

る
使用例　　 v = divmod(7, 3)

◎実行例

>>> divmod(7,3)
(2, 1)　　←商が2で余りが1
>>> 7//3 　←//演算子は切り捨ての除算
2
>>> 7%3 　　←%演算子は除算した余り
1

　7を3で割ると商が2で余りが1となります。なお、Pythonで
は//が切り捨ての除算、%が余りとなります。よって、7//3
を実行すると2が、7%3を実行すると1が得られます。

150
複数の要素のTrue/Falseを一度に調べるには

 すべての条件を調べる場合はall、どれか1つはanyを使
う

　たくさんのアイテムがあり、「それらがすべて条件を満た
すか」「それらのどれか1つでも条件を満たすか」という処
理を書くことは少なくありません。そんな状況に直面したと
きはall関数や、any関数を使うとシンプルに処理を記述でき
るかもしれません。

◎関数　all(a)
カテゴリ　 組み込み関数
引数　　　 リストやタプルなどのイテレート可能なオブジェクト
戻り値　　 TrueかFalse
説明　　　 リストなどに含まれる要素がすべてTrueのときに全体

としてTrueを返す。それ以外のときはFalseを返す
使用例　　 f = all([True, False, True])

◎関数　any(a)
カテゴリ　 組み込み関数
引数　　　 リストやタプルなどのイテレート可能なオブジェクト
戻り値　　 TrueかFalse
説明　　　 リストなどに含まれる要素がすべてFalseのときに全体

としてFalseを返す。それ以外のときはTrueを返す
使用例　　 f = any([False, True, False])

◎実行例

>>> data = [30, 20, 10] 　１
>>> [x > 10 for x in data] 　２
[True, True, False]
>>> any([x > 10 for x in data]) 　３
True
>>> all([x > 10 for x in data]) 　４

False

　１でリストに「30, 20, 10」というデータを格納していま
す。２では、そのデータをもとにリスト内包表記を使い、x
が10より大きいか否かを示すブール型のリスト「[True, True,
False]」を作成しています。
　３のanyは、1つでもTrueがあればTrueが返ります。ここで
はTrueが2つあるので、anyの戻り値はTrueになります。
　一方、４のallは、すべてがTrueのときのみTrueが返されま
す。今回はすべてTrueではないので、allの戻り値はFalseにな
っています。

◎リスト all_any.py
ages = (19, 20, 23, 18, 25)
adults = [x >= 20 for x in ages]
print("adults:", adults)
print("all adults? ", all(adults))
print("any adults? ", any(adults))

　5人分の年齢を示すagesタプルをもとに、リスト内包表記
を使って、20歳以上のブール値を保持するadultsというリス
トを作成しています。あとは、printでadultsデータ、all、any
の戻り値を出力しています。全員20歳以上ではないのでallは
Falseを、20歳以上の人が1人以上いるのでanyはTrueを返して
います。

■実行結果

adults: [False, True, True, False, True]
all adults?　False
any adults?　True

5-2 乱数
ゲームやシミュレーションを実装するときに乱数は欠かせま
せん。randomモジュールには乱数を扱うための関数が多数用
意されています。

151
乱数を生成するには

 乱数の分布に応じてrandrange、randint、random、
uniformなどの関数を使い分ける

　まずは、どの数も同じ頻度で生成する一様分布の乱数を見
てみましょう。

◎関数　randrange(stop)
カテゴリ　 randomモジュール
引数　　　 stop：乱数の上限
戻り値　　 0からstopまで（stopは含まない）の整数の乱数を返す
説明　　　 range()と同じようにrandrange(start, stop[, step])

と指定することも可能である。この場合は、startから
stopまでの乱数を生成する

使用例　　 r = random.randrange(1, 7)

　randint(a, b)という関数もありますが、これはrandrange(a,
b+1)と等価です。たとえば、randint(1, 6)はrandrange(1,7)と
同じで、1～6までの乱数を生成します。
　ほかにも次のような一様分布の乱数を発生させる関数があ
ります。

◎関数　random()
カテゴリ　 randomモジュール
引数　　　 なし
戻り値　　 0から1までの浮動小数点の乱数を生成する
説明　　　 seed関数で乱数生成器を初期化すると同じパターンの

乱数を生成できる
使用例　　 r = random.random()

◎関数　uniform(a, b)
カテゴリ　 randomモジュール
引数　　　 a, b：乱数を生成する範囲を指定する
戻り値　　 a以上、b以下の浮動小数点数
説明　　　 ランダムな浮動小数点数を返す
使用例　　 r = random.uniform(1, 100)

　乱数というと「どの数値も同じ確率で生成される」と思う
方もいるかもしれませんが、必ずしも乱数は一様分布とは限
りません。ここでは一様分布以外の関数を見ていきましょ
う。

◎関数　normalvariate(mu, sigma)
カテゴリ　 randomモジュール
引数　　　 mu：平均μ、sigma：標準偏差σ
戻り値　　 浮動小数点数
説明　　　 （μ、σ）の正規分布に従った乱数を返す
使用例　　 r = random.normalvariate(50,10)

◎関数　triangular(low, high, mode)
カテゴリ　 randomモジュール
引数　　　 low：最小値、high：最大値、mode：最頻値
戻り値　　 浮動小数点数
説明　　　 low以上、high以下で、modeを最頻値とする乱数を返

す
使用例　　 r = random.triangular(0,100,50)

◎関数　betavariate(alpha, beta)
カテゴリ　 randomモジュール
引数　　　 alpha：α値、beta：β値
戻り値　　 浮動小数点数
説明　　　 パラメータα、βで表されるベータ分布の乱数を返す
使用例　　 r = random.betavariate(0.5, 0.5)

　これらの関数がどんな分布をしているか、その様子を見て
みましょう。

◎リスト math_random2.py
import random, collections １
bucket = collections.Counter() ２
for _ in range(10000): ３
　　#r = random.normalvariate(0, 3)
　　r = random.betavariate(.5, .5) * 10 ４
　　#r = random.uniform(-10, 10)
　　#r = random.triangular(-10, 10)
　　v = round(r) ５
　　bucket[v] += 1 ６
for k in sorted(bucket.keys()): ７
　　v = int(bucket[k] / 50) ８
　　print("{0:3}:{1}".format(k, "*" * v)) ９

　１でrandomモジュールとcollectionsモジュールを読み込ん
でいます。２で出現回数を数えるカウンタを作成していま
す。３でfor文を使い、10000回ループを繰り返しています。
４で乱数を生成しています。５のround関数で乱数を整数に
変換し、６でその値をキーとして、出現頻度をカウントして
います。
　７のfor文は出力用のループです。８で出現頻度を取り出し
て、９でその頻度を棒グラフにして表示しています。

　コメントアウトを適宜外して、乱数を生成する関数が異な
ると、出現頻度がどのように変化するか確認してください。

152
ランダムに並べ替え、もしくは1つを選択するには

 並べ替えはshuffle、1つ選択するにはchoiceを使う

　乱数を生成する場合、何らかの目的があるはずです。トラ
ンプなら、札から1枚ひいたり、並べ替えたりするでしょ
う。クイズなら、出題順序を変えたりするでしょう。乱数を
使って自分で処理することも可能ですが、randomモジュー

ルには単に乱数を生成するだけでなく、便利な関数が用意さ
れています。

◎関数　choice(seq)
カテゴリ　 randomモジュール
引数　　　 seq：シーケンス型
戻り値　　 seqの中の値の1つ
説明　　　 リストやタプルなどのシーケンス型からランダムに1つ

の要素を選択し、その値を返す
使用例　　 r = random.choice(["Spring", "Summer", "Autumn",

"Winter"])

◎関数　shuffle(seq)
カテゴリ　 randomモジュール
引数　　　 seq：ミュータブルなシーケンス型
戻り値　　 なし
説明　　　 リストなどのシーケンス型をランダムに並べ替える。引

数で与えられたシーケンス自身が並べ替えられる。自
身とは別の並べ替えた結果を返すのではないことに注
意

使用例　　 random.shuffle(seasons)

　タプルは値を変更することができません。その場合は、
sample関数を使用するとよいでしょう。

◎関数　sample(seq, k)
カテゴリ　 randomモジュール
引数　　　 seq：シーケンス型、k：選択する要素の個数
戻り値　　 タプルなどの母集団からk個の要素を選び、ランダムに

並べ替えたリストを返す
説明　　　 shuffleと違い、元のシーケンス型とは別の並べ替えら

れた値が戻り値として返される
使用例　　 r = random.sample(["apple", "banana", "orange"], 3)

◎実行例

>>> import random
>>> seasons = ["Spring", "Summer", "Autumn", "Winter"]
>>> random.shuffle(seasons)
>>> seasons
['Autumn', 'Spring', 'Winter', 'Summer']
>>> random.sample(seasons, len(seasons))
['Autumn', 'Winter', 'Spring', 'Summer']

　randomモジュールを読み込み、seasonsという配列を作成
し、random.shuffleで並べ替えをしています。seasonsの順序
が入れ替えられていることがわかります。
　一方、random.sampleを実行した場合は、戻り値としてラ
ンダムに並べ替えられた値が返されています。
　次にトランプのカードをランダムに並べ替える例を示しま
す。

◎リスト random_shuffle.py
import random
cards = [] １
for i in "A23456789TJQK": ２
　　for j in ("H", "D", "C", "S"): ３
　　　　cards.append(j + "-" + i) ４
random.shuffle(cards) ５
for i, c in enumerate(cards): ６
　　if i % 13 == 0: ７
　　　　print()
　　print("{0:3} ".format(c), end="") ８

　１でカードを格納するリストを初期化しています。２と３
の2重ループで（A～Kまでの13回×H、D、C、Sのどれか4
回）、合計52回ループを実行します。ループ中の４ではカー

ドをリストに追加し、５で順番の並べ替えを行います。６の
for文は出力用のループです。７で、13個ごとに改行を出力
し、８でリストの中身を表示しています。

■実行結果

S-3 H-K C-T S-J S-4 C-5 S-2 S-6 H-2 C-4 S-Q S-T H-J
C-7 C-3 H-4 H-Q D-T H-T D-3 C-8 S-A S-5 S-9 C-6 C-2
D-7 H-7 D-K D-A H-9 H-A D-5 H-8 D-2 S-8 H-6 C-Q D-J
D-4 C-K H-3 C-9 H-5 S-K C-A S-7 C-J D-8 D-9 D-6 D-Q

Chapter
６

ネットワークへの
アクセス

20～30年ほど前、インターネットを使っている人はごく少数でした
が、今ではインターネットのない生活は考えられないほどに普及し
ました。Pythonでもネットワークやインターネットにアクセスする
機能は充実しています。本章では、そのような機能について見てい
きます。

6-1 URLの操作とアクセスの基本
Webサーバとやり取りをする際には、HTTPプロトコルが使
用されます。本節では、HTTPの利用を前提とし、URLをどの
ように解析し操作するかをまず解説します。URLでアクセス
してページやファイル、JSONファイルを取得する方法を示
します。

153
URLのフォーマットを解析するには

 urllib.parseモジュールを使って解析する

　日頃よく目にするホームページのアドレスは、正確にはプ
ロトコル、ホスト、ポート、パス…などのフォーマットが定
められています。urlparse関数はURLのフォーマットを解釈
します。

◎関数　urlparse(urlstring)
カテゴリ　 urllib.parseモジュール
引数　　　 解析対象となるURLの文字列
戻り値　　 URLを解析した結果を（スキーマ、アドレス、パス、

パスに対するパラメータ、クエリ、フラグメント識別
子）からなるタプルで返す

説 明 　 　 　 URL は scheme://host.domain[:port]/path?
query#fragmentのようなフォーマットを取るが、与
えられたURLを各部分に分割する

使 用 例 　 　 r =
urllib.parse.urlparse("http://www.impress.co.jp/news.
html?query=python")

◎リスト urllib_parse0.py
import urllib.parse
r =
urllib.parse.urlparse("https://www.impress.co.jp/business.html;ho
ge=1;?say=hello#01_digital")
print(r)

■実行結果

ParseResult(scheme='https', netloc='www.impress.co.jp',
path='/business.html', params='hoge=1;', query='say=hello',
fragment='01_digital')

　スキーマ(scheme)がhttps、ネットワーク上のアドレスが
www.impress.co.jp、パスが /business.html、パラメータが
hoge=1、クエリがsay=hello、フラグメントが01_digitalと
URLが部分ごとに分割されていることがわかります。

154
URLで絶対パスを取得するには

 urljoin関数を使って基準となるパスと相対パスを連結
する

　 HTML コ ン テ ン ツ を 記 述 す る 際 に は
「"../images/logo.png"」のような相対パスがよく使われま
す。このような相対パスから絶対パスを取得する場合には、
urljoin関数を使用します。

◎関数　urljoin(base, path)
カテゴリ　 urllib.parseモジュール
引数　　　 base：基準となる絶対パス、path：相対パス
戻り値　　 絶対パス
説明　　　 baseが基準の絶対パスであるとき、相対パスpathに対

応する絶対パスを返す
使 用 例 　 　 r =

urllib.parse.urljoin("http://www.hoge.com/news/inde
x.html", "../images/logo.png")

　baseとなるURLが「/」で終わっているか否か、フラグメ
ントの有無などによらず、絶対パスが取得できます。

◎リスト urllib_urljoin.py
from urllib.parse import urljoin
a = urljoin("http://www.impress.co.jp", "whatsup.html")
print(a)

b = urljoin("http://www.impress.co.jp/news/",
"../weather/index.html")
print(b)

c = urljoin("http://www.impress.co.jp/search?key=hello",
"../images/logo.png")
print(c)

　urljoin関数を使って、基準となるパスと相対パスから、絶
対URLを作成しています。

■実行結果

http://www.impress.co.jp/whatsup.html
http://www.impress.co.jp/weather/index.html

http://www.impress.co.jp/images/logo.png

155
URLで示されるページを取得するには

 urlopen関数でHTTPResponseオブジェクトを取得し、
readメソッドを呼ぶ

　最も基本的な操作として、インターネットからホームペー
ジを取得してみましょう。

◎関数　urlopen(url)
カテゴリ　 urllib.requestモジュール
引数　　　 URLの文字列
戻り値　　 HTTPResponseオブジェクト
説明　　　 urlへ接続して、コンテンツを取得する
使用例　　 res = urllib.request.urlopen('http://impress.co.jp/')

html = res.read()

◎リスト urllib_basic0.py
import urllib.request
res = urllib.request.urlopen('http://impress.co.jp/')
htmlbuf = res.read(300)
res.close()
print(htmlbuf)

　urllib.requestモジュールを読み込み、urlopen関数を使っ
て http://impress.co.jp に 接 続 し て い ま す 。 res は
HTTPResponseオブジェクトです。そのオブジェクトの

readメソッドで300バイトのデータを読み込み、htmlbufとい
う変数に格納し、その内容を出力しています。

■実行結果

b'<!DOCTYPE html>\n<html lang="ja">\n<head>\n 　 <meta
http-equiv="Content-Type" content="text/html; charset=UTF-8"
/>\n 　 <meta name="viewport" content="width=device-width,
initial-scale=1.0, user-scalable=no, minimum-scale=1.0,
maximum-scale=1.0">\n 　 <meta name="referrer"
content="unsafe-url">\n<title>\xe6\xa0\xaa\xe5\xbc\x8f'

ＮＯＴＥ macOS用公式インストーラでPython 3.6をインストール
した場合、HTTPS通信ができないことがあります。その
場合は「アプリケーション」→「 Python 3.6」→
「Install Certificates.command」を実行して証明書をイ
ンストールしてください。

　コンソールの出力を見ると、最初に“b’”という文字があり
ますが、これは出力がバイナリデータであることを意味しま
す 。 ま た 、 出 力 の 終 端 あ た り に
「<title>\xe6\xa0\xaa\xe5\xbc\x8f」という文字があります
が、これは日本語文字をバイナリで出力しているためです。
　なお、resはHTTPResponseオブジェクトで、最後にcloseす
る必要がありますが、次のようにwith命令を使うとcloseを明
示的に呼ぶ必要がなく便利です。
　また、read部分を書き換えて、バイナリデータをデコード
して文字列に変換できるようにしています。

◎リスト urllib_basic1.py
import urllib.request
with urllib.request.urlopen('http://impress.co.jp/') as response:

　 html = response.read().decode("utf-8")
　 print(html)

　取得したページから文字列を抽出するような場合、このよ
うにdecodeも同時に処理してしまうとよいでしょう。ちな
みにバイト数を指定せずにread（）を実行すると、ページの
すべてが読み込まれます。

　HTTPのステータスコード301

　HTTPでは、クライアントがリクエストを送り、サーバが
そのリクエストに応えてレスポンスを返します。レスポン
スには必ず「ステータスコード」と呼ばれる情報が含ま
れ、番号によって意味が規定されています。100番台が処理
中、200番台が成功、300番台がリダイレクト、400番台がク
ライアント側のエラー、500番台がサーバ側のエラーとなり
ます。
　301は「ページが恒久的に移動した」ことを意味します。
urllib_basic0.pyでは「'http://impress.co.jp/'」というアドレ
スからページを取得したように見えたかもしれません。し
かしながら、実際には「https://www.impress.co.jp」という
アドレスからページを取得しています。wwwが付与されて
いるだけでなく、「http」から「https」になっていること
に注意してください。
　urlopen(url)を実行すると、引数で与えられたサーバにア
クセスします。正常にページが取得できればそれで処理は
終了しますが、今回のケースでは、サーバはHTTPのステー
タスコード301（移動先：http://www.impress.co.jp）を返し
てきました。これを受けて、urlopenは「www.」を付けて
「http://www.impress.co.jp」としてアクセスしましたが、
再度301（移動先：https://www.impress.co.jp）が返されて
き ま し た 。 最 終 的 に 「 http 」 を https 」 に 替 え て
「https://www.impress.co.jp」にアクセスし、ホームページ
を取得しました。単にurlopenを1回呼び出しただけですが、
実はその裏ではこのような処理が行われていました。

156
URLをファイルに保存するには

 urllib.requestモジュールのurlretrieve関数を使う

　URLからファイルを取得できたら次はそれを保存してみまし
ょう。Google Chart APIを使って、helloという文字列のQRコ
ードを作成・ダウンロードして、qrcode.pngというファイル
に保存する例を以下に示します。

◎リスト urllib_saveimg.py
import urllib.request
url = "http://chart.apis.google.com/chart?
cht=qr&chs=300x300&chl=hello"
with urllib.request.urlopen(url) as img:
　　with open("qrcode.png", 'wb') as file:
　　　　file.write(img.read())

　urllib.request.urlopenでURLを読み込み、その内容をバイナ
リ形式'wb'でファイルに保存しています。この方法でもかま
いませんが、ファイルを保存するために特化した関数も用意
されています。

◎関数　urlretrieve(url, file)

カテゴリ　 urllib.requestモジュール
引数　　　 url：取得対象となるurl、file：保存先
戻り値　　 ローカルのファイル名とhttp.client.HTTPMessageオブ

ジェクトのタプル
説明　　　 urlの内容をfileに保存する
使 用 例 　 　 fname, headers =

urllib.request.urlretrieve('http://python.org/',
'python.txt')

　この関数を使って先ほどの例を書き換えてみましょう。

◎リスト urllib_saveimg2.py
import urllib.request
url = "http://chart.apis.google.com/chart?
cht=qr&chs=300x300&chl=hello"
urllib.request.urlretrieve(url, "qrcode2.png")

　 URLから QRコードを取得し、その内容をファイ
ル"qrcode2.png"に保存しています。

　モジュールの変遷

　Pythonでネットワークにアクセスする方法を検索したも
のの、いろいろな情報が遍在するために混乱する人も少な
くないと思います。その理由として、Python 2とPython 3で
モジュール名やその構造が変わったことが考えられます。
以下のようにPython 3ではモジュール構造が整理されまし
た。ネット上の記事にはPython 2を前提としたものも少なく
ありません。特にネット上の記事の場合、記事の内容が
Python 2と3のどちらを前提にしているのか、意識して読む
ことが大切です。

参照： www.diveintopython3.net/porting-code-to-python-3-
with-2to3.html

157
URLからJSON形式のデータを取得するには

 jsonモジュールを使ってjson文字列をオブジェクトに変
換する

　Web-APIとは、インターネット上に公開されているAPIのこ
とです。多くの会社や団体からさまざまなサービスが提供さ
れています。Web-APIを使うといろいろなサービスを簡単に実
現できます。
　Web-APIではHTTPでリクエストをサーバに送信し、サーバ
から返信をもらいますが、返信フォーマットの主流がJSONで
す。以下は書籍を検索するWeb-APIを使った例です。

◎リスト web_api.py
import urllib.request １
import json
url = 'https://www.googleapis.com/books/v1/volumes?
q=id:JPNhCAAAQBAJ'　２
response = urllib.request.urlopen(url)　３
content = json.loads(response.read().decode('utf-8'))　４
print(content)

　まず１でurllib.requestとjsonモジュールを読み込んでいま
す。２のurlは書籍検索のWeb-APIです。３のurlopenでページ
を取得し、４のreadメソッドでページを読み取り、decodeメ
ソッドでデコードします。その結果をjson.loadsに渡してい
ます。

ＮＯＴＥ macOS用公式インストーラでPython 3.6をインストールし
た場合、HTTPS通信ができないことがあります。その場
合は「アプリケーション」→「Python 3.6」→「Install

Certificates.command」を実行して証明書をインストール
してください。

6-2 Webサーバとのやり取りの基本
本節ではWebサーバにアクセスする方法について解説しま
す。たとえば、URLエンコードを行ってからアクセスする方
法、POSTによるデータ送信などを取り上げます。

158
テスト用Webサーバを用意するには

 pythonを「-m http.server ポート番号」オプションで
起動する

　Pythonにはもともとテスト用のWebサーバが用意されてお
り、コマンドラインから以下のように入力するだけでWebサ
ーバが8000番ポートで起ち上がります。

◎実行例

>python -m http.server 8000
Serving HTTP on 0.0.0.0 port 8000 ...

　あとは、ブラウザから「http://localhost:8000/」とアクセ
スすれば、コマンドを起動したディレクトリにあるファイル
一覧が表示されます。ファイルの取得テストには十分なサー
バですが、しかしサーバの中で何が起きているのかはわかり
ません。そこで、どんなリクエストがきたか表示する簡単な
Webサーバを作ってみました。

◎リスト test_web_server.py

import threading
from socketserver import ThreadingMixIn
from http.server import BaseHTTPRequestHandler, HTTPServer　
１

class TestServer(BaseHTTPRequestHandler): ２
　　def handle_headers(self): ３
　　　　for k, v in self.headers.items(): ４
　　　　　　print(k , ":" ,v)
　　　　self.rfile.close()
　　　　self.send_response(200) ５
　　　　self.end_headers()
　　　
　　def do_GET(self): ６
　　　　self.handle_headers()
　　　　self.wfile.write(bytes(self.path, "utf-8")) ７
　　def do_POST(self): ８
　　　　content_length = int(self.headers['Content-Length']) ９
　　　　post_data = self.rfile.read(content_length) 10
　　　　self.handle_headers()
　　　　self.wfile.write(post_data) 11

class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): 12
　　pass

httpd = ThreadedHTTPServer(("127.0.0.1", 8080), TestServer) 13
try:
　　httpd.serve_forever() 14
except KeyboardInterrupt:
　　pass
httpd.server_close()

　まず１で必要なモジュールを読み込んでいます。
BaseHTTPRequestHandlerは基本的な機能を持つHTTPサーバ

クラスで、カスタマイズしたい処理をオーバライドして使用
します。
　２でTestServerというBaseHTTPRequestHandlerを継承した
クラスを作成しています。このテスト用WebサーバはHTTP
ヘッダの内容を出力しますが、その処理を行うために３の
handle_headersメソッドを定義しています。４でHTTPヘッ
ダの内容（＝headersの値）をfor文を使って取り出し、print
で出力しています。
　５では応答メッセージのヘッダを返しています。
　６はGETを処理するメソッドです。handle_headersでヘッ
ダの内容を出力し、７で接続に使われたパスの内容を応答メ
ッセージとして出力しています。
　８がPOSTを処理するメソッドです。９でコンテンツの長
さをContent-Lengthから取得し、10でその長さ分を入力スト
リームrfileからreadしています。あとはhandle_headersメソ
ッドでHTTPヘッダを出力し、11で受領したデータを送り返
しています。
　一度張ったコネクションを再利用するなど、最近のブラウ
ザは高速化のためにさまざまな工夫をこらしています。その
ような状況にも対応できるよう、12でHTTPサーバがマルチ
スレッドで動作するようにThreadingMixInを利用していま
す。
　13でThreadedHTTPServerを作成し、14で実行を開始して
います。
　このテスト用サーバは以下のように実行することができま
す。

◎実行例

>python test_web_server.py

　終了するためにはCtrl+Cキーを押下してください。Ctrl+C
で終了しない場合はブラウザを終了する、もしくはコマンド
を実行したウインドウを閉じてください。なお、macOSの終
了キーは ＋．(ドット)キーとなります。

159
特殊文字をURLで使うには

 quote、unquoteでURLエンコード、URLデコードを行
う

　URLに使える文字は制限されており、規定された文字以外
はUTF-8で符号化したうえで％XX（XXは16進数）という形式
に 変 換 す る 旨 が 規 定 さ れ て い ま す
（https://ja.wikipedia.org/wiki/パーセントエンコーディン
グ）。この変換は「URLエンコード」と呼ばれます。この変
換を行う関数がquote、元に戻す関数がunquoteです。

ＮＯＴＥ Webブラウザによってはアドレス欄にURLエンコードが
デコードされた状態でアドレスが表示されます。たと
えば「https://ja.wikipedia.org/wiki/パーセントエンコー
デ ィ ン グ 」 は
「 https://ja.wikipedia.org/wiki/%E3%83%91%E3%83
%BC%E3%82%BB%E3%83%B3%E3%83%88%E3%8
2%A8%E3%83%B3%E3%82%B3%E3%83%BC%E3%
83%87%E3%82%A3%E3%83%B3%E3%82%B0 」 と
表示されることがあります。

◎関数　quote(string)
カテゴリ　 urllib.parseモジュール

引数　　　 変換対象の文字列
戻り値　　 URLエンコードされた文字列
説明　　　 引数の文字列をURLエンコードした文字列を返す
使用例　　 r = urllib.parse.quote("あいう")

◎関数　unquote(string)
カテゴリ　 urllib.parseモジュール
引数　　　 変換対象の文字列
戻り値　　 URLエンコードされる前の文字列
説明　　　 URLエンコードを元の文字列に戻す
使 用 例 　 　 r =

urllib.parse.unquote("%E3%81%82%E3%81%84%E
3%81%86")

◎リスト urllib_parse1.py
import urllib.parse
original = 'hi!はい'
quoted = urllib.parse.quote(original)
print("quote　: {0}->{1}".format(original, quoted))
unquoted = urllib.parse.unquote(quoted)
print("unquote: {0}->{1}".format(quoted, unquoted))

◎出力例
quote　: hi!はい->hi%21%E3%81%AF%E3%81%84
unquote: hi%21%E3%81%AF%E3%81%84->hi!はい

　 " は い " と い う 文 字 列 は UTF-8 に す る と
0xE3,0x81,0xAF,0xE3,0x81,0x84となります。 "!"は 0x21で
す。これらの文字がURLエンコードの変換対象となるの
で 、 "hi! は い " を quote で URL エ ン コ ー ド す る
と"hi%21%E3%81%AF%E3%81%84"となります。unquote

はその逆変換をする関数なので、元の"hi!はい"に戻っていま
す。

160
辞書型データをURLエンコードするには

 urlencodeを使って複数のパラメータをURLエンコード
する

　quote、unquoteを使うと、単一の文字列をURLエンコード
できます。Webサーバにパラメータを送信するときには、複
数の「パラメータ＝値」の組を送ることも少なくありませ
ん。このようなデータを保持するのには辞書型データが適し
ていますが、urlencodeは辞書型データに対して一括して
URLエンコードを行い、URLとして送信できる単一の文字列
に変換します。

◎関数　urlencode(query)
カテゴリ　 urllib.parseモジュール
引数　　　 辞書型などのマッピングオブジェクト
戻り値　　 辞書のパラメータをURLエンコードして連結した文字

列を返す
説明　　　 引数で渡されたオブジェクトをKey=Valueの文字列に

して返す。その際、日本語などのURL規定外の文字は
urlencode（UTF-8で符号化し、％XXの形式に変換）
して返す。それぞれのKey=Valueペアは＆文字で連結
される

使用例　　 r = urllib.parse.urlencode({'ja': "はい", 'en': 'Yes'})

◎リスト urllib_parse2.py
import urllib.parse
s = urllib.parse.urlencode({'ja': "はい", 'en': 'Yes'})
print(s)

■出力例

ja=%E3%81%AF%E3%81%84&en=Yes

　「ja=はい」と「en=Yes」という2つのパラメータを送る
例です。"はい"という文字列はUTF-8で符号化すると、
0xE3、0x81、0xAF、0xE3、0x81、0x84となります。よっ
て、ja=%E3%81%AF%E3%81%84となります。一方、英語
のYesはエンコード不要です。それらの値が＆で連結されて
いることがわかります。この関数を使うとGETによるデータ
送信が簡単に実装できます。

◎リスト urllib_get0.py
import urllib.request
import urllib.parse
url = "http://localhost:8080/test?"
param = urllib.parse.urlencode({'ja': "はい", 'en': 'Yes'})
with urllib.request.urlopen(url + param) as res:
　　print(res.read().decode('utf8'))

　urlencodeで辞書型のデータをURLエンコードし、urlopen
を使ってサーバに接続しています。test_web_server.pyを動
作した状態でurllib_get0.pyを実行すると、サーバのコンソー
ルに以下のような出力が表示されます。

■出力例

127.0.0.1 - - [10/Sep/2017 11:21:39] "GET /test?
ja=%E3%81%AF%E3%81%84&en=Yes HTTP/1.1" 200 -

　このように、 ja=%E3%81%AF%E3%81%84とurlencode
された文字列がGETでサーバに届いていることがわかりま
す。

161
POSTでデータを送信するには

 urlopenにRequestオブジェクトを渡す

　GETでデータを送る場合、そのデータはURLの一部として
送信されます。一方、POSTでデータを送るとデータは
HTTPのボディとしてサーバに送られます。GETでデータを
送るときには、送信するデータをURLエンコードしました
が、POSTの場合は、別の方法を使用します。

◎コンストラクタ　Request(url, data)
カテゴリ　 urllib.requestモジュール
引数　　　 url：サーバのURL、data：データ転送するバイト列、

ファイルオブジェクト
戻り値　　 Requestオブジェクト
説明　　　 urlで示されるサーバへPOSTメソッドでデータを送信

する
使用例　　 req = urllib.request.Request(url, buf)

◎リスト urllib_post0.py
import urllib.request
url = "http://localhost:8080/test"

buf = "Hello World".encode() １
req = urllib.request.Request(url, buf) ２
with urllib.request.urlopen(req) as res: ３
　　print(res.read().decode())

　１のbufは「Hello World」をバイト列にエンコードしたも
のです。２では、urlとbufを引数にRequestオブジェクトを作
成しています。そのオブジェクトを３でurlopenの引数に渡
しています。この例では、URL以外に送るべきデータがある
ため、GETではなくPOSTが使用されます。テストサーバで
のコンソール出力は以下のようになります。POSTと出力さ
れていることが確認できます。

ＮＯＴＥ http.serverモジュールはデフォルトでPOSTに対応して
おりません。POSTやHTTPヘッダの挙動を確認するには
「 158　テスト用Webサーバを用意するには」の
test_web_server.pyをご利用ください。

■出力例

Accept-Encoding : identity
Content-Type : application/x-www-form-urlencoded
Content-Length : 11
Host : localhost:8080
User-Agent : Python-urllib/3.6
Connection : close
127.0.0.1 - - [17/Jan/2018 02:35:04] "POST /test HTTP/1.1" 200 -

　urlopenでのGETとPOST

　urlopenではGETとPOSTの両方が使われます。URL文字
列とは別に何らかのデータを送信する場合にはPOSTが使
われます。

１ r = urllib.request.urlopen("http://localhost:8080/") GET

２ r = urllib.request.urlopen("http://localhost:8080/",
"hello".encode()) POST

３　req = urllib.request.Request("http://localhost:8080/")
r = urllib.request.urlopen(req) GET

４ 　 req = urllib.request.Request("http://localhost:8080/",
"hello".encode())
r = urllib.request.urlopen(req)　 POST

　１と２がurlopenに文字列を渡した場合、３と４が
Requestオブジェクトを渡した場合です。２と４で
は"hello”という文字列を送信していますが、これらの場合
にPOSTが使用されます。

162
HTTPヘッダを指定するには

 Requestオブジェクトのadd_headerメソッドを使用す
る

　HTTPはヘッダとHTTP本体から構成されます。HTTPヘッダ
を自分で追加する必要性に迫られることも少なくありませ

ん。そんなときは、Requestオブジェクトのadd_headerメ
ソッドを使用します。

◎メソッド　add_header(key, val)
カテゴリ　 urllib.requestモジュールのRequestクラス
引数　　　 key：ヘッダ名、val：ヘッダの値
戻り値　　 なし
説明　　　 HTTPヘッダに追加する
使用例　　 req.add_header('Content-Type', 'application/json')

◎リスト urllib_addheader.py
import urllib.request

req = urllib.request.Request("http://localhost:8080/")
req.add_header("X-MY-HEADER", "python_standard_library")
with urllib.request.urlopen(req) as res:
　　html = res.read().decode("utf-8")

　Requestオブジェクトを作成し、add_headerメソッドで
HTTPヘッダを追加します。テスト用のサーバに接続する
と、ヘッダが追加されていることが確認できます。

■出力例

Accept-Encoding : identity
Host : localhost:8080
User-Agent : Python-urllib/3.6
X-My-Header : python_standard_library
Connection : close
127.0.0.1 - - [10/Sep/2017 22:12:21] "GET / HTTP/1.1" 200 -

ＮＯＴＥ このサンプルはローカルのWebサーバと通信をします。
「 158　テスト用Webサーバを用意するには」の

test_web_server.pyを動かした状態でサンプルを実行し
てください。

163
HTTPやHTTPSで通信を行うには

 http.client.HTTPConnection、HTTPSConnectionを使用
する

　Requestを使ってHTTP(s)通信を行う方法を紹介してきまし
たが、urllib.requestモジュールはその中でhttp.clientモジュ
ールを使っています。ここでは、直接http.clientを使って通
信を行う方法を紹介します。

◎コンストラクタ　HTTPConnection(host)
カテゴリ　 http.clientモジュール
引数　　　 ホスト名
戻り値　　 HTTPConnectionオブジェクト
説明　　　 ホストと通信するためのオブジェクトを作成する。

httpsで通信する際にはHTTPSConnectionオブジェ
クトを作成する

使用例　　 conn = http.client.HTTPConnection("localhost", 8080)

◎リスト httpconnection.py
import http.client
conn = http.client.HTTPConnection("localhost", 8080)

headers = {
　　"X-MY-HEADER": "python_standard_library"
}
body = "{'hello':'world'}"

conn.request("POST", "/", body, headers)
response = conn.getresponse()
data = response.read()

print(data)

　HTTPConnectionオブジェクトを作成します。HTTPヘッダ
は連想配列の形で指定します。HTTPConnectionオブジェク
トのrequestメソッドで、メソッド（POST、GETなど）、パ
ス、ボディ、ヘッダなどの情報を渡し、getresponseでサー
バとの通信を行います。サーバからの応答は、レスポンスの
readメソッドを呼び出して取得しています。

ＮＯＴＥ このサンプルはローカルのWebサーバと通信をします。
「 158　テスト用Webサーバを用意するには」の
test_web_server.pyを動かした状態でサンプルを実行し
てください。

　Requestsモジュール

　ここまで標準モジュールを使ってネットワークにアクセ
スする方法について説明してきました。実際には、標準モ
ジュールではなくRequestsモジュールを使う人のほうが
多いかもしれません。Requestsモジュールは標準ライブラ
リに満足できない人が実装しただけあって使用方法がシン
プルです。
　GETでページを取得するコードは以下のようになりま
す。

◎リスト requests_get.py
import requests
res = requests.get('http://localhost:8080/test')
print(res.status_code)
print(res.text)

　POSTのコードは以下のようになります。

◎リスト requests_post.py
import requests
res = requests.post('http://localhost:8080/',
　　data={'ja': "はい", 'en': 'Yes'})
print(res.status_code)
print(res.text)

　どちらも標準ライブラリを使ったときよりも直観的な記
述になっています。ただし、Requestsは標準ライブラリで
はないので「pip install requests」を実行してパッケージ
を追加する必要があることに注意してください。

ＮＯＴＥ 公式のドキュメントにもRequestsモジュールの使用を
推奨する記載があります。
　http://docs.python-requests.org/en/master/

164
ブラウザを起動するには

 webbrowserモジュールのopen関数で開きたいページ
URLを指定する

http://docs.python-requests.org/en/master/

　Webブラウザを起動するにはwebbrowserモジュールの
open関数を使います。

◎関数　open(url)
カテゴリ　 webbrowserモジュール
引数　　　 ページのURL
戻り値　　 なし
説明　　　 デフォルトのブラウザを起動して指定されたURLのペ

ージを開く
使用例　　 webbrowser.open("http://impress.co.jp")

◎リスト webbrowser0.py
import webbrowser
webbrowser.open("http://impress.co.jp")

●新しいタブで開く
　すでにブラウザが起動しているときには、新しいタブを開
いてそこにページを表示することもできます。

◎関数　open_new_tab(url)
カテゴリ　 webbrowserモジュール
引数　　　 ページのURL
戻り値　　 なし
説明　　　 新しいタブで指定されたURLのページを開く
使用例　　 webbrowser.open_new_tab("http://impress.co.jp")

◎リスト webbrowser1.py
import webbrowser
webbrowser.open_new_tab("http://impress.co.jp")

Chapter
７

描画とGUI

ここまでコマンドラインから実行するプログラムについて説明して
きました。この章ではGUI（Graphical User Interface）について説明
します。Pythonの標準モジュールにはturtleやtkinterといったGUIモ
ジュールが含まれています。turtleは主にプログラミング学習用に、
tkinterは簡易GUI作成用に用いられます。

7-1  Turtleグラフィックスを使用する
turtleモジュールでは、ペンの上下、前進後退、右折左折とい
った基本的な操作を通して描画を行います。その内容は、プ
ログラミングの基礎を学ぶのに適しています。

165
基本的な描画を行うには

 forwardで前進、leftとrightで向きを変える

　Turtleグラフィックスの基本に慣れるには、Pythonコマンド
で対話的に操作するのがよいでしょう。

◎実行例

>>> from turtle import *
>>> forward(100)

　この2行を入力するだけで、ウィンドウが現れて右方向に矢
印（カーソル）が描画されます。

　このあとに、 90度左折する left(90)、さらに 100進む
forward(100)、と繰り返し実行すると四角形を描画できます。
forwardはfdと記述することも可能です。

◎実行例

>>> reset()
>>> forward(100)
>>> left(90)
>>> forward(100)
>>> left(90)
>>> forward(100)
>>> left(90)
>>> forward(100)

◎関数　forward(distance)
カテゴリ　 turtleモジュール
引数　　　 距離
戻り値　　 なし
説明　　　 カーソルが向いている方向にdistanceの距離分を進む
使用例　　 forward(100)

◎関数　left(angle)
カテゴリ　 turtleモジュール
引数　　　 角度
戻り値　　 なし
説明　　　 カーソルの向きをangleの角度で左に回す
使用例　　 left(90)

　主な命令を次に列挙します。

　ペンの現在位置を表すカーソルはデフォルトでは矢印の形
状ですが、shape関数を使うことでカーソルの形状を変更で
き、shapesizeでカーソルのサイズを変更することができま
す。

◎実行例

>>> from turtle import *

>>> shape("turtle")

166
多角形の描画を行うには

 「fdで進み、left、もしくはrightで曲がる」という処理
を繰り返す

　多角形を描画する場合、すべての頂点で同じ角度で曲がる
必要があります。

　n角形の場合、各頂点で曲がる角度θは、360度÷nとなりま
す。あとは、前進して曲がってという処理をn回繰り返せば多
角形が描画できます。以下の例ではペンの上げ下げにupと
downを、ペンの移動にsetposを使っています。

◎関数　up()
カテゴリ　 turtleモジュール
引数　　　 なし
戻り値　　 なし
説明　　　 ペンを上げる
使用例　　 up()

◎関数　down()

カテゴリ　 turtleモジュール
引数　　　 なし
戻り値　　 なし
説明　　　 ペンを下げる
使用例　　 down()

◎関数　setpos(x, y)
カテゴリ　 turtleモジュール
引数　　　 x座標、y座標
戻り値　　 なし
説明　　　 ペンをx, y座標の場所に移動する
使用例　　 setpos(100, 200)

◎リスト turtle_polygon.py
import turtle as t
from math import sin, cos, radians

def draw_poly(x, y, s, n): １
　　t.up() ２
　　t.setpos(x, y)
　　t.down()
　　for _ in range(n): ３
　　　　t.fd(s) ４
　　　　t.left(360/n) ５

draw_poly(-200, 200, 100, 3)
draw_poly(0, 200, 100, 4)
draw_poly(200, 200, 80, 5)
draw_poly(-200, 0, 75, 6)
draw_poly(0, 0, 70, 7)
draw_poly(200, 0, 50, 8)
draw_poly(-200, -200, 45, 10)
draw_poly(0, -200, 30, 15)
draw_poly(200, -200, 20, 20)

t.done()

　今回のリストではdraw_poly(x, y, s, n)関数を使って多角形
を描画しています。関数は１で定義されています。引数のx、
yは図形を描き始める場所、sは1辺のサイズ、nは頂点の数で
す。２でペンを上げて、setposでペンを移動します。そのあと
でdownで書き始めます。３でn角形分のループを開始しま
す。４で1辺分進んで、５において、各頂点で曲がる処理を行
います。このような処理で多角形を簡単に描画することがで
きます。

167
幾何学模様を描画するには

 2重ループを使って、多角形を回転して描画する

　直前の項では1重ループを使って多角形を描画しました。2
重ループを使うといろいろな幾何学模様が簡単に描画できま

す。

◎関数　colormode(cmode)
カテゴリ　 turtleモジュール
引数　　　 1か255のどちらかの値
戻り値　　 なし
説明　　　 色指定をする際、最大値を1にするか255にするか選択す

る
使用例　　 colormode(1)

◎関数　pencolor(r, g, b)
カテゴリ　 turtleモジュール
引数　　　 r：赤、g：緑、b：青
戻り値　　 なし
説明　　　 ペンの色を設定する。colormodeに応じて0～1もしくは

0～255の範囲で指定
使用例　　 pencolor(255,255,0)

◎リスト turtle_pattern.py
from turtle import *
from math import sin, cos, radians

def draw_poly(x, y, s, n): １
　　up()
　　setpos(x, y)
　　down()
　　for _ in range(n):
　　　　fd(s)
　　　　left(360/n)

speed(0) ２
colormode(1) ３

for i in range(90): ４
　　rad = radians(i*4) ５

　　r = (sin(rad) + 1) / 2 ６
　　g = (cos(rad) + 1) / 2 ７
　　b = (sin(rad*2) + 1) / 2 ８
　　pencolor(r, g, b) ９
　　draw_poly(0, 0, 100, 4) 10
　　right(4) 11

done()

　１の関数は前項で使ったものをそのまま流用しています。
２で描画のスピードを最大にしています。speedの引数は1が
最も遅く、10が速くなります。0はアニメーション効果をなく
す指定で、最も描画が速くなります。３でカラーモードを設
定します。引数は1か255のどちらかです。色を設定するとき
のパラメータの範囲を、0～1にするか0～255にするかを指定
します。今回は三角関数を使って色の値を指定するため引数
に1を渡しています。
　４でfor文を90回繰り返しています。５では0～360度の角度
をラジアンに変換しています。６～８でR（赤）、G（緑）、B
（青）の色を指定しています。９でR、G、Bの値を指定し、
10で一辺が100ピクセルの四角形を描画しています。11で角
度を4度右にずらしてfor文を繰り返します。このようにするこ
とで、四角形が4度ずつずれた幾何学模様が描画されます。
　ここで色の指定に三角関数を使った理由について説明しま
しょう。今回の模様は1回転、すなわち360度移動しながら色
を変化させますが、つなぎ目を目立たなくするためには、最
初と最後の色味をスムーズにつなげる必要があります。この
用途には三角関数が適しています。sin、cosどちらも360度で
元の値に戻るからです。sin、cosともに値の取りうる範囲は-1
から+1です。これを0～1の範囲にするために、1を加えて2で
割るという計算をしました。

　青色に関してはさらに変化をつけるため、角度radを2倍に
することで周期を2倍にしています。

　以下のリストはクリックした場所に星を描画します。

リスト: turtle_star.py
import turtle as t
def star(x, y):
　　t.up()
　　t.setpos(x,y)
　　t.down()
　　for _ in range(5):
　　　　t.forward(100)
　　　　t.right(144)
t.onscreenclick(lambda x, y: star(x, y))
t.done()

168
フラクタルを描画するには

 再帰関数を使う

　図形の一部分を取り出しても、それが全体と似ている図形
を「フラクタル」といいます。Turtleモジュールを使ってフラ
クタル図形を描画してみましょう。
　線分ABがあり、それを三等分する点CとDがあったとしま
す。CDを一辺とする正三角形を描き、その三角形の新たな頂
点をEとします。さらに線分AC、CE、ED、DBに対しても、同
じように三等分して正三角形を描画すると以下のようになり
ます。

　これをずっと繰り返していくと面白い図形ができあがりま
す。

◎リスト turtle_fractal.py
import turtle as t

def fractal_line(size, depth): １
　　if depth == 0: ２
　　　　t.fd(size)

　　else:
　　　　fractal_line(size/3, depth-1) ３
　　　　t.left(60) ４
　　　　fractal_line(size/3, depth-1) ５
　　　　t.right(120) ６
　　　　fractal_line(size/3, depth-1) ７
　　　　t.left(60) ８
　　　　fractal_line(size/3, depth-1) ９
t.speed(0) 10
t.up() 11
t.setx(-200)
t.sety(200)
t.down()
N = 4
fractal_line(400, N) 12
t.right(120)
fractal_line(400, N) 13
t.right(120)
fractal_line(400, N) 14
t.done()

　ある線分が与えられて、それを３等分して正三角形を描く
場合、turtleモジュールを利用したコードは以下のようになり
ます。

　「1/3進んで左へ60度、1/3進んで右に120度、1/3進んで左
へ60度、最後に1/3進む」という具合です。ただ、これではフ
ラクタルになりません。fdで1/3進む代わりに、自分自身の関
数を呼び出すようにします。関数が自分自身を呼び出すこと
を「再帰」と呼びますが、fractal_lineは再帰関数にほかなりま
せん。それでは詳しく見ていきましょう。
　１にあるように、fractal_lineは1辺の長さsizeと深さdepthを
引数にとります。depthは自分自身を呼び出すたびに減らして
いき、0になった時点で再帰を終了します。２でdepthが0か調
べ、0の場合は単にsizeの線を引きます。1以上の場合は３～９
で、「1/3進んで左へ60度（または右へ120度）…」という処
理を行いますが、進むときにfractal_lineを使います。depthの
値を1減らしていることに注意してください。
　10でスピードを最速にし、11でペンを上げて最初の描画座
標を設定し、12～14でfractal_lineを使って三角形を描画して
います。
　Nの値を変化させていくと、模様が緻密になっていく様子が
観察できます。このような図形を考案した数学者コッホにち
なんで、「コッホ曲線（コッホ雪片）」と呼びます。

　スタックオーバーフロー

　再帰関数で自分自身を永遠に呼び出すとどうなるでしょ
うか？fractal_lineでdepthを減らさずに呼び出してみると、
しばらく実行したあとに以下のようなエラーが表示され処
理が終了します。

■実行結果
RecursionError: maximum recursion depth exceeded in comparison

　一般的に、プログラムは関数を呼び出すときに、引数な
どの情報をスタックと呼ばれる記憶領域に格納します。関
数をずっと呼び出し続けると、この領域をすべて占有して
しまい、関数をこれ以上呼び出せなくなってしまいます。
これがスタックオーバーフローという状態です。

　普通にプログラムを組んでいるだけなら、スタックオー
バーフローに直面することはあまりないでしょう。しかし
ながら、再帰関数を使用すると、少し間違えただけで自分
自身を永遠に呼び続けるという状況に陥ってしまい、簡単
にスタックオーバーフローを引き起こしてしまいます。今
回は変数depthを使って、そのような状況を回避しました。

7-2 Tkinterでウィジェットをレイアウトする
GUIを構築する際には、まずウィンドウを生成し、そこに表示
する部品（ウィジェット）を配置しなくてはなりません。Tk
ではOSによって部品の大きさが微妙に変化するので、厳密な
値で配置するのではなく、ざっくりと部品を並べるというア
プローチのほうがよいでしょう。

169
ウィンドウを表示するには

 Tkオブジェクトを作成し、mainloopメソッドを呼び出
す

　TkinterではTkオブジェクトを作成することで、アプリケー
ションのメインとなるトップレベルウィンドウを作成するこ
とができます。

ＮＯＴＥ TkinterとはTkをPythonから呼び出せるようにするための
モジュールです。TkはもともとTclというスクリプト言語
用に開発されたGUI構築用のツールキットでしたが、手軽
に使えるためファンも多く、現在ではいろいろな言語で
サポートされています。

◎コンストラクタ　Tk()
カテゴリ　 tkinterモジュール
引数　　　 なし
戻り値　　 Tkオブジェクト
説明　　　 トップレベルのウィンドウを作成する
使用例　　 root = tk.Tk()

◎リスト tkinter_basic.py
import tkinter as tk
root = tk.Tk()
root.title("Python Standard Library") １
root.geometry("400x300") ２
root.mainloop() ３

　１では、作成されたオブジェクトのtitleメソッドを使ってウ
ィンドウタイトルを設定しています。また、２のgeometryメ
ソッドでウィンドウのサイズを設定しています。サイズ指定
を省略したときは、子要素を格納するのに必要なサイズが自
動的に計算されます。
　ウィンドウアプリケーションは、再描画を行ったり、ユー
ザーの操作に反応したりと、いろいろな事象に対応するため
に、メインループといわれるループ処理を実行するのが普通
です。tkinterではトップレベルのウィンドウのmainloopメソ
ッドを呼び出すことで、メインループを実行します３。

　GUIの親子関係

　tkinterにはボタン、ラベル、スクロールバー、キャンバス
などさまざまな部品が用意されており、それらを配置する
ことでGUIを構築します。Tkではこれらの部品を「ウィジェ
ット」と呼びます。ウィジェットは親子関係を形成しま
す。

　メインのウィンドウをつくって、その子要素として画面
上部にメニューを配置し、メニューの子供にボタンを配置
し、という具合です。Tkでは、ウィジェット作成時の最初
の引数に親ウィジェットを指定することで親子関係を記述
します。

170
縦方向（横方向）にボタンを配置するには

 ウィジェットのpackメソッドを呼び出す

　まずは最も基本的なウィジェットであるボタンを複数配置
してみましょう。

◎コンストラクタ　Button(parent, text=…)
カテゴリ　 tkinterモジュール
引数　　　 parent：親ウィジェット、text：ボタンに表示する文字

列
戻り値　　 Buttonオブジェクト
説明　　　 親がparentであるButtonウィジェットを作成する
使用例　　 button0 = tk.Button(root, text="Hello")

◎リスト tkinter_layout_basic0.py
import tkinter as tk
root = tk.Tk() １
button0 = tk.Button(root, text="Hello") ２
button1 = tk.Button(root, text="Python") ３
button2 = tk.Button(root, text="Language") ４
button0.pack() ５
button1.pack() ６
button2.pack() ７
root.mainloop()

　１でメインウィンドウを作成し、２～４でボタンを作成し
ています。第1引数がrootでメインウィンドウを指定していま
す。つまり、これらのボタンはメインウィンドウの直下に配
置されます。Tkでは部品を作成しただけでは画面に表示され
ません。「親ウィンドウの中でどのように配置するか」を子
供からリクエストを出す必要があります。そのリクエストを
依頼するのが５～７のpackメソッドです。特に引数を指定し
ない場合、縦方向にレイアウトされます。
　packメソッドには柔軟な配置を実現するために、さまざま
な引数が用意されています。

◎メソッド　pack(side=, fill=, anchor=, ...)
カテゴリ　 tkinterモジュールの各種ウィジェットクラス
引数　　　 名前付き引数sideがとり得る値は、TOP、BOTTOM、

LEFT、RIGHTのどれか
名前付き引数fillがとり得る値は、NONE、X、Y、BOTH
のどれか
名前付き引数anchorのとり得る値は、以下の図の通り

戻り値　　 なし
説明　　　 side　どの方向から詰めていくかを指定する

上から：TOP、左から：LEFT、右から：RIGHT、下か
ら：BOTTOM
fill　空きスペースがある場合に、どのように隙間を埋め
るかを指定する
横方向：X、縦方向：Y、縦横両方向：BOTH
anchor　空きスペースがある場合に、どの方向に寄せ
て配置するかを指定する。東西南北（EWSN）を組み合
わせて指定

使用例　　 button0.pack(side=tk.LEFT)
button0.pack(fill=tk.X)
button0.pack(anchor=tk.E)

◎リスト tkinter_pack0.py
import tkinter as tk
root = tk.Tk()
for txt in ("Hello","Python","Language"):
　　b = tk.Button(root, text=txt)
　　b.pack(side=tk.LEFT)
root.mainloop()

リスト：tkinter_pack1.py
import tkinter as tk
root = tk.Tk()
for txt in ("Hello","Python","Language"):
　　b = tk.Button(root, text=txt)
　　b.pack(fill=tk.X)
root.mainloop()

リスト：tkinter_pack2.py
import tkinter as tk
root = tk.Tk()
anchors = [tk.E, tk.W, tk.S]
texts = ["Hello","Python","Language"]
for i in range(3):
　　b = tk.Button(root, text=texts[i])
　　b.pack(anchor=anchors[i])
root.mainloop()

171
格子状にウィジェットを配置するには

 ウィジェットのgridメソッドを使い、配置する行・列を
指定する

　電卓や表など、格子状に部品を配置する場合にはgridレイ
アウトを使います。

◎メソッド　grid(row=, column=, padx=, pady=, ...)
カテゴリ　 tkinterモジュールの各種ウィジェットクラス
引数　　　 row：行、column：カラム、padx：横方向の余白、

pady：縦方向の余白
columnspan：横方向に何列にまたがって配置するか
rowspan：縦方向に何行にまたがって配置するか

戻り値　　 なし
説明　　　 行row、カラムcolumnの場所にウィジェットを配置する
使用例　　 button.grid(row=3, column=2)

◎リスト tkinter_layout_grid0.py
import tkinter as tk
root = tk.Tk()
for i in range(12): １
　　button = tk.Button(root, text=i, width=4, font=("",25)) ２
　　button.grid(row=i//4, column=i%4, padx=1, pady=2) ３
root.mainloop()

　１で12回ループを回しています。２でボタンを作成してい
ます。textにループの回数を指定し、ボタンの幅としてwidth
パラメータに4を指定。フォントの種類はデフォルトとし、そ
のサイズには25を指定しています。３が格子状にレイアウト
する部分です。行をrowで、列をcolumnで指定します。//は
切り捨ての除算、%は剰余を求める演算子です。これらの演
算子を使って、ループカウンタのiから行と列の番号を求めて
います。padxは横方向、padyは縦方向の余白です。

172
位置を指定してウィジェットを配置するには

 placeメソッドを使って位置指定を行う

　指定した位置と場所にウィジェットを配置するにはplaceメ
ソッドを使います。

◎ メ ソ ッ ド 　 place(x, y, width, height, relx, rely,
relwidth, relheight)
カテゴリ　 tkinterモジュールの各種ウィジェットクラス
引数　　　 x：部品の左端の位置（ピクセル）、デフォルトは0

y：部品の上端の位置（ピクセル）、デフォルトは0
width：部品の幅、height：部品の高さ
relx：部品の左端の位置（親に対する相対値0～1.0の実
数）、デフォルトは0
rely：部品の上端の位置（親に対する相対値0～1.0の実
数）、デフォルトは0
relwidth：部品の幅（親に対する相対値0～1.0の実数）
relheight：部品の高さ（親に対する相対値0～1.0の実
数）

戻り値　　 なし
説明　　　 指定された場所にウィジェットを配置する（原点は左上

隅）
使用例　　 button.place(x=10, y=20, width=150, height=30)

◎リスト tkinter_layout_place0.py
import tkinter as tk
root = tk.Tk()
root.geometry("200x150")
button0 = tk.Button(root, text="Hello")
button1 = tk.Button(root, text="Python")
button2 = tk.Button(root, text="Language")
button0.place(x=10, y=20, width=150, height=30)
button1.place(x=80, y=40, width=100, height=30)
button2.place(relx=0.1, rely=0.6, relwidth=0.3, relheight=0.2)
root.mainloop()

　button0とbutton1はピクセル単位の絶対値で場所と大きさを
指定しています。button2は親に対する相対値で場所と大きさ
を指定しています。

　いろいろな設定を行うには

　TkinterではいろいろなGUI部品が用意されています。主な
ものを以下に列挙します。

　たくさんの部品が用意されていることがわかります。そ
の上、それぞれの部品には数多くの設定内容があります。
たとえば、今までボタンの作成は以下のように行ってきま
した。最初の引数は親ウィジェットを指定していますが、
それ以外の引数にはキーワード引数を使用しています。

button = Button(root, text="Hello")

　ボタンを作成する場合、文字列以外にも、フォント、
色、ボーダー幅、余白、縦・横サイズ、コールバック関数
などさまざまな設定項目があります。このような設定項目
には数多くの種類があるので、すべてを順番通りに指定す
るのは現実的ではありません。
　そこでTkinterではキーワード引数を使用します。たとえ
ば以下のようになります。

button = Button(root, text=i, width=4, command=clicked)
button = Button(root, command=clicked, text=i)

　このように名前付き引数を使用すれば、必要な項目のみ
を設定できるようになります。これはButtonだけでなく、ほ
かのウィジェットでも共通です。どのウィジェットも、コ
ンストラクタ（ウィジェットを作る関数）の第1引数には親
ウィジェットを指定し、それに続くオプション引数で詳細
な指定を行います。
　主なオプションに次のようなものがあります。ウィジェ
ットによって指定できる内容は変わるので注意してくださ
い。以降、具体例の中で主要なウィジェットを作成してい
きます。

　ウィジェットのkeys()オプションを使用するとオプション
一覧が表示されます。この表は以下のプログラムを使って
作成しました。

◎リスト tkinter_options.py

from tkinter import *
widgets = [Button, Frame, Label, Entry, Scale, Canvas]
options = ["anchor", "bg", "bitmap", "bd", "command",
　　"font", "fg", "height", "justify", "padx", "pady",
　　"relief", "text", "width"]

print(" " * 7, end='')
for w in widgets:
　　print("{0:7}".format(w.__name__), end='')
print()

for o in options:
　　print("{0:10}".format(o), end='')
　　for w in widgets:
　　　　flag = "o" if o in w().keys() else "-"
　　　　print("{0:7}".format(flag), end='')
　　print()

173
フォントを指定するには

 ウィジェットのfont引数で指定する

　ほとんどのウィジェットでフォントを指定できます。フォ
ントの指定にはfontオプションを使用します。指定可能なパ
ラメータは以下の通りです。フォントタイプを明示的に指定
せず、デフォルトのフォントを使用する場合は空文字列を指
定します。

◎リスト tkinter_font_labels.py
import tkinter as tk
root = tk.Tk()
params = ("System", 20, "bold", "italic", "underline", "overstrike")
for i in range(len(params)):
　　s = params[0:i+1]
　　tk.Label(root, text=str(s), font=s).pack(fill=tk.X)
root.mainloop()

　params[0:i+1]で引数を順番に切り出しています。
　i=0のときは("System",)、i=1のときは("System", 20)、i=2
のときは("System", 20, "bold")、とパラメータの内容が徐々に
増えていきます。

　どのようなフォントタイプが利用できるかを調べるには、
tkinter.fontモジュールのfamilies関数を使用します。

◎リスト tkinter_font_list.py
import tkinter as tk
import tkinter.font
root = tk.Tk()
print(tkinter.font.families())

　現在の環境で利用できるフォント一覧が表示されます。ほ
かの環境でも意図したフォントを表示するには、一般的なフ
ォント名を使うのがよいでしょう。

ＮＯＴＥ 多くのウィジェットではreliefオプションで3Dボーダーを
描画できます。
◎リスト

import tkinter as tk
root = tk.Tk()

for r in (tk.SUNKEN, tk.RAISED, tk.GROOVE, tk.RIDGE,
tk.FLAT):
　　tk.Label(root, text=r, relief=r,
　　　　bd=5, font=("", 24)).pack(side=tk.LEFT)
root.mainloop()

174
複雑な配置をするには

 ウィジェットを使って入れ子構造を作り、それぞれに
適切なレイアウトを設定する

　ここまで説明したように、Tkでのレイアウトは、縦（横）
方向に1列に配置するpack、格子状に配置するgrid、任意の場
所に配置するplaceの3つが用意されています。1つの親ウィン
ドウの中にこれら複数のレイアウトを混在させることはでき
ません。よって、複雑なGUIを作るときには、Frameウィジェ
ットを入れ子にして、それぞれのFrameに別のレイアウトを適
用することになります。
　たとえば電卓を考えてみましょう。一般的な電卓では上部
に結果表示領域があり、下部にボタンが格子状に並んでいま
す。このようにある程度複雑なレイアウトを実現したい場
合、rootの直下にすべての部品を配置するのではなく、ウィ
ジェットを入れ子にすると配置が容易になります。
　結果表示領域のEntryを含むFrameと、キー入力用のButton
を格子状に配置するFrameを用意し、rootは単にFrame2個を縦

方向に配置します。Frameやrootは直下の子供を配置すること
に集中できるので、FrameやRootでの管理がしやすくなりま
す。

　テキストを入力したり、表示したりするにはEntryウィジェ
ットが便利です。以下のサンプルでは計算結果を表示するた
めにEntryウィジェットを使っています。
　Entryにテキストを挿入するにはinsertメソッドを使用し、
テキストの削除にはdeleteメソッドを使用します。

◎メソッド　insert(index, string)
カテゴリ　 tkinterモジュール、Editクラス
引数　　　 index：挿入する場所、string：挿入する文字列
戻り値　　 なし
説明　　　 indexで指定した場所にstringで指定した文字列を挿入

する
使用例　　 entry.insert(tk.END, "hello")

◎メソッド　delete(first, last=None)
カテゴリ　 tkinterモジュール、Editクラス
引数　　　 first：削除する文字の先頭位置

last：削除する文字の最後の位置、ENDとすると末端ま
で

戻り値　　 なし
説明　　　 Entryウィジェットにおいてfirstからlastまでの範囲の文

字を削除する
使用例　　 entry.delete(0, tk.END)

　また、以下のサンプルではEntryに入力された値を計算する
ためにeval関数（030で解説）を使用しています。

◎リスト tkinter_calc.py
import tkinter as tk

labels = ("7","8","9","*","4","5","6",
　　"-","1","2","3","+","C","0",".","=") １

def clicked(e): ２
　　btn = e.widget["text"] ３
　　if btn == "C":
　　　　entry.delete(0, tk.END) ４
　　elif btn == "=":
　　　　result = eval(entry.get()) ５
　　　　entry.delete(0, tk.END) ６
　　　　entry.insert(tk.END, result) ７
　　else:
　　　　entry.insert(tk.END, btn) ８
root = tk.Tk()
upper = tk.Frame(root) ９
entry = tk.Entry(upper, font=("", 25), justify=tk.RIGHT)
entry.pack(fill=tk.X)
upper.pack(padx=20, pady=20)

lower = tk.Frame(root) 10
lower.pack(pady=20)
for i, txt in enumerate(labels): 11
　　b = tk.Button(lower, width=4, height=2, font=("",25), text=txt)
12
　　b.grid(row=int(i/4), column=i%4) 13
　　b.bind("<Button-1>", clicked) 14

root.mainloop()

　１は電卓のボタン用のラベルです。２はボタン押下時のイ
ベントハンドラです。３で押下されたボタンのtextを取得しま
す。「C」キーが押下されたときは、４で入力内容をクリアし
ます。
　「=」キーが押下されたときは、５で入力内容を取得して
evalで計算をします。
　６で入力内容をクリアし、７で計算結果を表示します。そ
れ以外のときは８で押下されたキーを入力領域に追加しま
す。９で電卓上部のFrameを作成します。10で電卓下部の
Frameを作成し、11でラベルを取り出し、12でボタンを作成
します。13でボタンを格子状に配置し、14でイベントハンド
ラを登録しています。

7-3 Tkinterでイベントを処理する
部品を並べたら操作したくなるはずです。本節ではマウスや
キーボードに反応するコードの実装方法を見ていきます。

175
クリックイベントに反応するには

 ウィジェットのcommand引数、もしくはbindメソッド
を使用する

　ボタンやスライダバーなどはユーザー入力に反応して何か
処理を行うことが一般的です。ボタンが押下されたときにコ
マンドを実行するには、 Buttonウィジェット作成時の
command引数にコールバック関数を指定します。

◎リスト tkinter_button0.py
import tkinter as tk
def clicked():
　　print("clicked")

root = tk.Tk()
button0 = tk.Button(root, text="Hello", command=clicked)
button1 = tk.Button(root, text="World", command=clicked)
button0.pack()
button1.pack()
root.mainloop()

　command引数でコールバック関数を登録する方法はシンプ
ルですが、コールバック関数に値を渡すことができないの
で、複数のボタンを1つのコールバック関数で扱うような状況
には適していません。そのようなときにはbindメソッドを使
用してください。イベントに関する情報が引数としてコール
バック関数に渡されます。

◎メソッド　bind(event, handler)
カテゴリ　 tkinterモジュールの各種ウィジェットクラス
引数　　　 event：イベント文字列、handler：イベントハンドラ
戻り値　　 バインドを示す文字列
説明　　　 ボタンなどイベントを発生するウィジェットにおいて、

イベントとそれを処理するイベントハンドラを紐付ける
使用例　　 b = tk.Button(root, text="click")

b.bind("<Button-1>", clicked)

　bindメソッドでは、最初の引数にイベントの種類を文字列で
指定します。マウスのクリックやリリースを検出する場合に
は、以下の文字列に指定します。昔のUNIX端末では3つボタン
マウスを使うのが一般的でしたが、そのような背景があった
ために3つのボタンに対応できるようになっています。

　bindメソッドの第2引数にはコールバック関数を指定しま
す。

◎リスト tkinter_button1.py
import tkinter as tk

def clicked(e):
　　print("x:{0} y:{1} text:{2}".format(e.x, e.y, e.widget["text"]))

root = tk.Tk()
button0 = tk.Button(root, text="Hello")
button1 = tk.Button(root, text="World")
button0.pack()
button1.pack()
button0.bind("<Button-1>", clicked)
button1.bind("<Button-3>", clicked)
root.mainloop()

　今回の例ではclicked(e)をコールバック関数として定義して
います。実際に発生したイベントの情報はコールバック関数
の引数として渡されます。イベントeのxプロパティがマウス
のx座標、yプロパティがy座標、widgetプロパティがイベント
発生元になったウィジェットを保持しています。この例で
は、e.widget["text"]で、ボタンのtextプロパティを取得してい

ます。マウスの座標位置などの詳細情報が不要なときは、以
下のようにlambda式を使ってもよいでしょう。

def clicked(s):
　　print(s)

button0.bind("<Button-1>", lambda e:clicked("hello"))
button1.bind("<Button-3>", lambda e:clicked("python"))

　テーマ付きtk

　tkのバージョン8.5からテーマ付きtkが導入されました。
テーマ付きtk用のPythonモジュールがtkinter.ttkです。下記
のリストは通常のtkinterのサンプルです。2行目に以下の を
挿入すると、tkinterのウィジェットがtkinter.ttkのウィジェ
ットに置き換えられます。たとえば tkinter.Buttonは
tkinter.ttk.Buttonとなります。これによりウィジェットの外
観が変わります。
　ただし、ttkはtkinterとの互換性は意識されているもの
の、すべてのウィジェットで互換性は保証されていないの
で注意してください。また、ttkは単に部品の見た目を変え
るだけでなく、TreeViewなど新しい部品が追加されたり、
部品の役割とスタイルが分離しやすくなっていたりといっ
た違いがあります。

◎リスト ttkinter_basic.py
from tkinter import *
root = Tk() ←1行目と2行目の間に下記１を挿入
Button(root, text="Hello").pack()
Label(root, text="World").pack()

Entry(root).pack()
Checkbutton(root).pack()
Scale(root).pack()
root.mainloop()

from tkinter.ttk import *　１

176
キー入力に反応するには

 bindメソッドのKeyPress、KeyReleaseイベントを使用す
る

　キー入力を処理する場合にもbindを使用します。キー入力
はOSで検出され、フォーカスを持っているウィジェットへ送
られます。

◎リスト tkinter_keyevent0.py
import tkinter as tk

def keydown(e):
　　label["text"] = "keydown:" + str(e.keycode)　１
def keyup(e):

　　label["text"] = "keyup:" + str(e.keycode)　２

root = tk.Tk()
label = tk.Label(root)
label.pack()
entry = tk.Entry(root) ３
entry.pack()
tk.Button(root, text = "hello").pack() ４
entry.bind("<KeyPress>", keydown) ５
entry.bind("<KeyRelease>", keyup) ６
root.mainloop()

　１がキー押下、２がリリース時のコールバック関数です。
３で1行入力用のEntryウィジェットを作成しています。４のよ
うにウィジェットの作成とpackによるレイアウトを1行で記述
することも可能です。５と６で bindメソッドを使って
<KeyPress>と<KeyRelease>をイベントハンドラに紐付けてい
ます。

　なお、Tabキーを押すと、フォーカスが入力欄からボタンに
移ります（入力欄が非アクティブになる）。ボタンにフォー
カスがある状態でキーを押しても、ボタンにはキー押下のコ
ールバック関数が紐付けられていないのでイベントは検出さ
れません。その状態でキーを押しても反応しません。
　それでもキーを反応させたい場合は、前述のリスト５ ６の
bindメソッドを、すべてのイベントを受け取るbind_allメソッ
ドに書き換えます。

entry.bind_all("<KeyPress>", keydown)
entry.bind_all("<KeyRelease>", keyup)

　あるいは、root.bindメソッドで、ルートウィンドウにイベ
ントハンドラを紐付けるとよいでしょう。

root.bind("<KeyPress>", keydown)
root.bind("<KeyRelease>", keyup)

　どのキーが押されたかを調べるには、イベントハンドラの
引数として渡されるオブジェクトのkeycodeプロパティを見
ます。ここにキーコードが格納されます。keysymプロパティ
にはキーの名前が格納されます。どちらか使いやすいほうを
選択してください。
　また、単にキーのイベントを検出するだけであれば、次の
<Key>イベントも利用できます。

root.bind("<Key>", keyhandler)

177
マウスイベントを取得するには

 bindメソッドの<Motion>イベントを使用する

　マウスの移動を検出するには<Motion>イベントを使用し
ます。これと、「175　クリックイベントに反応するには」の
<Button-1> ～ <Button-3> 、 <ButtonRelease-1> ～

<ButtonRelease-3>を組み合わせると簡易ドローアプリが作成
できます。

◎リスト tkinter_canvas_mousedraw.py
import tkinter as tk
prev = [0, 0] １
isMouseDown = False ２

root = tk.Tk()
canvas = tk.Canvas(root, width=500, height=500)
canvas.pack()

def mousemove(event):　３
　　if isMouseDown:
　　　　canvas.create_line(prev[0], prev[1], event.x, event.y) 　４
　　　　prev[0], prev[1] = event.x, event.y ５
def mousedown(event): ６
　　global isMouseDown
　　prev[0], prev[1] = event.x, event.y
　　isMouseDown = True

def mouseup(event): ７
　　global isMouseDown
　　isMouseDown = False

canvas.bind('<Button-1>' , mousedown) ８
canvas.bind('<ButtonRelease-1>' , mouseup) ９
canvas.bind('<Motion>', mousemove) 10
root.mainloop()

　１と２で、以前のマウスの座標を保持するprevとマウスの押
下状態を保持するisMouseDownというグローバル変数を宣言
しています。

　３はマウス移動時のコールバック関数で、マウスが押下状
態、すなわち isMouseDownが Trueのときは、 canvasの
create_lineメソッドを使って、以前の座標から現在の座標まで
線を引きます。
　４のcreate_lineはCanvas上に線を描画するメソッドです。4
つの引数（点1のx座標、点1のy座標、点2のx座標、点2のy座
標）を引数にとり、点1と点2を結ぶ線を描画します。５で
prevに現在のマウスの位置を格納します。
　６はマウス押下時のコールバック関数で、現在のマウス位
置をprevに格納し、isMouseDownをTrueに設定します。
　７はマウスリリース時のコールバック関数で、
isMouseDownをFalseにします。
　８～10でcanvasウィジェットにイベントハンドラを登録し
ています。

　グローバル変数とローカル変数

　関数の中からグローバル変数の値を書き換える場合には
注意が必要です。グローバル変数はいろいろな場所からア
クセスできます。これは便利な反面、不用意に変更すると
バグの原因になってしまいます。そこで、Pythonではグロ
ーバル変数の値を関数の中から変更する場合には、その意

図を明確に表明するためにglobalと宣言する必要がありま
す。この指定がないと、全く同一の変数名を使用していた
としても、ローカル変数として扱われるので、グローバル
変数の値は更新されません。
　 前 出 の リ ス ト 「 tkinter_canvas_mousedraw.py 」 の
isMouseDownはマウスの押下状態を保持するグローバル変
数ですが、その値を関数の中から変更するためにglobalを指
定しています。

178
生成後にウィジェットのオプションを設定するには

 configureメソッドをキーワード引数で呼び出し、各種
オプションを設定する

　各種ウィジェットを作成するときに、引数のオプションを
使ってカスタマイズすることが可能です。生成したあとから
変更する場合にはconfigureメソッドを使います。

◎メソッド　configure()
カテゴリ　 tkinterモジュールの各種ウィジェットクラス
引数　　　 引数名＝引数値の形式で指定
戻り値　　 なし
説明　　　 ウィジェットの設定内容を更新する
使用例　　 label.configure(text="hello")

◎リスト tkinter_configure.py
import tkinter as tk

def textUpdate():
　　label.configure(text=entry.get()) １

def scaleUpdate(e):
　　label.configure(font=("", e)) ２
root = tk.Tk()
label = tk.Label(root)
label.pack()
entry = tk.Entry(root)
entry.pack()
tk.Button(root, text="Update", command=textUpdate).pack()
tk.Scale(root, orient = 'h', from_ = 10, to = 50,
　　command=scaleUpdate).pack(fill=tk.X)
root.mainloop()

　１はボタンが押下されたときのコールバックです。entryに
入力された値をgetメソッドで取り出し、configureメソッドを
使ってラベルに設定しています。２はScaleのコールバック関
数です。引数eにはスライダバーの数値が渡されます。
configureメソッドを使って、ラベルに表示されているフォン
トのサイズを変更しています。

179
GUIの状態を変数にバインドするには

 StringVar、IntVar、BooleanVarなどのオブジェクトをウ
ィジェットにバインドする

　GUIの部品によってはその状態を変数と連動させると便利な
ものがあります。このような仕組みをバインドといいます。
たとえば、次のようなものです。

　●スライダバーが操作されると自動で数値が更新される
　●チェックボックスが操作されると自動で状態変数が更新さ

れる
　●ラジオボタンの選択肢が変わると自動で変数が更新される
　●エディットの文字が更新されるとデータ用文字列が連動し

て更新される

　このとき、連動する変数は、int、str、boolといった組み込
み型ではなく、IntVar、StringVar、BooleanBarといったオ
ブジェクトになります。IntVarはintを包んだような（Wrapし
た）オブジェクトで、StringVarはstrを、BooleanVarはbool
を、といった具合です。
　ScaleとIntVarを関連付けておけば、Scaleを操作しただけで
IntVarの値が自動で更新されます。Radiobuttonの場合はIntVar
を、Checkbuttonの場合はBooleanVarを使います。Labelと
StringVarを関連付けておけば、StringVarの値を更新するだけ
でLabelの表示が自動的に更新されます。GUIの内容によって
変数の型が変わってくることに注意してください。

　関連付けはウィジェットを作成するときのオプションで行
います。

◎リスト tkinter_variable_bind.py
import tkinter as tk
def scaleUpdate(e):
　　color = "#{0:02x}{1:02x}{2:02x}".format(R.get(), １
　　　　G.get(), B.get())
　　root.configure(bg = color) ２
　
def btnUpdate():
　　txt = "radio={0} check={1}".format(RadioVar.get(), ３
　　　　CheckVar.get())
　　TextVar.set(txt) ４

root = tk.Tk()
TextVar = tk.StringVar() ５
label = tk.Label(root, textvariable=TextVar) ６
label.pack()
R, G, B = tk.IntVar(), tk.IntVar(), tk.IntVar() ７
for color in [R, G, B]:
　　tk.Scale(root, orient = 'h', from_ = 0, to = 255, ８
　　　　variable = color, command = scaleUpdate).pack(fill=tk.X)

RadioVar = tk.IntVar() ９
for num in range(3):

　　tk.Radiobutton(root, text = num, value = num,　　　　10
　　　　variable = RadioVar, command = btnUpdate).pack()
CheckVar = tk.BooleanVar() 11
tk.Checkbutton(root, variable = CheckVar,　12
　　command = btnUpdate).pack()

root.mainloop()

　１はスライダバーが操作されたときのコールバック関数で
す。R.get()、G.get()、B.get()で赤・緑・青の数値を取得し、
＃RRGGBB形式の文字列を構築しています。２でメインウィン
ドウの背景色を設定しています。
　３はラジオボタンやチェックボックスの状態が変化したと
きに呼ばれるコールバック関数です。RadioVar.get()でラジオ
ボタンの選択肢を取得し、CheckVar.get()でチェックボタンの
状態を取得して、文字列txtを作成しています。４でその文字
列をTextVarにセットしています。これでLabelの表示内容が自
動で更新されます。
　５でLabelのバインド変数StringVarを生成し、６でLabelのオ
プションとして登録しています。７でR、G、Bの3つの数値用
の IntVarを作成し、８でそれぞれのScaleオブジェクトの
variableにセットすることでバインドしています。９でラジオ
ボタン用のIntVarを作成し、10でラジオボタンにその変数を
紐付けています。
　11ではチェックボックス用のBooleanVarを作成し、12でチ
ェックボタンに紐付けています。
　スライダバーを操作すると背景色が変わり、ラジオボタン
やチェックボックスを操作すると画面上部のラベルが変化し
ます。

7-4 TkinterのCanvasに描画する
Canvasウィジェットを使うと、線・矩形・円・画像などを自
由に描画することができます。本節では、それらを描画する
方法のほか、描画したものを操作する方法を説明します。

Canvasについて

　HTML5にはCanvasという要素があり、自由に描画するこ
とができます。TkinterのCanvasも要素の上に描画できるとい
う点は共通していますが、描画対象の扱いに大きな違いがあ
ります。HTML5のCanvasでは絵筆のように描画するのに対
し、TkinterのCanvasでは描画内容をオブジェクトとして扱い
ます。ちょうど、ペイントツールとドローツールのような関
係です。TkinterのCanvasではいったん描画したものを、あと
から場所やサイズを変更したり、色を変えたりといったこと
が可能です。

180
Canvasに描画するには

 Canvasクラスのメソッドで線や矩形、文字などを描画
する

　それでは、さっそくTkinterのCanvasにいろいろ描画してい
きましょう。四角形、円、線、文字、画像といった基本的な
描画をマスターしましょう。

●四角形

◎メソッド　create_rectangle(x0, y0, x1, y1, option)
カテゴリ　 tkinterのCanvasクラス
引数　　　 x0, y0：左上の座標、x1, y1：右下の座標、option：

さまざまな設定
戻り値　　 作成した四角形のIDを返す
説明　　　 矩形を描画し、そのオブジェクトの識別子を返す。x1,

y1が幅と高さではない点に注意
使 用 例 　 　 id = canvas.create_rectangle(10, 50, 200, 100,

fill="#FFFF00")

●楕円
◎メソッド　create_oval(x0, y0, x1, y1, option)
カテゴリ　 tkinterのCanvasクラス
引数　　　 x0,y0：左上の座標、x1, y1：右下の座標、option：さ

まざまな設定
戻り値　　 作成した楕円のIDを返す
説明　　　 x0, y0, x1, y1で表される矩形に内接する楕円を描画

し、そのオブジェクトの識別子を返す。(x1-x0)と
(y1-y0)が等しいとき正円になる

使 用 例 　 　 id = canvas.create_oval(10, 50, 200, 100,
fill="#FFFF00")

　create_rectangleとcreate_ovalで描画される様子を次に
示します。

●線
◎メソッド　create_line(x0, y0, x1, y1, option)
カテゴリ　 tkinterのCanvasクラス
引数　　　 x0, y0：点1の座標、x1, y1：点２の座標、option：さ

まざまな設定
戻り値　　 作成した線のIDを返す
説明　　　 点1と点2を結ぶ線を描画し、そのオブジェクトの識別

子を返す
使用例　　 id = canvas.create_line(300, 50, 400, 100, width=3)

●文字
◎メソッド　create_text(x, y, option)
カテゴリ　 tkinterのCanvasクラス
引数　　　 option：描画文字はtextオプションで、フォントは

fontオプションで指定する
戻り値　　 作成した文字のIDを返す
説明　　　 x, yの座標にテキストを描画する
使用例　　 id = canvas.create_text(350, 180, text="Hello", font=

("", 30))

●画像
◎メソッド　create_image(x, y, option)
カテゴリ　 tkinterのCanvasクラス
引数　　　 x, y：画像を描画する場所、option：画像オブジェクト

はimageオプションで指定する
戻り値　　 作成した画像のIDを返す
説明　　　 画像からPhotoImageオブジェクトを作成し、そのオ

ブジェクトをimageオプションで指定することで、座
標(x,y)の場所に画像を描画する。デフォルトでは、
anchorがCENTERなので(x,y)が画像の中心となる。画
像の左上を (x,y)にする場合には optionとして
anchor=NWを指定する

使用例　　 img = tk.PhotoImage(file = 'logo.png')
id = canvas.create_image(100, 250, image=img,
anchor=tk.NW)

　 こ の ほ か に も Canvas に は ポ リ ゴ ン を 描 く
create_polygon、円弧を描くcreate_arcなどのメソッドが
用意されています。

◎リスト tkinter_canvas_drawings.py
import tkinter as tk
root = tk.Tk()
canvas = tk.Canvas(root, width=500, height=500)
canvas.pack()

canvas.create_rectangle(100, 50, 200, 100, 　１
　　fill="#FFFF00", outline="#0000FF", width=10)
canvas.create_oval(100, 150, 200, 200,　２
　　fill="#00FF00", outline="#00FFFF", width=5)
canvas.create_line(300, 50, 400, 100, width=3) ３
canvas.create_text(350, 180, text="Hello", font=("", 30)) ４
img = tk.PhotoImage(file = 'logo.png') ５
canvas.create_image(100, 250, image=img, anchor=tk.NW) ６

root.mainloop()

　１で矩形を描き、２で楕円を描き、３で直線、４でテキス
トを描画しています。５で「logo.png」というファイルから
画像オブジェクトを作成し、６で画像を描画しています。そ
れぞれオプションで色や線の太さなどを指定しています。

　画像のリサイズ

　Tkinterだけで画像のリサイズを効率よく行うことはでき
ません。以下のようにzoomとsubsampleを組み合わせるこ
とである程度の拡縮はできますが、これらのメソッドは引
数に整数しか取れないこともあり、リサイズ後の画像品質
はだいぶ劣化してしまいます。

img = img.zoom(2, 1)　　　　　#横2倍, 縦1倍

img = img.subsample(2, 2)　　#横1/2倍, 縦1/2倍

　リサイズが必要な場合は、 PIL（ Python Imaging
Library）などほかのモジュールを使うのがよいでしょう。

181
Canvasに描画した内容を操作するには

 描画時に取得したidを引数にCanvasの各種メソッドを
実行する

　前項でCanvasへの描画方法について説明しましたが、この
ま ま で は HTML の Canvas と あ ま り 変 わ り ま せ ん 。
draw_rectangleではなくcreate_rectangleというメソッド名だ
ったことにも象徴されていますが、これらのメソッドは描画
するだけでなく、オブジェクトを作成し、その識別子を戻り
値として返します。そして、その識別子を使用すれば、いっ
たん描画した内容を変更することができます。

◎メソッド　coords(id [, coods])
カテゴリ　 tkinterモジュールのCanvasクラス
引数　　　 id : canvasに描画したオブジェクトのid、coods: 更新

後の座標
戻り値　　 オブジェクトの座標
説明　　　 オブジェクトが占める矩形の座標を返す。coordsに

x0,y0,x1,y1を指定するとオブジェクトの座標が更新さ
れる

使用例　　 obj_id = canvas.create_rectangle(10,10, 100,100)
r = canvas.coords(obj_id)

◎メソッド　move(id, x, y)
カテゴリ　 tkinterモジュールのCanvasクラス

引数　　　 id：canvasに描画したオブジェクトのID、x：横方向
の移動量、y：縦方向の移動量

戻り値　　 なし
説明　　　 オブジェクトを現在の位置からx、y分移動する
使用例　　 ball = canvas.create_oval(100, 100, 120, 120)

canvas.move(ball, 10, 20)

◎リスト tkinter_canvas_objects.py
import tkinter as tk

def keyhandler(e):
　　r = canvas.coords(ball) １
　　print(r)
　　x, y = 0, 0
　　if e.keysym == "Up":
　　　　y = -5
　　elif e.keysym == "Down":
　　　　y = +5
　　elif e.keysym == "Right":
　　　　x = +5
　　elif e.keysym == "Left":
　　　　x = -5
　　canvas.move(ball, x, y) ２

root = tk.Tk()
canvas = tk.Canvas(root, width=300, height=300)
canvas.pack()
ball = canvas.create_oval(100, 100, 120, 120,
　　fill="#00FF00")
root.bind("<Key>", keyhandler)

root.mainloop()

　１でballオブジェクトの座標を取得して、コンソールに出
力しています。その後、押下されたキーの種類をkeysymプロ
パティで調べ、その値に応じ、２でballを移動しています。

■実行結果（ボールを移動したときにコンソールに表示されるメッセージ）

[100.0, 100.0, 120.0, 120.0]
[105.0, 100.0, 125.0, 120.0]
[110.0, 100.0, 130.0, 120.0]

　キーを押下するたびにballが移動します。またコンソール
にはballの占める領域が出力されます。

182
mainloop以外の処理を実行するには

 afterメソッドを使って関数を実行する

　TkinterでGUIを構築したあとで、何らかの処理を実行した
い場合もあるでしょう。以下のようなイメージです。

root.mainloop()

while True:
　　some_func()

　しかし、Tkinterではmainloopメソッドを実行することでメ
インループに入ってしまいます。つまり、mainloopより後ろ
に記述した内容は、ウィンドウが閉じられるまで実行されま
せん。このような状況に対処するために用意されているの
が、指定した時間後に処理を実行するafterメソッドです。ま
た、このあとに示すサンプルでは、オブジェクトと矩形の重
なりを検出する、次のfind_overlappingメソッドを使用し
ます。

◎メソッド　after(msec, func)
カテゴリ　 tkinterのTkクラス
引数　　　 msec：ミリ秒、func：関数
戻り値　　 識別子を示す文字列
説明　　　 msecで指定した時間のあとにfuncを実行する。funcの

中でafterを呼べば、mainloopに入ったあとでも、定
期的な処理を行える

使用例　　 id = root.after(10, tick)

◎メソッド　find_overlapping(x1,y1,x2,y2)
カテゴリ　 tkinterモジュールのCanvasクラス
引数　　　 重なりを検出する矩形領域
戻り値　　 衝突しているオブジェクトIDのタプル
説明　　　 引数で指定した矩形が重なっているオブジェクトを検出

する
使用例　　 collide = canvas.find_overlapping(x0,y0,x1,y1)

　canvasのまとめとして、迷路の壁にぶつからないように上
下左右で矩形を動かすサンプルを次に示します。

◎リスト tkinter_canvas_tick.py

import tkinter as tk
import collections １
keymap = collections.defaultdict(bool) ２
speed = [0, 0] ３
MAP = ((1,1,1,1,1,1,1,1),　４
　　　　(1,0,1,0,0,0,0,1),
　　　　(1,0,1,0,1,1,0,1),
　　　　(1,0,1,0,0,1,0,1),
　　　　(1,0,1,1,0,1,0,1),
　　　　(1,0,0,0,0,1,0,1),
　　　　(1,1,1,1,1,1,1,1))
def keypress(e): ５
　　keymap[e.keycode] = True
def keyup(e): ６
　　keymap[e.keycode] = False
def tick(): ７
　　if keymap[37]: speed[0] -= 1
　　if keymap[39]: speed[0] += 1
　　if keymap[38]: speed[1] -= 1
　　if keymap[40]: speed[1] += 1
　　canvas.move(you, speed[0], speed[1]) ８
　　speed[0] *= 0.95 ９
　　speed[1] *= 0.95
　　b = canvas.coords(you) 10
　　collide = canvas.find_overlapping(11
　　　　b[0], b[1], b[2], b[3])
　　if len(collide) <= 1: 12
　　　　root.after(30, tick)

root = tk.Tk()
canvas = tk.Canvas(root, width=400, height=350)
canvas.bind_all("<KeyPress>", keypress)
canvas.bind_all("<KeyRelease>", keyup)
canvas.pack()
for j, row in enumerate(MAP):

　　for i, col in enumerate(row):
　　　　if MAP[j][i] == 1:
　　　　　　canvas.create_rectangle(i*50, j*50,　13
　　　　　　　　(i+1)*50, (j+1)*50, fill="#00c")
you = canvas.create_rectangle(70,70,90,90,fill="#F0F")　14
root.after(30, tick) 15
root.mainloop()

　１と２でキー押下情報を保持する辞書を作成しています。
３では移動速度を、４では地図のデータを保持する変数を初
期化しています。５と６でキー押下状態をkeymap辞書に反映
しています。７ではキーの状態に応じて移動速度を変化さ
せ、８でキャラクタを移動させています。９は減速処理で
す。10でキャラクタの座標を取得し、11で衝突判定をして
います。衝突していない場合は12で処理を継続しています。
13ではMAPから地図を、14では操作対象となるキャラクタ
を作成しています。15ではでは、afterメソッドにより、メイ
ンループが開始された30ミリ秒後にtickメソッドを呼び出し
ています。

Chapter
８

そのほかの
便利なモジュール

Pythonには非常に多くのモジュールがあります。ここまでのカテゴ
リには分類されなかったものの、覚えておくと便利なモジュールを
いくつか集めてみました。

8-1 そのほかのモジュール
ここでは、知っておくと便利なクラス、関数などをランダム
に取り上げます。

183
コマンドラインツールの引数処理を簡単に行うには

 argparseモジュールのArgumentParserを使用する

　Pythonでコマンドラインツールを作成する場合、各種引数
を受け取る必要があるかもしれません。引数のチェックやヘ
ルプの表示に便利なクラスを見てみましょう。

◎コンストラクタ　ArgumentParser(description)
カテゴリ　 argparseモジュール
引数　　　 description：コマンドの使い方を伝えるメッセージ文字

列を指定する
戻り値　　 Parserオブジェクト
説明　　　 コマンド引数のチェックなどの処理を簡易化するととも

に、コマンド使用方法を出力する
使用例　　 parser = argparse.ArgumentParser(description="multiple

two values")

◎ メ ソ ッ ド　 add_argument(name or flags [,help]
[,type] [, required] [,default][, nargs]...)
カテゴリ　 argparseモジュールのArgumentParserクラス
引数　　　 name or flags：引数の名前、もしくはオプション文字

列のリスト
help：引数の説明
type：引数が変換されるべき型

required: コマンドラインオプションが省略可能かどう
か
default：引数がなかった場合のデフォルト値
nargs：受け取るコマンドライン引数の数を指定

戻り値　　 ArgumentParserが引数を管理するために使うオブジェ
クト

説明　　　 引数を追加する
使 用 例 　 　 a = parser.add_argument("-a", help="value1",

type=float, default=0)

◎リスト argparse_test.py
import argparse

def mul(a, b, c):
　　return a * b * c １

if __name__ == "__main__":
　　parser = argparse.ArgumentParser("multiply three values")
　 　 parser.add_argument("-a", help="value1", type=float,
required=True)
　 　 parser.add_argument("-b", help="value2", type=float,
required=True)
　 　 parser.add_argument("-c", help="value3", type=float,
default=1)
　　args = parser.parse_args() ２
　　print(mul(args.a, args.b, args.c))

　このスクリプトは3つの引数をかけ合わせた結果を出力しま
す１。最初の2つは必須の引数です。最後の1つはオプション
引数で、デフォルト値が１です。parse_argsは引数の文字列を
オブジェクトに変換するメソッドです２。 まずは引数を指定
しなかった場合です。引数-a、-bが必須の旨のエラーが表示さ
れます。

◎実行例

>python argparse_test.py
usage: multiply three values [-h] -a A -b B [-c C]
multiply three values: error: the following arguments are required: -
a, -b

　-hオプションを指定した場合の出力は以下の通りです。

◎実行例

>python argparse_test.py -h
usage: multiply three values [-h] -a A -b B [-c C]

optional arguments:
　-h, --help　show this help message and exit
　-a A　　　　value1
　-b B　　　　value2
　-c C　　　　value3

　次のように引数を3つ指定した場合は正しい値が出力される
ことがわかります。

◎実行例

>python argparse_test.py -a 1 -b 2 -c 3　
6.0

　以前はoptparseというモジュールがコマンドライン解析用に
用いられていましたが、廃止される予定です。今回紹介した
argparseモジュールを使ってください。

●オプションをつけずに引数を指定できるようにする
　「python prog -a 3 -b 4 -c 5」のようにオプションを指定す
るのではなく、python 「prog 3 4 5」のように引数を処理した

い場合は以下のサンプルのように記述します。

◎リスト argparse_test2.py
import argparse

def mul(a, b, c):
　　return a * b * c

if __name__ == "__main__":
　　parser = argparse.ArgumentParser("multiply three values")
　 　 parser.add_argument("numbers", help="float values",
type=float, nargs=3) １
　　args = parser.parse_args()
　 　 print(mul(args.numbers[0], args.numbers[1],
args.numbers[2])) ２

　１の「nargs=3」で、コマンドライン引数の数を指定してい
ます。受け取った引数はリストに格納され、２で各要素をか
け合わせています。
　引数の個数が想定と異なる場合にはエラーが出力され、正
しい場合は正しく処理が行われていることがわかります。

◎実行例

>python argparse_test2.py 1 2
usage: multiply three values [-h] numbers numbers numbers
multiply three values: error: the following arguments are required:
numbers

>python.exe argparse_test2.py 1 2 3
6.0

　プログラムからコマンドライン引数を受け取る
方法

　argparseモジュールを使用しないで、プログラムからコマ
ンドライン引数を受け取るにはsysモジュールのリストargv
を参照します。argvにはコマンドライン引数がリストとして
格納されます。

◎リスト sys_argv.py
import sys
for i, v in enumerate(sys.argv):
　　print("argv[{0}]={1}".format(i, v))

◎実行例
>python sys_argv.py a b 3
argv[0]=sys_argv.py
argv[1]=a
argv[2]=b
argv[3]=3

　コマンドラインの値はすべて文字列になるので数値とし
て扱う際には変換する必要があります。

184
ログを処理するには

 loggingモジュールを使用する

　かなり多くの開発者がprint関数を使ったデバッグをしたこ
とがあると思います。print関数は簡単でよいのですが、コメ

ントアウトをON/OFFする必要があったり、多くのprint関数で
ソースコードが散らかってしまったりと問題点も少なくあり
ません。そんなときはloggingモジュールの使用を検討してみ
ましょう。

◎関数　getLogger(name=None)
カテゴリ　 loggingモジュール
引数　　　 ログの名前
戻り値　　 指定された名前のロガーオブジェクトを返す
説明　　　 名前省略時はrootという名前が使用される
使用例　　 logger = logging.getLogger()

◎ 関 数 　 basicConfig(level=level,
filename=filename)
カテゴリ　 loggingモジュール
引数　　　 level：ロギングレベルを指定する。DEBUG、INFO、

WARNING、ERROR、CRITICALから選択する
filename：ログを出力するファイルを指定する

戻り値　　 なし
説明　　　 ロギングレベルを指定する。レベルを設定することで出

力情報を制御できる
使用例　　 logger = logging.basicConfig(level=logging.CRITICAL)

　ロギングレベルは以下のように設定されています。設定し
たロギングレベル以上の情報のみが出力されるようになりま
す。

◎リスト logging_test.py
import logging
logger = logging.getLogger()
logging.basicConfig(level=logging.CRITICAL) １

logger.debug("hello")
logger.info("world")
logger.warning("python")
logger.error("standard")
logger.critical("library")

　basicConfigで設定した以上の重要度レベルを持つメッセー
ジのみが表示されます。上記の例ではCRITICAL１と指定して
いるので、criticalレベルのメッセージしか出力されません。

■実行結果

CRITICAL:root:library

　loggerオブジェクトは単にエラーを出力するレベルを制御す
るだけでなく、コードの作成時の意図を第三者に伝える役目
もあります（単なる情報なのか、警告なのか、エラーなの
か）。効果的に使用する習慣を付けるとよいでしょう。

　モジュール名と同じ名前のファイル名を付けな
いこと

　Pythonではよく使う関数やクラスなどをまとめてモジュ
ールにすることができます。デフォルトでモジュール名＝
ファイル名となります。ディレクトリをパッケージとして

扱うには__init__.pyを用意する必要があります。いずれにせ
よファイル名やディレクトリ名を標準モジュールと同じ名
前にしてしまうと、自分が作ったファイルやディレクトリ
が優先されてしまうことがあるので注意してください。
os.pyやlogging.pyのように標準モジュールと同名のファイル
を自分で作り、実行しようとしても、意図した挙動になら
なくなることがあります。

185
オブジェクトを手軽に永続化するには

 shelveモジュールを使用する

　オブジェクトをファイルに保存したり、読み込んだりする
にはshelveモジュールが便利です。shelveはその実装の中で
pickle（134で解説）を利用しています。shelveは保存するデー
タを辞書のようにアクセスできるので使い方が簡単です。ち
ょっとしたデータを保存したい場合に適しています。

◎関数　open(filename)
カテゴリ　 shelveモジュール
引数　　　 ファイル名
戻り値　　 値を格納するための辞書オブジェクトが返される
説明　　　 通常の辞書のようにアクセスするだけで、格納された情

報がファイルに保存される
使用例　　 with shelve.open("data.db") as f:

◎リスト shelve_test.py
import shelve

with shelve.open('shelve.db') as db:

　　db['name'] = 'python'
　　db['dict'] = {"A": 3, "B": (2, 5), "C": "Hello"}
　　db['list'] = [2,4,5,6,1,2,3]

with shelve.open('shelve.db') as db:
　　print(db['name'])
　　print(db['dict'])
　　print(db['list'])

◎実行例

>python shelve_test.py
python
{'A': 3, 'C': 'Hello', 'B': (2, 5)}
[2, 4, 5, 6, 1, 2, 3]

　前半部分でshelve.dbに値を書き込んで、後半部分で値を読
み込んでいます。実行したディレクトリにはshelve.dbという
ファイルが生成されています。

186
ユニットテストを実行するには

 unittestモジュールを使用する

　テスト駆動開発にはユニットテストが欠かせません。
Pythonの標準ライブラリにもユニットテスト用のunittestモジ
ュールが含まれています。
　テスト駆動開発では一般的に以下のような開発サイクルを
繰り返します。

　1) 機能を検証するためのテストを書く（テストはFail）

　2) テストをパスするための最小限のコードを書く（テスト
はPass）

　3) 必要に応じてリファクタリングを行う

　unittestを使いながら、足し算addと引き算subを行うCalcク
ラスを作ってみましょう。まずは、機能を検証するためのテ
ストを作成します。

◎リスト calc_unittest.py
import unittest
import calc

class CalcTest(unittest.TestCase): １
　　def test_add(self):
　　　　c = calc.Calc()
　　　　expected = 5
　　　　actual = c.add(2, 3) ２
　　　　self.assertEqual(expected, actual) ３

　　def test_sub(self):
　　　　c = calc.Calc()
　　　　expected = 3
　　　　actual = c.sub(5, 2) ４
　　　　self.assertEqual(expected, actual) ５

if __name__ == '__main__':
　　unittest.main() ６

　unittestを記述するには、unittest.TestCaseを継承するクラス
を作成します。今回の場合はCalcTest１です。あとは、普通に
メソッドを記述していくだけです。unittest.main()５を実行す
ると、testから始まる名前を持つメソッドが自動で呼び出され
るので、その中でself.assertEqual３などの検証用のメソッドを
呼び出します。test_addではCalcクラスのaddメソッド２を、

test_subではCalcクラスのsubメソッド４を呼び出して、その
戻り値が予期した値か否かを検証しています。
　このテストを実行するとcalcモジュールがないというエラー
が出力されるので、calcモジュールを作成します。

◎リスト calc.py
class Calc:
　　def add(self, a, b):
　　　　pass
　　def sub(self, a, b):
　　　　pass

　エラーが出ることを確認したいので、メソッドの中身は意
図的に空にしています。この段階でテストを実行すると、以
下のようなエラーが出力されます。

■実行結果

FF
===
===================
FAIL: test_add (__main__.CalcTest)
…
self.assertEqual(expected, actual)
AssertionError: 5 != None
===
===================
FAIL: test_sub (__main__.CalcTest)
…
self.assertEqual(expected, actual)
AssertionError: 3 != None
--
Ran 2 tests in 0.006s
FAILED (failures=2)

　expectedとactualの値が同じではないためAssertionErrorでテ
ストがFailしていることがわかります。ここまで確認できてか
ら、ようやくCalcを実装します。

◎リスト calc.py (修正後)
class Calc:
　　def add(self, a, b):
　　　　return a + b
　　def sub(self, a, b):
　　　　return a - b

　再度テストを実行するとパスすることがわかります。

■実行結果

Ran 2 tests in 0.004s
OK

　unittestではassertEqualのように値を比較するだけでなく、
いろいろな検証用のメソッドが用意されています。主なメソ
ッドを以下の表に列挙します。

　assertAlmostEqualは“ほぼ同じ値”を検証するために使いま
す。浮動小数点を扱う場合などで使用します。各テストを実
行する前後、クラスを初期化する前後に特別な処理を実行し
たい場合は、以下のメソッドを必要に応じて実装します。

　これらのメソッドを使ってテストの挙動を確認してみま
す。前の例では各テストでCalcオブジェクトを作成していまし
たが、以下の例ではsetUpメソッドでCalcオブジェクトを作成
しています１。

◎リスト calc_unittest1.py
import unittest
import calc

class CalcTest(unittest.TestCase):
　　@classmethod
　　def setUpClass(cls):
　　　　print("setUpClass")

　　@classmethod
　　def tearDownClass(cls):
　　　　print("tearDownClass")

　　def setUp(self):
　　　　self.calc = calc.Calc() １
　　　　print("setUp", id(self))

　　def tearDown(self):
　　　　print("tearDown", id(self))

　　def test_add(self):

　　　　expected = 5
　　　　actual = self.calc.add(2, 3)
　　　　print("test_add", id(self))
　　　　self.assertEqual(expected, actual)

　　def test_sub(self):
　　　　expected = 3
　　　　actual = self.calc.sub(5, 2)
　　　　print("test_sub", id(self))
　　　　self.assertEqual(expected, actual)

if __name__ == '__main__':
　　unittest.main()

■実行結果

setUpClass
setUp 2653252992808
test_add 2653252992808
tearDown 2653252992808
.setUp 2653252992920
test_sub 2653252992920
tearDown 2653252992920
.tearDownClass
--
Ran 2 tests in 0.009s
OK

　最初にsetUpClassが呼ばれ、最後にtearDownClassが呼ばれ
ています。今回のテストケースはtest_addとtest_subの2つで
すが、それらが実行される直前にsetUpが、実行後にtearDown
が実行されていることがわかります。また、それぞれのテス
トケースでオブジェクトのidを表示していますが（上記例では
2653252992808と2653252992920）、別のインスタンスが作
成されていることがわかります。

　コンソールに色付きの文字を出力する

　Pythonでは、ちょっとしたコマンドラインインターフェ
ース用のスクリプトを作ることが少なくありません。多少
色を付けるだけでもグッと印象が変わります。coloramaモ
ジュールを使ってコマンドプロンプト（ターミナル）への
出力に色を付けてみましょう。

ＮＯＴＥ coloramaモジュールは標準モジュールには含まれてい
ないので、使用する際には「pip install colorama」
（macOS/Linuxでは「pip3 ～」）でモジュールをイン
ストールしてください。

◎関数　init(autoreset=False)
カテゴリ　 coloramaモジュール
引数・戻り値　　 なし
説明　　　 coloramaモジュールを初期化する
使用例　　 colorama.init()

　coloramaモジュールを使うときは最初にinit関数を実行し
ます。あとは、print文で文字を出力する際に、前景色、背
景色のキーワード（制御コード）を文字の前に付与するだ
けです。Fore、Backともに以下のキーワードの色を指定で
きます。RESETは設定を解除するものです。

'BLACK', 'BLUE', 'CYAN', 'GREEN', 'LIGHTBLACK_EX',
'LIGHTBLUE_EX', 'LIGHTCYAN_EX', 'LIGHTGREEN_EX',
'LIGHTMAGENTA_EX', 'LIGHTRED_EX', 'LIGHTWHITE_EX',
'LIGHTYELLOW_EX', 'MAGENTA', 'RED', 'RESET', 'WHITE',
'YELLOW'

◎実行例

>>> from colorama import init, Fore, Back, Style
>>> init()
>>> print(Fore.GREEN + "Hello" + Back.RED + "World")
HelloWorld
>>> print(Fore.YELLOW + "Hello" + Back.BLUE + "World")
HelloWorld
>>> print(Fore.RESET)

>>> print(Back.RESET)

◎リスト colorama_test2.py
from colorama import init, Fore, Back
init()
for attr in dir(Fore):
　　if attr[0] != "_":
　 　 　 　 print(Back.WHITE + getattr(Fore, attr) + "
{0:20}".format(attr), end='')
　 　 　 　 print(Fore.WHITE + getattr(Back, attr) + "
{0:20}".format(attr))

　ファイルの作成や更新を検出する

　サーバやサービスなどには、設定ファイルの更新を反映
するために、設定ファイルを再読み込みしなければならな
いものがあります。そのような場合、ファイルの作成や変
更を自動的に検出できれば、再読み込みといった手順を自
動化することが可能です。watchdogというモジュールを使
って、そのような自動化を実現してみましょう。watchdog
モジュールは、一定時間ごとにファイルを監視するのでは
なく（Pollingするのではなく）、OSレベルで変更を検出す
るので、処理の負担が少ないのが特徴です。

ＮＯＴＥ watchdogモジュールは標準モジュールには含まれてい
ないので、使用する際には「pip install watchdog」
（macOS/Linuxでは「pip3 ～」）でモジュールをイン
ストールしてください。

◎コンストラクタ　Observer()
カテゴリ　 watchdogモジュール
引数　　　 なし
戻り値　　 Observerオブジェクト自身
説明　　　 Observerオブジェクトを作成する
使用例　　 observer = Observer()

◎ メ ソ ッ ド 　 schedule(event_handler, path,
recursive)
カテゴリ　 watchdogモジュール
引数　　　 event_handler：イベントを処理するHandlerオブジ

ェクト
path：監視するパス、recursive：階層ごと監視する
か否か

戻り値　　 WatchDogオブジェクト

説明　　　 Observerオブジェクトの監視内容の設定を行う。こ
のあとstartメソッドを呼び出すことで実際の監視が
開始される

◎リスト watchdog_test.py
from watchdog.observers import Observer
from watchdog.events import PatternMatchingEventHandler

observer = Observer() １

class Handler(PatternMatchingEventHandler):
　　def on_created(self, event):
　　　　print("on_created:{}".format(event.src_path))
　　def on_modified(self, event):
　　　　print("on_modified:{}".format(event.src_path))
　　def on_deleted(self, event):
　　　　print("on_deleted:{}".format(event.src_path))

observer.schedule(event_handler=Handler("*"), path=".",
recursive=True) ２
observer.start() ３
try:
　　while True:
　　　　observer.join(1) ４
except KeyboardInterrupt:
　　observer.stop()

　Observerオブジェクトを作成し１、変化を処理するため
のハンドラ、モニタするパスを指定してscheduleメソッド２
を呼び出します。実際の監視はstartメソッド３で開始しま
す。監視を継続するためにjoinメソッド４を呼び出していま
す。Ctrl+Cキーでの中断を受信するために、joinをタイムア
ウト値付きで呼び出しています。

◎実行例

C:\Samples\python watchdog_test.py
on_created:.\test\新しいテキスト ドキュメント.txt
on_modified:.\test\新しいテキスト ドキュメント.txt
on_modified:.\test
on_deleted:.\test\test.txt

	目次
	Introduction Python環境の構築
	1 Pythonのインストール
	2 モジュールのインポートについて
	3 Atomエディタについて
	Chapter 1 文字列とデータの基本操作
	1-1 文字列の基本操作
	001 文字列をリテラルによって生成するには
	002 文字列の長さを求めるには
	003 文字列を連結するには
	004 アルファベットの大文字／小文字を変換するには
	005 文字列から指定した位置の文字を取り出すには
	006 文字列の一部を取り出すには
	007 文字列を反転するには
	008 文字列の一部を置換するには
	009 文字列内の文字を変換表に従って置換するには
	010 文字列内を検索するには
	011 文字列内の文字列の数をカウントするには
	012 文字列内に値を埋め込むには（その１）
	013 文字列内に値を埋め込むには（その2）
	014 文字列の先頭／最後から指定した文字を取り除くには
	015 リスト、タプル、辞書の要素を接続した文字列を生成するには
	016 数値を文字列に変換するには
	017 文字列を数値に変換するには
	018 文字列が数値／アルファベット／空白文字であることを調べるには
	019 文字列を指定した文字位置で分解しリストに変換するには
	020 文字列をセパレータの位置で３分割したタプルを戻すには
	021 文字列の先頭／最後が指定したものかを調べるには
	022 文字列を左寄せ／中央寄せ／右寄せにするには
	023 文字列の先頭を「0」で埋めるには
	024 文字列を指定したエンコーディングでエンコード／デコードするには
	025 文字とユニコードのコードポイントを相互変換するには
	026 タブを展開するには

	1-2 データの基本操作
	027 値のデータ型を調べるには
	028 オブジェクトのidを調べるには
	029 値を画面に表示するには
	030 文字列をPythonの式や文として実行するには
	031 実行中のプログラムファイルのパスを調べるには
	032 実行中のプログラムファイルの絶対パスや名前を調べるには
	033 条件判断を簡潔に行うには
	034 サブクラスかどうかを調べるには
	035 グローバル、ローカルのシンボルテーブルを表示するには
	036 コマンドラインから入力を受け取るには
	037 2つの値を比較するには
	038 オブジェクトが同じかどうかを判断するには
	039 ヘルプを表示するには

	Chapter 2 コレクションの取り扱い
	2-1 リスト、タプルの操作
	040 リスト、タプルをリテラルとして生成するには
	041 リスト、タプルの要素数を求めるには
	042 リスト、タプルを連結するには
	043 リスト、タプルの指定した位置の要素を取り出すには
	044 範囲を指定してリスト、タプルの要素を取り出すには
	045 リスト、タプルの要素の順番を反転するには
	046 タプルとリストを相互変換するには
	047 リストの要素の値を変更するには
	048 リストの最後に要素を追加するには
	049 リストの指定した位置に要素を挿入するには
	050 リストから指定した位置の要素を削除するには
	051 指定した値の要素がリスト、タプルに存在するかを調べるには
	052 リストから指定した値の要素を削除するには
	053 リスト、タプルの指定した値の要素の数を調べるには
	054 リスト、タプルの要素をソートするには
	055 リストやタプルの要素の最小値／最大値を求めるには
	056 リストをコピーするには
	057 リストやタプルの要素を順に取り出して処理するには
	058 リストやタプルのインデックスと要素を順に取り出すには
	059 2つのリスト、タプルの要素を組み合わせてループで処理するには
	060 整数の並びのリストやタプルを生成するには
	061 リスト、タプルの数値の要素の合計を求めるには
	062 シンプルな記述が可能な内包表記でリストを生成するには
	063 関数を使用してリストやタプルの要素を抽出するには
	064 関数を使用してリストやタプルの要素を順に処理するには

	2-2 辞書の操作
	065 辞書をリテラルとして生成するには
	066 指定したキーに対応する要素を取得するには
	067 辞書に要素を追加する／値を変更するには
	068 辞書の要素数を取得するには
	069 辞書の内容を別の辞書で更新／連結するには
	070 辞書の要素を削除するには
	071 辞書に指定したキーの要素が存在するか調べるには
	072 辞書のすべてのキーを取得するには
	073 辞書のすべての値を取得するには
	074 辞書からすべてのキーと値のペアを取得するには
	075 辞書をコピーするには
	076 シンプルな記述が可能な内包表記で辞書を生成するには

	2-3 セットの操作
	077 セットをリテラルとして生成するには
	078 セットをリストやタプルなどから生成するには
	079 セットの要素数を求めるには
	080 セットに要素を1つ追加するには
	081 セットを別のコレクションで更新するには
	082 2つのセットを合わせて新たなセットを生成するには
	083 セットの要素を削除するには
	084 セットをリストに変換するには
	085 セットに指定した要素が含まれているかを調べるには
	086 セットの要素を順に取得するには
	087 2つのセットの関係を調べるには
	088 セットの要素を辞書のキーとして使用するには
	089 セットをコピーするには
	090 シンプルな記述が可能な内包表記でセットを生成するには

	2-4 collectionsモジュールの便利なクラス
	091 タプルやリストの要素の出現回数を数えるには
	092 辞書にデフォルト値を設定するには
	093 タプルの要素に名前を付けるには

	Chapter 3 いろいろなテキスト処理
	3-1 正規表現
	094 正規表現を使用して検索を行うには
	095 マッチした部分の文字列や位置を取得するには
	096 パターン内のPythonのエスケープシーケンスを無効にするには
	097 最短マッチを行うには
	098 パターンをグループ化してマッチした部分を複数取り出すには
	099 マッチしたすべての部分をリストとして取り出すには
	100 文字列をパターンにマッチする部分で分割するには
	101 パターンにマッチする部分を置換するには
	102 パターンをコンパイルして実行速度を上げるには

	3-2 テキストファイルの読み書き
	103 テキストファイルの内容をまとめて読み込むには
	104 テキストファイルの各行をリストの要素として取り出すには
	105 テキストファイルの各行を1行ずつ読み込むには
	106 文字列をテキストファイルに書き出すには
	107 リストの要素をまとめてテキストファイルに書き出すには

	3-3 CSVファイルの取り扱い
	108 CSVファイルを読み込むには
	109 文字列をCSVファイルに書き出すには
	110 CSVファイルを辞書形式で読み込むには
	111 CSVファイルに辞書形式で書き込むには

	3-4 JSONデータの取り扱い
	112 JSONファイルを読み込んでPythonのオブジェクトに変換するには
	113 JSONデータの文字列をPythonのオブジェクトに変換するには
	114 PythonのオブジェクトをJSONデータに変換するには
	115 JSONデータをファイルに書き出すには

	Chapter 4 OSの機能を利用する ファイル／ディレクトリ／時刻／日付
	4-1 ファイルやディレクトリの取り扱い
	116 パス名（ディレクトリやファイル）を分割するには
	117 ファイル名と拡張子に分割するには
	118 パス名（ディレクトリやファイル）を連結するには
	119 パスを正規化するには
	120 ファイルやディレクトリの有無を調べるには
	121 ディレクトリを作成するには
	122 ディレクトリを削除するには
	123 ファイルを削除するには
	124 作業ディレクトリを取得・移動するには
	125 ディレクトリのファイル一覧を取得するには
	126 条件に合致するファイルをリストアップするには
	127 ファイルやディレクトリの名前を変えるには
	128 空のファイルを作成するには
	129 一時ファイルを作成するには

	4-2 多少高度なファイル操作
	130 ファイルをコピーするには
	131 コマンドのパスを調べるには
	132 ファイルを圧縮／展開するには
	133 複数ファイルから読み込むには
	134 オブジェクトをファイルに保存する／ファイルから読み込むには

	4-3 timeモジュールによる時刻の取り扱い
	135 現在時刻を取得するには
	136 一定時間実行を停止するには
	137 経過時刻を計測するには

	4-4 datetimeモジュールによる日付時刻の操作
	138 日付に関する情報を求めるには
	139 datetimeモジュールで時刻に関する情報を求めるには
	140 経過日数をカウントするには

	Chapter 5 数値演算と乱数
	5-1 さまざまな数値演算
	141 小数を整数に変換するには
	142 絶対値を求めるには
	143 べき乗を求めるには
	144 平方根を求めるには
	145 角度とラジアンを相互変換するには
	146 三角関数を使うには
	147 座標(x,y)とX軸のなす角度を求めるには
	148 １０進数と１６進数を相互に変換するには
	149 余りと商を一度に求めるには
	150 複数の要素のTrue/Falseを一度に調べるには

	5-2 乱数
	151 乱数を生成するには
	152 ランダムに並べ替え、もしくは1つを選択するには

	Chapter 6 ネットワークへのアクセス
	6-1 URLの操作とアクセスの基本
	153 URLのフォーマットを解析するには
	154 URLで絶対パスを取得するには
	155 URLで示されるページを取得するには
	156 URLをファイルに保存するには
	157 URLからJSON形式のデータを取得するには

	6-2 Webサーバとのやり取りの基本
	158 テスト用Webサーバを用意するには
	159 特殊文字をURLで使うには
	160 辞書型データをURLエンコードするには
	161 POSTでデータを送信するには
	162 HTTPヘッダを指定するには
	163 HTTPやHTTPSで通信を行うには
	164 ブラウザを起動するには

	Chapter 7 描画とGUI
	7-1 Turtleグラフィックスを使用する
	165 基本的な描画を行うには
	166 多角形の描画を行うには
	167 幾何学模様を描画するには
	168 フラクタルを描画するには

	7-2 Tkinterでウィジェットをレイアウトする
	169 ウィンドウを表示するには
	170 縦方向（横方向）にボタンを配置するには
	171 格子状にウィジェットを配置するには
	172 位置を指定してウィジェットを配置するには
	173 フォントを指定するには
	174 複雑な配置をするには

	7-3 Tkinterでイベントを処理する
	175 クリックイベントに反応するには
	176 キー入力に反応するには
	177 マウスイベントを取得するには
	178 生成後にウィジェットのオプションを設定するには
	179 GUIの状態を変数にバインドするには

	7-4 TkinterのCanvasに描画する
	180 Canvasに描画するには
	181 Canvasに描画した内容を操作するには
	182 mainloop以外の処理を実行するには

	Chapter 8 そのほかの便利なモジュール
	8-1 そのほかのモジュール
	183 コマンドラインツールの引数処理を簡単に行うには
	184 ログを処理するには
	185 オブジェクトを手軽に永続化するには
	186 ユニットテストを実行するには

	奥付

